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ABSTRACT 

This research was conducted to develop and validate growth models for Pseudomonas 

putida and Salmonella enterica in raw ground poultry meat. Separate experiments included 

similar experimental methods by inoculating bacteria into irradiated raw ground chicken meat; 

subjected to isothermal temperatures (P. putida at 5-35°C and S. enterica at 7-45°C) within the 

entire growth temperature range to simulate temperature fluctuation and possible deviations. 

Microorganisms were quantified and fitted with the Baranyi equation using USDA-ARS 

Integrated Pathogen Modeling Program to create a primary model and yield a low RMSE value 

for both microorganisms (0.065-0.519), and the maximum specific growth rate (μmax) to create 

the secondary model. Secondary model used the Ratkowsky square root equation resulting in 

RMSE values for P. putida (0.05) and S. enterica (0.08), indicating high reliability. Tertiary 

models were validated with dynamic sinusoidal low and high temperature profiles: P. putida (5-

20°C and 15-35°C) and S. enterica (7–25 °C and 20–45 °C). Validated tertiary models 

demonstrated a strong goodness-of-fit between observed data and predicted values.  
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Chapter 1 

INTRODUCTION 

 

Poultry meat is the most consumed animal protein since 2015, and the National Chicken 

Council (NCC) reports 115.9 lbs. per capita consumption of poultry in 2023 (National Chicken 

Councils, 2021). The shelf life of meat products is strongly influenced by the packaging type, 

meat form, and storage temperature. The average shelf life of refrigerated fresh meat products is 

one to two days from the date of purchase; however, this can vary depending on company-

specific interventions to extend shelf-life and the amount of time elapsed between the final 

packaging step of the processing chain and the arrival of product to retail stores. Previous 

research includes the investigation of spoilage bacteria growth in raw meat products for up to 25 

days of storage when product is treated with various preservation methods (Bruckner et al., 2013; 

Chouliara et al., 2007; Mexis et al., 2012; Saucier et al., 2000). Spoilage of meat occurs when 

products are stored outside their recommended timeframe or temperature, resulting in 

undesirable sensory changes in the product, such as the development of foul odors, discoloration, 

and liquid accumulation. Ground meat products have a shorter cold storage shelf life of one to 

two days when compared to three to five days in whole beef cuts (US Department of Health and 

Human Services, 2019). This reduced shelf life can be attributed to the significantly increased 

surface area exposure to processing equipment, thus providing more opportunity for bacterial 

growth and accelerated oxidative processes. The increased incidence of ground poultry spoilage 
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compared to beef can be due to the higher water activity (FSIS, 2025). Because water is a 

component of protein and not a component of fat, poultry meat is more prone to spoilage because 

of its naturally higher lean percentage. A 2010 study estimated 22 billion lbs. of poultry meat 

produced, 21.8 % of which was lost to waste by several factors, including spoilage by 

Pseudomonas spp. during temperature abuse and contamination of the pathogenic bacteria, S. 

enterica (Buzby et al., 2014). Pseudomonas spp. remain the leading bacterial organism 

contributing to the spoilage due to its ubiquitous and psychrotrophic properties that allow it to 

adapt and persist in raw poultry products. 

 Food waste contributes not only to substantial direct economic losses but also to 

significant indirect costs, including waste management, labor, and greenhouse gas emissions. In 

response to the billions of dollars in economic losses and public health impact from foodborne 

pathogens in the past, several studies have been conducted to develop mathematical models to 

predict the growth of specific pathogens, including S. enterica, during improper temperature 

storage conditions (Juneja et al., 2007). These models are being developed to accurately predict 

the risk of pathogenic bacterial growth to reduce the potential for foodborne illness. This method 

of approximate enumeration can be used as an instant preliminary assessment before investing 

more time-consuming and extensive testing when the growth of pathogenic and spoilage 

microorganisms due to temperature abuse is suspected.  The purpose of this study was to develop 

predictive models to determine the growth of Pseudomonas putida and Salmonella enterica and 

establish a tool for users to employ during risk analysis of pathogen contamination and spoilage 

following temperature deviation. While establishing a predictive model for Pseudomonas 

spoilage in ground poultry meats is critical to prevent significant economic losses, modeling and 

validating the growth of Salmonella is important from a public health perspective and adds to the 
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value of this research by providing a more accurate and widespread representation of 

temperature deviation in ground poultry products. The following were the main objectives of the 

research:  

1. To estimate the behavior and growth curve of Pseudomonas putida and Salmonella 

enterica based on previous modeling study data and growth characteristics observed 

from the literature review. 

2. To establish a minimum and maximum growth temperature for each organism during 

isothermal temperature monitoring.  

3. To develop a mathematical predictive model for the growth of Pseudomonas putida 

under a full growth temperature profile (5°C-35°C)  

4. To develop a mathematical predictive model for the growth of Salmonella enterica 

under a full growth temperature profile (7°C-45°C) 

5. To validate each of these models while being subjected to two dynamic temperature 

profiles: a higher and a lower profile.   

Outcomes from this study will establish a predictive modeling tool to aid in the 

development of an effective HACCP (Hazard Analysis and Critical Control Point) plan by setting 

critical limits and corrective actions based on realistic operational conditions. With accurate 

regulatory thresholds in place, these models will serve as an enhanced risk management 

application when presented with storage temperature deviations and offer earlier detection of 

spoiled product. This early detection can directly mitigate the costs associated with product loss 

due to microbial spoilage. These models also have the potential to provide a wider framework for 

shelf-life determination, thus resulting in a reduction of poultry meat spoilage and an increase in 

food sustainability. Ultimately, the predictive modeling tools established from this study will 
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play an essential role in providing oversight in both health-related and spoilage risks in poultry 

products by minimizing Salmonella illnesses and economic losses.   
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Chapter 2 

LITERATURE REVIEW 

 

2.1 Introduction to Pseudomonas spp. 

 Pseudomonas spp. are Gram-negative, facultative anaerobes that do not typically pose a 

serious health threat to the public following consumption in foodborne strains (Mellor et al., 

2011). Pseudomonas is considered a naturally occurring organism because it is commonly 

present in soil, water, and areas of higher humidity. However, it is also frequently associated with 

the spoilage of animal-based protein products such as dairy, eggs, and meat due to its thermo-

tolerant properties during pasteurization, psychrotrophic characteristics, lipolytic and proteolytic 

enzymes (Neumeyer et al., 1997). Pseudomonas spp. are able to tolerate and persist in stressful 

environments where the growth of other microorganisms may be inhibited (Wickramasinghe et 

al., 2019). The enzymatic properties of lipase and lecithinase from this organism allow for the 

degradation of nutrients within food systems, which generate useable metabolites for 

Pseudomonas to thrive. The combination of enzymatic activity along with other mechanisms, 

such as biosurfactant production, leads to the spoilage of raw poultry products (Mellor et al., 

2011). 

 Along with the preexisting enzymes that are associated with the growth of Pseudomonas, 

this organism can produce a byproduct categorized as biosurfactants, a compound that enhances 
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the persistence of cells by converting surrounding nutrients into functional substrates that support 

cell survival (Mellor et al., 2011). Other contributing physical factors of the meat leading to a 

higher risk for skin-on products are the harboring of bacteria in bird feather follicles and the 

interior of bones (Rouger et al., 2017). Because of the capability of Pseudomonas to degrade 

complex nutrient compounds into simpler structures, billions of dollars and pounds of poultry 

meat are lost because of waste due to adverse sensory characteristics, including foul odor and 

slime accumulation. 

Pseudomonas putida is commonly associated with raw poultry meat spoilage during 

chilled aerobic conditions. While it may not be the only species of Pseudomonas present, it is 

likely the most representative of the bacterial species responsible for spoilage in meat (Heir et 

al., 2021; Hinton et al., 2004; Koutsoumanis et al., 2006). Spoilage by pseudomonads is 

evaluated by the degree of color change, odor production, and slime accumulation 

(Koutsoumanis et al., 2006).  These characteristics remain the most predominant physical 

indicators of poultry spoilage and are the reason for poultry meat loss due to adverse sensory 

effects and lower consumer acceptability.  

Research has demonstrated that the growth of Pseudomonas can range from temperatures 

of 4-42°C (LaBauve & Wargo, 2012). While this temperature growth range is entirely dependent 

on the specific intrinsic (pH, fat composition, aw, and initial bacterial population), extrinsic 

(temperature and oxygen availability), and processing conditions associated during growth, it 

raises a large concern for the poultry processing industry from a financial aspect due to the 

increased likelihood of spoiled product. Spoilage of meat products is most attributed to abusive 

storage temperature conditions that are >4°C. Although it is not common for raw poultry meat to 
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be transported at temperatures greater than 10°C (Gill et al., 2002), even recurring minimal 

temperature deviations above 4°C can promote the growth of Pseudomonas spp. 

 

2.2 Persistence of Pseudomonas spp. 

The spoilage of most aerobically stored chilled food products can be attributed to the 

growth of Pseudomonas spp. This species known to tolerate further processing steps such as 

pasteurization and antimicrobials (Quintieri et al., 2021; Thomassen et al., 2023). Limited 

research has been conducted on Pseudomonas putida resistance to food processing; however, 

studies of other species of Pseudomonas have reported the organism to develop resistance to 

peracetic acid, a commonly used antimicrobial in several industries, including the poultry and 

meat industry (Akinbobola et al., 2017). A study conducted by Akinbobola et al. (2017) 

evaluated the resistance of P. aeruginosa, a common nosocomial strain of Pseudomonas that is a 

contaminant in surgical equipment. The findings concluded that this organism can tolerate 

concentrations of PAA at up to 2500 ppm, predominantly due to its biofilm virulence mechanism 

(Akinbobola et al., 2017).  

Pseudomonads synthesize lipolytic and proteolytic enzymes that facilitate the 

degradation of surrounding nutrient sources to contribute to the development of the extracellular 

matrix or biofilm. The enzymatic properties of lipase, a lipolytic enzyme, allow the breakdown 

of triacylglycerol (TAGs) into free fatty acids, which results in the dehydration of meat fats 

(Chandra et al., 2020). Lecithinase is a proteolytic enzyme that is responsible for the breakdown 

of  animal protein into consumable nutrient sources for Pseudomonas (Schmidt et al., 1969). In 

medical device equipment, nutrient sources often originate from the accumulation of organic soil 
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compounds in textured or irregular surfaces (Akinbobola et al., 2017). This risk is also seen in 

the food industry, with the residual debris on food contact surfaces providing ample nutrient 

supplies. As the biofilms age, the structure is reinforced and becomes more robust. During 

disinfection, aged biofilms can interact with disinfectant agents through their extracellular 

matrix, which reacts with the agent before it can penetrate the bacterial cell surface. This 

interaction can hinder the disinfectant’s ability to eliminate the microorganism, thus leading to 

the cell’s survival and persistence (Akinbobola et al., 2017).  

Another significant concern regarding antimicrobial resistance is the emergence of 

biocide resistance resulting from phenotypic adaptations (Vikram et al., 2015). Biocides are 

another category of disinfectant used by several industries to control the growth of biofilm 

activity and include chlorine, quaternary ammonium compounds, and aldehydes, all disinfectant 

compounds frequently used in the food industry. The resistance of P. fluorescens biofilms to 

biocides is a rising phenomenon that was investigated by Vikram et al. (2015), focusing on the 

role of efflux pumps and phosphonate degradation, and various metabolic activities. The findings 

concluded that the resistance of P. fluorescens to glutaraldehyde, another type of biocide 

disinfectant, increased with biofilm maturity. As a biofilm ages, it is believed that the level of 

exopolysaccharides and proteins increases, which limits the penetration of the disinfectant. This 

study explains that when the bacteria are exposed to the disinfectant, metabolic processes are 

triggered that further contribute to the growth of the biofilm, thus reinforcing its persistence.  

Multiple studies investigating the role of biofilms in the resistance to disinfectants 

suggest that the resilient properties of Pseudomonas spp. continue to remain a significant 

concern across multiple industries such as health care and food processing. Whether it is medical 
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device equipment or food spoilage, this ubiquitous bacterium continues to present challenges, 

costing billions of dollars.  

 

2.3 Pseudomonas spp. Biosurfactant Production 

Mellor et al. (2011) define these biosurfactants as biologically produced amphipathic 

compounds with affinity for interfaces that reduce surface and interfacial tension. The properties 

associated with biosurfactants include emulsification, penetration, and microbial growth 

enhancement (Thavasi et al., 2011). Although there are more negative attributes associated with 

biosurfactant production in most applications, several studies have been conducted to investigate 

the role of biosurfactants in the degradation of crude oil pollution in contaminated environments, 

including soil and the ocean (Thavasi et al., 2011; Yagoo & Vilvest, 2023). A study conducted by 

Yagloo & Vilvest (2023) investigated the prevalence of Pseudomonas aeruginosa in soil 

samples. It provided findings of antimicrobial activity against various microbial species when 

inoculated with P. aeruginosa cultures with pre-existing biosurfactant compounds during an 

‘Antagonist test’. The P. aeruginosa strains were effective against Bacillus subtilis, 

Staphylococcus aureus, and Escherichia coli, all species commonly found in soil (Yagoo & 

Vilvest, 2023).  In the poultry processing industry, biosurfactant compounds play a strong role in 

the emulsification of rendered chicken fats and can speed up the spoilage rate of chicken (Mellor 

et al., 2011). When biosurfactants are present, the increased spoilage rate could be attributed to 

the readily available skin-associated fat. Skin-on poultry products can harbor pseudomonads and 

other spoilage organisms in the feather follicles of the skin, which can make processing measures 

less effective (Rouger et al., 2017). This is supported by the slightly longer shelf life during cold 
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storage in skinless poultry cuts because of the lower lipid and hydrocarbon availability to be 

broken down.  

