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ABSTRACT 

Arbuscular mycorrhizal fungi (AMF) form one of the most ancient and widespread 

symbioses, enhancing plant nutrient acquisition in exchange for photosynthetically derived carbon. 

Accurately quantifying AMF colonization at scale, however, remains a major bottleneck. This 

dissertation presents a three-stage roadmap for developing robust, deep learning–based tools that 

enable high-throughput, automated analysis of AMF in sorghum (Sorghum bicolor) roots. 

First, a pilot study combined Mask R-CNN with mixed linear models to segment individual 

fungal structures in a recombinant inbred sorghum population and to relate colonization levels to 

root niche and fungal structure allocation. The study demonstrated that deep learning can capture 

biologically meaningful AMF phenotypes. 



Second, to overcome data scarcity in training deep learning models, I assembled 

MycorrhiSEE, a 15 TB collection of ~137,500 whole-slide images (WSIs) from 5,500 sorghum 

plants spanning 337 genotypes and diverse field treatments. A spline-guided tiling algorithm 

transformed gigapixel WSIs into uniform patches. Eight bootstrap evaluations confirmed 

consistent spline interpolation across expert-rated image quality classes. 

Third, building on MycorrhiSEE, an integrated pipeline was developed featuring (i) an 

enhanced spline-guided tiling algorithm with quantitative tiling quality metrics, and a two-step 

CNN-based classification that (ii) first removes background tiles with 99.7 % accuracy and then 

(iii) distinguishes AMF colonized from non-colonized image tiles. A wide selection of ImageNet-

pretrained architectures was benchmarked to identify the optimal classifiers. DenseNet and 

ResNet50-based classification classifier achieved >98% accuracy and superior generalization on 

both MycorrhiSEE and the external AMFinder dataset. 

Collectively, these contributions—from computer vision modeling to large-scale dataset 

curation and pipeline optimization—provide a practical framework for rapid, unbiased AMF 

phenotyping. The resulting tools enable scalable integration of imaging, genomic, and 

environmental data, advancing precision agriculture and ecological research on AMF to improve 

sorghum performance under diverse field conditions. 
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1 INTRODUCTION 

CHAPTER 

1 

INTRODUCTION 

1.1 Preface 

1.1.1 Motivation and Research Context 

The Kingdom Fungi is among the most diverse groups of organisms on earth 

(Wijayawardene et al., 2024). Mycorrhizal fungi—derived from the Greek myco (fungus) and rhiza 

(root)—, form symbiotic association with the roots of over 80% of vascular plants (Brundrett & 

Tedersoo, 2018). Through their extensive hyphal networks, mycorrhizal fungi provide plants 

access to otherwise unavailable soil nutrients, in exchange for up to 30% photosynthetic carbon 

(Hawkins et al., 2023). It is estimated that at least 50,000 fungal species from the phyla 

Glomeromycota, Ascomycota, Basidiomycota and Mucoromycota form mycorrhizal associations 

(van der Heijden et al., 2015). Based on their morphology and function, four principal types of 

mycorrhizal symbioses have been identified: arbuscular mycorrhiza (AM), ectomycorrhiza (ECM), 

orchid mycorrhiza (ORM), and ericoid mycorrhiza (ERM), with AM symbioses accounting for 

approximately 72% of all associations (Brundrett, 2009). 

In the context of global challenges—such as climate change, ecosystem conservation, and 

the need for sustainable agriculture—AM symbioses provide a promising alternative to chemical 

fertilizers and pesticides for enhancing plant health and yield. The symbiotic relationship between 

plant roots and arbuscular mycorrhizal fungi (AMF) has been shown to enhance the drought, heat, 

salt, herbivory and pathogen resistance of plants in the most arid and barren soils on earth (M. J. 



2 

Pozo & C. Azcón-Aguilar, 2007) (J. M. Ruiz-Lozano et al., 2012). The extensive underground 

hyphal network of AMF facilitates the uptake of water, nitrogen, phosphorus, and other ions 

(Kakouridis et al., 2022; Smith & Read, 2010). However, the outcome of this resource exchange 

is highly context dependent. It is influenced by both biotic factors—such as the plants and fungal 

genetic make-up—and abiotic factors, including soil conditions, climate and agricultural 

management practices which can shift the interaction along the parasitism–mutualism continuum 

(Feddermann et al., 2010; Graham & Abbott, 2000; Hart & Reader, 2002; Hoeksema et al., 2018; 

Johnson et al., 1997b; Klein et al., 2022; Klironomos & John, 1999; Mensah et al., 2015; Munkvold 

et al., 2004; Taylor & Harrier, 2000).  

How can we effectively harness AMF for agriculture? Greenhouse studies testing 

combinations of plants, AMF inoculants, and soils are unlikely to be predictive of mycorrhizal 

functions in field settings. Field applications of commercial inoculants, often formulated with few 

“super” species, have produced inconsistent plant growth responses (Koziol et al., 2024; Lutz et 

al., 2023). It has become increasingly evident that AM symbioses are not isolated, binary 

interactions between a single fungus and plant host. Rather, they function as complex adaptive 

systems, with plant fitness outcomes shaped by the interplay of host genotype, microbial 

community, and environmental context. 

Sorghum bicolor, a drought-tolerant C4 crop, has been cultivated as food, feed, and fuel 

for centuries across the world (Nigam et al., 2025). It is rich in micronutrients such as iron and 

zinc, as well as dietary fiber, antioxidant nutrients, and starch. Half a billion residents in Africa, 

Asia, and other semi-arid areas relies on sorghum as one of the cheapest nutrient sources. In 2021, 

the U.S. alone planted 7.3 million acres of sorghum (Tubiello et al., 2023). In western countries, 

sorghum is increasingly recognized for its value as animal feed and, more recently, as a bioenergy 
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crop. Its fibrous stalks, a byproduct of sugar extraction, can be fermented into ethanol and bio-jet 

fuel (Mullet et al., 2014). Enhancing beneficial AM symbiosis in sorghum can further reduce 

fertilizer and irrigation demands, increasing its value as a sustainable bioenergy crop in the rapidly 

changing global climate (Frew, 2019). 

1.1.2 Dissertation Objectives and Contributions 

My PhD research, funded by the Department of Energy and conducted as part of the 

collaborative project titled “Systems analysis of the beneficial associations of sorghum with 

arbuscular mycorrhizal fungi studied with genetics, genomics, imaging and microbiomics”, 

focuses on developing tools to support the large-scale quantification of AMF colonization. My 

research aims to generate a large high-quality image dataset from field-derived root samples and 

to develop robust high-throughput deep learning-based solutions for the automated quantification 

of AMF colonization in root images.  

Traditional microscopy-based methods for quantifying AMF are labor-intensive, time-

consuming, and subject to human bias, which limits scalability and cross-study comparability 

(Kokkoris et al., 2019; McGonigle et al., 1990a). Progress to automate AMF quantification using 

deep learning has been slow due to the lack of large, labeled image datasets (Evangelisti et al., 

2021a). My research addresses this gap by assembling a diverse, high quality, publicly available 

image dataset and training deep learning algorithms that are robust across imaging platforms and 

protocols. This work is essential for producing consistent colonization phenotypes that can be 

integrated with metagenomic, transcriptomic, and microbiomic data to construct predictive 

systems models (Torres et al., 2025). These models will help discover the functional linkages 

between sorghum genotypes and their associated microbiomes, ultimately enhancing our ability to 

predict and optimize plant performance under diverse environmental conditions. 
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1.1.3 Dissertation Overview 

The overarching goal of this dissertation is to create an automated, high-throughput 

solution for accurately quantifying arbuscular mycorrhizal fungi (AMF) colonization in sorghum 

root images. In Chapter 1, I provide necessary biology background on AM symbiosis and a gentle 

introduction to deep learning to prepare the readers for the following research chapters. Chapter 2 

begins with a small pilot dataset collected during the first field season of the DOE project in 2021. 

We introduced a multi-scale modeling framework that uses deep learning (Mask R-CNN) (He et 

al., 2020) and mixed linear models (MLMs) (Searle et al., 2009) to segment and classify individual 

AM fungal structures, and to model variation in AMF colonization among root regions and samples 

of Sorghum bicolor. The challenges and experiences in image data curation and training the initial 

deep learning model helped form the methodological basis for the subsequent chapters. 

Chapter 3 addresses the data bottleneck identified in Chapter 2. To scale up, a high-

throughput imaging workflow for harvesting, clearing, staining and imaging field grown sorghum 

root samples was developed by incorporating whole slide imaging (WSI) technology. This chapter 

describes the collaborative effort over two years to curate a 15-Terabyte image dataset, 

MycorrhiSEE (S. Zhang, T. Bourlai, et al., 2024). The dataset comprises ~137,500 multi-gigapixel 

WSIs of fine roots from 337 sorghum genotypes in the Bioenergy Association Panel (BAP) 

(Brenton et al., 2016), annotated with image quality and colonization labels. Additionally, we 

present a supporting image preprocessing software that transform whole slide images into tile 

images suitable for deep learning algorithms (S. Zhang, W. Lantz, et al., 2024). This resource adds 

new value to BAP by providing a mycorrhizal phenotype. New AM symbiotic genes can be 

discovered to advance the genetic engineering of sorghum as a bioenergy crop. MycorrhiSEE also 
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provides a new challenge to the AI community to develop new computer vision tools for the image 

analysis of mycorrhizal fungi.  

Chapter 4 builds on the MycorrhiSEE dataset. Recognizing the wide variability in image 

quality, we decompose the challenge of developing a generalized DL tool to segment individual 

AM fungal structures into incremental steps. We begin with training an image classification model 

to count the proportion of AMF colonized tiles in WSIs using high quality tiles only. A range of 

convolutional neural network (CNN) architectures, pretrained on large public image databases, is 

evaluated for their classification performance on our specialized dataset of root images. Those 

CNNs serves as baselines for future efforts to iteratively train with mixed-quality data. 

Chapter 5 discusses the limitations of this dissertation and outlines future directions toward 

creating an optimal deep learning tool for AMF quantification. We emphasize the need for 

automatic image quality assessment for large-scale image datasets. The integration of image 

augmentation and domain adaptation techniques during supervised model training can further 

improve CNN performance as the number of labeled images increases. Self-supervised learning 

offers the potential to further reduce the reliance on manual annotations and to enable the shift 

from image classification to accurate instance segmentation of fungal structures. The chapter 

concludes with key lessons learned throughout this dissertation and presents a roadmap for 

successfully applying deep learning to automate image analysis in fields that are underexplored or 

demand scalable, high-throughput solutions. 
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1.2 Arbuscular Mycorrhizal Fungi (AMF) 

1.2.1 Evolutionary History of AMF 

The evolution of arbuscular mycorrhizal fungi (AMF) has played a critical role in shaping 

terrestrial ecosystems. The symbiotic relationship between AMF and early land plants may have 

facilitated the transition from aquatic to terrestrial ecosystems and the evolution of vascular and 

root systems (Brundrett, 2009; Field et al., 2012b). Fossil evidence of AM-like structures has been 

discovered in the rhizomes of Aglaophyton major, an Early Devonian plant that predates the 

evolution of true roots by approximately 30 million years (Brundrett, 2002; Taylor & Osborn, 1996; 

Taylor et al., 1995). Molecular phylogenies of symbiotic genes further support the notion that the 

algal ancestors of land plants were pre-adapted for AM symbiosis  (Delaux et al., 2015).   

Phylogenetic analyses based on ribosomal DNA and gene loci indicate that Glomeromycota, 

the phylum containing AMF, has a monophyletic origin dating back to over 450 million years ago 

(James et al., 2006; Schüβler et al., 2001; Wijayawardene et al., 2024). This contrasts with other 

mycorrhizal types, such as ectomycorrhizal and orchid mycorrhizas, which have arisen multiple 

times independently, suggesting parallel or convergent evolutionary origins. Regardless of its long 

evolutionary history, Glomeromycota exhibits strikingly low species-level diversity, with an 

estimated 300 to1,600 species globally, far fewer than the 20,000 ectomycorrhizal species (Kivlin 

et al., 2011; Kõljalg et al., 2013; Öpik et al., 2013; TEDERSOO et al., 2012; van der Heijden et 

al., 2015). Remarkably, AMF form symbiotic associations with more than 20,000 plant species, 

including both lower plants (e.g., liverworts and hornworts) and higher plants (e.g., shrubs, trees, 

cereals, and herbs) (Genre et al., 2020; Humphreys et al., 2010; van der Heijden et al., 2015). This 

accounts for approximately 72% of all mycorrhizal associations in flowering plants (Brundrett, 

2009). AMF are widely distributed, inhabiting environments from the sub-polar regions to the 
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tropical rain forest, and from the deserts to even some aquatic ecosystems (Davison et al., 2015; 

Rosendahl, 2008).  

The functional diversity of AMF with limited species richness has led to several 

evolutionary hypotheses. One explanation is the presence of high intraspecific genetic 

heterogeneity. For example, Rhizophagus irregularis isolates only share ~50% of their genes. High 

copy number variation and an abundance of transposable elements in R. irregularis may enhance 

adaptability to environmental variations (Chen et al., 2018). More than 150,000 accessory genes 

have been identified across only six R. irregularis isolates, suggesting that local adaptation and 

functional diversity can evolve without speciation (Chen et al., 2018).  

Another hypothesis proposes multilevel selection involving plant hosts, AMF and their 

associated microbiome (Johnson & Marín, 2024). AMF often engage in cross-feeding relationships 

with the rhizosphere (root) and hyphosphere (hypha) bacteria (e.g., P-solubilizers, N-fixers, and 

Fe-providers) and can host hundreds of endobacterial taxa. These microbial consortia may be 

selected with the plant host as functional teams, as the teams confer the highest fitness advantage 

under certain environmental conditions. Evidence for this speculation includes studies showing 

that local AMF isolates provide greater growth benefits to native plant hosts compared to non-

local combinations (Banerjee et al., 2018; Lutz et al., 2023).  

These hypotheses underscore the complexity of AM symbiosis and the number of variables 

that need to be considered to understand the ecological and evolutionary drivers of AMF function. 

Currently, there are expanding efforts to link AMF taxa and genotypes with their functional traits 

across environmental conditions (Antunes et al., 2025; Corradi et al., 2024; Mathieu et al., 2018). 

As these studies grow in scale, there is an increasing demand for high throughput plant 

phenotyping and imaging-based quantification of AMF colonization, in conjunction with genomic 
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and microbiome profiling using Next Generation Sequencing (NGS) These integrative approaches 

will keep advancing our understanding of AMF functional diversity and its role in shaping plant 

fitness and ecosystem resilience. 

1.3 Sorghum 

1.3.1 Agricultural Relevance of Sorghum 

Sorghum [Sorghum bicolor (L.) Moench] is a stress resistant C4 grass native to Africa and 

currently ranks as the fifth most cultivated cereal crop worldwide, following rice, wheat, maize 

and barley. Sorghum is highly diverse, with cultivars broadly classified into three categories: grain 

sorghum, biomass sorghum, and sweet sorghum (Silva et al., 2021). Grain sorghum serves as a 

staple crop that provides food security for more than ¼ of the world. It is a vital source of starch 

and micronutrients in arid and semi-arid regions. Biomass and sweet sorghum, collectively termed 

bioenergy sorghum, are cultivated for their rapid accumulation of structural and nonstructural 

carbohydrates (Brenton et al., 2016). Their sugary milk can be fermented into bioethanol. The 

fibrous residuals can be converted into biojet fuel or used as animal feed (Wu et al., 2010).  

Sorghum’s C4 photosynthetic pathway contributes to its exceptional water- and nitrogen- 

efficiencies (Enciso et al., 2015; Gardner et al., 1994; Weissmann & Brutnell, 2012). This makes 

sorghum particularly attractive for sustainable bioenergy applications and climate resilient 

agriculture. Unlike C3 cereal crops, which have fibrous and highly branched root systems with 

high nutrient acquisition capacity, sorghum plants have a thicker cortex and depend more heavily 

on AMF for nutrient uptake (HETRICK et al., 1988; Liu et al., 2021; Wilson & Hartnett, 1998). 

As a result, enhancing mutualistic AMF symbiosis in sorghum offers a promising strategy to 

improve plant resilience and productivity even in soils affected by salinity or heavy metal 
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pollutions (J. M. Ruiz-Lozano et al., 2012) (Chandrasekaran et al., 2016; Dhawi et al., 2016; Riaz 

et al., 2021).   

1.3.2 Genetic Diversity and Genomic Resources 

Sorghum was the first C4 grass to have its genome sequenced (BTx623) using shotgun 

sequencing. This advancement established a foundation for sorghum genetic studies and the 

development of genomic resources. Its small diploid genome (2n = 20; ~730Mb) makes it a simpler 

model for functional genomic research than other C4 cereal crops (Paterson et al., 2009).  

One of the key genetic resources is the Bioenergy Association Panel (BAP), which includes 

a total of 390 sorghum accessions comprising 238 high biomass sorghum and 152 sweet sorghum 

lines from the National Plant Germplasm System (NPGS). The BAP represents historical and 

commercially relevant lines from all five major sorghum races (bicolor, caudatum, durra, guinea, 

and kafir) and three continents (Africa, Asia, and the Americas). These accessions display 

extensive variation in key traits, including stalk height, photoperiod sensitivity, development speed, 

and anthracnose resistance (Brenton et al., 2016).  

The original genotyping of BAP accessions identified a set of 232,303 single nucleotide 

polymorphisms (SNPs) using Genotype by Sequencing (GBS). More recently, whole genome 

sequencing (WGS) of 365 accessions has yielded ~19.7 million SNPs and ~2.7 million indels. A 

filtered set of ~5.48 million high quality SNPs has facilitated more accurate and comprehensive 

analyses of population structure and genetic diversity (Kumar et al., 2024). Genome-wide 

association studies (GWAS) utilize association mapping panels like BAP to identify molecular 

markers associated with quantitative traits in plants (Zhu et al., 2008). SNPs associated with a 

variety of phenotypic traits have been identified in sorghum, including traits related to plant 

architecture (Hu et al., 2019; Kumar et al., 2023; Morris et al., 2013; Zhao et al., 2016), agronomy 
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(J. Lucas Boatwright et al., 2022; Boyles et al., 2017; Brown et al., 2006; Chopra et al., 2017; Li 

et al., 2018; Mace et al., 2013; Rhodes et al., 2014), bioenergy (Boyles et al., 2019; Brenton et al., 

2016; Murray et al., 2009; Souza et al., 2021), and biomass and its compositional traits (J Lucas 

Boatwright et al., 2022; Brenton et al., 2016; Brown et al., 2008; Kumar et al., 2024; Murray et al., 

2009; Zhang et al., 2015).  

Additional genomic resources include the Sorghum Association Panel (SAP), Nested 

Association Mapping (NAM) populations, and recombinant inbred lines (RIL) with well-

characterized genetic markers and diverse phenotypes (Boatwright et al., 2021; J. Lucas 

Boatwright et al., 2022; Govindarajulu et al., 2021). Genomics databases, including Phytozome 

(Goodstein et al., 2012), Gramene (Ware et al., 2002), SorghumBase (Gladman et al., 2022), and 

the Sorghum QTL Atlas (Mace et al., 2019), enable data integration and easy access. 

