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ABSTRACT 

The Tail Doppler Radar (TDR) is a vertically-scanning radar found on the NOAA 

WP-3D and G-IV aircraft and is used for studying tropical cyclone structure and evolution. The 

quality control (QC) method applied to TDR data, NOAA-QC, has been shown to accurately 

identify non-meteorological data (NMD), but is aggressive at removing meteorological data 

(MD) especially in the lower and upper troposphere. The purpose of this study is to assess the 

benefits of reprocessing TDR data with a less aggressive QC method. We employ a 

recently-developed machine-learning quality control method, which has been shown to retain 

more MD than NOAA-QC, to reprocess a subset of cases. It is discovered that the 

machine-learning method is more accurate than NOAA-QC at retaining MD, especially within 

the lower and upper troposphere. Increased MD coverage with machine-learning is further 

demonstrated through increases in coverage within 3D wind analyses for each case. 

INDEX WORDS: TDR, NOAA-QC, MLQC, machine learning, boundary layer, outflow, MD,  

      NMD, tropical cyclone (TC)  
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CHAPTER 1 

INTRODUCTION 

The exact history of the creation of the first radars is quite muddled; radars were a 

product of WWII engineering, and as a result, the countries involved (mainly Britain and the 

United States) wanted to keep their new technology a secret from the opposing side. The 

development of the first ever radar is usually credited to Scottish physicist and meteorologist 

Robert A. Watson-Watt. His idea of using electromagnetic waves to locate enemy aircraft led to 

the creation of the Chain Home radars, which ended up being a crucial factor in the victory at the 

Battle of Britain (Whiton et al. 1998). As these new radars were used more abundantly among 

some of the allied powers, it was soon realized that unfavorable weather conditions would 

obscure the targets of interest. Dr. J. W. Ryde of the British General Electric Corporation 

Research Laboratory was the first to relate the sensing of the meteorological clutter to Rayleigh 

scattering of water droplets. Soon after the war, the allied militaries released the new radar 

technology to several newly created meteorological radar labs for further research (Rogers and 

Smith 1983). 

Through the next few decades, radars proved useful within meteorological operations and 

research. Analysis of radar data helped to improve our overall understanding of convective 

storms, and having real-time visualizations of storm systems improved operational nowcasting 

and warnings (Whiton et al. 1998). Within the world of tropical meteorology, radars increased 

observations and understanding of tropical mesoscale convective systems and tropical cyclones 

(TCs) while over land (Marks 1990). However, when it came to sensing tropical weather 
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phenomena (especially TCs), radars were significantly disadvantaged, as they were unable to 

reach the ocean or remote land areas. In 1971, Roger Lhermitte proposed the idea of using 

airborne Doppler radars in order to improve sensing of convective systems and the vertical 

motion of hydrometeors (see Figure 1). Since the aircraft would be relatively close to its sensing 

target, he suggested the use of a shorter wavelength (such as Ku or X band). To limit the Doppler 

effects of the aircraft on the radar output, it was also recommended that the radar beam be 

positioned perpendicular to the flight path. (Lhermitte 1971). 

 

Five years after Lhermitte’s paper was 

published, NOAA obtained its first WP-3D aircraft 

(known as NOAA-42 or Kermit), equipped with an 

airborne Doppler radar (Lee et al. 2003). The X 

band radar (wavelength of 3.2 cm) found a place at 

the tail of the aircraft, hence its eventual name, the 

Tail Doppler Radar (TDR) (see Figure 2). It worked 
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similarly to a ground-based radar that was 

tilted on its side, as the antenna would scan for 

a full 360˚ rotation. The azimuth angle was 

constantly adjusted to ensure that the beam was 

always perpendicular to the flight path, as was 

proposed by Lhermitte (1971) (see Figure 3) 

(Jorgensen et al. 1983). The initial tests of the 

NOAA-42 TDR conducted between 1980-82, 

as summarized in Jorgensen et al. (1983), 

showed promising results when compared with ground-based radar output, although there were 

errors due to the constant shift in azimuth, temporal and spatial resolution, and a lack of quality 

control of velocity returns. They also discovered that a dual-Doppler analysis was possible by 

comparing data collected from different viewing angles. 

Despite the errors, the first iteration of the NOAA-42 TDR was a success. In 1982, 

NOAA-42 probed Hurricane Debby and collected the first-ever Doppler winds in a TC (which 

then allowed for the researchers to create the first-ever horizontal map of winds in a TC). In 

addition, the TDR observed some mesoscale features within the hurricane that had not been 

measured prior, such as small scale eddies embedded in the flow and localized maxima of wind 

speed, divergence, and vorticity (Marks and Houze 1984). In 1983, the NOAA-42 TDR observed 

Hurricane Alicia, which led to the first ever mapping of three-dimensional winds (see Figure 4). 

This not only provided the first ever observations of TC structure and flow, but also led to the 

first ever quantification of TC water budget (Marks and Houze 1987). To help alleviate the 

resolution issues, a TDR of the same specifications was installed on NOAA-42's sister aircraft, 
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NOAA-43 (also known as Ms. Piggy). Having the same instrumentation on both radars allowed 

for more continuous sensing of the TC. The first time the two aircraft were flown together was 

during Hurricane Norbert in 1984 (Marks et al. 1992), then again during record-breaking 

Hurricane Gilbert in 1988 (which reached a minimum sea level pressure below 900 mb) (Black 

and Willoughby 1992, Dodge et al. 1999, Lee et al. 2003). 

 

Up to this point, the main method of analyzing TDR data was the same method as 

outlined in Jorgensen et al. (1983): using different viewpoints from the same instrument to create 

a pseudo-dual-Doppler analysis. However, this method makes the inaccurate assumption that the 

TC has not developed or changed in between the two measurements being taken. For some cases, 

such as the Hurricane Alicia mission, the temporal gap between the two measurements can be 
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upwards of an hour (Marks and Houze 1984). 

As a result, the Fore/Aft Scanning Technique 

(FAST) was created. Originally proposed by 

Jorgensen and DuGranrut (1991), the FAST 

technique involves alternatingly sending two 

radar beams, one oriented towards the fore of 

the aircraft and the other towards the aft, both 

of which are at an angle approximately 20˚ 

from the normal to the aircraft path. After comparisons of different scanning techniques within 

different convective environments (e.g. an Oklahoma MCS and Hurricane Norbert), it was 

determined that FAST returns the most realistic data output when compared to ground-based 

radar and other ground-truth measurements, and, therefore, has been the TDR scanning strategy 

ever since (Gamache et al. 1995, Jorgensen et al. 1996). A French dual-beam antenna was 

installed on the WP-3D aircraft to allow for alternating scanning between the fore and aft 

directions (see Figure 5) (Roux and Viltard 1995). Beginning in 2017, the WP-3D TDRs were 

upgraded to permit dual transmission of the fore and aft beams (see Figure 6) (Jorgensen et al. 

1996, Guy & Jorgensen 2014) further 

improving the temporal resolution of the 

measurements. 

As TDR capabilities improved, 

case studies involving TDR data became 

more common, especially since the 

WP-3Ds have been regularly probing 
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multiple TCs every year during the Atlantic hurricane season since the early 1980’s (Marks 

2003). Most of these case studies built on the previous observations of TC structure and 

dynamics. Some noteworthy case studies at this time include: 

●​ Roux and Viltard (1995): In a case study of Hurricane Claudette (1991) probed by both 

WP-3D aircraft (one aircraft used the original single beam scanning strategy and the 

other used FAST), Roux and Viltard analyzed the mesoscale dynamics and flow evolution 

within 100 km of the storm center during a partial eyewall replacement cycle (ERC). 

●​ Reasor et al. (2000): Through a true dual-Doppler analysis of Hurricane Olivia (1994) 

utilizing TDR data from both WP-3D aircraft, the inner-core asymmetric vorticity 

dynamics and evolution were analyzed as Olivia was weakening. This study was the first 

to evaluate previous symmetric and asymmetric vortex structure and intensity change 

theories. 

