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 Coastal environments are dynamic systems where natural processes, human 

development, and economic decisions interact in complex ways. My research sits at the 

intersection of environmental economics, spatial analysis, and remote sensing focusing on how 

coastal ecosystems influence economic outcomes and how communities respond to environmental 

change. Under the broader theme of natural infrastructure, my dissertation explores how the 

presence of mangrove forests shapes perceptions of environmental amenities and is reflected in 

housing market behavior. The dissertation also develops a methodology to address the absence of 

historical data on mangrove extent, using satellite imagery and cloud-based computing to generate 

spatial estimates of past mangrove coverage for long-term analysis. 
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Chapter 1  

Introduction 

 

As climate risks intensify and coastal populations grow, understanding the role of natural 

infrastructure in mitigating hazard exposure has become increasingly critical. Mangrove forests, 

found in tropical and subtropical intertidal zones, serve as natural buffers by reducing storm surge, 

stabilizing shorelines, and supporting biodiversity (Figure 1.1). Despite their recognized 

ecological importance, the protective services offered by mangroves remain underappreciated in 

economic analyses, largely due to the absence of market mechanisms to capture their value. This 

dissertation examines how households perceive and value mangrove protection through housing 

market behavior. It brings together insights from environmental economics, spatial analysis, and 

remote sensing to estimate the economic significance of mangroves in coastal Florida. 

The first paper of this dissertation examines how the protective role of mangroves is 

perceived and valued by households in the aftermath of a major storm event. A key contribution 

of this study lies in the development of a novel proxy for directional protection, capturing whether 

mangroves are spatially positioned between a property and the coastline, and thus likely to offer 

physical protection from storm surge. The paper leverages the landfall of Hurricane Irma, a 

Category 4 hurricane that struck Florida in 2017, as an exogenous shock to estimate whether the 

presence of mangrove is capitalized into property prices. Using a difference-in-differences 

framework, the analysis compares price changes for homes with and without directional mangrove 

protection before and after the storm, offering a revealed-preference perspective on the perceived 

value of this ecosystem service. 
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The second chapter investigates how proximity to mangroves influences property values 

over a longer time horizon. Using a long-difference framework and property transaction data 

spanning two decades, the study explores whether and how housing markets have capitalized the 

presence of mangroves. The analysis draws on mangrove extent data from the Global Mangrove 

Watch for selected years and offers a preliminary perspective on the long-term economic relevance 

of coastal environmental amenities. 

Recognizing that a major challenge in valuing natural infrastructure is the lack of historical 

spatial data, the third chapter addresses this gap by developing a methodology to generate past 

mangrove extent in Southwest Florida from the 1980s. This is achieved through the use of Landsat 

imagery, cloud-based computing, and machine learning classification techniques. The resulting 

dataset is intended to support future research on long-term mangrove dynamics and their 

ecosystem service contributions.  

Together, these three chapters contribute to the literature on the economic and protective 

value of mangrove ecosystems by combining empirical analysis of housing market behavior with 

a methodological framework for estimating historical mangrove extent. 
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Figure 1.1: Mangrove swamp, partly underwater. 

Photo credit: U.S. National Oceanic and Atmospheric Administration (public domain). 
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Chapter 2  

Nature’s Shield: Deciphering Mangroves’ Influence on Property Value Dynamics in the 

Wake of Hurricane Irma 

2.1   Introduction 

Coastal regions, increasingly vulnerable to climate change, face heightened risks from storm 

surge and hurricane-induced flooding, as evidenced by Hurricane Irma's extensive flood damage. 

On average, two hurricanes make landfall in the United States each year, predominantly along the 

Gulf and East Coasts (US EPA, 2016). These storms bring powerful winds and heavy rainfall, 

causing significant damage to infrastructure. The increasing frequency and intensity of such severe 

weather events highlight the urgent need for effective and cost-efficient hazard mitigation 

strategies. States like Florida are particularly vulnerable due to their unique geographic location, 

with extensive coastlines and being nearly surrounded by water. According to NOAA, coastal 

counties in the United States are home to 40 percent of the country’s population, and these areas 

have experienced a 40 percent increase in population from 1970 to 2010 (National Oceanic and 

Atmospheric Administration, Office for Coastal Management, 2013). This rapid growth in 

vulnerable coastal zones underscores the importance of resilience planning, including the use of 

natural defenses. 

As a natural coastal defense, mangrove forests, a wetland ecosystem situated between land and 

sea, are increasingly recognized for their ability to buffer storm surge, dissipate wave energy, and 

reduce flood risk (Barbier, 2007; Das & Vincent, 2009; Das & Crépin, 2013; Narayan et al., 2019; 

Sun & Carson, 2020) Despite their significance, these services frequently go unrecognized in 

economic planning and conservation efforts due to the absence of formal market mechanisms for 
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their valuation. This study examines whether and how these protective services provided by 

mangroves are capitalized into residential property values in Florida’s coastal areas. Specifically, 

we ask: Do homes that are spatially protected by mangroves command higher prices, particularly 

in the aftermath of a major hurricane? We develop a novel spatial proxy that captures both the 

proximity and the directional positioning of mangroves relative to the ocean and individual 

properties. We link this protection proxy with property sales data and apply a difference-in-

differences (DID) framework, using Hurricane Irma as an exogenous shock to identify the salience 

of mangrove protection in shaping property values.  

A growing body of interdisciplinary work highlights the critical role of wetlands in providing 

natural protection. Occupying the transitional zone between land and sea, mangrove forests serve 

as buffers that reduce the impact of storm surges, high winds, and coastal flooding. An early 

influential provided compelling empirical evidence that mangrove belt width significantly reduced 

fatalities in villages near the coast during India’s 1999 super cyclone, highlighting that vegetation 

itself, beyond elevation or topography, plays a key protective role (Das & Vincent, 2009). A 

follow-up study (Das & Crépin, 2013) extended this evidence by simulating how mangroves 

reduce wind velocity, finding notable reductions in structural damage even several kilometers 

inland. Beyond life-saving outcomes, mangrove forests have also been shown to enhance 

economic resilience. Studies (Del Valle et al., 2020; Hochard et al., 2019, 2021) used satellite-

derived nightlight data to analyze how mangrove coverage affects economic activity post-disaster. 

Del Valle et al. (2020) focusing on Central America, found that areas with mangrove belts of at 

least one kilometer experienced negligible short-run economic losses after hurricanes, while 

Hochard et al., in a global study of nearly 2,000 coastal communities, showed that mangrove 

buffers accelerated post-storm economic recovery.  
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Engineering-focused studies further support the value of mangroves as a protective asset.  

Zhang et al. (2012) using the Coastal and Estuarine Storm Tide model, demonstrated how 

mangrove vegetation attenuates storm surge, with effects varying nonlinearly by density and forest 

edge configuration. Tomiczek et al. (2021) synthesized physical experiments to emphasize how 

mangroves reduce wave energy and enhance coastal defense. These technical studies call for the 

integration of ecological and biophysical parameters into hazard mitigation planning. Parallel to 

this biophysical work, Barbier (2007) outlined two conceptual frameworks for ecosystem 

valuation of mangroves, the production function approach, which values services as inputs into 

economic outputs (e.g., fisheries), and the expected damage approach, which estimates how 

ecosystems reduce risk.   

 Barbier et al. (2013) and Barbier & Enchelmeyer (2014) exemplify how the ecological 

structure of coastal systems can be translated into quantifiable economic benefits. They applied 

storm surge modeling and expected damage functions to quantify the protective value of coastal 

wetlands across the Gulf Coast. Sun & Carson (2020) similarly utilized the expected damage 

function approach to assess the economic value of wetlands in mitigating damage resulting from 

88 tropical storms and hurricanes that hit the United States between 1996 and 2016. In the context 

of Florida, Narayan et al. (2019) used an insurance industry catastrophe model to quantify the 

flood reduction benefits of mangroves. They compared surge-related property losses under 

scenarios with and without mangroves—both annually and during Hurricane Irma. Their results 

indicate that mangroves averted $1.5 billion in property damage and annually flood risk by over 

25%. While their analysis estimates avoided damage from a modeling and insurance perspective, 

our study is the first to apply a hedonic framework to assess how mangrove protection is reflected 

in housing prices and perceived by homeowners. 



 

 

7 

 

While mangrove and wetland ecosystems are increasingly recognized for their role in 

hazard mitigation (Danielsen et al., 2005; Das & Crépin, 2013; Das & Vincent, 2009; DasGupta 

& Shaw, 2017; Hochard et al., 2019, 2021; Menéndez et al., 2020; Zhang et al., 2012), much of 

the existing literature assesses these services at global or national scales. This broader framing, 

while highly informative, often masks the heterogeneity in exposure, ecological structure, and 

socioeconomic vulnerability across and within regions. In addition, while these studies have 

advanced our understanding of the protective value of the coastal ecosystems, they often do not 

directly capture how residents, who both benefit from and play a role in the conservation of these 

natural defenses, perceive and value them. A notable exception is Barbier (2008) who examined 

household participation in post-tsunami mangrove replanting efforts in Thailand, to highlight how 

socioeconomic factors such as income, property rights, and prior experience shape conservation 

decisions. Nonetheless, important gaps remain in understanding how natural defenses function at 

a finer spatial scale and whether and how their protective benefits are reflected in property values.  

Building on this need for granularity, our study links fine-scale spatial arrangements of mangroves 

to property values using real estate transaction data, an approach that remains underexplored. 

While past research has used buffer width or proximity measures to evaluate the protective role of 

mangroves (e.g., Das & Vincent, 2009; Das & Crépin, 2013), we introduce a novel protection 

proxy that accounts for both proximity to mangroves and their directional positioning relative to 

potential coastal exposure. This is motivated by findings from Alongi (2008),  Temmerman et al. 

(2023) and Maza et al. (2017) which emphasize that mangrove protection is most effective when 

vegetation lies directly in the path of incoming storm surge or wave energy. By integrating these 

spatial dynamics, our study contributes a new, spatially explicit lens for understanding how natural 

coastal features influence property values and inform resilience planning.  
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We use hedonic property pricing models to identify the effect of mangrove protection on 

coastal property values. The hedonic property price approach has been widely used for the 

economic valuation of non-market goods, especially environmental amenities and disamenities. 

Applications in the coastal context include the valuation of beach nourishment (Gopalakrishnan et 

al., 2011), beach quality (Landry & Hindsley, 2021), dune renovations (Dundas, 2017a) and 

voluntary property buyout and acquisition (Hashida & Dundas, 2023). It has also been used to 

estimate coastal amenities and flood risk (Atreya et al., 2013; Atreya & Ferreira, 2015; Bakkensen 

et al., 2019; Bakkensen & Barrage, 2022; Bin, Kruse, et al., 2008; Kousky, 2019). Despite its broad 

application, the hedonic property pricing approach has not yet been applied to isolate the protective 

salience of mangroves, particularly at the property level. This gap likely stems from the complexity 

of disentangling protection benefits from other co-occurring services and disservices mangroves 

provide. In addition to protecting against storm surge, mangroves are associated with unpleasant 

odors and obstruction of oceanic views, which may also influence property values. The occurrence 

of a hurricane, however, increases the salience of mangroves' protective benefits and provides a 

quasi-experimental setting to study how these protective services are capitalized into property 

values. We employ a difference-in-differences (DID) framework, leveraging Hurricane Irma as an 

exogenous shock to assess the perceived value of natural protection provided by mangroves. 

Properties perceived to be protected by mangroves serve as the treated group, while comparable 

properties without such protection form the control group. By comparing pre- and post-hurricane 

price dynamics between these groups, we find that homes with protective mangrove coverage 

commanded at least a 7.6% price premium relative to similar unprotected properties. This approach 

parallels the work of Hallstrom & Smith (2005) who exploited a near-miss hurricane event in Lee 

County, Florida to examine how heightened storm risk perception affects property values. 
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Our work contributes to the growing literature on the economic valuation of ecological services 

provided by mangroves and wetlands. Previous valuation studies have estimated the role of 

mangroves in natural hazard mitigation in India (Das & Crépin, 2013; Das & Vincent, 

2009),Thailand (Barbier, 2008) and the USA (Del Valle et al., 2020; Narayan et al., 2019; Sun & 

Carson, 2020). To the best of our knowledge, ours is the first hedonic pricing study to incorporate 

a fine-scale proxy that captures the spatial orientation between mangroves, the ocean, and 

individual properties. While prior works (Das & Vincent, 2009; Das & Crépin, 2013), have 

considered the direction of storm winds, coastline, and mangrove presence at broader spatial 

scales, we develop a spatially explicit, property-level measure of protective positioning that 

integrates these elements. Our study contributes to the literature on ecosystem service valuation 

by demonstrating how property-level spatial relationships between mangroves, coastlines, and 

homes influence housing prices. This approach offers a replicable method for valuing protective 

coastal features and provides actionable insights for conservation planning, coastal zoning, and 

climate adaptation. 

2.2   Study Area 

Lee County, located along Florida's Gulf Coast, experienced substantial damage from 

Hurricane Irma, a category 4 storm, in September 2017, providing relevant context for this 

analysis. Hurricane Irma caused widespread devastation across the state, with damages totaling 

$50 billion (Federal Emergency Management Agency (FEMA), 2018), making it among the 

costliest hurricanes in U.S. history. In the five years following the disaster, Florida received more 

than $5.58 billion in federal recovery funding. This assistance included over $1 billion in grants 

provided by FEMA to aid individuals and households directly affected by the storm. Additionally, 
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nearly $4 billion was disbursed through FEMA's National Flood Insurance Program to cover 

claims from policyholders. To support long-term recovery and resilience efforts, FEMA also 

allocated $574 million in Public Assistance grants and $5.7 million in Hazard Mitigation 

Assistance. These funds have played a critical role in rebuilding communities, restoring 

infrastructure, and reducing future disaster risks, showcasing the ongoing commitment to helping 

Florida recover from one of its most significant natural disasters. 

Florida is home to an estimated 600,000 acres of mangrove forests, concentrated in its southern 

coastal regions. The three native species are red mangrove (Rhizophora mangle), black mangrove 

(Avicennia germinans), and white mangrove (Laguncularia racemosa), each have distinct 

ecological characteristics and occupy different zones within the intertidal environment. Red 

mangroves, typically found along the shoreline, are identifiable by their prop roots; black 

mangroves are located slightly inland and feature pneumatophores; and white mangroves occupy 

higher elevations with less prominent above-ground root structures. According to Iii & Walker 

(2016), the Pine Island Sound/Matlacha Pass sub-basin in Lee County contains an estimated 

19,107 acres of mangroves. The presence of mangroves in Lee County played a crucial role during 

Hurricane Irma. These coastal forests acted as natural buffers, reducing the impact of storm surges 

and mitigating shoreline erosion (Narayan et al., 2019). Their complex root systems helped 

stabilize sediments and dissipate wave energy, thereby protecting inland areas from more severe 

damage. Post-storm assessments highlighted the resilience of mangroves and underscored their 

importance in coastal defence strategies. In the years following Hurricane Irma, restoration efforts 

in Lee County have been supported by organizations such as Keep Lee County Beautiful (KLCB) 

and the Sanibel-Captiva Conservation Foundation (SCCF), working to enhance and preserve 

mangrove habitats along the county’s vulnerable coastlines.  
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According to 2020 U.S. Census Bureau data, Lee County has experienced significant 

population growth in recent years. Its population increased from 700,243 in 2015 to 772,268 in 

2019, a notable 10.3% growth rate. This increase far exceeded both state and national averages 

during the same period, underscoring the county's growing appeal as a residential and economic 

hub. The rapid growth is attributed to factors such as its coastal location, economic opportunities, 

and a steady influx of retirees and families attracted to its quality of life and natural amenities. 

