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We consider a class of stationary processes that exhibit both long-range de-
pendence and heavy tails. While separate limit theorems for the partial sums
and the maxima of such processes have recently been established—featuring
novel limiting objects—this work develops the joint sum-and-max limit theo-
rems for this class. In the finite-variance case, the limiting behavior consists of
two independent components: a fractional Brownian motion (from the sum)
and a long-range dependent random sup measure (from the maximum). In
contrast, in the infinite-variance regime, the limit comprises two dependent
components: a stable Lévy process and a random sup measure. Their depen-
dence is characterized through the local time and range of a stable subordinator.
To establish this result, we also prove a joint convergence theorem for the local
time and range of subordinators, which may be of independent interest.

In parallel, we investigate the estimation of multivariate extreme value mod-
els with a discrete spectral measure using spherical clustering techniques. The
primary methodological contribution is a new order selection criterion—selecting
the number of spectral atoms (or clusters)—based on an augmented silhouette
width index. This criterion introduces a penalty term that discourages overly
small clusters and insufficient separation between cluster centers. We prove that
the method consistently recovers the true number of atoms in the spectral mea-
sure, enabling consistent estimation of the order of max-linear factor models,
which lack standard likelihood-based tools for model selection. Our second con-
tribution is a large deviation analysis that quantifies the convergence quality of
clustering-based estimation of spectral measures. Finally, we demonstrate how

the discrete spectral measure estimation can be translated into parameter esti-



mation for heavy-tailed factor models, supported by simulations and real-world
data examples that illustrate both order selection and model inference.
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CHAPTER I

INTRODUCTION

1.1 Background

LI Extreme Value Theory and Domains of Attraction

Let {X,, }nen be a sequence of stationary random variables, where N =
{1,2,...}. We are interested in the asymptotic behavior of the partial maxi-
mum

M, := max(Xy,..., X,),

asn — o00. In particular, we seeck non-degenerate limit distributions for
properly normalized maxima, that is, sequences of constants {a,, > 0} and

{b,} C Rsuch that
7Mn b LN G, (r.1)
an
for some non-degenerate distribution function G. Here, <, denotes conver-
gence in distribution.

In the case where { X, } is an independent and identically distributed (i.i.d.)
sequence, the possible limit distributions are well understood and are charac-
terized in the classical theory of extreme value distributions, as summarized
in de Haan and Ferreira, 2006, These limiting distributions, referred to as ex-
treme value distributions, are characterized up to affine transformations of the
form x — ax + b, wherea > 0and b € R. The class of all extreme value
distributions can be denoted as

Gy(ar+0b), a>0,beR,



where G, is defined by
G, (z) = exp (—(1 + 7:10)_1/7) , forl+~x >0,
with v € R. Fory = 0, this expression is interpreted as the limit:
Go(x) = exp(—e™™), z€R,

which is known as the Gumbel distribution or double exponential distribution.
Depending on the value of the shape parameter , three canonical types of
extreme value distributions arise:

* Fréchet Type (y > 0): By taking G, ((x — 1)/7), and letting o =
1/~ > 0, we obtain the Fréchet distribution:

D, () 0, x <0,
o(T) =
exp(—z~%), z>0.

* Gumbel Type (y = 0): As already noted, the limiting distribution
becomes
Go(r) = exp(—e™™), z€R.

* Reverse Weibull Type (v < 0): By transforming G, (—(1+4x)/7) and
letting v = —1/ > 0, we obtain the reverse Weibull distribution:

S

Let F' denote the common distribution function of the stationary sequence
{ X, }nen. We say that F' belongs to the domain of attraction of an extreme
value distribution G, written ' € D(G.,), if the convergence (r.1) holds with
G replaced by G,. The characterization of the domain of attraction depends
on the value of the shape parameter 7, and the corresponding conditions on
the distribution F’ are as follows:

* Fréchet Case (7 > 0): In this case, the right endpoint of the support,

" :=sup{r € R: F(z) < 1},



is infinite. The distribution F belongs to the domain of attraction of the
Fréchet distribution if

1—F(t
lim 1= Fltz) _ 27, forallz > 0.
t—oo 1 — F(t)
This condition implies that the tail 1 — F'is regularly varying at infinity
with index —1/+. For a comprehensive treatment of regularly varying

functions, see Bingham et al., 1989,

* Reverse Weibull Case (7 < 0): Here, the right endpoint z* is finite.
The distribution F" belongs to the domain of attraction of the reverse
Weibull distribution if

1 — F(z* —tx)

; — =1/
ltlfgl = Pl — 1) x , forallz > 0.

This condition describes the behavior of the distribution near its finite
upper bound.

* Gumbel Case (7 = 0): In this case, the right endpoint * may be either
finite or infinite. The distribution F' belongs to the domain of attraction
of the Gumbel distribution if there exists a positive function f such that

1—F(t+azf(t)) Y

e 1-F@)

forallz € R.

The auxiliary function f typically satisfies certain regularity conditions,
such as slowly varying behavior near £, and plays a role similar to alocal

scale.

These conditions provide the necessary and sufficient characterizations for a
distribution [ to belong to one of the three max-stable domains of attraction.

The convergence in distribution of the normalized partial maxima, as in
equation (L.1), also holds in the presence of dependence among the random
variables { X, }. However, to ensure the validity of such a limit, certain de-
pendence conditions must be imposed on the sequence. These conditions are
formulated to control the extent of clustering of extreme values due to depen-
dence. A comprehensive treatment of such dependence structures is given in
Leadbetter et al., 1983, where conditions such as the D(u,,) and D’ (u,,) condi-
tions are introduced. These conditions ensure that the extremes of the sequence
behave asymptotically as if they were nearly independent, thereby preserving

the classical extreme value limit laws in the dependent setting.



1.I.2 Limit Theorem and Domains of Attraction

The limiting theory for the partial sums .S,, ;= X + - - - + X, is a classical
counterpart to the extreme value theory for the partial maxima M,,. Specifically,
we seek sequences of normalizing constants {c,, } with ¢,, > 0,and {d,} C R,
such that

Sn—dn 4,y
Cn
where U is a non-degenerate distribution. In the case where { X, } arei.i.d., the
fundamental results are summarized in Feller, 1971, Chapter XVII.

A central result is that the only possible non-degenerate limit distributions
for normalized sums of i.i.d. random variables are the stable distributions. These
distributions, which generalize the classical central limit theorem, are character-
ized through their characteristic functions.

Letp, q € [0, 1] with p + ¢ = 1, which parameterize the skewness of the
distribution, where p reflects the contribution from the right tail and ¢ from
the left. Then the characteristic function of a stable random variable X, with
stability index a € (0, 2], scale parameter ¢ > 0, and location parameter

1 € R, is given by:
o(t; o, p) = exp{—o”[t|* [1 —i(p — q)w(t, ) sgn(t)] + ipt},

where

(t. ) tan (%) , a#1,
w(t, o) =
—%log|t\, a=1;

and sgn(?) is the sign function defined as follows:

—1 ift <0,
sgn(t) :=4¢ 0 ift=0,
1 ift>0.

This form includes the Gaussian distribution as a special case when a@ = 2,
where the characteristic function reduces to that of a normal distribution with
finite variance.

Without loss of generality, we say that a distribution function F' belongs to
the domain of attraction of a stable law, denoted ' € D(a, p), if the limiting
distribution U has the characteristic function ¢(¢; o, p) as above.

Sufficient conditions for F' € D(c, p) depend on the tail behavior of F.
When 0 < a < 2, a necessary and sufficient condition is that there exists a

regularly varying function L(x) at infinity, such that:



2 — 2 —
YL(z), and F(-a)~¢g -2

1-F(x) ~ p- L(z), asz — oo.

This condition describes the power-law behavior of the tails, with balance
given by the parameters p and q.
When o = 2, which corresponds to the normal distribution, the require-

ment becomes the function

x
pl) = |y dF(y)
is a slowly varying function at infinity (see Bingham et al., 1989). This condi-
tion ensures that the second moment grows sufficiently slowly and is compati-
ble with convergence to a normal distribution with infinite support but finite
variance.

There are also numerous results concerning the convergence of the partial
sums S, when the sequence {X,,} exhibits dependence. In particular, gen-
eralizations of the classical central limit theorem and stable limit theory have
been developed under various forms of weak dependence. For example mzzx-
ing conditions, which quantify the asymptotic independence between distant
observations in the sequence (see Ibragimov and Linnik, 1971) and martingale
difference sequences, where the conditional expectation of each term given the
past is zero (see Hall and Heyde, 1980). These results underscore that, even
in the presence of dependence, the asymptotic behavior of sums of random
variables can often be characterized using classical or generalized probabilistic
limits—provided the dependence structure satisfies suitable regularity condi-

tions.

.13 Random Sup Measures and Convergence in Distribu-
tion

Writing Sy, (t) = S|pej and M,,(t) = M), where [ ] denotes the great-
est integer not exceeding z, the processes (5, ())i>0 and (M,,(t))¢>0 can be
viewed as stochastic processes indexed by continuous time. It is then natural
to investigate their functional convergence in an appropriate function space.
Typically, this is the Skorokhod space D[0, 00) endowed with the J; topology;
see Billingsley, 1999 for foundational results on this convergence.

An alternative and fruitful perspective on the partial maximum process
(M,,(t))>0 is to consider it as a random sup measure. For asubset B C [0, 00),



define

Mn(B> = kr/I}laé}é Xka (1'2‘)

so that M, (t) corresponds to the special case B = (0, t]. The framework of
random sup measures, which was systematically developed in O’Brien et al.,
1990, provides a robust setting for analyzing random sup measures.

A sup measureisamapm : G — R := [—00, 00], where G denotes the
collection of open subsets of R, satisfying

(o) -y

for any collection {G,} C G. This parallels the definition of a measure, but
with the additive operation replaced by the supremum.

A natural way to construct a sup measure is through the sup integral: given
afunction f : R — R, define

m(G) =\ f(t), Geg,

teG

and denote this operation by m = " f. Although different functions f may
yield the same sup measure, there exists a canonical representative—the sup

derivative, defined by

Gt

This sup derivative is upper semi-continuous (usc), and every sup measure m
satisfies the identity m = i¥d"m, establishing a bijection between the space of
sup measures and the space of usc functions. The sup measure can be extended
to all subsets of R via

m(B) = \/ d'm(t),
teB
ensuring consistency with the original definition on open sets.
To study convergence, we define the sup vague topology. A sequence of sup
measures (1M, ) is said to converge sup vaguely to m if:

lim sup m,(K) < m(K) forall compact K C R,

n

and

lim inf m,(G) > m(G) forallopen G C R.



This topology is metrizable and compact, with convergence characterized by

the values of sup measures on continuity sets. A set A C Risa continuity set for

m if m(int A) = m(clos A), i.e.,, no mass is concentrated on the boundary.
Under this framework, sup vague convergence m,, — m is equivalent to

m(A) = m(A)

for all bounded continuity sets A. In many cases, it suffices to verify this con-
vergence for bounded open intervals.

The Borel o-field on the space of sup measures generated by the sup vague
topology is the smallest o-field that renders the maps m — m(A) measur-
able for all open sets A, or equivalently for compact sets, compact intervals,
or bounded open intervals. Consequently, a mapping M : (2, F,P) —
sup measures is a zandom sup measure if and only if M (A) is a random vari-
able for every set A in any of these collections. The process M,,(B) defined
in thus forms a random sup measure. For a random sup measure M, its
probability law is completely determined by its finite-dimensional distributions
(M (A)) ac.a, for any of the aforementioned collections A.

We now address convergence in distribution. For a random sup measure M,
define the set of continuity intervals by

I(M):={le€Z:M(I)= M(closI)w.p.ui},

where Z denotes the collection of non-empty bounded open intervals. A se-
quence {M,} of random sup measures converges in distribution to a limit
M, written M, M , if and only if the finite-dimensional distributions of
(M, (1)) 1ez(ar) converge weakly to those of (M (1)) rez(ar).-

L4 Infinitely Divisible Processes

A fundamental building block of an infinitely divisible stochastic process is
a one-dimensional infinitely divisible random variable. The most powerful ana-
lytical tool for studying infinitely divisible random variables is the Lévy-Khintchine
representation.

Specifically, a real-valued random variable X is said to be infinitely divisible
if and only if there exists a uniquely determined characteristic triplet (o2, v, b),
where: 02 > 0 is the Gaussian component, v is a Borel measure on R \ {0},

called the Lévy measure, satistying

v({0}) =0, /Ru A 22) v(dz) < oo,



b € Ris adrift term, such that the characteristic function of X is given by for
every 0 € R,

E [eiex} = exp {—50292 + b0 + /]R (ewm —1— z@[[x]]) I/(dx)} ;

where [x] denotes the truncated function defined by

x, if |z| <1,
[x] := {

sgn(z), ifl|x| > 1.

This decomposition separates the contribution of small jumps (through the
Gaussian term and the drift) from that of large jumps (through the Lévy mea-
sure or the Poissonian term). For comprehensive coverage of infinitely divisible
distributions and their properties, see Sato, |1999.

A stochastic process (X (t))ier, is said to be infinitely divisible if and only
if there exists a uniquely determined triple (3, v, b), such that for every § € R”,
the joint characteristic function of X (¢) has the Lévy—Khintchine representa-

tion:

[E exp (2 > 9(t)X(t)>

teT

—exp {~5Q0) + [, (¢~ 1= (0. [«])) v(d) + (6.

where (0, ) = ;e 0(t)x(t) denotes the inner product in R” and the trun-
cation function [z(t)] is defined coordinate-wise. The elements of the triple
are defined as follows:

* Q) = X7 2(s,t)0(s)0(t) is a quadratic form associated with a
nonnegative definite function ¥ : 7" x T" — R, representing the covari-
ance structure of the Gaussian component;

* visaLévy measure on R7, governing the jump behavior of the process;
e b € R” is a shift vector;

This formulation generalizes the classical Lévy—Khintchine representation
of one-dimensional infinitely divisible random variables to the case of stochastic
processes indexed by an arbitrary set T". For more details, see Samorodnitsky,
2016,

An infinitely divisible random measure is one of the most fundamental ob-

jects in the study of infinitely divisible stochastic processes. It frequently serves



as a building block in constructing more complex infinitely divisible processes.
To define an infinitely divisible random measure, we begin with a measurable

space (5, S). The construction requires the following three components:

* A o-finite measure y on .S

* Ameasurevon S x (R\ {0}), such that the measure
mo(B) = // [2]? v(ds,dz) < oo, forall B € S,
Bx(R\{0})

is o-finite;
* A o-finite signed measure 3 on S.
Let Sp C S be the collection of sets B € S such that

m(B) := y(B) + [|B[|(B) + mo(B) < o0,

where ||3]| denotes the total variation measure of 3. For sets By, By € Sy,
define the covariance function

Y (By, Bs) :=~(By N By).
Next, define a measurable map ® : S x (R \ {0}) — R% by
O(s,x)(B) :=x - 1iepy, forBeS.
This map induces a Lévy measure ;2 on RS by pushforward:
pi=vod
Finally, define the shift function b € R by
b(B) := (B), forB € S,.

The infinitely divisible stochastic process M = {M(B) : B € Sy} with the
triple (3, p, b) characteristic is called an infinitely divisible random measure on
(S, S) with Gaussian variance measure -y, Lévy measure v, and shift measure
.

The fundamental properties of such a random measure are summarized in
the following:

1. Forevery B € Sy, the random variable M (B) is infinitely divisible with
characteristic triplet (0%, vg, B), where:



2. The random measure M is independently scattered: the random variables
M(By), ..., M(By) are independent for every finite collection of dis-
jointsets By, ..., By € Sp.

3. The random measure M is 0-additive almost surely: for any countable
collection of disjoint sets { B;} C Sy such thatJ; B; € Sy, we have

M (U Bj) = Z M(Bj) almost surely.
j j

(Note that the exceptional null set in this identity may depend on the
specific choice of the sets { B; }.)

An infinitely divisible random measure admits a disintegrated representa-
tion, which offers a more intuitive and localized understanding of its struc-
ture. Specifically, we consider an infinitely divisible stochastic process M =
{M(B) : B € 8} to be an infinitely divisible random measure characterized
by:

* A control measure m on (5, S),

* A local Gaussian variance function (0%(s), s € ),

* Local Lévy measures p(s, -) on R \ {0}, foreach s € S,
* Alocal shift function (b(s), s € ).

The random measure M is an independently scattered, o-additive random set
function such that for each B € S, the random variable M (B) is infinitely
divisible with characteristic triplet given by:

0]23:/]302(5)m(ds), wp() :/Bp(s,-)m(ds), bB:/Bb(s) m(ds).

Infinitely divisible random measures are fundamental because they serve
as building blocks for a wide variety of infinitely divisible stochastic processes.
In particular, many such processes can be constructed through integration of
deterministic functions with respect to infinitely divisible random measures.

10



Specifically, a large class of infinitely divisible processes { X (¢) : t € T'} can be
represented in the form:

:/Sf(t,s) M(ds), teT, (13)

where M isan infinitely divisible random measure on a measurable space (5, S),
and {f(¢,-) : t € T} is a family of measurable, nonrandom functions.

To define the stochastic integral, we begin with the case of simple functions.
Suppose f : S — Ris asimple function of the form:

k
S):ij]‘Bj(S)’ SES,
j=1

where f1,..., fr € Rand By,..., By € &y are disjoint sets such that the
random measure M is defined on each B;. Then the stochastic integral of f
with respect to M is defined by:

_ /Sf(s)M(ds) = f;M(B

For more general (non-simple) functions f that are ntegrable with respect to
the random measure M, the integral is defined as the limit:

1(f) = lim I(f,),

where { f,} is a sequence of simple functions such that f,,(s) — f(s) for
m-almost every s € .S, and the convergence holds in probability.

The stochastic integral I( f) with respect to an infinitely divisible random
measure M satisfies the following properties:

1. The integral I( f) is an infinitely divisible random variable. Its character-

istic function is given by:

E {ewl(f)} :exp{ - (922/3]”(3)2 o?(s)m(ds) + i@/sf(s)b(s)m(ds)

+ /S /R\{O} (eief(S)x —-1- Z@f(s)ﬂl‘]]) p(s,dx) m(ds)}’

where 02(s) is the local Gaussian variance, p(s, dx) is the local Lévy
measure, b(s) is the local shift function. In particular, the characteristic
triplet (02(f), sy, b(f)) of the random variable I ( f) is given as follows:

II



* The Gaussian variance:
o*(f) = [ J(5)* 0*(s) mids);
S
* The Lévy measure:

fbf = V§O Tf_l,
where the measure vy on S x (R '\ {0}) is defined by

vi(A) =v(ANn{(s,x): f(s) #0}), Ameasurable,

v is the Lévy measure of the random measure M, and T : S x (R\
{0}) — Ris the measurable transformation T¢(s, z) = f(s)z;

* The shift parameter:

b(f) Z/Sf(s)b(s)m(ds)
[ o U@l = SO D) pls. o))

2. The integral operator I(f) is linear. That s, if f and g are integrable
functions and a, b € R, then:

I(af +bg) = al(f)+bl(g) almostsurely.

