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ABSTRACT  

Black pepper is the most commonly used spice in the world. Unfortunately, black pepper 

is frequently contaminated with Salmonella during farming or processing. With spices being the 

vector for several foodborne outbreaks over the past two decades, it is crucial to ensure that 

inactivation methods are effective and well-understood. Therefore, we conducted a systematic 

review and meta-analysis of available literature that provides data for Salmonella survival when 

facing different inactivation treatments. We also developed secondary predictive models when 

sufficient survival data were available. Water activity, temperature, and the sample matrix were 

shown to have a strong influence on the outcome of most treatments, but in many cases, their 

impact has not been thoroughly investigated. Relative humidity (RH) was a relevant predictor for 

chlorine dioxide-based (ClO2) treatments, but concentration was not. This work provides critical 

information for optimizing existing methods, developing new technologies, and formulating risk 

management strategies. 
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CHAPTER 1- INTRODUCTION  

Black pepper is the most widely consumed spice in the world and can be used as a 

seasoning in both home cooking and food processing. However, black pepper is very frequently 

contaminated with Salmonella, which can cause serious foodborne illnesses. There have been 

several Salmonella outbreaks since 2000 where the identified vector was a spice. Salmonella can 

survive within black pepper and can even grow in the spice, as observed in a study by Xie et al. 

(2022). While dangerous when found in packaged seasoning, adding Salmonella to a processed 

food can cause the bacterium to grow if proper precautions are not taken. Therefore, ensuring that 

Salmonella is inactivated within black pepper is crucial to maintaining the safety of the foods to 

which it is added.  

However, there are currently many available methods for inactivating Salmonella, and to 

date, no study has systematically reviewed and compared the overall effects of these treatments. 

A combination of predictive modeling and meta-analysis can show us how different inactivation 

treatments compare in terms of Decimal Reduction time (D–value), identify factors that influence 

how Salmonella survives these treatments, and pinpoint possible research and knowledge gaps 

regarding factors and potential confounding variables when designing and evaluating effective 

treatments.  

A meta-analysis is a method of synthesizing and interpreting data where results from 

multiple studies are combined through statistical modeling. These results can be used to identify 

new patterns within study results, understand challenges in experimental design, and maximize the 

statistical power in estimating the effect size of an intervention (Gonzales-Barron & Butler, 2011). 
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While meta-analyses have long had a presence in the domains of public health and the social 

sciences, their application in food science has been relatively new. 

 After identifying methods and critical factors that may influence treatment efficacy, we 

decided to develop predictive models for methods where sufficient data was available to have 

statistically viable predictive models. It is well known that several factors can influence the 

effectiveness of inactivation methods, including temperature, water activity, and humidity. This 

systematic review and meta-analysis can provide valuable information for future researchers and 

policymakers to inform risk assessment and risk management strategies. The predictive models 

generated in this study can also be used to identify key factors when predicting Salmonella 

inactivation from available interventions. While Salmonella poses a significant risk in black 

pepper, a well-informed risk management program can effectively minimize the probability of a 

serious outbreak. 

 For this study, we examined various inactivation methods for controlling Salmonella in 

black pepper. We also analyzed Salmonella inactivation within infected black pepper samples with 

no treatment. We hypothesized that the overall effect of interventions would be a significant 

reduction in Salmonella and that these effects would be influenced by environmental factors, as 

well as the characteristics of the treatment process and the black pepper matrix. Our second 

hypothesis was that Salmonella populations would decline within infected black pepper samples, 

as black pepper is a low-moisture environment with innate natural antimicrobial properties. While 

evaluating different methods for inactivating Salmonella in black pepper, we developed secondary 

inactivation models for methods with sufficient data. A suitable method requires at least 10 

experiments, allowing for one covariate to be added for every 10 independent experiments. These 

were analyzed for goodness of fit. Our third hypothesis postulated that a predictive model could 
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be developed for microbial inactivation with sufficient goodness of fit after taking relevant factors 

into account.  

Therefore, we had two objectives. For the systematic review, we collected and sorted 

through all available literature in three scientific databases (ScienceDirect, PubMed, and Web of 

Science). Papers with relevant data were selected, and data were extracted for statistical analysis. 

A meta-analysis of available data was conducted using a random effects model. We compared 

effect sizes and heterogeneity between studies. We evaluated our findings to determine if any 

significant variables explain the variance in the experiment results.  

We developed primary models for all experiments (2-phase linear model with tail). We 

also developed secondary models for methods where sufficient data and at least one suitable 

covariate were available, using the “one-in-ten” rule (Chowdhury & Turin, 2020) to select suitable 

methods. In short, the treatment category or survival data needed at least one suitable covariate 

and 10 independent experiments to qualify, with an additional predictor added for every 10 studies. 

We characterized the inactivation models based on goodness of fit, specifically by reporting the 

root mean squared error (RMSE), R-squared (R2), and Akaike Information Criterion (AIC) of the 

primary models, and the residual standard error (RSE), R2, and AIC for the secondary models, 

where applicable. We identified and analyzed various factors that may influence the inactivation 

process, discussing possible reasons for their influence, the limitations of our study and current 

knowledge, and possible prospects. 
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CHAPTER 2- LITERATURE REVIEW 

2.1 Salmonella– a global threat 

Salmonella species are among the most significant causes of foodborne illnesses 

worldwide. The bacterium is responsible for ~155,000 deaths and 94 million infections annually 

worldwide. While extremely harmful to adults, children, the elderly, and immunocompromised 

individuals are much more likely to experience life-threatening illnesses from a Salmonella 

infection. Malnourished populations are also much more susceptible to Salmonella infection 

(Soltan Dallal et al., 2024). While the effect of Salmonella is most severe in developing countries 

(Soltan Dallal et al., 2024), the bacterium is one of the leading causes of death from foodborne 

illness in the United States; estimates suggest that over 1.2 million illnesses, 26,500 

hospitalizations, and 420 deaths occur each year. Moreover, the annual cost of salmonellosis ($4.1 

billion) accounts for approximately 23.6% of the total impact of foodborne illnesses on the US 

economy (Scallan et al., 2011; Medalla et al., 2021). 

Making the problem even worse is the emergence of antimicrobial-resistant (AMR) and 

multi-antibiotic-resistant (MAMR) strains of Salmonella, which may not be readily treatable with 

available antibiotics. Occurrences of clinically relevant AMR Salmonella spp. were estimated to 

have increased by 40% between the 2015-2016 timeframe compared to the period between 2004-

2008 (Medalla et al., 2021). MAMR Salmonella infections have also been observed worldwide 

over the last ten years (Alvarez et al., 2023; Mola et al., 2021; Patra et al., 2021; Zhang et al., 

2024). This underscores the importance of making sure that Salmonella is controlled within food 

products. 
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2.2 A persistent foodborne pathogen 

Salmonella is a genus of rod-shaped, predominantly motile, Gram-negative bacteria in 

the family of Enterobacteriaceae. They are facultative anaerobes and can quickly adapt to 

environments with widely significant changes in pH, aw, temperature, and oxygen concentration. 

Their resilience and near ubiquity in the environment make them functionally impossible to 

eradicate. Therefore, proper food safety protocols must be implemented and followed to minimize 

the risk to human health (Food microbiology, 2019). Depending on various factors, such as prior 

exposure and available nutrients, Salmonella can survive in high-acid environments with a 

pH<3.85, including within fermented dairy products (Álvarez-Ordóñez et al., 2012). Moreover, 

studies have confirmed that Salmonella can survive at high salt concentrations (4% (w/V), as well 

as under temperatures as low as 2°C and as high as 54°C (D’Aoust & Maurer, 2007; Spector & 

Kenyon, 2012). 

 One of the most dangerous characteristics of Salmonella is its ability to survive in low-

aw conditions. Studies show that Salmonella spp. can survive in foods for extended periods with 

water activities below 0.2. Given that one of the food industry’s main strategies for microbial 

control is desiccation, industry professionals must consider Salmonella’s resilience even within 

hostile environments (Morasi et al., 2022). The characteristics of the food matrix can also 

contribute to Salmonella’s ability to survive. A high fat content may protect Salmonella from the 

extreme pH environment within the stomach. Sugar has also been shown to protect Salmonella 

within low-aw environments by partially replacing water within the cell membrane and stabilizing 

membrane proteins (Wason et al., 2021). There have been several Salmonella outbreaks within 

low-aw food in the past two decades, with numbers increasing each year. Most of these outbreaks 

have been associated with foods high in sugar content, such as chocolate, almonds, and peanut 
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butter. However, a wide range of low-aw foods have been linked to Salmonella outbreaks, from 

sesame products to infant formula. Improper sanitation and inactivation can also enhance the stress 

tolerance of Salmonella species. Some of the bacteria’s strategies for surviving low-aw 

environments are osmoregulation, dormancy, changes in membrane structure, and biofilm 

formation. Moreover, exposure to a stressful environment, such as a low water-activity food, can 

also increase thermoresistance within Salmonella species. Therefore, Salmonella can become more 

resilient to heat inactivation if it is exposed to a low-aw environment before the treatment (Morasi 

et al., 2022).  

2.3 Salmonella in Herbs and Spices 

Herbs and spices, as well as seasoning blends, pose a challenge to Salmonella growth 

given their low-aw and innate presence of antimicrobial phytochemicals (Sulieman et al., 2023; 

Zweifel & Stephan, 2012). Nevertheless, the European Union reported over 200 notifications of 

Salmonella in spice and herb imports between 2015 and 2019. Additionally, the number of 

notifications for Salmonella found in seasoning blends available on the European Market has been 

increasing as of 2019 (Śmiechowska et al., 2021). In the US, the CDC recorded 11 outbreaks, 81 

hospitalizations, and 558 illnesses involving Salmonella from herbs since 2000. However, a series 

of 3 outbreaks between 2005 and 2011 caused 446 illnesses and 60 hospitalizations (CDC, 2022). 

According to the Rapid Alert System for Feed and FOOD (RASFF), the European Union has 

reported 352 notifications since 2020 (with one notification included from 2019) involving 

Salmonella when searching for the subject “Salmonella” while using the “pathogenic 

microorganism” and “herbs and spices” categories as filters (RASFF WINDOW, 2025). According 

to a 2022 study by the World Health Organization, Salmonella is one of the most significant 
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pathogens of concern, involved in the top 15 highest-risk scenarios during the overall risk 

assessment process.  

Vectors for infection varied but mainly depended on water quality and proximity to the 

soil. Methods of inactivation also showed significantly different efficacies. While Salmonella may 

have difficulties growing in some herbs, spices, or seasoning blends, surviving cells can still grow 

and infect foods flavored with the infected spices. The study's findings underscore the importance 

of adhering to good hygienic practices, good manufacturing practices, and establishing a robust 

Hazard Analysis and Critical Control Points (HACCP)-based food safety plan when working with 

spices (FAO, 2025), 

2.4 Salmonella in Black Pepper 

Black pepper (Piper nigrum L.) is the world’s most commonly and widely used spice, 

representing approximately 40% of the retail value generated by spices (Spence, 2024). The 

frequent contamination of black pepper by Salmonella is a significant public health concern; 

outbreaks in Norway, the United Kingdom, Canada, and the United States have resulted in more 

than 520 cases of infections, 108 hospitalizations, and two deaths. However, the worst outbreak 

from Salmonella-infected seasonings occurred in Germany, where infected paprika was added to 

potato chips, resulting in salmonellosis in over 1,000 people. This illustrates how contaminated 

spices can lead to outbreaks with serious consequences, as they are not consumed directly but are 

added to other foods (M. B. Vinha et al., 2025). While black pepper contains innate antimicrobial 

compounds, such as piperine (Butt et al., 2013; Shityakov et al., 2019), studies have shown that 

Salmonella can survive for up to one year when the black pepper is not treated (Keller et al., 2013). 

Black pepper is usually harvested by hand, followed by threshing to remove the spike 

(Korikanthimath, 2003). While mechanical threshers are used, the traditional method —trampling 
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on the harvested berries via feet —is still widely used, despite significant hygiene concerns (Biju 

et al.; Korikanthimath, 2003). The peppers are then dried to reduce the moisture content from 67-

70% to below 10%. During the drying process, the phenolic compounds within the spice are 

oxidized, resulting in the peppercorn's characteristic black color. However, blanching can be used 

before drying to speed up the process, while also accelerating color development, reducing foreign 

contamination, and the microbial load. The product is then cleaned and graded. Cleaning is done 

by hand, and then the mixture is run through an aspirator, which blows away the lighter, foreign 

matter, thereby separating it from the weightier peppercorns. Other elements, such as stones, metal 

particles, and stalks, are then separated mechanically. The peppercorns are then graded by sieving, 

though this can be combined with the cleaning step by including an aspirator. The product must 

then be stored away from moisture, heat, and light due to its hygroscopic nature, and many volatile 

and/or sensitive flavor compounds (Korikanthimath, 2003; Nisha et al., 2009). 

 Black peppercorns can then be ground, which results in a black pepper powder that is 

graded and sieved (Korikanthimath, 2003). Black pepper can be contaminated in all steps from 

harvest to processing. As seen in a study by Vinha et al. (2025), Salmonella was recovered from 

environmental samples, waste, and the product itself when sampling Brazilian farms and 

processing plants. The authors of the study emphasize the importance of good agricultural 

practices and good manufacturing practices, supported by HACCP, in protecting consumers from 

Salmonella when producing black pepper. A summary of their findings is presented Table 2.1. 

(Mariana Barboza Vinha et al., 2025). 

As shown in Table 2.1., many of the black pepper samples contained Salmonella, with an 

average of 16.7% of packaged products testing positive for the bacterium. Black pepper accounted 

for 80% of notifications for Salmonella contamination of herbs and spices in Europe in 2021 
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(Mariana Barboza Vinha et al., 2025). Therefore, more information is needed to improve the safety 

of the world’s most widely consumed spice.  

2.5 Methods for inactivation– all studies 

There are several methods for inactivating Salmonella within black pepper; conventional 

methods include steam sterilization, gamma irradiation, and Ethylene Oxide fumigation. The 

challenges with steam, the most widely used method, and gamma irradiation are the need for 

expensive, specialized equipment with high energy consumption, as well as the stigma among 

consumers associated with gamma irradiation. Ethylene Oxide fumigation has been effective but 

was banned in the European Union due to the toxicity of the gas (Mariana Barboza Vinha et al., 

2025). However, several other methods exist, each with its own benefits and drawbacks, such as 

Radiofrequency heating (Jeong & Kang, 2014; Kim et al., 2012) Chlorine Dioxide fumigation 

(Chai et al., 2022; Wei et al., 2023), and various plasma treatments (Song, 2023; Sun et al., 2014). 

Moreover, many studies use combined techniques (Bang et al., 2021) or novel gases such as 

hydrogen peroxide (Song & Kang, 2022) to inactivate Salmonella within black pepper. However, 

to the best of our knowledge, no comprehensive overview has been published that systematically 

reviews and compares the results of available data. Therefore, we conducted a systematic review 

and meta-analysis of all published studies that provide inactivation data for different interventions 

designed to control Salmonella in black pepper. 
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2.6 A brief introduction to Meta-Analysis and Systematic Review 

The earliest meta-analysis in food safety was conducted in 2004 to understand consumer 

behavior regarding food safety practices (Patil et al., 2004). The first direct application of meta-

analysis to understand microbial growth in a food product was published in 2005 (Vialette et al., 

2005). Ever since, meta-analytical techniques have been used to understand the effect of 

interventions on reducing microbial growth, beginning with Gonzales-Barron et al. (2008), who 

analyzed the effect of carcass chilling on Salmonella prevalence within pig carcasses. Some of the 

most recent publications include the studies by Rana et al. (2024) and Silva et al. (2021), who 

compared thermal interventions for killing Salmonella in low-moisture foods and inactivating 

pathogens in cheese using essential oils and lactic acid, respectively. However, very few meta-

analyses have been conducted on the inactivation of pathogens within herbs and spices. Through 

our search, we were only able to find one such study: Arcos‐Limiñana et al. (2025) explored the 

use of ultraviolet (UV) irradiation for a variety of spices. 

