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ABSTRACT

Advanced computer vision and deep learning methods have been developed to enhance
precision poultry farming through automated health status identification and activity monitoring
across multiple poultry species. A modified Segment Anything Model (SAM) pipeline, combined
with pre- and post-processing techniques but without extensive model training, achieved 84.4%
segmentation success for cage-free laying hens in thermal images, enabling non-invasive
extraction of body temperature to support early health assessment. A hybrid YOLOv7 + SAM
model using bounding box prompts achieved 98.0% segmentation accuracy, allowing precise
individual identification. Additionally, an open-source, user-friendly Streamlit platform
integrating SAM2 was developed to enable non-technical researchers to track animal activity
across different species directly from video data without any model training or manual labeling.
These tools minimize manual intervention, reduce animal stress, and improve decision-making by
providing automated monitoring of phenotypic and behavioral indicators, with broad applicability
in precision livestock farming and smart agricultural systems.
INDEX WORDS: Precision poultry farming; computer vision; zero-shot segmentation; health

status identification; activity monitoring
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CHAPTER I

PRECISION POULTRY FARMING: LITERATURE REVIEW

Introduction

According to the USDA National Agricultural Statistics Service (2025), the total value of
U.S. poultry production—including broilers, eggs, turkeys, and chicken sales—reached $70.2
billion in 2024, encompassing approximately 9.33 billion broilers, 200 million turkeys, and 182
million laying hens. Modern broiler houses typically hold between 25,000 to 100,000 broilers
raised on open litter floors (Lei et al., 2022). As the global demand for affordable, high-quality
animal protein continues to rise, poultry production systems are increasingly becoming larger and
more intensive. While increasing animal density can enhance efficiency and profitability (Godfray
et al., 2010), it also raises the risk of disease transmission, such as highly pathogenic avian
influenza (HPAI), potentially causing severe outbreaks and significant economic losses (Tsiouris
et al., 2015). For example, between 2015 and 2016, bird flu affected hundreds of farms across
Canada and the U.S., resulting in over 48 million birds being culled (Pasick et al., 2015; Shriner
et al.,, 2016). More recently, from 2022 to 2025, avian influenza impacted 51 states, 1,674
commercial flocks, and approximately 168.2 million birds (USDA Animal and Plant Health
Inspection Service, 2025). Massive culling was undertaken to prevent further spread, dramatically
affecting the egg market, with prices rising from $0.61 per dozen in 2021 to $8.05 per dozen in
2025 (Trading Economics, 2025). The virus also poses risks to other animals, such as cattle, further

endangering animal production systems (Centers for Disease Control and Prevention, 2025).



Beyond avian influenza, poultry farms face numerous infectious diseases, including
Salmonella (Oladeinde et al., 2025), infectious bronchitis (Raj and Jones, 1997), Newcastle disease
(Sadeghi et al., 2023), and infectious bursal disease (Eterradossi and Saif, 2013). These diseases
can lead to substantial financial losses if not promptly identified and managed. Therefore, it is
essential to develop intelligent tools capable of rapidly and accurately monitoring poultry health,
welfare, and productivity directly on-site.

Various diagnostic methods for poultry have been studied, each with strengths and
limitations. Traditional methods involve collecting samples on-site and sending them to
laboratories, which can take several days for diagnosis and requires skilled personnel (Vidic et al.,
2017). Additionally, caretakers must identify subtle signs of illness among tens of thousands of
birds, a challenging and often delayed process. Samples might need to be transported across long
distances, further extending the time for diagnosis (Brown Jordan et al., 2018). Automated
monitoring technologies, such as radio frequency identification (Ahmed et al., 2021; Li et al.,
2019), accelerometers (Li and Chai, 2023; Okada et al., 2009), and audio sensors (Banakar et al.,
2024), have achieved high accuracy (>90%) in detecting abnormal poultry behaviors. However,
these technologies are generally too expensive to deploy individually on every bird in large poultry
operations.

An alternative approach involves using non-contact, cost-effective solutions like computer
vision systems integrated with machine learning algorithms. The combination of computer vision
and machine learning is transforming animal agriculture, facilitating precision poultry science
from genetics to observable characteristics (phenomes) and from preharvest stages through
postharvest processing (Aziz et al., 2021; Li, 2025). At the heart of these advancements is image

segmentation, a computer vision technique that divides digital images into meaningful segments,



significantly enhancing poultry monitoring and analysis (Minaee et al., 2022). With its potential
to rapidly and accurately assess poultry health, behavior, and productivity, image segmentation
has become an essential tool in modern precision animal management. This dissertation explores
the application and enhancement of foundation segmentation models to further improve poultry
phenotyping and behavioral monitoring, addressing critical needs within poultry production
systems.

Overview of poultry phenotyping assessment

Poultry phenotyping involves the measurement and analysis of various physical and
behavioral traits of birds to evaluate their health, welfare, and productivity. Commonly monitored
physical phenotypes include body weight, growth rate, feather coverage, gait quality, body
temperature, and overall body condition (Mortensen et al., 2017). These traits provide critical
insights into the birds' physiological status, directly influencing production outcomes. For instance,
regular monitoring of body weight and growth rate helps producers optimize feed efficiency and
detect any growth abnormalities early (Emami et al., 2020).

Behavioral traits are equally important in phenotyping assessments, including activity
levels, feeding and drinking patterns, social interactions, and flock cohesion. Monitoring these
behaviors provides valuable data to evaluate poultry welfare and identify stress or discomfort
signals that might indicate underlying health issues (Aydin et al., 2010; Kristensen et al., 2007).
Traditional poultry phenotyping techniques predominantly rely on manual observations and
measurements, which are not only labor-intensive but also highly susceptible to human error,

subjective biases, and limited in scalability for commercial operations (Merenda et al., 2015).



To overcome these challenges, advanced automated technologies, such as electronic
sensors and computer vision systems, have been increasingly adopted. Among these, image
segmentation has become an indispensable technique due to its precision and versatility. Image
segmentation facilitates the detailed tracking and analysis of individual birds without direct human
intervention, thus minimizing stress and interference with natural behaviors (Saeidifar et al., 2024).
Accurate segmentation supports automated morphological assessments, such as feather coverage
analysis, gait evaluation, and the detection of physical deformities or injuries, significantly
improving the accuracy of health assessments (Lamping et al., 2022; Nasiri et al., 2022).

Moreover, segmentation techniques enhance behavioral monitoring by allowing precise
tracking of individual or group activities over extended periods. This capability aids in the early
detection of abnormal behaviors such as reduced mobility, increased aggression, or altered feeding
patterns, which could indicate health or welfare issues (Ejik et al., 2022; Li et al., 2020). By
automating these processes, image segmentation not only improves data accuracy and consistency
but also significantly reduces the time and labor required for comprehensive poultry phenotyping.
Consequently, it supports better-informed management decisions, enhances animal welfare
standards, and promotes sustainable productivity within intensive poultry production
environments (Lamping et al., 2022; Ejik et al., 2022).

Overview of image segmentation techniques

Image segmentation is a fundamental task in computer vision that involves dividing an
image into distinct and meaningful segments or regions. Each segment represents specific features
or objects within the image, making segmentation crucial for detailed analysis and interpretation

of visual data. Effective image segmentation allows for accurate object identification,



classification, and tracking, significantly benefiting numerous applications ranging from medical
diagnostics and autonomous vehicles to agriculture and animal monitoring (Lei et al., 2022).

Below are the categories of different segmentation techniques that have been widely
applied and studied across various domains:
Conventional image processing algorithms

Conventional image processing algorithms have long served as the foundation for early
animal segmentation tasks (Yoon et al., 2007). These methods typically rely on manually crafted
rules, filters, and basic mathematical models to extract relevant features from image data. Common
techniques include thresholding, edge detection, region growing, morphological operations, and
contour extraction (Dong et al., 2021). Although these approaches often require careful tuning and
perform optimally in controlled environments, they remain valuable for their simplicity,
computational efficiency, and ability to operate without extensive annotated training data (Yoon
et al., 2007). Figure 1.1 shows chicken breast segmentation using conventional image processing

algorithms.
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Fig. 1.1. Computer Vision System - Image processing steps (Geronimo et al. 2019).

In the context of poultry research, conventional image processing algorithms have been
applied across various applications, including product quality inspection, behavior and welfare
assessment, and animal trait recognition (Dong et al., 2021). These methods allow researchers to
analyze specific physical features such as visceral contours, thermal patterns, body morphology,
and fat content (Yoon et al., 2007). Despite the growing popularity of machine learning and deep
learning-based segmentation, conventional approaches continue to play a role where cost,
simplicity, or limited computational resources are constraints.

Table 1.1 summarizes selected studies from the literature that have utilized conventional

image processing algorithms for poultry segmentation:



Table 1.1. Applications of conventional image processing algorithms for poultry segmentation

. Segmentation Variables
Author (year) Subject ethod examined Performance
1 0
Chen et al. Chicken, Active coiltour . | 933 }f) zlt(ccuracy
(2018) duck mode , Visceral contours (chickens),
thresholding 86.7% (ducks)
) Poultry
Del Valle et Laylng hens, .Hausdorff movement, Efficient thermal
broiler distance-based .
al. (2021) . thermal comfort stress detection
breeders segmentation
(Unrest Index)
Morphological Effective and
Chen et al. Chicken region-growing evolution, clear
(2023) embryos segmentation allantois morphological
development segmentation
| 0
. Number of birds 89-93% aceuracy
thresholding and . for detecting
. R . feeding and .
Lietal. . pixel intensity- o : feeding, 93-95%
Broilers . drinking, spatial
(2020) based linear accuracy for
. and temporal ’
regression behavior patterns detecting
P drinking
Clear separation
Mansor et al. Poultry meat Mean-shift U and V color between halal
(2013) outiry me segmentation components and non-halal
distributions
. . o
Region extraction Shell quality 85‘7‘1 Yo ai:curacy
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GLCM) d=2 or d=4
OTSU Accurate yolk
thresholding + .
Leetal. . Egg yolk features, segmentation and
Duck contour extraction .
(2023) s size double yolk
+ morphological discriminati
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Machine learning-based methods

In recent years, machine learning-based segmentation techniques have gained considerable
attention in animal research due to their ability to model complex patterns, adapt to diverse
datasets, and often provide higher accuracy compared to traditional rule-based methods (Philipsen
et al. 2018). Unlike conventional image processing algorithms, machine learning approaches can
automatically learn decision boundaries from training data, reducing the need for manual tuning
and feature engineering. These methods typically require labeled datasets but are capable of
generalizing across different conditions and capturing subtle variations in biological structures.

In the poultry domain, machine learning-based segmentation methods have been applied
across multiple applications such as product quality inspection, health status identification, and
trait recognition (Yoon et al. 2022). Various models, including Support Vector Machines (SVM)
(Deng et al. 2018), Genetic Algorithms, and neural networks (Lamping et al. 2022), have been
employed to process data ranging from RGB images to hyperspectral and OCT imaging. These
techniques have enabled automated detection of shell defects, vascular features, tissue
abnormalities, and embryonic development stages, contributing significantly to precision livestock
farming.

Table 1.2 summarizes selected studies that have utilized machine learning-based

segmentation approaches in poultry research:



Table 1.2. Applications of machine learning-based methods for poultry segmentation

Author . Segmentation Variables
Subject : Performance
(year) method examined
Artificial Neural
Mota- Network - ANN) Eggshell defects 97.5%
Grajaleset  Poultry eggs combined with (cracks, shape segmentation
al. (2019) structured light deformation) accuracy
laser scanning
. . Support Vector Wooden Breast
Geronimo  Chicken Machine (SVM) condition, CVS 91.8%, NIR
et al. (Broiler hvsicochemical o
(2019) breast) based on texture physicochemica 97.5%
and color features attributes
Genetic Algorithm
optimized 0
Zhu et al. Chicken Backpropagation =~ Embryonic gender 89'12(?;5?5;“
(2021) embryos Neural Network (vascular features) paccurac
(GA-BPNN) Y
segmentation
SVM segmentation Faster and more
Xuetal.  Chick embryo S¢8 Vessel length, accurate than
using GLCM : .
(2010) (CAM) branching points global
texture features .
thresholding
Ekramirad 0
etal. Chicken SVM and ensemble co\r?ii?ggi E;iii; ) zgéi(r)e(l)cﬁ
(2024) Y Y
Fuzzy C-Means
Triyanto et : K-Means and Clustered flock ~ Outperformed K-
Chicks Fuzzy C-Means . Means in
al. (2022) . regions .
clustering segmentation
quality

Interactive segmentation methods

Interactive segmentation methods represent a more recent advancement in computer vision,
enabling users to directly guide the segmentation process with minimal manual intervention
(Rother et al., 2004; Xu et al., 2016). Unlike fully automated algorithms, these approaches leverage

user-provided prompts such as points, bounding boxes, or contours to refine segmentation outputs



(Xu et al., 2016). This flexibility allows for highly accurate segmentation results, even when
working with complex or variable image data, while significantly reducing the annotation burden
compared to fully manual labeling (Rother et al., 2004).

In poultry research, interactive segmentation methods have been successfully applied to
monitor animal behavior, welfare, and movement patterns across multiple environments and data
modalities. Recent developments in foundation models, such as the Segment Anything Model
(SAM), allow for promptable segmentation with little or no prior training on specific animal
datasets (Kirillov et al., 2023). This capability makes interactive segmentation especially appealing
for multi-species applications and practical use in precision livestock farming, where datasets may
be limited or highly diverse (Yang et al., 2023; Saeidifar et al., 2024). Figure 1.2 shows the bird

segmentation results using SAM.

mask decoder
image |
encoder

prompt encoder

Output Segment Anything Model Binary segmentation mask

Unified field-of-view, first frame of video image

embedding |points| box text mask Remove unwanted objects

AN Equally-spaced grid of points / N\ Filtered segmentation mask P

(a) Overview of the Segment Anything Model (b) Post-processing
Fig. 1.2. Individual bird segmentation using Segment Anything Model and post-processing. Fig.
1.2(a) provides a high-level overview of the Segment Anything Model and Fig. 1.2(b) the post-

processing step (Willems et al. 2025).
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Deep learning-based semantic segmentation methods

Semantic segmentation with deep learning has become a dominant approach in recent years
for animal monitoring applications due to its ability to assign class labels to every pixel in an image
with high accuracy (Minaee et al., 2021). These methods leverage convolutional neural networks
(CNNps), often in encoder-decoder architectures such as U-Net or its variants, to capture both global
context and fine-grained spatial details (Minaee et al., 2021; Shi et al., 2024). Unlike traditional
approaches, deep learning-based semantic segmentation models can automatically learn
hierarchical features directly from image data, making them highly effective even in complex or
variable environments (Minaee et al., 2021).

In poultry research, semantic segmentation has been applied to a wide range of tasks
including health status identification, product quality inspection, and generalized behavior
assessment (Sallam et al., 2024; Shi et al., 2024; Kou et al., 2024). These approaches have been
used with various data modalities such as X-ray, CT, and RGB imagery, enabling researchers to
automatically segment anatomical structures, detect defects, and quantify animal phenotypes with
high precision. As these models continue to evolve, their ability to generalize across species,
imaging conditions, and phenotyping tasks has made them increasingly valuable for precision
livestock farming.

Table 1.3 summarizes selected studies that have utilized deep learning-based semantic

segmentation methods in poultry research:

Table 1.3. Applications of deep learning-based semantic segmentation methods for poultry

segmentation
Author Subject Segmentation VarlajbleS Performance
(year) method examined
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Khanal et . Pyramid Vision
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Microcracks
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Crown, feather,
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96.9% accuracy,
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Deep learning-based instance segmentation methods

Deep learning-based instance segmentation has emerged as a highly effective approach for
animal phenotyping and behavior monitoring, particularly in complex environments where
multiple animals are present in the same frame (Lamping et al., 2022; Li et al., 2020). Unlike
semantic segmentation, which assigns a class label to each pixel, instance segmentation
distinguishes and tracks individual objects of the same class (van der Eijk et al., 2022), making it
highly valuable for studies requiring individual animal tracking, interaction analysis, or behavior

assessment.
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In poultry research, instance segmentation methods are increasingly applied to monitor
individual birds' behaviors, assess health conditions, and support precision management practices
(Saeidifar et al., 2024; Lamping et al., 2022). Models such as Mask R-CNN, YOLO-based
frameworks, and encoder-decoder CNNs have been used to accurately detect and segment
individual animals across different environments and species (Li et al., 2020; van der Eijk et al.,
2022). These approaches have demonstrated strong performance in tasks such as mating behavior
detection, plumage assessment, multi-object tracking, and accurate counting in group-housed birds
(Lamping et al., 2022).

Table 1.4 summarizes selected studies that have applied deep learning-based instance
segmentation methods in poultry research:

Table 1.4. Applications of deep learning-based instance segmentation methods for poultry

segmentation
Author Type of Segmentation Variables P
. erformance
(year) poultry method examined
5 .
Broiler behaviors 99.50% detection
- . mAP, 93.89%
Hu et al. Broilers Improved (activity, wing trackine MOTA
(2024) YOLOv8s model  spreading, resting, Og ’
: L 93.98% overall
feeding, drinking) )
behavior accuracy
1 0
Nasiri et al. . Encoder-decoder Stretchmg, 96'7/’ accutacy,
(2024) Broilers CNN preening 88.1% precision,
behaviors 89.96% recall
High accuracy; SD:
Zheng et Breeder YOLOVS Shank length, length=1.35 mm,
al. (2022) chickens M circumference  circumference=0.25
mm
Improved YOLOvV5S
Cao et al. Caged with . 99.2% accuracy;
(2024) broilers CSPDarknet53 Mortality status real-time capable
backbon
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Raja et al.
(2022)

6D pose (position  89% correct pose

Chicken legs Mask R-CNN and orientation) estimation

Hybrid methods

Hybrid segmentation methods combine the strengths of both traditional image processing
algorithms and modern machine learning or deep learning techniques to enhance segmentation
performance (Zhang et al., 2023; Yusof et al., 2020). These approaches typically integrate
conventional methods (such as thresholding, edge detection, morphological operations) with data-
driven models (like neural networks or ensemble learning algorithms) (Saifullah & Suryotomo,
2021). The goal is often to leverage the precision and rule-based control of traditional techniques
alongside the adaptability and generalization power of machine learning models.

In the context of poultry research, hybrid methods offer several advantages. For example,
conventional algorithms can provide pre-processed or region-of-interest information that
simplifies or guides the learning process for machine learning models (Zhang et al., 2023).
Conversely, machine learning models can compensate for the limitations of conventional methods
in more complex or noisy datasets by learning high-level feature representations (Abu Bakar et al.,
2024). Applications of hybrid methods in poultry studies may include product quality inspection,
behavior monitoring, and health condition assessment, particularly when image variability,
lighting, or environmental noise make purely rule-based or purely data-driven approaches less
effective (Saifullah & Suryotomo, 2021; Zhang et al., 2023; Yusof et al., 2020).

