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Abstract

We consider a class of stationary processes that exhibit both long-range de-
pendence and heavy tails. While separate limit theorems for the partial sums
and the maxima of such processes have recently been established—featuring
novel limiting objects—this work develops the joint sum-and-max limit theo-
rems for this class. In the finite-variance case, the limiting behavior consists of
two independent components: a fractional Brownian motion (from the sum)
and a long-range dependent random sup measure (from the maximum). In
contrast, in the infinite-variance regime, the limit comprises two dependent
components: a stable Lévy process and a random sup measure. Their depen-
dence is characterized through the local time and range of a stable subordinator.
To establish this result, we also prove a joint convergence theorem for the local
time and range of subordinators, which may be of independent interest.

In parallel, we investigate the estimation of multivariate extreme value mod-
els with a discrete spectral measure using spherical clustering techniques. The
primary methodological contribution is a new order selection criterion—selecting
the number of spectral atoms (or clusters)—based on an augmented silhouette
width index. This criterion introduces a penalty term that discourages overly
small clusters and insufficient separation between cluster centers. We prove that
the method consistently recovers the true number of atoms in the spectral mea-
sure, enabling consistent estimation of the order of max-linear factor models,
which lack standard likelihood-based tools for model selection. Our second con-
tribution is a large deviation analysis that quantifies the convergence quality of
clustering-based estimation of spectral measures. Finally, we demonstrate how
the discrete spectral measure estimation can be translated into parameter esti-



mation for heavy-tailed factor models, supported by simulations and real-world
data examples that illustrate both order selection and model inference.
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Chapter 1

Introduction

1.1 Background

1.1.1 Extreme Value Theory and Domains of Attraction
Let {Xn}n∈N be a sequence of stationary random variables, where N =

{1, 2, . . .}. We are interested in the asymptotic behavior of the partial maxi-
mum

Mn := max(X1, . . . , Xn),

as n → ∞. In particular, we seek non-degenerate limit distributions for
properly normalized maxima, that is, sequences of constants {an > 0} and
{bn} ⊂ R such that

Mn − bn

an

d−→ G, (1.1)

for some non-degenerate distribution function G. Here, d−→ denotes conver-
gence in distribution.

In the case where {Xn} is an independent and identically distributed (i.i.d.)
sequence, the possible limit distributions are well understood and are charac-
terized in the classical theory of extreme value distributions, as summarized
in de Haan and Ferreira, 2006. These limiting distributions, referred to as ex-
treme value distributions, are characterized up to affine transformations of the
form x 7→ ax + b, where a > 0 and b ∈ R. The class of all extreme value
distributions can be denoted as

Gγ(ax + b), a > 0, b ∈ R,
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where Gγ is defined by

Gγ(x) = exp
(
−(1 + γx)−1/γ

)
, for 1 + γx > 0,

with γ ∈ R. For γ = 0, this expression is interpreted as the limit:

G0(x) = exp(−e−x), x ∈ R,

which is known as the Gumbel distribution or double exponential distribution.
Depending on the value of the shape parameter γ, three canonical types of

extreme value distributions arise:

• Fréchet Type (γ > 0): By taking Gγ((x − 1)/γ), and letting α =
1/γ > 0, we obtain the Fréchet distribution:

Φα(x) :=

0, x ≤ 0,

exp(−x−α), x > 0.

• Gumbel Type (γ = 0): As already noted, the limiting distribution
becomes

G0(x) = exp(−e−x), x ∈ R.

• Reverse Weibull Type (γ < 0): By transforming Gγ(−(1+x)/γ) and
letting α = −1/γ > 0, we obtain the reverse Weibull distribution:

Ψα(x) :=

exp(−(−x)α), x < 0,

0, x ≥ 0.

Let F denote the common distribution function of the stationary sequence
{Xn}n∈N. We say that F belongs to the domain of attraction of an extreme
value distribution Gγ , written F ∈ D(Gγ), if the convergence (1.1) holds with
G replaced by Gγ . The characterization of the domain of attraction depends
on the value of the shape parameter γ, and the corresponding conditions on
the distribution F are as follows:

• Fréchet Case (γ > 0): In this case, the right endpoint of the support,

x∗ := sup{x ∈ R : F (x) < 1},
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is infinite. The distribution F belongs to the domain of attraction of the
Fréchet distribution if

lim
t→∞

1 − F (tx)
1 − F (t) = x−1/γ, for all x > 0.

This condition implies that the tail 1 − F is regularly varying at infinity
with index −1/γ. For a comprehensive treatment of regularly varying
functions, see Bingham et al., 1989.

• Reverse Weibull Case (γ < 0): Here, the right endpoint x∗ is finite.
The distribution F belongs to the domain of attraction of the reverse
Weibull distribution if

lim
t↓0

1 − F (x∗ − tx)
1 − F (x∗ − t) = x−1/γ, for all x > 0.

This condition describes the behavior of the distribution near its finite
upper bound.

• Gumbel Case (γ = 0): In this case, the right endpoint x∗ may be either
finite or infinite. The distribution F belongs to the domain of attraction
of the Gumbel distribution if there exists a positive function f such that

lim
t↑x∗

1 − F (t + xf(t))
1 − F (t) = e−x, for all x ∈ R.

The auxiliary function f typically satisfies certain regularity conditions,
such as slowly varying behavior near x∗, and plays a role similar to a local
scale.

These conditions provide the necessary and sufficient characterizations for a
distribution F to belong to one of the three max-stable domains of attraction.

The convergence in distribution of the normalized partial maxima, as in
equation (1.1), also holds in the presence of dependence among the random
variables {Xn}. However, to ensure the validity of such a limit, certain de-
pendence conditions must be imposed on the sequence. These conditions are
formulated to control the extent of clustering of extreme values due to depen-
dence. A comprehensive treatment of such dependence structures is given in
Leadbetter et al., 1983, where conditions such as the D(un) and D′(un) condi-
tions are introduced. These conditions ensure that the extremes of the sequence
behave asymptotically as if they were nearly independent, thereby preserving
the classical extreme value limit laws in the dependent setting.
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1.1.2 Limit Theorem and Domains of Attraction
The limiting theory for the partial sums Sn := X1 + · · · + Xn is a classical

counterpart to the extreme value theory for the partial maxima Mn. Specifically,
we seek sequences of normalizing constants {cn} with cn > 0, and {dn} ⊂ R,
such that

Sn − dn

cn

d−→ U,

where U is a non-degenerate distribution. In the case where {Xn} are i.i.d., the
fundamental results are summarized in Feller, 1971, Chapter XVII.

A central result is that the only possible non-degenerate limit distributions
for normalized sums of i.i.d. random variables are the stable distributions. These
distributions, which generalize the classical central limit theorem, are character-
ized through their characteristic functions.

Let p, q ∈ [0, 1] with p + q = 1, which parameterize the skewness of the
distribution, where p reflects the contribution from the right tail and q from
the left. Then the characteristic function of a stable random variable X , with
stability index α ∈ (0, 2], scale parameter σ > 0, and location parameter
µ ∈ R, is given by:

φ(t; α, p) = exp {−σα|t|α [1 − i(p − q)ω(t, α) sgn(t)] + iµt} ,

where

ω(t, α) =

tan
(

πα
2

)
, α ̸= 1,

− 2
π

log |t|, α = 1;

and sgn(t) is the sign function defined as follows:

sgn(t) :=


−1 if t < 0,

0 if t = 0,

1 if t > 0.

This form includes the Gaussian distribution as a special case when α = 2,
where the characteristic function reduces to that of a normal distribution with
finite variance.

Without loss of generality, we say that a distribution function F belongs to
the domain of attraction of a stable law, denoted F ∈ D(α, p), if the limiting
distribution U has the characteristic function φ(t; α, p) as above.

Sufficient conditions for F ∈ D(α, p) depend on the tail behavior of F .
When 0 < α < 2, a necessary and sufficient condition is that there exists a
regularly varying function L(x) at infinity, such that:
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1−F (x) ∼ p· 2 − α

α
L(x), and F (−x) ∼ q · 2 − α

α
L(x), as x → ∞.

This condition describes the power-law behavior of the tails, with balance
given by the parameters p and q.

When α = 2, which corresponds to the normal distribution, the require-
ment becomes the function

µ(x) :=
∫ x

−x
y2 dF (y)

is a slowly varying function at infinity (see Bingham et al., 1989). This condi-
tion ensures that the second moment grows sufficiently slowly and is compati-
ble with convergence to a normal distribution with infinite support but finite
variance.

There are also numerous results concerning the convergence of the partial
sums Sn when the sequence {Xn} exhibits dependence. In particular, gen-
eralizations of the classical central limit theorem and stable limit theory have
been developed under various forms of weak dependence. For example mix-
ing conditions, which quantify the asymptotic independence between distant
observations in the sequence (see Ibragimov and Linnik, 1971) and martingale
difference sequences, where the conditional expectation of each term given the
past is zero (see Hall and Heyde, 1980). These results underscore that, even
in the presence of dependence, the asymptotic behavior of sums of random
variables can often be characterized using classical or generalized probabilistic
limits—provided the dependence structure satisfies suitable regularity condi-
tions.

1.1.3 Random Sup Measures and Convergence in Distribu-
tion

Writing Sn(t) = S⌊nt⌋ and Mn(t) = M⌊nt⌋, where ⌊x⌋ denotes the great-
est integer not exceeding x, the processes (Sn(t))t≥0 and (Mn(t))t≥0 can be
viewed as stochastic processes indexed by continuous time. It is then natural
to investigate their functional convergence in an appropriate function space.
Typically, this is the Skorokhod space D[0, ∞) endowed with the J1 topology;
see Billingsley, 1999 for foundational results on this convergence.

An alternative and fruitful perspective on the partial maximum process
(Mn(t))t≥0 is to consider it as a random sup measure. For a subset B ⊂ [0, ∞),
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define
Mn(B) := max

k/n∈B
Xk, (1.2)

so that Mn(t) corresponds to the special case B = (0, t]. The framework of
random sup measures, which was systematically developed in O’Brien et al.,
1990, provides a robust setting for analyzing random sup measures.

A sup measure is a map m : G → R̄ := [−∞, ∞], where G denotes the
collection of open subsets of R, satisfying

m

(⋃
α

Gα

)
=
∨
α

m(Gα)

for any collection {Gα} ⊂ G. This parallels the definition of a measure, but
with the additive operation replaced by the supremum.

A natural way to construct a sup measure is through the sup integral: given
a function f : R → R̄, define

m(G) :=
∨
t∈G

f(t), G ∈ G,

and denote this operation by m = i∨f . Although different functions f may
yield the same sup measure, there exists a canonical representative—the sup
derivative, defined by

d∨m(t) :=
∧
G∋t

m(G), t ∈ R.

This sup derivative is upper semi-continuous (usc), and every sup measure m

satisfies the identity m = i∨d∨m, establishing a bijection between the space of
sup measures and the space of usc functions. The sup measure can be extended
to all subsets of R via

m(B) :=
∨
t∈B

d∨m(t),

ensuring consistency with the original definition on open sets.
To study convergence, we define the sup vague topology. A sequence of sup

measures (mn) is said to converge sup vaguely to m if:

lim sup
n

mn(K) ≤ m(K) for all compact K ⊂ R,

and
lim inf

n
mn(G) ≥ m(G) for all open G ⊂ R.
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This topology is metrizable and compact, with convergence characterized by
the values of sup measures on continuity sets. A set A ⊂ R is a continuity set for
m if m(int A) = m(clos A), i.e., no mass is concentrated on the boundary.

Under this framework, sup vague convergence mn → m is equivalent to

mn(A) → m(A)

for all bounded continuity sets A. In many cases, it suffices to verify this con-
vergence for bounded open intervals.

The Borel σ-field on the space of sup measures generated by the sup vague
topology is the smallest σ-field that renders the maps m 7→ m(A) measur-
able for all open sets A, or equivalently for compact sets, compact intervals,
or bounded open intervals. Consequently, a mapping M : (Ω, F ,P) →
sup measures is a random sup measure if and only if M(A) is a random vari-
able for every set A in any of these collections. The process Mn(B) defined
in (1.2) thus forms a random sup measure. For a random sup measure M , its
probability law is completely determined by its finite-dimensional distributions
(M(A))A∈A, for any of the aforementioned collections A.

We now address convergence in distribution. For a random sup measure M ,
define the set of continuity intervals by

I(M) := {I ∈ I : M(I) = M(clos I) w.p.1},

where I denotes the collection of non-empty bounded open intervals. A se-
quence {Mn} of random sup measures converges in distribution to a limit
M , written Mn

d−→ M , if and only if the finite-dimensional distributions of
(Mn(I))I∈I(M) converge weakly to those of (M(I))I∈I(M).

1.1.4 Infinitely Divisible Processes
A fundamental building block of an infinitely divisible stochastic process is

a one-dimensional infinitely divisible random variable. The most powerful ana-
lytical tool for studying infinitely divisible random variables is the Lévy–Khintchine
representation.

Specifically, a real-valued random variable X is said to be infinitely divisible
if and only if there exists a uniquely determined characteristic triplet (σ2, ν, b),
where: σ2 ≥ 0 is the Gaussian component, ν is a Borel measure on R \ {0},
called the Lévy measure, satisfying

ν({0}) = 0,
∫
R
(1 ∧ x2) ν(dx) < ∞,
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b ∈ R is a drift term, such that the characteristic function of X is given by for
every θ ∈ R,

E
[
eiθX

]
= exp

{
−1

2σ2θ2 + ibθ +
∫
R

(
eiθx − 1 − iθ[[x]]

)
ν(dx)

}
,

where [[x]] denotes the truncated function defined by

[[x]] :=

x, if |x| ≤ 1,

sgn(x), if |x| > 1.

This decomposition separates the contribution of small jumps (through the
Gaussian term and the drift) from that of large jumps (through the Lévy mea-
sure or the Poissonian term). For comprehensive coverage of infinitely divisible
distributions and their properties, see Sato, 1999.

A stochastic process (X(t))t∈T , is said to be infinitely divisible if and only
if there exists a uniquely determined triple (Σ, ν, b), such that for every θ ∈ RT ,
the joint characteristic function of X(t) has the Lévy–Khintchine representa-
tion:

E exp
(

i
∑
t∈T

θ(t)X(t)
)

= exp
{

−1
2Q(θ) +

∫
RT

(
ei⟨θ,x⟩ − 1 − i⟨θ, [[x]]⟩

)
ν(dx) + i⟨θ, b⟩

}
,

where ⟨θ, x⟩ = ∑
t∈T θ(t)x(t) denotes the inner product in RT and the trun-

cation function [[x(t)]] is defined coordinate-wise. The elements of the triple
are defined as follows:

• Q(θ) = ∑
s,t∈T Σ(s, t)θ(s)θ(t) is a quadratic form associated with a

nonnegative definite function Σ : T × T → R, representing the covari-
ance structure of the Gaussian component;

• ν is a Lévy measure on RT , governing the jump behavior of the process;

• b ∈ RT is a shift vector;

This formulation generalizes the classical Lévy–Khintchine representation
of one-dimensional infinitely divisible random variables to the case of stochastic
processes indexed by an arbitrary set T . For more details, see Samorodnitsky,
2016.

An infinitely divisible random measure is one of the most fundamental ob-
jects in the study of infinitely divisible stochastic processes. It frequently serves
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as a building block in constructing more complex infinitely divisible processes.
To define an infinitely divisible random measure, we begin with a measurable
space (S, S). The construction requires the following three components:

• A σ-finite measure γ on S;

• A measure ν on S × (R \ {0}), such that the measure

m0(B) :=
∫∫

B×(R\{0})
[[x]]2 ν(ds, dx) < ∞, for all B ∈ S,

is σ-finite;

• A σ-finite signed measure β on S.

Let S0 ⊆ S be the collection of sets B ∈ S such that

m(B) := γ(B) + ∥β∥(B) + m0(B) < ∞,

where ∥β∥ denotes the total variation measure of β. For sets B1, B2 ∈ S0,
define the covariance function

Σ(B1, B2) := γ(B1 ∩ B2).

Next, define a measurable map Φ : S × (R \ {0}) → RS0 by

Φ(s, x)(B) := x · 1{s∈B}, for B ∈ S0.

This map induces a Lévy measure µ on RS0 by pushforward:

µ := ν ◦ Φ−1.

Finally, define the shift function b ∈ RS0 by

b(B) := β(B), for B ∈ S0.

The infinitely divisible stochastic process M = {M(B) : B ∈ S0} with the
triple (Σ, µ, b) characteristic is called an infinitely divisible random measure on
(S, S) with Gaussian variance measure γ, Lévy measure ν, and shift measure
β.

The fundamental properties of such a random measure are summarized in
the following:

1. For every B ∈ S0, the random variable M(B) is infinitely divisible with
characteristic triplet (σ2

B, νB, βB), where:

9



• σ2
B = γ(B),

• µB(·) = ν(B × ·),

• βB = β(B).

2. The random measure M is independently scattered: the random variables
M(B1), . . . , M(Bd) are independent for every finite collection of dis-
joint sets B1, . . . , Bd ∈ S0.

3. The random measure M is σ-additive almost surely: for any countable
collection of disjoint sets {Bj} ⊂ S0 such that

⋃
j Bj ∈ S0, we have

M

⋃
j

Bj

 =
∑

j

M(Bj) almost surely.

(Note that the exceptional null set in this identity may depend on the
specific choice of the sets {Bj}.)

An infinitely divisible random measure admits a disintegrated representa-
tion, which offers a more intuitive and localized understanding of its struc-
ture. Specifically, we consider an infinitely divisible stochastic process M =
{M(B) : B ∈ S0} to be an infinitely divisible random measure characterized
by:

• A control measure m on (S, S),

• A local Gaussian variance function (σ2(s), s ∈ S),

• Local Lévy measures ρ(s, ·) on R \ {0}, for each s ∈ S,

• A local shift function (b(s), s ∈ S).

The random measure M is an independently scattered, σ-additive random set
function such that for each B ∈ S0, the random variable M(B) is infinitely
divisible with characteristic triplet given by:

σ2
B =

∫
B

σ2(s) m(ds), µB(·) =
∫

B
ρ(s, ·) m(ds), bB =

∫
B

b(s) m(ds).

Infinitely divisible random measures are fundamental because they serve
as building blocks for a wide variety of infinitely divisible stochastic processes.
In particular, many such processes can be constructed through integration of
deterministic functions with respect to infinitely divisible random measures.
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Specifically, a large class of infinitely divisible processes {X(t) : t ∈ T} can be
represented in the form:

X(t) =
∫

S
f(t, s) M(ds), t ∈ T, (1.3)

where M is an infinitely divisible random measure on a measurable space (S, S),
and {f(t, ·) : t ∈ T} is a family of measurable, nonrandom functions.

To define the stochastic integral, we begin with the case of simple functions.
Suppose f : S → R is a simple function of the form:

f(s) =
k∑

j=1
fj 1Bj

(s), s ∈ S,

where f1, . . . , fk ∈ R and B1, . . . , Bk ∈ S0 are disjoint sets such that the
random measure M is defined on each Bj . Then the stochastic integral of f

with respect to M is defined by:

I(f) :=
∫

S
f(s) M(ds) :=

k∑
j=1

fjM(Bj).

For more general (non-simple) functions f that are integrable with respect to
the random measure M , the integral is defined as the limit:

I(f) := lim
n→∞

I(fn),

where {fn} is a sequence of simple functions such that fn(s) → f(s) for
m-almost every s ∈ S, and the convergence holds in probability.

The stochastic integral I(f) with respect to an infinitely divisible random
measure M satisfies the following properties:

1. The integral I(f) is an infinitely divisible random variable. Its character-
istic function is given by:

E
[
eiθI(f)

]
= exp

− θ2

2

∫
S

f(s)2 σ2(s) m(ds) + iθ
∫

S
f(s)b(s) m(ds)

+
∫

S

∫
R\{0}

(
eiθf(s)x − 1 − iθf(s)[[x]]

)
ρ(s, dx) m(ds)

,

where σ2(s) is the local Gaussian variance, ρ(s, dx) is the local Lévy
measure, b(s) is the local shift function. In particular, the characteristic
triplet (σ2(f), µf , b(f)) of the random variable I(f) is given as follows:

11



• The Gaussian variance:

σ2(f) =
∫

S
f(s)2 σ2(s) m(ds);

• The Lévy measure:
µf = νf ◦ T−1

f ,

where the measure νf on S × (R \ {0}) is defined by

νf (A) = ν(A ∩ {(s, x) : f(s) ̸= 0}), A measurable,

ν is the Lévy measure of the random measure M , and Tf : S×(R\
{0}) → R is the measurable transformation Tf (s, x) = f(s)x;

• The shift parameter:

b(f) =
∫

S
f(s)b(s) m(ds)

+
∫

S

∫
R\{0}

([[f(s)x]] − f(s)[[x]]) ρ(s, dx) m(ds).

2. The integral operator I(f) is linear. That is, if f and g are integrable
functions and a, b ∈ R, then:

I(af + bg) = aI(f) + bI(g) almost surely.

Not only is the integral of an integrable function with respect to an infinitely
divisible random measure M an infinitely divisible random variable, but also
the family of such integrals defines an infinitely divisible stochastic process. Let
M be an infinitely divisible random measure on a measurable space (S, S),
with control measure m, local Gaussian variance σ2(s), local Lévy measures
ρ(s, ·), and local shift function b(s), for s ∈ S. Suppose f(t, ·) is integrable
for each t ∈ T . Then the stochastic process defined in (1.3) is infinitely divisible.
Moreover, it possesses a characteristic triple (ΣX , νX , bX), where:

• The Gaussian covariance function is given by

ΣX(t1, t2) =
∫

S
f(t1, s)f(t2, s) σ2(s) m(ds), t1, t2 ∈ T ;

• The Lévy measure νX is the image measure:

νX = ν ◦ H−1,

12



where ν is the Lévy measure of the random measure M , and H : S ×
R → RT is defined by

H(s, x) :=
(
xf(t, s)

)
t∈T

;

• The drift function is

bX(t) =
∫

S
f(t, s)b(s) m(ds)

+
∫

S

∫
R

([[f(t, s)x]] − f(t, s)[[x]]) ρ(s, dx) m(ds), t ∈ T.

