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ABSTRACT 

 Genomic selection is a powerful tool for accelerating genetic gain in plant breeding 

by leveraging genome-wide markers. In this study, we evaluated genomic prediction 

accuracy across multiple scenarios using both simulated and real datasets. Our findings 

demonstrate that prediction accuracy was greater when phenotypes were strongly 

associated with genotypes and when markers were selected based on GWAS significance 

rather than randomly. Models containing a greater number of true QTLs consistently 

yielded higher prediction accuracies, especially at higher heritability levels, whereas the 

inclusion of non-causal (noise) markers reduced accuracy by diluting the true genetic 

signal. Moreover, we showed that q-value-based marker selection effectively optimized 

prediction models, with intermediate q-value thresholds (0.1, 0.2) capturing nearly all true 

QTLs while minimizing the inclusion of non-informative markers. Validation with real 

data mirrored the simulation trends, and a QTL recovery analysis confirmed the reliability 

of this strategy, highlighting the importance of precise and informed marker selection. 

INDEX WORDS: Genomic selection, GWAS, Prediction Power, q-value, Marker 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Quantitative traits are typically controlled by multiple genes with small effects, thus 

complicating their selection and improvement [1] . Marker-assisted selection (MAS) is a breeding 

approach for trait improvement, which works well for simple, or qualitative traits controlled by a 

few genes with larger effects [2]. However, it struggles with complex traits that are controlled by 

multiple small effect loci [3]. To overcome this, Meuwissen, Hayes [4] introduced the genomic 

selection (GS) approach, which harnesses genome-wide marker data to estimate the genetic value 

of individuals without requiring phenotypic measurements for every generation, thereby 

accelerating selection cycles and improving genetic gain for complex quantitative traits. Heffner, 

Lorenz [5] reported that GS resulted in two-to three-times higher genetic gain per year in winter 

wheat and maize compared to MAS. 

GS utilizes a training data consisting of individuals genotyped and phenotyped for the trait 

of interest. This training data is used to build a statistical model that captures the relationship 

between genome-wide marker information and the observed trait values. This model can then be 

used to predict phenotypic values for new individuals from genotype data only [4]. The predicted 

values for the phenotypes of a new set are called genomic estimated breeding values (GEBVs).  

GEBVs represent the expected genetic merit of individuals based solely on their marker profiles. 

The accuracy of a GS model can be evaluated using cross validation, where the dataset is split into 

training and testing subsets. The model is trained on the training data and then used to predict the 

phenotypes of the remaining individuals in the test data. Prediction accuracy is quantified as the 
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Pearson correlation coefficient between the predicted GEBVs and the observed phenotypic values 

in the test set. Several factors influence the accuracy of genomic selectio,  including but not limited 

to trait heritability, underlying QTLs, training population size, marker density, and the statistical 

model used to estimate marker effects [6].  

 Genomic selection is based on assumption that quantitative trait loci (QTLs) or genes 

associated with traits are linked with at least one DNA marker. The linkage disequilibrium (LD) 

between QTLs and markers has a major effect on prediction accuracy because it determines how 

well markers can tag causal loci (QTL or genes) [4]. Previously, several studies have reported 

higher prediction accuracy when markers are in strong LD or even coinciding with causal 

mutations [7]. Hayes and Daetwyler [8] suggested that the inclusion of the markers tightly linked 

with a few large-effect QTLs, detected by GWAS could increase the prediction accuracy. Several 

studies have reported increases in prediction accuracy through large-effect SNP association in 

fixed-effects models [9-11].  