Table 1.5 summarizes selected studies that have applied hybrid methods in poultry

research:
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Table 1.5. Applications of hybrid methods for poultry segmentation

Author Type of Segmentation Variables
: Performance
(year) poultry method examined
Gaussian Mixture
Willems et o h Modeling (GMM) Night-time p  Strong correlation
al. (2025) Laying hens + S§gment activity, perc (-0.84, p<0.0001)
' Anything Model occupation B '
(SAM)
mAP improved
Behavior by ~2%, FPS
Zhaoetal.  Cage-reared Mask R-CNN + recoenition. bose increased by
(2025) ducks CycleGAN gnition, p 21%, significant
estimation
OKS
improvements
94.71% wire
Individual chicken mesh
Yang et al. Caged U-Net + pix2pixHD contour. cage segmentation
(2023) chickens pIXp lusion ’r mg 4 accuracy, 90.04%
OCCIUSION TEMOVAL gs1M, 25.24 dB
PSNR
0
Adaptive Canny  Egg fertility status 1.00 & .
Zhu et al. . i j . classification
Chicken eggs  operator + Ellipse (infertile, dead-
(2022) . accuracy for key
fitting embryo) .
categories
91.3% carcass
Chen et al. Chicken Thresholding + Carcass and segmentation
(2021) Active contour viscera position accuracy; 95.6%
viscera
. +i
Saeidifar et Cage-free rso?i\;[sinmlai/e[:L Bodv temperature 85.5% IoU,
al. (2024)  layinghens P Classi%er y temp 92.3% F1

Applications of segmentation in precision animal management

The advancement of segmentation techniques has significantly expanded the possibilities

in precision animal management (Minaee et al., 2021). These approaches have allowed for more

efficient, accurate, and large-scale monitoring of animals under both experimental and commercial

production conditions (Fernandez et al., 2018; van der Eijk et al., 2022). By enabling the extraction
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of detailed information from various imaging modalities, segmentation has improved the ability to
monitor individual animals, assess group-level dynamics, and support real-time decision-making
in diverse management contexts.

In modern production systems, the use of segmentation technologies has reduced labor
demands, minimized subjective errors associated with manual assessments, and allowed for
continuous, objective monitoring without disturbing animals (Fernandez et al., 2018). This non-
invasive approach not only enhances data reliability but also contributes to improved animal
welfare by reducing handling and observation stress. The increasing integration of segmentation-
based systems supports early detection of health issues, welfare concerns, and production
inefficiencies, enabling producers to apply timely interventions and optimize overall system
performance (van der Eijk et al., 2022; Saeidifar et al., 2024).

In the following subsections, the key application domains where segmentation plays a

crucial role in precision animal management are outlined.

Behavior and Welfare Assessment

Behavioral monitoring is one of the primary applications of segmentation techniques in
precision animal management. Continuous observation of animal behavior enables early detection
of welfare issues such as heat stress, aggression, abnormal activity, or restricted mobility, which
may otherwise go unnoticed under conventional farm management practices.

In poultry research, various segmentation methods have been applied to extract behavioral
patterns at both the individual and group levels. Traditional image processing techniques have
been employed to evaluate thermal comfort and movement disturbances. For example, Hausdorff
distance-based segmentation was used to develop an unrest index that quantifies thermal

discomfort in poultry flocks based on group movements (Del Valle et al., 2021). Similarly,
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conventional segmentation approaches were applied to create a cluster index that distinguishes
birds' thermal states and supports early detection of heat stress conditions (Pereira et al., 2020).

As segmentation techniques have advanced, machine learning and deep learning models
have been introduced to improve behavior assessment accuracy, particularly under more complex
conditions. A hybrid approach combining Mask R-CNN with CycleGAN was applied to enhance
behavior recognition in cage-reared ducks, resulting in improved segmentation accuracy and real-
time processing efficiency (Zhao et al., 2025). Instance segmentation models combined with
behavioral classification algorithms were used to accurately identify mating events in group-
housed broiler breeders, achieving an accuracy of 92% (Bodempudi et al., 2025). Furthermore, an
improved YOLOv8s model was utilized to perform real-time detection and tracking of multiple
broilers in cage-free systems, achieving high segmentation accuracy (mAP 99.50%) and effective
multi-object tracking (MOTA 93.89%) (Hu et al., 2024).

Collectively, these studies demonstrate the critical role of segmentation technologies in
improving the objectivity, resolution, and efficiency of behavior and welfare assessments in
poultry production systems. By enabling automated, non-invasive monitoring, these approaches
contribute to more proactive welfare management and support early intervention strategies that

improve flock health and productivity.

Health Status Identification

Segmentation-based methods play a crucial role in the early detection and monitoring of
health conditions in poultry production systems. By accurately isolating relevant anatomical
structures or behavioral patterns, these methods provide objective and quantitative measures to
assess the physical condition of individual animals or entire flocks, allowing for timely

interventions and improved health management.
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In poultry research, both conventional and advanced segmentation approaches have been
applied across diverse imaging modalities to identify various health indicators. Early studies
employed conventional image processing techniques, such as principal component analysis (PCA)
applied to multispectral images, to detect conditions like septicemia and infected yolk sacs in
chicken carcasses with high accuracy (Yang et al., 2005). Similarly, active contour-based
segmentation methods have been used to monitor health-related behaviors and physical conditions
in caged chickens, effectively extracting features from RGB and binocular vision images (Xiao et
al., 2019).

With the development of deep learning, more sophisticated models have been introduced
to enhance segmentation performance for health assessments. For example, ChickenNet, a deep
learning model based on Mask R-CNN architecture, was applied to assess plumage condition in
laying hens, achieving high detection accuracy (98.02% detection mAP and 91.83% plumage
scoring accuracy) (Lamping et al., 2022). Building on this work, uncertainty estimation techniques
were integrated into deep neural networks to improve segmentation robustness and confidence for
health status evaluations in chickens (Lamping et al., 2023).

Hybrid segmentation approaches have also been utilized to address specific health
monitoring challenges. For instance, Gaussian Mixture Models combined with the Segment
Anything Model (SAM) were applied to analyze night-time perch occupation and activity patterns
in laying hens as an early indicator for poultry red mite infestations, showing strong correlations
with infestation levels (Willems et al., 2025).

Collectively, these studies demonstrate the increasing importance of segmentation methods
in supporting precise, automated, and non-invasive health monitoring systems that contribute to

improving animal welfare and production sustainability in commercial poultry operations.
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Live Performance Prediction

Accurate and continuous monitoring of live performance metrics, such as body weight,
growth rate, and production efficiency, is a key component of precision animal management.
Segmentation methods enable non-invasive estimation of these parameters by automatically
extracting morphological features from images or video data, reducing the need for manual
weighing or labor-intensive measurements.

In poultry production, various segmentation approaches have been utilized to predict live
performance indicators. Early work applied conventional image processing techniques, such as
range-based watershed segmentation of 3D depth images, to estimate broiler weight, achieving a
relative mean error of 7.8% (Mortensen et al., 2016). Similarly, camera-based monitoring using
HSV and Lab color space segmentation was used to estimate weight and growth of geese in real-
time under commercial farm conditions (Toth et al., 2025).

Hybrid methods have also been introduced to improve accuracy by combining multiple
segmentation and feature extraction algorithms. For example, Chan-Vese segmentation combined
with ellipse fitting was used to segment broiler body contours, resulting in highly accurate weight
predictions with an R? of 0.98 and prediction errors typically below 50 grams (Amraei et al., 2017).

More recently, deep learning-based segmentation models have been employed to enhance
live performance monitoring under more complex conditions. YOLOV8 instance segmentation
was applied to automatically extract body regions of broilers for live weight prediction, achieving
a mean average precision (mAP) of 0.829 (Shams et al., 2025). Additionally, 3D convolutional
neural networks (3D CNNs) were used to process top-view video frames for broiler weight

estimation, reaching a prediction accuracy of 95% (Anuprabha et al., 2024).
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Together, these studies demonstrate the growing potential of segmentation-based systems
to provide real-time, automated, and scalable solutions for live performance prediction, enabling
more efficient management and optimization of poultry production systems.

Product Quality Inspection

Segmentation methods have also been extensively applied in product quality inspection,
enabling precise assessment of carcass features, tissue characteristics, and product defects. By
automating the extraction of critical quality attributes, segmentation-based systems contribute to
more consistent grading, improved product safety, and reduced labor demands in poultry
processing facilities.

In poultry carcass inspection, conventional image processing techniques have been widely
used to extract anatomical contours and identify internal organs. For example, contour-based
segmentation methods were applied to recognize visceral features in poultry carcasses, achieving
classification accuracies of 93.3% for chickens and 86.7% for ducks (Chen et al., 2018). Similarly,
conventional approaches based on color and texture analysis have been utilized for fat estimation
and body composition evaluation, demonstrating reliable performance under varying image
conditions (Chmiel et al., 2011).

Machine learning-based methods have also been introduced to improve defect detection
accuracy. A system using machine learning-based segmentation was developed to identify
eggshell defects in poultry eggs with 97.5% accuracy using laser structured light images (Mota-
Grajales et al., 2019).

Additional conventional approaches have been used for advanced color-based feature
extraction. RGB-based segmentation combined with color space transformations was employed to

estimate the color parameters of chicken breast fillets, achieving high correlations with manual
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color measurements (Barbin et al., 2016). Statistical texture features from multiple color spaces
(RGB, Lab*, XYZ, S, V, U) were applied to classify cold meats, achieving classification
accuracies ranging from 89% to 100% (Zapotoczny et al., 2016).

Collectively, these studies demonstrate the strong potential of segmentation technologies
to enhance product quality inspection by enabling consistent, objective, and high-throughput
evaluation of carcass and product attributes.

Animal Trait Recognition

Segmentation methods have also been applied to support automated recognition and
analysis of animal traits, such as morphology, sex, skeletal structure, and other phenotypic
characteristics that are important for breeding, welfare, and production optimization.

In poultry research, conventional image processing techniques have been successfully used
for morphological analysis of embryos and skeletal structures. Region-growing segmentation
algorithms were applied to extract 3D morphological features from MRI images of chick embryos,
providing effective and detailed anatomical segmentation (Chen et al., 2023). Similarly, automated
segmentation algorithms utilizing dual-thresholding approaches were implemented to analyze
micro-CT images of egg-laying hens for detailed bone structure evaluation (Chen et al., 2020).

Machine learning-based methods have also been introduced to support trait recognition
tasks. A Genetic Algorithm Optimized Backpropagation Neural Network was employed to identify
the gender of chicken embryos based on vascular image features, achieving a prediction accuracy
of 89.74% (Zhu et al., 2021).

Deep learning-based instance segmentation models have further improved trait extraction

accuracy. YOLOVS was utilized to measure shank length and circumference of breeder chickens
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from RGB images, providing high accuracy with standard deviations of 1.35 mm for length and
0.43 mm for circumference measurements (Zheng et al., 2022).

Collectively, these studies highlight the potential of segmentation-based systems to support
non-invasive, precise, and efficient trait recognition in poultry, contributing to genetic selection,
welfare monitoring, and breeding program optimization.

Objectives and Outline of the Dissertation

The primary objective of this dissertation was to develop and evaluate advanced
segmentation frameworks utilizing foundation models, deep learning, and hybrid image processing
techniques to enhance automated monitoring of poultry welfare, health, and behavior. Specifically,
the research focused on leveraging recent advancements in zero-shot and prompt-based
segmentation models to address key challenges in individual animal tracking, thermal condition
monitoring, and phenotypic trait extraction in precision poultry management. These models were
integrated with both RGB and thermal imaging modalities to create efficient, non-invasive, and
scalable solutions suitable for commercial and research applications.

This dissertation consists of several independent yet connected studies.

e In Chapter I, a comprehensive literature review was conducted to systematically analyze
existing segmentation methodologies applied in precision animal management,
categorizing studies based on segmentation types, applications, and species.

e In Chapter II, zero-shot segmentation models were applied and optimized to segment
cage-free laying hens from thermal images. By integrating image processing and machine
learning-based post-processing with foundation segmentation models (SAM, FastSAM,
MobileSAM), this study provided a fully automated pipeline for monitoring surface body

temperature as an indicator of health and thermal regulation.

22



e In Chapter III, an integrated approach combining object detection (YOLOV7) and
foundation image segmentation (SAM) was proposed to automate segmentation of birds
in diverse imaging conditions, eliminating the need for extensive manual annotation and
enhancing segmentation accuracy across various visual contexts.

e In Chapter IV, a novel open-source Streamlit-based platform was developed that allows
non-technical users to calculate animal activity indices from top-view videos using a
promptable foundation segmentation model (SAM?2). This platform demonstrated its
capacity for efficient behavior monitoring of poultry flocks while significantly reducing
labor and computational requirements.

e The results from these chapters are summarized in Chapter V and the conclusions provide
hands-on suggestions on precision poultry farming technologies.

Except for Chapter I, each chapter was prepared as independent research papers for peer-
reviewed journals and conferences. The final chapter summarizes the key findings and provides
concluding remarks along with future research directions that can contribute to the broader
advancement of precision poultry farming technologies.
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CHAPTER II

ZERO-SHOT IMAGE SEGMENTATION FOR MONITORING THERMAL CONDITIONS

OF INDIVIDUAL CAGE-FREE LAYING HENS

Body temperature is a critical indicator of the health and productivity of egg-laying
chickens and other domesticated animals. Recent advancements in thermography allow for precise
surface temperature measurement without physical contact with animals, reducing animal stress
from human handling. Gold standard temperature analysis via thermography requires manual
selection of limited points for an object of interest, which could be time-consuming and inadequate
for representing the comprehensive thermal profile of a chicken’s body. The objective of this study
was to leverage and optimize a zero-shot artificial intelligence technology for the automatic
segmentation of individual cage-free laying hens within thermal images, providing insights into
their overall thermal conditions. A zero-shot image segmentation model (Segment Anything,
“SAM”) was modified by replacing manual selections of target points with automatic selection of
the initial point using pre-processing techniques (e.g., thresholding) in each thermal image. The
model was also incorporated with post-processing techniques integrated with a machine learning
classifier to improve segmentation accuracy. Three versions of modified SAM models (i.e., SAM,
FastSAM, and MobileSAM), two common instance segmentation algorithms (i. e., YOLOvS8 and
Mask R-CNN), and two foundation segmentation models (i.e., U2 -Net and ISNet) were
comparatively evaluated to determine the optimal one for bird segmentation from thermal images.

A total of 1,917 thermal images were collected from cage-free laying hens (Hy-Line W-36) at 77—
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80 weeks of age. The image dataset exhibited considerable variations such as feathers, bird
movement, body gestures, and the specific conditions of cage-free facilities. The experimental
results demonstrate that the modified SAM did not only surpass the six zero-shot models—
YOLOV8, Mask R-CNN, FastSAM, MobileSAM, U2 Net, and ISNet—but also outperformed
other modified SAM-based models (Modified FastSAM and Modified MobileSAM) in terms of
hen detection performance, achieving a success rate of 84.4 %, and in segmentation performance,
with an inter section over union of 85.5 %, recall 0f 91.0 %, and an F1 score of 92.3 %. The optimal
model, modified SAM, was pipelined to extract statistics including the averages (°C) of mean
(27.03, 27.04, 28.53, 26.68), median (26.27, 26.84, 28.28, 26.78), 25th percentile (25.33, 25.61,
27.26, 25.53), and 75th percentile (28.04, 27.95, 29.22, 27.55) of surface body temperature of
individual laying hens in thermal images for each week. More statistics of hen body surface
temperature can be extracted based on the segmentation results. The developed pipeline is a useful

tool for automatically evaluating the thermal conditions of individual birds.

Introduction

The U.S. had 308 million commercial laying hens at the end of 2022, producing totally
92.6 billion table eggs (United Egg Producers, 2023). The egg industry is transitioning from cage
systems to cage-free (CF) systems to improve hen welfare, and the CF egg production accounted
for 34 % (106.2 million hens) of the current table egg layer flock (United Egg Producers, 2023).
While providing nutritious, safe, and affordable proteins for humans, the intensive CF systems are
facing challenges in managing hens effectively and appropriately such as air quality, floor eggs,
distribution, and pecking (Chai et al., 2019).Thermal regulation is one of the critical areas to be
optimized as it directly influences the health, productivity, and well-being of CF hens (Giloh et

al., 2012; Tattersall, 2016) and accurate detection of hens’ body temperature is the prerequisite of
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precision thermal regulation. The gold standard method to obtain bird body temperature is to use
thermometers to measure cloaca routinely (Candido " et al., 2020; Tattersall, 2016). The method
can provide accurate measures of hen core body temperatures but could be time- and labor-
intensive as human are required to catch and constrain birds for the measurement (Edgar et al.,
2013), especially considering tens of thousands of CF hens moving freely inside a house.
Thermometers should be inserted inside the bird’s body through the cloaca and stabilized for a few
minutes to acquire reliable readings, causing bird stress. The cloaca of birds could host rich
bacterial com munities, and thermometers could lead to cross-contamination if reused for another
birds without disinfection. Thus, efficient, accurate, and biosafe alternatives are needed for hen
body temperature measurement.

In recent years, thermography has become widely embraced as an alternative to traditional
thermometers in industry and agriculture, primarily due to its ability to enable non-contact and
non-invasive measurements of surface temperature (Baranowski et al., 2009; Biddle et al., 2018;
Church et al., 2014; Cilulko et al., 2013; Sadeghi et al., 2023). The surface temperature measured
by infrared thermal imaging has been strongly correlated to bird core body temperature (Giloh et
al., 2012), ambient environmental conditions (Andrade et al., 2017), genetics (Loyau et al., 2016),
and feather conditions (Cook et al., 2006), offering important insights into house management and
bird improvement. Common temperature analysis via thermography requires the manual selection
of limited points for an object of interest, which could be time-consuming and inadequate for
representing the comprehensive thermal profile of a chicken’s body. To gain the whole-body
thermal profile and subsequent analysis, individual birds should be first segmented from the

background in a thermal image via image seg mentation models.
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Image segmentation has been a fundamental challenge in computer vision since its creation
(Rosenfeld, 1976). It involves partitioning images (or video frames) into multiple segments and
objects, which are essential components for visual understanding systems (Szeliski, 2011).
Instance segmentation (one type of image segmentation task) has evolved into a notably
significant, intricate, and demanding domain within machine vision, especially during the rapid
development of deep learning (Bolya et al., 2019; He et al., 2017; Li et al., 2017; Xie et al., 2022).
Its objective is to predict both classes and pixel-specific masks for individual object instances,
effectively identifying areas, shapes, and locations of individual objects within images (Bai and
Urtasun, 2017; Hafiz and Bhat, 2020; He et al., 2017; Li et al., 2017). The instance segmentation
methods, operated within a supervised learning framework, heavily depend on extensive datasets
with annotations. Nevertheless, in numerous real-world applications such as segmenting CF hens,
as mentioned above, the process of collecting and labeling data in pixel level is exceptionally time-
consuming and requires professional annotators. Consequently, the instance segmentation models
pretrained with large datasets (e.g., COCO and ImageNet) containing general objects and
annotations might perform poorly when encountering unfamiliar classes (e.g., CF hens) with very
few annotations in the datasets. In such scenarios, zero-shot learning methods prove to be highly
valuable for solving the abovementioned issue (Zheng et al., 2021).

