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ABSTRACT 

       Prescribed burning is a key tool for managing forests in the Southeastern US, but it releases 

black carbon (BC), a pollutant that deteriorates air quality. This study evaluated BC during a 

prescribed burn at Jones Center in Georgia, using MA-200 sensors located Upwind, Downwind, 

and at an Apartment, while monitoring meteorological conditions. Non-parametric tests and 

regression models showed that the Downwind locations recorded elevated BC levels, with 

statistically significant differences. The influence of meteorology on BC dispersal was location-

specific: wind direction strongly affected BC levels at the Apartment location, while humidity 

and temperature displayed varying significance based on location and timings. Results indicate 

the role of local conditions in influencing pollutant behavior during burns. This study adds to the 

understanding of how emissions from such burns impact air quality in unmonitored rural areas 

and pinpoints that the meteorological context is important for exposure analysis. 

 

INDEX WORDS: Prescribed Burns, Black Carbon (BC), Air Quality, Rural Exposure 

 

 



CHARACTERIZING BLACK CARBON EMISSIONS FROM A PRESCRIBED BURN 

USING PORTABLE SENSORS 

 

by 

 

KIMBERLY OLUWATOMISIN ADEOTI 

 

B.Eng., Covenant University, Nigeria, 2021  

 

 

 

 

 

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment 

of the Requirements for the Degree 

 

MASTER OF SCIENCE 

 

ATHENS, GEORGIA 

2025 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2025 

KIMBERLY OLUWATOMISIN ADEOTI 

All Rights Reserved 

  



 

 

CHARACTERIZING BLACK CARBON EMISSIONS FROM A PRESCRIBED BURN 

USING PORTABLE SENSORS 

 

 

by 

 

KIMBERLY OLUWATOMISIN ADEOTI 

 

 

 

 

      Major Professor: Christina H. Fuller 

      Committee:             Robert Awauh-Baffour 

                                                     Rawad Saleh 

          

 

 

 

 

 

 

 

 

 

 

Electronic Version Approved: 

 

Ron Walcott 

Vice Provost for Graduate Education and Dean of the Graduate School 

The University of Georgia 

August 2025 



 

iv 

 

 

 

ACKNOWLEDGEMENTS 

 First and foremost, I honor God for who He is and the amazing support He has given me 

during this thesis writing process. I cannot put into words my thanks for His steady guidance and 

strength. I would like to express my heartfelt gratitude to my major professor, Dr. Christina 

Fuller, for her priceless support, mentorship, and encouragement over the last two years. Your 

direction, feedback, and suggestions have made me a more refined scholar than I was when we 

first met. I am sincerely grateful for encouraging me to take the right courses that expanded my 

capabilities post-course work and therefore enabled me to complete this work. I sincerely 

appreciate that direction. I extend thanks to the other committee members, Dr. Robert and Dr. 

Rawad, for your initial support and guidance through to the end. Your support established a 

pathway for this process to be easier than I anticipated. I also want to acknowledge and thank all 

the individuals who carved out time to help me conceptualize the boundaries and scope of my 

research and provided me with invaluable resources along the way, namely, Jeffery Cannon, 

Ryan Poland, and Jingting Huang. Your contributions have made a significant difference.  

         To my friends: Fiyin, Joy, Indu, Demilade, Gbemisola, Nifemi, Erin, Daphine, Wisdom, 

Precious, Ikenna, Subuola, and mentor: Eunice, thank you for your unwavering support and 

encouragement throughout this process. You made the hard days feel easier. Finally, to my 

family, particularly my parents, thank you for consistently believing in me, praying for me, and 

encouraging me to be the best version of myself. I am eternally grateful for the love you have 

and the sacrifice you made. 



 

v 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

LIST OF TABLES ....................................................................................................................... viii 

LIST OF FIGURES .........................................................................................................................x 

CHAPTERS 

 CHAPTER ONE: INTRODUCTION ..................................................................................1 

   1.1 INTRODUCTION .............................................................................................1 

   1.2 PROBLEM STATEMENT ................................................................................4 

                        1.3 PURPOSE OF THE STUDY .............................................................................5 

                        1.4 RESEARCH QUESTIONS AND HYPOTHESES ...........................................6 

                        1.5 SIGNIFICANCE OF THE STUDY...................................................................7 

                        1.6 SCOPE OF THE STUDY ..................................................................................8 

                        1.7 SUMMARY AND ORGANIZATION OF THE REST OF THE STUDY .......9 

 CHAPTER TWO: LITERATURE REVIEW ....................................................................10 

   2.2 PRESCRIBED FIRE ACTIVITY IN SOUTHEASTERN US  .......................15 

   2.3 AIR QUALITY IMPACTS OF PRESCRIBED FIRES ..................................18 

                        2.4 CHALLENGES IN EXPOSURE ASSESSMENT ..........................................22 

                        2.5 USE OF MA-200 FOR SMOKE AND PM2.5 MONITORING .....................24 

                        2.6 INFLUENCE OF METEOROLOGICAL CONDITIONS ON POLLUTANT 

DISPERSION ........................................................................................................27 



 

vi 

                        2.7 GROUND-BASED MEASUREMENTS AND DIRECT OBSERVATION 

APPROACHES......................................................................................................30 

                        2.8 OPPORTUNITIES IN LITERATURE ............................................................33 

                        2.9 RELEVANCE TO PRESENT STUDY ...........................................................36 

                        2.10 CONCLUSION ..............................................................................................39 

 CHAPTER THREE: METHODOLOGY ..........................................................................42 

   3.1 INTRODUCTION ...........................................................................................42 

   3.2 RESEARCH QUESTIONS AND HYPOTHESES .........................................44 

   3.3 STATISTICAL ANALYSIS PLAN ................................................................44 

                        3.4 DATA COLLECTION DETAILS ...................................................................45 

                        3.5 DATA ANALYSIS METHODS .....................................................................48 

                        3.6 ETHICAL AND QUALITY ASSURANCE ...................................................53 

                        3.7 SUMMARY .....................................................................................................53 

 CHAPTER FOUR: RESULTS AND DISCUSSION ........................................................55 

   4.1 INTRODUCTION ...........................................................................................55 

   4.2 SAMPLE CHARACTERISTICS  ...................................................................55 

                        4.3 FINDINGS OF DATA ANALYSIS  ...............................................................58 

                        4.4 STRENGTHS AND LIMITATIONS OF THE STUDY  ................................89 

                         4.5 SUMMARY  ...................................................................................................90 

 CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS  ...............................92 

   5.1 CONCLUSION ................................................................................................92 

   5.2 RECOMMENDATIONS .................................................................................94 

BIBLIOGRAPHY ..........................................................................................................................96 



 

vii 

APPENDICES 

 A Univariate Linear Regression Model Results ............................................................105 

 B    Multiple Linear Regression Model Results ...............................................................108 

  



 

viii 

 

 

LIST OF TABLES 

Page 

Table 1: Summary Statistics of Meteorological Data Over Time (19th to 21st April 2023) .........56 

Table 2: Summary Statistics of IR BC1 Over Time on April 19, 2023 .........................................58 

Table 3: Summary Statistics of IR BC1 Over Time on April 20, 2023 .........................................58 

Table 4: Summary Statistics of IR BC1 Over Time Across All the Days .....................................58 

Table 5: Summary Statistics of IR BC1 Over Time on April 21, 2023 (Sampling Time) ............59 

Table 6: Results of the Shapiro-Wilk Normality Test for IR BC1 Data ........................................65 

Table 7: Kruskal-Wallis Test Results for IR BC 1 ........................................................................65 

Table 8: Dunn’s Test Results (Bonferroni Method) for IR BC 1………………………………..65 

Table 9: Summary Statistics of Meteorological Over Time on April 21, 2023 (Sampling Time) 67 

Table 10: Categorization of Wind Direction .................................................................................69 

Table 11: Log Transformation of the non-normal variables (One Minute and Fifteen Minutes) ..72 

Table 12: Coefficients from the Linear Model Using 1-Minute Interval Data ..............................76 

Table 13: Coefficients from the Linear Model Using 15-Minute Interval Data ............................77 

Table 14: Coefficients Table from the Multiple Linear Regression Model (1-Minute Interval 

Data) …………………..…………………………………………………………………………78 

Table 15: Coefficients Table from the Multiple Linear Regression Model (15-Minute Interval 

Data) …………………………………………………………………………………………….79 

Table 16: Multiple Linear Regression Model Outputs (Continued) – 1- and 15-Minutes Interval 

Data………………………………………………………………………………………………86 



 

ix 

Table 17: ANOVA Test Results (One Minute and Fifteen Minutes) ............................................87 

 

  



 

x 

 

 

LIST OF FIGURES 

Page 

Figure 1: The Jones Center at Ichauway, located on the Dougherty Plain in Southwest Georgia 46 

Figure 2: MA-200 and prescribed burn locations ..........................................................................46 

Figure 3a-b: Wind Rose and Wind Class Frequency Distribution Across All Days .....................57 

Figure 4a-b: Line charts showing IR BC1 concentrations across all locations during the sampling 

period ……………………………………………………………………………………60 

Figure 5a-c: Histograms of IR BC1 Data Recorded at One-Minute Intervals…………………...63 

Figure 6a-c: Histograms of IR BC1 Data Recorded at Fifteen-Minute Intervals…...…………...64 

Figure 7a-c: Line charts showing meteorological data across the sampling period……………. 68 

Figure 8: Histogram of Wind Direction Data taken during the Sampling time …………………70 

Figure 9a-b: Wind Rose and Wind Class Frequency Distribution during the Sampling Time ....71 

Figure 10a-c: Scatter Plots with Regression Lines for the Upwind (U) Location Showing 

Relationships Between Black Carbon (BC) and Temperature, Wind Speed, and Relative 

Humidity (Fifteen Minutes) ……………………………………………………….….…….......73 

Figure 11a-c: Scatter Plots with Regression Lines for the Downwind (D) Location Showing 

Relationships Between Black Carbon (BC) and Temperature, Wind Speed, and Relative 

Humidity (Fifteen Minutes) …………………………………………………………………….74 

Figure 12a-c: Scatter Plots with Regression Lines for the Apartment (A) Location Showing 

Relationships Between Black Carbon (BC) and Temperature, Wind Speed, and Relative 

Humidity (Fifteen Minutes) ……………………………………..…………....………………..75



 

1 

 

 

CHAPTER ONE: INTRODUCTION 

1.1 INTRODUCTION 

 Wildland fires (wildfires and prescribed fires) are not a foreign concept in the land  

management space that exists in the US (Afrin, 2021). Such fires were once used for activities 

ranging from hunting to plant source generation to facilitating travel from place to place (Petralia 

& Potosnak, 2024). In recent decades, the areas burned from such fires have drastically 

increased, especially in the US, with their size and frequency being sponsored by Climate 

Change (Li et al.,202). The United States Environmental Protection Agency (USEPA) estimates 

that wildland fire emissions account for roughly 44% of all particulate matter emissions (<2.5 

μm aerodynamic diameter) across the United States (Adetona et al, 2016; Ran, 2019). Particulate 

matter released from wildland fires contains a variety of elements, including elemental carbon 

(EC) or black carbon (BC), organic carbon (OC), ionic species, trace elements, water-soluble 

organic carbon (WSOC), water-soluble iron (Fe (II)), and particle number concentration (Carrico 

& Karacaoglu, 2023; Balachandran et al., 2013; Jaffe et al., 2020; Karanasiou et al., 2021).  

           The impacts of wildland fires (wildfires and prescribed burns) have a substantial influence 

on ambient PM2.5, particularly in the Southeastern United States, which contains roughly 70% 

of the prescribed burns within the United States (Afrin et al, 2021). Several factors influence the 

emission of pollutants, such as PM2.5, some of which include fuel type, fuel moisture, fire 

conditions, amount of fuel consumed, temperature, weather, fire stages, etc. (Jaffe et al., 2020; 

Balachandran et al., 2013). More than 2 million hectares of land are managed with prescribed 
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fire in the Southeastern United States, with Georgia being among the top states with an estimated 

550,000 hectares burned annually (Odman et al., 2018). Prescribed burns are most prevalent in 

the winter and spring seasons. They also restore ecosystems such as longleaf pine and wiregrass, 

reduce wildfire risk, and manage invasive species (Tian et al., 2008; Petralia & Potosnak, 2024). 

Although prescribed fires emit fewer pollutants than wildfires, they can still significantly affect 

air quality, particularly for nearby and Downwind communities (Gaither et al., 2019). Several 

epidemiological studies have linked these exposures, including pollutants such as PM2.5, to 

serious health challenges, including cardiovascular, neurological, and respiratory disease, and 

increased risks of adverse birth outcomes and premature death (El Asmar et al., 2024; Huang et 

al., 2021). 

         Black carbon, a key component of particulate matter, has been proposed as a useful 

indicator in air quality management, given its strong association with a variety of adverse health 

effects (Wu et al., 2021). A study showed that prescribed fires were expected to cause health 

effects across a variety of endpoints: an additional 280 to 700 deaths, 4,400 lower respiratory 

outcomes, 7,300 upper respiratory symptoms, nearly 400 episodes of acute bronchitis, and 

several thousand missed workdays, among other consequences (Reisen, Meyer, et al., 2011; 

Adetona et al., 2016). Such findings highlight the need for more attention to the health 

consequences of prescribed fires as their prevalence increases in fire-dependent landscapes such 

as the Southeastern U.S. 

      To estimate the impacts of pollutant emissions, especially particulate matter (PM2.5) from 

activities such as prescribed fires, many tools and systems are often used: satellite-based 

products, permit records, aircraft and drones, statistical modelling tools, stationary monitors, and 

so on. Unfortunately, these tools have countless issues that prevent them from accurately 
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capturing emissions from prescribed burns. Such issues include the inability of such products to 

detect the location, size and the timing of such fires, the struggle of such products to distinguish 

between a prescribed burn and other wildland fires, over-estimation and underestimation of some 

statistical models, non-uniform distribution of stationary monitors, and so on (Huff et al., 2021; 

Sadia Afrin & Garcia–Menendez, 2020; El Asmar et al., 2024). With all this in perspective, it is 

paramount that another means of collecting data be explored. Portable and low-cost air monitors 

seem to fill the gaps highlighted by the other tools. Examples of such include the MA-series 

aethalometers: MA200, MA350, MA300; and the AE-series aethalometers: AE33, AE21, AE31, 

etc. (El Asmar et al., 2024). 

        These sensors are portable, low-cost, simple to operate, and can be installed rapidly while 

providing high-resolution data on ambient concentrations almost in real-time (Huang et al., 

2021). They are also capable of identifying changes in air quality and can even investigate, to a 

limited extent, the spatial variability of some elements of smoke plumes (El Asmar et al., 2024). 

Acknowledging that meteorological parameters, including wind speed, wind direction, 

temperature, and relative humidity, have a significant influence on the variations in surface level 

concentrations, portable monitors with internal sensors or used in conjunction with local weather 

stations can test if there is a relationship between BC concentrations and meteorological data 

(Reisen, Meyer, et al., 2011; Liu, 2014; Odman et al., 2018; Miller et al., 2019). 

      The MA-200 is a relatively new instrument, but has already been compared to a lot of 

reference-grade instruments. Although the MA-200 has many strengths, it still has limitations, 

some of which include its high sensitivity to a change in environment, leading to errors that 

should be corrected, the need for regular maintenance and complex corrections, and its potential 

for sampling bias. Generally, collocating sensors helps to capture smoke events across various 
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locations. It also minimizes issues related to predicting Downwind pollutant concentrations and 

is not affected by the uncertainty of planned burning locations and times (El Asmar et al., 2024).  

     This study was located at the Jones Center in Ichauway, an 18,000-plus hectare reserve 

located within the Lower Coastal Plains and Flatwoods areas in southern Georgia. The Jones 

Center at Ichuaway, via its conservation initiative, highlights long-leaf pine restoration, 

prescribed burns, and conservation-based forestry. With over 60% of the forested land burned on 

an annual basis and a fire-return interval of two years or less, prescribed burns are the bedrock of 

forest and wildlife management at the Jones Center. With such a rich ecological heritage, regular 

fire routine, and strong conservation framework, the Jones Center is the perfect location to study 

black carbon emissions and the influence of meteorological conditions during prescribed fires.  

      A significant portion of current research uses PM2.5 data or aerosol optical depth (AOD) 

data, which, naturally, are several steps away from combustion sources. This research also taps 

into such opportunities by collecting BC data from three points: Upwind, Downwind, and in an 

Apartment, during a prescribed fire at the Jones Center. It combines BC data with meteorological 

data to study BC concentration at multiple locations and how atmospheric conditions affect 

pollutant dispersion across different locations. The outcomes from this research will provide data 

that will work toward identifying more localized ways to monitor specifically for communities 

near prescribed burning in the Southeastern U.S. 

1.2 PROBLEM STATEMENT 

      Prescribed fires in the Southeastern part of the US are necessary for natural forest 

management, but they release black carbon (BC), a pollutant that is detrimental to ambient air 

quality and well-being. The sparse monitoring in rural burn regions and inadequate 

understanding of how weather affects the dispersal of black carbon limit precise exposure 
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evaluation. This research endeavor seeks to enhance prior research by utilizing portable, low-cost 

sensors to quantify black carbon during prescribed fires and examine the influence of 

meteorological conditions on its dispersion.  

1.3 PURPOSE OF THE STUDY 

      Ichauway is an ecologically diverse environment in the Southwestern part of Georgia, with 

longleaf pine forests, streams, wetlands, and farmlands. The Jones Center at Ichuaway, via its 

conservation initiative, highlights long-leaf pine restoration, prescribed burns, and conservation-

based forestry. This center had almost 18,000 acres of land reserved for the longleaf pine forest, 

and a large portion of its undisturbed habitats. Ichuaway gives an uncommon opportunity to 

study and effectively control the environment. With over 60% of the forested land burned on an 

annual basis and a fire-return interval of two years or less, prescribed burns are the bedrock of 

forest and wildlife management at the Jones Center.  

       With such a rich ecological heritage, regular fire routine, and strong conservation 

framework, the Jones Center is the perfect location to study black carbon emissions and the 

influence of meteorological conditions during prescribed fires. This work stems from 

opportunities identified in the literature by evaluating black carbon concentrations resulting from 

a prescribed burn at the Jones Center. BC measurements were taken across various locations to 

assess spatial variation by collecting data concurrently. This study also evaluates how key 

meteorological conditions such as wind speed, temperature, wind direction, and relative humidity 

influence black carbon concentrations across various locations. This study employed the use of 

an observational research design to address the research questions and hypotheses, infusing 

approaches such as comparative, descriptive, and correlational designs.  
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• Descriptive design: used to summarize and report the BC concentrations at the various 

locations (Upwind, Downwind, and Apartment) relative to the prescribed burn. 

