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Chapter 1

Introduction

The distribution of values of arithmetic functions in residue classes has drawn a lot

of attention in elementary, analytic and combinatorial number theory, with multiple

authors such as Delange, Narkiewicz, Dence and Pomerance, Banks and Shparlinski,

Śliwa, Rayner, Dobrowolski, Fomenko, and others studying such value distributions

for fixed moduli. In this dissertation, we extend several of their works and study the

distribution of arithmetic functions in residue classes to moduli that are allowed to

vary within a wide range. This study is motivated by the celebrated Siegel–Walfisz

theorem on the distribution of primes in progressions, and we obtain essentially best

possible analogues of the Siegel–Walfisz theorem for large classes of additive and

multiplicative functions.

In this introductory chapter, we recount some of the relevant past work done on

this subject, motivate the problems studied here, and summarize the contents of this

dissertation.
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1.1 Uniform distribution in residue classes

Section 1.1

Uniform distribution in residue classes

Let f be an integer valued arithmetic function and q be a positive integer. We say

that f is uniformly distributed or equidistributed modulo q if

#{n ≤ x : f(n) ≡ a (mod q)} ∼ x

q
as x→∞,

for each residue class a mod q. In shorthand, we will say that f is UD mod q. This

notion was introduced by Niven in [53].

For instance, the function f(n) = n is easily seen to be equidistributed modulo any

q ∈ N. A somewhat less trivial example is the function f(n) that maps n to the n-th

Fibonacci number, which is known to be equidistributed modulo q precisely when q

is a power of 5 (see [52, 37]).

Using the additive characters mod q, we can decide whether an arithmetic function

f is equidistributed mod q. In what follows, we use e(t) to denote e2πit.

Lemma 1.1.1. Consider any arithmetic function f : N → Z and a fixed positive

integer q. Then f is UD mod q if and only if for every nonzero residue class r mod

q, we have ∑
n≤x

e

(
rf(n)
q

)
= o(x) as x→∞.

Proof. Assume that f is UD mod q. Then for any residue class a mod q, we have

#{n ≤ x : f(n) ≡ a (mod q)} = (1 + o(1))x/q as x → ∞. As such, for any residue

2



1.1 Uniform distribution in residue classes

class r mod q, we have

∑
n≤x

e

(
rf(n)
q

)
=

∑
a mod q

e

(
ra

q

) ∑
n≤x

f(n)≡a (mod q)

1

=
(

1
q

∑
a mod q

e

(
ra

q

)
+ o(1)

)
x.

as x→∞. Now if r ̸≡ 0 (mod q), then
∑

a mod q e(ra/q) vanishes, proving the forward

implication.

For the reverse implication, we use the last observation to detect the condition

f(n) ≡ a (mod q). (In other words, we use the “orthogonality relations” of addi-

tive characters.) Indeed, using 1P to denote the indicator function of a property P ,

we see that for any residue class a mod q, we have

#{n ≤ x : f(n) ≡ a (mod q)} =
∑
n≤x

1f(n)−a≡0 (mod q)

=
∑
n≤x

1
q

∑
r mod q

e

(
r(f(n)− a)

q

)
.

Interchanging sums and isolating the term r ≡ 0 (mod q), we obtain

#{n ≤ x : f(n) ≡ a (mod q)} = x

q
+ 1

q

∑
r ̸≡0 (mod q)

e

(
−ra
q

)∑
n≤x

e

(
rf(n)
q

)
.

The lemma now follows from the hypothesis that
∑

n≤x e (rf(n)/q) = o(x) as x→∞,

for each r ̸≡ 0 (mod q).

Remark 1.1.2. Lemma 1.1.1 should be reminiscent of the classical “Weyl equidis-

tribution criterion” that is used to test for “uniform distribution mod 1”. Here we

say that a sequence {αn}∞
n=1 of real numbers is uniformly distributed mod 1 if for any

3



1.1 Uniform distribution in residue classes

subinterval (a, b) of [0, 1], we have

lim
x→∞

1
x

#{n ≤ x : {αn} ∈ (a, b)} = b− a,

where {α} := α−⌊α⌋ denotes the fractional part of a real number α. This is not the

same as the vacuous notion of “uniform distribution mod q” with q = 1. The notions

of “uniform distribution mod q” (for a general q) and “uniform distribution mod 1”

are not directly related to one another, however there are some connections. See [49,

Chapter 1] for some remarks on these connections.

Remark 1.1.3. An interesting question to ask would be: Can we characterize those

sets X ⊂ N for which there exists a function f : N → Z satisfying the following

property: f is UD mod q ⇐⇒ q ∈ X.

A tautological necessary condition on X is that it must be “divisor closed”, i.e. for

any q ∈ X, all the divisors of q must also lie in X. (This follows from the observation

that any residue class mod d is a union of q/d many residue classes mod q.) This

condition was also proven to be sufficient by A. Zame in [81].

This notion of equidistribution generalizes naturally to a family f1, . . . , fK : N → Z

of arithmetic functions: We say that this family is jointly equidistributed (or jointly

UD) modulo q if for any family of residue classes a1, . . . , aK mod q, we have

#{n ≤ x : ∀i ∈ [K], fi(n) ≡ ai (mod q)} ∼ x

qK
as x→∞. (1.1)

(Here and below, [K] denotes the set {1, . . . , K}.) A straightforward extension of the

argument given for Lemma 1.1.1 yields the following generalization of it.

Lemma 1.1.4. The functions f1, . . . , fK : N → Z are jointly UD modulo a fixed

4



1.2 Equidistribution of additive functions in residue classes: Fixed
moduli

q ∈ N if and only if for every tuple of residue classes (r1, . . . , rK) ̸≡ (0, . . . , 0) mod q

we have ∑
n≤x

e

(
r1f1(n) + · · ·+ rKfK(n)

q

)
= o(x) as x→∞.

Section 1.2

Equidistribution of additive functions in residue

classes: Fixed moduli

The main topic in this thesis is to study the distribution of additive and multiplicative

functions in residue classes. Here, we say that f : N → Z is additive if it satisfies

f(mn) = f(m) + f(n) for all pairs of coprime positive integers m and n. On the

other hand, we say that f : N → Z is multiplicative if it satisfies f(mn) = f(m)f(n)

for all such m and n.

Some of the most well-known examples of additive functions are:

• The function ω(n) =
∑

p|n 1 counting the distinct prime divisors of n.

• The function Ω(n) =
∑

pk∥n k =
∑

p|n vp(n) counting the prime divisors of n

with appropriate multiplicity. Here vp(n) is the exponent (highest power) of p

in the prime factorization of n.

• The function β(n) =
∑

p|n p summing the distinct prime divisors of n.

• The “Alladi-Erdős” function A(n) =
∑

pk∥n pk =
∑

p|n pvp(n) summing the

prime divisors of n with appropriate multiplicity.

Each of these functions is interesting in its own right, and various aspects of these

5



1.2 Equidistribution of additive functions in residue classes: Fixed
moduli

functions have been studied in the literature. As for their distribution in residue

classes, one of the earliest results in this direction is the following

Theorem 1.2.1. ω(n) is UD mod q for any q ∈ N. The same is true for Ω(n).

This result is due to Pillai [56], generalizing work of von Mangoldt who showed this

for q = 2. A similar result was also obtained by Sigmund Selberg in [70].

The Alladi–Erdős function also exhibits equidistribution modulo any positive integer

q: This was proven with a very strong error term for q = 2 by Alladi and Erdős [3]

themselves, and subsequently generalized to arbitrary q by Goldfeld [28].

Theorem 1.2.2. A(n) is UD mod q for any q ∈ N. In fact, there exists an absolute

constant c > 0 such that for r ∈ {0, 1}, we have

#{n ≤ x : A(n) ≡ r (mod 2)} = x

2 +O(x exp(−c
√

log x))

as x→∞. Moreover, for any fixed q > 2 and any residue class r mod q, we have as

x→∞,

#{n ≤ x : A(n) ≡ r (mod q)} = x

q
+O

(
x√

log x

)
. (1.2)

In 1969, Delange [19] gave a criterion for a general additive function f : N → Z

to be equidistributed modulo a fixed q ∈ N, in terms of the divergence of the sums

Sd :=
∑

d∤f(p) 1/p for certain divisors d of q. (See Theorem 1 and Remark 3.1.1 in

[19].)

Theorem 1.2.3. Let f : N → Z be an additive function and q > 1 a given integer.

Consider the sums Sd :=
∑

p: d∤f(p) 1/p. Then f is equidistributed mod q if and only

if Sℓ diverges for every odd prime ℓ dividing q, and one of the following hold:

6



1.2 Equidistribution of additive functions in residue classes: Fixed
moduli

(i) q is odd;

(ii) 2 ∥ q, and either S2 diverges or f(2r) is odd for all r ≥ 1;

(iii) 4 | q, S4 diverges, and either S2 diverges or f(2r) is odd for all r ≥ 1.

It is worth noting that Theorem 1.2.1 and the first assertion of Theorem 1.2.2 follow

immediately from Theorem 1.2.3: Indeed, since ω(p) = Ω(p) = 1 for any prime p, we

see that for any d > 1, the sum
∑

p:d∤ω(p) 1/p =
∑

p:d∤Ω(p) 1/p =
∑

p 1/p diverges.

In order to establish Theorem 1.2.3, Delange’s main idea (a theme that is highly recur-

rent while proving equidistribution results to fixed moduli) is to utilize the Weyl-type

criterion Lemma 1.1.1, and recognize that since f(n) is an additive function, the

functions e(rf(n)/q) are multiplicative, and as such the sums
∑

n≤x e(rf(n)/q) are

amenable to the plethora of tools from the vast subject of “mean values of multi-

plicative functions”. For Theorem 1.2.3, it suffices to use one of the oldest known

results in this subject: A theorem of Wirsing [80] that gives a necessary and sufficient

condition for the mean value of a multiplicative function g : N → U to vanish, in

terms of the average behavior of g at the primes and the behavior of g at powers of

2. (Here U := {z ∈ C : |z| ≤ 1} is the unit disk in the complex plane, and by the

“mean value” of g, we mean the quantity limx→∞
1
x

∑
n≤x g(n).)

In his sequel [20] to the aforementioned paper, Delange characterizes when a given

family f1, . . . , fM of integral-valued additive functions is jointly equidistributed to a

given integer modulus q, by reducing the problem to the equidistribution of a single

additive function. The following is the special case of Delange’s result that will be

relevant in this dissertation. (This corresponds to the assignment q′
i := 1, δ := q in

the result stated in section 4 of [20].)

Theorem 1.2.4. A given family f1, . . . , fM of integral-valued additive functions is

7



1.2 Equidistribution of additive functions in residue classes: Fixed
moduli

jointly equidistributed modulo q > 1 if and only if for all integers k1, . . . , kM satisfying

gcd(k1, . . . , kM) = 1,1 the additive function k1f1 + · · ·+ kMfM is equidistributed mod

q.

We remark that the formulation above is equivalent to that in [20, Section 4], which is

stated with the additional restriction that k1, . . . , kM ∈ {0, . . . , q−1}. Indeed, assume

that
∑M

i=1 λifi is equidistributed mod q for all (λ1, . . . , λM) ∈ {0, 1 · · · , q − 1}M sat-

isfying gcd(λ1, . . . , λM) = 1. We claim that
∑M

i=1 kifi is equidistributed mod q for all

(k1, . . . , kM) ∈ ZM satisfying gcd(k1, . . . , kM) = 1. To see this, we consider any tuple

(k1, . . . , kM) ∈ ZM having gcd(k1, . . . , kM) = 1, and let k′
1, . . . , k

′
M ∈ {0, 1, . . . , q − 1}

be the unique integers satisfying k′
i ≡ ki (mod q). Then d′ := gcd(k′

1, . . . , k
′
M) ∈

{1, . . . , q − 1} must be coprime to q, for otherwise, there is a prime ℓ dividing

gcd(q, k′
1, . . . , k

′
M) hence also dividing gcd(q, k1, . . . , kM) = 1. Write k′

i =: d′k′′
i for

some k′′
1 , . . . , k

′′
M ∈ {0, 1, . . . , q − 1} having gcd(k′′

1 , . . . , k
′′
M) = 1. Since d′ is invert-

ible mod q and the function
∑M

i=1 k
′′
i fi is equidistributed mod q, it follows so is the

function
∑M

i=1 kifi, as
∑M

i=1 kifi ≡
∑M

i=1 k
′
ifi ≡ d′∑M

i=1 k
′′
i fi (mod q).

Analogous to the first step in the proof of Theorem 1.2.3, Lemma 1.1.4 becomes

relevant in the proof of Theorem 1.2.4. As an application of Theorems 1.2.4 and

1.2.3, and of Dirichlet’s theorem on primes in progressions, we have the following

extension of (parts of) Theorems 1.2.1 and 1.2.2.

Corollary 1.2.5. ω(n) and A(n) are jointly UD modulo any fixed q ∈ N. The same

holds true for Ω(n) and A(n).

Remark 1.2.6. One might ask the following variant of the question asked in Remark

1.1.3: For which sets X ⊂ N does there exist an additive function f : N → Z that
1Whenever we speak of gcd(k1, . . . , kM ), we assume implicitly that (k1, . . . , kM ) ̸= (0, . . . , 0).

8



1.3 Equidistribution of multiplicative functions in residue classes:
Fixed moduli

satisfies the following equivalence: f is UD mod q ⇐⇒ q ∈ X. This question was

answered by Narkiewicz in Theorem 4.6 of his monograph [49].

Section 1.3

Equidistribution of multiplicative functions in

residue classes: Fixed moduli

We start by giving an account of the results known on the distribution of multiplicative

functions to fixed moduli.

1.3.1. The correct notion of “equidistribution”

It turns out that for multiplicative functions, the notion of “equidistribution” defined

in the previous section is not the correct one to work with. To see why that is,

let’s consider one of the most classical examples of a multiplicative function, the

Euler totient φ(n) = #(Z/nZ)×, which will make an appearance everywhere in this

dissertation. It is a well-known result (for instance, implicit in work of Landau [38])

that for any fixed q ∈ N, “almost all” positive integers n are divisible by a prime

p ≡ 1 (mod q). In other words, for any fixed q, we have

#{n ≤ x : ∃ p ≡ 1 (mod q) s.t. p | n} ∼ x as x→∞.

But if n is divisible by a prime p ≡ 1 (mod q), this forces q | (p− 1) | φ(n). As such,

for any fixed q, we obtain

#{n ≤ x : φ(n) ≡ 0 (mod q)} ∼ x as x→∞.

9
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In particular, this means that φ(n) is not equidistributed modulo any integer q > 1.

Motivated by this, Narkiewicz in [45] introduces the notion of weak uniform distribu-

tion: Given an integer-valued arithmetic function f and a positive integer q, we say

that f is weakly uniformly distributed (or weakly equidistributed or WUD) modulo q if

there are infinitely many positive integers n for which gcd(f(n), q) = 1, and if

#{n ≤ x : f(n) ≡ a (mod q)}

∼ 1
φ(q)#{n ≤ x : gcd(f(n), q) = 1}, as x→∞,

for each coprime residue class a mod q. In other words, our sample space of relevant

inputs is the set {n : gcd(f(n), q) = 1} and every coprime residue class mod q

gets its fair share of the sample space. For example, f would be WUD mod 6 if

{n : gcd(f(n), 6) = 1} is infinite and if the two coprime residue classes 1 mod 6 and

5 mod 6 each (asymptotically) receive 50% of the values f(n) that are coprime to 6.

This definition extends naturally to families of arithmetic functions: We say that

the functions f1, . . . , fK : N → Z are jointly weakly equidistributed (or jointly WUD)

modulo q if there are infinitely many n for which gcd(f1(n) · · · fK(n), q) = 1, and if

#{n ≤ x : ∀i ∈ [K], fi(n) ≡ ai (mod q)}

∼ 1
φ(q)K #{n ≤ x : gcd(f1(n) · · · fK(n), q) = 1} (1.3)

as x→∞, for all coprime residue classes a1, . . . , aK mod q.

Just like we used the additive characters e(r(·)/q) to detect arbitrary residue classes

mod q, we can use the multiplicative characters (or Dirichlet characters) to detect

coprime residue classes mod q. Doing this gives us the following analogues of Lemmas

1.1.1 and 1.1.4, which could be thought of as our “Weyl–type” criteria for weak

10
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equidistribution. In what follows, we use Uq to denote the unit group mod q and

χ0,q to denote the trivial (or principal) character mod q. We also follow the standard

convention that χ(m) = 0 for any Dirichlet character χ mod q and any integer m not

coprime to q.

Lemma 1.3.1. Consider arithmetic functions f1, . . . , fK : N→ Z and a fixed positive

integer q such that there are infinitely many n for which gcd(f1(n) . . . fK(n), q) = 1.

Then f1, . . . , fK are jointly WUD modulo q if and only if for all tuples of Dirichlet

characters (χ1, . . . , χK) ̸= (χ0,q, . . . , χ0,q) mod q, we have

∑
n≤x

χ1(f1(n)) . . . χK(fK(n)) = o

(∑
n≤x

χ0,q(f1(n) . . . fK(n))
)

as x→∞.

(1.4)

In particular, consider f : N → Z and q ∈ N for which {n : gcd(f(n), q) = 1} is

infinite. Then f is WUD mod q if and only if for any nontrivial character χ mod q,

∑
n≤x

χ(f(n)) = o

(∑
n≤x

χ0,q(f(n))
)

as x→∞. (1.5)

Proof. The argument is analogous to that given for Lemma 1.1.1, by substituting

the “additive orthogonality relations” by the “orthogonality relations for Dirichlet

characters”. Indeed for the forward implication, note that if f1, . . . , fK are jointly

WUD mod q, then for all tuples of Dirichlet characters (χ1, . . . , χK) ̸= (χ0,q, . . . , χ0,q)

mod q, we have

∑
n≤x

χ1(f1(n)) . . . χK(fK(n)) =
∑

a1,...,aK∈Uq

χ1(a1) . . . χK(aK)
∑
n≤x

(∀i) fi(n)≡ai (mod q)

1.
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Using (1.3) and the definition of χ0,q, we obtain

∑
n≤x

χ1(f1(n)) . . . χK(fK(n))

=

 1
φ(q)K

∑
a1,...,aK∈Uq

(
K∏
i=1

χi(ai)
)

+ o(1)

∑
n≤x

χ0,q(f1(n) . . . fK(n)).

But since (χ1, . . . , χK) ̸= (χ0,q, . . . , χ0,q) mod q, we must have
∑

ai∈Uq
χi(ai) = 0 for

some i ∈ [K], which means that

∑
a1,...,aK∈Uq

(
K∏
i=1

χi(ai)
)

=
K∏
i=1

∑
ai∈Uq

χi(ai)

 = 0,

yielding the forward implication.

For the reverse implication, recall that for any coprime residue a mod q, we have

1m≡a (mod q) = 1
φ(q)

∑
χ mod q χ(a)χ(m), with the sum being over all Dirichlet characters

χ mod q. This allows us to write for any a1, . . . , aK ∈ Uq,

#{n ≤ x : ∀i ∈ [K], fi(n) ≡ ai (mod q)} =
∑
n≤x

K∏
i=1

(
1

φ(q)
∑

χi mod q

χi(ai)χi(fi(n))
)
.

Expanding the product and interchanging sums, we obtain

#{n ≤ x : ∀i ∈ [K], fi(n) ≡ ai (mod q)}

= 1
φ(q)K

∑
χ1,...,χK mod q

(
K∏
i=1

χi(ai)
) ∑

n≤x

χ1(f1(n)) . . . χK(fK(n)).

Finally, the contribution of the tuple (χ1, . . . , χK) = (χ0,q, . . . , χ0,q) to the above sum

is exactly φ(q)−K#{n ≤ x : gcd(f1(n) . . . fK(n), q) = 1}, whereas by our hypoth-

esis (1.4), the contribution of each tuple (χ1, . . . , χK) ̸= (χ0,q, . . . , sχ0,q) mod q is

12



1.3 Equidistribution of multiplicative functions in residue classes:
Fixed moduli

o(φ(q)−K#{n ≤ x : gcd(f1(n) . . . fK(n), q) = 1}). This yields the desired asymptotic

(1.3).

Remark 1.3.2. As in Remarks 1.1.3 and 1.2.6, one can ask what conditions on a

set X ⊂ N are necessary and sufficient for there to exist some function f : N → Z

(or some multiplicative function f : N→ Z) satisfying the property:

f is WUD mod q ⇐⇒ q ∈ X.

This time an obvious necessary condition on X is that if q lies in X, then so must any

divisor d of q that has the same prime factors as q: This is because coprimality mod q

is equivalent to coprimality mod d, and any reduced residue class mod d is a union of

exactly φ(q)/φ(d) = q/d many reduced residue classes mod q. However, whether this

condition is sufficient or not remains an unsolved question (even for the existence of

a general arithmetic function f). See [46] and [49] for more remarks on this problem.

1.3.2. Building up towards the general criterion: Weak equidistribution of

the Euler totient

While Delange was able to exactly characterize the equidistribution of a general addi-

tive function modulo an integer, it seems a much more difficult (possibly intractable)

problem to exactly characterize the weak equidistribution of a general multiplicative

function. While results are known for very specific multiplicative functions, the most

general results known in literature are able to capture large classes of interesting mul-

tiplicative functions (leaving out other classes of interesting multiplicative functions).

Some of the most general criteria available in the literature are for multiplicative

functions that can be controlled by polynomials at the first few powers of all primes;

we will be calling them “polynomially–defined” multiplicative functions.

13
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Precisely, we will say that a multiplicative function f : N → Z is polynomially–

defined if there exists V ∈ N∪{∞} and polynomials {Wv}Vv=1 with integer coefficients

such that f(pv) = Wv(p) for all v ∈ [V ] and all primes p. In other words, the

polynomial Wv controls the behavior of f at the v-th powers of all primes. Several

well–known multiplicative functions fall within this class:

• The Euler totient function f(n) = φ(n) for which Wv(T ) = T v − T v−1.

• The sum of divisors function f(n) = σ(n) =
∑

d|n d for which Wv(T ) = T v +

T v−1 + · · ·+ T + 1.

• More generally, the functions σr(n) =
∑

d|n d
r for which Wv(T ) = T rv+T r(v−1)+

· · · + T r + 1. For odd r, these functions also occur as Fourier coefficients of

Eisenstein series.

• The divisor function d(n) that counts the number of positive divisors of n, for

which Wv(T ) = v + 1. More generally, the generalized divisor functions dr(n) =∑
n1,...,nr
n1...nr=n

1, for which Wv(T ) =
(
v+r−1
v

)
.

These are some natural examples of polynomially–defined multiplicative functions

arising in number theory. One can also construct more artificial examples (as is done

in applications), such as by fixing any (finite) V ∈ N, and then defining f : N → Z

to be any multiplicative function satisfying f(pv) = Wv(p) only for v ∈ [V ], with

{Wv}Vv=1 being any of the respective polynomials from the examples above, along

with f(pV+1) = ⌊p1/2⌋. All results below will show that the distribution of such

functions in coprime residue classes is highly similar to that of the respective function

from the list above.

In [45], Narkiewicz gives a general criterion to decide weak equidistribution of a
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single polynomially–defined multiplicative function to a fixed modulus. Although

this criterion requires a lot of technical set–up, its proof involves a similar underlying

theme as Delange’s criterion (Theorem 1.2.3). To highlight these ideas in a simple

manner, we consider the consequence of Narkiewicz’s criterion for the Euler totient

(see [45, Corollary 2]).

Proposition 1.3.3. φ(n) is WUD mod q if and only if gcd(q, 6) = 1. Moreover in

this case, we have for any a ∈ Uq,

#{n ≤ x : φ(n) ≡ a (mod q)} ∼ Cq
x

(log x)1−α(q) as x→∞, (1.6)

where α(q) =
∏
ℓ|q

ℓ prime

(
1− 1

ℓ−1

)
and Cq > 0 is a constant depending only on q.

Here the necessity of the condition gcd(q, 2) = 1 is clear because otherwise the sample

space {n : gcd(φ(n), q) = 1} becomes finite. The necessity of the condition gcd(q, 3) =

1 is a little more subtle: Basically, the numbers p− 1 = φ(p), for primes p ̸= 3, either

fail to be coprime to 3 or are “trapped” in the trivial subgroup of (Z/3Z)×. This

prevents φ(n) from being weakly equidistributed modulo 3 (and hence also modulo

multiples of 3).

The following table illustrates the weak equidistribution of φ(n) mod 5. Here for

x ≥ 1 and r ∈ {1, 2, 3, 4}, we have defined

ρr(x) := #{n ≤ x : φ(n) ≡ r (mod 5)}
#{n ≤ x : gcd(φ(n), 5) = 1} .

It is worth noting that in the table below, the convergence of each ρr(x) to the

expected value 0.25 is extremely slow, a point that is addressed by some ongoing

work of the author (not part of this thesis), and will be briefly discussed in the
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concluding remarks of Chapter 4 (section 4.12).

Table 1: Explicit numerical distributions of φ(n) mod 5:
x ρ1(x) ρ2(x) ρ3(x) ρ4(x)

105 0.27165 0.28003 0.23993 0.20837

106 0.27157 0.27556 0.23979 0.21307

107 0.27073 0.27267 0.23999 0.21660

108 0.26998 0.27051 0.24032 0.21917

109 0.26924 0.26884 0.24063 0.22127

Outline of proof of Proposition 1.3.3:

As mentioned above, the skeletal idea behind the argument is similar to that in

Delange’s criterion: Use our “Weyl–type” criterion and estimate the relevant character

sums using mean value estimates for multiplicative functions. Indeed by Lemma 1.3.1,

φ(n) is WUD mod q if any only if

∑
n≤x

χ(φ(n)) = o

(∑
n≤x

χ0,q(φ(n))
)

as x→∞ (1.7)

for every nontrivial character χ mod q.

The sums
∑

n≤x χ(φ(n)) are once again amenable to mean value results on multiplica-

tive functions, but here this input comes from a Tauberian Theorem of Delange and

Ikehara; see for instance [50, Appendix II, Theorem I]. (To apply this theorem, we

need to rewrite the Dirichlet series
∑

n≥1 χ(φ(n))/ns in a suitable form, which we do

by utilizing its Euler product and invoking basic properties of Dirichlet L–functions.)

An application of this theorem shows that for any character χ mod q, we have∑
n≤x χ(φ(n)) = cχx/(log x)1−α(χ) +o(x/(log x)1−α(χ)), where cχ is a complex number

and α(χ) = 1
φ(q)

∑
b∈Uq

χ(b − 1). By the triangle inequality, we have Re(α(χ)) ≤
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|α(χ)| ≤ α(χ0), with equality precisely when χ(b − 1) = 1 for all b in the set

{b ∈ Uq : b − 1 ∈ Uq}. Thus condition (1.7) holds precisely when for every such

nontrivial character χ mod q, we have cχ = 0. Now the constant cχ involves an (ab-

solutely convergent) Euler product, hence it vanishes precisely when one of the Euler

factors vanishes; this Euler factor is of the form 1+
∑

v≥1 χ(φ(pv))/pv for some prime

p. The upshot is that φ is WUD mod q precisely when

For every χ ̸= χ0,q mod q satisfying χ(b− 1) = 1 on the set

{b ∈ Uq : b− 1 ∈ Uq}, we have
∑
j≥0

χ(φ(pj))
pj

= 0 for some prime p. (1.8)

A straightforward application of the triangle inequality now shows the equation 1 +∑
v≥1 χ(φ(pv))/pv = 0 is possible only if p = 2, and this in turn forces χ(2) = 3,

which is impossible. This shows that there cannot exist a nontrivial character χ mod

q acting trivially on the set {b − 1 ∈ Uq : b ∈ Uq}. An elementary construction

using the Chinese Remainder Theorem now shows that this is possible precisely when

gcd(q, 6) = 1.

Finally, the asymptotic (1.6) follows from the aforementioned Delange–Ikehara Taube-

rian Theorem. The exponent α(q) arises from the proportion of unit residues u mod

q for which u− 1 is also a unit mod q.

Remark 1.3.4.

• All the arguments above until condition (1.8) go through with minor (mostly

notational) modifications to prove Narkiewicz’s general criterion, which we have

stated as Theorem 1.3.6 below.

• By Proposition 1.3.3, φ(n) is not weakly equidistributed mod 3. Dence and
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Pomerance [21] study the distribution of φ(n) mod 3. They find that the residue

class 1 mod 3 asymptotically receives about twice as many values of φ(n) as

compared to the residue class −1 mod 3.

Theorem 1.3.5. For r ∈ {−1, 1}, we have as x→∞,

#{n ≤ x : φ(n) ≡ r (mod 3)} ∼ crx/
√

log x,

where c1 ≈ 0.6109 and c−1 ≈ 0.3284.

1.3.3. Narkiewicz’s criteria for weak equidistribution and applications

Consider now a general polynomially–defined multiplicative function f : N → Z,

so that there exist polynomials {Wv}Vv=1 with integer coefficients satisfying f(pv) =

Wv(p) for all primes p and for all v ∈ [V ]. Fix a positive integer q. As for φ(n), we use

our criterion Lemma 1.3.1 to reduce the problem of characterizing the weak equidis-

tiribution of f(n) mod q to the problem of estimating the partial sums
∑

n≤x χ(f(n)).

Now the Dirichlet series
∑

n≥1 χ(f(n))/ns is absolutely convergent in the half-plane

Re(s) > 1, and possesses the Euler product
∏

p(1 +
∑

v≥1 χ(f(pv))/pvs). Defining

Rv(q) := {u ∈ Uq : Wv(u) ∈ Uq} for each v ∈ [V ], note that if Rv(q) were empty

for some v, then χ(f(pv)) = χ(Wv(p)) would be zero for all primes p not dividing q.

Hence to gain some traction on the aforementioned Euler product, we should assume

(the non–degeneracy condition) that Rv(q) is nonempty for some v ∈ [V ]. With k

denoting the least such v, we say that q is k–admissible, and in this case,

∑
n≥1

χ(f(n))
ns

=
∏
p∤q

(
1 +

∑
v≥k

χ(f(pv))
pvs

)
·
∏
p|q

(
1 +

∑
v≥1

χ(f(pv))
pvs

)

Notice that each Euler factor in the infinite part of the Euler product starts at the
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k-th power of primes: As such, the above Dirichlet series defines an analytic function

on the half plane Re(s) > 1/k and its behavior is determined by the polynomial Wk.

(In the discussion for φ(n) in the previous subsection, we had k = 1, so Wk(T ) was

just T − 1.)

Carrying out the arguments until (1.8) in the outline of the proof of Proposition 1.3.3

now shows that in order for f to be weakly equidistributed mod q, it is necessary and

sufficient to have a condition of the form (1.8). This leads to the following general

criterion for weak equidistribution due to Narkiewicz (see [45, Theorem I]).

Theorem 1.3.6. Let f : N → Z be a polynomially–defined multiplicative function,

with polynomials {Wv}Vv=1 ⊂ Z[T ] satisfying f(pv) = Wv(p) for all v ∈ [V ] and all

primes p. Fix k ∈ [V ] and a k-admissible q ∈ N.

Then f is WUD mod q if and only if for every nontrivial Dirichlet character χ mod

q satisfying χ(Wk(b)) = 1 on the set {b ∈ Uq : Wk(b) ∈ Uq}, there exists a prime

p satisfying
∑

j≥0 χ(f(pj)) p−j/k = 0. When this happens, there exists a constant

Cq > 0 depending only on q such that for any a ∈ Uq, we have

#{n ≤ x : f(n) ≡ a (mod q)} ∼ Cq
x

(log x)1−α(q) as x→∞,

where α(q) := 1
φ(q)#{u ∈ Uq : Wk(u) ∈ Uq}.

It remains a highly nontrivial problem to make this condition more explicit in the

above generality, for instance by replacing the “existence of prime” condition by a

simpler one, or by reducing the computation of the infinite sum
∑

j≥0 χ(f(pj)) p−j/k

to a finite computation. Concrete examples of such explicit criteria are Proposition

1.3.3 and some of the results below. See Chapter VI of Narkiewicz’s monograph [49]

for an algortihmic solution to this problem in some cases.
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Remark 1.3.7. As we will see in Chapter 4, the hypothesis of k-admissibility means

that we are working in a really sparse sample set of inputs; in fact #{n ≤ x :

gcd(f(n), q) = 1} = o(x1/k) as x → ∞. In general, sparse sets like this can often

present difficulties while studying arithmetic questions about them, but Narkiewicz’s

work is able to deal with these difficulties for a fixed modulus.

However, if f : N→ Z is controlled by polynomials up to the V -th powers of primes,

but if q is not k-admissible for any k ∈ [V ], then the sample space becomes too sparse

to say anything worthwhile (at least without assuming further control on the behavior

of f); see for instance [45, Theorem II].

A case of particular interest is when Narkiewicz’s criterion holds vacuously, namely,

when there are no nontrivial characters χ mod q satisfying χ(Wk(b)) = 1 on the set

{b ∈ Uq : Wk(b) ∈ Uq}, or equivalently, when the set {Wk(b) : bWk(b) ∈ Uq} generates

Uq. When this happens, we will say that f is regularly WUD mod q (this terminology

was introduced by Narkiewicz in [48]).

Corollary 1.3.8. In the setting of Theorem 1.3.6, assume that the set {Wk(b) :

bWk(b) ∈ Uq} generates Uq. Then f is WUD mod q.

We will say that f is regular if for any q ∈ N for which f is WUD mod q, it must also

hold that f is regularly WUD mod q. The outline given for Proposition 1.3.3 shows

that φ(n) is regular; in fact, this is how Narkiewicz originally deduced Proposition

1.3.3 from Theorem 1.3.6 in [45]. It turns out that the divisor function d(n), the sum

of divisors function σ(n), as well as the “sum-of-divisor-powers” functions σr(n) for

r > 2, are all regular. Observing this for d(n), Narkiewicz [45, Corollary 1] was able

to show the following.

Corollary 1.3.9. The divisor function d(n) is WUD mod q if and only if one of the
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following hold:

(a) q = 4.

(b) q = 2 · 3m for some m ∈ N.

(c) q = pm for some m ∈ N and 2 is a primitive root mod q.

(d) q = 2pm for some m ∈ N and 3 is a primitive root mod q.

In any of these cases, we have for any a ∈ Uq,

#{n ≤ x : d(n) ≡ a (mod q)} ∼ Cqx
1/M as x→∞,

where Cq > 0 is a constant depending only on q and M = minp|q p− 1.

Observing that the sum of divisors function σ(n) is also regular, Śliwa (see [75]) was

able to explicitly characterize those moduli q to which it is weakly equidistributed.

Proposition 1.3.10. σ(n) is WUD mod q iff 6 ∤ q.

It remains a highly nontrivial problem to give an explicit classification of all the

moduli q to which σr(n) is weakly equidistributed, for a general r > 1. Several

authors have made partial contributions to this problem, which we summarize below.

The starting point in all the following results is Narkiewicz’s criterion Theorem 1.3.6.

1. In the aforementioned paper [75], Śliwa gave some necessary and sufficient con-

ditions for σr to be WUD mod q when either gcd(φ(q), r) = 1 or φ(q) | r.

2. Fomenko [24] showed that for any fixed r ∈ N, σr is WUD modulo all odd

primes q ≫ r2.
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3. When r itself is an odd prime, Dobrowolski (see [49, Chapter V, Theorem 6.12])

gave some sufficient arithmetic conditions on q for σr to be WUD mod q.

4. In [48], Narkiewicz proved that for any r ≥ 3, the function σr(n) is regular.

Under some natural conditions, he also gave an effective algorithm to classify

all moduli to which a given polynomially–defined multiplicative function is reg-

ularly WUD. As an application of his algorithm, he showed that σ3 is WUD

mod q if and only if either gcd(q, 14) = 1 or gcd(q, 6) = 2.

5. Narkiewicz’s algorithm was improved by Rayner in [64] and [65]. In [64], he

showed that for any odd r, there are two finite effectively computable sets

K1, K2 ⊂ Z such that σr is WUD mod q iff either q is odd and not divisible

by an element of K1, or q is even and not divisible by an element of K2. He

computed K1, K2 for odd r ≤ 50. In [65], he extended this work to even

2 ≤ r ≤ 50.

6. Narkiewicz and Rayner [51] characterized all q modulo which σ2 is weakly

equidistributed. They show that σ2 is the only non-regular σr, and their char-

acterization of such q is also more complicated than for the other σr.

As a consequence of our main theorems in Chapter 4, we can extend all the afore-

mentioned results to varying moduli q satisfying optimal arithmetic restrictions.

In [47], Narkiewicz extended his criterion Theorem 1.3.6 to decide joint weak equidis-

tribution for families of “polynomially defined” multiplicative functions to a fixed

modulus q. The statement of the general criterion is a natural extension of Theorem

1.3.6, but to state it concisely, we develop the following notation which will also be

relevant later in this dissertation.
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• Consider K,V ≥ 1 and polynomially-defined multiplicative functions f1, . . . ,

fK : N → Z, with defining polynomials {Wi,v}1≤i≤K
1≤v≤V

⊂ Z[T ] satisfying fi(pv) =

Wi,v(p) for any prime p, and any i ∈ [K], v ∈ [V ].

• For any q and v ∈ [V ], define Rv(q) := {u ∈ Uq :
∏K

i=1 Wi,v(u) ∈ Uq}.

• Fix k ∈ [V ] and assume that {Wi,k}1≤i≤K are all nonconstant. We say that

q ∈ N is k-admissible (with respect to the family (Wi,v)1≤i≤K
1≤v≤V

) if the set Rk(q)

is nonempty but the sets Rv(q) are empty for all v < k.

• Define Q(k; f1, · · · , fK) to be the set of all k-admissible integers q such that for

every tuple (χ1, . . . , χK) ̸= (χ0, . . . , χ0) of Dirichlet characters2 mod q for which

the product
∏K

i=1 χi ◦Wi,k acts trivially on the set Rk(q) 3, there exists a prime

p satisfying ∑
j≥0

χ1(f1(pj)) · · ·χK(fK(pj))
pj/k

= 0. (1.9)

(By the triangle inequality, it is easy to see that any such prime p must be at

most 2k.)

Narkiewicz’s criterion [47, Theorem 1] in this setting is then stated as follows.

Theorem 1.3.11. Fix a k-admissible integer q. The functions f1, . . . , fK are jointly

weakly equidistributed modulo q if and only if q ∈ Q(k; f1, · · · , fK).

We thus have the following generalization of Corollary 1.3.8.
2Here χ0 or χ0,q denotes, as usual, the trivial or principal character mod q.
3i.e.

∏K
i=1 χi(Wi,k(u)) = 1 for all u ∈ Rk(q); note that Rk(q) is precisely the support of the

product
∏K

i=1 χi ◦Wi,k (i.e. the set of u where it is nonzero)
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Corollary 1.3.12. Assume that q is k-admissible and that the set

{(W1,k(u), . . . ,WK,k(u)) mod q : u
K∏
i=1

Wi,k(u) ∈ Uq} ⊂ UK
q

generates the group UK
q . Then (f1, . . . , fK) are jointly WUD mod q.

When the condition in the above corollary holds, we will say that (f1, . . . , fK) are

regularly WUD modulo q. Likewise, we can define a family (f1, . . . , fK) to be regular.

In [46], Narkiewicz gives an effective algorithm to determine, – for a given family

of polynomials (F1, . . . , FK) for which
∏K

i=1 Fi is squarefree, – the collection of all

moduli q for which the set {(F1(u), . . . , FK(u)) mod q : u
∏K

i=1 Fi(u) ∈ Uq} generates

the group UK
q . His algorithm thus also determines effectively, for a given k ∈ [V ],

the set of all k-admissible q for which (f1, . . . , fK) are regularly WUD mod q (see [46,

Theorem II]).

As part of the aforementioned algorithm, he shows that the problem of determin-

ing all moduli q for which {(F1(u), . . . , FK(u)) mod q : u
∏K

i=1 Fi(u) ∈ Uq} does not

generate UK
q can be reduced to the finite computation of determining this set under

the additional constraints that v2(q) ≤ 3, that vℓ(q) ≤ 2 for all odd primes ℓ, and

that all prime divisors of q are at most (1 +
∑K

i=1 degFi)2. For K = 1 (i.e. a single

polynomial), his algorithm doesn’t need F1 to be squarefree but only needs F1 to not

be a constant multiple of a proper power (i.e. square or higher power) of another

polynomial.

Using this algorithm and his general criterion Theorem 1.3.11, Narkiewicz character-

izes all fixed moduli q such the family (φ, σ) are jointly WUD mod q: It turns out

that the necessary condition coming from Proposition 1.3.3 is also sufficient.
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Corollary 1.3.13. The family (φ, σ) is jointly WUD mod q iff gcd(q, 6) = 1.

Remark 1.3.14. Note that all the results quoted from [46] and [47] have been stated

in greater generality: Narkiewicz actually studies the joint equidistribution of a fam-

ily of polynomially–defined multiplicative functions with respect to a family of fixed

moduli (q1, . . . , qK), where this notion is defined in the natural manner. In particu-

lar, Corollary 1.3.13 is the special case of the more complicated [46, Theorem I] that

classifies all moduli (q1, q2) such that (φ, σ) are jointly WUD modulo (q1, q2). Here,

we have stuck to the case of a single modulus (i.e., the case when q1 = · · · = qK = q)

since this case will be most relevant in the rest of this thesis.

The following consequence of the k = 1 case of Theorem 1.3.11 (see [47, Theorem 2])

will be relevant in the initial few chapters of this thesis.

Theorem 1.3.15. In the notation preceding the statement of Theorem 1.3.11, assume

the following:

(i) None of the polynomials {Wi,1 : 1 ≤ i ≤ K} are a constant multiple of a proper

power of another polynomial.

(ii) For all i ̸= j, the product Wi,1Wj,1 is squarefree in Z[T ].

Then there exists a constant C > 0 depending only on the polynomials {W1,1, . . . ,

WK,1} such that (f1, . . . , fK) are jointly WUD modulo any fixed q ∈ N supported on

primes exceeding C. That is, any such q lies in Q(1; f1, . . . , fK).

Remark 1.3.16. The constant C > 0 above depends only on the degrees, leading

coefficients, and the product of all distinct irreducible divisors of the {Wi,1}Ki=1.

In particular, for K = k = 1, we have the following simple sufficient condition, which
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we restate in simpler notation.

Corollary 1.3.17. Let f : N→ Z be a multiplicative function for which there exists

a nonconstant separable polynomial F ∈ Z[T ] satisfying f(p) = F (p) for all primes p.
4 Then there exists a constant C(F ) > 0 depending only on F such that f is WUD

modulo any q ∈ N supported on primes exceeding C(F ).

The deduction of Theorem 1.3.15 from Theorem 1.3.11 is one of the main contents

of [47]. One of the key ingredients in this deduction is the following result on the

behavior of character tuples on polynomial images of the unit group, which will also

be useful to us to prove the optimality of some of our main results in later chapters.

(See [47, Lemma 5] for the original statement of the following result.)

Lemma 1.3.18.

(a) Consider K ≥ 2, and nonconstant polynomials F1, . . . , FK ∈ Z[T ] whose product

is squarefree. Let ℓ > (1 +
∑K

i=1 degFi)2 be a prime that neither divides the

leading coefficient nor the discriminant of F1 . . . FK.

Then for any m ≥ 1 and any tuple of Dirichlet characters (χ1, . . . , χK) mod

ℓm, not all trivial, the product
∏K

i=1 χi(Fi(u)) cannot be constant on the set

{u mod ℓm : ℓ ∤ u
∏K

i=1 Fi(u)}.

(b) Consider a polynomial F ∈ Z[T ] which is not a constant multiple of a proper

power of another polynomial. Let ℓ > max{5, (1 + degF )2} be a prime that

neither divides the leading coefficient of F nor the discriminant of the product

of the distinct irreducible factors of F .

Then for any m ≥ 1 and any nontrivial Dirichlet character χ mod ℓm, the
4Here by “separable”, we mean that F has no roots of multiplicity greater than 1.
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function χ(F (u)) cannot be constant on the set {u mod ℓm : ℓ ∤ uF (u)}.

Here is yet another concrete application of Corollary 1.3.12 and Lemma 1.3.18.

Corollary 1.3.19. The family (φ, σ, σ2) is jointly weakly equidistributed modulo any

fixed integer q supported on primes exceeding 23.

Section 1.4

Allowing the modulus to vary...

In all these results, the modulus q has been assumed to be fixed. A natural question

of some interest is whether one can allow q to vary with our stopping point x. This

question is motivated by the celebrated Siegel–Walfisz Theorem, according to which

for any fixed K0 > 0, the primes up to any x are weakly equidistributed uniformly

to moduli q ≤ (log x)K0 . We state the qualitative version of this theorem below,

although this result is known with error terms of size O(x exp(−c
√

log x)); see for

instance [44, Corollary 11.19].

Theorem 1.4.1. Fix K0 > 0. As x→∞, we have

#{p ≤ x : p ≡ a (mod q)} ∼ 1
φ(q)#{p ≤ x} ∼ 1

φ(q) ·
x

log x,

uniformly in moduli q ≤ (log x)K0 and in coprime residues a mod q.

A general problem in elementary and analytic number theory is to find analogues of

the Siegel–Walfisz theorem in other contexts, and this problem has been ardently stud-

ied in various contexts, such as for smooth numbers and mean values of multiplicative

functions. In our context, one may ask: Can we find analogues of the Siegel–Walfisz

theorem for the value distributions of additive or multiplicative functions or (more
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generally) for the joint distributions of families of such functions?

To formalize this, given a constant K0 > 0, we shall say that the functions f1, . . . , fK :

N→ Z are jointly equidistributed (or jointly UD) mod q, uniformly for q ≤ (log x)K0 , if

#{n ≤ x : ∀i ∈ [K], fi(n) ≡ ai (mod q)} ∼ x

qK
as x→∞, (1.10)

uniformly in moduli q ≤ (log x)K0 and in residue classes a1, . . . , aK mod q. Explicitly,

this means that for any ϵ > 0, there exists X(ϵ,K0) > 0 depending only on ϵ and

K0 such that the ratio of the left hand side of (1.10) to the right hand side lies in

(1− ϵ, 1 + ϵ) for all x > X(ϵ,K0), all q ≤ (log x)K0 and all residues a1, . . . , aK mod q.

If K = 1 and f1 = f , we shall simply say that f is equidistributed (or UD) mod q,

uniformly for q ≤ (log x)K0 .

Likewise, we shall say that the functions f1, . . . , fK : N→ Z are jointly weakly equidis-

tributed (or jointly WUD) mod q, uniformly for q ≤ (log x)K0 , if:

(i) For every such q,
∏K

i=1 fi(n) is coprime to q for infinitely many n, and

(ii) The relation (1.3) holds as x → ∞, uniformly in moduli q ≤ (log x)K0 and in

coprime residue classes a1, . . . , aK mod q. Explicitly, this means that for any

ϵ > 0, there exists X(ϵ,K0) > 0 such that the ratio of the left hand side of (1.3)

to the right hand side lies in (1 − ϵ, 1 + ϵ) for all x > X(ϵ,K0), q ≤ (log x)K0

and coprime residues a1, . . . , aK mod q.

Again, if K = 1 and f1 = f , we shall simply say that f is weakly equidistributed (or

WUD) mod q, uniformly for q ≤ (log x)K0 .
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1.4.1. Equidistribution to varying moduli: Siegel–Walfisz for polynomially–

defined additive functions

The equidistribution of a single polynomially-defined additive function with uni-

formity in modulus seems to have been first studied for the Alladi-Erdős function

A(n) =
∑

pk∥n k · p in [60]. The special case of Lemma 3.3 in that paper with y = x

yields the equidistribution of A(n) to moduli q varying up to (a little less than) the

square root of log x.

Proposition 1.4.2. Fix δ > 0. The function A(n) is UD mod q, uniformly for

q ≤ (log x)1/2−δ. In fact, we have

#{n ≤ x : A(n) ≡ a (mod q)} = x

q
+O

(
x

(log x)1/2−δ

)

uniformly in q ≤ log x and in residues a mod q.

Note that Goldfeld’s result (1.2) gives a sharper error term for fixed moduli q.

The main idea in the proof of Proposition 1.4.2 is to estimate the character sums∑
n≤x e(rA(n)/q) by invoking the following quantitatively precise version of the re-

sult of Halász [30] which states that a multiplicative function F taking values on

the unit disk has mean value 0 unless F “pretends” to be5 nit for some t. The fol-

lowing version of the statement has been taken from [76, Corollary III.4.12], and its

development is attributed to Halász, Montgomery and Tenenbaum.

Theorem 1.4.3. Let F be a multiplicative function such that |F (n)| ≤ 1 for all n.

Uniformly in x, T ≥ 2, we have

1
x

∑
n≤x

F (n)≪ 1
T

+ exp
(
−min

|t|≤T

∑
p≤x

1− Re(F (p)p−it)
p

)
.

5in the sense of Granville and Soundararajan [29]
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In order to apply Theorem 1.4.3 to our sums
∑

n≤x e(rA(n)/q), we need to put a suit-

able lower bound on the sums
∑

p≤x (1− Re(A(p)p−it))/p: We do this by essentially

covering the range of summation with “multiplicatively narrow subintervals” wherein

the quantity uit is roughly constant, as u varies within the subinterval and as t varies

within [− log x, log x]. This allows us to deduce Proposition 1.4.2.

Proposition 1.4.2 was improved in [61] to allow q to vary within the full “Siegel–

Walfisz” range, but without a good quantitative error.

Proposition 1.4.4. Fix K0 > 0. Then A(n) is UD mod q, uniformly for q ≤

(log x)K0.

This result comes as a byproduct of a certain “mixing phenomenon” in the multi-

plicative group mod q that we will be using to establish some of the main results in

this thesis. The said “mixing” idea was originally used in the paper of Pollack with

the author [61] (which forms the contents of Chapter 2) in order to extend Corol-

lary 1.3.17 to q varying within a wide range, thus taking the first few steps towards

obtaining uniform analogues of Narkiewicz’s general criterion Theorem 1.3.11.

One of the topics we will study in this thesis is the phenomenon of joint equidistribu-

tion for families of polynomially–defined additive functions: Here, we say that an addi-

tive function g : N→ Z is polynomially-defined if there exists a nonconstant polynomial

G ∈ Z[T ] satisfying g(p) = G(p) for all primes p; we will then say that g is defined

by (the polynomial) G. For example, both the additive functions β(n) :=
∑

p|n p and

the Alladi-Erdős function A(n) =
∑

pk∥n kp are defined by the polynomial G(T ) = T .

(Note that our definition of a polynomially–defined multiplicative function was more

general, but this should not create any confusion since we will always make it explicit

whether we are considering an additive or multiplicative function.)
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Our starting point to study this joint equidistribution is Delange’s criteria Theorems

1.2.3 and 1.2.4, which we reformulate (in section 3.2) to more explicit results for

polynomially–defined additive functions: Certainly if (f1, . . . , fK) are jointly equidis-

tributed mod q ≤ (log x)K0 , then q has to satisfy the conditions of these two theorems.

For a single arbitrary polynomially–defined additive function g : N → Z, Akande [1]

shows that the arithmetic conditions in Theorem 1.2.3 are also sufficient for g to be

weakly equidistributed modulo q varying uniformly up to small powers of log x.

Theorem 1.4.5. Fix K0 > 0 and δ ∈ (0, 1]. Let g : N → Z be an additive function

defined by a polynomial G ∈ Z[T ] of degree D > 0. Let Q(g) denote the set of all

(fixed) moduli that satisfy Delange’s criterion in Theorem 1.2.3. Then g is UD modulo

q ∈ Q(g) varying uniformly up to (log x)min{K0,(1−δ)(1−1/D)−1}.

Note that for D = 1, the range of uniformity is (log x)K0 , the full “Siegel–Walfisz

range”. For D > 1, he is also able to prove that the exponent of log x is essentially

optimal. To show all of these, he suitably adapts the arguments in [61] (in particular,

the aforementioned “mixing” idea) by means of certain exponential sum estimates,

in order to show that the behavior of g modulo q can be related to that modulo a

bounded divisor of q (“bounded” in size by a constant depending only on the fixed

polynomial G).

In Chapter 3 (based on the manuscript [73]), we shall extend all of the aforementioned

results for a general family of polynomially–defined additive functions g1, . . . , gM :

N → Z that are defined by polynomials G1, . . . , GM ∈ Z[T ]. We will show that

asssuming the linear independence of the derivatives of the Gi (a condition which we

prove to be necessary), the family (g1, . . . , gM) is equidistributed uniformly modulo q

satisfying Delange’s criteria (Theorem 1.2.4 and 1.2.3) that is allowed to vary up to
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certain small powers of log x; we can also prove these powers to be essentially optimal

(except in the case M = deg(G1) = 1 addressed by Akande). Furthermore, we show

that uniformity is restored in the complete Siegel–Walfisz range (up to arbitrary

powers of log x) provided we appropriately restrict our inputs, restrictions that we

are also able to optimize in most cases.

To do all this, we need to refine some of the arguments used in the aforementioned

results and also use some new ideas not present therein. For instance, we need to

look at the Smith normal forms and invariant factors of certain matrices to bound

certain character sums. Moreover, we need to bound the contributions of certain

“bad” inputs n by carefully studying the prime decompositions of such n and using

different kinds of “anatomical arguments”6 in different cases.

1.4.2. Equidistribution to varying moduli: Siegel–Walfisz for polynomially–

defined multiplicative functions

Much of this thesis began with the problem of trying to give best possible analogues of

the Siegel–Walfisz theorem for general families of polynomially–defined multiplicative

functions, extending Narkiewicz’s criterion Theorem 1.3.11 to varying moduli q with

optimal restrictions. It appears that the first result in the direction of this problem was

obtained in joint work of Lebowitz-Lockard, Pollack and the author, who extended

Proposition 1.3.3 on the weak equidistribution of the Euler totient to prime moduli

varying within the full Siegel–Walfisz range (see [40, Theorem 1.1]):

Theorem 1.4.6. Fix K0 > 0. The Euler totient φ(n) is weakly equidistributed modulo

prime p lying in [5, (log x)K0 ]. In fact,

#{n ≤ x : φ(n) ≡ a (mod p)} ∼ 1
p− 1 ·

x

(log x)1/(p−1) as x→∞,

6in the sense of “anatomy of integers”
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uniformly in prime moduli p satisfying 5 ≤ p ≤ (log x)K0 and in coprime residues a

mod p.

The proof of this theorem combines two different methods, an analytic and an anatom-

ical method. For small p (roughly smaller than (log log x)2), we apply the analytic

method of Landau–Selberg–Delange, more precisely, an explicit version of this enun-

ciated by Chang and Martin [12] that allows for additional uniformity in certain

important parameters. On the other hand, when p is a little larger than log log x,

we apply a combinatorial and anatomical method of Banks–Harman–Shparlinski [7]:

In a very crude summary, this involves splitting off the largest prime factor P of

our inputs n, using multiple sieve–theoretic arguments to ensure that P is large and

appears only once in n, and then writing n in the form mP , so that the congruence

φ(n) ≡ a (mod p) can be rewritten as a linear congruence in P , thus throwing P in

a residue class mod p and allowing us to estimate the number of possible P via the

Siegel–Walfisz theorem. Note that the analytic part of our argument uses crucially

that nontrivial Jacobi sums over Fp are bounded by √p in absolute value; the trivial

bound of p would only allow the method to work for p up to about log log x, just shy

of what is required for overlap with our second range. However, these methods are

crucially limited to φ(n) (and σ(n)) and to prime moduli.

Instead of directly trying to get complete uniform analogues of the most general

criterion Theorem 1.3.11, let us first try to do this for Theorem 1.3.15 (which, recall,

gives weak equidistribution of f1, . . . , fK to moduli supported on large primes, under

some restrictions on the polynomials defining the fi at the primes) or Corollary 1.3.17

(the special case of Theorem 1.3.15 for a single function). In [59], we were able to get

a partial uniform analogue of Theorem 1.3.15, where we showed that a multiplicative

function f : N → Z controlled by a nonconstant separable polynomial at the primes
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is WUD modulo q varying up to a very small power of log x that is “almost prime”,

in the sense that the quantity δ(q) =
∑

ℓ prime
ℓ|q

1/ℓ becomes negligible as x→∞. (See

[59, Theorem 1.1] for the original statement of the following result.)

Theorem 1.4.7. Let f1, . . . , fK : N → Z be multiplicative functions for which there

exist nonconstant polynomials F1, . . . , FK ∈ Z[T ] with F1 . . . FK separable, such that

fi(p) = Fi(p) for all i ∈ [K] and all primes p.

Fix ϵ > 0. Then (1.3) holds as x → ∞, uniformly in q → ∞ satisfying q ≤

(log x)1/K−ϵ and δ(q) = o(1).

As an application, note that while Theorem 1.3.15 shows that the family (n, φ(n),

σ(n)) is jointly WUD modulo all fixed sufficiently large primes, Theorem 1.4.7 shows

that such equidistribution also holds uniformly modulo all primes p ≤ (log x)1/3−ϵ

exceeding a certain (fixed) threshold. (With the more explicit version of Theorem

1.3.15 in [47], one can show that this threshold is 17.)

The main idea in the proof of Theorem 1.4.7 is to extend the anatomical method

used for Theorem 1.4.6, by splitting off the largest J prime factors of our inputs

n, for some fixed judiciously-chosen J . In other words, we write n = mPJ . . . P1

with P (m) ≤ PJ ≤ · · · ≤ P1. (Here P (m) is the largest prime factor of m.) Most

of the time, PJ , . . . , P1 will appear to the first power only in n, so that fk(n) =

fk(m)fk(PJ) · · · fk(P1). Then given m, we use the Siegel–Walfisz theorem and char-

acter sum estimates to understand the number of choices for P1, . . . , PJ compatible

with the congruence conditions on fk(n).

