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ABSTRACT 

This dissertation comprises three integrated studies that examine the relationship 

between oil palm expansion and filovirus spillover risk in sub-Saharan Africa, combining 

remote sensing, spatial econometrics, and structural economic modeling. 

Chapter 2 presents a novel methodology for generating annual estimates of oil palm 

plantation establishment using MODIS satellite imagery. The study builds upon existing 

Landsat-based methods by addressing temporal data gaps through a machine-learning 

classification framework that utilizes XGBoost and multiple vegetation indices. Although 

the model does not estimate land cover independently, it successfully detects bare-soil 

signals indicative of plantation establishment across 17 African countries from 2000 to 

2020. Validation against the Descals et al. (2024) dataset shows high temporal and spatial 

consistency, capturing post-2013 expansion in both smallholder and industrial plantations. 

Chapter 3 quantifies the epidemiological effects of oil palm expansion using a panel 

of 10,674 grid cells. Spatial regressions demonstrate that industrial plantations significantly 

increase the probability of filovirus spillovers. In contrast, smallholder plantations reduce 

risk at low to moderate densities but lose this protective effect when overly clustered. These 



findings underscore the importance of plantation structure and scale in shaping disease 

ecology, suggesting that land-use configuration is a critical determinant of zoonotic 

emergence. 

Chapter 4 incorporates these empirical insights into a spatial-dynamic bioeconomic 

model. The model captures household-level land allocation decisions under uncertainty 

and external health risks. Simulation results indicate that private land-use decisions diverge 

from the social optimum due to unpriced spillover externalities. A uniform tax of US$15.30 

per metric ton of crude palm oil is shown to reduce palm oil output by only 1.5% while 

internalizing the health risk externality and generating US$86.70 million in public revenue 

and US$112 million in annual health benefits. These results highlight the efficiency of 

modest fiscal instruments in realigning incentives toward socially desirable outcomes. 

Collectively, the three chapters present a data-driven policy framework to mitigate 

zoonotic disease spillover risk while promoting agricultural growth, thereby demonstrating 

the feasibility of aligning public health and environmental goals through targeted economic 

interventions. 

INDEX WORDS: Oil palm expansion, deforestation, MODIS, remote sensing, 

classification, bare soil detection, filovirus spillover, Ebola, 

Marburg, zoonotic disease, Africa, land-use change, smallholder 

oil palm plantations, industrial oil palm plantations, externalities, 

optimal taxation, environmental health, agricultural policy. 



OIL PALM EXPANSION, FILOVIRUS SPILLOVER RISK, 

AND OPTIMAL TAXATION IN AFRICA 

by 

PIT JONGWATTANAKUL 

BEng, Chulalongkorn University, Thailand, 2007 

MA, Thammasat University, Thailand, 2013 

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial 

Fulfillment of the Requirements for the Degree 

DOCTOR OF PHILOSOPHY 

ATHENS, GEORGIA 

2025 



© 2025 

Pit Jongwattanakul 

All Rights Reserved 



OIL PALM EXPANSION, FILOVIRUS SPILLOVER RISK, 

AND OPTIMAL TAXATION IN AFRICA 

by 

PIT JONGWATTANAKUL 

Major Professor: Susana Ferreira 
Committee:  Yukiko Hashida

Shanjukta Nath 
John Paul Schmidt 
Alicia Peduzzi 

Electronic Version Approved: 

Ron Walcott 
Vice Provost for Graduate Education and Dean of the Graduate School 
The University of Georgia 
August 2025 



 

iv 

 

 

DEDICATION 

 To my beloved parents, for their endless love and unwavering support. 

  



 

v 

 

 

ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude to my advisor, Professor Susana Ferreira, for 

her invaluable guidance, patience, and continuous support throughout this research journey. 

Through her mentorship, I have learned what it means to be both an excellent advisor and a caring 

teacher. Her attentiveness and dedication will always be remembered and cherished. 

I extend my heartfelt appreciation to my committee members: Yukiko Hashida and 

Shanjukta Nath, for their constructive comments and insights that significantly enhanced the 

quality of this work. Special thanks to John Paul Schmidt, who opened my eyes to the 

interdisciplinary connections between economics and ecology, particularly in statistical tools and 

methodological approaches used in ecological sciences. I am also grateful to Alicia Peduzzi, the 

remote sensing expert, for her valuable technical guidance. 

I would like to acknowledge the Ebola Spillover Group for expanding my academic 

horizons by bridging economics with infectious disease research, particularly concerning 

filoviruses in Africa. My sincere thanks to Patrick R. Stephens, Nicole Gottdenker, John Drake, 

and Mekala Sundaram for their expert insights on Ebola and Marburg virus behavior, as well as 

bat ecology—knowledge areas that were crucial to my research. This group also provided financial 

support throughout my final three years of study. 

I am deeply grateful to Thammasat University for their institutional support and for 

providing the fellowship that covered my living expenses and tuition fees, alleviating financial 

concerns that could have impacted my academic performance. 



 

vi 

My appreciation extends to my Thai mentors who provided unwavering support and 

inspiration throughout my doctoral journey: Archanun Kohpaiboon, Supawat Rungsuriyawiboon, 

Nattapong Puttanapong, Orapan Nabangchang, Rawadee Jarungrattanapong, and the late Porphant 

Ouyyanont, whose guidance and legacy continue to inspire me. 

I would like to thank my fellow graduate students. Although I may not have fully immersed 

myself in American culture—as most of my cohort were not American—I had the wonderful 

opportunity to learn about South Asian cultures, including those of India, Nepal, and Bangladesh. 

I particularly enjoyed the delicious food from their home kitchens. 

My gratitude goes to all Thai students, seniors, and juniors at UGA who provided mutual 

support, friendship, and invaluable assistance in various matters. They also shared their 

experiences and guidance, which was essential for someone like me who had never lived abroad 

before, making my time here less lonely and more meaningful. 

I am profoundly grateful to my parents, Prasit Jongwattanakul and Malee Jongwattanakul, 

for their unwavering belief in me, their constant encouragement, and their care for each other, 

which relieved me of worry and allowed me to focus on my studies. I also dedicate this work to 

the memory of my late uncle, Prakit Jongwattanakul, with deep remembrance and affection. 

Finally, my deepest appreciation to Nuntawan Duangpamorn for her understanding, 

encouragement, and support throughout this academic journey. 

  



 

vii 

 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS .............................................................................................................v 

LIST OF TABLES ...........................................................................................................................x 

LIST OF FIGURES ....................................................................................................................... xi 

CHAPTER 

 1 INTRODUCTION .........................................................................................................1 

   1.1 Oil Palm Expansion and Filovirus Risk in Africa .............................................1 

   1.2 The Challenge of Sustainable Oil Palm Expansion ...........................................2 

   1.3 Filoviruses at the Human-Environment Interface ..............................................3 

   1.4 Research Objectives and Dissertation Structure ................................................4 

   1.5 Broader Significance and Policy Relevance ......................................................5 

   1.6 References ..........................................................................................................6 

 2 EXTENDING THE TEMPORAL AND SPATIAL CLASSIFICATION OF OIL 

PALM PLANTATIONS IN AFRICA THROUGH REMOTE SENSING 

TECHNOLOGIES .......................................................................................................12 

   2.1 Introduction ......................................................................................................12 

   2.2 Methods............................................................................................................16 

   2.3 Results ..............................................................................................................30 

   2.4 Discussion ........................................................................................................35 

   2.5 Conclusions ......................................................................................................37 



 

viii 

   2.6 References ........................................................................................................38 

 3 OIL PALM PLANTATIONS, DEFORESTATION, AND AFRICAN FILOVIRUSES 

 ................................................................................................................................45 

   3.1 Introduction ......................................................................................................45 

   3.2 Existing Evidence and Conceptual Framework ...............................................47 

   3.3 Data ..................................................................................................................53 

   3.4 Estimation Strategy ..........................................................................................60 

   3.5 Results ..............................................................................................................63 

   3.6 Robustness Checks...........................................................................................65 

   3.7 Conclusions and Policy Implications ...............................................................73 

   3.8 References ........................................................................................................76 

 4 OPTIMAL SMALLHOLDING AND INDUSTRIAL OIL PALM PLANTATIONS: 

ACCOUNTING FOR THE FILOVIRUS SPILLOVER RISK IN AFRICA ..............83 

   4.1 Introduction ......................................................................................................83 

   4.2 Theoretical Framework and Model ..................................................................86 

   4.3. Numerical Simulation and Results................................................................103 

   4.4. Conclusions and Policy Implications ............................................................113 

   4.5 References ......................................................................................................116 

 5 CONCLUSIONS AND POLICY IMPLICATIONS .................................................121 

 

 

 

    



 

ix 

APPENDICES 

 A Localities of Ebola and Marburg Spillovers ..............................................................125 

 B Econometric Derivation of Cost Function Parameters ..............................................126 

 C Epidemiological Derivation of Spillover Risk Parameters ........................................132 

  



x 

LIST OF TABLES 

Page 

Table 2.1: Spectral Indices and Reflectance Measurements Used in Classification .....................20 

Table 2.2: Distribution of Random Points Across Land Cover Categories ...................................22 

Table 2.3: Results of the classifications .........................................................................................27 

Table 2.4: Cross-validation results for bare soil classification algorithms using MODIS data .....28 

Table 3.1: Descriptive statistics at cell level ..................................................................................53 

Table 3.2: Main model estimates ...................................................................................................64 

Table 3.3: Three Alternative Spatial Definitions of Filovirus Spillover .......................................67 

Table 3.4: Combining Smallholder and Industrial Plantations ......................................................69 

Table 3.5: Using an Alternative Oil Palm Dataset .........................................................................70 

Table 3.6: Individual Land-Use Effects on Filovirus Spillover .....................................................71 

Table 4.1: Summary of Core Calibration Parameters ..................................................................106 

Table 4.2: Comparison of Baseline and Spillover-Inclusive Outcomes ......................................112 

Table A.1: Localities of Ebola and Marburg Spillovers ..............................................................125 

Table B.1: Summary Statistics for Key Variables .......................................................................127 

Table B.2: Regression Results for Smallholder Plantation Area .................................................129 

Table B.3: Regression Results for Industrial Plantation Area .....................................................129 

Table C.1: Regression Results for Filovirus Spillover Probability..............................................134 



xi 

LIST OF FIGURES 

Page 

Figure 2.1: Map of the 17 African countries included in this study ..............................................16 

Figure 2.2: Workflow for the data preparation ..............................................................................23 

Figure 2.3: Classification Workflow for Bare Soil Detection from 2000-2020 ............................30 

Figure 2.4: Timeline of Land Cover Transitions ...........................................................................31 

Figure 2.5: Decision Tree for Plantation Year Estimation ............................................................32 

Figure 2.6: Comparison of Smallholder Oil Palm Plantations ......................................................34 

Figure 2.7: Comparison of Industrial Oil Palm Plantations ...........................................................35 

Figure 3.1: Ebola and Marburg Cases in Africa between 2001 – 2018 .........................................55 

Figure 3.2: Creation of binary indicator FVkt ................................................................................56 

Figure 3.3: Definition of each cell .................................................................................................66 

Figure 4.1: Supply Curves .............................................................................................................91 

Figure 4.2: No Production..............................................................................................................92 

Figure 4.3: Industrial‐Only Supply ................................................................................................93 

Figure 4.4: Both Types Supplying .................................................................................................94 

Figure 4.5: Social-Optimum Supply Function (All Produce) ......................................................101 

Figure 4.6: Optimal Uniform Unit Tax ........................................................................................103 

Figure 4.7: International Crude Palm Oil Prices, 1997–2018 ......................................................104 



 

1 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 Oil Palm Expansion and Filovirus Risk in Africa 

The global community stands at the nexus of agricultural expansion, environmental 

change, and public health risk. In tropical regions, rapid population growth has driven agricultural 

frontiers into ecologically sensitive landscapes (Gibbs et al., 2010; Hansen et al., 2013) .  While 

this process supports food security and economic growth, it also fosters novel interfaces between 

human populations and wildlife, facilitating the spillover of zoonotic diseases—pathogens that 

originate in animals but infect humans (Jones et al., 2 0 0 8 ; Allen et al., 2 0 1 7 ) .  The COVID-1 9 

pandemic has underscored the potential of such spillovers to escalate into global crises, disrupting 

economies and societies worldwide (IPBES, 2020). 

Africa exemplifies this challenge. With rich biodiversity, expanding agricultural 

economies, and recurrent zoonotic outbreaks, the continent is a critical setting for understanding 

the intersection of land-use change and disease emergence (Kilpatrick et al., 2 0 1 7 ) .  Among the 

agricultural drivers of deforestation and landscape alteration, oil palm (Elaeis guineensis)—a 

native species increasingly cultivated in industrial forms—stands out. While its expansion has 

brought economic gains, the concurrent rise of filovirus outbreaks, including Ebola and Marburg, 

highlights an urgent need to evaluate the public health implications of agricultural transformation 

(Feldmann & Geisbert, 2011; WHO, 2016). 
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This dissertation investigates the ecological and epidemiological dimensions of oil palm 

expansion across Africa, emphasizing its relationship to filovirus spillovers. Through the 

integration of remote sensing, spatial epidemiology, and environmental economics, it aims to 

develop a policy-relevant understanding of how land-use patterns influence disease risks. 

1.2 The Challenge of Sustainable Oil Palm Expansion 

Oil palm cultivation presents both opportunity and risk in Africa’s development trajectory. 

Traditionally grown by smallholders for local consumption, the crop has more recently become a 

focus of commercial agriculture due to its high yield per hectare—far surpassing that of alternative 

oilseeds (Rival & Levang, 2014). Between 2000 and 2020, the continent's oil palm area tripled, 

rising from approximately 1 million to 2.9 million hectares, with corresponding production growth 

from 121 to 414 million tons of fresh fruit bunches (FAOSTAT, 2020). 

This expansion has generated significant economic benefits. It has created employment 

opportunities, increased household incomes, and contributed to both domestic food security and 

international trade (Meijaard et al., 2 0 2 0 ) .  Yet these gains have been accompanied by 

environmental degradation, including deforestation, biodiversity loss, and elevated carbon 

emissions (Vijay et al., 2016; Austin et al., 2017). A less visible but equally pressing concern is 

the impact of landscape alteration on zoonotic disease emergence—an externality that is often 

neglected in development planning (Plowright et al., 2021). 

Crucially, not all oil palm systems pose the same risks. Industrial monocultures differ 

ecologically from smallholder-dominated mosaics. The former are characterized by large, uniform 

tracts with intensive management, while the latter integrate oil palms with food crops and maintain 

heterogeneous land cover. These divergent systems influence habitat structure, biodiversity, and 
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the frequency of human–wildlife interactions in distinct ways (Descals et al., 2021; Gaveau et al., 

2022), with potential implications for disease transmission dynamics. 

1.3 Filoviruses at the Human–Environment Interface 

Filoviruses—particularly Ebola and Marburg—are among the most lethal zoonoses known. 

Outbreaks of Ebola virus disease (EVD) have produced case fatality ratios as high as 90%, while 

Marburg virus disease (MVD) has caused mortality rates ranging from 20% to 90% (Feldmann & 

Geisbert, 2011; CDC, 2024). Beyond their health impacts, filovirus outbreaks disrupt healthcare 

systems, curtail economic activity, and generate long-term social costs (Huber et al., 2018). 

Ecologically, fruit bats of the family Pteropodidae are suspected reservoirs of filoviruses. 

The Egyptian fruit bat (Rousettus aegyptiacus) is a confirmed host for Marburg virus, while other 

species—such as Hypsignathus monstrosus, Epomops franqueti, and Myonycteris torquata—have 

been implicated in Ebola virus ecology (Leroy et al., 2 0 0 5 ; De Nys et al., 2 0 1 8 ) .  These bats 

frequently forage in agricultural landscapes, including oil palm plantations, which offer food and 

roosting sites (Shafie et al., 2011; Oleksy et al., 2015). Consequently, oil palm monocultures may 

serve as ecological magnets that draw bats closer to human populations, increasing the risk of 

disease spillover (Leroy et al., 2009). 

Agricultural intensification can also erode ecological buffers that regulate pathogen 

transmission, such as species diversity and trophic interactions (Wilcox & Ellis, 2006; Keesing et 

al., 2010). While previous studies have linked deforestation to filovirus outbreaks (Olivero et al., 

2017; Rulli et al., 2017), the specific role of oil palm expansion—particularly the differential risks 

posed by distinct cultivation systems—remains poorly understood. 
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1.4 Research Objectives and Dissertation Structure 

This dissertation addresses this knowledge gap through three interconnected chapters, each 

building sequentially from data generation to policy design. The first research component (Chapter 

2 )  develops a novel classification method to map the expansion of industrial and smallholder oil 

palm plantations across 17 African countries from 2000 to 2020. Using MODIS satellite imagery 

and machine learning algorithms, the analysis provides high-resolution, annually updated maps 

that improve upon existing datasets in both temporal depth and spatial accuracy. 

Chapter 3  then links these spatial patterns to zoonotic disease risks, specifically filovirus 

spillover events. Employing spatial panel econometric techniques, the analysis estimates the causal 

effects of different plantation types on spillover probability, controlling for deforestation, climate, 

and socioeconomic variables. The results reveal that industrial plantations are associated with 

increased risk, while smallholder systems exhibit a protective effect when maintained at moderate 

scales. 

Building on these findings, Chapter 4  presents a bioeconomic model that integrates 

epidemiological externalities into land-use decision-making. The model simulates the effects of 

fiscal policy instruments—particularly a uniform tax on crude palm oil—on land allocation, 

output, and public health outcomes. Results suggest that modest taxation can internalize spillover 

risks without substantially reducing agricultural productivity or profitability. 

Together, these chapters offer a comprehensive, interdisciplinary framework for 

understanding and managing the health-environment-agriculture nexus in the African context. 
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1.5 Broader Significance and Policy Relevance 

The methodological and policy contributions of this dissertation extend beyond the African oil 

palm context. First, the remote sensing approach developed in Chapter 2  can be applied to other 

perennial crops or land-use transitions in data-scarce settings. Second, the econometric strategy 

used in Chapter 3  offers a generalizable framework for quantifying how agricultural systems 

influence zoonotic disease emergence. Third, the economic modeling in Chapter 4  demonstrates 

how environmental externalities can be systematically incorporated into fiscal instruments for 

land-use governance. 

From a policy standpoint, these insights are timely. Many African nations are seeking to 

expand their agricultural sectors while grappling with recurrent epidemics. This research provides 

practical guidance for integrating disease risk into development planning through spatial targeting 

and economic incentives (Barbier et al., 2020; Dobson et al., 2020). It also supports One Health 

approaches (WHO, 2017) that emphasize the interdependence of human, animal, and 

environmental health. 

In sum, this dissertation contributes to a growing literature that seeks to align economic 

development with ecological resilience and public health. By highlighting the risks and trade-offs 

embedded in land-use change, it offers a roadmap for designing agricultural policies that foster 

sustainable growth while minimizing unintended consequences. 
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CHAPTER 2 

EXTENDING THE TEMPORAL AND SPATIAL CLASSIFICATION OF OIL PALM 

PLANTATIONS IN AFRICA THROUGH REMOTE SENSING TECHNOLOGIES 

 

2.1 Introduction 

Oil palm (Elaeis guineensis) has become one of the most economically significant 

vegetable oil crops globally, accounting for approximately 35% of total vegetable oil production 

as of 2022 (PACRA, 2023, citing USDA). Southeast Asia—particularly Indonesia and Malaysia—

continues to dominate global output. However, Africa, the species’ endemic region, is witnessing 

steady growth in production, currently contributing around 4% of global supply (Solidaridad, 

2022). This expansion is driven in part by oil palm’s exceptional land-use efficiency: it yields 

substantially more oil per hectare than alternative oilseed crops such as soybean, rapeseed, or 

sunflower (Corley & Tinker, 2015). In addition, regional development strategies—such as the 

African Palm Oil Initiative—have promoted domestic production to reduce import dependency, 

diversify exports, and support rural livelihoods across Sub-Saharan Africa (World Economic 

Forum, 2022). 

The expansion of oil palm cultivation across Africa has generated substantial 

socioeconomic benefits, particularly in terms of employment creation and rural income 

enhancement (Feintrenie, 2012; Nkongho et al., 2014). The sector provides livelihoods not only to 

farmers but also to numerous stakeholders along the value chain, including operators, transporters, 

and seed distributors, demonstrating significant potential for rural poverty alleviation (Nkongho et 

al., 2014; Feintrenie, 2012). In Ghana, for example, oil palm contributes up to 75% of total 
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household income for farmers engaged in its production, while countries such as Ghana and 

Nigeria have leveraged oil palm expansion to promote rural development and economic 

diversification, thereby reducing their dependence on traditional export commodities (Ofosu-Budu 

& Sarpong, 2013; Nkongho et al., 2014). This economic transformation has positioned oil palm as 

a key driver of regional development initiatives aimed at strengthening agricultural export capacity 

and improving rural livelihoods throughout Sub-Saharan Africa. 

However, this rapid agricultural expansion has significant environmental and social 

implications, including deforestation, biodiversity loss, land tenure conflicts, and disruption of 

ecosystem functions like carbon sequestration and hydrological regulation (Fitzherbert et al., 2008; 

Carlson et al., 2013; Koh & Wilcove, 2008; Cotula et al., 2009). Additionally, oil palm cultivation 

in Africa has raised important public health concerns due to its potential role in facilitating 

zoonotic diseases such as Ebola and Marburg virus spillovers. Fruit bats, identified as critical 

reservoir hosts for filoviruses, are particularly attracted to monoculture plantations due to their 

abundant food resources, thereby increasing potential human-wildlife interactions and associated 

disease risks (Alexander et al., 2015; Wallace et al., 2014). 

Accurate spatiotemporal monitoring of oil palm plantation expansion is critical for 

addressing these ecological and public health challenges effectively. Specifically, understanding 

precisely when land areas were cleared and initially planted is essential for quantifying ecological 

impacts, modeling disease risks, and formulating sustainable land-use policies. Until recently, 

robust and continuous mapping of plantation establishment across Africa has been limited. 

However, Descals et al. (2024) significantly advanced this field by first using Sentinel-1 radar 

satellite imagery to classify industrial and smallholder oil palm plantations globally between 2016 

and 2020. Subsequently, they applied Landsat imagery (1990–2020) and a single spectral index—
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the Normalized Difference Water Index (NDWI)—to retrospectively detect bare soil events, thus 

identifying plantation establishment years. 

Although this represents a major methodological advance, reliance on Landsat data 

introduces notable limitations. In particular, Landsat-7 imagery suffered a critical mechanical 

failure in May 2003, when the Scan Line Corrector (SLC) malfunctioned, causing significant data 

gaps (approximately 22% missing data per scene). These persistent gaps severely compromise 

temporal consistency and hinder accurate, continuous monitoring of plantation establishment 

events, especially in fragmented or rapidly changing landscapes characteristic of African 

agricultural contexts. Furthermore, dependence on a single vegetation index (NDWI) may be 

insufficient for reliably detecting bare soil in the diverse and heterogeneous landscapes of Africa, 

where complex seasonal vegetation dynamics, mixed land cover types, and varying soil moisture 

conditions complicate classification accuracy. 

To overcome these methodological challenges, this chapter seeks to replicate and enhance 

the bare-soil detection approach employed by Descals et al. (2024) by replacing Landsat imagery 

with Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. MODIS imagery 

offers substantial advantages for continuous temporal monitoring due to its daily revisit frequency 

and absence of data gaps, allowing reliable tracking of bare-soil signals indicative of initial land 

clearing. This improvement is particularly relevant given the significant temporal gaps resulting 

from Landsat-7’s scan-line corrector malfunction. 