An infinitely divisible stochastic process without a Gaussian component
consists solely of a compound Poisson component. Such processes often ad-
mit explicit series representations involving the arrival times of a standard Pois-
son process, as well as an independent sequence of i.i.d. random variables, see
Samorodnitsky, 2016.

Let M be a symmetric infinitely divisible random measure on a measurable
space (S, S), without a Gaussian component, and with control measure m. Let
γ be a probability measure on S that is equivalent to m. Then

r(s) := dm

dγ
(s), s ∈ S,

is strictly positive m-almost everywhere. For each s ∈ S, define the correspond-
ing Lévy measure:

ρr(s, ·) := r(s)ρ(s, ·),

where ρ(s, ·) is the Lévy measure of M . Then each ρr(s, ·) is a symmetric one-
dimensional Lévy measure. Define the generalized inverse of the tail function
of ρr(s, ·) as

G(x, s) := inf
{

y > 0 : ρr(s, (y, ∞)) ≤ x

2

}
, x > 0.

Now, let {εn}n≥1 be a sequence of i.i.d. Rademacher random variables
(i.e., taking values ±1 with equal probability), {Yn}n≥1 a sequence of i.i.d. S-
valued random variables with common distribution γ. Let {Γn}n≥1 denote
the ordered points of a unit-rate Poisson process on (0, ∞). Note that

Γn = e1 + · · · + en, n = 1, 2, . . . ,
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where {ej}j≥1 are i.i.d. standard exponential random variables. Assume all
three sequences are independent. Define the stochastic process {Y (t)}t∈T by

Y (t) :=
∞∑

n=1
εn G(Γn, Yn) f(t, Yn), t ∈ T. (1.4)

Then {Y (t)}t∈T is a well-defined stochastic process, and it has the same finite-
dimensional distributions as the process {X(t)}t∈T defined in (1.3).

1.1.5 Multivariate Extreme Value Theory
Consider a sample of d-dimensional random vectors,

Xi = (Xi,1, . . . , Xi,d), i = 1, . . . , n,

which are i.i.d. with common distribution function F on Rd. Define the
component-wise maximum as

Mn =
n∨

i=1
Xi,

where the jth component of Mn is given by

Mn,j = max
1≤i≤n

Xi,j, j = 1, . . . , d.

The distribution function of Mn is given by

P(Mn ≤ x) = P(X1 ≤ x, . . . , Xn ≤ x) = F n(x), x ∈ Rd,

where the inequality is interpreted component-wise.
The multivariate domain-of-attraction problem is to find sequences of vec-

tors an > 0 and bn ∈ Rd such that the normalized maxima a−1
n (Mn − bn)

converge in distribution to a non-degenerate random vector, that is,

F n(anx + bn) d−→ G(x), as n → ∞, (1.5)

for some distribution function G onRd with non-degenerate marginals. When
such sequences an, bn exist, we say that F is in the (max-)domain of attraction
of G, denoted F ∈ D(G). The limiting distribution G is then called a multi-
variate extreme value distribution.

A crucial observation follows from the requirement of marginal conver-
gence. Let Fj and Gj denote the jth marginal distribution functions of F and
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G, respectively. Since weak convergence of random vectors implies convergence
of each marginal, we must have

F n
j (an,jxj + bn,j) d−→ Gj(xj), as n → ∞,

for each j = 1, . . . , d, where an,j and bn,j are the jth components of an and bn,
respectively. Therefore, each marginal distribution Fj must lie in the domain
of attraction of a univariate extreme value distribution Gj .

A d-variate distribution function G is called max-stable if for every positive
integer k, there exist vectors αk > 0 and βk ∈ Rd such that the following
identity in distribution holds:

Gk(αkx + βk) = G(x), for all x ∈ Rd.

Intuitively, this means that if Y, Y1, . . . , Yk are i.i.d. random vectors with
distribution function G, then there exist normalization vectors αk > 0, βk

such that

α−1
k

(
k∨

i=1
Yi − βk

)
d= Y, for all k ≥ 1.

That is, the distribution of the component-wise maximum of k i.i.d. copies of
Y, properly normalized, is again G. It follows immediately from this definition
that a max-stable distribution is in its own domain of attraction. In particular,
it is an extreme value distribution function. Conversely, as discussed previously,
any extreme value distribution arises as the limit of normalized component-wise
maxima and therefore satisfies the max-stability property. Hence, the class of
max-stable distributions coincides with the class of multivariate extreme value
distributions.

An important property of max-stable distributions is that G1/k is again
a distribution function for every integer k ≥ 1. This implies that G is max-
infinitely divisible. According to Balkema and Resnick, 1977, any max-infinitely
divisible distribution function G can be written in the form

G(x) = exp
{
−Λ

(
[−∞, ∞)d \ [−∞, x]

)}
,

where [−∞, x] = [−∞, x1] × · · · × [−∞, xd], for some measure Λ on Rd,
called the exponent measure of G. To facilitate the study of the dependence
structure of max-stable distributions, it is customary to standardize the margins.
That is, we transform each component so that all margins follow a common dis-
tribution. While the specific form of the marginal distribution is not essential,
a particularly convenient choice is the α-Fréchet distribution.
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For simplicity, we restrict our attention to the nonnegative orthant [0, ∞)d.
Let Λ denote the exponent measure of a multivariate α-Fréchet distribution. It
satisfies the homogeneity property

Λ(c · A) = c−αΛ(A), for all c > 0 and Borel sets A ⊆ [0, ∞)d.

This scaling property implies that Λ admits a polar decomposition into radial
and angular components. We follow the formulation of Beirlant et al., 2006,
Section 8.2.5, which allows the use of different norms for the radial and angular
parts. Let ∥ · ∥(r) and ∥ · ∥(s) denote two arbitrary norms on Rd. We define the
following one-to-one transformation from Ed := [0, ∞)d \ {0} to (0, ∞) ×
Sd−1

+ by

x 7→ (r, w) :=
(

∥x∥(r),
x

∥x∥(s)

)
,

where the positive part of the unit sphere is defined as

Sd−1
+ = {x ∈ [0, ∞)d : ∥x∥(s) = 1}, (1.6)

We continue to denote by Λ the pushforward measure of the original exponent
measure under this mapping. The polar decomposition of Λ then takes the
form:

Λ(dr, dw) = c(r)αr−α−1dr × H(dw), (1.7)

where H is a probability measure on Sd−1
+ , referred to as the spectral measure,

and c(r) is the normalizing constant given by

c(r) = Λ({x ∈ [0, ∞)d : ∥x∥(r) ≥ 1}). (1.8)

The spectral measure H encodes the angular structure of extremes and governs
the dependence among components of X. As a consequence of the marginal
standardization (to α-Fréchet margins), the following moment constraint must
hold: ∫

Sd−1
+

(
wj

∥w∥(r)

)α

H(dw) = 1
c(r)

, for j = 1, . . . , d. (1.9)

In practice, common choices for the norms include the p-norm, for p ∈ (0, ∞),
∥x∥p =

(∑d
j=1 |xj|p

)1/p
, and the supremum norm, ∥x∥∞ = maxd

j=1 |xj|.
Let us write the distribution function of the componentwise maximum as

F n = [1 − n−1{n(1 − F}]n and use the fact that (1 − n−1xn)n → e−x ∈
[0, 1] if and only if xn → x ∈ [0, ∞] as n → ∞, we deduce that the conver-
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gence in (1.5) holds if and only if

lim
n→∞

n {1 − F (anx + bn)} = − log G(x), x ∈ Rd, (1.10)

with the usual convention that − log(0) = ∞. (1.10) admits a natural interpre-
tation in terms of exponent measures. Recall that a multivariate extreme value
distribution G is characterized by an exponent measure Λ such that

Λ([q, ∞) \ [q, x]) = − log G(x), x ≥ q,

where q denotes the lower endpoint of G. In particular, for the jth marginal
distribution Gj , we let qj denote its lower endpoint. Observe that − log G(x)
is finite if x > q, and infinite otherwise. Consequently, the exponent measure
Λ assigns finite mass only to Borel sets in [q, ∞) that are bounded away from
q. Now define a sequence of measures (Λn) on [q, ∞) \ {q} via:

Λn(B) := nP(X1,n ∈ B),

where the normalized and thresholded variable Xi,n is defined as

Xi,n :=
(

Xi − bn

an

)
∨ q.

From this, it follows that

Λn([q, ∞) \ [q, x]) = n {1 − F (anx + bn))} , x ∈ [q, ∞).

Hence, (1.10) may be rewritten as:

Λn([q, ∞) \ [q, x]) → Λ([q, ∞) \ [q, x]), x ∈ [q, ∞),

which suggests weak convergence of the measures Λn to Λ on [q, ∞) \ {q}.
More precisely, this convergence is vague convergence, denoted:

Λn
v−→ Λ on [q, ∞) \ {q}.

By definition, Λn
v−→ Λ if

Λn(B) → Λ(B), for all Borel sets B ⊂ [q, ∞) \ {q}

with compact closure and such that the boundary ∂B satisfies Λ(∂B) = 0.
Note that such Borel sets B have compact closure in [q, ∞) \ {q} if and only
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if there exists x > q such that B ⊂ [q, ∞) \ [q, x]. For more informa-
tion on vague convergence of measures, see Resnick, 1987. In summary, (1.5) is
equivalent to vague convergence of the rescaled excess measure Λn toward the
exponent measure Λ.

Let G be a multivariate α-Fréchet distribution. Then the convergence in
(1.5) is equivalent to the vague convergence of measures

uP
(
u−1/αX ∈ ·

)
v−→ Λ(·), as u → ∞, (1.11)

on the punctured nonnegative orthant Ed := [0, ∞)d \ {0}. By the polar
decomposition of the exponent measure Λ, the convergence in (1.11) implies a
weak limit theorem for the angular component of X. Specifically, we have the
following convergence in distribution on Sd−1

+ as the threshold u → ∞:

P
(

X
∥X∥(s)

∈ A,

∣∣∣∣∣, ∥X∥(r) ≥ u

)
d−→ H(A), (1.12)

for Borel sets A ⊆ Sd−1
+ satisfying H(∂A) = 0 where

H(A) = 1
c(r)

Λ
({

x ∈ Ed : x
∥x∥(s)

∈ A, ∥x∥(r) ≥ 1
})

.

1.1.6 Spherical Clustering
The spherical clustering algorithms considered thus far operate exclusively

on the unit sphere Sd−1
+ defined with respect to the 2-norm (Euclidean norm),

i.e., ∥ · ∥(s) = ∥ · ∥2 in (1.6). We do not adopt this restriction unless we are
discussing specific examples, in order to maintain generality. The space Sd−1

+ is
equipped with the subspace topology inherited fromRd. To facilitate clustering
on Sd−1

+ , we introduce a dissimilarity measure D, which plays a central role in
the analysis.

Definition 1. A dissimilarity measure D on Sd−1
+ is a continuous function D :

Sd−1
+ ×Sd−1

+ → [0, 1] satisfying the following properties for all w1, w2 ∈ Sd−1
+ :

(i) D(w1, w2) = 0 if and only if w1 = w2, (ii) D(w1, w2) = D(w2, w1).

Remark 1.1. Without loss of generality, we assume that D is normalized such
that its image covers the entire interval [0, 1]. A function D satisfying properties
(i) and (ii) is commonly known as a semimetric, which differs from a true metric
by not satisfying the triangle inequality. Given the compactness of Sd−1

+ and the
continuity of D, convergence in D is topologically equivalent to convergence in
Sd−1

+ : that is, wn → w in Sd−1
+ if and only if D(wn, w) → 0. Moreover, the
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collection of D-balls

BD(w, r) := {u ∈ Sd−1
+ : D(w, u) < r}, w ∈ Sd−1

+ , r > 0,

forms a topological basis forSd−1
+ ; see, e.g., Galvin and Shore, 1984. We also define

a dual dissimilarity measure D† by

D†(w1, w2) := sup
w∈Sd−1

+

|D(w, w1) − D(w, w2)| . (1.13)

This function is again a continuous semimetric onSd−1
+ ×Sd−1

+ , satisfies D† ≥ D,
and is surjective onto [0, 1]. Moreover, a relaxed triangle inequality holds:

D(w1, w3) ≤ D(w1, w2) + D†(w2, w3). (1.14)

In addition, if D(wn, w) → 0 as n → ∞, then D†(wn, w) → 0 as well.

Common dissimilarity measures used in practice are often semimetrics. For
the 2-norm unit sphere Sd−1

+ , the cosine dissimilarity used in spherical k-means
clustering (Janßen and Wan, 2020) is

Dcos(w1, w2) := 1 − w⊤1 w2, w1, w2 ∈ Sd−1
+ ⊂ Rd. (1.15)

The k-principal components dissimilarity from Fomichov and Ivanovs, 2023 is
given by

Dpc(w1, w2) := 1 −
(
w⊤1 w2

)2
. (1.16)

Both dissimilarities are semimetrics and offer computational advantages. For
D = Dcos or Dpc, it follows from elementary inequalities that the dual satisfies

D†(w2, w3) ≤ c∥w2 − w3∥2, with c = 1 or 2, respectively.

To formalize clustering, we adopt the notion of multisets (see, e.g., Kettle-
borough and Rayward-Smith, 2013). A multiset W on Sd−1

+ allows repeated
elements. Its support, denoted supp(W ), is the usual set of unique elements in
W . For example, if w1, w2 ∈ Sd−1

+ are distinct, then W = {w1, w1, w2} has
support supp(W ) = {w1, w2}. A multiset is characterized by its multiplicity
function mW : Sd−1

+ → {0, 1, . . .}, where mW (w) denotes how many times
w appears in W . A set is simply a multiset with multiplicities 0 or 1. If w ∈ W ,
this means w ∈ supp(W ).

For two multisets W1, W2 with multiplicity functions m1, m2, their union
W1 ∪ W2 and intersection W1 ∩ W2 are defined pointwise via m1 ∨ m2 and
m1 ∧ m2, respectively. We write W1 ⊂ W2 if m1 ≤ m2. If supp(W ) is finite,
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then for any function f on Sd−1
+ , we define

∑
w∈W

f(w) :=
∑

w∈supp(W )
mW (w)f(w),

so that the cardinality of W is |W | := ∑
w∈supp(W ) mW (w). We also define

D(w, W ) := inf
s∈supp(W )

D(w, s).

Now suppose W is a multiset on Sd−1
+ with |W | < ∞, and fix k ∈ Z+

with k ≤ |W |. Let A∗k = {a∗1, . . . , a∗k} be a multiset of k elements in Sd−1
+

minimizing total dissimilarity:

∑
w∈W

D(w, A∗k) = inf
{ ∑

w∈W

D(w, A) : supp(A) ⊂ Sd−1
+ , |A| = k

}
.

(1.17)
By continuity of D and compactness ofSd−1

+ , such a minimizer exists, although
it may not be unique. When |supp(W )| ≥ k, the infimum is attained with k

distinct centers.
We now define the notion of a k-clustering.

Definition 2. A k-clustering of a multiset W on Sd−1
+ with respect to a dissim-

ilarity measure D is a pair (A∗k,Ck), where: A∗k = {a∗1, . . . , a∗k} is a multiset
minimizing (1.17), and Ck = {C1, . . . , Ck} is a partition of W into multisets
such that for each i ∈ {1, . . . , k} and every w ∈ Ci, we have

D(w, A∗k) = D(w, a∗i ).

We refer to A∗k as the set of centers, and the Ci’s as clusters.

Remark 1.2. A k-clustering always exists for any finite multiset W , although it
need not be unique, even when A∗k is. Ties in dissimilarity may lead to ambiguity
in cluster assignments. Nonetheless, one can always select clusters so that each Ci

is nonempty when k ≤ |W |.

For D = Dcos or Dpc, the above formulation recovers spherical k-means
(Janßen and Wan, 2020) and k-PC clustering (Fomichov and Ivanovs, 2023), re-
spectively. Solving (1.17) exactly is computationally intractable in general; thus,
heuristic methods such as Lloyd-type algorithms are typically employed in prac-
tice. For theoretical purposes, however, we assume that an exact k-clustering is
available.
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When W is a random multiset, we assume that both the elements of A∗k
and the indicator variables 1{w ∈ Cj} for w ∈ W , j ∈ {1, . . . , k}, are
measurable.

1.1.7 Spherical Clustering for Multivariate Extremes
Following Janßen and Wan, 2020 and Fomichov and Ivanovs, 2023, we

connect spherical clustering with the analysis of multivariate extremes. With
n ∈ Z+, let (X1, . . . , Xn), be i.i.d. copies of a random vector X that is
marginally standardized and belongs to the domain of attraction of α-Fréchet
distribution, with spectral measure H on Sd−1

+ . We assume that the random
vector X has been marginally standardized so that each component exhibits a
standard α-Pareto-type tail behavior, specifically:

lim
x→∞

xαP(X1 > x) = · · · = lim
x→∞

xαP(Xd > x) = 1, (1.18)

where α > 0 is a known tail index, commonly chosen as α = 1 or α = 2 in the
literature. While this condition can be generalized to allow for slowly varying
functions (see Bingham et al., 1989), we adopt the simplified form in (1.18) for
ease of exposition.

Let ℓn be an intermediate sequence satisfying ℓn → ∞ and ℓn/n → 0 as
n → ∞. Define the extremal subsample on Sd−1

+ by

Wn =
{

Xi

∥Xi∥(s)
: ∥Xi∥(r) ≥

(
n

ℓn

)1/α

, i ∈ {1, . . . , n}
}

. (1.19)

In words, Wn consists of those sample points whose ∥ · ∥(r) norms exceed a
high threshold, projected onto the ∥ · ∥(s)-norm unit sphere Sd−1

+ . The choice
of ℓn and the regular variation of X imply

E|Wn| = nP
(

∥X1∥(r) ≥
(

n

ℓn

)1/α
)

∼ ℓnc(r) → ∞, (1.20)

as n → ∞, where c(r) is as defined in (1.8). Moreover, the set {x ∈ Ed :
∥x∥(r) ≥ x} is a Λ-continuity set for all x > 0 due to the homogeneity of Λ.
Then, by a triangular-array version of the Strong Law of Large Numbers (see,
e.g., Hsu and Robbins, 1947), we have

|Wn|
ℓn

= 1
ℓn

n∑
i=1

1
{

∥Xi∥(r) ≥
(

n

ℓn

)1/α
}

→Λ
(
{x ∈ Ed : ∥x∥(r) ≥ 1}

)
= c(r), (1.21)
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almost surely as n → ∞.
We now define the empirical spectral measure on Sd−1

+ as

Hn = 1
|Wn|

∑
w∈Wn

δw, (1.22)

with the convention that Hn is the zero measure when |Wn| = 0. We now
establish the consistency of this empirical measure.

Proposition 1.1. Suppose X satisfies conditions (1.18) and (1.11), with spectral
measure H on Sd−1

+ as in (1.7). Let Wn be defined as in (1.19), and Hn as in
(1.22). Then for any Borel set S ⊂ Sd−1

+ that is a continuity set for H , we have

Hn(S) → H(S), almost surely as n → ∞.

Proof. The result follows from a triangular-array strong law of large numbers
applied to (1.11), (1.12), (1.20), and (1.21).

We next consider applying the k-clustering procedure from Definition 2
to the subsample Wn. As indicated by Proposition 1.1, Wn is an increasingly
accurate approximation of the spectral measure H . When H is discrete with
finitely many atoms, clustering Wn allows for accurate recovery of both the
locations and the masses of these atoms. The following corollary establishes the
consistency of the resulting estimators.

Corollary 1.2. Suppose X is as in Proposition 1.1, and the spectral measure H is
of the discrete form

H =
k∑

i=1
piδai

, (1.23)

with ai ∈ Sd−1
+ distinct and pi > 0,

∑k
i=1 pi = 1. Let Wn be the extremal

subsample in (1.19), and let (Ak,n,Ck,n) be a k-clustering of Wn as in Definition
2, with dissimilarity measure D. Define the estimated cluster proportions by

pk
i,n =

|Ck
i,n|

|Wn|
, if |Wn| > 0, and pk

i,n := 0 otherwise. (1.24)

Then there exist bijections πn : {1, . . . , k} → {1, . . . , k} such that

ak
πn(i),n → ai, pk

πn(i),n → pi, for all i ∈ {1, . . . , k},

almost surely as n → ∞.
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Proof. The convergence ak
πn(i),n → ai follows from Janßen and Wan, 2020,

Theorem 3.1, which establishes convergence in Hausdorff distance between Ak,n

and {a1, . . . , ak}, along with Proposition 1.1; see also Janßen and Wan, 2020,
Section 4.

To prove the convergence of pk
πn(i),n, define

rA := sup {r > 0 : B(ai, r), i = 1, . . . , k are disjoint} > 0. (1.25)

Fix ϵ ∈ (0, rA/3). Then, almost surely, for large enough n, the dissimilarities
satisfy D†(ak

πn(i),n, ai) < ϵ. By the triangle inequality (1.14), we obtain the
inclusions

BD(ai, ϵ) ⊂ BD(ak
πn(i),n, 2ϵ) ⊂ BD(ai, 3ϵ).

Since the sets BD(ai, 3ϵ) are disjoint, Definition 2 implies:

BD(ai, ϵ) ∩ Wn ⊂ Ck
πn(i),n ⊂

BD(ai, ϵ) ∪
⋂
j ̸=i

BD(aj, ϵ)c

 ∩ Wn.