The highly stringent restriction δ(q) = o(1) is nothing but a facet of the above

argument. In [61], Pollack and the author were able to remove this requirement and

get the complete uniform analogue of Corollary 1.3.17. To do this, we observed a
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certain “quantitative ergodicity” phenomenon in the multiplicative group mod q, by

virtue of which for any fixed polynomial F ∈ Z[T ] and any q ∈ N supported on primes

large enough compared to F , the images of the elements of Uq under F demonstrate

a certain “mixing” in Uq. (A related idea was used in a different problem by Kátai

[34].)

With notation as in Corollary 1.3.17 and with moduli q satisfying the “roughness”

condition therein, we showed that if F is linear then weak equidistribution holds up

to arbitrary powers of log x. (In particular, this extends Proposition 1.3.3 on the

weak equidistribution of φ(n) to the complete Siegel–Walfisz range.) In the general

case, however, q can only be allowed to vary up to small powers of log x, which we

were able to optimize [61, Theorem 1.3]. Uniformity could be restored in the full

Siegel-Walfisz range by suitably restricting the set of inputs n [61, Theorem 1.4]. See

Chapter 2 for more details.

Now we come to the grand finale: The problem of giving best possible uniform ana-

logues of Narkiewicz’s general criterion Theorem 1.3.11. It turns out all the devel-

opments mentioned until this point are still really far from solving this problem in

its complete generality. This is because several of the arguments in the last work

above are limited to a single function (i.e. the case K = 1) and do not generalize to

a family of functions, whereas the latest work for families mentioned so far (Theorem

1.4.7) requires hypotheses that are way too restrictive. Moreover, even in the special

case of a single function, we have only restricted to the case when q is 1-admissible

and supported on only large prime factors, and we have also been assuming that our

defining polynomial is separable. In particular, these results do not give satisfactory

uniform analogues of many of the results stated in subsection § 1.3.3, since the results

in § 1.3.3 involve k-admissible moduli for arbitrary k > 1; here k is as in the set up
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preceding the statement of Theorem 1.3.11.

In Chapter 4 (based on the latest manuscripts [71] and [72]), we remove all these

limitations and solve the full general problem posed at the start of this subsection. We

obtain essentially best possible uniform analogues of Narkiewicz’s criterion Theorem

1.3.11 in its complete generality to a single varying modulus.

One of our main results is that in the setting of Theorem 1.3.11 and under two

provably unavoidable technical hypotheses H1 and H2, the family f1, . . . , fK is

jointly WUD to a modulus q ∈ Q(k; f1, · · · , fK) that is also allowed to vary within

essentially optimal ranges. Roughly, this result looks like the following:

Theorem 1.4.8 (Theorem 4.1.1, summarized). Fix K0 > 0. In the setting of Theo-

rem 1.3.11 and under hypotheses H1 and H2, the family (f1, . . . , fK) is jointly WUD,

uniformly modulo q ≤ (log x)cq lying in Q(k; f1, . . . , fK). Here cq ∈ (0, K0] is a pa-

rameter depending (essentially) on q and on the polynomials W1,k, . . . ,WK,k (that

define the fi at the k-th powers of primes).

Note that lying in Q(k; f1, · · · , fK) is the necessary arithmetic restriction for (f1, . . . ,

fK) to be jointly weakly equidistributed to a k-admissible modulus q. In Theorem

4.1.1, we give explicit expressions for cq in an exhaustive list of cases. It is worth

mentioning that cq depends on the number of roots of the polynomial W1 . . .WK

modulo the primes divisors of q. The best possible lower bound on cq that holds

in general is cq ≫ (log log(3q))−
∑K

i=1 degWi,k , however cq can be bounded below by a

constant in several applications (for instance, if most prime divisors of q avoid certain

residue classes). In fact, we either optimize cq or we show that cq is K0 itself; in the

latter case, we have uniformity in the full Siegel–Walfisz range.

In the former case, cq turns out to be a small parameter, giving uniformity only up
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to small powers of log x (which are essentially optimal). We show that uniformity

can be restored up to arbitrary powers of log x by restricting to inputs n that have

sufficiently many large prime divisors. More precisely, with PR(n) denoting the R-th

largest prime factor of n counted with multiplicity (and defining PR(n) := 1 if n has

fewer than R prime factors), we have

Theorem 1.4.9 (Theorems 4.1.2 and 4.1.3, summarized). Fix K0 > 0. In the setting

of Theorem 1.3.11, and under hypotheses H1 and H2, there exists a fixed integer R

(depending only on k,K and
∑K

i=1 degWi,k) such that

#{n ≤ x : PR(n) > q, (∀i) fi(n) ≡ ai (mod q)}

∼ 1
φ(q)K #{n ≤ x : PR(n) > q, (∀i) gcd(fi(n), q) = 1} as x→∞,

uniformly in q ≤ (log x)K0 lying in Q(k; f1, · · · , fK) and in units (ai)Ki=1 mod q.

The original statements contain the exhaustive case-wise list of explicit values of R:

Most of these values are exactly or almost optimal in their respective cases, thus

ensuring equidistribution among as large a set of inputs as possible.

In [72], we obtain cleaner versions of the last two theorems when additional control is

available either on the multiplicative functions fi or on the anatomy of our inputs n.

We also show that even if one of the two hypotheses H1 or H2 is violated, then uni-

formity would fail in the above theorems in some of the worst possible ways: Not only

would uniformity fail modulo arbitrarily large q ≤ (log x)K0 , but also would be unre-

coverable no matter how much we restrict our set of inputs n to those having many

large prime factors. Thus, our results in [71, 72] are essentially best possible qual-

itative analogues of the Siegel-Walfisz theorem for families of polynomially-defined

multiplicative functions. As consequences, we are able to give complete uniform ana-

37



1.5 Summary of later chapters

logues of all the results of Narkiewicz, Śliwa, Dobrowolski, Fomenko, Rayner and

others, that were stated in subsection § 1.3.3.

The arguments used to prove our general results comprise a wide variety of themes

spanning several areas of mathematics. First of all, we need to refine our “mixing

phenomenon” with more sophisticated anatomical arguments, supplemented by char-

acter sum machinery combined with linear algebra over residue rings. But this only

takes us partway: To get the desired main terms, we crucially need arguments from

both the classical and “pretentious” sides of analytic number theory. Note that the

anatomical part of our arguments cannot be substituted by analytic arguments either,

since the latter do not give us the full range of uniformity. Furthermore, to bound

the contributions of certain “bad” inputs, we need to employ various sieve theoretic

techniques and understand the rational points of certain affine varieties over finite

fields using tools from arithmetic/algebraic geometry. The complete details of all the

results, arguments, optimality and applications have been provided in Chapter 4.

Section 1.5

Summary of later chapters

The summary of most of the thesis has been given in the last two subsections. Chap-

ters 2, 3 and 4 have been organized in the chronology of papers written: Chapter

2 describes the work in [61] leading to the complete uniform analogue of Corollary

1.3.17. In Chapter 3 (based on [73]), we digress to additive functions and give the

complete uniform analogue of Delange’s criterion for a family of polynomially–defined

additive functions (as alluded to in subsection § 1.4.2). In Chapter 4 (based on [71]

and [72]), we obtain the best possible uniform analogues of the Siegel–Walfisz theorem

for a general family of polynomially–defined multiplicative functions.
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In the last chapter of the thesis, we venture out of the additive and multiplicative

realms. One of the most well-known examples of an arithmetic function that is neither

additive nor multiplicative is the sum of proper divisors (or aliquot divisors) function

s(n) = σ(n) − n. This function has been the subject of a variety of exciting results

and elusive conjectures. In Chapter 5, we explore the distribution of s(n) to varying

prime moduli. Since s(n) = 1 for all prime n, the Prime Number Theorem shows

that to get uniformity up to arbitrary powers of log x, one needs to at least to restrict

to composite inputs n. We show that this restriction is sufficient to have s(n) be

equidistributed to prime moduli p varying within the full Siegel–Walfisz range. This

is based on work done in [40] (the same paper containing our oldest result Theorem

1.4.6), and it turns out that the methods of Chapters 2–4 can be adapted to simplify

our arguments from that paper. (Chapter 5 contains this simplified argument and

not the original argument in [40].)

Remark 1.5.1. We conclude this chapter with the remark that the problem of in-

vestigating distribution in residue classes of an integer sequence can be thought of

as investigating the trailing digits of the terms of that sequence. (This is especially

apparent if q is a power of 10, and more generally if q is a power of some integer b

and we work in “base b”.) The dual question is that of studying leading digits, and

in this regard, the “Benford phenomenon” is of significant interest. We say that a

sequence of numbers follows “Benford’s Law” if smaller digits are more likely to ap-

pear in the sequence and vice versa (defined in a precise way). This phenomenon was

originally observed by Simon Newcomb, and since then has been studied for a variety

of interesting sequences. In [60] and [43], we study this phenomenon for the sequence

of “intermediate prime factors”. In [11], Chandee, Li, Pollack and the author give

a general criterion for a multiplicative function to satisfy the Benford phenomenon,

and using this criterion we study the Benford behavior of several interesting multi-
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plicative functions, including but not limited to Hecke eigenvalues of newforms (such

as Ramanujan’s τ -function). We will not be elaborating on these works in this thesis.

1.5.1. Notation and conventions

• We do not consider the zero function as multiplicative, so if f is multiplicative,

then f(1) = 1.

• By P (n) and P−(n), we will mean the largest and least prime divisors of n,

respectively. For most of the thesis, we will stick to the convention that P (1) :=

1 and P−(1) :=∞.

• We set P1(n) = P (n) and define, inductively, Pk(n) = Pk−1(n/P (n)). Thus,

Pk(n) is the kth largest prime factor of n counted with multiplicity, with Pk(n) =

1 if Ω(n) < k.

• Given z > 0, we say that a positive integer n is z-smooth if P (n) ≤ z, and

z-rough if P−(n) > z. By the z-smooth part (resp. z-rough part) of n, we shall

mean the largest z-smooth (resp. z-rough) positive integer dividing n.

• For a ring R, let R× denote the multiplicative group of units of R. Write

Uq := (Z/qZ)×.

• We denote the number of primes dividing q counted with and without multi-

plicity by Ω(q) and ω(q) respectively.

• For a Dirichlet character χ mod q, we use f(χ) for the conductor of χ.

• When there is no danger of confusion, we shall write (a1, . . . , aK) in place of

gcd(a1, . . . , aK).

• Throughout, the letters p and ℓ are reserved for primes.

40



1.5 Summary of later chapters

• For nonzero H ∈ Z[T ], we use ordℓ(H) to denote the highest power of ℓ dividing

all the coefficients of H; for an integer m ̸= 0, we may use vℓ(m) in place of

ordℓ(m).

• Let MA×B(Z) denote the ring of A × B matrices with integer entries, while

GLA×B(Z) refer to the group of units of MA×B(Z), i.e. the matrices with de-

terminant ±1.

• Implied constants in ≪ and O-notation, as well as implicit constants in quali-

fiers like “sufficiently large”, may always depend on any parameters declared as

“fixed”; in particular, they will always depend on the polynomials {Wi,v}1≤i≤K
1≤v≤k

.

Other dependence will be noted explicitly (for example, with parentheses or

subscripts): Notably, we shall use C(F1, . . . , FK), C ′(F1, . . . , FK) and so on, to

denote constants depending on the fixed polynomials F1, . . . , FK .

• We write logk for the k-th iterate of the natural logarithm.

Other notation will be locally defined as required.
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Chapter 2

Weak equidistribution of a single

function to a varying “rough”

modulus: The mixing phenomenon

In this chapter, we introduce the “mixing phenomenon” (briefly alluded to in subsec-

tions 1.4.1 and 1.4.2) in order to obtain complete uniform analogues of Corollary 1.3.17

that gave sufficient conditions for the weak equidistribution of a single polynomially–

defined multiplicative function to a fixed modulus supported on large primes. (We

restate the corollary as a proposition below.) Throughout this chapter, we will be

considering a multiplicative function f : N→ Z for which there exists a nonconstant

separable polynomial F ∈ Z[T ] satisfying f(p) = F (p) for all primes p.

Proposition 2.0.1. There exists a constant C(F ) > 0 depending only on F such

that f is WUD modulo any fixed q ∈ N supported on primes exceeding C(F ).

This chapter is based on the joint paper [61] of Pollack and the author.
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Section 2.1

Main results of this chapter

Our first theorem shows that one has uniformity in q up to an arbitrary (but fixed)

power of log x when F is linear.

Theorem 2.1.1. Let f be a fixed polynomially-defined function with F (T ) = RT +S,

where R, S ∈ Z with R ̸= 0. Fix a real number K0 > 0. Then f(n) is WUD mod q,

uniformly for q ≤ (log x)K0 coprime to 6R.

A concrete consequence of this result is that the Euler totient φ(n) is weakly equidis-

tributed to moduli q coprime to 6 that vary up to any fixed power of log x: This

optimally extends Proposition 1.3.3 to moduli q varying within the Siegel–Walfisz

range. We are not sure what to conjecture for how far the range of uniformity can be

extended. For f(n) = φ(n), we cannot replace (log x)K0 with L(x)1+δ for any δ > 0,

where L(x) = xlog log log x/ log log x. This is a direct consequence of work of Pomerance

[63] showing that for all large x, there is an integer m ≤ x having all prime factors at

most log x and possessing at least x/L(x)1+δ/2 many φ-preimages n ≤ x. (He proved

this result conditional on a plausible conjecture about shifted primes with no large

prime factors.)

When the defining polynomial F has degree larger than 1, our method applies but

the results require some preparation to state. Let F (T ) ∈ Z[T ] be nonconstant. For

each positive integer q, define

ν(q) = #{a mod q : gcd(a, q) = 1 and F (a) ≡ 0 (mod q)} (2.1)
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and let

α(q) = 1
φ(q)#{a mod q : gcd(aF (a), q) = 1}. (2.2)

It is straightforward to check, using the Chinese Remainder Theorem, that

α(q) =
∏
ℓ|q

ℓ prime

(
1− ν(ℓ)

ℓ− 1

)
. (2.3)

If F has degree D, then ν(ℓ) ≤ D whenever ℓ does not divide the leading coefficient of

F . Thus, if q is coprime to that coefficient and every prime dividing q exceeds D+ 1,

then α(q) is nonzero. Furthermore if α(q) is nonzero, then ν(ℓ) ≤ min{ℓ− 2, D} for

all primes ℓ | q. By Mertens’ theorem and the bound ω(q) ≤ log(3q), this yields

α(q)≫D exp

− ∑
ℓ|q: ℓ>D
ℓ prime

ν(ℓ)
ℓ

 ≥ exp

−D ∑
ℓ≤ω(q)
ℓ prime

1
ℓ

≫D (log log (3q))−D. (2.4)

The lower bound (2.4) will prove important later.

Theorem 2.1.2. Let f be a fixed, polynomially-defined multiplicative function. Fix

δ ∈ (0, 1]. There is a constant C = C(F ) such that the following holds. For each

fixed K0, the values f(n) for n ≤ x are asymptotically weakly equidistributed mod q

provided that q ≤ (log x)K0, that q is divisible only by primes exceeding C, and that

either

(i) q is squarefree with ω(q) ≤ (1− δ)α(q) log log x/ logD, or

(ii) q ≤ (log x)α(q)(1−δ)(1−1/D)−1.

Conditions (i) and (ii) in Theorem 2.1.2 reflect genuine obstructions to uniformity. To

motivate (i), fix an integer D ≥ 2, and let F (T ) = (T−2)(T−4) · · · (T−2D)+2. Note
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that F is Eisenstein at 2, so F is irreducible over Q and thus without multiple roots.

Let f be the completely multiplicative function with f(p) = F (p) for all primes

p, and let q be a squarefree product of primes exceeding D + 1. Then F (p) ≡ 2

(mod q) whenever (p − 2) · · · (p − 2D) ≡ 0 (mod q). This congruence puts p in one

of Dω(q) coprime residue classes mod q. Hence, we expect ≫ Dω(q)

φ(q)
x

log x primes p ≤ x

with F (p) ≡ 2 (mod q), and we are assured this many primes (by Siegel–Walfisz)

if q is bounded by a power of log x. On the other hand, Proposition 2.2.1 below

implies (under this same restriction on the size of q) that the number of n ≤ x with

gcd(f(n), q) = 1 is x/(log x)1−(1+o(1))α(q). Thus, the residue class 2 mod q will be

‘overrepresented’ (vis-à-vis the expectation of weak uniform distribution) if Dω(q) >

(log x)(1+δ)α(q) for any fixed δ > 0, or in other words, if ω(q) > (1+δ)α(q) log2 x/ logD.

It follows that (i) is essentially optimal.

For completeness, we construct arbitrarily large classes of moduli q ≤ (log x)O(1) which

satisfy the last inequality above (with F still being the polynomial constructed in the

previous paragraph). Let KD > 0 be a constant depending only on D. Letting Y :=

KD log2 x and q :=
∏

ℓ prime
D+1<ℓ≤Y

ℓ, the prime number theorem shows that q ≤ (log x)2KD

and that ω(q) ≥ Y/2 log Y . On the other hand, the decomposition (2.3) shows that

α(q) ≪ exp

− ∑
ℓ prime

D+1<ℓ≤Y

ν(ℓ)/ℓ

 ≪ 1/ log Y , where the implied constant depends

only on D. (Here we have used the Prime Ideal Theorem.) Hence, by fixing KD

large enough in terms of D, we have constructed arbitrarily large classes of moduli

q ≤ (log x)O(1) which all satisfy ω(q) > (1 + δ)α(q) log2 x/ logD.

To motivate (ii), fix D ≥ 2, and let f be the completely multiplicative function

given by f(p) = (p − 1)D + 1 for all primes p. Let q be a Dth power, say q = qD1 .

Then f(p) ≡ 1 (mod q) whenever p ≡ 1 (mod q1). Thus, if q is bounded by a
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power of log x, there will be ≫ x/φ(q1) log x primes p ≤ x for which f(p) ≡ 1

(mod q). On the other hand, if we assume all primes dividing q1 exceed D + 1,

Proposition 2.2.1 implies that there are x/(log x)1−(1+o(1))α(q) integers n ≤ x with

gcd(f(n), q) = 1. It follows that the residue class 1 mod q will be overrepresented if

q1−1/D = q/q1 > (log x)(1+δ)α(q). This means that for weak equidistribution we require

q to be no more than ≈ (log x)α(q)(1−1/D)−1 . So (ii) is essentially best possible as well.

In both of the constructions described above, the obstruction to uniformity came

from prime inputs p. Tweaking the construction slightly, we could easily produce

obstructions to uniformity of the form rp, with r fixed (or even with r growing slowly

with x). In our final theorem, we pinpoint the ‘problem’ here as one of having too few

large prime factors. Specifically, we show that uniformity up to an arbitrary power of

log x can be restored by considering only inputs with sufficiently many prime factors

exceeding q. In fact, for squarefree moduli q, it suffices to restrict to inputs with

composite q-rough part.

Theorem 2.1.3. Let f be a fixed, polynomially-defined function. There is a constant

C(F ) such that the following hold.

(a) For each fixed K0 > 0,

#{n ≤ x : PD+2(n) > q, f(n) ≡ a (mod q)}

∼ 1
φ(q)#{n ≤ x : PD+2(n) > q, gcd(f(n), q) = 1} as x→∞, (2.5)

uniformly for coprime residue classes a mod q with q ≤ (log x)K0 and q divisible

only by primes exceeding C(F ).
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(b) For each fixed K0 > 0,

#{n ≤ x : P2(n) > q, f(n) ≡ a (mod q)}

∼ 1
φ(q)#{n ≤ x : P2(n) > q, gcd(f(n), q) = 1} as x→∞,

uniformly for coprime residue classes a mod q with q squarefree, q ≤ (log x)K0,

and q divisible only by primes exceeding C(F ).

The methods used to prove the aforementioned theorems refines that used to obtain

the earlier results Theorems 1.4.6 and 1.4.7. The essential new ingredient, which

allows us to dispense with the primality or “almost primality” conditions in those

theorems, is the exploitation of a certain ergodic (or mixing) phenomenon within the

multiplicative group mod q. As one illustration: Let q be a positive integer coprime

to 6. From the collection of units u mod q for which u + 1 is also a unit, choose

uniformly at random u1, u2, u3, . . . , and construct the products u1, u1u2, u1u2u3, . . . .

Once J is large, each unit mod q is roughly equally likely to appear as u1 · · ·uJ . This

particular example plays a starring role in our approach to the weak equidistribution

of Euler’s φ-function.

When f = φ, Theorem 2.1.1 is in the spirit of the Siegel–Walfisz theorem, with

primes replaced by values of φ(n). For investigations of the corresponding ‘Linnik’s

theorem’, concerning the least n for which φ(n) falls into a given progression, see

[13, 25, 26, 27].

Finally, it is worth mentioning that although in the spirit of Narkiewicz’s results,

we stated Theorems 2.1.1, 2.1.2 and 2.1.3 for F (T ) ∈ Z[T ], our methods go through

(with minor modifications) for integer-valued polynomials F , namely those satisfying

F (Z) ⊂ Z. Writing any such polynomial in the form G(T )/Q for some positive
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integer Q and G(T ) ∈ Z[T ], we need only ensure in addition that the constant C(F )

appearing in the aforementioned theorems exceeds Q.

Section 2.2

A preparatory estimate: The frequency with

which (f (n), q) = 1

The following proposition is contained in results of Scourfield [68]. Nevertheless, we

give a complete treatment here because the results of [68] are much more precise than

we will need. The weaker version below admits a simpler and shorter proof (although

we make no claim to originality regarding the underlying ideas).

For readability, we sometimes abbreviate α(q) to α, suppressing dependence on q.

Proposition 2.2.1. Fix a multiplicative function f with the property that f(p) =

F (p) for all primes p, where F (T ) ∈ Z[T ] is nonconstant. Fix K0 > 0. If x is

sufficiently large and q ≤ (log x)K0 with α = α(q) > 0, then

#{n ≤ x : (f(n), q) = 1} = x

(log x)1−α exp(O((log log (3q))O(1))). (2.6)

We treat separately the implicit upper and lower bounds in Proposition 2.2.1.

Upper bound

The following mean value estimate is a simple consequence of [32, Theorem 01, p. 2]

(and also of the more complicated Theorem 03 from that same chapter).

Lemma 2.2.2. Let g be a multiplicative function with 0 ≤ g(n) ≤ 1 for all n. For
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all x ≥ 3, ∑
n≤x

g(n)≪ x

log x exp
(∑
p≤x

g(p)
p

)
.

Here the implied constant is absolute.

If we set g(n) := 1gcd(f(n),q)=1, then the left-hand side of (2.6) is precisely
∑

n≤x g(n).

Note that the multiplicativity of f implies the multiplicativity of g. The following

lemma, due independently to Norton [54, Lemma, p. 669] and Pomerance [62, Remark

1], allows us to estimate the sums of g(p)/p appearing in Lemma 2.2.2.

Lemma 2.2.3. Let q be a positive integer, and suppose x is a real number with

x ≥ max{3, q}. For each coprime residue class a mod q,

∑
p≤x

p≡a (mod q)

1
p

= log2 x

φ(q) + 1
pq,a

+O

(
log (3q)
φ(q)

)
,

where pq,a denotes the least prime congruent to a modulo q.

Lemma 2.2.4. Let F (T ) ∈ Z[T ] be a fixed nonconstant polynomial. For each positive

integer q and each real number x ≥ 3q,

∑
p≤x

1gcd(F (p),q)=1

p
= α log2 x+O((log log (3q))O(1)),

where α = α(q) is as defined in (2.2).

Proof. Using the Möbius function to detect the coprimality condition, we write

∑
p≤x

gcd(F (p),q)=1

1
p

=
∑

3q<p≤x
gcd(F (p),q)=1

1
p

+O(log2(100q))
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=
∑
d|q

µ(d)
∑

3q<p≤x
d|F (p)

1
p

+O(log2(100q)). (2.7)

If p is a prime with p > 3q, then d | F (p) precisely when p belongs to one of ν(d)

coprime residue classes modulo d. By Lemma 2.2.3 (with d replacing q),

∑
3q<p≤x
d|F (p)

1
p

= ν(d)
φ(d) log log x+O

(
ν(d) log(3d)

φ(d) + ν(d) log2(3q)
φ(d)

)
.

Substituting this estimate into (2.7) yields a main term of (
∑

d|q
µ(d)ν(d)
φ(d) ) log2 x =

α log2 x, as desired. Turning to the errors,

∑
d|q

d squarefree

ν(d) log(3d)
φ(d) =

∑
d|q

d squarefree

ν(d)
φ(d)(log 3 +

∑
ℓ|d

log(ℓ))

≤ (log 3)
∑
d|q

d squarefree

ν(d)
φ(d) +

∑
ℓ|q

log ℓ · ν(ℓ)
ℓ− 1

∑
r|q/ℓ

r squarefree

ν(r)
φ(r)

≪
( ∑

d|q
d squarefree

ν(d)
φ(d)

)(
1 +

∑
ℓ|q

log ℓ · ν(ℓ)
ℓ− 1

)
.

Now
∑

d|q, d squarefree
ν(d)
φ(d) =

∏
ℓ|q(1+ν(ℓ)/(ℓ−1))≪ (log2(3q))D (keeping in mind that

ν(ℓ) ≤ D for all but O(1) many primes ℓ). Furthermore,

∑
ℓ|q

ν(ℓ) log ℓ
ℓ− 1 ≪

∑
ℓ|q

log ℓ
ℓ
≤

∑
ℓ≤log (3q)

log ℓ
ℓ

+
∑
ℓ|q

ℓ>log(3q)

log ℓ
ℓ

≪ log2 (3q) + log2 (3q)
log (3q)

∑
ℓ|q

ℓ>log(3q)

1,

and this is

≪ log2 (3q) + log2 (3q)
log(3q) ·

log q
log2 (3q) ≪ log2 (3q).

50



2.2 A preparatory estimate: The frequency with which (f(n), q) = 1

Thus,
∑

d|q, d squarefree
ν(d) log (3d)

φ(d) ≪ (log2(3q))D+1. Finally,

∑
d|q

d squarefree

ν(d) log2 (3q)
φ(d) ≪ log2 (3q) ·

∏
ℓ|q

(
1 + ν(ℓ)

ℓ− 1

)
≪ (log2 (3q))D+1.

Collecting estimates,
∑

p≤x 1gcd(F (p),q)=1/p = α log2 x+O((log2 (3q))D+1).

The upper bound half of Proposition 2.2.1 follows (in slightly more precise form)

immediately from Lemmas 2.2.2 and 2.2.4. In fact, we have shown the upper bound

in the much wider range q ≤ x/3.

Lower bound

The following lemma is due to Barban [8, Lemma 3.5]; see also [67, Theorem 3.5, p.

61].

Lemma 2.2.5. Let g be a multiplicative function with 0 ≤ g(n) ≤ 1 for all n. For

all x ≥ 3, ∑
n≤x

n squarefree

g(n)
n
≫ exp

(∑
p≤x

g(p)
p

)
.

Here the implied constant is absolute.

Proof of the lower bound in Proposition 2.2.1. Consider n of the form mP , where

m ≤ x1/3 is a squarefree product of primes p with gcd(f(p), q) = 1 and P ∈ (x1/2, x/m]

is a prime with (f(P ), q) = 1. Each such n has f(n) = f(m)f(P ) coprime to q.

Given m as above, we count corresponding P. The prime P is restricted to one of the

α(q)φ(q) residue classes a mod q with gcd(aF (a), q) = 1. Hence, given m ≤ x1/3 as
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2.3 Framework for the proof of Theorems 2.1.2 and 2.1.3

above, the Siegel–Walfisz theorem guarantees that there are

≫ (α(q)φ(q)) · 1
φ(q)

x

m log x = α(q) x

m log x

values of P . Now sum on m; by Lemma 2.2.5,

∑ 1
m

=
∑

m≤x1/3

m squarefree

1gcd(f(m),q)=1

m
≫ exp

 ∑
p≤x1/3

1gcd(f(p),q)=1

p

 .

The final sum on p is within O(1) of the corresponding sum taken over all p ≤ x.

The lower bound half of Proposition 2.2.1 now follows from Lemma 2.2.4, bearing in

mind that α(q)≫ (log log (3q))−D.

Section 2.3

Framework for the proof of Theorems 2.1.2 and

2.1.3

Define J = J(x) by setting

J = ⌊log log log x⌋.

(For our purposes, any integer-valued function tending to infinity sufficiently slowly

would suffice.) With δ from the statement of Theorem 2.1.2, we let y = y(x) be

defined by

y := exp((log x)δ/2)

and we say that the positive integer n is convenient (with respect to a given large real

number x) if (a) n ≤ x, (b) the J largest prime factors of n exceed y, and (c) none of

these J primes are repeated in n. That is, n is convenient if n admits an expression
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2.3 Framework for the proof of Theorems 2.1.2 and 2.1.3

n = mPJ · · ·P1, where P1, . . . , PJ are primes with

max{P (m), y} < PJ < · · · < P1, (2.8)

PJ · · ·P1 ≤ x/m. (2.9)

The framework developed in this section will go through in the proof of Theorem

2.1.3 (§2.6) by setting δ := 1.

Now let f be a fixed multiplicative function with f(p) = F (p) for all primes p, where

F (T ) ∈ Z[T ] is nonconstant. Fix K0 > 0, and suppose that q ≤ (log x)K0 . We set

N(q) = #{n ≤ x : gcd(f(n), q) = 1},

and we define Ncon(q) and Ninc(q) analogously, incorporating the extra requirement

that n be convenient or inconvenient, respectively.

We will repeatedly use the following standard estimate on the count of smooth num-

bers. The result below is a consequence of the Corollary on p. 15 of [10], but see [76,

Theorem 5.13 and Corollary 5.19, Chapter III.5] for more concrete results.

Lemma 2.3.1. Suppose X ≥ Y ≥ 3, and let u := logX
log Y . Whenever u → ∞ and

X ≥ Y ≥ (logX)2, we have

ψ(X, Y ) = X exp(−(1 + o(1))u log u).

Lemma 2.3.2. N(q) ∼ Ncon(q), as x→∞. Here the asymptotic holds uniformly in

q with q ≤ (log x)K0 and α(q) ̸= 0.

53



2.3 Framework for the proof of Theorems 2.1.2 and 2.1.3

Proof. We must show that Ninc(q) = o(N(q)), as x→∞.

Suppose the integer n ≤ x is counted by Ninc(q). We can assume that P (n) >

z := x1/ log2 x. Indeed, by Lemma 2.3.1, the number of n ≤ x with P (n) ≤ z is at

most x/(log x)(1+o(1)) log3 x and this is o(N(q)) by our ‘rough-and-ready’ estimate of

Proposition 2.2.1. We can similarly assume that n has no repeated prime factors

exceeding y, since the number of exceptions is O(x/y), which is again o(N(q)).

Write n = PAB, where P = P (n) and A is the largest divisor of n/P supported

on primes exceeding y. Thus P > z and P (B) ≤ y < P−(A). Observe that AB =

n/P ≤ x/z. So if A and B are given, the number of possibilities for P is bounded

by π(x/AB) ≪ x/AB log z ≪ x(log log x)/AB log x. We sum on A,B. As n has no

repeated primes exceeding y but n is inconvenient, it must be that Ω(A) < J . Thus,∑
1/A ≤ (1+

∑
p≤x 1/p)J ≤ (2 log2 x)J ≤ exp(O((log3 x)2)). Using that (f(B), q) = 1

(as f(n) = f(B)f(AP )) and that B is y-smooth,

∑ 1
B
≤
∏
p≤y

(
∞∑
j=0

1(f(pj),q)=1

pj

)
≪ exp

(∑
p≤y

1(f(p),q)=1

p

)
,

and this is ≪ (log x)αδ/2 exp(O((log2 q)O(1))) by Lemma 2.2.4. We conclude that

these n make a contribution to Ninc(q) of size at most x
(log x)1−αδ/2 exp(O((log3 x)2 +

(log2 q)O(1))). Since q ≤ (log x)K0 and α(q) obeys the lower bound (2.4), this contri-

bution is also o(N(q)).

Let N(q, a) denote the number of n ≤ x with f(n) ≡ a (mod q), and define Ncon(q, a)

and Ninc(q, a) analogously. By Lemma 2.3.2, the weak equidistribution of f mod q

will follow if N(q, a) ∼ 1
φ(q)Ncon(q).
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As a first step in this direction, we compare Ncon(q) and Ncon(q, a). Clearly,

Ncon(q) =
∑
m≤x

gcd(f(m),q)=1

∑′

P1,...,PJ

1,

where the ′ on the sum indicates that P1, . . . , PJ run through primes satisfying (2.8),

(2.9), and

gcd(f(P1) · · · f(PJ), q) = 1. (2.10)

Similarly,

Ncon(q, a) =
∑
m≤x

gcd(f(m),q)=1

∑′′

P1,...,PJ

1,

where the ′′ condition indicates that we enforce (2.8), (2.9) and (in place of (2.10))

f(m)f(P1)f(P2) · · · f(PJ) ≡ a (mod q). (2.11)

Let

V ′
q = {(v1, . . . , vJ) mod q : gcd(v1 . . . vJ , q) = 1, gcd(F (v1) · · ·F (vJ), q) = 1}

and

V ′′
q,a,m = {(v1, . . . , vJ) mod q : gcd(v1 . . . vJ , q) = 1, f(m)F (v1) · · ·F (vJ) ≡ a (mod q)}.

Then (2.10) amounts to restricting (P1, . . . , PJ), taken mod q, to belong to V ′
q, while

(2.11) restricts this same tuple to V ′′
q,a,m. By (2.2), #V ′

q = (φ(q)α(q))J .

The conditions (2.9) and (2.10) are independent of the ordering of P1, . . . , PJ . Thus,
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2.3 Framework for the proof of Theorems 2.1.2 and 2.1.3

letting Lm = max{y, P (m)},

∑′

P1,...,PJ

1 = 1
J !
∑
v∈V ′

q

∑
P1,...,PJ distinct
P1···PJ ≤x/m
each Pj>Lm

each Pj≡vj (mod q)

1. (2.12)

We proceed to remove the congruence conditions on the Pj from the inner sum. For

each tuple (v1, . . . , vJ) mod q ∈ V ′
q,

∑
P1,...,PJ distinct
P1···PJ ≤x/m
each Pj>Lm

each Pj≡vj (mod q)

1 =
∑

P2,...,PJ distinct
P2···PJ ≤x/mLm

each Pj>Lm

each Pj≡vj (mod q)

∑
P1 ̸=P2,...,PJ

Lm<P1≤x/mP2···PJ

P1≡v1 (mod q)

1.

Since Lm ≥ y and q ≤ (log x)K0 = (log y)2K0/δ, the Siegel–Walfisz theorem implies

that

∑
P1 ̸=P2,...,PJ

Lm<P1≤x/mP2···PJ

P1≡v1 (mod q)

1 = 1
φ(q)

∑
P1 ̸=P2,...,PJ

Lm<P1≤x/mP2···PJ

1 +O

(
x

mP2 · · ·PJ
exp(−C0

√
log y)

)
,

for some positive constant C0 := C0(K0, δ) depending only on K0 and δ. Putting this

back into the last display and bounding the O-terms crudely, we find that

∑
P1,...,PJ distinct
P1···PJ ≤x/m
each Pj>Lm

each Pj≡vj (mod q)

1 = 1
φ(q)

∑
P1,...,PJ distinct
P1···PJ ≤x/m
each Pj>Lm

(∀j≥2) Pj≡vj (mod q)

1 +O

(
x

m
exp

(
−1

2C0(log x)δ/4
))

.

Proceeding in the same way to remove the congruence conditions on P2, . . . , PJ , we
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2.3 Framework for the proof of Theorems 2.1.2 and 2.1.3

arrive at the estimate

∑
P1,...,PJ distinct
P1···PJ ≤x/m
each Pj>Lm

each Pj≡vj (mod q)

1 = 1
φ(q)J

∑
P1,...,PJ distinct
P1···PJ ≤x/m
each Pj>Lm

1 +O

(
x

m
exp

(
−1

4C0(log x)δ/4
))

. (2.13)

Inserting this estimate into (2.12) and keeping in mind that #V ′
q ≤ (log x)K0J (triv-

ially), we conclude that

Ncon(q) =
∑
m≤x

gcd(f(m),q)=1

∑′

P1,...,PJ

1

=
∑
m≤x

gcd(f(m),q)=1

#V ′
q

φ(q)J

(
1
J !

∑
P1,...,PJ distinct
P1···PJ ≤x/m
each Pj>Lm

1
)

+O

(
x exp

(
−1

8C0(log x)δ/4
))

.

(2.14)

An entirely analogous argument yields the same estimate with Ncon(q) replaced by

Ncon(q, a) and V ′
q replaced by V ′′

q,a,m. Comparing (2.14) with its Ncon(q, a) analogue

and rewriting
#V ′′

q,a,m

φ(q)J =
#V ′′

q,a,m

#V ′
q

·
#V ′

q

φ(q)J ,

we are motivated to introduce the following hypothesis.

Hypothesis A. #V ′′
q,a,m

#V ′
q
∼ 1

φ(q) , as x → ∞, uniformly in q and a and uniformly in

m ≤ x with gcd(f(m), q) = 1.

We will soon see how to verify Hypothesis A in the situations described in Theorems

2.1.1, 2.1.2, and 2.1.3. The phrase “uniformly in q and a” in Hypothesis A should be

read as “uniformly in q and a subject to the restrictions of these theorem statements”.
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If Hypothesis A holds, we may deduce (keeping in mind Lemma 2.3.2, and that

x exp(−1
8C0(log x)δ/4) = o(N(q)/φ(q)))

Ncon(q, a) =
∑
m≤x

gcd(f(m),q)=1

∑′′

P1,...,PJ

1

= (1 + o(1)) 1
φ(q)Ncon(q) + o

(
N(q)
φ(q)

)
= (1 + o(1)) 1

φ(q)N(q).

Since N(q, a) = Ncon(q, a) +Ninc(q, a), weak uniform distribution mod q will follow if

the contribution from Ninc(q, a) is shown to be negligible. We record this condition

as our next Hypothesis.

Hypothesis B. Ninc(q, a) = o(N(q)/φ(q)), as x→∞, uniformly in q and a.

Section 2.4

Linearly defined functions: Proof of Theorem

2.1.1

We proceed to verify Hypotheses A and B.

Verification of Hypothesis A. Let m ≤ x with gcd(f(m), q) = 1, and let w ∈ Z be

a value of af(m)−1 modulo q. We will estimate #V ′′
q,a,m via the product formula

#V ′′
q,a,m =

∏
ℓe∥q V

′′
ℓe , where

V ′′
ℓe := #{(v1, . . . , vJ) mod ℓe : gcd(v1 . . . vJ , ℓ) = 1,

J∏
i=1

(Rvi + S) ≡ w (mod ℓe)}.

By assumption, (ℓ, 6R) = 1 for all ℓ | q.

Suppose first that ℓ | S. Then the condition gcd(v1 . . . vJ , ℓ) = 1 is implied by
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2.4 Linearly defined functions: Proof of Theorem 2.1.1

∏J
i=1(Rvi + S) ≡ w (mod ℓe). Noting that the map v 7→ Rv + S is a permutation of

Z/ℓeZ, we see that V ′′
ℓe = φ(ℓe)J−1 and

φ(ℓe)V ′′
ℓe = φ(ℓe)J . (2.15)

When ℓ ∤ S, we must work somewhat harder. By inclusion-exclusion,

V ′′
ℓe =

J∑
j=0

(−1)j
(
J

j

)
V ′′
ℓe,j, (2.16)

where

V ′′
ℓe,j = #{(v1, . . . , vJ) mod ℓe : ℓ | v1, v2, . . . , vj,

J∏
i=1

(Rvi + S) ≡ w (mod ℓe)}.

If 0 ≤ j < J , then V ′′
ℓe,j = (ℓe−1)jφ(ℓe)J−j−1: Each of v1, . . . , vj can be chosen

arbitrarily from the ℓe−1 classes divisible by ℓ, while vj+1, . . . , vJ−1 can be chosen

arbitrarily subject to each of Rvi + S (for i = j + 1, . . . , J − 1) being a unit mod ℓe;

this then determines vJ . Similarly, V ′′
ℓe,J = O((ℓe−1)J−1). Referring back to (2.16),

φ(ℓe)V ′′
ℓe = (φ(ℓe)− ℓe−1)J +O(ℓe(ℓe−1)J−1)

= (ℓe(1− 2/ℓ))J
(
1 +O(ℓ(ℓ− 2)−J)

)
. (2.17)

By (2.15) and (2.17), in either case for ℓ we have

φ(ℓe)V ′′
ℓe =

(
φ(ℓe)

(
1− ν(ℓ)

ℓ− 1

))J
·
(
1 +O(ℓ(ℓ− 2)−J)

)
.
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Multiplying over ℓ,

φ(q)#V ′′
q,a,m = (φ(q)α(q))J

∏
ℓe∥q

(
1 +O(ℓ(ℓ− 2)−J)

)
= #V ′

q

∏
ℓe∥q

(
1 +O(ℓ(ℓ− 2)−J)

)
.

So to verify Hypothesis A, it is enough to show that the final product is 1 + o(1).

This follows if
∑

ℓe∥q ℓ(ℓ − 2)−J = o(1), which is straightforward to prove: Since q is

coprime to 6, we have for all large x that

∑
ℓe∥q

ℓ(ℓ−2)−J <
∑
ℓ≥5

ℓ(ℓ−2)−J ≤ 3−J/2
∑
ℓ≥5

ℓ(ℓ−2)−J/2 ≤ 3−J/2
∑
ℓ≥5

ℓ(ℓ−2)−3 ≪ 3−J/2.

Remark 2.4.1. It is also possible to estimate V ′′
ℓe via character sums, which will be

our primary tool for general F (T ) ∈ Z[T ]. By orthogonality (as in (2.18) below),

φ(ℓe)V ′′
ℓe =

∑
χ mod ℓe χ̄(w)ZJ

χ , where

Zχ : =
∑

v mod ℓe
χ0(v)χ(Rv + S)

=
∑

u mod ℓe
χ(u)−

∑
u mod ℓe
u≡S mod ℓ

χ(u);

here we have used that as v runs over coprime residues mod ℓe, the expression Rv+S

runs over all the residues mod ℓe except for those congruent to S mod ℓ. If ℓ | S,

it is then immediate that Zχ = 1χ=χ0φ(ℓe) (with χ0 denoting the principal character

mod ℓe), once again giving us φ(ℓe)V ′′
ℓe = φ(ℓe)J . On the other hand, if ℓ ∤ S, then

fixing a generator g mod ℓe and considering the unique r ∈ {0, 1, . . . , φ(ℓe) − 1}

satisfying gr ≡ S (mod ℓe), we observe that the sets {u mod ℓe : u ≡ S mod ℓ} and
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{gr+(ℓ−1)k mod ℓe : 0 ≤ k < ℓe−1} are equal. Hence,

∑
u mod ℓe
u≡S mod ℓ

χ(u) = 1χℓ−1=χ0χ(S)ℓe−1.

As such, Zχ = 1χ=χ0ℓ
e−1(ℓ − 2) + O(1χℓ−1=χ0, χ ̸=χ0ℓ

e−1), which again leads to (2.17)

since there are ℓ− 2 nontrivial characters χ mod ℓe satisfying χℓ−1 = χ0.

Verification of Hypothesis B. We proceed as in the proof of Lemma 2.3.2. Let n ≤ x

be an inconvenient solution to f(n) ≡ a (mod q). We can assume P (n) > z =

x1/ log2 x, since the number of exceptional n ≤ x is o(N(q)/φ(q)). Similarly, we can

assume that n has no repeated prime factors exceeding y = exp((log x)δ/2). Write

n = PAB, where P := P (n) and A is the largest divisor of n/P supported on

primes exceeding y. Then z < P ≤ x/AB and (RP + S)f(AB) ≡ a (mod q).

Given A and B, this congruence is satisfied for P belonging to at most one coprime

residue class mod q. So by the Brun–Titchmarsh inequality, given A and B there

are ≪ x/φ(q)AB log (z/q)≪ x log2 x/φ(q)AB log x corresponding values of P . Note

that we have saved a factor of φ(q) here over the analogous estimate in Lemma 2.3.2.

Summing on A,B, and making the same estimates as in the argument for Lemma

2.3.2, yields

Ninc(q, a) ≤ x

φ(q)(log x)1−αδ/2 exp(O((log3 x)2 + (log2 q)O(1))),

and this is o(N(q)/φ(q)).
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Section 2.5

General polynomially defined functions: Proof of

Theorem 2.1.2

To check Hypothesis A in the context of Theorem 2.1.2, we require the following

character sum estimate, which follows from the Weil bounds when e = 1 and from

work of Cochrane [14] (see also [15]) when e > 1. See [59, Proposition 2.6] for a

detailed discussion.

Lemma 2.5.1. Let F1(T ), . . . , FK(T ) ∈ Z[T ] be nonconstant polynomials for which

the product F1(T ) · · ·FK(T ) has no multiple roots. Let ℓ be an odd prime not divid-

ing the leading coefficient of any of the Fk(T ) and not dividing the discriminant of

F1(T ) · · ·FK(T ). Let e be a positive integer, and let χ1, . . . , χK be Dirichlet characters

modulo ℓe, at least one of which is primitive. Then

∣∣∣∣∣ ∑
x mod ℓe

χ1(F1(x)) · · ·χK(FK(x))
∣∣∣∣∣ ≤ (d− 1)ℓe(1−1/d),

where d =
∑K

k=1 degFk(T ).

Let ∆(F ) denote the discriminant of F (T ) if F (0) = 0 and the discriminant of TF (T )

if F (0) ̸= 0. Throughout this section and the next, we assume that C(F ) is fixed so

large that primes exceeding C(F ) are odd and divide neither the leading coefficient

of F nor ∆(F ). We also assume that C(F ) > (4D)2D+2 where D = degF (T ).

Verification of Hypothesis A. Suppose that m ≤ x has gcd(f(m), q) = 1 and write w
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2.5 General polynomially defined functions: Proof of Theorem 2.1.2

for a value of af(m)−1 mod q. Then #V ′′
q,a,m =

∏
ℓe∥q V

′′
ℓe and #V ′

q =
∏

ℓe∥q V
′
ℓe , where

V ′′
ℓe := #{(v1, . . . , vJ) mod ℓe : gcd(v1 . . . vJ , ℓ) = 1,

J∏
i=1

F (vi) ≡ w (mod ℓe)}

and

V ′
ℓe := #{(v1, . . . , vJ) mod ℓe : gcd(v1 . . . vJF (v1) · · ·F (vJ), ℓ) = 1}.

With χ0 denoting the principal Dirichlet character mod ℓe,

φ(ℓe)V ′′
ℓe =

∑
χ mod ℓe

χ̄(w)
∑

v1,...,vJ mod ℓe
χ0(v1 · · · vJ)χ(F (v1) · · ·F (vJ)) (2.18)

= V ′
ℓe +

∑
χ mod ℓe
χ ̸=χ0

χ̄(w)ZJ
χ , (2.19)

where Zχ :=
∑

v mod ℓe χ0(v)χ(F (v)). For each χ of conductor ℓe0 with 1 ≤ e0 ≤ e,

Lemma 2.5.1 gives |Zχ| = ℓe−e0|
∑

x mod ℓe0 χ0(x)χ(F (x))| ≤ Dℓ(e−e0)+e0(1−1/(D+1)) =

Dℓe−e0/(D+1). (If ℓ divides F (0), then
∑

x mod ℓe0 χ0(x)χ(F (x)) =
∑

x mod ℓe0 χ(F (x)),

and we apply Lemma 2.5.1 with k = 1 and F1(T ) = F (T ); otherwise we take k = 2,

F1(T ) = T , and F2(T ) = F (T ).) As there are fewer than ℓe0 characters of conductor

ℓe0 ,

∣∣∣∣ ∑
χ mod ℓe
χ ̸=χ0

χ̄(w)ZJ
χ

∣∣∣∣ ≤ ∑
1≤e0≤e

ℓe0(Dℓe−e0/(D+1))J = DJℓeJ
∑

1≤e0≤e

ℓe0(1−J/(D+1)).

Since J ≥ D+2 once x is sufficiently large, each term in the sum
∑

1≤e0≤e ℓ
e0(1−J/(D+1))

is smaller than half the previous, and
∑

1≤e0≤e ℓ
e0(1−J/(D+1)) ≤ 2ℓ1−J/(D+1). Thus,

|
∑

χ mod ℓe
χ ̸=χ0

χ̄(w)ZJ
χ | ≤ 2DJℓeJℓ1−J/(D+1). Since V ′

ℓe = (φ(ℓe)α(ℓe))J , we conclude from

(2.19) that

φ(ℓe)V ′′
ℓe = V ′

ℓe(1 +Rℓ), (2.20)
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where

|Rℓ| ≤ 2DJ

(
ℓe

φ(ℓe)α(ℓe)−1
)J

ℓ1−J/(D+1) ≤ 2(4D)Jℓ1−J/(D+1).

(We use here that ℓe/φ(ℓe), α(ℓe)−1 ≤ 2.) Multiplying over ℓ in (2.20), we see that

Hypothesis A will follow if (4D)J
∑

ℓ|q ℓ
1−J/(D+1) = o(1). To check this last inequality,

observe that when x is large,

(4D)J
∑
ℓ|q

ℓ1−J/(D+1) ≤ (4D)JC(F )−J/(2D+2)
∑
ℓ|q

ℓ1−J/(2D+2)

≤ (4D/C(F )1/(2D+2))J
∑
ℓ

ℓ−2 < 2(4D/C(F )1/(2D+2))J ;

this last quantity tends to 0 since C(F ) > (4D)2D+2 and J →∞.

Verification of Hypothesis B. We follow the arguments for the corresponding step in

§2.4. Let ξ(q) be the maximum number of roots v mod q of any congruence F (v) ≡ a

(mod q), where the maximum is over all residue classes a mod q. Then there are at

most ξ(q) possibilities for the residue class of P modulo q and our previous arguments

yield

Ninc(q, a) ≤ ξ(q) x

φ(q)(log x)1−αδ/2 exp(O((log3 x)2 + (log2 q)O(1)))

< ξ(q) x

φ(q)(log x)1−2αδ/3 .

This last quantity is certainly o(N(q)/φ(q)) as long as ξ(q) ≪ (log x)(1−δ)α (say).

By the choice of C(F ), we have ξ(q) ≤ Dω(q) for squarefree q, verifying Hypothesis

B for squarefree q having ω(q) ≤ (1 − δ)α log2 x/ logD. On the other hand, by a

result of Konyagin (see Lemma 2.5.2 below), each congruence F (v) ≡ a (mod q)

has O(q1−1/D) roots modulo q. Consequently, Hypothesis B also holds true for q ≤

(log x)α(1−δ)(1−1/D)−1 , completing the proof of Theorem 2.1.2.
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For completeness, we state the result of Konyagin (see [35, 36]) that we used above.

Lemma 2.5.2. Fix a nonconstant polynomial W (T ) =
∑D

j=0 ajT
j ∈ Z[T ]. Then

uniformly in integers q satisfying gcd(q, a0, . . . , aD) = 1, we have #{u ∈ Z/qZ :

W (u) ≡ 0 (mod q)} ≪D q1−1/D.

In the proof above, we have applied Lemma 2.5.2 with W (T ) being the fixed polyno-

mial F (T ), and with the aforementioned gcd condition being satisfied automatically

thanks to having P−(q) > C(F ) in Theorem 2.1.2.

Section 2.6

Equidistribution along inputs with several prime

factors exceeding q: Proof of Theorem 2.1.3

Proof of (a). Recall that for the purposes of Theorem 2.1.3, we take δ := 1 and

y = exp((log x)1/2) in the framework developed in section 2.3. Lemma 2.3.2 still

applies to show that N(q) ∼ Ncon(q) as x → ∞, uniformly in q ≤ (log x)K0 having

α(q) ̸= 0. In particular, if PD+2(n) ≤ q, then PJ(n) < q ≤ y (once x is large); thus n

is inconvenient, placing it in a set of size o(N(q)). It follows that the right-hand side

of (2.5) is ∼ N(q)/φ(q), and our task is that of showing the same for the left-hand

side. The proof of Hypothesis A in §2.5 gives Ncon(q, a) ∼ N(q)/φ(q). It remains only

to show that there are o(N(q)/φ(q)) inconvenient n with PD+2(n) > q and f(n) ≡ a

(mod q).

As usual, we can assume P (n) > z := x1/ log2 x and that n has no repeated prime

factor exceeding y = exp(
√

log x). Since n is inconvenient, we must have PJ(n) ≤ y.

We suppose first that one of the largest D + 2 primes in n is repeated. Write n =

PSm, where P = P (n), S is the largest squarefull divisor of n/P ; hence, Sm ≤ x/z
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and S > q2. Given S and m, there are fewer than π(x/Sm) ≪ x log2 x/Sm log x

possibilities for P . Summing on squarefull S > q2 bounds the number of n, given

m, as ≪ x log2 x/qm log x. To handle the sum on m, write m = AB, where A is the

largest divisor of m composed of primes exceeding y. Then Ω(A) < J , while B is y-

smooth with gcd(f(B), q) = 1. Bounding
∑

1/A and
∑

1/B as in the proof of Lemma

2.3.2, we deduce that
∑

1/m ≤ (log x) 1
2α exp((log3 x)O(1)). Putting it all together, we

see that the number of n in this case is at most x

q(log x)1− 1
2 α

exp((log3 x)O(1)), which is

o(N(q)/φ(q)).

We now suppose that each Pi := Pi(n) appears to the first power in n, for i =

1, 2, . . . , D + 2, and we write n = P1 · · ·PD+2m. Since f(n) ≡ a (mod q), it must be

that gcd(f(m), q) = 1. Furthermore, letting w denote a value of af(m)−1 mod q,

(P1, . . . , PD+2) mod q ∈ Vq(w),

where

Vq(w) := {(v1, . . . , vD+2) mod q :

gcd(v1 · · · vD+2, q) = 1, F (v1) · · ·F (vD+2) ≡ w (mod q)}.

Let us estimate the size of #Vq(w). Put

Vℓe = #{(v1, . . . , vD+2) mod ℓe :

gcd(v1 · · · vD+2, ℓ) = 1, F (v1) · · ·F (vD+2) ≡ w (mod ℓe)},

so that #Vq(w) =
∏

ℓe∥q Vℓe . From the proof of (2.20), with J replaced by D + 2,

φ(ℓe)Vℓe = (α(ℓe)φ(ℓe))D+2(1 +Rℓ),
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where |Rℓ| ≤ 2(4D)D+2ℓ−1/(D+1) ≪ ℓ−1/(D+1). Multiplying on ℓ gives

φ(q)#Vq(w)≪ α(q)D+2φ(q)D+2 exp
(
O
(∑

ℓ|q

ℓ−1/(D+1)))
≪ φ(q)D+2 exp(O((log q)1−1/(D+1))). (2.21)

Given P2, . . . , PD+2, m, and v = (v1, . . . , vD+2) mod q ∈ Vq(w), the number of possi-

bilities for P1 is ≪ x log2 x/φ(q)mP2 · · ·PD+2 log x, by Brun–Titchmarsh. Summing

on P2, . . . , PD+2, we see that the number of possibilities for n given v and m is

≪ x(log2 x)O(1)/φ(q)D+2m log x. (We use here that

∑
q<p≤x

p≡v (mod q)

1
p
≪ log2 x

φ(q) ,

uniformly in the choice of v, which follows from Brun–Titchmarsh and partial sum-

mation; alternatively, one can apply Lemma 2.2.3.) We sum on v ∈ Vq(w), using

(2.21), and then sum on m, writing m = AB and making the estimates as earlier in

this proof. We find that the total number of n is at most

x

φ(q)(log x)1− 1
2α

exp(O((log2 x)1−1/(D+1))),

which is o(N(q)/φ(q)).

Proof of (b). We follow the proof of (a), replacing D+ 2 everywhere by 2. It suffices

to show that

φ(ℓ)Vℓ ≤ φ(ℓ)2(1 +O(1/
√
ℓ)) (2.22)

for each ℓ, for then φ(q)#Vq(w) ≪ φ(q)2 exp(O((log q)1/2)), which is a suitable ana-

logue of (2.21).
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Certainly Vℓ is bounded by the count of Fℓ-points on the affine curve F (x)F (y) = w.

The polynomial F (x)F (y)−w is absolutely irreducible over Fℓ. Indeed, suppose that

F (x)F (y) − w = U(x, y)V (x, y) for some U(x, y), V (x, y) ∈ Fℓ[x, y]. Then for each

root θ ∈ Fℓ of F , we find that −w = U(θ, y)V (θ, y), and so in particular U(θ, y) is

constant. Thus, if we write

U(x, y) =
∑
k≥0

ak(x)yk,

with each ak(x) ∈ Fℓ[x], then ak(θ) = 0 for each k > 0. Since F has no multiple roots

over Fℓ, each such ak(x) is forced to be a multiple of F (x), hence U(x, y) ≡ a0(x)

(mod F (x)). A symmetric argument shows that V (x, y) ≡ b0(y) (mod F (y)) for some

b0(y) ∈ Fℓ[y], so that V (x, θ) = b0(θ). Consequently, for any root θ ∈ Fℓ of F ,

−w ≡ F (x)F (θ)− w ≡ U(x, θ)V (x, θ) ≡ a0(x)b0(θ) (mod F (x)),

which shows that U(x, y) ≡ a0(x) ≡ c (mod F (x)) for some constant c ∈ Fℓ. But this

forces c = U(θ, θ), showing that F (x) divides U(x, y)−U(θ, θ). By symmetry, so does

F (y), and we obtain U(x, y) = U(θ, θ) +F (x)F (y)Q(x, y) for some Q(x, y) ∈ Fℓ[x, y].