1.4 Sorghum-AMF Symbiosis 

AMF are important symbionts in sorghum that improve nutrient acquisition, water-use 

efficiency, and stress tolerance. The establishment and function of AM symbiosis in sorghum are 

influenced by fertilization, cover cropping, intercropping, tillage and land use forms, and irrigation 

(Abdelhalim et al., 2020; Birhane et al., 2018; Cobb et al., 2017; Egboka et al., 2022; Figueiredo 

de Oliveira et al., 2025; Moura et al., 2022; Tuheteru et al., 2020; Walder et al., 2015; Wipf Heidi 

et al., 2021).  

Several studies have reported that AMF can regulate stress response and water regulation 

pathways in sorghum (Putri et al., 2023; Symanczik et al., 2020; Varoquaux et al., 2019), as well 

as the expression of phosphate transporters (PTs) and ammonium transporters (AMTs) (Koegel et 

al., 2013; Walder et al., 2015). AMF colonization has been linked to increases in sorghum height, 

biomass, grain production and micronutrient content under drought, salinity stress and phosphorus 
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deficient conditions (Bagayoko et al., 2000; Birhanu et al., 2024; Chandra et al., 2022; Cobb et al., 

2016; Nakmee et al., 2016).  

However, those benefits are often sorghum genotype dependent (Watts‐Williams et al., 

2022). Also, temporal variation in AMF community composition in sorghum roots suggests that 

timing plays a key role in the efficacy of AMF-based interventions (Gao et al., 2020). Despite its 

relevance, there is a limited number of systems-level studies examining AMF symbiosis in 

genetically diverse sorghum populations using multi-omic approaches (Kaur et al., 2022; Sawers 

et al., 2017; S. J. Watts-Williams et al., 2019). Notably, the AMF colonization of BAP accessions 

has not yet been systematically characterized. This gap highlights the need for integrative studies 

that consider host genetic diversity, root microbiome dynamics, and functional AMF responses—

particularly in the context of breeding more symbiosis-responsive cereal crops (Sawers et al., 

2018) . 

1.5 Intuitive Introduction to Deep Learning  

1.5.1 Fundamentals of Deep Learning 

Machine Learning (ML) represents algorithms that allow computers to identify patterns 

from data and make decisions or predictions on new unseen data without explicit programming 

commends. Traditional ML algorithms require manual extraction of relevant features from 

unstructured data, including text, images, audios, etc. Algorithms like support vector machines 

(SVMs), random forest, and k-nearest neighbors have been tested effective for classification tasks 

(Deisenroth et al., 2020). 

Deep learning (DL) refers to a specialized subset of ML that utilizes neural networks to 

directly extract feature representations from unstructured data. Inspired by human brain’s neural 

structure, neural networks consist of multiple layers of interconnected nodes (neurons), hence 
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named deep learning. Deep learning has demonstrated remarkable success in image analysis, also 

known as computer vision (Younesi et al., 2024). DL algorithm can perform various vision tasks. 

Ordered with increasing complexity:  

• Classification determines whether a specific object (e.g., a balloon) appears in an image,

answering the question "What is in this image?"

• Object detection recognizes all instances of an object within an image and locates them

with bounding boxes, addressing both “what” and “where” questions.

• Semantic segmentation identifies all pixels belonging to a certain class, but it does not

distinguish between individual instances.

• Instance segmentation combines object detection with semantic segmentation to identify

individual object instances at the pixel level.

Convolutional neural networks (CNNs) are particularly suited for computer vision tasks.

The theoretical foundations of CNN were established in 1988. In 1994, Yann LeCun introduced 

LeNet-5, a pioneering architecture with practical implementation in handwritten digit recognition. 

LeNet-5 incorporated the three essential components still found in modern CNNs: convolutional 

layers, pooling layers, and non-linear activation functions. Limited by computation power at the 

time, LeNet-5 only has five trainable layers: three convolutional layers and two pooling layers 

(Lecun et al., 1998).  

In 2010, Graphics Processing Units (GPUs) was used for training CNNs for the first time, 

increasing the depth to nine layers. The release of large-scale labeled datasets, particularly 

ImageNet further accelerated the evolution of CNNs (Deng et al., 2009). In 2010, Krizhevsky et 

al. developed AlexNet and won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 

by a large margin, compared to the traditional computer vision methods (Krizhevsky et al., 2017). 
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Since then, the depth and width of CNNs has kept expanding with increasing sophisticated designs. 

By 2015, ResNet have reached over 100 layers and achieved higher accuracy than humans in 

computer vision tasks in natural image domain (He et al., 2016). Many of the foundational CNN 

models from the era continue to be widely applied and adapted to new computer vision tasks. 

In the sections that follow, I will provide an intuitive introduction to the fundamentals of 

CNN architectures and their key components, including input representation, output format, 

convolutional and pooling layers, fully connected layers, kernels, activation functions, loss 

functions, backpropagation, and optimization techniques. Then, I will review key foundation 

models and their architectural innovations, followed by an introduction to learning paradigms and 

advanced strategies such as transfer learning and domain adaptation. 

1.5.2 Basics of CNN Architecture 

Input representation 

Images in CNNs are represented as numerical tensors. A color image has three channels—

red, green, and blue (RGB). Each channel is represented as a 2D matrix of pixel values covering 

an image. When the color channels are stacked, the image becomes a 3D tensor with shape height 

× width × channels, where each pixel value encodes color intensity. For example, a 28×28 RGB 

image is represented as a 28×28×3 tensor. The total number of possible colors is 2563=16,777,216. 

Black corresponds to (0, 0, 0), and white to (255, 255, 255). Often times, we standardize the input 

image so that the pixel values range from 0 to 1. 

Kernels and convolutional layers 

In CNNs, neurons in convolutional layers are powerful feature extractors, also called filters 

or kernels. A kernel is a small matrix (e.g., 3×3 or 5×5) that slides across the input tensor and 
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computes a dot product at each location. The values of the dot products are saved to a new matrix 

known as the feature map. The size of the resulting feature map depends on three parameters:  

1. Kernel size: The spatial dimensions of the filter (e.g., 3×3, 5×5)  

2. Stride: The step size of the sliding kernel (e.g., a stride of 1 moves the kernel one pixel at 

a time)  

3. Padding: Additional zero pixels added to the input borders (e.g. a padding of 1 changes 

the dimension of input matrix from 28×28 to 30×30)  

For example, applying a 3×3 kernel with stride 1 and no padding to a 28×28 input yields a 26×26 

feature map. To maintain the input dimension, a padding of 1 is required. For multi-channel inputs, 

the convolution operation is performed independently on each channel and produces three feature 

maps. CNNs typically employ multiple kernels per layer, with more kernels in deeper layer, 

increasing the network width and learning increasingly abstract features. Visualization of trained 

CNNs like AlexNet revealed that lower-level kernels capture simple features (e.g., edges, corners), 

while deeper layers capture higher-order patterns (e.g., textures, shapes). Feature maps highlight 

the presence of learned features in the original image (Fig. 1.1). 

Figure 1.1 Visualize Feature Map after Convolution Operation. The original lion image 
is shown on the left. The feature map after convolution operation with edge detection 
kernel is shown on the right. 
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Pooling layer 

A pooling layer comes after convolutional layers to downsample the feature maps. The goal 

of the pooling layers is to retain high level feature representations in the feature maps within as 

low spatial dimension as possible, which reduces the computational requirements. They also help 

mitigate overfitting by making the network less sensitive to exact position of the feature in the 

input image. The most common method, max pooling, slides a window (e.g., 2×2) across the 

feature map and retains the maximum value within the region. For example, applying 2×2 max 

pooling to a 28×28 feature map produces a 14×14 output, halving the spatial resolution. Average 

pooling, which retains the mean value of each region, is an alternative used in some architectures. 

Activation function and forward propagation 

Activation functions introduce non-linearity, enabling the network to learn complex 

patterns (Fig. 1.2). During forward propagation, the convolutional operation is mathematically 

described as: 

Z=W∗A+b (Equation 1) 

Where W is the input tensor, A is the kernel, b is the bias term, * denotes the convolution operation. 

The activation function g is then applied to produce the activated output: 

A′=g(Z) (Equation 2) 

Figure 1.2 Importance of Nonlinearity in Deep Learning Models. This simple 
example scenario demonstrates that a non-linear activation function provides more 
flexibility and better separation of data than a linear activation function.  
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The output A’ serves as the input to the next layer. The Rectified Linear Unit (ReLU), defined as 

f(x) = max(0, x), is a commonly used activation function in DL for a faster and more stable 

convergence during training (Nair & Hinton, 2010).  

Fully connected layers and Output representation 

So far, we have discussed how convolutional layers, pooling layers and activation functions 

extract hierarchical features from image data. The final stage in a CNN architecture involves 

converting these learned feature representations into task specific predictions.  

Fully connected (FC) layers are derived from the multilayer perceptron (MLP) and are now 

commonly used as the classifier in CNNs for generating predictions. Unlike convolutional layers—

where neurons are kernels and inputs are tensors—neurons in fully connected layers are scalar 

nodes that hold a single activation value and take vectors as inputs. Despite structural differences, 

neurons in both layers compute dot products, and their mathematical formulations are functionally 

equivalent (Equation 1 & 2).  

Before passing data into the fully connected layers, the feature maps are flattened from 

multi-dimensional tensors into one-dimensional vectors. These vectors serve as input to the FC 

layers, where each neuron is connected to every activation in the previous layer. The dense 

connections of the FC layers enable the global combination of all features extracted from previous 

steps.  

The architecture of the output layer depends on the computer vision task requirements. For 

image classification, the output layer typically uses a Softmax activation function to transform the 

output vector into a probability distribution across predefined classes. Object Detection employs 

two parallel FC branches: one for classifying objects, and another for predicting bounding box 

coordinates, often using regression-based loss functions. Semantic and Instance Segmentation may 
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combine FC layers with fully convolutional networks (FCNs) to produce class labels, bounding 

boxes, and pixel-level masks for detected objects. 

Now, we understand the key components of CNNs and how CNNs extract features and 

make predictions in forward propagation. This provides the basics for understanding the state-of-

the-art DL architectures that we selected to use in Chapters 2 and 4.  
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CHAPTER  

2 

COMPUTER VISION MODELS ENABLE MIXED LINEAR MODELING TO PREDICT 

ARBUSCULAR MYCORRHIZAL FUNGAL COLONIZATION USING FUNGAL 

MORPHOLOGY1 

2 COMPUTER VISION MODELS ENABLE MIXED LINEAR MODELING TO PREDICT 

ARBUSCULAR MYCORRHIZAL FUNGAL COLONIZATION USING FUNGAL 

MORPHOLOGY 

1Zhang, S., Y. Wu, M. Skaro, J-H. Cheong, A. Bouffier-Landrum, I. Torres, Y. Guo, L. Stupp, B. 
Lincoln, A. Prestel, C. Felt, S. Spann, A. Mandal, N. Johnson, & J. Arnold. 2024. Nature 
Scientific Reports. https://doi.org/10.1038/s41598-024-61181-5. Reprinted here with 
permission of the publisher.  
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Abstract 

The presence of Arbuscular Mycorrhizal Fungi (AMF) in vascular land plant roots is one of the 

most ancient of symbioses supporting nitrogen and phosphorus exchange for photosynthetically 

derived carbon. Here we provide a multi-scale modeling approach to predict AMF colonization of 

a worldwide crop from a Recombinant Inbred Line (RIL) population derived from Sorghum 

bicolor and Sorghum propinquum. The high-throughput phenotyping methods of fungal structures 

here rely on a Mask Region-based Convolutional Neural Network (Mask R-CNN) in computer 

vision for pixel-wise fungal structure segmentations and mixed linear models to explore the 

relations of AMF colonization, root niche, and fungal structure allocation. Models proposed 

capture over 95% of the variation in AMF colonization as a function of root niche and relative 

abundance of fungal structures in each plant. Arbuscule allocation is a significant predictor of AMF 

colonization among sibling plants. Arbuscules and extraradical hyphae implicated in nutrient 

exchange predict highest AMF colonization in the top root section. Our work demonstrates that 

deep learning can be used by the community for the high-throughput phenotyping of AMF in plant 

roots. Mixed linear modeling provides a framework for testing hypotheses about AMF 

colonization phenotypes as a function of root niche and fungal structure allocations.  
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2.1  Introduction 

Most vascular land plants have lived in symbiotic association with Arbuscular Mycorrhizal 

Fungi (AMF) for more than 400 million years (Bonfante & Genre, 2010). The plant provides 

carbon (C), and in return the AMF provide Nitrogen (N) and Phosphorus (P). This exchange of 

nutrients is central to tree diversity in forests worldwide (Zhong et al., 2021), determination of 

CO2 in the atmosphere (Field et al., 2012a), and plant tolerance to drought, heat and pathogens 

(Gao et al., 2022; M. J. Pozo & C. Azcón-Aguilar, 2007; J. M. Ruiz-Lozano et al., 2012). The 

development of the AMF symbiosis is initiated by a single fungal hypha contacting a neighboring 

host root (Buee et al., 2000; Choi et al., 2018). Insertion of the epidermal layer by the 

prepenetration apparatus (Genre et al., 2008) is followed by intraradical hyphal growth. On 

reaching the inner cortex, branches arising from the intraradical hyphae could penetrate the cortical 

cell walls and form arbuscules known as the structure for nutrient transfer between symbionts 

(Pumplin & Harrison, 2009). Post-penetration development includes the differentiation of vesicles 

(Smith & Read, 2010) and spores (Marleau et al., 2011). Vesicles are nutrient storing structures for 

lipids and carbohydrates obtained from the plant host. AMF reproduce asexually using spores. The 

extensive extraradical hyphal network uptakes nitrogen, phosphorus, and other ions in soil that 

were otherwise inaccessible to the plant host. The various types of mycorrhizal structures 

differentiate from one continuum of fungal hyphae (Kokkoris et al., 2020) and can occur 

simultaneously in plant roots (Montero et al., 2019). Seminal work has shown that hyphal length, 

as well as spore counts and density, can vary significantly among conspecific AMF isolates, and 

that this variation has been shown to be correlated with differences in plant growth (Koch et al., 

2006). 
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The internal development of the fungus is influenced by the plant genome (De Vita et al., 

2018b; Michelle L. Pawlowski et al., 2020; Plouznikoff et al., 2019). An AMF species shows 

different morphological growth patterns, Arum- vs Paris-types, depending on the species of the 

plant partner in the association (Gerdemann, 1965; Jacquelinet-Jeanmougin & Gianinazzi-Pearson, 

1983; Smith & Smith, 1997b). Large variation in AMF richness and abundance has been 

characterized in several plant populations, in an effort to identify symbiosis-associated genes (De 

Vita et al., 2018b; Johnson et al., 2022; Lehnert et al., 2017; M. L. Pawlowski et al., 2020; 

Plouznikoff et al., 2019; Stahlhut et al., 2021; S. J. Watts-Williams et al., 2019). Plant mutants 

were generated for biological validation of symbiosis genes (MacLean et al., 2017). DELLA 

proteins were revealed as master regulators that interact with the symbiosis signaling pathway, 

which provides a mechanism to integrate symbiosis with plant growth and development (Davière 

& Achard, 2013; Gallego-Bartolomé et al., 2012). For example, DELLA transcription and protein 

stabilization serves to restrain plant growth but to promote arbuscule development (Floss et al., 

2013; Jiang et al., 2007). Direct evidence from the greenhouse highlighted that the functioning of 

colonization depends not only on the plant genotype but also on the identity of AMF 

genera/species/isolates (Stephanie J. Watts-Williams et al., 2019). The relative allocation to selfish 

versus non-selfish fungal structures (Johnson et al., 2003) also depends on the abiotic 

environmental conditions. Fertilization often reduces allocation to extraradical hyphae and 

arbuscules relative to other structures (Johnson et al., 2003). The genotypes of the organisms 

involved and the environmental conditions under which they interact determine the functioning of 

mycorrhizal association along the mutualistic-parasitic continuum (Feddermann et al., 2010; 

Graham & Abbott, 2000; Hart & Reader, 2002; Johnson et al., 1997b; Klironomos & John, 1999; 
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Mensah et al., 2015; Munkvold et al., 2004; Taylor & Harrier, 2000). A better understanding of the 

factors is needed.  

The AMF research community is limited by a lack of cost efficient and high-throughput 

imaging methods to quantitate the abundance of AMF hyphal structures in roots. In 1990, 

McGonigle et al developed an unbiased approach for scoring AMF colonized root samples 

(McGonigle et al., 1990a). It is the gold standard until now, but it is laborious and demands skilled 

human scorers. Molecular quantification methods like AMF-specific phospholipid fatty acids 

(PLFA) approximate the amount of AM fungal biomass. DNA-based methods like quantitative 

real-time PCR (qPCR) allow quantification of specific AMF taxa in roots and soil. Amplicon 

sequencing allows the measurement of relative abundance of AMF taxa in root samples. A 

disadvantage of the PLFA- and DNA-based approaches is that they cannot measure colonization 

and morphology at the fungal structure level. Microscopy methods are synergistic by quantitating 

fungal structures and their morphology inside roots (McGonigle et al., 1990a; Trouvelot et al., 

1985). Imaging, however, requires human scorers and the process is laborious and repetitive. 

Preparation and visual examination of 1,000 AMF slides with 20-30 root segments per slides takes 

an experienced researcher 2 months to complete. A computer vision model could potentially carry 

out this task in a few hours. 

Machine learning has been applied to fungal image classification even with limited training 

data in Neurospora crassa (Krach et al., 2022; Krach et al., 2020). A deep learning-based software, 

AMFinder, was developed to automate the process of quantifying AMF colonized root images 

(Evangelisti et al., 2021a). The examples demonstrated computer vision as a powerful tool for 

high-throughput AMF phenotyping. Further improvements remain to quantitate the allocation to 
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AM fungal structures and their morphological phenotypes in the roots using a newly available 

instance segmentation method of computer vision model.  

Instance segmentation using deep learning techniques, like Mask R-CNN (K. M. He et al., 

2017), offers an opportunity for accurate and robust detection and per-pixel segmentation of 

different hyphal structures in root images. With the image analysis on the inferred segmentations, 

hyphal length/width, hyphal branching frequency, arbuscule length/width, vesicle size, spore size 

and other morphological traits can be automatically measured. These morphological traits can be 

correlated with various biological and physical processes of plants, such as photosynthesis, 

respiration, transpiration, and carbon and nutrient assimilation, which can be very useful for 

quantitative trait locus (QTL) mapping (Plouznikoff et al., 2019) and Genome-wide Association 

Studies (GWAS) (De Vita et al., 2018b) for symbiotic gene discovery.  

Transfer learning is a technique that helps to transfer features learned from one dataset to 

another. The advancement of transfer learning benefits applications with limited annotated data. 

As of 2020, Mask R-CNN is one of the few deep learning architectures that can provide a generalist 

performance for instance image segmentation (He et al., 2018). Transfer learning-based 

application of Mask R-CNN have been adopted rapidly for imaging-based plant phenotyping in 

recent years (Ferguson et al., 2021).  

