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The distribution of values of arithmetic functions in residue classes is a problem of
significant interest in elementary, analytic and combinatorial number theory. Much work
has been done studying this problem for fixed moduli. In this thesis, we extend many of
the results in the literature for large classes of additive and multiplicative functions, so as
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analogues of the Siegel-Walfisz theorem (from prime number theory) for the joint
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Chapter 1

Introduction

The distribution of values of arithmetic functions in residue classes has drawn a lot
of attention in elementary, analytic and combinatorial number theory, with multiple
authors such as Delange, Narkiewicz, Dence and Pomerance, Banks and Shparlinski,
Sliwa, Rayner, Dobrowolski, Fomenko, and others studying such value distributions
for fized moduli. In this dissertation, we extend several of their works and study the
distribution of arithmetic functions in residue classes to moduli that are allowed to
vary within a wide range. This study is motivated by the celebrated Siegel-Walfisz
theorem on the distribution of primes in progressions, and we obtain essentially best
possible analogues of the Siegel-Walfisz theorem for large classes of additive and

multiplicative functions.

In this introductory chapter, we recount some of the relevant past work done on
this subject, motivate the problems studied here, and summarize the contents of this

dissertation.



1.1 UNIFORM DISTRIBUTION IN RESIDUE CLASSES

Section 1.1

Uniform distribution in residue classes

Let f be an integer valued arithmetic function and ¢ be a positive integer. We say

that f is uniformly distributed or equidistributed modulo ¢ if
#{n<z:f(n)=a (mod q)} ~ g as & — 00,

for each residue class @ mod ¢. In shorthand, we will say that f is UD mod ¢. This

notion was introduced by Niven in [53].

For instance, the function f(n) = n is easily seen to be equidistributed modulo any
g € N. A somewhat less trivial example is the function f(n) that maps n to the n-th
Fibonacci number, which is known to be equidistributed modulo ¢ precisely when ¢

is a power of 5 (see [52, 37]).

Using the additive characters mod ¢, we can decide whether an arithmetic function

f is equidistributed mod ¢. In what follows, we use e(t) to denote e*™*.

Lemma 1.1.1. Consider any arithmetic function f : N — Z and a fized positive
integer q. Then f is UD mod q if and only if for every nonzero residue class v mod

q, we have

3 e(rf(”)> = o) as z - oo.

n<x q

Proof. Assume that f is UD mod q. Then for any residue class a mod ¢, we have

#{n <z:f(n)=a (mod q)} = (1 +o(1))x/q as x — oo. As such, for any residue
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class r mod ¢, we have

S =X e(F) o

f(n)Ea_(mod q)

_ (éaéqe (%) —|—0(1)> z.

asz — oo. Now if r # 0 (mod gq), then }_ 4, e(ra/q) vanishes, proving the forward

implication.

For the reverse implication, we use the last observation to detect the condition
f(n) = a (mod ¢). (In other words, we use the “orthogonality relations” of addi-
tive characters.) Indeed, using 1p to denote the indicator function of a property P,

we see that for any residue class a mod ¢, we have

#{n<z:fn)=a (mod q)} = > 1 f()-az0(mod o)

n<x

_ Zé 3 e(M)

n<z ~ rmodq q

Interchanging sums and isolating the term » = 0 (mod ¢), we obtain

Ba<o S =atmoda) =2+ 0 S (T (H),

r#0 (mod q) n<z q

The lemma now follows from the hypothesis that »  _ e (rf(n)/q) = o(x) as x — oo,
for each r Z 0 (mod q). O

Remark 1.1.2. Lemma 1.1.1 should be reminiscent of the classical “Weyl equidis-
tribution criterion” that is used to test for “uniform distribution mod 1”. Here we

say that a sequence {a,}5°, of real numbers is uniformly distributed mod 1 if for any
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subinterval (a,b) of [0, 1], we have

lim 1#{ngxz{an}e(a,b)} = b—a,

T—0

where {a} = o — || denotes the fractional part of a real number . This is not the
same as the vacuous notion of “uniform distribution mod q” with ¢ = 1. The notions
of “uniform distribution mod q” (for a general q) and “uniform distribution mod 1”
are not directly related to one another, however there are some connections. See [49,

Chapter 1] for some remarks on these connections.

Remark 1.1.3. An interesting question to ask would be: Can we characterize those
sets X C N for which there exists a function f : N — 7Z satisfying the following

property: f is UD mod ¢ <= qe€ X.

A tautological necessary condition on X is that it must be “divisor closed”, i.e. for
any q € X, all the divisors of q¢ must also lie in X. (This follows from the observation
that any residue class mod d is a union of q/d many residue classes mod q.) This

condition was also proven to be sufficient by A. Zame in [81].

This notion of equidistribution generalizes naturally to a family fi,..., fx : N — Z
of arithmetic functions: We say that this family is jointly equidistributed (or jointly

UD) modulo g if for any family of residue classes ay,...,ax mod ¢, we have
Uin<a: VielK], filn)=a (mod q)} ~ = as z—00. (L1

(Here and below, [K] denotes the set {1,..., K}.) A straightforward extension of the

argument given for Lemma 1.1.1 yields the following generalization of it.

Lemma 1.1.4. The functions fi,...,fx : N — Z are jointly UD modulo a fixed
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q € N if and only if for every tuple of residue classes (r1,...,rx) Z (0,...,0) mod q

we have
Z €<r1f1(n)_|_..q.+7“KfK(n)> _ O(JI) as T — oo.
— Section 1.2

Equidistribution of additive functions in residue

classes: Fixed moduli

The main topic in this thesis is to study the distribution of additive and multiplicative
functions in residue classes. Here, we say that f : N — 7Z is additive if it satisfies
f(mn) = f(m) + f(n) for all pairs of coprime positive integers m and n. On the
other hand, we say that f : N — Z is multiplicative if it satisfies f(mn) = f(m)f(n)

for all such m and n.
Some of the most well-known examples of additive functions are:

o The function w(n) = > 1 counting the distinct prime divisors of n.

p|n

e The function Q(n) = = >, Up(n) counting the prime divisors of n

p*n

with appropriate multiplicity. Here v,(n) is the exponent (highest power) of p

in the prime factorization of n.

o The function f(n) = >_  p summing the distinct prime divisors of n.

p|n

« The “Alladi-Erdés” function A(n) = 3, pk = >, pvy(n) summing the

prime divisors of n with appropriate multiplicity.

Each of these functions is interesting in its own right, and various aspects of these
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functions have been studied in the literature. As for their distribution in residue

classes, one of the earliest results in this direction is the following
Theorem 1.2.1. w(n) is UD mod q for any q € N. The same is true for Q(n).

This result is due to Pillai [56], generalizing work of von Mangoldt who showed this

for ¢ = 2. A similar result was also obtained by Sigmund Selberg in [70].

The Alladi-Erdés function also exhibits equidistribution modulo any positive integer
q: This was proven with a very strong error term for ¢ = 2 by Alladi and Erdés [3]

themselves, and subsequently generalized to arbitrary ¢ by Goldfeld [28].

Theorem 1.2.2. A(n) is UD mod q for any q € N. In fact, there exists an absolute

constant ¢ > 0 such that for r € {0,1}, we have

#{n<z:AMm)=r (mod 2)} = g + O(z exp(—cy/log z))

as x — co. Moreover, for any fixred q > 2 and any residue class r mod q, we have as

T — 00,

#{ngx:A(n)Er(modq)}zg—l—O(\/le). (1.2)

In 1969, Delange [19] gave a criterion for a general additive function f : N — Z
to be equidistributed modulo a fixed ¢ € N, in terms of the divergence of the sums

Sy = dep) 1/p for certain divisors d of ¢q. (See Theorem 1 and Remark 3.1.1 in

[19].)

Theorem 1.2.3. Let f : N — 7Z be an additive function and ¢ > 1 a given integer.
Consider the sums Sy = zp: i) 1/p. Then f is equidistributed mod q if and only

if Sy diverges for every odd prime £ dividing q, and one of the following hold:
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(i) ¢ is odd;
(ii) 2 || ¢, and either Sy diverges or f(2") is odd for all T > 1;

(iii) 4 | q, Sy diverges, and either Sy diverges or f(2") is odd for all r > 1.

It is worth noting that Theorem 1.2.1 and the first assertion of Theorem 1.2.2 follow

immediately from Theorem 1.2.3: Indeed, since w(p) = Q(p) = 1 for any prime p, we

see that for any d > 1, the sum > 4 0 1/p = 3" uoq) 1/p = 2_, 1/p diverges.

In order to establish Theorem 1.2.3, Delange’s main idea (a theme that is highly recur-
rent while proving equidistribution results to fixed moduli) is to utilize the Weyl-type
criterion Lemma 1.1.1, and recognize that since f(n) is an additive function, the
functions e(rf(n)/q) are multiplicative, and as such the sums » _ e(rf(n)/q) are
amenable to the plethora of tools from the vast subject of “mean values of multi-
plicative functions”. For Theorem 1.2.3, it suffices to use one of the oldest known
results in this subject: A theorem of Wirsing [80] that gives a necessary and sufficient
condition for the mean value of a multiplicative function g : N — U to vanish, in
terms of the average behavior of g at the primes and the behavior of g at powers of
2. (Here U := {z € C : |z| < 1} is the unit disk in the complex plane, and by the

“mean value” of g, we mean the quantity lim, .. 2 > _ g(n).)

In his sequel [20] to the aforementioned paper, Delange characterizes when a given
family f1,..., far of integral-valued additive functions is jointly equidistributed to a
given integer modulus ¢, by reducing the problem to the equidistribution of a single
additive function. The following is the special case of Delange’s result that will be
relevant in this dissertation. (This corresponds to the assignment ¢, == 1, § := ¢ in

the result stated in section 4 of [20].)

Theorem 1.2.4. A given family fi,..., fa of integral-valued additive functions is
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jointly equidistributed modulo q > 1 if and only if for all integers k1, ..., ky; satisfying
ged(ky, ..., ky) = 1, the additive function kyfi + -+ + karfar is equidistributed mod

q.

We remark that the formulation above is equivalent to that in [20, Section 4], which is
stated with the additional restriction that kq, ..., ky € {0,...,¢—1}. Indeed, assume
that Zf\il \ifi is equidistributed mod ¢ for all (Aq,..., Ay) € {0,1--- ¢ — 1} sat-
isfying ged(Aq, ..., Ayr) = 1. We claim that Zf‘il k; f; is equidistributed mod ¢ for all
(ky, ..., ky) € ZM satistying ged(ky, ..., ky) = 1. To see this, we consider any tuple
(k1, ..., ky) € ZM having ged(ky, ..., ky) =1, and let k), ..., k), € {0,1,...,q— 1}
be the unique integers satisfying k; = k; (mod ¢). Then d' = ged(ky,..., k),) €
{1,...,¢ — 1} must be coprime to ¢, for otherwise, there is a prime ¢ dividing
ged(q, kY, ..., k),) hence also dividing ged(q, ki, ..., ky) = 1. Write & = d'k} for
some kY,..., k7, € {0,1,...,q — 1} having ged(k,...,k%,) = 1. Since d' is invert-
ible mod ¢ and the function ZM k! f; is equidistributed mod ¢, it follows so is the

1=1""

function Zf‘il kif;, as Zf\il kif; = Zf\il kifi=d Zf\il E!'f; (mod q).

Analogous to the first step in the proof of Theorem 1.2.3, Lemma 1.1.4 becomes
relevant in the proof of Theorem 1.2.4. As an application of Theorems 1.2.4 and
1.2.3, and of Dirichlet’s theorem on primes in progressions, we have the following

extension of (parts of) Theorems 1.2.1 and 1.2.2.

Corollary 1.2.5. w(n) and A(n) are jointly UD modulo any fized ¢ € N. The same
holds true for Q(n) and A(n).

Remark 1.2.6. One might ask the following variant of the question asked in Remark

1.1.83: For which sets X C N does there exist an additive function f : N — Z that

"'Whenever we speak of ged(ki, ..., kas), we assume implicitly that (ki,..., k) # (0,...,0).
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satisfies the following equivalence: f is UD mod q <= q € X. This question was

answered by Narkiewicz in Theorem 4.6 of his monograph [49].

— Section 1.3

Equidistribution of multiplicative functions in

residue classes: Fixed moduli

We start by giving an account of the results known on the distribution of multiplicative

functions to fixed moduli.

1.3.1. The correct notion of “equidistribution”

It turns out that for multiplicative functions, the notion of “equidistribution” defined
in the previous section is not the correct one to work with. To see why that is,
let’s consider one of the most classical examples of a multiplicative function, the
Euler totient ¢(n) = #(Z/nZ)*, which will make an appearance everywhere in this
dissertation. It is a well-known result (for instance, implicit in work of Landau [38])
that for any fixed ¢ € N, “almost all” positive integers n are divisible by a prime

p=1 (mod ¢). In other words, for any fixed ¢, we have

#{n<zx:3I p=1(modgq) st. p|ln}~ =z as x — oQ.

But if n is divisible by a prime p = 1 (mod gq), this forces ¢ | (p — 1) | ¢(n). As such,

for any fixed ¢, we obtain

#{n<xz: on)=0 (modq)} ~ = as T — 00.
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In particular, this means that ¢(n) is not equidistributed modulo any integer ¢ > 1.
Motivated by this, Narkiewicz in [45] introduces the notion of weak uniform distribu-
tion: Given an integer-valued arithmetic function f and a positive integer g, we say
that f is weakly uniformly distributed (or weakly equidistributed or WUD) modulo ¢ if

there are infinitely many positive integers n for which ged(f(n),q) = 1, and if

#{n<z:f(n)=a (mod q)}

~ @#{n <z :ged(f(n),q) =1}, as x — oo,

for each coprime residue class a mod ¢. In other words, our sample space of relevant
inputs is the set {n : ged(f(n),q) = 1} and every coprime residue class mod ¢
gets its fair share of the sample space. For example, f would be WUD mod 6 if
{n : ged(f(n),6) = 1} is infinite and if the two coprime residue classes 1 mod 6 and

5 mod 6 each (asymptotically) receive 50% of the values f(n) that are coprime to 6.

This definition extends naturally to families of arithmetic functions: We say that
the functions fi,..., fx : N — Z are jointly weakly equidistributed (or jointly WUD)

modulo ¢ if there are infinitely many n for which ged(fi(n) -+ fx(n),q) = 1, and if

#{n<xz:Vie K|, fi(n)=a; (modq)}

1
~ ———#{n <w:ged(fi(n) - fx(n),q) =1} (1.3)
v(q)
as r — 00, for all coprime residue classes aq, ..., ax mod q.

Just like we used the additive characters e(r(-)/q) to detect arbitrary residue classes
mod ¢, we can use the multiplicative characters (or Dirichlet characters) to detect
coprime residue classes mod ¢. Doing this gives us the following analogues of Lemmas

1.1.1 and 1.1.4, which could be thought of as our “Weyl-type” criteria for weak

10
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equidistribution. In what follows, we use U, to denote the unit group mod ¢ and
Xo,q to denote the trivial (or principal) character mod g. We also follow the standard
convention that y(m) = 0 for any Dirichlet character x mod ¢ and any integer m not

coprime to q.

Lemma 1.3.1. Consider arithmetic functions fi,..., fx : N — Z and a fized positive
integer q such that there are infinitely many n for which ged(fi(n)... fx(n),q) = 1.
Then f1,..., fx are jointly WUD modulo q if and only if for all tuples of Dirichlet

characters (X1, .-, Xk) 7 (Xoqs - - - » X0.q) Mmod q, we have

> xi(fin) .. xx(fx(n)) = O(ZXO,q(fl(")me(n))> as T — 0.

n<x n<x

(1.4)

In particular, consider f : N — Z and q € N for which {n : ged(f(n),q) = 1} is

infinite. Then f is WUD mod q if and only if for any nontrivial character x mod q,

> o x(f(m) =o (Z XO,q(f(n))> as T — 0. (1.5)

n<x n<lx

Proof. The argument is analogous to that given for Lemma 1.1.1, by substituting
the “additive orthogonality relations” by the “orthogonality relations for Dirichlet
characters”. Indeed for the forward implication, note that if fi,..., fx are jointly
WUD mod g, then for all tuples of Dirichlet characters (x1,...,xx) # (Xo.gs - - - s X0.9)

mod ¢, we have

Soalham) . oxk(fxm) = > @) oxkla) > L

n<lx at,...,ag €Uq n<lz
(Vi) fi(n)=a; (mod q)

11
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Using (1.3) and the definition of xq,, we obtain

> xalfim) - xx(fr(n))

n<x

— o(q)K Z (E Xi(%)) +o(1) ZXO,q(fl(n) . fr(n)).

n<x

But since (x1,--.5XK) # (Xo,gs - - - s X0,g) Mmod ¢, we must have Zaiqu Xi(a;) = 0 for

some i € [K], which means that

yielding the forward implication.

For the reverse implication, recall that for any coprime residue a mod ¢, we have
Lim=a (mod ¢) = ﬁ Zx mod ¢ X(a)x(m), with the sum being over all Dirichlet characters

x mod ¢. This allows us to write for any ay,...,ax € U,

#{n<az:Vie[K], filn)=a; (modq)} =) [] (ﬁ . Yi(ai)Xi(fi(n))> :

n<z i=1 xi mod g

Expanding the product and interchanging sums, we obtain

#{n <z:Vie[K], filn)=a (modq)}

N w(;)K > (Hm») ST xalhim) . oxx(fr(n).

X1,--xXK mod g \i=1 n<z

Finally, the contribution of the tuple (x1,...,Xx) = (X0, - - » X0,4) to the above sum
is exactly ¢(q) 5#{n < x : ged(fi(n)... fx(n),q) = 1}, whereas by our hypoth-

esis (1.4), the contribution of each tuple (x1,...,Xkx) # (Xogqs---, SXo,,) mod ¢ is

12
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o(p(q) B#{n <z :ged(fi(n)... fx(n),q) = 1}). This yields the desired asymptotic
(1.3). O

Remark 1.3.2. As in Remarks 1.1.8 and 1.2.6, one can ask what conditions on a
set X C N are necessary and sufficient for there to exist some function f : N — Z

(or some multiplicative function f: N — Z) satisfying the property:

fis WUD mod q <— qe X.

This time an obvious necessary condition on X is that if q lies in X, then so must any
divisor d of q that has the same prime factors as q: This is because coprimality mod q
s equivalent to coprimality mod d, and any reduced residue class mod d is a union of
exactly ©(q)/o(d) = q/d many reduced residue classes mod q. However, whether this
condition is sufficient or not remains an unsolved question (even for the existence of

a general arithmetic function f). See [46] and [49] for more remarks on this problem.

1.3.2. Building up towards the general criterion: Weak equidistribution of

the Euler totient

While Delange was able to exactly characterize the equidistribution of a general addi-
tive function modulo an integer, it seems a much more difficult (possibly intractable)
problem to exactly characterize the weak equidistribution of a general multiplicative
function. While results are known for very specific multiplicative functions, the most
general results known in literature are able to capture large classes of interesting mul-
tiplicative functions (leaving out other classes of interesting multiplicative functions).
Some of the most general criteria available in the literature are for multiplicative
functions that can be controlled by polynomials at the first few powers of all primes;

we will be calling them “polynomially—defined” multiplicative functions.

13
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Precisely, we will say that a multiplicative function f : N — 7Z is polynomially—
defined if there exists V € NU{oo} and polynomials {W,}Y_, with integer coefficients
such that f(p”) = W,(p) for all v € [V] and all primes p. In other words, the
polynomial W, controls the behavior of f at the v-th powers of all primes. Several

well-known multiplicative functions fall within this class:
 The Euler totient function f(n) = ¢(n) for which W,(T) =T" — T*~*.

« The sum of divisors function f(n) = o(n) = 3_,, d for which W,(T") = T" +

T o T+ 1

« More generally, the functions o,.(n) = >_, d" for which W,(T") = Tro4+T7-D 4
<+ +T" + 1. For odd r, these functions also occur as Fourier coefficients of

Eisenstein series.

 The divisor function d(n) that counts the number of positive divisors of n, for
which W,(T) = v+ 1. More generally, the generalized divisor functions d,.(n) =
> nine 1, for which W, (T) = ("+771).
ni...ny=n

v

These are some natural examples of polynomially—defined multiplicative functions
arising in number theory. One can also construct more artificial examples (as is done
in applications), such as by fixing any (finite) V' € N, and then defining f : N — Z
to be any multiplicative function satisfying f(p") = W,(p) only for v € [V], with
{W,}Y_, being any of the respective polynomials from the examples above, along
with f(p¥+1) = [p'/2]. All results below will show that the distribution of such
functions in coprime residue classes is highly similar to that of the respective function

from the list above.

In [45], Narkiewicz gives a general criterion to decide weak equidistribution of a
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single polynomially—-defined multiplicative function to a fixed modulus. Although
this criterion requires a lot of technical set—up, its proof involves a similar underlying
theme as Delange’s criterion (Theorem 1.2.3). To highlight these ideas in a simple
manner, we consider the consequence of Narkiewicz’s criterion for the Euler totient

(see [45, Corollary 2]).

Proposition 1.3.3. ¢(n) is WUD mod q if and only if ged(q,6) = 1. Moreover in

this case, we have for any a € U,,

X

W as T — 09, (16)

#{n<z:pm)=a (modq)} ~ C,

where a(q) = ] (1 — e_%) and Cy > 0 is a constant depending only on q.

tq
£ prime

Here the necessity of the condition ged(q, 2) = 1 is clear because otherwise the sample
space {n : ged(¢(n), q) = 1} becomes finite. The necessity of the condition ged(q, 3) =
1 is a little more subtle: Basically, the numbers p — 1 = (p), for primes p # 3, either
fail to be coprime to 3 or are “trapped” in the trivial subgroup of (Z/3Z)*. This
prevents ¢(n) from being weakly equidistributed modulo 3 (and hence also modulo

multiples of 3).

The following table illustrates the weak equidistribution of ¢(n) mod 5. Here for

x> 1and r € {1,2,3,4}, we have defined

o) = #{n <z :p(n)=r (mod 5)}
' #{n <z :ged(p(n),5) =1}

It is worth noting that in the table below, the convergence of each p.(z) to the
expected value 0.25 is extremely slow, a point that is addressed by some ongoing

work of the author (not part of this thesis), and will be briefly discussed in the
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concluding remarks of Chapter 4 (section 4.12).

Table 1: Explicit numerical distributions of ¢(n) mod 5:
z p1(x) pa() ps() pa(z)

10° | 0.27165 | 0.28003 | 0.23993 | 0.20837
10% | 0.27157 | 0.27556 | 0.23979 | 0.21307
107 | 0.27073 | 0.27267 | 0.23999 | 0.21660
10% | 0.26998 | 0.27051 | 0.24032 | 0.21917
10° | 0.26924 | 0.26884 | 0.24063 | 0.22127

Outline of proof of Proposition 1.5.5:

As mentioned above, the skeletal idea behind the argument is similar to that in
Delange’s criterion: Use our “Weyl-type” criterion and estimate the relevant character
sums using mean value estimates for multiplicative functions. Indeed by Lemma 1.3.1,

w(n) is WUD mod g if any only if

> x(p(n) =o (Z Xo,q(sO(n))) as & — 00 (1.7)

n<x n<x

for every nontrivial character x mod gq.

The sums ) . x(¢(n)) are once again amenable to mean value results on multiplica-
tive functions, but here this input comes from a Tauberian Theorem of Delange and
Ikehara; see for instance [50, Appendix II, Theorem I|. (To apply this theorem, we
need to rewrite the Dirichlet series } -, x(¢(n))/n° in a suitable form, which we do

by utilizing its Euler product and invoking basic properties of Dirichlet L—functions.)

An application of this theorem shows that for any character x mod ¢, we have
> n<a X(p(n)) = cyz/(log )17 + o(z/(log 2)1=*0)) where ¢, is a complex number

and a(y) = ﬁ > vev, X(b — 1). By the triangle inequality, we have Re(a(x)) <
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la(x)] < a(xo), with equality precisely when x(b — 1) = 1 for all b in the set
{b €U, :b—1¢€ U,}. Thus condition (1.7) holds precisely when for every such
nontrivial character y mod ¢, we have ¢, = 0. Now the constant ¢, involves an (ab-
solutely convergent) Euler product, hence it vanishes precisely when one of the Euler
factors vanishes; this Euler factor is of the form 1+3 -, x(4(p”))/p® for some prime

p. The upshot is that ¢ is WUD mod ¢ precisely when

For every x # xo, mod ¢ satisfying x(b — 1) = 1 on the set

{beU,:b—-1€U,}, we have Z M = 0 for some prime p. (1.8)

J=0

A straightforward application of the triangle inequality now shows the equation 1 +
> vs1 X(p(p?))/p® = 0 is possible only if p = 2, and this in turn forces x(2) = 3,
which is impossible. This shows that there cannot exist a nontrivial character y mod
q acting trivially on the set {b —1 € U, : b € U,}. An elementary construction
using the Chinese Remainder Theorem now shows that this is possible precisely when

ged(q, 6) = 1.

Finally, the asymptotic (1.6) follows from the aforementioned Delange—Tkehara Taube-
rian Theorem. The exponent «(q) arises from the proportion of unit residues v mod

q for which u — 1 is also a unit mod gq. 0

Remark 1.3.4.

o All the arguments above until condition (1.8) go through with minor (mostly
notational) modifications to prove Narkiewicz’s general criterion, which we have

stated as Theorem 1.5.6 below.

e By Proposition 1.53.3, ¢(n) is not weakly equidistributed mod 3. Dence and
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Pomerance [21] study the distribution of ¢(n) mod 3. They find that the residue
class 1 mod 3 asymptotically receives about twice as many values of p(n) as

compared to the residue class —1 mod 3.

Theorem 1.3.5. Forr € {—1,1}, we have as x — oo,

#{n<z:pn)=r (mod3)} ~ ca/y/logz,
where ¢; =~ 0.6109 and c_; ~ 0.3284.

1.3.3. Narkiewicz’s criteria for weak equidistribution and applications

Consider now a general polynomially-defined multiplicative function f : N — Z,
so that there exist polynomials {W,}Y_, with integer coefficients satisfying f(p*) =
W, (p) for all primes p and for all v € [V]. Fix a positive integer q. As for ¢(n), we use
our criterion Lemma 1.3.1 to reduce the problem of characterizing the weak equidis-

tiribution of f(n) mod ¢ to the problem of estimating the partial sums », . x(f(n)).

Now the Dirichlet series ) -, x(f(n))/n® is absolutely convergent in the half-plane
Re(s) > 1, and possesses the Euler product [[,(1 + > -, x(f(p"))/p*). Defining
R,(q) = {u € U, : W,(u) € U,} for each v € [V], note that if R,(¢) were empty
for some v, then x(f(p*)) = x(W,(p)) would be zero for all primes p not dividing gq.
Hence to gain some traction on the aforementioned Euler product, we should assume
(the non—degeneracy condition) that R,(¢) is nonempty for some v € [V]. With k

denoting the least such v, we say that ¢ is k—admissible, and in this case,

x(f(n) _ (@) x(f ("))
SO (1 M) (1300

n>1 plq v>k lg vzl

Notice that each Euler factor in the infinite part of the Euler product starts at the
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k-th power of primes: As such, the above Dirichlet series defines an analytic function
on the half plane Re(s) > 1/k and its behavior is determined by the polynomial W.
(In the discussion for ¢(n) in the previous subsection, we had k = 1, so Wy (T') was

just T'—1.)

Carrying out the arguments until (1.8) in the outline of the proof of Proposition 1.3.3
now shows that in order for f to be weakly equidistributed mod ¢, it is necessary and
sufficient to have a condition of the form (1.8). This leads to the following general

criterion for weak equidistribution due to Narkiewicz (see [45, Theorem I]).

Theorem 1.3.6. Let f : N — Z be a polynomially—defined multiplicative function,
with polynomials {W,}Y_, C Z|T] satisfying f(p®) = W,(p) for all v € [V] and all

primes p. Fiz k € [V] and a k-admissible ¢ € N.

Then f is WUD mod q if and only if for every nontrivial Dirichlet character x mod
q satisfying x(Wg(b)) = 1 on the set {b € U, : Wi(b) € U,}, there exists a prime
p satisfying ijo x(f(p?)) p7/* = 0. When this happens, there exists a constant

C, > 0 depending only on q such that for any a € U,, we have

T

#n <z fn)=a mod g} ~ Coeg

as T — 00,

where a(q) = @#{u e U, : Wi(u) € U, }.

It remains a highly nontrivial problem to make this condition more explicit in the
above generality, for instance by replacing the “existence of prime” condition by a
simpler one, or by reducing the computation of the infinite sum >0 x(f(p?)) p~i/*
to a finite computation. Concrete examples of such explicit criteria are Proposition
1.3.3 and some of the results below. See Chapter VI of Narkiewicz’s monograph [49]

for an algortihmic solution to this problem in some cases.
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Remark 1.3.7. As we will see in Chapter 4, the hypothesis of k-admissibility means
that we are working in a really sparse sample set of inputs; in fact #{n < z :
ged(f(n),q) = 1} = o(z'/*) as © — oo. In general, sparse sets like this can often
present difficulties while studying arithmetic questions about them, but Narkiewicz’s

work is able to deal with these difficulties for a fixed modulus.

However, if f : N — Z is controlled by polynomials up to the V-th powers of primes,
but if q is not k-admissible for any k € [V], then the sample space becomes too sparse
to say anything worthwhile (at least without assuming further control on the behavior

of f); see for instance [45, Theorem II].

A case of particular interest is when Narkiewicz’s criterion holds vacuously, namely,
when there are no nontrivial characters y mod ¢ satisfying x(Wy(b)) = 1 on the set
{be U, : Wi(b) € Uy}, or equivalently, when the set {W(b) : bWy (b) € U,} generates
U,. When this happens, we will say that f is regularly WUD mod ¢ (this terminology

was introduced by Narkiewicz in [48]).

Corollary 1.3.8. In the setting of Theorem 1.5.6, assume that the set {Wy(b) :
bWy (b) € U,} generates U,. Then f is WUD mod q.

We will say that f is regular if for any ¢ € N for which f is WUD mod ¢, it must also
hold that f is regularly WUD mod ¢. The outline given for Proposition 1.3.3 shows
that p(n) is regular; in fact, this is how Narkiewicz originally deduced Proposition
1.3.3 from Theorem 1.3.6 in [45]. It turns out that the divisor function d(n), the sum
of divisors function o(n), as well as the “sum-of-divisor-powers” functions o, (n) for
r > 2, are all regular. Observing this for d(n), Narkiewicz [45, Corollary 1] was able

to show the following.

Corollary 1.3.9. The divisor function d(n) is WUD mod q if and only if one of the
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following hold:
(a) ¢=4.
(b) ¢ =2-3™ for some m € N.
(c) g=p™ for some m € N and 2 is a primitive root mod q.
(d) q=2p™ for some m € N and 3 is a primitive root mod q.

In any of these cases, we have for any a € U,,

#{n <z :d(n)=a (mod q)} ~ Ca'™ as x— oo,

where Cy > 0 is a constant depending only on q and M = miny,,p — 1.

Observing that the sum of divisors function o(n) is also regular, Sliwa (see [75]) was

able to explicitly characterize those moduli ¢ to which it is weakly equidistributed.
Proposition 1.3.10. o(n) is WUD mod q iff 6 1 q.

It remains a highly nontrivial problem to give an explicit classification of all the
moduli ¢ to which o,.(n) is weakly equidistributed, for a general » > 1. Several
authors have made partial contributions to this problem, which we summarize below.

The starting point in all the following results is Narkiewicz’s criterion Theorem 1.3.6.

1. In the aforementioned paper [75], Sliwa gave some necessary and sufficient con-

ditions for o, to be WUD mod ¢ when either ged(¢(q),r) =1 or ¢(q) | r.

2. Fomenko [24] showed that for any fixed » € N, ¢, is WUD modulo all odd

primes q > r2.
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3. When r itself is an odd prime, Dobrowolski (see [49, Chapter V, Theorem 6.12])

gave some sufficient arithmetic conditions on ¢ for o, to be WUD mod g.

4. In [48], Narkiewicz proved that for any r > 3, the function o,(n) is regular.
Under some natural conditions, he also gave an effective algorithm to classify
all moduli to which a given polynomially—defined multiplicative function is reg-
ularly WUD. As an application of his algorithm, he showed that o3 is WUD

mod ¢ if and only if either ged(q, 14) = 1 or ged(q, 6) = 2.

5. Narkiewicz’s algorithm was improved by Rayner in [64] and [65]. In [64], he
showed that for any odd r, there are two finite effectively computable sets
Ky, Ky C 7Z such that o, is WUD mod q iff either ¢ is odd and not divisible
by an element of K;, or ¢ is even and not divisible by an element of K5. He
computed K;, Ky for odd » < 50. In [65], he extended this work to even

2 <r <50.

6. Narkiewicz and Rayner [51] characterized all ¢ modulo which oy is weakly
equidistributed. They show that o5 is the only non-regular o,, and their char-

acterization of such ¢ is also more complicated than for the other o,.

As a consequence of our main theorems in Chapter 4, we can extend all the afore-

mentioned results to varying moduli ¢ satisfying optimal arithmetic restrictions.

In [47], Narkiewicz extended his criterion Theorem 1.3.6 to decide joint weak equidis-
tribution for families of “polynomially defined” multiplicative functions to a fixed
modulus ¢q. The statement of the general criterion is a natural extension of Theorem
1.3.6, but to state it concisely, we develop the following notation which will also be

relevant later in this dissertation.
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o Consider K,V > 1 and polynomially-defined multiplicative functions f,...

fx: N — Z, with defining polynomials {W; , }1<i<x C Z[T] satisfying f;(p*)
1<v<V

Wi;.(p) for any prime p, and any i € [K],v € [V].

o For any g and v € [V], define R,(q) = {u € U, : [[12, Win(u) € U,}.

« Fix k € [V] and assume that {W;}1<;<x are all nonconstant. We say that

q € N is k-admissible (with respect to the family (W;,)i<i<k) if the set Ry(q)
1<v<

v

is nonempty but the sets R,(q) are empty for all v < k.

o Define Q(k; f1,- -+, fx) to be the set of all k-admissible integers ¢ such that for

every tuple (x1,...,Xx) # (Xo,-- -, Xo) of Dirichlet characters? mod ¢ for which

the product Hfil xi © Wi . acts trivially on the set Ry(g) , there exists a prime

p satisfying

(By the triangle inequality, it is easy to see that any such prime p must be at

most 2*.)

Narkiewicz’s criterion [47, Theorem 1] in this setting is then stated as follows.

Theorem 1.3.11. Fix a k-admissible integer q. The functions fi,..., fx are jointly

weakly equidistributed modulo q if and only if ¢ € Q(k; fr,--+ , [k)-

We thus have the following generalization of Corollary 1.3.8.

2Here x or Xo0,q denotes, as usual, the trivial or principal character mod g.

3i.e. Hfil Xi(Wik(u)) = 1 for all w € Ry(q); note that Ry(q) is precisely the support of the

product Hfil Xi © Wi (i.e. the set of u where it is nonzero)
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Corollary 1.3.12. Assume that q is k-admissible and that the set

{Wik(u),...,Wgkg(u)) mod q : UHW/Zk(U) eU,} C UqK

i=1
generates the group UF. Then (f1,..., fx) are jointly WUD mod q.

When the condition in the above corollary holds, we will say that (fi,..., fx) are

regularly WUD modulo ¢. Likewise, we can define a family (f1,..., fx) to be regular.

In [46], Narkiewicz gives an effective algorithm to determine, — for a given family
of polynomials (Fi, ..., Fk) for which Hfil F; is squarefree, — the collection of all
moduli ¢ for which the set {(F(u), ..., Fx(u)) mod q : u[, Fi(u) € U,} generates
the group UqK . His algorithm thus also determines effectively, for a given k& € [V],
the set of all k-admissible ¢ for which (f1,..., fx) are regularly WUD mod ¢ (see [46,
Theorem II}).

As part of the aforementioned algorithm, he shows that the problem of determin-
ing all moduli ¢ for which {(Fy(u), ..., Fx(u)) mod ¢ : u][, Fi(u) € U,} does not
generate UqK can be reduced to the finite computation of determining this set under
the additional constraints that vy(q) < 3, that v,(q) < 2 for all odd primes ¢, and
that all prime divisors of ¢ are at most (1 + Zfil deg F})?. For K =1 (i.e. a single
polynomial), his algorithm doesn’t need Fj to be squarefree but only needs F to not
be a constant multiple of a proper power (i.e. square or higher power) of another

polynomial.

Using this algorithm and his general criterion Theorem 1.3.11, Narkiewicz character-
izes all fixed moduli ¢ such the family (y, o) are jointly WUD mod ¢: It turns out

that the necessary condition coming from Proposition 1.3.3 is also sufficient.
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Corollary 1.3.13. The family (¢, o) is jointly WUD mod q iff ged(q,6) = 1.

Remark 1.3.14. Note that all the results quoted from [46] and [47] have been stated
in greater generality: Narkiewicz actually studies the joint equidistribution of a fam-
ily of polynomially—defined multiplicative functions with respect to a family of fixed
moduli (qi, ..., qK), where this notion is defined in the natural manner. In particu-
lar, Corollary 1.3.13 is the special case of the more complicated [46, Theorem I] that
classifies all moduli (q1,q2) such that (p,0) are jointly WUD modulo (q1,q2). Here,
we have stuck to the case of a single modulus (i.e., the case when ¢; =+ = qx = q)

since this case will be most relevant in the rest of this thesis.

The following consequence of the k = 1 case of Theorem 1.3.11 (see [47, Theorem 2|)

will be relevant in the initial few chapters of this thesis.

Theorem 1.3.15. In the notation preceding the statement of Theorem 1.53.11, assume

the following:

(i) None of the polynomials {W;1 : 1 <1 < K} are a constant multiple of a proper

power of another polynomial.
(it) For alli # j, the product W; W1 is squarefree in Z[T.

Then there exists a constant C' > 0 depending only on the polynomials {Wh,...,
Wi} such that (fi,..., fx) are jointly WUD modulo any fized ¢ € N supported on

primes exceeding C'. That is, any such q lies in Q(1; f1, ..., fx).

Remark 1.3.16. The constant C' > 0 above depends only on the degrees, leading

coefficients, and the product of all distinct irreducible divisors of the {W;1}X .

In particular, for K = k = 1, we have the following simple sufficient condition, which
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we restate in simpler notation.

Corollary 1.3.17. Let f : N — Z be a multiplicative function for which there exists
a nonconstant separable polynomial F' € Z[T| satisfying f(p) = F(p) for all primes p.
Y Then there exists a constant C(F) > 0 depending only on F such that f is WUD

modulo any q € N supported on primes exceeding C(F).

The deduction of Theorem 1.3.15 from Theorem 1.3.11 is one of the main contents
of [47]. Onme of the key ingredients in this deduction is the following result on the
behavior of character tuples on polynomial images of the unit group, which will also
be useful to us to prove the optimality of some of our main results in later chapters.

(See [47, Lemma 5] for the original statement of the following result.)

Lemma 1.3.18.

(a) Consider K > 2, and nonconstant polynomials F, ..., Fx € Z[T| whose product
is squarefree. Let £ > (1 + Zfil deg F};)? be a prime that neither divides the

leading coefficient nor the discriminant of Fy ... Fk.

Then for any m > 1 and any tuple of Dirichlet characters (x1,...,Xx) mod
o™, not all trivial, the product T[], xi(Fi(u)) cannot be constant on the set
{umod ¢™ : Lt uT[, Fi(u)}.

(b) Consider a polynomial F € Z[T| which is not a constant multiple of a proper
power of another polynomial. Let ¢ > max{5, (1 + deg F')?} be a prime that
neither divides the leading coefficient of F nor the discriminant of the product

of the distinct irreducible factors of .

Then for any m > 1 and any nontrivial Dirichlet character x mod ™, the

4Here by “separable”, we mean that F' has no roots of multiplicity greater than 1.
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function x(F(u)) cannot be constant on the set {u mod {™ : {{uF(u)}.
Here is yet another concrete application of Corollary 1.3.12 and Lemma 1.3.18.

Corollary 1.3.19. The family (p, o, 02) is jointly weakly equidistributed modulo any

fized integer q supported on primes exceeding 23.

Section 1.4

Allowing the modulus to vary...

In all these results, the modulus ¢ has been assumed to be fixed. A natural question
of some interest is whether one can allow ¢ to vary with our stopping point x. This
question is motivated by the celebrated Siegel-Walfisz Theorem, according to which
for any fixed Ky > 0, the primes up to any = are weakly equidistributed uniformly
to moduli ¢ < (logx)Xo. We state the qualitative version of this theorem below,
although this result is known with error terms of size O(z exp(—cy/logz)); see for

instance [44, Corollary 11.19].
Theorem 1.4.1. Fix Ky > 0. As v — oo, we have

#p<eip=amodg) ~ P} ~ o

uniformly in moduli ¢ < (logz)X° and in coprime residues a mod q.

A general problem in elementary and analytic number theory is to find analogues of
the Siegel-Walfisz theorem in other contexts, and this problem has been ardently stud-
ied in various contexts, such as for smooth numbers and mean values of multiplicative
functions. In our context, one may ask: Can we find analogues of the Siegel-Walfisz

theorem for the value distributions of additive or multiplicative functions or (more
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generally) for the joint distributions of families of such functions?

To formalize this, given a constant Ky > 0, we shall say that the functions fi,..., fx :

N — Z are jointly equidistributed (or jointly UD) mod ¢, uniformly for ¢ < (log x)%°, if

n<z:Vie[K], fin)=a (modq)} ~ —= as - oo, (1.10)
q
uniformly in moduli ¢ < (log )% and in residue classes ay, ..., ax mod q. Explicitly,

this means that for any € > 0, there exists X (¢, Ky) > 0 depending only on € and
Ky such that the ratio of the left hand side of (1.10) to the right hand side lies in

(1—¢,1+4¢) for all z > X (¢, Kp), all ¢ < (logx)"° and all residues ay, . .., ax mod q.

If K =1and f; = f, we shall simply say that f is equidistributed (or UD) mod g,

uniformly for ¢ < (log x)°.

Likewise, we shall say that the functions fi, ..., fx : N — Z are jointly weakly equidis-

tributed (or jointly WUD) mod ¢, uniformly for ¢ < (log z)%°, if:
(i) For every such g, Hfil fi(n) is coprime to ¢ for infinitely many n, and

(i) The relation (1.3) holds as  — oo, uniformly in moduli ¢ < (logz)*° and in
coprime residue classes aq,...,ax mod g. Explicitly, this means that for any
€ > 0, there exists X (¢, Ky) > 0 such that the ratio of the left hand side of (1.3)
to the right hand side lies in (1 —¢,1 + ¢) for all z > X (¢, Ky), ¢ < (log x)%°

and coprime residues aq,...,ax mod gq.

Again, if K =1 and f; = f, we shall simply say that f is weakly equidistributed (or

WUD) mod g, uniformly for ¢ < (log z)%.
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1.4.1. Equidistribution to varying moduli: Siegel-Walfisz for polynomially—

defined additive functions

The equidistribution of a single polynomially-defined additive function with uni-
formity in modulus seems to have been first studied for the Alladi-Erdds function
A(n) =3k, k- p in [60]. The special case of Lemma 3.3 in that paper with y =
yields the equidistribution of A(n) to moduli ¢ varying up to (a little less than) the

square root of log x.
Proposition 1.4.2. Fiz § > 0. The function A(n) is UD mod q, uniformly for
q < (log x)Y/27°. In fact, we have

#{n<z:AMn)=a (modq)}z%%—O(W)

uniformly in ¢ < logx and in residues a mod q.

Note that Goldfeld’s result (1.2) gives a sharper error term for fixed moduli q.
The main idea in the proof of Proposition 1.4.2 is to estimate the character sums
> n<e €(rA(n)/q) by invoking the following quantitatively precise version of the re-
sult of Haldsz [30] which states that a multiplicative function F' taking values on
the unit disk has mean value 0 unless ' “pretends” to be® n' for some t. The fol-
lowing version of the statement has been taken from [76, Corollary 111.4.12], and its

development is attributed to Haldsz, Montgomery and Tenenbaum.

Theorem 1.4.3. Let F' be a multiplicative function such that |[F(n)| < 1 for all n.

Uniformly in x, T > 2, we have

%ZF(n) < % + exp (— min Lo Re(F(mpit)) :

t<T
n<e ltI< P p

°in the sense of Granville and Soundararajan [29]
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In order to apply Theorem 1.4.3 to our sums » . _ e(rA(n)/q), we need to put a suit-

n<x
able lower bound on the sums 7 _ (1 — Re(A(p)p~"))/p: We do this by essentially
covering the range of summation with “multiplicatively narrow subintervals” wherein

the quantity u? is roughly constant, as u varies within the subinterval and as t varies

within [—log z,log z]. This allows us to deduce Proposition 1.4.2.

Proposition 1.4.2 was improved in [61] to allow ¢ to vary within the full “Siegel-

Walfisz” range, but without a good quantitative error.

Proposition 1.4.4. Fizx Ky > 0. Then A(n) is UD mod q, uniformly for q <

(log x)%o.

This result comes as a byproduct of a certain “mixing phenomenon” in the multi-
plicative group mod ¢ that we will be using to establish some of the main results in
this thesis. The said “mixing” idea was originally used in the paper of Pollack with
the author [61] (which forms the contents of Chapter 2) in order to extend Corol-
lary 1.3.17 to ¢ varying within a wide range, thus taking the first few steps towards

obtaining uniform analogues of Narkiewicz’s general criterion Theorem 1.3.11.

One of the topics we will study in this thesis is the phenomenon of joint equidistribu-
tion for families of polynomially—defined additive functions: Here, we say that an addi-
tive function g: N — 7Z is polynomially-defined if there exists a nonconstant polynomial
G € Z|T] satistying g(p) = G(p) for all primes p; we will then say that ¢ is defined
by (the polynomial) G. For example, both the additive functions f(n) == 3_  p and
the Alladi-Erdds function A(n) = 3_ ., kp are defined by the polynomial G(T') =T
(Note that our definition of a polynomially—defined multiplicative function was more
general, but this should not create any confusion since we will always make it explicit

whether we are considering an additive or multiplicative function.)

30



1.4 ALLOWING THE MODULUS TO VARY...

Our starting point to study this joint equidistribution is Delange’s criteria Theorems
1.2.3 and 1.2.4, which we reformulate (in section 3.2) to more explicit results for
polynomially—defined additive functions: Certainly if (fi,..., fx) are jointly equidis-

tributed mod ¢ < (log x)%°, then ¢ has to satisfy the conditions of these two theorems.

For a single arbitrary polynomially—defined additive function g : N — Z, Akande [1]
shows that the arithmetic conditions in Theorem 1.2.3 are also sufficient for g to be

weakly equidistributed modulo ¢ varying uniformly up to small powers of log x.

Theorem 1.4.5. Fiz Ky > 0 and 6 € (0,1]. Let g : N — Z be an additive function
defined by a polynomial G € Z[T] of degree D > 0. Let Q(g) denote the set of all
(fized) moduli that satisfy Delange’s criterion in Theorem 1.2.3. Then g is UD modulo

q € Q(g) varying uniformly up to (log x)™Fo.(1=9)(1-1/D)~"}

Note that for D = 1, the range of uniformity is (logxz)%°, the full “Siegel-Walfisz
range”. For D > 1, he is also able to prove that the exponent of logx is essentially
optimal. To show all of these, he suitably adapts the arguments in [61] (in particular,
the aforementioned “mixing” idea) by means of certain exponential sum estimates,
in order to show that the behavior of ¢ modulo ¢ can be related to that modulo a
bounded divisor of ¢ (“bounded” in size by a constant depending only on the fixed

polynomial G).

In Chapter 3 (based on the manuscript [73]), we shall extend all of the aforementioned
results for a general family of polynomially—defined additive functions gq,...,gn :
N — Z that are defined by polynomials Gi,...,Gy € Z[T]. We will show that
asssuming the linear independence of the derivatives of the G; (a condition which we
prove to be necessary), the family (g1, ..., gar) is equidistributed uniformly modulo ¢

satisfying Delange’s criteria (Theorem 1.2.4 and 1.2.3) that is allowed to vary up to
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1.4 ALLOWING THE MODULUS TO VARY...

certain small powers of log x; we can also prove these powers to be essentially optimal
(except in the case M = deg(G;) = 1 addressed by Akande). Furthermore, we show
that uniformity is restored in the complete Siegel-Walfisz range (up to arbitrary
powers of log ) provided we appropriately restrict our inputs, restrictions that we

are also able to optimize in most cases.

