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ABSTRACT

Arbuscular mycorrhizal fungi (AMF) form one of the most ancient and widespread
symbioses, enhancing plant nutrient acquisition in exchange for photosynthetically derived carbon.
Accurately quantifying AMF colonization at scale, however, remains a major bottleneck. This
dissertation presents a three-stage roadmap for developing robust, deep learning—based tools that
enable high-throughput, automated analysis of AMF in sorghum (Sorghum bicolor) roots.

First, a pilot study combined Mask R-CNN with mixed linear models to segment individual
fungal structures in a recombinant inbred sorghum population and to relate colonization levels to
root niche and fungal structure allocation. The study demonstrated that deep learning can capture

biologically meaningful AMF phenotypes.



Second, to overcome data scarcity in training deep learning models, I assembled
MycorrhiSEE, a 15 TB collection of ~137,500 whole-slide images (WSIs) from 5,500 sorghum
plants spanning 337 genotypes and diverse field treatments. A spline-guided tiling algorithm
transformed gigapixel WSIs into uniform patches. Eight bootstrap evaluations confirmed
consistent spline interpolation across expert-rated image quality classes.

Third, building on MycorrhiSEE, an integrated pipeline was developed featuring (i) an
enhanced spline-guided tiling algorithm with quantitative tiling quality metrics, and a two-step
CNN-based classification that (ii) first removes background tiles with 99.7 % accuracy and then
(ii1) distinguishes AMF colonized from non-colonized image tiles. A wide selection of ImageNet-
pretrained architectures was benchmarked to identify the optimal classifiers. DenseNet and
ResNet50-based classification classifier achieved >98% accuracy and superior generalization on
both MycorrhiSEE and the external AMFinder dataset.

Collectively, these contributions—from computer vision modeling to large-scale dataset
curation and pipeline optimization—provide a practical framework for rapid, unbiased AMF
phenotyping. The resulting tools enable scalable integration of imaging, genomic, and
environmental data, advancing precision agriculture and ecological research on AMF to improve

sorghum performance under diverse field conditions.
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CHAPTER
1
INTRODUCTION
1.1 Preface
1.1.1 Motivation and Research Context

The Kingdom Fungiis among the most diverse groups of organisms on earth
(Wijayawardene et al., 2024). Mycorrhizal fungi—derived from the Greek myco (fungus) and rhiza
(root)—, form symbiotic association with the roots of over 80% of vascular plants (Brundrett &
Tedersoo, 2018). Through their extensive hyphal networks, mycorrhizal fungi provide plants
access to otherwise unavailable soil nutrients, in exchange for up to 30% photosynthetic carbon
(Hawkins et al., 2023). It is estimated that at least 50,000 fungal species from the phyla
Glomeromycota, Ascomycota, Basidiomycota and Mucoromycota form mycorrhizal associations
(van der Heijden et al., 2015). Based on their morphology and function, four principal types of
mycorrhizal symbioses have been identified: arbuscular mycorrhiza (AM), ectomycorrhiza (ECM),
orchid mycorrhiza (ORM), and ericoid mycorrhiza (ERM), with AM symbioses accounting for
approximately 72% of all associations (Brundrett, 2009).

In the context of global challenges—such as climate change, ecosystem conservation, and
the need for sustainable agriculture—AM symbioses provide a promising alternative to chemical
fertilizers and pesticides for enhancing plant health and yield. The symbiotic relationship between
plant roots and arbuscular mycorrhizal fungi (AMF) has been shown to enhance the drought, heat,

salt, herbivory and pathogen resistance of plants in the most arid and barren soils on earth (M. J.



Pozo & C. Azcon-Aguilar, 2007) (J. M. Ruiz-Lozano et al., 2012). The extensive underground
hyphal network of AMF facilitates the uptake of water, nitrogen, phosphorus, and other ions
(Kakouridis et al., 2022; Smith & Read, 2010). However, the outcome of this resource exchange
is highly context dependent. It is influenced by both biotic factors—such as the plants and fungal
genetic make-up—and abiotic factors, including soil conditions, climate and agricultural
management practices which can shift the interaction along the parasitism—mutualism continuum
(Feddermann et al., 2010; Graham & Abbott, 2000; Hart & Reader, 2002; Hoeksema et al., 2018;
Johnson et al., 1997b; Klein et al., 2022; Klironomos & John, 1999; Mensah et al., 2015; Munkvold
et al., 2004; Taylor & Harrier, 2000).

How can we effectively harness AMF for agriculture? Greenhouse studies testing
combinations of plants, AMF inoculants, and soils are unlikely to be predictive of mycorrhizal
functions in field settings. Field applications of commercial inoculants, often formulated with few
“super” species, have produced inconsistent plant growth responses (Koziol et al., 2024; Lutz et
al., 2023). It has become increasingly evident that AM symbioses are not isolated, binary
interactions between a single fungus and plant host. Rather, they function as complex adaptive
systems, with plant fitness outcomes shaped by the interplay of host genotype, microbial
community, and environmental context.

Sorghum bicolor, a drought-tolerant C4 crop, has been cultivated as food, feed, and fuel
for centuries across the world (Nigam et al., 2025). It is rich in micronutrients such as iron and
zinc, as well as dietary fiber, antioxidant nutrients, and starch. Half a billion residents in Africa,
Asia, and other semi-arid areas relies on sorghum as one of the cheapest nutrient sources. In 2021,
the U.S. alone planted 7.3 million acres of sorghum (Tubiello et al., 2023). In western countries,

sorghum is increasingly recognized for its value as animal feed and, more recently, as a bioenergy



crop. Its fibrous stalks, a byproduct of sugar extraction, can be fermented into ethanol and bio-jet
fuel (Mullet et al., 2014). Enhancing beneficial AM symbiosis in sorghum can further reduce
fertilizer and irrigation demands, increasing its value as a sustainable bioenergy crop in the rapidly
changing global climate (Frew, 2019).

1.1.2 Dissertation Objectives and Contributions

My PhD research, funded by the Department of Energy and conducted as part of the
collaborative project titled “Systems analysis of the beneficial associations of sorghum with
arbuscular mycorrhizal fungi studied with genetics, genomics, imaging and microbiomics”,
focuses on developing tools to support the large-scale quantification of AMF colonization. My
research aims to generate a large high-quality image dataset from field-derived root samples and
to develop robust high-throughput deep learning-based solutions for the automated quantification
of AMF colonization in root images.

Traditional microscopy-based methods for quantifying AMF are labor-intensive, time-
consuming, and subject to human bias, which limits scalability and cross-study comparability
(Kokkoris et al., 2019; McGonigle et al., 1990a). Progress to automate AMF quantification using
deep learning has been slow due to the lack of large, labeled image datasets (Evangelisti et al.,
2021a). My research addresses this gap by assembling a diverse, high quality, publicly available
image dataset and training deep learning algorithms that are robust across imaging platforms and
protocols. This work is essential for producing consistent colonization phenotypes that can be
integrated with metagenomic, transcriptomic, and microbiomic data to construct predictive
systems models (Torres et al., 2025). These models will help discover the functional linkages
between sorghum genotypes and their associated microbiomes, ultimately enhancing our ability to

predict and optimize plant performance under diverse environmental conditions.



1.1.3 Dissertation Overview

The overarching goal of this dissertation is to create an automated, high-throughput
solution for accurately quantifying arbuscular mycorrhizal fungi (AMF) colonization in sorghum
root images. In Chapter 1, I provide necessary biology background on AM symbiosis and a gentle
introduction to deep learning to prepare the readers for the following research chapters. Chapter 2
begins with a small pilot dataset collected during the first field season of the DOE project in 2021.
We introduced a multi-scale modeling framework that uses deep learning (Mask R-CNN) (He et
al., 2020) and mixed linear models (MLMs) (Searle et al., 2009) to segment and classify individual
AM fungal structures, and to model variation in AMF colonization among root regions and samples
of Sorghum bicolor. The challenges and experiences in image data curation and training the initial
deep learning model helped form the methodological basis for the subsequent chapters.

Chapter 3 addresses the data bottleneck identified in Chapter 2. To scale up, a high-
throughput imaging workflow for harvesting, clearing, staining and imaging field grown sorghum
root samples was developed by incorporating whole slide imaging (WSI) technology. This chapter
describes the collaborative effort over two years to curate a 15-Terabyte image dataset,
MycorrhiSEE (S. Zhang, T. Bourlai, et al., 2024). The dataset comprises ~137,500 multi-gigapixel
WSIs of fine roots from 337 sorghum genotypes in the Bioenergy Association Panel (BAP)
(Brenton et al., 2016), annotated with image quality and colonization labels. Additionally, we
present a supporting image preprocessing software that transform whole slide images into tile
images suitable for deep learning algorithms (S. Zhang, W. Lantz, et al., 2024). This resource adds
new value to BAP by providing a mycorrhizal phenotype. New AM symbiotic genes can be

discovered to advance the genetic engineering of sorghum as a bioenergy crop. MycorrhiSEE also



provides a new challenge to the Al community to develop new computer vision tools for the image
analysis of mycorrhizal fungi.

Chapter 4 builds on the MycorrhiSEE dataset. Recognizing the wide variability in image
quality, we decompose the challenge of developing a generalized DL tool to segment individual
AM fungal structures into incremental steps. We begin with training an image classification model
to count the proportion of AMF colonized tiles in WSIs using high quality tiles only. A range of
convolutional neural network (CNN) architectures, pretrained on large public image databases, is
evaluated for their classification performance on our specialized dataset of root images. Those
CNN s serves as baselines for future efforts to iteratively train with mixed-quality data.

Chapter 5 discusses the limitations of this dissertation and outlines future directions toward
creating an optimal deep learning tool for AMF quantification. We emphasize the need for
automatic image quality assessment for large-scale image datasets. The integration of image
augmentation and domain adaptation techniques during supervised model training can further
improve CNN performance as the number of labeled images increases. Self-supervised learning
offers the potential to further reduce the reliance on manual annotations and to enable the shift
from image classification to accurate instance segmentation of fungal structures. The chapter
concludes with key lessons learned throughout this dissertation and presents a roadmap for
successfully applying deep learning to automate image analysis in fields that are underexplored or

demand scalable, high-throughput solutions.



1.2 Arbuscular Mycorrhizal Fungi (AMF)
1.2.1 Evolutionary History of AMF

The evolution of arbuscular mycorrhizal fungi (AMF) has played a critical role in shaping
terrestrial ecosystems. The symbiotic relationship between AMF and early land plants may have
facilitated the transition from aquatic to terrestrial ecosystems and the evolution of vascular and
root systems (Brundrett, 2009; Field et al., 2012b). Fossil evidence of AM-like structures has been
discovered in the rhizomes of Aglaophyton major, an Early Devonian plant that predates the
evolution of true roots by approximately 30 million years (Brundrett, 2002; Taylor & Osborn, 1996;
Taylor et al., 1995). Molecular phylogenies of symbiotic genes further support the notion that the
algal ancestors of land plants were pre-adapted for AM symbiosis (Delaux et al., 2015).

Phylogenetic analyses based on ribosomal DNA and gene loci indicate that Glomeromycota,
the phylum containing AMF, has a monophyletic origin dating back to over 450 million years ago
(James et al., 2006; Schiifler et al., 2001; Wijayawardene et al., 2024). This contrasts with other
mycorrhizal types, such as ectomycorrhizal and orchid mycorrhizas, which have arisen multiple
times independently, suggesting parallel or convergent evolutionary origins. Regardless of its long
evolutionary history, Glomeromycota exhibits strikingly low species-level diversity, with an
estimated 300 to1,600 species globally, far fewer than the 20,000 ectomycorrhizal species (Kivlin
et al., 2011; Kdljalg et al., 2013; Opik et al., 2013; TEDERSOO et al., 2012; van der Heijden et
al., 2015). Remarkably, AMF form symbiotic associations with more than 20,000 plant species,
including both lower plants (e.g., liverworts and hornworts) and higher plants (e.g., shrubs, trees,
cereals, and herbs) (Genre et al., 2020; Humphreys et al., 2010; van der Heijden et al., 2015). This
accounts for approximately 72% of all mycorrhizal associations in flowering plants (Brundrett,

2009). AMF are widely distributed, inhabiting environments from the sub-polar regions to the



tropical rain forest, and from the deserts to even some aquatic ecosystems (Davison et al., 2015;
Rosendahl, 2008).

The functional diversity of AMF with limited species richness has led to several
evolutionary hypotheses. One explanation is the presence of high intraspecific genetic
heterogeneity. For example, Rhizophagus irregularis isolates only share ~50% of their genes. High
copy number variation and an abundance of transposable elements in R. irregularis may enhance
adaptability to environmental variations (Chen et al., 2018). More than 150,000 accessory genes
have been identified across only six R. irregularis isolates, suggesting that local adaptation and
functional diversity can evolve without speciation (Chen et al., 2018).

Another hypothesis proposes multilevel selection involving plant hosts, AMF and their
associated microbiome (Johnson & Marin, 2024). AMF often engage in cross-feeding relationships
with the rhizosphere (root) and hyphosphere (hypha) bacteria (e.g., P-solubilizers, N-fixers, and
Fe-providers) and can host hundreds of endobacterial taxa. These microbial consortia may be
selected with the plant host as functional teams, as the teams confer the highest fitness advantage
under certain environmental conditions. Evidence for this speculation includes studies showing
that local AMF isolates provide greater growth benefits to native plant hosts compared to non-
local combinations (Banerjee et al., 2018; Lutz et al., 2023).

These hypotheses underscore the complexity of AM symbiosis and the number of variables
that need to be considered to understand the ecological and evolutionary drivers of AMF function.
Currently, there are expanding efforts to link AMF taxa and genotypes with their functional traits
across environmental conditions (Antunes et al., 2025; Corradi et al., 2024; Mathieu et al., 2018).
As these studies grow in scale, there is an increasing demand for high throughput plant

phenotyping and imaging-based quantification of AMF colonization, in conjunction with genomic



and microbiome profiling using Next Generation Sequencing (NGS) These integrative approaches
will keep advancing our understanding of AMF functional diversity and its role in shaping plant
fitness and ecosystem resilience.
1.3 Sorghum
1.3.1 Agricultural Relevance of Sorghum

Sorghum [Sorghum bicolor (L.) Moench] is a stress resistant C4 grass native to Africa and
currently ranks as the fifth most cultivated cereal crop worldwide, following rice, wheat, maize
and barley. Sorghum is highly diverse, with cultivars broadly classified into three categories: grain
sorghum, biomass sorghum, and sweet sorghum (Silva et al., 2021). Grain sorghum serves as a
staple crop that provides food security for more than % of the world. It is a vital source of starch
and micronutrients in arid and semi-arid regions. Biomass and sweet sorghum, collectively termed
bioenergy sorghum, are cultivated for their rapid accumulation of structural and nonstructural
carbohydrates (Brenton et al., 2016). Their sugary milk can be fermented into bioethanol. The
fibrous residuals can be converted into biojet fuel or used as animal feed (Wu et al., 2010).

Sorghum’s C4 photosynthetic pathway contributes to its exceptional water- and nitrogen-
efficiencies (Enciso et al., 2015; Gardner et al., 1994; Weissmann & Brutnell, 2012). This makes
sorghum particularly attractive for sustainable bioenergy applications and climate resilient
agriculture. Unlike C3 cereal crops, which have fibrous and highly branched root systems with
high nutrient acquisition capacity, sorghum plants have a thicker cortex and depend more heavily
on AMF for nutrient uptake (HETRICK et al., 1988; Liu et al., 2021; Wilson & Hartnett, 1998).
As a result, enhancing mutualistic AMF symbiosis in sorghum offers a promising strategy to

improve plant resilience and productivity even in soils affected by salinity or heavy metal



pollutions (J. M. Ruiz-Lozano et al., 2012) (Chandrasekaran et al., 2016; Dhawi et al., 2016; Riaz
et al., 2021).
1.3.2 Genetic Diversity and Genomic Resources

Sorghum was the first C4 grass to have its genome sequenced (BTx623) using shotgun
sequencing. This advancement established a foundation for sorghum genetic studies and the
development of genomic resources. Its small diploid genome (2n = 20; ~730Mb) makes it a simpler
model for functional genomic research than other C4 cereal crops (Paterson et al., 2009).

One of the key genetic resources is the Bioenergy Association Panel (BAP), which includes
a total of 390 sorghum accessions comprising 238 high biomass sorghum and 152 sweet sorghum
lines from the National Plant Germplasm System (NPGS). The BAP represents historical and
commercially relevant lines from all five major sorghum races (bicolor, caudatum, durra, guinea,
and kafir) and three continents (Africa, Asia, and the Americas). These accessions display
extensive variation in key traits, including stalk height, photoperiod sensitivity, development speed,
and anthracnose resistance (Brenton et al., 2016).

The original genotyping of BAP accessions identified a set of 232,303 single nucleotide
polymorphisms (SNPs) using Genotype by Sequencing (GBS). More recently, whole genome
sequencing (WGS) of 365 accessions has yielded ~19.7 million SNPs and ~2.7 million indels. A
filtered set of ~5.48 million high quality SNPs has facilitated more accurate and comprehensive
analyses of population structure and genetic diversity (Kumar et al., 2024). Genome-wide
association studies (GWAS) utilize association mapping panels like BAP to identify molecular
markers associated with quantitative traits in plants (Zhu et al., 2008). SNPs associated with a
variety of phenotypic traits have been identified in sorghum, including traits related to plant

architecture (Hu et al., 2019; Kumar et al., 2023; Morris et al., 2013; Zhao et al., 2016), agronomy



(J. Lucas Boatwright et al., 2022; Boyles et al., 2017; Brown et al., 2006; Chopra et al., 2017; Li
et al., 2018; Mace et al., 2013; Rhodes et al., 2014), bioenergy (Boyles et al., 2019; Brenton et al.,
2016; Murray et al., 2009; Souza et al., 2021), and biomass and its compositional traits (J Lucas
Boatwright et al., 2022; Brenton et al., 2016; Brown et al., 2008; Kumar et al., 2024; Murray et al.,
2009; Zhang et al., 2015).

Additional genomic resources include the Sorghum Association Panel (SAP), Nested
Association Mapping (NAM) populations, and recombinant inbred lines (RIL) with well-
characterized genetic markers and diverse phenotypes (Boatwright et al., 2021; J. Lucas
Boatwright et al., 2022; Govindarajulu et al., 2021). Genomics databases, including Phytozome
(Goodstein et al., 2012), Gramene (Ware et al., 2002), SorghumBase (Gladman et al., 2022), and
the Sorghum QTL Atlas (Mace et al., 2019), enable data integration and easy access.