2.7 Types of meta-analyses 

Meta-analyses typically employ one of two types of models: fixed-effect models and 

random-effects models. Fixed effect models assume that there is a single, true effect size. This 

typically limits the model to be used only in cases where the sample comes from a single, 

homogeneous population (Dettori et al., 2022; Schwarzer et al., 2015). For this reason, fixed-

effects models are seldom used in meta-analyses, as the data must come from multiple studies. 

Random effects models account for the assumption that effect estimates are more variable when 

considering multiple studies (Schwarzer et al., 2015). 

 Subgroup analysis can be helpful when comparing multiple interventions, treatment 

categories, or individual methods (Golden et al., 2019; Kateh et al., 2024; Leone et al., 2024). 
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Various measures of heterogeneity can explain the degree of variation between reported effect 

sizes. Two standard methods of showing heterogeneity are Cochran’s Q-test, which is based on 

the distribution, and the I2 index, which estimates the percent of variability that cannot be explained 

by chance alone. Therefore, a larger I2 index indicates greater variability among results. Another 

widely used method is meta–regression, which is typically a linear or nonlinear regression model 

used to predict which of the analyzed study-level characteristics is responsible for the variability 

(West et al., 2010). Variability between studies can also be reported by calculating the t2 value; 

when closer to zero, this value indicates less variability, whereas higher values indicate more 

significant differences between study effect sizes (Ariel De Lima et al., 2022).  

While random effects models are the most common meta-analytical models in food 

safety, other variations also exist. Multivariate meta-analysis can be used when there are several 

different ways to measure an outcome. This can be particularly helpful when different studies 

report outcomes on different scales. Network meta-analysis is a technique that seeks to compare 

different treatments to solve a single problem. This technique is widely used in medicine since it 

is capable of measuring direct and indirect evidence for the efficacy of an intervention (Schwarzer 

et al., 2015). However, we were unable to find any studies on microbial inactivation in the food 

industry that utilize network meta-analysis as a way of collating data. 

2.8 Predictive models- a benefit for effective food safety 

Predictive microbiology focuses on utilizing statistical models to describe microbial 

growth, survival, or inactivation within a food (Perez-Rodriguez & Valero, 2012). It assumes that 

microbial behavior in food- survival, growth, and death- is reproducible by controlling key factors 

that can be used to fit a statistical model (Łobacz et al., 2022). The basic formula of a statistical 

model can be seen in Equation 1: 
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Equation 1. General formula for a statistical model 

! = #! +	#"&" +	##&# + #$&$ + ' 

Where Y is the response variable,	#! is the intercept, &% the explanatory variables, #% the 

regression coefficients, with ' being the error (Perez-Rodriguez & Valero, 2012). 

The explanatory variables and regression coefficients are used to estimate a given 

outcome. These variables are also known as the deterministic part of a regression equation. The 

error is a term that explains data variability and is referred to as the stochastic part of the model. 

The type of model used for a dataset depends on the stochastic variable. In some cases, 

transformation techniques can be used to improve the model’s ability to predict a likely outcome 

and to minimize error (Perez-Rodriguez & Valero, 2012).  

Predictive models are frequently used to develop food safety plans. They may also be 

used to estimate a product’s shelf life and to optimize the production and handling process. During 

risk assessment, predictive models can help identify microbial hazards from production to 

consumption. When developing an HACCP system for a production process, predictive models 

can help determine critical control points and critical limits. They can also be used to verify the 

effectiveness of existing HACCP protocols. However, it is important to be mindful of limitations 

inherent to predictive models: there is always a degree of error, models cannot be extrapolated to 

conditions that were not present when collecting the data used for prediction, and real-life 

applications frequently contain variables unaccounted for in most models (Taiwo et al., 2024). 

Predictive models in microbiology are often evaluated by determining the accuracy and 

bias factors. Both are multiplicative factors that show the average amount of disagreement between 

the predicted and observed values. The bias factor can be interpreted as an average ratio of 

predicted and measured generation times. A perfect agreement would provide a bias factor of 1. 
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In a survival model, a bias factor over 1 would indicate overprediction, thereby making the model 

fail dangerous. In this case, bacterial inactivation may be less than what is predicted by the model, 

potentially leading to more surviving cells than anticipated. Fail-safe models occur when there is 

no danger for the model predictions to underestimate the microbial hazard. The accuracy factor 

predicts the spread of results within a prediction. An accuracy factor of 1 indicates perfect 

agreement, while larger values indicate the magnitude of spread (Ross, 1996). The equations for 

the bias and accuracy factors can be seen below: 

Equation 2. Formula for calculating the bias factor. 

( = 10(∑ ()*+
,-!"#$%&'#$
,-()*#"+#$ ./0) 

Equation 3. Formula for calculating the accuracy factor. 

+ = 10(∑
|()*	(,-!"#$%&'#$,-()*#"+#$ )|

0 )
 

Where b and a correspond to the bias and accuracy factors respectively, GTpredicted and 

GTobserved refer to the predicted and observed generation times, and n refers to the number of 

observations (Ross, 1996). 

Overall, a bias factor of less than 1 is needed, but a low bias factor can result in excessive 

food waste. Therefore, it is important to make sure that model predictions are reliable while the 

prediction error does not threaten food safety (Ross, 1996). 

Given the high risk of Salmonella contamination from the improper handling of black 

pepper, it is essential to ensure that proper food safety systems are in place during processing. 

More than 50 studies and 155 independent experiments are available today that describe methods 

for inactivating Salmonella in black pepper while providing direct or indirect reports of log 

reduction. However, to the best of our knowledge, no comprehensive overview and analysis of 
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these findings has been conducted. Therefore, our work aims to conduct a systematic review and 

meta-analysis of all available literature and to develop predictive models for various inactivation 

methods that can be used in food safety plans, provided there is sufficient data. 
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Table 2.1: Prevalence of Salmonella from harvest through processing (Vinha et al., 2025). 

Sample Process Method Location Average Positive (%) 
Soil Sun drying location (outdoor) Farm 33.50 
Soil Greenhouse (drying) Farm 16.67 
Soil Rotary Dryer Farm 5.57 
Drying Waste Sun drying location (outdoor) Farm 50.00 
Drying Waste Greenhouse (drying) Farm 0.00 
Drying Waste Rotary Dryer Farm 5.57 
Fallen black pepper berry Sun drying location (outdoor) Farm 0.00 
Fallen black pepper berry Greenhouse (drying) Farm 11.10 
Fallen black pepper berry Rotary Dryer Farm 0.00 
Threshed Berry Sun drying location (outdoor) Farm 16.67 
Threshed Berry Greenhouse (drying) Farm 15.00 
Threshed Berry Rotary Dryer Farm 0.00 
Stored Peppercorns Sun drying location (outdoor) Farm 27.80 
Stored Peppercorns Greenhouse (drying) Farm 27.77 
Stored Peppercorns Rotary Dryer Farm 11.10 

Raw Material NA 
Processing 
Plant 11.10 

Packaged product NA 
Processing 
Plant 16.67 

Processing Waste NA 
Processing 
Plant 16.67 
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CHAPTER 3- MATERIALS AND METHODS 

3.1 Research Question and Relevance Screening 

The first phase of our project commenced with a systematic review of the available 

literature on the survival of Salmonella in black pepper and the effect of various inactivation 

treatments on the Salmonella population. We began our work by formulating the research question: 

how do various inactivation methods compare when eliminating Salmonella in black pepper? The 

review was conducted following the guidelines of the PRISMA 2020 statement (Page et al., 2021). 

To begin our search, we selected three major databases of scientific literature: Clarivate’s Web of 

Science, Elsevier’s ScienceDirect, and the National Institute of Health’s PubMed database. We 

then used the following search query to find relevant documents: Title, Abstract, Keywords: 

("black pepper" OR "peppercorn" OR "Ground Pepper") AND Salmonella AND (Growth OR 

Inactivation OR Reduction OR Survival OR Fate). 

We found 87 relevant documents within the three databases after removing duplicates. 

Afterward, we screened our publications according to the chosen criteria: the studies had to provide 

sufficient CFU or survival data to calculate the log reduction. The experiments had to be conducted 

with either whole or ground black pepper (and exclusively with black pepper). Salmonella had to 

be the subject of the inactivation and survival studies. The article had to be an English-language, 

peer-reviewed journal article. The article had to contain temperature and/or other treatment 

parameters or provide survival data based on time. No parameters were required for the no–

treatment category, but water activity and temperature were recorded. After screening, we were 

left with 40 sources, from which we extracted data for 155 independent experiments. 
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We used Endnote 21.5 (Bld 20846) to download and organize references. We did not 

conduct further quality assessment to minimize bias when interpreting results (Leone et al., 2024; 

Stone et al., 2019). 

3.2 Data extraction 

After screening, we manually extracted data from the remaining sources and recorded all 

information within a spreadsheet (Microsoft Excel for Mac, version 16.93.1 (25011917), Microsoft 

Office 365). We determined 11 inactivation treatment categories that we used to group our studies: 

heat, UV, radiofrequency (RFH), plasma, indirect plasma, chlorine dioxide fumigation, chlorine 

dioxide with storage, gamma irradiation, steaming, electron beam irradiation, and no treatment. 

Methods that were only used in a single study were placed in the “miscellaneous” category. Within 

this category, some studies included multiple experiments, allowing us to conduct a meta-analysis; 

therefore, we were able to compare the independent experiments of phosphine fumigation (PH3), 

ethylene oxide fumigation (EtO), Acetic Acid fumigation, UV-irradiation with heating (UVH), 

and combined Heat/Humidity treatments. 

The following data were extracted for all (where provided): authors, log reduction, matrix 

(ground or whole), treatment type, treatment time (min), and temperature. Where possible, data on 

water activity were also extracted. Moisture content was converted to water activity using a 

moisture-sorption isotherm (MSI) for black pepper (Yogendrarajah et al., 2015). 

Further data extraction was determined based on the type of treatment. A summary of 

specialized data is presented in Table 4.1. We extracted the data from graphs by using PlotDigitizer 

(PlotDigitizer), while the data found in tables was recorded in Microsoft Excel.  
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3.3 Data collection and primary models 

We used the same data collected in our systematic review to develop primary models for 

each category determined inactivation or survival. Each individual experiment was modeled with 

the log reduction as the dependent variable (y) and time by as the independent variable (x). We 

selected a 2-phase linear model with a tail for primary modeling since it consistently showed the 

best fit, as determined by the AIC and RMSE. The primary models were generated by the 

Integrated Pathogen Modeling Program (IPMP) from the USDA (2018). The formula for the 

primary model used can be seen in Equation 4. 

Equation 4. The formula for linear function with tail. 

, = ,! −	
.
/	, .	 ≤ .4 

, = 	,56%7 , . > .4 

Where y0 and ytail represent the initial and final bacterial counts, respectively, t represents 

time, and D represents the D–value (USDA, 2018). 

For survival studies, an analogous concept to the D–Value called D–90 was used. D–90 

refers to the elapsed time in days needed for a 1-log reduction in total colony forming units (CFU) 

in a non-treated sample. To evaluate the fit of the models, the D–value (and its standard error), 

AIC, and RMSE were recorded from IPMP. The temperature for each experiment was recorded, 

when provided. In some cases (particularly within the no–treatment category), there was no 

temperature recorded; in this case, the temperature of the black pepper samples before inoculation 

was used. When no temperature data were discernible, we assumed that the experiments were 

carried out at room temperature based on the temperature of the black pepper samples before the 

experiment. We also extracted the water activity data for each experiment. Where only moisture 

content was provided, we used a moisture-sorption isotherm found within published literature to 
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estimate the water activity (Yogendrarajah et al., 2015). Tables 4.2. and 4.4. show the extracted 

data for thermal inactivation and no–treatment groups respectively. The inoculation procedure was 

also extracted where it was used to distinguish two treatments. In the case of ClO2-based 

inactivation, studies varied on holding time constant while modulating concentration or changing 

time with constant concentration. To make sure that our effect sizes (D–values) were comparable, 

we fitted a 2-phase linear model with tail from IPMP with the dependent variable being log 

reduction and the independent variable being a product of time and concentration. The relationship 

can be described by a linear function. Therefore, we were able to estimate the equivalent time 

needed for the variation in concentration used to achieve a 1-log reduction. 

Equation 5. Formula for calculating decimal reduction time (D–value). 

/ = 3
456"!7! − 456"!78

 

Where D is the decimal reduction time, x is time or dose, and N0 and NF are the initial and 

final bacterial counts (in CFU). 

Equation 6. Estimation of time equivalent to variation in ClO2 concentration 

3" =
, − β!
β"3#

 

Where x1 is the estimated time equivalent, y is the log reduction (reference was -1), β0 is 

the intercept, β1 is the slope of the linear inactivation curve, and x2 is the concentration. 

To make sure that the results were comparable, a reference concentration had to be 

chosen; for this the mode of all concentrations used in all ClO2-based inactivation studies was 

chosen: 10 mg/L. To calculate the time needed for a 1-log reduction, a value of -1 was chosen for 

y. 
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3.4 Meta-Analysis 

We conducted a random-effects meta-analysis using the “meta” package in R (Schwarzer 

et al., 2015). Our effect size was the log10-transformed D–value and it’s respective standard error 

after following the rules of error propagation (Lindberg, 2001). The τ² was estimated using the 

Restricted Maximum Likelihood (REML) method since we were working with relatively small 

sample sizes (Tanriver-Ayder et al., 2021). For treatment categories with more than 10 

independent experiments, we conducted a meta–regression analysis. Predictors were chosen 

according to the best fit for our secondary models. Outliers were determined by Dixon’s Q-test 

using the outliers package (Lukasz, 2005). Additionally, we performed a subgroup analysis for 

each inactivation method, choosing possible covariates that were common across most studies. We 

divided the heat, ClO2, plasma, EtO, PH3, RFH, and Survival Studies– that is the No Treatment 

(NT) and Survival in storage after ClO2 fumigation (ClO2/Storage)– into subgroups. 

To create a subgroup, we used the following criteria: a minimum of two experiments had 

to be conducted, and the subgroup needed to be a potential confounding variable. Moreover, 

sufficient data was needed for a subgroup to be formed- a majority of experiments needed to report 

the subgroup variable. Additionally, the ClO2, heat, miscellaneous, and survival studies were 

evaluated by considering multiple subgroups based on the possible covariates. Where an 

experimental factor was not varied across studies, we did not consider it a possible covariate. For 

cases with more than 10 studies (the ClO2, RFH, and heat treatment, as well as the NT categories), 

we selected several predictors according to the 1-in-10 rule to conduct meta–regression 

(Chowdhury & Turin, 2020). The model equations used during secondary modeling were 

employed in the meta–regression analysis. Our meta–regression results were evaluated using AIC, 

RMSE, and bubble plots, which reported our meta–regression findings.  
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3.5 Test for publication bias 

We evaluated all treatment methods with more than 10 experiments (ClO2, heat, no 

treatment, and miscellaneous treatments) for publication bias by generating funnel plots and 

conducting Begg and Mazumdar test for publication bias (Van Aert et al., 2019) via the meta 

package in RStudio (Schwarzer et al., 2015). For all other methods, there was not enough data to 

evaluate publication bias. 