To do all this, we need to refine some of the arguments used in the aforementioned
results and also use some new ideas not present therein. For instance, we need to
look at the Smith normal forms and invariant factors of certain matrices to bound
certain character sums. Moreover, we need to bound the contributions of certain
“bad” inputs n by carefully studying the prime decompositions of such n and using

26

different kinds of “anatomical arguments” in different cases.

1.4.2. Equidistribution to varying moduli: Siegel-Walfisz for polynomially—

defined multiplicative functions

Much of this thesis began with the problem of trying to give best possible analogues of
the Siegel-Walfisz theorem for general families of polynomially—defined multiplicative
functions, extending Narkiewicz’s criterion Theorem 1.3.11 to varying moduli ¢ with
optimal restrictions. It appears that the first result in the direction of this problem was
obtained in joint work of Lebowitz-Lockard, Pollack and the author, who extended
Proposition 1.3.3 on the weak equidistribution of the Euler totient to prime moduli

varying within the full Siegel-Walfisz range (see [40, Theorem 1.1]):

Theorem 1.4.6. Fiz Ky > 0. The Euler totient p(n) is weakly equidistributed modulo

prime p lying in [5, (log z)%°]. In fact,

1 x
p—1 (logz)/®-1

#{n <xz:pn)=a (modp)} ~ as x — 00,

6in the sense of “anatomy of integers”
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uniformly in prime moduli p satisfying 5 < p < (logz)X° and in coprime residues a

mod p.

The proof of this theorem combines two different methods, an analytic and an anatom-
ical method. For small p (roughly smaller than (loglogx)?), we apply the analytic
method of Landau—Selberg—Delange, more precisely, an explicit version of this enun-
ciated by Chang and Martin [12] that allows for additional uniformity in certain
important parameters. On the other hand, when p is a little larger than loglog z,
we apply a combinatorial and anatomical method of Banks—Harman—Shparlinski [7]:
In a very crude summary, this involves splitting off the largest prime factor P of
our inputs n, using multiple sieve-theoretic arguments to ensure that P is large and
appears only once in n, and then writing n in the form mP, so that the congruence
¢(n) = a (mod p) can be rewritten as a linear congruence in P, thus throwing P in
a residue class mod p and allowing us to estimate the number of possible P via the
Siegel-Walfisz theorem. Note that the analytic part of our argument uses crucially
that nontrivial Jacobi sums over [, are bounded by ,/p in absolute value; the trivial
bound of p would only allow the method to work for p up to about loglog z, just shy
of what is required for overlap with our second range. However, these methods are

crucially limited to ¢(n) (and o(n)) and to prime moduli.

Instead of directly trying to get complete uniform analogues of the most general
criterion Theorem 1.3.11, let us first try to do this for Theorem 1.3.15 (which, recall,
gives weak equidistribution of fi,..., fx to moduli supported on large primes, under
some restrictions on the polynomials defining the f; at the primes) or Corollary 1.3.17
(the special case of Theorem 1.3.15 for a single function). In [59], we were able to get
a partial uniform analogue of Theorem 1.3.15, where we showed that a multiplicative

function f : N — Z controlled by a nonconstant separable polynomial at the primes
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is WUD modulo ¢ varying up to a very small power of log x that is “almost prime”,

in the sense that the quantity 6(q) = > ¢ prime 1/¢ becomes negligible as © — oco. (See
tlq

[59, Theorem 1.1] for the original statement of the following result.)

Theorem 1.4.7. Let f1,..., fx : N — Z be multiplicative functions for which there

exist nonconstant polynomials F, ..., Fx € Z[T] with Fy ... Fy separable, such that

fi(p) = Fi(p) for alli € [K] and all primes p.

Fiz ¢ > 0. Then (1.3) holds as x — oo, uniformly in ¢ — oo satisfying ¢ <

(log 2)Y5=< and 6(q) = o(1).

As an application, note that while Theorem 1.3.15 shows that the family (n, p(n),
o(n)) is jointly WUD modulo all fixed sufficiently large primes, Theorem 1.4.7 shows
that such equidistribution also holds uniformly modulo all primes p < (logz)'/3~
exceeding a certain (fixed) threshold. (With the more explicit version of Theorem

1.3.15 in [47], one can show that this threshold is 17.)

The main idea in the proof of Theorem 1.4.7 is to extend the anatomical method
used for Theorem 1.4.6, by splitting off the largest J prime factors of our inputs
n, for some fixed judiciously-chosen J. In other words, we write n = mP;... P,
with P(m) < P; < --- < P;. (Here P(m) is the largest prime factor of m.) Most
of the time, Pjy,..., P, will appear to the first power only in n, so that fx(n) =
Jrx(m) fe(Py) -+ fr(P1). Then given m, we use the Siegel-Walfisz theorem and char-
acter sum estimates to understand the number of choices for Py, ..., P; compatible

with the congruence conditions on fi(n).

The highly stringent restriction 6(¢) = o(1) is nothing but a facet of the above
argument. In [61], Pollack and the author were able to remove this requirement and

get the complete uniform analogue of Corollary 1.3.17. To do this, we observed a
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certain “quantitative ergodicity” phenomenon in the multiplicative group mod ¢, by
virtue of which for any fixed polynomial F' € Z[T| and any ¢ € N supported on primes
large enough compared to F', the images of the elements of U, under F' demonstrate
a certain “mixing” in U,. (A related idea was used in a different problem by Katai

[34].)

With notation as in Corollary 1.3.17 and with moduli ¢ satisfying the “roughness”
condition therein, we showed that if F' is linear then weak equidistribution holds up
to arbitrary powers of logz. (In particular, this extends Proposition 1.3.3 on the
weak equidistribution of ¢(n) to the complete Siegel-Walfisz range.) In the general
case, however, ¢ can only be allowed to vary up to small powers of log x, which we
were able to optimize [61, Theorem 1.3]. Uniformity could be restored in the full
Siegel-Walfisz range by suitably restricting the set of inputs n [61, Theorem 1.4]. See

Chapter 2 for more details.

Now we come to the grand finale: The problem of giving best possible uniform ana-
logues of Narkiewicz’s general criterion Theorem 1.3.11. It turns out all the devel-
opments mentioned until this point are still really far from solving this problem in
its complete generality. This is because several of the arguments in the last work
above are limited to a single function (i.e. the case K = 1) and do not generalize to
a family of functions, whereas the latest work for families mentioned so far (Theorem
1.4.7) requires hypotheses that are way too restrictive. Moreover, even in the special
case of a single function, we have only restricted to the case when ¢ is 1-admissible
and supported on only large prime factors, and we have also been assuming that our
defining polynomial is separable. In particular, these results do not give satisfactory
uniform analogues of many of the results stated in subsection § 1.3.3, since the results

in § 1.3.3 involve k-admissible moduli for arbitrary k£ > 1; here k is as in the set up
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preceding the statement of Theorem 1.3.11.

In Chapter 4 (based on the latest manuscripts [71] and [72]), we remove all these
limitations and solve the full general problem posed at the start of this subsection. We
obtain essentially best possible uniform analogues of Narkiewicz’s criterion Theorem

1.3.11 in its complete generality to a single varying modulus.

One of our main results is that in the setting of Theorem 1.3.11 and under two
provably unavoidable technical hypotheses H; and H,, the family fi,..., fx is
jointly WUD to a modulus g € Q(k; f1,-- -, fx) that is also allowed to vary within

essentially optimal ranges. Roughly, this result looks like the following:

Theorem 1.4.8 (Theorem 4.1.1, summarized). Fiz Ko > 0. In the setting of Theo-
rem 1.3.11 and under hypotheses Hy and Hs, the family (f1,..., fx) is jointly WUD,
uniformly modulo q < (logx) lying in Q(k; f1,..., fx). Here ¢, € (0, K] is a pa-
rameter depending (essentially) on q and on the polynomials Wiy, ... , Wk (that

define the f; at the k-th powers of primes).

Note that lying in Q(k; fi1, -, fx) is the necessary arithmetic restriction for (fi, ...,
fx) to be jointly weakly equidistributed to a k-admissible modulus ¢. In Theorem
4.1.1, we give explicit expressions for ¢, in an exhaustive list of cases. It is worth
mentioning that ¢, depends on the number of roots of the polynomial W; ... Wy
modulo the primes divisors of g. The best possible lower bound on ¢, that holds

in general is ¢, > (log 10g(3q))‘2§:1 deg W,

*, however ¢, can be bounded below by a
constant in several applications (for instance, if most prime divisors of ¢ avoid certain
residue classes). In fact, we either optimize ¢, or we show that ¢, is K itself; in the

latter case, we have uniformity in the full Siegel-Walfisz range.

In the former case, ¢, turns out to be a small parameter, giving uniformity only up

36



1.4 ALLOWING THE MODULUS TO VARY...

to small powers of logx (which are essentially optimal). We show that uniformity
can be restored up to arbitrary powers of logx by restricting to inputs n that have
sufficiently many large prime divisors. More precisely, with Pg(n) denoting the R-th
largest prime factor of n counted with multiplicity (and defining Pr(n) := 1 if n has

fewer than R prime factors), we have

Theorem 1.4.9 (Theorems 4.1.2 and 4.1.3, summarized). Fiz Ky > 0. In the setting
of Theorem 1.3.11, and under hypotheses Hy and H,, there exists a fized integer R
(depending only on k, K and S~ deg W; ) such that

#{n < : Pr(n) >q, (Vi) fi(n) = a; (mod q)}
1
T olg)F

#{n <3 Pa(n) > g, (i) ged(fi(n),q) =1} as 7 oo,

uniformly in q < (logz)%° lying in Q(k; f1,- -+, fx) and in units (a;), mod q.

The original statements contain the exhaustive case-wise list of explicit values of R:
Most of these values are exactly or almost optimal in their respective cases, thus

ensuring equidistribution among as large a set of inputs as possible.

In [72], we obtain cleaner versions of the last two theorems when additional control is
available either on the multiplicative functions f; or on the anatomy of our inputs n.
We also show that even if one of the two hypotheses H; or H, is violated, then uni-
formity would fail in the above theorems in some of the worst possible ways: Not only
would uniformity fail modulo arbitrarily large ¢ < (logx)%°, but also would be unre-
coverable no matter how much we restrict our set of inputs n to those having many
large prime factors. Thus, our results in [71, 72] are essentially best possible qual-
itative analogues of the Siegel-Walfisz theorem for families of polynomially-defined

multiplicative functions. As consequences, we are able to give complete uniform ana-
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logues of all the results of Narkiewicz, Sliwa, Dobrowolski, Fomenko, Rayner and

others, that were stated in subsection § 1.3.3.

The arguments used to prove our general results comprise a wide variety of themes
spanning several areas of mathematics. First of all, we need to refine our “mixing
phenomenon” with more sophisticated anatomical arguments, supplemented by char-
acter sum machinery combined with linear algebra over residue rings. But this only
takes us partway: To get the desired main terms, we crucially need arguments from
both the classical and “pretentious” sides of analytic number theory. Note that the
anatomical part of our arguments cannot be substituted by analytic arguments either,
since the latter do not give us the full range of uniformity. Furthermore, to bound
the contributions of certain “bad” inputs, we need to employ various sieve theoretic
techniques and understand the rational points of certain affine varieties over finite
fields using tools from arithmetic/algebraic geometry. The complete details of all the

results, arguments, optimality and applications have been provided in Chapter 4.

Section 1.5

Summary of later chapters

The summary of most of the thesis has been given in the last two subsections. Chap-
ters 2, 3 and 4 have been organized in the chronology of papers written: Chapter
2 describes the work in [61] leading to the complete uniform analogue of Corollary
1.3.17. In Chapter 3 (based on [73]), we digress to additive functions and give the
complete uniform analogue of Delange’s criterion for a family of polynomially—defined
additive functions (as alluded to in subsection § 1.4.2). In Chapter 4 (based on [71]
and [72]), we obtain the best possible uniform analogues of the Siegel-Walfisz theorem

for a general family of polynomially—defined multiplicative functions.
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In the last chapter of the thesis, we venture out of the additive and multiplicative
realms. One of the most well-known examples of an arithmetic function that is neither
additive nor multiplicative is the sum of proper divisors (or aliquot divisors) function
s(n) = o(n) — n. This function has been the subject of a variety of exciting results
and elusive conjectures. In Chapter 5, we explore the distribution of s(n) to varying
prime moduli. Since s(n) = 1 for all prime n, the Prime Number Theorem shows
that to get uniformity up to arbitrary powers of log z, one needs to at least to restrict
to composite inputs n. We show that this restriction is sufficient to have s(n) be
equidistributed to prime moduli p varying within the full Siegel-Walfisz range. This
is based on work done in [40] (the same paper containing our oldest result Theorem
1.4.6), and it turns out that the methods of Chapters 2—4 can be adapted to simplify
our arguments from that paper. (Chapter 5 contains this simplified argument and

not the original argument in [40].)

Remark 1.5.1. We conclude this chapter with the remark that the problem of in-
vestigating distribution in residue classes of an integer sequence can be thought of
as investigating the trailing digits of the terms of that sequence. (This is especially
apparent if q is a power of 10, and more generally if q is a power of some integer b
and we work in “base b”.) The dual question is that of studying leading digits, and
in this regard, the “Benford phenomenon” is of significant interest. We say that a
sequence of numbers follows “Benford’s Law” if smaller digits are more likely to ap-
pear in the sequence and vice versa (defined in a precise way). This phenomenon was
originally observed by Simon Newcomb, and since then has been studied for a variety
of interesting sequences. In [60] and [43], we study this phenomenon for the sequence
of “intermediate prime factors” In [11], Chandee, Li, Pollack and the author give
a general criterion for a multiplicative function to satisfy the Benford phenomenon,

and using this criterion we study the Benford behavior of several interesting multi-
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plicative functions, including but not limited to Hecke eigenvalues of newforms (such

as Ramanujan’s T-function). We will not be elaborating on these works in this thesis.

1.5.1. Notation and conventions

We do not consider the zero function as multiplicative, so if f is multiplicative,

then f(1) = 1.

By P(n) and P~(n), we will mean the largest and least prime divisors of n,
respectively. For most of the thesis, we will stick to the convention that P(1) :=

land P~ (1) = co.

We set Pi(n) = P(n) and define, inductively, Py(n) = Pr_1(n/P(n)). Thus,
Pi.(n) is the kth largest prime factor of n counted with multiplicity, with Py(n) =
1if Q(n) < k.

Given z > 0, we say that a positive integer n is z-smooth if P(n) < z, and
z-rough if P~(n) > z. By the z-smooth part (resp. z-rough part) of n, we shall

mean the largest z-smooth (resp. z-rough) positive integer dividing n.

For a ring R, let R* denote the multiplicative group of units of R. Write
U, = (Z/qZ)".

We denote the number of primes dividing ¢ counted with and without multi-

plicity by 2(¢q) and w(q) respectively.
For a Dirichlet character x mod ¢, we use f(x) for the conductor of x.

When there is no danger of confusion, we shall write (ai,...,ax) in place of

ged(ay, ..., ak).
Throughout, the letters p and ¢ are reserved for primes.
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1.5 SUMMARY OF LATER CHAPTERS

« For nonzero H € Z[T], we use ordy(H) to denote the highest power of ¢ dividing
all the coefficients of H; for an integer m # 0, we may use v,(m) in place of

ord,(m).

o Let Maxp(Z) denote the ring of A x B matrices with integer entries, while
GLaxp(Z) refer to the group of units of My p(Z), i.e. the matrices with de-

terminant +1.

o Implied constants in < and O-notation, as well as implicit constants in quali-
fiers like “sufficiently large”, may always depend on any parameters declared as
“fixed”; in particular, they will always depend on the polynomials {VV“)}%%% K-

SUS
Other dependence will be noted explicitly (for example, with parentheses or

subscripts): Notably, we shall use C(F}, ..., Fk), C'(F,..., Fx) and so on, to

denote constants depending on the fixed polynomials F}, ..., Fk.
o We write log,, for the k-th iterate of the natural logarithm.

Other notation will be locally defined as required.
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Chapter 2

Weak equidistribution of a single
function to a varying “rough”

modulus: The mixing phenomenon

In this chapter, we introduce the “mixing phenomenon” (briefly alluded to in subsec-
tions 1.4.1 and 1.4.2) in order to obtain complete uniform analogues of Corollary 1.3.17
that gave sufficient conditions for the weak equidistribution of a single polynomially—
defined multiplicative function to a fixed modulus supported on large primes. (We
restate the corollary as a proposition below.) Throughout this chapter, we will be
considering a multiplicative function f : N — Z for which there exists a nonconstant

separable polynomial F' € Z[T] satistying f(p) = F(p) for all primes p.

Proposition 2.0.1. There exists a constant C(F) > 0 depending only on F such

that f is WUD modulo any fized ¢ € N supported on primes exceeding C(F').

This chapter is based on the joint paper [61] of Pollack and the author.
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2.1 MAIN RESULTS OF THIS CHAPTER

Section 2.1

Main results of this chapter

Our first theorem shows that one has uniformity in ¢ up to an arbitrary (but fixed)

power of log x when F is linear.

Theorem 2.1.1. Let f be a fized polynomially-defined function with F(T) = RT+ S,
where R, S € Z with R # 0. Fiz a real number Ky > 0. Then f(n) is WUD mod q,

uniformly for ¢ < (logx)%° coprime to 6R.

A concrete consequence of this result is that the Euler totient p(n) is weakly equidis-
tributed to moduli ¢ coprime to 6 that vary up to any fixed power of logx: This
optimally extends Proposition 1.3.3 to moduli ¢ varying within the Siegel-Walfisz
range. We are not sure what to conjecture for how far the range of uniformity can be
extended. For f(n) = ¢p(n), we cannot replace (logx)%° with L(z)'*° for any § > 0,
where L(z) = glosloglosz/loglosz  Thig is a direct consequence of work of Pomerance
[63] showing that for all large x, there is an integer m < x having all prime factors at

149/2 many @-preimages n < z. (He proved

most log x and possessing at least x/L(x)
this result conditional on a plausible conjecture about shifted primes with no large

prime factors.)

When the defining polynomial F' has degree larger than 1, our method applies but
the results require some preparation to state. Let F(T') € Z[T]| be nonconstant. For

each positive integer ¢, define

v(q) = #{a mod ¢ : ged(a,q) =1 and F(a) =0 (mod q)} (2.1)
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2.1 MAIN RESULTS OF THIS CHAPTER

and let
1

©(q)

It is straightforward to check, using the Chinese Remainder Theorem, that

a(q) = #{a mod ¢ : ged(aF(a),q) = 1}. (2.2)

alg) =[] (1—%). (2.3)

If F" has degree D, then v(¢) < D whenever ¢ does not divide the leading coefficient of
F'. Thus, if ¢ is coprime to that coefficient and every prime dividing ¢q exceeds D + 1,
then a(q) is nonzero. Furthermore if a(q) is nonzero, then v(¢) < min{¢ — 2, D} for

all primes ¢ | q. By Mertens’ theorem and the bound w(q) < log(3q), this yields

alq) >p exp | — Z @ >exp | =D Z % >p (loglog (3¢))~". (2.4)

lq: £>D £<w(q)
£ prime ¢ prime

The lower bound (2.4) will prove important later.

Theorem 2.1.2. Let [ be a fized, polynomially-defined multiplicative function. Fix
d € (0,1]. There is a constant C = C(F) such that the following holds. For each
fizred Ky, the values f(n) for n < x are asymptotically weakly equidistributed mod q
provided that ¢ < (logx)X°, that q is divisible only by primes exceeding C, and that

either
(i) q is squarefree with w(q) < (1 — §)a(q) loglogx/log D, or
(i) q < (logz)@1-0)(1-1/D)~"

Conditions (i) and (ii) in Theorem 2.1.2 reflect genuine obstructions to uniformity. To

motivate (i), fix an integer D > 2, and let F(T') = (T'—2)(T'—4)--- (T —2D)+2. Note
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2.1 MAIN RESULTS OF THIS CHAPTER

that F'is Eisenstein at 2, so F' is irreducible over Q and thus without multiple roots.
Let f be the completely multiplicative function with f(p) = F(p) for all primes
p, and let ¢ be a squarefree product of primes exceeding D + 1. Then F(p) = 2

(mod ¢) whenever (p —2)---(p —2D) =0 (mod ¢). This congruence puts p in one

pw(@)

w(q) i i
of D coprime residue classes mod ¢. Hence, we expect > OB

primes p < x
with F'(p) = 2 (mod ¢), and we are assured this many primes (by Siegel-Walfisz)
if ¢ is bounded by a power of logxz. On the other hand, Proposition 2.2.1 below
implies (under this same restriction on the size of ¢) that the number of n < x with
ged(f(n),q) = 1 is x/(logz)t~0+eM)@  Thus, the residue class 2 mod ¢ will be
‘overrepresented’ (vis-a-vis the expectation of weak uniform distribution) if D“(® >
(log )1+ for any fixed § > 0, or in other words, if w(q) > (1+6)a(q) log, z/log D.

It follows that (i) is essentially optimal.

For completeness, we construct arbitrarily large classes of moduli ¢ < (log 2)°™") which
satisfy the last inequality above (with F' still being the polynomial constructed in the
previous paragraph). Let Kp > 0 be a constant depending only on D. Letting Y =

Kplogyw and ¢ .= ] ¢, the prime number theorem shows that ¢ < (logz)?5p

£ prime
D+1<<Y

and that w(q) > Y/2logY. On the other hand, the decomposition (2.3) shows that

alq) < exp|— > v)/l] < 1/logY, where the implied constant depends
piicty

only on D. (Here we have used the Prime Ideal Theorem.) Hence, by fixing Kp
large enough in terms of D, we have constructed arbitrarily large classes of moduli

q < (log z)°M which all satisfy w(q) > (1 + §)a(q) log, / log D.

To motivate (ii), fix D > 2, and let f be the completely multiplicative function
given by f(p) = (p — 1)P + 1 for all primes p. Let ¢ be a Dth power, say q = ¢P.

Then f(p) = 1 (mod g) whenever p = 1 (mod ¢;). Thus, if ¢ is bounded by a
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2.1 MAIN RESULTS OF THIS CHAPTER

power of logx, there will be > z/¢(q)logx primes p < x for which f(p) = 1
(mod ¢). On the other hand, if we assume all primes dividing ¢; exceed D + 1,
Proposition 2.2.1 implies that there are z/(logz)!=(1TeM)(9) integers n < x with
ged(f(n),q) = 1. It follows that the residue class 1 mod ¢ will be overrepresented if
¢ YP = q/q > (log )92 This means that for weak equidistribution we require

¢ to be no more than ~ (log z)*@(1=1/P)™" Sq (ii) is essentially best possible as well.

In both of the constructions described above, the obstruction to uniformity came
from prime inputs p. Tweaking the construction slightly, we could easily produce
obstructions to uniformity of the form rp, with r fixed (or even with r growing slowly
with z). In our final theorem, we pinpoint the ‘problem’ here as one of having too few
large prime factors. Specifically, we show that uniformity up to an arbitrary power of
log x can be restored by considering only inputs with sufficiently many prime factors
exceeding ¢. In fact, for squarefree moduli ¢, it suffices to restrict to inputs with

composite g-rough part.

Theorem 2.1.3. Let f be a fized, polynomially-defined function. There is a constant
C(F) such that the following hold.

(a) For each fized Ky > 0,

#{n <z : Ppya(n) >q, f(n)=a (mod q)}

~ ﬁ#{n < x:Ppia(n) >q, ged(f(n),q) =1} asz — 0o, (2.5)

uniformly for coprime residue classes a mod q with ¢ < (logz)5° and q divisible

only by primes exceeding C(F).
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2.1 MAIN RESULTS OF THIS CHAPTER

(b) For each fized Ky > 0,

4{n<z:Pn)>q, f(n)=a (mod q)}

~ @#{n <a:Pyn) > q ged(f(n).q) =1}  asx - oo,

uniformly for coprime residue classes a mod q with q squarefree, q¢ < (log z)¥o,

and q divisible only by primes exceeding C'(F).

The methods used to prove the aforementioned theorems refines that used to obtain
the earlier results Theorems 1.4.6 and 1.4.7. The essential new ingredient, which
allows us to dispense with the primality or “almost primality” conditions in those
theorems, is the exploitation of a certain ergodic (or mixing) phenomenon within the
multiplicative group mod ¢. As one illustration: Let ¢ be a positive integer coprime
to 6. From the collection of units © mod ¢ for which u + 1 is also a unit, choose
uniformly at random wuy, us, us, ..., and construct the products wy, uius, ujusus, . . ..
Once J is large, each unit mod ¢ is roughly equally likely to appear as uy - - - u ;. This
particular example plays a starring role in our approach to the weak equidistribution

of Euler’s p-function.

When f = ¢, Theorem 2.1.1 is in the spirit of the Siegel-Walfisz theorem, with
primes replaced by values of ¢(n). For investigations of the corresponding ‘Linnik’s

theorem’, concerning the least n for which ¢(n) falls into a given progression, see

13, 25, 26, 27].

Finally, it is worth mentioning that although in the spirit of Narkiewicz’s results,
we stated Theorems 2.1.1, 2.1.2 and 2.1.3 for F/(T') € Z[T], our methods go through
(with minor modifications) for integer-valued polynomials F', namely those satisfying

F(Z) C Z. Writing any such polynomial in the form G(7)/Q for some positive
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2.2 A PREPARATORY ESTIMATE: THE FREQUENCY WITH WHICH (f(n),q) =1

integer @ and G(T') € Z[T], we need only ensure in addition that the constant C(F)

appearing in the aforementioned theorems exceeds Q).

— Section 2.2

A preparatory estimate: The frequency with

which (f(n),q) =1

The following proposition is contained in results of Scourfield [68]. Nevertheless, we
give a complete treatment here because the results of [68] are much more precise than
we will need. The weaker version below admits a simpler and shorter proof (although

we make no claim to originality regarding the underlying ideas).
For readability, we sometimes abbreviate a(q) to «, suppressing dependence on g.

Proposition 2.2.1. Fiz a multiplicative function f with the property that f(p) =
F(p) for all primes p, where F(T) € Z[T)] is nonconstant. Fiz Ky > 0. If x is

sufficiently large and q < (log x)%° with o = a(q) > 0, then

X

= exp(O((loglog (3¢))°V)).  (26)

#{nﬁxf(f(n)>Q):1}:W

We treat separately the implicit upper and lower bounds in Proposition 2.2.1.

Upper bound

The following mean value estimate is a simple consequence of [32, Theorem 01, p. 2]

(and also of the more complicated Theorem 03 from that same chapter).

Lemma 2.2.2. Let g be a multiplicative function with 0 < g(n) < 1 for all n. For
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all x > 3,

Zg(n) < lozw exp (Z %) .

n<x p<x

Here the implied constant is absolute.

If we set g(n) := lged(f(n).q=1, then the left-hand side of (2.6) is precisely >, ., g(n).
Note that the multiplicativity of f implies the multiplicativity of g. The following
lemma, due independently to Norton [54, Lemma, p. 669] and Pomerance [62, Remark

1], allows us to estimate the sums of g(p)/p appearing in Lemma 2.2.2.

Lemma 2.2.3. Let q be a positive integer, and suppose x is a real number with

x > max{3,q}. For each coprime residue class a mod g,

Z 121053,2anL 1 +O<log(3q))7

= 9@ Pea ©(q)

p=a (mod q)

where py . denotes the least prime congruent to a modulo .

Lemma 2.2.4. Let F(T) € Z[T] be a fixed nonconstant polynomial. For each positive

integer q and each real number x > 3q,

1. _
S A=l jog, 1+ O((loglog (30))°1),
p

p<z

where o = a(q) is as defined in (2.2).

Proof. Using the Mébius function to detect the coprimality condition, we write

Z L Z % + O(log,(100q))

p<z 3q<p<z
ged(F'(p),q)=1 ged(F'(p),q)=1
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= Zu > - L4 O(logy(1009)). (2.7)

3q<p<zx
d|F(p)

If p is a prime with p > 3¢, then d | F(p) precisely when p belongs to one of v(d)

coprime residue classes modulo d. By Lemma 2.2.3 (with d replacing q),

L), () los(3d) | v(d)logy (30
2 = ) e *O( A T w0 )

3q<p<z
d|F(p)

d)

Substituting this estimate into (2.7) yields a main term of (3_,, “(T';gd))log;Qx

alog, z, as desired. Turning to the errors,

v(d)log(3d) v(d)
> o > sO(d)(1<>g:a+21<>g(£))

dlq dlq 2d
d squarefree d squarefree
v(d) v(r)
<1
<loed) 2 0@ T2 0
d sqtilsl(gefree e r sqﬂgigfree
v(d) v(€)
1 logl - —= ).
<(( 2 ) (e
dlq tq

d squarefree

Now Zd|q, d squarefree gp(d Hé\q(l + V<£)/(€_ 1)) < <10g2(BQ))D (keeping in mind that

v(¢) < D for all but O(1) many primes ¢). Furthermore,

Zy(g)éoigﬁl<<2#§ Z log€+ Z log€

{lq g £<log (3q)
Z>log(3q)

10g2 3q)
<1 3q) 1,
< log, (3¢) log 30) %

£>1log(3q)

and this is

log, (3 1
< log, (3¢) + Og?gq)>~ o8d

< log, (3q).
log(3g) log, (3q) &> (30)
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Thus, Zdlq, d squarefree % < (10g2(BQ))D+1' Finally,

%: W < log, (3¢) - E (1 + %) < (log, (3¢)7*.

d squarefree

Collecting estimates, Zpga; Lycd(F(p),q)=1/P = alogy x + O((log, (3¢))P). O

The upper bound half of Proposition 2.2.1 follows (in slightly more precise form)
immediately from Lemmas 2.2.2 and 2.2.4. In fact, we have shown the upper bound

in the much wider range g < z/3.

Lower bound

The following lemma is due to Barban [8, Lemma 3.5]; see also [67, Theorem 3.5, p.

61].

Lemma 2.2.5. Let g be a multiplicative function with 0 < g(n) <1 for all n. For

all x > 3,

n squarefree

Here the implied constant is absolute.

Proof of the lower bound in Proposition 2.2.1. Consider n of the form mP, where

1/2

m < 2'/3 is a squarefree product of primes p with ged(f(p),¢) = 1and P € (2'/?, x/m]

is a prime with (f(P),q) = 1. Each such n has f(n) = f(m)f(P) coprime to q.

Given m as above, we count corresponding P. The prime P is restricted to one of the

a(q)p(q) residue classes a mod ¢ with ged(aF(a),q) = 1. Hence, given m < 2'/3 as
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2.3 FRAMEWORK FOR THE PROOF OF THEOREMS 2.1.2 AND 2.1.3

above, the Siegel-Walfisz theorem guarantees that there are

1 T T

> (a(q)p(q)) - o) miogs a(q)

mlogx

values of P. Now sum on m; by Lemma 2.2.5,

1 1 m).a)= 1 -
Z_ = Z ged(f(m)@)=1 exp Z ged(f(p),g)=1
m m

mel/3 pSmI/S p
m squarefree

The final sum on p is within O(1) of the corresponding sum taken over all p < z.
The lower bound half of Proposition 2.2.1 now follows from Lemma 2.2.4, bearing in

mind that a(q) > (loglog (3q))~P. O

— Section 2.3

Framework for the proof of Theorems 2.1.2 and

2.1.3

Define J = J(z) by setting

J = |logloglog x|.

(For our purposes, any integer-valued function tending to infinity sufficiently slowly
would suffice.) With ¢ from the statement of Theorem 2.1.2, we let y = y(x) be
defined by

y == exp((log 2)"’?)

and we say that the positive integer n is convenient (with respect to a given large real
number z) if (a) n < z, (b) the J largest prime factors of n exceed y, and (c) none of

these J primes are repeated in n. That is, n is convenient if n admits an expression
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2.3 FRAMEWORK FOR THE PROOF OF THEOREMS 2.1.2 AND 2.1.3

n=m~P;--- P, where Py, ..., P; are primes with
max{P(m),y} < Py <--- < Py, (2.8)
Py P <x/m. (2.9)

The framework developed in this section will go through in the proof of Theorem

2.1.3 (§2.6) by setting 0 := 1.

Now let f be a fixed multiplicative function with f(p) = F(p) for all primes p, where

F(T) € Z[T) is nonconstant. Fix Ky > 0, and suppose that ¢ < (logx)%°. We set

N(q) = #{n <z : ged(f(n),q) = 1},

and we define No,(q) and Ni,.(q) analogously, incorporating the extra requirement

that n be convenient or inconvenient, respectively.

We will repeatedly use the following standard estimate on the count of smooth num-
bers. The result below is a consequence of the Corollary on p. 15 of [10], but see [76,

Theorem 5.13 and Corollary 5.19, Chapter I11.5] for more concrete results.

Lemma 2.3.1. Suppose X >Y > 3, and let u := }gi); Whenever u — oo and

X >Y > (log X)?, we have

(X, Y) = Xexp(—(1+o(1))ulogu).

Lemma 2.3.2. N(q) ~ Nen(q), as © — o0o. Here the asymptotic holds uniformly in

q with ¢ < (log x)%° and a(q) # 0.
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2.3 FRAMEWORK FOR THE PROOF OF THEOREMS 2.1.2 AND 2.1.3

Proof. We must show that Ni,.(q) = o(N(q)), as © — oo.

Suppose the integer n < x is counted by Ni.(q). We can assume that P(n) >
z := g¥/1°82%  Indeed, by Lemma 2.3.1, the number of n < x with P(n) < z is at
most /(logz)(!Te)es = and this is o(N(q)) by our ‘rough-and-ready’ estimate of
Proposition 2.2.1. We can similarly assume that n has no repeated prime factors

exceeding y, since the number of exceptions is O(z/y), which is again o(N(q)).

Write n = PAB, where P = P(n) and A is the largest divisor of n/P supported
on primes exceeding y. Thus P > z and P(B) < y < P~(A). Observe that AB =
n/P < z/z. Soif A and B are given, the number of possibilities for P is bounded
by m(z/AB) < x/ABlog z < x(loglogz)/ABlogx. We sum on A, B. As n has no
repeated primes exceeding y but n is inconvenient, it must be that Q(A) < J. Thus,
S1/A< (145, 1/p) < (2logy ) < exp(O((logy 2)?)). Using that (f(B),q) = 1
(as f(n) = f(B)f(AP)) and that B is y-smooth,

Z% <11 (i ﬂ(f(z;;,q)=1> < oxp (Z ﬂ(fo;)?,q):l) 7

p<y \j=0 p<y

and this is < (log )/ exp(O((logy ¢)°™M)) by Lemma 2.2.4. We conclude that
these n make a contribution to Ni,.(q) of size at most Tog sy =772 exp(O((logs z)? +
(log, 9)°M)). Since ¢ < (log )% and a(q) obeys the lower bound (2.4), this contri-

bution is also o(N(q)). O

Let N (g, a) denote the number of n < x with f(n) = a (mod ¢), and define Ny, (g, a)

and Nic(g,a) analogously. By Lemma 2.3.2, the weak equidistribution of f mod ¢
. . 1

will follow if N(q,a) ~ @an(q).
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As a first step in this direction, we compare Neon(q) and Neon(gq, a). Clearly,

Ncon(Q) = Z Z, 17

m<x Py,...,P.
ged(f(m),q)=1

where the ’ on the sum indicates that Py, ..., P; run through primes satisfying (2.8),
(2.9), and

ged(f(P1) -+~ f(Py),q) = 1. (2.10)

Similarly,

where the ” condition indicates that we enforce (2.8), (2.9) and (in place of (2.10))

fm)f(P)f(Py)--- f(Py) =a (mod q). (2.11)

Let
Vi ={(v1,...,v5) mod ¢ : ged(vy...vs,q) = 1,gcd(F(v1)--- F(vs),q) = 1}
and

Vo ={(v1,...,v5) mod ¢ : ged(vy ... vs,q) =1, f(m)F(v1) -+ F(vy) =a (mod q)}.

q7a7m

Then (2.10) amounts to restricting (P, ..., Py), taken mod ¢, to belong to V;, while

(2.11) restricts this same tuple to V), .. By (2.2), #V, = (¢(q)a(q))”.

The conditions (2.9) and (2.10) are independent of the ordering of Py,..., P;. Thus,
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letting L,, = max{y, P(m)},

Y= % > Y (2.12)

p,...,P;y " veV! Pi,..,Py distinct
Py--Py<z/m
each Pj>Lpy,

each Pj=v; (mod q)

We proceed to remove the congruence conditions on the P; from the inner sum. For

each tuple (vy,...,vs) mod g € V,

> - % >

Py,...,Py distinct Ps,...,Py distinct P1#Ps,...,Py
P1~~PJ§Z‘/’H’L PQ“'PJSI/mLm Lm<P1§x/mP2---PJ
each Pj>Lpy, each Pj>Lpy, Pi=v1 (mod q)

each Pj=v; (mod q) each Pj=v; (mod q)

Since L,, > vy and ¢ < (logz)%° = (logy)?!0/%, the Siegel-Walfisz theorem implies

that
1 x
l=—— 1+O(—exp —Coyy/lo ),
. Z o(q) Z mP,--- P, (=Covlogy)
1#Ps,....Py P1#Ps,...,P;
Lm<P1§$/mP2~~PJ Lm<P1§l'/mP2mPJ

Pi=v; (mod q)

for some positive constant Cy := Cy(Ky, d) depending only on Ky and §. Putting this

back into the last display and bounding the O-terms crudely, we find that

Y= b 3 140 (% exp (—%C’o(logx)‘w)) .

Pi,...,Py distinct SO(CZ) Pi,...,P; distinct
P--Py<z/m P--Py<z/m
each Pj>Lpy, each Pj>Lm,
each Pj=v; (mod q) (V§>2) Pj=v; (mod q)
Proceeding in the same way to remove the congruence conditions on P, ..., Py, we
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arrive at the estimate

> P > 1+O(%exp (—iC’O(log:c)‘W)). (2.13)

J
Py,...,Py distinct QO(Q) Py,...,Py distinct
Py--Py<z/m P--Py<z/m
each P;>Lm, each Pj>Lpy,

each Pj=v; (mod q)

Inserting this estimate into (2.12) and keeping in mind that #V) < (logxz)*°” (triv-

ially), we conclude that

Ncon(Q) - Z Z/ 1

m<x Py,...,.Py
ged(f(m),q)=1

= ¥ ﬂ(% > 1) +0 (xexp <—éC’0(logx)5/4)) :

J
m<zx 90(6]) P1,...,Py distinct
ged(f(m),g)=1 Py--Py<z/m
each Pj>Lm,

(2.14)

An entirely analogous argument yields the same estimate with N, (g) replaced by

Neon(q, @) and V; replaced by VJ

q,a,m*

Comparing (2.14) with its Neon(q, @) analogue

and rewriting
#Vgam _ #Vgam  #Yy
©(q)’ #V o(q)”

we are motivated to introduce the following hypothesis.

Hypothesis A. #1;1{/“,”" ~ ﬁ, as x — oo, uniformly in q and a and uniformly in
q

m <z with ged(f(m),q) = 1.

We will soon see how to verify Hypothesis A in the situations described in Theorems
2.1.1, 2.1.2, and 2.1.3. The phrase “uniformly in ¢ and a” in Hypothesis A should be

read as “uniformly in ¢ and a subject to the restrictions of these theorem statements”.
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If Hypothesis A holds, we may deduce (keeping in mind Lemma 2.3.2, and that

xexp(—%Co(log )% = o(N(q)/¢(q)))

Ncon(q7a> - Z Z 1

gcd(;?<)gcq)=1 .....
o s (Y@ 1
= (1+ o(1) 5 Nowla) + (m)) (1 o) 5N (0.

Since N(q,a) = Neon(q, @) + Nine(q, a), weak uniform distribution mod ¢ will follow if
the contribution from Ni,.(g,a) is shown to be negligible. We record this condition

as our next Hypothesis.

Hypothesis B. Ny..(¢,a) = o(N(q)/¢(q)), as x — 0o, uniformly in q and a.

— Section 2.4

Linearly defined functions: Proof of Theorem

2.1.1

We proceed to verify Hypotheses A and B.

Verification of Hypothesis A. Let m < x with ged(f(m),q) = 1, and let w € Z be

a value of af(m)~! modulo ¢. We will estimate #V,,,, via the product formula
#Vgam = 1leq Ve, Where
J
Vye .= #{(v1,...,vs) mod £° : ged(vy ...vz,0) =1, H (Rv; +5) =w (mod ¢9)}.
i=1

By assumption, (¢,6R) =1 for all /| q.

Suppose first that ¢ | S. Then the condition ged(vy...vy,¢) = 1 is implied by
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H;.le(Rvi +S5) =w (mod ¢¢). Noting that the map v — Rv + S is a permutation of
ZJU°7, we see that VI = p(£¢)’~1 and

(VL = (%) (2.15)

When ¢ 1 S, we must work somewhat harder. By inclusion-exclusion,

J

ViL=> (-1 (J) Vi, (2.16)
j=0 J
where
J
Vie ;= #{(v1,...,vg) mod £°: £ | vy, vg,. .. 0y, H(Rvi +S5) =w (mod £°)}.
i=1

If 0 <j < J, then Vi, = (£7")p(Le)’77": Each of vy,...,v; can be chosen
arbitrarily from the (7! classes divisible by ¢, while v;i1,...,v;_; can be chosen
arbitrarily subject to each of Rv; + S (fori=j+1,...,J — 1) being a unit mod ¢¢;

this then determines v;. Similarly, V! ; = O((£°")’~"). Referring back to (2.16),

DYV = (p(6) — 7Y + O (7))
= (t°(1=2/0))" (1+ 0t —2)"")) . (2.17)
By (2.15) and (2.17), in either case for £ we have

ety = (o) (1- Z@J)J (140U -2)7)).
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Multiplying over ¢,

PD#V) = (p(@l@) [T (L + 00 = 2))) = #V, [[ (1 + O(e(e = 2)77)) .
ellq £llq
So to verify Hypothesis A, it is enough to show that the final product is 1 + o(1).

This follows if Y., £(¢ —2)~7 = o(1), which is straightforward to prove: Since ¢ is

llg

coprime to 6, we have for all large x that

Soue=2)7 <y pe=2)7 <3Py p(e—2)77 <372y u(e-2)7F < 372

t¢||q 5 £>5 5

]

Remark 2.4.1. It is also possible to estimate V,! via character sums, which will be

our primary tool for general F(T) € Z[T|. By orthogonality (as in (2.18) below),

L)V = Zx mod £ )Z(w)Z;(], where

Zoi= 3 xolw)x(Ro+ )

v mod £¢
= Y W Y xw:
u mod £¢ u mod £

u=S mod ¢

here we have used that as v runs over coprime residues mod (¢, the expression Rv+.S
runs over all the residues mod (¢ except for those congruent to S mod £. If £ | S,
it is then immediate that Z, = 1,—,((¢) (with xo denoting the principal character
mod (), once again giving us p(L4)V)l = o(£¢)?. On the other hand, if €1 S, then
fixing a generator g mod (¢ and considering the unique r € {0,1,... p(¢¢) — 1}

satisfying ¢g" = S (mod (¢), we observe that the sets {u mod ¢¢ : v = S mod ¢} and
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{g"t=DR mod ¢°: 0 < k < (¢7'} are equal. Hence,

ST X)) =T X (ST

u mod £¢
u=S mod ¢

As such, Z, = T\t (€ —2) + O(1, e7YY, which again leads to (2.17)

=1=x0, x#Xo0

since there are ¢ — 2 nontrivial characters x mod (¢ satisfying x*~' = xo.

Verification of Hypothesis B. We proceed as in the proof of Lemma 2.3.2. Let n < x
be an inconvenient solution to f(n) = a (mod ¢q). We can assume P(n) > z =
xt/19227 since the number of exceptional n < x is o(N(q)/(q)). Similarly, we can
assume that n has no repeated prime factors exceeding y = exp((logz)*?). Write
n = PAB, where P := P(n) and A is the largest divisor of n/P supported on
primes exceeding y. Then z < P < x/AB and (RP + S)f(AB) = a (mod q).
Given A and B, this congruence is satisfied for P belonging to at most one coprime
residue class mod g. So by the Brun—Titchmarsh inequality, given A and B there
are < x/p(q)ABlog (z/q) < zlog, x/¢(q)AB log x corresponding values of P. Note
that we have saved a factor of ¢(q) here over the analogous estimate in Lemma 2.3.2.
Summing on A, B, and making the same estimates as in the argument for Lemma

2.3.2, yields

T

Ninel2: 0) < (q)(logx

sy PO ((logy )" + (log 7)),

and this is o(N(q)/¢(q)). O
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— Section 2.5

General polynomially defined functions: Proof of

Theorem 2.1.2

To check Hypothesis A in the context of Theorem 2.1.2, we require the following
character sum estimate, which follows from the Weil bounds when e = 1 and from
work of Cochrane [14] (see also [15]) when e > 1. See [59, Proposition 2.6] for a

detailed discussion.

Lemma 2.5.1. Let Fy(T), ..., Fx(T) € Z[T)] be nonconstant polynomials for which
the product Fy(T)--- Fx(T) has no multiple roots. Let € be an odd prime not divid-
ing the leading coefficient of any of the Fy(T) and not dividing the discriminant of
Fi(T)---Fg(T). Let e be a positive integer, and let x1, ..., Xk be Dirichlet characters

modulo (¢, at least one of which is primitive. Then

Z Xl(Fl(,fC))XK<FK(Z')) < (d— 1)£e(171/d)’

 mod £¢
where d = S| deg F(T).

Let A(F') denote the discriminant of F'(T) if F/(0) = 0 and the discriminant of TF(T)
if F'(0) # 0. Throughout this section and the next, we assume that C'(F) is fixed so
large that primes exceeding C'(F') are odd and divide neither the leading coefficient
of F nor A(F). We also assume that C(F) > (4D)?*P*2 where D = deg F(T).

Verification of Hypothesis A. Suppose that m < x has ged(f(m),q) = 1 and write w
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q7a7m

for a value of af(m)~! mod q. Then #V" = [Ty, Vie and #V = [1e, Vie, where

J
Vye .= #{(v1,...,vs) mod £°: ged(vy ...vy,0) =1, HF(UZ) =w (mod ¢°)}

i=1

and

Ve :=#{(vy,...,v5) mod ¢ : ged(vy ... v F (v1) -+ F(vy),£) = 1}.

With x¢ denoting the principal Dirichlet character mod ¢¢,

Wik = > xw) D> xolor-v)x(F(v) - Fluy)) (2.18)

x mod £¢ V1,...,07 mod £¢
Vit Y ww)z, (2.19)
x mod £¢
XFXO0

where Z, == > e xo(v)x(F(v)). For each x of conductor ¢ with 1 < ey < e,
Lemma 2.5.1 gives [Zy| = 57| 37 4 eo Xo(2)X(F(2))] < Detemeo)teol=1/(DH)) —
Dye=eo/(D+D) - (If ¢ divides F(0), then >, eo Xo(Z)X(F(2)) = 3, 1od e0 X(F(2)),
and we apply Lemma 2.5.1 with £ = 1 and Fy(T) = F(T); otherwise we take k = 2,
Fi(T)=T, and F»(T) = F(T).) As there are fewer than ¢ characters of conductor
e,

> xw)z]

x mod £¢
X7X0

< Z EeO(DEe_eO/(D+1))J:DJ€eJ Z Eeo(l—J/(D+1)).

1<eg<e 1<eg<e

Since J > D+2 once x is sufficiently large, each term in the sum Z1geoge geo1=J/(D+1))

is smaller than half the previous, and >, . (eo(=J/(D+1)) < 9p1=J/(D+1) = Thyg,

| >y mod = X(w) Z]| < 2D7 47 =7/(PHY “Since V. = (p(¢°)r(£%))”, we conclude from
XFX0

(2.19) that
(Ve = V(1 + Ry), (2.20)
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where

e
p(Le)

(We use here that £¢/p(£¢), a(¢¢)~! < 2.) Multiplying over ¢ in (2.20), we see that

J
[Re| < 2D° ( a(ée)‘l) =D+ < 9(4 D) =IO+,

Hypothesis A will follow if (4D)’ Dt ¢1=7/(P+1) — 5(1). To check this last inequality,

observe that when x is large,

(4D)J Z gl—J/(D+1) < (4D)JC(F)—J/(2D+2) Z gl—J/(2D+2)
q q

(4D/C( 1/ 2D+2 ZE_ < 2 4D/C( )1/(2D+2))J;

this last quantity tends to 0 since C(F) > (4D)*’*2 and J — oo. O

Verification of Hypothesis B. We follow the arguments for the corresponding step in
§2.4. Let &(q) be the maximum number of roots v mod ¢ of any congruence F'(v) = a
(mod ¢), where the maximum is over all residue classes @ mod q. Then there are at
most £(q) possibilities for the residue class of P modulo ¢ and our previous arguments
yield

Nne(4,0) £ 60) 5o exp(O((log 2)° + (log 0)°)

X

< g a7

(1-9)« (

This last quantity is certainly o(N(q)/¢(q)) as long as £(q) < (logx) say).