 A genome wide association study (GWAS) is a statistical method used to identify the 

markers significantly associated with a trait of interest. It is considered a powerful tool to dissect 

the genetic architecture of complex traits in plants and animals [12, 13]. Several studies have 

reported that marker preselection based on GWAS results can lead to slight or moderate 

improvement in prediction accuracy [14-17]. Ideally, genomic selection should capture the effects 

of all QTLs through LD between markers and causal variants. When at least one or two markers 

in strong LD with each QTL are included, the model can effectively account for majority of the 

QTL effects. With the advancement of high-throughput genotyping, generating hundreds of 

thousands of markers has become increasingly feasible. While this offers dense genome coverage, 

it also introduces many markers that are not in LD with any QTLs. These unlinked markers do not 
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contribute useful information for trait prediction. Instead, they can introduce statistical noise, 

inflate model complexity, and increase the risk of overfitting, especially in the models that do not 

shrink marker effects aggressively. This leads to a situation where the true signal from causal loci 

is diluted, thereby lowering the prediction accuracy. Therefore, marker preselection, such as that 

based on GWAS, can enhance the model efficiency and prediction accuracy by identifying markers 

in strong LD to put in the model while excluding redundant or uninformative ones. 

In this study, we investigated how marker selection strategies influence genomic prediction 

accuracy in plant breeding, with the goal of identifying an optimal number of markers for inclusion 

in the genomic selection models. We began with a set of simulation-based scenarios, designed to 

evaluate genomic prediction under varying degrees of genotype-phenotype association. We 

applied the same analytical pipeline to the true genotype and phenotype data from an F2 sorghum 

population to evaluate the model performance under actual breeding conditions. In each scenario, 

GWAS was conducted to compute p-values for each marker, which were then ranked based on 

their p-values and subsets of varying sizes were selected to perform genomic prediction. For 

comparison, we also tested randomly selected marker subsets of equivalent sizes. Additionally, we 

applied a q-value based marker selection approach to examine how different false discovery rate 

(FDR) thresholds affects prediction accuracy.  We further evaluated the effect of trait architecture 

such as heritability and number of underlying QTLs on prediction performance. Together, this 

study provides insights into a how genetic architecture and marker selection strategies affect 

genomic prediction accuracy, offering practical guidance for optimizing prediction pipelines in 

plant breeding applications. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Theoretical Framework and Hypothesis 

We hypothesized that the prediction accuracy in genomic selection can be improved by selecting 

statistically significant markers identified through genome-wide association studies (GWAS). To 

test this, we performed GWAS using single marker linear regression, where each marker was 

independently tested for its association with the phenotype. The p-values were used to rank 

markers based on statistical significance. The markers with N lowest p-values were used in 

genomic selection. We apply several strategies, detailed below, for determining N. For 

comparison, we also applied random marker selection, where N markers were selected at random, 

independent of GWAS results. This comparison allowed us to assess the effect of informed vs 

uninformed marker selection on genomic prediction accuracy. 

2.2 Genomic Prediction Models 

For genomic prediction, we implemented four commonly used Bayesian based models as follows 

[15]: 

Genomic Best Linear Unbiased Prediction (GBLUP) 

GBLUP is based on the standard linear mixed model framework, expressed as: 

𝑦𝑖 =  𝜇 + 𝑔𝑖 +  𝜀𝑖, 

where 𝑦𝑖 is the phenotypic value of individual I, 𝜇 is the overall population mean (a fixed effect), 

𝑔𝑖  is the genomic estimated breeding value (GEBV), and 𝜀𝑖 is the residual error. The model 

assumes 𝑔 ~ 𝑁(0, 𝐺𝜎𝑔
2) , where 𝐺 =  𝑋𝑋′/𝑝 is the genomic relationship matrix construction from 
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the standardized marker matrix 𝑋 (coded as 0, 1, 2), and 𝑝 is the number of markers. The model 

assumes all marker effects contribute equally to trait variation, making it well-suited for polygenic 

traits controlled by many small-effect QTLs. It is also effective in scenarios with strong population 

structure. 