Degree considerations now imply that for U(x, y) to divide F (x)F (y) − w, either

Q(x, y) is a nonzero constant, in which case V (x, y) is constant, or Q(x, y) = 0, in

which case U(x, y) is constant.

Now we apply the following version of the Hasse–Weil bound [41, Corollary 2(b)].

Proposition 2.6.1. If V is an absolutely irreducible affine plane curve, then #V (Fℓ) ≤

ℓ+O(
√
ℓ), where the implied constant depends only on the degree of V .
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This gives that the number of Fℓ-points on F (x)F (y) = w is at most ℓ+ 1 + 1
2(2D−

1)(2D − 2)⌊2
√
ℓ⌋, which is φ(ℓ)(1 +O(1/

√
ℓ)), yielding (2.22).

Section 2.7

Concluding remarks and further questions

Elementary methods often enjoy a robustness surpassing their analytic counterparts,

and our (quasi)elementary approach to weak uniform distribution is no exception.

Not only does our method yield a range of uniformity in q wider than that (seem-

ingly) accessible to more ‘obvious’ attacks via mean value theorems for multiplicative

functions, but the method applies to functions that do not fit conveniently into the

‘multiplicative managerie’. We illustrate with the following theorem; note that the

distribution in residue classes of the function A∗(n) below does not seem easily ap-

proached via mean value theorems.

Theorem 2.7.1. Fix K0 ≥ 1. The sum of prime divisors function A(n) :=
∑Ω(n)

j=1 Pj(n),

as well as the alternating sum of prime divisors function A∗(n) :=
∑Ω(n)

j=1 (−1)j−1Pj(n),

is asymptotically uniformly distributed to all moduli q ≤ (log x)K0. In other words,

as x→∞, ∑
n≤x

A(n)≡a (mod q)

1 ∼
∑
n≤x

A∗(n)≡a (mod q)

1 ∼ x

q
, (2.23)

uniformly in moduli q ≤ (log x)K0 and residue classes a mod q.

Remark 2.7.2. The uniform distribution of A(n) mod q for each fixed q is a conse-

quence of the theorem of Delange quoted in the introduction, with more precise results

appearing in work of Goldfeld [28]. For varying q, the problem seems to have been

first considered in [60]; there Halász’s mean value theorem is used to show uniform
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distribution of A(n) mod q for q ≤ (log x) 1
2 −δ (for any fixed δ > 0), a significantly

narrower range than that allowed by Theorem 2.7.1.

Proof of Theorem 2.7.1. With y := exp(
√

log x), arguments analogous to (but sim-

pler than) those in the proof of Lemma 2.3.2 show that the number of inconvenient

n ≤ x is o(x), while arguments analogous to (but simpler than) those in the verifi-

cation of Hypothesis B of §2.4 show that the number of inconvenient n ≤ x having

A(n) ≡ a (mod q) or A∗(n) ≡ a (mod q) is o(x/q). Hence, it suffices to show that

N(q, a) ∼ N∗(q, a) ∼ 1
q

∑
convenient n≤x

1, (2.24)

where N(q, a) (respectively, N∗(q, a)) denotes the number of convenient n ≤ x having

A(n) ≡ a (mod q) (resp., A∗(n) ≡ a (mod q)).

Proceeding as in §2.3, we define, for an arbitrary residue class w mod q,

Vq(w) := {(v1, . . . , vJ) mod q : gcd(v1 . . . vJ , q) = 1,
J∑
j=1

vj ≡ w (mod q)}

and

V∗
q (w) := {(v1, . . . , vJ) mod q : gcd(v1 . . . vJ , q) = 1,

J∑
j=1

(−1)j−1vj ≡ w (mod q)},

and we write

N(q, a) =
∑
m≤x

1
J !

∑
v∈Vq,a,m

∑
P1,...,PJ distinct
P1···PJ ≤x/m
each Pj>Lm

each Pj≡vj (mod q)

1,
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N∗(q, a) =
∑
m≤x

1
J !

∑
v∈V∗

q,a,m

∑
P1,...,PJ distinct
P1···PJ ≤x/m
each Pj>Lm

each Pj≡vj (mod q)

1,

where Vq,a,m := Vq(a− A(m)) and V∗
q,a,m := V∗

q (a− (−1)JA∗(m)).

By J applications of Siegel-Walfisz, we now obtain

N(q, a) :=
∑
m≤x

#Vq,a,m
φ(q)J

(
1
J !

∑
P1,...,PJ distinct
P1···PJ ≤x/m
each Pj>Lm

1
)

+O

(
x exp

(
−1

8C0(log x)1/4
))

(2.25)

N∗(q, a) :=
∑
m≤x

#V∗
q,a,m

φ(q)J

(
1
J !

∑
P1,...,PJ distinct
P1···PJ ≤x/m
each Pj>Lm

1
)

+O

(
x exp

(
−1

8C0(log x)1/4
))

,

(2.26)

for some constant C0 > 0 depending only on K0. As an analogue of our Hypothesis

A, we claim that as x→∞,

#Vq,a,m ∼ (12∤q + 2 · 12|q, J≡a−A(m) (mod 2))
φ(q)J
q

, (2.27)

#V∗
q,a,m ∼ (12∤q + 2 · 12|q, J≡a−(−1)JA∗(m) (mod 2))

φ(q)J
q

, (2.28)

uniformly in m ≤ x and in q ≤ (log x)K0 . (If 12∤q + 2 · 12|q, J≡a−A(m) (mod 2) = 0, the

asymptotic (2.27) should be interpreted as the claim Vq,a,m is empty, and similarly

for (2.28).) To this end, it suffices to show that

#V∗
q (w) = #Vq(w) ∼ (12∤q + 2 · 12|q, J≡w (mod 2))

φ(q)J
q

, (2.29)

uniformly in q ≤ (log x)K0 and in residue classes w mod q. The equality in (2.29)
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follows immediately from the one-to-one correspondence

(v1, · · · , vJ)←→ (v1,−v2, · · · , (−1)J−1vJ)

between Vq(w) and V∗
q (w). To see the asymptotic, we write #Vq(w) =

∏
ℓe∥q Vℓe ,

where for each prime power ℓe ∥ q,

Vℓe : = #{(v1, . . . , vJ) mod ℓe : gcd(v1 . . . vJ , ℓ) = 1,
J∑
j=1

vj ≡ w (mod ℓe)}

= φ(ℓe)J
ℓe

+ 1
ℓe

∑
0<r<ℓe

exp
(
−2πirw

ℓe

)
Sℓ(r)J ,

with Sℓ(r) :=
∑

v mod ℓe, (v,ℓ)=1 exp(2πirv/ℓe) (a Ramanujan sum). This sum can be

exactly evaluated with the following identity (see [44, Theorem 4.1, p. 110]):

Sℓ(r) =
∑

v mod ℓe
(v,ℓ)=1

exp
(

2πirv
ℓe

)
= 1ℓe−1∥r(−ℓe−1) for all r ∈ {1, · · · , ℓe − 1}. (2.30)

We deduce that as x→∞,

#Vq(w) = (12∤q + 2 · 12|q, J≡w (mod 2))
φ(q)J
q

∏
ℓ|q
ℓ>2

(
1 +O

(
1

(ℓ− 1)J−1

))
,

leading to (2.29), since
∑

ℓ|q, ℓ>2 1/(ℓ− 1)J−1 = o(1) as J →∞.

Plugging (2.27) and (2.28) into (2.25) and (2.26) respectively, and carrying out our

initial reductions in reverse order completes the proof of (2.24), and hence also that

of (2.23), for odd q ≤ (log x)K0 . On the other hand, when q is even we obtain

N(q, a) = 2
q

∑
n≤x

A(n)≡a (mod 2)

1 + o

(
x

q

)
, N∗(q, a) = 2

q

∑
n≤x

A∗(n)≡a (mod 2)

1 + o

(
x

q

)
;
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here, it has been noted that a−A(m) ≡ J (mod 2) is equivalent to A(mP1 · · ·PJ) ≡ a

(mod 2), and likewise for A∗ in place of A. Since A(n) is known to be equidistributed

mod 2 (as discussed in the remarks preceding the theorem), and A∗(n) ≡ A(n)

(mod 2), the theorem follows.

We close on a more speculative note. The mixing exploited in this chapter can be

interpreted as a quantitative ergodicity phenomenon for random walks on multiplica-

tive groups. However, our proofs go through character sum estimates; one might

say that no actual Markov chains were harmed in the production of our arguments.

It would be interesting to investigate the extent to which the (rather substantially

developed) theory of Markov chain mixing could be brought directly to bear on these

kinds of uniform and weak uniform distribution questions. This has the potential to

open up applications in situations where character sum technology is unavailable.

73



Chapter 3

Joint distribution in residue classes

of families of polynomially-defined

additive functions

We extend the results in subsection § 1.4.1 to a family of polynomially–defined addi-

tive functions, thus also partially extending Delange’s Theorems 1.2.4 and 1.2.3 from

fixed to varying moduli. In this chapter, g1, . . . , gM : N → Z will be additive func-

tions for which there exist nonconstant polynomials G1, . . . , GM ∈ Z[T ] satisfying

gi(p) = Gi(p) for all primes p and all i ∈ [M ]. This chapter is based on the paper [73]

of the author.
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Section 3.1

Main results

In the first main result of this chapter, we shall extend Theorem 1.4.5 to families

of additive functions. To this end, let gi and Gi be as above, and let Q(g1,...,gM )

denote the set of moduli q such that g1, . . . , gM are jointly equidistributed mod q.

For technical reasons to be elaborated on later (see Theorem 3.1.4), we will assume

in our main results (Theorems 3.1.1, 3.1.2 and 3.1.3) that the derivatives of Gi are

linearly independent over Q. This amounts to assuming that no nontrivial Z-linear

combination of the Gi reduces to a constant in Z[T ], or in other words, that the

polynomials {Gi(T ) − Gi(0) : 1 ≤ i ≤ M} ⊂ Q[T ] are Q-linearly independent. (For

M = 1, this simply amounts to G1 being nonconstant.) In particular, this hypothesis

forces the maximum of the degrees of the Gi to be no less than M .

Our first main result shows that g1, . . . , gM are jointly equidistributed to moduli q

lying in Q(g1,...,gM ) varying uniformly up to a small power of log x . In what follows, we

denote by D and Dmin the maximum and the minimum of the degrees of G1, . . . , GM

respectively,1 so that by the above discussion, D ≥M .

Theorem 3.1.1. Fix K ≥ 1, δ ∈ (0, 1] and an integer M ≥ 1. Let g1, . . . , gM be

additive functions defined by the polynomials G1, . . . , GM such that the polynomials

{G′
i}1≤i≤M ⊂ Z[T ] are Q-linearly independent. Then g1, . . . , gM are jointly equidis-

tributed modulo q, uniformly for q ≤ (log x)K lying in Q(g1,...,gM ), under any of the

following additional conditions.

(i) M = 1, and either q is squarefree or G1 is linear.
1The asymmetry in notation is due to the much greater frequency of the appearance of D in our

results, as compared to Dmin.
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(ii) M ≥ 2, q ≤ (log x)(1−δ)/(M−1), and either q is squarefree or at least one of

G1, . . . , GM is linear.

(iii) q ≤ (log x)(1−δ)(M−1/Dmin)−1.

Subpart (i) and the special case M = 1 of subpart (iii) are contained in Theorem

1.4.5 from [1], but we have included them here in order to give a self-contained and

unified treatment. These assertions will of course be automatically established by our

method as well. However, our method is significantly different from that used in [1]

as there are several additional ideas required to generalize these special cases to our

theorem above.

In subsection § 3.4.1, we shall show that the ranges of q in the subparts of the

above theorem are all essentially optimal. In the constructions described there, the

obstructions to uniformity will come from the prime inputs p, analogous to what we

observed in Chapter 2. Our next two results point out that the inputs n with too

few ‘large’ prime factors present the key obstructions to uniformity. In other words,

uniformity in q up to an arbitrary power of log x can be restored by restricting the

set of n to those with sufficiently many prime divisors (counted with multiplicty)

exceeding q.

Theorem 3.1.2. Fix K,M ≥ 1 and let g1, . . . , gM be additive functions defined by

the polynomials G1, . . . , GM , such that {G′
i}1≤i≤M ⊂ Z[T ] are Q-linearly independent.

Assume that D = max1≤i≤M degGi ≥ 2. We have

#{n ≤ x : PMD+1(n) > q, (∀i) gi(n) ≡ bi (mod q)}

∼ 1
qM

#{n ≤ x : PMD+1(n) > q} ∼ x

qM
as x→∞,
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uniformly in moduli q ≤ (log x)K lying in Q(g1,...,gM ), and in residue classes b1, . . . , bM

mod q.

Here we omit the possibility D = 1, as in this case, the fact that D ≥ M forces

M = 1, putting us in the setting of Theorem 3.1.1(i), where we already have complete

uniformity in q in the Siegel–Walfisz range. For squarefree moduli q, it turns out that

a much weaker restriction on the inputs suffices: we need only assume that n has

at least twice as many prime factors (counted with multiplicity) exceeding q as the

number M of additive functions considered.

Theorem 3.1.3. Fix K ≥ 1, M ≥ 2 and let g1, . . . , gM be additive functions defined

by the polynomials G1, . . . , GM , such that {G′
i}1≤i≤M ⊂ Z[T ] are Q-linearly indepen-

dent. We have

#{n ≤ x : P2M(n) > q, (∀i) gi(n) ≡ bi (mod q)}

∼ 1
qM

#{n ≤ x : P2M(n) > q} ∼ x

qM
as x→∞,

uniformly in squarefree q ≤ (log x)K lying in Q(g1,...,gM ), and in residues b1, . . . , bM

mod q.

Here, we omit the case M = 1 as complete uniformity in squarefree q ≤ (log x)K has

already been attained in Theorem 3.1.1(i). In subsection § 3.6.1, we will show that

the restriction P2M(n) > q is nearly optimal in the sense that it cannot be weakened

to P2M−3(n) > q for any M ≥ 2, and that for M = 2, it cannot be weakened to

P2M−2(n) > q either.

We now illustrate the necessity of our recurring linear independence hypothesis. It

turns out that if the polynomials {G′
i}Mi=1 are not assumed to be Q-linearly inde-
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pendent, then the M congruences gi(n) ≡ bi (mod q) might degenerate to (at most)

M−1 congruences for sufficiently many inputs n. As such, it is not possible to restore

uniformity in moduli q ≤ (log x)K no matter how many prime factors of our inputs

n we assume to be larger than q. Specifically, for any large integer R, we can always

construct integers b1, . . . , bM which are overrepresented by the g1, . . . , gM among the

set of inputs n ≤ x having PR(n) > q. We show this precisely below.

Theorem 3.1.4. Fix K ≥ 1,M ≥ 2 and polynomials G1, . . . , GM−1 ∈ Z[T ] such that

{G′
i}M−1
i=1 ⊂ Z[T ] are Q-linearly independent. Consider nonzero integers {ai}M−1

i=1 and

a polynomial GM ∈ Z[T ] satisfying G′
M =

∑M−1
i=1 aiG

′
i and GM(0) ̸=

∑M−1
i=1 aiGi(0).

Let g1, . . . , gM be additive functions defined by the polynomials G1, . . . , GM . There

exists a computable constant CG > 0 depending only on the system Ĝ := (G1, . . . , GM)

that satisfies the following properties:

For any integer Q > 1 with P−(Q) > CG, the functions g1, . . . , gM are jointly equidis-

tributed mod Q. However, for any fixed R > CG and any integers {bi}M−1
i=1 , there exists

an integer bM such that

#{n ≤ x : PR(n) > q, (∀i) gi(n) ≡ bi (mod q)}

≫ x(log2 x)R−1

qM−1 log x as x→∞,

uniformly in moduli q ≤ (log x)K having P−(q) > CG.

Thus, the above theorem shows that without the Q-linear independence of the {G′
i}Mi=1,

uniformity could fail to all moduli q ∈ (log x, (log x)K0 ] having sufficiently large prime

factors, despite g1, . . . , gM being jointly equidistributed to any fixed modulus having

sufficiently large prime factors. We expect that with appropriate modifications of

our methods, it might be possible to obtain analogues of Theorems 3.1.1, 3.1.2 and
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3.1.3 (with more limited ranges of unformity in q) when {G′
i}Mi=1 are not Q-linearly

independent: from our arguments below, it seems reasonable to expect that the cor-

responding ranges of q and restrictions on the inputs n should then depend on the

rank of the matrix of coefficients of the polynomials {G′
i}Mi=1.

We conclude this introductory section with the remark that although for the sake of

simplicity of statements, we have been assuming that our additive functions {gi}Mi=1

and polynomials {Gi}Mi=1 are both fixed, our proofs of Theorems 3.1.1, 3.1.2, 3.1.3 and

3.1.4 will reveal that these results are also uniform in the additive functions {gi}Mi=1

as long as they are defined by the fixed polynomials {Gi}Mi=1.

Additional notation and conventions in this chapter:

Given polynomials G1, . . . , GM ∈ Z[T ], we shall (in this chapter) use D and Dmin

to denote the maximum and the minimum of the degrees of the Gi, respectively.

As usual, implied constants in ≪ and O-notation, as well as implicit constants in

qualifiers like “sufficiently large”, may always depend on any parameters declared as

“fixed”; in particular, they will always depend on the polynomials G1, . . . , GM . Other

dependence will be noted explicitly (for example, with parentheses or subscripts);

notably, we shall use C(G) or CG to denote constants depending only on the vector

Ĝ := (G1, . . . , GM) of defining polynomials.

For a positive integer n, we define Ω∗
>q(n) :=

∑
pk∥n

p>q, k>1

k to be the number of prime

divisors of n (counted with multiplicity) that exceed q and appear to an exponent

greater than 1 in the prime factorization of n.
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Section 3.2

Preliminary Discussion: Delange’s

equidistribution criteria and consequences for

polynomially-defined additive functions

We start by stating the following explicit consequences of Delange’s criteria Theorems

1.2.3 and 1.2.4 in our setting of polynomially-defined additive functions, which is how

they shall be useful to us. In what follows, for a given polynomial G ∈ Z[T ], we set

αG(q) := 1
φ(q)#(G−1(Uq) ∩ Uq) = 1

φ(q)#{v ∈ Uq : G(v) ∈ Uq}

denote the proportion of unit residues v mod q whose image under the polynomial G

is also a unit mod q. By the Chinese Remainder Theorem, αG(q) =
∏

ℓ|q αG(ℓ).

Lemma 3.2.1. Let g : N → Z be an additive function defined by a nonconstant

polynomial G ∈ Z[T ]. We can describe the set

Qg = {q ∈ N : g is equidistributed mod q}

as follows:

(i) If 2 | g(2r) for some r ≥ 1, then Qg = {q : αG(q) ̸= 0}.

(ii) If 2 ∤ g(2r) for all r ≥ 1 and if 4 | (G(1), G(3)), then

Qg = {q : 2 ∤ q, αG(q) ̸= 0} ∪ {q : 2 ∥ q, αG(q/2) ̸= 0}.
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(iii) If 2 ∤ g(2r) for all r ≥ 1 and if 4 ∤ (G(1), G(3)), then Qg =
{
q : αG

(
q

2v2(q)

)
̸= 0
}
.

Proof. In what follows, let q′ := q/2v2(q) denote the largest odd divisor of q. An

application of the Siegel–Walfisz Theorem with partial summation shows that for any

divisor d > 1 of q and any X > eq, we have

Sd(X) :=
∑
p≤X
d∤g(p)

1
p

=
∑
p≤X
d∤G(p)

1
p

=
∑
r∈Ud
d∤G(r)

∑
p≤X

p≡r mod d

1
p

+Oq(1) = βG(d) log2 X +Oq(1),

where βG(d) := 1
φ(d)#{r ∈ Ud : d ∤ G(r)}. Letting X → ∞, we deduce that the sum

Sd =
∑

p: d∤g(p) 1/p diverges if and only if βG(d) ̸= 0. But since βG(ℓ) = αG(ℓ) for

any prime ℓ, Theorem 1.2.3 shows that if q ∈ Qg, then αG(ℓ) ̸= 0 for all odd primes

ℓ dividing q, so that αG(q′) ̸= 0. On the other hand, if αG(q) ̸= 0 for some q, then

βG(ℓ) = αG(ℓ) ̸= 0 for all primes dividing q, so that Sℓ diverges for all such primes,

and Theorem 1.2.3 leads to q ∈ Qg (since S4 ≥ S2). In summary, we have so far

shown that {q : αG(q) ̸= 0} ⊂ Qg ⊂ {q : αG(q′) ̸= 0}, which in particular means that

{q : 2 ∤ q, q ∈ Qg} = {q : 2 ∤ q, αG(q) ̸= 0}.

Now consider an even integer q ∈ Qg, so that it satisfies the necessary condition

αG(q′) ̸= 0.

(i) If 2 | g(2r) for some r ≥ 1, then by Theorem 1.2.3, the sum S2 must diverge. By

the above discussion, this means that αG(2) = βG(2) must be nonzero, leading

to αG(q) ̸= 0. Hence, in this case Qg = {q : αG(q) ̸= 0}.

(ii) Suppose 2 ∤ g(2r) for all r ≥ 1 and 4 | (G(1), G(3)). Then αG(2) = 0, so that

by Theorem 1.2.3(ii) and the discussion in the previous paragraph, we have
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{q : 2 ∥ q, q ∈ Qg} = {q : 2 ∥ q, αG(q/2) ̸= 0}. Moreover, no positive

integer divisible by 4 can lie in Qg: this follows by Theorem 1.2.3(iii), since

the condition 4 | (G(1), G(3)) implies that βG(4) = 0, and that S4 converges.

Hence, in this case Qg is as in the statement of the lemma.

(iii) Finally if 2 ∤ g(2r) for all r ≥ 1 and if 4 ∤ (G(1), G(3)), then S4 diverges, and

Theorem 1.2.3 along with the inclusions obtained in the previous paragraph

show that q lies in Qg if and only if αG(q′) ̸= 0.

This completes the proof of the lemma.

The following observation paves the way for a simple application of Theorem 1.2.4 in

the setting of polynomially-defined additive functions.

Lemma 3.2.2. Let M ≥ 2 and g1, . . . , gM : N → Z be additive functions de-

fined by the nonconstant polynomials G1, . . . , GM ∈ Z[T ], and let ℓ be a prime. If

αk1G1+···+kMGM
(ℓ) ̸= 0 for all integer tuples (k1, . . . , kM) satisfying gcd(k1, . . . , kM) =

1, then the polynomials G1, . . . , GM must be Fℓ-linearly independent. Further, if

ℓ > D + 1, then this condition is also sufficient.

Proof. To establish the first assertion, we assume by way of contradiction that there

exist µ1, . . . , µM ∈ {0, 1, . . . , ℓ − 1} not all zero, such that
∑M

r=1 µrGr(T ) vanishes

identically in Fℓ[T ]. We will construct integers k1, . . . , kM satisfying gcd(k1, . . . , kM) =

1 and αk1G1+···+kMGM
(ℓ) = 0. To that end, consider some i ∈ [M ] for which µi ̸≡ 0

(mod ℓ) and let kr := µr for all r ∈ [M ] \ {i}.

Now choose any j ∈ [M ] \ {i}. By the Chinese Remainder Theorem, there exists

an integer ki such that ki ≡ µi (mod ℓ) and gcd(ki, kj) = 1. With this choice

of integers (k1, . . . , kM), we see that gcd(k1, · · · , kM) = 1 and that the polyno-
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mial
∑M

r=1 krGr(T ) ≡
∑M

r=1 µrGr(T ) (mod ℓ) is identically zero in Fℓ[T ], so that

αk1G1+···+kMGM
(ℓ) = 0. This proves the first assertion of the lemma.

To show the second assertion, we consider any prime ℓ > D+1. Suppose there did ex-

ist a tuple of integers (k1, . . . , kM) satisfying gcd(k1, . . . , kM) = 1 and αk1G1+···+kMGM
(ℓ) =

0. Then on the one hand, (k1, . . . , kM) ̸≡ (0, . . . , 0) (mod ℓ). On the other hand, the

polynomial
∑M

r=1 krGr(T ) (considered as an element of Fℓ[T ]) has degree at most D

but has at least #Uℓ = φ(ℓ) = ℓ−1 > D roots in Fℓ. As such,
∑M

r=1 krGr(T ) vanishes

identically in Fℓ[T ] yielding a nontrivial Fℓ-linear dependence relation between the

{Gr}Mr=1.

We remark that the matrix of coefficients alluded to towards the end of section 3.1 will

play a pivotal role in our arguments. To set things up, we write G′
i(T ) =:

∑D−1
r=0 ai,rT

r

for some integers {ai,r : 1 ≤ i ≤ M, 0 ≤ r ≤ D − 1}, so that ai,D−1 ̸= 0 for some i

(since D = max1≤i≤M degGi). Note that since Gi ∈ Z[T ], we have (r + 1) | ai,r for

all i ∈ [M ] and 0 ≤ r ≤ D − 1. By the matrix of coefficients or coefficient matrix of

the polynomials {G′
i}1≤i≤M , we shall mean the D ×M integer matrix

A0 :=



a1,0 · · · aM,0

· · · · · · · · ·

· · · · · · · · ·

a1,D−1 · · · aM,D−1


(3.1)

whose i-th column lists the coefficients of the polynomial G′
i in ascending order of the

degree of T . It is important to note that if the polynomials {G′
i}Mi=1 are Q-linearly

independent, then the columns of the matrix A0 form Q-linearly independent vectors,

so that A0 has full rank. As such, the Smith normal form S0 of A0 only has nonzero

entries on its main diagonal. In other words, A0 has exactly M invariant factors
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β1, . . . , βM ∈ Z\{0}, which must also satisfy βi | βi+1 for all 1 ≤ i < M . Furthermore,

since S0 is obtained from A0 by a change of basis over Z, it follows that the primes ℓ

for which the columns of A0 (or equivalently, the polynomials {G′
i}Mi=1) are Fℓ-linearly

dependent are precisely those which divide at least one of the βi (or equivalently,

those which divide βM). As a consequence, letting C0(G) be any constant exceeding

max{D + 1, |βM |} (so that C0(G) depends only on the vector Ĝ := (G1, . . . , GM)),

we see that:

The polynomials {G′
i}Mi=1 are Fℓ-linearly independent for all primes ℓ > C0(G).

(3.2)

Our arguments leading to (3.2) show that under the weaker hypothesis that the

{Gi}Mi=1 are Q-linearly independent, there exists a constant C1(Ĝ) > D+ 1 such that

{Gi}Mi=1 are Fℓ-linearly independent for all ℓ > C1(Ĝ). Note that if {G′
i}Mi=1 are Q

(respectively, Fℓ)-linearly independent, then so are {Gi}Mi=1. Hence, if {G′
i}Mi=1 are

Q-linearly independent, then with C0(G) as in (3.2), the {Gi}Mi=1 are also Fℓ-linearly

independent for any prime ℓ > C0(G). Combining these observations with Theorem

1.2.4 and Lemmas 3.2.1 and 3.2.2, we obtain the following useful consequence.

Corollary 3.2.3. Let g1, . . . , gM : N→ Z be additive functions defined by the noncon-

stant polynomials G1, . . . , GM ∈ Z[T ]. Then for any q > 1 with P−(q) > D + 1, the

functions g1, . . . , gM are jointly equidistributed mod q if and only if the polynomials

{Gi}Mi=1 are Fℓ-linearly independent for every prime ℓ | q. In particular,

(i) If the polynomials {Gi}Mi=1 are Q-linearly independent (so that C1(Ĝ) exists),

then any q having P−(q) > C1(Ĝ) lies in Q(g1,...,gM ).

(ii) If the polynomials {G′
i}Mi=1 are Q-linearly independent (so that C0(Ĝ) exists),

then any q having P−(q) > C0(G) lies in Q(g1,...,gM ).
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Section 3.3

Preparation for Theorems 3.1.1, 3.1.2 and 3.1.3:

Obtaining the main term

Analogous to Chapter 2, we start by defining J := J(x) := ⌊log3 x⌋. Let δ ∈ (0, 1]

be as in the statement of Theorem 1.1; the development in this section will also go

through in Theorems 3.1.2 and 3.1.3 with (say) δ := 1.

We define y := exp
(
(log x)δ/2) , and call a positive integer n ≤ x convenenient if the

J largest prime divisors of n exceed y and exactly divide n, that is, if

max{PJ+1(n), y} < PJ(n) < · · · < P1(n).

Any convenient n can thus be uniquely written in the form mPJ · · ·P1, with

Lm := max{y, P (m)} < PJ < · · · < P1. (3.3)

We will show that the convenient n give the most dominant contribution to the counts

considered in Theorems 3.1.1, 3.1.2 and 3.1.3.

Proposition 3.3.1. Fix K,M ≥ 1 and let g1, . . . , gM be additive functions defined

by the nonconstant polynomials G1, . . . , GM ∈ Z[T ], such that {G′
i}1≤i≤M ⊂ Q[T ] are

Q-linearly independent. Let D = max1≤i≤M degGi. We have

#{n ≤ x : n convenient, (∀i) gi(n) ≡ bi (mod q)} ∼ x

qM
, as x→∞,

uniformly in moduli q ≤ (log x)K lying in Q(g1,...,gM ), and in residues bi mod q.
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Proof. Writing each convenient n uniquely in the formmPJ · · ·P1, wherem,PJ , . . . , P1

satisfy (3.3), we find that gi(n) = gi(m) +
∑J

j=1 Gi(Pj). The conditions gi(n) ≡ bi

(mod q) (1 ≤ i ≤ M) can then be rewritten as (P1, . . . , PJ) mod q ∈ V ′
q,m :=

VJ,M
(
q; (bi − gi(m))Mi=1

)
, where

VJ,M
(
q; (wi)Mi=1

)
:=
{

(v1, . . . , vJ) ∈ (Uq)J : (∀i)
J∑
j=1

Gi(vj) ≡ wi (mod q)
}
.

(Note that this set can be defined for any set of polynomials {Gi}Mi=1 regardless of

whether or not they come from a set of additive functions.) As a consequence,

∑
n≤x convenient

(∀i) gi(n)≡bi (mod q)

1 =
∑
m≤x

∑
(v1,...,vJ )∈V ′

q,m

∑
P1,...,PJ

P1···PJ ≤x/m
Lm<PJ<···<P1

(∀j) Pj≡vj (mod q)

1

=
∑
m≤x

∑
(v1,...,vJ )∈V ′

q,m

1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

(∀j) Pj≡vj (mod q)

1,
(3.4)

where in the last equality above, we have noted that the conditions P1 · · ·PJ ≤ x/m

and (P1, . . . , PJ) mod q ∈ V ′
q,m are both independent of the ordering of P1, . . . , PJ .

We now estimate the innermost sum on P1, . . . , PJ by removing the congruence con-

ditions on the Pj. For each tuple (v1, . . . , vJ) mod q ∈ V ′
q,m, we see that

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

(∀j) Pj≡vj (mod q)

1 =
∑

P2,...,PJ>Lm

P2···PJ ≤x/mLm

P2,...,PJ distinct
(∀j) Pj≡vj (mod q)

∑
P1 ̸=P2,...,PJ

Lm<P1≤x/mP2···PJ

P1≡v1 (mod q)

1.

Since Lm ≥ y and q ≤ (log x)K = (log y)2K/δ, the Siegel–Walfisz theorem yields
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P1 ̸=P2,...,PJ
Lm<P1≤x/mP2···PJ

P1≡v1 (mod q)

1 = 1
φ(q)

∑
P1 ̸=P2,...,PJ

Lm<P1≤x/mP2···PJ

1 + O

(
x

mP2 · · ·PJ
exp(−C0

√
log y)

)
,

for some positive constant C0 := C0(K, δ) depending only on K and δ. Putting this

back into the last display, we find that

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

(∀j) Pj≡vj (mod q)

1 = 1
φ(q)

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

(∀j≥2) Pj≡vj (mod q)

1 + O

(
x

m
exp

(
−1

2C0(log x)δ/4
))

,

where we have put the bound

∑
P2,...,PJ ≤x

1
P2 · · ·PJ

≤

∑
p≤x

1
p

J−1

≤ (2 log2 x)J−1 ≤ exp(O((log3 x)2)).

Proceeding in the same way to successively remove the congruence conditions on

P2, . . . , PJ , we deduce that

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

(∀j) Pj≡vj (mod q)

1 = 1
φ(q)J

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

1 + O

(
x

m
exp

(
−1

4C0(log x)δ/4
))

. (3.5)

Inserting this into (3.4) and noting that #V ′
q,m ≤ φ(q)J ≤ (log x)KJ , we obtain

∑
n≤x convenient

(∀i) gi(n)≡bi (mod q)

1 =
∑
m≤x

#V ′
q,m

φ(q)J

(
1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

1
)

+O

(
x exp

(
−C0

8 (log x)δ/4
))

.

(3.6)

The following proposition, which we shall establish momentarily, will provide the
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desired estimate on the cardinalities of the sets V ′
q,m. For future convenience and

independent interest, we state it in slightly greater generality than necessary in our

immediate application.

Proposition 3.3.2. Let G1, . . . , GM ∈ Z[T ] be nonconstant polynomials, such that

{G′
i}1≤i≤M ⊂ Z[T ] are Q-linearly independent. Let D = max1≤i≤M degGi and C :=

C(G) be a constant exceeding max{C0(G), (2D)2D+4}, where C0(G) is the constant

in (3.2). We have

#VN,M
(
q; (wi)Mi=1

)
φ(q)N =

(
Q0

q

)M {#VN,M
(
Q0; (wi)Mi=1

)
φ(Q0)N

+O

(
1
CN

)}
∏
ℓ|q
ℓ>C

(
1 +O

(
(2D)N
ℓN/D−M

))
,

uniformly in N ≥ MD + 1, in all positive integers q > 1, and in residue classes

w1, . . . , wM mod q, where Q0 is a divisor of q of size O(1) supported on primes at

most C.

To estimate the count #V ′
q,m in (3.6), we apply the above proposition with N := J

which goes to infinity with x and hence exceeds MD + 1 for all sufficiently large x.

For the same reason, we find that as x→∞,

∑
ℓ|q
ℓ>C

(2D)N
ℓN/D−M ≤ (2D)J

∑
ℓ|q
ℓ>C

1
ℓJ/(D+2)

≤ (2D)J
CJ/(2D+4)

∑
ℓ≥2

1
ℓ2 ≤

(
2D

C1/(2D+4)

)J
= o(1).

As such, an application of the above proposition yields
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#VJ,M
(
q; (wi)Mi=1

)
φ(q)J = (1 + o(1))

(
Q0

q

)M {#VJ,M
(
Q0; (wi)Mi=1

)
φ(Q0)J

+O

(
1
CJ

)}
,

uniformly in q and (w1, . . . , wM) mod q, where Q0 | q and Q0 = O(1). In particular,

this same estimate holds for V ′
q,m = VJ,M

(
q; (bi − gi(m))Mi=1

)
, and we obtain from

(3.6),

∑
n≤x convenient

(∀i) gi(n)≡bi (mod q)

1

= (1 + o(1))
(
Q0

q

)M∑
m≤x

{#V ′
Q0,m

φ(Q0)J
+O(C−J)

}(
1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

1
)

+ O

(
x exp

(
−1

8C0(log x)δ/4
))

= (1 + o(1))
(
Q0

q

)M∑
m≤x

#V ′
Q0,m

φ(Q0)J

(
1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

1
)

+ o

(
x

qM

)

where we have recalled that

∑
m≤x

(
1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

1
)
≤
∑
m≤x

( ∑
P1,...,PJ

P1···PJ ≤x/m
Lm<PJ<···<P1

1
)
≤ x.

But now, applying the estimate (3.6) with Q0 playing the role of q, we find that

∑
n≤x convenient

(∀i) gi(n)≡bi (mod q)

1 = (1 + o(1))
(
Q0

q

)M ∑
n≤x convenient

(∀i) gi(n)≡bi (mod Q0)

1 + o

(
x

qM

)
.

Before proceeding further, we state the following bound on the number of positive

integers without many large prime factors. The following is a variant of [59, Lemma
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2.3] which follows from the same arguments.

Lemma 3.3.3. Uniformly in x ≥ y ≥ 10 and R ≥ 2, we have

#{n ≤ x : PR(n) ≤ y} ≪ x
log y
log x(2 log log x)R−1.

Recall that any inconvenient n ≤ x either has PJ(n) ≤ y or has a repeated prime

factor exceeding y. The number of n ≤ x satisfying the latter condition is no more

than
∑

p>y

∑
n≤x: p2|n 1 ≤ x

∑
p>y 1/p2 ≪ x/y = o(x). Moreover, by Lemma 3.3.3,

the number of n ≤ x having PJ(n) ≤ y is ≪ x(log2 x)J−1/(log x)1−δ which is also

o(x). This yields

∑
n≤x convenient

(∀i) gi(n)≡bi (mod q)

1 = (1 + o(1))
(
Q0

q

)M ∑
n≤x

(∀i) gi(n)≡bi (mod Q0)

1 + o

(
x

qM

)
.

Finally, since q lies in Q(g1,...,gM ), so does its divisor Q0, and as Q0 = O(1), the sum

occurring on the right hand side above is (1 + o(1))x/QM
0 . This completes the proof

of Proposition 3.3.1, up to that of Proposition 3.3.2.

Before beginning the proof of Proposition 3.3.2, we state some (relevant special cases

of) known bounds on mixed exponential sums, which will provide some key technical

inputs in our arguments. First, we have the renowned bound of Weil [78] coming from

his work on the Riemann Hypothesis for curves over a finite field (see also Schmidt [66,

chapter II, Corollary 2F]). In what follows, we set e(t) := exp(2πit). For a positive

integer Q, we use χ0,Q to denote the trivial (or principal) character mod Q. For a

prime ℓ, χ0,ℓ is also the principal character modulo any power of ℓ.

Proposition 3.3.4. Let F ∈ Z[T ] be a polynomial of degree D0 ≥ 1, and let ℓ > D0
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be a prime such that F doesn’t reduce to a constant modulo ℓ. Then we have

∣∣∣∣∣ ∑
v mod ℓ

χ0,ℓ(v)e(F (v)/ℓ)
∣∣∣∣∣ ≤ D0ℓ

1/2.

We will also need analogues of the above bound for prime powers, which have been

obtained by Cochrane and Zheng [17, equation (1.13), Theorems 1.1 and 8.1]. (See

[14] for more general results.) In what follows, for a nonconstant polynomial F ∈ Z[T ]

and a prime ℓ, we define tℓ(F ) := ordℓ(F ′), that is tℓ(F ) is the highest power of ℓ

dividing the coefficients of the polynomial F ′. Let AF,ℓ denote the set of nonzero

roots in Fℓ of the polynomial ℓ−tℓ(F )F ′ (considered as a nonzero element of Fℓ[T ]).

We use Mℓ(F ) to denote the maximum of the multiplicities of the zeros of ℓ−tℓ(F )F ′

in Fℓ, with Mℓ(F ) :=∞ if there is no such zero.

Proposition 3.3.5. Let F ∈ Z[T ] be a polynomial of degree D0 ≥ 1, and let ℓe be a

prime power such that F doesn’t reduce to a constant modulo ℓ. Let t := tℓ(F ) and

M := Mℓ(F ).

(i) If ℓ > 2 and e ≥ t+ 2, then

∣∣∣∣∣∣
∑

v mod ℓe
χ0,ℓ(v)e(F (v)/ℓe)

∣∣∣∣∣∣ ≤ D0 · ℓt/(M+1) · ℓe(1−1/(M+1)).

(ii) For ℓ = 2 and e ≥ t+ 3, we have

∣∣∣∣∣∣
∑

v mod 2e

χ0,2(v)e(F (v)/2e)

∣∣∣∣∣∣ ≤ 2D0 · 2t/(M+1) · 2e(1−1/(M+1)).
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Proof of Proposition 3.3.2. We start by showing that

#VN,M
(
ℓe; (wi)Mi=1

)
= φ(ℓe)N

ℓeM

(
1 +O

(
(2D)N
ℓN/D−M

))
(3.7)

uniformly for all primes ℓ > C = C(G), positive integers e ≥ 1 and N ≥ MD + 1,

and wi ∈ Z/ℓeZ. Indeed, by the orthogonality of additive characters, we can write

#VN,M
(
ℓe; (wi)Mi=1

)
= #

{
(v1, . . . , vN) ∈ (Uℓe)N : (∀i)

N∑
j=1

Gi(vj) ≡ wi (mod ℓe)
}

=
∑

(v1,...,vN )∈(Uℓe )N

M∏
i=1

 1
ℓe

∑
ri mod ℓe

e
(
−riwi

ℓe

)
e

(
ri
ℓe

N∑
j=1

Gi(vj)
)

= φ(ℓe)N
ℓeM

{
1 + 1

φ(ℓe)N
∑

(r1,...,rM )̸≡(0,...,0) mod ℓe
e

(
− 1
ℓe

M∑
i=1

riwi

)
(Zℓe; r1,...,rM

)N
}
, (3.8)

where Zℓe; r1,...,rM
:=

∑
v mod ℓe

χ0,ℓ(v)e
(

1
ℓe

M∑
i=1

riGi(v)
)

and χ0,ℓ denotes the trivial char-

acter mod ℓe (which is also the trivial character mod ℓ).

Now in the case D = 1, we must have M = 1, so that we may write G1(T ) =:

AT +B for some integers A ̸= 0 and B. For each nonzero residue r mod ℓe, we have

r =: ℓe−e0r′ for some e0 ∈ {1, · · · , e} and some coprime residue r′ mod ℓe0 . Hence,

|Zℓe; r| = ℓe−e0

∣∣∣∣∑ v mod ℓe0
gcd(v,ℓe0 )=1

e(r′Av/ℓe0)
∣∣∣∣. The last sum being a Ramanujan sum is

nonzero precisely when ℓe0−1|r′A by equation (2.30). But this forces e0 = 1 because

ℓ ∤ A (by definition of C0(G) = C0({G1})) and ℓ ∤ r′ (by definition of r′.) If e0 = 1,

then |Zℓe; r| ≤ ℓe−1, and since there are at most ℓ many residues r mod ℓe which are
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divisible by ℓe−1, we find from (3.8) that

#VN,M
(
ℓe; (wi)Mi=1

)
= φ(ℓe)N

ℓe

{
1 +O

(
1

φ(ℓe)N · ℓ · (ℓ
e−1)N

)}
= φ(ℓe)N

ℓe

{
1 +O

(
2N
ℓN−1

)}

uniformly in N ≥ 1. This establishes the bound (3.7) in the case D = 1, so in order

to complete the proof of (3.7), we may assume that D ≥ 2.

Now for a given tuple (r1, . . . , rM) ̸≡ (0, . . . , 0) mod ℓe, we must have

gcd(ℓe, r1, . . . , rM) = ℓe−e0

for some 1 ≤ e0 ≤ e. Hence, we can write ri := ℓe−e0r′
i for some (r′

1, . . . , r
′
M) mod ℓe0

satisfying (r′
1, . . . , r

′
M) ̸≡ (0, . . . , 0) mod ℓ, which shows that

|Zℓe; r1,...,rM
| = ℓe−e0

∣∣∣∣∣∣
∑

v mod ℓe0

χ0,ℓ(v)e

 1
ℓe0

M∑
i=1

r′
iGi(v)

∣∣∣∣∣∣
= ℓe−e0

∣∣∣∣∣∣
∑

v mod ℓe0

χ0,ℓ(v)e
(
F (v)
ℓe0

)∣∣∣∣∣∣ ,
where F (T ) :=

∑M
i=1 r

′
i(Gi(T ) − Gi(0)). Now we observe that since ℓ > C(G) >

C0(G), the polynomials {G′
i}Mi=1 are Fℓ-linearly independent, hence so are the poly-

nomials {Gi−Gi(0)}Mi=1. This prevents the polynomial F from reducing to a constant

mod ℓ (for if it did, then this constant would be zero). Consequently, if e0 = 1, then

Proposition 3.3.4 yields |Zℓe; r1,...,rM
| ≤ ℓe−e0 ·Dℓ1/2 = Dℓe−1/2. On the other hand, if

e0 ≥ 2, then from Proposition 3.3.5(i), we obtain |Zℓe; r1,...,rM
| ≤ ℓe−e0 ·Dℓe0(1−1/D) =

Dℓe−e0/D; here we have noted that ℓ > C > 2, tℓ(F ) = ordℓ(F ′) = ordℓ
(∑M

i=1 r
′
iG

′
i

)
=

0 ≤ e0 − 2 and that Mℓ(F ) ≤ deg(F ′) ≤ D − 1. For each 1 ≤ e0 ≤ e, there are
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at most ℓe0M many possible tuples (r′
1, . . . , r

′
M) mod ℓe0 , hence at most ℓe0M tuples

(r1, . . . , rM) mod ℓe satisfying gcd(ℓe, r1, . . . , rM) = ℓe−e0 . We deduce that

∑
(r1,...,rM )̸≡(0,...,0) mod ℓe

|Zℓe; r1,...,rM
|N

≤ ℓM
(
Dℓe−1/2)N +

∑
2≤e0≤e

ℓe0M
(
Dℓe−e0/D

)N
≤
∑

1≤e0≤e

ℓe0M
(
Dℓe−e0/D

)N
≤ DNℓeN

ℓN/D−M

∑
r≥0

1
(ℓN/D−M)r ≪

DNℓeN

ℓN/D−M ,

where the last bound uses the fact that N/D − M ≥ 1/D, so that the last sum

occurring in the above display is no more than
∑
r≥0

2−r/D ≪ 1. (It is while passing

from the first line to the second in the above display where we use the assumption that

D ≥ 2.) Inserting the bound obtained above into (3.8) and noting that ℓ/(ℓ− 1) ≤ 2

completes the proof of estimate (3.7).

Given an arbitrary positive integer q, let q̃ :=
∏

ℓe∥q
ℓ≤C

ℓe denote the largest divisor of q

supported on primes not exceeding the constant C (the “C-smooth part” of q). We

can again invoke the orthogonality of additive characters to write, for any tuple of

residues (w1, . . . , wM) mod q̃,

#VN,M
(
q̃; (wi)Mi=1

)
= #

{
(v1, . . . , vN) ∈ (Uq̃)N : (∀i)

N∑
j=1

Gi(vj) ≡ wi (mod q̃)
}

= 1
q̃M

∑
r1,...,rM mod q̃

e

(
−1
q̃

M∑
i=1

riwi

)
(Zq̃; r1,...,rM

)N ,

(3.9)
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where Zq̃; r1,...,rM
:=

∑
v mod q̃

χ0,q̃(v)e
(

1
q̃

M∑
i=1

riGi(v)
)

and χ0,q̃ denotes the trivial charac-

ter mod q̃.

Now with β1, . . . , βM being the invariant factors of the matrix A0 defined in (3.1)

(listed in ascending order), we fix R := R(Ĝ) ∈ N≥2 to be any integer constant such

that

R > CD(4D|βM |)C .

Let Q1 :=
∏

ℓe∥q̃: e>R ℓ
e−R and

Q0 := q̃/Q1 =
∏
ℓe∥q̃

ℓmin{e,R} =
∏

ℓe∥q: ℓ≤C

ℓmin{e,R},

so that Q0 | q and Q0 ≤
∏

ℓ≤C ℓ
R ≪ 1. We write #VN,M

(
q̃; (wi)Mi=1

)
=: S ′ +S ′′, where

S ′ counts the contribution of all tuples (r1, . . . , rM) mod q̃ where all the components

ri are divisible by Q1, that is,

S ′ := 1
q̃M

∑
r1,...,rM mod q̃

(r1,...,rM )≡(0,...,0) mod Q1

e

(
−1
q̃

M∑
i=1

riwi

)
(Zq̃; r1,...,rM

)N .

Any tuple (r1, . . . , rM) mod q̃ counted in S ′ is thus of the form (Q1s1, . . . , Q1sM) for

some tuple (s1, . . . , sM) mod Q0 that is uniquely determined by (r1, . . . , rM). We find
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that

Zq̃; r1,...,rM
=
∑
v mod q̃

χ0,q̃(v)e

 1
Q0

M∑
i=1

siGi(v)


=
∑

u mod Q0

χ0,Q0(u)e

 1
Q0

M∑
i=1

siGi(u)

 ∑
v∈Uq̃

v≡u mod Q0

1

= φ(q̃)
φ(Q0)

ZQ0; s1,...,sM

where the last equality above follows from a simple counting argument. Consequently,

S ′ = 1
q̃M

(
φ(q̃)
φ(Q0)

)N ∑
s1,...,sM mod Q0

e

(
− 1
Q0

M∑
i=1

siwi

)
(ZQ0; s1,...,sM

)N .

An application of the orthogonality identity (3.9) with Q0 playing the role of q̃ yields

S ′ =
(
Q0

q̃

)M (
φ(q̃)
φ(Q0)

)N
#VN,M

(
Q0; (wi)Mi=1

)
. (3.10)

Now we consider the sum

S ′′ = 1
q̃M

∑
r1,...,rM mod q̃

(r1,...,rM )̸≡(0,...,0) mod Q1

e

(
−1
q̃

M∑
i=1

riwi

)
(Zq̃; r1,...,rM

)N .

Consider any tuple (r1, . . . , rM) mod q̃ occurring in S ′′. By the definition of Q1,

there exists a prime power ℓe ∥ q̃ for which e > R but vℓ(gcd(r1, . . . , rM)) < e − R.

Letting Q′ := q̃/ gcd(q̃, r1, . . . , rM) and r′
i := ri/ gcd(q̃, r1, . . . , rM) (for 1 ≤ i ≤ M),

we therefore deduce that for any such aforementioned prime ℓ, we have vℓ(Q′) > R, so

that Q′ is not (R+1)-free. Moreover, r′
1, . . . , r

′
M are uniquely determined mod Q′ and

satisfy gcd(Q′, r′
1, . . . , r

′
M) = 1. Now for each i, we can write r′

i/Q
′ =

∑
ℓeℓ ∥Q′ r′

i,ℓ/ℓ
eℓ
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mod 1, where the sum is over the prime powers ℓeℓ exactly dividing Q′; 2 here, for

each ℓeℓ ∥ Q′, r′
i,ℓ is uniquely determined mod ℓeℓ by the relation r′

i,ℓ

∏
pep ∥Q′

p ̸=ℓ
pep ≡ r′

i

(mod ℓeℓ). Since gcd(Q′, r′
1, . . . , r

′
M) = 1, it follows that ℓ ∤ gcd(r′

1,ℓ, . . . , r
′
M,ℓ) for each

prime ℓ | Q′. By the Chinese Remainder Theorem, we can factor

Zq̃; r1,...,rM
= φ(q̃)
φ(Q′)

∑
v mod Q′

χ0,Q′(v)e
(

1
Q′

M∑
i=1

r′
iGi(v)

)

= φ(q̃)
φ(Q′)

∏
ℓeℓ ∥Q′

Zℓeℓ ; r′
1,ℓ,...,r

′
M,ℓ
. (3.11)

Write G′
i(T ) =:

∑D−1
j=0 ai,jT

j as in the discussion preceding (3.1). We claim that for

any prime ℓ | Q′,

tℓ := tℓ(r′
1,ℓ, . . . , r

′
M,ℓ) := ordℓ

(
M∑
i=1

r′
i,ℓG

′
i

)

= vℓ

(
gcd

0≤j≤D−1

M∑
i=1

ai,jr
′
i,ℓ

)
≤ vℓ(βM), (3.12)

where (recall) β1, . . . , βM are the invariant factors of the matrix A0 in (3.1). The

third equality simply follows from the fact that

M∑
i=1

r′
i,ℓG

′
i(T ) =

D−1∑
j=0

(
M∑
i=1

ai,jr
′
i,ℓ

)
T j.

To show the inequality in (3.12), it suffices to show that ℓtℓ must divide βM . To do

the latter, we recall that, by the theory of modules over a principal ideal domain,

that there exist a D × D integer matrix P0 and an M ×M integer matrix R0 such

that detP0, detR0 ∈ {±1} and P0A0R0 is the Smith normal form S0 of A0. As

such, P0A0 = S0R
−1
0 where the matrix R−1

0 has integer entries (ki,j)1≤i,j≤M . Now
2We are just applying Bezout’s identity; equivalently, this may be thought of as partial fraction

decomposition over the integers.
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ℓtℓ divides all the numbers {
∑M

i=1 ai,jr
′
i,ℓ : 0 ≤ j ≤ D − 1}, which are precisely

the entries of the matrix A0

(
r′

1,ℓ . . . r′
M,ℓ

)⊺

(here
(
r′

1,ℓ . . . r′
M,ℓ

)⊺

denotes the

column vector listing the r′
i,ℓ). As such, ℓtℓ also divides the entries of the matrix

P0A0

(
r′

1,ℓ . . . r′
M,ℓ

)⊺

, and hence also those of the matrix

S0R
−1
0


r′

1,ℓ

. . .

r′
M,ℓ


M×1

=



β1(k1,1r
′
1,ℓ + · · ·+ k1,Mr

′
M,ℓ)

. . .

βM(kM,1r
′
1,ℓ + · · ·+ kM,Mr

′
M,ℓ)

0

. . .

0


D×1

. (3.13)

But now if ℓ divides all of the numbers k1,1r
′
1,ℓ + · · ·+ k1,Mr

′
M,ℓ, . . . . . . , kM,1r

′
1,ℓ + · · ·+

kM,Mr
′
M,ℓ, then

R−1
0



r′
1,ℓ

. . .

. . .

r′
M,ℓ


M×1

=



k1,1r
′
1,ℓ + · · ·+ k1,Mr

′
M,ℓ

· · ·

· · ·

kM,1r
′
1,ℓ + · · ·+ kM,Mr

′
M,ℓ


M×1

≡



0

· · ·

· · ·

0


M×1

(mod ℓ).

This forces ℓ to divide gcd(r′
1,ℓ, . . . , r

′
M,ℓ), which is impossible since ℓ | Q′ (see the line

preceding (3.11)). Since ℓtℓ divides the entries of the rightmost matrix in (3.13), it

follows that ℓtℓ must divide at least one of the invariant factors βi, and hence must

also divide βM . This establishes our claim (3.12).
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We will now show that for any prime power ℓeℓ ∥ Q′ for which eℓ > R, we have

|Zℓeℓ ; r′
1,ℓ,...,r

′
M,ℓ
| =

∣∣∣∣∣ ∑
v mod ℓeℓ

χ0,ℓ(v)e
(

1
ℓeℓ

M∑
i=1

r′
i,ℓGi(v)

)∣∣∣∣∣
≤ 2D|βM |ℓeℓ(1−1/D).

(3.14)

To show this, we note that since G′
i(T ) =

∑D−1
j=0 ai,jT

j, we have Gi(T ) − Gi(0) =∑D−1
j=0

ai,j

j+1T
j+1 (recall that (j + 1) | ai,j), so that with

cℓ := ordℓ

(
M∑
i=1

r′
i,ℓ(Gi(T )−Gi(0))

)
= vℓ

(
gcd

0≤j≤D−1

∑M
i=1 ai,jr

′
i,ℓ

j + 1

)
, (3.15)

we have

|Zℓeℓ ; r′
1,ℓ,...,r

′
M,ℓ
| =

∣∣∣∣∣ ∑
v mod ℓeℓ

χ0,ℓ(v)e
(

1
ℓeℓ−cℓ

D−1∑
j=0

(
ℓ−cℓ

∑M
i=1 ai,jr

′
i,ℓ

j + 1

)
vj+1

)∣∣∣∣∣
= ℓcℓ

∣∣∣∣∣ ∑
v mod ℓeℓ−cℓ

χ0,ℓ(v)e
(
F̃ (v)
ℓeℓ−cℓ

)∣∣∣∣∣ ,
where F̃ (T ) :=

∑D−1
j=0

(
ℓ−cℓ

∑M
i=1 ai,jr

′
i,ℓ

j+1

)
T j+1 ∈ Z[T ]. By (3.15) and (3.12), we see

that F̃ cannot reduce to a constant mod ℓ and that cℓ ≤ tℓ ≤ vℓ(βM). Furthermore,

(3.12) also shows that

ordℓ(F̃ ′) = ordℓ

(
D−1∑
j=0

(
M∑
i=1

ai,jr
′
i,ℓ

)
T j

)
− cℓ = tℓ − cℓ

≤ vℓ(βM)− cℓ ≤ R− 3− cℓ < (eℓ − cℓ)− 3.

(Here we use eℓ > R > |βM | + 3.) Consequently, some subpart of Proposition 3.3.5
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applies, yielding

|Zℓeℓ ; r′
1,ℓ,...,r

′
M,ℓ
| ≤ ℓcℓ · 2Dℓordℓ(F̃ ′) · ℓ(eℓ−cℓ)(1−1/(Mℓ(F̃ )+1))

≤ ℓcℓ · 2Dℓvℓ(βM )−cℓ · ℓeℓ(1−1/D) ≤ 2D|βM |ℓeℓ(1−1/D).

Here, Mℓ(F̃ ) is the largest multiplicity of a zero in Fℓ of the polynomial ℓ−ordℓ(F̃ ′)F̃ ′,

and we have used that this multiplicity is no more than deg(F̃ ′) ≤ D − 1. This

establishes (3.14).

