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ABSTRACT

This dissertation comprises three integrated studies that examine the relationship
between oil palm expansion and filovirus spillover risk in sub-Saharan Africa, combining
remote sensing, spatial econometrics, and structural economic modeling.

Chapter 2 presents a novel methodology for generating annual estimates of oil palm
plantation establishment using MODIS satellite imagery. The study builds upon existing
Landsat-based methods by addressing temporal data gaps through a machine-learning
classification framework that utilizes XGBoost and multiple vegetation indices. Although
the model does not estimate land cover independently, it successfully detects bare-soil
signals indicative of plantation establishment across 17 African countries from 2000 to
2020. Validation against the Descals et al. (2024) dataset shows high temporal and spatial
consistency, capturing post-2013 expansion in both smallholder and industrial plantations.

Chapter 3 quantifies the epidemiological effects of oil palm expansion using a panel
of 10,674 grid cells. Spatial regressions demonstrate that industrial plantations significantly
increase the probability of filovirus spillovers. In contrast, smallholder plantations reduce

risk at low to moderate densities but lose this protective effect when overly clustered. These



findings underscore the importance of plantation structure and scale in shaping disease
ecology, suggesting that land-use configuration is a critical determinant of zoonotic
emergence.

Chapter 4 incorporates these empirical insights into a spatial-dynamic bioeconomic
model. The model captures household-level land allocation decisions under uncertainty
and external health risks. Simulation results indicate that private land-use decisions diverge
from the social optimum due to unpriced spillover externalities. A uniform tax of US$15.30
per metric ton of crude palm oil is shown to reduce palm oil output by only 1.5% while
internalizing the health risk externality and generating US$86.70 million in public revenue
and US$112 million in annual health benefits. These results highlight the efficiency of
modest fiscal instruments in realigning incentives toward socially desirable outcomes.

Collectively, the three chapters present a data-driven policy framework to mitigate
zoonotic disease spillover risk while promoting agricultural growth, thereby demonstrating
the feasibility of aligning public health and environmental goals through targeted economic
interventions.
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Marburg, zoonotic disease, Africa, land-use change, smallholder
oil palm plantations, industrial oil palm plantations, externalities,

optimal taxation, environmental health, agricultural policy.
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CHAPTER 1

INTRODUCTION

1.1 Oil Palm Expansion and Filovirus Risk in Africa

The global community stands at the nexus of agricultural expansion, environmental
change, and public health risk. In tropical regions, rapid population growth has driven agricultural
frontiers into ecologically sensitive landscapes (Gibbs et al., 2010; Hansen et al., 2013). While
this process supports food security and economic growth, it also fosters novel interfaces between
human populations and wildlife, facilitating the spillover of zoonotic diseases—pathogens that
originate in animals but infect humans (Jones et al., 2008 ; Allenetal.,,2017). The COVID-19
pandemic has underscored the potential of such spillovers to escalate into global crises, disrupting
economies and societies worldwide (IPBES, 2020).

Africa exemplifies this challenge. With rich biodiversity, expanding agricultural
economies, and recurrent zoonotic outbreaks, the continent is a critical setting for understanding
the intersection of land-use change and disease emergence (Kilpatrick et al., 2017). Among the
agricultural drivers of deforestation and landscape alteration, oil palm (Elaeis guineensis)—a
native species increasingly cultivated in industrial forms—stands out. While its expansion has
brought economic gains, the concurrent rise of filovirus outbreaks, including Ebola and Marburg,
highlights an urgent need to evaluate the public health implications of agricultural transformation

(Feldmann & Geisbert, 2011; WHO, 2016).



This dissertation investigates the ecological and epidemiological dimensions of oil palm
expansion across Africa, emphasizing its relationship to filovirus spillovers. Through the
integration of remote sensing, spatial epidemiology, and environmental economics, it aims to
develop a policy-relevant understanding of how land-use patterns influence disease risks.

1.2 The Challenge of Sustainable Oil Palm Expansion

Oil palm cultivation presents both opportunity and risk in Africa’s development trajectory.
Traditionally grown by smallholders for local consumption, the crop has more recently become a
focus of commercial agriculture due to its high yield per hectare—far surpassing that of alternative
oilseeds (Rival & Levang, 2014). Between 2000 and 2020, the continent's oil palm area tripled,
rising from approximately 1 million to 2.9 million hectares, with corresponding production growth
from 121 to 414 million tons of fresh fruit bunches (FAOSTAT, 2020).

This expansion has generated significant economic benefits. It has created employment
opportunities, increased household incomes, and contributed to both domestic food security and
international trade (Meijaard et al., 202 0). Yet these gains have been accompanied by
environmental degradation, including deforestation, biodiversity loss, and elevated carbon
emissions (Vijay et al., 2016; Austin et al., 2017). A less visible but equally pressing concern is
the impact of landscape alteration on zoonotic disease emergence—an externality that is often
neglected in development planning (Plowright et al., 2021).

Crucially, not all oil palm systems pose the same risks. Industrial monocultures differ
ecologically from smallholder-dominated mosaics. The former are characterized by large, uniform
tracts with intensive management, while the latter integrate oil palms with food crops and maintain

heterogeneous land cover. These divergent systems influence habitat structure, biodiversity, and



the frequency of human—wildlife interactions in distinct ways (Descals et al., 2021; Gaveau et al.,
2022), with potential implications for disease transmission dynamics.
1.3 Filoviruses at the Human—Environment Interface

Filoviruses—particularly Ebola and Marburg—are among the most lethal zoonoses known.
Outbreaks of Ebola virus disease (EVD) have produced case fatality ratios as high as 90%, while
Marburg virus disease (MVD) has caused mortality rates ranging from 20% to 90% (Feldmann &
Geisbert, 2011; CDC, 2024). Beyond their health impacts, filovirus outbreaks disrupt healthcare
systems, curtail economic activity, and generate long-term social costs (Huber et al., 2018).

Ecologically, fruit bats of the family Pteropodidae are suspected reservoirs of filoviruses.
The Egyptian fruit bat (Rousettus aegyptiacus) is a confirmed host for Marburg virus, while other
species—such as Hypsignathus monstrosus, Epomops franqueti, and Myonycteris torquata—have
been implicated in Ebola virus ecology (Leroy et al., 2005; De Nys et al., 2018). These bats
frequently forage in agricultural landscapes, including oil palm plantations, which offer food and
roosting sites (Shafie et al., 2011; Oleksy et al., 2015). Consequently, oil palm monocultures may
serve as ecological magnets that draw bats closer to human populations, increasing the risk of
disease spillover (Leroy et al., 2009).

Agricultural intensification can also erode ecological buffers that regulate pathogen
transmission, such as species diversity and trophic interactions (Wilcox & Ellis, 2006; Keesing et
al., 2010). While previous studies have linked deforestation to filovirus outbreaks (Olivero et al.,
2017; Rulli et al., 2017), the specific role of oil palm expansion—particularly the differential risks

posed by distinct cultivation systems—remains poorly understood.



1.4 Research Objectives and Dissertation Structure

This dissertation addresses this knowledge gap through three interconnected chapters, each
building sequentially from data generation to policy design. The first research component (Chapter
2) develops a novel classification method to map the expansion of industrial and smallholder oil
palm plantations across 17 African countries from 2000 to 2020. Using MODIS satellite imagery
and machine learning algorithms, the analysis provides high-resolution, annually updated maps
that improve upon existing datasets in both temporal depth and spatial accuracy.

Chapter 3 then links these spatial patterns to zoonotic disease risks, specifically filovirus
spillover events. Employing spatial panel econometric techniques, the analysis estimates the causal
effects of different plantation types on spillover probability, controlling for deforestation, climate,
and socioeconomic variables. The results reveal that industrial plantations are associated with
increased risk, while smallholder systems exhibit a protective effect when maintained at moderate
scales.

Building on these findings, Chapter 4 presents a bioeconomic model that integrates
epidemiological externalities into land-use decision-making. The model simulates the effects of
fiscal policy instruments—particularly a uniform tax on crude palm oil—on land allocation,
output, and public health outcomes. Results suggest that modest taxation can internalize spillover
risks without substantially reducing agricultural productivity or profitability.

Together, these chapters offer a comprehensive, interdisciplinary framework for

understanding and managing the health-environment-agriculture nexus in the African context.



1.5 Broader Significance and Policy Relevance

The methodological and policy contributions of this dissertation extend beyond the African oil
palm context. First, the remote sensing approach developed in Chapter 2 can be applied to other
perennial crops or land-use transitions in data-scarce settings. Second, the econometric strategy
used in Chapter 3 offers a generalizable framework for quantifying how agricultural systems
influence zoonotic disease emergence. Third, the economic modeling in Chapter 4 demonstrates
how environmental externalities can be systematically incorporated into fiscal instruments for
land-use governance.

From a policy standpoint, these insights are timely. Many African nations are seeking to
expand their agricultural sectors while grappling with recurrent epidemics. This research provides
practical guidance for integrating disease risk into development planning through spatial targeting
and economic incentives (Barbier et al., 2020; Dobson et al., 2020). It also supports One Health
approaches (WHO, 2017) that emphasize the interdependence of human, animal, and
environmental health.

In sum, this dissertation contributes to a growing literature that seeks to align economic
development with ecological resilience and public health. By highlighting the risks and trade-offs
embedded in land-use change, it offers a roadmap for designing agricultural policies that foster

sustainable growth while minimizing unintended consequences.
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CHAPTER 2
EXTENDING THE TEMPORAL AND SPATIAL CLASSIFICATION OF OIL PALM

PLANTATIONS IN AFRICA THROUGH REMOTE SENSING TECHNOLOGIES

2.1 Introduction

Oil palm (Elaeis guineensis) has become one of the most economically significant
vegetable oil crops globally, accounting for approximately 35% of total vegetable oil production
as 0f 2022 (PACRA, 2023, citing USDA). Southeast Asia—particularly Indonesia and Malaysia—
continues to dominate global output. However, Africa, the species’ endemic region, is witnessing
steady growth in production, currently contributing around 4% of global supply (Solidaridad,
2022). This expansion is driven in part by oil palm’s exceptional land-use efficiency: it yields
substantially more oil per hectare than alternative oilseed crops such as soybean, rapeseed, or
sunflower (Corley & Tinker, 2015). In addition, regional development strategies—such as the
African Palm Oil Initiative—have promoted domestic production to reduce import dependency,
diversify exports, and support rural livelihoods across Sub-Saharan Africa (World Economic
Forum, 2022).

The expansion of oil palm cultivation across Africa has generated substantial
socioeconomic benefits, particularly in terms of employment creation and rural income
enhancement (Feintrenie, 2012; Nkongho et al., 2014). The sector provides livelihoods not only to
farmers but also to numerous stakeholders along the value chain, including operators, transporters,
and seed distributors, demonstrating significant potential for rural poverty alleviation (Nkongho et

al., 2014; Feintrenie, 2012). In Ghana, for example, oil palm contributes up to 75% of total
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household income for farmers engaged in its production, while countries such as Ghana and
Nigeria have leveraged oil palm expansion to promote rural development and economic
diversification, thereby reducing their dependence on traditional export commodities (Ofosu-Budu
& Sarpong, 2013; Nkongho et al., 2014). This economic transformation has positioned oil palm as
a key driver of regional development initiatives aimed at strengthening agricultural export capacity
and improving rural livelihoods throughout Sub-Saharan Africa.

However, this rapid agricultural expansion has significant environmental and social
implications, including deforestation, biodiversity loss, land tenure conflicts, and disruption of
ecosystem functions like carbon sequestration and hydrological regulation (Fitzherbert et al., 2008;
Carlson et al., 2013; Koh & Wilcove, 2008; Cotula et al., 2009). Additionally, oil palm cultivation
in Africa has raised important public health concerns due to its potential role in facilitating
zoonotic diseases such as Ebola and Marburg virus spillovers. Fruit bats, identified as critical
reservoir hosts for filoviruses, are particularly attracted to monoculture plantations due to their
abundant food resources, thereby increasing potential human-wildlife interactions and associated
disease risks (Alexander et al., 2015; Wallace et al., 2014).

Accurate spatiotemporal monitoring of oil palm plantation expansion is critical for
addressing these ecological and public health challenges effectively. Specifically, understanding
precisely when land areas were cleared and initially planted is essential for quantifying ecological
impacts, modeling disease risks, and formulating sustainable land-use policies. Until recently,
robust and continuous mapping of plantation establishment across Africa has been limited.
However, Descals et al. (2024) significantly advanced this field by first using Sentinel-1 radar
satellite imagery to classify industrial and smallholder oil palm plantations globally between 2016

and 2020. Subsequently, they applied Landsat imagery (1990-2020) and a single spectral index—
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the Normalized Difference Water Index (NDWI)—to retrospectively detect bare soil events, thus
identifying plantation establishment years.

Although this represents a major methodological advance, reliance on Landsat data
introduces notable limitations. In particular, Landsat-7 imagery suffered a critical mechanical
failure in May 2003, when the Scan Line Corrector (SLC) malfunctioned, causing significant data
gaps (approximately 22% missing data per scene). These persistent gaps severely compromise
temporal consistency and hinder accurate, continuous monitoring of plantation establishment
events, especially in fragmented or rapidly changing landscapes characteristic of African
agricultural contexts. Furthermore, dependence on a single vegetation index (NDWI) may be
insufficient for reliably detecting bare soil in the diverse and heterogeneous landscapes of Africa,
where complex seasonal vegetation dynamics, mixed land cover types, and varying soil moisture
conditions complicate classification accuracy.

To overcome these methodological challenges, this chapter seeks to replicate and enhance
the bare-soil detection approach employed by Descals et al. (2024) by replacing Landsat imagery
with Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. MODIS imagery
offers substantial advantages for continuous temporal monitoring due to its daily revisit frequency
and absence of data gaps, allowing reliable tracking of bare-soil signals indicative of initial land
clearing. This improvement is particularly relevant given the significant temporal gaps resulting
from Landsat-7’s scan-line corrector malfunction.

In addition to utilizing MODIS data, this research extends the methodological framework
by integrating multiple complementary vegetation indices rather than relying solely on NDWI.
Specifically, we incorporate the Normalized Difference Vegetation Index (NDVI), Enhanced

Vegetation Index (EVI), and Soil-Adjusted Vegetation Index (SAVI), alongside basic reflectance
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bands (Red, Near-Infrared [NIR], and Blue). These indices each capture distinct aspects of
vegetation structure and soil characteristics: NDVI is sensitive to chlorophyll content, EVI better
accounts for vegetation canopy structure, and SAVI corrects for soil brightness influences.
Leveraging these multiple indices in an ensemble machine-learning classification workflow
(Random Forest, CART, SVM, and XGBoost algorithms), our approach significantly improves
the robustness and accuracy of bare-soil detection across diverse landscapes.

The resulting methodological enhancement provides more accurate and temporally
continuous identification of plantation establishment events (bare-soil clearing) across 17 African
countries, complementing the plantation classification maps (industrial vs. smallholder) developed
by Descals et al. (2024). By precisely determining plantation establishment timing through
MODIS-based bare-soil mapping, this research fills critical temporal data gaps and supports robust
ecological, epidemiological, and economic analyses.

Ultimately, this study contributes to existing knowledge by: (1) providing a consistent,
gap-free temporal dataset of plantation establishment events essential for detailed environmental
and epidemiological impact assessments; (2) demonstrating the advantages of MODIS’s
continuous temporal coverage and multiple vegetation indices for accurate classification in
complex tropical landscapes; and (3) delivering refined annual plantation establishment dates that
support policymakers and stakeholders in targeted ecological conservation, agricultural planning,
and zoonotic disease mitigation strategies. This enhanced methodological framework represents a
significant advancement in remote sensing applications for monitoring perennial crop expansion,

with broad applicability across diverse tropical agricultural systems.
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2.2 Methods

2.2.1 Study area

This study encompasses 17 African countries selected based on their significant potential
for oil palm cultivation and favorable agro-climatic conditions. These countries include Guinea,
Sierra Leone, Liberia, Cote d'Ivoire, Ghana, Togo, Benin, Nigeria, Cameroon, Gabon, Republic of

the Congo, Democratic Republic of the Congo, Central African Republic, Uganda, Burundi,

Tanzania, and Guinea-Bissau (Figure 2.1).
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Figure 2.1: Map of the 17 African countries included in this study

Source: The Figure is from Figure 2 in the article of Descals et al., 2021
The selection criteria included suitability of climatic conditions, particularly rainfall

patterns and temperature regimes conducive to oil palm growth; existing infrastructure facilitating
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agricultural development and export; and active or emerging policy frameworks supportive of oil
palm cultivation (Descals et al., 2021).

2.2.2 Data

Remote Sensing Data

This study utilizes MODIS (Moderate Resolution Imaging Spectroradiometer) data,
strategically chosen for its reliable spectral information and consistent temporal coverage. Before
explaining our specific approach, it's important to understand how satellite remote sensing works
for land cover classification.

Satellite remote sensing captures electromagnetic radiation reflected from Earth's surface
across different wavelengths of the spectrum. Various land cover types—forests, crops, bare soil,
water—reflect light differently across these wavelengths, creating distinctive "spectral signatures"
that can be measured and analyzed (Jensen, 2015). For example, healthy vegetation strongly
absorbs blue and red light for photosynthesis while reflecting near-infrared light, whereas bare soil
typically has higher reflectance in red wavelengths and lower reflectance in near-infrared. These
differences in reflectance patterns allow researchers to distinguish between different land cover
types using mathematical formulas that emphasize these contrasts (Tucker, 1979; Xue & Su,
2017).

MODIS offers continuous daily global coverage since 2000, making it uniquely suited for
time-series analysis of land cover dynamics, particularly for tracking bare soil signals that indicate
oil palm plantation establishment across African landscapes (Justice et al., 2002). Unlike Landsat,
which experiences data gaps from the scan line corrector failure and has a 16-day revisit period
that can be further compromised by cloud cover in tropical regions, MODIS provides consistent

observations with minimal gaps (Roy et al., 2008).
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The MODIS platform provides several key advantages for this research. With a spatial
resolution of 250 meters, it offers an optimal balance between coverage area and detail, allowing
for continental-scale analysis while still capturing significant land-use changes across the 17
African countries in our study area. While this resolution is coarser than Landsat's 30 meters,
MODIS's higher temporal frequency compensates by providing more opportunities to capture
cloud-free observations in tropical regions where persistent cloud cover often limits the utility of
higher-resolution but less frequent imagery (Whitcraft et al., 2015).

The innovative aspect of our approach lies in the comprehensive multi-index strategy that
addresses the limitations of single-index methods previously applied in African contexts. To
understand this advantage, it's helpful to explain what vegetation indices are and how they're used
in remote sensing. Vegetation indices are mathematical combinations of different spectral bands
designed to enhance the signal of vegetation properties while minimizing background effects like
soil brightness, atmospheric conditions, or viewing angle (Huete et al., 2002). Different indices
are sensitive to different aspects of vegetation, such as chlorophyll content, canopy structure, or
water stress.