Bayesian Ridge Regression (BRR) 

 In BRR, phenotypes are fitted as a linear combination of all markers in the model as follows: 𝑦𝑖 =

𝜇 + ∑ 𝑥𝑖𝑗
𝑝
𝑗=1 β𝑗 + 𝜖𝑖 , where 𝑥𝑖𝑗 is the genotype of the individual 𝑖 at marker 𝑗, and 𝛽𝑗~ 𝑁 (0, 𝜎𝛽

2) 

is the marker effect, and 𝜀𝑖 is the residual error assumed to be normally distributed. The model 

assumes the normal distribution of effects which leads to shrinkage of estimates toward zero. It is 

particularly useful when the number of markers (p) exceeds the number of individuals (n), which 

is common in genomic datasets. This model is also suitable for polygenic traits where many 

markers contribute small effects. 

Bayesian LASSO (BL) 

BL assumes the marker effects follow a double-exponential (Laplace) prior 𝛽𝑗~ 𝐷𝐸 (𝜆2, 𝜎𝛽
2) 

,which can be represented as a scale mixture of normal with an exponential prior in the variance: 

𝛽𝑗~ ∫ 𝑁 (𝛽𝑗|0, 𝜎𝑗
2)𝐸𝑥𝑝 (𝜎𝑗

2|
𝜆2

2 ) 𝜕𝜎𝑗
2 

, where 𝛽𝑗  is the effect of the jth marker, 𝑁(𝛽𝑗|0, 𝜎𝑗
2) is a normal distribution centered at zero with 

variance 𝜎𝑗
2. This model uses adaptive shrinkage, allowing each marker to have its own amount of 

shrinkage. In other words, it applies stronger shrinkage to small marker effects, effectively 

reducing noise, while retaining large-effect markers. As a result, it produces sparser solutions and 

is particularly well-suited for scenarios where only a subset of markers is truly associated with the 

trait. 
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BayesB (BB) 

BayesB assumes a two-part mixture prior of each marker effect 𝛽𝑗 . In particular, the model 

assumes only a subset of markers have non-zero effect, while the rest have exactly zero effect. The 

marker effects are assumed to be zero with probability 𝜋, and with probability  1 − 𝜋, they 

followed a scaled Students’ t- distribution as follows: 

𝛽𝑗 =  {
0,                  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑖𝑏𝑙𝑖𝑡𝑦 𝜋 

𝑡(𝛽𝑗|𝑑𝑓𝛽, 𝑆𝛽),    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑖𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜋
 

The non-zero effects follow as scaled Student’s t-distribution with degrees of freedom 𝑑𝑓𝛽  

and scale 𝑆𝛽. The t-distribution can be represented as follows: 

𝛽𝑗  ~ ∫ 𝑁(𝛽𝑗|0, 𝜎𝑗
2) 𝜒−2(𝜎𝑗

2|𝑑𝑓𝛽, 𝑆𝛽)𝜕𝜎𝑗
2) 

The model is particularly well-suited for oligogenic traits, controlled by a few major QTLs. 

It effectively excludes non-informative markers by assigning them an effect size of exactly zero. 

For GBLUP, we computed genomic relationship matrix using the standardized genotype matrix 

coded as 0, 1, 2. For BRR, BL, and BayesB, the marker matrix was directly used as the design 

matrix.  

We used a 5-fold cross-validation procedure, repeated over 100 replications, to evaluate 

genomic prediction accuracy at various marker subsets determined by GWAS-significance. The 

data were split into five folds; in each fold, four folds was used for training and one for testing. 

GWAS was performed only on the training set to select markers based on q-value thresholds. The 

selected markers were then used to train a model and predict phenotypes in test set. Prediction 

accuracy was calculated as the correlation between predicted and observed phenotype and 

averaged across replicates. All four models were implemented using the BGLR package in R [15].  
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2.3 Data  

The genotype and phenotype data used in this study were derived from an F₂ sorghum population 

consisting of 189 individuals (Dr. Paterson’s lab (Plant Genome Mapping L) at UGA). A total of 

28,958 raw SNP data were generated based on genotyping by sequencing (GBS). We conducted 

filtering to retain only biallelic markers, reducing the number to 11,028. Markers with missing or 

heterozygous parental genotypes were removed, resulting in 8,465 SNPs. Of these, 4220 were 

polymorphic between parents. Finally, markers with more than 20% missing data were excluded, 

yielding a final set of 3,583 high-quality SNPs for all downstream GWAS and genomic prediction 

analyses. 