Applying the bound (3.14) to each prime power ℓeℓ ∥ Q′ for which eℓ > R, and

applying the trivial bound |Zℓeℓ ; r′
1,ℓ,...,r

′
M,ℓ
| ≤ φ(ℓeℓ) for all the other prime powers

ℓeℓ ∥ Q′, the factorization (3.11) yields

|Zq̃; r1,...,rM
| ≤ φ(q̃)

φ(Q′)

( ∏
ℓeℓ ∥Q′

eℓ≤R

φ(ℓeℓ)
)
·

( ∏
ℓeℓ ∥Q′

eℓ>R

2D|βM |ℓeℓ(1−1/D)

)

≤ (2D|βM |)ω(Q′) · φ(q̃) ·
∏
ℓeℓ ∥Q′

eℓ>R

(
ℓeℓ(1−1/D)

φ(ℓeℓ)

)

≤ (4D|βM |)C ·
φ(q̃)
A1/D .

Here A denotes the (R+1)-full part of Q′ and in the last bound above, we have noted

that ω(Q′) ≤ ω(q̃) ≤
∑

ℓ≤C 1 ≤ C. Since Q′ is not (R + 1)-free, we have A > 1.
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Applying this bound for each of the sums Zq̃; r1,...,rM
occurring in S ′′, we obtain

|S ′′| ≤ (4D|βM |)CNφ(q̃)N
q̃M

∑
A|q̃: A>1

A is (R+1)-full

1
AN/D

·

∑
Q′,r′

1,...,r
′
M

Q′|q̃: (R+1)-full part of Q′ is A
r′

1,...,r
′
M mod Q′

gcd(r′
1,...,r

′
M ,Q′)=1

∑
r1,...,rM mod q̃

Q′=q̃/ gcd(q̃,r1,...,rM )
(∀i) r′

i=ri/ gcd(q̃,r1,...,rM )

1.

Since any choice of Q′ | q̃ and residues r′
1, . . . , r

′
M mod Q′ uniquely determines

r1, . . . , rM mod q̃ by the relations ri = r′
iq̃/Q

′, we see that

|S ′′| ≤ (4D|βM |)CNφ(q̃)N
q̃M

∑
A|q̃: A>1

A is (R+1)-full

1
AN/D

·
∑
Q′|q̃

(R+1)-full part of Q′ is A

∑
r′

1,...,r
′
M mod Q′

gcd(r′
1,...,r

′
M ,Q′)=1

1

≤ (4D|βM |)CNφ(q̃)N
q̃M

∑
A|q̃: A>1

A is (R+1)-full

1
AN/D

∑
Q′|q̃

(R+1)-full part of Q′ is A

(Q′)M .

Now any divisor Q′ of q̃ with (R+ 1)-full part equal to A must be of the form Ad for

some (R + 1)-free divisor d of q̃, and d ≤
∏

ℓ|q̃ ℓR ≤
∏

ℓ≤C ℓ
R ≤ CCR ≪ 1. Conse-

quently the innermost sum in the last expression above is at mostAM
∑

d|q̃
d is (R+1)-free

dM

≪ AM , leading to

|S ′′| ≪ (4D|βM |)CNφ(q̃)N
q̃M

∑
A|q̃: A>1

A is (R+1)-full

1
AN/D−M , (3.16)

Since N ≥MD + 1, we have N/D −M ≥ 1/D, so that for all primes ℓ, we have

∑
v≥R+1

1
ℓv(N/D−M) ≤

1
ℓ(R+1)(N/D−M)

∑
v≥0

1
ℓv/D

101



3.3 Preparation for Theorems 3.1.1, 3.1.2 and 3.1.3: Obtaining the
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≤ 1
ℓ(R+1)(N/D−M) ·

21/D

21/D − 1 ≤
2D · 21/D

2(R+1)/D ≤
2D2

R
≤ 1

2 .

(Here, we have noted that 21/D − 1 = exp(log 2/D)− 1 ≥ log 2/D > 1/2D and that

2R/D ≥ R/D ≥ 4D.) This means that for all primes ℓ ≤ C, we have

log
(

1 +
∑
v≥R+1

1
ℓv(N/D−M)

)
≪

∑
v≥R+1

1
ℓv(N/D−M)

≪ 1
ℓ(R+1)(N/D−M) ≪

1
ℓRN/D

≤ 1
2RN/D ,

and since q̃ is C-smooth, this leads to

∑
A|q̃: A>1

A is (R+1)-full

1
AN/D−M ≤

∏
ℓ|q̃

(
1 +

∑
v≥R+1

1
ℓv(N/D−M)

)
− 1

= exp
(
O

(
1

2RN/D

))
− 1≪ 1

2RN/D .

Inserting this into (3.16), we obtain

|S ′′| ≪
(

(4D|βM |)C
2R/D

)N
φ(q̃)N
q̃M

≤ C−N φ(q̃)N
q̃M

,

noting in the last step that (4D|βM |)C
/

2R/D ≤ D(4D|βM |)C
/
R ≤ C−1, by the defi-

nition of R. From (3.10), we now obtain

#VN,M
(
q̃; (wi)Mi=1

)
= S ′ + S ′′

=
(
Q0

q̃

)M
φ(q̃)N

{
#VN,M

(
Q0; (wi)Mi=1

)
φ(Q0)N

+O
(
C−N)} .
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3.4 Joint equidistribution without input restriction: Proof of
Theorem 3.1.1

Finally, writing

#VN,M
(
q; (wi)Mi=1

)
= #VN,M

(
q̃; (wi)Mi=1

) ∏
ℓe∥q: ℓ>C

#VN,M
(
ℓe; (wi)Mi=1

)
,

and invoking the estimate above for #VN,M
(
q̃; (wi)Mi=1

)
in conjunction with (3.7) for

all the powers ℓe ∥ q of primes ℓ > C, we obtain the estimate claimed in Proposition

3.3.2.

Section 3.4

Joint equidistribution without input restriction:

Proof of Theorem 3.1.1

By Proposition 3.3.1, it remains to show that the count of inconvenient n ≤ x for

which all the gi(n) ≡ bi (mod q) is o(x/qM) as x → ∞ in the prescribed ranges of

q. Setting z := x1/ log2 x, we first remove from these n ≤ x, the ones that either have

P (n) ≤ z or have a repeated prime factor exceeding y. By Lemma 2.3.1, the number

of n ≤ x having P (n) ≤ z is O
(
x/(log x)(1+o(1)) log3 x

)
, and as seen before, the number

of n ≤ x having a repeated prime factor exceeding y is O(x/y). Both of these bounds

being o(x/qM), it suffices to consider the contribution Σ0 of those inconvenient n ≤ x

which have P (n) > z and do not possess any repeated prime factor exceeding y.

By the definition of “inconvenient”, any n counted in Σ0 must also have PJ(n) ≤ y,

and hence can be written in the form n = mP , where P := P (n) > z, PJ(m) ≤ y

and gcd(m,P ) = 1. As such, gi(n) = gi(m) + Gi(P ), and the congruence gi(n) ≡ bi

(mod q) shows that P mod q lies in the set V1,M
(
q; (bi − gi(m))Mi=1

)
. Setting

ξG(q) := max{#V1,M
(
q; (wi)Mi=1

)
: w1, . . . , wM mod q},
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3.4 Joint equidistribution without input restriction: Proof of
Theorem 3.1.1

the Brun-Titchmarsh theorem shows that for a given m, the number of possibilities

for P is no more than

∑
z<P≤x/m

P mod q ∈V1,M(q;(bi−gi(m))M
i=1)

1 ≪ ξG(q) x/m

φ(q) log(z/q) ≪
ξG(q)
φ(q)

x log2 x

m log x . (3.17)

To estimate the sum of 1/m over m ≤ x having PJ(m) ≤ y, we write each such m

in the form BA where P (B) ≤ y < P−(A) and Ω(A) ≤ J . As such, the sum of the

reciprocals of the possible A is at most

∑
A≤x

Ω(A)≤J

1
A
≤

(
1 +

∑
p≤x

1
p

)J

≤ (2 log2 x)J ≤ exp
(
O((log3 x)2)

)
,

while the sum of the reciprocals of the possible B is no more than

∑
B: P (B)≤y

1
B
≤
∏
p≤y

(
1 + 1

p
+O

(
1
p2

))

≤ exp
(∑
p≤y

1
p

+O(1)
)
≪ log y.

Collecting estimates, we obtain

∑
m≤x

PJ (m)≤y

1
m
≪ (log x)δ/2 exp

(
O((log3 x)2)

)
, (3.18)

which from the bound (3.17) reveals that

Σ0 ≪
ξG(q)
φ(q)

x log2 x

(log x)1−δ/2 exp
(
O((log3 x)2)

)
≪ ξG(q)

q

x

(log x)1−2δ/3 . (3.19)

We now proceed to show the assertions in the three subparts of the theorem.
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3.4 Joint equidistribution without input restriction: Proof of
Theorem 3.1.1

Proof of (i), (ii). If at least one of G1, . . . , GM is linear, then ξG(q)≪ 1 and we obtain

Σ0 ≪ x/q(log x)1−2δ/3. This is o(x/qM) as soon as qM−1 ≤ (log x)1−δ. This condition

is tautological if M = 1, and for M ≥ 2 it is equivalent to q ≤ (log x)(1−δ)/(M−1).

If q is squarefree, then withD1 = degG1, we see that #V1,M
(
q; (wi)Mi=1

)
≤ #V1,1 (q;w1)

=
∏

ℓ|q #V1,1 (ℓ;w1) ≪ (D1)ω(q) ≤ (log x)δ/100. (Here we have noted that for any

sufficiently large ℓ, the polynomial G1(T ) − w1 cannot vanish identically mod ℓ,

and hence has at most D1 roots mod ℓ.) As such, from (3.19), it follows that

Σ0 ≪ x/q(log x)1−3δ/4. This is automatically o(x/qM) if M = 1, while for M ≥ 2, we

need only assume that q ≤ (log x)(1−δ)/(M−1).

Proof of (iii). Finally, assume (by relabelling if necessary) that degG1 = Dmin. By

Lemma 2.5.2, we have #V1,M
(
q; (wi)Mi=1

)
≤ #V1,1 (q;w1)≪ q1−1/Dmin . (To be precise,

we apply Lemma 2.5.2 to the polynomial congruence (G1(T )−w1)/d ≡ 0 (mod q/d),

where d is the greatest common divisor of q and the coefficients of the polynomial

G1(T ) − w1. Note that each solution mod q/d lifts to a solution mod q in ≤ d ≪ 1

ways.) Consequently, we obtain Σ0 ≪ x/q1/Dmin(log x)1−2δ/3. This is o(x/qM) as soon

as qM−1/Dmin ≤ (log x)1−δ, completing the proof of the theorem.

3.4.1. Optimality of range of q in Theorem 3.1.1

We will now construct polynomials G1, . . . , GM which will show that the various

restrictions on the range of q in Theorem 3.1.1 are all essentially optimal. To that end,

let G ∈ Z[T ] be any monic polynomial having a nonzero integer root a. Let Gi(T ) :=

G(T )i, so that the polynomials {G′
i}Mi=1 having distinct degrees are automatically Q-

linearly independent. Letting C0(G) be the constant coming from (3.2), Corollary

3.2.3 shows that any integer q having P−(q) > C0(G) lies in Q(g1,...,gM ). Moreover,

any prime p satisfying p ≡ a (mod q) also satisfies G(p) ≡ 0 (mod q), hence also

gi(p) = Gi(p) = G(p)i ≡ 0 (mod q) for all i. As such, for all q ≤ (log x)K having
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3.5 Complete uniformity for general moduli: Proof of Theorem 3.1.2

P−(q) > max{|a|, C0(G)}, the Siegel–Walfisz Theorem yields

∑
n≤x

(∀i) gi(n)≡0 (mod q)

1 ≥
∑
p≤x

p≡a (mod q)

1≫ x

φ(q) log x ≫
x

q log x.

For any M ≥ 2, this last expression grows strictly faster than x/qM as soon as qM−1

grows faster than log x, for instance if q > (log x)(1+δ)/(M−1). This construction shows

that the range of q in Theorem 3.1.1(ii) is essentially optimal.

Now consider anyM ≥ 1, D ≥ 1, and letG(T ) := (T−1)d. Then withGi(T ) = G(T )i,

we see that Dmin = d. For moduli q of the form qd1 (for some q1 > 1), any prime

p ≡ 1 (mod q1) satisfies G(p) = (p − 1)d ≡ 0 (mod q). Hence, if q1 ≤ (log x)K has

P−(q1) > C0(G), then q = qd1 ≤ (log x)Kd also has P−(q) > C0(G), and we find that

on the one hand q ∈ Q(g1,...,gM ), while on the other,

∑
n≤x

(∀i) gi(n)≡0 (mod q)

1 ≥
∑
p≤x

p≡1 (mod q1)

1≫ x

φ(q1) log x ≫
x

q1/d log x.

This last expression grows strictly faster than x/qM as soon as qM−1/d grows faster

than log x, for instance if q > (log x)(1+δ)(M−1/d)−1 . Since d = Dmin, this example

shows that the range of q in Theorem 3.1.1(iii) is essentially optimal as well.

Section 3.5

Complete uniformity for general moduli: Proof

of Theorem 3.1.2

In section 3.3, we had defined J = ⌊log3 x⌋ and for the purposes of this theorem, we

took δ := 1, so that y = exp((log x)1/2). If x is sufficiently large then any convenient
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3.5 Complete uniformity for general moduli: Proof of Theorem 3.1.2

n has PMD+1(n) ≥ PJ(n) ≥ y > q. Moreover, by Lemma 3.3.3, the number of n ≤ x

having PMD+1(n) ≤ q is o(x). By Proposition 3.3.1, it remains to show that there are

o(x/qM) many inconvenient n ≤ x having PMD+1(n) > q and satisfying gi(n) ≡ bi

(mod q) for all i.

Now by the arguments in the beginning of the previous section, the number of n ≤ x

which either have P (n) ≤ z = x1/ log2 x or have a repeated prime factor exceeding y is

o(x/qM). As such, in order to complete the proof of the theorem, it suffices to show

that ∑
n≤x: PMD+1(n)>q
PJ (n)≤y; P (n)>z
p>y =⇒ p2∤n

(∀i) gi(n)≡bi (mod q)

1 ≪ x

qM(log x)1/3 (3.20)

uniformly in q ≤ (log x)K and in residues (b1, . . . , bM) mod q.

Assume first that M ≥ 2. To show (3.20) write the count on the left hand side as

Σ0 + Σ1 + Σ2 + Σ,

where

• Σ0 counts those n which are exactly divisible by at least MD+ 1 many distinct

primes exceeding q,

• For r ∈ {1, 2}, Σr counts the n that are exactly divisible by at least (M−r)D+1

but at most (M − r + 1)D many distinct primes exceeding q, and

• Σ counts the remaining n, namely, those that are exactly divisible by at most

(M − 2)D many distinct primes exceeding q.

We proceed to show that the expression on the right hand side of (3.20) bounds
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3.5 Complete uniformity for general moduli: Proof of Theorem 3.1.2

each of Σ0, Σ1, Σ2 and Σ. To do this, we shall bound the cardinalities of the sets

VN,M
(
q; (wi)Mi=1

)
that arise by discarding some of the congruences defining the set.

The following consequence of Proposition 3.3.2 will be useful: for any fixed r ∈

{0, 1, . . . ,M − 1}, we have

#V(M−r)D+1,M−r
(
q; (wi)M−r

i=1
)
≪ φ(q)(M−r)D+1

qM−r exp
(
O
(
(log q)1−1/D)) (3.21)

uniformly in moduli q > 1 and in residue classes (w1, . . . , wM) mod q. Here, we have

noted that {G′
i}M−r
i=1 are Q-linearly independent, as well as the facts that max1≤i≤M−r degGi

≤ D, and that

∏
ℓ|q

(
1 +O

(
1

ℓ1/D

))
≤ exp

O
∑
ℓ≤ω(q)

1
ℓ1/D


≪ exp

(
O
(
(log q)1−1/D)) ,

with the last sum on ℓ being bounded by partial summation and Chebyshev’s esti-

mates.

Bounding Σ0: Any n counted in Σ0 is exactly divisible by at least M(D + 1) + 1

many prime factors exceeding q and has P (n) > z, PJ(n) ≤ y. Hence, n can be

written in the form mP1 · · ·PM(D+1)+1, where P1 := P (n) > z, q < PM(D+1)+1 <

· · · < P1, PJ(m) ≤ y and gcd(m,P1 · · ·PM(D+1)+1) = 1. As such, gi(n) = gi(m) +∑
1≤j≤M(D+1)+1 Gi(Pj) and the congruences gi(n) ≡ bi (mod q) force (P1, . . . , PM(D+1)+1)

mod q to lie in the set Vm := VM(D+1)+1,M
(
q; (bi − gi(m))Mi=1

)
.

Given m and v̂ := (v1, . . . , vM(D+1)+1) ∈ Vm, we count the number of possible

P1, . . . , PM(D+1)+1 satisfying (P1, . . . , PM(D+1)+1) ≡ v̂ mod q. For a given choice of

P2, . . . , PM(D+1)+1, the number of possible P1 is, by the Brun-Titchmarsh inequality,
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no more than

∑
z<P1≤x/mP2···PM(D+1)+1

P1≡v1 (mod q)

1≪
x/mP2 · · ·PM(D+1)+1

φ(q) log(z/q) ≪ x log2 x

φ(q)mP2 · · ·PM(D+1)+1 log x.

For each j ∈ {2, . . . ,M(D + 1) + 1}, the sum on Pj is, by Brun-Titchmarsh and

partial summation, no more than

∑
q<p≤x

p≡vj (mod q)

1
p
≪ log2 x

φ(q) .

Hence, givenm and v̂ = (v1, . . . , vM(D+1)+1) ∈ Vm, the number of possible P1, . . . , PM(D+1)+1

satisfying (P1, . . . , PM(D+1)+1) ≡ v̂ mod q is

≪ x(log2 x)O(1)

φ(q)M(D+1)+1m log x,

leading to

Σ0 ≪
x(log2 x)O(1)

log x

∑
m≤x

PJ (m)≤y

1
m
· #Vm
φ(q)M(D+1)+1 .

Using (3.21) to bound Vm = VM(D+1)+1,M
(
q; (bi − gi(m))Mi=1

)
, followed by (3.18) to

bound the resulting sum on m, we deduce that

Σ0 ≪
x(log2 x)O(1)

qM log x exp
(
O
(
(log q)1−1/D)) ∑

m≤x
PJ (m)≤y

1
m
≪ x

qM(log x)1/3 ,

yielding the desired bound for Σ0. It is to be noted that this bound on Σ0 holds true

for any M ≥ 1.
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Bounding Σ1: Recall that Ω∗
>q(n) :=

∑
pk∥n

p>q, k>1

k counts (with multiplicity) the number

of prime factors of n exceeding q that appear to an exponent larger than 1 in the

prime factorization of n; as such, the squarefull part of n (i.e., the largest squarefull

divisor of n) exceeds qΩ∗
>q(n).

Now, any n counted in Σ1 is exactly divisible by least (M − 1)D + 1 but at most

MD many distinct primes exceeding q. Since PM(D+1)+1(n) > q, it follows that

Ω∗
>q(n) ≥ 2, so that the squarefull part of n exceeds q2. As such, n can be written

in the form mSP(M−1)D+1 · · ·P1, where m,S, P(M−1)D+1, . . . , P1 are pairwise coprime,

P1 := P (n) > z, q < P(M−1)D+1 < · · · < P1, PJ(m) ≤ y, and S > q2 is squarefull.

Since

gi(n) = gi(mS) +
∑

1≤j≤(M−1)D+1

Gi(Pj),

the congruence conditions gi(n) ≡ bi (mod q), considered for 1 ≤ i ≤ M − 1, force

(P1, . . . , P(M−1)D+1) ≡ v̂ mod q for some

v̂ := (v1, . . . , v(M−1)D+1) ∈ V(M−1)D+1,M−1
(
q; (bi − gi(mS))M−1

i=1
)
.

Given m,S and v̂, the argument given for bounding Σ0 above shows that the number

of possible P1, . . . , P(M−1)D+1 satisfying (P1, . . . , P(M−1)D+1) ≡ v̂ mod q is

≪ x(log2 x)O(1)

φ(q)(M−1)D+1mS log x.

This yields

Σ1 ≪
x(log2 x)O(1)

log x

∑
m≤x

PJ (m)≤y

1
m
·
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∑
S>q2 squarefull

1
S
·

#V(M−1)D+1,M−1
(
q; (bi − gi(mS))M−1

i=1
)

φ(q)(M−1)D+1 ,

so that by (3.21),

Σ1 ≪
x(log2 x)O(1)

qM−1 log x exp
(
O
(
(log q)1−1/D)) ∑

m≤x
PJ (m)≤y

1
m

∑
S>q2 squarefull

1
S
.

Using (3.18) along with the bound
∑

S>q2 squarefull 1/S ≪ 1/q, we obtain

Σ1 ≪
x(log2 x)O(1)

qM(log x)1/2 exp
(
O
(
(log q)1−1/D + (log3 x)2))≪ x

qM(log x)1/3 ,

showing the desired bound for Σ1.

Bounding Σ2: Any n counted in Σ2 is exactly divisible by least (M − 2)D+ 1 but at

most (M − 1)D many distinct primes exceeding q. Since PM(D+1)+1(n) > q, it follows

that Ω∗
>q(n) ≥MD+1−(M−1)D = D+1. Now assume thatD ≥ 3, so that Ω∗

>q(n) ≥

4, and the squarefull part of n exceeds q4. In this case, any n counted in Σ2 can be

written in the form mSP(M−2)D+1 · · ·P1, where m,S, P(M−2)D+1, . . . , P1 are pairwise

coprime, P1 := P (n) > z, q < P(M−2)D+1 < · · · < P1, PJ(m) ≤ y, and S > q4 is

squarefull. Since gi(n) = gi(mS) +
∑

1≤j≤(M−2)D+1 Gi(Pj), the congruence conditions

gi(n) ≡ bi (mod q), considered for 1 ≤ i ≤M −2, force (P1, . . . , P(M−2)D+1) ≡ v̂ mod

q for some

v̂ := (v1, . . . , v(M−2)D+1) ∈ V(M−2)D+1,M−2
(
q; (bi − gi(mS))M−2

i=1
)
.
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Replicating the argument given for Σ1 shows that

Σ2 ≪
x(log2 x)O(1)

log x

∑
m≤x

PJ (m)≤y

1
m
·

∑
S>q4 squarefull

1
S
·

#V(M−2)D+1,M−2
(
q; (bi − gi(mS))M−2

i=1
)

φ(q)(M−2)D+1

≪ x(log2 x)O(1)

qM−2 log x exp
(
O
(
(log q)1−1/D)) ∑

m≤x
PJ (m)≤y

1
m

∑
S>q4 squarefull

1
S

≪ x(log2 x)O(1)

qM(log x)1/2 exp
(
O
(
(log q)1−1/D + (log3 x)2))

≪ x

qM(log x)1/3 .

showing the desired bound for Σ2 in the case D ≥ 3.

Now assume that D = 2, so that 2 ≤ M ≤ D = 2 forces M = 2. Any n counted

in Σ2 has P5(n) > q but at most (M − 1)D = 2 of these exactly divide n. Hence, n

is either divisible by the cube of a prime exceeding q or is (exactly) divisible by the

squares of two distinct primes exceeding q. Any n of the first kind can be written

in the form mpsP for some primes p, P satisfying P = P (n) > z and q < p < P ,

and some positive integers s,m satisfying s ≥ 3, PJ(m) ≤ y. Given m, p and s, the

number of possible P ∈ (z, x/mps] is O(x/mps log z). Summing this over all s ≥ 3,

all p > q, and then over all possible m, and invoking (3.18) in conjunction with the

fact that
∑

p>q 1/p3 ≪ 1/q2, we find that the total contribution of all n of the first

kind is ≪ x/q2(log x)1/3 which is absorbed in the desired expression.

On the other hand, if n is divisible by the squares of two distinct primes exceeding q,

then it is of the form mps1
1 p

s2
2 P for some primes P, p1, p2 satisfying P = P (n) > z and

q < p2 < p1 < P , and for some positive integers m, s1, s2 satisfying s1 ≥ 2, s2 ≥ 2
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and PJ(m) ≤ y. Given m, p1, p2, s1, s2, the number of possible P ∈ (z, x/mps1
1 p

s2
2 ]

is O(x/mps1
1 p

s2
2 log z). Summing this over all possible si, pi, and m via (3.18) and

the fact that
∑

p>q 1/p2 ≪ 1/q, we deduce that the total contribution of all n that

are divisible by the squares of two primes is ≪ x/q2(log x)1/3. This establishes the

desired bound on the sum Σ2 in the remaining case D = 2.

Bounding Σ: Any n counted in Σ has PM(D+1)+1(n) > q, but no more than (M −2)D

of these exactly divide n. Since D = max1≤i≤M degGi ≥M , it follows that any such

n has Ω∗
>q(n) ≥M(D+ 1) + 1− (M −2)D = 2D+ 1 ≥ 2M + 1, so that the squarefull

part of n exceeds q2M+1. Consequently, any n counted in Σ can be written in the

form mSP , where P := P (n) > z, S > q2M+1 is squarefull and PJ(m) ≤ y. Given m

and S, the number of possible P ∈ (z, x/mS] is O(x/mS log z). Summing this over

all squarefull S > q2M+1 and then over all m by means of (3.18), we find that

Σ≪ x log2 x

log x

∑
m≤x

PJ (m)≤y

1
m

∑
S>q2M+1

S squarefull

1
S
≪ x

qM+1/2(log x)1/3 ,

yielding the desired bound for Σ, and completing the proof of the estimate (3.20), for

M ≥ 2.

The case M = 1 is much simpler: we need only split the count in the left hand side of

(3.20) as Σ0+Σ where Σ0 counts those n that have no repeated prime factor exceeding

q. As such, any n counted in Σ0 is exactly divisible by at least D+1 primes exceeding

q, whereupon the exact same arguments given for the “Σ0” defined in the case M ≥ 2

show that Σ0 ≪ x/q(log x)1/3. On the other hand, any n counted in Σ has a repeated

prime factor exceeding q, and thus is of the form mSP , with P := P (n) > z, S > q2

squarefull and PJ(m) ≤ y. Proceeding as for the “Σ” considered in the case M ≥ 2,

we obtain Σ ≪ x/q(log x)1/3. This shows the estimate (3.20) in the remaining case
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M = 1, completing the proof of theorem.

Section 3.6

Complete uniformity in squarefree moduli:

Proof of Theorem 3.1.3

Arguing as in the beginning of the previous section, in order to complete the proof of

the theorem, it suffices to show the following analogue of (3.20)

∑
n≤x: P2M (n)>q
PJ (n)≤y; P (n)>z
p>y =⇒ p2∤n

(∀i) gi(n)≡bi (mod q)

1 ≪ x

qM(log x)1/3 (3.22)

uniformly in squarefree q ≤ (log x)K and in residues (b1, . . . , bM) mod q.

The following analogue of (3.21) will be useful for this purpose: for each r ∈ {0, 1, . . . ,M−

1}, we have

#V2(M−r),M−r
(
q; (wi)M−r

i=1
)
≤ λω(q)φ(q)2(M−r)

qM−r (3.23)

uniformly for squarefree q > 1 and in residue classes (w1, . . . , wM−r) mod q, for some

constant λ := λ(Ĝ) > 1. It suffices to show this bound for r = 0 for then it may

be applied with M − r playing the role of M (recalling that {G′
i}M−r
i=1 are Q-linearly

independent for any such r).

As in Proposition 3.3.2, we let C := C(G) be a constant exceeding max{C0(G),

(2D)2D+4}, with C0(G) defined in (3.2). Then for all ℓ ≤ C(G), we have trivially

#V2M,M

(
ℓ; (wi)Mi=1

)
≤ φ(ℓ)2M ≤ λ1

φ(ℓ)2M

ℓM
(3.24)
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by fixing λ1 := λ1(Ĝ) > C(G)M .

Now consider a prime ℓ > C(G). By orthogonality we can write, as in (3.8),

#V2M,M

(
ℓ; (wi)Mi=1

)
= φ(ℓ)2M

ℓM

{
1+

1
φ(ℓ)2M

∑
(r1,...,rM ) ̸≡(0,...,0) mod ℓ

e

(
−1
ℓ

M∑
i=1

riwi

)
(Zℓ; r1,...,rM

)2M

}
,

where Zℓ; r1,...,rM
:=

∑
v mod ℓ

χ0,ℓ(v)e
(

1
ℓ

M∑
i=1

riGi(v)
)

. Since ℓ > C(G) > C0(G), the

polynomials {G′
i}Mi=1 must be Fℓ-linearly independent, so that for each (r1, . . . , rM) ̸≡

(0, . . . , 0) mod ℓ, the polynomial
∑M

i=1 riGi(T ) does not reduce to a constant mod ℓ.

As such, the Weil bound (Proposition 3.3.4) yields |Zℓ; r1,...,rM
| ≤ Dℓ1/2, leading to

#V2M,M

(
ℓ; (wi)Mi=1

)
= φ(ℓ)2M

ℓM

{
1 +O

(
ℓM

(Dℓ1/2)2M

φ(ℓ)2M

)}
≤ λ2

φ(ℓ)2M

ℓM
, (3.25)

for some constant λ2 := λ2(Ĝ) > C(G)M . Finally, we choose λ := max{λ1, λ2} and

write, for any squarefree q > 1,

#V2M,M

(
q; (wi)Mi=1

)
=

∏
ℓ|q: ℓ≤C

#V2M,M

(
ℓ; (wi)Mi=1

)
·
∏

ℓ|q: ℓ>C

#V2M,M

(
ℓ; (wi)Mi=1

)
.

Combining (3.24) for all the prime divisors ℓ ≤ C with (3.25) for all the prime divisors

ℓ > C, we obtain the desired bound (3.23) for r = 0. As argued before, this also

implies (3.23) for any r ∈ {0, 1, . . . ,M − 1}.

Coming to the proof of (3.22), we write the count on the left hand side as

Σ1 + Σ2 + · · ·+ ΣM + Σ,
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where

• Σ1 counts those n which are exactly divisible by at least 2M many distinct

primes exceeding q,

• For each r ∈ {1, . . . ,M − 1}, Σr+1 counts the n that are exactly divisible by

either 2M − 2r many or by 2M − 2r+ 1 many distinct primes exceeding q, and

• Σ counts the remaining n, namely, those that are exactly divisible by at most

one prime exceeding q.

Bounding Σ1: Any n counted in Σ1 can be written in the form mP2M · · ·P1, where

P1 := P (n) > z, q < P2M < · · · < P1, PJ(m) ≤ y and where gcd(m,P2M · · ·P1) = 1.

As such, the congruences gi(n) ≡ bi (mod q) force (P1, . . . , P2M) ≡ v̂ mod q for some

v̂ := (v1, . . . , v2M) ∈ V2M,M

(
q; (bi − gi(m))Mi=1

)
.

Given m and v̂, the arguments in the previous section show that the number of

possible P1, . . . , P2M satisfying (P1, . . . , P2M) ≡ v̂ mod q is

≪ x(log2 x)O(1)

φ(q)2Mm log x.

Consequently,

Σ1 ≪
x(log2 x)O(1)

log x

∑
m≤x

PJ (m)≤y

1
m
·

#V2M,M

(
q; (bi − gi(m))Mi=1

)
φ(q)2M .

Using (3.23) to bound the cardinality #V2M,M

(
q; (bi − gi(m))Mi=1

)
in conjunction with
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(3.18) to bound the resulting sum on m, we obtain

Σ1 ≪ λω(q)x(log2 x)O(1)

qM(log x)1/2 exp
(
O
(
(log3 x)2))≪ x

qM(log x)1/3 ,

showing the desired bound for Σ1.

Bounding Σ2, . . . ,ΣM : We start by making the following general observation:

Let E be a set of primes and for a positive integer N , let Ω∗
E(N) :=

∑
pk∥n

p∈E, k>1

k denote

the number of prime divisors of N (counted with multiplicity) lying in the set E and

appearing to an exponent greater than 1 in the prime factorization of N . Then for

any t ≥ 2, any positive integer N having Ω∗
E(N) ≥ t is divisible by pα1

1 · · · pαs
s for some

distinct primes p1, . . . , ps ∈ E, and integers α1, . . . , αs ≥ 2 summing to t or t+1. More

precisely, there exist positive integers s, m, α1, . . . , αs, β1, . . . , βs and distinct primes

p1, . . . , ps ∈ E such that α1, . . . , αs ≥ 2,
∑s

i=1 αi ∈ {t, t + 1}, gcd(m, p1 · · · ps) = 1,

N = mpβ1
1 · · · pβs

s and βi ≥ αi for all i ∈ [s].

This is seen by a simple induction on t, the case t = 2 being clear with the tuple

(α1, . . . , αs) being the singleton (2) and the case t = 3 being clear with (α1, . . . , αs) ∈

{(3), (2, 2)}. Consider any T ≥ 4, assume that the result holds for all t < T , and let N

be a positive integer with Ω∗
E(N) ≥ T . Let p1 be the largest prime divisor of N lying

in the set E and satisfying p2
1 | n, and let β1 := vp1(N) ≥ 2. If β1 ≥ T −1, then we are

done with (α1, . . . , αs) being (T ) or (T−1, 2), so suppose β1 ≤ T−2. Then the positive

integer N ′ := N/pβ1
1 is not divisible by p1, and has Ω∗

E(N ′) ≥ T−β1 ≥ T−(T−2) = 2.

As such, by the inductive hypothesis applied to N ′ and t := T − β1, there exist

s,m, α2, . . . , αs, β2, . . . , βs and distinct primes p2, . . . , ps ∈ E satisfying α2, . . . , αs ≥ 2,∑s
i=2 αi ∈ {T − β1, T − β1 + 1}, gcd(m, p2 · · · ps) = 1, N ′ = mpβ2

2 · · · pβs
s and βi ≥ αi

for all i ∈ {2, . . . , s}. Since p1 ∤ N ′, we see that the primes p1, . . . , ps ∈ E must all
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be distinct and that gcd(m, p1 · · · ps) = 1. Consequently, with α1 := β1 ≥ 2, we have

N = pβ1
1 N

′ = mpβ1
1 p

β2
2 · · · pβs

s with
∑s

i=1 αi ∈ {T, T + 1} and with βi ≥ αi for all

i ∈ [s]. This completes the induction step, establishing the claimed observation.

With this observation in hand, we note that for each r ∈ {1, . . . ,M−1}, any n counted

in the sum Σr+1 is of the form mpβ1 · · · pβs
s P2M−2r · · ·P1 where all of the following hold:

(i) P1 := P (n) > z;

(ii) q < P2M−2r < · · · < P1;

(iii) p1, . . . , ps > q;

(iv) β1 ≥ α1, . . . , βs ≥ αs for some positive integers α1, . . . , αs at least 2 summing

to either max{2, 2r − 1} or to 2r;

(v) PJ(m) ≤ y;

(vi) m, p1, . . . , ps, P2M−2r, . . . , P1 are all pairwise coprime.

Indeed, any n counted in Σr+1 is exactly divisible by at least 2M − 2r but at

most 2M − 2r + 1 many primes (counted with multiplicity) exceeding q. Hence

in the case r = 1 we have Ω∗
>q(n) ≥ 2 while for r ∈ {2, . . . ,M − 1}, we have

Ω∗
>q(n) ≥ 2M − (2M − 2r + 1) ≥ 2r − 1, so altogether Ω∗

>q(n) ≥ max{2, 2r − 1}.

Let P1, P2, . . . , P2M−2r be primes exceeding q that exactly divide n, and satisfy P1 :=

P (n) > z and P2M−2r < · · · < P2 < P1. Then with n′ := n/P1 · · ·P2M−2r, we still

have Ω∗
>q(n′) = Ω∗

>q(n) ≥ max{2, 2r−1} and gcd(n′, P1 · · ·P2M−2r) = 1. Invoking the

above observation for N := n′, t := max{2, 2r− 1} and E the set of primes exceeding

q, we find that n′ = mpβ1 · · · pβs
s for some s ≥ 1, primes p1, . . . , ps > q and positive inte-

gers m,β1, . . . , βs such that m, p1, . . . , ps are pairwise coprime, and β1 ≥ α1, . . . , βs ≥
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αs for some positive integers α1, . . . , αs at least 2 summing to either max{2, 2r − 1}

or 2r. (Here, we have recalled that in the case t = 2, the tuple (α1, . . . , αs) = (2) was

sufficient.) Altogether, we find that n = n′P1 · · ·P2M−2r = mpβ1 · · · pβs
s P1 · · ·P2M−2r,

with m, p1, . . . , ps, β1, . . . , βs, P1, . . . , P2M−2r satisfying the conditions (i)-(vi).

Consequently, gi(n) = gi(mpβ1
1 · · · pβs

s ) +
∑2M−2r

j=1 Gi(Pj), and the conditions gi(n) ≡

bi (mod q) for i ∈ [M − r] force (P1, . . . , P2M−2r) ≡ v̂ mod q for some element

v̂ := (v1, . . . , v2M−2r) of the set

V2M−2r,M−r

(
q; (bi − gi(mpβ1 · · · pβs

s ))M−r
i=1

)
.

Given m, s, α1, . . . , αs, p1, . . . , ps, β1, . . . , βs and v̂, the arguments in the previous

section show that the number of possible P1, . . . , P2M−2r satisfying (P1, . . . , P2M−2r) ≡

v̂ mod q is

≪ x(log2 x)O(1)

φ(q)2M−2rmpβ1
1 · · · p

βs
s log x

.

Using (3.23) to bound #V2M−2r,M−r

(
q; (bi − gi(mpβ1 · · · pβs

s ))M−r
i=1

)
, we find that

Σr+1 ≪ λω(q)x(log2 x)O(1)

qM−r log x

∑
m≤x

PJ (m)≤y

1
m

∑
s≥1; α1,...,αs≥2

α1+···+αs∈{2r−1,2r}

∑
p1,...,ps>q

β1≥α1,...,βs≥αs

1
pβ1

1 · · · p
βs
s

.

Now, the sum on p1, . . . , ps, β1, . . . , βs is no more than

s∏
i=1

∑
pi>q

∑
βi≥αi

1
pβi

i

≪ s∏
i=1

∑
pi>q

1
pαi
i

≪ 1
qα1+···+αs−s .

In addition since s ≥ 1 and
∑s

i=1 αi ≥ 2r−1 and each αi ≥ 2, we find that
∑s

i=1 αi−

s ≥ r: indeed, from the bound
∑s

i=1 αi − s ≥ 2s− s = s ≥ 1, it remains to only see

that for r ≥ 2, we have
∑s

i=1 αi − s ≥ max{s, 2r − 1− s} ≥ r. Collecting estimates,
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we obtain

Σr+1 ≪ λω(q)x(log2 x)O(1)

qM log x

∑
m≤x

PJ (m)≤y

1
m

∑
s≥1; α1,...,αs≥2

α1+···+αs∈{2r−1,2r}

1.

But since there are O(1) many possible s ≥ 1 and tuples (α1, . . . , αs) of positive

integers summing to 2r − 1 or to 2r, this automatically leads to

Σr+1 ≪ λω(q)x(log2 x)O(1)

qM log x

∑
m≤x

PJ (m)≤y

1
m
.

As a consequence, (3.18) yields

Σr+1 ≪
λω(q)x

qM(log x)1/2 exp
(
O
(
(log3 x)2))≪ x

qM(log x)1/3 ,

yielding the desired bound for all of Σ2, . . . ,ΣM .

Bounding Σ: Any n counted in Σ has 2M many prime factors (counted with multi-

plicity) exceeding q, out of which at most one of them can exactly divide n. Hence

Ω∗
>q(n) ≥ 2M − 1, and by the same argument as given above, any n counted in Σ

can be expressed in the form mpβ1
1 · · · pβs

s P , where P := P (n) > z, p1, . . . , ps > q are

primes, PJ(m) ≤ y, and β1 ≥ α1, . . . , βs ≥ αs for some positive integers α1, . . . , αs at

least 2 summing to either 2M −1 or 2M . Given m, s, α1, . . . , αs, p1, . . . , ps, β1, . . . , βs,

the number of possible P is ≪ x/mpβ1
1 · · · pβs

s log z. As above, we have
∑s

i=1 αi− s ≥

max{s, 2M − 1 − s} ≥ M , so that the sum over s, α1, . . . , αs, p1, . . . , ps, β1, . . . , βs is

O(q−M). Finally, using (3.18) to bound the sum on m, we obtain Σ≪ x/qM(log x)1/3.

This completes the proof of (3.22), and hence that of Theorem 3.1.3.
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3.6.1. Optimality in the input restrictions in Theorem 3.1.3:

For any M ≥ 2, we construct additive functions g1, . . . , gM showing that the restric-

tion P2M(n) > q cannot be weakened to P2M−3(n) > q in our range of q. For M = 2,

the condition P2M−3(n) > q translates to P (n) > q; by Lemma 2.3.1, this latter condi-

tion may be ignored up to a negligible error, so the first counterexample in subsection

§ 3.4.1 suffices.

Now assume that M ≥ 3; consider additive functions g1, . . . , gM : N → Z defined by

the polynomials Gi(T ) := (T − 1)i, and satisfying the conditions gi(p2) := 0 for all

primes p and all i ∈ [M ]. As observed in subsection § 3.4.1, the polynomials {G′
i}Mi=1

are Q-linearly independent, and with C0(G) as in (3.2), we have q ∈ Q(g1,...,gM ) for all

moduli q having P−(q) > C0(G).

We see that Gi(p) ≡ 0 (mod q) for all i and for all primes p ≡ 1 (mod q). Conse-

quently, if p1, . . . , pM−2, P are primes satisfying q < pM−2 < · · · < p1 < x1/(4M−8) <

x1/3 < P ≤ x/(p1 · · · pM−2)2 and P ≡ 1 (mod q), then the positive integer n :=

(p1 · · · pM−2)2P is less than or equal to x, has P2M−3(n) > q and satisfies the con-

ditions gi(n) = Gi(P ) +
∑M−2

j=1 gi(p2
j) ≡ 0 (mod q) for all i ∈ {1, . . . ,M}. By the

Siegel–Walfisz Theorem, we find that

∑
n≤x: P2M−3(n)>q

(∀i) gi(n)≡0 (mod q)

1 ≥
∑

q<pM−2<···<p1<x1/(4M−8)

∑
x1/3<P≤x/(p1···pM−2)2

P≡1 (mod q)

1

≫
∑

q<pM−2<···<p1<x1/(4M−8)

(
x

φ(q)(p1 · · · pM−2)2 log x +O(x1/3)
)

≫ x

q log x

∑
p1,...,pM−2 distinct

q<p1,...,pM−2<x
1/(4M−8)

1
(p1 · · · pM−2)2
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Ignoring the distinctness condition in the sum above incurs a total error

≪ x

q log x

∑
p1,p2,...,pM−3>q

1
p4

1p
2
2 · · · p2

M−3

≪ x

q log x

∑
p>q

1
p4

∑
p>q

1
p2

M−4

≪ x

qM log x.

On the other hand,

∑
p1,...,pM−2∈(q,x1/(4M−8))

1
(p1 · · · pM−2)2 =

 ∑
q<p<x1/(4M−8)

1
p2

M−2

≫ 1
(q log q)M−2 .

Collecting estimates, we obtain for all sufficiently large q,

∑
n≤x: P2M−3(n)>q

(∀i) gi(n)≡0 (mod q)

1≫ x

qM−1 log x(log q)M−2 +O

(
x

qM log x

)

≫ x

qM−1 log x(log2 x)M−2 ,

which grows strictly faster than x/qM as soon as q > log x · (log2 x)M−1 (say). We

conclude that the condition P2M(n) > q cannot be replaced by P2M−3(n) > q for any

M ≥ 2.

One might wonder whether one of the conditions P2M−1(n) > q or P2M−2(n) > q could

possibly suffice to restore uniformity in squarefree q ≤ (log x)K . In this direction, we

now construct an example showing that the condition P2M−2(n) > q is also insufficient

for M = 2. Indeed, let consider additive functions g1, g2 defined by the polynomials

G1(T ) := T and G2(T ) := T 3, so that {G′
1, G

′
2} are clearly Q-linearly independent.
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With C0(G) as usual, we have q ∈ Q(g1,g2) for all q having P−(q) > C0(G).

However, if n is of the form P1P2 for distinct primes P1, P2 satisfying P1, P2 > y :=

exp((log x)1/2) and P2 ≡ −P1 (mod q), then P2(n) > y > q, whileGi(P1)+Gi(P2) ≡ 0

(mod q) for i ∈ {1, 2}, so that g1(n) ≡ g2(n) ≡ 0 (mod q). As such, for 2 < q ≤

(log x)K , a simpler version of the arguments leading to (3.5) yields

∑
n≤x: P2(n)>q

(∀i) gi(n)≡0 (mod q)

1 ≥
∑
v∈Uq

1
2!

∑
P1,P2>y

P1 ̸=P2, P1P2≤x
P1≡v, P2≡−v (mod q)

1

≫ 1
φ(q)

∑
P1,P2>y: P1P2≤x

1 +O(x exp(−C ′(log x)1/4))

≫ x log2 x

q log x ,

(3.26)

where C ′ := C ′(K) > 0 is a constant, and the last bound above is a simple conse-

quence of Chebyshev’s and Mertens’ estimates. In particular, this shows that the

tuple (0, 0) mod q is overrepresented by (g1, g2) once q > log x/(log2 x)1/2, showing

failure of uniformity in squarefree q after a very small threshold, under the restriction

P2M−2(n) > q for M = 2.

It is to be noted that our arguments above go through for any two polynomials

Gi(T ) := AiT
ki + Bi (i ∈ {1, 2}), for any two distinct odd positive integers ki, and

any integers Ai ̸= 0 and Bi. Indeed, the distinctness of k1 and k2 ensures that G′
1 and

G′
2 are Q-linearly independent, while their parity ensures that any two primes P1, P2

satisfying P2 ≡ −P1 (mod q) also satisfy Gi(P1) + Gi(P2) ≡ 2Bi (mod q) for both

i ∈ {1, 2}. As such, the above arguments show that there are≫ x log2 x/q log x many

n ≤ x satisfying gi(n) ≡ 2Bi (mod q) for i ∈ {1, 2}. This gives an infinite family of

counterexamples showing that the condition P2M−2(n) > q is not sufficient to restore
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uniformity in squarefree q ≤ (log x)K in the case M = 2.

In conclusion, this means that our restriction P2M(n) > q in Theorem 3.1.3 is at most

“one step away” from optimal, in the sense that it might still be possible to weaken

it to P2M−1(n) > q.

Section 3.7

Necessity of the linear independence hypothesis:

Proof of Theorem 3.1.4

Recall that the Q-linear independence of {G′
i}M−1
i=1 is equivalent to that of {Gi −

Gi(0)}M−1
i=1 ; likewise, the condition G′

M =
∑M−1

i=1 aiG
′
i is exactly equivalent to the

condition GM(T ) − GM(0) =
∑M−1

i=1 ai(Gi(T ) − Gi(0)) in the ring Q[T ]. We claim

that the polynomials {Gi}Mi=1 are Q-linearly independent. Indeed, suppose there exist

integers β1, . . . , βM for which
∑M

i=1 βiGi(T ) = 0 in Q[T ]. Since GM(T ) = GM(0) +∑M−1
i=1 ai(Gi(T )−Gi(0)), we find that

M−1∑
i=1

(βi + βMai)Gi(T ) = βM

(
M−1∑
i=1

aiGi(0)−GM(0)
)
, (3.27)

so that
∑M−1

i=1 (βi + βMai)(Gi(T ) − Gi(0)) = 0. Since {Gi(T ) − Gi(0)}M−1
i=1 are Q-

linearly independent, the last relation forces βi = −βMai for all i ∈ {1, . . . ,M − 1},

which by (3.27) leads to

βM

(
M−1∑
i=1

aiGi(0)−GM(0)
)

= 0.

Now if βM ̸= 0, then the above relation forces
∑M−1

i=1 aiGi(0) = GM(0) contrary

to hypothesis. Hence, we must have βM = 0, forcing βi = −βMai = 0 for all
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i ∈ {1, . . . ,M − 1}. This shows that {Gi}Mi=1 are indeed Q linearly independent.

As such by Corollary 3.2.3(i) and the discussion preceding it, there exists a constant

C1(Ĝ) > 0 such that {Gi}Mi=1 are Fℓ-linearly independent for all ℓ > C1(Ĝ), and so Q ∈

Q(g1,...,gM ) for all moduli Q > 1 having P−(Q) > C1(Ĝ). In addition, since {G′
i}M−1
i=1

are Q-linearly independent, there exists (by (3.2)) a constant C0(G1, . . . , GM−1) > 0

such that {G′
i}M−1
i=1 are Fℓ-linearly independent for any ℓ > C0(G1, . . . , GM−1).

We set CG to be any constant exceeding

max{C1(Ĝ), 4M(32D)2D+4, C0(G1, . . . , GM−1)},

and henceforth consider moduli q having P−(q) > CG, so that q ∈ Q(g1,...,gM ). Given

any R > CG and integers {bi}M−1
i=1 , set bM := GM(0)R +

∑M−1
i=1 ai(bi − Gi(0)R).

Then the relations
∑R

j=1 Gi(vj) ≡ bi (mod q) for i ∈ {1, . . . ,M − 1} also imply that∑R
j=1 GM(vj) ≡ bM (mod q). As such, for any R distinct primes P1, . . . , PR, with

(P1, . . . , PR) mod q lying in the set

V := VR,M−1
(
q; (bi)M−1

i=1
)

=
{

(vj)Rj=1 ∈ (Uq)R : (∀i ∈ [M − 1])
R∑
j=1

Gi(vj) ≡ bi (mod q)
}
,

we have gi(P1 · · ·PR) ≡ bi (mod q) for all i ∈ [M ]. Letting y := exp((log x)1/2), a

simpler version of the arguments leading to (3.5) yields, for q ≤ (log x)K ,

∑
n≤x: PR(n)>q

(∀i) gi(n)≡bi (mod q)

1 ≥
∑

(v1,...,vR)∈V

1
R!

∑
P1,...,PR>y
P1···PR≤x

P1,...,PR distinct
(∀j) Pj≡vj (mod q)

1
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≫ #V
φ(q)R

∑
P1,...,PR>y
P1···PR≤x

P1,...,PR distinct

1 +O(x exp(−C ′(log x)δ/4))

≫ #V
φ(q)R

∑
P1,...,PR>y
P1···PR≤x

1 +O(x exp(−C ′(log x)δ/4))

for some constant C ′ := C ′(K) > 0. A direct induction on R (involving Chebyshev’s

estimate) shows that the last sum above is

∑
n≤x: P−(n)>y

Ω(n)=R

1 ≫ x(log2 x)R−1

log x ,

leading to

∑
n≤x: PR(n)>q

(∀i) gi(n)≡bi (mod q)

1 ≫ #V
φ(q)R ·

x(log2 x)R−1

log x +O(x exp(−C ′(log x)δ/4)).

As such, to complete the proof of the theorem, it remains to show that

#V = #VR,M−1
(
q; (bi)M−1

i=1
)
≫ φ(q)R

qM−1 . (3.28)

To show this, we argue as in the proof of the estimate (3.7): for each prime power

ℓe ∥ q, we write

#VR,M−1
(
ℓe; (bi)M−1

i=1
)

= φ(ℓe)R
ℓe(M−1)

{
1

+ 1
φ(ℓe)R

∑
(r1,...,rM−1 )̸≡(0,...,0) mod ℓe

e

− 1
ℓe

M−1∑
i=1

ribi

 (Zℓe; r1,...,rM−1)R
}
,
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where

Zℓe; r1,...,rM−1 :=
∑

v mod ℓe
χ0,ℓ(v)e

 1
ℓe

M−1∑
i=1

riGi(v)


for each (r1, . . . , rM−1) ̸≡ (0, . . . , 0) mod ℓe. For any such (r1, . . . , rM−1), we have

gcd(ℓe, r1, . . . , rM−1) = ℓe−e0 for some 1 ≤ e0 ≤ e and |Zℓe; r1,...,rM−1| ≤ Dℓe−e0/D

(here it is important that since ℓ > CĜ, the polynomials {G′
i}M−1
i=1 are Fℓ-linearly

independent). We obtain

1
φ(ℓe)R

∑
(r1,...,rM−1 )̸≡(0,...,0) mod ℓe

|Zℓe; r1,...,rM−1|R

≤ DRℓeR

φ(ℓe)R
∑
e0≥1

(
ℓM−1−R/D)e0 ≤ 2(2D)R

ℓR/D−M+1 .

Since R/D −M ≥ R/(D + 2) and ℓ1/(2D+4) > (CG)1/(2D+4) > 32D, this leads to

1
φ(ℓe)R

∑
(r1,...,rM−1) ̸≡(0,...,0) mod ℓe

|Zℓe; r1,...,rM−1 |R ≤
2(2D)R
ℓR/(D+2)

≤ 2(2D)R
(32D)R ·

1
ℓR/(2D+4) ≤

1
8RℓR/(2D+4) ≤

1
8ℓ2 .

Hence, for each prime power ℓe ∥ q,

#VR,M−1
(
ℓe; (bi)M−1

i=1
)
≥ φ(ℓe)R
ℓe(M−1)

(
1− 1

8ℓ2

)
, (3.29)

and since
∏

ℓ|q
(
1− 1

8ℓ2
)
≥ 1− 1

8
∑

ℓ≥2
1
ℓ2
≥ 7

8 , we obtain by multiplying all the bounds

(3.29),

#V =
∏
ℓe∥q

#VR,M−1
(
ℓe; (bi)M−1

i=1
)
≥ 7

8 ·
φ(q)R
qM−1 .

This shows (3.28), completing the proof of Theorem 3.1.4, and demonstrating the

necessity of the linear independence hypothesis in the generality of our setting.
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Chapter 4

Joint distribution in residue classes

of families of polynomially-defined

multiplicative functions

We return to the general setting of Theorem 1.3.11, with f1, . . . , fK : N → Z being

a family of multiplicative functions for which there exist polynomials {Wi,v}1≤i≤K
1≤v≤V

⊂

Z[T ] satisfying fi(pv) = Wi,v(p) for all i ∈ [K], v ∈ [V ] and all primes p. In Chapter

2, we gave a uniform analogue of Corollary 1.3.17 on the weak equidistribution of a

single polynomially–defined multiplicative function to a varying 1-admissible modulus

supported on large primes. However, most of the arguments in that chapter are

completely limited to the case of a single multiplicative function (i.e. K = 1) and

do not generalize to families. Even for a single function, they are still far from being

complete varying-modulus analogues of Theorem 1.3.6 because they crucially need q

to be 1-admissible (i.e. k = 1) and have only large prime factors, and also crucially

need the only defining polynomial W1,1 to be separable.
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In this chapter, we remove all these limitations, and obtain best possible analogues of

Theorem 1.3.11 to varying moduli. Our results are thus also best possible analogues

of the Siegel–Walfisz theorem for families of polynomially–defined multiplicative func-

tions. These results are thus also new for a single multiplicative function as they give

complete uniform analogues of Narkiewicz’s single function criterion Theorem 1.3.6.

Special cases of our main results thus also give uniform analogues (with optimal arith-

metic restrictions) of the works of Narkiewicz, S̀liwa, Rayner, Dobrowolski, Fomenko

and others mentioned in the discussion following Proposition 1.3.10.

In the last paragraph of subsection § 1.4.2, we already gave a glimpse of some of the

ideas used in our arguments. A more detailed summary of the arguments is given

towards the end of the next section.

This chapter is based on the papers [71] and [72] of the author.

Section 4.1

Main results

4.1.1. Multiplicative independence and the Invariant Factor Hypothesis

For concrete and provably unavoidable reasons (see Theorems 4.1.4 and 4.1.5 below),

we are going to need two additional hypotheses (which we had been calling “H1” and

“H2” before the statement of Theorem 1.4.8). We first define the relevant notation

and terminology.

1. We say that the polynomials {Fi}1≤i≤K ⊂ Z[T ] are multiplicatively independent

(over Z) if there is no tuple of integers (c1, . . . , cK) ̸= (0, . . . , 0) for which the product∏K
i=1 F

ci
i is identically constant in Q(T ). This hypothesis is very easy to satisfy, for
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example it is satisfied by {Fi}1≤i≤K ⊂ Z[T ] if
∏K

i=1 Fi is separable. It is also satisfied

if each Fi has an irreducible factor that is not present in the other Fj (for j ̸= i).

2. Assume that {Fi}Ki=1 ⊂ Z[T ] are multiplicatively independent. Factor Fi =

ri
∏M

j=1 G
µij

j with ri ∈ Z, {Gj}Mj=1 ⊂ Z[T ] being pairwise coprime primitive1 irre-

ducibles and with µij ≥ 0 being integers, such that each Gj appears with a positive

exponent µij in some Fi. Let ω(F1 · · ·FK) := M and define the exponent matrix of

(Fi)Ki=1 to be the M ×K matrix

E0 := E0(F1, . . . , FK) :=



µ11 · · · µK1

· · · · · · · · ·

· · · · · · · · ·

µ1M · · · µKM


∈MM×K(Z),

so that E0 has a positive entry in each row. Since {Fi}Ki=1 ⊂ Z[T ] are multiplicatively

independent, the columns of E0 are Q-linearly independent and ω(F1 · · ·FK) = M ≥

K.