This demographic expansion has placed Lee County among Florida's fastest-growing regions, 

highlighting its increasing importance within the state. Figure 2.1 maps mangrove extent in Lee 

County using Global Mangrove Watch (GMW) data for 2017 (Bunting et al. 2022), overlaid with 

the locations of single-family home sales from 2015 to 2019. Lee County contains a substantial 

stretch of coastal mangroves, with residential properties located both near and far from these 

natural features. Notably, some homes are oriented such that both mangroves and open water 

(ocean or bay) lie in the same direction, while for others, they lie in opposite directions. This spatial 

variation provides a unique setting to examine the role of mangrove protection in influencing 

property values, as illustrated later in Figure 2.3 and Figure 2.4. 

2.3  Empirical Strategy 

Mangrove protection proxy 

To represent the protective role of mangroves in coastal housing markets, our study constructs 

a protection proxy that integrates both proximity and directional orientation of mangroves and the 

ocean relative to each property. This approach is grounded in extensive biophysical and ecological 

literature demonstrating that mangrove forests function as natural buffers against storm surge, 

wave energy, and coastal inundation, particularly when positioned between vulnerable assets and 
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storm surge. Our analysis does not incorporate wind and wave directions explicitly; instead, it 

focuses on the directional orientation of the ocean and mangroves relative to each property. Alongi 

(2008) emphasizes that the degree of protection offered by mangroves depends not only on forest 

structure and species composition but also on the angle of impact, highlighting how directional 

placement shapes the magnitude of buffering. Temmerman et al. (2023) further stress that 

mangroves are most effective in attenuating wind waves when vegetation stands in the path of the 

incoming storm. Their ability to attenuate storm surge is dependent on landscape features such as 

forest width, continuity, and the presence of tidal channels. In addition, Maza et al. (2017) 

demonstrate through flume experiments that flow velocity and turbulence are highest at the leading 

edge of a mangrove forest and diminish progressively into the interior. Trees situated directly in 

the path of flow bear the greatest drag, suggesting that only mangroves located in front of a 

property, relative to incoming waves or surge direction, can reduce hydrodynamic forces. The 

findings from Alongi (2008), Maza et al. (2017) and Temmerman et al. (2023) and the broader 

literature collectively indicate that spatial configuration, specifically proximity and directional 

positioning plays a central role in determining the effectiveness of mangrove ecosystems in 

providing protection. 

Figure 2.2 illustrates the limitations of traditional proximity-based measures in defining 

mangrove protection. In such measures, all properties located near mangroves are uniformly 

classified as protected, regardless of whether the mangroves lie seaward or landward of the 

structures. This approach leads to misclassification, particularly in coastal settings where 

properties may be closer to mangroves on the bay side while remaining directly exposed to the 

ocean. In the map, the protection dummy is defined solely based on proximity to mangroves. 

Yellow dots represent houses perceived as protected because they are relatively closer to 
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mangroves than to the ocean, while red areas are not considered protected based on this distance 

metric alone. However, some properties classified as protected under this approach remain 

vulnerable because their geographic location leaves them exposed to the ocean or bay despite 

nearby mangroves. This misalignment illustrates the importance of incorporating directional 

shielding in defining protection. To address this limitation, we introduce directional-proximity-

based proxy. 

The directional-proximity-based proxy identifies as protected only those properties that are both 

near mangroves and have mangroves positioned between the property and the ocean. The 

conceptual framework for this proxy is illustrated in Figure 2.3. It depicts two scenarios, in the 

first - the house is located on the seaward side of the mangroves, leaving it unprotected from high 

waves, in the second - mangroves are positioned between the ocean and the house, acting as a 

natural barrier against wave impacts. This spatial relationship forms the basis for our definition of 

the Protected variable, capturing the mitigating role of mangroves in safeguarding properties from 

storm surge.  

We use the county’s coastal boundary to map the shoreline and Global Mangrove Watch 

(GMW) data (Bunting et al., 2022),  from 2015 to 2019 to map mangrove extents. For each 

property, we calculate the distance and angle to both the nearest mangrove extent and the nearest 

shoreline. To assess directional protection, we compute the angular difference between the 

mangrove and shoreline directions relative to each property. To account for edge cases where 

angular measurements cross the -180° to 180° boundary, we apply wraparound adjustments to 

ensure that the true directional relationship is captured. The next step involves determining 

directional alignment. To determine whether mangroves and the shoreline lie in the same direction 

relative to a property, we calculated the angular difference between their respective bearings from 
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each property and applied a threshold angle. We evaluated a range of thresholds (45° to 120°) to 

determine a cutoff beyond which the two features could no longer be considered directionally 

aligned. Based on this, we adopt a 90° threshold which means if the angular difference between 

the mangrove and shoreline bearings is less than 90°, the two are considered directionally aligned 

relative to the property. We then combine this directional alignment variable with a 

closer_to_mangroves dummy, which equals one if the property is located closer to mangroves than 

to the shoreline. The product of these two dummies defines the protected variable, identifying 

properties that are both nearer to mangroves and directionally positioned to plausibly benefit from 

their protective function. Detailed examples illustrating this process are provided in the Appendix. 

The GIS-based implementation of this method is illustrated in Figure 2.4. The variables are 

formally defined as: 

 

𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 = 𝑐𝑙𝑜𝑠𝑒𝑟_𝑡𝑜_𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒𝑠 × 𝑠𝑎𝑚𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

where: 

𝑐𝑙𝑜𝑠𝑒𝑟_𝑡𝑜_𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒𝑠 = {
1, 𝑖𝑓 𝑑𝑖𝑠𝑡𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒 <  𝑑𝑖𝑠𝑡𝑜𝑐𝑒𝑎𝑛                                               

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                        
 

and,  

𝑠𝑎𝑚𝑒_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = {
1, 𝑖𝑓 𝑎𝑛𝑔𝑙𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 <  90°                                  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                        
 

 

By incorporating both proximity and directional alignment, the mangrove protection proxy 

offers a more ecologically valid and policy-relevant measure of natural coastal defense, consistent 

with empirical insights from studies such as Alongi (2008), Chen et al. (2021), Maza et al. (2017) 
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and Temmerman et al. (2023). This refinement captures a more nuanced nature of coastal 

protection that arises from the spatial orientation of mangroves relative to the ocean. 

Econometric specification 

This paper leverages the landfall of Hurricane Irma in Florida as a quasi-experimental shock to 

estimate the protective services provided by mangroves, as reflected in housing market 

capitalization. Hurricane Irma struck as a Category 4 storm in September 2017 and was one of the 

most damaging hurricanes in U.S. history, with estimated economic losses exceeding $50 billion  

(Narayan et al., 2019). It made landfall in Florida, causing extensive flooding and storm surges of 

up to ten feet, particularly along the mangrove-dominated coastlines of the Everglades National 

Park. As one of the costliest hurricane years on record, 2017 brought attention to the role of natural 

coastal features in mitigating flood damage, offering a salient context to assess whether mangrove-

related protection is capitalized in property values. Our study employs the hedonic property pricing 

model to analyse the impact of mangroves on property values within the coastal buffer of Lee 

County, focusing on a comparative assessment before and after Hurricane Irma. Our methodology 

hinges on using property sales prices as the dependent variable, with structural and environmental 

characteristics, alongside the hurricane event, as independent variables. We exclude island 

scenarios from our analysis. These include properties that are surrounded by the ocean, by 

mangroves, or by both. Since our interest is coastal single-family property, we create a binary 

buffer of 1-kilometer (K) as indicated in Figure 2.5, to identify the properties located within a 1K 

distance from either mangroves’ extent or ocean boundaries. We further perform a robustness 

check using a 2K buffer. 

We employ a DID approach to examine how protection by mangroves affected house prices 

after the hurricane. To support the identifying assumption of the DID framework, that the level of 
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mangrove protection remained relatively stable across treatment and control units over time—we 

compare mangrove extent before and after Hurricane Irma using GMW maps for 2016 and 2018 

as shown in Figure 2.6. GMW Version 3.0 delivers annual mangrove extent maps for 1996, 2007–

2010, and 2015–2020 with each map independently derived from satellite data of that year. This 

ensures that our comparisons across the years are grounded in independently derived observations. 

Our study area, located north of the most severely affected zones, shows no visible large-scale 

changes in mangrove coverage between these two years. While the mapped extent appears stable, 

the literature emphasizes that mangrove protection is not static; storm-related damage and 

subsequent recovery can significantly influence the functional capacity of these ecosystems. Most 

severe mangrove damage occurred farther south, at the southern tip of Florida, particularly in the 

Everglades and in Monroe and Collier counties (Lagomasino et al., 2021). Nonetheless, the 

absence of visible extent loss in our study region, combined with evidence of early regeneration 

and functional recovery in mangrove systems (Temmerman et al., 2023), lends support to the 

assumption that protection levels remained relatively stable during the post-Irma period analyzed. 

Following the standard hedonic property price model, the sale price of a property is expressed as 

a function of its structural attributes, locational characteristics, and environmental amenities. 

Structural attributes include the number of bedrooms and bathrooms, total living area, presence of 

a garage or pool, and other property-specific features. Locational characteristics reflect proximity 

to services such as supermarkets, healthcare facilities, parks, schools, and the coastline. 

Environmental amenities refer to natural features that may enhance or reduce the desirability of a 

location.  

To isolate the causal impact of mangrove protection on property values, the main analysis 

employs a repeat sales model with property fixed effects. This approach controls for all time-
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invariant, unobserved characteristics at the property level such as structural features that could 

otherwise bias estimates in a standard hedonic regression. The estimation is restricted to properties 

that were sold both before and after Hurricane Irma, allowing for a within-property comparison of 

price changes over time. Our analysis assumes that no major gray infrastructure investments 

confound the observed post-Irma price changes. Based on available information, there is no 

indication that flood defense structures were constructed in Lee County during the immediate 

aftermath of Hurricane Irma within the years covered in our dataset. 

Equation (1) models the logarithm of the sale price (𝑃𝑖𝑡) as a function of perceived mangrove 

protection (𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑𝑖), the hurricane event indicator (𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒𝑡), and their interaction, while 

controlling for property fixed effects (𝛼𝑖) and quarter-year (𝜆𝑡) fixed effects. 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 is a 

binary variable equal to one if the property is considered protected by mangroves, based on its 

spatial orientation relative to the ocean. 𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒𝑡 is an event dummy that indicates sales 

transactions occurring after September 10, 2017. 

The model is specified as follows: 

ln(𝑃𝑖𝑡) =  𝛽𝑚 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑𝑖 + 𝛽ℎ 𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒𝑡 +  𝛽𝑒 (𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑𝑖 ∗ 𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒𝑡) + 

 𝛼𝑖 + 𝜆𝑡 +  𝜀𝑖𝑡 

(1) 

 

In equation (1), the interaction term between 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 and 𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒 is our variable of interest; 

it captures the differential change in property values for homes considered protected by 

mangroves, relative to unprotected homes, after the hurricane. The quarter-year fixed effects 

account for market-wide shocks affecting all properties within a given quarter. 
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We also run a Census block fixed effects (𝛾𝑛) model with quarter-year fixed effects (𝜆𝑡) using the 

following specification: 

 

Equation (2) complements the property fixed effects model by capturing variations within Census 

blocks, allowing us to examine how a property's structural characteristics, its location relative to 

points of interest, and its position within the floodplain collectively influence property prices. 

Building on the framework of (Atreya & Ferreira, 2015), we initially incorporated a Damage proxy 

and used water depth from flood insurance claims obtained through the National Flood Insurance 

Program (NFIP) website, which reports water depth at the individual claim level. However, this 

approach was ultimately not used in the final analysis due to limitations discussed later in the 

paper. 

2.4  Data & Descriptive Statistics 

The study utilizes sales records of single-family residential homes in Lee County, Southwest 

Florida, from 2015 to 2019.  While this represents a relatively short timeframe, it reflects the most 

recent four years of available transaction data as of October 2022, and it covers a symmetric 

window of property transactions before and after Hurricane Irma in September 2017. Property 

sales data are drawn from the Lee County Property Appraiser database, which includes structural 

characteristics like lot size, square footage, year built, and presence of amenities such as a pool, 

garage, or seawall. The seawall variable indicates whether a property adjacent to a water body has 

a hardened coastal defense structure, which may affect both its market value and perceived 

ln(𝑃𝑖𝑡) =  𝛽0 +  𝛽𝑥  𝑋𝑖 + 𝛽𝑚 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑𝑖 + 𝛽ℎ 𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒𝑡

+  𝛽𝑒 (𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑𝑖 ∗ 𝐻𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒𝑡) +  𝛼𝑖 + 𝜆𝑡 +  𝜀𝑖𝑡 

(2) 
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resilience to flooding. However, the dataset does not include information on the timing of seawall 

installation, so the variable is treated as time-invariant in our analysis. 

The dataset is spatially enriched by linking each property to environmental and locational 

features, including distance and directional proximity to mangroves, flood risk zones, and 

proximity to points of interest such as schools, hospitals, supermarkets, and recreational centers. 

GMW data are used to compute the distance and angle from each house to the nearest mangrove 

patch. We also calculate each property's angle and distance to the open coastline using county 

shoreline data. A mangrove protection proxy is constructed based on whether mangroves lie 

between the house and the coast, capturing the potential role of mangroves in attenuating storm 

surge. Flood zone classifications come from FEMA’s Flood Insurance Rate Maps and elevation 

data derived from digital elevation models. We also use TIGER/Line shapefiles to assign each 

parcel to its respective census block, tract, and ZIP code, enabling controls for neighbourhood-

level fixed effects. Finally, we incorporate flood insurance data from the National Flood Insurance 

Program (NFIP), which provides water depth at the census block group. Given the inclusion of 

property fixed effects in equation (1), these aggregated measures do not provide any temporal 

variation and are not used in this specification, but they are used in the census block specification 

in equation (2). 

Sale prices are adjusted to 2019 dollars using Lee County housing price index data from the 

Federal Reserve Economic Data (FRED). The literature does not provide standardized guidance 

on handling multiple transactions for the same property within short time frames. To minimize the 

risk of including non-arm’s length sales, transactions where the same property was bought and 

sold multiple times within a few months were excluded. After cleaning and filtering, the dataset 

contains 100,794 unique transactions. We further restrict the analysis to properties located within 
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a 1 K buffer of either the mangrove edge or the shoreline, yielding a final estimation sample of 

19,234 transactions. Properties located on barrier islands are excluded, as they represent a distinct 

housing submarket with systematically higher prices and limited comparability to mainland 

parcels. 