3.6 Secondary models 

Choosing the most optimal secondary model meant we had to consider the following 

factors: overall fit (as described by AIC), number of predictors (to prevent overfitting), and the 

normal distribution of residuals (to ensure the validity of model predictions). Therefore, to select 

the optimal model, a full second-order polynomial global model was fitted, and all possible 

reduced second-order polynomial models were generated using the MuMIn package in R (Bartoń, 

2010). The models were then screened based on the number of predictors and the normality of 

residuals (Shapiro-Wilkes test). We used the one-in-ten rule to determine the maximum number 

of predictors: For every 10 datapoints, we would allow one predictor to be fitted (Chowdhury & 

Turin, 2020). This effectively restricted secondary models to RFH, Heat and ClO2 fumigation 

treatments, as well as the non-treated samples. Predictors were chosen by relevance and correlation 

to the dependent variable. A black pepper matrix (ground or whole) could not be used as a predictor 

for any category due to an insufficient sample size or lack of variation within the category. After 

screening the reduced second-order polynomial models based on residual distribution and number 

of predictors, we determined the most suitable model was the one with the highest AIC value. 

Where more than one predictor was viable (this was only in the case of heat-based inactivation), 

we used a reduced second-order polynomial model to conduct response surface analysis. 
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Equation 7. Full second-order polynomial equation used for global model (for 2 

predictors) 

456"!/ = #!	 + 	#"&" + 	##&# + #$&"# + #9&## + #:&"&# + 	'	

In the case of models with multiple predictors, we fitted a response surface model using 

the rsm package in R (Lenth, 2008). When only one predictor was available, we used linear 

regression with the most suitable predictor, as determined by the screening method described 

above. Results were exported using the writexl package (Ooms, 2017). Since there were significant 

differences between radiofrequency treatment methods, no suitable secondary model could be 

established. 
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CHAPTER 4- Results and Discussion 

4.1. Systematic Review 

After a systematic review and screening, we identified 40 studies that met our inclusion 

criteria with a total of 155 independent experiments. We categorized our studies into 11 methods, 

including no–treatment and miscellaneous, which comprised four methods with multiple, 

independent experiments and 6 individual methods providing a single D–value. Summaries of the 

data for the investigated covariates, categorized by treatment method, are presented in Table 4.2 

to 4.17. The subcategories seen under “miscellaneous” are further explained in the meta-analysis 

chapter. 

We extracted the D–values and their standard errors from each study using IPMP. Fitting 

the linear model with the tail proved to be the most suitable for each experiment. However, in 

some cases, the software was unable to fit an appropriate primary model; in these cases, we used 

R to run a simple linear regression to predict the most suitable D–value. Moreover, in some cases, 

IPMP was unable to provide an estimate for AIC or RMSE. Summary of the data gathered from 

our primary modeling are also presented in Tables 4.2 to 4.17. 

The primary models that calculated D–values had AIC values ranging from -29.46 to          

38.99, with the average value being 13.05. Meanwhile, the RMSE values ranged from 0.00 to 3.09, 

with an average of 0.44. In the case of D–90 values, the AIC values ranged from a minimum of     

-39.00 to a maximum of 34.12, with an average of -5.54. In the case of RMSE, values fell between 

0.00 and 1.12, with a mean of 0.26. This indicates that the primary models exhibited significant 

variability in terms of their goodness of fit. The Standard Error of the effect sizes ranges from not 
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being measurable to a high of 366.26 for D–values, and 0 to 7777.38 in the case of D–90 values. 

Some studies in the NT category reported Salmonella growth in black pepper (Xie et al., 2022). 

One experiment had to be removed from the analysis of D–90 values following Dixon’s Q-test 

because it was a significant outlier. 

4.2.  Secondary Models, Critical Variables, and Goodness of Fit 

After screening the quadratic and all possible reduced quadratic models for each method, 

we found that the best inactivation method for heat was a reduced second-order polynomial model. 

In contrast, linear models provided the most suitable predictions for inactivation in the NT and 

ClO2–treatment categories. We used the Shapiro test to select models with normally distributed 

residuals, ensuring that our model can predict accurately. The 1-in-10 rule was used to set the 

maximum number of predictors to minimize the chance of selecting an overfit model (Chowdhury 

& Turin, 2020). We selected AIC as our final evaluation criterion, since it can be applied to both 

linear and nonlinear models. RMSE was reported as well, but R2 was only considered for linear 

models, since it has little to no validity when evaluating nonlinear regression models, and can 

provide highly misleading results (Spiess & Neumeyer, 2010). A summary of our goodness-of-fit 

statistics is presented in Table 4.18. 

Overall, the secondary models for heat treatment and ClO2–fumigation showed a much 

better fit compared to the best model available for the non-treated samples, even after removing 

outliers using Dixon’s Q-test. To provide the best goodness of fit for all investigated methods, D–

values and D–90 values had to be log-transformed. 
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Modeling Salmonella Inactivation During Heat Treatment 

As shown in Figure 4.1, two key factors in predicting the D–value of a heat treatment are 

temperature and water activity. Higher temperature treatments result in a faster log reduction of 

Salmonella CFUs. However, higher water activities also tend to result in a more intense heat 

treatment, even at lower temperatures. Salmonella is one of the most critical pathogens that need 

to be controlled in low-aw foods. They have a strong tendency to adapt to stressful conditions, 

increasing their durability to hostile environments, including the temperatures used during heat 

treatments (Dawoud et al., 2017). These bacteria can survive in low-moisture, high-solute settings 

via osmoregulation, increasing the concentration of solutes within their cells to maintain turgor 

pressure. Salmonella can also modulate its membrane composition to adapt to environments with 

low water activity. Another adaptation mechanism is dormancy, whereby Salmonella spp. enter a 

viable but non-culturable (VBNC) state. If conditions improve, these Salmonella cells can return 

to a normal metabolic state and continue to reproduce. However, when Salmonella spp. reduce 

their metabolism, they also gain increased thermoresistance. The absence of water can increase the 

heat resistance of Salmonella cells by preventing protein denaturation (Dawoud et al., 2017; 

Morasi et al., 2022). Low water activity in general tends to increase the thermal resistance of 

Salmonella spp. This is in line with what Jin et al. (2018) found for low-moisture foods with high 

fat and high protein contents and what Wei et al. (2020) found in milk powder samples. The model 

residuals are normally distributed (p = 0.924). The Quantile-Quantile (Q–Q) plot is shown in 

Figure 4.2. 

Modeling Salmonella Inactivation During Chlorine Dioxide Treatment 

Chlorine dioxide (ClO2) is a gas at room temperature that is highly soluble in water. It’s 

primary antimicrobial properties come from being a potent oxidizing agent- specifically, the 
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unstable Cl-O double bond can easily break and generate free radicals that damage the cell 

membrane, destroy nucleic acid structures, prevent protein synthesis, and inhibit enzymatic 

systems responsible for basic metabolism In gaseous form, it can penetrate the food surface and 

has even stronger biocidal properties (Zhang et al., 2023). The relative humidity (RH) used during 

a ClO2 treatment  is a critical factor to consider when inactivation is being evaluated. This is likely 

because water solubilizes ClO2, dissolves, and increases its contact with the food matrix (Park et 

al., 2018). Several studies have found that the efficacy of ClO2 is conditional upon exposure time, 

RH, and gas concentration (Han et al., 2001; Wason & Subbiah, 2023). However, our results 

suggest that concentration has a negligible effect on the log D–value within the investigated ranges 

(5 mg/L to 15 mg/L). When predicting the log D–value from concentration, we found that 

concentration was not significant (P = 0.799) and had a low correlation (R² = 0.068). However, 

considering our small sample size (13 experiments), further studies should be conducted to more 

accurately measure the concentration’s effect on the log D–value when using gaseous ClO2 

treatments for black pepper. RH had by far the most significant influence on the log D–value 

(P<0.001, R2 = 0.747), with higher RH (%) indicating smaller log D–values. A graphical 

representation of our model is shown in Figure 4.3. The errors for our model are normally 

distributed, as indicated by the Shapiro-Wilkes test, which yields a p-value of 0.756. This suggests 

that there is no pattern in prediction errors that would cause substantial deviation within the data 

range studied in our analysis (Fig. 4). 

Modeling Salmonella Inactivation During No Treatment 

With Salmonella’s ability to survive in low-water activity settings, multiple studies have 

evaluated the pathogen’s survival kinetics within black pepper. Many studies have examined how 

Salmonella survives within foods with low water activity. Studies have shown that Salmonella can 
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be recovered from black pepper even after a year of storage. However, survival curves appear to 

depend on the temperature and relative humidity of the environment (Keller et al., 2013). In some 

instances, such as the study by Xie et al. (2022), Salmonella was found to be able to grow within 

black pepper, with a 0.18 log CFU increase after 56 days. This experiment examined a Salmonella 

cocktail with a water activity of 0.3 and storage at room temperature.  

This was in line with our overall findings; higher water activity led to more rapid 

reductions in Salmonella cell counts, while lower water activities increased their overall survival 

(Xie et al., 2022). While black pepper contains innate antimicrobials, such as the alkaloid piperine,  

some Gram-negative bacteria, including some Salmonella Typhi, have been shown to be more 

resistant to black pepper’s antimicrobial effects. The method of exposure to antimicrobial 

compounds in black pepper (such as the alkaloid piperine) seems to be critical when predicting the 

antimicrobial properties of black pepper (Abd El-Hack et al., 2022; Ashish Singh et al., 2023; 

Shityakov et al., 2019). Considering that grinding black peppercorns would likely increase the 

cells’ exposure to back pepper’s antimicrobial phytochemicals, future studies could investigate the 

growth of Salmonella in ground and whole peppercorns directly. Our subgroup analysis, as 

presented in the following section, also indicates that Salmonella generally dies much faster on 

ground black pepper; however, with only two experiments conducted on whole black pepper, 

further research is needed. Moreover, cross-protection as a result of low-water activity stress may 

also explain the durability of Salmonella in black pepper (Morasi et al., 2022). 

4.3 Limitations for Predictive Modeling 

Our study has several limitations that highlight knowledge gaps in the existing literature. 

Heat-based inactivation had the most considerable amount of datapoints. However, as seen in our 

meta-analysis results, the heterogeneity for studies in all three categories was moderate to high. 
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Studies were most similar in the case of ClO2–fumigation, but heterogeneity was still moderate (I2 

= 39.6%). This shows that study-based variability was significant for all groups, and our small 

sample size (13 experiments for ClO2–fumigation) suggests that more data is needed. In the case 

of NT, the high variability of studies and a limited choice of predictors resulted in a low R2 

compared to the other methods. Based on the reviewed literature, RH and temperature variation 

may be critical factors to examine when considering Salmonella growth during black pepper 

storage (Keller et al., 2013). Given the relationship between relative humidity (RH) and water 

activity, ensuring that water activity in black pepper remains high during processing may be critical 

for preventing the survival of Salmonella. 

4.4 Meta-analysis results 

Meta-Analysis for Heat Treatment 

Our random-effects meta-analysis suggests that heat-based inactivation results in an 

average log D–value of 0.81, with variability arising from differences in aw, temperature, and 

matrix. Matrix and water activity result in the most significant variability when considering 

subgroup differences. A summary of our results is presented in Tables 4.19-4.21.  

The between-study heterogeneity when evaluating heat treatments by matrix was 99.2%, 

with τ² values for the subgroups ranging from 0.1 (Whole) to 0.16 (Ground). The τ² for all 

experiments was 0.21, indicating low variability between experiments. It should be noted that both 

experiments used for whole black pepper in this category were from a single study (Song, 2023), 

and the I2 between the experiments examining whole black pepper was still 64.2%. The difference 

between the whole and ground subgroups appeared to be significant (P < 0.0001), suggesting that 

matrix plays a strong role during heat inactivation. Specifically, the average log D–value for whole 

black pepper was 1.9 as compared to 0.8 for experiments on ground black pepper.  
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When analyzing the subgroups by temperature, the overall subgroup difference appears 

to be less significant than that of the matrix or water activity. All subgroups exhibit high between-

study heterogeneity. Low-temperature studies (45-60°C) show significant variance within studies 

(τ² = 0.41), whereas medium-temperature studies (65-75°C) have a τ² of 0.17.  Low-temperature 

experiments showed an I² of 0.0% and an undetectable τ², although it should be noted that only two 

study experiments, both from the same study, were included in this category. High-temperature 

studies (80-85°C) had a τ² of 0.41, indicating higher variability within the studies.  

When evaluating subgroups by water activity, two experiments (Song, 2023) were 

excluded since they did not provide water activity data. The mean log D–value in the case of high 

aw (0.5) was the lowest, though all confidence intervals overlap. High water activity (0.65–0.75) 

experiments yielded an I2 of 66.4, indicating more moderate heterogeneity, whereas the medium 

(0.45-0.55) and low (0.25-0.40) aw subgroups showed high I2 values (>98%). The τ² for high and 

low aw experiments were somewhat lower than τ² for medium aw studies. Our findings indicate 

that, among the three subgroup analyses, heterogeneity appears to be strongly related to differences 

in study design, rather than to sampling error alone. Table 4.22. presents the results from our meta–

regression analysis, which considers both temperature and water activity. The matrix data could 

not be analyzed alongside water activity, since the only study using whole black pepper (Song, 

2023) did not report water activity results.  

Our QE and QM statistics confirm that both water activity and temperature are critical 

predictors of log D–value (p < 0.0001). The I2 shows that 95.21% of the heterogeneity between 

studies is not due to sampling error, while the R2* (83.09%) indicates that water activity and 

temperature explain most of the observed heterogeneity. Our findings suggest that, within the 

range of our data (45-85°C), both water activity and sample matrix are clear covariates for heat 
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treatment efficacy. Higher water activities result in lower log D–values. Possible reasons for this 

may be the increased exposure of cells to antimicrobial components in ground black pepper or that 

Salmonella cells can hide within the crevices of whole black pepper. However, to the best of our 

knowledge, no study has investigated the effect of the matrix on inactivation efficacy. Therefore, 

future studies may want to compare the effects of heat treatments on both whole and ground 

peppercorns. 

As seen in Figure 4.11, plotting our effects and standard error results in a highly 

asymmetric and skewed funnel plot. Studies appear to report lower log D–values and 

measurements with lower standard errors disproportionately (Carlson et al., 2023). This seems to 

indicate the presence of noticeable publication bias. Begg and Mazumdar’s Rank Correlation Test 

appears to support this, yielding a z-value of 1.39 (p = 0.016). 

The key statistics to note here are τ², I², R²*, and the p-values of QM and the z-value of 

the Rank correlation test. τ² describes the variance between studies while I2 describes the 

heterogeneity that is not directly related to sampling error (Rücker et al., 2008). R2* shows the 

percentage of I2 that is explained by the moderator variables, while the p-value of QM shows the 

significance of the moderator variable as it predicts the response variable (the effect). The p-value 

of the rank correlation test z shows the probability of publication bias, with higher p-values 

indicating a probable absence of bias. However, it is essential to consider that meta-analyses with 

small sample sizes may yield false negative (Begg & Mazumdar, 1994). Therefore, it is also best 

to examine the funnel plot symmetry. 

Meta-Analysis for ClO2–treatment 

Through the course of our systematic review, we found two main categories of ClO2 

treatments: ClO2 fumigation is a simple gaseous ClO2 treatment, while ClO2 with storage also 
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evaluates continued microbial decline after ClO2 treatment.  We performed two subgroup analyses 

on ClO2–fumigation: we grouped studies into 60,70, and 80% RH and 5, 10, 15 mg/L by 

concentration. Moreover, we conducted a meta–regression analysis on the ClO2 studies. A 

summary of our findings is presented in Tables 4.23. and 4.24. When evaluating findings by RH, 

ClO2–treatment shows an I² of 39.6% (0.0% to 69.4%), a τ² of 0.02 (0.0 to 0.2), indicating that 

while there was substantial heterogeneity between studies, individual studies themselves had low 

variability within them. The subgroup I2s all had overlapping and wide confidence intervals (from 

0 to >80%) while the predicted mean log D–value was 2.0. When dividing ClO2–treatments by 

concentration, I2 values had similarly wide confidence intervals, with lower bounds ranging from 

0% to 17.3% and upper bounds ranging from 85.6% to 89.6%. τ² was low for all subgroups (the 

highest being 0.06). When analyzing subgroups by RH, the differences seemed more significant 

(p = 0.077) compared to subgroup analysis based on gas concentration (p = 0.416). The highest 

log-D–value was 2.7 (2.06 to 3.25) for the 41.5% RH subgroup, and the lowest was 1.8 (1.62 to 

1.98) for the 80% RH subgroup. Simultaneously, log-D–values range from 1.9 (1.63 to 2.12) for 

studies with a 15 mg/L gas concentration to 2.1 (1.81 to 2.31) in the case of a 10 mg/L 

concentration.  