●​ Black et al. (2002): This study also examined the Hurricane Olivia (1994) case of Reasor 

et al. (2000) but focused on the convective structure of the eyewall. By using vertical 

incidence data (i.e., nadir- and zenith-pointing TDR beams), Black et al. 2002 analyzed 

how (changes in) environmental shear affected the overall evolution of structure and flow 

of Hurricane Jimena (1991) and Hurricane Olivia (1994). 

 

​ However, there was one major disadvantage to using TDR data that discouraged many 

researchers from using it in their studies: the quality control (QC) process. Due to the nature of 

the TDR (including bandwidth, scanning strategy, and being on a rapidly moving platform), the 

data contains non-meteorological data (NMD) that need to be filtered out before an analysis can 

be performed (see Figure 7). At this time, all QCing had to be done manually by a radar expert, 
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which is a long and tedious process that can take months to complete for one case (Stern and 

Nolan 2009). Not only did this deter researchers from using the data, but it also inhibited the use 

of TDR data in operational forecasting. This all changed in 2005 when Gamache et al. (2005) 

created the current rules-based QC algorithm, NOAA-QC. Written in Fortran, NOAA-QC 

subtracts out the aircraft motion, removes sea surface contamination, applies a mask to the data 

to filter out noise, and uses Signal Quality Index (SQI) and Spectral Width metrics to discard any 

remaining NMD (Gamache et al. 2005). After the data is QC’d, it is run through 

NOAA-Synthesis, an analysis software (also created by Gamache et al.) that derives a 

three-dimensional wind field based on the Doppler velocities, similar to a dual-Doppler analysis. 

The processes behind NOAA-Synthesis are summarized in the appendix of Reasor et al. (2009). 

NOAA-QC went through extensive testing during the 2004 Atlantic Hurricane Season, and was 

put into operations on both the WP-3D aircraft the next year. As a result, in 2005, TDR-derived 

analyses were sent in real-time off the aircraft to the National Hurricane Center and were used in 

the forecasting of track and intensity of Atlantic TCs, such as Hurricane Katrina (Gamache et al. 

2005 and Rogers et al. 2006). NOAA-QC also allowed for the assimilation of TDR data into TC 
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forecasting models, such as the Hurricane Weather Research and Forecasting model (HWRF) 

and the current Hurricane Analysis and Forecast System (HAFS). Several studies have 

demonstrated that assimilating TDR data into these models has resulted in significant TC 

forecast improvements (Rogers et al. 2006, Aksoy et al. 2012, Knisely and Poterjoy 2023, 

Hazelton et al. 2022). 

​ Once QC’d TDR data was more accessible to researchers in the late 2000’s, TC studies 

began utilizing multiple cases in composite analyses. Earlier research utilized datasets comprised 

of fewer cases (compared to current times) to confirm and build on what has been previously 

learned by single case studies regarding topics such as tangential winds and the vertical structure 

of the radius of maximum winds (Stern and Nolan 2009), as well as vortex structure and 

dynamics (Rogers et al. 2012). As time passed and the TDR collected data on more cases, the 

datasets for composite studies grew (for example, Fischer et al. (2022) utilized 66 different 

cases), which allowed for the intercomparison of TCs. A popular area of interest has involved 

comparing structure and dynamics (such as inner-core, vortex, and TC boundary layer (BL) 

kinematics) among TCs of different intensification stages (Rogers et al. 2013, Fischer et al. 2022, 

Zhang et al. 2023). 

​ The latest significant update regarding TDR data is the creation of the Tropical Cyclone 

Radar Archive of Doppler Analyses with Re-centering (TC-RADAR) by Fischer et al. (2022 & 

2024). TC-RADAR is a publicly available, user-friendly dataset of TDR analyses that 

“comprises over 900 analyses from 273 flights into TCs in the North Atlantic, eastern North 

Pacific, and central North Pacific basins between 1997 and 2020,” (Fischer et al. 2022, p. 2255). 

Fischer et al. (2022) does note that all TDR data in TC-RADAR that was collected prior to 2010 
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should not be used due to errors in the processing software (this issue still exists to date). The 

overall goal of TC-RADAR is to increase the usage of TDR data in TC research. 
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CHAPTER 2 

BACKGROUND 

​ Within the past 50 years, TDR data 

has proven itself to be a crucial piece in 

improving both our overall understanding 

of TC processes and our ability to forecast 

TCs. The addition of NOAA-QC and 

TC-RADAR have made QC’d TDR data 

and TDR-derived analyses more 

accessible to TC researchers. Even though 

NOAA-QC is around 20 years old, 

Neighbour et al. (2024) was the first quantitative assessment of its performance and accuracy. 

Through case studies of 2022 Hurricanes Fiona and Earl, Neighbour et al. (2024) shows that 

NOAA-QC is accurate in filtering out NMD (with a 99.5% NMD removal rate), but is fairly 

aggressive, as it only retains around 70% of meteorological data (MD) in the process. The 

authors also discover that NOAA-QC removes the most amount of MD in the boundary layer 

(TCBL) and outflow layer (see Figure 8). Knowledge of the TCBL and the TC outflow layer are 

crucial for improving understanding of TC structure, evolution, and impacts. 

​ Machine learning is a subset of artificial intelligence where a computer model can 

effectively use a knowledgebase of data to solve a problem and/or complete a task without being 

explicitly programmed to do so step-by-step (Kühl et al. 2022). Currently, there is a team at 
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Colorado State University that is using machine 

learning to create a new QC method for TDR data. 

Their machine learning QC (MLQC) model, known as 

the Random forest Optimized Non-meteorological 

IdentificatioN (RONIN), runs on Julia and uses a 

random forest technique (Breiman 2001) to filter out 

NMD. The RONIN methodology is similar to that of 

DesRosiers and Bell (2024) and has thus far shown to 

retain more MD than NOAA-QC. 

There are two main motivations for the creation 

of a new and improved QC method. The first, which is 

currently the main priority, is to improve the accuracy 

of TDR QC by retaining more MD in the final output 

while maintaining the current NMD detection accuracy. 

The secondary motivation is to prepare for a future without TDRs. Since the NOAA WP-3D 

aircraft are approaching 50 years of operations, NOAA is planning to replace them with new 

C-130 aircraft by 2030. However, TDRs cannot be used on C-130s due to the aircraft structure, 

so the entire airborne radar system will have to change. While the exact replacement for the TDR 

hasn’t been decided yet, researchers have mainly been looking to airborne Phased Array radars 

(APARs) as a solution (see Figure 9). APARs provide many benefits, including improved 

functionality and temporal/spatial resolution. The main asset of APARs is their dual polarization 

capabilities, which would provide additional information about the shape, size, variability, and 

orientation of targets within a tropical cyclone (Vivekanandan et al. 2014). Due to the 
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rules-based nature of NOAA-QC, it cannot be applied to the new radar. Switching to a new 

MLQC method would hopefully ease the transition between new radars due to the adaptability of 

machine learning. 

​ With this in mind, there are currently two major proposals for future research in the 

works at NOAA’s Atlantic Oceanographic Meteorological Laboratory (AOML). The first takes 

the MLQC efforts one step further by proposing a completely new processing methodology for 

the NOAA airborne radars. The proposed methodology includes using Colorado State 

University’s (CSU) RONIN for QCing the data, a novel machine learning model to de-alias 

Doppler velocities, and finally a new wind synthesis software coded in Julia. This proposal hopes 

to improve the numerical accuracy of airborne radar-derived three-dimensional wind analyses for 

both TC research and operations, as well as to ease the future transition between the airborne 

radars. The second proposal aims to investigate how the new TDR MLQC method will impact 

TC forecasts in the HAFS model. The proposed study will create three sets of TDR data 

collected within 2022-24, two of which are QC’d by either MLQC or NOAA-QC, and one set 

that includes no TDR data at all (to serve as a control). The researchers plan to assimilate each 

dataset separately into the HAFS model and assess how the forecast and model error changes. 
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CHAPTER 3 

MOTIVATION AND RESEARCH QUESTIONS 

​ It has been noted that the numerical output of the TDR-derived analyses does not align 

with that of other measurements taken (such as dropsonde or scaled TDR data). Specifically, the 

wind speeds are often smaller in magnitude than expected. A good example of this is comparing 

how the data in Fischer et al. 2022 (which uses solely TDR data) doesn’t completely match with 

that from Zhang et al. 2023 (which scales TDR wind speeds from higher altitudes to the TCBL), 

especially around the TCBL (see Figures 10 & 11). Researchers point towards the scanning 

limits of the TDR and/or the automated processing of TDR data, including NOAA-QC and 

NOAA- Synthesis, as a possible cause (Reasor et al. 2009, Stern and Nolan 2009, Rogers et al. 