By the choice of C(F), we have £(q) < D*9 for squarefree ¢, verifying Hypothesis
B for squarefree ¢ having w(q) < (1 — 0)alog, z/log D. On the other hand, by a
result of Konyagin (see Lemma 2.5.2 below), each congruence F'(v) = a (mod q)
has O(q'~/P) roots modulo ¢. Consequently, Hypothesis B also holds true for ¢ <
(1-8)(1—1/D)~1

(log x)*( , completing the proof of Theorem 2.1.2. O
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For completeness, we state the result of Konyagin (see [35, 36]) that we used above.

Lemma 2.5.2. Fiz a nonconstant polynomial W(T) = ijzo a;T7 € Z[T). Then
uniformly in integers q satisfying ged(q, ag,...,ap) = 1, we have #{u € Z/qZ :

W(u) =0 (mod q)} <p ¢'~V/P.

In the proof above, we have applied Lemma 2.5.2 with W (T') being the fixed polyno-
mial F'(T), and with the aforementioned ged condition being satisfied automatically

thanks to having P~(q) > C'(F') in Theorem 2.1.2.

— Section 2.6

Equidistribution along inputs with several prime

factors exceeding ¢: Proof of Theorem 2.1.3

Proof of (a). Recall that for the purposes of Theorem 2.1.3, we take § := 1 and
y = exp((logz)'/?) in the framework developed in section 2.3. Lemma 2.3.2 still
applies to show that N(q) ~ Neon(q) as  — oo, uniformly in ¢ < (logz)X° having
a(q) # 0. In particular, if Ppyo(n) < g, then Pj(n) < ¢ <y (once z is large); thus n
is inconvenient, placing it in a set of size o(/N(q)). It follows that the right-hand side
of (2.5) is ~ N(q)/¢(q), and our task is that of showing the same for the left-hand
side. The proof of Hypothesis A in §2.5 gives Neon(q,a) ~ N(q)/(q). It remains only
to show that there are o(N(q)/¢(¢)) inconvenient n with Ppia(n) > g and f(n) = a

(mod q).

As usual, we can assume P(n) > z := z'/!°%27 and that n has no repeated prime
factor exceeding y = exp(y/logz). Since n is inconvenient, we must have P;(n) < y.
We suppose first that one of the largest D + 2 primes in n is repeated. Write n =

PSm, where P = P(n), S is the largest squarefull divisor of n/P; hence, Sm < z/z
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and S > ¢?. Given S and m, there are fewer than 7(x/Sm) < wlog, z/Smlogx
possibilities for P. Summing on squarefull S > ¢* bounds the number of n, given
m, as < xlog, x/gmlogx. To handle the sum on m, write m = AB, where A is the
largest divisor of m composed of primes exceeding y. Then Q(A) < J, while B is y-
smooth with ged(f(B),q) = 1. Bounding > 1/A and > 1/B as in the proof of Lemma
2.3.2, we deduce that 3" 1/m < (log z)2® exp((logs #)°M). Putting it all together, we

T

see that the number of n in this case is at most exp((logz x)°M), which is

o(N(q)/#(q))-

1
q(logz)' ™2

We now suppose that each P, := P;(n) appears to the first power in n, for i =
1,2,...,D+2, and we write n = Py --- Pp.om. Since f(n) = a (mod ¢), it must be

that ged(f(m),q) = 1. Furthermore, letting w denote a value of af(m)~! mod g,

(Pb s 7PD+2) mod qe Vq(w)7

where

Vo(w) == {(v1,...,vps2) mod g :

ged(vr -+ vpi2,q) =1, F(vi) -+ F(vpy2) = w (mod ¢)}.

Let us estimate the size of #V,(w). Put

Vie = #{(v1,...,vps2) mod £° :

ged(vy -+ vpya, ) =1, F(vy) -+ F(vpy2) =w (mod £°)},

so that #V,(w) = [, Vee. From the proof of (2.20), with J replaced by D + 2,

P(£)Vee = (a(l)p(£)) P (1 + Ry),
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where |Ry| < 2(4D)P+2(=1/(P+1) « ¢=1/(D+1)  Multiplying on /¢ gives

QO((])#V(](U)) < oz(q)D+2<p(q)D+2 exp (O<Z£1/(D+1)))

tq
< ()" exp(O((log ¢)'/(P+)). (2.21)
Given P, ..., Ppio, m, and v = (v1,...,Up42) mod ¢ € V,(w), the number of possi-

bilities for P, is < zlog, z/¢(q)mP; - -+ Ppiologz, by Brun-Titchmarsh. Summing
on P, ..., Pp.s, we see that the number of possibilities for n given v and m is

< z(logy )W /o(q)P+2mlog z. (We use here that

Z 1<<10g2x7
P lq)

q<p<wz
p=v (mod q)

uniformly in the choice of v, which follows from Brun-Titchmarsh and partial sum-
mation; alternatively, one can apply Lemma 2.2.3.) We sum on v € V,(w), using
(2.21), and then sum on m, writing m = AB and making the estimates as earlier in

this proof. We find that the total number of n is at most

T

1 exp(O((logy z) '~/ PH)),

p(q)(logz)
which is o(N(q)/¢(q)). O
Proof of (b). We follow the proof of (a), replacing D + 2 everywhere by 2. It suffices

to show that

P(OVe < p(0*(1+ 0(1/V0)) (2.22)

for each ¢, for then p(q)#V,(w) < ¢(q)? exp(O((log q)'/?)), which is a suitable ana-
logue of (2.21).
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Certainly V; is bounded by the count of Fy-points on the affine curve F(x)F(y) = w.

The polynomial F'(x)F(y)—w is absolutely irreducible over F,. Indeed, suppose that
F(z)F(y) —w = U(z,y)V(z,y) for some U(z,y),V(z,y) € Fy[z,y]. Then for each
root § € Fy of F, we find that —w = U(#,y)V(0,y), and so in particular U(6,y) is

constant. Thus, if we write

Ulz,y) =) ar(2)y",

k>0

with each ay(x) € Fy[z], then ay(#) = 0 for each k& > 0. Since F' has no multiple roots
over [y, each such ay(z) is forced to be a multiple of F(x), hence U(x,y) = ao(z)
(mod F(z)). A symmetric argument shows that V(z,y) = by(y) (mod F(y)) for some

bo(y) € Fy[y], so that V(z,0) = by(6). Consequently, for any root § € Fy of F,
—w=F(z)F0) —w=U(z,0)V(z,0) = ag(x)bo(0) (mod F(x)),

which shows that U(x,y) = ao(z) = ¢ (mod F(z)) for some constant ¢ € F,. But this
forces ¢ = U (0, 6), showing that F(x) divides U(z,y) —U (0, 6). By symmetry, so does
F(y), and we obtain U(z,y) = U(6,0) + F(z)F(y)Q(x,y) for some Q(z,y) € F/lx,y].
Degree considerations now imply that for U(z,y) to divide F(z)F(y) — w, either
Q(z,y) is a nonzero constant, in which case V(x,y) is constant, or Q(z,y) = 0, in

which case U(x,y) is constant.

Now we apply the following version of the Hasse-Weil bound [41, Corollary 2(b)].

Proposition 2.6.1. IfV is an absolutely irreducible affine plane curve, then #V (F,)

IN

(+ O(\/Z), where the implied constant depends only on the degree of V.
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This gives that the number of Fy-points on F(z)F(y) = w is at most £+ 1+ 3(2D —
1)(2D — 2)[2v/¢], which is ¢(¢)(1 + O(1/+/?)), yielding (2.22). O

Section 2.7

Concluding remarks and further questions

Elementary methods often enjoy a robustness surpassing their analytic counterparts,
and our (quasi)elementary approach to weak uniform distribution is no exception.
Not only does our method yield a range of uniformity in ¢ wider than that (seem-
ingly) accessible to more ‘obvious’ attacks via mean value theorems for multiplicative
functions, but the method applies to functions that do not fit conveniently into the
‘multiplicative managerie’. We illustrate with the following theorem; note that the
distribution in residue classes of the function A*(n) below does not seem easily ap-

proached via mean value theorems.

Theorem 2.7.1. Fiz Ky > 1. The sum of prime divisors function A(n) = Z?:(q) P;j(n),

as well as the alternating sum of prime divisors function A*(n) = Z?:(q) (=1)"tP;(n),
is asymptotically uniformly distributed to all moduli ¢ < (logxz)%°. In other words,

as r — oo,

Y o1~ Y 1o~ g, (2.23)

n<lz n<lz
A(n)=a (mod q) A*(n)=a (mod q)

uniformly in moduli ¢ < (log z)X° and residue classes a mod gq.

Remark 2.7.2. The uniform distribution of A(n) mod q for each fized q is a conse-
quence of the theorem of Delange quoted in the introduction, with more precise results
appearing in work of Goldfeld [28]. For varying q, the problem seems to have been

first considered in [60]; there Haldsz’s mean value theorem is used to show uniform
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distribution of A(n) mod q for ¢ < (log :z:)%_‘s (for any fixred 6 > 0), a significantly

narrower range than that allowed by Theorem 2.7.1.

Proof of Theorem 2.7.1. With y := exp(y/logz), arguments analogous to (but sim-
pler than) those in the proof of Lemma 2.3.2 show that the number of inconvenient
n < z is o(z), while arguments analogous to (but simpler than) those in the verifi-
cation of Hypothesis B of §2.4 show that the number of inconvenient n < x having

A(n) = a (mod q) or A*(n) =a (mod q) is o(z/q). Hence, it suffices to show that

N(g,a) ~ N*(g,a) ~

oo (2.24)

convenient n<x

| =

where N(q,a) (respectively, N*(g,a)) denotes the number of convenient n < z having

A(n) = a (mod q) (resp., A*(n) =a (mod q)).

Proceeding as in §2.3, we define, for an arbitrary residue class w mod ¢,

J
Vy(w) :=={(v1,...,v;) mod g : ged(vy ...v5,q) =1, Zvj =w (mod q)}
j=1
and
J
Vi(w) :=={(v1,...,v5) mod ¢ : ged(vy ... vy, q) = 1, Z(—l)ﬂ_lvj =w (mod q)},
j=1

and we write

OIS SE 1D DENED DI

m<z ~  vE€Vqa,m Pi,.., Py distinct
P--Py<z/m
each Pj>Lpy,
each Pj=v; (mod q)
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1
* —
N (q7 a) - § j E : § 17
m<z vevy . m P, Py distinct
Pp--Py<z/m
each P;j>Lm,
each Pj=v; (mod q)

where Vgam 1= Vola — A(m)) and Vi, . = Vi(a — (—1)7 A*(m)).

q,a,m

By J applications of Siegel-Walfisz, we now obtain

#anm 1 1 1/4
N = | = 1 ——Cp(l
wi= S8 (5, T 1) 0 (eon(icstnr

Pi--Pj<z/m
each P;>Lm,

(2.25)

N*(q.a) ==Y #Viam (% > 1) +0 (:p exp (—éC’O(logx)l/4)) :

" Pi,...,P; distinct
Pi--Py<z/m
each Pj>Lpy,

(2.26)

for some constant Cy > 0 depending only on Kj. As an analogue of our Hypothesis

A, we claim that as © — oo,

J
plq
#Vgam ~ (Lag + 2 Lojg 7=a— A(m) (mod 2)) (q> , (2.27)
J
* plq
#Vq,am ~ (12’(11 + 2 Ly, s=a—(~1)7 A*(m) (mod 2)) (q) , (2.28)

uniformly in m < x and in ¢ < (logz)¥o. (If Loy + 2 - Lojg, J=a—A(m) (mod 2) = 0, the
asymptotic (2.27) should be interpreted as the claim V,,,, is empty, and similarly

for (2.28).) To this end, it suffices to show that

J

BV (w) = #V,y(w) ~ (Lagg + 2 - Lojg J=uw (mod 2))‘0(3) , (2.29)

uniformly in ¢ < (logz)®® and in residue classes w mod g. The equality in (2.29)
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follows immediately from the one-to-one correspondence

between Vy(w) and V;(w). To see the asymptotic, we write #Vy(w) = []p, Vee,

where for each prime power ¢¢ || g,

J
Vie : = #{(v1,...,v5) mod £° : ged(vy ... vz, 0) =1, Zvj =w (mod ¢°)}

j=1
0¢)’! 1 2mirw
— 90(68) + 7 Z exp (— 7 ) Se(r)”,

0<r<ee

with Se(r) == 37, nod e, (w.0)=1 €XP(2mirv/(¢) (a Ramanujan sum). This sum can be

exactly evaluated with the following identity (see [44, Theorem 4.1, p. 110]):

.-
Sy =3 exp ( 7;1”) = Dpeorp (=LY for all r € {1,--+ 5 =1}, (2.30)
v mod £°
(v,0)=1

We deduce that as  — o0,

J 1
#Vg(w) = (Logg + 2 - L2jg, 7=w (mod 2))S0(§) [q[ (1 +0 (W)) :
>2

leading to (2.29), since >y, pop 1/(€ — 1)t =0(1) as J — oo.

Plugging (2.27) and (2.28) into (2.25) and (2.26) respectively, and carrying out our
initial reductions in reverse order completes the proof of (2.24), and hence also that

of (2.23), for odd ¢ < (logx)"%°. On the other hand, when ¢ is even we obtain

N(q,a)zz 3 1+0(§), N*(q,a)zg Yy 1—|—0(§);

n<x n<zx
A(n)=a (mod 2) A*(n)=a (mod 2)
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2.7 CONCLUDING REMARKS AND FURTHER QUESTIONS

here, it has been noted that a— A(m) = J (mod 2) is equivalent to A(mP; --- P;) = a
(mod 2), and likewise for A* in place of A. Since A(n) is known to be equidistributed
mod 2 (as discussed in the remarks preceding the theorem), and A*(n) = A(n)

(mod 2), the theorem follows. O

We close on a more speculative note. The mixing exploited in this chapter can be
interpreted as a quantitative ergodicity phenomenon for random walks on multiplica-
tive groups. However, our proofs go through character sum estimates; one might
say that no actual Markov chains were harmed in the production of our arguments.
It would be interesting to investigate the extent to which the (rather substantially
developed) theory of Markov chain mixing could be brought directly to bear on these
kinds of uniform and weak uniform distribution questions. This has the potential to

open up applications in situations where character sum technology is unavailable.
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Chapter 3

Joint distribution in residue classes
of families of polynomially-defined

additive functions

We extend the results in subsection § 1.4.1 to a family of polynomially—defined addi-
tive functions, thus also partially extending Delange’s Theorems 1.2.4 and 1.2.3 from
fixed to varying moduli. In this chapter, g1,...,9x : N — Z will be additive func-
tions for which there exist nonconstant polynomials Gy,...,Gy € Z[T] satisfying
g:(p) = G;(p) for all primes p and all i € [M]. This chapter is based on the paper [73]

of the author.
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3.1 MAIN RESULTS

Section 3.1

Main results

In the first main result of this chapter, we shall extend Theorem 1.4.5 to families
of additive functions. To this end, let g; and G; be as above, and let Q. . 4.
denote the set of moduli ¢ such that gq,..., gy are jointly equidistributed mod gq.
For technical reasons to be elaborated on later (see Theorem 3.1.4), we will assume
in our main results (Theorems 3.1.1, 3.1.2 and 3.1.3) that the derivatives of G; are
linearly independent over Q. This amounts to assuming that no nontrivial Z-linear
combination of the G; reduces to a constant in Z[T], or in other words, that the
polynomials {G;(T) — G;(0) : 1 <1i < M} C Q[T] are Q-linearly independent. (For
M =1, this simply amounts to GG; being nonconstant.) In particular, this hypothesis

forces the maximum of the degrees of the GG; to be no less than M.

Our first main result shows that g¢;,..., gy are jointly equidistributed to moduli ¢
lying in Qy, ... gx,) Varying uniformly up to a small power of logx . In what follows, we
denote by D and D,,;, the maximum and the minimum of the degrees of Gy, ..., Gy

respectively,! so that by the above discussion, D > M.

Theorem 3.1.1. Fiz K > 1, § € (0,1] and an integer M > 1. Let g1,...,9m be
additive functions defined by the polynomials Gy, ..., Gy such that the polynomials

{Gi<i<m C Z[T) are Q-linearly independent. Then g1, ..., gy are jointly equidis-

-----

following additional conditions.

(i) M =1, and either q is squarefree or G is linear.

IThe asymmetry in notation is due to the much greater frequency of the appearance of D in our
results, as compared to Dpyi,-
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3.1 MAIN RESULTS

(ii) M > 2, ¢ < (logx)=9/M=1 " and either q is squarefree or at least one of

G1,...,Gy s linear.
(iii) q < (log2)(1=)M=1/Dmin) ™"

Subpart (i) and the special case M = 1 of subpart (iii) are contained in Theorem
1.4.5 from [1], but we have included them here in order to give a self-contained and
unified treatment. These assertions will of course be automatically established by our
method as well. However, our method is significantly different from that used in [1]
as there are several additional ideas required to generalize these special cases to our

theorem above.

In subsection § 3.4.1, we shall show that the ranges of ¢ in the subparts of the
above theorem are all essentially optimal. In the constructions described there, the
obstructions to uniformity will come from the prime inputs p, analogous to what we
observed in Chapter 2. Our next two results point out that the inputs n with too
few ‘large’ prime factors present the key obstructions to uniformity. In other words,
uniformity in ¢ up to an arbitrary power of logx can be restored by restricting the
set of n to those with sufficiently many prime divisors (counted with multiplicty)

exceeding q.

Theorem 3.1.2. Fix K, M > 1 and let gq,...,gy be additive functions defined by
the polynomials Gy, ..., G, such that {G’}1<i<p C Z[T] are Q-linearly independent.

Assume that D = maxj<;<p deg G; > 2. We have

#{n <x: Pypi1(n) >q, (Vi) gi(n) =b; (mod q)}

1 x
Nq—M#{”§$1PMD+1(n)>q}~q—M as x — 00,
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3.1 MAIN RESULTS

uniformly in moduli ¢ < (log )™ lying in Q, and in residue classes by, ..., by

?"’791\/1);

mod q.

Here we omit the possibility D = 1, as in this case, the fact that D > M forces
M =1, putting us in the setting of Theorem 3.1.1(i), where we already have complete
uniformity in ¢ in the Siegel-Walfisz range. For squarefree moduli ¢, it turns out that
a much weaker restriction on the inputs suffices: we need only assume that n has
at least twice as many prime factors (counted with multiplicity) exceeding ¢ as the

number M of additive functions considered.

Theorem 3.1.3. Fix K > 1, M > 2 and let g1, ..., gyn be additive functions defined
by the polynomials Gy, ..., G, such that {Gl} <<y C Z[T) are Q-linearly indepen-

dent. We have

#{n <x: Pypy(n)>q, (Vi) gi(n)=0b; (modq)}

1
Nq—M#{HSIL‘IPzM(n)>q}NqiM as v — 00,

uniformly in squarefree ¢ < (logz)¥ lying in Qgr,gar), and in residues by, ..., by

mod q.

Here, we omit the case M = 1 as complete uniformity in squarefree ¢ < (logx)¥ has
already been attained in Theorem 3.1.1(i). In subsection § 3.6.1, we will show that
the restriction Pypr(n) > ¢ is nearly optimal in the sense that it cannot be weakened
to Papr_3(n) > ¢ for any M > 2, and that for M = 2, it cannot be weakened to

PQM,Q(H) > q either.

We now illustrate the necessity of our recurring linear independence hypothesis. It

turns out that if the polynomials {G:}M, are not assumed to be Q-linearly inde-
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3.1 MAIN RESULTS

pendent, then the M congruences g;(n) = b; (mod ¢) might degenerate to (at most)
M —1 congruences for sufficiently many inputs n. As such, it is not possible to restore
uniformity in moduli ¢ < (log )X no matter how many prime factors of our inputs
n we assume to be larger than ¢. Specifically, for any large integer R, we can always
construct integers by, ..., by which are overrepresented by the g1, ..., gy among the

set of inputs n < z having Pg(n) > ¢q. We show this precisely below.

Theorem 3.1.4. Fiz K > 1, M > 2 and polynomials Gy, . ..,Gy—1 € Z[T] such that
(G € Z[T) are Q-linearly independent. Consider nonzero integers {a; }2 7' and
a polynomial Gy € Z[T) satisfying Gy = Som " a; Gl and Gar(0) # oM a,GH(0).
Let g1, ...,g9m be additive functions defined by the polynomials Gy, ...,Gy. There
exists a computable constant Cg > 0 depending only on the system G = (Gy,...,Guy)

that satisfies the following properties:

For any integer Q) > 1 with P~(Q) > Cg, the functions g1, ...,gu are jointly equidis-
tributed mod Q. However, for any fived R > Cg and any integers {b;}2 1", there exists

an integer byy such that

#{n <x:Pg(n)>q, (Vi) gi(n)="b; (modq)}

z(logy r)%1
> ———F———  asT — 00,
¢M1log x

uniformly in moduli ¢ < (logz)X having P~(q) > Cg.

Thus, the above theorem shows that without the Q-linear independence of the {G/}X,,
uniformity could fail to all moduli ¢ € (log , (log x)%°] having sufficiently large prime
factors, despite g1, ..., gy being jointly equidistributed to any fixed modulus having
sufficiently large prime factors. We expect that with appropriate modifications of

our methods, it might be possible to obtain analogues of Theorems 3.1.1, 3.1.2 and
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3.1.3 (with more limited ranges of unformity in ¢) when {G}}, are not Q-linearly
independent: from our arguments below, it seems reasonable to expect that the cor-
responding ranges of ¢ and restrictions on the inputs n should then depend on the

rank of the matrix of coefficients of the polynomials {G}}.

We conclude this introductory section with the remark that although for the sake of

simplicity of statements, we have been assuming that our additive functions {g;},
and polynomials {G;}¥, are both fixed, our proofs of Theorems 3.1.1, 3.1.2, 3.1.3 and
3.1.4 will reveal that these results are also uniform in the additive functions {g;}¥,

as long as they are defined by the fixed polynomials {G;}}M,.

Additional notation and conventions in this chapter:

Given polynomials G1,...,Gy € Z[T], we shall (in this chapter) use D and Dy,
to denote the maximum and the minimum of the degrees of the G;, respectively.
As usual, implied constants in < and O-notation, as well as implicit constants in
qualifiers like “sufficiently large”, may always depend on any parameters declared as
“fixed”; in particular, they will always depend on the polynomials G, ..., Gy, Other
dependence will be noted explicitly (for example, with parentheses or subscripts);
notably, we shall use C(G) or Cg to denote constants depending only on the vector

~

G = (Gy,...,Gy) of defining polynomials.

For a positive integer n, we define Q% (n) = Z k to be the number of prime

pFln
p>q, k>1
divisors of n (counted with multiplicity) that exceed ¢ and appear to an exponent

greater than 1 in the prime factorization of n.
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3.2 PRELIMINARY DISCUSSION: DELANGE’S EQUIDISTRIBUTION CRITERIA AND
CONSEQUENCES FOR POLYNOMIALLY-DEFINED ADDITIVE FUNCTIONS

— Section 3.2

Preliminary Discussion: Delange’s
equidistribution criteria and consequences for

polynomially-defined additive functions

We start by stating the following explicit consequences of Delange’s criteria Theorems
1.2.3 and 1.2.4 in our setting of polynomially-defined additive functions, which is how

they shall be useful to us. In what follows, for a given polynomial G € Z[T], we set

! -1 = L v : v
ag(q) = W#(G (Uq) N Uq) = (p(q)#{ eUy: G(v) € Uq}

denote the proportion of unit residues v mod ¢ whose image under the polynomial G

is also a unit mod ¢. By the Chinese Remainder Theorem, ag(q) =[], ac(f)-

Lemma 3.2.1. Let g: N — 7 be an additive function defined by a monconstant

polynomial G € Z[T]|. We can describe the set
Q, = {q € N: g is equidistributed mod ¢}

as follows:

(1) If 2] g(27) for somer > 1, then Q4 = {q : ac(q) # 0}.

(it) If 24 g(27) for allr > 1 and if 4 | (G(1),G(3)), then

Q,={q:21q, aclg) #0}U{q:2| q, ac(q/2) # 0}.
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(iti) If21 g(27) for allr > 1 and if 41 (G(1),G(3)), then Qy = {q : ag (Qvg(q)) #0}.

Proof. In what follows, let ¢’ = ¢/2"2(9 denote the largest odd divisor of ¢. An
application of the Siegel-Walfisz Theorem with partial summation shows that for any

divisor d > 1 of ¢ and any X > e, we have

Sy(X) = Z% _ Z%

p<X p<X
dfg(p) d{G(p)

DY ]19 1+ 0y(1) = B(d) logy X + O,(1),

relUy p<X
dtG(r) p=r mod d

where (g(d) = ﬁ#{r € Uy : df G(r)}. Letting X — oo, we deduce that the sum
Sd = D arg(p /P diverges if and only if S¢(d) # 0. But since S¢(¢) = aq(¢) for
any prime ¢, Theorem 1.2.3 shows that if ¢ € Q,, then ag(¢) # 0 for all odd primes
¢ dividing ¢, so that ag(¢’) # 0. On the other hand, if ag(q) # 0 for some ¢, then
Ba(l) = ag(l) # 0 for all primes dividing ¢, so that Sy diverges for all such primes,
and Theorem 1.2.3 leads to ¢ € Q, (since S; > S;). In summary, we have so far

shown that {q : aq(q) # 0} C Q, C {q: ac(¢) # 0}, which in particular means that
{g:21q, a€ Q} ={q:214q, aclq) #0}.

Now consider an even integer ¢ € Q,, so that it satisfies the necessary condition

ag(q') # 0.

(i) If 2 | g(2") for some r > 1, then by Theorem 1.2.3, the sum Sy must diverge. By
the above discussion, this means that ag(2) = B5(2) must be nonzero, leading

to ag(q) # 0. Hence, in this case Q, = {q : ag(q) # 0}.

(ii) Suppose 2 1 g(2") for all » > 1 and 4 | (G(1),G(3)). Then ag(2) = 0, so that

by Theorem 1.2.3(ii) and the discussion in the previous paragraph, we have
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{¢:21 ¢ qge Q}t ={¢:2]| ¢ ac(q/2) # 0}. Moreover, no positive
integer divisible by 4 can lie in Q,: this follows by Theorem 1.2.3(iii), since
the condition 4 | (G(1),G(3)) implies that S5(4) = 0, and that S, converges.

Hence, in this case Q, is as in the statement of the lemma.

(iii) Finally if 2 ¢ g(2") for all » > 1 and if 4 1 (G(1),G(3)), then S, diverges, and
Theorem 1.2.3 along with the inclusions obtained in the previous paragraph

show that ¢ lies in Q,, if and only if ag(¢') # 0.

This completes the proof of the lemma. n

The following observation paves the way for a simple application of Theorem 1.2.4 in

the setting of polynomially-defined additive functions.

Lemma 3.2.2. Let M > 2 and g1,...,9m @ N — Z be additive functions de-
fined by the nonconstant polynomials Gy, ...,Gy € Z[T], and let ¢ be a prime. If
Oky Gyt kinyGa (£) # 0 for all integer tuples (ky, ..., k) satisfying ged(ky, ... ky) =
1, then the polynomials G1,...,Gy must be Fy-linearly independent. Further, if

¢ > D+ 1, then this condition is also sufficient.

Proof. To establish the first assertion, we assume by way of contradiction that there
exist py,...,pun € {0,1,...,¢ — 1} not all zero, such that Zi\il 1, G(T) vanishes
identically in F,[T]. We will construct integers ki, . . ., kys satisfying ged(ky, ..., ky) =
1 and a6y 4tk ey (£) = 0. To that end, consider some ¢ € [M] for which p; #Z 0

(mod ¢) and let k, := p, for all r € [M]\ {i}.

Now choose any j € [M]\ {i}. By the Chinese Remainder Theorem, there exists
an integer k; such that k; = p; (mod ¢) and ged(k;, k;) = 1. With this choice

of integers (ki,...,ky), we see that ged(ky, - ,ky) = 1 and that the polyno-
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mial M E.G.(T) = M 1,G,(T) (mod ¢) is identically zero in Fy[T], so that

Ok, Gy 4tk Gay (£) = 0. This proves the first assertion of the lemma.

To show the second assertion, we consider any prime ¢ > D+1. Suppose there did ex-

ist a tuple of integers (ky, . .., kar) satisfying ged(ky, ..., ky) = Land a6y 4 1kp 60 (0) =

0. Then on the one hand, (ki,..., k) Z (0,...,0) (mod ¢). On the other hand, the
polynomial 3" k.G,.(T) (considered as an element of F,[T]) has degree at most D
but has at least #U; = ¢(¢) = {—1 > D roots in F,. As such, Zi\il k.G, (T) vanishes
identically in F,[T] yielding a nontrivial F-linear dependence relation between the

{G 1L B

We remark that the matrix of coefficients alluded to towards the end of section 3.1 will
play a pivotal role in our arguments. To set things up, we write G5(T") =: Zf;ol a; I
for some integers {a;, : 1 <i < M,0 <r < D — 1}, so that a; p_; # 0 for some i
(since D = max;<;<)r deg G;). Note that since G; € Z[T], we have (r + 1) | a;, for
all i € [M] and 0 < r < D — 1. By the matrix of coefficients or coefficient matrix of

the polynomials {G’}1<;<, we shall mean the D x M integer matrix

a1,0 ce ap,0

a1,p-1 - AMD-1

whose i-th column lists the coefficients of the polynomial G in ascending order of the
degree of T. Tt is important to note that if the polynomials {G/}M, are Q-linearly
independent, then the columns of the matrix Ay form Q-linearly independent vectors,
so that Ay has full rank. As such, the Smith normal form Sy of Ay only has nonzero

entries on its main diagonal. In other words, Ay has exactly M invariant factors
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b1, -, Bu € Z\{0}, which must also satisfy 5; | 5,41 forall 1 <i < M. Furthermore,
since Sy is obtained from Ay by a change of basis over Z, it follows that the primes ¢
for which the columns of Ay (or equivalently, the polynomials {G.} ) are Fy-linearly
dependent are precisely those which divide at least one of the §; (or equivalently,
those which divide /). As a consequence, letting Cy(G) be any constant exceeding
max{D + 1,|Bx|} (so that Cy(G) depends only on the vector G == (G, ...,Gu)),

we see that:

The polynomials {G}}Y, are Fy-linearly independent for all primes ¢ > Cy(G).
(3.2)

Our arguments leading to (3.2) show that under the weaker hypothesis that the
{G;}M, are Q-linearly independent, there exists a constant C;(G) > D + 1 such that
{G;}M, are F-linearly independent for all £ > C;(G). Note that if {G}}M, are Q
(respectively, Fy)-linearly independent, then so are {G;}M,. Hence, if {G/}M, are
Q-linearly independent, then with Co(G) as in (3.2), the {G;}}, are also Fy-linearly
independent for any prime ¢ > Cy(G). Combining these observations with Theorem

1.2.4 and Lemmas 3.2.1 and 3.2.2, we obtain the following useful consequence.

Corollary 3.2.3. Let g1, ..., 9y : N — Z be additive functions defined by the noncon-
stant polynomials Gy, ...,Gy € Z|T). Then for any q > 1 with P~(q) > D + 1, the
functions g1, ..., gy are jointly equidistributed mod q if and only if the polynomials
{GM, are Fy-linearly independent for every prime £ | q. In particular,

(i) If the polynomials {G: ¥, are Q-linearly independent (so that C1(G) exists),

~

then any q having P~(q) > C1(G) lies in Qg . gu)-

(ii) If the polynomials {G/}M, are Q-linearly independent (so that Co(G) eists),

then any q having P~(q) > Co( G) lies in Qg
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— Section 3.3

Preparation for Theorems 3.1.1, 3.1.2 and 3.1.3:

Obtaining the main term

Analogous to Chapter 2, we start by defining J = J(z) = |logsx]. Let 6 € (0,1]
be as in the statement of Theorem 1.1; the development in this section will also go

through in Theorems 3.1.2 and 3.1.3 with (say) 0 := 1.

We define y = exp ((log 33)5/2) , and call a positive integer n < x convenenient if the

J largest prime divisors of n exceed y and exactly divide n, that is, if
max{P;.1(n),y} < P;(n) <--- < Pi(n).
Any convenient n can thus be uniquely written in the form mP; --- Py, with
L, =max{y, P(m)} < Py <--- < P,. (3.3)

We will show that the convenient n give the most dominant contribution to the counts

considered in Theorems 3.1.1, 3.1.2 and 3.1.3.

Proposition 3.3.1. Fiz K, M > 1 and let gq,...,gy be additive functions defined
by the nonconstant polynomials Gy, ..., Gy € Z[T], such that {G}1<i<p C Q[T are
Q-linearly independent. Let D = max;<;<p deg G;. We have

T

#{n < x:n convenient, (Vi) gi(n) =b; (mod q)} ~ —-, asz — oo,
q

uniformly in moduli g < (logz)* lying in Q,, ), and in residues b; mod q.
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Proof. Writing each convenient n uniquely in the form mPj - -- P;, wherem, Py, ..., P,
satisfy (3.3), we find that g;(n) = g;(m) + Z;.Izl Gi(Pj). The conditions g;(n) = b,
(mod ¢) (I < @ < M) can then be rewritten as (Py,...,P;) mod ¢ € V,, =

Vim (q, (b; — gi(m ))f\il), where
Vim (q; (wl)zj\il) = {(Uh ) € (Uq)J (Vi) ZGi(Uj) = w; (mod Q)} .

(Note that this set can be defined for any set of polynomials {G;}, regardless of

whether or not they come from a set of additive functions.) As a consequence,

2te=d ) >

n<zx convenient m<z (vi,.. ’U‘])EV{Z m Pi,...
(Vi) gi(n)=b; (mod q) Py PJ<ac/m
Ly <Pj<--<P1
(V4) Pj=v; (mod q)

1
D DD DR D DR
mZx (v1,0,07)EV) 1, 1;1,]51;227;;
Py,.. ,PJ distinct

(V5) Pj=v; (mod q)

where in the last equality above, we have noted that the conditions P --- P; < xz/m

and (Py,...,Py) mod q € V, . are both independent of the ordering of P,. .., P;.

We now estimate the innermost sum on Py, ..., P; by removing the congruence con-
ditions on the P;. For each tuple (vy,...,v;) mod ¢ € V., we see that
)T DS > ¢
Pi,...P;>Lm Ps,....Py>Lpm Py #Ps,...,Py
P1'~~PJ§I/TTL P2"‘PJ§I/mLm Lm<P1§x/mP2--~PJ
Py,...,Py distinct Ps,...,Py distinct Pi=v; (mod q)
(V4) Pj=wv; (mod q) (V4) Pj=v; (mod q)

Since L,, >y and ¢ < (logz)¥ = (logy)*/%, the Siegel-Walfisz theorem yields
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Z 1 = %q) Z 1+0 (m eXp(—Co\/logy)> ,

P1#Pa,...,P; P #P,,...,P;y
Lm<P1§x/mP2---PJ Lm<P1§x/mP2---PJ
Pi=v;1 (mod q)

for some positive constant Cy := Cy(K, ) depending only on K and ¢. Putting this

back into the last display, we find that

S - @ Sy O(%exp (—%Co(logx)6/4)>,

Py,..,Py>Lm Pr,...,P;>Lm

Py--Py<z/m Py--Py<z/m
Py,...,P; distinct Py,...,Pj distinct
(V4) Pj=v; (mod q) (Vj>2) Pj=v; (mod q)

where we have put the bound

J-1

> ﬁé Z% < (2logy z)"™" < exp(O((logy 2)*)).

Py,...,Py<x p<z

Proceeding in the same way to successively remove the congruence conditions on

Py, ..., Py, we deduce that

Y- @(Z)J Yoos O(%exp (—i()’o(logx)‘s/‘l)). (3.5)

Py,....,Py>Lm Py,..,Py>Lpm,
Py--Py<z/m Pp--Py<z/m
Pr,...,Py distinct Pr,...,Py distinct

(V4) Pj=v; (mod q)

Inserting this into (3.4) and noting that #V, , < ¢(q)” < (logz)*”, we obtain

o #V,,m 1 C10 5/4
Z 1_Zg0(q)‘] (T Z 1) +O(xexp <—§(10ga:) :
n<z convenient m<z Pp,...P;j>Lpm

(V4) gi(n)=b; (mod q) Py--P;<z/m
P1,...,Py distinct

(3.6)

The following proposition, which we shall establish momentarily, will provide the
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desired estimate on the cardinalities of the sets V. For future convenience and
independent interest, we state it in slightly greater generality than necessary in our

immediate application.

Proposition 3.3.2. Let G1,...,Gy € Z[T] be nonconstant polynomials, such that
{Gi}1<i<m C Z[T) are Q-linearly independent. Let D = max;<;<p deg G; and C =
C(G) be a constant exceeding max{Cy(G), (2D)*PT4}, where Co( Q) is the constant

n (3.2). We have

#Vvr (@ (wi)ily) _ (@)M {#VN,M (Qos (wi)}L) L0 (L)

el q p(Qo)N oN
[T(+0 (@)

uniformly in N > MD + 1, in all positive integers q > 1, and in residue classes
wi, ..., wy mod q, where Qo is a divisor of q of size O(1) supported on primes at

most C'.

To estimate the count #V; ,, in (3.6), we apply the above proposition with N := J
which goes to infinity with z and hence exceeds M D + 1 for all sufficiently large x.

For the same reason, we find that as x — oo,

(2D
¢N/D-M = (2D) ZgJ/ (D+2)

lg ‘g
>C >C
J
= CJ/ 2D+4 Zp = <C1/(2D+4 ) = o(1).

£>2

As such, an application of the above proposition yields
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#VJ,M@(E];)(;%WJ — (1 + o(1)) (%)M {#VJ’MSO(%O;)(?WJ o (%) }

uniformly in ¢ and (wy,...,wy) mod g, where Q) | ¢ and Q)9 = O(1). In particular,

this same estimate holds for V) = Vyar (q; (b — gi(m))X,), and we obtain from

(3.6),

oo

n<x convenient
(Vi) gi(n)=b; (mod q)

:(1+0(1))(%)MZ{%+0(0J)}(% > 1>

m<x
Pi--Py<z/m
Pr,...,Py distinct

+ 0 (m exp <—éC’o(log x)6/4)>

~wromn (9 S ER (5F 1))

Pi--Py<z/m

m<z Py,...,Py>Ly m<z ey Py
PyPy<a/m PPy <a/m
P1,...,Pj distinct Lin<Pj<--<Py

But now, applying the estimate (3.6) with () playing the role of ¢, we find that

> 1= (1+o1) (%)M > 1+ o(qiM)

n<z convenient n<z convenient
(Vi) gi(n)=b; (mod q) (V%) gi(n)=b; (mod Qo)

Before proceeding further, we state the following bound on the number of positive

integers without many large prime factors. The following is a variant of [59, Lemma
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2.3] which follows from the same arguments.

Lemma 3.3.3. Uniformly in x >y > 10 and R > 2, we have

logy
log x

)R—l'

#{n<z:Prn) <y} < x (2loglog x

Recall that any inconvenient n < z either has P;(n) < y or has a repeated prime
factor exceeding y. The number of n < x satisfying the latter condition is no more
than >0 >0 <0 el S 2300, 1/p* < x/y = o(x). Moreover, by Lemma 3.3.3,
the number of n < x having P;(n) < y is < z(log, z)’~'/(logz)'~° which is also

o(x). This yields

> 1= (1to1) (%)M > 1+ o(qiM)

n<x convenient nlx
(Vi) gi(n)=b; (mod q) (Vi) gi(n)=b; (mod Qo)

Finally, since ¢ lies in Qg, 4., 50 does its divisor @, and as Qg = O(1), the sum

occurring on the right hand side above is (1 4 o(1))z/Q}!. This completes the proof

of Proposition 3.3.1, up to that of Proposition 3.3.2. O

Before beginning the proof of Proposition 3.3.2, we state some (relevant special cases
of) known bounds on mixed exponential sums, which will provide some key technical
inputs in our arguments. First, we have the renowned bound of Weil [78] coming from
his work on the Riemann Hypothesis for curves over a finite field (see also Schmidt [66,
chapter II, Corollary 2F]). In what follows, we set e(t) = exp(2mit). For a positive
integer ), we use xp to denote the trivial (or principal) character mod Q. For a

prime /¢, o is also the principal character modulo any power of /.

Proposition 3.3.4. Let F' € Z[T] be a polynomial of degree Dy > 1, and let £ > Dq
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be a prime such that F doesn’t reduce to a constant modulo . Then we have

S Xodw)elF(0)/0)| < Dot

v mod ¢

We will also need analogues of the above bound for prime powers, which have been
obtained by Cochrane and Zheng [17, equation (1.13), Theorems 1.1 and 8.1]. (See
[14] for more general results.) In what follows, for a nonconstant polynomial F' € Z[T|
and a prime ¢, we define t,(F') = ord,(F"), that is ¢,(F) is the highest power of ¢
dividing the coefficients of the polynomial F’. Let Ag, denote the set of nonzero
roots in [y of the polynomial /~#(F)F’ (considered as a nonzero element of F,[T7]).
We use My(F) to denote the maximum of the multiplicities of the zeros of ¢~ [

in Fy, with M,(F') := oo if there is no such zero.

Proposition 3.3.5. Let F' € Z[T] be a polynomial of degree Dy > 1, and let (¢ be a
prime power such that F doesn’t reduce to a constant modulo {. Let t = t,(F) and

M = M,(F).

(i) If £ > 2 and e > t + 2, then
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Proof of Proposition 3.3.2. We start by showing that

#Vnar (05 (wi) ) = %@N (1 +0 ( ;ﬁf?_ﬁ;)) (3.7)

uniformly for all primes ¢ > C' = C(G), positive integers e > 1 and N > M D + 1,

and w; € Z/(°Z. Indeed, by the orthogonality of additive characters, we can write

#VN M (563 (wz)f\il)

N
B {(01, ~oun) € (Ue)™ = (Vi) ZGi(Uj) = w; (mod Ee)}
M . ]_1 N
= > Iz 2 () (;—;ZGAUJ-))
(V1,0,uN)E(Uge) N i=1 7; mod £¢ j=1

M
oL N 1 1
B 231\3 {1 + @(£e>N ¢ (_g_ezriwi> (Zfe;h 77777 TM)N }7 (38)
=1

M
where Ze.py  py = Z Xo(v)e (iZnGi(v)> and xo¢ denotes the trivial char-
acter mod (¢ (WhiChUi;n (;ﬁséeo the trivial (Z;;racter mod /).

Now in the case D = 1, we must have M = 1, so that we may write G1(T") =:
AT + B for some integers A # 0 and B. For each nonzero residue r mod ¢¢, we have
r =: L7’ for some ey € {1, -+ ,e} and some coprime residue 7’ mod ¢¢°. Hence,
| Zpe.r| = €670 Zgé’dﬁ?ﬁ o e(r'Av/e®°)|. The last sum being a Ramanujan sum is
nonzero precisely when 071y’ A by equation (2.30). But this forces ey = 1 because

¢ 1 A (by definition of Co(G) = Co({G1})) and £ 17" (by definition of r'.) If eg = 1,

then |Zpe.,| < 7] and since there are at most ¢ many residues r mod ¢¢ which are
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divisible by 71, we find from (3.8) that

o (¢ () = 200 {reo (gt

Ao (20))

uniformly in N > 1. This establishes the bound (3.7) in the case D = 1, so in order

to complete the proof of (3.7), we may assume that D > 2.

Now for a given tuple (r1,...,7ry) Z (0,...,0) mod ¢¢, we must have

ng(ﬁe,Tl, e ,TM) = 66_60

for some 1 < ¢y < e. Hence, we can write r; :== £°~°r} for some (r1,...,7),) mod £

satisfying (11, ...,7,) Z (0,...,0) mod ¢, which shows that

M

e—e 1
‘de;rl ,,,,, T]M‘ = Z X(M(v)e ETOZTQGZ(U)
v mod £€0 i=1
e—e F(v)
=/ 0 Z X[)’g(U)e (KTO> ,
v mod £€0

where F(T) = Zi‘il ri(Gi(T) — G;(0)). Now we observe that since £ > C(G) >
Co(G), the polynomials {G}M, are F,-linearly independent, hence so are the poly-
nomials {G; —G;(0)}*,. This prevents the polynomial F' from reducing to a constant

mod ¢ (for if it did, then this constant would be zero). Consequently, if ¢y = 1, then

.....

-----

De=*0/P; here we have noted that £ > C > 2, t,(F) = ord,(F") = ord,( M riG}) =

=1"1"1

0 < ey — 2 and that M,(F) < deg(F’) < D — 1. For each 1 < ¢q < e, there are
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at most ¢ many possible tuples (r},...,7%,;) mod £°, hence at most £*°™ tuples

(r1,...,7mar) mod (¢ satisfying ged (€6, ry, ... ,rar) = £°7%. We deduce that

Z |Z56;T1,-~~7TM‘N

(r1,...,rar)#(0,...,0) mod £¢

< €M (D6671/2)N_'_ Z geoM (Dgefeo/D)N

2<ep<e
S Z geoM (Dge—eo/D)N
1<ep<e
- DNgeN 1 DN[@N
— gN/D—M (EN/DfM)T < EN/D—M’

r>0

where the last bound uses the fact that N/D — M > 1/D, so that the last sum

occurring in the above display is no more than 22_7"/ D <« 1. (It is while passing
r>0

from the first line to the second in the above display where we use the assumption that

D > 2.) Inserting the bound obtained above into (3.8) and noting that /(¢ —1) < 2

completes the proof of estimate (3.7).

Given an arbitrary positive integer g, let ¢ = [, £ denote the largest divisor of ¢
<C

supported on primes not exceeding the constant C' (the “C-smooth part” of ¢). We

can again invoke the orthogonality of additive characters to write, for any tuple of

residues (wy, ..., wy) mod g,

= #4 (1, ,on) € UPN + (Vi) Y Gi(v;) = w; (mod ED} (3.9)

=1

1 1 N
= Ej_M Z e (_E“ani) (Zﬁ;T1,~~-,TM) )
i=1

71,7 mod g
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q
=1

M
where Zg.,, .\, = Z Xo.g(v)e <%ZriGi(v)> and Xz denotes the trivial charac-

v mod q
ter mod gq.

Now with f3y,..., By being the invariant factors of the matrix Ay defined in (3.1)
(listed in ascending order), we fix R = R(@) € N>, to be any integer constant such
that

R > CD(4D|Bx|)°C.