 

2.4 Pseudomonas spp. Role in Spoilage of Ground Poultry Products 

While Pseudomonas spp. and other spoilage organisms are not regulated in the food 

industry, they can still be identified as economic adulterants or indicators of poor sanitation. 

There are regulations in place from The United States Department of Agriculture Food Safety 

Inspection Service (USDA-FSIS) that require written sanitation and hygiene protocols such as 

Good Manufacturing Practices (GMPs) and Sanitation Standard Operating Procedures (SSOPs) 

that must meet the requirements of the Code of Federal Regulations §416.12, and perform 

necessary verification tasks described in FSIS directives (5000.1 and 5000.4).  These required 

processes can aid in limiting the microbial contamination in foods. Pseudomonas spp. and other 

non-hazardous spoilage organisms are typically monitored through aerobic plate counts (APC) or 

psychrotrophic plate count in refrigerated products. This is because the growth of Pseudomonas 

or psychrotrophic bacteria could potentially indicate the growth of Listeria monocytogenes, a 

pathogen commonly found in chilled Ready To Eat (RTE) products (Thomassen et al., 2023).  

  Because of its combined virulence mechanisms to resist extensive processing conditions 

and antimicrobial interventions (Thomassen et al., 2023), it is the major contributor to the 

development of undesirable sensory characteristics. There are two types of poultry meat that are 

predicted to have the highest spoilage rate: skin-on poultry products and comminuted or ground 

poultry meat (Hinton et al., 2004). Because skin-on products can physically harbor more 

bacterial populations during the poultry harvesting process, thus resulting in a high microbial 
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load. Ground poultry and poultry meat products are more susceptible to spoilage due to the 

increased subjection to processing equipment and surface area contact compared to whole-meat 

cuts (Hinton et al., 2004). Rouger et al. (2017) mentions that a substantial amount of 

contamination of spoilage bacteria can be sourced from processing equipment surfaces located in 

a poultry processing facility, such as the rubber picking fingers used for feather removal (Figure 

2.1) and conveyor belts (Arnold & Yates, 2009; Rouger et al., 2017). Both equipment parts 

include pronounced crevices and introduce favorable conditions for bacterial harborage and 

biofilm establishment (Arnold & Yates, 2009). Other areas of contamination identified during 

poultry operations include airborne bacteria, water from scalding and frequent rinsing and 

chilling steps, cross-contamination during evisceration, deboning, cutting, mincing, and further 

processing, including the addition of ingredients such as marinades (Rouger et al., 2017).  

 Because of the seemingly endless points of introduction for spoilage bacteria 

contamination during poultry processing, the likelihood of spoilage bacteria presence is nearly 

inevitable and raises significant concern from both a financial and sustainability perspective.  

 

 

 

Figure 2.6: A picture by Eduardo 
Cervantes Lopez showing plucking 
fingers inside equipment (WATT 
Poultry, 2019) 
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2.5 Financial Impact of Food Spoilage in Poultry Products by Pseudomonas spp.   

The USDA defines food loss as the edible amount of food, post-harvest, that is available 

for food consumption but is not consumed and disposed (Buzby et al., 2014). In 2010, the 

USDA’s Economic Research Service estimated that approximately 30-40 percent of the United 

States food supply became food waste, weighing approximately 133 billion pounds and costing 

$161 billion (Buzby et al., 2014). Food waste can result from many stages of the production and 

supply chain; however, spoilage remains one of the top reasons. Spoilage of food can be 

attributed to many factors with microbial contamination remaining the most prominent. 

Microbial food spoilage is caused by bacteria, yeast and mold growth that facilitates metabolic 

process to breakdown the organic compounds causing off-odors, flavors, textures, and colors. 

While these unwanted sensory characteristics may not always cause a health concern, they are 

undesirable to consumers and result in the disposal of food products.  

In 2010, the Economic Research Service (ERS) estimated that out of the 22 billion 

pounds of poultry meat produced, 21.8% was lost to waste, including microbial spoilage and 

contamination (Buzby et al., 2014). When food product is wasted, it is not only the physical 

nutritional components that are lost, but also the land area, water, labor, and energy that were put 

into the process of making that food available for consumption. The ERS refers to these indirect 

costs as “negative externalities” and defines them as costs accumulated from the spillover of 

another action that can adversely affect the environment and society (Buzby et al., 2014). Some 

of these externalities caused by food waste include increased pressure on the availability of 

natural resources, elevated greenhouse gas emissions from livestock operations and waste 

management processes, and contamination of the water supply. In 2015, the USDA partnered 

with the U.S. Environmental Protection Agency (EPA) to set a goal of cutting the nation's food 
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waste by 50 percent by the year 2030 (EPA, 2025). With five years left to meet this goal, food 

manufacturers are still struggling to implement changes in their operations to reduce the amount 

of food waste from both the producer and consumer side of the food industry.  

 

2.6 Introduction to Salmonella enterica  

Salmonella enterica is a Gram-negative facultative anaerobe that is a member of the 

Enterobacteriaceae family, and is currently the most common bacteria associated with foodborne 

illness (CDC, 2022; FDA, 2024). The United States Centers for Disease Control and Prevention 

(CDC) estimates that 1.35 million infections occur in the United States every year due to 

Salmonella, with approximately 23% of those illnesses linked to the consumption of poultry 

meat (CDC, 2024; Lamichhane et al., 2024). Salmonellosis is a bacterial disease that can result 

from consuming contaminated food products that may lead to severe illness and, in some cases, 

death. The most common serotypes of Salmonella enterica detected in poultry include S. 

Enteritidis, S. Heidelberg, S. Kentucky, S. Newport, and S. Typhimurium (CDC, 2022; Foley et 

al., 2011; Williams et al., 2025). There have been shifts in the most predominant serovar over the 

last several decades (Foley et al., 2011), and they interestingly show no consistency across time 

or geographical region (Williams et al., 2025). Research is being done to reduce the incidence of 

Salmonella in poultry meat, but this bacterium remains off the zero-tolerance microbial limit list 

in raw poultry processing because of its nearly guaranteed presence in testing. While the health 

concerns associated with Salmonella contamination remain of the highest priority, the economic 

impact is also of high concern. A recent study estimates that the occurrence of Salmonella in 

poultry meat leads to an estimated $2.8 billion in health issues, product waste, decline of life 

expectancy, etc. (Scharff, 2020). Because of the several negative attributes of Salmonella 



 

14 
 
 

 
 

becoming more apparent, new Salmonella performance standards in raw meat were proposed by 

FSIS as an effort to reduce the occurrence of Salmonella infections by 25% by the year 2030 

(FSIS, 2025.) While this proposed framework may have been withdrawn because of several 

significant issues raised by representatives from various entities effected (FSIS, 2025), the 

concern for illnesses from Salmonella remains.  

 

2.7 Salmonella Epidemiology 

Salmonella enterica, or non-typhoidal Salmonella, is the current leading cause of 

bacterial illness and hospitalization following the consumption of contaminated food (Williams 

et al., 2025). The most common serotypes of Salmonella enterica infections from foodborne 

illness include Enteritidis, Typhimurium, and Newport (CDC, 2022; FDA, 2024; Foley et al., 

2011; Williams et al., 2025). The CDC estimates that Salmonella causes approximately 1.35 

million infections in the United States every year as of 2024. With chicken products remaining 

the second most prevalent  source for Salmonella infection, the USDA estimates that one in 

every 25 packages of chicken meat in retail stores contains Salmonella (CDC, 2024). The CDC 

Active Surveillance Network reports that in 2022, approximately 15 in every 100,000 individuals 

were infected with Salmonella following the consumption of contaminated food (CDC, 2022). 

Of those illnesses, 27% of infections caused hospitalization, and less than 1% resulted in 

death(CDC, 2022). Over the last 10 years in the United States, Salmonella infections have 

peaked during summer months, and have had the highest incidence reports in the state of Georgia 

at 23% (CDC, 2022). Non-typhoidal Salmonella (NTS) is known to easily adapt to its host 

environment in order to quickly spread through the consumption of contaminated food and water 

because of the shorter incubation and shedding time (Lamichhane et al., 2024). This adaptation 



 

15 
 
 

 
 

in a host can be influenced by factors including initial infection dosage, susceptibility of the host, 

age of the host, host species, and Salmonella species (Lamichhane et al., 2024). For example, in 

most NTS infections, the pathogenesis includes a stronger ability to survive and withstand innate 

immune responses such as physical barriers (skin, mucosa membranes), physiological factors 

(body temperature, low pH), leukocytes (phagocytes, natural killer cells), and various resident 

enzymes and antimicrobial peptides (Haraga et al., 2008; Lamichhane et al., 2024).  

 

2.8 Salmonella Infection 

Salmonella bacteria can be classified into two categories: S. enterica and S. bongori, with 

S. enterica being one of the six subspecies that can be divided into over 2500 serovars (Achtman 

et al., 2012; Fookes et al., 2011). S. bongori is a species most associated with cold-blooded 

animals, and S. enterica is associated with disease in warm-blooded animals and humans 

(Fookes et al., 2011). There are two major categories for the Salmonella enterica subspecies: 

Typhoidal Salmonella (TS) and Non-Typhoidal Salmonella (NTS). Non-typhoidal Salmonella 

includes the species Salmonella Typhi and Salmonella Paratyphi and results in the illness known 

as “Typhoid Fever”. This is a prolonged infection (1-3 weeks to show symptoms) that can lead to 

sepsis or a perforated intestine without treatment (Mayo Clinic, 2023). Salmonellosis is caused 

by non-typhoidal Salmonella bacteria, including the numerous serovars that can be categorized 

as Gastroenteritis or Extra-intestinal (Achtman et al., 2012). Illness is commonly associated with 

the serovars S. Typhimurium and S. Enteritidis.   

Salmonellosis occurs following the ingestion of the bacteria and can occur through 

consuming contaminated food products that include, but are not limited to, meat, poultry, eggs, 
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milk, seafood, and fresh produce (CDC, 2024; Lamichhane et al., 2024). Consumption of 

contaminated food products accounts for approximately 95% of Salmonellosis, which is 

characterized by symptoms that include diarrhea, fever, chills, and abdominal pain (Foley and 

Lynn 2008).  

These symptoms usually occur after an incubation period of six hours to six days and can 

persist for four to seven days (CDC, 2024; Lamichhane et al., 2024).  

The infectious dose for Salmonella can range from 15-20 cells, but is normally at least 

10,000 cells (Akil & Ahmad, 2019). While it is not as common, these symptoms can develop into 

septicemia (blood infections), arthritis, cholecystitis, endocarditis, etc. Death is unlikely, but it 

Figure 2.7: General overview of the current classification of Salmonella enterica (Achtman et 
al., 2012) 
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has been estimated that 400 fatalities occur per year in high-risk individuals such as the elderly, 

infants, and the immunocompromised (Health & Human Services, n.d.). 

 

2.9 Salmonella Virulence Factors  

2.9.1 Attachment and Internalization  

The human digestive system, specifically the stomach, functions with fundamental 

defense mechanisms within the mucosal barrier that regularly provide protection from unwanted 

bacterial invasion. These defenses include low pH, the presence of specialized organelles 

(lysosomes), enzymes (lactoferrin, phospholipase, thiocyanate), and antimicrobial peptides 

(AMPS) that aid in the digestion of essential components of the pathogen, or sequester vital 

nutrients needed, such as iron (Haraga et al., 2008; Lamichhane et al., 2024). However, 

Salmonella enterica continues to withstand these defenses and cause infection through its 

adapted virulence mechanism.  Salmonella enterica serovar Typhimurium employs the bacterial 

Type 3 Secretion System, which promotes adherence to the host cell and introduces effector 

molecules that inhibit signaling pathways for actin polymerization (Haraga et al., 2008). In doing 

so, the Salmonellae cause “ruffling” or the engulfment of the pathogen and internalization into 

the host (Figure 1; Haraga et al., 2008). S. enterica is most associated with the type 1 and curli 

fimbriae during bacterial adhesion; however, studies show that S. enterica can produce at least 

nine types of fimbriae (Althouse et al., 2003). Fimbriae are specific organelles resembling 

hairlike structures that line the outer membrane of the bacterial cell and allow for attachment to a 

host, and eventually biofilm formation (Rehman et al., 2019). Fimbriae are classified into three 

different categories based on their protein matrix pathway: Type 4, Chaperone-Usher (CU), and 
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Nucleated Precipitation (Rehman et al., 2019). Several previous studies suggest that T1F 

expression in Salmonella enterica serotype Typhimurium undergoes phase variation, or the                

ability to turn specific phenotypic encoded genes “on” and “off” depending on environmental 

factors (Kolenda et al., 2019). The curli fimbriae type is more commonly associated with S. 

enterica strains specifically and can be credited for the survival of toxin-producing cells in 

various environments, including the avian intestinal tract and non-biological hosts such as soil, 

because of its high relevance in biofilm formation (Rai & Bai, 2017).  