2012, Fischer et al. 2022). However, there has not yet been any attempt to understand how the
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processing of TDR data, 

especially QC, affects the output 

of analyses and structural 

diagnostics. This is especially 

important now since TDR data is 

being utilized more in TC 

research, thanks to the data 

(which has been QC’d by 

NOAA-QC) being publicly 

available through TC-RADAR. 

It’s also been noted that despite 

NOAA-QC’s accuracy in 

removing NMD, some 

TDR-derived analyses still 

contain NMD. The consensus before Neighbour et al. (2024) has been to blame the current QC 

method, but since we discovered that NOAA-QC is accurate in its filtering of NMD, this raises 

the question: what could be causing this discrepancy between TDR and other measurements to 

occur? This is especially crucial for operations because the inclusion of NMD in analyses can 

inhibit TC forecasting.  

Therefore, as an extension of Neighbour et al. (2024), this project aims to investigate how 

different QC methods affect TC structure derived from TDR analyses and structural diagnostics, 

specifically within the TCBL and outflow layer. Specifically, we want to know how the 

incorporation of a new and improved MLQC method will affect/advance TC research and 
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forecasting operations, and whether the TDR data in TC-RADAR should be reprocessed with a 

new QC method. Our specific research questions are as follows: 

1.​ How does RONIN’s performance compare to that of NOAA-QC? 

a.​ Specifically, how do their MD retention and NMD filtering rates compare? 

b.​ Where are the differences in MD retention and NMD filtering (within each radar 

sweep and by height)? 

c.​ Does the performance of RONIN and NOAA-QC vary by case? 

2.​ How does using RONIN to QC TDR data affect TDR-derived analyses when compared 

to analyses from data QC’d by NOAA-QC? 

a.​ In cases where NMD contamination is present in the real-time, NOAA-QC’ed 

analyses, how does using RONIN to QC TDR data affect the amount of NMD 

contamination within RONIN-derived analyses? 

b.​ How does coverage and data quality vary between the two analyses? Do different 

QC methods yield fundamentally different TC structures? 
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CHAPTER 4 

DATA AND SOURCES 

​ To meet both the goals of this thesis and to assist the objectives of further studies, we will 

be focusing on TDR data collected during 2022-24. It is important to note that all TDR data, 

regardless of QC method, has been thinned by ⅔, as is the operational standard. Raw TDR data 

was downloaded from the NOAA Aircraft Operation Center’s public server. All NOAA-QC and 

manually edited datasets to be used in this research were downloaded from a shared Google 

folder. The analyses derived from NOAA-QC’d TDR data for the 2024 cases are the analyses 

that were created in real-time during NOAA Hurricane Reconnaissance Missions, and these were 

downloaded from AOML Hurricane Research Division’s (HRD) public server. Running CSU’s 

RONIN requires Julia to be installed. In addition, we used NCAR’s LROSE RadX to convert the 

TDR data to different formats as necessary, as well as LROSE SOLO3 to view the individual 

TDR sweeps. To create TDR-derived structural diagnostics of the MLQC’d data, we used 

NOAA-Synthesis, a software created by John Gamache that will de-alias the data and create 

three-dimensional winds (similar to that of Gamache et al. 2005 and Reasor et al. 2009 with the 

QC code removed). NOAA-Synthesis requires jobfiles, backdoor files that provide necessary 

case-specific information, in order to run. To use NOAA-Synthesis for the RONIN-QC’d data, 

we downloaded the jobfiles used in real time from NOAA AOC’s public server and edited them 

using the AOML Jobfile Editing software. Finally, to view the analyses created by NOAA- 

Synthesis, we utilized NASA’s Panoply visualization software. 

●​ NOAA AOC public server of raw TDR data: https://seb.omao.noaa.gov/pub/acdata/  

 

https://seb.omao.noaa.gov/pub/acdata/
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●​ NOAA AOML HRD’s public server of real-time TDR analysis graphics: 

https://www.aoml.noaa.gov/ftp/pub/hrd/data/RTradar/  

●​ NOAA AOC’s public server of real-time TDR analyses and jobfiles: 

https://seb.omao.noaa.gov/pub/flight/radar/  

●​ RONIN: https://github.com/irslushy/Ronin.jl  

●​ NCAR LROSE: https://www.eol.ucar.edu/content/lidar-radar-open-software-environment  

●​ AOML Jobfile Editing Software (requires Java Web Start): 

https://seb.omao.noaa.gov/tdrjob/  

●​ NASA Panoply: https://www.earthdata.nasa.gov/data/tools/panoply  

○​ Note: due to the current status of NASA GISS, this website may no longer work. I 

unfortunately could not find a replacement. 

 

 

https://www.aoml.noaa.gov/ftp/pub/hrd/data/RTradar/
https://seb.omao.noaa.gov/pub/flight/radar/
https://github.com/irslushy/Ronin.jl
https://www.eol.ucar.edu/content/lidar-radar-open-software-environment
https://seb.omao.noaa.gov/tdrjob/
https://www.earthdata.nasa.gov/data/tools/panoply
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CHAPTER 5 

QUALITY CONTROL METHODOLOGIES 

NOAA-QC 

​ NOAA-QC is a rules-based QC method written in Fortran and created by Gamache et al. 

(2005). The methodology for NOAA-QC hasn’t changed drastically over the years other than to 

account for new masks and changes in the TDR scanning strategy. Prior to every hurricane 

season, the mask used in NOAA-QC is created through multiple test flights over perturbed sea 

surface and clear air. The data collected from these flights is then averaged together to find the 

mean reflectivity values for each radar-relative azimuth and range (which are all stored in the 

mask). In operations, in order for a gate to be kept as MD, the reflectivity value of this gate must 

be greater than a specific reflectivity threshold above the mask’s value for that range and 

azimuth. 

​ In addition to the mask, NOAA-QC subtracts out the aircraft motion from the raw 

Doppler velocity. Then, it removes the surface by looking for high reflectivity gradients (around 

5-10 dBz per gate) around the area where the surface is usually located on the radar. Next, it uses 

several rules-based thresholds to further filter the data, such as signal-to-noise (to despeckle), 

Spectral Width (to remove known NMD sources, such as the side lobe and second trip echoes), 

and SQI (to remove NMD with sources that are not easily identified). Finally, NOAA-QC 

dealiases the data with multiple passes through a Bargen-Brown de-aliasing technique (Gamache 

et al. 2005). 
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RONIN 

​ RONIN is a machine learning quality control method written in Julia version 1.10.5. The 

untrained RONIN code is available to the public on Github to be used in other applications, such 

as ELDORA data. For this study, we are using a RONIN model trained using data from four 

cases: Hurricane Earl (flight 20220907H1), Tropical Storm Fiona (flight 20220918H1), 

Hurricane Lee (20230912I1), and Tropical Storm Beryl (20240705H1). Eighty percent of this 

data was randomly selected to be used in training of the model, while the other twenty percent 

was set aside for testing purposes. In the training process, each sweep in the training dataset is 

given to the model in its raw and manually edited form to show the computer how a human 

would go about editing the raw data. The training of the RONIN model used in this study was 

previously done by AOML and Colorado State University. 