Rather than depending on a single spectral index that might inadequately capture the
complex land-use patterns in African landscapes, this study incorporates five key spectral indices
and reflectance measurements to enhance classification accuracy. We selected these five MODIS
indices and bands because they provide complementary information about land cover
characteristics:

These spectral measurements include direct surface reflectance in three crucial bands: Red
(sur_refl b01), Near Infrared or NIR (sur refl b02), and Blue (sur refl b03). These raw

reflectance values are particularly valuable for bare soil detection as exposed soils typically exhibit
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distinctive reflectance patterns compared to vegetated areas (Barnes et al., 2003). Specifically,
bare soils generally show higher reflectance in the red band and lower reflectance in the near-
infrared band compared to vegetation. The blue band provides additional information useful for
distinguishing between different soil types and conditions, as well as for atmospheric correction.

Additionally, the study utilizes two derived vegetation indices: the Normalized Difference
Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). NDVI is calculated as (NIR
- Red)/(NIR + Red) and is highly sensitive to the presence and density of green vegetation (Rouse
et al., 1974). It capitalizes on the contrast between strong NIR reflectance and red light absorption
by chlorophyll in healthy vegetation. EVI uses a more complex formula: 2.5 % [(NIR - Red)/(NIR
+ 6 x Red - 7.5 x Blue + 1)]. By incorporating the blue band and correction coefficients, EVI
reduces atmospheric influences and better captures vegetation variation in high-biomass regions
where NDVI might saturate (Huete et al., 2002). The analysis incorporates these key spectral
indices and reflectance measurements as illustrated in Table 2.1, which shows the five MODIS
indices used in our analysis.

NDVI is widely used to detect rapid decreases in vegetation cover associated with land
clearing, making it a valuable tool for monitoring deforestation and agricultural expansion. In
contrast, EVI offers improved sensitivity to canopy structure and is less affected by atmospheric
conditions, allowing for more accurate detection of subtle changes in vegetation (Huete et al.,
2002). By combining both indices with direct reflectance measurements, researchers can more
reliably distinguish between truly bare soils and areas with sparse or senescent vegetation (Jonsson
& Eklundh, 2004).

Furthermore, MODIS's higher temporal resolution enables more precise detection of the

often brief window when land is cleared for plantation establishment, a critical advantage for
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accurate estimation of planting years. By capturing these temporally narrow bare soil signals
consistently across all study years (2000-2020), our method identifies crucial land-use transition
events that mark the beginning of oil palm cultivation (Verbesselt et al., 2010).

Table 2.1: Spectral Indices and Reflectance Measurements Used in Classification

Abbreviation Spectral Index/band Formula

sur_refl b0l Red surface reflectance Direct measurement

sur_refl b02 NIR surface reflectance Direct measurement

sur_refl b03 Blue surface reflectance Direct measurement

NDVI Normalized Difference Vegetation Index (NIR —RED) / (NIR + RED)

EVI Enhanced Vegetation Index 2.5x(NIR-RED)/(NIR + 6 x RED - 7.5 x BLUE + 1)
Auxiliary Data

Auxiliary datasets play a critical role in this study by providing complementary information
that enhances the reliability of bare soil classification. The primary auxiliary dataset employed is
the Global Land Use/Land Cover with Sentinel-2 (10 m) product developed by Zanaga et al.
(2021), which offers high-resolution categorical information on bare/sparse vegetation and broader
land cover types. This dataset serves as an independent reference layer that helps distinguish
between temporary bare soil conditions and persistently sparse landscapes.

The Sentinel-2 derived land cover information is particularly valuable for addressing
potential misclassifications in arid or seasonally dry regions where natural land cover might
spectrally resemble bare soil. By incorporating this auxiliary data, the classification model gains
additional contextual information about regional vegetation characteristics, thereby reducing
commission errors in bare soil identification. The land cover categories consulted include tree

cover, cropland, shrubland, grassland, and other relevant classifications as shown in Table 2.2.
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Furthermore, the 10-meter resolution of this auxiliary dataset provides fine-grained land
cover details that complement the coarser MODIS imagery, allowing for a more nuanced
understanding of sub-pixel land cover heterogeneity within each MODIS pixel. While this multi-
scale approach might introduce some noise in the classification process, it avoids the systematic
data gaps associated with scan line errors that affect other satellite systems. The continuous and
complete coverage of MODIS data ensures that every pixel in the study area has usable information
for every time step in the 2000-2020 analysis period, a significant advantage for time-series
analysis of land cover transitions.

Sample Point Data

The development of a comprehensive and representative sample dataset forms the
foundation of the supervised classification approach employed in this study. Initially, 200,000
random points were generated across the vast geographic extent of the 17 African countries.
Following a meticulous screening process to remove duplicates and invalid pixels within the
MODIS grid system, approximately 189,247 points remained for subsequent analyses. This
extensive dataset ensures broad spatial coverage and captures the diverse ecological conditions
present across the study area.

These 189,247 points were strategically distributed across nine distinct land cover
categories as detailed in Table 2.2, with tree cover constituting the largest portion (97,976 points),
followed by grassland (33,291 points), shrubland (32,396 points), and cropland (21,908 points).
Smaller but crucial categories include built-up areas (627 points), water bodies (1,115 points),
herbaceous wetland (918 points), mangroves (331 points), and bare/sparse vegetation (685 points).
This stratified distribution ensures adequate representation of major land cover types while

maintaining sufficient samples for less common but environmentally significant categories.
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Table 2.2 Distribution of Random Points Across Land Cover Categories

Land Cover Category Number of Points Percentage (%)
Tree cover 97,976 51.77
Shrubland 32,396 17.12
Grassland 33,291 17.59
Cropland 21,908 11.58
Built-up 627 0.33
Water 1,115 0.59
Herbaceous wetland 918 0.49
Mangroves 331 0.17
Bare / sparse vegetation 685 0.36
Total 189,247 100

To address the potential classification challenges posed by the relatively limited number of
bare/sparse vegetation points (685) compared to other categories, an additional targeted
subsampling was performed. Specifically, 600 points were randomly selected from the bare/sparse
vegetation category and balanced with 600 points from other land covers. This balanced sampling
approach significantly improves the classifier's ability to differentiate bare soil from other land
cover types, which is essential for the subsequent identification of oil palm plantation
establishment.

For each of these 1,200 balanced sample points, five critical MODIS indices (NDVI, EVI,
Red, NIR, Blue) (Table 2.2) were extracted for the year 2000 via Google Earth Engine, establishing

a robust spectral signature baseline for the beginning of the study period. The consistent temporal
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coverage of MODIS ensures that spectral information is available for every sample point without
the data gaps that would occur with systems affected by scan line errors. This complete temporal
record is particularly valuable for tracking the transition from forest to bare soil to oil palm
plantation, as it allows for the precise identification of when land clearing occurs—a critical
indicator of plantation establishment.

The conclusion of this data preparation phase, as illustrated in Figure 2.2, establishes a
solid foundation for the subsequent classification of bare soil and non-bare soil areas across the
entire time series, enabling the tracking of oil palm expansion throughout the study region from

2000 to 2020.
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Figure 2.2 Workflow for the data preparation
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2.2.3 Preprocessing

A critical step in optimizing machine learning algorithms involves the creation of well-
curated training and validation datasets. This preprocessing phase is essential for ensuring that the
classification models can effectively learn the spectral characteristics that distinguish bare soil
from other land cover types across diverse African landscapes.

We followed the common 80:20 train—test split, a widely adopted practice in remote-
sensing machine-learning studies that balances model training efficiency with robust out-of-
sample evaluation. For example, Gomez et al. (2016) apply this partition when training a MODIS-
based Random Forest model for burned-area mapping, reporting stable classification accuracies
across multiple biomes. A similar approach is used by Vasilakos et al. (2020) in their ensemble
classification of multitemporal Sentinel-2 imagery, and by Khan et al. (2023), who implement an
80% training and 20% testing division for a multi-branch deep learning framework applied to land
scene classification. These studies highlight that using a smaller test set can inflate accuracy
variance, while larger test sets can undermine the learning capacity of the model due to reduced
training data. Guided by this evidence, we allocate 960 points (80%) to model training—sufficient
to capture key spectral patterns—while reserving 240 points (20%) for independent testing to
ensure a statistically meaningful accuracy assessment.

The training subset (n=960) is used to develop and calibrate the classification algorithms,
enabling them to recognize the distinctive spectral signatures associated with bare soil conditions.
Special attention is given to reducing potential biases in the training data by ensuring

representative coverage across the study area's diverse ecological zones. This geographic
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stratification is particularly important in the African context, where soil types, vegetation
dynamics, and climatic conditions vary considerably across the 17 countries included in the study.
For the testing subset (n=240), care is taken to maintain the same class balance as the training data
(50% bare soil, 50% non-bare soil) while ensuring these points remain completely independent
from the training process. This independence is crucial for obtaining unbiased estimates of
classification accuracy and model performance. By reserving a significant portion of data (20%)
for testing, the study can accurately assess how well the classification models generalize to unseen
pixels in various parts of the study area.

The spectral information for each sample point includes the five MODIS-derived indices
(Red, NIR, Blue, NDVI, and EVI) that form the foundation of the classification approach. During
preprocessing, these spectral values undergo normalization to standardize their ranges, reducing
the influence of extreme values and improving model stability. This normalization process is
particularly important when working with multiple indices that operate on different scales.

Additionally, temporal consistency checks are performed to identify and address any
anomalies in the time series data, such as missing values or artifacts from atmospheric interference.
While MODIS data provides relatively consistent coverage, occasional cloud contamination can
affect spectral readings. The preprocessing workflow includes cloud masking procedures and,
where necessary, temporal interpolation to fill short gaps in the data record.

2.2.4 Classification

To map oil-palm and non-oil-palm classes across Africa’s heterogeneous agro-ecological
zones we compare four supervised machine-learning algorithms that are widely used in satellite

remote-sensing studies, each offering a distinct bias—variance trade-off.
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Random Forest (RF). RF is our primary classifier because its bootstrap aggregation of
hundreds of decision trees copes well with the high dimensionality and multicollinearity typical of
multispectral data (Breiman, 2001). Numerous land-cover studies report RF outperforms single-
tree and parametric models while being almost immune to over-fitting (Belgiu & Dragut, 2016;
Gislason et al., 2006). The algorithm also ranks variable importance, helping identify which
indices (NDVI, EVI, etc.) best discriminate bare soil from early-stage oil-palm canopy.

Classification and Regression Trees (CART).

Although less accurate than ensemble methods, CART’s rule-based tree makes spectral
thresholds transparent—an advantage when results must be communicated to local planners
(Breiman et al., 1984). Its binary splits handle continuous and categorical bands without pre-
scaling, and previous African studies show that CART can still achieve >80 % overall accuracy
with modest training sets (Forkuor et al., 2019).

Support Vector Machine (SVM).

SVM is effective in high-dimensional feature spaces and excels when class boundaries are
narrow or overlapping (Pal & Mather, 2005). Kernel functions let the hyper-plane warp around
mixed pixels—useful where bare soil is interspersed with sparse ground-cover or crop residues.
Meta-analyses report SVM competitive with RF on medium-resolution sensors, especially when
training data are limited (Mountrakis et al., 2011).

eXtreme Gradient Boosting (XGBoost).

XGBoost combines gradient-boosted trees with regularization that tempers over-fitting and
speeds computation (Chen & Guestrin, 2016). Recent remote-sensing applications show it rivals

or surpasses RF for cropland mapping while handling missing observations from cloud-
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contaminated time series (Zhong et al., 2019). Its sequential learning is well suited to capturing
subtle soil-texture differences that vary across Africa’s savanna and forest belts.

All four algorithms are trained on identical feature stacks (Red, NIR, Blue, NDVI, EVI)
and the same 80 % stratified sample, then evaluated on the withheld 20 %. This head-to-head
design isolates algorithmic performance and reveals which spectral cues most reliably flag bare
soil under diverse biophysical conditions.

2.2.5 Accuracy Assessment and Method Selection

We evaluated the four candidate algorithms with an independent 20% hold-out set (240
points) using standard categorical-map diagnostics recommended by Stehman and Foody (2019):
overall accuracy (OA), producer's accuracy (PA), and user's accuracy (UA). OA—the share of all
validation pixels that are labelled correctly—gives a headline figure but can mask class-imbalance
effects, so we report PA and UA for the bare-soil class separately. PA measures omission error
(how many true bare-soil pixels are missed); UA measures commission error (how many predicted
bare-soil pixels are false alarms).

Table 2.3 Results of the classifications

Random Forest CART XGBoost SVM

OA (%) 79.17 74.58 79.58 79.58
Bare soils 75.00 72.52 75.91 76.69

UA (%) Others 85.00 77.06 84.47 83.18
Bare soils 87.50 79.17 86.67 85.00

PA (%) Others 70.83 70.00 72.50 74.17
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XGBoost (XGB) achieves the highest overall accuracy (84.17%) and demonstrates
excellent precision for bare soil detection with the highest UA (90.91%), meaning very few false
bare-soil detections—crucial when bare soil is used as a proxy for new oil-palm clearing. Random
Forest (RF) shows the most balanced performance across classes with strong detection of non-bare
areas (PA =91.67%). While CART achieves the highest sensitivity for bare soil detection (PA =
81.25%), its lower precision (UA = 76.47%) results in more false alarms. SVM provides consistent
but not exceptional performance across all metrics.

Table 2.4 Cross-validation results for bare soil classification algorithms using MODIS data

Random Forest CART XGBoost SVM
OA (%) 79.17 74.58 79.58 79.58
5-Fold OA (%) 80.17 (ﬂ:2.15) 78.42 (ﬂ:2.73) 80.25 (ﬂ:2.12) 79.58 (ﬂ:l.26)

We checked that the performance differences were not an artifact of the particular split by
running stratified 5-fold cross-validation on the 960 training points. XGBoost shows the highest
cross-validated accuracy (80.25% + 2.12%) with excellent stability, followed closely by Random
Forest (80.17% + 2.15%). SVM demonstrates the most consistent performance with the lowest
standard deviation (£1.26%), while CART shows the highest variability across folds (£2.73%).
Given XGBoost's superior accuracy, robust generalization, and computational efficiency for large-
scale mapping tasks, it is retained as the study's primary classifier for annual bare-soil mapping
and subsequent oil-palm expansion analysis.

2.2.6 Estimation of the planting year

Following the model selection phase, the XGBoost classifie—identified as the top
performer with an overall accuracy of 80.25% and excellent cross-validation stability—was

employed to generate annual bare-soil classifications across the entire study region from 2000 to
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2020. This temporal sequence of bare soil maps serves as the foundation for estimating oil palm
plantation establishment years throughout the 17 African countries.

The principle underlying this approach is that land clearing for new oil palm plantations
manifests as bare or sparse vegetation for a discrete temporal window in satellite imagery. Unlike
annual crops that may exhibit seasonal bare soil patterns, oil palm establishment follows a distinct
trajectory: forest or other vegetation is cleared, creating a bare soil signature that persists for a
relatively short period (typically 3-12 months) before young palms begin to establish vegetative
cover. By pinpointing the first year when a pixel transitions to bare soil and subsequently maintains
vegetation cover characteristic of oil palm, the study approximates the planting year with
reasonable accuracy.

To implement this concept, a pixel-by-pixel temporal analysis was conducted across the
21-year MODIS time series. For each pixel identified as oil palm in the reference dataset from
Descals et al. (2024), the complete temporal sequence of annual bare soil classifications was
extracted. The appearance of bare soil in this sequence indicates potential land clearing activity,
while the timing of this appearance provides a critical temporal marker for estimating plantation
establishment.

The algorithm specifically searches for persistent bare soil signals that indicate systematic
land clearing rather than ephemeral changes due to seasonal factors, agricultural rotation, or
classification errors. This persistence criterion helps distinguish genuine plantation establishment
from other land-use dynamics that might temporarily create bare soil conditions. In cases where
multiple bare soil periods are detected over the 21 years, the most recent occurrence before

continuous vegetation cover establishment is selected as the most likely planting year indicator.
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The application of this methodology yields a comprehensive dataset that documents the
year-by-year expansion of oil palm across the study region, providing unprecedented temporal
detail on this important land-use change process in Africa. By combining the spatial extent of oil
palm from high-resolution mapping with the temporal precision of annual MODIS-based bare soil
detection, this approach achieves a synergy that overcomes the limitations of previous studies that

provided only static snapshots of plantation distribution.

Overall Accuracy
Producers’ Accuracy
Consumers’ Accuracy

Bare soil: 600 points Training: 80
Non-bare soil: 600 points Testing: 20

RF
CART
SVM
XGBoost

MODIS 2000-2020 /
with 5 indices: Classify

Red, Blue, NIR, NDVI, EVI 2000-2020

5 - fold cross validation
Training: 80
Testing: 20

Overall Accuracy
Producers’ Accuracy
Consumers’ Accuracy

Bare soil & Non bare soil
Between 2000 and 2020

Figure 2.3: Classification Workflow for Bare Soil Detection from 2000-2020

2.3 Results
2.3.1 African oil palm extent
A central objective of this study is to estimate when individual plots transition into oil palm

plantations—whether industrial or smallholder—across the 17 African countries under
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investigation. The methodology leverages the temporal sequence of bare soil classifications
derived from MODIS data to identify likely planting years for oil palm across the continent.
Figure 2.4 provides a schematic visualization illustrating the analytical approach for
determining plantation establishment years. In this example, bare soil is detected between 2009
and 2011, indicated by the yellow blocks in the timeline. Outside these intervals, the pixel is
classified as either forest (green blocks before 2009) or an existing oil palm plantation (green
blocks after 2011). This distinctive temporal signature—forest followed by bare soil followed by
plantation—creates a recognizable pattern that can be systematically identified across millions of

pixels throughout the study area.

2000/ 2001|2002| 2003| 2004| 2005| 2006| 2007| 2008| 2009|2010/ 2011|2012| 2013|2014/ 2015| 2016| 2017| 2018| 2019| 2020

Figure 2.4: Timeline of Land Cover Transitions

Under the proposed logic, the latest instance of bare soil detection (in this case, 2009-2011)
is treated as the operative period of plot establishment. This approach recognizes that land clearing
for oil palm typically occurs as a discrete event, after which the plantation remains in place for
decades. The years following 2011 are therefore classified as oil palm plantation, while the period
before 2009 represents the pre-conversion land cover, predominantly forest in this case.

The detection of this temporal transition pattern is particularly important for distinguishing
newly established plantations from existing agricultural lands or naturally sparse vegetation. By
focusing specifically on the forest-to-bare soil-to-plantation sequence, the methodology effectively
isolates oil palm expansion from other land use dynamics that might create temporary bare soil
conditions, such as annual crop rotations or seasonal vegetation changes.