Among the 19,234 sales transactions within the 1-kilometer buffer, 10,543 occurred before 

Hurricane Irma and 8,691 occurred after. We construct a repeat sales panel by identifying 

properties that were sold in both periods surrounding the hurricane, which made landfall in 

September 2017. A total of 1,452 properties appears in both periods, of which 455 are perceived 

as protected. Retaining all transactions for these repeat-sale properties, including 1,636 pre-Irma 

sales and 1,536 post-Irma sales, results in a panel of 3,172 repeat-sale observations. Table 2.1 

presents the distribution of sales transactions before and after Hurricane Irma, disaggregated by 

whether properties are protected by mangroves or not. Since directional alignment is largely time-

invariant, the protection status of each property is assumed to remain unchanged over time. The 

table includes both the full set of transactions within the 1-kilometer buffer and the subset of repeat 

sales. 

A limitation of the repeat sales design is the reduction in sample size, as it includes only 

properties that transacted in both the pre- and post-hurricane periods. Nonetheless, the summary 

statistics reported in Table 2.2 indicate that properties in the repeat sales sample are broadly like 

those in the full estimation sample in terms of structural characteristics, location, and exposure to 

environmental risks. Two-sample t-tests reveal that repeat sales properties tend to have slightly 

lower prices, smaller total area, and are situated at marginally lower elevations. Differences in 

environmental features, including distance to mangroves and inundation depth, are not statistically 

significant. Core structural features, such as the number of bedrooms and stories, show no 



 

 

21 

 

differences. Overall, while the repeat sales sample modestly underrepresents higher-value homes, 

it remains broadly representative of the larger sample, supporting its use in analyzing price 

dynamics over time. This suggests that selection into the repeat sales sample does not 

disproportionately capture properties with higher storm vulnerability during the relatively short 

pre- and post-hurricane period analyzed.  

2.5  Results 

Table 2.3 presents an estimate from a repeat sales property fixed effects model examining the 

relationship between mangrove protection and housing prices within a 1-kilometer buffer. Two 

model specifications are reported: Model 1 defines protection using the  directionality-based 

approach put forth in this paper (𝑐𝑙𝑜𝑠𝑒𝑟_𝑡𝑜_𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒𝑠 × 𝑠𝑎𝑚𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛); Model 2 defines 

protection more simply, based solely on the property's proximity to mangroves 

(closer_to_mangroves). In both models, property fixed effects absorb all time-invariant 

unobserved heterogeneity and standard errors are clustered at the property level since census 

blocks are comprised of both protected and not protected housing units. Across both specifications, 

the coefficient on the Protected indicator is positive but not statistically significant. The hurricane 

indicator is positive and statistically significant in both the models, suggesting an overall increase 

in property prices following Hurricane Irma, likely driven by post-disaster recovery dynamics. 

Substantial federal assistance, including FEMA redevelopment funding and insurance payouts, 

contributed to rebuilding efforts and may have supported property values during the post-Irma 

period  (Federal Emergency Management Agency (FEMA), 2018). The interaction between the 

Protected and Hurricane indicators is positive and statistically significant at the 10% level in both 

models.  
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The results show that the directionality-based measure of mangrove protection (Model 1) yields a 

larger interaction effect between protection and hurricane exposure. Properties classified as 

protected under this definition experienced approximately an 8.0% price premium following the 

hurricane. In contrast, the simpler proximity-based measure (Model 2) also shows a statistically 

significant interaction effect, but the estimated premium is approximately 6.1%. These results 

suggest that incorporating the directional relationship between mangroves, properties, and the 

ocean captures variation in protective value that may be missed by distance-based definitions 

alone. 

We also re-estimate the above regressions using year fixed effects, with results reported in 

Table 2.7 of Appendix A. In model 1a, the interaction term based on the directionality-based 

protection measure remains statistically significant, showing a 7.6% price premium post-hurricane 

periods, reinforcing the robustness of this approach. In contrast, model 2a, which defines 

protection solely based on proximity to mangroves, yields an insignificant interaction term, 

suggesting limited explanatory power when relying on distance alone. 

To validate the identifying assumption of parallel trends underlying our DID framework, 

we conduct a basic comparison of pre- Irma prices. A two-sample t-test comparing pre-Irma 

adjusted log prices between protected and unprotected properties yields a t-statistic of -8.02 and a 

p-value below 0.01. The difference in mean log prices is statistically significant at the 1% level, 

with a 95% confidence interval ranging from -0.460 to -0.279. These results indicate that protected 

properties were priced significantly higher than unprotected properties. Next, we test parallel 

trends assumption using an event study approach, with 2017 as the base year. This specification 

allows us to trace the evolution of treatment effects before and after the event, relative to the base 

year. The pre-treatment coefficients for 2015 and 2016 are small in magnitude and statistically 
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insignificant. A Wald test of joint significance for the 2015 and 2016 interaction terms yields a 

chi-squared statistic of 1.14 with a p-value of 0.32, providing additional support for the parallel 

trend assumption. Figure 2.7 plots the event study coefficients and their 95% confidence intervals 

for both the annual and quarterly specifications, using 2017 and 2017 Q3 as the base periods, 

respectively. In the annual event study, estimates remain close to zero in the pre-event years, 

followed by an upward shift in 2018, indicating a positive price effect of protection in the post-

treatment period. In the quarterly specification, pre-treatment coefficients are close to zero and 

statistically insignificant, except for 2017 Q1 and somewhat Q2. A positive and statistically 

significant effect appears in 2017 Q4, while estimates for subsequent quarters are small in 

magnitude and not statistically significant. The lack of statistically significant effects in subsequent 

quarters may reflect greater noise at the quarterly level. Finally, Figure 2.8 presents average 

adjusted prices across quarter-years for protected and unprotected properties. Prior to Hurricane 

Irma, price trends for both groups move in parallel, although protected properties exhibit slightly 

higher price levels.  

To ensure the reliability of our estimates, we perform a series of robustness and falsification 

tests. First, we expand the spatial scope of the analysis to include properties located within a 2 K 

buffer of either the mangrove edge or the coastline. This broader window accounts for properties 

that may still benefit from mangrove protection or be vulnerable to coastal hazards but lie slightly 

beyond the original spatial threshold. Table 2.4 presents the results. The interaction term between 

Protected and Hurricane remains positive and statistically significant, with an estimated 

coefficient of 0.0938, suggesting a 9.4% price premium for protected properties in the aftermath 

of a hurricane. The larger price effects observed when we include more inland properties are 

consistent with broader post-disaster market dynamics in Florida.  
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As a falsification test, we conduct a placebo analysis using alternative event dates, 

including dates both before and after the actual event as presented in Table 2.5. Specifically, we 

replace the actual hurricane date (September 10, 2017) with placebo dates - September 10, 2016, 

and September 10, 2018 - in separate tests. The estimated interaction between Protected and the 

placebo hurricane indicator is statistically insignificant in both scenarios, lending support to the 

validity of our identification strategy. The absence of an effect in this falsification exercise 

reinforces the interpretation that the main results are not driven by underlying trends or spurious 

correlations. 

We next estimate a hedonic regression with census block fixed effects, using the full 

sample of properties within the 1K buffer. Results for the key variables—protection, hurricane, 

and their interaction—are presented in Table 2.6. In this specification, the interaction between the 

protection dummy and the hurricane indicator is negative and statistically significant, in contrast 

to the results from the property fixed effects model. However, given the larger number of 

observations in the pooled regression, these differences might be driven by sample composition 

rather than model structure alone. The full regression output, including all housing characteristics 

and environmental controls, is provided in Appendix Table 2.8. Across these specifications, we 

observe expected signs for most housing characteristics. Structural attributes such as additional 

bathrooms, garages, and seawalls are positively associated with sale prices, while older homes and 

homes with additional stories tend to sell at a discount. Elevation is positively associated with 

price, and proximity to the coastline is also valued more highly, even after controlling flood zone 

status. Amenities such as proximity to recreational centers and healthcare facilities do not show 

significant effects, whereas proximity to county parks is positively associated with property values. 
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When fixed effects are specified at the neighbourhood level (census block), much of the variation 

in perceived protection may be absorbed, leading to an attenuation of the estimated price premium. 

This divergence suggests that the protective value of mangroves operates at a more localized, 

property-specific level rather than uniformly across neighbourhood. It also reinforces the 

motivation behind our construction of a protection proxy that incorporates the relative 

directionality of mangroves and the ocean for each property. Finally, the pooled regression results 

show that key housing and locational attributes exhibit expected relationships with prices, lending 

further confidence to the overall specification and control structure. 

2.6  Discussion 

The empirical results provide evidence that mangroves play a measurable and economically 

important role in protecting residential properties from hurricane related risks. Although flood 

resilience planning and funding allocations were initiated in the years following Hurricane Irma 

(Flooding Facts, 2024; Flooding Information - Irma), there is no indication of significant flood 

protection infrastructure being constructed in Lee County during the immediate aftermath of the 

hurricane within our study period and within our study area, especially for homes located within 

1 km or 2 km of the coastline or the nearest mangrove fringe. In the repeat sales framework, which 

controls for time-invariant unobserved property characteristics, we find that properties identified 

as protected by mangroves experienced significantly higher price appreciation following 

Hurricane Irma of about 8 percent. The robustness of the interaction effect in the expanded 2K 

buffer further supports this interpretation, suggesting that the valuation of mangrove protection is 

not confined to narrowly defined coastal segments but may extend inland to properties that still 

perceive benefits from nearby natural buffers. 
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Additional analyses further reinforce the robustness of these findings. Placebo tests using 

alternative event dates yield no significant effects, lending credibility to the causal interpretation 

of the main results. Event study estimates confirm parallel pre-trends between protected and 

unprotected properties, consistent with the identifying assumptions of the difference-in-differences 

framework. While the quarterly event study exhibits greater noise and smaller post-treatment 

effects beyond the immediate aftermath of the hurricane, this is expected given smaller sample 

sizes per period. At the same time, results from the full hedonic models with census block fixed 

effects reveal more complex dynamics. While key housing attributes such as structure size, 

elevation, and proximity to the coast continue to exhibit expected signs and significance levels, 

the estimated interaction between protection and hurricane becomes attenuated or statistically 

insignificant in these specifications. This likely reflects the limitations of neighbourhood level 

fixed effects in capturing the nuanced, property-specific ways in which natural protection is 

perceived and valued. Much of the variation in perceived protection is likely absorbed when fixed 

effects are defined at broader spatial units, thereby muting localized dynamics. These findings 

highlight the importance of constructing a refined protection proxy that accounts for the relative 

directionality between mangroves, the ocean, and individual properties, acknowledging that the 

protective function of mangroves is perceived differently at a finer spatial scale.  

Overall, the findings underscore that the protective value of mangroves is recognized and 

capitalized into housing prices, particularly following major storm events, and that perceived 

protection is localized and property-specific rather than uniformly distributed across the 

neighbourhood. 
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2.7  Conclusion 

This paper examines whether the protective presence of mangroves is recognized in property 

markets, particularly during extreme weather events. Using a repeat sales framework and property-

level data, we find that homes identified as protected by mangroves experienced a noticeable 

increase in price appreciation following Hurricane Irma and remain stable when extending the 

spatial buffer to include properties up to 2K from the coast. This suggests that the market does not 

just value proximity to mangroves but also perceives their presence in reducing exposure to storm 

surge. Our approach goes beyond standard proximity-based measures by accounting for the 

relative direction of mangroves and the shoreline, which allows for a more spatially explicit 

assessment of protection.  

These findings contribute to a growing body of literature on the economic valuation of 

ecosystem services, particularly those related to natural infrastructure and climate adaptation. By 

quantifying the protective effect of mangroves on housing prices, this study supports a nature-

based approach to resilience. Mangroves offer a cost-effective alternative to hard infrastructure in 

flood mitigation, and their value is being capitalized in real estate markets. These results offer 

practical insights for policymakers and coastal planners. As climate change intensifies hurricane 

and flood risks, integrating natural infrastructure into economic and policy planning is no longer 

just about conservation, it is also a smart financial and risk management strategy for the future. 
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Table 2.1: Spatial and Temporal Distribution of Sales Transactions (2015-2019) within 1K 

buffer 

 
All transactions Repeat sales  

Pre 

Irma 

Post 

Irma 

Pre 

Irma 

Post 

Irma 

Not 

Protected 
7401 5926 1125 1063 

Protected  3142 2765 511 473 

Total 10543 8691 1636 1536 
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Table 2.2: Summary Statistics for within 1K buffer and for repeat sales houses 

 

Variables 
All transactions Repeat sales   

Mean  Std. dev Mean  Std. dev t stats p-value 

Sales Price ($1000) 434.73 454.58 397.61 364.43 3.8244 0.0001 

Total Area (sq ft) 3769.18 1832.82 3686.28 1684.96 2.5345 0.0113 

Bedrooms 3.01 0.70 3.02 0.70 -1.2200 0.2225 

Bathrooms 2.31 0.77 2.28 0.72 2.2183 0.0266 

Garage  0.84 0.36 0.84 0.36 - - 

Carport 0.09 0.30 0.10 0.30 - - 

Pool 0.56 0.50 0.56 0.49 - - 

Boat dock 0.18 0.38 0.17 0.37 - - 

Seawall 0.26 0.44 0.25 0.43 - - 

Stories 1.13 0.34 1.13 0.33 1.0423 0.2973 

Age 28.99 20.15 31.05 20.86 -5.1919 0.0000 

Elevation (ft) 2.38 1.01 2.33 0.96 2.7052 0.0069 

Distance to school (ft) 7020.52 4825.74 6987.91 4765.30 0.3564 0.7216 

Distance to healthcare 

(ft) 
7134.60 3683.36 7152.06 3624.68 

-0.2509 0.8019 

Distance to 

Supermarket (ft) 
6006.00 4396.80 6001.01 4401.80 

0.0591 0.9529 

Distance to Recreation 

centre (ft) 
2897.90 1707.70 2852.09 1681.71 

1.4183 0.1562 

Distance to Park (ft) 9029.26 6392.40 9061.38 6462.16 -0.2598 0.7950 

Distance to mangroves 

(ft) 
6565.82 5826.60 6748.31 5764.60 

-1.6494 0.0991 

Distance to coastline 

(ft) 
2369.60 1822.53 2323.10 1769.83 

1.3650 0.1723 

Inundation depth 

(inches) 
1.04 2.03 0.98 1.88 

1.8518 0.0641 

Flood Zone  0.74 0.44 0.74 0.44   

Protected  0.31 0.46 0.31 0.46   
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Table 2.3: Property Fixed Effects Regression Output within 1K 

 Model 1  

(Directionality) 