Consequently,

Hn(BD(ai, ϵ)) ≤ pk
πn(i),n ≤ Hn

BD(ai, ϵ) ∪
⋂
j ̸=i

BD(aj, ϵ)c

 .

Both bounds converge almost surely to pi as n → ∞ by Proposition 1.1.

Remark 1.3. In contrast to Janßen and Wan, 2020, Proposition 3.3, we work
directly under the marginal standardization assumption in (1.18) and omit the
empirical marginal transformations used in Janßen and Wan, 2020, Eq. (3.5)
for simplicity. Nonetheless, our consistency result for order selection (Theorem
3.5) can be extended to the setting of Janßen and Wan, 2020 by leveraging their
corresponding results.

1.2 Literature Review

1.2.1 Joint Sum-and-Max Limit
We now turn to the joint asymptotic behavior of the partial sum Sn and

the partial maximum Mn. The study of their joint distribution is of particular
interest, as it reveals the interplay between typical and extreme behaviors in a
sequence of random variables. Understanding the joint convergence provides a
more comprehensive probabilistic description than marginal analyses alone. For
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instance, in risk management or insurance mathematics, both the accumulated
claims (sum) and the largest claim (maximum) are of critical interest, and their
dependence structure may significantly impact modeling and inference.

Clearly, joint convergence in distribution implies the marginal convergence
of each component. The case where {Xn}n∈N are i.i.d. was thoroughly studied
by Chow and Teugels, 1978. They showed that, under suitable normalization,
the pair (Sn, Mn) converges jointly in distribution to a non-degenerate limit
(S, M) as n → ∞ if and only if each component converges marginally. More-
over, they established a striking result: Sn and Mn are asymptotically indepen-
dent—meaning the limiting variables S and M are independent—unless the
common distribution F of Xn has a heavy tail on the positive side. Specifically,
dependence in the limit arises only when the tail 1 − F (x) is regularly varying
with index −α for some α ∈ (0, 2), i.e., F ∈ D(Φα) ∩ D(α, p) with p > 0.

This result has a natural interpretation. When F is light-tailed, the influence
of any individual Xn is asymptotically negligible relative to the sum Sn, and the
maximum Mn has little effect on the sum, leading to asymptotic independence.
In contrast, when F is heavy-tailed, the sum Sn is often dominated by the same
extreme values that define Mn, inducing a non-trivial dependence structure in
the limit.

Furthermore, Chow and Teugels, 1978 extended these results to the func-
tional setting. They proved that the process (Sn(t), Mn(t))t≥0, when prop-
erly normalized, converges in distribution in a Skorokhod space to a joint limit
process (S(t), M(t))t≥0. In the heavy-tailed case, the processes S(t) and M(t)
exhibit dependence, reflecting the dominance of extreme values over entire time
intervals. Marginally, S(t) is an α-stable Lévy process and M(t) is an α-Fréchet
extremal process.

What happens when the sequence {Xn} exhibits dependence? Under suit-
able weak dependence conditions—typically referred to as short-range depen-
dence—it is often found that the joint distribution of normalized (Sn, Mn)
mimics the behavior seen in the i.i.d. case. For example, if {Xn} is strongly mix-
ing and has finite variance, then Sn and Mn are asymptotically independent;
see Anderson and Turkman, 1991; Hsing, 1995 for precise formulations and re-
sults. This mirrors the i.i.d. scenario, where individual terms are asymptotically
negligible in the sum and do not influence the maximum significantly.

However, the situation becomes more nuanced when {Xn} has a heavy
right tail, i.e., when 1 − F (x) is regularly varying at infinity. In this regime, de-
pendence in {Xn} can significantly alter the joint limiting behavior of (Sn, Mn).
Specifically, a key issue arises when large observations from both tails cluster
in time: the dependence structure may induce cancellation effects in the par-
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tial sums, thereby invalidating the asymptotic dependence typically observed
in the i.i.d. case. This type of phenomenon emphasizes that dependence not
only affects marginal distributions but also plays a crucial role in shaping joint
extremal behavior.

Despite these complications, when such cancellation is excluded—either
structurally or via specific assumptions—the normalized sum and maximum
often still exhibit joint convergence to the same class of limits as in the i.i.d.
setting. This was rigorously analyzed in Anderson and Turkman, 1995, where
conditions were given to preclude pathological cancellations while retaining the
heavy-tail-driven dependence structure.

More recently, Krizmanić, 2020 extended this line of inquiry to functional
convergence. There, the joint process (Sn(t), Mn(t))t≥0 was shown to con-
verge under conditions that effectively control the dependence among extreme
events. Specifically, the assumptions ensured that extreme values form clusters
which can be treated as asymptotically independent blocks. Moreover, by re-
quiring that extremes within a cluster have the same sign, the analysis rules out
potential cancellations that could otherwise obscure the heavy-tail effects.

There have been relatively few studies on the joint asymptotic distribution
of (Sn, Mn) under strong dependence in {Xn}, often referred to as long-range
dependence. Notably, much of the existing theory focuses on the case where
{Xn} is a Gaussian sequence. For such processes, it has been observed that the
critical decay rate of the covariance function significantly influences the limiting
joint behavior of (Sn, Mn). Specifically, the rate (1/ log n) serves as a boundary
between asymptotic independence and dependence.

When the covariance satisfies Cov(Xn+1, X1) = o(1/ log n), and under
some additional regularity conditions, it has been shown that Sn and Mn are
asymptotically independent; see Ho and Hsing, 1996; Ho and McCormick,
1999. This mirrors the behavior found in weakly dependent or short-range
dependent sequences with light-tailed distributions. In contrast, when

lim
n→∞

Cov(Xn+1, X1) log n ∈ (0, ∞],

the partial sum Sn and the maximum Mn become asymptotically dependent.
In this regime, the long-range memory embedded in the covariance structure
allows extreme values to influence the aggregate behavior of the sum, leading
to non-negligible contributions from the maximum to the sum even asymp-
totically. The limiting joint distribution of (Sn, Mn) under such long-range
dependent Gaussian structures was rigorously studied in Ho and Hsing, 1996;
Ho and McCormick, 1999; McCormick and Qi, 2000.
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On the other hand, the joint sum-and-maximum limit theorem for long-
range dependent {Xn} with heavy-tailed distributions has not, to the best of
our knowledge, been rigorously investigated. To clarify, it is important to define
precisely what is meant by long-range dependence in this context. Notably, the
threshold between short- and long-range dependence may differ depending on
whether we are analyzing the sum or the maximum of the sequence.

We adopt the phase-transition framework proposed by Samorodnitsky, 2016,
which characterizes long-range dependence through a qualitative shift in both
the normalization required for convergence and the nature of the limiting pro-
cess itself. Under this viewpoint, long-range dependence manifests when the
normalizing sequence or the limit diverges significantly from the i.i.d. setting,
indicating stronger memory in the process.

A key insight from this perspective is that long-range dependence tends to
appear earlier in the sum than in the maximum. For example, in the Gaussian
setting, long-range dependence for the sum Sn already emerges when the covari-
ance Cov(Xn+1, X1) decays as n−ρ with ρ ∈ (0, 1). In contrast, the maximum
Mn exhibits long-range dependence only when the covariance decays as slowly
as (1/ log n)—the critical threshold discussed previously.

A similar phenomenon occurs in the heavy-tailed setting. The sum process
can be substantially influenced by the clustering of extremes even when the
dependence is relatively weak, while the maximum typically requires stronger
dependence—such as persistent clustering of high-magnitude events—to devi-
ate from classical extreme value behavior. In this work, we emphasize that the
term long-range dependence refers to a dependence structure that simultane-
ously affects the asymptotic behavior of both the sum and the maximum.

In particular, we focus on a class of stationary infinitely divisible processes
{Xn}n∈N with regularly varying tails, whose dependence structure arises from a
null-recurrent Markov chain characterized by a memory parameter β ∈ (0, 1).
This modeling framework, originally introduced in Rosiński and Samorodnit-
sky, 1996, has since attracted substantial attention due to its capacity to encap-
sulate long-range dependence both from the perspective of partial sums and
partial maxima.

1.2.2 On estimation and order selection for multivariate
extremes via clustering

Multivariate extreme value theory (EVT) concerns the statistical behavior
of concurrent extreme events across multiple variables; see Beirlant et al., 2006;
de Haan and Ferreira, 2006. A common approach in this theory involves stan-
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dardizing the marginal distributions and examining the angular distribution of
extreme observations—those with large norms. Under the multivariate max-
imum domain of attraction assumption, this angular distribution converges
to a limit on the unit sphere, referred to as the spectral measure (or angular
measure).

Due to the inherently small sample size of extreme events, the challenge of
high dimensionality becomes particularly acute in multivariate EVT. As high-
lighted in the review article Engelke and Ivanovs, 2021, a central focus of recent
work has been on employing parsimonious modeling strategies to mitigate this
issue. A notable and interpretable example is the class of discrete spectral mea-
sures, where the angular distribution is concentrated on a finite set of directions.
Despite its simplicity, Fougères et al., 2013 established that any extremal depen-
dence structure can be approximated arbitrarily well by such discrete spectral
measures. Furthermore, several classes of parametric models—including heavy-
tailed max-linear and sum-linear models (e.g., Einmahl et al., 2012) and the more
recent transformed-linear model Cooley and Thibaud, 2019—are characterized
by having discrete spectral measures.

More recently, several authors have proposed applying clustering algorithms
on the unit sphere as a parsimonious summary of the angular structure of mul-
tivariate extremes. Einmahl et al., 2012 and Janßen and Wan, 2020 employed
the spherical k-means algorithm with cosine dissimilarity Dhillon and Modha,
2001 and explored its connection to estimating max-linear factor models. Fomi-
chov and Ivanovs, 2023 proposed the spherical k-principal component (k-PC)
clustering method, based on a refined cosine dissimilarity, and demonstrated its
ability to detect spectral mass concentrated on lower-dimensional faces of the
sphere. Medina et al., 2024 utilized the spectral clustering algorithm (Ng et al.,
2001) on a k-nearest neighbor graph constructed from angular components of
extreme samples, relating it to sum-linear models.

These works reveal a natural link between discrete spectral measures and
spherical clustering: each atom of the spectral measure can be viewed as a cluster
center, with extreme data points clustering around them. This intuition has
been formalized in Janßen and Wan, 2020; Medina et al., 2024, where consis-
tency results for recovering the spectral measure via clustering were established
(with Janßen and Wan, 2020’s results also covering the k-PC method of Fomi-
chov and Ivanovs, 2023). Since the underlying parameters of max-linear and
sum-linear factor models are directly determined by the spectral measure, con-
sistent estimation of the spectral measure directly enables consistent inference
for the model parameters.

27



However, in all existing theoretical analyses connecting clustering algorithms
to discrete spectral measures, the number of atoms—equivalently, the number
of clusters (referred to as the order)—is assumed to be known. In practice, ad
hoc methods such as the elbow or scree plot are often used to guide order se-
lection (Fomichov and Ivanovs, 2023; Janßen and Wan, 2020; Medina et al.,
2024). These methods rely on visual inspection and lack rigorous theoretical
justification.

In this paper, we advance the study of clustering-based inference for multi-
variate extremes with discrete spectral measures. Our contributions are three-
fold: 1. We develop a novel method for selecting the number of clusters (or-
der), which is both theoretically consistent and practically simple to implement.
Our method builds on the classical silhouette method (Hruschka et al., 2004;
Rousseeuw, 1987), with a key innovation: we introduce a penalty term to the
simplified average silhouette width to discourage both small cluster sizes and
small dissimilarities between cluster centers. This adjustment enhances sen-
sitivity to overestimation of the number of clusters and allows for consistent
estimation of the true order—even in models where likelihood-based criteria
are unavailable, such as max-linear factor models (Einmahl et al., 2012; Yuen
and Stoev, 2014). 2. We provide a large deviation-type result on the quality
of spectral measure estimation via clustering methods like spherical k-means
and k-PC. This offers a quantitative perspective on the convergence proper-
ties of clustering-based spectral inference under the multivariate extreme value
framework. 3. We describe how the discrete spectral measure estimation can
be directly translated into parameter estimates for heavy-tailed max-linear and
sum-linear factor models. Through simulations and real-data examples, we
demonstrate the performance of our order selection method and its application
to factor model inference.
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Chapter 2

The Setup

2.1 A Class of Long-Range Dependent Processes
Generated by Conservative Flows

We adopt a model essentially following that of Samorodnitsky and Wang,
2019. Let {Yn}n∈N0 denote an irreducible, aperiodic, null-recurrent Markov
chain onZ, with state spaceN0 := {0, 1, 2, . . .}. The sample paths (x0, x1, . . .)
of the chain belong to the measurable space (E, E) := (ZN0 , C(ZN0)), where
C(ZN0) is the cylindrical σ-field. Let (πi)i∈Z denote the unique invariant mea-
sure of the chain, normalized so that π0 = 1. For each initial state i ∈ Z, let
Pi be the law of the Markov chain started at Y0 = i. Define a σ-finite infinite
measure µ on (E, E) by

µ(A) :=
∑
i∈Z

πiPi(A), A ∈ E .

Let T : E → E be the left-shift operator given by T (x0, x1, x2, . . .) =
(x1, x2, . . .). Then µ is T -invariant, i.e., µ ◦ T−1 = µ.

We consider the stationary process defined by

Xn =
∫

E
f ◦ T n(s) M(ds), n ∈ N, (2.1)

where f : E → R is a measurable function and M is a homogeneous sym-
metric infinitely divisible random measure on (E, E), without a Gaussian com-
ponent. Specifically, the random measure M is characterized by the following:
the control measure is the σ-finite measure µ on (E, E), the local Gaussian
variance is identically zero: σ2(s) = 0, the local Lévy measure is constant:
ρ(s, ·) = ρ(·), the local drift is zero: b(s) = 0, where ρ is a symmetric Lévy
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measure on (R, B(R)) satisfying ρ(−B) = ρ(B) for all B ∈ B(R). Under
these assumptions, the distribution of M is characterized by:

E
[
eiθM(A)

]
= exp

{
−µ(A)

∫
R
(1 − cos(θy)) ρ(dy)

}
, θ ∈ R,

for any A ∈ E with µ(A) < ∞. The resulting sequence {Xn}n∈N is stationary,
infinitely divisible, and has symmetric marginal distributions.

Let x := (x0, x1, . . .) denote an element of the space E, and define the
measurable set

A0 := {x ∈ E : x0 = 0},

which satisfies µ(A0) = π0 = 1. For the integrand function f in (2.1), we shall,
for simplicity and following the convention in Samorodnitsky and Wang, 2019,
assume that

f = 1A0 .

Since M(A) and M(B) are independent for disjoint sets A and B, the de-
pendence structure of the process {Xn}n∈N is entirely determined by the flow
of sets {T−nA0}n∈N, or equivalently, by the ergodic properties of the transfor-
mation T . Define the wandering rate sequence by

wn := µ

(
n⋃

k=1
T−kA0

)
, n ∈ N. (2.2)

This sequence is closely related to the first entrance time into A0, defined as

φA0(x) := inf{n ∈ N : xn = 0}, x ∈ E.

It follows that wn = ∑n
k=1 P0(φA0 ≥ k). Throughout this paper, we assume

that the tail distribution of the first entrance time into A0 after the Markov
chain makes its first departure from A0 satisfies

P0(φA0 > n) ∈ RV∞(−β) for some β ∈ (0, 1),

where RV∞(−β) denotes the class of regularly varying functions at infinity
with index −β. Similarly, we use RV0 to denote regular variation at zero. This
assumption on the tail of the entrance time distribution can equivalently be
expressed in terms of the wandering rate sequence

wn =
n∑

k=1
P0(φA0 ≥ k) ∼ n P0(φA0 > n)

1 − β
∈ RV∞(1 − β), (2.3)
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as established in Owada and Samorodnitsky, 2015. This assumption induces
long-range dependence in the process.

The marginal distribution of Xn is governed by the Lévy measure ρ, which
consequently determines the domain of attraction of the process. We assume
that ρ satisfies the regular variation condition at infinity:

ρ((x, ∞)) ∈ RV∞(−α), for some α > 0. (2.4)

Moreover, in the case 0 < α < 2, following the framework of Bai et al., 2020,
we impose an additional condition on the behavior of ρ near the origin:

ρ((x, ∞)) = O(x−α0) as x → 0, for some α0 ∈ (0, 2). (2.5)

This ensures sufficient control over both the tails and the small jump behavior
of the Lévy measure.

In our setting, the process {Xn}n∈N defined in (2.1) admits a series repre-
sentation for each fixed n ∈ N. For each n, let {U

(n)
j }j∈N be a sequence of i.i.d.

E-valued random variables with common distribution µn defined by

dµn

dµ
(x) =

1{⋃n

k=1 T−kA0}(x)
µ (⋃n

k=1 T−kA0)
, x ∈ E.

Due to the shift-invariance of µ, i.e., µ(T−1·) = µ(·), and noting that by (2.2),
µ
(⋃n

k=1 T−kA0
)

= wn, it follows that for each k = 1, . . . , n and j ∈ N,

P
(
U

(n)
j ∈ T−kA0

)
= µ(T−kA0)

wn

= µ(A0)
wn

= 1
wn

.

Let {εn}n≥1 be a sequence of i.i.d. Rademacher random variables and {Γn}n≥1

denote the ordered points of a unit-rate Poisson process on (0, ∞). Hence, as
in (1.4), the finite-dimensional distributions (Xk)k=1,...,n admit the following
representation in distribution:

(Xk)k=1,...,n
d=
 ∞∑

j=1
εj ρ←

(
Γj

2wn

)
1{U(n)

j ∈T−kA0}


k=1,...,n

, (2.6)

where ρ← denotes the generalized inverse of the tail of the Lévy measure ρ de-
fined for y > 0 by

ρ←(y) := inf {x > 0 : ρ((x, ∞)) ≤ y} . (2.7)
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We review known results concerning the limit theorems for partial sums and
partial maxima of the process {Xn}n∈N defined in (2.1). The limiting processes
are closely connected to stable subordinators, for which we refer to Bertoin,
1999 for a comprehensive treatment. A subordinator is a non-decreasing Lévy
process characterized by stationary and independent increments and càdlàg
sample paths. It starts at zero almost surely. A β-stable subordinator (Sβ(t))t≥0

has a stability index β ∈ (0, 1). For each t > 0, the random variable Sβ(t)
follows a one-sided β-stable distribution supported on [0, ∞), with Laplace
transform given by

E
[
e−λSβ(t)

]
= exp

(
−tλβ

)
, λ ≥ 0.

The associated Lévy measure ν(dx) of Sβ has the form

ν(dx) = β

Γ(1 − β)x−β−1 1(0,∞)(x) dx.

The sample paths of Sβ are strictly increasing and right-continuous almost
surely.

The inverse stable subordinator, also known as the Mittag-Leffler process,
is defined as

Mβ(t) := S←β (t) := inf{u ≥ 0 : Sβ(u) ≥ t}, t ≥ 0.

This process is continuous and non-decreasing almost surely. Alternatively, the
right-continuous inverse can be used:

S→β (t) := inf{u ≥ 0 : Sβ(u) > t}.

The closure of the range {Sβ(t) : t ≥ 0} defines the β-stable regenerative set,
denoted by Rβ . This random closed set takes values in F([0, ∞)), the space of
closed subsets of [0, ∞) equipped with the Fell topology; for background on
the theory of random sets, we refer to Molchanov, 2005.

Define the partial sum process by

Sn(t) :=
⌊nt⌋∑
k=1

Xk, t ≥ 0. (2.8)

It is known that the limiting behavior of the normalized process (Sn(t))t≥0

depends critically on the tail behavior of Xk.
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If Xk has finite variance, which is equivalent to the Lévy measure ρ satisfy-
ing ∫

R
x2 ρ(dx) < ∞, (2.9)

then the partial sum process satisfies the functional central limit theorem

1
nw
−1/2
n

(Sn(t))t≥0 ⇒ cβ (BH(t))t≥0 as n → ∞,

in the space D[0, ∞) equipped with the Skorokhod J1-topology. Here, wn is
the wandering rate defined in (2.2), and BH(t) denotes fractional Brownian
motion with Hurst index H = (1 + β)/2, satisfying E[BH(t)2] = t2H/2,
t ≥ 0; see Samorodnitsky, 2016, Theorem 9.4.7. The constant cβ is given by

c2
β =

∫
R

x2 ρ(dx) · Γ(1 + 2β)
Γ(2 − β)Γ(2 + β) · E[Sβ(1)−2β], (2.10)

where Sβ(1) denotes the β-stable subordinator evaluated at time 1.
Note that the normalization sequence (nw−1/2

n ) ∈ RV∞(H) due to (2.3),
and thus grows faster than n1/2, which is the classical rate for the i.i.d. case. This
reflects the long-range dependence induced by the conservative flow

When the marginal distributions of Xk exhibit infinite variance, and the
Lévy measure ρ satisfies the regular variation condition for some α ∈ (0, 2)
as in (2.4), along with the boundedness condition at the origin as in (2.5), it
follows that the generalized inverse ρ← of the tail of the Lévy measure (defined
in (2.7)) satisfies ρ←(y) ∈ RV0(−1/α). Under these assumptions, the normal-
ized partial sum process

1
ρ←(w−1

n )nw−1
n

(Sn(t))t≥0 ⇒ 1
Γ(2 − β)C−1/α

α (Yα,β(t))t≥0 , as n → ∞,

in the Skorokhod space D[0, ∞) equipped with the J1 topology. The normal-
ization sequence belongs to the class RV∞

(
β + 1−β

α

)
. The constant Cα is

given by

Cα =

{Γ(1 − α)}−1 cos−1
(

πα
2

)
, if α ̸= 1,

2
π
, if α = 1,

(2.11)

as shown in Owada and Samorodnitsky, 2015, Theorem 5.1 and Example 5.5 and
Bai et al., 2020.