1.4 Sorghum-AMF Symbiosis

AMF are important symbionts in sorghum that improve nutrient acquisition, water-use
efficiency, and stress tolerance. The establishment and function of AM symbiosis in sorghum are
influenced by fertilization, cover cropping, intercropping, tillage and land use forms, and irrigation
(Abdelhalim et al., 2020; Birhane et al., 2018; Cobb et al., 2017; Egboka et al., 2022; Figueiredo
de Oliveira et al., 2025; Moura et al., 2022; Tuheteru et al., 2020; Walder et al., 2015; Wipf Heidi
et al., 2021).

Several studies have reported that AMF can regulate stress response and water regulation
pathways in sorghum (Putri et al., 2023; Symanczik et al., 2020; Varoquaux et al., 2019), as well
as the expression of phosphate transporters (PTs) and ammonium transporters (AMTs) (Koegel et
al., 2013; Walder et al., 2015). AMF colonization has been linked to increases in sorghum height,

biomass, grain production and micronutrient content under drought, salinity stress and phosphorus
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deficient conditions (Bagayoko et al., 2000; Birhanu et al., 2024; Chandra et al., 2022; Cobb et al.,
2016; Nakmee et al., 2016).

However, those benefits are often sorghum genotype dependent (Watts-Williams et al.,
2022). Also, temporal variation in AMF community composition in sorghum roots suggests that
timing plays a key role in the efficacy of AMF-based interventions (Gao et al., 2020). Despite its
relevance, there is a limited number of systems-level studies examining AMF symbiosis in
genetically diverse sorghum populations using multi-omic approaches (Kaur et al., 2022; Sawers
et al., 2017; S. J. Watts-Williams et al., 2019). Notably, the AMF colonization of BAP accessions
has not yet been systematically characterized. This gap highlights the need for integrative studies
that consider host genetic diversity, root microbiome dynamics, and functional AMF responses—
particularly in the context of breeding more symbiosis-responsive cereal crops (Sawers et al.,
2018) .
1.5 Intuitive Introduction to Deep Learning
1.5.1 Fundamentals of Deep Learning

Machine Learning (ML) represents algorithms that allow computers to identify patterns
from data and make decisions or predictions on new unseen data without explicit programming
commends. Traditional ML algorithms require manual extraction of relevant features from
unstructured data, including text, images, audios, etc. Algorithms like support vector machines
(SVMs), random forest, and k-nearest neighbors have been tested effective for classification tasks
(Deisenroth et al., 2020).

Deep learning (DL) refers to a specialized subset of ML that utilizes neural networks to
directly extract feature representations from unstructured data. Inspired by human brain’s neural

structure, neural networks consist of multiple layers of interconnected nodes (neurons), hence
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named deep learning. Deep learning has demonstrated remarkable success in image analysis, also
known as computer vision (Younesi et al., 2024). DL algorithm can perform various vision tasks.
Ordered with increasing complexity:

Classification determines whether a specific object (e.g., a balloon) appears in an image,

answering the question "What is in this image?"

e Object detection recognizes all instances of an object within an image and locates them
with bounding boxes, addressing both “what” and “where” questions.

o Semantic segmentation identifies all pixels belonging to a certain class, but it does not
distinguish between individual instances.

o Instance segmentation combines object detection with semantic segmentation to identify
individual object instances at the pixel level.

Convolutional neural networks (CNNs) are particularly suited for computer vision tasks.
The theoretical foundations of CNN were established in 1988. In 1994, Yann LeCun introduced
LeNet-5, a pioneering architecture with practical implementation in handwritten digit recognition.
LeNet-5 incorporated the three essential components still found in modern CNNs: convolutional
layers, pooling layers, and non-linear activation functions. Limited by computation power at the
time, LeNet-5 only has five trainable layers: three convolutional layers and two pooling layers
(Lecun et al., 1998).

In 2010, Graphics Processing Units (GPUs) was used for training CNNs for the first time,
increasing the depth to nine layers. The release of large-scale labeled datasets, particularly
ImageNet further accelerated the evolution of CNNs (Deng et al., 2009). In 2010, Krizhevsky et
al. developed AlexNet and won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

by a large margin, compared to the traditional computer vision methods (Krizhevsky et al., 2017).
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Since then, the depth and width of CNNs has kept expanding with increasing sophisticated designs.
By 2015, ResNet have reached over 100 layers and achieved higher accuracy than humans in
computer vision tasks in natural image domain (He et al., 2016). Many of the foundational CNN
models from the era continue to be widely applied and adapted to new computer vision tasks.

In the sections that follow, I will provide an intuitive introduction to the fundamentals of
CNN architectures and their key components, including input representation, output format,
convolutional and pooling layers, fully connected layers, kernels, activation functions, loss
functions, backpropagation, and optimization techniques. Then, I will review key foundation
models and their architectural innovations, followed by an introduction to learning paradigms and
advanced strategies such as transfer learning and domain adaptation.
1.5.2 Basics of CNN Architecture
Input representation

Images in CNNs are represented as numerical tensors. A color image has three channels—
red, green, and blue (RGB). Each channel is represented as a 2D matrix of pixel values covering
an image. When the color channels are stacked, the image becomes a 3D tensor with shape height
x width x channels, where each pixel value encodes color intensity. For example, a 28x28 RGB
image is represented as a 28x28x3 tensor. The total number of possible colors is 256°=16,777,216.
Black corresponds to (0, 0, 0), and white to (255, 255, 255). Often times, we standardize the input
image so that the pixel values range from 0 to 1.
Kernels and convolutional layers

In CNNSs, neurons in convolutional layers are powerful feature extractors, also called filters

or kernels. A kernel is a small matrix (e.g., 3x3 or 5x5) that slides across the input tensor and
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computes a dot product at each location. The values of the dot products are saved to a new matrix
known as the feature map. The size of the resulting feature map depends on three parameters:
1. Kernel size: The spatial dimensions of the filter (e.g., 3x3, 5x5)
2. Stride: The step size of the sliding kernel (e.g., a stride of 1 moves the kernel one pixel at
a time)
3. Padding: Additional zero pixels added to the input borders (e.g. a padding of 1 changes
the dimension of input matrix from 28%28 to 30%30)
For example, applying a 3x3 kernel with stride 1 and no padding to a 28%28 input yields a 26x26
feature map. To maintain the input dimension, a padding of 1 is required. For multi-channel inputs,
the convolution operation is performed independently on each channel and produces three feature
maps. CNNs typically employ multiple kernels per layer, with more kernels in deeper layer,
increasing the network width and learning increasingly abstract features. Visualization of trained
CNNs like AlexNet revealed that lower-level kernels capture simple features (e.g., edges, corners),
while deeper layers capture higher-order patterns (e.g., textures, shapes). Feature maps highlight

the presence of learned features in the original image (Fig. 1.1).

Figure 1.1 Visualize Feature Map after Convolution Operation. The original lion image
is shown on the left. The feature map after convolution operation with edge detection
kernel is shown on the right.
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Pooling layer

A pooling layer comes after convolutional layers to downsample the feature maps. The goal
of the pooling layers is to retain high level feature representations in the feature maps within as
low spatial dimension as possible, which reduces the computational requirements. They also help
mitigate overfitting by making the network less sensitive to exact position of the feature in the
input image. The most common method, max pooling, slides a window (e.g., 2x2) across the
feature map and retains the maximum value within the region. For example, applying 2x2 max
pooling to a 28x28 feature map produces a 14x14 output, halving the spatial resolution. Average
pooling, which retains the mean value of each region, is an alternative used in some architectures.
Activation function and forward propagation

Activation functions introduce non-linearity, enabling the network to learn complex
patterns (Fig. 1.2). During forward propagation, the convolutional operation is mathematically
described as:

Z=W+A+b (Equation 1)

Where W is the input tensor, 4 is the kernel, b is the bias term, * denotes the convolution operation.
The activation function g is then applied to produce the activated output:

A'=g(Z) (Equation 2)

Figure 1.2 Importance of Nonlinearity in Deep Learning Models. This simple
example scenario demonstrates that a non-linear activation function provides more
flexibility and better separation of data than a linear activation function.
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The output 4’ serves as the input to the next layer. The Rectified Linear Unit (ReLU), defined as
f(x) = max(0, x), is a commonly used activation function in DL for a faster and more stable
convergence during training (Nair & Hinton, 2010).

Fully connected layers and Output representation

So far, we have discussed how convolutional layers, pooling layers and activation functions
extract hierarchical features from image data. The final stage in a CNN architecture involves
converting these learned feature representations into task specific predictions.

Fully connected (FC) layers are derived from the multilayer perceptron (MLP) and are now
commonly used as the classifier in CNNs for generating predictions. Unlike convolutional layers—
where neurons are kernels and inputs are tensors—neurons in fully connected layers are scalar
nodes that hold a single activation value and take vectors as inputs. Despite structural differences,
neurons in both layers compute dot products, and their mathematical formulations are functionally
equivalent (Equation 1 & 2).

Before passing data into the fully connected layers, the feature maps are flattened from
multi-dimensional tensors into one-dimensional vectors. These vectors serve as input to the FC
layers, where each neuron is connected to every activation in the previous layer. The dense
connections of the FC layers enable the global combination of all features extracted from previous
steps.

The architecture of the output layer depends on the computer vision task requirements. For
image classification, the output layer typically uses a Softmax activation function to transform the
output vector into a probability distribution across predefined classes. Object Detection employs
two parallel FC branches: one for classifying objects, and another for predicting bounding box

coordinates, often using regression-based loss functions. Semantic and Instance Segmentation may
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combine FC layers with fully convolutional networks (FCNs) to produce class labels, bounding
boxes, and pixel-level masks for detected objects.

Now, we understand the key components of CNNs and how CNNs extract features and
make predictions in forward propagation. This provides the basics for understanding the state-of-

the-art DL architectures that we selected to use in Chapters 2 and 4.
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CHAPTER
2
COMPUTER VISION MODELS ENABLE MIXED LINEAR MODELING TO PREDICT
ARBUSCULAR MYCORRHIZAL FUNGAL COLONIZATION USING FUNGAL

MORPHOLOGY!

Zhang, S., Y. Wu, M. Skaro, J-H. Cheong, A. Bouffier-Landrum, 1. Torres, Y. Guo, L. Stupp, B.
Lincoln, A. Prestel, C. Felt, S. Spann, A. Mandal, N. Johnson, & J. Arnold. 2024. Nature
Scientific Reports. https://doi.org/10.1038/s41598-024-61181-5. Reprinted here with
permission of the publisher.
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Abstract
The presence of Arbuscular Mycorrhizal Fungi (AMF) in vascular land plant roots is one of the
most ancient of symbioses supporting nitrogen and phosphorus exchange for photosynthetically
derived carbon. Here we provide a multi-scale modeling approach to predict AMF colonization of
a worldwide crop from a Recombinant Inbred Line (RIL) population derived from Sorghum
bicolor and Sorghum propinguum. The high-throughput phenotyping methods of fungal structures
here rely on a Mask Region-based Convolutional Neural Network (Mask R-CNN) in computer
vision for pixel-wise fungal structure segmentations and mixed linear models to explore the
relations of AMF colonization, root niche, and fungal structure allocation. Models proposed
capture over 95% of the variation in AMF colonization as a function of root niche and relative
abundance of fungal structures in each plant. Arbuscule allocation is a significant predictor of AMF
colonization among sibling plants. Arbuscules and extraradical hyphae implicated in nutrient
exchange predict highest AMF colonization in the top root section. Our work demonstrates that
deep learning can be used by the community for the high-throughput phenotyping of AMF in plant
roots. Mixed linear modeling provides a framework for testing hypotheses about AMF

colonization phenotypes as a function of root niche and fungal structure allocations.
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2.1 Introduction

Most vascular land plants have lived in symbiotic association with Arbuscular Mycorrhizal
Fungi (AMF) for more than 400 million years (Bonfante & Genre, 2010). The plant provides
carbon (C), and in return the AMF provide Nitrogen (N) and Phosphorus (P). This exchange of
nutrients is central to tree diversity in forests worldwide (Zhong et al., 2021), determination of
COsz in the atmosphere (Field et al., 2012a), and plant tolerance to drought, heat and pathogens
(Gao et al., 2022; M. J. Pozo & C. Azcon-Aguilar, 2007; J. M. Ruiz-Lozano et al., 2012). The
development of the AMF symbiosis is initiated by a single fungal hypha contacting a neighboring
host root (Buee et al., 2000; Choi et al., 2018). Insertion of the epidermal layer by the
prepenetration apparatus (Genre et al., 2008) is followed by intraradical hyphal growth. On
reaching the inner cortex, branches arising from the intraradical hyphae could penetrate the cortical
cell walls and form arbuscules known as the structure for nutrient transfer between symbionts
(Pumplin & Harrison, 2009). Post-penetration development includes the differentiation of vesicles
(Smith & Read, 2010) and spores (Marleau et al., 2011). Vesicles are nutrient storing structures for
lipids and carbohydrates obtained from the plant host. AMF reproduce asexually using spores. The
extensive extraradical hyphal network uptakes nitrogen, phosphorus, and other ions in soil that
were otherwise inaccessible to the plant host. The various types of mycorrhizal structures
differentiate from one continuum of fungal hyphae (Kokkoris et al., 2020) and can occur
simultaneously in plant roots (Montero et al., 2019). Seminal work has shown that hyphal length,
as well as spore counts and density, can vary significantly among conspecific AMF isolates, and
that this variation has been shown to be correlated with differences in plant growth (Koch et al.,

2006).
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The internal development of the fungus is influenced by the plant genome (De Vita et al.,
2018b; Michelle L. Pawlowski et al., 2020; Plouznikoff et al., 2019). An AMF species shows
different morphological growth patterns, Arum- vs Paris-types, depending on the species of the
plant partner in the association (Gerdemann, 1965; Jacquelinet-Jeanmougin & Gianinazzi-Pearson,
1983; Smith & Smith, 1997b). Large variation in AMF richness and abundance has been
characterized in several plant populations, in an effort to identify symbiosis-associated genes (De
Vita et al., 2018b; Johnson et al., 2022; Lehnert et al., 2017; M. L. Pawlowski et al., 2020;
Plouznikoff et al., 2019; Stahlhut et al., 2021; S. J. Watts-Williams et al., 2019). Plant mutants
were generated for biological validation of symbiosis genes (MacLean et al., 2017). DELLA
proteins were revealed as master regulators that interact with the symbiosis signaling pathway,
which provides a mechanism to integrate symbiosis with plant growth and development (Davicre
& Achard, 2013; Gallego-Bartolomé et al., 2012). For example, DELLA transcription and protein
stabilization serves to restrain plant growth but to promote arbuscule development (Floss et al.,
2013; Jiang et al., 2007). Direct evidence from the greenhouse highlighted that the functioning of
colonization depends not only on the plant genotype but also on the identity of AMF
genera/species/isolates (Stephanie J. Watts-Williams et al., 2019). The relative allocation to selfish
versus non-selfish fungal structures (Johnson et al., 2003) also depends on the abiotic
environmental conditions. Fertilization often reduces allocation to extraradical hyphae and
arbuscules relative to other structures (Johnson et al., 2003). The genotypes of the organisms
involved and the environmental conditions under which they interact determine the functioning of
mycorrhizal association along the mutualistic-parasitic continuum (Feddermann et al., 2010;

Graham & Abbott, 2000; Hart & Reader, 2002; Johnson et al., 1997b; Klironomos & John, 1999;
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Mensah et al., 2015; Munkvold et al., 2004; Taylor & Harrier, 2000). A better understanding of the
factors is needed.

The AMF research community is limited by a lack of cost efficient and high-throughput
imaging methods to quantitate the abundance of AMF hyphal structures in roots. In 1990,
McGonigle et al developed an unbiased approach for scoring AMF colonized root samples
(McGonigle et al., 1990a). It is the gold standard until now, but it is laborious and demands skilled
human scorers. Molecular quantification methods like AMF-specific phospholipid fatty acids
(PLFA) approximate the amount of AM fungal biomass. DNA-based methods like quantitative
real-time PCR (qPCR) allow quantification of specific AMF taxa in roots and soil. Amplicon
sequencing allows the measurement of relative abundance of AMF taxa in root samples. A
disadvantage of the PLFA- and DNA-based approaches is that they cannot measure colonization
and morphology at the fungal structure level. Microscopy methods are synergistic by quantitating
fungal structures and their morphology inside roots (McGonigle et al., 1990a; Trouvelot et al.,
1985). Imaging, however, requires human scorers and the process is laborious and repetitive.
Preparation and visual examination of 1,000 AMF slides with 20-30 root segments per slides takes
an experienced researcher 2 months to complete. A computer vision model could potentially carry
out this task in a few hours.

Machine learning has been applied to fungal image classification even with limited training
data in Neurospora crassa (Krach et al., 2022; Krach et al., 2020). A deep learning-based software,
AMFinder, was developed to automate the process of quantifying AMF colonized root images
(Evangelisti et al., 2021a). The examples demonstrated computer vision as a powerful tool for

high-throughput AMF phenotyping. Further improvements remain to quantitate the allocation to
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AM fungal structures and their morphological phenotypes in the roots using a newly available
instance segmentation method of computer vision model.

Instance segmentation using deep learning techniques, like Mask R-CNN (K. M. He et al.,
2017), offers an opportunity for accurate and robust detection and per-pixel segmentation of
different hyphal structures in root images. With the image analysis on the inferred segmentations,
hyphal length/width, hyphal branching frequency, arbuscule length/width, vesicle size, spore size
and other morphological traits can be automatically measured. These morphological traits can be
correlated with various biological and physical processes of plants, such as photosynthesis,
respiration, transpiration, and carbon and nutrient assimilation, which can be very useful for
quantitative trait locus (QTL) mapping (Plouznikoff et al., 2019) and Genome-wide Association
Studies (GWAS) (De Vita et al., 2018b) for symbiotic gene discovery.

Transfer learning is a technique that helps to transfer features learned from one dataset to
another. The advancement of transfer learning benefits applications with limited annotated data.
As 0f2020, Mask R-CNN is one of the few deep learning architectures that can provide a generalist
performance for instance image segmentation (He et al., 2018). Transfer learning-based
application of Mask R-CNN have been adopted rapidly for imaging-based plant phenotyping in
recent years (Ferguson et al., 2021).

We present a Mask R-CNN based image analysis method that provides the four previously
unavailable advantages: (1) requires a minimal training data via transfer learning 2) achieves pixel
level identification of multiple AM fungal structures via instance segmentation; 3) works on root
samples colonized by a mixed populations of AMF in the field; 4) provides morphological
measures on each category of AM fungal structure. We took the quantification and morphological

measures from the image analysis to address fundamental questions about the AMF symbiosis: (1)
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can a mathematical model be developed to predict AMF colonization; (2) does the allocation to
AM fungal structures vary between plants; (3) are there differences in the niche within the root
system, where AMF structures are found?