3. Continuing from above, E0 has a Smith Normal Form given by the M×K diagonal

matrix diag(β1, . . . , βK), where β1, . . . , βK ∈ Z are the invariant factors of E0 satisfying

β1 | · · · | βK ; since the columns of E0 are Q-linearly independent, it follows that βi

are all nonzero. (Here we fixed some ordering of the Gj to define E0 but the invariant

factors are independent of this ordering.) We shall use β (F1, . . . , FK) to denote the

last invariant factor βK . We define the

Invariant Factor Hypothesis: Given B0 > 0, we shall say that a positive integer q

satisfies (hypothesis) IFH(F1, . . . , FK ;B0) if gcd(ℓ − 1, β(F1, . . . , FK)) = 1 for any
1We say that a polynomial in Z[T ] is primitive when the greatest common divisor of its coefficients

is 1.
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prime ℓ | q such that ℓ > B0.

Example: Often in applications,
∏K

i=1 Fi is separable over Q (or more generally, the

exponent matrix E0(F1, . . . , FK) is equivalent to the diagonal matrix diag(1, . . . , 1));

when this happens, β(F1, . . . , FK) = 1, so any integer satisfies IFH(F1, . . . , FK ;B0)

for any B0 > 0.

4.1.2. Set-up for the main results in this chapter

Most of the set-up for the main results has already been done before Theorem 1.3.11,

however owing to the necessity of some additional notation, we state the complete

set-up below for the convenience of the reader:

• Consider multiplicative functions f1, . . . , fK : N→ Z and polynomials {Wi,v}1≤i≤K
1≤v≤V

⊂

Z[T ] satisfying fi(pv) = Wi,v(p) for any prime p, any i ∈ [K] and v ∈ [V ].

• Let f :=
∏K

i=1 fi and Wv :=
∏K

i=1 Wi,v, so f(pv) = Wv(p) for all primes p and

all v.

• For each v ∈ [V ], define Dv := degWv =
∑K

i=1 degWi,v. Also let D := Dk, and

Dmin := min1≤i≤K degWi,k.

• For any q and v ∈ [V ], define Rv(q) = {u ∈ Uq : Wv(u) ∈ Uq} and αv(q) :=
1

φ(q)#Rv(q).

• Fix k ∈ [V ], and say that q is k-admissible if Rk(q) = ∅ but Rv(q) ̸= ∅ for all

v < k.

Note that if q is k-admissible, then αv(q) = 0 for v < k, while αk(q) ≫Wk

(log log(3q))−D by the Chinese Remainder Theorem and a standard argument

using Mertens’ Theorem.
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• Assume that {Wi,k}1≤i≤K are multiplicatively independent.

• Define Q(k; f1, · · · , fK) exactly as before the statement of Theorem 1.3.11.

4.1.3. The Main Results

In Theorems 4.1.1 to 4.1.3 below, we fix K0, B0 > 0. Our implied constants depend

only on K0, B0 and the polynomials {Wi,v}1≤i≤K
1≤v≤k

, and are in particular independent

of V and of {Wi,v}1≤i≤K
k<v≤V

.

Theorem 4.1.1. Fix ϵ ∈ (0, 1). The functions f1, . . . , fK are jointly weakly equidis-

tributed, uniformly to all moduli q ≤ (log x)K0 lying in Q(k; f1, · · · , fK) and satisfying

IFH(W1,k, . . . ,WK,k; B0), provided any one of the following holds.

(i) Either K = 1 and W1,k = Wk is linear, or if K ≥ 2, q ≤ (log x)(1−ϵ)αk(q)/(K−1)

and at least one of {Wi,k}1≤i≤K is linear (i.e., Dmin = 1).

(ii) q is squarefree and qK−1D
ω(q)
min ≤ (log x)(1−ϵ)αk(q).

(iii) Dmin > 1 and q ≤ (log x)(1−ϵ)αk(q)(K−1/Dmin)−1.

A concrete application: Corollary 1.3.13 (special case of [46, Theorem 1]) shows

that φ(n) and σ(n) are jointly WUD modulo a fixed integer q precisely when q is

coprime to 6; in fact, Q(1;φ, σ) = {q : (q, 6) = 1}. Theorem 4.1.1 shows that

(φ, σ) are jointly WUD uniformly modulo q ≤ (log x)(1−ϵ)α(q) coprime to 6, where

α(q) := α1(q) =
∏

ℓ|q(ℓ− 3)/(ℓ− 1) and ϵ > 0 is fixed but arbitrary.

Optimality of the conditions in Theorem 4.1.1: Note that except in the very

first case when K = 1 and Wk = W1,k is linear (which is also when we already have the

best possible analogue of the Siegel-Walfisz theorem), Theorem 4.1.1 gives uniformity

only up to small powers of log x. In subsection § 4.7.1, we will construct general
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counterexamples showing that for any K, k, D and Dmin, the ranges of q in (i)–(iii)

above are all essentially optimal, except perhaps in the very first case. We will also

show that for any K ≥ 2, the range of q in (i) is essentially optimal, even if q is

squarefree and {Wi,k}1≤i≤K are all linear, for any choice of (pairwise coprime) linear

functions! In particular, this means that the aforementioned range (log x)(1−ϵ)α(q)

is basically optimal for the joint weak equidistribution of (φ, σ), even if we restrict

to squarefree q. Thus, this special case of Theorem 4.1.1(i) is the optimal uniform

analogue of Narkiewicz’s result in [46] for a single varying modulus.

Restoring uniformity in the Siegel–Walfisz range:

Our constructions in § 4.7.1 will reveal that obstructions to uniformity in q come

from inputs n of the form P k for primes P . Modifying those constructions, we can

produce more obstructions of the form mP k with m fixed or growing slowly with x. It

turns out that once again, uniformity is restored in the full Siegel–Walfisz range if we

restrict attention to those n that are divisible by sufficiently many primes exceeding

q. Since D = 1 forces K = 1 and Wk = W1,k to be linear (a case in which Theorem

4.1.1(i) already gives complete uniformity in q ≤ (log x)K0), we assume in Theorems

4.1.2 and 4.1.3 below that D ≥ 2.

Theorem 4.1.2. The following hold as x → ∞, uniformly in coprime residues

a1, . . . , aK to moduli q ≤ (log x)K0 that lie in Q(k; f1, · · · , fK) and satisfy hypoth-

esis IFH(W1,k, . . . ,WK,k;B0).

#{n ≤ x : PR(n) > q, (∀i) fi(n) ≡ ai (mod q)}

∼ 1
φ(q)K #{n ≤ x : gcd(f(n), q) = 1}

∼ 1
φ(q)K #{n ≤ x : PR(n) > q, gcd(f(n), q) = 1}. (4.1)
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Here 
R = k(KD + 1), if k < D

R is the least integer exceeding k (1 + (k + 1) (K − 1/D)) , if k ≥ D.

Even in the special case k = K = 1, this theorem improves over Theorem 2.1.3(a).

The value of R is optimal for K = 1 and f1(n) = σ(n) modulo even q; see the

discussion on applications in subsection § 4.1.5. For squarefree q, it suffices to have

much weaker restrictions on n (that are often optimal in greater generality) to restore

uniformity in the Siegel–Walfisz range.

Theorem 4.1.3. The formulae (4.1) hold as x→∞, uniformly in coprime residues

a1, . . . , aK to squarefree moduli q ≤ (log x)K0 lying in Q(k; f1, · · · , fK) and satisfying

IFH(W1,k, . . . ,WK,k;B0), with

R :=



2, if K = k = 1 and W1,1 is not squarefull.

k(Kk +K − k) + 1, if k > 1 and at least one of

{Wi,k}1≤i≤K is not squarefull.

k(Kk +K − k + 1) + 1, in general.

Here we write a polynomial F ∈ Z[T ] as F = r
∏M

j=1 H
νj

j for some νj ∈ N and pairwise

coprime primitive irreducibles Hj ∈ Z[T ], and we say that F is “squarefull” (in Z[T ])

if (
∏M

j=1 Hj)2 | F . Note that this is equivalent to saying that
∏

θ∈C
F (θ)=0

(T − θ)2 | F (T )

in C[T ], i.e., that every root of F in C has multiplicity at least 2.

It is worthwhile to try optimizingR above since doing so ensures weak equidistribution
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among the largest possible set of inputs n. In subsection § 4.10.1, we show that the

first two values of R in Theorem 4.1.3 are exactly optimal, in the sense that for any

K and k, reducing the “2” to “1” or the “k(Kk + K − k) + 1” to “k(Kk + K −

k)” destroys uniformity in q ≤ (log x)K0 : We also construct infinitely many general

counterexamples showing this. In these examples, {Wi,k}Ki=1 are pairwise coprime

irreducibles, making
∏K

i=1 Wi,k separable over Q (so that IFH is satisfied trivially).

4.1.4. Necessity of the multiplicative independence and invariant factor

hypotheses

We now explain the necessity of these two hypotheses that we have been assuming in

our results so far. It turns out that even if one of them is violated, then uniformity

would fail in the above theorems in some of the worst possible ways: Not only would

uniformity fail modulo arbitrarily large q ≤ (log x)K0 , but also would be unrecoverable

no matter how much we restrict our set of inputs n to those having many large prime

factors!

For instance, without the multiplicative independence condition, the K congruences

fi(n) ≡ ai (mod q) (for 1 ≤ i ≤ K) may degenerate to fewer congruences for suffi-

ciently many inputs n. This would lead to failure of weak equidistribution uniformly

to all sufficiently large q, no matter how much we restrict the inputs n to those having

many large prime factors.

Theorem 4.1.4. Fix R ≥ 1, K > 1 and assume that {Wi,k}1≤i≤K−1 ⊂ Z[T ] are

multiplicatively independent, with
∑K−1

i=1 degWi,k > 1. Suppose WK,k =
∏K−1

i=1 W λi
i,k

for some nonnegative integers (λi)K−1
i=1 ̸= (0, . . . , 0). There exists a constant C :=

C(W1,k, . . . ,WK−1,k) > 0 such that
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#{n ≤ x : PRk(n) > q, (∀i ∈ [K]) fi(n) ≡ ai (mod q)}

≫ 1
φ(q)K−1 ·

x1/k(log log x)R−2

log x

as x → ∞, uniformly in k-admissible q ≤ (log x)K0 supported on primes ℓ > C

satisfying gcd(ℓ− 1, β(W1,k, . . . , WK−1,k)) = 1, and uniformly in ai ∈ Uq with aK ≡∏K−1
i=1 aλi

i (mod q).

The compatibility of the relations in {Wi,k}1≤i≤K and (ai)Ki=1 suggests why the K

congruences degenerate to K − 1 congruences. Note that the above lower bound will

in fact come from the n which are supported on primes much larger than q. A similar

lower bound holds for K = 1 when Wk = W1,k is constant (see the remark preceding

subsection § 4.11.1). Using the above theorem, we shall construct (in § 4.11.1) explicit

examples of polynomials {Wi,k}1≤i≤K−1 and moduli q ∈ Q(k; f1, · · · , fK) where the

above lower bound grows strictly faster than the expected proportion of n ≤ x having

gcd(f(n), q) = 1. This would demonstrate an overrepresentation of the coprime

residues (ai mod q)Ki=1 by the multiplicative functions f1, . . . , fK , coming from inputs

n that have at least Rk many prime factors exceeding q, showing the necessity of our

hypothesis on the multiplicative independence of {Wi,k}1≤i≤K .

Turning to the invariant factor hypothesis, we will show that the failure of this con-

dition incurs an additional factor over the expected main term. For certain choices of

q and {Wi,k}1≤i≤K , this factor can be made too large, once again leading to an over-

representation of the tuple (ai mod q)Ki=1 by the multiplicative functions f1, . . . , fK .

Theorem 4.1.5. Fix R ≥ 1 and assume that {Wi,k}1≤i≤K ⊂ Z[T ] are nonconstant,

monic and multiplicatively independent, so that β = β(W1,k, . . . ,WK,k) ∈ Z \ {0}.

There exists a constant C := C(W1,k, . . . ,WK,k) > 0 such that
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#{n ≤ x : PRk(n) > q, (∀i ∈ [K]) fi(n) ≡ ai (mod q)}

≫ 2#{ℓ|q: gcd(ℓ−1,β)̸=1}

φ(q)K · x
1/k(log log x)R−2

log x (4.2)

as x→∞, uniformly in k-admissible q ≤ (log x)K0 having P−(q) > C, and uniformly

in coprime residues (ai)Ki=1 mod q which are all congruent to 1 modulo the largest

squarefree divisor of q.

Here, the restriction on the residues ai is imposed in order to have a positive contribu-

tion of certain character sums modulo the prime divisors of q. In subsection § 4.11.1,

we shall construct explicit examples of q ∈ Q(k; f1, · · · , fK) and {Wi,k}1≤i≤K for

which the expression in the above lower bound is much larger than the expected pro-

portion of n ≤ x having gcd(f(n), q) = 1. We shall establish Theorems 4.1.4 and

4.1.5 in section 4.11.

4.1.5. Some more concrete applications of our main results

We give several applications of our main results to arithmetic functions of common

interest. In fact, as applications of Theorems 4.1.1 to 4.1.3 we can extend the results of

Narkiewicz, Rayner, Śliwa, Dobrowolski and Fomenko (alluded to in the introduction)

to varying moduli, – without imposing any unnecessary arithmetic restrictions on the

moduli. For instance, recall Śliwa’s result Proposition 1.3.10 that σ(n) is weakly

equidistributed precisely to fixed moduli that are not multiples of 6; in fact, his work

shows that Q(1;σ) = {q : gcd(q, 2) = 1} and Q(2;σ) = {q : gcd(q, 6) = 2}. Calling

the members of the set Q(2;σ) “special”, our main results extend Śliwa’s work as

follows:

• By Theorem 4.1.1(i), σ(n) is WUD uniformly to all odd moduli q ≤ (log x)K0 .
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• Theorem 4.1.1(iii) shows that σ(n) is WUD uniformly modulo all special q ≤

(log x)(2−δ)α̃(q), where α̃(q) := α2(q) =
∏

ℓ|q
ℓ≡1 (mod 3)

(1− 2/(ℓ− 1)).

• By Theorem 4.1.1(ii), σ(n) is WUD uniformly modulo all squarefree special

q ≤ (log x)K0 satisfying 2ω(q) ≤ (log x)(1−ϵ)α̃(q). By the example constructed in

[71, subsection 7.1], these restrictions are optimal.

• By Theorem 4.1.2 (resp. 4.1.3), σ(n) is WUD uniformly modulo all special

(resp. modulo squarefree special) q ≤ (log x)K0 by restricting to inputs n with

P6(n) > q (resp. P4(n) > q). 2 By the examples constructed in [71], both of

these restrictions are optimal as well.

We can give more applications of our main results to explicitly study the weak equidis-

tribution of the functions σr(n) :=
∑

d|n d
r (for r > 1). An easy check shows that

the polynomial
∑

0≤j≤v T
rj = T r(v+1)−1

T r−1 shares no roots with its derivative, hence is

separable. Calling the q ∈ Q(k;σr) as “k-special”, Theorem 4.1.1 thus shows that

σr is WUD uniformly modulo all k-special q ≤ (log x)(1−ϵ)αk(q)(1−1/kr)−1 , and modulo

all squarefree k-special q ≤ (log x)K0 having ω(q) ≤ (1 − ϵ)αk(q) log log x/ log(kr).

Further, by Theorems 4.1.2 and 4.1.3, weak equidistribution is restored modulo all

k-special (resp. modulo squarefree k-special) q ≤ (log x)K0 by restricting to n with

Pk(kr+1)(n) > q (resp. Pk+1(n) > q).

An explicit characterization of the moduli q ≤ (log x)K0 to which a given σr is

weakly equidistributed thus reduces to an understanding of the possible k (for which

Q(k;σr) ̸= ∅) and of the set Q(k;σr) for a given fixed r; both of these are problems of

fixed moduli that (as mentioned in the discussion following Proposition 1.3.10) have

been studied in great depth in [75], [24], [51], [48], [49], [64] and [65].
2Here we have noted that the condition P3(n) > q forces P4(n) > q since for σ(n) to be coprime

to the even number q, it is necessary for n to be of the form m2 or 2m2.
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Other applications: we saw using Theorem 4.1.1 that φ(n) and σ(n) are jointly WUD

modulo q ≤ (log x)(1−ϵ)α(q) coprime to 6, and that these two restrictions on q are

necessary and essentially optimal. By Theorem 4.1.2, complete uniformity is restored

to all moduli q ≤ (log x)K0 coprime to 6 by restricting to inputs n with P5(n) >

q. These results also imply that the function φ(n)σ(n) is WUD uniformly modulo

q ≤ (log x)(1−ϵ)α(q) coprime to 6; moreover, φ(n)σ(n) is WUD uniformly modulo all

q ≤ (log x)K0 coprime to 6 if we restrict to n with P5(n) > q. Likewise, we can get

interesting consequences of Theorems 4.1.1 to 4.1.3 for the families (φ, σ3), (φ, σ, σ2),

(φ, σ, σ2, σ3) etc., as well as to exotic families like (φσ, σ4), (φσ, σσ2), (σ, σ2
2, σ

3
3, σ

4
4),

(σσ3, σ
2
2) and so on.

In general, Theorems 4.1.1 to 4.1.3 can be used to obtain more explicit analogues of the

Siegel-Walfisz theorem for a family (f1, . . . , fK) of polynomially-defined multiplicative

functions by means of an explicit understanding of the sets Q(k; f1, · · · , fK). This

is a “fixed modulus problem” that, – as mentioned in subsection § 1.4.2, – has been

studied by multiple authors.

4.1.6. Summary of the main ideas

The arguments used to establish Theorems 4.1.1 to 4.1.3 comprise several themes.

(1) By studying the anatomy (prime factorizations) of our inputs n much more care-

fully, we refine the “mixing” phenomenon in Chapter 2.

(2) We invoke Halász’s theorem and carefully estimate certain “pretentious distances”

by adapting a technique used to bound exponential sums.

(3) We judiciously modify the Landau-Selberg-Delange method to obtain sharp upper

bounds on the mean values of certain multiplicative functions involving characters

mod q, uniformly for q ≤ (log x)K0 (applying known mean value results directly is
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not enough to get the desired uniformity). To make these modifications, we adapt

some ideas of Scourfield [69].

(4) Character sum machinery and linear algebra over rings come into play throughout

the chapter. In fact, we invoke various extensions of the Weil bounds, and carefully

study the Smith normal forms and invariant factors of several matrices, to bound

certain character sums.

(5) We reformulate certain counting problems in terms of counting rational points of

affine varieties over finite fields, which can be approached with arithmetic an geometric

and algebro-geometric machinery, such as the Lang–Weil bound and properties of

regular sequences.

We conclude this section with the remark that although for the sake of simplicity

of statements, we have been assuming that our multiplicative functions {fi}Ki=1 and

polynomials {Wi,v}1≤i≤K
1≤v≤V

are both fixed, our proofs will reveal that these results are

also uniform in the {fi}Ki=1 as long as they are defined by the fixed polynomials

{Wi,v}1≤i≤K
1≤v≤V

.

In the conclusion of this chapter, we mention some new interesting questions arising

from the results and methods used in this work.

Section 4.2

Technical preparation: The number of n ≤ x for

which gcd(f (n), q) = 1

In this section, we shall provide a rough estimate on the count of n ≤ x for which

f(n) =
∏K

i=1 fi(n) is coprime to the modulus q, uniformly in q ≤ (log x)K0 . We will
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show the following estimate, which generalizes Proposition 2.2.1. In the rest of the

chapter, we abbreviate αv(q) to αv for each v ∈ [V ].

Proposition 4.2.1. For all sufficiently large x and uniformly in k-admissible q ≤

(log x)K0, we have

∑
n≤x

(f(n),q)=1

1 =
∑
n≤x

each (fi(n),q)=1

1 = x1/k

(log x)1−αk
exp(O((log2(3q))O(1))). (4.3)

4.2.1. Proof of the lower bound.

Any m ≤ x1/k satisfying gcd(f(mk), q) = 1 is certainly counted in the left hand side

of (4.3). To estimate the number of such m, we apply Proposition 2.2.1, with f(nk)

and x1/k playing the roles of “f(n)” and “x” in the quoted proposition. This shows

that the sum in (4.3) is bounded below by the right hand side.

4.2.2. Proof of the upper bound.

We start by giving an upper bound on the count of r-full smooth numbers; here we

consider any n ∈ N to be 1-full (and we consider 1 as being r-full for any r ≥ 1). The

case r = 1 of the following result is Lemma 2.3.1.

Lemma 4.2.2. Fix r ∈ N. We have as X,Z →∞,

#{n ≤ X : P (n) ≤ Z, n is r-full}

≪ X1/r(logZ) exp
(
−U
r

logU +O(U log2(3U))
)
,

uniformly for (logX)max{3,2r} ≤ Z ≤ X1/2, where U := logX/logZ.

Proof of Lemma 4.2.2. The proof is an application of Rankin’s trick. We start by

141



4.2 Technical preparation: The number of n ≤ x for which
gcd(f(n), q) = 1

letting η ≤ min{1/3, 1/2r} be a positive parameter to be chosen later, and observe

that

∑
n≤X: P (n)≤Z
n is r-full

1 ≤
∑

n is r-full
P (n)≤Z

(
X

n

)(1−η)/r

≪ X(1−η)/r exp

∑
p≤Z

1
p1−η

 , (4.4)

where we have used the Euler product and noted that
∑

p

∑
v≥r+1 p

−v(1−η)/r ≪∑
p p

−(1−η)(1+1/r) ≪r 1 since (1− η)(1 + 1/r) ≥ (1 + 1/r)(1−min{1/3, 1/2r}) > 1.

Now set η := logU
logZ ≤ min

{1
3 ,

1
2r

}
. We write

∑
p≤Z 1/p1−η = log2 Z+

∑
p≤Z

(exp(η log p)−

1)/p+ O(1). Since η log p ≤ log 2≪ 1 for all p ≤ 21/η, we find that the contribution

of p ≤ 21/η to the last sum above is

∑
p≤21/η

(exp(η log p)− 1)/p≪ η
∑
p≤21/η

log p/p≪ 1,

while the contribution of p ∈ (21/η, Z] is at most

(exp(η logZ)− 1)
∑

21/η<p≤Z

1/p ≤ U(log2 U +O(1)).

Collecting estimates, we obtain
∑

p≤Z 1/p1−η = log2 Z + O(U log2(3U)), which from

(4.4) completes the proof of the lemma.

The following important observation will be useful throughout the chapter.

Lemma 4.2.3. If q is k-admissible, then the k-free part of any positive integer n

satisfying gcd(f(n), q) = 1 is bounded. More precisely, it is of size O(1), where the

implied constant depends only on the polynomials {Wi,v}1≤i≤K
1≤v≤k

.

Proof. Let Sv := {ℓ prime : αv(ℓ) = 0}. (Recall αv and Wv from § 4.1.2.) Note the
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following:

Observation 1. For each 1 ≤ v < k, the set Sv consists only of primes of

size O(1), with the implied constant depending only on the polynomials

W1,v, . . . ,WK,v:

This is because for any prime ℓ, we have αv(ℓ) = 1
φ(ℓ)#{u ∈ Uℓ : Wv(u) ∈ Uℓ} ≥

1−Dv/(ℓ− 1). Thus, αv(ℓ) > 0 for all ℓ > 1 +Dv = 1 +
∑K

i=1 degWi,v.

Observation 2. For any positive integer n satisfying gcd(f(n), q) = 1, the

k-free part of n must only be divisible by primes from
⋃

1≤v<k Sv:

Assume by way of contradiction, that there exists some n satisfying gcd(f(n), q) = 1

and some prime p ̸∈
⋃

1≤v<k Sv satisfying pr ∥ n for some r < k. Then Wr(p) = f(pr)

divides f(n). Since q is k-admissible and r < k, we must have αr(q) = 0. But since

αr(q) =
∏

ℓ|q αr(ℓ) by the Chinese Remainder Theorem, it follows that there must be

some prime ℓ0 | q for which αr(ℓ0) = 0. By definition of αr, this means that for any

unit u ∈ Uℓ0 , we must have ℓ0 | Wr(u). In particular, since the prime p above does not

lie in Sr while ℓ0 does, it follows that p ̸= ℓ0, so that ℓ0 | Wr(p) | f(n), contradicting

the requirement that gcd(f(n), q) = 1.

Lemma 4.2.3 follows immediately Observations 1 and 2.

Coming to the proof of the upper bound implied in (4.3), we define y := exp(
√

log x)

and start by removing those n which are divisible by the (k+ 1)-th power of a prime

exceeding y. Writing any such n as AB for some k-free B and k-full A, Lemma 4.2.3
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shows that B ≪ 1 so that the contribution of such n to (4.3) is

∑
n≤x: (f(n),q)=1
∃ p>y: pk+1|n

1 ≪
∑
A≤x

A is k-full
∃ p>y: pk+1|n

1

≤
∑
p>y

∑
v≥k+1
pv≤x

∑
m≤x/pv

m is k-full

1≪
∑
p>y

∑
v≥k+1

(
x

pv

)1/k

≪
(
x

y

)1/k

, (4.5)

where we have used the fact that the number of k-full integers up to X is O(X1/k)

(see [23]). The last expression above is negligible in comparison to the right hand

side of (4.3). Hence, it remains to bound the number of n satisfying (f(n), q) = 1

that are not divisible by the (k + 1)-th power of any prime exceeding y.

We write any such n in the form BMN , where N is y-rough, BM is y-smooth, B is

k-free, M is k-full, and B,M,N are pairwise coprime. By Lemma 4.2.3, we see that

B = O(1) and that N is k-full. But also since n is not divisible by the (k + 1)-th

power of any prime exceeding y, we must have N = Ak for some squarefree y-rough

integer A. Consequently,

∑
n≤x: (f(n),q)=1
p>y =⇒ pk+1 ∤ n

1 ≤
∑
B≤x

(f(B),q)=1
B is k-free

∑
M≤x/B: M is k-full
P (M)≤y, (f(M),q)=1

∑
A≤(x/BM)1/k

P−(A)>y: (f(Ak),q)=1
A squarefree

1. (4.6)

We now write the right hand side of the above inequality as Σ1 + Σ2, where Σ1 and

Σ2 count the contribution of (B,M,A) with M ≤ x1/2 and M > x1/2, respectively.

Bounding Σ2: Any A counted in Σ2 satisfies A ≤ (x/BM)1/k ≤ x1/2k/B1/k, so that

Σ2 ≤
∑
B≤x

(f(B),q)=1
B is k-free

∑
A≤x1/2k/B1/k

P−(A)>y: (f(Ak),q)=1
A squarefree

∑
M≤x/BAk: P (M)≤y
M is k-full, (f(M),q)=1

1.
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To bound the innermost sum, we invoke Lemma 4.2.2; here U = log(x/BAk)
log y ≥ 1

2
√

log x.

This yields

Σ2 ≪
∑
B≤x

(f(B),q)=1
B is k-free

∑
A≤x1/2k/B1/k

P−(A)>y: (f(Ak),q)=1
A squarefree

x1/k

B1/kA
exp

(
− 1

6k
√

log x · log2 x

)
.

Recalling that B = O(1) and bounding the sum on A trivially by 2 log x, we deduce

that Σ2 ≪ x1/k exp
(
−
√

log x
)
, which is negligible compared to the right hand side of

(4.3).

Bounding Σ1: To bound the (innermost) sum on A in Σ1, we invoke Lemma 2.2.2

on the multiplicative function g(A) := µ(A)2
1P−(A)>y1(f(Ak),q)=1, with µ denoting the

Möbius function. Since M ≤ x1/2 and B ≪ 1, this gives

Σ1 ≪
x1/k

log x exp

∑
y<p≤x

1(Wk(p),q)=1

p

 ∑
M≤x1/2: M is k-full
P (M)≤y, (f(M),q)=1

1
M1/k .

But since the sum on M above is no more than

∑
M is k-full

P (M)≤y, (f(M),q)=1

1
M1/k ≤

∏
p≤y

(
1 +

1(f(pk),q)=1

p
+O

(
1

p1+1/k

))

≪ exp

∑
p≤y

1(Wk(p),q)=1

p

 , (4.7)

it follows by an estimation of
∑

p≤y 1(Wk(p),q)=1/p via Lemma 2.2.4, that Σ1 is absorbed

in the right hand side of (4.3). This establishes Proposition 4.2.1.
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Section 4.3

The main term in Theorems 4.1.1 to 4.1.3:

Contribution of “convenient” n

We start by defining

J := ⌊log3 x⌋ and y := exp((log x)ϵ/2),

where ϵ is as in the statement of Theorem 4.1.1 and ϵ := 1 for Theorems 4.1.2 and

4.1.3. We call n ≤ x convenient if the largest J distinct prime divisors of n exceed y

and each appear to exactly the k-th power in n. 3 In other words, n is convenient

iff it can be uniquely written in the form n = m(PJ · · ·P1)k for m ≤ x and primes

P1, . . . , PJ satisfying

Lm := max{y, P (m)} < PJ < · · · < P1. (4.8)

Note that any n having PJk(n) ≤ y must be inconvenient; on the other hand, if n is

inconvenient and satisfies gcd(f(n), q) = 1 then either PJk(n) ≤ y or n is divisible by

the (k+ 1)-th power of a prime exceeding y. These observations will be helpful in the

rest of the chapter.

We start by showing that there are a negligible number of inconvenient n ≤ x satis-

fying gcd(f(n), q) = 1.
3This is the more general version of the “convenient n” defined in section 2.3 where we were

working in the case k = 1.
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Proposition 4.3.1. We have as x→∞,

∑
n≤x: (f(n),q)=1
n inconvenient

1 = o

( ∑
n≤x

(f(n),q)=1

1
)
, (4.9)

uniformly in k-admissible q ≤ (log x)K0.

Proof. By (4.5) and (4.3), the contribution of the n’s that are divisible by the (k+1)-

th power of a prime exceeding y is negligible. Letting z := x1/ log2 x, we show that the

contribution of z-smooth n to the left side of (4.9) is also negligible compared to the

right. Indeed, writing any such n in the form AB for some k-free B and k-full A,

we have P (A) ≤ z whereas (by Lemma 4.2.3) B = O(1). Hence the contribution of

z-smooth n is, by Lemma 4.2.2,

∑
n≤x: P (n)≤z

(f(n),q)=1

1 ≪
∑

A≤x: P (A)≤z
A is k-full

1 ≪ x1/k exp
(
−
(

1
k

+ o(1)
)

log2 x log3 x

)
, (4.10)

which is indeed negligible compared to the right hand side of (4.9).

It remains to consider the contribution of those n which are neither z-smooth nor

divisible by the (k + 1)-th power of a prime exceeding y. Since n is inconvenient,

we must have PJk(n) ≤ y (see the discussion just preceding the statement of this

proposition). Hence, n can be written in the form mP k where P := P (n) > z and

m = n/P k, so that PJk(m) ≤ y, gcd(m,P ) = 1 and f(n) = f(m)f(P k). Given

m, there are at most
∑

z<P≤(x/m)1/k 1 ≪ x1/k/m1/k log z many possibilities for P .
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Consequently,

∑
n≤x inconvenient
P (n)>z, (f(n),q)=1
p>y =⇒ pk+1 ∤ n

1 ≤
∑

n≤x: PJk(n)≤y
P (n)>z, (f(n),q)=1
p>y =⇒ pk+1 ∤ n

1

≪ x1/k log2 x

log x

∑
m≤x

PJk(m)≤y, (f(m),q)=1
p>y =⇒ pk+1 ∤ m

1
m1/k . (4.11)

As in the argument preceding (4.6), we write any m occurring in the above sum

(uniquely) in the form BMAk, where B is k-free, M is k-full, A is squarefree,

P (BM) ≤ y < P−(A), and Ω(A) ≤ J (since PJk(n) ≤ y). Since B = O(1), we

deduce that

∑
m≤x

PJk(m)≤y, (f(m),q)=1
p>y =⇒ pk+1 ∤ m

1
m1/k ≪

∑
M k-full

P (M)≤y, (f(M),q)=1

1
M1/k

∑
A≤x

Ω(A)≤J

1
A
.

The sum on A is no more than

(1 +
∑
p≤x

1/p)J ≤ (2 log2 x)J ≤ exp(O((log3 x)2)),

while the sum on M is≪ exp(αk log2 y+O((log2(3q))O(1))) by (4.7) and Lemma 2.2.4.

Altogether,

∑
m≤x

PJk(m)≤y, (f(m),q)=1
p>y =⇒ pk+1 ∤ m

1
m1/k ≪ (log x)αkϵ/2 exp

(
O((log3 x)2 + (log2(3q))O(1))

)
. (4.12)

Inserting this into (4.11) and comparing with (4.3) completes the proof.
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It turns out that the convenient n give the dominant contributions in our asymptotics,

in the sense that it is these n that give the desired main term.

Theorem 4.3.2. Fix K0, B0 > 0 and assume that {Wi,k}1≤i≤K ⊂ Z[T ] are noncon-

stant and multiplicatively independent. As x→∞, we have

∑
n≤x convenient

(∀i) fi(n)≡ai (mod q)

1 ∼ 1
φ(q)K

∑
n≤x

(f(n),q)=1

1,

uniformly in coprime residues a1, . . . , aK to moduli q ≤ (log x)K0 lying in Q(k; f1, · · · , fK)

and satisfying IFH(W1,k, . . . ,WK,k;B0).

We shall prove this theorem in the next few sections. In this section and the next,

we take the first step by showing a weaker version of this result, where we reduce the

congruences fi(n) ≡ ai from modulus q to a bounded divisor of q.

Proposition 4.3.3. Fix K0, B0 > 0 and assume that {Wi,k}1≤i≤K ⊂ Z[T ] are noncon-

stant and multiplicatively independent. There exists a constant λ := λ(W1,k, . . . ,WK,k;

B0) > 0 depending only on {Wi,k}1≤i≤K ⊂ Z[T ] and B0, such that as x → ∞, we

have

∑
n≤x convenient

(∀i) fi(n)≡ai (mod q)

1

=
(
φ(Q0)
φ(q)

)K ∑
n≤x: (f(n),q)=1

(∀i) fi(n)≡ai (mod Q0)

1 + o

(
1

φ(q)K
∑
n≤x

(f(n),q)=1

1
)
, (4.13)

uniformly in coprime residues a1, . . . , aK to k-admissible moduli q ≤ (log x)K0 satis-

fying IFH(W1,k, . . . ,WK,k;B0). Here Q0 is some divisor of q satisfying Q0 ≤ λ.
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Proof. For any N ≥ 1 and (wi)Ki=1 ∈ UK
q , we define

V(k)
N,K

(
q; (wi)Ki=1

)
:=
{

(v1, . . . , vN) ∈ (Uq)N :

(∀i ∈ [K])
N∏
j=1

Wi,k(vj) ≡ wi (mod q)
}
.

We write each convenient n uniquely in the form m(PJ · · ·P1)k, where m,PJ , . . . , P1

satisfy (4.8). Then fi(n) = fi(m)
∏J

j=1 Wi,k(Pj), so that the conditions fi(n) ≡ ai

(mod q) amount to gcd(f(m), q) = 1 and

(P1, . . . , PJ) mod q ∈ V ′
q,m := V(k)

J,K

(
q; (aifi(m)−1)Ki=1

)
.

Noting that the conditions P1 · · ·PJ ≤ (x/m)1/k and (P1, . . . , PJ) mod q ∈ V ′
q,m are

both independent of the ordering of P1, . . . , PJ , we obtain

∑
n≤x convenient

(∀i) fi(n)≡ai (mod q)

1 =
∑
m≤x

(f(m),q)=1

∑
(v1,...,vJ )∈V ′

q,m

1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤(x/m)1/k

P1,...,PJ distinct
(∀j) Pj≡vj (mod q)

1. (4.14)

Proceeding exactly as in the argument for (2.13), we remove the congruence conditions

on P1, . . . , PJ by successive applications of the Siegel–Walfisz Theorem. We get

∑
P1,...,PJ>Lm

P1···PJ ≤(x/m)1/k

P1,...,PJ distinct
(∀j) Pj≡vj (mod q)

1 = 1
φ(q)J

∑
P1,...,PJ>Lm

P1···PJ ≤(x/m)1/k

P1,...,PJ distinct

1 + O

(
x1/k

m1/k exp
(
−K1(log x)ϵ/4))

for some constant K1 := K1(K0) > 0.
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Collecting estimates and noting that #V ′
q,m ≤ φ(q)J ≤ (log x)K0J , we obtain

∑
n≤x convenient

(∀i) fi(n)≡ai (mod q)

1 =
∑
m≤x

(f(m),q)=1

#V ′
q,m

φ(q)J

(
1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤(x/m)1/k

P1,...,PJ distinct

1
)

+ O

(
x1/k exp

(
−K1

2 (log x)ϵ/4
))

. (4.15)

Here in the last step we have crudely bounded the sum
∑

m≤x
(f(m),q)=1

m−1/k by writing

each m as AB for some k-full A and k-free B satisfying gcd(A,B) = 1, and recalling

that B = O(1) while
∑

1/A ≤
∏

p≤x
(
1 + 1/p+O

(
1/p1+1/k)). The following propo-

sition estimates #V ′
q,m. Note that it actually involves only B0 and the polynomials

{Wi,k}1≤i≤K , nothing else.

Proposition 4.3.4. Assume that {Wi,k}1≤i≤K are multiplicatively independent. De-

fine the quantities D =
∑K

i=1 degWi,k and αk(q) = 1
φ(q)#{u ∈ Uq :

∏K
i=1 Wi,k(u) ∈ Uq}

as before.

There exists a constant C0 := C0(W1,k, . . . ,WK,k;B0) > (8D)2D+2 depending only on

{Wi,k}1≤i≤K and B0, such that for any constant C > C0, the following two estimates

hold uniformly in coprime residues (wi)Ki=1 to moduli q satisfying αk(q) ̸= 0 and

IFH(W1,k, . . . ,WK,k;B0):

#V(k)
N,K

(
q; (wi)Ki=1

)
φ(q)N = αk(q)N

αk(Q0)N

(
φ(Q0)
φ(q)

)K {#V(k)
N,K

(
Q0; (wi)Ki=1

)
φ(Q0)N

+O

(
1
CN

)}
∏
ℓ|q
ℓ>C0

(
1 +O

(
(4D)N
ℓN/D−K

))
, (4.16)

uniformly for N ≥ KD + 1, where Q0 is a C0-smooth divisor of q of size OC(1).
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Moreover

#V(k)
N,K

(
q; (wi)Ki=1

)
φ(q)N ≤

(∏
ℓe∥q e

)
1N=KD

qN/D
exp (O(ω(q))), for each 1 ≤ N ≤ KD.

(4.17)

Applying (4.16) with N := J = ⌊log3 x⌋ ≥ KD+1, and with C fixed to be a constant

exceeding 2CC0
0 , we see that

#V ′
q,m

φ(q)J = (1 + o(1)) αk(q)
J

αk(Q0)J

(
φ(Q0)
φ(q)

)K {#V ′
Q0,m

φ(Q0)J
+O

(
1
CJ

)}
,

where V ′
Q0,m

:= V(k)
J,K

(
Q0; (aifi(m)−1)Ki=1

)
and we have noted that

∑
ℓ|q
ℓ>C0

(4D)J/ℓJ/D−K ≤
(

4D/C1/(2D+2)
0

)J
= o(1).

We insert this into (4.15), and observe that since αk(q) ̸= 0, since Q0 | q and since

Q0 is C0-smooth, we have

αk(Q0)C ≥ C
∏
ℓ≤C0

(
1− ℓ− 2

ℓ− 1

)
≥ C

CC0
0
≥ 2.

Thus

∑
n≤x convenient

(∀i) fi(n)≡ai (mod q)

1

= (1 + o(1))
(
φ(Q0)
φ(q)

)K
αk(q)J
αk(Q0)J

∑
m≤x

(f(m),q)=1

#V ′
Q0,m

φ(Q0)J

(
1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤(x/m)1/k

P1,...,PJ distinct

1
)

+ o

(
1

φ(q)K
∑
n≤x

(f(n),q)=1

1
)
, (4.18)
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where we have noted that

∑
n≤x convenient
gcd(f(n),q)=1

1 = αk(q)J
∑
m≤x

(f(m),q)=1

(
1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤(x/m)1/k

P1,...,PJ distinct

1
)

+ O

(
x1/k exp

(
−K1

2 (log x)ϵ/4
))

. (4.19)

Here (4.19) can be proven by replicating the arguments leading to (4.15) and observing

that

#{(v1, . . . , vJ) ∈ UJ
q :

J∏
j=1

Wk(vj) ∈ Uq} = (αk(q)φ(q))J .

Now for each (wi)Ki=1 ∈ UK
q , we define UJ,K

(
q,Q0; (wi)Ki=1

)
to be the set of tuples

(v1, . . . , vJ) ∈ UJ
q satisfying

∏J
j=1 Wi,k(vj) ∈ Uq and

∏J
j=1 Wi,k(vj) ≡ wi (mod Q0) for

each i ∈ [K]. Observe that any convenient n satisfying gcd(f(n), q) = 1 and fi(n) ≡ ai

(mod Q0) for all i ∈ [K], can be uniquely written in the form n = m(PJ · · ·P1)k, where

PJ , . . . , P1 are primes satisfying (4.8), and where gcd(f(m), q) = 1 and (P1, . . . , PJ)

mod q ∈ Um := UJ,K
(
q,Q0; (aifi(m)−1)Ki=1

)
. As such, by the arguments leading to

(4.15), we obtain

∑
n≤x convenient
gcd(f(n),q)=1

(∀i) fi(n)≡ai (mod Q0)

1

=
∑
m≤x

(f(m),q)=1

#Um
φ(q)J

(
1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤(x/m)1/k

P1,...,PJ distinct

1
)

+ o

(
1

φ(q)K
∑
n≤x

(f(n),q)=1

1
)
. (4.20)

A simple counting argument shows the following general observation: Let F ∈ Z[T ]

be nonconstant, and let d, d′ be positive integers such that d′ | d and αF (d) :=
1

φ(d)#{u ∈ Ud : F (u) ∈ Ud} is nonzero (hence so is αF (d′)). Then for any u ∈ Ud′ for

153



4.3 The main term in Theorems 4.1.1 to 4.1.3: Contribution of
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which F (u) ∈ Ud′ , we have

#{U ∈ Ud : U ≡ u (mod d′), F (U) ∈ Ud} = αF (d)φ(d)
αF (d′)φ(d′) . (4.21)

Using this general observation for F := Wk =
∏K

i=1 Wi,k (so that αF = αk), we obtain

#UJ,K
(
q,Q0; (wi)Ki=1

)
=
(

αk(q)φ(q)
αk(Q0)φ(Q0)

)J
#V(k)

J,K

(
Q0, (wi)Ki=1

)
for all (wi)Ki=1 ∈ UK

q . Applying this with wi := aifi(m)−1 and recalling that V ′
Q0,m

= V(k)
J,K

(
Q0; (aifi(m)−1)Ki=1

)
, we get from (4.20),

∑
n≤x convenient
gcd(f(n),q)=1

(∀i) fi(n)≡ai (mod Q0)

1 = αk(q)J
αk(Q0)J

∑
m≤x

(f(m),q)=1

V ′
Q0,m

φ(Q0)J

(
1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤(x/m)1/k

P1,...,PJ distinct

1
)

+ o

(
1

φ(q)K
∑
n≤x

(f(n),q)=1

1
)
.

Comparing this with (4.18), we obtain

∑
n≤x convenient

(∀i) fi(n)≡ai (mod q)

1 = (1 + o(1))
(
φ(Q0)
φ(q)

)K ∑
n≤x convenient
gcd(f(n),q)=1

(∀i) fi(n)≡ai (mod Q0)

1

+ o

(
1

φ(q)K
∑
n≤x

(f(n),q)=1

1
)
.

Finally, an application of Proposition 4.3.1 allows us to remove the condition of n

being convenient from the main term on the right hand side above. This completes

the proof of Proposition 4.3.3, up to the proof of Proposition 4.3.4, which we take up

in the next section.
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Section 4.4

Counting solutions to congruences: Proof of

Proposition 4.3.4

4.4.1. Preparation for the proof of Proposition 4.3.4

We temporarily abandon all the previous set-up just for this subsection. We shall

make use of two character sum bounds, which we state in the next two propositions.

Proposition 4.4.1. Let ℓ be a prime, χ a Dirichlet character mod ℓ. Let F ∈ Z[T ]

be a nonconstant polynomial which is not congruent mod ℓ to a polynomial of the

form c ·G(T )ord(χ) for some c ∈ Fℓ and G ∈ Fℓ[T ], where ord(χ) denotes the order of

the character χ. Then ∣∣∣∣∣∣
∑
u mod ℓ

χ(F (u))

∣∣∣∣∣∣ ≤ (d− 1)
√
ℓ,

where d is the degree of the largest squarefree divisor of F .

This is a version of the Weil bounds and is a special case of [77, Corollary 2.3] (see

also [18], [79] and [66] for older results). We will also need an analogue of the above

result for character sums to higher prime power moduli, and this input is provided

by the following consequences of Theorems 1.2 and 7.1 and eqn. (1.15) in work of

Cochrane [14] (see [16] for related results).

In what follows, for a polynomial H ∈ Z[T ], we denote by H ′ or H ′(T ) the formal

derivative of H. Let ℓ be a prime such that ordℓ(H) = 0, so that H is not identically

zero in Fℓ[T ] (see § 1.5.1 for definition of ordℓ). By the ℓ-critical polynomial associated

to H we shall mean the polynomial CH := ℓ−ordℓ(H′)H ′, which has integer coefficients

and can be considered as a nonzero element of the ring Fℓ[T ]. By the ℓ-critical points
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of H, we shall mean the set A(H; ℓ) ⊂ Fℓ of zeros of the polynomial CH which are

not zeros of H (both polynomials considered mod ℓ). Finally, for any θ ∈ Fℓ, we use

µθ(H) to denote the multiplicity of θ as a zero of H.

Proposition 4.4.2. Let ℓ be a prime, g ∈ Z[T ] a nonconstant polynomial, and t :=

ordℓ(g′). Consider an integer e ≥ t + 2 and a primitive character χ mod ℓe. Let

M := maxθ∈A(g;ℓ) µθ(Cg) be the maximum multiplicity of an ℓ-critical point of g.

(i) For odd ℓ, we have

∣∣∣∣∣∣
∑

u mod ℓe
χ(g(u))

∣∣∣∣∣∣ ≤
 ∑
θ∈A(g;ℓ)

µθ(Cg)

 ℓt/(M+1) ℓe(1−1/(M+1)).

(ii) For ℓ = 2 and e ≥ t+ 3, we have

∣∣∣∣∣∣
∑

u mod 2e

χ(g(u))

∣∣∣∣∣∣ ≤ (12.5)2t/(M+1) 2e(1−1/(M+1)).

In fact, the sum is zero if g has no 2-critical points.

In order to make use of the aforementioned bounds, we will need to understand the

quantities that appear when we apply them. The following observations enable us to

do this.

Proposition 4.4.3. Let {Fi}Ki=1 ⊂ Z[T ] be nonconstant and multiplicatively indepen-

dent. There exists a constant C1 := C1(F1, . . . , FK) ∈ N such that all of the following

hold:

(a) For any prime ℓ, there are O(1) many tuples (A1, . . . , AK) ∈ [ℓ− 1]K for which

FA1
1 · · ·F

AK
K is of the form c · Gℓ−1 in Fℓ[T ] for some c ∈ Fℓ and G ∈ Fℓ[T ];
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here, the implied constant depends at most on {Fi}Ki=1. In fact, if ℓ > C1

and gcd(ℓ − 1, β(F1, . . . , FK)) = 1, then the only such tuple is (A1, . . . , AK) =

(ℓ− 1, . . . , ℓ− 1).

(b) For any prime ℓ and any (A1, . . . , AK) ∈ NK satisfying ℓ ∤ gcd(A1, . . . , AK), we

have in the two cases below,

τ(ℓ) := ordℓ
(
(Tφ(ℓr)F1(T )A1 · · ·FK(T )AK )′) = ordℓ(F̃ (T ))

= 0, if ℓ > C1, r ≥ 2

≤ C1, if ℓ ≤ C1, ordℓ
(∏K

i=1 Fi

)
= 0, r ≥ C1 + 2,

(4.22)

where F̃ (T ) :=
∑K

i=1 AiF
′
i (T )

∏
1≤j≤K
j ̸=i

Fj(T ). In either of the two cases above,

any root θ ∈ Fℓ of the polynomial

Cℓ(T ) := ℓ−τ(ℓ)(Tφ(ℓr)F1(T )A1 · · ·FK(T )AK )′

which is not a root of T
∏K

i=1 Fi(T ), must be a root of the polynomial ℓ−τ(ℓ)F̃ (T )

of the same multiplicity.4

Proof. We start by writing Fi =: ri
∏M

j=1 G
µij

j as in subsection § 4.1.1, so that

ri ∈ Z and G1, . . . , GM ∈ Z[T ] are irreducible, primitive and pairwise coprime, and

M = ω(F1 · · ·FK). Recall that M ≥ K and that the exponent matrix E0(F1, . . . , FK)

has Q-linearly independent columns, making β(F1, . . . , FK) a nonzero integer. Fur-

ther, since Gj are pairwise coprime irreducibles, the resultants Res(Gj, Gj′) and dis-

criminants disc(Gj) are nonzero integers for all j ̸= j′ ∈ [M ]. Note that for any prime
4Once again, the last three polynomials are being considered as nonzero elements of Fℓ[T ].
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ℓ not dividing the leading coefficient of any Gj and not dividing

∏
1≤j≤M

disc(Gj) ·
∏

1≤j ̸=j′≤M

Res(Gj, Gj′),

the product
∏M

j=1 Gj is separable in Fℓ[T ].

Also since (F c1
1 · · ·F

cK
K )′ =

(∏K
i=1 F

ci−1
i

)∑K
i=1 ciF

′
i

∏
1≤j≤K
j ̸=i

Fj, the multiplicative in-

dependence of the polynomials {Fi}Ki=1 forces the polynomials
{
F ′
i

∏
1≤j≤K
j ̸=i

Fj

}K
i=1
⊂

Z[T ] to be Q-linearly independent. Writing D := deg(F1 · · ·FK) and writing each

F ′
i (T )

∏
1≤j≤K
j ̸=i

Fj(T ) =
∑D−1

j=0 ci,jT
j for some {ci,j}0≤j≤D−1 ⊂ Z, we thus deduce that

the columns of the matrix

M1 := M1(F1, . . . , FK) :=



c1,0 · · · cK,0

· · · · · · · · ·

· · · · · · · · ·

c1,D−1 · · · cK,D−1


∈MD×K(Z) (4.23)

must be Q-linearly independent. Consequently, D ≥ K and the last diagonal entry

β̃ ∈ Z \ {0} of the Smith Normal form of M1 is also the largest invariant factor of M1

(in size).

Fix C1 := C1(F1, . . . , FK) to be any positive integer exceeding all of the following:

• max
{

2, |β̃|,
∏M

j=1 |disc(Gj)| ·
∏

1≤j ̸=j′≤M |Res(Gj, Gj′)|
}

(recall that these are all nonzero),

• the sizes of the leading coefficients of F1, . . . , FK , G1, . . . , GM .

We claim that any such C1 satisfies the properties in the statement of the proposition.
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Proof of (a). We may assume that ℓ > C1. Let β := β(F1, . . . , FK), as defined in

§ 4.1.1. By the discussion at the start of the proof, the conditions defining C1 force

G1, . . . , GM to be pairwise coprime in Fℓ[T ]. Let (A1, . . . , AK) ̸= (0, . . . , 0) be any

tuple of nonnegative integers for which FA1
1 · · ·F

AK
K is of the form c · Gℓ−1 in Fℓ[T ]

for some c ∈ Fℓ and G ∈ Fℓ[T ]. We claim that A1, . . . , AK must all be divisible by

(ℓ−1)/d1 where d1 := gcd(ℓ−1, β). This will be enough to complete the proof of (a),

since there are no more than dK1 ≤ |β|K ≪ 1 many tuples (A1, . . . , AK) ∈ [ℓ − 1]K

with each Ai divisible by (ℓ− 1)/d1.

To establish the above claim, we may assume without loss of generality that G is

monic, and note that c ∈ F×
ℓ since ordℓ(F1 · · ·FK) = 0 by definition of C1. Write each

Gj as λjHj in the ring Fℓ[T ], for some λj ∈ F×
ℓ and nonconstant monic Hj ∈ Fℓ[T ]

(which can be done since ℓ doesn’t divide the leading coefficient of any Gj). Then

Fi = ri
∏M

j=1 G
µij

j = ρi
∏M

j=1 H
µij

j for some ρi ∈ F×
ℓ . Since c · Gℓ−1 =

∏K
i=1 F

Ai
i =(∏K

i=1 ρ
Ai
i

)
·
∏

1≤j≤M H
∑K

i=1 µijAi

j in Fℓ[T ], and G,H1, . . . , HM are all monic, we find

that Gℓ−1 =
∏

1≤j≤M H
∑K

i=1 µijAi

j . But now since
∏

1≤j≤M Gj is separable in Fℓ[T ], so

is
∏

1≤j≤M Hj, and we deduce that
∑K

i=1 µijAi ≡ 0 (mod ℓ−1) for each j ∈ [M ]. This

can be rewritten as the matrix congruence (0 · · · · · · 0)⊤ ≡ E0(A1 · · ·AK)⊤ (mod ℓ−1);

each side of this congruence is an M×1 matrix, Y ⊤ denotes the transpose of a matrix

Y and E0 is the exponent matrix defined in § 4.1.1.

Now since M ≥ K and E0 has full rank, there exist P0 ∈ GLM×M(Z) and R0 ∈

GLK×K(Z) for which P0E0R0 is the Smith Normal Form diag(β1, . . . , βK) of E0, with

β1, . . . , βK ∈ Z\{0} being the invariant factors of E0. Thus βi | βi+1 for all 1 ≤ i < K

and β = β(F1, . . . , FK) = βK . This means that P0E0 = diag(β1, . . . , βK)R−1
0 and
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writing (qij)1≤i,j≤K := R−1
0 , we find that



0

· · ·

· · ·

0


M×1

≡ P0E0


A1

· · ·

AK


K×1

≡



β1(q11A1 + · · ·+ q1KAK)

· · ·

βK(qK1A1 + · · ·+ qKKAK)

0

· · ·

0


M×1

(mod ℓ− 1).

Hence for each i ∈ [K], βi(qi1A1 + · · · + qiKAK) ≡ 0 (mod ℓ − 1), so that (ℓ −

1)/ gcd(ℓ − 1, βi) divides qi1A1 + · · · + qiKAK . But since βi | βK , it follows that

(ℓ− 1)/ gcd(ℓ− 1, βK) = (ℓ− 1)/d1 also divides qi1A1 + · · ·+ qiKAK for each i ∈ [K].

We obtain
0

· · ·

0


K×1

≡


q11A1 + · · ·+ q1KAK

· · ·

qK1A1 + · · ·+ qKKAK


K×1

≡ R−1
0


A1

· · ·

AK


K×1

(
mod ℓ− 1

d1

)
,

(4.24)

establishing the desired claim that (A1, . . . , AK) ≡ (0, . . . , 0)
(

mod ℓ−1
d1

)
.

Proof of (b). We start by noting that

(Tφ(ℓr)F1(T )A1 · · ·FK(T )AK )′

= φ(ℓr)Tφ(ℓr)−1
K∏
i=1

Fi(T )Ai + Tφ(ℓr)

(
K∏
i=1

Fi(T )Ai−1

)
F̃ (T ), (4.25)

where F̃ (T ) is as in the statement of the proposition. We claim that ordℓ(F̃ ) ≤

1ℓ≤C1C1 for all primes ℓ satisfying ordℓ(F1 · · ·FK) = 0 and for all nonnegative integers
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A1, . . . , AK satisfying (A1, . . . , AK) ̸≡ (0, . . . , 0) mod ℓ. To show this, we proceed as

in the proof of (a), but working with the matrix M1 defined in (4.23) in place of

the exponent matrix E0. Observe that F̃ (T ) =
∑D−1

j=0

(∑K
i=1 ci,jAi

)
T j, hence if

κ(ℓ) := ordℓ(F̃ ), then ℓκ(ℓ) divides all the entries of the matrix M1(A1 · · ·AK)⊤. Since

M1 has full rank and D =
∑K

i=1 degFi ≥ K many rows, and since (A1, . . . , AK) ̸≡

(0, . . . , 0) mod ℓ, an argument entirely analogous to the one leading to (4.24) shows

that ℓκ(ℓ) divides the last invariant factor β̃ of M1. Hence ordℓ(F̃ ) = κ(ℓ) ≤ vℓ(β̃) and

our claim follows as |β̃| < C1.

As a consequence, we find that ordℓ
(
Tφ(ℓr)

(∏K
i=1 Fi(T )Ai−1

)
F̃ (T )

)
= ordℓ(F̃ ) ≤

1ℓ≤C1C1 for all primes ℓ ≤ C1 satisfying ordℓ(F1 · · ·FK) = 0, and also for all primes

ℓ > C1 (for which the condition ordℓ(F1 · · ·FK) = 0 is automatic by definition of C1).

But now since ordℓ(φ(ℓr)) ≥ 1 for r ≥ 2 and ordℓ(φ(ℓr)) ≥ C1 + 1 for r ≥ C1 + 2,

(4.25) shows that τ(ℓ) = ordℓ
(
Tφ(ℓr)

(∏K
i=1 Fi(T )Ai−1

)
F̃ (T )

)
, establishing subpart

(b) of the proposition.

Finally, since in both the cases of (4.22), we have τ(ℓ) < r − 1, the identity (4.25)

reveals that

Cℓ(T ) ≡ ℓ−τ(ℓ)

(
Tφ(ℓr)

K∏
i=1

Fi(T )Ai

)′

≡ Tφ(ℓr)

(
K∏
i=1

Fi(T )Ai−1

)(
ℓ−τ(ℓ)F̃ (T )

)
in the ring Fℓ[T ].