Descriptive statistics tools, such as summary statistics, box plots, and line charts, were 

used to observe the general behavior of black carbon and meteorological data (Petralia & 

Potosnak, 2024).  

• Comparative design: used to see how BC levels differ across different locations, relative 

to the burn. Sensors were allowed to run in the three locations, after which statistical 

tools were used to compare differences between them. Tests such as Kruskal-Wallis were 

used in this regard, especially as they relate to statistically significant differences.  

• Correlational design: used to check for relationships between the meteorological 

variables (wind speed, humidity, and temperature) and BC concentrations. To ensure data 

uniformity, the timing and date of the BC concentrations and the meteorological data 

were matched. Scatter plots were used to visualize relationships between BC 

concentration and meteorological data (Balachandran et al., 2013).  

Tools such as Google Earth, WRPLOT View, and ArcGIS were used to create visualizations that 

helped to make sense of the results from a spatial point of view (Carrico & Karacaoglu, 2023; 

Petralia & Potosnak, 2024). 

1.4 RESEARCH QUESTIONS AND HYPOTHESES 

        Building on identified opportunities in literature and the dataset structure, this study is 

guided by the following research questions and corresponding hypotheses: 

Research Question 1: 

How do black carbon (BC) concentrations differ between Upwind, Downwind, and Apartment 

locations during a prescribed burn? 
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H1: BC concentrations will be significantly higher at Downwind locations compared to Upwind 

and Apartment sites during the prescribed burn. 

Research Question 2: 

What effects do meteorological conditions have on the levels of BC at these locations?  

H2: Meteorological conditions, specifically wind speed, wind direction, temperature, and 

relative humidity, will influence concentrations of BC.   

To further examine these relationships, we introduce the following sub-hypotheses:  

• H2.1: Higher wind speeds will be associated with higher concentrations of BC. 

• H2.2: Higher levels of relative humidity will be associated with higher BC concentrations.  

• H2.3: BC concentrations at the sensor locations will increase when winds are originating from 

the burning location of the prescribed fire. 

• H2.4: Higher temperatures will be associated with elevated concentrations of BC.  

These research questions and hypotheses have been built to assist with the opportunities 

identified in the problem statement. This research is intended to provide significant contributions 

to the environmental engineering field and policymakers. This information can assist in the 

development of processes to reduce and manage black carbon emissions to protect communities 

impacted by prescribed fires and mitigate broader environmental effects. 

1.5 SIGNIFICANCE OF THE STUDY 

     Countless environmental studies tend to focus on pollutants such as PM2.5 and organic 

carbon when it comes to prescribed burn activities. Not often do we see them focus on black 

carbon (BC), a pollutant that is likely to be associated with combustion processes across different 

locations, such as the Upwind, Downwind, and Apartment locations. Research studies such as 

that conducted by Pearce et.al (2012) prove this, as the study focuses on PM2.5 burn gradients 
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near burn sites as opposed to BC in such contexts. Recently, assessments of portable BC sensors 

such as the microAeth® series (e.g., MA-200, MA-300, MA-350) have showcased their capacity 

to capture spatial and temporal variations in fire emissions with finesse (Liu et al., 2021).  This 

research adds to the body of knowledge by presenting local and fire-specific BC data that better 

classify exposure gradients (Pearce et al., 2012; Petralia & Potosnak, 2024). Such insights 

underpin the budding need for community-scale monitoring approaches, specifically in areas 

around such burn sites where their vulnerable members may face bigger health risks.  

         There are quite a few studies that explore the influence of weather conditions such as wind 

speed, mixing height, temperature, and the like on the dispersion of smoke, but only a few 

combine such with fine-scale BC data. In most cases, research studies tend to rely on particulate 

matter (PM2.5) or satellite-derived aerosol optical depth (AOD), which are not specific to 

sources of fire. The dispersal of prescribed fire smoke is influenced by meteorology, topography, 

and fire patterns; surface-level BC dispersion stays unclear (Kondo et al., 2022; Achtemeier, 

2009). This work speaks to these opportunities identified in literature by merging local and site-

specific black carbon concentrations with meteorological data, giving a burn-sensitive 

understanding of the behavior of pollutants. This study gains valuable insights from research 

done in Oregon and New Mexico, which pinpointed the influence of meteorological data on 

PM2.5 data (Miller et al., 2019; Maji, Ford, et al., 2024). Infusing BC data gives a more selected 

approach to examining exposure, fire management practices, and guiding air quality policy.  

1.6 SCOPE OF STUDY   

     This study is intended to estimate black carbon (BC) concentrations measured in several 

locations (Upwind, Downwind, and in the Apartment) during a prescribed burn at the Jones 

Center at Ichauway, Georgia, and to examine the immediate influence of meteorological 
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attributes: wind speed; wind direction; temperature; and relative humidity on BC concentrations. 

The data for this study were collected over a very short time. BC measurements were taken with 

an Aethlabs MA-200, and meteorological data were collected at a weather station on the Jones 

Center property. High-resolution BC data were collected at one-minute intervals, and 

meteorological data were collected at 15-minute intervals. The study used statistical descriptive 

statistics, non-parametric tests, and simple univariate linear and multiple linear regression 

models to evaluate relationships, trends, and predictions across several variables.   

     In addition to being an original research study, it is also exploratory and offers perspectives 

important for understanding the mechanics of pollution dispersion associated with prescribed fire 

management in the Southeastern US. The conclusions produced from this research are context 

and location-specific, case-dependent upon the fire event and study site, but can be built upon for 

future prescribed burns research.   

1.7 SUMMARY AND ORGANIZATION OF REMAINDER OF STUDY   

     The remainder of this study is organized as follows: Chapter 2 provides an overview of the 

various studies that were reviewed and applied in support of the research; Chapter 3 details the 

procedures and data analysis methods used in this study to address the questions; Chapter 4 

presents the results of the research by addressing the research questions and evaluating the 

hypothesis statements; Chapter 5 includes the conclusions derived from the research and 

recommendations derived from the lessons learned in the study. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1.1 Brief Overview of Wildland and Prescribed Fires in the US 

        Wildland fires (wildfires and prescribed fires) are not a foreign concept in the land  

management space that exists in the US. Such fires were once used for activities ranging from 

hunting to plant source generation to facilitating travel from place to place (Petralia & Potosnak, 

2024). In recent decades, the burned areas from such fires have drastically increased, especially 

in the US, with their size and frequency being sponsored by Climate Change (Li et al.,2023). In 

fact, from 2008 to 2019, an average of 6,846,857 acres of land was burned on an annual basis by 

a corresponding average of 64,072 wildfires in the United States. Also, estimates from the 

United States Environmental Protection Agency (USEPA) show that wildland fires contributed 

approximately 44% of the total emissions of particulate matter with an aerodynamic diameter 

less than 2.5 μm in the US (Adetona et al., 2016; Ran, 2019). Interestingly, 32% of such fires 

were attributed to prescribed burns, reinforcing the fact that several burns carried out in the US 

are prescribed burns (Maji, Li, et al., 2024; Sadia Afrin & Garcia–Menendez, 2020). The 

particulate matter emitted contains constituents such as organic and elemental carbon (Carrico & 

Karacaoglu, 2023).   

         Ironically, prescribed burns have been recommended as a great tool that can be used to 

douse the effect of climate-induced wildfires, reverse past fire suppression policies, and help 

manage the growth of the wildland urban interface (Wu et al., 2021). This is so because, unlike 

uncontrolled wildfires, prescribed fires are carried out under strict, controlled, and in some cases, 

regulated conditions that are enforced by land managers and the likes. Despite such stringent 



 

11 

operational clauses, prescribed burns still offer immense benefits, making the entire practice 

worthwhile (Schollaert et al., 2024; Carrico & Karacaoglu, 2023). 

2.1.2 Importance of Prescribed Fires in the Southeastern US (Georgia) 

             The Southeastern United States is a region vulnerable to wildfires from a combination of 

its landscape, climatic characteristics, and its long history of prescribed fire (Petralia & Potosnak, 

2024). A major cause of this is that forests in this region are fire-dependent and thus need such 

fires to survive and thrive (Odman et al., 2018). Examples of these forests include longleaf 

forests, slash and loblolly pine forests with palmetto-galberry understories in Florida, Georgia, 

and South Carolina, with pine and mixed hardwood forests in the upper coastal plain of South 

Carolina, as well as shortleaf pine-grass assemblages in Arkansas (Maji, Li, et al., 2024). The 

states in the Southeastern US utilize prescribed fire for different reasons, including changing 

natural fuel loads that may become wildfires, regenerating nutrients in the soil, managing insects 

and diseases, improving wildlife habitat, and so on. In the Southeastern US, over 2 million 

hectares are treated by prescribed fires, and Georgia is among these states with approximately 

550,000 hectares treated through prescribed fire each year (Odman et al., 2018).  

          Throughout much of the 20th century, large plantations in Southern Georgia were 

developed to manage wild game for hunting (deer, quail, turkey), requiring burning practices 

undertaken at prescribed intervals (Gaither et al., 2019). Another motivation for the state of 

Georgia aligned with prescribed burning is for restoration activities of longleaf pine (Pinus 

palustris) and wiregrass ecosystems in the coastal plains of Georgia (Jang & Jung, 2023). 

Prescribed burns are generally understood to produce lower emissions than wildfires, making 

them a good land management tool (Maji, Li, et al., 2024; Jang & Jung, 2023). 
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2.1.3 Correlation between Prescribed Fire Emissions, Public Health, and Air Quality   

           In 2017, the Southeast burned approximately 7.6 million acres (3 million hectares) of the 

total 11.3 million acres (4.6 million hectares) that burned nationally (El Asmar et al., 2024). 

Among the Southeast states, Florida and Georgia burned over 1 million acres (0.4 million 

hectares) of land on an annual basis (El Asmar et al., 2024). With an average of 0.15 million 

acres of burn area expanding annually and solid controls on other pollution sources in the 

Southeastern US, it is no wonder that prescribed fires are thought to contribute up to 

approximately 27% of total emissions. Such emissions therefore depress air quality, diminish 

visibility, and generally negatively impact public health (Maji, Li, et al., 2024; Liu, 2014; Ravi et 

al., 2018; Odman et al., 2018).   

         Even with prescribed burns being conducted in suitable weather conditions, they still 

produce localized and regional air pollution (El Asmar et al., 2024). Such burns were shown to 

account for 10-15% of the annual average ambient levels, which may increase to 20-30% during 

the burning season (January to April) when burning is most extensive (Maji, Li, Vaidyanathan, et 

al., 2024). The particle pollution contributions could absorb a portion of the ambient air quality 

improvements obtained in the United States over the years (Maji, Li, et al., 2024). A recent study 

by Liu (2014) documented that smoke plumes from two prescribed fires in Central Georgia 

raised PM2.5 concentrations above the daily limit established by US National Ambient Air 

Quality Standards with the probable result of degrading air quality and comfort for residents in 

the vicinity, especially vulnerable populations, including elderly individuals, children, and 

people with respiratory issues.   

       It should also be mentioned that emissions from prescribed fires typically settle around the 

burn sites and even endanger the health of those living close by (Gaither et al., 2019). Many 
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epidemiological studies have linked exposure to these emissions, particularly to toxic pollutants 

such as PM2.5, with serious adverse human health outcomes, including cardiovascular, 

neurological, and respiratory diseases, increased risk of adverse birth outcomes, and premature 

mortality (El Asmar et al., 2024; Huang et al., 2021). Another study showed that because of 

increased wildland fire occurrences in the two Southeastern states of Florida and Georgia, 

premature deaths and respiratory-related hospitalizations increased substantially (Gaither et al., 

2019). Also, a health impact assessment in the Southeastern US estimated increased 

hospitalization for asthma and increased all-cause mortality related to the exposure to prescribed 

burns (Schollaert et al., 2024). These studies recognize that prescribed burns can be used to 

mitigate some of the impacts of wildfires, but that they still have some impacts on both people 

and the environments that surround those burns. 

2.1.4 Assessing Fine-Scale Spatial and Meteorological Variability of Pollutant Concentrations 

using Direct Measurement Tools 

         To estimate the impacts of pollutant emissions, especially particulate matter (PM2.5) from 

activities such as prescribed fires, many tools and systems are often used. Countless studies use 

permit records, as they provide precise measurements of these burns; unfortunately, the 

southeastern states of the US lack a complete record of such burns (Maji, Li, et al., 2024). Other 

studies rely on satellite-based products to identify and provide information regarding prescribed 

burns. Quite a few limitations exist with this method and they include the inability of satellites to 

detect such low-intensity and short-lived burns, obstruction by cloud cover, the inability of such 

products to detect the location, size and the timing of such fires, the struggle of such products to 

distinguish between a prescribed burn and other wildland fires, the complex nature of fire 

emissions (Sadia Afrin & Garcia–Menendez, 2020; El Asmar et al., 2024). Aircraft and drones 
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have also been deployed for a couple of prescribed fire studies, and although they provide high 

resolutions that are useful for monitoring the evolution of smoke particles Downwind, such 

measures are not continuous and could miss various aspects of the smoke, e.g., at night (El 

Asmar et al., 2024).  

        Statistical Modelling tools such as CMAQ, HYSPLIT, and Blue Sky are also used in many 

studies, but the downside to them is that their quality depends on the quality of their inputs 

(Carrico & Karacaoglu, 2023; Miller et al., 2019; Odman et al., 2018). Stationary monitors such 

as SLAMS consider surface concentrations, but they are mostly deployed by the authorities 

based on the needs of the state and local air pollution management agencies, making such 

distribution non-uniform. As a result, those who live in rural areas lack the necessary 

infrastructure to monitor the impacts from sole plumes from prescribed fires (Huff et al., 2021). 

With all this in perspective, it is paramount that another means of collecting data be explored. 

Portable, low-cost air monitors seem to fill the gaps highlighted by the other tools.  

          One study that made use of a combination of some of the methods listed above highlighted 

the fact that a method that can get more accurate ground-based data, especially in rural areas, 

should be explored (Sadia Afrin & Garcia–Menendez, 2020). Another study highlighted their 

reliance on satellite data and the Bluesky model but did not give them reliable data due to cloud 

cover obstructions and how the blue-sky model underestimated and overestimated the emissions 

(Maji, Li, et al., 2024).  

     Portable sensors are easy to use and deploy whilst collecting ambient concentrations with 

high-resolution data in almost real time (Huang et al., 2021). They could also be used to monitor 

air quality patterns and, to some extent, investigate the spatial variability of species in smoke 

plumes (El Asmar et al., 2024). Since meteorological variables such as wind speed, wind 
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direction, temperature, relative humidity play a huge role in the variations exhibited by surface 

level concentrations, portable monitors furnished with internal sensors or used alongside nearby 

weather stations can be used to see if there is any relationship between such BC concentrations 

and the meteorological data around them (Reisen, Meyer, et al., 2011; Liu, 2014; Odman et al., 

2018; Miller et al., 2019). 

2.2 PRESCRIBED FIRE ACTIVITY IN SOUTHEASTERN US 

2.2.1 Geographic Distribution and Timing of Prescribed Burning   

       Prescribed burns occur in many locations across the U.S. but ultimately are shaped by 

demographics and politics (Petralia & Potosnak, 2024; Kondo et al., 2022). Their occurrence is 

complex as it relates to considerations of human use of the forest, seasonal ecology, ecosystem 

needs, diverse management goals, and burn duration (Tian et al., 2008). Prescribed burns are 

implemented in the Southeast (64%) and the West (33%), utilized less frequently in the 

Northeast (3%), based on factors such as land use and ease of dispersion of the emissions from 

smoke (Wu et al., 2021). Compared with seasonal prescribed burns in Kentucky and Virginia in 

the north and Texas and Oklahoma in the west the credit for increased activity of prescribed 

burns goes to the extensive acreage of longleaf pine (Pinus palustris) and its forest savanna 

ecosystems of the southeastern US south (Petralia & Potosnak, 2024; Balachandran et al., 2013). 

Prescribed burns in the southeastern U.S. were also reported by Jaffe et al. (2020) as occurring 

primarily in the winter season, often aimed at maintaining multiple upland longleaf and forest 

savanna ecosystems. However, as spring arrived, such burns were shifted to the central region 

and grazing lands, highlighting the importance of the 4% of burns attributed to the Southeastern 

parts of the US (Jaffe et al., 2020; Petralia & Potosnak, 2024). 
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     A recent assessment of prescribed burns estimated that 70% of the prescribed burns 

conducted in the U.S. occur in the Southeastern U.S. and represent around 25% of total primary 

PM2.5 emissions (Sadia Afrin & Garcia–Menendez, 2020). The southeast states of Georgia, 

Florida, Alabama, and South Carolina burned approximately 3-4 million hectares each annually 

(Gaither et al, 2019). In the state of Georgia, such burns typically happen in the Winter and 

Spring, because the weather conditions allow for it, compared to the conditions that come with 

the Summer and Fall, which are many at times intense and in some cases, erratic. Historical 

burns conducted from 1994-2005 showed that 87% of all prescribed burns were conducted from 

December to April, with 37% of the total number done in March alone (Tian et al., 2008) 

2.2.2 Rationale for Prescribed Burning: Ecosystem Management and Wildfire Risk Reduction 

       Wildland fires are a traditional tool useful for shaping most North American Systems. 

Native Americans used such fires as an agricultural tool to manage wildlife habitats and hunting 

grounds. With time, such fires were suppressed. However, that shift led to the buildup of fuels, 

which, in addition to climate change, has increased the occurrence and impacts of wildfires. 

Consequently, forest managers readopted the discarded practice of prescribed burns (Jaffe et al., 

202; Petralia & Potosnak, 2024). The impacts of climate change and human-induced ignitions 

have made it more important to tackle the wildfire beast before it gets out of hand. A recent 

review affirmed this, highlighting that wildfire activity in the US is on the rise, along with the 

corresponding fire suppression costs. Costs associated with federal wildfire suppression hit an 

all-time high in 2018 of $3 billion (Jaffe et al., 2020). Wildfires in November of 2016 in 

Tennessee, North Carolina, and Georgia produced PM2.5 concentrations greater than 100 μg/m³ 

in many cities, suggesting a need for a better fire management strategy (Jaffe et al. 2020). 