Let Q1 =[5 esp ¢ and

QO — a/Ql _ Hgmin{e,R} _ H gmin{e,R}7
tellg tellg: £<C
so that Qo | ¢ and Qo < [T, 7 < 1. We write #Vyar (G; (wi),) = S'+S5", where
S” counts the contribution of all tuples (71, ..., 7)) mod ¢ where all the components

r; are divisible by @1, that is,

1 1
N
S = 21“_M E e <—§, g Tz’wz’) (Zi]v;n,mﬂ’M) :
T1,e.,m a7 mod @ =1
(r1,-.-,ra1)=(0,...,0) mod Q1

Any tuple (rq,...,ry) mod g counted in S’ is thus of the form (Q;s1,...,Q1s)) for

some tuple (sq,...,sy) mod @y that is uniquely determined by (ry, ..., 7). We find
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that
1 M
Z?ETL.--,TM = Z XO,&(U)e Q_ZSzG2<U)
v mod ¢ 0 i=1
1 M
= Z Xo.Qo (W)€ Q_ZSZGZ(U) Z 1
u mod Qo 0 i=1 vGUa

v=u mod Qo

_ »(@ Zo,
SO(QO) 0,81,...,81\4

where the last equality above follows from a simple counting argument. Consequently,

L (e@ )" RS N
S-w (foy) 2 e(ﬁ&”‘”) o)

81,..-,8p mod Qo

An application of the orthogonality identity (3.9) with Qg playing the role of ¢ yields

5= (%)M (@"‘Z%)N#VN,M (Qos (wi)2) (3.10)

Now we consider the sum

M
1 1
S = a_M Z e <_§Zriwi> (Zﬁ;?“l,...ﬂ’M)N :

T1,..,7p mod G =1

(r1,e-rar)#(0,...,0) mod Q1

Consider any tuple (ry,...,7y) mod ¢ occurring in S”. By the definition of @y,
there exists a prime power ¢¢ || ¢ for which e > R but vy(ged(ry,...,7y)) < e — R.
Letting Q' = q/gcd(q,r1,...,7y) and 7, == r;/ ged(q,r1,...,ry) (for 1 < i < M),
we therefore deduce that for any such aforementioned prime ¢, we have v,(Q’) > R, so
that Q" is not (R+1)-free. Moreover, ry, ..., r,, are uniquely determined mod @’ and

satisfy ged(Q', 71, ..., r)y) = 1. Now for each i, we can write r;/Q" = 3 e, o 75 o/
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mod 1, where the sum is over the prime powers ¢* exactly dividing @Q’; ? here, for

each (¢ || @', r;, is uniquely determined mod ¢ by the relation 7} , [ [perjq' p” = 7}
p#£L

(mod £°). Since ged(Q', 71, ..., 7)) = 1, it follows that £ { ged(r] 4, ..., 7),,) for each

prime ¢ | Q'. By the Chinese Remainder Theorem, we can factor

Zt?;m,...,rM = ;ig?) Z XOQ (Ql Z?‘ G )

v mod @’

(q)
_ [1 Zevr oo, (3.11)
/ RS WIRRLE V)
2@ e

Write GJ(T') = ZJD o ai;T7 as in the discussion preceding (3.1). We claim that for

any prime ¢ | @',

M
b= (o T ) = ord (Z ri,eGi)

=1

=y ( ged Zaz,er) < ve(Bum), (3.12)
0<j<D-1

where (recall) f1,..., 0y are the invariant factors of the matrix Ay in (3.1). The

third equality simply follows from the fact that

M D-1 / M
ZT;,eG;(T) = (Z @i 57 M) 7.

i=1 j=0 \i=1

To show the inequality in (3.12), it suffices to show that ¢ must divide $5;. To do
the latter, we recall that, by the theory of modules over a principal ideal domain,
that there exist a D X D integer matrix Fy and an M x M integer matrix Ry such
that det Py,det Ry € {#1} and PyAgRy is the Smith normal form Sy of Ag. As

such, PyAy = SoRy" where the matrix R, ' has integer entries (k;;)i<ij<yp. Now

2We are just applying Bezout’s identity; equivalently, this may be thought of as partial fraction
decomposition over the integers.
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(% divides all the numbers {3, aijriy 0 < j < D — 1}, which are precisely
T T

the entries of the matrix Ay (7’/1 P Tﬁw, z) (here (7"/1 . 7’3/[’ z) denotes the

column vector listing the r;,). As such, £* also divides the entries of the matrix

T
PyAy (7”/1 o Ty z) , and hence also those of the matrix

51(]431,17”173 + -+ k‘1,M7"§\u)
i B (kpprh +- -+ k o)
M\Rpm1T s M,MT
SoRt | ... = b e . (3.13)
0
T/
MEJ nrxa
0
Dx1
But now if ¢ divides all of the numbers k1 17,4+ + k1m0 ckarary g+t
kM,MT;W7Z7 then
y kiary o+ -+ kimriy, 0
RVl = = (mod ¢).
T;V[’f Mx1 kM’lrll’g Tt kM,M%w’g Mx1 0 Mx1
This forces £ to divide ged(r] 4, . .., 7)), which is impossible since £ | Q" (see the line

preceding (3.11)). Since ¢* divides the entries of the rightmost matrix in (3.13), it
follows that ¢ must divide at least one of the invariant factors 3;, and hence must

also divide fy;. This establishes our claim (3.12).
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We will now show that for any prime power ¢ || @’ for which e, > R, we have

s ot o)

v mod £¢¢

o | =
371,005 M e

(3.14)
< 2D|ﬁM|gez(1*1/D)_

To show this, we note that since G(T) = ZD o ai;T7, we have G4(T) — Gi(0) =

ZJD 01 j;flTJ“ (recall that (7 + 1) | a;;), so that with

¢y = ordy (Z rio(Gi(T) — GZ-(O))> = U < ged M) ) (3.15)

i—1 o<j<p-1  J+1

we have

Ze el / | —=
| Zﬁ,rl’e ..... T e

(e ()
/¢ i=1"%]"4,0 i+1
v mod £°¢ beeee 7=0 ]+1
(v)
Z XO’Z(U)e <fee—c£

v mod £°¢~¢¢

™

Y

where F(T) = Y77 (e—T> Tit! e Z[T]. By (3.15) and (3.12), we see

that F cannot reduce to a constant mod ¢ and that co < ty < ve(Byr). Furthermore,

(3.12) also shows that

D-1 / M
Ordg = ordy g ai,jr;g TV —co =1, — ¢y
7=0 i=1

SU@(ﬁM)—CZSR—3—Cg<(6g—Cg)—3.

(Here we use ey > R > || + 3.) Consequently, some subpart of Proposition 3.3.5
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applies, yielding

| < e 9 Dyerde( (F') g(ee*Cz)(lfl/(Me(FHl))

.....

< e 9 DypveBu)—ce | pee(1-1/D) < 2D|5M‘g6e(1*1/D)‘

Here, Mg(ﬁ ) is the largest multiplicity of a zero in F, of the polynomial —orde(F) ,
and we have used that this multiplicity is no more than deg(F’) < D — 1. This
establishes (3.14).

Applying the bound (3.14) to each prime power ¢* | @' for which ¢, > R, and

applying the trivial bound |Zpe,.,/ (L) for all the other prime powers

"
LevTarel =

e || @', the factorization (3.11) yields

| Zgr it | < ;0((3) ( H @(564)) : ( H 2D|5M]£e/f(11/D)>

eee||Q’ )| Q’
ey <R er>R
gee 1 l/D)
< (2D[Buml)* e(q) - H ( (=)
eee)|Qf
er>R
(q)

< (4D]6n )" 2L

Here A denotes the (R+ 1)-full part of " and in the last bound above, we have noted

that w(Q') <w(q) <> o1 < C. Since Q' is not (R + 1)-free, we have A > 1.
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Applying this bound for each of the sums Z3,, . ,,, occurring in S”, we obtain

M

|S//| < (4D|5M|)CN90(®N Z 1 .
= M AN/D
Alg: A>1
Ais (R+1)-full

> > 1.

QI,TII,...,’VGM T1,...,7 7 mod a
Q'|3: (R+1)-full part of Q' is A Q'=q/ ged(q,r1,-mar)
7,7 mod Q' (Vi) ri=ri/ged(@r1s»70r)

ng(Tllv""Tth/)zl

Since any choice of @' | ¢ and residues 7,...,7), mod @’ uniquely determines
r1,...,ry mod g by the relations r; = riq/Q’, we see that
51| < PP T (@)™ 3 1 3 S o
= M AN/D
Alg: A>1 Q'lg ], mod Q’
Ais (R+1)-full (R+1)-full part of Q" is A gcd(r’l,,,,7r§w7Q’):1
< ADBu) (@) $ 1 3 Q)M
= M AN/D :
Al A>1 Q'lg
Ais (R+1)-full (R+1)-full part of Q" is A

Now any divisor @)’ of ¢ with (R + 1)-full part equal to A must be of the form Ad for
some (R 4 1)-free divisor d of g, and d < [, €% < [[,co 0" < C9% < 1. Conse-
quently the innermost sum in the last expression above is at most AM > dlg aM

d is (R+1)-free
< AM | leading to

m . (AD[Bu]) N (@)™ 1
19" < i Z AN/D-M (3.16)

Al A>1
Ais (R+1)-full

Since N > M D + 1, we have N/D — M > 1/D, so that for all primes ¢, we have

1 < 1 1
Z EU(N/D—M) - g(R—&-l)(N/D—M) Z gv/D
v>R+1 v>0
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- 1 21/D _2D- 21/D - 2D?
= p(R+1)(N/D-M) " 91/D _{ = 9E+1)/D = R

<

N | —

(Here, we have noted that 21/P — 1 = exp(log2/D) — 1 > log2/D > 1/2D and that

28/D > R/D > 4D.) This means that for all primes ¢ < C, we have

1 1
o (14 3 vt ) € X g

v>R+1 v>R+1
1 1 1

< ((R+1)(N/D—M) < ¢RN/D < 9RN/D’

and since ¢ is C-smooth, this leads to

1 1
> W§H<1+ 2 W—DM)>—1

Alg: A>1 0q v>R+1

Ais (R+1)-full
1 1

Inserting this into (3.16), we obtain

Y

" (DB @Y _ @Y
15" < ( oR/D M <C N;]“—M

noting in the last step that (4D|8)|)¢/2%/P < D(4D|Bu|)¢/R < C~*, by the defi-

nition of R. From (3.10), we now obtain

#Vno (G (wi)ily) =5+ 5"

[ Qo M N | #Vn (Qo; (wi)Xy) _N
(L) {FrfiB) o |
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Finally, writing

#VN]V[ <Q7 (wl>z 1) #VNM (Q7 wl i= 1 H #VNM ( (wl)i\il> )
tellg: £>C
and invoking the estimate above for #Vy y (¢; (w;),) in conjunction with (3.7) for
all the powers (¢ || ¢ of primes ¢ > C', we obtain the estimate claimed in Proposition

3.3.2. [l

— Section 3.4

Joint equidistribution without input restriction:

Proof of Theorem 3.1.1

By Proposition 3.3.1, it remains to show that the count of inconvenient n < z for
which all the g;(n) = b; (mod q) is o(x/¢™) as # — oo in the prescribed ranges of
q. Setting z == z'/1°%2% e first remove from these n < z, the ones that either have
P(n) < z or have a repeated prime factor exceeding y. By Lemma 2.3.1, the number
of n < z having P(n) < zis O (z/(logz)1Te())1ees ) "and as seen before, the number
of n < x having a repeated prime factor exceeding y is O(x/y). Both of these bounds
being o(x/q™), it suffices to consider the contribution Xy of those inconvenient n < x

which have P(n) > z and do not possess any repeated prime factor exceeding y.

By the definition of “inconvenient”, any n counted in ¥, must also have P;(n) < v,

IN

and hence can be written in the form n = mP, where P .= P(n) > z, P;(m) <y
and ged(m, P) = 1. As such, g;(n) = gi(m) + G;(P), and the congruence g;(n) = b,
(mod ¢) shows that P mod g lies in the set Vi ys (¢; (b; — gi(m))M,). Setting

¢a(q) = max{#Vim (q; (’wz)fvzll) twi,. .., wy mod g},
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the Brun-Titchmarsh theorem shows that for a given m, the number of possibilities

for P is no more than

z/m falq) wlogys
2 b€l € g mioges 31T

z<P<z/m
P mod ¢ €V1,M(q;(bi*gi(m) ?il)

To estimate the sum of 1/m over m < x having P;(m) < y, we write each such m
in the form BA where P(B) <y < P~(A) and Q2(A) < J. As such, the sum of the

reciprocals of the possible A is at most
1 1 !
Z 1 < (1 + Z 5) < (2log, z)” < exp (O((logz 2)?)) ,

while the sum of the reciprocals of the possible B is no more than

1 1 1
> pell(50(3))
B: P(B)<y P<y
1
< exp (Z -+ O(l)) < logy.
p<y p
Collecting estimates, we obtain

> < (loga) P exp (O(log 7)) (3.18)

m<x
Pj(m)<y

which from the bound (3.17) reveals that

falq) zlogyw 2 £al(q) T
o(q) (logz)1-9/2 exp (O((log; 7)?)) < . (oga) o7

Yo K (3.19)

We now proceed to show the assertions in the three subparts of the theorem.
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Proof of (i), (ii). 1f at least one of Gy, ..., Gy is linear, then {g(¢) < 1 and we obtain
Yo < x/q(log2)' =23, This is o(x/q™) as soon as ¢™ ' < (logz)'~°. This condition

is tautological if M = 1, and for M > 2 it is equivalent to ¢ < (log z)(1=9/(M=1),

If ¢ is squarefree, then with D = deg Gy, we see that #V; y/ (q; (wz)i‘il) < #V11(q;wr)
= 1y, #V1i1 (Gwr) < (D1)*@ < (logz)*/'®. (Here we have noted that for any
sufficiently large ¢, the polynomial G1(7T) — w; cannot vanish identically mod ¢,
and hence has at most D; roots mod ¢.) As such, from (3.19), it follows that
Yo < x/q(log 2)' 734, This is automatically o(x/¢™) if M = 1, while for M > 2, we

need only assume that ¢ < (logz)(1=9/(M=1),

Proof of (iii). Finally, assume (by relabelling if necessary) that deg G; = Dyin. By
Lemma 2.5.2, we have #V1 1 (q; (w;)M)) < #V11 (q;wr) < ¢'~1/Pmin. (To be precise,
we apply Lemma 2.5.2 to the polynomial congruence (G1(T) —w,)/d =0 (mod ¢/d),
where d is the greatest common divisor of ¢ and the coefficients of the polynomial
G1(T) — w;y. Note that each solution mod ¢/d lifts to a solution mod ¢ in < d < 1
ways.) Consequently, we obtain Xy < x/q"/Pmin(log 2)1=2%/3. This is o(z/¢™) as soon

as ¢M~1/Pmin < (log x)'~%, completing the proof of the theorem.

3.4.1. Optimality of range of ¢ in Theorem 3.1.1

We will now construct polynomials Gy,..., Gy which will show that the various
restrictions on the range of ¢ in Theorem 3.1.1 are all essentially optimal. To that end,
let G € Z[T] be any monic polynomial having a nonzero integer root a. Let G;(T) =
G(T)?, so that the polynomials {G’}M, having distinct degrees are automatically Q-
linearly independent. Letting Cy(G) be the constant coming from (3.2), Corollary

,,,,, ). Moreover,

any prime p satisfying p = a (mod ¢) also satisfies G(p) = 0 (mod ¢), hence also

gi(p) = Gi(p) = G(p)! = 0 (mod q) for all i. As such, for all ¢ < (logz)¥ having
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P~(q) > max{|a|, Co(G)}, the Siegel-Walfisz Theorem yields

X X
1> 1 .
Z - Z > ¢(q)log x > qlogx

n<x p<lx
(V%) gi(n)=0 (mod q) p=a (mod q)

For any M > 2, this last expression grows strictly faster than x/¢™ as soon as ¢ =1
grows faster than log z, for instance if ¢ > (log 2)(*+9)/(M=1 This construction shows

that the range of ¢ in Theorem 3.1.1(ii) is essentially optimal.

Now consider any M > 1, D > 1, and let G(T) := (T'—1)%. Then with G;(T) = G(T)’,
we see that Dy, = d. For moduli ¢ of the form ¢f (for some ¢, > 1), any prime
p =1 (mod ¢) satisfies G(p) = (p — 1) = 0 (mod ¢). Hence, if ¢; < (logz)X has
P~ (q1) > Co(G), then ¢ = ¢¢ < (logz)X? also has P~(q) > Cy(G), and we find that

on the one hand ¢ € Q(y, .. 4,,), While on the other,

x x
1> 1> > .
Z - Z o(q1) log qY/?log x

n<lz p<w
(Vi) gi(n)=0 (mod q) p=1 (mod ¢1)

M—1/d

This last expression grows strictly faster than z/¢™ as soon as ¢ grows faster

(1+0)(M—1/d)~"

than logz, for instance if ¢ > (logx) Since d = D, this example

shows that the range of ¢ in Theorem 3.1.1(iii) is essentially optimal as well.

— Section 3.5

Complete uniformity for general moduli: Proof

of Theorem 3.1.2

In section 3.3, we had defined J = |log; x| and for the purposes of this theorem, we

took & := 1, so that y = exp((logz)'/?). If x is sufficiently large then any convenient
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3.5 COMPLETE UNIFORMITY FOR GENERAL MODULI: PROOF OF THEOREM 3.1.2

n has Pypyi1(n) > P;(n) >y > q. Moreover, by Lemma 3.3.3, the number of n < z
having Pypi1(n) < ¢ is o(x). By Proposition 3.3.1, it remains to show that there are
o(z/¢™) many inconvenient n < z having Pypi1(n) > g and satisfying g;(n) = b,

(mod q) for all 7.

Now by the arguments in the beginning of the previous section, the number of n < x
which either have P(n) < z = 2'/1°82% or have a repeated prime factor exceeding y is

o(x/¢™). As such, in order to complete the proof of the theorem, it suffices to show

that
Yoo« ° (3.20)
M (log x)'/? '
n<z: Pypyi(n)>q
Pj(n)<y; P(n)>z
p>y = p°in

(Vi) gi(n)=b; (mod q)

uniformly in ¢ < (logx)® and in residues (b1, ..., by) mod q.

Assume first that M > 2. To show (3.20) write the count on the left hand side as

PINED TS YT )

where

e Yy counts those n which are exactly divisible by at least M D + 1 many distinct

primes exceeding q,

o Forr € {1,2}, ¥, counts the n that are exactly divisible by at least (M —r)D+1

but at most (M — r + 1)D many distinct primes exceeding ¢, and

e Y counts the remaining n, namely, those that are exactly divisible by at most

(M — 2)D many distinct primes exceeding q.
We proceed to show that the expression on the right hand side of (3.20) bounds
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3.5 COMPLETE UNIFORMITY FOR GENERAL MODULI: PROOF OF THEOREM 3.1.2

each of Xy, ¥y, ¥ and . To do this, we shall bound the cardinalities of the sets
V.M (q; (wz)f‘il) that arise by discarding some of the congruences defining the set.

The following consequence of Proposition 3.3.2 will be useful: for any fixed r €

{0,1,..., M — 1}, we have

my, , M—r p(q)M-IPH 1-1/D
(M—7r)D+1,M—r (Qa (wi>z':1 ) < T exp (O ((10g q) )) (321>

uniformly in moduli ¢ > 1 and in residue classes (wy, ..., wys) mod ¢q. Here, we have
noted that {G}¥ " are Q-linearly independent, as well as the facts that max;<;<ys_, deg G;

< D, and that

< exp (O ((log Q)lil/D)) ’

with the last sum on ¢ being bounded by partial summation and Chebyshev’s esti-

martes.

Bounding ¥o: Any n counted in Y is exactly divisible by at least M(D + 1) + 1
many prime factors exceeding ¢ and has P(n) > z, P;(n) < y. Hence, n can be
written in the form mP; - - Pyyp41)4+1, where P = P(n) > z, ¢ < Prpsny+1 <
-+ < P, P;y(m) <y and ged(m, Py -+ Py(py1)+1) = 1. As such, g;(n) = gi(m) +
> 1<j<m(piy1 Gi(F) and the congruences g;(n) = b; (mod g) force (P, ..., Pr(pii)+1)

mod ¢ to lie in the set V,, == Varp+1)+1.u (5 (bi — g:(m)),).

Given m and v = (v1,...,VmmD+1)+1) € Vi, we count the number of possible
Py, ..., Py(psry+1 satistying (P, ..., Pypy1)+1) = ¥ mod ¢. For a given choice of

Py, ..., Pyp41)+1, the number of possible P, is, by the Brun-Titchmarsh inequality,
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3.5 COMPLETE UNIFORMITY FOR GENERAL MODULI: PROOF OF THEOREM 3.1.2

no more than

z/mPy--- P xlog, ©
Z 1 /mP M(D+1)+1 < o

¢(q)log(z/q) (@)mPy - Pay(piaysrloga’

2<P1<z/mP2Pyr(pi1)+1
Pi=v; (mod q)

For each j € {2,...,M(D + 1) + 1}, the sum on P; is, by Brun-Titchmarsh and

partial summation, no more than

q<p<z
p=v; (mod q)

Hence, given m and 0 = (vq, ..., Va(p41)+1) € Vi, the number of possible Py, ..., Pypi1)+1
satisfying (P, ..., Py(p41)+1) = 0 mod ¢ is
z(log, )M
< (log, )

QO(Q)M(D—H)—HTTL log x’

leading to
z(log, )0 1 #V,,
Yo KL ———— —_ .
0 log x ngz m o(q)MD+D+1
Py(m)<y

Using (3.21) to bound V,,, = Vapi1)+1,m (q; (b; — gi(m))f‘il), followed by (3.18) to

bound the resulting sum on m, we deduce that

2 (logy )7V 1-1/D 1 x

S < 2082 o (0 ((1 / i L —

0 < gMlogx exp (O ((logq) ) ngx m < ¢ (log x)'/3’
P;(m)<y

yielding the desired bound for . It is to be noted that this bound on ¥ holds true

for any M > 1.
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3.5 COMPLETE UNIFORMITY FOR GENERAL MODULI: PROOF OF THEOREM 3.1.2

Bounding ¥ : Recall that Q% (n) = Z k counts (with multiplicity) the number

ol
p>1?17 l?>1
of prime factors of n exceeding ¢ that appear to an exponent larger than 1 in the

prime factorization of n; as such, the squarefull part of n (i.e., the largest squarefull

divisor of n) exceeds ¢,

Now, any n counted in ¥ is exactly divisible by least (M — 1)D + 1 but at most
MD many distinct primes exceeding ¢q. Since Pyypi1)+1(n) > ¢, it follows that
Q% ,(n) > 2, so that the squarefull part of n exceeds ¢®. As such, n can be written
in the form mSP—1yp41 - - P1, where m, S, Piy—1yp+1, - . -, P are pairwise coprime,
Py = P(n) > z, ¢ < Pp—1yps1 < -+ < P, Ps(m) <y, and S > ¢* is squarefull.
Since

gi(n) = gi(mS)+ Y Gi(P)),

1<j<(M—1)D+1
the congruence conditions g;(n) = b; (mod ¢), considered for 1 < i < M — 1, force

(P1,..., Piu—1yp+1) = U mod ¢ for some

U= (v1,...,0m-1)p+1) € V(M-1)D+1,M— 1((]; (bi — g:(mS))}L; )

Given m, S and v, the argument given for bounding ¥, above shows that the number

of possible P, ..., Pi—1)p41 satisfying (P, ..., Piay—1)p4+1) = ¥ mod ¢ is

z(log, )00

< .
o(q)M=1D+11nS og x

This yields

z(log, )W
M _
O P log T Z

m<x
Pj(m)<y
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3.5 COMPLETE UNIFORMITY FOR GENERAL MODULI: PROOF OF THEOREM 3.1.2

Z 1 #FVar-yprima (g; (b; — g:(mS) M)
o (q)(M—DD+1 ,

S>q? squarefull

so that by (3.21),

z(log, x)o(l) 1-1/D 1 1
¥ < =220 exp (O ((log q)* =Y E — g —.
qM_l log t ( ( )) m<x m S>q? squarefull S
Py(m)<y

Using (3.18) along with the bound » ¢ 2 uareran 1/S < 1/, we obtain

z(log, )W)

b — 2s 7
'S P {log )17

1-1/D 2 z
exp (O ((logq) P4 (logs ) )) < W’

showing the desired bound for ;.

Bounding ¥5: Any n counted in Y5 is exactly divisible by least (M —2)D + 1 but at
most (M —1)D many distinct primes exceeding ¢. Since Pry(p11y+1(n) > ¢, it follows
that Q% (n) > MD+1—(M—1)D = D+1. Now assume that D > 3, so that Q% (n) >
4, and the squarefull part of n exceeds ¢*. In this case, any n counted in ¥y can be
written in the form mSPyr_o)p41--- P1, where m, S, Py—2yp+1, - .., P1 are pairwise
coprime, P, := P(n) > z, ¢ < P—oyps1 < --- < P, Py(m) < y, and S > ¢* is
squarefull. Since g;(n) = g:(mS) + 32, ;< (m_9yp1 Gi(F), the congruence conditions
gi(n) = b; (mod q), considered for 1 <1i < M —2, force (Py,..., Pa—2p+1) = v mod

q for some

U= (v1,...,Vr-2)p+1) € V(M-2)D+1,M—2 (q; (b — gi(ms))ij\iIQ) :
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Replicating the argument given for ¥; shows that

z(log, x)
3 -
2 K T, log T Z

m<x
Pj(m)<y

Z 1 #V(M—2)D+1,M—2 (CI7 (b; — g;(mS)) My )
o(q) =2+

S>q? squarefull

r(log, 7)) -y - 5
< 2 Toga exp (O ((log q) )) ; m gu:arefull S

Py(m)<y

z(log, z)°M
(1 125 ) exp (O ((log q)lfl/D + (log3 x)z))

¢ (log z)'/?
T

L ——— -
g™ (log x)'/?

showing the desired bound for ¥, in the case D > 3.

Now assume that D = 2, so that 2 < M < D = 2 forces M = 2. Any n counted
in ¥y has Ps(n) > ¢ but at most (M — 1)D = 2 of these exactly divide n. Hence, n
is either divisible by the cube of a prime exceeding ¢ or is (exactly) divisible by the
squares of two distinct primes exceeding gq. Any n of the first kind can be written
in the form mp*P for some primes p, P satisfying P = P(n) > z and ¢ < p < P,
and some positive integers s, m satisfying s > 3, P;(m) < y. Given m,p and s, the
number of possible P € (z,2/mp°| is O(x/mp®log z). Summing this over all s > 3,
all p > ¢, and then over all possible m, and invoking (3.18) in conjunction with the

fact that > _ 1/p* < 1/¢?, we find that the total contribution of all n of the first

P>q

kind is < z/¢*(log 2)'/® which is absorbed in the desired expression.

On the other hand, if n is divisible by the squares of two distinct primes exceeding ¢,
then it is of the form mp{* p5* P for some primes P, p1, ps satisfying P = P(n) > z and

qg < p2 < pp < P, and for some positive integers m, sy, sy satisfying s; > 2, 5o > 2

112
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and P;(m) < y. Given m,pi, pe, $1, S2, the number of possible P € (z,z/mpi'p3?]
is O(z/mpi'ps?log z). Summing this over all possible s;, p;, and m via (3.18) and
the fact that > _ 1/p* < 1/q, we deduce that the total contribution of all n that
are divisible by the squares of two primes is < x/¢?(logx)'/3. This establishes the

desired bound on the sum ¥, in the remaining case D = 2.

Bounding 3: Any n counted in 3 has Py(p1)+1(n) > ¢, but no more than (M —2)D
of these exactly divide n. Since D = maxj<,<p)s deg G; > M, it follows that any such
nhas Q% (n) > M(D+1)+1— (M —2)D =2D+1 > 2M +1, so that the squarefull

2M+1

part of n exceeds ¢ . Consequently, any n counted in X can be written in the

form mSP, where P := P(n) > z, S > ¢**! is squarefull and P;(m) < y. Given m
and S, the number of possible P € (z,2/mS] is O(z/mSlog z). Summing this over

2M+1 and then over all m by means of (3.18), we find that

:clong x
log Z Z S M“/?(loga:)l/:’”

m<zx S>q 2M+1
Py(m ) y S squarefull

all squarefull S > ¢

yielding the desired bound for ¥, and completing the proof of the estimate (3.20), for
M > 2.

The case M = 1 is much simpler: we need only split the count in the left hand side of
(3.20) as ¥y+X where Xy counts those n that have no repeated prime factor exceeding
g. As such, any n counted in Y is exactly divisible by at least D+ 1 primes exceeding
¢, whereupon the exact same arguments given for the “X,” defined in the case M > 2
show that ¥y < x/q(logx)/3. On the other hand, any n counted in ¥ has a repeated
prime factor exceeding ¢, and thus is of the form mSP, with P := P(n) > z, S > ¢
squarefull and P;(m) < y. Proceeding as for the “X” considered in the case M > 2,

we obtain ¥ < x/q(logx)'/3. This shows the estimate (3.20) in the remaining case
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M =1, completing the proof of theorem. m

— Section 3.6

Complete uniformity in squarefree moduli:

Proof of Theorem 3.1.3

Arguing as in the beginning of the previous section, in order to complete the proof of

the theorem, it suffices to show the following analogue of (3.20)

x
Y1« P (3.22)

n<z: Papr(n)>q
Py(n)<y; P(n)>z
p>y = p3tn
(Vi) gi(n)=b; (mod q)

uniformly in squarefree ¢ < (logz)® and in residues (by, ..., by) mod q.

The following analogue of (3.21) will be useful for this purpose: for each r € {0,1,..., M—

1}, we have
2(M—r)
o yele) P4
#VZ(Mfr),Mfr (q, (wz)lj\il ) <A (q)(p(q)T (323)
uniformly for squarefree ¢ > 1 and in residue classes (wy, ..., wy_,) mod g, for some

~

constant A = A(G) > 1. It suffices to show this bound for » = 0 for then it may
be applied with M — r playing the role of M (recalling that {G/}¥ " are Q-linearly

independent for any such r).

As in Proposition 3.3.2, we let C' := C(G) be a constant exceeding max{Cy(G),
(2D)*P+1} | with Cy(G) defined in (3.2). Then for all £ < C(G), we have trivially

2M
#hana (8 i) < o0 < AT (3.24)
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by fixing A, == M (G) > C(G)M.

Now consider a prime ¢ > C'(G). By orthogonality we can write, as in (3.8),

2M
#Vor i (5; (wz)f\il) = 4'0(3/[ {l—l—

v mod £ 1=1
polynomials {G;}¥, must be F/-linearly independent, so that for each (ry,...,ry) #

M
where Zp.py 0y = Z Xo.e(v)e (%Z’I}GKU)) Since ¢ > C(G) > Cy(G), the

(0,...,0) mod ¢, the polynomial Ef\il r:G;(T') does not reduce to a constant mod ¢.

-----

oM 1/2\2M oM
#Vor,m (& (wl)'f\il) = % {1 + O (EM%)} < /\290(524 , (3.25)

for some constant Ay = /\2(@) > C(G)M. Finally, we choose A := max{\;, A2} and

write, for any squarefree ¢ > 1,

#Vorr,m (Q; (wz)f\i1) = H #VzM,M (f; (wz)f\i1> : H #VQM,M (55 (wz)i\il) .

L)g: £<C Lg: £>C

Combining (3.24) for all the prime divisors ¢ < C with (3.25) for all the prime divisors
¢ > C, we obtain the desired bound (3.23) for » = 0. As argued before, this also
implies (3.23) for any r € {0,1,..., M — 1}.

Coming to the proof of (3.22), we write the count on the left hand side as

Y145+ + Sy + 5,
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where

e Y1 counts those n which are exactly divisible by at least 2M many distinct

primes exceeding q,

e For each r € {1,..., M — 1}, ¥, counts the n that are exactly divisible by

either 2M — 2r many or by 2M — 2r + 1 many distinct primes exceeding ¢, and

o Y counts the remaining n, namely, those that are exactly divisible by at most

one prime exceeding q.

Bounding ¥1: Any n counted in ¥; can be written in the form mPsy, - - - Py, where
Py :=P(n) >z, q< Py <--- < P, Py(m) <y and where ged(m, Py --- P) = 1.

As such, the congruences g;(n) = b; (mod q) force (Py,..., Pay) = 0 mod ¢ for some

U= (v1,...,v20m) € Voamrm (q; (bi — gi(m))ij\il) :

Given m and v, the arguments in the previous section show that the number of

possible Py, ..., Py satisfying (Py, ..., Pay) =0 mod ¢ is

z(logy )0
p(q)*Mmloga’
Consequently,
1 log x o m ©(q)2M .
Py(m)<y

Using (3.23) to bound the cardinality #Vanrar (g; (b; — g:(m))2,) in conjunction with
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(3.18) to bound the resulting sum on m, we obtain

o) .

z(log, x) 2
)1/2 exXp (O ((10g3 x) )) < W7

) AWl 2\ 7e27)
1< g (logx

showing the desired bound for ;.
Bounding Yo, ..., X We start by making the following general observation:

Let E be a set of primes and for a positive integer N, let Q5 (V) = Z k denote

p*ln
peEE, k>1
the number of prime divisors of N (counted with multiplicity) lying in the set £ and
appearing to an exponent greater than 1 in the prime factorization of N. Then for
any t > 2, any positive integer N having Q75,(N) > ¢ is divisible by p{* - - - p% for some
distinct primes py,...,ps € E, and integers ay, ..., a; > 2 summing to t or t+1. More
precisely, there exist positive integers s, m, ay,...,as, 51, ..., 8s and distinct primes

p1,-..,ps € E such that ay,...,a, > 2, 37 a; € {t,t + 1}, ged(m,p1---ps) = 1,

N =mpl" - pPs and B; > «; for all i € [s].

This is seen by a simple induction on ¢, the case t = 2 being clear with the tuple
(aq,...,as) being the singleton (2) and the case t = 3 being clear with (aq,...,a5) €
{(3),(2,2)}. Consider any T' > 4, assume that the result holds for all ¢t < T', and let N
be a positive integer with Q5(N) > T'. Let p; be the largest prime divisor of N lying
in the set E and satisfying p? | n, and let 8 == v,, (N) > 2. If 3; > T —1, then we are
done with (ay, ..., as) being (T') or (T'—1, 2), so suppose ; < T'—2. Then the positive
integer N’ := N/p&* is not divisible by py, and has Q5 (N') > T—8; > T—(T—2) = 2.
As such, by the inductive hypothesis applied to N’ and ¢ = T — 31, there exist
S, M, Qs ...,0s, Pa,...,0s and distinct primes po, ..., ps € E satisfying as, ..., as > 2,
S i € {T = B, T — By + 1}, ged(m,po---ps) = 1, N' = mpff - pf* and §; > a,

for all i € {2,...,s}. Since p; 1 N', we see that the primes py,...,ps € E must all
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be distinct and that ged(m, p; - - ps) = 1. Consequently, with ay == 51 > 2, we have
N = p"N' = mp?pl .- pPe with Yooy € {T,T + 1} and with 5; > «; for all

i € [s]. This completes the induction step, establishing the claimed observation.

With this observation in hand, we note that for each r € {1,..., M —1}, any n counted

in the sum >, is of the form mp? . pfs Poyr_op - - - Py where all of the following hold:
(i) P, == P(n) > z;
(i) ¢ < Popgeoy < -+- < Py

(111) P1y---3DPs > 4

(iv) 81 > aq,...,Bs > a, for some positive integers aj, ..., a5 at least 2 summing

to either max{2,2r — 1} or to 2r;
(v) Ps(m) <y;
(vi) m,p1,...,ps, Ponr—or, ..., P are all pairwise coprime.

Indeed, any n counted in ,,; is exactly divisible by at least 2M — 2r but at
most 2M — 2r + 1 many primes (counted with multiplicity) exceeding ¢q. Hence
in the case 7 = 1 we have QY (n) > 2 while for r € {2,...,M — 1}, we have
QL (n) > 2M — (2M — 2r + 1) > 2r — 1, so altogether QY (n) > max{2,2r — 1}.
Let Py, P, ..., Pyy o, be primes exceeding ¢ that exactly divide n, and satisfy P, ==
P(n) > z and Py o9 < -+ < Py < P;. Then with n' == n/Py -+ Py _o,, we still
have QF (n') = Q% (n) > max{2,2r—1} and ged(n’, Py - - - Paps—o,) = 1. Invoking the
above observation for N := n/, ¢t := max{2,2r — 1} and F the set of primes exceeding
q, we find that n’ = mpf - pP for some s > 1, primes py, . . ., ps > ¢ and positive inte-

gers m, 3y, ..., Bs such that m, py, ..., ps are pairwise coprime, and 3; > ay,...,3s >
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a, for some positive integers aq, ..., as at least 2 summing to either max{2,2r — 1}
or 2r. (Here, we have recalled that in the case t = 2, the tuple (a1, ..., as) = (2) was
sufficient.) Altogether, we find that n = n'P; -+ Py o, = mpf . -pfSPl cos Popr_op,

with m, p1, ..., Ds, By« oy Bsy Pry - .., Papy_o, satisfying the conditions (i)-(vi).

Consequently, g;(n) = gi(mp’* - - pP) + ZQM " G4(P;), and the conditions g;(n) =
b; (mod q) for ¢ € [M — r| force (Py,...,Pap—2,) = ¥ mod ¢ for some element
U= (v1,...,Vap—2,) of the set

Vorr—or M—r <Qa (bi — gz(mpl pf))%?) :

Given m, s,aq,...,04, P1y.-.,Ps, P1s--.,3s and v, the arguments in the previous
section show that the number of possible Py, ..., Poys_o. satisfying (P, ..., Payy_o,) =

v mod q is
z(logy x)o(l)

< QM —27 9y i1 Bs ’
©(q) mpyt---ps°logx

Using (3.23) to bound #Vars—2rar—r (q, (b; — g;(mp -- pfﬁ))ij\i?), we find that

Y1 <A@ ngigfc Z— Z Z ﬁ'

m<z s21; ag,..,0s22 D1se-Ps>q P Ps
Py(m)<y  ai+-Fase{2r—1,2r} Bi12a1,...,Bs>as

Now, the sum on p,...,ps, 51, .., Bs is no more than

HZZB <<HZ <ﬁ-

=1 pi>q Biza; Z pz>q

In addition since s > 1 and Y ;_, o; > 2r — 1 and each oy > 2, we find that >, o; —
s > r: indeed, from the bound Zle a; — 8§ > 28— s =5 > 1, it remains to only see

that for r > 2, we have Y 7, a; — s > max{s,2r — 1 — s} > r. Collecting estimates,
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we obtain
z(lo :C
SR S SR
qM logx
m<x s>1; gy, >2
PJ(m)Sy a1+-tase{2r—1,2r}
But since there are O(1) many possible s > 1 and tuples (a,...,as) of positive

integers summing to 2r — 1 or to 2r, this automatically leads to

SYRPSVTEIL LAl ol

T ¢Mlogx
lOg[If m<x
Py(m)<y
As a consequence, (3.18) yields
Yo K AR (0 ((logz z)?)) < -
, — X 0gs T _
S M (log )12 P 8 g™ (log x)1/3

yielding the desired bound for all of ¥, ..., ¥,.

Bounding ¥: Any n counted in ¥ has 2M many prime factors (counted with multi-
plicity) exceeding ¢, out of which at most one of them can exactly divide n. Hence
QL ,(n) > 2M — 1, and by the same argument as given above, any n counted in 3
can be expressed in the form mpé31 --p% P where P = P(n) >z, p1,...,ps > q are
primes, P;(m) <y, and 81 > a4, ..., s > a, for some positive integers a, ..., as at
least 2 summing to either 2M — 1 or 2M. Given m, s, a1, ..., Qs, P1y- - Psy, B1y -+ Py
the number of possible P is < z/mp\* - - p% log z. As above, we have Y7 a; —s >
max{s,2M — 1 — s} > M, so that the sum over s,aq, ..., D1,...,Ds, B1,- -, 0s 18

O(g~™). Finally, using (3.18) to bound the sum on m, we obtain ¥ < x /¢ (log z)'/3.

This completes the proof of (3.22), and hence that of Theorem 3.1.3. m
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3.6.1. Optimality in the input restrictions in Theorem 3.1.3:

For any M > 2, we construct additive functions g, ..., gy showing that the restric-
tion Pypr(n) > g cannot be weakened to Pyy,_3(n) > ¢ in our range of q. For M = 2,
the condition Pyys—3(n) > ¢ translates to P(n) > ¢; by Lemma 2.3.1, this latter condi-
tion may be ignored up to a negligible error, so the first counterexample in subsection

§ 3.4.1 suffices.

Now assume that M > 3; consider additive functions g1, ..., gy : N — 7Z defined by
the polynomials G;(T) := (T — 1)%, and satisfying the conditions g;(p*) := 0 for all
primes p and all i € [M]. As observed in subsection § 3.4.1, the polynomials {G}},
are Q-linearly independent, and with Cy(G) as in (3.2), we have ¢ € Q(q, ... g, for all
moduli ¢ having P~(q) > Cy(G).

We see that G;(p) = 0 (mod ¢) for all ¢ and for all primes p = 1 (mod ¢). Conse-
quently, if p1,...,py—2, P are primes satisfying ¢ < py_o < -+ < p1 < /M-8 <
23 < P < af/(p1---pu—2)> and P = 1 (mod ¢), then the positive integer n =
(p1- -+ pa—2)?P is less than or equal to z, has Py 3(n) > ¢ and satisfies the con-
ditions g;(n) = G;(P) + Z?ﬁ;z 9:(p}) = 0 (mod q) for all s € {1,...,M}. By the

Siegel-Walfisz Theorem, we find that

DRSS >

n<z: Popr—_3(n)>q q<p1\{72<-"<p1<£E1/(4A{78) x1/3<P§1’/(p1~-pM72)2
(Vi) gi(n)=0 (mod q) P=1 (mod q)

> 2. (@(Q)(Pl pwaPlogz | O(’”UB))

q<pr—2<--<pi1<z!/(4M=8)

T 1
>> N
qlogx Z (p1 o 'pM—2)2

P1,..,Pam—2 distinct
q<p1,eceprr—o<z/(AM=8)
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Ignoring the distinctness condition in the sum above incurs a total error

S S
qlogx pip3 - p3

M-3
P1,P2;--sPM—3>4q

T 1 1 T
< Jlogz ZF Z? < Plogz

p>q p>q

On the other hand,

1 1
Z (1 pr—2)? Z 2

P, v —2€ (g / (M =8)) g<p<z!/(AM=8)
S 1
(qlog g)M=%

Collecting estimates, we obtain for all sufficiently large ¢,

) D E Y (N
¢M1log z(log q)M—2 gM log x

n<x: P2M_3(n)>q
(Vi) gi(n)=0 (mod q)

X

> g -1log x(logy x)M—2’

which grows strictly faster than z/¢™ as soon as ¢ > logz - (logy )"~ (say). We
conclude that the condition Psps(n) > ¢ cannot be replaced by Paps—3(n) > ¢ for any

M > 2.

One might wonder whether one of the conditions Paps—1(n) > g or Papy_o(n) > g could
possibly suffice to restore uniformity in squarefree ¢ < (logz)¥. In this direction, we
now construct an example showing that the condition Pyy;_o(n) > ¢ is also insufficient
for M = 2. Indeed, let consider additive functions g1, go defined by the polynomials
G1(T) =T and Go(T) := T, so that {G}, G4} are clearly Q-linearly independent.
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With Cy(G) as usual, we have ¢ € Qg 4, for all ¢ having P~(q) > Cy(G).

However, if n is of the form P, P, for distinct primes Py, P, satisfying P, P, > y =
exp((log 7)/?) and P, = —P, (mod q), then Py(n) >y > ¢, while G;(P)+Gi(P) =0
(mod q) for i € {1,2}, so that g;(n) = ga(n) = 0 (mod ¢q). As such, for 2 < ¢ <

(log z)¥X, a simpler version of the arguments leading to (3.5) yields

SRNEIED SE RN DI

n<z: Pa(n)>q veUy Py,Py>y

%) gi(n)=0 (mo P1#P;, PiP<z
(Vi) gi(n)=0 (mod q) PIE;ij}; )
1 (3.26)
> —— 1+ O(zexp(—C’(log z)*/*
ST 2 (x exp(—C"(log 2)/4))
P1,Py>y: PLPy<z
xlog,
qlogz’
where " = C'(K) > 0 is a constant, and the last bound above is a simple conse-

quence of Chebyshev’s and Mertens’ estimates. In particular, this shows that the
tuple (0,0) mod ¢ is overrepresented by (g1, g2) once ¢ > log z/(log, )/, showing
failure of uniformity in squarefree ¢ after a very small threshold, under the restriction

Py o(n) > g for M = 2.

It is to be noted that our arguments above go through for any two polynomials
Gi(T) = A;TF + B; (i € {1,2}), for any two distinct odd positive integers k;, and
any integers A; # 0 and B;. Indeed, the distinctness of k; and ks ensures that G’ and
GY, are Q-linearly independent, while their parity ensures that any two primes P, Py
satisfying P, = —P; (mod ¢) also satisfy G;(P) + Gi(P,) = 2B; (mod ¢) for both
i € {1,2}. As such, the above arguments show that there are > zlog, /¢ log x many
n < x satisfying g;(n) = 2B; (mod ¢) for ¢ € {1,2}. This gives an infinite family of

counterexamples showing that the condition Psps_o(n) > ¢ is not sufficient to restore
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uniformity in squarefree ¢ < (logz)¥ in the case M = 2.

In conclusion, this means that our restriction Pyy(n) > ¢ in Theorem 3.1.3 is at most
“one step away” from optimal, in the sense that it might still be possible to weaken

it to Papr—1(n) > gq.

— Section 3.7

Necessity of the linear independence hypothesis:

Proof of Theorem 3.1.4

Recall that the Q-linear independence of {G%}Y ! is equivalent to that of {G; —
Gi(0)}MTY; likewise, the condition G, = M " a;G is exactly equivalent to the
condition G (T) — Gur(0) = M1 ai(Gi(T) — Gi(0)) in the ring Q[T]. We claim
that the polynomials {G;}}, are Q-linearly independent. Indeed, suppose there exist
integers f1, ..., By for which S 8,G4(T) = 0 in Q[T]. Since G (T) = Gp(0) +

Zf\ifl a;(G;(T) — G;(0)), we find that

i(ﬁi + Buai)Gi(T) = By (2_: a;G;(0) — GM(0)> , (3.27)

=1

linearly independent, the last relation forces 3; = —fya; for all i € {1,..., M — 1},
which by (3.27) leads to

Now if By # 0, then the above relation forces S 0 " a;G4(0) = Gp(0) contrary

to hypothesis. Hence, we must have 8,;, = 0, forcing 5; = —fya; = 0 for all
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ied{l,.. — 1}. This shows that {G;}}, are indeed Q linearly independent.

As such by Corollary 3.2.3(i) and the discussion preceding it, there exists a constant
C1(G) > 0'such that {G;}*, are F,-linearly independent for all ¢ > C;(G), and so Q €
,,,,, ) for all moduli @ > 1 having P~(Q) > C1(G). In addition, since {G}M !
are Q-linearly independent, there exists (by (3.2)) a constant Co(G1,...,Gp-1) > 0

such that {G;}M ! are Fy-linearly independent for any £ > Co(Gy, ..., Gar—1).

We set Cg to be any constant exceeding
maX{Cl (@)7 4M(32D)2D+4, Co(Gl, ceey GM—I)},

and henceforth consider moduli ¢ having P~(q) > Cg, so that ¢ € Q... gu)
any R > Cq and integers {b;}7%, set by = Gu(0)R + XM " a;(b; — G4(0)R).
Then the relations Zle Gi(v;) = b; (mod q) for i € {1,..., M — 1} also imply that
Zle Gum(vj) = by (mod ¢). As such, for any R distinct primes Py, ..., Pg, with

(Py,...,Pg) mod q lying in the set

V= VRM 1((],([))]\{ 1)

R
= {(vj)le € (U)": (Vie M —1)) ZGi(vj) =b; (mod q)} )
=1
we have g;(P,--- Pg) = b; (mod q) for all i € [M]. Letting y := exp((logz)'/?), a

simpler version of the arguments leading to (3.5) yields, for ¢ < (logz)¥,

Yoz X oy X

n<z: Pr(n)>q (v1y..,vR)EV 1},~~~§R<>y
Vi) gi(n)=b; (mod 1" FRST
(¥2) gi(n)=bi ( 9 P1,...,Pr distinct
(V4) Pj=wv; (mod q)
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> 3 14 Oesp(~C'(loga))

$V

> w(q)f

Z 14 O(x exp(—C’(log z)*/*))

for some constant C” := C"(K) > 0. A direct induction on R (involving Chebyshev’s

estimate) shows that the last sum above is

1 R—-1
Z | s tlogy ) ’
log x

leading to

#V  x(logy x)B! , 5/
Z I > SQE lozgx + O(z exp(—C'(log z)"*)).

n<z: Pr(n)>q
(V4) gi(n)=b; (mod q)

As such, to complete the proof of the theorem, it remains to show that

e(q)"
qM—l

#V = #Vrym1 (Q; (bi)f\ifl) > (3.28)

To show this, we argue as in the proof of the estimate (3.7): for each prime power

¢ || g, we write

#VRr M1 (Ee; (bz')f‘ifl) = pe(M-1) {1
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where
. M-1
Zﬁe TlyeTM—1 Z Xo,g(?])e %ZTZGZ(U)
v mod £¢ i=1
for each (ry,...,rp—1) # (0,...,0) mod ¢¢. For any such (rq,...,7y—1), we have
ng(ﬁe’Tl,...,TM_l) = (% for some 1 < ¢y < e and |Zée;r1 77777 TM?1| < Dye—eo/D

(here it is important that since ¢ > Cg, the polynomials {G/}M ! are Fy-linearly

independent). We obtain

Dfigeti M—1—R/D\€0 2(2D)"
gO(ge)}zz: (ﬁ ) = (R/D-M+1"

ep>1

IN

Since R/D — M > R/(D + 2) and (Y/(2P+1) > (Cg)V/ 2P+ > 32D, this leads to

1 Z 2(2D)R
SD(E@)R |Z€€ TLyeeny TM 1|R iy KR/(D+2)
(1,70 —1)#Z(0,...,0) mod £¢
< Q(QD)R 1 1 1

(32D)F  (RIGDH) = gRER/EDHD) = 3"

Hence, for each prime power (¢ || g,

c 1y o )R 1
#VRrM-1 (f ;(bi)i]‘ill) > o) 1— 32 ) (3.29)
and since Hflq (1 — #) >1-— % > oo e% > %, we obtain by multiplying all the bounds
(3.29),
c 1y o 7 oe(@)rf
#V =[] #Vea (00257 > o A

llq
This shows (3.28), completing the proof of Theorem 3.1.4, and demonstrating the

necessity of the linear independence hypothesis in the generality of our setting. [
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Chapter 4

Joint distribution in residue classes
of families of polynomially-defined

multiplicative functions

We return to the general setting of Theorem 1.3.11, with fi,..., fx : N — Z being
a family of multiplicative functions for which there exist polynomials {W; ,} 1<K C
Z|T) satistying f;(p”) = Wi(p) for all i € [K], v € [V] and all primes p. In 6ﬁz;pter
2, we gave a uniform analogue of Corollary 1.3.17 on the weak equidistribution of a
single polynomially—defined multiplicative function to a varying 1-admissible modulus
supported on large primes. However, most of the arguments in that chapter are
completely limited to the case of a single multiplicative function (i.e. K = 1) and
do not generalize to families. Even for a single function, they are still far from being
complete varying-modulus analogues of Theorem 1.3.6 because they crucially need ¢

to be 1-admissible (i.e. £k = 1) and have only large prime factors, and also crucially

need the only defining polynomial W ; to be separable.
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In this chapter, we remove all these limitations, and obtain best possible analogues of
Theorem 1.3.11 to varying moduli. Our results are thus also best possible analogues
of the Siegel-Walfisz theorem for families of polynomially—-defined multiplicative func-
tions. These results are thus also new for a single multiplicative function as they give
complete uniform analogues of Narkiewicz’s single function criterion Theorem 1.3.6.
Special cases of our main results thus also give uniform analogues (with optimal arith-
metic restrictions) of the works of Narkiewicz, Sliwa, Rayner, Dobrowolski, Fomenko

and others mentioned in the discussion following Proposition 1.3.10.