As such, any root of the polynomial θ ∈ Fℓ of Cℓ(T ) (considered as a nonzero element

of Fℓ[T ]) which is not a root of T
∏K

i=1 Fi(T ), must be a root of ℓ−τ(ℓ)F̃ (T ), and θ

must have the same multiplicity in Cℓ(T ) and ℓ−τ(ℓ)F̃ (T ). This completes the proof

of Proposition 4.4.3.
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4.4.2. Proof of Proposition 4.3.4

We return to the set-up in Proposition 4.3.4. Since αk(q) ̸= 0, we have

ordℓ(
K∏
i=1

Wi,k) = 0

for each prime ℓ | q. Fix C0 := C0 ({Wi,k}1≤i≤K ;B0) to be any constant exceeding B0,

(32D)2D+2, the sizes of the leading and constant coefficients of {Wi,k}1≤i≤K , as well

as the constant C1(W1,k, . . . ,WK,k) coming from an application of Proposition 4.4.3

to the family {Wi,k}1≤i≤K of multiplicatively independent polynomials. We will show

that any such choice of C0 suffices.

We first consider the case D > 1; the case D = 1 will be dealt with towards

the end of the argument. For an arbitrary positive integer Q and coprime residues

w1, . . . , wK mod Q, an application of the orthogonality of Dirichlet characters yields

#V(k)
N,K

(
Q; (wi)Ki=1

)
= 1
φ(Q)K

∑
χ1,...,χK mod Q

χ1(w1) · · ·χK(wK)(ZQ;χ1,...,χK
)N , (4.26)

where ZQ;χ1,...,χK
:=

∑
v mod Q

χ0,Q(v)
∏K

i=1 χi(Wi,k(v)) and χ0,Q denotes (as usual) the

trivial character mod Q.

Dealing with the large primes dividing q: We first show that there exists a

constant K ′ = K ′({Wi,k}1≤i≤K) such that uniformly in primes ℓ > C0 dividing q, we

have

#V(k)
N,K

(
ℓe; (wi)Ki=1

)
φ(ℓe)N
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
= αk(ℓ)N
φ(ℓe)K

(
1 +O

(
(4D)N
ℓN/D−K

))
, uniformly in N ≥ KD + 1

≤ K ′ e1N=KDℓ−eN/D, for each 1 ≤ N ≤ KD.

(4.27)

To show these, we start by applying (4.26) to get

#V(k)
N,K(ℓe; (wi)Ki=1)
φ(ℓe)N = αk(ℓ)N

φ(ℓe)K

{
1

+ 1
(αk(ℓ)φ(ℓe))N

∑
(χ1,...,χK )̸=(χ0,ℓ,...,χ0,ℓ) mod ℓe

(
K∏
i=1

χi(wi)
)

(Zℓe;χ1,...,χK
)N
}
, (4.28)

where we have recalled that αk(ℓ) ̸= 0 since αk(q) ̸= 0. For any tuple (χ1, . . . , χK) ̸=

(χ0,ℓ, . . . , χ0,ℓ) mod ℓe, let ℓe0 := lcm[f(χ1), . . . , f(χK)] ∈ {ℓ, . . . , ℓe}. Using χ1, . . . , χK

to also denote the characters mod ℓe0 inducing χ1, . . . , χK respectively, we see that

Zℓe;χ1,...,χK
= ℓe−e0 Zℓe0 ; χ1,...,χK

. Moreover Uℓe0 is cyclic since ℓ > C0 > 2. Letting

γ denote a generator of Uℓe0 , we see that the character group mod ℓe0 is generated

by the character ψe0 given by ψe0(γ) := exp(2πi/φ(ℓe0)). Hence, there exists a tuple

(A1, . . . , AK) ∈ [φ(ℓe0)] satisfying χi = ψAi
e0 for each i, and since at least one of

χ1, . . . , χK is primitive mod ℓe0 , we also have

(A1, . . . , AK) ̸≡


(0, . . . , 0) (mod ℓ), if e0 > 1,

(0, . . . , 0) (mod ℓ− 1), if e0 = 1.
(4.29)

We can now write

Zℓe; χ1,...,χK
= ℓe−e0 Zℓe0 ; χ1,...,χK

= ℓe−e0
∑

v mod ℓe0

ψe0

(
vφ(ℓe0 )

K∏
i=1

Wi,k(v)Ai

)
. (4.30)
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Case 1: If e0 = 1, then since ℓ > C0 > B0, we have

gcd(ℓ− 1, β(W1,k, . . . ,WK,k)) = 1.

Further, since ℓ > C0 > C1(W1,k, . . . ,WK,k), we see by (4.29) and Proposition 4.4.3(a)

that
∏K

i=1 W
Ai
i,k cannot be of the form c·Gℓ−1 in Fℓ[T ]. As such, (4.30) and Proposition

4.4.1 show that

|Zℓe; χ1,...,χK
| ≤ Dℓe−1/2 for any tuple (χ1, . . . , χK) mod ℓe having e0 = 1. (4.31)

Case 2: If e0 ≥ 2, then since ordℓ(
∏K

i=1 Wi,k) = 0 and ℓ > C0 > C1(W1,k, . . . , WK,k),

Proposition 4.4.3 and (4.29) show that

τ(ℓ) := ordℓ((Tφ(ℓe0 )
K∏
i=1

Wi,k(T )Ai)′) = 0 ≤ e0 − 2.

Thus (4.30) and Proposition 4.4.2(i) yield

|Zℓe; χ1,...,χK
| ≤

(∑
θ∈Aℓ

µθ(Cℓ)
)
ℓe−e0/(Mℓ+1),

whereAℓ ⊂ Fℓ denotes the set of ℓ-critical points of Tφ(ℓe0 )∏K
i=1 Wi,k(T )Ai , namely the

roots of Cℓ(T ) = (Tφ(ℓe0 )∏K
i=1 Wi,k(T )Ai)′ in Fℓ that are not roots of Tφ(ℓe0 )∏K

i=1 Wi,k(T )Ai .

But by the last assertion in Proposition 4.4.3, we see that

Mℓ ≤
∑
θ∈Aℓ

µθ(Cℓ) ≤ deg(
K∑
i=1

AiW
′
i,k

∏
1≤j≤K
j ̸=i

Wj,k) ≤ D − 1.
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This yields

|Zℓe; χ1,...,χK
| ≤ Dℓe−e0/D for any tuple (χ1, . . . , χK) mod ℓe having e0 > 1. (4.32)

Combining the conclusions of Cases 1 and 2, and using the fact that there are at most

ℓe0K many tuples (χ1, . . . , χK) of characters mod ℓe having lcm[f(χ1), . . . , f(χK)] = ℓe0 ,

we get

1
(αk(ℓ)φ(ℓe))N

∑
(χ1,...,χK) ̸=(χ0,ℓ,...,χ0,ℓ) mod ℓe

|Zℓe;χ1,...,χK
|N ≤ (4D)N

∑
1≤e0≤e

ℓe0(K−N/D),

(4.33)

where in the last inequality above, we have used the facts that D ≥ 2 and αk(ℓ) ≥

1−D/(ℓ−1) ≥ 1−D/(C0−1) ≥ 1/2. Now if N ≥ KD+1, then ℓK−N/D ≤ C
−1/D
0 ≤

1/2, so that the last sum in (4.33) is at most 2(4D)NℓK−N/D. On the other hand, if

N ≤ KD, then the same sum is≪ e1N=KDℓe(K−N/D). Inserting these two bounds into

(4.33) and (4.28) gives (4.27).

Dealing with the small primes dividing q: Now for an arbitrary q, we let q̃ :=∏
ℓe∥q
ℓ≤C0

ℓe denote the C0-smooth part of q. By (4.26),

#V(k)
N,K

(
q̃; (wi)Ki=1

)
= 1
φ(q̃)K

∑
χ1,...,χK mod q̃

χ1(w1) · · ·χK(wK)(Zq̃;χ1,...,χK
)N . (4.34)

Given a constant C > C0, we fix κ to be any integer constant exceeding C ·

(30DCC0
0 )2C0 . Let Q0 :=

∏
ℓe∥q̃ ℓ

min{e,κ} =
∏

ℓ≤C0
ℓmin{vℓ(q),κ} denote the largest (κ+1)-

free divisor of q̃. Write the expression on the right hand side of (4.34) as S ′ + S ′′,
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where

S ′ := 1
φ(q̃)K

∑
χ1,...,χK mod q̃

lcm[f(χ1),...,f(χK)] is (κ+ 1)-free

χ1(w1) · · ·χK(wK)(Zq̃;χ1,...,χK
)N

denotes the contribution of those tuples (χ1, . . . , χK) mod q̃ for which lcm[f(χ1), . . . ,

f(χK)] is (κ + 1)-free, or equivalently, those (χ1, . . . , χK) for which lcm[f(χ1), . . . ,

f(χK)] divides Q0.

For each tuple (χ1, . . . , χK) counted in S ′, there exists a unique tuple (ψ1, . . . , ψK) of

characters mod Q0 inducing (χ1, . . . , χK) mod q̃, respectively. Noting that αk(q̃) =

αk(Q0), a straightforward calculation using (4.21) shows that

Zq̃;χ1,...,χK
=

∑
u mod Q0

χ0,Q0 (u)
K∏
i=1

ψi(Wi,k(u))
∑
v mod q̃

v≡u mod Q0
gcd(v

∏K
i=1 Wi,k(v),q̃)=1

1

= φ(q̃)
φ(Q0)

ZQ0; ψ1,...,ψK

Using this and invoking (4.26) with Q := Q0, we obtain

S ′

φ(q̃)N = φ(q̃)−K

φ(Q0)N
∑

ψ1,...,ψK mod Q0

(
K∏
i=1

ψi(wi)
)

(ZQ0;ψ1,...,ψK
)N

=
(
φ(Q0)
φ(q̃)

)K #V(k)
N,K

(
Q0; (wi)Ki=1

)
φ(Q0)N

(4.35)

We now deal with the remaining sum S ′′ which is the contribution of those (χ1, . . . , χK)

mod q̃ for which lcm[f(χ1), . . . , f(χK)] is not (κ+ 1)-free. For each such (χ1, . . . , χK),

we factor χi =:
∏

ℓe∥q̃ χi,ℓ, where χi,ℓ is a character mod ℓe. Defining eℓ to be

vℓ (lcm[f(χ1), . . . , f(χK)]), we observe that since f(χi) =
∏

ℓe∥q f(χi,ℓ) and each f(χi,ℓ)

is a power of ℓ, we must have lcm[f(χ1,ℓ), . . . , f(χK,ℓ)] = ℓeℓ . For each ℓe ∥ q̃, let
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(χ1,ℓ, . . . , χK,ℓ) also denote the characters mod ℓeℓ inducing (χ1,ℓ, . . . , χK,ℓ) mod ℓe

respectively. Then at least one of χ1,ℓ, . . . , χK,ℓ must be primitive mod ℓeℓ . The

factorization Zq̃;χ1,...,χK
=
∏

ℓe∥q̃ Zℓe;χ1,ℓ,...,χK,ℓ
now yields

|Zq̃;χ1,...,χK
| ≤

∏
ℓe∥q̃
eℓ≤κ

φ(ℓe)

 ∏
ℓe∥q̃

eℓ≥κ+1

(
ℓe−eℓ |Zℓeℓ ;χ1,ℓ,...,χK,ℓ

|
)
. (4.36)

We claim that for all prime powers ℓe ∥ q̃ with eℓ ≥ κ+ 1, we have

|Zℓeℓ ;χ1,ℓ,...,χK,ℓ
| ≤ (DCC0

0 ) ℓeℓ(1−1/D). (4.37)

For odd ℓ, this follows essentially by the same argument as that given to bound

Zℓe;χ1,...,χK
in “Case 2” before: The only difference is that this time we use both the

assertions in (4.22) since eℓ ≥ κ + 1 > (30DC0)2C0 + 1 > C0 + 2. Now assume that

ℓ = 2, i.e. e2 = v2(lcm[f(χ1), . . . , f(χK)]) ≥ κ + 1 ≥ 31. We shall use Proposition

4.4.2(ii).

To do this, we observe that the characters ψ, η mod 2e2 defined by

ψ(5) := exp(2πi/2e2−2), ψ(−1) := 1 and η(5) := 1, η(−1) := −1

generate the character group mod 2e2 . Hence for each i ∈ [K], there exist ri ∈ [2e2−2]

and si ∈ [2] satisfying χi,2 = ψriηsi ; also 2 ∤ gcd(r1, . . . , rK) as e2 ≥ 4 and at least one

of χ1,2, . . . , χK,2 is primitive mod 2e2 . Thus Z2e2 =
∑

v mod 2e2

ψ (g(v)) η
(
v2∏K

i=1 Wi,k(v)si

)
,

where g(T ) :=
∏K

i=1 Wi,k(T )ri and we have abbreviated Z2e2 ;χ1,2,...,χK,2 to Z2e2 . Since

η is induced by the nontrivial character mod 4, writing v := 4u + λ and hλ(T ) :=
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g(4T + λ) gives

Z2e2 =
∑
λ=±1

η

(
K∏
i=1

Wi,k(λ)si

) ∑
u mod 2e2−2

ψ (hλ(u))

= 1
4
∑
λ=±1

η

(
K∏
i=1

Wi,k(λ)si

) ∑
u mod 2e2

ψ (hλ(u)) (4.38)

If η
(∏K

i=1 Wi,k(λ)si

)
̸= 0, then

∏K
i=1 Wi,k(λ)si ≡ 1 (mod 2), so

ord2

(
K∏
i=1

Wi,k(4T + λ)ri−1

)
= 0.

As such, with G̃ :=
∑K

i=1 riW
′
i,k

∏
j ̸=iWj,k, we see that

τλ(2) := ord2(h′
λ(T )) = 2 + ord2(G̃(4T + λ)) ≤ 2 + ord2(G̃) + 2 deg(G̃) ≤ C0 + 2D;

(4.39)

here we have used (4.22) and the fact that ord2(F (4T +λ)) ≤ ord2(F ) + 2 deg(F ) for

any nonconstant polynomial F . 5

Two consequences of (4.39) are that 2−(τλ(2)−2)G̃(4T + λ) ∈ Z[T ] and that τλ(2) ≤

κ− 3 ≤ e2 − 3. Thus Proposition 4.4.2(ii) applies, yielding

∣∣∣∣∣∣
∑

u mod 2e2

ψ (hλ(u))

∣∣∣∣∣∣ ≤ (12.5) · 2C0+2D · 2e2(1−1/(Mλ+1)),

where Mλ is the maximum multiplicity of a 2-critical point of hλ.

Since
∏K

i=1 Wi,k(4T+λ)ri−1 ≡ 1 (mod 2), it follows that any such critical point θ ∈ F2

is a root of the polynomial 2−(τλ(2)−2)G̃(4T +λ), giving Mλ ≤ deg G̃(4T +λ) ≤ D−1,
5This can be seen by writing the coefficients of F (4T + λ) in terms of those of F , and using a

simple divisibility argument.
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so that ∣∣∣∣∣∣
∑

u mod 2e2

ψ (hλ(u))

∣∣∣∣∣∣ ≤ (12.5) · 2C0+2D · 2e2(1−1/D) ≤ DCC0
0 · 2e2(1−1/D).

Inserting this into (4.38) completes the proof of (4.37) in the remaining case ℓ = 2.

Combining (4.36) with (4.37), we find that for each (χ1, . . . , χK) counted in S ′′, we

have

|Zq̃;χ1,...,χK
| ≤ (2D0C

C0
0 )C0φ(q̃)A−1/D0 ,

where A :=
∏

ℓe∥q̃: eℓ≥κ+1 ℓeℓ denotes the (κ+1)-full part of lcm[f(χ1), . . . , f(χK)], i.e,

the largest (κ+1)-full divisor of lcm[f(χ1), . . . , f(χK)]. Now for a divisor d of q̃, there

are at most dK many tuples (χ1, . . . , χK) of characters mod q̃ for which lcm[f(χ1), . . . ,

f(χK)] = d. Hence, summing this last bound over all possible (χ1, . . . , χK) occurring

in the sum S ′′, we obtain

|S ′′| ≤ 1
φ(q̃)K

∑
A|q̃: A>1

A is (κ+1)-full

∑
d|q̃

(κ+1)-full part
of d is A

dK · (2D0C
C0
0 )C0Nφ(q̃)N
AN/D

≪ φ(q̃)N
φ(q̃)K · (2D0C

C0
0 )C0N

∑
A|q̃: A>1

A is (κ+1)-full

1
AN/D−K .

In the last step above, we have noted that for any d dividing q̃ whose (κ+ 1)-full part

is A, we have d≪ A. Continuing,

|S ′′|
φ(q̃)N ≪

(2D0C
C0
0 )C0N

φ(q̃)K

∏
ℓe∥q̃

(
1 +

∑
κ+1≤ν≤e

1
ℓν(N/D−K)

)
− 1

 . (4.40)

Now if N ≥ KD + 1, then since κ > C · (30DCC0
0 )2C0 ≥ D(D + 3), we see that the

sum on ν above is at most 2−κ(N/D−K) (1− 2−1/D)−1 ≤ 2D+2

2κ/D ≤ 1
2 . Hence log(1 +
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∑
κ+1≤ν≤e ℓ

−ν(N/D−K)) ≪ 2−κ(N/D−K) ≪ 2−κN/D. In addition, since P (q̃) ≤ C0,

equation (4.40) gives

|S ′′|
φ(q̃)N ≪

(2D0C
C0
0 )C0N

φ(q̃)K

{
exp

(
O

(
1

2κN/D

))
− 1
}

≪ 1
φ(q̃)K ·

(
(2D0C

C0
0 )C0

2κ/D

)N
≪ C−N

φ(q̃)K , (4.41)

where in the last step, we have recalled that κ/D > D−1·C ·(30DCC0
0 )2C0 > C ·(2C1)C0 .

Combining (4.41) with (4.35), we deduce that

#V(k)
N,K

(
q̃; (wi)Ki=1

)
φ(q̃)N = S

′ + S ′′

φ(q̃)N (4.42)

=
(
φ(Q0)
φ(q̃)

)K {#V(k)
N,K

(
Q0; (wi)Ki=1

)
φ(Q0)N

+O

(
1
CN

)}
, (4.43)

uniformly for N ≥ KD + 1 and in coprime residues w1, . . . , wK to any modulus q.

On the other hand, for each N ∈ [KD], we have 1 +
∑

κ+1≤ν≤e ℓ
−ν(N/D−K) ≪

e1N=KD ℓe(K−N/D), which from (4.40), yields |S ′′|/φ(q̃)N ≪
(∏

ℓe∥q̃ e
)
1N=KD

/
q̃N/D.

Combining this with the trivial bound |S ′|/φ(q̃)N ≪ φ(q̃)−K ≪ q̃−K ≪ q̃−N/D coming

from (4.35), we find that for each N ∈ [KD], we have

#V(k)
N,K

(
q̃; (wi)Ki=1

)
φ(q̃)N ≪

(∏
ℓe∥q̃ e

)
1N=KD

q̃N/D
, uniformly in q and (wi)Ki=1 ∈ UK

q . (4.44)

Proposition 4.3.4 now follows in the case D > 1 by combining (4.27) with (4.42)

(for N > KD) or (4.44) (for N ≤ KD), and then noting that
∏

ℓ|q: ℓ>C0
αk(ℓ) =

αk(q)/αk(Q0).

Now assume that D = 1, so that K = 1 and W1,k(T ) := RT + S for some integers

R and S with R ̸= 0. We first make the following general observation, which is
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immediate from Proposition 4.4.2: For any primitive character χ mod ℓb, the sum

Zℓb;χ :=
∑

v mod ℓb χ0,ℓ(v)χ(Rv + S) =
∑

v mod ℓb χ(vφ(ℓb)(Rv + S)) is zero for any odd

prime ℓ and any integer b ≥ vℓ(R) + 2, as well as for ℓ = 2 and any b ≥ v2(R) + 3.

Indeed in both these cases, the polynomial F (T ) = Tφ(ℓb)(RT + S) has no ℓ-critical

point, since ordℓ(F ′) = vℓ(R) which forces ℓ−ordℓ(F ′)F ′(T ) = (ℓ−vℓ(R)R)Tφ(ℓb) in Fℓ[T ].

By this observation, it follows that uniformly in N ≥ 1 and in ℓe ∥ q with ℓ > C0

(> |R|), we have

#V(k)
N,1(ℓe;w)
φ(ℓe)N = αk(ℓ)N

φ(ℓe)

(
1 +O

(( 2
ℓ− 1

)N−1
))

. (4.45)

Indeed, we simply invoke (4.28) and note that if f(χ) = ℓe0 for some e0 ≥ 2 = vℓ(R)+2,

then Zℓe;χ = 0 as seen above. On the other hand, if f(χ) = ℓ (and there are ℓ − 2

many such characters mod ℓe), then

|Zℓe;χ| = ℓe−1

∣∣∣∣∣ ∑
v mod ℓ

χ(Rv + S)− χ(S)
∣∣∣∣∣ = ℓe−1

∣∣∣∣∣ ∑
u mod ℓ

χ(u)− χ(S)
∣∣∣∣∣ ≤ ℓe−1.

Letting q̃ :=
∏

ℓe∥q
ℓ≤C0

ℓe as before, we fix an integer κ > C0 +3, and write #V(k)
N,1 (q̃;w) =

φ(q̃)−1
∑

χ mod q̃

χ(w)(Zq̃;χ)N = S ′ +S ′′, where S ′ again denotes the contribution of those

χ mod q̃ for which f(χ) is (κ+ 1)-free. Then (4.35) continues to hold, and S ′′ = 0 by

the general observation above. This yields

#V(k)
N,1 (q̃;w)
φ(q̃)N = φ(Q0)

φ(q̃) ·
#V(k)

N,1 (Q0;w)
φ(Q0)N

,

which combined with (4.45), proves Proposition 4.3.4 in the final case D = 1.

With Proposition 4.3.4 established, the proof of Proposition 4.3.3 is now complete.
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We will eventually also need the following variant of Proposition 4.3.4, which follows

from an argument that is a much simpler version of that given for (4.27).

Corollary 4.4.4. Assume that {Wi,k}1≤i≤K are multiplicatively independent. Then

#V(k)
N,K

(
q; (wi)Ki=1

)
φ(q)N ≪


φ(q)−K exp

(
O(
√

log q)
)
, for each fixed N ≥ 2K + 1

q−N/2 exp
(
O(ω(q))

)
, for each fixed N ≤ 2K,

(4.46)

uniformly in coprime residues w1, . . . , wK modulo squarefree q satisfying αk(q) ̸= 0

and hypothesis IFH(W1,k, . . . ,WK,k;B0).

Towards Theorem 4.3.2

To deduce Theorem 4.3.2 from Proposition 4.3.3, we apply the orthogonality of Dirich-

let characters to see that the main term in the right hand side of (4.13) is equal to

(
φ(Q0)
φ(q)

)K ∑
n≤x: (f(n),q)=1

(∀i) fi(n)≡ai (mod Q0)

1 = 1
φ(q)K

∑
n≤x

(f(n),q)=1

1

+ 1
φ(q)K

∑
(χ1,...,χK) ̸=(χ0,Q0 ,...,χ0,Q0 ) mod Q0

(
K∏
i=1

χi(ai)
)

·
∑
n≤x

1(f(n),q)=1

K∏
i=1

χi(fi(n)).

Henceforth, let Q :=
∏

ℓ|q ℓ denote the radical of q. To obtain Theorem 4.3.2, it

remains to prove that each
∑
n≤x

1(f(n),q)=1
∏K

i=1 χi(fi(n)) = o

( ∑
n≤x

(f(n),q)=1

1
)

. For Q≪ 1,

this follows by applying Theorem 1.3.11 to the divisor Q∗ := lcm[Q,Q0] ≪ 1 of q.

(Note that as q lies in Q(k; f1, · · · , fK), so does Q∗, since q and Q∗ have the same
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prime factors.) So we may assume that Q is sufficiently large. Theorem 4.3.2 would

follow once we show the result below. Here λ and Q0 are as in Proposition 4.3.3.

Theorem 4.4.5. There exists a constant δ0 := δ0(λ) > 0 such that, uniformly in

moduli q ≤ (log x)K0 lying in Q(k; f1, · · · , fK) and having sufficiently large radical,

we have

∑
n≤x

χ1(f1(n)) · · ·χK(fK(n))1(f(n),q)=1 ≪ x1/k

(log x)1−(1−δ0)αk(Q)

for all tuples of characters (χ1, . . . , χK) ̸= (χ0,Q0 , . . . , χ0,Q0) mod Q0.

Let Ck(Q0) denote the set of tuples of characters (ψ1, . . . , ψK) mod Q0, not all triv-

ial, such that
∏K

i=1 ψi(Wi,k(u)) is constant on its support, which is precisely the set

Rk(Q0) = {u ∈ UQ0 : Wk(u) ∈ UQ0}. To prove Theorem 4.4.5, we separately consider

the two cases when a tuple of characters mod Q0 lies in Ck(Q0) or not.

Section 4.5

Proof of Theorem 4.4.5 for nontrivial tuples of

characters not in Ck(Q0)

For any integer d ≥ 1 and any nontrivial tuple (ψ1, . . . , ψK) of characters mod d not

lying in Ck(d), we have

∣∣∣∣∣ ∑
u mod d

χ0,d(u)ψ1(W1,k(u)) · · ·ψK(WK,k(u))
∣∣∣∣∣ < αk(d)φ(d).

With λ as in Proposition 4.3.3, we define the constant δ1 := δ1(W1,k, . . . ,WK,k;B0) ∈

(0, 1) to be
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max
d≤λ

αk(d)̸=0

max
(ψ1,...,ψK )̸=(χ0,d,...,χ0,d) mod d

(ψ1,...,ψK) ̸∈ Ck(d)

1
αk(d)φ(d)

∣∣∣∣∣ ∑
u mod d

χ0,d(u)ψ1(W1,k(u)) · · ·ψK(WK,k(u))
∣∣∣∣∣ .

Then since Q0 ≤ λ, we have for any nontrivial tuple (χ1, . . . , χK) ̸∈ Ck(Q0),∣∣∣∣∣ ∑
u mod Q0

χ0,Q0(u)χ1(W1,k(u)) · · ·χK(WK,k(u))
∣∣∣∣∣ ≤ δ1αk(Q0)φ(Q0). (4.47)

We set δ := (1 − δ1)/2 and Y := exp((log x)δ/3). To establish Theorem 4.4.5 for all

(χ1, . . . , χK) ̸∈ Ck(Q0), it suffices to show that

∑
n≤x

p>Y =⇒ pk+1 ∤ n

χ1(f1(n)) · · ·χK(fK(n)) 1(f(n),q)=1 ≪
x1/k

(log x)1−(δ1+δ)αk
. (4.48)

This is because by the arguments before (4.5), the contribution of the n’s not counted

above is negligible. Writing any n counted in (4.48) uniquely asBMAk (as done before

(4.6)), we see that the sum in (4.48) equals

∑
B≤x

P (B)≤Y
B is k-free

1(f(B),q)=1

(
K∏
i=1

χi(fi(B))
) ∑

M≤x/B
M is k-full
P (M)≤Y

1(f(M),q)=1

(
K∏
i=1

χi(fi(M))
)

∑
A≤(x/BM)1/k

1P−(A)>Y 1(f(Ak),q)=1 µ(A)2
K∏
i=1

χi(fi(Ak)) (4.49)

Moreover, the arguments leading to the bound for Σ2 towards the end of section 4.2

show that the tuples (B,M,A) having M > x1/2 give negligible contribution to the

above sum. To prove (4.48), it thus only remains to bound the contribution of tuples

(B,M,A) with M ≤ x1/2 to the triple sum in (4.49). To deal with such tuples, we
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will establish the following general upper bound uniformly for X ≥ exp((log Y )2):

∑
A≤X

1P−(A)>Y 1(f(Ak),q)=1 µ(A)2
K∏
i=1

χi(fi(Ak))≪
X

(logX)1−αk(δ1+δ/2) . (4.50)

We apply a quantitative version of Halász’s Theorem [76, Corollary III.4.12] on the

multiplicative function

F (A) := 1P−(A)>Y 1(f(Ak),q)=1 µ(A)2
K∏
i=1

χi(fi(Ak)),

taking T := logX. This requires us to put, for each t ∈ [−T, T ], a lower bound on

the sum below (which is the square of a certain “pretentious distance”):

D(X; t)

:=
∑
p≤X

1
p

(
1− Re

(
1p>Y 1(f(pk),q)=1 µ(p)2 p−it

K∏
i=1

χi(fi(pk))
))

= (1− αk) log2 X + αk log2 Y

+
∑

Y <p≤X
(Wk(p),q)=1

1
p

(
1− Re

(
p−it

K∏
i=1

χi(Wi,k(p))
))

+O
(
(log2(3q))O(1));

(4.51)

here to get the second line from the first, we use Lemma 2.2.4.

To get a lower bound on D(X; t), we proceed analogously to the proof of [60, Lemma

3.3]. The key idea is to split the range of the last sum above into blocks of small

multiplicative width, so that the complex number p−it is essentially constant for all p

lying in a given block. More precisely, we cover the interval (Y,X] with finitely many

disjoint intervals I :=
(
η, η(1 + 1/ log2 X)

]
for certain choices of η ∈ (Y,X], choosing

the smallest η to be Y and allowing the rightmost endpoint of such an interval to jut
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out slightly past X but no more than X(1 + 1/ log2 X). Then the last sum in (4.51)

equals

∑
I

∑
p∈I

(Wk(p),q)=1

1
p

(
1− Re

(
p−it

K∏
i=1

χi(Wi,k(p))
))

+O

(
1

log3 X

)
(4.52)

Consider any I occurring in the sum above. For each p ∈ I, we have

|p−it − η−it| ≤
∣∣∣∣∫ t log p

t log η
exp(−iϱ) dϱ

∣∣∣∣ ≤ |t log p− t log η| ≤ |t|
log2 X

≤ 1
logX .

This shows that uniformly in I, the inner sum in (4.52) is equal to

∑
p∈I

(Wk(p),q)=1

1
p

(
1− Re

(
p−it

K∏
i=1

χi(Wi,k(p))
))

=
∑
u∈Uq

(Wk(u),q)=1

(
1− Re

(
η−it

K∏
i=1

χi(Wi,k(u))
)) ∑

p∈I
p≡u (mod q)

1
p

+O

 1
logX

∑
p∈I

1
p

 (4.53)

Note that p = (1 + o(1))η for all p ∈ I. (Here and in what follows, the asymptotic

notation refers to the behavior as x → ∞, and is uniform in the choice of I.) For

parameters Z,W depending on X, we write Z ≳ W to mean Z ≥ (1 + o(1))W . By

the Siegel Walfisz Theorem,

∑
p∈I

p≡u (mod q)

1
p

≳
1
η

∑
p∈I

p≡u (mod q)

1 ≳
1

φ(q) ·
1
η

∑
p∈I

1 ≳
1

φ(q)

∑
p∈I

1
p
.
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Hence the whole main term on the right hand side of (4.53) is

≳
1

φ(q)

∑
p∈I

1
p

∑
u∈Uq

(Wk(u),q)=1

(
1− Re

(
η−it

K∏
i=1

χi(Wi,k(u))
))

(4.54)

≳ (αk − αkδ1)

∑
p∈I

1
p

 , (4.55)

where in the last step above, we have used (4.21) and (4.47) to see that

1
φ(q)

∣∣∣∣∣ ∑
u∈Uq

(Wk(u),q)=1

K∏
i=1

χi(Wi,k(u))
∣∣∣∣∣

= αk(q)
αk(Q0)φ(Q0)

∣∣∣∣∣ ∑
r mod Q0

χ0,Q0(r)
K∏
i=1

χi(Wi,k(r))
∣∣∣∣∣ ≤ αkδ1.

Inserting the bound obtained in (4.54) into (4.53), we find that each inner sum in

(4.52) is

∑
p∈I

(Wk(p),q)=1

1
p

(
1− Re

(
p−it

K∏
i=1

χi(Wi,k(p))
))

≳ αk(1−δ1)
∑
p∈I

1
p

+O
(

1
logX

∑
p∈I

1
p

)
.

TheO-term above when summed over all I is≪ (logX)−1∑
p≤2X p

−1 ≪ log2 X/ logX.

Thus, the whole main term in (4.52) is at least

αk

(
1− δ1 −

δ

2

)
(log2 X − log2 Y ).

Using this fact along with (4.51) yields

D(X; t) ≥
(

1− αk
(
δ1 + δ

2

))
log2 X + αk

(
δ1 + δ

2

)
log2 Y + O

(
(log2(3q))O(1)),
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uniformly for t ∈ [−T, T ]. As such, [76, Corollary III.4.12] establishes the claimed

bound (4.50).

Now for each M ≤ x1/2, we have (x/BM)1/k ≫ x1/2k. Applying (4.50) to each of the

innermost sums in (4.49), we see that the total contribution of all tuples (B,M,A)

with M ≤ x1/2 to the triple sum in (4.49) is

≪
∑
B≪1

∑
M≤x1/2: M is k-full
P (M)≤Y, (f(M),q)=1

(x/BM)1/k

(log x)1−αk(δ1+δ/2) ≪
x1/k

(log x)1−αk(δ1+δ) ;

here we have bounded the sum on M using (4.7) (with “Y ” playing the role of “y”)

and Lemma 2.2.4. This proves (4.48), and hence also Theorem 4.4.5 for all nontrivial

tuples of characters (χ1, . . . , χK) mod Q0 not in Ck(Q0).

Section 4.6

Proof of Theorem 4.4.5 for tuples of characters

in Ck(Q0)

It suffices to consider the case when x is an integer, and we will do so in the rest of the

section. Our argument consists of suitably modifying the Landau–Selberg–Delange

method for mean values of multiplicative functions (see for instance [76, Chapter

II.5]), and to study the behavior of a product of L-functions raised to complex powers

by accounting for the presence of Siegel zeros modulo q. This is partly inspired from

work of Scourfield [69] and will also need some results from her paper. We will denote

complex numbers in the standard notation s = σ + it.6

6The parameters σ and σk (to be defined later) in this section have nothing to do with the
divisor functions σr(n) =

∑
d|n d

r mentioned in the introduction. We are not working with the
divisor functions in this section.
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Recall thatQ =
∏

ℓ|q ℓ; since q is k-admissible, so isQ. Consider any χ̂ := (χ1, . . . , χK) ∈

Ck(Q0), so that the product
∏K

i=1 χi(Wi,k(u)) is constant on Rk(Q0); let cχ̂ denote this

constant value. Consider the Dirichlet series

Fχ(s) :=
∑
n≥1

1(f(n),q)=1

ns

K∏
i=1

χi(fi(n)) =
∑
n≥1

1(f(n),Q)=1

ns

K∏
i=1

χi(fi(n))

which is absolutely convergent in the half-plane σ > 1.

In the rest of this section, we fix µ0 satisfying max{0.7, k/(k + 1)} < µ0 < 1.

4.6.1. Analysis of the Dirichlet series.

We start by giving a meromorphic continuation of Fχ(s) to a larger region. To do

this, set LQ(t) := log(Q(|tk| + 1)) and recall that there exists an absolute constant

c1 > 0 such that the product
∏

ψ mod Q L(s, ψ) has at most one zero βe (counted with

multiplicity) in the region σ > 1 − c1/ log(Q(|t| + 1)), which is necessarily real and

simple; βe is called the “Siegel zero”. If βe exists, then it is a root of L(s, ψe) for some

real character ψe mod Q, which we will be referring to as the “exceptional character”.

By reducing the constant c1 if necessary, we may assume that c1 < 1− µ0, and that

the conductor of ψe (which is squarefree) is large enough that it is not (D+2)-smooth.

Let Dk(c0) denote the region

{
σ + it : σ > 1

k

(
1− c1

LQ(t)

)}
.

Then
∏

ψ mod Q L(sk, ψ) has at most one zero and exactly one pole in the region

Dk(c0), namely βe/k and 1/k, respectively.

Branch cuts and complex logarithms: In the rest of the section, we assume that
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the complex plane has been cut along the line σ ≤ 1/k if αk(Q) and cχ̂ are not both

1, whereas if αk(Q) = cχ̂ = 1, then the complex plane is cut along the line σ ≤ βe/k.

(If αk(Q) = cχ̂ = 1 and if there is also no Siegel zero mod q, then there is no cut.)

Lemma 4.6.1. The Dirichlet series Fχ(s) is absolutely convergent on the half-plane

σ > 1
k
, where it satisfies

Fχ(s) = F1(sk)cχ̂ g(sk)cχ̂ Gχ,1(s) Gχ,2(s) (4.56)

with

F1(sk) =

∏
Q1|Q

∏
ψ mod Q1
ψ primitive

L(sk, ψ)γ(ψ)


αk(Q)

g(sk) =

∏
Q1|Q

∏
ψ mod Q1
ψ primitive

∏
ℓ| Q

Q1

(
1− ψ(ℓ)

ℓks

)γ(ψ)


αk(Q)

,

γ(ψ) = 1
αk(Q)φ(Q)

∑
v∈UQ

Wk(v)∈UQ

χ(v).

Here, the functions F1(sk), g(sk), Gχ,1(s) and Gχ,2(s) satisfy the following properties:

(i) F1(sk) is holomorphic and nonvanishing in the region Dk(c0) − (−∞, 1/k]. 7

In fact, if αk(Q) = cχ̂ = 1 and if βe exists (resp. doesn’t exist), then the same

is true in the bigger region Dk(c0)− (−∞, βe/k] (resp. Dk(c0)).

(ii) g(sk) and Gχ,1(s) are holomorphic and nonvanishing in the half-plane σ > µ0/k,
7This region is obtained by omitting the ray (−∞, 1/k] from the region Dk(c0).
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and we have, uniformly for all s in this region,

max
{∣∣∣∣g′(sk)

g(sk)

∣∣∣∣ , ∣∣∣∣G′
χ,1(s)

Gχ,1(s)

∣∣∣∣}≪ max{1, (logQ)1−σk} log logQ. (4.57)

(iii) Gχ,2(s) is holomorphic in the half-plane σ > µ0/k, wherein

|Gχ,2(s)|, |G′
χ,2(s)| ≪ 1.

Before proving this lemma, we state some results from [69] (or immediate conse-

quences thereof) that will be useful to us in the sequel.

Lemma 4.6.2.

(i) [69, Lemma 3(i)(a)] We have
∑

ℓ|m ℓ
−σ log ℓ≪ max{1, (logm)1−σ} log logm, uni-

formly in positive integers m ≥ 3 and in complex numbers s having σ > 0.7.

(ii) [69, Lemma 7] For all y > 1 and 0 < λ ≤ 1, we have
∫∞
y

e−uuλ−1du ≤ yλ−1e−y.

(iii) [69, Lemma 9(ii)] With g(s) coming from the statement of Lemma 4.6.1, we have

|g′(s)/g(s)| ≪ max{1, (logQ)1−σ} log logQ, uniformly for s having σ > 0.7.

(iv) [69, Lemma 15(i)] With F1(s) coming from the statement of Lemma 4.6.1,

∣∣∣∣F ′
1(s)
F1(s)

+ αk(Q)
s− 1 −

αk(Q)γ(ψe)
s− βe

∣∣∣∣ ≪ log(Q(|t|+ 1)),

uniformly in complex numbers s satisfying σ ≥ 1− c1/2 log(Q(|t|+ 1)).

Here, subpart (ii) is a standard bound on the tail of the integral defining a Gamma

function, and follows by integrating by parts. Subpart (iv) is a direct consequence of

[69, Lemma 15(i)] with the parameter “ξ” there defined to be log(Q(|t|+ 1)).
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Proof of Lemma 4.6.1. Absolute convergence of Fχ(s) on the region σ > 1/k:

To see this, we start by noting that Fχ(s) is tautologically absolutely convergent on

σ > 1, and in this half plane, we have the Euler product

Fχ(s) =
∏
p

(
1 +

∑
v≥1

1(f(pv),Q)=1

pvs

K∏
i=1

χi(fi(pv))
)
. (4.58)

In the rest of the proof, we fix Bk > 2k/µ0 such that Bk exceeds any k-free integer n

satisfying gcd(f(n), q) = 1; recall that by Lemma 4.2.3, Bk can be chosen to depend

only on {Wi,v}1≤i≤K
1≤v≤k

. Then the contribution of primes p ≤ Bk to the aforementioned

Euler product is a finite product, each factor of which is absolutely convergent in the

region σ > 0. On the other hand, by Lemma 4.2.3 and the facts that Q is k-admissible

and (χ1, . . . , χK) ∈ Ck(Q0), the total contribution of all primes p > Bk to the above

Euler product (4.58) is

∏
p>Bk

(
1 +

cχ̂1(Wk(p),Q)=1

pks
+O

(
1

p(k+1)σ

))
, (4.59)

which is absolutely convergent in the region σ > 1/k. (This is because the series∑
p cχ̂1(Wk(p),Q)=1/p

ks is absolutely convergent for σ > 1/k.) This shows that Fχ(s) is

absolutely convergent on the region σ > 1/k.

The product decomposition (4.56): Thus (4.58) holds in the region σ > 1/k, and

in this same region, we may write

Fχ(s) =

 ∏
b∈UQ

Wk(b)∈UQ

∏
p≡b (mod Q)

(
1− 1

pks

)−cχ̂

 ·
 ∏

p|Q
Wk(p)∈UQ

(
1− 1

pks

)−cχ̂


·
∏
p

(
1 +

∑
v≥1

1(f(pv),Q)=1

pvs

K∏
i=1

χi(fi(pv))
)(

1−
1(Wk(p),Q)=1

pks

)cχ̂

(4.60)
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Now for σ > 1/k, the orthogonality of Dirichlet characters mod Q and the fact that

logL(sk, ψ) =
∑

p,v ψ(pv)/pvsk show that the logarithm of the first double product in

(4.60) is equal to

cχ̂
∑
b∈UQ

Wk(b)∈UQ

∑
p,v≥1

p≡b (mod Q)

1
vpvks

= cχ̂
∑
b∈UQ

Wk(b)∈UQ


1

φ(Q)
∑

ψ mod Q

ψ(b)
∑
p

ψ(p)
pks

+
∑
p,v≥2

p≡b (mod Q)

1
vpvks


= αk(Q)cχ̂

∑
ψ mod Q

γ(ψ) logL(sk, ψ)

+ cχ̂
∑
b∈UQ

Wk(b)∈UQ

∑
v≥2

 ∑
p≡b (mod Q)

1
vpvks

−
∑

p: pv≡b (mod q)

1
vpvks

 .

We insert this into (4.60), noting that L(sk, ψ) = L(sk, ψ∗)
∏

ℓ| Q
Q1

(1−ψ∗(ℓ)/ℓsk) and

that γ(ψ) = γ(ψ∗) if the primitive character ψ∗ mod Q1 induces ψ mod Q. This

yields (4.56), with

Gχ,2(s) :=
∏
p≤Bk

(
1 +

∑
v≥1

1(f(pv),Q)=1

pvs

K∏
i=1

χi(fi(pv))
)(

1−
1(Wk(p),Q)=1

pks

)cχ̂

and

Gχ,1(s) :=
∏
p>Bk

(
1 +

∑
v≥1

1(f(pv),Q)=1

pvs

K∏
i=1

χi(fi(pv))
)(

1−
1(Wk(p),Q)=1

pks

)cχ̂

· exp

cχ̂ ∑
b∈UQ

Wk(b)∈UQ

∑
v≥2

 ∑
p≡b (mod Q)

1
vpvks

−
∑

p: pv≡b (mod q)

1
vpvks




·
∏
p|Q

Wk(p)∈UQ

(
1− 1

pks

)−cχ̂

, (4.61)
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where Bk was as defined after (4.58).

Proving statements (i)–(iii) of the lemma: To see (i), recall that
∏

ψ mod Q L(sk, ψ)

has is holomorphic and nonvanishing in the region Dk(c0) − (−∞, 1/k]. In fact, if

αk(Q) = cχ̂ = 1, then

F1(sk) = L(sk, χ0) ·

∏
Q1|Q
Q1>1

∏
ψ mod Q1
ψ primitive

L(sk, ψ)γ(ψ)


αk(Q)

,

which shows the other assertions of (i). Also (iii) is immediate by a direct calculation

using the definition of Gχ,2(s).

We thus focus on (ii). By the very definition of g(sk), we see that it is holomorphic

and nonvanishing in the half-plane σ > 0. Also the bound on |g′(sk)/g(sk)| in (4.57)

is an immediate consequence of Lemma 4.6.2(iii).

To show the assertions for Gχ,1(s), we recall that by the arguments preceding (4.59)

the first product (over primes p > Bk) in (4.61) is equal to

∏
p>Bk

(
1 +

cχ̂1(Wk(p),Q)=1

pks
+O

(
1

p(k+1)σ

))(
1−

1(Wk(p),Q)=1

pks

)cχ̂

=
∏
p>Bk

(
1 +O

(
1

p(k+1)σ

))
,

which is absolutely convergent and defines a holomorphic function in the half plane

σ > µ0/k. (Here is it important that µ0/k > 1/(k + 1).) Likewise the exponen-

tial factor in (4.61) defines a holomorphic function in the same half plane, hence

so does Gχ,1(s). To see that Gχ,1(s) is also nonvanishing in this region, we need

only see that the condition p > Bk > 2k/µ0 guarantees that each of the factors

1 +
∑

v≥1
1(f(pv),Q)=1

pvs

∏K
i=1 χi(fi(pv)) in (4.61) has size at least 1 −

∑
v≥k p

−vσ > 1 −
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2p−kσ > 1 − 2B−µ0
k > 0. Finally, a straightforward computation using (4.61) shows

that for σ > µ0/k, we have

G′
χ,1(s)

Gχ,1(s)
= −cχ̂k

∑
p|Q

Wk(p)∈UQ

log p
pks

+O(1)≪
∑
p|Q

log p
pkσ

,

completing the proof of (4.57) via Lemma 4.6.2(i).

4.6.2. Preparing for the contour shift: Auxiliary functions and intermedi-

ate bounds

Our objective is to relate the sum in Theorem 4.4.5 to the Dirichlet series Fχ(s) by

an effective version of Perron’s formula, and shift the contour to the left of the line

σ = 1/k. As such, we will need the following proposition in order to estimate the

resulting integrals.

To set up, we choose ϵ1 := ϵ1(λ) to be a constant (depending only on λ) satisfying

0 < ϵ1 < 1− cos(2π/d) for any positive integer d ≤ λ. Consider the functions

F̃χ(s) := F1(sk)cχ̂ g(sk)cχ̂ Gχ,1(s)

H̃χ(s) := F̃χ(s)
(
s− 1

k

)αk(Q)cχ̂
(
s− βe

k

)−αk(Q)cχ̂γ(ψe)

,

Hχ(s) := F̃χ(s)
s

(
s− 1

k

)αk(Q)cχ̂

,

where here and in what follows, any term or factor involving βe is to be understood

as omitted if the Siegel zero doesn’t exist. By Lemma 4.6.1(i) and (ii), we see that:

1. F̃χ(s) is holomorphic and nonvanishing on Dk(c0)− (−∞, 1/k]. If αk(Q) = cχ̂ = 1

and if βe exists (resp. doesn’t exist), then the same is true on Dk(c0) − (−∞, βe/k]
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(resp. Dk(c0)).

2. Hχ(s) analytically continues into and is nonvanishing on Dk(c0)− (−∞, βe/k].

3. H̃χ(s) analytically continues into and is nonvanishing on Dk(c0).

(Recall our branch cut conventions elucidated at the start of the section.)

In what follows, we set T := exp(
√

log x).

Proposition 4.6.3. We have the following bounds:

(i) |Hχ(1/k)| ≪ (log x)αk(Q)ϵ1/5.

(ii) |H̃χ(s)| ≪ (log x)αk(Q)ϵ1/4 uniformly for real s satisfying

1
k

(
1− c1

4 logQ

)
≤ s ≤ 1

k
.

(iii) |Fχ(s)| ≪ (log x)(1/2+ϵ1)αk(Q) uniformly for complex numbers s = σ+it satisfying

σ ≥ 1
k

(
1− c1

2LQ(t)

)
, |t| ≤ T and |s− θ/k| ≫ 1/LQ(t) for θ ∈ {1, βe}.

(iv) Uniformly in real s ≤ 1/k satisfying s ≥ 1
k

(2
3 + βe

3

)
(if the Siegel zero exists) or

s ≥ 1
k

(
1− c1

4 logQ

)
(otherwise), we have

∣∣∣∣Hχ

(
1
k

)
Gχ,2

(
1
k

)
−Hχ(s)Gχ,2(s)

∣∣∣∣≪ (log x)(1/20+αk(Q)/5)ϵ1
(

1
k
− s
)
.

Proof. We start with the following

General observation: We have |H̃χ(s)| ≍ |H̃χ(w)| uniformly in complex numbers

s and w satisfying Im(s) = Im(w) =: t, and |s−w| ≪ LQ(t)−1 and Re(w) ≥ Re(s) ≥
1
k

(
1− c1

2LQ(t)

)
.
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Indeed by the definitions of H̃χ(s) and F̃χ(s), we have

∣∣∣∣∣H̃ ′
χ(z)

H̃χ(z)

∣∣∣∣∣
=
∣∣∣∣cχ̂k(F ′

1(kz)
F1(kz)

+ αk(Q)
kz − 1 −

αk(Q)γ(ψe)
kz − βe

)
+ cχ̂k

g′(kz)
g(kz) +

G′
χ,1(z)

Gχ,1(z)

∣∣∣∣≪ LQ(t) (4.62)

uniformly for complex numbers z = u + it satisfying u ≥ 1
k

(
1− c1

2LQ(t)

)
. In the last

bound above, we have used (4.57) and Lemma 4.6.2(iv). The general observation now

follows by writing

log
(
H̃χ(w)
H̃χ(s)

)
=
∫ Re(w)

Re(s)

H̃ ′
χ(u+ it)

H̃χ(u+ it)
du.

(i) Let bk(t) := 1
k

(
1 + c3

LQ(t)

)
for some absolute constant c3 > 0. By the above

observation and the definitions of F̃χ(s), H̃χ(s) and Hχ(s), we see that

∣∣∣∣Hχ

(
1
k

)∣∣∣∣≪ ∣∣∣∣H̃χ

(
1
k

)∣∣∣∣ (1− βe)−αk(Q) ≪ |H̃χ(bk(0))| (1− βe)−αk(Q)

≪ |F̃χ(bk(0))| (logQ)(1− βe)−2αk(Q)

≪ |F1(kbk(0))g(kbk(0))|Re(cχ̂) (logQ)2(1− βe)−2αk(Q). (4.63)

Here in the last bound, we have noted that |Gχ,1(bk(0))| ≪ log2 Q, as is evident from

the fact that
∏

p|Q
Wk(p)∈UQ

(1 − p−kbk(0))−1 ≪ exp(
∑

p|Q 1/p) ≪ exp(
∑

p≤ω(Q) 1/p) ≪

logω(Q)≪ log2 Q.

Now proceeding exactly as in the proof of (4.56), we see that for all s with σ > 1/k,

we have ∑
n≥1

1(f(nk),Q)=1

nks
= F1(ks) g(ks) G̃(s), (4.64)
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where

G̃(s) =
∏
p

(
1 +

∑
v≥2

1
pvks

(1(f(pkv),Q)=1 − 1(Wk(p),Q)=1 1(f(pk(v−1)),Q)=1)
)

· exp

 ∑
b∈UQ

Wk(b)∈UQ

∑
v≥2

 ∑
p≡b (mod Q)

1
vpvks

−
∑

p: pv≡b (mod Q)

1
vpvks




·
∏
p|Q

Wk(p)∈UQ

(
1− 1

pks

)−1

.

Uniformly for s with σ ≥ 1/k, we observe that the infinite product above has size

at least 1 −
∑

p,v≥2 1/pv ≫ 1 and at most exp(
∑

p,v≥2 1/pv) ≪ 1. Likewise, the

exponential factor has size≍ 1 in the same region. Moreover, for σ ≥ 1/k, the product

over p | Q is ≍ | exp(
∑

p|Q: (Wk(p),Q)=1 p−ks)|, which is ≫ 1 and ≪ exp(
∑

p|Q p−1)≪

log2 Q. Putting these observations together, we find that

1≪ G̃(s)≪ log2 Q, uniformly in complex numbers s having σ ≥ 1/k. (4.65)

Applying this lower bound on G̃(bk(0)), the equality (4.64) yields

|F1(kbk(0)) g(kbk(0))| ≪
∑
n≥1

1(f(nk),Q)=1

nkbk(0) ≤ ζ(kbk(0))

= 1
kbk(0)− 1 +O(1)≪ logQ,

so that from (4.63), we obtain |Hχ(1/k)| ≪ (logQ)3(1− βe)−2αk(Q). Subpart (i) now

follows as Q ≤ (log x)K0 and as 1 − βe ≫ϵ1 Q
−ϵ1/20K0 ≫ϵ1 (log x)−ϵ1/20 by Siegel’s

Theorem.

(ii) By the general observation at the start of the proof, we have |H̃χ(s)| ≪ |H̃χ(1/k)| ≪
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|Hχ(1/k)|(1−βe)−αk(Q) ≪ |Hχ(1/k)|(log x)αk(Q)ϵ1/20. The result now follows from (i).

(iii) By the same general observation, we have |H̃χ(s)| ≪ |H̃χ(bk(t)+it)|, and since |s−

θ/k| ≫ 1/LQ(t), we have bk(t) + it− θ/k ≍ s− θ/k for θ ∈ {1, βe}. Thus |F̃χ(s)| ≪

|F̃χ(bk(t) + it)|. (Recall that H̃χ(s) := F̃χ(s)
(
s− 1

k

)αk(Q)cχ̂
(
s− βe

k

)−αk(Q)cχ̂γ(ψe).) Us-

ing (4.61) and replicating the arguments that led to (4.65), we also obtain

(log2 Q)−1 ≪ Gχ,1(s)≪ log2 Q,

uniformly in complex numbers s having σ ≥ 1/k. (4.66)

Thus uniformly for s as in subpart (iii) of the proposition, we have

|F̃χ(s)| ≪ |F̃χ(bk(t) + it)| ≪ (log2 Q) · |F1(k(bk(t) + it))g(k(bk(t) + it))|Re(cχ̂).

(Recall that F̃χ(s) = F1(sk)cχ̂ g(sk)cχ̂ Gχ,1(s).) Next by (4.64) and (4.65), we get

|F̃χ(s)| ≪ (log2 Q)
∣∣∣∣∣∑
n≥1

1(f(nk),Q)=1

nk(bk(t)+it)

∣∣∣∣∣
Re(cχ̂)

≪ (log2 Q)
(∑
n≥1

1(f(nk),Q)=1

nkbk(t)

)Re(cχ̂)

.

By (4.64), (4.65) and (4.66), we get

|F̃χ(s)| ≪ (log2 Q)2|F1(kbk(t))g(kbk(t))|Re(cχ̂) ≪ (log2 Q)3|F̃χ(bk(t))|.

By definitions of bk(t) and H̃χ(bk(t)), the last bound gives

|F̃χ(s)| ≪ (log3 x)3|H̃χ(bk(t))|LQ(t)αk(Q)(1− βe)−αk(Q).

Finally, recall that |t| ≤ T = exp(
√

log x), that 1 − βe ≫ϵ1 (log x)−ϵ1/20, and that

|H̃χ(bk(t))| ≪ |H̃χ(1/k)| ≪ (log x)αk(Q)ϵ1/4 (by subpart (ii) the general observation at
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the start of the proof). This yields |F̃χ(s)| ≪ (log x)αk(Q)(1/2+ϵ1). Lemma 4.6.1(iii)

now proves the assertion.

(iv) It suffices to show that uniformly for s satisfying the same conditions as in this

subpart,

|Hχ(s)|+ |H ′
χ(s)| ≪ (log x)αk(Q)ϵ1/5

(
logQ+ 1

1− βe

)
. (4.67)

(Here as usual, the second term on the right is omitted if there is no Siegel zero, oth-

erwise it dominates.) Indeed once we establish (4.67), then from the bound 1−βe ≫ϵ1

(log x)−ϵ1/20, it follows that |Hχ(s)|+|H ′
χ(s)| ≪ (log x)(1/20+αk(Q)/5)ϵ1 , which combined

with Lemma 4.6.1(iii) and the observation |Hχ(1/k)Gχ,2 (1/k)−Hχ(s)Gχ,2(s)| =∣∣∣∫ 1/k
s

(Hχ(u)Gχ,2(u))′ du
∣∣∣ completes the proof of the subpart.

To show (4.67), we recall that Hχ(s) is non-vanishing for s as in the subpart. Further

(4.62) applies with z = s for all s considered in this subpart, yielding

∣∣∣∣H ′
χ(s)

Hχ(s)

∣∣∣∣ =
∣∣∣∣∣H̃ ′

χ(s)
H̃χ(s)

− 1
s

+ αk(Q)cχ̂γ(ψe)
s− βe/k

∣∣∣∣∣
≪ LQ(0) + 1 + 1

1− βe
≪ logQ+ 1

1− βe
.

As a consequence,

∣∣∣∣log Hχ(1/k)
Hχ(s)

∣∣∣∣ =
∣∣∣∣∣
∫ 1/k

s

H ′
χ(u)

Hχ(u) du
∣∣∣∣∣

≪
(

1
k
− s
)(

logQ+ 1
1− βe

)
≪ 1,

showing that |Hχ(s)| ≍ |Hχ(1/k)| uniformly for all s in the statement. Collecting
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these bounds, we obtain for all such s,

|Hχ(s)|+ |H ′
χ(s)| ≪

∣∣∣∣Hχ

(
1
k

)∣∣∣∣+
∣∣∣∣H ′

χ(s)
Hχ(s)

∣∣∣∣ · ∣∣∣∣ Hχ(s)
Hχ(1/k)

∣∣∣∣ · ∣∣∣∣Hχ

(
1
k

)∣∣∣∣
≪
∣∣∣∣Hχ

(
1
k

)∣∣∣∣ (logQ+ 1
1− βe

)
,

so that the desired bound (4.67) now follows from subpart (i). This concludes the

proof.