​ The RONIN methodology is based on that of DesRosiers and Bell (2024). The version of 

RONIN used for this study is a two-pass model that utilizes a 90% agreement threshold for its 

decision trees. Figure 12 shows the classification scheme of RONIN. During the first pass, the 
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agreement level amongst all decision trees for each gate is calculated. The gates where at least 

90% of decision trees have determined the data to be meteorological are automatically classified 

as MD. On the flip side, the gates that at most 10% of trees have found to be meteorological are 

automatically determined NMD and removed. The majority of the gates will lie between the 

10-90% range and move to the second pass. During the second pass, the decision trees conduct a 

reassessment of the data, and the agreement level amongst all trees for each gate is recalculated. 

During this process, the decision trees utilize a gate’s spatial proximity to other gates that have 

already been classified during the first pass to influence their final assessment. After the 

recalculation, RONIN takes the highest agreement level of the two passes for each gate. The 

gates where at least 90% of the decision trees agree the data is meteorological for the second 

pass are classified as MD and retained. For all other gates, since neither pass generated a 

meteorological classification agreement level of at least 90%, they are deemed NMD and 

removed from the final QC’d sweep. This process repeats for every sweep included in the dataset 

fed to RONIN until the model has seen all of the sweeps included. 
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CHAPTER 6 

RESEARCH METHODOLOGY 

Research Question #1 

How does RONIN’s performance compare to that of NOAA-QC? 

The methodology here will be very similar to the analysis methodology of Neighbour et al. 

(2024). Here, we will be focusing on four cases: 2022 Hurricane Earl, 2022 Hurricane Fiona, 

2023 Hurricane Lee, and 2024 Hurricane Beryl. 

1.​ Download, install, and configure Julia and RONIN on my Linux Desktop. Install any 

necessary dependencies before compiling, and create necessary subdirectories. 

2.​ Download the manual-QC, NOAA-QC, and raw TDR data for all four cases. Also 

download all Correction Factor (CFAC) files for 2022, 2023, and 2024. 

a.​ Raw TDR data will download as a zipped file in sigmet format. NOAA-QC data 

is provided by Paul Reasor and John Gamache.  

b.​ Unzip all files and use RadxConvert to convert the data to dorade format (this 

way, the data can be read into SOLO3). Then, thin the data by ⅔ to match the 

manually edited data. 

c.​ Export the CFAC files to dorade datasets for all QC methods and all four cases. 

3.​ Convert all dorade data to CfRadial format using RadxConvert so the data can be read by 

RONIN and the Python scripts (see below). 

4.​ Use RONIN to QC the raw TDR data for each case.  

a.​ Copy the raw TDR CfRadial data into the necessary RONIN subdirectory. 
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b.​ In the RONIN directory, run Julia version 1.10.5, load dependencies, jld2 files, 

and the model configuration structure. Next, clean the individual sweeps in the 

RONIN subdirectory. Once complete, move the cleaned data out of the RONIN 

subdirectory to a secure location. 

c.​ Each case should now have three similar datasets of individual TDR sweeps, with 

each dataset having been QC’d by a different method (manual, NOAA-QC, and 

RONIN). 

5.​ Calculate and analyze performance statistics for both RONIN and NOAA-QC. 

a.​ Neighbour et al. (2024) created Python scripts to generate statistics (specifically, 

NMD filtering rate and MD retention rate) on the performance of NOAA-QC as a 

comparison to manual-QC. This assumes that the manually edited data is 

“ground-truth” and that there was no human error in the QC process.  

b.​ Using the list of training sweeps from Colorado State University, remove the 

sweeps used to train the model from all datasets. This way, RONIN will be 

evaluated solely on how it QC’s data it has not yet seen. 

c.​ Match the NOAA-QC and RONIN sweeps to ensure a direct comparison for each 

case. 

d.​ Using these Python scripts, generate performance statistics for both NOAA-QC 

and RONIN, for each case and for all cases combined. These statistics are found 

using the following equations: 

 ℎ𝑖𝑡 𝑟𝑎𝑡𝑒 =  100 *  𝑇𝑃
𝑁𝑀𝐷

𝑡𝑜𝑡

 𝑚𝑖𝑠𝑠 𝑟𝑎𝑡𝑒 =  100 *  𝐹𝑁
𝑁𝑀𝐷

𝑡𝑜𝑡
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 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =  100 *  𝐹𝑃
𝑀𝐷

𝑡𝑜𝑡

where tot_NMD (tot_MD) is the total amount of NMD (MD) in the sweep 

(defined by the manually edited data), TP is true positive (NMD correctly 

removed by the QC method), FN is false  negative (NMD incorrectly kept by 

QC), and FP is false positive (MD incorrectly removed by QC). 

i.​ Note that in this study, hit rate is referred to as NMD removal rate and 

false positive is referred to as MD removal rate for clarity. Miss rate is not 

discussed as it is equal to one hundred minus the hit rate. 

e.​ Use these statistics to assess how RONIN quantitatively performs in comparison 

to NOAA-QC on a case-by-case basis. 

6.​ Use SOLO3 to view the individual TDR sweeps from both the RONIN and NOAA-QC 

datasets for each case. Qualitatively compare how RONIN and NOAA-QC perform on an 

individual sweep by sweep basis, documenting areas of importance or significant 

contrast. 

 

Research Question #2 

How does using RONIN to QC TDR data affect TDR-derived analyses when compared to 

analyses from data QC’d by NOAA-QC? 

Here, we will be focusing on all TC cases during 2022-24 where TDR data was collected. 

1.​ Download John Gamache’s 3D wind analysis software (NOAA-Synthesis), NASA’s 

Panoply, AOML’s jobfile editing software, and all necessary dependencies. Install and 

compile software. 
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2.​ Using flight paths from Tropical Atlantic and the Level 2 processing log from Paul 

Reasor, investigate all 2024 cases and select a group of cases with different reprocessing 

needs and intensity (tropical storm, minor hurricane, and major hurricane). 

3.​ Download the raw TDR data for the selected 2024 cases and prepare the data to be QC’d 

by RONIN by following steps 2a to 3 from Research Question #1. Also download the 

matching operational jobfiles for each case. 

4.​ Use RONIN to QC the data for each case by following steps 4a-b from Research 

Question #1. This will create a dataset of selected 2024 TCs that have been QC’d by 

RONIN. Move the data to the model run subdirectory of NOAA-Synthesis. 

5.​ Use the jobfile editing software to adjust the start and end times of each case to be within 

the time range of its matching RONIN dataset. Also remove 0.5 from the azimuth angle 

corrections. Export each zipped jobfile to the case-specific model run subdirectory of 

NOAA-Synthesis, then unzip. 

6.​ Create a text file within the NOAA-Synthesis run subdirectory that will direct the 

software to the location of the RONIN-QC’d CfRadials. 

7.​ Run the RONIN 2024 dataset through NOAA-Synthesis. 

8.​ Download the TDR-derived real-time (NOAA-QC’d) analyses for each case from the 

AOC public server. 

9.​ Use Panoply to map both QC methods for each individual case on an earth-relative frame 

of reference at different heights above sea level. 

10.​Compare the RONIN TDR analyses to the real-time analyses for each case, and 

document in detail the similarities and differences. Pay extra attention to the cases that 

had NMD contamination in the real-time analyses. If needed, use SOLO3 to view the 
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QC’d Dorade files for each QC method to determine performance regarding NMD 

removal and MD retention. 

11.​Graph the NMD filtering and MD retention rates as a function of height (as in Neighbour 

et al. (2024)) for each case to compare how RONIN and NOAA-QC perform at different 

height levels within the TCs of interest. 

 

The Cases Used in this Study 

​ The cases we chose to answer Research Question #1 were selected because we had the 

manually edited data accessible from earlier research, they contained NMD in the 3D wind 

analyses or presented problems during Level 2 reprocessing, and they provided a variety in terms 

of intensity and environment. These four cases are: 

●​ Earl (flight 20220907H1, leg 125303-132518 UTC): At the time of this flight, Earl was 

classified as a Category 1 Hurricane and was located over the Atlantic Ocean east of The 

Bahamas. The leg in question traverses from the northeast to the southwest and crosses 

through the center of rotation around 1307 UTC. 