We present a Mask R-CNN based image analysis method that provides the four previously 

unavailable advantages: (1) requires a minimal training data via transfer learning 2) achieves pixel 

level identification of multiple AM fungal structures via instance segmentation; 3) works on root 

samples colonized by a mixed populations of AMF in the field; 4) provides morphological 

measures on each category of AM fungal structure. We took the quantification and morphological 

measures from the image analysis to address fundamental questions about the AMF symbiosis: (1) 
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can a mathematical model be developed to predict AMF colonization; (2) does the allocation to 

AM fungal structures vary between plants; (3) are there differences in the niche within the root 

system, where AMF structures are found?  

To understand AMF symbiosis as part of largescale systems biology studies, we developed 

a deep learning-based image analysis method to automatically measure AMF colonization 

intensity and fungal structure morphologies. The mixed linear model was used to provide a 

framework for testing hypotheses about AMF colonization and the variation in these morphometric 

measures. The result is a direct connection between the fungal structures present in each root 

sample and fungal colonization of the roots. This connection will permit the exploration of how 

AMF affect plant health through allocation to their structures. 
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Table 2.1 Performance of the Mask R-CNN compares favorably with published performance on 
other image datasets. The training set 1 is made of 767 in-house images on the Georgia samples. 
Training set 2 contains additional images from the AMFinder dataset (Evangelisti et al., 2021a; 
Tukey, 1949). The model performance is measured by average precision (AP) of each class, mean 
average precision (mAP) and mean average precision at intersection over union threshold of 0.5 
(mAP50) (K. M. He et al., 2017) 

2.2  Results 

2.2.1 Performance of Mask R-CNN on AMF Image Segmentation 

Our Mask R-CNN model can segment AMF colonized root images with satisfying 

performance (Table 2.1). The training images and annotations were generated by human scorers 

using the McGonigle method (McGonigle et al., 1990b) on a grid associated with the 192 root 

intersections per slide (See Materials and Methods). The pretrained Mask R-CNN model on the 

COCO dataset was loaded and trained on an in-house dataset with the default augmentation 

including image random flip and resize and a 0.7 confidence score threshold (Table 2.1 Model A) 

showing higher performance on our in-house testing images with 25.9 mean average precision 

(mAP) and 47.5 mean average precision at intersection over union (IoU) threshold of 0.5 (AP50) 

across classes, comparable to the performance of Mask R-CNN on other public datasets. For each 

class, the average precision (AP) captures both the precision (related to type I error) and recall 

(power=1-type II error) for IoU from 0.5 to 0.95 with a 0.05 step interval. Example results 

presented the agreement between model prediction and the ground truth (Fig. 2.1). The Mask R-

CNN excelled at segmenting sorghum root and spore with AP values larger than 40 (Table 2.1). 

Model Training 
data 

Testing 
data AP mAP50 

A In-house In-house 

Root Arbuscule Extraradical 
hypha 

Intraradical 
hypha Vesicle Spore Non-

AM 
47.5 46.2 29.6 6.7 7.4 21.9 55.8 13.7 

 mAP  
25.9 

B Combined In-house  mAP  39.7 21.4 

C Combined Combined mAP 50.2 29.6 
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Reasonable performance was achieved on arbuscule and vesicle with AP ranging from 20 to 30. 

The model struggled with predicting instances of intraradical and extraradical hyphae.  
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A B

C D

E F

G H

Prediction Ground

Figure 2.1 Instance segmentation on the test set images of RIL plants. The left column (A, C, 
E, G) shows Mask R-CNN predictions of all five AM fungal structures: arbuscule, external 
hypha, internal hypha, vesicle, and spore. Random color is used to fill individual masks. 
Classification with confidence score is labeled on the corner of a bounding box. The right 
column (B, D, F, H) displays the ground truth annotations from human scorers. 
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The confidence score distributions of high precision predictions of root, extraradical hypha, 

vesicle and spore were left-skewed, indicating high certainty on the assigned class labels (Fig. 2.2). 

Arbuscules had lower confidence scores in comparison to sorghum roots (Fig. 2.2) (P<0.00003 

Tukey Multiple Comparison applied to an ANOVA of angular transformation of confidence scores). 

The low AP value and the high confidence score of extraradical hypha suggest that the main 

challenge for the Mask R-CNN is the pixel level segmentation of extraradical hypha rather than 

instance classification. Given the low AP value and confidence score of intraradical hypha, this 

fungal structure was dropped from latter analyses. Difficulty in arbuscule classification could be 

driven by the observation that arbuscules present in both isolation and clusters in sorghum roots. 

The observed frequencies of fungal structures from Mask R-CNN predictions did not differ from 

the frequencies counted by human scorers on the testing images (p-value = 0.786 with Fisher’s 

exact test). As the segmentation model produced satisfying results, we chose the best one (Table 

Arbuscule Extraradical hypha Intraradical hypha Spore Vesicle Root

0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0

0

5

10

15

Confidence score

D
en

si
ty

Figure 2.2 The best model trained using the in-house image dataset is used to do inference on the 
test set containing only in-house images of Georgia samples. Confidence scores are assigned to 
predicted instances during classification by the Mask R-CNN. A threshold of 0.7 was applied to 
select for high precision predictions only. Mask R-CNN has the highest confidence in labels 
assigned to predicted roots for showing a left skewed distribution. 
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2.1 Model A) for inference on a much larger in-house dataset (24,391 images) where images were 

collected in similar experimental settings. 

The pretrained model was also trained and tested with a combined dataset including the 

AMFinder dataset2 to illustrate how the model will be iteratively improved as more data are 

collected. The AMFinder dataset was made up of images collected from lab grown plants with a 

single AMF species inoculum and had patterns different from our in-house dataset collected from 

plants grown in soil from the field in Georgia, USA. With learning rates 0.001 and the default 

augmentation, we obtained a mAP of 29.6 and mAP50 of 50.2 in the combined test set (see 

Materials and Methods). This showed that our Mask R-CNN Model can be expanded and adapted 

to diverse conditions with different experimental settings as more representative training data are 

included.  

We then tested whether adding the AMFinder images to the training dataset improved 

model performance on our in-house AMF colonized root images. The model performance was 

slightly decreased on the original test set. The best model trained on the combined image set had 

a mAP of 21.4 and mAP50 of 39.7. Whether adding new data with patterns different from the 

targeted conditions needs further testing with different training schedules and approaches. 

2.2.2 From Image Segmentation to Measures of Fungal Morphology 

The best performing computer vision model on in-house images presented above was 

applied to over 20,000 images of 108 root samples from the top, middle, bottom root regions of 

12 sibling sorghum plants to generate pixel-wise segmentations of the five hyphal structures. From 

the segmentation results, the average quantity and size of fungal structures were computed for each 

root sample. Paired correlation analyses of the fungal structure morphological traits were examined 

first to identify whether fungal structures tend to co-occur in sorghum roots.  
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Positive associations dominated the frequencies of fungal structures. Higher occurrence of 

extraradical hyphae was consistently associated with higher occurrence of arbuscules. Vesicles and 

spores were positively correlated in sizes and counts. Larger number of vesicles and spores in a 

sample were suggestive of smaller arbuscules (Fig 2.3).  

2.2.3 Using Mixed Linear Models to Predict Total AMF Abundance with Fungal Structure 

Morphology  

From the morphometric data of fungal structures, two measures of total AMF abundance 

were computed: the percentage root area occupied by AMF (percent colonization) and the density 

of AMF per root area (count density). Mixed linear model (MLM) analysis of the two phenotypes 

as response variables and the fungal structure morphology traits as predictors provides a means to 

test two hypotheses in the study of differential colonization by AMF. One major hypothesis is that 

AMF presents differential colonization between root sections. The second hypothesis is that 

allocation to AM fungal structures varies between plants. In this section, background on mixed 

linear modeling serves as an accessible introduction to how MLMs can be used to test these two 

hypotheses. 

Figure 2.3 Significant correlations exist between structure counts and size. Shades of red indicate 
increasingly positive correlations. Shades of blue indicate decreasingly negative correlations. Fungal 
structures were abbreviated: arbuscule (arb), extraradical hypha (exH), intraradical hypha (inH), 
spores (sp), and vesicle (ves). For the correlations between fungal counts and sizes in the third panel, 
counts were arranged on the x-axis, sizes on the y-axis. 
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2.2.3.1 The Rationale for Mixed Effects  

Mixed Linear Models (MLMs), also known as multilevel or hierarchical models, feature 

fixed and random effects (Searle et al., 2009) (Box. 2.1). Experimental treatments are typically 

modeled as fixed effects. Individual observations are grouped by random factors. Random factors, 

therefore, constitute the grouping level. Fixed factors are estimated as the mean effect for a 

particular factor level. In contrast, if the primary interest lies in estimating between-group 

variances, variables are modelled as random effects. The estimated values of random factors are 

shrunk towards the population mean. 

The choice of using mixed effects to model AMF colonization is motivated by the 

experimental design. Our data are inherently hierarchical. AMF colonization was quantified in 

each of the three root regions within each sorghum plant, and three replicates were taken per root 

region (Fig. 2.4). The nested layers are plant, root depth, and replicate. The spatial scales between 

Plant 

Figure 2.4 Experimental design entails hierarchical sampling from a RIL population. Twelve 
inbred lines were used in the experiment. One plant of each inbred line was sampled from the top 
(TOP), middle (MID), and bottom (BOT) of the root system.  Each section was sampled three 
times. For each sample, 4 fields of view were imaged around each marker dot as shown on the 
schematic slide below, generating 192 root intersections per slide. Five fungal structures: 
arbuscule (arb), internal hypha (inH), external hypha (exH), vesicles (ves), and spore (sp) were 
segmented from each image. Root region is a variable recorded for each sample. Average size and 
count are computed for each class of instances found in a sample. 
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root samples and sorghum plants are biologically nested (Schielzeth & Nakagawa, 2013). 

Between-sample variance needs to be evaluated as a random factor. It would be wrong to treat root 

samples from the same sorghum plant as independent. The twelve sorghum plants are siblings 

randomly sampled from a RIL population. Between-plant variance is treated as a random factor as 

well. Root region and AMF structure level phenotypes are the fixed effects. The same model 

structure can be used to model the AMF count density.  

2.2.3.2 Mixed Linear Model Assumptions 

In MLM, both root samples and sibling plants are assumed to be randomly sampled from 

a population of samples and a population of sorghum recombinant inbred lines, respectively 

(Govindarajulu et al., 2021). It is assumed that the sampling errors (eij) and the plant level random 

effects (u0i) are independent and that the random effects and sampling errors have a normal 

distribution of zero mean and distinct constant variances (Box. 2.1). Another assumption is that 

the mean and variance of the response variable are not functionally dependent on each other across 

siblings. Transformation of the response variable is an effective method to remove the dependency. 

Choice of models are designed to address each of the three questions of the paper laid out at the 

end of the introduction. 

2.2.3.3 The Null Model (Model 1) 

The Null MLM Model does not include explanatory variables but only the mean overall 

AMF colonization and the plant level and sample level differences in colonization. The 

colonization by AMF of a root sample from a plant (yij) is equal to the mean colonization in the 

sorghum population (b0) plus the plant level random difference from the population mean (u0i) 

plus the sample level differences (eij) (Box. 2.1). This simple Null Model shows that MLM 

partitions   
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Box 2.1. Mixed linear models (Searle et al., 2009) discover relations between AMF colonization 
and count density on the one hand and accession and fungal morphology on the other hand. 
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the total variance in AMF colonization var(yij) into a variance between plants var(u0i) and a 

variance between samples var(eij) as shown from Box. 2.1 (Model 1) (Juan, Basile, et al., 2005). 

The between plant variance var(u0i) was estimated to be 0.0099 and two times that of the between 

sample variance var(eij) in Table 2.2. The proportion of the total percent colonization differences 

can be quantified at the plant level by computing the intraclass correlation (ICC) (Juan, Basile, et 

al., 2005).  

In Table 2.2, the ICC of Null Model was 0.647, which implies that 64.7% of differences in 

total percent colonization of AMF is at the plant level and could be controlled by the plant genome 

(Deng et al., 2021). An alternative hypothesis would be that this clustering of variance at the plant 

level might be attributable to the different composition of AMF structures, and this composition 

could be defined by the plant genome. We will come back to testing the alternative hypothesis in 

Models 3, 4, and 5. 

2.2.3.4 Random Intercept Model with Experimental Design Variable (Model 2) 

In Model 2, the Null Model (Model 1) is expanded by including the design variable, the 

root region where the root sample was obtained (Fig. 2.4), with fixed effect b1. Root region is a 

discrete predictor with three levels. The goal of the model is to investigate if AMF percent 

colonization differs between root regions and to determine the extent to which variance at plant 

level may change after taking into account differences in colonization in root regions. Proportional 
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change in variance (PCV) at different levels can be computed to evaluate the change using the 

following equation  (Juan, Min, et al., 2005; Nakagawa & Schielzeth, 2013), 

where var(u0i) is the between plant variance in the Null Model and var’(u0i) is the between plant 

variance in the new model. Comparing Model 2 to the Null Model 1, the PCVplant was equal to -

0.0221, and PCVsample was equal to 0.3648 in Table 2. We concluded that 36.48% of sample 

variance within plants in the null model is attributed to differences in root regions. By adjusting 

for the root regions where the sample was obtained, another 2.21% of the variance in percent 

colonization by AMF was accounted for by plant differences in Table 2.2.  

2.2.3.5 Random Intercept + Fixed Slope Model with AMF Structure Predictors (Model 3, 4, 

5) 

As mentioned earlier under the Null Model, an alternative hypothesis to the clustering of 

total percent colonization of AMF at the plant level is that the plant level differences in AMF 

abundance can be attributable to the different composition of AMF structures in the plants, which 

could be controlled by the plant genome (Deng et al., 2021; Merlo et al., 2005). To test the 

possibility, the three Models (3, 4, and 5) expand Model 2 by including arbuscule count and/or size 

as fixed effects determined to be significant by Lasso Regression (Groll & Tutz, 2014). By 

comparing Models 3, 4, and 5 to the Null Model, the changes in plant level variance can be 

measured using ICCs and PCVs after adding different AMF structure predictors to the model 

(Table 2.2). The interpretation of ICCs and PCVs leads to a major conclusion regarding the total 

AMF percent colonization and the composition of fungal structures, which is discussed in depth 

in a later section. 
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Table 2.2 Mixed linear models are well predicted for percent colonization by arbuscule count, 
arbuscule size, region, and plant. Proportional change in variance (PCV) is provided to measure 
the importance of random effects. Intraclass correlation (ICC) is used to implicate the variance 
between plants. Varied measures of fit are provided to assess model performance. 

The effect of average size of arbuscule (b2) and the effect of arbuscule count (b3) per sample 

are continuous variables that describe the association of the AMF structures with the total degree 

of root colonization by AMF (yij)s. A positive estimate of b3, for example, indicates a positive 

linear relation between AMF colonization and average arbuscule size. A larger estimate of b3 than 

b4 means arbuscule size has a stronger effect on total AMF colonization per unit increase than 

arbuscule count. In all three models, the relations between fixed effects and overall AMF 

Random Intercept Random Intercept 
+ slope

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Null 

Model 
Model with 
one fixed 

effect 

Model A with 
two fixed 

effects 

Model B with 
two fixed 

effects 

Model A with 
three fixed 

effects 

Model B with 
three fixed effects 

Fixed Effects 
    Intercept 0.3339 0.3360 0.3329 0.3307 0.3293 0.3410 

    regionTOP NA 0.0492 0.0354 0.0312 0.0241 0.0226 
    regionBOT NA -0.0552 -0.0322 -.0213 -0.0100 -0.0087

    arb_count_scaled NA NA NA 0.0885 0.0757 0.0937 
    arb_size_scaled NA NA 0.0490 NA 0.0346 0.0304 
Variance of fixed 

effects 
NA 0.0018 0.0040 0.0092 0.0109 0.0139 

Random Effects 
Variance between 

plants 
0.0099 0.0101 0.0056 0.0015 0.0010 0.0009 

Variance between 
root samples 

0.0054 0.0034 0.0024 0.0015 0.0009 0.0007 

Proportional Change in Variance (PCV) 
Between 

plants 
NA -0.0221 0.4355 0.8447 0.9003 0.9091 

Between root 
samples 

NA 0.3648 0.5640 0.7298 0.8344 0.8713 

Intraclass Correlation (ICC) or Variance Partition Coefficient (VPC) 
    Plants 0.6472 0.7470 0.7037 0.5133 0.5248 0.5645 

Model Performance 
    Marginal R2 NA 0.1190 0.3345 0.7539 0.8525 0.8532 
    Conditional R2 0.6472 0.7771 0.8028 0.8802 0.9299 0.9574 

    AIC -217.9263 -259.5121 -301.6817 -362.4751 -413.8518 -421.9404
    BIC -209.8799 -246.1014 -285.5889 -346.3823 -395.0769 -397.8012

    Deviance -223.9263 -269.5121 -313.6817 -374.4751 -427.8518 -439.9404
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colonization are considered to be the same in all sorghum plants. In other words, the slopes are 

fixed with respect to plant.  

2.2.3.6 Random Intercept + Random Slope Model with AMF structure predictors (Model 6) 

In Model 6, the effect of arbuscule count (b3) on overall AMF colonization may differ between 

sorghum plants. For examples, in some plants with high AMF colonization in the roots, arbuscules 

may be the dominant hyphal structure but not in other plants. In Model 6, the regression coefficient 

of AMF colonization on arbuscule count varies at the plant level to capture this differential effect. 

By comparing Model 6 to Model 5, it is possible to determine whether the assumption of varying 

magnitude of association of arbuscule count and percent colonization between plants holds.  

The total variance in AMF colonization var(yij) is still made up of two parts, a variance 

between plants var(u0i, u1ix1ij) and a variance between samples var(eij). The variance between 

plants var(u0i, u1ix1ij), however, partitions into a slope variance var(u1ix1ij), intercept variance 

var(u0i) and their covariance cov(u0i, u1ix1ij) (Subramanian et al., 2003). This variance is a quadratic 

function in arbuscule count:  

When there are random slopes in the model, the Variance Partition Coefficient (VPC), a function 

of arbuscule count, is calculated to measure the relationship of plant level variance to the total 

variance rather than an ICC (Subramanian et al., 2003): 

VPC is similar to ICC in terms of interpretation of the result. 
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2.2.4 Arbuscule Morphology is Predictive of Differential AMF Percent Root Colonization in 

Sibling Plants 

Looking at how the plant level variance changes as predictors such as root region, arbuscule 

size, and count were added to the Null Model in Model 2, 3, 4, and 5, we observed that, in Model 

6, 90.9% total variance in percent colonization is attributed to the plants (PCVplant = 0.9091). An 

VPC of 56.6% suggested that even if variance at plant level shrunk, it still explained the majority 

of differences in percent colonization. This is possible because the sample level variance dropped 

with the plant level variance by 87.1% as arbuscule count and size were added as predictors.  

