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ABSTRACT 

 Advanced computer vision and deep learning methods have been developed to enhance 

precision poultry farming through automated health status identification and activity monitoring 

across multiple poultry species. A modified Segment Anything Model (SAM) pipeline, combined 

with pre- and post-processing techniques but without extensive model training, achieved 84.4% 

segmentation success for cage-free laying hens in thermal images, enabling non-invasive 

extraction of body temperature to support early health assessment. A hybrid YOLOv7 + SAM 

model using bounding box prompts achieved 98.0% segmentation accuracy, allowing precise 

individual identification. Additionally, an open-source, user-friendly Streamlit platform 

integrating SAM2 was developed to enable non-technical researchers to track animal activity 

across different species directly from video data without any model training or manual labeling. 

These tools minimize manual intervention, reduce animal stress, and improve decision-making by 

providing automated monitoring of phenotypic and behavioral indicators, with broad applicability 

in precision livestock farming and smart agricultural systems. 
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CHAPTER I 

PRECISION POULTRY FARMING: LITERATURE REVIEW  

Introduction 

 According to the USDA National Agricultural Statistics Service (2025), the total value of 

U.S. poultry production—including broilers, eggs, turkeys, and chicken sales—reached $70.2 

billion in 2024, encompassing approximately 9.33 billion broilers, 200 million turkeys, and 182 

million laying hens. Modern broiler houses typically hold between 25,000 to 100,000 broilers 

raised on open litter floors (Lei et al., 2022). As the global demand for affordable, high-quality 

animal protein continues to rise, poultry production systems are increasingly becoming larger and 

more intensive. While increasing animal density can enhance efficiency and profitability (Godfray 

et al., 2010), it also raises the risk of disease transmission, such as highly pathogenic avian 

influenza (HPAI), potentially causing severe outbreaks and significant economic losses (Tsiouris 

et al., 2015). For example, between 2015 and 2016, bird flu affected hundreds of farms across 

Canada and the U.S., resulting in over 48 million birds being culled (Pasick et al., 2015; Shriner 

et al., 2016). More recently, from 2022 to 2025, avian influenza impacted 51 states, 1,674 

commercial flocks, and approximately 168.2 million birds (USDA Animal and Plant Health 

Inspection Service, 2025). Massive culling was undertaken to prevent further spread, dramatically 

affecting the egg market, with prices rising from $0.61 per dozen in 2021 to $8.05 per dozen in 

2025 (Trading Economics, 2025). The virus also poses risks to other animals, such as cattle, further 

endangering animal production systems (Centers for Disease Control and Prevention, 2025).  
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 Beyond avian influenza, poultry farms face numerous infectious diseases, including 

Salmonella (Oladeinde et al., 2025), infectious bronchitis (Raj and Jones, 1997), Newcastle disease 

(Sadeghi et al., 2023), and infectious bursal disease (Eterradossi and Saif, 2013). These diseases 

can lead to substantial financial losses if not promptly identified and managed. Therefore, it is 

essential to develop intelligent tools capable of rapidly and accurately monitoring poultry health, 

welfare, and productivity directly on-site. 

 Various diagnostic methods for poultry have been studied, each with strengths and 

limitations. Traditional methods involve collecting samples on-site and sending them to 

laboratories, which can take several days for diagnosis and requires skilled personnel (Vidic et al., 

2017). Additionally, caretakers must identify subtle signs of illness among tens of thousands of 

birds, a challenging and often delayed process. Samples might need to be transported across long 

distances, further extending the time for diagnosis (Brown Jordan et al., 2018). Automated 

monitoring technologies, such as radio frequency identification (Ahmed et al., 2021; Li et al., 

2019), accelerometers (Li and Chai, 2023; Okada et al., 2009), and audio sensors (Banakar et al., 

2024), have achieved high accuracy (>90%) in detecting abnormal poultry behaviors. However, 

these technologies are generally too expensive to deploy individually on every bird in large poultry 

operations. 

 An alternative approach involves using non-contact, cost-effective solutions like computer 

vision systems integrated with machine learning algorithms. The combination of computer vision 

and machine learning is transforming animal agriculture, facilitating precision poultry science 

from genetics to observable characteristics (phenomes) and from preharvest stages through 

postharvest processing (Aziz et al., 2021; Li, 2025). At the heart of these advancements is image 

segmentation, a computer vision technique that divides digital images into meaningful segments, 
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significantly enhancing poultry monitoring and analysis (Minaee et al., 2022). With its potential 

to rapidly and accurately assess poultry health, behavior, and productivity, image segmentation 

has become an essential tool in modern precision animal management. This dissertation explores 

the application and enhancement of foundation segmentation models to further improve poultry 

phenotyping and behavioral monitoring, addressing critical needs within poultry production 

systems. 

Overview of poultry phenotyping assessment 

 Poultry phenotyping involves the measurement and analysis of various physical and 

behavioral traits of birds to evaluate their health, welfare, and productivity. Commonly monitored 

physical phenotypes include body weight, growth rate, feather coverage, gait quality, body 

temperature, and overall body condition (Mortensen et al., 2017). These traits provide critical 

insights into the birds' physiological status, directly influencing production outcomes. For instance, 

regular monitoring of body weight and growth rate helps producers optimize feed efficiency and 

detect any growth abnormalities early (Emami et al., 2020). 

 Behavioral traits are equally important in phenotyping assessments, including activity 

levels, feeding and drinking patterns, social interactions, and flock cohesion. Monitoring these 

behaviors provides valuable data to evaluate poultry welfare and identify stress or discomfort 

signals that might indicate underlying health issues (Aydin et al., 2010; Kristensen et al., 2007). 

Traditional poultry phenotyping techniques predominantly rely on manual observations and 

measurements, which are not only labor-intensive but also highly susceptible to human error, 

subjective biases, and limited in scalability for commercial operations (Merenda et al., 2015). 

 



 

4 

 To overcome these challenges, advanced automated technologies, such as electronic 

sensors and computer vision systems, have been increasingly adopted. Among these, image 

segmentation has become an indispensable technique due to its precision and versatility. Image 

segmentation facilitates the detailed tracking and analysis of individual birds without direct human 

intervention, thus minimizing stress and interference with natural behaviors (Saeidifar et al., 2024). 

Accurate segmentation supports automated morphological assessments, such as feather coverage 

analysis, gait evaluation, and the detection of physical deformities or injuries, significantly 

improving the accuracy of health assessments (Lamping et al., 2022; Nasiri et al., 2022). 

 Moreover, segmentation techniques enhance behavioral monitoring by allowing precise 

tracking of individual or group activities over extended periods. This capability aids in the early 

detection of abnormal behaviors such as reduced mobility, increased aggression, or altered feeding 

patterns, which could indicate health or welfare issues (Ejik et al., 2022; Li et al., 2020). By 

automating these processes, image segmentation not only improves data accuracy and consistency 

but also significantly reduces the time and labor required for comprehensive poultry phenotyping. 

Consequently, it supports better-informed management decisions, enhances animal welfare 

standards, and promotes sustainable productivity within intensive poultry production 

environments (Lamping et al., 2022; Ejik et al., 2022). 

Overview of image segmentation techniques 

 Image segmentation is a fundamental task in computer vision that involves dividing an 

image into distinct and meaningful segments or regions. Each segment represents specific features 

or objects within the image, making segmentation crucial for detailed analysis and interpretation 

of visual data. Effective image segmentation allows for accurate object identification, 
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classification, and tracking, significantly benefiting numerous applications ranging from medical 

diagnostics and autonomous vehicles to agriculture and animal monitoring (Lei et al., 2022). 

 Below are the categories of different segmentation techniques that have been widely 

applied and studied across various domains: 

Conventional image processing algorithms 

 Conventional image processing algorithms have long served as the foundation for early 

animal segmentation tasks (Yoon et al., 2007). These methods typically rely on manually crafted 

rules, filters, and basic mathematical models to extract relevant features from image data. Common 

techniques include thresholding, edge detection, region growing, morphological operations, and 

contour extraction (Dong et al., 2021). Although these approaches often require careful tuning and 

perform optimally in controlled environments, they remain valuable for their simplicity, 

computational efficiency, and ability to operate without extensive annotated training data (Yoon 

et al., 2007). Figure 1.1 shows chicken breast segmentation using conventional image processing 

algorithms. 
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Fig. 1.1. Computer Vision System - Image processing steps (Geronimo et al. 2019). 

 

 In the context of poultry research, conventional image processing algorithms have been 

applied across various applications, including product quality inspection, behavior and welfare 

assessment, and animal trait recognition (Dong et al., 2021). These methods allow researchers to 

analyze specific physical features such as visceral contours, thermal patterns, body morphology, 

and fat content (Yoon et al., 2007). Despite the growing popularity of machine learning and deep 

learning-based segmentation, conventional approaches continue to play a role where cost, 

simplicity, or limited computational resources are constraints. 

 Table 1.1 summarizes selected studies from the literature that have utilized conventional 

image processing algorithms for poultry segmentation: 
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Table 1.1. Applications of conventional image processing algorithms for poultry segmentation 

Author (year) Subject Segmentation 
method 

Variables 
examined Performance 

Chen et al. 
(2018) 

Chicken, 
duck 

Active contour 
model, 

thresholding 
Visceral contours 

93.3% accuracy 
(chickens), 

86.7% (ducks) 

Del Valle et 
al. (2021) 

Laying hens, 
broiler 

breeders 

Hausdorff 
distance-based 
segmentation 

Poultry 
movement, 

thermal comfort 
(Unrest Index) 

Efficient thermal 
stress detection 

Chen et al. 
(2023) 

Chicken 
embryos 

region-growing 
segmentation 

Morphological 
evolution, 
allantois 

development 

Effective and 
clear 

morphological 
segmentation 

Li et al. 
(2020) Broilers 

thresholding and 
pixel intensity-

based linear 
regression 

Number of birds 
feeding and 

drinking, spatial 
and temporal 

behavior patterns 

89–93% accuracy 
for detecting 

feeding, 93–95%  
accuracy for 

detecting 
drinking 

Mansor et al. 
(2013) Poultry meat Mean-shift 

segmentation 
U and V color 
components 

Clear separation 
between halal 
and non-halal 
distributions 

Rachmawanto 
et al. (2020) Chicken eggs 

Region extraction 
followed by feature 
extraction (HSV + 

GLCM) 

Shell quality 
(good, defective, 

rotten) 

85.71% accuracy 
using K=1 and 
distance metric 

d=2 or d=4 

Le et al. 
(2023) Duck 

OTSU 
thresholding + 

contour extraction 
+ morphological 

filtering 

Egg yolk features, 
size 

Accurate yolk 
segmentation and 

double yolk 
discrimination 
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Machine learning-based methods 

 In recent years, machine learning-based segmentation techniques have gained considerable 

attention in animal research due to their ability to model complex patterns, adapt to diverse 

datasets, and often provide higher accuracy compared to traditional rule-based methods (Philipsen 

et al. 2018). Unlike conventional image processing algorithms, machine learning approaches can 

automatically learn decision boundaries from training data, reducing the need for manual tuning 

and feature engineering. These methods typically require labeled datasets but are capable of 

generalizing across different conditions and capturing subtle variations in biological structures. 

 In the poultry domain, machine learning-based segmentation methods have been applied 

across multiple applications such as product quality inspection, health status identification, and 

trait recognition (Yoon et al. 2022). Various models, including Support Vector Machines (SVM) 

(Deng et al. 2018), Genetic Algorithms, and neural networks (Lamping et al. 2022), have been 

employed to process data ranging from RGB images to hyperspectral and OCT imaging. These 

techniques have enabled automated detection of shell defects, vascular features, tissue 

abnormalities, and embryonic development stages, contributing significantly to precision livestock 

farming. 

 Table 1.2 summarizes selected studies that have utilized machine learning-based 

segmentation approaches in poultry research: 

 

 

 

 

 



 

9 

Table 1.2. Applications of machine learning-based methods for poultry segmentation 

Author 
(year) Subject Segmentation 

method 
Variables 
examined Performance 

Mota-
Grajales et 
al. (2019) 

Poultry eggs 

Artificial Neural 
Network - ANN) 
combined with 
structured light 
laser scanning 

Eggshell defects 
(cracks, shape 
deformation) 

97.5% 
segmentation 

accuracy 

Geronimo 
et al. 

(2019) 

Chicken 
(Broiler 
breast) 

Support Vector 
Machine (SVM) 
based on texture 

and color features 

Wooden Breast 
condition, 

physicochemical 
attributes 

CVS 91.8%, NIR 
97.5% 

Zhu et al. 
(2021) 

Chicken 
embryos 

Genetic Algorithm 
optimized 

Backpropagation 
Neural Network 

(GA-BPNN) 
segmentation 

Embryonic gender 
(vascular features) 

89.74% gender 
prediction 
accuracy 

Xu et al. 
(2010) 

Chick embryo 
(CAM) 

SVM segmentation 
using GLCM 

texture features 

Vessel length, 
branching points 

Faster and more 
accurate than 

global 
thresholding 

Ekramirad 
et al. 

(2024) 
Chicken SVM and ensemble Woody breast 

condition severity 
95-100% 
accuracy 

Triyanto et 
al. (2022) Chicks 

K-Means and 
Fuzzy C-Means 

clustering 

Clustered flock 
regions 

Fuzzy C-Means 
outperformed K-

Means in 
segmentation 

quality 
 

Interactive segmentation methods 

 Interactive segmentation methods represent a more recent advancement in computer vision, 

enabling users to directly guide the segmentation process with minimal manual intervention 

(Rother et al., 2004; Xu et al., 2016). Unlike fully automated algorithms, these approaches leverage 

user-provided prompts such as points, bounding boxes, or contours to refine segmentation outputs 
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(Xu et al., 2016). This flexibility allows for highly accurate segmentation results, even when 

working with complex or variable image data, while significantly reducing the annotation burden 

compared to fully manual labeling (Rother et al., 2004). 

 In poultry research, interactive segmentation methods have been successfully applied to 

monitor animal behavior, welfare, and movement patterns across multiple environments and data 

modalities. Recent developments in foundation models, such as the Segment Anything Model 

(SAM), allow for promptable segmentation with little or no prior training on specific animal 

datasets (Kirillov et al., 2023). This capability makes interactive segmentation especially appealing 

for multi-species applications and practical use in precision livestock farming, where datasets may 

be limited or highly diverse (Yang et al., 2023; Saeidifar et al., 2024). Figure 1.2 shows the bird 

segmentation results using SAM. 

 

 

Fig. 1.2. Individual bird segmentation using Segment Anything Model and post-processing. Fig. 

1.2(a) provides a high-level overview of the Segment Anything Model and Fig. 1.2(b) the post-

processing step (Willems et al. 2025). 
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Deep learning-based semantic segmentation methods 

 Semantic segmentation with deep learning has become a dominant approach in recent years 

for animal monitoring applications due to its ability to assign class labels to every pixel in an image 

with high accuracy (Minaee et al., 2021). These methods leverage convolutional neural networks 

(CNNs), often in encoder-decoder architectures such as U-Net or its variants, to capture both global 

context and fine-grained spatial details (Minaee et al., 2021; Shi et al., 2024). Unlike traditional 

approaches, deep learning-based semantic segmentation models can automatically learn 

hierarchical features directly from image data, making them highly effective even in complex or 

variable environments (Minaee et al., 2021). 

 In poultry research, semantic segmentation has been applied to a wide range of tasks 

including health status identification, product quality inspection, and generalized behavior 

assessment (Sallam et al., 2024; Shi et al., 2024; Kou et al., 2024). These approaches have been 

used with various data modalities such as X-ray, CT, and RGB imagery, enabling researchers to 

automatically segment anatomical structures, detect defects, and quantify animal phenotypes with 

high precision. As these models continue to evolve, their ability to generalize across species, 

imaging conditions, and phenotyping tasks has made them increasingly valuable for precision 

livestock farming. 

 Table 1.3 summarizes selected studies that have utilized deep learning-based semantic 

segmentation methods in poultry research: 

 

Table 1.3. Applications of deep learning-based semantic segmentation methods for poultry 

segmentation 

Author 
(year) Subject Segmentation 

method 
Variables 
examined Performance 
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Sallam et 
al. (2024) Laying hens 

U-Net deep 
learning-based 

semantic 
segmentation 

Keel bone 
geometry 
(fractures, 
deviations) 

0.88-0.90 dice 
coefficient 

Shi et al. 
(2023) Chicken eggs 

Improved U-Net 
using MobileNet-
V2 backbone with 
CBAM attention 

for enhanced crack 
segmentation 

Microcracks 
(<5µm, <20µm) 

82.2% MIoU, 
65.0% Crack-IoU 

Shwetha V 
et al. 

(2025) 
Poultry 

ResUNet+ and 
DeepLabV3 
(Xception 
backbone) 

Crown, feather, 
leg regions 

91.2% dice, 
86.7% IoU 

Zhu et al. 
(2024) 

Chick embryo 
(CAM) 

MAEFNet 
(Multistage 
Attention 

Enhancement 
Fusion Network) 

Broiler chickens 96.35% IoU, 
0.8810 R² 

Khanal et 
al. (2024) Chicken Pyramid Vision 

Transformer (PVT) 
Chicken count, 
crowd density 

96.9% accuracy, 
27.8 MAE 

Robinson et 
al. (2022) 

Poultry 
(CAFO barns) 

U-Net with ResNet-
18 encoder 

Barn location and 
footprint 

87% recall, 83% 
precision 

 

Deep learning-based instance segmentation methods 

 Deep learning-based instance segmentation has emerged as a highly effective approach for 

animal phenotyping and behavior monitoring, particularly in complex environments where 

multiple animals are present in the same frame (Lamping et al., 2022; Li et al., 2020). Unlike 

semantic segmentation, which assigns a class label to each pixel, instance segmentation 

distinguishes and tracks individual objects of the same class (van der Eijk et al., 2022), making it 

highly valuable for studies requiring individual animal tracking, interaction analysis, or behavior 

assessment. 
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 In poultry research, instance segmentation methods are increasingly applied to monitor 

individual birds' behaviors, assess health conditions, and support precision management practices 

(Saeidifar et al., 2024; Lamping et al., 2022). Models such as Mask R-CNN, YOLO-based 

frameworks, and encoder-decoder CNNs have been used to accurately detect and segment 

individual animals across different environments and species (Li et al., 2020; van der Eijk et al., 

2022). These approaches have demonstrated strong performance in tasks such as mating behavior 

detection, plumage assessment, multi-object tracking, and accurate counting in group-housed birds 

(Lamping et al., 2022). 

 Table 1.4 summarizes selected studies that have applied deep learning-based instance 

segmentation methods in poultry research: 

Table 1.4. Applications of deep learning-based instance segmentation methods for poultry 

segmentation 

Author 
(year) 

Type of 
poultry 

Segmentation 
method 

Variables 
examined Performance 

Hu et al. 
(2024) Broilers Improved 

YOLOv8s model 

Broiler behaviors 
(activity, wing 

spreading, resting, 
feeding, drinking) 

99.50% detection 
mAP, 93.89% 

tracking MOTA, 
93.98% overall 

behavior accuracy 

Nasiri et al. 
(2024) Broilers Encoder-decoder 

CNN 

Stretching, 
preening 
behaviors 

96.7% accuracy, 
88.1% precision, 

89.96% recall 

Zheng et 
al. (2022) 

Breeder 
chickens YOLOv5 Shank length, 

circumference 

High accuracy; SD: 
length=1.35 mm, 

circumference=0.25 
mm 

Cao et al. 
(2024) 

Caged 
broilers 

Improved YOLOv5 
with 

CSPDarknet53 
backbon 

Mortality status 99.2% accuracy; 
real-time capable 



 

14 

Raja et al. 
(2022) Chicken legs Mask R-CNN 6D pose (position 

and orientation) 
89% correct pose 

estimation 

 

Hybrid methods 

 Hybrid segmentation methods combine the strengths of both traditional image processing 

algorithms and modern machine learning or deep learning techniques to enhance segmentation 

performance (Zhang et al., 2023; Yusof et al., 2020). These approaches typically integrate 

conventional methods (such as thresholding, edge detection, morphological operations) with data-

driven models (like neural networks or ensemble learning algorithms) (Saifullah & Suryotomo, 

2021). The goal is often to leverage the precision and rule-based control of traditional techniques 

alongside the adaptability and generalization power of machine learning models. 