Notonly is the integral of an integrable function with respect to an infinitely
divisible random measure M an infinitely divisible random variable, but also
the family of such integrals defines an infinitely divisible stochastic process. Let
M be an infinitely divisible random measure on a measurable space (.5, S),
with control measure m, local Gaussian variance 02(8), local Lévy measures
p(s,-), and local shift function b(s), for s € S. Suppose f(, -) is integrable
foreacht € T'. Then the stochastic process defined in is infinitely divisible.

Moreover, it possesses a characteristic triple (X x, vx, bx ), where:

* The Gaussian covariance function is given by
Sx(tty) = /S (b, 8)f (ta, 8) () m(ds), t1,ts € T
* The Lévy measure vy is the image measure:
vy =vo H !,

12



where v is the Lévy measure of the random measure M, and H : S X
R — R” is defined by

H(s,x):= (a:f(t, s))

teT’
¢ The drift function is

bx(t) = [ (2 5)b(s) m(ds)
+ [ [ Aft.9)2] = £t 9)a]) pls. de)m(ds), teT.

An infinitely divisible stochastic process without a Gaussian component
consists solely of a compound Poisson component. Such processes often ad-
mit explicit series representations involving the arrival times of a standard Pois-
son process, as well as an independent sequence of i.i.d. random variables, see
Samorodnitsky, 2016

Let M be a symmetric infinitely divisible random measure on a measurable
space (S, S), without a Gaussian component, and with control measure m. Let
7 be a probability measure on S that is equivalent to m. Then

dm
r(s) .= —(s), sé€S,
(5) = )

is strictly positive m-almost everywhere. Foreach s € S, define the correspond-
ing Lévy measure:

pr(87 ) = T(S)p(‘S? ')7
where p(s, -) is the Lévy measure of M. Then each p,.(s, -) is a symmetric one-
dimensional Lévy measure. Define the generalized inverse of the tail function
of p.(s,) as

G(z,s) = inf {y > 0:p.(s, (y,00)) < ;}, x> 0.

Now, let {&,,},>1 be a sequence of i.i.d. Rademacher random variables
(ie., taking values =1 with equal probability), {Y}, },>1 a sequence of i.i.d. S-
valued random variables with common distribution 7. Let {I',, },,>1 denote
the ordered points of a unit-rate Poisson process on (0, 00). Note that

I',=e14+---+e,, n=12,...,

3



where {€;};>; are i.i.d. standard exponential random variables. Assume all
three sequences are independent. Define the stochastic process {Y (t) }ter by

Y(t) = i en Gy, Yy) f(t, YY), teT. (1.4)
n=1

Then {Y (¢) }er is a well-defined stochastic process, and it has the same finite-
dimensional distributions as the process { X (¢) }+cr defined in (r.3).

1.Ls Multivariate Extreme Value Theory

Consider a sample of d-dimensional random vectors,
Xi:(Xi,la---7Xi,d)u z':l,...,n,

which are i.i.d. with common distribution function F on R%. Define the
component-wise maximum as

where the jth component of M, is given by

Mn,j = Imax X’i,j7 j = 1, c. 7d.

1<i<n

The distribution function of M, is given by
PM, <x)=P(X; <x,...,X, <x)=F"(x), x¢cR%

where the inequality is interpreted component-wise.

The multivariate domain-of-attraction problem is to find sequences of vec-
torsa,, > 0andb,, € R such that the normalized maxima a, 1 (M,, — b,)
converge in distribution to a non-degenerate random vector, that is,

F"(a,x + by,) 4 G(x), asn — oo, (1.5)

for some distribution function G on R? with non-degenerate marginals. When
such sequences a,,, b,, exist, we say that F is in the (max-)domain of attraction
of G, denoted F' € D(G). The limiting distribution G is then called a multi-
variate extreme value distribution.

A crucial observation follows from the requirement of marginal conver-
gence. Let Fj and G; denote the jth marginal distribution functions of F"and

14



G, respectively. Since weak convergence of random vectors implies convergence

of each marginal, we must have
d
Fi'(anvj + bnj) — Gi(x;), asn — oo,

foreachj =1,...,d,wherea, jandb, ; are the jth components of a,, and b,,,
respectively. Therefore, each marginal distribution F; must lie in the domain
of attraction of a univariate extreme value distribution Gj.

A d-variate distribution function G is called max-stable if for every positive
integer k, there exist vectors ay > 0 and 3, € R? such that the following
identity in distribution holds:

G*(aux + B,) = G(x), forallx € R%.

Intuitively, this means thatif Y, Y, ..., Y are iid. random vectors with
distribution function G, then there exist normalization vectors o, > 0, B
such that

k
a,;l (\/ Y, — ,Bk> 2 Y, foralk >1.
i=1

That is, the distribution of the component-wise maximum of k i.i.d. copies of
Y, properly normalized, is again G. It follows immediately from this definition
that a max-stable distribution is in its own domain of attraction. In particular,
itis an extreme value distribution function. Conversely, as discussed previously,
any extreme value distribution arises as the limit of normalized component-wise
maxima and therefore satisfies the max-stability property. Hence, the class of
max-stable distributions coincides with the class of multivariate extreme value
distributions.

An important property of max-stable distributions is that G'/* is again
a distribution function for every integer k& > 1. This implies that G is max-
infinitely divisible. According to Balkema and Resnick, 1977, any max-infinitely
divisible distribution function (G can be written in the form

G(X) = exXp {_A ([—OO, Oo)d \ [_OO» X])} )

where [—00, x| = [—00, 1] X +++ X [~00, 24|, for some measure A on RY,
called the exponent measure of G. To facilitate the study of the dependence
structure of max-stable distributions, it is customary to standardize the margins.
That s, we transform each component so that all margins follow a common dis-
tribution. While the specific form of the marginal distribution is not essential,
a particularly convenient choice is the a-Fréchet distribution.
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For simplicity, we restrict our attention to the nonnegative orthant [0, 00).
Let A denote the exponent measure of a multivariate a-Fréchet distribution. It
satisfies the homogeneity property

A(c-A) = c“A(A), forallc > 0andBorelsets A C [0, 00)%.

This scaling property implies that A admits a polar decomposition into radial
and angular components. We follow the formulation of Beirlant et al., 2006,
Section 8.2.5, which allows the use of different norms for the radial and angular

parts. Let || - ||,y and || - ||(5) denote two arbitrary norms on R%. We define the
following one-to-one transformation from Eq := [0, 00)? \ {0} to (0, o00) %
S by

X
x ) o= (I 2.
where the positive part of the unit sphere is defined as
Sflfl = {x €[0,00)%: x5y = 1}, (1.6)

We continue to denote by A the pushforward measure of the original exponent
measure under this mapping. The polar decomposition of A then takes the
form:

A(dr,dw) = ciyar=*tdr x H(dw), (1.7)

where H is a probability measure on Sflfl, referred to as the spectral measure,

and ¢, is the normalizing constant given by
e = AM{x €[0,00)": [x[le) = 1}). (1.8)

The spectral measure [ encodes the angular structure of extremes and governs
the dependence among components of X. As a consequence of the marginal

standardization (to c-Fréchet margins), the following moment constraint must

hold:
w; “ 1 .
H(dw) = , forj=1,...,d (r.9)
/Sil <||W||<r>> C(r)

In practice, common choices for the norms include the p-norm, for p € (0, 00),

Ixllp = (32, Ja;17) ", and the supremum norm, [x||c = max?_, |z,
Let us write the distribution function of the componentwise maximum as

F" = [1 —n Yn(1 — F}]" and use the fact that (1 — n"'z,)" — e €

[0,1] ifand only if z,, — = € [0, 00| asn — 00, we deduce that the conver-
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gence in (s holds if and only if

lim n{l - F(a,x +b,)} = —logG(x), x€R?  (L0)

n—o0

with the usual convention that — log(0) = oc. admits a natural interpre-
tation in terms of exponent measures. Recall that a multivariate extreme value

distribution G is characterized by an exponent measure A such that

A(lg,0) \ [q,%]) = —logG(x), x> q,

where q denotes the lower endpoint of GG. In particular, for the jth marginal
distribution G ;, we let ¢; denote its lower endpoint. Observe that — log G(x)
is finite if x > q, and infinite otherwise. Consequently, the exponent measure
A assigns finite mass only to Borel sets in [q, 00) that are bounded away from
q. Now define a sequence of measures (A,,) on [q, 00) \ {q} via:

Aw(B) :==nP(Xy, € B),

where the normalized and thresholded variable X ,, is defined as

Xi,n = ( ) V q.

an

From this, it follows that
An([a,00) \ [a,x]) =n{l — F(a,x+by,))}, x€[q,00).
Hence, may be rewritten as:

An(lg,00) \ [a,x]) = A([q,00) \ [q,X]), x € [q,00),

which suggests weak convergence of the measures A,, to A on [q, 00) \ {q}.
More precisely, this convergence is vague convergence, denoted:

An = A onlq,00)\ {q}.
By definition, A,, 5 A
A, (B) = A(B), forall Borelsets B C [q, ) \ {q}

with compact closure and such that the boundary 0B satisfies A(0B) = 0.
Note that such Borel sets B have compact closure in [q, 00) \ {q} if and only
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if there exists x > q such that B C [q,0) \ [q,x]. For more informa-
tion on vague convergence of measures, see Resnick, 1987, In summary, is
equivalent to vague convergence of the rescaled excess measure A\, toward the
exponent measure A.

Let G be a multivariate a-Fréchet distribution. Then the convergence in
is equivalent to the vague convergence of measures

ulP (U_I/O‘X € ) — A(}), asu — oo, (r.ax)

on the punctured nonnegative orthant E, := [0,00)? \ {0}. By the polar
decomposition of the exponent measure A, the convergence in implies a
weak limit theorem for the angular component of X. Specifically, we have the
following convergence in distribution on S%~" as the threshold u — oo:

X
P ( e A, |X]l = u) 4 f(a), (112)
X

for Borel sets A C S satisfying H(OA) = 0 where

H(A)_——lA xEEdzix €A x||mm=>1p).
()
C(r) HXH(S)

1.1.6 Spherical Clustering

The spherical clustering algorithms considered thus far operate exclusively
on the unit sphere St defined with respect to the 2-norm (Euclidean norm),
ie, || - |ls) = I - |2 in (.6). We do not adopt this restriction unless we are
discussing specific examples, in order to maintain generality. The space Si_l is
equipped with the subspace topology inherited from R?. To facilitate clustering
on Sfl, we introduce a dissimilarity measure D, which plays a central role in

the analysis.

Definition 1. A4 dissimilarity measure D on Sfl[l is a continuous function D :
STt x S — [0, 1] satisfying the following properties for all wy, wy € S%1:
(1) D(w1, W) = 0ifand only if w1 = W, (i) D(W1, W) = D(Wa, Wy).

Remark v.x. Without loss of generality, we assume that D is normalized such
that its image covers the entire interval 0, 1. A function D satisfying properties
(1) and (i) is commonly known as a semimetric, which differs from a true metric
by not satisfying the triangle inequality. Given the compactness of St and the
continuity of D, convergence in D is topologically equivalent to convergence in
S that is, w,, — W in ST if and only if D(w,,, W) — 0. Moreover, the
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collection of D-balls
Bp(w,r):={u € Si‘l :D(w,u) <r}, we 81—17 P> 0,

forms a topological basis for ST'; see, e.g., Galvin and Shore, 1984, We also define
a dual dissimilarity measure DT by

D]L(WlaWQ) ‘= sup |D(W7W1) - D(Wv W2)| : (1'13)

d—1
w€S+

This function is again a continuous semimetric on Sflfl X Sfl[ Y satisfies Dt > D,
and is surjective onto [0, 1]. Moreover, a relaxed triangle inequality holds:

D(wi,w3) < D(wy, ws) + DT(Wza w3). (114)

In addition, if D(w,,,w) — 0asn — 00, then DT (w,,, w) — 0 as well.

Common dissimilarity measures used in practice are often semimetrics. For
the 2-norm unit sphere S%~*, the cosine dissimilarity used in spherical k-means
clustering (Janf8en and Wan, 2020) is

Deoos(W1, Ws) =1 — W] wy, Wi, Wy € Si_l c R (r15)

The k-principal components dissimilarity from Fomichov and Ivanovs, 2023|is
given by
- 2
Dye(wi,wa) =1 — (W1 WQ) . (1.16)

Both dissimilarities are semimetrics and offer computational advantages. For

D = D5 or Dy, it follows from elementary inequalities that the dual satisfies
DY (wy, w3) < c||wy — Wz, withc = 1or2, respectively.

To formalize clustering, we adopt the notion of multisets (see, e.g., Kettle-
borough and Rayward-Smith, 2013). A multiset W on ST allows repeated
elements. Its support, denoted supp (W), is the usual set of unique elements in
W. For example, if wi, wy € Sflfl are distinct, then W' = {w;, wq, Wy} has
support supp(W) = {w1, wa}. A multiset is characterized by its multiplicity
function my, : ST — {0, 1, ...}, where my (W) denotes how many times
W appears in WW. A set is simply a multiset with multiplicities o or 1. If w € W,
this means w € supp(W).

For two multisets W7, W5 with multiplicity functions 12, ms, their union
W, U Wy and intersection W N Wy are defined pointwise via m V mg and
my A meg, respectively. We write W, C W if my < my. If supp(W) is finite,
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then for any function f on S‘i_l, we define

ofw)= > mw(w)f(w),

weWw wesupp(W)

so that the cardinality of W is [W| := Y cquppw) mw (W). We also define

D(w,W):= inf D(w,s).

( ) sesupp(W) ( )
Now suppose W is a multiset on S with [W| < oo, and fix k € Z,
with k& < |W|. Let A; = {a¥,...,a}} be a multiset of k elements in ST

minimizing total dissimilarity:

> D(w,Ap) = inf{ > D(w,A):supp(4) C ST, |A| = k} :
weW weW
(1.17)

By continuity of D and compactness of Sfl[l, such a minimizer exists, although
it may not be unique. When [supp(W)| > k, the infimum is attained with k&
distinct centers.

We now define the notion of a k-clustering.

Definition 2. 4 k-clustering of a multiset W on S with respect to a dissim-
ilarity measure D is a pair (A}, €y), where: A, = {aj, ..., a;} isa multiset
minimizing (L17)), and € = {Ch, ..., Cy} is a partition of W into multisets
such that foreach i € {1, ...k} and everyw € C, we have

D(w, A;) = D(w,a}).
We refer to Aj, as the set of centers, and the C;’s as clusters.

Remark r.2. 4 k-clustering always exists for any finite multiset W, although it
need not be unique, even when Aj, is. Ties in dissimilarity may lead to ambiguity
in cluster assignments. Nonetheless, one can always select clusters so that each C;
is nonempty when k < |W|.

For D = D, or Dy, the above formulation recovers spherical k-means
(Janfen and Wan, |2020) and k-PC clustering (Fomichov and Ivanovs, 2023, re-
spectively. Solving exactly is computationally intractable in general; thus,
heuristic methods such as Lloyd-type algorithms are typically employed in prac-
tice. For theoretical purposes, however, we assume that an exact k-clustering is
available.
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When W is a random multiset, we assume that both the elements of A}
and the indicator variables 1{w € C;} forw € W, j € {1,...,k}, are
measurable.

r.L7 Spherical Clustering for Multivariate Extremes

Following Janf8en and Wan, 2020/ and Fomichov and Ivanovs, [2023, we
connect spherical clustering with the analysis of multivariate extremes. With
n € Zy,let (X4,...,X,), be i.i.d. copies of a random vector X that is
marginally standardized and belongs to the domain of attraction of a-Fréchet
distribution, with spectral measure H on S%~'. We assume that the random
vector X has been marginally standardized so that each component exhibits a
standard a-Pareto-type tail behavior, specifically:

lim P(Xy >x)=--- = lim r*P(Xy > x) =1, (1.18)
where o > 0 is a known tail index, commonly chosenasa = 1 or o = 2in the
literature. While this condition can be generalized to allow for slowly varying
functions (see Bingham et al., 1989), we adopt the simplified form in for
ease of exposition.

Let £, be an intermediate sequence satisfying ¢,, — oo and {,,/n — 0 as
n — 00. Define the extremal subsample on ST by

X n 1/a
W, = 1 X[y > <> , iE{l,...,n}}. (r.19)
{ Xilly = = e

In words, W, consists of those sample points whose || - ||() norms exceed a

high threshold, projected onto the || - [|(s)-norm unit sphere S%. The choice
of £,, and the regular variation of X imply

1/a
E|W,| = nP <HX1||(T) > (Z) ) ~ Lpciry — 00, (1.20)
asn — 00, where ¢,y is as defined in (.8). Moreover, the set {x € E4 :
|x[[(-) = x} is a A-continuity set for all # > 0 due to the homogeneity of A.
Then, by a triangular-array version of the Strong Law of Large Numbers (see,
e.g., Hsu and Robbins, 1947), we have

|Wn| 13
141X, >
—A ({x e Eq:||x[|pm > 1} = (r.21)
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almost surely as n — oo.
We now define the empirical spectral measure on ST as

1
H, = W Z Ow, (r.22)
| TL| WEWn
with the convention that H,, is the zero measure when |WW,,| = 0. We now

establish the consistency of this empirical measure.

Proposition vr.1. Suppose X satisfies conditions (L18) and (L), with spectral
measure H on Sfl as in (7). Let W, be defined as in (1.19), and H,, as in
. Then for any Borel set S C Si_l that is a continuity set for H, we have

H,(S) — H(S), almostsurelyasn — oo.

Proof. The result follows from a triangular-array strong law of large numbers

applied to (r.11), (.12)), (r.20), and (.21). O

We next consider applying the k-clustering procedure from Definition
to the subsample IW,,. As indicated by Proposition |r.1, W, is an increasingly
accurate approximation of the spectral measure . When H is discrete with
finitely many atoms, clustering W, allows for accurate recovery of both the
locations and the masses of these atoms. The following corollary establishes the

consistency of the resulting estimators.