Information provided from the National Interagency Fire Center over the period 2014-2023 
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shows that 6.5 million acres were burned, demonstrating an increase in the number of large 

wildfire events. There is increasing consensus that the re-establishment of natural fire regimes is 

necessary for sustainable health in forests (Schollaert et al., 2024). Prescribed burns can help 

fulfill this need since they are set for moving the fire at a lower intensity to burn the understory 

while protecting trees (Jang & Jung, 2023; Odman et al., 2018; Petralia & Potosnak, 2024).  

        Controlled burns are carried out for various reasons, such as primary fuel management, 

ecological restoration, and support for agricultural goals (Petralia & Potosnak, 2024). In the 

southeastern U.S., they are used to manage forest ecosystems and slow the growth and 

infestations of endangered species, all to reduce larger, intense forest fires (Balachandran et al., 

2013). 

2.2.3 Fuel Types and Combustion Phases (Flaming vs Smoldering) 

         Several factors influence the emission of pollutants, such as PM2.5. Some of which include 

fuel type, fuel moisture, fire conditions, amount of fuel consumed, temperature, weather, fire 

stages, etc. (Jaffe et al., 2020; Balachandran et al., 2013). Many tree species in the forests of the 

Southeastern United States are fire-adapted and need fire (Odman et al., 2018). Yet, there are 

some recognized fire-adapted forests, including longleaf pine forests, slash and loblolly pine 

forests with palmetto-galberry understories that are located across Florida, Georgia, and South 

Carolina, as well as pine and mixed hardwood forests in the upper coastal plain of South 

Carolina and shortleaf pine-grass assemblages in Arkansas (Maji, Li, et al., 2024). In Georgia, 

various stakeholders, including private and public agencies, have committed considerable 

resources to conserve longleaf pine (Pinus Palustris) and wiregrass ecosystems in the coastal 

plain by implementing carefully orchestrated fire regimes (Gaither et al., 2019).  
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       There are two combustion phases during the process of forest fires, including flaming and 

smoldering (Ran, 2019). The flaming phase refers to the period of active burning, while the 

smoldering phase is noted for long-period, low-intensity burning after flames have been 

extinguished. Since the smoldering phase has a cooler temperature range, smoldering 

combustion typically produces larger emissions per unit of fuel consumed; however, Janhall, 

Andreae, and Poschl indicated that particulate matter (PM) emissions from the flaming phase 

exceeded those of the smoldering phase. Emissions from the flaming and smoldering phases 

behave differently during the atmospheric dispersion processes, due to differences in release 

rates and timing (Tian et al., 2008).  

          Biel et al. (2020) recognized that prescribed burns in the southeastern United States tend to 

have more occurrences of smoldering combustion than prescribed burns in the rest of the nation 

(Jaffe et al., 2020). However, results show that in the case of prescribed burns in Georgia, the 

occurrence of smoldering combustion usually consumes surface fuels, whereas large woody and 

below-ground fuels are not counted as active across the smoldering phase (Tian et al. 2008). 

Emissions produced from low-intensity burning with the high humidity characteristic of the 

Southeastern United States can lead to dense fogs, sometimes with virtually no visibility, and 

magnified risk of catastrophic vehicle accidents, mostly in areas characterized by fine-scale 

topographic depressions (Jaffe et al., 2020). 

2.3 AIR QUALITY IMPACTS OF PRESCRIBED FIRES 

2.3.1 PM2.5 as a Primary Emission from Prescribed Burns 

       Biomass burning emits a range of air contaminants, including gases and particulates. Gases 

include carbon dioxide, carbon monoxide, hydrocarbons, and trace gases. PM2.5 is a major 

component of biomass smoke; the negative effects of this fine particle contamination on air 
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quality have become a greater focus of concern locally and globally over the past two decades, as 

the adverse health implications become better understood. As far as air pollution in rural areas 

goes, the types of land management practices that result in air pollution are smoke from 

wildfires, smoke from burning agricultural residuals, fire from prescribed burns in forests and 

vegetation, burning biomass, etc. (Reisen, Meyer, et al. 2011; Schollaert et al., 2024). In 2017, 

wildland fires accounted for 44% of the US’ primary emissions of fine particulate matter 

(PM2.5), 32% of which were attributed to prescribed burns (Huff et al., 2021; Maji, Li, et al., 

2024). In the Southeastern part of the US, wildland fires contributed to 31% of the primary 

PM2.5, 81% of which came from prescribed burns (Maji, Li, et al., 2024; El Asmar et al., 2024).  

        The various particles ejected as a result of such fires are comprised of elemental carbon 

(EC) or black carbon (BC), organic carbon (OC), ionic species, trace elements, water-soluble 

organic carbon (WSOC), soluble iron (Fe (II)), and total particle number concentration (Carrico 

& Karacaoglu, 2023; Balachandran et al., 2013; Jaffe et al., 2020; Karanasiou et al., 2021). BC, 

formed from flaming (as opposed to smoldering) combustion, are graphitic-like particles (20-30 

nm) that form larger particles (200 nm), are hydrophobic (Jaffe et al., 2020). Fires in the 

southeastern and Midwestern regions of the US contribute minor, but significant, quantities to 

particulate organic carbon; Spring is the peak fire season, and prescribed burns are the majority 

type of fire that occurs (Jaffe et al., 2020). Several studies affirmed the fact that the BC level was 

5-fold during the flaming stage compared to the smoldering stage, emphasizing the significance 

of the burning stage in determining the chemical makeup of particulate matter (Wu et al., 2021). 

2.3.2 Health Consequences of Prescribed Fires                 

        Concerns regarding the health impacts of smoke related to fire are relevant, especially for 

communities that are Downwind (Jaffe et al. 2020). A health risk assessment of the continental 
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U.S. revealed that from 2008 to 2012, there were between 3,900 and 6,300 hospital admissions 

for respiratory cases and 1,700 and 2,800 for cardiovascular cases due to short-term smoke 

exposures. Since then, smoke levels in the U.S. have increased (and likely now exceed) levels 

from previous years, which will likely lead to increased health impacts (Jaffe et al. 2020). There 

has been some recent scientific literature about health impacts from wildfires; however, there is 

less literature on exposure to prescribed fires (Jaffe et al. 2020).                                   

        It is generally accepted that exposure to ambient PM2.5 from biomass burning is associated 

with increased morbidity and mortality, and the body of evidence is quite large (Karanasiou et al. 

2021). A study in Georgia found that air pollution due to prescribed burns can have substantial 

health effects, potentially leading to hundreds of morbidity and mortality cases (Afrin and 

Garcia-Menendez 2021). Another study found that firefighters who performed prescribed burns 

had increased levels of pollutants at exposure levels that exceeded occupational exposure limits 

(Barbosa et al. 2024). Prescribed burns are low-intensity burns; however, exposure to these burns 

can result in increased health issues, including a decrease in respiratory health (Barbosa et al. 

2024).                            

        According to Wu et al. (2021), black carbon is one of the components of particulate matter 

and a good indicator for the management of air quality due to its strong relationship with adverse 

health outcomes. In another study, the authors found that prescribed burns would result in health 

impacts for various endpoints: 280-700 deaths, 4400 lower respiratory illnesses, 7300 upper 

respiratory symptoms, just about 400 acute bronchitis cases, and lost workdays in the thousands 

among other endpoints (Reisen, Meyer, et al. 2011). Prescribed burns also contributed to 

degraded visibility in specific Class 1 areas protected by law in parts of the Pacific Northwest of 

the U.S. (Ravi et al. 2018). Overall, the evidence suggests that it is important to apply greater 
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attention to health impacts from prescribed burns, given that their application will likely be 

increasingly used in fire-prone landscapes such as the Southeastern U.S.   

2.3.3 Timeframe and Longevity of Prescribed Burn Effects          

        Sadia Afrin and Garcia-Menendez (2020) showed that for more than 60 % of study sites, the 

predictive capability of nearby permitted fires was stronger than meteorological conditions, 

suggesting greater impacts on PM2.5 levels for prescribed burns. In particular, the Georgia sites 

in the study had a large effect, with an average variance in 24 hr. PM2.5 concentrations 

attributable to burning were more than four times that explained by meteorological variables 

(Afrin, 2021). Moreover, the effects of prescribed burning on air quality returned to pre-burn 

conditions in 1-2 days after the burn (Afrin, 2021). 

2.3.4 Brief Discussion about Community Level Impacts 

        Wildland fires, both wildfires and prescribed burns, have important implications on ambient 

PM2.5 concentrations in the Southeastern region of the United States, which is home to nearly 

70% of prescribed burns conducted (Afrin, 2021). Many prescribed burns are conducted near 

communities that fall along the wildland-urban interface (WUI), affecting millions of people 

(Afrin, 2021). The literature focused on wildland fire smoke suggests that those most impacted 

are from socioeconomically disadvantaged backgrounds, specifically the elderly (Afrin, 2021). 

Furthermore, prescribed fires can increase PM2.5 in rural areas where air quality monitoring and 

management have few resources (Afrin, 2021). Characteristics of communities with repeated 

burns differ from the general population, increasing their vulnerability to smoke (Afrin, 2021). A 

recent study collectively showed higher PM2.5 concentrations from prescribed burns, non-

discriminately impacting areas that have higher levels of African American populations (Afrin, 

2021).   
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      A study conducted in Georgia showed that for prescribed burns, the areas impacted most 

disproportionately include populations in areas of lower socioeconomic status, larger elderly 

population, higher number of disabled persons, and accessibility to housing and transportation 

(Afrin & Garcia-Menendez, 2021). In 2018, another study found that prescribed burn smoke was 

positively associated with African Americans and mobile home housing at the Census tract level 

in Georgia (Kondo et al., 2022). In summary, these results suggest that prescribed burns might 

have an environmental justice undertone to them, because such burns have constantly been 

situated close to those who lack the resources to avoid such exposures.  

2.4 CHALLENGES IN EXPOSURE ASSESSMENT 

2.4.1 Sparse Distribution of Regulatory Monitoring Stations 

       Regulatory monitoring stations are essential in assessing the effects of smoke locally and 

regionally over both short and long-time scales (El Asmar et al., 2024). These stations are 

typically operated by a federal, state, or tribal agency (Jaffe et al., 2020). For example, the State 

and Local Air Monitoring Stations (SLAMS) network measures surface PM2.5 concentrations 

for compliance with the National Ambient Air Quality Standards (NAAQS) (Huff et al., 2021). 

In many environmental health studies, regulatory monitoring data have been combined with 

model simulations to create estimates of pollution with spatial detail to determine health impacts. 

This will help establish the link between air pollution exhibited at the time of a prescribed burn 

to the relevant health impacts. In many cases, though, the distance between regulatory monitors 

prohibits the quality and resolution of that data (Huang et al., 2021; Jaffe et al, 2020; Schollaert 

et al, 2024; Childs et al, 2022). 

     This defect is caused primarily by the locations of monitors being driven by state and local air 

pollution management agencies through their State Implementation Plans (SIPs), which do not 
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seek uniform coverage (Huff et al., 2021). As a result, there are several rural communities that 

are regularly subjected to prescribed burning but lack enough monitoring capability, which limits 

both public awareness and research capabilities in those communities. 

2.4.2 Under-detection by Satellite Remote Sensing 

         Accurately determining the impacts of wildland fires requires proper identification and 

characterization of a fire. One of the typical methods for accomplishing this is with satellite 

remote sensing, which generally detects thermal anomalies or changes in vegetation cover. While 

making positive contributions in many cases, the satellite remote sensing route has some 

disadvantages, especially regarding prescribed burns. Factors including cloud cover, limited 

spatial resolution, and the complexities of fire emissions can significantly interfere with 

objectively detecting and examining low-intensity burns, such as prescribed fire (El Asmar et al., 

2024). Satellites are ill-equipped to easily identify small, low-temperature fires that typically 

occur when combusting below the forest canopy, i.e., understory burns (Liu, 2014; Jaffe et al., 

2020; Sadia Afrin & Garcia-Menendez, 2020). 

      These limitations underscore the need to develop further ground-based monitoring 

possibilities. Portable, low-cost air quality monitors are a feasible possibility as these monitors 

provide immediate, localized information on pollutant concentrations. This would be particularly 

useful in areas with small, controlled burns that are difficult to see via satellite, increasing public 

awareness and informing air quality regulators (Sadia Afrin & Garcia–Menendez, 2020). 

2.4.3 Episodic Nature of Smoke Events 

        Prescribed burns are fires intentionally set as part of active management efforts during a 

specific "window" with conditions such as wind, temperature, humidity, and other parameters as 

approved in a simple burn plan (Liu, 2014). There are major challenges associated with the 
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collection of data during sporadic smoke events, including the uncertain timing of a smoke event, 

the duration of the smoke episode, and the wind patterns that can, at a fundamental level, 

determine the impact of the area (Wheeler et al., 2023). The unpredictability of these factors 

leads to satellite instruments not being able to fully capture prescribed burns. Satellite sensors 

cannot take the same path every time because of their orbital tracks; they also make such 

movements at specific times and locations, meaning that many prescribed burns, which often last 

a brief time, have several sensor misses (Liu, 2014). In the Southeastern United States, there are 

considerable uncertainties in remote sensing fire data techniques about the location, size, and 

timing of fires (Sadia Afrin & Garcia–Menendez, 2020). 

2.5 USE OF MA-200 FOR SMOKE AND PM2.5 MONITORING 

2.5.1 Overview of MA-200 Sensor Performance 

        Black Carbon (BC) is a pollutant comprised of a variety of carbon-based materials formed 

from the incomplete combustion of carbon-containing fossil fuels and biomass (Liu et al., 2021; 

Chakraborty et al., 2023). Black Carbon is suspected to be very harmful to human health (Liu et 

al., 2021; Chakraborty et al., 2023). The International Agency for Research on Cancer designates 

this pollutant as a 2B Carcinogen, and studies show that there is a correlation between exposure 

to black carbon and cardiovascular, neurological, and respiratory diseases (Liu et al, 2021). 

Evaluating black carbon is complicated because of the ambiguity in its chemical definition. 

The black carbon particles themselves are very resistant to degradation and are very effective at 

absorbing short- and long-wave light radiation (Liu et al., 2021; Chakraborty et al., 2023).  

           Most of the direct measurement approaches to quantifying BC utilize an aerosol light 

absorption on a filter measurement technique which is the preferred method, for example, when 

using an aethalometer or multi-angle absorption photometer, because you can gain real-time air 
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quality measurements and understand better, your local air quality and pollutant exposures (Liu 

et al., 2021; Chakraborty et al., 2023). The MA-200 is specifically designed to measure black 

carbon concentrations for different exposure scenarios, including personal exposure 

measurements, ambient and vertical profile measurements, and indoor emission concentration 

measurements (Liu et al., 2021; Chakraborty et al., 2023). 

2.5.2 Case Studies Validating Sensor Accuracy vs. Regulatory Monitors 

        The MA-200 is a relatively new instrument but has already been compared to a lot of 

reference-grade instruments. In one study, BC concentrations were taken from different 

locations, post-processed using methods (ONA, CMA, LPR), and compared with a stationary 

monitor- AE33. When comparing the two instruments, there was a strong correlation (Pearson's 

R = 0.933) in the time interval of about 30 to 60 minutes between walks (Liu et al., 2021; 

Chakraborty et al., 2023). In the end, there was no wavelength dependence between the 

monitoring device's stationary vs. portable position (Liu et al., 2021). 

       Another study conducted by Blanco-Donado et. al only found a 9% difference between the 

MA-200 and AE33 eBC concentrations. These results suggest that the MA-200 monitor’s BC 

results can be trusted.  

2.5.3 Advantages of the MA-200 

        The MA-200 monitor is beneficial for a myriad of reasons, some of which include spatial 

coverage, rapid deployment, real-time surface air monitoring, and so on. The portability of the 

MA-200 device allows it to be easily transported from place to place, including rural areas. This 

also means that it can be deployed to as many regions as possible, as soon as the need for it 

arises. The MA-200 sensors are also able to detect low-intensity burns such as prescribed burns 

and can either be used as stand-alone data or serve as inputs for satellite or statistical models 
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such as Blue Sky (Sablan et al., 2024; Sadia Afrin & Garcia–Menendez, 2020). A benefit of 

sampling at ground level is the certainty of identifying the emission source and combustion 

condition, which permits a focused examination of the smoldering element (Reisen et al., 2018). 

Therein, it also allows for a strong observational dataset of the many fires and atmospheric 

parameters key to the complex processes of plumes (Jaffe et al., 2020). 

2.5.4 Limitations of the MA-200 Sensor 

        Although the MA-200 has many strengths, some of the limitations are highlighted in this 

subsection. The Ma-200 is a mobile instrument, and so when it experiences a change in 

locations, i.e., from a highly polluted one to a less polluted one, noise is introduced into its data. 

Also, if the sensor runs on a very high frequency (e.g., 1 Hz) or there is an unstable flow during 

data collection, errors displayed as negative values would be introduced into the data. Such 

errors must be corrected without eliminating them, as such values are useful for explaining 

environmental fluctuations. Such data can be corrected using post-processing algorithms made 

available by the AethLabs team on their website. These algorithms cancel out the noise without 

eradicating the negative values, giving researchers quality data to work with. Holder et al. found 

that noise estimates from the MA-series aethalometers can be up to five times higher than those 

of the reference instrument for one-minute averaged data (Liu et al., 2021; Chakraborty et al., 

2023). In addition, the MA-200 sensor needs regular maintenance. In the event of issues with the 

MA-200 sensors, this may necessitate a return to the manufacturers, adding time delays to 

research timelines (Liu et al., 2021). 

        In conclusion, the raw black carbon (BC) concentrations provided by the Aethalometer 

require complex corrections for measurement artifacts related to both filter loading and the 

multiple scattering effect (Liu et al., 2021; Chakraborty et al., 2023). High concentrations of 
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equivalent BC (eBC) can produce substantial error or potential bias that needs to be corrected for 

filter loading, e.g., (Chakraborty et al., 2023; Liu et al., 2021). Lastly, and still in line with other 

ground sampling techniques, the MA-200 collects only a small percentage of the total smoke 

produced by the fire (e.g., Reisen et al., 2018). Thus, when assessing point-source measurements, 

it is critical to consider the possibility of sampling bias given the environmental conditions of the 

fire. 