Model 6 had the highest R-squared (Johnson, 2014; Nakagawa & Schielzeth, 2013) of 

0.9574 and desired lowest information criteria and deviance. A model with random slopes for both 

arbuscule counts and size were fitted but not included in Table 2 as it was not significantly different 
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Figure 2.5 Percent colonization is well predicted by Model 6. (A) Random slopes (red) are fitted 
to scaled arbuscule count for each plant. Fixed slopes for arbuscule size (grey) are shown as 
reference for easy visualization of the changing slopes of arbuscule count. The solid line represents 
the intercept of the top root region, which predicts for higher AMF percent colonization than 
sample mean. (B) Variance between plants and its VPC are plotted as a function arbuscule count. 
Scaled arbuscule count is plot on the x-axis, with Variance between plants as the main y-axis, its 
VPC on the secondary y-axis. 
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from Model 6 in a likelihood ratio test. Confidence scores for arbuscule was added as a fixed effect 

to Model 6 and was tested nonsignificant using a likelihood ratio test. In Fig. 2.5A, the expected 

values of AMF colonization from Model 6 were plotted to visualize the fit of the model to the data 

and the varying slopes between plants. The plant level variance and its VPC is a function of 

arbuscule count in Model 6 (Fig. 2.5B). The clustering of plant level variance was stronger when 

more arbuscules were observed, also reflected by the increasing of VPC (Fig. 2.5B). For example, 

N6F3, E37, N66, N102, and N116 had higher slopes and hence higher arbuscule counts than the 

Table 2.3 Mixed linear models are well predicted for count density by counts of hyphal structures, 
root regions, and sorghum accessions. Proportional change in variance (PCV) is provided to 
measure the importance of random effects. Intraclass correlation (ICC) is used to implicate the 
variance between accessions. Varied measures of fit are provided to assess model performance. 

 Random intercept Random intercept 
and slope 

 Model 1 Model 2 Model 3 Model 4 
 Null model Model with one fixed 

effect 
Model A with five 

fixed effects 
Model B with five 

fixed effects 
Fixed Effects x 109     
    Intercept 809770.357 793371.277 786651.710 790215.150 
    regionTOP NA 114053.586 76643.165 86253.886 
    regionBOT NA -64856.345 -7287.224 -8284.854 
    arb count scaled NA NA 66137.475 60660.157 
    exH count scaled NA NA 60918.089 63380.104 
    sp count scaled NA NA 47678.393 39526.530 
    ves count scaled NA NA 97338.416 111460.129 
    Variance of fixed effects NA 5.520 33.276 34.734 
Random Effects x 109     

Variance between    
Plants 

20.689 21.322 7.049 6.012 

    Variance between  
    root samples 

27.674 21.979 7.642 6.264 

Proportional Change in Variance (PCV) 
    Between plants NA -0.031 0.659 0.709 
    Between root samples NA 0.206 0.724 0.774 
Intraclass Correlation (ICC) or Variance Partition Coefficient (VPC) 
    Plant 0.428 0.492 0.480 0.490 
Model Performance     
    Marginal R2 NA 0.113 0.694 0.692 
    Conditional R2 0.428 0.550 0.841 0.875 
    AIC -1543.514 -1563.654 -1674.505 -1678.541 
    BIC -1535.467 -1550.243 -1650.366 -1649.037 
    Deviance -1549.514 -1573.654 -1692.505 -1700.541 
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remaining accessions. The remaining plants, however, had lower arbuscule counts and similar total 

AMF percent colonization. It was impossible to distinguish the remaining plants by their arbuscule 

counts. At first sight it seemed strange that arbuscule count should be selected as a predictor when 

it had lower confidence scores than other traits (Fig. 2.2), but as shown in Fig 2.5B, there were 

substantial differences in arbuscule count for the first 5 accessions, and that was why arbuscule 

count was selected for inclusion in the mixed linear model to explain plant level differences.  

2.2.5 The Plant Level Variance Component in Count is Stable across Models – Loss of 

Goodness of Fit in Random Effects is Offset by A Gain in Goodness of Fit to Fixed Effects of 

Fungal Structures 

The same variable selection and model selection procedure for overall AMF percent 

colonization was applied to fit overall AMF count density as the response variable. The b vector 

of fixed effects was modified to include the appropriate AMF structure phenotypes as predictors. 

Lasso regression (Groll & Tutz, 2014) selected the count measures of all fungal structures as fixed 

effects in the mixed linear model to predict overall AMF count density in sorghum plants. Forward 

selection removed the number of intraradical hyphae as an explanatory variable. Root regions and 

the counts of arbuscules, vesicles, spores and extraradical hyphae were the five fixed effects in 

Model 3 and 4 for count density. Random slopes were added with respect to the four effects of 

fungal structures. The effect of extraradical hyphae was the only one that differed between the 

sorghum plants. A random slope was added to the effect of extraradical hyphae in Model 4. We 

added the confidence score of extraradical hypha as a fixed effect to count density Model 4 and 

found that it was not a significant variable. 

The proportion of variance at the plant level remained stable as fixed effects were added to 

models (Table 2.2). In Table 2.3, the ICCs and VPC of between plant variance ranged from 0.428  
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Table 2.4 Tukey multiple comparison test with contrasts between region regions and their 
significance (p-values). The top, middle, and bottom root regions were abbreviated as TOP, MID 
and BOT. 

to 0.490, which was less than a 7% difference in variance explained. The proportional changes in 

plant variance decreased by 70.9%, which was compensated for by a 77.4% drop in sampling 

variance. What variation in count density lost to the fixed effects was replaced by the improved fit 

of the model. 

2.2.6 Differential AMF Colonization between Sorghum Root Regions 

A significant improvement of Model 2 to the Null Model 1 for both total AMF colonization 

phenotypes supports that AMF colonization was different between root regions. PCVsample was 

0.365 and 0.205 respectively for AMF percent colonization and count density (Table 2.2 and 2.3). 

The positive signs of PCVs suggest that the sample variances within plants in the null models are 

attributed to differences in root regions. The top root region had the highest colonization by t-tests 

at the 0.05 significance level (Fig. 2.6 A and B). Arbuscule count was a predictor essential for the 

modeling of both phenotypes in the previous section. It is a reasonable speculation that arbuscule 

count is a main driving force in the positive correlation of the two total AMF colonization traits. 

The speculation is sustained by larger arbuscule size (Fig. 2.6C), higher of arbuscules and 

Structure Count 
arb exH inH sp ves 

Contrast Estimate p-value Estimate p-value Estimate p-value Estimate p-value Estimate p-value
MID-
TOP 

-0.203 0.2538 -0.527 0.0015 -0.109 0.7834 -0.211 0.5379 0.192 0.4038 

MID-
BOT 

0.383 0.0096 0.385 0.0274 -0.193 0.4663 0.205 0.5580 -0.018 0.9922 

TOP-
BOT 

0.586 <0.0001 0.912 <0.0001 -0.084 0.8636 0.416 0.0957 -0.209 0.3397 

Structure size 
arb exH inH sp ves 

Contrast Estimate p-value Estimate p-value Estimate p-value Estimate p-value Estimate p-value
MID-
TOP 

-0.281 0.2341 0.162 0.6823 0.229 0.4966 -0.144 0.7754 -0.170 0.7275 

MID-
BOT 

0.469 0.0201 0.159 0.6942 -0.075 0.9274 0.308 0.3275 -0.243 0.5247 

TOP-
BOT 

0.750 <0.0001 -0.004 0.9998 -0.304 0.2944 0.447 0.0922 -0.073 0.9434 
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extraradical hyphae in the top root region (Fig. 2.6D), tested significant using Tukey Multiple 

Comparison tests (Table 2.4). 

Table 2.5 Multiple comparison test of AMF colonization along root regions. 

Although the morphological traits of other AM fungal structures did not have significant 

effects, they could still contribute to differential colonization. If the sorghum plants were colonized 

by equal amounts of AMF, Fig. 2.7 A and B showed how the relative abundance of AM fungal 

structures in the roots could differ. When the twelve sorghum plants were ranked in decreasing 

order of AMF percent colonization from left to right, the relative amount of arbuscules and 

extraradical hyphae trended downward. The same observation held if the panel was divided by 

root regions. 

To quantify the observation, one more phenotype was calculated, the amount of arbuscule 

and extraradical hyphae divided by the total AMF structures. It measures the proportion of nutrient 

exchange (PNE) structures (Johnson et al., 2003). After logit transformation, a mixed linear model 

was fitted to PNE with root region as the fixed effect and a plant level random effect. The intraclass 

correlation for PNE was 0.585. The conditional R-squared of the mixed linear model was 0.624. 

Tukey multiple comparison test showed that the top 0-15cm and the middle 15-30cm tested 

insignificant to each other, but both were tested significant to the bottom >30cm roots (Table 2.5). 

Percent colonization and count density had the middle 15-30cm root region tested insignificant 

against the bottom root regions. The levels of AMF colonization of the twelve sorghum plants were 

ranked differently with percent colonization, count density and PNE. Some similarity was found 

between percent colonization and PNE using Spearman correlation (rho=0.544, p<0.001) There 

 Percent colonization Count density Proportion nutrient exchange 
Contrast Estimate p-value Estimate p-value Estimate p-value 
MID-BOT 0.009 0.410 0.000032 0.345 0.408 0.011 
MID-TOP -0.023 0.005 -0.000077 0.004 -0.311 0.070 
TOP-BOT 0.031 <0.0001 0.000109 <0.0001 0.719 <0.0001 
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was no correlation between proportion NE and AMF count density (rho=-0.089, p = 0.362) (Fig. 

2.8).  
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Figure 2.6 AMF colonization and structure abundance vary with root depth. A and B show the 
distribution of total AMF percent colonization and count density by the top, middle, bottom root 
regions. Colonization is the highest in the top root region. To examine the reason for high AMF 
colonization in the top root region, Box and Whisker plots are used to display the size and count 
density of each AM fungal structure by root regions in C and D. 
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Figure 2.8 The stack bar plots reflect the relative abundance of AM fungal structures when the 
total AMF count density is assumed to be the same across sibling plants. Sibling plants are 
ordered in decreasing total AMF percent colonization. (A)The relative abundance of arbuscule 
and extraradical hypha decreases as the plant has more quantities of vesicle and spore. (B)The 
same relationship is observed in the top, middle and bottom root regions of sibling plants.  

Figure 2.7 The density plots of AMF percent colonization, count density and proportion of 
nutrient exchange (Proportion NE) are arranged on the diagonal. The phenotypes were 
transformed to be normally distributed. Scatter plots of each pair of phenotypes are visualized in 
the lower panel. Pearson correlation values and significance are displayed in the upper panel. For 
example, percent colonization and proportion NE has a 0.544 positive correlation. 
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2.3 Discussion 

2.3.1 Preferential AMF Colonization in Sorghum Roots 

The 15cm of roots closest to the soil surface presented highest total AMF colonization and 

proportion of nutrient exchange fungal structures (Fig. 2.4 and 2.6, Table 2.4 and 2.5). The total 

AMF richness and colonization at 0-10 cm soil depth were shown to be higher than at deeper soil 

layers in Pedicularis kansuensis at a subalpine grassland ecosystem (Wang et al., 2018). Kabir et 

al found that total colonization, total hyphae density, and spore density were highest at a depth of 

0-15 cm of soil in corn roots (Kabir et al., 1998). Top roots of sorghum produce secondary roots

and fine root via branching. The growing tip is at the bottom of the root. One hypothesis is that the 

AMF preferentially colonize the actively branching sections of sorghum roots. An alternative 

hypothesis is that the top layer is rich in phosphorus, defining the niche for AMF colonization 

(Wang et al., 2018). One way to test the first hypothesis is to examine the variation in root 

morphology between inbred lines with the software DIRT (Das et al., 2015) to see whether or not 

root morphology has an impact on fungal structure counts. The latter hypothesis could also be 

tested by using nanodots or phosphorus labeling experiments to track the exchange in the top layer 

(Whiteside et al., 2019). 

2.3.2 Plant Level Variance of AMF Colonization 

In the null model, the total variance in AMF colonization was composed of the sampling 

variance and plant level variance. Expanding the null models transferred the plant level variance 

from the variance components to the fungal structure morphology traits. One hypothesis for the 

result is that sorghum plants of different genotypic backgrounds determine overall AMF abundance 

in roots by manipulating the developmental stage of AMF species after colonization. Alternatively, 

in lifestyle studies of single AMF species, researchers found that the composition and morphology 
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of their fungal structures vary. Sorghum lines may match with a community of AMF species in the 

soil that generates different compositions of AM fungal structures in roots (Martignoni et al., 2021). 

Our experimental design does not permit direct testing of the amount of variance in AMF 

colonization that is under the genomic control of plant hosts, because there were no biological 

replicates of the RILs. If biological replicates were available, plant level variance would provide 

an estimate of population level variance of AMF colonization and the measurements, ICCs and 

VPCs, would capture the broad sense heritability including additive, dominant and epistatic effects. 

The results in Table 2.2 are suggestive of performing a large scale Genome Wide Association 

Study (GWAS) and or Recombinant Inbred Lines (RILs) study in Sorghum bicolor to test whether 

or not sorghum genes play a role in AMF colonization (De Vita et al., 2018b; Plouznikoff et al., 

2019). 

2.3.3 Differential AMF Colonization between Sorghum Inbred Lines 

Percent colonization was a new measurement of overall AMF abundance by taking the 

ratio of pixelwise segmentation of fungal structures and sorghum roots of our computer vision 

model. Count density was a similar measurement of AMF abundance to the output of McGonigle 

(McGonigle et al., 1990b) scoring method. The proportion of variance at plant level of these two 

phenotypes did not lose to the integration of fungal structure morphology traits into the models, 

which establishes them as favorable response variables for Genome-wide Association Studies of 

AMF colonization in sorghum populations. While both phenotypes were modeled with fungal 

structure morphology traits as fixed effects, the fixed effects differed in their ability to explain 

variability in the data. Two morphological traits of arbuscule were required to explain 95.7% 

variability in percent colonization suggestive of a mechanism for how the plant controls AMF 
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colonization. One example of a gene relevant to this mechanism encodes the protein DELLA (Floss 

et al., 2013; Yu et al., 2014). 

Count density was modeled with four fungal structures. The final fit to predicting count 

density explained 87.2% of variability. One could argue that percent colonization is a better 

phenotype for GWAS for its simplicity, goodness of fit and higher plant level variance. The plant 

level variance of the phenotype would decrease as the number of plant replicates and sorghum 

inbred lines grow in scale. Count density should not be discarded as technologies provide newer 

features to quantify AMF abundance. Finally, the two phenotypes did rank the twelve sorghum 

inbred lines in different orders. Inbred line L8 had the highest AMF count density but ranked 7th 

for percent colonization. Ranks for most other inbred lines were comparable. It is recommended 

to use both phenotypes in future studies of AMF colonization using computer vision.  

2.3.4 Role of Models across Scales to Understand the AMF Symbiosis with Plants 

To understand the symbiosis of Sorghum bicolor with AMF it has been necessary here to 

develop models that operate at multiple scales (Johnson et al., 2006). First, computer vision models 

were developed that provided the high throughput data to describe how AMF colonize the plant at 

the individual plant level. A variety of measures were developed that then can be used in GWAS 

studies to test the role of the plant genome in shaping the AMF microbiome. To avoid the 

confounding effects of environmental field variables in a GWAS, it will important to use factorial 

designs (Fisher, 1935) and blocking to separate the effects of accession from environmental field 

variables, like Nitrogen and Phosphorus levels. These models operated at the individual level of 

plants in the study. The computer vision models provided a diverse array of measures to describe 

the colonization process described above (Tables 2.2 and 2.3). We are in the process of not only 

automating classification and segmentation of fungal structures but full automation of image 
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acquisition as well. A final limitation of the computer vision phenotyping method here is not 

having live cell images to follow the dynamics of the structures. The Kokkoris laboratory (Cornell 

et al., 2022) has been able to follow the dynamics of nuclei in AMF, and it would be useful to adopt 

a similar approach to other AMF structures to gain a time dimension on colonization. Live cell 

imaging will also contribute to understanding the prepenetration apparatus (Genre et al., 2008), 

arbuscule formation (Floss et al., 2013), and AMF inheritance (Marleau et al., 2011). 

On top of the computer vision model for feature extraction, mixed linear models were 

added to discover relations between measures of overall AMF abundance with fungal structure 

morphology and root niche. This mixed linear modeling approach provides a framework for 

GWAS and QTL mapping by suggesting underlying mechanisms by which the plant genome 

controls the AMF community. For example, arbuscule count entered into the prediction. This 

relation suggests a mechanistic link to the arbuscules in how the plant genome controls the AMF 

microbiome. There are likely genes in both sides of the partnership controlling the development 

of these structures (Ivanov et al., 2019). Other layers to the modeling will need to be added to 

conceptualize our understanding of this ancient and fundamental symbiosis (Johnson et al., 2006). 
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2.4 Materials and Methods 

2.4.1 The Georgia Dataset 

Plant Cultivation: 

Sorghum plants were derived from Recombinant Inbred Lines (RILs), a mapping 

population consisting of 191 F3:5 from a cross between an unnamed accession of Sorghum 

propinquum (William Rooney, Texas A & M University, College Station, TX) and inbred line 

TX7000 of S. bicolor (Govindarajulu et al., 2021). The seeds were kindly provided by Jeff 

Bennetzen, one of the PIs who constructed the RIL collection (Govindarajulu et al., 2021). No 

permissions are needed to use these Sorghum accessions. Three seeds from 15 RILs were planted 

on October 5, 2020, in steam sterilized Sungro garden soil in 2.5-gallon pots at the UGA Botany 

Greenhouse. Seedlings were grown on a 11-hour light cycle. Plants were fertilized with 1 

tablespoon Osmocote. Individual seedling was transferred in 2.5-gallon pots filled with a 4:1 mix 

of steam sterilized turface and soil from Ironhorse Farm, Watkinsville, GA (Table 2.1) on day 15. 

Seedlings were grown to maturity on a 11-hour Light/Dark cycle with watering as needed. In 

addition, one commercial hybrid forage sorghum plant derived from Richardson, TX was 

harvested at Iron Horse Farm, GA on October 13, 2020, two grain sorghums of accession M72GB7 

at Iron Horse Farm, GA on November 12, 2020, a Colby sorghum at UGA Botany Greenhouse. 

All the methods were carried out in accordance with relevant Institutional guidelines and 

regulations. 

Root imaging: 

Random samples of 0.25g of fine roots were taken from the whole roots of Richardson, 

M72GB7, Colby, E46-W, N88, E24, E46 for training images. The cleaned whole roots were cut 

into 1 cm pieces. Fine roots with intact cortex were randomly selected and weighed to get 3 
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cassettes of 0.25g of samples per plant. Root samples were cleared in 10% alkaline hydrogen 

peroxide solution for 2 hours and in 5% KOH overnight at room temperature. Fungal structures 

were stained using a modified Ink and Vinegar method (Vierheilig & Piché, 1998). Stained roots 

were spread and flattened on slides prior for imaging. Mounted root samples were imaged at 200X 

magnification with a Zeiss Primo Star compound microscope equipped with an Axiocam 105 color 

camera. Focusing was done locally and manually for every field of view during imaging to increase 

sharpness, but no post image acquisition processing was involved, such as adjusting contrast. 

McGonigle method was used to generate images at 192 root intersections. The root intersections 

were 0.5 cm equidistantly spread across a 75 x 25mm glass slide. The fungal structures at root 

intersections were manually scored and annotated for training the computer vision model. 