Corollary x.2. Suppose X is as in Proposition @ and the spectral measure H is
of the discrete form

k
H=73 pia,, (r.23)
i=1

with a; € Sflfl distinct and p; > 0, Zle p; = 1. Let W, be the extremal
subsample in (119), and let (A, €k n) be a k-clustering of W, as in Definition
B} with dissimilarity measure D. Define the estimated cluster proportions by

Cck
pfm = ||V{/n||’ if |[Wy| >0, omdpin = 0 otherwise. (r.24)
n

Then there exist bijections t, : {1,... k} = {1,..., k} such that

k

aﬂ'n (i),

— aj, pin(i),n — pi, forallie{1,... k},

almost surely asn — oo.
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Proof. The convergence afrn (7 A follows from Janflen and Wan, 2020},
Theorem 3.1, which establishes convergence in Hausdorft distance between Ay, ,,
and {ay, ..., a;}, along with Proposition see also Janflen and Wan, 2020,
Section 4.

To prove the convergence of pfrn(i)m, define

ra:=sup{r>0:B(a;,r),i=1,...,karedisjoint} > 0. (1.25)

Fixe € (0,74/3). Then, almost surely, for large enough n, the dissimilarities
satisfy Df(af (iym>@i) < €. By the triangle inequality (L.14), we obtain the
inclusions

BD(aZ-, 6) C BD(aﬁn(i)yn, 26) C BD(ai, 36)

Since the sets Bp(a, 3€) are disjoint, Definition ] implies:

BD(az-, 6) Nnw, C C:n(l),n C (BD(aZ-, 6) U n BD(aj, E)C) N w,.
J#

Consequently,

H,(Bp(a;,€)) < pfrn(i),n < H, (BD(aive) U m BD(aja 6>C) .
J#i

Both bounds converge almost surely to p; as n — oo by Proposition O]

Remark 1.3. In contrast to JanfSen and Wan, 2020, Proposition 3.3, we work
directly under the marginal standardization assumption in and omit the
empirical marginal transformations used in JanfSen and Wan, 2020, Eq. (3.5)
for simplicity. Nonetheless, our consistency result for order selection (Theorem
can be extended to the setting of JanfSen and Wan, 2020 by leveraging their

corvesponding results.

1.2 Literature Review

.21 Joint Sum-and-Max Limit

We now turn to the joint asymptotic behavior of the partial sum S,, and
the partial maximum M,,. The study of their joint distribution is of particular
interest, as it reveals the interplay between typical and extreme behaviors in a
sequence of random variables. Understanding the joint convergence provides a

more comprehensive probabilistic description than marginal analyses alone. For
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instance, in risk management or insurance mathematics, both the accumulated
claims (sum) and the largest claim (maximum) are of critical interest, and their
dependence structure may significantly impact modeling and inference.

Clearly, joint convergence in distribution implies the marginal convergence
of each component. The case where { X, },en are i.i.d. was thoroughly studied
by Chow and Teugels, 1978, They showed that, under suitable normalization,
the pair (S,,, M,,) converges jointly in distribution to a non-degenerate limit
(S, M) asn — oo if and only if each component converges marginally. More-
over, they established a striking result: S, and M,, are asymptotically indepen-
dent—meaning the limiting variables S and M are independent—unless the
common distribution F' of X, has a heavy tail on the positive side. Specifically,
dependence in the limit arises only when the tail 1 — F'(z) is regularly varying
with index —a for some a € (0, 2), ie., F' € D(®,) N D(«, p) withp > 0.

This resulthas a natural interpretation. When F'is light-tailed, the influence
of any individual X, is asymptotically negligible relative to the sum S,,, and the
maximum M, has little effect on the sum, leading to asymptotic independence.
In contrast, when £ is heavy-tailed, the sum S, is often dominated by the same
extreme values that define M,,, inducing a non-trivial dependence structure in
the limit.

Furthermore, Chow and Teugels, 1978|extended these results to the func-
tional setting. They proved that the process (S, (t), My, (t)):>0, when prop-
erly normalized, converges in distribution in a Skorokhod space to a joint limit
process (S(t), M (t))i>o0. In the heavy-tailed case, the processes S(t) and M (t)
exhibit dependence, reflecting the dominance of extreme values over entire time
intervals. Marginally, S(t) is an a-stable Lévy process and M () is an a-Fréchet
extremal process.

What happens when the sequence { X, } exhibits dependence? Under suit-
able weak dependence conditions—typically referred to as short-range depen-
dence—it is often found that the joint distribution of normalized (.S,,, M,,)
mimics the behavior seen in the i.i.d. case. For example, if { X, } is strongly mix-
ing and has finite variance, then .S, and M,, are asymptotically independent;
see Anderson and Turkman, 1991; Hsing, [199s|for precise formulations and re-
sults. This mirrors the i.i.d. scenario, where individual terms are asymptotically
negligible in the sum and do not influence the maximum significantly.

However, the situation becomes more nuanced when { X, } has a heavy
right tail, i.e., when 1 — F'(x) is regularly varying at infinity. In this regime, de-
pendence in { X, } canssignificantly alter the jointlimiting behavior of (S,,, M,,).
Specifically, a key issue arises when large observations from both tails cluster
in time: the dependence structure may induce cancellation effects in the par-
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tial sums, thereby invalidating the asymptotic dependence typically observed
in the ii.d. case. This type of phenomenon emphasizes that dependence not
only affects marginal distributions but also plays a crucial role in shaping joint
extremal behavior.

Despite these complications, when such cancellation is excluded—either
structurally or via specific assumptions—the normalized sum and maximum
often still exhibit joint convergence to the same class of limits as in the i.i.d.
setting. This was rigorously analyzed in Anderson and Turkman, 1995, where
conditions were given to preclude pathological cancellations while retaining the
heavy-tail-driven dependence structure.

More recently, Krizmani¢, 2020 extended this line of inquiry to functional
convergence. There, the joint process (5,(t), M,,(t));>0 was shown to con-
verge under conditions that effectively control the dependence among extreme
events. Specifically, the assumptions ensured that extreme values form clusters
which can be treated as asymptotically independent blocks. Moreover, by re-
quiring that extremes within a cluster have the same sign, the analysis rules out
potential cancellations that could otherwise obscure the heavy-tail effects.

There have been relatively few studies on the joint asymptotic distribution
of (S, M,,) under strong dependence in { X, }, often referred to as long-range
dependence. Notably, much of the existing theory focuses on the case where
{X,,} is a Gaussian sequence. For such processes, it has been observed that the
critical decay rate of the covariance function significantly influences the limiting
joint behavior of (S,,, M,,). Specifically, the rate (1/ log n) serves asa boundary
between asymptotic independence and dependence.

When the covariance satisfies Cov(X,, 11, X1) = 0o(1/logn), and under
some additional regularity conditions, it has been shown that S;, and M, are
asymptotically independent; see Ho and Hsing, 1996; Ho and McCormick,
1999, This mirrors the behavior found in weakly dependent or short-range
dependent sequences with light-tailed distributions. In contrast, when

lim Cov(X,41,X1)logn € (0, o0,

the partial sum S, and the maximum M,, become asymptotically dependent.
In this regime, the long-range memory embedded in the covariance structure
allows extreme values to influence the aggregate behavior of the sum, leading
to non-negligible contributions from the maximum to the sum even asymp-
totically. The limiting joint distribution of (.S,,, M,,) under such long-range
dependent Gaussian structures was rigorously studied in Ho and Hsing, 1996;
Ho and McCormick, 19995 McCormick and Qj, 2000\
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On the other hand, the joint sum-and-maximum limit theorem for long-
range dependent { X, } with heavy-tailed distributions has not, to the best of
our knowledge, been rigorously investigated. To clarify, itis important to define
precisely what is meant by long-range dependence in this context. Notably, the
threshold between short- and long-range dependence may differ depending on
whether we are analyzing the sum or the maximum of the sequence.

We adopt the phase-transition framework proposed by Samorodnitsky, 2016,
which characterizes long-range dependence through a qualitative shift in both
the normalization required for convergence and the nature of the limiting pro-
cess itself. Under this viewpoint, long-range dependence manifests when the
normalizing sequence or the limit diverges significantly from the i.i.d. setting,
indicating stronger memory in the process.

A key insight from this perspective is that long-range dependence tends to
appear earlier in the sum than in the maximum. For example, in the Gaussian
setting, long-range dependence for the sum S,, already emerges when the covari-
ance Cov (X, 11, X ) decaysasn™? with p € (0, 1). In contrast, the maximum
M, exhibits long-range dependence only when the covariance decays as slowly
as (1/log n)—the critical threshold discussed previously.

A similar phenomenon occurs in the heavy-tailed setting. The sum process
can be substantially influenced by the clustering of extremes even when the
dependence is relatively weak, while the maximum typically requires stronger
dependence—such as persistent clustering of high-magnitude events—to devi-
ate from classical extreme value behavior. In this work, we emphasize that the
term long-range dependence refers to a dependence structure that simultane-
ously affects the asymptotic behavior of both the sum and the maximum.

In particular, we focus on a class of stationary infinitely divisible processes
{ X, }nen with regularly varying tails, whose dependence structure arises from a
null-recurrent Markov chain characterized by a memory parameter 5 € (0, 1).
This modeling framework, originally introduced in Rosiriski and Samorodnit-
sky, 1996, has since attracted substantial attention due to its capacity to encap-
sulate long-range dependence both from the perspective of partial sums and

partial maxima.

1.2.2 On estimation and order selection for multivariate

extremes via clustering

Multivariate extreme value theory (EV'T) concerns the statistical behavior
of concurrent extreme events across multiple variables; see Beirlant et al., 2006;

de Haan and Ferreira, 2006, A common approach in this theory involves stan-
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dardizing the marginal distributions and examining the angular distribution of
extreme observations—those with large norms. Under the multivariate max-
imum domain of attraction assumption, this angular distribution converges
to a limit on the unit sphere, referred to as the spectral measure (or angular
measure).

Due to the inherently small sample size of extreme events, the challenge of
high dimensionality becomes particularly acute in multivariate EVT. As high-
lighted in the review article Engelke and Ivanovs, 2021, a central focus of recent
work has been on employing parsimonious modeling strategies to mitigate this
issue. A notable and interpretable example is the class of discrete spectral mea-
sures, where the angular distribution is concentrated on a finite set of directions.
Despite its simplicity, Fougeres et al., 2013/established that any extremal depen-
dence structure can be approximated arbitrarily well by such discrete spectral
measures. Furthermore, several classes of parametric models—including heavy-
tailed max-linear and sum-linear models (e.g., Einmahl et al., 2012)) and the more
recent transformed-linear model Cooley and Thibaud, 2019—are characterized
by having discrete spectral measures.

More recently, several authors have proposed applying clustering algorithms
on the unit sphere as a parsimonious summary of the angular structure of mul-
tivariate extremes. Einmahl et al., 2012/and Janflen and Wan, 2020 employed
the spherical k-means algorithm with cosine dissimilarity Dhillon and Modha,
2001/and explored its connection to estimating max-linear factor models. Fomi-
chov and Ivanovs, 2023 proposed the spherical k-principal component (k-PC)
clustering method, based on a refined cosine dissimilarity, and demonstrated its
ability to detect spectral mass concentrated on lower-dimensional faces of the
sphere. Medina et al., 2024 utilized the spectral clustering algorithm (Ng et al.,
2001) on a k-nearest neighbor graph constructed from angular components of
extreme samples, relating it to sum-linear models.

These works reveal a natural link between discrete spectral measures and
spherical clustering: each atom of the spectral measure can be viewed as a cluster
center, with extreme data points clustering around them. This intuition has
been formalized in Janflen and Wan, 20205 Medina et al., 2024, where consis-
tency results for recovering the spectral measure via clustering were established
(with Janf3en and Wan, 2020s results also covering the k-PC method of Fomi-
chov and Ivanovs, 2023). Since the underlying parameters of max-linear and
sum-linear factor models are directly determined by the spectral measure, con-
sistent estimation of the spectral measure directly enables consistent inference

for the model parameters.
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However, in all existing theoretical analyses connecting clustering algorithms
to discrete spectral measures, the number of atoms—equivalently, the number
of clusters (referred to as the order)—is assumed to be known. In practice, ad
hoc methods such as the elbow or scree plot are often used to guide order se-
lection (Fomichov and Ivanovs, |2023; Janflen and Wan, 2020, Medina et al.,
2024). These methods rely on visual inspection and lack rigorous theoretical
justification.

In this paper, we advance the study of clustering-based inference for multi-
variate extremes with discrete spectral measures. Our contributions are three-
fold: 1. We develop a novel method for selecting the number of clusters (or-
der), which is both theoretically consistent and practically simple to implement.
Our method builds on the classical silhouette method (Hruschka et al., 20045
Rousseeuw, 1987), with a key innovation: we introduce a penalty term to the
simplified average silhouette width to discourage both small cluster sizes and
small dissimilarities between cluster centers. This adjustment enhances sen-
sitivity to overestimation of the number of clusters and allows for consistent
estimation of the true order—even in models where likelihood-based criteria
are unavailable, such as max-linear factor models (Einmabhl et al., o125 Yuen
and Stoev, |2o14)). 2. We provide a large deviation-type result on the quality
of spectral measure estimation via clustering methods like spherical k-means
and k-PC. This offers a quantitative perspective on the convergence proper-
ties of clustering-based spectral inference under the multivariate extreme value
framework. 3. We describe how the discrete spectral measure estimation can
be directly translated into parameter estimates for heavy-tailed max-linear and
sum-linear factor models. Through simulations and real-data examples, we
demonstrate the performance of our order selection method and its application

to factor model inference.
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CHAPTER 2

THE SETUP

2.1 A Class of Long-Range Dependent Processes

Generated by Conservative Flows

We adopt a model essentially following that of Samorodnitsky and Wang,
2019. Let {Y), }nen, denote an irreducible, aperiodic, null-recurrent Markov
chain onZ, withstate space Ny := {0, 1, 2, .. .}. Thesample paths (z, 21, . . .)
of the chain belong to the measurable space (E, £) := (Z"°,C(Z"")), where
C(Z"0) is the cylindrical o-field. Let (7;);cz denote the unique invariant mea-
sure of the chain, normalized so that my = 1. For each initial state 7 € Z, let
P, be the law of the Markov chain started at Y = 7. Define a o-finite infinite
measure jcon (E, E) by

i€z
Let T : E — E be the left-shift operator given by T'(x¢, x1, 22,...) =
(w1, 22, ...). Then pis T-invariant, i.e., p o 77! = pu.
We consider the stationary process defined by

X, = / foT"(s)M(ds), neN, (2.1)
E

where f : /' — R is a measurable function and M is a homogeneous sym-
metric infinitely divisible random measure on (E, £), without a Gaussian com-
ponent. Specifically, the random measure M is characterized by the following:
the control measure is the o-finite measure i on (£, £), the local Gaussian
variance is identically zero: 0%(s) = 0, the local Lévy measure is constant:
p(s,-) = p(+), the local drift is zero: b(s) = 0, where p is a symmetric Lévy
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measure on (R, B(R)) satisfying p(—B) = p(B) forall B € B(R). Under

these assumptions, the distribution of M is characterized by:

E [ = exp {—u(A) [ (1= cos(y)) p(dy)}, 0 € R,

forany A € £ with j1(A) < oo. The resulting sequence { X, },en is stationary,
infinitely divisible, and has symmetric marginal distributions.
Letx := (%o, 1,...) denote an element of the space £, and define the

measurable set
Ay :={x€ E:xy=0},

which satisfies 11(Ag) = o = 1. For the integrand function f in (2.1)), we shall,
for simplicity and following the convention in Samorodnitsky and Wang, 2019,

assume that

f = 1A0'
Since M (A) and M (B) are independent for disjoint sets A and B, the de-

pendence structure of the process { X, } nen is entirely determined by the flow
of sets {7 Ag }nen, or equivalently, by the ergodic properties of the transfor-
mation 1. Define the wandering rate sequence by

Wy = [t (U TkA()) , nelN. (2.2)
k=1

This sequence is closely related to the first entrance time into Ay, defined as
Ya,(x) :=inf{n e N:z, =0}, xe€E.

It follows that w,, = >";_; Po(¢a, > k). Throughout this paper, we assume
that the tail distribution of the first entrance time into Ay after the Markov
chain makes its first departure from Ay satisfies

Py(pa, >n) € RV (=) forsomef € (0,1),

where RV, (—/3) denotes the class of regularly varying functions at infinity
with index — /3. Similarly, we use RV, to denote regular variation at zero. This
assumption on the tail of the entrance time distribution can equivalently be

expressed in terms of the wandering rate sequence

” n P >n
wn =Y Polpay > k) ~ OTOfOB )
k=1

S RVoo(l - 6)a (23)
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as established in Owada and Samorodnitsky, 2015, This assumption induces
long-range dependence in the process.

The marginal distribution of X, is governed by the Lévy measure p, which
consequently determines the domain of attraction of the process. We assume

that p satisfies the regular variation condition at infinity:
p((z,00)) € RVy(—a), forsomea > 0. (2.4)

Moreover, in the case 0 < o < 2, following the framework of Bai et al., 2020}
we impose an additional condition on the behavior of p near the origin:

p((r,0)) =0(x7) asxz — 0, forsomecay € (0,2). (2.5)

This ensures sufficient control over both the tails and the small jump behavior
of the Lévy measure.

In our setting, the process { X, }nen defined in admits a series repre-
sentation for each fixed n € N. For each n, let {U J(n) }jen be asequence of .i.d.
FE-valued random variables with common distribution i,, defined by

d:un (X) . 1{U::1 T_kAO}(X)
dp p(Upy TR Ag)

Due to the shift-invariance of y, i.e., u(T~") = u(-), and noting that by (2.2),
1 (UZ:1 T*’“AO) = w,,, it follows that foreach k = 1,...,nand j € N,

x e F.

—k
P (U e T7"4,) = wT—4) _ pldy) _ 1

Wn Wn, Wn

Let {¢,, },>1 be asequence of i.i.d. Rademacher random variables and {I',, },,>1
denote the ordered points of a unit-rate Poisson process on (0, 00). Hence, as

-----

d [ L
(Xk)b=1,..n = (Z e p° <2an> 1{U§">eT—kAo}> o (20)
k

=1,...,n

where p~ denotes the generalized inverse of the tail of the Lévy measure p de-

fined for y > 0 by

p*(y) :==1inf{z > 0: p((z,00)) < y}. (2.7)
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We review known results concerning the limit theorems for partial sums and
partial maxima of the process { X}, } nen defined in (2.1). The limiting processes
are closely connected to stable subordinators, for which we refer to Bertoin,
1999|for a comprehensive treatment. A subordinator is a non-decreasing Lévy
process characterized by stationary and independent increments and cadlag
sample paths. Itstarts at zero almost surely. A S-stable subordinator (S5(t))i>o
has a stability index § € (0,1). Foreacht > 0, the random variable Ss(t)
follows a one-sided /3-stable distribution supported on [0, 00), with Laplace
transform given by

E [e”\sﬁ(t)} = exp (—t)\ﬁ) , A>0.