 In the context of poultry research, hybrid methods offer several advantages. For example, 

conventional algorithms can provide pre-processed or region-of-interest information that 

simplifies or guides the learning process for machine learning models (Zhang et al., 2023). 

Conversely, machine learning models can compensate for the limitations of conventional methods 

in more complex or noisy datasets by learning high-level feature representations (Abu Bakar et al., 

2024). Applications of hybrid methods in poultry studies may include product quality inspection, 

behavior monitoring, and health condition assessment, particularly when image variability, 

lighting, or environmental noise make purely rule-based or purely data-driven approaches less 

effective (Saifullah & Suryotomo, 2021; Zhang et al., 2023; Yusof et al., 2020). 

 Table 1.5 summarizes selected studies that have applied hybrid methods in poultry 

research: 
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Table 1.5. Applications of hybrid methods for poultry segmentation 

Author 
(year) 

Type of 
poultry 

Segmentation 
method 

Variables 
examined Performance 

Willems et 
al. (2025) Laying hens 

Gaussian Mixture 
Modeling (GMM)  

+ Segment 
Anything Model 

(SAM) 

Night-time 
activity, perch 

occupation 

Strong correlation 
(-0.84, p<0.0001) 

Zhao et al. 
(2025) 

Cage-reared 
ducks 

Mask R-CNN + 
CycleGAN 

Behavior 
recognition, pose 

estimation 

mAP improved 
by ~2%, FPS 
increased by 

21%, significant 
OKS 

improvements 

Yang et al. 
(2023) 

Caged 
chickens U-Net + pix2pixHD 

Individual chicken 
contour, cage 

occlusion removal 

94.71% wire 
mesh 

segmentation 
accuracy, 90.04% 
SSIM, 25.24 dB 

PSNR 

Zhu et al. 
(2022) Chicken eggs 

Adaptive Canny 
operator + Ellipse 

fitting 

Egg fertility status 
(infertile, dead-

embryo) 

100% 
classification 

accuracy for key 
categories 

Chen et al. 
(2021) Chicken Thresholding + 

Active contour 
Carcass and 

viscera position 

91.3% carcass 
segmentation 

accuracy; 95.6% 
viscera 

Saeidifar et 
al. (2024) 

Cage-free 
laying hens 

SAM + image 
processing + ML 

classifier 
Body temperature 85.5% IoU, 

92.3% F1 

 

Applications of segmentation in precision animal management 

 The advancement of segmentation techniques has significantly expanded the possibilities 

in precision animal management (Minaee et al., 2021). These approaches have allowed for more 

efficient, accurate, and large-scale monitoring of animals under both experimental and commercial 

production conditions (Fernández et al., 2018; van der Eijk et al., 2022). By enabling the extraction 



 

16 

of detailed information from various imaging modalities, segmentation has improved the ability to 

monitor individual animals, assess group-level dynamics, and support real-time decision-making 

in diverse management contexts. 

 In modern production systems, the use of segmentation technologies has reduced labor 

demands, minimized subjective errors associated with manual assessments, and allowed for 

continuous, objective monitoring without disturbing animals (Fernández et al., 2018). This non-

invasive approach not only enhances data reliability but also contributes to improved animal 

welfare by reducing handling and observation stress. The increasing integration of segmentation-

based systems supports early detection of health issues, welfare concerns, and production 

inefficiencies, enabling producers to apply timely interventions and optimize overall system 

performance (van der Eijk et al., 2022; Saeidifar et al., 2024). 

 In the following subsections, the key application domains where segmentation plays a 

crucial role in precision animal management are outlined. 

Behavior and Welfare Assessment 

 Behavioral monitoring is one of the primary applications of segmentation techniques in 

precision animal management. Continuous observation of animal behavior enables early detection 

of welfare issues such as heat stress, aggression, abnormal activity, or restricted mobility, which 

may otherwise go unnoticed under conventional farm management practices. 

 In poultry research, various segmentation methods have been applied to extract behavioral 

patterns at both the individual and group levels. Traditional image processing techniques have 

been employed to evaluate thermal comfort and movement disturbances. For example, Hausdorff 

distance-based segmentation was used to develop an unrest index that quantifies thermal 

discomfort in poultry flocks based on group movements (Del Valle et al., 2021). Similarly, 
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conventional segmentation approaches were applied to create a cluster index that distinguishes 

birds' thermal states and supports early detection of heat stress conditions (Pereira et al., 2020). 

 As segmentation techniques have advanced, machine learning and deep learning models 

have been introduced to improve behavior assessment accuracy, particularly under more complex 

conditions. A hybrid approach combining Mask R-CNN with CycleGAN was applied to enhance 

behavior recognition in cage-reared ducks, resulting in improved segmentation accuracy and real-

time processing efficiency (Zhao et al., 2025). Instance segmentation models combined with 

behavioral classification algorithms were used to accurately identify mating events in group-

housed broiler breeders, achieving an accuracy of 92% (Bodempudi et al., 2025). Furthermore, an 

improved YOLOv8s model was utilized to perform real-time detection and tracking of multiple 

broilers in cage-free systems, achieving high segmentation accuracy (mAP 99.50%) and effective 

multi-object tracking (MOTA 93.89%) (Hu et al., 2024). 

 Collectively, these studies demonstrate the critical role of segmentation technologies in 

improving the objectivity, resolution, and efficiency of behavior and welfare assessments in 

poultry production systems. By enabling automated, non-invasive monitoring, these approaches 

contribute to more proactive welfare management and support early intervention strategies that 

improve flock health and productivity. 

Health Status Identification 

 Segmentation-based methods play a crucial role in the early detection and monitoring of 

health conditions in poultry production systems. By accurately isolating relevant anatomical 

structures or behavioral patterns, these methods provide objective and quantitative measures to 

assess the physical condition of individual animals or entire flocks, allowing for timely 

interventions and improved health management. 
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 In poultry research, both conventional and advanced segmentation approaches have been 

applied across diverse imaging modalities to identify various health indicators. Early studies 

employed conventional image processing techniques, such as principal component analysis (PCA) 

applied to multispectral images, to detect conditions like septicemia and infected yolk sacs in 

chicken carcasses with high accuracy (Yang et al., 2005). Similarly, active contour-based 

segmentation methods have been used to monitor health-related behaviors and physical conditions 

in caged chickens, effectively extracting features from RGB and binocular vision images (Xiao et 

al., 2019). 

 With the development of deep learning, more sophisticated models have been introduced 

to enhance segmentation performance for health assessments. For example, ChickenNet, a deep 

learning model based on Mask R-CNN architecture, was applied to assess plumage condition in 

laying hens, achieving high detection accuracy (98.02% detection mAP and 91.83% plumage 

scoring accuracy) (Lamping et al., 2022). Building on this work, uncertainty estimation techniques 

were integrated into deep neural networks to improve segmentation robustness and confidence for 

health status evaluations in chickens (Lamping et al., 2023). 

 Hybrid segmentation approaches have also been utilized to address specific health 

monitoring challenges. For instance, Gaussian Mixture Models combined with the Segment 

Anything Model (SAM) were applied to analyze night-time perch occupation and activity patterns 

in laying hens as an early indicator for poultry red mite infestations, showing strong correlations 

with infestation levels (Willems et al., 2025). 

 Collectively, these studies demonstrate the increasing importance of segmentation methods 

in supporting precise, automated, and non-invasive health monitoring systems that contribute to 

improving animal welfare and production sustainability in commercial poultry operations. 
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Live Performance Prediction 

 Accurate and continuous monitoring of live performance metrics, such as body weight, 

growth rate, and production efficiency, is a key component of precision animal management. 

Segmentation methods enable non-invasive estimation of these parameters by automatically 

extracting morphological features from images or video data, reducing the need for manual 

weighing or labor-intensive measurements. 

 In poultry production, various segmentation approaches have been utilized to predict live 

performance indicators. Early work applied conventional image processing techniques, such as 

range-based watershed segmentation of 3D depth images, to estimate broiler weight, achieving a 

relative mean error of 7.8% (Mortensen et al., 2016). Similarly, camera-based monitoring using 

HSV and Lab color space segmentation was used to estimate weight and growth of geese in real-

time under commercial farm conditions (Toth et al., 2025). 

 Hybrid methods have also been introduced to improve accuracy by combining multiple 

segmentation and feature extraction algorithms. For example, Chan-Vese segmentation combined 

with ellipse fitting was used to segment broiler body contours, resulting in highly accurate weight 

predictions with an R² of 0.98 and prediction errors typically below 50 grams (Amraei et al., 2017). 

 More recently, deep learning-based segmentation models have been employed to enhance 

live performance monitoring under more complex conditions. YOLOv8 instance segmentation 

was applied to automatically extract body regions of broilers for live weight prediction, achieving 

a mean average precision (mAP) of 0.829 (Shams et al., 2025). Additionally, 3D convolutional 

neural networks (3D CNNs) were used to process top-view video frames for broiler weight 

estimation, reaching a prediction accuracy of 95% (Anuprabha et al., 2024). 
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 Together, these studies demonstrate the growing potential of segmentation-based systems 

to provide real-time, automated, and scalable solutions for live performance prediction, enabling 

more efficient management and optimization of poultry production systems. 

Product Quality Inspection 

 Segmentation methods have also been extensively applied in product quality inspection, 

enabling precise assessment of carcass features, tissue characteristics, and product defects. By 

automating the extraction of critical quality attributes, segmentation-based systems contribute to 

more consistent grading, improved product safety, and reduced labor demands in poultry 

processing facilities. 

 In poultry carcass inspection, conventional image processing techniques have been widely 

used to extract anatomical contours and identify internal organs. For example, contour-based 

segmentation methods were applied to recognize visceral features in poultry carcasses, achieving 

classification accuracies of 93.3% for chickens and 86.7% for ducks (Chen et al., 2018). Similarly, 

conventional approaches based on color and texture analysis have been utilized for fat estimation 

and body composition evaluation, demonstrating reliable performance under varying image 

conditions (Chmiel et al., 2011). 

 Machine learning-based methods have also been introduced to improve defect detection 

accuracy. A system using machine learning-based segmentation was developed to identify 

eggshell defects in poultry eggs with 97.5% accuracy using laser structured light images (Mota-

Grajales et al., 2019). 

 Additional conventional approaches have been used for advanced color-based feature 

extraction. RGB-based segmentation combined with color space transformations was employed to 

estimate the color parameters of chicken breast fillets, achieving high correlations with manual 
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color measurements (Barbin et al., 2016). Statistical texture features from multiple color spaces 

(RGB, Lab*, XYZ, S, V, U) were applied to classify cold meats, achieving classification 

accuracies ranging from 89% to 100% (Zapotoczny et al., 2016). 

 Collectively, these studies demonstrate the strong potential of segmentation technologies 

to enhance product quality inspection by enabling consistent, objective, and high-throughput 

evaluation of carcass and product attributes. 

Animal Trait Recognition 

 Segmentation methods have also been applied to support automated recognition and 

analysis of animal traits, such as morphology, sex, skeletal structure, and other phenotypic 

characteristics that are important for breeding, welfare, and production optimization. 

 In poultry research, conventional image processing techniques have been successfully used 

for morphological analysis of embryos and skeletal structures. Region-growing segmentation 

algorithms were applied to extract 3D morphological features from MRI images of chick embryos, 

providing effective and detailed anatomical segmentation (Chen et al., 2023). Similarly, automated 

segmentation algorithms utilizing dual-thresholding approaches were implemented to analyze 

micro-CT images of egg-laying hens for detailed bone structure evaluation (Chen et al., 2020). 

 Machine learning-based methods have also been introduced to support trait recognition 

tasks. A Genetic Algorithm Optimized Backpropagation Neural Network was employed to identify 

the gender of chicken embryos based on vascular image features, achieving a prediction accuracy 

of 89.74% (Zhu et al., 2021). 

 Deep learning-based instance segmentation models have further improved trait extraction 

accuracy. YOLOv5 was utilized to measure shank length and circumference of breeder chickens 
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from RGB images, providing high accuracy with standard deviations of 1.35 mm for length and 

0.43 mm for circumference measurements (Zheng et al., 2022). 

 Collectively, these studies highlight the potential of segmentation-based systems to support 

non-invasive, precise, and efficient trait recognition in poultry, contributing to genetic selection, 

welfare monitoring, and breeding program optimization. 

Objectives and Outline of the Dissertation 

 The primary objective of this dissertation was to develop and evaluate advanced 

segmentation frameworks utilizing foundation models, deep learning, and hybrid image processing 

techniques to enhance automated monitoring of poultry welfare, health, and behavior. Specifically, 

the research focused on leveraging recent advancements in zero-shot and prompt-based 

segmentation models to address key challenges in individual animal tracking, thermal condition 

monitoring, and phenotypic trait extraction in precision poultry management. These models were 

integrated with both RGB and thermal imaging modalities to create efficient, non-invasive, and 

scalable solutions suitable for commercial and research applications. 

 This dissertation consists of several independent yet connected studies. 

• In Chapter I, a comprehensive literature review was conducted to systematically analyze 

existing segmentation methodologies applied in precision animal management, 

categorizing studies based on segmentation types, applications, and species. 

• In Chapter II, zero-shot segmentation models were applied and optimized to segment 

cage-free laying hens from thermal images. By integrating image processing and machine 

learning-based post-processing with foundation segmentation models (SAM, FastSAM, 

MobileSAM), this study provided a fully automated pipeline for monitoring surface body 

temperature as an indicator of health and thermal regulation. 
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• In Chapter III, an integrated approach combining object detection (YOLOv7) and 

foundation image segmentation (SAM) was proposed to automate segmentation of birds 

in diverse imaging conditions, eliminating the need for extensive manual annotation and 

enhancing segmentation accuracy across various visual contexts. 

• In Chapter IV, a novel open-source Streamlit-based platform was developed that allows 

non-technical users to calculate animal activity indices from top-view videos using a 

promptable foundation segmentation model (SAM2). This platform demonstrated its 

capacity for efficient behavior monitoring of poultry flocks while significantly reducing 

labor and computational requirements. 

• The results from these chapters are summarized in Chapter V and the conclusions provide 

hands-on suggestions on precision poultry farming technologies. 

 Except for Chapter I, each chapter was prepared as independent research papers for peer-

reviewed journals and conferences. The final chapter summarizes the key findings and provides 

concluding remarks along with future research directions that can contribute to the broader 

advancement of precision poultry farming technologies. 
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CHAPTER II 

ZERO-SHOT IMAGE SEGMENTATION FOR MONITORING THERMAL CONDITIONS 

OF INDIVIDUAL CAGE-FREE LAYING HENS 

 

Body temperature is a critical indicator of the health and productivity of egg-laying 

chickens and other domesticated animals. Recent advancements in thermography allow for precise 

surface temperature measurement without physical contact with animals, reducing animal stress 

from human handling. Gold standard temperature analysis via thermography requires manual 

selection of limited points for an object of interest, which could be time-consuming and inadequate 

for representing the comprehensive thermal profile of a chicken’s body. The objective of this study 

was to leverage and optimize a zero-shot artificial intelligence technology for the automatic 

segmentation of individual cage-free laying hens within thermal images, providing insights into 

their overall thermal conditions. A zero-shot image segmentation model (Segment Anything, 

“SAM”) was modified by replacing manual selections of target points with automatic selection of 

the initial point using pre-processing techniques (e.g., thresholding) in each thermal image. The 

model was also incorporated with post-processing techniques integrated with a machine learning 

classifier to improve segmentation accuracy. Three versions of modified SAM models (i.e., SAM, 

FastSAM, and MobileSAM), two common instance segmentation algorithms (i. e., YOLOv8 and 

Mask R-CNN), and two foundation segmentation models (i.e., U2 -Net and ISNet) were 

comparatively evaluated to determine the optimal one for bird segmentation from thermal images. 

A total of 1,917 thermal images were collected from cage-free laying hens (Hy-Line W-36) at 77–
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80 weeks of age. The image dataset exhibited considerable variations such as feathers, bird 

movement, body gestures, and the specific conditions of cage-free facilities. The experimental 

results demonstrate that the modified SAM did not only surpass the six zero-shot models—

YOLOv8, Mask R-CNN, FastSAM, MobileSAM, U2 Net, and ISNet—but also outperformed 

other modified SAM-based models (Modified FastSAM and Modified MobileSAM) in terms of 

hen detection performance, achieving a success rate of 84.4 %, and in segmentation performance, 

with an inter section over union of 85.5 %, recall of 91.0 %, and an F1 score of 92.3 %. The optimal 

model, modified SAM, was pipelined to extract statistics including the averages (◦C) of mean 

(27.03, 27.04, 28.53, 26.68), median (26.27, 26.84, 28.28, 26.78), 25th percentile (25.33, 25.61, 

27.26, 25.53), and 75th percentile (28.04, 27.95, 29.22, 27.55) of surface body temperature of 

individual laying hens in thermal images for each week. More statistics of hen body surface 

temperature can be extracted based on the segmentation results. The developed pipeline is a useful 

tool for automatically evaluating the thermal conditions of individual birds. 

Introduction 

The U.S. had 308 million commercial laying hens at the end of 2022, producing totally 

92.6 billion table eggs (United Egg Producers, 2023). The egg industry is transitioning from cage 

systems to cage-free (CF) systems to improve hen welfare, and the CF egg production accounted 

for 34 % (106.2 million hens) of the current table egg layer flock (United Egg Producers, 2023). 

While providing nutritious, safe, and affordable proteins for humans, the intensive CF systems are 

facing challenges in managing hens effectively and appropriately such as air quality, floor eggs, 

distribution, and pecking (Chai et al., 2019).Thermal regulation is one of the critical areas to be 

optimized as it directly influences the health, productivity, and well-being of CF hens (Giloh et 

al., 2012; Tattersall, 2016) and accurate detection of hens’ body temperature is the prerequisite of 
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precision thermal regulation. The gold standard method to obtain bird body temperature is to use 

thermometers to measure cloaca routinely (Candido ˆ et al., 2020; Tattersall, 2016). The method 

can provide accurate measures of hen core body temperatures but could be time- and labor-

intensive as human are required to catch and constrain birds for the measurement (Edgar et al., 

2013), especially considering tens of thousands of CF hens moving freely inside a house. 

Thermometers should be inserted inside the bird’s body through the cloaca and stabilized for a few 

minutes to acquire reliable readings, causing bird stress. The cloaca of birds could host rich 

bacterial com munities, and thermometers could lead to cross-contamination if reused for another 

birds without disinfection. Thus, efficient, accurate, and biosafe alternatives are needed for hen 

body temperature measurement. 

In recent years, thermography has become widely embraced as an alternative to traditional 

thermometers in industry and agriculture, primarily due to its ability to enable non-contact and 

non-invasive measurements of surface temperature (Baranowski et al., 2009; Biddle et al., 2018; 

Church et al., 2014; Cilulko et al., 2013; Sadeghi et al., 2023). The surface temperature measured 

by infrared thermal imaging has been strongly correlated to bird core body temperature (Giloh et 

al., 2012), ambient environmental conditions (Andrade et al., 2017), genetics (Loyau et al., 2016), 

and feather conditions (Cook et al., 2006), offering important insights into house management and 

bird improvement. Common temperature analysis via thermography requires the manual selection 

of limited points for an object of interest, which could be time-consuming and inadequate for 

representing the comprehensive thermal profile of a chicken’s body. To gain the whole-body 

thermal profile and subsequent analysis, individual birds should be first segmented from the 

background in a thermal image via image seg mentation models. 
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Image segmentation has been a fundamental challenge in computer vision since its creation 

(Rosenfeld, 1976). It involves partitioning images (or video frames) into multiple segments and 

objects, which are essential components for visual understanding systems (Szeliski, 2011). 