2.6 INFLUENCE OF METEOROLOGICAL CONDITIONS ON POLLUTANT DISPERSION 

2.6.1 Wind Speed and Direction: Key Factors in Smoke Transport  

         Fire emissions can vary based on the type and condition of fuel, weather, and burning 

conditions. Therefore, understanding how fuels, vegetation, fire, topography, and wind tend to 

interact in a location may improve understanding of smoke spread (Maji, Li, et al., 2024). 

Research indicates that meteorological events, such as wind and precipitation, are strong 

correlates with prescribed burning events (Odman et al., 2018). For example, PM2.5 

concentrations have been known to be influenced by weather characteristics such as wind speed 

and mixing height (Reisen, Meyer, et al., 2011). In addition, the interaction of wind, fire 

behavior, vegetation, and dispersion into the atmosphere is even more complicated in hilly, 

uneven terrain (Miller et al., 2019). The topography of an area dictates the flow of wind in that 

region, and it does this by channeling flow along valleys. On the other hand, vegetation cover 

and moisture tend to influence wind turbulence and fine time scales. For example, when the 

Earth’s surface cools at night, such cooling leads to the downslope winds from sunset to sunrise, 

but the heating of the Earth by daytime leads to up-valley winds. Such mechanisms transport 

smoke (or overnight smoldering emissions) into valley settlements where people live. Willamette 

Valley residents in Oregon experienced this in 2017 when stagnant air and low wind speeds 
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created a situation of smoke buildup near the ground and magnified concentrations of PM (Jaffe 

et al., 2020).  

         Studies show that wind conditions conducive to optimal air quality are more likely to occur 

in the Spring (13%) than in the Fall during prescribed burns (5%) (Miller et al., 2019). In 

situations of high wind speed, the atmosphere stabilizes, vertical mixing is reduced, and more 

smoke remains near the ground (Liu, 2014; Jaffe et al., 2020). Generally, prescribed burns are 

used to reduce wildfire risk, whilst enhancing the dispersion of smoke, before affecting 

Downwind communities (Maji, Li, et al., 2024). The impact of wind on smoke behavior was 

further illustrated in one study, as it was discovered that transport winds had a low correlation 

with smoke plume rise (Liu, 2014).  

2.6.2 Relative Humidity and Temperature: Influence on Combustion Efficiency and Plume Rise 

        Smoke has a strong connection with the physical atmosphere (Jaffe et al., 2020). As smoke 

modifies the radiative properties of the atmosphere by blocking solar radiation and re-radiating 

heat into the surrounding air, it can increase atmospheric stability in the mixed layer, reduce 

surface temperature, and limit the height of mixed-layer wind speeds (Jaffe et al., 2020). Smoke 

plume rise indicates the potential maximum height a smoke plume derived from a prescribed fire 

can rise into the atmosphere (Urbanski, 2014). Particles from prescribed fires that rise higher in 

smoke plumes are likely to disperse from rural burn sites and may impact air quality in the more 

populated areas downrange of those sites (Liu, 2014). Generally, fire plumes rise during the 

afternoon, as humidity decreases, temperatures increase, and atmospheric boundary layers reach 

full development (Jaffe et al., 2020).   

         A regression model investigation examining smoke plume rise found relative humidity to 

have a weak relationship with it. Surface air temperature and atmospheric stability both revealed 
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a similarly associated relationship with smoke plume rise, much like the relationships noted with 

fuel temperature and atmospheric boundary layer height, and plume rise (Liu, 2014). This 

investigation also emphasized that fire behavior is most influenced by relative humidity and 

temperature. At the same time, the relative humidity and air temperature must not be too dry and 

warm, either, as that could result in uncontrollable burns, like the 2000 Cerro Grande Fire at the 

Los Alamos National Lab in New Mexico (Miller et al., 2019). 

2.6.3 Timing of Burns to Minimize Smoke Exposure: Before Rains, Stable Winds, Cool/Dry 

Weather 

       Prescribed burns in the US take place in specific regions and at specific times of the year. 

These burns typically occur in the spring and fall, when the risk of prescribed fires escalating to 

wildfires is low, compared to the summertime (Sablan et al., 2024). Weather plays an important 

role in the chance of a burn happening. In general, burns are avoided on rainy days, following 

heavy rain, or during long dry periods (Jang & Jung, 2023; Odman et al., 2018; Petralia & 

Potosnak, 2024). In a study using the GFC burn permit database for 2010-2014, it showed that 

weather conditions along with seasonal conditions play a role in the decision-making for land 

managers (Odman et al, 2018). This is quite realistic, as weather conditions could either douse or 

exacerbate the impacts of burns. Warm and dry conditions fostered the burning process of 

biomass fuel in the Huff et al. (2021) study, agreeing with existing literature in that space. But 

too hot or too dry conditions could worsen the situation. Over the past two decades, climate 

change has contributed to larger burned areas in the US. Between 2001 and 2019, fires burned at 

least 1.5 million hectares nationally in 17 different years, and at least 4 million hectares burned 

between 2015 and 2017 (Jaffe et al., 2020; Iyaz, 2022). 
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2.6.4 Fog Formation from Moist Smoke in Winter/Spring 

        Research has shown that the smoke released from the prescribed burns carried out between 

January and April can contain sufficient moisture capable of promoting the formation of a 

polluted dense fog at night (Huff et al., 2021). In the humid southeastern United States, 

smoldering phase emissions, along with the high moisture in the atmosphere (from the fire as 

well as the environment), can create dense fog that results in near-zero visibility conditions (Jaffe 

et al., 2020). 

2.7 GROUND-BASED MEASUREMENTS AND DIRECT OBSERVATION APPROACHES 

2.7.1 Importance of Collocating Sensors Upwind/Downwind for Gradient Analysis 

         In almost all cases, sensor placement would allow for monitoring of smoke events in 

different locations nearby, and it would help alleviate challenges with predicting pollutants 

traveling Downwind, while also being unaffected by uncertainty in intended burning locations or 

schedules (El Asmar et al., 2024). Collocating these sensors would provide more spatial 

resolution to account for smoke from the same flames at multiple locations, which could help to 

investigate shifts in smoke chemistry with more confidence. 

        One study carried out in Augsburg, Germany, demonstrated this concept, as they co-located 

MA-200 devices and stationary regulatory monitors to demonstrate the unit-to-unit comparability 

of black carbon concentrations recorded from the units (Liu et al., 2021). Another study used 

sensors such as AE33, AE22, and AE31 to conduct side-by-side and background comparisons, 

along with TEOM-based PM2.5 concentrations in comparison to the state monitoring stations.  

Such comparisons enhanced confidence in the particulate mass measurements that could not be 

calibrated easily, like gas monitors (El Asmar et al., 2024). 
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2.7.2 The Use of Instruments like MA-200 for Black Carbon Detection 

          Black carbon consists mainly of sp2-bonded carbon in a graphene-like structure, which is 

highly stable and has a large absorbance range across many short and long wavelengths of light 

(Liu et al., 2021; Chakraborty et al., 2023). Many measurement techniques based on the 

properties of BC have been developed, and how BC is defined differs based on which 

measurement technique is used. Typically, there are three kinds of assessments to determine the 

mass concentration of BC:  

(1) The mass concentration of elemental carbon (EC) is determined through thermal optical 

analysis of aerosol collected onto filters, for example, using a thermal-optical OC-EC (organic 

carbon - elemental carbon) analyzer developed by the Sunset Lab, logs onto data sets, and is part 

of the total measurement.  

(2) An approximate equivalent black carbon (eBC) can be determined by light absorption of 

aerosols collected onto filters, as noted by Hansen et al. (1984), which can be from 

aethalometers, multi-angle absorption photometry, and a photo-acoustic device such as a photo-

acoustic soot spectrometer.  

(3) The amounts of refractory BC (rBC) can also be determined using laser-induced 

incandescence (LII), a technique that was developed after the single particle photometer (SP2) 

technology.  

      Of the range of commercially available instruments, aethalometers are in popular use by 

many scientific agencies and regulatory bodies for real-time assessment of black carbon (BC) or 

equivalent black carbon (eBC) (Chakraborty et al., 2023). Some common examples include the 

MA-series, such as the MA200, MA350, and MA300; and AE-series instruments like AE33, 

AE21, AE31, amongst others (El Asmar et al. 2024). 
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2.7.3 Case Examples of Sensor Networks Deployed During Prescribed Fires 

       In a research project conducted in Eastern Kansas during the spring of 2021, 39 Purple Air 

sensors were combined with satellite data to examine exposures from prescribed burns. The 

sensors were able to detect fire locations, confirm smoke in the atmosphere, and detect higher 

concentrations of aerosols. In addition to distinguishing PM2.5 smoke-related levels, the research 

brought awareness to the importance of portable low-cost sensors in rural areas to better 

understand local impacts from smoke. The study showed that prescribed burns produced a 

significant increase in surface PM2.5 concentrations (Sablan et al., 2024). In another study 

conducted in southwestern Georgia, four low-cost PM sensors (Plantower PMS 3003) were used 

with a reference monitor (BAM) and were incorporated with a chemical transport model 

(CMAQ) along with data fusion techniques. The sensors were able to capture the relative 

differences in PM2.5 concentrations, and the temporal trends at the sites were strongly 

correlated, which provided an extra benefit of low-cost sensors to exposure assessments. These 

sensors helped to distinguish impacts from prescribed burning, in conjunction with additional 

temporal and spatial information that is often overlooked when using models or traditional 

monitoring networks. 

         Additionally, low-cost sensors are invaluable alternatives when regulatory monitors are 

either unavailable or not functioning properly. Nevertheless, the study underscored the 

importance of more research focused on sensor calibration and data correction, particularly 

concerning the best practices for reconciling low-cost sensor data with reference-grade 

instruments (Huang et al., 2021). 
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2.7.4 Benefits of Combining Ground Data with Meteorological Observations 

        Control burns are usually executed when the fire behavior/ dynamics (e.g., fuel types) and 

weather/burning conditions (e.g., Burning Index, spot weather forecasts) are favorable (Maji, Li 

et al., 2024). Fire emissions data can be collected from ground datasets or via remote sensing 

techniques (Li et al., 2023). Understandably, smaller fires, such as prescribed burns, are not 

perceived by remote sensing products; therefore, there are considerable uncertainties in satellite-

based estimates, even more so with the absence of surface-level fire data (Huang et al., 2018; 

Nowell et al., 2018). This pointed to the necessity for ground-fire data in regions of interest for 

assessing air quality impacts (Sadia Afrin & Garcia–Menendez, 2020). Additionally, 

meteorological conditions can be used to predict the occurrence of a wildland burn, and such 

information can be used to train data-driven models (Li et al., 2023).  

            An analysis done by the Georgia Forestry Commission (GFC) of burns permit data taken 

from 2010 to 2014 hugely confirmed that the season and weather hugely influenced the decisions 

taken by the land manager (Odman et al., 2018). This is logical, because weather can either 

douse or aggravate the environmental, health, and overall air quality impact that such burns have 

over a region. Infusing meteorological data into ground data analysis improves our 

understanding of the environmental and health impacts of such burns.  

2.8 OPPORTUNITIES IN LITERATURE 

2.8.1 Limited Studies Synthesizing Meteorological Conditions, Smoke Dispersion, and Sensor 

Data 

       Most environmental studies tend to make use of satellite products or chemical transport 

models to predict pollutant concentrations from wildland fires. In some cases, they compare the 

data obtained from such sources with stationary, regulatory, or portable monitors, burn permits, 
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and burning emissions inventories to know which technique yields the best estimates (Huang et 

al., 2021; Sablan et al., 2024; Miller et al., 2019; Schollaert et al., 2024). Other studies infuse 

meteorological data into models such as blue-sky or novel regression models, which are used to 

predict or estimate pollutant concentrations (Liu, 2014). Some research uses some of the tools: 

satellite detectors, regulatory monitors, and portable sensors to compare pollutant concentrations 

across locations, which are quite beneficial (Liu et al., 2021). Interestingly, not many studies 

integrate meteorological data with real-time BC data.  

        This research will attempt to fill this gap by correlating meteorological factors (temperature, 

relative humidity, wind speed, and direction) with MA-200 data to analyze BC concentrations 

throughout different locations and the influence of those meteorological factors. One study took 

a similar approach through a combination of meteorological conditions, smoke dispersion 

modeling, and ground acquired data (Miller et al., 2019), which corresponds to the air quality 

issues related to prescribed burns in the complex terrain of a bend in Oregon (Miller et al., 2019). 

2.8.2 Need for Better Fire Records: Exact Burn Time, Duration, and Fuel Details 

         Fire records are critical for researchers as well as the public because they provide critical 

inputs for several statistical and chemical transport models. Unfortunately, these permits often 

lack post-burn data, and the records often have uncertainties associated with them stemming 

from incompleteness, inconsistent or varied recordkeeping standards, and varied reporting 

requirements from different agencies. In recent years, however, the availability of digital 

prescribed fire records has substantially increased in several states (Afrin, 2021). Some studies in 

the Southeastern US focus on Georgia and Florida specifically because these states contain 

robust digital permits inventories due in part to the hard work of the Georgia Forestry 

Commission (GFC) and the Florida Forest Service (Jang & Jung, 2023; Odman et al., 2018; 
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Petralia & Potosnak, 2024). The situation is not uniform in other states, with digital records, 

when available, lacking or not containing enough data fields (Sadia Afrin & Garcia–Menendez, 

2020).  

       Having more information than was provided in permits, such as exact coordinates, start 

times, durations, fuel types burned, and atmospheric conditions, would certainly improve the 

value of bottom-up fire records for air quality assessment (Sadia Afrin & Garcia–Menendez, 

2020). Remarkably, there would also be significant value in obtaining post-burn occurrence or 

treated area data because these permits do not account for this information (Sadia Afrin & 

Garcia–Menendez, 2020). Addressing these opportunities in the research would further efforts to 

develop a complete assessment of prescribed fires' impact on air quality across the region. Even 

though prescribed fires are noted as the primary source of PM2.5 emissions in the Southeast, 

emissions inventories and observational networks do not come close to capturing the full extent 

of prescribed fires' impacts (Afrin, 2021; El Asmar et al., 2024).  In general, the permit records 

are often better at measuring actual areas burned than satellite data and vast records of prescribed 

fires (though there is a dearth of complete prescribed fire datasets for the southeastern states). 

Interestingly, the records from burn permits are always accurate; however, permit records 

sometimes inaccurately represent the location (though they require maps), date, and time of 

burns, thus potentially leading to the misidentification of the location and size of the burn area 

(Maji, Li, et al., 2024). 

2.8.3 Future Climatic Implications: Longer Fire Season, More Frequent Burns 

         The burning of biomass plays a significant role in total carbon emissions on both a regional 

and global scale, with global estimates indicating ~2.0 Pg C/year (Reisen et al., 2018). Year-to-

year variations in carbon emissions are significant on global and regional scales, as seen during 



 

36 

the El Niño years of 1997 and 1998, as well as during the more recent widespread fires, 

including forest and peatland fires in Southeast Asia in 2015 (Reisen et al., 2018). In Australia, 

estimated net carbon fluxes because of fire emissions are around 26 Tg C/year (Reisen et al., 

2018). Most carbon emissions estimated (∼95%) consist of carbon dioxide (CO2), carbon 

monoxide (CO), and methane (CH4). Furthermore, the fine particulate matter (PM2.5) that is 

converted to carbon is less than ∼5% of the overall carbon emissions (Reisen et al., 2018). While 

PM2.5 is a very small portion of carbon emissions, it is an important contributor of bushfire 

smoke and is consistently above air quality standards and causing the greatest risk of adverse 

health effects associated with biomass burning (Reisen et al., 2018).  

      Smoke particles also contribute to regional climate (Liu et al, 2014). As climate continues to 

change, it is predicted that in some areas of the world, large fire events are likely to be more 

frequent, particularly the western United States, Canada, Australia, and Russia, which will alter 

air quality and health impacts (Reisen et al., 2018). In the U.S.A., there has been evidence that 

the frequency and intensity of wildfires have increased over time, which leads to a longer fire 

weather season defined by more pronounced high temperatures and low humidity. This trend, 

driven by climate change, has resulted in larger burns (Maji, Li, et al., 2024). 

2.9 RELEVANCE TO PRESENT STUDY 

2.9.1 Justification for the study at the Jones Center, GA 

        Ichauway has a range of landscapes including longleaf pine forests, wetlands, river & 

streams, agricultural fields, and more. The focus is to manage and protect all the various facets of 

land and facilities. The essential land management practices include an extensive prescribed fire 

program, ecologically based forest management, and a longleaf pine ecosystem restoration on the 

Ichauway land (The Jones Center at Ichauway, 2024). Longleaf pine ecosystems were one of the 
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most abundant and widespread forest types in North America, covering over 92 million acres in 

the Southeast. They have now been reduced to less than 5% of the original range, and therefore, 

longleaf pine and species associated with longleaf pine are conservation priorities in the region 

for recovery and restoration. Subsequent benefits provided from longleaf pine forests include 

wildlife habitat (game and non-game), biodiversity, high-quality timber products, societal 

benefits and services (e.g., water yield and carbon storage), recreation, and aesthetic value. 

Ichauway includes approximately 18,000 acres of ancient longleaf pine forests (much of which 

has not been disturbed and retains native groundcover), creating a rare opportunity to enhance 

the knowledge and understanding of these ecosystems (The Jones Center at Ichauway, 2024; The 

Jones Center at Ichauway, 2022).  

       At Ichauway, staff burn approximately sixty percent of forested acres annually, maintaining 

a fire-return interval of two years or less. All fire ignitions are ground ignitions via 4-wheel 

ATVs. Prescribed burning is done year-round, and land management resources dictate the 

burning, with approximately 35% of burning in the growing season. This fire management 

enables the integrity of the natural longleaf pine forest structure and function, and reduces fuel 

loads to limit damage from wildfires (The Jones Center at Ichauway, 2024). There are 

approximately 50 endangered, threatened, or special concern species, both plants and animals, on 

the Jones Center property (The Jones Center at Ichauway, 2024). These species include the red-

cockaded woodpecker (RCW), gopher tortoise, fox squirrel, Florida pine snake, and gopher frog. 

The land management of the Jones Center supports the populations of these important species by 

principally maintaining a high-quality longleaf pine ecosystem, which is sustained through 

constant fire (The Jones Center at Ichauway, 2024; The Jones Center at Ichauway, 2022). The 
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Jones Center provides a unique platform for this study due to its strong natural history, integrated 

fire management, and impressive conservation practice. 