To understand AMF symbiosis as part of largescale systems biology studies, we developed
a deep learning-based image analysis method to automatically measure AMF colonization
intensity and fungal structure morphologies. The mixed linear model was used to provide a
framework for testing hypotheses about AMF colonization and the variation in these morphometric
measures. The result is a direct connection between the fungal structures present in each root
sample and fungal colonization of the roots. This connection will permit the exploration of how

AMEF affect plant health through allocation to their structures.
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Table 2.1 Performance of the Mask R-CNN compares favorably with published performance on
other image datasets. The training set 1 is made of 767 in-house images on the Georgia samples.
Training set 2 contains additional images from the AMFinder dataset (Evangelisti et al., 2021a;
Tukey, 1949). The model performance is measured by average precision (AP) of each class, mean
average precision (mAP) and mean average precision at intersection over union threshold of 0.5
(mAP50) (K. M. He et al., 2017)

Training Testing

Model AP mAP50
data data
Extraradical Intraradical . Non-
Root  Arbuscule hypha hypha Vesicle Spore AM
A In-house In-house 46.2 29.6 6.7 7.4 21.9 55.8 13.7 475
mAP
259
. mAP
B Combined In-h ouys 39.7
0ombpine: n-nouse 214
C Combined Combined %Ag 50.2
2.2 Results

2.2.1 Performance of Mask R-CNN on AMF Image Segmentation

Our Mask R-CNN model can segment AMF colonized root images with satisfying
performance (Table 2.1). The training images and annotations were generated by human scorers
using the McGonigle method (McGonigle et al., 1990b) on a grid associated with the 192 root
intersections per slide (See Materials and Methods). The pretrained Mask R-CNN model on the
COCO dataset was loaded and trained on an in-house dataset with the default augmentation
including image random flip and resize and a 0.7 confidence score threshold (Table 2.1 Model A)
showing higher performance on our in-house testing images with 25.9 mean average precision
(mAP) and 47.5 mean average precision at intersection over union (IoU) threshold of 0.5 (AP50)
across classes, comparable to the performance of Mask R-CNN on other public datasets. For each
class, the average precision (AP) captures both the precision (related to type I error) and recall
(power=1-type II error) for IoU from 0.5 to 0.95 with a 0.05 step interval. Example results
presented the agreement between model prediction and the ground truth (Fig. 2.1). The Mask R-

CNN excelled at segmenting sorghum root and spore with AP values larger than 40 (Table 2.1).
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Reasonable performance was achieved on arbuscule and vesicle with AP ranging from 20 to 30.

The model struggled with predicting instances of intraradical and extraradical hyphae.
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Prediction Ground

Figure 2.1 Instance segmentation on the test set images of RIL plants. The left column (A, C,
E, G) shows Mask R-CNN predictions of all five AM fungal structures: arbuscule, external
hypha, internal hypha, vesicle, and spore. Random color is used to fill individual masks.
Classification with confidence score is labeled on the corner of a bounding box. The right
column (B, D, F, H) displays the ground truth annotations from human scorers.
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The confidence score distributions of high precision predictions of root, extraradical hypha,
vesicle and spore were left-skewed, indicating high certainty on the assigned class labels (Fig. 2.2).
Arbuscules had lower confidence scores in comparison to sorghum roots (Fig. 2.2) (P<0.00003
Tukey Multiple Comparison applied to an ANOVA of angular transformation of confidence scores).
The low AP value and the high confidence score of extraradical hypha suggest that the main
challenge for the Mask R-CNN is the pixel level segmentation of extraradical hypha rather than
instance classification. Given the low AP value and confidence score of intraradical hypha, this
fungal structure was dropped from latter analyses. Difficulty in arbuscule classification could be
driven by the observation that arbuscules present in both isolation and clusters in sorghum roots.
The observed frequencies of fungal structures from Mask R-CNN predictions did not differ from
the frequencies counted by human scorers on the testing images (p-value = 0.786 with Fisher’s

exact test). As the segmentation model produced satisfying results, we chose the best one (Table

Arbuscule Extraradical hypha Intraradical hypha Spore Vesicle Root

04

0.7 0.8 0.9 1.00.7 0.8 0.9 1007 0.8 O.QConﬁC:.eOng.; ScoreO.B 0.9 1.007 0.8 0.9 1007 0.8 0.9 1.0
Figure 2.2 The best model trained using the in-house image dataset is used to do inference on the
test set containing only in-house images of Georgia samples. Confidence scores are assigned to
predicted instances during classification by the Mask R-CNN. A threshold of 0.7 was applied to
select for high precision predictions only. Mask R-CNN has the highest confidence in labels
assigned to predicted roots for showing a left skewed distribution.
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2.1 Model A) for inference on a much larger in-house dataset (24,391 images) where images were
collected in similar experimental settings.

The pretrained model was also trained and tested with a combined dataset including the
AMFinder dataset2 to illustrate how the model will be iteratively improved as more data are
collected. The AMFinder dataset was made up of images collected from lab grown plants with a
single AMF species inoculum and had patterns different from our in-house dataset collected from
plants grown in soil from the field in Georgia, USA. With learning rates 0.001 and the default
augmentation, we obtained a mAP of 29.6 and mAP50 of 50.2 in the combined test set (see
Materials and Methods). This showed that our Mask R-CNN Model can be expanded and adapted
to diverse conditions with different experimental settings as more representative training data are
included.

We then tested whether adding the AMFinder images to the training dataset improved
model performance on our in-house AMF colonized root images. The model performance was
slightly decreased on the original test set. The best model trained on the combined image set had
a mAP of 21.4 and mAPS50 of 39.7. Whether adding new data with patterns different from the
targeted conditions needs further testing with different training schedules and approaches.

2.2.2 From Image Segmentation to Measures of Fungal Morphology

The best performing computer vision model on in-house images presented above was
applied to over 20,000 images of 108 root samples from the top, middle, bottom root regions of
12 sibling sorghum plants to generate pixel-wise segmentations of the five hyphal structures. From
the segmentation results, the average quantity and size of fungal structures were computed for each
root sample. Paired correlation analyses of the fungal structure morphological traits were examined

first to identify whether fungal structures tend to co-occur in sorghum roots.
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Positive associations dominated the frequencies of fungal structures. Higher occurrence of
extraradical hyphae was consistently associated with higher occurrence of arbuscules. Vesicles and
spores were positively correlated in sizes and counts. Larger number of vesicles and spores in a

sample were suggestive of smaller arbuscules (Fig 2.3).
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Figure 2.3 Significant correlations exist between structure counts and size. Shades of red indicate
increasingly positive correlations. Shades of blue indicate decreasingly negative correlations. Fungal
structures were abbreviated: arbuscule (arb), extraradical hypha (exH), intraradical hypha (inH),
spores (sp), and vesicle (ves). For the correlations between fungal counts and sizes in the third panel,
counts were arranged on the x-axis, sizes on the y-axis.

2.2.3 Using Mixed Linear Models to Predict Total AMF Abundance with Fungal Structure

Morphology

From the morphometric data of fungal structures, two measures of total AMF abundance
were computed: the percentage root area occupied by AMF (percent colonization) and the density
of AMF per root area (count density). Mixed linear model (MLM) analysis of the two phenotypes
as response variables and the fungal structure morphology traits as predictors provides a means to
test two hypotheses in the study of differential colonization by AMF. One major hypothesis is that
AMF presents differential colonization between root sections. The second hypothesis is that
allocation to AM fungal structures varies between plants. In this section, background on mixed
linear modeling serves as an accessible introduction to how MLMs can be used to test these two

hypotheses.
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2.2.3.1 The Rationale for Mixed Effects

Mixed Linear Models (MLMs), also known as multilevel or hierarchical models, feature
fixed and random effects (Searle et al., 2009) (Box. 2.1). Experimental treatments are typically
modeled as fixed effects. Individual observations are grouped by random factors. Random factors,
therefore, constitute the grouping level. Fixed factors are estimated as the mean effect for a
particular factor level. In contrast, if the primary interest lies in estimating between-group
variances, variables are modelled as random effects. The estimated values of random factors are
shrunk towards the population mean.

The choice of using mixed effects to model AMF colonization is motivated by the
experimental design. Our data are inherently hierarchical. AMF colonization was quantified in
each of the three root regions within each sorghum plant, and three replicates were taken per root

region (Fig. 2.4). The nested layers are plant, root depth, and replicate. The spatial scales between
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Figure 2.4 Experimental design entails hierarchical sampling from a RIL population. Twelve
inbred lines were used in the experiment. One plant of each inbred line was sampled from the top
(TOP), middle (MID), and bottom (BOT) of the root system. Each section was sampled three
times. For each sample, 4 fields of view were imaged around each marker dot as shown on the
schematic slide below, generating 192 root intersections per slide. Five fungal structures:
arbuscule (arb), internal hypha (inH), external hypha (exH), vesicles (ves), and spore (sp) were
segmented from each image. Root region is a variable recorded for each sample. Average size and
count are computed for each class of instances found in a sample.
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root samples and sorghum plants are biologically nested (Schielzeth & Nakagawa, 2013).
Between-sample variance needs to be evaluated as a random factor. It would be wrong to treat root
samples from the same sorghum plant as independent. The twelve sorghum plants are siblings
randomly sampled from a RIL population. Between-plant variance is treated as a random factor as
well. Root region and AMF structure level phenotypes are the fixed effects. The same model
structure can be used to model the AMF count density.
2.2.3.2 Mixed Linear Model Assumptions

In MLM, both root samples and sibling plants are assumed to be randomly sampled from
a population of samples and a population of sorghum recombinant inbred lines, respectively
(Govindarajulu et al., 2021). It is assumed that the sampling errors (&;) and the plant level random
effects (uoi) are independent and that the random effects and sampling errors have a normal
distribution of zero mean and distinct constant variances (Box. 2.1). Another assumption is that
the mean and variance of the response variable are not functionally dependent on each other across
siblings. Transformation of the response variable is an effective method to remove the dependency.
Choice of models are designed to address each of the three questions of the paper laid out at the
end of the introduction.
2.2.3.3 The Null Model (Model 1)

The Null MLM Model does not include explanatory variables but only the mean overall
AMEF colonization and the plant level and sample level differences in colonization. The
colonization by AMF of a root sample from a plant (yjj) is equal to the mean colonization in the
sorghum population (o) plus the plant level random difference from the population mean (uoi)
plus the sample level differences (&i) (Box. 2.1). This simple Null Model shows that MLM

partitions
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Box 2.1. Mixed linear models (Searle et al., 2009) discover relations between AMF colonization
and count density on the one hand and accession and fungal morphology on the other hand.

General Expression of MLMs
Response Intercept + Fixed Random  Sampling
y=XB+2ZU + ¢
Random Intercept Null Model (Model 1)
Percent Intercept ~ Sorghum  Sampling
~a \4 v “

Yij = Bo+uoi+t €

uop; ~ N(0,0 3)

eij ~ N(0,07)
Random Intercept Model with Experimental Design Variable (Model 2)

Percent Intercept ~ Sorghum  Region  Sampling
~a \4 v N o
Yij = Bo+ uoi + P1T1i; + €5
ug; ~ N(0,02)
€; ~ N(0,02)
Random Intercept Model with Structure Level Predictors (Model 5)
Percent Intercept ~ Sorghum  Region Arbuscule Arbuscule Sampling
“~a \4 v Y ¥ ¥ o
Yij = Po+ woi+ Biz1ij + Pox2ij + B3xzij + €
up; ~ N(0,02)
€i; ~ N(0,02)
Random Intercept and Slope Model with Structure Level Predictors (Model 6)

Percent Random intercept: Region Arbuscule Random slope: Sampling
A — A/ g —— »
Yij = Bo+uoi+ BrijTiij + B2ijT2ij + (Bsij + u1i)T3is + €5

ug; ~ N(O, aio)

u; ~ N(O, 031)
COU(UOia Uu) =  Ouguq

€i; ~ N(0,02)
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the total variance in AMF colonization var(yj) into a variance between plants var(uo) and a

variance between samples var(gij) as shown from Box. 2.1 (Model 1) (Juan, Basile, et al., 2005).

var(y;;) = var(ug;) + var(e;;) = aﬁ + 062

The between plant variance var(uo;) was estimated to be 0.0099 and two times that of the between
sample variance var(gj) in Table 2.2. The proportion of the total percent colonization differences

can be quantified at the plant level by computing the intraclass correlation (ICC) (Juan, Basile, et

al., 2005).

, 2
100 = var(uo;) _ %

var(ug;) + var(e;;) 030 + o2

In Table 2.2, the ICC of Null Model was 0.647, which implies that 64.7% of differences in
total percent colonization of AMF is at the plant level and could be controlled by the plant genome
(Deng et al., 2021). An alternative hypothesis would be that this clustering of variance at the plant
level might be attributable to the different composition of AMF structures, and this composition
could be defined by the plant genome. We will come back to testing the alternative hypothesis in
Models 3, 4, and 5.
2.2.3.4 Random Intercept Model with Experimental Design Variable (Model 2)

In Model 2, the Null Model (Model 1) is expanded by including the design variable, the
root region where the root sample was obtained (Fig. 2.4), with fixed effect 1. Root region is a
discrete predictor with three levels. The goal of the model is to investigate if AMF percent
colonization differs between root regions and to determine the extent to which variance at plant

level may change after taking into account differences in colonization in root regions. Proportional
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change in variance (PCV) at different levels can be computed to evaluate the change using the

following equation (Juan, Min, et al., 2005; Nakagawa & Schielzeth, 2013),

POV = 170 = ver (1)

var(uo;)

var(€;) — var’ (€5)

POVoompte = var(€i;)

where var(uo;) is the between plant variance in the Null Model and var’(uo;) is the between plant
variance in the new model. Comparing Model 2 to the Null Model 1, the PCVpiant was equal to -
0.0221, and PCVgmple was equal to 0.3648 in Table 2. We concluded that 36.48% of sample
variance within plants in the null model is attributed to differences in root regions. By adjusting
for the root regions where the sample was obtained, another 2.21% of the variance in percent
colonization by AMF was accounted for by plant differences in Table 2.2.

2.2.3.5 Random Intercept + Fixed Slope Model with AMF Structure Predictors (Model 3, 4,
S)

As mentioned earlier under the Null Model, an alternative hypothesis to the clustering of
total percent colonization of AMF at the plant level is that the plant level differences in AMF
abundance can be attributable to the different composition of AMF structures in the plants, which
could be controlled by the plant genome (Deng et al., 2021; Merlo et al., 2005). To test the
possibility, the three Models (3, 4, and 5) expand Model 2 by including arbuscule count and/or size
as fixed effects determined to be significant by Lasso Regression (Groll & Tutz, 2014). By
comparing Models 3, 4, and 5 to the Null Model, the changes in plant level variance can be
measured using ICCs and PCVs after adding different AMF structure predictors to the model
(Table 2.2). The interpretation of ICCs and PCVs leads to a major conclusion regarding the total

AMF percent colonization and the composition of fungal structures, which is discussed in depth

in a later section.
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Table 2.2 Mixed linear models are well predicted for percent colonization by arbuscule count,
arbuscule size, region, and plant. Proportional change in variance (PCV) is provided to measure
the importance of random effects. Intraclass correlation (ICC) is used to implicate the variance
between plants. Varied measures of fit are provided to assess model performance.

Random Intercept Random Intercept
+ slope
Model 1 Model 2  Model 3  Model 4 Model 5 Model 6

Null Model with Model A with Model B with Model A with Model B with
Model one fixed two fixed two fixed three fixed three fixed effects

effect effects effects effects
Fixed Effects
Intercept 0.3339 0.3360 0.3329 0.3307 0.3293 0.3410
regionTOP NA 0.0492 0.0354 0.0312 0.0241 0.0226
regionBOT NA -0.0552 -0.0322 -.0213 -0.0100 -0.0087
arb_count_scaled NA NA NA 0.0885 0.0757 0.0937
arb_size scaled NA NA 0.0490 NA 0.0346 0.0304
Variance of fixed NA 0.0018 0.0040 0.0092 0.0109 0.0139
effects
Random Effects
Variance between 0.0099 0.0101 0.0056 0.0015 0.0010 0.0009
plants
Variance between 0.0054 0.0034 0.0024 0.0015 0.0009 0.0007
root samples
Proportional Change in Variance PCV)
Between NA -0.0221 0.4355 0.8447 0.9003 0.9091
plants
Between root NA 0.3648 0.5640 0.7298 0.8344 0.8713
samples
Intraclass Correlation (Ico or Variance Partition Coefficient (VPC)
Plants 0.6472 0.7470 0.7037 0.5133 0.5248 0.5645
Model Performance
Marginal R? NA 0.1190 0.3345 0.7539 0.8525 0.8532
Conditional R? 0.6472 0.7771 0.8028 0.8802 0.9299 0.9574
AIC -217.9263 -259.5121 -301.6817 -362.4751 -413.8518 -421.9404
BIC -209.8799 -246.1014 -285.5889 -346.3823 -395.0769 -397.8012
Deviance -223.9263 -269.5121 -313.6817 -374.4751 -427.8518 -439.9404

The effect of average size of arbuscule (32) and the effect of arbuscule count (33) per sample
are continuous variables that describe the association of the AMF structures with the total degree
of root colonization by AMF (yjj)s. A positive estimate of 33, for example, indicates a positive
linear relation between AMF colonization and average arbuscule size. A larger estimate of 33 than
B4 means arbuscule size has a stronger effect on total AMF colonization per unit increase than

arbuscule count. In all three models, the relations between fixed effects and overall AMF
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colonization are considered to be the same in all sorghum plants. In other words, the slopes are
fixed with respect to plant.

2.2.3.6 Random Intercept + Random Slope Model with AMF structure predictors (Model 6)
In Model 6, the effect of arbuscule count (33) on overall AMF colonization may differ between
sorghum plants. For examples, in some plants with high AMF colonization in the roots, arbuscules
may be the dominant hyphal structure but not in other plants. In Model 6, the regression coefticient
of AMF colonization on arbuscule count varies at the plant level to capture this differential effect.
By comparing Model 6 to Model 5, it is possible to determine whether the assumption of varying
magnitude of association of arbuscule count and percent colonization between plants holds.

The total variance in AMF colonization var(yj) is still made up of two parts, a variance
between plants var(uoi, uiixiij) and a variance between samples var(ej). The variance between
plants var(uoi, uiixiij), however, partitions into a slope variance var(uiiXijj), intercept variance
var(uoi) and their covariance cov(uo;, u1ix1ij) (Subramanian et al., 2003). This variance is a quadratic

function in arbuscule count:

var(yi;) = var(ue;, u1i%1ij) + var(e;;)
= wvar(ug;) + var(uiiT1i;) + 2cov(ugi, u1;T145) + var(ei;)
0’30 + O'ZIZE%ij + 20u0ulxlij + 0'62

When there are random slopes in the model, the Variance Partition Coefficient (VPC), a function
of arbuscule count, is calculated to measure the relationship of plant level variance to the total

variance rather than an ICC (Subramanian et al., 2003):

2 2,2 g
VPO — var(uo;, U1 1i5) _ _ Tup T 0u, T1i5 + 20ugu, T1ij

2
var(uoi, u1iT1ij) +var(ei;) 0% +0a T1;; + 20uu, T1ij + 02

VPC is similar to ICC in terms of interpretation of the result.
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2.2.4 Arbuscule Morphology is Predictive of Differential AMF Percent Root Colonization in
Sibling Plants

Looking at how the plant level variance changes as predictors such as root region, arbuscule
size, and count were added to the Null Model in Model 2, 3, 4, and 5, we observed that, in Model
6, 90.9% total variance in percent colonization is attributed to the plants (PCVpiane = 0.9091). An
VPC of 56.6% suggested that even if variance at plant level shrunk, it still explained the majority
of differences in percent colonization. This is possible because the sample level variance dropped
with the plant level variance by 87.1% as arbuscule count and size were added as predictors.