Model 2  

(Proximity) 

Variables Log(price) Log(price) 

Protected (=1) 
0.3093  

(0.2682) 

0.0279  

(0.1378) 

Hurricane (=1) 
0.2817 

(0.1449) 

0.2697 

(0.1445) 

Protected x Hurricane 
0.0799* 

 (0.0313) 

0.0614* 

 (0.0305) 

Fixed-Effects:   

Quarter-year Yes Yes 

Property Yes Yes 

S.E.: Clustered Property  Property  

Observations: 3,172 3,172 

R2 0.85153 0.85106 

Note: standard errors in parentheses; ***p < 0.01, **p<0.05, *p<0.1 
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Table 2.4: Robustness Check with Property Fixed Effects Regression Output within 2K 

 Model 3 

Variables log(price) 

Protected (=1) 
0.1542 

(0.1176) 

Hurricane (=1) 
0.4551*** 

(0.1112) 

Protected x Hurricane 
0.0988*** 

(0.0233) 

Fixed-Effects:  

Quarter-year Yes 

Property Yes 

S.E.: Clustered Property 

Observations: 5,865 

R2 0.84567 
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Table 2.5: Placebo Test 

 
Model 4 

Before Hurricane 

Model 5 

After Hurricane 

Variables log(price) log(price) 

Protected (=1) 
0.2874 

(0.2729) 

0.3121 

(0.2664) 

Placebo Hurricane (=1) 
-0.1229 

(0.1496) 

-0.1270 

(0.0880) 

Protected x Placebo 

Hurricane 

0.0465 

(0.0367) 

0.0396 

(0.0351) 

Fixed-Effects:   

Quarter-year Yes Yes 

Property Yes Yes 

S.E.: Clustered Property Property 

Observations: 3,172 3,172 

R2 0.85082 0.85079 

Note: standard errors in parentheses; ***p < 0.01, **p<0.05, *p<0.1 
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Table 2.6: Neighbourhood Fixed Effects Regression Output within 1K buffer 

 
Model 6 

(All within 1K) 

Variables log(price) 

Protected (=1) 

0.0332 

(0.0260) 

Hurricane (=1) 

0.0634 

(0.0352) 

Protected X Hurricane 

-0.0571*** 

(0.0154) 

Fixed-Effects:  

Quarter-year Yes 

Census Block level Yes 

S.E.: Clustered Census block 

Observations: 19,234 

R2 0.75388 
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Figure 2.1: Lee County Single Family Sales from 2015 to 2019 
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Figure 2.2: Proximity-based mangrove protection may overstate actual protection.  

Note: This map defines the protection dummy based solely on proximity to mangroves. Properties 

shaded yellow are perceived as protected, while those in red are not. However, several properties 

(within the black rectangle) remain directly exposed to the ocean or bay despite their proximity to 

mangroves, illustrating that distance alone does not ensure actual protection. These spatial patterns 

underscore the importance of incorporating directional exposure to more accurately capture the 

protective role of mangroves. 
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Figure 2.3: Determining protection status based on the relative positions of houses, mangroves, 

and the ocean. 
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Figure 2.4: Directional Protection Concept and GIS-Based Implementation 

Note: The left section illustrates conceptual scenarios demonstrating the importance of mangrove 

directionality in coastal protection: (i) a house positioned seaward of the mangroves remains 

exposed to storm impacts, whereas (ii) a house located landward is shielded from incoming waves. 

The right panel shows the application of this concept in ArcGIS Pro, where properties are classified 

as protected or unprotected based on their spatial relationship with nearby mangroves and the 

ocean. Some houses that appear visually behind mangroves are still shown as unprotected (red) 

rather than protected (yellow). This is due to the presence of small water inlets in the coastline 

shapefile. Our method defines protection based on the proximity and directional orientation of 

mangroves relative to the nearest coastline point. In areas with such inlets, this spatial 

configuration results in some houses being categorized as unprotected, even if they appear 

protected in the map view. 
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Figure 2.5: Spatial Distribution of Properties Relative to Coastal Features in Lee County 

Note: We explicitly exclude island scenarios from our analysis. These include properties that are 

surrounded by the ocean, by mangroves, or by both. 
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Figure 2.6: Mangrove extent before and after Hurricane Irma.  

Note: Panel A shows 2016 mangrove extent and Panel B shows 2018 extent, based on GMW maps. 

Yellow dots represent single-family homes within a 1 km buffer of mangroves or ocean.  

 

 

 

Figure 2.7: Event Study Plot 

 

 

 

Figure 2.8: Pre-trend of the two group 
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Appendix A 

 The diagrams below illustrate scenarios to clarify the directional relationship between mangroves, 

the ocean, and a house, in a Cartesian coordinate system. The location of the house corresponds to 

the origin or point (0,0). These scenarios demonstrate how the angular difference and relative 

positioning of mangroves determine whether a house is considered protected. Each scenario 

includes a rough computation of the angular difference and the protection status. 

Protection = same direction × near mangroves 

Scenario 1: Mangroves and ocean in the same direction, properties are protected (Figure 2.9). 

The angular difference between the mangroves and the ocean is less than 90°, indicating alignment 

in the same direction. The mangroves are positioned between the house and the ocean, effectively 

acting as a protective barrier.  
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Figure 2.9: Mangroves & Ocean in the same direction, properties are protected 

 

Scenario 2: Mangroves and Ocean in the same direction, properties are not protected (Figure 2.10). 

The angular difference between the mangroves and the ocean is less than 90°, indicating alignment 

in the same direction. However, the mangroves are not located between the house and the ocean, 

providing no effective protection. In this case, both same_direction and closer_to_mangroves 

dummies are 1, resulting in a protection value of 1. 
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Figure 2.10: Mangroves & Ocean in the same direction, properties are not protected 

 

Scenario 3 & 4: Mangroves and Ocean in the opposite direction, properties are not protected 

(Figure 2.11).  

The angular difference between the mangroves and the ocean exceeds 90°, indicating they are not 

aligned. The house is considered unprotected because the directional alignment condition is not 

met. In this case, same_direction is 0, and protection is automatically 0, regardless of the 

closer_to_mangroves value.  
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Figure 2.11: Mangroves & Ocean in opposite direction, properties are not protected 

 

However, there is an edge case where the closer_to_mangroves dummy may require additional 

consideration. For instance, if the house is very close to the mangroves and the ocean is 

significantly farther away but in the opposite direction, the protection offered by mangroves may 

remain effective despite the lack of directional alignment. In such cases, the influence of the 

ocean’s direction on protection might diminish, and the proximity of mangroves could take 

precedence. This scenario introduces complexity, and we are exploring how to integrate a 

proximity-based threshold for the closer_to_mangroves dummy to account for such cases. These 

edge cases will be addressed in further analyses and are critical for refining the computation of the 

protection variable. 

In the scenarios above, to accurately represent the directional relationship between the nearest 

mangrove extent and the ocean, the angular difference is calculated as the absolute difference 

between their respective angles. However, in cases where this difference exceeds 180°, the value 

is adjusted to reflect the shortest rotational distance. This adjustment accounts for the wraparound 
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nature of angles measured in a circular system, ensuring consistency and correctness in the 

computation. The following examples illustrate this process: 

a. If the angle to nearest mangrove stretch is 20° and to the ocean is -40° then the angular 

distance is the absolute difference between then which is 𝑎𝑏𝑠(𝑎𝑛𝑔𝑙𝑒𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒 −

𝑎𝑛𝑔𝑙𝑒𝑜𝑐𝑒𝑎𝑛) which is 𝑎𝑏𝑠(20° − (−40°)) =  60°. 

b. Similarly, if the angle to nearest mangrove stretch is 100° and to the ocean is -100° then 

the absolute difference between them would initially be calculated as  𝑎𝑏𝑠(100° −

(−100°)) = 200°. However, since 200° exceeds 180°, we adjust the same as 360° −

200° = 160°. This adjustment ensures that the angular difference accurately represents the 

shortest rotational distance between the two directions. 

 

Regression Output: 

Table 2.7 presents result from alternative specifications. In Model 1a, the interaction term based 

on the directionality-based protection measure remains statistically significant, showing a 7.6% 

price premium post-hurricane periods, reinforcing the robustness of this approach. In contrast, 

model 2a, which defines protection solely based on proximity to mangroves, yields an insignificant 

interaction term, suggesting limited explanatory power when relying on distance alone. 

 

Table 2.7: Alternative Protection Measure Based on Relative Proximity 

 Model 1a 

(Directionality) 

Model 2a 

(Proximity) 

Variables Log(price) Log(price) 

Protected (=1) 
0.2986 

(0.2594) 

-0.0140  

(0.1462) 
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Hurricane (=1) 
0.3136*** 

(0.0556) 

0.3179*** 

(0.0564) 

Protected x Hurricane 
0.0765* 

 (0.0312) 

0.0591 

 (0.0303) 

Fixed-Effects:   

Year Yes Yes 

Property Yes Yes 

S.E.: Clustered Property  Property  

Observations: 3,172 3,172 

R2 0.84797 0.84753 

Note: standard errors in parentheses; ***p < 0.01, **p<0.05, *p<0.1 

 

 

Table 2.8 reports the full results of the pooled regression with neighbourhood (census block group) 

fixed effects as referenced in the main text. The model includes a comprehensive set of property 

characteristics, environmental variables, and interaction terms, allowing for a comparison with the 

property fixed effects specification.  

 

Table 2.8: Neighbourhood Fixed Effects Regression Output 

 
Model 7 

(All within 1K) 

Model 8 

(All within 1K) 

Variables log(price) log(price) 

Protected (=1) 

0.0345 

(0.0259) 

0.0332 

(0.0260) 

Hurricane (=1) 

0.0568*** 

(0.0210) 

0.0634 

(0.0352) 

Protected X Hurricane 

-0.0571*** 

(0.0153) 

-0.0571*** 

(0.0154) 

Age 

-0.0117***  

(0.0011) 

-0.0117***  

(0.0011) 

Age square 

8.16e-5 ***  

(1.42e-5) 

8.15e-5***  

(1.41e-5) 

Total Area 

0.0001***  

(5.72e-6) 

0.0001***  

(5.67e-6) 
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Bedrooms 
0.0200*  

(0.0078) 

0.0191*  

(0.0077) 

Bathrooms 
0.0848*** 

(0.0091) 

0.0850*** 

(0.0091) 

Garage (=1) 

0.0648** 

(0.0216) 

0.0654**  

(0.0215) 

Carport (=1) 
-0.0495**  

(0.0186) 

-0.0460*  

(0.0186) 

Pool (=1) 
0.0636*** 

(0.0124) 

0.0614*** 

(0.0123) 

Boat dock (=1) 
0.0250*  

(0.0124) 

0.0228  

(0.0123) 

Seawall (=1) 
0.2893***  

(0.0273) 

0.2924***  

(0.0271) 

Stories 

-0.0640*** 

(0.0176) 

-0.0661*** 

(0.0175) 

Elevation  
0.0535*** 

(0.0142) 

0.0537*** 

(0.0141) 

Distance to school  
-0.0214 

(0.0299) 

-0.0226 

(0.0296) 

Distance to healthcare  
0.0369 

(0.0448) 

0.0379 

(0.0455) 

Distance to Supermarket  -0.0280  

(0.0415) 

-0.0288  

(0.0415) 

Distance to Recreation 

centre 

-0.0444*  

(0.0219) 

-0.0452*  

(0.0220) 

Distance to Park  0.0228  

(0.0276) 

0.0227  

(0.0272) 

Distance to coastline 

-0.1091*** 

(0.0143) 

-0.1096*** 

(0.0143) 

Flood Zone (=1) 

0.0101  

(0.0145) 

0.0118  

(0.0145) 

Fixed-Effects:   

Year Yes No 

Quarter-year No Yes 

Census Block level Yes Yes 

S.E.: Clustered Census block  Census block 

Observations: 19,234 19,234 

R2 0.75176 0.75388 

Note: standard errors in parentheses; ***p < 0.01, **p<0.05, 

*p<0.1 
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Chapter 3  

Let ‘Em Grow: Do Florida Coastal Property Owners Value Mangroves? 

3.1  Introduction 

Coastal zones comprise only 4% of the Earth's land area and 11% of ocean surface, yet they are 

among the planet’s most ecologically and economically productive regions. These areas provide 

life-sustaining ecosystem services, including food provision, nutrient cycling, and storm buffering 

(Barbier et al., 2013; Millennium Ecosystem Assessment, 2005). Yet these ecosystems face 

growing pressure from human activity, particularly as population growth accelerates in coastal 

areas. Their low-lying geography and exposure to tropical storms, sea-level rise, and coastal 

erosion render them particularly vulnerable to natural hazards. In the United States, coastal 

counties account for 40 percent of the population, with a 40 percent increase recorded between 

1970 and 2010 (National Oceanic and Atmospheric Administration, Office for Coastal 

Management, 2013). This rapid expansion in hazard-prone areas heightens the need to protect and 

preserve natural coastal buffers - such as mangroves, which offer cost-effective protection against 

storm surge and flooding. The increasing exposure of assets and communities to coastal risks 

makes the conservation of these natural defenses not only ecologically important but also 

economically and socially imperative. 

Mangroves are a highly productive and salt-tolerant coastal forest ecosystem found primarily 

in the tropical and sub-tropical intertidal regions of the world. Globally, mangroves reduce 

property damage by an estimated $65 billion annually and protect over 15 million people from 

coastal flooding (Menéndez et al., 2020). This study investigates whether and how the presence of 

mangroves is capitalized into coastal property values along Florida’s Gulf Coast. We adopt a 
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property fixed effects hedonic pricing model and employ a long-difference framework, linking 

repeat sales housing data with geospatially referenced mangrove extent from the Global Mangrove 

Watch (GMW) (Bunting et al., 2018, 2022) for three time points: 1996, 2007, and 2017. This 

approach enables us to examine how the effect of mangrove proximity on property values evolves 

over time, providing insight into the dynamic relationship between environmental amenities and 

housing markets. The analysis focuses primarily on the proximity to mangroves, measured as the 

logarithm of distance to the nearest mangrove patch. This variable captures the most direct spatial 

relationship between each property and adjacent mangrove coverage and serves as the core 

measure of mangrove exposure across counties and time. In a supplemental analysis for one of the 

study counties, we also incorporate two additional spatial dimensions, mangrove area within a 

buffer radius of the property and viewshed-based mangrove visibility, to explore whether these 

features are differentially capitalized into housing values. 