The associated Lévy measure v/(dx) of Ss has the form

B
INUE)

The sample paths of Sy are strictly increasing and right-continuous almost

v(dr) = 2777 1,00y (2) da.

surely.
The inverse stable subordinator, also known as the Mittag-Leffler process,

is defined as
Mpg(t) := S§ (t) == inf{u > 0: Sg(u) > t}, t=>0.

This process is continuous and non-decreasing almost surely. Alternatively, the

right-continuous inverse can be used:
S’ (t) == inf{u > 0: Sz(u) > t}.

The closure of the range {S3(t) : t > 0} defines the S-stable regenerative set,
denoted by R 5. This random closed set takes values in §([0, 00)), the space of
closed subsets of [0, 00) equipped with the Fell topology; for background on
the theory of random sets, we refer to Molchanov, 200s|

Define the partial sum process by

[nt)
Sa(t) ==Y Xy, t>0. (2.8)
k=1

It is known that the limiting behavior of the normalized process (.S, (t)):>0
depends critically on the tail behavior of Xj.
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If X}, has finite variance, which is equivalent to the Lévy measure p satisty-

ing

/3ﬁphm)<cm, (2.9)
R
then the partial sum process satisfies the functional central limit theorem
1
m (Sn(t))tzo = Cﬁ (BH(t))tZU asn — OO7

in the space D|0, 00) equipped with the Skorokhod .J;-topology. Here, w;, is
the wandering rate defined in (2.2)), and By (t) denotes fractional Brownian
motion with Hurst index H = (1 + 3)/2, satisfying E[ By (t)?] = 21 /2,
t > 0; see Samorodnitsky, 2016, Theorem 9.4.7. The constant cg is given by

T(1+28)

= [ 0d) 55— pra g ESO L o)

where S5(1) denotes the §-stable subordinator evaluated at time 1.
Note that the normalization sequence (nw;, /%) € RV, (H) due to (2.3),

1/2 \which is the classical rate for thei.i.d. case. This

and thus grows faster than n
reflects the long-range dependence induced by the conservative flow

When the marginal distributions of X}, exhibit infinite variance, and the
Lévy measure p satisfies the regular variation condition for some av € (0, 2)
as in (2.4), along with the boundedness condition at the origin as in (2.3)), it
follows that the generalized inverse p* of the tail of the Lévy measure (defined
in (2.7)) satisfies p (y) € RVy(—1/cr). Under these assumptions, the normal-

ized partial sum process

1 1

(Sn(t) 10 = r2=3)

in the Skorokhod space D[0, 00) equipped with the .J; topology. The normal-
ization sequence belongs to the class RV, (ﬁ + %) The constant C, is

T a— —1/a
P (w; Hnw; ! Co ' (Yas(t))se: asn— oo,

given by
c. — {{F(l —a)}tcos™? (%) , ifa# 1, (10

2 ifa=1,

as shown in Owada and Samorodnitsky, 2015, Theorem s.1and Example 5.5 and
Bai et al., 2020l

To describe the limit process (Y, 5(t))i>0, where 0 < o < 2and 0 <
B < 1, let (2, F',P') be an auxiliary probability space independent of the
underlying one. Let (M3(t, w’))¢>0 denote a Mittag-LefHer process defined on
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(Y, F',P),and let v(dx) = (1 — B)a~Pdx be a measure on (0, 00). Then

the limiting process is given by

Km@yzl¥mmﬂ@«t—@%wﬂﬂhﬂdwh t>0,

where Z,, g is a symmetric a-stable (SaS) random measure on 2 x [0, 00) with
control measure m := P’ ® v, characterized by

E [exp (i0Za ()] = exp (—[0]"m(4)), 0€R,

forall A € 7' ® B([0, 00)) with m(A) < oo.

The process (Yo, 5())¢>0 is represented as a stochastic integral with respect
to an infinitely divisible random measure, and hence it admits a series represen-
tation as in (r.4). For any subordinator o, define its (right-continuous) inverse

process, also known as the local time process, by
L,(z):=inf{t >0:0(t) >z}, x>0. (2.12)

Let {¢;}jen beasequence of i.i.d. Rademacher random variables, and {I'; } jen
denote the ordered arrival times of a standard Poisson process on [0, 00), as
introduced earlier. Let {0} jen be a sequence of i.i.d. standard /-stable sub-
ordinators, and let {V; } jen be i.i.d. random variables on [0, 1] with common
distribution function P(V < z) = 2179,z € [0, 1]. All sequences above are
assumed mutually independent. Let L; := L, denote the local time process
of 0;. Now, define the following series representation of the limiting process:

S(t) = (201" &, T

Jj=1

;1/04 LJ ((t - VJ)+) , te [07 1]7 (2~I3)
where C,, is the constant defined in (2.11). The series in converges almost
surely; see Bai et al., 2020l Moreover, the process (Y, 4 (t))te[o,l], Y, s restricted
to time interval [0, 1], is equal in law to (S(t))sc[0,1], see Samorodnitsky, 2016,
Example 3.4.4.

Next, we review the limit theorems for the partial maximum process. For

eachn € N, define

M,(B) := ke{%%))(ﬂNXk’ B € G([0,00)), (2.14)
with the convention maxgy := —00, and where G([0, 00)) denotes the collec-

tion of open subsets of [0, 00) under the subspace topology.
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Suppose the marginal law of X, satisfies the regular variation condition (cf.
(2-4)) for some v > 0, and assume the additional regularity condition:
nPo(pa =n)
Sup —————~ < 0. 2.1
nek Po(ipa > 1) (5)
Under these assumptions, Samorodnitsky and Wang, 2019| established the fol-

lowing functional limit theorem:

o= (MaB) gy = os(B)acgiay 31— .

in the space of sup measures SM ([0, 00)) equipped with the sup vague topol-
ogy. In the above theorem, the normalization sequence p* (w;, ') € RV ((1—
8)/a).

To define the limiting random sup measure 7, g, consider a Poisson point
process on [0, 00) x [0, 00) x F([0, 00)) with mean measure au ™+ dy (1 —
B)vPdvPr 5> Where P is the law of the 3-stable regenerative set R5. Let
(U;, W;, F}) jen be a measurable enumeration of the points of the Poisson pro-

cess. Define the shifted regenerative sets:

Fp=W;+ Fp={W;+z:z€l;}, jeN

Then, for B € G(]0, 0)), the limit random sup measure is given by

Na,p(B) == ilelg (Z Ujl{te@}) . (2.16)

j=1

Itisknown thatif § € (0, 1/2], then 7, 3(B) follows an a-Fréchet distribution
marginally for each B. However, this property fails when 5 € (1/2, 1), indi-
cating a significant shift in the extremal structure of the process in the strongly
dependent regime.

If we restrict the random sup measure 7, g to a compact interval, say [0, 1],
we can utilize a particularly convenient measurable enumeration of the points in
the associated Poisson point process. Define the closed range of a subordinator

o as

Ry :={o(t): t >0}, (2.17)

where the closure is taken in [0, 00). Let {I'; } jen denote the arrival times of
a standard Poisson process on (0, 00), and let {0} jen be a sequence of i.i.d.
standard [-stable subordinators, independent of {I'; }. Let {V; }jen be an i.i.d.
sequence of random variables on [0, 1] with distribution function P(V < z) =
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2'77, independent of the previous sequences. Define R; := R, and let

R =V,+R;={V,+z:2€R;}, jeEN,

be the regenerative set R ; shifted by V. Note that since 0 € R ; almost surely,
we also have V; € R ;. We now define the random sup measure as

M(B) := sup (i Fj_l/al{teﬁj}) , Beg(0,1]).

teB j=1

Then the family (M (B)) gcg(jo.1]) has the same finite-dimensional distribu-
tions as (1)a,3(B)) peg(01))- 1 his equivalence in distribution arises from the
fact that the original Poisson point process (U;, W, F}) jen restricted to [0, 00) X
[0,1] x F([0,00)) can be interpreted as a Poisson point process (U;) ey on
[0, 00), marked by two independent sequences (V;)jen and (R;)jen, which
are i.i.d. random elements in [0, 1] and the space of regenerative sets, respec-
tively. Moreover, we may enumerate the points of the Poisson random measure
in decreasing order of the first coordinate (U;) jen, which leads to a natural
representation {Fj_l/ “Yien

Let us introduce the set

Is:= (R;N[0,1], 0#SCN,

jes

with the convention Iy := [0, 1]. Itisknown that the intersection I isnonempty
almost surely only if 1 < [S| < g, where {3 := max{k € N : k <
(1 — B)~'}; see Samorodnitsky and Wang, 2019, Corollary B.3. An alternative
but equivalent representation of M (B) that is useful in proofs is given by

M(B) = sup (1{15037&@} erl/a> ,  Beg(lo,1]), (2.18)

jes

where the supremum is almost surely attained at some (random) finite set
with | S| < £3; see Samorodnitsky and Wang, 2019,

2.2 Heavy-tailed Factor Models

As observed by Einmahl et al., 2012/and Janflen and Wan, 2020, k-clustering
algorithms can be naturally related to the estimation of certain factor-like mod-
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els frequently encountered in the analysis of multivariate extremes. Let

B =)y gy =|b1 o by,

where each b; = (by;,...,by)" € [0,00)% withj € {1,...,k}, are k
distinct, nonzero column vectors. We assume that no row or column of B is
identically zero (as such redundancy would allow reduction of d or k).

LetZ = (Zy,. .., Zx)" beavector of i.i.d. positive random variables with
regularly varying tails:

P(Zy >z)~27% asz— o0, forsomea € (0,00).

We consider two models linking X € R% to Z:

1. Sum-linear model:

T
k k

X =BZ-= (Zblij,...,Zbdej) . (2.19)
j=1

J=1

2. Max-linear model:

T
k k

X:BQZ: (\/ blij,...7 \/bde]‘) s (2.2.0)
j=1 Jj=1

where © denotes the matrix operation with summation replaced by the maxi-
mum. Due to the exchangeability of the components of Z, the distribution of
X under either model is identifiable only up to a permutation of the columns of
B; thatis, for any permutation mon {1, . . ., k}, the distribution of X remains
unchanged under B — B, = {bﬂ(l) e bﬂ(k)} .

Both models and are known to satisfy multivariate regular vari-

ation (MRV), with a discrete spectral measure of the form

Iyl b,
Pi= a; = , j=1,... k, (2.21)

! Z?:l HbZ”(T) ’ Hij(S)
where || - ||y and || - || (s) are norms used in the radial-angular decomposition.

This result follows from the “single large jump” heuristic: when || X{| . is large,
it is overwhelmingly due to a single large Z;; see, e.g., Einmahl et al., 20125 Med-
ina et al.,, 2024 These works often assume || - ||y = || - ||(s) and @ = 1, but

generalizations are straightforward.
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To ensure marginal standardization as in (.18)) or (r.9)), the following con-
straint must hold:

k
Zb%zl, 1=1,...,d. (2.22)
j=1

The models can be further extended by including a noise component. For
example, one may consider

X =BZ+e or X=(BOZ)Ve,

where e = (£1,...,24) " consists of i.i.d. positive noise terms. As long as the
tails of ; are lighter than those of Z;, the asymptotic properties remain valid;
see Einmahl et al., 2012/

The transformed-linear model of Cooley and Thibaud, 2o19/also falls within
this framework. Importantly, when fitting such models in practice, one typi-
cally focuses on the extremal subset of the data (e.g., those observations exceed-

ing a high threshold; see ), rather than the entire sample.
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CHAPTER 3

MAIN REsULTS

3.1 Theory

3.1 Joint Convergence of Processes with Finite Variance

For simplicity, we present our results on the unit interval [0, 1]; however,
they can be extended to the half-line [0, 00) without essential modifications.
Let G([0, 1]) denote the open subsets of [0, 1] with respect to the subspace
topology inherited from R.

Theorem 3.1. Let { X, }nen be a stationary process defined as in with f =
14, Define the partial sum process (Sy(t))icpo,1] 45 in and the partial
maximum process (M, (B)) peg(jo,1)) as in (2.14). Suppose the regular variation
conditions and hold for some 0 < B < 1 and o > 2, respectively. Ad-
ditionally, assume the finite variance condition and the regularity condition
are satisfied. Then, asn — 00, the following joint convergence holds:

?w}/z (Sn())rejoy | o (Br (1)) iepo
) (Mn(B))Beg([o,u) (naﬁ(B))Beg([O,l])
weakly in the product space D[0, 1] x SM|0, 1], where D]0, 1] is equipped with

the Skorokhod Jy-topology and S M |0, 1] with the sup-vague topology. Here, w,,
is defined by (-2, p* isas in (7)), cp is the constant in (2.10), By is a frac-

tional Brownian motion with Hurst parameter H = (1 + [3)/2 satisfying
E[By (t)%] = t*7 /2, and 1,  is the random sup measure defined in (2.16).

Furthermore, the processes By and 1), g appearing in the limit are indepen-
dent.

For simplicity, we do not treat the case @ = 2 when {X,,} has infinite
variance. This subtle case requires modifying the normalization n~tw!/2 by
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an additional slowly varying diverging factor. Aside from this adjustment, we
expect the limit theorem to remain qualitatively similar to Theorem[s.—specifi-
cally, the sum component should still converge to a fractional Brownian motion

in the limit.

3.2 Joint Convergence of Processes with Infinite Variance

Theorem 3.2. Let { X, }nen be a stationary process defined by with f =
14,. Suppose and hold for 0 < B < land (0 < o < 2, respectively.

Let (S,,(t))iepo,1] be defined in and M, (B)) eg(jo.1)) be defined in (2.14).
Assume that holds for some oy < 2 and holds. Then

(metem,n) N (M@V&(S@))te[a,u)

e (Mn(B)) Beg(o.n (M(B))eg(o.))

weakly in D[0, 1] x SM[0,1] asn — oo, where w,, as in and p* asin
(2.7), Co Zsasin , and the limit process S and random sup measure M are
asin and (2.18)).

The following proposition demonstrates a key contrast with Theorem
the limiting processes in Theorem 3.2are no longer independent.

Proposition 3.3. Let (S (t))c(o,1) bedefined asin (2.13), and let (M (B)) peg(jo.1)
be defined as in (2.18)). Then S(t) and M (B) are dependent.

3.3 Joint Convergence of Subordinators with Their Local

Times and Ranges

We present a result stating that the weak convergence of strictly increas-
ing subordinators implies the joint weak convergence of the subordinator, its
associated local time process, and its closed range. For our purposes, we also

incorporate an independent random shift into the framework.

Proposition 3.4. Let 0 and {0, }nen be subordinators such that o is strictly
increasing on [0, 00) almost surely. Let V' and {V, } nen be non-negative ran-
dom variables. Suppose that o, is independent of V,, for eachn € N, and o is
independent of V. Let L and Ly, denote the local time processes associated
with o and oy, respectively, and let R and R, denote their closed ranges (.17).
Assume that

on(1) S o(1) and V, BV asn— .
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Then, for anyt,y > 0, the following joint weak convergence holds:

(Vi + 00(8))sefoyg ; (V +0(s))sefoy
(Ln((z — Vn)+))x€[0,y} = | (L((z - V)+>)x€[0,y}
Vo +Ra V+R

in D[0,t] x D|[0,y] x §([0, 00)), where the function spaces are equipped with
the uniform and Fell topologies, respectively. In particular,

(o (3)) J (U(S))SGOt]
(Ln(z ))me 0yl | = (L(m))xe[o "
Rn

in D[0,t] x D|[0,y] x §([0,00)).

3.1.4 Order Selection via Penalized Silhouette

Suppose I is a multiset on Sflfl, andlet 1 < k < |WW| < oo. Consider a
k-clustering of W, denoted by A;, = {af,...,a;}and €, = {C4,...,Cy},
with respect to a dissimilarity measure D as defined in Deﬁnition Forw e W,
define

a(w) = D(w,A}), bw)= max D(w, A; \ {a}),
which respectively denote the dissimilarity of w to its closest center (i.c., the
center of the cluster to which it belongs) and to its second-closest center. When
k =1, we define b(w) := 1. The (simplified) average silbouette width (ASW)
(Hruschka et al., 2004) of the clustering is then given by

-~ = W) a(w)
S=SW;A;) = =
( |W| wzei:/V |W weWw W

A well-clustered dataset typically exhibits small a(w ) values relative to b(w)
for most w € W. Hence, S is commonly used to select the number of clusters
k by maximizing it over a range of values. However, when applying ASW to
multivariate extremes with a discrete spectral measure, we find that its perfor-
mance may be unsatisfactory. Specifically, ASW tends to become insensitive
when the number of clusters exceeds the true number £, i.e., the number of
atoms in the spectral measure. In particular, we observe two problematic be-
haviors of ASW: 1. It often treats a small fraction of isolated points as a separate

cluster. 2. It may split a single cluster center into multiple nearby centers.
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Motivated by these observations, we propose adding a penalty term that
discourages both small cluster sizes and small dissimilarities between cluster
centers. Recall that for a k-clustering (A}, &) of a multiset W, the set A} =
{al,...,a;} consists of the cluster centers, and €, = {C1, ..., Cy} denotes
the corresponding partition of W. Define

- [“R% , t
b= BOV; A4 &) = 1= ( R (é?é?ng(a“aﬂ)) ’
(3.2)

where ¢ > 0 is a tuning parameter. For & = 1, we define the second minimum
as 1. This penalty term discourages the formation of very small clusters and
cluster centers that are too close together. Both quantities lie in [0, 1], and

the penalty increases as either quantity decreases. The penalized ASW is then
defined as

Sy (W5 A, &)

e Gl (s
=S — P, = < mmk W1/k (1§I}l<1]1‘1§kD(a“aj ) ]W| Z

When ¢ = 0, we recover the original ASW: Sy = S. As t increases, the penalty

term P, grows and \S; decreases.
We now present a consistency result for using penalized ASW in selecting
the number of clusters in multivariate extreme models with discrete spectral

measures.

Theorem 3.5. Suppose X satisfies conditions (1.18) and (1.11), and bas a discrete

spectral measure of the form

k
H = Zpi5ai7
i=1

where a; € Si_l are distinct and p; > 0 with Zle p; = 1. Let W, denote the
extremal subsample as in (L19)), with £, — oo and (,,/n — 0. Let (Amn, Cmn)
denote an m-clustering of Wy, as in Definition o} with respect to dissimilarity
measure D from Deﬁm’tz'on@ Let v 4 be as defined in (1.25), and define

Pmin = lgugk Di- (3.3)
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Then for anyt € (0,1,), where

o = ln(l - 'rApmin)
0 hl(rAkpmin)

: (3.4)

we have for all m # k
liTrLgiOI.}f [St(Whi Akns €hn) — St(Was Amny Cn)] = Av - almost surely,

where Ay := (1 4kpmin)’ — (1 — 7apmin) > 0 fort € (0, 1o).