In the last paragraph of subsection § 1.4.2, we already gave a glimpse of some of the
ideas used in our arguments. A more detailed summary of the arguments is given

towards the end of the next section.

This chapter is based on the papers [71] and [72] of the author.

Section 4.1

Main results

4.1.1. Multiplicative independence and the Invariant Factor Hypothesis

For concrete and provably unavoidable reasons (see Theorems 4.1.4 and 4.1.5 below),
we are going to need two additional hypotheses (which we had been calling “H;” and
“Hy” before the statement of Theorem 1.4.8). We first define the relevant notation

and terminology.

1. We say that the polynomials {F;}1<i<x C Z[T] are multiplicatively independent
(over Z) if there is no tuple of integers (¢, ..., cx) # (0,...,0) for which the product

Hfil F?' is identically constant in Q(7"). This hypothesis is very easy to satisfy, for
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example it is satisfied by {F}}1<;<x C Z[T] if [[, F; is separable. It is also satisfied

if each F; has an irreducible factor that is not present in the other F} (for j # i).

2. Assume that {F;}X, C Z[T] are multiplicatively independent. Factor F; =
Ti Hjle GYY with r; € Z, {G;}, C Z[T] being pairwise coprime primitive' irre-
ducibles and with p;; > 0 being integers, such that each G; appears with a positive
exponent f;; in some F;. Let w(F}---Fk) = M and define the exponent matrix of

(F;)K, to be the M x K matrix

Hir o o HK1

EO = Eg(Fl,...,FK)Z

S MMXK(Z)7

Mine -0 UKM

so that Fj has a positive entry in each row. Since {F;}X | C Z[T] are multiplicatively
independent, the columns of Ey are Q-linearly independent and w(Fy - - Fg) = M >
K.

3. Continuing from above, Fy has a Smith Normal Form given by the M x K diagonal
matrix diag(fy, . .., k), where 31, ..., Bk € Z are the invariant factors of Ej satisfying
b1 ]+ | Bk; since the columns of Ey are Q-linearly independent, it follows that £;
are all nonzero. (Here we fixed some ordering of the G; to define £ but the invariant
factors are independent of this ordering.) We shall use 5 (F1,..., Fik) to denote the

last invariant factor Sx. We define the

Invariant Factor Hypothesis: Given By > 0, we shall say that a positive integer ¢

satisfies (hypothesis) IFH(F,..., Fi; By) if ged(¢ — 1,8(F1, ..., Fk)) = 1 for any

'We say that a polynomial in Z[T] is primitive when the greatest common divisor of its coefficients
is 1.
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prime ¢ | ¢ such that ¢ > By.

Example: Often in applications, Hfil F; is separable over Q (or more generally, the
exponent matrix Eo(Fy, ..., Fk) is equivalent to the diagonal matrix diag(1,...,1));
when this happens, 5(F1, ..., Fx) = 1, so any integer satisfies [FH(F}, ..., Fk; By)

for any By > 0.

4.1.2. Set-up for the main results in this chapter

Most of the set-up for the main results has already been done before Theorem 1.3.11,
however owing to the necessity of some additional notation, we state the complete

set-up below for the convenience of the reader:

« Consider multiplicative functions f1,. .., fx: N — Z and polynomials {W; , }1<i<x C
1<v<V

Z[T) satistying fi(p”) = W, (p) for any prime p, any ¢ € [K]| and v € [V].

o Let f = Hfil fiand W, = Hfil Wi, so f(p¥) = Wy(p) for all primes p and

all v.

o For each v € [V], define D, := degW, = Zf; deg W, ,. Also let D := Dy, and

Dmin = minlSiSK deg W7;7k.

o For any ¢ and v € [V], define R,(¢) = {u € U, : W,(u) € U,} and a,(q) =
ﬁ#Rv@»

o Fix k € [V], and say that ¢ is k-admissible if Ry(q) = 0 but R,(q) # 0 for all

v <k.

Note that if ¢ is k-admissible, then a,(¢) = 0 for v < k, while ax(q) >w,
(loglog(3q))~" by the Chinese Remainder Theorem and a standard argument

using Mertens’ Theorem.

131



4.1 MAIN RESULTS

» Assume that {W,;}1<i<x are multiplicatively independent.

o Define Q(k; f1,- -, fx) exactly as before the statement of Theorem 1.3.11.

4.1.3. The Main Results

In Theorems 4.1.1 to 4.1.3 below, we fix Ky, By > 0. Our implied constants depend
only on Ky, By and the polynomials {W;,h<i<xk, and are in particular independent

1<v<k

of V and of {W, , h<i<k-

k<v<V

Theorem 4.1.1. Fiz e € (0,1). The functions f1,..., fx are jointly weakly equidis-
tributed, uniformly to all moduli ¢ < (logz)%° lying in Q(k; f1,--- , fx) and satisfying
IFHWyy,...,Wky; By), provided any one of the following holds.

(i) Either K =1 and Wy, = Wy, is linear, or if K > 2, q¢ < (log z)(1~9(@)/(K-1)

and at least one of {W, x h<i<k s linear (i.e., Duyin = 1).

(ii) q is squarefree and qulDw(q) < (log z)(1=9k (@)

(ii) Dyin > 1 and ¢ < (log )1 =9os@FK=1/Dumin) ™

A concrete application: Corollary 1.3.13 (special case of [46, Theorem 1]) shows
that ¢(n) and o(n) are jointly WUD modulo a fixed integer ¢ precisely when ¢ is
coprime to 6; in fact, Q(l;¢,0) = {q : (¢,6) = 1}. Theorem 4.1.1 shows that
(p,0) are jointly WUD uniformly modulo ¢ < (logz)1=9%@ coprime to 6, where
a(q) = ai(q) =[]y, (¢ —3)/(¢ — 1) and € > 0 is fixed but arbitrary.

Optimality of the conditions in Theorem 4.1.1: Note that except in the very
first case when K = 1 and W), = W is linear (which is also when we already have the
best possible analogue of the Siegel-Walfisz theorem), Theorem 4.1.1 gives uniformity

only up to small powers of logz. In subsection § 4.7.1, we will construct general
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counterexamples showing that for any K, k, D and Dy, the ranges of ¢ in (i)—(iii)
above are all essentially optimal, except perhaps in the very first case. We will also
show that for any K > 2, the range of ¢ in (i) is essentially optimal, even if ¢ is
squarefree and {W; }1<;<x are all linear, for any choice of (pairwise coprime) linear
functions! In particular, this means that the aforementioned range (log )=
is basically optimal for the joint weak equidistribution of (¢, ), even if we restrict
to squarefree ¢. Thus, this special case of Theorem 4.1.1(i) is the optimal uniform

analogue of Narkiewicz’s result in [46] for a single varying modulus.

Restoring uniformity in the Siegel-Walfisz range:

Our constructions in § 4.7.1 will reveal that obstructions to uniformity in ¢ come
from inputs n of the form P* for primes P. Modifying those constructions, we can
produce more obstructions of the form mP* with m fixed or growing slowly with z. It
turns out that once again, uniformity is restored in the full Siegel-Walfisz range if we
restrict attention to those n that are divisible by sufficiently many primes exceeding
q. Since D =1 forces K =1 and W, = Wy to be linear (a case in which Theorem
4.1.1(i) already gives complete uniformity in ¢ < (logx)%°), we assume in Theorems

4.1.2 and 4.1.3 below that D > 2.

Theorem 4.1.2. The following hold as x — oo, uniformly in coprime residues
ai,...,ax to moduli ¢ < (logz)X° that lie in Q(k; f1,---, fx) and satisfy hypoth-

esis [FH(WL]C, ceey WK,k; Bo)

#{n < : Pp(n) >q, (Vi) filn) = a; (mod q)}

1
- @(q)K#{n < :ged(f(n),q) =1}
1
~ St S @i Paln) > g ged(fn).q) = 11 (@)
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Here

R=k(KD+1), ifk <D

R is the least integer exceeding k(1 + (k+1) (K —1/D)), ifk > D.

Even in the special case k = K = 1, this theorem improves over Theorem 2.1.3(a).
The value of R is optimal for K = 1 and fi(n) = o(n) modulo even ¢; see the
discussion on applications in subsection § 4.1.5. For squarefree ¢, it suffices to have
much weaker restrictions on n (that are often optimal in greater generality) to restore

uniformity in the Siegel-Walfisz range.

Theorem 4.1.3. The formulae (4.1) hold as x — oo, uniformly in coprime residues
ai, ..., ax to squarefree moduli ¢ < (logz)X° lying in Q(k; f1,- -, fx) and satisfying
IFH(WL]C, ceey WKJf; B()), with

2, if K =k =1 and Wy, is not squarefull.

k(Kk+ K —k)+1, if k> 1 and at least one of

{Wikh<i<i is not squarefull.

k(Kk+K—k+1)+1, in general.

\

Here we write a polynomial F' € Z[T] as F = r Hjj\il H? for some v; € N and pairwise
coprime primitive irreducibles H; € Z[T], and we say that F' is “squarefull” (in Z[T)
if (H]Ai1 H;)? | F. Note that this is equivalent to saying that HF?GG)(C:O(T —0)? | F(T)
in C[T], i.e., that every root of F' in C has multiplicity at least 2.

It is worthwhile to try optimizing R above since doing so ensures weak equidistribution
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among the largest possible set of inputs n. In subsection § 4.10.1, we show that the
first two values of R in Theorem 4.1.3 are exactly optimal, in the sense that for any
K and k, reducing the “2” to “1” or the “k(Kk + K — k) + 1”7 to “k(Kk + K —
k)" destroys uniformity in ¢ < (logx)%°: We also construct infinitely many general
counterexamples showing this. In these examples, {W;;}X, are pairwise coprime

irreducibles, making [[., W separable over Q (so that IFH is satisfied trivially).

4.1.4. Necessity of the multiplicative independence and invariant factor

hypotheses

We now explain the necessity of these two hypotheses that we have been assuming in
our results so far. It turns out that even if one of them is violated, then uniformity
would fail in the above theorems in some of the worst possible ways: Not only would
uniformity fail modulo arbitrarily large ¢ < (log )%, but also would be unrecoverable
no matter how much we restrict our set of inputs n to those having many large prime

factors!

For instance, without the multiplicative independence condition, the K congruences
fi(n) = a; (mod q) (for 1 < i < K) may degenerate to fewer congruences for suffi-
ciently many inputs n. This would lead to failure of weak equidistribution uniformly
to all sufficiently large ¢, no matter how much we restrict the inputs n to those having

many large prime factors.

Theorem 4.1.4. Fix R > 1, K > 1 and assume that {W; ;}1<i<x—1 C Z[T] are

multiplicatively independent, with Zf;l degW;r > 1. Suppose Wk = Hf;l I/Vf‘,;
for some nonnegative integers (\)E7t # (0,...,0). There exists a constant C' =

CWik,-.-sWk_1) >0 such that
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#{n <z : Pge(n) >q, (Vi € [K]) fi(n) =a; (mod q)}

1 /% (log log )12

p(g)k1 log »

>

as © — oo, uniformly in k-admissible ¢ < (logx)X° supported on primes ¢ > C
satisfying ged(d — 1, B(Wik, ..., Wk_1x)) = 1, and uniformly in a; € U, with ax =

Hf:l al’-\" (mod q).

The compatibility of the relations in {W;;}i<i<x and (a;)K; suggests why the K
congruences degenerate to K — 1 congruences. Note that the above lower bound will
in fact come from the n which are supported on primes much larger than ¢. A similar
lower bound holds for K =1 when W), = W ; is constant (see the remark preceding
subsection § 4.11.1). Using the above theorem, we shall construct (in § 4.11.1) explicit
examples of polynomials {W; }i1<i<x—1 and moduli ¢ € Q(k; fi,-- -, fx) where the
above lower bound grows strictly faster than the expected proportion of n < x having
ged(f(n),q) = 1. This would demonstrate an overrepresentation of the coprime
residues (a; mod ¢)X, by the multiplicative functions fi, ..., fx, coming from inputs
n that have at least Rk many prime factors exceeding ¢, showing the necessity of our

hypothesis on the multiplicative independence of {W; x}1<i<k-

Turning to the invariant factor hypothesis, we will show that the failure of this con-
dition incurs an additional factor over the expected main term. For certain choices of
q and {W, ; }1<i<k, this factor can be made too large, once again leading to an over-

representation of the tuple (a; mod ¢)%, by the multiplicative functions fi,..., fx.

Theorem 4.1.5. Fiz R > 1 and assume that {W, x h1<i<x C Z[T| are nonconstant,
monic and multiplicatively independent, so that 8 = B(Wik,...,Wky) € Z \ {0}.

There ezists a constant C == C(Wy ..., Wgky) > 0 such that
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#{n <z : Pge(n) >q, (Vi € [K]) fi(n) =a; (mod q)}
2#{“‘15 ged(¢—1,8)#1} xl/k(log log x)RfQ

>
o(q)¥ log =

(4.2)

as ¥ — oo, uniformly in k-admissible ¢ < (log z)%° having P~ (q) > C, and uniformly
in coprime residues (a;)X, mod q which are all congruent to 1 modulo the largest

squarefree divisor of q.

Here, the restriction on the residues a; is imposed in order to have a positive contribu-
tion of certain character sums modulo the prime divisors of ¢. In subsection § 4.11.1,
we shall construct explicit examples of ¢ € Q(k; fi, -+, fx) and {W;,}i<i<k for
which the expression in the above lower bound is much larger than the expected pro-
portion of n < x having ged(f(n),q) = 1. We shall establish Theorems 4.1.4 and

4.1.5 in section 4.11.

4.1.5. Some more concrete applications of our main results

We give several applications of our main results to arithmetic functions of common
interest. In fact, as applications of Theorems 4.1.1 to 4.1.3 we can extend the results of
Narkiewicz, Rayner, Sliwa, Dobrowolski and Fomenko (alluded to in the introduction)
to varying moduli, — without imposing any unnecessary arithmetic restrictions on the
moduli. For instance, recall Sliwa’s result Proposition 1.3.10 that o(n) is weakly
equidistributed precisely to fixed moduli that are not multiples of 6; in fact, his work
shows that Q(1;0) = {q : ged(q,2) = 1} and Q(2;0) = {q : ged(q,6) = 2}. Calling
the members of the set Q(2;0) “special”, our main results extend Sliwa’s work as

follows:

« By Theorem 4.1.1(i), o(n) is WUD uniformly to all odd moduli ¢ < (log z)%°.
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o Theorem 4.1.1(iii) shows that o(n) is WUD uniformly modulo all special ¢ <

(log )95 where a(q) = anlg) =TT sy (1—2/(¢—1).
¢=1 (mod 3)

e By Theorem 4.1.1(ii), o(n) is WUD uniformly modulo all squarefree special
q < (log x)%0 satisfying 2¢@ < (log2)(1=9%@), By the example constructed in

[71, subsection 7.1], these restrictions are optimal.

e By Theorem 4.1.2 (resp. 4.1.3), o(n) is WUD uniformly modulo all special
(resp. modulo squarefree special) ¢ < (log z)X° by restricting to inputs n with
Ps(n) > q (resp. Py(n) > q). ? By the examples constructed in [71], both of

these restrictions are optimal as well.

We can give more applications of our main results to explicitly study the weak equidis-

tribution of the functions o,(n) == >_,, d" (for r > 1). An easy check shows that

. ; r(v+1) L o :
the polynomial >, , T = T L shares no roots with its derivative, hence is

Tr—1

separable. Calling the ¢ € Q(k;0,) as “k-special”, Theorem 4.1.1 thus shows that
o, is WUD uniformly modulo all k-special ¢ < (log z)(=92@0=1/k)7" "and modulo
all squarefree k-special ¢ < (logx)®° having w(q) < (1 — €)ax(q) loglog z/ log(kr).
Further, by Theorems 4.1.2 and 4.1.3, weak equidistribution is restored modulo all
k-special (resp. modulo squarefree k-special) ¢ < (logz)%° by restricting to n with

Prkry1)(n) > q (resp. Prii(n) > q).

An explicit characterization of the moduli ¢ < (logz)X° to which a given o, is
weakly equidistributed thus reduces to an understanding of the possible & (for which
Q(k;0,) # () and of the set Q(k; o,) for a given fixed r; both of these are problems of
fixed moduli that (as mentioned in the discussion following Proposition 1.3.10) have

been studied in great depth in [75], [24], [51], [48], [49], [64] and [65].

2Here we have noted that the condition P3(n) > ¢ forces Py(n) > ¢ since for o(n) to be coprime
to the even number ¢, it is necessary for n to be of the form m? or 2m?.
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Other applications: we saw using Theorem 4.1.1 that ¢(n) and o(n) are jointly WUD
modulo ¢ < (logz)=9%@ coprime to 6, and that these two restrictions on ¢ are
necessary and essentially optimal. By Theorem 4.1.2, complete uniformity is restored
to all moduli ¢ < (logz)X° coprime to 6 by restricting to inputs n with Ps(n) >
q. These results also imply that the function ¢(n)o(n) is WUD uniformly modulo
q < (logz)(1=92@ coprime to 6; moreover, ¢(n)o(n) is WUD uniformly modulo all
q < (logx)&o coprime to 6 if we restrict to n with Ps(n) > ¢. Likewise, we can get
interesting consequences of Theorems 4.1.1 to 4.1.3 for the families (¢, 03), (@, 0, 02),
(p,0,09,03) etc., as well as to exotic families like (o, 04), (9o, 003), (0,032,035, 0%),

(003,03%) and so on.

In general, Theorems 4.1.1 to 4.1.3 can be used to obtain more explicit analogues of the
Siegel-Walfisz theorem for a family (f1, ..., fx) of polynomially-defined multiplicative
functions by means of an explicit understanding of the sets Q(k; f1, -, fx). This
is a “fixed modulus problem” that, — as mentioned in subsection § 1.4.2, — has been

studied by multiple authors.

4.1.6. Summary of the main ideas

The arguments used to establish Theorems 4.1.1 to 4.1.3 comprise several themes.

(1) By studying the anatomy (prime factorizations) of our inputs n much more care-

fully, we refine the “mixing” phenomenon in Chapter 2.

(2) We invoke Haldsz’s theorem and carefully estimate certain “pretentious distances”

by adapting a technique used to bound exponential sums.

(3) We judiciously modify the Landau-Selberg-Delange method to obtain sharp upper
bounds on the mean values of certain multiplicative functions involving characters

mod ¢, uniformly for ¢ < (logz)%° (applying known mean value results directly is
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not enough to get the desired uniformity). To make these modifications, we adapt

some ideas of Scourfield [69].

(4) Character sum machinery and linear algebra over rings come into play throughout
the chapter. In fact, we invoke various extensions of the Weil bounds, and carefully
study the Smith normal forms and invariant factors of several matrices, to bound

certain character sums.

(5) We reformulate certain counting problems in terms of counting rational points of
affine varieties over finite fields, which can be approached with arithmetic an geometric
and algebro-geometric machinery, such as the Lang-Weil bound and properties of

regular sequences.

We conclude this section with the remark that although for the sake of simplicity
of statements, we have been assuming that our multiplicative functions {f;}%£, and

polynomials {W; , }1<i<kx are both fixed, our proofs will reveal that these results are

120<V
also uniform in the {f;}X, as long as they are defined by the fixed polynomials
Wivh<i<k.
120V

In the conclusion of this chapter, we mention some new interesting questions arising

from the results and methods used in this work.

— Section 4.2

Technical preparation: The number of n < z for

which ged(f(n),q) =1

In this section, we shall provide a rough estimate on the count of n < z for which

f(n) = [1X, fi(n) is coprime to the modulus ¢, uniformly in ¢ < (logz)*°. We will
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show the following estimate, which generalizes Proposition 2.2.1. In the rest of the

chapter, we abbreviate ,(q) to a, for each v € [V].

Proposition 4.2.1. For all sufficiently large x and uniformly in k-admissible ¢ <

(log x)%°, we have

L1/
Z L= Z 1= (log z)— exp(O((log,(3¢))°M)). (4.3)
nsz n<zx
(f(n),9)=1 each (fi(n),q)=1

4.2.1. Proof of the lower bound.

Any m < 2'/* satisfying ged(f(m*), q) = 1 is certainly counted in the left hand side
of (4.3). To estimate the number of such m, we apply Proposition 2.2.1, with f(n*)
and x'/* playing the roles of “f(n)” and “z” in the quoted proposition. This shows

that the sum in (4.3) is bounded below by the right hand side.

4.2.2. Proof of the upper bound.

We start by giving an upper bound on the count of r-full smooth numbers; here we
consider any n € N to be 1-full (and we consider 1 as being r-full for any » > 1). The

case v = 1 of the following result is Lemma 2.3.1.

Lemma 4.2.2. Fix r € N. We have as X, Z — o0,

#{n < X:Pn)<Z nisr-full}

U
< XY"(log Z) exp (—— logU + O(U10g2(3U))) ,
r
uniformly for (log X)™ax{3.2rt < 7 < X2 where U := log X /log Z.

Proof of Lemma 4.2.2. The proof is an application of Rankin’s trick. We start by
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letting n < min{1/3,1/2r} be a positive parameter to be chosen later, and observe

that

X\ )/ 1
il (1=n)/r
B D Y B D

n<X: P(n)<Z n _is r-full p<Z

_f
n is r-full P(n)<z -

where we have used the Euler product and noted that >3 > ..., peUmr <«

>, o~ IR« Tsinee (1—n)(14+1/r) > (14 1/r)(1 — min{1/3,1/2r}) > 1.

Now set n = iggg < min {1, - }. We write > p<z /P = log, Z+Z(exp(nlogp)—
p<Z
1)/p + O(1). Since nlogp < log?2 < 1 for all p < 2'/7, we find that the contribution

of p < 211 to the last sum above is

> (exp(nlogp) ~ Dfp<n Y logp/p < 1.

pSQl/" p§21/"7

while the contribution of p € (21/7, Z] is at most

(exp(nlog Z2) —1) Y 1/p < U(log, U+ O(1)).

2L/n<p<Z

Collecting estimates, we obtain > _, 1/p'™" = log, Z + O(U log,(3U)), which from

(4.4) completes the proof of the lemma. O

The following important observation will be useful throughout the chapter.

Lemma 4.2.3. If q is k-admissible, then the k-free part of any positive integer n
satisfying ged(f(n),q) = 1 is bounded. More precisely, it is of size O(1), where the

implied constant depends only on the polynomials {W; , h<i<k.
1<v<k

Proof. Let S, = {¢ prime : a,(¢) = 0}. (Recall a, and W, from § 4.1.2.) Note the
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following:

Observation 1. For each 1 < v < k, the set S, consists only of primes of
size O(1), with the implied constant depending only on the polynomials

Wl,m ey WK,U:

This is because for any prime ¢, we have «,(¢) = ﬁ#{u e Uy : Wy(u) € U} >

1— D,/(f —1). Thus, a,(f) >0 forall £ > 14 D, =1+ S 5 deg Wi,.

Observation 2. For any positive integer n satisfying ged(f(n),q) = 1, the

k-free part of n must only be divisible by primes from U1§v<k Syt

Assume by way of contradiction, that there exists some n satisfying ged(f(n),q) =1
and some prime p & |, ., Sy satisfying p” || n for some r < k. Then W,(p) = f(p")
divides f(n). Since ¢ is k-admissible and r < k, we must have «,.(¢) = 0. But since
ar(q) = [Iy, @-(¢) by the Chinese Remainder Theorem, it follows that there must be
some prime ¢y | g for which a,.(¢y) = 0. By definition of «,., this means that for any
unit u € Uy, we must have ¢y | W,.(u). In particular, since the prime p above does not
lie in S, while ¢y does, it follows that p # £y, so that €y | W,.(p) | f(n), contradicting

the requirement that ged(f(n),q) = 1.

Lemma 4.2.3 follows immediately Observations 1 and 2. m

Coming to the proof of the upper bound implied in (4.3), we define y := exp(y/log x)
and start by removing those n which are divisible by the (k4 1)-th power of a prime

exceeding y. Writing any such n as AB for some k-free B and k-full A, Lemma 4.2.3
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shows that B < 1 so that the contribution of such n to (4.3) is

dYoo1< )

n<wz: (f(n),q)=1 A<z
3 p>y: pFHin 3 ;,4>‘;:k};£u+111|n
1/k 1/k
x x
< E E E 1< E g (T) <<<—) ,  (4.5)
p>y v2k+l  m<z/p" p>y  v>k+1 b Y

p’<z m is k-full

where we have used the fact that the number of k-full integers up to X is O(X /)
(see [23]). The last expression above is negligible in comparison to the right hand
side of (4.3). Hence, it remains to bound the number of n satisfying (f(n),q) = 1

that are not divisible by the (k + 1)-th power of any prime exceeding y.

We write any such n in the form BM N, where N is y-rough, BM is y-smooth, B is
k-free, M is k-full, and B, M, N are pairwise coprime. By Lemma 4.2.3, we see that
B = O(1) and that N is k-full. But also since n is not divisible by the (k + 1)-th
power of any prime exceeding y, we must have N = A* for some squarefree y-rough

integer A. Consequently,

o< > > > 1. (4.6)

n<z: (f(n),q)=1 B<z M<z/B: M is k-full A<(z/BM)/*
poy —> pF+l f (é(f)lff);; P(M)<y, (f(M),0)=1  p=(A)>y: (f(AF),q)=1

A squarefree

We now write the right hand side of the above inequality as »; 4+ >, where ¥; and

Y, count the contribution of (B, M, A) with M < z'/?2 and M > x'/2, respectively.

Bounding ¥5: Any A counted in X satisfies A < (z/BM)'*F < /¢ /Bl/k 5o that

ne Y Y >

B<zx A<gl/2k/pl/k M<xz/BA*: P(M)<y
(é‘(i?)éqf)zl P=(A)>y: (f(AF),q)=1 M is k-full, (f(M),q)=1
1S k-lree A squarefree
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To bound the innermost sum, we invoke Lemma 4.2.2; here U = % >1 sVlogx.

This yields

U/ 1 —
D<) 2 mexp(‘@ log‘"’”'logﬁ)'
B<z A<gl/2k/B1/k
JE=L P R o=

A squarefree

Recalling that B = O(1) and bounding the sum on A trivially by 2logz, we deduce
that ¥y < 2'/* exp (—\/ log x), which is negligible compared to the right hand side of
(4.3).

Bounding ¥1: To bound the (innermost) sum on A in X;, we invoke Lemma 2.2.2
on the multiplicative function g(A) = p(A)*Lp-(a)>yL(f(ar)g =1, With z denoting the

Moébius function. Since M < /2 and B < 1, this gives

z!/k Lwi(p).0)=1 1
B < e | 2 Ty 2.
y<p<lx M<z/2: M is k-full
P(M)<y, (f(M),q)=1

But since the sum on M above is no more than

1 Ly (pk),q)=1 1
Z MUk = H (1 + D +0 pl+1/k

M is k-full Py
P(M)<y, (f(M),q)=1

1 _
< exp ZM 7 (4.7)
Py P
it follows by an estimation of 37 _ 1(w, (),q)=1/p via Lemma 2.2.4, that ¥, is absorbed

in the right hand side of (4.3). This establishes Proposition 4.2.1.
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— Section 4.3

The main term in Theorems 4.1.1 to 4.1.3:

Contribution of “convenient” n

We start by defining

J = |logs 2| and y = exp((log z)/?),

where € is as in the statement of Theorem 4.1.1 and € := 1 for Theorems 4.1.2 and
4.1.3. We call n < x convenient if the largest J distinct prime divisors of n exceed y
and each appear to exactly the k-th power in n. ® In other words, n is convenient
iff it can be uniquely written in the form n = m(P;--- P,)* for m < z and primes

Py, ..., P; satisfying

L, =max{y, P(m)} < P; <--- < P,. (4.8)

Note that any n having Pj,(n) < y must be inconvenient; on the other hand, if n is
inconvenient and satisfies ged(f(n),q) = 1 then either Pj(n) <y or n is divisible by
the (k+ 1)-th power of a prime exceeding y. These observations will be helpful in the

rest of the chapter.

We start by showing that there are a negligible number of inconvenient n < x satis-

fying ged(f(n),q) = 1.

3This is the more general version of the “convenient n” defined in section 2.3 where we were
working in the case k = 1.

146



4.3 THE MAIN TERM IN THEOREMS 4.1.1 TO 4.1.3: CONTRIBUTION OF
“CONVENIENT” n

Proposition 4.3.1. We have as v — o0,

o1 = 0( > 1), (4.9)

n<z: (f(n),q)=1
n inconvenient (f(n),q)=1

uniformly in k-admissible ¢ < (log z)%o.

Proof. By (4.5) and (4.3), the contribution of the n’s that are divisible by the (k+1)-
th power of a prime exceeding y is negligible. Letting z := z'/1°82% we show that the
contribution of z-smooth n to the left side of (4.9) is also negligible compared to the
right. Indeed, writing any such n in the form AB for some k-free B and k-full A,
we have P(A) < z whereas (by Lemma 4.2.3) B = O(1). Hence the contribution of

z-smooth n is, by Lemma 4.2.2,

1
Z 1 < Z 1 < aFexp <— <E + 0(1)) log,  logs x) . (4.10)

n<z: P(n)<z A<z: P(A)<z
(f(n),g)=1 A is k-full

which is indeed negligible compared to the right hand side of (4.9).

It remains to consider the contribution of those n which are neither z-smooth nor
divisible by the (k + 1)-th power of a prime exceeding y. Since n is inconvenient,
we must have Pji(n) < y (see the discussion just preceding the statement of this
proposition). Hence, n can be written in the form mP* where P := P(n) > z and
m = n/P* so that Pj(m) < vy, ged(m,P) = 1 and f(n) = f(m)f(P*). Given

m, there are at most Zz<P<(z/m)1/k 1 < 2'/*/m'/*log z many possibilities for P.
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Consequently,

DRI SR

n<z inconvenient n<z: Pjip(n)<y
P(n)>z, (f(n),q)=1 P(n)>z, (f(n),q)=1
p>y = pFtl i n p>y = pFtl i n
z'/*log, x Z 1
_— . 4.11
< log x ml/k (4.11)

m<zx

Prr(m)<y, (f(m),q)=1
p>y = p"tl {m

As in the argument preceding (4.6), we write any m occurring in the above sum
(uniquely) in the form BMA* where B is k-free, M is k-full, A is squarefree,
P(BM) <y < P~ (A), and Q(A) < J (since Py(n) < y). Since B = O(1), we

deduce that

>ooam< X gm Mg

m<x M k-full A<z
Prp(m)<y, (f(m),q)=1 P(M)<y, (f(M),q)=1 QA)<J
p>y=p"t {m

The sum on A is no more than

(1+) 1/p)’ < (2logyx)” < exp(O((logs 2)%)),

p<z

while the sum on M is < exp(ay log, y+O((log,(3¢))°™M)) by (4.7) and Lemma 2.2.4.

Altogether,

1
) 1 < (log @)™ exp (O((log, 2)? + (logy(30))°). (4.12)
m<zx
PJk:(m)Sy’_(f(m)7q):1
p>y = pFtl {m

Inserting this into (4.11) and comparing with (4.3) completes the proof. O
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It turns out that the convenient n give the dominant contributions in our asymptotics,

in the sense that it is these n that give the desired main term.

Theorem 4.3.2. Fiz Ky, By > 0 and assume that {W; ;}1<i<x C Z[T] are noncon-

stant and multiplicatively independent. As x — oo, we have

Z ! Ns@(;)K Z b

n<x convenient n<x
(Vi) fi(n)=a; (mod q) (f(n),q)=1
uniformly in coprime residues ay, . . ., ax to moduli ¢ < (log z)%° lying in Q(k; f1,+ -+, fx)

and satisfying IFH(Wy g, ..., Wkx; Bo).

We shall prove this theorem in the next few sections. In this section and the next,
we take the first step by showing a weaker version of this result, where we reduce the

congruences f;(n) = a; from modulus ¢ to a bounded divisor of g.

Proposition 4.3.3. Fiz Ky, By > 0 and assume that {W,; x }1<i<x C Z[T] are noncon-
stant and multiplicatively independent. There exists a constant X = AX(W1 g, ..., Wk k:
By) > 0 depending only on {W;}1<i<x C Z[T| and By, such that as x — oo, we

have

> oo

n<x convenient
(Vi) fi(n)=a; (mod q)

. ©(Qo) " 1
_(so(q)) Zm_l 1+ 0<¢<q)K S 1>, (4.13)

n<z: (f(n),q)= n<zx
(Vi) fi(n)=a; (mod Qo) (f(n),g)=1

uniformly in coprime residues ay, . ..,ax to k-admissible moduli ¢ < (logz)%° satis-

fying IFH(W1 g, ..., Wky; Bo). Here Qq is some divisor of q satisfying Qo < A.
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Proof. For any N > 1 and (w;){<, € UF, we define

Vi (g3 (w)E,) = {(Ul, . uw) € (U)V

N
(Vi € [ HVV”“ vj) = w; (mod q)}
7=1

We write each convenient n uniquely in the form m(P; - -- P)¥, where m, Py, ..., P,
satisfy (4.8). Then f;(n) = f;(m) H;le W, x(P;), so that the conditions f;(n) = q;

(mod ¢) amount to ged(f(m),q) =1 and
(Pi,.... Py) mod g €V}, = Vi (q (aifim)™)E,).

Noting that the conditions Py --- P; < (z/m)"* and (Py,...,P;) mod ¢ € V., are

both independent of the ordering of Py, ..., P;, we obtain

3 1= ) 3 % Yoot (4.14)

n<z convenient m<z (vl,...,vJ)GV(’Lm ' Pr,..,P;>Lm
(Vi) fi(n)=a; (mod q) (f(m),q)=1 Py--Py<(z/m)t/k
P1,...,Py distinct
(V4) Pj=v; (mod q)

Proceeding exactly as in the argument for (2.13), we remove the congruence conditions

on Pj,... , Py by successive applications of the Siegel-Walfisz Theorem. We get
> DD T 05 (~Flog )"
1 = 1 + O( exp (—K;(logx)© )
J 1/k
Py,....Py>Lm (’O(q) Py,....,Py>Lm
Py-Py<(z/m)t/* Py--Py<(z/m)'/k
P1,...,Py distinct P1,...,Py distinct

(V4) Pj=v; (mod q)

for some constant K = K;(Kpy) > 0.
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Collecting estimates and noting that #V, ,, < ©0(q)” < (logz)®e/ we obtain

#Vem [ 1
1= L 1
n<x (mzn\;enient mz: (p(q>J (J' Pl,..§;>Lm )

<
(Vi) fi(n)=a; (mod q) (f(m)’,;)ﬂ Py-Py<(z/m)l/*
Py,...,Py distinct

+ 0 (xl/k exp <—%(logw)6/4>) . (4.15)

Here in the last step we have crudely bounded the sum Y <, m~Y* by writing
(f(m),9)=1

each m as AB for some k-full A and k-free B satisfying gcd(A, B) = 1, and recalling

that B = O(1) while Y3 1/A <[, (1+1/p+ O (1/p'*"/¥)). The following propo-

sition estimates #)! . Note that it actually involves only By and the polynomials
q7m

{Wirh<i<k, nothing else.

Proposition 4.3.4. Assume that {W, s h1<i<x are multiplicatively independent. De-
fine the quantities D = Y1 deg W, and ay.(q) = q)#{u c U, I, Wir(u) € U}

as before.

There exists a constant Cy = Co(Wi, ..., Wik; Bo) > (8D)?*P*2 depending only on
{Wikh<i<ix and By, such that for@ constant C' > Cy, the following two estimates

hold uniformly in coprime residues (w;)5, to moduli q satisfying ai(q) # 0 and

IFH(WL]C, ceey WK,k; Bo)

VN (@ )E) @)™ (o(Qo)\ ™ [ #VN K (Qo; (w)E,) 1
@ _Oék(QO)N< <>) Qo)™ +O<O_)

11 <HO(W)) (4.16)

g
>Cy

uniformly for N > KD + 1, where Qg is a Cy-smooth divisor of q of size Oc(1).
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Moreover

#VJ(\]{)K (¢ (wi)E)) < (Hzqu e)ﬂN:KD
o(q)™ B qN/P

exp (O(w(q))), foreach1 < N < KD.
(4.17)

Applying (4.16) with N :== J = [logg x| > KD+ 1, and with C' fixed to be a constant

exceeding 2C5°, we see that

o = ezl (5 (S o (o)}

where Vg, . = V () (QO, (a;f:(m)~")K ) and we have noted that

Z (4D)’ /¢//P-K < (4D/Cé/(2D+2)>J — (1),

g
£>Cyo

We insert this into (4.15), and observe that since ay(q) # 0, since Qo | ¢ and since

Qo is Cy-smooth, we have

(-2 C
ak(Qo)CZCH (1_6—1) ZCCO > 2.
0

£<Co

Thus

> oo

n<x convenient

(Vi) fi(n)=a; (mod q)

oo (50)' 585 £ S 2,

m<x

=1 Py-Py<(z/m)'/*

1
+ o<¢<q)K > 1), (4.18)

n<x

(f(n),9)=1
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where we have noted that

ool =ae)! ) (% > 1)

n<z convenient m<z Py,...,P;>Lpy
ged(f(n),q)=1 (f(m),q)=1 Py--Py<(z/m)'/k
Pr,...,Py distinct

+ O (xl/k exp (—%(bg@f“)) . (4.19)

Here (4.19) can be proven by replicating the arguments leading to (4.15) and observing

that ;
#{(on, - 0g) € U [T Walvy) € U} = (an(@) ().

j=1
Now for each (w;)KX, € UK, we define Uy x (¢, Qo; (wi)E,) to be the set of tuples
(v1,...,vy) € U/ satisfying H}]:l Wi k(v;) € U, and H;.Izl Wi k(v;) = w; (mod Q) for
each i € [K]. Observe that any convenient n satisfying ged(f(n),q) = 1 and f;(n) = a;
(mod Qo) for alli € [K], can be uniquely written in the form n = m(P; - - - P;)¥, where
Py, ..., Py are primes satisfying (4.8), and where ged(f(m),q) = 1 and (Pi,..., Py)
mod ¢ € Uy, = Uk (q,Qo; (aifi(m)™")E ). As such, by the arguments leading to
(4.15), we obtain

Z 1
n<x convenient

ged(f(n),q)=1
(Vi) fi(n)=a; (mod Qo)

_ #lm (1 of !
- ¥ (p(q)J(J! S 1>+ <gp(q)K > 1>. (4.20)

m<x n<x
(f(m),g)=1 Py-Py<(z/m)t/* (f(n),g)=1

A simple counting argument shows the following general observation: Let F' € Z[T]
be nonconstant, and let d,d be positive integers such that d' | d and ap(d) =

ﬁ#{u € Uy : F(u) € Uy} is nonzero (hence so is ap(d')). Then for any u € Uy for
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which F(u) € Uy, we have

#{U€eUy: U=u (mod d), F(U) e Uy} = %. (4.21)

Using this general observation for F' = W), = Hfil Wik (so that ap = ay), we obtain

#Z/IJ,K((L Qo; (wz)f;) = (%) #V((JZL(Qm (wz>fi1)

for all (w;)/, € UJF. Applying this with w; = a;f;(m)~" and recalling that Vi, ,,

= ng[)( (Qo; (aifi(m)™H)K,), we get from (4.20),

J V/ 1
} : () } : Qn (L 5~y
J J |
n<x convenient ak(QO) m<x SO(QO) J3 Pr,...,Py>Lm
ged(f(n),q)=1 (f(m),q)=1 Pye-Py<(z/m)t/k
(Vi) fi(n)=a; (mod Qo) Py,...,Py distinct
1
+ o E 1].
(QO(Q)K n<x )
(f(n),a)=1

Comparing this with (4.18), we obtain

> 1 =(0+0) (%)K > 1

n<zx convenient n<zx convenient
(Vi) fi(n)=a; (mod q) ged(f(n),q)=1
(Vi) fi(n)=a; (mod Qo)

1
+ 0<W ; 1).

(f(n),9)=1

Finally, an application of Proposition 4.3.1 allows us to remove the condition of n
being convenient from the main term on the right hand side above. This completes
the proof of Proposition 4.3.3, up to the proof of Proposition 4.3.4, which we take up

in the next section. O
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— Section 4.4

Counting solutions to congruences: Proof of

Proposition 4.3.4

4.4.1. Preparation for the proof of Proposition 4.3.4

We temporarily abandon all the previous set-up just for this subsection. We shall

make use of two character sum bounds, which we state in the next two propositions.

Proposition 4.4.1. Let ¢ be a prime, x a Dirichlet character mod (. Let ' € Z[T|
be a nonconstant polynomial which is mot congruent mod ¢ to a polynomial of the
form c- G(T)°" ) for some ¢ € Fy and G € F[T), where ord(x) denotes the order of

the character x. Then

D x(Fw)| < (d—1)V7,

where d is the degree of the largest squarefree divisor of I

This is a version of the Weil bounds and is a special case of [77, Corollary 2.3] (see
also [18], [79] and [66] for older results). We will also need an analogue of the above
result for character sums to higher prime power moduli, and this input is provided
by the following consequences of Theorems 1.2 and 7.1 and eqn. (1.15) in work of

Cochrane [14] (see [16] for related results).

In what follows, for a polynomial H € Z[T], we denote by H' or H'(T') the formal
derivative of H. Let ¢ be a prime such that ord,(H) = 0, so that H is not identically
zero in Fy[T] (see § 1.5.1 for definition of ord,). By the ¢-critical polynomial associated
to H we shall mean the polynomial Cy = ¢~ ) H’ which has integer coefficients

and can be considered as a nonzero element of the ring IFy[7]. By the ¢-critical points
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of H, we shall mean the set A(H;¢) C F, of zeros of the polynomial Cyx which are
not zeros of H (both polynomials considered mod ¢). Finally, for any 6 € F,, we use

tg(H) to denote the multiplicity of # as a zero of H.

Proposition 4.4.2. Let { be a prime, g € Z|T| a nonconstant polynomial, and t =
ordy(¢"). Consider an integer e > t + 2 and a primitive character x mod (¢. Let

M = maxge a(g:0) 110(Cy) be the mazimum multiplicity of an (-critical point of g.

(i) For odd ¢, we have

Z X(g(u)) < Z NG(CQ) Pt/ (M+1) pe(1=1/(M+1))

u mod £¢ 0€A(g;0)

(ii) For { =2 and e >t + 3, we have

Z X(g(u)) S (12‘5)2t/(M—|—1) 25(1—1/(M+1)).

u mod 2°¢
In fact, the sum is zero if g has no 2-critical points.

In order to make use of the aforementioned bounds, we will need to understand the

quantities that appear when we apply them. The following observations enable us to

do this.

Proposition 4.4.3. Let {F;}X | C Z|T] be nonconstant and multiplicatively indepen-
dent. There exists a constant Cy = Cy(F}, ..., Fx) € N such that all of the following
hold:

(a) For any prime {, there are O(1) many tuples (Ay,. .., Ax) € [( — 11X for which
Ff . F25 s of the form ¢ - G in T[T for some ¢ € Fy and G € Fy[T);
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here, the implied constant depends at most on {F;}X,. In fact, if £ > C
and ged(¢ — 1, B(FY, ..., Fk)) = 1, then the only such tuple is (Ay, ..., Ax) =
(—1,....,0—1).

(b) For any prime { and any (A, ..., Ax) € NE satisfying € 1 ged(Ay, ..., Ak), we

have in the two cases below,

7(¢) == ord, (TP F(T)A - - Fie(T)4%)') = ord(F(T))

=0, ifl>ChLr>2
(4.22)

<G, i< Cond ([T F) = 0,0 > G2,

where F(T) = Zfil A F/(T) [ Ti<j<k Fj(T). In either of the two cases above,
J#
any root 0 € Fy of the polynomial

Cg(T) — =70 (Tcp(ﬂ)pl (T)Al - FK(T)AK)/

which is not a root of TT[I—, Fi(T), must be a oot of the polynomial —"OF(T)

of the same multiplicity.*

Proof. We start by writing F; = r; Hj\il GY" as in subsection § 4.1.1, so that
r; € Z and Gy,...,Gy € Z[T] are irreducible, primitive and pairwise coprime, and
M = w(F; -+ Fk). Recall that M > K and that the exponent matrix Ey(F1, ..., Fk)
has Q-linearly independent columns, making G(Fj,..., Fx) a nonzero integer. Fur-
ther, since G; are pairwise coprime irreducibles, the resultants Res(G;, G;/) and dis-

criminants disc(G;) are nonzero integers for all j # j" € [M]. Note that for any prime

4Once again, the last three polynomials are being considered as nonzero elements of F,[T].
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¢ not dividing the leading coefficient of any G; and not dividing

H disc(Gj) - H Res(Gj, Gy),

1<j<M 1<jAj <M
the product Hj\il G is separable in F,[7].
Also since (F*--- Fi) = (Hfil Fici_1> Zfil c;.F! 1li<j<k F}, the multiplicative in-
J#i

K
dependence of the polynomials {F;}X | forces the polynomials {Fi’ [Ti<j<kx Fj} C
J#i i=1
Z[T] to be Q-linearly independent. Writing D = deg(F} --- F) and writing each
F/(T) [ Li<j<x F;(T) = Z].D;()l ci;T7 for some {¢; ;}o<j<p—1 C Z, we thus deduce that
J#i

the columns of the matrix

C1,0 T CK,0

M1 = Ml(Fl,...,FK) : EMDXK(Z) (423)

Ci,p-1 '+ CKD-1

must be Q-linearly independent. Consequently, D > K and the last diagonal entry
3 € 7\ {0} of the Smith Normal form of M is also the largest invariant factor of M,

(in size).
Fix C == C1(F, ..., Fk) to be any positive integer exceeding all of the following:

e max {2, (B, TIL, Idisc(Gy)| - TTicpycns IReS(G5 Gl |

(recall that these are all nonzero),
o the sizes of the leading coefficients of Fi, ..., Fx,G1,..., G-

We claim that any such (] satisfies the properties in the statement of the proposition.
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Proof of (a). We may assume that ¢ > Cy. Let § = B(F,..., Fk), as defined in
§ 4.1.1. By the discussion at the start of the proof, the conditions defining C force
G1,...,Gy to be pairwise coprime in Fy[T]. Let (Ay,...,Ag) # (0,...,0) be any
tuple of nonnegative integers for which F{* ... F2X is of the form ¢ - G~ in Fy[T]
for some ¢ € Fy and G € Fy[T]. We claim that A;,..., Ax must all be divisible by
(¢—1)/dy where d; := ged(¢—1, 3). This will be enough to complete the proof of (a),
since there are no more than df < |8|% < 1 many tuples (Ay,..., Ax) € [( — 1]¥

with each A; divisible by (¢ —1)/d;.