To describe the limit process (Yα,β(t))t≥0, where 0 < α < 2 and 0 <

β < 1, let (Ω′, F ′,P′) be an auxiliary probability space independent of the
underlying one. Let (Mβ(t, ω′))t≥0 denote a Mittag-Leffler process defined on
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(Ω′, F ′,P′), and let ν(dx) = (1 − β)x−βdx be a measure on (0, ∞). Then
the limiting process is given by

Yα,β(t) :=
∫

Ω′×[0,∞)
Mβ((t − x)+, ω′) dZα,β(ω′, x), t ≥ 0,

where Zα,β is a symmetric α-stable (SαS) random measure on Ω′× [0, ∞) with
control measure m := P′ ⊗ ν, characterized by

E [exp (iθZα,β(A))] = exp (−|θ|αm(A)) , θ ∈ R,

for all A ∈ F ′ ⊗ B([0, ∞)) with m(A) < ∞.
The process (Yα,β(t))t≥0 is represented as a stochastic integral with respect

to an infinitely divisible random measure, and hence it admits a series represen-
tation as in (1.4). For any subordinator σ, define its (right-continuous) inverse
process, also known as the local time process, by

Lσ(x) := inf{t ≥ 0 : σ(t) > x}, x ≥ 0. (2.12)

Let {εj}j∈N be a sequence of i.i.d. Rademacher random variables, and {Γj}j∈N

denote the ordered arrival times of a standard Poisson process on [0, ∞), as
introduced earlier. Let {σj}j∈N be a sequence of i.i.d. standard β-stable sub-
ordinators, and let {Vj}j∈N be i.i.d. random variables on [0, 1] with common
distribution function P(V ≤ x) = x1−β , x ∈ [0, 1]. All sequences above are
assumed mutually independent. Let Lj := Lσj

denote the local time process
of σj . Now, define the following series representation of the limiting process:

S(t) := (2Cα)1/α
∞∑

j=1
εj Γ−1/α

j Lj ((t − Vj)+) , t ∈ [0, 1], (2.13)

where Cα is the constant defined in (2.11). The series in (2.13) converges almost
surely; see Bai et al., 2020. Moreover, the process (Yα,β(t))t∈[0,1], Yα,β restricted
to time interval [0, 1], is equal in law to (S(t))t∈[0,1], see Samorodnitsky, 2016,
Example 3.4.4.

Next, we review the limit theorems for the partial maximum process. For
each n ∈ N, define

Mn(B) := max
k∈(nB)∩N

Xk, B ∈ G([0, ∞)), (2.14)

with the convention max∅ := −∞, and where G([0, ∞)) denotes the collec-
tion of open subsets of [0, ∞) under the subspace topology.
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Suppose the marginal law of Xk satisfies the regular variation condition (cf.
(2.4)) for some α > 0, and assume the additional regularity condition:

sup
n∈N

nP0(φA = n)
P0(φA > n) < ∞. (2.15)

Under these assumptions, Samorodnitsky and Wang, 2019 established the fol-
lowing functional limit theorem:

1
ρ←(w−1

n ) (Mn(B))B∈G([0,∞)) ⇒ (ηα,β(B))B∈G([0,∞)) , as n → ∞,

in the space of sup measures SM([0, ∞)) equipped with the sup vague topol-
ogy. In the above theorem, the normalization sequence ρ←(w−1

n ) ∈ RV∞((1−
β)/α).

To define the limiting random sup measure ηα,β , consider a Poisson point
process on [0, ∞)× [0, ∞)×F([0, ∞)) with mean measure αu−(1+α)du (1−
β)v−βdv PRβ

, where PRβ
is the law of the β-stable regenerative set Rβ . Let

(Uj, Wj, Fj)j∈N be a measurable enumeration of the points of the Poisson pro-
cess. Define the shifted regenerative sets:

F̃j := Wj + Fj := {Wj + x : x ∈ Fj}, j ∈ N.

Then, for B ∈ G([0, ∞)), the limit random sup measure is given by

ηα,β(B) := sup
t∈B

 ∞∑
j=1

Uj1{t∈F̃j}

 . (2.16)

It is known that if β ∈ (0, 1/2], then ηα,β(B) follows an α-Fréchet distribution
marginally for each B. However, this property fails when β ∈ (1/2, 1), indi-
cating a significant shift in the extremal structure of the process in the strongly
dependent regime.

If we restrict the random sup measure ηα,β to a compact interval, say [0, 1],
we can utilize a particularly convenient measurable enumeration of the points in
the associated Poisson point process. Define the closed range of a subordinator
σ as

Rσ := {σ(t) : t ≥ 0}, (2.17)

where the closure is taken in [0, ∞). Let {Γj}j∈N denote the arrival times of
a standard Poisson process on (0, ∞), and let {σj}j∈N be a sequence of i.i.d.
standard β-stable subordinators, independent of {Γj}. Let {Vj}j∈N be an i.i.d.
sequence of random variables on [0, 1] with distribution functionP(V ≤ x) =
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x1−β , independent of the previous sequences. Define Rj := Rσj
, and let

R̃j := Vj + Rj = {Vj + x : x ∈ Rj}, j ∈ N,

be the regenerative set Rj shifted by Vj . Note that since 0 ∈ Rj almost surely,
we also have Vj ∈ R̃j . We now define the random sup measure as

M(B) := sup
t∈B

 ∞∑
j=1

Γ−1/α
j 1{t∈R̃j}

 , B ∈ G([0, 1]).

Then the family (M(B))B∈G([0,1]) has the same finite-dimensional distribu-
tions as (ηα,β(B))B∈G([0,1]). This equivalence in distribution arises from the
fact that the original Poisson point process (Uj, Wj, Fj)j∈N restricted to [0, ∞)×
[0, 1] × F([0, ∞)) can be interpreted as a Poisson point process (Uj)j∈N on
[0, ∞), marked by two independent sequences (Vj)j∈N and (Rj)j∈N, which
are i.i.d. random elements in [0, 1] and the space of regenerative sets, respec-
tively. Moreover, we may enumerate the points of the Poisson random measure
in decreasing order of the first coordinate (Uj)j∈N, which leads to a natural
representation {Γ−1/α

j }j∈N.
Let us introduce the set

IS :=
⋂
j∈S

R̃j ∩ [0, 1], ∅ ≠ S ⊂ N,

with the convention I∅ := [0, 1]. It is known that the intersection IS is nonempty
almost surely only if 1 ≤ |S| ≤ ℓβ , where ℓβ := max{k ∈ N : k <

(1 − β)−1}; see Samorodnitsky and Wang, 2019, Corollary B.3. An alternative
but equivalent representation of M(B) that is useful in proofs is given by

M(B) = sup
S⊂N

1{IS∩B ̸=∅}
∑
j∈S

Γ−1/α
j

 , B ∈ G([0, 1]), (2.18)

where the supremum is almost surely attained at some (random) finite set S

with |S| ≤ ℓβ ; see Samorodnitsky and Wang, 2019.

2.2 Heavy-tailed Factor Models
As observed by Einmahl et al., 2012 and Janßen and Wan, 2020, k-clustering

algorithms can be naturally related to the estimation of certain factor-like mod-
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els frequently encountered in the analysis of multivariate extremes. Let

B = (bij)i=1,...,d; j=1,...,k =
[
b1 · · · bk

]
,

where each bj = (b1j, . . . , bdj)⊤ ∈ [0, ∞)d, with j ∈ {1, . . . , k}, are k

distinct, nonzero column vectors. We assume that no row or column of B is
identically zero (as such redundancy would allow reduction of d or k).

Let Z = (Z1, . . . , Zk)⊤ be a vector of i.i.d. positive random variables with
regularly varying tails:

P(Z1 > z) ∼ z−α, as z → ∞, for some α ∈ (0, ∞).

We consider two models linking X ∈ Rd to Z:
1. Sum-linear model:

X = BZ =
 k∑

j=1
b1jZj, . . . ,

k∑
j=1

bdjZj

⊤ . (2.19)

2. Max-linear model:

X = B ⊙ Z =
 k∨

j=1
b1jZj, . . . ,

k∨
j=1

bdjZj

⊤ , (2.20)

where ⊙ denotes the matrix operation with summation replaced by the maxi-
mum. Due to the exchangeability of the components of Z, the distribution of
X under either model is identifiable only up to a permutation of the columns of
B; that is, for any permutation π on {1, . . . , k}, the distribution of X remains
unchanged under B 7→ Bπ =

[
bπ(1) · · · bπ(k)

]
.

Both models (2.19) and (2.20) are known to satisfy multivariate regular vari-
ation (MRV), with a discrete spectral measure of the form

pj =
∥bj∥α

(r)∑k
ℓ=1 ∥bℓ∥α

(r)
, aj = bj

∥bj∥(s)
, j = 1, . . . , k, (2.21)

where ∥ · ∥(r) and ∥ · ∥(s) are norms used in the radial-angular decomposition.
This result follows from the “single large jump” heuristic: when ∥X∥(r) is large,
it is overwhelmingly due to a single large Zj ; see, e.g., Einmahl et al., 2012; Med-
ina et al., 2024. These works often assume ∥ · ∥(r) = ∥ · ∥(s) and α = 1, but
generalizations are straightforward.
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To ensure marginal standardization as in (1.18) or (1.9), the following con-
straint must hold:

k∑
j=1

bα
ij = 1, i = 1, . . . , d. (2.22)

The models can be further extended by including a noise component. For
example, one may consider

X = BZ + ε or X = (B ⊙ Z) ∨ ε,

where ε = (ε1, . . . , εd)⊤ consists of i.i.d. positive noise terms. As long as the
tails of εi are lighter than those of Zj , the asymptotic properties remain valid;
see Einmahl et al., 2012.

The transformed-linear model of Cooley and Thibaud, 2019 also falls within
this framework. Importantly, when fitting such models in practice, one typi-
cally focuses on the extremal subset of the data (e.g., those observations exceed-
ing a high threshold; see (1.19)), rather than the entire sample.
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Chapter 3

Main Results

3.1 Theory

3.1.1 Joint Convergence of Processes with Finite Variance
For simplicity, we present our results on the unit interval [0, 1]; however,

they can be extended to the half-line [0, ∞) without essential modifications.
Let G([0, 1]) denote the open subsets of [0, 1] with respect to the subspace
topology inherited from R.

Theorem 3.1. Let {Xn}n∈N be a stationary process defined as in (2.1) with f =
1A0 . Define the partial sum process (Sn(t))t∈[0,1] as in (2.8) and the partial
maximum process (Mn(B))B∈G([0,1]) as in (2.14). Suppose the regular variation
conditions (2.3) and (2.4) hold for some 0 < β < 1 and α ≥ 2, respectively. Ad-
ditionally, assume the finite variance condition (2.9) and the regularity condition
(2.15) are satisfied. Then, as n → ∞, the following joint convergence holds:

 1
nw
−1/2
n

(Sn(t))t∈[0,1]
1

ρ←(w−1
n ) (Mn(B))B∈G([0,1])

 ⇒

 cβ (BH(t))t∈[0,1]
(ηα,β(B))B∈G([0,1])


weakly in the product space D[0, 1] × SM [0, 1], where D[0, 1] is equipped with
the Skorokhod J1-topology and SM [0, 1] with the sup-vague topology. Here, wn

is defined by (2.2), ρ← is as in (2.7), cβ is the constant in (2.10), BH is a frac-
tional Brownian motion with Hurst parameter H = (1 + β)/2 satisfying
E[BH(t)2] = t2H/2, and ηα,β is the random sup measure defined in (2.16).

Furthermore, the processes BH and ηα,β appearing in the limit are indepen-
dent.

For simplicity, we do not treat the case α = 2 when {Xn} has infinite
variance. This subtle case requires modifying the normalization n−1w1/2

n by
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an additional slowly varying diverging factor. Aside from this adjustment, we
expect the limit theorem to remain qualitatively similar to Theorem 3.1—specifi-
cally, the sum component should still converge to a fractional Brownian motion
in the limit.

3.1.2 Joint Convergence of Processes with Infinite Variance
Theorem 3.2. Let {Xn}n∈N be a stationary process defined by (2.1) with f =
1A0 . Suppose (2.3) and (2.4) hold for 0 < β < 1 and 0 < α < 2, respectively.
Let (Sn(t))t∈[0,1] be defined in (2.8) and Mn(B))B∈G([0,1]) be defined in (2.14).
Assume that (2.5) holds for some α0 < 2 and (2.15) holds. Then 1

ρ←(w−1
n )nw−1

n
(Sn(t))t∈[0,1]

1
ρ←(w−1

n )(Mn(B))B∈G([0,1])

 ⇒
( 1

Γ(2−β)C
−1/α
α (S(t))t∈[0,1]

(M(B))B∈G([0,1])

)

weakly in D[0, 1] × SM [0, 1] as n → ∞, where wn as in (2.2) and ρ← as in
(2.7), Cα is as in (2.11), and the limit process S and random sup measure M are
as in (2.13) and (2.18).

The following proposition demonstrates a key contrast with Theorem 3.1:
the limiting processes in Theorem 3.2 are no longer independent.

Proposition 3.3. Let (S(t))t∈[0,1] be defined as in (2.13), and let (M(B))B∈G([0,1])

be defined as in (2.18). Then S(t) and M(B) are dependent.

3.1.3 Joint Convergence of Subordinators with Their Local
Times and Ranges

We present a result stating that the weak convergence of strictly increas-
ing subordinators implies the joint weak convergence of the subordinator, its
associated local time process, and its closed range. For our purposes, we also
incorporate an independent random shift into the framework.

Proposition 3.4. Let σ and {σn}n∈N be subordinators such that σ is strictly
increasing on [0, ∞) almost surely. Let V and {Vn}n∈N be non-negative ran-
dom variables. Suppose that σn is independent of Vn for each n ∈ N, and σ is
independent of V . Let L and Ln denote the local time processes (2.12) associated
with σ and σn, respectively, and let R and Rn denote their closed ranges (2.17).
Assume that

σn(1) d−→ σ(1) and Vn
d−→ V as n → ∞.
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Then, for any t, y > 0, the following joint weak convergence holds:
(Vn + σn(s))s∈[0,t]

(Ln((x − Vn)+))x∈[0,y]

Vn + Rn

 d=⇒


(V + σ(s))s∈[0,t]

(L((x − V )+))x∈[0,y]

V + R


in D[0, t] × D[0, y] × F([0, ∞)), where the function spaces are equipped with
the uniform and Fell topologies, respectively. In particular,

(σn(s))s∈[0,t]

(Ln(x))x∈[0,y]

Rn

 d=⇒


(σ(s))s∈[0,t]

(L(x))x∈[0,y]

R


in D[0, t] × D[0, y] × F([0, ∞)).

3.1.4 Order Selection via Penalized Silhouette

Suppose W is a multiset on Sd−1
+ , and let 1 ≤ k ≤ |W | < ∞. Consider a

k-clustering of W , denoted by A∗k = {a∗1, . . . , a∗k} and Ck = {C1, . . . , Ck},
with respect to a dissimilarity measure D as defined in Definition 2. For w ∈ W ,
define

a(w) = D(w, A∗k), b(w) = max
1≤i≤k

D(w, A∗k \ {a∗i }),

which respectively denote the dissimilarity of w to its closest center (i.e., the
center of the cluster to which it belongs) and to its second-closest center. When
k = 1, we define b(w) := 1. The (simplified) average silhouette width (ASW)
(Hruschka et al., 2004) of the clustering is then given by

S̄ = S̄(W ; A∗k) = 1
|W |

∑
w∈W

b(w) − a(w)
b(w) = 1 − 1

|W |
∑

w∈W

a(w)
b(w) . (3.1)

A well-clustered dataset typically exhibits small a(w) values relative to b(w)
for most w ∈ W . Hence, S̄ is commonly used to select the number of clusters
k by maximizing it over a range of values. However, when applying ASW to
multivariate extremes with a discrete spectral measure, we find that its perfor-
mance may be unsatisfactory. Specifically, ASW tends to become insensitive
when the number of clusters exceeds the true number k, i.e., the number of
atoms in the spectral measure. In particular, we observe two problematic be-
haviors of ASW: 1. It often treats a small fraction of isolated points as a separate
cluster. 2. It may split a single cluster center into multiple nearby centers.
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Motivated by these observations, we propose adding a penalty term that
discourages both small cluster sizes and small dissimilarities between cluster
centers. Recall that for a k-clustering (A∗k,Ck) of a multiset W , the set A∗k =
{a∗1, . . . , a∗k} consists of the cluster centers, and Ck = {C1, . . . , Ck} denotes
the corresponding partition of W . Define

Pt = Pt(W ; A∗k,Ck) := 1 −
(

min
i=1,...,k

|Ci|
|W |/k

)t (
min

1≤i<j≤k
D(a∗i , a∗j )

)t

,

(3.2)
where t ≥ 0 is a tuning parameter. For k = 1, we define the second minimum
as 1. This penalty term discourages the formation of very small clusters and
cluster centers that are too close together. Both quantities lie in [0, 1], and
the penalty increases as either quantity decreases. The penalized ASW is then
defined as

St(W ; A∗k,Ck)

:=S̄ − Pt =
(

min
i=1,...,k

|Ci|
|W |/k

)t (
min

1≤i<j≤k
D(a∗i , a∗j )

)t

− 1
|W |

∑
w∈W

a(w)
b(w) .

When t = 0, we recover the original ASW: S0 = S̄. As t increases, the penalty
term Pt grows and St decreases.

We now present a consistency result for using penalized ASW in selecting
the number of clusters in multivariate extreme models with discrete spectral
measures.

Theorem 3.5. Suppose X satisfies conditions (1.18) and (1.11), and has a discrete
spectral measure of the form

H =
k∑

i=1
piδai

,

where ai ∈ Sd−1
+ are distinct and pi > 0 with

∑k
i=1 pi = 1. Let Wn denote the

extremal subsample as in (1.19), with ℓn → ∞ and ℓn/n → 0. Let (Am,n,Cm,n)
denote an m-clustering of Wn as in Definition 2, with respect to dissimilarity
measure D from Definition 1. Let rA be as defined in (1.25), and define

pmin := min
1≤i≤k

pi. (3.3)
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Then for any t ∈ (0, t0), where

t0 := ln(1 − rApmin)
ln(rAkpmin) , (3.4)

we have for all m ̸= k

lim inf
n→∞

[St(Wn; Ak,n,Ck,n) − St(Wn; Am,n,Cm,n)] ≥ ∆t almost surely,

where ∆t := (rAkpmin)t − (1 − rApmin) > 0 for t ∈ (0, t0).

This theorem implies that if the tuning parameter t is chosen within an
appropriate range, then with high probability as n → ∞, the penalized ASW
is uniquely maximized at the true number of clusters k. In practice, we recom-
mend plotting the penalized ASW St as a function of m ∈ {1, 2, . . . } over a
small range of t values. Start with t ≈ 0 and gradually increase it. If spurious
clusters (e.g., tiny clusters or clusters with very close centers) exist, the curve will
typically bend or drop at the correct number of clusters. The “elbow” point in
this plot can then be selected as the optimal value k. As a quick illustration, we
follow a simulation setup of (d = 6, k = 6) below to simulate a max-linear fac-
tor model. Penalized ASW St (vertical axis) for spherical k-means clustering is
plotted as a function of test order m (horizontal axis); see Figure 3.1 . Increasing
t to very large values is generally uninformative and not advised. Developing
a data-driven method to select t remains an open and important direction for
future research.
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Figure 3.1: A simulation instance taken from d = 6, k = 6 setup.
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3.1.5 Large Deviation Analysis of Clustering-based Spectral
Estimation

In this section, we provide a quantitative refinement of the consistency
result stated in Corollary 1.2 by deriving large-deviation-type bounds. This
analysis builds on several key estimates developed in the proof of Theorem 3.5
and offers additional insight into the convergence behavior of the clustering-
based estimator.

As a preliminary step, we establish a Chernoff–Hoeffding-type bound for
the sum of a Binomial number of independent Bernoulli random variables.
This result may be of independent interest and plays a central role in the subse-
quent probabilistic analysis.

Lemma 3.6. Suppose Bi, i ∈ Z+, are independent Bernoulli random variables
with P(Bi = 1) = q1 ∈ (0, 1) and N is a Binomial(n, q2) random variable
which is independent of Bi’s, n ∈ Z+. Then we have for any r ∈ (0, 1 − q1),

P
(

1
N

N∑
i=1

Bi > q1 + r

)
≤ exp

{
nq2

[
e−D(q1+r∥q1) − 1

]}
≤ exp

{
nq2

(
e−2r2 − 1

)}
, (3.5)

and for any r ∈ (0, q1),

P
(

1
N

N∑
i=1

Bi < q1 − r

)
≤ exp

{
nq2

[
e−D(q1−r∥q1) − 1

]}
≤ exp

{
nq2

(
e−2r2 − 1

)}
, (3.6)

where D(x ∥ y) = x ln(x/y) + (1 − x) ln{(1 − x)/(1 − y)} if x, y ∈ (0, 1)
(the Kullback–Leibler divergence between two Bernoulli distributions). Here∑m

i=1 Bi/m is understood as 0 when m = 0.