A substantial body of research has examined the protective services provided by coastal 

ecosystems, particularly in reducing storm-related damages and preserving lives. Barbier & 

Enchelmeyer (2014) used the expected damage function framework to estimate the economic 

value of storm protection provided by wetlands, showing that even a 0.1 unit increase in wetland 

continuity per meter can reduce storm-related damages by $99–$133 per sub-planning unit. Sun 

& Carson (2020) used the expected damage function approach to assess the economic value of 

wetlands in mitigating damage resulting from 88 tropical storms and hurricanes that hit the United 

States between 1996 and 2016. Del Valle et al. (2020) and Hochard et al. (2019, 2021) used remote 

sensing data to show that areas with mangrove buffers in the US and globally experienced smaller 

economic disruptions and faster recovery following coastal storms. Studies related to India’s 1999 

super cyclone  (Das & Crépin, 2013; Das & Vincent, 2009) found that continuous mangrove belts 
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were associated with significantly fewer fatalities and substantially reduce structural damage even 

at considerable distances from both the mangroves and the coastline. Together, these studies 

highlight the role of mangroves as critical ecological infrastructure in mitigating storm impacts. 

However, most of this work focuses on outcomes at regional or community scales, leaving open 

the question of whether and to what extent such protective benefits are reflected in individual 

housing market outcomes. 

Hedonic pricing provides a well-established framework for estimating the implicit value of non-

market environmental goods, including those related to coastal protection and aesthetic quality. 

Prior studies have used hedonic methods to value beach quality (Landry & Hindsley, 2021), beach 

nourishment (Gopalakrishnan et al., 2011), dune restoration (Dundas, 2017) and voluntary 

property buyouts (Hashida & Dundas, 2023). It has also been used to assess the impact of flood 

risk and coastal amenities on housing markets (Atreya et al., 2013; Atreya & Ferreira, 2015; 

Bakkensen et al., 2019; Bakkensen & Barrage, 2022; Bin, Kruse, et al., 2008; Kousky, 2019). A 

growing body of research also highlights the importance of incorporating viewshed analysis in 

hedonic pricing models, particularly in environmental valuation (Bin et al., 2008; Dundas, 2017; 

Hamilton & Morgan, 2010; Paterson & Boyle, 2002; Walls et al., 2015). When visibility of an 

environmental amenity is correlated with other spatial features, omitting it can lead to biased 

estimates of amenity values. Several studies have used high-resolution elevation data, such as 

Light Detection and Ranging (LiDAR), to construct viewshed-based variables. In coastal contexts, 

ocean views have been shown to significantly influence property values. Bin et al. (2008) and 

Hamilton & Morgan (2010) estimate households’ willingness to pay for incremental improvements 

in ocean views, while  Dundas (2017)  finds effects of ocean visibility in the context of dune 

restoration. Other studies assess the impact of views of terrestrial land cover. Paterson & Boyle 
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(2002) and Walls et al. (2015) found mixed results, with forest views negatively affecting prices 

in some cases, while farmland views having positive effects. Sander & Polasky (2009) emphasize 

that both the composition and diversity of visible land cover types also matter for valuation. 

Consistent with earlier work that relies on visibility metrics, we incorporate a viewshed-derived 

index of mangrove visibility to assess whether and to what extent, visible mangroves are 

capitalized into housing prices. 

Biophysical studies have demonstrated the protective capacity of mangroves, however 

empirical evidence on whether such benefits are reflected in housing markets is limited. This paper 

addresses this gap by applying a property-level hedonic pricing model to evaluate whether housing 

prices respond to changes in mangrove exposure. Our analysis reveals that over the initial ten 

years, a 1% increase in distance from mangroves is associated with a 0.007% to 0.06% increase in 

property prices across the two counties. However, this relationship does not persist over a longer 

time horizon, suggesting that the influence of mangrove proximity on housing prices diminishes 

over time. We find no consistent evidence that mangrove areal extent or visibility affects property 

prices. 

Our study contributes to the growing literature on the economic valuation of ecosystem services 

provided by mangroves and wetlands. Prior work has primarily focused on estimating the 

protective value of mangroves in the context of natural hazards, including studies in India (Das & 

Crépin, 2013; Das & Vincent, 2009),Thailand (Barbier, 2008) and the USA (Del Valle et al., 2020; 

Narayan et al., 2019; Sun & Carson, 2020). While these studies highlight the storm protection 

benefits of mangroves, they do not directly assess how such ecosystems are valued in housing 

markets. To the best of our knowledge, ours is the first hedonic pricing study to incorporate fine-

scale spatial proxies of mangrove presence specifically, proximity, area within a defined radius, 



 

 

52 

 

and visibility from individual properties, to estimate their capitalization into coastal property 

values. 

3.2  Study Area 

Florida boasts an estimated 600,000 acres of mangrove forests , representing the largest extent 

of these ecosystems in the continental United States (Florida Department of Environmental 

Protection, 2024). The three species found in Florida — red mangrove (Rhizophora mangle), black 

mangrove (Avicennia germinans), and white mangrove (Laguncularia racemosa), each have 

unique characteristics and occupy different parts of the coastal environment. Red mangroves, with 

their distinctive prop roots, typically grow along the water’s edge, while black mangroves occupy 

slightly higher elevations and can be identified by their finger-like projections called 

pneumatophores. White mangroves usually grow upland from the other two species. Our study 

focuses on the southwest coast of Florida, particularly the Tampa Bay region, that has experienced 

significant urbanization in the last few decades. This region, which encompasses Florida’s largest 

open-water estuary, has witnessed a substantial loss of coastal wetlands. According to the 

Southwest Florida Water Management District (Garcia et al., 2023) there has been a loss of over 

44% of the wetlands bordering Tampa Bay in the past century. Analyzing the effects of changes 

in mangrove extent over time in this region is crucial, given its environmental significance and the 

scale of the observed habitat loss.  

This study focuses on Pinellas and Hillsborough counties (Figure 3.1), located along Florida’s 

Gulf Coast and bordering the Tampa Bay estuary. According to the 2020 U.S. Census, Pinellas is 

the fourth most populous county in the state, with 959,107 residents and a population density of 

3,512.8 people per square mile. It has 442,789 occupied housing units and a homeownership rate 
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of 68.3%, slightly above the state average. Hillsborough County is larger and more populous, with 

1,513,301 residents and a population density of 1,480 people per square mile. It contains 559,949 

occupied housing units but has a lower homeownership rate of 61.2%. Median household income 

in Hillsborough is $74,308, above the state median, while in Pinellas it is slightly lower at $66,472. 

Both counties are ecologically and economically significant, but they differ in landscape 

characteristics and coastal exposure. Pinellas County is highly urbanized and defined by its 

extensive Gulf coastline and low-lying coastal zones. Hillsborough County, by contrast, features 

a more diverse natural landscape, including inland river systems, forests, and wetlands. Although 

its mangrove coverage is more spatially dispersed, these ecosystems still play a vital role in the 

county’s coastal resilience. The contrasting ecological and development patterns across the two 

counties provide a valuable setting for examining how proximity to mangroves is capitalized in 

their residential housing markets. 

3.3  Empirical Strategy 

We estimate the relationship between housing prices and mangrove proximity using a long-

difference specification based on a repeat sales transaction. This approach compares changes in 

housing prices over extended intervals, specifically between 1996, 2007, and 2017, to assess 

whether shifts in proximity to mangroves are capitalized into property values. Following Chay & 

Michael (2005), study of the Clean Air Act’s county-level reductions in total suspended 

particulates, which treats the 1970 and 1980 census observations as two post-adjustment equilibria, 

we assume the ten-year change in housing prices as households’ long-run willingness to pay for 

the environmental amenity. By focusing on long time horizon, the model captures changes in 

housing market outcomes while differencing out time-invariant unobserved heterogeneity. 



 

 

54 

 

Our core specification follows a semi-log form, standard in the hedonic valuation literature, to 

account for the skewed distribution of housing prices and to allow coefficient interpretations in 

percentage terms (Kuminoff et al., 2010). The primary variable of interest is the logarithm of the 

distance to the nearest mangrove patch, capturing spatial proximity to mangrove extent. The 

property fixed-effects specification is presented in Equation (1): 

𝑙𝑛(𝑃𝑖𝑡) = 𝛽0 +  𝛽𝑚 (𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒𝑠𝑖𝑡) ∗ 𝑃𝑒𝑟𝑖𝑜𝑑𝑡) +  𝛼𝑖 + 𝜀𝑖𝑡 (1) 

where 𝑃𝑖𝑡 is the inflation-adjusted sale price of the property 𝑖 in year 𝑡. The primary variable 

of interest is the interaction term 𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒𝑠𝑖𝑡) ∗ 𝑃𝑒𝑟𝑖𝑜𝑑𝑡, where 

𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒𝑠) represents the log of the distance from the property to the nearest 

mangroves and Periodt is an indicator for the 2007 and 2017 periods, with 1996 as the reference 

year. The terms 𝛼𝑖 captures unobserved, time-invariant property-specific effects (Livy & Klaiber, 

2016; Palmquist, 1982) and 𝜀𝑖𝑡 is the idiosyncratic error term. We also estimate a pooled regression 

model, incorporating a range of property characteristics alongside the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒𝑠 

variable. To account for localized unobserved heterogeneity, we include census block-level fixed 

effects.  

While long difference models effectively eliminate time-invariant characteristics, they do 

not account for time-varying neighborhood factors that may influence housing prices and correlate 

with mangrove proximity.  As part of the future work, we plan to extend the analysis by 

incorporating neighborhood-level controls, as outlined in Equation (2).  

∆𝑙𝑛(𝑃𝑖𝑐) = 𝛽 ∆(𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒𝑠𝑖𝑐)) +  𝛾′ ∆𝑁𝑖𝑐  +  𝜂𝑐 + 𝜀𝑖𝑐  (2) 

where ∆ln(𝑃𝑖𝑐) is the change in the sale price of the property 𝑖 in county 𝑐 between the years 1996 

and 2007. ∆(𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒𝑠𝑖𝑐)) is the change in the proximity to the nearest 
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mangroves patch; ∆𝑁𝑖𝑐 is a vector of changes in neighbourhood-level covariates and 𝜂𝑐 controls 

for unobserved county level trends. This approach is conceptually similar to that of Taylor & 

Druckenmiller (2022) who used a long-difference model to evaluate NFIP claims at the ZIP code 

level, incorporating state fixed effects and a rich set of control variables capturing socio-economic 

changes. While the authors don't explicitly state market equilibrium, their long-difference 

methodology implicitly assumes it. 

To further explore whether alternative measures of mangrove exposure influence housing 

prices, we estimate additional models using a subset of the data restricted to repeat sales 

transactions between Period 0 (1994–1998) and Period 1 (2005–2007) in Pinellas County. All 

spatial exposure measures are constructed within a 1km buffer radius of each property. The choice 

of a 1 km extent is guided by existing literature, Bin et al. (2008) use a 1-mile viewshed buffer in 

their study of coastal amenities.  

Area Analysis 

Using ArcGIS Pro, we generate 1 km buffer around each property and intersect them with 

mangrove extent layers to estimate the total area of mangroves within each buffer radius. The 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒𝑠 𝑎𝑟𝑒𝑎 in equation (3) refers to the percentage of the mangrove within 1 km 

buffer around each property.  

ln(𝑃𝑖𝑡) = 𝛽0 + 𝛽m (log(𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒𝑠 𝑎𝑟𝑒𝑎) ∗ Periodt) +  𝛼𝑖 + 𝜀𝑖𝑡 (3) 

All other variables in Equation (3) are defined in earlier specifications. 

Viewshed Analysis 

To account for the visibility of mangroves from each property, we incorporate a viewshed-

based measure of visual exposure into the hedonic model. Similar to the area-based analysis, this 

viewshed analysis is limited to Pinellas County and includes only repeat sales observed in just two 
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periods: period 0 (1994–1998) and period 1 (2005–2007). The analysis is conducted in ArcGIS 

Pro using the VIEWSHED function, with inputs including property coordinates (as observer 

points), mangrove extent layers, and a custom digital elevation model (DEM) that accounts for 

both natural topography and built structures. Because standard DEMs do not reflect visual 

obstructions from buildings, we construct year-specific terrain surfaces that incorporate vertical 

structures. Building height data are derived from GIS parcel shapefiles, with the number of stories 

assigned to each structure. Following Sander & Polasky (2009), we assume an average floor height 

of 3 meters and add 2 meters to account for roof and foundation elevations. The resulting raster 

layer is added with a base 10-meter DEM (USGS Earth Explorer) to create an elevation surface 

that reflects both topography and built structures. To reflect changes in the built environment, we 

construct separate DEMs for 1996 and 2007, using building data available for each period. We 

calculate the viewshed from each property within a 1-kilometer radius using the year-specific 

custom DEM and mangrove extent for each period. In our viewshed analysis, the observer point 

is placed at the top of each building, approximating the highest occupied floor. No additional 

observer height is added. Figure 3.2 illustrates the viewshed analysis for a representative property. 

A 1-kilometer buffer (shown in blue) is drawn around the parcel to define the spatial extent of the 

viewshed. Using the customized elevation surface, the viewshed function is applied to identify all 

areas visible from the top-story window of the house. The resulting visible region is highlighted 

in orange. Mangrove extent, shown in light green, is then overlaid with the viewshed output. The 

intersecting area, representing the portion of mangroves visible from the property, is shown in 

yellow and used to calculate the percentage of mangrove area that is visible within the 1-kilometer 

radius.  

ln(𝑃𝑖𝑡) = 𝛽0 +  𝛽m (log(𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑣𝑖𝑒𝑤𝑠ℎ𝑒𝑑 𝑎𝑟𝑒𝑎) ∗ Periodt) +  𝛼𝑖 + 𝜀𝑖𝑡 (4) 
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All variables in Equation (4) are as defined in earlier specifications. The term 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑣𝑖𝑒𝑤𝑠ℎ𝑒𝑑 𝑎𝑟𝑒𝑎 refers to the percentage of the visible mangrove area within a 1 km 

buffer around each property. We also estimate two additional specifications: one that includes both 

percent mangrove area and proximity, and another that pairs viewshed with proximity. 

In practice, the scope of our analysis is shaped by data availability. The Global Mangrove 

Watch dataset provides consistent spatial coverage for mangrove extent beginning in 1996, with 

additional layers available for 2007 and subsequent years. Consistent with prior studies (Walls et 

al., 2015), which link land cover data from a single year to nearby years of sales transactions, we 

use static mangrove extent layers for representative periods. Specifically, as indicated in Table 3.1, 

we link the 1996 GMW mangrove layer to housing transactions from 1994 to 1998, and the 2007 

layer to transactions from 2005 to 2007, and the 2017 layer to transactions from 2015 to 2018. 

Based on this approach, our main analysis focuses on three discrete periods to evaluate long-term 

changes in the relationship between mangrove proximity and housing prices. 

3.4  Data & Descriptive Statistics 

The primary data source for this study is the property sales records obtained from the Pinellas 

and Hillsborough County’s Property Appraiser’s website. We focus on single-family home sales 

that align with the years of the available Global Mangrove Watch (GMW) dataset. To construct 

the first long-difference period (1996 to 2007), we use sales from 1994–1996 to represent the 

baseline period and sales from 2005–2007 to represent the later period. For the second long-

difference period (1996 to 2017), we pair the same baseline window (1994–1996) with sales from 

2015–2017. This structure allows us to estimate price changes over roughly 10-year and 20-year 

intervals, anchored to the timing of available mangrove extent data. 
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To adjust for inflation, housing prices are deflated using the Housing Price Index for respective 

Counties, sourced from the Federal Reserve Economic Data (FRED), and expressed in 2019 

dollars. Shapefiles containing property identification numbers and geographic coordinates were 

downloaded from the respective County’s Open data portal. Lastly, elevation data from the USGS 

Earth Explorer is used to construct terrain surfaces, which are critical for conducting viewshed 

analysis. 