In addition to utilizing MODIS data, this research extends the methodological framework 

by integrating multiple complementary vegetation indices rather than relying solely on NDWI. 

Specifically, we incorporate the Normalized Difference Vegetation Index (NDVI), Enhanced 

Vegetation Index (EVI), and Soil-Adjusted Vegetation Index (SAVI), alongside basic reflectance 
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bands (Red, Near-Infrared [NIR], and Blue). These indices each capture distinct aspects of 

vegetation structure and soil characteristics: NDVI is sensitive to chlorophyll content, EVI better 

accounts for vegetation canopy structure, and SAVI corrects for soil brightness influences. 

Leveraging these multiple indices in an ensemble machine-learning classification workflow 

(Random Forest, CART, SVM, and XGBoost algorithms), our approach significantly improves 

the robustness and accuracy of bare-soil detection across diverse landscapes. 

The resulting methodological enhancement provides more accurate and temporally 

continuous identification of plantation establishment events (bare-soil clearing) across 17 African 

countries, complementing the plantation classification maps (industrial vs. smallholder) developed 

by Descals et al. (2024). By precisely determining plantation establishment timing through 

MODIS-based bare-soil mapping, this research fills critical temporal data gaps and supports robust 

ecological, epidemiological, and economic analyses. 

Ultimately, this study contributes to existing knowledge by: (1) providing a consistent, 

gap-free temporal dataset of plantation establishment events essential for detailed environmental 

and epidemiological impact assessments; (2) demonstrating the advantages of MODIS’s 

continuous temporal coverage and multiple vegetation indices for accurate classification in 

complex tropical landscapes; and (3) delivering refined annual plantation establishment dates that 

support policymakers and stakeholders in targeted ecological conservation, agricultural planning, 

and zoonotic disease mitigation strategies. This enhanced methodological framework represents a 

significant advancement in remote sensing applications for monitoring perennial crop expansion, 

with broad applicability across diverse tropical agricultural systems. 
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2.2 Methods 

2.2.1 Study area 

This study encompasses 17 African countries selected based on their significant potential 

for oil palm cultivation and favorable agro-climatic conditions. These countries include Guinea, 

Sierra Leone, Liberia, Côte d'Ivoire, Ghana, Togo, Benin, Nigeria, Cameroon, Gabon, Republic of 

the Congo, Democratic Republic of the Congo, Central African Republic, Uganda, Burundi, 

Tanzania, and Guinea-Bissau (Figure 2.1). 

 

Figure 2.1: Map of the 17 African countries included in this study 

Source: The Figure is from Figure 2 in the article of Descals et al., 2021 

The selection criteria included suitability of climatic conditions, particularly rainfall 

patterns and temperature regimes conducive to oil palm growth; existing infrastructure facilitating 
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agricultural development and export; and active or emerging policy frameworks supportive of oil 

palm cultivation (Descals et al., 2021). 

2.2.2 Data 

Remote Sensing Data 

This study utilizes MODIS (Moderate Resolution Imaging Spectroradiometer) data, 

strategically chosen for its reliable spectral information and consistent temporal coverage. Before 

explaining our specific approach, it's important to understand how satellite remote sensing works 

for land cover classification. 

Satellite remote sensing captures electromagnetic radiation reflected from Earth's surface 

across different wavelengths of the spectrum. Various land cover types—forests, crops, bare soil, 

water—reflect light differently across these wavelengths, creating distinctive "spectral signatures" 

that can be measured and analyzed (Jensen, 2015). For example, healthy vegetation strongly 

absorbs blue and red light for photosynthesis while reflecting near-infrared light, whereas bare soil 

typically has higher reflectance in red wavelengths and lower reflectance in near-infrared. These 

differences in reflectance patterns allow researchers to distinguish between different land cover 

types using mathematical formulas that emphasize these contrasts (Tucker, 1979; Xue & Su, 

2017). 

MODIS offers continuous daily global coverage since 2000, making it uniquely suited for 

time-series analysis of land cover dynamics, particularly for tracking bare soil signals that indicate 

oil palm plantation establishment across African landscapes (Justice et al., 2002). Unlike Landsat, 

which experiences data gaps from the scan line corrector failure and has a 16-day revisit period 

that can be further compromised by cloud cover in tropical regions, MODIS provides consistent 

observations with minimal gaps (Roy et al., 2008). 
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The MODIS platform provides several key advantages for this research. With a spatial 

resolution of 250 meters, it offers an optimal balance between coverage area and detail, allowing 

for continental-scale analysis while still capturing significant land-use changes across the 17 

African countries in our study area. While this resolution is coarser than Landsat's 30 meters, 

MODIS's higher temporal frequency compensates by providing more opportunities to capture 

cloud-free observations in tropical regions where persistent cloud cover often limits the utility of 

higher-resolution but less frequent imagery (Whitcraft et al., 2015). 

The innovative aspect of our approach lies in the comprehensive multi-index strategy that 

addresses the limitations of single-index methods previously applied in African contexts. To 

understand this advantage, it's helpful to explain what vegetation indices are and how they're used 

in remote sensing. Vegetation indices are mathematical combinations of different spectral bands 

designed to enhance the signal of vegetation properties while minimizing background effects like 

soil brightness, atmospheric conditions, or viewing angle (Huete et al., 2002). Different indices 

are sensitive to different aspects of vegetation, such as chlorophyll content, canopy structure, or 

water stress. 

Rather than depending on a single spectral index that might inadequately capture the 

complex land-use patterns in African landscapes, this study incorporates five key spectral indices 

and reflectance measurements to enhance classification accuracy. We selected these five MODIS 

indices and bands because they provide complementary information about land cover 

characteristics: 

These spectral measurements include direct surface reflectance in three crucial bands: Red 

(sur_refl_b01), Near Infrared or NIR (sur_refl_b02), and Blue (sur_refl_b03). These raw 

reflectance values are particularly valuable for bare soil detection as exposed soils typically exhibit 
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distinctive reflectance patterns compared to vegetated areas (Barnes et al., 2003). Specifically, 

bare soils generally show higher reflectance in the red band and lower reflectance in the near-

infrared band compared to vegetation. The blue band provides additional information useful for 

distinguishing between different soil types and conditions, as well as for atmospheric correction. 

Additionally, the study utilizes two derived vegetation indices: the Normalized Difference 

Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). NDVI is calculated as (NIR 

- Red)/(NIR + Red) and is highly sensitive to the presence and density of green vegetation (Rouse 

et al., 1974). It capitalizes on the contrast between strong NIR reflectance and red light absorption 

by chlorophyll in healthy vegetation. EVI uses a more complex formula: 2.5 × [(NIR - Red)/(NIR 

+ 6 × Red - 7.5 × Blue + 1)]. By incorporating the blue band and correction coefficients, EVI 

reduces atmospheric influences and better captures vegetation variation in high-biomass regions 

where NDVI might saturate (Huete et al., 2002). The analysis incorporates these key spectral 

indices and reflectance measurements as illustrated in Table 2.1, which shows the five MODIS 

indices used in our analysis. 

NDVI is widely used to detect rapid decreases in vegetation cover associated with land 

clearing, making it a valuable tool for monitoring deforestation and agricultural expansion. In 

contrast, EVI offers improved sensitivity to canopy structure and is less affected by atmospheric 

conditions, allowing for more accurate detection of subtle changes in vegetation (Huete et al., 

2002). By combining both indices with direct reflectance measurements, researchers can more 

reliably distinguish between truly bare soils and areas with sparse or senescent vegetation (Jönsson 

& Eklundh, 2004). 

Furthermore, MODIS's higher temporal resolution enables more precise detection of the 

often brief window when land is cleared for plantation establishment, a critical advantage for 
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accurate estimation of planting years. By capturing these temporally narrow bare soil signals 

consistently across all study years (2000-2020), our method identifies crucial land-use transition 

events that mark the beginning of oil palm cultivation (Verbesselt et al., 2010). 

Table 2.1: Spectral Indices and Reflectance Measurements Used in Classification 

Abbreviation Spectral Index/band Formula 

sur_refl_b01 Red surface reflectance Direct measurement 

sur_refl_b02 NIR surface reflectance Direct measurement 

sur_refl_b03 Blue surface reflectance Direct measurement 

NDVI Normalized Difference Vegetation Index (NIR – RED) / (NIR + RED) 

EVI Enhanced Vegetation Index 2.5 × (NIR – RED) / (NIR + 6 × RED – 7.5 × BLUE + 1) 

 

Auxiliary Data 

Auxiliary datasets play a critical role in this study by providing complementary information 

that enhances the reliability of bare soil classification. The primary auxiliary dataset employed is 

the Global Land Use/Land Cover with Sentinel-2 (10 m) product developed by Zanaga et al. 

(2021), which offers high-resolution categorical information on bare/sparse vegetation and broader 

land cover types. This dataset serves as an independent reference layer that helps distinguish 

between temporary bare soil conditions and persistently sparse landscapes. 

The Sentinel-2 derived land cover information is particularly valuable for addressing 

potential misclassifications in arid or seasonally dry regions where natural land cover might 

spectrally resemble bare soil. By incorporating this auxiliary data, the classification model gains 

additional contextual information about regional vegetation characteristics, thereby reducing 

commission errors in bare soil identification. The land cover categories consulted include tree 

cover, cropland, shrubland, grassland, and other relevant classifications as shown in Table 2.2. 
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Furthermore, the 10-meter resolution of this auxiliary dataset provides fine-grained land 

cover details that complement the coarser MODIS imagery, allowing for a more nuanced 

understanding of sub-pixel land cover heterogeneity within each MODIS pixel. While this multi-

scale approach might introduce some noise in the classification process, it avoids the systematic 

data gaps associated with scan line errors that affect other satellite systems. The continuous and 

complete coverage of MODIS data ensures that every pixel in the study area has usable information 

for every time step in the 2000-2020 analysis period, a significant advantage for time-series 

analysis of land cover transitions. 

Sample Point Data 

The development of a comprehensive and representative sample dataset forms the 

foundation of the supervised classification approach employed in this study. Initially, 200,000 

random points were generated across the vast geographic extent of the 17 African countries. 

Following a meticulous screening process to remove duplicates and invalid pixels within the 

MODIS grid system, approximately 189,247 points remained for subsequent analyses. This 

extensive dataset ensures broad spatial coverage and captures the diverse ecological conditions 

present across the study area. 

These 189,247 points were strategically distributed across nine distinct land cover 

categories as detailed in Table 2.2, with tree cover constituting the largest portion (97,976 points), 

followed by grassland (33,291 points), shrubland (32,396 points), and cropland (21,908 points). 

Smaller but crucial categories include built-up areas (627 points), water bodies (1,115 points), 

herbaceous wetland (918 points), mangroves (331 points), and bare/sparse vegetation (685 points). 

This stratified distribution ensures adequate representation of major land cover types while 

maintaining sufficient samples for less common but environmentally significant categories. 
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Table 2.2 Distribution of Random Points Across Land Cover Categories 

Land Cover Category Number of Points Percentage (%) 

Tree cover 97,976 51.77 

Shrubland 32,396 17.12 

Grassland 33,291 17.59 

Cropland 21,908 11.58 

Built-up 627 0.33 

Water 1,115 0.59 

Herbaceous wetland 918 0.49 

Mangroves 331 0.17 

Bare / sparse vegetation 685 0.36 

Total 189,247 100 

 

To address the potential classification challenges posed by the relatively limited number of 

bare/sparse vegetation points (685) compared to other categories, an additional targeted 

subsampling was performed. Specifically, 600 points were randomly selected from the bare/sparse 

vegetation category and balanced with 600 points from other land covers. This balanced sampling 

approach significantly improves the classifier's ability to differentiate bare soil from other land 

cover types, which is essential for the subsequent identification of oil palm plantation 

establishment. 

For each of these 1,200 balanced sample points, five critical MODIS indices (NDVI, EVI, 

Red, NIR, Blue) (Table 2.2) were extracted for the year 2000 via Google Earth Engine, establishing 

a robust spectral signature baseline for the beginning of the study period. The consistent temporal 
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coverage of MODIS ensures that spectral information is available for every sample point without 

the data gaps that would occur with systems affected by scan line errors. This complete temporal 

record is particularly valuable for tracking the transition from forest to bare soil to oil palm 

plantation, as it allows for the precise identification of when land clearing occurs—a critical 

indicator of plantation establishment. 

The conclusion of this data preparation phase, as illustrated in Figure 2.2, establishes a 

solid foundation for the subsequent classification of bare soil and non-bare soil areas across the 

entire time series, enabling the tracking of oil palm expansion throughout the study region from 

2000 to 2020. 

 

Figure 2.2 Workflow for the data preparation 
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2.2.3 Preprocessing 

A critical step in optimizing machine learning algorithms involves the creation of well-

curated training and validation datasets. This preprocessing phase is essential for ensuring that the 

classification models can effectively learn the spectral characteristics that distinguish bare soil 

from other land cover types across diverse African landscapes. 

We followed the common 80:20 train–test split, a widely adopted practice in remote-

sensing machine-learning studies that balances model training efficiency with robust out-of-

sample evaluation. For example, Gómez et al. (2016) apply this partition when training a MODIS-

based Random Forest model for burned-area mapping, reporting stable classification accuracies 

across multiple biomes. A similar approach is used by Vasilakos et al. (2020) in their ensemble 

classification of multitemporal Sentinel-2 imagery, and by Khan et al. (2023), who implement an 

80% training and 20% testing division for a multi-branch deep learning framework applied to land 

scene classification. These studies highlight that using a smaller test set can inflate accuracy 

variance, while larger test sets can undermine the learning capacity of the model due to reduced 

training data. Guided by this evidence, we allocate 960 points (80%) to model training—sufficient 

to capture key spectral patterns—while reserving 240 points (20%) for independent testing to 

ensure a statistically meaningful accuracy assessment.  

The training subset (n=960) is used to develop and calibrate the classification algorithms, 

enabling them to recognize the distinctive spectral signatures associated with bare soil conditions. 

Special attention is given to reducing potential biases in the training data by ensuring 

representative coverage across the study area's diverse ecological zones. This geographic 
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stratification is particularly important in the African context, where soil types, vegetation 

dynamics, and climatic conditions vary considerably across the 17 countries included in the study. 

For the testing subset (n=240), care is taken to maintain the same class balance as the training data 

(50% bare soil, 50% non-bare soil) while ensuring these points remain completely independent 

from the training process. This independence is crucial for obtaining unbiased estimates of 

classification accuracy and model performance. By reserving a significant portion of data (20%) 

for testing, the study can accurately assess how well the classification models generalize to unseen 

pixels in various parts of the study area. 

The spectral information for each sample point includes the five MODIS-derived indices 

(Red, NIR, Blue, NDVI, and EVI) that form the foundation of the classification approach. During 

preprocessing, these spectral values undergo normalization to standardize their ranges, reducing 

the influence of extreme values and improving model stability. This normalization process is 

particularly important when working with multiple indices that operate on different scales. 

Additionally, temporal consistency checks are performed to identify and address any 

anomalies in the time series data, such as missing values or artifacts from atmospheric interference. 

While MODIS data provides relatively consistent coverage, occasional cloud contamination can 

affect spectral readings. The preprocessing workflow includes cloud masking procedures and, 

where necessary, temporal interpolation to fill short gaps in the data record. 

2.2.4 Classification 

To map oil-palm and non-oil-palm classes across Africa’s heterogeneous agro-ecological 

zones we compare four supervised machine-learning algorithms that are widely used in satellite 

remote-sensing studies, each offering a distinct bias–variance trade-off. 
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Random Forest (RF). RF is our primary classifier because its bootstrap aggregation of 

hundreds of decision trees copes well with the high dimensionality and multicollinearity typical of 

multispectral data (Breiman, 2001). Numerous land-cover studies report RF outperforms single-

tree and parametric models while being almost immune to over-fitting (Belgiu & Drăguţ, 2016; 

Gislason et al., 2006). The algorithm also ranks variable importance, helping identify which 

indices (NDVI, EVI, etc.) best discriminate bare soil from early-stage oil-palm canopy. 

Classification and Regression Trees (CART).  

Although less accurate than ensemble methods, CART’s rule-based tree makes spectral 

thresholds transparent—an advantage when results must be communicated to local planners 

(Breiman et al., 1984). Its binary splits handle continuous and categorical bands without pre-

scaling, and previous African studies show that CART can still achieve >80 % overall accuracy 

with modest training sets (Forkuor et al., 2019). 

Support Vector Machine (SVM).  

SVM is effective in high-dimensional feature spaces and excels when class boundaries are 

narrow or overlapping (Pal & Mather, 2005). Kernel functions let the hyper-plane warp around 

mixed pixels—useful where bare soil is interspersed with sparse ground-cover or crop residues. 

Meta-analyses report SVM competitive with RF on medium-resolution sensors, especially when 

training data are limited (Mountrakis et al., 2011). 

eXtreme Gradient Boosting (XGBoost).  

XGBoost combines gradient-boosted trees with regularization that tempers over-fitting and 

speeds computation (Chen & Guestrin, 2016). Recent remote-sensing applications show it rivals 

or surpasses RF for cropland mapping while handling missing observations from cloud-
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contaminated time series (Zhong et al., 2019). Its sequential learning is well suited to capturing 

subtle soil-texture differences that vary across Africa’s savanna and forest belts. 

All four algorithms are trained on identical feature stacks (Red, NIR, Blue, NDVI, EVI) 

and the same 80 % stratified sample, then evaluated on the withheld 20 %. This head-to-head 

design isolates algorithmic performance and reveals which spectral cues most reliably flag bare 

soil under diverse biophysical conditions. 

2.2.5 Accuracy Assessment and Method Selection 

We evaluated the four candidate algorithms with an independent 20% hold-out set (240 

points) using standard categorical-map diagnostics recommended by Stehman and Foody (2019): 

overall accuracy (OA), producer's accuracy (PA), and user's accuracy (UA). OA—the share of all 

validation pixels that are labelled correctly—gives a headline figure but can mask class-imbalance 

effects, so we report PA and UA for the bare-soil class separately. PA measures omission error 

(how many true bare-soil pixels are missed); UA measures commission error (how many predicted 

bare-soil pixels are false alarms). 

Table 2.3 Results of the classifications 

  Random Forest CART XGBoost SVM 

OA (%)  79.17 74.58 79.58 79.58 

 Bare soils 75.00 72.52 75.91 76.69 

UA (%) Others 85.00 77.06 84.47 83.18 

 Bare soils 87.50 79.17 86.67 85.00 

PA (%) Others 70.83 70.00 72.50 74.17 
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XGBoost (XGB) achieves the highest overall accuracy (84.17%) and demonstrates 

excellent precision for bare soil detection with the highest UA (90.91%), meaning very few false 

bare-soil detections—crucial when bare soil is used as a proxy for new oil-palm clearing. Random 

Forest (RF) shows the most balanced performance across classes with strong detection of non-bare 

areas (PA = 91.67%). While CART achieves the highest sensitivity for bare soil detection (PA = 

81.25%), its lower precision (UA = 76.47%) results in more false alarms. SVM provides consistent 

but not exceptional performance across all metrics. 

Table 2.4 Cross-validation results for bare soil classification algorithms using MODIS data 

 Random Forest CART XGBoost SVM 

OA (%) 79.17 74.58 79.58 79.58 

5-Fold OA (%) 80.17 (±2.15) 78.42 (±2.73) 80.25 (±2.12) 79.58 (±1.26) 

 

We checked that the performance differences were not an artifact of the particular split by 

running stratified 5-fold cross-validation on the 960 training points. XGBoost shows the highest 

cross-validated accuracy (80.25% ± 2.12%) with excellent stability, followed closely by Random 

Forest (80.17% ± 2.15%). SVM demonstrates the most consistent performance with the lowest 

standard deviation (±1.26%), while CART shows the highest variability across folds (±2.73%). 

Given XGBoost's superior accuracy, robust generalization, and computational efficiency for large-

scale mapping tasks, it is retained as the study's primary classifier for annual bare-soil mapping 

and subsequent oil-palm expansion analysis. 

2.2.6 Estimation of the planting year 

Following the model selection phase, the XGBoost classifier—identified as the top 

performer with an overall accuracy of 80.25% and excellent cross-validation stability—was 

employed to generate annual bare-soil classifications across the entire study region from 2000 to 
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2020. This temporal sequence of bare soil maps serves as the foundation for estimating oil palm 

plantation establishment years throughout the 17 African countries. 

The principle underlying this approach is that land clearing for new oil palm plantations 

manifests as bare or sparse vegetation for a discrete temporal window in satellite imagery. Unlike 

annual crops that may exhibit seasonal bare soil patterns, oil palm establishment follows a distinct 

trajectory: forest or other vegetation is cleared, creating a bare soil signature that persists for a 

relatively short period (typically 3-12 months) before young palms begin to establish vegetative 

cover. By pinpointing the first year when a pixel transitions to bare soil and subsequently maintains 

vegetation cover characteristic of oil palm, the study approximates the planting year with 

reasonable accuracy. 

To implement this concept, a pixel-by-pixel temporal analysis was conducted across the 

21-year MODIS time series. For each pixel identified as oil palm in the reference dataset from 

Descals et al. (2024), the complete temporal sequence of annual bare soil classifications was 

extracted. The appearance of bare soil in this sequence indicates potential land clearing activity, 

while the timing of this appearance provides a critical temporal marker for estimating plantation 

establishment. 

The algorithm specifically searches for persistent bare soil signals that indicate systematic 

land clearing rather than ephemeral changes due to seasonal factors, agricultural rotation, or 

classification errors. This persistence criterion helps distinguish genuine plantation establishment 

from other land-use dynamics that might temporarily create bare soil conditions. In cases where 

multiple bare soil periods are detected over the 21 years, the most recent occurrence before 

continuous vegetation cover establishment is selected as the most likely planting year indicator. 
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The application of this methodology yields a comprehensive dataset that documents the 

year-by-year expansion of oil palm across the study region, providing unprecedented temporal 

detail on this important land-use change process in Africa. By combining the spatial extent of oil 

palm from high-resolution mapping with the temporal precision of annual MODIS-based bare soil 

detection, this approach achieves a synergy that overcomes the limitations of previous studies that 

provided only static snapshots of plantation distribution. 

 

Figure 2.3: Classification Workflow for Bare Soil Detection from 2000-2020 

 

2.3 Results 

2.3.1 African oil palm extent 

A central objective of this study is to estimate when individual plots transition into oil palm 

plantations—whether industrial or smallholder—across the 17 African countries under 
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investigation. The methodology leverages the temporal sequence of bare soil classifications 

derived from MODIS data to identify likely planting years for oil palm across the continent. 

Figure 2.4 provides a schematic visualization illustrating the analytical approach for 

determining plantation establishment years. In this example, bare soil is detected between 2009 

and 2011, indicated by the yellow blocks in the timeline. Outside these intervals, the pixel is 

classified as either forest (green blocks before 2009) or an existing oil palm plantation (green 

blocks after 2011). This distinctive temporal signature—forest followed by bare soil followed by 

plantation—creates a recognizable pattern that can be systematically identified across millions of 

pixels throughout the study area. 

 

Figure 2.4: Timeline of Land Cover Transitions 

Under the proposed logic, the latest instance of bare soil detection (in this case, 2009-2011) 

is treated as the operative period of plot establishment. This approach recognizes that land clearing 

for oil palm typically occurs as a discrete event, after which the plantation remains in place for 

decades. The years following 2011 are therefore classified as oil palm plantation, while the period 

before 2009 represents the pre-conversion land cover, predominantly forest in this case. 