Proof. We only prove the (3.5) and the proof of (3.6) is similar. It follows from
a version of Hoeffding’s inequality for Binomial (Hoeffding, 1963, Equation
(2.1)) that for any m ≥ 0,

P
(

1
m

m∑
i=1

Bi > q1 + r

)
≤ e−mD(q1+r∥q1).
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Hence

P
(

1
N

N∑
i=1

Bi > q1 + r

)
≤

n∑
m=0

(
n

m

)
qm

2 e−mD(q1+r∥q1)(1 − q2)n−m

=
[
q2
{
e−D(q1+r∥q1) − 1

}
+ 1

]n
≤ exp

{
nq2

[
e−D(q1+r∥q1) − 1

]}
,

where in the last inequality we have used the inequality x + 1 ≤ exp(x), x ∈
R. To obtain the second inequality in (3.5), it suffices to note that in view of
Hoeffding, 1963, Equation (2.3), one has D(q1 + r ∥ q1) ≥ 2r2.

Remark 3.1. Note that when r is small, this simplified bound is approximately
exp(−2nq2r

2), a form identical to the usual Hoeffding’s inequality (recall nq2

is the effective sample size here).

Let H = ∑k
i=1 piδai

be as defined in (1.23). Let (Ak,n,Ck,n), where Ak,n =
(ak

1,n, . . . , ak
k,n) and Ck,n =

{
Ck

1,n, . . . , Ck
k,n

}
, form a k-clustering of the ex-

tremal subsample Wn as in (1.19). By Corollary 1.2, there exists permutation π,
such that ak

πn(i),n and pk
πn(i),n in (1.24) are consistent estimators for ai and pi, re-

spectively. Note that an accurate estimation can be interpreted as that for small
x, y > 0, D(ak

π(i),n, ai) < x and |pk
π(i),n − pi| < y for all i ∈ {1, . . . , k}.

Now consider the complement “large deviation” event

E(x, y) =
⋂
π

k⋃
i=1

{
|ak

π(i),n − ai| > x
}

∪
{
|pk

π(i),n − pi| > y
}

. (3.7)

where the intersection ∩π is over all permutations π : {1, . . . , k} 7→ {1, . . . , k}.
We have the following result.

Proposition 3.7. Suppose X satisfying (1.18) and (1.11) has a spectral measure of
the following form H = ∑k

i=1 piδai
, where ai’s are distinct points on Sd−1

+ , and
pi > 0, p1+· · ·+pk = 1. Let Wn denote the extremal subsample as in (1.19), and
a k-clustering of Wn formed by

(
Ak,n = (ak

1,n, . . . , ak
k,n),Ck,n =

{
Ck

1,n, . . . , Ck
k,n

})
as defined in Definition 2 with respect to a dissimilarity measure D defined in
Definition 1. Let E(x, y) be the event defined in 3.7. Then for any x, y > 0,

lim sup
n

1
c(r)ℓn

lnP(E(x, y)) ≤ exp
(
−2∆(x, y)2

)
− 1

where

∆(x, y) =

max{y/ck, pminx/(k + x)}, x < ϵ0, y < ckpminϵ0/(k + ϵ0),
pminϵ0/(k + ϵ0), otherwise,
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where ϵ0 := sup{ϵ > 0 : rA > ϵ + r†A(ϵ)} and ck := (k ∨ 2 − 1).

Proof. If Hn(BD(ai, ϵ)) = |Wn ∩ BD(ai, ϵ)|/|Wn| ≥ pi − δ for all i ∈
{1, . . . , k}, by Lemmas A.8 and A.10, as long as (A.28) holds, there exists a
permutation π : {1, . . . , k} 7→ {1, . . . , k}, such that D(ak

π(i),n, ai) < ϵ′ and
|pk

π(i),n − pi| ≤ ckδ for all i ∈ {1, . . . , k}. Hence under (A.28), whenever
ϵ′ ≤ x or ckδ ≤ y,

P(E(x, y)) ≤ P
(⋂

π

k⋃
i=1

{
D(ak

π(i),n, ai) > ϵ′
}

∪
{
|pk

π(i),n − pi| > ckδ
})

≤ P
(

k⋃
i=1

{Hn(BD(ai, ϵ)) < pi − δ}
)

,

where Hn is the empirical spectral measure in (1.22). Observe that for any i ∈
{1, . . . , k},(

|Wn|,
(
1{Xj/∥Xj∥(s) ∈ BD(ai, ϵ), ∥Xj∥(r) ≥ (n/ℓn)1/α}

)
j=1,...,n

)
d= (N, (Bj)j=1,...,n) ,

where N and Bj ’s are as in Lemma 3.6 with respective parameters q1 and q2

given as follows:

q1 = q1(i, ϵ, n) :=
P
(
X1/∥X1∥(s) ∈ BD(ai, ϵ), ∥X1∥(r) ≥ (n/ℓn)1/α

)
P
(
∥X1∥(r) ≥ (n/ℓn)1/α

)
→pi (3.8)

as n → ∞, where the last convergence holds due to (1.12) and the fact that
BD(ai, ϵ)’s are disjoint under ϵ < rA, and

q2 = q2(n) = P
(
∥X1∥(r) ≥ (n/ℓn)1/α

)
∼ c(r)(n/ℓn) (3.9)

as n → ∞. Now applying Lemma 3.6, we have

P
(

k⋃
i=1

{Hn(BD(ai, ϵ)) < pi − δ}
)

≤
k∑

i=1
P (Hn(BD(ai, ϵ)) < pi − δ)

≤ k exp
(
nq2(n)

[
exp{−2δ2} − 1

])
.

(3.10)
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Therefore in view of also (3.8) and (3.9), we have

lim sup
n

1
ℓn

lnP (E(x, y)) ≤ c(r)
{
exp(−2δ2) − 1

}
.

The next step is to determine the largest value of δ as possible. Recall ϵ0 =
sup{ϵ′ > 0 : rA > ϵ′ + r†A(ϵ′)}. Then when ϵ′ ∈ (0, ϵ0), for all ϵ small
enough we have rA > ϵ′ + 2r†A(ϵ) + r†A(ϵ′), namely, (A.28) holds. Hence by
taking ϵ ↓ 0 in (A.25), we get from ϵ′ < ϵ0 the restriction δ < pminϵ0/(k + ϵ0).
Similarly, from ϵ′ ≤ x we get the restriction δ < pminx/(k + x). In addition,
from ckδ ≤ y we get the restriction δ ≤ y/ck. At least one of the last two
conditions should be satisfied. Therefore,

δ < pminϵ0/(k + ϵ0), if x ≥ ϵ0,

δ < pminϵ0/(k + ϵ0), if x < ϵ0, y ≥ ckpminϵ0/(k + ϵ0),
δ < max{y/ck, pminx/(k + x)}, if x < ϵ0, y < ckpminϵ0/(k + ϵ0).

The result then follows.

Remark 3.2. The large-deviation-type estimates in Proposition 3.7 show that the
probability P(E(x, y)) decays exponentially in the expected extremal subsample
size c(r)ℓn. Notably, the structure of the deviation function ∆(x, y) reveals im-
portant qualitative insights: the difficulty of the clustering-based estimation—as
reflected in the rate of decay of these error probabilities—depends negatively on
pmin and rA (since ϵ0 increases with rA), and positively on the number of clusters
k. In other words, the estimation becomes more accurate when the true discrete
spectral measure has fewer atoms, the atoms are more well-separated under the
dissimilarity measure D, or the mass associated with each atom is relatively large.

We also have the following result which states that in the context of Theo-
rem 3.5, the probability of false order election tends to 0 exponentially fast.

Proposition 3.8. Suppose X satisfying (1.18) and (1.11) has a discrete spectral
measure of the form H = ∑k

i=1 piδai
, k ∈ Z+ where ai’s are distinct points on

Sd−1
+ , and pi > 0, p1 + · · · + pk = 1. Let Wn denote the extremal subsample as

in (1.19), and (Am,n,Cm,n), m ∈ Z+, form an m-clustering of Wn as defined
in Definition 2 with respect to a dissimilarity measure D defined in Definition 1.
Let rA be defined as in (1.25), pmin be defined as in (3.3) and t0 be defined as in
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(3.4). Then fix t ∈ (0, t0),

lim sup
n

lnP ({St(Wn; Ak,n,Ck,n) ≤ St(Wn; Am,n,Cm,n) for all m ̸= k})
c(r)ℓn

≤ exp
(
−2δt(k, pmin, rA)2

)
− 1

where δt(k, pmin, rA) > 0 is the solution δ of the equation [k(pmin − δ)rA]t −
kδ = (k2δ)t ∨ ([1 − (pmin − δ)rA]1{k ≥ 2}).

Proof. Writing St(m) = St(Wn; Am,n,Cm,n), we have

P ({St(k) ≤ St(m), m ̸= k}) ≤ P ({St(k) ≤ St(m), m ̸= k} ∩ En(ϵ, δ))
+ P (En(ϵ, δ)c) ,

where En(ϵ, δ) is in (A.31). Combining the inequalities regarding S̄ in the
proof of Proposition A.11, and the inequalities regarding Pt in the proof of
Proposition A.12, the event in the first probability on the right-hand side above
is empty as long as δ > 0 satisfies

[k(pmin − δ)rA]t − kδ > (k2δ)t ∨ ([1 − (pmin − δ)rA]1{k ≥ 2})

and ϵ is sufficiently small (depending on δ). Note that the inequality above holds
when δ is sufficiently small due to 0 < t < t0 = ln(1−rApmin)/ ln(rAkpmin),
and its left-hand side is decreasing (to negative values) and its right-hand side
is increasing with as δ increases to pmin. Then for any δ ∈ (0, δt(k, pmin, rA)),
we have in view of (3.9) and (3.10) that

lim
n

1
c(r)ℓn

lnP ({St(k) ≤ St(m), m ̸= k}) ≤ exp(−2δ2) − 1.

The proof is concluded by letting δ ↑ δt(k, pmin, rA).

3.2 Methods

3.2.1 Order Selection and Coefficient Estimation
Due to the discrete nature of the spectral measure, the likelihood functions

corresponding to the models (2.19) and (2.20) are not accessible; see, e.g., Ein-
mahl et al., 2012; Yuen and Stoev, 2014. In particular, even outside the frame-
work of extremes, the max-linear model (2.20) lacks a smooth density, rendering
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standard likelihood-based model selection tools, such as information criteria,
inapplicable.

Nevertheless, these factor-based models (including (2.19) and (2.20)) possess
a discrete spectral measure of the form (1.23). Therefore, the penalized ASW
criterion offers a viable alternative for selecting the number of factors k, with
consistency established in Theorem 3.5.

From this point on, we assume that the order k is known. A central question
is whether the spectral measure—estimated via k-clustering—can be translated
into an estimate of the coefficient matrix B = (b1, . . . , bk) in the sum-linear
or max-linear model, while satisfying the marginal constraint (2.22).

Combining the representation (2.21) for the spectral measure with the con-
straint (2.22), we obtain a system of kd+d−1 equations for the kd unknowns
in B: specifically, (k − 1) equations for the weights pj (due to their sum being
one), (d−1)k equations from the unit-norm conditions on the aj , and d equa-
tions from (2.22). Hence, the system is typically overdetermined. As a result,
when pj and aj are estimated via clustering, the system may not admit an exact
solution, although the relations are asymptotically satisfied (see Corollary 1.2).

To address this, we propose a simple and consistent method to recover an
estimate of B that satisfies the marginal constraint (2.22). Observe that for
both models (2.19) and (2.20), the exponent measure Λ concentrates on rays
{tbj : t > 0}, j = 1, . . . , k. Each spectral mass point aj = bj/∥bj∥(s) on
the ∥ · ∥(s)-norm sphere corresponds to the point bj/∥bj∥α = aj/∥aj∥α on
the α-norm sphere. An appealing property of using the α-norm is the following
identity, derived from (2.22):

k∑
j=1

∥bj∥α
α =

d∑
i=1

k∑
j=1

bα
ij = d.

Thus, under the choice ∥ · ∥(r) = ∥ · ∥α in (2.21), we obtain the direct relation:
pjd = ∥bj∥α

α, which leads to the expression:

bj = (pjd)1/α · aj

∥aj∥α

, j = 1, . . . , k. (3.11)

In particular, if the angular norm ∥ ·∥(s) is chosen as the α-norm (i.e., ∥ ·∥(s) =
∥ · ∥α), then ∥aj∥α = 1 and the expression above simplifies accordingly.

This suggests a natural procedure: estimate pj and aj via k-clustering on
the α-norm sphere, plug them into (3.11) to obtain preliminary estimates b̂j ,
and collect them into the matrix B̂ = (b̂1, . . . , b̂k). Let B̂ = (r⊤1 , . . . , r⊤d )⊤,
where r⊤i denotes the ith row of B̂. To enforce the marginal constraint (2.22),
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we rescale each row to unit α-norm:

r̃i = ri

∥ri∥α

, i = 1, . . . , d.

The resulting matrix B̃, with rows r̃⊤i , satisfies (2.22) by construction.
Finally, by Corollary 1.2 and a continuous mapping argument, this proce-

dure yields a consistent estimator of the coefficient matrix B, up to permutation
of the columns.

3.3 Simulations
In this section, we present simulation studies to illustrate the performance

of the penalized ASW criterion introduced in Section 3.1.4. Following the setup
of Janßen and Wan, 2020, Section 4, we simulate data from the max-linear
factor model (2.20), with randomly generated coefficient matrices B. The latent
factors Zj are taken to be i.i.d. standard Fréchet random variables with shape
parameter α = 1.

We consider four different combinations of data dimension d and true num-
ber of factors k. For each combination, the coefficient vectors bj are generated
according to the procedures described below. Due to the standardization condi-
tion (2.22), it suffices to specify b1, . . . , bk−1. Let {Ui} denote i.i.d. uniform
random variables on [0, 1]:

• d = 4, k = 2: b1 = (U1, U2, U3, U4)⊤/2.

• d = 4, k = 6:

b1 = (U1, U2, U3, U4)⊤/3, b2 = (U5, 0, U6, 0)⊤/3,

b3 = (0, U7, 0, U8)⊤/3, b4 = (U9, U10, 0, 0)⊤/3,

b5 = (0, 0, U11, U12)⊤/3.

• d = 6, k = 6:

b1 = (U1, . . . , U6)⊤/3, b2 = (U7, 0, U8, 0, U9, 0)⊤/3,

b3 = (0, U10, 0, U11, 0, U12)⊤/3, b4 = (U13, U14, U15, 0, 0, 0)⊤/3,

b5 = (0, 0, 0, U13, U14, U15)⊤/3.
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• d = 10, k = 6:

b1 = (U1, . . . , U10)⊤/2, b2 = (U11, U12, 0, . . . , 0)⊤/2,

b3 = (0, 0, U13, U14, 0, . . . , 0)⊤/2,

b4 = (0, · · · , 0, U15, U16, 0, · · · , 0)⊤/2,

b5 = (0, . . . , 0, U17, U18, U19, U20)⊤/2.

For each of the above configurations, we generate 100 independent random
coefficient matrices B. From each simulated model, we draw a dataset of size
10,000. We then extract the 1,000 observations with the largest ℓ2 norms, project
them onto the ℓ2 unit sphere (i.e., we set ∥ · ∥(r) = ∥ · ∥(s) = ∥ · ∥2), and apply
spherical clustering and penalized ASW analysis on this extremal subsample.

For clustering, we use the spherical k-means algorithm from the R package
skmeans (Hornik et al., 2012), and the k-principal directions clustering (k-
PC) algorithm using the implementation from the supplementary material of
Fomichov and Ivanovs, 2023.

Figures 3.2 through 3.5 visualize the results for each (d, k) setup. Each ma-
trix plot corresponds to one setup and consists of 100 columns (one for each
simulation). The upper half of each plot shows results for spherical k-means;
the lower half shows those for k-PC. Each row within these halves corresponds
to a different value of the penalty parameter t. A cell’s color indicates the esti-
mated number of clusters m that maximized the penalized ASW: White indi-
cates correct order identification (m = k). Red shades indicate underestima-
tion (m < k). Blue shades indicate overestimation (m > k). A bar plot to
the right of each matrix summarizes the proportion of simulations (out of 100)
where the estimated order matched the true order.

Across all setups, we observe that the unpenalized ASW (t = 0) tends to
overestimate the number of factors—sometimes substantially. As the penalty
parameter t increases, this overestimation bias is significantly corrected, and the
success rate of correct order identification improves markedly over a range of
moderate t values. It is important to note that the success rate shown for each t

is aggregated over all 100 datasets using that fixed t. As discussed in Section 3.1.4,
further improvements may be achieved by adaptively selecting t per dataset
using visual inspection of the ASW curves.

We also find that the k-PC method generally outperforms spherical k-means
in terms of order identification accuracy. One particularly challenging scenario
is the (d = 4, k = 6) configuration, where the cluster centers often lie in close
proximity, making the estimation problem more difficult.
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Figure 3.2: Simulation result visualization for the setup d = 4, k = 2.
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Figure 3.3: Simulation result visualization for the setup d = 4, k = 6.
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Figure 3.4: Simulation result visualization for the setup d = 6, k = 6.
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Figure 3.5: Simulation result visualization for the setup d = 10, k = 6.
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Chapter 4

Applications

We demonstrate the application of the penalized ASW method, introduced
in Section 3.1.4, for selecting the number of factors k, as well as the conversion of
clustering-based spectral estimates into factor coefficient matrices, as discussed
in Section 3.2.1. The analysis is conducted using the spherical k-principal direc-
tions clustering (k-PC) algorithm, where the dissimilarity measure D is defined
as in (1.16).

We focus exclusively on the k-PC method for two main reasons. First, the
simulation results in Section 3.3 suggest that penalized ASW combined with
k-PC yields superior empirical performance in identifying the correct order
k. Second, as argued in Fomichov and Ivanovs, 2023, the k-PC algorithm is
particularly well-suited for detecting groups of concomitant extremes—that
is, subsets of variables that tend to become simultaneously large. This prop-
erty allows for more meaningful comparisons between the selected order k and
external or domain-specific knowledge about the underlying data structure.

Let the observed dataset be denoted by {xi}n
i=1, where each observation

xi = (xi1, . . . , xid)⊤ ∈ [0, ∞)d. As a preprocessing step, we marginally stan-
dardize the data to roughly satisfy the standardization condition (1.9) with tail
index α = 2. Specifically, for each margin j ∈ {1, . . . , d}, we define the
empirical distribution function as

F̂j(x) := 1
n

n∑
i=1

1{xij < x},

which ensures that F̂j(xij) < 1 for all i. The standardized data is then given
by the transformed vectors {x̃i}n

i=1, where

x̃ij :=
{
− log

[
F̂j(xij)

]}−1/2
.
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If F̂j were the true marginal CDF, then x̃ij would approximately follow a stan-
dard Fréchet distribution with tail index α = 2.

To identify clusters of extremal behavior, we adopt a procedure analogous
to that used in the simulation study of Section 3.3. We select the top 10% of
the transformed observations {x̃i} with the largest ℓ2-norms. This extremal
subsample is then projected onto the ℓ2-unit sphere. That is, we work with
norms ∥ · ∥(r) = ∥ · ∥(s) = ∥ · ∥2, ensuring that subsequent clustering is
performed on the angular component of the extreme observations.

This setup enables us to apply the penalized ASW procedure to estimate
the number of extremal dependence components and, via the methodology in
Section 3.2.1, recover an interpretable factor representation of the multivariate
extremes.

4.1 Air Pollution Data
We illustrate our methodology using an air pollution dataset from the R

package texmex (Southworth et al., 2024), originally published as supplemen-
tary material to Heffernan and Tawn, 2004. The dataset contains daily mea-
surements of air pollutant levels recorded in Leeds, U.K., city center between
1994 and 1998. The data are separated into two subsets based on seasonality:
the summer dataset includes 578 observations recorded from April to July, the
winter dataset includes 532 observations recorded from November to February.

Each observation consists of the daily maximum concentrations of five pol-
lutants: Ozone, NO2, NO, SO2, and PM10. These data were previously ana-
lyzed in Janßen and Wan, 2020, where spherical k-means clustering was applied
to the analysis of multivariate extremes. In our analysis, we apply the spherical
k-PC clustering algorithm from Fomichov and Ivanovs, 2023, in conjunction
with the penalized ASW criterion introduced in Section 3.1.4. The extremal sub-
sample is constructed by selecting the top 10% of transformed data (as described
in the beginning of this section) with respect to their ℓ2-norms and projecting
them onto the ℓ2-unit sphere.

Figures 4.1 and 4.3 display the penalized ASW values as functions of the
number of clusters m, with curves corresponding to various values of the tuning
parameter t. Following the visual selection procedure discussed in Section 3.1.4,
we identify the optimal order as k = 5 for the summer data and k = 3 for
the winter data. For the summer data, k = 4 may also be a reasonable choice,
suggesting mild ambiguity. These results are consistent with, though slightly
different from, the order selections reported in Janßen and Wan, 2020, where
k = 5 was chosen for the summer data and k = 4 for the winter data using
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elbow plot diagnostics (see Janßen and Wan, 2020, Fig. 1). It is worth noting
that k = 3 for the winter data also appears plausible from their elbow plots.
One explanation for the slight discrepancy lies in the clustering algorithm used:
we employ the spherical k-PC method, whereas Janßen and Wan, 2020 applied
spherical k-means.

To further interpret the clustering results, we estimate the factor coefficient
matrix B based on the selected order k, using the procedure from Section 3.2.1,
with ∥ · ∥(r) = ∥ · ∥(s) = ∥ · ∥2 and tail index α = 2. The resulting coefficient
matrices are visualized in Figures 4.2 and 4.4.

For the summer data (Figure 4.2), the estimated factor directions exhibit
sharp alignment with coordinate axes, suggesting a near-independence struc-
ture in the tail behavior of the five pollutants. This pattern aligns with the
concept of asymptotic independence, which is common in environmental data
and discussed in Beirlant et al., 2006, Chapter 8.