2.4 Simulation Framework 

2.4.1 Phenotype and Genotype Simulation 

We performed several simulations for generating genotypes and phenotypes for conducting 

GWAS and GS. In some simulation scenarios the genotypes were sampled with replacement from 

true genotypes in the data. In others, frequencies were generated using the standard F2 allele 

frequency (A:H: B = 1:2:1). The phenotype is simulated using the formula: 

𝑦𝑖 = ∑ 𝑔𝑖𝑗𝛽𝑗

𝑛𝑄𝑇𝐿

𝑗=1

+ 𝜖𝑖 

Where 𝑦𝑖 is the phenotype of individual i, 𝑛𝑄𝑇𝐿 is the number of QTLs affecting the trait, 𝑔𝑖𝑗  is 

the genotype of individual i at 𝑄𝑇𝐿𝑗 (coded as 0, 1, or 2), 𝛽𝑗  is the effect of 𝑄𝑇𝐿𝑗 on the phenotype 

and 𝜖𝑖 is the residual error for individual i (normally distributed: 𝑁(0, 𝜎𝜖
2)}. To relate this to 

heritability ℎ2, we use ℎ2 = (𝜎𝑔
2)/(𝜎𝑔

2 + 𝜎𝜖
2 ) , where  𝜎𝑔

2 is genetic variance due to QTL effects, 

and 𝜎𝜖
2 residual variance. We tested the following scenarios with different combinations of 
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genotypes and phenotypes to investigate the effect of marker selection strategy in the genomic 

selection.  

2.4.2 Simulation Scenarios 

We evaluated four scenarios to investigate the impact of genotype-phenotype relationships on the 

prediction accuracies as detailed below. In each scenarios, we used 189 samples and 3,583 markers 

to match the dimensions of the true phenotype and genotype datasets. 

Scenario 1. Simulated Phenotype and Simulated Genotype (Type I: True association between 

phenotype and genotype) 

In this scenario, the genotype data was initially simulated based on an allele frequency distribution 

of 1:2:1, reflecting segregation patterns typical of an F2 population and provide a realistic genetic 

framework for the study. This simulated genotype was then used to generate phenotype with a 

fixed narrow-sense heritability of 0.5, controlled by 50 QTLs with constant-effect sizes. GWAS 

and genomic selection were then conducted using simulated phenotypes and simulated genotypes, 

ensuring that the phenotype and genotype remained entirely dependent. This scenario served as a 

benchmark for evaluating the prediction accuracy when genetic effects are fully known and 

controlled. 

Scenario 2. Simulated Phenotype and Simulated Genotype (Type II: No relationship between 

phenotype and genotype) 

In this scenario, both genotype and phenotype were initially simulated as in scenario 1. 

Subsequently, a second simulation was performed using the real genotype dataset, where a new 

set of genotypes was generated by sampling individuals with replacement. Simulated phenotypes 

were then paired with these resampled genotypes in such a way that the phenotype and genotype 
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remained entirely independent and unassociated. GWAS and genomic selection were performed 

under the assumption that there was no intrinsic association between genotype and phenotype, 

allowing for a controlled evaluation of statistical models and prediction accuracy in the absence of 

true genetic effects. This scenario also served as a negative control to assess how prediction 

accuracy behaves when no true signal is present. 

Scenario 3. Simulated Phenotype and True Genotype Data 

In this scenario, marker genotypes were sampled with replacement from the sorghum data. Each 

individual in the simulation sample was assigned the full marker genotype vector of an individual 

in the real data. This procedure maintains a realistic correlation structure between markers. 