2.9.2 Use of MA-200 at Three locations: Upwind, Downwind, and Apartment 

         The southeastern United States contains one of the most extensive urban-wildland 

interfaces in the United States, with millions of residents living in areas adjacent to and/or 

intermixed with fire-prone lands (Afrin, 2021). This, along with regulating prescribed burns 

when conditions should result in incomplete combustion, has the potential to cause concerns over 

air quality and public health in surrounding communities (Sadia Afrin & Garcia–Menendez, 

2020). Prior research shows that using portable low-cost sensors, which can be deployed in 

different locations, increases the identification of the smoke events while also increasing the 

spatial resolution of black carbon concentrations related to the location of the prescribed burns 

(Liu et al., 2021; Chakraborty et al., 2023; Huang et al., 2021; El Asmar et al., 2024). 

       This study aimed to apply the same principle by collocating MA-200 sensors at three 

locations: Downwind, Upwind, and Apartment locations. These locations were selected to see 

how the BC concentrations varied across those places, relative to the burn location. Regarding 

the Apartment location, it was chosen because it was a bit far from the burn location, unlike the 

other locations, presenting an opportunity to explore smoke dispersion at a far distance.  

2.9.3 Goals of the Study: Access Spatial Differences in BC Exposure and the Impact of 

Meteorological Conditions 

This study will measure the concentration of black carbon released during a prescribed fire at the 

Jones Center, based on the previously stated opportunities in literature. The black carbon was 

measured in several locations to explore variation in spatial context. This study will also examine 
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how weather factors such as wind direction, wind speed, temperature, and relative humidity 

influence black carbon concentrations at various sites. 

2.10 CONCLUSION 

2.10.1 Summary of Relevant Findings from the Literature   

          Prescribed burning (PB) is the controlled ignition of both dead and live vegetation for 

resource management such as agriculture, land-clearing, silviculture, or simply limiting the scope 

of the wildfire risk (Jang & Jung, 2023; Odman et al., 2018; Petralia & Potosnak, 2024). Many 

species of trees survive fire as part of their life cycle in the Southeastern USA forests (Jang & 

Jung, 2023; Odman et al., 2018; Petralia & Potosnak, 2024). Each year, there are more than 2 

million hectares of land undergoing prescribed burning in the Southeastern USA, with Georgia 

alone treating almost 550,000 hectares each year (Odman et al., 2018; Petralia & Potosnak, 

2024). Prescribed fire combined with other sources of air pollution leads to the release of PM2.5 

being the predominant contributor in the Southeastern USA where it contributes around 250 Gg 

from prescribed burning (27% of total emissions), though it remains uncertain just how much 

prescribed fire contributes to area air pollution (Sadia Afrin & Garcia--Menendez, 2020; Jang & 

Jung, 2023; Odman et al., 2018). 

        PM2.5 from prescribed fires is complex and consists of many things: elemental carbon 

(EC), or black carbon (BC), organic carbon (OC), ionic compounds, trace metals, water-soluble 

organic carbon (WSOC), water-soluble iron (Fe(II)), particle number concentrations (Carrico & 

Karacaoglu, 2023; Balachandran et al., 2013; Jaffe et al., 2020; Karanasiou et al., 2021). Black 

carbon is an essential component of PM2.5 that has been put forth as a critical metric for air 

quality management due to consistent associations with a variety of negative health effects (Wu 

et al., 2021). The prescribed burning activity is very dependent on weather, especially 
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precipitation and wind. If a forecast is available, then it can help predict the immediate future of 

the demand for burning (Jang & Jung, 2023; Odman et al., 2018). Likewise, air quality 

predictions can rely on forecasts. Given the number of permitting systems already established 

(across several southeastern states), prescribed burns can be suspended on days of forecasted 

poor air quality and permitted when their weather conditions are acceptable. 

2.10.2 How Does This Study Build On Existing Knowledge 

          As many studies have examined the PM2.5 and organic carbon levels that arise from 

prescribed burns, there have been few studies specifically detailing black carbon (BC) 

concentrations across different micro-locations (site of burn, site immediately Downwind of 

burn, residential neighborhoods). Pearce et al. (2012) measured PM2.5 concentrations 

Downwind of burn locations, but did not thoroughly investigate black carbon, which will provide 

a more specific measure of combustion. Previous studies of the microAeth® series (MA200, 

MA300, MA350) have highlighted the capacity of mobile BC sensors to determine BC 

concentrations and capture, with improved spatial and temporal reliability, concentration 

gradients in these conditions (Liu et al., 2021). This study’s data set on BC, as mentioned in 

Pearce et al. (2012) and the Chicagoland study (2024), which focused on pollutants concentrated 

Downwind, will provide specific combustion-related insights from the data. It also reinforces the 

need for localized monitoring methods for burns, particularly for those communities that are 

more at risk. 

        Many studies have noted the role of atmospheric conditions such as mixing height, wind 

speed, and relative humidity, but few studies have analyzed high-resolution black carbon 

measurements along with meteorological conditions to investigate their effects on micro-scale 

pollutant dispersion. New data demonstrated that smoke from prescribed fires dispersed 
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significantly differently based on the topography, atmospheric conditions, and fire arrangement 

(Kondo et al., 2022; Achtemeier, 2009). Still, much of the research is dependent on PM2.5 data 

or satellite-measured aerosol optical depth (AOD) information; the specific dispersion of black 

carbon sources, particularly on the surface and in complex terrain, is not widely understood. 

Such a conclusion can be reached based on those studies conducted in Oregon and New Mexico, 

which investigated how meteorology could influence pollutant dispersion (Miller et al., 2019; 

Maji, Ford, et al., 2024). However, they mainly relied on PM2.5 data; this research is important 

since it can lead to more specific analysis on combustion sources and source sensitivity by 

employing black carbon measurements. 

 

         

 

 

 

 

 

 

 

 

 

 

 

 



 

42 

 

 

CHAPTER THREE: METHODOLOGY 

3.1 INTRODUCTION  

      Most previous studies on smoke from prescribed burns have focused on PM2.5 and organic 

carbon, while there has been less attention on black carbon (BC), which is more associated with 

combustion as a pollutant. Furthermore, very few studies have reported BC concentrations, or 

from BC sources, across locations, in and Upwind, Downwind, and within communities adjacent 

to prescribed burns. Research by Pearce et al. (2012), for example, has illustrated a gradient of 

PM2.5 surrounding burn sites, but BC remains significantly less studied in this context. Recent 

progress with portable devices, namely microAeth devices (MA-200, MA-300, MA-350), has 

demonstrated the ability to take high-resolution spatial and temporal measurements of BC 

concentrations (Liu et al., 2021). Utilizing the findings from Pearce et al. (2012) and the 

Chicagoland study (2024) that determined higher pollutant levels in communities located 

Downwind of emissions using a localized, combustion-based model of BC exposure, data will be 

generated to promote a more localized monitoring approach for communities near prescribed 

burn sites in the southeastern US. 

      Furthermore, while meteorological variables, including wind speed, wind direction, 

temperature, and relative humidity, are acknowledged to affect the dispersion of smoke, studies 

that exist that incorporate these confounding variables with high-resolution measurements of 

black carbon (BC) are few. Much of the current studies rely on either PM2.5 data or satellite-

derived aerosol optical depth (AOD), which does not relate directly to any combustion sources. 

As smoke dispersion is impacted by terrain, fire configuration, and atmospheric dynamics it is 
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useful to improve our understanding of what happens with BC at ground level (Kondo et al., 

2022; Achtemeier, 2009). This research effort aims to address these missing factors with BC 

measurements taken during the prescribed fire at three sites: Upwind, Downwind, and distant 

that took place at the Jones Center. The purpose was to correlate these measurements to the 

meteorological data and determine how the concentrations of BC varied spatially, while also 

assessing how the weather conditions alter pollution dispersion across the different locations. 

3.1.1 Flow of the Methodology Chapter 

         This chapter begins by giving an overview of the methods used, after which it references 

the research questions and hypothesis statements that would be tested. It then goes ahead to 

highlight the research designs used in the study. Afterwards, details of the data collection 

process, sampling, instrumentation, and data analysis methods were explained. Other 

methodological sub-sections, such as the assumptions, ethical assurances, and quality assurance, 

would also be looked at before concluding with the summary chapter.   

3.1.2 Overview of Methods Used 

       To address the research questions, black carbon (BC) concentrations were measured during a 

prescribed burn at the Jones Center in Southwest Georgia using three MA-200 sensors located 

Upwind (to the Southeast), Downwind (to the Northwest), and on the screened porch of an 

apartment situated to the Northeast. At the same time, meteorological information (wind speed, 

wind direction, temperature, and relative humidity) was recorded from a weather station on Jones 

Center grounds. The BC observations were recorded every minute, while the meteorological 

observations were made every 15 minutes. R Studio was used to preprocess and integrate 

meteorological and BC data, as well as perform all analyses. 
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3.2 RESEARCH QUESTIONS AND HYPOTHESES 

 The research questions and hypotheses guiding this study have already been presented in 

Section 1.4 of the introductory chapter. 

3.3 STATISTICAL ANALYSIS PLAN 

         This study utilized an observational design for the exploration of research questions and 

hypotheses. Data-wise, the descriptive design was used to summarize and report the BC 

concentrations at the various locations (Upwind, Downwind, and Apartment) relative to the 

prescribed burn. Descriptive statistics tools, such as summary statistics, box plots, and line 

charts, were used to observe the general behavior of black carbon and meteorological data 

(Petralia & Potosnak, 2024). The comparative design was used to see how BC levels differed 

across different locations, relative to the burn. To obtain BC data, the sensors were allowed to 

run in three locations, after which statistical tools were used to compare differences between 

them. Tests such as Kruskal-Wallis were used in this regard, especially as they relate to 

statistically significant differences.  

      The correlational design was used to check for relationships between the meteorological 

variables (wind speed, humidity, and temperature) and BC concentrations. To ensure data 

uniformity, the timing and date of the BC concentrations and the meteorological data were 

matched. Scatter plots were used to visualize relationships between BC concentration and 

meteorological data (Balachandran et al., 2013). Univariate Linear and multiple linear regression 

models were used to estimate these relationships whilst explaining the differences across the 

locations (Sadia Afrin & Garcia–Menendez, 2020). Tools such as Google Earth, WRPLOT 

View, and ArcGIS were used to create visualizations that helped to make sense of the results 

from a spatial point of view (Carrico & Karacaoglu, 2023; Petralia & Potosnak, 2024). 
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3.4 DATA COLLECTION DETAILS  

3.4.1 Study Location and Population Characteristics 

          The Jones Center in Ichauway, a large reserve of greater than 18,000 hectares in the lower 

coastal plains and flatwoods of southern Georgia, is depicted in Figure 1 (DEIMS-SDR, 2023; 

NSF, 2025). Ichauway is in the Dougherty Plain and is defined by a topography with local 

elevations above mean sea level of 90 to 200 feet, surficial material made up primarily of sandy 

soils with poorly drained clays in varying classifications of drainage (excessively drained sands 

to very poorly drained clays) (The Jones Center at Ichauway, 2024). The terrestrial research 

areas are mostly located in the southern area of the Jones Center (DEIMS-SDR, 2023). Latitude 

and longitude coordinates for the Jones Center are approximately 31.19484° N, -84.46861° W 

(DEIMS-SDR, 2023). The longleaf forests at Ichauway have been actively managed for more 

than eighty years with ecologically based management strategies frequent prescribed fire and 

selective cutting of trees. Upland longleaf pine forests make up the largest land cover type at 

Ichauway, covering approximately 18,000 acres (Jones Center, 2025; The Jones Center at 

Ichauway, 2024).  Apart from the spring prescribed burns held at the Jones Center, which many 

times start from the month of April, the Jones Center sometimes runs short fire campaigns to see 

how well the fires burn before the extended fire season. In this study, BC concentration data 

were obtained from three locations subject to fire (Upwind, Downwind, and Apartment), as seen 

in Figure 2.  
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Figure 1: The Joseph W. Jones Ecological Research Center at Ichauway located on the 

Dougherty Plain in Southwest Georgia (Deemy & Rasmussen, 2017). 

 

Figure 2: MA-200 and prescribed burn locations. Yellow dot: Downwind; Blue dot: Upwind; 

Orange dot: Apartment; Teal dot: Burn location. 

3.4.2 Instrumentation 

         The MA200 measures optical absorption by black carbon on a filter at five optical 

wavelengths: infrared, red, green, blue, and ultraviolet (880, 625, 528, 470, and 375nm, 

respectively). The MA200 uses a commonly accepted measure of black carbon called 

“equivalent black carbon” (eBC) from the 880nm channel, specifically the IR BCc channel. The 



 

47 

MA200 has a limit of detection of 30 μg/m³ for eBC using a 5-minute time base at a sampling 

rate of 150mL/min (SingleSpot™ mode) with a resolution of 1ng/m3. For mobile monitoring 

applications, the MA200 can be used to estimate a person’s exposure and measure eBC mass 

concentrations in different locations (Liu et al., 2021). 

         In this study, three aethalometers, MA200-0427, MA200-0422, and MA200-0428, were 

used to measure black carbon concentrations from different locations relative to the prescribed 

burn. Before deployment, the sensors were prepared and adjusted in the lab, undergoing zero 

calibration checks and a thorough examination to ensure they were in good condition. In general, 

the MA200 instrument can monitor black carbon at timescales of 1, 5, 10, 30, 60, and 300 

seconds. This study collected black carbon concentrations at a time interval of 1minute.  

3.4.3 Data Collection Procedures 

           Two days before the burn (19th of April 2023), the MA-200-0428 at the Apartment 

location started recording background concentrations of black carbon. This kicked off from 7:49 

pm and ended at 9:43 pm. The next day, the same background concentrations were taken 

throughout the day from 7:12 am to 9:43 pm. On the day of the burn (21st of April 2023), MA 

200-0428 started taking readings from 7:19 am. The other sensors at the Upwind (MA 200-0427) 

and Downwind (MA 200-0422) locations started collecting their data at 8:56 am. It is 

noteworthy to mention that the three sensors were collocated side by side, before (9:11 am to 

9:34 am) and after the burn (1:00 pm to 1:30 pm), to ensure that they were running as they 

should and that the readings recorded were consistent.  

        The sampling time was from 9:45 am to 12:55 pm, and during this time, the three monitors 

were placed at different locations: MA-200 0428 was placed on the screen porch at the 

Apartment, MA200-0422 was placed at the Downwind location, and MA200-0427 was placed at 
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the Upwind location. Although some post- and pre-sampling data were available for use, only 

sampling time data were used for analysis. After data collection, the MA200 sensor's data was 

downloaded and extracted using the Aethlabs dashboard. Additionally, the meteorological data 

used in this study were obtained from an on-site weather station located at the Jones Center. The 

meteorological data spanned from 11:55 pm on April 18 to 11:30 pm on April 21, 2023.  

3.5 DATA ANALYSIS METHODS 

            In this section, the analytical skeleton used to answer research questions and test the 

hypothesis statements is explored. The tools and techniques used were because of the data 

structure, variable type, and the aim of the study. Such analytical tools include descriptive 

statistics, Kruskal-Wallis tests, Dunn's post hoc test, and the univariate linear and multiple linear 

regression models. Together, these tools ensured that the BC concentrations across the locations 

were evaluated, while considering the influence of the meteorological conditions. 

3.5.1 Research Questions and Hypotheses 

The research questions and hypotheses statements directing this study have already been 

presented in Section 1.4 of the introductory chapter. 

3.5.2 Data Types and Sensor Configuration 

      The data used in this study, black carbon concentration data and meteorological data, were a 

perfect fit both to answer the research questions and test the hypothesis statements. To ensure 

uniformity across all sensors, this study made use of the black carbon concentration data run on 

the single spot mode. Also, it is noteworthy to mention that only the MA-200’, located at the 

Upwind and the Downwind locations, were run in Dual spot mode. This allowed them to use 

their in-built correction system to correct errors due to high attenuation values.  
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3.5.3 Data Preparation and Preprocessing 

1. Preprocessing Raw BC Data: After extracting the BC data from the MA-200, they were 

renamed according to their location (A: Apartment, D: Downwind, and U: Upwind) and 

narrowed down to columns relevant to this study: Date local, Time local, and IR BC 1. 

The IR BC 1 data was taken at 1-minute intervals and trimmed to the sampling time: 9:45 

am to 12:55 pm. 

2. Splitting Date and Time: The Date local and Time local columns were then split into 

Year, Month, Day, Hour, Minute columns to aid the merging and further analysis in R 

Studio. The split operation was carried out using the Microsoft Excel software. 

3. Meteorological Data Processing: Meteorological data, recorded at 15-minute intervals, 

also had irrelevant variables (e.g., soil temperature, pressure) present in its original 

dataset. To prepare it for merging in R, the original dataset was cleaned to contain only 

necessary data: Date, Temperature, Wind Speed, Wind Direction, and matched to the 

same sampling time interval. 

4. Data Integration in R Studio: 

• Codes were run in R to merge the one-minute BC data from each location. 

• The merged one-minute BC dataset was matched to the 15-minute meteorological data 

using replication logic. 

3.5.4 Descriptive Statistics and Visualization 

      Descriptive statistical tools such as the mean, median, mode, interquartile range, box plots, 

and line charts were used to explore the variable of interest: black carbon and meteorological 

data. These tools gave insight into how the variables behave over time across the three locations. 

Wind Roses were also used to give spatial and directional insight into the wind speed and 
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prevailing wind direction variables across the various locations (El Asmar et al., 2024). Lastly, 

the ArcGIS software was used to geolocate the sensors and the burn location using coordinates 

obtained from the MA-200 and one of the burn managers.  

3.5.5 Test for Normality 

• Histograms were used to visually evaluate distribution symmetry for black carbon and the 

meteorological data. 

• A Shapiro-Wilk Test was completed on the black carbon data to determine if the data 

were normally distributed. A p-value of 0.05 or lower was considered a rejection of the 

null hypothesis that the data were normally distributed. Since the source BC data was not 

normally distributed, all additional analyses were done with non-parametric tests.  