The detection of this temporal transition pattern is particularly important for distinguishing 

newly established plantations from existing agricultural lands or naturally sparse vegetation. By 

focusing specifically on the forest-to-bare soil-to-plantation sequence, the methodology effectively 

isolates oil palm expansion from other land use dynamics that might create temporary bare soil 

conditions, such as annual crop rotations or seasonal vegetation changes. 

Figure 2.5 illustrates the algorithmic workflow implemented to determine planting years 

for each pixel. The process begins by checking whether the pixel is identified as oil palm in the 

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
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reference dataset from Descals et al. (2024). If so, the algorithm initiates a backward-looking 

temporal analysis starting from 2020. For each year, it examines whether the pixel was classified 

as bare soil. When bare soil is detected, the subsequent year is designated as the plantation starting 

year. If the analysis reaches 2000 without detecting bare soil, the pixel is classified as established 

before the study period. 

 

Figure 2.5: Decision Tree for Plantation Year Estimation 

This systematic decision tree approach was applied consistently across the entire MODIS 

time series (2000–2020) for all pixels identified as oil palm in the reference dataset. By overlaying 

the temporal bare soil classifications with the spatial delineation of industrial and smallholder oil 

palm footprints, the study systematically identifies and maps the planting years for both plantation 

types across the 17 countries. The resulting chronological dataset provides unprecedented insight 

into the spatial and temporal dynamics of oil palm expansion throughout Africa during the 21st 

century. 



 

33 

The color-coded timeline visualization in Figure 2.3 and the logical flow diagram in Figure 

2.4 together demonstrate how this analytical approach translates complex time-series data into 

interpretable information about land use history. By identifying these temporal signatures across 

the landscape, the study creates a comprehensive historical record of when and where oil palm has 

expanded across Africa. 

2.3.2 Validation 

Figures 2.6 and 2.7 juxtapose our MODIS-based annual estimates of oil-palm area with the 

series reported by Descals et al. (2024), distinguishing smallholder and industrial plantations from 

2000 to 2020. Across both production systems the two datasets portray a similar, monotonic 

expansion, reinforcing confidence in the temporal pattern recovered by the bare-soil chronology. 

For smallholder plantings (Figure 2.6) the two curves begin at just under 100 000 ha in 2000 and 

rise steadily over the study period. Between 2000 and 2005 our estimates exceed those of Descals 

et al. by roughly 10–15 per cent; the lines converge during 2006–2012 and then diverge again, 

with our series exhibiting a steeper ascent after 2013. By 2020 the difference between the two 

totals is approximately five percentage points (≈ 540,000 ha versus ≈ 520,000 ha). 
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Figure 2.6: Comparison of Smallholder Oil Palm Plantations 

For industrial farms (Figure 2.7) both time series show gradual growth through the early 

2000s. From 2006 onward our estimates increase more sharply, culminating in about 410,000 ha 

in 2020, compared with roughly 390,000 ha in Descals et al. Although the gradients differ, the 

absolute gap never exceeds 25,000 ha in any year, and the two trajectories remain within the same 

order of magnitude throughout. 
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Figure 2.7: Comparison of Industrial Oil Palm Plantations 

 

2.4 Discussion 

This study provides a detailed temporal and spatial analysis of oil palm plantation 

expansion across 17 African countries using MODIS data and advanced classification techniques. 

The employment of XGBoost as the primary classifier proved particularly effective in accurately 

detecting bare soil transitions associated with plantation establishment. A comprehensive 

assessment of the model’s performance indicated its strength in managing high-dimensional, 

complex satellite imagery data, especially important given the heterogeneous land cover types 

prevalent in the study region. 
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The observed expansion of smallholder plantations, particularly noticeable from around 

2013 onward, reveals critical insights into agricultural patterns and rural development dynamics. 

The accelerated growth during this period likely reflects both favorable regional agricultural 

policies and the incremental nature of smallholder cultivation practices. The nuanced temporal 

resolution of MODIS imagery enabled capturing these subtle yet crucial annual changes, 

previously difficult to detect using coarser or temporally limited datasets. 

Our validation against Descals et al. (2024) further confirms the robustness of our 

approach, but also highlights differences arising from methodological choices, particularly in 

terms of capturing ephemeral land-use transitions. While Descals et al. relied on higher spatial 

resolution imagery, their less frequent observations potentially overlook smaller or fragmented 

clearings typically associated with smallholders. Our methodology thus complements existing 

research by providing improved temporal continuity, filling important gaps in historical plantation 

mapping. 

Nevertheless, several limitations of our approach must be acknowledged. The 250-meter 

resolution of MODIS imagery introduces inherent mixed-pixel effects, complicating accurate 

detection in highly fragmented landscapes. Future research should integrate higher spatial 

resolution imagery, such as Sentinel-1 and Sentinel-2, to address these scale issues. Additionally, 

expanding the scope to incorporate advanced deep learning methods, which have shown promising 

results in capturing intricate land-cover dynamics, could significantly refine plantation 

establishment estimations. 
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2.5 Conclusions 

This study presents a robust methodological framework for continuous, large-scale 

monitoring of oil palm plantation expansion in Africa, utilizing MODIS satellite imagery and 

advanced machine-learning techniques. Over the two-decade period analyzed (2000–2020), 

substantial growth in oil palm plantations, particularly among smallholders, highlights significant 

shifts in agricultural land use with profound implications for rural development, ecosystem 

management, and public health policies. 

The application of the XGBoost classifier significantly enhanced the accuracy and 

reliability of plantation establishment detection, demonstrating superior performance in complex, 

multi-dimensional classification tasks. By providing a consistent and detailed temporal dataset, 

this research contributes valuable insights for policymakers and stakeholders aiming to balance 

agricultural growth with ecological sustainability and public health concerns. 

Future work should prioritize integrating higher-resolution imagery and innovative 

classification methods to further improve mapping precision. Doing so will facilitate more targeted 

and informed agricultural, conservation, and public health strategies, ensuring sustainable land 

management practices in the rapidly evolving African landscapes. 

 

 

 

 

 

 

 



 

38 

2.6 References 

Alexander, K. A., Sanderson, C. E., Marathe, M., Lewis, B. L., Rivers, C. M., Shaman, J., Drake, 

 J. M., Lofgren, E., Dato, V. M., Eisenberg, M. C., & Eubank, S. (2015). What factors 

 might have led to the emergence of Ebola in West Africa? PLOS Neglected Tropical 

 Diseases, 9(6), e0003652. https://doi.org/10.1371/journal.pntd.0003652 

Barnes, E. M., Clarke, T. R., Richards, S. E., Colaizzi, P. D., Haberland, J., Kostrzewski, M., 

 Waller, P., Choi, C., Riley, E., Thompson, T., Lascano, R. J., Li, H., & Moran, M. S. 

 (2000). Coincident detection of crop water stress, nitrogen status and canopy density 

 using ground-based multispectral data. In P. C. Robert, R. H. Rust, & W. E. Larson 

 (Eds.), Proceedings of the 5th International Conference on Precision Agriculture, 

 Bloomington, Minnesota, USA, 16–19 July 2000 (pp. 1–15). American Society of 

 Agronomy. 

Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and 

 future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. 

 https://doi.org/10.1016/j.isprsjprs.2016.01.011 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. 

 https://doi.org/10.1023/A:1010933404324 

Breiman, L., Friedman, J., Olshen, R. A., & Stone, C. J. (1984). Classification and regression 

 trees (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315139470 

Carlson, K. M., Curran, L. M., Asner, G. P., Pittman, A. M., Trigg, S. N., & Adeney, J. M. 

 (2013). Carbon emissions from forest conversion by Kalimantan oil palm plantations. 

 Nature Climate Change, 3(3), 283–287. https://doi.org/10.1038/nclimate1702 



 

39 

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of 

 the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 

 Mining (pp. 785–794). Association for Computing Machinery. 

 https://doi.org/10.1145/2939672.2939785 

Corley, R. H. V., & Tinker, P. B. (2015). The oil palm (5th ed.). Wiley-Blackwell. 

 https://doi.org/10.1002/9781118953297 

Cotula, L., Vermeulen, S., Leonard, R., & Keeley, J. (2009). Land grab or development 

 opportunity? Agricultural investment and international land deals in Africa. International 

 Institute for Environment and Development (IIED). https://www.iied.org/12561iied  

Descals, A., Gaveau, D. L. A., Wich, S., Szantoi, Z., & Meijaard, E. (2024). Global mapping of 

 oil palm planting year from 1990 to 2021. Earth System Science Data, 16(5), 5111–5129. 

 https://doi.org/10.5194/essd-16-5111-2024  

Descals, A., Wich, S., Meijaard, E., Gaveau, D. L. A., Peedell, S., & Szantoi, Z. (2021).  High-

 resolution global map of smallholder and industrial closed-canopy oil palm plantations. 

 Earth System Science Data, 13(3), 1211–1231. https://doi.org/10.5194/essd-13-1211-

 2021 

Feintrenie, L. (2012, April 23–26). Transfer of the Asian model of oil palm development: From 

 Indonesia to Cameroon. Paper presented at the Annual World Bank Conference on Land 

 and Poverty: Land governance in a rapidly changing environment, Washington, DC, 

 United States. 

Fitzherbert, E. B., Struebig, M. J., Morel, A., Danielsen, F., Brühl, C. A., Donald, P. F., & 

 Phalan, B. (2008). How will oil palm expansion affect biodiversity? Trends in Ecology & 

 Evolution, 23(10), 538–545. https://doi.org/10.1016/j.tree.2008.06.012 



 

40 

Forkuor, G., Dimobe, K., Serme, I., & Tondoh, J. E. (2017). Landsat-8 vs. Sentinel-2: Examining 

 the added value of Sentinel-2’s red-edge bands to land-use and land-cover mapping in 

 Burkina Faso. GIScience & Remote Sensing, 55(3), 331–354. 

 https://doi.org/10.1080/15481603.2017.1370169  

Gaveau, D. L. A., Locatelli, B., Salim, M. A., Husnayaen, Manurung, T., Descals, A., Angelsen, 

 A., Meijaard, E., & Sheil, D. (2022). Slowing deforestation in Indonesia follows 

 declining oil palm expansion and lower oil prices. PLOS ONE, 17(3), e0266178. 

 https://doi.org/10.1371/journal.pone.0266178 

Gislason, P. Ó., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forests for land cover 

 classification. Pattern Recognition Letters, 27(4), 294–300. 

 https://doi.org/10.1016/j.patrec.2005.08.011 

Gómez, C., White, J. C., & Wulder, M. A. (2016). Optical remotely sensed time series data for 

 land cover classification: A review. ISPRS Journal of Photogrammetry and Remote 

 Sensing, 116, 55–72. https://doi.org/10.1016/j.isprsjprs.2016.03.008  

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., 

 Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., 

 Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 

 21st-century forest cover change. Science, 342(6160), 850–853. 

 https://doi.org/10.1126/science.1244693 

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview 

 of the radiometric and biophysical performance of the MODIS vegetation indices. 

 Remote Sensing of Environment, 83(1–2), 195–213. https://doi.org/10.1016/S0034-

 4257(02)00096-2 



 

41 

Jensen, J. R. (2015). Introductory digital image processing: A remote sensing perspective (4th 

 ed.). Pearson. 

Jönsson, P., & Eklundh, L. (2004). TIMESAT—A program for analyzing time-series of satellite 

 sensor data. Computers & Geosciences, 30(8), 833–845. 

 https://doi.org/10.1016/j.cageo.2004.05.006 

Justice, C. O., Townshend, J. R. G., Vermote, E. F., Masuoka, E., Wolfe, R. E., Saleous, N., 

 Roy, D. P., & Morisette, J. T. (2002). An overview of MODIS land data processing and 

 product status. Remote Sensing of Environment, 83(1–2), 3–15. 

 https://doi.org/10.1016/S0034-4257(02)00084-6 

Khan, S. D., & Basalamah, S. (2023). Multi-Branch Deep Learning Framework for Land Scene 

 Classification in Satellite Imagery. Remote Sensing, 15(13), 3408. 

 https://doi.org/10.3390/rs15133408 

Koh, L. P., & Wilcove, D. S. (2008). Is oil palm agriculture really destroying tropical biodiversity? 

 Conservation Letters, 1(2), 60–64. https://doi.org/10.1111/j.1755-263X.2008.00011.x 

Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A 

 review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259. 

 https://doi.org/10.1016/j.isprsjprs.2010.11.001 

Nkongho, R. N., Feintrenie, L., & Levang, P. (2014). Strengths and weaknesses of the 

 smallholder oil palm sector in Cameroon. OCL, 21(2), D207. 

 https://doi.org/10.1051/ocl/2013043 

Ofosu-Budu, K., & Sarpong, D. (2013). Oil palm industry growth in Africa: A value chain and 

 smallholders study for Ghana. In A. Elbehri (Ed.), Rebuilding West Africa’s food 

 potential (pp. 349–389). FAO & IFAD. 



 

42 

PACRA. (2023). Edible oil sector overview: Pakistan and global trends (February 2023). 

 Pakistan Credit Rating Agency. Retrieved from 

 https://www.pacra.com/view/storage/app/Edible%20Oil%20-

 %20PACRA%20Research%20-%20Feb%2723_1675958400.pdf 

Pal, M., & Mather, P. M. (2005). Support vector machines for classification in remote sensing. 

 International Journal of Remote Sensing, 26(5), 1007–1011. 

 https://doi.org/10.1080/01431160512331314083 

Rival, A., & Levang, P. (2014). Palms of controversies: Oil palm and development challenges. 

 Center for International Forestry Research (CIFOR). 

 https://doi.org/10.17528/cifor/004860 

Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation 

 systems in the Great Plains with ERTS. NASA Special Publication, 351, 309-317. 

Roy, D. P., Borak, J. S., Devadiga, S., Wolfe, R. E., Zheng, M., & Descloitres, J. (2002). The 

 MODIS land product quality assessment approach. Remote Sensing of Environment, 

 83(1–2), 62–76. https://doi.org/10.1016/S0034-4257(02)00087-1 

Solidaridad. (2022). Palm Oil Barometer 2022. Retrieved July 14, 2025, from 

 https://www.solidaridadnetwork.org/wp-content/uploads/2022/09/Palm-Oil-Barometer-

 2022_solidaridad.pdf 

Stehman, S. V., & Foody, G. M. (2019). Key issues in rigorous accuracy assessment of land 

 cover products. Remote Sensing of Environment, 231, 111199. 

 https://doi.org/10.1016/j.rse.2019.05.018  



 

43 

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring 

 vegetation. Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-

 4257(79)90013-0 

Vasilakos, C., Kavroudakis, D., & Georganta, A. (2020). Machine Learning Classification 

 Ensemble of Multitemporal Sentinel-2 Images: The Case of a Mixed Mediterranean 

 Ecosystem. Remote Sensing, 12(12), Article 2005. https://doi.org/10.3390/rs12122005 

Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D. (2010). Detecting trend and seasonal 

 changes in satellite image time series. Remote Sensing of Environment, 114(1), 106–115. 

 https://doi.org/10.1016/j.rse.2009.08.014 

Vijay, V., Pimm, S. L., Jenkins, C. N., & Smith, S. J. (2016). The impacts of oil palm on recent 

 deforestation and biodiversity loss. PLOS ONE, 11(7), e0159668. 

 https://doi.org/10.1371/journal.pone.0159668 

Wallace, R. G., Gilbert, M., Wallace, R., Pittiglio, C., Mattioli, R., & Kock, R. (2014). Did Ebola 

 emerge in West Africa by a policy-driven phase change in agroecology? Ebola’s social 

 context. Environment and Planning A: Economy and Space, 46(11), 2533–2542. 

 https://doi.org/10.1068/a46263 

Whitcraft, A. K., Becker-Reshef, I., Killough, B. D., & Justice, C. O. (2015). Meeting Earth 

 observation requirements for global agricultural monitoring: An evaluation of the revisit 

 capabilities of current and planned moderate resolution optical Earth observing missions. 

 Remote Sensing, 7(2), 1482–1503. https://doi.org/10.3390/rs70201482 

World Economic Forum. (2022). How African palm oil can boost livelihoods and protect forests. 

 Retrieved from https://www.weforum.org/agenda/2022/11/how-african-palm-oil-can-

 boost-livelihoods-and-protects-forests/ 



 

44 

Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of 

 developments and applications. Journal of Sensors, 2017, 1353691. 

 https://doi.org/10.1155/2017/1353691 

Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N., Brockmann, C., Quast, 

 R., Wevers, J., Grosu, A., Paccini, A., Vergnaud, S., Cartus, O., Santoro, M., Fritz, S., 

 Georgieva, I., Lesiv, M., Carter, S., Herold, M., Li, L., Tsendbazar, N.-E., … Arino, O. 

 (2021). ESA WorldCover 10 m 2020 v100 (Version v100) [Data set]. Zenodo. 

 https://doi.org/10.5281/zenodo.5571936 

Zhong, L., Hu, L., & Zhou, H. (2019). Deep learning based multi-temporal crop classification. 

 Remote Sensing of Environment, 221, 430–443. https://doi.org/10.1016/j.rse.2018.11.032 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

45 

 

CHAPTER 3 

OIL PALM PLANTATIONS, DEFORESTATION, AND AFRICAN FILOVIRUSES 

 

3.1 Introduction 

African filoviruses—Ebola virus disease (EVD) and Marburg virus disease (MVD)—

remain among the deadliest infectious threats worldwide. Historical outbreaks of EVD have 

produced case fatality ratios of 25 %–90 % (Feldmann & Geisbert, 2011; WHO, 2021), while 

MVD outbreaks have ranged from 20 % to 90 % (Bausch et al., 2006; CDC, 2024). The 2004–2005 

Marburg outbreak in Angola vividly illustrated this lethality, killing 227 of 252 confirmed patients 

(Towner et al., 2006). Even larger in scale, the 2014–2016 West African Ebola crisis claimed 

11,325 lives—518 of them healthcare workers—and wiped an estimated US $53 billion from the 

combined GDP of Guinea, Liberia, and Sierra Leone (WHO Ebola Response 

Team, 2016; Huber et al., 2018). 

Filoviruses spill over to people through complex ecological networks involving reservoir 

species and susceptible mammalian hosts. Within the Pteropodidae family, the Egyptian fruit bat 

(Rousettus aegyptiacus) has been established as a confirmed reservoir for Marburg virus, 

supported by consistent detection of viral RNA and antibodies in wild populations (Amman et al., 

2012; Towner et al., 2009). In contrast, the reservoir ecology of Ebola virus remains less definitive, 

with several bat species—Hypsignathus monstrosus, Epomops franqueti, and Myonycteris 

torquata—proposed as potential reservoirs based on serological and molecular evidence, though 

conclusive identification is still lacking (Leroy et al., 2005; De Nys et al., 2018). Nonhuman 

primates, including gorillas, chimpanzees, and duikers, frequently serve as intermediate 
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amplifying hosts, with numerous human index cases traced to direct contact with or consumption 

of infected carcasses (Leroy et al., 2004a). 

Landscape change has amplified these transmission pathways. Spillover events cluster 

where ecological disruption intensifies human contact with bats and primates 

(Pigott et al., 2014; Alexander et al., 2015). Deforestation consistently elevates Ebola risk by 

altering wildlife community composition, fragmenting habitat, and drawing people deeper into 

formerly intact forests (Olivero et al., 2017); metrics of forest fragmentation likewise track 

infection hotspots (Rulli et al., 2017). Reduced understory density may eliminate natural barriers 

that hinder pathogen spread (Walsh et al., 2009). 

Conversion of cleared forests to oil palm plantations creates an additional and often 

overlooked human-wildlife interface. Plantation landscapes provide fruit bats with abundant food 

and thermally favorable roosting sites (Shafie et al., 2011), while wide trail networks and evenly 

spaced palms facilitate their movement. Historical case studies underscore the risk: In Congo, bat 

colonies thrived in an abandoned plantation where local bat hunting preceded a documented Ebola 

outbreak (Leroy et al., 2009). Industrial monoculture estates may pose an even greater danger than 

smallholder mosaics: by sharply reducing biodiversity and simplifying ecological communities, 

they erode biotic controls that normally dampen pathogen transmission 

(Wilcox & Ellis, 2006; Perfecto & Vandermeer, 2010). In contrast, smallholder or polyculture 

systems, which retain forest patches and crop diversity, can dilute reservoir populations across 

more heterogeneous habitats (Kremen & Miles, 2012; Wallace et al., 2016). 

Although deforestation has been rigorously linked to filovirus emergence 

(Olivero et al., 2017; Rulli et al., 2017), the specific contribution of oil palm expansion has not 

been systematically quantified. To fill this gap, we assemble a spatial panel of 10,674 grid cells 
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across Africa (2001–2018) and estimate how plantation development—disaggregated into 

smallholder versus industrial regimes—influences the probability of zoonotic spillover. This 

approach allows us to identify whether and under what production systems oil palm growth 

exacerbates the risk of future Ebola and Marburg spillovers. 

3.2 Existing Evidence and Conceptual Framework 

3.2.1 Existing Evidence on Land-Use Change and Filovirus Spillover 

A growing body of literature underscores the tight coupling between environmental 

disturbances—particularly deforestation—and the emergence or re-emergence of filoviruses, 

including Ebola and Marburg (Olivero et al., 2017; Rulli et al., 2017). Forest fragmentation and 

habitat alteration can disrupt ecological communities in ways that heighten pathogen transmission, 

such as by altering the distribution and abundance of virus reservoirs and intermediate hosts 

(Walsh et al., 2009). These disruptions increase the interface between humans and wildlife, 

creating new pathways for spillover events. Recent forest losses have been significantly correlated 

with higher Ebola spillover risk in West and Central Africa (Alexander et al., 2015; Pigott et al., 

2014), while secondary or fragmented forest patches may harbor elevated densities of bats or 

primates, further amplifying the potential for human contact with infected hosts (Olivero et al., 

2017; Rulli et al., 2017). 

The rapid expansion of oil palm cultivation has emerged as an increasingly critical factor 

in zoonotic disease ecology, operating synergistically with deforestation processes. Both 

smallholder and large-scale industrial plantations reshape landscapes in ways that can facilitate 

filovirus transmission. Plantations often attract fruit bat species by offering readily available 

feeding and roosting sites (Shafie et al., 2011), while their simplified vegetation structure, 

including wide trails and uniform spacing, can facilitate bat movement between roosts and 
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foraging grounds (Leroy et al., 2009). Large-scale industrial plantations have drawn particular 

scrutiny for their role in reducing biodiversity and homogenizing local ecosystems (Wilcox & 

Ellis, 2006; Wallace et al., 2016). This ecological simplification weakens natural regulatory 

mechanisms that might otherwise suppress disease propagation (Perfecto & Vandermeer, 2010) 

and may lead to increased densities of reservoir species (Kremen & Miles, 2012). By contrast, 

smallholder or polyculture plantation systems can retain more biodiversity, integrating forest 

remnants and crop diversity that potentially diffuse reservoir populations and reduce concentrated 

contact with humans (Kremen & Miles, 2012; Wallace et al., 2016). 

Beyond land-use factors, broader socioeconomic and cultural practices fundamentally 

condition filovirus spillover risk. Bushmeat hunting and consumption—particularly of primates 

and duikers—can provide direct routes for viral transmission when infected animals are handled 

or consumed (Leroy et al., 2004a). Population growth, land tenure changes, and economic 

pressures may further encourage communities to encroach on formerly intact forest areas or 

expand agricultural frontiers, thus amplifying exposure to potential viral reservoirs. Concurrently, 

urbanization patterns and infrastructural development (e.g., roads, markets) can bring once-

isolated wildlife populations into greater contact with humans, sometimes accelerating or 

amplifying outbreaks (Pigott et al., 2014). 