To test for the differential AMF colonization in root regions and in sorghum plants, 12 RIL 

sorghums of E37, L8, N6-F3, N10, N43, N66, N68, N102, N108, N110, N116, and N162 were 

sampled from three root regions. The ‘TOP’ region was the first 15 cm of roots below soil surface. 

The ‘MID’ region is the next 15 cm below. The ‘BOT’ region was roots longer than 30 cm (Fig. 

2.4). Aerial roots were excluded from sampling. From each region of a plant, 3 technical replicates 

of 0.25g of fine roots with intact cortex were randomly sampled. Each plant was represented with 

a total of 9 cassettes or 2.25g of root samples. A line has only 1 plant as biological replicate. The 

same clearing, staining and imaging procedures were applied. 

2.4.2 The Cambridge Dataset 

The publicly available Cambridge dataset (zenodo ID 10.5281/zenodo.5118948) included 

15 whole slide scanning images acquired with a VHX-5000 digital microscope (Keyence, Milton 

Keynes, UK) set to ×200 magnification. The images were downloaded from the zenodo data portal 

using the zenodo-get software method. The 15 whole slide images were in jpg format and 10389 
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× 5108 pixels and 96 pixels/inch in size. The original annotations were discarded. The same 

annotators and annotation standards for the Georgia dataset were used in reannotation to maintain 

uniformity. The annotated images were tiled and added to the Georgia dataset to create a secondary 

training set for more and even representation of each AMF class.  

2.4.3 Image Annotation  

The root image annotation was conducted using the VGG annotator tool (Dutta & 

Zisserman, 2019). The fungal and root structures were manually annotated using the polygon tool. 

One of seven class labels was assigned to a structure (Table 2.1). The annotation results were 

exported as a json file and csv table. All 746 jpg images in the Georgia dataset were segmented 

and annotated. We generated 3577 polygon annotations. A total of 14 out of 15 images were 

selected from the Cambridge dataset and produced 20588 annotations. The annotation criteria can 

be found in Table 2.6.  

 

Table 2.6 Annotation rules for masking AM fungal structures. 
Class Annotation Rules for the Georgia Dataset 
root Plant root with intact cortex 
extradical hypha (exH) Filamentous structure outside the boundary of a plant root annotation 
intraradical hypha (inH) Filamentous structure within the boundary of a plant root annotation 
spore (sp) 
 

Circular structures with a solid outline, connected to AMF external 
hypha, and outside the boundary of plant root 

vesicle (ves) 
 

Circular or rectangular structures with a solid outline and within the 
boundary of plant root 

arbuscule (arb) 
 

Highly branched hypha with fuzzy outline and connected to 
intraradical hyphae within the boundary of plant root 

others Non-AM fungal structures 
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2.4.4 Data Cleaning 

The Georgia and the Cambridge datasets were cleaned to produce similar input data. All 

segmentation shapes were approximated by polygons, including converting polyline to polygon 

directly and resampling points in circles to produce polygons. Some segmentation shapes, 

including point, rectangle and ellipse, were removed. Empty and undefined segmentations were 

also removed. Classes with few representative examples were merged into ‘others’. Class labels 

were made uniform in their vocabularies. The final class list included root, AMF internal hypha, 

AMF external hypha, AMF arbuscule, AMF vesicle, AMF spore and others. The cleaned Georgia 

dataset included 746 jpg images that are 2380 × 1740 pixels and 300 pixels/inch in size and 3577 

annotations. 

The Cambridge dataset needed additional processing steps. To have comparable input data 

in size, the 14 images were tiled and subsampled. The images were tiled into squares of 512 × 512 

pixels and smaller images on the boundaries. The segmentations were subsampled to fit each tile. 

New segmentation polygons were produced at the intersection of the tiles and the original 

segmentations using Shapely (Gillies & others, 2007--). Polygons with self-intersection were 

dissected into smaller simple polygons. Points and LineStrings were ignored as subsampling 

results. Indices for segmentation and bounding box were recalculated relative to the new tiled 

image. Only tiled images with at least one segmentation annotation were kept. The quality of tiling 

and subsampling were checked by comparing segmentation in the raw images and the tiled small 

images visually. The resulting Cambridge dataset included 1379 tiled jpg images that are 512 × 

512 pixels and 96 pixels/inch in size and 20558 annotations. 

The Georgia dataset was separated into training, validation and testing sets at 8:1:1 ratio. 

The training set has 598 images and 2874 annotations. To increase the number of examples for 
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each fungal structure, the Cambridge dataset was divided in the same 8:1:1 ratio and merged to the 

previous Georgia training, validation and testing sets. The secondary training set is made up of 

1105 images and 16417 annotations. The final prediction set was consisted of 24,391 root images 

from the ‘TOP’, ‘MID’, and ‘BOT’ regions of 12 sorghum RIL plants. Images with height or width 

less than 100 pixels in the prediction set were dropped. 

2.4.5 Mask R-CNN Model training  

Mask R-CNN was implemented in Detectron2 (K. M. He et al., 2017; Yuxin Wu et al., 

2019) and is composed of the backbone, the region proposal network (RPN), and heads (K. M. He 

et al., 2017; Y Wu et al., 2019). The ResNet 50 and FPN (Feature Pyramid Network) backbone 

extracts feature map from images (K. M. He et al., 2017; T.-Y. Lin et al., 2014). RPN proposes 

candidate regions (Ren et al., 2015). Heads produce bounding box, mask, and class inferences. 

The Mask R-CNN model was pretrained on the COCO dataset with 3x schedule (K. M. He et al., 

2017; T. Y. Lin et al., 2014; Yuxin Wu et al., 2019). The pretrained model was retrained on the first 

and secondary training sets for 50 epochs with batch size 2 and the default learning rate schedule. 

Different hyperparameters were tested, and each combination was repeated three times 

with different random seeds. Learning rates of 0.001 and 0.002 were tested. The number of frozen 

or fine-tuned backbone modules was varied by changing the ‘FREEZE_AT’ parameter from 1 to 

3. Two augmentation options were implemented. The default option included image random flip

and resize, and the second option added random crop, rotation, and brightness adjustment as 

augmentation options. Other parameters were set to the defaults in Detectron2 configuration 

(Yuxin Wu et al., 2019).  
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Model performance and hyperparameters were evaluated based on mean Average Precision 

(mAP). The best fine-tuned model for defined hyperparameters was selected based on total loss in 

validation set during training (K. M. He et al., 2017). 

The model quality metric mAP was calculated with varying confidence thresholds and 

averaged over all classes. In addition, AP50 was calculated at Intersection over union (IoU) level 

50%, and AP was averaged over IoU levels from 50% to 95%. Score threshold for inference in test 

set was set to 0.7. 

2.4.6 Mixed Linear Model Prediction And Statistical Analysis 

The best model was used for the prediction set of 24,391 images. Other settings remained 

the same as training. Inferred segmentations in an image were cross-tabulated by class versus 

segmentation number and pixel number. For downstream statistical analysis on AMF colonization, 

three class level statistics were generated using the two outputs above.  

Count density of an AMF structure was defined as its segmentation number divided by the 

root pixel number (count/pixel). Average class size of an AMF structure was its pixel number 

divided by its segmentation number (pixel/count). Percent colonization by an AMF structure was 

measured as its pixel number per root pixel (pixel/pixel). The three class level colonization 

statistics were calculated for every slide. A total of 648 entries was used for regression analysis to 

test for differential colonization in root regions and sorghum plants.  

Mixed effect models in ‘lme4’ R package (Bates et al., 2015) were used for modeling the 

three class level AMF colonization statistics. ANOVA and t-tests were used to test for the 

significance of model parameters. Likelihood ratio test was used to test the significance of a model 

to a nested model. 
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2.4.7 Computational Resources 

Model training and inference was implemented on sapelo2 at the Georgia Advanced 

Computing Resource Center (GACRC) with one p100 GPU, 4 CPUs, and 20 GB memory. GPUs 

were used for model training. CPUs were used for model inference. Codes are available in GitHub: 

https://github.com/Arnold-Lab/image_seg_sorghum_am. 

2.5 Data Availability 

Summary data and codes are available in GitHub: https://github.com/Arnold-

Lab/image_seg_sorghum_am. The analyses and manuscript are available in RStudio with the 

exception of the tables, which were converted manually back to Word formatting from image 

formatting at the request of the publisher. The large collection of over 20,000 raw images is 

available upon reasonable request from a shared DropBox folder. 

https://github.com/Arnold-Lab/image_seg_sorghum_am
https://github.com/Arnold-Lab/image_seg_sorghum_am
https://github.com/Arnold-Lab/image_seg_sorghum_am
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Abstract 

Developing deep learning tools for automated quantification of arbuscular mycorrhizal 

fungi (AMF) necessitates large, high-quality datasets capturing the diversity of AMF-root 

interactions under varied environmental conditions. We present MycorrhiSEE, a 15-Terabyte (Tb), 

high-resolution image dataset comprising approximately 137,500 whole-slide images (WSIs) of 

root segments from 5,500 sorghum plants representing 337 genotypes, grown under diverse 

agronomic treatments. Images were acquired using the ZEISS AxioScan 7 high-throughput robotic 

microscope equipped with a 5-megapixel resolution color camera. This dataset provides 

unprecedented detail and diversity, offering a valuable resource for developing deep learning 

applications in AMF research. A new spline-based method was developed to transform WSIs into 

deep learning-ready image patches. We validated the robustness of the algorithm by analyzing 

eight bootstrap samples of a thousand images each classified as excellent, moderate, or bad quality 

by four independent experts. The goodness of fit, roughness, and irregularity of the splines were 

uniform across all quality levels, confirming our method's reliability for generating patches from 

gigapixel plant root images. These patches will be used as an input to deep learning algorithms 

capable of detecting and classifying mycorrhized root segments and types of fungal structures 

presented. 
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3.1 Introduction 

Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with the roots of 70–

90% of terrestrial plants (Smith & Read, 2010). In this mutualistic partnership, plants transfer up to 

20% of their photosynthetically derived carbon to AMF (Johnson et al., 1997a), which in return 

facilitate the uptake of essential nutrients such as phosphorus, nitrogen, and other micronutrients 

(W. Wang et al., 2017). AMF significantly enhance plant nutrient absorption, improve soil structure, 

boost plant resilience to environmental stressors, and increase plant biomass and biodiversity 

(Baum et al., 2015; María J Pozo & Concepción Azcón-Aguilar, 2007; Juan Manuel Ruiz-Lozano 

et al., 2012; Zhong et al., 2021), making them critical for sustainable agriculture and ecological 

balance. To fully harness AMF as mutualistic biofertilizers, large-scale ecological and genomic 

studies are necessary to understand the complex interactions between AMF, plants, and their 

environments, as well as the genomic regulation of plant-AMF symbiosis (Klein et al., 2022). 

Imaging has been the primary method for studying the frequency and distribution of AM hyphal 

structures (SMITH & SMITH, 1997a). However, traditional imaging methods for quantifying AMF 

structures are time-consuming and prone to human bias, limiting scalability (McGonigle et al., 

1990b). The development of deep learning-based computer vision tools for automated recognition 

C. E. 

F. G. H. 

D. A.

B. 

Figure 3.1 Left: A. Root segments arrange in U-shapes on a labeled microscope slide; B. WSI of 
a single root segment. Right: AM fungal structures were captured in high resolution as shown in 
the zoomed-in images with arrows pointing to C. arbuscules, D. extraradical hypha, E. spores, F. 
intraradical hypha, G. vesicles, H. coils. 
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and segmentation of AMF structures is promising but limited by the lack of comprehensive, 

annotated datasets that reflect the diversity of AMF-root associations (Evangelisti et al., 2021a; 

Shufan Zhang et al., 2024).  

To address this need, we created MycorrhiSEE, a high-resolution, large-scale dataset of 

mycorrhized root images, collected utilizing Whole Slide Imaging technology (Shafi & Parwani, 

2023). The dataset comprises ~137,500 multi-gigapixel images of fine roots from 5,500 sorghum 

plants representing 337 genotypes, grown under varied agronomical conditions (Fig. 3.1). To 

facilitate deep learning applications, we have developed a specialized tiling algorithm and created 

annotations that classify image tiles as colonized or non-colonized and by image quality (S. Zhang, 

W. Lantz, et al., 2024). The scale and quality of the MycorrhiSEE dataset provide an unprecedented 

level of detail and diversity, offering a rich resource for the AMF research community and for big 

data analytics.  

3.2 Data Description 

3.2.1 Sample Collection 

Table 3.1 Overview of Experiments in the Dataset 
 Experiments were conducted in 

Watkinsville, Georgia to study AMF-plant 

interactions under varied conditions, 

including fertilizer treatments, fungal 

diseases, plant developmental stages, and 

long-term monoculture effects (Table 3.1). The studies used the Bioenergy Association Panel 

(BAP), a genetically diverse population of Sorghum bicolor (Brenton et al., 2016).  

Seedlings from the BAP accessions were germinated in a greenhouse and transplanted to 

the field after 2 weeks. Each plant was uniquely labeled with a QR code carrying genotype and 

Experiment Year # Plant 
Genotypes # Samples # Slides 

Time-series 
experiment 2020 15 

3 replicates 
5 timepoints 
225 samples 

1028 

Fertilizer 
treatments 2021 337 

3 replicates 
4 treatments 
4044 
samples 

3682 

Long-term 
monoculture 

2020-
2025 75-85 

3 replicates 
4 years 
960 samples 

790 
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field position, a system retained throughout cultivation and image acquisition. At the time of 

harvest, plant age, flowering status, height, dry weight, tiller number, tiller width, disease load, 

and root dry weight were recorded. Plant roots were chilled on ice and transferred into 75% ethanol 

the same day for long-term storage at 4°C. From each plant, a 0.25 g sample of fine roots was 

randomly selected, and cleared and stained via a modified ink and vinegar protocol (Vierheilig & 

Piché, 1998). For imaging, 20-30 root segments of ~1 cm were mounted in a U-shape on slides to 

ensure alignment during stitching (Fig. 3.1A). 

3.2.2 Image Acquisition 

A ZEISS AxioScan 7 microscope, equipped with an Axiocam 705 color CMOS camera, 

was used to scan up to 100 slides per run. The microscope automatically identified QR codes for 

file naming and followed structured image acquisition steps optimized for MycorrhiSEE root 

samples (Fig. 3.2). After automatic sample detection, adaptive coarse and fine focus mapping were 

Figure 3.2 A demonstration of the sample processing and image acquisition workflow. The 
modified ink and vinegar protocol and microscope settings were summarized. 



 61 

applied to maximize contrast across sample regions. Focus points were evenly distributed across 

the sample area based on size (mm²). Coarse focusing, performed with a Fluar 5×/0.25 M27 

objective lens, covered a 616.39 µm range with a 24.90 µm step size. Fine focusing refined the 

depth within a 250 µm range centered on the coarse focus and used a 3.84 µm step size with a 

Plan-Apochromat 10×/0.45 M27 objective lens. During the final scan, image frames were captured 

at 2560 × 1920 pixel resolution 0.347 µm effective pixel size and stitched in real-time with 10% 

overlaps, producing WSIs with JpegXR lossless compression. WSIs and metadata were exported 

in ZEISS CZI format to ensure spatial integrity and data fidelity. The acquisition settings are 

reproducible by loading the scan profile saved in ZEISS csprof format.  

3.2.3 Image Annotations and Quality Assessment 

The resulting MycorrhiSEE dataset consists of 15 Tb of WSIs of fine root segments. To 

assess image quality, we randomly sampled 10,000 WSIs across 10 bootstraps, categorizing them 

as Excellent, Moderate, or Bad based on U-shape integrity, orientation, root branching, and clarity. 

The average quality distribution across bootstraps was 44.91% (±5.55) Excellent, 50.09% (±5.35) 

Moderate, and 5.80% (±1.25) Bad. For detailed quality assessment, a subset of 1,780 WSIs were 

evaluated for extra image quality factors, including U-shape deformity, dirtiness, opacity, and 

blurriness, and assigned severity scores on a scale of 1 to 7, where higher scores indicated lower 
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Figure 3.3 The histogram illustrates the quality score distribution of 1,780 WSIs. The scores, 
ranging from 1 (highest quality) to 7 (lowest quality). Scores of 2 and 3 dominate the distribution, 
with over 500 images in each category. Few WSIs reached the poorest quality categories (6 or 7), 
suggesting high image quality of the overall dataset. 
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image quality. The analysis revealed that the majority of WSIs fell within the higher quality range 

(Fig. 3.3). Furthermore, we selected high quality image tiles (701´701) with 75% or greater root 

coverage and created a balanced classification dataset consisting of 1,500 colonized and 1,500 

non-colonized tiles. 

3.3 Spline-guided Tiling Algorithm 

\To convert WSIs to direct inputs for deep learning-based computer vision algorithms, we 

developed a spline-guided tiling algorithm to remove blank backgrounds and generate high root 

coverage tiles of desired dimensions (S. Zhang, W. Lantz, et al., 2024). We utilized the Otsu's 

thresholding (Otsu, 1979) to isolate the significant root contours, selecting the largest to convert 

into a list of points. A quadratic polynomial was fitted to the points. The second derivative of the 

polynomial was computed to determine the concavity of the root segment. WSIs were rotated so 

that all root segments were convex. To satiate the injective condition of spline interpolation on a 

fixed coordinate frame, the smallest y value was selected for a multivalued x. Then, the unique 

shapes of contours were represented by a piecewise cubic function with six evenly distributed 

Figure 3.4 Demonstration of our spline-based method vs. standard sliding window method. Red 
spline guides the positioning of the colorful patches to trace the shape of the root segment. The 
white gridline divides the entire image into equal sized patches. 
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internal nodes (De Boor, 2001). We ensured a smooth interpolation by applying two continuous 

derivatives at each knot. Our algorithm computes uniformly spaced anchor points along the cubic 

spline, based on estimated arc length using the composite trapezoidal rule. The orientation and 

vertices of the patches were computed using the tangent and normal vectors at the anchor points, to 

position patches along the spline's curvature (Fig. 3.4).  

The robustness of the algorithm was tested with 1000 WSIs bootstrapped 8 times. Four 

operators independently categorized WSIs into 

Excellent, Moderate, or Bad based on U-shape 

integrity, orientation, root branching, and clarity. 

Excellent images exhibited a complete, correctly 

oriented U-shape; Moderate images allowed for 

broken U-shapes and minor imperfections; Bad 

images included misshapen or highly branched 

roots and empty or out-of-focus images. Across 

bootstraps, the image quality distribution 

averaged 44.91 (±5.55)%, 50.09 (±5.35)% and 

5.80 (±1.25)% for Excellent, Moderate, and Bad, 

respectively. Our performance metrics for fit, 

roughness, and irregularity—residual sum of 

squares, third derivative average, and 

curvature— were stable across quality categories 

(Fig. 3.5).  
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Figure 3.5 In violin plots, A) Residual sum of 
square of spline on log10 scale; B) Average 
third derivatives of spline on log10 scale; C) 
Curvature of spline  
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For 1000 bootstrap WSIs, we categorized the resulting 701 ´ 701 pixel image tiles by root 

coverage. Approximately 21.1% (8,879 images) had 75–100% root coverage, while the remaining 

tiles were distributed across 50–75% (9,898 images), 25–50% (6,764 images), and less than 25% 

root coverage (16,584 images). This distribution revealed underlying taxnomy groups within 

image tiles by root coverage.  