The curli fimbriae type employs an attachment mechanism that binds to host-specific 

proteins, including fibronectin, laminin, plasminogen, and major histocompatibility complex 

class I molecules (Saldaña et al., 2009). Curli biogenesis in Salmonella is similar to E. coli and is 

mediated by the expression of the CsgD regulator of the csgBAC operon (Rai & Bai, 2017). 

Figure 2.8: The internalization of Salmonellae (Haraga et al., 2008) 
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Once the Salmonellae have invaded the digestive tract, they attach to mannose-receptor residues 

within the intestine. This is when the shedding process begins, and further contamination occurs 

via fecal matter. These mechanisms are significant because of their contribution to the formation 

of the extracellular matrix needed for biofilm arrangement and allow for enhanced survival on 

both epithelial tissues and food contact surfaces.  

 

2.9.2 Salmonella biofilms 

A chapter published in the Trends in Food Safety and Protection Journal explains the role 

that biofilms play in the persistence of pathogenic bacteria and their contribution towards deadly 

outbreaks (Rai & Bai, 2017). A biofilm is a concentrated composition of bacteria that is encased 

in a sticky-like extracellular polymeric substance (EPS) matrix that allows resistance to 

environments that are not normally suitable for bacterial persistence (Rai & Bai, 2017).  The EPS 

is composed of extracellular polysaccharides, proteins, extracellular DNA, and water (Zhao et 

al., 2023). This shield of polysaccharides allows for attachment to various surfaces, including 

both biotic and abiotic surfaces, as well as retains water and serves as a permeable membrane for 

gas emission and nutrient accumulation (Zhao et al., 2023). Because the accumulation of 

polysaccharides is so critical in biofilm formation, this mechanism could also take place in meat 

products during spoilage. Spoilage in any food results in an aggregation of nutrient compounds 

due to the degradation of protein tissues from enzymatic activity. Biofilm development is a key 

virulence mechanism for cross-contamination via food contact surfaces.  
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2.10 Salmonella enterica Prevalence in Raw Poultry Products 

S. enterica has been identified as the current most prevalent bacteria causing foodborne 

illness, especially in poultry products (CDC, 2022, 2024). With the increasing demand of 

alternatively produced food products, the emergence of popularity for organic, antibiotic-free, 

free-range chicken, has outweighed the previous demand for conventional processes. Consumers 

believe that in unconventional processes, the lack of pesticides, antibiotics, vaccines, and added 

hormones increase the safety of poultry meat, however, there is a lack of scientific evidence to 

support this (Golden & Mishra, 2020; Sofos, 2008). 

 S. enterica contamination of poultry products can occur through both vertical and 

horizontal transmission (Foley et al., 2011). In poultry, vertical contamination at the farm can 

exist from breeding hens to offspring via transovarian contamination of the inner components of 

an egg. Eggshells can also be a source of contamination during the oviposition of the egg. The 

most common horizontal transmission of S. enterica in chickens is the fecal-oral route (Foley et 

al., 2011). S. enterica in poultry feces is considered reasonably likely to occur (RLTO) because 

of its nearly inevitable presence in broiler chicken houses (Chavez-Velado et al., 2024; Rai & 

Bai, 2017). According to the 2021 National Antimicrobial Resistance Monitoring System 

(NARMS) Integrated Report Summary, the top three serotypes among S. enterica isolated from 

retail chicken meat were Kentucky (38%), Enteritidis (23.3%) and Heidelberg (8.3%) (FDA, 

2024).  

 A meta-analysis study by Golden & Mishra (2020) quantified the prevalence of S. 

enterica during three major benchmarks in the broiler chicken production chain. Results showed 

that the Salmonella prevalence was highest in prechill samples (68.6%), followed by rehang 

(42.9%), and postchill (14.3%).  This data supports the claim that one of the most predominant 
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sources of bacterial contamination of poultry meat in poultry processing facilities occurs through 

transmission by processing equipment and food contact surfaces (Rouger et al., 2017).  

Although prevalence of Salmonella can vary across processing plants based on their anti-

microbial interventions such as peracetic acid washes and pH adjustments, a bio-mapping study 

identified consistently high areas of S. enterica detection across three plants (Chavez-Velado et 

al., 2024). The high areas mentioned were live receiving, rehang, and pre-chill (Chavez-Velado 

et al., 2024). Live receiving is the point of entry for birds to the facility; rehang is the step 

immediately after the scalding and picking process; prechill is before the immersion chilling step 

which remains the most significant critical control point in most operations due to the significant 

log reduction of bacterial counts from a mean concentration of 2.39 ± 0.23 log CFU/sample at  

live receiving to approximately 0.25 ±0.07 log CFU/sample during the post-chill step (Chavez-

Velado et al., 2024). The comparison of S. enterica prevalence between these three areas can 

identify the strengths and weaknesses of the critical control points. A significant reduction of 

Salmonella prevalence from live hang to rehang may indicate that the scalding process between 

these two steps is effective at reducing microbial activity by the removal of feathers, head, feet 

and dirt from the carcass (Chavez-Velado et al., 2024). However, a higher percentage of 

Salmonella during the prechill step may indicate that cross-contamination of Salmonella positive 

carcasses is spread to Salmonella negative carcasses during the picking step due to the reuse of 

water and harborage of bacteria located within the picking fingers (Achtman et al., 2012; 

Chavez-Velado et al., 2024; Rouger et al., 2017).  A significant portion of bacterial harborage can 

be attributed to cross contamination through contact with equipment surfaces, especially those 

with deep crevices, rough surfaces, and worn down or missing parts (Rouger et al., 2017).  
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The FSIS has regulations in place to control the prevalence of Salmonella during poultry 

slaughter and processing operations (FSIS, 2021). The Poultry Products Inspection Act (PPIA) 

establishes the mandating of continuous FSIS inspection during slaughter, sets sanitation and 

HACCP requirements, and regulates the labeling, handling, and facility operations of a poultry 

processing establishment.  The regulations require facilities to conduct a hazard analysis during 

the development of a HACCP plan to determine the food safety hazards that occur at different 

steps of the processing line. During the development of a HACCP plan, critical control points are 

established to mitigate these hazards, such as post-chilling interventions. The frequency of 

Salmonella detection is regulated by the FSIS Performance Standards Salmonella Verification 

Program for Raw Poultry Products (FSIS, 2021). According to the Salmonella Performance 

Standards, following the chilling step, the performance guidelines permit a maximum percentage 

of positive Salmonella samples within a rolling 52-week window. In broiler carcasses the 

maximum allowable positives of Salmonella samples are 9.8%, 25% in comminuted meat, and 

15.4% for chicken parts (FSIS, 2021). However, even with these performance standards, 

Salmonella infections continue to occur, suggesting that current regulations and mandated 

interventions may not be enough. Because of this, the Food Safety and Inspection Service (FSIS) 

proposed a new framework for Salmonella contamination levels in raw poultry products in 

August of 2024.  

Although this framework was later withdrawn by the FSIS to further assess its approach 

on developing new regulations for the poultry industry, the reasoning for the proposal remains; to 

reduce the occurrence of Salmonella infections by 25% before the year 2030 (USDA, 2024). 

Products mentioned in the framework included raw chicken carcasses, chicken parts, 

comminuted chicken, and comminuted turkey products (FSIS, 2024). The proposed performance 
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standard included three major components of revision to current practices and standards enforced 

in poultry processing facilities (FSIS, 2024). While the first two components focused on the 

establishment of Salmonella as a hazard that is reasonably likely to occur (RLTO) in flocks 

before entering the facility and the required enforcement of microbial monitoring practices, the 

third component remains the most challenging (FSIS, 2024). This proposed component 

introduces a new final product detection threshold, under which a product would be considered 

adulterated if Salmonella levels exceed this limit or if specific high-risk serotypes are detected.  

This proposed standard stated that, “ …raw chicken carcasses, chicken parts, comminuted 

chicken, and comminuted turkey are adulterated if they contain any type of Salmonella at or 

above 10 colony forming units/per milliliter or gram (10 cfu/mL(g)) in analytical portion (i.e., 

mL of rinsate or gram of product) and contain any detectable level of at least one of the 

Salmonella serotypes of public health significance identified for that commodity” (FSIS, 2024). 

While the implementation of a new regulatory standard may not have been the correct approach, 

the utilization of Salmonella monitoring and predictive tools is necessary to reduce these 

infection numbers.  

 

2.11 Predictive Modeling 

 As the global population continues to rise, so does the demand for food (Quintieri et al., 

2021). This creates pressure on the food industry to maintain an efficient food supply, while also 

engaging in sustainability practices that prevent overproduction and minimize unnecessary or 

preventable food waste. Challenge tests have been recognized as a standard application to 

determine the shelf life of products by simulating the effects of environmental conditions on food 

(McDonald & Sun, 1999). However, these tests can be considered economically and 



 

24 
 
 

 
 

operationally burdensome in terms of time, labor, and financial investment (McDonald & Sun, 

1999). This makes them less suitable for rapid decision making.  Predictive modeling is a 

statistical tool commonly used in the food industry to forecast outcomes of a product under 

specific conditions (McDonald & Sun, 1999; McMeekin et al., 1997; Neumeyer et al., 1997; 

Thomas et al., 2019). This can play a vital role in determining food safety, quality, shelf life, and 

assessing risk.  

Predictive food microbiology (PFM) is a sector of predictive modeling that utilizes 

mathematical functions to develop a matrix that estimates the behavior of microorganisms’ under 

different environmental conditions (McDonald & Sun, 1999; Ross et al., 2000; Thomas et al., 

2019). Many food safety experts use this tool to predict the fate of a targeted bacteria under 

specific intrinsic or extrinsic conditions that may occur during processing, distribution, and 

storage of food products (Thomas et al., 2019). Models in food safety can be developed based on 

processing interventions that can determine the effectiveness of a critical control points in a 

HACCP plan or optimize the processing conditions for quality purposes. Food safety 

interventions include antimicrobial additions, temperature change, thermal processing, 

acidification etc. When deviations from product speculations occur, predictive microbiology can 

be used as an immediate application to estimate pathogen or bacterial growth, survival, or 

inactivation and help determine the condition of the product, whether it poses a food safety or 

quality-based risk (Ross et al., 2000).  

Predictive microbial models can be categorized in different ways depending on the 

purpose and outcome. The most significant categories to note are: kinetic and probability-based, 

empirical and mechanistic, and primary, secondary, and tertiary models. Some of these categories 
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may overlap, thus adding to the complexity of the model, and proving that predictive modeling 

can serve many roles.  

Kinetic models one of the primary approaches used in PFM that describe the rate of the 

bacterial behavior, such as growth or inactivation under various environmental conditions. This 

type of model quantifies the effect of environmental factors such as temperature, pH, and water 

activity on parameters such as lag time, specific growth rate, and population density (McMeekin 

et al., 1997; Van Boekel, 1996). These type of models are useful when estimating bacterial 

population or shelf-life over time and even under dynamic conditions (Baranyi & Roberts, 1994; 

Zwietering et al., 1991). In comparison,  probability-based models estimate the probability of 

specific microbial activities occurring under given conditions (presence/absence)(McDonald & 

Sun, 1999; Ratkowsky & Ross, 1995). Probability models are most used to indicate the 

likelihood of growth or toxin production and not the speed of each (Roberts, 1997). A kinetic 

model is typically selected over probability-based models when the desired outcome requires 

precise quantification and speed of growth or inactivation. Traditionally, these two approaches 

have been considered as distinct, however, Ratkowsky and Ross (1995) proposed an integration 

of the two to better determine the boundary between growth/and no growth (Ratkowsky & Ross, 

1995). They explained that the original division into the two categories was presumptive, and 

that eventually most research in PFM overlaps with both kinetic and probability-based 

approaches.  

Empirical and mechanistic models describe the approach to predicting microbial 

behavior. Empirical models are built on data and designed to fit experimental data through 

mathematical relationships derived from microbial growth, survival, or inactivation, and do not 

define the biological processes such as enzymatic activity, nutrient metabolism, and stress 



 

26 
 
 

 
 

response that may be explained in mechanistic models (Devlieghere et al., 2009; McDonald & 

Sun, 1999; McMeekin et al., 1997; Zwietering et al., 1993). Mechanistic models focus on 

“theoretical bases” that govern cellular processes (McDonald & Sun, 1999). These models aim to 

represent the biological mechanisms that occur during cell growth or inactivation. Because of the 

significant impact that cellular metabolism has on the behavior of a bacterium, most researcher 

agree that mechanistic models provide more accurate and reflect the complexity of the microbial 

dynamics taking place (Jagannath & Tsuchido, 2003; Zwietering et al., 1993).   