Zero-shot image segmentation involves a type of segmentation algorithms that can segment
objects or regions of interest in images that have never been seen or been trained on (Bucher et al.,
2019; Kato et al., 2019; Zheng et al., 2021). Some of the most popular and state-of-the-art zero-
shot instance image segmentation models include Segment Anything Model (SAM) (Kirillov et
al., 2023), Fast Segment Anything Model (FastSAM) (Zhao et al., 2023), Faster Segment Anything

Model (MobileSAM or FasterSAM) (Zhang et al., 2023). These SAM-based models have gained
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widespread attention since they appeared in recent months (Ma et al., 2024; Mazurowski et al.,
2023; Osco et al., 2023; Shi et al., 2023). They were trained on billions of image masks and
millions of images and could be generalizable to unseen or untrained objects. They can segment
objects of interest through manually selecting a point inside the objects or drawing a bounding
box. These models have been applied for medical image analysis (Mazurowski et al., 2023; Shi et
al., 2023), agricultural image segmentation (Yaqin Li et al., 2023), remote sensing applications
(Osco et al., 2023), video segmentation (Cheng et al., 2023), and demonstrated great potential for
zero-shot image segmentation. Per preliminary testing, these SAM-based models may suffer from
several challenges for poultry-relate images including manually selecting initial points for
segmentation and determining the optimal seg mentation mask. Specifically, the manual selection
of tens of thousands of points for segmenting CF hens in commercial houses is laborious.

The objective of this research was to leverage and optimize zero-shot artificial intelligence
technology for the automatic segmentation of in dividual CF laying hens within thermal images.
The strengths of this article includes: 1) a series of up-to-date zero-shot instance image seg
mentation algorithms were compared, and the optimal one was further optimized; 2) the foundation
segmentation algorithm was integrated with image processing (pre-processing) for point
prompting and ma chine learning classification for generated optimal mask (post-processing) for
boosting segmentation performance of individual hens; and 3) thermal characteristics of laying
hens (where birds appear higher temperature than the surrounding, resulting in brighter regions in
thermal images) were fully utilized with the foundation segmentation model to improve bird
segmentation performance. The contributions of this research involves: 1) critical development
and optimization procedures of the combination of thermography and foundation image

segmentation model were provided for fully automatic image segmentation in agriculture domain;
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2) zero-shot image segmentation models were modified with image processing and machine
learning classifiers to innovate model architecture tailored for poultry segmentation; and 3) a zero-
shot instance image segmentation pipeline was developed to extracted the statistics of surface body
temperature of individual hens, opening numerous opportunities for mobile poultry health
assessment. The proposed framework segments the most complete bird in a frame, with which the
most comprehensive information of bird thermal conditions can be analyzed. Information of

multiple birds can be collected by taking multiple photo shoots of thermal images.
Materials and Methods

Overall workflow

The workflow of this paper comprises nine major components, as illustrated in Figure 2.1.
The first step involves data collection in CF hen environments and thermal camera calibration.
Subsequently, the thermal and RGB images undergo spatial alignment with simple image
processing algorithms to optimize its suitability for subsequent analyses. Following this, a
comparative analysis is conducted, benchmarking the SAM against various state-of-the-art
instance segmentation models. After that, the evaluation metrics calculation is performed to select
the optimal model. The fifth phase focuses on modifying the SAM, incorporating both pre- and
post-processing techniques to automate the SAM and enhance its performance for classification
and segmentation. The next step encompasses calculating evaluation metrics to quantify the
models’ performance between modified SAM-based models, providing a rigorous assessment of
their efficacy and accuracy. With the optimal model after the evaluation, the workflow includes
sequential steps of automatic digit extraction in thermal images and finding the relationship
between temperature and pixel intensity, providing a quantitative analysis of the thermal

characteristics. The paper concludes with a ninth and final step, wherein statistics of surface
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temperature from body profile are conducted to offer insights into the thermal condition of in
dividual CF laying hens throughout four weeks. The sole programming language utilized was
Python. Key Python libraries included cv2 and PIL for image manipulation, sklearn for
constructing machine learning models, along with pandas and numpy for handling data. Matplotlib
was used for graphically representing results. Additionally, supplementary libraries employed
were pickle, os, skimage, csv, and sys. Computational operations were executed on Google Colab,
which provided 12.7 GB of RAM and 16 GB of T4 GPU memory, supported by a dual-core CPU

running at 2.30 GHz.

Comparative analysis \\‘
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Data collection &
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/ /"

- ~
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Fig. 2.1. Workflow diagram - This figure presents a schematic of the nine-step analytical process
employed in the paper. SAM is Segment Anything, YOLO is You Only Look Once, and R-CNN

is Region-based Convolutional Neural Network.



Data collection and thermal camera calibration

The study was conducted at the University of Georgia’s Poultry Research Center. Four
environmentally controlled rooms were used, each measuring 7.3 m long, 6.1 m wide, and 3.1 m
high. Those dimensions were comparable to commercial house standards. Each room housed 200
laying hens (Hy-Line W-36) on a litter floor, which resulted in a stocking density of 0.22 m2 per
hen. This density exceeds the minimum requirements set by the United Egg Producers (United
Egg Producers, 2023), which specify 0.093 m2 per hen for multi-tiered aviaries and partially
slatted systems, and 0.139 m2 per hen for single-level all-litter floor systems. The larger space
allows chickens to exhibit a broader range of natural behaviors, such as foraging, dust bathing, and
perching. Each room contained 2.5-cm-deep pine wood shavings, an A-shaped perch with a total
length of 36.6 m, and four nest boxes. The hens were fed with an antibiotic-free mash feed during
the research. The diets were formulated in the feed mill located at the same research center with
the following nutritional specifications: metabolizable energy: 1.26 MJ/ hen/day, crude protein:
16.70 g/day, calcium: 4 g/day, and digestible phosphorus: 0.40 g/day. Husbandry, management,
and environmental conditions followed the Hy-Line W-36 commercial layers management
guidelines (Management Guide, W-36 Commercial layers, 2024). All procedures were approved
by the Institutional Animal Care and Use Committee (IACUC) prior to the start of the study
(Protocol number: A2020 08—-014-A1, approved on 5 October 2020). The diverse and dynamic
environment enhances the validity and applicability of the collected data, capturing a
representative sample of natural behaviors and interactions.

The thermal camera (FLIR C5, Teledyne FLIR, Wilsonville, Oregon, USA) was calibrated

using a calibrator (FLUKE 9133, FLUKE, Everett, WA, USA) as shown in Figure 2.2, to ensure
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accurate and precise temperature measurements. For the calibration, 15 points ranging from 24 to
38 °C were selected, as this range typically represents the variation in a chicken’s body surface
temperature. After setting the calibrator to a specific temperature, the temperature displayed by the
thermal camera was recorded and plotted, as illustrated in Figure 2.10. Subsequently, a simple
linear regression was utilized to determine the relationship between the temperatures indicated by

the thermal camera and the calibrator.

Fig. 2.2. Precision calibrator for thermal camera calibration.

Thermal images were captured when birds were 77-80 weeks of age using the thermal
imaging camera. The thermal camera outputs a pair of RGB and thermal images during each shot.
The size of each image was 640 x 480 pixels. The total number of pairs of images was 1917. The
images exhibited considerable diversity in terms of pixel intensity, varying backgrounds, presence
of feathers on the ground, inclusion of nest boxes, and overlapping and occlusion among multiple
chickens. Figure 2.3 shows four pairs of RGB and thermal sample images. Each pair of images

contained at least one complete laying hen, and surface temperatures of all objects captured were
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quantified with grayscale pixel intensities (0-255), with higher surface temperatures being

brighter.

(a) (b)

Fig. 2.3. Ten pairs of RGB and thermal images: a, ¢) RGB images; and b, d) corresponding thermal
images. The bottom-left number under the bar in each thermal image represents the lowest
temperature, and the top-left number above the bar indicates the highest temperature recorded in

the scene.
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Spatial alignment

Due to the low contrast and unclear boundaries of the chicken’s body in the thermal images
according to Figure 2.3, the corresponding RGB image was used for segmentation. The resulting
mask was then multiplied by a corresponding thermal image to extract the chicken’s body area.
How ever, a challenge arose from different scales of thermal and corresponding RGB images. To
address this, the RGB image underwent cropping and resizing to align with the thermal image
scale, where the cropping coordinates are (105, 50, 440, 320). This cropping coordinates were
determined through a trial-and-error process to find the most effective settings for matching the
RGB images to the thermal images. These coordinates, which define the upper-left corner of the
cropping area (105 for x-axis, 50 for y-axis) and specify the width (440) and height (320) of the
area to be cropped, were consistently applied to all images. This consistency was crucial in
ensuring that the resized RGB images matched perfectly with the corresponding thermal images.
Then, the cropped RGB images were resized to a standard resolution of 640 x 480 pixels, matching
the resolution of the thermal images. This standardization ensured that every detail captured in the
RGB images was accurately mapped onto the corresponding areas in the thermal images. The
consistent application of these cropping and resizing parameters across all images ensured that
specific points on the thermal images were correctly aligned with those in the RGB images. This
precise alignment is illustrated in Figure 2.4 and was critical for accurately over laying the
segmentation masks onto the thermal images. The same clipping and resizing paradigm worked
perfectly fine for all of the images due to the fact that the camera intrinsic are fixed and the same

camera was used to take both RGB and thermal images at the same time.
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(a) (b)

Fig. 2.4. Spatial alignment for RGB images to match corresponding thermal images: a) Original

()

RGB image; b) RGB image after cropping and resizing; and ¢) corresponding thermal image.

Comparison of different zero-shot deep learning models for hen segmentation

SAM consists of three components: an image encoder, a flexible prompt encoder, and a
fast mask decoder. SAM aims to transform the landscape of image analysis by offering a versatile
and flexible foundational model for segmenting objects and regions within images. In contrast to
conventional image segmentation models that demand extensive expertise in task-specific
modeling, SAM eliminates the necessity for such specialized knowledge. It allows users to
segment objects with just one or several interactive mouse clicks to include and exclude from the
object. The model also accommodates prompts through bounding boxes. In instances of
segmentation ambiguity, SAM can generate multiple valid masks, a crucial capability for real-
world seg mentation challenges.

Additional six deep learning models were deployed to verify the SAM’s performance
regarding zero-shot CF hen segmentation. These models were previously trained on large datasets
and used directly to segment CF hens in this study without extensive training on images.

Fast Segment Anything Model (FastSAM), a CNN-based model, stands out for its speed

due to its training on just 2 % of the SA-1B dataset, which contains 1 billion masks for training
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general-purpose object segmentation models like SAM. The Faster Segment Anything model
(MobileSAM or FasterSAM) improved processing speed by substituting the original bulky ViT-
H (632 millions of parameters) encoder of SAM with a more compact Tiny-ViT (5 millions of
parameters). Generally, FastSAM and MobileSAM are the extensive versions of original SAM by
compressing SAM parameters to improve processing speed.

Mask R-CNN is a deep learning instance image segmentation model that was previously
trained on the COCO (Common Objects in Context) dataset and has been used in many researches
(Anantharaman et al., 2018; Chiao et al., 2019; Li et al., 2020; Lin et al., 2020; Zimmermann and
Siems, 2019). The pre-trained model could be used as a zero-shot image segmentation model,
especially when the class of interest is the same as that in the COCO dataset (He et al., 2017).
YOLOVS is the state-of-the-art YOLO model that can be used for object detection, image
classification, and instance segmentation tasks (Yiting Li et al., 2023; Talaat and ZainEldin, 2023;
Xiao et al., 2023). YOLOvS8n architecture was used to offer enhanced performance on edge
devices, providing a balance between detection accuracy and computational resource
requirements. Both models have potential to segment CF hens without extensive training in this
study but need verification.

U2 -Net (Qin et al., 2020) is a deep learning model optimized for salient object detection,
widely adapted for precise segmentation tasks due to its unique U-squared architecture. It excels
in areas requiring detailed boundary delineation, such as medical imaging and object segmentation
in videos. This model is particularly useful for zero-shot segmentation tasks involving unique
object classes. ISNet (Jin et al., 2021) combines deep feature pyramids and attention mechanisms
to enhance instance segmentation accuracy, originally developed for high resolution imagery but

now also applied in agriculture. Both U2 -Net and ISNet show potential for segmenting specific
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poultry breeds without extensive custom training, although their effectiveness in such applications
would need further validation.
Modification of Segment Anything model

After model comparison, the SAM-based models were further modified to improve CF
hen segmentation performance. Detailed model performance results can be found in the result
section.

As mentioned earlier, original SAM-related models may encounter challenges for
automatic selection of initial points and best mask for segmentation. Pre-processing steps were
introduced to automatically select an initial point of a target bird from each thermal image, and
postprocessing steps were deployed to automatically determine the best mask among generated
ones. The flowchart of the proposed method (Modified SAM) is shown in Figure 2.5. The proposed
pre- and postprocessing techniques were also applied to FastSAM and MobileSAM, which are

indicated as Modified FastSAM and Modified MobileSAM hereafter.
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Fig. 2.5. Modified Segment Anything Model overview. A heavyweight image encoder outputs an

image embedding that can then be efficiently queried by defining an automatic initial point to
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produce object masks at amortized real-time speed. The yellow numbers in the masks indicate the
confidence scores of the segmentation. To select the best masks out of the three masks generated,

a machine learning classifier was used.

The pre-processing mainly involved automatic selection of the initial points of CF hens in
thermal images. Initially, the highest intensity point (indicating the highest surface temperature)
in the thermal image served as the initial point, as a target bird was assumed to have higher surface
temperature than the background. However, in some cases, the highest intensity areas were
concentrated at the edges of the chicken’s body in most thermal images (Figure 2.6¢), instead of
the center of the chicken’s body. Those edge areas could create ambiguity for the segmentation of
the chicken and surroundings, further leading to inaccurate bird seg mentation. To address this
issue, the process was refined. Thermal images underwent segmentation using a threshold value
of 100 to effectively isolate the warmer regions (hen bodies) from the cooler background
(environment) resulting in one or multiple distinct regions or blobs representing potential subjects
(hens). The threshold value of 100 for segmenting thermal images in this study was selected
through an analysis aimed at optimizing the differentiation between the hens and the background.
This process involved conducting an exploratory analysis where multiple threshold levels, ranging
from 50 to 150 in increments of 10, were applied to a representative set of images. Each setting
was evaluated based on the clarity and continuity of the hen shapes as well as the exclusion of
background elements. The threshold of 100 worked experimentally better, consistently yielding
the most ac curate segmentation of the hens with minimal noise from the surroundings.

Among various segmented blobs, the largest blob, was selected based on the area it covers.

The largest area refers to the largest contiguous region identified in the thermal image after
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thresholding, which likely corresponds to the main body of a chicken due to the uniformity and
intensity of the heat signatures characteristic of the hen’s body. This step involves calculating the
pixel count of each blob and identifying the one with the maximum count. The center of this largest
blob was determined using geometric center calculations, commonly referred to as the centroid.
The centroid of a shape in digital image processing is calculated as the average of all the x
coordinates and the average of all the y coordinates of the pixels in a blob or region. This centroid
acts as an initial point for further segmentation tasks, particularly for zero-shot segmentation
techniques where selecting a meaningful starting point is crucial for model performance. By
choosing the centroid of the largest heat-signature blob, the segmentation model is better oriented
to focus on the hen’s body rather than the surrounding cooler areas. This strategic choice enhances
both the accuracy and efficiency of the subsequent segmentation steps, ensuring that the most
significant thermal profile (the hen) is captured effectively in the analysis. Figure 2.6 visually
illustrates the process of initial point selection. The selected initial point in a thermal image

matched that in the corresponding RGB image for segmentation.

(c) (d) (e)

Fig. 2.6. SAM Pre-processing: a) Thermal image; b) segmented image after thresholding; c)

(a)

extraction of the largest area; d) thermal image with the initial point determined from the center of
the largest area; and e) thermal image with the initial point determined from the highest intensity

(highest temperature).
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In the original SAM-based models, a single prompt could yield multiple valid masks with
different confidence scores. In most instances, the mask with the highest score aligned with the
desired output (best mask). However, there were cases where the highest-scored mask may not be
the optimal result among the generated masks, and two of these cases are indicated in Figure 2.7.
According to Figure 2.7, the mask with the highest score in the first row is the optimal result.
However, in the second row, the mask with the highest score does not represent the optimal result.
To automatically select the best output mask from the three generated masks, a machine learning

classification process was implemented.

(b) (e)

Fig. 2.7. SAM Post-processing: a) RGB image; b, ¢, d) three masks generated using SAM where

b shows the masks with the highest confidence scores; and e) ground truth image.

The initial phase involved extracting valuable features from the generated mask images
and saving the outcomes in a CSV file. This process yielded a data frame encapsulated within the
CSV, comprising 444 instances (data points) that represent individual hens. These 444 instances

or mask images were generated by SAM, and then technicians need to further verify whether the
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generated masks were correct (1) or incorrect (0). Each instance was described by seven feature

columns, including the number of white pixels, number of connected components, area, perimeter,

eccentricity, equivalent diameter, and solidity, along with an additional column representing the

target value.

The methodology for feature extraction was based on established principles in the field of

image processing and analysis, rather than a single algorithmic approach (Saeidifar et al., 2021;

Solis-Sanchez et al., 2011). The chosen features are well-recognized for their ability to capture

critical information about binary images like masks and are extensively explained as follows:

1)

2)

3)

4)

5)

Number of while pixels. This feature serves as a direct indicator of the mask’s occupied
area within the image, reflecting the presence and size of the mask. This simple, yet
effective, feature quantifies the mask’s extent.

Number of connected components. This feature indicates the number of isolated mask
regions, providing insights into the mask’s fragmentation or continuity, a key aspect in
image analysis as supported by (Saeidifar et al., 2021).

Area of a mask. This feature is fundamental to understanding its spatial extent. This
measure has been utilized to quantify object sizes in binary segmentation tasks, as explored
by (Solis-Sanchez et al., 2011).

Perimeter of a mask. This feature offers a gauge for the complexity of the mask’s
boundary, influencing the shape and smoothness, as delineated in boundary analysis
methods discussed by (Saeidifar et al., 2021; Solis-S” anchez et al., 2011).

Eccentricity. This feature measures the deviation of the mask’s shape from a perfect circle,

critical for distinguishing between various mask shapes, as applied in shape analysis in
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(Solis-S” anchez et al., 2011). It has a clearly defined range of values. It is O for a perfectly

round object and 1 for a line-shaped object:

_ (U2,0 — #0,2)2 - 4#0,22
&= 2
(Uz,0 + Ho2)

2.1)

where € is eccentricity; U, o and g, are the central moments of second order of any object inside
an image.

6) Equivalent diameter. This feature converts the mask’s area into the diameter of a circle
with an equivalent area, providing a scaleinvariant size measure and facilitating
comparison between masks of different sizes, as utilized in (Saeidifar et al., 2021).

7) Solidity. This feature reflects the ratio of the mask’s area to its convex hull area, offering
a metric for concavity, and has been employed to evaluate shape compactness in binary
images, as noted in studies like (Solis-Sanchez " et al., 2011).