●​ Fiona (flight 20220918H1, leg 123041-125227 UTC): During this flight, Fiona was 

classified as a Tropical Storm, and will therefore be represented as Tropical Storm Fiona 

in this research. At this time, Fiona was located in the Caribbean Sea just south of Puerto 

Rico. The leg in question is outbound from the center heading northwest. 

●​ Lee (flight 20230912I1, leg 124223-132940 UTC): At the time of this flight, Lee was 

classified as a Category 3 Hurricane and was located over the Atlantic Ocean east of The 

Bahamas. The leg in question traverses from east northeast to west southwest and crosses 

through the center of rotation at around 1309 UTC. 

 



26 

●​ Beryl (flight 20240705H1, leg 222200-224400 UTC): During this flight, Beryl was 

classified as a Tropical Storm, and will therefore be represented as Tropical Storm Beryl 

in this research. At this time, Beryl was just entering the Gulf of Mexico after crossing 

through the Yucatan Peninsula. The leg in question is outbound from the center and 

traverses over land through clear air (where NOAA-QC particularly struggles) heading 

south. 

​ The cases selected for Research Question #2 were guided by the National Hurricane 

Center (NHC), as they wanted to see RONIN applied to several recent (2024) cases with a 

variety of intensities and reprocessing needs. We selected six cases from 2024 to be used to 

answer Research Question #2. 

●​ Debby (flight 20240804H1, leg 123558-135709 UTC): Debby was classified as a 

Tropical Storm during this flight, and was located in the Gulf of Mexico west of Florida. 

The leg heads west for the downwind, then turns and goes southeast for the inbound/ 

outbound, crossing the center of rotation at 1329 UTC. This case did not need any 

additional reprocessing for Level 2. 

●​ Ernesto (flight 20240813H1, leg 214515-225419 UTC): At the time of this flight, Ernesto 

was classified as a Tropical Storm and was located over the Virgin Islands. The leg in 

question traverses towards the southeast, then turns and heads north for the 

inbound/outbound, crossing the center of rotation at 2231 UTC. Because the aircraft flew 

right over multiple islands during this leg, the data needed some reprocessing for Level 2. 

This also involved the removal of the downwind leg, which was problematic in the 

reprocessing process. 
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●​ Helene (flight 20240925H1, leg 242800-253640 UTC): During this flight, Helene was a 

Category 1 Hurricane and was located in the Gulf of Mexico northeast of the Yucatan and 

west of Cuba. The leg traverses towards the south southeast for the downwind, then turns 

towards the northeast for the inbound/outbound, crossing the center of rotation at 2511 

UTC. This case did not need any reprocessing for Level 2. 

●​ Rafael (flight 20241106H2, leg 212500-222345 UTC): Rafael was classified as a 

Category 2 Hurricane during the time of this flight and was located over northwestern 

Cuba. The leg traverses south directly over mainland Cuba and La Isla de Juventud, 

crossing the center of rotation at 2152 UTC. Because the aircraft flew directly over land, 

the data needed reprocessing and an adjustment to the end time to fix the resulting noise 

for Level 2. 

●​ Beryl (flight 20240702H1, leg 250640-263700 UTC): At the time of this flight, Beryl 

was classified as a Category 4 Hurricane and was located in the Caribbean Sea south of 

Hispaniola. The leg in question heads downwind towards the west southwest, then turns 

and goes southeast for the inbound/outbound, crossing the center of rotation at 2558 

UTC. This case did not need any reprocessing for Level 2. 

●​ Helene (flight 20240926I1, leg 095214-111021 UTC): During this flight, Helene was a 

Category 1 Hurricane located in the Gulf of Mexico northwest of Cuba and west of the 

Florida Keys. The leg heads downwind towards the south, then turns and traverses west  

for the inbound/outbound, crossing the center of rotation at 1042 UTC. This case needed 

some reprocessing due to some noise in reflectivity, and the downwind leg was removed 

for Level 2. 
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CHAPTER 7 

RESULTS 

 

The performance statistics for both NOAA-QC and RONIN were calculated for each case 

individually and for all four cases combined (see Figure 13). Since Lee, Fiona, and Earl were 

average cases for NOAA-QC, it performed as expected with around a 99.6% NMD removal rate 

and over a quarter of MD removed as well. For these three cases, RONIN significantly increased 

the amount of MD retained, from 11.81% MD removal with Earl down to 6.84% for Fiona. 

However, RONIN was slightly less accurate in removing NMD for Earl, Fiona, and Lee, having 

an average NMD removal rate of just under 99%. 

On the other hand, Beryl is a different story. Beryl was specifically included because we 

were curious to see how RONIN would perform in a situation where NOAA-QC is known to 

fail: clear air over land. As was expected, NOAA-QC was the least effective for Beryl out of all 
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four cases, with an NMD removal rate of 96.17% and an MD removal rate of almost 37%. 

Unlike NOAA-QC, RONIN was able to adapt to the significant change in environment and was 

quite successful. As a result, using RONIN on the Beryl case caused an increase in both NMD 

removal and MD retention. Therefore, the combined statistics for all four cases illustrate that 

using RONIN leads to improved overall accuracy in removing NMD and retaining MD. 

Obviously, this is not true for all four cases individually, and will likely not be true for the 

majority of TDR data. However, RONIN’s ability to pivot on a case-by-case basis demonstrates 

that nearly all cases will likely see an increase in MD retention when RONIN is the QC method. 

We also compared individual sweeps QC’d with NOAA-QC and RONIN to determine 

where the main differences are located on a radar-relative frame of reference. Figure 14 shows a 

comparison of a sweep from Lee QC’d with NOAA-QC (top) and RONIN (bottom). In a 
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comparison between the two, there doesn’t seem to be a significant difference in NMD retained. 

The main improvement with RONIN, on the other hand, is the significant increase in MD. The 

main additions of MD are located in the TCBL (bottom box), TC outflow (top box), and areas 

further away from the radar (two side boxes). There are also improvements in the filling of gaps 

within the MD left by NOAA-QC when QC’ing with RONIN. 

The most crucial aspect of this research is how a difference in QC will affect the 

TDR-derived analyses and structure. As a sanity check, we created the 3D wind analyses using 

NOAA-Synthesis for all four cases used to answer Research Question #1. While the results were 

positive in terms of more MD retention (see Figure 15), because it is impossible to create the 

analyses without the sweeps used to train RONIN, we are unable to use these results to make any 

definitive conclusions on how RONIN using RONIN to QC TDR data will affect TC structure. 

Therefore, in collaboration with NHC, we selected six new cases, all from 2024, to answer 

Research Question #2. For simplicity, we will only be presenting the analyses at four height 

levels: TCBL (0.5-5 km), flight level (3 km), midlevel (7 km), and outflow (12-14 km).  
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As expected from looking at the individual sweeps, some of the greatest differences 

between NOAA-QC and RONIN in the analyses are within the TCBL (see Figure 16). The main 

improvement with RONIN is the significant increase in coverage of MD. This is shown through 

the closure of gaps within the MD and the increase in data further away from the flight track. 

More importantly, we are seeing a significant increase in coverage in crucial areas of the TC. For 

example, Figure 16a is a comparison of NOAA-QC and RONIN analyses for Beryl at 0.5 km. 

The 0.5 km RONIN analysis has significantly improved coverage around the eyewall of Beryl, 

which also allows us to see the 0.5 km wind maxima (something we are unable to see in the 

NOAA-QC analysis). This will likely prove crucial to forecasters as it will provide much more 

information on circulation and inflow structure, which also may help them predict/understand the 

possible impacts to society for when the TC in question makes landfall. 