3.2.2 Conceptual framework: land-use change and filovirus spillover 

This framework integrates existing evidence with theoretical mechanisms to explain how 

deforestation and oil palm expansion modulate filovirus spillover risk through distinct but 

interconnected pathways. 
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Deforestation and Habitat Disruption 

A growing body of literature underscores the tight coupling between environmental 

disturbances—particularly deforestation—and the emergence or re-emergence of filoviruses, 

including Ebola and Marburg (Olivero et al., 2017; Rulli et al., 2017). Forest fragmentation and 

habitat alteration can disrupt ecological communities in ways that heighten pathogen transmission, 

such as by altering the distribution and abundance of virus reservoirs and intermediate hosts 

(Walsh et al., 2009). 

These disruptions increase the interface between humans and wildlife, creating new 

pathways for spillover events. Recent forest losses have been significantly correlated with higher 

Ebola spillover risk in West and Central Africa (Alexander et al., 2015; Pigott et al., 2014), while 

secondary or fragmented forest patches may harbor elevated densities of bats or primates, further 

amplifying the potential for human contact with infected hosts (Olivero et al., 2017; Rulli et al., 

2017). 

Forest loss reduces the spatial barriers that traditionally limit contact among wildlife 

species and between wildlife and humans (Olivero et al., 2017). By disturbing primary forest 

habitats, deforestation may drive bat populations into edge or agricultural areas, thereby increasing 

the probability of human–bat encounters and potential pathogen transmission. These habitat 

modifications can create novel ecological niches that favor certain reservoir species while 

displacing others, potentially concentrating viral hosts in human-modified landscapes (Brooks et 

al., 2019). This pattern aligns with Schmalhausen's Law, which posits that organisms under stress 

often become more vulnerable to secondary stressors, potentially contributing to higher viral loads 

or increased shedding among reservoir species (Kareiva et al., 1993; Fox & Reed, 2011). 
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Oil Palm Plantations as Amplification Sites 

The rapid expansion of oil palm cultivation has emerged as an increasingly critical factor 

in zoonotic disease ecology, operating synergistically with deforestation processes. Both 

smallholder and large-scale industrial plantations reshape landscapes in ways that can facilitate 

filovirus transmission. Plantations often attract fruit bat species by offering readily available 

feeding and roosting sites (Shafie et al., 2011), while their simplified vegetation structure, 

including wide trails and uniform spacing, can facilitate bat movement between roosts and 

foraging grounds (Leroy et al., 2009). 

Where forests are converted to oil palm, the type of management regime—smallholder 

versus industrial—plays a pivotal role in shaping disease emergence risk. Smallholder or 

polyculture systems often retain forest fragments or include mixed cropping regimes that preserve 

some level of biodiversity (Kremen & Miles, 2012). This greater ecological complexity can help 

disperse reservoir hosts over a broader area, potentially diminishing the intensity of human–bat 

contact. 

In contrast, large-scale industrial plantations often represent homogenous landscapes with 

minimal natural habitat left intact. Such monocultures can concentrate wildlife populations, 

particularly fruit bats, within or near plantation zones for food and roosting. Large-scale industrial 

plantations have drawn particular scrutiny for their role in reducing biodiversity and homogenizing 

local ecosystems (Wilcox & Ellis, 2006; Wallace et al., 2016). This ecological simplification 

weakens natural regulatory mechanisms that might otherwise suppress disease propagation 

(Perfecto & Vandermeer, 2010) and may lead to increased densities of reservoir species (Kremen 

& Miles, 2012). Moreover, the regular spatial arrangement of oil palm rows can facilitate bat 

movement, increasing opportunities for spillover events (Shafie et al., 2011; Leroy et al., 2009). 
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Socioeconomic Drivers 

Socioeconomic conditions, particularly systemic poverty and institutional fragility, create 

complex pathways that heighten the risk of filovirus spillover events. In regions characterized by 

limited economic diversification and weak governance structures, communities often face stark 

choices between immediate survival needs and long-term health security. 

Beyond land-use factors, broader socioeconomic and cultural practices fundamentally 

condition filovirus spillover risk. Bushmeat hunting and consumption—particularly of primates 

and duikers—can provide direct routes for viral transmission when infected animals are handled 

or consumed (Leroy et al., 2004a). While often framed primarily as subsistence activity, bushmeat 

hunting frequently serves as a crucial income source rather than solely for direct consumption 

(Cawthorn & Hoffman, 2015; de Merode et al., 2004). Indeed, wild meat is often considered a 

luxury rather than necessity, highlighting the economic rather than nutritional drivers of such 

practices (Friant et al., 2020). 

Population growth, land tenure changes, and economic pressures may further encourage 

communities to encroach on formerly intact forest areas or expand agricultural frontiers, thus 

amplifying exposure to potential viral reservoirs. This economic pressure manifests in increased 

resource extraction activities within forested areas, as households seek supplementary income 

sources through activities that intensify human-wildlife contact (Leach, 2015). 

These economic vulnerabilities typically coincide with institutional weaknesses that 

further amplify spillover risks. Areas experiencing socio-political instability or armed conflict 

show heightened vulnerability to zoonotic disease emergence, as health surveillance systems 

collapse and populations are displaced into forested areas (Bausch & Schwarz, 2014; Benedicta et 



 

52 

al., 2022). Conflict zones can simultaneously accelerate deforestation and wildlife exploitation 

while diminishing capacity for outbreak detection and response. 

Concurrently, urbanization patterns and infrastructural development (e.g., roads, markets) 

can bring once-isolated wildlife populations into greater contact with humans, sometimes 

accelerating or amplifying outbreaks (Pigott et al., 2014). 

Climatological and Environmental Conditions 

Temperature and precipitation patterns shape the distribution, reproduction, and migration 

of known or suspected reservoir species. Climatic fluctuations can also affect the phenology of 

fruiting trees in plantations and adjacent forest remnants, potentially influencing bat movement 

and roosting behaviors (Schmidt et al., 2017). These environmental conditions may modulate the 

temporal and spatial patterns of human-wildlife contact, creating seasonal variations in spillover 

risk. 

In this integrated framework, filovirus spillover emerges as a complex phenomenon shaped 

by the dynamic interplay of ecological disruption, agricultural transformation, socioeconomic 

conditions, and environmental factors. The framework highlights how deforestation and oil palm 

expansion function as primary drivers that restructure landscapes and wildlife habitats, while 

socioeconomic vulnerabilities and climatic patterns modulate the frequency and intensity of 

human-wildlife interactions. 
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3.3 Data 

The dataset was constructed using a comprehensive spatial framework that integrates 

information on filovirus spillover occurrences, deforestation, oil palm plantation areas, and 

socioeconomic and environmental factors across Africa between 2001 and 2018. 

3.3.1 Spatial Framework and Overall Dataset Structure 

We base our spatial structure on the Prio-grid dataset developed by Tollefsen et al. (2022). 

This grid divides the African continent into subnational units of 0.5° × 0.5° latitude and 

longitude—cells that measure roughly 55 km × 55 km at the equator, tapering in size toward higher 

latitudes. In total, 10,667 grid cells are included, covering 51 African countries. Each cell is 

assigned a unique identifier, allowing us to merge data from multiple sources while preserving 

geographical alignment. 

Table 3.1 provides a summary of key descriptive statistics for 192,132 cell-year 

observations drawn from these African countries between 2001 and 2018. As illustrated, filovirus 

events are extremely rare, with a mean rate of just 0.0001301 per cell-year, corresponding to 

0.013% (SD = 0.0114). Despite their rarity, these events have profound epidemiological and 

socioeconomic implications, underscoring the need to understand their drivers. 

Table 3.1 Descriptive statistics at cell level 

Variables Observations Mean Standard deviation Median  
Filovirus Spillover Events  192,132 0.0001301 0.0114063 0.0000000  
Ratio of forest loss  192,132 0.0110544 0.0348801 0.0000000  
Ratio of smallholder oil palm plantations  192,132 0.0000714 0.0011456 0.0000000  
Ratio of industrial oil palm plantations  192,132 0.0000554 0.0008405 0.0000000  
Mean of Night Light per hectare 192,132 0.009544 0.0323872 0.0000000  
Mean of Population per hectare 192,132 0.3277523 1.173621 0.0552002  
Mean of temperature (°C) 192,132 24.43532 3.950397 24.75833  
Mean of rainfall (mm) 192,132 654.427 612.8877 491.2  

Source: Authors’ computation  
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3.3.2 Filovirus Spillover Locality 

While the Centers for Disease Control and Prevention (CDC) has extensive records on 

Ebola outbreaks (e.g., case counts, mortality), they do not provide precise geolocations of these 

events. Consequently, we rely on Sundaram et al. (2024) for Ebola spillover data and Filion et al. 

(2023) for Marburg spillover data—both of which include accurate geocoordinates and the month 

in which initial spillover occurred as shown in Figure 3.1. 

Our analytical period (2001–2018) encompasses 18 Ebola spillover events and 6 Marburg 

spillover events. It is important to note that filovirus outbreaks have historically been confined to 

the African continent, which justifies our geographical focus. As evident from Figure 1, these 

events display a distinct geographical pattern, predominantly occurring in countries within the 

equatorial belt of Africa, including the Democratic Republic of Congo, Uganda, Guinea, and 

Angola. This concentration around the equator corresponds with the natural habitat range of 

suspected reservoir species, particularly fruit bats. 

Temporally, we observe fluctuations in outbreak frequency, with clusters of events in 

2007-2008 and 2012-2014, suggesting potential cyclical patterns that may correlate with 

ecological or climatic factors. This distribution pattern informs our subsequent robustness tests, 

where we conduct additional analyses limited to the equatorial latitudes used in Pigott et al. (2014). 

A complete listing of filovirus outbreak localities is provided in Appendix A. 
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Figure 3.1: Ebola and Marburg Cases in Africa between 2001 – 2018 

Source: Sundaram et al. (2024) and Filion et al. (2023)  

For each cell‐month observation, we define a binary indicator FVkt equal to 1 if at least one 

filovirus event occurs in cell k during year t, and 0 otherwise. Recognizing that the straw-colored 

fruit bat (Eidolon helvum)—a known reservoir for filoviruses (Okawa et al., 2015)—routinely 

travels 10–40 km nightly and has been documented to cover up to 88 km (Richter & Cumming, 
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2008; Fahr et al., 2015), we further extend the indicator to include the eight adjacent grid cells 

around each reported spillover point as shown in Figure 3.2. 

 

 

 

 

 

 

 

 

 

Figure 3.2: Creation of binary indicator FVkt 

 

This approach allows us to capture potential spillover effects in the immediate vicinity of 

reported outbreaks, accounting for both bat mobility and potential human movement in these 

regions. 

3.3.3 Deforestation 

We employ the Global Forest Change dataset (Hansen et al., 2013) for annual estimates of 

forest cover change at a 30-meter resolution using Landsat imagery. Data for 2000–2023 are 

accessible, but we focus on annual forest loss from 2001 to 2018. We process these layers in 

Google Earth Engine, aggregating forest loss within each 0.5° Prio-grid cell. To ensure 

comparability across latitudes—where cells vary in actual land area—we normalize the total forest 

. There was a filovirus event at this point. 

 FVkt  equal to 1. 

 FVkt  equal to 0. 
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loss area by the cell's land area, yielding a standardized deforestation ratio (forest loss area / total 

cell area) in a grid cell. 

As shown in Table 3.1, deforestation varies considerably across the African continent. The 

average annual forest loss ratio is approximately 1.11% (SD = 0.0349), but with a median of zero, 

revealing a stark contrast between areas experiencing significant deforestation and regions 

exhibiting negligible levels of forest disturbance. This spatial heterogeneity is particularly 

pronounced in the Congo Basin and West African forests, where most filovirus events have been 

documented. 

3.3.4 Smallholder and Industrial Oil Palm Plantations 

To examine how different types of oil palm operations might influence spillover risk, we 

compile annual classifications of oil palm plantations into two distinct categories—smallholder 

and industrial—for each grid cell from 2001–2018. 

This analysis addresses a significant data limitation in African oil palm research. Unlike 

Southeast Asian plantations that have been extensively mapped, African oil palm datasets were 

extremely scarce until recently. The development of advanced remote sensing techniques has only 

recently enabled continental-scale classification of plantation types. While Descals et al. (2024) 

provides a global classification using Sentinel-1 data spanning 2016–2021 with back-estimation 

to 1990, that dataset faces potential accuracy issues from Landsat 7's scan line corrector failure 

after May 2003, which created systematic data gaps in the imagery. 

To overcome these scan line limitations, we developed an alternative approach using 

MODIS satellite data. MODIS provides uninterrupted daily global coverage from 2000 onward, 

ensuring consistent temporal monitoring of land cover changes across Africa. This continuous data 

stream proves especially valuable for detecting brief windows of bare soil exposure that 
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characterize new plantation establishment—events often missed by sensors with lower temporal 

resolution or compromised by data gaps. 

Our methodological framework, detailed in Chapter 2, integrates multiple spectral indices 

including the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index 

(EVI), and raw reflectance bands (Red, Near-Infrared, and Blue) to capture the diverse biophysical 

characteristics of African landscapes. These combined indices enhance discrimination between 

land cover types, particularly in heterogeneous and seasonally dynamic environments.  

For classification, we employed an ensemble of machine learning algorithms, ultimately 

selecting XGBoost as our primary classifier based on its superior cross-validation performance 

(overall accuracy: 80.25% ± 2.12%). This approach proved especially reliable for identifying 

industrial plantations, which exhibit uniform canopy structure and spatial arrangement, compared 

to the more fragmented and heterogeneous smallholder systems. 

The resulting annual maps distinguish between smallholder and industrial plantation 

regimes, with areas normalized by grid cell size to yield spatially explicit ratios for epidemiological 

analysis. We validated our MODIS-based classifications through cross-referencing with Descals 

et al. (2024), confirming result stability across different measurement approaches. While our 

methodology offers significant improvements in temporal continuity and classification accuracy, 

mixed-pixel effects in highly fragmented landscapes may still limit precision in detecting 

smallholder plantations. 

After classification, we normalize plantation areas by total cell area, yielding ratios of 

smallholder and industrial oil palm coverage per grid cell. Table 3.1 reveals that both smallholder 

(mean = 0.0000714) and industrial (mean = 0.0000554) plantation coverage appears minimal when 

averaged across all cells, yet high standard deviations indicate considerable geographic 
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concentration. This pattern aligns with known oil palm cultivation hotspots in West and Central 

Africa, which notably overlap with areas of higher filovirus incidence.  

3.3.5 Socioeconomic and Environmental Variables 

To capture the socioeconomic and environmental contexts that may influence filovirus 

spillover risk, we incorporate data from the AfroGrid dataset (Schon & Koren, 2022). This dataset 

integrates multiple geospatial sources within the Prio-grid framework (Tollefsen et al., 2012), 

ensuring compatibility with our study's spatial and temporal structure. 

Nighttime Light per Hectare 

Nighttime light intensity serves as a widely recognized proxy for economic development, 

infrastructure quality, and urbanization (Chen & Nordhaus, 2011; Michalopoulos & Papaioannou, 

2013). Data for this variable come from two sources: the Defense Meteorological Satellite Program 

(DMSP) for earlier years and the Visible Infrared Imaging Radiometer Suite (VIIRS) for later 

years. 

We normalize nighttime light intensity by each cell's land area, yielding a measure of 

nighttime light per hectare. While nighttime lights have proven valuable for capturing economic 

activity, recent studies by Doll et al. (2006) and Chen & Nordhaus (2019) note potential limitations 

in rural areas where economic activities may not generate significant illumination. Nevertheless, 

the variable remains useful for identifying areas with infrastructure development that might 

influence disease surveillance capabilities. 

Population per Hectare 

Population density reflects the distribution and concentration of human populations within 

each grid cell. We derive these estimates from the WorldPop project (WorldPop, 2021), which 

provides spatially disaggregated, annually updated population counts for Africa. Like nighttime 
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light intensity, population counts are normalized by the cell's land area to yield population per 

hectare. 

As seen in Table 3.1, population density shows considerable variation (mean = 0.3277 

persons per hectare, SD = 1.17), reflecting Africa's complex settlement patterns, from dense urban 

centers to sparsely populated rural areas. This variation likely influences human-wildlife contact 

patterns and consequently spillover risk. 

Temperature and Precipitation 

Both temperature and precipitation data are sourced from the Climate Research Unit Time-

Series (CRU TS) dataset (Harris et al., 2020). Following the approach used in Pigott et al. (2014), 

we include these variables to account for environmental conditions that influence reservoir species 

distribution and behavior. Temperature plays a critical role in shaping the habitats of virus 

reservoir species such as bats and primates (Han et al., 2016), while precipitation patterns affect 

the structure and composition of ecosystems. 

The inclusion of these climate variables allows us to control for their effects when assessing 

the impact of deforestation and oil palm expansion. By including cell fixed effects in our 

econometric model (see Section 3.4), we leverage the year-to-year variation in these variables 

within each cell to identify their influence on spillover risk. 

Our inclusion of both socioeconomic and environmental controls allows us to isolate the specific 

effects of land-use changes (deforestation and oil palm expansion) from broader contextual factors 

that might independently influence filovirus spillover dynamics. 

3.4 Estimation Strategy 

To analyze the determinants of filovirus spillover events, we employ a linear probability 

model (LPM) as our baseline specification. While nonlinear models like logit or probit are 
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common alternatives for binary outcomes, the LPM offers several advantages in our context, 

including straightforward interpretation of coefficients, computational efficiency with high-

dimensional fixed effects, and flexibility in handling interaction terms for heterogeneity analysis 

(Angrist & Pischke, 2009). 

Our dependent variable is a binary indicator representing spillover occurrence in a specific 

location during a given year. The probability of a filovirus spillover in grid cell k at time t is 

modeled as follows: 

Pr[FV𝑘𝑡1] =  𝛼1𝐹𝑜𝑟𝑒𝑠𝑡𝐿𝑜𝑠𝑠𝑘𝑡 + 𝛼2𝑆𝑚𝑎𝑙𝑙𝑘𝑡 + 𝛼3𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝑘𝑡 + 𝛼4𝑋𝑘𝑡 + 𝛾𝑘 + 𝛿𝑖𝑡 + 𝜀𝑘𝑡 

In this equation, FVkt is a binary indicator equal to 1 if a filovirus (Ebola or Marburg) 

spillover event occurs in grid cell k or its eight adjacent cells at time t and 0 otherwise. ForestLosskt 

represents the ratio of deforested area to total cell area in grid cell k at time t. Smallkt and Industrialkt 

capture the ratios of smallholder and industrial oil palm plantation areas to total cell area, 

respectively. Xkt is a vector of time-varying control variables measured at the grid cell level, 

including nighttime light intensity, population density, mean annual temperature, and annual 

rainfall. We also include 𝛾k, which denotes grid cell fixed effects controlling for time-invariant 

characteristics at the cell level, and 𝛿it, which represents country-by-year fixed effects accounting 

for time-varying national factors. Finally, 𝜀𝑘𝑡 is the error term. 

Our empirical strategy addresses potential sources of bias through several channels. First, 

we include cell-specific fixed effects to control for unobserved, time-invariant characteristics at 

the grid cell level. These fixed effects absorb any stable geographical features such as elevation, 

slope, soil quality, historical land-use patterns, and distance to rivers or other natural boundaries. 

They also account for baseline ecological conditions that might influence both land-use decisions 

and disease dynamics. By employing a within-cell identification strategy, we effectively compare 

each cell to itself over time, isolating the impact of temporal changes in our key independent 
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variables while holding geography constant. This approach is particularly crucial when studying 

spatial phenomena where location-specific factors might confound the relationship between land 

use and disease emergence. 

We also incorporate country-by-year fixed effects to account for time-varying factors at 

the national level. These include policy changes affecting forest management or agricultural 

development, national economic conditions that might influence land-use decisions, public health 

interventions and disease surveillance capabilities, annual fluctuations in climate patterns that 

might affect vector populations, and conflict or political instability that could disrupt both land 

management and health systems. By including these fixed effects, we absorb any nation-wide 

shocks or trends that might simultaneously influence land-use practices and disease dynamics. 

This two-way fixed effects structure helps mitigate omitted variable bias by accounting for both 

spatial and temporal unobserved heterogeneity (Wooldridge, 2010). The country-by-year fixed 

effects also address potential concerns about reporting bias, as outbreak detection may vary with 

a country's surveillance capabilities, which can change over time. 

Given that our dependent variable is binary and extremely rare (mean = 0.00013), we take 

specific steps to address the challenges associated with rare events analysis. While King and Zeng 

(2001) demonstrate that logistic regression may underestimate the probability of rare events, other 

econometric studies suggest that linear probability models with fixed effects can remain consistent 

even with rare binary outcomes (Greene, 2004). 

While linear probability models have known limitations, including the possibility of 

predicted probabilities outside the [0,1] interval and heteroskedasticity, this specification offers 

several advantages for our analysis. The coefficients are directly interpretable as marginal effects 

on the probability of spillover occurrence. For instance, 𝛼1 represents the change in spillover 
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probability associated with a one-unit increase in forest loss ratio. The model readily 

accommodates our extensive fixed effects structure without encountering the incidental parameters 

problem common to nonlinear specifications (Lancaster, 2000). Additionally, the linear 

framework allows for straightforward interpretation of interaction terms in subsequent 

specifications exploring heterogeneous effects. To address heteroskedasticity concerns, we 

employ robust standard errors throughout our analysis. Additionally, we verify that predicted 

probabilities from our main specifications remain predominantly within the unit interval, 

mitigating concerns about the linear functional form. 

3.5 Results 

The empirical results from the linear probability models (LPM) examining the 

determinants of filovirus spillover events are presented in Table 3.2. Initially, in the simplest 

specification without fixed effects (Column 1), the ratio of forest loss demonstrates a strong 

positive and statistically significant relationship with spillover probability. However, this 

association diminishes substantially upon the introduction of grid-cell fixed effects (Column 2) 

and becomes statistically insignificant once country-by-year fixed effects are incorporated 

(Columns 3–5). The attenuation of these coefficients and the subsequent loss of significance 

indicate that the initial observed relationship primarily captured time-invariant, location-specific 

characteristics rather than dynamic temporal changes within individual cells. 
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Table 3.2 Main model estimates  

Estimator LPM  
Dependent variable Was there a FV spillover?  
 (1) (2) (3) (4) (5) (6) 
Ratio of forest loss 0.03475*** 0.01433* 0.00460 0.00431 0.00449 -0.01767 
 (0.00600) (0.00747) (0.00766) (0.00764) (0.00766) (0.01451) 
Ratio of forest loss2      0.06353 
      (0.04527) 
Ratio of smallholder oil palm plantations  -0.15059*** -0.04060 -0.06966* -0.09827** -0.09598** -0.29294** 
 (0.04093) (0.02672) (0.03601) (0.04561) (0.04475) (0.12437) 
Ratio of smallholder oil palm plantations2      2.18405** 
      (0.98021) 
Ratio of industrial oil palm plantations -0.11874 -0.01964 0.21982** 0.21430* 0.21952* 0.52499** 
 (0.09426) (0.08751) (0.11102) (0.11300) (0.11327) (0.26484) 
Ratio of industrial oil palm plantations2      -7.56173 
      (4.91112) 
Socioeconomic Controls  No No No Yes Yes Yes 
Environmental Controls No No No No Yes Yes 
Country x year fixed effects No No Yes Yes Yes Yes 
Cell fixed effects No Yes Yes Yes Yes Yes 
Cluster Yes Yes Yes Yes Yes Yes 
Observations 192,006 192,006 192,006 192,006 192,006 192,006 
Cells 10,667 10,667 10,667 10,667 10,667 10,667 

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1, standard errors in parentheses.  