These features were selected to ensure a comprehensive analysis of the masks.
Collectively, the number of white pixels, area, and equivalent diameter provide related metrics that
collectively depict the mask’s scale and presence; the number of connected components, perimeter,
and solidity contribute to an understanding of the mask’s geometric properties and topology; and
eccentricity offers a geometric analysis dimension, distinguishing elongated masks from more
circular forms. This robust feature set was designed to provide a nuanced characterization across
various mask morphologies and sizes.

To ensure the quality and consistency of the training and inference data, several
preprocessing steps were performed on the extracted features for machine learning classification:
1) Normalization. All features were normalized into the same scale to reduce the potential biases

and distortions caused by the different scales of these features. 2) Data Reshuffling. The dataset
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was reshuffled to ensure that the data distribution was random and to reduce any potential bias
during model training. 3) Data Splitting. The dataset was split into 5 folds for cross-validation.

Supervised machine learning classifiers were trained and tested on the mentioned features
to evaluate their performance in predicting the accuracy of the masks. The classifiers used for mask
selection were Decision Tree, Adaptive Boosting (Ada Boost), Support Vector Machine (SVM),
Random Forest, and K-Nearest Neighbor (KNN), which are classical and popular supervised
machine learning classifiers. A total of 444 mask images were used for the training. Each classifier
was trained using a five-fold cross-validation approach to ensure robustness, given the relatively
small size of the dataset.

Extensive hyperparameter tuning was conducted to optimize each classifier’s performance:

e Decision Tree: Max depth, min samples split, min samples leaf.

e Ada Boost: Number of estimators, learning rate.

e SVM: Kernel type, regularization parameter (C), gamma.

¢ Random Forest: Number of estimators, max depth, min samples split and leaf.
e KNN: Number of neighbors (k), distance metric.

The optimal hyperparameter combinations were identified using grid search with cross-
validation, which systematically evaluates a range of hyperparameter values and selects the
combination that yields the best performance on the validation set.

Finally, the classifiers were evaluated and compared, and the optimal one was included in
the SAM model. Once three masks were generated from SAM, they were classified with the
optimal classifier to determine the most appropriate mask regardless of confidence scores. If
multiple masks or none of the masks were classified as optimal, the mask with the highest score

was retained.
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Evaluation metrics calculation

This study employed a robust suite of evaluation metrics to independently gauge the
performance of segmentation and classification, as well as the efficacy of machine learning
classifiers in post-processing. The segmentation model evaluation leverages a dataset consisting
of 1,917 RGB images of individual chickens. The annotation of these images was carried out by a
well-trained technician using Roboflow, which ensured the provision of high-precision masks that
delineated the most complete depiction of each chicken. Subsequently, the author conducted a
double verification to guarantee the accuracy and quality of the labeling. This rigorous ground
truth forms the benchmark for assessing the segmentation models’ accuracy.

The trained models were evaluated with precision, recall, F1 score, and Intersection over
Union (IoU) as described in Equations (2.2), (2.3), (2.4), and (2.5). The precision measures the
accuracy of the segmentation model in identifying only relevant pixels as part of the segmentation.
It is the ratio of correctly predicted positive observations to the total predicted positive
observations. Recall, also known as sensitivity, measures the model’s ability to correctly identify
all relevant pixels. It is the ratio of correctly predicted positive observations to all observations that
should have been labeled as positive. The F1 Score is the harmonic mean of Precision and Recall
and is a measure of the model’s accuracy. An F1 Score reaches its best value at 1 (perfect precision
and recall) and worst at 0. [oU is a measure used to quantify the percent overlap between the target
mask and the model’s prediction output. It is calculated by dividing the area of overlap between

the predicted segmentation and the ground truth by the area of union.

o True positive
Precision = — — (2.2)
True positive + False positive

True positive
Recall = — - (2.3)
True positive + False negative

59



Precision X Recall

= X .
Flscore 2 Precision + Recall (24)

True positive
IoU = — — , (2.5)
True positive + False positive + False negative

where true positive refers to pixels that are correctly identified as part of the object of interest;
false positive are the pixels that the segmentation model incorrectly identifies as part of the object,
but they actually belong to the background or other objects; false negative is used for pixels that
are part of the object in the ground truth but are missed by the segmentation model.

The detection metric employed is the success rate, which is based on the IoU value. A
successful segmentation is one where the IoU is 50 % or greater, which aligns with standard
thresholds used in prominent publications (Girshick, 2015; He et al., 2017; Redmon and Farhadi,
2018) as shown in Equation (2.6). The success rate thus reflects the percentage of images in which
the models successfully segmented the chicken areas.

Number of successfully segmented images (IoU > 0.5)
Success rate = - (2.6)
Total number of images

In this study, a carefully curated set of 444 mask images was labeled to determine the
presence of chicken masks and used to evaluate the classification phase of the machine learning
process. The accuracy of the classifiers, defined as the ratio of correctly identified masks (both
chicken and non-chicken) to the total number of masks evaluated, serves as the fundamental metric
for this assessment as shown in Equation (2.7).

2 _ The number of correct predictions @7
couracy = Total number of predictions '

Automatic digit extraction in thermal images
To calculate the relationship between temperature readings and pixel intensity in thermal

imagery, it is essential to first extract the two temperature values recorded by the thermal camera
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within the image. This process involved identifying and cropping the regions that display the
lowest and highest temperatures, which are in fixed positions in the thermal image. These cropped
areas were then processed through an Optical Character Recognition (OCR) tool designed for
Python, known as Python-tesseract (pytesseract). Python-tesseract is capable of recognizing and
interpreting the text contained within images. For accurate OCR results, the background of the
cropped images was modified to white with the temperature digits in black, which ensures optimal
performance of the OCR tool. Figure 2.8 illustrates the mentioned process. Given the total count
of 1917 thermal images and each image containing two temperature readings, a total of 3834
images containing the temperature digits were processed through the pytesseract classifier. The

accuracy of the digit predictions made by pytesseract was found to be 100 %.

314 88 : e

Tesseract - OCR
Engine

B 2:.: SAPTV IS o

Fig. 2.8. Extracting digits from a thermal image using pytesseract. OCR is Optical Character

Recognition.

Finding the relation between temperature and pixels intensity

After a chicken’s body region was segmented from each RGB image, the area defined by
the segmented mask was then multiplied to the corresponding thermal image to isolate the
chicken’s body temperature region. Figure 2.9. illustrates the result of this multiplication. To
determine the temperature represented by each pixel in the chicken’s body region in the thermal

image, the minimum and maximum pixel intensities were first extracted. Then, utilizing the digits
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obtained from the previous section, the corresponding surface temperatures of the pixels within

the chicken’s body area were calculated using the equation (2.8).

(b) (c)

Fig. 2.9. Multiplication of the mask on the thermal image: a) Thermal image; b) segmented mask;

(a)

and ¢) resulting image after multiplication.

nonzero pixels — x1
x2 —x1

where x1 is the minimum pixel intensity in the thermal image, x2 is the maximum pixel intensity,

Temperature = X (y2—-yl)+yl (2.8)

y1 is the minimum temperature captured by the thermal camera, and y2 is the maximum
temperature captured.

The equation derived from the calibration process involving the thermal camera and the
calibrator, as depicted in Figure 2.10, should be used to calculate the actual surface temperature
captured by the thermal camera. This ensures that the measurement reflects the true surface
temperature.

Extracting statistics of chicken’s body temperature

After calculating the actual surface temperatures of the chicken’s body in the thermal

images, various common statistical measures were computed to describe the data distribution

across a four-week age span. The mean, or the average temperature value of the chicken’s body
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surface pixels, provides a central value of the temperature data. The median is the middle value
that separates the higher half from the lower half of the temperature data, indicating a central trend
without being affected by extreme values. The minimum and maximum values represent the lowest
and highest temperatures observed, respectively, giving insights into the range of temperature
variation. The 25th and 75th percentiles are values below which 25 % and 75 % of the temperature
observations may be found, respectively, highlighting the spread and skewness of temperature
values. Surface temperatures measured by infrared thermal imaging have shown a strong
correlation with the core body temperature of birds, as indicated by (Giloh et al., 2012). The results

and discussion section presents graphs plotting these various statistical measures.
Results and discussion

Thermal camera calibration

Figure 2.10 shows the linear regression between the thermal camera and calibrator temperature.
According to Figure 2.10, the linear regression analysis between temperatures recorded by the
thermal camera and those from the reference calibrator shows a high correlation, evidenced by an
R-squared value of 0.99. This indicates the thermal camera's effectiveness in reflecting the
calibrator's precision under controlled conditions. However, the deviation from a perfect R-
squared value of 1.0 suggests the presence of factors that may introduce variability into the thermal
camera's readings. The differences in subjects' postures and their distances from the camera could
contribute to this variability. Changes in posture may alter the exposed surface area, and variations
in distance could affect the thermal flux received by the camera, thereby influencing the
temperature measurements (Intharachathorn et al., 2023, Kelly et al., 2019). These dynamics are
particularly relevant when monitoring live subjects, such as CF laying hens in this case, where

such variations are inevitable.
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To enhance the consistency and accuracy of thermal readings, adopting a fixed distance
between the camera and the subjects could be beneficial. This approach would likely mitigate the
variability caused by distance-related changes in thermal camera, leading to more reliable
temperature measurements. The broader application of this analysis highlights the importance of
operational considerations, such as subject distance and posture, in the effective deployment of
thermal imaging for animal monitoring. However, appropriately segmenting and extracting
individual CF laying hens out of multiple birds should be explored with the fixed installation of a

thermal camera.
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Fig. 2.10. The temperature calibration curve and the fitting formula.

Selecting the optimal model for zero-shot cage-free hen detection and segmentation
Table 2.1 provides a comparative overview of hen detection performance utilizing a range

of zero-shot segmentation algorithms. The success rate, a key metric in this analysis, is determined
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by the proportion of images where the IoU exceeds the 50% threshold. Images that met or
surpassed this criterion were considered to be successfully detected and segmented, contributing
positively to the overall success rate. The highest success rates were for U2-Net and SAM with
84.3% and 73.2%, respectively. Although U2-Net had the highest success rate among all models,

it performed poorly in terms of other evaluation criteria as shown in Table 2.2.

Table 2.1. Performance comparison of hen detection before any modifications

Models Success Rate (%)
YOLOV&n 50.0
MobileSAM 70.7
SAM 73.2
FastSAM 71.6
Mask R-CNN 64.2
U2-Net 84.3
ISNet 64.4

Notes: SAM is Segment Anything, YOLO is You Only Look Once; and R-CNN is Region-based

Convolutional neural network. U*-Net is U square net.

SAM's superiority lies in its ability to generalize effectively to new tasks and datasets
without requiring task-specific training or fine-tuning. This capability is attributed to its training
on the diverse SA-1B dataset and its design, which allows it to interpret and respond to a wide
range of segmentation prompts, thereby enabling it to tackle a variety of segmentation challenges
effectively in a zero-shot manner. Moreover, SAM generates three masks with varying confidence
scores for each segmentation task, providing a nuanced approach to resolving the ambiguities
inherent in segmentation tasks, particularly in zero-shot scenarios where the model is applied to

completely unseen data (Kirillov et al., 2023). However, while SAM leads in zero-shot efficacy,
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there is room for improvement to achieve an even higher success rate. This could potentially be
addressed through modifications tailored to enhance its discrimination capabilities specifically for
the task at hand.

On the other hand, the lower success rate (50.0%) of YOLOvS8 underscores a limitation in its
zero-shot detection capabilities, particularly in accurately identifying chickens. Although
YOLOvS8 and Mask R-CNN are powerful models, their performance is not optimized for this
specific application without training on a dataset specific to chickens. Nonetheless, the overarching
goal is to utilize a zero-shot instance segmentation method that operates without requiring any
image training.

Table 2.2 presents a comparison of different segmentation metrics across the models to

assess the segmentation capabilities of various models.

Table 2.2. Performance comparison of hen segmentation before any modifications

Evaluation criteria (%)

Models Precision Recall F1 score IoU
YOLOVS8n 97.4 81.4 88.4 79.5
MobileSAM 92.9 90.2 91.1 84.0
SAM 93.8 90.6 92.2 85.4
FastSAM 92.6 90.4 91.5 84.1
MaskRCNN 87.5 90.2 88.8 79.9
U2-Net 98.8 77.4 86.6 76.7
ISNet 99.6 71.7 83.1 71.5

Notes: SAM is Segment Anything, YOLO is You Only Look Once; and R-CNN is Region-based

Convolutional neural network. U*-Net is U square net.
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According to the data in Table 2.2, it is observed that the segmentation metrics across various
SAM-based models before modifications are relatively consistent. This consistency is primarily
because the metrics were calculated for images that the models have successfully segmented and
detected in prior assessments. Therefore, these figures represent the performance on a refined
subset of images — those that met the success criteria in the earlier detection phase and not the
entire dataset.

While the segmentation results across models were closely matched, SAM still outperformed
the others in most aspects, except for precision. The close results indicate that all models were
reasonably effective in distinguishing the segmented chickens once they passed the initial
detection threshold. However, SAM's slight edge in these unmodified conditions suggests that its
core architecture is inherently more aligned with the nuances of hen segmentation tasks, even

before any tailored enhancements are applied. Figure 2.11 illustrates the segmentation results

No detection No detection “
/
(@ () ) @ (h) U]

achieved by different models.
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Fig. 2.11. Segmentation results of different models: a) RGB image; b) MobileSAM; ¢) FastSAM;

d) SAM; e) YOLOVS, f) Mask R-CNN, g) U%-Net, h) ISNet; and i) ground truth.

In summary, SAM-based models performed better than the other two zero-shot instance
segmentation, thus, they were selected for further optimization for segmenting individual laying

hens from thermal images.

Comparison of five different machine learning classifiers for the post-processing

As mentioned earlier., an extensive hyperparameter tuning process was conducted to find the
best hyperparameter values for each of the classifiers used for the optimal mask selection. Table
2.3 lists all the hyperparameters, the range of tested values, and the best value among them used

for each of the five classifier models.

Table 2.3. Hyperparameter tuning results for machine learning classifiers

Model Hyperparameter Values Best value
max_depth [3, 5,7, None] 5
Decision Tree | min_samples_split (2,5, 10] 2
min_samples_leaf [1,2,4] 1
n_estimators [50, 100, 200] 100
Boost -
AdaBoos learning_rate [0.01, 0.1, 1] 0.1
C [0.1, 1, 10] 1
SVM gamma ['scale', 'auto'] 'scale’
kernel ['linear’,'rbf','poly'] 'tbf’
n_estimators [50, 100, 200] 100
max_depth [None, 10, 20, 30] None
R Forest -
andom Fores min_samples_split (2,5, 10] 2
min_samples_leaf [1,2,4] 1
KNN n_nelghbors . [3,5,7] 5
metric ['euclidean’,'manhattan'] 'euclidean’
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Notes: AdaBoost is Adaptive Boosting, SVM is Support Vector Machine; and KNN is K-Nearest

Neighbor.

Table 2.4 compares the classification accuracy for various machine learning models used

in the post-processing stage.

Table 2.4. Comparison of different machine learning classifiers for mask selection

Models Accuracy (%)
Decision tree 91.7
Ada Boost 90.4
SVM 89.4
Random Forest 90.5
KNN 87.0

Notes: Ada Boost is Adaptive Boosting; and SVM is Support Vector Machine.

In the evaluation of machine learning classifiers for post-processing, the decision tree
outperformed, closely followed by the Random Forest and Ada Boost methods. The SVM
classifier also fared well, indicating its strong capability for this task. KNN, while still performing
respectably, offers a valuable benchmark for comparative analysis.

The nuanced performance of these classifiers suggests that the more complex ensemble
methods, despite their computational intensity, do not significantly outperform the simpler
decision tree model in this context. This could be attributed to the nature of the features extracted
for post-processing, where decision trees might capture the necessary patterns effectively without

the need for ensemble strategies (Banfield et al., 2007).
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Upon the completion of training, the decision tree guided the selection process among the
three masks generated for each image. The classifier’s judgment is paramount; if it identified a
single mask as optimal, that mask was selected as the output, overriding the score-based selection.
In scenarios where multiple masks were deemed optimal, or none meet the criteria, the mask with
the highest score was then chosen. This hybrid approach, combining the classifier’s analytical
strengths with score-based evaluation, was designed to optimize mask selection, ensuring that the
final output is not only based on empirical feature assessment but also on quantifiable
segmentation performance.

Comparison of modified SAM-based models and two generic models for cage-free hen
detection and segmentation

According to the baseline performance outlined in Tables 2.1 and 2.2, the SAM-based models
were further developed by incorporating pre- and post-processing techniques. Since SAM-based
models are considered generic segmentation models, to make the comparison fair, they were
compared with the two generic baselines, namely U?-Net and ISNet. Table 2.5 examines the
detection results from the modified SAM-based models as well as U?-Net and ISNet. Modified
SAM models’ performance were compared in different states: without any pre- or post-processing,
with pre-processing only, and with post-processing only. However, we could not apply similar pre
and post-processing steps on U2?-Net and ISNet as they do not accept input prompts for
segmentation. This comprehensive evaluation was essential to evaluate the impact of each

processing stage on the overall efficacy of the hen segmentation task.
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Table 2.5. Performance comparison of hen detection for modified SAM-Based models

Models Condition Success rate (%)
W/O pre & post-processing 73.2
W/ pre-processing 75.3
SAM W/ post-processing 82.6
W/ pre & post-processing 84.4
W/O pre & post-processing 70.7
W/ pre-processing 72.0
MobileSAM W/ post-processing 78.3
W/ pre & post-processing 82.0
W/O pre & post-processing 71.6
FastSAM W/ pre-processing 72.8
U2-Net W/O pre & post-processing 84.3
ISNet W/O pre & post-processing 64.4

Notes: 'w/o' refers to 'without,' indicating that the model was tested without the application of the associated
processing technique. Conversely, 'w/' denotes 'with,’ showing that the model was tested with the

implementation of the given pre-processing or post-processing technique.

In examining the data presented in Table 2.5, it becomes apparent that the Modified SAM,
which incorporated both pre- and post-processing steps, had a significantly higher success rate in
detecting and segmenting hens than its counterparts in the family of SAM models. U?-Net model
had a quite similar performance as modified-SAM model in terms of success rate. Success rate
metric is crucial, as it quantifies the percentage of instances where the algorithm correctly
identifies and delineates the subjects of interest. The comparative analysis reveals that the
enhanced success rate of the Modified SAM—when contrasted with the original SAM, which lacks
additional processing, the SAM with pre-processing only, and the SAM with post-processing only,

underscores the substantial impact of the modifications on the algorithm’s efficiency. These
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techniques likely enhance the model's ability to discriminate between the hens and their
surroundings by optimizing the input data quality and refining the segmentation output. The reason
FastSAM was not implemented with post-processing was due to its design, which generates a
single mask. Consequently, it does not necessitate post-processing steps typically required for
models that produce multiple masks and need to select the best one. Furthermore, the Modified
SAM's success showcased the potential of integrating zero-shot learning principles with targeted
algorithmic enhancements to achieve high performance. This balanced approach leverages the
inherent strengths of zero-shot models, such as their flexibility and generalizability, while
compensating for their weaknesses through strategic modifications that tune the model to the
specific characteristics of the task. Table 2.6 provides an evaluation of the segmentation

performance of different SAM-based models.