This theorem implies that if the tuning parameter ¢ is chosen within an
appropriate range, then with high probability as n — oo, the penalized ASW
is uniquely maximized at the true number of clusters £. In practice, we recom-
mend plotting the penalized ASW S; as a function of m € {1,2,...} overa
small range of ¢ values. Start with ¢ ~ 0 and gradually increase it. If spurious
clusters (e.g., tiny clusters or clusters with very close centers) exist, the curve will
typically bend or drop at the correct number of clusters. The “elbow” point in
this plot can then be selected as the optimal value k. As a quick illustration, we
follow a simulation setup of (d = 6, k = 6) below to simulate a max-linear fac-
tor model. Penalized ASW S; (vertical axis) for spherical k-means clustering is
plotted as a function of test order m (horizontal axis); see Figure[3.1]. Increasing
t to very large values is generally uninformative and not advised. Developing
a data-driven method to select ¢ remains an open and important direction for

future research.
Penalized ASW Curves for Simulated Data

0.9
Penalty Value
0.8 =0

t=0.01
—o- t=0.025
o t=0.05

Penalized ASW

0.6 t=0.075
t=0.1

2 3 4 5 6 7 8 9 10 11 12 13 14
Number of Clusters Selected

Figure 3.1: A simulation instance taken from d = 6, k = 6 setup.
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3.5 Large Deviation Analysis of Clustering-based Spectral
Estimation

In this section, we provide a quantitative refinement of the consistency
result stated in Corollary [1.2 by deriving large-deviation-type bounds. This
analysis builds on several key estimates developed in the proof of Theorem
and offers additional insight into the convergence behavior of the clustering-
based estimator.

As a preliminary step, we establish a Chernoff-Hoeffding-type bound for
the sum of a Binomial number of independent Bernoulli random variables.
This result may be of independent interest and plays a central role in the subse-
quent probabilistic analysis.

Lemma 3.6. Suppose B;, i € 7., are independent Bernoulli random variables
withP(B; = 1) = q1 € (0,1) and N is a Binomial(n, q2) random variable
which is independent of B;’s, n € L. Then we bave foranyr € (0,1 — q1),

P (;{ng > q + 7") < exp {an [e‘D(‘“””‘“) - 1”
< exp {ng, (e — 1)}, (35)

and for anyr € (0, q1),

P (;f i B, <q — r) <exp {nq2 [e*D(qu”‘“) — 1”
<exp{ng (e 1)}, (3.6)

where D(x || y) = x1n(z/y) + (1 = 2) In{(1 —2)/(1 = y)} ifw,y € (0, 1)
(the Kullback—Leibler divergence between two Bernoulli distributions). Here
>, Bi/m is understood as O when m = 0.

Proof. We only prove the and the proof of is similar. It follows from
a version of Hoeftding’s inequality for Binomial (Hoeffding, 1963, Equation
(2.1)) that for any m > 0,

P (1 i Bi>aq + 7“) < e~mPlartria)
m

i=1
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Hence

1 N n
=1

n
m

o

:7{% {e—D(QH-THCIl) _ 1} + 1]”
exp {nqg [Q—D(qﬁrllth) _ 1}} 7

where in the last inequality we have used the inequality z + 1 < exp(x), x €

IN

R. To obtain the second inequality in (3.5)), it suffices to note that in view of
Hoeftding, 1963, Equation (2.3), one has D(q1 + 7 || ¢1) > 2r2. ]

Remark 3.1. Note that when r is small, this simplified bound is approximately
exp(—2nqar?), a form identical to the usual Hoeffding’s inequality (recall ngs
is the effective sample size bere).

Let H = % | pi6a, beasdefined in (23). Let (Ag 1, €. ), where Ay, =
(af,,...,a;,)and €, = {Cfn, ce Cﬁn}, form a k-clustering of the ex-
tremal subsample W), as in (r.19). By Corollary there exists permutation 7,
such that afn(i)jn and pﬁn(i)’n in (1.24) are consistent estimators for a; and p;, re-
spectively. Note that an accurate estimation can be interpreted as that for small
z,y > 0, D(al, ,a;) < xand [pk;  —pi| < yforali € {1,... k}.

Now consider the complement “large deviation” event

E(z,y) =

™ 2

{‘aﬁ(i),n —a; > l’} U {’pﬁ(i),n —pil > Z/} - (37)

-

1

where theintersection N isoverall permutations 7 : {1,..., k} — {1,... k}.
We have the following result.

Proposition 3.7. Suppose X satisfying and has a spectral measure of

the following form H = Sk Di0a,, where a;’s are distinct points on Si_l, and

pi > 0,p1+- - -+pr = L. Let W, denote the extremal subsample as in (1.19)), and

a k-clustering of W, formed by (Ak,n =(af,,...,a},), Cn = {Cfn, . ,C,’j,n})
as defined in Definition Q with respect to a dissimilarity measure D defined in
Definition|l} Let E(,y) be the event defined inls. 7} Then for any x,y > 0,

lim sup

— - P(E(z,y)) < exp (-2A(z,9)°) ~ 1
n (r)tn

where

Az, y) = max{y/cx, pmint/(k + )}, x < €0,y < CkPmin€o/(k + €o),
| Pmin€o/ (k + €0), otherwise,
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where eg == sup{e > 0:1r4 > e+ rh(e)}yand ¢, = (V2 —1).

Proof. 1€ Hu(Bp(ay,€)) = [W, N Bp(a, €)|/|Wa| > p; — 6 foralli €

{1,...,k}, by Lemmas and as long as holds, there exists a
permutation 7 : {1,..., k} — {1,... &k}, such that D(aﬁ(i)m, a;) < € and
Py — pil < cpdforalli € {1,...k}. Hence under (A.28), whenever
€ <zorcyd <y,

P(E(z,y)) (

<r(

where H,, is the empirical spectral measure in . Observe that for any i €

(1,.... k),

k
L_J { Ar(i) ai) > 6/} U {’pfr(i),n — il > Ck(5}>
{H,(Bp(aj,€)) < p; — 5}) :

IS

-----

(17l (HX3/ 1Kl € Bolans o) 1Kl = (/0)}) )

where NV and B;’s are as in Lemma with respective parameters ¢; and go
given as follows:

P (Xy/[Xulls) € Bo(@i, €), [ Xilley > (n/6a)V*)
P (Xl = (n/) V)

=P (3.8)

q1 = q1(i7€7n) =

asn — 00, where the last convergence holds due to and the fact that
Bp(ay, €)’s are disjoint under € < 74, and

@ = ax(n) = P (IXilley > (n/€)"%) ~ ciy(n/tn) — (39)

asn — o0o. Now applying Lemma we have

P (U{Hn(BD(ai,e)) < pi — 5}) < Z +(Bp(a;, €)) < p; —0)

k exp (nqg(n) {exp{—252} - 1]) :
(3.10)

IN
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Therefore in view of also (3.8) and (3.9)), we have

limnsup gl InP(E(z,y)) < ¢ {exp(—252) — 1} .
The next step is to determine the largest value of ¢ as possible. Recall ¢g =
sup{¢’ > 0 : 74 > ¢ 4 7l (¢)}. Then when ¢’ € (0, &), for all € small
enough we have r4 > €' + 2 (e) + 7 (€), namely, holds. Hence by
taking € | 0in (A.2s]), we get from €’ < ¢, the restriction § < pmin€o/(k + €o).
Similarly, from €’ < x we get the restriction 6 < ppix/(k + x). In addition,
from ;6 < y we get the restriction § < y/cy. At least one of the last two
conditions should be satisfied. Therefore,

0 < pmiHEO/(k + 60)7 if x > €0,
0 < Pmin€o/(k + €0), ifz < €,y > ckPminco/(k + €0),
d < max{y/ck, Pmint/(k + )}, ifr < €,y < CkPminco/(k + €0).

The result then follows. ]

Remark 3.2. The large-deviation-type estimates in Proposition E]Jbow that the
probability P(E(x,y)) decays exponentially in the expected extremal subsample
sizge ¢ ln. Notably, the structure of the deviation function A(x,y) reveals im-
portant gualitative insights: the difficulty of the clustering-based estimation—as
reflected in the rate of decay of these error probabilities—depends negatively on
Pmin and T 4 (since €y increases with v 4 ), and positively on the number of clusters
k. In other words, the estimation becomes more accurate when the true discrete
spectral measure has fewer atoms, the atoms are morve well-separated under the

dissimilarity measure D, or the mass associated with each atom is relatively large.

We also have the following result which states that in the context of Theo-
rem the probability of false order election tends to 0 exponentially fast.

Proposition 3.8. Suppose X satisfying and has a discrete spectral
measure of the form H = SF_| p;i0a,, k € 7y where a;’s are distinct points on
S andp; > 0,py + - - -+ p, = 1. Let W, denote the extremal subsample as
in (L19), and (A, Cn), M € Loy, form an m-clustering of W, as defined
in Definition[p|with respect to a dissimilarity measure D defined in Definitionly
Let r 4 be defined as in (L25)), Din be defined as in and ty be defined as in
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(-4). Then fixt € (0, o),

P ({S;(Wn; Apps Chn) < Se(Wins Ay, € for allm # k})
C(T)gn

lim sup
2
< exp (—204(K, pmin, 74)%) — 1

where 0y(k, Pmin, Ta) > 0 s the solution § of the equation [k(puwin — 0)7 4]t —
ko = (K*0)" V ([1 = (pmin — 0)ra]1{k > 2}).

Proof. Writing S¢(m) = Sy (Wy; A s, € ), we have

P ({Si(k) < Si(m), m # k}) < P({Sy(k) < Si(m), m # k} N En(c, 5))
+P (B, (e, 0)°),

where E,(€,6) is in (A31). Combining the inequalities regarding S in the
proof of Proposition and the inequalities regarding P in the proof of
Proposition the event in the first probability on the right-hand side above
is empty as long as & > 0 satisfies

[k(Dmin — 0)7a]" — k6 > (E20)' V ([1 = (pmin — 0)7a]1{k > 2})

and e is sufficiently small (depending on d). Note that the inequality above holds
when ¢ is sufficiently small due to 0 < ¢ < to = In(1—74pmin)/ (7 4kPmin ),
and its left-hand side is decreasing (to negative values) and its right-hand side
is increasing with as § increases to Puin. Then forany d € (0, 6,(k, pmin, 7'4)),

we have in view of (3.9)) and (3.10)) that

. 1
lim
n C(r)én

InP ({Sy(k) < Sy(m), m # k}) < exp(—26%) — 1.

The proof is concluded by letting 6 1 6;(k, Pmin, 74)- O

3.2 Methods

3.2.0  Order Selection and Coefficient Estimation

Due to the discrete nature of the spectral measure, the likelihood functions
corresponding to the models (2.19)) and are not accessible; see, e.g., Ein-
mahl et al,, 20125 Yuen and Stoev, 2014, In particular, even outside the frame-

work of extremes, the max-linear model lacks a smooth density, rendering
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standard likelihood-based model selection tools, such as information criteria,
inapplicable.

Nevertheless, these factor-based models (including and (2.20))) possess
a discrete spectral measure of the form (.23). Therefore, the penalized ASW
criterion offers a viable alternative for selecting the number of factors k, with
consistency established in Theorem

From this point on, we assume that the order £ isknown. A central question
is whether the spectral measure—estimated via k-clustering—can be translated
into an estimate of the coefficient matrix B = (by, ..., by) in the sum-linear
or max-linear model, while satisfying the marginal constraint .

Combining the representation for the spectral measure with the con-
straint (2.22)), we obtain a system of kd + d — 1 equations for the kd unknowns
in B: specifically, (k — 1) equations for the weights p; (due to their sum being
one), (d — 1)k equations from the unit-norm conditions on the a;, and d equa-
tions from . Hence, the system is typically overdetermined. As a result,
when p; and a; are estimated via clustering, the system may not admit an exact
solution, although the relations are asymptotically satisfied (see Corollary|r.2)).

To address this, we propose a simple and consistent method to recover an
estimate of B that satisfies the marginal constraint (2.22)). Observe that for
both models and (2.20), the exponent measure A concentrates on rays
{tb; : t > 0},j = 1,..., k. Each spectral mass pointa; = b;/||bj||(s) on
the || - ||(s)-norm sphere corresponds to the point b; /||b; ||« = a;/||a;||« on
the a-norm sphere. An appealing property of using the a-norm is the following

identity, derived from (2.22)):

k d k
>_IIbjlle = >_ > b5 =d.
j=1 i=1j=1
Thus, under the choice || - |-y = || - || in (2.21), we obtain the direct relation:
p;d = ||b;]|%, which leads to the expression:
o a; .
b; = (p;d)"/* - 2, j=1,....k (3.1)
2]

In particular, if the angular norm || - [|(5) is chosen as the a-norm (i.e., || - [|(s) =
| - ||la), then ||a;||o = 1 and the expression above simplifies accordingly.

This suggests a natural procedure: estimate p; and a; via k-clustering on
the a-norm sphere, plug them into to obtain preliminary estimates Bj,
and collect them into the matrix B = (by,...,bg). Let B = (r],....r])7,

T ; B i i
where r; denotes the ith row of B. To enforce the marginal constraint (2.22)),
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we rescale each row to unit a-norm:
r;

=,
[rilfo

r; Z:1,7d

The resulting matrix B , with rows fl-T, satisfies by construction.

Finally, by Corollary and a continuous mapping argument, this proce-
dure yields a consistent estimator of the coefficient matrix I3, up to permutation
of the columns.

3.3 Simulations

In this section, we present simulation studies to illustrate the performance
of the penalized ASW criterion introduced in Section Following the setup
of Janflen and Wan, 2020, Section 4, we simulate data from the max-linear
factor model , with randomly generated coefficient matrices 3. The latent
factors Z; are taken to be i.i.d. standard Fréchet random variables with shape
parameter o = 1.

We consider four different combinations of data dimension d and true num-
ber of factors k. For each combination, the coefficient vectors b; are generated
according to the procedures described below. Due to the standardization condi-
tion (2.22)), it suffices to specify by, ..., byx_1. Let {U;} denote i.i.d. uniform
random variables on [0, 1]:

® d:4,]€:2 b1 = (Ul,UQ,U3,U4>T/2.
cd=4,k=06:

by = (U1,Us, U3, Us)" /3, by = (Us,0,Us,0)" /3,
b3 - (07 U770a U8)T/3a b4 == (UQ;U107070)T/3a
b5 - (07 07 U117 Ul2)T/3‘

*d=6,k=6:

b, = (Uy,...,Us)"/3, by = (Uz,0,Us,0,Uy,0)" /3,
bs = (0,Us0,0,Uy1,0,U2) " /3, by = (Usz,Uws, U5,0,0,0)" /3,
b5 = (07 07 07 U137 U147 U15>T/3-
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* d=10,k = 6:

by = (U,...,Uw) /2, by = (Un,U,0,...,0)"/2,
0707U137U14707--'70>T/27
07"' aO7U157U16707"' 7O)T/27

For each of the above configurations, we generate 100 independent random
coefficient matrices B. From each simulated model, we draw a dataset of size
10,000. We then extract the 1,000 observations with the largest £, norms, project
them onto the /5 unit sphere (i.e., weset || - |-y = || - |(s) = || - ||2), and apply
spherical clustering and penalized ASW analysis on this extremal subsample.

For clustering, we use the spherical k-means algorithm from the R package
skmeans (Hornik et al., 2012)), and the k-principal directions clustering (k-
PC) algorithm using the implementation from the supplementary material of
Fomichov and Ivanovs, 2023!

Figures[3.2|through 35| visualize the results for each (d, k) setup. Each ma-
trix plot corresponds to one setup and consists of 100 columns (one for each
simulation). The upper half of each plot shows results for spherical k-means;
the lower half shows those for £-PC. Each row within these halves corresponds
to a different value of the penalty parameter t. A cell’s color indicates the esti-
mated number of clusters m that maximized the penalized ASW: White indi-
cates correct order identification (m = k). Red shades indicate underestima-
tion (m < k). Blue shades indicate overestimation (m > k). A bar plot to
the right of each matrix summarizes the proportion of simulations (out of 100)
where the estimated order matched the true order.

Across all setups, we observe that the unpenalized ASW (¢ = 0) tends to
overestimate the number of factors—sometimes substantially. As the penalty
parameter ¢ increases, this overestimation bias is significantly corrected, and the
success rate of correct order identification improves markedly over a range of
moderate ¢ values. It is important to note that the success rate shown for each ¢
is aggregated over all 100 datasets using that fixed t. As discussed in Section
further improvements may be achieved by adaptively selecting ¢ per dataset
using visual inspection of the ASW curves.

We also find that the k-PC method generally outperforms spherical k-means
in terms of order identification accuracy. One particularly challenging scenario
is the (d = 4, k = 6) configuration, where the cluster centers often lie in close
proximity, making the estimation problem more difficult.
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Figure 3.2: Simulation result visualization for the setup d = 4, k = 2.
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Figure 3.3: Simulation result visualization for the setup d = 4,k = 6.
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Figure 3.4: Simulation result visualization for the setup d = 6,k = 6.
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Figure 3.5: Simulation result visualization for the setup d = 10,k = 6.
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CHAPTER 4

APPLICATIONS

We demonstrate the application of the penalized ASW method, introduced
in Section for selecting the number of factors k, as well as the conversion of
clustering-based spectral estimates into factor coefficient matrices, as discussed
in Section[3.2.1} The analysis is conducted using the spherical k-principal direc-
tions clustering (k-PC) algorithm, where the dissimilarity measure D is defined
asin (L.16).

We focus exclusively on the k-PC method for two main reasons. First, the
simulation results in Section [3.3| suggest that penalized ASW combined with
Ek-PC yields superior empirical performance in identifying the correct order
k. Second, as argued in Fomichov and Ivanovs, 2023, the k-PC algorithm is
particularly well-suited for detecting groups of concomitant extremes—that
is, subsets of variables that tend to become simultaneously large. This prop-
erty allows for more meaningful comparisons between the selected order £ and
external or domain-specific knowledge about the underlying data structure.