 

2.11.1 Primary Modeling  

 A primary model is used to define the distribution of microbial growth, survival, or death 

under isothermal, or constant conditions over time. A common primary model used for predictive 

microbiology is the Baranyi model (Figure 2.4). Figure 2.4 shows an example of the growth of 

Listeria monocytogenes under constant temperature conditions with the Baranyi model fitted 

(Thomas et al., 2019). It is important to select the most relevant type of primary model to a 

dataset based on the purpose and highest accuracy. The Baranyi model can be used to predict the 

growth, survival, and death curves. It is different from other primary models because of its 

accurate development of the adjusted sigmoidal curve by factoring in the separation and duration 

of different phases of bacterial growth: the lag phase, the exponential phase, and the stationary 
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phase. This model captures the time taken by bacterial cells to adjust to their environment, or the 

physiological adaptation referred to as the lag phase (Baranyi & Roberts, 1994; Roberts, 1997). 

There are several software’s that utilize this model to help users to predict the bacterial 

concentration in each food product. Examples of this software include DMFit, Combase, or 

Pathogen Modeling Program (PMP).  

 

2.11.2 Secondary Modeling  

A secondary model is used to integrate the impact of the environmental parameter used 

on the primary model with a response to changes in one or more environmental factors such as 

temperature, pH, and water activity (aW) (Baranyi & Roberts, 1994; Jagannath & Tsuchido, 

2003; McDonald & Sun, 1999). The Ratkowsky square root model frequently provides an 

Figure 2.9: The Baranyi model used to show the growth of Listeria monocytogenes in queso 

fresco at a given temperature (Thomas et al., 2019) 
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accurate fit during bacterial growth studies by interpreting the biological parameters (Ratkowsky 

et al., 1981; Thomas et al., 2019). Most models before the Ratkowsky model are based on the 

Arrhenius Law equation: 𝑘 = 𝐴 exp '− !
"#
), which assumes microbial growth as exponential 

across all temperatures and interventions, including suboptimal conditions. Ratkowsky explained 

that bacterial growth is a complex process that the Arrhenius Law fails to describe, thus leading 

to his original model (Ratkowsky et al., 1981). Ratkowsky proposed a secondary model that 

employed a more accurate approach using square root as a function of bacterial growth and 

temperature: *𝜇$%& = 𝑏(𝑇 − 𝑇') that provides an excellent fit to empirical data in both 

minimum and optimal growth temperatures (Ratkowsky et al., 1981). Later in 1983, Ratkowsky 

et al. extended the previously proposed Ratkowsky et al. (1981) model to cover the full 

biokinetic temperature range by including four new parameters that represent the minimum and 

Figure 2.10: The Ratkowsky model used to fit the growth rate of Listeria monocytogenes in 

queso fresco at increasing temperatures (Thomas et al., 2019) 
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maximum temperature bounds (Ratkowsky et al., 1983). The new empirical non-linear 

regression model is as follows: 

 *𝜇$%& = 𝑏(𝑇 − 𝑇$()){1 − exp[𝑐(𝑇 − 𝑇$%&)]}  

where 𝑇$() and 𝑇$%& are the minimum and maximum temperatures, 𝑏 is the regression 

coefficient of the square root of growth rate constant, and 𝑐 is an additional parameter to better 

fit data for temperatures above the optimal range (Ratkowsky et al., 1983). Figure 2.5 shows an 

example of the current Ratkowsky model being used to show the distribution of data with an 

increasing growth rate of Listeria monocytogenes as temperature increases in queso fresco 

(Thomas et al., 2019).  

 

2.11.3 Tertiary Modeling 

Tertiary models are user-friendly computer software tools that are an integration of both 

primary and secondary modeling data. The most used software’s include the USDA’s Pathogen 

Modeling Program (PMP)(Buchanan, 1990) and the ComBase prediction system. This software 

allows users to predict microbial behavior under various environmental conditions and is 

supplied with data through validated and published models. Food safety professionals can easily 

access this database to predict the behavior of a specific bacteria under various conditions. Both 

programs allow for a quick simulation of microbial response to changing intrinsic and extrinsic 

factors such as temperature, pH, water activity, gas composition, etc.  
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2.12 Applications of Predictive Modeling  

Predictive modeling has become a predominant tool in food microbiology by providing 

essential comprehensive approaches for predicting microbial behavior in varied food matrices 

under different environmental conditions. This mathematical application enhances food safety by 

enabling professionals to efficiently respond to high-risk events, develop and validate HACCP 

plans, determine shelf-life and spoilage capacity, and design processing interventions (McDonald 

& Sun, 1999). In meat and poultry products, modeling tools are being consistently developed and 

used due to the complex food matrix system and endless interventions used for animal-based 

protein products (Daud et al., 1978; Pooni & Mead, 1984). Data is constantly being added to 

modeling software to provide a more universal tool for food products that have been subjected to 

both unconventional and extensive processing operations.   

During HACCP plan development and validation, food safety personnel can utilize the 

predictive modeling tool to accurately represent the behavior of bacteria at different points 

during their specific processing operation (McDonald & Sun, 1999). Predictive modeling can aid 

in quantifying the microbial population to allow professionals to adjust HACCP programs to 

comply with the thresholds set by the microbial performance standards. For example, the 

efficacy of an anti-microbial intervention for controlling spoilage bacteria such as Pseudomonas 

spp. in a poultry processing facility can be predetermined with a tertiary model. Such models can 

allow for the simulation of varying concentrations of peracetic acid under specific temperature 

and pH conditions. This application will eliminate excessive financial investment on unnecessary 

trial-and-error experimentation.   

During risk-assessment of pathogen presence in a product exposed to temperature 

deviations, predictive modeling can be applied to rapidly evaluate the impact of the event and 
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accurately predict the fate of affected product. This application has the potential to reduce costs 

from product-recall and accelerate the risk assessment process that may otherwise be delayed 

during microbial testing of the product. The applications of predictive modeling in food safety 

continues to evolve, however, it is not without limitations.  

 

2.13 Limitations of Predictive Modeling 

 While the applications of predictive microbiology span across multiple areas of both 

hazard analysis and quality assessment, certain constraints still limit the use of this modeling 

tool. Due to unpredictable behavior of bacteria exposed to atypical conditions, the need for 

microbial testing is essential. Industry users must provide empirical evidence for product holds 

and release decisions due to the high risk associated with contaminated product release.  

Additional limitations include the need for raw data to support model development in less 

common food categories (McDonald & Sun, 1999). Although popularity among predictive 

modeling utilization continues to rise, significant knowledge gaps persist for unconventionally 

processed foods (McDonald & Sun, 1999; Pooni & Mead, 1984). When new parameters need to 

be incorporated, the process of collecting data for model development is extensive and time 

consuming. Without the data to develop and validate a model, predictive modeling cannot be 

applied thus limiting its use to only well-documented food products. Another critical limitation 

of predictive microbiology is the overlooked-impact that competition has on microbial 

populations (Devlieghere et al., 2009). Bacteria can behave differently in the presence of a 

diverse bacterial population whereas certain species may outcompete others due to their 

adaptability and resilience in challenging conditions. This restricts the quantification process for 

the pathogen of concern and can potentially reduce the reliability of the model. As a result, 
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caution should be exercised when utilizing predictive modeling tools because of the inability to 

model unknown events that influence bacterial growth.  
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3.1 Abstract 

Pseudomonas spp. are a common spoilage organism and primary contributor to food 

quality degradation and food waste in poultry meat products due to its ubiquity, resilience during 

environmental stress, and psychrotrophic characteristics. This study sought to develop and 

validate a predictive growth model for P. putida in raw ground chicken meat under isothermal 

and dynamic temperature conditions, including the entire growth temperature threshold to mimic 

temperature fluctuations during transport and storage operations. P. putida was inoculated into 

irradiated raw ground chicken meat at seven isothermal temperatures (5, 10, 15, 20, 25, 30, 

35°C) and quantified over time. The isothermal data was fitted with the Baranyi equation using 

the USDA-ARS Integrated Pathogen Modeling Program and yielded a low RMSE value ranging 

from 0.197-0.519, indicating a strong similarity between the predicted values and experimental 

data. The secondary model was fitted with the Ratkowsky Square Root equation to evaluate the 

effect of temperature on maximum specific growth rate (μmax) and evaluated with an RMSE 

value of 0.049, suggesting a high degree of conformity between the observed values and 

prediction. The tertiary model was formulated through the synthesis of the data obtained from the 

primary and secondary models and validated using two dynamic sinusoidal temperature profiles: 

5-20°C, 24-hour cycle; 15-35°C, 6-hour cycles. Model performance was assessed using 

Accuracy (Af) and Bias (Bf) factors for both profiles: Af (0.0441) and Bf (1.0260) for the low 

temperatures, and Af (1.050) and Bf (0.9815) for the high temperatures. These findings suggest 

that the developed prediction model exhibited close alignment with the observed data, indicating 

a reliable model for industry use in predicting the bacterial behavior of P. putida in raw ground 

chicken meat subjected to dynamic temperature conditions.   
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3.2 Introduction 

Pseudomonas spp. are ubiquitous Gram-negative, facultative anaerobes that are 

commonly found in soil, water, and areas of high humidity.  Although foodborne isolates of this 

organism are not typically associated with illness or raise concern as a serious health threat like 

some pathogenic strains (Mellor et al., 2011), it is most commonly implicated in the spoilage of 

animal-based protein products such as eggs, dairy, and meat. This can be attributed to its ability 

to persist under challenging processing conditions, psychrotrophic characteristics, and lipolytic 

and proteolytic enzymatic activity (Neumeyer et al., 1997). Pseudomonas frequently 

outcompetes other bacteria due to these resilient properties (Wickramasinghe et al., 2019). 

Pseudomonas spp. and other spoilage organisms can serve as indicators of poor sanitation and 

are not regulated in the food industry; however, the United States Department of Agriculture 

(USDA) has regulations that require the development, and validation of written sanitation and 

hygiene protocols such as Good Manufacturing Practices (GMPs) and Sanitation Standard 

Operating Procedures (SSOPs) that target the minimization of microbial growth.  

 Pseudomonas spp. are recognized as the primary spoilage organism found in poultry 

meat products, and other animal-derived protein foods (Heir et al., 2021; Hinton et al., 2004; 

Koutsoumanis et al., 2006). Its ability to withstand intensive processing efforts through multiple 

survival mechanisms makes it a key contributor to the degradation of sensory quality in meat 

products (Quintieri et al., 2021; Thomassen et al., 2023). Among poultry cuts, skin-on and 

comminuted products are prone to increased spoilage rates (Hinton et al., 2004). Skin-on poultry 

retain higher bacterial loads due to their feather follicles and water retention, which can increase 

bacterial growth (Dawson et al., 2013; FSIS, 2025). Food contact surfaces and equipment are 

also a common reservoir for bacterial contamination. Frequent sources of contamination from 
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equipment include the rubber picking fingers used for feather removal and conveyor belts 

(Rouger et al., 2017), which contain pronounced crevices that create ideal niches for bacterial 

harborage and biofilm development (Arnold & Yates, 2009; Rouger et al., 2017). Additional 

sources of contamination along the poultry process include airborne bacteria, water from 

scalding and frequent rinsing and chilling steps, cross-contamination during evisceration, 

deboning, cutting, mincing, and ingredient additions during further processing (Rouger et al., 

2017). Given the numerous potential entry points for spoilage bacteria throughout poultry 

processing, their presence is inevitable, posing a substantial economic concern.  

According to the USDA, food waste is defined as edible food products that are not eaten 

and discarded (Buzby et al., 2014).  In 2010, approximately 30-40 percent of the United States’ 

food supply was lost as waste, totaling an estimated weight of 133 billion pounds and 

representing a financial loss of $161 billion (Buzby et al., 2014). The Economic Research 

Service (ERS) estimated that in 2010, of the 22 billion pounds of poultry meat produced, 21.8% 

was lost to waste, including microbial spoilage and contamination (Buzby et al., 2014). While 

food waste can accumulate from various stages throughout production, spoilage remains a 

leading contributor. Food waste not only results in the loss of edible nutrients and financial 

investment in the product but also represents a waste of resources invested in the production, 

including land, water, labor, and energy. The ERS uses the term “negative externalities” to 

account for these indirect economic losses accumulated from unintentional consequences of one 

action that impose on the environment and societal costs (Buzby et al., 2014).  