3.4 Conclusion 

 This annotated dataset serves as a foundation for developing deep learning models for 

quantifying AMF colonization and evaluating root image quality. The MycorrhiSEE dataset will 

continue to expand in the coming years as root samples from ongoing and future experiments are 

imaged and added to the collection. This growth will further enhance the dataset’s diversity and 

utility for AMF research.  

Additionally, we present a robust algorithm for generating patches from WSIs as DL inputs. 

To showcase its efficiency, we aim to compare it to the standard sliding-window method in 

producing informative patches. Enhancements to patch quality may involve analyzing the area of 

overlap with root segments and using local histogram equalization to improve tile image quality. 

We anticipate the broad applicability of our algorithm, extending to roots taken under contexts 

beyond mycorrhizal colonization research and analogous structures, such as roads, cracks, and 

blood vessels, in DL research.  

 Meanwhile, we are actively developing deep learning-based tools for more comprehensive 

image quality assessment, enabling finer categorization and filtering of WSIs based on multiple 

quality metrics. These tools will support more accurate and scalable analyses, maximizing the 

dataset’s potential for advancing big data-driven solutions for image-based AMF quantification. 
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3.5 Data Availability 

The dataset and annotations are available upon request. The spline based tiling algorithm 

is available at https://github.com/Arnold-Lab. The experiment metadata associated with the WSIs 

will be disclosed after the experimental results are published. 
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CHAPTER 

4 

HIGH-THROUGHPUT QUANTIFICATION OF ARBUSCULAR MYCORRHIZAL FUNGI 

COLONIZATION USING SPLINE-GUIDED TILING AND CROSS-DOMAIN TRANSFER 

LEARNING WITH WHOLE-SLIDE IMAGES1 

4 HIGH-THROUGHPUT QUANTIFICATION OF ARBUSCULAR MYCORRHIZAL 

FUNGI COLONIZATION USING SPLINE-GUIDED TILING AND CROSS-DOMAIN 

TRANSFER LEARNING WITH WHOLE-SLIDE IMAGES 

1Zhang, S., T. Bourlai and J. Arnold. 2025. To be submitted to IEEE Access. 
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Abstract 

Quantifying arbuscular mycorrhizal fungi (AMF) colonization in plant roots through 

microscopy imaging poses significant challenges due to labor-intensive processes, human biases, 

and limited throughput. To address these challenges, we introduce an integrated deep learning 

pipeline with three key innovations. First, we developed an enhanced spline-guided tiling 

algorithm along with novel quality metrics to evaluate its effectiveness, demonstrating robust 

performance across two distinct datasets: MycorrhiSEE and AMFinder. Second, we proposed a 

two-step convolutional neural network (CNN) classification approach to quantify AMF 

colonization by counting colonized tiles within whole-slide images (WSIs). This stratified 

classification process simplifies training by initially removing easily identifiable background tiles 

using a ResNet50-based classifier, achieving an accuracy of 99.7%, and subsequently classifying 

tiles into colonized and non-colonized root regions. Third, we conducted comprehensive 

experiments evaluating the within- and cross-domain performance of various pretrained CNN 

architectures with differing depths, widths, and computational efficiencies. Our findings identify 

DenseNet and ResNet50 as the most suitable architectures, consistently outperforming baseline 

models and achieving accuracies exceeding 98%. Collectively, these innovations facilitate scalable, 

high-throughput, and accurate AMF colonization quantification, significantly advancing precision 

agriculture and ecological research by overcoming previous computational and generalization 

limitations.  
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4.1 Introduction 

Precision agriculture enhances crop productivity and sustainability by tailoring agricultural 

practices to specific land conditions (Ayoub Shaikh et al., 2022). One promising but underutilized 

approach involves manipulating plant microbiomes to improve crop performance and resilience 

(Pace et al., 2025). Among microbial symbionts, arbuscular mycorrhizal fungi (AMF) play a 

crucial role in plant root systems, enhancing nutrient uptake, suppressing disease, and increasing 

stress tolerance, particularly in arid and nutrient-poor soils (Kakouridis et al., 2022; M. J. Pozo & 

C. Azcón-Aguilar, 2007; J. M. Ruiz-Lozano et al., 2012). Found in nearly all crops and soil types, 

AMF contribute to agricultural sustainability by improving soil structure and reducing greenhouse 

gas emissions (Field et al., 2012b; Hawkins et al., 2023; Wilson et al., 2009). 

The global market for mycorrhizae-based biofertilizers, including AMF, is projected to 

grow from USD 1.29 billion in 2025 to USD 2.05 billion in 2030, doubling in five years 

(Intelligence, 2024). Despite this growth, there are no standardized guidelines for integrating AMF 

inoculations with conventional agricultural practices to maximize their benefits for plant and soil 

health (Rillig et al., 2019). The beneficial effects of mycorrhizal symbiosis are highly context 

dependent (Johnson et al., 1997b; Koch et al., 2017; Yang et al., 2017). The integration of 

knowledge on AMF symbiosis across diverse crops, accessions, and management practices 

remains challenging due to the absence of consistent and objective measures of AMF colonization, 

hindering cross-study comparisons and data integration (Antunes et al., 2025). 

Quantifying AMF colonization in field-grown plants presents significant challenges due to 

the limitations of traditional imaging methods (McGonigle et al., 1990a; Trouvelot, 1986). These 

manual techniques are labor-intensive and prone to human bias (Füzy et al., 2015; Kokkoris et al., 

2019). Advances in high-throughput imaging and deep learning (DL) offer a transformative 
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solution (Ferguson et al., 2021). Whole-slide scanning enables the rapid acquisition of large 

imaging datasets (S. Zhang, T. Bourlai, et al., 2024), while DL algorithms can automate and 

enhance AMF identification and quantification (Evangelisti et al., 2021b; Shufan Zhang et al., 

2024). 

However, applying deep neural networks to whole-slide images (WSIs) for AMF 

quantification remains a non-trivial task. WSIs are massive multi-gigapixel images where fungal 

colonization is sparse, requiring computationally efficient strategies to extract relevant features 

(Kong & Henao, 2022). Directly processing WSIs is infeasible due to GPU memory constraints, 

while excessive downscaling compromises spatial details critical for accurate analysis. 

Additionally, variability in imaging systems, sample preparation, magnification, sensor resolution, 

and staining techniques (e.g., differences between AMFinder and MycorrhiSEE datasets) leads to 

domain shifts, reducing model generalizability (Evangelisti et al., 2021b; S. Zhang, T. Bourlai, et 

al., 2024). Annotation inconsistency and imbalances further hinder the extraction of robust features 

across datasets. 

To address these challenges, we present an integrated pipeline combining an enhanced 

spline-guided tiling algorithm (S. Zhang, W. Lantz, et al., 2024), a two-step classification approach, 

and cross-domain training with ImageNet-pretrained models to quantify AMF colonization in plant 

root WSIs. Our improvements to the spline-guided tiling algorithm include new quality metrics 

and modifications to enhance robustness across two whole slide imaging systems (Zeiss vs 

Keyence). This algorithm efficiently partitions WSIs into biologically relevant regions, excluding 

extraneous background to optimize computational resources. 
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Figure 4.1 A) Workflow of proposed approach using an enhanced spline-guided tiling algorithm 
with improvements 1-4 to generate input tiles from root WSIs, a data processing step to filter out 
low quality tiles with low root coverage, and two classifiers to count AM colonized tiles. 
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Figure 4.1 B) Examples of AMFinder and MycorrhiSEE images in the proposed workflow 
demonstrated in Fig. 4.1A.   
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The two-step classification first employs a ResNet50-based classifier to filter out 

background tiles (Background Classifier), followed by fine-tuned deep convolutional neural 

networks (CNNs) to distinguish colonized (M+) and non-colonized (M–) root regions 

(Colonization Classifier). We evaluate a diverse set of ImageNet-pretrained architectures, 

including shallow and deep networks optimized for parameter propagation and training efficiency 

(Fig. 4.1A).  

Our approach demonstrates that integrating whole-slide imaging with deep learning 

achieves high classification accuracy and balanced performance, providing a scalable, high-

throughput tool for AMF quantification. Our findings highlight the importance of transfer learning 

and cross-domain training for robust mycorrhizal colonization classification across diverse 

imaging conditions. By systematically evaluating pretrained deep learning architectures, we 

provide critical insights into optimal model design for AMF quantification. These advancements 

enhance the precision and efficiency of AMF colonization analysis, supporting the broader 

application of high-throughput phenotyping in plant–microbe interaction research. 

4.2 Related Work 

4.2.1 Microscopy-Based AMF Characterization 

Microscopy imaging has played a fundamental role in the study of arbuscular mycorrhizal 

fungi (AMF), facilitating research on their morphology, symbiosis, and ecological functions. Early 

AMF studies in the 1900s relied on staining techniques such as trypan blue (Phillips & Hayman, 

1970) and the ink-and-vinegar method (Vierheilig et al., 1998) to visualize fungal structures, 

enabling detailed characterization of hyphae, appressoria, arbuscules, vesicles, and spores across 

species and genera using brightfield and dissection microscopes (Dodd et al., 2000; Friese & Allen, 

1991; Smith & Smith, 1997b; Smith & Read, 1997). Metabolic stains indicate nutrient exchange 
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between plant host and AMF (Boddington & Dodd, 1998, 1999; Vosatka & Dodd, 1998; Wanxiao 

Wang et al., 2017). 

By the 2000s, microscopy remained important for measuring AMF colonization across a 

variety of plant genotypes and environmental conditions (Baon et al., 1993; Cockerton et al., 2020; 

De Vita et al., 2018a; Ellouze et al., 2015; Hetrick et al., 1992; Johnson et al., 2022; Kaeppler et 

al., 2000; M. L. Pawlowski et al., 2020; Plouznikoff et al., 2019; Sawers et al., 2017; Schultz et 

al., 2010; Stahlhut et al., 2021; Taylor et al., 2015; S. J. Watts-Williams et al., 2019). Fluorescence 

and live-cell imaging further advanced AMF research, enabling real-time observation of signaling 

pathways and metabolic exchanges in symbiosis (Ivanov & Harrison, 2014; Kobae & Hata, 2010; 

Kokkoris et al., 2020; MacLean et al., 2017; Oyarte Galvez et al., 2025). More recently, genomic 

advancements have been coupled with high-resolution imaging, linking genetic markers to AMF 

colonization patterns, morphological characteristics, and functional responses (Martin & van der 

Heijden, 2024; Säle et al., 2021). 

Despite these advancements, scalability remains a major challenge, as conventional 

microscopy techniques are labor-intensive and lack the throughput necessary for large-scale 

studies. Standardized high throughput imaging techniques could further improve the accuracy and 

reproducibility of quantitative estimates, allowing researchers to measure hyphal, vesicular, and 

arbuscular root colonization more reliably, ultimately enhancing ecological models predicting 

AMF functionality (Antunes et al., 2025; Kokkoris et al., 2019). The increasing demand for high-

throughput, automated imaging solutions has driven the adoption of deep learning-based computer 

vision methods to enhance the efficiency of AMF quantification. 
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4.2.2 Deep Learning for Image-Based Analysis 

Convolutional Neural Networks (CNNs), a subset of deep learning (DL), have become the 

dominant approach for image classification, object detection, and segmentation in various domains 

(Dong et al., 2021; Noor & Ige, 2024; Younesi et al., 2024). A typical CNN architecture consists 

of convolution layers, pooling layers, and fully connected layers. Convolution acts as powerful 

feature extractors, enabling neural networks to learn spatial and hierarchical representations of 

image data, including edges, textures, and shapes (Krizhevsky et al., 2017). 

The modern evolution of CNNs can be contributed to increased GPU processing power 

and the availability of large-scale labeled datasets such as ImageNet (Deng et al., 2009). Since 

2012, CNN-based models have dominated the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC), achieving human-level accuracy by 2015 with the introduction of ResNet 

(He et al., 2016). However, CNNs rely on large labeled datasets and substantial training, limiting 

their application in specialized domains where labeled data is scarce (Cheng et al., 2022; Iqra et 

al., 2024).  

To address these limitations, transfer learning has emerged as a promising solution (Raina 

et al., 2007). By leveraging the pretrained CNNs trained on large datasets, transfer learning enables 

the models to be fine-tuned to new tasks with fewer labeled examples (Yosinski et al., 2014; 

Zhuang et al., 2019). This approach has been tested effective at fungal structure identification 

(Krach et al., 2022; Krach et al., 2020) and across numerous agricultural applications (Hossen et 

al., 2025), including plant phenotyping (Jiang & Li, 2020), pest detection (Chen et al., 2022), 

disease identification (Nazir et al., 2023), and yield estimation (Khaki et al., 2021). 
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4.2.3 CNNs for AMF Quantification 

Efforts have been made to apply CNNs for automating imaging-based AMF quantification. 

Evangelisti et al developed the AMFinder pipeline, a semi-automated deep learning-based method 

that enables user-supervised validation of CNN-generated predictions (Evangelisti et al., 2021b). 

AMFinder works on whole-slide scanning images (WSIs) of stained root samples and splits them 

into smaller tiles for CNN classification. CNN1 distinguishes between colonized (M+), non-

colonized (M-), and background tiles. CNN2 further classifies M+ tiles by AM fungal structures. 

Users can manually review and correct CNN predictions using AMFbrowser. AMFinder 

demonstrated that CNNs provide a feasible solution for the automation of AMF quantification, but 

it remains reliant on supervised training on a large volume of labeled data. 

In another study, Mask R-CNN was trained for AMF segmentation using a transfer 

learning-based approach (K. He et al., 2017; Shufan Zhang et al., 2024). This method reduced 

labeling requirements, but imaging was done using traditional compound microscopy and 

manually moving of the camera across slides, which limited scalability. 

While these studies point to the potential of CNNs and transfer learning for AMF 

quantification, challenges remain in developing scalable, high-throughput solutions capable of 

handling WSIs, domain variability, and large-scale studies. The integration of whole-slide imaging, 

CNN, and transfer learning presents a promising pathway toward automated, high-throughput 

AMF quantification. 

4.3 Methodology 

4.3.1 Image Preprocessing 

To ensure comparable physical coverage between the AMFinder and MycorrhiSEE images 

(Fig. 1B), we calculated equivalent pixel regions for both imaging systems. The AMFinder WSIs 
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were captured with a VHX-5000 microscope at 200x magnification using a 1/1.8-inch (7.2 mm) 

CMOS sensor (1600 x 1200 resolution, 3.6 μm sensor pixel size, 0.95 μm actual pixel size) and 

cropped to 256 × 256 pixel image tiles. To match the same physical area in the MycorrhiSEE 

dataset, taken by the ZEISS Axioscan 7 microscope (Carl Zeiss Microscopy, LLC, Thornwood, 

NY) at 10x magnification with an Axiocam 705 color camera (2464 × 2056 resolution, 3.45 μm 

sensor pixel size, 0.347 μm actual pixel size), a 701 × 701 pixel region was required. 

For the initial arrangement of spline-guided patches in the MycorrhiSEE dataset, a patch 

size of 1402 × 1402 pixels was used. These patches were further subdivided into four 701 × 701 

tiles and resized to 256 × 256 pixels to match the dimensions of AMFinder image tiles.  

4.3.2 Image Taxonomy 

In analyzing the AMFinder and MycorrhiSEE image tiles, we observed substantial 

variation in the amount of background pixels within each image, as demonstrated in Fig. 4.2. This 

variability posed significant challenges for consistent colonization labeling, as images with 

differing root area may represent fundamentally different taxonomic groups by root area or by 

visual characteristics, including colonization intensity. Failure to account for this underlying image 

Figure 4.2 Demonstration of how variable the amount of root area per image is using AMFinder 
tile images. Labels are published in the AMFinder paper. Consistent colonization labeling cannot 
be achieved without accounting for image taxonomy related to the amount of background pixel 
per tile. 
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taxonomy could lead to imbalanced class representations at deeper levels, despite efforts to 

maintain a balanced dataset overall. To address this issue, we refined our training and testing 

datasets for AMF colonization classification by selecting only images with 75% or more visible 

root area (Fig. 4.1B). 

Upon grouping the images by root area, we found that only 15.0% (2040 images) of 

AMFinder tiles contained 75-100% root coverage, while a larger portion fell into lower root area 

categories: 2714 images (50-75%), 3876 images (25-50%), and 4910 images (less than 25%). In 

the MycorrhiSEE dataset, 21.1% (8879 images) met the 75-100% root coverage threshold, with 

the remaining images distributed across 50-75% (9898 images), 25-50% (6764 images), and less 

than 25% root area (16584 images). These distributions highlight the significant presence of low 

root area images reinforces the importance of filtering based on root coverage to ensure a 

consistent training base for accurate model learning and robust performance across varying image 

taxonomies. 

Table 4.1 Comparison of convolutional neural networks used. Convolution layers (conv). Fully 
connected layers (fc). Residual block (res). 

Network Year Input Size Depth Parameters 
(millions) Size Convolutional Layers 

VGG16 2014 224×224×3 16 138 528 MB 13 conv, & 3 fc 

ResNet50 2015 224×224×3 50 25.6 98 MB 1 conv, 16 bottleneck res, & 1 fc 

DenseNet121 2017 224×224×3 121 8.0 33 MB 4 conv, & 4 dense blocks 

DenseNet169 2017 224×224×3 169 14.3 57 MB 4 conv, & 4 dense blocks 

DenseNet201 2017 224×224×3 201 20.0 80 MB 4 conv, & 4 dense blocks 

MobileNetV2 2018 224×224×3 53 3.5 13 MB 1 conv, & 19 bottleneck res. 

EfficientNetV2-B0 2021 224×224×3 24 7.1 29 MB 2 conv, & 11 Fused-MBConv blocks 

EfficientNetV2-B1 2021 240×240×3 26 8.1 31 MB 2 conv, & 12 Fused-MBConv blocks 

AMFinder CNN1 2022 126×126×3 11 1.4 5.4MB 8 conv, & 3 fc 
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4.3.3 Dataset Preparation 

For background classification, a tile was annotated as Background, if it had: 1) at least 75% 

image area to be background, blank, bubble or debris, 2) no blurring, excellent root clearing and 

fungal staining, and 3) less than 3 extraradical hyphae. The resulting dataset was made of 2000 

Background and 2000 Non-background tiles with an equal representation of M+ and M- tiles from 

AMFinder and MycorrhiSEE datasets (Fig. 4.1B).  

For colonization classification, we annotated tiles from AMFinder and MycorrhiSEE 

dataset using following criteria: 1) less than 25% background pixels, 2) no blurring, excellent root 

clearing and fungal staining, and 3) at least 5 hyphal structures to be colonized (M+), otherwise 

noncolonized (M-). The final dataset consisted of 1000 M+ and 787 M- tiles from AMFinder 

dataset and 1000 M+ and 1000 M- tiles from the MycorrhiSEE dataset. The AMFinder root 

samples were highly colonized, resulting in an insufficient number of M- tiles. 