Table 2.6. Performance comparison of hen segmentation for modified SAM-Based models

Models Condifion _ Evaluation criteria (%)
Precision Recall Flscore IoU
W/O pre & post-processing 93.8 90.6 92.2 85.4
W/ pre-processing 93.6 90.7 92.1 84.3
SAM W/ post-processing 93.8 90.7 922 85.1
W/ pre & post-processing 93.6 91.0 923 85.5
W/O pre & post-processing 92.9 90.2 91.5 84.0
W/ pre-processing 92.5 90.4 91.4 84.1
MobileSAM W/ post-processing 92.5 90.4 91.4 84.1
W/ pre & post-processing 91.8 90.7 91.2 83.6
W/O pre & post-processing 92.6 90.4 91.5 84.1
FastSAM W/ pre-processing 92.5 90.4 91.4 84.1
U%-Net W/O pre & post-processing 98.8 77.4 86.6 76.7
ISNet W/O pre & post-processing 99.6 71.7 83.1 71.5
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Notes: 'w/o' refers to 'without,' indicating that the model was tested without the application of the associated
processing technique. Conversely, 'w/' denotes 'with,’ showing that the model was tested with the

implementation of the given pre-processing or post-processing technique.

As highlighted in Table 2.2 and previously discussed, the segmentation metrics among the
SAM-based models were generally consistent, reflecting their efficacy in processing successfully
detected images. Similarly, Table 2.6 also presents comparable results. These findings further
reinforce the reliability of the SAM models in segmenting images that meet the established success
criteria. The two generic models, U?-Net and ISNet were quite competitive in terms of precision,
but demonstrated poor performance in terms of recall, Fl-score, and IoU which makes them
unreliable for our testbed.

In the context of Table 2.6, while the results show a uniform performance, the Modified
SAM models have shown incremental improvements in segmentation. These enhancements,
particularly evident in the metrics of recall, F1 score and IoU, suggest that the post-modification
refinements in the SAM-based models have further fine-tuned their segmentation capabilities,
especially for the challenging aspects of the hen segmentation task. This incremental advancement
underscores the value of the modifications introduced to the SAM framework, confirming that
even minor adjustments can yield measurable benefits in segmentation precision and reliability.
Figure 2.12 displays the segmentation results produced by the modified SAM. According to the
figure, the Modified SAM could segment a more complete body profile compared to the Original

SAM.
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Fig. 2.12. Hen segmentation using Modified SAM: a) RGB Image; b) thermal image; c)

segmentation result using SAM without modification; and d) segmentation result using Modified

SAM; and e) ground truth image.

The primary goal of this study was to develop a zero-shot image segmentation algorithm
aimed at minimizing the time-consuming task of manual segmentation annotation in the poultry
sector. Traditional manual segmentation annotation of each bird, accounting for intricate details
like head and leg contours, typically requires about one minute per image. Although semi-
supervised tools like Roboflow reduce this time to approximately 20 seconds, they may still need
human intervention for refined annotations. In our dataset of 1,917 images, manual segmentation
annotation would take about 32 hours, and semi-automatic methods around 11 hours. By contrast,
the proposed model processed each image in roughly 2 seconds, completing the task in about 1
hour for the entire dataset, thus saving significant labor costs. Considering the minimum hourly
wage for labeling is $13 per hour, our approach reduces segmentation annotation costs by $400
and $140 compared to manual and semi-automatic methods, respectively. Moreover, our model

surpasses previous ones in all evaluation metrics. This efficiency makes zero-shot image
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segmentation highly valuable for large-scale poultry studies, requiring extensive bird segmentation
annotations.
Statistics of surface temperature in chickens over four weeks of age

After establishing the relationship between temperature and pixel intensity as discussed
earlier, various statistics were extracted from the temperature of the segmented chicken pixels in
the thermal images. The averages of the statistics have been plotted in Figure 2.13 across four

weeks of bird age.
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Fig. 2.13. Extraction of average statistics with standard deviation for surface body temperature of

hens from weeks 77 to 80.

According to Figure 2.13, the six figures display various average temperature statistics
along with their standard deviations, charting the trends in surface body temperatures of chickens
from weeks 77 to 80. These trends were largely consistent across the figures, except for the average
maximum temperatures. Since the average maximum temperature reflected only the single highest

temperature point in a thermal image, it did not provide a comprehensive representation of the
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overall surface body temperature. This discrepancy highlights the necessity of evaluating a range
of statistics to gain a full understanding of surface body temperatures (Nascimento et al., 2014), a
principle advocated for in this paper.

Bird surface body temperature fluctuated from weeks 77 to 80 with a peak at week 79. This
demonstrates the necessity of continuous monitoring of bird thermal conditions to provide timely
and precise thermal regulation for hens.

It is crucial to consider a comprehensive set of statistics when evaluating surface body
temperature to obtain a representative thermal snapshot. This paper's detailed statistical approach,
which includes analysis of mean, median, 25" percentile and 75" percentile, alongside the standard
deviation, provides a comprehensive view of the thermal characteristics of the birds over the four-
week period. Such an approach ensures that decisions or inferences drawn from the data are based

on a complete and nuanced understanding of the thermal dynamics of hens.

Additional discussion and future work

Our study was conducted over a period of 4 weeks (28 days). To contextualize this duration,
we compared it with the periods used in similar peer-reviewed articles. Table 2.7 shows examples
of studies that utilized shorter periods. The longer data acquisition period in this study allows for
capturing a wider range of temporal and spatial dynamics and behavior patterns, which is

supportive for developing more robust and generalizable machine learning models.

Table 2.7. Comparison of study durations in various research studies

Reference Study period
(Lietal., 2021) 3 days
(Bahuti et al., 2023) 21 days
(Lamping et al., 2022) 5 days
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(Du et al., 2021) 7 days
This study 28 days

The structural similarity score was computed for each pair of images for demonstrating the
diversity of the dataset, with 1 representing an identical/similar image and O representing a
completely different image as shown in Figure 2.14. Histogram of the score for different pairs of

images was computed to depict the distribution of image similarity scores.
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Fig. 2.14. Distribution of image similarity scores

According to the histogram graph, the following results were observed to support large

diversity in the dataset.

1) Wide range of similarity scores: The similarity scores cover a wide spectrum from 0.3 to

0.7, reflecting the presence of both highly dissimilar and highly similar images in the dataset. This
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range implies that the dataset contains a variety of images, rather than being skewed towards either
end of the similarity spectrum.

2) Normal distribution: The similarity scores form a bell-shaped curve, similar to a normal
distribution. This indicates a balanced dataset, where most image pairs exhibit moderate similarity,
and fewer pairs are either highly similar or highly dissimilar. Such a balance points to diversity,
suggesting that the dataset does not favor any particular type of image content.

3) Larger proportion of dissimilar images: Commonly, the similarity score of less than 0.5
indicates a different image, which took up over 75% in this case. Thus, the image inside the dataset
was either moderately or highly dissimilar with each other.

Future work will focus on evaluating SAMAug, which uses augmented point prompts derived
from initial SAM segmentation to improve the model's grasp of user intentions, thus boosting
segmentation accuracy without additional inputs or model retraining (Dai et al., 2023).
Additionally, for the post-processing step involving a machine learning classifier to select the
optimal mask from three options, improvements could include expanding the training dataset for
the classifier and augmenting the number of features provided to the classifier to increase its
accuracy.

Conclusions

In this research, a zero-shot image segmentation technique was developed and optimized
using the Segment Anything Model (SAM) for segmenting individual cage-free laying hens. The
performance of the zero-shot model was significantly enhanced by integrating specific pre- and
post-processing techniques, outperforming other zero-shot instance segmentation methods. The
modified model has been streamlined into a pipeline to automatically extract comprehensive body

temperature statistics, such as the mean, median, maximum, minimum, 25th, and 75th percentiles.
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As aresult, a valuable tool has been provided that supports precision poultry farming and aims to
improve production efficiency. This advancement in the application of artificial intelligence in
agriculture paves the way for more efficient health monitoring and management practices,
potentially revolutionizing the poultry industry by enhancing both productivity and animal
welfare.
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CHAPTER III

AUTOMATIC SEGMENTATION OF BIRDS USING A COMBINATION OF OBJECT

DETECTION AND FOUNDATION IMAGE SEGMENTATION MODELS

This study introduced an innovative method for automatic bird segmentation by combining
an object detection model (i.e., YOLOv7) with a foundation image segmentation model (i.e.,
Segment Anything Model, SAM). YOLOv7 detected individual birds in images and calculated
bounding box prompts of each detected bird for the SAM, enabling detailed and efficient
segmentation without manual point inputs. The developed method was compared with various
segmentation methods, including YOLOVS, Thermal image + MobileSAM, Thermal image +
SAM, Thermal image + FastSAM, Mask R-CNN, and YOLOV7 (providing centroids of detected
birds as point prompts) + SAM. The results showed that the proposed method outperformed all of
the comparative segmentation methods, with the highest precision of 92.5%, recall of 98.2%, F1
score of 95.1%, IoU of 91.0%, and success rate of 98.0%. The study highlights a significant
advancement in automatic image segmentation techniques with less intensive human annotation
than standard deep learning-based image segmentation methods. The developed methods can be
scaled up and transferred to various agricultural, environmental, medical, geographical, and urban
planning applications.
Introduction

The rapidly expanding domain of image segmentation has witnessed a remarkable

transformation with the introduction of a comprehensive foundation model, Segment Anything
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Model (SAM) (Kirillov et al., 2023). A foundation image segmentation model should have good
generalizability in segmenting objects of interest from various backgrounds and environments
beyond training datasets. The most impressive part is that without task-specific training (zero-shot)
or with minimal additional training via prompts (user inputs) (few-shot), the foundation models
(Bommasani et al., 2021) can rival or even outperform traditionally trained models on certain tasks.
Some of the most popular and state-of-the-art zero-shot instance image segmentation models other
than SAM include Fast Segment Anything Model (FastSAM) (Zhao et al., 2023) and Faster
Segment Anything Model (MobileSAM or FasterSAM) (Zhang et al., 2023). These SAM-based
models have gained widespread attention since they appeared in recent studies (Ma et al., 2024;
Mazurowski et al., 2023; Osco et al., 2023; Shi et al., 2023). Researchers are constantly pushing
the boundaries by increasing model size, dataset comprehensiveness, and the computational power
used for training (Brown et al., 2020; Hoffmann et al., 2022; Kaplan et al., 2020; Chowdhery et
al., 2023) .Owning to large-scale training in the substantial dataset, SA-1B, which comprises over
1 billion masks and 11 million images, SAM has demonstrated robust zero-shot or few-shot image
segmentation performance via various input prompts such as point or bounding box prompts. A
data engine was developed for the SAM dataset, involving three stages: model-assisted manual
annotation, semi-automatic, and fully automatic. In the manual annotation stage, annotators
labeled masks based on complete shapes rather than prompts, significantly improving annotation
speed and quality, resulting in 4.3 million masks from 120k images. The semi-automatic stage
aimed to label less prominent objects by training a bounding box detector, generating 5.9 million
masks from 180k images. The fully automatic stage leveraged improvements from previous stages
and ambiguity awareness to generate 1.1 billion masks from 11 million images without human

intervention. Quality was maintained by comparing and refining automatically generated masks
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using [oU metrics. SAM’s architecture includes a Masked Auto Encoding (MAE) pre-trained
Vision Transformer (ViT) encoder that produces image embeddings for prompt-based mask
generation (Kirillov et al., 2023).

SAM requires manual input prompts, which poses limitations of SAM applications in the
scenarios with dense distributions of targeted objects. For instance, a modern poultry house
typically contains tens of thousands of birds, and the same amount of human input prompts are
needed to segment individual birds out from images if SAM is deployed in the precision poultry
farming domain. Thus, automating the prompting procedure for SAM is urgently needed to avoid
laborious manual inputs for densely distributed objects. The agricultural industry, particularly
poultry farming, stands to benefit significantly from advancements in automated image
segmentation due to the sheer scale and complexity of monitoring animal welfare (Edgar et al.,
2013). Enhanced segmentation capabilities can lead to better health monitoring, resource
allocation, and overall management of poultry houses.

Previous studies investigated integrating image processing (pre-processing) for point
prompting and machine learning for generated mask classification (post-processing) into SAM to
segment individual laying hens from thermal images (Saeidifar et al., 2024). While achieving a
success rate of 84.4%, IoU of 85.5%, recall of 91.0%, and F1 score of 92.3%, the proposed method
inevitably had several drawbacks. Firstly, thermography, despite providing thermal characteristics
of target objects for prompting, can be subject to ambient temperature and is not economically
friendly for end users. Instead, RGB is the mainstream of deep learning model development due
to its cost-effectiveness and easy access. Second, the proposed framework still requires training
for supervised machine learning classifiers, which is not supportive to achieve zero-shot or few-

shot image segmentation. Moreover, relying on thermal imaging limits the versatility of the
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system, as thermography cannot be easily adapted to varying environmental conditions without
significant recalibration, especially for thermal equilibrium environments. This reliance also adds
a layer of complexity and cost that can be prohibitive for widespread adoption, especially in
smaller-scale operations.

Such a framework can be improved by integrating object detection models, which enclose
target objects with bounding boxes. The set of models has been constantly improved with model
architecture, model parameters, learning structure, dataset comprehensiveness, and computational
power used for training. Object detection has its own foundation model, such as YOLO (You Only
Look Once) which is widely used in many research (Talaat & ZainEldin, 2023; Xiao et al., 2023),
and can be integrated into SAM to automate zero-shot or few-shot image segmentation. YOLOV7,
a recent advancement in the series of YOLO models, represents state-of-the-art technology in real-
time object detection, emphasizing speed and accuracy across various operational frames per
second (FPS) (Wang et al., 2023). This model showcases a significant improvement over its
predecessors and other existing models in terms of detection precision and processing speed. The
YOLOV7 architecture integrates a robust and streamlined design optimized for speed without
sacrificing accuracy, making it highly suitable for real-time applications (Wang et al., 2023; Li et
al., 2024; Xia et al., 2022; Peng et al., 2024). The model employs a combination of Cross Stage
Partial (CSP) networks and additional enhancements in the backbone that allow for faster
computation while reducing the number of parameters. This architecture benefits significantly
from advances in convolutional neural networks, utilizing techniques that optimize layer
interactions for improved feature extraction and efficiency. The training process of YOLOV7 is
notable for its efficiency and effectiveness, partly due to the innovative use of "trainable bag-of-

freebies." These methods optimize the training phase to enhance model accuracy without
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additional computational cost at inference time. YOLOv7 was trained from scratch on the MS
COCO dataset, a comprehensive image dataset popular for object detection tasks, which helps in
achieving robustness across varied visual contexts without the need for pre-trained weights.

In a combined framework, an object detection model like YOLOV7 first identifies objects
within an image and automatically generates bounding boxes. These bounding boxes, along with
a precisely calculated centroids within each box, serve as the prompts for SAM. Consequently,
SAM focuses on the prompted areas to produce refined segmentation masks. Such a combined
framework cannot only avoid laborious human input prompts densely distributed objects but also
enjoys the strengths of two different sets of foundation models.

In sum, the objective of this research was to innovate an automatic segmentation method
by combining YOLOvV7 and SAM. The proposed method was trained, optimized, and evaluated
with a laying hen dataset collected from cage-free housing systems.

Materials and methods

Overall workflow

The workflow of this paper comprises six major components as illustrated in Figure 3.1.
The first step involves data collection from the cage-free hen environments. Subsequently, object
detection is performed using the YOLOv7 model, which is renowned for its accuracy and
efficiency in identifying objects within images. Following this, the coordinates of the bounding
boxes obtained by YOLOV7 are extracted, facilitating precise localization of the detected objects.
The fourth step introduces the proposed method, YOLOv7 + SAM, which uses both point prompts
and box prompts for improved segmentation. The fifth phase encompasses a comparative analysis,
benchmarking YOLOvV7 + SAM against various state-of-the-art instance segmentation models.

This analysis aims to identify the model that delivers the best performance. The final step focuses
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on the calculation of evaluation metrics to rigorously assess the efficacy of the models, ensuring
the selection of the optimal model for the task.

The sole programming language utilized was Python. Key Python libraries included
OpenCV and Pillow for image manipulation, along with Pandas and NumPy for handling data.
Matplotlib was used for graphically representing results. Additionally, supplementary libraries
employed were pickle, os, Scikit-image, csv, and sys. Computational operations were executed on
Google Colab, which provided 12.7 GB of RAM and 16 GB of T4 GPU memory, supported by a

dual-core CPU running at 2.30 GHz.

Extracting
—>» bounding box —»
coordinates

— Comparative Analysis

SAM + Thermal
L o | Mask R-CNN
FastSAM + YOLOV7 + | |y ov7 + SAM

p ~, | Thermal image SAM (Box (Point prompt) |
Q

) prompt)
MobileSAM +
Thermal image YOLOvs

Evaluation Metrics
Calculation

Object detection

. Proposed method
Data collection —> (Y°L°V7)

(YOLOV7 + SAM)

Fig. 3.1. Workflow diagram - This figure presents a schematic of the six-step analytical process
employed in the paper. SAM is Segment Anything, YOLO is You Only Look Once, and R-CNN

is Region-based Convolutional Neural Network.
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Animal, housing, and management

The study took place at the University of Georgia’s Poultry Research Center. Four rooms
with environmental controls were used, each measuring 7.3 meters in length, 6.1 meters in width,
and 3.1 meters in height. Each room housed 180 Hy-Line W-36 laying hens on a litter floor covered
with 2.5 cm of pine wood shavings. The rooms also included an A-shaped perch totaling 36.6
meters in length and four nest boxes. The hens were fed an antibiotic-free mash feed during the
study. The feed, made at the center's feed mill, had the following nutritional specs: 1.26
MJ/hen/day of metabolizable energy, 16.70 g/day of crude protein, 4 g/day of calcium, and 0.40
g/day of digestible phosphorus. Husbandry, management, and environmental conditions followed
the guidelines for Hy-Line W-36 commercial layers (Hy-Line International, 2024). The study's
procedures were approved by the Institutional Animal Care and Use Committee (IACUC) under

protocol number A2020 08-014-A1, approved on October 5, 2020.

Dataset

Images were taken with a low-cost thermal imaging camera (FLIR CS5, Teledyne FLIR,
Wilsonville, Oregon, USA) when the birds were 77-80 weeks old. The camera was carefully
calibrated with a thermal calibrator (FLUKE 9133, FLUKE, Everett, WA, USA) to ensure the
temperature captured in thermal images was correct. Each shot produced a pair of RGB and
thermal images, each with a size of 640 x 480 pixels. A total of 1,917 pairs of images were
collected. The images varied widely in pixel intensity, backgrounds, presence of feathers on the
ground, inclusion of nest boxes, and instances of overlapping and occlusion among the chickens.

Figure 3.2 presents two pairs of samples RGB and thermal images.
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(a)

Fig. 3.2. Two pairs of RGB and thermal images: a, ¢) RGB images; and b, d) corresponding

(b)

thermal images. Digits inside thermal images indicate maximal or minimal temperatures.