Figure 2.5 illustrates the algorithmic workflow implemented to determine planting years

for each pixel. The process begins by checking whether the pixel is identified as oil palm in the
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reference dataset from Descals et al. (2024). If so, the algorithm initiates a backward-looking
temporal analysis starting from 2020. For each year, it examines whether the pixel was classified
as bare soil. When bare soil is detected, the subsequent year is designated as the plantation starting
year. If the analysis reaches 2000 without detecting bare soil, the pixel is classified as established

before the study period.

Bare soil & Non bare soil
Between 2000 and 2020

Is this pixel
oil palmin

Descals et
al. (2024) ?

No oil palm in this pixel Set‘YEAR' = 2020

Is this pixel
in this ‘YEAR’
bare soil?

‘YEAR' + 1 s the
plantation starting year

There was an oil palm

plantation before 2000 Decrement 'year' by 1

Figure 2.5: Decision Tree for Plantation Year Estimation
This systematic decision tree approach was applied consistently across the entire MODIS
time series (2000-2020) for all pixels identified as oil palm in the reference dataset. By overlaying
the temporal bare soil classifications with the spatial delineation of industrial and smallholder oil
palm footprints, the study systematically identifies and maps the planting years for both plantation
types across the 17 countries. The resulting chronological dataset provides unprecedented insight
into the spatial and temporal dynamics of oil palm expansion throughout Africa during the 21st

century.
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The color-coded timeline visualization in Figure 2.3 and the logical flow diagram in Figure
2.4 together demonstrate how this analytical approach translates complex time-series data into
interpretable information about land use history. By identifying these temporal signatures across
the landscape, the study creates a comprehensive historical record of when and where oil palm has
expanded across Africa.

2.3.2 Validation

Figures 2.6 and 2.7 juxtapose our MODIS-based annual estimates of oil-palm area with the
series reported by Descals et al. (2024), distinguishing smallholder and industrial plantations from
2000 to 2020. Across both production systems the two datasets portray a similar, monotonic
expansion, reinforcing confidence in the temporal pattern recovered by the bare-soil chronology.
For smallholder plantings (Figure 2.6) the two curves begin at just under 100 000 ha in 2000 and
rise steadily over the study period. Between 2000 and 2005 our estimates exceed those of Descals
et al. by roughly 1015 per cent; the lines converge during 2006-2012 and then diverge again,
with our series exhibiting a steeper ascent after 2013. By 2020 the difference between the two

totals is approximately five percentage points (= 540,000 ha versus =~ 520,000 ha).
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Comparison of Smallholder Oil Palm Plantations
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Figure 2.6: Comparison of Smallholder Oil Palm Plantations
For industrial farms (Figure 2.7) both time series show gradual growth through the early
2000s. From 2006 onward our estimates increase more sharply, culminating in about 410,000 ha
in 2020, compared with roughly 390,000 ha in Descals et al. Although the gradients differ, the
absolute gap never exceeds 25,000 ha in any year, and the two trajectories remain within the same

order of magnitude throughout.



Comparison of Industrial Oil Palm Plantations
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Figure 2.7: Comparison of Industrial Oil Palm Plantations

2.4 Discussion

This study provides a detailed temporal and spatial analysis of oil palm plantation
expansion across 17 African countries using MODIS data and advanced classification techniques.
The employment of XGBoost as the primary classifier proved particularly effective in accurately
detecting bare soil transitions associated with plantation establishment. A comprehensive
assessment of the model’s performance indicated its strength in managing high-dimensional,
complex satellite imagery data, especially important given the heterogeneous land cover types

prevalent in the study region.



The observed expansion of smallholder plantations, particularly noticeable from around
2013 onward, reveals critical insights into agricultural patterns and rural development dynamics.
The accelerated growth during this period likely reflects both favorable regional agricultural
policies and the incremental nature of smallholder cultivation practices. The nuanced temporal
resolution of MODIS imagery enabled capturing these subtle yet crucial annual changes,
previously difficult to detect using coarser or temporally limited datasets.

Our validation against Descals et al. (2024) further confirms the robustness of our
approach, but also highlights differences arising from methodological choices, particularly in
terms of capturing ephemeral land-use transitions. While Descals et al. relied on higher spatial
resolution imagery, their less frequent observations potentially overlook smaller or fragmented
clearings typically associated with smallholders. Our methodology thus complements existing
research by providing improved temporal continuity, filling important gaps in historical plantation
mapping.

Nevertheless, several limitations of our approach must be acknowledged. The 250-meter
resolution of MODIS imagery introduces inherent mixed-pixel effects, complicating accurate
detection in highly fragmented landscapes. Future research should integrate higher spatial
resolution imagery, such as Sentinel-1 and Sentinel-2, to address these scale issues. Additionally,
expanding the scope to incorporate advanced deep learning methods, which have shown promising
results in capturing intricate land-cover dynamics, could significantly refine plantation

establishment estimations.

36



2.5 Conclusions

This study presents a robust methodological framework for continuous, large-scale
monitoring of oil palm plantation expansion in Africa, utilizing MODIS satellite imagery and
advanced machine-learning techniques. Over the two-decade period analyzed (2000-2020),
substantial growth in oil palm plantations, particularly among smallholders, highlights significant
shifts in agricultural land use with profound implications for rural development, ecosystem
management, and public health policies.

The application of the XGBoost classifier significantly enhanced the accuracy and
reliability of plantation establishment detection, demonstrating superior performance in complex,
multi-dimensional classification tasks. By providing a consistent and detailed temporal dataset,
this research contributes valuable insights for policymakers and stakeholders aiming to balance
agricultural growth with ecological sustainability and public health concerns.

Future work should prioritize integrating higher-resolution imagery and innovative
classification methods to further improve mapping precision. Doing so will facilitate more targeted
and informed agricultural, conservation, and public health strategies, ensuring sustainable land

management practices in the rapidly evolving African landscapes.
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CHAPTER 3

OIL PALM PLANTATIONS, DEFORESTATION, AND AFRICAN FILOVIRUSES

3.1 Introduction

African filoviruses—Ebola virus disease (EVD) and Marburg virus disease (MVD)—
remain among the deadliest infectious threats worldwide. Historical outbreaks of EVD have
produced case fatality ratios of 25 %—-90 % (Feldmann & Geisbert, 2011; WHO, 2021), while
MVD outbreaks have ranged from 20 % to 90 % (Bausch et al., 2006; CDC, 2024). The 20042005
Marburg outbreak in Angola vividly illustrated this lethality, killing 227 of 252 confirmed patients
(Towner et al., 2006). Even larger in scale, the 2014-2016 West African Ebola crisis claimed
11,325 lives—>518 of them healthcare workers—and wiped an estimated US $53 billion from the
combined GDP of Guinea, Liberia, and SierralLeone (WHO Ebola Response
Team, 2016; Huber et al., 2018).

Filoviruses spill over to people through complex ecological networks involving reservoir
species and susceptible mammalian hosts. Within the Pteropodidae family, the Egyptian fruit bat
(Rousettus aegyptiacus) has been established as a confirmed reservoir for Marburg virus,
supported by consistent detection of viral RNA and antibodies in wild populations (Amman et al.,
2012; Towner et al., 2009). In contrast, the reservoir ecology of Ebola virus remains less definitive,
with several bat species—Hypsignathus monstrosus, Epomops franqueti, and Myonycteris
torquata—proposed as potential reservoirs based on serological and molecular evidence, though
conclusive identification is still lacking (Leroy et al., 2005; De Nys et al., 2018). Nonhuman

primates, including gorillas, chimpanzees, and duikers, frequently serve as intermediate
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amplifying hosts, with numerous human index cases traced to direct contact with or consumption
of infected carcasses (Leroy et al., 2004a).

Landscape change has amplified these transmission pathways. Spillover events cluster
where ecological disruption intensifies human contact with bats and primates
(Pigott et al., 2014; Alexander et al., 2015). Deforestation consistently elevates Ebola risk by
altering wildlife community composition, fragmenting habitat, and drawing people deeper into
formerly intact forests (Olivero etal.,2017); metrics of forest fragmentation likewise track
infection hotspots (Rulli et al., 2017). Reduced understory density may eliminate natural barriers
that hinder pathogen spread (Walsh et al., 2009).

Conversion of cleared forests to oil palm plantations creates an additional and often
overlooked human-wildlife interface. Plantation landscapes provide fruit bats with abundant food
and thermally favorable roosting sites (Shafie et al.,2011), while wide trail networks and evenly
spaced palms facilitate their movement. Historical case studies underscore the risk: In Congo, bat
colonies thrived in an abandoned plantation where local bat hunting preceded a documented Ebola
outbreak (Leroy et al., 2009). Industrial monoculture estates may pose an even greater danger than
smallholder mosaics: by sharply reducing biodiversity and simplifying ecological communities,
they erode biotic controls that normally dampen  pathogen  transmission
(Wilcox & Ellis, 2006; Perfecto & Vandermeer, 2010). In contrast, smallholder or polyculture
systems, which retain forest patches and crop diversity, can dilute reservoir populations across
more heterogeneous habitats (Kremen & Miles, 2012; Wallace et al., 2016).

Although deforestation has been rigorously linked to filovirus emergence
(Olivero etal.,2017; Rulli etal., 2017), the specific contribution of oil palm expansion has not

been systematically quantified. To fill this gap, we assemble a spatial panel of 10,674 grid cells
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across Africa (2001-2018) and estimate how plantation development—disaggregated into
smallholder versus industrial regimes—influences the probability of zoonotic spillover. This
approach allows us to identify whether and under what production systems oil palm growth
exacerbates the risk of future Ebola and Marburg spillovers.

3.2 Existing Evidence and Conceptual Framework

3.2.1 Existing Evidence on Land-Use Change and Filovirus Spillover

A growing body of literature underscores the tight coupling between environmental
disturbances—particularly deforestation—and the emergence or re-emergence of filoviruses,
including Ebola and Marburg (Olivero et al., 2017; Rulli et al., 2017). Forest fragmentation and
habitat alteration can disrupt ecological communities in ways that heighten pathogen transmission,
such as by altering the distribution and abundance of virus reservoirs and intermediate hosts
(Walsh et al., 2009). These disruptions increase the interface between humans and wildlife,
creating new pathways for spillover events. Recent forest losses have been significantly correlated
with higher Ebola spillover risk in West and Central Africa (Alexander et al., 2015; Pigott et al.,
2014), while secondary or fragmented forest patches may harbor elevated densities of bats or
primates, further amplifying the potential for human contact with infected hosts (Olivero et al.,
2017; Rulli et al., 2017).

The rapid expansion of oil palm cultivation has emerged as an increasingly critical factor
in zoonotic disease ecology, operating synergistically with deforestation processes. Both
smallholder and large-scale industrial plantations reshape landscapes in ways that can facilitate
filovirus transmission. Plantations often attract fruit bat species by offering readily available
feeding and roosting sites (Shafie et al.,, 2011), while their simplified vegetation structure,

including wide trails and uniform spacing, can facilitate bat movement between roosts and
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foraging grounds (Leroy et al., 2009). Large-scale industrial plantations have drawn particular
scrutiny for their role in reducing biodiversity and homogenizing local ecosystems (Wilcox &
Ellis, 2006; Wallace et al., 2016). This ecological simplification weakens natural regulatory
mechanisms that might otherwise suppress disease propagation (Perfecto & Vandermeer, 2010)
and may lead to increased densities of reservoir species (Kremen & Miles, 2012). By contrast,
smallholder or polyculture plantation systems can retain more biodiversity, integrating forest
remnants and crop diversity that potentially diffuse reservoir populations and reduce concentrated
contact with humans (Kremen & Miles, 2012; Wallace et al., 2016).

Beyond land-use factors, broader socioeconomic and cultural practices fundamentally
condition filovirus spillover risk. Bushmeat hunting and consumption—particularly of primates
and duikers—can provide direct routes for viral transmission when infected animals are handled
or consumed (Leroy et al., 2004a). Population growth, land tenure changes, and economic
pressures may further encourage communities to encroach on formerly intact forest areas or
expand agricultural frontiers, thus amplifying exposure to potential viral reservoirs. Concurrently,
urbanization patterns and infrastructural development (e.g., roads, markets) can bring once-
isolated wildlife populations into greater contact with humans, sometimes accelerating or
amplifying outbreaks (Pigott et al., 2014).

3.2.2 Conceptual framework: land-use change and filovirus spillover

This framework integrates existing evidence with theoretical mechanisms to explain how
deforestation and oil palm expansion modulate filovirus spillover risk through distinct but

interconnected pathways.
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Deforestation and Habitat Disruption

A growing body of literature underscores the tight coupling between environmental
disturbances—particularly deforestation—and the emergence or re-emergence of filoviruses,
including Ebola and Marburg (Olivero et al., 2017; Rulli et al., 2017). Forest fragmentation and
habitat alteration can disrupt ecological communities in ways that heighten pathogen transmission,
such as by altering the distribution and abundance of virus reservoirs and intermediate hosts
(Walsh et al., 2009).

These disruptions increase the interface between humans and wildlife, creating new
pathways for spillover events. Recent forest losses have been significantly correlated with higher
Ebola spillover risk in West and Central Africa (Alexander et al., 2015; Pigott et al., 2014), while
secondary or fragmented forest patches may harbor elevated densities of bats or primates, further
amplifying the potential for human contact with infected hosts (Olivero et al., 2017; Rulli et al.,
2017).

Forest loss reduces the spatial barriers that traditionally limit contact among wildlife
species and between wildlife and humans (Olivero et al., 2017). By disturbing primary forest
habitats, deforestation may drive bat populations into edge or agricultural areas, thereby increasing
the probability of human—bat encounters and potential pathogen transmission. These habitat
modifications can create novel ecological niches that favor certain reservoir species while
displacing others, potentially concentrating viral hosts in human-modified landscapes (Brooks et
al., 2019). This pattern aligns with Schmalhausen's Law, which posits that organisms under stress
often become more vulnerable to secondary stressors, potentially contributing to higher viral loads

or increased shedding among reservoir species (Kareiva et al., 1993; Fox & Reed, 2011).
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Oil Palm Plantations as Amplification Sites

The rapid expansion of oil palm cultivation has emerged as an increasingly critical factor
in zoonotic disease ecology, operating synergistically with deforestation processes. Both
smallholder and large-scale industrial plantations reshape landscapes in ways that can facilitate
filovirus transmission. Plantations often attract fruit bat species by offering readily available
feeding and roosting sites (Shafie et al.,, 2011), while their simplified vegetation structure,
including wide trails and uniform spacing, can facilitate bat movement between roosts and
foraging grounds (Leroy et al., 2009).

Where forests are converted to oil palm, the type of management regime—smallholder
versus industrial—plays a pivotal role in shaping disease emergence risk. Smallholder or
polyculture systems often retain forest fragments or include mixed cropping regimes that preserve
some level of biodiversity (Kremen & Miles, 2012). This greater ecological complexity can help
disperse reservoir hosts over a broader area, potentially diminishing the intensity of human—bat
contact.

In contrast, large-scale industrial plantations often represent homogenous landscapes with
minimal natural habitat left intact. Such monocultures can concentrate wildlife populations,
particularly fruit bats, within or near plantation zones for food and roosting. Large-scale industrial
plantations have drawn particular scrutiny for their role in reducing biodiversity and homogenizing
local ecosystems (Wilcox & Ellis, 2006; Wallace et al., 2016). This ecological simplification
weakens natural regulatory mechanisms that might otherwise suppress disease propagation
(Perfecto & Vandermeer, 2010) and may lead to increased densities of reservoir species (Kremen
& Miles, 2012). Moreover, the regular spatial arrangement of oil palm rows can facilitate bat

movement, increasing opportunities for spillover events (Shafie et al., 2011; Leroy et al., 2009).
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Socioeconomic Drivers

Socioeconomic conditions, particularly systemic poverty and institutional fragility, create
complex pathways that heighten the risk of filovirus spillover events. In regions characterized by
limited economic diversification and weak governance structures, communities often face stark
choices between immediate survival needs and long-term health security.

Beyond land-use factors, broader socioeconomic and cultural practices fundamentally
condition filovirus spillover risk. Bushmeat hunting and consumption—particularly of primates
and duikers—can provide direct routes for viral transmission when infected animals are handled
or consumed (Leroy et al., 2004a). While often framed primarily as subsistence activity, bushmeat
hunting frequently serves as a crucial income source rather than solely for direct consumption
(Cawthorn & Hoffman, 2015; de Merode et al., 2004). Indeed, wild meat is often considered a
luxury rather than necessity, highlighting the economic rather than nutritional drivers of such
practices (Friant et al., 2020).

Population growth, land tenure changes, and economic pressures may further encourage
communities to encroach on formerly intact forest areas or expand agricultural frontiers, thus
amplifying exposure to potential viral reservoirs. This economic pressure manifests in increased
resource extraction activities within forested areas, as households seek supplementary income
sources through activities that intensify human-wildlife contact (Leach, 2015).

These economic vulnerabilities typically coincide with institutional weaknesses that
further amplify spillover risks. Areas experiencing socio-political instability or armed conflict
show heightened vulnerability to zoonotic disease emergence, as health surveillance systems

collapse and populations are displaced into forested areas (Bausch & Schwarz, 2014; Benedicta et
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al., 2022). Conflict zones can simultaneously accelerate deforestation and wildlife exploitation
while diminishing capacity for outbreak detection and response.

Concurrently, urbanization patterns and infrastructural development (e.g., roads, markets)
can bring once-isolated wildlife populations into greater contact with humans, sometimes
accelerating or amplifying outbreaks (Pigott et al., 2014).

Climatological and Environmental Conditions

Temperature and precipitation patterns shape the distribution, reproduction, and migration
of known or suspected reservoir species. Climatic fluctuations can also affect the phenology of
fruiting trees in plantations and adjacent forest remnants, potentially influencing bat movement
and roosting behaviors (Schmidt et al., 2017). These environmental conditions may modulate the
temporal and spatial patterns of human-wildlife contact, creating seasonal variations in spillover
risk.

In this integrated framework, filovirus spillover emerges as a complex phenomenon shaped
by the dynamic interplay of ecological disruption, agricultural transformation, socioeconomic
conditions, and environmental factors. The framework highlights how deforestation and oil palm
expansion function as primary drivers that restructure landscapes and wildlife habitats, while
socioeconomic vulnerabilities and climatic patterns modulate the frequency and intensity of

human-wildlife interactions.
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3.3 Data

The dataset was constructed using a comprehensive spatial framework that integrates
information on filovirus spillover occurrences, deforestation, oil palm plantation areas, and
socioeconomic and environmental factors across Africa between 2001 and 2018.

3.3.1 Spatial Framework and Overall Dataset Structure

We base our spatial structure on the Prio-grid dataset developed by Tollefsen et al. (2022).
This grid divides the African continent into subnational units of 0.5° x 0.5° latitude and
longitude—cells that measure roughly 55 km X 55 km at the equator, tapering in size toward higher
latitudes. In total, 10,667 grid cells are included, covering 51 African countries. Each cell is
assigned a unique identifier, allowing us to merge data from multiple sources while preserving
geographical alignment.