Instance segmentation (one type of image segmentation task) has evolved into a notably 

significant, intricate, and demanding domain within machine vision, especially during the rapid 

development of deep learning (Bolya et al., 2019; He et al., 2017; Li et al., 2017; Xie et al., 2022). 

Its objective is to predict both classes and pixel-specific masks for individual object instances, 

effectively identifying areas, shapes, and locations of individual objects within images (Bai and 

Urtasun, 2017; Hafiz and Bhat, 2020; He et al., 2017; Li et al., 2017). The instance segmentation 

methods, operated within a supervised learning framework, heavily depend on extensive datasets 

with annotations. Nevertheless, in numerous real-world applications such as segmenting CF hens, 

as mentioned above, the process of collecting and labeling data in pixel level is exceptionally time-

consuming and requires professional annotators. Consequently, the instance segmentation models 

pretrained with large datasets (e.g., COCO and ImageNet) containing general objects and 

annotations might perform poorly when encountering unfamiliar classes (e.g., CF hens) with very 

few annotations in the datasets. In such scenarios, zero-shot learning methods prove to be highly 

valuable for solving the abovementioned issue (Zheng et al., 2021). 

Zero-shot image segmentation involves a type of segmentation algorithms that can segment 

objects or regions of interest in images that have never been seen or been trained on (Bucher et al., 

2019; Kato et al., 2019; Zheng et al., 2021). Some of the most popular and state-of-the-art zero-

shot instance image segmentation models include Segment Anything Model (SAM) (Kirillov et 

al., 2023), Fast Segment Anything Model (FastSAM) (Zhao et al., 2023), Faster Segment Anything 

Model (MobileSAM or FasterSAM) (Zhang et al., 2023). These SAM-based models have gained 
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widespread attention since they appeared in recent months (Ma et al., 2024; Mazurowski et al., 

2023; Osco et al., 2023; Shi et al., 2023). They were trained on billions of image masks and 

millions of images and could be generalizable to unseen or untrained objects. They can segment 

objects of interest through manually selecting a point inside the objects or drawing a bounding 

box. These models have been applied for medical image analysis (Mazurowski et al., 2023; Shi et 

al., 2023), agricultural image segmentation (Yaqin Li et al., 2023), remote sensing applications 

(Osco et al., 2023), video segmentation (Cheng et al., 2023), and demonstrated great potential for 

zero-shot image segmentation. Per preliminary testing, these SAM-based models may suffer from 

several challenges for poultry-relate images including manually selecting initial points for 

segmentation and determining the optimal seg mentation mask. Specifically, the manual selection 

of tens of thousands of points for segmenting CF hens in commercial houses is laborious. 

The objective of this research was to leverage and optimize zero-shot artificial intelligence 

technology for the automatic segmentation of in dividual CF laying hens within thermal images. 

The strengths of this article includes: 1) a series of up-to-date zero-shot instance image seg 

mentation algorithms were compared, and the optimal one was further optimized; 2) the foundation 

segmentation algorithm was integrated with image processing (pre-processing) for point 

prompting and ma chine learning classification for generated optimal mask (post-processing) for 

boosting segmentation performance of individual hens; and 3) thermal characteristics of laying 

hens (where birds appear higher temperature than the surrounding, resulting in brighter regions in 

thermal images) were fully utilized with the foundation segmentation model to improve bird 

segmentation performance. The contributions of this research involves: 1) critical development 

and optimization procedures of the combination of thermography and foundation image 

segmentation model were provided for fully automatic image segmentation in agriculture domain; 
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2) zero-shot image segmentation models were modified with image processing and machine 

learning classifiers to innovate model architecture tailored for poultry segmentation; and 3) a zero-

shot instance image segmentation pipeline was developed to extracted the statistics of surface body 

temperature of individual hens, opening numerous opportunities for mobile poultry health 

assessment. The proposed framework segments the most complete bird in a frame, with which the 

most comprehensive information of bird thermal conditions can be analyzed. Information of 

multiple birds can be collected by taking multiple photo shoots of thermal images. 

Materials and Methods 

Overall workflow 

The workflow of this paper comprises nine major components, as illustrated in Figure 2.1. 

The first step involves data collection in CF hen environments and thermal camera calibration. 

Subsequently, the thermal and RGB images undergo spatial alignment with simple image 

processing algorithms to optimize its suitability for subsequent analyses. Following this, a 

comparative analysis is conducted, benchmarking the SAM against various state-of-the-art 

instance segmentation models. After that, the evaluation metrics calculation is performed to select 

the optimal model. The fifth phase focuses on modifying the SAM, incorporating both pre- and 

post-processing techniques to automate the SAM and enhance its performance for classification 

and segmentation. The next step encompasses calculating evaluation metrics to quantify the 

models’ performance between modified SAM-based models, providing a rigorous assessment of 

their efficacy and accuracy. With the optimal model after the evaluation, the workflow includes 

sequential steps of automatic digit extraction in thermal images and finding the relationship 

between temperature and pixel intensity, providing a quantitative analysis of the thermal 

characteristics. The paper concludes with a ninth and final step, wherein statistics of surface 
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temperature from body profile are conducted to offer insights into the thermal condition of in 

dividual CF laying hens throughout four weeks. The sole programming language utilized was 

Python. Key Python libraries included cv2 and PIL for image manipulation, sklearn for 

constructing machine learning models, along with pandas and numpy for handling data. Matplotlib 

was used for graphically representing results. Additionally, supplementary libraries employed 

were pickle, os, skimage, csv, and sys. Computational operations were executed on Google Colab, 

which provided 12.7 GB of RAM and 16 GB of T4 GPU memory, supported by a dual-core CPU 

running at 2.30 GHz. 

 

 

 

Fig. 2.1. Workflow diagram - This figure presents a schematic of the nine-step analytical process 

employed in the paper. SAM is Segment Anything, YOLO is You Only Look Once, and R-CNN 

is Region-based Convolutional Neural Network. 
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Data collection and thermal camera calibration 

The study was conducted at the University of Georgia’s Poultry Research Center. Four 

environmentally controlled rooms were used, each measuring 7.3 m long, 6.1 m wide, and 3.1 m 

high. Those dimensions were comparable to commercial house standards. Each room housed 200 

laying hens (Hy-Line W-36) on a litter floor, which resulted in a stocking density of 0.22 m2 per 

hen. This density exceeds the minimum requirements set by the United Egg Producers (United 

Egg Producers, 2023), which specify 0.093 m2 per hen for multi-tiered aviaries and partially 

slatted systems, and 0.139 m2 per hen for single-level all-litter floor systems. The larger space 

allows chickens to exhibit a broader range of natural behaviors, such as foraging, dust bathing, and 

perching. Each room contained 2.5-cm-deep pine wood shavings, an A-shaped perch with a total 

length of 36.6 m, and four nest boxes. The hens were fed with an antibiotic-free mash feed during 

the research. The diets were formulated in the feed mill located at the same research center with 

the following nutritional specifications: metabolizable energy: 1.26 MJ/ hen/day, crude protein: 

16.70 g/day, calcium: 4 g/day, and digestible phosphorus: 0.40 g/day. Husbandry, management, 

and environmental conditions followed the Hy-Line W-36 commercial layers management 

guidelines (Management Guide, W-36 Commercial layers, 2024). All procedures were approved 

by the Institutional Animal Care and Use Committee (IACUC) prior to the start of the study 

(Protocol number: A2020 08–014-A1, approved on 5 October 2020). The diverse and dynamic 

environment enhances the validity and applicability of the collected data, capturing a 

representative sample of natural behaviors and interactions. 

The thermal camera (FLIR C5, Teledyne FLIR, Wilsonville, Oregon, USA) was calibrated 

using a calibrator (FLUKE 9133, FLUKE, Everett, WA, USA) as shown in Figure 2.2, to ensure 
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accurate and precise temperature measurements. For the calibration, 15 points ranging from 24 to 

38 ◦C were selected, as this range typically represents the variation in a chicken’s body surface 

temperature. After setting the calibrator to a specific temperature, the temperature displayed by the 

thermal camera was recorded and plotted, as illustrated in Figure 2.10. Subsequently, a simple 

linear regression was utilized to determine the relationship between the temperatures indicated by 

the thermal camera and the calibrator. 

 

 

Fig. 2.2. Precision calibrator for thermal camera calibration. 

 

Thermal images were captured when birds were 77–80 weeks of age using the thermal 

imaging camera. The thermal camera outputs a pair of RGB and thermal images during each shot. 

The size of each image was 640 × 480 pixels. The total number of pairs of images was 1917. The 

images exhibited considerable diversity in terms of pixel intensity, varying backgrounds, presence 

of feathers on the ground, inclusion of nest boxes, and overlapping and occlusion among multiple 

chickens. Figure 2.3 shows four pairs of RGB and thermal sample images. Each pair of images 

contained at least one complete laying hen, and surface temperatures of all objects captured were 
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quantified with grayscale pixel intensities (0–255), with higher surface temperatures being 

brighter. 

 

Fig. 2.3. Ten pairs of RGB and thermal images: a, c) RGB images; and b, d) corresponding thermal 

images. The bottom-left number under the bar in each thermal image represents the lowest 

temperature, and the top-left number above the bar indicates the highest temperature recorded in 

the scene. 
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Spatial alignment 

Due to the low contrast and unclear boundaries of the chicken’s body in the thermal images 

according to Figure 2.3, the corresponding RGB image was used for segmentation. The resulting 

mask was then multiplied by a corresponding thermal image to extract the chicken’s body area. 

How ever, a challenge arose from different scales of thermal and corresponding RGB images. To 

address this, the RGB image underwent cropping and resizing to align with the thermal image 

scale, where the cropping coordinates are (105, 50, 440, 320). This cropping coordinates were 

determined through a trial-and-error process to find the most effective settings for matching the 

RGB images to the thermal images. These coordinates, which define the upper-left corner of the 

cropping area (105 for x-axis, 50 for y-axis) and specify the width (440) and height (320) of the 

area to be cropped, were consistently applied to all images. This consistency was crucial in 

ensuring that the resized RGB images matched perfectly with the corresponding thermal images. 

Then, the cropped RGB images were resized to a standard resolution of 640 × 480 pixels, matching 

the resolution of the thermal images. This standardization ensured that every detail captured in the 

RGB images was accurately mapped onto the corresponding areas in the thermal images. The 

consistent application of these cropping and resizing parameters across all images ensured that 

specific points on the thermal images were correctly aligned with those in the RGB images. This 

precise alignment is illustrated in Figure 2.4 and was critical for accurately over laying the 

segmentation masks onto the thermal images. The same clipping and resizing paradigm worked 

perfectly fine for all of the images due to the fact that the camera intrinsic are fixed and the same 

camera was used to take both RGB and thermal images at the same time.  
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Fig. 2.4. Spatial alignment for RGB images to match corresponding thermal images: a) Original 

RGB image; b) RGB image after cropping and resizing; and c) corresponding thermal image. 

 

Comparison of different zero-shot deep learning models for hen segmentation 

SAM consists of three components: an image encoder, a flexible prompt encoder, and a 

fast mask decoder. SAM aims to transform the landscape of image analysis by offering a versatile 

and flexible foundational model for segmenting objects and regions within images. In contrast to 

conventional image segmentation models that demand extensive expertise in task-specific 

modeling, SAM eliminates the necessity for such specialized knowledge. It allows users to 

segment objects with just one or several interactive mouse clicks to include and exclude from the 

object. The model also accommodates prompts through bounding boxes. In instances of 

segmentation ambiguity, SAM can generate multiple valid masks, a crucial capability for real-

world seg mentation challenges. 

Additional six deep learning models were deployed to verify the SAM’s performance 

regarding zero-shot CF hen segmentation. These models were previously trained on large datasets 

and used directly to segment CF hens in this study without extensive training on images. 

Fast Segment Anything Model (FastSAM), a CNN-based model, stands out for its speed 

due to its training on just 2 % of the SA-1B dataset, which contains 1 billion masks for training 
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general-purpose object segmentation models like SAM. The Faster Segment Anything model 

(MobileSAM or FasterSAM) improved processing speed by substituting the original bulky ViT-

H (632 millions of parameters) encoder of SAM with a more compact Tiny-ViT (5 millions of 

parameters). Generally, FastSAM and MobileSAM are the extensive versions of original SAM by 

compressing SAM parameters to improve processing speed. 

Mask R-CNN is a deep learning instance image segmentation model that was previously 

trained on the COCO (Common Objects in Context) dataset and has been used in many researches 

(Anantharaman et al., 2018; Chiao et al., 2019; Li et al., 2020; Lin et al., 2020; Zimmermann and 

Siems, 2019). The pre-trained model could be used as a zero-shot image segmentation model, 

especially when the class of interest is the same as that in the COCO dataset (He et al., 2017). 

YOLOv8 is the state-of-the-art YOLO model that can be used for object detection, image 

classification, and instance segmentation tasks (Yiting Li et al., 2023; Talaat and ZainEldin, 2023; 

Xiao et al., 2023). YOLOv8n architecture was used to offer enhanced performance on edge 

devices, providing a balance between detection accuracy and computational resource 

requirements. Both models have potential to segment CF hens without extensive training in this 

study but need verification. 

U2 -Net (Qin et al., 2020) is a deep learning model optimized for salient object detection, 

widely adapted for precise segmentation tasks due to its unique U-squared architecture. It excels 

in areas requiring detailed boundary delineation, such as medical imaging and object segmentation 

in videos. This model is particularly useful for zero-shot segmentation tasks involving unique 

object classes. ISNet (Jin et al., 2021) combines deep feature pyramids and attention mechanisms 

to enhance instance segmentation accuracy, originally developed for high resolution imagery but 

now also applied in agriculture. Both U2 -Net and ISNet show potential for segmenting specific 
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poultry breeds without extensive custom training, although their effectiveness in such applications 

would need further validation. 

Modification of Segment Anything model 

After model comparison, the SAM-based models were further modified to improve CF 

hen segmentation performance. Detailed model performance results can be found in the result 

section. 

As mentioned earlier, original SAM-related models may encounter challenges for 

automatic selection of initial points and best mask for segmentation. Pre-processing steps were 

introduced to automatically select an initial point of a target bird from each thermal image, and 

postprocessing steps were deployed to automatically determine the best mask among generated 

ones. The flowchart of the proposed method (Modified SAM) is shown in Figure 2.5. The proposed 

pre- and postprocessing techniques were also applied to FastSAM and MobileSAM, which are 

indicated as Modified FastSAM and Modified MobileSAM hereafter. 

 

  

Fig. 2.5. Modified Segment Anything Model overview. A heavyweight image encoder outputs an 

image embedding that can then be efficiently queried by defining an automatic initial point to 
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produce object masks at amortized real-time speed. The yellow numbers in the masks indicate the 

confidence scores of the segmentation. To select the best masks out of the three masks generated, 

a machine learning classifier was used. 

 

The pre-processing mainly involved automatic selection of the initial points of CF hens in 

thermal images. Initially, the highest intensity point (indicating the highest surface temperature) 

in the thermal image served as the initial point, as a target bird was assumed to have higher surface 

temperature than the background. However, in some cases, the highest intensity areas were 

concentrated at the edges of the chicken’s body in most thermal images (Figure 2.6e), instead of 

the center of the chicken’s body. Those edge areas could create ambiguity for the segmentation of 

the chicken and surroundings, further leading to inaccurate bird seg mentation. To address this 

issue, the process was refined. Thermal images underwent segmentation using a threshold value 

of 100 to effectively isolate the warmer regions (hen bodies) from the cooler background 

(environment) resulting in one or multiple distinct regions or blobs representing potential subjects 

(hens). The threshold value of 100 for segmenting thermal images in this study was selected 

through an analysis aimed at optimizing the differentiation between the hens and the background. 

This process involved conducting an exploratory analysis where multiple threshold levels, ranging 

from 50 to 150 in increments of 10, were applied to a representative set of images. Each setting 

was evaluated based on the clarity and continuity of the hen shapes as well as the exclusion of 

background elements. The threshold of 100 worked experimentally better, consistently yielding 

the most ac curate segmentation of the hens with minimal noise from the surroundings. 

Among various segmented blobs, the largest blob, was selected based on the area it covers. 

The largest area refers to the largest contiguous region identified in the thermal image after 



 

54 

thresholding, which likely corresponds to the main body of a chicken due to the uniformity and 

intensity of the heat signatures characteristic of the hen’s body. This step involves calculating the 

pixel count of each blob and identifying the one with the maximum count. The center of this largest 

blob was determined using geometric center calculations, commonly referred to as the centroid. 

The centroid of a shape in digital image processing is calculated as the average of all the x 

coordinates and the average of all the y coordinates of the pixels in a blob or region. This centroid 

acts as an initial point for further segmentation tasks, particularly for zero-shot segmentation 

techniques where selecting a meaningful starting point is crucial for model performance. By 

choosing the centroid of the largest heat-signature blob, the segmentation model is better oriented 

to focus on the hen’s body rather than the surrounding cooler areas. This strategic choice enhances 

both the accuracy and efficiency of the subsequent segmentation steps, ensuring that the most 

significant thermal profile (the hen) is captured effectively in the analysis. Figure 2.6 visually 

illustrates the process of initial point selection. The selected initial point in a thermal image 

matched that in the corresponding RGB image for segmentation. 

 

  

Fig. 2.6. SAM Pre-processing: a) Thermal image; b) segmented image after thresholding; c) 

extraction of the largest area; d) thermal image with the initial point determined from the center of 

the largest area; and e) thermal image with the initial point determined from the highest intensity 

(highest temperature). 
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In the original SAM-based models, a single prompt could yield multiple valid masks with 

different confidence scores. In most instances, the mask with the highest score aligned with the 

desired output (best mask). However, there were cases where the highest-scored mask may not be 

the optimal result among the generated masks, and two of these cases are indicated in Figure 2.7. 

According to Figure 2.7, the mask with the highest score in the first row is the optimal result. 

However, in the second row, the mask with the highest score does not represent the optimal result. 

To automatically select the best output mask from the three generated masks, a machine learning 

classification process was implemented. 

 

  

Fig. 2.7. SAM Post-processing: a) RGB image; b, c, d) three masks generated using SAM where 

b shows the masks with the highest confidence scores; and e) ground truth image. 

 

The initial phase involved extracting valuable features from the generated mask images 

and saving the outcomes in a CSV file. This process yielded a data frame encapsulated within the 

CSV, comprising 444 instances (data points) that represent individual hens. These 444 instances 

or mask images were generated by SAM, and then technicians need to further verify whether the 
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generated masks were correct (1) or incorrect (0). Each instance was described by seven feature 

columns, including the number of white pixels, number of connected components, area, perimeter, 

eccentricity, equivalent diameter, and solidity, along with an additional column representing the 

target value. 

The methodology for feature extraction was based on established principles in the field of 

image processing and analysis, rather than a single algorithmic approach (Saeidifar et al., 2021; 

Solis-Sanchez ´ et al., 2011). The chosen features are well-recognized for their ability to capture 

critical information about binary images like masks and are extensively explained as follows: 

1) Number of while pixels. This feature serves as a direct indicator of the mask’s occupied 

area within the image, reflecting the presence and size of the mask. This simple, yet 

effective, feature quantifies the mask’s extent. 

2) Number of connected components. This feature indicates the number of isolated mask 

regions, providing insights into the mask’s fragmentation or continuity, a key aspect in 

image analysis as supported by (Saeidifar et al., 2021). 

3) Area of a mask. This feature is fundamental to understanding its spatial extent. This 

measure has been utilized to quantify object sizes in binary segmentation tasks, as explored 

by (Solis-Sanchez ´ et al., 2011). 

4) Perimeter of a mask. This feature offers a gauge for the complexity of the mask’s 

boundary, influencing the shape and smoothness, as delineated in boundary analysis 

methods discussed by (Saeidifar et al., 2021; Solis-S´ anchez et al., 2011). 

5) Eccentricity. This feature measures the deviation of the mask’s shape from a perfect circle, 

critical for distinguishing between various mask shapes, as applied in shape analysis in 
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(Solis-S´ anchez et al., 2011). It has a clearly defined range of values. It is 0 for a perfectly 

round object and 1 for a line-shaped object: 

e =	
(𝜇!,# −	𝜇#,!)! − 4𝜇#,!!