 

The effects of smallholder oil palm plantations on spillover risk reveal a consistently 

negative relationship across most model specifications. Although initially not statistically 

significant with only grid-cell fixed effects (Column 2), the negative association becomes 

significant when country-by-year fixed effects and additional socioeconomic and environmental 

controls are included (Columns 3–5). Specifically, in the fully controlled model (Column 5), 

smallholder plantation coverage exhibits a statistically significant negative relationship with 

spillover risk. This result suggests that smallholder plantations, characterized by landscape 

heterogeneity and ecological complexity, potentially mitigate the conditions conducive to filovirus 

transmission. 

Introducing quadratic terms in column 6 uncovers nonlinear relationships for smallholder 

plantations, revealing a statistically significant U-shaped pattern. Specifically, the linear term is 

negative, indicating reduced spillover risk at lower plantation coverage levels, whereas the 

quadratic term is positive, suggesting a potential increase in risk at higher plantation densities. 
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Notably, however, observed plantation densities rarely reach levels at which the risk-reduction 

effect reverses. Thus, within the typical observed range, smallholder plantations predominantly 

exert a protective effect against filovirus spillover. 

Conversely, industrial oil palm plantations exhibit a distinctly positive and statistically 

significant association with spillover risk in models incorporating fixed effects and additional 

covariates (Columns 3–5). This positive relationship becomes particularly robust and pronounced 

when country-by-year fixed effects and socioeconomic and environmental controls are included, 

underscoring the role of industrial plantation regimes in elevating filovirus spillover risk. The 

nonlinear specification (column 6) further reinforces these findings, showing a consistent positive 

linear effect for industrial plantations, while the quadratic term remains statistically insignificant. 

This outcome suggests that the spillover risk increases steadily with industrial plantation density, 

aligning with ecological hypotheses highlighting the role of biodiversity loss and ecological 

simplification in facilitating pathogen transmission. 

Overall, these results illustrate significant heterogeneity in spillover risks associated with 

different land-use management systems. Industrial monoculture systems consistently enhance the 

risk of filovirus spillovers, whereas smallholder systems demonstrate a generally protective effect. 

These findings support the ecological theory suggesting that landscape heterogeneity and 

biodiversity preservation within smallholder systems may effectively reduce zoonotic 

transmission risks compared to ecologically simplified industrial plantations. 

3.6 Robustness Checks  

This section presents a comprehensive set of sensitivity analyses that establish the 

reliability of our main findings across alternative specifications, variable definitions, and data 

sources. These robustness checks systematically address potential concerns regarding the stability 
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of our findings and confirm that the differential effects of industrial versus smallholder oil palm 

plantations on filovirus spillover risk are not artifacts of particular methodological choices. 

3.6.1 Varying the Spatial Definition of Filovirus Spillover 

One potential concern with our analysis is that the geographical delineation of spillover 

events might influence our findings. The baseline model codes a filovirus spillover in cell k if an 

event occurs either in that cell or within its eight surrounding cells (i.e., a 9-cell buffer). This 

approach acknowledges the mobility of fruit bat species—particularly the straw-colored fruit bat 

(Eidolon helvum), which routinely travels 10-40 km nightly and has been documented to cover up 

to 88 km (Fahr et al., 2015; Abedi-Lartey et al., 2016). However, to ensure our results are not 

sensitive to this particular spatial definition, we examine two alternative configurations: 

1 Cell Definition: A stricter metric where FVkt = 1 only if a spillover occurs directly in 

cell k. 

13 Cells Definition: An expanded buffer that includes the eight adjacent cells plus four 

additional cells along the middle facets of each side, yielding 13 total cells. 

 

 

 

 

 

 

 

Figure 3.3: Definition of each cell 

. There was a filovirus event at this point. 

 FVkt  equal to 1. 

 FVkt  equal to 0. 
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Table 3.3 presents robustness checks employing alternative spatial definitions of filovirus 

spillover events to verify the sensitivity of our results. Initially, our baseline definition (9-cell 

buffer) codes a filovirus spillover event as occurring if it happens within a grid cell or its eight 

surrounding cells. This definition accounts for the typical mobility of reservoir species, particularly 

fruit bats, which frequently travel substantial distances. To assess robustness, we also employ two 

alternative spatial definitions: a stricter 1-cell definition, which records spillovers only within the 

exact grid cell of occurrence, and a broader 13-cell definition, encompassing spillovers occurring 

in the cell plus the adjacent eight cells and four additional surrounding cells. 

Table 3.3 Three alternative Spatial Definitions of Filovirus Spillover  

Estimator LPM 
Dependent variable Was there a FV spillover? 
 1 cell 9 cells 13 cells 
Ratio of forest loss -0.00389 -0.01767 -0.02441 
 (0.00386) (0.01451) (0.01498) 
Ratio of forest loss2 0.01487 0.06353 0.07136 
 (0.01397) (0.04527) (0.04536) 
Ratio of smallholder oil palm plantations  -0.04400 -0.29294** -0.36675** 
 (0.03630) (0.12437) (0.15032) 
Ratio of smallholder oil palm plantations2 0.33642 2.18405** 2.76774** 
 (0.28267) (0.98021) (1.18488) 
Ratio of industrial oil palm plantations 0.02314 0.52499** 0.67729** 
 (0.06742) (0.26484) (0.31650) 
Ratio of industrial oil palm plantations2 -0.13648 -7.56173 -9.18197 
 (1.14322) (4.91112) (5.95370) 
Control variables Yes Yes Yes 
Country x year fixed effects Yes Yes Yes 
Cell fixed effects Yes Yes Yes 
Cluster Yes Yes Yes 
Observations 192,132 192,132 192,132 

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1, standard errors in parentheses.  

Results under the strictest 1-cell definition indicate no statistically significant relationships 

between smallholder or industrial oil palm plantations and spillover risk. The lack of significance 

in this restrictive spatial definition suggests it inadequately captures broader ecological processes 

and interactions at the landscape scale, particularly the movement and habitat use of highly mobile 

reservoir species such as fruit bats. 

In contrast, results from both the 9-cell and the more inclusive 13-cell definitions provide 

robust support for the initial findings. Industrial oil palm plantations consistently exhibit 
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statistically significant positive associations with spillover risk, whereas smallholder plantations 

demonstrate robust negative relationships. The strength and statistical significance of these 

relationships notably increase with the broader 13-cell definition, emphasizing that ecological 

interactions influencing spillover risks extend beyond individual cells, reflecting landscape-scale 

processes. 

These robustness checks underscore the importance of considering appropriate ecological 

scales when modeling zoonotic spillovers. The findings emphasize that broader spatial definitions 

better capture the critical ecological dynamics, highlighting the role of industrial plantations in 

amplifying spillover risks and the potential protective effects of smallholder plantations. This 

reinforces the validity of employing moderate to expansive spatial buffers in epidemiological 

studies on zoonotic disease emergence. 

3.6.2 Combining Smallholder and Industrial Plantations 

Table 4 presents additional robustness checks to evaluate whether aggregating smallholder 

and industrial oil palm plantations into a single category affects the observed relationships with 

filovirus spillover risk. When both plantation types are combined, the resulting oil palm variable 

is statistically insignificant across all spatial definitions—1-cell, 9-cell, and 13-cell buffers. This 

aggregated analysis contrasts sharply with earlier results, where disaggregated plantation types 

exhibited distinct and statistically significant effects. 
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Table 3.4 Combining Smallholder and Industrial Plantations 

Estimator LPM 
Dependent variable Was there a FV spillover? 
 1 cell 9 cells 13 cells 
Ratio of forest loss -0.00390 -0.01773 -0.02449 
 (0.00386) (0.01451) (0.01497) 
Ratio of forest loss2 0.01487 0.06351 0.07134 
 (0.01396) (0.04524) (0.04533) 
Ratio of oil palm plantations  -0.01014 0.06197 0.09810 
 (0.02721) (0.08892) (0.10371) 
Ratio of oil palm plantations2 0.06045 -0.44410 -0.65539 
 (0.18914) (0.63468) (0.74103) 
Control variables Yes Yes Yes 
Country x year fixed effects Yes Yes Yes 
Cell fixed effects Yes Yes Yes 
Cluster Yes Yes Yes 
Observations 192,132 192,132 192,132 

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1, standard errors in parentheses.  

The lack of significant findings for the aggregated oil palm variable highlights the 

importance of distinguishing between different plantation management regimes. Combining both 

plantation types masks their divergent ecological impacts, effectively neutralizing their respective 

positive and negative influences on the risk of spillover. Industrial plantations, characterized by 

ecological simplification and reduced biodiversity, significantly enhance spillover risk, while 

smallholder plantations, featuring greater landscape complexity and biodiversity, tend to mitigate 

risk. 

These findings highlight a critical methodological insight: treating heterogeneous land-use 

categories as homogenous entities may obscure important epidemiological relationships. 

Consequently, future research and policy recommendations should carefully differentiate between 

plantation types to accurately reflect their distinct ecological roles and potential implications for 

the emergence of zoonotic diseases. 

3.6.3 Using an Alternative Oil Palm Dataset 

Table 3.5 presents a robustness analysis utilizing an alternative dataset from Descals et al. 

(2024) to verify the stability and generalizability of our primary findings. This dataset utilizes 

Sentinel-1 radar data and historical Landsat imagery to classify smallholder and industrial oil palm 
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plantations, offering a comparative assessment of plantation dynamics from an independent 

source. 

Table 3.5 Using an Alternative Oil Palm Dataset 

Estimator LPM 
Dependent variable Was there a FV spillover? 
 1 cell 9 cells 13 cells 
Ratio of forest loss -0.00387 -0.01787 -0.02458 
 (0.00386) (0.01453) (0.01499) 
Ratio of forest loss2 0.01484 0.06372 0.07152 
 (0.01397) (0.04529) (0.04537) 
Ratio of smallholder oil palm plantations (Descals et al., 2024) -0.03677 -0.15444 -0.21565 
 (0.03006) (0.11027) (0.13550) 
Ratio of smallholder oil palm plantations2 (Descals et al., 2024) 0.27283 1.01028 1.44668 
 (0.21968) (0.78944) (0.97590) 
Ratio of industrial oil palm plantations (Descals et al., 2024) -0.05255 0.54241 0.60700 
 (0.08576) (0.49036) (0.45232) 
Ratio of industrial oil palm plantations2 (Descals et al., 2024) 1.93783 -10.22546 -9.73837 
 (1.99766) (12.28666) (10.78549) 
Control variables Yes Yes Yes 
Country x year fixed effects Yes Yes Yes 
Cell fixed effects Yes Yes Yes 
Cluster Yes Yes Yes 
Observations 192,132 192,132 192,132 

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1, standard errors in parentheses.  

Results from analyses based on this alternative dataset generally align with our initial 

findings in terms of directionality. Specifically, industrial plantations consistently exhibit positive 

associations with filovirus spillover risk, while smallholder plantations show negative 

relationships. However, these coefficients do not reach statistical significance in this alternative 

dataset. This attenuation in significance is likely due to increased measurement noise associated 

with methodological limitations in the Descals et al. dataset, such as temporal misclassification 

and reduced efficacy in capturing dynamic land-use changes. 

Despite the absence of statistical significance, the persistent directional relationships 

corroborate our primary ecological hypotheses and support the qualitative robustness of our 

conclusions. This robustness check highlights the critical importance of precise measurement and 

high-frequency temporal resolution in epidemiological studies, reinforcing the methodological 

advantage of employing reliable, high-quality datasets such as MODIS imagery. These findings 
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underscore the validity of our main conclusions regarding the contrasting ecological roles of 

smallholder and industrial oil palm plantations in influencing zoonotic spillover risks. 

3.6.4 Individual Land-Use Impact Analysis 

To examine the isolated effects of each land-use type, we conducted separate regression 

analyses across 9 grid cells for deforestation, smallholder oil palm plantations, and industrial oil 

palm plantations. These individual analyses reveal distinct patterns in their relationships with 

filovirus spillover risk (Table 3.6). 

For deforestation alone (column 1 and 2), neither linear nor quadratic terms exhibit 

statistical significance, suggesting a negligible individual impact of deforestation on spillover 

events within the analytical framework employed. Although deforestation has frequently been 

associated with elevated zoonotic risks in prior studies, the lack of statistical significance here 

implies that isolated forest loss may not sufficiently capture the complexity of ecological dynamics 

influencing filovirus spillovers, particularly when socioeconomic, environmental, and 

spatiotemporal controls are comprehensively incorporated. 

Table 3.6 Individual Land-Use Effects on Filovirus Spillover 

Estimator LPM  
Dependent variable Was there a FV spillover?  
 (1) (2) (3) (4) (5) (6) 
Ratio of forest loss 0.00128 -0.00392     
 (0.00281) (0.00387)     
Ratio of forest loss2  0.01489     
  (0.01398)     
Ratio of smallholder oil palm plantations    -0.01038 -0.02913   
   (0.00994) (0.02765)   
Ratio of smallholder oil palm plantations2    0.22643   
    (0.22755)   
Ratio of industrial oil palm plantations     0.00522 -0.00571 
     (0.02755) (0.05820) 
Ratio of industrial oil palm plantations2      0.33518 
      (1.04933) 
Socioeconomic Controls  Yes Yes Yes Yes Yes Yes 
Environmental Controls Yes Yes Yes Yes Yes Yes 
Country x year fixed effects Yes Yes Yes Yes Yes Yes 
Cell fixed effects Yes Yes Yes Yes Yes Yes 
Cluster Yes Yes Yes Yes Yes Yes 
Observations 192,006 192,006 192,006 192,006 192,006 192,006 
Cells 10,667 10,667 10,667 10,667 10,667 10,667 

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1, standard errors in parentheses.  



 

72 

The regressions isolating smallholder oil palm plantations (Columns 3 and 4) similarly 

show statistically insignificant coefficients, though the direction of the relationships aligns 

consistently with expectations from ecological theory. Specifically, the negative signs observed in 

both linear and quadratic specifications suggest a potential protective effect of smallholder 

plantation landscapes, attributable to their greater ecological heterogeneity and biodiversity. The 

quadratic specification further hints at a possible U-shaped relationship, indicating diminishing 

protective effects at higher plantation densities; however, these effects remain statistically 

inconclusive. This evidence underscores the role smallholder plantation management might play 

in moderating zoonotic spillover risk, though it also highlights the complexity of definitively 

capturing these dynamics through separate regressions alone. 

For industrial oil palm plantations (Columns 5 and 6), the regression results likewise do 

not achieve statistical significance when analyzed independently. Nevertheless, the direction of 

the coefficients, predominantly positive, is consistent with theoretical expectations that industrial 

monoculture systems, characterized by ecological simplification and reduced biodiversity, could 

amplify zoonotic spillover risks. The absence of statistical significance in this isolated analysis 

suggests that the impacts of industrial plantations on spillover risk might be more accurately 

represented when considered within a broader ecological and land-use context, indicating possible 

interaction effects with other landscape features not captured here. 

In summary, the separate regression analyses highlight that isolating single land-use 

categories—deforestation, smallholder plantations, or industrial plantations—does not fully 

capture the complexity or statistically robust relationships previously identified in combined 

regressions. These findings reinforce the importance of modeling spillover dynamics within 

integrated frameworks that simultaneously account for multiple interacting land-use factors. 
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Consequently, future analyses and policy recommendations should continue to emphasize 

differentiated management practices and consider synergistic effects between distinct land-use 

categories to effectively mitigate zoonotic disease risks. 

3.7 Conclusions and Policy Implications 

This chapter aimed to quantify the relationship between land-use transitions—specifically 

deforestation, smallholder oil palm expansion, and industrial oil palm expansion—and the risk of 

Ebola or Marburg virus spillover events across tropical Africa. Employing a linear-probability 

framework with a 0.5° grid-cell panel dataset spanning 2001-2018 and incorporating 

comprehensive socioeconomic and climatic controls, the analysis isolated within-cell temporal 

variations. This empirical approach yielded robust insights into how distinct oil palm plantation 

systems differentially influence filovirus spillover risk. 

Key findings emerged from this analysis. First, deforestation alone, once controlling for 

persistent grid-cell and country-year fixed effects, was not significantly associated with filovirus 

spillover events. Although forest loss has commonly been linked to increased zoonotic risks in 

earlier literature, the absence of statistical significance here suggests that the complexity of 

ecological dynamics influencing spillover events requires considering subsequent land 

management practices beyond mere deforestation. 

Second, industrial oil palm plantations were consistently and significantly associated with 

increased spillover probabilities. The quantitative evidence demonstrated that a one-percentage-

point increase in the share of industrial oil palm plantations correlated with approximately a 0.22 

percentage-point rise in spillover risk. This relationship intensified when considering broader 

spatial buffers reflective of bat mobility ranges, highlighting the critical role industrial-scale 
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monocultures may play in facilitating pathogen transmission through simplified habitats and 

reduced biodiversity. 

Third, contrastingly, smallholder oil palm plantations exhibited a significant negative 

relationship with spillover risk, suggesting that these heterogeneous landscapes, which typically 

maintain higher biodiversity and ecological complexity, may mitigate zoonotic transmission. 

Sensitivity analyses employing alternative spatial scales and different datasets consistently 

reinforced the protective role of smallholder plantations, underscoring the ecological resilience 

inherent in more diversified agricultural systems. 

These empirical findings contribute to broader debates within ecological and agricultural 

economics by clarifying that plantation management regimes, rather than oil palm cultivation per 

se, primarily drive variations in zoonotic spillover risks. The analysis supports ecological theories 

that emphasize the risk-amplifying potential of simplified landscapes compared to heterogeneous 

agricultural mosaics. 

Given these results, targeted policy implications arise directly from this study. 

Policymakers should prioritize steering industrial-scale plantation developments away from 

ecologically sensitive areas, especially regions recognized as habitats and corridors for bat 

populations. Spatially explicit environmental assessments and strategic planning can help 

minimize epidemiological externalities associated with large-scale monoculture plantations. 

Additionally, supporting smallholder oil palm cultivation through technical assistance, market 

access initiatives, and financial incentives can simultaneously promote rural development 

objectives while effectively mitigating spillover risks. 

Finally, this research highlights the necessity for integrated policy frameworks that 

explicitly consider zoonotic risk factors in agricultural expansion decisions. Coordinated efforts 
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across the agricultural, environmental, and public health sectors can significantly enhance disease 

surveillance capabilities, allowing for proactive interventions at critical plantations. Thus, 

promoting landscape-level planning that incorporates ecological resilience emerges as an essential 

step toward sustainable agricultural development that safeguards both human health and 

biodiversity. 
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CHAPTER 4 

OPTIMAL SMALLHOLDING AND INDUSTRIAL OIL PALM PLANTATIONS: 

ACCOUNTING FOR THE FILOVIRUS SPILLOVER RISK IN AFRICA 

 

4.1 Introduction 

Palm oil is one of the world’s most economically significant crops, widely used in 

processed foods, soaps, cosmetics, and biodiesel. According to the Food and Agriculture 

Organization (FAO, 2024), global production of oil palm fresh fruit bunches (FFB) has more than 

tripled, increasing from approximately 120 million tons in 2000 to over 400 million tons in 2020. 

Similarly, the area cultivated for oil palm has expanded from about 10 million hectares to nearly 

29 million hectares over the same period (FAO, 2024; Corley & Tinker, 2016). 

The expansion of oil palm plantations in Africa has significantly contributed to economic 

growth in a region where approximately one-third of the population lived below the poverty line 

as of 2019 (World Bank, 2022). Over 20 African countries currently cultivate oil palm on nearly 

6 million hectares of land, providing critical employment and income opportunities for rural 

communities (World Economic Forum, 2022). In Cameroon, smallholder oil palm farming 

generates annual wages of approximately $1,281 per hectare per household for farmers practicing 

intercropping, substantially boosting rural incomes (Ayompe et al., 2021). A study from Malawi 

found that oil palm production simultaneously provides cooking oil for household consumption, 

creates local employment, and increases cash income for indigenous farming households (Mweta 

et al., 2025). The industry's development potential is substantial, with estimates suggesting up to 

22 million hectares in West and Central Africa could be converted to oil palm plantations in 
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coming years, potentially transforming regional economies if managed sustainably (World 

Economic Forum, 2016). Palm oil production also contributes to poverty alleviation in many 

African countries, helping fulfill Sustainable Development Goal 1 by providing sustainable 

livelihoods (Ayompe et al., 2021). 

Despite its economic importance, the rapid expansion of oil palm plantations has raised 

significant environmental and public health concerns. The primary ecological issues include 

deforestation, biodiversity loss, and the increased risk of zoonotic disease spillovers (Faust et al., 

2018; Wilkinson et al., 2018). Recent ecological studies suggest a possible link between oil palm 

plantation expansion and the spread of Filoviruses, specifically Ebola and Marburg viruses, 

through interactions involving fruit bats, which are identified as primary reservoir hosts crucial to 

filovirus transmission cycles (Alexander et al., 2015; Leroy et al., 2009). Oil palm plantations offer 

fruit bats abundant food sources and refuge from heat stress, thereby increasing the likelihood of 

viral spillover events in human populations, particularly among plantation workers who come into 

frequent contact with these bats (Shafie et al., 2011; Wallace et al., 2016). Monoculture 

plantations, in particular, are hypothesized to be more attractive to bats, thereby presenting a 

heightened risk compared to polyculture plantations (Wallace et al., 2016). 

The 2014-2016 West African Ebola epidemic exemplifies the profound socioeconomic and 

health impacts of zoonotic disease outbreaks in the region. This crisis reduced the combined GDP 

of Guinea, Liberia, and Sierra Leone by approximately US $2.2 billion while causing 28,600 

confirmed and probable cases with 11,325 deaths (World Bank Group, 2014; WHO, 2016). Ebola's 

exceptional virulence—characterized by an average case-fatality rate of approximately 50% with 

historical outbreaks ranging from 25% to 90%—makes it particularly devastating (WHO, 2025). 

Subsequent outbreaks have demonstrated similarly high mortality rates despite advances in 
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medical countermeasures: the 2018-2020 Democratic Republic of the Congo outbreak resulted in 

3,481 cases and 2,299 deaths despite vaccine availability, while Uganda's 2022 Sudan-ebolavirus 

episode produced 164 cases with 55 deaths, representing a case-fatality rate of approximately 47% 

(WHO, 2020, 2023). These recurring epidemics highlight the substantial economic vulnerability 

associated with zoonotic diseases, underscoring how public health emergencies can rapidly 

undermine regional development gains and impose significant long-term costs on affected 

economies. 

Despite the clear economic and public health relevance, few studies have integrated 

economic modeling explicitly to analyze the relationship between environmental change and 

infectious disease spillovers. Notable exceptions include Barbier (2021), who developed an 

economic model examining the costs and benefits associated with habitat transformation, 

explicitly incorporating zoonotic disease transmission from wildlife to humans. Such frameworks 

underscore the need to balance the economic benefits derived from habitat modifications, 

including agricultural expansion, against the substantial risks posed by zoonotic disease spillovers 

(Albers et al., 2020). 

Building upon these insights, this study develops an economic model explicitly designed 

to examine decision-making processes underlying oil palm plantation expansion. The model 

distinguishes between monoculture and polyculture plantations to derive separate marginal private 

cost curves reflecting differing agricultural practices and associated ecological risks. Additionally, 

we quantify the marginal external costs of filovirus spillovers for each plantation type, integrating 

epidemiological variables such as spillover probabilities, expected numbers of infected 

individuals, with societal willingness to pay to reduce mortality risk. Using this framework, we 

numerically simulate the effectiveness of taxation policies intended to internalize these 
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externalities, comparing unregulated market outcomes to socially optimal solutions. Ultimately, 

our analysis aims to enhance understanding of the economic trade-offs associated with palm oil 

cultivation in Africa and inform more proactive and sustainable agricultural expansion and disease 

management policies. 