Table 3.2 summarizes the descriptive statistics for key variables used in the long-difference 

analysis, separately for Pinellas and Hillsborough. The sample includes all repeat sales of single-

family homes located within 2 km of either mangrove or the ocean as shown in Figure 3.3. Mean 

sales prices were higher in Hillsborough County, averaging $462,000 compared to approximately 

$358,000 in Pinellas County. While several structural features—such as docks, fireplaces, pools, 

and porches—are recorded only for Pinellas, Hillsborough includes other characteristics such as 

the number of bedrooms and bathrooms, heated area, and lot size, reflecting differences in 

available data across the two property appraiser systems. In terms of structural features, homes in 

both counties are predominantly single-unit and single-story dwellings, though Hillsborough 

properties tend to be newer on average (mean age of 32.5 years in Hillsborough vs. 40.5 years in 

Pinellas). With respect to environmental characteristics, properties in Hillsborough are generally 

farther from mangroves, mean distance of 12,570 feet vs. 10,251 feet in Pinellas. Elevation levels 

are comparable across the two counties. 

For the subsample analysis using alternative mangrove exposure measures, the subset includes 

1,752 repeat-sale observations located within 1 km buffer. We note that the exposure to 

mangroves—whether measured by area or visibility—is sparse for a majority of properties. The 

average mangrove area within 1 km of property is approximately 185,429 square feet, but the 
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median and first quartile are both zero, and over 75% of properties have less than 29,000 square 

feet of mangroves nearby. In percentage terms, the average coverage within the 1 km buffer is 

0.55%, with a maximum of 15.7%, reflecting a highly skewed distribution. The viewshed-based 

metrics show comparable patterns. The average visible mangrove area within 1 km is roughly 

185,653 square feet, while both the median and first quartile remain zero. The mean percentage of 

visible mangrove area is 0.55%, nearly identical to the buffer-based measure, with a maximum of 

15.7%. These distributions highlight the substantial heterogeneity in mangrove exposure across 

properties, with a concentration of observations clustered at or near zero exposure. 

3.5  Results 

The analysis uses a long-difference framework across three periods (1996, 2007, and 2017) and 

draws on data from two coastal counties: Pinellas and Hillsborough. We focus exclusively on 

repeat sales of properties located within 2 km of either mangroves or the ocean, restricting the 

sample to those sold multiple times during the study window. This approach enables the estimation 

of within-property changes in housing prices while controlling for all time-invariant, unobserved 

characteristics. Table 3.3 presents the results from property fixed-effects regressions, with standard 

errors clustered at the census block level.  

In Pinellas County, the interaction between distance to mangroves and the first long-difference 

period (a 10-year change from 1996 to 2007) is positive and statistically significant. This suggests 

that over the first long difference period, homes located farther from mangroves are appreciated 

more than those nearby, indicating a price penalty associated with proximity to mangroves. 

However, in the extended long-difference period (the 20-year change from 1996 to 2017), the 

interaction term is statistically insignificant, implying that this effect has faded over time. A similar 
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pattern is observed in Hillsborough County. The first long-difference period (1996–2007) shows 

a strong positive association between distance to mangroves and housing prices but by the 20-year 

mark (1996–2017), the effect reverses and becomes marginally significant, suggesting a potential 

shift in market preferences toward valuing proximity to mangroves. Future research will explore 

the drivers of this shift by integrating neighborhood‐level characteristics into the long-difference 

framework, as specified in Equation (2). 

Taken together, the results point to a temporal shift in how mangrove proximity is valued in the 

housing market. To complement the main analysis, we estimate a pooled model that includes 

structural characteristics and neighborhood fixed effects. The estimated coefficients align with 

expectations – property prices decrease with age and with increasing distance from the coastline. 

The effect of mangrove proximity is similar in both magnitude and direction to that observed in 

the property fixed-effects model, particularly in the first 10-year long-difference specification. The 

results are presented in Table 3.4 in Appendix B.  

We run the subsample analysis of properties in Pinellas County located within 1 km of either 

the coastline or the mangrove fringe. Repeat-sales models with property fixed effects are estimated 

with 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒𝑠 𝑎𝑟𝑒𝑎 and 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑣𝑖𝑒𝑤𝑠ℎ𝑒𝑑 𝑎𝑟𝑒𝑎 as key explanatory variables. In 

both cases, the coefficients are small and statistically insignificant, suggesting no discernible 

relationship between these areal measures and housing prices. As a robustness check, we estimate 

pooled OLS models that include mangrove proximity along with each areal variable. Across all 

pooled specifications, proximity to mangroves remains statistically significant and consistent in 

magnitude, while the 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒𝑠 𝑎𝑟𝑒𝑎 and 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑣𝑖𝑒𝑤𝑠ℎ𝑒𝑑 𝑎𝑟𝑒𝑎 measures 

continue to show no meaningful effect. These findings indicate that it is the proximity to the 
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mangrove patch and not the total area or visibility of mangroves within 1 km of a property, that is 

priced into the housing market. Detailed pooled results are reported in Table 3.5 of Appendix B. 

3.6  Discussion 

This study investigates the relationship between mangrove proximity and housing prices using 

a long-differences framework applied to repeat sales data. The results reveal a positive and 

statistically significant association between distance to mangroves and property values over the 

initial ten-year period (period 1 relative to period 0), suggesting that closer proximity may be 

perceived as disamenity. However, when the analysis is extended to a longer horizon, spanning 20 

years, the effect of mangrove proximity becomes statistically insignificant. This temporal 

divergence indicates that the initial disamenity effect associated with mangrove proximity 

diminishes over time. Several factors may contribute to this attenuation. One possible explanation 

is the impact of policy interventions, notably Florida’s Mangrove Trimming and Preservation Act 

(MTPA, 1996). This legislation, which restricts mangrove trimming and imposes penalties for 

non-compliance, was enacted to preserve the ecological benefits of mangroves, including their role 

in storm surge protection. While disentangling this effect is beyond the scope of this study, 

primarily due to limitations in historical mangrove data. The findings, however, highlight the 

dynamic nature of how environmental amenities and disamenities are capitalized in housing 

markets. The fading of the negative proximity effect may reflect shifting public perceptions, 

increased environmental awareness, or more effective regulatory enforcement in urban coastal 

areas.  

Looking ahead, there is a clear need for high-resolution, annual mangrove extent datasets to 

support more granular analyses of these dynamics. Emerging advancements in remote sensing and 
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machine learning classification provide promising tools for generating such time series. Future 

research that integrates these spatial datasets with detailed property transaction records can more 

precisely identify the long-term market effects of mangrove coverage and assess the influence of 

environmental policy. Despite current data constraints, this study lays groundwork for future 

research at the intersection of land markets, ecosystem change, and coastal management. 
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Table 3.1: Correspondence of Mangrove Extent Years to House Sale Years 

GMW Year Sales Year Range 

1996 1994 – 1998 

2007 2005 – 2007 

2017 2015 - 2019 

Note: GMW refers to the Global Mangrove Watch dataset. 

Mangrove extent layers from each reference year are linked to 

nearby housing transactions to represent property proximity to 

mangroves. 

 

 

Table 3.2: Descriptive Statistics 

 Variables Pinellas Hillsborough 

 Mean SD Mean SD 

Sales Price ($1000) 357.83 284.68 461.67 620.41 

dock (1/0) 0.085 0.279 - - 

Fireplace (1/0) 0.496 0.500 - - 

Pool (1/0) 0.515 0.500 - - 

Porch (1/0) 0.049 0.215 - - 

Total Effective Area (sq ft) 2251.76 1252.49 - - 

Units  1.01 0.12 1.03 0.16 

Stories 1.27 0.52 1.31 0.54 

Age 40.51 20.05 32.50 28.00 

Beds - - 3.30 0.86 

Baths - - 2.33 0.95 

Heated area - - 1973.34 1017.55 

Acreage - - 0.23 0.33 

Distance to mangroves (ft) 10251.10 6901.77 12569.88 8554.58 

Distance to coastline (ft) 2626.07 1966.55 1534.83 1019.46 

Elevation (m) 11.25 6.07 11.17 5.52 
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Table 3.3: Property Fixed Effects Regression 

 
Pinellas 

Model 1 

Hillisbourg  

Model 2 

Variables log (price) log (price) 

log (Distance to 

mangroves) x period = 1 

0.0071*  0.0595***  

(0.0030) (0.0077) 

log (Distance to 

mangroves) x period = 2 

-0.0046  -0.0238*  

(0.0061) (0.0116) 

Fixed-Effects:   

Property Yes Yes 

S.E.: Clustered Census Block Census Block 

Observations: 7,997 26,553 

R2 0.87386 0.83827 

Note: standard errors in parentheses; ***p < 0.01, **p<0.05, *p<0.1 
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Figure 3.1: Study Area - Pinellas and Hillsborough County, Florida 
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Figure 3.2: Visibility analysis for a representative property, showing buffer, viewshed, mangroves, 

and visible mangrove extent. 
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Figure 3.3: Repeat sales within 2K buffer 
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Appendix B 

Table 3.4: Pooled Regression Output using Proximity measure only 

 Pinellas Hillisbourg 

 
Model 1 

(1K Buffer) 

Model 2 

(2K buffer) 

Model 3 

(1K Buffer) 

Model 4 

(2K buffer) 

Variables log (price) log (price) log (price) log (price) 

log (Distance to 

mangroves) x period = 1 

0.0234***  0.0174*** 0.1242***  0.1193***  

(0.0021) (0.0019) (0.0016) (0.0021) 

log (Distance to 

mangroves) x period = 2 

0.0225***  0.0173***  0.1158***  0.1070***  

(0.0038) (0.0034) (0.0018) (0.0018) 

Age 
-0.0042**  -0.0033*  0.0019***  0.0019***  

(0.0016) (0.0015) (0.0005) (0.0004) 

Dock (0/1) 
0.2133***  0.2101***    

(0.0387) (0.0392)   

Fire (0/1) 
0.1152***  0.1094***    

(0.0215) (0.0185)   

Pool (1/0) 
0.1678***  0.1669***    

(0.0208) (0.0174)   

Porch (1/0) 
0.0836.  0.0838*    

(0.0429) (0.0333)   

Units (1/0) 
-0.0222  -0.1443  -0.1235*  -0.1042**  

(0.2304) (0.1854) (0.0493) (0.0371) 

Stories 
-0.0423  0.0006  0.0240  0.0113  

(0.0286) (0.0327) (0.0242) (0.0189) 

Total Effective Area 
0.0001***  0.0001**    

(2.64e-5) (3.6e-5)   

log (Distance to ocean) 
-0.0518*  -0.0635**  -0.1958***  -0.1823***  

(0.0247) (0.0223) (0.0289) (0.0246) 

Elevation 
-0.0108  -0.0192  -0.0488**  -0.0513***  

(0.0214) (0.0190) (0.0169) (0.0136) 

log (Distance to ocean) x 

elevation 

0.0015  0.0029  0.0068**  0.0068***  

(0.0031) (0.0025) (0.0025) (0.0018) 

Beds 
  0.0476***  0.0415***  

  (0.0115) (0.0093) 

Baths   0.0364*  0.0334**  
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  (0.0142) (0.0110) 

Heated Area 
  0.0001***  0.0002***  

  (3.39e-5) (2.91e-5) 

Acreage 
  0.0743*  0.0816**  

  (0.0308) (0.0273) 

Fixed-Effects:     

Census Block Yes Yes Yes Yes 

S.E.: Clustered Census Block Census Block Census Block Census Block 

Observations: 5,030 7,997 15,718 26,553 

R2 0.85937 0.84215 0.75509 0.73136 

Note: standard errors in parentheses; ***p < 0.01, **p<0.05, *p<0.1 

 

Table 3.5: Pooled Regression Output for Pinellas Conty using area and viewshed measure 

 Area analysis 
Viewshed 

analysis 

Area with 

proximity 

Viewshed 

with 

proximity 

Variables log (price) log (price) log (price) log (price) 

log (Distance to 

mangroves) x period = 1 

  0.0227*** 0.0227*** 

  (0.0043) (0.0043) 

(Percent of viewshed 

area) x period = 1 

 -0.0025  -0.0006 

 (0.0047)  (0.0045) 

(Percent of mangroves 

area) x period = 1 

-0.0025  -0.0007  

 (0.0046)   (0.0045)  

Age 
0.0144***  0.0144***  -0.0031  -0.0031  

 (0.0017)  (0.0017)  (0.0038)  (0.0038) 

Dock (0/1) 
0.2484**  0.2484**  0.2516**  0.2516**  

 (0.0828)  (0.0828)  (0.0788)  (0.0788) 

Fire (0/1) 
0.0704  0.0704  0.0743  0.0743  

 (0.0534)  (0.0534)  (0.0467)  (0.0467) 

Pool (1/0) 
0.1668***  0.1668***  0.1260**  0.1260**  

 (0.0484)  (0.0484)  (0.0454)  (0.0454) 

Porch (1/0) 
0.2137 0.2136 0.1820  0.1820  

 (0.1261)  (0.1261)  (0.1193)  (0.1193) 

Units (1/0) 
-1.034***  -1.034***  -0.3964 -0.3962 

 (0.1648)  (0.1648)  (0.2188)  (0.2188) 

Stories 
 -0.1675*   -0.1674*   -0.1448*   -0.1448*  

 (0.0815)  (0.0814)  (0.0684)  (0.0684) 

Total Effective Area 
0.0003***  0.0003***  0.0003***  0.0003***  

 (5.58e-5)  (5.58e-5)  (5.18e-5)  (5.18e-5) 

log (Distance to ocean) 0.0103  0.0103  -0.0098  -0.0098  
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 (0.0574)  (0.0574)  (0.0597)  (0.0597) 

Elevation 
0.0355  0.0355  0.0370  0.0370  

 (0.0469)  (0.0468)  (0.0360)  (0.0360) 

log (Distance to ocean) x 

elevation 

-0.0041  -0.0041  -0.0044  -0.0044  

 (0.0067)  (0.0067)  (0.0054)  (0.0054) 

Fixed-Effects:     

Census Block Yes Yes Yes Yes 

S.E.: Clustered Census Block Census Block Census Block Census Block 

Observations: 1,752 1,752 1,752 1,752 

R2 0.85789 0.85789 0.862 0.862 

Note: standard errors in parentheses; ***p < 0.01, **p<0.05, *p<0.1 
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Chapter 4  

Shoreline Wonders: Navigating Mangroves with Geographic Information Systems 

  

4.1  Introduction 

Coastal ecosystems, although occupying just 4% of the Earth’s land and 11% of its ocean 

surface, provide disproportionately large ecological and economic benefits. These include carbon 

storage, flood mitigation, water purification, and critical habitat for biodiversity. Yet, these 

regions—particularly coastal forests—are increasingly threatened by human activities. The U.S. 

coastal zone, which accounts for less than 10% of the country’s land area, is home to nearly 40% 

of the population, making it especially vulnerable to land use pressures (National Oceanic and 

Atmospheric Administration, Office for Coastal Management, 2013). Between 1970 and 2010, the 

population in coastal counties grew by over 40%, driving intensified development and placing 

stress on natural buffers. As climate change amplifies risks such as storm surge and hurricane-

induced flooding, the degradation of coastal forests raises critical concerns about the long-term 

resilience of coastal communities. 