Model 6 had the highest R-squared (Johnson, 2014; Nakagawa & Schielzeth, 2013) of
0.9574 and desired lowest information criteria and deviance. A model with random slopes for both

arbuscule counts and size were fitted but not included in Table 2 as it was not significantly different
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Figure 2.5 Percent colonization is well predicted by Model 6. (A) Random slopes (red) are fitted
to scaled arbuscule count for each plant. Fixed slopes for arbuscule size (grey) are shown as
reference for easy visualization of the changing slopes of arbuscule count. The solid line represents
the intercept of the top root region, which predicts for higher AMF percent colonization than
sample mean. (B) Variance between plants and its VPC are plotted as a function arbuscule count.
Scaled arbuscule count is plot on the x-axis, with Variance between plants as the main y-axis, its
VPC on the secondary y-axis.
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from Model 6 in a likelihood ratio test. Confidence scores for arbuscule was added as a fixed effect
to Model 6 and was tested nonsignificant using a likelihood ratio test. In Fig. 2.5A, the expected
values of AMF colonization from Model 6 were plotted to visualize the fit of the model to the data
and the varying slopes between plants. The plant level variance and its VPC is a function of
arbuscule count in Model 6 (Fig. 2.5B). The clustering of plant level variance was stronger when
more arbuscules were observed, also reflected by the increasing of VPC (Fig. 2.5B). For example,
N6F3, E37, N66, N102, and N116 had higher slopes and hence higher arbuscule counts than the

Table 2.3 Mixed linear models are well predicted for count density by counts of hyphal structures,
root regions, and sorghum accessions. Proportional change in variance (PCV) is provided to

measure the importance of random effects. Intraclass correlation (ICC) is used to implicate the
variance between accessions. Varied measures of fit are provided to assess model performance.

Random intercept Random intercept
and slope
Model 1 Model 2 Model 3 Model 4
Null model Model with one fixed Model A with five Model B with five
effect fixed effects fixed effects
Fixed Effects x 10°
Intercept 809770.357 793371.277 786651.710 790215.150
regionTOP NA 114053.586 76643.165 86253.886
regionBOT NA -64856.345 -7287.224 -8284.854
arb count scaled NA NA 66137.475 60660.157
exH count scaled NA NA 60918.089 63380.104
sp count scaled NA NA 47678.393 39526.530
ves count scaled NA NA 97338.416 111460.129
Variance of fixed effects NA 5.520 33.276 34.734
Random Effects x 10°
Variance between 20.689 21.322 7.049 6.012
Plants
Variance between 27.674 21.979 7.642 6.264
root samples
Proportional Change in Variance (PCV)
Between plants NA -0.031 0.659 0.709
Between root samples NA 0.206 0.724 0.774
Intraclass Correlation (ICC) or Variance Partition Coefficient (VPC)
Plant 0.428 0.492 0.480 0.490
Model Performance
Marginal R? NA 0.113 0.694 0.692
Conditional R? 0.428 0.550 0.841 0.875
AIC -1543.514 -1563.654 -1674.505 -1678.541
BIC -1535.467 -1550.243 -1650.366 -1649.037
Deviance -1549.514 -1573.654 -1692.505 -1700.541
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remaining accessions. The remaining plants, however, had lower arbuscule counts and similar total
AMF percent colonization. It was impossible to distinguish the remaining plants by their arbuscule
counts. At first sight it seemed strange that arbuscule count should be selected as a predictor when
it had lower confidence scores than other traits (Fig. 2.2), but as shown in Fig 2.5B, there were
substantial differences in arbuscule count for the first 5 accessions, and that was why arbuscule
count was selected for inclusion in the mixed linear model to explain plant level differences.
2.2.5 The Plant Level Variance Component in Count is Stable across Models — Loss of
Goodness of Fit in Random Effects is Offset by A Gain in Goodness of Fit to Fixed Effects of
Fungal Structures

The same variable selection and model selection procedure for overall AMF percent
colonization was applied to fit overall AMF count density as the response variable. The 3 vector
of fixed effects was modified to include the appropriate AMF structure phenotypes as predictors.
Lasso regression (Groll & Tutz, 2014) selected the count measures of all fungal structures as fixed
effects in the mixed linear model to predict overall AMF count density in sorghum plants. Forward
selection removed the number of intraradical hyphae as an explanatory variable. Root regions and
the counts of arbuscules, vesicles, spores and extraradical hyphae were the five fixed effects in
Model 3 and 4 for count density. Random slopes were added with respect to the four effects of
fungal structures. The effect of extraradical hyphae was the only one that differed between the
sorghum plants. A random slope was added to the effect of extraradical hyphae in Model 4. We
added the confidence score of extraradical hypha as a fixed effect to count density Model 4 and
found that it was not a significant variable.

The proportion of variance at the plant level remained stable as fixed effects were added to

models (Table 2.2). In Table 2.3, the ICCs and VPC of between plant variance ranged from 0.428
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Table 2.4 Tukey multiple comparison test with contrasts between region regions and their

significance (p-values). The top, middle, and bottom root regions were abbreviated as TOP, MID
and BOT.

Structure Count

arb exH inH sp ves
Contrast  Estimate p-value Estimate  p-value Estimate  p-value Estimate  p-value Estimate  p-value
MID- -0.203 0.2538 -0.527 0.0015 -0.109 0.7834 -0.211 0.5379 0.192 0.4038
TOP
MID- 0.383 0.0096 0.385 0.0274 -0.193 0.4663 0.205 0.5580 -0.018 0.9922
BOT
TOP- 0.586 <0.0001 0.912 <0.0001 -0.084 0.8636 0.416 0.0957 -0.209 0.3397
BOT

Structure size

arb exH inH sp ves
Contrast  Estimate p-value Estimate p-value Estimate p-value Estimate p-value Estimate p-value
MID- -0.281 0.2341 0.162 0.6823 0.229 0.4966 -0.144 0.7754 -0.170 0.7275
TOP
MID- 0.469 0.0201 0.159 0.6942 -0.075 0.9274 0.308 0.3275 -0.243 0.5247
BOT
TOP- 0.750 <0.0001 -0.004 0.9998 -0.304 0.2944 0.447 0.0922 -0.073 0.9434
BOT

to 0.490, which was less than a 7% difference in variance explained. The proportional changes in
plant variance decreased by 70.9%, which was compensated for by a 77.4% drop in sampling
variance. What variation in count density lost to the fixed effects was replaced by the improved fit
of the model.
2.2.6 Differential AMF Colonization between Sorghum Root Regions

A significant improvement of Model 2 to the Null Model 1 for both total AMF colonization
phenotypes supports that AMF colonization was different between root regions. PCVample Was
0.365 and 0.205 respectively for AMF percent colonization and count density (Table 2.2 and 2.3).
The positive signs of PCVs suggest that the sample variances within plants in the null models are
attributed to differences in root regions. The top root region had the highest colonization by t-tests
at the 0.05 significance level (Fig. 2.6 A and B). Arbuscule count was a predictor essential for the
modeling of both phenotypes in the previous section. It is a reasonable speculation that arbuscule
count is a main driving force in the positive correlation of the two total AMF colonization traits.

The speculation is sustained by larger arbuscule size (Fig. 2.6C), higher of arbuscules and
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extraradical hyphae in the top root region (Fig. 2.6D), tested significant using Tukey Multiple
Comparison tests (Table 2.4).

Table 2.5 Multiple comparison test of AMF colonization along root regions.

Percent colonization Count density Proportion nutrient exchange
Contrast Estimate p-value Estimate p-value Estimate p-value
MID-BOT 0.009 0.410 0.000032 0.345 0.408 0.011
MID-TOP -0.023 0.005 -0.000077 0.004 -0.311 0.070
TOP-BOT 0.031 <0.0001 0.000109 <0.0001 0.719 <0.0001

Although the morphological traits of other AM fungal structures did not have significant
effects, they could still contribute to differential colonization. If the sorghum plants were colonized
by equal amounts of AMF, Fig. 2.7 A and B showed how the relative abundance of AM fungal
structures in the roots could differ. When the twelve sorghum plants were ranked in decreasing
order of AMF percent colonization from left to right, the relative amount of arbuscules and
extraradical hyphae trended downward. The same observation held if the panel was divided by
root regions.

To quantify the observation, one more phenotype was calculated, the amount of arbuscule
and extraradical hyphae divided by the total AMF structures. It measures the proportion of nutrient
exchange (PNE) structures (Johnson et al., 2003). After logit transformation, a mixed linear model
was fitted to PNE with root region as the fixed effect and a plant level random effect. The intraclass
correlation for PNE was 0.585. The conditional R-squared of the mixed linear model was 0.624.
Tukey multiple comparison test showed that the top 0-15cm and the middle 15-30cm tested
insignificant to each other, but both were tested significant to the bottom >30cm roots (Table 2.5).
Percent colonization and count density had the middle 15-30cm root region tested insignificant
against the bottom root regions. The levels of AMF colonization of the twelve sorghum plants were
ranked differently with percent colonization, count density and PNE. Some similarity was found

between percent colonization and PNE using Spearman correlation (rho=0.544, p<0.001) There
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was no correlation between proportion NE and AMF count density (rho=-0.089, p = 0.362) (Fig.
2.8).
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Figure 2.6 AMF colonization and structure abundance vary with root depth. A and B show the
distribution of total AMF percent colonization and count density by the top, middle, bottom root
regions. Colonization is the highest in the top root region. To examine the reason for high AMF
colonization in the top root region, Box and Whisker plots are used to display the size and count
density of each AM fungal structure by root regions in C and D.
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Figure 2.8 The stack bar plots reflect the relative abundance of AM fungal structures when the
total AMF count density is assumed to be the same across sibling plants. Sibling plants are
ordered in decreasing total AMF percent colonization. (A)The relative abundance of arbuscule
and extraradical hypha decreases as the plant has more quantities of vesicle and spore. (B)The
same relationship is observed in the top, middle and bottom root regions of sibling plants.
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Figure 2.7 The density plots of AMF percent colonization, count density and proportion of
nutrient exchange (Proportion NE) are arranged on the diagonal. The phenotypes were
transformed to be normally distributed. Scatter plots of each pair of phenotypes are visualized in
the lower panel. Pearson correlation values and significance are displayed in the upper panel. For
example, percent colonization and proportion NE has a 0.544 positive correlation.
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2.3 Discussion
2.3.1 Preferential AMF Colonization in Sorghum Roots

The 15c¢m of roots closest to the soil surface presented highest total AMF colonization and
proportion of nutrient exchange fungal structures (Fig. 2.4 and 2.6, Table 2.4 and 2.5). The total
AMEF richness and colonization at 0-10 cm soil depth were shown to be higher than at deeper soil
layers in Pedicularis kansuensis at a subalpine grassland ecosystem (Wang et al., 2018). Kabir et
al found that total colonization, total hyphae density, and spore density were highest at a depth of
0-15 cm of soil in corn roots (Kabir et al., 1998). Top roots of sorghum produce secondary roots
and fine root via branching. The growing tip is at the bottom of the root. One hypothesis is that the
AMF preferentially colonize the actively branching sections of sorghum roots. An alternative
hypothesis is that the top layer is rich in phosphorus, defining the niche for AMF colonization
(Wang et al., 2018). One way to test the first hypothesis is to examine the variation in root
morphology between inbred lines with the software DIRT (Das et al., 2015) to see whether or not
root morphology has an impact on fungal structure counts. The latter hypothesis could also be
tested by using nanodots or phosphorus labeling experiments to track the exchange in the top layer
(Whiteside et al., 2019).
2.3.2 Plant Level Variance of AMF Colonization

In the null model, the total variance in AMF colonization was composed of the sampling
variance and plant level variance. Expanding the null models transferred the plant level variance
from the variance components to the fungal structure morphology traits. One hypothesis for the
result is that sorghum plants of different genotypic backgrounds determine overall AMF abundance
in roots by manipulating the developmental stage of AMF species after colonization. Alternatively,

in lifestyle studies of single AMF species, researchers found that the composition and morphology
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of their fungal structures vary. Sorghum lines may match with a community of AMF species in the
soil that generates different compositions of AM fungal structures in roots (Martignoni et al., 2021).

Our experimental design does not permit direct testing of the amount of variance in AMF
colonization that is under the genomic control of plant hosts, because there were no biological
replicates of the RILs. If biological replicates were available, plant level variance would provide
an estimate of population level variance of AMF colonization and the measurements, ICCs and
VPCs, would capture the broad sense heritability including additive, dominant and epistatic effects.
The results in Table 2.2 are suggestive of performing a large scale Genome Wide Association
Study (GWAS) and or Recombinant Inbred Lines (RILs) study in Sorghum bicolor to test whether
or not sorghum genes play a role in AMF colonization (De Vita et al., 2018b; Plouznikoff et al.,
2019).
2.3.3 Differential AMF Colonization between Sorghum Inbred Lines

Percent colonization was a new measurement of overall AMF abundance by taking the
ratio of pixelwise segmentation of fungal structures and sorghum roots of our computer vision
model. Count density was a similar measurement of AMF abundance to the output of McGonigle
(McGonigle et al., 1990b) scoring method. The proportion of variance at plant level of these two
phenotypes did not lose to the integration of fungal structure morphology traits into the models,
which establishes them as favorable response variables for Genome-wide Association Studies of
AMF colonization in sorghum populations. While both phenotypes were modeled with fungal
structure morphology traits as fixed effects, the fixed effects differed in their ability to explain
variability in the data. Two morphological traits of arbuscule were required to explain 95.7%

variability in percent colonization suggestive of a mechanism for how the plant controls AMF
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colonization. One example of a gene relevant to this mechanism encodes the protein DELLA (Floss
etal., 2013; Yu et al., 2014).

Count density was modeled with four fungal structures. The final fit to predicting count
density explained 87.2% of variability. One could argue that percent colonization is a better
phenotype for GWAS for its simplicity, goodness of fit and higher plant level variance. The plant
level variance of the phenotype would decrease as the number of plant replicates and sorghum
inbred lines grow in scale. Count density should not be discarded as technologies provide newer
features to quantify AMF abundance. Finally, the two phenotypes did rank the twelve sorghum
inbred lines in different orders. Inbred line L8 had the highest AMF count density but ranked 7
for percent colonization. Ranks for most other inbred lines were comparable. It is recommended
to use both phenotypes in future studies of AMF colonization using computer vision.

2.3.4 Role of Models across Scales to Understand the AMF Symbiosis with Plants

To understand the symbiosis of Sorghum bicolor with AMF it has been necessary here to
develop models that operate at multiple scales (Johnson et al., 2006). First, computer vision models
were developed that provided the high throughput data to describe how AMF colonize the plant at
the individual plant level. A variety of measures were developed that then can be used in GWAS
studies to test the role of the plant genome in shaping the AMF microbiome. To avoid the
confounding effects of environmental field variables in a GWAS, it will important to use factorial
designs (Fisher, 1935) and blocking to separate the effects of accession from environmental field
variables, like Nitrogen and Phosphorus levels. These models operated at the individual level of
plants in the study. The computer vision models provided a diverse array of measures to describe
the colonization process described above (Tables 2.2 and 2.3). We are in the process of not only

automating classification and segmentation of fungal structures but full automation of image
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acquisition as well. A final limitation of the computer vision phenotyping method here is not
having live cell images to follow the dynamics of the structures. The Kokkoris laboratory (Cornell
et al., 2022) has been able to follow the dynamics of nuclei in AMF, and it would be useful to adopt
a similar approach to other AMF structures to gain a time dimension on colonization. Live cell
imaging will also contribute to understanding the prepenetration apparatus (Genre et al., 2008),
arbuscule formation (Floss et al., 2013), and AMF inheritance (Marleau et al., 2011).

On top of the computer vision model for feature extraction, mixed linear models were
added to discover relations between measures of overall AMF abundance with fungal structure
morphology and root niche. This mixed linear modeling approach provides a framework for
GWAS and QTL mapping by suggesting underlying mechanisms by which the plant genome
controls the AMF community. For example, arbuscule count entered into the prediction. This
relation suggests a mechanistic link to the arbuscules in how the plant genome controls the AMF
microbiome. There are likely genes in both sides of the partnership controlling the development
of these structures (Ivanov et al., 2019). Other layers to the modeling will need to be added to

conceptualize our understanding of this ancient and fundamental symbiosis (Johnson et al., 2006).
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2.4 Materials and Methods
2.4.1 The Georgia Dataset

Plant Cultivation:

Sorghum plants were derived from Recombinant Inbred Lines (RILs), a mapping
population consisting of 191 F3:5 from a cross between an unnamed accession of Sorghum
propinguum (William Rooney, Texas A & M University, College Station, TX) and inbred line
TX7000 of S. bicolor (Govindarajulu et al., 2021). The seeds were kindly provided by Jeff
Bennetzen, one of the PIs who constructed the RIL collection (Govindarajulu et al., 2021). No
permissions are needed to use these Sorghum accessions. Three seeds from 15 RILs were planted
on October 5, 2020, in steam sterilized Sungro garden soil in 2.5-gallon pots at the UGA Botany
Greenhouse. Seedlings were grown on a 11-hour light cycle. Plants were fertilized with 1
tablespoon Osmocote. Individual seedling was transferred in 2.5-gallon pots filled with a 4:1 mix
of steam sterilized turface and soil from Ironhorse Farm, Watkinsville, GA (Table 2.1) on day 15.
Seedlings were grown to maturity on a 11-hour Light/Dark cycle with watering as needed. In
addition, one commercial hybrid forage sorghum plant derived from Richardson, TX was
harvested at [ron Horse Farm, GA on October 13, 2020, two grain sorghums of accession M72GB7
at Iron Horse Farm, GA on November 12, 2020, a Colby sorghum at UGA Botany Greenhouse.
All the methods were carried out in accordance with relevant Institutional guidelines and
regulations.