(𝜇!,# +	𝜇#,!)!
																																																																																																								(2.1) 

where e is eccentricity; 𝜇!,# and 𝜇#,! are the central moments of second order of any object inside 

an image. 

6) Equivalent diameter. This feature converts the mask’s area into the diameter of a circle 

with an equivalent area, providing a scaleinvariant size measure and facilitating 

comparison between masks of different sizes, as utilized in (Saeidifar et al., 2021). 

7) Solidity. This feature reflects the ratio of the mask’s area to its convex hull area, offering 

a metric for concavity, and has been employed to evaluate shape compactness in binary 

images, as noted in studies like (Solis-Sanchez ´ et al., 2011). 

These features were selected to ensure a comprehensive analysis of the masks. 

Collectively, the number of white pixels, area, and equivalent diameter provide related metrics that 

collectively depict the mask’s scale and presence; the number of connected components, perimeter, 

and solidity contribute to an understanding of the mask’s geometric properties and topology; and 

eccentricity offers a geometric analysis dimension, distinguishing elongated masks from more 

circular forms. This robust feature set was designed to provide a nuanced characterization across 

various mask morphologies and sizes. 

To ensure the quality and consistency of the training and inference data, several 

preprocessing steps were performed on the extracted features for machine learning classification: 

1) Normalization. All features were normalized into the same scale to reduce the potential biases 

and distortions caused by the different scales of these features. 2) Data Reshuffling. The dataset 
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was reshuffled to ensure that the data distribution was random and to reduce any potential bias 

during model training. 3) Data Splitting. The dataset was split into 5 folds for cross-validation. 

Supervised machine learning classifiers were trained and tested on the mentioned features 

to evaluate their performance in predicting the accuracy of the masks. The classifiers used for mask 

selection were Decision Tree, Adaptive Boosting (Ada Boost), Support Vector Machine (SVM), 

Random Forest, and K-Nearest Neighbor (KNN), which are classical and popular supervised 

machine learning classifiers. A total of 444 mask images were used for the training. Each classifier 

was trained using a five-fold cross-validation approach to ensure robustness, given the relatively 

small size of the dataset. 

Extensive hyperparameter tuning was conducted to optimize each classifier’s performance: 

• Decision Tree: Max depth, min samples split, min samples leaf. 

• Ada Boost: Number of estimators, learning rate. 

• SVM: Kernel type, regularization parameter (C), gamma. 

• Random Forest: Number of estimators, max depth, min samples split and leaf.  

• KNN: Number of neighbors (k), distance metric. 

The optimal hyperparameter combinations were identified using grid search with cross-

validation, which systematically evaluates a range of hyperparameter values and selects the 

combination that yields the best performance on the validation set. 

Finally, the classifiers were evaluated and compared, and the optimal one was included in 

the SAM model. Once three masks were generated from SAM, they were classified with the 

optimal classifier to determine the most appropriate mask regardless of confidence scores. If 

multiple masks or none of the masks were classified as optimal, the mask with the highest score 

was retained. 
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Evaluation metrics calculation 

This study employed a robust suite of evaluation metrics to independently gauge the 

performance of segmentation and classification, as well as the efficacy of machine learning 

classifiers in post-processing. The segmentation model evaluation leverages a dataset consisting 

of 1,917 RGB images of individual chickens. The annotation of these images was carried out by a 

well-trained technician using Roboflow, which ensured the provision of high-precision masks that 

delineated the most complete depiction of each chicken. Subsequently, the author conducted a 

double verification to guarantee the accuracy and quality of the labeling. This rigorous ground 

truth forms the benchmark for assessing the segmentation models’ accuracy. 

The trained models were evaluated with precision, recall, F1 score, and Intersection over 

Union (IoU) as described in Equations (2.2), (2.3), (2.4), and (2.5). The precision measures the 

accuracy of the segmentation model in identifying only relevant pixels as part of the segmentation. 

It is the ratio of correctly predicted positive observations to the total predicted positive 

observations. Recall, also known as sensitivity, measures the model’s ability to correctly identify 

all relevant pixels. It is the ratio of correctly predicted positive observations to all observations that 

should have been labeled as positive. The F1 Score is the harmonic mean of Precision and Recall 

and is a measure of the model’s accuracy. An F1 Score reaches its best value at 1 (perfect precision 

and recall) and worst at 0. IoU is a measure used to quantify the percent overlap between the target 

mask and the model’s prediction output. It is calculated by dividing the area of overlap between 

the predicted segmentation and the ground truth by the area of union. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 																																																																														
(2.2) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 																																																																																			
(2.3) 
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𝐹1	𝑠𝑐𝑜𝑟𝑒 = 	2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 																																																																																																

(2.4) 

𝐼𝑜𝑈 = 	
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 																																																							
(2.5) 

where true positive refers to pixels that are correctly identified as part of the object of interest; 

false positive are the pixels that the segmentation model incorrectly identifies as part of the object, 

but they actually belong to the background or other objects; false negative is used for pixels that 

are part of the object in the ground truth but are missed by the segmentation model. 

The detection metric employed is the success rate, which is based on the IoU value. A 

successful segmentation is one where the IoU is 50 % or greater, which aligns with standard 

thresholds used in prominent publications (Girshick, 2015; He et al., 2017; Redmon and Farhadi, 

2018) as shown in Equation (2.6). The success rate thus reflects the percentage of images in which 

the models successfully segmented the chicken areas. 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠	𝑟𝑎𝑡𝑒 = 	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦	𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑	𝑖𝑚𝑎𝑔𝑒𝑠	(𝐼𝑜𝑈 > 0.5)

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑚𝑎𝑔𝑒𝑠 																				(2.6) 

In this study, a carefully curated set of 444 mask images was labeled to determine the 

presence of chicken masks and used to evaluate the classification phase of the machine learning 

process. The accuracy of the classifiers, defined as the ratio of correctly identified masks (both 

chicken and non-chicken) to the total number of masks evaluated, serves as the fundamental metric 

for this assessment as shown in Equation (2.7). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 																																																																					(2.7) 

Automatic digit extraction in thermal images 

To calculate the relationship between temperature readings and pixel intensity in thermal 

imagery, it is essential to first extract the two temperature values recorded by the thermal camera 
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within the image. This process involved identifying and cropping the regions that display the 

lowest and highest temperatures, which are in fixed positions in the thermal image. These cropped 

areas were then processed through an Optical Character Recognition (OCR) tool designed for 

Python, known as Python-tesseract (pytesseract). Python-tesseract is capable of recognizing and 

interpreting the text contained within images. For accurate OCR results, the background of the 

cropped images was modified to white with the temperature digits in black, which ensures optimal 

performance of the OCR tool. Figure 2.8 illustrates the mentioned process. Given the total count 

of 1917 thermal images and each image containing two temperature readings, a total of 3834 

images containing the temperature digits were processed through the pytesseract classifier. The 

accuracy of the digit predictions made by pytesseract was found to be 100 %. 

 

 

Fig. 2.8. Extracting digits from a thermal image using pytesseract. OCR is Optical Character 

Recognition. 

 

Finding the relation between temperature and pixels intensity 

After a chicken’s body region was segmented from each RGB image, the area defined by 

the segmented mask was then multiplied to the corresponding thermal image to isolate the 

chicken’s body temperature region. Figure 2.9. illustrates the result of this multiplication. To 

determine the temperature represented by each pixel in the chicken’s body region in the thermal 

image, the minimum and maximum pixel intensities were first extracted. Then, utilizing the digits 



 

62 

obtained from the previous section, the corresponding surface temperatures of the pixels within 

the chicken’s body area were calculated using the equation (2.8). 

 

 

Fig. 2.9. Multiplication of the mask on the thermal image: a) Thermal image; b) segmented mask; 

and c) resulting image after multiplication. 

 

 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 	
𝑛𝑜𝑛𝑧𝑒𝑟𝑜	𝑝𝑖𝑥𝑒𝑙𝑠 − 𝑥1

𝑥2 − 𝑥1 	×	(y2 − y1) + y1																																																								(2.8) 

where 𝑥1 is the minimum pixel intensity in the thermal image, 𝑥2 is the maximum pixel intensity, 

y1  is the minimum temperature captured by the thermal camera, and y2  is the maximum 

temperature captured.  

The equation derived from the calibration process involving the thermal camera and the 

calibrator, as depicted in Figure 2.10, should be used to calculate the actual surface temperature 

captured by the thermal camera. This ensures that the measurement reflects the true surface 

temperature. 

Extracting statistics of chicken’s body temperature 

After calculating the actual surface temperatures of the chicken’s body in the thermal 

images, various common statistical measures were computed to describe the data distribution 

across a four-week age span. The mean, or the average temperature value of the chicken’s body 
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surface pixels, provides a central value of the temperature data. The median is the middle value 

that separates the higher half from the lower half of the temperature data, indicating a central trend 

without being affected by extreme values. The minimum and maximum values represent the lowest 

and highest temperatures observed, respectively, giving insights into the range of temperature 

variation. The 25th and 75th percentiles are values below which 25 % and 75 % of the temperature 

observations may be found, respectively, highlighting the spread and skewness of temperature 

values. Surface temperatures measured by infrared thermal imaging have shown a strong 

correlation with the core body temperature of birds, as indicated by (Giloh et al., 2012). The results 

and discussion section presents graphs plotting these various statistical measures. 

Results and discussion 

Thermal camera calibration 

Figure 2.10 shows the linear regression between the thermal camera and calibrator temperature. 

According to Figure 2.10, the linear regression analysis between temperatures recorded by the 

thermal camera and those from the reference calibrator shows a high correlation, evidenced by an 

R-squared value of 0.99. This indicates the thermal camera's effectiveness in reflecting the 

calibrator's precision under controlled conditions. However, the deviation from a perfect R-

squared value of 1.0 suggests the presence of factors that may introduce variability into the thermal 

camera's readings. The differences in subjects' postures and their distances from the camera could 

contribute to this variability. Changes in posture may alter the exposed surface area, and variations 

in distance could affect the thermal flux received by the camera, thereby influencing the 

temperature measurements (Intharachathorn et al., 2023, Kelly et al., 2019). These dynamics are 

particularly relevant when monitoring live subjects, such as CF laying hens in this case, where 

such variations are inevitable. 

https://www.sciencedirect.com/science/article/pii/S0168169924008275#b0115
https://www.sciencedirect.com/science/article/pii/S0168169924008275#b0130
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To enhance the consistency and accuracy of thermal readings, adopting a fixed distance 

between the camera and the subjects could be beneficial. This approach would likely mitigate the 

variability caused by distance-related changes in thermal camera, leading to more reliable 

temperature measurements. The broader application of this analysis highlights the importance of 

operational considerations, such as subject distance and posture, in the effective deployment of 

thermal imaging for animal monitoring. However, appropriately segmenting and extracting 

individual CF laying hens out of multiple birds should be explored with the fixed installation of a 

thermal camera. 

 

Fig. 2.10. The temperature calibration curve and the fitting formula. 

 

Selecting the optimal model for zero-shot cage-free hen detection and segmentation 

Table 2.1 provides a comparative overview of hen detection performance utilizing a range 

of zero-shot segmentation algorithms. The success rate, a key metric in this analysis, is determined 
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by the proportion of images where the IoU exceeds the 50% threshold. Images that met or 

surpassed this criterion were considered to be successfully detected and segmented, contributing 

positively to the overall success rate. The highest success rates were for U2-Net and SAM with 

84.3% and 73.2%, respectively. Although U2-Net had the highest success rate among all models, 

it performed poorly in terms of other evaluation criteria as shown in Table 2.2. 

 

Table 2.1. Performance comparison of hen detection before any modifications 

Models Success Rate (%) 

YOLOV8n 50.0 

MobileSAM 70.7 

SAM 73.2 

FastSAM 71.6 

Mask R-CNN 

U2-Net 

ISNet 

64.2 

84.3 

64.4 

Notes: SAM is Segment Anything, YOLO is You Only Look Once; and R-CNN is Region-based 

Convolutional neural network. U2-Net is U square net. 

 

 SAM's superiority lies in its ability to generalize effectively to new tasks and datasets 

without requiring task-specific training or fine-tuning. This capability is attributed to its training 

on the diverse SA-1B dataset and its design, which allows it to interpret and respond to a wide 

range of segmentation prompts, thereby enabling it to tackle a variety of segmentation challenges 

effectively in a zero-shot manner. Moreover, SAM generates three masks with varying confidence 

scores for each segmentation task, providing a nuanced approach to resolving the ambiguities 

inherent in segmentation tasks, particularly in zero-shot scenarios where the model is applied to 

completely unseen data (Kirillov et al., 2023). However, while SAM leads in zero-shot efficacy, 
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there is room for improvement to achieve an even higher success rate. This could potentially be 

addressed through modifications tailored to enhance its discrimination capabilities specifically for 

the task at hand. 

On the other hand, the lower success rate (50.0%) of YOLOv8 underscores a limitation in its 

zero-shot detection capabilities, particularly in accurately identifying chickens. Although 

YOLOv8 and Mask R-CNN are powerful models, their performance is not optimized for this 

specific application without training on a dataset specific to chickens. Nonetheless, the overarching 

goal is to utilize a zero-shot instance segmentation method that operates without requiring any 

image training.  

Table 2.2 presents a comparison of different segmentation metrics across the models to 

assess the segmentation capabilities of various models. 

 

Table 2.2. Performance comparison of hen segmentation before any modifications 

Models 
Evaluation criteria (%) 

Precision Recall F1 score IoU 
YOLOV8n 97.4 81.4 88.4 79.5 

MobileSAM  92.9 90.2 91.1 84.0 

SAM  93.8 90.6 92.2 85.4 

FastSAM  92.6 90.4 91.5 84.1 

MaskRCNN 87.5 90.2 88.8 79.9 

U2-Net 98.8 77.4 86.6 76.7 

ISNet 99.6 71.7 83.1 71.5 

Notes: SAM is Segment Anything, YOLO is You Only Look Once; and R-CNN is Region-based 

Convolutional neural network. U2-Net is U square net. 
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According to the data in Table 2.2, it is observed that the segmentation metrics across various 

SAM-based models before modifications are relatively consistent. This consistency is primarily 

because the metrics were calculated for images that the models have successfully segmented and 

detected in prior assessments. Therefore, these figures represent the performance on a refined 

subset of images — those that met the success criteria in the earlier detection phase and not the 

entire dataset. 

While the segmentation results across models were closely matched, SAM still outperformed 

the others in most aspects, except for precision. The close results indicate that all models were 

reasonably effective in distinguishing the segmented chickens once they passed the initial 

detection threshold. However, SAM's slight edge in these unmodified conditions suggests that its 

core architecture is inherently more aligned with the nuances of hen segmentation tasks, even 

before any tailored enhancements are applied. Figure 2.11 illustrates the segmentation results 

achieved by different models. 
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Fig. 2.11. Segmentation results of different models: a) RGB image; b) MobileSAM; c) FastSAM; 

d) SAM; e) YOLOv8, f) Mask R-CNN, g) U2-Net, h) ISNet; and i) ground truth. 

 

In summary, SAM-based models performed better than the other two zero-shot instance 

segmentation, thus, they were selected for further optimization for segmenting individual laying 

hens from thermal images. 

 

Comparison of five different machine learning classifiers for the post-processing 

As mentioned earlier., an extensive hyperparameter tuning process was conducted to find the 

best hyperparameter values for each of the classifiers used for the optimal mask selection. Table 

2.3 lists all the hyperparameters, the range of tested values, and the best value among them used 

for each of the five classifier models.  

 

Table 2.3. Hyperparameter tuning results for machine learning classifiers 

Model Hyperparameter Values Best value 

Decision Tree 
max_depth 

min_samples_split 
min_samples_leaf 

[3, 5, 7, None] 
[2, 5, 10] 
[1, 2, 4] 

5 
2 
1 

AdaBoost n_estimators 
learning_rate 

[50, 100, 200] 
[0.01, 0.1, 1] 

100 
0.1 

SVM 
C 

gamma 
kernel 

[0.1, 1, 10] 
['scale', 'auto'] 

['linear','rbf','poly'] 

1 
'scale' 
'rbf' 

Random Forest 

n_estimators 
max_depth 

min_samples_split 
min_samples_leaf 

[50, 100, 200] 
[None, 10, 20, 30] 

[2, 5, 10] 
[1, 2, 4] 

100 
None 

2 
1 

KNN n_neighbors 
metric 

[3, 5, 7] 
['euclidean','manhattan'] 

5 
'euclidean' 
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Notes: AdaBoost is Adaptive Boosting, SVM is Support Vector Machine; and KNN is K-Nearest 

Neighbor. 

 

 Table 2.4 compares the classification accuracy for various machine learning models used 

in the post-processing stage.  

 

Table 2.4. Comparison of different machine learning classifiers for mask selection 

Models Accuracy (%) 

Decision tree 91.7 

Ada Boost 90.4 

SVM 89.4 

Random Forest 90.5 

KNN 87.0 

Notes: Ada Boost is Adaptive Boosting; and SVM is Support Vector Machine. 

 

In the evaluation of machine learning classifiers for post-processing, the decision tree 

outperformed, closely followed by the Random Forest and Ada Boost methods. The SVM 

classifier also fared well, indicating its strong capability for this task. KNN, while still performing 

respectably, offers a valuable benchmark for comparative analysis. 

The nuanced performance of these classifiers suggests that the more complex ensemble 

methods, despite their computational intensity, do not significantly outperform the simpler 

decision tree model in this context. This could be attributed to the nature of the features extracted 

for post-processing, where decision trees might capture the necessary patterns effectively without 

the need for ensemble strategies (Banfield et al., 2007). 
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Upon the completion of training, the decision tree guided the selection process among the 

three masks generated for each image. The classifier’s judgment is paramount; if it identified a 

single mask as optimal, that mask was selected as the output, overriding the score-based selection. 

In scenarios where multiple masks were deemed optimal, or none meet the criteria, the mask with 

the highest score was then chosen. This hybrid approach, combining the classifier’s analytical 

strengths with score-based evaluation, was designed to optimize mask selection, ensuring that the 

final output is not only based on empirical feature assessment but also on quantifiable 

segmentation performance. 

Comparison of modified SAM-based models and two generic models for cage-free hen 

detection and segmentation 

According to the baseline performance outlined in Tables 2.1 and 2.2, the SAM-based models 

were further developed by incorporating pre- and post-processing techniques. Since SAM-based 

models are considered generic segmentation models, to make the comparison fair, they were 

compared with the two generic baselines, namely U2-Net and ISNet. Table 2.5 examines the 

detection results from the modified SAM-based models as well as U2-Net and ISNet. Modified 

SAM models’ performance were compared in different states: without any pre- or post-processing, 

with pre-processing only, and with post-processing only. However, we could not apply similar pre 

and post-processing steps on U2-Net and ISNet as they do not accept input prompts for 

segmentation. This comprehensive evaluation was essential to evaluate the impact of each 

processing stage on the overall efficacy of the hen segmentation task. 
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Table 2.5. Performance comparison of hen detection for modified SAM-Based models 

Models Condition Success rate (%) 

SAM 

W/O pre & post-processing 

W/ pre-processing 

W/ post-processing 

W/ pre & post-processing 

73.2 

75.3 

82.6 

84.4 

MobileSAM 

W/O pre & post-processing 70.7 

W/ pre-processing 72.0 

W/ post-processing 78.3 

W/ pre & post-processing 82.0 

FastSAM 
W/O pre & post-processing 

W/ pre-processing 

71.6 

72.8 

U2-Net W/O pre & post-processing 84.3 

ISNet W/O pre & post-processing 64.4 

Notes: 'w/o' refers to 'without,' indicating that the model was tested without the application of the associated 

processing technique. Conversely, 'w/' denotes 'with,' showing that the model was tested with the 

implementation of the given pre-processing or post-processing technique.  
 