In contrast, for the winter data (Figure 4.4), one of the estimated factors
clearly captures a cluster involving NO, NO2, and PM10, indicating asymp-
totic dependence among these three pollutants. This observation is consistent
with the findings of Heffernan and Tawn, 2004, who also reported dependence
between these variables. Thus, the identified factor structure for the winter
dataset provides empirical support for the selected order k = 3, which groups
these pollutants into a common extremal component.
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4.2 River Discharge Data
The river discharge dataset comprises 16,386 daily discharge records from 13

monitoring stations across North America, obtained from the Global Runoff
Data Centre German Federal Institute of Hydrology, n.d. These stations, listed
in Table 4.1 and mapped in Fig. 4.5, are situated along five major rivers: the
Willamette, Mississippi, Williamson, Hudson, and Broad Rivers.

Table 4.1: Clustering of 13 river discharge stations based on concomitant Ex-
tremes.

Station Name River Name Factor (Cluster) Index
SALEM, OR WILLAMETTE RIVER 4

PORTLAND, OR WILLAMETTE RIVER 4
HARRISBURG, OR WILLAMETTE RIVER 4

ST.PAUL, MN MISSISSIPPI RIVER 1
AITKIN, MN MISSISSIPPI RIVER 1
THEBES, IL MISSISSIPPI RIVER 6

CHESTER, IL MISSISSIPPI RIVER 6
CHILOQUIN, OR WILLIAMSON RIVER 2

GREEN ISLAND, NY HUDSON RIVER 5
FORT EDWARD, NY HUDSON RIVER 5
NORTH CREEK, NY HUDSON RIVER 5
NEAR CARLISLE, SC BROAD RIVER 3

NEAR BELL, GA BROAD RIVER 3
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Figure 4.5: Geographical locations of the 13 river discharge stations.

Following the approach described in Section 3.2.1, Fig. 4.6 displays the pe-
nalized average silhouette width (ASW) curves, from which an optimal factor
order of 6 is suggested. The corresponding factor matrix B, derived from spec-
tral estimation using ∥ · ∥(s) = ∥ · ∥(r) = ∥ · ∥2 and α = 2, is visualized
in Fig. 4.7. For each row of B, we identify the factor index (equivalently, the
cluster index in Fig. 4.7) corresponding to the maximum value. These indices
are reported in the final column of Table 4.1, providing a rough categorization
of stations based on groups of concomitant extremes.

The clustering results show strong agreement with geographical intuition:
stations along the same river are generally grouped together. A notable excep-
tion involves the four stations on the Mississippi River, which are split into two
distinct clusters. This division is geographically coherent, as the stations fall into
two widely separated regions—Minnesota (MN) and Illinois (IL)—justifying
the observed partition.
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Chapter 5

Conclusion and Future
Work

In this thesis, we established joint sum-and-max limit theorems for a class of
stationary infinitely divisible processes exhibiting both long-range dependence
and heavy tails. Our results reveal a striking dichotomy depending on whether
the marginal variance is finite or infinite. In the finite-variance case, we proved
that the normalized partial sum and maximum processes converge jointly to
a pair of asymptotically independent limit objects: a fractional Brownian mo-
tion and a random sup measure. In contrast, in the infinite-variance case, we
demonstrated the emergence of asymptotic dependence in the limit, where the
sum converges to a symmetric α-stable process and the maximum to a random
sup measure, with the dependence structure intricately captured via the local
time and range of a stable subordinator.

Our methodology includes a novel joint convergence result for subordina-
tors, their local times, and ranges, which we expect to be of independent inter-
est. This technical development was essential to describing the dependent limit
structure in the infinite-variance regime.

Looking ahead, several extensions of this work are worth exploring. A nat-
ural question is whether similar joint convergence results hold in more general
dependence frameworks beyond the null-recurrent Markov chain model. More-
over, understanding the impact of different normalization schemes and gener-
alizing our framework to include non-symmetric or non-stationary settings are
promising directions for future investigation.

Following recent developments in the literature, we investigate the estima-
tion of multivariate extreme value models with a discrete spectral measure using
spherical clustering techniques. Our primary contribution is a novel method for
selecting the model order—that is, the number of clusters—that consistently
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recovers the true number of spectral atoms. This is achieved by augmenting
the widely used simplified average silhouette width (ASW) with an additional
penalty term that discourages small cluster sizes and small dissimilarities be-
tween cluster centers. As a by-product, our approach also facilitates order selec-
tion in max-linear factor models. The proposed method is simple to implement
and demonstrates strong empirical performance.

In addition, we carry out a large-deviation-type analysis for the estimation
of discrete spectral measures via clustering. This analysis sheds light on the con-
vergence behavior of clustering-based estimators in the multivariate extremes
setting. We further illustrate how these estimators can be employed for param-
eter inference in heavy-tailed factor models.

Finally, we outline several directions for future research. First, the tuning pa-
rameter t in the penalty term (3.2) is currently selected through visual inspection.
Developing a data-driven approach for selecting t would be valuable and may re-
quire a deeper understanding of the consistency result in Theorem 3.5. Second,
alternative clustering evaluation criteria to ASW, such as the cross-validation
method based on algorithmic instability proposed by Wang, 2010, could offer
promising alternatives in the context of multivariate extremes. Third, it remains
an open problem to determine an appropriate threshold ln in (1.19) when clus-
tering extreme observations; the methodology developed in Wan and Davis,
2019 may offer useful insights here.
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Appendix A

Proofs

A.1 Finite Variance Case
Proof of Theorem 3.1. Observe that tightness in the product space follows if
tightness holds in each marginal space. The weak convergence—and hence tight-
ness—of n−1w1/2

n Sn in D[0, 1] follows from Samorodnitsky, 2016, Theorem
9.4.7. On the other hand, the normalized empirical sup measure (ρ←(w−1

n ))−1Mn

is automatically tight since the space SM [0, 1] is compact (Vervaat, 1988, Theo-
rem 4.2). By Proposition A.6 and Remark A.1, it remains to verify convergence
of the finite-dimensional distributions (fdd) in [0, 1] × I , where I denotes the
collection of all non-empty open subintervals of [0, 1], in the sense of Definition
4.

Fix m > 0. As in Samorodnitsky and Wang, 2019, Section 5, each Xk in
(2.1) admits the decomposition

Xk = X
(1)
k,m + X

(2)
k,m,

where
X

(j)
k,m :=

∫
E

f ◦ T k(s) M (j)
m (ds), j = 1, 2,

and M (1)
m and M (2)

m are two independent homogeneous symmetric infinitely
divisible random measures. The Lévy measure of M (1)

m is ρ restricted to {|x| ≤
m}, while the Lévy measure of M (2)

m is ρ restricted to {|x| > m}. Define for
j = 1, 2:

S(j)
n,m(t) :=

⌊nt⌋∑
k=1

X
(j)
k,m, t ∈ [0, 1],

and
M (j)

n,m(B) := max
k∈nB∩N

X
(j)
k,m, B ∈ G([0, 1]),
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with the convention that max ∅ := −∞. By Samorodnitsky, 2016, Theorem
9.4.7, we have

n−1w1/2
n S(1)

n,m

fdd−−→ cβ,mBH , as n → ∞,

in [0, 1], where

c2
β,m = Γ(1 + 2β)

Γ(2 − β)Γ(2 + β)E
(
{Sβ(1)}−2β

) ∫ m

−m
x2ρ(dx).

By a slight extension of Samorodnitsky and Wang, 2019, Theorem 5.1 to accom-
modate the more general regular variation assumption on ρ (see also the proof
of Theorem 3.2), we obtain

(ρ←(w−1
n ))−1M (2)

n,m

fdd−−→ ηα,β, in I, as n → ∞.

Note that the limit law above is independent of the truncation parameter m,
which reflects the fact that the extremal behavior is determined solely by the tail
behavior of the joint distribution of {X

(2)
k,m}k=1,...,n, which in turn depends

only on the tail of the Lévy measure ρ. Since S(1)
n,m and M (2)

n,m are based on
independent components, we conclude:

(
n−1w1/2

n S(1)
n,m

(ρ←(w−1
n ))−1M (2)

n,m

)
fdd−−→

(
cβ,mBH

ηα,β

)
, as n → ∞,

in [0, 1]×I , where BH and ηα,β are independent. Since cβ,m → cβ as m → ∞,
we obtain(

cβ,mBH

ηα,β

)
fdd−−→

(
cβBH

ηα,β

)
, in [0, 1] × I, as m → ∞.

The desired convergence in fdd now follows by a standard triangular approxi-
mation argument (see, e.g., Billingsley, 1999, Theorem 3.2), once we verify the
following negligibility conditions for any t ∈ [0, 1], B ∈ G([0, 1]), and ϵ > 0:

lim
m→∞

lim sup
n→∞

P
(
n−1w1/2

n

∣∣∣Sn(t) − S(1)
n,m(t)

∣∣∣ > ϵ
)

= 0 (A.1)

and

lim
m→∞

lim sup
n→∞

P
(
(ρ←(w−1

n ))−1
∣∣∣Mn(B) − M (2)

n,m(B)
∣∣∣ > ϵ

)
= 0. (A.2)
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To verify (A.1), observe that by Samorodnitsky, 2016, Theorem 9.4.7 again,

n−1w1/2
n

(
Sn(t) − S(1)

n,m(t)
)

= n−1w1/2
n S(2)

n,m(t) fdd−−→ (cβ − cβ,m)BH(t),

as n → ∞, from which (A.1) follows because cβ,m → cβ as m → ∞.
For (A.2), we assume n is large enough that nB ∩ N ̸= ∅. For any real

sequences (αk)n
k=1 and (βk)n

k=1, we have:∣∣∣∣max
1≤k≤n

(αk + βk) − max
1≤k≤n

αk

∣∣∣∣ ≤ max
1≤k≤n

|βk|.

Hence,

lim sup
n→∞

P
(
(ρ←(w−1

n ))−1
∣∣∣Mn(B) − M (2)

n,m(B)
∣∣∣ > ϵ

)
≤ lim sup

n→∞
P
(

max
k∈nB∩N

∣∣∣X(1)
k,m

∣∣∣ > ρ←(w−1
n )ϵ

)
.

By stationarity and a union bound:

≤ lim sup
n→∞

n · P
(∣∣∣X(1)

1,m

∣∣∣ > ρ←(w−1
n )ϵ

)
= 0,

since ρ←(w−1
n ) ∈ RV∞((1 − β)/α) and X

(1)
1,m has tails satisfying

P
(∣∣∣X(1)

1,m

∣∣∣ > x
)

= o
(
e−δx log x

)
, x → ∞,

for some δ > 0, as is known for infinitely divisible distributions with bounded
Lévy measures (Sato, 1999, Theorem 26.1).

A.2 Infinite Variance Case
We now proceed to introduce a Poissonization construction that plays a

central role in the proof. For each j, n ∈ N, define the set of scaled entrance
times, starting from a random point U

(n)
j , as

R̃j,n :=
{

k

n
: k = 1, . . . , n, U

(n)
j ∈ T−kA0

}
.

Due to the construction of U
(n)
j , the set R̃j,n is almost surely non-empty, with

(random) cardinality |R̃j,n|. Thus, we can write

R̃j,n = Vj,n + {τj,n(0), τj,n(1), . . . , τj,n(|R̃j,n| − 1)} ⊂ n−1{1, . . . , n},
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where
Vj,n := 1

n
min

{
k = 1, . . . , n : U

(n)
j ∈ T−kA0

}
(A.3)

is the scaled first entrance time, and τj,n(0) := 0 < τj,n(1) < · · · < τj,n(|R̃j,n|−
1) are the successive scaled entrance times relative to Vj,n.

In view of the Markov chain construction, the sequence {nτj,n(i)}i forms
a N-valued renewal process (i.e., a random walk with i.i.d. steps in N) starting
at i = 0 and stopped at i = |R̃j,n| − 1. Moreover, limn→∞ |R̃j,n| = ∞.
The inter-arrival times of {nτj,n(i)}i, before stopping, are i.i.d. with common
probability mass function P0(φA0 = k), for k = 1, 2, . . . . For technical
convenience, we extend τj,n(i) to all i ∈ N0 by appending i.i.d. inter-arrivals
drawn from the same distribution, maintaining independence across different
j’s.

Next, for each j, n ∈ N, let {Nj,n(t)}t≥0 be a Poisson process with inten-
sity

γn := nw−1
n

Γ(2 − β) ∈ RV∞(β),

and assume it is independent of all other random elements. Define the non-
decreasing processes σj,n as

{σj,n(t) : t ≥ 0} := {τj,n(Nj,n(t)) : t ≥ 0}.

Then each σj,n is a non-decreasing compound Poisson process and hence a
subordinator. Let Lj,n and Rj,n denote the local time and range of σj,n. Note
that the scaled range satisfies

R̃j,n = (Vj,n + Rj,n) ∩ [0, 1]. (A.4)

For each subset S ⊂ N, define the intersection of the shifted random sets as

IS,n :=


⋂

j∈S R̃j,n, if S ̸= ∅,

n−1{1, . . . , n}, if S = ∅.
(A.5)

Now fix a level ℓ ∈ N, and define the following quantities central to the
analysis. First, introduce the process

S∗n,ℓ(t) :=
ℓ∑

j=1
εj ρ←

(
Γj

2wn

)
Lj,n((t − Vj,n)+), t ∈ [0, 1], (A.6)
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and the maximum functional

M∗
n,ℓ(B) := max

S⊂{1,...,ℓ}
1{IS,n∩B=∅}

∑
j∈S

1{εj=1} ρ←
(

Γj

2wn

)
, B ∈ G([0, 1]).

(A.7)
As per convention, any summation or maximization over an empty index set is
interpreted as zero. We note that equations (A.6) and (A.7) serve as approxima-
tions of the partial sum and partial maximum processes, respectively, as will be
made precise in Lemmas A.3 and A.4 below. To facilitate this approximation,
we also define the truncated versions of the processes S(t) and M(B) from
(2.13) and (2.18), respectively, as follows:

Sℓ(t) := (2Cα)1/α
ℓ∑

j=1
εjΓ−1/α

j Lj

(
(t − Vj)+

)
, t ∈ [0, 1], (A.8)

and

Mℓ(B) := max
S⊂{1,...,ℓ}

1{IS∩B=∅}
∑
j∈S

Γ−1/α
j , B ∈ G([0, 1]). (A.9)

Proposition A.1. Fix an integer ℓ > 0. Let S∗n,ℓ and M∗
n,ℓ be defined as in

equations (A.6) and (A.7), respectively, and let Sℓ and Mℓ be their corresponding
limits defined in equations (A.8) and (A.8). Then, as n → ∞,

1
ρ←(w−1

n )

(
S∗n,ℓ

M∗
n,ℓ

)
f.d.d.−→

(
C−1/αSℓ

Mℓ

)
in T0 := [0, 1] × I,

where I denotes the collection of all non-empty open subintervals of [0, 1], and the
convergence is in the sense of finite-dimensional distributions on T0.

Proof. Since {P0(φA0 > n)}n ∈ RV∞(−β), we may write

P0(φA0 > n) := n−βf(n),

where f(n) is slowly varying at infinity. Recall that each τj,n is an increasing
random walk with i.i.d. steps that are integer-valued, non-negative, and regu-
larly varying with index β ∈ (0, 1). Let {σj}, {Lj}, {Vj} be as defined earlier.
A classical result on convergence to stable laws (see, e.g., Section 1.a in Chow
and Teugels, 1978 yields

nτj,n(⌊γn⌋)
γ

1/β
n f−1/β(γ1/β

n )
⇒ (Γ(1 − β))1/βσj(1),
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as n → ∞, where f−1/β denotes the de Bruijn conjugate of f−1/β , satisfying
the property

lim
n→∞

f−1/β(n)f−1/β(nf−1/β(n)) = 1

(see, e.g., Theorem 1.5.13 in Bingham et al., 1989). Moreover, using the asymp-
totic behavior in (2.3), we have

γ1/β
n = (nw−1

n )1/β(Γ(2−β))−1/β ∼ nf−1/β(n)(Γ(1−β))−1/β, as n → ∞.

Hence, it follows that{
γ1/β

n f−1/β
(
γ1/β

n

)}−1
n → (Γ(1−β))1/β, and thus τj,n(⌊γn⌋) ⇒ σj(1).

Since Nj,n(1)/γn
P→ 1, and Nj,n(1) is independent of τj,n, a standard argu-

ment for replacing deterministic time arguments by independent random times
yields

σj,n(1) = τj,n(Nj,n(1)) ⇒ σj(1), as n → ∞.

In addition, by Theorem 5.4 of Samorodnitsky and Wang, 2019, we have

Vj,n
d→ Vj, as n → ∞,

with Vj,n as defined in (A.3). Applying Proposition 3.4 and using independence
across j, we obtain(

(Lj,n((x − Vj,n)+))x∈[0,1]
(Vj,n + Rj,n) ∩ [0, 1]

)
j=1,...,ℓ

⇒
(

(Lj((x − Vj)+))x∈[0,1]
(Vj + Rj) ∩ [0, 1]

)
j=1,...,ℓ

,

weakly in D([0, 1])ℓ × F([0, 1])ℓ as n → ∞. Furthermore, by Theorem 5.4 of
Samorodnitsky and Wang, 2019, for each S ⊂ {1, . . . , ℓ},

IS,n :=
⋂
j∈S

(Vj,n+Rj,n)∩[0, 1] ⇒ IS :=
⋂
j∈S

(Vj+Rj)∩[0, 1], in F([0, 1]).

By Lemma A.2 below (which extends Samorodnitsky and Wang, 2019, 26, The-
orem 2.1), we have(

(Lj,n((x − Vj,n)+))x∈[0,1]
IS,n

)
j=1,...,ℓ

S⊂{1,...,ℓ}

⇒
(

(Lj((x − Vj)+))x∈[0,1]
IS

)
j=1,...,ℓ

S⊂{1,...,ℓ}

,
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weakly in D([0, 1])ℓ ×F([0, 1])2ℓ . The result then follows from the above joint
convergence and the facts:

ρ←(Γj/(2wn))
ρ←(w−1

n ) → (Γj/2)−1/α, j = 1, . . . , ℓ,

due to regular variation of ρ←, and

(Mℓ(B))B∈G([0,1])
d=
 max

S⊂{1,...,ℓ}
1{IS∩B=∅}

∑
j∈S

1{εj=1}(Γj/2)−1/α


B∈G([0,1])

,

where the equality in law follows from the fact that the thinned Poisson process
{Γj/2}j∈N,εj=1 has the same distribution as {Γj}j∈N.

Lemma A.2. Let {Ak}m
k=1 and {A

(n)
k }n∈N,k=1,...,m be random closed sets in

F = F(Rd), for some fixed m ∈ N. Let x(n) and x be random elements in a
separable metric space E. Suppose that the following joint weak convergence holds:

(
x(n)

(A(n)
k )k=1,··· ,m

)
⇒
(

x

(Ak)k=1,··· ,m

)
in E × Fm as n → ∞. (A.10)

For any non-empty index set I ⊂ {1, . . . , m}, define the intersections:

A
(n)
I :=

⋂
k∈I

A
(n)
k , AI :=

⋂
k∈I

Ak.

In addition, let A
(n)
∅ and A∅ be non-random elements ofF such that A

(n)
k ⊂ A

(n)
∅

and Ak ⊂ A∅ for all k = 1, . . . , m and all n ∈ N. Assume further that for
every I ⊂ {1, . . . , m}, the intersections satisfy the marginal convergence:

A
(n)
I ⇒ AI in F as n → ∞.

Then we have the joint convergence:

(
x(n)

(A(n)
I )I⊂{1,...,m}

)
⇒
(

x

(AI)I⊂{1,...,m}

)
in E × F2m

as n → ∞. (A.11)

Proof. The only substantive difference between Samorodnitsky and Wang, 2019,
Theorem 2.1(b) and the present lemma is the inclusion of the auxiliary compo-
nents x(n) and x. Note that the product space E×Fm is itself a separable metric
space, since both E and F are separable. Therefore, by the Skorokhod repre-
sentation theorem, the weak convergence in (A.10) can be upgraded to almost
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sure convergence on a suitable probability space. The remainder of the proof
then proceeds by adapting the arguments from Samorodnitsky and Wang, 2019,
Theorem 2.1(b), thereby establishing a convergence-in-probability version of
(A.11).

Recall the series representation of the sequence (Xk)k=1,...,n as given in
equation (2.6). For each fixed ℓ ∈ N, we define the truncated partial sum
process by

Sn,ℓ(t) :=
ℓ∑

j=1
εj ρ←

(
Γj

2wn

) ⌊nt⌋∑
k=1

1{U(n)
j ∈T−kA0}

, t ∈ [0, 1], (A.12)

and the corresponding truncated partial maximum process by

Mn,ℓ(B) := max
k∈nB∩N

ℓ∑
j=1

εj ρ←
(

Γj

2wn

)
1{U(n)

j ∈T−kA0}
, B ∈ G([0, 1]).

(A.13)

Lemma A.3. For any t ∈ [0, 1], ℓ ∈ N, and ϵ > 0, Then,

lim
n→∞

P
(∣∣∣∣∣ Γ(2 − β)

ρ← (w−1
n ) nw−1

n

Sn,ℓ(t) − 1
ρ← (w−1

n )S∗n,ℓ(t)
∣∣∣∣∣ > ϵ

)
= 0.

where Sn,ℓ and S∗n,ℓ are as in (A.12) and (A.6), respectively.

Proof. Using the relation γn = nw−1
n /Γ(2 − β), it suffices to show that for

each j = 1, . . . , ℓ,

lim
n→∞

P

ρ←
(

Γj

2wn

)
ρ← (w−1

n )

∣∣∣∣∣∣ 1
γn

⌊nt⌋∑
k=1

1{U(n)
j ∈T−kA0}

− Lj,n ((t − Vj,n)+)

∣∣∣∣∣∣ > ϵ

 = 0,

for any fixed ϵ > 0. Note that, by the regular variation of ρ←, we have

ρ←
(

Γj

2wn

)
ρ← (w−1

n ) →
(

Γj

2

)−1/α

as n → ∞.