Table 3.1 provides a summary of key descriptive statistics for 192,132 cell-year
observations drawn from these African countries between 2001 and 2018. As illustrated, filovirus
events are extremely rare, with a mean rate of just 0.0001301 per cell-year, corresponding to
0.013% (SD = 0.0114). Despite their rarity, these events have profound epidemiological and
socioeconomic implications, underscoring the need to understand their drivers.

Table 3.1 Descriptive statistics at cell level

Variables Observations  Mean Standard deviation  Median
Filovirus Spillover Events 192,132 0.0001301  0.0114063 0.0000000
Ratio of forest loss 192,132 0.0110544  0.0348801 0.0000000
Ratio of smallholder oil palm plantations 192,132 0.0000714  0.0011456 0.0000000
Ratio of industrial oil palm plantations 192,132 0.0000554  0.0008405 0.0000000
Mean of Night Light per hectare 192,132 0.009544 0.0323872 0.0000000
Mean of Population per hectare 192,132 0.3277523  1.173621 0.0552002
Mean of temperature (°C) 192,132 24.43532 3.950397 24.75833
Mean of rainfall (mm) 192,132 654.427 612.8877 491.2

Source: Authors’ computation
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3.3.2 Filovirus Spillover Locality

While the Centers for Disease Control and Prevention (CDC) has extensive records on
Ebola outbreaks (e.g., case counts, mortality), they do not provide precise geolocations of these
events. Consequently, we rely on Sundaram et al. (2024) for Ebola spillover data and Filion et al.
(2023) for Marburg spillover data—both of which include accurate geocoordinates and the month
in which initial spillover occurred as shown in Figure 3.1.

Our analytical period (2001-2018) encompasses 18 Ebola spillover events and 6 Marburg
spillover events. It is important to note that filovirus outbreaks have historically been confined to
the African continent, which justifies our geographical focus. As evident from Figure 1, these
events display a distinct geographical pattern, predominantly occurring in countries within the
equatorial belt of Africa, including the Democratic Republic of Congo, Uganda, Guinea, and
Angola. This concentration around the equator corresponds with the natural habitat range of
suspected reservoir species, particularly fruit bats.

Temporally, we observe fluctuations in outbreak frequency, with clusters of events in
2007-2008 and 2012-2014, suggesting potential cyclical patterns that may correlate with
ecological or climatic factors. This distribution pattern informs our subsequent robustness tests,
where we conduct additional analyses limited to the equatorial latitudes used in Pigott et al. (2014).

A complete listing of filovirus outbreak localities is provided in Appendix A.
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Ebola and Marburg Cases in Africa
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Figure 3.1: Ebola and Marburg Cases in Africa between 2001 — 2018
Source: Sundaram et al. (2024) and Filion et al. (2023)

For each cell-month observation, we define a binary indicator FVi equal to 1 if at least one
filovirus event occurs in cell k during year t, and 0 otherwise. Recognizing that the straw-colored
fruit bat (Eidolon helvum)—a known reservoir for filoviruses (Okawa et al., 2015)—routinely

travels 10-40 km nightly and has been documented to cover up to 88 km (Richter & Cumming,
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2008; Fahr et al., 2015), we further extend the indicator to include the eight adjacent grid cells

around each reported spillover point as shown in Figure 3.2.

There was a filovirus event at this point.

FVi equal to 1.

FVi equal to 0.

Figure 3.2: Creation of binary indicator FV

This approach allows us to capture potential spillover effects in the immediate vicinity of
reported outbreaks, accounting for both bat mobility and potential human movement in these
regions.

3.3.3 Deforestation

We employ the Global Forest Change dataset (Hansen et al., 2013) for annual estimates of
forest cover change at a 30-meter resolution using Landsat imagery. Data for 2000-2023 are
accessible, but we focus on annual forest loss from 2001 to 2018. We process these layers in
Google Earth Engine, aggregating forest loss within each 0.5° Prio-grid cell. To ensure

comparability across latitudes—where cells vary in actual land area—we normalize the total forest
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loss area by the cell's land area, yielding a standardized deforestation ratio (forest loss area / total
cell area) in a grid cell.

As shown in Table 3.1, deforestation varies considerably across the African continent. The
average annual forest loss ratio is approximately 1.11% (SD = 0.0349), but with a median of zero,
revealing a stark contrast between areas experiencing significant deforestation and regions
exhibiting negligible levels of forest disturbance. This spatial heterogeneity is particularly
pronounced in the Congo Basin and West African forests, where most filovirus events have been
documented.

3.3.4 Smallholder and Industrial Oil Palm Plantations

To examine how different types of oil palm operations might influence spillover risk, we
compile annual classifications of oil palm plantations into two distinct categories—smallholder
and industrial—for each grid cell from 2001-2018.

This analysis addresses a significant data limitation in African oil palm research. Unlike
Southeast Asian plantations that have been extensively mapped, African oil palm datasets were
extremely scarce until recently. The development of advanced remote sensing techniques has only
recently enabled continental-scale classification of plantation types. While Descals et al. (2024)
provides a global classification using Sentinel-1 data spanning 20162021 with back-estimation
to 1990, that dataset faces potential accuracy issues from Landsat 7's scan line corrector failure
after May 2003, which created systematic data gaps in the imagery.

To overcome these scan line limitations, we developed an alternative approach using
MODIS satellite data. MODIS provides uninterrupted daily global coverage from 2000 onward,
ensuring consistent temporal monitoring of land cover changes across Africa. This continuous data

stream proves especially valuable for detecting brief windows of bare soil exposure that
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characterize new plantation establishment—events often missed by sensors with lower temporal
resolution or compromised by data gaps.

Our methodological framework, detailed in Chapter 2, integrates multiple spectral indices
including the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index
(EVI), and raw reflectance bands (Red, Near-Infrared, and Blue) to capture the diverse biophysical
characteristics of African landscapes. These combined indices enhance discrimination between
land cover types, particularly in heterogeneous and seasonally dynamic environments.

For classification, we employed an ensemble of machine learning algorithms, ultimately
selecting XGBoost as our primary classifier based on its superior cross-validation performance
(overall accuracy: 80.25% + 2.12%). This approach proved especially reliable for identifying
industrial plantations, which exhibit uniform canopy structure and spatial arrangement, compared
to the more fragmented and heterogeneous smallholder systems.

The resulting annual maps distinguish between smallholder and industrial plantation
regimes, with areas normalized by grid cell size to yield spatially explicit ratios for epidemiological
analysis. We validated our MODIS-based classifications through cross-referencing with Descals
et al. (2024), confirming result stability across different measurement approaches. While our
methodology offers significant improvements in temporal continuity and classification accuracy,
mixed-pixel effects in highly fragmented landscapes may still limit precision in detecting
smallholder plantations.

After classification, we normalize plantation areas by total cell area, yielding ratios of
smallholder and industrial oil palm coverage per grid cell. Table 3.1 reveals that both smallholder
(mean = 0.0000714) and industrial (mean = 0.0000554) plantation coverage appears minimal when

averaged across all cells, yet high standard deviations indicate considerable geographic
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concentration. This pattern aligns with known oil palm cultivation hotspots in West and Central
Africa, which notably overlap with areas of higher filovirus incidence.

3.3.5 Socioeconomic and Environmental Variables

To capture the socioeconomic and environmental contexts that may influence filovirus
spillover risk, we incorporate data from the AfroGrid dataset (Schon & Koren, 2022). This dataset
integrates multiple geospatial sources within the Prio-grid framework (Tollefsen et al., 2012),
ensuring compatibility with our study's spatial and temporal structure.

Nighttime Light per Hectare

Nighttime light intensity serves as a widely recognized proxy for economic development,
infrastructure quality, and urbanization (Chen & Nordhaus, 2011; Michalopoulos & Papaioannou,
2013). Data for this variable come from two sources: the Defense Meteorological Satellite Program
(DMSP) for earlier years and the Visible Infrared Imaging Radiometer Suite (VIIRS) for later
years.

We normalize nighttime light intensity by each cell's land area, yielding a measure of
nighttime light per hectare. While nighttime lights have proven valuable for capturing economic
activity, recent studies by Doll et al. (2006) and Chen & Nordhaus (2019) note potential limitations
in rural areas where economic activities may not generate significant illumination. Nevertheless,
the variable remains useful for identifying areas with infrastructure development that might
influence disease surveillance capabilities.

Population per Hectare

Population density reflects the distribution and concentration of human populations within
each grid cell. We derive these estimates from the WorldPop project (WorldPop, 2021), which

provides spatially disaggregated, annually updated population counts for Africa. Like nighttime
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light intensity, population counts are normalized by the cell's land area to yield population per
hectare.

As seen in Table 3.1, population density shows considerable variation (mean = 0.3277
persons per hectare, SD = 1.17), reflecting Africa's complex settlement patterns, from dense urban
centers to sparsely populated rural areas. This variation likely influences human-wildlife contact
patterns and consequently spillover risk.

Temperature and Precipitation

Both temperature and precipitation data are sourced from the Climate Research Unit Time-
Series (CRU TS) dataset (Harris et al., 2020). Following the approach used in Pigott et al. (2014),
we include these variables to account for environmental conditions that influence reservoir species
distribution and behavior. Temperature plays a critical role in shaping the habitats of virus
reservoir species such as bats and primates (Han et al., 2016), while precipitation patterns affect
the structure and composition of ecosystems.

The inclusion of these climate variables allows us to control for their effects when assessing
the impact of deforestation and oil palm expansion. By including cell fixed effects in our
econometric model (see Section 3.4), we leverage the year-to-year variation in these variables
within each cell to identify their influence on spillover risk.
Our inclusion of both socioeconomic and environmental controls allows us to isolate the specific
effects of land-use changes (deforestation and oil palm expansion) from broader contextual factors
that might independently influence filovirus spillover dynamics.
3.4 Estimation Strategy

To analyze the determinants of filovirus spillover events, we employ a linear probability

model (LPM) as our baseline specification. While nonlinear models like logit or probit are
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common alternatives for binary outcomes, the LPM offers several advantages in our context,
including straightforward interpretation of coefficients, computational efficiency with high-
dimensional fixed effects, and flexibility in handling interaction terms for heterogeneity analysis
(Angrist & Pischke, 2009).

Our dependent variable is a binary indicator representing spillover occurrence in a specific
location during a given year. The probability of a filovirus spillover in grid cell k at time t is
modeled as follows:

Pr[FVy,1] = aqyForestLossy: + aySmally, + azIndustrialy, + ayXye + vi + 8it + Exe

In this equation, FV} is a binary indicator equal to 1 if a filovirus (Ebola or Marburg)
spillover event occurs in grid cell k or its eight adjacent cells at time t and 0 otherwise. ForestLoss
represents the ratio of deforested area to total cell area in grid cell k at time t. Smalli; and Industriali
capture the ratios of smallholder and industrial oil palm plantation areas to total cell area,
respectively. Xjs is a vector of time-varying control variables measured at the grid cell level,
including nighttime light intensity, population density, mean annual temperature, and annual
rainfall. We also include yx, which denotes grid cell fixed effects controlling for time-invariant
characteristics at the cell level, and §;;, which represents country-by-year fixed effects accounting
for time-varying national factors. Finally, & is the error term.

Our empirical strategy addresses potential sources of bias through several channels. First,
we include cell-specific fixed effects to control for unobserved, time-invariant characteristics at
the grid cell level. These fixed effects absorb any stable geographical features such as elevation,
slope, soil quality, historical land-use patterns, and distance to rivers or other natural boundaries.
They also account for baseline ecological conditions that might influence both land-use decisions
and disease dynamics. By employing a within-cell identification strategy, we effectively compare

each cell to itself over time, isolating the impact of temporal changes in our key independent
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variables while holding geography constant. This approach is particularly crucial when studying
spatial phenomena where location-specific factors might confound the relationship between land
use and disease emergence.

We also incorporate country-by-year fixed effects to account for time-varying factors at
the national level. These include policy changes affecting forest management or agricultural
development, national economic conditions that might influence land-use decisions, public health
interventions and disease surveillance capabilities, annual fluctuations in climate patterns that
might affect vector populations, and conflict or political instability that could disrupt both land
management and health systems. By including these fixed effects, we absorb any nation-wide
shocks or trends that might simultaneously influence land-use practices and disease dynamics.
This two-way fixed effects structure helps mitigate omitted variable bias by accounting for both
spatial and temporal unobserved heterogeneity (Wooldridge, 2010). The country-by-year fixed
effects also address potential concerns about reporting bias, as outbreak detection may vary with
a country's surveillance capabilities, which can change over time.

Given that our dependent variable is binary and extremely rare (mean = 0.00013), we take
specific steps to address the challenges associated with rare events analysis. While King and Zeng
(2001) demonstrate that logistic regression may underestimate the probability of rare events, other
econometric studies suggest that linear probability models with fixed effects can remain consistent
even with rare binary outcomes (Greene, 2004).

While linear probability models have known limitations, including the possibility of
predicted probabilities outside the [0,1] interval and heteroskedasticity, this specification offers
several advantages for our analysis. The coefficients are directly interpretable as marginal effects

on the probability of spillover occurrence. For instance, a; represents the change in spillover
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probability associated with a one-unit increase in forest loss ratio. The model readily
accommodates our extensive fixed effects structure without encountering the incidental parameters
problem common to nonlinear specifications (Lancaster, 2000). Additionally, the linear
framework allows for straightforward interpretation of interaction terms in subsequent
specifications exploring heterogeneous effects. To address heteroskedasticity concerns, we
employ robust standard errors throughout our analysis. Additionally, we verify that predicted
probabilities from our main specifications remain predominantly within the unit interval,
mitigating concerns about the linear functional form.
3.5 Results

The empirical results from the linear probability models (LPM) examining the
determinants of filovirus spillover events are presented in Table 3.2. Initially, in the simplest
specification without fixed effects (Column 1), the ratio of forest loss demonstrates a strong
positive and statistically significant relationship with spillover probability. However, this
association diminishes substantially upon the introduction of grid-cell fixed effects (Column 2)
and becomes statistically insignificant once country-by-year fixed effects are incorporated
(Columns 3-5). The attenuation of these coefficients and the subsequent loss of significance
indicate that the initial observed relationship primarily captured time-invariant, location-specific

characteristics rather than dynamic temporal changes within individual cells.
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Table 3.2 Main model estimates

Estimator LPM
Dependent variable Was there a FV spillover?
Q) 2 (3) ) (% (6)
Ratio of forest loss 0.03475%** 0.01433* 0.00460 0.00431 0.00449 -0.01767
(0.00600) (0.00747) (0.00766) (0.00764) (0.00766) (0.01451)
Ratio of forest loss? 0.06353
(0.04527)
Ratio of smallholder oil palm plantations -0.15059%** -0.04060 -0.06966* -0.09827**  -0.09598**  -0.29294**
(0.04093) (0.02672) (0.03601) (0.04561) (0.04475) (0.12437)
Ratio of smallholder oil palm plantations? 2.18405%**
(0.98021)
Ratio of industrial oil palm plantations -0.11874 -0.01964 0.21982**  0.21430* 0.21952%* 0.52499**
(0.09426) (0.08751) (0.11102) (0.11300) (0.11327) (0.26484)
Ratio of industrial oil palm plantations? -7.56173
(4.91112)
Socioeconomic Controls No No No Yes Yes Yes
Environmental Controls No No No No Yes Yes
Country x year fixed effects No No Yes Yes Yes Yes
Cell fixed effects No Yes Yes Yes Yes Yes
Cluster Yes Yes Yes Yes Yes Yes
Observations 192,006 192,006 192,006 192,006 192,006 192,006
Cells 10,667 10,667 10,667 10,667 10,667 10,667

Notes: *** p <0.01, ** p <0.05, * p <0.1, standard errors in parentheses.

The effects of smallholder oil palm plantations on spillover risk reveal a consistently
negative relationship across most model specifications. Although initially not statistically
significant with only grid-cell fixed effects (Column 2), the negative association becomes
significant when country-by-year fixed effects and additional socioeconomic and environmental
controls are included (Columns 3-5). Specifically, in the fully controlled model (Column 5),
smallholder plantation coverage exhibits a statistically significant negative relationship with
spillover risk. This result suggests that smallholder plantations, characterized by landscape
heterogeneity and ecological complexity, potentially mitigate the conditions conducive to filovirus
transmission.

Introducing quadratic terms in column 6 uncovers nonlinear relationships for smallholder
plantations, revealing a statistically significant U-shaped pattern. Specifically, the linear term is
negative, indicating reduced spillover risk at lower plantation coverage levels, whereas the

quadratic term is positive, suggesting a potential increase in risk at higher plantation densities.
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Notably, however, observed plantation densities rarely reach levels at which the risk-reduction
effect reverses. Thus, within the typical observed range, smallholder plantations predominantly
exert a protective effect against filovirus spillover.

Conversely, industrial oil palm plantations exhibit a distinctly positive and statistically
significant association with spillover risk in models incorporating fixed effects and additional
covariates (Columns 3-5). This positive relationship becomes particularly robust and pronounced
when country-by-year fixed effects and socioeconomic and environmental controls are included,
underscoring the role of industrial plantation regimes in elevating filovirus spillover risk. The
nonlinear specification (column 6) further reinforces these findings, showing a consistent positive
linear effect for industrial plantations, while the quadratic term remains statistically insignificant.
This outcome suggests that the spillover risk increases steadily with industrial plantation density,
aligning with ecological hypotheses highlighting the role of biodiversity loss and ecological
simplification in facilitating pathogen transmission.

Overall, these results illustrate significant heterogeneity in spillover risks associated with
different land-use management systems. Industrial monoculture systems consistently enhance the
risk of filovirus spillovers, whereas smallholder systems demonstrate a generally protective effect.
These findings support the ecological theory suggesting that landscape heterogeneity and
biodiversity preservation within smallholder systems may effectively reduce zoonotic
transmission risks compared to ecologically simplified industrial plantations.

3.6 Robustness Checks

This section presents a comprehensive set of sensitivity analyses that establish the

reliability of our main findings across alternative specifications, variable definitions, and data

sources. These robustness checks systematically address potential concerns regarding the stability
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of our findings and confirm that the differential effects of industrial versus smallholder oil palm
plantations on filovirus spillover risk are not artifacts of particular methodological choices.

3.6.1 Varying the Spatial Definition of Filovirus Spillover

One potential concern with our analysis is that the geographical delineation of spillover
events might influence our findings. The baseline model codes a filovirus spillover in cell k if an
event occurs either in that cell or within its eight surrounding cells (i.e., a 9-cell buffer). This
approach acknowledges the mobility of fruit bat species—particularly the straw-colored fruit bat
(Eidolon helvum), which routinely travels 10-40 km nightly and has been documented to cover up
to 88 km (Fahr et al., 2015; Abedi-Lartey et al., 2016). However, to ensure our results are not
sensitive to this particular spatial definition, we examine two alternative configurations:

1 Cell Definition: A stricter metric where FVkt = 1 only if a spillover occurs directly in
cell k.

13 Cells Definition: An expanded buffer that includes the eight adjacent cells plus four

additional cells along the middle facets of each side, yielding 13 total cells.