4.6.3. Perron’s formula and the contour shifts

We first show that there is some X sufficiently close to x for which the error term

arising from an effective Perron’s formula is small.

Lemma 4.6.4. Let h := x/ log2 x. There exists a positive integer X ∈ (x, x + h]

satisfying ∑
3X/4<n<5X/4

n̸=X

1(f(n),Q)=1

| log(X/n)| ≪ X1/k logX.

Proof. This would follow once we show that

∑
x<X≤x+h

∑
3X/4<n<5X/4

n ̸=X

1(f(n),Q)=1

| log(X/n)| ≪ x1/kh log x, (4.68)

with the outer sum being over integers X ∈ (x, x + h]. (Recall that x ∈ Z+ in this

entire section.) To show this, we write the sum on the left hand side as S1 + S2,

where S1 denotes the contribution of the case 3X/4 < n ≤ X − 1. Writing any n

contributing to S1 as X − v for some integer v ∈ [1, X/4), we see that | log(X/n)| =

− log(1 − v/X) ≫ v/X ≫ v/x. Recalling that n = Bm for some k-free B of size
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O(1) and some k-full m, we thus have

S1 ≤
∑

3x/4<n<x+h

∑
x<X≤x+h

n+1≤X<4n/3

1(f(n),Q)=1

| log(X/n)| ≪ x
∑
B≪1

∑
3x
4B
<m<x+h

B
m is k-full

∑
1≤v<x+h

4
x<v+Bm≤x+h

1
v

≪ x
∑

1≤v≤ x+h
4

1
v

∑
B≪1

∑
x−v

B
<m≤ x−v+h

B
m is k-full

1≪ x log x
(
x1/kh

x
+ x1/(k+1)

)
≪ x1/kh log x,

where we have bounded the last inner sum on m using the Erdős-Szekeres estimate

on the count of k-full integers (see [23]). This shows that the sum S1 is bounded by

the right hand expression in (4.68). Similarly so is the sum S2, proving (4.68).

To complete the proof of Theorem 4.4.5, it suffices to establish the bound therein for

the “X” found in Lemma 4.6.4 in place of “x”, for once we do so, we may simply note

that

∣∣∣ ∑
x<n≤X

χ1(f1(n)) · · ·χK(fK(n))1(f(n),q)=1

∣∣∣
≤

∑
x<n≤X

1(f(n),Q)=1 ≤
∑
B≪1

∑
x
B
<m≤ X

B
m is k-full

1≪ x1/k

log2 x
.

To show the bound in Theorem 4.4.5 for X, we start by applying an effective version

of Perron’s formula [76, Theorem II.2.3]. To bound the resulting error, we use Lemma

4.6.4 and note that

X
1
k (1+ 1

log X )
 ∑
n≤3X/4

+
∑

n≥5X/4

 1(f(n),Q)=1

T | log(X/n)|n
1
k (1+ 1

log X )

≪ X1/k

T

∑
B≪1

∑
m≥1

m is k-full

1
m

1
k (1+ 1

log X )

≪ X1/k

T

∏
p

(
1 + 1

p1+1/ logX +O

(
1

p1+1/k

))
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≪ X1/k

T
exp

(∑
p

1
p1+1/ logX

)
≪ X1/k logX

T
,

with the last bound above being a consequence of Mertens’ Theorem along with the

fact that

∑
p>X

1
p1+1/ logX ≤

∑
j≥0

∑
X2j

<p≤X2j+1

1
p1+1/ logX

≤
∑
j≥0

exp(−2j)
∑

X2j
<p≤X2j+1

1
p
≪ 1.

(Recall that T = exp(
√

log x) ≥ exp
(1

2
√

logX
)
.) As such, [76, Theorem II.2.3] yields

∑
n≤X

χ1(f1(n)) · · ·χK(fK(n))1(f(n),Q)=1

= 1
2πi

∫ 1
k (1+ 1

log X )+iT

1
k (1+ 1

log X )−iT

Fχ(s)Xs

s
ds+O

(
X1/k logX

T

)
. (4.69)

Our arguments will be divided into three possibilities:

Case 1: When (αk(Q), cχ̂) ̸= (1, 1) and there is a Siegel zero βe mod Q.

Case 2: When (αk(Q), cχ̂) ̸= (1, 1) and there is no Siegel zero mod Q.

Case 3: When (αk(Q), cχ̂) = (1, 1).

In Case 1, we will be assuming henceforth that βe > 1− 5c1
24 logQ ; otherwise decreasing

c1 reduces to Case 2. Let β∗ := 2
3 + βe

3 and σk(t) := 1
k

(
1− c1

4LQ(t)

)
, so that βe

k
> σk(0).

Let δ, δ1 ∈ (0, βe/10k) satisfy σk(0) < βe

k
− 2δ1 <

βe

k
+ 2δ1 <

β∗

k
< 1

k
− 2δ. Consider

the contours

• Γ2, the horizontal segment traversed from 1
k

(
1 + 1

logX

)
+ iT to σk(T ) + iT .

• Γ3, the part of the curve σk(t) + it traversed from t = T to t = 0.
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• Γ4 := Γ4(δ1), the segment traversed from σk(0) to βe/k − δ1 above the branch

cut.

• Γ5 := Γ5(δ1), the semicircle of radius δ1 centered at βe/k, lying in the upper

half plane and traversed clockwise.

• Γ6 := Γ6(δ1), the segment traversed from βe/k + δ1 to β∗/k above the branch

cut.

• Γ7 := Γ7(δ), the segment traversed from β∗/k to 1/k− δ above the branch cut.

• Γ8 := Γ8(δ), the circle of radius δ centered at 1/k, traversed clockwise from the

point 1/k − δ above the branch cut to its reflection below the branch cut.

• Γ∗
4 := Γ∗

4(δ), the segment traversed from σk(0) to 1/k−δ above the branch cut.

• Γ∗
5 := Γ∗

5(δ1), the circle of radius δ1 centered at βe/k, traversed clockwise from

the point βe/k− δ1 above the branch cut to its reflection below the branch cut.

Here Γ∗
5(δ1) is relevant only when our branch cut is along σ ≤ βe/k (i.e., when

αk(Q) = cχ̂ = 1 and βe exists), while the rest of the contours are defined irrespective

of the branch cut. We define the contour Γ1 by

Γ1 :=



∑8
j=2 Γj +

∑7
j=2 Γj, under Case 1

Γ2 + Γ3 + Γ∗
4 + Γ8 + Γ∗

4 + Γ3 + Γ2, under Case 2∑4
j=2 Γj + Γ∗

5 +
∑4

j=2 Γj, under Case 3.

Here Γj (resp. Γ∗
4) is the contour obtained by reflecting Γj (resp. Γ∗

4) about the real

axis.
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In Case 3, if βe doesn’t exist, then there is no branch cut and Γ4, Γ4 and Γ∗
5 are

excluded from Γ1. In all three cases, the integrand in (4.69) is analytic in the region

enclosed by Γ1 and the segment joining 1
k

(
1 + 1

logX

)
− iT and 1

k

(
1 + 1

logX

)
+ iT .

(Note that if cχ̂ = 1, the definitions of Q(k; f1, · · · , fK) and Gχ,1, Gχ,2 in Lemma 4.6.1

give Gχ,2(1/k) = 0, canceling the simple pole of F1(sk) at s = 1/k. In particular, this

happens in Case 3.) So

∑
n≤X

χ1(f1(n)) · · ·χK(fK(n))1(f(n),Q)=1

= − 1
2πi

∫
Γ1

Fχ(s)Xs

s
ds+O

(
X1/k logX

T

)
. (4.70)

We now proceed to estimate the integrals occurring on the right hand side above.

In the following proposition, any result about an integral is valid whenever the cor-
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responding contour is a part of Γ1: so for instance, the assertion on Γ8 (resp. Γ∗
5)

holds under Cases 1 or 2 (resp. Case 3), those on Γ5 and Γ6 hold under Case 1, and

the bound involving Γ4 holds under Cases 1 and 3. Let Ij (resp. Ij, I∗
j ) denote the

corresponding integral along Γj (resp. along Γj, Γ∗
j).

Proposition 4.6.5. We have the following bounds:

(i) |I2|+ |I2|+ |I3|+ |I3| ≪ X1/k exp(−κ0
√

logX) for some positive constant κ0 :=

κ0(c1, k) depending only on c1 and k.

(ii) max{|I4 + I4|, |I6 + I6|} ≪ X1/k exp(−
√

logX) uniformly in δ, δ1 as above.

(iii) limδ1→0+ |I5| = limδ1→0+ |I5| = limδ1→0+ |I∗
5 | = limδ→0+ |I8| = 0.

Proof. To show subpart (i), we use the fact that since βe > 1−5c1/24 logQ, any s lying

on Γ2, Γ3 or their conjugates satisfies the requirements of Proposition 4.6.3(iii). As

such, (i) follows immediately from Proposition 4.6.3(iii) and the fact that |s| ≫ |t|+1

for all s.

For subpart (ii), we note that for all s ∈ Γ4, we have

(s− 1/k)−αk(Q)cχ̂ = (1/k − s)−αk(Q)cχ̂ e−iπαk(Q)cχ̂

and

(s− βe/k)αk(Q)cχ̂γ(ψe) = (βe/k − s)αk(Q)cχ̂γ(ψe) eiπαk(Q)cχ̂γ(ψe).

(This is clear if the branch cut is along σ ≤ 1/k, and also if the branch cut is

along σ ≤ βe/k which is when (αk(Q), cχ̂) = (1, 1).) Likewise, for all s ∈ Γ4, we

have (s − 1/k)−αk(Q)cχ̂ = (1/k − s)−αk(Q)cχ̂ eiπαk(Q)cχ̂ and (s − βe/k)αk(Q)cχ̂γ(ψe) =

(βe/k − s)αk(Q)cχ̂γ(ψe) e−iπαk(Q)cχ̂γ(ψe). Since e±iπαk(Q)cχ̂(γ(ψe)−1) ≪ 1, the definitions of
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F̃χ(s) and H̃χ(s) show that

|I4 + I4| ≪

∣∣∣∣∣
∫ βe/k−δ1

σk(0)

H̃χ(s)Gχ,2(s)Xs

s

(
1
k
− s
)−αk(Q)cχ̂

(
βe
k
− s
)αk(Q)cχ̂γ(ψe)

ds
∣∣∣∣∣ .

But now by Lemma 4.6.1(iii) and Proposition 4.6.3(ii), we see that

|I4 + I4| ≪ Xβe/k(logX)αk(Q)ϵ1/4(1− βe)−αk(Q) ·
∫ βe/k−δ1

σk(0)

(
βe
k
− s
)αk(Q)Re(cχ̂γ(ψe))

ds

≪ Xβe/k(logX)3αk(Q)ϵ1/10 ·
(
βe
k
− σk(0)

)1+αk(Q)Re(cχ̂γ(ψe))

≪ X1/k exp(−
√

logX).

Here we have recalled that βe ≤ 1− c(ϵ1)/Qϵ1/20K0 ≤ 1− c(ϵ1)/(logX)ϵ1/20 for some

constant c(ϵ1) > 0, and (as argued before Lemma 4.6.1) that Qe := f(ψe) has a prime

factor ℓe > D + 2, which upon factoring ψe =
∏

ℓ|Q ψe,ℓ with ψe,ℓ being a character

mod ℓ, led to

αk(Q)|γ(ψe)| ≤ αk(Q)
∏
ℓ|Qe

∣∣∣∣∣
∑

v: vWk(v)∈Uℓ
ψe,ℓ(v)

αk(ℓ)(ℓ− 1)

∣∣∣∣∣ (4.71)

≤ 1
ℓe − 1

∣∣∣∣∣ ∑
v mod ℓe

Wk(v)≡0 (mod ℓe)

ψe,ℓ(v)
∣∣∣∣∣ ≤ D

D + 1 . (4.72)

This shows the desired bound on I4 in (ii), and the assertion for I6 is entirely analo-

gous.

Coming to subpart (iii), we parametrize the points of Γ5 by s = βe/k + δ1e
iθ where

π ≥ θ ≥ 0. Since M̃ := sup|s− βe
k |≤ 1

2(βe
k

−σk(0)) |H̃χ(s)| is finite, we have for all
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sufficiently small δ1 > 0,

|I5| ≪ M̃

∫ π

0
Xβe/k+δ1

(
1− βe
k
− δ1

)−αk(Q)Re(cχ̂)

δ
1+αk(Q)Re(cχ̂γ(ψe))
1 dθ

≪ M̃Xβe/k+δ1δ
1/(D+1)
1(1−βe

k
− δ1

)αk(Q) ,

where we have again seen that 1 + αk(Q)Re(cχ̂γ(ψe)) ≥ 1/(D + 1) by (4.71). The

last expression shows that limδ1→0+ |I5| = 0, and the assertions on |I5| and |I∗
5 | are

proved similarly. The same argument also shows that

|I8| ≪M∗X1/k+δδ1−αk(Q)Re(cχ̂)
(

1− βe
k
− δ
)−αk(Q)

for all sufficiently small δ > 0, where M∗ = sup|s− 1
k |≤ 1−β∗

k
|H̃χ(s)|. This yields

limδ→0+ |I8| = 0, because αk(Q)Re(cχ̂) < 1 whenever (αk(Q), cχ̂) ̸= (1, 1).

Now in case 3, we let δ1 ↓ 0 in (4.70) and invoke the relevant assertions of Proposition

4.6.5 to obtain
∑

n≤X χ1(f1(n)) · · ·χK(fK(n))1(f(n),Q)=1 ≪ X1/k exp(−κ1
√

logX) for

some constant κ1 > 0. Hence to complete the proof of Theorem 4.4.5, it suffices to

assume that (αk(Q), cχ̂) ̸= (1, 1). In case 1, we obtain, by letting δ ↓ 0 and δ1 ↓ 0 in

(4.70),

∑
n≤X

χ1(f1(n)) · · ·χK(fK(n))1(f(n),Q)=1

= − lim
δ→0+

I7 + I7

2πi +O(X1/k exp(−κ1
√

logX)). (4.73)

By an argument analogous to that given for Proposition 4.6.5(ii), it is easy to see that

the above limit exists. Furthermore, writing (s−1/k)−αk(Q)cχ̂ = (1/k−s)−αk(Q)cχ̂ e±iπαk(Q)cχ̂
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as before, we see that the limit in (4.73) is equal to

sin(παk(Q)cχ̂)
π

∫ 1/k

β∗/k

Hχ(s)Gχ,2(s)Xs

(
1
k
− s
)−αk(Q)cχ̂

ds,

We write the above integral as Hχ(1/k)Gχ,2(1/k)I1 − I2, where

I1 :=
∫ 1/k

β∗/k

Xs(1/k − s)−αk(Q)cχ̂ ds.

Letting s = 1/k−u/ logX, and using β∗ = 2/3+βe/3 ≤ 1− c(ϵ1)/3(logX)ϵ1/20 along

with Lemma 4.6.2(ii) we get

I1 = X1/k

(logX)1−αk(Q)cχ̂

{
Γ(1− αk(Q)cχ̂) +O(exp(−

√
logX))

}
.

Now using Proposition 4.6.3(iv) and making the same change of variable, we find that

I2 ≪ (logX)
(

1
20 + αk(Q)

5

)
ϵ1

∫ 1/k

β∗/k

Xs

(
1
k
− s
)1−αk(Q)Re(cχ̂)

ds

≪ X1/k

(logX)2−αk(Q)Re(cχ̂)−(1/20+αk(Q)/5)ϵ1
(4.74)

as Γ(2− αk(Q)Re(cχ̂))≪ 1. Collecting estimates, we obtain from (4.73),

∑
n≤X

1(f(n),Q)=1

K∏
i=1

χ1(f1(n))

= Hχ(1/k)Gχ,2 (1/k)
Γ(αk(Q)cχ̂) · X1/k

(logX)1−αk(Q)cχ̂

(
1 +O(exp(−

√
logX))

)
+O

(
X1/k

(logX)2−αk(Q)Re(cχ̂)−(1/20+αk(Q)/5)ϵ1

)
, (4.75)

by the reflection formula for the Gamma function and as Γ(z) ≫ 1 for all z with

|z| ≤ 2.
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If cχ̂ ̸= 1, then Re(cχ̂) ≤ cos(2π/φ(Q0)) < 1 − ϵ1. Lemma 4.6.1(iii) and Proposition

4.6.3(i) yield

∑
n≤X

1(f(n),Q)=1

K∏
i=1

χ1(f1(n))≪ X1/k

(logX)1−αk(Q)(Re(cχ̂)+ϵ1/5)

≪ X1/k

(logX)1−αk(Q)(1−δ0) ,

with δ0 := δ0(λ) := min{3ϵ1/4, 1 − ϵ1/2}. On the other hand, if cχ̂ = 1, then since

q ∈ Q(k; f1, · · · , fK), we must have Gχ,2(1/k) = 0 (as observed before (4.70)). Hence,

(4.75) yields

∑
n≤X

χ1(f1(n)) · · ·χK(fK(n))1(f(n),Q)=1 ≪
X1/k

(logX)2−αk(Q)−(1/20+αk(Q)/5)ϵ1

≪ X1/k

(logX)1−αk(Q)(1−δ0) ,

completing the proof of Theorem 4.4.5 in case 1.

Finally in case 2, (4.70) and Proposition 4.6.5 lead to the following analogue of (4.73):

∑
n≤X

χ1(f1(n)) · · ·χK(fK(n))1(f(n),Q)=1

= − lim
δ→0+

I∗
4 + I∗

4
2πi +O(X1/k exp(−κ0

√
logX)). (4.76)

An argument entirely analogous to the one given above leads to the sharper variant of

(4.75) with the exp(−
√

logX) replaced by exp
(
− c1 logX

8kK0 log2 X

)
, completing the proof

of Theorem 4.4.5.

This finally concludes the proof of Theorem 4.3.2. In order to establish Theorems

4.1.1 to 4.1.3, we thus need to appropriately bound the contributions of inconvenient
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n’s considered in the respective theorems. We take this up in the next several sections.

Section 4.7

Equidistribution to restricted moduli: Proof of

Theorem 4.1.1

By Theorem 4.3.2, it remains to show that

∑
n≤x inconvenient

(∀i) fi(n)≡ai (mod q)

1 = o

(
1

φ(q)K
∑
n≤x

(f(n),q)=1

1
)

as x→∞, (4.77)

uniformly in coprime residues (ai)Ki=1 to k-admissible moduli q ≤ (log x)K0 , under any

one of the conditions (i)-(iii) of Theorem 4.1.1.

To show this, we set z := x1/ log2 x and recall that, by (4.10), (4.5) and (4.3), the n’s

that are either z-smooth or divisible by the (k + 1)-th power of a prime exceeding y

give negligible contribution to the left hand side of (4.77) in comparison to the right

hand side. The remaining n can be written in the form mP k, where P := P (n) > z,

PJk(m) ≤ y, m is not divisible by the (k + 1)-th power of a prime exceeding y, and

gcd(m,P ) = 1, so that fi(n) = fi(m)Wi,k(P ). Given m, the number of possible P is,

by the Brun-Titchmarsh inequality,

≪
V ′′

1,q

φ(q) ·
(x/m)1/k

log(z/q) ≪
V ′′

1,q

φ(q) ·
x1/k log2 x

m1/k log x ,

where V ′′
1,q := max

{
#V(k)

1,K
(
q; (wi)Ki=1

)
: (wi)Ki=1 ∈ UK

q

}
. Summing this over possible

m, we get
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∑
n≤x inconvenient

P (n)>z; p>y =⇒ pk+1 ∤ n
(∀i) fi(n)≡ai (mod q)

1 ≪
V ′′

1,q

φ(q) ·
x1/k

(log x)1−αkϵ/2 exp
(
O((log3 x)2 + (log2(3q))O(1))

)

via (4.12). By Proposition 4.2.1, the quantity on the right hand side above is negligible

compared to the right hand side of (4.77) whenever qK−1V ′′
1,q ≪ (log x)(1−2ϵ/3)αk . But

this does hold under any one of conditions (i)-(iii) in the statement of Theorem 4.1.1,

because:

(i) V ′′
1,q ≪ 1 if at least of one of {Wi,k}1≤i≤K is linear.

(ii) V ′′
1,q ≪ D

ω(q)
min if q is squarefree, since #V(k)

1,K(ℓ; (wi)Ki=1) ≤ Dmin for all ℓ≫ 1.

(iii) V ′′
1,q ≪ q1−1/Dmin by Lemma 2.5.2.

This establishes (4.77), completing the proof of Theorem 4.1.1.

4.7.1. Optimality in the ranges of q in Theorem 4.1.1.

In all our examples below, {Wi,k}Ki=1 ⊂ Z[T ] will be nonconstant with
∏K

i=1 Wi,k sep-

arable over Q. Then β(W1,k, . . . ,WK,k) = 1, guaranteeing that any integer satisfies

IFH(W1,k, . . . ,WK,k; 1). We claim that there exists a constant C̃ := C̃(W1,k, . . . ,WK,k)

such that for any multiplicative functions (f1, . . . , fK) satisfying fi(pk) = Wi,k(p) for

all primes p and all i ∈ [K], any C̃-rough k-admissible integer q lies inQ(k; f1, · · · , fK);

in other words, (f1, . . . , fK) are jointly WUD modulo any fixed C̃-rough k-admissible

integer q. Indeed, viewing a character of UK
q as a tuple of characters mod q,8 the

condition (1.9) becomes vacuously true whenever Tk(q) := {(W1,k(u), · · · ,WK,k(u)) ∈

UK
q : u ∈ Uq} generates the group UK

q . Now under the canonical isomorphism
8Here UK

q is the direct product of Uq taken K times.
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UK
q →

∏
ℓe∥q U

K
ℓe , the set Tk(q) maps to

∏
ℓe∥q Tk(ℓe). Thus by [49, Lemma 5.13], 9 if

Tk(q) does not generate UK
q , then there is some ℓe ∥ q and some tuple of characters

(ψ1, · · · , ψK) ̸= (χ0,ℓ, . . . , χ0,ℓ) mod ℓe for which
∏K

i=1 ψi(Wi,k(u)) is constant on the

set Rk(ℓe). Our claim now follows from Lemma 1.3.18.

Fix any k ∈ N. Let C̃0 > max{C̃, 4KD} be any constant depending only on the

polynomials {Wi,k}1≤i≤K , which also exceeds the size of the leading coefficient and

(nonzero) discriminant of
∏K

i=1 Wi,k. Then by Theorem 1.3.11, f1, . . . , fK are jointly

weakly equidistributed modulo any (fixed) C̃0-rough k-admissible integer. Fix a prime

ℓ0 > C̃0, and consider any nonconstant polynomials {Wi,v} 1≤i≤K
1≤v≤k−1

⊂ Z[T ] all of whose

coefficients are divisible by ℓ0, so that αv(ℓ0) = 0 for each v < k. Our moduli q will

have P−(q) = ℓ0, so that αv(q) = 0 for all v < k. In each example below, we will show

that αk(q) ̸= 0, so that q is k-admissible and lies in Q(k; f1, · · · , fK) by definition

of C̃0. The constant K0 (in the assumption q ≤ (log x)K0) is taken large enough in

terms of {Wi,k}Ki=1.

Optimality under condition (i). We show that for any K ≥ 2, the range of

q in Theorem 4.1.1(i) is optimal, – even if all of W1,k, . . . ,WK,k are assumed to

be linear, for any choice of (pairwise coprime) linear functions. Indeed, consider

Wi,k(T ) := ciT+bi ∈ Z[T ] for nonzero integers ci and integers bi satisfying bi/ci ̸= bj/cj

for all i ̸= j. Then
∏K

i=1 Wi,k is clearly separable in Q[T ]. Choose a nonzero integer

b such that
∏K

i=1(cib + bi) ̸= 0. Let C̃0 > max{|b|, |cib + bi| : 1 ≤ i ≤ K} be any

constant satisfying the aforementioned requirements, so that any q with P−(q) =

ℓ0 > C̃0 is coprime to b and to
∏K

i=1 Wi,k(b) =
∏K

i=1(cib + bi). Thus αk(q) ̸= 0 and

q ∈ Q(k; f1, · · · , fK). Now any prime P ≤ x1/k satisfying P ≡ b (mod q) also satisfies
9This is a fact from finite group theory which states that if A1, . . . , Am are finite abelian groups,

and if Rj is a nonempty subset of Aj for each j ∈ [m], then
∏m

j=1 Rj does not generate
∏m

j=1 Aj if
and only if there exist characters ψj of Aj , not all trivial, such that each ψj takes a constant value
cj on Rj , with c1 . . . cm = 1.

204



4.7 Equidistribution to restricted moduli: Proof of Theorem 4.1.1

fi(P k) = Wi,k(P ) ≡ cib + bi (mod q) for all i ∈ [K]. The Siegel–Walfisz Theorem

thus shows that there are ≫ x1/k/φ(q) log x many n ≤ x satisfying fi(n) ≡ cib + bi

(mod q) for all i ∈ [K]. By Proposition 4.2.1, this last expression grows strictly faster

than φ(q)−K#{n ≤ x : (f(n), q) = 1} as soon as q ≥ (log x)(1+ϵ)αk/(K−1) for any

fixed ϵ ∈ (0, 1), showing that the range of q in Theorem 4.1.1 under condition (i)

is essentially optimal. Note that with Y ∈ [2(1 + ϵ) log2 x/(K − 1), (K0/2) log2 x],

the squarefree integer q :=
∏

ℓ0≤ℓ≤Y ℓ satisfies all desired conditions; in particular

(log x)(1+ϵ)/(K−1) ≤ q ≤ (log x)K0 and P−(q) = ℓ0.

Optimality under condition (ii). To show that the range of squarefree q in

Theorem 4.1.1(ii) is optimal, we define Wi,k(T ) :=
∏

1≤j≤d(T − 2j) + 2(2i− 1) ∈ Z[T ]

for some fixed d > 1. Eisenstein’s criterion at the prime 2 shows that each Wi,k is

irreducible in Q[T ], and the distinct Wi,k’s differ by a constant, making
∏K

i=1 Wi,k

separable over Q. Now 2 ∈ Uq, and Wi,k(2) = 2(2i− 1) ≤ 2(2K − 1) < 4KD < C̃0 <

P−(q) for each i ∈ [K]. Thus, q ∈ Q(k; f1, · · · , fK) and (2(2i−1))Ki=1 ∈ UK
q . Further,

any prime P satisfying
∏

1≤j≤d(P−2j) ≡ 0 (mod q) also satisfies fi(P k) = Wi,k(P ) ≡

2(2i − 1) (mod q) for each i. Since 2d = 2 degWi,k < 4KD < P−(q), we see that

2, 4, . . . , 2d are all distinct coprime residues modulo each prime dividing q, whereupon

it follows that the congruence
∏

1≤j≤d(v − 2j) ≡ 0 (mod q) has exactly dω(q) distinct

solutions v ∈ Uq for squarefree q. Hence, there are≫ dω(q)

φ(q) ·
x1/k

log x many primes P ≤ x1/k

satisfying fi(P k) ≡ 2(2i−1) (mod q) for all i, so there are also at least as many n ≤ x

for which all fi(n) ≡ 2(2i−1) (mod q). The last expression grows strictly faster than

φ(q)−K#{n ≤ x : (f(n), q) = 1} as soon as qK−1D
ω(q)
min = qK−1dω(q) > (log x)(1+ϵ)αk

for any fixed ϵ > 0, showing that the range of q in Theorem 4.1.1(ii) is essentially

optimal.

Note that it is possible to construct squarefree q ≤ (log x)K0 satisfying the much
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stronger requirement that dω(q) > (log x)(1+ϵ)αk (and P−(q) = ℓ0). Indeed, let q :=∏
ℓ0≤ℓ≤Y ℓ for some Y ≤ (K0/2) log2 x. Then ω(q) =

∑
ℓ0≤ℓ≤Y 1 ≥ Y/2 log Y . On

the other hand, by the Chinese Remainder Theorem and the Prime Ideal Theorem,

αk(q) ≤ κ′/ log Y for some constant κ′ := κ′(W1,k, . . . ,WK,k; ℓ0). So we need only

choose any

Y ∈ (4κ′ log2 x/ log d, (K0/2) log2 x)

in order to have q ≤ (log x)K0 and dω(q) > (log x)(1+ϵ)αk .

For future reference, we observe that any n of the form P k with P a prime exceeding

q satisfies Pk(n) > q. Hence in the above setting, we have shown the stronger lower

bound

∑
n≤x: Pk(n)>q

(∀i) fi(n)≡2(2i−1) (mod q)

1 ≥
∑

q<P≤x1/k∏
1≤j≤d(P−2j)≡0 (mod q)

1 ≫ dω(q)

φ(q) ·
x1/k

log x. (4.78)

Optimality under condition (iii). Fix d > 1 and define Wi,k(T ) := (T − 1)d + i ∈

Z[T ], so that
∏K

i=1 Wi,k(T + 1) =
∏K

i=1(T d + i) is clearly separable in Q[T ], hence

so is
∏K

i=1 Wi,k(T ). Let q := Qd for some Q ≤ (log x)K0/d satisfying P−(Q) = ℓ0.

Then 1 ∈ Rk(q), showing that q ∈ Q(k; f1, · · · , fK). Moreover, i ∈ Uq for each

i ∈ [K], and any prime P ≡ 1 (mod Q) satisfies fi(P k) = Wi,k(P ) = (P − 1)d + i ≡ i

(mod q). Consequently, there are ≫ x1/k/q1/d log x many n ≤ x satisfying fi(n) ≡ i

(mod q) for all i, and this last expression grows strictly faster than φ(q)−K#{n ≤ x :

(f(n), q) = 1} as soon as qK−1/Dmin = qK−1/d ≥ (log x)(1+ϵ)αk for some fixed ϵ ∈ (0, 1).

This establishes that the range of q in condition (iii) of Theorem 4.1.1 is optimal,

and concrete examples of moduli q satisfying the conditions imposed so far, are those

of the form Qd, with Q lying in [(log x)(1+ϵ)(K−1/d)−1/d, (log x)K0/d] and having least

prime factor ℓ0.
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Section 4.8

Restricted inputs to general moduli: Proof of

Theorem 4.1.2

Fix T ∈ N>1. By Proposition 4.3.1 and the fact that PJk(n) ≤ PT (n), it is immediate

that ∑
n≤x: PT (n)≤q
gcd(f(n),q)=1

1 = o

( ∑
n≤x

gcd(f(n),q)=1

1
)
. (4.79)

In Theorems 4.1.2 and 4.1.3, we may assume q to be sufficiently large, for otherwise

these results follow directly from Theorem 1.3.11 and (4.79). The latter formula

also shows the equality of the second and third expressions in (4.1), so it remains to

show the first equality in either. Recall that for this theorem, we have ϵ := 1 and

y = exp(
√

log x) in the framework developed in section 4.3. Now any convenient n

has PJk(n) > y and hence is counted in the left hand side of (4.1). By Theorem

4.3.2, it suffices to show that the contributions of the inconvenient n to the left hand

sides of (4.1) are negligible compared to φ(q)−K#{n ≤ x : (f(n), q) = 1}. In fact, by

(4.10) and (4.5), it remains to show (4.80) below to establish Theorem 4.1.2:

∑∗

n: PR(n)>q
1 ≪ x1/k

φ(q)K(log x)1−2αk/3 . (4.80)

Here and in the rest of the chapter, any sum of the form
∑∗

n denotes a sum over

positive integers n ≤ x that are not z-smooth, not divisible by the (k+1)-th power of

a prime exceeding y, have PJk(n) ≤ y and satisfy fi(n) ≡ ai (mod q) for all i ∈ [K].

Other conditions imposed on this sum are additional to these.

Defining ω∥(n) := #{p > q : pk ∥ n} and ω∗(n) := #{p > q : pk+1 | n}, we first show
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the following three bounds:

∑∗

n: ω∥(n)≥KD+1
1,
∑∗

n: ω∥(n)=KD
ω∗(n)≥1

1,
∑

n≤x: (f(n),q)=1
ω∗(n)≥Kk, PJk(n)≤y, P (n)>z

p>y =⇒ pk+1 ∤ n

1

≪ x1/k

φ(q)K(log x)1−2αk/3 . (4.81)

Any n counted in the first sum is of the form m(PKD+1 · · ·P1)k, where PJk(m) ≤ y,

where P1, . . . , PKD+1 are primes exceeding q satisfying P1 := P (n) > z and q <

PKD+1 < · · · < P1, and where fi(n) = fi(m)
∏KD+1

j=1 fi(P k
j ) = fi(m)

∏KD+1
j=1 Wi,k(Pj).

The conditions fi(n) ≡ ai (mod q) can be rewritten as

(P1, . . . , PKD+1) mod q ∈ V(k)
KD+1,K

(
q; (aifi(m)−1)Ki=1

)
.

Given m, (v1, . . . , vKD+1) ∈ V(k)
KD+1,K

(
q; (aifi(m)−1)Ki=1

)
, and P2, . . . , PKD+1, the num-

ber of P1 in (q, x1/k/m1/kP2 · · ·PKD+1] satisfying P1 ≡ v1 (mod q) is

≪ x1/k log2 x
/
m1/kP2 · · ·PKD+1φ(q) log x,

by Brun-Titchmarsh. We sum this over all possible P2, . . . , PKD+1, making use of

the bound
∑

q<p≤x
p≡v (mod q)

1/p ≪ log2 x
/
φ(q) uniformly in v ∈ Uq (which can be seen by

Brun–Titchmarsh and partial summation). We deduce that the number of possible

(P1, . . . , PKD+1) satisfying Pj ≡ vj (mod q) for each j ∈ [KD + 1] is no more than

∑
q<PKD+1<···<P2≤x
(∀j) Pj≡vj (mod q)

∑
z<P1≤x1/k

/
m1/kP2···PKD+1

P1≡v1 (mod q)

1 ≪ 1
φ(q)KD+1 ·

x1/k(log2 x)O(1)

m1/k log x . (4.82)

Define V ′
r,K := max

{
#V(k)

r,K

(
q; (wi)Ki=1

)
: w1, . . . , wK ∈ Uq

}
. Summing (4.82) over all
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(v1, . . . , vKD+1) ∈ V(k)
KD+1,K

(
q; (aifi(m)−1)Ki=1

)
and then over all m via (4.12) shows

that

∑∗

n: ω∥(n)≥KD+1
1 (4.83)

≪
V ′
KD+1,K

φ(q)KD+1 ·
x1/k

(log x)1−αk/2 · exp
(
O
(
(log3 x)2 + (log2(3q))O(1))) . (4.84)

Applying (4.16) with N := KD + 1, we get

V ′
KD+1,K/φ(q)KD+1 ≪ φ(q)−K

∏
ℓ|q

(1 +O(ℓ−1/D))

≪ φ(q)−K exp
(
O((log q)1−1/D)

)
.

This yields the first bound in (4.81).

Next, any n counted in the second sum in (4.81) can be written asmpc(PKD · · ·P1)k for

some m, c and distinct primes p, P1, . . . , PKD exceeding q, which satisfy the conditions

P1 = P (n) > z, q < PKD < · · · < P1, PJk(m) ≤ y, c ≥ k + 1 and fi(n) =

fi(m)fi(pc)
∏KD

j=1 Wi,k(Pj), so that (P1, . . . , PKD) mod q ∈ V(k)
KD,K

(
q; (aifi(mpc)−1)Ki=1

)
.

Given m, p, c and (v1, . . . , vKD) ∈ V(k)
KD,K

(
q; (aifi(mpc)−1)Ki=1

)
, the arguments leading

to (4.82) show that the number of possible (P1, . . . , PKD) satisfying (Pj)KDi=1 ≡ (vj)KDi=1

(mod q) is ≪ x1/k(log2 x)O(1)
/
φ(q)KDm1/kpc/k log x. Summing this successively over

all (v1, . . . , vKD), c ≥ k + 1, p > q and all possible m, shows that the second of the

three sums in (4.81) is

≪
V ′
KD,K

q1/kφ(q)KD ·
x1/k

(log x)1−2αk/3 .

(Here we have noted that
∑

p>q, c≥k+1 p−c/k ≪
∑

p>q p−1−1/k ≪ q−1/k.) By (4.17),

we have V ′
KD,K

/
q1/kφ(q)KD ≪ 1/qK , proving the second inequality in (4.81).
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Lastly, any n counted in the third sum in (4.81) still has P (n) > z and P (n)k ∥ q, and

thus can be written in the form mpc1
1 · · · p

cKk
Kk P

k for some distinct primes p1, . . . , pKk, P

exceeding q and some integers m, c1, . . . , cKk, which satisfy P = P (n) > z, PJk(m) ≤

y, cj ≥ k+1 for all j ∈ [Kk], and gcd(f(m), q) = 1. Given m, p1, . . . , pKk, c1, . . . , cKk,

the number of possible P > z satisfying P k ≤ x/mpc1
1 · · · p

cKk
Kk is

≪ x1/k/(mpc1
1 · · · p

cKk
Kk )1/k log z.

Summing this over all c1, . . . , cKk ≥ k+ 1, and then over all p1, . . . , pKk,m, shows the

third bound in (4.81).

In the rest of the argument, R as in the statement of the theorem is the least integer

exceeding

max
{
k(KD + 1)− 1, k

(
1 + (k + 1)

(
K − 1

D

))}

=


k(KD + 1)− 1, if k < D

k (1 + (k + 1) (K − 1/D)) if k ≥ D.

Since q is sufficiently large, the q-rough part of any n satisfying gcd(f(n), q) = 1 is

k-full (by Lemma 4.2.3). As such, any n with ω∗(n) = 0 counted in (4.80) must have

ω∥(n) ≥ ⌊R/k⌋ ≥ KD+ 1, and hence is counted in the first sum in (4.81). Moreover,

any n with ω∥(n) = KD counted in (4.80) must also have ω∗(n) ≥ R − kω∥(n) ≥

k(KD+ 1)− kKD ≥ 1, and hence is counted in the second sum in (4.81). By (4.81),

it thus remains to show that the contribution of n having ω∥(n) ∈ [KD − 1] and

ω∗(n) ∈ [Kk − 1] to the left hand side of (4.80) is absorbed in the right hand side.

This would follow once we show that for any fixed r ∈ [KD − 1] and s ∈ [Kk − 1],

the contribution Σr,s of all n with ω∥(n) = r and ω∗(n) = s to the left hand side of
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(4.80) is absorbed in the right hand side.

Now any n counted in Σr,s is of the form mpc1
1 · · · pcs

s P
k
1 · · ·P k

r for some distinct primes

p1, . . . , ps, P1, . . . , Pr and integers m, c1, . . . , cs, which satisfy the following conditions:

(i) P (m) ≤ q;

(ii) P1 := P (n) > z; q < Pr < · · · < P1;

(iii) p1, . . . , ps > q;

(iv) c1, . . . , cs ≥ k + 1 and c1 + · · ·+ cs ≥ R− kr;

(v) m, p1, . . . , ps, P1, . . . , Pr are all pairwise coprime, so that

fi(n) = fi(m)f(pc1
1 ) · · · f(pcs

s )
r∏
j=1

Wi,k(Pj)

for each i ∈ [K].

Here, property (i) holds because the q-rough part of any n satisfying gcd(f(n), q) = 1

is k-full, whereas ω∥(n) = r, ω∗(n) = s .

With τi := min{ci, R−kr}, it is easy to see that the integers τ1, . . . , τs ∈ [k+1, R−kr]

satisfy τ1 ≤ c1, . . . , τs ≤ cs and τ1 + · · · + τs ≥ R − kr. (Here it is important that

R ≥ k(KD + 1), r ≤ KD − 1 and c1 + · · · + cs ≥ R − kr.) Turning this around, we

find that

Σr,s ≤
∑

τ1,...,τs∈[k+1,R−kr]
τ1+···+τs≥R−kr

Nr,s(τ1, . . . , τs), (4.85)

where Nr,s(τ1, . . . , τs) denotes the contribution of all n counted in (4.80) which can

be written in the form mpc1
1 · · · pcs

s P
k
1 · · ·P k

r for some distinct primes p1, . . . , ps, P1,

· · · , Pr and integers m, c1, . . . , cs satisfying the conditions (i)-(v) above, along with
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the condition c1 ≥ τ1, . . . , cs ≥ τs. We will show that for each tuple (τ1, . . . , τs)

occurring in (4.85), we have

Nr,s(τ1, . . . , τs) ≪
x1/k(log2 x)O(1)

qK log x . (4.86)

Consider an arbitrary such tuple (τ1, . . . , τs), and write n in the formmpc1
1 · · · pcs

s P
k
1 · · ·P k

r

as above. The conditions fi(n) ≡ ai (mod q) lead to

(P1, . . . , Pr) mod q ∈ V(k)
r,K

(
q; (aifi(mpc1

1 · · · pcs
s )−1)Ki=1

)
.

Given m, p1, . . . , ps, c1, . . . , cs and

(v1, . . . , vr) ∈ V(k)
r,K

(
q; (aifi(mpc1

1 · · · pcs
s )−1)Ki=1

)
,

the arguments leading to (4.82) show that the number of possible P1, . . . , Pr satisfying

Pj ≡ vj mod q for each j ∈ [r], is

≪ x1/k(log2 x)O(1)
/
φ(q)rm1/kp

c1/k
1 · · · pcs/k

s log x.

With V ′
r,K = max(wi)i∈UK

q
#V(k)

r,K

(
q; (wi)Ki=1

)
as before, the bounds

∑
pi>q: ci≥τi

p
−ci/k
i ≪

q−(τi/k−1) yield

Nr,s(τ1, . . . , τs)≪
1

q(τ1+···+τs)/k−s

V ′
r,K

φ(q)r ·
x1/k(log2 x)O(1)

log x

∑
m≤x: P (m)≤q
gcd(f(m),q)=1

1
m1/k . (4.87)

Proceeding as in the argument for (4.12), we write any m in the above sum as BM
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where B is k-free and M is k-full, so that B = O(1) and P (M) ≤ q. We find that

∑
m≤x: P (m)≤q
gcd(f(m),q)=1

1
m1/k ≪

∑
M≤x: P (M)≤q
M is k-full

1
M1/k ≤

∏
p≤q

(
1 + 1

p
+O

(
1

p1+1/k

))

≪ exp

∑
p≤q

1
p

≪ log q. (4.88)

Inserting this into (4.87), we obtain

Nr,s(τ1, . . . , τs)≪
1

q(τ1+···+τs)/k−s

V ′
r,K

φ(q)r ·
x1/k(log2 x)O(1)

log x . (4.89)

Now since 1 ≤ r ≤ KD − 1, an application of (4.17) with N := r now yields

Nr,s(τ1, . . . , τs)≪
exp

(
O(ω(q))

)
q(τ1+···+τs)/k−s+r/D ·

x1/k(log2 x)O(1)

log x (4.90)

≪
exp

(
O(ω(q))

)
qmax{s/k,R/k−r−s}+r/D ·

x1/k(log2 x)O(1)

log x , (4.91)

where in the last equality we have recalled that τ1, . . . , τs ≥ k+ 1 and τ1 + · · ·+ τs ≥

R− kr.

We claim that max{s/k,R/k − r − s} + r/D > K. This is tautological if s/k +

r/D > K, so suppose s/k + r/D ≤ K. Then r ≤ D(K − s/k) ≤ DK − D/k, and

s ≤ k(K − r/D) so that R/k − r − s+ r/D ≥ R/k −Kk + ((k + 1)/D − 1)r.

Now if k < D, then (k + 1)/D − 1 ≤ 0, so for all 1 ≤ r ≤ DK − D/k, we have

R/k −Kk + ((k + 1)/D − 1)r ≥ R/k −Kk + ((k + 1)/D − 1)(DK −D/k) and this

exceeds K since R ≥ k(KD+1). If on the other hand, we had k ≥ D, then k+1 > D

and the minimum value of R/k −Kk + ((k + 1)/D− 1)r is attained at r = 1, giving

us R/k −Kk + ((k + 1)/D − 1)r ≥ R/k −Kk + ((k + 1)/D − 1) which also exceeds
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K since R > k
(
1 + (1 + k)(K − 1/D)

)
. This shows our claim, so that (4.90) leads to

(4.86). Summing (4.86) over the O(1) many possible tuples (τ1, . . . , τs) occurring in

the right hand side of (4.85) yields Σr,s ≪ x1/k(log2 x)O(1)/qK log x, which (as argued

before) establishes Theorem 4.1.2.

Section 4.9

Final preparatory step for Theorem 4.1.3:

Counting points on varieties

To establish Theorem 4.1.3, we will need the following partial improvements of Corol-

lary 4.4.4. In this section, we again deviate from the general notation set up for

Theorems 4.1.1 to 4.1.3, so the notation set up in this section will be relevant in this

section only.

Proposition 4.9.1. Let F ∈ Z[T ] be a fixed nonconstant polynomial which is not

squarefull.

(a) Define V2,1(ℓ;w) := {(v1, v2) ∈ U2
ℓ : F (v1)F (v2) ≡ w (mod ℓ)}. Then #V2,1(ℓ;w)

≤ φ(ℓ)
(
1 +O

(
ℓ−1/2)), uniformly for primes ℓ and coprime residues w mod ℓ.

(b) Let G ∈ Z[T ] be any fixed polynomial such that {F,G} ⊂ Z[T ] are multiplica-

tively independent. Let V3,2(ℓ;u,w) be the set of (v1, v2, v3) ∈ U3
ℓ satisfying

the two congruences F (v1)F (v2)F (v3) ≡ u (mod ℓ) and G(v1)G(v2)G(v3) ≡ w

(mod ℓ). Then #V3,2(ℓ;u,w) ≪F,G φ(ℓ), uniformly in primes ℓ and coprime

residues u,w mod ℓ.

Our starting idea will be to look at V2,1(ℓ;w) and V3,2(ℓ;u,w) as subsets of the sets

of Fℓ-rational points of certain varieties over the algebraic closure Fℓ of Fℓ.
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Proposition 4.9.2. Let V be a variety defined over Fℓ and V (Fℓ) := V ∩ Fℓ.

(a) If V is an absolutely irreducible affine plane curve, then #V (Fℓ) ≤ ℓ+ O(
√
ℓ),

where the implied constant depends only on the degree of V .

(b) Let d be the positive integer such that V ⊂ (Fℓ)d. We have #V (Fℓ) ≪ ℓdimV ,

where dim V is the dimension of V as a variety, and the implied constant de-

pends at most on d and on the number and degrees of the polynomials defining

V .

Subpart(a) is just Proposition 2.6.1 restated for convenience, while subpart (b) is a

weaker version of [22, Claim 7.2] but in fact goes back to work of Lang and Weil

[39, Lemma 1]. To make use of the aforementioned results, we will be needing the

following observations.

Lemma 4.9.3. Let F,G ∈ Z[T ] be fixed multiplicatively independent polynomials

such that F is not squarefull. There exist constants κ0(F ) and κ1(F,G) such that:

(a) For any N ≥ 2, ℓ > κ0(F ) and w ∈ F×
ℓ , the polynomial

∏N
i=1 F (Xi) − w is

absolutely irreducible over Fℓ, that is, it is irreducible in the ring Fℓ[X1, . . . , XN ].

(b) For any ℓ > κ1(F,G) and u,w ∈ F×
ℓ , the polynomial F (X)F (Y )F (Z) − u is

irreducible and doesn’t divide the polynomial G(X)G(Y )G(Z) − w in the ring

Fℓ[X, Y, Z].

Proof. Write F := r
∏M

j=1 G
bj

j for some r ∈ Z, bj ∈ N, and pairwise coprime irre-

ducibles Gj ∈ Z[T ], so that by the nonsquarefullness of F in Z[T ], we have bj = 1 for

some j ∈ [M ]. By the observations at the start of the proof of Proposition 4.4.3, there

exists a constant κ0(F ) such that for any prime ℓ > κ0(F ), ℓ doesn’t divide the leading
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coefficient of F and
∏M

j=1 Gj is separable in Fℓ[T ]. This forces
∏

θ∈Fℓ
F (θ)=0

(T −θ)2 ∤ F (T )

in Fℓ[T ].

Proof of (a). We will show that for any ℓ > κ0(F ) and U, V ∈ Fℓ[X1, . . . , XN ]

satisfying
N∏
i=1

F (Xi)− w = U(X1, . . . , XN)V (X1, . . . , XN), (4.92)

one of U or V must be constant. First note that for any root θ ∈ Fℓ of F , we

have −w = U(X1, . . . , XN−1, θ)V (X1, . . . , XN−1, θ), forcing U(X1, . . . , XN−1, θ) and

V (X1, . . . , XN−1, θ) to be constant in the ring Fℓ[X1, . . . , XN ]. Writing

U(X1, . . . , XN) =
∑

i1,...,iN−1≥0
i1≤R1,...,iN−1≤RN−1

ui1,...,iN−1(XN) X i1
1 · · ·X

iN−1
N−1 ,

and

V (X1, . . . , XN) =
∑

j1,...,jN−1≥0
j1≤T1,...,jN−1≤TN−1

vj1,...,jN−1(XN) Xj1
1 · · ·X

jN−1
N−1

(where ui1,...,iN−1 , vj1,...,jN−1 ∈ Fℓ[XN ], and neither uR1,...,RN−1 nor vT1,...,TN−1 is identi-

cally zero), we thus find that ui1,...,iN−1(θ) = vj1,...,jN−1(θ) = 0 for any (i1, . . . , iN−1) ̸=

(0, . . . , 0), (j1, . . . , jN−1) ̸= (0, . . . , 0), and any θ as above. Thus, if the tuples

(R1, . . . , RN−1) and (T1, . . . , TN−1) are both nonzero, then
∏

θ∈Fℓ
F (θ)=0

(XN − θ) divides

uR1,...,RN−1(XN) and vT1,...,TN−1(XN) in Fℓ[XN ]. But then, if α ∈ Z is the leading

coefficient of F , then comparing the monomials (in X1, . . . , XN−1) with maximal to-

tal degree in (4.92), we find that αN−1F (XN) = uR1,...,RN−1(XN) vT1,...,TN−1(XN) ≡

0 (mod
∏

θ∈Fℓ
F (θ)=0

(XN − θ)2), which is impossible by the observations in the first

paragraph of the proof. This forces one of (R1, . . . , RN−1) or (T1, . . . , TN−1) to be

(0, . . . , 0), say the latter. Then V (X1, . . . , XN) = v0,...,0(XN) and since N ≥ 2, plug-
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ging X1 := θ for some root θ ∈ Fℓ of F into (4.92) yields

−w = U(θ,X2, . . . , XN)v0,...,0(XN),

forcing V to be identically constant.

Proof of (b). We claim that for all primes ℓ ≫F,G 1, if the rational function F aGb

is constant in the ring Fℓ(T ) for some integers a, b, then a ≡ b ≡ 0 (mod ℓ).10 The

argument for this is a simple variant of that given for the inequality “ordℓ(F̃ ) ≤

1ℓ≤C1C1” in the proof of Proposition 4.4.3(b), so we only sketch it. Since {F,G} ⊂

Z[T ] are multiplicatively independent, the polynomials {F ′G,FG′} ⊂ Z[T ] are Q-

linearly independent, hence so are the columns of the matrix M1 listing the coefficients

of F ′G and FG′ in two columns. Hence we can find invertible matrices P1 and Q1

(where Q1 is a 2×2 matrix) such that P1M1Q1 = diag(β1, β2) for some β1, β2 ∈ Z\{0}

satisfying β1 | β2. Let ℓ > |β2| be any prime not dividing the leading coefficients of

F , G, F ′G or FG′. If F aGb is identically constant in Fℓ[T ], then aF ′G + bFG′ ≡ 0

in Fℓ[T ], so M1(a b)⊤ ≡ 0 (mod ℓ). Hereafter, familiar calculations yield (a b)⊤ ≡ 0

(mod ℓ).

Collecting our observations, we have shown that there exists a constant κ1(F,G) such

that for all primes ℓ > κ1(F,G), the following three properties hold:

(i) ℓ > κ0(F ), so that
∏

θ∈Fℓ
F (θ)=0

(T − θ)2 ∤ F (T ) in Fℓ[T ];

(ii) ℓ doesn’t divide the leading coefficient of F or G; and,

(iii) For any a, b ∈ Z for which F aGb is identically constant in Fℓ(T ), we have ℓ | a

and ℓ | b.
10It is not difficult to see that this also forces a = b = 0, but we won’t need that.
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We will now show that any such constant κ1(F,G) satisfies the property in subpart (b)

of the lemma. By subpart (a), F (X)F (Y )F (Z)−u is already irreducible in Fℓ[X, Y, Z]

for any u ∈ F×
ℓ . Assume by way of contradiction that for some ℓ > κ1(F,G) and

u,w ∈ F×
ℓ , we have

G(X)G(Y )G(Z)−w = H0(X, Y, Z) (F (X)F (Y )F (Z)−u) for some H0 ∈ Fℓ[X, Y, Z].

(4.93)

Write H0(X, Y, Z) =:
∑

0≤i1≤r1
0≤i2≤r2

hi1,i2(X)Y i1Zi2 for some hi1,i2 ∈ Fℓ[X] with hr1,r2 not

identically zero. If (r1, r2) = (0, 0), then substituting a root of F and G in place of Y

and Z respectively, we see thatH0 must be a constant λ0 ∈ Fℓ\{0} satisfying w = λ0u.

Thus G(X)G(Y )G(Z) = λ0F (X)F (Y )F (Z). Now substituting some η ∈ Fℓ which is

not a root of FG in place of both Y and Z leads to F (X)G(X)−1 = λ−1
0 F (η)−2G(η)2,

a nonzero constant. But since (1,−1) ̸≡ (0, 0) (mod ℓ), this violates condition (iii)

in the definition of κ1(F,G). Hence (r1, r2) ̸= (0, 0).

Let α, β ∈ Z denote the leading coefficients of F and G respectively. Comparing

the monomials in Y and Z of maximal total degree in (4.93) yields β2G(X) =

α2F (X)hr1,r2(X) in Fℓ[X], so that (since either side of this identity is nonzero), we

get F | G in Fℓ[X]. Write G = FmH for some m ≥ 1 and H ∈ Fℓ[X] such that F ∤ H

in Fℓ[X]. An easy finite induction shows that with

Gt(X, Y, Z) := F (X)m−tF (Y )m−tF (Z)m−tH(X)H(Y )H(Z)− u−tw

and

F̂ (X, Y, Z) := F (X)F (Y )F (Z)− u,

we have F̂ | Gt for each t ∈ {0, 1, . . . ,m}. Indeed, the case t = 0 is just (4.93), and

if F̂ | Gt for some t ≤ m − 1, then writing Gt = QtF̂ shows that F (X)F (Y )F (Z)
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| (Qt(X, Y, Z)− u−(t+1)w). With Qt+1 defined by

Qt(X, Y, Z)− u−(t+1)w = F (X)F (Y )F (Z)Qt+1(X, Y, Z),

we obtain Gt+1 = Qt+1F̂ completing the induction.

Applying this last observation with t := m shows that F̂ (X, Y, Z) divides the poly-

nomial H(X)H(Y )H(Z) − u−mw in Fℓ[X, Y, Z]. We claim that this forces H to be

constant. Indeed if not, then letting γ ∈ Fℓ \ {0} be the leading coefficient of H, 11

writing H(X)H(Y )H(Z)− u−mw = (F (X)F (Y )F (Z)− u)
∑

0≤i1≤b1
0≤i2≤b2

gi1,i2(X)Y i1Zi2

for some gi1,i2 ∈ Fℓ[X] with gb1,b2 ̸= 0, and comparing the monomials in Y and Z of

maximal degree, we obtain γ2H(X) = α2F (X)gb1,b2(X). This leads to F | H, con-

trary to hypothesis. Hence H must be constant, so the identity F−mG = H in Fℓ(X)

violates condition (iii) in the definition of κ1(F,G), as (−m, 1) ̸≡ (0, 0) (mod ℓ). This

shows that F̂ cannot divide G(X)G(Y )G(Z)− w, completing the proof.

Given a commutative ring R and an R-module M , we say that x ∈ R is an M -

regular element if x is not a zero-divisor on M , that is, if xz = 0 for some z ∈ M

implies z = 0. A sequence x1, . . . , xn of elements of R is said to be M -regular if

x1 is an M -regular element, each xi is an M/(x1, . . . , xi−1)M -regular element, and

M/(x1, . . . , xn)M ̸= 0. It is well-known (see [9, Proposition 1.2.14]) that for any

proper ideal I in a Noetherian ring R, the height of I is at least the length of the

longest R-regular sequence contained in I.

Proof of Proposition 4.9.1. With κ0(F ) and κ1(F,G) as in Lemma 4.9.3, the affine

plane curve {(X, Y ) ∈ F2
ℓ : F (X)F (Y )−w = 0} is absolutely irreducible for any ℓ >

κ0(F ), so that Proposition 4.9.2(a) yields Proposition 4.9.1(a). For (b), it suffices to
11Here γ ̸= 0 in Fℓ because ℓ doesn’t divide the leading coefficient of G = FmH.
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show that for any prime ℓ > κ1(F,G), the variety Vℓ ⊂ F3
ℓ defined by the polynomials

F̂ (X, Y, Z) := F (X)F (Y )F (Z)−u and Ĝ(X, Y, Z) := G(X)G(Y )G(Z)−w has≪F,G

ℓ many Fℓ-rational points. Consider the ideal I(Vℓ) of the ring R := Fℓ[X, Y, Z]

consisting of all polynomials vanishing at all the points of Vℓ, so that (F̂ , Ĝ) ⊂ I(Vℓ).