Overall, these results align with our findings that ClO2–inactivation is more dependent 

on humidity than concentration within the range of our considered variables. Our meta–regression 

results (Table 4.25) also confirm that RH has a better capacity at explaining residual heterogeneity, 

as the R2* of 39.90% when grouping by RH completely disappears when grouping by 

concentration. Moreover, the I2 is noticeably lower when analyzing the groups by relative humidity 

(RH) as opposed to concentration. However, the relatively low number of datapoints (k = 13) 

suggests that further research is needed to evaluate the impact of concentration and relative 
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humidity properly. The bubble plots generated from our meta–regression analyses also 

demonstrate the strong significance of RH compared to concentration. 

In the case of ClO2-based inactivation, the results appear relatively evenly distributed, 

suggesting lower amounts of publication bias. The Rank Correlation Test result also indicates 

some publication bias as seen in Table 4.26. 

Meta-Analyses for Direct and Indirect Plasma Treatment 

Plasma-based inactivation is a relatively new method for Salmonella inactivation in black 

pepper. Throughout our systematic review, we found nine experiments that used this method to 

treat black pepper. However, there were two methods for plasma-based inactivation: Direct plasma 

methods generate plasma that directly contacts the spices for decontamination, whereas indirect 

plasma methods are used to treat air to generate charged particles that then contact the microbes 

within a given food. Reactive oxygen and nitrogen species, charged particles, and UV radiation 

appear to all play a role in microbial inactivation within the atmospheric-pressure cold plasma 

method (Šimončicová et al., 2019). Specifically, UV-radiation may damage cellular DNA, lipid 

peroxidation, protein modulation, electrostatic membrane disruption, and electroporation have 

been proposed as mechanisms for non-thermal plasma’s bactericidal properties (Liao et al., 2017). 

Remote or indirect plasma techniques are used to treat a gas, generating charged particles and 

reactive oxygen species that are then used to inactivate microbes on the target surface. One 

advantage of remote plasma technologies is that the apparatus can have flexible construction and 

may be used for foods of different shapes and sizes (Obileke et al., 2022). Nevertheless, both 

methods have been used for black pepper as seen in Figures 4.17 and 4.18. The results of the meta-

analysis can be seen in Table 4.27. 
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Since only two indirect plasma methods were used for indirect plasma treatment, we were 

unable to conduct a subgroup analysis on the methods. The mean log D–value was 1.1 (0.83 to 

1.36) with an I² of 17.5% and a τ² of 0.00159, indicating low heterogeneity within-study variance. 

In the case of direct plasma methods, we divided our methods by the carrier gas: modified 

methods used either argon or an argon/air combination, whereas all other methods just used air. 

Modified methods had a mean effect size of 0.93 (0.45 to 1.42), whereas methods using air had a 

mean log D–value of 0.5 (-0.63 to 1.63). Given the breadth of the confidence intervals, we were 

unable to find any significant differences between the subgroups. Both subgroups had an I2 over 

90, indicating substantial heterogeneity. However, modified methods had a τ² of 0.23, compared 

to 0.96 in experiments using air, suggesting a much greater variance between studies. Many 

variables can affect the efficacy of plasma-based inactivation, from apparatus design to energy 

dose to flow rate to carrier gas (Obileke et al., 2022; Šimončicová et al., 2019). 

Meta-Analysis for Gamma, UV, and Electron Beam Irradiation Treatment 

Irradiation is a method used to control pathogens in food products, aiming to prevent 

foodborne illnesses. This technique has become more and more accepted by consumers in recent 

years. The main mechanism of Irradiation rests on destroying microbial DNA via direct ionization 

and generating reactive species that damage cell components by generating free radicals (Mshelia 

et al., 2023). Our systematic review identified three methods of irradiation: Gamma, electron-

beam, and UV irradiation. Electron beam irradiation offers the benefits of not requiring a nuclear 

irradiation source, lower cost, and being less hazardous to humans than gamma irradiation. 

Electron beam treatments come in two forms: high-energy electron beams (HEEB, >300 keV) and 

low-energy electron beams (LEEB, <300 keV). Electron beam treatments usually have shallow 

penetration, which limits their uses in foodstuffs (Mshelia et al., 2023; Sani et al., 2025). UV 
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irradiation is also a popular form of irradiation since it can effectively preserve a food’s nutritional 

and physical microstructure. The meta-analysis results of the reported irradiation-based treatments 

can be seen in Tables 4.28 to 4.30. 

The two primary forms of UV irradiation are UV-C and UV-A, which have different 

mechanisms of inactivation. The UV-C wavelength range encompasses the maximum absorbance 

of RNA and DNA (265-275 nm), whereas UV-A (365 nm) destroys cells by generating free 

radicals (Arcos‐Limiñana et al., 2025).  

Gamma irradiation is a treatment that can penetrate deep within the food matrix. Gamma 

rays are a form of ionizing radiation with frequencies above 1019 Hz. Generating gamma rays 

typically requires radioactive isotopes, and the equipment typically has high initial costs. However, 

gamma irradiation is highly effective in eliminating pathogenic microbes (Shahi et al., 2021).   

We used two subgroups to characterize UV treatments: black pepper matrix and radiation 

intensity. Overall, the low–intensity (0.57–1.7 mW/cm2) and high–intensity (1110–2320 mW/cm2) 

methods did not appear to have significant subgroup differences (p = 0.844), with mean effect 

sizes of 1.47 (0.06 to 2.89) and 1.31 (0.50 to 2.12), respectively. The I2 index was above 95% for 

both the low- and high-intensity groups. The τ² was 0.658 for high-intensity studies and 1.002 for 

low-intensity studies, indicating that the latter had much higher variability between studies. It 

should be noted that the low-intensity subgroup consisted of only two studies: Park et al (2020) 

and Gabriel et al (2020) with intensities of 0.57 mW/cm2 and 1.7 mW/cm2, respectively. In the 

high-intensity group, all studies had an intensity of 1110 1.7 mW/cm2 except for one (2320 1.7 

mW/cm2). 

When evaluating the differences by matrix, the  test between the subgroups resulted in a 

p-value of 0.0729. The mean effect sizes were 0.80 (0.63 to 0.96) for whole black pepper and 
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1.61(0.73 to 2.48) in the case of ground black pepper. No heterogeneity or variance between 

studies was detected for experiments on whole black pepper (conducted by Gabriel et al (2020) 

and Kim et al (2023) respectively), while the subgroup evaluating ground black pepper showed 

high heterogeneity and variance between studies (I2 = 98.5%, τ² = 0.761). 

We could find only two inactivation methods that used electron beam technology to 

eliminate salmonella from black pepper; Gaba et al. (2022) used a low energy electron beam 

whereas Murdoch et al used a high energy electron beam for inactivation, which is reflected in the 

high I2 (99.4%), the τ² (0.292). The effect sizes were 0.66 (0.57 to 0.75) for LEEB inactivation and 

-0.11 (-0.17 to -0.04) in the case of HEEB inactivation (Gaba et al., 2022; Murdoch et al., 2022). 

Due to the lack of available subgroup data, the studies exploring gamma irradiation could not be 

divided into subgroups. The mean effect size of the random effects model was 0.28 (-0.44 to 1.01) 

with high heterogeneity (I2= 92.3%) and a τ² of 0.483. 

Meta-Analysis for Radiofrequency Heating Treatments 

Radiofrequency (RF) waves are electromagnetic radiation with frequencies of 300 kHz 

to 300 MHz. However, only frequencies of 13.56, 27.12, and 40.68 MHz can be used for industrial 

applications, to avoid interfering with communication signals (Qiu et al., 2022). RF heating relies 

on electromagnetic field oscillations that increase the temperature within food by generating 

friction from the rapid movement of charged particles (ionic migration) and rotating dipole 

molecules. This means that the efficacy of RF treatments depends on the inherent characteristics 

of the food matrix, such as moisture content, electrical and thermal conductivity, specific heat 

capacity, material density, ion concentration, as well as the RF radiation parameters, including 

power and frequency. The primary mechanism of inactivation stems from its thermal effect on 

cells, which damages ribosomal DNA, depletes Mg+ ions, and denatures proteins. The oscillating 
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electromagnetic field can also rupture the cell membrane, leading to cell death (Bermudez-Aguirre 

& Niemira, 2023). A crucial consideration is that hot and cold spots can form within the treated 

food product, potentially posing hazards if not properly managed. However, RFH has several 

benefits, including energy efficiency and speed (Qiu et al., 2022). When RFH is conducted, steam 

is generated that can impact bacterial inactivation. 

In our meta-analysis, we examined various implementations of RFH treatments. Three 

studies by Wei et al (2018), Wei et al. (2019), and Wason et al. (2021) used containers that had 

steam release valves during the RFH treatment. Tong et al. (2022) used a vacuum-sealed bag to 

hold the black pepper. We could not identify whether the treated black pepper was in a sealed, 

vented, or open container for all other studies. We analyzed RFH methods using subgroup analysis 

and meta–regression according to the following parameters: matrix, power, ventilation, and water 

activity. The results of the meta-analysis are presented in Tables 4.31. to 4.34 while meta-

regression results are reported in Table 4.35. 

When categorizing RFH–treatments by matrix, experiments have an overall effect size of 

0.6 (0.37 to 0.86), with whole black pepper having a mean effect of 0.3 (0 to 0.67) and ground 

black pepper having a mean effect of 0.9 (0.80 to 1.01). The τ² is 0.11 (0.03 to 0.58) in all 

experiments, while the τ² for whole and ground are 0.11 and 0, respectively. I2 values for all 

experiments are 82.2% (70.1% to 89.4%), which was close to that of whole black pepper (81.2%) 

but much higher than ground black pepper (0.0%). It should be noted that ground black pepper 

consisted of five experiments, four of which came from a single study (Jeong & Kang, 2014). The 

matrix appears to have a strong influence on log D–values, as indicated by the test result of 9.99 

(p = 0.0016). Overall, log D–values seem to be smaller for whole black pepper than ground black 

pepper. 
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When categorizing methods by the amount of power used, subgroup differences were 

even more substantial (p < 0.0001). Methods using 6 kW had the smallest effect size of -0.3 (-

0.9;0.28), followed by 0.5 (0.26; 0.71) effect size for experiments using 9 kW and 0.9 (0.81; 1.01) 

for 12 kW methods. Overall, log D–values had an increasing tendency as the power increased. I2 

values were 0% for 6 and 12 kW, but were 83.0% (61.3%; 92.5%) for the 9 kW studies. The 9-

kW study had the highest τ² as well (0.04), and the overall τ² was 0.11 (0.03;0.58). These data 

points suggest that determining a precise and accurate I2 is difficult; however, within each group, 

variability between studies appears to be low. Overall, the inactivation methods exhibit a clear 

trend, where higher power is correlated with lower log D–values. 

Since only three studies explicitly reported ventilation methods, we could only separate 

methods based on the following techniques: controlled ventilation and not reported. Since water 

has high heat conductivity and pressurized steam can contribute to microbial inactivation, we 

decided to compare studies where steam release was controlled through a valve with those where 

it was not reported. 

Overall, subgroups showed significant differences (p = 0.0014) with high heterogeneity 

among methods, with no reports on ventilation (I2 = 84.4%). Studies with controlled ventilation 

had a mean effect size of -0.31 (-0.90 to 0.28), whereas studies with no comments on ventilation 

had a mean effect size of 9.7 (0.51 to 0.89). Variability in studies with controlled steam ventilation 

was minimal (τ² = 0) while variability was somewhat larger in the case of studies not reported (τ² 

= 0.059). Studies in the not-reported section employed multiple different designs, utilizing sample 

containers such as jars, beakers, or vacuum-sealed pouches, with no report on ventilation. This 

may explain a significant fraction of heterogeneity among studies, as evident in our meta–

regression analysis below. 
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 Water activity has a direct relationship with moisture content as seen in a moisture-

sorption isotherm. Water, being an excellent heat conductor, a strong solvent for ions, and a polar 

molecule, is directly affected by RFH treatments. Therefore, we decided to evaluate subgroups 

based on the water activity of the black pepper before treatment.  

Overall, we found that the subgroup difference test yielded a of 3.79 (p = 0.051). The 

mean effect sizes were 0.5 (0.12 to 0.87) for medium aw (0.54–0.66) and 0.88 (0.77 to 0.99) for 

high aw (0.76–0.87). For these studies, water activity ranged from 0.54 to 0.87. At first glance, it 

appears that lower water activities correspond to more significant reductions in cell count. One 

possible cause for the more intense reduction at lower water activities may be the higher solute 

concentration in Salmonella cells, which may be polar or ionic substances. However, his narrow 

range and limited number of experiments (k = 10) mean more research is needed. 

With only 12 studies, we were limited to conducting our meta–regression analysis by 

using one predictor at a time. Overall, ventilation appeared to have the strongest predictive power, 

with an R2* explaining 84.07% of the heterogeneity, as indicated by I2 (62.66%). Power had a 

near-identical predictive power, while using the matrix as a moderator variable yielded an I2 of 

72.82% and an R2* of 72.29%. Overall, results indicate that ventilation, matrix, and power are all 

suitable moderator variables (p < 0.001). Interestingly, conducting a meta–regression using water 

activity as a covariate provided little explanation (R² = 0.00%, I² = 92.38%, p = 0.274). Graphical 

representations can be seen in the bubble plots below (Figures 4.28, 4.29, and 4.30). 

Running the rank correlation test yielded a bias estimate of 2.00 and a z-statistic of 0.14 

(p = 0.891), indicating little evidence of publication bias (Table 4.36). 



 51 

Meta-Analysis for Steam Treatment 

Throughout our systematic review, we identified 11 studies that employed various forms 

of steam-based inactivation to eliminate Salmonella from black pepper. However, we were only 

able to use seven experiments since the first measurement in the survival curve was below the limit 

of detection. We analyzed the steam inactivation methods by categorizing them according to their 

temperature (low (88–100°C), medium (120–140°C), and high (160–180°C) respectively), water 

activity (0.3 and 0.65), and method (Superheated steam, vacuum steam). Superheated steam is a 

variation of steam–treatment whereby heat is added to steam beyond its saturation point. This 

provides the steam with a higher enthalpy, which speeds up heat transfer. Moreover, superheated 

steam does not condense if the temperature is higher than the saturation temperature at a given 

pressure (Alfy et al., 2016). Vacuum steam pasteurization is another method that utilizes shorter 

runtimes and lower temperatures to prevent the loss of volatile compounds, thereby preserving 

quality. In this case, steam condenses on the surface of peppercorns and penetrates their crevices, 

where it transfers the heat needed to inactivate Salmonella (Newkirk et al., 2018). The results of 

the meta-analysis on steam treatment log D–values can be seen in Tables 4.37 and 4.38. 

Temperature had a significant effect on subgroups (p < 0.0001). However, precise log D–

values were difficult to determine because of the rapid inactivation caused by steam pasteurization 

techniques. The I2 of all studies was 87.5% (73.3 to 94.2%) with a τ² of 0.19 (0.05 to 1.72). Overall, 

higher temperatures tend to correspond to lower log D–values, with a mean estimate of -1.16 (-

1.37 to -0.95) in the case of low heat. Medium heat resulted in log D–values ranging from -1.29 to 

-1.51, while high temperature experiments yielded log D–values of -2.14 and -2.22. 