As the global population continues to rise, the demand for food increases, and the 

pressure on the food industry accumulates (Quintieri et al., 2021). The food industry is 

responsible for ensuring a stable food supply while also implementing sustainable production 
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practices to reduce waste. Conventional methods of evaluating product shelf life are the use of 

challenge tests, which simulate environmental storage and transportation conditions that affect 

the shelf life of a product (McDonald & Sun, 1999). Although effective, these methods are time-

consuming, labor-intensive, and costly, making them impractical for rapid decision making 

(McDonald & Sun, 1999). Predictive modeling is a widely used alternative that allows for a 

more efficient approach, and this approach uses statistical functions to estimate the behavior of 

bacteria under specific environmental conditions, aiding in the risk assessment of food safety 

concerns, deviations from product speculations, and shelf life determination (McDonald & Sun, 

1999; McMeekin et al., 1997; Neumeyer et al., 1997; Thomas et al., 2019).  

A specific sector for applications of this tool is Predictive Food Microbiology (PFM), 

which enables food safety professionals to simulate microbial behavior, such as growth, 

inactivation, and survival, under various environmental conditions that can affect a food product 

(McDonald & Sun, 1999; Ross et al., 2000; Thomas et al., 2019).  The objective of this study 

was to determine the minimum and maximum growth temperatures for Pseudomonas putida in 

raw ground poultry meat, develop a predictive model for the growth of P. putida under a full 

growth temperature profile (5 to 35 °C), and to validate the developed model by using a high and 

low temperature profile under sinusoidal temperature fluctuations.  
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3.3 Materials and Methods  

3.3.1 Ground Chicken Meat 

Poultry meat breasts and thighs cuts were obtained from a local grocery store and further 

processed using equipment in the food processing pilot plants in the Department of Food Science 

and Technology at the University of Georgia. The meat was ground twice through a fine grind 

(1/8mm grind plate). The ground chicken was then packaged (8” x 10”, Clarity 3 mil Standard 

Bags, Clarity Brand) and vacuum sealed with approximately 120g each prior to being frozen. 

The frozen bags were then packaged in perishable shipping kits and sent off for electron beam 

irradiation at the National Center for Electron Beam Research at Texas A&M University in 

College Station, Texas.  The bags were irradiated with 3.5 kGy for total degradation of all 

bacteria, making them sterile for experimental inoculation. The meat was then stored at -20 °C 

before being thawed at 4 °C, 12 h prior to use. Following irradiation, various random samples 

were used to measure the average pH, 6.06 ± 0.06. The fat concentration was measured as 3.17 

±17 by the ANKOMXT15 Extraction System (ANKOM Technology, Macedon, NY) at the 

University of Georgia Department of Animal and Dairy Science.  

 

3.3.2 Bacterial Strains and Inoculation 

Pseudomonas putida isolate used in this study was obtained from the American Type 

Culture Collection (ATTC, Manassas, VA).  The strain was cultured from the glycerol stocks in 

the -80 °C storage in two biological replicates. A 10uL loop of the stock was used to inoculate a 

sterile test tube with 10mL of Tryptic Soy Broth (TSB; Difco, Sparks, MD) and grown at 30°C 

for 18 h to obtain an inoculum population of ~ 8.5-9.0 log CFU/mL. The inoculum was further 
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diluted to target a starting population of 2.5-3.0 log CFU/g in the meat pouches across all 

replicates and temperature experiments. The product was inoculated and divided into 5 g 

aliquots. The ground poultry pouches were then heat-sealed and homogenized by hand 

massaging for two min.. Small pouches of meat were made with 5 ± 0.10g of inoculated meat 

and heat sealed. The pouches were then submerged in a circulating water bath (PolyScience, 

Cole-Parmer Instrument Company, Niles, IL) at a constant temperature of 5, 10, 15, 20, 25, 30, 

and 35°C and held throughout the study.  

 

3.3.3 Sampling  

  At the predetermined fixed time points for sampling, a pair of replicate samples were 

removed from the water bath, and the meat from the pouches was aseptically transferred into 

filtered Whirl-Pak bags (Nasco International, Madison, WI) with 20mL of 0.1% Buffered 

Peptone Water (BPW; Difco, Stark, MD). The pouches were then hand massaged for two min., 

and a series of tenfold serial dilutions were prepared in 0.1% BPW. The selected dilutions were 

then spread plated in duplicates on Pseudomonas Isolation Agar (PIA; Sigma-Aldrich, St. Louis, 

MO) in 100uL aliquots and incubated for 24 h at 30°C.  

 

3.3.4 Predictive Modeling 

Primary Model 

A primary model is used to define the distribution of how a microbial population grows, 

survives, or dies under isothermal, or constant conditions, over time. It is important to select the 
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most relevant primary model for a dataset based on the purpose and highest accuracy.  A 

common primary model used for predictive microbiology is the Baranyi model. The Baranyi 

model can be used to predict the growth, survival, and death curves, and is different from other 

primary models because of its accurate development of the adjusted sigmoidal curve by factoring 

in the separation and duration of different phases of bacterial growth: the lag phase, the 

exponential phase, and the stationary phase. This model captures the time taken by bacterial cells 

to adjust to their environment, or the physiological adaptation referred to as the lag phase 

(Thomas et al., 2019). Once isothermal data was collected from each temperature set, the 

regression curve from the bacterial cell populations (log CFU/mL) at given time points was fitted 

to the primary modeling equation with the USDA Integrated Pathogen Modeling Program 2013 

(IPMP) software and was used for developing the primary and secondary predictive models in 

the present study. This program can allow users to analyze the behavior of bacteria during 

growth, survival, or inactivation under various environmental changes such as temperature, pH, 

water activity (Aw), etc. The equation for the fitted model is as follows:  

Baranyi Model equation:  

𝑦(𝑡) = 𝑦' + 𝜇$%&𝐹(𝑡) − ln	(1 + (
𝑒*!"#+(-) − 1
𝑒(/!"#0/$)

) 

 where 𝐹(𝑡) = 𝑡 + 1
2
ln>𝑒02- + 𝑒3' − 𝑒(2-03')?. The parameters of the equation are defined as: 

𝑦(𝑡)is the cell population of Pseudomonas putida (log CFU/g) at time t, 𝑦'is the initial cell 

population (log CFU/g), 𝑦$%&is the maximum cell population reached (log CFU/g), 𝜇$%& is the 

specific growth rate (log CFU/h), ℎ' describes the prior physical state of the cells. The lag phase 
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duration was calculated using the formula: 𝜆 = 3$
*!"#

 where 𝜆 is the parameter for lag phase 

duration (h) (Zwietering et al., 1991).  

Secondary Modeling 

A secondary model is used to integrate the impact of the environmental parameter used in 

the primary model. The Ratkowsky square root model frequently provides an accurate fit during 

bacterial growth studies by interpreting the biological parameters. The parameters given from the 

primary modeling output were used to develop a secondary model to demonstrate the 

relationship of temperature and specific growth rate (𝜇$%&). The values from each replicate were 

fitted into the secondary Ratkowsky Square Root model (Ratkowsky et al., 1981). The equation 

is as follows:  

*𝜇$%& = 𝑏(𝑇 − 𝑇$()){1 − 𝑒𝑥𝑝[𝑐(𝑇 − 𝑇$%&)]}	

where the 𝑎 parameter is the regression coefficient, T is the temperature (°C), and 𝑇$() is the 

minimum temperature (°C).  

Tertiary Model 

Tertiary models are user-friendly software and allow for the accurate prediction of 

bacterial behavior under specific conditions. The role of a tertiary model is to simulate real-world 

temperature fluctuations that may occur during transportation and storage. This type of model is 

developed by the integration of primary and secondary models that have been validated with 

sinusoidal dynamic conditions. Such software includes that of the most widely used, IPMP 

software (Huang, 2013).  However, a major limitation of this software is that it is restricted to 

accessing raw data. Another common USDA-ARS software applied is ComBase (Barayni & 
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Tamplin, 2004), which includes access to a database with over 65,000 records that describe the 

behavior of pathogens and spoilage organisms in a diverse food system. The software used for 

the development of the tertiary model in this study was MATLAB (Version R2023a, The 

MathWorks, Inc). This program allowed for the precise input of experimental parameters and 

conditions to predict the growth of P. putida accurately.  

 

3.4 Statistical Analysis 

The statistical analysis of the primary models included the comparison of goodness-of-fit 

metrics, including Root Mean Squared Error (RMSE), Sum of Squared Errors (SSE), Mean 

Squared Error (MSE), and Residual Standard Deviation. These values were given in the 

statistical output following the fitting of the Baranyi model to the experimental data using the 

USDA-ARS Integrated Pathogen Modeling Program software. The formulas for each metric are 

displayed in Table 3.1. The analysis of the secondary model included the evaluation of RMSE, 

while also identifying trends that can indicate normal bacterial behavior observed during growth, 

such as maximum specific growth rate (μmax) and lag phase duration (LPD). The tertiary model 

fitness was evaluated with the Accuracy and Bias factors calculated from the MATLAB software 

(Baranyi et al., 1999).  

3.4.1 Validation of Models 

The tertiary predictive growth model was validated by conducting two dynamic 

sinusoidal time-temperature profiles under constant intrinsic conditions: 5-20 °C (24-hour cycle); 

15-35 °C (6-hour cycles). As previously mentioned, inoculated samples were placed in a 

circulating programmable water bath to simulate temperature fluctuations at fixed intervals. 
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Sampling was conducted at planned time intervals, and the growth of Pseudomonas putida was 

enumerated until cells reached the stationary phase.  

 

3.5 Results and Discussion 

3.5.1 Temperature threshold 

Pseudomonas putida exhibited growth in ground poultry meat under constant isothermal 

conditions from temperatures 5 to 35°C. The minimum and maximum temperatures for bacterial 

growth were tested through preliminary studies. For the lower limit, the bacterial concentration 

of Pseudomonas putida did not detect growth at temperatures lower than 5°C, but survival was 

indicated. The limit of detection (LOD) for P. putida was 0.84 log CFU/g.  Although 

Pseudomonas spp. are considered a psychrotroph, this strain of bacteria did not exhibit growth 

below the typical threshold of 4-5°C likely due to severely reduced metabolic activity (Barbier et 

al., 2014). For the upper limit, P. putida growth was not detected at temperatures greater than 

35°C, and death of the bacterial cells was indicated at a temperature of 37°C (LOD = 0.84).   

 

3.5.2 Primary Modeling  

This study measured the growth of Pseudomonas putida at seven different temperatures: 

5, 10, 15, 20, 25, 30, and 35°C. The bacterial growth was from each of these isothermal 

experiments was enumerated, converted to log CFU/g, and fitted with the Baranyi equation using 

the USDA Integrated Pathogen Modeling Program 2013 (IPMP) software (Figure 3.1). The 

growth parameters: maximum specific growth rate (µmax), lag phase duration (LPD, λ), initial cell 
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concentration (y0), and maximum cell population (ymax) were recorded (Table 3.2). The 

parameter h0 is characterized as the ‘adaptation work’ required of a bacteria to adapt existing 

conditions (Juneja et al., 2007; Thomas et al., 2019; Tsaloumi et al., 2022). It is assumed in the 

Baranyi equation that the value of h0 is constant for a given bacterial species in a specific food 

matrix (Baranyi & Roberts, 1994; Juneja et al., 2007; Thomas et al., 2019). However, it was 

determined in this study that there was no correlation between temperature and h0 values, 

therefore, the arithmetic mean of h0 (1.07) was used for further modeling development. Because 

of this lack of pattern, the primary models were refitted with the new h0 value, and the other 

parameters were re-calculated. The isothermal enumeration and predicted curve for each 

temperature is shown in Figure 3.1. 

The initial cell concentration (y0) of the inoculated meat pouches ranged from 2.48-3.53 

log CFU/g across all temperatures compared to the ideal target inoculation of 2.5 log CFU/g 

(Table 3.2). The maximum population density detected did not exceed 8.09 log CFU/g during 

any of the isothermal experiments. This could be attributed to the limited amount of oxygen and 

nutrients available to the bacteria because of the impermeable pouch material that is traditionally 

used for vacuum sealing.  

 While goodness of fit metrics are recommended to be utilized relatively and not as an 

absolute standard, these values can provide insight into the performance of a model. The 

equations associated with each metric can be found in Table 3.1. Overall, the fitting of the 

observed primary isothermal data to the Baranyi model is reflected with low Root Mean Squared 

Error (RMSE) values ranging from 0.197-0.519 (Table 3.3). During RMSE analysis, the closer 

the value is to zero, the “better fit” a model is to the observed data. These values indicate that the 

observed data was very similar to the model predictions. The Sum of Squared Error (SSE) is also 
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given as a comparative metric to use when multiple model types are fitted.  However, since only 

the Baranyi model was fitted and the value of SSE increases with sample size, this metric was 

not used to assess the goodness of fit in the present study, but it can be used for future studies 

comparing additional fitted model equations (Table 3.3).  Another metric extracted from the 

modeling software was the Mean Squared Error (MSE) values that ranged from 0.070-0.384. 

This metric reports values as squared units compared to RMSE which has the units used in the 

observed model data. MSE values are also used as another alternative comparison metric for 

model developers to use to evaluate the optimization of a model and are not as relevant in the 

present study but are provided for future research purposes. 