Root imaging:

Random samples of 0.25g of fine roots were taken from the whole roots of Richardson,

M72GB7, Colby, E46-W, N88, E24, E46 for training images. The cleaned whole roots were cut

into 1 cm pieces. Fine roots with intact cortex were randomly selected and weighed to get 3
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cassettes of 0.25g of samples per plant. Root samples were cleared in 10% alkaline hydrogen
peroxide solution for 2 hours and in 5% KOH overnight at room temperature. Fungal structures
were stained using a modified Ink and Vinegar method (Vierheilig & Piché, 1998). Stained roots
were spread and flattened on slides prior for imaging. Mounted root samples were imaged at 200X
magnification with a Zeiss Primo Star compound microscope equipped with an Axiocam 105 color
camera. Focusing was done locally and manually for every field of view during imaging to increase
sharpness, but no post image acquisition processing was involved, such as adjusting contrast.
McGonigle method was used to generate images at 192 root intersections. The root intersections
were 0.5 cm equidistantly spread across a 75 x 25mm glass slide. The fungal structures at root
intersections were manually scored and annotated for training the computer vision model.

To test for the differential AMF colonization in root regions and in sorghum plants, 12 RIL
sorghums of E37, L8, N6-F3, N10, N43, N66, N68, N102, N108, N110, N116, and N162 were
sampled from three root regions. The ‘TOP’ region was the first 15 cm of roots below soil surface.
The ‘MID’ region is the next 15 cm below. The ‘BOT’ region was roots longer than 30 cm (Fig.
2.4). Aerial roots were excluded from sampling. From each region of a plant, 3 technical replicates
of 0.25g of fine roots with intact cortex were randomly sampled. Each plant was represented with
a total of 9 cassettes or 2.25g of root samples. A line has only 1 plant as biological replicate. The
same clearing, staining and imaging procedures were applied.

2.4.2 The Cambridge Dataset

The publicly available Cambridge dataset (zenodo ID 10.5281/zenodo.5118948) included
15 whole slide scanning images acquired with a VHX-5000 digital microscope (Keyence, Milton
Keynes, UK) set to x200 magnification. The images were downloaded from the zenodo data portal

using the zenodo-get software method. The 15 whole slide images were in jpg format and 10389
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x 5108 pixels and 96 pixels/inch in size. The original annotations were discarded. The same
annotators and annotation standards for the Georgia dataset were used in reannotation to maintain
uniformity. The annotated images were tiled and added to the Georgia dataset to create a secondary
training set for more and even representation of each AMF class.
2.4.3 Image Annotation

The root image annotation was conducted using the VGG annotator tool (Dutta &
Zisserman, 2019). The fungal and root structures were manually annotated using the polygon tool.
One of seven class labels was assigned to a structure (Table 2.1). The annotation results were
exported as a json file and csv table. All 746 jpg images in the Georgia dataset were segmented
and annotated. We generated 3577 polygon annotations. A total of 14 out of 15 images were
selected from the Cambridge dataset and produced 20588 annotations. The annotation criteria can

be found in Table 2.6.

Table 2.6 Annotation rules for masking AM fungal structures.

Class Annotation Rules for the Georgia Dataset

root Plant root with intact cortex

extradical hypha (exH) | Filamentous structure outside the boundary of a plant root annotation

intraradical hypha (inH) | Filamentous structure within the boundary of a plant root annotation

spore (sp) Circular structures with a solid outline, connected to AMF external
hypha, and outside the boundary of plant root

vesicle (ves) Circular or rectangular structures with a solid outline and within the
boundary of plant root

arbuscule (arb) Highly branched hypha with fuzzy outline and connected to
intraradical hyphae within the boundary of plant root

others Non-AM fungal structures
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2.4.4 Data Cleaning

The Georgia and the Cambridge datasets were cleaned to produce similar input data. All
segmentation shapes were approximated by polygons, including converting polyline to polygon
directly and resampling points in circles to produce polygons. Some segmentation shapes,
including point, rectangle and ellipse, were removed. Empty and undefined segmentations were
also removed. Classes with few representative examples were merged into ‘others’. Class labels
were made uniform in their vocabularies. The final class list included root, AMF internal hypha,
AMF external hypha, AMF arbuscule, AMF vesicle, AMF spore and others. The cleaned Georgia
dataset included 746 jpg images that are 2380 x 1740 pixels and 300 pixels/inch in size and 3577
annotations.

The Cambridge dataset needed additional processing steps. To have comparable input data
in size, the 14 images were tiled and subsampled. The images were tiled into squares of 512 x 512
pixels and smaller images on the boundaries. The segmentations were subsampled to fit each tile.
New segmentation polygons were produced at the intersection of the tiles and the original
segmentations using Shapely (Gillies & others, 2007--). Polygons with self-intersection were
dissected into smaller simple polygons. Points and LineStrings were ignored as subsampling
results. Indices for segmentation and bounding box were recalculated relative to the new tiled
image. Only tiled images with at least one segmentation annotation were kept. The quality of tiling
and subsampling were checked by comparing segmentation in the raw images and the tiled small
images visually. The resulting Cambridge dataset included 1379 tiled jpg images that are 512 X
512 pixels and 96 pixels/inch in size and 20558 annotations.

The Georgia dataset was separated into training, validation and testing sets at 8:1:1 ratio.

The training set has 598 images and 2874 annotations. To increase the number of examples for
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each fungal structure, the Cambridge dataset was divided in the same 8:1:1 ratio and merged to the
previous Georgia training, validation and testing sets. The secondary training set is made up of
1105 images and 16417 annotations. The final prediction set was consisted of 24,391 root images
from the ‘TOP’, ‘MID’, and ‘BOT’ regions of 12 sorghum RIL plants. Images with height or width
less than 100 pixels in the prediction set were dropped.
2.4.5 Mask R-CNN Model training

Mask R-CNN was implemented in Detectron2 (K. M. He et al., 2017; Yuxin Wu et al.,
2019) and is composed of the backbone, the region proposal network (RPN), and heads (K. M. He
et al., 2017; Y Wu et al., 2019). The ResNet 50 and FPN (Feature Pyramid Network) backbone
extracts feature map from images (K. M. He et al., 2017; T.-Y. Lin et al., 2014). RPN proposes
candidate regions (Ren et al., 2015). Heads produce bounding box, mask, and class inferences.
The Mask R-CNN model was pretrained on the COCO dataset with 3x schedule (K. M. He et al.,
2017; T.Y. Lin et al., 2014; Yuxin Wu et al., 2019). The pretrained model was retrained on the first
and secondary training sets for 50 epochs with batch size 2 and the default learning rate schedule.

Different hyperparameters were tested, and each combination was repeated three times
with different random seeds. Learning rates of 0.001 and 0.002 were tested. The number of frozen
or fine-tuned backbone modules was varied by changing the ‘FREEZE AT’ parameter from 1 to
3. Two augmentation options were implemented. The default option included image random flip
and resize, and the second option added random crop, rotation, and brightness adjustment as
augmentation options. Other parameters were set to the defaults in Detectron2 configuration

(Yuxin Wu et al., 2019).
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Model performance and hyperparameters were evaluated based on mean Average Precision
(mAP). The best fine-tuned model for defined hyperparameters was selected based on total loss in
validation set during training (K. M. He et al., 2017).

The model quality metric mAP was calculated with varying confidence thresholds and
averaged over all classes. In addition, AP50 was calculated at Intersection over union (IoU) level
50%, and AP was averaged over loU levels from 50% to 95%. Score threshold for inference in test
set was set to 0.7.

2.4.6 Mixed Linear Model Prediction And Statistical Analysis

The best model was used for the prediction set of 24,391 images. Other settings remained
the same as training. Inferred segmentations in an image were cross-tabulated by class versus
segmentation number and pixel number. For downstream statistical analysis on AMF colonization,
three class level statistics were generated using the two outputs above.

Count density of an AMF structure was defined as its segmentation number divided by the
root pixel number (count/pixel). Average class size of an AMF structure was its pixel number
divided by its segmentation number (pixel/count). Percent colonization by an AMF structure was
measured as its pixel number per root pixel (pixel/pixel). The three class level colonization
statistics were calculated for every slide. A total of 648 entries was used for regression analysis to
test for differential colonization in root regions and sorghum plants.

Mixed effect models in ‘lme4’ R package (Bates et al., 2015) were used for modeling the
three class level AMF colonization statistics. ANOVA and t-tests were used to test for the
significance of model parameters. Likelihood ratio test was used to test the significance of a model

to a nested model.
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2.4.7 Computational Resources

Model training and inference was implemented on sapelo2 at the Georgia Advanced
Computing Resource Center (GACRC) with one p100 GPU, 4 CPUs, and 20 GB memory. GPUs
were used for model training. CPUs were used for model inference. Codes are available in GitHub:

https://github.com/Arnold-Lab/image seg_sorghum_am.

2.5 Data Availability

Summary data and codes are available in GitHub: https:/github.com/Arnold-

Lab/image seg_sorghum am. The analyses and manuscript are available in RStudio with the

exception of the tables, which were converted manually back to Word formatting from image
formatting at the request of the publisher. The large collection of over 20,000 raw images is

available upon reasonable request from a shared DropBox folder.
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Abstract

Developing deep learning tools for automated quantification of arbuscular mycorrhizal
fungi (AMF) necessitates large, high-quality datasets capturing the diversity of AMF-root
interactions under varied environmental conditions. We present MycorrhiSEE, a 15-Terabyte (Tb),
high-resolution image dataset comprising approximately 137,500 whole-slide images (WSIs) of
root segments from 5,500 sorghum plants representing 337 genotypes, grown under diverse
agronomic treatments. Images were acquired using the ZEISS AxioScan 7 high-throughput robotic
microscope equipped with a 5-megapixel resolution color camera. This dataset provides
unprecedented detail and diversity, offering a valuable resource for developing deep learning
applications in AMF research. A new spline-based method was developed to transform WSIs into
deep learning-ready image patches. We validated the robustness of the algorithm by analyzing
eight bootstrap samples of a thousand images each classified as excellent, moderate, or bad quality
by four independent experts. The goodness of fit, roughness, and irregularity of the splines were
uniform across all quality levels, confirming our method's reliability for generating patches from
gigapixel plant root images. These patches will be used as an input to deep learning algorithms
capable of detecting and classifying mycorrhized root segments and types of fungal structures

presented.
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3.1 Introduction

Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with the roots of 70—
90% of terrestrial plants (Smith & Read, 2010). In this mutualistic partnership, plants transfer up to
20% of their photosynthetically derived carbon to AMF (Johnson et al., 1997a), which in return
facilitate the uptake of essential nutrients such as phosphorus, nitrogen, and other micronutrients
(W. Wang et al., 2017). AMF significantly enhance plant nutrient absorption, improve soil structure,
boost plant resilience to environmental stressors, and increase plant biomass and biodiversity
(Baum et al., 2015; Maria J Pozo & Concepcion Azcon-Aguilar, 2007; Juan Manuel Ruiz-Lozano
et al., 2012; Zhong et al., 2021), making them critical for sustainable agriculture and ecological
balance. To fully harness AMF as mutualistic biofertilizers, large-scale ecological and genomic
studies are necessary to understand the complex interactions between AMF, plants, and their
environments, as well as the genomic regulation of plant-AMF symbiosis (Klein et al., 2022).
Imaging has been the primary method for studying the frequency and distribution of AM hyphal
structures (SMITH & SMITH, 1997a). However, traditional imaging methods for quantifying AMF
structures are time-consuming and prone to human bias, limiting scalability (McGonigle et al.,

1990b). The development of deep learning-based computer vision tools for automated recognition

ot , .
Figure 3.1 Left: A. Root segments arrange in U-shapes on a labeled microscope slide; B. WSI of
a single root segment. Right: AM fungal structures were captured in high resolution as shown in
the zoomed-in images with arrows pointing to C. arbuscules, D. extraradical hypha, E. spores, F.
intraradical hypha, G. vesicles, H. coils.
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and segmentation of AMF structures is promising but limited by the lack of comprehensive,
annotated datasets that reflect the diversity of AMF-root associations (Evangelisti et al., 2021a;
Shufan Zhang et al., 2024).

To address this need, we created MycorrhiSEE, a high-resolution, large-scale dataset of
mycorrhized root images, collected utilizing Whole Slide Imaging technology (Shafi & Parwani,
2023). The dataset comprises ~137,500 multi-gigapixel images of fine roots from 5,500 sorghum
plants representing 337 genotypes, grown under varied agronomical conditions (Fig. 3.1). To
facilitate deep learning applications, we have developed a specialized tiling algorithm and created
annotations that classify image tiles as colonized or non-colonized and by image quality (S. Zhang,
W. Lantz, et al., 2024). The scale and quality of the MycorrhiSEE dataset provide an unprecedented
level of detail and diversity, offering a rich resource for the AMF research community and for big
data analytics.

3.2 Data Description
3.2.1 Sample Collection

Table 3.1 Overview of Experiments in the Dataset
Experiments were conducted in

" # Plant .
Experiment  Year Genotypes # Samples # Slides
i i 3 replicates Watkinsville, Georgia to study AMF-plant
Time-series ), |5 5timepoints 1028 > g Y p
experiment
225 samples
Fertil ifeplicates interactions under varied conditions,
ertilizer treatments
treatments 2021 337 4044 3682
samples including fertilizer treatments, fungal
Long-term 2020 3 replicates
g " 7585 4 years 790
monoculture 2025 .
960 samples diseases, plant developmental stages, and

long-term monoculture effects (Table 3.1). The studies used the Bioenergy Association Panel
(BAP), a genetically diverse population of Sorghum bicolor (Brenton et al., 2016).
Seedlings from the BAP accessions were germinated in a greenhouse and transplanted to

the field after 2 weeks. Each plant was uniquely labeled with a QR code carrying genotype and

59



field position, a system retained throughout cultivation and image acquisition. At the time of
harvest, plant age, flowering status, height, dry weight, tiller number, tiller width, disease load,
and root dry weight were recorded. Plant roots were chilled on ice and transferred into 75% ethanol
the same day for long-term storage at 4°C. From each plant, a 0.25 g sample of fine roots was
randomly selected, and cleared and stained via a modified ink and vinegar protocol (Vierheilig &
Pich¢, 1998). For imaging, 20-30 root segments of ~1 cm were mounted in a U-shape on slides to

ensure alignment during stitching (Fig. 3.1A).

[ 5500 Sorghum Plants | File Naming with QR code |
| Auto Sample Detection l
0.25g fine roots 3

Coarse Focus Mapping

5% KOH overnight at room temp Fluar SX/O'Z.S:%%; ggjective lens
Alkaline H,0, for 30 mins %“"’;‘ e
5% Vinegar 5% Ink at 95 °C nd: -79 pm
Range: 616.39 pm
¢ Step size: 24.90 pm
20-30 1cm root segments +
Mounted in U-shape Fine Focus Mapping
Fixed in PVLG Plan-Apochromat 10x/0.45 M27
Center: coarse focus
¢ Range: 250.00 pm
ZEISS AxioScan 7 Step size: 24.90 pm
Axiocam 705¢ v
High Speed Scanning
Plan-Apochromat 10x/0.45 M27
Whole Slide Scanning Images (WSIs) Resolution: 2560 x 1920
CZI File Format Effective pixel size: 0.347 pm

¢ v

Real-time Stitching
| 15 Terabytes of Multi-Gigapixel WSIs JpegXR Lossless Compression

Figure 3.2 A demonstration of the sample processing and image acquisition workflow. The
modified ink and vinegar protocol and microscope settings were summarized.

3.2.2 Image Acquisition

A ZEISS AxioScan 7 microscope, equipped with an Axiocam 705 color CMOS camera,
was used to scan up to 100 slides per run. The microscope automatically identified QR codes for
file naming and followed structured image acquisition steps optimized for MycorrhiSEE root

samples (Fig. 3.2). After automatic sample detection, adaptive coarse and fine focus mapping were
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applied to maximize contrast across sample regions. Focus points were evenly distributed across
the sample area based on size (mm?). Coarse focusing, performed with a Fluar 5x/0.25 M27
objective lens, covered a 616.39 pm range with a 24.90 um step size. Fine focusing refined the
depth within a 250 um range centered on the coarse focus and used a 3.84 um step size with a
Plan-Apochromat 10%/0.45 M27 objective lens. During the final scan, image frames were captured
at 2560 x 1920 pixel resolution 0.347 um effective pixel size and stitched in real-time with 10%
overlaps, producing WSIs with JpegXR lossless compression. WSIs and metadata were exported
in ZEISS CZI format to ensure spatial integrity and data fidelity. The acquisition settings are
reproducible by loading the scan profile saved in ZEISS csprof format.
3.2.3 Image Annotations and Quality Assessment

The resulting MycorrhiSEE dataset consists of 15 Tb of WSIs of fine root segments. To
assess image quality, we randomly sampled 10,000 WSIs across 10 bootstraps, categorizing them
as Excellent, Moderate, or Bad based on U-shape integrity, orientation, root branching, and clarity.
The average quality distribution across bootstraps was 44.91% (£5.55) Excellent, 50.09% (£5.35)
Moderate, and 5.80% (£1.25) Bad. For detailed quality assessment, a subset of 1,780 WSIs were
evaluated for extra image quality factors, including U-shape deformity, dirtiness, opacity, and

blurriness, and assigned severity scores on a scale of 1 to 7, where higher scores indicated lower
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Figure 3.3 The histogram illustrates the quality score distribution of 1,780 WSIs. The scores,
ranging from 1 (highest quality) to 7 (lowest quality). Scores of 2 and 3 dominate the distribution,
with over 500 images in each category. Few WSIs reached the poorest quality categories (6 or 7),
suggesting high image quality of the overall dataset.
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image quality. The analysis revealed that the majority of WSIs fell within the higher quality range
(Fig. 3.3). Furthermore, we selected high quality image tiles (701x701) with 75% or greater root
coverage and created a balanced classification dataset consisting of 1,500 colonized and 1,500
non-colonized tiles.
3.3 Spline-guided Tiling Algorithm

\To convert WSIs to direct inputs for deep learning-based computer vision algorithms, we
developed a spline-guided tiling algorithm to remove blank backgrounds and generate high root
coverage tiles of desired dimensions (S. Zhang, W. Lantz, et al., 2024). We utilized the Otsu's
thresholding (Otsu, 1979) to isolate the significant root contours, selecting the largest to convert
into a list of points. A quadratic polynomial was fitted to the points. The second derivative of the
polynomial was computed to determine the concavity of the root segment. WSIs were rotated so
that all root segments were convex. To satiate the injective condition of spline interpolation on a

fixed coordinate frame, the smallest y value was selected for a multivalued x. Then, the unique

shapes of contours were represented by a piecewise cubic function with six evenly distributed
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Figure 3.4 Demonstration of our spline-based method vs. standard sliding window method. Red
spline guides the positioning of the colorful patches to trace the shape of the root segment. The
white gridline divides the entire image into equal sized patches.
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internal nodes (De Boor, 2001). We ensured a smooth interpolation by applying two continuous
derivatives at each knot. Our algorithm computes uniformly spaced anchor points along the cubic
spline, based on estimated arc length using the composite trapezoidal rule. The orientation and
vertices of the patches were computed using the tangent and normal vectors at the anchor points, to
position patches along the spline's curvature (Fig. 3.4).