Considering water activity as a subgroup did not provide as substantial a difference as 

temperature. Additionally, the subgroups by water activity and method were identical, since 
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Newkirk et al. (2018) used low (0.33) water activity peppercorns and vacuum steam pasteurization 

while Ban et al used medium (0.63) aw with superheated steam pasteurization (Ban et al., 2018; 

Newkirk et al., 2018). Therefore, we cannot determine the cause of variability. The studies had an 

I2 of 87.5% (73.3 to 94.2%), and a tau² of 0.19 (0.05 to 1.92). Superheated Steam treatments with 

medium aw had a high I2 (>90%), whereas the low aw vacuum steam treatment experiments had no 

measurable heterogeneity. The mean effect size was -1.6 (-2.2 to 1.09) for superheated 

steam/medium aw and -1.1 (-1.36 to 0.74) for low aw /vacuum steam treatments.  

Meta-Analysis of Miscellaneous Treatments  

While the aforementioned methods, as well as non-treated and storage after ClO2 

fumigation experiments, had multiple studies examining similar interventions, several methods 

had only one comparable inactivation study. These methods included ethylene oxide (EtO) 

fumigation, Acetic Acid fumigation, Heat and humidity treatment, phosphine fumigation, and 

UV/heat treatments. We considered comparing these methods to others as impractical, so we 

categorized them as miscellaneous (MISC) methods. A subgroup analysis based on method was 

conducted for MISC methods with repeated experiments (Table 4.39). Individual meta-analyses 

were reported on all techniques that were repeated at least once (Tables 4.40 to 4.44).  

EtO fumigation is highly effective at inactivating Salmonella but is considered to be a 

controversial antimicrobial; while used in the United States, Canada, and India, this treatment has 

been banned from use in the European Union due to its mutagenic and carcinogenic properties 

(Dudkiewicz et al., 2022). EtO inactivates Salmonella by adding alkyl groups to proteins and 

nucleic acids, causing denaturation, and is highly reactive with water (Huang et al., 2012; Wei et 

al., 2021). Multiple studies found that temperature and relative humidity were critical parameters 

for inactivating Salmonella with EtO However, our subgroup analysis found no significant 
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difference (p = 0.9925) between the different RH (%) subgroups with mean effect sizes ranging 

from 0.24 (-0.49 to 0.98) to 0.30 (-0.33 to 0.94).  However, the  for subgroup differences among 

temperature-based subgroups (46°C, 53°C, and 60°C) had a p-value of 0.043. The study itself 

reported that a five-log reduction was only possible with 20 minutes of the maximum temperature 

(60°C) and RH (50%) (Wei et al., 2021).  

Park et al (2019) explored how combining UV-irradiation with two levels of heat 

treatment (45°C and 60°C) can have a combined effect on inactivation. Higher temperatures 

combined with UV had a more substantial effect of 0.32 (-0.04 to 0.69) when compared to Lower 

temperatures- a log D–value of 0.68 (0.43 to 0.93). The two experiments had an I2 of 60% and a τ² 

of 0.038 (Park et al., 2019). 

Phosphine is one of the most popular fumigants in the world. It is highly toxic but does 

not leave residues within the product. Thus far, we have only found one study that explored how 

phosphine affects Salmonella in black pepper. We divided the experiments by Castro et al. (2011) 

into two subgroups based on water activity (0.92 and 0.97). 

Overall, the test between the subgroups resulted in a p-value of 0.475. The I2 of 

experiments on black pepper with an aw of 0.97 was 20.7%, while no heterogeneity was found for 

experiments with an aw of 0.92. Overall, all experiments had a negligible (0.0009) τ² and an I² of 

0%. It should be noted that the aw values were very close to one another, which may contribute to 

the lack of difference between the subgroups.  

The moisture content of bacteria is most related to the relative humidity of their 

environment. High humidity can increase their moisture content and make them more susceptible 

to heat-based inactivation. Yang et al. (2020) conducted a study that combined a 15-minute dry 

heating phase with humidity increases to 80%, 70%, or 60%. Since there was no reduction before 
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the humidity treatment, we calculated the log D–values based on the initial humidity increase 

(Yang et al., 2022).  

Our findings clearly show that higher humidity levels came with faster reductions in 

colony-forming units. Overall, the mean log D–values were -0.23 (-0.39 to -0.07), 0.09 (-0.28 to 

0.46), and 0.55 (0.15 to 0.95) for 80%, 70%, and 60% humidity, respectively. All treatments had 

an I2 of 85.5% and a τ² of 0.132 (Yang et al., 2022). 

To find a new alternative for spice disinfection, Nei et al. (2017) tested acetic acid at 

concentrations of 0.3, 0.6, and 4.7 mmol/L. The results of 0.3 and 0.6 were close with respective 

log D–values of 1.62 (1.02 to 2.23) and 1.6 (1.06 to 2.14).  Concentrations of 4.7 mmol/L had a 

log D–value of 1.18. Overall, no heterogeneity was found among the results. 

Six experiments lacked a dimension of comparison. These methods were based on 

fumigation (O3, H2O2), irradiation (Near Infrared (NIR), UV with NIR, UV with NIR and TiO2 

exposure (TiO2/UVNIR, and simultaneous UV-A and C treatment. The log D–values of these 

methods ranged from -0.42 in the case of H2O2 fumigation to 2.00. Their primary model statistics 

are presented in Table 4.45. Many of these methods are novel and, to the best of our knowledge, 

have not been previously reported. Therefore, more research is needed to verify the efficacy and 

predicted outcome of using these methods. 

Meta-Analysis of Experiments with No Treatment, Survival after ClO2Fumigation 

Among all the reviewed studies, we identified 28 experiments in which the researchers 

provided no treatment for the inoculated black pepper samples. Effects for these studies varied 

greatly, with Song (2023) measuring a 1 log reduction in one day and Xie et al. (2022) 

measuring up to a 0.18 log increase throughout the experiment (Song, 2023; Xie et al., 2022). 

Both the sample matrix and water activity were key determinants in Salmonella survival. 
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When comparing all experiments, NT studies had a mean effect of 1.2 (0.85 to 1.52), with 

high aw (0.92–9.97) studies having a mean effect of 0.2 (0.14 to 0.27), compared to low aw (0.30) 

studies, which had a mean effect of 1.8 (1.06 to 2.46). This indicates that Salmonella tends to die 

more quickly in high aw environments, particularly in black pepper. When evaluating the matrix, 

only one study (Song 2023) used whole black pepper for the evaluation. However, their 

experiments yielded a markedly smaller effect of 0.3 (-0.3 to 0.83) compared to the mean for 

ground black pepper studies: 1.5 (1.11 to 1.97). The findings in our subgroup analysis align well 

with our response surface analysis results, suggesting that both water activity and sample matrix 

can influence how Salmonella spp. survive. The meta-analysis on D-90 values of NT studies can 

be seen in Tables 4.46 and 4.47.When evaluating the subgroups, both categorizations showed high 

heterogeneity (I² = 98.5%, τ² = 1.23), and subgroup differences as measured by the test showed p-

values below 0.001. 

Conducting a meta–regression (Table 4.48) shows us that using both aw and sample 

matrix as a predictor explains 52% of heterogeneity that is not due to sampling error (I2 = 92.5%). 

The QM statistic has a p-value below 0.0001, indicating that both moderator variables are 

significant. This is again in line with our findings from the response surface analysis. 

Not all survival studies relied on no treatments. Wei et al. (2019) and Golden et al. (2019) 

both investigated the behavior of Salmonella after ClO2 fumigation. We referred to these methods 

as ClO2 (storage), and their results were provided in the same units as NT studies (D–90). To be 

able to analyze these results correctly, we chose the final CFU count of the ClO2 treatment as our 

initial CFU count for D90 determination (Golden et al., 2019; Wei et al., 2023). These methods 

can be grouped according to the parameters of their respective ClO2 treatments: relative humidity 

and concentration. The results of the meta-analysis on ClO2 (storage) studies can be seen in Tables 
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4.49 and 4.50. In the case of concentration, the effect on survival (p = 0.027) was more prominent 

than that of RH (p = 0.313). This suggests that while concentration may not be the primary 

determinant of ClO2 inactivation, it plays a significantly stronger role in cell survival after 

inactivation. The I2 for medium (5–5.14 mg/L) and high (10–12.86 mg/L) concentration subgroups 

were 72.7% (8.1% to 91.9%) and 54.6% (0.0% to 88.9%), respectively. The τ² for medium 

concentration was 0.04, while the τ² was 0.2 for studies that used higher concentrations, suggesting 

greater variance between studies. The treatments with 80% RH showed no heterogeneity, whereas 

experiments using 41.5% RH resulted in a τ² of 0.35 and an I² of 88.4% (72.9% to 95.1%). Since 

these experiments came from only two separate studies using 41.5% and 80% RH, the number of 

studies performed, and variations thereof (such as concentration), can be assumed to contribute to 

this disparity between heterogeneity statistics. 
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Table 4.1: Data Extraction by Treatment 

Inactivation Treatment Data Extracted for All Covariates used for Secondary 
Modeling and Subgroup Analysis 

Heat 

Authors, Log Reduction 
(log CFU), Matrix 

(ground or whole), 
Method, Treatment Time 

(min), and 
Temperature(°C) 

Temperature, Matrix,  aw 

UV Intensity, Matrix 

Plasma Gas 

Indirect Plasma N/A 

ClO2 RH, Concentration 

Gamma Irradiation N/A 

Steam Water Activity 

Electron Beam  
Gamma Irradiation 

N/A 
N/A 

Radiofrequency Matrix 

ClO2/Storage RH, Concentration 

No Treatment Matrix, aw 

Miscellaneous Method, RH, Matrix 
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Table 4.2: Primary Model Data for Heat Inactivation with Key Predictors 

Author Method Matrix D-value SE Temp (°C) aw RMSE AIC Effect Type 

Song 2023 Heat Whole 54.804 6.977 80 NA 0.347 31.129 D–value (min) 

Gautam et al 2020 Heat Ground 5.734 0.117 65 0.75 0.376 32.094 D–value (min) 

Gautam et al 2020 Heat Ground 3.263 1.493 70 0.75 0.232 26.33 D–value (min) 

Gautam et al 2020 Heat Ground 1.684 0.647 75 0.75 0.157 21.65 D–value (min) 

Wason et al 2022 Heat Ground 3.232 0.252 65 0.7 0.417 33.346 D–value (min) 

Wason et al 2022 Heat Ground 3.84 0.875 70 0.7 0.253 27.347 D–value (min) 

Wason et al 2022 Heat Ground 1.429 0.211 75 0.7 0.129 -9.012 D–value (min) 

Park et al 2019 Heat Ground 4.533 1.516 45 0.65 0.625 9.731 D–value (min) 

Park et al 2019 Heat Ground 1.584 1.516 60 0.65 0.611 9.352 D–value (min) 

Wei et al 2021b Heat Ground 6.032 5.49 65 0.65 0.287 -2.724 D–value (min) 

Wei et al 2021b Heat Ground 3.142 1.961 70 0.65 0.23 -6.299 D–value (min) 

Wei et al 2021b Heat Ground 1.604 0.621 75 0.65 0.211 25.177 D–value (min) 

Wason et al 2022 Heat Ground 2.999 3.087 70 0.55 0.575 37.201 D–value (min) 

Wason et al 2022  Heat Ground 2.268 0.852 75 0.55 0.361 31.624 D–value (min) 

Wason et al 2022  Heat Ground 1.259 0.561 80 0.55 0.399 11.234 D–value (min) 

Gautam et al 2020 Heat Ground 6.015 0.152 75 0.54 0.392 32.617 D–value (min) 

Gautam et al 2020 Heat Ground 2.618 1.18 80 0.54 0.385 32.389 D–value (min) 

Gautam et al 2020 Heat Ground 0.853 0.459 85 0.54 0.246 27.01 D–value (min) 

Wei et al 2021b Heat Ground 35.31 0.771 65 0.45 0.418 3.271 D–value (min) 

Wei et al 2021b Heat Ground 15.721 0.837 70 0.45 0.327 -0.654 D–value (min) 

Wei et al 2021b Heat Ground 5.948 0.445 75 0.45 0.279 -3.163 D–value (min) 

Ahmad et al 2022 Heat Ground 20 0.5 65 0.45 NA NA D–value (min) 

Ahmad et al 2022 Heat Ground 8.6 0.2 70 0.45 NA NA D–value (min) 

Ahmad et al 2022 Heat Ground 3.3 0.1 75 0.45 NA NA D–value (min) 

Ahmad et al 2022 Heat Ground 21.5 0.4 65 0.45 NA NA D–value (min) 

Ahmad et al 2022 Heat Ground 9.8 0.1 70 0.45 NA NA D–value (min) 
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Author Method Matrix D-value SE Temp (°C) aw RMSE AIC Effect Type 

Ahmad et al 2022 Heat Ground 3.4 0.1 75 0.45 NA NA D–value (min) 

Wason et al 2022 Heat Ground 18.086 0.832 70 0.4 0.597 37.641 D–value (min) 

Wason et al 2022  Heat Ground 8.446 3.495 75 0.4 0.303 29.494 D–value (min) 

Wason 2024a  Heat Ground 4.612 0.17 80 0.4 0.299 29.357 D–value (min) 

Wason 2024a  Heat Ground 3.035 0.711 80 0.4 0.255 27.438 D–value (min) 

Wason et al 2022  Heat Ground 3.225 0.35 80 0.4 0.373 31.995 D–value (min) 

Gautam et al 2020 Heat Ground 9.273 2.796 75 0.33 0.143 20.461 D–value (min) 

Gautam et al 2020 Heat Ground 5.127 1.016 80 0.33 0.136 19.877 D–value (min) 

Gautam et al 2020 Heat Ground 1.751 0.297 85 0.33 0.189 23.845 D–value (min) 

Xie et al 2022  Heat Ground 34.06 0.271 70 0.3 0.202 NA D–value (min) 

Wei et al 2021b Heat Ground 42.718 3.283 75 0.25 0.311 -20.789 D–value (min) 

Wei et al 2021b Heat Ground 16.528 0.292 80 0.25 0.323 30.268 D–value (min) 
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Table 4.3: Primary Model Data for ClO2–Inactivation with Key Predictors 

Author Method Matrix D-value SE RH (%) Concentration (mg/L) RMSE AIC 
Wei et al 2021c  ClO2 Whole 77.890 16.257 60 5 0.161 -1.506 

Wei et al 2021c  ClO2 Whole 97.553 23.418 70 5 0.385 10.718 

Wei et al 2021c  ClO2 Whole 87.040 18.274 80 5 0.528 15.152 

Wei et al 2021c  ClO2 Whole 137.727 21.415 60 10 0.177 -0.190 

Wei et al 2021c  ClO2 Whole 40.643 9.108 70 10 0.331 8.595 

Wei et al 2021c  ClO2 Whole 64.163 7.459 80 10 0.520 2.481 

Wei et al 2021c  ClO2 Whole 101.755 19.293 60 15 0.292 6.825 

Wei et al 2021c  ClO2 Whole 88.808 22.043 70 15 0.530 36.228 

Wei et al 2021c  ClO2 Whole 43.619 9.465 80 15 0.667 38.989 

Wei et al 2023 ClO2 Whole 44.118 0.000 80 10 0.000 NA 

Chai et al 2022 ClO2 Whole 151.103 13.790 70 10 0.281 -29.460 

Golden et al 2019 ClO2 Whole 450.603 189.740 41.5 10 0.718 24.127 

Golden et al 2019 ClO2 Whole 450.102 198.171 41.5 10 0.751 24.584 
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4.4: Primary Model Data for No–treatment Experiments with Key Predictors 