3.5.6 Inferential Statistical Tests 

• A Kruskal-Wallis Test was used to determine if there was a statistically significant 

difference between each of the three locations (A, D, and U) regarding the variable of 

interest (IR BC 1). A p-value lower than 0.05 means that there is statistically significant 

difference in IR BC 1 pollution between the three sites. A p-value of 0.05 or greater 

means that there is no statistically significant difference. The Kruskal-Wallis test shows 

that a difference exists; it does not indicate which specific groups are different from each 

other (Geeks for Geeks, 2020).  

• Then, if the p-value from the Kruskal-Wallis test shows significance, Dunn's Post-Hoc 

Test (with Bonferroni Correction) is run to figure out which locations differ from one 

another. Dunn’s Test will indicate the pairs of locations that have statistically significant 

differences in IR BC 1 pollution levels, respectively. 
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3.5.7 Modeling Procedures 

Data Transformations 

• Before running the regression models, the black carbon concentration data were log-

transformed to normalize the data and stabilize variance.  

• Also, two rows of data were removed from the BC dataset, reducing the 1-minute dataset 

from 191 to 189 rows of data. NANs and negative values were also removed from the 

dataset before modelling. 

Interpretation of Log-Transformed Coefficients 

Since the Black Carbon (BC) concentration data were log-transformed, the coefficients from the 

regression results mean the following:  

• A positive β means that the dependent variable (BC) increases by (𝑒𝛽- 1) × 100% per unit 

increase in the predictor variable (wind speed, wind direction, relative humidity). 

• A negative β indicates that the dependent variable (BC) decreases by (1 - 𝑒𝛽) × 100%. 

• To assess smaller unit changes in the predictor variable (e.g., 0.1 or 0.05), the effect on 

the outcome can be computed by 𝑒𝛽∗0.1or  𝑒𝛽∗0.05 to provide some further insights into 

the impact of the variable on the outcome at a finer level. 

Visual Adjustments 

• The scatterplots in this study showed “stacked vertical” lines, and this was due to the 

repeated values exhibited by the one-minute meteorological dataset. 

Univariate Linear Regression (1-min and 15-min models) 

Prior to carrying out the univariate linear regression modeling, the wind direction variable was 

categorized into eight categories. Also, since the wind direction was a circular variable, 

histograms were used to visualize it. 
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Multiple Linear Regression (1-min and 15-min models): Encoding Wind Direction Using 

Sine and Cosine Components 

In meteorology, wind direction (a circular variable) is measured in degrees, and has both 0 and 

360 degrees to mean the same thing: wind coming from the north. Since the linear regression 

model interprets variables linearly, the circularity of the wind direction variable may lead to 

wrong conclusions when used as is. To account for this, wind direction was converted to 

continuous components: north-south, east-west, using sine and cosine transformations, using the 

formula below:  

𝜃𝑚𝑎𝑡ℎ = (270 − 𝜃𝑚𝑒𝑡)  mod 360 

𝜃𝑟𝑎𝑑 =  𝜃𝑚𝑎𝑡ℎ  ×  
𝜋

180
  

𝑤𝑖𝑛𝑑𝑥 = cos(𝜃𝑟𝑎𝑑) , 𝑤𝑖𝑛𝑑𝑦 = sin(𝜃𝑟𝑎𝑑),  

Equation 1: Transformation of Wind Direction into East–West and North–South Components 

 

• θ_met: the actual meteorological wind direction in degrees that represents the source of 

the wind flow.  

• θ_math: an adjusted angle that is modified to comply with the accepted mathematical 

standard, where 0° is East.  

• θ_rad: the same angle converted from degrees to radians to allow it to be used with 

mathematical functions.  

• cos(θ_rad): gives us the east-west wind component (wind_x).  

• sin(θ_rad): gives us the north-south wind component (wind_y).  

The wind_x and wind_y components were then utilized as predictor variables in the multiple 

linear regression model. This allows the model to pinpoint circular wind direction as opposed to 
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using raw wind direction that could confuse the model into separating 0° and 360° as two distinct 

directions. A multicollinearity test was performed on the predictor variables before finalizing the 

results of the multiple linear regression (MLR) model to ensure reliable and clear estimated 

coefficient values. The Variance Inflation Factor (VIF) was computed for each predictor to fully 

assess multicollinearity (Khan et al., 2018). VIF values that exceed a range of 5 - 10 are typically 

seen as indicative of substantial multicollinearity. 

3.6 ETHICAL AND QUALITY ASSURANCE 

        The data used in this study were environmental and did not use human subjects, and so 

there was no need for ethical approvals or consent from the Institutional Review Board. To 

guarantee the reliability and validity of the research findings, statistical measures such as 

standard error and standard deviation were used. This was to check for the variations and 

consistency of the black carbon emissions data across the different locations. Also, pre-

deployment procedures such as the calibration and test run of instruments, consistent data 

collection intervals, and adequate documentation of all analysis steps were followed strictly. All 

these procedures make sure that the results of this research endeavor are replicable and 

trustworthy.  

3.7 SUMMARY 

          In this chapter, the application of an observational research design included descriptive, 

comparative, and correlational methods to answer the research questions and test the hypotheses. 

The observational research design (i.e., descriptive, comparative, correlational) provided a 

structure that guided the data collection and analysis necessary to contribute to the existing 

knowledge in the air quality space. The analytical framework provided some insights that would 
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be useful for thinking about air quality and prescribed fire scenarios. In the following chapter, 

the results from the analysis will be presented and discussed.  
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CHAPTER FOUR: RESULTS AND DISCUSSION 

4.1 INTRODUCTION  

      This chapter presents the findings of the data analysis to answer the research question and 

test the hypothesis statements. It starts by restating the research questions and hypothesis 

statements, then describes the characteristics of the sample. It then details the results from the 

analyses that correspond with the research questions and hypotheses, followed by discussions 

interpreting, contextualizing, and relating the findings to the existing literature. Finally, 

implications for policy, research, industry, theory, and practice will be discussed. 

4.2 SAMPLE CHARACTERISTICS 

       This section gives a summary of the variables used in this study, including their notations 

and units of measurement. These variables denote the black carbon concentrations and the 

meteorological conditions across the different locations (A, U, and D). They are listed below:  

• T – Temperature measured in Degrees Celsius (℃). This variable represents the 

temperature of the surrounding environment during the sampling period. 

• WD – Wind Direction measured in Degrees (˚). This shows the direction that the wind is 

blowing from.  

• WS – Wind Speed measured in Mps (m/s). This denotes how fast the air is moving at the 

study location.  

• RH – Relative humidity measured in Percentage (%).  This depicts how much water 

vapor is in the air at a particular temperature (Cottingim, 2018). 
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• A Location BC – Black carbon data taken at the Apartment Location measured in 

Micrograms/Meter Cubed (μg/m3). This represents BC concentrations at the outdoor 

premises of the Apartment. 

• U Location BC – Black carbon data taken at the Upwind Location measured in 

Micrograms/Meter Cubed (μg/m3). This depicts BC concentrations Upwind of the burn. 

• D Location BC – Black carbon data taken at the Downwind Location measured in 

Micrograms/Meter Cubed (μg/m3). This depicts BC concentrations Downwind of the 

burn. 

• IR BC1: Black carbon data extracted from the Infrared wavelength taken at a single spot. 

Table 1: Summary Statistics of Meteorological Data Over Time (19th to 21st April 2023) 

Variable Mean Mode Median Q1 Q3 IQR Minimum Maximum 

T 20.1 28.1 21.2 13.0 26.9 13.8 7.8 29.6 

WS 1.1 0 1.2 0.1 2.1 2.0 0 3.3 

RH 60.9 100 56.7 36.1 89.8 53.7 22.2 100 

 

Over the course of the three days (19th to 21st of April), the mean values across all the variables, 

RH, WS, and T, were found to be 60.9%, 1.1m/s, and 20.1℃, respectively. The minimum and 

maximum values across the board were T (7.8℃, 29.6℃), WS (0m/s, 3.3m/s), and RH (22.2%, 

100%), respectively. Looking at the summary statistics table, it shows low temperature ranges, 

which are typical of the spring season, typically characterized by temperate weather. Also, the 

observed wind speed values are typical of prescribed burns, as it makes more sense to carry them 

out under not too windy conditions, so that they do not go out of control. Notably, the most 

prevalent wind speed was found to be 0m/s, indicative of a calm wind situation. These 

observations were further reinforced by the Wind class frequency distribution and the 

categorized wind direction figures shown in Figures 3a and b.  
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Figure 3a-b: Wind Rose and Wind Class Frequency Distribution Across All Days 
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Table 2: Summary Statistics of IR BC1 Over Time on April 19, 2023 

Variable Mean Median Mode Q1 Q3 IQR Minimum Maximum 

A 2,322 2,290 2,268 2,236 2,388 152 2,068 3,066 

 

Table 3: Summary Statistics of IR BC1 Over Time on April 20, 2023 

Variable Mean Median Mode Q1 Q3 IQR Minimum Maximum 

A 994 463 422 319 841 522 30 5,059 

 

Table 4: Summary Statistics of IR BC1 Over Time on April 21, 2023 

Variable Mean Median Mode Q1 Q3 IQR Minimum Maximum 

A 721 682 828 498 892 394 203 3,324 

D 24,143 1,988 -758 -108 7,703 7,811 -8,071 383,508 

U 7,323 670 608 464 922 458 -779 2,939 

 

Tables 2 and 3 were taken from the Apartment location. The high concentrations recorded there 

(especially on the first day, 2,322μg/m³) had dropped to 721 μg/m³ by the third day. Also, as 

expected, the IR BC 1 concentrations at the Downwind location recorded the highest mean 

concentrations, 24,143 μg/m³, compared to the other locations, with concentrations of 734μg/m³ 

at the Upwind location and 721 μg/m³ at the Apartment location. The negative values that kept 

showing up in the Downwind location were owing to the instrument's signal noise caused by the 

unstable flow. 

4.3 FINDINGS OF DATA ANALYSIS  

4.3.1 Findings of Data Analysis Organized by Research Question  

4.3.1.1 Hypothesis Statement 1  

H1: BC concentrations will be significantly higher at Downwind locations compared to Upwind 

and Apartment sites during and after the prescribed burn. 
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4.3.1.2 Descriptive Statistics  

For the first research question, the table below summarizes descriptive statistics of the BC 

concentration data that were collected in locations during the sampling period (prescribed burn).  

Table 5: Summary Statistics of IR BC1 Over Time on April 21, 2023 (Sampling Time) 

Location Mean Median Mode Q1 Q3 IQR Minimum Maximum Standard 

Deviation 

A 664 600 474 499 780 281 344 3,324 283 

U 678 625 682 493 821 328 207 1,871 258 

D 34,028 2,901 2,670 312 17,129 16,817 -2,095 383,508 73,882 
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Figure 4a-b: Line charts showing IR BC1 concentrations across all locations during the 

sampling period. The chart on the left displays the data on a normal scale, while the chart on the 

right shows log-transformed values (base 10) to highlight differences between the IR BC1 

concentrations at the Upwind and Apartment locations. 

The values in Table 5 are consistent with Table 4, the Downwind location has the highest mean 

IR BC 1 concentration (34,028 μg/m³), with the Upwind and Apartment locations subsequent but 

not very close (678 μg/m³ and 664 μg/m³, respectively). This clearly illustrates that the 

Downwind sensor had the highest exposure to black carbon emissions. Also, as seen in Figures 

4a and 4b, concentrations at the Downwind location began to peak at approximately 10:00 a.m., 

with concentrations reaching over 383,508 μg/m³ until approximately 10:49 a.m. The peak 

concentrations over the Downwind location are the only clear peaks, as subsequent smaller peaks 

occurred between 11:00 a.m. and noon, but to a much lesser extent than the first higher peak had 
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occurred. Low dips were also observed for the Downwind location, at 11:29 a.m. and 12:17 p.m. 

(Figure 4b).  

      Although they are geographically distant from each other, the Upwind and the Apartment 

locations are capturing relatively similar BC concentrations (Table 5). This indicates that the 

plume dispersion and meteorology in those areas were similar, unlike the conditions observed 

Downwind. The high concentrations of black carbon observed by the Downwind location could 

have been attributed to the intense release of smoke when the fire was first lit and actively 

burning biomass. As the fire lost intensity, the smoke production was also probably diminished, 

resulting in decreasing concentrations of BC.         

      The median values show a similar trend to the means, with the Downwind location being the 

highest median concentration of black carbon at 2,901 μg/m³, while the Upwind location and 

Apartment location recorded 625 μg/m³ and 600 μg/m³ of median black carbon, respectively. The 

relatively high amount of median black carbon at the Downwind location, in combination with 

its maximum value of 383,508 μg/m³, indicates many high-concentration values. Likely, these 

extreme values are mostly in the right tail of the distribution; the high maximum value also 

shows that the distribution of values is very positively skewed, which will necessitate 

normalization of data before continuing with analyses.     

        As seen in Table 5, standard deviation provides a snapshot of variation in black carbon (BC) 

concentrations in the three locations. Locations A and U elicited relatively low standard 

deviations, 283 μg/m³ and 258 μg/m³, respectively, suggesting that the BC concentrations at 

these locations were relatively consistent in their location and clustered around their respective 

means (664 μg/m³ for A and 678 μg/m³ for U). Conversely, location D exhibited an extremely 

large standard deviation of 73,882 μg/m³, vastly exceeding the mean of 34,028 μg/m³, implying a 
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substantial variation from the mean, an exaggerated degree of variability, and outliers within the 

dataset. Moreover, the interquartile range of 16,817 μg/m³, the negative minimum of -2,095 

μg/m³, and the marginally considerable differences between the mean and median (2,901 μg/m³) 

suggest an asymmetric distribution in location D.  

4.3.1.3 Inferential Statistics 

Tests for Normality 

     Before carrying out any advanced analysis, black carbon concentration data (1 minute and 15 

minutes) were checked to see if they followed a normal distribution. This was an essential step 

that was used to determine the methods to use to run further analysis. To start with, histograms 

were used to visually check for normality, followed by the Shapiro-Wilk normality test, which 

provided a solid assessment of normality. The results from these tests (shown below) gave more 

direction to the type of inferential tests (parametric or non-parametric) used for further analysis. 
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Figure 5a-c: Histograms of IR BC1 Data Recorded at One-Minute Intervals 
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Figure 6a-c: Histograms of IR BC1 Data Recorded at Fifteen-Minute Intervals 

 

Visually, the distribution of the IR BC 1 at most of the locations appeared skewed to the right, 

both under the 1-minute and the 15-minute data. The only exception was the U location BC data, 

whose distribution looked like that of a normal curve, compared to the other locations. The 

Shapiro-Wilk test was also conducted to check for normality across locations and time intervals. 

The results are outlined below:  



 

65 

Table 6: Results of the Shapiro-Wilk Normality Test for IR BC1 Data 

Variables W Value P Value 

One Minute:   

A location BC 0.72 < 2.2e-16 

U location BC 0.90 1.10e-12 

D location BC 0.44 < 2.2e-16 

   

Fifteen Minutes:   

A location BC 0.69 1.85e-12 

U location BC 0.96 0.48 

D location BC 0.52 7.46e-07 

 

The results from the Shapiro-Wilk normality test show that for the one-minute data (all 

locations), their distribution was significantly different from the normal distribution (p < 0.05). 

The only dataset whose distribution was not significantly different was the U location BC (the 

15-minute data). Since it was the only one in that category, all the datasets were classified as 

being non-normally distributed, qualifying them to be analyzed using non-parametric statistical 

tests. 

Test for Non-Normality: Kruskal-Wallis Test 

Table 7: Kruskal-Wallis Test Results for IR BC 1 

Variable of concern Chi-squared Df value P-value 

One Minute IR BC 1 70.00 2 6.30e-16 

Fifteen Minutes IR BC 1 22.75 2 1.15e-05 

 

These results show that there is a significant difference (p value less than 0.05) in the black 

carbon concentrations both in the one-minute and the fifteen-minute datasets. In a bid to know 

which of the location pairs differ significantly, Dunn’s post-hoc test was conducted.  

Table 8: Dunn’s Test Results (Bonferroni Method) for IR BC 1 

Variable of concern Locations Z P. Unadjusted P. Adjusted 

One Minute IR BC 1  A - D 

A - U 

7.48 

0.48 

7.57e-14 

6.30e- 1 

2.27e-13 

1e+ 0 
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D - U -7.00 2.63e-12 

 

7.88e-12 

 

Fifteen Minute IR BC 1 A - D 

A - U 

D - U 

4.04 

-0.17 

-4.21 

0.00005 

0.86 

0.00003 

 

0.0002 

1 

0.0001 

 

 

For the one-minute and fifteen-minute datasets, Dunn’s post-hoc test results disclosed that the A 

location BC and D location BC pairs, were not just different as seen through the summary 

statistics, but these differences were also statistically significant (p value < 0.05) (Jang & Jung, 

2023). 

4.3.1.4 Summary 

        The analysis conducted in this sub-section showed that Downwind BC concentrations 

significantly differed from the Upwind and Apartment locations. Firstly, the summary statistics 

revealed that the highest concentration value of 34,028 μg/m³ was recorded at the Downwind 

location, compared to the Apartment and Upwind locations, which recorded values of 664 μg/m³ 

and 678 μg/m³, respectively. Results from the Kruskal-Wallis test showed that such differences 

were statistically significant with p values less than 0.05, across the one-minute and fifteen-

minute datasets. Also, the 1-minute and 15-minute datasets, tested using Dunn’s post-hoc test, 

revealed that the differences in black carbon concentrations between the Apartment (A), Upwind 

(U) locations, and the Downwind (D) location were not only obvious but also statistically 

significant (p < 0.05).  

     Studies like those conducted by Sablan et al. (2024) and Ravi et al. (2018) emphasize the fact 

that particulate matter concentrations do not disperse quickly Downwind of fires.  Such 

heightened concentrations can have a significant impact on air quality, visibility, and health. This 

further reinforces the fact that more attention needs to be paid to communities that live 



 

67 

Downwind of these fires, either through policies that limit such burns or community engagement 

meetings through which the potential air quality risks are effectively communicated. Also, giving 

such communities tools that they could use to possibly monitor their air quality is quite 

important, as such measures would inadvertently affect their general health and well-being. 

4.3.2 Results of Data Analysis by Research Question 

4.3.2.1 Hypothesis Statement 2 

H2: Meteorological conditions, specifically wind speed, wind direction, temperature, and 

relative humidity, will influence concentrations of BC.  

4.3.2.2 Descriptive Statistics 

To answer the second research question, the table below gives a descriptive statistic of the 

Meteorological data during the sampling time (prescribed burn). 