Thus, to establish the desired limit, it suffices to prove that

lim
n→∞

P

∣∣∣∣∣∣ 1
γn

⌊nt⌋∑
k=1

1{U(n)
j ∈T−kA0}

− Lj,n ((t − Vj,n)+)

∣∣∣∣∣∣ > ϵ

 = 0.
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Define

Qj,n(t) :=
⌊nt⌋∑
k=1

1{U(n)
j ∈T−kA0}

.

Observe that Qj,n(t) ≥ 1 if and only if Vj,n ≤ t, in which case

τj,n(Qj,n(t) − 1) ≤ t − Vj,n < τj,n(Qj,n(t)).

This implies

Lj,n((t − Vj,n)+) = inf {s ≥ 0 : τj,n(Nj,n(s)) > (t − Vj,n)+}
= inf {s ≥ 0 : Nj,n(s) = Qj,n(t) ∨ 1} .

Let {Tj,n(i)}i∈N be the inter-arrival times of the Poisson process Nj,n; then
these are i.i.d. exponential random variables with mean γ−1

n . Consequently,

Lj,n((t − Vj,n)+) =
Qj,n(t)∨1∑

i=1
Tj,n(i).

We now estimate the deviation:

P

 1
γn

∣∣∣∣∣∣
⌊nt⌋∑
k=1

1{U(n)
j ∈T−kA0}

− Lj,n((t − Vj,n)+)

∣∣∣∣∣∣ > ϵ


≤P

∣∣∣∣∣∣Qj,n(t)
γn

−
Qj,n(t)∑

i=1
Tj,n(i)

∣∣∣∣∣∣ > ϵ

+ P (Tj,n(1) > ϵ) .

The second term vanishes as n → ∞ since Var(Tj,n(1)) = γ−2
n → 0. For the

first term, by Chebyshev’s inequality and the independence of the Tj,n(i), we
obtain

P

∣∣∣∣∣∣Qj,n(t) −
Qj,n(t)∑

i=1
Tj,n(i)

∣∣∣∣∣∣ > ϵ

 ≤Var(Tj,n(1))E[Qj,n(t)]
ϵ2

=γ−2
n

ϵ2 · n

wn

,

which converges to zero as n → ∞.

Lemma A.4. For any non-empty open interval B ⊂ [0, 1], we have

lim
n→∞

P
(∣∣∣Mn,ℓ(B) − M∗

n,ℓ(B)
∣∣∣ > 0

)
= 0,

where Mn,ℓ is as defined in (A.13), and M∗
n,ℓ is as defined in (A.7).
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Proof. Recall Rj,n from (A.4) and IS,n from (A.5). Letting Sc := {1, . . . , ℓ}\
S, define the set

I∗S,n := IS,n ∩
⋂

j∈Sc

Rc
j,n.

Thus, each (rescaled) time point in I∗S,n is contained precisely in those intervals
Rj,n for which j ∈ S, and in none of those with j ∈ Sc. Now define the event

An(B) :=
⋃

S⊂{1,...,ℓ}

(
{IS,n ∩ B ̸= ∅} ∩

{
I∗S,n ∩ B = ∅

})
.

By Lemma 5.5 of Samorodnitsky and Wang, 2019, we have the identity

Mn,ℓ(B) = M∗
n,ℓ(B) on the complement An(B)c,

and moreover, limn→∞ P(An(B)) = 0. The result follows immediately.

Proof of Theorem 3.2. Tightness on the product space follows if it holds for each
marginal component. The tightness of the normalized partial sum process Sn in
the J1-topology of D[0, 1] has been established in Owada and Samorodnitsky,
2015; see also Bai et al., 2020. The normalized partial maxima Mn is automati-
cally tight, since the space SM [0, 1] is compact. In view of Proposition A.6 and
Remark A.1, it remains to verify the convergence of finite-dimensional distribu-
tions in the index set T0 := [0, 1] × I , where I denotes the collection of all
non-empty open subintervals of [0, 1]. This will be achieved using a triangular
approximation argument (cf. Theorem 3.2 in Billingsley, 1999).

Note that, as ℓ → ∞, the truncated processes Sℓ(t) → S(t) and Mℓ(B) →
M(B) almost surely, for every t ∈ [0, 1] and B ∈ G([0, 1]), where Sℓ and Mℓ

are defined in (A.8) and (A.9) as truncated versions of S and M , respectively.
The triangular approximation argument is completed by Proposition A.1 and
Lemmas A.3 and A.4, provided we can establish the negligibility of the tail con-
tributions beyond the truncation level. Specifically, we require that for any
ϵ > 0,

lim
ℓ→∞

lim sup
n→∞

P

 1
ρ←(w−1

n )nw−1
n

∣∣∣∣∣∣
⌊nt⌋∑
k=1

∞∑
j=ℓ+1

εjρ
←
(

Γj

2wn

)
1{U(n)

j ∈T−kA0}

∣∣∣∣∣∣ > ϵ

 = 0

(A.14)
and

lim
ℓ→∞

lim sup
n→∞

P

 1
ρ←(w−1

n ) max
k∈nB∩N

∣∣∣∣∣∣
∞∑

j=ℓ+1
εj ρ←

(
Γj

2wn

)
1{U(n)

j ∈T−kA0}

∣∣∣∣∣∣ > ϵ

 = 0

(A.15)
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Relation (A.14) is a special case of relation (66) in Bai et al., 2020. To handle
(A.15), we apply a union bound and a version of Markov’s inequality. For any
r > 0, the probability on the left-hand side of (A.15) is bounded above by

nP

 1
ρ←(w−1

n )

∣∣∣∣∣∣
∞∑

j=ℓ+1
εj ρ←

(
Γj

2wn

)
1{U(n)

j ∈T−kA0}

∣∣∣∣∣∣ > ϵ


≤n ϵ−r E

 1
ρ←(w−1

n )

∣∣∣∣∣∣
∞∑

j=ℓ+1
εj ρ←

(
Γj

2wn

)
1{U(n)

j ∈T−kA0}

∣∣∣∣∣∣
r

. (A.16)

By independence and using the Khintchine inequality for Rademacher vari-
ables, the expectation in (A.16) is further bounded by

n ϵ−rCr

 ∞∑
j=ℓ+1

E [ρ←(Γj/(2wn))2]
ρ←(w−1

n )2 P(U (n)
j ∈ T−kA0)

r/2

.

From inequality (82) in the proof of (66) in Bai et al., 2020, for large j, we have

E[ρ←(Γj/(2wn))2]
ρ←(w−1

n )2 ≤ CE
(
(Γj/2)−1/α0 + (Γj/2)−(1/α)−δ

)2
≤ Cj−2γ,

for some generic positive constant C and a small δ > 0, where α0 ∈ (0, 2) is
as in (2.5) and γ := min{1/α0, 1/α + δ}. Since P(U (n)

j ∈ T−kA) = w−1
n , it

follows that

P

 1
ρ←(w−1

n ) max
k∈nB∩N

∣∣∣∣∣∣
∞∑

j=ℓ+1
εj ρ←

(
Γj

2wn

)
1{U(n)

j ∈T−kA0}

∣∣∣∣∣∣ > ϵ


≤ n C w−r/2

n

∞∑
j=ℓ+1

j−2γ.

Finally, since (wn) ∈ RV∞(1 − β), choosing r > 2/(1 − β) guarantees that

lim
n→∞

nw−r/2
n = 0.

Using the fact that
∑∞

j=ℓ+1 j−2γ → 0 as ℓ → ∞ (since 2γ > 1), we conclude
that (A.15) holds. This completes the triangular approximation argument.
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A.3 Dependence of Limits in the Infinite Vari-
ance Case

Proof of Proposition 3.3. To establish the dependence, it suffices to show that
S(1) and M([0, 1]) are dependent. We demonstrate this by verifying that the
tail dependence coefficient:

lim
x→∞

P(|S(1)| > x | M([0, 1]) > x) ̸= 0.

Let
Zj := (2Cα)1/αεjLj(1 − Vj), j ∈ N,

where the marginal distribution of Lj(1) follows the Mittag-Leffler law and
thus admits finite moments of all orders. Then, we can write

S(1) =
∞∑

j=1
ZjΓ−1/α

j .

Moreover, due to the strict ordering Γ1 < Γ2 < · · · and the fact that IS ̸= ∅
almost surely for any |S| ≤ ℓβ , we have

M([0, 1]) = sup
S⊂N

1≤|S|≤ℓβ

∑
j∈S

Γ−1/α
j

 =
ℓβ∑

j=1
Γ−1/α

j .

We claim that, as x → ∞, the marginal tail behavior of |S(1)| satisfies

P(|S(1)| > x) ∼ P(|Z1|Γ−1/α
j > x) ∼ x−αE[|Z1|α]. (A.17)

To justify (A.17), note that by orthogonality E[ZiZj] = 0 for i ̸= j, and
independence, we compute:

E


 ∞∑

j=ℓ

ZjΓ−1/α
j

2
 =

∞∑
j=ℓ

E[Z2
j Γ−2/α

j ] ≤ CE[Z2
1 ]
∞∑

j=ℓ

j−2/α < ∞,

(A.18)
for all large enough ℓ, where C is a generic positive constant, and we have applied
a bound for negative moments of Γj . A Markov inequality then yields:

P

∣∣∣∣∣∣
∞∑

j=ℓ

ZjΓ−1/α
j

∣∣∣∣∣∣ > x

 ≤ Cx−2.
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For fixed j ∈ N, using Breiman’s lemma and asymptotics of the gamma distri-
bution of Γj , we get:

P(|Zj|Γ−1/α
j > x) ∼ E[|Zj|jα]P(Γ−1/α

j > x) ∼ E[|Zj|jα]
j! x−jα. (A.19)

Combining (A.18) and (A.19), and using Lemma 4.2.4 from Samorodnitsky,
2016, the claim in (A.17) follows.

On the other hand, by Proposition 3.3 in Samorodnitsky and Wang, 2019,
we have:

P(M([0, 1]) > x) ∼ P(Γ−1/α
1 > x) ∼ x−α.

Now consider the joint tail. For any ϵ ∈ (0, 1), using union bounds, trian-
gular inequalities, and (A.19), we have:

P(|S(1)| > x, M([0, 1]) > x)
≤P(|Z1|Γ−1/α

1 > (1 − ϵ)x, Γ−1/α
1 > (1 − ϵ)x)

+ P

∣∣∣∣∣∣
∞∑

j=2
ZjΓ−1/α

j

∣∣∣∣∣∣ > ϵx

+ P

 ℓβ∑
j=2

Γ−1/α
j > ϵx


=P(|Z1|Γ−1/α

1 > (1 − ϵ)x, Γ−1/α
1 > (1 − ϵ)x) + o(x−α),

as x → ∞, due to (A.18) and (A.19). Note that

P(|Z1|Γ−1/α
1 > x, Γ−1/α

1 > x)
=P(1{|Z1|≤1}|Z1|Γ−1/α

1 > x) + P(|Z1| > 1)P(Γ−1/α
1 > x)

∼
(
E[|Z1|α1{|Z1|≤1}] + P(|Z1| > 1)

)
x−α,

where Breiman’s lemma justifies the last relation. Putting this together:

lim sup
x→∞

P(|S(1)| > x, M([0, 1]) > x)
P(|Z1|Γ−1/α

1 > x, Γ−1/α
1 > x)

≤ (1 − ϵ)−α.

Similarly, for the lower bound, for any ϵ ∈ (0, 1),

P(|S(1)| > x, M([0, 1]) > x)
≥P(|Z1|Γ−1/α

1 > (1 + ϵ)x, Γ−1/α
1 > (1 + ϵ)x) − o(x−α),

so
lim inf

x→∞

P(|S(1)| > x, M([0, 1]) > x)
P(|Z1|Γ−1/α

1 > x, Γ−1/α
1 > x)

≥ (1 + ϵ)−α.
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Letting ϵ → 0, we conclude that:

lim
x→∞

P(|S(1)| > x, M([0, 1]) > x)
P(|Z1|Γ−1/α

1 > x, Γ−1/α
1 > x)

= 1,

which implies that

lim
x→∞

P(|S(1)| > x | M([0, 1]) > x)

=E[|Z1|α1{|Z1|≤1}] + P(|Z1| > 1) ̸= 0.

This completes the proof.

A.4 Joint Convergence on Subordinators

Lemma A.5. Suppose f, fn : [0, ∞) → [0, ∞), n ∈ N, are non-decreasing,
unbounded, and right-continuous functions with right-continuous inverses f→

and f→n , respectively. Let F and Fn denote the closed ranges of f and fn, respec-
tively. Assume additionally that f is strictly increasing and that the local uniform
convergence

sup
0≤s≤t

|fn(s) − f(s)| → 0 as n → ∞ (A.20)

holds for every t ≥ 0. Then the following conclusions hold:
1. For every y ∈ [0, ∞),

sup
0≤x≤y

|f→n (x) − f→(x)| → 0 as n → ∞, (A.21)

that is, the inverses converge uniformly on compact intervals.
2. For any sequence xn → x ∈ R,

|ρ(xn, Fn) − ρ(x, F )| → 0 as n → ∞, (A.22)

where for a non-empty set A ⊆ R, the distance function ρ is defined by ρ(x, A) :=
infu∈A |x − u|.

Proof. Since f is strictly increasing, its right-continuous inverse f→ is contin-
uous (see, e.g., Whitt, 2002, Lemma 13.6.5). The local uniform convergence of
the inverses, i.e., (A.21), then follows from Whitt, 2002, Corollary 13.6.4.

We now prove (A.22). Since |ρ(xn, Fn) − ρ(x, Fn)| ≤ |xn − x|, it suffices
to consider the case xn ≡ x. Fix x ∈ R. Because f is non-decreasing and
unbounded, there exists t > 0 such that f(t) > x. By monotonicity, we may
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write
ρ(x, F ) = inf

0≤s≤t
|x − f(s)|.

On the other hand, the convergence fn(t) → f(t) as n → ∞, implied by
(A.20), ensures that for all sufficiently large n, we have fn(t) > x. Thus,

ρ(x, Fn) = inf
0≤s≤t

|x − fn(s)|, for all large n.

By the triangle inequality, we then obtain

ρ(x, F )− sup
0≤s≤t

|f(s)−fn(s)| ≤ ρ(x, Fn) ≤ ρ(x, F )+ sup
0≤s≤t

|f(s)−fn(s)|.

Letting n → ∞ and using the convergence in (A.20), we conclude that ρ(x, Fn) →
ρ(x, F ), which completes the proof of (A.22).

Proof of Proposition 3.4. The key step in the proof is the following coupling
result, which is a consequence of Theorem 15.17 in Kallenberg, 2002: under the
assumption that σn(1) d−→ σ(1) as n → ∞, there exist versions σ̃n

d= σn such
that for all t ≥ 0,

∆n(t) := sup
0≤s≤t

|σ̃n(s) − σ(s)| P−→ 0.

By the Skorokhod representation theorem, we can further assume that on a
possibly extended probability space, there exist random variables Ṽn

d= Vn and
Ṽ

d= V such that Ṽn → Ṽ almost surely, and both Ṽn and Ṽ are independent
of σ̃n and σ, respectively.

Now fix an arbitrary subsequence S ⊂ N. We claim that there exists a
further subsequence S ′ ⊂ S such that

P
(

lim
n∈S′

∆n(t) = 0 for all t > 0
)

= 1.

This follows from the standard sub-subsequence argument: for each k ∈ N,
there exists a subsequence Sk ⊂ Sk−1 ⊂ · · · ⊂ S1 ⊂ S such that ∆n(k) → 0
almost surely along n ∈ Sk. Using the monotonicity of ∆n(t) in t, we can
extract a diagonal subsequence S ′ = {nk}k∈N such that the convergence holds
for all t > 0.
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Let L̃nk
denote the right-continuous inverse (i.e., the local time) of σ̃nk

.
Then for each y ≥ 0,

sup
0≤x≤y

∣∣∣L̃nk

(
(x − Ṽnk

)+
)

− L
(
(x − Ṽ )+

)∣∣∣
≤ sup

0≤x≤y

∣∣∣L̃nk

(
(x − Ṽnk

)+
)

− L
(
(x − Ṽnk

)+
)∣∣∣

+ sup
0≤x≤y

∣∣∣L((x − Ṽnk
)+
)

− L
(
(x − Ṽ )+

)∣∣∣
≤ sup

0≤x≤y

∣∣∣L̃nk

(
x
)

− L
(
x
)∣∣∣+ sup

0≤x≤y

∣∣∣L((x − Ṽnk
)+
)

− L
(
(x − Ṽ )+

)∣∣∣ .
Applying Lemma A.5 (specifically, its uniform convergence (A.21)) and using
the uniform continuity of L on [0, y], we conclude that

P
(

lim
k→∞

sup
0≤x≤y

∣∣∣L̃nk

(
(x − Ṽnk

)+
)

− L
(
(x − Ṽ )+

)∣∣∣ = 0
)

= 1.

Next, applying conclusion (A.22) from Lemma A.5 yields

P
(

lim
k→∞

ρ
(
x, Ṽnk

+ R̃nk

)
= ρ(x, Ṽ + R) for all x ∈ [0, ∞)

)
= 1,

where R̃nk
and R denote the closed ranges of σ̃nk

and σ, respectively, and
ρ(x, A) denotes the distance from point x to set A. Since convergence in the
Fell topology is characterized by this type of pointwise convergence of distance
functions (see, e.g., Theorem 2.2(iii) in Salinetti and Wets, 1981), we obtain

Ṽnk
+ R̃nk

a.s.−−→ Ṽ + R in F([0, ∞)).

Thus, we have established the almost sure convergence along any subsub-
sequence and hence convergence in probability of the triplet consisting of the
shifted subordinator, its local time, and its range. Since the coupled sequences
have the same distributions as the original ones, the desired joint weak conver-
gence follows.

A.5 Criterion for Weak Convergence
It is a classical strategy to establish weak convergence of stochastic processes

by verifying the convergence of finite-dimensional distributions (fdd) and prov-
ing tightness; see, for example, the treatment of weak convergence in the Sko-
rokhod space in Billingsley, 1999, Chapter 3. In the present work, we also
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consider random elements whose codomain extends beyond the Skorokhod
space—specifically, into the space of sup measures SM [0, 1]. Unsurprisingly,
the same “fdd + tightness” principle continues to apply in this broader setting.
To elucidate this methodology, we begin with a general result and then specify
it to our framework. Throughout, we denote by B(E) the Borel σ-algebra on
a topological space E.

Suppose T is the index set of the processes (typically time), and let U be a
separable metric space serving as the state space. Let M ⊆ UT be a function
space consisting of mappings x : T → U , which itself is equipped with a
metric under which it becomes a Polish space (i.e., complete and separable). For
any finite collection t1, . . . , td ∈ T , define the (multi-)projection map

πt1,...,td
: M → Ud, πt1,...,td

(x) = (x(t1), . . . , x(td)),

and assume that each single-time projection πt : M → U is measurable for
every t ∈ T .

In our application, the function spaces of interest are D[0, 1], endowed with
the J1-topology, and SM [0, 1], equipped with the sup-vague topology. Both
of these are metrizable and form Polish spaces; see Billingsley, 1999, Section
12 for D[0, 1], and Vervaat, 1988, Remark 5.6 for SM [0, 1]. We set the index
set T = [0, 1] × G([0, 1]), and define the product space M = D[0, 1] ×
SM [0, 1], endowed with the corresponding product metric. The state space is
U = R × R. Measurability of the projection mappings πt then follows from
standard results—see Billingsley, 1999, Section 12 for D[0, 1] and the definition
of the sup-vague topology, as well as the proof of Vervaat, 1988, Theorem 11.1
for SM [0, 1].

Let ξ = (ξ(t))t∈T be a stochastic process taking values in a Polish space M,
and let Pξ denote its law on M. We define the following subset of continuity
indices:

Tξ := {t ∈ T : Pξ (πt : M → U is continuous) = 1} .

Following Vervaat, 1988, we introduce key notions related to weak convergence
in M. Throughout, we write d= to denote equality in law.

Definition 3. (Law-Determining and Convergence-Determining Sets). A subset
T0 ⊂ T is said to be law determining if the following holds: for any two processes
ξ1, ξ2 with values in M, if for every d ∈ N and t1, . . . , td ∈ T0,

πt1,...,td
ξ1

d= πt1,...,td
ξ2 on Ud,
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then ξ1
d= ξ2 as random elements in M. That is, the finite-dimensional distri-

butions indexed by T0 uniquely determine the law on M.
A subset T0 ⊂ T is said to be convergence determining if, for any pair of

processes ξ1, ξ2 with values in M, the set T0 ∩ Tξ1 ∩ Tξ2 is law determining.

Definition 4. (Finite-Dimensional Convergence). We say ξn
fdd−→ ξ in a subset

T0 ⊂ T , if for every d ∈ N and t1, . . . , td ∈ T0,

πt1,...,td
ξn ⇒ πt1,...,td

ξ in distribution on Ud.

When T0 is omitted, it is understood to be the full index set T .

The family {ξn}n∈N is said to be tight in M if for every ϵ > 0, there exists
a compact subset K ⊂ M such that

inf
n
P(ξn ∈ K) ≥ 1 − ϵ.

Proposition A.6. Suppose T0 ⊂ T is a convergence determining set in the sense
of Definition 3. Then the weak convergence ξn ⇒ ξ in M holds if and only if

ξn
fdd−→ ξ in Tξ and {ξn} is tight in M.

Moreover, if T0 ⊂ Tξ , one may replace Tξ with T0 in the statement above.