If I(Vℓ) = R, then Vℓ = ∅, so suppose I(Vℓ) ⊊ R. Lemma 4.9.3(b) shows that the

sequence Ĝ, F̂ ∈ I(Vℓ) is R-regular, so by [9, Proposition 1.2.14], I(Vℓ) has height

at least 2. By [4, Chapter 11, Exercise 7], the Krull-dimension of R is 3. Hence

the Krull-dimension of R/I(Vℓ) is at most 3 − 2 = 1 (by, say, [42, p. 31]). Thus

dim(Vℓ) ≤ 1, and Proposition 4.9.2 completes the proof.

Section 4.10

Restricted inputs to squarefree moduli: Proof of

Theorem 4.1.3

Returning to the notation set up in the introduction, we start with the same initial

reductions as in section 4.8. As such, in order to establish the theorem, it suffices to

show that

∑∗

n: PR(n)>q
1 ≪ x1/k

φ(q)K(log x)1−2αk/3 , (4.94)

with the respective values of R defined in the statement. Here we again have ϵ = 1 and

y = exp(
√

log x) in the framework developed in section 4.3. We retain the notation

ω∥(n) = #{p > q : pk ∥ n} and ω∗(n) = #{p > q : pk+1 | n} from section 4.8.
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The case K = 1, W1,k not squarefull.

In this case, (4.94) would follow once we show that

∑∗

n: Pk+1(n)>q
1 ≪ x1/k

φ(q)(log x)1−2αk/3 , (4.95)

Indeed, any n counted in (4.95) which is divisible by the (k + 1)-th power of a prime

exceeding q can be written in the form mpcP k for some positive integers m, c and

primes p, P , satisfying P = P (n) > z, q < p < P , c ≥ k + 1, PJk(m) ≤ y and

f(n) = f(m)f(pc)Wk(P ). Recalling that #{u ∈ Uq : Wk(u) ≡ b (mod q)} ≪ Dω(q)

uniformly in b ∈ Z, the argument given for the second bound in (4.81) shows that

the contribution of such n is≪ Dω(q)

q1/kφ(q) ·
x1/k

(log x)1−2αk/3 ≪ x1/k

φ(q)(log x)1−2αk/3 . On the other

hand, for any n counted in (4.95) which is not divisible by the (k + 1)-th power of

any prime exceeding q, the condition Pk+1(n) > q forces ω∥(n) ≥ 2 (again since q is

sufficiently large and the q-rough part of n is k-full). Thus n = m(P2P1)k, for some

m and primes P1, P2 satisfying P1 := P (n) > z, q < P2 < P1, PJk(m) ≤ y and f(n) =

f(m)Wk(P1)Wk(P2). The arguments before (4.83) show that the contribution of such

n is ≪ V ′
2,1

φ(q)2 · x1/k

(log x)1−αk/2 exp((log3 x)O(1)), which is ≪ x1/k

φ(q)(log x)1−2αk/3 by Proposition

4.9.1(a).

The remaining cases

To complete the proof of Theorem 4.1.3, it thus remains to show that we may take:

(i) R = k(Kk+K−k)+1 if K, k ≥ 2 and at least one of {Wi,k}1≤i≤K is not squarefull.

(ii) R = k(Kk +K − k + 1) + 1, in general.

We shall call (i) as “Subcase 1” and (ii) as “Subcase 2”, and we shall denote R =

k(Kk +K − k + 1) + 1 to mean the respective value of R in the respective subcase.

We have the following analogues of the first two bounds in (4.81), which can be shown
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by replicating arguments and replacing the use of Proposition 4.3.4 by Corollary 4.4.4.

∑∗

n: ω∥(n)≥2K+1
1,

∑∗

n: ω∥(n)=2K
ω∗(n)≥1

1 ≪ x1/k

φ(q)K(log x)1−2αk/3 , (4.96)

If ω∗(n) = 0, then kω∥(n) ≥ R ≥ k(Kk + K − k + 1) + 1, so that ω∥(n) ≥

Kk + K − k + 1 + 1 ≥ 2K + 1; hence, any n with ω∗(n) = 0 counted in (4.94) is

automatically counted in the first sum in (4.96). Likewise, the condition ω∥(n) = 2K

forces
∑

p>q: pk+1|n vp(n) ≥ R − kω∥(n) ≥ k((K − 1)(k − 1)− 1 + 1) + 1 ≥ 1, so that

ω∗(n) ≥ 1; as such, any n with ω∥(n) = 2K contributing to (4.94) is counted in the

second sum in (4.96). Furthermore, by the third bound in (4.81), the contribution

of all n having ω∗(n) ≥ Kk to the left hand side of (4.94) is absorbed in the right

hand side. It thus suffices to show that for any r ∈ [2K − 1] and s ∈ [Kk − 1], the

contribution Σr,s of all n with ω∥(n) = r and ω∗(n) = s to the left hand side of (4.94)

is absorbed in the right hand side.

Recall that any n counted in Σr,s is of the form mpc1
1 · · · pcs

s P
k
1 · · ·P k

r for some distinct

primes p1, . . . , ps, P1, . . . , Pr and integers m, c1, . . . , cs, which satisfy the conditions

(i)–(v) in the proof of Theorem 4.1.2, but with the current values of R. Once again,

the integers τ1, . . . , τs defined by τj := min{cj, R − kr} satisfy τj ∈ [k + 1, R − kr],

τj ≤ cj and τ1 + · · · + τs ≥ R − kr. (Here R − kr ≥ k + 1 follows from r ≤ 2K − 1

and R = k(Kk +K − k + 1) + 1.) Thus,

Σr,s ≤
∑

τ1,...,τs∈[k+1,R−kr]
τ1+···+τs≥R−kr

Nr,s(τ1, . . . , τs), (4.97)

where Nr,s(τ1, . . . , τs) denotes the contribution of all n counted in the left hand side

of (4.94) which can be written in the form mpc1
1 · · · pcs

s P k
1 · · ·P k

r for some distinct

primes p1, . . . , ps, P1, · · · , Pr and integers m, c1, . . . , cs satisfying c1 ≥ τ1, . . . , cs ≥ τs
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and the conditions (i)–(v) in the proof of Theorem 4.1.2 (but with the current values

of R). We will show that for each tuple (τ1, . . . , τs) occurring in (4.97), we have

Nr,s(τ1, . . . , τs) ≪
x1/k(log2 x)O(1)

qK log x exp
(
O(
√

log q)
)
. (4.98)

Now the bound (4.89) continues to hold, so we have

Nr,s(τ1, . . . , τs)≪
1

q(τ1+···+τs)/k−s

V ′
r,K

φ(q)r ·
x1/k(log2 x)O(1)

log x (4.99)

with the current values of r, s, τ1, . . . , τs and with V ′
r,K defined as before. By (4.46),

Nr,s(τ1, . . . , τs)≪
exp

(
O(ω(q))

)
q(τ1+···+τs)/k−s+r/2 ·

x1/k(log2 x)O(1)

log x

≪
exp

(
O(ω(q))

)
qmax{s/k+r/2, R/k−r/2−s} ·

x1/k(log2 x)O(1)

log x .

(4.100)

Now max{s/k + r/2, R/k − r/2− s} > K whenever one of the following holds:

(a) In Subcase 1, we have either k ≥ 3, r ≥ 3, or k = 2, r ≥ 4.

(b) In Subcase 2, we have r ≥ 2.

Indeed, if s/k + r/2 ≤ K, then s ≤ k(K − r/2), so that R/k − r/2 − s ≥ K + (k −

1)(r/2− 1)− 1 +1+ 1/k. This last quantity strictly exceeds K precisely under (a) or

(b) above, establishing (4.98) under one of these two conditions. It thus only remains

to tackle:

(i) the possibility that r = 1 in both Subcases 1 and 2, and

(ii) the possibilities r = 2 and k = 2, r = 3 in Subcase 1.

The possibility r = 1 is easily handled (in both subcases) by inserting into (4.99)

the trivial bound V ′
r,K = V ′

1,K ≪ D
ω(q)
min . Now assume we are in Subcase 1 and

either r = 2 or k = 2, r = 3. Suppose wlog that W1,k is not squarefull. If r =

2, then Proposition 4.9.1(a) yields #V(k)
2,K(q; (wi)Ki=1)/φ(q)2 ≤ #V2,1(q;w1)/φ(q)2 ≪
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φ(q)−1 exp(O(
√

log q)), uniformly for (wi)Ki=1 ∈ UK
q . Inserting this bound into (4.99),

we deduce that N2,s(τ1, . . . , τs)≪ q− max{s/k+1,R/k−1−s} · x
1/k(log2 x)O(1)

log x exp
(
O(
√

log q)
)
.

Since max{s/k + 1, R/k − 1− s} ≥ K, this shows (4.98) in Subcase 1 when r = 2.

For k = 2, r = 3, the multiplicative independence of {W1,k,W2,k} allows us to

use Proposition 4.9.1(b) to get #V(k)
3,K(q; (wi)Ki=1)

/
φ(q)3 ≪ exp

(
O(ω(q))

)/
φ(q)2 uni-

formly for (wi)Ki=1. By (4.99),

N3,s(τ1, . . . , τs)≪ q− max{s/2+2, R/2−1−s} · x
1/k(log2 x)O(1)

log x exp
(
O(ω(q))

)
,

and it is easily checked that max{s/2 + 2, R/2 − 1 − s} > K. This shows (4.98) in

Subcase 1 when k = 2, r = 3, completing the proof of Theorem 4.1.3.

4.10.1. Optimality of the conditions of Theorem 4.1.3

We will now show that the first two values of R given in Theorem 4.1.3 are optimal.

We retain the setting in subsection § 4.7.1 we had used to show optimality in Theorem

4.1.1(ii). To recall: fix an arbitrary k ∈ N and d > 1, and define Wi,k(T ) :=
∏d

j=1(T −

2j)+2(2i−1), so that
∏K

i=1 Wi,k is separable (over Q). Let C̃0 > 4KD be any constant

(depending only on {Wi,k}1≤i≤K) exceeding the size of the (nonzero) discriminant of∏K
i=1 Wi,k, and such that any C̃0-rough k-admissible integer lies in Q(k; f1, · · · , fK).

Fix a prime ℓ0 > C0 and nonconstant polynomials {Wi,v}1≤i≤K
1≤v<k

⊂ Z[T ] with all

coefficients divisible by ℓ0. Let q ≤ (log x)K0 be any squarefree integer having P−(q) =

ℓ0, so that as before q ∈ Q(k; f1, · · · , fK). Recall also that (2(2i− 1))Ki=1 ∈ UK
q , that

any prime P satisfying
∏d

j=1(P − 2j) ≡ 0 (mod q) also satisfies fi(P k) ≡ 2(2i − 1)

(mod q), and that the congruence
∏d

j=1(v−2j) ≡ 0 (mod q) has exactly dω(q) distinct

solutions v ∈ Uq.

The first value R = 2 in Theorem 4.1.3 is optimal since the condition P2(n) > q
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cannot be replaced by the condition P (n) > q, as shown in (4.78). We now show

that the condition “R = k(Kk + K − k) + 1” in Theorem 4.1.3 cannot be weak-

ened to “R = k(Kk + K − k)” for any K, k. To this end, let f1, . . . , fK : N → Z

be any multiplicative functions such that fi(pv) := Wi,v(p) and fi(pk+1) := 1 for all

primes p, all i ∈ [K] and v ∈ [k]. Consider n of the form (p1 · · · pk(K−1))k+1P k ≤ x

where P, p1, . . . , pk(K−1) are primes satisfying the conditions P := P (n) > x1/3k,

q < pk(K−1) < · · · < p1 < x1/4Kk2 , and
∏

1≤j≤d(P − 2j) ≡ 0 (mod q). Then

Pk(Kk+K−k)(n) = pk(K−1) > q and fi(n) = fi(P k)
∏k(K−1)

j=1 fi(pk+1
j ) ≡ 2(2i−1) (mod q)

for each i ∈ [K]. Given p1, . . . , pk(K−1), the number of primes P satisfying x1/3k <

P ≤ x1/k/(p1 · · · pk(K−1))1+1/k is ≫ dω(q)x1/k/φ(q)(p1 · · · pk(K−1))1+1/k log x by Siegel–

Walfisz; here we have noted that (p1 · · · pk(K−1))1+1/k ≤ x(K−1)(k+1)/4Kk2 ≤ x1/2k.

Dividing by k! allows us to replace the condition pk(K−1) < · · · < p1 by a distinctness

condition, giving us

∑
n≤x:Pk(Kk+K−k)(n)>q

(∀i)fi(n)≡2(2i−1) (mod q)

1 ≫ dω(q)x1/k

φ(q) log x (T1 − T2) , (4.101)

where T1 denotes the sum ignoring the distinctness condition on the p1, . . . , pk(K−1),

and T2 denotes the sum over all the tuples (p1, . . . , pk(K−1)) for which pi = pj for some

i ̸= j ∈ [k(K − 1)]. Now note that

T1 =
∏

1≤j≤k(K−1)

 ∑
q<pj≤x1/4Kk2

p
−(1+1/k)
j

≫ 1/qK−1(log q)k(K−1)

while

T2 ≪

(∑
p>q

p−(2+2/k)

) (∑
p>q

p−(1+1/k)

)k(K−1)−2

≪ 1/qK .
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Consequently, the expression on the right hand side of (4.101) is

≫ dω(q)x1/k/φ(q)K(log2 x)k(K−1)+1 log x,

which by Proposition 4.2.1, grows strictly faster than φ(q)−K#{n ≤ x : gcd(f(n), q) =

1} as soon as dω(q) > (log x)(1+ϵ)αk . We have already constructed such q in subsection

§ 4.7.1. Hence, the condition Pk(Kk+K−k)+1(n) > q in Theorem 4.1.3 is optimal for

any values of K and k.

As a remark, note that this example also shows that if k = 1, then for any K, the

condition “P2K+1(n) > q” coming from the third value of R in Theorem 4.1.3 is

“almost optimal” in the sense that it cannot be replaced by “P2K−1(n) > q”.

Section 4.11

Necessity of the multiplicative independence and

invariant factor hypotheses: Proofs of Theorems

4.1.4 and 4.1.5

We first give a lower bound that will be useful in both the theorems. Until we

specialize to each theorem, we will not assume anything about {Wi,k}1≤i≤K ∈ Z[T ]

beyond that they are nonconstant, and our estimates will be uniform in all q ≤

(log x)K0 and (ai)Ki=1 ∈ UK
q .

Let y := exp(
√

log x) and given any fixed R ≥ 1, we let V ′
q := V(k)

R,K

(
q; (ai)Ki=1

)
=

{(v1, . . . , vR) ∈ UR
q : (∀i ∈ [K])

∏R
j=1 Wi,k(vj) ≡ ai (mod q)}. Consider any N ≤ x of

the form N = (P1 · · ·PR)k, where P1, . . . , PR are primes satisfying y < PR < · · · < P1,

and (P1, . . . , PR) mod q ∈ V ′
q . Then PRk(N) > y > q and fi(N) =

∏R
j=1 Wi,k(Pj) ≡
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ai (mod q). Replacing the ordering condition on P1, . . . , PR by the condition that

they are distinct, we get

∑
n≤x: PRk(n)>q

(∀i) fi(n)≡ai (mod q)

1 =
∑

(v1,...,vR)∈V ′
q

1
R!

∑
P1,...,PR>y
P1···PR≤x1/k

P1,...,PR distinct
(∀j) Pj≡vj (mod q)

1.

Proceeding exactly as in the argument for (2.13), we obtain

∑
P1,...,PR>y
P1···PR≤x1/k

P1,...,PR distinct
(∀j) Pj≡vj (mod q)

1 = 1
φ(q)R

∑
P1,...,PR>y
P1···PR≤x1/k

P1,...,PR distinct

1 + O
(
x1/k exp

(
−K1(log x)1/4)) (4.102)

for some constant K1 > 0. Collecting estimates and using the fact that #V ′
q ≤

φ(q)R ≤ (log x)K0R, we see that there is a constant K2 > 0 such that

∑
n≤x: PRk(n)>q

(∀i) fi(n)≡ai (mod q)

1 ≥
V ′
q

φ(q)R ·
1
R!

∑
P1,...,PR>y
P1···PR≤x1/k

P1,...,PR distinct

1 − x1/k exp(−K2(log x)1/4).

The sum in the main term is exactly the count of squarefree y-rough integers m ≤ x1/k

having Ω(m) = R. Ignoring this squarefreeness condition incurs a negligible error of∑
p>y

∑
m≤x1/k

p2|m
1 ≪ x1/k/y. We thus find that the main term in the above display

equals #{m ≤ x1/k : P−(m) > y, Ω(m) = R}, which is ≫ x1/k(log2 x)R−1/ log x by a

straightforward induction on R (via Chebyshev’s estimates). As a consequence,

∑
n≤x: PRk(n)>q

(∀i) fi(n)≡ai (mod q)

1 ≫
V ′
q

φ(q)R ·
x1/k(log2 x)R−1

log x − x1/k exp(−K1(log x)1/4). (4.103)
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Completing the proof of Theorem 4.1.4

We now restrict to the {Wi,k}1≤i≤K and (ai)Ki=1 considered in Theorem 4.1.4, so

K ≥ 2, {Wi,k}1≤i≤K−1 ⊂ Z[T ] are multiplicatively independent, WK,k =
∏K−1

i=1 W λi
i,k

for some tuple (λi)K−1
i=1 ̸= (0, . . . , 0) of nonnegative integers, and (ai)Ki=1 ∈ UK

q satisfy

aK ≡
∏K−1

i=1 aλi
i (mod q). The key observation is that relations assumed between the

{Wi,k}1≤i≤K and (ai)Ki=1 guarantee that V ′
q = V(k)

R,K

(
q; (ai)Ki=1

)
= V(k)

R,K−1
(
q; (ai)K−1

i=1
)
,

with the set V(k)
R,K−1

(
q; (ai)K−1

i=1
)

defined by the congruences
∏R

j=1 Wi,k(vj) ≡ ai (mod q),

only for i ∈ [K − 1].

Define D1 :=
∑K−1

i=1 degWi,k > 1 and let “C” in the statement of the theorem be any

constant C∗ := C∗(W1,k, · · · ,WK−1,k) exceeding (32D1)2D1+2, the sizes of the leading

and constant coefficients of {Wi,k}Ki=1, and the constant C∗
1 := C1(W1,k, . . . ,WK−1,k)

coming from an application of Proposition 4.4.3 to the family {Wi,k}K−1
i=1 of noncon-

stant multiplicatively independent polynomials. To show the lower bound in Theorem

4.1.4, we may assume that R > 4KD1(D1 + 1). We shall carry out some of the argu-

ments of Proposition 4.3.4.

Note that αk(q) = 1
φ(q)#{u ∈ Uq :

∏K−1
i=1 Wi,k(u) ∈ Uq} ̸= 0. For each prime

ℓ | q, we have gcd(ℓ − 1, β(W1,k, · · · ,WK−1,k)) = 1 and ℓ > C∗ > C∗
1 . Thus

the hypothesis IFH(W1,k, . . . ,WK−1,k; 1) holds true, and so do the corresponding

analogues of the inequalities (4.31) and (4.32); in fact by the second assertion in

Proposition 4.4.3(a), the analogue of (4.31) holds true for all tuples of characters

(χ1, . . . , χK−1) ̸= (χ0,ℓ, . . . , χ0,ℓ) mod ℓe having lcm[f(χ1), . . . , f(χK−1)] = ℓ. We find

that

1(
αk(ℓ)φ(ℓe)

)R ∑
(χ1,...,χK−1 )̸=(χ0,ℓ,...,χ0,ℓ) mod ℓe

∣∣Zℓe; χ1,...,χK−1(W1,k, . . . ,WK−1,k)
∣∣R
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≤ DR
1 ℓ

eR

(αk(ℓ)φ(ℓe))R
∑

1≤e0≤e

ℓe0(K−R/D1) ≤ 2(4D1)R
ℓR/D1−K , (4.104)

where as usual Zℓe; χ1,...,χK−1(W1,k, . . . ,WK−1,k) =
∑

u mod ℓe χ0,ℓ(u)
∏K−1

i=1 χi(Wi,k(u)).

Now since R ≥ 4KD1(D1 + 1) and ℓ > C∗ > (32D1)2D1+2, we see that ℓR/D1−K ≥

ℓR/(D1+1) ≥ ℓR/(2D1+2) · (C∗)R/(2D1+2) ≥ ℓ2(32D1)R, showing that the right hand ex-

pression in (4.104) is at most 1/4ℓ2. Invoking the corresponding analogue of (4.26),

we see for each prime power ℓe ∥ q that

#V(k)
R,K−1(ℓe; (ai)K−1

i=1 )
φ(ℓe)R ≥ αk(ℓ)R

φ(ℓe)K−1 ·
(

1− 1
2ℓ2

)
.

But since
∏

ℓ|q(1− 1/2ℓ2) ≥ 1− 1
2
∑

ℓ≥2 1/ℓ2 ≥ 1/2, we obtain

V ′
q

φ(q)R =
V(k)
R,K−1

(
q; (ai)K−1

i=1
)

φ(q)R ≥ αk(q)R
2φ(q)K−1 ,

which holds true uniformly in q having P−(q) > C∗. Inserting this bound into (4.103)

and recalling that αk(q)≫ 1/(log2(3q))D completes the proof of Theorem 4.1.4.

Completing the proof of Theorem 4.1.5

Again, it suffices to consider the case R > 18KD(D + 1) to prove (4.2). We

start by choosing “C” in the statement of the theorem to be a constant C2 :=

C2(W1,k, . . . ,WK,k) exceeding (32D)6D+6, the sizes of the leading and constant co-

efficients of {Wi,k}Ki=1, and the constant C1(W1,k, . . . ,WK,k) obtained by applying

Proposition 4.4.3 to the family {Wi,k}1≤i≤K of multiplicatively independent polyno-

mials. The analogue of (4.32) continues to hold for each ℓ | q, and thus

1
(αk(ℓ)φ(ℓe))R

∑
(χ1,...,χK) mod ℓe

lcm[f(χ1),...,f(χK)]∈{ℓ2,...,ℓe}

|Zℓe; χ1,...,χK
(W1,k, . . . ,WK,k)|R
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≤ DRℓeR

(αk(ℓ)φ(ℓe))R
∑

2≤e0≤e

ℓe0(K−R/D) ≤ 2(4D)R
ℓR/D−K ≤ 1

4ℓ2 , (4.105)

where in the last inequality, we used R > 4KD(D + 1) and ℓ > C2 ≥ (32D)6D+6.

If (χ1, . . . , χK) is a tuple of characters mod ℓe having lcm[f(χ1), . . . , f(χK)] = ℓ, then

with ψℓ being a generator of the character group mod ℓ, we have χi = ψAi
ℓ for some

unique (A1, . . . , AK) ∈ [ℓ − 1]K satisfying (A1, . . . , AK) ̸≡ (0, . . . , 0) (mod ℓ − 1).

Recall from the arguments leading to (4.31) that if
∏K

i=1 W
Ai
i,k is not of the form

c ·Gℓ−1 in Fℓ[T ], then |Zℓe; χ1,...,χK
(W1,k, . . . ,WK,k)| ≤ Dℓe−1/2. On the other hand, if∏K

i=1 W
Ai
i,k is of that form (with G monic, say), then since each Wi,k is monic, we must

have
∏K

i=1 W
Ai
i,k = Gℓ−1. Since G(v) is a unit mod ℓ iff

∏K
i=1 Wi,k(v) is, it follows that

Zℓe; χ1,...,χK
(W1,k, . . . ,WK,k) = ℓe−1

∑
v mod ℓ

ψℓ
(
(vG(v))ℓ−1) = αk(ℓ)φ(ℓe). Combining

these observations with (4.105) and using that
∏K

i=1 χi(ai) = 1 for any characters

(χ1, . . . , χK) mod ℓe with lcm[f(χ1), . . . , f(χK)] = ℓ (as ai ≡ 1 mod ℓ), we get

#V(k)
R,K

(
ℓe; (ai)Ki=1

)
φ(ℓe)R ≥ αk(ℓ)R

φ(ℓe)K

(
1 + Bℓ −

1
2ℓ2

)
, (4.106)

where Bℓ denotes the number of tuples (A1, . . . , AK) ∈ [ℓ−1]K \{(0, . . . , 0)} for which∏K
i=1 W

Ai
i,k is a perfect (ℓ− 1)-th power in Fℓ[T ].

Now recalling the definition of the constant C1 = C1(W1,k, . . . ,WK,k) from the proof of

Proposition 4.4.3, we know that for any ℓ > C1, the pairwise coprime irreducible fac-

tors of the product
∏K

i=1 Wi,k in Z[T ] continue to be separable and pairwise coprime in

the ring Fℓ[T ]. By the arguments given in the proof of Proposition 4.4.3(a),
∏K

i=1 W
Ai
i,k

is a perfect (ℓ − 1)-th power in Fℓ[T ] precisely when E0(A1 · · ·AK)⊤ ≡ (0 · · · · · · 0)⊤

(mod ℓ− 1), where E0 = E0(W1,k, . . . ,WK,k) is the exponent matrix. Thus, Bℓ is ex-

actly the number of nonzero vectors X ∈ (Z/(ℓ−1)Z)K satisfying the matrix equality
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E0X = 0 over the ring Z/(ℓ− 1)Z.

Recall that E0 has Q-linearly independent columns and non-zero last invariant factor

β = β(W1,k, . . . ,WK,k) ∈ Z. By [55, Theorem 6.4.17], the matrix equation E0X = 0

has a nontrivial solution in the ring Z/(ℓ−1)Z precisely when some nonzero element of

Z/(ℓ−1)Z annihilates all the K×K minors of the matrix E0. But if gcd(ℓ−1, β) ̸= 1,

then the canonical image of d := (ℓ− 1)/ gcd(ℓ− 1, β) in Z/(ℓ− 1)Z clearly does this,

since dβ ≡ 0 (mod ℓ− 1) and since β divides the gcd of the K ×K minors of E0 (in

Z). We thus obtain Bℓ ≥ 1 for each prime prime ℓ | q satisfying gcd(ℓ − 1, β) ̸= 1,

which from (4.106) yields V ′
q

/
φ(q)R ≥ 2#{ℓ|q: (ℓ−1,β)̸=1}αk(q)R

/
2φ(q)K . Inserting this

into (4.103) establishes (4.2).

Remark: If K = 1 and W1,k is a constant c, then the k-admissibility of q forces

gcd(q, c) = 1, which by (4.103) gives

#{n ≤ x : PRk(n) > q, f(n) ≡ cR (mod q)} ≫ x1/k(log2 x)R−1/ log x.

4.11.1. Explicit Examples.

We now construct examples where the lower bounds in Theorems 4.1.4 and 4.1.5 grow

strictly faster than the expected quantity φ(q)−K#{n ≤ x : (f(n), q) = 1}.

Failure of joint weak equidistribution upon violation of multiplicative in-

dependence hypothesis (example for Theorem 4.1.4)

By Proposition 4.2.1, it is clear that the lower bound in Theorem 4.1.4 grows strictly

faster once q grows fast enough compared to log x. For a concrete example, we

start with any {Wi,k}1≤i≤K−1 ⊂ Z[T ] for which β∗ = β(W1,k, . . . ,WK−1,k) is odd (for

instance, Wi,k := Hbi
i for some pairwise coprime irreducibles H1, . . . , HK−1 ∈ Z[T ] and

odd integers bi > 1 satisfying bi | bi+1 for each i < K − 1). Fix nonnegative integers
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(λi)K−1
i=1 ̸= (0, . . . , 0) and nonzero integers (ai)Ki=1 satisfying aK =

∏K−1
i−1 aλi

i (in Z), and

letWK,k =
∏K−1

i=1 W λi
i,k. Consider a constant C̃ > max{C∗,

∏K
i=1 |ai|}, such that any C̃-

rough k-admissible integer lies inQ(k; f1, · · · , fK). Here C∗ as in the proof of Theorem

4.1.4, so that C̃ > D1 + 1 =
∑K−1

i=1 degWi,k + 1. Let ℓ0 be the least prime exceeding

C̃ and satisfying ℓ0 ≡ −1 mod β∗. 12 Let {Wi,v} 1≤i≤K
1≤v≤k−1

⊂ Z[T ] be nonconstant

polynomials with all coefficients divisible by ℓ0, and let q :=
∏

ℓ0≤ℓ≤Y
ℓ≡−1 (mod β∗)

ℓ, with Y

any parameter lying in (4|β∗| log2 x, (K0/2) log2 x). Since αk(ℓ) ≥ 1−D1/(ℓ− 1) > 0

for ℓ > C̃, we see that q ≤ (log x)K0 is k-admissible and hence lies in Q(k; f1, · · · , fK).

As β∗ is odd and ℓ ≡ −1 (mod β∗) for all ℓ | q, we have gcd(ℓ−1, β∗) = 1 for all such

ℓ. Further, q = exp
(∑

ℓ0≤ℓ≤Y
ℓ≡−1 (mod β∗)

log ℓ
)
≥ exp (Y/2|β∗|) ≥ log2 x, so the lower

bound in Theorem 4.1.4 grows strictly faster than φ(q)−K#{n ≤ x : (f(n), q) = 1}.

Failure of joint weak equidistribution upon violation of Invariant Factor

Hypothesis (example for Theorem 4.1.5)

Define Wi,k(T ) := T − i for each i ∈ [K− 1] and WK,k(T ) := (T −K)d, for some fixed

d ∈ {2, . . . , K}. Then {Wi,k}1≤i≤K are nonconstant, monic and pairwise coprime

(hence multiplicatively independent); also E0(W1,k, . . . ,WK,k) = diag(1, . . . , 1, d) so

β := β(W1,k, . . . ,WK,k) = d. Note that αk(ℓ) = 1 − K/(ℓ − 1) > 0 for any prime

ℓ > K + 1. Let C3 := C3(W1,k, . . . ,WK,k) be a constant exceeding the constant

C2 in the proof of Theorem 4.1.5, such that any k-admissible C3-rough integer lies

in Q(k; f1, · · · , fK); note that C3 > D + 1 ≥ K + 2. Let ℓ0 be the least prime

exceeding C3 and satisfying ℓ0 ≡ 1 (mod d), let {Wi,v}1≤i≤K
1≤v<k

⊂ Z[T ] be nonconstant

polynomials all of whose coefficients are divisible by ℓ0, and let q :=
∏

ℓ0≤ℓ≤Y
ℓ≡1 (mod d)

ℓ,

with Y ≤ (K0/2) log2 x a parameter to be chosen later.

Then q ≤ (log x)K0 , P−(q) > C3 and q ∈ Q(k; f1, · · · , fK). By Theorem 4.1.5 and
12Our arguments go through with the residue −1 mod β∗ replaced by any c∗ ∈ Uβ∗ for which

c∗ − 1 ∈ Uβ∗ .
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Proposition 4.2.1, it follows that the residues ai ≡ 1 (mod q) are overrepresented

if #{ℓ | q : (ℓ − 1, β) ̸= 1} ≥ 4αk log2 x. But #{ℓ | q : (ℓ − 1, β) ̸= 1} =∑
ℓ0≤ℓ≤Y

ℓ≡1 (mod d)
1 ≥ Y/2φ(d) log Y , whereas (since K ≥ φ(d)), we have αk ≤ K3/ log Y

for some constant K3 > 0 depending at most on C3, K and d. So we only need Y to

satisfy 8K3φ(d) log2 x < Y < (K0/2) log2 x.

Therefore, our multiplicative independence and invariant factor hypotheses are both

necessary for achieving uniformity in q ≤ (log x)K0 in Theorems 4.1.1, 4.1.2 and 4.1.3,

and neither of them can be bypassed by restricting to inputs n with sufficiently many

large prime factors.

Section 4.12

Concluding Remarks

It is interesting to note that despite the extensive amount of ‘multiplicative machinery’

known in analytic number theory, there does not seem to be any estimate in the

literature, a direct application of which can replace our arguments in section 4.6. For

instance, Halász’s Theorem only yields an upper bound on the character sums that is

not precise enough, while a direct application of (known forms of) the Landau-Selberg-

Delange method, – one of the most precise estimates on mean values of multiplicative

functions known in literature, – seems to give an extremely small range of uniformity

in q.

Theorem 4.1.3 suggests a few directions of improvement. First, as mentioned at the

end of the previous section, we are still “one step away” from optimality in the case

K ≥ 2, k = 1: Theorem 4.1.3 shows that “P2K+1(n) > q” is sufficient while the

discussion in subsection § 4.10.1 shows that “P2K−1(n) > q” is not, so the question is
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whether the optimal value is “2K” or “2K + 1”. If it is the former, then we will need

a sharper bound on V ′
2K,K than what comes from our methods in section 4.10. One

can also ask whether it is possible to weaken the nonsquarefullness conditions in the

statement of Theorem 4.1.3.

Recall also that the ranges of q in Theorem 4.1.1 are genuinely optimal in all the

cases except in the very first one (namely when K = 1 and Wk = W1,k is linear): This

includes the case of a single multiplicative function f(n) controlled by a single linear

polynomial at the primes, the most interesting concrete example of which is φ(n)

or σ(n) itself! In these cases, we can prove that q cannot be allowed to grow much

faster than L(x) = xlog log log x/ log log x (see the end of the introduction in [40]), but

owing to our heavy reliance on the Siegel-Walfisz theorem, the previous arguments

do not extend past the range q ≤ (log x)K0 . It would be interesting to obtain the best

possible range of q in this remaining case; it seems that being able to do this may

require significantly new ideas or an entirely different approach.

This chapter has obtained some of the best possible analogues of the Siegel-Walfisz

theorem for families of polynomially-defined multiplicative functions. One of the

next steps would be to study analogues of the Bombieri-Vinogradov theorem for such

families. We might also ask for extensions of the results of this chapter to study the

distribution of Fourier coefficients of modular forms (particularly Ramanujan’s tau

function τ(n)) to varying moduli.

In the manuscript [72], we strengthen some of the results in this chapter under some

additional finer control on the behavior of the given multiplicative functions at some

higher prime powers.

Finally, in an upcoming manuscript [74] of the author, we extend the general Landau–
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Selberg–Delange method (as formulated in [76, chapter II.5], for instance) from the

case when the Dirichlet series in the picture is controlled by a complex power of the

Riemann zeta to the case when it is controlled by a product of L-functions mod q

raised to complex powers, where q varies in a wide range. As one of several applica-

tions of this result, we hope to give quantitative versions of Theorems 4.1.1 to 4.1.3.

This would also enable us to understand the second-order behavior in these distribu-

tions as well as the rate of convergence to equidistribution. In particular, we should

be able to explain the slow convergence to equidistribution observed in the table on

φ(n) mod 5 following the statement of Proposition 1.3.3. It is also very likely that the

convergence to equidistribution is monotonic in general, even as q varies uniformly in

the “Siegel–Walfisz” range; we should also be able to establish this.
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Chapter 5

Distribution of the aliquot sum

function to varying prime moduli

Let s(n) = σ(n)−n denote the sum-of-proper-divisors (or sum-of-aliquot-divisors) func-

tion. In this chapter, we determine asymptotic formulas for the number of n ≤ x for

which s(n) lands in a given residue class modulo p, uniformly for primes p below any

fixed power of log x. This chapter is partly based on the manuscript [40], however,

we have been able to simplify the arguments using ideas from Chapters 2–4.

For fixed modulus q, one has that q | σ(n) for all n except those belonging to a set of

density 0. This was observed already by Alaoglu and Erdős in 1944 [2, p. 882]. (See

also the proof of Lemma 5 in [58], and Theorem 2 in [62].) Since s(n) = σ(n)−n ≡ −n

(mod q) whenever q | σ(n), we immediately deduce that s(n) is equidistributed mod

q for each fixed modulus q.

We will show that s(n) remains equidistributed for larger prime moduli p, but some

care about the formulation is required. Since s(q) = 1 for every prime q, there are at
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least (1 + o(1))x/ log x values of n ≤ x with s(n) ≡ 1 (mod p), no matter the value

of p. This dashes any hope of equidistribution if p is appreciably larger than log x.

We work around this issue by considering s(n) only for composite n.

Theorem 5.0.1. Fix K0 > 0. As x → ∞, the number of composite n ≤ x with

s(n) ≡ a (mod p) is (1+o(1))x/p, for every residue class a mod p with p ≤ (log x)K0.

Additional notation and conventions in this chapter:

We reserve the letters p, P for primes. In addition to employing the Landau–Bachmann–

Vinogradov notation from asymptotic analysis, we write A ≳ B (resp., A ≲ B) to

mean that A ≥ (1 + o(1))B (resp., A ≤ (1 + o(1))B).

Section 5.1

Technical Preparation

As shown in the introduction, s(n) is equidistributed modulo each fixed prime p,

hence to show Theorem 5.0.1, we may assume that p→∞ such that p ≤ (log x)K0 .

The following result is a special case of the fundamental lemma of sieve theory, as

formulated in [31, Theorem 7.2, p. 209].

Lemma 5.1.1. Let X ≥ Z ≥ 3. Suppose that the interval I = (u, v] has length

v − u = X. Let Q be a set of primes not exceeding Z. For each q ∈ Q, choose a

residue class aq mod q. The number of integers n ∈ I not congruent to aq mod q for

any q ∈ Q is

X

(∏
q∈Q

(
1− 1

q

))(
1 +O

(
exp

(
−1

2
logX
logZ

)))
.

237



5.1 Technical Preparation

We will need the following result on the count of n ≤ x for which gcd(σ(n), p) = 1,

which refines Proposition 2.2.1 for the function σ(n) to prime moduli. This follows

as a direct consequence of [69, Theorem A] or [40, Lemma 5.1]; alternatively, a more

elementary argument for this can be given by following the proof of the latter.

Lemma 5.1.2. Fix A > 0. As x, p→∞ with log x
log p →∞, we have

∑
n≤x
p∤σ(n)

1 ∼ x

p(log x)1/(p−1) .

In what follows, given J ∈ N and units R, S mod p, we define

UJ(p;R, S) = {(v1, . . . , vJ) ∈ UJ
p :

J∏
j=1

(vj + 1) ≡ R,
J∏
j=1

vj ≡ S (mod p)}.

Moreover, given residues a, r, s mod p, we define

VJ(p, a;R, S) = {(v1, . . . , vJ) ∈ UJ
p : r

J∏
j=1

(vj + 1) − s
J∏
j=1

vj ≡ a (mod p)}.

We also define α(p) := 1−1/(p−1). The following estimates on the sizes of UJ(p;R, S)

and VJ(p, a;R, S) will be useful throughout our arguments.

Lemma 5.1.3. As x, p, J →∞, we have

#UJ(p;R, S) = (1 + o(1))(α(p)φ(p))J
φ(p)2

uniformly in R, S ∈ Up.

Proof. The argument is a much simpler version of that given for Proposition 4.3.4,
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5.1 Technical Preparation

so we only outline it. By (4.26), we have

#UJ(p;R, S) = 1
φ(p)2

∑
χ,ψ mod p

χ(R)ψ(S)
( ∑
v mod p

χ(v + 1)ψ(v)
)J

.

For (χ, ψ) = (χ0, χ0) mod p (where χ0 is again the trivial character mod p), we see

that
∑

v mod p χ(v + 1)ψ(v) = #{v ∈ Up : v + 1 ∈ Up} = p − 2 = α(p)φ(p). For the

other O(p2) many possibilities of (χ, ψ), the sum
∑

v mod p χ(v+1)ψ(v) being a Jacobi

sum has absolute value at most p1/2. This shows that

#UJ(p;R, S) = (α(p)φ(p))J
φ(p)2

{
1 +O

(
pJ/2+2

(α(p)φ(p))J

)}
,

and since p, J →∞, the O-term above is at most pJ/2+2

(p−2)J ≤ 2J

pJ/2−2 = o(1).

Lemma 5.1.4. As x, p, J →∞, we have the following estimates, uniformly in residue

classes a, r, s mod p.

#VJ(p, a;R, S) =



(1 + o(1)) · (α(p)φ(p))J/φ(p), if a ∈ Up, r ∈ Up, s ≡ 0 (mod p)

φ(p)J−1, if a ∈ Up, r ≡ 0 (mod p), s ∈ Up

(1 + o(1)) · φ(p)J−1, if a ∈ Up, r ∈ Up, s ∈ Up

(1 + o(1)) · (α(p)φ(p))J/φ(p), if a ≡ 0 (mod p), r ∈ Up, s ∈ Up.
(5.1)

Proof. In the first case, we have VJ(p, a;R, S) = {(v1, . . . , vJ) ∈ UJ
p : r

∏J
j=1(vj +

1) ≡ a (mod p)}, with a, r ∈ Up, so its count is (1 + o(1))(α(p)φ(p))J/φ(p) by the

arguments given for the verification of hypothesis A in section 2.4. In the second case,

we see that VJ(p, a;R, S) = {(v1, . . . , vJ) ∈ UJ
p :

∏J
j=1 vj ≡ −as−1 (mod p)}; since

as−1 ∈ Up, any of the φ(p)J−1 many arbitrary assignments of v1, . . . , vJ−1 throws vJ
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5.1 Technical Preparation

in a unique coprime residue class mod p.

Now we come to the third case, namely when a, r, s ∈ Up. We start by setting

R ≡ r
∏J

j=1(vj + 1) and S ≡ s
∏J

j=1 vj mod p, so that R−S ≡ a (mod p). Note that

S ∈ Up, so that (separating the cases when R is or is not divsible by p, we may write)

#VJ(p, a;R, S) =
∑

R,S∈Up

R−S≡a (mod p)

#UJ(p;Rr−1, Ss−1)

+ #{(v1, . . . , vJ) ∈ UJ
p : p |

J∏
j=1

(vj + 1),
J∏
j=1

vj ≡ −as−1 (mod p)}. (5.2)

By Lemma 5.1.3, the sum above is (1 + o(1))(α(p)φ(p))J/φ(p). To count the last

cardinality in (5.2), note that omitting the divisibility condition would give a total

of φ(p)J−1 many tuples (v1, . . . , vJ) (as argued in the second case of (5.1)). On

the other hand, by Lemma 5.1.3, the number of (v1, . . . , vJ) ∈ UJ
p satisfying p ∤∏J

j=1(vj + 1) and
∏J

j=1 vj ≡ −as−1 (mod p) is equal to
∑

b∈Up
#UJ(p; b,−as−1) =

(1 + o(1))(α(p)φ(p))J/φ(p). Putting all of this together into (5.2) shows that

#VJ(p, a;R, S) = (1 + o(1)) · (α(p)φ(p))J
φ(p) + φ(p)J−1 − (1 + o(1)) · (α(p)φ(p))J

φ(p)

which is φ(p)J−1(1 + o(α(p)J)), and hence also φ(p)J−1(1 + o(1)) as desired.

Finally, we come to the last case, namely when a ≡ 0 (mod p) and r, s ∈ Up. Setting

R ≡ r
∏J

j=1(vj+1) ≡ s
∏J

j=1 vj (mod p), we see that this time, we must have R ∈ Up,

which allows us to write

#VJ(p, a;R, S) = #VJ(p, 0; r, s) =
∑
R∈Up

#UJ(p;Rr−1, Rs−1).

Invoking Lemma 5.1.3 on each UJ(p;Rr−1, Rs−1) thus completes the proof.
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5.2 Contribution of the convenient n

In the spirit of the arguments in previous chapters, we set

J := ⌊log3 x⌋ and y := exp((log x)1/4),

and we define n to be convenient if the J largest prime factors of n exceed y and

none of them are repeated in n. Thus any convenient n can be uniquely written in

the form mPJ . . . P1, where Lm := max{y, P (m)} < PJ < · · · < P1. Note that any

convenient n is automatically composite. As such, we will say that n is inconvenient

if it is composite and not convenient.

We then have the following analogue of Lemma 2.3.2 and Proposition 4.3.1.

Lemma 5.1.5. Fix K0 > 0. Uniformly in p, x → ∞ satisfying p ≤ (log x)K0, the

number of inconvenient n ≤ x is o(x), and the number of inconvenient n ≤ x divisible

by p is o(x/p).

The proofs of both the assertions are much simpler versions of that of Lemma 2.3.2 so

we omit the details. (The only additional observation for the second assertion is that if

we write n = BAP with P (B) ≤ y < P−(A) and with P > z as in the proof of Lemma

2.3.2, then we must have p | B, so that
∑

1/B ≤ p−1∑
m:P (m)≤y 1/m≪ (log y)/p.)

Section 5.2

Contribution of the convenient n

Once again, we show that the convenient n give the main term.

Proposition 5.2.1. Fix K0 > 0. We have

#{n ≤ x convenient : s(n) ≡ a (mod p)} ∼ x

p
as x, p→∞,
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5.2 Contribution of the convenient n

uniformly in p ≤ (log x)K0 and in residues a mod p.

Proof. The exact same arguments as given for (3.6) or (4.15) show that

∑
n≤x convenient
s(n)≡a (mod p)

1 =
∑
m≤x

#V(m)
φ(p)J

(
1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

1
)

+ O
(
x exp

(
−C1(log x)1/16)) (5.3)

where V(m) := VJ(p, a;σ(m),m). for some constant C1 depending on K0.

First consider any a ∈ Up. Note that for V(m) to be nonempty, we must have p ∤ m

or p ∤ σ(m). As such, the first three cases of (5.1) show that the count of convenient

n ≤ x satisfying s(n) ≡ a (mod p) is

(1 + o(1))α(p)J
φ(p)

∑
m≤x

p∤σ(m), p|m

(
1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

1
)

+ 1
φ(p)

∑
m≤x

p|σ(m), p∤m

(
1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

1
)

+ 1 + o(1)
φ(p)

∑
m≤x

p∤mσ(m)

(
1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

1
)
.

(5.4)

The first double sum (over m ≤ x satisfying p ∤ σ(m) and p | m) is at most

∑
m≤x
p|m

(
1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

1
)
≤
∑
m≤x
p|m

∑
Lm<PJ<···<P1
P1···PJ ≤x/m

1 ≤
∑
n≤x
p|n

1 ≪ x

p
. (5.5)

Thus, collecting the main terms in the second and third double sums in (5.4) shows
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5.2 Contribution of the convenient n

that the expression in (5.4) is

1
φ(p)

∑
m≤x
p∤m

(
1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

1
)

+ o


1

φ(p)

∑
m≤x

p∤mσ(m)

(
1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

1
) + o

(
x

p

)
.

By (5.5), removing the p ∤ m condition in the main term above incurs a negligible

error. Moreover, proceeding as in (5.5) shows that the double sum in the o-term

above is at most x. This shows that

∑
n≤x convenient
s(n)≡a (mod p)

1 = 1
φ(p)

∑
m≤x

(
1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

1
)

+ o

(
x

p

)
.

Reversing the splitting of convenient n and invoking the first assertion of Lemma

5.1.5 shows that the double sum in the right hand side above is ∼ x, completing the

proof of the proposition for a ∈ Up.

Finally, consider the case a ≡ 0 (mod p). We start by writing

∑
n≤x convenient
s(n)≡0 (mod p)

1 =
∑

n≤x convenient
s(n)≡0 (mod p)

p∤nσ(n)

1 +
∑

n≤x convenient
p|n, p|σ(n)

1. (5.6)

By the second assertion of Lemma 5.1.5, ignoring the convenient condition in the

second sum on the right hand side above incurs an error of o(x/p). Since the number

of n ≤ x divisible by p2 is o(x/p), we thus obtain

∑
n≤x convenient
p|n, p|σ(n)

1 =
∑
n≤x

p∥n, p|σ(n)

1 + o

(
x

p

)
=

∑
m≤x/p

p∤m, p|σ(m)

1 + o

(
x

p

)
=
∑
m≤x/p
p|σ(m)

1 + o

(
x

p

)
;
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5.2 Contribution of the convenient n

in the second equality above, we have noted that if p ∥ n, then n can be uniquely

written as mp for some m ≤ x/p not divisible by p, so that σ(n) = σ(m)(p+1) ≡ σ(m)

(mod p). By Lemma 5.1.2, we obtain

∑
n≤x convenient
p|n, p|σ(n)

1 = x

p
−
∑
m≤x/p
p∤σ(m)

1 + o

(
x

p

)
= x

p
− (1+o(1)) x

p(log x)1/(p−1) + o

(
x

p

)
.

(5.7)

To deal with the first sum in (5.6), we proceed as in the case a ∈ Up, by first obtaining

an analogue of (5.3) and then using the last case of Lemma 5.1.4. Noting that

p ∤ nσ(n) also forces p ∤ mσ(m), we deduce that

∑
n≤x convenient
s(n)≡0 (mod p)

p∤nσ(n)

1 = (1 + o(1)) α(p)J
φ(p)

∑
m≤x

p∤mσ(m)

(
1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

1
)

+ o

(
x

p

)
.

An entirely analogous argument also gives

∑
n≤x convenient

p∤nσ(n)

1 = α(p)J
∑
m≤x

p∤mσ(m)

(
1
J !

∑
P1,...,PJ>Lm

P1···PJ ≤x/m
P1,...,PJ distinct

1
)

+ o

(
x

p

)
,

where the aforementioned application of Lemma 5.1.4 is replaced by the easy obser-

vation that the number of tuples (v1, . . . , vJ) ∈ UJ
p for which

∏J
j=1(vj + 1) ∈ Up is

exactly (α(p)φ(p))J . Comparing the last two displays shows that

∑
n≤x convenient
s(n)≡0 (mod p)

p∤nσ(n)

1 = 1 + o(1)
φ(p)

∑
n≤x convenient

p∤nσ(n)

1 + o

(
x

p

)
= 1 + o(1)

φ(p)

∑
n≤x
p∤σ(n)

1 + o

(
x

p

)
,

where the last equality follows from the first assertion of Lemma 5.1.5. Finally,
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5.3 Bounding the contribution of inconvenient n

invoking Lemma 5.1.2 shows that

∑
n≤x convenient
s(n)≡0 (mod p)

p∤nσ(n)

1 = (1 + o(1)) x

p(log x)1/(p−1) + o

(
x

p

)
.

Inserting this and (5.7) into (5.6) establishes Proposition 5.2.1.

Hence to complete the proof of Theorem 5.0.1, it suffices to show that the number

of inconvenient n ≤ x satisfying s(n) ≡ a (mod p) is o(x/p) uniformly in x, p → ∞

with p ≤ (log x)K0 .

Section 5.3

Bounding the contribution of inconvenient n

Let z = x1/ log2 x. By the arguments given towards the start of the proof of Lemma

2.3.2, there are o(x/p) many n ≤ x which are either z-smooth or have a repeated prime

factor exceeding y. Any remaining inconvenient n must have PJ(n) ≤ y. Splitting

these n into S1 and S2 depending on whether or not P2(n) > y (respectively), it

suffices to show that both S1 and S2 are o(x/p).

By definition of S1, any n counted in it can be written as n = mP2P1, where P1 >

z, where max{y, P (m)} < P2 < P1, and PJ(m) ≤ y. The congruence s(n) ≡ a

(mod p) can be rewritten as (P1, P2) ≡ (v1, v2) mod p for some (v1, v2) in V2(m) :=

V2(p, a;σ(m),m). Now given m and (v1, v2), the number of possible (P1, P2) can be

bounded by familiar Brun–Titchmarsh and partial summation arguments. This gives

S1 ≪
x(log2 x)2

log x
∑
m≤x

PJ (m)≤y

1
m
· #V2(m)
φ(p)2 . (5.8)
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5.3 Bounding the contribution of inconvenient n

We now claim that uniformly in primes p and in residues a, r, s mod p, we have

#V2(p, a; r, s) ≤ 1r≡s≡a≡0 (mod p) φ(p)2 + 2φ(p). (5.9)

Indeed, writing r(v1 + 1)(v2 + 1) − sv1v2 = (r(v1 + 1) − sv1) · v2 + r(v1 + 1) and

differentiating the possibility of whether or not the coefficient of v2 is invertible mod

p, we obtain

#V2(p, a; r, s) ≤
∑
v1∈Up

r(v1+1)̸≡sv1 (mod p)
r(v1+1)̸≡a (mod p)

1 + φ(p) ·
∑
v1∈Up

r(v1+1)≡sv1≡a (mod p)

1

The first sum is always at most φ(p). As for the second sum, if a ∈ Up, then the

congruence sv1 ≡ a (mod p) forces v1 into a unique coprime residue class mod p, in

which case the second sum is at most 1. Moreover, if a ≡ 0 (mod p) but r ∈ Up,

then the congruence r(v1 + 1) ≡ a ≡ 0 (mod p) forces v1 ≡ −1 (mod p), so that the

second sum again at most 1. Inserting all these observations into the displayed bound

above shows that #V2(p, a; r, s) ≤ 2φ(p) except when a ≡ r ≡ 0 (mod p). Now if

a ≡ r ≡ 0 (mod p), then for V2(p, a; r, s) to be nonempty, we must also have s ≡ 0

(mod p), thus proving (5.9).

Now if a ∈ Up, then (5.8) and (5.9) show that S1 ≪ x(log2 x)2/p
√

log x; here the sum∑
m≤x

PJ (m)≤y
1/m has been bounded by writing m = AB with P (B) ≤ y < P−(A), and

handling
∑

1/A and
∑

1/B in a manner analogous to the proof of Lemma 2.3.2.

On the other hand, if a ≡ 0 (mod p), then (5.8) and (5.9) show that

S1 ≪
x(log2 x)2

φ(p) log x
∑
m≤x

PJ (m)≤y

1
m

+ x(log2 x)2

log x
∑

m≤x: p|m
PJ (m)≤y

1
m
.
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5.3 Bounding the contribution of inconvenient n

Handling the first sum as above, writing any m in the second sum as m = Mp with

PJ(M) ≤ y, and handling
∑

1/M as above, now shows that S1 ≪ x(log2 x)2/p
√

log x

in the case a ≡ 0 (mod p) as well. Hence we always have S1 = o(x/p).

We now turn to S2, the count of composite n ≤ x not having any repeated prime

factor exceeding y, and satisfying the three conditions P2(n) ≤ y, P (n) > z, s(n) ≡ a

(mod p). From now on, we will be handling all residues a mod p simultaneously. Write

n = mP with P = P (n) > max{z, P (m)}, so that P (m) ≤ y. Then Ps(m) +σ(m) =

s(n) ≡ a (mod p). Now if s(m) ̸≡ 0 (mod p), then we must also have σ(m) ̸≡ a

(mod p), and by Brun–Titchmarsh, the total number of such (m,P ) is

≪
∑
m≤x

P (m)≤y

x/m

φ(p) log z ≪
x log2 x

p log x ·
∏
ℓ≤y

(
1 +

∑
v≥1

1
ℓv

)
≪ x log2 x

p log x · exp
(∑
ℓ≤y

1
ℓ

)
,

which is ≪ x log2 x/p(log x)3/4 = o(x/p).

It thus only remains to bound the contribution of (m,P ) counted above that satisfy

s(m) ≡ 0 (mod p), so that σ(m) ≡ a (mod p). This means two things: First, m =

σ(m) − s(m) ≡ a (mod p). Second, since n is composite, we have m > 1, so that

s(m) > 0, whence the condition s(m) ≡ 0 (mod p) forces p ≤ s(m) ≤ σ(m) ≪

m log2(3m), leading to to m≫ p/ log2 p. (Here the bound on σ(m) is a standard fact,

see for instance [33, Theorem 323, p. 350].) Bounding the number of P ∈ (z, x/m]

via Chebyshev’s estimate on the count of primes, and then summing over m shows

that the total number of such possible (m,P ) is

≪ x log2 x

log x


log2 p

p
+

∑
p<m≤y10

m≡a (mod p)

1
m

+
∑

y10<m≤x
P (m)≤y

m≡a (mod p)

1
m

 . (5.10)
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5.4 Concluding remarks

By partial summation, the second sum is ≪ (log x)1/4/p. To bound the third sum

above, consider any X ∈ (y10, x] and note that any y-smooth m ≤ x is certainly not

divisible by any prime ℓ ∈ (y,X1/2]. This means that

∑
m≤X
P (m)≤y

m≡a (mod p)

1 ≤
∑

M≤X/p
y<ℓ≤X1/2 =⇒ M ̸≡−ap−1 mod ℓ

1≪ X

p
·
∏

y<ℓ≤X1/2

(
1− 1

ℓ

)
≪ X(log x)1/4

p logX ,

where we have written m = Mp + a and invoked Lemma 5.1.1. By partial sum-

mation and the above bound, it now follows that the third sum in (5.10) is ≪

(log x)1/4(log2 x)/p. Collecting all above estimates shows that the number of possible

(m,P ) with s(m) ≡ 0 (mod p) is ≪ x(log2 x)2/p(log x)3/4 = o(x/p). This establishes

that S2 = o(x/p), concluding the proof of Theorem 5.0.1.

Section 5.4

Concluding remarks

Given our reliance on the Siegel–Walfisz theorem, it seems difficult to extend unifor-

mity in our results past (log x)K0 . It would be interesting to have heuristics suggesting

the “correct” range of uniformity to expect. Uniformity in Theorem 5.0.1 certainly

fails as soon as p is a bit larger than x1/2. To see this, let q, r run over primes up to
1
3
√
x. Then each product qr ≤ x and s(qr) = q + r + 1 <

√
x. Hence, some m <

√
x

has ≫ x1/2(log x)−2 preimages n = qr ≤ x. If now p ≥ x1/2(log x)3 (say), then the

residue class m mod p contains s(n) for many more than x/p composite n ≤ x.

The reader interested in other work on the distribution of s(n) in residue classes is

referred to [6, 5, 57].
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