 

3.5.3 Secondary Modeling 

 The maximum specific growth rate (μmax) showed a positive correlation as it increased 

with increasing temperatures up to its optimal growth temperature of 30°C, then showed a slight 

decrease at 35°C (Figure 3.2) When fitted with the Ratkowsky model, the observed values 

showed adherence to the predicted values with and resulted in an RMSE value of 0.049, 

indicating the model was accurate. The Lag Phase Duration (LPD) is the amount of time for 

bacterial cells to physiologically adapt to the environment. The LPD of Pseudomonas putida in 

ground poultry meat was observed to be negatively exponential as temperature increased, 

reaching its minimum length at its optimal growth temperature of 30°C, after which it began to 

increase again (Figure 3.3). Baranyi et al. (1995) explains that LPD can be a function of 

temperature, and exposure to temperatures near the lower limit of an organisms growth range can 

induce cold shock that can result in a prolonged lag phase (Baranyi et al., 1995). This claim is 
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supported by the data observed in the present study. The Ratkowsky reported that the predicted 

minimum temperature (Tmin) for growth was 6.01 ± 1.69°C and the predicted maximum growth 

temperature (Tmax ) was 35.32 ±0.01°C for P. putida in raw ground poultry meat. These values 

remain close to the observed minimum (5°C) and maximum (35°C) temperatures. 

 

3.5.4 Growth Models Under Dynamic Temperature Profiles and Validation Evaluation 

Figure 3.4 displays the predicted tertiary model profiles developed from MATLAB 

software, and the observed data from the validation studies. The lower temperature profile (5-

20°C) yielded an Accuracy factor (Af) of 1.0441 and a Bias factor (Bf) of 1.0260. The higher 

temperature profile (15-35°C) yielded an Accuracy factor of 1.050 and Bias factor of 0.9815. 

The role of the Accuracy factor is to reflect the closeness of the predicted values sourced from 

the tertiary model to the observed values obtained from the validation experiment by measuring 

the deviation(Baranyi et al., 1999). Bias factor indicates whether there is an over or under-

prediction, if any, of the bacterial behavior (Baranyi et al., 1999). For both parameters, a value 

approaching 1.0 reflects the greater reliability and applicability of the model (Baranyi et al., 

1999). For the present study, the factor values suggest the tertiary models are well-fitted to the 

prediction of the bacterial growth of Pseudomonas putida in raw ground poultry meat.  An 

Accuracy Prediction Zone (APZ) analysis was performed to further assess any deviation between 

the observed and predicted data (Figure 3.5). This was achieved by subtracting the observed 

values from the predicted values to generate the predicted error. The acceptable prediction limit 

was set between -1.0 (fail-safe) and 0.5 (fail-dangerous) log CFU/g. It is important to note that 

when predicting the bacterial behavior within a food matrix, some deviations are to be expected. 
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A fail-safe model can indicate the overprediction of growth, and a fail-dangerous model can 

indicate an underprediction of growth (Juneja et al., 2018; Oscar, 2005; Thomas et al., 2019). 

This analysis yielded an APZ score of 96.16% with only one out of 26 points from both 

temperature profiles falling outside of the accepted accuracy prediction zone (-1.0 to 0.5 log 

CFU/g). An APZ score of >70% is preferred and considered as an acceptable score (Oscar, 

2005). This indicates a high level of agreement between the observed and predicted values, thus 

demonstrating a strong model performance under dynamic conditions. 

 

3.6 Conclusion 

 This study successful characterized the temperature-dependent growth of Pseudomonas 

putida in raw ground poultry meat using predictive modeling approaches. This organism 

demonstrated growth between 5°C and 35°C, with no detectable growth below 5°C or above 

35°C. Primary modeling using the Baranyi equation yielded low RMSE values (0.197-0.519), 

indicating a strong fit between observed and predicted growth under isothermal conditions. 

Secondary modeling with the Ratkowsky equation confirmed the positive relationship between 

temperature and maximum specific growth rate, up until its optimal growth temperature of 30°C. 

The lag phase duration exhibited a negatively exponential relationship as temperature increased. 

The validated tertiary models demonstrated high predictive reliability, with accuracy and bias 

factors close to 1.0 for both low and high temperature profiles. The Accuracy Prediction Zone 

(APZ) analysis yielded a score of 96.16%, well above the threshold of 70% acceptability. 

Overall, these results prove that this model can serve as an effective tool for predicting the 

growth behavior of P. putida under dynamic temperature conditions in raw ground poultry meat 
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and can offer valuable insights in shelf-life determination, quality control risk assessment, and 

spoilage prevention.   
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LIST OF FIGURES 

Figure 3.1: Growth of P. putida in raw ground poultry meat at different storage temperatures. 

Points are P. putida populations at different times, and the curve is the predicted growth curve of 

the fitted Baranyi model. 

Figure 3.2: Ratkowsky square root model of specific growth rate (μmax) of P. putida in raw 

ground poultry meat as a function of temperature. Points are the maximum specific growth rate 

P. putida at different temperatures, and the fitted line is the predicted values. 

Figure 3.3: The observed Lag Phase Duration (LPD) of P. putida in raw ground poultry meat 

Figure 3.4: Validation for predicting growth of P. putida in raw ground poultry meat under 

dynamic temperature conditions: A (low temperature profile: 5-20°C, 24-hour cycles; B (high 

temperature profile: 15-35°C, 6-hour cycles) 

Figure 3.5: The APZ analysis performed based on the validation data between the observed and 

predicted growth behavior of P. putida in raw ground poultry meat.  
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Table 3.1: Goodness of fit metrics and the associated formulas 

 

Metric Name Formula 

SSE Sum of Squared Errors 
E(
)

(41

𝑦( − 𝑦F()5 

 

MSE Mean Squared Error 1
𝑛E(

)

(41

𝑦( − 𝑦F()5 

RMSE Root Mean Squared 

Error HE(
)

(41

𝑦( − 𝑦F()5 

RESIDUAL SD Residual Standard 

Deviation 
I
𝑆𝑆𝐸
𝑛 − 𝑝 



 

71 
 
 

 
 

Table 3.2: Specific growth rate(μmax), maximum population density (ymax), lag-phase duration 

(λ), and initial bacterial concentration (y0) of P. putida in raw ground poultry meat at different 

temperatures. 

 

 

 

 

 

 

  

Temp (ºC) μmax (log CFU/h) ymax (log cfu/g) λ (h) y0(log cfu/g) 

5 0.02 7.70 45.55 3.53 

10 0.08 7.88 14.18 3.02 

15 0.14 6.98 7.45 2.48 

20 0.25 7.74 4.21 3.13 

25 0.38 7.57 2.79 3.03 

30 0.54 7.22 0.53 3.03 

35 0.38 8.09 0.38 3.22 
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Table 3.3: Primary modeling Goodness of Fit Metrics extracted from the USDA Pathogen 

Modeling Program Software for P. putida 

 

Temp (ºC) RMSE SSE MSE RESIDUAL SD 

5 0.40 1.89 0.16 0.35 

10 0.52 4.59 0.38 0.46 

15 0.50 3.45 0.30 0.46 

20 0.46 2.25 0.22 0.41 

25 0.26 0.71 0.07 0.23 

30 0.20 0.47 0.04 0.18 

35 0.32 1.26 0.11 0.29 

 

  



 

73 
 
 

 
 

 

 

Chapter 4 

DEVELOPMENT AND VALIDATION OF A PREDICTIVE MODEL FOR SALMONELLA 

ENTERICA IN RAW GROUND POULTRY MEAT 
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4.1 Abstract 

Salmonella enterica is a leading bacterial pathogen associated with foodborne illness in 

the United States, with the consumption of contaminated poultry products contributing to 23% of 

the 1.35 million annual infections.  Despite extensive interventions in the poultry industry to 

mitigate contamination, Salmonella remains prevalent and is considered reasonably likely to 

occur (RLTO) during poultry processing. The present study aimed to develop and validate a 

predictive growth model for Salmonella enterica in raw ground poultry meat under isothermal 

and dynamic temperature conditions, including the entire growth temperature threshold to mimic 

temperature fluctuations during transport and storage operations. A five-strain cocktail of 

Salmonella enterica serovars (Hadar, Heidelberg, Montevideo, Thompson, and Enteritidis) was 

inoculated into irradiated raw ground chicken meat and stored at nine isothermal temperatures (7, 

10, 15, 20, 25, 30, 35, 40, 45 °C). Bacterial growth was enumerated over time and fitted with the 

Baranyi primary model using the USDA-ARS Integrated Pathogen Modeling program (IPMP 

2013). This resulted in RMSE values ranging from 0.065 to 0.303, supporting the indication of 

close alignment between the observed values and the predicted outcome. The specific growth 

rate (μmax) was used to develop the secondary model. A Ratkowsky square root equation was 

used for secondary modeling to describe the effect of temperature on μmax, resulting in a strong 

fit yielding an RMSE value of 0.083. The tertiary model was developed by integrating the 

primary and secondary models and validated under two sinusoidal dynamic temperature profiles: 

7–25 °C with 12 h cycles and 20–45 °C with 8 h cycles. The performance of the low and high 

models was evaluated using Accuracy (0.9771, 1.034) and Bias (1.044, 1.012) factors, 

respectively, which indicated strong agreement between the predicted values and experimental 

data during validation studies. These results indicate that the developed model is closely related 
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to the observed data, demonstrating its reliable application for predicting the growth behavior of 

Salmonella enterica in raw ground chicken meat under dynamic temperature conditions.  
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4.2 Introduction 

Salmonella is a Gram-negative facultative anaerobe and is the leading bacterial pathogen 

associated with foodborne illness (FDA, 2024). The U.S. Centers for Disease Control and 

Prevention (CDC) estimates that Salmonella causes approximately 1.35 million infections in the 

United States every year, with nearly 23% of cases attributed to the consumption of 

contaminated poultry products (Lamichhane et al., 2024; Scallan Walter et al., 2025). 

Salmonellosis, a bacterial disease caused by Salmonella, can result from consuming 

contaminated food products that may lead to a range of symptoms, including gastrointestinal 

disease and, in extreme cases, death (Lamichhane et al., 2024). Despite substantial research 

efforts and industry interventions to minimize the presence of Salmonella in poultry meat, this 

pathogen remains prevalent in raw poultry products, warranting its categorization as 

“Reasonably Likely To Occur” (RLTO) (Chavez-Velado et al., 2024; Rai & Bai, 2017).  

Beyond health implications, the economic burden associated with Salmonella 

contamination is substantial. Scharff (2020) estimates that the total cost of Salmonella in poultry 

meat equates to an estimated cost of $2.8 billion in health issues, product waste, decline of life 

expectancy, etc. (Scharff, 2020). The staggering losses highlight the need for more effective 

control strategies and regulatory compliance. Recognizing the importance of reducing the burden 

of salmonellosis, the U.S. Department of Agriculture’s Food Safety Inspection Service (USDA-

FSIS) prioritized the reduction of Salmonella-related illnesses by proposing a new Salmonella 

framework for poultry processing operations. One of its public health goals is to achieve a 25% 

reduction of Salmonella infections by the year 2030.  

Since 2015, poultry has remained the most widely consumed animal protein in the United 

States. According to the National Chicken Council, the average per capita consumption of 
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chicken reached approximately 115.9 pounds in 2023, demonstrating its significant role in the 

American diet (National Chicken Council, 2021). However, the growing popularity of these 

dietary trends is not without consequence. Consumer demand for alternatively produced poultry, 

such as antibiotic-free, organic, and free-range options, has now surpassed that of conventionally 

raised chicken.  While these production methods are perceived by consumers as safer due to the 

absence of antibiotics, pesticides, and vaccines, there is limited scientific evidence to support 

these assumptions (Golden & Mishra, 2020; Sofos, 2008).  Salmonella contamination of food 

products can occur through both vertical and horizontal transmission pathways. Horizontally, 

contamination can occur most commonly through the fecal-oral route (Huis In’T Veld, 2009). 

Vertically, infection can occur from breeder hens to offspring via egg internal contents or the 

shell during laying (Huis In’T Veld, 2009). This mode of transmission highlights the potential 

vulnerability that alternative methods without antibiotics could potentially lead to the 

contamination of poultry and poultry products.  

 Salmonella enterica in poultry feces is considered reasonably likely to occur (RLTO) due 

to its ubiquity in broiler chicken houses (Chavez-Velado et al., 2024; Rai & Bai, 2017). Data 

from the 2021 National Antimicrobial Resistance Monitoring System (NARMS) Integrated 

Report Summary identified the top three serotypes among Salmonella isolated from retail 

chicken meat as Kentucky (38%), Enteritidis (23.3%), and Heidelberg (8.3%) (FDA, 2021). 

Other sources have also reported  that S. Enteritidis, Newport and Typhimurium are the top three 

reported serovars causing Salmonella infection (CDC, 2022, 2024; Ferrari et al., 2019; Foley et 

al., 2011; Williams et al., 2025). Although shifts in the predominant Salmonella serovars have 

been observed over recent decades, there is limited evidence identifying consistent trends over 

time and across geographical regions (Williams et al., 2025). Ongoing research aims to reduce 
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the prevalence of Salmonella in poultry products, but this pathogen remains excluded from the 

zero-tolerance list for raw poultry due to its high likelihood of being present.  