The robustness of the algorithm was tested with 1000 WSIs bootstrapped 8 times. Four
operators independently categorized WSIs into

Excellent, Moderate, or Bad based on U-shape

©

integrity, orientation, root branching, and clarity.

Excellent images exhibited a complete, correctly

log10 (Residual Sum of Squares)
&) ~

oriented U-shape; Moderate images allowed for

Excellent Moderate Bad

broken U-shapes and minor imperfections; Bad
images included misshapen or highly branched
roots and empty or out-of-focus images. Across

bootstraps, the image quality distribution

log10 (Average Third Derivative)
|
4

Excellent Moderate Bad

averaged 44.91 (£5.55)%, 50.09 (£5.35)% and

5.80 (£1.25)% for Excellent, Moderate, and Bad,

7.5

respectively. Our performance metrics for fit, -

Curvature

roughness, and irregularity—residual sum of -

squares, third derivative average, and 00

Excellent Moderate Bad
Figure 3.5 In violin plots, A) Residual sum of
square of spline on logl0 scale; B) Average
third derivatives of spline on logl0 scale; C)
Curvature of spline

curvature— were stable across quality categories

(Fig. 3.5).
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For 1000 bootstrap WSIs, we categorized the resulting 701 x 701 pixel image tiles by root
coverage. Approximately 21.1% (8,879 images) had 75—-100% root coverage, while the remaining
tiles were distributed across 50-75% (9,898 images), 25-50% (6,764 images), and less than 25%
root coverage (16,584 images). This distribution revealed underlying taxnomy groups within
image tiles by root coverage.

3.4 Conclusion

This annotated dataset serves as a foundation for developing deep learning models for
quantifying AMF colonization and evaluating root image quality. The MycorrhiSEE dataset will
continue to expand in the coming years as root samples from ongoing and future experiments are
imaged and added to the collection. This growth will further enhance the dataset’s diversity and
utility for AMF research.

Additionally, we present a robust algorithm for generating patches from WSIs as DL inputs.
To showcase its efficiency, we aim to compare it to the standard sliding-window method in
producing informative patches. Enhancements to patch quality may involve analyzing the area of
overlap with root segments and using local histogram equalization to improve tile image quality.
We anticipate the broad applicability of our algorithm, extending to roots taken under contexts
beyond mycorrhizal colonization research and analogous structures, such as roads, cracks, and
blood vessels, in DL research.

Meanwhile, we are actively developing deep learning-based tools for more comprehensive
image quality assessment, enabling finer categorization and filtering of WSIs based on multiple
quality metrics. These tools will support more accurate and scalable analyses, maximizing the

dataset’s potential for advancing big data-driven solutions for image-based AMF quantification.
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3.5 Data Availability
The dataset and annotations are available upon request. The spline based tiling algorithm
is available at https://github.com/Arnold-Lab. The experiment metadata associated with the WSIs

will be disclosed after the experimental results are published.
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CHAPTER
4
HIGH-THROUGHPUT QUANTIFICATION OF ARBUSCULAR MYCORRHIZAL FUNGI
COLONIZATION USING SPLINE-GUIDED TILING AND CROSS-DOMAIN TRANSFER

LEARNING WITH WHOLE-SLIDE IMAGES!

Zhang, S., T. Bourlai and J. Arnold. 2025. To be submitted to /[EEE Access.
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Abstract

Quantifying arbuscular mycorrhizal fungi (AMF) colonization in plant roots through
microscopy imaging poses significant challenges due to labor-intensive processes, human biases,
and limited throughput. To address these challenges, we introduce an integrated deep learning
pipeline with three key innovations. First, we developed an enhanced spline-guided tiling
algorithm along with novel quality metrics to evaluate its effectiveness, demonstrating robust
performance across two distinct datasets: MycorrhiSEE and AMFinder. Second, we proposed a
two-step convolutional neural network (CNN) classification approach to quantify AMF
colonization by counting colonized tiles within whole-slide images (WSIs). This stratified
classification process simplifies training by initially removing easily identifiable background tiles
using a ResNet50-based classifier, achieving an accuracy of 99.7%, and subsequently classifying
tiles into colonized and non-colonized root regions. Third, we conducted comprehensive
experiments evaluating the within- and cross-domain performance of various pretrained CNN
architectures with differing depths, widths, and computational efficiencies. Our findings identify
DenseNet and ResNet50 as the most suitable architectures, consistently outperforming baseline
models and achieving accuracies exceeding 98%. Collectively, these innovations facilitate scalable,
high-throughput, and accurate AMF colonization quantification, significantly advancing precision
agriculture and ecological research by overcoming previous computational and generalization

limitations.
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4.1 Introduction

Precision agriculture enhances crop productivity and sustainability by tailoring agricultural
practices to specific land conditions (Ayoub Shaikh et al., 2022). One promising but underutilized
approach involves manipulating plant microbiomes to improve crop performance and resilience
(Pace et al., 2025). Among microbial symbionts, arbuscular mycorrhizal fungi (AMF) play a
crucial role in plant root systems, enhancing nutrient uptake, suppressing disease, and increasing
stress tolerance, particularly in arid and nutrient-poor soils (Kakouridis et al., 2022; M. J. Pozo &
C. Azcon-Aguilar, 2007; J. M. Ruiz-Lozano et al., 2012). Found in nearly all crops and soil types,
AMEF contribute to agricultural sustainability by improving soil structure and reducing greenhouse
gas emissions (Field et al., 2012b; Hawkins et al., 2023; Wilson et al., 2009).

The global market for mycorrhizae-based biofertilizers, including AMF, is projected to
grow from USD 1.29 billion in 2025 to USD 2.05 billion in 2030, doubling in five years
(Intelligence, 2024). Despite this growth, there are no standardized guidelines for integrating AMF
inoculations with conventional agricultural practices to maximize their benefits for plant and soil
health (Rillig et al., 2019). The beneficial effects of mycorrhizal symbiosis are highly context
dependent (Johnson et al., 1997b; Koch et al., 2017; Yang et al., 2017). The integration of
knowledge on AMF symbiosis across diverse crops, accessions, and management practices
remains challenging due to the absence of consistent and objective measures of AMF colonization,
hindering cross-study comparisons and data integration (Antunes et al., 2025).

Quantifying AMF colonization in field-grown plants presents significant challenges due to
the limitations of traditional imaging methods (McGonigle et al., 1990a; Trouvelot, 1986). These
manual techniques are labor-intensive and prone to human bias (Fiizy et al., 2015; Kokkoris et al.,

2019). Advances in high-throughput imaging and deep learning (DL) offer a transformative
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solution (Ferguson et al., 2021). Whole-slide scanning enables the rapid acquisition of large
imaging datasets (S. Zhang, T. Bourlai, et al., 2024), while DL algorithms can automate and
enhance AMF identification and quantification (Evangelisti et al., 2021b; Shufan Zhang et al.,
2024).

However, applying deep neural networks to whole-slide images (WSIs) for AMF
quantification remains a non-trivial task. WSIs are massive multi-gigapixel images where fungal
colonization is sparse, requiring computationally efficient strategies to extract relevant features
(Kong & Henao, 2022). Directly processing WSIs is infeasible due to GPU memory constraints,
while excessive downscaling compromises spatial details critical for accurate analysis.
Additionally, variability in imaging systems, sample preparation, magnification, sensor resolution,
and staining techniques (e.g., differences between AMFinder and MycorrhiSEE datasets) leads to
domain shifts, reducing model generalizability (Evangelisti et al., 2021b; S. Zhang, T. Bourlai, et
al., 2024). Annotation inconsistency and imbalances further hinder the extraction of robust features
across datasets.

To address these challenges, we present an integrated pipeline combining an enhanced
spline-guided tiling algorithm (S. Zhang, W. Lantz, et al., 2024), a two-step classification approach,
and cross-domain training with ImageNet-pretrained models to quantify AMF colonization in plant
root WSIs. Our improvements to the spline-guided tiling algorithm include new quality metrics
and modifications to enhance robustness across two whole slide imaging systems (Zeiss vs
Keyence). This algorithm efficiently partitions WSIs into biologically relevant regions, excluding

extraneous background to optimize computational resources.
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Spline-guided Tiling Algorithm with Improvements
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Figure 4.1 A) Workflow of proposed approach using an enhanced spline-guided tiling algorithm
with improvements 1-4 to generate input tiles from root WSIs, a data processing step to filter out
low quality tiles with low root coverage, and two classifiers to count AM colonized tiles.

70



D

.

LR
e

Tile Images Tile Images

Non-background Background Non-background Background

>———-———-———-———-———-———-———-———-———-———-——_’\

— o m  m mm mn e e mmm M e e Mmm M e e Mmm mmm e M Mmm M e Mmm Mmm M e Mmm Mmm M e Mmm Mmm M e Mmm M M e Rm e e
o o e e e e e e e e R M e e mmm M e e mmm M e e R M e M M e e mmm M e e mmm M e e e e - O

/7 \

Figure 4.1 B) Examples of AMFinder and MycorrhiSEE images in the proposed workflow
demonstrated in Fig. 4.1A.
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The two-step classification first employs a ResNet50-based classifier to filter out
background tiles (Background Classifier), followed by fine-tuned deep convolutional neural
networks (CNNs) to distinguish colonized (M+) and non-colonized (M-) root regions
(Colonization Classifier). We evaluate a diverse set of ImageNet-pretrained architectures,
including shallow and deep networks optimized for parameter propagation and training efficiency
(Fig. 4.1A).

Our approach demonstrates that integrating whole-slide imaging with deep learning
achieves high classification accuracy and balanced performance, providing a scalable, high-
throughput tool for AMF quantification. Our findings highlight the importance of transfer learning
and cross-domain training for robust mycorrhizal colonization classification across diverse
imaging conditions. By systematically evaluating pretrained deep learning architectures, we
provide critical insights into optimal model design for AMF quantification. These advancements
enhance the precision and efficiency of AMF colonization analysis, supporting the broader
application of high-throughput phenotyping in plant-microbe interaction research.

4.2 Related Work
4.2.1 Microscopy-Based AMF Characterization

Microscopy imaging has played a fundamental role in the study of arbuscular mycorrhizal
fungi (AMF), facilitating research on their morphology, symbiosis, and ecological functions. Early
AMEF studies in the 1900s relied on staining techniques such as trypan blue (Phillips & Hayman,
1970) and the ink-and-vinegar method (Vierheilig et al., 1998) to visualize fungal structures,
enabling detailed characterization of hyphae, appressoria, arbuscules, vesicles, and spores across
species and genera using brightfield and dissection microscopes (Dodd et al., 2000; Friese & Allen,

1991; Smith & Smith, 1997b; Smith & Read, 1997). Metabolic stains indicate nutrient exchange
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between plant host and AMF (Boddington & Dodd, 1998, 1999; Vosatka & Dodd, 1998; Wanxiao
Wang et al., 2017).

By the 2000s, microscopy remained important for measuring AMF colonization across a
variety of plant genotypes and environmental conditions (Baon et al., 1993; Cockerton et al., 2020;
De Vita et al., 2018a; Ellouze et al., 2015; Hetrick et al., 1992; Johnson et al., 2022; Kaeppler et
al., 2000; M. L. Pawlowski et al., 2020; Plouznikoff et al., 2019; Sawers et al., 2017; Schultz et
al., 2010; Stahlhut et al., 2021; Taylor et al., 2015; S. J. Watts-Williams et al., 2019). Fluorescence
and live-cell imaging further advanced AMF research, enabling real-time observation of signaling
pathways and metabolic exchanges in symbiosis (Ivanov & Harrison, 2014; Kobae & Hata, 2010;
Kokkoris et al., 2020; MacLean et al., 2017; Oyarte Galvez et al., 2025). More recently, genomic
advancements have been coupled with high-resolution imaging, linking genetic markers to AMF
colonization patterns, morphological characteristics, and functional responses (Martin & van der
Heijden, 2024; Séle et al., 2021).

Despite these advancements, scalability remains a major challenge, as conventional
microscopy techniques are labor-intensive and lack the throughput necessary for large-scale
studies. Standardized high throughput imaging techniques could further improve the accuracy and
reproducibility of quantitative estimates, allowing researchers to measure hyphal, vesicular, and
arbuscular root colonization more reliably, ultimately enhancing ecological models predicting
AMF functionality (Antunes et al., 2025; Kokkoris et al., 2019). The increasing demand for high-
throughput, automated imaging solutions has driven the adoption of deep learning-based computer

vision methods to enhance the efficiency of AMF quantification.
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4.2.2 Deep Learning for Image-Based Analysis

Convolutional Neural Networks (CNNs), a subset of deep learning (DL), have become the
dominant approach for image classification, object detection, and segmentation in various domains
(Dong et al., 2021; Noor & Ige, 2024; Younesi et al., 2024). A typical CNN architecture consists
of convolution layers, pooling layers, and fully connected layers. Convolution acts as powerful
feature extractors, enabling neural networks to learn spatial and hierarchical representations of
image data, including edges, textures, and shapes (Krizhevsky et al., 2017).

The modern evolution of CNNs can be contributed to increased GPU processing power
and the availability of large-scale labeled datasets such as ImageNet (Deng et al., 2009). Since
2012, CNN-based models have dominated the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), achieving human-level accuracy by 2015 with the introduction of ResNet
(He et al., 2016). However, CNNs rely on large labeled datasets and substantial training, limiting
their application in specialized domains where labeled data is scarce (Cheng et al., 2022; Iqra et
al., 2024).

To address these limitations, transfer learning has emerged as a promising solution (Raina
etal., 2007). By leveraging the pretrained CNNs trained on large datasets, transfer learning enables
the models to be fine-tuned to new tasks with fewer labeled examples (Yosinski et al., 2014;
Zhuang et al., 2019). This approach has been tested effective at fungal structure identification
(Krach et al., 2022; Krach et al., 2020) and across numerous agricultural applications (Hossen et
al., 2025), including plant phenotyping (Jiang & Li, 2020), pest detection (Chen et al., 2022),

disease identification (Nazir et al., 2023), and yield estimation (Khaki et al., 2021).
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4.2.3 CNNs for AMF Quantification

Efforts have been made to apply CNNs for automating imaging-based AMF quantification.
Evangelisti et al developed the AMFinder pipeline, a semi-automated deep learning-based method
that enables user-supervised validation of CNN-generated predictions (Evangelisti et al., 2021b).
AMFinder works on whole-slide scanning images (WSIs) of stained root samples and splits them
into smaller tiles for CNN classification. CNN1 distinguishes between colonized (M+), non-
colonized (M-), and background tiles. CNN2 further classifies M+ tiles by AM fungal structures.
Users can manually review and correct CNN predictions using AMFbrowser. AMFinder
demonstrated that CNNs provide a feasible solution for the automation of AMF quantification, but
it remains reliant on supervised training on a large volume of labeled data.

In another study, Mask R-CNN was trained for AMF segmentation using a transfer
learning-based approach (K. He et al., 2017; Shufan Zhang et al., 2024). This method reduced
labeling requirements, but imaging was done using traditional compound microscopy and
manually moving of the camera across slides, which limited scalability.

While these studies point to the potential of CNNs and transfer learning for AMF
quantification, challenges remain in developing scalable, high-throughput solutions capable of
handling WSIs, domain variability, and large-scale studies. The integration of whole-slide imaging,
CNN, and transfer learning presents a promising pathway toward automated, high-throughput
AMF quantification.

4.3 Methodology
4.3.1 Image Preprocessing
To ensure comparable physical coverage between the AMFinder and MycorrhiSEE images

(Fig. 1B), we calculated equivalent pixel regions for both imaging systems. The AMFinder WSIs
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were captured with a VHX-5000 microscope at 200x magnification using a 1/1.8-inch (7.2 mm)
CMOS sensor (1600 x 1200 resolution, 3.6 um sensor pixel size, 0.95 um actual pixel size) and
cropped to 256 x 256 pixel image tiles. To match the same physical area in the MycorrhiSEE
dataset, taken by the ZEISS Axioscan 7 microscope (Carl Zeiss Microscopy, LLC, Thornwood,
NY) at 10x magnification with an Axiocam 705 color camera (2464 x 2056 resolution, 3.45 pm
sensor pixel size, 0.347 um actual pixel size), a 701 x 701 pixel region was required.

For the initial arrangement of spline-guided patches in the MycorrhiSEE dataset, a patch
size of 1402 x 1402 pixels was used. These patches were further subdivided into four 701 x 701
tiles and resized to 256 % 256 pixels to match the dimensions of AMFinder image tiles.
4.3.2 Image Taxonomy

In analyzing the AMFinder and MycorrhiSEE image tiles, we observed substantial
variation in the amount of background pixels within each image, as demonstrated in Fig. 4.2. This
variability posed significant challenges for consistent colonization labeling, as images with
differing root area may represent fundamentally different taxonomic groups by root area or by

visual characteristics, including colonization intensity. Failure to account for this underlying image
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Figure 4.2 Demonstration of how variable the amount of root area per image is using AMFinder
tile images. Labels are published in the AMFinder paper. Consistent colonization labeling cannot
be achieved without accounting for image taxonomy related to the amount of background pixel
per tile.
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taxonomy could lead to imbalanced class representations at deeper levels, despite efforts to
maintain a balanced dataset overall. To address this issue, we refined our training and testing
datasets for AMF colonization classification by selecting only images with 75% or more visible
root area (Fig. 4.1B).

Upon grouping the images by root area, we found that only 15.0% (2040 images) of
AMFinder tiles contained 75-100% root coverage, while a larger portion fell into lower root area
categories: 2714 images (50-75%), 3876 images (25-50%), and 4910 images (less than 25%). In
the MycorrhiSEE dataset, 21.1% (8879 images) met the 75-100% root coverage threshold, with
the remaining images distributed across 50-75% (9898 images), 25-50% (6764 images), and less
than 25% root area (16584 images). These distributions highlight the significant presence of low
root area images reinforces the importance of filtering based on root coverage to ensure a
consistent training base for accurate model learning and robust performance across varying image

taxonomies.

Table 4.1 Comparison of convolutional neural networks used. Convolution layers (conv). Fully
connected layers (fc). Residual block (res).