To establish the above claim, we may assume without loss of generality that G is
monic, and note that ¢ € F; since ordy(F} - - - Fx) = 0 by definition of C;. Write each
G, as A\jH; in the ring F,[T], for some \; € F; and nonconstant monic H; € F,[T]]
(which can be done since ¢ doesn’t divide the leading coefficient of any G;). Then
F = Hj\il G?ij = pi Hj‘il Hj“ij for some p; € F). Since ¢ G*~! = Hfil Fhi =
(Hfil pfi> Tlicjen H%:fil“iin in F,[T], and G, Hy, ..., Hy are all monic, we find
that G = [T,y szgluiin. But now since [],;.,, G; is separable in F,[T], so
is [1,<;j< Hj, and we deduce that S K 1 A; =0 (mod £—1) for each j € [M]. This
can be rewritten as the matrix congruence (0-- - - - - 0)" = Eo(A; -+ Ag)T (mod £—1);

each side of this congruence is an M x 1 matrix, Y' denotes the transpose of a matrix

Y and Ej is the exponent matrix defined in § 4.1.1.

Now since M > K and FEj has full rank, there exist Py € GLyxm(Z) and Ry €
G Lk (Z) for which PyEy Ry is the Smith Normal Form diag(f, ..., fk) of Ey, with
B1, ..., Brx € Z\{0} being the invariant factors of Ey. Thus ; | ;41 forall 1 <i < K
and B = B(Fy,...,Fg) = Bx. This means that PyEy = diag(fi, ..., Bk)R;" and
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ertlng (qU>1SZJSK = Ral, we find that

Bi(g1Ar + -+ ik Ak)

A+ -+ A
=P Ey| ... = Prlarads awxAx) (mod ¢ —1).
0
Ax

0 Kx1
Mx1

Mx1

Hence for each i € [K], Bi(¢gnd1 + -+ + ¢ixAx) = 0 (mod ¢ — 1), so that (¢ —
1)/ ged(¢ — 1, 5;) divides g1 Ay + -+ + qixAx. But since §; | Pk, it follows that
(0—1)/ged(l—1,5k) = (¢ —1)/d; also divides g1 A1 + - - - + qix A for each i € [K].

We obtain
0 g+ + arAk Ay
_ {—1
= =R;! (mod a ) ;
0 g1 + -+ g Ak Ak
Kx1 Kx1 Kx1

(4.24)

establishing the desired claim that (A4y,..., Ax) =(0,...,0) (mod ed—_11>

Proof of (b). We start by noting that

(TP R(T)™ - Fre(T)M)

— ()T [ T+ o) (H E(T)AH) F(T), (4.25)

i=1 =1

where F(T) is as in the statement of the proposition. We claim that ord,(F) <

1y<c, C) for all primes ¢ satisfying ordy(F - - - Fix) = 0 and for all nonnegative integers
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Ay, ..., Ak satisfying (A, ..., Ax) Z (0,...,0) mod ¢. To show this, we proceed as
in the proof of (a), but working with the matrix M; defined in (4.23) in place of
the exponent matrix Ey. Observe that F(T) = Zf:_ol (Zfil ci,jAz) T7, hence if
k(0) = ordy(F), then £ divides all the entries of the matrix M;(A; -+ Ax)T. Since
M, has full rank and D = Zfil deg F; > K many rows, and since (A;,..., Ag) #
(0,...,0) mod ¢, an argument entirely analogous to the one leading to (4.24) shows
that £+ divides the last invariant factor 3 of M;. Hence ord,(F) = () < vy(B) and

our claim follows as |3| < C\.

As a consequence, we find that ord, (T‘P(m (Hfil Fi(T)Ai_1> ﬁ(T)) = ord,(F) <
Ly<c,C) for all primes ¢ < C satisfying ord,(F} --- Fx) = 0, and also for all primes
¢ > C (for which the condition ord,(F} - - - Fx) = 0 is automatic by definition of C}).
But now since ord,(¢(¢")) > 1 for r > 2 and ord,(¢(¢")) > Cy + 1 for r > Cy + 2,
(4.25) shows that 7(¢) = ord, (TW(”) (Hfil Fi(T)Ai_1> ﬁ(T)), establishing subpart

(b) of the proposition.

Finally, since in both the cases of (4.22), we have 7(¢) < r — 1, the identity (4.25)

reveals that

K /
C(T) =" (TW) 11 E(T)/“)

K
= o) (H FZ-(T)A"1> (W@ﬁ(T)) in the ring Fy[T).
=1

As such, any root of the polynomial § € F, of C;(T") (considered as a nonzero element
of Fy[T]) which is not a root of T[]~ F;(T), must be a root of ¢—"OF(T), and 0
must have the same multiplicity in Co(T") and ¢~"®F(T)). This completes the proof

of Proposition 4.4.3. O
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4.4.2. Proof of Proposition 4.3.4

We return to the set-up in Proposition 4.3.4. Since ay(q) # 0, we have

K
ord(J [ Wiw) =0

i=1

for each prime ¢ | q. Fix Cy = Cy ({W, x h1<i<x; Bo) to be any constant exceeding By,
(32D)?P*+2 the sizes of the leading and constant coefficients of {W; s }1<i<r, as well
as the constant Cy (Wi, ..., Wk ) coming from an application of Proposition 4.4.3
to the family {W; x }1<i<x of multiplicatively independent polynomials. We will show

that any such choice of Cj suffices.

We first consider the case D > 1; the case D = 1 will be dealt with towards

the end of the argument. For an arbitrary positive integer () and coprime residues

wy, ..., wg mod @), an application of the orthogonality of Dirichlet characters yields

#Vf(\fky)K (Q7 (wZ)fil) = ! Z Yl(wl) o 'YK(U)K>(ZQ;X1,~~,XK>N7 (4'26>

where Zg. vy, xx = Z X0.0(0) TTS, xi(Wik(v)) and xoq denotes (as usual) the
v mod Q

trivial character mod Q).

Dealing with the large primes dividing ¢: We first show that there exists a

constant K" = K'({W, x h1<i<k) such that uniformly in primes ¢ > C dividing ¢, we

have
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()Y (4D)N . .
= S)F (1—|—O<£N/D_K , uniformly in N > KD + 1

(4.27)

< K’ eﬂN:KDﬁ_eN/D, foreach 1 < N < KD.
To show these, we start by applying (4.26) to get

HVr(C5 (w)E) oy
SO(E@)N @( e

N T | T T

(X1 X5 ) Z(X0,05+X0,¢) mod €6 \1=1

where we have recalled that ay(¢) # 0 since ay(q) # 0. For any tuple (x1,..., Xx) #
(X0, - - - X0,) mod ¢, let £°0 :=lem[f(x1), ..., f(xx)] € {(, ..., ¢¢}. Using x1,..., XK
to also denote the characters mod ¢°° inducing x1, ..., xx respectively, we see that

vi- Moreover U, is cyclic since £ > Cy > 2. Letting

..........

v denote a generator of Up,, we see that the character group mod ¢°° is generated
by the character 1., given by ., (7) = exp(2mi/p(¢°°)). Hence, there exists a tuple
(A1,...,Ak) € [p(l)] satisfying y; = wéj for each 7, and since at least one of

X1, -, XK 1S primitive mod £, we also have

0,...,0) (mod ¢), ife ;
(A1, Ag) 2 ( ) (mod £ o=t (4.29)

(0,...,0) (mod £ —1), ifey=1.

We can now write

de; X1y XK e deo; X1+ XK
K
— 56—60 Z weo <U§0(260) H Wz’k(U)Az> ] (430)
v mod £€0 1=1
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Case 1: If ¢y = 1, then since ¢ > Cy > By, we have
ng(g — 1, 6(Wl,k7 ey WK,k)) =1.

Further, since £ > Cy > Cy (Wi, ..., Wky), we see by (4.29) and Proposition 4.4.3(a)
that [, Wﬁc cannot be of the form ¢-G*~1 in Fy[T]. As such, (4.30) and Proposition
4.4.1 show that

| Ze: rxie| < D=Y2 for any tuple (xi,...,xx) mod ¢¢ having eg = 1. (4.31)

-----

Case 2: If eg > 2, then since ordg(Hfil Wix) =0and £ > Cy > Ct(Wig, ..., Wki),
Proposition 4.4.3 and (4.29) show that

K
7(0) = ord, ((T#) T Win(T)*)) =0 < e — 2.

i=1
Thus (4.30) and Proposition 4.4.2(i) yield

’Z@e; _— XK’ < (Z ,UG(CE)> 66760/(Mz+1),

fc A,

where A, C F; denotes the set of /-critical points of 7% T, W, 1 (T)*, namely the
roots of Cy(T) = (T Hfil Wi x(T)%)" in Fy that are not roots of T#(**) Hfil W,k (T)4.

But by the last assertion in Proposition 4.4.3, we see that

K
My <Y pp(Co) < deg(d AW/, [[ Wiw) <D -1
0cA, i=1 1<j<K
j#i

164



4.4 COUNTING SOLUTIONS TO CONGRUENCES: PROOF OF PROPOSITION 4.3.4

This yields

| Zte; rnere| < DEEP for any tuple (x1,. .., xx) mod ¢ having ey > 1. (4.32)

.....

Combining the conclusions of Cases 1 and 2, and using the fact that there are at most
(%K many tuples (1, . . ., xx ) of characters mod £¢ having lem[f(x1), . . ., f(xx)] = £,

we get

1 ke
EGEC S Ziml < (DY Y £

(X15-sXK)7#(X0,25+-X0,¢) mod £° 1<ep<e

(4.33)

where in the last inequality above, we have used the facts that D > 2 and a4 (¢) >
1-D/(t—1)>1-D/(Cy—1) > 1/2. Now if N > KD +1, then (5-N/P < C;'/P <
1/2, so that the last sum in (4.33) is at most 2(4D)N¢X=N/P_ On the other hand, if
N < KD, then the same sum is < e'~N=x0(¢(K=N/D) Tngerting these two bounds into

(4.33) and (4.28) gives (4.27).

Dealing with the small primes dividing ¢: Now for an arbitrary ¢, we let ¢ =

[T ¢epq ¢¢ denote the Cy-smooth part of ¢. By (4.26),
1<Cy

k)~ 1 _ _
HVe (T () = > ) X wr) Za o) (434)
Given a constant C' > Cj, we fix kK to be any integer constant exceeding C' -

(SODCOCO>200~ Let Qg := Hfs”f{ gmin{e,r} — HZSCO ¢min{ve(9).5} Jenote the largest (K‘i‘ 1)_

free divisor of g. Write the expression on the right hand side of (4.34) as &’ + §”,
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where

1 _ _
S = E X1 (w1) -+ X (Wi ) (Zg xa, ... XK)N
X1, XK mod
lem[f(x1),---f(xK)] is (k + 1)-free

denotes the contribution of those tuples (x1, ..., xx) mod ¢ for which lem[f(x1), .. .,

f(xx)] is (k + 1)-free, or equivalently, those (x1,...,xx) for which lem[f(x1), ...,

f(xx)] divides Q.

For each tuple (x1, ..., xx) counted in &', there exists a unique tuple (¢4, ..., 1¥k) of
characters mod @)y inducing (x1, ..., xx) mod ¢, respectively. Noting that ay(q) =

ar(Qo), a straightforward calculation using (4.21) shows that

Ziniwo = D Yoo () [[r(Wiatw) oo

v mod q
v=u mod Qo

ged (v TiL, Wik (v),@)=1

u mod Qo

S _el@™ W . .
90<®N a @(QO)N Z (H w”ﬂ( Z)> (ZQOHZH ----- 1111()

Y1,k mod Qo N1
k
_ (so@o))K #Vire (Qoi (w)) (4.35)
v(q) P(Qo)N
We now deal with the remaining sum §” which is the contribution of those (x1, - .., Xx)

mod ¢ for which lem[f(x1),...,f(xx)] is not (k + 1)-free. For each such (x1,..., Xx),

we factor y; = Hzeani,éa where x;, is a character mod ¢°. Defining e, to be

ve (lem[f(x1), - ... f(xx)]), we observe that since f(x:) = [, f(xi,e) and each f(xi.)

is a power of ¢, we must have lem[f(x1,), ..., f(xx,e)] = €. For each (¢ || g, let
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(X105 - -+, Xx) also denote the characters mod ¢* inducing (x14,- .., Xxe) mod £¢

respectively. Then at least one of xiy,..., Xk must be primitive mod ¢*. The

,,,,,

’Za;m ----- XK| < H@(ge) H (ge_equef;xu ----- XK,Z|)‘ (436)
g g
er<K ey>k+1

We claim that for all prime powers (¢ || ¢ with e, > k + 1, we have
’ZK@L’;XLZ ~~~~~ XK,Z' < (DCOCO) 662(1_1/D)' (4'37)

For odd /¢, this follows essentially by the same argument as that given to bound
77777 vi 1 “Case 27 before: The only difference is that this time we use both the
assertions in (4.22) since ¢, > k + 1 > (30DC()*“ + 1 > Cj + 2. Now assume that
0 =2, ie. ey = vo(lem[f(x1),...,f(xx)]) > x+ 1 > 31. We shall use Proposition

4.4.2(ii).

To do this, we observe that the characters 1), n mod 2°? defined by

Y(5) = exp(2mi/2°7?), Y(=1) =1 and n(5):=1,n(-1) = —1

generate the character group mod 2¢2. Hence for each i € [K], there exist r; € [2°277]
and s; € [2] satisfying x; o = ¥ n%; also 2 t ged(ry,...,rk) as es > 4 and at least one

of X1.2, - - -, Xk.2 18 primitive mod 2¢2. Thus Zge; = Z Y (g(v)) n <U2 1L, Wi,k(v)SZ)’

v mod 2°€2

where g(T') = Hfil Wir(T)™ and we have abbreviated Zaes;y, ,...yx, t0 Z2es. Since

.....

n is induced by the nontrivial character mod 4, writing v := 4u + A and hy(T) =
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g(4T + X) gives

K
=1

22622277<

A==%1

:i > (HWZ ()\)s’) Z ¥ (ha(u)) (4.38)

A==1 i=1 % mod 262

w mod 2622

Wi,kmﬁ) DREACND)

If (Hfi . WM(A)&) £0, then [T%, Wix(A)* =1 (mod 2), so
K
ord, (H W, k(4T + )\)”"1) =0.
=1

As such, with G == SE riWi ik T2 Wik, we see that

7A(2) == ordy(h\(T)) = 2 + orda(G(AT 4+ N)) < 2+ orda(G) + 2deg(G) < Cy + 2D;
(4.39)

here we have used (4.22) and the fact that ords(F(47 + A)) < ords(F) + 2 deg(F) for

any nonconstant polynomial F. 5

Two consequences of (4.39) are that 2-(M@-2G(AT 4+ \) € Z[T] and that 7,(2) <

Kk — 3 < ey — 3. Thus Proposition 4.4.2(ii) applies, yielding

Z ¥ (ha(u))| < (12.5) - 260F2D . ge2(1-1/(Mo+1))

u mod 2¢2

where M) is the maximum multiplicity of a 2-critical point of h,.

Since [[X, Wir(4T+\)""1 =1 (mod 2), it follows that any such critical point § € Fy

is a root of the polynomial 2= -2G(4T + ), giving My < deg G(AT +\) < D —1,

5This can be seen by writing the coefficients of F/(4T + )) in terms of those of F, and using a
simple divisibility argument.
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so that

Z P (ha(w))| < (12.5) - 260120 . 9e21=1/D) < Do . 9e2(171/D),

u mod 2¢2

Inserting this into (4.38) completes the proof of (4.37) in the remaining case ¢ = 2.

Combining (4.36) with (4.37), we find that for each (xi,..., xx) counted in 8", we

have

.....

where A =[], (¢t denotes the (k4 1)-full part of lem[f(x1), - .., f(xk)], i-e,

lg: ee>r+1
the largest (k4 1)-full divisor of lem[f(1), - .., f(xx)]. Now for a divisor d of ¢, there
are at most d® many tuples (x1,. .., Xx) of characters mod ¢ for which lem[f(x1), ...,

f(xx)] = d. Hence, summing this last bound over all possible (x1, ..., xx) occurring

in the sum S”, we obtain

Co\CoN N

K AN/D
#(d) Alg: A>1 dg
Ais (k+1)-full (k+1)-full part
of dis A
p@™ Co\CoN 1
< e PO DL o
Algs A>1

A is (k+1)-full

In the last step above, we have noted that for any d dividing ¢ whose (x + 1)-full part

is A, we have d < A. Continuing,

"] (2DCg )N 1 _
LT I\ X somm) 1y (4.40)

Lelg k+l<v<e

Now if N > KD + 1, then since x > C - (30DCS?)2% > D(D + 3), we see that the

sum on v above is at most 2-*WN/D-K) (1 — 2_1/D)_1 < gf—f; < % Hence log(1 +
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S itcpee (VWD) gmRWN/D=K) o 9=RN/D I addition, since P(g) < Co,

equation (4.40) gives

e < {0 () )

N
1 (2DOC§°)CO> c
< . L —=, 4.41

NG ( 277D DK (4.41)

where in the last step, we have recalled that k/D > D~1.C-(30DC§?)*% > C-(2C}) .

Combining (4.41) with (4.35), we deduce that

#Viie (T (w)y) _ 8+
p(@N p()N

) (s;(%))[( {#Vf(vl?f;((%’;)fj"”ﬁl) Lo (%) } )

uniformly for N > KD + 1 and in coprime residues wq, ..., wg to any modulus q.

(4.42)

On the other hand, for each N € [KDJ], we have 1+ > ., . (—v(N/D-K)
In=

elv=kp e(K=N/D) “which from (4.40), yields |S"|/¢(@)N < (HZGHZ]“ e) v KD/E]vN/D.

Combining this with the trivial bound || /(7)Y < ¢(§) ™% < ¢ % < ¢ ™/P coming

from (4.35), we find that for each N € [K D], we have

*) [~ IN=kD
#Vn ok (T (wi) ) - (erna 6)
@ R

uniformly in ¢ and (w;)/, € UJ. (4.44)

Proposition 4.3.4 now follows in the case D > 1 by combining (4.27) with (4.42)
(for N > KD) or (444) (for N < KD), and then noting that [],, .o, ar(f) =

ax(q)/ar(Qo).

Now assume that D =1, so that K =1 and Wy ,(7T") .= RT + S for some integers

R and S with R # 0. We first make the following general observation, which is
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immediate from Proposition 4.4.2: For any primitive character y mod ¢°, the sum
Ziiy, =30 med v Xoe(W)X(Ro +8) =3 o x(v#)(Ru + S)) is zero for any odd
prime ¢ and any integer b > vy(R) + 2, as well as for £ = 2 and any b > vs(R) + 3.
Indeed in both these cases, the polynomial F(T) = T#“)(RT + S) has no (-critical

point, since ordy(F') = vy(R) which forces £~ ¢«(F) F/(T) = (¢~(R) RYT#() in F,[T].

By this observation, it follows that uniformly in N > 1 and in ¢¢ || ¢ with ¢ > Cj

(> |R]), we have

#V%(iv w) &JSE?;V (1 o (< 6% )Nl))' (4.45)

Indeed, we simply invoke (4.28) and note that if f(y) = ¢ for some ey > 2 = vy(R)+2,
then Zp., = 0 as seen above. On the other hand, if f(x) = ¢ (and there are £ — 2

many such characters mod £¢), then

Zien = 71| 3 (B4 8) — x(5)| = £

v mod £

u mod £

Letting q =[] |4 ¢° as before, we fix an integer k > Cy+3, and write #V](Vli)l (q;w) =
1<Cyo

o(@) " Z X(w)(Zgz )N =8 +8"”, where 8 again denotes the contribution of those

x mod g
x mod ¢ for which f(x) is (k + 1)-free. Then (4.35) continues to hold, and §” = 0 by

the general observation above. This yields

#Vha (@ 0) _ o(Qo) #Viva (Quiw)

p@  w(@) p(Qo)

which combined with (4.45), proves Proposition 4.3.4 in the final case D = 1. O

With Proposition 4.3.4 established, the proof of Proposition 4.3.3 is now complete.

171



4.4 COUNTING SOLUTIONS TO CONGRUENCES: PROOF OF PROPOSITION 4.3.4

We will eventually also need the following variant of Proposition 4.3.4, which follows

from an argument that is a much simpler version of that given for (4.27).

Corollary 4.4.4. Assume that {W; ;. }1<i<x are multiplicatively independent. Then

#V](\’;)K (¢; (w)E ) - o(q) X exp (O(\/log q)), for each fired N > 2K + 1
pla)™

g V% exp (O(w(q))), for each fized N < 2K,

(4.46)

uniformly in coprime residues wy, ..., wx modulo squarefree q satisfying aux(q) # 0

and hypothesis IFH (Wi, ..., Wku; Bo).

Towards Theorem 4.3.2

To deduce Theorem 4.3.2 from Proposition 4.3.3, we apply the orthogonality of Dirich-
let characters to see that the main term in the right hand side of (4.13) is equal to
(@(Qo))K Z | 1 Z 1
(q) p(a)*

n<z: (f(n),q)=1 n
(Vi) fi(n)=a; (mod Qo) (f(n),q)=1

(X150 XE)Z(X0,Qg »++» i=1
K
' Zﬂ(ﬂnxq):l [T xfin).
n<x i=1

Henceforth, let @ = H£|q€ denote the radical of q. To obtain Theorem 4.3.2, it

remains to prove that each Z]l(f(n)ﬂ)zl 15, xi(fuln)) = 0( Z 1) . For Q <« 1,

n<lx
(f(n),9)=1
this follows by applying Theorem 1.3.11 to the divisor Q* = lem[Q, Qo] < 1 of q.

n<x

(Note that as ¢ lies in Q(k; f1,--+ , fi), so does Q*, since ¢ and Q* have the same
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prime factors.) So we may assume that @ is sufficiently large. Theorem 4.3.2 would

follow once we show the result below. Here A and @)y are as in Proposition 4.3.3.

Theorem 4.4.5. There exists a constant &y = do(\) > 0 such that, uniformly in
moduli ¢ < (logz)X0 lying in Q(k; f1,--- , fx) and having sufficiently large radical,

we have

21/k
D xalfim) - () lygmam < (log 2)1_ ()@

n<x

for all tuples of characters (x1, ..., xXx) 7# (X0.Qos - - - » X0,Q0) Mm0d Q.

Let C(Qo) denote the set of tuples of characters (¢1,...,1%x) mod Qg, not all triv-
ial, such that Hfil 1i(W; r(u)) is constant on its support, which is precisely the set
Ri(Qo) ={u € Ug, : Wi(u) € Ug, }. To prove Theorem 4.4.5, we separately consider

the two cases when a tuple of characters mod @ lies in C(Qo) or not.

— Section 4.5

Proof of Theorem 4.4.5 for nontrivial tuples of

characters not in C;.(Q))

For any integer d > 1 and any nontrivial tuple (i1, ..., 1) of characters mod d not

lying in Ci(d), we have

> XoaWr (Wig(w) - o (Wi ()| < ax(d)p(d).

u mod d

With A as in Proposition 4.3.3, we define the constant 6y == 0y(Wik, ..., Wk By) €

(0,1) to be
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max max
d<Ai (W1, )#(X0,d»++:X0,4) mod d
o (d)#0 (W1, %K) & Ci(d)
1
— Xo.a(W)1(Wik(w)) -+ o (Wi g (w))] -
@ | 2

Then since @y < A, we have for any nontrivial tuple (x1, ..., xx) & Ck(Qo),

Y Xo@@xa(Wik(w)) - xx(Wick(w)

u mod Qo

< 100 (Q0)p(Qo)- (4.47)

We set 0 := (1 — 6;)/2 and Y = exp((log x)%/3). To establish Theorem 4.4.5 for all

(X1s- -5 XK) € Cr(Qo), it suffices to show that

L1/E

D alhlm) ) Tymaom € qosimm (449

n<x
p>Y = pFtl | n

This is because by the arguments before (4.5), the contribution of the n’s not counted
above is negligible. Writing any n counted in (4.48) uniquely as BM A* (as done before

(4.6)), we see that the sum in (4.48) equals

Y lymgm <szfz > > Ly (szfz >

B<zx M<z/B
P(B)<Y M is k-full
B is k-free P(M)Y
K
Z Lp-(aysy Lipearyg=1 H(A)? HXi(fi(Ak)> (4.49)
A<(z/BM)/* =1

Moreover, the arguments leading to the bound for ¥, towards the end of section 4.2
show that the tuples (B, M, A) having M > z'/2 give negligible contribution to the
above sum. To prove (4.48), it thus only remains to bound the contribution of tuples

(B, M, A) with M < x'/2 to the triple sum in (4.49). To deal with such tuples, we
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will establish the following general upper bound uniformly for X > exp((logY)?):

X
k
> by Ty, Hxl FA) <€ qoxyrmmm (450

A<X

We apply a quantitative version of Haldsz’s Theorem [76, Corollary 111.4.12] on the

multiplicative function

K
F(A) = Lp-(apsy Ligam g1 #(A)? [ a(fi(A%),
i=1

taking 7" := log X. This requires us to put, for each ¢t € [-T,T], a lower bound on

the sum below (which is the square of a certain “pretentious distance”):

D(X;1)
1 —it
= Z ~ (1= Re Loy Lispmg=1 #(p)* p sz
p<X b
— (1 — ) logy X + i log, Y (4.51)
+ Z <1 — Re( ltHXz zk )) + O((lOg (3Q))O(1))
Y<p<X
(Wi(p).a)=

here to get the second line from the first, we use Lemma 2.2.4.

To get a lower bound on D(X;t), we proceed analogously to the proof of [60, Lemma
3.3]. The key idea is to split the range of the last sum above into blocks of small
multiplicative width, so that the complex number p~ is essentially constant for all p
lying in a given block. More precisely, we cover the interval (Y, X| with finitely many
disjoint intervals Z == (n,n(1+ 1/ log® X )] for certain choices of n € (Y, X], choosing

the smallest 1 to be Y and allowing the rightmost endpoint of such an interval to jut

175



4.5 PROOF OF THEOREM 4.4.5 FOR NONTRIVIAL TUPLES OF CHARACTERS NOT
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out slightly past X but no more than X (1 + 1/log* X). Then the last sum in (4.51)

equals

; Z % (1 — Re (pithi(Wi,k(p>>>> +0 (@) (4.52)

peEL
(Wi (p),q)=1

Consider any Z occurring in the sum above. For each p € Z, we have

i 1

—it _ —it < < )
|p 'I’] | — Og2X — logX

tlogp
/ exp(—ig) d@' < [tlogp —tlogn| <
tlogn 1

This shows that uniformly in Z, the inner sum in (4.52) is equal to

> % (1 —Re (p” Hxi(Wz,k(p))»

pEL
(Wk(p),a)=1

- 1

= E 1—Re(n " | [ xi(Wix(u E -

€U, ( ( 1_[1 ( k( )> p

u q (] pEI
(Wi (uw),9)=1 p=u (mod q)
1 1
@] - 4.53
t 10g X Zp ( )
peL

Note that p = (1 + o(1))n for all p € Z. (Here and in what follows, the asymptotic
notation refers to the behavior as + — oo, and is uniform in the choice of Z.) For
parameters Z, W depending on X, we write Z 2 W to mean Z > (1 + o(1))W. By

the Siegel Walfisz Theorem,

1 1 1 1 1 1
DR ST " D D
p U wla) 7 plg) &~ p
peL peL peET peL
p=u (mod q) p=u (mod q)
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Hence the whole main term on the right hand side of (4.53) is

1 1 it 5
> m e ; Z (1 — Re (7] EXZ(WZk(u»)) (4.54)

peL uely
(Wi (u),q)=1
1
2 (g — agd -1, 4.55
2 (o — ady) E p (4.55)
peL

where in the last step above, we have used (4.21) and (4.47) to see that

@ Z HXz‘(Wz‘,k(U))‘

u€ly =1
(W (u),q)=1
K
ar(q)
" an(Q0)2(Qo) ol” {(Wik(r)| < agds.
a(Qo)w(Qo) TH%:QO X0.Q ( >HX( k( )) k01

Inserting the bound obtained in (4.54) into (4.53), we find that each inner sum in
(4.52) is

1 . K 1 1 1
Z , <1 —Re (p_‘ HXZ(Wzk(p))>> 2 ak(l—al)z ~+0 <logX Z_> ‘

peT 1=1 peT p peL p
(Wk(p),a)=1

The O-term above when summed over all Z is < (log X) ™" > o p™" < logy, X/ log X.

Thus, the whole main term in (4.52) is at least

ay, (1 — 0 — g) (logy X —log, Y).

Using this fact along with (4.51) yields
0 5
D(X;t) > (1 — g (51 + 5)) log, X + ay <51 + 5) log, Y + O((logQ(gq))O(l)%
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uniformly for ¢t € [T, T]. As such, [76, Corollary II1.4.12] establishes the claimed

bound (4.50).

Now for each M < /2] we have (z/BM)'Y* > 2'/2k Applying (4.50) to each of the
innermost sums in (4.49), we see that the total contribution of all tuples (B, M, A)

with M < x/2 to the triple sum in (4.49) is

< Z Z (]Og m)l—ak(51+6/2) < (logx)l—ak(51+5)’

B<l  M<zl/?: M is k-full
P(M)<Y, (f(M),q9)=1

here we have bounded the sum on M using (4.7) (with “Y” playing the role of “y”)
and Lemma 2.2.4. This proves (4.48), and hence also Theorem 4.4.5 for all nontrivial

tuples of characters (xi,. .., xx) mod Qg not in Cx(Qo)- ]

— Section 4.6

Proof of Theorem 4.4.5 for tuples of characters

in Ck(Qo)

It suffices to consider the case when x is an integer, and we will do so in the rest of the
section. Our argument consists of suitably modifying the Landau-Selberg-Delange
method for mean values of multiplicative functions (see for instance [76, Chapter
I1.5]), and to study the behavior of a product of L-functions raised to complex powers
by accounting for the presence of Siegel zeros modulo ¢. This is partly inspired from
work of Scourfield [69] and will also need some results from her paper. We will denote

complex numbers in the standard notation s = o + it.°

6The parameters o and o) (to be defined later) in this section have nothing to do with the
divisor functions or(n) = }_,,, d" mentioned in the introduction. We are not working with the
divisor functions in this section.
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Recall that Q = Hé\q ¢; since ¢ is k-admissible, so is (). Consider any X = (x1,..., Xk) €
Cr(Qo), so that the product Hfil Xi(Wi(u)) is constant on Ry (Qo); let ¢y denote this

constant value. Consider the Dirichlet series

Mf = EUMQ -
A6 = 32 0 T = 35 200 ]
n>1 =1 n>1 =1

which is absolutely convergent in the half-plane o > 1.

In the rest of this section, we fix pg satisfying max{0.7,k/(k 4+ 1)} < po < 1.

4.6.1. Analysis of the Dirichlet series.

We start by giving a meromorphic continuation of F,(s) to a larger region. To do
this, set Lo(t) == log(Q(|tk| + 1)) and recall that there exists an absolute constant
¢1 > 0 such that the product [],, .4 o L(s,%) has at most one zero . (counted with
multiplicity) in the region o > 1 — ¢1/log(Q(|t| + 1)), which is necessarily real and
simple; f3, is called the “Siegel zero”. If f3, exists, then it is a root of L(s, ) for some
real character 1, mod @), which we will be referring to as the “exceptional character”.
By reducing the constant c; if necessary, we may assume that ¢; < 1 — g, and that

the conductor of 1, (which is squarefree) is large enough that it is not (D +2)-smooth.

Let D (co) denote the region

{U+d:0>%<1—£;w)}.

Then [, 000 L(sk, 1) has at most one zero and exactly one pole in the region

Di(co), namely S, /k and 1/k, respectively.

Branch cuts and complex logarithms: In the rest of the section, we assume that
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the complex plane has been cut along the line o < 1/k if oy, (Q)) and ¢ are not both
1, whereas if a;(Q) = ¢y = 1, then the complex plane is cut along the line o < . /k.

(If ax(Q) = cg = 1 and if there is also no Siegel zero mod ¢, then there is no cut.)

Lemma 4.6.1. The Dirichlet series F\(s) is absolutely convergent on the half-plane

1

o > 1, where it satisfies

F\(s) = Fi(sk)= g(sk)= Gyi(s) Gyal(s) (4.56)

with
a(Q)

Fsk)=| 1T II ZGskwy®

Q11Q Y mod Q1

Y primitive

ai(Q)

/ ()
=TT T T(-%) |
QiQ  pmod @y g @

Y primitive

1 _
1) = o 2 X0

velUq
Wi (v)eUq

Here, the functions Fy(sk), g(sk), Gy1(s) and G, 2(s) satisfy the following properties:

(i) Fi(sk) is holomorphic and nonvanishing in the region Dy(cy) — (—oo, 1/k]. 7
In fact, if ap(Q) = cx = 1 and if B. exists (resp. doesn’t exist), then the same

is true in the bigger region Dy(co) — (—o0, Be/k| (resp. Di(co)).

1) g(sk) and G 1(s) are holomorphic and nonvanishing in the half-plane o > py/k,
X

"This region is obtained by omitting the ray (—oco,1/k] from the region Dy (co).
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and we have, uniformly for all s in this region,

max {

(11t) Gy 2(s) is holomorphic in the half-plane o > po/k, wherein

g'(sk)| |Glals)
g(sk) ‘ ’ 'Gx,l(s)

} < max{1, (log Q)" ~7*} loglog Q. (4.57)

G 2()], |G a(s)] < 1.

Before proving this lemma, we state some results from [69] (or immediate conse-

quences thereof) that will be useful to us in the sequel.

Lemma 4.6.2.
1) [69, Lemma 3(i)(a)] We have (=7 log ¢ < max{1, (logm)'=7}loglog m, uni-
Lm

formly in positive integers m > 3 and in complex numbers s having o > 0.7.
(i) [69, Lemma 7] For ally > 1 and 0 < X\ <1, we have fyoo e turtdu < yrlev.

(7ii) [69, Lemma 9(ii)] With g(s) coming from the statement of Lemma 4.6.1, we have

19 (5)/g(s)| < max{1, (log Q)7 }loglog Q, uniformly for s having o > 0.7.

(iv) [69, Lemma 15(i)] With Fi(s) coming from the statement of Lemma 4.6.1,

Fi(s) N (@) aw(@)y(¥e)
Fi(s)  s—1 s — B

< log(Q(Jt] + 1)),

uniformly in complex numbers s satisfying o > 1 — c¢1/21og(Q([t| + 1)).

Here, subpart (ii) is a standard bound on the tail of the integral defining a Gamma
function, and follows by integrating by parts. Subpart (iv) is a direct consequence of

(69, Lemma 15(i)] with the parameter “¢” there defined to be log(Q(|t| + 1)).
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Proof of Lemma 4.6.1. Absolute convergence of F(s) on the region o > 1/k:
To see this, we start by noting that F\(s) is tautologically absolutely convergent on

o > 1, and in this half plane, we have the Euler product

F(s) H(HZHU 2 szf, ) (4.58)

D v>1

In the rest of the proof, we fix Bj, > 2%/#0 such that B}, exceeds any k-free integer n
satisfying ged(f(n),q) = 1; recall that by Lemma 4.2.3, By can be chosen to depend
only on {Ww}lléé K Then the contribution of primes p < By to the aforementioned
Euler product is_;_ﬁnite product, each factor of which is absolutely convergent in the
region o > 0. On the other hand, by Lemma 4.2.3 and the facts that () is k-admissible
and (x1,--.,xk) € Ck(Qo), the total contribution of all primes p > By to the above

Euler product (4.58) is

L wip),Q)=1 1
H(1+#+o ) ) (4.59)

p> By

which is absolutely convergent in the region o > 1/k. (This is because the series
> L wi(p).@)=1/P* s absolutely convergent for o > 1/k.) This shows that F\(s) is

absolutely convergent on the region ¢ > 1/k.

The product decomposition (4.56): Thus (4.58) holds in the region o > 1/k, and

in this same region, we may write

o 1 n)o—ﬁ" 1 (-4)°

beUg  p=b (mod Q plQ
Wi (b)eUq Wi(p)eUg
~ Lww.=1 %
v>1
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Now for o > 1/k, the orthogonality of Dirichlet characters mod @ and the fact that
log L(sk, ) = >, ¥(p")/p"** show that the logarithm of the first double product in

(4.60) is equal to

1
Z Z Upvks

beUqg p,u>1
Wi (b)€Ug p=b (mod Q)

L R —— B
X Z (Q) Z w(b)z pks + Z Upvks

belUq v 1 mod Q P p,u>2
Wi (b)eUq p=b (mod Q)
= ar(@)cg D v(¥)log L(sk,¥)
1 mod @

1 1
+ & Z Z Z W - Z Upvks

belUg v>2 \ p=b(mod Q) p: p?=b (mod q)
Wi (b)EUQ

We insert this into (4.60), noting that L(sk, 1) = L(sk,*) HZ‘QQ(l —*(£)/£5%) and
1
that v(v) = ~v(¢*) if the primitive character ¢¥* mod () induces ¥ mod ). This

yields (4.56), with

Grals) = [T (1+Z Hxl fily ) (1 Hne=)”

p<By, v>1

and

Lwe(p).@)=1 | %
Gx,l(S) = H (1+Z f(p Q) . HXz filp ) ( —(W](;ZSQ) 1)

p> By v>1

1 1
TEXP [ & Z Z Z W o Z vp'uks

beUg v2>22 \p=b(mod Q) p: p?=b (mod q)
Wk(b)EUQ
1\ %
II (1 - %) . (4.61)
plQ
Wi(p)eUg
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where By, was as defined after (4.58).

Proving statements (i)—(iii) of the lemma: To see (i), recall that [ [, ,,.q o L(sk, )
has is holomorphic and nonvanishing in the region Dy (co) — (—o0, 1/k]. In fact, if

ap(Q) = cg =1, then

ai(Q)

Fi(sk)=L(sk.xo)- | [T ] ZL(sk.w)y® ,

Q1|Q ¢ mod Q1
@Q1>1 ¢ primitive

which shows the other assertions of (i). Also (iii) is immediate by a direct calculation

using the definition of G, 2(s).

We thus focus on (ii). By the very definition of g(sk), we see that it is holomorphic
and nonvanishing in the half-plane ¢ > 0. Also the bound on |¢'(sk)/g(sk)| in (4.57)

is an immediate consequence of Lemma 4.6.2(iii).

To show the assertions for G, ;(s), we recall that by the arguments preceding (4.59)

the first product (over primes p > By) in (4.61) is equal to

1T (1+ L (p).Q)=1 +O( 1 )) (1 B ﬂ(wk<p>,cz>=1>c>?
B, pks p(k—i—l)a pks
1
- H (1 +0 (p(k+1)a)) ;

p>DBy,

which is absolutely convergent and defines a holomorphic function in the half plane
o > po/k. (Here is it important that pug/k > 1/(k + 1).) Likewise the exponen-
tial factor in (4.61) defines a holomorphic function in the same half plane, hence
so does Gy 1(s). To see that G, 1(s) is also nonvanishing in this region, we need
only see that the condition p > B, > 2F/ guarantees that each of the factors

1+ szl Liem.a= Hfil Xi(fi(p¥)) in (4.61) has size at least 1 — ZUka_”” >1—

p'us
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2p~* > 1 — 2B, " > 0. Finally, a straightforward computation using (4.61) shows

that for o > ug/k, we have

G (s 1 1
Mgk T o«
Gya(s) p p
Pl plQ
Wi (p)eUg
completing the proof of (4.57) via Lemma 4.6.2(i). O

4.6.2. Preparing for the contour shift: Auxiliary functions and intermedi-

ate bounds

Our objective is to relate the sum in Theorem 4.4.5 to the Dirichlet series F)(s) by
an effective version of Perron’s formula, and shift the contour to the left of the line
o = 1/k. As such, we will need the following proposition in order to estimate the

resulting integrals.

To set up, we choose €; = €;(\) to be a constant (depending only on \) satisfying

0 < € < 1—cos(2m/d) for any positive integer d < A. Consider the functions

F\(s) = Fi(sk)= g(sk)= Gya(s)

_ N 1 ak(Q)CQ ,Be _ak(Q)CQ7(¢8)
H,(s) = F\(s) (s - E) (5 — ?> ,

where here and in what follows, any term or factor involving f, is to be understood

as omitted if the Siegel zero doesn’t exist. By Lemma 4.6.1(i) and (ii), we see that:

1. ﬁx(s) is holomorphic and nonvanishing on Dy (cy) — (—o0, 1/k]. If ax(Q) =cg =1

and if . exists (resp. doesn’t exist), then the same is true on Dy(co) — (—o0, B./k]
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(resp. Di(co)).

2. H,(s) analytically continues into and is nonvanishing on Dj(co) — (—o0, e /k].
3. H,(s) analytically continues into and is nonvanishing on Dj(cy).

(Recall our branch cut conventions elucidated at the start of the section.)

In what follows, we set T := exp(y/log x).

Proposition 4.6.3. We have the following bounds:

(i) [H\(1/k)| < (logz)*+( @75,

(i7) |ﬁ[x(s)| < (log 2)** @ /* yniformly for real s satisfying
1 C1
—(1-— <s<
b < 4log Q) =0

(iii) |F\(s)| < (log x)1/2+)w (@) yniformly for complex numbers s = o+it satisfying

| =

o> 1 (1 - m) | < T and |s — 0/k| > 1/Lq(t) for 0 € {1, 8.}

(iv) Uniformly in real s < 1/k satisfying s > 7 (3 + %) (if the Siegel zero exists) or

s> 1 (1 — 41%@) (otherwise), we have

(1) 0 (1) - 96

Proof. We start with the following

< togapomencarn (1),

General observation: We have |ﬁx(s)| = |]§X(w)| uniformly in complex numbers

s and w satisfying Im(s) = Im(w) =: ¢, and |s — w| < Lo(t)"! and Re(w) > Re(s) >

1 c
k (1 - MQl(t))'
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Indeed by the definitions of ﬁx(s) and fx(s), we have

‘{wz)
H,(2)
Fi(kz) | an(Q)  an(Q)v(¢) g(kz) | Ga(2)
= |esh | = - ok X Lo(t) (4.62
X (Fl(k:z) + kz—1 kz — S. t R g(kz) * Gy1(2) <Lolt) (462)
uniformly for complex numbers z = u + it satisfying u > % <1 — m> In the last

bound above, we have used (4.57) and Lemma 4.6.2(iv). The general observation now

follows by writing

log (ﬁX(w)> = /RE(W) Mdu.

Re(s)  Hy(u+1t)

(i) Let bi(t) = %(1 + Lﬁ(t)) for some absolute constant cs > 0. By the above

observation and the definitions of ﬁx(s), ﬁx(s) and H,(s), we see that

i (5) <
< B (b(0))] (log Q)(1 = B,) 2@

< | Fy(kbi(0))g(kbr, (0))[FC%) (log Q)*(1 — B.) >+, (4.63)

()] @ = B @ < o)) (- 5@

Here in the last bound, we have noted that |G, 1(bx(0))| < log, @, as is evident from

the fact that [T o (1 —p )™ < exp(Y, 0 1/p) < exp(X <o) 1/P) <
Wi(p)€EUq -

logw(Q) < log, Q.
Now proceeding exactly as in the proof of (4.56), we see that for all s with o > 1/k,

we have

S LUND i g k) i), (.60

nks
n>1
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where

_ 1
G(s)=]] (1 +) ks (Lise),@=1 — Lwemr@)=1 Lippre-n).g)=1)

p v>2

1 1
- eXp Z Z Z Upvks o Z Upvks

beUg v2>2 \p=b(mod Q) p: p?=b (mod Q)
Wi (b)eUq

p|Q
Wi(p)€Ug

Uniformly for s with o > 1/k, we observe that the infinite product above has size
at least 1 — 3> ~,1/p" > 1 and at most exp(}_, -, 1/p") < 1. Likewise, the

exponential factor has size < 1 in the same region. Moreover, for o > 1/k, the product

over p | Q is < [exp(D_,10. (wi(p).0)=1 p~*)|, which is > 1 and < exp(Y_, o P <

log, . Putting these observations together, we find that
1 < G(s) < log, @, uniformly in complex numbers s having o > 1/k.  (4.65)

Applying this lower bound on G(by,(0)), the equality (4.64) yields

L (k) O)—
[P (kbi(0)) g(kby(0))] < Y~ —LHE=0 < (kb (0))
n>1

1

= W +0(1) < log Q,

so that from (4.63), we obtain |H, (1/k)| < (log Q)3(1 — B.)~2*(@. Subpart (i) now
follows as @ < (logz)X° and as 1 — B, >, Q~/?K0 »_ (logx)~/? by Siegel’s

Theorem.

(ii) By the general observation at the start of the proof, we have |H, (s)| < |H,(1/k)| <
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|H (1/k)|(1 = B.) (@ < |H, (1/k)|(log z)**(@/20 The result now follows from (i).

(iii) By the same general observation, we have |ﬁx(3)| < |ﬁ]x(bk(t)—|—it)|, and since |s—
0/k| > 1/Lo(t), we have by(t) +it —0/k =< s — 0/k for 0 € {1, 5.}. Thus |F\(s)| <
|I§X(bk(t) +it)]. (Recall that flx(s) = ]:;X(s) (s— %)ak(Q)cz (s— %)_ak(@c’ﬂ(%).) Us-

ing (4.61) and replicating the arguments that led to (4.65), we also obtain

(log, Q)il < Gx,l(s) < log, Q,

uniformly in complex numbers s having o > 1/k. (4.66)
Thus uniformly for s as in subpart (iii) of the proposition, we have
[Fe(9)] < [ (bi(t) +it)] < (logy Q) - |Fy ((bi(t) + it)) g (k(bi(t) + it)) ).

(Recall that ﬁx(s) = Fi(sk)x g(sk)* Gy1(s).) Next by (4.64) and (4.65), we get

Re(cg)

Re(cs)
~ Lymh@=1)
Fi(s)] < (log Q) < (l0g, Q) (E DG} ) -

n>1

T Lpnr), =1
R (D) Fit)

n>1

By (4.64), (4.65) and (4.66), we get

|F(5)] < (logy Q)| Fy (kb (t))g(kbr(£))[*0) < (log, Q)%|F) (bi(1))].

By definitions of by (t) and f]x(bk(t)), the last bound gives
|F(s)] < (logs x)® | Hy (b (1)) | Lo ()@ (1 — )@,

Finally, recall that |t| < T = exp(y/Iogx), that 1 — 8, >, (logz)~/?° and that

|ﬁx(bk(t))| < |ﬁx(1/k)| < (log z)**@<1/* (by subpart (ii) the general observation at
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the start of the proof). This yields |Fy(s)] < (logz)*@01/2t)  Lemma 4.6.1(iii)

now proves the assertion.

(iv) It suffices to show that uniformly for s satisfying the same conditions as in this

subpart,

|H\(s)| + [H,(s)| < (log z)2x(@</5 (logQ + 1 —15 ) . (4.67)

(Here as usual, the second term on the right is omitted if there is no Siegel zero, oth-
erwise it dominates.) Indeed once we establish (4.67), then from the bound 1—f, >,
(log z)=/20, it follows that | H, (s)|+|H(s)| < (logx)1/20tex(@/5)a which combined
with Lemma 4.6.1(iii) and the observation |H,(1/k)Gy2(1/k) — H,(s)Gy2(s)| =

f:/k(HX(u)GXQ(u))’ du| completes the proof of the subpart.

To show (4.67), we recall that H,(s) is non-vanishing for s as in the subpart. Further

(4.62) applies with z = s for all s considered in this subpart, yielding

‘Hus) |G 1 au(@eer(w)
H,(s) f]x(s) S s — Be/k
1 1
<<£Q(0)+1+1_B€ <<logQ+1_66.
As a consequence,
Hy(1/R)| | % Hyw)
‘log H, (5 ‘ L mwm™

1 1
< (E_S) (log@—ir 1—5e) < 1,

showing that |H,(s)| < |H,(1/k)| uniformly for all s in the statement. Collecting
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these bounds, we obtain for all such s,

S

[Hy(5)] + [H) (s)| < \HX (é)\ + \ZE; | 'HHQ(/Z)’ | ‘HX @‘
<l (B e 5)

so that the desired bound (4.67) now follows from subpart (i). This concludes the

proof. ]

4.6.3. Perron’s formula and the contour shifts

We first show that there is some X sufficiently close to x for which the error term

arising from an effective Perron’s formula is small.