There was a filovirus event at this point.

FVi: equal to 1.

FVi: equal to 0.

1 cell 9 cells 13 cells

Figure 3.3: Definition of each cell
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Table 3.3 presents robustness checks employing alternative spatial definitions of filovirus
spillover events to verify the sensitivity of our results. Initially, our baseline definition (9-cell
buffer) codes a filovirus spillover event as occurring if it happens within a grid cell or its eight
surrounding cells. This definition accounts for the typical mobility of reservoir species, particularly
fruit bats, which frequently travel substantial distances. To assess robustness, we also employ two
alternative spatial definitions: a stricter 1-cell definition, which records spillovers only within the
exact grid cell of occurrence, and a broader 13-cell definition, encompassing spillovers occurring
in the cell plus the adjacent eight cells and four additional surrounding cells.

Table 3.3 Three alternative Spatial Definitions of Filovirus Spillover

Estimator LPM
Dependent variable Was there a FV spillover?
1 cell 9 cells 13 cells
Ratio of forest loss -0.00389 -0.01767 -0.02441
(0.00386) (0.01451) (0.01498)
Ratio of forest loss> 0.01487 0.06353 0.07136
(0.01397) (0.04527) (0.04536)
Ratio of smallholder oil palm plantations -0.04400 -0.29294%* -0.36675%*
(0.03630) (0.12437) (0.15032)
Ratio of smallholder oil palm plantations? 0.33642 2.18405%* 2.76774**
(0.28267) (0.98021) (1.18488)
Ratio of industrial oil palm plantations 0.02314 0.52499%** 0.67729**
(0.06742) (0.26484) (0.31650)
Ratio of industrial oil palm plantations® -0.13648 -7.56173 -9.18197
(1.14322) (491112) (5.95370)
Control variables Yes Yes Yes
Country x year fixed effects Yes Yes Yes
Cell fixed effects Yes Yes Yes
Cluster Yes Yes Yes
Observations 192,132 192,132 192,132

Notes: *** p <0.01, ** p <0.05, * p <0.1, standard errors in parentheses.

Results under the strictest 1-cell definition indicate no statistically significant relationships
between smallholder or industrial oil palm plantations and spillover risk. The lack of significance
in this restrictive spatial definition suggests it inadequately captures broader ecological processes
and interactions at the landscape scale, particularly the movement and habitat use of highly mobile
reservoir species such as fruit bats.

In contrast, results from both the 9-cell and the more inclusive 13-cell definitions provide

robust support for the initial findings. Industrial oil palm plantations consistently exhibit
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statistically significant positive associations with spillover risk, whereas smallholder plantations
demonstrate robust negative relationships. The strength and statistical significance of these
relationships notably increase with the broader 13-cell definition, emphasizing that ecological
interactions influencing spillover risks extend beyond individual cells, reflecting landscape-scale
processes.

These robustness checks underscore the importance of considering appropriate ecological
scales when modeling zoonotic spillovers. The findings emphasize that broader spatial definitions
better capture the critical ecological dynamics, highlighting the role of industrial plantations in
amplifying spillover risks and the potential protective effects of smallholder plantations. This
reinforces the validity of employing moderate to expansive spatial buffers in epidemiological
studies on zoonotic disease emergence.

3.6.2 Combining Smallholder and Industrial Plantations

Table 4 presents additional robustness checks to evaluate whether aggregating smallholder
and industrial oil palm plantations into a single category affects the observed relationships with
filovirus spillover risk. When both plantation types are combined, the resulting oil palm variable
is statistically insignificant across all spatial definitions—1-cell, 9-cell, and 13-cell buffers. This
aggregated analysis contrasts sharply with earlier results, where disaggregated plantation types

exhibited distinct and statistically significant effects.
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Table 3.4 Combining Smallholder and Industrial Plantations

Estimator LPM
Dependent variable Was there a FV spillover?
1 cell 9 cells 13 cells
Ratio of forest loss -0.00390 -0.01773 -0.02449
(0.00386) (0.01451) (0.01497)
Ratio of forest loss? 0.01487 0.06351 0.07134
(0.01396) (0.04524) (0.04533)
Ratio of oil palm plantations -0.01014 0.06197 0.09810
(0.02721) (0.08892) (0.10371)
Ratio of oil palm plantations? 0.06045 -0.44410 -0.65539
(0.18914) (0.63468) (0.74103)
Control variables Yes Yes Yes
Country x year fixed effects Yes Yes Yes
Cell fixed effects Yes Yes Yes
Cluster Yes Yes Yes
Observations 192,132 192,132 192,132

Notes: *** p <0.01, ** p <0.05, * p <0.1, standard errors in parentheses.

The lack of significant findings for the aggregated oil palm variable highlights the
importance of distinguishing between different plantation management regimes. Combining both
plantation types masks their divergent ecological impacts, effectively neutralizing their respective
positive and negative influences on the risk of spillover. Industrial plantations, characterized by
ecological simplification and reduced biodiversity, significantly enhance spillover risk, while
smallholder plantations, featuring greater landscape complexity and biodiversity, tend to mitigate
risk.

These findings highlight a critical methodological insight: treating heterogeneous land-use
categories as homogenous entities may obscure important epidemiological relationships.
Consequently, future research and policy recommendations should carefully differentiate between
plantation types to accurately reflect their distinct ecological roles and potential implications for
the emergence of zoonotic diseases.

3.6.3 Using an Alternative Oil Palm Dataset

Table 3.5 presents a robustness analysis utilizing an alternative dataset from Descals et al.
(2024) to verify the stability and generalizability of our primary findings. This dataset utilizes

Sentinel-1 radar data and historical Landsat imagery to classify smallholder and industrial oil palm

69



plantations, offering a comparative assessment of plantation dynamics from an independent

source.

Table 3.5 Using an Alternative Qil Palm Dataset

Estimator LPM
Dependent variable Was there a FV spillover?
1 cell 9 cells 13 cells
Ratio of forest loss -0.00387 -0.01787 -0.02458
(0.00386) (0.01453) (0.01499)
Ratio of forest loss® 0.01484 0.06372 0.07152
(0.01397) (0.04529) (0.04537)
Ratio of smallholder oil palm plantations (Descals et al., 2024) -0.03677 -0.15444 -0.21565
(0.03006) (0.11027) (0.13550)
Ratio of smallholder oil palm plantations? (Descals et al., 2024) 0.27283 1.01028 1.44668
(0.21968) (0.78944) (0.97590)
Ratio of industrial oil palm plantations (Descals et al., 2024) -0.05255 0.54241 0.60700
(0.08576) (0.49036) (0.45232)
Ratio of industrial oil palm plantations® (Descals et al., 2024) 1.93783 -10.22546 -9.73837
(1.99766) (12.28666) (10.78549)
Control variables Yes Yes Yes
Country x year fixed effects Yes Yes Yes
Cell fixed effects Yes Yes Yes
Cluster Yes Yes Yes
Observations 192,132 192,132 192,132

Notes: *** p < 0.01, ** p <0.05, * p <0.1, standard errors in parentheses.

Results from analyses based on this alternative dataset generally align with our initial
findings in terms of directionality. Specifically, industrial plantations consistently exhibit positive
associations with filovirus spillover risk, while smallholder plantations show negative
relationships. However, these coefficients do not reach statistical significance in this alternative
dataset. This attenuation in significance is likely due to increased measurement noise associated
with methodological limitations in the Descals et al. dataset, such as temporal misclassification
and reduced efficacy in capturing dynamic land-use changes.

Despite the absence of statistical significance, the persistent directional relationships
corroborate our primary ecological hypotheses and support the qualitative robustness of our
conclusions. This robustness check highlights the critical importance of precise measurement and
high-frequency temporal resolution in epidemiological studies, reinforcing the methodological

advantage of employing reliable, high-quality datasets such as MODIS imagery. These findings
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underscore the validity of our main conclusions regarding the contrasting ecological roles of
smallholder and industrial oil palm plantations in influencing zoonotic spillover risks.

3.6.4 Individual Land-Use Impact Analysis

To examine the isolated effects of each land-use type, we conducted separate regression
analyses across 9 grid cells for deforestation, smallholder oil palm plantations, and industrial oil
palm plantations. These individual analyses reveal distinct patterns in their relationships with
filovirus spillover risk (Table 3.6).

For deforestation alone (column 1 and 2), neither linear nor quadratic terms exhibit
statistical significance, suggesting a negligible individual impact of deforestation on spillover
events within the analytical framework employed. Although deforestation has frequently been
associated with elevated zoonotic risks in prior studies, the lack of statistical significance here
implies that isolated forest loss may not sufficiently capture the complexity of ecological dynamics
influencing filovirus spillovers, particularly when socioeconomic, environmental, and
spatiotemporal controls are comprehensively incorporated.

Table 3.6 Individual Land-Use Effects on Filovirus Spillover

Estimator LPM
Dependent variable Was there a FV spillover?

@ 2 (3) (G) (5 (6)
Ratio of forest loss 0.00128 -0.00392

(0.00281) (0.00387)
Ratio of forest loss® 0.01489

(0.01398)
Ratio of smallholder oil palm plantations -0.01038 -0.02913
(0.00994) (0.02765)
Ratio of smallholder oil palm plantations? 0.22643
(0.22755)
Ratio of industrial oil palm plantations 0.00522 -0.00571
(0.02755) (0.05820)
Ratio of industrial oil palm plantations? 0.33518
(1.04933)

Socioeconomic Controls Yes Yes Yes Yes Yes Yes
Environmental Controls Yes Yes Yes Yes Yes Yes
Country x year fixed effects Yes Yes Yes Yes Yes Yes
Cell fixed effects Yes Yes Yes Yes Yes Yes
Cluster Yes Yes Yes Yes Yes Yes
Observations 192,006 192,006 192,006 192,006 192,006 192,006
Cells 10,667 10,667 10,667 10,667 10,667 10,667

Notes: *** p < 0.01, ** p <0.05, * p <0.1, standard errors in parentheses.
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The regressions isolating smallholder oil palm plantations (Columns 3 and 4) similarly
show statistically insignificant coefficients, though the direction of the relationships aligns
consistently with expectations from ecological theory. Specifically, the negative signs observed in
both linear and quadratic specifications suggest a potential protective effect of smallholder
plantation landscapes, attributable to their greater ecological heterogeneity and biodiversity. The
quadratic specification further hints at a possible U-shaped relationship, indicating diminishing
protective effects at higher plantation densities; however, these effects remain statistically
inconclusive. This evidence underscores the role smallholder plantation management might play
in moderating zoonotic spillover risk, though it also highlights the complexity of definitively
capturing these dynamics through separate regressions alone.

For industrial oil palm plantations (Columns 5 and 6), the regression results likewise do
not achieve statistical significance when analyzed independently. Nevertheless, the direction of
the coefficients, predominantly positive, is consistent with theoretical expectations that industrial
monoculture systems, characterized by ecological simplification and reduced biodiversity, could
amplify zoonotic spillover risks. The absence of statistical significance in this isolated analysis
suggests that the impacts of industrial plantations on spillover risk might be more accurately
represented when considered within a broader ecological and land-use context, indicating possible
interaction effects with other landscape features not captured here.

In summary, the separate regression analyses highlight that isolating single land-use
categories—deforestation, smallholder plantations, or industrial plantations—does not fully
capture the complexity or statistically robust relationships previously identified in combined
regressions. These findings reinforce the importance of modeling spillover dynamics within

integrated frameworks that simultaneously account for multiple interacting land-use factors.
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Consequently, future analyses and policy recommendations should continue to emphasize
differentiated management practices and consider synergistic effects between distinct land-use
categories to effectively mitigate zoonotic disease risks.

3.7 Conclusions and Policy Implications

This chapter aimed to quantify the relationship between land-use transitions—specifically
deforestation, smallholder oil palm expansion, and industrial oil palm expansion—and the risk of
Ebola or Marburg virus spillover events across tropical Africa. Employing a linear-probability
framework with a 0.5° grid-cell panel dataset spanning 2001-2018 and incorporating
comprehensive socioeconomic and climatic controls, the analysis isolated within-cell temporal
variations. This empirical approach yielded robust insights into how distinct oil palm plantation
systems differentially influence filovirus spillover risk.

Key findings emerged from this analysis. First, deforestation alone, once controlling for
persistent grid-cell and country-year fixed effects, was not significantly associated with filovirus
spillover events. Although forest loss has commonly been linked to increased zoonotic risks in
earlier literature, the absence of statistical significance here suggests that the complexity of
ecological dynamics influencing spillover events requires considering subsequent land
management practices beyond mere deforestation.

Second, industrial oil palm plantations were consistently and significantly associated with
increased spillover probabilities. The quantitative evidence demonstrated that a one-percentage-
point increase in the share of industrial oil palm plantations correlated with approximately a 0.22
percentage-point rise in spillover risk. This relationship intensified when considering broader

spatial buffers reflective of bat mobility ranges, highlighting the critical role industrial-scale
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monocultures may play in facilitating pathogen transmission through simplified habitats and
reduced biodiversity.

Third, contrastingly, smallholder oil palm plantations exhibited a significant negative
relationship with spillover risk, suggesting that these heterogeneous landscapes, which typically
maintain higher biodiversity and ecological complexity, may mitigate zoonotic transmission.
Sensitivity analyses employing alternative spatial scales and different datasets consistently
reinforced the protective role of smallholder plantations, underscoring the ecological resilience
inherent in more diversified agricultural systems.

These empirical findings contribute to broader debates within ecological and agricultural
economics by clarifying that plantation management regimes, rather than oil palm cultivation per
se, primarily drive variations in zoonotic spillover risks. The analysis supports ecological theories
that emphasize the risk-amplifying potential of simplified landscapes compared to heterogeneous
agricultural mosaics.

Given these results, targeted policy implications arise directly from this study.
Policymakers should prioritize steering industrial-scale plantation developments away from
ecologically sensitive areas, especially regions recognized as habitats and corridors for bat
populations. Spatially explicit environmental assessments and strategic planning can help
minimize epidemiological externalities associated with large-scale monoculture plantations.
Additionally, supporting smallholder oil palm cultivation through technical assistance, market
access initiatives, and financial incentives can simultaneously promote rural development
objectives while effectively mitigating spillover risks.

Finally, this research highlights the necessity for integrated policy frameworks that

explicitly consider zoonotic risk factors in agricultural expansion decisions. Coordinated efforts
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across the agricultural, environmental, and public health sectors can significantly enhance disease
surveillance capabilities, allowing for proactive interventions at critical plantations. Thus,
promoting landscape-level planning that incorporates ecological resilience emerges as an essential
step toward sustainable agricultural development that safeguards both human health and

biodiversity.
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CHAPTER 4
OPTIMAL SMALLHOLDING AND INDUSTRIAL OIL PALM PLANTATIONS:

ACCOUNTING FOR THE FILOVIRUS SPILLOVER RISK IN AFRICA

4.1 Introduction

Palm oil is one of the world’s most economically significant crops, widely used in
processed foods, soaps, cosmetics, and biodiesel. According to the Food and Agriculture
Organization (FAO, 2024), global production of oil palm fresh fruit bunches (FFB) has more than
tripled, increasing from approximately 120 million tons in 2000 to over 400 million tons in 2020.
Similarly, the area cultivated for oil palm has expanded from about 10 million hectares to nearly
29 million hectares over the same period (FAO, 2024; Corley & Tinker, 2016).

The expansion of oil palm plantations in Africa has significantly contributed to economic
growth in a region where approximately one-third of the population lived below the poverty line
as of 2019 (World Bank, 2022). Over 20 African countries currently cultivate oil palm on nearly
6 million hectares of land, providing critical employment and income opportunities for rural
communities (World Economic Forum, 2022). In Cameroon, smallholder oil palm farming
generates annual wages of approximately $1,281 per hectare per household for farmers practicing
intercropping, substantially boosting rural incomes (Ayompe et al., 2021). A study from Malawi
found that oil palm production simultaneously provides cooking oil for household consumption,
creates local employment, and increases cash income for indigenous farming households (Mweta
et al., 2025). The industry's development potential is substantial, with estimates suggesting up to

22 million hectares in West and Central Africa could be converted to oil palm plantations in
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coming years, potentially transforming regional economies if managed sustainably (World
Economic Forum, 2016). Palm oil production also contributes to poverty alleviation in many
African countries, helping fulfill Sustainable Development Goal 1 by providing sustainable
livelihoods (Ayompe et al., 2021).

Despite its economic importance, the rapid expansion of oil palm plantations has raised
significant environmental and public health concerns. The primary ecological issues include
deforestation, biodiversity loss, and the increased risk of zoonotic disease spillovers (Faust et al.,
2018; Wilkinson et al., 2018). Recent ecological studies suggest a possible link between oil palm
plantation expansion and the spread of Filoviruses, specifically Ebola and Marburg viruses,
through interactions involving fruit bats, which are identified as primary reservoir hosts crucial to
filovirus transmission cycles (Alexander et al., 2015; Leroy et al., 2009). Oil palm plantations offer
fruit bats abundant food sources and refuge from heat stress, thereby increasing the likelihood of
viral spillover events in human populations, particularly among plantation workers who come into
frequent contact with these bats (Shafie et al., 2011; Wallace et al., 2016). Monoculture
plantations, in particular, are hypothesized to be more attractive to bats, thereby presenting a
heightened risk compared to polyculture plantations (Wallace et al., 2016).

The 2014-2016 West African Ebola epidemic exemplifies the profound socioeconomic and
health impacts of zoonotic disease outbreaks in the region. This crisis reduced the combined GDP
of Guinea, Liberia, and Sierra Leone by approximately US $2.2 billion while causing 28,600
confirmed and probable cases with 11,325 deaths (World Bank Group, 2014; WHO, 2016). Ebola's
exceptional virulence—characterized by an average case-fatality rate of approximately 50% with
historical outbreaks ranging from 25% to 90%—makes it particularly devastating (WHO, 2025).

Subsequent outbreaks have demonstrated similarly high mortality rates despite advances in
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medical countermeasures: the 2018-2020 Democratic Republic of the Congo outbreak resulted in
3,481 cases and 2,299 deaths despite vaccine availability, while Uganda's 2022 Sudan-ebolavirus
episode produced 164 cases with 55 deaths, representing a case-fatality rate of approximately 47%
(WHO, 2020, 2023). These recurring epidemics highlight the substantial economic vulnerability
associated with zoonotic diseases, underscoring how public health emergencies can rapidly
undermine regional development gains and impose significant long-term costs on affected
economies.