Occupying the intertidal zones of tropical and subtropical coasts, mangroves are salt-tolerant 

forests that play a critical role in protecting coastal areas. With their complex root systems, they 

stabilize shorelines, reduce erosion, trap sediments, and serve as critical barriers against storm 

surge and flooding. In addition to their protective role, mangroves support fisheries, store large 

amounts of carbon, and provide habitat for diverse flora and fauna. Despite these benefits, 

mangroves have experienced widespread loss due to coastal development, aquaculture, and 

climate-related stressors. Understanding how mangrove cover has changed over time is essential 
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for assessing both ecological resilience and the services these ecosystems provide to coastal 

communities. This study develops a remote sensing-based methodology to map the historical 

extent of mangroves in southwest Florida over the period 1985 to 2020 using the Google Earth 

Engine (GEE) platform. We use the Global Mangrove Watch (GMW) (Bunting et al., 2018, 2022) 

dataset  as a reference and apply supervised learning approaches to predict mangrove extent. 

Our approach builds on a growing body of research that leverages long-term satellite 

imagery to monitor mangrove extent and dynamics. The use of Landsat data has been central to 

this effort. Giri et al. (2011) pioneered the first high-resolution global mangrove map for the year 

2000, using Landsat imagery to estimate a global extent of approximately 137,760 km² and 

highlighting regional hotspots of loss. This work laid the foundation for subsequent efforts such 

as the GMW (Bunting et al., 2018, 2022), which to produce consistent time-series maps of 

mangrove extent for select years starting 1996. With reported classification accuracy above 95%, 

the GMW dataset has become a widely used reference for both scientific research and conservation 

planning. The introduction of GEE has further expanded the capacity for large-scale, reproducible 

analysis of mangrove dynamics. Yancho et al. (2020) developed the tool to map and monitor 

mangrove ecosystems in Myanmar using a random forest classifier, showcasing GEE's utility in 

regional-scale ecosystem monitoring. Similarly, Lagomasino et al. (2021) used GEE and multi-

sensor datasets to track mangrove loss and recovery following extreme climatic events, 

demonstrating the value of high-frequency observations in capturing both short-term disturbances 

and long-term trends. Together, these studies represent a significant shift from static snapshots to 

more dynamic, process-oriented assessments of mangrove change. In parallel, recent advances in 

deep learning have opened new frontiers in ecological remote sensing. Guo et al. (2021) introduced 

ME-Net, a mangrove extraction model trained using semantic segmentation and visual 
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interpretation of high-resolution Sentinel imagery. Yang et al. (2022) demonstrated the 

effectiveness of convolutional neural networks (CNNs) for mapping urban tree crowns using 

Landsat 8 imagery. While these approaches remain relatively underutilized in mangrove research, 

they highlight the growing potential of deep learning techniques for improving pixel-level 

classification accuracy, an aspect particularly relevant for applications requiring fine spatial 

granularity, such as ecosystem valuation. 

A comprehensive, long-term analysis of mangrove extent in southwest Florida, capturing multi-

decadal trends, regulatory shifts, and development pressures, has been largely missing from 

literature. This study addresses that gap by building a consistent temporal record of mangrove 

cover spanning from 1985 to 2020, using a reproducible, scalable classification workflow 

grounded in remote sensing and cloud computing. In addition to generating spatial data for 

ecological monitoring, these outputs are specifically designed to support downstream economic 

analysis on the capitalization of mangrove protection in adjoining coastal property markets. 

Recognizing the need for higher spatial precision, future work will focus on developing a U-Net 

(Ronneberger et al., 2015) based deep learning model as a future extension. U-Net is a 

convolutional neural network architecture designed for pixel-wise image segmentation, 

particularly effective in capturing fine spatial details and preserving boundary information. The 

following sections describe the study area, data sources, creation of training labels, model 

development, post-classification processing and results from the three supervised models. 

4.2  Study Area 

Mangroves in the continental United States are predominantly found in Florida, which supports 

most of these forests. Florida is home to approximately 600,000 acres of mangrove forests, 
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representing the largest and most ecologically significant mangrove habitat in the U.S. (Florida 

Department of Environmental Protection, 2024). These forests are concentrated along the southern 

and southwestern coasts, where subtropical conditions support their year-round growth. The region 

is dominated by three native species - red mangrove (Rhizophora mangle), black mangrove 

(Avicennia germinans), and white mangrove (Laguncularia racemosa), each occupying distinct 

ecological zones along the coastal gradient. Red mangroves, known for their prominent prop roots, 

thrive along the shoreline and play a key role in stabilizing sediments. Slightly inland, black 

mangroves grow at higher elevations and are recognized by their vertical pneumatophores, which 

facilitate gas exchange in oxygen-poor soils. White mangroves typically occur even further inland, 

where tidal influence is reduced. Together, these species form a transitional buffer zone between 

terrestrial and marine environments, supporting a wide array of biodiversity and providing critical 

services such as erosion control, water filtration, and fish nursery habitat. 

Our study focuses on the southwest coastal region of Florida, specifically the Tampa Bay area, 

which is bordered by Pinellas, Hillsborough, and Manatee counties (see Figure 4.1). These areas 

are ecologically significant, encompassing Florida’s dynamic coastal wetlands, and are also among 

the most urbanized and rapidly developing regions in the state. The Tampa Bay estuary, Florida’s 

largest open-water estuary, has been particularly impacted by land conversion, hydrological 

alterations, and infrastructure development. Historical assessments by the Southwest Florida 

Water Management District (Garcia et al., 2023) report a loss of over 44% of coastal wetland 

acreage in the region over the past century—a trend that includes both mangrove forests and salt 

marshes. Given this context, a detailed analysis of long-term mangrove cover change in southwest 

Florida is both timely and necessary. Identifying spatial patterns of gain and loss over the past 
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several decades not only contributes to understanding ecosystem responses to anthropogenic and 

climatic pressures but also informs local conservation and land-use strategies. 

4.3  Data Sources 

Recent advances in cloud computing have significantly improved researchers’ ability to access, 

process, and analyze large volumes of geospatial data. Platforms such as GEE allow for scalable, 

real-time processing of satellite imagery and other spatial datasets without the need for local 

storage or high-performance computing infrastructure. Among the wide range of datasets available 

on GEE, Landsat and Sentinel are two of the most widely used Earth observation programs for 

monitoring land cover, vegetation dynamics, and environmental change. The Landsat program, 

jointly operated by the U.S. Geological Survey (USGS) and NASA, was launched in 1972 and 

provides a continuous record of Earth’s surface. On the other hand, Sentinel satellites are more 

recent and designed to provide regular, systematic, and reliable data for environmental and natural 

resource monitoring. Sentinel-1 offers a spatial resolution of 5 to 20 meters, depending on the 

imaging mode, while Sentinel-2 provides a resolution of 10 to 60 meters, depending on the spectral 

band. However, for studies requiring long-term temporal coverage, such as ours, Landsat imagery 

is preferred due to its extensive historical archive. Landsat 5 (U.S. Geological Survey, 2020a) 

Thematic Mapper which operated from 1984 to 2013, provides data suitable for the earlier portion 

of our study period. For years from 1999 onward, we use imagery from Landsat 7 (U.S. Geological 

Survey, 2020b) Enhanced Thematic Mapper Plus, launched in 1999. Both collections offer surface 

reflectance products that are atmospherically corrected and well-suited for land cover 

classification. We use the Shuttle Radar Topography Mission (SRTM) digital elevation data (Farr 

et al., 2007) at a resolution of 1 arc-second (approximately 30m) to map and mask higher elevation 
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area (NASA Jet Propulsion Laboratory, 2013). To generate ground truth for model training, we 

use GMW products, which provide mangrove extent maps for discrete years: 1996, 2000, 2007, 

2010, 2015, and 2020. Specifically, we use the GMW layers from 1996 and 2020 as reference data 

to create binary training labels: mangrove = 1, non-mangrove = 0 for supervised classification. 

4.4  Methodology 

Preprocessing Steps 

This section outlines the geospatial and spectral preprocessing steps conducted prior to 

classification, as illustrated in the block diagram (Figure 4.2). The workflow begins with acquiring 

Landsat 5 and Landsat 7 surface reflectance imagery, which serve as the primary input for 

generating spectral features across the study period (1985–2020). Terrain information from the 

SRTM Digital Elevation Model is incorporated to restrict the analysis to low-lying coastal areas 

by masking out higher elevation zones that fall outside the mangrove-growing range. We use 

GMW layers from 1996 and 2020 as ground truth because they represent the temporal extremes 

of mangrove extent in the dataset. This allows the model to learn from the widest observed 

variation in mangrove coverage, enhancing its ability to generalize across different spatial and 

temporal conditions, while also avoiding the added complexity of incorporating multiple 

intermediate years. These layers are combined through logical operations, described in the 

following section, to produce binary labels (mangrove = 1, non-mangrove = 0). Spectral and 

elevation data are extracted for each labeled point, and the dataset is partitioned into training 

(70%), testing (15%), and external validation (15%) subsets. The trained machine learning model 

is then used to predict mangrove extent using satellite imagery for each year from 1985 to 2020, 

enabling consistent year-on-year classification. 
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Label Generation from known mangrove extents 

We start with the geometry tool in GEE to define the spatial extent of our study area that 

encompasses the coastal boundaries of Pinellas, Hillsborough, and Manatee counties in the Tampa 

Bay region. To define ground truth, we use the GMW layers from 1996 and 2020, which represent 

the earliest and most recent GMW products currently available. The logical intersection of these 

two layers allows us to identify core mangrove areas that have persisted over a 24-year period. To 

reduce classification uncertainty along the edges, we apply a spatial filter that retains only interior 

pixels fully surrounded by mangrove cover as shown in Figure 4.3 (a). 

To generate non-mangrove training labels, we first created a union of the GMW 1996 and 2020 

layers, which captured all areas classified as mangroves in either year. This union captured both 

persistent and transitional zones and served as a conservative estimate of historical mangrove 

presence. To reduce the risk of mislabeling near boundaries, we applied a 50-meter buffer using a 

focal maximum filter to create a mangrove buffer around this union. We then defined our region 

of interest (ROI) by expanding the mangrove union to a 1000-meter buffer, capturing ecologically 

adjacent areas. The non-mangrove class was derived by subtracting the 50-meter mangrove buffer 

from the 1000-meter ROI, isolating pixels located between these two boundaries. This approach 

helped minimize boundary contamination while focusing on stable, ecologically distinct non-

mangrove zones (Figure 4.3(b)). Figure 4.3(c) shows the final training labels, combining core 

mangrove areas (in green) and non-mangrove regions (in red) into a single binary classification 

layer, where landcover = 1 indicates mangrove and landcover = 0 indicates non-mangrove. 

Deriving Spectral and Elevation Features for Classification 

We used Landsat 5 imagery for the period 1985 to 1998 and Landsat 7 for 1999 to 2020. The 

year 2020 served as our baseline for model development, with the classification model trained on 
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imagery from this year and validated against the GMW 2020 extent layer to assess accuracy. The 

algorithm that performed best was then applied across all years to generate consistent historical 

mangrove extent maps. For the model building, we gathered Landsat imagery from January 1 to 

December 31, 2020. The imagery was cloud-masked, clipped to the study area, and aggregated 

into a single, cloud-free composite using a median reducer. 

The spectral bands from these Landsat composites served as the covariates (independent 

variables) in the classification model. As part of feature engineering, we further derived a suite of 

spectral indices listed in Table 4.1, to enhance distinction between mangrove canopy, open water, 

and upland surfaces. Each index targets a distinct biophysical property relevant to mangrove 

ecology. The Normalized Difference Vegetation Index (NDVI) exploits the strong reflectance of 

healthy vegetation in the near-infrared and its absorption in the red portion of the spectrum 

(Tarpley et al., 1984). The Enhanced Vegetation Index (EVI) was developed to improve sensitivity 

in high biomass regions and reduce atmospheric and canopy background effects (A. Huete et al., 

1999). The Soil Adjusted Vegetation Index (SAVI) further corrects for soil brightness in areas 

with sparse vegetation cover (A. R. Huete, 1988). The Green Chlorophyll Vegetation Index 

(GCVI) uses the green reflectance band to estimate chlorophyll concentration, particularly in the 

absence of a red-edge band (Gitelson et al., 2003). For water detection, the Normalized Difference 

Water Index (NDWI) uses green and near-infrared reflectance to estimate vegetation water content 

(Gao, 1996). The Modified NDWI (MNDWI) replaces the NIR band with SWIR to enhance open 

water detection, particularly in built-up region (Xu, 2006). The Land Surface Water Index (LSWI), 

which also uses NIR and SWIR bands, has been used in wetland studies to detect waterlogged 

vegetation and changes in leaf water content (Chandrasekar et al., 2010). Two mangrove-specific 

indices were also included: the Composite Mangrove Recognition Index (CMRI), defined as the 
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difference between NDVI and NDWI (Gupta et al., 2018), and the Modular Mangrove Recognition 

Index (MMRI), which combines absolute NDVI and MNDWI values to improve mangrove–non-

mangrove separation (Diniz et al., 2019). To capture spectral characteristics of built-up or 

disturbed areas, the Enhanced Built-up and Bareness Index (EBBI) integrates SWIR, NIR, and 

thermal infrared bands to distinguish built-up surfaces from bare soil and vegetation (As-syakur et 

al., 2012). Additionally, simple spectral ratios were computed to support surface characterization: 

the Simple Ratio (SR), defined as NIR divided by red reflectance, is one of the earliest vegetation 

metrics (Jordan, 1969); the Ratio 5/4 (SWIR/NIR) and Ratio 3/5 (Red/SWIR) are commonly used 

to distinguish vegetative and non-vegetative surfaces based on relative spectral behaviour.  

Together, these thirteen indices form a complementary feature set that, when stacked alongside the 

original Landsat spectral bands and elevation data, enhanced the model's ability to distinguish 

mangroves from other land cover types. 