Salmonella presence in poultry has been researched by several sources as an effort to 

identify high-risk areas and mitigate contamination. Golden and Mishra conducted a meta-

analysis showing that Salmonella was highest at the pre-chill stage (68.6%), followed by rehang 

(42.9%), and lowest at post-chill (14.3%) (Golden & Mishra, 2020). This evidence supports the 

Hazard Analysis and Critical Control Points (HACCP) in place to limit the growth of Salmonella 

enterica in raw poultry. Such critical control points can include monitoring of carcasses for fecal 

contamination, the utilization of peracetic acid as an antimicrobial during pre-chill operations, 

and chilling of all products (FSIS, n.d.). Another bio-mapping study identified live receiving, 

rehang, and pre-chill as high areas of Salmonella contamination across three poultry processing 

plants (Chavez-Velado et al., 2024). Live receiving is the point of entry for birds to the facility; 

rehang is the step immediately after the scalding and picking process; prechill is before the 

immersion chilling step, which remains the most significant critical control point in most 

operations due to the significant log reduction of bacterial counts from a mean concentration of 

2.39 ± 0.23 log CFU/sample at live receiving to approximately 0.25 ±0.07 log CFU/sample 

during the post-chill step. (Chavez-Velado et al., 2024). Discussion of this evidence suggested 

that by comparing the Salmonella prevalence of different areas located within a processing plant, 

strengths and weaknesses can be recognized and evaluated for potential revision.   

As the global population increases, so does the pressure on the food industry to ensure a 

steady and sustainable food supply while minimizing waste (Quintieri et al., 2021). Traditional 

microbial challenge testing, which simulates environmental conditions to estimate product shelf-

life, has remained the preferred method for evaluation; however, it is often criticized for being 
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time-consuming, labor-intensive, and economically burdensome (Baranyi & Roberts, 1994). 

Predictive modeling is a robust statistical tool in the food industry to estimate the fate of targeted 

bacteria under specific intrinsic or extrinsic conditions that may occur during processing, 

distribution, and storage of food products (Thomas et al., 2019). These models can be structured 

to consider processing interventions that can determine food safety or optimize the processing 

conditions. Food safety interventions include antimicrobial additions, temperature change, 

thermal processing, acidification, etc. In cases where unexpected deviations from product 

speculations arise, modeling tools can be applied to predict pathogen or bacterial growth, 

survival, or inactivation. These models assist in evaluating the product’s condition and 

determining whether it presents a risk to food safety or quality. The objective of this study was to 

determine the minimum and maximum growth temperatures for a Salmonella enterica cocktail in 

raw ground poultry meat, develop a predictive model for the growth of Salmonella enterica 

under a full growth temperature profile (7 to 45 °C), and to validate the developed model by 

using a high and low temperature profile under sinusoidal temperature fluctuations.  

 

4.3 Materials and Methods 

4.3.1 Ground Chicken Meat 

 Poultry meat (breasts and thighs) was purchased from a local grocery store and further 

processed using equipment in the food processing pilot plants in the Department of Food Science 

and Technology at the University of Georgia. The meat was ground twice through a fine grind 

(1/8mm grind plate). The ground chicken was then packaged (8” x 10”, Clarity 3 mil Standard 

Bags, Clarity Brand) and vacuum sealed with approximately 120g each prior to being frozen. 

The frozen bags were packaged in perishable shipping kits and sent off for electron beam 
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irradiation at the National Center for Electron Beam Research at Texas A&M University in 

College Station, Texas. The bags were sterilized with irradiation technology at 3.5kGy for total 

degradation of all bacteria. The meat was then stored at -20°C prior to being thawed at 4 °C 12 h 

prior to use. Following irradiation, various random samples were used to measure the average 

pH, 6.06 ± 0.06. The fat concentration was measured as 3.17± 0.17 by the ANKOMXT15 

Extraction System (ANKOM Technology, Macedon, NY) at the University of Georgia 

Department of Animal and Dairy Science. 

 

4.3.2 Bacterial Strains and Inoculation 

The bacterial strains used in this study include Salmonella enterica serovars Hadar (S-24, 

turkey meat isolate), Heidelberg (S-27; environmental isolate), Montevideo (S-26; beef isolate), 

and Thompson (S-20; chicken meat isolate) from FSIS, and Enteritidis Phage Type 4 (S-42; 

clinical isolate) from the CDC. The strains were cultured from the glycerol stocks in the -80 °C 

storage. A 10 uL loop of the stock was used to inoculate a sterile test tube with 10mL of Tryptic 

Soy Broth (Becton, Dickison and Company; Sparks MD) and grown at 37 °C for 16 h to obtain 

an inoculum population of ~ 8.5-9.0 log CFU/mL. The inoculum was further diluted in 0.1% 

Buffered Peptone Water (BPW; Becton, Dickison and Company; Sparks, MD) to target a starting 

population of 2.5-3.0 log CFU/g in the meat pouches across all replicates and temperature 

experiments. Each culture tube was vortexed and 1mL of S. enterica strain was distributed into a 

sterile test tube to obtain 5mL S. enterica cocktail that was then serially diluted in 9mL of 0.1% 

Buffered Peptone Water (BPW; Becton, Dickison and Company; Sparks MD). The biological 

culture cocktail was used to inoculate two separate thawed bags of 120 g of irradiated ground 
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poultry meat. The inoculum volume was determined by the weight of the meat with 

approximately 10 uL of inoculum per gram of meat, to achieve a targeted initial population of 

2.5-3.0 log CFU/g in the meat pouches. The ground poultry pouches were then heat-sealed and 

homogenized by hand massaging for two min. Small pouches (3.3”x2.5”; Clarity 3 mil Standard 

Bags, Clarity Brand) of meat were made with 5 ± 0.10g of inoculated meat and heat sealed. The 

pouches were then submerged in a circulating water bath (PolyScience, Cole-Parmer Instrument 

Company, Niles, IL) for the predicted duration time, for isothermal water bath temperatures at 25 

°C and lower, different water bath incubation methods were used because of the incapability of 

the thermal water baths to maintain a temperature lower than ambient temperature. A heating 

water bath was placed in a walk-in cooler set to 4 °C. This allowed the circulating water bath to 

maintain constant temperatures from 25-8 °C. Due to limited equipment availability, temperature 

incubation was achieved using alternative methods. For the 7 °C temperature experiments, a 

water-filled container was placed inside a refrigerator to maintain consistent and controlled 

environmental temperatures, and temperature was monitored with a data logger (Fischerbrand 

TraceableLIVE- Thermo Fischer Scientific Inc.). 

 

4.3.3 Sampling 

  At the planned fixed time point for sampling, a pair of replicate inoculated meat pouches 

was removed from the water bath, and the meat from the pouches was aseptically transferred into 

filtered Whirl-Pak bags (Nasco International, Madison, WI) with 20mL of 0.1% BPW (Becton, 

Dickison and Company; Sparks MD). The pouches were then hand massaged for two min, and a 

series of tenfold serial dilutions were prepared based on preliminary predictions (Juneja et al., 
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2007; Combase) The selected dilutions were then plated in duplicates on Aerobic Count 

Petrifilms (3M, St. Paul, MN) in 1.0 mL increments and incubated for 24 h at 37 °C to enumerate 

surviving Salmonella populations. To assure no background microflora were present throughout 

the study random samples were plated on xylose, lysine, and sodium deoxycholate agar (XLD; 

Becton, Dickison and Company; Sparks MD) to visually inspect the black color of the colonies, 

not for enumeration.   

 

4.3.4 Predictive Modeling 

Primary Model 

A primary model describes the baseline distribution of how a microbial population grows, 

survives, or dies under isothermal, or constant conditions over time. One of the most widely used 

primary models in predictive microbiology is the Baranyi model. It is important to select the 

most appropriate type of primary model for a dataset based on the intended application and 

highest accuracy. The Baranyi model is particularly effective for growth prediction because it 

characterizes the complete microbial growth curve, including the lag, exponential, and stationary 

phases along the entire sigmoidal curve (Baranyi & Roberts, 1994; Thomas et al., 2019). This 

model captures the time taken by bacterial cells to adjust to their environment, or the 

physiological adaptation referred to as the lag phase (Thomas et al., 2019). Once isothermal data 

was collected across different temperature conditions, the log-transformed bacterial counts (log 

CFU/mL) at given time points were fitted to the Baranyi primary modeling equation using the 

USDA Integrated Pathogen Modeling Program 2013 (IPMP) software. The equation for the fitted 

model is as follows:  
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Baranyi Model equation:  

𝑦(𝑡) = 𝑦' + 𝜇$%&𝐹(𝑡) − ln	(1 + (
𝑒*!"#+(-) − 1
𝑒(/!"#0/$)

) 

 where 𝐹(𝑡) = 𝑡 + 1
2
ln>𝑒02- + 𝑒3' − 𝑒(2-03')?. The parameters of the equation are defined as: 

𝑦(𝑡)is the cell population of S. enterica (log CFU/g) at time t, 𝑦'is the initial cell population (log 

CFU/g), 𝑦$%&is the maximum cell population reached (log CFU/g), 𝜇$%& is the specific growth 

rate (hours), ℎ' describes the prior physical state of the cells. The lag phase duration was 

calculated using the formula: 𝜆 = 3$
*!"#

 where 𝜆 is the parameter for lag phase duration (h) 

(Zwietering et al., 1991).  

Secondary Modeling 

A secondary model is used to integrate the impact of the environmental parameter used in 

the primary model. The Ratkowsky square root model frequently provides an accurate fit during 

bacterial growth studies by interpreting the biological parameters The parameters given from the 

primary modeling output were used to develop a secondary model to demonstrate the 

relationship of temperature and specific growth rate (𝜇$%&). The values from each replicate were 

fitted into with the secondary Ratkowsky Square Root model (Ratkowsky et al., 1981) The 

equation is as follows:  

𝜇$%& = 𝑎(𝑇 − 𝑇$())5 

where the 𝑎 parameter is the regression coefficient, T is the temperature (°C), and 𝑇$() is the 

minimum temperature (°C). This was also preformed using the USDA Integrated Pathogen 

Modeling Program 2013 (IPMP) software (Huang, 2013).  
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Tertiary Model 

Tertiary models are user-friendly software tools designed to accurately predict bacterial 

behavior under specific conditions. These models are built upon validated primary and secondary 

models under dynamic conditions. One of the most widely used software’s was developed by the 

USDA-Agricultural Research Service (USDA-ARS) known as the Integrated Pathogen Modeling 

Program (IPMP) (Huang, 2013).  IPMP enables users to simulate bacterial behavior during 

growth, survival, or inactivation in response to various environmental changes such as 

temperature, pH, water activity (Aw), etc. Despite its utility, a major limitation of IPMP is that it 

is restricted to the access of only raw data, limiting its flexibility. Another common USDA-ARS 

software applied is ComBase (Barayni & Tamplin, 2004), which includes access to an extensive 

database with over 65,000 records detailing the behavior of pathogens and spoilage organisms 

across a wide range of food matrices.  

 

4.4 Statistical Analysis 

The statistical evaluation of the developed primary models during the present study 

involved comparing goodness-of-fit metrics, including Root Mean Squared Error (RMSE), Sum 

of Squared Errors (SSE), Mean of Squared Error (MSE), and Residual Standard Deviation. 

These metrics were generated as part of the output following the fitting of the Baranyi model to 

the experimental data using the USDA-ARS Integrated Pathogen Modeling Program (IPMP). 

The corresponding equations for each metric are presented in Table 4.1.  
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For the secondary model, analysis focused on RMSE and identifying trends observed 

during bacterial growth such as maximum specific growth rate (μmax) and lag phase duration 

(LPD).  Evaluation of the tertiary was based on accuracy and bias factors, calculated using 

MATLAB software (Baranyi et al., 1999).  

 

4.4.1 Validation of Models 

The tertiary predictive growth model developed was validated using two dynamic 

sinusoidal temperature profiles under controlled intrinsic conditions: a low temperature profile 

(7-25°C, 12-hour cycles), and a high temperature profile (20-45°C, 8-hour cycles). As previously 

mentioned, inoculated samples were placed in a circulating programmable water bath to simulate 

temperature fluctuations at fixed intervals. Sampling was conducted at planned time intervals, 

and the growth of Salmonella enterica was recorded until cells reached the stationary phase.  

 

4.5 Results and Discussion 

4.5.1 Temperature Threshold 

The Salmonella enterica strains tested in the present study exhibited growth in raw 

ground poultry meat under constant isothermal condition from temperatures 7 to 45°C. While 

determining the minimum and maximum temperatures during preliminary studies, it was found 

that this specific cocktail of S. enterica did not exhibit growth at temperatures below 7°C and 

exhibited limited growth by only increasing approximately 1.4 log CFU/g between 14 and 20 

days before decreasing as shown in Figure 4.1. The limit of detection (LOD) for Salmonella was 
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0.35 log CFU/g when plated on APC Petri films. For the upper threshold limit, S. enterica 

growth was not detected at temperatures higher than 45°C (LOD = 0.35). According to Matches 

& Liston (1968), this is normal behavior for most S. enterica strains. and the temperature 

threshold for Salmonella can vary based on species and nutrient medium (Matches & Liston, 

1968).  