Lemma 4.6.4. Let h == x/log’x. There exists a positive integer X € (x,z + h]

satisfying
1m0
E —l(f( ;’?) ! <<X1/klogX.
sxjacmzsxya | 108X/)]
n#X

Proof. This would follow once we show that

Liym).@=1 1k
Ty <@ hlog, (4.68)
:c<Xz<:x+h 3X/4<Z:77,<5X/4 |log(X/n)]|
n#X

with the outer sum being over integers X € (z,z + h]. (Recall that x € Z" in this
entire section.) To show this, we write the sum on the left hand side as S; + Ss,
where S; denotes the contribution of the case 3X/4 < n < X — 1. Writing any n
contributing to S; as X — v for some integer v € [1, X/4), we see that |log(X/n)| =

—log(l —v/X) > v/X > v/x. Recalling that n = Bm for some k-free B of size
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O(1) and some k-full m, we thus have

1 1
S > > T €T XX
[log(X/n)| / n) v
3z/4<n<z+h x<X<z+h Bk1 B<m< zEh <y <w+h
nt+1<X<4n/3 m is k- full r<v+Bm<x+h

1 h
<Lz Z ;Z Z 1<<:clog:1:<x1/k;+x1/(k“)><<x1/khlogx,

1§v§x44»h Bkl ;cgv <m< acfg+h
m is k-full

where we have bounded the last inner sum on m using the Erdés-Szekeres estimate
on the count of k-full integers (see [23]). This shows that the sum S is bounded by

the right hand expression in (4.68). Similarly so is the sum Sy, proving (4.68). [

To complete the proof of Theorem 4.4.5, it suffices to establish the bound therein for
the “X” found in Lemma 4.6.4 in place of “z”, for once we do so, we may simply note

that

S A e (Fe () Lo~ \

rz<n<X

< 1 < I«

S D O LD DED DI S o e
r<n<X Bk1 w<m§X

m is k- full

To show the bound in Theorem 4.4.5 for X, we start by applying an effective version
of Perron’s formula [76, Theorem I1.2.3]. To bound the resulting error, we use Lemma

4.6.4 and note that

xtrms) [0S 4 % Lym.@-=1
n<sx/a  n=sx/a) T1log(X/n) nt (1 x)

Xl/k:
S

k

Bk1 m>1
m is k-full
< 1+——+0 | ——+
T ];[ p1+1/logX p1+1/k:
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X1/k 1 XVk]log X
< T exp (Z p1+1/logX) < T )

p

with the last bound above being a consequence of Mertens’ Theorem along with the

fact that

1 1
PDersris D DINED D

p>X 7>0 X2j <p<X2j+1
y 1
< Zexp(—2 ) Z -« 1.
j>0 X2 <p<x2 !

(Recall that T' = exp(v/logz) > exp (3+/log X).) As such, [76, Theorem II.2.3] yields

Z x1(fi(n)) - xx (fx(n)Lim),Q)=1

n<X

Our arguments will be divided into three possibilities:
Case 1: When (a4 (Q), c5) # (1,1) and there is a Siegel zero . mod Q).
Case 2: When (a4 (@), cg) # (1,1) and there is no Siegel zero mod Q.

Case 3: When (a4(Q),cx) = (1,1).

In Case 1, we will be assuming henceforth that 5. > 1 — 52 ok otherwise decreasing

24log

c; reduces to Case 2. Let 5* = %4—% and oy (t) = % (1 — 4;@%» so that % > 01(0).
Let 6,6, € (0, 3./10k) satisfy ox(0) < 2 — 25, < L= + 25, < & < L —25. Consider

the contours
« I'y, the horizontal segment traversed from ¢ (1 + @) +iT to op(T) +iT.

o '3, the part of the curve oy (t) + it traversed from t =T to t = 0.
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[y :=T'4(d1), the segment traversed from o (0) to 5./k — 6; above the branch

cut.

['s :== I'5(d1), the semicircle of radius 0; centered at f./k, lying in the upper

half plane and traversed clockwise.

I'e = I'¢(01), the segment traversed from S./k + §; to 8*/k above the branch

cut.
['; :=T'7(0), the segment traversed from 5*/k to 1/k — ¢ above the branch cut.

I's :=I'g(d), the circle of radius 0 centered at 1/k, traversed clockwise from the

point 1/k — § above the branch cut to its reflection below the branch cut.
[} = T}(0), the segment traversed from o4(0) to 1/k — 9 above the branch cut.

I't == T%(61), the circle of radius 0, centered at (./k, traversed clockwise from

the point (3./k — d; above the branch cut to its reflection below the branch cut.

Here I';(d1) is relevant only when our branch cut is along ¢ < B./k (i.e., when

ap(Q) = cg = 1 and [, exists), while the rest of the contours are defined irrespective

of the branch cut. We define the contour I'; by

(

25:2 Ly + Z;ZQ T, under Case 1

Z?ZQ I+ + Z?ZQ Iy, under Case 3.
\

Here T, (resp. T',) is the contour obtained by reflecting T'; (resp. I';) about the real

axis.
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Case 1: (ax(Q),¢z) # (1.1) and there is a Siegel zero 3, mod Q.

ow(T) +iT I i (1 + ﬁ) +iT

or(0) +

ou(T) —iT (14 ghy) T

Case 2: (0x(@),cg) # (1,1) and there is no Siegel zero mod Q.

1 1 P
op(T) + 1T I k (1 + 1ugr) +iT

A

Iy
0 - & .\
ox(0) < 1/k
X
. -~

% (1+ lu;_\') —iT

195



4.6 PROOF OF THEOREM 4.4.5 FOR TUPLES OF CHARACTERS IN Cr((Qo)

Case 3: ((Q), ;) = (1,1) and there is a Siegel zero 3, mod Q).

au(T) —iT (14 ) T

In Case 3, if 3. doesn’t exist, then there is no branch cut and I'y, Ty and T are

excluded from I'y. In all three cases, the integrand in (4.69) is analytic in the region

enclosed by I'y and the segment joining % (1 + 10ng> — 1" and % <1 + loéX) + 1.
(Note that if ¢y = 1, the definitions of Q(k; f1,-- - , fx) and Gy 1, Gy 2 in Lemma 4.6.1
give G, 2(1/k) = 0, canceling the simple pole of F(sk) at s = 1/k. In particular, this

happens in Case 3.) So

> xa(fin) - xx(Fre(n) L)@t

n<X

1 F (s)X*® X1klog X
__ L &dsﬂ)(%). (4.70)

271 r; S

We now proceed to estimate the integrals occurring on the right hand side above.

In the following proposition, any result about an integral is valid whenever the cor-
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responding contour is a part of I'y: so for instance, the assertion on I's (resp. I'})
holds under Cases 1 or 2 (resp. Case 3), those on I's and ' hold under Case 1, and
the bound involving T'y holds under Cases 1 and 3. Let I; (resp. I;, I #) denote the

corresponding integral along T'; (resp. along T';, 7).
Proposition 4.6.5. We have the following bounds:

(i) |L]+ L]+ || + |I5] < XY* exp(—#kov/log X) for some positive constant kg =

ko(c1, k) depending only on ¢; and k.
(ii) max{|Iy + L, |Is + Is|} < X/*¥ exp(—+/Tog X) uniformly in §,8, as above.

(iii) limg, oy |Is| = limg, Loy |I5] = limg, o1 |I3] = lims_oy |Is] = 0.

Proof. To show subpart (i), we use the fact that since 5, > 1—5¢; /24 log @, any s lying
on I'y, I's or their conjugates satisfies the requirements of Proposition 4.6.3(iii). As
such, (i) follows immediately from Proposition 4.6.3(iii) and the fact that |s| > [¢|+1

for all s.

For subpart (ii), we note that for all s € I'y, we have
(S _ 1/]{)70"“(62%? — (1/]€ - S>fo¢k(Q)c)? efifrak(Q)c;

and

(s — 5e/k)ak(Q)cm(¢e) = (B./k — S)ak(Q)c;w(we) oimok (e (ve)

(This is clear if the branch cut is along ¢ < 1/k, and also if the branch cut is
along o < B./k which is when (a,(Q),cg) = (1,1).) Likewise, for all s € Ty, we
have (s — 1/]{;)*%(62)0; = (1/k — 5)*%(@)% ema(@)cz and (s — Be/k)ak(Q)C;’Y(we) —
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F,(s) and H,(s) show that

L+ L] <

— — S _

/ﬁe/Hl Hy(5)Gya(s) X (1 >“’k(Q)c? (Be >“’“(Q)W(%)
? ? ds| .

% (0) §

But now by Lemma 4.6.1(iii) and Proposition 4.6.3(ii), we see that

Be/k—51 (5 )%(Q)Re(cm(%))
° ds

I+ I < Xﬂe/k(logX)ak(Q)51/4(1 — Be)_ak(Q) / At
o1(0)

3 I4ag(@)Re(cgy(ve))
< Xﬁe/k(log X)?’C“’“(Q)el/10 : (f — Gk(O))

< XY¥ exp(—+/log X).
Here we have recalled that B, < 1 — c(e;)/Q/?K0 < 1 — ¢(e1)/(log X)/?° for some

constant ¢(e;) > 0, and (as argued before Lemma 4.6.1) that Q). := f(¢).) has a prime

factor ¢, > D + 2, which upon factoring 1, = He\Q e With 1., being a character

mod /¢, led to
v: vWg(v)€ [Ee,( )
a(Q)|7(Ye)| < ar(Q) H > azv(ﬁ()éﬂU— 1)£ ’ (4.71)
Qe
1 — D
S ge—l Ur%;g ,lvbef(v) S D—|—1 (472)

Wy (v)=0 (mod £e)

This shows the desired bound on I in (ii), and the assertion for I is entirely analo-

gous.

Coming to subpart (iii), we parametrize the points of I's by s = B./k + 6, where

T >0 > 0. Since M = SUP|,_se | <1 (g, (0)) |H,(s)| is finite, we have for all
k=2

& Ok
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sufficiently small §; > 0,

511+ak(Q)Re(C;’Y(1/Je)) a0

5] < M/ X Be/k+0n (1—_5@ s,
0

—ar(@Re(cs)
)

M X Be/k+61 5}/(D+1)
_ ap(Q
(5 = a) ™

)

where we have again seen that 1 4+ ax(Q)Re(cyy(ve)) > 1/(D + 1) by (4.71). The
last expression shows that lims, .oy |I5] = 0, and the assertions on |I5| and |IZ| are

proved similarly. The same argument also shows that

(@)
Iy < M*X/E+og1-an(@Re(cs) (1 —k Be 5) K

for all sufficiently small 6 > 0, where M* = SUP|,_1|

1
k

s+ |Hy(s)|. This yields
k

<
lims_,o4 [Is| = 0, because ai(Q)Re(cg) < 1 whenever (o (Q), cy) # (1,1). O

Now in case 3, we let ; | 0 in (4.70) and invoke the relevant assertions of Proposition

4.6.5 to obtain Y, x1(f1(n)) - - - X& (i (1)) L(pm), =1 < X* exp(—r1v/Tog X) for
some constant x; > 0. Hence to complete the proof of Theorem 4.4.5, it suffices to
assume that (a,(Q),cg) # (1,1). In case 1, we obtain, by letting 6 | 0 and 6, | 0 in

(4.70),

> xa(fin) - xx (Fre(n) (). @)=1

n<X

L+ 1T
— _ lim T L O exp(—ri/Tog X)), (4.73)

By an argument analogous to that given for Proposition 4.6.5(ii), it is easy to see that

the above limit exists. Furthermore, writing (s—1/k)~(@% = (1/k—s) (@5 eFimar(@cg
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as before, we see that the limit in (4.73) is equal to

sin(ma(Q)cg) 1/k

m 8 /k

1 _ak(Q)CQ
H,(5)Gy2(s)X*® (— — 5> ds,

We write the above integral as H, (1/k)G,2(1/k)I; — I3, where

1/k
I = X(1/k — s)~ @z 4.
B+ /k

Letting s = 1/k —u/log X, and using 5* = 2/3+ ./3 < 1—c(€;)/3(log X)/% along

with Lemma 4.6.2(ii) we get

Xl/k
(log X)lfak(Q)C;

{m — ax(Q)ex) + O(exp(—+/log X))} .

11:

Now using Proposition 4.6.3(iv) and making the same change of variable, we find that

. (Q) 1/k 1 1—ak(Q)Re(c§)
/e K

Xl/k

< (log X )2~ on(@Re(eg)=(1/20+ar(Q)/B)er

(4.74)

as ['(2 — o (Q)Re(cy)) < 1. Collecting estimates, we obtain from (4.73),

K
D Lgmy@=1 H xi(fi(n))

n<X

_ H,(1/k)Gy 2 (1/k) 1/k
T T(@(@cg)  (log X))@ (1+O(GXP(—\/@))>

Xl/k
+0 ((log X)2—ozk(Q)Re(c>?)—(1/20+ak(Q)/5)€1) ) (4.75)

by the reflection formula for the Gamma function and as I'(z) > 1 for all z with

|z < 2.
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If cg # 1, then Re(cg) < cos(2m/¢(Qp)) < 1 — €. Lemma 4.6.1(iii) and Proposition
4.6.3(1) yield

Z ﬁ Xl/k

Lismi=1 | ] xa(fi(n)) < S

n<X i=1 (lOgX) k(Q)( (X)+ 1/5)
Xl/k

(log X)l_ak(Q)(l—(sO) ’

with §p == dp(A) = min{3e;/4,1 — & /2}. On the other hand, if ¢y = 1, then since
q€ Qk; f1,---, fr), we must have G, 2(1/k) = 0 (as observed before (4.70)). Hence,
(4.75) yields

Xl/k

;xl(f 1) X)) yme=r < qora@ i@

Xl/k

< log X) - @0—)"

completing the proof of Theorem 4.4.5 in case 1.

Finally in case 2, (4.70) and Proposition 4.6.5 lead to the following analogue of (4.73):

> xa(fin) - xx(Fre(n) L), @)=1

n<X

Ir+1Ir
§—0+ 271

O(XY* exp(—kor/log X)). (4.76)

An argument entirely analogous to the one given above leads to the sharper variant of

(4.75) with the exp(—+/log X) replaced by exp (—%), completing the proof

of Theorem 4.4.5.

This finally concludes the proof of Theorem 4.3.2. In order to establish Theorems

4.1.1 to 4.1.3, we thus need to appropriately bound the contributions of inconvenient
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n’s considered in the respective theorems. We take this up in the next several sections.

— Section 4.7

Equidistribution to restricted moduli: Proof of

Theorem 4.1.1

By Theorem 4.3.2, it remains to show that

Z 1 = O(@(;)K Z 1) as x — 00, (4.77)

n<z inconvenient n<lx

(Vi) fi(n)=a; (mod q) (f(n),9)=1

uniformly in coprime residues (a;)X | to k-admissible moduli ¢ < (log x)%°, under any

one of the conditions (i)-(iii) of Theorem 4.1.1.

To show this, we set z := 2'/1°82 and recall that, by (4.10), (4.5) and (4.3), the n’s
that are either z-smooth or divisible by the (k + 1)-th power of a prime exceeding y
give negligible contribution to the left hand side of (4.77) in comparison to the right
hand side. The remaining n can be written in the form mP*, where P := P(n) > z,
Pji(m) <y, m is not divisible by the (k + 1)-th power of a prime exceeding y, and
ged(m, P) =1, so that f;(n) = fi(m)W, x(P). Given m, the number of possible P is,

by the Brun-Titchmarsh inequality,

Vg (/m)E V2 log, @
o(q) log(z/q) ~ ¢lq) m'/*logx’

<

where V// = max {#Vl(k[)( (¢; (w)Ey) : (w)k, € Uf}. Summing this over possible

m, we get
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Vi /¥ 2 o()
Z b < 90<Q) . (IOg l')lfake/Q exp (O((10g3 LL') - (log2(3q)) ))

n<x inconvenient
P(n)>z; p>y = p**t! { n
(Vi) fi(n)=a; (mod q)

via (4.12). By Proposition 4.2.1, the quantity on the right hand side above is negligible
compared to the right hand side of (4.77) whenever ¢" 'V}, < (log z) =232 But
this does hold under any one of conditions (i)-(iii) in the statement of Theorem 4.1.1,

because:
(i) V", < 1if at least of one of {W;}1<i<k is linear.
(i) v, < D9 if ¢ is squarefree, since #Vl(?((é; (w;)E ) < Dpin for all £> 1.
(iii) VY, < ¢'~Y/Pmin by Lemma 2.5.2.

This establishes (4.77), completing the proof of Theorem 4.1.1. ]

4.7.1. Optimality in the ranges of ¢ in Theorem 4.1.1.

In all our examples below, {W;}X, € Z[T] will be nonconstant with [, W; sep-
arable over Q. Then (Wi, ..., Wky) = 1, guaranteeing that any integer satisfies
IFHWiy,...,Wky;1). We claim that there exists a constant C = 5(W17k, oo Wkk)
such that for any multiplicative functions (fi,..., fx) satisfying f;(p*) = W;,(p) for
all primes p and all i € [K], any C-rough k-admissible integer g lies in Qk; f1, -+, fK);
in other words, (fi, ..., fx) are jointly WUD modulo any fixed 6’—r0ugh k-admissible
integer ¢. Indeed, viewing a character of UqK as a tuple of characters mod ¢,® the
condition (1.9) becomes vacuously true whenever 7;(q) = {(Wix(u), -, Wgkr(u)) €

UqK :u € U} generates the group UqK . Now under the canonical isomorphism

8Here UqK is the direct product of U, taken K times.
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U — Ty, U, the set Ti(q) maps to [ Teeyy Te(£9). Thus by [49, Lemma 5.13], 9 if

lla
Tr(q) does not generate UqK , then there is some ¢¢ || ¢ and some tuple of characters
(1, k) # (Xows - - - Xoe) mod €€ for which [TX, (Wi x(u)) is constant on the

set Ri(£¢). Our claim now follows from Lemma 1.3.18.

Fix any k € N. Let Cp > max{é’, 4K D} be any constant depending only on the
polynomials {W; x}1<;<x, which also exceeds the size of the leading coefficient and
(nonzero) discriminant of Hf; Wi . Then by Theorem 1.3.11, fi,..., fx are jointly
weakly equidistributed modulo any (fixed) Cy-rough k-admissible integer. Fix a prime
ly > Co, and consider any nonconstant polynomials {I/Vi,v}1 LK C Z[T)] all of whose
coefficients are divisible by ¢y, so that «,({y) = 0 for each _vv_<7k. Our moduli ¢ will
have P~(q) = /o, so that a,(q) = 0 for all v < k. In each example below, we will show
that ay(q) # 0, so that ¢ is k-admissible and lies in Q(k; f1,--- , fx) by definition

of Cy. The constant K (in the assumption ¢ < (logz)%0) is taken large enough in

terms of {W, }K,.

Optimality under condition (i). We show that for any K > 2, the range of
q in Theorem 4.1.1(i) is optimal, — even if all of Wy, ..., Wk are assumed to
be linear, for any choice of (pairwise coprime) linear functions. Indeed, consider
W, x(T) == ¢;T+b; € Z[T] for nonzero integers ¢; and integers b; satisfying b;/c; # b;/c;
for all ¢ # j. Then Hfil W, i, is clearly separable in Q[7]. Choose a nonzero integer
b such that [[%,(cib + b;) # 0. Let Co > max{|b|,|cib+b;] : 1 < i < K} be any
constant satisfying the aforementioned requirements, so that any ¢ with P~(q) =
ly > Cy is coprime to b and to [T, Wir(b) = [T, (cib + b;). Thus ax(g) # 0 and

q € Qk; fi, -+, fx). Now any prime P < 2'/* satisfying P = b (mod q) also satisfies

9This is a fact from finite group theory which states that if A;, ..., A,, are finite abelian groups,
and if R; is a nonempty subset of A; for each j € [m], then J[;", R; does not generate [[_, A; if
and only if there exist characters 1); of A;, not all trivial, such that each 1); takes a constant value
cjon Ry, with ey ...cp, = 1.
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fi(P*) = W;x(P) = ¢;b + b; (mod q) for all i € [K]. The Siegel-Walfisz Theorem
thus shows that there are > xl/k/w(q) logx many n < x satisfying f;(n) = ¢;b +b;
(mod q) for all i € [K]. By Proposition 4.2.1, this last expression grows strictly faster
than o(q)"X#{n < x : (f(n),q) = 1} as soon as ¢ > (logz)+Iw/(K=1) for any
fixed € € (0,1), showing that the range of ¢ in Theorem 4.1.1 under condition (i)
is essentially optimal. Note that with Y € [2(1 + €)logy /(K — 1), (Ko/2) log, ],
the squarefree integer ¢ = Hzo <i<y U satisfies all desired conditions; in particular

(log z)(H9/(K=1) < ¢ < (logz)X0 and P~(q) = 4.

Optimality under condition (ii). To show that the range of squarefree ¢ in
Theorem 4.1.1(ii) is optimal, we define W; x(T) == [, ;< 4(T — 2j) +2(2i — 1) € Z[T
for some fixed d > 1. Eisenstein’s criterion at the prime 2 shows that each W, is
irreducible in Q[T], and the distinct W;;’s differ by a constant, making Hfil Wik
separable over Q. Now 2 € U, and W, ;(2) =2(2i — 1) <2(2K — 1) <4KD < Co <
P~ (q) for each i € [K]. Thus, g € Q(k; f1,--- , fx) and (2(20 — 1)), € UF. Further,
any prime P satisfying [[,;,(P—2j) = 0 (mod q) also satisfies f;(P*) = W, x(P) =
2(2i — 1) (mod q) for each i. Since 2d = 2degW;, < 4KD < P~(q), we see that
2,4, ...,2d are all distinct coprime residues modulo each prime dividing ¢, whereupon

it follows that the congruence [, 4(v —2j) =0 (mod g) has exactly d“(@ distinct

a«(a) . zl/k
v(q) logz

solutions v € U, for squarefree q. Hence, there are > many primes P < x!/¥
satisfying fi(P*) = 2(2i—1) (mod q) for all i, so there are also at least as many n < x
for which all f;(n) = 2(2i—1) (mod ¢). The last expression grows strictly faster than
p(q) K #{n < 21 (f(n),q) = 1} as soon as ¢X LY = ¢F1d*@ > (logz)t+eu

for any fixed € > 0, showing that the range of ¢ in Theorem 4.1.1(ii) is essentially

optimal.

Note that it is possible to construct squarefree ¢ < (logz)X° satisfying the much
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stronger requirement that d*(@ > (logz)*9% (and P~(q) = £y). Indeed, let ¢ ==
[I4<o<y ¢ for some YV < (Ko/2)logyz. Then w(q) = >, cpcy 1 = Y/2logY. On
the other hand, by the Chinese Remainder Theorem and the Prime Ideal Theorem,
ap(q) < k'/logY for some constant ' == K' (Wi, ..., Wk ly). So we need only
choose any

Y € (4k'logy x/ log d, (Ko /2) log, x)
in order to have ¢ < (logz)%° and A @ > (log g])(lJFE)ak'

For future reference, we observe that any n of the form P* with P a prime exceeding

q satisfies Py(n) > q. Hence in the above setting, we have shown the stronger lower

bound
d«(@) 1/k
> 1 > > 1> N (4.78)
e(q) logax
n<xz: Pg(n)>q q<P<gl/k
(Vi) fi(n)=2(2i—1) (mod q) [Ti<j<a(P—25)=0 (mod q)

Optimality under condition (iii). Fix d > 1 and define W; ;(T) == (T — 1)?+i €
Z[T), so that [[X, Wix(T + 1) = [[.S,(T% + 9) is clearly separable in Q[T], hence
so is Hfil Wix(T). Let ¢ == Q¢ for some Q < (logz)Xo/? satisfying P~(Q) = .
Then 1 € Ry(q), showing that ¢ € Q(k; f1, -+, fx). Moreover, i € U, for each
i € [K], and any prime P =1 (mod Q) satisfies f;(P*) = W, x(P) = (P - 1) +i =
(mod ¢). Consequently, there are > xl/k/ql/d log x many n < z satisfying f;(n) =i
(mod q) for all ¢, and this last expression grows strictly faster than ¢(q) 5 #{n < z:
(f(n),q) = 1} as soon as ¢&—1/Pmin = ¢K=1/d > (Jog )1+ for some fixed € € (0,1).
This establishes that the range of ¢ in condition (iii) of Theorem 4.1.1 is optimal,
and concrete examples of moduli ¢ satisfying the conditions imposed so far, are those
of the form Q¢, with Q lying in [(logz)tOE=1/d™"/d (Jog 1)Ko/d] and having least

prime factor 4.
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— Section 4.8

Restricted inputs to general moduli: Proof of

Theorem 4.1.2

Fix T' € N.;. By Proposition 4.3.1 and the fact that Pj,(n) < Pr(n), it is immediate

Z)<q1 :0< > 1>. (4.79)

n<z: Pr(n n<z
ged(f(n),q)=1 ged(f(n),q)=1

that

In Theorems 4.1.2 and 4.1.3, we may assume ¢ to be sufficiently large, for otherwise
these results follow directly from Theorem 1.3.11 and (4.79). The latter formula
also shows the equality of the second and third expressions in (4.1), so it remains to
show the first equality in either. Recall that for this theorem, we have € := 1 and
y = exp(v/log x) in the framework developed in section 4.3. Now any convenient n
has Pji(n) > y and hence is counted in the left hand side of (4.1). By Theorem
4.3.2, it suffices to show that the contributions of the inconvenient n to the left hand
sides of (4.1) are negligible compared to o(q) X#{n < x: (f(n),q) = 1}. In fact, by

(4.10) and (4.5), it remains to show (4.80) below to establish Theorem 4.1.2:

L1/E

1 .
Zn: Pr(n)>q < o(q) K (log x)1—20x/3

(4.80)

Here and in the rest of the chapter, any sum of the form ) " denotes a sum over
positive integers n < x that are not z-smooth, not divisible by the (k+ 1)-th power of
a prime exceeding y, have Pj;(n) < y and satisfy f;(n) = a; (mod q) for all i € [K].

Other conditions imposed on this sum are additional to these.

Defining wy(n) = #{p > ¢ : p* || n} and w*(n) = #{p > ¢ : p"™ | n}, we first show
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the following three bounds:

Zn: w|(n)>KD+1 1’ Zn: w|(n)=KD 1, Z 1

n<z: (f(n),q)=1
w*(n)>Kk, Pyp(n)<y, P(n)>z
p>y=p"tl {n

Sk

< SR (oga)i a5

(4.81)

Any n counted in the first sum is of the form m(Pxp,y--- Py)¥, where Py(m) <y,

where P, ..., Pxpy1 are primes exceeding ¢ satisfying P, == P(n) > z and ¢ <
Pxps1 < -+ < Pp, and where f;(n) = fi(m) [\ fi(PF) = film) [T Wik(P)).

The conditions f;(n) = a; (mod ¢) can be rewritten as

(Pry..., Pgpy1) mod g € VI((I'CI))-&—LK (q; (aifi(m)_l)ilil)'

Given m, (vy,...,Vkpy1) € V%%JFLK (q; (aifi(m)_l)fil), and Ps, ..., Pkpy1, the num-

ber of Py in (q, xl/k/ml/kPg -+ Pgpy1] satisfying Py = v; (mod q) is
< z'/*log, f/ml/kpz -+ Prpiap(q) log ,

by Brun-Titchmarsh. We sum this over all possible P, ..., Pxp.1, making use of
the bound Y 4ep<e  1/p < logy z/¢(g) uniformly in v € U, (which can be seen by
p=v (mod q)

Brun-Titchmarsh and partial summation). We deduce that the number of possible

(P, ..., Pkpsr) satisfying P; = v; (mod g) for each j € [KD + 1] is no more than

Z Z 1 < 1 2!/ (logy )M (@2)
g i p(q) P+ ml/kloga
q(jj)Klg;;(nfo(fg)m Z<P1§$1/k/m1/kP2‘..PKD+1
T P1=v; (mod q)

Define V! ;; == max {#Vﬁ’kl)( (¢; (w)E)) cwr, ... wk € Uq}. Summing (4.82) over all
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(V1,..., VkD41) € V;?DH,K(q; (a;fi(m)~")K) and then over all m via (4.12) shows
that
X, ! (4.83)
n: w)(n)=KD+1
VikDi1,K z/k , o
< o(q) KD+ . llog )72 -exp (O((logs z)* + (logy(3¢))°™")) . (4.84)

Applying (4.16) with N = KD + 1, we get

VI/<D+1,K/<P(Q>KD+1 < plq) " H(l +0(7Py)
£q

< (q) X exp (O((log 9)' /7).

This yields the first bound in (4.81).

Next, any n counted in the second sum in (4.81) can be written as mp®(Pxp - - - P, )" for
some m, ¢ and distinct primes p, P, ..., Pxp exceeding ¢, which satisfy the conditions
Pr=Pn) >z q< Pxkp < < P, Pe(m) <y, ¢ > k+1and fi(n) =
£i(m) £i(0°) TLS Wik(P), so that (Py, ..., Pip) mod q € V&), i (g; (ai fi(mp) ™D,
Given m, p,c and (vy,...,vgp) € V}?}LK (¢; (@i f;(mp®)~")K,), the arguments leading
to (4.82) show that the number of possible (P, ..., Pxp) satisfying (P;)52 = (v;)KD
(mod q) is < z'/*(log, x)O(l)/go(q)KDml/kpc/k log x. Summing this successively over
all (v1,...,vkp), c > k+1, p> ¢ and all possible m, shows that the second of the

three sums in (4.81) is

/ 1/k
VKD,K zt/

< PP (loga) 2l

(Here we have noted that > _ = .~r1; et < P p TV < g7k By (4.17),

we have VIQD,K/ql/kcp(q)KD < 1/¢¥, proving the second inequality in (4.81).
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Lastly, any n counted in the third sum in (4.81) still has P(n) > z and P(n)* || ¢, and
thus can be written in the form mpS* - - - pi&* P¥ for some distinct primes py, . .., prr, P
exceeding ¢ and some integers m, ¢y, . . ., cgy, which satisfy P = P(n) > z, Py(m) <
y, ¢c; > k+1forall j € [KE|, and ged(f(m),q) = 1. Given m,p1, ..., Pkk, C1,- - -, CKk,

CKk

the number of possible P > z satisfying P* < x/mp{* - - - piKF is
<z [ (mpS - pie)F log .

Summing this over all ¢, ..., cxr > k+1, and then over all pq, ..., pxr, m, shows the

third bound in (4.81).

In the rest of the argument, R as in the statement of the theorem is the least integer

exceeding

max{k:(KD—i—l)—l,k(l—i—(k—l—l) (K—%))}

k(KD +1) -1, if k< D

k(1+ (k+1)(K—1/D)) ifk> D.

Since q is sufficiently large, the ¢-rough part of any n satisfying ged(f(n),q) = 1 is
k-full (by Lemma 4.2.3). As such, any n with w*(n) = 0 counted in (4.80) must have
w|(n) > [R/k] > KD +1, and hence is counted in the first sum in (4.81). Moreover,
any n with wj(n) = KD counted in (4.80) must also have w*(n) > R — kwy(n) >
k(KD+1)—kKD > 1, and hence is counted in the second sum in (4.81). By (4.81),
it thus remains to show that the contribution of n having wj(n) € [KD — 1] and
w*(n) € [Kk — 1] to the left hand side of (4.80) is absorbed in the right hand side.
This would follow once we show that for any fixed r € [KD — 1] and s € [Kk — 1],

the contribution ¥, of all n with w(n) = r and w*(n) = s to the left hand side of
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(4.80) is absorbed in the right hand side.

Now any n counted in ¥, , is of the form mp{* - - - pé PF - - - P for some distinct primes

P1,---,Psy P1, ..., P and integers m, cq, . . ., ¢s, which satisfy the following conditions:
(i) P(m) < g

(ii) PL:=P(n) >z ¢< P, <--- < P;

(iii) pi,-..,ps > ¢

(iv) e, > k+1land e; + - + ¢ > R — kr;

(v) m, p1,...,ps, P1, ..., P are all pairwise coprime, so that
fitn) = fi(m) f(p7") -~ f(P5°) H Wik (P;)
j=1

for each ¢ € [K].

Here, property (i) holds because the g-rough part of any n satisfying ged(f(n),q) =1

is k-full, whereas wj(n) =, w*(n) = s .

With 7; := min{¢;, R—kr}, it is easy to see that the integers 7,..., 75 € [k+1, R—kr]
satisfy 7 < ¢1,...,7s < c¢sand 7y + -+ 7y > R — kr. (Here it is important that

R>kEKD+1),r<KD-—1and ¢; +---+¢s; > R — kr.) Turning this around, we

find that
Srs < > No(T1y ., ), (4.85)
T1yeer,Ts €E[k+1,R—k7]
T14--+7s>R—kr
where N, (71, ...,7s) denotes the contribution of all n counted in (4.80) which can
be written in the form mp{* ---pS PF... P* for some distinct primes pi,...,ps, P,
-+, P. and integers m,cy, ..., c, satisfying the conditions (i)-(v) above, along with
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the condition ¢; > 7,...,¢s > 7. We will show that for each tuple (m,...,7s)

occurring in (4.85), we have

2% (log, 2)°M
r,8 9 !S . 4-86
Nos(rom) < T B (4.56)

Consider an arbitrary such tuple (71, . .., 7,), and write n in the form mp{* - - - p& PF . ..

as above. The conditions f;(n) = a; (mod ¢) lead to
(Pr,...,P) mod q € V ( (@i fi(mpS - p2)HE).
Given m, p1,...,ps,C1,-..,Cs and
(V1,...,0,) € ( ;(a zfz(mp(fl"'pgs>_1)£1)7

the arguments leading to (4.82) show that the number of possible P, . .., P, satisfying

P; = v; mod ¢ for each j € [r], is

< 2*(log, x) /gp l/kpil/k o ps/Flog .

With V! ¢ = max(u,),cux #Vr(ﬁ% (¢; (w;)K,) as before, the bounds > pisq eism Di Cr <
g (mi/k=1) yield
1 Vig x'*(log, 2)°W) 1
Nrs yeeeols o 2 4.87
) (7'1 7') < q(71+...+73)/1g_s go(q)r logm Z ml/k ( )

m<z: P(m)<q
ged(f(m),q)=1

Proceeding as in the argument for (4.12), we write any m in the above sum as BM
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where B is k-free and M is k-full, so that B = O(1) and P(M) < g. We find that

1 1 1 1
AP (R C)

m<z: P(m)<q M<z: P(M)<q p<q
ged(f(m),q)=1 M is k-full
1
< exp - | < logg. 4.88
2 (458)
P=q
Inserting this into (4.87), we obtain
1 Vik a'/*(log, x)°W
Nos(T1, .0 7s) < o 2 : 4.89
’ (i 7s) gt +7s) [k—s o(q)" log x ( )
Now since 1 <r < KD — 1, an application of (4.17) with N := r now yields
exp (O(w(q)))  a'/*(logy 2)°W)
'/\[T‘,S(7_17 e 77_5) < q(T1+"'+Ts)/k_S+T/D ’ logx (490)
exp (O(w(q))) z/*(log, )W 101
qmax{s/k,R/kfrfs}+r/D ' lOgZL‘ ) ( : )

where in the last equality we have recalled that r,..., 7, > k+1land 74 + - -+ 74 >

R — kr.

We claim that max{s/k,R/k —r — s} +r/D > K. This is tautological if s/k +
r/D > K, so suppose s/k+r/D < K. Then r < D(K — s/k) < DK — D/k, and
s <k(K —r/D)sothat R/k—r—s+r/D>R/k—Kk+ ((k+1)/D —1)r.

Now if £ < D, then (k+1)/D —1 < 0, s0 for all 1 < r < DK — D/k, we have
R/k — Kk + ((k+1)/D —1)r > R/k — Kk + ((k +1)/D — 1)(DK — D/k) and this
exceeds K since R > k(K D+1). If on the other hand, we had k > D, then k+1 > D
and the minimum value of R/k — Kk + ((k+1)/D — 1)r is attained at r = 1, giving
us R/k— Kk+ ((k+1)/D—1)r > R/k — Kk + ((k+1)/D — 1) which also exceeds
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K since R > k(1+ (1+ k)(K —1/D)). This shows our claim, so that (4.90) leads to
(4.86). Summing (4.86) over the O(1) many possible tuples (71, ..., 7s) occurring in
the right hand side of (4.85) yields ¥, ; < z/*(log, )™ /¢® log z, which (as argued

before) establishes Theorem 4.1.2.

— Section 4.9

Final preparatory step for Theorem 4.1.3:

Counting points on varieties

To establish Theorem 4.1.3, we will need the following partial improvements of Corol-
lary 4.4.4. In this section, we again deviate from the general notation set up for
Theorems 4.1.1 to 4.1.3, so the notation set up in this section will be relevant in this

section only.

Proposition 4.9.1. Let F' € Z[T] be a fized nonconstant polynomial which is not

squarefull.

(a) Define Va1(l;w) == {(vi,v2) € U} : F(v1)F(ve) =w (mod £)}. Then #Va1(¢;w)

< @(0) (1 +0 (6*1/2)), uniformly for primes ¢ and coprime residues w mod (.

(b) Let G € Z[T] be any fized polynomial such that {F,G} C Z[T] are multiplica-
tively independent. Let Vso(l;u,w) be the set of (v1,va,v3) € U} satisfying
the two congruences F(v1)F(vy)F(v3) = u (mod ¢) and G(v1)G(v9)G(v3) = w
(mod ). Then #Vs2(l;u,w) <pa @(€), uniformly in primes ¢ and coprime

residues u,w mod £.

Our starting idea will be to look at Va1 (¢;w) and Vs 5(¢; u, w) as subsets of the sets

of Fy-rational points of certain varieties over the algebraic closure F, of F,.
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Proposition 4.9.2. Let V' be a variety defined over F, and V(F,) ==V NTF,.

(a) If V is an absolutely irreducible affine plane curve, then #V (F;) < £+ O(V1),

where the implied constant depends only on the degree of V.

(b) Let d be the positive integer such that V C (F,)?. We have #V (F,) < (™Y,
where dAim' V' is the dimension of V' as a variety, and the implied constant de-
pends at most on d and on the number and degrees of the polynomials defining

V.

Subpart(a) is just Proposition 2.6.1 restated for convenience, while subpart (b) is a
weaker version of [22, Claim 7.2] but in fact goes back to work of Lang and Weil
[39, Lemma 1]. To make use of the aforementioned results, we will be needing the

following observations.

Lemma 4.9.3. Let F,G € Z[T] be fixed multiplicatively independent polynomials

such that F' is not squarefull. There exist constants ko(F) and k1 (F,G) such that:

(a) For any N > 2, { > ko(F) and w € F}, the polynomial [, F(X;) — w is

absolutely irreducible over Fy, that is, it is irreducible in the ring Fy[ X1, ..., Xn].

(b) For any { > k1(F,G) and u,w € F}, the polynomial F(X)F(Y)F(Z) — u is
irreducible and doesn’t divide the polynomial G(X)G(Y)G(Z) — w in the ring
F[X,Y, Z].

Proof. Write F' = rHjM:l G?j for some r € Z, b; € N, and pairwise coprime irre-
ducibles G; € Z[T, so that by the nonsquarefullness of F' in Z[T'], we have b; = 1 for
some j € [M]. By the observations at the start of the proof of Proposition 4.4.3, there

exists a constant ro(F) such that for any prime ¢ > ro(F), £ doesn’t divide the leading
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coefficient of F' and H]Ail G/ is separable in F,[T]. This forces [] 45, (T—0)*1 F(T)
B F(6)=0
in Fz[T]
Proof of (a). We will show that for any ¢ > ko(F) and U,V € Fy[X;,..., Xy]
satisfying
[[FX)—w=UX,... . Xy)V(X1,..., Xn), (4.92)

one of U or V must be constant. First note that for any root # € F, of F, we
have —w = U(Xl, e ,XN—1> Q)V(Xl, ceey XN—I; 8), fOl"Cng U(Xl, e 7XN—17 8) and
V(Xi,...,Xn_1,0) to be constant in the ring F,[ X7, ..., Xy]. Writing

U(Xy,...,Xn) = > Uiy, iy (X)) XJT o X0

11<Ri1,..,iNn—1<Rny_1

and
_ E ' J1 JN-1
V(Xh 7XN) - Ujt,ein 1(XN) Xl 'XN—l
J1sesJN-120
J1<T, jN—1<TN-1
(where i, _in 1> Vir.in: € Fo[Xn], and neither ug, g, , nor vy, 7, , is identi-

----- iN71(0) = Uj17---7jN71(0) = 0 for any (ila s 7iN—1) 7é
0,...,0), (ji,---,Jn-1) # (0,...,0), and any 6 as above. Thus, if the tuples

(Ri,...,Rx-1) and (T, ..., Ty_1) are both nonzero, then [ 4z, (Xy — 0) divides
F(6)=0

..........