Let the observed dataset be denoted by {x;}!" ;, where each observation
X; = (i1, ..., Tia)| € [0,00)% Asa preprocessing step, we marginally stan-
dardize the data to roughly satisfy the standardization condition with tail
index @ = 2. Specifically, for each margin j € {1,...,d}, we define the
empirical distribution function as

n

A 1
Fj(x) = > Hay <z},
=1

which ensures that £(z;;) < 1 for all 7. The standardized data is then given
by the transformed vectors {X; }!"_,, where

Tij = {— log [Z:—}(x”)] }_1/2.
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If ﬁ’j were the true marginal CDF, then Z;; would approximately follow a stan-
dard Fréchet distribution with tail index @ = 2.

To identify clusters of extremal behavior, we adopt a procedure analogous
to that used in the simulation study of Section We select the top 10% of
the transformed observations {X; } with the largest /5-norms. This extremal
subsample is then projected onto the fy-unit sphere. That is, we work with
norms || - [y = || - |ls) = || - [|2> ensuring that subsequent clustering is
performed on the angular component of the extreme observations.

This setup enables us to apply the penalized ASW procedure to estimate
the number of extremal dependence components and, via the methodology in
Section recover an interpretable factor representation of the multivariate

extremes.

4.1 Air Pollution Data

We illustrate our methodology using an air pollution dataset from the R
package texmex (Southworth et al., 2024)), originally published as supplemen-
tary material to Heffernan and Tawn, 2004, The dataset contains daily mea-
surements of air pollutant levels recorded in Leeds, U.K., city center between
1994 and 1998. The data are separated into two subsets based on seasonality:
the summer dataset includes 578 observations recorded from April to July, the
winter dataset includes 532 observations recorded from November to February.

Each observation consists of the daily maximum concentrations of five pol-
lutants: Ozone, NOz2, NO, SO2, and PMro. These data were previously ana-
lyzed in Janf3en and Wan, 2020, where spherical k-means clustering was applied
to the analysis of multivariate extremes. In our analysis, we apply the spherical
k-PC clustering algorithm from Fomichov and Ivanovs, 2023, in conjunction
with the penalized ASW criterion introduced in Section The extremal sub-
sample is constructed by selecting the top 10% of transformed data (as described
in the beginning of this section) with respect to their £,-norms and projecting
them onto the ¢5-unit sphere.

Figures |4.1and |4.3| display the penalized ASW values as functions of the
number of clusters m, with curves corresponding to various values of the tuning
parameter ¢. Following the visual selection procedure discussed in Section
we identify the optimal order as & = 5 for the summer data and £ = 3 for
the winter data. For the summer data, & = 4 may also be a reasonable choice,
suggesting mild ambiguity. These results are consistent with, though slightly
different from, the order selections reported in Janflen and Wan, 2020, where
k = 5 was chosen for the summer data and & = 4 for the winter data using
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elbow plot diagnostics (see Janflen and Wan, Fig. 1). It is worth noting
that & = 3 for the winter data also appears plausible from their elbow plots.
One explanation for the slight discrepancy lies in the clustering algorithm used:
we employ the spherical £-PC method, whereas Janflen and Wan, applied
spherical k-means.

To further interpret the clustering results, we estimate the factor coefficient
matrix BB based on the selected order £, using the procedure from Section
with || - ||y = || - [ls) = || - ||2 and tail index ov = 2. The resulting coefficient
matrices are visualized in Figures and

For the summer data (Figure , the estimated factor directions exhibit
sharp alignment with coordinate axes, suggesting a near-independence struc-
ture in the tail behavior of the five pollutants. This pattern aligns with the
concept of asymptotic independence, which is common in environmental data
and discussed in Beirlant et al., Chapter 8.

In contrast, for the winter data (Figure , one of the estimated factors
clearly captures a cluster involving NO, NOz2, and PMio, indicating asymp-
totic dependence among these three pollutants. This observation is consistent
with the findings of Heffernan and Tawn, who also reported dependence
between these variables. Thus, the identified factor structure for the winter
dataset provides empirical support for the selected order k& = 3, which groups

these pollutants into a common extremal component.
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Figure 4.3: Penalized ASW curves
for winter air pollution data (top

10% norms).

4.2 River Discharge Data

The river discharge dataset comprises 16,386 daily discharge records from 13
monitoring stations across North America, obtained from the Global Runoff
Data Centre German Federal Institute of Hydrology, These stations, listed
in Table |4.1 and mapped in Fig. are situated along five major rivers: the

Figure 4.4: Estimated B' for
winter pollution data (top 10%
norms).

Willamette, Mississippi, Williamson, Hudson, and Broad Rivers.

Table 4.1: Clustering of 13 river discharge stations based on concomitant Ex-

tremes.

Station Name
SALEM, OR
PORTLAND, OR
HARRISBURG, OR
ST.PAUL, MN
AITKIN, MN
THEBES, IL
CHESTER, IL
CHILOQUIN, OR
GREEN ISLAND, NY
FORT EDWARD, NY
NORTH CREEK, NY
NEAR CARLISLE, SC
NEAR BELL, GA

River Name
WILLAMETTE RIVER
WILLAMETTE RIVER
WILLAMETTE RIVER

MISSISSIPPI RIVER
MISSISSIPPI RIVER
MISSISSIPPI RIVER
MISSISSIPPI RIVER
WILLIAMSON RIVER
HUDSON RIVER
HUDSON RIVER
HUDSON RIVER
BROAD RIVER
BROAD RIVER

Factor (Cluster) Index

4

W W L A RGN\~ = AN
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Figure 4.5: Geographical locations of the 13 river discharge stations.

Following the approach described in Section [3.2.1}, Fig. [4.6|displays the pe-
nalized average silhouette width (ASW) curves, from which an optimal factor
order of 6 is suggested. The corresponding factor matrix I, derived from spec-
tral estimation using || - [[s) = || - ||y = | - ||z and @ = 2, is visualized
in Fig. For each row of B, we identify the factor index (equivalently, the
cluster index in Fig. corresponding to the maximum value. These indices
are reported in the final column of Table[4.1} providing a rough categorization
of stations based on groups of concomitant extremes.

The clustering results show strong agreement with geographical intuition:
stations along the same river are generally grouped together. A notable excep-
tion involves the four stations on the Mississippi River, which are split into two
distinct clusters. This division is geographically coherent, as the stations fall into
two widely separated regions—Minnesota (MN) and Illinois (IL)—justifying
the observed partition.
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Figure 4.6: Penalized ASW curves
for river discharge data (top 10%
norms).

Figure 4.7: Estimated B for river
discharge data (top 10% norms).
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CHAPTER §

CONCLUSION AND FUTURE
WORK

In this thesis, we established joint sum-and-max limit theorems for a class of
stationary infinitely divisible processes exhibiting both long-range dependence
and heavy tails. Our results reveal a striking dichotomy depending on whether
the marginal variance is finite or infinite. In the finite-variance case, we proved
that the normalized partial sum and maximum processes converge jointly to
a pair of asymptotically independent limit objects: a fractional Brownian mo-
tion and a random sup measure. In contrast, in the infinite-variance case, we
demonstrated the emergence of asymptotic dependence in the limit, where the
sum converges to a symmetric a-stable process and the maximum to a random
sup measure, with the dependence structure intricately captured via the local
time and range of a stable subordinator.

Our methodology includes a novel joint convergence result for subordina-
tors, their local times, and ranges, which we expect to be of independent inter-
est. This technical development was essential to describing the dependent limit
structure in the infinite-variance regime.

Looking ahead, several extensions of this work are worth exploring. A nat-
ural question is whether similar joint convergence results hold in more general
dependence frameworks beyond the null-recurrent Markov chain model. More-
over, understanding the impact of different normalization schemes and gener-
alizing our framework to include non-symmetric or non-stationary settings are
promising directions for future investigation.

Following recent developments in the literature, we investigate the estima-
tion of multivariate extreme value models with a discrete spectral measure using
spherical clustering techniques. Our primary contribution is a novel method for
selecting the model order—that is, the number of clusters—that consistently
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recovers the true number of spectral atoms. This is achieved by augmenting
the widely used simplified average silhouette width (ASW) with an additional
penalty term that discourages small cluster sizes and small dissimilarities be-
tween cluster centers. As a by-product, our approach also facilitates order selec-
tion in max-linear factor models. The proposed method is simple to implement
and demonstrates strong empirical performance.

In addition, we carry out a large-deviation-type analysis for the estimation
of discrete spectral measures via clustering. This analysis sheds light on the con-
vergence behavior of clustering-based estimators in the multivariate extremes
setting. We further illustrate how these estimators can be employed for param-
eter inference in heavy-tailed factor models.

Finally, we outline several directions for future research. First, the tuning pa-
rameter ¢ in the penalty term is currently selected through visual inspection.
Developing a data-driven approach for selecting t would be valuable and may re-
quire a deeper understanding of the consistency result in Theorem 3.5} Second,
alternative clustering evaluation criteria to ASW, such as the cross-validation
method based on algorithmic instability proposed by Wang, 2010, could ofter
promising alternatives in the context of multivariate extremes. Third, it remains
an open problem to determine an appropriate threshold /,, in when clus-
tering extreme observations; the methodology developed in Wan and Davis,
2019/ may offer useful insights here.
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APPENDIX A

PROOFS

A.1 Finite Variance Case

Proof of Theorem[s.1 Observe that tightness in the product space follows if
tightness holds in each marginal space. The weak convergence—and hence tight-
ness—of n~twl/2S,, in D|0, 1] follows from Samorodnitsky, 2016, Theorem
9.4.7. On the other hand, the normalized empirical sup measure (p* (w;,!)) "t M,
is automatically tight since the space SM [0, 1] is compact (Vervaat, 1988, Theo-
rem 4.2). By Proposition[A.¢land Remark[A.1] it remains to verify convergence
of the finite-dimensional distributions (fdd) in [0, 1] x Z, where Z denotes the
collection of all non-empty open subintervals of [0, 1], in the sense of Definition
(4

Fix m > 0. As in Samorodnitsky and Wang, 2019} Section s, each X, in
admits the decomposition

X=X+ x2)

where

, M

X0, = [ FoTHs) MP(ds), j=1,2,
E

and MY and M2 are two independent homogeneous symmetric infinitely
divisible random measures. The Lévy measure of M is p restricted to {|z| <
m}, while the Lévy measure of M2 is p restricted to {|x| > m}. Define for
=12
‘ [nt] '
SO =Y X7, telo1]
k=1

and

M) (B) := max X\

m kenBAN M’

B e g([0,1]),
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with the convention that max () := —oco. By Samorodnitsky, 2016, Theorem

9.4.7, we have

fdd

—1, 1/2 q(1
n~twl/ Sn}n — cgmBm, asn — 00,

in [0, 1], where

['(1+425) _ m
- (S 01) [ ot
By a slight extension of Samorodnitsky and Wang, 2019, Theorem s.1 to accom-

modate the more general regular variation assumption on p (see also the proof

of Theorem , we obtain

(p%(wgl))_lM,(l’Q,)n ELLN Na,, 1nZ, asn — 00.
Note that the limit law above is independent of the truncation parameter m,
which reflects the fact that the extremal behavior is determined solely by the tail
behavior of the joint distribution of {X| ,527)”} k=1,....n» which in turn depends
only on the tail of the Lévy measure p. Since ST(Ll)n and Mg)n are based on

independent components, we conclude:

( n—twl/2SH fdd, cgmBr
(p

, asn — 00,
“(wy, )M, Mo, )

in [0, 1] XZ, where By and 1), g are independent. Since cg ,,, — cgasm — 00,

we obtain

B B
(CB,m H) ﬂ) (Cﬁ H) , in[0,1] X Z, asm — oc.
Na,p No,B

The desired convergence in fdd now follows by a standard triangular approxi-
mation argument (see, e.g., Billingsley, 1999, Theorem 3.2), once we verify the
following negligibility conditions for any ¢ € [0, 1], B € G([0,1]),and € > 0:

lim limsupP (n_lw}/Q ‘Sn(t) — S,(f)n(t)’ > e) =0 (A.x)

m—o0 n—oo

and

lim limsup P ((p* (w, ")) |Ma(B) = MZ,(B)| > €) =0. (A2)

n n,m
m— 00 n—oo ’
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To verify (A.1), observe that by Samorodnitsky, 2016, Theorem 9.4.7 again,

w2 (S,(8) — SO,(0) = n k252, () L% (5 — cam) Bu(t),

n7 n7
asn — 0o, from which follows because ¢g ., — c5as m — 0.
For (A.2)), we assume n is large enough that nB NN # (). For any real
sequences (o )r_; and (5;)f_;, we have:

< max |ﬁk|

max (o + ;) — max g max.

1<k<n 1<k<n

Hence,

limsup P (o (w, "))~ [Ma(B) = ME,(B)] > ¢)

n—o0

§limsup]P’< max \X,SM > p‘_(wgl)e> .

n—00 kenBNN

By stationarity and a union bound:

< limsupn - P(‘le‘ > p"(w _1)6) =0,

n—oo

since p* (w,; ') € RV ((1 — 3)/cr) and x4 L ) has tails satisfying
P (‘Xl(lgl‘ > x) =0 (e"mog’”) , T — 00,

for some d > 0, as is known for infinitely divisible distributions with bounded
Lévy measures (Sato, 1999, Theorem 26.1). [

A.2 Infinite Variance Case

We now proceed to introduce a Poissonization construction that plays a
central role in the proof. For each j,n € N, define the set of scaled entrance
times, starting from a random point U }n), as

—~ k
Rjn = { k=1,...,n, U](n) € T_kAO}.

Due to the construction of U ](n), the set R ,, is almost surely non-empty, with
(random) cardinality | R ,,|. Thus, we can write

Rim = Vin + {m5m(0), Tjn(1), ..., Tjm(IRjml = 1)} € n7H{1,... 0},
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where
Vim = imin{k: 1,...,n: U;n) ET_kAO} (A3)

is the scaled first entrance time, and 75, (0) 1= 0 < 75,,(1) < -+ < 75 (| Rjm|—
1) are the successive scaled entrance times relative to V..

In view of the Markov chain construction, the sequence {n7; () }; forms
a N-valued renewal process (i.e., a random walk with i.i.d. steps in N) starting
ati = 0 and stopped ati = |7,€jn| — 1. Moreover, lim,, |72vjn| = 00.
The inter-arrival times of {n; ,,(7) }+, before stopping, are i.i.d. with common
probability mass function Py(¢a, = k), fork = 1,2,.... For technical
convenience, we extend 7; ,,(¢) to all ¢ € Ny by appending i.i.d. inter-arrivals
drawn from the same distribution, maintaining independence across different
7’s.

Next, for each j,n € N, let { N} ,,(t) }+>0 be a Poisson process with inten-
sity

nwil

Yn 1= F(Tjﬁ) € RV (8),

and assume it is independent of all other random elements. Define the non-
decreasing processes 0 ,, as

{ojn(t) 1t > 0} = {7jn(Njn(t)) : £ = O}

Then each 0, is a non-decreasing compound Poisson process and hence a
subordinator. Let L, , and R ;,, denote the local time and range of 0 ,,. Note
that the scaled range satisfies

Rijn = (Vin +Rjn) N[0, 1]. (A.4)

For each subset S C N, define the intersection of the shifted random sets as

e Rin if
ISJL — {DJGS R], 9 1 S # @, (A_S)

n~H{1,...,n}, ifS=0.

Now fix a level £ € N, and define the following quantities central to the
analysis. First, introduce the process

e .
0= 3o (3 ) (0= Vi) telll ()

2w,
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and the maximum functional

.
M (B) == 1 _ Lo p" | 52 B 1]).
B) = i, Voo D™ (5, ) Bed(o1)
(A7)

As per convention, any summation or maximization over an empty index set is
interpreted as zero. We note that equations and serve as approxima-
tions of the partial sum and partial maximum processes, respectively, as will be
made precise in Lemmas[A.3]and[A.4]below. To facilitate this approximation,
we also define the truncated versions of the processes S(t) and M (B) from

(2.13) and (2.18)), respectively, as follows:

Silt) = (20a>1/“fejfﬂ%j((t—W)’ tefo1,  (As8)

j=1

and

My(B) := max lignpeny 3. 157% Beg(0,1]).  (A9)
Sc{1,...,.t} jes

Proposition A.x. Fix an integer ¢ > 0. Let S, , and M, , be defined as in
equations (A.6) and , respectively, and let Sy and My be their corresponding
limits defined in equations (A.8) and (A.8)). Then, asn — o,

1 S¥ )\ fad [C7YS, ,
— =10,1] xZ
pe(wgl) (M;j) — ( M, inTo [07 ] XL,

where T denotes the collection of all non-empty open subintervals of [0, 1], and the
convergence is in the sense of finite-dimensional distributions on Jy.

Proof. Since { Py(pa, > 1) }n € RVo(—f), we may write
PO(SOAO > n) = n_ﬁf(n)’

where f(n) is slowly varying at infinity. Recall that each 7}, is an increasing
random walk with i.i.d. steps that are integer-valued, non-negative, and regu-
larly varying with index 5 € (0,1). Let {0}, {L;}, {V;} be as defined earlier.
A classical result on convergence to stable laws (see, e.g., Section r.a in Chow

and Teugels, 1978 yields

Vﬁm’% = (1= 5)) o (1),
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asn — 00, where f~1/8 denotes the de Bruijn conjugate of f~1/%, satisfying
the property
lim f~7(n) f=1/P(nf " (n)) = 1

n—oo
(see, e.g., Theorem 1.5.13 in Bingham et al., 1989). Moreover, using the asymp-

totic behavior in (2.3), we have
WP = (nw, YT 2=p) " ~nf P (n)(D(1-B)) P, asn — oo
Hence, it follows that

DRI ()} n = (0007, andthus 73 ([3)) = 0,(0).

Since N, ,,(1) /7 L 1, and N; (1) is independent of 7; ,,, a standard argu-
ment for replacing deterministic time arguments by independent random times
yields

0jin(1) = Tjn(Njn(1)) = 0;(1), asn — oo.