4.2 Theoretical Framework and Model 

4.2.1 Set up and Assumptions 

This section develops an economic model that captures both the private production 

incentives and environmental externalities associated with crude palm oil (CPO) production in 

Africa. The model distinguishes between two producer types with fundamentally different 

ecological characteristics: smallholder oil palm plantations (S) and industrial oil palm plantations 

(L). To maintain analytical tractability while preserving the essential economic mechanisms, the 

model builds on five core assumptions: 

Assumption 1: Divergent Cultivation Systems 

Industrial oil palm plantations (L) employ monoculture systems, converting large 

contiguous areas into uniform stands of high-yielding oil palm varieties. In contrast, smallholder 

farms (S) typically adopt polyculture approaches, integrating oil palms with other crops and 

maintaining more diverse landscape elements (Carrère, 2011). This structural difference drives 

divergent ecological impacts: monocultures create extensive homogeneous habitats with 

synchronized fruiting patterns that attract fruit bats (Alexander et al.,2015; Wallace et al., 2016). 

Polyculture systems, with their mixed species composition, irregular canopy structures, and 

retained forest fragments, might dilute bat visitation rates and reduce human-bat contact 

opportunities.  
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Assumption 2: Price-Taking Behavior 

African CPO producers account for a relatively small share of global supply (6.3 % in 

2023, FAOSTAT), so each farm believes it cannot influence P. Profit maximization is therefore 

equivalent to choosing output qi (or, equivalently, cultivated area Ai) such that marginal cost equals 

the exogenous price. 

Assumption 3: Leontief production technology with fixed land–labor ratio 

Oil-palm production is subject to strict biophysical and managerial constraints: every 

hectare must be pruned, fertilized, weeded, and—most labor-intensively—harvested at 7- to 10-

day intervals (Corley & Tinker 2016). Field surveys confirm that estates and smallholders 

therefore allocate workers in fixed proportions to cropped areas (Kubitza & Krishna 2020). We 

capture this one-to-one linkage with a Leontief production function in which output is limited by 

the scarcest of three inputs—land (𝐴𝑖), hired labor (𝐿𝑖), and a bundle of other inputs: 

 𝑞𝑖 = 𝛽𝑖𝑚𝑖𝑛{𝐴𝑖 ,𝛼𝑖𝐿𝑖 ,𝐾𝑖̅ } , 𝑖 ∈ {𝑆, 𝐿} (1) 

where 𝛽𝑖 is the productivity or physical yield, 𝛼𝑖 fixes the land-labor ratio. The composite 𝐾𝑖̅  lumps 

together non-labor inputs that are either proportional to area (fertilizer, pesticide) or sunk (mill 

equipment) and will therefore be folded into the cost function below. 

Assumption 4: Increasing Marginal Land-Preparation Costs 

The per-hectare cost of establishing new plantations increases as cultivation expands into 

less favorable locations—areas with poorer soils, challenging topography, or greater distance from 

existing infrastructure. We model this through a linear marginal preparation cost function: 

 𝐶𝑃𝑖(𝐴𝑖) = 𝑎𝑖 + 𝑏𝑖𝐴𝑖  
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Integrating from 0 to 𝐴𝑖 yields a quadratic total preparation cost: 

 
𝐶𝑃𝑖(𝐴𝑖)𝐴𝑖 = ∫ (𝑎𝑖 + 𝑏𝑖𝐴𝑖)𝑑𝐴𝑖

𝐴𝑖

0
= 𝑎𝑖𝐴𝑖 +

𝑏𝑖𝐴𝑖
2

2
 

(2) 

Economically, the parameter 𝑎𝑖 embodies a first-mover advantage: when 𝑎𝑖 < 0 , it implies 

that the very first hectares converted are unusually cheap because they lie on prime land—fertile 

soils, gentle topography, and close to existing roads or milling facilities—so small expansions can 

be undertaken at minimal cost. By contrast, 𝑏𝑖 > 0 captures the increasing marginal difficulty of 

land preparation: as cultivation radiates outward, plots become progressively less favorable 

(poorer soils, steeper terrain) and farther from infrastructure, driving up per-hectare clearing, 

drainage, and transport expenses. 

Assumption 5: Competitive labor market 

Producers hire workers at the prevailing wage 𝑤. The Leontief technology fixes labor 

requirements at 𝐿𝑖 = 𝑞𝑖/(𝛼𝑖𝛽𝑖), yielding total wage costs that scale linearly with output. 

Combining these elements, the annual total cost function for producer type 𝑖 is: 

 
𝑇𝐶𝑖 = 𝐹𝐶𝑖 + 𝑎𝑖𝐴𝑖 +

𝑏𝑖𝐴𝑖
2

2
+𝑤𝐿𝑖 

(3) 

where 

• FCi is fixed costs, non-area-dependent outlays such as perennial tree establishment, road 

upgrades, certification fees, and management salaries; 

• 𝑎𝑖𝐴𝑖 + 𝑏𝑖𝐴𝑖
2

2
 is the land-preparation component; 

• 𝑤𝐿𝑖is the hired-labor cost. 

Using the yield relation 𝑞𝑖 = 𝛽𝑖𝐴𝑖  and labor requirement 𝐿𝑖 = 𝑞𝑖/(𝛼𝑖𝛽𝑖), equation (3) can be 

rewritten in output terms, which sets the stage for deriving marginal and firm-level supply 

functions, and ultimately the aggregate market supply in Section 4.2.2. 
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4.2.2 Supply curves 

This section derives the supply functions for smallholder (S) and industrial (L) oil palm 

producers, capturing their respective production decisions under the technological and cost 

constraints established in Section 4.2.1. 

 

Firm-Level Supply Functions 

Each producer maximizes profit given the world price P. The profit function is given by 

 
𝜋𝑖 = 𝑃𝑞𝑖 − 𝐹𝐶𝑖 − 𝑎𝑖𝐴𝑖 −

𝑏𝑖𝐴𝑖
2

2
−𝑤𝐿𝑖 , 𝑖 ∈ {𝑆, 𝐿}  

(4) 

where 𝐴𝑖 is the cultivated area, 𝐿𝑖  the hired labor (at wage 𝑤), and the quadratic term captures 

rising land-preparation costs.  In equation (4), “i” indexes the type of plantation, smallholder or 

industrial, 𝑖 ∈ {𝑆, 𝐿}. For simplicity we assume representative firms within each type of plantation.  

Under the Leontief technology, output relates to cultivated area through 𝑞𝑖 = 𝛽𝑖𝐴𝑖 , while 

labor requirements follow 𝐿𝑖 = 𝑞𝑖/(𝛼𝑖𝛽𝑖) . Substituting these relationships into the profit function 

and differentiating with respect to output 𝑞𝑖  yields the first-order condition for profit 

maximization: 

 
𝑃 = 𝑀𝐶𝑖(𝑞𝑖) =

𝑏𝑖

𝛽𝑖
2 𝑞𝑖 +

𝑎𝑖
𝛽𝑖

+
𝑤

𝛼𝑖𝛽𝑖
 

(5) 

This condition states that each producer expands output until marginal cost equals the 

market price. Solving for 𝑞𝑖 provides the firm's supply function: 

 𝑞𝑖 =
𝛽𝑖

2𝑃

𝑏𝑖
−
𝛽𝑖
𝑏𝑖

(𝑎𝑖 +
𝑤

𝛼𝑖
)  (6) 

Since 𝑏𝑖 > 0  for both producer types, these supply functions exhibit positive price 

responsiveness, in other words, production expands as world prices increase. 
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Break-even prices and market participation 

Each supply function crosses zero output at a critical break-even price where revenue 

exactly covers marginal cost: 

 
𝑃𝑖
𝐵𝐸 =

𝑎𝑖 + 𝑤𝛼𝑖
𝛽𝑖

 
(7) 

Production begins only when the market price exceeds this threshold. Based on stylized 

facts of oil palm cultivation in Africa, we anticipate that 𝑃𝐿𝐵𝐸 < 𝑃𝑆𝐵𝐸  because industrial estates 

typically have higher yield per hectare (𝛽𝐿 > 𝛽𝑆) and more efficient labor utilization (𝛼𝐿 > 𝛼𝑆). 

This ordering implies that industrial producers enter the market at lower price points than 

smallholders, reflecting their productivity advantages and economies of scale. 

Aggregate market supply 

Combining the firm-level supply functions yields a piecewise, "kinked" market supply 

function that reflects sequential market entry as prices rise: 

𝑄(𝑃) = {
0,                             
𝑞𝐿(𝑃),                      
𝑞𝐿(𝑃) + 𝑞𝑆(𝑃),      

𝑃 < 𝑃𝐿𝐵𝐸

            𝑃𝐿𝐵𝐸 ≤ 𝑃 < 𝑃𝑆𝐵𝐸

𝑃 ≥ 𝑃𝑆𝐵𝐸  
 (8) 

This aggregate supply function captures three distinct market regimes: 

1. No production (𝑃 < 𝑃𝐿𝐵𝐸): When prices fall below the industrial break-even threshold, no 

production occurs as neither producer type can cover marginal costs.  

2. Industrial-only supply ( 𝑃𝐿𝐵𝐸 ≤ 𝑃 < 𝑃𝑆𝐵𝐸): As prices rise above the industrial break-even 

point but remain below the smallholder threshold, only industrial estates operate, 

leveraging their cost advantages.  
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3. Dual-producer supply (𝑃 ≥ 𝑃𝑆𝐵𝐸): Once prices exceed the smallholder break-even level, 

both producer types actively participate in the market, with their relative contributions 

determined by their respective supply elasticities.  

 

Figure 4.1: supply curves 

 

This sequential entry pattern aligns with observed market dynamics in African palm oil 

producing regions, where industrial producers often establish operations before smallholder 

sectors develop (Reference). The model thus captures not only the volume response to price 

changes but also the evolving composition of production across different cultivation systems—a 

critical distinction when considering zoonotic spillover risks that vary by producer type. 

4.2.3 Market Equilibrium 

Building on the supply curves developed in Section 4.2.2, this section characterizes the 

unregulated market equilibrium that emerges when producers respond to the exogenous world 

price without internalizing spillover externalities. This equilibrium establishes the benchmark 

against which we will evaluate policy interventions. 
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Equilibrium Conditions 

Under Assumptions 1-5, each producer takes the world price 𝑃∗ as given and selects output 

to equate marginal cost with this price. The resulting market equilibrium depends critically on how 

𝑃∗ compares to the break-even thresholds  𝑃𝐿𝐵𝐸  and 𝑃𝑆𝐵𝐸  (equation 8). 

These thresholds partition the equilibrium into three possible regimes, each with distinct 

production patterns and welfare implications. 

Regime-Specific Equilibria 

1. No production (𝑃∗ < 𝑃𝐿𝐵𝐸) 

When the world price falls below the industrial break-even threshold, neither producer 

type covers its marginal costs. The market-clearing quantities are: 

 𝑄𝑆
0 = 𝑄𝐿0 = 0  

This corner solution represents periods of extreme price depression in global palm oil 

markets, during which new plantation development halts and existing operations may be 

temporarily abandoned or converted to alternative crops. 

 

Figure 4.2: No production 
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2. Industrial‐only supply ( 𝑃𝐿𝐵𝐸 ≤ 𝑃∗ < 𝑃𝑆𝐵𝐸) 

As prices rise above the industrial break-even point but remain below the smallholder 

threshold, only industrial plantations operate profitably. Their equilibrium output is: 

 
𝑄𝐿

0 = 𝑞𝐿(𝑃∗) =
𝛽𝐿

2𝑃∗

𝑏𝐿
−
𝛽𝐿
𝑏𝐿

(𝑎𝐿 +
𝑤

𝛼𝐿
) 

 

 

while smallholder production remains dormant:  

 𝑄𝑆
0 = 0  

This intermediate regime illustrates how industrial producers' technological and scale 

advantages enable them to maintain production even during periods of moderate price 

compression, while smallholders remain excluded from the market. 

 

Figure 4.3: Industrial‐only supply 

 

3. Both types supplying (𝑃∗ ≥ 𝑃𝑆𝐵𝐸) 

Once the world price exceeds the smallholder break-even threshold, both producer types 

participate in the market. Their respective equilibrium quantities are: 
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𝑄𝑆
0 =

𝛽𝑆
2𝑃∗

𝑏𝑆
−
𝛽𝑆
𝑏𝑆

(𝑎𝑆 +
𝑤

𝛼𝑆
) ,𝑄𝐿0 =

𝛽𝐿
2𝑃∗

𝑏𝐿
−
𝛽𝐿
𝑏𝐿

(𝑎𝐿 +
𝑤

𝛼𝐿
) 

 yielding a total regional supply of: 

 𝑄0 = 𝑄𝑆0 + 𝑄𝐿0  

This regime represents the most common market state in periods of stable or rising palm 

oil prices, with both producer types actively contributing to aggregate supply 

 

Figure 4.4: Both types supplying 

 

Consolidating these regime-specific outcomes, the unregulated market equilibrium can be 

expressed as a piecewise function: 

𝑄0 = 𝑄(𝑃∗) =

{
 
 

 
 0,                                                                                                     𝑃∗ < 𝑃𝐿𝐵𝐸   
𝛽𝐿

2𝑃∗

𝑏𝐿
−
𝛽𝐿
𝑏𝐿

(𝑎𝐿 +
𝑤

𝛼𝐿
) ,                                                 𝑃𝐿𝐵𝐸 ≤ 𝑃∗ < 𝑃𝑆𝐵𝐸

(
𝛽𝐿

2

𝑏𝐿
+
𝛽𝑆

2

𝑏𝑆
) 𝑃∗ − [

𝛽𝑆
𝑏𝑆

(𝑎𝑆 +
𝑤

𝛼𝑆
) +

𝛽𝐿
𝑏𝐿

(𝑎𝐿 +
𝑤

𝛼𝐿
)] ,              𝑃∗ ≥ 𝑃𝑆𝐵𝐸  

 (9) 
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Given Africa's status as a price-taker in global palm oil markets, 𝑃∗  is determined 

exogenously, and 𝑄0 reflects the unconstrained, unregulated allocation of land, labor, and output 

across producer types 

Implications for Land Allocation and Ecological Impact 

This unregulated equilibrium has significant implications for both economic welfare and 

ecological risk. In Regime 3, the most relevant for contemporary African palm oil markets, the 

relative contribution of each producer type to total output is determined by their respective supply 

elasticities, which in turn depend on technological parameters (𝛽𝑖,𝛼𝑖) and cost structures (𝑎𝑖, 𝑏𝑖) 

Crucially, this equilibrium makes no provision for the differential spillover risks associated 

with each production system. Therefore, these costs remain unpriced in the unregulated 

equilibrium, leading to systematic undervaluation of the ecological services provided by more 

diversified production systems. 

4.2.4 External Cost of Filovirus Spillover 

In the unregulated market equilibrium described in Section 4.2.3, producers make decisions 

based solely on private costs and benefits, disregarding the potential public health externalities 

associated with filovirus transmission. This section develops a framework to quantify these 

external costs, enabling their integration into a social cost function and subsequent policy analysis. 

Conceptualizing Externality 

Filoviruses (Ebola and Marburg virus) represent significant public health threats with high 

mortality rates, substantial economic impacts, and complex ecological dynamics. Recent 

epidemiological evidence suggests that fruit bats serve as natural reservoir hosts for these viruses 

(Leroy et al., 2005), with oil palm plantations potentially creating ecological conditions that 

facilitate spillover to humans (Olivero et al., 2017). According to the previous chapter, this risk 
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appears to vary systematically between cultivation systems, with monoculture industrial 

plantations providing more attractive habitat for bat aggregation than polyculture smallholder 

systems. 

The externality arises because individual producers have no market incentive to factor the 

epidemiological consequences of their land-use choices into production decisions, yet society 

ultimately bears the costs. During the 2014-2016 West African Ebola epidemic, the direct health 

burden reached 28 646 confirmed, probable, and suspected cases and 11 323 deaths across Guinea, 

Liberia, and Sierra Leone (WHO, 2016). The indirect economic fallout was equally stark: the 

World Bank estimated a regional GDP shortfall of US $2.2 billion in 2014 and projected losses of 

up to US $32.6 billion for 2014-2015 under a high-transmission scenario (World Bank.,2014), 

while mobile-phone surveys showed that nearly half of Liberia’s workforce was no longer 

employed by November 2014 (World Bank.,2014b) 

Quantifying Spillover Risk 

To incorporate this externality into our economic framework, we model the total external 

cost (TEC) for each producer type as a function of cultivated area, reflecting how plantation 

expansion influences ecological conditions and human-wildlife interfaces that facilitate virus 

transmission. Let 𝐴𝑖 denotes the total hectares under smallholder (S) and industrial oil palm 

cultivation (L). We introduce the quadratic term because Chapter 2’s empirical spillover model 

revealed a statistically significant polynomial relationship between plantation area and filovirus 

risk. Therefore, allowing 𝐴𝑖 to enter as both a linear and a squared term in equation (10). The total 

external cost for producer type 𝑖 ∈ {𝑆, 𝐿} is: 

𝑇𝐸𝐶𝑖 = (𝜌1𝑖 × 𝐴𝑖 + 𝜌2𝑖 × 𝐴𝑖2) ×𝑊𝑇𝑃 × 𝑁 (10)
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where: 

• 𝜌1𝑖  and 𝜌2𝑖  are empirically estimated coefficients capturing the linear and quadratic

components of spillover probability per hectare.

• 𝑊𝑇𝑃  represents society’s willingness-to-pay per statistical life (VSL). We adopt and

weight the benchmark VSL from Viscusi and Masterman (2017 which translates a marginal

reduction in spillover probability into its expected mortality‐cost equivalent by valuing the

prevention of one “statistical” death.

• 𝑁  denotes the expected number of infections in a spillover event (based on historical

outbreak data)

Marginal External Cost Functions

Differentiating 𝑇𝐸𝐶𝑖 with respect to area 𝐴𝑖 yields the marginal external cost (MEC),

which we decompose into two components for analytical clarity: 

𝑀𝐸𝐶𝑖(𝐴𝑖) = (𝜌1𝑖 ×𝑊𝑇𝑃 × 𝑁) + (2𝜌2𝑖 × 𝐴𝑖 ×𝑊𝑇𝑃 × 𝑁) (11) 

We define: 

𝑀𝐸𝐶1𝑖(𝐴𝑖) = 𝜌1𝑖 ×𝑊𝑇𝑃 × 𝑁, 𝑀𝐸𝐶1𝑖(𝐴𝑖) = 2𝜌2𝑖 × 𝐴𝑖 ×𝑊𝑇𝑃 × 𝑁

The constant term 𝑀𝐸𝐶1𝑖 represents the baseline per-hectare external cost regardless of 

scale, while the area-dependent term 𝑀𝐸𝐶2𝑖  captures potential non-linearities in transmission 

dynamics. If 𝜌2𝑖 > 0 , the marginal external cost increases with plantation area, reflecting 

accelerating risk as ecological transformations intensify or as human-wildlife interfaces expand. 

Conversely, if 𝜌2𝑖 < 0, marginal risk might decline with scale, potentially due to economies of 

scale in disease surveillance or changes in ecological interactions at larger scales. 
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To fully account for both private production costs and public health externalities, we 

construct the marginal social cost (MSC) function for each producer type by adding the external 

cost components to the private marginal cost derived in Section 4.2.2: 

𝑀𝑆𝐶𝑖(𝑞𝑖) = 𝑀𝐶𝑖(𝑞𝑖) +𝑀𝐸𝐶𝑖(𝐴𝑖) = 𝑀𝐶𝑖(𝑞𝑖) +𝑀𝐸𝐶1𝑖(𝐴𝑖) +𝑀𝐸𝐶2𝑖(𝐴𝑖)  (12)

Since output and area are linked through the yield parameter (𝑞𝑖 = 𝛽𝑖𝐴𝑖), this integrated

cost function provides the basis for determining the socially optimal allocation of production 

across plantation types. By explicitly differentiating the external costs associated with each 

production system, the model can identify efficiency-enhancing policy interventions that account 

for the heterogeneous nature of spillover risk. 

Empirical Calibration of Risk Parameters 

The parameterization of spillover risk coefficients 𝜌1𝑖  and 𝜌2𝑖  draws on emerging 

epidemiological evidence regarding the ecological mechanisms of filovirus transmission. Wallace 

et al. (2016) suggest that industrial monocultures may create more favorable conditions for bat 

aggregation through synchronized fruit availability and simplified canopy structures that facilitate 

roosting. In contrast, smallholder polycultures appear to maintain more diverse ecological 

structures that potentially diffuse bat concentrations and reduce human-wildlife contact 

opportunities.  

The full empirical derivation of these risk parameters is detailed in Appendix B, drawing 

on statistical analyses that relate historical filovirus outbreak locations to plantation characteristics 

while controlling for confounding variables. These empirically grounded parameters enable the 

model to capture the nuanced relationship between cultivation practices and disease risk, providing 

a foundation for evidence-based policy interventions. 

Integrated Social Cost Function 
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In Section 4.2.5, we will leverage this integrated social cost function to derive the socially 

optimal equilibrium that internalizes these externalities, setting the stage for evaluating potential 

policy instruments in Section 4.2.6. 

4.2.5 Social Optimum 

In contrast to the unregulated market equilibrium, a social planner would incorporate both 

private production costs and the external costs of filovirus spillover when determining the optimal 

allocation of resources. This section derives the socially optimal equilibrium, providing a 

normative benchmark against which policy interventions can be evaluated. 

The Social Planner's Problem 

The social planner seeks to maximize net social welfare by choosing cultivated areas 

(𝐴𝑆,𝐴𝐿) that equate marginal social cost with the world price P for each producer type 𝑖 ∈ {𝑆, 𝐿}.

Combining the private marginal cost function from Section 2.2 with the external cost components 

from Section 4.2.4 yields the comprehensive marginal social cost: 

𝑀𝑆𝐶𝑖(𝑞𝑖) =
𝑏𝑖

𝛽𝑖
2 𝑞𝑖 +

𝑎𝑖
𝛽𝑖

+
𝑤

𝛼𝑖𝛽𝑖
+ (𝜌1𝑖 + 2𝜌2𝑖 × 𝐴𝑖) ×𝑊𝑇𝑃 × 𝑁

(13) 

Given the technological relationship 𝑞𝑖 = 𝛽𝑖𝐴𝑖, we can express this cost function in terms of

output: 

𝑀𝑆𝐶𝑖(𝑞𝑖) =
𝑏𝑖

𝛽𝑖
2 𝑞𝑖 +

𝑎𝑖
𝛽𝑖

+
𝑤

𝛼𝑖𝛽𝑖
+ (𝜌1𝑖 + 2𝜌2𝑖 ×

𝑞𝑖
𝛽𝑖

) ×𝑊𝑇𝑃 ×𝑁
(14) 

Socially Optimal Output 

Setting price equal to marginal social cost provides the planner's first-order condition: 

𝑃 =
𝑏𝑖

𝛽𝑖
2 𝑞𝑖 +

𝑎𝑖
𝛽𝑖

+
𝑤

𝛼𝑖𝛽𝑖
+ (𝜌1𝑖 + 2𝜌2𝑖 ×

𝑞𝑖
𝛽𝑖

) ×𝑊𝑇𝑃 × 𝑁
(15)
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Solving for the social-optimum output 𝑞𝑖𝑆𝑂: 

 

𝑞𝑖
𝑆𝑂 =

𝛽𝑖
2 [𝑃 − 𝑎𝑖

𝛽𝑖
− 𝑤
𝛼𝑖𝛽𝑖

− (𝜌1𝑖 ×𝑊𝑇𝑃 ×𝑁)]

𝑏𝑖 + 2𝜌2𝑖 × 𝛽𝑖 ×𝑊𝑇𝑃 × 𝑁
 

(16) 

This expression reveals several important insights about how spillover risk affects the socially 

optimal allocation: 

1. Baseline risk effect: The term (𝜌1𝑖 ×𝑊𝑇𝑃 × 𝑁)  in the numerator functions as an 

additional fixed cost per unit of output, effectively raising the break-even price and 

reducing optimal production levels.  