Table 9: Summary Statistics of Meteorological Over Time on April 21, 2023 (Sampling Time) 

Variable Mean Median Mode Q1 Q3 IQR Minimum Maximum 

T 25.1 25.2 N/A 24.3 25.8 1.5 23.0 26.8 

RH 45.3 46.5 N/A 40.3 50 9.7 35.1 56.7 

WS 2.8 2.7 N/A 2.6 3.1 0.5 2.1 3.2 

 

The summary of the meteorological conditions during the sampling period is provided in the 

table above. Relative humidity is a measure of the amount of moisture air can hold at a specified 

temperature and pressure. Relative humidity was moderate, with an average of 45.3% and a 

maximum of 56.7%. Wind speeds were relatively low and consistent throughout the period, with 

the maximum wind speed of 3.2 m/s very close to the mean wind speed of 2.8 m/s. Ambient 

temperature ranged from 23.0°C to 26.8°C, which is also a typical temperature for the time of 

day and time of year. "NA" values in the mode column across variables were not unexpected for 
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the short sampling window.

 

 

 

Figure 7a-c: Line charts showing Meteorological data during the sampling period. 
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The charts above show several interesting trends. Relative humidity has a general trend 

downward over the sampling period, decreasing from the maximum of 56.7% to approximately 

36.7%. Temperature has a general trend upward, from 23.0°C to 26.8°C, which is consistent with 

the time of day and the spring season in which the burn occurred. The downward trend of 

relative humidity and upward trend of temperature are expected because warmer air can hold 

more moisture, which will decrease relative humidity even though the amount of water vapor 

remains the same. Wind speed exhibited some variation, starting at the maximum of 3.2 m/s and 

fluctuating throughout the sampling time by 0.5m/s. 

        Interestingly, Figure 4b shows that the same period (9:45 to 10 am) during which the BC 

concentrations spiked at the Downwind location coincided with the increase in temperature and 

wind speed, and a decrease in relative humidity variables. Also, since the Wind Direction 

variable is a categorical, circular variable, it was grouped into logical bins before running the 

analysis (linear regression analysis). The bins are shown in the table below: 

Table 10: Categorization of Wind Direction  

Category Wind Direction Range (°) 

0 0 (Calm winds) 

1 0° - 45° (N-NE) 

2 45° - 90° (NE-E) 

3 90° - 135° (E-SE) 

4 135° - 180° (SE-S) 

5 180° - 225° (S-SW) 

6 
225° - 270° (SW-W) 

 

7 
270° - 315° (W-NW) 

 

8 315° - 360° (NW-N) 

 



 

70 

 

Figure 8: Histogram of Wind Direction Data taken during the Sampling time 

The grouped wind direction was also plotted on a histogram, and from Figure 8, categories 3 and 

4, indicative of the (E-SE) and (SE-S), were the prominent directions in the sampling time. The 

wind rose was plotted using the wind speed and wind direction, streamlined to the sampling 

time, also affirming this as they show the directions that the wind was blowing from the 106.3° 

to 168.9° range. In addition, the wind class frequency chart shows that the prominent wind speed 

recorded at that time fell within the class 2.1m/s to 3.6m/s, pointing to decent and constant wind 

conditions throughout the sampling time. 
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Figure 9a-b: Wind Rose and Wind Class Frequency Distribution during the Sampling Time 

4.3.2.3 Inferential Statistics 

      The results of the logarithmic transformation of black carbon data at one minute and fifteen 

minutes are shown below. 
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Table 11: Log Transformation of the non-normal variables (One Minute and Fifteen Minutes) 

Transformation Stage 

 

Variables (Skewness values) 

 

 A (1 Minute) D (1 Minute) U (1 Minute) 

Pre Transformation 4.80 2.82 1.15 

Post Transformation 0.93 -0.14 -0.16 

    

 A (15 Minutes) D (15 Minutes) U (15 Minutes) 

Pre Transformation 0.27 1.76 0.71 

Post Transformation 0.19 0.66 0.37 

 

The next set of results are those that were obtained from the regression models (univariate linear 

and multiple linear regression models).        

Univariate Linear Regression Results 

General Univariate Linear Regression Model Formula: y = a + bx 

Y: dependent variable, e.g., A location BC, U location BC, D location BC 

X: independent variable, e.g. WS, WD (category), RH, T. 

logy= a + bx could then be: logA location BC = a + bWS  

(This study’s univariate linear regression model formula) 

Figures 10-12 show scatter plots with regression lines that detail the linearity between black 

carbon concentrations at A, D, and U sites with the independent meteorological variables 

(temperature, wind speed, relative humidity) measured at 15-minute intervals.  



 

73 

  

  

 

Figure 10a-c: Scatter Plots with Regression Lines for the Upwind (U) Location Showing 

Relationships Between Black Carbon (BC) and Temperature, Wind Speed, and Relative 

Humidity (Fifteen Minutes) 
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Figure 11a-c: Scatter Plots with Regression Lines for the Downwind (D) Location Showing 

Relationships Between Black Carbon (BC) and Temperature, Wind Speed, and Relative 

Humidity (Fifteen Minutes) 
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Figure 12a-c: Scatter Plots with Regression Lines for the Apartment (A) Location Showing 

Relationships Between Black Carbon (BC) and Temperature, Wind Speed, and Relative 

Humidity (Fifteen Minutes) 
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     Even after the natural log transformation of black carbon concentrations to stabilize variance 

and to eliminate skewness in the distributions, the regression lines and scatter plots produced 

from the simple linear regression models exhibited weak linear relationships between the 

individual predictors and the ln black carbon concentrations. The visual inspection of the 

individual plotted points, not closely clustered about the fitted regression lines, suggested that the 

influence of the individual predictor(s) on the log-transformed black carbon concentrations could 

not be explained in isolation. Acknowledging the cumulative effects and possibly interactions of 

multiple predictors was necessary. This was the rationale for transitioning to a multiple linear 

regression (MLR) model and a more expansive model of relationships. Overall, the patterns seen 

between the one-minute and the fifteen-minute data were similar. The fifteen-minute plots were 

provided here because they resulted in clearer patterns between the predictor and response 

variables, unlike the one-minute dataset, which resulted in a closer stacked pattern. The one-

minute scatter plots with regression lines are included in Appendix B.  

Table 12: Coefficients from the Univariate Linear Model Using 1-Minute Interval Data 

Variables  Intercept Estimate Standard Error P-Value 

D location BC     

WS 8.67 0.04 0.69 0.95 

WD (Category 4) 8.71 0.11 0.35 0.75 

T 32.05 -0.94 0.15 1.54e-09 

RH 1.38 0.16 0.02 1.07e-09 

     

U Location BC     

WS 7.32 -0.31 0.10 0.001 

WD (Category 4) 6.42 0.06 0.05 0.30 

T 0.77 0.23 0.02 < 2.2e-16 

RH 8.22 -0.04 0.003 < 2.2e-16 

     

A location BC     

WS 6.42 0.01 0.08 0.91 

WD (Category 4) 6.47 -0.05 0.05 0.30 

T 3.73 0.11 0.02 1.07e-07 

RH 7.41 -0.02 0.003 1.22e-10 



 

77 

 

Table 13: Coefficients from the Univariate Linear Model Using 15-Minute Interval Data 

Variables Intercept Estimate Standard Error P-Value 

D location BC     

WS 8.77 0.04 1.85 0.98 

WD (Category 4) 9.02 -0.27 1.07 0.81 

T 33.97 -1.00 0.37 0.02 

RH 0.90 0.18 0.06 0.01 

     

U Location BC     

WS 7.47 -0.36 0.29 0.24 

WD (Category 4) 6.44 0.07 0.18 0.69 

T 4.20 0.09 0.06 0.15 

RH 8.23 -0.04 0.01 6.19e-05 

     

A location BC     

WS 6.38 0.03 0.25 0.90 

WD (Category 4) 6.50 -0.05 0.15 0.72 

T 4.20 0.09 0.06 0.15 

RH 7.31 -0.02 0.01 0.07 

  

While Univariate linear regression models can be used to determine how each meteorological 

variable influences black carbon (BC) concentrations individually, the decision to focus on 

Multiple Linear Regression (MLR) is to understand which variables are the strongest predictors 

of concentrations. The MLR model usually has a larger adjusted 𝑅2 value, meaning it possesses 

greater explanatory power when also considering the complexity of the model. MLR was used to 

evaluate the impact of multiple predictors (wind speed, temperature, and relative humidity) at the 

same time. This shows the complex interactions of various meteorological factors that would 

influence BC concentration levels.  

     Analyzing the coefficient estimates of the MLR provided a more accurate measure of how 

each variable impacts BC concentration. Variables can be considered in isolation; however, 

when controlling for the influence of all other variables. This ultimately gives a more 
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comprehensive and realistic narrative of the various environmental dynamics surrounding 

prescribed burns, which gives a better assurance when advising on air quality assessments and 

exposure assessments. 

Multiple Linear Regression Results 

General Multiple Linear Regression Model Formula: y = β₀ + β₁x₁ + β₂x₂ + ... + βₚxₚ + ε 

Y: dependent variable, e.g., A location BC, U location BC, D location BC 

X: independent variable, e.g., WS, WD (sin and cos), RH, T  

logy = β₀ + β₁x₁ + β₂x₂ + ... + βₚxₚ + ε could then be:  A location BC = β₀ + β₁·WS + β₂·wind_x + 

β₃·wind_y + β₄·T + β₅·RH + ε  

(This study’s Multiple Linear Regression model formula) 

Before running the Multiple Linear Regression Model, histograms and QQ plots were used to 

check for normality. As a result of the large number of such plots, they have been put in 

Appendix B. The residual figures for one minute and fifteen minutes were also put in the same 

section. In some models where either all predictors were statistically significant or all were 

insignificant, the multicollinearity was visually assessed first. These models were each assessed 

with the Variance Inflation Factor (VIF) analysis that identifies multicollinearity. Variables with 

large VIF were then removed from subsequent models, so that significant predictors could be 

more clearly identified. 

Table 14: Coefficients Table from the Multiple Linear Regression Model (1-Minute Interval 

Data) 

Location Estimate Standard Error Pr(>|t|) 

D Location BC    

Model 1-Intercept 

WS 

wind_x 

wind_y 

47.56 

-0.61 

-4.89 

8.71 

28.55 

0.72 

2.42 

2.50 

0.10 

0.40 

0.05 

0.001 
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T 

RH 

-1.69 

-0.09 

0.89 

0.15 

 

0.06 

0.56 

 

    

A Location BC    

Model 1-Intercept 

WS 

wind_x 

wind_y 

T 

RH 

 

19.78 

-0.23 

1.09 

-1.56 

-0.31 

-0.07 

 

3.73 

0.09 

0.32 

0.34 

0.12 

0.02 

 

3.34e-07 

0.01 

0.001 

7.14e-06 

0.01 

0.001 

Model 2- Intercept 

WS 

T 

wind_x 

wind_y 

 

7.11 

-0.11 

0.09 

1.78 

-2.19 

 

0.90 

0.09 

0.02 

0.26 

0.29 

 

2.21e-13 

0.20 

1.98e-05 

1.77e-10 

3.42e-12 

 

Model 3-Intercept 

wind_x 

wind_y 

T 

 

6.23 

1.61 

-1.99 

0.10 

 

0.59 

0.23 

0.25 

0.02 

 

< 2e-16 

3.30e-11 

1.94e-13 

4.77e-08 

 

    

U Location BC    

Model 1-Intercept 

WS 

wind_x 

wind_y 

T 

RH 

 

15.35 

-0.24 

0.23 

-0.64 

-0.18 

-0.07 

 

3.84 

0.09 

0.33 

0.35 

0.12 

0.02 

9.27e-05 

0.01 

0.50 

0.07 

0.13 

0.001 

 

Model 2- Intercept 

WS 

RH 

 

8.32 

-0.04 

-0.04 

 

0.21 

0.07 

0.003 

 

< 2e-16 

0.55 

< 2e-16 

 

    
 

Table 15: Coefficients Table from the Multiple Linear Regression Model (15-Minute Interval 

Data) 

Location Estimate Standard Error Pr(>|t|) 

D Location BC    

Model 1-Intercept 

WS 

wind_x 

18.83 

-0.57 

-5.67 

79.06 

1.88 

6.86 

0.82 

0.77 

0.44 
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wind_y 

T 

RH 

8.92 

-0.83 

0.06 

 

7.16 

2.48 

2.48 

 

0.25 

0.75 

0.89 

 

Model 2-Intercept 

WS 

wind_x 

wind_y 

T 

 

30.04 

-0.67 

-6.27 

9.47 

-1.19 

 

17.48 

1.65 

5.13 

5.71 

0.40 

 

0.12 

0.70 

0.26 

0.14 

0.02 

 

    

A Location BC    

Model 1-Intercept 

WS 

wind_x 

wind_y 

T 

RH 

 

19.27 

-0.24 

1.36 

-1.89 

-0.29 

-0.06 

 

10.07 

0.24 

0.87 

0.91 

0.32 

0.05 

 

0.10 

0.34 

0.16 

0.08 

0.40 

0.29 

Model 2-Intercept 

WS 

wind_x 

wind_y 

T 

7.96 

-0.15 

1.97 

2.45 

0.07 

 

2.43 

0.23 

0.72 

0.79 

0.06 

 

0.01 

0.54 

0.02 

0.01 

0.22 

 

    

U Location BC    

Model 1-Intercept 

WS 

wind_x 

Wind_y 

T 

RH 

 

16.60 

-0.26 

0.06 

-0.46 

-0.22 

-0.08 

 

8.15 

0.19 

0.71 

0.74 

0.26 

0.04 

 

0.08 

0.23 

0.94 

0.55 

0.41 

0.12 

 

Model 2-Intercept 

WS 

wind_x 

Wind_y 

T 

 

2.68 

-0.14 

0.81 

-1.15 

0.22 

2.16 

0.20 

0.63 

0.71 

0.05 

 

0.25 

0.52 

0.24 

0.14 

0.002 
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D Location (Downwind) – One-Minute data  

In the one-minute data table, the wind directions of both axes had the greatest estimated values.  

• Wind_x variable, winds blowing from the west, has an estimate of -4.89 and wind_y variable, 

winds from the north, has an estimate of 8.71. This means that for every 1 increment of wind_x, 

the BC at location D results in a decrease of 99.24%. Likewise, for every 0.01 increment of 

wind_y the BC at location D increases by 9.1%. By and large, wind directions on both axes have 

a large effect on BC at location D, and are also statistically important (p values 0.05, 0.001).  

• It is also important to mention that the other variables (except the wind direction) were not 

statistically significant or exhibited a large degree of collinearity. According to Pearce et al. 

(2012) Downwind exposures were observed to be influenced most directly by wind direction and 

distance from the burn site, with the observed emissions from the burn site occurring in 

correspondence to the burning severity, method, and timing.  

Location (Apartment) – One-Minute Data  

All predictor variables in Model 1 were statistically significant following the first model.  

 • wind_x variable (wind blowing east) and wind_y variable (wind blowing south) had the 

highest coefficients as well, at 1.09 and -1.56, respectively. Therefore, for a 0.1-unit increase in 

wind_x, BC at location A increased by 11.6%, whereas for a 1-unit increase in wind_y the BC 

decreased by 79.0%. This may seem minor until reading further below about the impactful 

effects of wind direction and BC at location A.  

• The model prompted us to check for collinearity between the RH and T variables that were 

both similar enough that the VIF index values revealed that the variable, RH, may not be 

necessary, with RH being the highest at 52.93. Therefore, RH was excluded from subsequent 

models.  
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From the output of the second model:  

• Estimates of wind_x (flowing east) and wind_y (flowing west) rose to 1.78 and -2.19, 

respectively. As such, for each 0.1-unit increase in wind_x and wind_y the effect on the BC at 

location A where BC increased 19.5% and decreased 19.7% respectively with both wind values 

yielding statistically significant outputs (p values 1.77e-10, 3.42e-12). This led to the conclusion 

that wind had a strong impact on BC concentrations. In the third model, all predictors, except for 

wind speed (WS) and relative humidity (RH), were included. RH was removed from the model 

due to its VIF value (52.93; Model 1), which suggests multicollinearity. However, WS was 

omitted based on a lack of statistical significance (p = 0.20) when looking at the second model. 

• The wind_x (blowing east) and wind_y (blowing south) variables had the highest estimates of 

1.61 and -1.99. Therefore, for each 0.1-unit increase in wind_x, the BC at location A increased 

by 17.5%, whereas for each 1-unit increase wind_y, the BC decreased by 86.4%. For both wind 

values, these estimates were statistically significant with p values of 3.30e-11 and 1.94e-13, 

asserting their impact on the BC values. At Location A, wind direction provided impactful 

insights into this research. 

U Location (Upwind) – One-Minute Data   

In the first model for the U location BC:   

• Wind Speed (WS), wind_x (eastward wind), and wind_y (southward wind) estimated the 

largest (-0.24, 0.23, -0.64), meaning a 1-unit increase in WS would result in a 21.2% 

decrease in U location BC; a 1-unit increase in wind_x and wind_y corresponded to a 

25.4% increase and a 47.1% decrease in U location BC, respectively.   
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• Of note, WS and relative humidity (RH) were the only significant predictors, with p 

values of 0.01, 0.001.  In the second model, all insignificant variables were eliminated, 

while the WS and RH were kept.   

• While the WS estimated a greater (-0.04) value, it was insignificant (p > 0.05); however, 

RH estimated a lesser (-0.04) value but was significant (p < 2e-16). This finding yet again 

further supports the strong effect of RH on BC concentrations found in this study. 

D Location (Downwind) – Fifteen-Minute Data 

Using all the predictors in the first model:  

• The wind_x (flowing to the west) and wind_y (flowing to the east) had the highest 

estimate values of -5.67 and 8.92, indicating a solid influence from wind direction. In this 

model, none of the predictors were statistically significant.  

• After checking for multicollinearity, the T and RH variables were highly collinear  

(-0.98), And this was displayed through the VIF analysis. RH had the highest VIF score 

of 54.04, and so it was taken out of the first model. 

In the second model: 

• The wind_x (flowing to the west) and the wind_y (flowing to the north) had the highest 

estimates of -6.27 and 9.47, respectively.  