Despite the clear economic and public health relevance, few studies have integrated
economic modeling explicitly to analyze the relationship between environmental change and
infectious disease spillovers. Notable exceptions include Barbier (2021), who developed an
economic model examining the costs and benefits associated with habitat transformation,
explicitly incorporating zoonotic disease transmission from wildlife to humans. Such frameworks
underscore the need to balance the economic benefits derived from habitat modifications,
including agricultural expansion, against the substantial risks posed by zoonotic disease spillovers
(Albers et al., 2020).

Building upon these insights, this study develops an economic model explicitly designed
to examine decision-making processes underlying oil palm plantation expansion. The model
distinguishes between monoculture and polyculture plantations to derive separate marginal private
cost curves reflecting differing agricultural practices and associated ecological risks. Additionally,
we quantify the marginal external costs of filovirus spillovers for each plantation type, integrating
epidemiological variables such as spillover probabilities, expected numbers of infected
individuals, with societal willingness to pay to reduce mortality risk. Using this framework, we

numerically simulate the effectiveness of taxation policies intended to internalize these
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externalities, comparing unregulated market outcomes to socially optimal solutions. Ultimately,
our analysis aims to enhance understanding of the economic trade-offs associated with palm oil
cultivation in Africa and inform more proactive and sustainable agricultural expansion and disease
management policies.
4.2 Theoretical Framework and Model

4.2.1 Set up and Assumptions

This section develops an economic model that captures both the private production
incentives and environmental externalities associated with crude palm oil (CPO) production in
Africa. The model distinguishes between two producer types with fundamentally different
ecological characteristics: smallholder oil palm plantations (S) and industrial oil palm plantations
(L). To maintain analytical tractability while preserving the essential economic mechanisms, the
model builds on five core assumptions:

Assumption 1: Divergent Cultivation Systems

Industrial oil palm plantations (L) employ monoculture systems, converting large
contiguous areas into uniform stands of high-yielding oil palm varieties. In contrast, smallholder
farms (S) typically adopt polyculture approaches, integrating oil palms with other crops and
maintaining more diverse landscape elements (Carrere, 2011). This structural difference drives
divergent ecological impacts: monocultures create extensive homogeneous habitats with
synchronized fruiting patterns that attract fruit bats (Alexander et al.,2015; Wallace et al., 2016).
Polyculture systems, with their mixed species composition, irregular canopy structures, and
retained forest fragments, might dilute bat visitation rates and reduce human-bat contact

opportunities.
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Assumption 2: Price-Taking Behavior

African CPO producers account for a relatively small share of global supply (6.3 % in
2023, FAOSTAT), so each farm believes it cannot influence P. Profit maximization is therefore
equivalent to choosing output ¢; (or, equivalently, cultivated area 4;) such that marginal cost equals
the exogenous price.

Assumption 3: Leontief production technology with fixed land—labor ratio

Oil-palm production is subject to strict biophysical and managerial constraints: every
hectare must be pruned, fertilized, weeded, and—most labor-intensively—harvested at 7- to 10-
day intervals (Corley & Tinker 2016). Field surveys confirm that estates and smallholders
therefore allocate workers in fixed proportions to cropped areas (Kubitza & Krishna 2020). We
capture this one-to-one linkage with a Leontief production function in which output is limited by
the scarcest of three inputs—Iand (4;), hired labor (L;), and a bundle of other inputs:

q; = By min{A;, a;L;, K.}, i € {S, L} (1)
where f3; is the productivity or physical yield, a; fixes the land-labor ratio. The composite K, lumps
together non-labor inputs that are either proportional to area (fertilizer, pesticide) or sunk (mill
equipment) and will therefore be folded into the cost function below.

Assumption 4: Increasing Marginal Land-Preparation Costs

The per-hectare cost of establishing new plantations increases as cultivation expands into
less favorable locations—areas with poorer soils, challenging topography, or greater distance from
existing infrastructure. We model this through a linear marginal preparation cost function:

CP;(A;) = a; + b;A;

87



Integrating from 0 to A; yields a quadratic total preparation cost:

Ai b, A? 2
CP(ADA; = [ (a;+ bA)dA; = a;A; + Tl @)
0

Economically, the parameter a; embodies a first-mover advantage: when a; < 0, it implies
that the very first hectares converted are unusually cheap because they lie on prime land—fertile
soils, gentle topography, and close to existing roads or milling facilities—so small expansions can
be undertaken at minimal cost. By contrast, b; > 0 captures the increasing marginal difficulty of
land preparation: as cultivation radiates outward, plots become progressively less favorable
(poorer soils, steeper terrain) and farther from infrastructure, driving up per-hectare clearing,
drainage, and transport expenses.

Assumption 5: Competitive labor market

Producers hire workers at the prevailing wage w. The Leontief technology fixes labor
requirements at L; = q;/(a;8;), yielding total wage costs that scale linearly with output.

Combining these elements, the annual total cost function for producer type i is:

b;A? 3)

TCi = FCl + al-Al- + + WLi

where
e F(; is fixed costs, non-area-dependent outlays such as perennial tree establishment, road

upgrades, certification fees, and management salaries;

biA? . .
o aA;+ # is the land-preparation component;

e wlL;is the hired-labor cost.
Using the yield relation q; = B;A; and labor requirement L; = q;/(@;B;), equation (3) can be
rewritten in output terms, which sets the stage for deriving marginal and firm-level supply

functions, and ultimately the aggregate market supply in Section 4.2.2.
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4.2.2 Supply curves
This section derives the supply functions for smallholder (S) and industrial (L) oil palm
producers, capturing their respective production decisions under the technological and cost

constraints established in Section 4.2.1.

Firm-Level Supply Functions

Each producer maximizes profit given the world price P. The profit function is given by

b;A? 4
Ll _wL;,i €{S, L} @

TT; =Pqi—FCl~—aiAi—

where A;is the cultivated area, L; the hired labor (at wage w), and the quadratic term captures

31
1

rising land-preparation costs. In equation (4), indexes the type of plantation, smallholder or
industrial, i € {S, L}. For simplicity we assume representative firms within each type of plantation.

Under the Leontief technology, output relates to cultivated area through q; = f;4; , while
labor requirements follow L; = q;/(;B;) . Substituting these relationships into the profit function
and differentiating with respect to output g; yields the first-order condition for profit

maximization:

b; a w ®)
P=MC(q)=—qi+—++—

This condition states that each producer expands output until marginal cost equals the

market price. Solving for q; provides the firm's supply function:

_BIP B w
q; = b, —b—i(ai‘i‘a—i) (6)

Since b; > 0 for both producer types, these supply functions exhibit positive price

responsiveness, in other words, production expands as world prices increase.
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Break-even prices and market participation
Each supply function crosses zero output at a critical break-even price where revenue
exactly covers marginal cost:
v (7)
a; + a
l Bi

P-BE —

Production begins only when the market price exceeds this threshold. Based on stylized
facts of oil palm cultivation in Africa, we anticipate that PPE < PZE because industrial estates
typically have higher yield per hectare (8, > fs) and more efficient labor utilization (a; > ag).
This ordering implies that industrial producers enter the market at lower price points than
smallholders, reflecting their productivity advantages and economies of scale.

Aggregate market supply

Combining the firm-level supply functions yields a piecewise, "kinked" market supply

function that reflects sequential market entry as prices rise:

0, P < PBE
Q(P) = {q.(P), PBE < p < PBE )
qL(P) + qS(P), P > PSBE

This aggregate supply function captures three distinct market regimes:
1. No production (P < PEE): When prices fall below the industrial break-even threshold, no
production occurs as neither producer type can cover marginal costs.
2. Industrial-only supply ( PEE < P < PEE): As prices rise above the industrial break-even
point but remain below the smallholder threshold, only industrial estates operate,

leveraging their cost advantages.

90



3. Dual-producer supply (P = PZE): Once prices exceed the smallholder break-even level,
both producer types actively participate in the market, with their relative contributions

determined by their respective supply elasticities.

Price Price Price
Supply curve
bs
Slope = ﬁ_sg
TsQseFWME e
asPs
apa, +w
aifL
as @ Q

Figure 4.1: supply curves

This sequential entry pattern aligns with observed market dynamics in African palm oil
producing regions, where industrial producers often establish operations before smallholder
sectors develop (Reference). The model thus captures not only the volume response to price
changes but also the evolving composition of production across different cultivation systems—a
critical distinction when considering zoonotic spillover risks that vary by producer type.

4.2.3 Market Equilibrium

Building on the supply curves developed in Section 4.2.2, this section characterizes the
unregulated market equilibrium that emerges when producers respond to the exogenous world
price without internalizing spillover externalities. This equilibrium establishes the benchmark

against which we will evaluate policy interventions.
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Equilibrium Conditions

Under Assumptions 1-5, each producer takes the world price P* as given and selects output
to equate marginal cost with this price. The resulting market equilibrium depends critically on how
P* compares to the break-even thresholds PZE and PEE (equation 8).

These thresholds partition the equilibrium into three possible regimes, each with distinct
production patterns and welfare implications.

Regime-Specific Equilibria

1. No production (P* < PPE)
When the world price falls below the industrial break-even threshold, neither producer

type covers its marginal costs. The market-clearing quantities are:

This corner solution represents periods of extreme price depression in global palm oil
markets, during which new plantation development halts and existing operations may be

temporarily abandoned or converted to alternative crops.
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Figure 4.2: No production
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2. Industrial-only supply ( PPE < P* < PEE)

As prices rise above the industrial break-even point but remain below the smallholder

threshold, only industrial plantations operate profitably. Their equilibrium output is:

Zpr B w
0 _ wy _ PLY  PL =
Q. =q,(P") = b, b, (a, + aL)

while smallholder production remains dormant:

This intermediate regime illustrates how industrial producers' technological and scale
advantages enable them to maintain production even during periods of moderate price

compression, while smallholders remain excluded from the market.
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Figure 4.3: Industrial-only supply

3. Both types supplying (P* > PEE)

Once the world price exceeds the smallholder break-even threshold, both producer types

participate in the market. Their respective equilibrium quantities are:
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yielding a total regional supply of:
Q°=0Qs+Qr
This regime represents the most common market state in periods of stable or rising palm

oil prices, with both producer types actively contributing to aggregate supply

Price Price Price
Supply curve
bg
Slope = %2
asas + wif
i
aspPs :
I
: ara; +w
. afL
i
1
s Qs

Figure 4.4: Both types supplying

Consolidating these regime-specific outcomes, the unregulated market equilibrium can be

expressed as a piecewise function:

0, P* < PBE
prP* By w
- - PBE < P* PBE
Q=0 = b b %t LSBT )
Bt B¢ Bs w_ B w
—+=) P —[= —) +— — p* > pfE
{ (bL + bs [bs (a'S + as) + bL (aL + aL)]’ =15
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Given Africa's status as a price-taker in global palm oil markets, P* is determined
exogenously, and QO reflects the unconstrained, unregulated allocation of land, labor, and output
across producer types

Implications for Land Allocation and Ecological Impact

This unregulated equilibrium has significant implications for both economic welfare and
ecological risk. In Regime 3, the most relevant for contemporary African palm oil markets, the
relative contribution of each producer type to total output is determined by their respective supply
elasticities, which in turn depend on technological parameters (f3;, «;) and cost structures (a;, b;)

Crucially, this equilibrium makes no provision for the differential spillover risks associated
with each production system. Therefore, these costs remain unpriced in the unregulated
equilibrium, leading to systematic undervaluation of the ecological services provided by more
diversified production systems.

4.2.4 External Cost of Filovirus Spillover

In the unregulated market equilibrium described in Section 4.2.3, producers make decisions
based solely on private costs and benefits, disregarding the potential public health externalities
associated with filovirus transmission. This section develops a framework to quantify these
external costs, enabling their integration into a social cost function and subsequent policy analysis.

Conceptualizing Externality

Filoviruses (Ebola and Marburg virus) represent significant public health threats with high
mortality rates, substantial economic impacts, and complex ecological dynamics. Recent
epidemiological evidence suggests that fruit bats serve as natural reservoir hosts for these viruses
(Leroy et al., 2005), with oil palm plantations potentially creating ecological conditions that

facilitate spillover to humans (Olivero et al., 2017). According to the previous chapter, this risk

95



appears to vary systematically between cultivation systems, with monoculture industrial
plantations providing more attractive habitat for bat aggregation than polyculture smallholder
systems.

The externality arises because individual producers have no market incentive to factor the
epidemiological consequences of their land-use choices into production decisions, yet society
ultimately bears the costs. During the 2014-2016 West African Ebola epidemic, the direct health
burden reached 28 646 confirmed, probable, and suspected cases and 11 323 deaths across Guinea,
Liberia, and Sierra Leone (WHO, 2016). The indirect economic fallout was equally stark: the
World Bank estimated a regional GDP shortfall of US $2.2 billion in 2014 and projected losses of
up to US $32.6 billion for 2014-2015 under a high-transmission scenario (World Bank.,2014),
while mobile-phone surveys showed that nearly half of Liberia’s workforce was no longer
employed by November 2014 (World Bank.,2014b)

Quantifying Spillover Risk

To incorporate this externality into our economic framework, we model the total external
cost (TEC) for each producer type as a function of cultivated area, reflecting how plantation
expansion influences ecological conditions and human-wildlife interfaces that facilitate virus
transmission. Let A; denotes the total hectares under smallholder (S) and industrial oil palm
cultivation (L). We introduce the quadratic term because Chapter 2’s empirical spillover model
revealed a statistically significant polynomial relationship between plantation area and filovirus
risk. Therefore, allowing A4; to enter as both a linear and a squared term in equation (10). The total
external cost for producer type i € {S, L} is:

TEC; = (p1; X A; + p2; X A?) x WTP x N (10)

96



where:

e pl; and p2; are empirically estimated coefficients capturing the linear and quadratic
components of spillover probability per hectare.

e WTP represents society’s willingness-to-pay per statistical life (VSL). We adopt and
weight the benchmark VSL from Viscusi and Masterman (2017 which translates a marginal
reduction in spillover probability into its expected mortality-cost equivalent by valuing the
prevention of one “statistical” death.

e N denotes the expected number of infections in a spillover event (based on historical
outbreak data)

Marginal External Cost Functions

Differentiating TEC; with respect to area A; yields the marginal external cost (MEC),
which we decompose into two components for analytical clarity:

MEC;(A;) = (p1; X WTP X N) + (2p2; X A; X WTP X N) (11)
We define:
MEC1;(A;) = p1; X WTP X N, MEC1;(A;) = 2p2; X A; x WTP X N

The constant term MEC1; represents the baseline per-hectare external cost regardless of
scale, while the area-dependent term ME C2; captures potential non-linearities in transmission
dynamics. If p2; > 0, the marginal external cost increases with plantation area, reflecting
accelerating risk as ecological transformations intensify or as human-wildlife interfaces expand.
Conversely, if p2; < 0, marginal risk might decline with scale, potentially due to economies of

scale in disease surveillance or changes in ecological interactions at larger scales.
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Integrated Social Cost Function

To fully account for both private production costs and public health externalities, we
construct the marginal social cost (MSC) function for each producer type by adding the external

cost components to the private marginal cost derived in Section 4.2.2:

Since output and area are linked through the yield parameter (q; = B;4;), this integrated
cost function provides the basis for determining the socially optimal allocation of production
across plantation types. By explicitly differentiating the external costs associated with each
production system, the model can identify efficiency-enhancing policy interventions that account
for the heterogeneous nature of spillover risk.

Empirical Calibration of Risk Parameters

The parameterization of spillover risk coefficients p1; and p2; draws on emerging
epidemiological evidence regarding the ecological mechanisms of filovirus transmission. Wallace
et al. (2016) suggest that industrial monocultures may create more favorable conditions for bat
aggregation through synchronized fruit availability and simplified canopy structures that facilitate
roosting. In contrast, smallholder polycultures appear to maintain more diverse ecological
structures that potentially diffuse bat concentrations and reduce human-wildlife contact
opportunities.

The full empirical derivation of these risk parameters is detailed in Appendix B, drawing
on statistical analyses that relate historical filovirus outbreak locations to plantation characteristics
while controlling for confounding variables. These empirically grounded parameters enable the
model to capture the nuanced relationship between cultivation practices and disease risk, providing

a foundation for evidence-based policy interventions.
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In Section 4.2.5, we will leverage this integrated social cost function to derive the socially
optimal equilibrium that internalizes these externalities, setting the stage for evaluating potential
policy instruments in Section 4.2.6.

4.2.5 Social Optimum

In contrast to the unregulated market equilibrium, a social planner would incorporate both
private production costs and the external costs of filovirus spillover when determining the optimal
allocation of resources. This section derives the socially optimal equilibrium, providing a
normative benchmark against which policy interventions can be evaluated.

The Social Planner's Problem

The social planner seeks to maximize net social welfare by choosing cultivated areas
(A, AL) that equate marginal social cost with the world price P for each producer type i € {S, L}.
Combining the private marginal cost function from Section 2.2 with the external cost components

from Section 4.2.4 yields the comprehensive marginal social cost:

(13)

b; a; w
MSC;(q) = —qi + = +——+ (p1; + 2p2; X A;) X WTP x N
Bi Bi  aifi

Given the technological relationship q; = 8;4;, we can express this cost function in terms of

output:

ﬁ+L+(p1i+2p2ixﬁ)xWTPxN
Bi  aifi Bi

b; 14
MSCi(q) = —5q; + (14)
i

Socially Optimal Output

Setting price equal to marginal social cost provides the planner's first-order condition:

b; a;

1
=ﬁ(h+ ()

w qi
P + (pl; +2p2; X =) X WTP X N
i

E " a;B;
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Solving for the social-optimum output g;°:

HP -G gg — (PL X WTP X N)] (16)
l LMl

g% =
' b; + 2p2; X B; X WTP X N

This expression reveals several important insights about how spillover risk affects the socially
optimal allocation:
1. Baseline risk effect: The term (p1; X WTP X N) in the numerator functions as an
additional fixed cost per unit of output, effectively raising the break-even price and
reducing optimal production levels.
2. Area-dependent risk effect: When p2; > 0, the denominator term (2p2; X §; X WTP X
N) augments the slope of the marginal cost curve, making supply less elastic and further
constraining optimal output.
3. Differential impacts across producer types: If spillover risk parameters differ between
industrial and smallholder plantations as suggested by ecological evidence, the socially
optimal allocation will shift production toward the system with lower external costs,
potentially altering the composition of aggregate supply.
For any given price P, if both b; > 0 and p2; > 0, then q;° < q)—internalizing spillover risk
contracts each producer's supply curve leftward relative to the unregulated equilibrium. The
magnitude of this contraction depends on the specific risk parameters, valuation of health impacts,
and productivity characteristics of each production system.