Author Method Matrix D-value SE aw RMSE AIC 
Effect 
Type 

Song 2023 NT Whole 0.022 0.005 NA 0.445 34.123 D90 (day) 

Golden et al 2019  NT Whole 9.065 0.412 NA 0.056 -16.291 D90 (day) 

Golden et al 2019  NT Whole 6.901 1.549 NA 0.056 -16.291 D90 (day) 

Song 2023 NT Whole 0.023 0.006 NA 0.443 34.078 D90 (day) 

Song 2023 NT Whole 0.023 0.006 NA 0.443 34.078 D90 (day) 

Castro et al 2011 NT Whole 1.818 0.477 0.97 0.196 NA D90 (day) 

Castro et al 2011 NT Whole 1.587 0.053 0.92 0.021 NA D90 (day) 

Castro et al 2011 NT Whole 2.517 0.962 0.67 0.459 NA D90 (day) 

Castro et al 2011 NT Whole 9.969 3.184 0.67 0.606 9.567 D90 (day) 

Keller et al 2013 NT Ground 14.485 1.183 0.55 0.565 -5.249 D90 (day) 

Keller et al 2013 NT Ground 3.263 0.230 0.55 0.418 -8.691 D90 (day) 

Keller et al 2013 NT Ground 5.482 1.128 0.55 0.727 -6.028 D90 (day) 

Keller et al 2013 NT Ground 15.460 3.146 0.55 0.336 -39.001 D90 (day) 

Xie et al 2022 NT Ground 44.785 21.903 0.5 0.083 -30.093 D90 (day) 

Xie et al 2022 NT Ground 16.734 5.854 0.5 0.159 -19.704 D90 (day) 

Xie et al 2022 NT Ground 106.371 6.268 0.5 0.226 -28.856 D90 (day) 

Xie et al 2022 NT Ground 114.078 8.351 0.5 0.248 -20.158 D90 (day) 

Sun et al 2014 NT Whole 6.888 6.827 0.47 1.121 NA D90 (day) 

Wason et al 2022 NT Ground 10.864 4.226 0.4 0.215 -23.347 D90 (day) 

Xie et al 2022 NT Ground 168.476 369.927 0.3 0.099 -27.264 D90 (day) 

Xie et al 2022 NT Ground 1.49E+08 4.63E+14 0.3 0.282 -10.583 D90 (day) 

Xie et al 2022 NT Ground 323.367 36.441 0.3 0.134 -32.363 D90 (day) 

Xie et al 2022 NT Ground 439.549 95.310 0.3 0.190 -25.412 D90 (day) 

Bowman et al 2015 NT Whole 21.870 7.052 0.3 0.165 22.205 D90 (day) 

Bowman et al 2015 NT Whole 74.241 95.912 0.3 0.437 5.634 D90 (day) 
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Bowman et al 2015 NT Whole 31.280 13.346 0.3 0.177 23.090 D90 (day) 

Bowman et al 2015 NT Whole 4.427 0.762 0.3 0.434 33.834 D90 (day) 

Wei et al 2019 NT Whole 1.906 0.241 0.66 0.11 -25.378 D90 (day) 
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Table 4.5: Primary Model Data for Miscellaneous Treatments with Key Predictors 

 
Author Method Matrix D-value SE RMSE AIC Effect Type 
Kim et al 2023  NIR Whole 10.006 0.513 0.067 11.377 D–value (min) 

Kim et al 2023  UV-NIR Whole 2.76 0.147 0.352 3.035 D–value (min) 

Park et al 2019 UV-Heat Ground 4.781 0.617 0.592 4.921 D–value (min) 

Park et al 2019 UV-Heat Ground 2.099 0.39 0.879 12.028 D–value (min) 

Wei et al 2021a EtO Whole 1.392 0.523 0.427 12.162 D–value (min) 

Wei et al 2021a EtO Whole 0.7 0.056 0.182 0.206 D–value (min) 

Wei et al 2021a EtO Whole 1.842 0.97 1.124 25.714 D–value (min) 

Wei et al 2021a EtO Whole 0.891 0.189 0.377 10.409 D–value (min) 

Wei et al 2021a EtO Whole 11.432 5.607 1.069 25.011 D–value (min) 

Wei et al 2021a EtO Whole 1.675 0.894 1.039 24.619 D–value (min) 

Wei et al 2021a EtO Whole 12.799 6.515 0.99 23.947 D–value (min) 

Wei et al 2021a EtO Whole 2.489 0.602 0.756 20.162 D–value (min) 

Wei et al 2021a EtO Whole 0.327 0 0 NA D–value (min) 

Nei et al 2017 Acetic Acid NA 42.062 12.932 1.144 28.787 D–value (min) 

Nei et al 2017 Acetic Acid NA 39.535 10.862 1.087 28.282 D–value (min) 

Nei et al 2017 Acetic Acid NA 15 0 0 NA D–value (min) 

Park et al 2020 TiO2/UV-AC Ground 109.399 24.612 0.369 -6.232 D–value (min) 

Park et al 2020 UV-AC Ground 72.834 12.026 0.248 -5.05 D–value (min) 

Rane et al 2020 O3 Whole 400 0 0 NA D–value (min) 

Yang et al 2020 
Heat/Humidit
y Whole 0.589 0.047 0.302 NA 

D–value (min) 

Yang et al 2020 
Heat/Humidit
y Whole 1.221 0.231 0.579 NA 

D–value (min) 

Yang et al 2020 
Heat/Humidit
y Whole 3.574 0.732 0.586 NA 

D–value (min) 

Song and Kang H2O2 Whole 0.3787 0.114 NA NA D–value (min) 
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Author Method Matrix D-value SE RMSE AIC Effect Type 
Castro et al 2011 PH3 Whole 1319.89 201.108 0.372 NA D–value (min) 

Castro et al 2011 PH3 Whole 1932.886 180.427 0.155 NA D–value (min) 

Castro et al 2011 PH3 Whole 813.559 366.258 1.127 NA D–value (min) 

Castro et al 2011 PH3 Whole 1231.822 181.151 0.384 NA D–value (min) 
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Table 4.6: Primary Model Data for Acetic Acid Treatments with Key Predictors 

Author Method Matrix D-value SE RMSE AIC Effect Type 
Nei et al 2017 Acetic Acid NA 42.062 12.932 1.144 28.787 D–value (min) 

Nei et al 2017 Acetic Acid NA 39.535 10.862 1.087 28.282 D–value (min) 

Nei et al 2017 Acetic Acid NA 15 0 0 NA D–value (min) 
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Table 4.7: Primary Model Data for EtO Treatments with Key Predictors 

Author Method Matrix D-value SE Temperature (°C) RH RMSE AIC Effect Type 
Wei et al 
2021a EtO Whole 1.392 0.523 46 30 0.427 12.162 

D–value 
(min) 

Wei et al 
2021a EtO Whole 0.7 0.056 46 40 0.182 0.206 

D–value 
(min) 

Wei et al 
2021a EtO Whole 1.842 0.97 46 50 1.124 25.714 

D–value 
(min) 

Wei et al 
2021a EtO Whole 0.891 0.189 53 30 0.377 10.409 

D–value 
(min) 

Wei et al 
2021a EtO Whole 11.432 5.607 53 40 1.069 25.011 

D–value 
(min) 

Wei et al 
2021a EtO Whole 1.675 0.894 53 50 1.039 24.619 

D–value 
(min) 

Wei et al 
2021a EtO Whole 12.799 6.515 60 30 0.99 23.947 

D–value 
(min) 

Wei et al 
2021a EtO Whole 2.489 0.602 60 40 0.756 20.162 

D–value 
(min) 

Wei et al 
2021a EtO Whole 0.327 0 60 50 0 NA 

D–value 
(min) 
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Table 4.8: Primary Model Data for Heat with Humidity Treatments with Key Predictors 

Author Method Matrix D-value SE Temperature (°C) RH RMSE AIC Effect Type 

Yang et al 2020 Heat/Humidity Whole 0.589 0.047 80 80 0.302 NA 

D–value 

(min) 

Yang et al 2020 Heat/Humidity Whole 1.221 0.231 80 70 0.579 NA 

D–value 

(min) 

Yang et al 2020 Heat/Humidity Whole 3.574 0.732 80 60 0.586 NA 

D–value 

(min) 
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Table 4.9: Primary Model Data for PH3 Treatments with Key Predictors 

Author Method Matrix D-value SE aw RMSE Effect Type 
Castro et al 2011 PH3 Whole 1319.89 201.108 0.92 0.372 D–value (min) 

Castro et al 2011 PH3 Whole 1932.886 180.427 0.97 0.155 D–value (min) 

Castro et al 2011 PH3 Whole 813.559 366.258 0.92 1.127 D–value (min) 

Castro et al 2011 PH3 Whole 1231.822 181.151 0.97 0.384 D–value (min) 
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Table 4.10: Primary Model Data for Steam Treatments with Key Predictors 

Author Method Matrix 
D-
value SE 

Temp 
(°C) aw 

Method 
Variation RMSE AIC Effect Type 

Ban et al 2018 Steam Whole 0.056 0.008 100 0.62 Superheated 0.483 35.101 

D–value 

(min) 

Ban et al 2018 Steam Whole 0.053 NA 120 0.62 Superheated 0.5831 17.770 

D–value 

(min) 

Ban et al 2018 Steam Whole 0.031 0.008 140 0.62 Superheated 0.911 22.771 

D–value 

(min) 

Ban et al 2018 Steam Whole 0.007 0.001 160 0.62 Superheated 0.488 NA 

D–value 

(min) 

Ban et al 2018 Steam Whole 0.006 NA 180 0.62 Superheated 1.215 NA 

D–value 

(min) 

Newkirk et al 2018 Steam Whole 0.077 0.018 88 0.33 Vacuum 0.649 10.326 

D–value 

(min) 

Newkirk et al 2018 Steam Whole 0.101 0.022 88 0.33 Vacuum 0.812 13.909 

D–value 

(min) 
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Table 4.11: Primary Model Data for Radiofrequency Heat Treatments with Key Predictors 

Author Method Matrix 
D-
value SE aw 

Power 
(kW) Ventilation RMSE AIC 

Effect 
Type 

Wason et al 2024b RFH Whole 0.318 1.841 0.66 6 Controlled 2.087 29.423 

D–value 

(min) 

Wei et al 2018 RFH Whole 0.496 0.15 0.6 6 Controlled 1.723 32.889 

D–value 

(min) 

Wei et al 2019 RFH Whole 
0.413 

1.54703 0.66 6 Controlled 0.110 -25.378 

D–value 

(min) 
Jeong and Kang 

2014  RFH Ground 11.022 1.434 0.54 12 

Not 

Reported 0.795 3.185 

D–value 

(min) 
Jeong and Kang 

2014  RFH Ground 6.335 0.713 0.76 12 

Not 

Reported 0.648 
10.353 

D–value 

(min) 
Jeong and Kang 

2014  RFH Ground 7.426 0.674 0.84 12 

Not 

Reported 0.549 3.260 

D–value 

(min) 
Jeong and Kang 

2014  RFH Ground 9.004 0.874 0.87 12 

Not 

Reported 0.647 -0.095 

D–value 

(min) 

Kim et al 2012  RFH Whole 0.299 0.2186 NA 9 

Not 

Reported 0.302 6.230 

D–value 

(min) 

Kim et al 2012  RFH Ground 0.206 0.3142 NA 9 

Not 

Reported 0.434 10.590 

D–value 

(min) 

Tong et al 2022  RFH Whole 4.897 0.173 0.65 9 Closed 
0.076 

-15.379 

D–value 

(min) 

Tong et al 2022  RFH Whole 3.316 0.214 0.65 9 Closed 
0.097 

NA 

D–value 

(min) 

Tong et al 2022  RFH Whole 1.997 0.169 0.65 9 Closed 
0.190 

NA 

D–value 

(min) 
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Table 4.12: Primary Model Data for Direct Plasma Treatments with Key Predictors 

Author Method Matrix D-value SE Gas RMSE AIC Effect Type 
Hertwig et al 2015 Plasma Whole 1.420 0.250 Modified (Argon) 0.250 -5.170 D–value (min) 

Song 2023 Plasma Whole 41.220 3.630 Modified (Argon) 0.050 8.610 D–value (min) 

Sun et al 2014 Plasma Whole 18.220 1.620 Modified (Argon) 0.250 13.760 D–value (min) 

Sun et al 2014 Plasma Whole 14.340 0.900 Air 0.230 26.090 D–value (min) 

Sun et al 2014 Plasma Whole 12.720 1.850 Air 0.510 NA D–value (min) 
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Table 4.13: Primary Model Data for Indirect Plasma Treatments with Key Predictors 

Author Method Matrix 
D-
value SE Gas Power 

(kW) RMSE AIC Effect Type 

Garcia Casado et al 2024 

Indirect 

Plasma Whole 13.941 0.962 

Modified 

(Argon) 0.08 0.042 NA 

D–value 

(min) 

Hertwig et al 2015 

Indirect 

Plasma Whole 5.233 1.990 Air 1.2 0.967 16.704 

D–value 

(min) 
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Table 4.14: Primary Model Data for Gamma Irradiation Treatments with Key Predictors 

Author Method Matrix D-value SE RMSE AIC Effect Type 
Song et al 2014  Gamma Whole 3.158 0.795 0.478 34.994 D–value (min) 

Song et al 2014  Gamma Ground 9.829 1.828 0.372 31.983 D–value (min) 

Arias Rios et al 2019 Gamma Whole 0.204 0.041 0.305 7.438 D–value (min) 

Doca et al 2021 Gamma Whole 2.151 0.737 0.741 NA D–value (min) 
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Table 4.15: Primary Model Data for UV Irradiation Treatments with Key Predictors 

Author Method Matrix 
D-
value SE Intensity (mW/cm2 ) RMSE AIC 

Effect 
Type 

Gabriel et al 2020 UV Whole 5.946 0.523 1.7 0.192 -20.575 

D–value 

(min) 

Park et al 2019 UV Ground 2.088 0.206 2320 0.285 -8.267 

D–value 

(min) 

Park et al 2020  UV Ground 72.834 12.026 1110 0.248 -5.05 

D–value 

(min) 

Park et al 2020  UV Ground 118.134 10.061 1110 0.13 -23.003 

D–value 

(min) 

Park et al 2020  UV Ground 165.241 44.453 0.57 0.193 NA 

D–value 

(min) 

Kim et al 2023  UV Whole 9.337 2.381 1110 0.178 -10.346 

D–value 

(min) 
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Table 4.16: Primary Model Data for Electron Beam Treatments with Key Predictors 

Author Method Matrix D-value SE RMSE AIC Effect Type 
Gaba et al 2022 Electron Beam Whole 4.576 0.210 0.108 -7.115 D–value (min) 

Murdoch et al 2024 Electron Beam Whole 0.783 0.027 0.226 -21.971 D–value (min) 
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Table 4.17: Primary Model Data for ClO2/Storage with Key Predictors 

Author Method Matrix D-value SE RH (%) Concentration (mg/L) RMSE 
Wei et al 2023 ClO2/Storage Whole 6.618 1.777 80 5.00 0.127 

Wei et al 2023  ClO2/Storage Whole 5.107 0.506 80 10.00 0.061 

Golden et al 2019  ClO2/Storage Whole 2.5 0 41.5 2.57 0 

Golden et al 2019  ClO2/Storage Whole 2.273 0 41.5 5.14 0 

Golden et al 2019  ClO2/Storage Whole 3275 7777.383 41.5 12.86 0.006 

Golden et al 2019  ClO2/Storage Whole 31.192 10.332 41.5 2.57 0.254 

Golden et al 2019  ClO2/Storage Whole 2.632 0.069 41.5 5.14 0.005 

Golden et al 2019  ClO2/Storage Whole 23.905 6.086 41.5 12.86 0.086 
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Table 4.18: Goodness of fit statistics for our secondary models 