In examining the data presented in Table 2.5, it becomes apparent that the Modified SAM, 

which incorporated both pre- and post-processing steps, had a significantly higher success rate in 

detecting and segmenting hens than its counterparts in the family of SAM models. U2-Net model 

had a quite similar performance as modified-SAM model in terms of success rate. Success rate 

metric is crucial, as it quantifies the percentage of instances where the algorithm correctly 

identifies and delineates the subjects of interest. The comparative analysis reveals that the 

enhanced success rate of the Modified SAM—when contrasted with the original SAM, which lacks 

additional processing, the SAM with pre-processing only, and the SAM with post-processing only, 

underscores the substantial impact of the modifications on the algorithm’s efficiency. These 
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techniques likely enhance the model's ability to discriminate between the hens and their 

surroundings by optimizing the input data quality and refining the segmentation output. The reason 

FastSAM was not implemented with post-processing was due to its design, which generates a 

single mask. Consequently, it does not necessitate post-processing steps typically required for 

models that produce multiple masks and need to select the best one. Furthermore, the Modified 

SAM's success showcased the potential of integrating zero-shot learning principles with targeted 

algorithmic enhancements to achieve high performance. This balanced approach leverages the 

inherent strengths of zero-shot models, such as their flexibility and generalizability, while 

compensating for their weaknesses through strategic modifications that tune the model to the 

specific characteristics of the task. Table 2.6 provides an evaluation of the segmentation 

performance of different SAM-based models. 

 

Table 2.6. Performance comparison of hen segmentation for modified SAM-Based models 

Models Condition 
Evaluation criteria (%) 

Precision Recall F1score IoU 

SAM 

W/O pre & post-processing 

W/ pre-processing 

W/ post-processing 

W/ pre & post-processing 

93.8 90.6 92.2 85.4 

93.6 90.7 92.1 84.3 

93.8 90.7 92.2 85.1 

93.6 91.0 92.3 85.5 

MobileSAM 

W/O pre & post-processing 92.9 90.2 91.5 84.0 

W/ pre-processing 92.5 90.4 91.4 84.1 

W/ post-processing 92.5 90.4 91.4 84.1 

W/ pre & post-processing 91.8 90.7 91.2 83.6 

FastSAM 
W/O pre & post-processing 

W/ pre-processing 

92.6 90.4 91.5 84.1 

92.5 90.4 91.4 84.1 

      U2-Net W/O pre & post-processing 98.8 77.4 86.6 76.7 

        ISNet W/O pre & post-processing 99.6 71.7 83.1 71.5 



 

73 

Notes: 'w/o' refers to 'without,' indicating that the model was tested without the application of the associated 

processing technique. Conversely, 'w/' denotes 'with,' showing that the model was tested with the 

implementation of the given pre-processing or post-processing technique.  
 

As highlighted in Table 2.2 and previously discussed, the segmentation metrics among the 

SAM-based models were generally consistent, reflecting their efficacy in processing successfully 

detected images. Similarly, Table 2.6 also presents comparable results. These findings further 

reinforce the reliability of the SAM models in segmenting images that meet the established success 

criteria. The two generic models, U2-Net and ISNet were quite competitive in terms of precision, 

but demonstrated poor performance in terms of recall, F1-score, and IoU which makes them 

unreliable for our testbed.  

In the context of Table 2.6, while the results show a uniform performance, the Modified 

SAM models have shown incremental improvements in segmentation. These enhancements, 

particularly evident in the metrics of recall, F1 score and IoU, suggest that the post-modification 

refinements in the SAM-based models have further fine-tuned their segmentation capabilities, 

especially for the challenging aspects of the hen segmentation task. This incremental advancement 

underscores the value of the modifications introduced to the SAM framework, confirming that 

even minor adjustments can yield measurable benefits in segmentation precision and reliability. 

Figure 2.12 displays the segmentation results produced by the modified SAM. According to the 

figure, the Modified SAM could segment a more complete body profile compared to the Original 

SAM. 
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Fig. 2.12. Hen segmentation using Modified SAM: a) RGB Image; b) thermal image; c) 

segmentation result using SAM without modification; and d) segmentation result using Modified 

SAM; and e) ground truth image. 

 

The primary goal of this study was to develop a zero-shot image segmentation algorithm 

aimed at minimizing the time-consuming task of manual segmentation annotation in the poultry 

sector. Traditional manual segmentation annotation of each bird, accounting for intricate details 

like head and leg contours, typically requires about one minute per image. Although semi-

supervised tools like Roboflow reduce this time to approximately 20 seconds, they may still need 

human intervention for refined annotations. In our dataset of 1,917 images, manual segmentation 

annotation would take about 32 hours, and semi-automatic methods around 11 hours. By contrast, 

the proposed model processed each image in roughly 2 seconds, completing the task in about 1 

hour for the entire dataset, thus saving significant labor costs. Considering the minimum hourly 

wage for labeling is $13 per hour, our approach reduces segmentation annotation costs by $400 

and $140 compared to manual and semi-automatic methods, respectively. Moreover, our model 

surpasses previous ones in all evaluation metrics. This efficiency makes zero-shot image 
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segmentation highly valuable for large-scale poultry studies, requiring extensive bird segmentation 

annotations. 

Statistics of surface temperature in chickens over four weeks of age 

After establishing the relationship between temperature and pixel intensity as discussed 

earlier, various statistics were extracted from the temperature of the segmented chicken pixels in 

the thermal images. The averages of the statistics have been plotted in Figure 2.13 across four 

weeks of bird age. 
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Fig. 2.13. Extraction of average statistics with standard deviation for surface body temperature of 

hens from weeks 77 to 80. 

 

 According to Figure 2.13, the six figures display various average temperature statistics 

along with their standard deviations, charting the trends in surface body temperatures of chickens 

from weeks 77 to 80. These trends were largely consistent across the figures, except for the average 

maximum temperatures. Since the average maximum temperature reflected only the single highest 

temperature point in a thermal image, it did not provide a comprehensive representation of the 
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overall surface body temperature. This discrepancy highlights the necessity of evaluating a range 

of statistics to gain a full understanding of surface body temperatures (Nascimento et al., 2014), a 

principle advocated for in this paper. 

Bird surface body temperature fluctuated from weeks 77 to 80 with a peak at week 79. This 

demonstrates the necessity of continuous monitoring of bird thermal conditions to provide timely 

and precise thermal regulation for hens. 

 It is crucial to consider a comprehensive set of statistics when evaluating surface body 

temperature to obtain a representative thermal snapshot. This paper's detailed statistical approach, 

which includes analysis of mean, median, 25th percentile and 75th percentile, alongside the standard 

deviation, provides a comprehensive view of the thermal characteristics of the birds over the four-

week period. Such an approach ensures that decisions or inferences drawn from the data are based 

on a complete and nuanced understanding of the thermal dynamics of hens. 

Additional discussion and future work 

Our study was conducted over a period of 4 weeks (28 days). To contextualize this duration, 

we compared it with the periods used in similar peer-reviewed articles. Table 2.7 shows examples 

of studies that utilized shorter periods. The longer data acquisition period in this study allows for 

capturing a wider range of temporal and spatial dynamics and behavior patterns, which is 

supportive for developing more robust and generalizable machine learning models. 

 

Table 2.7. Comparison of study durations in various research studies 

Reference Study period 

(Li et al., 2021) 3 days 

(Bahuti et al., 2023) 21 days 

(Lamping et al., 2022) 5 days 
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(Du et al., 2021) 7 days 

This study 28 days 

 

 

The structural similarity score was computed for each pair of images for demonstrating the 

diversity of the dataset, with 1 representing an identical/similar image and 0 representing a 

completely different image as shown in Figure 2.14. Histogram of the score for different pairs of 

images was computed to depict the distribution of image similarity scores. 

 

 

Fig. 2.14. Distribution of image similarity scores 

 

According to the histogram graph, the following results were observed to support large 

diversity in the dataset.  

1) Wide range of similarity scores: The similarity scores cover a wide spectrum from 0.3 to 

0.7, reflecting the presence of both highly dissimilar and highly similar images in the dataset. This 
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range implies that the dataset contains a variety of images, rather than being skewed towards either 

end of the similarity spectrum. 

2) Normal distribution: The similarity scores form a bell-shaped curve, similar to a normal 

distribution. This indicates a balanced dataset, where most image pairs exhibit moderate similarity, 

and fewer pairs are either highly similar or highly dissimilar. Such a balance points to diversity, 

suggesting that the dataset does not favor any particular type of image content. 

3) Larger proportion of dissimilar images: Commonly, the similarity score of less than 0.5 

indicates a different image, which took up over 75% in this case. Thus, the image inside the dataset 

was either moderately or highly dissimilar with each other. 

Future work will focus on evaluating SAMAug, which uses augmented point prompts derived 

from initial SAM segmentation to improve the model's grasp of user intentions, thus boosting 

segmentation accuracy without additional inputs or model retraining (Dai et al., 2023). 

Additionally, for the post-processing step involving a machine learning classifier to select the 

optimal mask from three options, improvements could include expanding the training dataset for 

the classifier and augmenting the number of features provided to the classifier to increase its 

accuracy. 

Conclusions 

In this research, a zero-shot image segmentation technique was developed and optimized 

using the Segment Anything Model (SAM) for segmenting individual cage-free laying hens. The 

performance of the zero-shot model was significantly enhanced by integrating specific pre- and 

post-processing techniques, outperforming other zero-shot instance segmentation methods. The 

modified model has been streamlined into a pipeline to automatically extract comprehensive body 

temperature statistics, such as the mean, median, maximum, minimum, 25th, and 75th percentiles. 
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As a result, a valuable tool has been provided that supports precision poultry farming and aims to 

improve production efficiency. This advancement in the application of artificial intelligence in 

agriculture paves the way for more efficient health monitoring and management practices, 

potentially revolutionizing the poultry industry by enhancing both productivity and animal 

welfare. 
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CHAPTER III 

AUTOMATIC SEGMENTATION OF BIRDS USING A COMBINATION OF OBJECT 

DETECTION AND FOUNDATION IMAGE SEGMENTATION MODELS 

 

 This study introduced an innovative method for automatic bird segmentation by combining 

an object detection model (i.e., YOLOv7) with a foundation image segmentation model (i.e., 

Segment Anything Model, SAM). YOLOv7 detected individual birds in images and calculated 

bounding box prompts of each detected bird for the SAM, enabling detailed and efficient 

segmentation without manual point inputs. The developed method was compared with various 

segmentation methods, including YOLOv8, Thermal image + MobileSAM, Thermal image + 

SAM, Thermal image + FastSAM, Mask R-CNN, and YOLOv7 (providing centroids of detected 

birds as point prompts) + SAM. The results showed that the proposed method outperformed all of 

the comparative segmentation methods, with the highest precision of 92.5%, recall of 98.2%, F1 

score of 95.1%, IoU of 91.0%, and success rate of 98.0%. The study highlights a significant 

advancement in automatic image segmentation techniques with less intensive human annotation 

than standard deep learning-based image segmentation methods. The developed methods can be 

scaled up and transferred to various agricultural, environmental, medical, geographical, and urban 

planning applications. 

Introduction 

 The rapidly expanding domain of image segmentation has witnessed a remarkable 

transformation with the introduction of a comprehensive foundation model, Segment Anything 
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Model (SAM) (Kirillov et al., 2023). A foundation image segmentation model should have good 

generalizability in segmenting objects of interest from various backgrounds and environments 

beyond training datasets. The most impressive part is that without task-specific training (zero-shot) 

or with minimal additional training via prompts (user inputs) (few-shot), the foundation models 

(Bommasani et al., 2021) can rival or even outperform traditionally trained models on certain tasks. 

Some of the most popular and state-of-the-art zero-shot instance image segmentation models other 

than SAM include Fast Segment Anything Model (FastSAM) (Zhao et al., 2023) and Faster 

Segment Anything Model (MobileSAM or FasterSAM) (Zhang et al., 2023). These SAM-based 

models have gained widespread attention since they appeared in recent studies (Ma et al., 2024; 

Mazurowski et al., 2023; Osco et al., 2023; Shi et al., 2023). Researchers are constantly pushing 

the boundaries by increasing model size, dataset comprehensiveness, and the computational power 

used for training (Brown et al., 2020; Hoffmann et al., 2022; Kaplan et al., 2020; Chowdhery et 

al., 2023) .Owning to large-scale training in the substantial dataset, SA-1B, which comprises over 

1 billion masks and 11 million images, SAM has demonstrated robust zero-shot or few-shot image 

segmentation performance via various input prompts such as point or bounding box prompts. A 

data engine was developed for the SAM dataset, involving three stages: model-assisted manual 

annotation, semi-automatic, and fully automatic. In the manual annotation stage, annotators 

labeled masks based on complete shapes rather than prompts, significantly improving annotation 

speed and quality, resulting in 4.3 million masks from 120k images. The semi-automatic stage 

aimed to label less prominent objects by training a bounding box detector, generating 5.9 million 

masks from 180k images. The fully automatic stage leveraged improvements from previous stages 

and ambiguity awareness to generate 1.1 billion masks from 11 million images without human 

intervention. Quality was maintained by comparing and refining automatically generated masks 



 

89 

using IoU metrics. SAM’s architecture includes a Masked Auto Encoding (MAE) pre-trained 

Vision Transformer (ViT) encoder that produces image embeddings for prompt-based mask 

generation (Kirillov et al., 2023). 

 SAM requires manual input prompts, which poses limitations of SAM applications in the 

scenarios with dense distributions of targeted objects. For instance, a modern poultry house 

typically contains tens of thousands of birds, and the same amount of human input prompts are 

needed to segment individual birds out from images if SAM is deployed in the precision poultry 

farming domain. Thus, automating the prompting procedure for SAM is urgently needed to avoid 

laborious manual inputs for densely distributed objects. The agricultural industry, particularly 

poultry farming, stands to benefit significantly from advancements in automated image 

segmentation due to the sheer scale and complexity of monitoring animal welfare (Edgar et al., 

2013). Enhanced segmentation capabilities can lead to better health monitoring, resource 

allocation, and overall management of poultry houses. 

 Previous studies investigated integrating image processing (pre-processing) for point 

prompting and machine learning for generated mask classification (post-processing) into SAM to 

segment individual laying hens from thermal images (Saeidifar et al., 2024). While achieving a 

success rate of 84.4%, IoU of 85.5%, recall of 91.0%, and F1 score of 92.3%, the proposed method 

inevitably had several drawbacks. Firstly, thermography, despite providing thermal characteristics 

of target objects for prompting, can be subject to ambient temperature and is not economically 

friendly for end users. Instead, RGB is the mainstream of deep learning model development due 

to its cost-effectiveness and easy access. Second, the proposed framework still requires training 

for supervised machine learning classifiers, which is not supportive to achieve zero-shot or few-

shot image segmentation. Moreover, relying on thermal imaging limits the versatility of the 
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system, as thermography cannot be easily adapted to varying environmental conditions without 

significant recalibration, especially for thermal equilibrium environments. This reliance also adds 

a layer of complexity and cost that can be prohibitive for widespread adoption, especially in 

smaller-scale operations. 

 Such a framework can be improved by integrating object detection models, which enclose 

target objects with bounding boxes. The set of models has been constantly improved with model 

architecture, model parameters, learning structure, dataset comprehensiveness, and computational 

power used for training. Object detection has its own foundation model, such as YOLO (You Only 

Look Once) which is widely used in many research (Talaat & ZainEldin, 2023; Xiao et al., 2023), 

and can be integrated into SAM to automate zero-shot or few-shot image segmentation. YOLOv7, 

a recent advancement in the series of YOLO models, represents state-of-the-art technology in real-

time object detection, emphasizing speed and accuracy across various operational frames per 

second (FPS) (Wang et al., 2023). This model showcases a significant improvement over its 

predecessors and other existing models in terms of detection precision and processing speed. The 

YOLOv7 architecture integrates a robust and streamlined design optimized for speed without 

sacrificing accuracy, making it highly suitable for real-time applications (Wang et al., 2023; Li et 

al., 2024; Xia et al., 2022; Peng et al., 2024). The model employs a combination of Cross Stage 

Partial (CSP) networks and additional enhancements in the backbone that allow for faster 

computation while reducing the number of parameters. This architecture benefits significantly 

from advances in convolutional neural networks, utilizing techniques that optimize layer 

interactions for improved feature extraction and efficiency. The training process of YOLOv7 is 

notable for its efficiency and effectiveness, partly due to the innovative use of "trainable bag-of-

freebies." These methods optimize the training phase to enhance model accuracy without 
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additional computational cost at inference time. YOLOv7 was trained from scratch on the MS 

COCO dataset, a comprehensive image dataset popular for object detection tasks, which helps in 

achieving robustness across varied visual contexts without the need for pre-trained weights. 

 In a combined framework, an object detection model like YOLOv7 first identifies objects 

within an image and automatically generates bounding boxes. These bounding boxes, along with 

a precisely calculated centroids within each box, serve as the prompts for SAM. Consequently, 

SAM focuses on the prompted areas to produce refined segmentation masks. Such a combined 

framework cannot only avoid laborious human input prompts densely distributed objects but also 

enjoys the strengths of two different sets of foundation models. 

 In sum, the objective of this research was to innovate an automatic segmentation method 

by combining YOLOv7 and SAM. The proposed method was trained, optimized, and evaluated 

with a laying hen dataset collected from cage-free housing systems. 

Materials and methods 

Overall workflow 

 The workflow of this paper comprises six major components as illustrated in Figure 3.1. 

The first step involves data collection from the cage-free hen environments. Subsequently, object 

detection is performed using the YOLOv7 model, which is renowned for its accuracy and 

efficiency in identifying objects within images. Following this, the coordinates of the bounding 

boxes obtained by YOLOv7 are extracted, facilitating precise localization of the detected objects. 

The fourth step introduces the proposed method, YOLOv7 + SAM, which uses both point prompts 

and box prompts for improved segmentation. The fifth phase encompasses a comparative analysis, 

benchmarking YOLOv7 + SAM against various state-of-the-art instance segmentation models. 

This analysis aims to identify the model that delivers the best performance. The final step focuses 
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on the calculation of evaluation metrics to rigorously assess the efficacy of the models, ensuring 

the selection of the optimal model for the task. 

 The sole programming language utilized was Python. Key Python libraries included 

OpenCV and Pillow for image manipulation, along with Pandas and NumPy for handling data. 

Matplotlib was used for graphically representing results. Additionally, supplementary libraries 

employed were pickle, os, Scikit-image, csv, and sys. Computational operations were executed on 

Google Colab, which provided 12.7 GB of RAM and 16 GB of T4 GPU memory, supported by a 

dual-core CPU running at 2.30 GHz. 

 

 

Fig. 3.1. Workflow diagram - This figure presents a schematic of the six-step analytical process 

employed in the paper. SAM is Segment Anything, YOLO is You Only Look Once, and R-CNN 

is Region-based Convolutional Neural Network. 
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Animal, housing, and management 

 The study took place at the University of Georgia’s Poultry Research Center. Four rooms 

with environmental controls were used, each measuring 7.3 meters in length, 6.1 meters in width, 

and 3.1 meters in height. Each room housed 180 Hy-Line W-36 laying hens on a litter floor covered 

with 2.5 cm of pine wood shavings. The rooms also included an A-shaped perch totaling 36.6 

meters in length and four nest boxes. The hens were fed an antibiotic-free mash feed during the 

study. The feed, made at the center's feed mill, had the following nutritional specs: 1.26 

MJ/hen/day of metabolizable energy, 16.70 g/day of crude protein, 4 g/day of calcium, and 0.40 

g/day of digestible phosphorus. Husbandry, management, and environmental conditions followed 

the guidelines for Hy-Line W-36 commercial layers (Hy-Line International, 2024). The study's 

procedures were approved by the Institutional Animal Care and Use Committee (IACUC) under 

protocol number A2020 08-014-A1, approved on October 5, 2020. 