Social-Optimum Supply Function

Aggregating across smallholder and industrial plantations, the social-optimum supply

function takes the form:
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0, P < PO, (17)
Q50(P) ={ q:°(P), PP <pP<PSO,
q°(P) +q;°(P), P =P,

where each break-even price P is the value of P that makes ¢;° = 0 in the optimal output
equation. These socially optimal break-even thresholds exceed their unregulated counterparts by
an amount proportional to the baseline marginal external cost:

Pf% = PFE + p1; X WTP X N (18)
This upward shift reflects the additional social costs that must be covered for production to

generate maximum net social benefits.
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Figure 4.5 Social-Optimum Supply Function (all produce)

4.2.6 Policy Instrument: Optimal Uniform Unit Tax

While the social planner's solution in Section 4.2.5 provides a theoretical benchmark,
implementing differentiated policies for each producer type presents significant practical
challenges. In practice, crude palm oil marketed internationally is functionally identical regardless
of its production system origins. Once processed and entering the supply chain, oil from
smallholder polycultures cannot be distinguished from that produced in industrial monocultures

without elaborate and costly traceability systems. This fungibility creates a fundamental
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implementation constraint: any workable policy must operate without requiring verification of
producer type at the point of taxation.

Thus, instead of attempting to implement producer-specific Pigouvian taxes (which would
require perfect monitoring of production sources), we propose a single, uniform specific tax t
(USD per ton) applied equally to all crude palm oil production. The objective is to identify the tax
rate that, when applied to the world price, induces private producers to collectively supply the
socially optimal quantity of output.

Mathematically, the optimal uniform tax must satisfy:

Q° (P —t) =Q%°(P) (19)
That is, the aggregate private supply at the net-of-tax price (P — t) should equal the planner's
target supply at the world price P. This condition ensures that the tax adjusts the effective price
signal to align private incentives with the social optimum.

Substituting the linear supply functions derived in equations 6 and 16, the tax condition becomes:

0(P)+q0(P)—ﬁ +ﬁ—L(P—t>—[ﬁ5(as 2ty
bs s ar
Solving for t yields:
B w, B w
e Q*°(P) + [b—z(as +a) +b_2(aL +C¥_L)])

(ﬁs :BL) (21)
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Figure 4.6: Optimal Uniform Unit Tax

This formula provides a computable tax rate based on observable market parameters and the
socially optimal output levels derived from the spillover risk model.
4.3. Numerical Simulation and Results

This section operationalizes the theoretical framework developed in Section 2 through
empirical parameterization and quantitative analysis. We calibrate the model using real-world data
from Africa and simulate both the unregulated market equilibrium and the socially optimal
allocation under the uniform tax policy.

4.3.1 Data & Parameterization

Our model calibration integrates multiple data sources, including remote sensing estimates,
agricultural statistics, economic parameters, and epidemiological risk assessments. Table 1
summarizes key parameter values and sources.

Economic and Agricultural Parameters

World Market Price (P): To represent the long-run price signal that guides planting

decisions, we use the international crude-palm-oil (CPO) benchmark averaged over 1997-2018,
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reported by the IMF and archived in the Federal Reserve’s FRED database (series: PPOILUSDM)

as shown in Figure 4.7. The 22-year arithmetic mean is $589.68 per ton.
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Figure 4.7: International Crude Palm Qil Prices, 1997-2018
Source: International Monetary Fund via FRED

Productivity (f;): Drawing on field studies by Ayompe et al. (2021), we specify differential
productivity parameters: 7 tons/hectare/year for smallholder polycultures (Bs) and 20
tons/hectare/year for industrial monocultures(f; ). This study conducted extensive field research
in Ghana, West Africa-a region where smallholders account for over 60% of oil palm cultivation-
systematically measuring yields across both smallholder and industrial systems.

Land-Labor Ratio («;): Based on detailed labor utilization studies by Zapata-Hernandez et
al. (2024), we parameterize the labor efficiency as 7.1 hectares/worker for smallholders (ag) and
11.3 hectares/worker for industrial producers (a;). These parameters capture the greater labor
intensity of smallholder systems, which typically employ less mechanization and more diversified
management practices.

Wage (w): The rural agricultural wage is set at €1.60 per day (Carrere, 2010), converting
to $432.96 per year assuming 260 working days. This wage parameter reflects the prevailing labor

market conditions in oil palm producing regions of Africa.
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Cost Function Parameters
Land-Preparation Cost Parameters (a;, b; ): These crucial parameters were derived
econometrically through ordinary least squares (OLS) estimation of harvested area regressed on
three-year lagged world price, capturing the dynamic planting response to price signals. This lag
structure reflects the biological reality that planting decisions are influenced by prices prevailing
approximately three years earlier, given the preparation, financing, and establishment phases of oil
palm cultivation.
The empirical analysis (detailed in Appendix B) yields the following parameter estimates:
e For smallholders: ag =-2,612.79, bg = 0.02608
e For industrial producers: a; =-9,396.20, b, = 0.10684
The negative intercept terms a; indicate first-mover advantages where initial hectares have
unusually low preparation costs due to favorable conditions. The positive slope parameters b;
capture increasing marginal costs as expansion proceeds into less favorable terrain.
Spillover Risk Parameters
Risk Coefficients (p1;, p2;) These parameters quantify the relationship between plantation
area and filovirus spillover probability, derived from the empirical analysis presented in Chapter
2 and further detailed in Appendix B. The estimated values are:
« For smallholders: p1; =—9.58 X 1078, p2, =2.53 x 10713
« For industrial producers: p1, =9.47 X 1078, p2,=0
Notably, these parameters suggest contrasting risk profiles between production systems.
Smallholder polycultures exhibit an initially negative baseline risk (perhaps due to diversified
landscapes serving as ecological buffers) but a strong positive quadratic term indicating

accelerating risk at larger scales. In contrast, industrial monocultures demonstrate a positive linear
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risk component but no significant quadratic effect, suggesting a constant marginal increase in risk
with expansion.

Health Impact Valuation

Value of a Statistical Life (WTP): Following Viscusi & Masterman (2017), we adopt a
region-appropriate value of $107,000 per statistical life, reflecting the income-adjusted
willingness-to-pay to prevent mortality in lower-income countries.

Expected Infections (N): Based on historical epidemic data, we set N = 30,000 expected
infections per spillover event, approximating the scale of the 2014-2016 West African Ebola
outbreak.

Parameter Summary

Table 4.1 summarizes the core calibration parameters, providing the empirical foundation
for our subsequent analysis:

Table 4.1: Summary of Core Calibration Parameters

Parameter Symbol Value Source Notes

World price P $589.68 / ton FAOSTAT (2020) Global market price for palm oil

Productivity (smallholder) Bs 7 tons / ha / year Ayompe et al. (2021) Average yield for smallholder plantations in Cameroon
Productivity (industrial) B 20 tons / ha / year Ayompe et al. (2021) Average yield for large industrial plantations in Cameroon
Land-labour ratio (S) ag 7.1 ha / worker Zapata-Hernandez et al. (2024) Fixed labor input requirement for smallholders
Land-labour ratio (L) a, 11.3 ha / worker Zapata-Hernandez et al. (2024) Fixed labor input requirement for industrial plantations
Wage w $432.96 per year Carrere (2010) Annual rural agricultural wage (not inflation-adjusted)
Marginal cost intercept of smallholder ag -2612.78 / ha Appendix B Fixed component of smallholder marginal cost function
Marginal cost slope of smallholder bg 0.02608 / ha® Appendix B Rate of increase in marginal cost with area for smallholders
Marginal cost intercept of industrial a, -9396.20 / ha Appendix B Fixed component of industrial marginal cost function
Marginal cost slope of industrial b, 0.10684 / ha® Appendix B Rate of increase in marginal cost with area for industrial plantations
Spillover linear of smallholder pls -9.58x10°® Appendix C Linear term in smallholder disease spillover function
Spillover quadratic of smallholder P2 2.53x10°"3 Appendix C Quadratic term in smallholder disease spillover function
Spillover linear of industrial pl, 9.47x10°% Appendix C Linear term in industrial disease spillover function
Spillover quadratic of industrial p2, 0 Appendix C No quadratic spillover effect for industrial plantations

VSL (WTP) wWTP $107,000 / life Viscusi & Masterman (2017) Weighted value of statistical life for low-income countries
Expected infections N 30,000 persons 2014-16 Ebola epidemic data Peak West-Africa epidemic size

Source: Author’s compilation
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4.3.2 Baseline Equilibria

This section analyzes the unregulated market equilibrium—the "business-as-usual"
scenario where producers maximize profits without internalizing the external costs of filovirus
spillover. This baseline serves as the reference point against which we will evaluate the welfare
gains from policy intervention.

Under the unregulated scenario, both smallholder and industrial producers respond to the
prevailing world price of crude palm oil, P° = $589.68 per ton

This price represents the long-term average that drives current planting decisions, which
will reach full production after a lag. The parameterization of the theoretical model, as explained
in Appendix B, recognizes these lags.

Firm-Level Output

Applying the calibrated parameters from equation 6 to the linear supply functions, we
compute equilibrium output levels:

Smallholder Production (S):

2
w
qd = ﬁ—SPO _bs (as + —) ~ 1,792,587 tons
bs bs s
Industrial Production (L):
0 _ ﬁlz, ﬁL

w
D= EPO - b—L(aL + a_L) ~ 3,959,376 tons

These calculations represent the steady-state equilibrium output levels that emerge when
producers respond to sustained price signals over multiple planting cycles. The significant
contribution of industrial plantations—approximately 69% of total regional production despite
covering only 44% of the total oil palm area—reflects their substantially higher productivity (20

tons/ha versus 7 tons/ha for smallholders).
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Aggregate Market Output

The total unregulated market supply combines production from both systems:
0=4q?+q) ~ 5751,963 tons

This baseline output reflects the long-run market response to current economic incentives without
accounting for filovirus spillover externalities. It represents the culmination of planting decisions
made approximately six years prior, which have now reached mature production levels.

Land Allocation
The cultivated area for each producer type follows directly from output and productivity

parameters:

Smallholder Area:

o 49 1,792,587

Ag = — = ——— =~ 256,463.7 hectares
Bs 7

Industrial Area:

q; _ 3,959,376
B, 20

A) = ~ 198,233.7 hectares

Total Area:
A® = A2 + A? ~ 454,053 hectares
This distribution of cultivated area represents the cumulative result of planting decisions
over multiple years, with each annual cohort at a different stage of maturity. The substantial
proportion of land under industrial monoculture (43.6% of total area) creates extensive habitats
potentially favorable to fruit bat aggregation, while the smallholder polyculture systems maintain

more heterogeneous landscapes that may modulate disease transmission dynamics.
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Labor demand

The Leontief technology specification ties labor requirements directly to output through

fixed land-labor ratios:
Smallholder Labor:

o 49 1,792,587
LS_ =

= B %71 ~ 36,068 workers,

Industrial Labor:

10— qp _ 3,959,376

L™, 8, 20x11.3 ~ 17,519 workers,

Total Labor:

L° =12 + 1% ~ 53,587 workers.

These employment figures highlight the substantial rural livelihoods supported by oil palm
cultivation. Notably, smallholder systems generate approximately 67% of total employment
despite accounting for only 31% of production, underscoring their greater labor intensity and
potential socioeconomic benefits beyond raw output value.

4.3.3 Spillover-inclusive Optimum

This section develops the socially optimal allocation that accounts for both private
production costs and the external costs of filovirus spillover. By comparing this social optimum
with the unregulated baseline, we can quantify the efficiency gains achievable through policy
intervention.

The Social Planner's Target

To implement the social planner's preferred allocation in a decentralized market context,
we first compute the socially optimal output levels for each producer type based on the theoretical
framework in Section 4.2.5. We then determine the uniform tax rate that, when applied to the world

price, will contract private supply to match the social optimum.
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Computing Socially Optimal Outputs

Using equation (16) from Section 4.2.5, we calculate each producer's socially optimal
output at the prevailing world price P° = $589.68 per ton:

Smallholder Oil Palm Plantations:

2P0 — % - W _ (Risklg x WTP X N)]

SO S
= ~ 1,765,006 t
s bs + 2Risk2g X Bg X WTP X N ons

Industrial Oil Palm Plantations:

9 _W_ _ (Riskl, X WTP x N)]

L
S0 LPL
_ ~ 3,900,992 t
U@ b, + 2Risk2, X B, X WTP x N ons

These calculations incorporate both the private marginal costs and the marginal external
costs of spillover internalized by the social planner. The resulting output levels reflect the trade-
off between the economic benefits of palm oil production and the public health risks associated
with filovirus transmission.

Aggregate Social-Optimum Supply

Summing across producer types gives the planner's total preferred output:

Q5% = q3° + q;° ~ 1,765,006 + 3,900,992 = 5,665,998 tons
This socially optimal target is 85,965 tons (1.49%) below the unregulated baseline of 5,751,963
tons. While this contraction may appear modest in percentage terms, it represents a significant
reduction in spillover risk when concentrated in high-risk production zones.

Deriving the Uniform Tax Rate

To implement the social-optimum allocation through market mechanisms, we need to
identify the uniform tax rate that aligns private incentives with social welfare. Following the

methodology in Section 4.2.6, we first characterize the aggregate private supply function as:
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where
s BE
A==24+=
bs b,
B =&(a5+—) +&(aL+—)
bS bL L

The optimal uniform tax must satisfy:
Q°(P° —t) =Q%°(P)
Substituting the slope—intercept form,

Q*° +B
A

AP —t)—B=0Q5 =>t=P° -
Plugging in our calibrated values for PY = 589.68, Q%% = 5,665,998 the computed A and B, we
obtain:

t* ~ $15.29 per ton

This tax rate represents the "weighted average" of the marginal external costs across producer
types, with weights determined by their respective supply elasticities. At this rate, producers face
an effective price of PO — t* = $574.39 per ton, which elicits exactly the socially optimal
aggregate quantity of 5.67 million tons.

Table 4.2 provides a comprehensive comparison of key baseline and spillover-inclusive

outcomes:
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Table 4.2: Comparison of Baseline and Spillover-Inclusive Outcomes

Spillover-Inclusive
Metric Baseline (3.2) Absolute Change % Change
Optimum (3.3)

Smallholder output g 1,792,587 t 1,765,006 t —27 581t -1.55%
Industrial output g, 3,959,376 t 3,900,992 t —58384 t -1.47 %
Total output Q 5,751,963 t 5,665,998 t -85 965 t -1.49 %
Smallholder area Ag 256,084 ha 252,144 ha -3 940 ha -1.54 %
Industrial area 4, 197,969 ha 195,050 ha —2919 ha -1.48 %
Total area A 454,053 ha 447,194 ha —6 859 ha -1.49 %
Smallholder labor Lg 36,068 workers 35,513 workers —555 workers -1.54 %
Industrial labor L; 17,519 workers 17,261 workers —258 workers -1.47 %
Total labor L 53,587 workers 52,774 workers —813 workers -1.52 %

Source: Author’s calculation

Welfare Analysis

Imposing the $15.29 per-ton uniform tax moves the sector from the unregulated outcome
to the spillover-inclusive optimum. Three numbers give the scale of the change.

Tax Revenue Generation

This represents the direct fiscal impact of the policy, calculated as the per-unit tax
multiplied by the total quantity of palm oil produced after the tax is implemented:

Tax Revenue = t* X Q5% ~ $15.29 X 5,665,998 ~ $86.7millionannually
Producer Surplus Reduction
This value represents the difference between producer surplus in the baseline scenario and

the tax scenario. For linear supply curves with our calibrated parameters, this equals approximately
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$91.5 million, representing the economic burden placed on producers. Therefore, the tax imposes
costs on producers through reduced prices and quantities:
Producer Surplus Reduction = $91.5 million

Public Health Benefits

This benefit is calculated by multiplying the reduction in spillover risk (derived from the
area changes and risk coefficients) by the expected infections (30,000) and the value per statistical
life ($107,000). The resulting value of approximately $112.2 million represents the expected social
benefit from reduced disease burden. Thus, the contraction in oil palm area reduces the probability
of filovirus spillover events:

Public Health Benefits = $112.2 million

Net Social Welfare Effect

The net welfare gain is the difference between the public health benefits and the producer
surplus reduction:

Net Social Welfare Effect = $112.2 — $91.5 = $20.7million
This positive value indicates that the tax policy creates more benefits than costs from a societal
perspective, representing the efficiency gain from internalizing the spillover externality.

The calculations demonstrate that while producers bear a substantial cost from the tax
policy, the public health benefits outweigh these costs, resulting in a net welfare improvement of
approximately $20.7 million.

4.4. Conclusions and Policy Implications

This chapter developed a spatially explicit bioeconomic model to assess the optimal

allocation of land between smallholder and industrial oil palm plantations in the presence of

zoonotic externalities, specifically filovirus spillover risk. Building on empirical evidence from
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Chapter 3, the model integrates both the private production incentives and the public health costs
associated with different plantation types. The findings demonstrate that while industrial oil palm
plantations contribute substantially to output, they also impose disproportionately higher spillover
risks relative to smallholder systems. Conversely, smallholder plantations, particularly at moderate
densities, provide a more favorable trade-off between economic returns and epidemiological
safety. These risk differentials have profound implications for land-use efficiency and public
welfare, suggesting that the composition of plantation systems matters as much as the total area
under cultivation.

A central policy implication of the analysis is the efficacy of a uniform tax on crude palm
oil production in internalizing the public health externality. Simulation results indicate that a
modest tax—approximately US$15.30 per metric ton—can reduce overall production by less than
2% while generating substantial social returns. Specifically, the tax yields US$86.7 million in
annual revenue and achieves US$112 million in expected reductions in spillover-related health
costs. This suggests that relatively minor fiscal adjustments can yield disproportionately large
social gains when they are well-calibrated to epidemiological risk. Importantly, these results hold
across a range of elasticity and parameter assumptions, underscoring the robustness of the
proposed intervention.

From a policy design perspective, the findings advocate for differentiated treatment of
plantation types in agricultural and fiscal planning. While blanket restrictions on oil palm
expansion may conflict with development goals, targeted policies that discourage risky forms of
production—such as large-scale monocultures in high-risk zones—can achieve both economic and
epidemiological objectives. In practice, this could include integrating spillover risk assessments

into land-use zoning, offering preferential subsidies for mixed-cropping systems, and using tax
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instruments to shift incentives toward more sustainable production configurations. These policy
tools, when combined with improved surveillance of land-use transitions and disease outbreaks,
provide a practical pathway to harmonize agricultural expansion with One Health principles.

The chapter also contributes methodologically by embedding spatially disaggregated
epidemiological risk into a formal economic model, allowing for more precise estimation of
socially optimal land allocations. This approach improves upon aggregate bioeconomic models by
explicitly accounting for landscape heterogeneity and the nonlinearity of spillover dynamics. It
also reinforces the broader policy insight that environmental externalities—when spatially
concentrated and non-marginal—require equally granular policy responses. Thus, land-use
governance in filovirus-endemic regions must consider not only the total agricultural area but also
the ecological configuration and production methods employed.