Object detection model (YOLOV7)

YOLOV7, a state-of-the-art object detection model known for its speed and accuracy, was
utilized in this study to detect chickens in RGB images. This version of YOLO was chosen due to
its balanced trade-off between detection performance and computational efficiency, which is
critical for processing large datasets in a reasonable time frame. Additionally, since "bird" is one
of the classes YOLOV7 has been trained on in the COCO dataset, the pre-trained YOLOv7 model
was transferred and utilized for this task. This allowed the leveraging of its pre-existing knowledge
to accurately identify chickens in the images. The output of YOLOvV7 detecting chickens in the

dataset is shown in Figure 3.3.
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Fig. 3.3. YOLO output

Extracting the coordinates of the bounding box

In this phase, the coordinates of the bounding boxes obtained by YOLOvV7 were extracted
to be used as the initial prompts for SAM. The centroid of each bounding box served as the initial
point prompt for SAM. Additionally, the four coordinates of the corners of the bounding box were
used as the bounding box prompt for SAM. This setup allowed the precise bird localization
provided by YOLOV7, leveraging the performance enhancement of SAM in segmenting the
chickens.
Proposed method

The flowchart of the proposed method (YOLOvV7 + SAM) is shown in Figure 3.4.

95



-t Mask decoder

- L0TY

encoder T
Conv
inage  Mask A
embedding
Object detection model
(YOLOVT)
T Masks
Bounding bax

coordinates
Fig. 3.4. Proposed Method (YOLOvV7 + SAM): The method uses a robust image encoder to
generate an image embedding. This embedding can be efficiently queried by defining an automatic
initial point, enabling the production of bird masks at amortized real-time speed. The yellow
numbers on the masks represent the confidence scores of the segmentation, with the mask having

the highest score being selected as the final output.

YOLOV7 (box prompts) + SAM

For the chicken segmentation using bounding boxes, the x_min, y min, x_max, andy max
coordinates provided by YOLOvV7 were given to SAM, hereafter referred as YOLOv7 (box
prompts) + SAM. Using a bounding box as a prompt, narrows down the area for finding the
segmented object (i.e., chicken in this case), which makes the segmentation more accurate. Three
masks were generated by each segmentation, and the mask with the highest confidence score was

chosen.
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(b) {c)

Fig. 3.5. Segmentation results of YOLOV7 (providing bounding boxes of detected birds as box
prompts) + SAM: a) detected chickens enclosed with bounding box; b) segmentation results; c)

ground truths.

YOLOV7 (point prompts) + SAM

Figure 3.6 shows the procedure of using the centroids of detected birds from YOLOV7 as

point prompts for SAM segmentation, hereafter referred as YOLOvV7 (point prompts) + SAM.
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(a)

Fig. 3.6. Segmentation results of YOLOvV7 (point prompts) + SAM: a) detected chickens enclosed
with bounding boxes; b) RGB image with centroid points of detected bounding boxes; c)

segmentation results; d) ground truths.

Since the centroids of bounding boxes obtained by YOLOv7 was only a single point, in
some images where the orientation of the chicken's body is complex, the centroid may fall outside
of the chicken’s body, leading to inaccurate segmentation. Figure 3.7 shows some of the erroneous
segmentation examples. For example, the hen needs to access nipple drinkers with its head tilted

to one side, leading to curly body shape and fallout centroid points.



(a) (b) (c) (d)

Fig. 3.7. Erroneous segmentation results of YOLOV7 (point prompts) + SAM: a) detected chickens
enclosed with bounding boxes; b) RGB image with centroid points of detected bounding boxes; c)

erroneous segmentation results; d) ground truths.

Comparative analysis

The performance of the YOLOv7 + SAM combination for zero-shot hen segmentation was
verified using four additional deep learning models. These models, which had already been trained
on large datasets, were directly used for segmenting hens without requiring extensive additional
training. Mask Region-based Convolutional Neural Network (R-CNN), a well-known instance
segmentation model, was trained on the COCO (Common Objects in Context) dataset and has been
widely used in research. As the target class (i.e., bird) is included in the COCO dataset, this pre-
trained model can effectively perform segmentation tasks without extra training.

FastSAM, a CNN-based model, stands out for its speed due to its training on just 2% of
the SA-1B dataset, which contains 1 billion masks for training general-purpose object
segmentation models like SAM. The MobileSAM or FasterSAM improved processing speed by

substituting the original bulky ViT-H (632 million parameters) encoder of SAM with a more
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compact Tiny-ViT (5 million parameters). Generally, FastSAM and MobileSAM are extensive
versions of the original SAM, with compressed parameters to enhance processing speed.

YOLOVS, the newer YOLO model, can be used for object detection, image classification,
and instance segmentation. The YOLOv8n version offers good performance on edge devices,
balancing detection accuracy and computational resources. Both Mask R-CNN and YOLOVS have
the potential to effectively segment hens without extensive additional training, but their
performance in this study needs to be verified.

Additionally, a previous study (Thermal images + SAM) used the characteristics of thermal
images, along with some pre- and post-processing steps, as the initial prompt for SAM. This
approach leveraged the unique features of thermal images to enhance SAM's performance in
segmenting the hens.

Evaluation metrics calculation

This study utilized a comprehensive set of evaluation metrics to independently assess the
performance of both segmentation and detection. The segmentation model evaluation was based
on a dataset of 1,917 RGB images of individual chickens. These images were annotated by a skilled
technician using Roboflow, ensuring high-precision masks that accurately depicted each chicken.
The author then conducted a double verification to ensure the accuracy and quality of the labeling.
This rigorous ground truth served as the benchmark for evaluating the accuracy of the
segmentation models.

The performance of the trained models was assessed using precision, recall, F1 score, and
Intersection over Union (IoU) as detailed in Equations (3.1), (3.2), (3.3), and (3.4). Precision
determines how accurately the model identifies only the relevant pixels for segmentation,

calculated by the proportion of correctly predicted positives to the total predicted positives. Recall,
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also known as sensitivity, evaluates the model’s effectiveness in detecting all relevant pixels,
calculated by the proportion of correctly predicted positives to the total actual positives. The F1
Score, representing the harmonic mean of precision and recall, gauges the model’s overall
accuracy, with 1 being the optimal value indicating perfect precision and recall, and 0 the lowest.
IoU measures the overlap between the predicted segmentation and the ground truth, calculated by
dividing the overlapping area by the combined area of the predicted segmentation and the ground

truth.

o True positive
Precision = — — (3.1)
True positive + False positive

True positive

Recall =

(3.2)

True positive + False negative

1 ) Precision X Recall 33
= X .
score Precision + Recall (3:3)

True positive

IoU = 3.4
0 True positive + False positive + False negative (34)

where true positive refers to pixels that are correctly identified as part of the birds; false positive
are the pixels that the segmentation model incorrectly identifies as part of the birds, but they
actually belong to the background or other objects; false negative is used for pixels that are part of
the birds in the ground truth but are missed by the segmentation model.

The detection metric employed is the success rate, which is based on the IoU value. A
successful segmentation is one where the IoU is 50% or greater, which aligns with standard
thresholds used in prominent publications (Girshick, 2015; He et al., 2017; Redmon and Farhadi,
2018) as shown in Equation (3.5). The success rate thus reflects the percentage of images in which

the models successfully segmented the chicken areas.
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Number of successfully segmented images (IoU > 0.5)

S te = .
uccessrate Total number of images (3:5)

Results and discussion
Image similarity scores

The histogram as shown in Figure 3.8 illustrates the distribution of RGB image similarity
scores within the sampled subset. The scores ranged from 0 to 1 with 0 representing a completely
different image and 1 representing an identical/duplicate image. The similarity score ranges from
0.3 to 0.7, with the majority of scores concentrated around the 0.4 to 0.5 range. The histogram's
shape and distribution indicate several key points about the diversity of the dataset:

e Wide Range of Similarity Scores: The similarity scores span a broad range (0.3 to 0.7),
indicating that there was a mix of both highly similar and highly dissimilar images within
the dataset. This range suggests that the dataset includes a variety of images rather than
being dominated by very similar or very dissimilar images.

e Normal Distribution: The distribution of similarity scores forms a bell-shaped curve,
resembling a normal distribution. This suggests a balanced dataset where most image pairs
had moderate similarity, with fewer pairs being either very similar or very dissimilar. This
balance is indicative of diversity, as it implies that the dataset does not have a bias towards

a specific type of image content.
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Fig. 3.8. Similarity score histogram of RGB images in the dataset

The histogram provides evidence that the dataset is diverse, with a wide range of similarity
scores and a balanced distribution of similarities. Despite the computational limitations that
required analyzing a subset of smaller images, the results indicate that the dataset contains a variety
of images with differing levels of similarity, which should comprehensively evaluate the capability
of the proposed methods for bird segmentation.

Selecting the optimal model for zero-shot hen detection

Table 3.1 presents a comparative analysis of hen detection performance using various zero-
shot segmentation algorithms. The primary metric for this evaluation was the success rate, defined
as the percentage of images with an IoU greater than 50%. Images meeting or surpassing this 50%
IoU threshold were classified as successfully detected and segmented, thereby positively

impacting the overall success rate.

Table 1
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Table 3.1. comparative analysis of hen detection performance

Models Success Rate (%)
YOLOV8 50.0
Thermal image + MobileSAM 82.0
Thermal image + SAM 84.4
Thermal image + FastSAM 72.8
Mask R-CNN 64.2
YOLOV7 83.2
YOLOvV7 (box prompts) + SAM 98.0
YOLOV7 (point prompts) + SAM 94.0

In reviewing the data in Table 3.1, it becomes clear that the proposed method (YOLOv7
(box prompts) + SAM) achieved a significantly higher success rate in detecting and segmenting
hens compared to other methods. This metric is important because it measures the percentage of
instances where the algorithm accurately identifies and delineates the birds. The comparative
analysis shows that the improved success rate of the proposed method, especially when compared
to SAM using point prompts from thermal imaging (which required pre- and post-processing
steps), highlights the significant impact of the modifications on the algorithm’s efficiency. These
techniques likely enhance the model's ability to distinguish between the hens and their
surroundings by optimizing the quality of the input data. With this new method, pre- and post-
processing steps are unnecessary since the initial prompt is chosen effectively, resulting in optimal

output masks without selecting the best mask by a well-trained machine learning classifier.
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Conversely, the lower success rate (50.0%) of YOLOvS highlights a limitation in its zero-
shot detection capabilities, particularly in accurately identifying chickens. Although YOLOvV8 and
Mask R-CNN are robust models, their performance is not optimized for this specific application
without training on a dataset specific to chickens. The main goal was to use a zero-shot instance
segmentation method that functions without requiring any image training. This approach aligns
with the broader objective of deploying efficient and adaptable models capable of handling various
segmentation tasks with minimal setup, emphasizing the value of SAM as a promising tool in zero-
shot segmentation scenarios.

Comparison of different models for hen segmentation
To assess the segmentation capabilities of various models, Table 3.2 presents a comparison

of different segmentation metrics across the models.

Table 3.2. comparison of different segmentation metrics across the models.

Evaluation criteria (%)

Models
Precision Recall F1 Score IoU
YOLOVS 97.4 81.4 88.4 79.5
Thermal image + MobileSAM 91.8 90.7 91.2 83.6
Thermal image + SAM 93.6 91.0 923 85.5
Thermal image + FastSAM 92.5 90.4 91.4 84.1
Mask R-CNN 87.5 90.2 88.8 79.9
YOLOV7 (box prompts) + SAM 92.5 98.2 95.1 91.0
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YOLOV7 (point prompts) + SAM 923 93.3 92.7 86.6

All the models exhibit relatively consistent segmentation metrics, except for YOLOvV7 (box
prompts) + SAM, which significantly outperforms the others. This superior performance suggests
that using a well-chosen bounding box prompt effectively captures the entire chicken body, as it
covers the chicken's full extent rather than just a single point, like the point prompt. The point
prompt is generally less effective because it provides a less comprehensive representation of the
bird, resulting in poorer generalization.

The bounding box prompt offers a complete outline of the birds, ensuring that all relevant
parts are included in the segmentation process. This comprehensive approach enables the model
to generalize better and accurately segment the entire bird. On the other hand, a point prompt
focuses on a single location, often missing parts of the bird and leading to incomplete and less
reliable segmentation. This distinction underscores the importance of selecting the appropriate
prompt type to enhance model accuracy and reliability. By covering the entire bird, the bounding
box prompt allows the model to understand the context and boundaries more effectively, resulting
in higher segmentation accuracy. This method does not only improve the model's ability to capture
details but also enhances its capability to generalize across different instances of the object.

The success of YOLOv7 (box prompts) + SAM highlights the critical role of prompt
selection in optimizing segmentation performance.

Figure 3.9 illustrates the segmentation results achieved by different models. According to

the figure, the YOLOV7 (box prompts) + SAM could segment a more complete body.
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Fig. 3.9. Segmentation results of different models: a) RGB image; b) thermal image + MobileSAM;

c¢) thermal image + FastSAM; d) thermal image + SAM; e) YOLOVS; f) Mask R-CNN; g) YOLOv7

(box prompt) + SAM; h) YOLOvV7 (point prompts) + SAM; and 1) ground truth.

Conclusion

The comprehensive evaluation of various zero-shot segmentation models for hen detection
highlights the superior performance of the YOLOv7 + SAM model with a bounding box prompt,
achieving an impressive 98.0% success rate. This model effectively captures the entire bird,
reducing the need for extensive pre-processing and post-processing, and outperforms other models
such as YOLOVS and Mask R-CNN, which showed limitations without specific training. The
success of YOLOv7 + SAM underscores the potential of zero-shot segmentation techniques to
provide flexible, efficient solutions in specialized applications, setting a benchmark for future tasks
and promising significant enhancements in operational efficiency and monitoring accuracy in

agricultural settings.
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CHAPTER IV

ANIMALAI: AN OPEN-SOURCE WEB PLATFORM FOR AUTOMATED ANIMAL
ACTIVITY INDEX CALCULATION USING INTERACTIVE DEEP LEARNING

SEGMENTATION

Monitoring of the activity index of animals is considered crucial for assessing their welfare
and behavior patterns. However, traditional methods for calculating the activity index, such as
pixel intensity differencing of entire frames, are often found to suffer from significant interference
and noise, leading to inaccurate results. The classical activity index method is also lacking in the
capability to measure the activity index of individual animals, making it impossible to track the
movement of specific animals within a group. Furthermore, no free and accessible online platform
is currently available for non-technical researchers to calculate animal activity index, thereby
creating a gap in the tools available for animal welfare studies. Tracking all individual animals in
a video can be computationally expensive. The objectives of this research were to 1) develop a
user-friendly, open-source platform using Streamlit to enable researchers to calculate the activity
index of animals, either individually or in groups, from video footage; and 2) explore the
representative proportion of animals to depict the whole group activity index, for saving computing
time and resources. Top-view videos can be easily uploaded, and animals can be selected for
targeted tracking. A general deep learning-based image segmentation model, the Segment
Anything Model2 (SAM2) that is a promptable segmentation model, was used to segment and

track individual animals across frames without the need for extensive training or annotation.
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Consistent and accurate segmentation and tracking were ensured by the platform, thereby
overcoming the challenges posed by noise and interference in classical methods. The SAM2
segmented and tracked Cobb500 male broiler chicken in videos from weeks 1 to 7 with a
segmentation success rate of 100%, Intersection over Union (IoU) of 92.21% =+ 0.012, precision
0f93.87% +0.019, recall 0f 98.15% +0.011, and F1 score of 95.94% =+ 0.006. These metrics were
calculated from 1,157 individual chickens. Statistical analysis revealed that tracking 80% of birds
in week 1, 60% in week 4, and 40% in week 7 was significantly sufficient (#>0.90; P < 0.048) to
depict the overall flock movement. This user-friendly tool is provided to researchers as an
accessible and efficient way to track and analyze animal behavior patterns, delivering accurate and
reliable insights into animal welfare at both the individual and group levels without requiring
extensive programming knowledge.
Introduction

Animal activity plays a pivotal role in understanding welfare, health, and behavior patterns
across various livestock species (Bocaj et al., 2020; Oso et al., 2025; Tran et al., 2022). In modern
animal production systems, continuous observation and prompt detection of abnormal behaviors
are paramount for maintaining high standards of welfare and maximizing productivity (Elbarrany
et al., 2023). Capturing animal activity—broadly defined as the frequency or extent of movement
over time—can offer valuable insights for both researchers and producers to make evidence-based
decisions. In poultry, for example, sudden changes in flock movement may indicate issues like
heat stress or disease outbreaks. In cattle and pigs, activity patterns can help detect lameness or
identify periods of increased stress (Chen et al., 2021; Fuentes et al., 2020). As such, techniques

that enable robust and efficient estimation of the activity are indispensable.
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In order to quantify animal activity, the activity index, a measure of movement intensity
through image processing, was proposed by (Bloemen et al., 1997). Activity index was defined
as the percentage of pixels of moving objects to the total number of pixels within the image
(including animals and background). In more recent research, the total number of pixels was
replaced with total bird-representative pixels to compensate for variations in animal size at
different ages (Aydin et al., 2010; Li et al., 2020; Silvera et al., 2017). Since the concept was
coined, the activity index has been widely used to quantify the activities of broilers (Kristensen et
al., 2006; Neves et al., 2015). The concept has been applied to develop a commercial computer
vision system, named eYeNamic, and the vision system has been applied in several European
studies (Pefia Fernandez et al., 2018; Silvera et al., 2017).

While classical activity index calculation method can be quick to implement and
computationally straightforward, it tends to be highly sensitive to noise and environmental factors
such as lighting fluctuations, camera vibrations, or background movements such as human
interference (Sengar and Mukhopadhyay, 2017). Moreover, applying pixel intensity differencing
to an entire scene restricts researchers to group-level activity assessments. In many practical
scenarios, especially those involving large populations of animals housed together, the interest lies
in pinpointing the movements of specific individuals. Without the ability to segment and track
individual animals, vital data—such as determining which animals are underactive or
hyperactive—remain inaccessible.

Deep learning-based methods have substantially advanced object detection and
segmentation in recent years (Li and Chai, 2023; Saeidifar et al., 2024; Shams et al., 2023).
However, developing a specialized segmentation model for each livestock species or experimental

setup can be prohibitively time-consuming and expensive. Researchers would need to curate and
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annotate large image datasets, train convolutional neural networks or transformers, and then
continuously update these models as lighting conditions, camera angles, or animal growth stages
change. This complexity has motivated the rise of more generalized segmentation models that are
pre-trained on vast and diverse image corpora, allowing them to perform “zero-shot” or “few-shot”
segmentation on new types of objects (Ravi et al., 2024). One such model is SAM2, a powerful
variant of the foundational SAM (Ravi et al., 2024). SAM?2 has been lauded for its ability to quickly
and accurately identify objects of interest with minimal prompting, effectively reducing the need
for large-scale annotation (Ravi et al., 2024). Unlike traditional models that often fail when
confronted with new species or environments, SAM?2 has been broadly trained with billions of
image masks, enabling it to handle a wide range of scenes and animal morphologies. Alongside
these advances in segmentation, there has also been a growing need for accessible, user-friendly
platforms that can seamlessly integrate deep learning into everyday research workflows. The user-
friendly platforms are especially important for scholars who do not have sufficient computing
backgrounds for coding but would love to use the automatic tools to support animal research for
advancing animal products.