coefficient of F', then comparing the monomials (in X, ..., Xy_1) with maximal to-

~~~~~ Ry (XN) UTy,...Tn—1 (XN) =

0 (mod [] gz, (Xn — 6)?), which is impossible by the observations in the first
F(0)=0
paragraph of the proof. This forces one of (Ry,...,Ryx_1) or (T3,...,Tn_1) to be

tal degree in (4.92), we find that oV ' F(Xy) = ug,

(0,...,0), say the latter. Then V(X,..., Xy) = v o(Xn) and since N > 2, plug-

.....

216



4.9 FINAL PREPARATORY STEP FOR THEOREM 4.1.3: COUNTING POINTS ON
VARIETIES

ging X, = 6 for some root § € F, of F into (4.92) yields
—w = U(67X27"'7XN)U0 ..... O(XN)7

forcing V' to be identically constant.

Proof of (b). We claim that for all primes ¢ > 1, if the rational function F*G®
is constant in the ring Fy(7T) for some integers a, b, then a = b = 0 (mod ¢).!° The
argument for this is a simple variant of that given for the inequality “ordg(ﬁ ) <
Ly<c,Cy” in the proof of Proposition 4.4.3(b), so we only sketch it. Since {F,G} C
Z|T) are multiplicatively independent, the polynomials {F'G, FG'} C Z[T| are Q-
linearly independent, hence so are the columns of the matrix M listing the coefficients
of F'G and FG' in two columns. Hence we can find invertible matrices P; and
(where @) is a 2 x 2 matrix) such that Py M0, = diag(/, f2) for some [y, 5y € Z\{0}
satisfying (3 | f2. Let £ > |f3] be any prime not dividing the leading coefficients of
F, G, F'G or FG'. If F*G" is identically constant in F[T], then aF'G + bFG' = 0
in Fy[T], so Mi(a b)" =0 (mod f). Hereafter, familiar calculations yield (a b)" = 0

(mod /).

Collecting our observations, we have shown that there exists a constant x1(F, G) such
that for all primes ¢ > k1 (F,G), the following three properties hold:
(i) € > ko(F), so that T se5, (T —0)* 1 F(T) in Fo[T;
F(6)=0

(ii) ¢ doesn’t divide the leading coefficient of F' or G; and,

(iii) For any a,b € Z for which F®G® is identically constant in Fy(7"), we have ¢ | a

and € | b.

101t is not difficult to see that this also forces a = b = 0, but we won’t need that.
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We will now show that any such constant 1 (F, G) satisfies the property in subpart (b)
of the lemma. By subpart (a), F(X)F(Y)F(Z)—uis already irreducible in F,[ XY, Z]
for any v € F,. Assume by way of contradiction that for some ¢ > k;(F,G) and

u,w € F), we have

G(X)GYV)G(Z)—w = Hy(X,Y, Z) (F(X)F(Y)F(Z)—u) for some Hy € F,[X,Y, Z].

(4.93)
Write Hy(X,Y, Z) = 2822:12” hi, i, (X)Y 1 Z2 for some hy, ;, € Fy[X] with h,, ., not
identically zero. If (ry, rg)_i_(T(Q), 0), then substituting a root of F' and G in place of Y
and Z respectively, we see that H, must be a constant \g € F,\ {0} satisfying w = A\gu.
Thus G(X)G(Y)G(Z) = A\F(X)F(Y)F(Z). Now substituting some 7 € F, which is
not a root of F'G' in place of both Y and Z leads to F(X)G(X)™! = A\, 1 F(n)~2G(n)?,

a nonzero constant. But since (1, —1) # (0,0) (mod /), this violates condition (iii)

in the definition of k1 (F, G). Hence (r1,72) # (0,0).

Let a, 8 € Z denote the leading coefficients of F' and G respectively. Comparing
the monomials in ¥ and Z of maximal total degree in (4.93) yields 3?°G(X) =
A@?F(X)hyy 1, (X) in Fy[X], so that (since either side of this identity is nonzero), we
get F' | G in Fy[X]. Write G = F™H for some m > 1 and H € Fy[X] such that F { H

in Fy[X]. An easy finite induction shows that with
G/X.,Y,Z) = F(X)" ' F(Y)"*F(Z)" " H(X)H(Y)H(Z) — u"tw

and

~

F(X,Y,Z) = F(X)F(Y)F(Z) —u,

we have F | Gy for each t € {0,1,...,m}. Indeed, the case t = 0 is just (4.93), and
if F| G, for some t < m — 1, then writing G, = Q,F shows that F(X)F(Y)F(Z)
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| (Qu(X,Y, Z) —u="Dw). With Q.4 defined by
QuX,Y,Z) —u Yy = F(X)F(Y)F(2)Qi1(X,Y, Z),

we obtain Gy = Qtﬂﬁ completing the induction.

Applying this last observation with ¢ := m shows that F (X,Y, Z) divides the poly-
nomial H(X)H(Y)H(Z) —u ™w in F,[X,Y, Z]. We claim that this forces H to be
constant. Indeed if not, then letting v € F, \ {0} be the leading coefficient of H, !
writing H(X)H(Y)H(Z) —u"w = (F(X)F(Y)F(Z) — u) Zgglggl Girin(X)Y 11 Z72
for some g;, ;, € F,[X] with gy, 5, # 0, and comparing the mono;nzzizil; in Y and Z of
maximal degree, we obtain V2H(X) = o*F(X)gp, ,(X). This leads to F' | H, con-
trary to hypothesis. Hence H must be constant, so the identity F~"G = H in Fy(X)
violates condition (iii) in the definition of k1 (F, G), as (—m, 1) # (0,0) (mod ¢). This
shows that F' cannot divide G(X)G(Y)G(Z) — w, completing the proof. O

Given a commutative ring R and an R-module M, we say that x € R is an M-
regular element if = is not a zero-divisor on M, that is, if xz = 0 for some z € M
implies z = 0. A sequence x1,...,x, of elements of R is said to be M-regular if
x1 is an M-regular element, each z; is an M/(xy,...,z;_1)M-regular element, and
M/(z1,...,z,)M # 0. It is well-known (see [9, Proposition 1.2.14]) that for any
proper ideal [ in a Noetherian ring R, the height of I is at least the length of the

longest R-regular sequence contained in 1.

Proof of Proposition 4.9.1. With ko(F') and k;(F,G) as in Lemma 4.9.3, the affine
plane curve {(X,Y) € FE . F(X)F(Y)—w = 0} is absolutely irreducible for any ¢ >

ko(F), so that Proposition 4.9.2(a) yields Proposition 4.9.1(a). For (b), it suffices to

"UHere v # 0 in F; because £ doesn’t divide the leading coefficient of G = F™H.
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show that for any prime ¢ > x(F, G), the variety V;, C Fi defined by the polynomials
F(X,Y,Z) = F(X)F(Y)F(Z)—u and G(X,Y, Z) = G(X)G(Y)G(Z) —w has <p¢
¢ many Fy-rational points. Consider the ideal I(V}) of the ring R = F,[X,Y, 7]
consisting of all polynomials vanishing at all the points of V;, so that (ﬁ , @) C I(Vp).
If I(Vy) = R, then V; = 0, so suppose I(V;) C R. Lemma 4.9.3(b) shows that the
sequence é,ﬁ € I(Vp) is R-regular, so by [9, Proposition 1.2.14], I(V;) has height
at least 2. By [4, Chapter 11, Exercise 7], the Krull-dimension of R is 3. Hence
the Krull-dimension of R/I(V;) is at most 3 — 2 = 1 (by, say, [42, p. 31]). Thus

dim(V;) < 1, and Proposition 4.9.2 completes the proof. H

— Section 4.10

Restricted inputs to squarefree moduli: Proof of

Theorem 4.1.3

Returning to the notation set up in the introduction, we start with the same initial
reductions as in section 4.8. As such, in order to establish the theorem, it suffices to

show that

L1/k

1 < ,
Zn: Pr(n)>q o(q) K (log x)1—20x/3

(4.94)

with the respective values of R defined in the statement. Here we again have ¢ = 1 and
y = exp(v/logz) in the framework developed in section 4.3. We retain the notation

wi(n) = #{p > q: p* || n} and w*(n) = #{p > ¢ : p**' | n} from section 4.8.
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The case K =1, W, not squarefull.

In this case, (4.94) would follow once we show that

L1/E

) 1
Zn: Peia(n)>g < ©(q)(log z)t—20%/3”

(4.95)

Indeed, any n counted in (4.95) which is divisible by the (k4 1)-th power of a prime
exceeding ¢ can be written in the form mp°P* for some positive integers m,c and
primes p, P, satisfying P = P(n) > 2z, ¢ < p < P, ¢ > k+ 1, P;y(m) < y and
f(n) = f(m)f(p°)Wi(P). Recalling that #{u € U, : Wy(u) = b (mod ¢)} < D@

uniformly in b € Z, the argument given for the second bound in (4.81) shows that

21/k

D@ (@) o1/k < e On the other

7%o(q) ~ (loga) 2073 ©(q)(log =

hand, for any n counted in (4.95) which is not divisible by the (k + 1)-th power of

the contribution of such n is <«

any prime exceeding ¢, the condition Pj1(n) > ¢ forces w(n) > 2 (again since ¢ is
sufficiently large and the g-rough part of n is k-full). Thus n = m(P,P;)*, for some
m and primes Py, P satisfying P, .= P(n) > z, ¢ < P, < P, Py(m) <y and f(n) =
F(m)Wi(P)Wg(P2). The arguments before (4.83) show that the contribution of such

. 1Z5 xt/F
nis < ©(q)? : (logx)lf"‘km

4.9.1(a).

exp((logy #)°M), which is < 5 z/2 by Proposition

(¢)(log ) —2k/3

The remaining cases

To complete the proof of Theorem 4.1.3, it thus remains to show that we may take:
(i) R=k(Kk+K—k)+1if K,k > 2 and at least one of {W; ;. }1<;<x is not squarefull.
(ii) R =k(Kk+ K — k+ 1)+ 1, in general.

We shall call (i) as “Subcase 1”7 and (ii) as “Subcase 2”, and we shall denote R =

k(Kk+ K —k + 1) + 1 to mean the respective value of R in the respective subcase.

We have the following analogues of the first two bounds in (4.81), which can be shown
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by replicating arguments and replacing the use of Proposition 4.3.4 by Corollary 4.4.4.

% % {L‘l/k
1 1 4.96
Zn: w)(n)>2K+1 ’ Zn: w|(n)=2K < gp(q)K(log I)I_Q‘)‘k/g ’ ( )

w*(n)>1

If w*(n) = 0, then kwy(n) > R > k(Kk+ K — k + 1) + 1, so that wy(n) >
Kk+ K —k+1+1> 2K + 1; hence, any n with w*(n) = 0 counted in (4.94) is
automatically counted in the first sum in (4.96). Likewise, the condition wy(n) = 2K

forces > (n) > R —kwy(n) > k(K -1)(k—1)—=1+1)+1>1,so that

p>g: phtin Up
w*(n) > 1; as such, any n with wj(n) = 2K contributing to (4.94) is counted in the
second sum in (4.96). Furthermore, by the third bound in (4.81), the contribution
of all n having w*(n) > Kk to the left hand side of (4.94) is absorbed in the right
hand side. It thus suffices to show that for any r € [2K — 1] and s € [Kk — 1], the
contribution X, ; of all n with w(n) = r and w*(n) = s to the left hand side of (4.94)

is absorbed in the right hand side.

Recall that any n counted in X, is of the form mp{* - - - p% PF ... P* for some distinct
primes pq,...,ps, Pi,..., P, and integers m,cy, ..., cs, which satisfy the conditions
(i)—(v) in the proof of Theorem 4.1.2, but with the current values of R. Once again,
the integers 7y, ..., 7, defined by 7; = min{c;, R — kr} satisfy 7; € [k + 1, R — kr],
7, <cjand 7y + - -+ 75 > R—kr. (Here R — kr > k + 1 follows from r < 2K — 1

and R =k(Kk+ K —k+ 1)+ 1.) Thus,

Er,s S Z M“,S(Tl7 ce ,7'5), (497)

T1,...,Ts €E[k+1,R—kr]
71+ +7s>R—kr

where N, 4(71,...,7s) denotes the contribution of all n counted in the left hand side
of (4.94) which can be written in the form mp{' ---p% PF... P* for some distinct

primes py,...,ps, Pi, - -+, P. and integers m, ¢y, ..., cs satisfying ¢; > 7,...,¢cs > 75
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and the conditions (i)—(v) in the proof of Theorem 4.1.2 (but with the current values

of R). We will show that for each tuple (71,...,7s) occurring in (4.97), we have

2V/* (logy )W
Nos(mh,.00, 1) < K log exp (O(y/logq)). (4.98)

Now the bound (4.89) continues to hold, so we have

1 Vi a'/*(logyz)°"
r,s sy ls ’ ' 1.99
N, (71 T) < q(71+..-+rs)/k—s QD(Q)T log ( )
with the current values of 7,s,71,...,7, and with V! ;c defined as before. By (4.46),
exp (O(w 2V*(log, 2)°M
Nl im) < p( ( (?))) x/¥(log, x)
) q(Tl+ +75)/k—s+r/2 log x (4 100)
exp (O(w(q))  2"/*(logy z)°W) |
qns/ktr /2, Rfk=r/2=s} | log = '

Now max{s/k +r/2, R/k —r/2 — s} > K whenever one of the following holds:

(a) In Subcase 1, we have either k >3, r >3, or k=2, r > 4.

(b) In Subcase 2, we have r > 2.

Indeed, if s/k +1r/2 < K, then s < k(K —r/2), so that R/k —r/2—s > K + (k —
1)(r/2—1) =1+ 1+ 1/k. This last quantity strictly exceeds K precisely under (a) or
(b) above, establishing (4.98) under one of these two conditions. It thus only remains
to tackle:

(i) the possibility that » = 1 in both Subcases 1 and 2, and

(ii) the possibilities r = 2 and k = 2,7 = 3 in Subcase 1.

The possibility 7 = 1 is easily handled (in both subcases) by inserting into (4.99)
the trivial bound V. = V/ < D:;(ifl). Now assume we are in Subcase 1 and
either r = 2 or k = 2,7 = 3. Suppose wlog that W, is not squarefull. If r =

2, then Proposition 4.9.1(a) yields #VQ(?(((]; (w)E ) /0(q)? < #Vo1(q;w1)/0(q)* <
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©(q) " exp(O(v1og q)), uniformly for (w;)L, € UK. Inserting this bound into (4.99),
we deduce that No (71, ..., 7,) < g~ max{s/kLR/k—1=s} M(If;geng)omexp (0(/1ogq)).

Since max{s/k + 1, R/k — 1 — s} > K, this shows (4.98) in Subcase 1 when r = 2.

For k = 2,r = 3, the multiplicative independence of {W;, W5} allows us to
use Proposition 4.9.1(b) to get #V?Ef?((q; (wi)) /0(q)* < exp (O(w(q)))/#(g)? uni-
formly for (w;)%,. By (4.99),

o(1)

— maxys —1—s xl/k log L
Noalris o) < gtz i) 2008 o (0(u(g),

and it is easily checked that max{s/2 +2, R/2 —1— s} > K. This shows (4.98) in

Subcase 1 when k = 2,r = 3, completing the proof of Theorem 4.1.3.

4.10.1. Optimality of the conditions of Theorem 4.1.3

We will now show that the first two values of R given in Theorem 4.1.3 are optimal.
We retain the setting in subsection § 4.7.1 we had used to show optimality in Theorem
4.1.1(ii). To recall: fix an arbitrary k € N and d > 1, and define W; (T = H?ZI(T—
2j)+2(2i—1), so that [/, W; is separable (over Q). Let Cy > 4K D be any constant
(depending only on {W; x }1<i<k) exceeding the size of the (nonzero) discriminant of
Hfil Wik, and such that any Cy-rough k-admissible integer lies in Qk; fi,-+ , fr)-
Fix a prime ¢, > Cj and nonconstant polynomials {VVw}ll%S K C Z[T] with all
coefficients divisible by 4. Let ¢ < (log z)%° be any squarefree i;lq‘;der having P~ (q) =
lo, so that as before ¢ € Q(k; f1,--- , fx). Recall also that (2(2i —1));%, € UK, that
any prime P satisfying H?Zl(P —25) = 0 (mod q) also satisfies f;(P*) = 2(2i — 1)
(mod ¢), and that the congruence szl(v—2j) =0 (mod ¢) has exactly d*(@ distinct

solutions v € U,,.

The first value R = 2 in Theorem 4.1.3 is optimal since the condition Py(n) > ¢
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cannot be replaced by the condition P(n) > ¢, as shown in (4.78). We now show
that the condition “R = k(Kk + K — k) + 17 in Theorem 4.1.3 cannot be weak-
ened to “R = k(Kk + K — k)” for any K, k. To this end, let f1,...,fx: N = Z
be any multiplicative functions such that f;(p¥) == W, ,(p) and f;(p**!) := 1 for all
primes p, all ¢ € [K| and v € [k]. Consider n of the form (p; - - prx_1))F ' P* < z
where P,pi,...,pr—1) are primes satisfying the conditions P = P(n) > z'/3,
¢ < prg-ny < o < pr < @V and [ 4(P — 2j) = 0 (mod g). Then
Pyt -t (n) = pric—1) > gand fi(n) = fi(P T £(ph ) = 2(2i-1) (mod q)
for each i € [K]. Given py,...,prx-1), the number of primes P satisfying g3k <

P <o [(py - prge—n) M is > d @l [o(q) (pr -+ prer—1y) T F log @ by Siegel -

H+1/k <« x(K—l)(k+1)/4Kk2 < 21/2%k

Walfisz; here we have noted that (pi---prx—1))
Dividing by &! allows us to replace the condition pyx_1) < --- < p; by a distinctness

condition, giving us

(@) /K
SRR e NS
¢(q)log x
n<z: P(rrax—k)(n)>q
(Vi) £ (m)=2(2i~1) (mod q)
where 7; denotes the sum ignoring the distinctness condition on the pi, ..., prrx—1),
and 7 denotes the sum over all the tuples (p1, ..., prx—1)) for which p; = p; for some
i # j € [k(K —1)]. Now note that
T, = H Z p;(1+1/k) > 1/qK—1(10g q)k(K—l)

1<G<k(K—1) \¢<p, <g1/4Kk2

while

k(K—1)—2
Tp < (Zp—(Z-i-Q/k)) (Zp—(l-i-l/k)) < 1/g%.

p>q p>q
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Consequently, the expression on the right hand side of (4.101) is
> d*@Wa'* /()" (logy )V log x,

which by Proposition 4.2.1, grows strictly faster than ¢(q) "5 #{n < z : ged(f(n),q) =
1} as soon as ) > (log x)1+92% - We have already constructed such ¢ in subsection
§ 4.7.1. Hence, the condition Py(gpyx—k)+1(n) > ¢ in Theorem 4.1.3 is optimal for

any values of K and k.

As a remark, note that this example also shows that if £ = 1, then for any K, the

condition “Pog1(n) > ¢” coming from the third value of R in Theorem 4.1.3 is

“almost optimal” in the sense that it cannot be replaced by “Pyx_1(n) > ¢”.

— Section 4.11

Necessity of the multiplicative independence and
invariant factor hypotheses: Proofs of Theorems

4.1.4 and 4.1.5

We first give a lower bound that will be useful in both the theorems. Until we
specialize to each theorem, we will not assume anything about {W;}1<i<x € Z[T]
beyond that they are nonconstant, and our estimates will be uniform in all ¢ <

(logz)* and (a;)X, € UK.

Let y = exp(y/logx) and given any fixed R > 1, we let V, = ng)K(q; (a)E,)) =
{(v1,...,vr) € UF : (Vi € [K]) Hle Wi k(vj) = a; (mod ¢)}. Consider any N < x of
the form N = (P, - -- Pg)*, where P, ..., Py are primes satisfyingy < Pg < --- < Py,
and (P, ..., Pp) modq € V. Then Pry(N) >y > qand f;(N) = Hle Wik(P;) =
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a; (mod q). Replacing the ordering condition on Pj,..., Pg by the condition that

they are distinct, we get

2122%21.

n<z: Prr(n)>q (v1,-,vR)EV] Pr,...,Pr>y
(Vi) fi(n)=a; (mod q) Py--Pr<zgl/k
P1,...,Pr distinct
(Vj) Pj=v; (mod q)

Proceeding exactly as in the argument for (2.13), we obtain

> I > 1+ O(a exp (—Ki(logx)')) (4.102)

R
Pr,....,Pr>y QD(Q) Py,...,Pr>y
Py Pr<gl/k Pp--Pp<gl/k
Pi,...,Pr distinct Pr,...,Pr distinct

(V4) Pj=v; (mod q)

for some constant K; > 0. Collecting estimates and using the fact that #V, <

0(q)® < (logz)®o® we see that there is a constant Ky > 0 such that

V! 1
Z 1 > A — Z 1 — xl/kexp(—Kg(logx)1/4).

n=z: Pr(n)>q Pr,...,Pr>y
(V’L) fi(n)Eai (mOd q) Pl---PRSCEl/k
Py,...,Pr distinct

The sum in the main term is exactly the count of squarefree y-rough integers m < x'/*

having Q(m) = R. Ignoring this squarefreeness condition incurs a negligible error of

D poy domeat/n 1 K x'/%/y. We thus find that the main term in the above display
p?m

equals #{m < 2% : P~(m) >y, Q(m) = R}, which is > z'/*(log, )%~ /log x by a

straightforward induction on R (via Chebyshev’s estimates). As a consequence,

V! xl/k log., )1
Z I > go(qq)R. (lo?x) — 2Fexp(—K,(logz)"*). (4.103)

n<z: Prr(n)>q
(Vi) fi(n)=a; (mod q)
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Completing the proof of Theorem 4.1.4

We now restrict to the {W;} <i<x and (a;)X, considered in Theorem 4.1.4, so
K > 2, {W;}<i<k—1 C Z[T] are multiplicatively independent, W = HK ! W’\
for some tuple (\)2;' # (0,...,0) of nonnegative integers, and (a;)X, € UF satisfy
axg = HZK 1"} (mod q). The key observation is that relations assumed between the
{Wirh<ickx and (a;)X, guarantee that V, = Vl(%k)K(q, (a)E,) = VRK g (@),
with the set VR w_1(¢; (a;)i7") defined by the congruences H Wik(v;) = a; (mod q),

only for i € [K —1].

Define D, := Zf;l deg W, > 1 and let “C"” in the statement of the theorem be any
constant C* .= C*(Wyy, -+, Wk_1) exceeding (32D;)*P12 the sizes of the leading
and constant coefficients of {W; .}, and the constant Cf = C1(Wiy s, ..., Wk _14)
coming from an application of Proposition 4.4.3 to the family {W;;}< " of noncon-
stant multiplicatively independent polynomials. To show the lower bound in Theorem
4.1.4, we may assume that R > 4K D;(D; + 1). We shall carry out some of the argu-

ments of Proposition 4.3.4.

Note that ax(q) = ﬁ#{u e U, HK "Wix(u) € U} # 0. For each prime
¢ | q, we have ged(d — 1, 8(Wiy, -+ ,Wk_1x)) = 1 and ¢ > C* > Cf. Thus
the hypothesis IFH(Wiy,...,Wk_14;1) holds true, and so do the corresponding
analogues of the inequalities (4.31) and (4.32); in fact by the second assertion in
Proposition 4.4.3(a), the analogue of (4.31) holds true for all tuples of characters

(X155 XE—1) # (X0us - - -, Xo,e) mod £¢ having lem[f(x1), ..., f(xx-1)] = ¢. We find
that

1 R
W( Z Zee; sty Wiges oo, Wi 1k)}

X15---XEK —1)7(X0,05---»X0,¢) mod £¢
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DF”R eo(K—R/D1 2(4D1)R
= Totptiyr 2, S e (100

Now since R > 4K D,(D; + 1) and ¢ > C* > (32D,)*"1+2 we see that (/1=K >
¢R/(D1+1) > pR/(2D1+2) (C*)R/(2D1+2) > (2(32D;)F, showing that the right hand ex-
pression in (4.104) is at most 1/4¢%. Invoking the corresponding analogue of (4.26),

we see for each prime power (¢ || ¢ that

i a5 @)Y an(0)” ,(1_L>
()T = ()R 202)°

But since [[,,(1 —1/26%) > 1—337,.,1/6* > 1/2, we obtain

Vi V(e @)
()t o(q)F -

which holds true uniformly in ¢ having P~(¢q) > C*. Inserting this bound into (4.103)

and recalling that ay(q) > 1/(log,(3q))” completes the proof of Theorem 4.1.4. [

Completing the proof of Theorem 4.1.5

Again, it suffices to consider the case R > 18K D(D + 1) to prove (4.2). We
start by choosing “C” in the statement of the theorem to be a constant Cp =
Co(Whg,...,Wgky) exceeding (32D)%PF6 the sizes of the leading and constant co-
efficients of {W;;}X,, and the constant Cy(Wiy,..., Wky) obtained by applying
Proposition 4.4.3 to the family {W, ; }1<i<x of multiplicatively independent polyno-

mials. The analogue of (4.32) continues to hold for each ¢ | ¢, and thus

1
W Z 1 Zee; xvxxe Wiks -+ WK,k)|R

(X1,---,X k) mod £¢
lem[§(x1);--f (x5 )| €{€2,....£5}
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DRfeR 2(4D)"R 1
< - peo(K—R/D) < < —. (4.105
ERGEGCIP S mpr < g (109

where in the last inequality, we used R > 4K D(D + 1) and ¢ > Cy > (32D)5P+6,

If (x1,.-.,Xxk) is a tuple of characters mod ¢¢ having lem[f(x1), ..., f(xx)] = ¢, then
with 1, being a generator of the character group mod ¢, we have y; = 1/1242' for some
unique (Aj, ..., Ax) € [¢ — 1]¥ satisfying (Ay,...,Ag) #Z (0,...,0) (mod £ — 1).
Recall from the arguments leading to (4.31) that if J[i, Wﬁg is not of the form
c- GV in Fy[T), then |Zee. vy v Wik oo, Wiep)| < D¢e=Y2. On the other hand, if
Hfil VVZA,Q is of that form (with G monic, say), then since each W, is monic, we must

have Hfil Wﬁg = G* 1. Since G(v) is a unit mod ¢ iff Hfil W, (v) is, it follows that
Zoe: srxx Wiky oo, Wig) = €671 Z Y (vG(0)1) = ap(f)p(¢°). Combining

v mod ¢

these observations with (4.105) and using that [[.,X;(a;) = 1 for any characters

(X1 - -, Xx) mod £¢ with lem[f(x1),...,f(xx)] = (as a; = 1 mod ), we get

#VRIT}( (£63 (ai)ifil) Ozk(ﬁ)R - L
o) R = () (1 + B, %2) : (4.106)

V

where B, denotes the number of tuples (Ay,..., Ax) € [(—1]5\{(0,...,0)} for which
15, VV;}C is a perfect (¢ — 1)-th power in F,[T].

Now recalling the definition of the constant Cy = Cy (Wi, . .., Wk ) from the proof of
Proposition 4.4.3, we know that for any ¢ > (', the pairwise coprime irreducible fac-
tors of the product Hfil Wk, in Z[T'] continue to be separable and pairwise coprime in
the ring F,[T']. By the arguments given in the proof of Proposition 4.4.3(a), Hfil VVZ‘%
is a perfect (¢ — 1)-th power in F,[T] precisely when Ey(A;--- Ag)" = (0------ 0)"
(mod ¢ — 1), where Ey = Eo(Wi g, ..., Wky) is the exponent matrix. Thus, B, is ex-

actly the number of nonzero vectors X € (Z/(¢—1)Z)* satisfying the matrix equality
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EyX = 0 over the ring Z/(¢ — 1)Z.

Recall that Ey has Q-linearly independent columns and non-zero last invariant factor
B =BWik,...,Wky) € Z. By [55, Theorem 6.4.17], the matrix equation EyX = 0
has a nontrivial solution in the ring Z/(¢—1)Z precisely when some nonzero element of
7 /(¢ —1)Z annihilates all the K x K minors of the matrix Ey. But if ged(/—1, ) # 1,
then the canonical image of d == (¢ —1)/ged(¢ — 1, 3) in Z/(¢ — 1)Z clearly does this,
since df =0 (mod ¢ — 1) and since  divides the ged of the K x K minors of Ey (in
7). We thus obtain By, > 1 for each prime prime ¢ | ¢ satisfying ged(¢ — 1,3) # 1,
which from (4.106) yields V /o (q)® > 2#ltle =LA o (q)F /2¢(g)¥. Inserting this

into (4.103) establishes (4.2). O

Remark: If K = 1 and W; is a constant ¢, then the k-admissibility of ¢ forces
ged(q, ¢) = 1, which by (4.103) gives

#{n < x: Ppi(n) > q, f(n) = (mod ¢q)} > z/*(log, z)F!/log z.

4.11.1. Explicit Examples.

We now construct examples where the lower bounds in Theorems 4.1.4 and 4.1.5 grow

strictly faster than the expected quantity ¢(q) *#{n < z: (f(n),q) = 1}.

Failure of joint weak equidistribution upon violation of multiplicative in-

dependence hypothesis (example for Theorem 4.1.4)

By Proposition 4.2.1, it is clear that the lower bound in Theorem 4.1.4 grows strictly
faster once ¢ grows fast enough compared to logx. For a concrete example, we
start with any {W; x}1<i<x—1 C Z[T] for which p* = 8(Wik, ..., Wk_1x) is odd (for
instance, W, ;, := Hf’ for some pairwise coprime irreducibles Hy, ..., Hx 1 € Z|T] and

odd integers b; > 1 satisfying b; | b;41 for each ¢ < K — 1). Fix nonnegative integers
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(A)ETE # (0, ..., 0) and nonzero integers (a;)X, satisfying ax = [[~ " a) (in Z), and

let Wi s, = 10" VV{\k Consider a constant C' > max{C*, 1%, |ail}, such that any C-
rough k-admissible integer lies in Q(k; f1,- - , fx). Here C* as in the proof of Theorem

4.1.4, so that C > Di+1= Zfi}l deg W, + 1. Let ¢y be the least prime exceeding

C and satisfying o = —1 mod 8*. 2 Let {Wi,} 1<ick C Z[T] be nonconstant
1<v<k—1
polynomials with all coefficients divisible by £y, and let ¢ == [[ g<e<y ¢, with Y
{=—1 (mod B*)

any parameter lying in (4|8*|log, x, (K(/2) log, ). Since a(¢) > 1—Dy/({ —1) >0
for ¢ > 5, we see that ¢ < (log x)%0 is k-admissible and hence lies in Q(k; f1,-- - , fx).
As *is odd and £ = —1 (mod [*) for all £ | ¢, we have ged(¢—1, 5*) = 1 for all such
(. Further, ¢ = exp (Z lo<t<Y logﬁ) > exp (Y/2|8*]) > log®z, so the lower

¢=—1 (mod B*)
bound in Theorem 4.1.4 grows strictly faster than ¢(q) X #{n <z : (f(n),q) = 1}.

Failure of joint weak equidistribution upon violation of Invariant Factor

Hypothesis (example for Theorem 4.1.5)

Define W, x(T) :== T —i for each i € [K — 1] and Wi 1(T) == (T — K)<, for some fixed
d € {2,...,K}. Then {W,;}1<i<x are nonconstant, monic and pairwise coprime
(hence multiplicatively independent); also Eo(Wig, ..., Wgky) = diag(l,...,1,d) so
= PB(Wig,...,Wky) = d. Note that oy(¢) =1 — K/({ —1) > 0 for any prime
¢ > K+ 1. Let C3 = C3(Wiy,...,Wky) be a constant exceeding the constant
Cs in the proof of Theorem 4.1.5, such that any k-admissible Cs-rough integer lies
in Q(k; f1,--+, fx); note that C3 > D+ 1 > K + 2. Let ¢y be the least prime
exceeding C3 and satisfying ¢p = 1 (mod d), let {W;, }i<i<x C Z[T] be nonconstant

1<v<k

polynomials all of whose coefficients are divisible by ¢y, and let ¢ == [[ g<e<y ¥,
=1 (mod d)

with Y < (K;/2) log, = a parameter to be chosen later.

Then ¢ < (logz)%°, P~(q) > Cs and ¢ € Q(k; f1, -+, fx). By Theorem 4.1.5 and

120ur arguments go through with the residue —1 mod * replaced by any c¢* € Ug~ for which
ct—1¢€¢ U@x.
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Proposition 4.2.1, it follows that the residues a; = 1 (mod ¢q) are overrepresented

i 400 | g ((—1,8) # 1} > daylogyz. But #{0 | q: ((—1,8) # 1} =

Y te<e<y 1> Y/2p(d)logY, whereas (since K > ¢(d)), we have o < K3/logY
£=1 (mod d)

for some constant K3 > 0 depending at most on C3, K and d. So we only need Y to

satisfy 8K3p(d)logyx <Y < (Ky/2)log, z.

Therefore, our multiplicative independence and invariant factor hypotheses are both
necessary for achieving uniformity in ¢ < (log z)%° in Theorems 4.1.1, 4.1.2 and 4.1.3,
and neither of them can be bypassed by restricting to inputs n with sufficiently many

large prime factors.

Section 4.12

Concluding Remarks

It is interesting to note that despite the extensive amount of ‘multiplicative machinery’
known in analytic number theory, there does not seem to be any estimate in the
literature, a direct application of which can replace our arguments in section 4.6. For
instance, Halasz’s Theorem only yields an upper bound on the character sums that is
not precise enough, while a direct application of (known forms of) the Landau-Selberg-
Delange method, — one of the most precise estimates on mean values of multiplicative
functions known in literature, — seems to give an extremely small range of uniformity

in q.

Theorem 4.1.3 suggests a few directions of improvement. First, as mentioned at the
end of the previous section, we are still “one step away” from optimality in the case
K > 2, k = 1. Theorem 4.1.3 shows that “Pyxy1(n) > ¢” is sufficient while the

discussion in subsection § 4.10.1 shows that “ Py _1(n) > ¢” is not, so the question is
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whether the optimal value is “2K” or “2K + 1”. If it is the former, then we will need
a sharper bound on Vjg ;- than what comes from our methods in section 4.10. One
can also ask whether it is possible to weaken the nonsquarefullness conditions in the

statement of Theorem 4.1.3.

Recall also that the ranges of ¢ in Theorem 4.1.1 are genuinely optimal in all the
cases except in the very first one (namely when K = 1 and W), = W, is linear): This
includes the case of a single multiplicative function f(n) controlled by a single linear
polynomial at the primes, the most interesting concrete example of which is ¢(n)
or o(n) itself! In these cases, we can prove that ¢ cannot be allowed to grow much
faster than L(z) = alegloslogw/loglogz (g0 the end of the introduction in [40]), but
owing to our heavy reliance on the Siegel-Walfisz theorem, the previous arguments
do not extend past the range ¢ < (log z)¥°. It would be interesting to obtain the best
possible range of ¢ in this remaining case; it seems that being able to do this may

require significantly new ideas or an entirely different approach.

This chapter has obtained some of the best possible analogues of the Siegel- Walfisz
theorem for families of polynomially-defined multiplicative functions. One of the
next steps would be to study analogues of the Bombieri- Vinogradov theorem for such
families. We might also ask for extensions of the results of this chapter to study the
distribution of Fourier coefficients of modular forms (particularly Ramanujan’s tau

function 7(n)) to varying moduli.

In the manuscript [72], we strengthen some of the results in this chapter under some
additional finer control on the behavior of the given multiplicative functions at some

higher prime powers.

Finally, in an upcoming manuscript [74] of the author, we extend the general Landau—

234



4.12 CONCLUDING REMARKS

Selberg—Delange method (as formulated in [76, chapter I1.5], for instance) from the
case when the Dirichlet series in the picture is controlled by a complex power of the
Riemann zeta to the case when it is controlled by a product of L-functions mod ¢
raised to complex powers, where ¢ varies in a wide range. As one of several applica-
tions of this result, we hope to give quantitative versions of Theorems 4.1.1 to 4.1.3.
This would also enable us to understand the second-order behavior in these distribu-
tions as well as the rate of convergence to equidistribution. In particular, we should
be able to explain the slow convergence to equidistribution observed in the table on
©(n) mod 5 following the statement of Proposition 1.3.3. It is also very likely that the
convergence to equidistribution is monotonic in general, even as ¢ varies uniformly in

the “Siegel-Walfisz” range; we should also be able to establish this.
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Chapter 5

Distribution of the aliquot sum

function to varying prime moduli

Let s(n) = o(n) —n denote the sum-of-proper-divisors (or sum-of-aliquot-divisors) func-
tion. In this chapter, we determine asymptotic formulas for the number of n < z for
which s(n) lands in a given residue class modulo p, uniformly for primes p below any
fixed power of logz. This chapter is partly based on the manuscript [40], however,

we have been able to simplify the arguments using ideas from Chapters 2—4.

For fixed modulus ¢, one has that ¢ | o(n) for all n except those belonging to a set of
density 0. This was observed already by Alaoglu and Erdds in 1944 [2, p. 882]. (See
also the proof of Lemma 5 in [58], and Theorem 2 in [62].) Since s(n) = o(n)—n = —n
(mod ¢) whenever ¢ | o(n), we immediately deduce that s(n) is equidistributed mod

q for each fixed modulus g¢.

We will show that s(n) remains equidistributed for larger prime moduli p, but some

care about the formulation is required. Since s(q) = 1 for every prime ¢, there are at
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5.1 TECHNICAL PREPARATION

least (1 4 o(1))x/logx values of n < z with s(n) =1 (mod p), no matter the value
of p. This dashes any hope of equidistribution if p is appreciably larger than log x.

We work around this issue by considering s(n) only for composite n.

Theorem 5.0.1. Fiz Ko > 0. As x — 00, the number of composite n < x with

s(n) = a (mod p) is (1+0(1))x/p, for every residue class a mod p with p < (logx)=°.

Additional notation and conventions in this chapter:

We reserve the letters p, P for primes. In addition to employing the Landau-Bachmann—
Vinogradov notation from asymptotic analysis, we write A 2 B (resp., A < B) to

mean that A > (1 +0(1))B (resp., A < (1 +0(1))B).

Section 5.1

Technical Preparation

As shown in the introduction, s(n) is equidistributed modulo each fixed prime p,

hence to show Theorem 5.0.1, we may assume that p — oo such that p < (log z)%o.

The following result is a special case of the fundamental lemma of sieve theory, as

formulated in [31, Theorem 7.2, p. 209].

Lemma 5.1.1. Let X > Z > 3. Suppose that the interval I = (u,v] has length
v—u = X. Let Q be a set of primes not exceeding Z. For each q € Q, choose a
residue class a, mod q. The number of integers n € I not congruent to a, mod q for

any q € Q is

(I0-3) (o (=(23))
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5.1 TECHNICAL PREPARATION

We will need the following result on the count of n < z for which ged(o(n),p) = 1,
which refines Proposition 2.2.1 for the function o(n) to prime moduli. This follows
as a direct consequence of [69, Theorem A] or [40, Lemma 5.1]; alternatively, a more

elementary argument for this can be given by following the proof of the latter.

Lemma 5.1.2. Fiz A > 0. As z,p — oo with igii — 00, we have

X
Yl
= p(logz)"/=V

pto(n)

In what follows, given J € N and units R, S mod p, we define
J J
Uj(p; R, S) =A{(vy,...,v5) € Uz;] ; H(Uj +1)=R, ij =S (mod p)}.
j=1 Jj=1
Moreover, given residues a,r, s mod p, we define
J J
Vi(p,a; R, S) ={(v1,...,v5) €U} : TH(vj +1) — sij =a (mod p)}.
i=1 j=1
We also define a(p) :== 1—1/(p—1). The following estimates on the sizes of U;(p; R, S)

and V;(p, a; R, S) will be useful throughout our arguments.

Lemma 5.1.3. As z,p, J — oo, we have
o
#Us(py R, S) = (14 0(1))
uniformly in R, S € U,.

Proof. The argument is a much simpler version of that given for Proposition 4.3.4,
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5.1 TECHNICAL PREPARATION

so we only outline it. By (4.26), we have

U R S) = —— 3 X(RS) (Z x<v+1>w<v>> .

2
v(P) | i,

v mod p

For (x, %) = (xo0, x0o) mod p (where xq is again the trivial character mod p), we see

that ) X+ DY) =#{velU,:v+1e€ Uy} =p—2=a(p)e(p). For the

v mod p

other O(p?) many possibilities of (x, ), the sum 37 . x(v+1)1(v) being a Jacobi

sum has absolute value at most p/2. This shows that

W)= SO (1o ()

v(p)? (P)e(p)’
and since p, J — 0o, the O-term above is at most Zﬁ%)j < pﬁ—;ﬂ =o(1). ]

Lemma 5.1.4. Asx,p, J — 0o, we have the following estimates, uniformly in residue

classes a,r,s mod p.

(14 0(1)) - (p)e(p))’ /(p), if a € Up,r € Up,5 =0 (mod p)

p(p)’ 1, ifa e U,r=0 (mod p),s €U,
#VJ(p>a; R: S) =
(1+o0(1)) - (p)’, ifa€U,reUp,secl,

(1+0(1) - (p)e®)’ /o), if a=0 (mod p),r € Up,s € Uy,
(5.1)

\

Proof. In the first case, we have V;(p,a; R, S) = {(vy,...,v;) € U} : TH;.IZI(UJ- +
1) = a (mod p)}, with a,r € U, so its count is (1 + o(1))(a(p)p(p))’ /¢(p) by the
arguments given for the verification of hypothesis A in section 2.4. In the second case,

we see that V;(p,a; R, S) = {(v1,...,vy) € U} : H}]:l v; = —as~' (mod p)}; since

1

as™t € U,, any of the ¢(p)’~! many arbitrary assignments of vy, ...,v;_; throws v;
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5.1 TECHNICAL PREPARATION

in a unique coprime residue class mod p.

Now we come to the third case, namely when a,r,s € U,. We start by setting
R=r H‘j]:l(vj +1)and S=s szl v; mod p, so that R — S = a (mod p). Note that

S € U,, so that (separating the cases when R is or is not divsible by p, we may write)

#Vi(p,a;R,S) = Y #U(p; Rt SsTY
R,S€U,
R—S=a (mod p)

J J
+#{(v1,...,v) €U : p| H(vj +1), ij = —as™! (mod p)}. (5.2)

Jj=1

By Lemma 5.1.3, the sum above is (1 + o(1))(a(p)¢(p))’/o(p). To count the last
cardinality in (5.2), note that omitting the divisibility condition would give a total
of p(p)’~* many tuples (v1,...,v5) (as argued in the second case of (5.1)). On

the other hand, by Lemma 5.1.3, the number of (vy,...,v;) € Ui] satisfying p {

H;-]:]_(Uj + 1) and szl vj = —as™' (mod p) is equal to 35, #Us(p;b, —as™!) =

(14 o(1))(a(p)p(p))’ /¢(p). Putting all of this together into (5.2) shows that
#Vs(p,a R.S) = (1+0(1)) - =

which is o (p)? 71 (1 + o(a(p)’)), and hence also p(p)’~1(1 + o(1)) as desired.

Finally, we come to the last case, namely when a =0 (mod p) and r, s € U,. Setting
R=r H;.Izl(vj +1)=s H}]:l v; (mod p), we see that this time, we must have R € U,

which allows us to write

#Vi(p,a; R, S) = #V;(p,0;1,5) = Z #U;(p; Rr—t, Rs™1).

ReU,

Invoking Lemma 5.1.3 on each U;(p; Rr—t, Rs™!) thus completes the proof. O
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5.2 CONTRIBUTION OF THE CONVENIENT 7,

In the spirit of the arguments in previous chapters, we set
J = [logsz| and y:=exp((logz)/*),

and we define n to be convenient if the J largest prime factors of n exceed y and
none of them are repeated in n. Thus any convenient n can be uniquely written in
the form mP; ... Py, where L,, = max{y, P(m)} < P; < --- < P;. Note that any
convenient n is automatically composite. As such, we will say that n is inconvenient

if it is composite and not convenient.
We then have the following analogue of Lemma 2.3.2 and Proposition 4.3.1.

Lemma 5.1.5. Fiz Ky > 0. Uniformly in p,x — oo satisfying p < (logz)¥o, the

number of inconvenient n < x is o(x), and the number of inconvenient n < x divisible

by p is o(x/p).

The proofs of both the assertions are much simpler versions of that of Lemma 2.3.2 so
we omit the details. (The only additional observation for the second assertion is that if
we write n = BAP with P(B) <y < P~(A) and with P > z as in the proof of Lemma

2.3.2, then we must have p | B, so that Y 1/B <p~! > mp(m)<y 1/m < (logy)/p.)

Section 5.2

Contribution of the convenient n

Once again, we show that the convenient n give the main term.

Proposition 5.2.1. Fiz Ky > 0. We have

#{n < x convenient : s(n) =a (mod p)} ~ Tous xT,p — 00,
p
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5.2 CONTRIBUTION OF THE CONVENIENT 7,

uniformly in p < (logz)%° and in residues a mod p.

Proof. The exact same arguments as given for (3.6) or (4.15) show that

Z 1= Ei]();;?) (% Z 1> + O (zexp (—Ci(logz)"/'%)) (5.3)

n<x convenient < Py,....,Py>Lm
s(n)=a (mod p) PyPy<z/m
Py,...,Py distinct

where V(m) == V;(p,a;o(m), m). for some constant C; depending on K.

First consider any a € U,. Note that for V(m) to be nonempty, we must have p f m
or pto(m). As such, the first three cases of (5.1) show that the count of convenient

n < x satisfying s(n) = a (mod p) is

a(p)’ 1
(1+0(1)) E i E 1
©(p) - LS
mxx 1yees 7>Lm,
plo(m), plm Py--Pj<z/m

Py,...,Py distinct

1 1 1+ o(1) 1
w2 2 ) EEG 2 )

m<z Pi,....P;>Lm m<x Pi,....,P;>Lm
plo(m), pim Py-Py<z/m ptmo(m) Py--Pr<z/m
Py,...,P; distinct Pq,...,Py distinct

(5.4)

The first double sum (over m < z satisfying p{ o(m) and p | m) is at most

Z(% >, 1>SZ Y 1< 1<<§. (5.5)

m<x Py,....,P;>Lm m<x Lp<Pj<--<Pp n<x
plm Py--Pj<z/m plm  Pi-P;<z/m pln
Pi,...,Py distinct

Thus, collecting the main terms in the second and third double sums in (5.4) shows
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5.2 CONTRIBUTION OF THE CONVENIENT 7,

that the expression in (5.4) is

1 1 1 1 T
@Z(ﬁ Z 1) + o m 2 (ﬁ Z 1) + 0(];).

m<x Pi,....,Py>Lp, < P1,....,Py>Ly,
Mm P1---PJ§33/TTL Mm (m) Pl---PJSx/m
P1,...,Py distinct P,...,P; distinct

By (5.5), removing the p { m condition in the main term above incurs a negligible
error. Moreover, proceeding as in (5.5) shows that the double sum in the o-term
above is at most x. This shows that

3 1:$2(% T 1)+0(g)_

n<z convenient m<z Pi,...P;>Lpm
s(n)=a (mod p) P--Py<z/m
P,...,P; distinct

Reversing the splitting of convenient n and invoking the first assertion of Lemma
5.1.5 shows that the double sum in the right hand side above is ~ x, completing the

proof of the proposition for a € U,,.

Finally, consider the case a =0 (mod p). We start by writing

o= > 1+ > L (5.6)

n<x convenient n<x convenient n<x convenient
$(n)=0 (mod p) s(n)=0 (mod p) p|n, plo(n)
pino(n)

By the second assertion of Lemma 5.1.5, ignoring the convenient condition in the
second sum on the right hand side above incurs an error of o(x/p). Since the number
of n < x divisible by p? is o(x/p), we thus obtain

DY 1+o(g): 3 1+0(§)=Zl+o(§);

n<zx convenient n<x m<z/p m<z/p
pln, plo(n) plln, plo(n) pfm, plo(m) plo(m)
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5.2 CONTRIBUTION OF THE CONVENIENT 7,

in the second equality above, we have noted that if p || n, then n can be uniquely
written as mp for some m < x/p not divisible by p, so that o(n) = o(m)(p+1) = o(m)

(mod p). By Lemma 5.1.2, we obtain

3 :%_ZHO():%—(HO(U)W+O(§).

n<x convenient m<x/p
pln, plo(n) plo(m)

(5.7)
To deal with the first sum in (5.6), we proceed as in the case a € U, by first obtaining
an analogue of (5.3) and then using the last case of Lemma 5.1.4. Noting that

p 1 no(n) also forces p { mo(m), we deduce that

a(p)?! 1 (x)
1 = (1+o0(1 — 11 +o(—-).
2 = (e oy D (J! ) »
n<zx convenient m<x P1,...,P;j>Ly,
s(n)=0 (mod p) ptmo(m) Py--Py<z/m
ptno(n) Py,...,Py distinct

An entirely analogous argument also gives

Yoor—aw’ Y (% 3 1)4—0(%),

n<z convenient m<z Py,...,P;>Lm
pino(n) pimo(m) Pi--Py<z/m
P1,...,Py distinct

where the aforementioned application of Lemma 5.1.4 is replaced by the easy obser-
vation that the number of tuples (vy,...,v;) € U, for which szl(vj +1) e U, is

exactly (a(p)p(p))’. Comparing the last two displays shows that

oz 6 - 26

n<x convenient n<x convenient n<x
s(n)=0 (mod p) pino(n) plo(n)
pino(n)

where the last equality follows from the first assertion of Lemma 5.1.5. Finally,
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5.3 BOUNDING THE CONTRIBUTION OF INCONVENIENT 7

invoking Lemma 5.1.2 shows that

o1 = (1+0(1))W + 0(%).

n<x convenient
s(n)=0 (mod p)
pino(n)

Inserting this and (5.7) into (5.6) establishes Proposition 5.2.1. O
Hence to complete the proof of Theorem 5.0.1, it suffices to show that the number

of inconvenient n < x satisfying s(n) = a (mod p) is o(x/p) uniformly in z,p — oo

with p < (log z)¥o.

Section 5.3

Bounding the contribution of inconvenient n

Let z = z/1°82% By the arguments given towards the start of the proof of Lemma
2.3.2, there are o(x/p) many n < z which are either z-smooth or have a repeated prime
factor exceeding y. Any remaining inconvenient n must have P;(n) < y. Splitting
these n into S; and Sy depending on whether or not Py(n) > y (respectively), it

suffices to show that both S; and Sy are o(z/p).

By definition of S, any n counted in it can be written as n = mP,P;, where P, >
z, where max{y, P(m)} < P, < Py, and P;(m) < y. The congruence s(n) = a
(mod p) can be rewritten as (Pi, P5) = (v1,v9) mod p for some (v, v3) in Vao(m) =
Va(p,a;o(m), m). Now given m and (v, vy), the number of possible (P, P;) can be

bounded by familiar Brun—Titchmarsh and partial summation arguments. This gives

r(log, )’ 1 #W(m)
S < g 2 n; S R (5.8)
Py(m)<y
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5.3 BOUNDING THE CONTRIBUTION OF INCONVENIENT 7

We now claim that uniformly in primes p and in residues a,r, s mod p, we have

#Vg(p,a;r, 5) S ]lrEsEaEO (mod p) (P(p>2 + 290<p) (59>

Indeed, writing r(v; + 1)(vy + 1) — svjvg = (r(vy + 1) — sv1) - va + r(vy + 1) and
differentiating the possibility of whether or not the coefficient of v, is invertible mod

p, we obtain

#Va(p,a;r,s) < > 1+ ¢p)- > 1

U1 EUp vl EUp
r(vi+1)#sv1 (mod p) r(vi+1)=svi=a (mod p)
r(vi+1)Za (mod p)

The first sum is always at most ¢(p). As for the second sum, if a € U, then the
congruence sv; = a (mod p) forces vy into a unique coprime residue class mod p, in
which case the second sum is at most 1. Moreover, if a = 0 (mod p) but r € U,
then the congruence r(v; + 1) = a =0 (mod p) forces v; = —1 (mod p), so that the
second sum again at most 1. Inserting all these observations into the displayed bound
above shows that #Vy(p,a;r,s) < 2p(p) except when ¢ = r = 0 (mod p). Now if
a=r =0 (mod p), then for Vy(p,a;r,s) to be nonempty, we must also have s = 0

(mod p), thus proving (5.9).

Now if a € U,, then (5.8) and (5.9) show that S; < z(log, )?/pv/log x; here the sum

> m<z 1/m has been bounded by writing m = AB with P(B) <y < P~(A), and
Py(m)<y

handling > 1/A and ) 1/B in a manner analogous to the proof of Lemma 2.3.2.

On the other hand, if @ = 0 (mod p), then (5.8) and (5.9) show that

z(log, r)? 1 z(log, x)? 1

S« === E - 4 ——= E —
o(p)logx — m log x A
Py(m)<y Py(m)<y
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5.3 BOUNDING THE CONTRIBUTION OF INCONVENIENT 7

Handling the first sum as above, writing any m in the second sum as m = Mp with
P;(M) <y, and handling }_ 1/M as above, now shows that S} < z(log, z)?/py/log =

in the case a =0 (mod p) as well. Hence we always have S; = o(z/p).

We now turn to Ss, the count of composite n < x not having any repeated prime
factor exceeding y, and satisfying the three conditions Py(n) <y, P(n) > z, s(n) = a
(mod p). From now on, we will be handling all residues @ mod p simultaneously. Write
n =mP with P = P(n) > max{z, P(m)}, so that P(m) < y. Then Ps(m)+o(m) =
s(n) = a (mod p). Now if s(m) # 0 (mod p), then we must also have o(m) # a

(mod p), and by Brun—Titchmarsh, the total number of such (m, P) is

xlog, x xlog, 1
oL . 1 . -
?;rf)iy <y v>1

which is < xlog, z/p(log 2)* = o(z/p).

It thus only remains to bound the contribution of (m, P) counted above that satisfy
s(m) = 0 (mod p), so that o(m) = a (mod p). This means two things: First, m =
o(m) — s(m) = a (mod p). Second, since n is composite, we have m > 1, so that
s(m) > 0, whence the condition s(m) = 0 (mod p) forces p < s(m) < o(m) K
mlog,(3m), leading to to m > p/log, p. (Here the bound on o(m) is a standard fact,
see for instance [33, Theorem 323, p. 350].) Bounding the number of P € (z,z/m)]
via Chebyshev’s estimate on the count of primes, and then summing over m shows

that the total number of such possible (m, P) is

xlog,x | logyp 1 1
— — . 5.10
< log x P + Z m + Z m ( )
p<m<yl0 yll<m<z
m=a (mod p) P(m)<y
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By partial summation, the second sum is < (logz)'/*/p. To bound the third sum
above, consider any X € (y'°, z] and note that any y-smooth m < z is certainly not

divisible by any prime ¢ € (y, X'/2]. This means that

X 1 X (log )"/
1 < 1 — 1—- —_—
¥ i< ¥ <3 I (1-7) « S
m<X M<X/p y<l<X1/2
P(m)<y y<l<XY?2 —= Mz#—ap~! mod ¢

m=a (mod p)

where we have written m = Mp + a and invoked Lemma 5.1.1. By partial sum-
mation and the above bound, it now follows that the third sum in (5.10) is <
(log z)/*(log, z) /p. Collecting all above estimates shows that the number of possible
(m, P) with s(m) =0 (mod p) is < z(log, 7)?/p(log v)*/* = o(x/p). This establishes

that Sy = o(z/p), concluding the proof of Theorem 5.0.1. O

Section 5.4

Concluding remarks

Given our reliance on the Siegel-Walfisz theorem, it seems difficult to extend unifor-
mity in our results past (log z)%°. It would be interesting to have heuristics suggesting
the “correct” range of uniformity to expect. Uniformity in Theorem 5.0.1 certainly

/2 To see this, let ¢, run over primes up to

fails as soon as p is a bit larger than z
$v/. Then each product ¢gr < z and s(qr) = ¢+ r + 1 < /z. Hence, some m < \/z
has > 2'/%(logz)~2 preimages n = gr < x. If now p > z'/?(logx)? (say), then the

residue class m mod p contains s(n) for many more than z/p composite n < x.

The reader interested in other work on the distribution of s(n) in residue classes is

referred to [6, 5, 57.
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