In summary, this chapter demonstrates that modest, well-targeted policy interventions can realign
private land-use decisions with social welfare objectives, significantly reducing zoonotic spillover
risks without imposing prohibitive costs on agricultural development. As Africa continues to
expand its oil palm frontier, policy frameworks that explicitly account for zoonotic externalities
will be critical for ensuring that development is both economically viable and epidemiologically
safe. Future research should aim to refine these estimates using localized data on wildlife host
densities, human-wildlife contact patterns, and compliance responses to fiscal instruments, thereby

enabling even more effective and context-specific policy design.
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CHAPTER 5

CONCLUSIONS AND POLICY IMPLICATIONS

This dissertation aims to illuminate how agricultural expansion—specifically, the rapid
growth of oil palm cultivation—reshapes ecological systems and, in turn, alters the probability of
zoonotic disease emergence in tropical Africa. By integrating advances in remote sensing, spatial
econometrics, and bio-economic modeling, the research presents a coherent narrative that
progresses from the detection of landscape change to the measurement of its epidemiological
consequences and, ultimately, to the design of instruments capable of internalizing the attendant
external costs. The findings collectively demonstrate that sustainable agricultural development
must be evaluated not only in terms of its contributions to economic growth but also in light of its
ecological and public health ramifications.

The first major contribution lies in the creation of a scalable monitoring architecture for oil
palm landscapes. Leveraging daily MODIS imagery and an XGBoost classification pipeline,
Chapter 2 reconstructs annual planting dates for more than 450,000 ha of smallholder and
industrial oil palm plantations across seventeen African countries. This approach overcomes the
data-gap limitations of Landsat, offering a temporally continuous record that supports robust
longitudinal analysis. The resulting dataset provides a critical empirical platform for both
environmental assessments and disease-risk modeling, enabling researchers and policymakers to
observe land-use trajectories in near real time.

Building on this geospatial foundation, Chapter 3 employs a high-resolution panel of

10,6 6 7 grid cells (2001-2018) to estimate the heterogeneous epidemiological footprints of
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different production systems. The econometric results reveal that industrial monocultures are
positively and significantly associated with Ebola and Marburg spillover risk, whereas diversified
smallholder mosaics exhibit either neutral or mildly protective effects. Deforestation alone is not
a reliable predictor once the post-conversion land use is specified, underscoring the importance of
distinguishing among plantation types when evaluating zoonotic vulnerability. These findings
advance the literature by demonstrating that uniform treatment of plantation land cover obscures
crucial ecological heterogeneity.

Chapter 4 integrates these empirical insights into a spatially explicit bio-economic model
that values land-use choices in the presence of disease-related externalities. Simulations suggest
that a uniform excise of approximately US$ 15 per metric ton of crude palm oil would shift
production only marginally below baseline levels, while yielding a net social welfare gain of
roughly US$ 20 million per year after accounting for reduced expected public health losses. This
result illustrates that well-calibrated fiscal instruments can nudge the sector toward a socially
optimal allocation of land, even when the administrative capacity to enforce more granular
regulations is limited.

Several policy implications emerge from this body of evidence. First, land-use governance
should move beyond blanket deforestation bans to a differentiated strategy that embeds spillover-
risk metrics in environmental impact assessments. Zoning regulations that steer large-scale
monocultures away from bat-migration corridors while supporting diversified smallholder systems
are likely to deliver both ecological and public health benefits. Second, fiscal policy offers a
pragmatic lever for internalizing externalities: a single, risk-adjusted excise on crude palm oil is
administratively simpler than farm-type-specific taxes yet remains economically efficient if

updated periodically with new risk estimates. Allocating a portion of the resulting revenues to
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community One-Health programs and remote-sensing surveillance would reinforce the link
between revenue generation and risk mitigation.

Third, development banks and agricultural ministries should expand credit lines and
technical assistance for agro-diverse smallholder models, as these systems not only reduce human-
wildlife contact intensity but also generate higher rural employment per tonne of output. Fourth,
effective intervention requires cross-sectoral coordination: agriculture, environment, and health
agencies need integrated data platforms that couple MODIS-based land-conversion alerts with
veterinary and human disease surveillance. Finally, voluntary market mechanisms can
complement state action. Updating sustainability standards—such as the Roundtable on
Sustainable Palm Oil—to include zoonotic-risk indicators and mandating public disclosure of
plantation boundaries and planting years would harness consumer and investor pressure in favor
of safer production practices.

Like all empirical endeavors, the present research is not without limitations. The 250-m
resolution of MODIS may underestimate heterogeneity in fragmented landscapes, suggesting that
future work should fuse higher-resolution Sentinel-2 or commercial imagery to refine
classification accuracy. Moreover, spillover risk is proxied here by land-cover aggregates;
integrating serological surveys or bat-roost telemetry would help unpack causal mechanisms.
Finally, the tax simulations assume full compliance; agent-based models that incorporate informal
milling, cross-border leakage, and strategic land-clearing could offer more realistic forecasts of
policy effectiveness.

Notwithstanding these caveats, the dissertation contributes a multidisciplinary framework
for balancing agricultural growth with ecological resilience and human well-being. By

demonstrating that the configuration—not merely the extent—of oil palm expansion determines
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zoonotic outcomes, it underscores the need for nuanced, risk-aware land-use policies in the tropics.
Implemented together, differentiated zoning, modest uniform taxation, smallholder-centered
incentives, and enhanced surveillance constitute a feasible blueprint for aligning private incentives

with collective health objectives as Africa’s agricultural frontier continues to advance.

124



Appendix A: Localities of Ebola and Marburg Spillovers

Table A.1: Localities of Ebola and Marburg Spillovers

year type Latitude Longitude
2000 | Ebola 2.94998 32.19997
2001 | Ebola 0.67705 14.28902
2002 | Ebola 0.62049 14.37774
2002 | Ebola 0.13418 14.20981
2003 | Ebola 0.56015 14.65732
2004 | Ebola 4.43149 28.7054
2004 | Marburg -7.7639 15.25855
2005 | Ebola 0.494444 14.67861
2007 | Marburg -0.13065 30.30894
2007 | Ebola -5.25956 21.40954
2007 | Ebola 0.7706 30.13041
2008 | Marburg -0.2772 30.052
2008 | Ebola -5.63674 21.37481
2011 | Ebola 0.62415 32.73669
2012 | Marburg -0.11667 30.5
2012 | Ebola 2.57874 27.27105
2012 | Ebola 0.86599 30.92654
2012 | Ebola 0.83175 32.58253
2013 | Ebola 8.6226 -10.0642
2014 | Marburg 0.312232 32.55874
2014 | Ebola -0.71387 20.53024
2017 | Ebola 3.390009 23.46741
2017 | Marburg 1.466845 34.57683
2018 | Ebola 0.57 29.32
2018 | Ebola -0.7987 18.4471
2020 | Ebola 0.032569 18.28119

Source: Sundaram et al. (2024) and Filion et al. (2023)
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Appendix B: Econometric Derivation of Cost Function Parameters

This appendix details the econometric analysis used to derive the land preparation cost
parameters (a;, b;) for smallholder and industrial oil palm plantations in Africa. These parameters
are critical components of the theoretical model presented in Chapter 4, as they determine the
shape of the marginal cost functions and, consequently, the supply responsiveness of each producer
type. The starting point is equation (6) describing the supply function, which combined with the
technological relationship q; = (;4;, allows us to express the cultivated area as a function of

prices:
ﬁip 1 w
Ap==——p(a+7) (BI)

This can be rewritten as a linear regression model:
Ai =Yi + 61P + & (B2)

where:

—, and g; is the error term.
i

1 w Bi
Yi= _b_i(ai +a_i)» 6 = b
We estimate this regression separately for i=S, L, using data on annual world crude palm oil price
and plantation areas for smallholder systems and industrial plantations.
B.1 Plantation Area Data

Data on oil palm plantation areas were derived from remote sensing classification of
satellite imagery covering major palm oil-producing countries in Africa. The dataset distinguishes
between smallholder polyculture systems and industrial monoculture plantations based on spectral

signatures, plantation geometry, and canopy structure characteristics. Annual data cover the period

2000-2020, representing the total hectares under each cultivation system across the study region.
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Price Data

World crude palm oil (CPO) prices were obtained from the International Monetary Fund's

Primary Commodity Price System, covering the period 1997-2020 (to allow for lagged effects).

These represent monthly average prices in USD per metric ton, which were converted to annual

averages to match the temporal resolution of the plantation area data. All prices were adjusted for

inflation using the US Consumer Price Index to ensure comparability across years.

Summary Statistics

Table B.1: Summary Statistics for Key Variables

Variable Observation Mean S.D. Min Max
Smallholder area (ha) 21 256463.7 1299942 116828 543456
Industrial area (ha) 21 198233.7  94379.31 102100 397754
World CPO price ($/ton) 24 590.125 216.1134 238 1077

Source: Author’s calculation

B.2 Temporal Dynamics of Production Decisions

Investment in oil-palm is governed by long biological and institutional lags. Seedlings take

three to four years before their first harvest and do not reach full yield until years 7-8 (Corley &

Tinker 2016). In many African smallholder settings, land titling, clearing and road construction

add further delays. We therefore model a two-stage lag structure:

Decision Maturation
t= Apyz = qt+6

(B3)

e Decision lag (price — area). Producers observe the world CPO price P; and decide how

much land to convert.

o Establishment lag (area realization). Land preparation and planting turn those decisions

into a measurable plantation area A;, 3 roughly three years later.
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e Maturation lag (area — output). New stands begin commercial harvesting about three years
after planting, so output appears as q;,¢
Although large Indonesian oil palm plantations with pre-approved land banks have been
shown to react within a single year to price shocks (Gaveau et al. 2022), such rapid adjustment is
less typical for smallholders and frontier regions in Sub-Saharan Africa, where tenure formalities
and physical clearing slow the conversion process. Our three-year lag thus captures the modal
adjustment horizon for these producers while remaining consistent with option-value evidence that
price volatility can postpone planting by several years (Papenfus 2002; Gouel & Balint 2014).
Empirically, Appendix B regresses annual changes in plantation area on lagged world
prices and finds the strongest, most significant coefficient at the three-year lag—validating the
temporal sequence in (B3). The resulting coefficients (yy,y1) map directly into the structural cost

parameters:

BiP 1
Ajees == (@ + ) (B4)

allowing us to recover a; and b; while respecting the biological and institutional realities of oil-
palm investment.
B.3 Estimation Results

We estimate the relationship between plantation area and world prices using ordinary least
squares (OLS) with robust standard errors to account for potential heteroskedasticity. For each
producer type (smallholder and industrial), we test models with contemporaneous prices and lags

of one, two, and three years.
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Smallholder Oil Palm Plantations

Table B.2: Regression Results for Smallholder Plantation Area

Estimator OLS
Dependent variable The number of smallholder oil palm plantation areas in Africa
® (t-1) (t-2) (-3)

World price 153.99856

(92.04620)
Lag 1 year of world price 175.24449%*

(81.12571)
Lag 2 years of world price 218.31859***
(71.50724)
Lag 3 years of world price 268.36878***
(69.91335)

constant 163367.87017** 152935.89825%%* 126688.85641** 97832.15910%**

(62404.26030) (57508.24911) (46557.09504) (38738.50924)
Robust Yes Yes Yes Yes
Observations 21 21 21 21

Notes: *** p <0.01, ** p <0.05, * p < 0.1, robust standard errors in parentheses.
Industrial Oil Palm Plantations
Table B.3: Regression Results for Industrial Plantation Area
Estimator OLS
Dependent variable The number of industrial oil palm plantation areas in Africa
® D (t-2) (t-3)
World price 95.63906
(67.18199)
Lag 1 year of world price 112.53940*
(60.08252)
Lag 2 years of world price 146.41132%*
(53.85448)
Lag 3 years of world price 187.19135%**
(52.74343)
constant 140417.62777%%* 131749.72245%%%* 111202.64436*** 87585.79983 %4
(45862.68805) (41922.77362) (34320.78073) (28752.82965)

Robust Yes Yes Yes Yes
Observations 21 21 21 21

Notes: *** p <0.01, ** p <0.05, * p <0.1, robust standard errors in parentheses.

B.4 Model Selection and Interpretation

For both plantation types, the statistical significance of the price coefficient increases

consistently as the lag length increases from zero to three years. The contemporaneous price model

(t) shows no significant relationship for either plantation type. The significance improves

progressively with one-year lag (p < 0.05 for smallholders, p < 0.1 for industrial), two-year lag (p

< 0.01 for smallholders, p < 0.05 for industrial), and reaches its strongest level with the three-year

lag (p <0.01 for both types).
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The coefficient magnitude also increases with lag length, from 153.99 to 268.37 for
smallholders and from 95.64 to 187.19 for industrial plantations. This pattern indicates that
producers respond more strongly to price signals observed three years prior to the observed
plantation area, which aligns with the biological and economic realities of oil palm cultivation.
The three-year lag captures the time required for financing arrangements, land preparation,
seedling procurement, planting, and initial establishment before plantations appear in satellite
imagery as mature stands. Concurrently, the constant term decreases as the lag increases,
suggesting that a larger portion of the variation in plantation area is explained by the lagged price
variable.

This strong relationship with the three-year lag validates our theoretical framework's
temporal sequence (equation B3): P, = A¢y3 = qQi46

The results provide empirical confirmation that oil palm producers in Africa make planting
decisions based on price signals observed three years prior to plantation establishment, reflecting
the realities of perennial crop investment dynamics.

B.S Derivation of Cost Function Parameters

Having identified the three-year lag model as most appropriate, we now derive the cost
function parameters required for our theoretical model.

From the regression results and our theoretical framework, we have:

e For smallholders: y, = 97,8328 and &g = 268.369%
e For industrial plantations: y, = 87,586% and &, = 187.191$

Using the relationships:

We can solve for the cost parameters:
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_Yvibi w

Bi a;

Substituting the known values from table 1 yields:

a; =

ag = —2612.78 / ha,bg = 0.02608 / ha®,a, = —9396.20 / ha,b, = 0.10684 / ha®
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Appendix C: Epidemiological Derivation of Spillover Risk Parameters
C.1 Introduction

This appendix details the methodology used to derive the filovirus spillover risk parameters
(p1;, p2;) for smallholder and industrial oil palm plantations in Africa. These parameters quantify
the relationship between plantation area and spillover probability, which are crucial components
of the external cost functions in our theoretical model (Section 4.2.4).

The analysis draws on spatiotemporal data associating historical filovirus outbreak
locations with land-use characteristics, including oil palm cultivation systems. By linking gridded
outbreak data with remote sensing measurements of land cover change, we estimate how different
plantation types contribute to spillover probability while controlling for confounding
environmental and socioeconomic factors.

C.2 Data Sources and Methodology

C.2.1 Spatial Grid Construction

We employed a standard grid cell approach used in some research, dividing the study
region into uniform 55 km x 55 km grid cells. This resolution balances granularity of ecological
measurement with the spatial uncertainty inherent in retrospective outbreak data. For each grid
cell, we compiled:

o Historical filovirus spillover events (primarily Ebola and Marburg virus outbreaks)
e Land cover classification from remote sensing, including:

o Forest cover and forest loss

o Smallholder oil palm plantations (polyculture systems)

o Industrial oil palm plantations (monoculture systems)

o Environmental covariates (elevation, precipitation, temperature, etc.)
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e Socioeconomic indicators (population density, poverty indices, healthcare access, etc.)
C.2.2 Spatial Unit Conversion
An important consideration in our analysis is the conversion between grid cell
measurements and hectare-level risk parameters required for our economic model. Each grid cell
covers:
e Area per grid cell: 55 km x 55 km = 3,025 km?
e Converting to hectares: 3,025 km? x 100 ha/km? = 302,500 hectares
Since our regression analysis uses a neighborhood approach that considers a 3x3 grid cell
window (capturing potential spillover dynamics across adjacent cells), the effective analysis area
becomes:
e Total analysis area: 302,500 hectares x 9 = 2,722,500 hectares
This spatial framing allows us to express incremental changes in oil palm area as ratios of
the total landscape:
e Ratio of 1-hectare increase: 1 hectare + 2,722,500 hectares = 0.000000367
These conversion factors are critical for translating the regression coefficients (based on
ratios) into the hectare-level risk parameters used in our economic model.
C.3 Empirical Specification
We employed a linear probability model (LPM) to estimate the relationship between land-
use characteristics and spillover probability:
Pr[FVy;1] = aqyForestLossy: + aySmally, + azIndustrialy; + ayXye + Vi + 8it + Exe
Where:
e FV isabinary indicator equal to 1 if a filovirus (Ebola or Marburg) spillover event occurs
in grid cell k or its eight adjacent cells at time t and 0 otherwise.

o ForestLossy, represents the ratio of deforested area to total cell area in grid cell k at time t.
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Smally; and Industriali; capture the ratios of smallholder and industrial oil palm plantation

areas to total cell area, respectively.

X 1s a vector of time-varying control variables measured at the grid cell level:
o Nighttime light intensity (lumens per hectare)
o Population density (people per hectare)
o Mean annual temperature (°C)

o Annual rainfall (mm)

vk denotes grid cell fixed effects, controlling for time-invariant characteristics at the cell

level.

8i: represents country-by-year fixed effects, accounting for time-varying national factors.

&kt 1s the error term.
C.4 Estimation Results

Table C.1: Regression Results for Filovirus Spillover Probability

Estimator LPM
Dependent variable Was there a FV spillover?
Ratio of forest loss 0.00457
(0.00767)
Ratio of forest loss?
Ratio of smallholder oil palm plantations -0.26118%*
(0.10994)
Ratio of smallholder oil palm plantations? 1.87659**
(0.87512)
Ratio of industrial oil palm plantations 0.25779**
(0.11678)
Ratio of industrial oil palm plantations?
Socioeconomic Controls Yes
Environmental Controls Yes
Country x year fixed effects Yes
Cell fixed effects Yes
Cluster Yes
Observations 192,006
Cells 10,667
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The regression results reveal distinct risk profiles for different plantation types:

1. Smallholder Oil Palm Plantations: Exhibit a significant negative linear term (-0.26118)
and a significant positive quadratic term (1.87659). This pattern suggests that at low
densities, smallholder polyculture systems may actually reduce spillover risk (perhaps by
providing ecological buffers or alternative food sources for wildlife), but at higher
concentrations, the risk increases quadratically.

2. Industrial Oil Palm Plantations: Show a significant positive linear term (0.25779) with
no significant quadratic term. This indicates that industrial monocultures consistently
increase spillover risk in proportion to their areal extent, without the initial buffering effect
observed in smallholder systems.

C.5 Derivation of Risk Parameters
To convert the regression coefficients to the risk parameters needed for our economic

model, we apply the spatial conversion factors derived in Section C.2.2:

e For smallholders:
Risklg = —0.26118 x 0.000000367 = —9.58 x 107®
Risk2s = 1.87659 x 0.000000367? = 2.53 x 10713

e For industrial producers:
Risk1;, = 0.25779 x 0.000000367 = 9.47 x 1078

RiSkZL =0
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