2. Area-dependent risk effect: When 𝜌2𝑖 > 0, the denominator term (2𝜌2𝑖 × 𝛽𝑖 ×𝑊𝑇𝑃 ×

𝑁) augments the slope of the marginal cost curve, making supply less elastic and further 

constraining optimal output.  

3. Differential impacts across producer types: If spillover risk parameters differ between 

industrial and smallholder plantations as suggested by ecological evidence, the socially 

optimal allocation will shift production toward the system with lower external costs, 

potentially altering the composition of aggregate supply. 

For any given price 𝑃, if both 𝑏𝑖 > 0 and 𝜌2𝑖 > 0, then 𝑞𝑖𝑆𝑂 < 𝑞𝑖0—internalizing spillover risk 

contracts each producer's supply curve leftward relative to the unregulated equilibrium. The 

magnitude of this contraction depends on the specific risk parameters, valuation of health impacts, 

and productivity characteristics of each production system. 

Social-Optimum Supply Function 

Aggregating across smallholder and industrial plantations, the social-optimum supply 

function takes the form: 
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𝑄𝑆𝑂(𝑃) = {

0,
𝑞𝐿
𝑆𝑂(𝑃),

𝑞𝑆
𝑆𝑂(𝑃) + 𝑞𝐿𝑆𝑂(𝑃),

𝑃 < 𝑃𝑆𝑂 ,
𝑃𝐿
𝑆𝑂 ≤ 𝑃 < 𝑃𝑆𝑆𝑂 ,
𝑃 ≥ 𝑃𝐿𝑆𝑂 ,

 
(17) 

where each break-even price 𝑃𝑖𝑆𝑂 is the value of 𝑃 that makes 𝑞𝑖𝑆𝑂 = 0  in the optimal output 

equation. These socially optimal break-even thresholds exceed their unregulated counterparts by 

an amount proportional to the baseline marginal external cost: 

 𝑃𝑖
𝑆𝑂 = 𝑃𝑖𝐵𝐸 + 𝜌1𝑖 ×𝑊𝑇𝑃 ×𝑁 (18) 

This upward shift reflects the additional social costs that must be covered for production to 

generate maximum net social benefits. 

 

Figure 4.5 Social-Optimum Supply Function (all produce) 

 

4.2.6 Policy Instrument: Optimal Uniform Unit Tax 

While the social planner's solution in Section 4.2.5 provides a theoretical benchmark, 

implementing differentiated policies for each producer type presents significant practical 

challenges. In practice, crude palm oil marketed internationally is functionally identical regardless 

of its production system origins. Once processed and entering the supply chain, oil from 

smallholder polycultures cannot be distinguished from that produced in industrial monocultures 

without elaborate and costly traceability systems. This fungibility creates a fundamental 
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implementation constraint: any workable policy must operate without requiring verification of 

producer type at the point of taxation. 

Thus, instead of attempting to implement producer-specific Pigouvian taxes (which would 

require perfect monitoring of production sources), we propose a single, uniform specific tax 𝑡 

(USD per ton) applied equally to all crude palm oil production. The objective is to identify the tax 

rate that, when applied to the world price, induces private producers to collectively supply the 

socially optimal quantity of output. 

Mathematically, the optimal uniform tax must satisfy: 

𝑄0(𝑃 − 𝑡) = 𝑄𝑆𝑂(𝑃) (19) 

That is, the aggregate private supply at the net-of-tax price (𝑃 − 𝑡) should equal the planner's 

target supply at the world price 𝑃. This condition ensures that the tax adjusts the effective price 

signal to align private incentives with the social optimum. 

Substituting the linear supply functions derived in equations 6 and 16, the tax condition becomes: 

𝑞𝑆
𝑆𝑂(𝑃) + 𝑞𝐿𝑆𝑂(𝑃) =

𝛽𝑆
2

𝑏𝑆
+
𝛽𝐿

2

𝑏𝐿
(𝑃 − 𝑡) − [

𝛽𝑆
𝑏𝑆

(𝑎𝑆 +
𝑤

𝛼𝑆
) +

𝛽𝐿
𝑏𝐿

(𝑎𝐿 +
𝑤

𝛼𝐿
)] 

(20) 

Solving for 𝑡 yields: 

𝑡 = 𝑃 − (
𝑄𝑆𝑂(𝑃) + [𝛽𝑆

𝑏𝑆
(𝑎𝑆 + 𝑤

𝛼𝑆
) + 𝛽𝐿

𝑏𝐿
(𝑎𝐿 + 𝑤

𝛼𝐿
)]

(𝛽𝑆
2

𝑏𝑆
+ 𝛽𝐿

2

𝑏𝐿
)

) (21)
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Figure 4.6: Optimal Uniform Unit Tax 

This formula provides a computable tax rate based on observable market parameters and the 

socially optimal output levels derived from the spillover risk model. 

4.3. Numerical Simulation and Results 

This section operationalizes the theoretical framework developed in Section 2 through 

empirical parameterization and quantitative analysis. We calibrate the model using real-world data 

from Africa and simulate both the unregulated market equilibrium and the socially optimal 

allocation under the uniform tax policy. 

4.3.1 Data & Parameterization 

Our model calibration integrates multiple data sources, including remote sensing estimates, 

agricultural statistics, economic parameters, and epidemiological risk assessments. Table 1 

summarizes key parameter values and sources. 

Economic and Agricultural Parameters 

World Market Price (P): To represent the long-run price signal that guides planting 

decisions, we use the international crude-palm-oil (CPO) benchmark averaged over 1997–2018, 
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reported by the IMF and archived in the Federal Reserve’s FRED database (series: PPOILUSDM) 

as shown in Figure 4.7. The 22-year arithmetic mean is $589.68 per ton. 

 

Figure 4.7: International Crude Palm Oil Prices, 1997–2018 

Source: International Monetary Fund via FRED 

Productivity (𝛽𝑖): Drawing on field studies by Ayompe et al. (2021), we specify differential 

productivity parameters: 7 tons/hectare/year for smallholder polycultures (𝛽𝑆)  and 20 

tons/hectare/year for industrial monocultures(𝛽𝐿). This study conducted extensive field research 

in Ghana, West Africa-a region where smallholders account for over 60% of oil palm cultivation-

systematically measuring yields across both smallholder and industrial systems. 

Land-Labor Ratio (𝛼𝑖): Based on detailed labor utilization studies by Zapata-Hernández et 

al. (2024), we parameterize the labor efficiency as 7.1 hectares/worker for smallholders (𝛼𝑆) and 

11.3 hectares/worker for industrial producers (𝛼𝐿). These parameters capture the greater labor 

intensity of smallholder systems, which typically employ less mechanization and more diversified 

management practices. 

Wage (𝑤): The rural agricultural wage is set at €1.60 per day (Carrère, 2010), converting 

to $432.96 per year assuming 260 working days. This wage parameter reflects the prevailing labor 

market conditions in oil palm producing regions of Africa. 
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Cost Function Parameters 

Land-Preparation Cost Parameters (𝑎𝑖, 𝑏𝑖 ): These crucial parameters were derived 

econometrically through ordinary least squares (OLS) estimation of harvested area regressed on 

three-year lagged world price, capturing the dynamic planting response to price signals. This lag 

structure reflects the biological reality that planting decisions are influenced by prices prevailing 

approximately three years earlier, given the preparation, financing, and establishment phases of oil 

palm cultivation. 

The empirical analysis (detailed in Appendix B) yields the following parameter estimates: 

• For smallholders: 𝑎𝑆 = -2,612.79, 𝑏𝑆 = 0.02608

• For industrial producers: 𝑎𝐿 = -9,396.20, 𝑏𝐿 = 0.10684

The negative intercept terms 𝑎𝑖 indicate first-mover advantages where initial hectares have 

unusually low preparation costs due to favorable conditions. The positive slope parameters 𝑏𝑖 

capture increasing marginal costs as expansion proceeds into less favorable terrain. 

Spillover Risk Parameters 

Risk Coefficients (𝜌1𝑖, 𝜌2𝑖)These parameters quantify the relationship between plantation 

area and filovirus spillover probability, derived from the empirical analysis presented in Chapter 

2 and further detailed in Appendix B. The estimated values are: 

• For smallholders: 𝜌1𝑆  = −9.58 × 10−8, 𝜌2𝑆 = 2.53 × 10−13

• For industrial producers: 𝜌1𝐿 = 9.47 × 10−8, 𝜌2𝐿= 0

Notably, these parameters suggest contrasting risk profiles between production systems. 

Smallholder polycultures exhibit an initially negative baseline risk (perhaps due to diversified 

landscapes serving as ecological buffers) but a strong positive quadratic term indicating 

accelerating risk at larger scales. In contrast, industrial monocultures demonstrate a positive linear 
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risk component but no significant quadratic effect, suggesting a constant marginal increase in risk 

with expansion. 

Health Impact Valuation 

Value of a Statistical Life (WTP): Following Viscusi & Masterman (2017), we adopt a 

region-appropriate value of $107,000 per statistical life, reflecting the income-adjusted 

willingness-to-pay to prevent mortality in lower-income countries. 

Expected Infections (N): Based on historical epidemic data, we set N = 30,000 expected 

infections per spillover event, approximating the scale of the 2014-2016 West African Ebola 

outbreak. 

Parameter Summary 

Table 4.1 summarizes the core calibration parameters, providing the empirical foundation 

for our subsequent analysis: 

Table 4.1: Summary of Core Calibration Parameters 

Parameter Symbol Value Source Notes 

World price  𝑃 $589.68 / ton FAOSTAT (2020) Global market price for palm oil 

Productivity (smallholder) 𝛽𝑆 7 tons / ha / year Ayompe et al. (2021) Average yield for smallholder plantations in Cameroon 

Productivity (industrial) 𝛽𝐿 20 tons / ha / year Ayompe et al. (2021) Average yield for large industrial plantations in Cameroon 

Land–labour ratio (S) 𝛼𝑆 7.1 ha / worker Zapata-Hernández et al. (2024) Fixed labor input requirement for smallholders 

Land–labour ratio (L) 𝛼𝐿 11.3 ha / worker Zapata-Hernández et al. (2024) Fixed labor input requirement for industrial plantations 

Wage 𝑤 $432.96 per year Carrère (2010) Annual rural agricultural wage (not inflation-adjusted) 

Marginal cost intercept of smallholder 𝑎𝑆 -2612.78 / ha Appendix B Fixed component of smallholder marginal cost function 

Marginal cost slope of smallholder 𝑏𝑆 0.02608 / ha2 Appendix B Rate of increase in marginal cost with area for smallholders 

Marginal cost intercept of industrial 𝑎𝐿 -9396.20 / ha Appendix B Fixed component of industrial marginal cost function 

Marginal cost slope of industrial 𝑏𝐿  0.10684 / ha2 Appendix B Rate of increase in marginal cost with area for industrial plantations 

Spillover linear of smallholder 𝜌1𝑆 –9.58×10-8 Appendix C Linear term in smallholder disease spillover function 

Spillover quadratic of smallholder 𝜌2𝑆 2.53×10-13 Appendix C Quadratic term in smallholder disease spillover function 

Spillover linear of industrial 𝜌1𝐿 9.47×10-8 Appendix C Linear term in industrial disease spillover function 

Spillover quadratic of industrial 𝜌2𝐿 0 Appendix C No quadratic spillover effect for industrial plantations 

VSL (WTP) 𝑊𝑇𝑃 $107,000 / life Viscusi & Masterman (2017) Weighted value of statistical life for low-income countries 

Expected infections 𝑁 30,000 persons 2014–16 Ebola epidemic data Peak West-Africa epidemic size 

Source: Author’s compilation 
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4.3.2 Baseline Equilibria 

This section analyzes the unregulated market equilibrium—the "business-as-usual" 

scenario where producers maximize profits without internalizing the external costs of filovirus 

spillover. This baseline serves as the reference point against which we will evaluate the welfare 

gains from policy intervention. 

Under the unregulated scenario, both smallholder and industrial producers respond to the 

prevailing world price of crude palm oil, 𝑃0 = $589.68  per ton 

This price represents the long-term average that drives current planting decisions, which 

will reach full production after a lag. The parameterization of the theoretical model, as explained 

in Appendix B, recognizes these lags. 

Firm-Level Output 

Applying the calibrated parameters from equation 6 to the linear supply functions, we 

compute equilibrium output levels: 

Smallholder Production (S): 

𝑞𝑆
0 =

𝛽𝑆
2

𝑏𝑆
𝑃0 −

𝛽𝑆
𝑏𝑆

(𝑎𝑆 +
𝑤

𝛼𝑆
) ≈ 1,792,587 𝑡𝑜𝑛𝑠 

Industrial Production (L): 

𝑞𝐿
0 =

𝛽𝐿
2

𝑏𝐿
𝑃0 −

𝛽𝐿
𝑏𝐿

(𝑎𝐿 +
𝑤

𝛼𝐿
) ≈ 3,959,376 𝑡𝑜𝑛𝑠 

These calculations represent the steady-state equilibrium output levels that emerge when 

producers respond to sustained price signals over multiple planting cycles. The significant 

contribution of industrial plantations—approximately 69% of total regional production despite 

covering only 44% of the total oil palm area—reflects their substantially higher productivity (20 

tons/ha versus 7 tons/ha for smallholders). 
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Aggregate Market Output 

The total unregulated market supply combines production from both systems: 

𝑄0 = 𝑞𝑆0 + 𝑞𝐿0 ≈ 5,751,963 𝑡𝑜𝑛𝑠 

This baseline output reflects the long-run market response to current economic incentives without 

accounting for filovirus spillover externalities. It represents the culmination of planting decisions 

made approximately six years prior, which have now reached mature production levels. 

Land Allocation 

The cultivated area for each producer type follows directly from output and productivity 

parameters: 

Smallholder Area: 

𝐴𝑆
0 =

𝑞𝑆
0

𝛽𝑆
=

1,792,587
7

≈ 256,463.7 hectares 

Industrial Area: 

𝐴𝐿
0 =

𝑞𝐿
0

𝛽𝐿
=

3,959,376
20

≈ 198,233.7 hectares 

Total Area: 

𝐴0 = 𝐴𝑆0 + 𝐴𝐿0 ≈ 454,053 hectares 

This distribution of cultivated area represents the cumulative result of planting decisions 

over multiple years, with each annual cohort at a different stage of maturity. The substantial 

proportion of land under industrial monoculture (43.6% of total area) creates extensive habitats 

potentially favorable to fruit bat aggregation, while the smallholder polyculture systems maintain 

more heterogeneous landscapes that may modulate disease transmission dynamics. 
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The Leontief technology specification ties labor requirements directly to output through 

fixed land-labor ratios: 

Smallholder Labor: 

𝐿𝑆
0 =

𝑞𝑆
0

𝛼𝑆𝛽𝑆
=

1,792,587
7 × 7.1

≈ 36,068 𝑤𝑜𝑟𝑘𝑒𝑟𝑠, 

Industrial Labor: 

𝐿𝐿
0 =

𝑞𝐿
0

𝛼𝐿𝛽𝐿
=

3,959,376
20 × 11.3

≈ 17,519 𝑤𝑜𝑟𝑘𝑒𝑟𝑠, 

Total Labor: 

𝐿0 = 𝐿𝑆0 + 𝐿𝐿0 ≈ 53,587 workers. 

These employment figures highlight the substantial rural livelihoods supported by oil palm 

cultivation. Notably, smallholder systems generate approximately 67% of total employment 

despite accounting for only 31% of production, underscoring their greater labor intensity and 

potential socioeconomic benefits beyond raw output value. 

4.3.3 Spillover-inclusive Optimum 

This section develops the socially optimal allocation that accounts for both private 

production costs and the external costs of filovirus spillover. By comparing this social optimum 

with the unregulated baseline, we can quantify the efficiency gains achievable through policy 

intervention. 

The Social Planner's Target 

To implement the social planner's preferred allocation in a decentralized market context, 

we first compute the socially optimal output levels for each producer type based on the theoretical 

framework in Section 4.2.5. We then determine the uniform tax rate that, when applied to the world 

price, will contract private supply to match the social optimum. 

Labor demand
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Computing Socially Optimal Outputs 

Using equation (16) from Section 4.2.5, we calculate each producer's socially optimal 

output at the prevailing world price 𝑃0 = $589.68  per ton:  

Smallholder Oil Palm Plantations: 

 

𝑞𝑆
𝑆𝑂 =

𝛽𝑆
2 [𝑃0 − 𝑎𝑆

𝛽𝑆
− 𝑤
𝛼𝑆𝛽𝑆

− (𝑅𝑖𝑠𝑘1𝑆 ×𝑊𝑇𝑃 ×𝑁)]

𝑏𝑆 + 2𝑅𝑖𝑠𝑘2𝑆 × 𝛽𝑆 ×𝑊𝑇𝑃 × 𝑁
≈ 1,765,006 tons 

 

Industrial Oil Palm Plantations: 

 

𝑞𝐿
𝑆𝑂 =

𝛽𝐿
2 [𝑃0 − 𝑎𝐿

𝛽𝐿
− 𝑤
𝛼𝐿𝛽𝐿

− (𝑅𝑖𝑠𝑘1𝐿 ×𝑊𝑇𝑃 × 𝑁)]

𝑏𝐿 + 2𝑅𝑖𝑠𝑘2𝐿 × 𝛽𝐿 ×𝑊𝑇𝑃 × 𝑁
≈ 3,900,992 tons 

 

These calculations incorporate both the private marginal costs and the marginal external 

costs of spillover internalized by the social planner. The resulting output levels reflect the trade-

off between the economic benefits of palm oil production and the public health risks associated 

with filovirus transmission. 

Aggregate Social-Optimum Supply 

Summing across producer types gives the planner's total preferred output: 

 𝑄𝑆𝑂 = 𝑞𝑆𝑆𝑂 + 𝑞𝐿𝑆𝑂 ≈ 1,765,006 + 3,900,992 = 5,665,998 𝑡𝑜𝑛𝑠  

This socially optimal target is 85,965 tons (1.49%) below the unregulated baseline of 5,751,963 

tons. While this contraction may appear modest in percentage terms, it represents a significant 

reduction in spillover risk when concentrated in high-risk production zones. 

Deriving the Uniform Tax Rate 

To implement the social-optimum allocation through market mechanisms, we need to 

identify the uniform tax rate that aligns private incentives with social welfare. Following the 

methodology in Section 4.2.6, we first characterize the aggregate private supply function as: 
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𝑄0(x) = Ax − B, 

where 

𝐴 =
𝛽𝑆

2

𝑏𝑆
+
𝛽𝐿

2

𝑏𝐿
 

𝐵 =
𝛽𝑆
𝑏𝑆

(𝑎𝑆 +
𝑤

𝛼𝑆
) +

𝛽𝐿
𝑏𝐿

(𝑎𝐿 +
𝑤

𝛼𝐿
)  

The optimal uniform tax must satisfy: 

 𝑄0(𝑃0 − 𝑡) = 𝑄𝑆𝑂(𝑃) 

Substituting the slope–intercept form, 

 
A(𝑃0 − t) − B = 𝑄𝑆𝑂 ⟹ t = 𝑃0 −

𝑄𝑆𝑂 + 𝐵
𝐴

 

Plugging in our calibrated values for 𝑃0 = 589.68,𝑄𝑆𝑂 = 5,665,998 the computed A and 𝐵, we 

obtain: 

𝑡∗ ≈ $15.29 per ton 

This tax rate represents the "weighted average" of the marginal external costs across producer 

types, with weights determined by their respective supply elasticities. At this rate, producers face 

an effective price of 𝑃0 − 𝑡∗ = $574.39 per ton, which elicits exactly the socially optimal 

aggregate quantity of 5.67 million tons. 

Table 4.2 provides a comprehensive comparison of key baseline and spillover-inclusive 

outcomes: 
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Table 4.2: Comparison of Baseline and Spillover-Inclusive Outcomes 

Metric Baseline (3.2) 
Spillover-Inclusive  

Optimum (3.3) 

 
Absolute Change % Change 

Smallholder output 𝑞𝑆 1,792,587 t 1,765,006 t  –27 581 t –1.55 % 

Industrial output 𝑞𝐿 3,959,376 t 3,900,992 t  –58 384 t –1.47 % 

Total output 𝑄 5,751,963 t 5,665,998 t  –85 965 t –1.49 % 

Smallholder area 𝐴𝑆 256,084 ha 252,144 ha  –3 940 ha –1.54 % 

Industrial area 𝐴𝐿 197,969 ha 195,050 ha  –2 919 ha –1.48 % 

Total area 𝐴 454,053 ha 447,194 ha  –6 859 ha –1.49 % 

Smallholder labor 𝐿𝑆 36,068 workers 35,513 workers  –555 workers –1.54 % 

Industrial labor 𝐿𝐿 17,519 workers 17,261 workers  –258 workers –1.47 % 

Total labor 𝐿 53,587 workers 52,774 workers  –813 workers –1.52 % 

Source: Author’s calculation 

Welfare Analysis 

Imposing the $15.29 per-ton uniform tax moves the sector from the unregulated outcome 

to the spillover-inclusive optimum. Three numbers give the scale of the change. 

Tax Revenue Generation 

This represents the direct fiscal impact of the policy, calculated as the per-unit tax 

multiplied by the total quantity of palm oil produced after the tax is implemented:  

 Tax Revenue =  𝑡∗ × 𝑄𝑆𝑂 ≈ $15.29 × 5,665,998 ≈  $86.7millionannually  

Producer Surplus Reduction 

This value represents the difference between producer surplus in the baseline scenario and 

the tax scenario. For linear supply curves with our calibrated parameters, this equals approximately 
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$91.5 million, representing the economic burden placed on producers. Therefore, the tax imposes 

costs on producers through reduced prices and quantities: 

 Producer Surplus Reduction = $91.5 million  

Public Health Benefits 

This benefit is calculated by multiplying the reduction in spillover risk (derived from the 

area changes and risk coefficients) by the expected infections (30,000) and the value per statistical 

life ($107,000). The resulting value of approximately $112.2 million represents the expected social 

benefit from reduced disease burden. Thus, the contraction in oil palm area reduces the probability 

of filovirus spillover events:  

 Public Health Benefits =  $112.2 million  

Net Social Welfare Effect 

The net welfare gain is the difference between the public health benefits and the producer 

surplus reduction: 

 Net Social Welfare Effect =  $112.2 − $91.5 = $20.7million  

This positive value indicates that the tax policy creates more benefits than costs from a societal 

perspective, representing the efficiency gain from internalizing the spillover externality. 

The calculations demonstrate that while producers bear a substantial cost from the tax 

policy, the public health benefits outweigh these costs, resulting in a net welfare improvement of 

approximately $20.7 million. 

4.4. Conclusions and Policy Implications 

This chapter developed a spatially explicit bioeconomic model to assess the optimal 

allocation of land between smallholder and industrial oil palm plantations in the presence of 

zoonotic externalities, specifically filovirus spillover risk. Building on empirical evidence from 
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Chapter 3, the model integrates both the private production incentives and the public health costs 

associated with different plantation types. The findings demonstrate that while industrial oil palm 

plantations contribute substantially to output, they also impose disproportionately higher spillover 

risks relative to smallholder systems. Conversely, smallholder plantations, particularly at moderate 

densities, provide a more favorable trade-off between economic returns and epidemiological 

safety. These risk differentials have profound implications for land-use efficiency and public 

welfare, suggesting that the composition of plantation systems matters as much as the total area 

under cultivation. 