In addition, by Theorem 5.4 of Samorodnitsky and Wang, |2019, we have
Vin N Vi, asn — oo,

with V; ,, as defined in (A.3). Applying Proposition[3.4jand using independence

across J, we obtain

(Linl(x = Vi) )eion (Li((@ = VD)) aeon
( (Vi + Ry 0 0,1 ]>] o ( WV, + R0 0,1 }> )

weakly in D([0, 1])* x §([0,1])* asn — oo. Furthermore, by Theorem 5.4 of
Samorodnitsky and Wang, 2019} foreach S C {1, ..., ¢},

Isn = ((VintRin)N0,1] = Is := () (V;+R;)N[0,1], inF([0,1]).

jes JjES

By Lemmabelow (which extends Samorodnitsky and Wang, 2019, 26, The-

orem 2.1), we have

((Lm((:v - V}',n)+))x€[o,1]> N ((Lg‘((w = Vi)4)) ey
Is, j=1,..
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weakly in D(]0, 1])* x ([0, 1] )2, The result then follows from the above joint
convergence and the facts:

p (L5 (2wn))

1/« .
p<_<w771) —><FJ/2) / ’ j_la"'agu

due to regular variation of p*, and

d —1/a
(M£<B)>Beg([0,1]) = ( max lizgnp=p} Z Li;=13(I/2) Y ) )
Beg([0,1])

Sc{1,...,0} jes

where the equality in law follows from the fact that the thinned Poisson process
{T'j/2}jen,e,=1 has the same distribution as {T'; } jen.
O

-----

T = S(RY), for some fixed m € N. Let 2\ and x be random clements in a
separable metric space . Suppose that the following joint weak convergence holds:

( o ) = ((Ak) o ) inE xF"asn — oo. (A.10)

(Aggn))kzl,---,m k=1,--,m

For any non-empty index set I C {1, ..., m}, define the intersections:

A =AY, A=) A

kel kel

In addition, let A((Dn) and Ay be non-random elements of § such that A,E;n) C Aén)
and Ay, C Ag forallk = 1,... ,mandalln € N. Assume further that for
every I C {1,...,m}, the intersections satisfy the marginal convergence:

Agn) = A; inFasn — oo.

Then we have the joint convergence:

(n)
x T m

n = inE xF" asn — oco. (A.)
<(A(1 Nic.. m}) ((AI)Ic{l ..... m})

Proof. The only substantive difference between Samorodnitsky and Wang, 2019,
Theorem 2.1(b) and the present lemma is the inclusion of the auxiliary compo-
nents ") and z.. Note that the productspace £ X §™ is itself a separable metric
space, since both F and § are separable. Therefore, by the Skorokhod repre-
sentation theorem, the weak convergence in can be upgraded to almost
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sure convergence on a suitable probability space. The remainder of the proof
then proceeds by adapting the arguments from Samorodnitsky and Wang, 2019,

Theorem 2.1(b), thereby establishing a convergence-in-probability version of

(A.1). O

Recall the series representation of the sequence (Xj)kg=1,. » as given in

-----

equation (2.6). For each fixed { € N, we define the truncated partial sum
process by

T [nt]
Ze’i]p (2 ) Zl{U(n>ET kAg) te [07 1]7 (A-IZ)

and the corresponding truncated partial maximum process by

1T
M, (B) := max ZE]p (2?; >1{U(n)€T kAg)? B e G([0,1]).

kEnBON ¢
(A.13)

> e) =0.
where Sy, ¢ and S;, , are as in and (A.6)), respectively.

Proof. Using the relation v, = nw, ! /T'(2 — f3), it suffices to show that for
eachj=1,...,4

Lemma A3. Foranyt € [0,1], ¢ € N, and e > 0, Then,

. 2-5) .
P (| o)~ iy St

i ? Gy %kzllw;w—%}—Ljvn«t—mm >e) =0,

for any fixed € > 0. Note that, by the regular variation of p*, we have
r; /e
P (ﬁ) L\
—— = | = asn — 00.
p (w,) 2
Thus, to establish the desired limit, it suffices to prove that
[nt]

Y kz:l 1{U;”)€T—k,40} = Ljn ((t = Vin)s)

lim P (
n—oo
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Define
[nt]

Qjn(t) Z 1 (U™ er—kag}

Observe that Q; ,(t) > lifand only if V},, < ¢, in which case

Tjn(Qin(t) —1) <t = Vjn < 75n(Qjn(t))-
This implies

Lin((t = Vin)y) = inf{s 2 0: 750 (Njn(s)) > (t = Vin)+}
=inf{s > 0: N,,(s) =Q;n(t) V1}.

Let {7}j,(7) }ien be the inter-arrival times of the Poisson process IV} ,,; then
these are i.i.d. exponential random variables with mean ,,*. Consequently,

Lin((t=Vin)e) = > Tiali).

We now estimate the deviation:

(G

Qjn(t)
(QJ”( > T

Y
The second term vanishes as n — oo since Var(7T},,(1)) = ~,,2 — 0. For the

[nt]

kz 1 U<n)€T kAO} - L],n<<t - ‘/j,n>+)

)

6) +P(T;,(1) >€).

first term, by Chebyshev’s inequality and the independence of the 77 ,,(7), we

obtain
R  Var(Tn (1) E[Q; (1)
(@m > T ) Ea—
N2
which converges to zero as n — oo. [

Lemma A.4. For any non-empty open interval B C |0, 1], we have
lim P (|M,,o(B) — My, ,(B)| > 0) =0,

n—oo

where M, ¢ is as defined in (A.13)), and M, , is as defined in (A.7).
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Proof. Recall R, from and Ig ,, from (Ass). Letting S¢ := {1,...,(}\
S, define the set
[E,n = Igyn N m ,R,jn
jese
Thus, each (rescaled) time point in /g, is contained precisely in those intervals
Rjn forwhich j € S, and in none of those with j € S¢. Now define the event

AuB)= U ({IsanB#0n{I5,nB=0}).

By Lemma 5.5 of Samorodnitsky and Wang, 2019, we have the identity
My (B) = M, ,(B) on the complement A, (B)",

and moreover, lim,,_,~, P(A,,(B)) = 0. The result follows immediately.

O
Proof of Theorem 3.2l Tightness on the productspace follows if it holds for each

marginal component. The tightness of the normalized partial sum process S, in
the Ji-topology of D|0, 1] has been established in Owada and Samorodnitsky,
20155 see also Bai et al., 2020, The normalized partial maxima M,, is automati-
cally tight, since the space SM [0, 1] is compact. In view of Propositionand
Remark[A.1} it remains to verify the convergence of finite-dimensional distribu-
tions in the index set 7 := [0, 1] x Z, where Z denotes the collection of all
non-empty open subintervals of [0, 1]. This will be achieved using a triangular
approximation argument (cf. Theorem 3.2 in Billingsley, 1999).

Note that, as ¢ — 00, the truncated processes Sy(t) — S(t) and My(B) —
M (B) almost surely, for every t € [0, 1] and B € G([0, 1]), where Sy and M,
are defined in and as truncated versions of S and M, respectively.
The triangular approximation argument is completed by Proposition|A.1jand
Lemmas[A.3Jand[A.4] provided we can establish the negligibility of the tail con-

tributions beyond the truncation level. Specifically, we require that for any

e >0,
\_ntj o0 F
— J _

N 1
th hm sup P (Ml)l

—00  n—oo o )nw, P oy
(A.14)

and

lim limsup P # max i g;ipt L 1 Sel =0

(=0 n—soo p* (w; 1) kenBON Pt J 2w, | (U ET R A0}

(A.ss)
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Relation (A.14]) is a special case of relation (66) in Bai et al., 2020l To handle
(A.13), we apply a union bound and a version of Markov’s inequality. For any

r > 0, the probability on the left-hand side of is bounded above by
T.
Z P (21571) 1{U§”>eT—kAO}

1
nP|——-r €
(pﬂw;l) j=t+1 i )
B 1 ' 1
<ne "E (p“(wl) ) . (Aa0)

By independence and using the Khintchine inequality for Rademacher vari-

ables, the expectation in is further bounded by

o0

e}

Ly
Z &j pe <2wn> l{U;”)eT*kAO}

j=t+1

00 - 2 r/2
WCT(Z E 0 (05 20n)?] o) ¢ o AO)) |

S ety
From inequality (82) in the proof of (66) in Bai et al., 2020, for large j, we have

Elp* (T;/(2wn))*]

e = CE ((0;/2) 70 4 (1, /2)" W) < =,

for some generic positive constant C' and a small 6 > 0, where oy € (0,2) is
asin (2-s) and 7 := min{1/ap, 1/a + 8}. Since P(U” € T+ A) = w; , it
follows that

- )

Finally, since (w,,) € RV (1 — 3), choosing r > 2/(1 — ) guarantees that

Z P (2wn> 1{U;")€T*kA0}

1
(1) penax
p(w; 1) kenBNN Pars

o0
§nCw;r/2 Z j_27.
j=t+1

lim nw,"? = 0.
n—oo

Using the fact that 372, §727 — 0as — oo (since 2y > 1), we conclude
that (A.1s) holds. This completes the triangular approximation argument.
O
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A.3 Dependence of Limits in the Infinite Vari-

ance Case

Proof of Proposz'tz'on To establish the dependence, it suffices to show that
S(1) and M ([0, 1]) are dependent. We demonstrate this by verifying that the
tail dependence coefficient:

lim P(S(1)] > 2| M(0,1)) > ) £0.

Let
= (2C)"%;L;(1-V;), jE€EN,

where the marginal distribution of L;(1) follows the Mittag-LefHer law and
thus admits finite moments of all orders. Then, we can write

=Sz
j=1

Moreover, due to the strict ordering I’y < T'y < - - - and the fact that Ig # ()
almost surely for any |\S| < £g, we have

ts
M([0,1]) = sup (Z Fj_l/o‘> = ZFj_l/a.
SCN
1<[S|<tp

We claim that, as © — 00, the marginal tail behavior of |S(1)] satisfies
B(IS()| > 2) ~ P(ZI; " > o) ~ 2B 27 (Ay)

To justify (A.17), note that by orthogonality E[Z;Z;] = 0 fori # j, and

independence, we compute:

3 ZTfl/a E22 T < CE[ZY) S~ -2
J5
j=¢ j=¢

(A.18)
foralllarge enough ¢, where C'is a generic positive constant, and we have applied
a bound for negative moments of I';. A Markov inequality then yields:

P
j=t

Z erj—l/a

> x) < Cx~?
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For fixed j € N, using Breiman’s lemma and asymptotics of the gamma distri-
bution of I';, we get:

A v E[|Z;}%] _,
PIZIE " > 0) ~ B R > 0) ~ HDE i )

Combining (A.18)) and (A.19), and using Lemma 4.2.4 from Samorodnitsky,
2016, the claim in follows.
On the other hand, by Proposition 3.3 in Samorodnitsky and Wang, 2019,

we have:

P(M([0,1]) > z) ~ PT;Y* > 2) ~ 27,

Now consider the joint tail. For any € € (0, 1), using union bounds, trian-

gular inequalities, and , we have:

P(|S(1)| > x, M([0,1]) > z)
<P(|Z|T7"* > (1 — )z, T7Y* > (1 — e)x)

ts
]P’( >ex> +]P’(ZF31/°‘>6:B>

ZZ F 1/a
j=2

<\Zl|r‘”a > (1= ez, TV > (1-e)z) + o(2™),

as x — 00, due to (A.18) and (A.19). Note that

]P’(|ZI|F1_1/"‘ > J:,Fl_l/o‘ > 1)
—P(1{2<)| Z1|T7 7 > 2) + P(|Zy] > P > 2)
~ (E[|Zl|a1{|Z1|§1}] + P(|Zl| > 1)) —

where Breiman’s lemma justifies the last relation. Putting this together:

M([0,1
lim sup P(S( )’_1>/f ([Oil/]i > 2) <(1—¢)“
oo P(|Zy T > 2,777 > )

Similarly, for the lower bound, for any € € (0, 1),

P(|S(1)| > z, M([0,1]) > x)
>P(|Z 07 > (14 €2, T7V* > (1 + €)z) — o(z™),

SO

g PUSDL> 2 10,1 >
e P12y Ty Y > 2, Ty > 1)

> (14¢€) "
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Letting € — 0, we conclude that:

o PUS)] > @, M([0,1]) > x)

=1,
250 P(| 2,07V > 2, TV > )

which implies that

lim P(]S(1)] > = | M([0,1]) > )
=E[|Z1]* 1z, <] + P(| 21| > 1) # 0.

This completes the proof.

A.4 Joint Convergence on Subordinators

Lemma A.s. Suppose f, f, : [0,00) — [0,00), n € N, are non-decreasing,
unbounded, and right-continuous functions with right-continuous inverses f~
and 7, respectively. Let I and F,, denote the closed ranges of f and f,, respec-
tively. Assume additionally that f isstrictly increasing and that the local uniform
convergence

sup |fu(s) = f(s)] =0 asn — oo (A.20)
0<s<t

holds for everyt > 0. Then the following conclusions hold.:
1. Forevery y € [0, 00),

sup |f, () — f7(x)] =0 asn — oo, (A.21)
0<z<y

that is, the inverses converge uniformly on compact intervals.
2. For any sequence x,, — x € R,

|p(xn>Fn)_p(xaF)’ —0 asn — o0, (A'ZZ)

where for a non-emptyset A C R, the distance function p is defined by p(x, A) =
infyea |z —u

Proof. Since f is strictly increasing, its right-continuous inverse f~ is contin-
uous (see, e.g., Whitt, 2002, Lemma 13.6.5). The local uniform convergence of
the inverses, i.., (A.21), then follows from Whitt, 2002}, Corollary 13.6.4.

We now prove (A.22)). Since |p(z,,, F) — p(z, F},)| < |z, — 2|, it suffices
to consider the case z,, = x. Fixx € R. Because f is non-decreasing and
unbounded, there exists ¢ > 0 such that f(¢) > z. By monotonicity, we may
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write

pla, F) = inf |z — f(s)].

0<s<t

On the other hand, the convergence f,,(t) — f(t) asn — oo, implied by
(A.20), ensures that for all sufficiently large 1, we have f,(t) > x. Thus,

p(z, F,) = inf |x — f,(s)|, foralllargen.

0<s<t

By the triangle inequality, we then obtain

p(x, F)— sup |f(s)—fu(s)| < p(x, ) < p(x, )+ sup |f(s)—fu(s)].
0<s<t 0<s<t
Lettingn — oo and using the convergence in (A.20), we conclude that p(z, F,,) —

p(z, F'), which completes the proof of (A.22).
H

Proof of Proposition3.4} The key step in the proof is the following coupling

result, which is a consequence of Theorem 15.17 in Kallenberg, 2002: under the

. d . o d
assumption that 0,,(1) = o(1) asn — 00, there exist versions &,, = ,, such
that forall ¢ > 0,

An(t) == sup [5n(s) — o(s)| = 0.
0<s<t

By the Skorokhod representation theorem, we can further assume that on a
possibly extended probability space, there exist random variables Vn 4 V., and
V 2V such that f/n — V almost surely, and both f/n and V are independent
of ,, and o, respectively.

Now fix an arbitrary subsequence S C N. We claim that there exists a
further subsequence S" C S such that

P (lirgl A, (t) = Oforallt > O) =1
nes’

This follows from the standard sub-subsequence argument: for each k € N,
there exists a subsequence S, C Sk_1 C --- C Sy C Ssuchthat A, (k) — 0
almost surely along n € 5. Using the monotonicity of A, (t) in ¢, we can
extract a diagonal subsequence S” = {ny, } xen such that the convergence holds
forallt > 0.
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Let an denote the right-continuous inverse (i.e., the local time) of ,,, .
Then foreach y > 0,

S0 (Lo (@ = Vi) = L = V)
< s Loy (&= Vo)) = L{(@ = Vi)
+ sup [L((w = Vo)) = L(= = V)4)]
< sup |Lu (o) = L(o)| + sup |L((@ = Va)s) = L{(w = V)s )]

Applying Lemma[A_s|(specifically, its uniform convergence (A.21)) and using

the uniform continuity of L on [0, y|, we conclude that

P (hm sup ‘Enk ((a: - Vnk)+) - L((:B - V)+)‘ = 0) = 1.

k—o0 0<z<y

Next, applying conclusion from LemmalA.d]yields
P (khm ) (x, Vo, + ﬁnk) = p(z,V +R)forallz € [0, oo)) =1,
—00

where ﬁnk and R denote the closed ranges of 7, and o, respectively, and
p(z, A) denotes the distance from point x to set A. Since convergence in the
Fell topology is characterized by this type of pointwise convergence of distance
functions (see, e.g., Theorem 2..2(iii) in Salinetti and Wets, 1981), we obtain

Voo 4+ R, 25V 4+ R ing([0,00)).

Thus, we have established the almost sure convergence along any subsub-
sequence and hence convergence in probability of the triplet consisting of the
shifted subordinator, its local time, and its range. Since the coupled sequences
have the same distributions as the original ones, the desired joint weak conver-

gence follows.

[]

A.s Criterion for Weak Convergence

Itis a classical strategy to establish weak convergence of stochastic processes
by verifying the convergence of finite-dimensional distributions (fdd) and prov-
ing tightness; see, for example, the treatment of weak convergence in the Sko-
rokhod space in Billingsley, 1999, Chapter 3. In the present work, we also
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consider random elements whose codomain extends beyond the Skorokhod
space—specifically, into the space of sup measures SN [0, 1]. Unsurprisingly,
the same “fdd + tightness” principle continues to apply in this broader setting.
To elucidate this methodology, we begin with a general result and then specify
it to our framework. Throughout, we denote by B(£) the Borel o-algebra on
a topological space E.

Suppose T is the index set of the processes (typically time), and let U be a
separable metric space serving as the state space. Let M C U T be a function
space consisting of mappings  : 7' — U, which itself is equipped with a
metric under which it becomes a Polish space (i.e., complete and separable). For
any finite collection ?1, . . ., ¢4 € T', define the (multi-)projection map

7Tt1 77777 tq . M — Ud, 7Tt1 ..... td(fL‘) = (.’,U(tl), . 7$(td)),

and assume that each single-time projection 7, : M — U is measurable for
everyt € T.

In ourapplication, the function spaces of interestare D[0, 1], endowed with
the J;-topology, and SM 0, 1], equipped with the sup-vague topology. Both
of these are metrizable and form Polish spaces; see Billingsley, 1999, Section
12 for D0, 1], and Vervaat, 1988, Remark 5.6 for SM0, 1]. We set the index
set T = [0,1] x G([0,1]), and define the product space M = D]0, 1] x
SM]0, 1], endowed with the corresponding product metric. The state space is
U=RxR. Measurability of the projection mappings 7; then follows from
standard results—see Billingsley, 1999, Section 12 for D[0, 1] and the definition
of the sup-vague topology, as well as the proof of Vervaat, 1988, Theorem 11.1
for SM |0, 1].

Let& = (&(t))ier be astochastic process taking values in a Polish space M,
and let P denote its law on M. We define the following subset of continuity
indices:

Te :={teT:P¢(m: M — Uiscontinuous) = 1}.

Following Vervaat, 1988, we introduce key notions related to weak convergence

. . d ..
in M. Throughout, we write = to denote equality in law.

Definition 3. (Law-Determining and Convergence-Determining Sets). A subset
Ty C T is said to be law determining if the following holds: for any two processes
&1, & with values in M, if foreveryd € Nand ty, ... tq € Ty,

ﬂ-tl ..... tdfl = 7Tt1 ..... td£2 on Ud7



then & 4 &2 as random elements in M. That is, the finite-dimensional distri-
butions indexed by T\ uniquely determine the law on M.