Several user-friendly platforms were developed in the animal behavior domain to assist
researchers in tracking and analyzing animal movements. For instance, the AnimalAccML
integrated multiple machine learning models and feature engineering techniques and enabled users
to automatically analyze behaviors of with several mouse clicks based on triaxial accelerometer
data, which is not suitable for computer vision-based metric analytics (Li and Chai, 2023).
DeepLabCut was a widely adopted open-source tool that leverages deep learning for markerless
pose estimation in images/videos (Mathis et al., 2018). Its user-friendly interface made it popular

among researchers; however, it generally required extensive manual annotation and a considerable

114



amount of training data to adapt to different species or experimental conditions. This reliance on
manual setup hindered rapid deployment in novel environments and limits its utility for studies
that require immediate or real-time analysis. Another notable example is idtracker.ai, which
offered automated tracking of individual animals within groups (Romero-Ferrero et al., 2019).
While it simplified the tracking process and is relatively intuitive, idtracker.ai tended to be
computationally intensive, especially when dealing with large groups or high-resolution video
footages. Moreover, its performance degraded in scenarios with significant noise, variable lighting,
or complex backgrounds, thereby reduced its reliability in accurately capturing animal movement
dynamics (Dell et al., 2014).

Despite the advancements these platforms represent, they were not designed to compute
the animal activity index automatically. Their primary focus lies in detailed tracking and pose
estimation rather than in providing a comprehensive, user-friendly solution for calculating
movement-based metrics such as the activity index at either the individual or group level. In
conclusion, while current tools offer valuable functionalities in animal tracking and behavior
analysis, there remains a notable gap: there is currently no user-friendly platform that
automatically calculates the animal activity index, highlighting an unmet need in animal welfare
research and monitoring.

Several studies in the field of collective animal behavior have demonstrated that
monitoring a representative subset of individuals can effectively capture the overall dynamics of a
group, aiming to improve computational efficiencies. For example, in a study investigating the
spatial organization and interaction rules within starling flocks, researchers found that each bird
interacted with a fixed number of neighbors (six to seven) rather than all nearby individuals. This

topological interaction enabled flocks to maintain cohesion and coordinated movement, even
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under changing densities and external perturbations. Although the study did not directly address
representative sampling, the idea that a limited number of local interactions govern the behavior
of the entire group implies that monitoring a subset of individuals could reveal key aspects of
collective dynamics (Ballerini et al., 2008). Similarly, in another study on the collective behavior
of midge swarms, researchers found that individual midges were strongly connected, even beyond
their nearest neighbors. Even in the absence of global order, midges exhibited coherent movement
patterns that could be explained by localized interactions. Their study demonstrated that these
correlations reflect emergent group-level behavior, suggesting that sampling a fraction of
individuals can provide reliable insights into the overall dynamics of the swarm. By employing
simulations of interacting particles, they further showed that local measurements could scale up to
describe the collective response of the entire group (Attanasi et al., 2014).

Our exploration of different sampling ratios (20%, 40%, 60%, and 80%) across key growth
stages in broilers addressed this gap. By systematically determining the optimal proportion of birds
needed to accurately represent the entire flock’s activity, our study provided a practical framework
that reduced computational demands without compromising the reliability of activity index
measurements. This tailored approach is particularly relevant for commercial applications, where
rapid and resource-efficient monitoring is essential for effective animal welfare management. The
objectives of this research were to 1) develop a user-friendly, open-source platform to enable
researchers to calculate the activity index of animals, either individually or in groups, from video
footage; and 2) explore the representative proportion of animals to depict the whole group activity

index, for saving computing time and resources.
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Materials and Methods

Animal housing and video data collection

For the purpose of validating the segmentation model, a subset of a larger video dataset
was used. This dataset was collected at the University of Georgia’s Poultry Research Center during
May—June 2024. A total of 1,776 day-old Cobb 500 broiler chickens were randomly assigned to
48 pens, with 37 birds being allocated per pen, within two environmentally controlled rooms. The
rooms were measured to be approximately 17.2m in length by 11.4m in width and were
subdivided into two rows of 12 identical pens, each of which measured 1.2 m by 3.0 m. Two
feeders were provided at opposite ends of every pen, and two centrally located drinking lines were
installed. Standard environmental conditions were maintained in accordance with the Cobb
management guidelines (Cobb, 2022), with feed and water provided ad libitum. Lighting and
temperature adjustments were made according to age-specific protocols throughout the rearing
period. Video recordings were acquired using overhead security cameras (NHD-887MSB, Swann
Security, Santa Fe Springs, CA) that were mounted on the ceiling at a distance of approximately
3.05m above each pen. Continuous recordings were managed by 16-channel video recorders
(SRDVR-85680H-US, Swann Security, Santa Fe Springs, CA). The recordings were set at a
resolution of 1024 x 768 pixels and at 15 frames per second (fps), and the video data were stored
as .MP4 files on a 20-terabyte external hard disk. A total of 34 videos from week 1 through week
7 were selected, and 1157 individuals were used for evaluation. Although all birds from the large
study were included in the complete dataset, the subset for evaluation was chosen so as to ensure
a representative distribution across developmental stages from week 1 (early phase), week 4
(medium phase), and week 7 (late phase). All experimental procedures, including the video

recordings, were performed in compliance with protocols approved by the Institutional Animal
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Care and Use Committee (IACUC) at the University of Georgia (protocol number: A2023 07-016-
Y1-A0).
Overall workflow

Figure 4.1 illustrates the Streamlit-based interface workflow for calculating the animals’
activity index. Once the application was launched, a user-friendly graphical interface was loaded
in the default web browser. The user could upload a video of up to one hour in length for the
convenience of data visualization. If a video exceeded this duration, the interface issued a warning
and recommended trimming. Subsequently, key parameters, such as frame interval, can be
specified by the user. The system extracted frames from the uploaded video and displayed the first
frame so the user can pinpoint, via mouse click, the location of the animal or region of interest. If
the user was dissatisfied with the selected coordinate, an ‘undo’ option reverted the choice until
the coordinate was precisely defined. After confirming the chosen coordinates, the interface
proceeded to segment the video, generating both an RGB mask frame and a binary mask frame.
This segmentation underpinned the computation of an activity index, which was then plotted and
viewable within the interface. Additionally, the activity index plot, as well as the normalized
activity index for each consecutive frame, were saved as a PNG and TXT file, respectively. In
addition, users can inspect frames derived from frame differencing for a more detailed overview
of movement and check whether the segmentation was successful or not. Although Figure 1 shows
a typical workflow, users may adjust certain steps (e.g., re-uploading trimmed clips or revisiting
parameter settings) according to their experimental needs. Detailed descriptions of each phase and
the options offered by the Streamlit interface are provided in the following sections. The interface

was published on GitHub (https://github.com/MahtabSaeidifar/AnimalAl) for open access.
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In this study, the entire platform was developed solely using Python, which enabled all
components to be consolidated into a single consistent computing environment to enhance code
readability and maintainability. The most important packages used in our platform were torch
(v2.4.1) for deep learning, streamlit (v1.19.0) for developing interactive web applications, numpy
(v1.26.4) for numerical computations, pandas (v1.4.2) for data manipulation, matplotlib (v3.9.2)
for data visualization, and jupyterlab (v4.2.4) for providing an interactive development
environment. In addition, the SAM2 package was installed directly from its GitHub repository
(https://github.com/facebookresearch/sam?2) to facilitate segmentation tasks. The computer used
for platform development and evaluation was equipped with a 13th Gen Intel® Core™ 17-13700
processor, featuring 24 logical CPUs with clock speeds ranging from 0.8 GHz to 5.2 GHz, 62 GiB

of installed RAM, and a 64-bit operating system.
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blue color indicates main processing steps; orange color indicates decision points; purple color

indicates user input parameters; and green color indicates files saved in the main directory.

Video uploading

Once the application was launched, a user-friendly graphical interface was displayed in the
web browser, allowing for an intuitive interaction. The interface prompted the user to upload a
video, accepting various formats (e.g., MP4, MOV, AVI, and MPEG4). The recommended
maximum duration for the video was one hour; if the uploaded file exceeded this length, the system

automatically issues a warning and advised trimming the video to under one hour. This
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recommendation helps ensure faster processing times and reduces computational overhead during
subsequent steps.
Video frame extraction

Once the user has uploaded a video, the application automatically evaluated the duration
of the file and generated a range of recommended frame intervals. These recommendations aimed
to strike a balance between capturing sufficient details and minimizing both storage requirements
and computational resources. While users are free to override the recommended settings and
specify a custom interval, adhering to the suggested range is generally preferred for optimal
efficiency and data manageability.

By selecting an interval, the user essentially controlled the frequency of frames to be
extracted: smaller intervals yield more frames (allowing for finer-grained analysis) but required
greater storage and computational power, whereas larger intervals reduced the number of frames
extracted and offer lowered storage demands at the potential cost of missing some subtle
movements. After choosing a frame interval, users can click the ‘Extract Frames’ button to trigger
the extraction process as shown in Figure 4.2. The resulting frames were automatically stored in a
designated directory, ensuring that they can be readily accessed in subsequent stages of the

workflow (e.g., segmentation, activity index calculation, or further analysis).
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AnimalAl: An Open-Source Web
Platform for Automated Animal
Activity Index Calculation Using
Interactive Deep Learning
Segmentation

Current Working Directory: /media/mahtab/Windows/streamlitproject/segment-anything-2

Upload your video file
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Browse files
Limit 5GB per file « MP4, MOV, AV
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Enter the frame interval in seconds:
0.50 = &

Extract Frames

Fig. 4.2. The graphical user interface of the application displaying the frame extraction process.
Users can select a frame interval after uploading a video, adjust settings based on recommendations,

and trigger the extraction process using the ‘Extract Frames’ button.

Interactive animal selection

Following frame extraction, the interface automatically displayed the first frame from the
video so that the user can identify the animal(s) to be segmented from the background. Using a
mouse click, users can select one or multiple animals (e.g., one, two, three, or potentially all visible
objects) within the frame. Each click isolated the chosen subject by registering its coordinates,

which guide subsequent segmentation tasks. If the user is dissatisfied with any selections, an
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‘undo’ button enables a quick reversion, allowing for precise, iterative refinement of the selected
coordinates.

This interactive step was crucial for achieving reliable isolation of the target animals from
extraneous background elements. By removing other moving objects and environmental noises,
the application is better able to deliver accurate analysis of movement or behavior in subsequent
phases. Moreover, the flexibility to select multiple animals within a single frame offers a
comprehensive approach for studies involving group dynamics or interactions.

Segmentation using Segment Anything Model 2

Once the targeted animals were selected, the segmentation process was initiated by clicking
on the ‘Segment’ button (Figure 4.3). The foundation model known as SAM2 was employed to
handle promptable visual segmentation in both images and videos. In SAM2, a data engine was
built and refined through user interactions, culminating in the creation of largest video
segmentation datasets to date. A simple transformer architecture with streaming memory was
adopted to enable real-time video processing (Ravi et al., 2024).

By leveraging its extensive pretraining on a large and diverse dataset, SAM2 demonstrated
strong performance across a wide range of segmentation tasks in both videos and images. In the
context of video segmentation, higher accuracy has been observed with only one-third the user
interactions required by previous approaches, and image segmentation ran 6x faster and more
accurately compared to the original SAM. Notably, no additional training was required for specific
tasks; instead, the user-selected coordinates served as prompts for guiding the segmentation, which
was then automatically propagated to subsequent frames.

After the segmentation process was completed, two directories were created to store the

results. One directory housed the RGB mask frames, in which the selected animals were distinctly

123



highlighted, while the other stored the binary mask frames, where only the targeted animals were

shown in isolation. Figure 4.3 illustrates examples of both the RGB mask frames and the

corresponding binary mask frames.

Use the canvas below to select object points. For best results:
* Choose the 'circle’ tool from the toolbar on the left.
* Click on the image to place a small circle at the object location(s).

* Add as many object points as needed. Each circle represents one object.

e @

Segment

[ —

p——-——

Fig. 4.3. Examples of segmentation outputs generated by the application using the Segment

Anything Model 2. The RGB mask frames (top-right) highlight the selected animals in distinct

colors, while the binary mask frames (bottom-right) isolate the targeted animals from the

background.
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Frame differencing for calculating activity index

Activity within a video sequence was assessed by measuring the extent of pixel-level
changes between consecutive segmented frames (i.e., the binary mask frames). To achieve this,
the difference between the current binary frame and the preceding frame was computed using an
absolute difference operation. The resulting differenced frame highlights any pixels that have
changed, indicating movement or behavioral changes. Figure 4.4 illustrates a series of these

differenced frames.
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Frame 1 Frame 2 Difference Frame

Frame 2 Frame 3 Difference Frame

Frame 3 Frame 4 Difference Frame

Fig. 4.4. Series of differenced frames illustrating pixel-level changes between consecutive

segmented frames (binary mask frames) for calculating animal activity index.

To obtain an overall measure of activity, the number of changed pixels in each differenced

frame was normalized by the combined pixel count of the current and previous frames. Formally,

the activity index for frame i is calculated in Equation (4.1).
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Dif f_pixel_count;

Activity index; = (4.1)

Pixel_count_current + Pixel_count_previous
where the term Dif f_pixel_count i is the total number of nonzero pixels in the “difference
frame,” which is obtained by subtracting the pixel values of frame i +1 from frame i, Thus, these
nonzero pixels highlight the regions that have changed between the two consecutive frames.
Meanwhile, pixel count current and pixel count previous each represent the total number of
nonzero pixels in frames i +1 and i, respectively. The two frames were used to generate the
difference frame. This ratio ensured that the activity index remained bounded between 0 and 1. A
higher value indicated greater movement, while a lower value suggested minimal changes.

Additionally, the normalized activity index for each consecutive frame was saved in a TXT
file in the main directory. This is useful for users to further analyze the results on their own,
enabling deeper insights into movement patterns and behavioral trends from an animal scientist’s
perspectives.
Visualizing the activity index

Once the frame differencing procedure was completed, an activity index plot was
automatically generated to illustrate the level of movement for the selected animals throughout the
video. As shown in Figure 4.5, the x-axis represents the video time in minutes and seconds, while
the y-axis ranges from 0 (indicating no movement) to 1 (reflecting the highest activity index). For
each timestamp, a corresponding activity index value was displayed, enabling researchers to
identify periods of heightened activity or relative inactivity. This visualization was invaluable for
understanding the dynamics of animal behavior, as it condensed movement data into a single,
intuitive plot for efficient analysis. Additionally, the generated activity index plot was saved in the

main directory, allowing users to access and utilize it for further examination or reporting.
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Normalized Activity Index Over Time

Normalized Activity Index
© o o o o o
N w H w [=)] ~
N ) L L ) .

o©
-
L

M T T T T T

P > P XA AL D v b‘bb"v&b‘b%'\/vb‘bQ’bb‘b
QQQQQQQQQQQ Q QxQ&QNQ’»Q’LQ’LQWQwQ%Q%Q%Q’b tvaQb‘Qb‘QvaQ%Q%QG)Q‘O

Time (minutes:seconds)

o
=}
\

Fig. 4.5. Activity index plot illustrating the level of movement for the selected animals throughout
the video. The x-axis denotes the video duration in minutes and seconds, while the y-axis ranges

from 0 (minimal activity) to 1 (maximum activity).

Evaluation metrics calculation

This study employed a robust suite of evaluation metrics to independently gauge the
performance of tracking and segmentation. The SAM?2 evaluation leverages a dataset consisting
of 1,157 individual chickens from 82 different video frames. The annotation of these images was
carried out by a well-trained technician using Roboflow, which ensured the provision of high-
precision masks that delineated the most complete depiction of each chicken in each frame.
Subsequently, another well-trained technician conducted a double verification to guarantee the
accuracy and quality of the labeling. This rigorous ground truth formed the benchmark for

assessing the segmentation models' accuracy.
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The SAM?2 segmentation performance was evaluated with precision, recall, F1 score, and
Intersection over Union (IoU) as described in Equations (4.2), (4.3), (4.4), and (4.5). The precision
measures the accuracy of the segmentation model in identifying only relevant pixels as part of the
segmentation. It is the ratio of correctly predicted positive observations to the total predicted
positive observations. Recall, also known as sensitivity, measures the model's ability to correctly
identify all relevant pixels. It is the ratio of correctly predicted positive observations to all
observations that should have been labeled as positive. The F1 Score is the harmonic mean of
precision and recall and a measure of the model's accuracy. An F1 Score reaches its best value at
1 (perfect precision and recall) and worst at 0. IoU is a measure used to quantify the percent overlap
between the target mask and the model's prediction output. It is calculated by dividing the area of

overlap between the predicted segmentation and the ground truth by the area of union.

o True positive
Precision = — — (4.2)
True positive + False positive

True positive
Recall = — - (4.3)
True positive + False negative

Precision X Recall

= 2X )
Flscore 2 Precision + Recall (44)

True positive
IoU = — — - (4.5)
True positive + False positive + False negative

where true positive refers to pixels that are correctly identified as part of birds; false positive are
the pixels that the segmentation model incorrectly identifies as part of birds, but they actually
belong to the background; false negative is used for pixels that are part of birds in the ground truth
but are missed by the segmentation model.

A successful segmentation is one where the IoU is 50% or greater, which aligns with

standard thresholds used in prominent publications (Girshick, 2015; He et al., 2017; Redmon and
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Farhadi, 2018). The success rate thus reflects the percentage of images in which the models

successfully tracked and segmented the chicken areas shown in Equation (4.6).

Number of successfully tracked & segmented images (IoU > 0.5)
Success rate = - (4.6)
Total number of images

Evaluating the impact of segmentation on activity index accuracy

To evaluate whether segmentation improved the accuracy of the activity index, 480 video
frames were selected from week 4 recordings. These frames contained human interference and
other unnecessary object movements (e.g., feeders and fans), providing a challenging scenario for
activity-index calculation. Two methods were applied. First, the conventional “no-segmentation”
approach involved subtracting consecutive frames to generate a difference frame, followed by
applying a threshold value of 50 to binarize the result. White pixels in the binary image indicated
movement, and black pixels indicated no movement. The activity index for each frame was then
calculated based on the count of white pixels in that frame.

Second, in the segmentation-based method, all chickens in each frame were isolated using
SAM?2 before frame differencing. This removed non-essential background elements, including any
human interference. The white-pixel counts were again used to compute the activity index. To
determine whether these two approaches (with and without segmentation) produced significantly
different mean activity levels, a paired t-test was conducted, with statistical significance set at P <
0.05. This comparison enabled a clearer assessment of how removing background motion
influences the reliability of activity-index measurements.
Statistical analysis of different ratios of birds to represent the entire group’s activity

Tracking every individual bird can be time-consuming and computationally expensive.
Consequently, this study tested whether sampling a subset of birds could reliably represent the

entire flock’s movement patterns at different growth stages. Four different sampling ratios—20%,
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40%, 60%, and 80% of the flock—were compared to the 100% baseline at three ages (weeks 1, 4,
and 7). The number of birds selected from a pen was 7 for 20%, 15 for 40%, 22 for 60%, 30 for
80%, and 37 for 100%. Six distinct initializations (i.e., sets of randomly selected birds in feeder,
drinker, corner, and open regions of the pen) were used per ratio to reduce spatial bias. All video
data for this analysis were obtained as described earlier. Briefly, from each selected video clip,
480 consecutive frames (15 frames per second over ~32 seconds) were extracted. Within these
frames, the developed platform isolated only the chosen subset of birds for each ratio, and an
activity index was calculated by comparing pixel-wise differences between consecutive segmented
frames. Parallel calculations were made for the 100% baseline (i.e., the entire flock).