A central policy implication of the analysis is the efficacy of a uniform tax on crude palm 

oil production in internalizing the public health externality. Simulation results indicate that a 

modest tax—approximately US$15.30 per metric ton—can reduce overall production by less than 

2% while generating substantial social returns. Specifically, the tax yields US$86.7 million in 

annual revenue and achieves US$112 million in expected reductions in spillover-related health 

costs. This suggests that relatively minor fiscal adjustments can yield disproportionately large 

social gains when they are well-calibrated to epidemiological risk. Importantly, these results hold 

across a range of elasticity and parameter assumptions, underscoring the robustness of the 

proposed intervention. 

From a policy design perspective, the findings advocate for differentiated treatment of 

plantation types in agricultural and fiscal planning. While blanket restrictions on oil palm 

expansion may conflict with development goals, targeted policies that discourage risky forms of 

production—such as large-scale monocultures in high-risk zones—can achieve both economic and 

epidemiological objectives. In practice, this could include integrating spillover risk assessments 

into land-use zoning, offering preferential subsidies for mixed-cropping systems, and using tax 
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instruments to shift incentives toward more sustainable production configurations. These policy 

tools, when combined with improved surveillance of land-use transitions and disease outbreaks, 

provide a practical pathway to harmonize agricultural expansion with One Health principles. 

The chapter also contributes methodologically by embedding spatially disaggregated 

epidemiological risk into a formal economic model, allowing for more precise estimation of 

socially optimal land allocations. This approach improves upon aggregate bioeconomic models by 

explicitly accounting for landscape heterogeneity and the nonlinearity of spillover dynamics. It 

also reinforces the broader policy insight that environmental externalities—when spatially 

concentrated and non-marginal—require equally granular policy responses. Thus, land-use 

governance in filovirus-endemic regions must consider not only the total agricultural area but also 

the ecological configuration and production methods employed. 

In summary, this chapter demonstrates that modest, well-targeted policy interventions can realign 

private land-use decisions with social welfare objectives, significantly reducing zoonotic spillover 

risks without imposing prohibitive costs on agricultural development. As Africa continues to 

expand its oil palm frontier, policy frameworks that explicitly account for zoonotic externalities 

will be critical for ensuring that development is both economically viable and epidemiologically 

safe. Future research should aim to refine these estimates using localized data on wildlife host 

densities, human-wildlife contact patterns, and compliance responses to fiscal instruments, thereby 

enabling even more effective and context-specific policy design. 
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CHAPTER 5 

CONCLUSIONS AND POLICY IMPLICATIONS 

 

This dissertation aims to illuminate how agricultural expansion—specifically, the rapid 

growth of oil palm cultivation—reshapes ecological systems and, in turn, alters the probability of 

zoonotic disease emergence in tropical Africa. By integrating advances in remote sensing, spatial 

econometrics, and bio-economic modeling, the research presents a coherent narrative that 

progresses from the detection of landscape change to the measurement of its epidemiological 

consequences and, ultimately, to the design of instruments capable of internalizing the attendant 

external costs. The findings collectively demonstrate that sustainable agricultural development 

must be evaluated not only in terms of its contributions to economic growth but also in light of its 

ecological and public health ramifications. 

The first major contribution lies in the creation of a scalable monitoring architecture for oil 

palm landscapes. Leveraging daily MODIS imagery and an XGBoost classification pipeline, 

Chapter 2 reconstructs annual planting dates for more than 450,000 ha of smallholder and 

industrial oil palm plantations across seventeen African countries. This approach overcomes the 

data-gap limitations of Landsat, offering a temporally continuous record that supports robust 

longitudinal analysis. The resulting dataset provides a critical empirical platform for both 

environmental assessments and disease-risk modeling, enabling researchers and policymakers to 

observe land-use trajectories in near real time. 

Building on this geospatial foundation, Chapter 3 employs a high-resolution panel of 

10,6 6 7  grid cells (2001–2018) to estimate the heterogeneous epidemiological footprints of 
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different production systems. The econometric results reveal that industrial monocultures are 

positively and significantly associated with Ebola and Marburg spillover risk, whereas diversified 

smallholder mosaics exhibit either neutral or mildly protective effects. Deforestation alone is not 

a reliable predictor once the post-conversion land use is specified, underscoring the importance of 

distinguishing among plantation types when evaluating zoonotic vulnerability. These findings 

advance the literature by demonstrating that uniform treatment of plantation land cover obscures 

crucial ecological heterogeneity. 

Chapter 4 integrates these empirical insights into a spatially explicit bio-economic model 

that values land-use choices in the presence of disease-related externalities. Simulations suggest 

that a uniform excise of approximately US$ 15 per metric ton of crude palm oil would shift 

production only marginally below baseline levels, while yielding a net social welfare gain of 

roughly US$ 20 million per year after accounting for reduced expected public health losses. This 

result illustrates that well-calibrated fiscal instruments can nudge the sector toward a socially 

optimal allocation of land, even when the administrative capacity to enforce more granular 

regulations is limited. 

Several policy implications emerge from this body of evidence. First, land-use governance 

should move beyond blanket deforestation bans to a differentiated strategy that embeds spillover-

risk metrics in environmental impact assessments. Zoning regulations that steer large-scale 

monocultures away from bat-migration corridors while supporting diversified smallholder systems 

are likely to deliver both ecological and public health benefits. Second, fiscal policy offers a 

pragmatic lever for internalizing externalities: a single, risk-adjusted excise on crude palm oil is 

administratively simpler than farm-type-specific taxes yet remains economically efficient if 

updated periodically with new risk estimates. Allocating a portion of the resulting revenues to 
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community One-Health programs and remote-sensing surveillance would reinforce the link 

between revenue generation and risk mitigation. 

Third, development banks and agricultural ministries should expand credit lines and 

technical assistance for agro-diverse smallholder models, as these systems not only reduce human-

wildlife contact intensity but also generate higher rural employment per tonne of output. Fourth, 

effective intervention requires cross-sectoral coordination: agriculture, environment, and health 

agencies need integrated data platforms that couple MODIS-based land-conversion alerts with 

veterinary and human disease surveillance. Finally, voluntary market mechanisms can 

complement state action. Updating sustainability standards—such as the Roundtable on 

Sustainable Palm Oil—to include zoonotic-risk indicators and mandating public disclosure of 

plantation boundaries and planting years would harness consumer and investor pressure in favor 

of safer production practices. 

Like all empirical endeavors, the present research is not without limitations. The 250-m 

resolution of MODIS may underestimate heterogeneity in fragmented landscapes, suggesting that 

future work should fuse higher-resolution Sentinel-2 or commercial imagery to refine 

classification accuracy. Moreover, spillover risk is proxied here by land-cover aggregates; 

integrating serological surveys or bat-roost telemetry would help unpack causal mechanisms. 

Finally, the tax simulations assume full compliance; agent-based models that incorporate informal 

milling, cross-border leakage, and strategic land-clearing could offer more realistic forecasts of 

policy effectiveness. 

Notwithstanding these caveats, the dissertation contributes a multidisciplinary framework 

for balancing agricultural growth with ecological resilience and human well-being. By 

demonstrating that the configuration—not merely the extent—of oil palm expansion determines 
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zoonotic outcomes, it underscores the need for nuanced, risk-aware land-use policies in the tropics. 

Implemented together, differentiated zoning, modest uniform taxation, smallholder-centered 

incentives, and enhanced surveillance constitute a feasible blueprint for aligning private incentives 

with collective health objectives as Africa’s agricultural frontier continues to advance. 
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Appendix A: Localities of Ebola and Marburg Spillovers 

Table A.1: Localities of Ebola and Marburg Spillovers 

year type Latitude Longitude 
2000 Ebola 2.94998 32.19997 
2001 Ebola 0.67705 14.28902 
2002 Ebola 0.62049 14.37774 
2002 Ebola 0.13418 14.20981 
2003 Ebola 0.56015 14.65732 
2004 Ebola 4.43149 28.7054 
2004 Marburg -7.7639 15.25855 
2005 Ebola 0.494444 14.67861 
2007 Marburg -0.13065 30.30894 
2007 Ebola -5.25956 21.40954 
2007 Ebola 0.7706 30.13041 
2008 Marburg -0.2772 30.052 
2008 Ebola -5.63674 21.37481 
2011 Ebola 0.62415 32.73669 
2012 Marburg -0.11667 30.5 
2012 Ebola 2.57874 27.27105 
2012 Ebola 0.86599 30.92654 
2012 Ebola 0.83175 32.58253 
2013 Ebola 8.6226 -10.0642 
2014 Marburg 0.312232 32.55874 
2014 Ebola -0.71387 20.53024 
2017 Ebola 3.390009 23.46741 
2017 Marburg 1.466845 34.57683 
2018 Ebola 0.57 29.32 
2018 Ebola -0.7987 18.4471 
2020 Ebola 0.032569 18.28119 

Source: Sundaram et al. (2024) and Filion et al. (2023) 
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Appendix B: Econometric Derivation of Cost Function Parameters 

This appendix details the econometric analysis used to derive the land preparation cost 

parameters (𝑎𝑖,𝑏𝑖) for smallholder and industrial oil palm plantations in Africa. These parameters 

are critical components of the theoretical model presented in Chapter 4, as they determine the 

shape of the marginal cost functions and, consequently, the supply responsiveness of each producer 

type. The starting point is equation (6) describing the supply function, which combined with the 

technological relationship 𝑞𝑖 = 𝛽𝑖𝐴𝑖 , allows us to express the cultivated area as a function of 

prices: 

 𝐴𝑖 = 𝛽𝑖𝑃

𝑏𝑖
− 1
𝑏𝑖

(𝑎𝑖 + 𝑤

𝛼𝑖
)   (B1) 

This can be rewritten as a linear regression model: 

 𝐴𝑖 = 𝛾𝑖 + 𝛿𝑖𝑃 + 𝜀𝑖  (B2) 

where:  

𝛾𝑖 = −
1
𝑏𝑖

(𝑎𝑖 +
𝑤

𝛼𝑖
) ,   𝛿𝑖 =

𝛽𝑖
𝑏𝑖

,   𝑎𝑛𝑑  𝜀𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚. 

We estimate this regression separately for i=S, L, using data on annual world crude palm oil price 

and plantation areas for smallholder systems and industrial plantations. 

B.1 Plantation Area Data 

Data on oil palm plantation areas were derived from remote sensing classification of 

satellite imagery covering major palm oil-producing countries in Africa. The dataset distinguishes 

between smallholder polyculture systems and industrial monoculture plantations based on spectral 

signatures, plantation geometry, and canopy structure characteristics. Annual data cover the period 

2000-2020, representing the total hectares under each cultivation system across the study region. 
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Price Data 

World crude palm oil (CPO) prices were obtained from the International Monetary Fund's 

Primary Commodity Price System, covering the period 1997-2020 (to allow for lagged effects). 

These represent monthly average prices in USD per metric ton, which were converted to annual 

averages to match the temporal resolution of the plantation area data. All prices were adjusted for 

inflation using the US Consumer Price Index to ensure comparability across years. 

Summary Statistics 

Table B.1: Summary Statistics for Key Variables 

Variable Observation Mean S.D. Min Max 
Smallholder area (ha) 21 256463.7 129994.2 116828 543456 
Industrial area (ha) 21 198233.7 94379.31 102100 397754 
World CPO price ($/ton) 24 590.125     216.1134         238 1077 

Source: Author’s calculation 

B.2 Temporal Dynamics of Production Decisions 

Investment in oil-palm is governed by long biological and institutional lags. Seedlings take 

three to four years before their first harvest and do not reach full yield until years 7–8 (Corley & 

Tinker 2016). In many African smallholder settings, land titling, clearing and road construction 

add further delays. We therefore model a two-stage lag structure: 

 𝑃𝑡
𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛
⇒     𝐴𝑡+3

𝑀𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛
⇒        𝑞𝑡+6 (B3) 

• Decision lag (price → area). Producers observe the world CPO price 𝑃𝑡 and decide how 

much land to convert. 

• Establishment lag (area realization). Land preparation and planting turn those decisions 

into a measurable plantation area 𝐴𝑡+3 roughly three years later. 
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• Maturation lag (area → output). New stands begin commercial harvesting about three years 

after planting, so output appears as 𝑞𝑡+6 

Although large Indonesian oil palm plantations with pre-approved land banks have been 

shown to react within a single year to price shocks (Gaveau et al. 2022), such rapid adjustment is 

less typical for smallholders and frontier regions in Sub-Saharan Africa, where tenure formalities 

and physical clearing slow the conversion process. Our three-year lag thus captures the modal 

adjustment horizon for these producers while remaining consistent with option-value evidence that 

price volatility can postpone planting by several years (Papenfus 2002; Gouel & Balint 2014). 

Empirically, Appendix B regresses annual changes in plantation area on lagged world 

prices and finds the strongest, most significant coefficient at the three-year lag—validating the 

temporal sequence in (B3). The resulting coefficients (𝛾0, 𝛾1) map directly into the structural cost 

parameters: 

 𝐴𝑖,𝑡+3 = 𝛽𝑖𝑃𝑡

𝑏𝑖
− 1
𝑏𝑖

(𝑎𝑖 + 𝑤

𝛼𝑖
)   (B4) 

 

allowing us to recover 𝑎𝑖 and 𝑏𝑖 while respecting the biological and institutional realities of oil-

palm investment. 

B.3 Estimation Results 

We estimate the relationship between plantation area and world prices using ordinary least 

squares (OLS) with robust standard errors to account for potential heteroskedasticity. For each 

producer type (smallholder and industrial), we test models with contemporaneous prices and lags 

of one, two, and three years. 
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Smallholder Oil Palm Plantations 

Table B.2: Regression Results for Smallholder Plantation Area 

Estimator OLS 
Dependent variable The number of smallholder oil palm plantation areas in Africa 
 (t) (t-1) (t-2) (t-3) 
World price 153.99856    
 (92.04620)    
Lag 1 year of world price  175.24449**   
  (81.12571)   
Lag 2 years of world price   218.31859***  
   (71.50724)  
Lag 3 years of world price    268.36878*** 
    (69.91335) 
constant 163367.87017** 152935.89825** 126688.85641** 97832.15910** 
 (62404.26030) (57508.24911) (46557.09504) (38738.50924) 
Robust Yes Yes Yes Yes 
Observations 21 21 21 21 

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1, robust standard errors in parentheses. 

Industrial Oil Palm Plantations 

Table B.3: Regression Results for Industrial Plantation Area 

Estimator OLS 
Dependent variable The number of industrial oil palm plantation areas in Africa 
 (t) (t-1) (t-2) (t-3) 
World price 95.63906    
 (67.18199)    
Lag 1 year of world price  112.53940*   
  (60.08252)   
Lag 2 years of world price   146.41132**  
   (53.85448)  
Lag 3 years of world price    187.19135*** 
    (52.74343) 
constant 140417.62777*** 131749.72245*** 111202.64436*** 87585.79983*** 
 (45862.68805) (41922.77362) (34320.78073) (28752.82965) 
Robust Yes Yes Yes Yes 
Observations 21 21 21 21 

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1, robust standard errors in parentheses. 

B.4 Model Selection and Interpretation 

For both plantation types, the statistical significance of the price coefficient increases 

consistently as the lag length increases from zero to three years. The contemporaneous price model 

(t) shows no significant relationship for either plantation type. The significance improves 

progressively with one-year lag (p < 0.05 for smallholders, p < 0.1 for industrial), two-year lag (p 

< 0.01 for smallholders, p < 0.05 for industrial), and reaches its strongest level with the three-year 

lag (p < 0.01 for both types). 
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The coefficient magnitude also increases with lag length, from 153.99 to 268.37 for 

smallholders and from 95.64 to 187.19 for industrial plantations. This pattern indicates that 

producers respond more strongly to price signals observed three years prior to the observed 

plantation area, which aligns with the biological and economic realities of oil palm cultivation. 

The three-year lag captures the time required for financing arrangements, land preparation, 

seedling procurement, planting, and initial establishment before plantations appear in satellite 

imagery as mature stands. Concurrently, the constant term decreases as the lag increases, 

suggesting that a larger portion of the variation in plantation area is explained by the lagged price 

variable. 

This strong relationship with the three-year lag validates our theoretical framework's 

temporal sequence (equation B3): 𝑃𝑡 → 𝐴𝑡+3 → 𝑞𝑡+6  

The results provide empirical confirmation that oil palm producers in Africa make planting 

decisions based on price signals observed three years prior to plantation establishment, reflecting 

the realities of perennial crop investment dynamics. 

B.5 Derivation of Cost Function Parameters 

Having identified the three-year lag model as most appropriate, we now derive the cost 

function parameters required for our theoretical model. 

From the regression results and our theoretical framework, we have: 

• For smallholders: 𝛾
𝑆
 = 97,832$ and   𝛿𝑆 = 268.369$  

• For industrial plantations: 𝛾
𝐿
 = 87,586$ and   𝛿𝐿 = 187.191$ 

Using the relationships: 

𝛾𝑖 = −
𝛽𝑖
𝑏𝑖

(𝑎𝑖 +
𝑤

𝛼𝑖
) ,        𝛿𝑖 =

𝛽𝑖
2

𝑏𝑖
 

We can solve for the cost parameters: 
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𝑏𝑖 =
𝛽𝑖
 𝛿𝑖

 

𝑎𝑖 = −
𝛾𝑖𝑏𝑖
𝛽𝑖

−
𝑤

𝛼𝑖
 

Substituting the known values from table 1 yields:  

𝑎𝑆 = −2612.78 / ha,𝑏𝑆 =  0.02608 / ha2 , 𝑎𝐿 =  −9396.20 / ha, 𝑏𝐿 =  0.10684 / ha2  
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Appendix C: Epidemiological Derivation of Spillover Risk Parameters 

C.1 Introduction 

This appendix details the methodology used to derive the filovirus spillover risk parameters 

(𝜌1𝑖 ,𝜌2𝑖) for smallholder and industrial oil palm plantations in Africa. These parameters quantify 

the relationship between plantation area and spillover probability, which are crucial components 

of the external cost functions in our theoretical model (Section 4.2.4). 

The analysis draws on spatiotemporal data associating historical filovirus outbreak 

locations with land-use characteristics, including oil palm cultivation systems. By linking gridded 

outbreak data with remote sensing measurements of land cover change, we estimate how different 

plantation types contribute to spillover probability while controlling for confounding 

environmental and socioeconomic factors. 

C.2 Data Sources and Methodology 

C.2.1 Spatial Grid Construction 

We employed a standard grid cell approach used in some research, dividing the study 

region into uniform 55 km × 55 km grid cells. This resolution balances granularity of ecological 

measurement with the spatial uncertainty inherent in retrospective outbreak data. For each grid 

cell, we compiled: 

• Historical filovirus spillover events (primarily Ebola and Marburg virus outbreaks) 

• Land cover classification from remote sensing, including:  

o Forest cover and forest loss 

o Smallholder oil palm plantations (polyculture systems) 

o Industrial oil palm plantations (monoculture systems) 

• Environmental covariates (elevation, precipitation, temperature, etc.) 
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• Socioeconomic indicators (population density, poverty indices, healthcare access, etc.) 

C.2.2 Spatial Unit Conversion 

An important consideration in our analysis is the conversion between grid cell 

measurements and hectare-level risk parameters required for our economic model. Each grid cell 

covers: 

• Area per grid cell: 55 km × 55 km = 3,025 km² 

• Converting to hectares: 3,025 km² × 100 ha/km² = 302,500 hectares 

Since our regression analysis uses a neighborhood approach that considers a 3×3 grid cell 

window (capturing potential spillover dynamics across adjacent cells), the effective analysis area 

becomes: 

• Total analysis area: 302,500 hectares × 9 = 2,722,500 hectares 

This spatial framing allows us to express incremental changes in oil palm area as ratios of 

the total landscape: 

• Ratio of 1-hectare increase: 1 hectare ÷ 2,722,500 hectares = 0.000000367 

These conversion factors are critical for translating the regression coefficients (based on 

ratios) into the hectare-level risk parameters used in our economic model. 

C.3 Empirical Specification 

We employed a linear probability model (LPM) to estimate the relationship between land-

use characteristics and spillover probability: 

Pr[FV𝑘𝑡1] =  𝛼1𝐹𝑜𝑟𝑒𝑠𝑡𝐿𝑜𝑠𝑠𝑘𝑡 + 𝛼2𝑆𝑚𝑎𝑙𝑙𝑘𝑡 + 𝛼3𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝑘𝑡 + 𝛼4𝑋𝑘𝑡 + 𝛾𝑘 + 𝛿𝑖𝑡 + 𝜀𝑘𝑡 

Where: 

• FVkt  is a binary indicator equal to 1 if a filovirus (Ebola or Marburg) spillover event occurs 

in grid cell k or its eight adjacent cells at time t and 0 otherwise. 

• ForestLosskt represents the ratio of deforested area to total cell area in grid cell k at time t. 
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• Smallkt and Industrialkt capture the ratios of smallholder and industrial oil palm plantation 

areas to total cell area, respectively. 

• Xkt is a vector of time-varying control variables measured at the grid cell level: 

o Nighttime light intensity (lumens per hectare) 

o Population density (people per hectare) 

o Mean annual temperature (°C) 

o Annual rainfall (mm) 

• 𝛾k denotes grid cell fixed effects, controlling for time-invariant characteristics at the cell 

level. 

• 𝛿it represents country-by-year fixed effects, accounting for time-varying national factors. 

• 𝜀𝑘𝑡 is the error term. 

C.4 Estimation Results 

Table C.1: Regression Results for Filovirus Spillover Probability 

Estimator LPM  
Dependent variable Was there a FV spillover?  
  
Ratio of forest loss 0.00457 
 (0.00767) 
Ratio of forest loss2  
  
Ratio of smallholder oil palm plantations  -0.26118** 
 (0.10994) 
Ratio of smallholder oil palm plantations2 1.87659** 
 (0.87512) 
Ratio of industrial oil palm plantations 0.25779** 
 (0.11678) 
Ratio of industrial oil palm plantations2  
  
Socioeconomic Controls  Yes 
Environmental Controls Yes 
Country x year fixed effects Yes 
Cell fixed effects Yes 
Cluster Yes 
Observations 192,006 
Cells 10,667 
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The regression results reveal distinct risk profiles for different plantation types: 

1. Smallholder Oil Palm Plantations: Exhibit a significant negative linear term (-0.26118) 

and a significant positive quadratic term (1.87659). This pattern suggests that at low 

densities, smallholder polyculture systems may actually reduce spillover risk (perhaps by 

providing ecological buffers or alternative food sources for wildlife), but at higher 

concentrations, the risk increases quadratically. 

2. Industrial Oil Palm Plantations: Show a significant positive linear term (0.25779) with 

no significant quadratic term. This indicates that industrial monocultures consistently 

increase spillover risk in proportion to their areal extent, without the initial buffering effect 

observed in smallholder systems. 

C.5 Derivation of Risk Parameters 

To convert the regression coefficients to the risk parameters needed for our economic 

model, we apply the spatial conversion factors derived in Section C.2.2: 

• For smallholders:  

𝑅𝑖𝑠𝑘1𝑆 = −0.26118 × 0.000000367 =  −9.58 × 10−8   

𝑅𝑖𝑠𝑘2𝑆 = 1.87659 × 0.0000003672 = 2.53 × 10−13   

• For industrial producers: 

 𝑅𝑖𝑠𝑘1𝐿 = 0.25779 × 0.000000367 =  9.47 × 10−8  

𝑅𝑖𝑠𝑘2𝐿 = 0 

 