• Interestingly, the T variable was the only variable with a statistical significance of 0.02. It 

also had the third-highest estimate with a value of -1.19. This means that for every 1-unit 

increase in T, D location BC decreases by 69.6%, depicting a strong yet inverse 

relationship on the black carbon concentrations at the D location.  
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A Location (Apartment) - Fifteen Minutes 

At this location, the same multicollinearity problems were observed, and so the RH had to be 

dropped due to its high VIF value of 54.04. 

For the second model: 

• The wind_x (wind flowing to the east) and the wind_y (wind flowing to the south) had 

the highest estimate values of 1.97 and -2.45, meaning that for every 0.1-unit increase in 

wind_x and wind_y, A location BC increased by 21.8% and decreased by 21.7%. Both 

variables were also statistically significant (p values: 0.02, 0.01), suggesting that 

directional airflow plays a major role in influencing BC levels at the Apartment location. 

U Location (Upwind) - Fifteen-Minute data 

As seen in the other locations, RH also displayed multicollinearity with a VIF value of 54.04, 

necessitating its elimination from the second model.  

In this model: 

• The wind_x (wind flowing to the east) and the wind_y (wind flowing to the south) had 

the highest estimate values of 0.81 and -1.15, meaning that for every 0.1-unit increase in 

wind_x and wind_y, U location BC increases by 8.4% and decreases by 10.8%. 

Interestingly, none of the wind direction variables were statistically significant.  

• Surprisingly, T was the only variable with a statistical significance of p value = 0.002 and 

the third highest estimate value of 0.22. Meaning that for every 1-unit increase in T, the 

U location BC decreases by 19.6%, suggesting a moderately strong, yet statistically 

significant impact on the black carbon concentrations at the U location.  

From the results stated above, the wind direction seemed to be quite prominent, especially in the 

A location (1 minute and 15 minutes), where the wind was flowing towards the south and the 
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east direction. It is suggested that the wind direction might be instrumental in the transport of BC 

concentrations at this location. This may be owing to the spot where the sensor was placed (at the 

screen porch) and its exposure to winds blowing in the southeastern direction. Similarly, the D 

location for the one-minute data portrayed the same trend but in the opposite direction, with wind 

flowing towards the west and the south directions, pinpointing the prevailing winds' role in 

conveying fire emissions to close locations (Jaffe et al., 2020). Its 15-minute data had 

temperature as the strongest variable of interest, and this might be due to the heavy influence that 

the heat from the burn and that of the environment had on the BC concentrations at that location 

(Liu, 2014; Odman et al., 2018).  

        At the U location BC, RH was significant in the 1-minute data, but in the 15-minute data, 

temperature was significant. This might be underlining the strong influence and collinearity that 

T and RH have on the BC concentrations at the Upwind location. Also, since this location was 

on the upper part of the fire, this site might have retained more moisture owing to factors such as 

topography, cooler temperatures, which promote the aggregation of BC, especially in hotter 

environments (Balachandran et al., 2013; Miller et al., 2019). 

       These trends spotlight the influence and importance of meteorological conditions when it 

comes to understanding the dynamics of BC concentrations across locations. Such findings align 

with previous research endeavors that show the influence of conditions such as wind, 

temperature on the transport of pollutants during biomass burns (Sadia Afrin & Garcia–

Menendez, 2020; Petralia & Potosnak, 2024; Liu et al., 2021). Also, having site-specific 

meteorological conditions helps to improve the accuracy of regression models in air quality 

studies.  
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Table 16: Multiple Linear Regression Model Outputs (Continued) – 1- and 15-Minute Interval 

Data 

One Minute Adjusted R-Squared P-value 

D location BC   

Model 1 0.38 5.32e-15 

   

U Location BC   

Model 1 0.53 < 2.2e-16 

Model 2 0.48 < 2.2e-16 

   

A Location BC   

Model 1 0.39 < 2.2e-16 

Model 2 0.35 < 2.2e-16 

Model 3 0.35 < 2.2e-16 

   

Fifteen Minutes   

D Location BC   

Model 1 0.44 0.10 

Model 2 0.51 0.04 

   

U Location BC   

Model 1 0.78 0.01 

Model 2 0.73 0.01 

   

A Location BC   

Model 1 0.51 0.07 

Model 2 0.49 0.05 

 

For the One Minute data:   

• At the U location, the adjusted 𝑅2for the original model was 0.53, whereas the second model 

had an adjusted 𝑅2 of 0.48, which suggests that the original model with all predictors explained 

the variability in U better than the second model.   

 • At the A location, the original model had the adjusted 𝑅2 of 0.39, which was greater than the 

adjusted 𝑅2 of the second model of 0.35 and the third model of 0.35. This indicates that the 

original model, which included all predictors, explained the variability in A better than the 

second model.   
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For the Fifteen Minutes data:   

• At the D location, the original model had an adjusted 𝑅2 of 0.44, which is lower than the 

second model, which had an adjusted 𝑅2 of 0.51. This indicates that the original model with all 

predictors did not explain the variability in D as well as the second model did.   

• At the U location, the original model had an adjusted 𝑅2 of 0.78, which is greater than the 

second model, which had an adjusted 𝑅2 of 0.73; therefore, the original model, which included 

all the predictors, better explained the variability in U compared to the second model.   

• At the A location, the original model had an adjusted 𝑅2 of 0.51, which was higher than the 

adjusted 𝑅2 for the second model (0.49). As a result, the original model, which included all the 

predictors, explained the variability in A better than the second model.   

It is important to note that the original models had the highest adjusted R² values for all the 

locations and periods, except for the D location in the Fifteen Minutes data set.  This also reflects 

an important idea that even a model with statistically significant and non-collinear predictors can 

sometimes be deficient in explaining the variance in that model. 

Table 17: ANOVA Test Results (One Minute and Fifteen Minutes) 

Location / Model 

 

Res. 

Df 

 

RSS 

 

Df 

 

Sum of Squares 

 

F 

 

Pr(>F) 

 

One Minute  

 

 

 

    

A: 

Model 1 

Model 2 

Model 3 

 

 

183 

184 

185 

 

 

11.45 

12.21 

12.32 

 

 

 

-1 

-1 

 

 

 

-0.76 

-0.11 

 

 

 

12.18 

1.77 

 

 

 

0.001 

0.19 

 

U: 

Model 1 

Model 2 

 

 

183 

186 

 

 

12.12 

13.64 

 

 

 

-3 

 

 

 

-1.52 

 

 

 

7.65 

 

 

 

7.64e-05 

 

       

Fifteen Minutes       
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D: 

Model 1 

Model 2 

 

 

7 

8 

 

 

13.41 

13.45 

 

 

 

-1 

 

 

 

-0.04 

 

 

 

0.02 

 

 

 

0.89 

 

A: 

Model 1 

Model 2 

 

 

7 

8 

 

 

0.22 

0.26 

 

 

 

-1 

 

 

 

-0.04 

 

 

 

1.34 

 

 

 

0.29 

 

U: 

Model 1 

Model 2 

 

 

7 

8 

 

 

0.14 

0.21 

 

 

 

-1 

 

 

 

-0.06 

 

 

 

3.09 

 

 

 

0.12 

 

       

 

Table 19, identified in the previous section, contains several interesting findings relating to this 

research.   

• At site A, the first regression model produced a statistically significant result indicated by 

the F statistic of 12.18 and a p value of 0.001. The first regression model removed several 

meteorological variables, leading to a deviation in the second model. This means that the 

first model that included all predictors was the better model choice. The results on 

regression model three contained an F statistic of 1.77 with a p > 0.05 (0.19).  

• At the U site, only two regression runs were conducted and showed a F statistic of 7.65 

with a p value of 7.64e-05 or <0.0001; which means that the meteorological variables 

removed (wind_x, wind_y, and T) were important and should be retained as predictors.  

• For the fifteen-minute data, the final regression models were statistically insignificant 

with F values of 0.02, 1.34, 3.09, and p values greater than 0.05. These results suggest 

that taking out some of the collinear variables, like RH, was beneficial, seeing that the 

models did not significantly lose their explanatory power at the A, U, and D locations.  
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4.4 STRENGTHS AND LIMITATIONS OF THE STUDY 

      This study comes with many strengths that contribute to its importance in the field of air 

quality and prescribed fire research. Firstly, it can be noted that it is one of the few studies to 

characterize real-time black carbon (BC) during a real prescribed burn, while using portable, 

low-cost and easily deployable equipment. By taking time-resolved measurements and 

incorporating meteorological data into the study, it provides a practical approach to 

understanding how local environmental factors (wind direction and temperature) impact the 

dispersion of pollution. 

     In addition, this study presents clear methods where the steps taken to tackle multicollinearity 

and the importance of the variables within the regression models are detailed, which strengthens 

the rigor of the statistical analysis. The use of multiple sensor locations (Upwind, Downwind, 

Apartment) gives a spatial component to the observed pollution trends, which will allow for 

better exposure assessments and inform future placements of the sensors. While the study is 

geographically and temporally limited, it establishes a starting point for a larger, more 

comprehensive study using portable and low-cost sensors in the real world. 

    Nonetheless, there are limitations with this study that affected the interpretation of the results. 

Firstly, although the MA-200 can be used in Dual Spot mode, not all the sensors were used in 

that manner. For this analysis, therefore, the BC levels from the Single Spot (IR BC 1) were 

used, thus introducing variability from the unstable flow rates, filter loading artifacts, and shifts 

in location. Secondly, there were no post-processing steps to refine the data or use noise-

reducing methods (ONA, LPR, and CMA). Furthermore, there was no Drinovec et al. (2015) 

correction factor provided. The first three algorithms were provided by AethLabs 

(https://aethlabs.com) (Liu et al., 2021) and are widely implemented in environmental research, 
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but none were used to remove noise, based on a modest sample size and low levels of noise. 

Noise was only recorded on two occasions in the downwind location of MA-200 0422:  

(1) A couple of 0 values recorded while advancing the tape were removed from the dataset, and 

(2) a "Flow Unstable" notice was reported at 12:58 PM, resulting in negative values at 1:00 PM, 

which continued until sampling ended at 1:32 PM. Even after going through AethLabs' post-

processing algorithms, the negative values remained the same and were kept as reported. 

      Finally, the scope of this study was limited, as data were collected from just three sites during 

one burn event. This limits the applicability of the findings because they are only relevant in this 

context. Despite this, the findings nevertheless contribute to an understanding of the impact of 

meteorological factors upon BC levels during a prescribed burn and provide a reference for 

future studies. 

4.5 SUMMARY 

      In conclusion, the results of this study reaffirm the importance of assessing variable 

contributions both statistically and contextually. Some variables otherwise may have not been 

statistically significant when considered independently, however all together they can contribute 

to improving the overall performance of the model, especially in cases of multicollinearity, 

which illustrates the importance of selecting a statistical method that incorporates analytical 

methods such as ANOVA, adjusted 𝑅2 values, and VIF to determine the best column of 

predictors. Additionally, the results from the Univariate Linear Regression and Multiple Linear 

Regression Models address all variables, and there were several variables, wind direction, 

temperature, and relative humidity, that represented redundancy throughout the data.  

      This further supports the need for additional research that examines the interaction of climate 

change effects on temperature and relative humidity, and how these interactions are reflected in 
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contemporary prescribed fire practices. Additionally, having regulatory policies in place to 

minimize human-related activities, waste management, burning of fossil fuels (e.g., coal, oil, 

natural gas), deforestation, and animal manure will be fundamental to reducing global warming 

to minimizing the intensification of wildfires (United Nations, 2025). 
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CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS 

5.1 CONCLUSION 

      This thesis investigated black carbon (BC) concentrations relative to a controlled burn at the 

Jones Center at Ichauway, Georgia - a biologically diverse area and regularly burned area of the 

Southeastern United States (The Jones Center at Ichauway, 2024; Jang & Jung, 2023). Prescribed 

burning creates significant sources of particulate matter emissions, and Georgia is one of the 

states that performs the most prescribed burns. The goal of this research was to contribute to the 

knowledge of a combustion-specific element that scientists have not investigated significantly: 

the spatial distribution of black carbon in relation to controlled burn events. This dissertation 

utilized three MA-200 portable and low-cost aethalometers to measure black carbon 

concentrations at three distinct micro-environment locations:  

(1) an outdoor location Downwind of the controlled burn.  

(2) an outdoor location Upwind of the controlled burn; and  

(3) an outdoor location located on the screen porch of the Apartment. Furthermore, weather data, 

including wind speed and direction, temperature, and relative humidity, was collected using a 

weather station on location. The average data was analyzed to explore the following two 

questions: 

1. Relative to the prescribed burn, how do concentrations of black carbon vary across the 

locations? 

2. What effects do meteorological variables have on the concentrations of black carbon? 
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      Employing both a 1-minute and a 15-minute resolution dataset and various models of 

analysis, including descriptive statistics, methods of non-parametric tests (Kruskal-Wallis and 

Dunn's post hoc), and univariate linear and multiple linear regression modeling, suggested that 

black carbon (BC) levels exhibited significant spatial differences. This study confirmed the 

hypothesis that locations that are Downwind would generally experience the highest 

concentrations of black carbon, supporting previous findings that communities located 

Downwind faced higher exposure risks (Considine et al., 2019). Additionally, this study 

concurred with prior studies identifying projected pollutant transport due to wind after a fire 

event (e.g., Pearce et al., 2012; Ravi et al., 2018; Xu et al., 2018). It was also determined that 

weather variables had effects, but again, these effects were site-dependent and time-relevant. 

Wind direction (both x and y) was determined to be a statistically significant predictor of BC 

concentrations at both Downwind and Apartment sites, with additional finding temperature and 

relative humidity being significant, especially at the Upwind site - relative humidity was 

statistically significant in the one-minute dataset, and temperature was the main variable in the 

15-minute model. These findings show how localized atmospheric dynamics associated with 

burn intensity, topography, and weather conditions influence air pollution exposure at a micro 

scale. 

        Of significance, the study addressed the need for portable and low-cost sensor technology to 

be used in conjunction with meteorological-type monitoring to arrive at a good understanding of 

pollutants and their spatial and temporal resolution. This is particularly relevant in rural areas, 

which do not have the robust air quality coverage that regulatory networks provide. The work 

also illustrated the extent to which meteorological markers can create differences in prescribed 

burns and air quality that are important for adaptation to climate change and public health 
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assessment. In conclusion, this research filled a significant gap in the fire and air quality 

literature by providing real-time black carbon data from several locations with the specificity of 

combustion and environmental context, which delineated the exposure conditions. The findings 

underscored the need for air monitoring strategies in community settings while advancing the 

task of reconciling ecological fire management with human health protections, especially for at-

risk populations closest to and Downwind of smoke exposure. 

5.2 RECOMMENDATIONS 

Using the findings from this work as a context, the following recommendations are proposed for 

future research efforts: 

• Models such as Blue Sky could be incorporated into studies such as this in a bid to arrive 

at more detailed conclusions. Some studies have reported that the Bluesky Model could 

either underestimate or overestimate BC concentrations and so running it side by side 

with such ground-based data could help to cross-check its performance for black carbon.  

• Also, collocating the MA-200 with reference grade sensors such as the AE-33, filter-

based gravimetric samplers could help to assess the overall functionality, credibility, and 

shortcomings of the sensors under real-world fire scenarios.  

• Additionally, further studies could investigate the influence of other seasons, such as 

winter and its weather conditions, on BC concentrations. These would be interesting to 

see, as seasonality does not just dictate burn decisions but would also greatly impact the 

dispersal of BC particles.  

Ultimately, this research survey offers basic knowledge of prescribed fire's impact on black 

carbon levels across different locations and weather impacts on this variability. The results may 
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apply to future projects related to environmental monitoring, fire management techniques, and 

public education, particularly in locations where prescribed burning is used regularly. 
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Appendix A 

Univariate Linear Regression Model Results 

     

 

Scatter Plots with Regression Lines for the Apartment (A) Location Showing Relationships 

Between Black Carbon (BC) and Temperature, Wind Speed, and Relative Humidity (One Minute) 
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Scatter Plots with Regression Lines for the Downwind (D) Location Showing Relationships 

Between Black Carbon (BC) and Temperature, Wind Speed, and Relative Humidity (One Minute) 
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Scatter Plots with Regression Lines for the Upwind (U) Location Showing Relationships Between 

Black Carbon (BC) and Temperature, Wind Speed, and Relative Humidity (One Minute) 
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Appendix B 

Multiple Linear Regression Results 

Histogram Charts for the Model Residuals (Check for Normality) 

  

Histogram Charts of Residuals for the Upwind (U) Model – Models 1 and 2 (One Minute) 

 

Histogram Charts of Residuals for the Downwind (D) Model – Model 1 (One Minute) 
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Histogram Charts of Residuals for the Apartment (A) Model – Models 1,2 and 3 (One Minute) 

  

Histogram Charts of Residuals for the Upwind (U) Model – Models 1 and 2 (Fifteen Minutes) 
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Histogram Charts of Residuals for the Downwind (D) Model – Models 1 and 2 (Fifteen Minutes) 

  

Histogram Charts of Residuals for the Apartment (A) Model – Models 1 and 2 (Fifteen Minutes) 
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QQ Plots for the Model Residuals (Check for Normality) 

  

QQ Plots of Residuals for the Upwind (U) Model – Models 1 and 2 (One Minute) 

 

  

QQ Plots of Residuals for the Downwind (D) Model – Model 1(One Minute) 
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 QQ Plots of Residuals for the Apartment (A) Model – Models 1, 2, and 3 (One Minute) 

  

QQ Plots of Residuals for the Upwind (U) Model – Models 1 and 2 (Fifteen Minutes) 
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QQ Plots of Residuals for the Downwind (D) Model – Models 1 and 2 (Fifteen Minutes) 

  

QQ Plots of Residuals for the Apartment (A) Model – Models 1 and 2 (Fifteen Minutes) 
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Multicollinearity Assumption Check 

    

Correlation Matrix for the Upwind (U) Model – Models 1 and 2 (One Minute) 

   

Correlation Matrix for the Downwind (D) Model – Model 1  (One Minute) 
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Correlation Matrix for the Apartment (A) Model – Models 1, 2 and 3 (One Minute) 

  

Correlation Matrix for the Upwind (U) Model – Models 1 and 2 (Fifteen Minutes) 
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Correlation Matrix for the Downwind (D) Model – Models 1 and 2 (Fifteen Minutes) 

 

   

Correlation Matrix for the Apartment (A) Model – Models 1, 2 and 3 (Fifteen Minutes) 
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