Dataset 

Images were taken with a low-cost thermal imaging camera (FLIR C5, Teledyne FLIR, 

Wilsonville, Oregon, USA) when the birds were 77-80 weeks old. The camera was carefully 

calibrated with a thermal calibrator (FLUKE 9133, FLUKE, Everett, WA, USA) to ensure the 

temperature captured in thermal images was correct. Each shot produced a pair of RGB and 

thermal images, each with a size of 640 × 480 pixels. A total of 1,917 pairs of images were 

collected. The images varied widely in pixel intensity, backgrounds, presence of feathers on the 

ground, inclusion of nest boxes, and instances of overlapping and occlusion among the chickens. 

Figure 3.2 presents two pairs of samples RGB and thermal images. 
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Fig. 3.2.  Two pairs of RGB and thermal images: a, c) RGB images; and b, d) corresponding 

thermal images. Digits inside thermal images indicate maximal or minimal temperatures. 

 

Object detection model (YOLOv7) 

 YOLOv7, a state-of-the-art object detection model known for its speed and accuracy, was 

utilized in this study to detect chickens in RGB images. This version of YOLO was chosen due to 

its balanced trade-off between detection performance and computational efficiency, which is 

critical for processing large datasets in a reasonable time frame. Additionally, since "bird" is one 

of the classes YOLOv7 has been trained on in the COCO dataset, the pre-trained YOLOv7 model 

was transferred and utilized for this task. This allowed the leveraging of its pre-existing knowledge 

to accurately identify chickens in the images. The output of YOLOv7 detecting chickens in the 

dataset is shown in Figure 3.3. 
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Fig. 3.3.  YOLO output 

 

Extracting the coordinates of the bounding box 

 In this phase, the coordinates of the bounding boxes obtained by YOLOv7 were extracted 

to be used as the initial prompts for SAM. The centroid of each bounding box served as the initial 

point prompt for SAM. Additionally, the four coordinates of the corners of the bounding box were 

used as the bounding box prompt for SAM. This setup allowed the precise bird localization 

provided by YOLOv7, leveraging the performance enhancement of SAM in segmenting the 

chickens. 

Proposed method 

 The flowchart of the proposed method (YOLOv7 + SAM) is shown in Figure 3.4. 

 



 

96 

 

Fig. 3.4. Proposed Method (YOLOv7 + SAM): The method uses a robust image encoder to 

generate an image embedding. This embedding can be efficiently queried by defining an automatic 

initial point, enabling the production of bird masks at amortized real-time speed. The yellow 

numbers on the masks represent the confidence scores of the segmentation, with the mask having 

the highest score being selected as the final output. 

 

YOLOv7 (box prompts) + SAM  

 For the chicken segmentation using bounding boxes, the x_min, y_min, x_max, and y_max 

coordinates provided by YOLOv7 were given to SAM, hereafter referred as YOLOv7 (box 

prompts) + SAM. Using a bounding box as a prompt, narrows down the area for finding the 

segmented object (i.e., chicken in this case), which makes the segmentation more accurate. Three 

masks were generated by each segmentation, and the mask with the highest confidence score was 

chosen.   
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Fig. 3.5. Segmentation results of YOLOv7 (providing bounding boxes of detected birds as box 

prompts) + SAM: a) detected chickens enclosed with bounding box; b) segmentation results; c) 

ground truths. 

 

YOLOv7 (point prompts) + SAM  

 Figure 3.6 shows the procedure of using the centroids of detected birds from YOLOv7 as 

point prompts for SAM segmentation, hereafter referred as YOLOv7 (point prompts) + SAM. 
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Fig. 3.6. Segmentation results of YOLOv7 (point prompts) + SAM: a) detected chickens enclosed 

with bounding boxes; b) RGB image with centroid points of detected bounding boxes; c) 

segmentation results; d) ground truths. 

 

 Since the centroids of bounding boxes obtained by YOLOv7 was only a single point, in 

some images where the orientation of the chicken's body is complex, the centroid may fall outside 

of the chicken’s body, leading to inaccurate segmentation. Figure 3.7 shows some of the erroneous 

segmentation examples. For example, the hen needs to access nipple drinkers with its head tilted 

to one side, leading to curly body shape and fallout centroid points. 
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Fig. 3.7. Erroneous segmentation results of YOLOv7 (point prompts) + SAM: a) detected chickens 

enclosed with bounding boxes; b) RGB image with centroid points of detected bounding boxes; c) 

erroneous segmentation results; d) ground truths. 

 

Comparative analysis 

 The performance of the YOLOv7 + SAM combination for zero-shot hen segmentation was 

verified using four additional deep learning models. These models, which had already been trained 

on large datasets, were directly used for segmenting hens without requiring extensive additional 

training. Mask Region-based Convolutional Neural Network (R-CNN), a well-known instance 

segmentation model, was trained on the COCO (Common Objects in Context) dataset and has been 

widely used in research. As the target class (i.e., bird) is included in the COCO dataset, this pre-

trained model can effectively perform segmentation tasks without extra training. 

 FastSAM, a CNN-based model, stands out for its speed due to its training on just 2% of 

the SA-1B dataset, which contains 1 billion masks for training general-purpose object 

segmentation models like SAM. The MobileSAM or FasterSAM improved processing speed by 

substituting the original bulky ViT-H (632 million parameters) encoder of SAM with a more 
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compact Tiny-ViT (5 million parameters). Generally, FastSAM and MobileSAM are extensive 

versions of the original SAM, with compressed parameters to enhance processing speed. 

 YOLOv8, the newer YOLO model, can be used for object detection, image classification, 

and instance segmentation. The YOLOv8n version offers good performance on edge devices, 

balancing detection accuracy and computational resources. Both Mask R-CNN and YOLOv8 have 

the potential to effectively segment hens without extensive additional training, but their 

performance in this study needs to be verified. 

 Additionally, a previous study (Thermal images + SAM) used the characteristics of thermal 

images, along with some pre- and post-processing steps, as the initial prompt for SAM. This 

approach leveraged the unique features of thermal images to enhance SAM's performance in 

segmenting the hens. 

Evaluation metrics calculation 

 This study utilized a comprehensive set of evaluation metrics to independently assess the 

performance of both segmentation and detection. The segmentation model evaluation was based 

on a dataset of 1,917 RGB images of individual chickens. These images were annotated by a skilled 

technician using Roboflow, ensuring high-precision masks that accurately depicted each chicken. 

The author then conducted a double verification to ensure the accuracy and quality of the labeling. 

This rigorous ground truth served as the benchmark for evaluating the accuracy of the 

segmentation models. 

 The performance of the trained models was assessed using precision, recall, F1 score, and 

Intersection over Union (IoU) as detailed in Equations (3.1), (3.2), (3.3), and (3.4). Precision 

determines how accurately the model identifies only the relevant pixels for segmentation, 

calculated by the proportion of correctly predicted positives to the total predicted positives. Recall, 
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also known as sensitivity, evaluates the model’s effectiveness in detecting all relevant pixels, 

calculated by the proportion of correctly predicted positives to the total actual positives. The F1 

Score, representing the harmonic mean of precision and recall, gauges the model’s overall 

accuracy, with 1 being the optimal value indicating perfect precision and recall, and 0 the lowest. 

IoU measures the overlap between the predicted segmentation and the ground truth, calculated by 

dividing the overlapping area by the combined area of the predicted segmentation and the ground 

truth. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 																																																																														
(3.1) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 																																																																																			
(3.2) 

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 	2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 																																																																																																

(3.3) 

𝐼𝑜𝑈 = 	
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 																																																							
(3.4) 

 

where true positive refers to pixels that are correctly identified as part of the birds; false positive 

are the pixels that the segmentation model incorrectly identifies as part of the birds, but they 

actually belong to the background or other objects; false negative is used for pixels that are part of 

the birds in the ground truth but are missed by the segmentation model. 

 The detection metric employed is the success rate, which is based on the IoU value. A 

successful segmentation is one where the IoU is 50% or greater, which aligns with standard 

thresholds used in prominent publications (Girshick, 2015; He et al., 2017; Redmon and Farhadi, 

2018) as shown in Equation (3.5). The success rate thus reflects the percentage of images in which 

the models successfully segmented the chicken areas. 
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𝑆𝑢𝑐𝑐𝑒𝑠𝑠	𝑟𝑎𝑡𝑒 = 	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦	𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑	𝑖𝑚𝑎𝑔𝑒𝑠	(𝐼𝑜𝑈 > 0.5)

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑚𝑎𝑔𝑒𝑠 																				(3.5) 

 

Results and discussion 

Image similarity scores 

 The histogram as shown in Figure 3.8 illustrates the distribution of RGB image similarity 

scores within the sampled subset. The scores ranged from 0 to 1 with 0 representing a completely 

different image and 1 representing an identical/duplicate image. The similarity score ranges from 

0.3 to 0.7, with the majority of scores concentrated around the 0.4 to 0.5 range. The histogram's 

shape and distribution indicate several key points about the diversity of the dataset: 

• Wide Range of Similarity Scores: The similarity scores span a broad range (0.3 to 0.7), 

indicating that there was a mix of both highly similar and highly dissimilar images within 

the dataset. This range suggests that the dataset includes a variety of images rather than 

being dominated by very similar or very dissimilar images. 

• Normal Distribution: The distribution of similarity scores forms a bell-shaped curve, 

resembling a normal distribution. This suggests a balanced dataset where most image pairs 

had moderate similarity, with fewer pairs being either very similar or very dissimilar. This 

balance is indicative of diversity, as it implies that the dataset does not have a bias towards 

a specific type of image content. 
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Fig. 3.8.  Similarity score histogram of RGB images in the dataset 

 

 The histogram provides evidence that the dataset is diverse, with a wide range of similarity 

scores and a balanced distribution of similarities. Despite the computational limitations that 

required analyzing a subset of smaller images, the results indicate that the dataset contains a variety 

of images with differing levels of similarity, which should comprehensively evaluate the capability 

of the proposed methods for bird segmentation. 

Selecting the optimal model for zero-shot hen detection 

 Table 3.1 presents a comparative analysis of hen detection performance using various zero-

shot segmentation algorithms. The primary metric for this evaluation was the success rate, defined 

as the percentage of images with an IoU greater than 50%. Images meeting or surpassing this 50% 

IoU threshold were classified as successfully detected and segmented, thereby positively 

impacting the overall success rate. 

Table 1 
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Table 3.1. comparative analysis of hen detection performance 

Models Success Rate (%) 

YOLOv8 50.0 
 

Thermal image + MobileSAM 82.0 

Thermal image + SAM 84.4 

Thermal image + FastSAM 72.8 

Mask R-CNN 64.2 
 

YOLOv7 83.2 
 

YOLOv7 (box prompts) + SAM 98.0 

YOLOv7 (point prompts) + SAM 94.0 

 

 In reviewing the data in Table 3.1, it becomes clear that the proposed method (YOLOv7 

(box prompts) + SAM) achieved a significantly higher success rate in detecting and segmenting 

hens compared to other methods. This metric is important because it measures the percentage of 

instances where the algorithm accurately identifies and delineates the birds. The comparative 

analysis shows that the improved success rate of the proposed method, especially when compared 

to SAM using point prompts from thermal imaging (which required pre- and post-processing 

steps), highlights the significant impact of the modifications on the algorithm’s efficiency. These 

techniques likely enhance the model's ability to distinguish between the hens and their 

surroundings by optimizing the quality of the input data. With this new method, pre- and post-

processing steps are unnecessary since the initial prompt is chosen effectively, resulting in optimal 

output masks without selecting the best mask by a well-trained machine learning classifier. 
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 Conversely, the lower success rate (50.0%) of YOLOv8 highlights a limitation in its zero-

shot detection capabilities, particularly in accurately identifying chickens. Although YOLOv8 and 

Mask R-CNN are robust models, their performance is not optimized for this specific application 

without training on a dataset specific to chickens. The main goal was to use a zero-shot instance 

segmentation method that functions without requiring any image training. This approach aligns 

with the broader objective of deploying efficient and adaptable models capable of handling various 

segmentation tasks with minimal setup, emphasizing the value of SAM as a promising tool in zero-

shot segmentation scenarios. 

Comparison of different models for hen segmentation 

To assess the segmentation capabilities of various models, Table 3.2 presents a comparison 

of different segmentation metrics across the models. 

 

Table 3.2. comparison of different segmentation metrics across the models. 

Models 
Evaluation criteria (%) 

Precision Recall F1 Score IoU 

YOLOv8 97.4 81.4 88.4 79.5 

Thermal image + MobileSAM 91.8 90.7 91.2 83.6 

Thermal image + SAM 93.6 91.0 92.3 85.5 

Thermal image + FastSAM 92.5 90.4 91.4 84.1 

Mask R-CNN 87.5 90.2 88.8 79.9 

YOLOv7 (box prompts) + SAM 92.5 98.2 95.1 91.0 
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YOLOv7 (point prompts) + SAM  92.3 93.3 92.7 86.6 

 

 All the models exhibit relatively consistent segmentation metrics, except for YOLOv7 (box 

prompts) + SAM, which significantly outperforms the others. This superior performance suggests 

that using a well-chosen bounding box prompt effectively captures the entire chicken body, as it 

covers the chicken's full extent rather than just a single point, like the point prompt. The point 

prompt is generally less effective because it provides a less comprehensive representation of the 

bird, resulting in poorer generalization. 

 The bounding box prompt offers a complete outline of the birds, ensuring that all relevant 

parts are included in the segmentation process. This comprehensive approach enables the model 

to generalize better and accurately segment the entire bird. On the other hand, a point prompt 

focuses on a single location, often missing parts of the bird and leading to incomplete and less 

reliable segmentation. This distinction underscores the importance of selecting the appropriate 

prompt type to enhance model accuracy and reliability. By covering the entire bird, the bounding 

box prompt allows the model to understand the context and boundaries more effectively, resulting 

in higher segmentation accuracy. This method does not only improve the model's ability to capture 

details but also enhances its capability to generalize across different instances of the object. 

 The success of YOLOv7 (box prompts) + SAM highlights the critical role of prompt 

selection in optimizing segmentation performance. 

 Figure 3.9 illustrates the segmentation results achieved by different models. According to 

the figure, the YOLOv7 (box prompts) + SAM could segment a more complete body. 
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Fig. 3.9. Segmentation results of different models: a) RGB image; b) thermal image + MobileSAM; 

c) thermal image + FastSAM; d) thermal image + SAM; e) YOLOv8; f) Mask R-CNN; g) YOLOv7 

(box prompt) + SAM; h) YOLOv7 (point prompts) + SAM; and i) ground truth. 

 

Conclusion 

The comprehensive evaluation of various zero-shot segmentation models for hen detection 

highlights the superior performance of the YOLOv7 + SAM model with a bounding box prompt, 

achieving an impressive 98.0% success rate. This model effectively captures the entire bird, 

reducing the need for extensive pre-processing and post-processing, and outperforms other models 

such as YOLOv8 and Mask R-CNN, which showed limitations without specific training. The 

success of YOLOv7 + SAM underscores the potential of zero-shot segmentation techniques to 

provide flexible, efficient solutions in specialized applications, setting a benchmark for future tasks 

and promising significant enhancements in operational efficiency and monitoring accuracy in 

agricultural settings. 
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CHAPTER IV 

ANIMALAI: AN OPEN-SOURCE WEB PLATFORM FOR AUTOMATED ANIMAL 

ACTIVITY INDEX CALCULATION USING INTERACTIVE DEEP LEARNING 

SEGMENTATION 

 

 Monitoring of the activity index of animals is considered crucial for assessing their welfare 

and behavior patterns. However, traditional methods for calculating the activity index, such as 

pixel intensity differencing of entire frames, are often found to suffer from significant interference 

and noise, leading to inaccurate results. The classical activity index method is also lacking in the 

capability to measure the activity index of individual animals, making it impossible to track the 

movement of specific animals within a group. Furthermore, no free and accessible online platform 

is currently available for non-technical researchers to calculate animal activity index, thereby 

creating a gap in the tools available for animal welfare studies. Tracking all individual animals in 

a video can be computationally expensive. The objectives of this research were to 1) develop a 

user-friendly, open-source platform using Streamlit to enable researchers to calculate the activity 

index of animals, either individually or in groups, from video footage; and 2) explore the 

representative proportion of animals to depict the whole group activity index, for saving computing 

time and resources. Top-view videos can be easily uploaded, and animals can be selected for 

targeted tracking. A general deep learning-based image segmentation model, the Segment 

Anything Model2 (SAM2) that is a promptable segmentation model, was used to segment and 

track individual animals across frames without the need for extensive training or annotation. 
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Consistent and accurate segmentation and tracking were ensured by the platform, thereby 

overcoming the challenges posed by noise and interference in classical methods. The SAM2 

segmented and tracked Cobb500 male broiler chicken in videos from weeks 1 to 7 with a 

segmentation success rate of 100%, Intersection over Union (IoU) of 92.21% ± 0.012, precision 

of 93.87% ± 0.019, recall of 98.15% ± 0.011, and F1 score of 95.94% ± 0.006. These metrics were 

calculated from 1,157 individual chickens. Statistical analysis revealed that tracking 80% of birds 

in week 1, 60% in week 4, and 40% in week 7 was significantly sufficient (r≥0.90; P ≤ 0.048) to 

depict the overall flock movement. This user-friendly tool is provided to researchers as an 

accessible and efficient way to track and analyze animal behavior patterns, delivering accurate and 

reliable insights into animal welfare at both the individual and group levels without requiring 

extensive programming knowledge. 

Introduction 

 Animal activity plays a pivotal role in understanding welfare, health, and behavior patterns 

across various livestock species (Bocaj et al., 2020; Oso et al., 2025; Tran et al., 2022). In modern 

animal production systems, continuous observation and prompt detection of abnormal behaviors 

are paramount for maintaining high standards of welfare and maximizing productivity (Elbarrany 

et al., 2023). Capturing animal activity—broadly defined as the frequency or extent of movement 

over time—can offer valuable insights for both researchers and producers to make evidence-based 

decisions. In poultry, for example, sudden changes in flock movement may indicate issues like 

heat stress or disease outbreaks. In cattle and pigs, activity patterns can help detect lameness or 

identify periods of increased stress (Chen et al., 2021; Fuentes et al., 2020). As such, techniques 

that enable robust and efficient estimation of the activity are indispensable. 
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 In order to quantify animal activity, the activity index, a measure of movement intensity 

through image processing, was proposed by  (Bloemen et al., 1997). Activity index was defined 

as the percentage of pixels of moving objects to the total number of pixels within the image 

(including animals and background). In more recent research, the total number of pixels was 

replaced with total bird-representative pixels to compensate for variations in animal size at 

different ages (Aydin et al., 2010; Li et al., 2020; Silvera et al., 2017). Since the concept was 

coined, the activity index has been widely used to quantify the activities of broilers (Kristensen et 

al., 2006; Neves et al., 2015). The concept has been applied to develop a commercial computer 

vision system, named eYeNamic, and the vision system has been applied in several European 

studies (Peña Fernández et al., 2018; Silvera et al., 2017). 

 While classical activity index calculation method can be quick to implement and 

computationally straightforward, it tends to be highly sensitive to noise and environmental factors 

such as lighting fluctuations, camera vibrations, or background movements such as human 

interference (Sengar and Mukhopadhyay, 2017). Moreover, applying pixel intensity differencing 

to an entire scene restricts researchers to group-level activity assessments. In many practical 

scenarios, especially those involving large populations of animals housed together, the interest lies 

in pinpointing the movements of specific individuals. Without the ability to segment and track 

individual animals, vital data—such as determining which animals are underactive or 

hyperactive—remain inaccessible. 

 Deep learning-based methods have substantially advanced object detection and 

segmentation in recent years (Li and Chai, 2023; Saeidifar et al., 2024; Shams et al., 2023). 