 

4.5.2 Primary Modeling  

This study measured the growth of Salmonella enterica at nine different temperatures: 7, 

10, 15, 20, 25, 30, 35, 40, and 45°C. The bacterial growth from each of the isothermal 

experiments was measured, converted to log CFU/g, and fitted with the Baranyi equation using 

the USDA-ARS Integrated Pathogen Modeling Program (Figure 4.1). The growth parameters: 

maximum specific growth rate (µmax), lag phase duration (LPD, λ), initial cell concentration (y0), 

and maximum cell population (ymax) were recorded (Table 4.2). The parameter h0 is 

characterized as the ‘adaptation work’ required of a bacteria to adapt existing conditions (Juneja 

et al., 2007; Thomas et al., 2019; Tsaloumi et al., 2022). It is assumed in the Baranyi equation 

that the value of h0 is constant for a given bacterial species in a specific food matrix (Baranyi & 

Roberts, 1994; Juneja et al., 2007; Thomas et al., 2019). In this study, there was a slight 

correlation between a decreasing h0 value and increasing temperature; however, because of the 

decision to include the 7°C temperature data with minimal growth, this created a slight deviation 

in the trend. Therefore, the arithmetic mean of h0 (1.35) was used for further modeling 

development. The primary models were refitted with the new h0 value, and the other parameters 

were recalculated.  
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 The initial cell concentration for the inoculated meat pouches ranged from 2.79-3.24 log 

CFU/g across all temperature experiments compared to the targeted inoculation of 2.5-3.0 log 

CFU/g (Table 4.2). The maximum population did not exceed 9.18 log CFU/g during any of the 

isothermal studies, and there was no observed correlation between initial inoculation level and 

maximum population density.  

Although goodness-of-fit metrics are recommended for relative rather than absolute 

evaluation, they can still offer valuable insight into a model’s performance. The corresponding 

equations for each metric of note are presented in Table 4.1. In this study, the Baranyi model was 

fitted to primary isothermal growth data, resulting in low Root Mean Squared Error (RMSE) 

values ranging from 0.065 to 0.303 (Table 4.3), suggesting a strong similarity between observed 

and predicted values. In general, lower RMSE, SSE, and MSE values—those approaching 

zero—indicate a better fit to the data. The Sum of Squared Errors (SSE) was also provided as a 

comparative metric, which is typically useful when evaluating multiple models. However, 

because only the Baranyi model was applied in this analysis, SSE values are of limited relevance 

for assessing model performance in this context, but they can provide valuable insight for 

comparing future research with additional model equations (Table 4.3). Additionally, Mean 

Squared Error (MSE) values, ranging from 0.0045 to 0.121, were generated by the modeling 

software. Unlike RMSE, which retains the same units as the observed data, MSE is expressed in 

squared units. While MSE is commonly used by model developers to assess optimization and 

performance across various model types, it holds less interpretive value in the current single-

model framework. 
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4.5.3 Secondary Modeling  

The observed maximum specific growth rate (µmax ) exhibited a positive correlation with 

temperature increasing steadily up to the optimal growth temperature of 40°C, followed by a 

slight decline at 45°C (Figure 4.2). When the data were fitted to the Ratkowsky model, the 

resulting Root Mean Squared Error (RMSE) of 0.083 supports the idea that the observed values 

closely aligned with the predicted outcome, indicating a high level of model accuracy.  The lag 

phase duration (LPD)-which reflects the time required for bacterial cells to physiologically adapt 

to new environmental conditions- showed a negatively exponential relationship with temperature 

reaching its shortest duration at its optimal temperature of 40 °C, after which it began to rise 

again (Figure 4.3). This trend aligns with findings from previous studies. According to Baranyi et 

al. (1995), LPD is temperature-dependent, and exposure to temperatures near the lower threshold 

may trigger cold shock, prolonging the lag phase. The results in the present study support this 

interpretation. The Ratkowsky reported that the mean predicted minimum temperature (Tmin) for 

growth was 9.44 ± 1.56°C and the mean predicted maximum growth temperature (Tmax ) was 

45.23 ±0.02°C for S. enterica in raw ground poultry meat. These values remain close to the 

observed minimum (7°C) and maximum (45°C) temperatures, and is consistent with existing 

literature (Juneja et al., 2007; Milkievicz et al., 2020).  

 

4.5.4 Growth Models Under Dynamic Temperature Profiles and Validation Evaluation 

Figure 4.4 presents the validated tertiary models subjected to a dynamic temperature 

profile with their corresponding prediction curve. For the lower temperature profile (7-25°C), the 

produced accuracy factor in response to the fitted prediction was 1.044, and a bias factor of 
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0.9771. The higher temperature profile (20-45°C) resulted in an accuracy factor of 1.034 and a 

bias factor of 1.012. The Accuracy factor measures how closely the predicted values align with 

experimental observations by quantifying the overall deviation (Baranyi et al., 1999). The Bias 

factor indicated the direction of deviation, whether the model tends to overpredict or 

underpredict bacterial behavior. For both metrics, values approaching 1.0 signify a high level of 

model reliability. An Accuracy Prediction Zone (APZ) analysis was performed to assess the 

degree of deviation between the observed and predicted bacterial counts (Figure 4.5). The 

predicted error was calculated by subtracting the observed values from the predicted values. The 

acceptable range for prediction error was defined between -1.0 log CFU/g (fail-safe) and 0.5 log 

CFU/g (fail-dangerous). It is acknowledged that some deviations are to be expected when 

modeling the bacterial behavior in a complex food system.  Overprediction (fail-safe) suggests a 

conservative model, while underprediction (fail-dangerous) can pose as a greater risk by 

underestimating the bacterial growth and the potential for solicitation and consumption of 

contaminated food product (Juneja et al., 2018; Oscar, 2005; Ross et al., 2000; Thomas et al., 

2019). However, overprediction is still not desired as it can warrant unnecessary disposal of 

potentially safe food, and result in substantial economic losses (Thomas et al., 2019). This 

analysis yielded an APZ score of 96% with only one out of 25 points from both temperature 

profiles falling outside of the accepted accuracy prediction zone (-1.0 to 0.5 log CFU/g) (Figure 

4.6). An APZ score of >70% is preferred and considered as an acceptable score (Oscar, 2005). 

This indicates a high level of agreement between the observed and predicted values, thus 

demonstrating a strong model performance under dynamic conditions. 
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4.6 Conclusion  

 This study successfully characterized the growth behavior of Salmonella enterica across 

the entire growth kinetic temperature range using predictive modeling. The Baranyi equation 

accurately described isothermal growth, evidenced by a low RMSE range (0.065-0.303), and 

consistent initial and maximum population levels. Utilizing the arithmetic mean h0 value (1.35) 

yielded consistent model performance across all temperatures. The secondary model fitted with 

the Baranyi equation demonstrated a strong correlation between temperature and both maximum 

specific growth rate (µmax) and lag phase duration (LPD, λ). The tertiary model validation 

profiles confirmed the model’s reliability and predictive strength based on the accuracy and bias 

factors with values near 1.0, and a high APZ score of 96%. Overall, the data from model can 

serve as an effective predictive tool for users to simulate the growth of Salmonella enterica in 

raw ground poultry meat subjected to abusive temperature deviation.  
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LIST OF FIGURES 

Figure 4.1: Growth of S. enterica in raw ground poultry meat at different storage temperatures. 

Points are S. enterica populations at different times, and the curve is the predicted growth curve 

of the fitted Baranyi model 

Figure 4.2: Ratkowsky square root model of specific growth rate (μmax) of S. enterica in raw 

ground poultry meat as a function of temperature. Points are the maximum specific growth rate 

S. enterica at different temperatures, and the fitted line is the prediction. 

Figure 4.3: The observed Lag Phase Duration (LPD) of S. enterica in raw ground poultry meat  

Figure 4.4: Validation for predicting growth of S. enterica in raw ground poultry meat under 

dynamic temperature conditions: A (low temperature profile: 7-25°C, 12-hour cycles; B (high 

temperature profile: 20-45°C, 8-hour cycles) 

Figure 4.5: The APZ analysis performed based on the validation data between the observed and 

predicted growth behavior of S. enterica in raw ground poultry meat. 
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Figure 4.2 
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Figure 4.3 

 

  



 

100 
 
 

 
 

Figure 4.4 
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Figure 4.5:  
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Table 4.1: Goodness of fit metrics and the associated formulas. 

 

Metric Name Formula 

SSE Sum of Squared Errors 
E(
)

(41

𝑦( − 𝑦F()5 

 

MSE Mean Squared Error 1
𝑛E(

)

(41

𝑦( − 𝑦F()5 

RMSE Root Mean Squared 

Error HE(
)

(41

𝑦( − 𝑦F()5 

RESIDUAL SD Residual Standard 

Deviation 
I
𝑆𝑆𝐸
𝑛 − 𝑝 
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Table 4.2: Specific growth rate(μmax), maximum population density (ymax), lag-phase duration 

(λ), and initial bacterial concentration (y0) of S. enterica in raw ground poultry meat at different 

temperatures 

 

Temp (ºC) μmax (log CFU/h) λ (h) y0 (log CFU/g) ymax (log CFU/g) 

7 0.03 128.81 2.87 3.91 

10 0.04 36.92 3.06 8.33 

15 0.12 12.26 2.79 8.83 

20 0.24 5.62 2.88 8.61 

25 0.38 2.64 3.24 8.93 

30 0.60 1.45 2.98 9.13 

35 0.81 1.05 2.98 9.18 

40 0.99 0.86 2.96 8.87 

45 0.57 1.12 2.97 7.54 
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Table 4.3: Primary modeling Goodness of Fit Metrics extracted from the USDA Pathogen 

Modeling Program Software for S. enterica  

  

Temp (ºC).  RMSE SSE MSE SD 

7 0.30 0.48 0.12 0.21 

10 0.27 0.61 0.08 0.22 

15 0.11 0.08 0.01 0.09 

20 0.14 0.18 0.02 0.11 

25 0.26 0.71 0.07 0.22 

30 0.12 0.15 0.02 0.10 

35 0.07 0.03 0.01 0.05 

40 0.09 0.06 0.01 0.07 

45 0.16 0.21 0.03 0.13 
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Chapter 5 

OVERALL CONCLUSION AND FUTURE RESEARCH 

 

The risks associated with bacterial contamination of both Pseudomonas putida and 

Salmonella enterica in raw ground poultry meat are substantial from an economic and public 

health perspective, thus amplifying the need for more effective approaches to aid in the 

mitigation of the impact from the presence of these bacteria.  The development and validation of 

the predictive growth models for P. putida and S. enterica provides a valuable tool for food 

industry application in both quality and safety risk assessments. These studies demonstrated the 

distinct growth patterns associated with each bacterium under their specific growth temperature 

range and their response to changing temperature conditions. The shifts in environment were 

captured with both the Baranyi and Ratkowsky models, as they considered the stages of bacterial 

growth and measured the bacterial responses. The integrated data from each of the primary and 

secondary models allowed for a representative tertiary model and dynamic validation that closely 

mimicked real-world product temperatures during processing, transport, and storage. 

 Model performance during each stage of development was evaluated, and it confirmed 

the reliability and consistency of the observed data as presented in the RMSE metric values for 

the primary and secondary models, and the Accuracy and Bias factors for the tertiary model. The 

main findings of this study included that the maximum specific growth rate and lag phase 
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duration are affected by temperature. Both studies indicated that lag phase duration exponentially 

decreases with increasing temperature up to the optimal growth temperature (30 °C for P. putida 

and 40 °C for S. enterica), and maximum specific growth rate (µmax) increases with temperature 

up to the optimal growth temperature.  

The P. putida model serves as an effective tool for shelf-life determination and spoilage 

risk assessment that holds promise to minimize the amount of unnecessary food waste due to 

microbial spoilage and contribute to increased long-term sustainability practices. Similarly, the S. 

enterica model can offer a more advanced and expedited approach for risk assessment in 

suspected pathogenic contamination of poultry products. This can promote the evaluation of 

HACCP operations and serve as a diagnostic tool during the auditing of antimicrobial 

interventions.  

Future studies should explore additional environmental variables that influence the 

bacterial growth kinetics. For P. putida, studies investigating the impact of modified atmosphere 

packaging (MAP) with varying oxygen concentrations are recommended to identify an 

approximate minimum concentration of oxygen required for P. putida growth. Future research 

for both Salmonella and Pseudomonas predictive modeling should also consider the role of 

competing background microbiota during the survival of the bacteria in raw ground poultry meat. 

Additionally, the influence of varying fat concentrations on bacterial persistence and lag phase 

duration warrants investigation to enhance model accuracy under more diverse food matrix 

conditions.  

 

 