Flight level (3 km) to mid-level (7 km) is usually where we see the greatest coverage in 

TDR data (see Figures 17 & 18). Since hydrometeors in this area are closer to the radar and don’t 

experience surface contamination, these levels often contain the most amount of MD retained by 

QC. Therefore, there were not significant improvements in data coverage in areas further away 

from the radar, as was with the boundary layer analyses. Instead, the main benefit is improved 

coverage of gaps within the analysis. It seems that RONIN is less aggressive at removing MD 

and is able to better discern the difference between MD and NMD with diminished return signals 

(such as at the ends of convection or smaller convective cells). The filling of these gaps by 

RONIN continues to allow for improved insight into a TC’s activity and structure. For example, 

RONIN’s improved coverage of Beryl’s eyewall depicts a more accurate image of the TC’s wind 

maxima at different heights (including up to the mid-levels), allowing for a better understanding 

of Beryl’s structure and evolution (see Figures 17-18a). 
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Understanding of a TC’s outflow layer is crucial to TC research, as it provides a key to 

improving our overall knowledge of structure and flow (Rappin et al. 2011). Neighbour et al. 

(2024) concluded that NOAA-QC has the highest percentage of data removal in the outflow 
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layer. This is likely because outflow convection is often cirrus in nature, which produces smaller 

returns on a radar (as a reminder, NOAA-QC’s mask filters out gates that don’t meet or exceed a 

certain reflectivity value). Outflow data on a WP-3D TDR is usually scarce, so any loss in MD 

has more of an impact than it would at other levels. RONIN, on the other hand, is able to 

recognize that smaller return values in the outflow don’t always correlate with NMD (see Figure 

19). This leads to significantly improved coverage in the outflow analyses, including areas that 

NOAA-QC originally removed completely. 

Another important improvement with RONIN is the location of retained NMD in the 

analyses. Although it was shown previously that RONIN is slightly less accurate in removing 

NMD, it seems that less NMD is infiltrating the RONIN analyses compared to those from 

NOAA-QC’d data. One example of this is the 1 km Rafael analysis (see Figure 20). As a 

reminder, due to the aircraft flying over land, Rafael had some NMD present in the 
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NOAA-QC’d, real-time analysis. 

The NMD in velocity is present in 

the 1 km wind vectors (highlighted 

in the box), likely due to the 

influence of La Isla de Juventud. 

On the other hand, the RONIN 

analysis doesn’t have visible NMD 

infiltration. For these cases, the 

NMD being retained by RONIN is 

in less crucial locations in the 

RONIN-QC’d analyses. 

Finally, we graphed the change in data coverage between the two QC methods’ analyses 

with height to show the impact that the increased coverage has at different height levels (see 

Figure 21). It is apparent that all six cases see an increase in data coverage at all height levels 

when RONIN is used to QC the TDR data. The two cases that saw the largest increase in 

coverage were the Tropical Storms: Debby and Ernesto. This is likely because NOAA-QC’s 

mask does not perform as well with less-organized TCs with lower reflectivity returns. This is a 

crucial result because the development stages of TCs are the most difficult to predict, particularly 

due to their chaotic, ill-defined structure (Nguyen & Kieu 2024). Dramatically improved MD 

coverage at all levels within earlier stage TCs will likely improve the derived structure and 

circulation cores. Having more accurate information on structure for early development TCs 

would provide more useful data for assimilation into forecasting models and to forecasters. 
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CHAPTER 8 

DISCUSSION 

​ While the use of airborne radar in TCs is relatively new, it has provided the world of 

tropical meteorology with invaluable knowledge and improved understanding of TC structure, 

flow, and evolution. Therefore, any increase in MD coverage without further NMD infiltration 

would prove to be a significant improvement to TC researchers and forecasters. For example, 

forecasters at NHC rely on TDR data for both forecasting and nowcasting. Having access to 

improved TDR-derived analyses and data would help them make more accurate classifications, 

better understand how a TC is evolving or how it may impact society, and improve both 

short-term and long-term predictions of TCs. TDR data has also shown to be a crucial tool in TC 

research. We expect that improved coverage of MD within TDR data and analyses, especially 

within the TCBL and outflow, will allow researchers to further our knowledge of TC structure 

and processes. Especially with TDR radar being easily accessible to the public through 

TC-RADAR (Fischer et al. 2022), reprocessing the data within TC-RADAR with RONIN will 

allow for all TC researchers across the globe to use the improved TDR data. 

​ There are, however, some limitations of applications of this study. For example, there are 

some processes that RONIN may not improve coverage of. This includes ERCs. We included the 

20240926I1 Helene case because at this time, NHC reported that Helene was completing an 

ERC. Shortly thereafter, the TC rapidly intensified to a Category 4 Hurricane (Hagen et al. 

2025). Unfortunately, RONIN did not provide any improved coverage into the ERC process for 

the 095214-111021 UTC leg from this case (see Figure 16e). Considering that we have only 
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analyzed one case for ERC coverage with RONIN, we are unable to make a conclusion until we 

have assessed both additional legs/flights from the Helene case in addition to other cases also 

undergoing ERC. We are hopeful that the improved MD coverage in the TCBL and outflow will 

provide necessary information on TC structure and flow to hurricane forecasting models that 

they can use to increase output accuracy. However, due to model limitations, TDR data is parsed 

down significantly before being assimilated into hurricane forecasting models, and there is 

always a possibility the model could reject the new data altogether. 

We also expect that the improved MD coverage from RONIN will likely not significantly 

impact TDR-derived structural diagnostics, such as radially averaged flow. As structural 

diagnostics often involve taking the average of data along individual ranges, it only takes into 

account data that is already accessible. The only locations we are expecting to see any change, be 

it significant or not, would be in the TCBL and outflow. In the TCBL, the improved coverage of 

crucial areas of the TC, such as the wind maxima in the 20240702H1 Beryl case, may 

demonstrate itself through slightly more accurate results near the TCBL (however, we are still 

expecting to see the gap present when comparing studies like Fischer et al. 2022 and Zhang et al. 

2023). The improved MD coverage in the outflow will at most slightly improve outflow 

coverage in structural diagnostics by providing data that originally wasn’t present with those 

created by NOAA-QC’d TDR data. 

The main limitation with this work has been the timeline. This research has been 

completed though UGA’s DoubleDawgs Program, which is a five year bachelor/master’s degree 

pathway. I was the first to attempt the DoubleDawgs in Atmospheric Sciences. Not only was my 

master’s experience truncated, so was the timeline for this research. The basis for this study lay 

in my previous research as an undergraduate at AOML with Paul Reasor and John Gamache. The 
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majority of the work completed for this thesis was done within six months. There were other 

avenues I wished I could have explored more, such as ERC coverage and structural diagnostics, 

but I was unable due to the time constraint. Another timeline constraint was with the manually 

edited data. As mentioned previously, manually editing TDR data is a long and tedious process. 

Due to my timeline, the manually edited data was provided to me. In an ideal situation, I would 

have had the time to manually edit some of my own data for inclusion in this study. 
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

​ The main goal of this study was to compare how applying different QC methods to TDR 

data affects our ability to derive TC structure. The two QC methods we compared were 

NOAA-QC, a rules-based method written in Fortran and has been operational on the WP-3Ds for 

nearly 20 years; and RONIN, a novel machine learning method written in Julia and trained on 

manually edited TDR data. This study aimed to answer two main questions: how does RONIN’s 

performance compare to that of NOAA-QC, and how does using RONIN to QC TDR data affect 

TDR-derived analyses when compared to analyses from data QC’d by NOAA-QC? 

​ Neighbour et al. (2024) discovered that NOAA-QC has an NMD removal rate above 

99.5%, but it is aggressive, as it also removes around 30% MD. In order to compare these 

statistics with RONIN among a diverse array of cases, we utilized the methods from Neighbour 

et al. (2024) on Hurricane Earl (2022), Tropical Storm Fiona (2022), Hurricane Lee (2023), and 

Tropical Storm Beryl (2024). Over all four cases combined, RONIN has an NMD removal rate 

slightly less than that of NOAA-QC at 99.05%, yet a significantly lower MD removal rate at 

9.11%. For these same cases, NOAA-QC performed as expected to Neighbour et al. (2024) with 

regards to the high MD removal rate, but the NMD detection was lower than usual. We rejected 

this to be a crucial finding due to the inclusion of Tropical Storm Beryl in these four cases, which 

NOAA-QC performed particularly poorly due to the environmental conditions. Upon comparing 

the results from all cases overall and the individual Tropical Storm Beryl case, we found that 

unlike NOAA-QC (which is one size fits all), RONIN is able to pivot for similar performance 
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between various cases in differing environments. When we perused through the individual 

sweeps of NOAA-QC’d and RONIN-QC’d TDR data, we discovered that the main 

improvements in data coverage are within the TCBL, outflow, and areas further away from the 

radar. 