Network Year Input Size  Depth P(i::;;ll?::;;s Size Convolutional Layers
VGG16 2014  224x224x3 16 138 528 MB 13 conv, & 3 fc
ResNet50 2015 224%224x3 50 25.6 98 MB 1 conv, 16 bottleneck res, & 1 fc
DenseNet121 2017 224%224x3 121 8.0 33 MB 4 conv, & 4 dense blocks
DenseNet169 2017 224%224x3 169 14.3 57 MB 4 conv, & 4 dense blocks
DenseNet201 2017  224x224x3 201 20.0 80 MB 4 conv, & 4 dense blocks
MobileNetV2 2018 224%224x3 53 3.5 13 MB 1 conv, & 19 bottleneck res.
EfficientNetV2-B0 2021 224%224x3 24 7.1 29 MB 2 conv, & 11 Fused-MBConv blocks
EfficientNetV2-B1 2021  240%240x3 26 8.1 31 MB 2 conv, & 12 Fused-MBConv blocks
AMFinder CNN1 2022 126x126%3 11 1.4 5.4MB 8 conv, & 3 fc
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4.3.3 Dataset Preparation

For background classification, a tile was annotated as Background, if it had: 1) at least 75%
image area to be background, blank, bubble or debris, 2) no blurring, excellent root clearing and
fungal staining, and 3) less than 3 extraradical hyphae. The resulting dataset was made of 2000
Background and 2000 Non-background tiles with an equal representation of M+ and M- tiles from
AMFinder and MycorrhiSEE datasets (Fig. 4.1B).

For colonization classification, we annotated tiles from AMFinder and MycorrhiSEE
dataset using following criteria: 1) less than 25% background pixels, 2) no blurring, excellent root
clearing and fungal staining, and 3) at least 5 hyphal structures to be colonized (M+), otherwise
noncolonized (M-). The final dataset consisted of 1000 M+ and 787 M- tiles from AMFinder
dataset and 1000 M+ and 1000 M- tiles from the MycorrhiSEE dataset. The AMFinder root
samples were highly colonized, resulting in an insufficient number of M- tiles.

The datasets were divided into training, validation, and test sets using a 7:2:1 split. Tile
images were resized to 224x224x3 for model input, except for EfficientNetV2B1 which requires
an input size of 240x240x3 (Table 4.1). Model training utilized three datasets, AMFinder images,
MycorrhiSEE images, and a Combined dataset (AMFinder + MycorrhiSEE). The training set size
was determined to ensure accuracy within £0.02 of 0.928, requiring a minimum of 641 images for
a 0.02 margin of error or 2,566 images for a 0.01 margin. Testing was conducted using three
corresponding test sets: AMFinder, MycorrhiSEE, and Combined, allowing for robust evaluations
within and across domains.

4.3.4 Pretrained ImageNet CNNs
Several ImageNet-pretrained models were evaluated for their ability to classify

Background, M+, and M- tile images: VGG16, ResNet50, DenseNetl21, DenseNetl69,
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DenseNet201, MobileNetV2, and EfficientNetV2 B0 and B1. AMFinder CNNI1 architecture
shares significant similarities with VGG16, featuring a sequential stack of 3x3 convolutional layers
followed by max-pooling and fully connected (fc) layers; however, AMFinder has only 1.4 million
parameters in its multiclass configuration, much lighter than VGG16’s 138 million parameters.
ResNet50, known for its bottleneck residual blocks (res), helps mitigate overfitting. MobileNetV2
and EfficientNetV2 prioritize efficiency through depthwise separable convolutions and compound
scaling, while DenseNet models leverage dense connections to promote feature reuse and efficient
parameter utilization (Table 4.1). This range of architectures allowed us to compare shallow and

deep networks, as well as models optimized for different computational trade-offs.

Excellent Moderate Bad

Figure 4.3 Examples of ZEISS AxioScan 7 WSIs of root segments. Images were labeled as
excellent, moderate, bad based on root segment conformation and image quality. Excellent:
complete curve with changing concavity. Moderate: disjoint or with minor imperfections
(curving back, branching, air bubbles) Bad: misshapen or highly branched roots and empty or
out-of-focus images. (see Methods for detailed description of labeling standards). White pixels
are paddings for the background area around samples detected by the microscope. Images were
resized for display.
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4.3.5 Model Training

In this study, we adopted a two-step approach to classify tiles from root WSIs as M+, M-,
or Background. First, we trained a Background Classifier. An ImageNet pretrained ResNet50 was
trained to filter out Background tiles. A second Colonization Classifier was used to classify M+
and M- tiles from images predicted as Non-background. Several ImageNet pretrained models were
finetuned for colonization classification task (Fig. 4.1A).

All models were trained using a batch size of 64 with the fully connected and the
classification layers removed, and the backbone weights frozen. The optimization process
employed Binary Cross-Entropy loss function and Adam optimizer with an initial learning rate
(LR) of 0.0001 and a maximum of 50 epochs.

To enhance model convergence and prevent overfitting, two adaptive training strategies
were implemented. The learning rate was dynamically reduced by a factor of 0.5 when the
validation loss plateaued for 3 consecutive epochs, with a minimum allowable learning rate of
1x10°%. Additionally, early stopping was triggered if no improvement in validation loss was

observed for 5 consecutive epochs.

Overlap = 8.423% Coverage = 98.891%

Figure 4.4 Visualization of patch overlap and root coverage using the spline-guided tiling
algorithm on ZEISS AxioScan 7 images. The left panel illustrates the overlap between neighboring
patches, which is 8.423%. The right panel shows the root coverage achieved, amounting to
98.891%. These metrics highlight the algorithm's ability to effectively cover the region of interest
while managing overlap.
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4.4.1 Experiment 1: Evaluation of the Improved Spline-Guided Tiling Algorithm on
MycorrhiSEE Dataset
To evaluate the effectiveness of the original spline-guided tiling algorithm in generating
patches, it was applied to 1005 MycorrhiSEE WSIs distributed evenly across quality categories
(Excellent, Moderate, Bad) using patch size 1024x1024. The MycorrhiSEE dataset consists of
field grown Sorghum bicolor root WSIs imaged using ZEISS AxioScan 7 at 10x magnification.
Image acquisition and quality categories were defined in previous publications (S. Zhang, T.
Bourlai, et al., 2024) and summarized in Fig. 4.3. Key algorithm performance metrics included
(Fig. 4.4):
e Root Coverage: Percentage of root area covered by patches.
o Patch Overlap: Degree of overlap between adjacent patches.
o Patch Redundancy: The amount of background patches out of all patches.
The original algorithm achieved average root coverage of 84.6% (+11.8%), 80.0% (£14.2%), and
72.3% (£19.4%) for Excellent, Moderate, and Bad WSIs (Fig. 2), respectively. Patch overlap
across varying quality remained around 4% (3.8% Excellent, 3.70% Moderate, 4.40% Bad). It was
estimated that over 90% WSIs in the MycorrhiSEE dataset had Excellent and Moderate quality.
There was a significant data loss due to low patch coverage. To minimize data loss, four
incremental improvements were implemented:
o Improvement 1: Orientation Standardization
To enhance spline interpolation, we fitted a polynomial to root contours, used the second
derivative to estimate concavity, and rotated each image to achieve uniform orientation.

o Improvement 2: Patch Recentering
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The original algorithm’s injective condition retained only the highest y-value among points
sharing the same x-value, causing the spline to drift from the root midline. Patches were
recentered along normal vectors to realign with the midline. The first two adjustments
improved overall root coverage by 5.2% (p < 0.001) (Table 4.2 Contrast 2-0).

o Improvement 3: Handling Disjoint Root Segments
Disjoint root segments in Moderate quality WSIs, partially recognized by the original
algorithm, were addressed by splitting images at polynomial vertices and extracting the
largest root contour from each half.

o Improvement 4: Coordinate Frame Transformation
Half-images were mirrored and rotated 45 degrees. This transformation resolved issues to

assign patches to root sections with extreme curvature within a fixed coordinate frame.

Table 4.2 Tukey Post hoc test of root coverage and patch overlap between spline guided tiling
algorithm versions. Contrast represents comparisons between two algorithm versions. Version 0:
original algorithm, Version 1-4: improved algorithms with improvement 1 to 4 sequentially
implemented.

Root Coverage

Excellent Moderate Bad
Contrast Estimate p-value Estimate p-value Estimate p-value
1-0 -0.017 0.948 -0.006 1.000 -0.011 0.999
2-1 0.057 <0.001 0.064 <0.001 0.068 <0.001
3-2 0.011 0.999 0.018 0.922 0.027 0.379
4-3 0.040 0.012 0.046 0.001 0.053 <0.001
2-0 0.040 0.012 0.059 <0.001 0.057 <0.001
3-0 0.051 <0.001 0.077 <0.001 0.084 <0.001
4-0 0.091 <0.001 0.123 <0.001 0.138 <0.001

Patch Overlap

Excellent Moderate Bad
Contrast Estimate p-value Estimate p-value Estimate p-value
1-0 -0.007 0.350 -0.004 0.994 -0.006 0.698
2-1 0.031 <0.001 0.026 <0.001 0.027 <0.001
3-2 0.005 0.838 0.011 0.004 0.014 <0.001
4-3 -0.001 1.000 -0.003 0.998 0.001 1.000
2-0 0.023 <0.001 0.023 <0.001 0.021 <0.001
3-0 0.029 <0.001 0.034 <0.001 0.036 <0.001
4-0 0.028 <0.001 0.031 <0.001 0.037 <0.001
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The enhancements collectively improved root coverage by 9.1%, 12.3%, and 13.8% to 93.7%,

92.3% and 86.1% for Excellent, Moderate, and Bad images, respectively, while patch overlap

increased modestly from 3.95% to 7.11%.

4.4.2 Experiment 2: Application of the Spline-Guided Tiling Algorithm to AMFinder Dataset

The algorithm was evaluated on AMFinder WSIs using two tile sizes (512x512 and

256%256) to test its adaptability to different imaging systems and influence of patch size selection
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Table 4.3 Statistic properties of root coverage and patch overlap for two tile sizes.

Patch size coverage overlap

mean sd mean sd
256 x 256 0.751 0.192 0.0312 0.0405
512x 512 0.907 0.124 0.0358 0.0502




was 90.7%, comparable to the 90.8% coverage across quality categories for MycorrhiSEE dataset
(Fig. 4.5), demonstrating robust performance even on extensively entangled roots in the AMFinder
WSIs. Comparison to the regular gridline-based tiling method demonstrated the algorithm’s
superior efficiency in reducing patch redundancy. The number of background tiles (256x256 pixels)
decreased from 146,769 to 9,499 (human confirmed). Tile size 256%256 was used to generate tiles
from AMFinder WSIs for the classification experiments below.
4.4.3 Experiment 3: Evaluate Proposed Two-Step Classification Approach

A ResNet50-based CNN was first trained to filter out Background tiles (Background
Classifier), achieving an accuracy of 0.997. Subsequently, several ImageNet-pretrained models—
VGG16, ResNet50, MobileNetV2, DenseNetl2l, DenseNetl69, DenseNet201, and
EfficientNetV2— were trained to perform classification of colonized (M+) and non-colonized (M-)
image tiles (Colonization Classifiers). A dataset combination experiment was conducted to
evaluate the performance of the Colonization Classifiers against AMFinder CNN1 models for their
ability to correctly identify AMF colonized tiles (M+ tiles).

The AMFinder and MycorrhiSEE datasets used in the experiment differ in imaging systems,
sample preparation, root maturity, fungal morphology, and background texture (Fig. 4.1B). These
variations offered a valuable scenario for evaluating domain dependency, model robustness, and
the efficiency of cross-domain learning. To fully explore these capabilities, the experiment
involved training the models on three distinct data configurations:

1. AMFinder-only: Training on the AMFinder dataset.

2. MycorrhiSEE-only: Training on the MycorrhiSEE dataset.

3. Combined dataset: Training on a heterogeneous dataset that merged AMFinder and

MycorrhiSEE images.
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The experimental design evaluated the models’ performance across three key scenarios:
1 Within-domain classification: Training and testing on the same dataset (e.g., AMFinder-
only).
2 Cross-domain generalization: Training on one dataset and testing on another (e.g.,
AMFinder-trained model tested on MycorrhiSEE images).
3 Domain adaptation: Training on the Combined dataset and testing across all test sets
(AMFinder, MycorrhiSEE, and Combined).
4.4.3.1 Within Domain Performances of Colonization Classifiers
Performance of AMFinder CNN1 Models
AMFinder CNN1 models were evaluated on tiles from the AMFinder dataset to establish
baseline performance. Despite its larger training set (AMFinder paper appendix), the model
demonstrated poor accuracy in multiple scenarios. Trained without augmentation, AMFinder
CNNI1v1 achieved only 53.3% overall accuracy on the AMFinder test set, with a pronounced bias
toward the noncolonized class (25% versus 88.75%) (Table 4.4), indicating limited generalization
even within the same dataset (Fig. 6A). While training with augmentation improved accuracy to
77.2%, the results of AMFinder CNN1v2 retained high misclassification rates for positive and
negative examples (Table 4). Class imbalance and inconsistent labeling during training could have
contributed to the poor performance of AMFinder CNN1 models. Visualization of original training
images from the AMFinder dataset revealed mis-labeled tiles (Fig. 4.2). More robust feature
extraction methods and training strategies are needed to reliably classify AMF colonization.
Performance of Pretrained Models
Within-domain evaluations revealed that the ImageNet-pretrained architectures

outperformed the baseline AMFinder CNN1 models. When trained and tested on the AMFinder
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dataset, the finetuned networks consistently achieved overall accuracies exceeding 98%, with
DenseNet169 and DenseNet201 reaching approximately 99.44% accuracy and exhibiting near-
perfect per-class performance (Fig. 4.6A). When trained and tested on MycorrhiSEE dataset,
architectures such as ResNet50 and DenseNet variants achieved overall accuracies in the range of
93-97.5% with balanced per-class accuracies (Table 4.4). These findings underscore the efficacy
of leveraging ImageNet pretraining to enhance model classification performance within specific
domains.
4.4.3.2 Cross Domain Performances of Single Dataset Models

The cross-domain evaluations revealed a significant impact of domain shift on model
performance (comparing Fig. 4.6A and Fig. 4.6B). When models were trained on the AMFinder
dataset and tested on the MycorrhiSEE set, overall accuracies ranged from 54.5% to 69.5%, with
pronounced class imbalances (Table 4.5). For example, ResNet50 achieved an overall accuracy of
approximately 69.5% with a stark disparity between the colonized (40%) and noncolonized (99%)
classes (Table 4.5). Similar trends were observed for DenseNet121 and DenseNet201, where high
noncolonized accuracies were countered by very low colonized accuracies (30% and 9%,
respectively) (Table 4.5). In contrast, when the training was conducted on the MycorrhiSEE
dataset with subsequent testing on AMFinder, overall performance improved, with ResNet50 and
EfficientNetV2BO0 reaching 83.3% and 81.1% accuracy, respectively (Table 4.5). However, this
configuration also exhibited notable imbalances; several architectures, such as DenseNetl121,
DenseNet169, DenseNet201, and VGGI16, attained perfect or near-perfect accuracies for the
colonized class while substantially underperforming on the noncolonized class (with accuracies as
low as 19%41%) (Table 4.5). These findings underscore the challenges of cross-domain

generalization with single dataset training in AMF colonization classification. Notably, the
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baseline AMFinder CNN1 models continued to underperform in cross-domain settings (Fig. 4.6B),
with both variants exhibiting a pronounced bias (Table 4.5).
4.4.3.3 Domain Adaptation of Combined Dataset Models

Building on the previously discussed cross-domain performance, training with the diverse
combined dataset of AMFinder and MycorrhiSEE markedly improved generalization across
models (comparing Fig. 4.6C to Fig. 4.6B). In this configuration, the networks not only achieved
near-perfect performance when tested on the AMFinder dataset—with overall accuracies
exceeding 98% and balanced per-class accuracies—but also demonstrated substantial
enhancements on the MycorrhiSEE test set, where overall accuracies ranged from approximately
87% to 96.5% (Table 4.6). By integrating imaging conditions and colonization patterns from both
datasets during training, the models effectively mitigated the biases observed in the earlier cross-
domain experiments.

In addition, further evaluations on a combined test set provide additional insights into the
benefits of cross-domain learning. Models trained on the AMFinder dataset exhibited moderate
overall accuracies on the combined test set—ranging from approximately 74% (e.g., DenseNet201)
to 82% (e.g., ResNet50 and DenseNetl169) (Table 4.7). In contrast, networks trained on the
MycorrhiSEE dataset generally achieved higher overall accuracies on the combined test set (up to
91% with ResNet50), with consistently higher colonized accuracies (Table 4.7). Models trained
on MycorrhiSEE surpass those on AMFinder when tested on a combined dataset, indicating
MycorrhiSEE dataset's potential for domain generalization (Fig. 4.6D). These findings, in
conjunction with our earlier cross-domain evaluations, highlight that training on a single domain
does not sufficiently capture the variability inherent in heterogeneous imaging data, thereby

impairing the model's ability to generalize. Conversely, the enhanced performance observed with
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diverse training data suggests that integrating multiple datasets enables the models to learn more
robust, domain-invariant features, ultimately leading to improved and more balanced cross-domain
performance.

4.5 Conclusion

4.5.1 Overall Accuracy of Two-Classifier Approach

The proposed two-step classification pipeline (Background Classifier + Colonization
Classifier) exhibited consistently strong performance across the AMFinder, MycorrhiSEE, and
combined test sets. In the first step, the Background Classifier achieved near-perfect accuracy of
0.997 with ResNet50. In the second step, the Colonization Classifiers demonstrated excellent
results. DenseNet121 trained on combined data delivered 100% accuracy on the AMFinder test
set, while ResNet50 trained specifically on MycorrhiSEE showing the best overall accuracies of
0.975 on the MycorrhiSEE test data. These findings confirm that the proposed two-step approach
can reliably segregates background tiles and automate the analysis of mycorrhizal colonization.
4.5.2 Best Model Architecture for AMF Colonization Classification

The complete performance analysis indicates that modern deep convolutional architectures,
particularly DenseNet and ResNet50 variants, markedly outperform the baseline AMFinder CNN1
models across both the AMFinder and MycorrhiSEE datasets. Additionally, EfficientNet
architectures, while competitive, did not consistently match the performance of DenseNet or
ResNet50 models, likely due to differences in reduced network depth and design trade-offs
between model complexity and parameter efficiency. These findings imply that, for the AMF
colonization classification problem, architectural depth and connectivity—whether through dense

or residual linkages—play critical roles in achieving high accuracy and balanced class predictions.
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The comprehensive evaluation of deep convolutional architectures for AMF colonization
classification demonstrates that ImageNet-pretrained networks significantly outperform the
baseline AMFinder CNN1 models across both within-domain and cross-domain scenarios. Cross-
domain analyses further revealed that models trained solely on a single domain suffered from
notable performance drops and class imbalances when exposed to external datasets. Cross-domain
training enabled the networks to learn domain-invariant features and achieve more balanced
performance across disparate test sets. These findings underscore the importance of incorporating
heterogeneous data during model training to enhance generalization in real-world applications of
DL in quantification of AMF.