Refining the Area of Interest for Classification using Otsu Thresholding 

To refine the region of interest (ROI) for classification, we adapted the method of Donchyts et 

al. (2016) which applies Canny edge detection (Canny, 1986) to identify boundary zones, and Otsu 

(1979) thresholding method to compute an optimal threshold for water detection using the 

Modified Normalized Difference Water Index (MNDWI) as shown in Figure 4.4. MNDWI 

enhances the spectral contrast between open water and non-water surfaces by combining green 

and shortwave infrared (SWIR) bands. Higher MNDWI values typically correspond to water 

bodies, while lower or negative values indicate land or built-up areas. Pixels in the ROI with 

MNDWI values below this threshold were classified as land, while those above it were identified 

as open water. The resulting mask defines the final classification area, as shown in Figure 4.4(b). 
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4.5  Experimental Setup 

Training Dataset 

To construct the training dataset, we overlaid the binary landcover labels from Figure 4.3(c) 

where landcover = 1 indicates mangrove and landcover = 0 indicates non-mangrove, onto the 

refined Region of Interest (ROI) defined in Figure 4.4(b). This overlay resulted in a complete 

dataset comprised of both the output labels and the input covariates, which included Landsat 

surface reflectance bands, derived spectral indices, and elevation data. On this composite image, 

we performed stratified random sampling, extracting 3,000 samples per class to ensure balanced 

representation of mangrove and non-mangrove pixels in the training set. To facilitate robust model 

evaluation, the sampled points were partitioned into training, testing, and validation subsets. 

Specifically, 70% of the points were allocated for training, 15% for testing, and the remaining 15% 

reserved for validation. Hyperparameter tuning for each model was conducted using the training 

and testing sets, allowing us to optimize performance while avoiding overfitting. The final 

validation set, held out entirely from the model-building process, serves as an out-of-sample check 

to assess the generalizability and robustness of each classifier across unseen regions. 

Model Development 

GEE has increasingly been used in land use and land cover (LULC) change studies, combining 

the platform’s cloud computing capabilities with supervised machine learning (ML) algorithms 

such as Classification and Regression Trees (CART), Random Forests (RF), and Support Vector 

Machines (SVM) (Ganjirad & Bagheri, 2024; Gorelick et al., 2017; M et al., 2023). These models 

can be trained directly within the GEE JavaScript API environment using labelled input features 

and allow flexible hyperparameter tuning and model evaluation. In this study, we implemented 
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each of these algorithms on a common training dataset and optimized them through grid search 

over relevant hyperparameters to maximize classification performance. 

The Classification and Regression Tree (CART) model (Breiman et al., 1984) is a decision tree-

based algorithm that recursively partitions the data into homogeneous subsets based on feature 

values, resulting in a hierarchical tree structure for classification. We tuned two key 

hyperparameters: maxNodes, which controls the maximum number of terminal nodes and thus the 

model's complexity, and minLeafPopulation, which specifies the minimum number of samples 

required in a terminal node to reduce the risk of overfitting. A grid search was conducted over five 

values for each hyperparameter: maxNodes = {10, 50, 75, 100, 150} and minLeafPopulation = {5, 

10, 20, 50, 100}, resulting in 25 total hyperparameter combinations. For each combination, the 

model was trained on the training set and evaluated on the testing set. Based on classification 

accuracy, the optimal hyperparameter values for the final CART model were maxNodes = 50 and 

minLeafPopulation = 20. 

The next model we implemented was Random Forest (RF) (Breiman, 2001), an ensemble 

learning method that constructs multiple decision trees and aggregates their predictions to improve 

classification accuracy and reduce overfitting. We tuned three key hyperparameters: 

numberOfTrees, which determines the total number of trees in the ensemble; variablesPerSplit, 

which specifies the number of features randomly selected at each split to promote tree diversity; 

and bagFraction, which controls the proportion of training data sampled (with replacement) to 

grow each tree. A comprehensive grid search was conducted over 120 combinations, testing 

numberOfTrees values of 50, 100, and 150; variablesPerSplit values ranging from 5 to 14; and 

bagFraction values from 0.60, to 0.90. Each model was trained on the training set and evaluated 

on a validation set, with classification accuracy used as the selection criterion. The optimal 
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hyperparameter values for the final RF model were numberOfTrees = 50, variablesPerSplit = 12, 

and bagFraction = 0.60, which yielded an accuracy of 89.2%. The Variable Importance from the 

Random Forest model shown in Figure 4.5 highlight the importance of spectral indicators in 

distinguishing mangrove and non-mangrove areas. 

Lastly, we trained a Support Vector Machine (SVM) model (Cortes & Vapnik, 1995), a 

supervised learning algorithm that constructs a hyperplane to optimally separate data into distinct 

classes. We implemented the SVM classifier using a Radial Basis Function (RBF) kernel, which 

is well-suited for capturing non-linear relationships in the data. Two key hyperparameters were 

tuned: gamma, which controls the influence of individual training examples (with lower values 

corresponding to broader influence), and cost, which balances the trade-off between maximizing 

the decision margin and minimizing classification error. A grid search was performed over 32 

hyperparameter combinations, testing gamma values of 0.1, 0.3, 0.5, and 0.7, and cost values of 

0.01, 0.1, 1, 10, 25, 50, 75, and 100. Each combination was trained on the training set and evaluated 

on the testing set, with accuracy scores recorded for comparison. Based on these results, the 

optimal configuration for the final SVM model was gamma = 0.1 and cost = 10. 

4.6  Results 

Our test and validation accuracy varied by the method used for the final CART, RF, and SVM 

models (Table 4.2). Based on the comparative performance of the three models, we selected the 

Random Forest (RF) classifier for extent mapping. We assessed the Random Forest model on the 

validation subset withheld during training. The confusion matrix for this subset resulted in an 

overall accuracy of 99.44% and a Kappa coefficient of 0.79, indicating strong agreement between 

predicted and actual land cover classes. Following this, the final model was applied to classify the 
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full 2020 Landsat image stack over the region of interest. The resulting classification output was 

post-processed using a connected pixel filter to remove isolated misclassified pixels. Only clusters 

with at least 50 connected pixels were preserved in the final map. To assess spatial performance 

at the pixel level, we compared the model’s mangrove classification (binary: 1 = mangrove, 0 = 

non-mangrove) with GMW 2020 for the same region. From this spatial comparison, the model 

correctly identified 14,174 mangrove pixels (true positives) and approximately 2,286,057 non-

mangrove pixels (true negatives). It misclassified 10,148 non-mangrove pixels as mangroves (false 

positives) and failed to detect 2,806 mangrove pixels (false negatives). The overall accuracy was 

calculated to be 99.44%, reflecting the proportion of all correctly classified pixels. To provide a 

clearer picture of model performance for the mangrove class, we also computed user’s accuracy 

(precision) and producer’s accuracy (recall). The user’s accuracy was 58.28%, indicating that more 

than half of the pixels predicted as mangrove were correct. In contrast, the producer’s accuracy 

was 83.47%, suggesting that most actual mangrove pixels were successfully identified. These 

metrics highlight a common trade-off: while the model tends to overpredict mangroves (resulting 

in a lower precision), it rarely fails to detect true mangrove areas (reflected in the high recall). 

Figure 4.6 presents the results of the 2020 classification, comparing the predicted mangrove extent 

generated by the Random Forest model with the known extent from the GMW dataset to visually 

assess spatial agreement. 

We use the final Random Forest classifier to predict mangrove extent for each year from 1985 

to 2020. To estimate total mangrove area, we calculate the number of pixels classified as 

mangroves and multiply by their actual ground area, converting the results to hectares. While year-

to-year variation is evident in Figure 4.7, the overall trend indicates a steady increase in mangrove 

coverage across the region after 1990. A notable exception is the sharp decline between 1989 and 
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1990, which may be attributed to the extreme freeze event recorded during the 1989 Christmas 

period. Reports suggests that this cold snap brought sustained freezing temperatures across Florida, 

leading to widespread mangrove defoliation and dieback (Southeast Florida Coastal Marine 

Ecosystem, 2013). 

4.7  Discussion 

Annual maps of mangrove extent were generated from satellite imagery using GEE and 

machine learning models, addressing a key data gap in coastal ecosystem monitoring. This annual 

classification enables clearer tracking of mangrove change over time and supports analyses that 

align with policy interventions, disturbance events, and shifts in land use. Unlike existing global 

datasets limited to a few discrete years, the method developed here produces consistent annual 

classifications using multi-band Landsat imagery, spectral indices, and elevation data. 

The Random Forest model achieves an overall validation accuracy of 89.65% in predicting 

mangrove extent, demonstrating strong performance in terms of both accuracy and recall. It 

effectively captures the spatial distribution of mangroves across the region, particularly in areas of 

persistent mangrove presence. However, the model exhibits a lower precision, indicating a 

tendency to misclassify certain non-mangrove areas as mangroves. Future work will explore the 

use of seasonal and tide-specific composites to better capture phenological and hydrological 

variation. In the future work, we also plan to explore deep learning approaches, particularly 

convolutional neural networks (CNNs) such as U-Net (Ronneberger et al., 2015), which may offer 

advantages in modeling complex spatial patterns and capturing finer structural details in coastal 

landscapes. U-Net is specifically designed for semantic segmentation and is well-suited to 
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preserving edge information and spatial coherence, which could potentially enhance the detection 

of fringe and narrow mangrove patches and reduce misclassification errors. 

With this newly generated, annual mangrove extent dataset, we are now able to examine how 

changes in mangrove coverage translate into economic outcomes over time. Specifically, the data 

allows us to evaluate whether, and to what extent, the protective services provided by mangroves 

are reflected in housing market behavior. By aligning year-by-year mangrove extent with property 

transaction data, we can assess how proximity to mangroves and changes in their presence affect 

property values. This level of temporal and spatial resolution was not previously available and 

enhances our ability to investigate how the economic value of ecosystem services evolves 

alongside changes in ecological conditions. 

Beyond its use in economic analysis, this dataset can support a range of applications in 

environmental and policy research. It allows tracking ecological responses to natural disturbances 

such as hurricanes, studying biodiversity, and monitoring vegetation change over time. It can also 

be linked with species richness and land cover data, making it useful for ecological and 

conservation planning. The classification outputs provide a foundation not only for valuing coastal 

protection services but also for broader research on ecosystem change and resilience. The 

underlying approach offers a scalable method for mapping mangrove extent that can be applied in 

other coastal regions.  
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Table 4.1: Indices Computed 

Spectral 

Indices 

Type Computation 

NDVI 

Vegetation 

Index 

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

EVI 
 

2.5 ∗  (𝑁𝐼𝑅 − 𝑅𝑒𝑑)

𝑁𝐼𝑅 +  6 ∗  𝑅𝑒𝑑 −  7.5 ∗  𝐵𝑙𝑢𝑒 +  1
 

SAVI 1.5 ∗  (𝑁𝐼𝑅 −  𝑅𝑒𝑑)

𝑁𝐼𝑅 +  𝑅𝑒𝑑 + 0.5
 

GCVI  
(

𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
) − 1 

NDWI  

Water Index 

 

𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
 

MNDWI 𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅
 

LSWI 𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

CMRI 
Mangrove 

Index 

𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑊𝐼 

MMRI (|𝑀𝑁𝐷𝑊𝐼|  −  |𝑁𝐷𝑉𝐼|)

(|𝑀𝑁𝐷𝑊𝐼| +  |𝑁𝐷𝑉𝐼|)
 

EBBI Built-up Index (𝑆𝑊𝐼𝑅 −  𝑁𝐼𝑅)

 (10 ∗  √(𝑆𝑊𝐼𝑅 +  𝑇𝐼𝑅))
 

SR 

Spectral Ratio 

𝑁𝐼𝑅

𝑅𝑒𝑑
 

Ratio 5/4 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅
 

Ratio 3/5 𝑅𝑒𝑑

𝑆𝑊𝐼𝑅
 

 

 

Table 4.2: Model Outcome 

Model CART RF SVM 

Test Accuracy (%) 92.00 92.90 92.80 

Validation Accuracy (%) 88.96 89.65 88.52 

Kappa (%) 78.00 79.00 77.00 

Overall Accuracy (%) 99.36 99.44 99.43 

User Accuracy (%) 54.28 58.28 57.48 

Producer Accuracy (%) 84.92 83.47 83.30 
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Figure 4.1: Study Area: Tampa Bay, Southwest Florida 
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Figure 4.2: Block Diagram of Mangroves Extent Mapping 
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Figure 4.3: Spatial distribution of (a) core mangrove areas, (b) non-mangrove regions, and (c) final 

training labels used for classification.  
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Figure 4.4: Pre-processed and Final Landsat surface reflectance image for the year 2020 

Note: (a) Pre-processed Landsat surface reflectance image for the year 2020, including cloud 

masking and scaling. (b) Final image stack used for classification, incorporating spectral indices 

and elevation data, clipped to the area of interest. 
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Figure 4.5: Variable Importance from Random Forest Classifier 

Note: The surface reflectance band 6 (ST_B6), which corresponds to the thermal infrared (TIR) 

portion of the electromagnetic spectrum (10.4–12.5 µm), emerged as the most influential predictor, 

followed by SR_B1 (blue, 0.45–0.52 µm), SR_B5 (short-wave infrared, 1.55–1.75 µm), SR_B3 

(red, 0.63–0.69 µm), the Normalized Difference Moisture Index (NDMI) and the elevation. 
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Figure 4.6: Predicted mangrove extent and GMW mangrove extent for 2020 

Note: (a) Predicted mangrove extent for 2020 based on RF classification; (b) known GMW 

mangrove extent for 2020. To better understand which variables contributed most to the Random 

Forest classification, we examined the feature importance scores generated by the model. As 

shown in Figure 4.6, the surface reflectance band 6 (ST_B6) emerged as the most influential 

predictor, followed by SR_B1, SR_B5, SR_B3, NDMI and elevation. These results highlight the 

importance of spectral and hydrological indicators in distinguishing mangrove and non-mangrove 

areas. 
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Figure 4.7: Predicted mangroves year on year 

Note: The overall trend indicates a steady increase in mangrove coverage across the region after 

1990. A notable exception is the sharp decline between 1989 and 1990, which may be attributed 

to the extreme freeze event recorded during the 1989 Christmas period. Reports suggests that this 

cold snap brought sustained freezing temperatures across Florida, leading to widespread mangrove 

defoliation and dieback (Southeast Florida Coastal Marine Ecosystem, 2013). 
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Chapter 5  

Conclusion 

 

Together, the three chapters in this dissertation offer complementary perspectives on the 

economic value of mangrove ecosystems in coastal Florida. The first chapter captures the salience 

of mangrove protection in the immediate aftermath of a hurricane, providing evidence of how 

natural defenses are perceived during extreme weather events. The second chapter moves beyond 

disaster contexts to examine whether mangrove presence is consistently valued in property markets 

over longer time horizons. The third chapter addresses a key data limitation by reconstructing 

historical mangrove extent using remote sensing and machine learning, offering a foundation for 

future long-term valuation studies. Collectively, these studies contribute to a deeper understanding 

of how protective ecosystem services are reflected in market behavior and underscore the 

importance of integrating natural infrastructure into coastal resilience planning and economic 

decision-making. 
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