A subset Ty C T is said to be convergence determining if, for any pair of
processes &1, §o with values in M, the set Ty N Tg, N T, is law determining.

Definition 4. (Finite-Dimensional Convergence). We say &, e & in a subset
To C T, if foreveryd € Nandt,, ... tq €Ty,

Tty tgSn = Ty, 1,6 in distribution on Ue.

When Ty is omitted, it is understood to be the full index set T.

The family {&, } e is said to be zight in M if for every € > 0, there exists
a compact subset K C M such that

i%fIP’(fn eK)>1—e

Proposition A.6. Suppose Ty C T is a convergence determining set in the sense

of Definitionls| Then the weak convergence &, = € in M holds if and only if
fad : e
& — & inTy and {&,} istight in M.

Moreover, if Tty C T¢, one may replace T with Ty in the statement above.

Proof. “If” part. Suppose that {, } is tight in M, and that &, fd, §in 1.
By Prokhorov’s theorem (see, e.g., Kallenberg, 2002, Theorem 16.3), any sub-
sequence of {&,,} admits a further subsequence which converges weakly in M
to a random element §* € M. To establish the desired convergence &, = &, it
suffices to show that Pe. = Pe.

Letty,...,tq € T¢- for arbitrary d € N. By definition of T¢-, the projec-
tion mapping 7y, 4, : M — U ¢ is continuous [P¢+-almost surely. Then, by
the continuous mapping theorem (see, e.g., Kallenberg, 2002, Theorem 4.27),

we obtain

ﬂ-tl,...,tdfn = ﬂ-tl,...,tdf*

along the chosen sub-subsequence. On the other hand, by assumption,

7Tt1,...,td€’n = T(tl,...,tdf

forallty, ...ty € To NTe N Te+. By uniqueness of limits in distribution, this
implies

7'[‘,517__7,545* i 7Tt1,...,td§7 for all t1,...,tq € To N Tg N Tg*.
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Since Tj is convergence determining, this implies £* 4 &, ie,Pe- = Pe. Hence,
every subsequence of {£,,} contains a further subsequence converging weakly
to P¢, and thus the full sequence §,, = £ in M.

“Only if” part. Weak convergence &, = £ in M implies tightness of {,, }
(again by Kallenberg, 2002, Theorem 16.3). Moreover, for any d € N and

t1,...,tq € T¢, the mapping 7y, ., is continuous almost surely with respect

.....

to P¢, and hence the continuous mapping theorem yields
Tiretan = Ty,ta€-

Therefore, &, fd, §inTe.
O

Remark A.x. We daim that the subser Ty = [0, 1] X I is convergence determin-
ing in the sense of Definition[g| where T denotes the collection of all non-empty open
subintervals of [0, 1). 1o justify this, consider two arbitrary random elements &, =
(Z1, My) and & = (Za, My), each taking valuesin M = D|0, 1] x SM|0, 1.
By results in Billingsley, 1999} Section 12 and the proof of Vervaat, 1988, Theorem
12.2, there exist subsets J; C [0,1] and Z; C I, fori = 1,2, such that the
complements [0,1] \ J; and L \ I; are countable. Moreover, these subsets can
be selected so that projection maps evaluated at any point in J; (for D0, 1]) or
Z; (for SM|0, 1)) are continunous with respect to the marginal law of Z; or M,
respectively, fori = 1, 2. This implies that J; x I; C T¢, t =1, 2.

Now, consider the intersection
T = (jl N jg) X (Il QIQ) Ccl1ynN T§1 N T&.

10 conclude that Ty, is convergence determining, it suffices to show that T is law
determining in the sense of Definition E| By Dynkin’s -\ theorem, it is enough
to show that the T-system

-----

{7@;1 LU):deN ty,... tqeT" U € B(Ud)}

generates the Borel o-field B(M). This follows from the known results in each
component space: for M = D|0, 1), with T* = J1 N T, the result bolds by
Billingsley, 1999, Theorem 12.5; and for M = SM|0, 1], with T* = I, NIy, the
result follows from Vervaat, 1988, Theorem 11.1. Since both D0, 1] and SM|0, 1]
are separable spaces, the product Borel o-field satisfies

B(D|0, 1] x SM]0,1]) = B(D]0, 1]) ® B(SM]0,1]),
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as noted in Kallenberg, 2002, Lemma 1.2.

We also observe that projection mappings in D|0, 1| are almost surely con-
tinuous with respect to the limit laws By (Theorem .1) and S (Theorem [3.2),
by virtue of Billingsley, 1999, Theorem 12.5, since both the fractional Brownian
motion By and the stable process S admit versions with continuous paths al-
most surely (see Owada and Samorodnitsky, 2ors, Theorem 3.3). Similarly, pro-
Jection mappings in SM |0, 1] are almost surely continuous with respect to the
limit random sup-measure laws, as shown in the proof of Samorodnitsky and
Wang, zorg, Proposition s.2. Therefore, the projection mapping on the product
space D[0,1] x SMI0, 1] is almost surely continuous with respect to the joint
limit law of € in either Theorem.d|orfs.2 It follows that Ty = [0,1] x I C T,

completing the argument.

A.6 Consistency of Order Selection via Penalized
Silhouette

We begin by establishing deterministic bounds related to the k-clustering
framework introduced in Definition [2}and the average silhouette width (ASW)
criterion in (3.1). Proposition [r.1 suggests that if the true spectral measure H
consists of finitely many atoms, then by selecting the subset .S as a union of
neighborhoods surrounding each atom, almost all points in the extremal sub-
sample W, (defined in ) will, for sufficiently large n, lie near one of these
atoms with respect to the dissimilarity measure D. This observation motivates
the analysis of scenarios where the majority of points in a finite multiset are
concentrated around a finite set of centers.

Throughout this section, fix distinct points {a;,...,a;} =1 A C Sé-1,
with k € Z., and associated weights p; > 0 satisfying Zle p; = 1. Let D
be the dissimilarity measure defined in Definition [ We say a finite multiset
W C S%7! satisfies the concentration condition A(e, §) for given €, § > 0 if
the following hold: £ < |W| A 04 e € (0,7r4), with 74 defined in (L2s));
€ (0, Pmin), where Py is defined in (3.3)); and

W N Bp(ay, )]
Wi

>p;—0, forallie {1,... k}. (A.23)

In proving the subsequent lemmas, it is necessary to control the dual dis-
similarity DT between points lying within the same D-neighborhood. To this
end, we define a uniform upper bound for the dual dissimilarity. Given the set
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A={ay,...,ar}and s > 0, define
i (s) = sup {DT(ai,w) cief{l,...,k}, w € Bp(a;, s)} . (Azg)

Remark A.2. Notethatrly(s) > 0 forall s > 0,and ' (s) — 0ass — 0;see
Remar/e@ In particular, for sufficiently small € > 0, we always have ', (€) <

TA.

When a multiset W satisfies the concentration condition .A(€, d) but is
partitioned into fewer than & clusters, then necessarily, at least two of the un-
derlying true clusters are merged. This merging leads to reduced separability
between the resulting clusters, which can be effectively detected via the ASW
criterion. The following lemma formalizes this intuition.

Lemma A.7. Suppose a multiset W satisfies the condition A(e,0) and1 < m <
k. Let (A, €,) be an m-clustering of W as defined in Definitionl] Then the
(unpenalized) AS w S satisfies

S =S(W; AL, €0) < 1= (puin — 0) (ra — (),

where TL isas in (A.24)).

Proof. Since m < k and Bp(a;,r4)’s are disjoint, ¢ € {1,...,k}, there
exists ¢ € {1,...,k} such that Bp(as,r4) N A%, = (). Hence forany w €
W N Bp(ay, €), we have by the triangular inequality that

a(w) = D(w,A’) > D(as, A’)) — DT(W, ag) >1rs— TL(E).
Then since b(w) < 1, we have

W |WﬂBD(ag,E)|
|W| Z |W’ Z a(w) > W] (T _TL(G))

weW W
Z (pmin - 5) (TA - TL(E)) )

which implies the desired result. L]

The nextlemma establishes that if the multiset W satisfies the concentration
condition A(e, §) and is partitioned into at least & clusters, then for each true
center a; € A, there exists at least one cluster center that lies within a small
D-neighborhood of a;. In other words, no true cluster is left unrepresented
among the fitted clusters, provided the number of clusters is no less than the

true number .
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Lemma A.8. Suppose a multiset W satisfiesthe condition A€, §). Let (A7, €p,),
where AY, = {af,...,a}}, be an m-custering of W as defined in Definition
B m > k. Then foranyi € {1,... k}, thereexists j € {1,...,m}, such that
D (a;f, al-) < €, where

(1—kd)e+ks

€ =é(e0) = s + 7Y (€). (A.2s)

In particular, whenm = kand €' < r 4, thereexistsa bz]'ectz’onw AL,k
{1,..., k}, such that D ( (),az) <€ forallie{l,... k}.

Proof. We prove the first claim by contradiction. Suppose there exists i €
{1,...,k} such that D(a},a;) > ¢ forallj € {1,...,m}. Then for any
w € W N Bp(a;, €), we have by the triangular inequality that

D(w, A%) > D(a;, A%) — Df(w,a;) > € — iy (e).
Hence combining this and (A.23)),

. 1 .
|W] Z D(w,A}) > |W] Z D(w, A})

wew weWNBp (a;,e)
>(pi = 6) (¢ = 1y(€)) > (puin — 0) (¢ = 7€) -
(A.26)
Next, suppose that a multiset S on S%* contains A and |S| = m, which is

only possible when m > k as assumed. Then we have D(w, S) < D(w, A).
SetU, :=WnN (UleBD(ai, 6)), we have that

’W’Z ’W‘{ZDWA)—G— > } (1—kd)e+ko,

wew wel, WeEW\Ue
(A.27)

where the last inequality is obtained by maximizing |\ U, | with the constraint

(A.23). Now in view of (r.17), the first expression in (A.26)) is less than or equal
to the first expression in (A.27), and hence these two inequalities imply:

¢ < {(1—kb)e+ kY (Pmin — 6) + 71 (€),

which contradicts the choice of €.

For the second claim, note that Bp(a;,74)’s are disjoint, i € {1, ..., k}.
Soif € < rg4,itisimpossible that D (a;f, ai) < ¢ and D (a;-‘, ai/> < € hold
simultaneously when @ # 4’. The conclusion then follows.
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As a consequence of the previous lemma, if the multiset W' is concentrated
around k centers but is partitioned into more than £ clusters, then one of two
outcomes must occur: either some of the resulting clusters will have small car-
dinality, or at least two cluster centers will be close to each other with respect

to the dissimilarity measure D. This is formalized in the following lemma.

Lemma A.9. Suppose a multiset W satisfies the condition Ale, ). Assume
additionally that € in satisfies € < r4. Let (AL, €p), where A}, =
{af,...,a},}and €, = {C1,...,Cy}, be an m-clustering of W as defined
in Definitionl) m > k. Then either of the following happens:

Z:r{unm “g}h <ké or lggriiJ%mD(a;‘,a;) <€ +2rl (€) + 7, (¢).

Proof. Since Bp(a;, €'),i € {1,...,k}, are disjoint (because € < 74), by
Lemma we can, without loss of generality, assume thata) € Bp(a;, €),
i€{l,...,k}.Wenow divide into two cases as follows.
Caser: thereexistsone j € {k+1, ..., m} (fixed below in the discussion of this
case) which satisfies D(aj, A) > € + 211, (€). Then foranyi € {1,...,k}
and any w € W N Bp(ay, €), we have by the triangular inequality that
D(w,a?) < D(a;,a?) + Di(a;, w) < € + rly(€), and hence

D(w,a}) > D(a},a;) — D'(w,a;) > ¢ + 2rly(e) — rly(e) > D(w,a)).

This in view of Deﬁnitionimplies that W N Bp(a;,€) C W N Cf forall
i € {1,..., k}. Therefore, we have by that

min |Cz’ < |Cj| < ’Wﬂmizl,...,kBD(aiae)c|
= W] = W W

< ko.

Casez: forany j € {k+1,...,m},wehave D(a}, a;) < €' +2r1, (€) for some
i € {1,...,k}. Then for any such pair of j and i, we have

D(aj,a}) < D(a;,a}) + D'(a;,a]) < € + 2l (e) + 1y (¢).

O]

The next lemma states that if the multiset W is concentrated around k
centers and is partitioned into exactly & clusters, then the unpenalized average
silhouette width S will favor this clustering by yielding a high score—close
to the ideal value of 1. Moreover, under such a configuration, all clusters will
have sufficiently large sizes, and the corresponding cluster centers will be well-
separated with respect to the dissimilarity measure D.
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LemmaA.ro. Let (A} = {af,...,a;}, &, = {C4,...,Cy}) beak-custering
of W as defined in Definition [ Suppose a multises W satisfies the condition
Ale, 0). Suppose in addition

ra > € +2rh(e) + rly(€) (A.28)

with € in (A.23)). Then the (unpenalized) AS WS satisfies

o Pyt
S=S(W;AL &) >1— (1 —kd)— f TA(G)T — kd.
ra—ra(€) —ru(e)
In addition, with the same permutation w : {1,... k} — {1,... k} found

in Lemma we have

|G|

Wi > p; — 0 foreachi and min  D(aj,al) >ra — 27”11(6/)7

1<i<j<k i

where when k = 1, miny <, j<x D(a, &%) is understood as 1, and the inequali-

19 9y
ties still hold.

Proof. Sincer, > €, by LemmalA.8} there existsa permutation 7 : {1,..., k} —
{1,...,k}, suchthat D(a;, a};)) < €,i € {1,...,k} Then foreachiand
any w € Bp(a;, €), we have by the triangular inequality that

D(w,a} ;) < D(a;, ay;) + DY (w,a;) < € +1l(e), (A.29)
and for j # i that

D (w,a};)) > D (ai, a;)—D'(a;,a};))— D (w,a;) > ra—r (€)= (e),
(A.30)

where if k& = 1, the left-hand side D (W, ay j)> in (A.30) is understood as 1,

and the inequality still holds. Writing as before U, = U;<;<x Bp(a;, €) N W.

In view of (A.23) and the inequalities above, we have

“w {w%:} +W§V:\U} ( bﬁiii )
z<1— GITJFTL(E)T )(1—k6)+0

ra—ry(€e) —ry(e)

7(5) 7 (J

which implies the first claim.
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For the second claim, in view of Definition |2} (A.28]), (A.29)), (A.30]), we
have W N Bp(a;, €) C Crpy,i € {1, ..., k}. Hence by (A.23),

(&1 S W N Bp(ay, €
1. W

> pi — 0.
Furthermore, forany 1 <¢ < j < kandk > 1,
Ar(i): An(j)) = P\ aj, Az () Aj, Arj) ) Z TA—2T4\€).

]

We begin by stating a result concerning the average silhouette width .S de-
fined in (3.1), in the case where the number of clusters is less than or equal to £,
the true number of atoms in the underlying discrete spectral measure.

Proposition A.ax. Suppose X satisfying and has a discrete spectral
measure of the form H = S°%_| piSa,, where a;’s are distinct points on ST, and
pi > 0,p1 + -+ + pp = L. Let W, denote the extremal subsample as in (1.19)),
and (A n, € p) form an m-dustering of W, as defined in Definition Q with
respect to a dissimilarity measure D defined in Definitiont, If m <k, then
almost surely,

limsup S(Wo; Ay €on) < 1 — 7 APrmin,

wherer 5 is as in and pmin is as in 33). If m = k, then almost surely,
11£I1 S’(VVn7 Ak,na ka) = 1.

Proof. Note thate’ — Oase,§ — 0, we may choose them small enough such
that (A.28) is satisfied. Define the event

Bo(e,8) = {IWy 0 Bo(as,€)] > [Wal(pi — 6), i € {1,...,k}}. (A3)

By Proposition L] with S = Bp(a;, €) and the choice € < r4, we have each
H,(S) = |W,NBp(a;,e€)|/|W,| converges almost surely to H(S) = p;, i €
{1, ..., k}. Hence, with probability 1, the event E,, (¢, §) happens eventually
asn — 00, namely, P(lim inf,, 1{E,,(¢,0)} = 1) = 1. Since W, satisfies
the condition A(€, §) on E,, (¢, §), by Lemmas|A.7|and[A.10] for almost every

outcome w in the sample space {2, when n is sufficiently large, we have when

86



m < k that

S(W; Ay € ) H{E, (€,6)}
< {1 = (uwin = 6) (ra = 71(9)) } 1{En(e, )}

and

S(Wna Ak’,na Q:k,n)l{E”(e’ 5)}

¢ + ' (e
> {1 (1 k) — r;(e)AE ZL(EI) _ k;é} 1E,(,5)).

The desired results follow if one takes lim sup,, and lim inf,, respectively in the

two inequalities above, and then lets 6, € — 0 (see also Remark[A.2)). [

Next, we present a result concerning the penalty term P; defined in (3.2)),
in the setting where the number of clusters is greater than or equal to .

Proposition A.x2. Suppose X satisfying and has a discrete spectral
measure of the form H = Zle PiOa,, where ;s are distinct points on Sfl[ U and
pi > 0,p1 + -+ + pr = 1. Let W, denote the extremal subsample as in (1.19)),
and (Apn, € ) form an m-dustering of W, as defined in Definition Q with
respect to a dissimilarity measure D defined in Deﬁm’tz'on@ Supposet > 0. If
m > k, we bave almost surely

hrILn Pt(Wna Am,na Q:m,n) =1
Ifm = k, we have almost surely

lim sup -Pt<Wna Ak,na Q:k,n) S 11— (TAkpmin)t7

wherer 4 is as in (L25)) and puin 15 as in (3.3).

Proof. The argument is similar to that of Proposition[A.u] In particular, under
the restriction to the event E, (€, ¢) in (A.31), we have by Lemrnathat for
m >k

Po(Wos Ay €n) = 1= (K20)'V (€ +2rl(e) + ()
and by LemmalA.10| that
Py(Wai Ay €in) < 1= [k (pin — 0)(ra — 27y ()]
We omit the rest of the details. O
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Now we are ready to prove Theorem
Proof of Theorem - Putting together Propositions and and using

the facts that S € [0, 1] and P, € [0, 1], we have almost surely that

lim sup,, St(Wn; Am,n> Q:m,n) S 1— T APmin, ifm < k;
lim infn St(Wrm Ak,na €k,n) Z (TAkpmin)ta itm = ka
lim sup,, Sy (Wh; Amn, €mn) <0, ifm > k.

Therefore, the desired claim follows. l
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