​ In collaboration with NHC, we then selected six different cases from 2024, all cases that 

RONIN has never seen with varying intensities and data reprocessing needs, to create 

RONIN-QC’d TDR-derived 3-dimensional wind analyses using NOAA-Synthesis. We found 

that when using RONIN to create these TDR-derived analyses, data coverage increases 

immensely. Specifically, RONIN expands the range of analyses further away from the flight 

track, covers holes in the analyses, and provides improved coverage on crucial areas of the TC 

(such as the eyewall). While the majority of improvements were within the TCBL and outflow, 

we demonstrate that all heights within all six cases see improvements in data coverage when 

using RONIN. In cases such as Hurricane Rafael (2024) where there was NMD retained in the 

analyses created by NOAA-QC’d data (due to TDR interactions with land), RONIN was able to 

recognize and remove the NMD while still retaining more MD in the same area. We expect the 

reasoning for this is due to RONIN’s framework using spatial awareness in MD identification as 

well as RONIN being trained on manually edited data. 

​ Overall, we have concluded that RONIN is the better QC method for WP-3D TDR data 

in comparison to NOAA-QC. In terms of future work, there are two grants in the proposal stage 

looking to move forward. One is under Michael Fischer at the University of Miami, which will 

investigate how using RONIN to QC WP-3D TDR data will impact data assimilation into and 

output of hurricane forecasting models. The other grant is under Michael Bell at Colorado State 

University and seeks to recreate the entire TDR data QC to analysis process using solely 
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machine learning. Personally, I plan to continue working with TDR data in my PhD at the 

University of Miami. In the short term, I would like to continue this project by analyzing how 

different QC methods affect structural diagnostics (such as azimuthally-averaged winds). If I get 

the results I am expecting (which is not a significant improvement with RONIN), I also plan to 

investigate NOAA-Synthesis to see how we can optimize the process for the most accurate 

results. In addition, I will continue to work with NHC in the further analysis and presentation of 

RONIN as the new QC method for TDR. This includes expanding my analyses for Research 

Question #2 to all cases within 2024 and possibly within other seasons. 

 

 

 

 

 

 

 

 

 



52 

 

 

REFERENCES 

Aksoy, A., Lorsolo, S., Vukicevic, T., Sellwood, K. J., Aberson, S. D., & Zhang, F. (2012). The 

HWRF Hurricane Ensemble Data Assimilation System (HEDAS) for High-Resolution 

Data: The Impact of Airborne Doppler Radar Observations in an OSSE. Monthly Weather 

Review, 140(6), 1843–1862. https://doi.org/10.1175/mwr-d-11-00212.1 

Black, M. L., Gamache, J. F., Marks, F. D., Samsury, C. E., & Willoughby, H. E. (2002). Eastern 

Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The Effect of Vertical Shear on 

Structure and Intensity. Monthly Weather Review, 130(9), 2291–2312. 

https://doi.org/10.1175/1520-0493(2002)130%3C2291:ephjoa%3E2.0.co;2 

Black, M. L., & Willoughby, H. E. (1992). The Concentric Eyewall Cycle of Hurricane Gilbert. 

Monthly Weather Review, 120(6), 947–957. 

https://doi.org/10.1175/1520-0493(1992)120%3C0947:TCECOH%3E2.0.CO;2 

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. 

https://doi.org/10.1023/a:1010933404324 

DesRosiers, A. J., & Bell, M. M. (2023). Airborne Radar Quality Control with Machine 

Learning. Artificial Intelligence for the Earth Systems, 3(1). 

https://doi.org/10.1175/aies-d-23-0064.1 

Dodge, P., Burpee, R. W., & Marks, F. D. (1999). The Kinematic Structure of a Hurricane with 

Sea Level Pressure Less Than 900 mb. Monthly Weather Review, 127(6), 987–1004. 

https://doi.org/10.1175/1520-0493(1999)127%3C0987:tksoah%3E2.0.co;2 

 



53 

Fischer, M. S., Reasor, P. D., Rogers, R. F., & Gamache, J. F. (2022). An Analysis of Tropical 

Cyclone Vortex and Convective Characteristics in Relation to Storm Intensity Using a 

Novel Airborne Doppler Radar Database. Monthly Weather Review, 150(9), 2255–2278. 

https://doi.org/10.1175/mwr-d-21-0223.1 

Fischer, M. S., Rogers, R. F., Reasor, P. D., & Dunion, J. P. (2024). An Observational Analysis of 

the Relationship between Tropical Cyclone Vortex Tilt, Precipitation Structure, and 

Intensity Change. Monthly Weather Review, 152(1), 203–225. 

https://doi.org/10.1175/mwr-d-23-0089.1 

Gamache, J. F., Marks, F. D., & Roux, F. (1995). Comparison of Three Airborne Doppler 

Sampling Techniques with Airborne In Situ Wind Observations in Hurricane Gustav 

(1990). Journal of Atmospheric and Oceanic Technology, 12(1), 171–181. 

https://doi.org/10.1175/1520-0426(1995)012%3C0171:cotads%3E2.0.co;2 

Gamache, J., Franklin, J., Surgi, N., & Liu, Q. (2005). Real-Time Dissemination of Hurricane 

Wind Fields Determined from Airborne Doppler Radar Data Real-Time Dissemination of 

Hurricane Wind Fields Determined. In Joint Hurricane Testbed Project Final Reports. 

http://www.nhc.noaa.gov/jht/2003-2005reports/DOPLRgamache_JHTfinalreport.pdf 

Guy, N., & Jorgensen, D. P. (2014). Kinematic and Precipitation Characteristics of Convective 

Systems Observed by Airborne Doppler Radar during the Life Cycle of a Madden–Julian 

Oscillation in the Indian Ocean. Monthly Weather Review, 142(4), 1385–1402. 

https://doi.org/10.1175/mwr-d-13-00252.1 

Hagen, A., Cangialosi, J., Chenard, M., Alaka, L., & Delgado, S. (2025). Hurricane Helene 

(AL092024). In NOAA NWS National Hurricane Center. NOAA. 

https://www.nhc.noaa.gov/data/tcr/AL092024_Helene.pdf  

 



54 

Hazelton, A., Alaka, G. J., Gramer, L., Ramstrom, W., Ditchek, S., Chen, X., Liu, B., Zhang, Z., 

Zhu, L., Wang, W., Thomas, B., Shin, J., Wang, C.-K., Kim, H.-S., Zhang, X., Mehra, A., 

Marks, F., & Gopalakrishnan, S. (2023). 2022 Real-Time Hurricane Forecasts from an 

Experimental Version of the Hurricane Analysis and Forecast System (HAFSV0.3S). 

Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1264969 

Jorgensen, D. P., and DuGranrut J. D. (1991): A Dual-Beam Technique for Deriving Wind Fields 

from Airborne Doppler Radar. Preprints, 25th Int. Conf. on Radar Meteorology, Paris, 

France, American Meteorological Society, 458–461. 

Jorgensen, D. P., Hildebrand, P. H., & Frush, C. L. (1983). Feasibility Test of an Airborne 

Pulse-Doppler Meteorological Radar. Journal of Climate and Applied Meteorology, 

22(5), 744–757. 

https://doi.org/10.1175/1520-0450(1983)022%3C0744:ftoaap%3E2.0.co;2 

Jorgensen, D. P., Matejka, T., & Dugranrut, J. D. (1996). Multi-Beam Techniques for Deriving 

Wind Fields from Airborne Doppler Radars. Meteorology and Atmospheric Physics, 

59(1-2), 83–104. https://doi.org/10.1007/bf01032002 

Knisely, J., & Poterjoy, J. (2023). Implications of Self-Contained Radiance Bias Correction for 

Data Assimilation within the Hurricane Analysis and Forecasting System (HAFS). 