Method AIC RMSE R2 P-Value 
(Normality) Predictors 

Heat -3.20 0.214 NA 0.924 
Temperautre (°C), 

aw 

NT 39.90 0.548 0.479 0.425 aw 

ClO2 (RH) -4.24 0.177 0.747 0.756 RH (%) 

ClO2 (C)  13.55 0.352 0.006 0.088 
Concentration 
(mg/L) 
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Table 4.19: Meta-Analysis Results  for Heat Treatments by Heat Intensity 

 
Method Subgroup Log D P k I2 τ² 
Heat (Temp) All Experiments 0.9 (0.69 ; 1.02) 0 39 99.2% (99.1% ; 99.3%) 0.21 (0.12 ; 0.37) 

Heat (Temp) 75–85 °C 0.8 (0.39 ; 1.21) 0 11 96.7% (95.4% ; 97.6%) 0.41 (NA ; NA) 

Heat (Temp) 60–75°C 0.9 (0.71 ; 1.07) 0 26 99.5% (99.4% ; 99.5%) 0.17 (NA ; NA) 

Heat (Temp) 45–60 °C 0.6 (-0.01 ; 1.23) 0.055 2 0.0% (NA ; NA) 0 (NA ; NA) 
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Table 4.20: Meta-Analysis Results  for Heat Treatments by Matrix 

Method Subgroup Log D P k I2 τ² 
Heat (Matrix) All Experiments 0.9 (0.69 ; 1.02) 0 39 99.2% (99.1% ; 99.3%) 0.21 (0.12 ; 0.37) 

Heat (Matrix) Whole 1.9 (1.42 ; 2.46) 0 2 64.2% (0.0% ; 91.8%) 0.1 (NA ; NA) 

Heat (Matrix) Ground 0.8 (0.66 ; 0.96) 0 37 99.3% (99.2% ; 99.3%) 0.16 (NA ; NA) 
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Table 4.21: Meta-Analysis Results  for Heat Treatments by Water Activity 

Method Subgroup Log D P k I2 τ² 

Heat (aw) All Experiments 0.8 (0.66 ; 0.96) 0 37 
99.3% (99.2% ; 
99.3%) 

0.16 (0.08 ; 0.26) 

Heat (aw) 0.65–0.75 0.5 (0.31 ; 0.69) 0 11 
66.4% (36.5% ; 
82.2%) 

0.04 (NA ; NA) 

Heat (aw) 0.45–0.55 0.9 (0.66 ; 1.09) 0 15 
99.2% (99.0% ; 
99.3%) 

0.14 (NA ; NA) 

Heat (aw) 0.25–0.40 0.9 (0.66 ; 1.23) 0 11 
98.9% (98.6% ; 
99.1%) 

0.2 (NA ; NA) 
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Table 4.22: Results of Meta–Regression Analysis and Begg and Mazumdar’s Rank Correlation 

Test for Heat–treatment experiments 

Statistic Value 
Covariates aw, Temperature 

τ² 0.027 (SE = 0.011) 

I2 95.21% 

H2 20.88 

R2* 83.09% 

QE 561.44 (p < 0.0001) 

QM 111.62 (p < 0.0001) 

Rank correlation test z 1.39 (p = 0.016) 

Bias Estimate 115.000 (SE = 82.666) 
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Table 4.23: Meta-Analysis Results  for ClO2–Treatments by Concentration 

Method Subgroup Log D P k I2 τ² 

ClO2 by RH All Experiments 
2.0 (1.85 ; 
2.11) 

0 12 39.6% (0.0% ; 69.4%) 0.02 (0 ; 0.2) 

ClO2 by RH 60% (RH) 2 (1.83 ; 2.24) 0 3 0.0% (0.0% ; 89.6%) 0 (NA ; NA) 

ClO2 by RH 70% (RH) 2 (1.72 ; 2.24) 0 4 50.1% (0.0% ; 83.5%) 
0.04 (NA ; 

NA) 

ClO2 by RH 80% (RH) 
1.8 (1.62 ; 

1.98) 
0 3 0.0% (0.0% ; 89.6%) 0 (NA ; NA) 

 

 



 83 

 
Table 4.24: Meta-Analysis Results  for ClO2–Treatments by Concentration 

Method Subgroup Log D P k I2 τ² 

ClO2 (conc.) All Experiments 
2.0 (1.85 ; 

2.11) 
0 12 39.6% (0.0% ; 69.4%) 0.02 (0 ; 0.2) 

ClO2 (conc.) 5 mg/L 
1.9 (1.69 ; 

2.18) 
0 3 0.0% (0.0% ; 89.6%) 0 (NA ; NA) 

ClO2 (conc.) 10 mg/L 
2.1 (1.81 ; 

2.31) 
0 6 

65.5% (17.3% ; 

85.6%) 

0.06 (NA ; 

NA) 

ClO2 (conc.) 15 mg/L 
1.9 (1.63 ; 

2.12) 
0 3 0.0% (0.0% ; 89.6%) 0 (NA ; NA) 

 



 84 

Table 4.25: Results of Meta–Regression Analysis for ClO2–treatment experiments 

Statistic By Concentration By RH 
τ² 0.020 (SE = 0.024) 0.01 (SE = 0.019) 

I2 38.50% 23.53% 

H2 1.63 1.31 

R2* 0.00% 39.90% 

QE 18.08 (p = 0.054) 
10.84(p = 
0.370) 

QM 0.105 (p = 0.747 
6.01 (p = 
0.014) 



 85 

 

Table 4.26: Begg and Mazumdar’s Rank Correlation Test for ClO2–treatments 

Statistic Value for ClO2 
Rank correlation test z 0.27 (p =0.784) 

Bias Estimate 4.00 (SE = 14.583) 

 



 86 

Table 4.27: Meta-Analysis Results  for Plasma Treatments by Gas Used. 

Method Subgroup Log D P k I2 τ² 
Plasma 
(Indirect) 

Full Group 1.1 (0.83 ; 1.36) 0 2 17.5% (NA ; NA) 0.02 (NA ; NA) 

Plasma Full Group 0.8 (0.23 ; 1.28) 0.005 7 96.7% (95.0% ; 97.8%) 0.47 (0.18 ; 2.45) 

Plasma Has Argon  0.9 (0.45 ; 1.42) 0 4 91.0% (80.1% ; 95.9%) 0.23 (NA ; NA) 

Plasma Air Only 0.5 (-0.63 ; 1.63) 0.387 3 98.6% (97.6% ; 99.2%) 0.96 (NA ; NA) 
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Table 4.28: Meta-Analysis Results of UV Treatments by Intensity (mW/cm2) 

Method Subgroup Log D P k I2 τ² 

UV (intensity) Full Group 
1.4 (0.73 ; 
1.99) 

0 6 
97.9% (96.9% ; 
98.6%) 

0.59 (0.21 ; 
3.67) 

UV (intensity) 0.57–1.7 mW/cm2 
1.5 (0.06 ; 
2.89) 

0.041 2 
96.2% (89.3% ; 
98.6%) 

1 (NA ; NA) 

UV (intensity) 1110–2320 mW/cm2 
1.3 (0.5 ; 
2.12) 

0.002 4 
98.4% (97.5% ; 
99.0%) 

0.66 (NA ; 
NA) 



 88 

Table 4.29: Meta-Analysis Results of UV Treatments by Matrix 

Method Subgroup Log D P k I2 τ² 

UV (matrix) Full Group 
1.4 (0.73 ; 
1.99) 

0 6 
97.9% (96.9% ; 
98.6%) 

0.59 (0.21 ; 
3.67) 

UV (matrix) Whole 
0.8 (0.63 ; 
0.96) 

0 2 0.0% (NA ; NA) 0 (NA ; NA) 

UV (matrix) Ground 
1.6 (0.73 ; 
2.48) 

0 4 
98.5% (97.6% ; 
99.1%) 

0.76 (NA ; 
NA) 
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Table 4.30: Meta-Analysis Results of Gamma and Electron Beam Irradiation Treatments 

Method Subgroup Log D P k I2 τ² 

Gamma Irradiation Full Group 0.3 (-0.44 ; 1.01) 0.446 4 
92.3% (83.4% ; 
96.4%) 

0.48 (0.12 ; 
6.91) 

Electron Beam Full Group 0.3 (-0.47 ; 1.03) 0.471 2 
99.4% (99.0% ; 
99.7%) 

0.29 (NA ; 
NA) 
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Table 4.31: Meta-Analysis results of Radiofrequency Heating Treatments by Matrix 

Method Subgroup Log D P k I2 τ² 
RFH 
(Matrix) 

All 
Experiments 

0.6 (0.37 ; 0.86) 0 12 
82.2% (70.1% ; 
89.4%) 

0.11 (0.03 ; 
0.58) 

RFH 
(Matrix) 

Whole 0.3 (0 ; 0.67) 0.053 7 
81.2% (62.1% ; 
90.7%) 

0.11 (NA ; 
NA) 

RFH 
(Matrix) 

Ground 0.9 (0.8 ; 1.01) 0 5 
0.0% (0.0% ; 
79.2%) 

0 (NA ; 
NA) 
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Table 4.32: Meta-Analysis for Radiofrequency Heat Treatments by Power 

Method Subgroup Log D P k I2 τ² 
RFH 
(Power) 

All 
Experiments 

0.6 (0.37 ; 0.86) 0 12 
82.2% (70.1% ; 
89.4%) 

0.11 (0.03 ; 
0.58) 

RFH 
(Power) 

6kW -0.3 (-0.9 ; 0.28) 0.31 3 
0.0% (0.0% ; 
89.6%) 

0 (NA ; 
NA) 

RFH 
(Power) 

12kW 0.9 (0.81 ; 1.01) 0 4 
0.0% (0.0% ; 
84.7%) 

0 (NA ; 
NA) 

RFH 
(Power) 

 9kW 0.5 (0.26 ; 0.71) 0 5 
83.0% (61.3% ; 
92.5%) 

0.04 (NA ; 
NA) 
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Table 4.33: Meta-Analysis for Radiofrequency Heat Treatments by Steam Ventilation 

Method Subgroup Log D P k I2 τ² 
RFH 
(Ventilation) 

All 
Experiments 

0.6 (0.37 ; 0.86) 0 12 
82.2% (70.1% ; 
89.4%) 

0.11 (0.03 ; 
0.58) 

RFH 
(Ventilation) 

Controlled -0.3 (-0.9 ; 0.28) 0.31 3 
0.0% (0.0% ; 
89.6%) 

0 (NA ; 
NA) 

RFH 
(Ventilation) 

Not 
Reported 

0.7 (0.51 ; 0.89) 0 9 
84.4% (72.0% ; 
91.3%) 

0.06 (NA ; 
NA) 
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Table 4.34: Meta-Analysis for Radiofrequency Heat Treatments by Water Activity 

Method Subgroup Log D P k I2 τ² 

RFH (aw) All Experiments 0.7 (0.42 ; 0.89) 0 10 
84.6% (73.3% ; 

91.1%) 

0.1 (0.03 ; 

0.46) 

RFH (aw) 0.54–0.66 0.5 (0.12 ; 0.87) 0.009 7 
85.2% (71.4% ; 

92.3%) 

0.16 (NA ; 

NA) 

RFH (aw) 0.76–0.87 0.9 (0.77 ; 0.99) 0 3 
0.0% (0.0% ; 

89.6%) 

0 (NA ; 

NA) 
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Table 4.35: Meta–Regression results for Radiofrequency Heating 

Statistic By Ventilation By Matrix By aw By Power 

τ² 0.018 (SE = 0.016 0.031 (SE = 0.024) 0.106 (SE = 0.070) 

0.020 (SE = 

0.017) 

I2 62.66% 72.82% 92.38% 63.83% 

H2 2.68 3.68 13.13 2.76 

R2* 84.07% 72.29% 0.00% 82.12% 

QE 27.67 (p = 0.0011) 35.38 (p = 0.0001) 47.20 (p < 0.0001) 

29.77 (p = 

0.0009) 

QM 18.49 (p < 0.0001) 11.03 (p = 0.0009) 1.20 (p = 0.274) 

18.72 (p < 

0.0001) 
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Table 4.36: Begg and Mazumdar’s Rank Correlation Test for Radiofrequency–treatments 

Statistic Value for ClO2 
Rank correlation test z 0.14 (p = 0.891) 

Bias Estimate 2.00 (SE = 14.583) 



 96 

Table 4.37: Meta-Analysis Results for Steam Treatment by Temperature 

Method Subgroup Log D P k I2 τ² 
Steam 

(Temperature) 
All Experiments -1.4 (-1.84 ; -0.99) 0.00 5 

87.5% (73.3% ; 

94.2%) 
0.19 (0.05 ; 1.72) 

Steam 

(Temperature) 
88–100°C -1.2 (-1.37 ; -0.95) 0.00 3 

0.0% (0.0% ; 

89.6%) 
0 (NA ; NA) 

Steam 

(Temperature) 
120–140°C -1.5 (-2.01 ; -1) 0.00 1 NA (NA ; NA) NA (NA ; NA) 

Steam 

(Temperature) 
160–180°C  -2.2 (-2.43 ; -1.87) 0.00 1 NA (NA ; NA) NA (NA ; NA) 
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Table 4.38: Meta-Analysis results for Steam Treatments by Water Activity and Method 

Method Subgroup Log D P k I2 τ² 

Steam (aw /Method) All Experiments 
-1.4 (-1.84 ; -

0.99) 
0.00 5 

87.5% (73.3% ; 

94.2%) 
0.19 (0.05 ; 1.72) 

Steam (aw /Method)  
0.65 

/Superheated 
-1.6 (-2.2 ; -1.09) 0.00 3 

90.2% (74.1% ; 

96.3%) 
0.21 (NA ; NA) 

Steam (aw /Method) 0.33/Vacuum 
-1.1 (-1.36 ; -

0.74) 
0.00 2 0.0% (NA ; NA) 0 (NA ; NA) 
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Table 4.39: Meta-Analysis Results for Miscellaneous Treatments 

Method Subgroup Log D P k I2 τ² 
EtO All Experiments 0.2 (-0.09 ; 0.54) 0.155 8 56.8% (5.1% ; 80.4%) 0.09 (0 ; 0.75) 

EtO 30% (RH) 0.3 (-0.33 ; 0.86) 0.376 3 54.6% (0.0% ; 87.0%) 0.15 (NA ; NA) 

EtO 40% (RH) 0.3 (-0.33 ; 0.94) 0.345 3 
80.3% (37.7% ; 
93.7%) 

0.24 (NA ; NA) 

EtO 50% (RH)  0.2 (-0.49 ; 0.98) 0.514 2 0.0% (NA ; NA) 0 (NA ; NA) 

Acetic Acid All Experiments 1.6 (1.21 ; 2.01) 0 2 0.0% (NA ; NA) 0 (NA ; NA) 

Heat/Humidity All Experiments 0.1 (-0.34 ; 0.56) 0.64 3 
85.5% (57.5% ; 
95.1%) 

0.13 (0.02 ; 6.1) 

PH3 All Experiments 3.2 (3.06 ; 3.34) 0 4 0.0% (0.0% ; 84.7%) 0 (0 ; 0.24) 

PH3 0.92 (aw) 3.1 (2.82 ; 3.38) 0 2 0.0% (NA ; NA) 0 (NA ; NA) 

PH3 0.97 (aw) 3.2 (3.04 ; 3.4) 0 2 20.7% (NA ; NA) 0 (NA ; NA) 

UV/Heating All Experiments 0.5 (0.18 ; 0.87) 0.003 2 60.0% (0.0% ; 90.6%) 0.04 (NA ; NA) 
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Table 4.40: Meta-analysis results for Ethylene-Oxide Treatments by Temperature and Relative Humidity 