In summary, the results suggest that future customized architectures for AMF colonization
classification should prioritize robust feature propagation and multi-scale representation through
enhanced depth and connectivity. The integration of diverse training datasets is also essential to
mitigate domain shift and ensure consistent, high-accuracy performance in varied imaging
conditions. These insights provide a clear direction for further research and development of

tailored deep learning models to support precise and reliable AMF colonization diagnostics.
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Table 4.4. Within Domain Classification
Accuracy for AMF Colonization of Single

Dataset Models
M+ M-
Network Test Acc. Ace. Ace.
AMFinder .
CNN1v1 AMFinder  0.533  0.250  0.888
AMFinder g
CNN1v2 AMFinder  0.772 1 0.488
AMFind 0.983  0.988  0.980
VGG16 1n. er 9 9 9
MycorthiSEE  0.940  0.960  0.920
AMFinder 0978 0975  0.980
ResNet50 .
MycorrhiSEE ~ 0.975  0.980  0.970
AMFi . .
DenseNet121 1n.der 0.989  0.975 1
MycorthiSEE  0.955  0.950  0.960
AMFi 0. !
DenseNet169 1n§er 994 1 0.990
MycorrhiSEE ~ 0.965 1 0.930
AMFi 0. .
DenseNet201 1n.der 994  0.988 1
MycorthiSEE ~ 0.955  0.9900  0.920
AMFi , ! !
ST m.der 0.978  0.963  0.990
MycorrhiSEE  0.930 0930  0.930
EfficientNet AMFinder 0972 0975  0.970
V2-B0 MycorrhiSEE  0.935  0.970  0.900
EfficientNet AMFinder 0967 0975  0.960
V2-B1 MycorrhiSEE  0.940 0950  0.930

Table 4.6. Classification Accuracy for AMF
Colonization of Combined Dataset Models

Table 4.5. Cross-Domain Classification
Accuracy for AMF Colonization of Single
Dataset Models
M+ M-
Network Test Acc. Ace. Ace.
AMPFinder .
CNN1v1 MycorthiSEE ~ 0.500  0.0400  0.960
AMPFinder .
CNN1v2 MycorrhiSEE ~ 0.630  0.8800  0.380
AMFind 0.672 1 0.410
VGG16 et 7
MycorthiSEE  0.625  0.530  0.720
AMFinder  0.833  0.988  0.710
ResNet50 .
MycorrhiSEE ~ 0.695 0400  0.990
AMFinder  0.744  0.988  0.550
DenseNet121 .
MycorthiSEE  0.645  0.300  0.990
AMFinder  0.661  0.963  0.420
DenseNet169 .
MycorrhiSEE  0.690 0480  0.900
AMFi 0.550 1 0.190
DenseNet201 inder ?
MycorrhiSEE ~ 0.545  0.090 1
. AMFinder  0.772  0.550  0.950
MobileNetV2 .
MycorrhiSEE  0.685 0470  0.900
EfficientNet AMFinder  0.811  0.713  0.890
V2-B0 MycorthiSEE  0.695  0.500  0.890
EfficientNet AMFinder  0.744  0.750  0.740
V2-B1 MycorrhiSEE  0.645 0720  0.570

Table 4.7. Classification Accuracy for AMF
Colonization of Single Dataset Models on
Combined Test Set

M+ M- Network Train Acc. M+ M-

Network Test Acc. Ace. Ace. Acc. Acc.
VGG16 AMFinder 0989 0988  0.990 VGG16 AMFinder  0.783  0.733  0.833
MycorthiSEE  0.944 0917  0.972 MycorrhiSEE  0.836  0.978  0.694
ResNet50 AMFinder 0989 0988  0.990 ResNet50 AMFinder  0.822  0.656  0.989
MycorrhiSEE  0.975  0.983  0.967 MycorrhiSEE  0.914  0.983  0.844
DenseNet121 AMFinder 1 1 1 DenseNet121 AMFinder 0.797 0.600 0.994
MycorrhiSEE  0.972  0.967  0.978 MycorrhiSEE  0.869  0.967  0.772
DenseNet169 ~ AMFinder 0972 0988 0960  DenseNetl69  AMFinder  0.825 0711  0.939
MycorrhiSEE  0.950  0.972  0.928 MycorrhiSEE  0.844  0.983  0.706

DenseNet201 ~ AMFinder  0.994 1 0.990  DenseNet201 ~ AMFinder  0.744  0.489 1
MycorrhiSEE  0.969  0.989  0.950 MycorrhiSEE  0.797  0.994  0.600
MobileNetV2 ~ AMFinder 0972 0963 0980  MobileNetV2 ~ AMFinder  0.814  0.689  0.939
MycorrhiSEE 0917  0.883  0.950 MycorrhiSEE  0.850  0.761  0.939
EfficientNet ~ AMFinder 0983  0.975  0.990 EfficientNet ~ AMFinder  0.817  0.711  0.922
V2-B0 MycorrhiSEE  0.947 0933 0.961 V2-B0 MycorrhiSEE ~ 0.875  0.856  0.894
EfficientNet ~ AMFinder 0972  0.988  0.960 EfficientNet ~ AMFinder  0.789  0.833  0.744
V2-B1 MycorthiSEE  0.956  0.967  0.944 V2-B1 MycorthiSEE  0.850  0.861  0.839
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In-Domain Performance of Single Dataset Models
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Figure 4.6A. Single dataset models are
trained with either AMFinder or
MycorrhiSEE dataset and tested with
images from the same dataset to evaluate
their in-domain performance. Blue lines:
Models trained and tested with AMFinder
images. Yellow lines: Models trained and
tested with MycorrhiSEE images. Purple
lines: Baseline performance of AMFinder
classifiers CNNlvl and CNNI1v2 on
AMFinder images.
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Cross-Domain Performance of Single Dataset Models
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Figure 4.6B. Single dataset models are
trained with either AMFinder or
MycorrhiSEE  dataset tested with
images from the same dataset to
evaluate their in-domain performances.
Blue lines: Models trained with
MycorrhiSEE images and tested on
AMFinder images. Yellow lines:
Models trained with AMFinder images
and tested on MycorrhiSEE images.
Purple lines: Baseline performance of
AMFinder classifiers CNNIlvl and
CNN1v2 on MycorrhiSEE images.



Performance of Combined Dataset Models
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Figure 4.6C. Combined dataset models
are trained with AMFinder and
MycorrhiSEE  images. Blue lines:
Models tested on AMFinder images.
Yellow lines: Models tested on
MycorrhiSEE images. Comparing Fig.
4.6C to 6B, we can conclude that
combined dataset models generalize
better than single dataset models.

Models Tested on Combined Test Set
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Figure 4.6D. Single and combined dataset
models are tested on the combined test set.
Teal lines: Combined models. Yellow lines:
MycorrhiSEE models. Blue lines: AMFinder
models. Purple lines: Baseline AMFinder
classifiers CNN1v1 and CNN1v2. Pretrained
models significantly outperform baseline
AMFinder classifiers. Model performance
increases when trained with diverse images
with the combined models achieving the best
results.
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CHAPTER
5
LIMITATIONS AND FUTURE DIRECTIONS
5.1 Dataset Limitations
Limitation 1: Imbalanced Representation of AM Fungal Structures (Chapter 2)

In Chapter 2, one critical limitation was the imbalanced representation of AM fungal
structures within the dataset used for training and testing the Mask R-CNN model. Due to limited
personnel available at the beginning of the project, we only managed to image and annotate 165
root samples over a year, with the least represented fungal structure class having only 135
examples. Such imbalance likely compromised the model's ability to learn effectively across all
classes. Although we used loss functions designed to mitigate class imbalance, these adjustments
alone might not have fully compensated for the uneven representation.

As an immediate solution, we supplemented our training data by annotating additional root
images from a publicly available dataset, AMFinder. In hindsight, a better approach would have
been to prioritize class balance, randomly sampling annotations to match the number of examples
of the least represented class. An iterative strategy could then be employed, progressively adding
more annotations only if initial model training results were inadequate. Additionally, we could
have explored image augmentation techniques specifically targeting underrepresented classes

before merging our in-house data with the external AMFinder images.
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Limitation 2: Unknown Variability in Image Quality Across the MycorrhiSEE Dataset
(Chapter 3)

Another significant limitation discussed in Chapter 3 was the unknown variability in image
quality across the extensive MycorrhiSEE dataset. In contrast to Chapter 2, which involved a
carefully curated dataset of 10,944 manually collected images (2380x1740 pixels) from 57 root
samples, the MycorrhiSEE dataset was composed of gigapixel WSIs from approximately 5,500
root samples collected over five years and multiple experiments. As datasets scale in size,
maintaining uniform root clearing and staining quality becomes inherently challenging, inevitably
leading to variability in image quality (S. Zhang, T. Bourlai, et al., 2024).

We are implementing an imaging profile to ensure that the robotic microscope accounts for
varying sample quality and searches for optimal imaging depth for each root segment. This
adaptive control has its limits. Platform variability is likely to be an issue as well. We currently
have research technicians reviewing all completed WSIs when imaging finished and redo samples
with blurry images. The variability in sample quality, however, cannot be evaluated at the time of
imaging. The unknown distribution of these quality categories complicated efforts to assemble a
truly representative training dataset, potentially impacting the accuracy and generalizability of
deep learning models.

To address these limitations, we are currently developing machine learning and deep
learning models capable of automatically detecting and categorizing low-quality images. With
these tools, we aim either to filter out low-quality images or to strategically balance the
representation of each quality category in both training and testing sets, thereby improving model
robustness and generalization. Image quality enhancement is also worth exploring to minimize

data loss. Another application of the image quality assessment ML and DL models is quality
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control on the root samples. By screening for poorly cleared or stained root samples, we could
identify problematic batches, repeat the sample preparation step, and improve image quality (Naus,
1975, 2015).

Limitation 3: Annotation Variability and Human Subjectivity (Chapters 2-4)

A consistent limitation across Chapters 2 to 4 was the inherent variability and subjectivity
of human annotations. Annotation errors, typically ranging from 5% to 10%, introduced
inconsistencies into the dataset. Recognizing this issue, we implemented strategies to mitigate
variability. First, we assigned annotation tasks to groups of two or three annotators, enabling cross-
checking and consensus-building. Additionally, before large-scale annotation, we conducted
practice rounds in which all annotators labeled the same several hundred images. Results from
these sessions were carefully reviewed and any discrepancies corrected, ensuring alignment among
annotators. Clearly documented labeling rules were circulated and periodically reinforced among
annotators throughout the annotation process. Furthermore, if inconsistencies were discovered
during model training and testing, labels were corrected promptly, and the affected models were
retrained. Despite these rigorous measures, the subjective nature of annotations remains a
challenge, underscoring the ongoing need for clear guidelines, continuous quality control, and
possibly automated annotation assistance tools in future studies.

5.2 Technical Limitations
Limitation 1: Computational Constraints Posed by WSIs (Chapters 3 and 4)

A major technical limitation encountered during this research is the computational
constraints associated with processing multi-gigapixel WSIs. Due to GPU memory limitations,
WSIs were not directly utilized as inputs for deep learning algorithms, as the size of these images

far exceeds the memory available on standard GPUs. To address this constraint, we developed and
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utilized strategic image patching methods, including spline-based techniques presented in
Chapters 3 and 4. The spline-based tiling algorithm effectively segments WSIs into smaller,
manageable patches, carefully excluding non-informative background regions with no root
segments. These smaller patches significantly reduce the computational load, enabling their direct
use as inputs to deep learning models without compromising spatial resolution. This approach
allows models to leverage full resolution image data while maintaining feasibility within existing
hardware constraints.
Limitation 2: Challenges in Segmenting Small, Intricate Fungal Structures (Chapter 2)

Another substantial challenge, discussed extensively in Chapter 2, relates to accurately
segmenting small and intricate fungal structures such as extraradical hyphae and arbuscules.
Segmentation delineates the boundaries of fungal structures in root samples. Detecting and
segmenting these structures are inherently problematic for several reasons. First, the low resolution
of small fungal structures provides fewer pixels to represent their morphological details, making
them difficult to distinguish from the background of the root cortex, for example. Additionally,
small objects often lack distinctive features or sufficient contextual information to facilitate precise
identification. Human scorers utilize the contextual information in identifying AM fungal
structures, such as the connections of arbuscules to intraradical hyphae or extraradical hyphae
being outside the root cortex and distinguishing them from other mycorrhizal fungi. Variability in
lighting and staining conditions further exacerbates this problem, causing inconsistencies in fungal
structure classification and complicating detection of fungal structures.

To mitigate these challenges, we divided WSIs into smaller patches to enhance AMF
classification and segmentation accuracy at the expense of losing contextual information. Patching

significantly reduced the relative size differences between fungal structures and the overall image
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dimensions. In Chapter 2, during the annotation process, annotators maintained tight segmentation
margins around AM fungal structures and deliberately excluded ambiguous examples to ensure
high-quality ground-truth labels. In Chapters 3 and 4, our spline-guided tiling algorithm, efficiently
removed redundant background regions, while each patch provided sufficient contextual
information about the root cortex and the relevant fungal structures. We carefully selected patch
sizes to retain adequate context, as AM fungal structures never occur in isolation or in the root
stele.

Future research should explore new DL architectures and methodological improvements to
address this limitation. Transformer-based detectors and attention mechanisms also show
significant potential in accurately capturing fine-scale details (Cheng et al., 2022). Additionally,
advanced learning methodologies such as Knowledge Distillation (Nabavi et al., 2024), Self-
Supervised Learning (W. Zhou et al., 2024), and Reinforcement Learning (Fang et al., 2024)
represent promising directions to further improve model performance, robustness, and adaptability
when dealing with small and intricate fungal structures.

Limitation 3: Data Storage and Transfer (Chapters 3 and 4)

The substantial size of the MycorrhiSEE dataset, discussed in Chapters 3 and 4, introduces
additional technical limitations regarding data storage and transfer. Currently encompassing
approximately 15 Terabytes of image data and continually expanding, the sheer scale of this dataset
significantly complicates data management practices. Moving, backing up, and sharing such a
large dataset are increasingly challenging. Cloud-based computing solutions, often recommended
for high-performance processing tasks, are impractical in this scenario since few, if any,
supercomputing facilities permit uploading datasets of this magnitude, although the Amazon Web

Service (AWS) remains a possibility (Skaro et al., 2022).
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Learning from this limitation, it would have been beneficial to adopt high-performance
Solid State Drives (SSDs) earlier in the project for data storage. SSDs offer notably faster read-
write speeds (500-3,500 MB/s) compared to traditional Hard Disk Drives (HDDs) (30-150 MB/s),
significantly accelerating data retrieval and improving efficiency during intensive image
processing tasks and deep learning model training. Moving forward, strategic investments in local
computational infrastructure—such as dedicated servers equipped with high-performance GPUs,
CPUs, and large-capacity SSD storage arrays—will likely be necessary. Such infrastructure would
alleviate current bottlenecks associated with data handling, enabling more streamlined and
efficient data processing and model development workflows in future large-scale image-based
deep learning projects.
5.3 Methodological Limitations
Limitation 1: Limitations of Transfer Learning

One critical methodological limitation encountered throughout this project, pertains to the
constraints inherent in transfer learning approaches. While leveraging pretrained CNNs trained on
large, general-purpose datasets (e.g., ImageNet and COCO) provided an efficient starting point for
developing AM fungal detection models, challenges arose regarding model generalization across
diverse plant genotypes, varying agronomic conditions, distinct imaging platforms, and differing
staining and image acquisition protocols. These domain-specific factors introduced significant
variability that was not entirely captured by models pretrained on generalized image datasets.
Consequently, the reliance on extensive annotated datasets tailored to each new imaging scenario
has posed scalability challenges, restricting broader adoption of deep learning approaches within

AMF research.
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Future efforts should include rigorous fine-tuning of pretrained CNNs for specialized
applications on AMF quantification, systematically varying the width and depth of fully connected
layers, gradual unfreezing of the CNN backbone, and hyperparameter finetuning using such tools
as the Maximally Informative Next Experiment (MINE) (Torres et al., 2025) and Bayesian
optimization (Nogueira, 2014). Additionally, architectures that leverage attention mechanisms or
hybridize CNN with transformer models could markedly improve generalization by capturing
long-range dependencies and context more effectively (Cheng et al., 2022; Fang et al., 2024). Self-
supervised learning techniques represent another promising avenue, significantly alleviating the
dependence on large volumes of labeled data by leveraging unlabeled data to derive feature
representations transferable across diverse AMF image analysis tasks (Zhou et al., 2024).
Furthermore, exploring multi-frame feature fusion and cross-modal approaches may substantially
enhance detection and segmentation of small fungal structures in complex backgrounds (Jiang et
al., 2024). For example, combining fluorescent microscopy images with traditional brightfield
images may synergistically improve model robustness and accuracy. Another possible solution to
an expanded training dataset is using Interactive Semi-Automatic Annotation Tool integrated with
Segment Anything (ISAT-SAM) to speed up the annotation process (Kirillov et al., 2023).
Limitation 2: Insufficient Evaluation of Data Augmentation Techniques (Chapters 2 and 3)

Another methodological constraint recognized in Chapters 2 and 3 involves the limited
exploration and systematic evaluation of data augmentation techniques. Data augmentation holds
significant promise for addressing class imbalance issues and facilitating effective merging of
datasets from multiple imaging domains. Although we employed basic augmentation methods

(such as flipping and rotation), these techniques alone might not sufficiently address the variability
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across domains, nor do they fully mitigate the effects of imbalanced representation among fungal
structure classes.

Moving forward, comprehensive evaluation and validation of more sophisticated
augmentation methods, such as color jittering, elastic deformation, synthetic minority
oversampling techniques (SMOTE), and advanced generative approaches (e.g., generative
adversarial networks or GANs), may provide substantial improvements. Quantitative assessments
of augmentation methods should involve rigorous experimentation comparing model performance
metrics before and after the augmentation steps. Systematic evaluation of domain-specific
augmentation effectiveness will ensure that future model training and domain integration efforts
benefit fully from augmentation, leading to more robust and generalizable models.

Limitation 3: Model Interpretability Issues

Another methodological limitation is the difficulty in interpreting deep learning models,
which significantly hinders biological understanding of the derived features and decision-making
processes (Chen et al., 2023). While CNNs and Mask R-CNN models exhibited excellent
performance in detecting and quantifying AM fungal structures, the inherent “black-box” nature
of these deep learning architectures presents a challenge for biological interpretability.
Understanding the specific image features driving model predictions is crucial, particularly for
validating biological hypotheses and ensuring meaningful scientific conclusions.

To enhance interpretability, we suggest adopting visualization techniques for filters and
feature maps learned by deep neural networks. Methods such as guided backpropagation, gradient-
weighted class activation mapping (Grad-CAM), and saliency mapping can visually highlight the
specific regions and image features critical to model predictions. Visualizing intermediate

convolutional filters and feature maps may provide insights into what features the network
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prioritizes when identifying specific fungal structures. Future research should systematically
integrate these visualization tools into the model evaluation workflow, bridging the gap between
computational models and biological insights. Improved interpretability can increase trust in deep
learning models among biologists, fostering broader acceptance and more meaningful biological

interpretation of deep learning-derived results.
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