Weather and Forecasting, 38(9), 1719–1738. https://doi.org/10.1175/waf-d-23-0027.1 

Kühl, N., Schemmer, M., Goutier, M., & Satzger, G. (2022). Artificial intelligence and machine 

learning. Electronic Markets, 32(4), 2235–2244. 

https://doi.org/10.1007/s12525-022-00598-0 

 



55 

Lee, W.-C., Marks, F. D., & Walther, C. (2003). Airborne Doppler Radar Data Analysis 

Workshop. Bulletin of the American Meteorological Society, 84(8), 1063–1075. 

https://doi.org/10.1175/bams-84-8-1063 

Lhermitte, R. M. (1971). Probing of Atmospheric Motion by Airborne Pulse-Doppler Radar 

Techniques. Journal of Applied Meteorology, 10(2), 234–246. 

https://doi.org/10.1175/1520-0450(1971)010%3C0234:poamba%3E2.0.co;2 

Lorsolo, S., Gamache, J., & Aksoy, A. (2013). Evaluation of the Hurricane Research Division 

Doppler Radar Analysis Software Using Synthetic Data. Journal of Atmospheric and 

Oceanic Technology, 30(6), 1055–1071. https://doi.org/10.1175/jtech-d-12-00161.1 

Marks, F.D. (1990). Radar Observations of Tropical Weather Systems. In: Atlas, D. (eds) Radar 

in Meteorology. American Meteorological Society, Boston, MA. 

https://doi.org/10.1007/978-1-935704-15-7_31 

Marks, F. D. (2003). State of the Science: Radar View of Tropical Cyclones. Meteorological 

Monographs, 30(52), 33–33. 

https://doi.org/10.1175/0065-9401(2003)030%3C0033:sotsrv%3E2.0.co;2 

Marks, F. D., & Houze, R. A. (1984). Airborne Doppler Radar Observations in Hurricane Debby. 

Bulletin of the American Meteorological Society, 65(6), 569–582. 

https://doi.org/10.1175/1520-0477(1984)065%3C0569:adroih%3E2.0.co;2 

Marks, F. D., & Houze, R. A. (1987). Inner Core Structure of Hurricane Alicia from Airborne 

Doppler Radar Observations. Journal of the Atmospheric Sciences, 44(9), 1296–1317. 

https://doi.org/10.1175/1520-0469(1987)044%3C1296:icsoha%3E2.0.co;2 

Marks, F. D., Houze, R. A., & Gamache, J. F. (1992). Dual-Aircraft Investigation of the Inner 

Core of Hurricane Norbert. Part I: Kinematic Structure. Journal of the Atmospheric 

 



56 

Sciences, 49(11), 919–942. 

https://doi.org/10.1175/1520-0469(1992)049%3C0919:daioti%3E2.0.co;2 

Neighbour, K. L., Reasor, P. D., & Gamache, J. (2024). Assessment of Operational 

Airborne-Radar Quality Control Methods for NOAA Hurricane Reconnaissance. Sixth 

Special Symposium on Tropical Meteorology and Tropical Cyclones, American 

Meteorological Society, Baltimore, MD. 

Nguyen, Q., & Kieu, C. (2024). Predicting Tropical Cyclone Formation with Deep Learning. 

Weather and Forecasting, 39(1), 241–258. https://doi.org/10.1175/waf-d-23-0103.1 

NOAA Hurricane Hunters. (2012, December 6). The NOAA Hurricane Hunters - A rare look 

inside the NOAA G-IV Tail Doppler Radar before the aircraft and NOAA crew start 

supporting the NOAA/NCEP Winter Storms project. | Facebook. Facebook.com. 

https://www.facebook.com/NOAAHurricaneHunters/photos/a-rare-look-inside-the-noaa-

g-iv-tail-doppler-radar-before-the-aircraft-and-noaa/10151326989865081/ 

Rappin, E. D., Morgan, M. C., & Tripoli, G. J. (2011). The Impact of Outflow Environment on 

Tropical Cyclone Intensification and Structure. Journal of the Atmospheric Sciences, 

68(2), 177–194. https://doi.org/10.1175/2009jas2970.1 

Reasor, P. D., Eastin, M. D., & Gamache, J. F. (2009). Rapidly Intensifying Hurricane Guillermo 

(1997). Part I: Low-Wavenumber Structure and Evolution. Monthly Weather Review, 

137(2), 603–631. https://doi.org/10.1175/2008mwr2487.1 

Reasor, P. D., Montgomery, M. T., Marks, F. D., & Gamache, J. F. (2000). Low-Wavenumber 

Structure and Evolution of the Hurricane Inner Core Observed by Airborne Dual-Doppler 

Radar. Monthly Weather Review, 128(6), 1653–1680. 

https://doi.org/10.1175/1520-0493(2000)128%3C1653:lwsaeo%3E2.0.co;2 

 



57 

Rogers, R. F., Lorsolo, S., Reasor, P. D., Gamache, J. F., & Marks, F. D. (2012). Multiscale 

Analysis of Tropical Cyclone Kinematic Structure from Airborne Doppler Radar 

Composites. Monthly Weather Review, 140(1), 77–99. 

https://doi.org/10.1175/mwr-d-10-05075.1 

Rogers, R., Aberson, S., Black, M., Black, P., Cione, J., Dodge, P., Dunion, J., Gamache, J., 

Kaplan, J., Powell, M., Shay, N., Surgi, N., & Uhlhorn, E. (2006). The Intensity 

Forecasting Experiment: A NOAA Multiyear Field Program for Improving Tropical 

Cyclone Intensity Forecasts. Bulletin of the American Meteorological Society, 87(11), 

1523–1538. https://doi.org/10.1175/bams-87-11-1523 

Rogers, R. R., & Smith, P. L. (1983). Radar meteorology. Science Progress (1933- ), 68(270), 

149–176. http://www.jstor.org/stable/43420561 

Rogers, R., Reasor, P., & Lorsolo, S. (2013). Airborne Doppler Observations of the Inner-Core 

Structural Differences between Intensifying and Steady-State Tropical Cyclones. Monthly 

Weather Review, 141(9), 2970–2991. https://doi.org/10.1175/mwr-d-12-00357.1 

Roux, F., & Viltard, N. (1995). Structure and Evolution of Hurricane Claudette on 7 September 

1991 from Airborne Doppler Radar Observations. Part I: Kinematics. Monthly Weather 

Review, 123(9), 2611–2640. 

https://doi.org/10.1175/1520-0493(1995)123%3C2611:saeohc%3E2.0.co;2 

Stern, D., & Nolan, D. S. (2009). Reexamining the Vertical Structure of Tangential Winds in 

Tropical Cyclones: Observations and Theory. Journal of the Atmospheric Sciences, 

66(12), 3579–3600. https://doi.org/10.1175/2009jas2916.1 

Whiton, R. C., Smith, P. L., Bigler, S. G., Wilk, K. E., & Harbuck, A. C. (1998). History of 

Operational Use of Weather Radar by U.S. Weather Services. Part I: The Pre-NEXRAD 

 



58 

Era. Weather and Forecasting, 13(2), 219–243. 

https://doi.org/10.1175/1520-0434(1998)013%3C0219:HOOUOW%3E2.0.CO;2 

Zhang, J. A., Rogers, R. F., Reasor, P. D., & Gamache, J. (2023). The Mean Kinematic Structure 

of the Tropical Cyclone Boundary Layer and Its Relationship to Intensity Change. 

Monthly Weather Review, 151(1), 63–84. https://doi.org/10.1175/mwr-d-21-0335.1 

 


	INTRODUCTION 
	BACKGROUND 
	MOTIVATION AND RESEARCH QUESTIONS 
	DATA AND SOURCES 
	QUALITY CONTROL METHODOLOGIES 
	NOAA-QC 
	RONIN 

	RESEARCH METHODOLOGY 
	Research Question #1 
	Research Question #2 
	The Cases Used in this Study 

	RESULTS  
	DISCUSSION 
	CONCLUSIONS AND FUTURE WORK 
	REFERENCES 