However, developing a specialized segmentation model for each livestock species or experimental 

setup can be prohibitively time-consuming and expensive. Researchers would need to curate and 
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annotate large image datasets, train convolutional neural networks or transformers, and then 

continuously update these models as lighting conditions, camera angles, or animal growth stages 

change. This complexity has motivated the rise of more generalized segmentation models that are 

pre-trained on vast and diverse image corpora, allowing them to perform “zero-shot” or “few-shot” 

segmentation on new types of objects (Ravi et al., 2024). One such model is SAM2, a powerful 

variant of the foundational SAM (Ravi et al., 2024). SAM2 has been lauded for its ability to quickly 

and accurately identify objects of interest with minimal prompting, effectively reducing the need 

for large-scale annotation (Ravi et al., 2024). Unlike traditional models that often fail when 

confronted with new species or environments, SAM2 has been broadly trained with billions of 

image masks, enabling it to handle a wide range of scenes and animal morphologies.  Alongside 

these advances in segmentation, there has also been a growing need for accessible, user-friendly 

platforms that can seamlessly integrate deep learning into everyday research workflows. The user-

friendly platforms are especially important for scholars who do not have sufficient computing 

backgrounds for coding but would love to use the automatic tools to support animal research for 

advancing animal products. 

 Several user-friendly platforms were developed in the animal behavior domain to assist 

researchers in tracking and analyzing animal movements. For instance, the AnimalAccML 

integrated multiple machine learning models and feature engineering techniques and enabled users 

to automatically analyze behaviors of with several mouse clicks based on triaxial accelerometer 

data, which is not suitable for computer vision-based metric analytics (Li and Chai, 2023). 

DeepLabCut was a widely adopted open-source tool that leverages deep learning for markerless 

pose estimation in images/videos (Mathis et al., 2018). Its user-friendly interface made it popular 

among researchers; however, it generally required extensive manual annotation and a considerable 
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amount of training data to adapt to different species or experimental conditions. This reliance on 

manual setup hindered rapid deployment in novel environments and limits its utility for studies 

that require immediate or real-time analysis. Another notable example is idtracker.ai, which 

offered automated tracking of individual animals within groups (Romero-Ferrero et al., 2019). 

While it simplified the tracking process and is relatively intuitive, idtracker.ai tended to be 

computationally intensive, especially when dealing with large groups or high-resolution video 

footages. Moreover, its performance degraded in scenarios with significant noise, variable lighting, 

or complex backgrounds, thereby reduced its reliability in accurately capturing animal movement 

dynamics (Dell et al., 2014). 

 Despite the advancements these platforms represent, they were not designed to compute 

the animal activity index automatically. Their primary focus lies in detailed tracking and pose 

estimation rather than in providing a comprehensive, user-friendly solution for calculating 

movement-based metrics such as the activity index at either the individual or group level. In 

conclusion, while current tools offer valuable functionalities in animal tracking and behavior 

analysis, there remains a notable gap: there is currently no user-friendly platform that 

automatically calculates the animal activity index, highlighting an unmet need in animal welfare 

research and monitoring. 

 Several studies in the field of collective animal behavior have demonstrated that 

monitoring a representative subset of individuals can effectively capture the overall dynamics of a 

group, aiming to improve computational efficiencies. For example, in a study investigating the 

spatial organization and interaction rules within starling flocks, researchers found that each bird 

interacted with a fixed number of neighbors (six to seven) rather than all nearby individuals. This 

topological interaction enabled flocks to maintain cohesion and coordinated movement, even 
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under changing densities and external perturbations. Although the study did not directly address 

representative sampling, the idea that a limited number of local interactions govern the behavior 

of the entire group implies that monitoring a subset of individuals could reveal key aspects of 

collective dynamics (Ballerini et al., 2008). Similarly, in another study on the collective behavior 

of midge swarms, researchers found that individual midges were strongly connected, even beyond 

their nearest neighbors. Even in the absence of global order, midges exhibited coherent movement 

patterns that could be explained by localized interactions. Their study demonstrated that these 

correlations reflect emergent group-level behavior, suggesting that sampling a fraction of 

individuals can provide reliable insights into the overall dynamics of the swarm. By employing 

simulations of interacting particles, they further showed that local measurements could scale up to 

describe the collective response of the entire group (Attanasi et al., 2014). 

 Our exploration of different sampling ratios (20%, 40%, 60%, and 80%) across key growth 

stages in broilers addressed this gap. By systematically determining the optimal proportion of birds 

needed to accurately represent the entire flock’s activity, our study provided a practical framework 

that reduced computational demands without compromising the reliability of activity index 

measurements. This tailored approach is particularly relevant for commercial applications, where 

rapid and resource-efficient monitoring is essential for effective animal welfare management. The 

objectives of this research were to 1) develop a user-friendly, open-source platform to enable 

researchers to calculate the activity index of animals, either individually or in groups, from video 

footage; and 2) explore the representative proportion of animals to depict the whole group activity 

index, for saving computing time and resources. 
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Materials and Methods 

Animal housing and video data collection 

 For the purpose of validating the segmentation model, a subset of a larger video dataset 

was used. This dataset was collected at the University of Georgia’s Poultry Research Center during 

May–June 2024. A total of 1,776 day-old Cobb 500 broiler chickens were randomly assigned to 

48 pens, with 37 birds being allocated per pen, within two environmentally controlled rooms. The 

rooms were measured to be approximately 17.2 m in length by 11.4 m in width and were 

subdivided into two rows of 12 identical pens, each of which measured 1.2 m by 3.0 m. Two 

feeders were provided at opposite ends of every pen, and two centrally located drinking lines were 

installed. Standard environmental conditions were maintained in accordance with the Cobb 

management guidelines (Cobb, 2022), with feed and water provided ad libitum. Lighting and 

temperature adjustments were made according to age-specific protocols throughout the rearing 

period. Video recordings were acquired using overhead security cameras (NHD-887MSB, Swann 

Security, Santa Fe Springs, CA) that were mounted on the ceiling at a distance of approximately 

3.05 m above each pen. Continuous recordings were managed by 16-channel video recorders 

(SRDVR-85680H-US, Swann Security, Santa Fe Springs, CA). The recordings were set at a 

resolution of 1024 × 768 pixels and at 15 frames per second (fps), and the video data were stored 

as .MP4 files on a 20-terabyte external hard disk. A total of 34 videos from week 1 through week 

7 were selected, and 1157 individuals were used for evaluation. Although all birds from the large 

study were included in the complete dataset, the subset for evaluation was chosen so as to ensure 

a representative distribution across developmental stages from week 1 (early phase), week 4 

(medium phase), and week 7 (late phase). All experimental procedures, including the video 

recordings, were performed in compliance with protocols approved by the Institutional Animal 
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Care and Use Committee (IACUC) at the University of Georgia (protocol number: A2023 07-016-

Y1-A0). 

Overall workflow 

 Figure 4.1 illustrates the Streamlit-based interface workflow for calculating the animals’ 

activity index. Once the application was launched, a user-friendly graphical interface was loaded 

in the default web browser. The user could upload a video of up to one hour in length for the 

convenience of data visualization. If a video exceeded this duration, the interface issued a warning 

and recommended trimming. Subsequently, key parameters, such as frame interval, can be 

specified by the user. The system extracted frames from the uploaded video and displayed the first 

frame so the user can pinpoint, via mouse click, the location of the animal or region of interest. If 

the user was dissatisfied with the selected coordinate, an ‘undo’ option reverted the choice until 

the coordinate was precisely defined. After confirming the chosen coordinates, the interface 

proceeded to segment the video, generating both an RGB mask frame and a binary mask frame. 

This segmentation underpinned the computation of an activity index, which was then plotted and 

viewable within the interface. Additionally, the activity index plot, as well as the normalized 

activity index for each consecutive frame, were saved as a PNG and TXT file, respectively. In 

addition, users can inspect frames derived from frame differencing for a more detailed overview 

of movement and check whether the segmentation was successful or not. Although Figure 1 shows 

a typical workflow, users may adjust certain steps (e.g., re-uploading trimmed clips or revisiting 

parameter settings) according to their experimental needs. Detailed descriptions of each phase and 

the options offered by the Streamlit interface are provided in the following sections. The interface 

was published on GitHub (https://github.com/MahtabSaeidifar/AnimalAI) for open access. 
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 In this study, the entire platform was developed solely using Python, which enabled all 

components to be consolidated into a single consistent computing environment to enhance code 

readability and maintainability. The most important packages used in our platform were torch 

(v2.4.1) for deep learning, streamlit (v1.19.0) for developing interactive web applications, numpy 

(v1.26.4) for numerical computations, pandas (v1.4.2) for data manipulation, matplotlib (v3.9.2) 

for data visualization, and jupyterlab (v4.2.4) for providing an interactive development 

environment. In addition, the SAM2 package was installed directly from its GitHub repository 

(https://github.com/facebookresearch/sam2) to facilitate segmentation tasks. The computer used 

for platform development and evaluation was equipped with a 13th Gen Intel® Core™ i7-13700 

processor, featuring 24 logical CPUs with clock speeds ranging from 0.8 GHz to 5.2 GHz, 62 GiB 

of installed RAM, and a 64-bit operating system. 
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Fig. 4.1. Workflow diagram of the platform - This figure presents a schematic of different steps 

analytical process employed in the platform. Red color indicates start and end points of the process; 

blue color indicates main processing steps; orange color indicates decision points; purple color 

indicates user input parameters; and green color indicates files saved in the main directory. 

 

Video uploading 

 Once the application was launched, a user‐friendly graphical interface was displayed in the 

web browser, allowing for an intuitive interaction. The interface prompted the user to upload a 

video, accepting various formats (e.g., MP4, MOV, AVI, and MPEG4). The recommended 

maximum duration for the video was one hour; if the uploaded file exceeded this length, the system 

automatically issues a warning and advised trimming the video to under one hour. This 
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recommendation helps ensure faster processing times and reduces computational overhead during 

subsequent steps. 

Video frame extraction 

 Once the user has uploaded a video, the application automatically evaluated the duration 

of the file and generated a range of recommended frame intervals. These recommendations aimed 

to strike a balance between capturing sufficient details and minimizing both storage requirements 

and computational resources. While users are free to override the recommended settings and 

specify a custom interval, adhering to the suggested range is generally preferred for optimal 

efficiency and data manageability. 

 By selecting an interval, the user essentially controlled the frequency of frames to be 

extracted: smaller intervals yield more frames (allowing for finer‐grained analysis) but required 

greater storage and computational power, whereas larger intervals reduced the number of frames 

extracted and offer lowered storage demands at the potential cost of missing some subtle 

movements. After choosing a frame interval, users can click the ‘Extract Frames’ button to trigger 

the extraction process as shown in Figure 4.2. The resulting frames were automatically stored in a 

designated directory, ensuring that they can be readily accessed in subsequent stages of the 

workflow (e.g., segmentation, activity index calculation, or further analysis). 
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Fig. 4.2. The graphical user interface of the application displaying the frame extraction process. 

Users can select a frame interval after uploading a video, adjust settings based on recommendations, 

and trigger the extraction process using the ‘Extract Frames’ button.  

 

Interactive animal selection 

 Following frame extraction, the interface automatically displayed the first frame from the 

video so that the user can identify the animal(s) to be segmented from the background. Using a 

mouse click, users can select one or multiple animals (e.g., one, two, three, or potentially all visible 

objects) within the frame. Each click isolated the chosen subject by registering its coordinates, 

which guide subsequent segmentation tasks. If the user is dissatisfied with any selections, an 
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‘undo’ button enables a quick reversion, allowing for precise, iterative refinement of the selected 

coordinates. 

 This interactive step was crucial for achieving reliable isolation of the target animals from 

extraneous background elements. By removing other moving objects and environmental noises, 

the application is better able to deliver accurate analysis of movement or behavior in subsequent 

phases. Moreover, the flexibility to select multiple animals within a single frame offers a 

comprehensive approach for studies involving group dynamics or interactions. 

Segmentation using Segment Anything Model 2 

 Once the targeted animals were selected, the segmentation process was initiated by clicking 

on the ‘Segment’ button (Figure 4.3). The foundation model known as SAM2 was employed to 

handle promptable visual segmentation in both images and videos. In SAM2, a data engine was 

built and refined through user interactions, culminating in the creation of largest video 

segmentation datasets to date. A simple transformer architecture with streaming memory was 

adopted to enable real-time video processing (Ravi et al., 2024).   

 By leveraging its extensive pretraining on a large and diverse dataset, SAM2 demonstrated 

strong performance across a wide range of segmentation tasks in both videos and images. In the 

context of video segmentation, higher accuracy has been observed with only one‐third the user 

interactions required by previous approaches, and image segmentation ran 6× faster and more 

accurately compared to the original SAM. Notably, no additional training was required for specific 

tasks; instead, the user‐selected coordinates served as prompts for guiding the segmentation, which 

was then automatically propagated to subsequent frames.   

 After the segmentation process was completed, two directories were created to store the 

results. One directory housed the RGB mask frames, in which the selected animals were distinctly 
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highlighted, while the other stored the binary mask frames, where only the targeted animals were 

shown in isolation. Figure 4.3 illustrates examples of both the RGB mask frames and the 

corresponding binary mask frames. 

 

 

Fig. 4.3. Examples of segmentation outputs generated by the application using the Segment 

Anything Model 2. The RGB mask frames (top-right) highlight the selected animals in distinct 

colors, while the binary mask frames (bottom-right) isolate the targeted animals from the 

background. 
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Frame differencing for calculating activity index 

 Activity within a video sequence was assessed by measuring the extent of pixel-level 

changes between consecutive segmented frames (i.e., the binary mask frames). To achieve this, 

the difference between the current binary frame and the preceding frame was computed using an 

absolute difference operation. The resulting differenced frame highlights any pixels that have 

changed, indicating movement or behavioral changes. Figure 4.4 illustrates a series of these 

differenced frames. 
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Fig. 4.4. Series of differenced frames illustrating pixel-level changes between consecutive 

segmented frames (binary mask frames) for calculating animal activity index. 

 

 To obtain an overall measure of activity, the number of changed pixels in each differenced 

frame was normalized by the combined pixel count of the current and previous frames. Formally, 

the activity index for frame 𝑖 is calculated in Equation (4.1). 
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𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥$ =	
𝐷𝑖𝑓𝑓_𝑝𝑖𝑥𝑒𝑙_𝑐𝑜𝑢𝑛𝑡$

𝑃𝑖𝑥𝑒𝑙_𝑐𝑜𝑢𝑛𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑃𝑖𝑥𝑒𝑙_𝑐𝑜𝑢𝑛𝑡_𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠																																							
(4.1) 

 

where the term 𝐷𝑖𝑓𝑓_𝑝𝑖𝑥𝑒𝑙_𝑐𝑜𝑢𝑛𝑡  𝑖  is the total number of nonzero pixels in the “difference 

frame,” which is obtained by subtracting the pixel values of frame 𝑖 +1 from frame 𝑖, Thus, these 

nonzero pixels highlight the regions that have changed between the two consecutive frames. 

Meanwhile, pixel_count_current and pixel_count_previous each represent the total number of 

nonzero pixels in frames 𝑖  +1 and 𝑖 , respectively. The two frames were used to generate the 

difference frame. This ratio ensured that the activity index remained bounded between 0 and 1. A 

higher value indicated greater movement, while a lower value suggested minimal changes. 

 Additionally, the normalized activity index for each consecutive frame was saved in a TXT 

file in the main directory. This is useful for users to further analyze the results on their own, 

enabling deeper insights into movement patterns and behavioral trends from an animal scientist’s 

perspectives. 

Visualizing the activity index 

 Once the frame differencing procedure was completed, an activity index plot was 

automatically generated to illustrate the level of movement for the selected animals throughout the 

video. As shown in Figure 4.5, the x-axis represents the video time in minutes and seconds, while 

the y-axis ranges from 0 (indicating no movement) to 1 (reflecting the highest activity index). For 

each timestamp, a corresponding activity index value was displayed, enabling researchers to 

identify periods of heightened activity or relative inactivity. This visualization was invaluable for 

understanding the dynamics of animal behavior, as it condensed movement data into a single, 

intuitive plot for efficient analysis. Additionally, the generated activity index plot was saved in the 

main directory, allowing users to access and utilize it for further examination or reporting. 
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Fig. 4.5. Activity index plot illustrating the level of movement for the selected animals throughout 

the video. The x-axis denotes the video duration in minutes and seconds, while the y-axis ranges 

from 0 (minimal activity) to 1 (maximum activity). 

 

Evaluation metrics calculation 

 This study employed a robust suite of evaluation metrics to independently gauge the 

performance of tracking and segmentation. The SAM2 evaluation leverages a dataset consisting 

of 1,157 individual chickens from 82 different video frames. The annotation of these images was 

carried out by a well-trained technician using Roboflow, which ensured the provision of high-

precision masks that delineated the most complete depiction of each chicken in each frame. 

Subsequently, another well-trained technician conducted a double verification to guarantee the 

accuracy and quality of the labeling. This rigorous ground truth formed the benchmark for 

assessing the segmentation models' accuracy. 
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 The SAM2 segmentation performance was evaluated with precision, recall, F1 score, and 

Intersection over Union (IoU) as described in Equations (4.2), (4.3), (4.4), and (4.5). The precision 

measures the accuracy of the segmentation model in identifying only relevant pixels as part of the 

segmentation. It is the ratio of correctly predicted positive observations to the total predicted 

positive observations. Recall, also known as sensitivity, measures the model's ability to correctly 

identify all relevant pixels. It is the ratio of correctly predicted positive observations to all 

observations that should have been labeled as positive. The F1 Score is the harmonic mean of 

precision and recall and a measure of the model's accuracy. An F1 Score reaches its best value at 

1 (perfect precision and recall) and worst at 0. IoU is a measure used to quantify the percent overlap 

between the target mask and the model's prediction output. It is calculated by dividing the area of 

overlap between the predicted segmentation and the ground truth by the area of union. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 																																																																														
(4.2) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 																																																																																			
(4.3) 

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 	2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 																																																																																																

(4.4) 

𝐼𝑜𝑈 = 	
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 																																																							
(4.5) 

where true positive refers to pixels that are correctly identified as part of birds; false positive are 

the pixels that the segmentation model incorrectly identifies as part of birds, but they actually 

belong to the background; false negative is used for pixels that are part of birds in the ground truth 

but are missed by the segmentation model. 

 A successful segmentation is one where the IoU is 50% or greater, which aligns with 

standard thresholds used in prominent publications (Girshick, 2015; He et al., 2017; Redmon and 
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Farhadi, 2018). The success rate thus reflects the percentage of images in which the models 

successfully tracked and segmented the chicken areas shown in Equation (4.6). 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠	𝑟𝑎𝑡𝑒 = 	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦	𝑡𝑟𝑎𝑐𝑘𝑒𝑑	&	𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑	𝑖𝑚𝑎𝑔𝑒𝑠	(𝐼𝑜𝑈 > 0.5)

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑚𝑎𝑔𝑒𝑠
															(4.6) 

Evaluating the impact of segmentation on activity index accuracy 

 To evaluate whether segmentation improved the accuracy of the activity index, 480 video 

frames were selected from week 4 recordings. These frames contained human interference and 

other unnecessary object movements (e.g., feeders and fans), providing a challenging scenario for 

activity-index calculation. Two methods were applied. First, the conventional “no-segmentation” 

approach involved subtracting consecutive frames to generate a difference frame, followed by 

applying a threshold value of 50 to binarize the result. White pixels in the binary image indicated 

movement, and black pixels indicated no movement. The activity index for each frame was then 

calculated based on the count of white pixels in that frame. 

 Second, in the segmentation-based method, all chickens in each frame were isolated using 

SAM2 before frame differencing. This removed non-essential background elements, including any 

human interference. The white-pixel counts were again used to compute the activity index. To 

determine whether these two approaches (with and without segmentation) produced significantly 

different mean activity levels, a paired t-test was conducted, with statistical significance set at P < 

0.05. This comparison enabled a clearer assessment of how removing background motion 

influences the reliability of activity-index measurements. 

Statistical analysis of different ratios of birds to represent the entire group’s activity 

 Tracking every individual bird can be time-consuming and computationally expensive. 