The datasets were divided into training, validation, and test sets using a 7:2:1 split. Tile 

images were resized to 224×224×3 for model input, except for EfficientNetV2B1 which requires 

an input size of 240×240×3 (Table 4.1). Model training utilized three datasets, AMFinder images, 

MycorrhiSEE images, and a Combined dataset (AMFinder + MycorrhiSEE). The training set size 

was determined to ensure accuracy within ±0.02 of 0.928, requiring a minimum of 641 images for 

a 0.02 margin of error or 2,566 images for a 0.01 margin. Testing was conducted using three 

corresponding test sets: AMFinder, MycorrhiSEE, and Combined, allowing for robust evaluations 

within and across domains.  

4.3.4 Pretrained ImageNet CNNs 

Several ImageNet-pretrained models were evaluated for their ability to classify 

Background, M+, and M- tile images: VGG16, ResNet50, DenseNet121, DenseNet169, 
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DenseNet201, MobileNetV2, and EfficientNetV2 B0 and B1. AMFinder CNN1 architecture 

shares significant similarities with VGG16, featuring a sequential stack of 3x3 convolutional layers 

followed by max-pooling and fully connected (fc) layers; however, AMFinder has only 1.4 million 

parameters in its multiclass configuration, much lighter than VGG16’s 138 million parameters. 

ResNet50, known for its bottleneck residual blocks (res), helps mitigate overfitting. MobileNetV2 

and EfficientNetV2 prioritize efficiency through depthwise separable convolutions and compound 

scaling, while DenseNet models leverage dense connections to promote feature reuse and efficient 

parameter utilization (Table 4.1). This range of architectures allowed us to compare shallow and 

deep networks, as well as models optimized for different computational trade-offs. 

Excellent Moderate Bad 

Figure 4.3 Examples of ZEISS AxioScan 7 WSIs of root segments. Images were labeled as 
excellent, moderate, bad based on root segment conformation and image quality. Excellent: 
complete curve with changing concavity. Moderate: disjoint or with minor imperfections 
(curving back, branching, air bubbles) Bad: misshapen or highly branched roots and empty or 
out-of-focus images. (see Methods for detailed description of labeling standards). White pixels 
are paddings for the background area around samples detected by the microscope. Images were 
resized for display. 
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4.3.5 Model Training 

In this study, we adopted a two-step approach to classify tiles from root WSIs as M+, M-, 

or Background. First, we trained a Background Classifier. An ImageNet pretrained ResNet50 was 

trained to filter out Background tiles. A second Colonization Classifier was used to classify M+ 

and M- tiles from images predicted as Non-background. Several ImageNet pretrained models were 

finetuned for colonization classification task (Fig. 4.1A).  

All models were trained using a batch size of 64 with the fully connected and the 

classification layers removed, and the backbone weights frozen. The optimization process 

employed Binary Cross-Entropy loss function and Adam optimizer with an initial learning rate 

(LR) of 0.0001 and a maximum of 50 epochs. 

To enhance model convergence and prevent overfitting, two adaptive training strategies 

were implemented. The learning rate was dynamically reduced by a factor of 0.5 when the 

validation loss plateaued for 3 consecutive epochs, with a minimum allowable learning rate of 

1x10-6. Additionally, early stopping was triggered if no improvement in validation loss was 

observed for 5 consecutive epochs.  

4.4 Experiments and Results 
Figure 4.4 Visualization of patch overlap and root coverage using the spline-guided tiling 
algorithm on ZEISS AxioScan 7 images. The left panel illustrates the overlap between neighboring 
patches, which is 8.423%. The right panel shows the root coverage achieved, amounting to 
98.891%. These metrics highlight the algorithm's ability to effectively cover the region of interest 
while managing overlap. 
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4.4.1 Experiment 1: Evaluation of the Improved Spline-Guided Tiling Algorithm on 

MycorrhiSEE Dataset 

To evaluate the effectiveness of the original spline-guided tiling algorithm in generating 

patches, it was applied to 1005 MycorrhiSEE WSIs distributed evenly across quality categories 

(Excellent, Moderate, Bad) using patch size 1024×1024. The MycorrhiSEE dataset consists of 

field grown Sorghum bicolor root WSIs imaged using ZEISS AxioScan 7 at 10x magnification. 

Image acquisition and quality categories were defined in previous publications (S. Zhang, T. 

Bourlai, et al., 2024) and summarized in Fig. 4.3. Key algorithm performance metrics included 

(Fig. 4.4): 

• Root Coverage: Percentage of root area covered by patches. 

• Patch Overlap: Degree of overlap between adjacent patches. 

• Patch Redundancy: The amount of background patches out of all patches.  

The original algorithm achieved average root coverage of 84.6% (±11.8%), 80.0% (±14.2%), and 

72.3% (±19.4%) for Excellent, Moderate, and Bad WSIs (Fig. 2), respectively. Patch overlap 

across varying quality remained around 4% (3.8% Excellent, 3.70% Moderate, 4.40% Bad). It was 

estimated that over 90% WSIs in the MycorrhiSEE dataset had Excellent and Moderate quality. 

There was a significant data loss due to low patch coverage. To minimize data loss, four 

incremental improvements were implemented: 

• Improvement 1: Orientation Standardization 

To enhance spline interpolation, we fitted a polynomial to root contours, used the second 

derivative to estimate concavity, and rotated each image to achieve uniform orientation.  

• Improvement 2: Patch Recentering 
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The original algorithm’s injective condition retained only the highest y-value among points 

sharing the same x-value, causing the spline to drift from the root midline. Patches were 

recentered along normal vectors to realign with the midline. The first two adjustments 

improved overall root coverage by 5.2% (p < 0.001) (Table 4.2 Contrast 2-0).  

• Improvement 3: Handling Disjoint Root Segments 

Disjoint root segments in Moderate quality WSIs, partially recognized by the original 

algorithm, were addressed by splitting images at polynomial vertices and extracting the 

largest root contour from each half.  

• Improvement 4: Coordinate Frame Transformation 

Half-images were mirrored and rotated 45 degrees. This transformation resolved issues to 

assign patches to root sections with extreme curvature within a fixed coordinate frame. 

 

Table 4.2 Tukey Post hoc test of root coverage and patch overlap between   spline guided tiling 
algorithm versions.  Contrast represents comparisons between two algorithm versions. Version 0: 
original algorithm, Version 1-4: improved algorithms with improvement 1 to 4 sequentially 
implemented. 
 

 

 

 

 

 

 

 

 

Root Coverage 
 Excellent Moderate Bad 
Contrast Estimate p-value Estimate p-value Estimate p-value 
1-0 -0.017 0.948 -0.006 1.000 -0.011 0.999 
2-1 0.057 <0.001 0.064 <0.001 0.068 <0.001 
3-2 0.011 0.999 0.018 0.922 0.027 0.379 
4-3 0.040 0.012 0.046 0.001 0.053 <0.001 
2-0 0.040 0.012 0.059  <0.001 0.057 <0.001 
3-0 0.051 <0.001 0.077 <0.001 0.084 <0.001 
4-0 0.091 <0.001 0.123 <0.001 0.138  <0.001 

Patch Overlap 
 Excellent Moderate Bad 
Contrast Estimate p-value Estimate p-value Estimate p-value 
1-0 -0.007 0.350 -0.004 0.994 -0.006 0.698 
2-1 0.031 <0.001 0.026 <0.001 0.027 <0.001 
3-2 0.005 0.838 0.011 0.004 0.014 <0.001 
4-3 -0.001 1.000 -0.003 0.998 0.001 1.000 
2-0 0.023 <0.001 0.023 <0.001 0.021 <0.001 
3-0 0.029 <0.001 0.034 <0.001 0.036 <0.001 
4-0 0.028 <0.001 0.031 <0.001 0.037 <0.001 
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The enhancements collectively improved root coverage by 9.1%, 12.3%, and 13.8% to 93.7%，

92.3% and 86.1% for Excellent, Moderate, and Bad images, respectively, while patch overlap 

increased modestly from 3.95% to 7.11%.  

4.4.2 Experiment 2: Application of the Spline-Guided Tiling Algorithm to AMFinder Dataset 

The algorithm was evaluated on AMFinder WSIs using two tile sizes (512×512 and 

256×256) to test its adaptability to different imaging systems and influence of patch size selection 

on algorithm performance. 

AMFinder dataset consists of 7 large 

and 20 small WSIs of lab grown 

Nicotiana benthamiana roots 

captured with a VHX-5000 digital 

microscope (Keyence, Milton 

Keynes, UK) at 200x. Root coverage 

improved significantly with larger 

patch size 512×512 pixels (p<0.001), 

while overlap increased by 0.46% 

(p<0.001) (Table 4.3). Using patch 

size 512×512, the average root 

coverage of the AMFinder dataset  

 

Table 4.3 Statistic properties of root coverage and patch overlap for two tile sizes. 
 

 
Patch size coverage overlap 

mean sd mean sd 
256 x 256 0.751 0.192 0.0312 0.0405 
512 x 512 0.907 0.124 0.0358 0.0502 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 4.5 Comparing tiling quality of the algorithm on 
AMFinder and MycorrhiSEE datasets. The boxplots 
display the distribution of root coverage and tile overlap for 
each dataset. The spline guided tiling algorithm 
demonstrated robust performance 
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was 90.7%, comparable to the 90.8% coverage across quality categories for MycorrhiSEE dataset 

(Fig. 4.5), demonstrating robust performance even on extensively entangled roots in the AMFinder 

WSIs. Comparison to the regular gridline-based tiling method demonstrated the algorithm’s 

superior efficiency in reducing patch redundancy. The number of background tiles (256×256 pixels) 

decreased from 146,769 to 9,499 (human confirmed). Tile size 256×256 was used to generate tiles 

from AMFinder WSIs for the classification experiments below.  

4.4.3 Experiment 3: Evaluate Proposed Two-Step Classification Approach 

A ResNet50-based CNN was first trained to filter out Background tiles (Background 

Classifier), achieving an accuracy of 0.997. Subsequently, several ImageNet-pretrained models—

VGG16, ResNet50, MobileNetV2, DenseNet121, DenseNet169, DenseNet201, and 

EfficientNetV2— were trained to perform classification of colonized (M+) and non-colonized (M-) 

image tiles (Colonization Classifiers). A dataset combination experiment was conducted to 

evaluate the performance of the Colonization Classifiers against AMFinder CNN1 models for their 

ability to correctly identify AMF colonized tiles (M+ tiles). 

The AMFinder and MycorrhiSEE datasets used in the experiment differ in imaging systems, 

sample preparation, root maturity, fungal morphology, and background texture (Fig. 4.1B). These 

variations offered a valuable scenario for evaluating domain dependency, model robustness, and 

the efficiency of cross-domain learning. To fully explore these capabilities, the experiment 

involved training the models on three distinct data configurations: 

1. AMFinder-only: Training on the AMFinder dataset.

2. MycorrhiSEE-only: Training on the MycorrhiSEE dataset.

3. Combined dataset: Training on a heterogeneous dataset that merged AMFinder and

MycorrhiSEE images.
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The experimental design evaluated the models’ performance across three key scenarios: 

1 Within-domain classification: Training and testing on the same dataset (e.g., AMFinder-

only). 

2 Cross-domain generalization: Training on one dataset and testing on another (e.g., 

AMFinder-trained model tested on MycorrhiSEE images). 

3 Domain adaptation: Training on the Combined dataset and testing across all test sets 

(AMFinder, MycorrhiSEE, and Combined). 

4.4.3.1 Within Domain Performances of Colonization Classifiers 

Performance of AMFinder CNN1 Models 

AMFinder CNN1 models were evaluated on tiles from the AMFinder dataset to establish 

baseline performance. Despite its larger training set (AMFinder paper appendix), the model 

demonstrated poor accuracy in multiple scenarios. Trained without augmentation, AMFinder 

CNN1v1 achieved only 53.3% overall accuracy on the AMFinder test set, with a pronounced bias 

toward the noncolonized class (25% versus 88.75%) (Table 4.4), indicating limited generalization 

even within the same dataset (Fig. 6A). While training with augmentation improved accuracy to 

77.2%, the results of AMFinder CNN1v2 retained high misclassification rates for positive and 

negative examples (Table 4). Class imbalance and inconsistent labeling during training could have 

contributed to the poor performance of AMFinder CNN1 models. Visualization of original training 

images from the AMFinder dataset revealed mis-labeled tiles (Fig. 4.2). More robust feature 

extraction methods and training strategies are needed to reliably classify AMF colonization. 

Performance of Pretrained Models 

Within-domain evaluations revealed that the ImageNet‐pretrained architectures 

outperformed the baseline AMFinder CNN1 models. When trained and tested on the AMFinder 
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dataset, the finetuned networks consistently achieved overall accuracies exceeding 98%, with 

DenseNet169 and DenseNet201 reaching approximately 99.44% accuracy and exhibiting near-

perfect per‐class performance (Fig. 4.6A). When trained and tested on MycorrhiSEE dataset, 

architectures such as ResNet50 and DenseNet variants achieved overall accuracies in the range of 

93–97.5% with balanced per-class accuracies (Table 4.4). These findings underscore the efficacy 

of leveraging ImageNet pretraining to enhance model classification performance within specific 

domains. 

4.4.3.2 Cross Domain Performances of Single Dataset Models 

The cross-domain evaluations revealed a significant impact of domain shift on model 

performance (comparing Fig. 4.6A and Fig. 4.6B). When models were trained on the AMFinder 

dataset and tested on the MycorrhiSEE set, overall accuracies ranged from 54.5% to 69.5%, with 

pronounced class imbalances (Table 4.5). For example, ResNet50 achieved an overall accuracy of 

approximately 69.5% with a stark disparity between the colonized (40%) and noncolonized (99%) 

classes (Table 4.5). Similar trends were observed for DenseNet121 and DenseNet201, where high 

noncolonized accuracies were countered by very low colonized accuracies (30% and 9%, 

respectively) (Table 4.5). In contrast, when the training was conducted on the MycorrhiSEE 

dataset with subsequent testing on AMFinder, overall performance improved, with ResNet50 and 

EfficientNetV2B0 reaching 83.3% and 81.1% accuracy, respectively (Table 4.5). However, this 

configuration also exhibited notable imbalances; several architectures, such as DenseNet121, 

DenseNet169, DenseNet201, and VGG16, attained perfect or near-perfect accuracies for the 

colonized class while substantially underperforming on the noncolonized class (with accuracies as 

low as 19%–41%) (Table 4.5). These findings underscore the challenges of cross-domain 

generalization with single dataset training in AMF colonization classification. Notably, the 
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baseline AMFinder CNN1 models continued to underperform in cross-domain settings (Fig. 4.6B), 

with both variants exhibiting a pronounced bias (Table 4.5). 

4.4.3.3 Domain Adaptation of Combined Dataset Models 

Building on the previously discussed cross-domain performance, training with the diverse 

combined dataset of AMFinder and MycorrhiSEE markedly improved generalization across 

models (comparing Fig. 4.6C to Fig. 4.6B). In this configuration, the networks not only achieved 

near-perfect performance when tested on the AMFinder dataset—with overall accuracies 

exceeding 98% and balanced per-class accuracies—but also demonstrated substantial 

enhancements on the MycorrhiSEE test set, where overall accuracies ranged from approximately 

87% to 96.5% (Table 4.6). By integrating imaging conditions and colonization patterns from both 

datasets during training, the models effectively mitigated the biases observed in the earlier cross-

domain experiments.  

In addition, further evaluations on a combined test set provide additional insights into the 

benefits of cross-domain learning. Models trained on the AMFinder dataset exhibited moderate 

overall accuracies on the combined test set—ranging from approximately 74% (e.g., DenseNet201) 

to 82% (e.g., ResNet50 and DenseNet169) (Table 4.7). In contrast, networks trained on the 

MycorrhiSEE dataset generally achieved higher overall accuracies on the combined test set (up to 

91% with ResNet50), with consistently higher colonized accuracies (Table 4.7). Models trained 

on MycorrhiSEE surpass those on AMFinder when tested on a combined dataset, indicating 

MycorrhiSEE dataset's potential for domain generalization (Fig. 4.6D). These findings, in 

conjunction with our earlier cross-domain evaluations, highlight that training on a single domain 

does not sufficiently capture the variability inherent in heterogeneous imaging data, thereby 

impairing the model's ability to generalize. Conversely, the enhanced performance observed with 
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diverse training data suggests that integrating multiple datasets enables the models to learn more 

robust, domain-invariant features, ultimately leading to improved and more balanced cross-domain 

performance. 

4.5 Conclusion 

4.5.1 Overall Accuracy of Two-Classifier Approach 

The proposed two-step classification pipeline (Background Classifier + Colonization 

Classifier) exhibited consistently strong performance across the AMFinder, MycorrhiSEE, and 

combined test sets. In the first step, the Background Classifier achieved near-perfect accuracy of 

0.997 with ResNet50. In the second step, the Colonization Classifiers demonstrated excellent 

results. DenseNet121 trained on combined data delivered 100% accuracy on the AMFinder test 

set, while ResNet50 trained specifically on MycorrhiSEE showing the best overall accuracies of 

0.975 on the MycorrhiSEE test data. These findings confirm that the proposed two-step approach 

can reliably segregates background tiles and automate the analysis of mycorrhizal colonization. 

4.5.2 Best Model Architecture for AMF Colonization Classification 

The complete performance analysis indicates that modern deep convolutional architectures, 

particularly DenseNet and ResNet50 variants, markedly outperform the baseline AMFinder CNN1 

models across both the AMFinder and MycorrhiSEE datasets. Additionally, EfficientNet 

architectures, while competitive, did not consistently match the performance of DenseNet or 

ResNet50 models, likely due to differences in reduced network depth and design trade-offs 

between model complexity and parameter efficiency. These findings imply that, for the AMF 

colonization classification problem, architectural depth and connectivity—whether through dense 

or residual linkages—play critical roles in achieving high accuracy and balanced class predictions. 
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The comprehensive evaluation of deep convolutional architectures for AMF colonization 

classification demonstrates that ImageNet-pretrained networks significantly outperform the 

baseline AMFinder CNN1 models across both within-domain and cross-domain scenarios. Cross-

domain analyses further revealed that models trained solely on a single domain suffered from 

notable performance drops and class imbalances when exposed to external datasets. Cross-domain 

training enabled the networks to learn domain-invariant features and achieve more balanced 

performance across disparate test sets. These findings underscore the importance of incorporating 

heterogeneous data during model training to enhance generalization in real-world applications of 

DL in quantification of AMF. 

In summary, the results suggest that future customized architectures for AMF colonization 

classification should prioritize robust feature propagation and multi-scale representation through 

enhanced depth and connectivity. The integration of diverse training datasets is also essential to 

mitigate domain shift and ensure consistent, high-accuracy performance in varied imaging 

conditions. These insights provide a clear direction for further research and development of 

tailored deep learning models to support precise and reliable AMF colonization diagnostics. 
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Network Test Acc. M+ 
Acc. 

M- 
Acc. 