Proof. “If” part. Suppose that {ξn} is tight in M, and that ξn
fdd−→ ξ in Tξ.

By Prokhorov’s theorem (see, e.g., Kallenberg, 2002, Theorem 16.3), any sub-
sequence of {ξn} admits a further subsequence which converges weakly in M
to a random element ξ∗ ∈ M. To establish the desired convergence ξn ⇒ ξ, it
suffices to show that Pξ∗ = Pξ.

Let t1, . . . , td ∈ Tξ∗ for arbitrary d ∈ N. By definition of Tξ∗ , the projec-
tion mapping πt1,...,td

: M → Ud is continuous Pξ∗ -almost surely. Then, by
the continuous mapping theorem (see, e.g., Kallenberg, 2002, Theorem 4.27),
we obtain

πt1,...,td
ξn ⇒ πt1,...,td

ξ∗

along the chosen sub-subsequence. On the other hand, by assumption,

πt1,...,td
ξn ⇒ πt1,...,td

ξ

for all t1, . . . , td ∈ T0 ∩ Tξ ∩ Tξ∗ . By uniqueness of limits in distribution, this
implies

πt1,...,td
ξ∗

d= πt1,...,td
ξ, for all t1, . . . , td ∈ T0 ∩ Tξ ∩ Tξ∗ .
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Since T0 is convergence determining, this implies ξ∗
d= ξ, i.e.,Pξ∗ = Pξ. Hence,

every subsequence of {ξn} contains a further subsequence converging weakly
to Pξ, and thus the full sequence ξn ⇒ ξ in M.

“Only if” part. Weak convergence ξn ⇒ ξ in M implies tightness of {ξn}
(again by Kallenberg, 2002, Theorem 16.3). Moreover, for any d ∈ N and
t1, . . . , td ∈ Tξ, the mapping πt1,...,td

is continuous almost surely with respect
to Pξ, and hence the continuous mapping theorem yields

πt1,...,td
ξn ⇒ πt1,...,td

ξ.

Therefore, ξn
fdd−→ ξ in Tξ.

Remark A.1. We claim that the subset T0 = [0, 1] × I is convergence determin-
ing in the sense of Definition 3, where I denotes the collection of all non-empty open
subintervals of [0, 1]. To justify this, consider two arbitrary random elements ξ1 =
(Z1, M1) and ξ2 = (Z2, M2), each taking values in M = D[0, 1]×SM [0, 1].
By results in Billingsley, 1999, Section 12 and the proof of Vervaat, 1988, Theorem
12.2, there exist subsets Ji ⊂ [0, 1] and Ii ⊂ I , for i = 1, 2, such that the
complements [0, 1] \ Ji and I \ Ii are countable. Moreover, these subsets can
be selected so that projection maps evaluated at any point in Ji (for D[0, 1]) or
Ii (for SM [0, 1]) are continuous with respect to the marginal law of Zi or Mi,
respectively, for i = 1, 2. This implies that Ji × Ii ⊂ Tξi

, i = 1, 2.
Now, consider the intersection

T ∗ := (J1 ∩ J2) × (I1 ∩ I2) ⊂ T0 ∩ Tξ1 ∩ Tξ2 .

To conclude that T0 is convergence determining, it suffices to show that T ∗ is law
determining in the sense of Definition 3. By Dynkin’s π-λ theorem, it is enough
to show that the π-system{

π−1
t1,...,td

(U) : d ∈ N, t1, . . . , td ∈ T ∗, U ∈ B(Ud)
}

generates the Borel σ-field B(M). This follows from the known results in each
component space: for M = D[0, 1], with T ∗ = J1 ∩ J2, the result holds by
Billingsley, 1999, Theorem 12.5; and for M = SM [0, 1], with T ∗ = I1 ∩ I2, the
result follows from Vervaat, 1988, Theorem 11.1. Since both D[0, 1] and SM [0, 1]
are separable spaces, the product Borel σ-field satisfies

B(D[0, 1] × SM [0, 1]) = B(D[0, 1]) ⊗ B(SM [0, 1]),
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as noted in Kallenberg, 2002, Lemma 1.2.
We also observe that projection mappings in D[0, 1] are almost surely con-

tinuous with respect to the limit laws BH (Theorem 3.1) and S (Theorem 3.2),
by virtue of Billingsley, 1999, Theorem 12.5, since both the fractional Brownian
motion BH and the stable process S admit versions with continuous paths al-
most surely (see Owada and Samorodnitsky, 2015, Theorem 3.3). Similarly, pro-
jection mappings in SM [0, 1] are almost surely continuous with respect to the
limit random sup-measure laws, as shown in the proof of Samorodnitsky and
Wang, 2019, Proposition 5.2. Therefore, the projection mapping on the product
space D[0, 1] × SM [0, 1] is almost surely continuous with respect to the joint
limit law of ξ in either Theorem 3.1 or 3.2. It follows that T0 = [0, 1] × I ⊂ Tξ ,
completing the argument.

A.6 Consistency of Order Selection via Penalized
Silhouette

We begin by establishing deterministic bounds related to the k-clustering
framework introduced in Definition 2 and the average silhouette width (ASW)
criterion in (3.1). Proposition 1.1 suggests that if the true spectral measure H

consists of finitely many atoms, then by selecting the subset S as a union of
neighborhoods surrounding each atom, almost all points in the extremal sub-
sample Wn (defined in (1.19)) will, for sufficiently large n, lie near one of these
atoms with respect to the dissimilarity measure D. This observation motivates
the analysis of scenarios where the majority of points in a finite multiset are
concentrated around a finite set of centers.

Throughout this section, fix distinct points {a1, . . . , ak} =: A ⊂ Sd−1
+ ,

with k ∈ Z+, and associated weights pi > 0 satisfying
∑k

i=1 pi = 1. Let D

be the dissimilarity measure defined in Definition 1. We say a finite multiset
W ⊂ Sd−1

+ satisfies the concentration condition A(ϵ, δ) for given ϵ, δ > 0 if
the following hold: k ≤ |W | ∧ δ−1; ϵ ∈ (0, rA), with rA defined in (1.25);
δ ∈ (0, pmin), where pmin is defined in (3.3); and

|W ∩ BD(ai, ϵ)|
|W |

≥ pi − δ, for all i ∈ {1, . . . , k}. (A.23)

In proving the subsequent lemmas, it is necessary to control the dual dis-
similarity D† between points lying within the same D-neighborhood. To this
end, we define a uniform upper bound for the dual dissimilarity. Given the set
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A = {a1, . . . , ak} and s > 0, define

r†A(s) = sup
{
D†(ai, w) : i ∈ {1, . . . , k}, w ∈ BD(ai, s)

}
. (A.24)

Remark A.2. Note that r†A(s) > 0 for all s > 0, and r†A(s) → 0 as s → 0; see
Remark 1.1. In particular, for sufficiently small ϵ > 0, we always have r†A(ϵ) <

rA.

When a multiset W satisfies the concentration condition A(ϵ, δ) but is
partitioned into fewer than k clusters, then necessarily, at least two of the un-
derlying true clusters are merged. This merging leads to reduced separability
between the resulting clusters, which can be effectively detected via the ASW
criterion. The following lemma formalizes this intuition.

Lemma A.7. Suppose a multiset W satisfies the condition A(ϵ, δ) and 1 ≤ m <

k. Let (A∗m,Cm) be an m-clustering of W as defined in Definition 2. Then the
(unpenalized) ASW S̄ satisfies

S̄ = S̄(W ; A∗m,Cm) ≤ 1 − (pmin − δ)
(
rA − r†A(ϵ)

)
,

where r†A is as in (A.24).

Proof. Since m < k and BD(ai, rA)’s are disjoint, i ∈ {1, . . . , k}, there
exists ℓ ∈ {1, . . . , k} such that BD(aℓ, rA) ∩ A∗m = ∅. Hence for any w ∈
W ∩ BD(aℓ, ϵ), we have by the triangular inequality (1.14) that

a(w) = D(w, A∗m) ≥ D(aℓ, A∗m) − D†(w, aℓ) ≥ rA − r†A(ϵ).

Then since b(w) ≤ 1, we have

1
|W |

∑
w∈W

a(w)
b(w) ≥ 1

|W |
∑

w∈W

a(w) ≥ |W ∩ BD(aℓ, ϵ)|
|W |

(
rA − r†A(ϵ)

)
≥ (pmin − δ)

(
rA − r†A(ϵ)

)
,

which implies the desired result.

The next lemma establishes that if the multiset W satisfies the concentration
condition A(ϵ, δ) and is partitioned into at least k clusters, then for each true
center ai ∈ A, there exists at least one cluster center that lies within a small
D-neighborhood of ai. In other words, no true cluster is left unrepresented
among the fitted clusters, provided the number of clusters is no less than the
true number k.
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Lemma A.8. Suppose a multiset W satisfies the condition A(ϵ, δ). Let (A∗m,Cm),
where A∗m = {a∗1, . . . , a∗m}, be an m-clustering of W as defined in Definition
2, m ≥ k. Then for any i ∈ {1, . . . , k}, there exists j ∈ {1, . . . , m}, such that
D
(
a∗j , ai

)
< ϵ′, where

ϵ′ = ϵ′(ϵ, δ) = (1 − kδ)ϵ + kδ

pmin − δ
+ r†A(ϵ). (A.25)

In particular, when m = k and ϵ′ < rA, there exists a bijection π : {1, . . . , k} 7→
{1, . . . , k}, such that D

(
a∗π(i), ai

)
< ϵ′ for all i ∈ {1, . . . , k}.

Proof. We prove the first claim by contradiction. Suppose there exists i ∈
{1, . . . , k} such that D(a∗j , ai) ≥ ϵ′ for all j ∈ {1, . . . , m}. Then for any
w ∈ W ∩ BD(ai, ϵ), we have by the triangular inequality (1.14) that

D(w, A∗m) ≥ D(ai, A∗m) − D†(w, ai) ≥ ϵ′ − r†A(ϵ).

Hence combining this and (A.23),

1
|W |

∑
w∈W

D(w, A∗m) ≥ 1
|W |

∑
w∈W∩BD(ai,ϵ)

D(w, A∗m)

≥(pi − δ)
(
ϵ′ − r†A(ϵ)

)
≥ (pmin − δ)

(
ϵ′ − r†A(ϵ)

)
.

(A.26)

Next, suppose that a multiset S on Sd−1
+ contains A and |S| = m, which is

only possible when m ≥ k as assumed. Then we have D(w, S) ≤ D(w, A).
Set Uϵ := W ∩

(
∪k

i=1BD(ai, ϵ)
)

, we have that

1
|W |

∑
w∈W

D(w, S) ≤ 1
|W |

 ∑
w∈Uϵ

D(w, A) +
∑

w∈W\Uϵ

1

 < (1−kδ)ϵ+kδ,

(A.27)
where the last inequality is obtained by maximizing |W \Uϵ| with the constraint
(A.23). Now in view of (1.17), the first expression in (A.26) is less than or equal
to the first expression in (A.27), and hence these two inequalities imply:

ϵ′ < {(1 − kδ)ϵ + kδ}/(pmin − δ) + r†A(ϵ),

which contradicts the choice of ϵ′.
For the second claim, note that BD(ai, rA)’s are disjoint, i ∈ {1, . . . , k}.

So if ϵ′ < rA, it is impossible that D
(
a∗j , ai

)
< ϵ′ and D

(
a∗j , ai′

)
< ϵ′ hold

simultaneously when i ̸= i′. The conclusion then follows.
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As a consequence of the previous lemma, if the multiset W is concentrated
around k centers but is partitioned into more than k clusters, then one of two
outcomes must occur: either some of the resulting clusters will have small car-
dinality, or at least two cluster centers will be close to each other with respect
to the dissimilarity measure D. This is formalized in the following lemma.

Lemma A.9. Suppose a multiset W satisfies the condition A(ϵ, δ). Assume
additionally that ϵ′ in (A.25) satisfies ϵ′ < rA. Let (A∗m,Cm), where A∗m =
{a∗1, . . . , a∗m} and Cm = {C1, . . . , Cm}, be an m-clustering of W as defined
in Definition 2, m > k. Then either of the following happens:

min
i=1,...,m

|Ci|
|W |

≤ kδ or min
1≤i<j≤m

D(a∗i , a∗j ) ≤ ϵ′ + 2r†A(ϵ) + r†A(ϵ′).

Proof. Since BD(ai, ϵ′), i ∈ {1, . . . , k}, are disjoint (because ϵ′ < rA), by
Lemma A.8, we can, without loss of generality, assume that a∗i ∈ BD(ai, ϵ′),
i ∈ {1, . . . , k} . We now divide into two cases as follows.
Case 1: there exists one j ∈ {k+1, . . . , m} (fixed below in the discussion of this
case) which satisfies D(a∗j , A) > ϵ′ + 2r†A(ϵ). Then for any i ∈ {1, . . . , k}
and any w ∈ W ∩ BD(ai, ϵ), we have by the triangular inequality (1.14) that
D(w, a∗i ) ≤ D(ai, a∗i ) + D†(ai, w) ≤ ϵ′ + r†A(ϵ), and hence

D(w, a∗j ) ≥ D(a∗j , ai) − D†(w, ai) > ϵ′ + 2r†A(ϵ) − r†A(ϵ) ≥ D(w, a∗i ).

This in view of Definition 2 implies that W ∩ BD(ai, ϵ) ⊂ W ∩ Cc
j for all

i ∈ {1, . . . , k}. Therefore, we have by (A.23) that

min
i=1,...,m

|Ci|
|W |

≤ |Cj|
|W |

≤
|W ∩ ⋂i=1,...,k BD(ai, ϵ)c|

|W |
≤ kδ.

Case 2: for any j ∈ {k+1, . . . , m}, we have D(a∗j , ai) ≤ ϵ′+2r†A(ϵ) for some
i ∈ {1, . . . , k}. Then for any such pair of j and i, we have

D(a∗i , a∗j ) ≤ D(ai, a∗j ) + D†(ai, a∗i ) ≤ ϵ′ + 2r†A(ϵ) + r†A(ϵ′).

The next lemma states that if the multiset W is concentrated around k

centers and is partitioned into exactly k clusters, then the unpenalized average
silhouette width S̄ will favor this clustering by yielding a high score—close
to the ideal value of 1. Moreover, under such a configuration, all clusters will
have sufficiently large sizes, and the corresponding cluster centers will be well-
separated with respect to the dissimilarity measure D.
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Lemma A.10. Let (A∗k = {a∗1, . . . , a∗k},Ck = {C1, . . . , Ck}) be a k-clustering
of W as defined in Definition 2. Suppose a multiset W satisfies the condition
A(ϵ, δ). Suppose in addition

rA > ϵ′ + 2r†A(ϵ) + r†A(ϵ′) (A.28)

with ϵ′ in (A.25). Then the (unpenalized) ASW S̄ satisfies

S̄ = S̄(W ; A∗k,Ck) ≥ 1 − (1 − kδ) ϵ′ + r†A(ϵ)
rA − r†A(ϵ) − r†A(ϵ′)

− kδ.

In addition, with the same permutation π : {1, . . . , k} 7→ {1, . . . , k} found
in Lemma A.8, we have

|Cπ(i)|
|W |

≥ pi − δ for each i and min
1≤i<j≤k

D(a∗i , a∗j ) ≥ rA − 2r†A(ϵ′),

where when k = 1, min1≤i<j≤k D(a∗i , a∗j ) is understood as 1, and the inequali-
ties still hold.

Proof. Since rA > ϵ′, by Lemma A.8, there exists a permutation π : {1, . . . , k} 7→
{1, . . . , k}, such that D(ai, a∗π(i)) < ϵ′, i ∈ {1, . . . , k}. Then for each i and
any w ∈ BD(ai, ϵ), we have by the triangular inequality (1.14) that

D(w, a∗π(i)) ≤ D(ai, a∗π(i)) + D†(w, ai) < ϵ′ + r†A(ϵ), (A.29)

and for j ̸= i that

D
(
w, a∗π(j)

)
≥ D (ai, aj)−D†(aj, a∗π(j))−D†(w, ai) ≥ rA−r†A(ϵ′)−r†A(ϵ),

(A.30)
where if k = 1, the left-hand side D

(
w, a∗π(j)

)
in (A.30) is understood as 1,

and the inequality still holds. Writing as before Uϵ = ⋃
1≤i≤k BD(ai, ϵ) ∩ W .

In view of (A.23) and the inequalities above, we have

S̄ = 1
|W |

 ∑
w∈Uϵ

+
∑

w∈W\Uϵ


(

1 − a(w)
b(w)

)

≥
(

1 − ϵ′ + r†A(ϵ)
rA − r†A(ϵ) − r†A(ϵ′)

)
(1 − kδ) + 0,

which implies the first claim.
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For the second claim, in view of Definition 2, (A.28), (A.29), (A.30), we
have W ∩ BD(ai, ϵ) ⊂ Cπ(i), i ∈ {1, . . . , k}. Hence by (A.23),

|Cπ(i)|
|W |

≥ |W ∩ BD(ai, ϵ)|
|W |

≥ pi − δ.

Furthermore, for any 1 ≤ i < j ≤ k and k > 1,

D(a∗π(i), a∗π(j)) ≥ D(ai, aj)−D†
(
ai, a∗π(i)

)
−D†

(
aj, a∗π(j)

)
≥ rA−2r†A(ϵ′).

We begin by stating a result concerning the average silhouette width S̄ de-
fined in (3.1), in the case where the number of clusters is less than or equal to k,
the true number of atoms in the underlying discrete spectral measure.

Proposition A.11. Suppose X satisfying (1.18) and (1.11) has a discrete spectral
measure of the form H = ∑k

i=1 piδai
, where ai’s are distinct points on Sd−1

+ , and
pi > 0, p1 + · · · + pk = 1. Let Wn denote the extremal subsample as in (1.19),
and (Am,n,Cm,n) form an m-clustering of Wn as defined in Definition 2 with
respect to a dissimilarity measure D defined in Definition 1. If m < k, then
almost surely,

lim sup
n

S̄(Wn; Am,n,Cm,n) ≤ 1 − rApmin,

where rA is as in (1.25) and pmin is as in (3.3). If m = k, then almost surely,

lim
n

S̄(Wn; Ak,n,Ck,n) = 1.

Proof. Note that ϵ′ → 0 as ϵ, δ → 0, we may choose them small enough such
that (A.28) is satisfied. Define the event

En(ϵ, δ) = {|Wn ∩ BD(ai, ϵ)| ≥ |Wn|(pi − δ), i ∈ {1, . . . , k}} . (A.31)

By Proposition 1.1 with S = BD(ai, ϵ) and the choice ϵ < rA, we have each
Hn(S) = |Wn ∩ BD(ai, ϵ)|/|Wn| converges almost surely to H(S) = pi, i ∈
{1, . . . , k}. Hence, with probability 1, the event En(ϵ, δ) happens eventually
as n → ∞, namely, P(lim infn 1{En(ϵ, δ)} = 1) = 1. Since Wn satisfies
the condition A(ϵ, δ) on En(ϵ, δ), by Lemmas A.7 and A.10, for almost every
outcome ω in the sample space Ω, when n is sufficiently large, we have when
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m < k that

S̄(Wn; Am,n,Cm,n)1{En(ϵ, δ)}
≤
{
1 − (pmin − δ)

(
rA − r†A(ϵ)

)}
1{En(ϵ, δ)}

and

S̄(Wn; Ak,n,Ck,n)1{En(ϵ, δ)}

≥
{

1 − (1 − kδ) ϵ′ + r†A(ϵ)
rA − r†A(ϵ) − r†A(ϵ′)

− kδ

}
1{En(ϵ, δ)}.

The desired results follow if one takes lim supn and lim infn respectively in the
two inequalities above, and then lets δ, ϵ → 0 (see also Remark A.2).

Next, we present a result concerning the penalty term Pt defined in (3.2),
in the setting where the number of clusters is greater than or equal to k.

Proposition A.12. Suppose X satisfying (1.18) and (1.11) has a discrete spectral
measure of the form H = ∑k

i=1 piδai
, where ai’s are distinct points on Sd−1

+ , and
pi > 0, p1 + · · · + pk = 1. Let Wn denote the extremal subsample as in (1.19),
and (Am,n,Cm,n) form an m-clustering of Wn as defined in Definition 2 with
respect to a dissimilarity measure D defined in Definition 1. Suppose t > 0. If
m > k, we have almost surely

lim
n

Pt(Wn; Am,n,Cm,n) = 1.

If m = k, we have almost surely

lim sup
n

Pt(Wn; Ak,n,Ck,n) ≤ 1 − (rAkpmin)t,

where rA is as in (1.25) and pmin is as in (3.3).

Proof. The argument is similar to that of Proposition A.11. In particular, under
the restriction to the event En(ϵ, δ) in (A.31), we have by Lemma A.9 that for
m > k

Pt(Wn; Am,n,Cm,n) ≥ 1 − (k2δ)t ∨
(
ϵ′ + 2r†A(ϵ) + r†A(ϵ′)

)t
,

and by Lemma A.10 that

Pt(Wn; Ak,n,Ck,n) ≤ 1 − [k(pmin − δ)(rA − 2r†A(ϵ′))]t.

We omit the rest of the details.
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Now we are ready to prove Theorem 3.5.

Proof of Theorem 3.5: Putting together Propositions A.11 and A.12, and using
the facts that S̄ ∈ [0, 1] and Pt ∈ [0, 1], we have almost surely that


lim supn St(Wn; Am,n,Cm,n) ≤ 1 − rApmin, if m < k;
lim infn St(Wn; Ak,n,Ck,n) ≥ (rAkpmin)t, if m = k;
lim supn St(Wn; Am,n,Cm,n) ≤ 0, if m > k.

Therefore, the desired claim follows.
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