Method Subgroup Log D P k I2 τ² 
EtO (Temp) 46°C -0.1 (-0.28 ; 0.02) 0.085349 3 0.0% (0.0% ; 89.6%) 0 (NA ; NA) 

EtO (Temp) 53°C 0.3 (-0.35 ; 0.97) 0.355966 3 53.8% (0.0% ; 86.8%) 
0.19 (NA ; 
NA) 

EtO (Temp) 60°C  0.6 (-0.03 ; 1.25) 0.061408 2 37.2% (NA ; NA) 
0.09 (NA ; 
NA) 

EtO (RH) 
All 
Experiments 

0.2 (-0.09 ; 0.54) 0.155057 8 56.8% (5.1% ; 80.4%) 0.09 (0 ; 0.75) 

EtO (RH) 30% RH 0.3 (-0.33 ; 0.86) 0.375508 3 54.6% (0.0% ; 87.0%) 
0.15 (NA ; 
NA) 

EtO (RH) 40% RH 0.3 (-0.33 ; 0.94) 0.345366 3 80.3% (37.7% ; 93.7%) 
0.24 (NA ; 
NA) 

EtO (RH) 50% RH  0.2 (-0.49 ; 0.98) 0.513504 2 0.0% (NA ; NA) 0 (NA ; NA) 
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Table 4.41: Meta-analysis results for UV/Heating Treatments 

Method Subgroup Log D P k I2 τ² 

UV/Heating All Experiments 
0.5 (0.18 ; 
0.87) 

0.003 2 60.0% (0.0% ; 90.6%) 
0.04 (NA ; 
NA) 
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Table 4.42: Meta-Analysis Results for Phosphine Fumigation Treatments 

Method Subgroup Log D P k I2 τ² 

PH3 All Experiments 
3.2 (3.06 ; 
3.34) 

0 4 
0.0% (0.0% ; 
84.7%) 

0 (0 ; 0.24) 

PH3 (aw) 0.92  
3.1 (2.82 ; 
3.38) 

0 2 0.0% (NA ; NA) 0 (NA ; NA) 

PH3 (aw) 0.97 3.2 (3.04 ; 3.4) 0 2 20.7% (NA ; NA) 0 (NA ; NA) 
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Table 4.43: Meta-Analysis Results for Heat/Humidity Treatments 

Method Subgroup Log D P k I2 τ² 

Heat/Humidity All Experiments 
0.1 (-0.34 ; 
0.56) 

0.640 3 
85.5% (57.5% ; 
95.1%) 

0.13 (0.02 ; 
6.1) 
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Table 4.44: Meta-analysis results for Acetic Acid Treatments 

Method Subgroup Log D P k I2 τ² 

Acetic Acid All Experiments 
1.6 (1.21 ; 

2.01) 
0 2 0.0% (NA ; NA) 0 (NA ; NA) 
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Table 4.45: Primary Model Statistics for Other Miscellaneous Methods 

Author Method Matrix Log D RMSE AIC 
Kim et al 2023  NIR Whole 1.00 0.067 11.377 

Kim et al 2023  UV/NIR Whole 0.44 0.352 3.035 

Park et al 2020 TiO2/UV-A-C Ground 2.04 0.369 -6.232 

Park et al 2020 UV-A-C Ground 1.86 0.248 -5.05 

Rane et al 2020 O3 Whole 2.60 0 NA 

Song and Kang H2O2 Whole -0.42 NA NA 
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Table 4.46: Meta-Analysis Results for Non-Treated Sample Experiments by Matrix 

Method Subgroup Log D–90 (day) P k I2 τ² 

NT (matrix) Full Group 0.8 (0.39 ; 1.28) 0 27 
98.5% (98.2% ; 
98.7%) 

1.23 (0.69 ; 2.25) 

NT (matrix) Whole 0.3 (-0.31 ; 0.83) 0.375 15 
96.6% (95.6% ; 
97.5%) 

1.12 (NA ; NA) 

NT (matrix) Ground 1.5 (1.11 ; 1.97) 0 12 
97.7% (96.9% ; 
98.2%) 

0.49 (NA ; NA) 
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Table 4.47: Meta-Analysis Results for Non-Treated Sample Experiments by Water Activity 

Method Subgroup Log D–90 (day) P k I2 τ² 
NT (aw) Full Group 1.2 (0.85 ; 1.52) 0 22 98.5% (98.2% ; 98.7%) 0.53 (0.25 ; 0.97) 

NT (aw) 0.92–9.97 0.2 (0.14 ; 0.27) 0 2 0.0% (NA ; NA) 0 (NA ; NA) 

NT (aw) 0.40–0.67 1.1 (0.76 ; 1.46) 0 13 97.4% (96.6% ; 98.0%) 0.33 (NA ; NA) 

NT (aw) 0.30 1.8 (1.06 ; 2.46) 0 7 93.8% (89.6% ; 96.3%) 0.63 (NA ; NA) 
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Table 4.48: Meta–Regression Results for No–treatment Experiments 

Statistic Value 
Covariates aw, Matrix 

τ² 0.245 (SE = 0.105) 

I2 92.50% 

H2 13.34 

R2* 53.42% 

QE 387.18 (p < 0.0001) 

QM 21.12 (p < 0.0001) 
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Table 4.49: Meta-Analysis Results for ClO2/Storage by Concentration 

Method Subgroup Log D–90 (day) P k I2 τ² 

ClO2/Storage by Conc. Full Group 
0.9 (0.52 ; 
1.31) 

0 6 
85.6% (70.7% ; 
92.9%) 

0.16 (0.03 ; 3.99) 

ClO2/Storage by Conc. 5–5.14 mg/L 
0.5 (0.18 ; 
0.88) 

0.003 2 
54.6% (0.0% ; 
88.9%) 

0.04 (NA ; NA) 

ClO2/Storage by Conc. 10–12.86 mg/L 
1.1 (0.39 ; 
1.71) 

0.002 3 
72.7% (8.1% ; 
91.9%) 

0.2 (NA ; NA) 

ClO2/Storage by Conc. 2.57 mg/L 
1.5 (0.84 ; 
2.14) 

0 1 NA (NA ; NA) NA (NA ; NA) 



 109 

Table 4.50: Meta-Analysis Results for ClO2/Storage by Relative Humidity 

Method Subgroup Log D–90 (day) P k I2 τ² 
ClO2/Storage by 
RH 

Full Group 0.9 (0.52 ; 1.31) 0 6 85.6% (70.7% ; 92.9%) 
0.16 (0.03 ; 
3.99) 

ClO2/Storage by 
RH 

80% (RH) 0.7 (0.54 ; 0.9) 0 2 0.0% (NA ; NA) 0 (NA ; NA) 

ClO2/Storage by 
RH 

41.5% (RH) 1.1 (0.39 ; 1.81) 0.002 4 88.4% (72.9% ; 95.1%) 0.35 (NA ; NA) 
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Figure 4.1: Contour plot of temperature and water activity for predicting D–value during heat 
treatment Deeper green colors correspond to lower log D–values while red/white colors 

correspond to higher log D–values. 
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Figure 4.2: Q–Q Plot of the Heat Inactivation Model. Predictors are heat and water activity.  

Shapiro-Wilkes Test p-Value is 0.924. 

Q–Q  Plot for Heat Treatment Model 
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Figure 4.3: Secondary Log-Linear Model for ClO2– Fumigation Treatment Predicting Log D–

values from RH 
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Figure 4.4: Q–Q Plot of the ClO2–Inactivation Model. Shapiro-Wilkes Test p-Value is 0.756. 

Q–Q Plot of the ClO2–treatment Model 
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Figure 4.5: Secondary Log-Linear Model for Non-Treated Sample Experiments Predicted from 

aw 
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Figure 4.6: Q–Q Plot for Non-Treated Sample Model. Shapiro-Wilkes Test p-Value is 0.425 

Q–Q Plot of the No Treatment Model 
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Figure 4.7: Forest Plot for Heat Treatments by Heat Intensity 
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Figure 4.8: Forest Plot for Heat Treatments by Sample Matrix
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Figure 4.9: Forest Plot for Heat Treatments by Sample Water Activity 
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Figure 4.10: Bubble Plot of Heat Treatment Meta–Regression with aw and Temperature as 

Predictors. Bubble size corresponds to temperature. 
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Figure 4.11: Funnel Plot for Heat Treatment Experiments 
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Figure 4.12: Forest Plot for Log D–value of ClO2-treated Samples Grouped by Concentration 
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Figure 4.13: Forest Plot for Log D–value of ClO2-treated Samples Grouped by Relative Humidity 
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Figure 4.14: Bubble Plot of Meta–Regression for ClO2-treated Samples, with RH as Covariate 

 

Meta-Regression of ClO2 Samples (RH%) 
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Figure 4.15: Bubble Plot of Meta–Regression for ClO2-treated Samples, with Concentration as 

Covariate 

 

Meta-Regression of ClO2 Samples (Concentration) 
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Figure 4.16: Funnel Plot for ClO2- Treatment Experiments 

 

Funnel Plot for ClO2 Treatment 
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Figure 4.17: Forest Plot for Log D–value of Indirect Plasma-treated Samples Grouped by Relative 

Humidity 
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Figure 4.18: Forest Plot for Log D–value of Direct Plasma-treated Samples Grouped by Gas Used 
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Figure 4.19: Forest Plot for Log D–value of UV-treated Samples Grouped by Intensity (mW/cm2) 
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Figure 4.20: Forest Plot for Log D–value of UV-treated Samples Grouped by Matrix 
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Figure 4.21: Forest Plot for Log D–value of Electron Beam Treatments 
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Figure 4.22: Forest Plot for Log D–value of Gamma Irradiation Treatments 
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Figure 4.23: Forest Plot for Log D–value of Radiofrequency Heat Treatments by Matrix 
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Figure 4.24: Forest Plot for Log D–value of Radiofrequency Heat Treatments by Power 
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Figure 4.25: Forest Plot for Log D–value of Radiofrequency Heat Treatments by Steam 

Ventilation 
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Figure 4.26: Forest Plot for Log D-value of Radiofrequency Heat Treatments by Water Activity 
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Figure 4.27: Bubble Plot of Meta–Regression for Radiofrequency-treated Samples, with Power 

as a Covariate 
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Figure 4.28: Bubble Plot of Meta–Regression for Radiofrequency-treated Samples, with 

Ventilation as the Covariate 
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Figure 4.29: Bubble Plot of Meta–Regression for Radiofrequency-treated Samples, with Water 

Activity as the covariate 
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Figure 4.30: Funnel Plot for Radiofrequency Treatment Experiments 
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Figure 4.31: Forest Plot of Steam Treatments by Temperature 
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A) 

 
B) 

 
Figure 4.32: Forest plots of Steam Treatments by Water Activity (A) and Steaming Method (B). 

Forest Plots are Identical. 
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Figure 4.33: Forest Plot of Ethylene-Oxide Treatments by Relative Humidity 
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Figure 4.34: Forest Plot of Ethylene-Oxide Treatments by Temperature 
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Figure 4.35: Forest Plot for UV/Heating Treatments 
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Figure 4.36: Forest Plot for Phosphine Fumigation Treatments 
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Figure 4.37: Forest Plot for Heat/Humidity Treatments 
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Figure 4.38: Forest Plot for Acetic Acid Treatments 
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Figure 4.39: Forest Plot for Non-Treated Sample Experiments by Matrix 
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Figure 4.40: Forest Plot for Non-Treated Sample Experiments by Water Activity 
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Figure 4.41: Bubble Plot for Meta–Regression for Non-Treated Samples, Covariates are Matrix 

and Water Activity, with bubble size corresponding to water activity. 
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Figure 4.42: Forest Plot for ClO2/Storage Experiments by Concentration 
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Figure 4.43: Forest Plot for ClO2/Storage Experiments by Relative Humidity 
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CONCLUSIONS  

This study examined available literature on different inactivation methods for Salmonella 

in black pepper. Through a systematic review and meta-analysis, we identified commonly used as 

well as less-conventional methods for microbial control in spices. We also identified some of the 

key factors contributing to the efficacy of each method and compared studies based on their log 

D–value and 95% confidence interval. For methods with sufficient data (i.e., putative predictors 

and at least 10 studies), we developed response surface and linear models, which were evaluated 

for goodness of fit. We found that higher water activity tends to correlate with shorter D–values, 

and the sample matrix strongly influences heat-based inactivation as well as survival under no 

treatment. 

In contrast to previous reports, we found that relative humidity was the key factor in 

predicting D–value for ClO2-based treatments, while concentration did not play a significant role. 

However, we found that concentration does play a more substantial role in determining how cells 

survive after treatment. We also discussed possible future studies and the limitations of this study. 

Overall, while over 40 studies have been conducted on eliminating Salmonella in black pepper, 

further research is needed to improve our understanding of how different factors such as matrix, 

water activity, and temperature — affect the performance of these methods. Further research in 

this field could help organizations and individuals within the global food safety community 

develop comprehensive predictive models that enhance food safety. With black pepper being the 

king of spices, it is essential to ensure that the public is protected from pathogens that may survive 

and even grow within it.    
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Chapter 5- Limitations and Future Research 

Many studies have been conducted on multiple inactivation methods for Salmonella in 

black pepper. However, significant knowledge gaps remain that could be critical when developing 

a food safety system. The black pepper matrix was one of the most critical factors in any method 

where sufficient data was provided. Some methods, such as steam, ClO2, and Gamma Irradiation, 

were only tested on one matrix of black pepper. In the case of heat inactivation and no treatment, 

whole black peppercorns allowed Salmonella to survive for a longer period. 

In contrast, radiofrequency treatments provided a more suitable matrix for Salmonella 

survival when ground black pepper was used. Future studies should focus on evaluating the 

behavior of Salmonella within ground and whole black pepper. Understanding whether whole 

black pepper kernels can protect Salmonella is essential when considering the parameters of a 

chosen inactivation method. The relationship between heating method (e.g., direct, indirect, 

volumetric) and the sample matrix may also shed light on factors that should be considered when 

combining heat treatments with either ground black pepper or whole peppercorns.  

Additionally, testing other methods, such as steam treatments, irradiation-based 

treatments, and ClO2–fumigation on whole and ground black pepper could yield important 

information when applying these techniques. Our results also suggest that water activity plays a 

key role in the efficacy of each treatment. Lower water activity tends to correspond with better 

survival. While this may be attributed to cross-protection from an unfavorable environment, 

further research is needed to determine how methods such as ClO2–fumigation and UV-irradiation 

are affected by water activity. For instance, it is reasonable to consider whether ClO2, a highly 
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soluble gas in water, would be more effective on a sample with higher water activity, and whether 

this would impact residue concentration post–treatment. Moreover, past research on ClO2-based 

treatments has identified temperature, relative humidity, concentration, and time as the most 

critical factors (Han et al., 2001). However, we found that concentration had little to no 

independent effect on immediate inactivation (though it did seem to have a more substantial effect 

on survival after treatment). Moreover, all experiments were conducted at or near room 

temperature, so the effect of temperature could not be studied. Future studies may investigate how 

higher temperatures impact ClO2–treatments on Salmonella in black pepper.  

Furthermore, one challenge in our analysis was that many methods lacked sufficient 

replications for meta–regression analysis and testing for publication bias. To properly validate 

these methods, further studies are needed to establish relationships between covariates and their 

effects. While subgroup analysis may have identified some critical variables, their effect on the 

response variable (D–value) in comparison to other variables that may or may not have been 

reported leaves much room for further study. Furthermore, predictive modeling techniques require 

at least 10 studies, following the “one in ten rule,” to create a model with sufficient statistical 

power. For more accurate models, more than 20 or 30 models would be needed for reliable 

prediction. 

Additionally, our predictive model for NT experiments yielded an R² of 0.479, an RMSE of 0.548, 

and an AIC of 39.90. We believe this is due to substantial variability between studies. Identifying 

potential confounding variables within these studies would be crucial to improving the goodness-

of-fit. 
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