The Pearson correlation coefficient (r value), as shown in Equation (4.7), was computed
between each subset’s activity index (at varying sampling percentages) and the full flock’s index
across six different initializations. The analyses were performed in Python (v3.9) using the pandas,
numpy, and statsmodels libraries. This approach enabled a straightforward evaluation of whether
a reduced sampling ratio could reliably represent overall flock activity while minimizing
computational overhead. minimizing computational overhead.

_ -0 -
(205 - 2750 - 77

(4.7)

where x; represents the i" observation for variable X, y; represents the it" observation for
variable Y, X is the mean of all X values, and yis the mean of all Y values. The numerator captures
how X and Y co-vary (or change together), while the denominator normalizes these deviations,
keeping r dimensionless and ranging from -1 to +1.

According to a study, the correlation was negligible with r being 0.00 to 0.30 or 0.00 to -

0.30, low with r being 0.31 to 0.50 or -0.31 to -0.50, moderate with r being 0.51 to 0.70 or -0.51
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to -0.70, high with r being 0.71 to 0.90 or -0.71 to -0.90, and very high with r being 0.91 to 1.00
or -0.91 to -1.00 (Hinkle et al., 2003). Additionally, following the computation of the r value
between each representation and the entire flock, a statistical comparison of the activity indices
was carried out across different pairs of representations to determine whether they differ
significantly. A significance level of P < 0.05 was applied, meaning that any P-value below 0.05
indicates a significant difference, while values above this threshold suggest no meaningful
difference. If no statistically significant differences were observed, a smaller sampling ratio may
be selected without sacrificing accuracy, thus reducing both computational load and resource
requirements.

Results and discussion

Example procedure of interface operations

Below is a general procedure for video-based activity index calculation using the
developed web-based platform. The platform guided users step-by-step through video
segmentation and activity index generation. Some of the computational user interfaces are
presented in Figures. 4.2-4.5.
Step 1: Run the platform and launch the interface using the command, which load the platform in
a web browser. The main interface page then appears one a default web browser.
Step 2: Click the ‘Browse files’ button to upload a video file.
Step 3: The platform automatically checks whether the uploaded video is less than one hour in
duration. If it is not, a warning message will be displayed, prompting the user to trim the video
before proceeding.
Step 4: Input the frame interval for frame extraction based on either the recommended frame

interval or the user’s choice.
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Step 5: Once the frame interval is set, the platform will extract individual frames from the video.
The first frame will be displayed for visualization and selection of the animals to be tracked.
Step 6: Using the mouse, the user can click on the animal’s location within the first frame to input
its coordinates. This step initializes the segmentation process by identifying the region of interest.
Step 7: Confirm whether the selected coordinates are correct. If not, click the ‘undo’ button to
adjust the coordinates and select a new region.
Step 8: When satisfied with the input, click the ‘Segment’ button. The platform will begin
segmenting the video, generating both RGB mask frames and binary mask frames that highlight
the animals of interest.
Step 9: The platform displays the activity index plot for the targeted, segmented animal across the
video.
Step 10: Finally, the platform displays frames obtained through frame differencing, providing a
dynamic view of motion changes throughout the video.
Segmentation performance on a chicken dataset

In this study, the effectiveness of SAM2 was evaluated within a web-based pipeline using
a dedicated chicken dataset as mentioned earlier. The dataset comprised multiple video clips
captured under diverse lighting conditions (5-10 lux), varying stocking densities (30-37 birds in a
1.2 m wide % 3.0 m long pen), and different chicken ages (weeks 1 to 7). This enabled to challenge
the model’s robustness under realistic, real-world scenarios. As shown in Figure 4.6, SAM2
produces high-quality segmentation results across chickens of different ages, demonstrating its

adaptability to variations commonly encountered in poultry management settings.
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Fig. 4.6. SAM2 segmentation results: (a) the original frame, (b) the corresponding RGB mask

output, (c) the Binary mask output, and (d) the ground truth segmentation.

SAM2 was selected for this project because it is specifically designed for interactive,
prompt-based segmentation. In practice, a user can indicate the animal of interest by simply
clicking or drawing a bounding box, after which SAM2 automatically tracked and segmented that
animal throughout the video. This user-driven workflow was ideally suited for a web-based
application where videos were uploaded, the target object(s) were selected, and precise mask

outputs were generated without reliance on a fixed set of predefined object classes. By using

134



prompts, the model effectively mitigated challenges posed by occlusions and cluttered
backgrounds, which are the issues frequently encountered in livestock environments. This
approach was consistent with earlier studies that have shown minimal, yet precise user input can
substantially improve segmentation accuracy (Kirillov et al., 2023; Sofiiuk et al., 2022).

To quantify the segmentation accuracy of SAM2 on chickens at various ages, several
established performance metrics, including precision, recall, F1 score, loU, and success rate, were
employed. Table 4.1 summarizes these quantitative results for segmenting broiler chickens in
weeks 1, 4, and 7. The consistently high scores (100% success rate, over 92% precision, over 97%
recall, over 92%, and over 90% IoU) across different conditions indicate that SAM2 can generalize
well, even when the visual appearance of the subjects changes due to factors such as age or
lighting. Earlier segmentation methods relied on user-drawn bounding boxes or scribbles and can
struggle with background clutter and occlusion (Rother et al., 2004). Unlike the earlier methods,
the current method leveraged prompt-based guidance to focus precisely on regions of interest with
the robust model architecture. Furthermore, SAM demonstrated high efficiency in practical
deployment, requiring minimal user interaction while achieving accurate segmentation. Its refined
prompt-based strategy effectively directed the model’s attention to relevant regions, enabling
precise segmentation without extensive manual annotation. This aligned with findings that SAM
outperformed conventional models like SegFormer and SETR in zero-shot segmentation,
achieving a mloU of 94.8%, and operated effectively without additional training, reducing the

burden of manual input while maintaining high performance (Yang et al., 2024).
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Table 4.1. Segmentation performance of Segment Anything Model 2 for segmenting broiler

chickens at Weeks 1-217.

Evaluation criteria (%)

Chicken age —
Precision Recall F1 score IoU Success rate
Weekl 92.13 98.40 95.16 90.77 100
Week4 94.42 98.29 96.29 92.85 100
Week7 94.75 97.86 92.26 92.79 100

The demonstrated performance has clear implications for real-world applications in
precision poultry monitoring. For instance, integrating SAM2 into a web-based system would
allow research scholars, regardless of coding or computing expertise, to upload videos, use simple
prompts to segment individual chickens, and receive accurate segmentation masks in real time.
Such a system would not only facilitate automated flock monitoring and behavioral analysis but
could also be extended to support tasks such as weight prediction or movement tracking. Recent
advancements in poultry monitoring have further illustrated how segmentation outputs can be
utilized as critical inputs for data-driven livestock management. For instance, SAM-segmented
results were combined with thermal images to extract various statistics of chickens’ body
temperature, facilitating more accurate assessments of their thermal conditions (Saeidifar et al.,
2024).

Overall, the robust performance of SAM2 across diverse environmental and biological
conditions, combined with its interactive and user-friendly design, confirmed its suitability for
applications that require high-quality segmentation with minimal manual input. These results
validate the technical capabilities of SAM2 while highlighting its potential to drive innovation in

precision livestock farming and similar real-world domains.
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Comparison of activity index calculation with and without segmentation

A total of 480 frames from week 4 recordings were analyzed to compare the results of
activity index calculation with and without segmentation. As summarized in Figure 4.7, the
segmented method produced lower and more consistent activity-index values (mean + SD) relative

to the unsegmented approach, indicating a reduction in background-induced noise.

Normalized Activity Index Over Time for Consecutive Frames

Frame 1 Frame 2 Difference Frame
— . vy " N

Frame 1 Frame 2 Difference Frame

Fig. 4.7. Effect of segmentation on the accuracy of the activity index: the top row shows the

approach without segmentation, while the bottom row shows the approach with segmentation.

A paired t-test revealed a significant difference (P<0.01) between the two sets of activity-
index measurements, demonstrating that removing non-essential background motion (e.g., human
interference) meaningfully enhances the accuracy of the computed activity index. The activity
index after segmentation was substantially reduced, with an average value of 3167.12 (mean

absolute deviation of 2329.57), compared to 6302.64 (mean absolute deviation of 3744.55)
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recorded before segmentation (i.e., prior to normalization). Frames with noticeable external
movement had higher activity indices under the no-segmentation approach, whereas the
segmentation-based method isolated chicken-related motion, minimizing overestimation and
producing a smoother time series. These findings align with precision livestock monitoring studies,
which have demonstrated that focusing on target subjects, such as chickens, reduces noise from
extraneous interference by isolating them from distracting elements like moving litter, feathers,
droppings, or human presence. This approach, particularly through image segmentation, improves
data quality and tracking precision (Yang et al., 2024).

In practical applications, these results support the integration of segmentation as a pre-
processing step in real-world poultry monitoring systems. By using segmented frames to calculate
activity indexes, researchers can obtain more accurate, noise-free measurements that better reflect
true animal activity. This refined approach can drive more effective, data-driven management
decisions in precision livestock farming.

Determination of optimal sampling ratio for group activity assessment

Four different sampling ratios of the entire group—20%, 40%, 60%, and 80%—were
evaluated at three key broiler growth stages (weeks 1, 4, and 7). Six distinct initializations were
selected from various regions of the pen for each percentage to minimize bias. Figures. 4.8-4.10

show different initializations for weeks 1, 4, and 7 respectively.
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@ e
Fig. 4.8. Example of five sampling initializations at week 1, comparing (a) 20%, (b) 40%, (c) 60%,

(d) 80%, and (e) the entire flock (100%).

Fig. 4.9. Example of five sampling initializations at week 4, comparing (a) 20%, (b) 40%, (c) 60%,

(d) 80%, and (e) the entire flock (100%).
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Fig. 4.10. Example of five sampling initializations at week 7, comparing (a) 20%, (b) 40%, (c)

60%, (d) 80%, and (¢) the entire flock (100%).

Table 4.2 summarizes the average r value between each representation’s activity index and
the entire flock. For broilers at weeks 4 and 7, representations of 40% or more was highly
correlated with the entire group (r>0.90), whereas at week 1, a subset of at least 60% was required

to highly correlate with the entire group (r>0.93).

Table 4.2. Average Pearson correlation coefficients (r value) between each sampling ratio and

the entire flock at different broiler growth stages (Weeks 1, 4, and 7).

Sampling ratio

Chick

feken age 20% 40% 60% 80%
Week 0.58 0.61 0.93 0.97
Weekd 0.74 0.90 0.96 0.98
Week? 0.73 0.93 0.92 0.94
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To determine whether these representations also differ significantly from one another, P-
values were computed and visualized in Figure 4.11 (heatmaps), with a significance level set at
0.05. Any pairwise comparison showing P < 0.05 was deemed significantly different, while P-
values above 0.05 indicated no meaningful difference. At week 1 (Figure 4.11a), the 80%
representation’s activity index was significantly different from that of all other subsets. Coupled
with its high r value of 0.97, this finding underscored the need to track 80% of the flock during the
first week to ensure a reliable movement indicator. In week 4 (Figure 4.11b), the 60% and 80%
representations showed no significant difference from each other (P=0.092) but differed
significantly from both 20% and 40% (P=0.006-0.023). Given that 60% alone achieved a high r
value of 0.96 and was not significantly different from the 80% subset, the 60% emerged as a more
cost-effective option to represent the entire group. Lastly, in week 7 (Figure 4.11c¢), 40%, 60%,
and 80% exhibited no significant differences among themselves (P=0.486-0.791), indicating that

tracking 40% of the flock was sufficient, particularly given its high r value of 0.93 (Table 4.2).

-1.00

0.05

0.092

T T T T T 0.00
20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%

Fig. 4.11. Comparative P-value heatmap across different representation at (a) week 1, (b) week 4,

and (c) week 7.
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The results demonstrate a clear trend that as broilers grew, the proportion of the flock
required for accurate movement tracking decreased. This is likely due to the natural changes in
flock behavior over time, where younger birds exhibited higher levels of individual movement
variability, necessitating a larger sample size (Baxter and O’Connell, 2023; Newberry and Hall,
1990; Weeks et al., 2000). In contrast, older broilers exhibit more synchronized and predictable
movement patterns, which allowed for a smaller subset of birds to sufficiently represent the entire
flock (Bessei, 2006; van der Sluis et al., 2019).

From a practical standpoint, these results suggest that poultry management systems can
significantly reduce tracking efforts by adjusting the sampling ratio based on bird age.
Implementing an adaptive tracking strategy—where a higher sampling ratio is used early in growth
and gradually reduced over time—could optimize the efficiency of activity monitoring systems.
This approach can help farms allocate computational resources more effectively, enabling real-
time flock assessments without unnecessary data processing costs.

Conclusions

A user-friendly, open-source platform was developed to address key challenges in animal
behavior monitoring by enabling the calculation of the activity index for individual and group-
housed animals from video recordings. The SAM2 was integrated with a frame-subtraction
approach, ensuring reliable segmentation and tracking without requiring extensive training or
annotations. This segmentation-based method significantly reduced noise and interference,
thereby enhancing the accuracy of activity-index calculations. The results suggested that 80% in
week 1, 60% in week 4, and 40% in week 7 were sufficient to cover the entire group’s activity
index. The computational burden was lowered by tracking fewer animals as broilers matured,

while still maintaining a robust representation of overall flock activity.
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Beyond broiler applications, immediate deployment was facilitated for other species—such as
pigs, cattle, or laboratory mice—without necessitating specialized technical expertise. Data
processing, segmentation, and activity-index visualization were consolidated into a single
Streamlit interface, providing researchers with an accessible and efficient tool for analyzing animal
welfare and behavior patterns. Consequently, a critical gap in the availability of free, online
solutions for animal welfare research was filled, paving the way for broader automated analysis

and further advancements in computational tools for animal-welfare studies.
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CHAPTER V

SUMMARY

This dissertation systematically investigated advanced computer vision and deep learning
techniques to enhance precision poultry farming by focusing on the automated health analysis of
laying hens and the activity monitoring of different species. The methodologies, experimental
results, and detailed discussions are presented in Chapters II to IV, corresponding to three distinct
research papers. This final chapter summarizes the key findings, their interconnections, and their
implications for poultry welfare and farm management, highlighting how these advancements
contribute to more efficient and humane poultry production.

The first study developed an optimized zero-shot image segmentation pipeline based on
the Segment Anything Model (SAM) to automatically segment individual cage-free laying hens
in thermal images. By integrating pre-processing (e.g., thresholding for automatic point selection)
and post-processing with a machine learning classifier, the modified SAM outperformed other
models, including YOLOv8, Mask R-CNN, FastSAM, MobileSAM, U2-Net, and ISNet, achieving
a success rate of 84.4%, Intersection over Union (IoU) of 85.5%, recall of 91.0%, and an F1 score
of 92.3%. This pipeline enabled the extraction of comprehensive body surface temperature
statistics (e.g., mean: 26.68-28.53°C, median: 26.27-28.28°C across weeks 77—80) for individual
hens, offering a non-invasive tool for monitoring thermal conditions. The approach reduced animal
stress by eliminating manual handling and provided a scalable solution for precision poultry

farming, enhancing health monitoring and production efficiency.
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The second study advanced automated segmentation by combining YOLOvV7 for object
detection with SAM for segmentation, using bounding box prompts to eliminate manual inputs.
This hybrid YOLOv7 + SAM model achieved superior performance compared to YOLOv8, Mask
R-CNN, and other SAM variants, with a precision of 92.5%, recall of 98.2%, an F1 score of 95.1%,
IoU of 91.0%, and a success rate of 98.0%. By automating the detection and segmentation of
individual hens, this method minimized the need for labor-intensive annotations, offering a
scalable and efficient solution for poultry monitoring. The high accuracy and transferability of this
approach make it applicable not only to poultry but also to broader agricultural, environmental,
and medical imaging tasks, demonstrating its versatility in precision farming.

The third study addressed the challenge of monitoring animal activity by developing an
open-source, user-friendly Streamlit platform integrated with SAM?2 for segmenting and tracking
individual broiler chickens in videos. This platform overcame the limitations of traditional pixel
intensity differencing methods by reducing noise and enabling individual tracking, with a
segmentation success rate of 100%, IoU of 92.21%, precision of 93.87%, recall of 98.15%, and an
F1 score of 95.94% for Cobb500 male broilers from weeks 1 to 7. Statistical analysis showed that
tracking 80% of birds in week 1, 60% in week 4, and 40% in week 7 was sufficient (r > 0.90; P <
0.048) to represent the flock’s activity index, reducing computational costs while maintaining
accuracy. This tool is accessible to non-technical researchers and adaptable for other species,
filling a critical gap in automated welfare assessment tools.

The findings demonstrate that advanced computer vision tools can significantly improve
poultry management by providing non-invasive, automated, and accurate monitoring systems. The
thermal segmentation pipeline enables early detection of health issues through temperature

variations, reducing the need for stressful handling and improving welfare. The hybrid YOLOv7
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+ SAM model offers a scalable solution for identifying and monitoring individual birds, which can
optimize resource allocation (e.g., feeder and drinker placement) and detect behavioral anomalies.
The Streamlit platform empowers researchers and farmers with an accessible tool to assess flock
activity, enabling data-driven decisions to enhance welfare, such as adjusting stocking densities or
lighting conditions to reduce stress. Collectively, these tools support precision farming practices
that improve productivity, reduce labor costs, and enhance animal welfare by enabling proactive
management of health and behavior.

The developed tools lay a strong foundation for future advancements in precision poultry
farming. The thermal segmentation pipeline could be extended to monitor other physiological
parameters, such as respiratory rate, by integrating additional sensors. The hybrid segmentation
model’s transferability suggests potential applications in other livestock species or agricultural
tasks, such as crop monitoring. The Streamlit platform could be enhanced with real-time analytics
and cloud integration for large-scale deployments. Farm managers can leverage these tools to
optimize management practices, such as adjusting environmental conditions based on activity and
temperature data to improve welfare and production efficiency. Future research should focus on
integrating these systems into a unified platform for real-time, multi-modal monitoring and
validating their performance across diverse poultry breeds and farming systems.

In conclusion, this dissertation provides a suite of innovative, automated tools that address
critical challenges in poultry monitoring, from thermal health assessment to behavioral tracking.
By harnessing zero-shot segmentation and user-friendly interfaces, these advancements pave the
way for smarter, more humane poultry farming practices, with significant potential for broader

agricultural applications.
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