VGG16 AMFinder 0.989 0.988 0.990 
MycorrhiSEE 0.944 0.917 0.972 

ResNet50 AMFinder 0.989 0.988 0.990 
MycorrhiSEE 0.975 0.983 0.967 

DenseNet121 AMFinder 1 1 1 
MycorrhiSEE 0.972 0.967 0.978 

DenseNet169 AMFinder 0.972 0.988 0.960 
MycorrhiSEE 0.950 0.972 0.928 

DenseNet201 AMFinder 0.994 1 0.990 
MycorrhiSEE 0.969 0.989 0.950 

MobileNetV2 AMFinder 0.972 0.963 0.980 
MycorrhiSEE 0.917 0.883 0.950 

EfficientNet
V2-B0 

AMFinder 0.983 0.975 0.990 
MycorrhiSEE 0.947 0.933 0.961 

EfficientNet
V2-B1 

AMFinder 0.972 0.988 0.960 
MycorrhiSEE 0.956 0.967 0.944 

Network Test Acc. M+ 
Acc. 

M- 
Acc. 

AMFinder 
CNN1v1 AMFinder 0.533 0.250 0.888 

AMFinder 
CNN1v2 AMFinder 0.772 1 0.488 

VGG16 
AMFinder 0.983 0.988 0.980 

MycorrhiSEE 0.940 0.960 0.920 

ResNet50 
AMFinder 0.978 0.975 0.980 

MycorrhiSEE 0.975 0.980 0.970 

DenseNet121 
AMFinder 0.989 0.975 1 

MycorrhiSEE 0.955 0.950 0.960 

DenseNet169 
AMFinder 0.994 1 0.990 

MycorrhiSEE 0.965 1 0.930 

DenseNet201 
AMFinder 0.994 0.988 1 

MycorrhiSEE 0.955 0.9900 0.920 

MobileNetV2 
AMFinder 0.978 0.963 0.990 

MycorrhiSEE 0.930 0.930 0.930 
EfficientNet

V2-B0 
AMFinder 0.972 0.975 0.970 

MycorrhiSEE 0.935 0.970 0.900 
EfficientNet

V2-B1 
AMFinder 0.967 0.975 0.960 

MycorrhiSEE 0.940 0.950 0.930 

Network Test Acc. M+ 
Acc. 

M- 
Acc. 

AMFinder 
CNN1v1 MycorrhiSEE 0.500 0.0400 0.960 

AMFinder 
CNN1v2 MycorrhiSEE 0.630 0.8800 0.380 

VGG16 
AMFinder 0.672 1 0.410 

MycorrhiSEE 0.625 0.530 0.720 

ResNet50 
AMFinder 0.833 0.988 0.710 

MycorrhiSEE 0.695 0.400 0.990 

DenseNet121 
AMFinder 0.744 0.988 0.550 

MycorrhiSEE 0.645 0.300 0.990 

DenseNet169 
AMFinder 0.661 0.963 0.420 

MycorrhiSEE 0.690 0.480 0.900 

DenseNet201 
AMFinder 0.550 1 0.190 

MycorrhiSEE 0.545 0.090 1 

MobileNetV2 
AMFinder 0.772 0.550 0.950 

MycorrhiSEE 0.685 0.470 0.900 
EfficientNet

V2-B0 
AMFinder 0.811 0.713 0.890 

MycorrhiSEE 0.695 0.500 0.890 
EfficientNet

V2-B1 
AMFinder 0.744 0.750 0.740 

MycorrhiSEE 0.645 0.720 0.570 

Network Train Acc. M+ 
Acc. 

M- 
Acc. 

VGG16 AMFinder 0.783 0.733 0.833 
MycorrhiSEE 0.836 0.978 0.694 

ResNet50 AMFinder 0.822 0.656 0.989 
MycorrhiSEE 0.914 0.983 0.844 

DenseNet121 AMFinder 0.797 0.600 0.994 
MycorrhiSEE 0.869 0.967 0.772 

DenseNet169 AMFinder 0.825 0.711 0.939 
MycorrhiSEE 0.844 0.983 0.706 

DenseNet201 AMFinder 0.744 0.489 1 
MycorrhiSEE 0.797 0.994 0.600 

MobileNetV2 AMFinder 0.814 0.689 0.939 
MycorrhiSEE 0.850 0.761 0.939 

EfficientNet
V2-B0 

AMFinder 0.817 0.711 0.922 
MycorrhiSEE 0.875 0.856 0.894 

EfficientNet
V2-B1 

AMFinder 0.789 0.833 0.744 
MycorrhiSEE 0.850 0.861 0.839 

Table 4.4. Within Domain Classification 
Accuracy for AMF Colonization of Single 
Dataset Models 

Table 4.5. Cross-Domain Classification 
Accuracy for AMF Colonization of Single 
Dataset Models 

Table 4.7. Classification Accuracy for AMF 
Colonization of Single Dataset Models on 
Combined Test Set 

Table 4.6. Classification Accuracy for AMF 
Colonization of Combined Dataset Models 
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Figure 4.6B. Single dataset models are 
trained with either AMFinder or 
MycorrhiSEE dataset tested with 
images from the same dataset to 
evaluate their in-domain performances. 
Blue lines: Models trained with 
MycorrhiSEE images and tested on 
AMFinder images. Yellow lines: 
Models trained with AMFinder images 
and tested on MycorrhiSEE images. 
Purple lines: Baseline performance of 
AMFinder classifiers CNN1v1 and 
CNN1v2 on MycorrhiSEE images. 

Figure 4.6A. Single dataset models are 
trained with either AMFinder or 
MycorrhiSEE dataset and tested with 
images from the same dataset to evaluate 
their in-domain performance. Blue lines: 
Models trained and tested with AMFinder 
images. Yellow lines: Models trained and 
tested with MycorrhiSEE images. Purple 
lines: Baseline performance of AMFinder 
classifiers CNN1v1 and CNN1v2 on 
AMFinder images.  
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Figure 4.6C. Combined dataset models 
are trained with AMFinder and 
MycorrhiSEE images. Blue lines: 
Models tested on AMFinder images. 
Yellow lines: Models tested on 
MycorrhiSEE images. Comparing Fig. 
4.6C to 6B, we can conclude that 
combined dataset models generalize 
better than single dataset models.  

Figure 4.6D. Single and combined dataset 
models are tested on the combined test set. 
Teal lines: Combined models. Yellow lines: 
MycorrhiSEE models. Blue lines: AMFinder 
models. Purple lines: Baseline AMFinder 
classifiers CNN1v1 and CNN1v2. Pretrained 
models significantly outperform baseline 
AMFinder classifiers. Model performance 
increases when trained with diverse images 
with the combined models achieving the best 
results. 
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5 LIMITATIONS AND FUTURE DIRECTIONS 

CHAPTER 

5 

LIMITATIONS AND FUTURE DIRECTIONS 

5.1 Dataset Limitations 

Limitation 1: Imbalanced Representation of AM Fungal Structures (Chapter 2) 

In Chapter 2, one critical limitation was the imbalanced representation of AM fungal 

structures within the dataset used for training and testing the Mask R-CNN model. Due to limited 

personnel available at the beginning of the project, we only managed to image and annotate 165 

root samples over a year, with the least represented fungal structure class having only 135 

examples. Such imbalance likely compromised the model's ability to learn effectively across all 

classes. Although we used loss functions designed to mitigate class imbalance, these adjustments 

alone might not have fully compensated for the uneven representation.  

As an immediate solution, we supplemented our training data by annotating additional root 

images from a publicly available dataset, AMFinder. In hindsight, a better approach would have 

been to prioritize class balance, randomly sampling annotations to match the number of examples 

of the least represented class. An iterative strategy could then be employed, progressively adding 

more annotations only if initial model training results were inadequate. Additionally, we could 

have explored image augmentation techniques specifically targeting underrepresented classes 

before merging our in-house data with the external AMFinder images. 
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Limitation 2: Unknown Variability in Image Quality Across the MycorrhiSEE Dataset 

(Chapter 3) 

Another significant limitation discussed in Chapter 3 was the unknown variability in image 

quality across the extensive MycorrhiSEE dataset. In contrast to Chapter 2, which involved a 

carefully curated dataset of 10,944 manually collected images (2380×1740 pixels) from 57 root 

samples, the MycorrhiSEE dataset was composed of gigapixel WSIs from approximately 5,500 

root samples collected over five years and multiple experiments. As datasets scale in size, 

maintaining uniform root clearing and staining quality becomes inherently challenging, inevitably 

leading to variability in image quality (S. Zhang, T. Bourlai, et al., 2024).  

We are implementing an imaging profile to ensure that the robotic microscope accounts for 

varying sample quality and searches for optimal imaging depth for each root segment. This 

adaptive control has its limits. Platform variability is likely to be an issue as well. We currently 

have research technicians reviewing all completed WSIs when imaging finished and redo samples 

with blurry images. The variability in sample quality, however, cannot be evaluated at the time of 

imaging. The unknown distribution of these quality categories complicated efforts to assemble a 

truly representative training dataset, potentially impacting the accuracy and generalizability of 

deep learning models.  

To address these limitations, we are currently developing machine learning and deep 

learning models capable of automatically detecting and categorizing low-quality images. With 

these tools, we aim either to filter out low-quality images or to strategically balance the 

representation of each quality category in both training and testing sets, thereby improving model 

robustness and generalization. Image quality enhancement is also worth exploring to minimize 

data loss. Another application of the image quality assessment ML and DL models is quality 
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control on the root samples. By screening for poorly cleared or stained root samples, we could 

identify problematic batches, repeat the sample preparation step, and improve image quality (Naus, 

1975, 2015).  

Limitation 3: Annotation Variability and Human Subjectivity (Chapters 2-4) 

A consistent limitation across Chapters 2 to 4 was the inherent variability and subjectivity 

of human annotations. Annotation errors, typically ranging from 5% to 10%, introduced 

inconsistencies into the dataset. Recognizing this issue, we implemented strategies to mitigate 

variability. First, we assigned annotation tasks to groups of two or three annotators, enabling cross-

checking and consensus-building. Additionally, before large-scale annotation, we conducted 

practice rounds in which all annotators labeled the same several hundred images. Results from 

these sessions were carefully reviewed and any discrepancies corrected, ensuring alignment among 

annotators. Clearly documented labeling rules were circulated and periodically reinforced among 

annotators throughout the annotation process. Furthermore, if inconsistencies were discovered 

during model training and testing, labels were corrected promptly, and the affected models were 

retrained. Despite these rigorous measures, the subjective nature of annotations remains a 

challenge, underscoring the ongoing need for clear guidelines, continuous quality control, and 

possibly automated annotation assistance tools in future studies. 

5.2 Technical Limitations 

Limitation 1: Computational Constraints Posed by WSIs (Chapters 3 and 4) 

A major technical limitation encountered during this research is the computational 

constraints associated with processing multi-gigapixel WSIs. Due to GPU memory limitations, 

WSIs were not directly utilized as inputs for deep learning algorithms, as the size of these images 

far exceeds the memory available on standard GPUs. To address this constraint, we developed and 
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utilized strategic image patching methods, including spline-based techniques presented in 

Chapters 3 and 4. The spline-based tiling algorithm effectively segments WSIs into smaller, 

manageable patches, carefully excluding non-informative background regions with no root 

segments. These smaller patches significantly reduce the computational load, enabling their direct 

use as inputs to deep learning models without compromising spatial resolution. This approach 

allows models to leverage full resolution image data while maintaining feasibility within existing 

hardware constraints. 

Limitation 2: Challenges in Segmenting Small, Intricate Fungal Structures (Chapter 2) 

Another substantial challenge, discussed extensively in Chapter 2, relates to accurately 

segmenting small and intricate fungal structures such as extraradical hyphae and arbuscules. 

Segmentation delineates the boundaries of fungal structures in root samples. Detecting and 

segmenting these structures are inherently problematic for several reasons. First, the low resolution 

of small fungal structures provides fewer pixels to represent their morphological details, making 

them difficult to distinguish from the background of the root cortex, for example. Additionally, 

small objects often lack distinctive features or sufficient contextual information to facilitate precise 

identification. Human scorers utilize the contextual information in identifying AM fungal 

structures, such as the connections of arbuscules to intraradical hyphae or extraradical hyphae 

being outside the root cortex and distinguishing them from other mycorrhizal fungi. Variability in 

lighting and staining conditions further exacerbates this problem, causing inconsistencies in fungal 

structure classification and complicating detection of fungal structures. 

To mitigate these challenges, we divided WSIs into smaller patches to enhance AMF 

classification and segmentation accuracy at the expense of losing contextual information. Patching 

significantly reduced the relative size differences between fungal structures and the overall image 
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dimensions. In Chapter 2, during the annotation process, annotators maintained tight segmentation 

margins around AM fungal structures and deliberately excluded ambiguous examples to ensure 

high-quality ground-truth labels. In Chapters 3 and 4, our spline-guided tiling algorithm, efficiently 

removed redundant background regions, while each patch provided sufficient contextual 

information about the root cortex and the relevant fungal structures. We carefully selected patch 

sizes to retain adequate context, as AM fungal structures never occur in isolation or in the root 

stele.  

Future research should explore new DL architectures and methodological improvements to 

address this limitation. Transformer-based detectors and attention mechanisms also show 

significant potential in accurately capturing fine-scale details (Cheng et al., 2022). Additionally, 

advanced learning methodologies such as Knowledge Distillation (Nabavi et al., 2024), Self-

Supervised Learning (W. Zhou et al., 2024), and Reinforcement Learning (Fang et al., 2024) 

represent promising directions to further improve model performance, robustness, and adaptability 

when dealing with small and intricate fungal structures. 

Limitation 3: Data Storage and Transfer (Chapters 3 and 4) 

The substantial size of the MycorrhiSEE dataset, discussed in Chapters 3 and 4, introduces 

additional technical limitations regarding data storage and transfer. Currently encompassing 

approximately 15 Terabytes of image data and continually expanding, the sheer scale of this dataset 

significantly complicates data management practices. Moving, backing up, and sharing such a 

large dataset are increasingly challenging. Cloud-based computing solutions, often recommended 

for high-performance processing tasks, are impractical in this scenario since few, if any, 

supercomputing facilities permit uploading datasets of this magnitude, although the Amazon Web 

Service (AWS) remains a possibility (Skaro et al., 2022). 
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Learning from this limitation, it would have been beneficial to adopt high-performance 

Solid State Drives (SSDs) earlier in the project for data storage. SSDs offer notably faster read-

write speeds (500-3,500 MB/s) compared to traditional Hard Disk Drives (HDDs) (30-150 MB/s), 

significantly accelerating data retrieval and improving efficiency during intensive image 

processing tasks and deep learning model training. Moving forward, strategic investments in local 

computational infrastructure—such as dedicated servers equipped with high-performance GPUs, 

CPUs, and large-capacity SSD storage arrays—will likely be necessary. Such infrastructure would 

alleviate current bottlenecks associated with data handling, enabling more streamlined and 

efficient data processing and model development workflows in future large-scale image-based 

deep learning projects. 

5.3 Methodological Limitations 

Limitation 1: Limitations of Transfer Learning  

One critical methodological limitation encountered throughout this project, pertains to the 

constraints inherent in transfer learning approaches. While leveraging pretrained CNNs trained on 

large, general-purpose datasets (e.g., ImageNet and COCO) provided an efficient starting point for 

developing AM fungal detection models, challenges arose regarding model generalization across 

diverse plant genotypes, varying agronomic conditions, distinct imaging platforms, and differing 

staining and image acquisition protocols. These domain-specific factors introduced significant 

variability that was not entirely captured by models pretrained on generalized image datasets. 

Consequently, the reliance on extensive annotated datasets tailored to each new imaging scenario 

has posed scalability challenges, restricting broader adoption of deep learning approaches within 

AMF research. 
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Future efforts should include rigorous fine-tuning of pretrained CNNs for specialized 

applications on AMF quantification, systematically varying the width and depth of fully connected 

layers, gradual unfreezing of the CNN backbone, and hyperparameter finetuning using such tools 

as the Maximally Informative Next Experiment (MINE) (Torres et al., 2025) and Bayesian 

optimization (Nogueira, 2014). Additionally, architectures that leverage attention mechanisms or 

hybridize CNN with transformer models could markedly improve generalization by capturing 

long-range dependencies and context more effectively (Cheng et al., 2022; Fang et al., 2024). Self-

supervised learning techniques represent another promising avenue, significantly alleviating the 

dependence on large volumes of labeled data by leveraging unlabeled data to derive feature 

representations transferable across diverse AMF image analysis tasks (Zhou et al., 2024). 

Furthermore, exploring multi-frame feature fusion and cross-modal approaches may substantially 

enhance detection and segmentation of small fungal structures in complex backgrounds (Jiang et 

al., 2024). For example, combining fluorescent microscopy images with traditional brightfield 

images may synergistically improve model robustness and accuracy. Another possible solution to 

an expanded training dataset is using Interactive Semi-Automatic Annotation Tool integrated with 

Segment Anything (ISAT-SAM) to speed up the annotation process (Kirillov et al., 2023).  

Limitation 2: Insufficient Evaluation of Data Augmentation Techniques (Chapters 2 and 3) 

Another methodological constraint recognized in Chapters 2 and 3 involves the limited 

exploration and systematic evaluation of data augmentation techniques. Data augmentation holds 

significant promise for addressing class imbalance issues and facilitating effective merging of 

datasets from multiple imaging domains. Although we employed basic augmentation methods 

(such as flipping and rotation), these techniques alone might not sufficiently address the variability 



100 

across domains, nor do they fully mitigate the effects of imbalanced representation among fungal 

structure classes.  

Moving forward, comprehensive evaluation and validation of more sophisticated 

augmentation methods, such as color jittering, elastic deformation, synthetic minority 

oversampling techniques (SMOTE), and advanced generative approaches (e.g., generative 

adversarial networks or GANs), may provide substantial improvements. Quantitative assessments 

of augmentation methods should involve rigorous experimentation comparing model performance 

metrics before and after the augmentation steps. Systematic evaluation of domain-specific 

augmentation effectiveness will ensure that future model training and domain integration efforts 

benefit fully from augmentation, leading to more robust and generalizable models. 

Limitation 3: Model Interpretability Issues  

Another methodological limitation is the difficulty in interpreting deep learning models, 

which significantly hinders biological understanding of the derived features and decision-making 

processes (Chen et al., 2023). While CNNs and Mask R-CNN models exhibited excellent 

performance in detecting and quantifying AM fungal structures, the inherent “black-box” nature 

of these deep learning architectures presents a challenge for biological interpretability. 

Understanding the specific image features driving model predictions is crucial, particularly for 

validating biological hypotheses and ensuring meaningful scientific conclusions. 

To enhance interpretability, we suggest adopting visualization techniques for filters and 

feature maps learned by deep neural networks. Methods such as guided backpropagation, gradient-

weighted class activation mapping (Grad-CAM), and saliency mapping can visually highlight the 

specific regions and image features critical to model predictions. Visualizing intermediate 

convolutional filters and feature maps may provide insights into what features the network 
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prioritizes when identifying specific fungal structures. Future research should systematically 

integrate these visualization tools into the model evaluation workflow, bridging the gap between 

computational models and biological insights. Improved interpretability can increase trust in deep 

learning models among biologists, fostering broader acceptance and more meaningful biological 

interpretation of deep learning-derived results.
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