Consequently, this study tested whether sampling a subset of birds could reliably represent the 

entire flock’s movement patterns at different growth stages. Four different sampling ratios—20%, 
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40%, 60%, and 80% of the flock—were compared to the 100% baseline at three ages (weeks 1, 4, 

and 7). The number of birds selected from a pen was 7 for 20%, 15 for 40%, 22 for 60%, 30 for 

80%, and 37 for 100%. Six distinct initializations (i.e., sets of randomly selected birds in feeder, 

drinker, corner, and open regions of the pen) were used per ratio to reduce spatial bias. All video 

data for this analysis were obtained as described earlier. Briefly, from each selected video clip, 

480 consecutive frames (15 frames per second over ~32 seconds) were extracted. Within these 

frames, the developed platform isolated only the chosen subset of birds for each ratio, and an 

activity index was calculated by comparing pixel-wise differences between consecutive segmented 

frames. Parallel calculations were made for the 100% baseline (i.e., the entire flock). 

 The Pearson correlation coefficient (r value), as shown in Equation (4.7), was computed 

between each subset’s activity index (at varying sampling percentages) and the full flock’s index 

across six different initializations. The analyses were performed in Python (v3.9) using the pandas, 

numpy, and statsmodels libraries. This approach enabled a straightforward evaluation of whether 

a reduced sampling ratio could reliably represent overall flock activity while minimizing 

computational overhead. minimizing computational overhead. 

𝑟 = 	
∑(𝑥$ − 𝑥̅) (𝑦$ − 𝑦Z)

[∑(𝑥$ − 𝑥̅)!∑(𝑦$ − 𝑦Z)
!
																																																																																																															(4.7) 

where 𝑥$  represents the	 𝑖%&  observation for variable 𝑋 , 𝑦$  represents the 𝑖%&  observation for 

variable 𝑌, 𝑥̅  is the mean of all 𝑋 values, and 𝑦Zis the mean of all 𝑌 values. The numerator captures 

how 𝑋 and 𝑌 co-vary (or change together), while the denominator normalizes these deviations, 

keeping r dimensionless and ranging from -1 to +1. 

 According to a study, the correlation was negligible with r being 0.00 to 0.30 or 0.00 to -

0.30, low with r being 0.31 to 0.50 or -0.31 to -0.50, moderate with r being 0.51 to 0.70 or -0.51 
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to -0.70, high with r being 0.71 to 0.90 or -0.71 to -0.90, and very high with r being 0.91 to 1.00 

or -0.91 to -1.00 (Hinkle et al., 2003). Additionally, following the computation of the r value 

between each representation and the entire flock, a statistical comparison of the activity indices 

was carried out across different pairs of representations to determine whether they differ 

significantly. A significance level of P < 0.05 was applied, meaning that any P-value below 0.05 

indicates a significant difference, while values above this threshold suggest no meaningful 

difference. If no statistically significant differences were observed, a smaller sampling ratio may 

be selected without sacrificing accuracy, thus reducing both computational load and resource 

requirements. 

Results and discussion 

Example procedure of interface operations 

 Below is a general procedure for video-based activity index calculation using the 

developed web-based platform. The platform guided users step-by-step through video 

segmentation and activity index generation. Some of the computational user interfaces are 

presented in Figures. 4.2-4.5. 

Step 1: Run the platform and launch the interface using the command, which load the platform in 

a web browser. The main interface page then appears one a default web browser. 

Step 2: Click the ‘Browse files’ button to upload a video file. 

Step 3: The platform automatically checks whether the uploaded video is less than one hour in 

duration. If it is not, a warning message will be displayed, prompting the user to trim the video 

before proceeding. 

Step 4: Input the frame interval for frame extraction based on either the recommended frame 

interval or the user’s choice. 
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Step 5: Once the frame interval is set, the platform will extract individual frames from the video. 

The first frame will be displayed for visualization and selection of the animals to be tracked. 

Step 6: Using the mouse, the user can click on the animal’s location within the first frame to input 

its coordinates. This step initializes the segmentation process by identifying the region of interest. 

Step 7: Confirm whether the selected coordinates are correct. If not, click the ‘undo’ button to 

adjust the coordinates and select a new region. 

Step 8: When satisfied with the input, click the ‘Segment’ button. The platform will begin 

segmenting the video, generating both RGB mask frames and binary mask frames that highlight 

the animals of interest. 

Step 9: The platform displays the activity index plot for the targeted, segmented animal across the 

video. 

Step 10: Finally, the platform displays frames obtained through frame differencing, providing a 

dynamic view of motion changes throughout the video. 

Segmentation performance on a chicken dataset 

 In this study, the effectiveness of SAM2 was evaluated within a web-based pipeline using 

a dedicated chicken dataset as mentioned earlier. The dataset comprised multiple video clips 

captured under diverse lighting conditions (5-10 lux), varying stocking densities (30-37 birds in a 

1.2 m wide × 3.0 m long pen), and different chicken ages (weeks 1 to 7). This enabled to challenge 

the model’s robustness under realistic, real-world scenarios. As shown in Figure 4.6, SAM2 

produces high-quality segmentation results across chickens of different ages, demonstrating its 

adaptability to variations commonly encountered in poultry management settings. 
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Fig. 4.6. SAM2 segmentation results: (a) the original frame, (b) the corresponding RGB mask 

output, (c) the Binary mask output, and (d) the ground truth segmentation. 

 

 SAM2 was selected for this project because it is specifically designed for interactive, 

prompt-based segmentation. In practice, a user can indicate the animal of interest by simply 

clicking or drawing a bounding box, after which SAM2 automatically tracked and segmented that 

animal throughout the video. This user-driven workflow was ideally suited for a web-based 

application where videos were uploaded, the target object(s) were selected, and precise mask 

outputs were generated without reliance on a fixed set of predefined object classes. By using 
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prompts, the model effectively mitigated challenges posed by occlusions and cluttered 

backgrounds, which are the issues frequently encountered in livestock environments. This 

approach was consistent with earlier studies that have shown minimal, yet precise user input can 

substantially improve segmentation accuracy (Kirillov et al., 2023; Sofiiuk et al., 2022). 

 To quantify the segmentation accuracy of SAM2 on chickens at various ages, several 

established performance metrics, including precision, recall, F1 score, IoU, and success rate, were 

employed. Table 4.1 summarizes these quantitative results for segmenting broiler chickens in 

weeks 1, 4, and 7. The consistently high scores (100% success rate, over 92% precision, over 97% 

recall, over 92%, and over 90% IoU) across different conditions indicate that SAM2 can generalize 

well, even when the visual appearance of the subjects changes due to factors such as age or 

lighting. Earlier segmentation methods relied on user-drawn bounding boxes or scribbles and can 

struggle with background clutter and occlusion (Rother et al., 2004). Unlike the earlier methods, 

the current method leveraged prompt-based guidance to focus precisely on regions of interest with 

the robust model architecture. Furthermore, SAM demonstrated high efficiency in practical 

deployment, requiring minimal user interaction while achieving accurate segmentation. Its refined 

prompt-based strategy effectively directed the model’s attention to relevant regions, enabling 

precise segmentation without extensive manual annotation. This aligned with findings that SAM 

outperformed conventional models like SegFormer and SETR in zero-shot segmentation, 

achieving a mIoU of 94.8%, and operated effectively without additional training, reducing the 

burden of manual input while maintaining high performance (Yang et al., 2024). 
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Table 4.1. Segmentation performance of Segment Anything Model 2 for segmenting broiler 

chickens at Weeks 1-217. 

Chicken age 
                                Evaluation criteria (%)  

Precision Recall F1 score IoU Success rate 
Week1 92.13 98.40 95.16 90.77 100 

Week4 94.42 98.29 96.29 92.85 100 

Week7 94.75 97.86 92.26 92.79 100 

 

 The demonstrated performance has clear implications for real-world applications in 

precision poultry monitoring. For instance, integrating SAM2 into a web-based system would 

allow research scholars, regardless of coding or computing expertise, to upload videos, use simple 

prompts to segment individual chickens, and receive accurate segmentation masks in real time. 

Such a system would not only facilitate automated flock monitoring and behavioral analysis but 

could also be extended to support tasks such as weight prediction or movement tracking. Recent 

advancements in poultry monitoring have further illustrated how segmentation outputs can be 

utilized as critical inputs for data-driven livestock management. For instance, SAM-segmented 

results were combined with thermal images to extract various statistics of chickens’ body 

temperature, facilitating more accurate assessments of their thermal conditions (Saeidifar et al., 

2024). 

 Overall, the robust performance of SAM2 across diverse environmental and biological 

conditions, combined with its interactive and user-friendly design, confirmed its suitability for 

applications that require high-quality segmentation with minimal manual input. These results 

validate the technical capabilities of SAM2 while highlighting its potential to drive innovation in 

precision livestock farming and similar real-world domains. 
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Comparison of activity index calculation with and without segmentation 

 A total of 480 frames from week 4 recordings were analyzed to compare the results of 

activity index calculation with and without segmentation. As summarized in Figure 4.7, the 

segmented method produced lower and more consistent activity-index values (mean ± SD) relative 

to the unsegmented approach, indicating a reduction in background-induced noise. 

 

 

Fig. 4.7. Effect of segmentation on the accuracy of the activity index: the top row shows the 

approach without segmentation, while the bottom row shows the approach with segmentation. 

 

 A paired t-test revealed a significant difference (P<0.01) between the two sets of activity-

index measurements, demonstrating that removing non-essential background motion (e.g., human 

interference) meaningfully enhances the accuracy of the computed activity index. The activity 

index after segmentation was substantially reduced, with an average value of 3167.12 (mean 

absolute deviation of 2329.57), compared to 6302.64 (mean absolute deviation of 3744.55) 
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recorded before segmentation (i.e., prior to normalization). Frames with noticeable external 

movement had higher activity indices under the no-segmentation approach, whereas the 

segmentation-based method isolated chicken-related motion, minimizing overestimation and 

producing a smoother time series. These findings align with precision livestock monitoring studies, 

which have demonstrated that focusing on target subjects, such as chickens, reduces noise from 

extraneous interference by isolating them from distracting elements like moving litter, feathers, 

droppings, or human presence. This approach, particularly through image segmentation, improves 

data quality and tracking precision (Yang et al., 2024).  

 In practical applications, these results support the integration of segmentation as a pre-

processing step in real-world poultry monitoring systems. By using segmented frames to calculate 

activity indexes, researchers can obtain more accurate, noise-free measurements that better reflect 

true animal activity. This refined approach can drive more effective, data-driven management 

decisions in precision livestock farming. 

Determination of optimal sampling ratio for group activity assessment 

 Four different sampling ratios of the entire group—20%, 40%, 60%, and 80%—were 

evaluated at three key broiler growth stages (weeks 1, 4, and 7). Six distinct initializations were 

selected from various regions of the pen for each percentage to minimize bias. Figures. 4.8-4.10 

show different initializations for weeks 1, 4, and 7 respectively. 
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Fig. 4.8. Example of five sampling initializations at week 1, comparing (a) 20%, (b) 40%, (c) 60%, 

(d) 80%, and (e) the entire flock (100%). 

 

 

Fig. 4.9. Example of five sampling initializations at week 4, comparing (a) 20%, (b) 40%, (c) 60%, 

(d) 80%, and (e) the entire flock (100%). 

 



 

140 

 

Fig. 4.10. Example of five sampling initializations at week 7, comparing (a) 20%, (b) 40%, (c) 

60%, (d) 80%, and (e) the entire flock (100%). 

 

 Table 4.2 summarizes the average r value between each representation’s activity index and 

the entire flock. For broilers at weeks 4 and 7, representations of 40% or more was highly 

correlated with the entire group (r≥0.90), whereas at week 1, a subset of at least 60% was required 

to highly correlate with the entire group (r≥0.93). 

 

Table 4.2. Average Pearson correlation coefficients (𝑟 value) between each sampling ratio and 

the entire flock at different broiler growth stages (Weeks 1, 4, and 7). 

Chicken age 
Sampling ratio 

20% 40% 60% 80% 
Week1 0.58 0.61 0.93 0.97 

Week4 0.74 0.90 0.96 0.98 

Week7 0.73 0.93 0.92 0.94 
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 To determine whether these representations also differ significantly from one another, P-

values were computed and visualized in Figure 4.11 (heatmaps), with a significance level set at 

0.05. Any pairwise comparison showing P < 0.05 was deemed significantly different, while P-

values above 0.05 indicated no meaningful difference. At week 1 (Figure 4.11a), the 80% 

representation’s activity index was significantly different from that of all other subsets. Coupled 

with its high r value of 0.97, this finding underscored the need to track 80% of the flock during the 

first week to ensure a reliable movement indicator. In week 4 (Figure 4.11b), the 60% and 80% 

representations showed no significant difference from each other (P=0.092) but differed 

significantly from both 20% and 40% (P=0.006-0.023). Given that 60% alone achieved a high r 

value of 0.96 and was not significantly different from the 80% subset, the 60% emerged as a more 

cost-effective option to represent the entire group. Lastly, in week 7 (Figure 4.11c), 40%, 60%, 

and 80% exhibited no significant differences among themselves (P=0.486-0.791), indicating that 

tracking 40% of the flock was sufficient, particularly given its high r value of 0.93 (Table 4.2). 

 

 

Fig. 4.11. Comparative P-value heatmap across different representation at (a) week 1, (b) week 4, 

and (c) week 7. 
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 The results demonstrate a clear trend that as broilers grew, the proportion of the flock 

required for accurate movement tracking decreased. This is likely due to the natural changes in 

flock behavior over time, where younger birds exhibited higher levels of individual movement 

variability, necessitating a larger sample size (Baxter and O’Connell, 2023; Newberry and Hall, 

1990; Weeks et al., 2000). In contrast, older broilers exhibit more synchronized and predictable 

movement patterns, which allowed for a smaller subset of birds to sufficiently represent the entire 

flock (Bessei, 2006; van der Sluis et al., 2019). 

 From a practical standpoint, these results suggest that poultry management systems can 

significantly reduce tracking efforts by adjusting the sampling ratio based on bird age. 

Implementing an adaptive tracking strategy—where a higher sampling ratio is used early in growth 

and gradually reduced over time—could optimize the efficiency of activity monitoring systems. 

This approach can help farms allocate computational resources more effectively, enabling real-

time flock assessments without unnecessary data processing costs. 

Conclusions 

 A user-friendly, open-source platform was developed to address key challenges in animal 

behavior monitoring by enabling the calculation of the activity index for individual and group-

housed animals from video recordings. The SAM2 was integrated with a frame-subtraction 

approach, ensuring reliable segmentation and tracking without requiring extensive training or 

annotations. This segmentation-based method significantly reduced noise and interference, 

thereby enhancing the accuracy of activity-index calculations. The results suggested that 80% in 

week 1, 60% in week 4, and 40% in week 7 were sufficient to cover the entire group’s activity 

index. The computational burden was lowered by tracking fewer animals as broilers matured, 

while still maintaining a robust representation of overall flock activity. 
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Beyond broiler applications, immediate deployment was facilitated for other species—such as 

pigs, cattle, or laboratory mice—without necessitating specialized technical expertise. Data 

processing, segmentation, and activity-index visualization were consolidated into a single 

Streamlit interface, providing researchers with an accessible and efficient tool for analyzing animal 

welfare and behavior patterns. Consequently, a critical gap in the availability of free, online 

solutions for animal welfare research was filled, paving the way for broader automated analysis 

and further advancements in computational tools for animal-welfare studies. 
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CHAPTER V 

SUMMARY 

 

This dissertation systematically investigated advanced computer vision and deep learning 

techniques to enhance precision poultry farming by focusing on the automated health analysis of 

laying hens and the activity monitoring of different species. The methodologies, experimental 

results, and detailed discussions are presented in Chapters II to IV, corresponding to three distinct 

research papers. This final chapter summarizes the key findings, their interconnections, and their 

implications for poultry welfare and farm management, highlighting how these advancements 

contribute to more efficient and humane poultry production. 

The first study developed an optimized zero-shot image segmentation pipeline based on 

the Segment Anything Model (SAM) to automatically segment individual cage-free laying hens 

in thermal images. By integrating pre-processing (e.g., thresholding for automatic point selection) 

and post-processing with a machine learning classifier, the modified SAM outperformed other 

models, including YOLOv8, Mask R-CNN, FastSAM, MobileSAM, U2-Net, and ISNet, achieving 

a success rate of 84.4%, Intersection over Union (IoU) of 85.5%, recall of 91.0%, and an F1 score 

of 92.3%. This pipeline enabled the extraction of comprehensive body surface temperature 

statistics (e.g., mean: 26.68–28.53°C, median: 26.27–28.28°C across weeks 77–80) for individual 

hens, offering a non-invasive tool for monitoring thermal conditions. The approach reduced animal 

stress by eliminating manual handling and provided a scalable solution for precision poultry 

farming, enhancing health monitoring and production efficiency. 
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The second study advanced automated segmentation by combining YOLOv7 for object 

detection with SAM for segmentation, using bounding box prompts to eliminate manual inputs. 

This hybrid YOLOv7 + SAM model achieved superior performance compared to YOLOv8, Mask 

R-CNN, and other SAM variants, with a precision of 92.5%, recall of 98.2%, an F1 score of 95.1%, 

IoU of 91.0%, and a success rate of 98.0%. By automating the detection and segmentation of 

individual hens, this method minimized the need for labor-intensive annotations, offering a 

scalable and efficient solution for poultry monitoring. The high accuracy and transferability of this 

approach make it applicable not only to poultry but also to broader agricultural, environmental, 

and medical imaging tasks, demonstrating its versatility in precision farming. 

The third study addressed the challenge of monitoring animal activity by developing an 

open-source, user-friendly Streamlit platform integrated with SAM2 for segmenting and tracking 

individual broiler chickens in videos. This platform overcame the limitations of traditional pixel 

intensity differencing methods by reducing noise and enabling individual tracking, with a 

segmentation success rate of 100%, IoU of 92.21%, precision of 93.87%, recall of 98.15%, and an 

F1 score of 95.94% for Cobb500 male broilers from weeks 1 to 7. Statistical analysis showed that 

tracking 80% of birds in week 1, 60% in week 4, and 40% in week 7 was sufficient (r ≥ 0.90; P ≤ 

0.048) to represent the flock’s activity index, reducing computational costs while maintaining 

accuracy. This tool is accessible to non-technical researchers and adaptable for other species, 

filling a critical gap in automated welfare assessment tools. 

The findings demonstrate that advanced computer vision tools can significantly improve 

poultry management by providing non-invasive, automated, and accurate monitoring systems. The 

thermal segmentation pipeline enables early detection of health issues through temperature 

variations, reducing the need for stressful handling and improving welfare. The hybrid YOLOv7 
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+ SAM model offers a scalable solution for identifying and monitoring individual birds, which can 

optimize resource allocation (e.g., feeder and drinker placement) and detect behavioral anomalies. 

The Streamlit platform empowers researchers and farmers with an accessible tool to assess flock 

activity, enabling data-driven decisions to enhance welfare, such as adjusting stocking densities or 

lighting conditions to reduce stress. Collectively, these tools support precision farming practices 

that improve productivity, reduce labor costs, and enhance animal welfare by enabling proactive 

management of health and behavior. 

The developed tools lay a strong foundation for future advancements in precision poultry 

farming. The thermal segmentation pipeline could be extended to monitor other physiological 

parameters, such as respiratory rate, by integrating additional sensors. The hybrid segmentation 

model’s transferability suggests potential applications in other livestock species or agricultural 

tasks, such as crop monitoring. The Streamlit platform could be enhanced with real-time analytics 

and cloud integration for large-scale deployments. Farm managers can leverage these tools to 

optimize management practices, such as adjusting environmental conditions based on activity and 

temperature data to improve welfare and production efficiency. Future research should focus on 

integrating these systems into a unified platform for real-time, multi-modal monitoring and 

validating their performance across diverse poultry breeds and farming systems. 

In conclusion, this dissertation provides a suite of innovative, automated tools that address 

critical challenges in poultry monitoring, from thermal health assessment to behavioral tracking. 

By harnessing zero-shot segmentation and user-friendly interfaces, these advancements pave the 

way for smarter, more humane poultry farming practices, with significant potential for broader 

agricultural applications. 