Markers were randomly chosen to be the QTLs and phenotypes were generated using the 

‘simplePhenotype’ package in R [18]. The simulated phenotype was controlled by 50 QTLs with 

constant-effect sizes and had a narrow-sense heritability of 0.5. The model assumed no dominance 

or epistatic interactions and residuals followed a normal distribution. This scenario allowed for the 

evaluation of genomic prediction accuracy under a more realistic genetic background where true 

genotypic structure was preserved but phenotypes were still under controlled, simulated 

architecture. 

Scenario 4. True phenotype and Genotype Data 

In this scenario, we utilized the actual genotype and phenotype data from the F2 sorghum 

population for both GWAS and genomic selection. This real-data analysis served as a validation 

step, enabling us to assess how the results from simulation-based scenarios compare to an actual 

breeding dataset. 
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2.5 Effect of Underlying QTLs and Heritability on Prediction Accuracy 

To assess how prediction accuracy is influenced by underlying QTLs and heritability, we 

simulated phenotypes randomly selecting 10, 100, and 500 QTLs from the simulated genotype 

data (sampling with replacement of true genotypic data) at different heritability values of 0.2, 0.4, 

0.6, and 0.8. Although we implemented four genomic prediction models, we focused on the 

GBLUP model for downstream analyses, as no substantial differences in prediction accuracy were 

observed among the models across Scenarios 1-4. For each simulation, GWAS was performed first 

to rank markers based on their p-values. Genomic selection was then performed using successive 

subsets of the top 500, 1000, 1500, 2000, 2500, 3000, and 3500 markers. Prediction accuracy was 

computed for different combinations of QTLs and heritability values across different subsets of 

top-ranked markers, which was measured as the Pearson correlation coefficient between the 

genomic estimated breeding values (GEBVs) and the true simulated phenotypes in the test set. 

2.6 QTL vs Noise Marker Simulation 

To evaluate the effect of errors or noise markers related to the prediction accuracy, we randomly 

selected a fixed number of QTLs from the true genotype for simulating the phenotype. The noise 

makers were generated from the remaining markers from a true genotype that does not contain any 

QTL genotype. However, there are still some chances that some markers may show poor to 

moderate association and cause biases. To mitigate this, we ran a GWAS with non-QTL genotypes 

and sorted them based on their p-values. We selected the top 1000 non-significant markers (1000 

highest p-values) as noise markers. The prediction models were then fitted to predict genomic 

accuracies for several combinations of QTLs and noise marker combinations to assess the effect 

of non-causal marker inclusion. The scenarios included combinations such as (25 QTLs, 0 noise), 

(25QTLs, 25 noise), (25 QTLs, 50 noise), (25 QTLs, 75 noise), and (25 QTLs, 100 noise) markers. 
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The scenarios were tested with increased numbers of causal loci, including 50, 75, and 100 QTLs 

for the four different narrow-sense heritability levels (0.2, 0.4, 0.6, 0.8). 

2.7 q-value Based Marker Selection  

We used the q value approach to identify statistically significant markers while controlling the 

false discovery rate (FDR) in the genome-wide association study. The q-values were computed 

from the GWAS-derived p-values using the method proposed by Storey and Tibshirani (2003)[19], 

which estimates the minimum FDR at which a particular markers can be considered significant. 

Unlike p-values, which assess the probability of observing a test statistics as extreme as the one 

obtained under the null hypothesis, q-values account for the multiple testing burden by estimating 

the expected proportion of false positives among all the markers declared significant.  

We used the ‘qvalue’ package in R[20] to calculate the q-values and generate marker 

subsets at multiple FDR thresholds, ranging from very stringent cutoffs (0.001 – 0.05) , through 

moderate thresholds (0.1 – 0.3), up to baseline thresholds of (0.7 – 1.0).  These marker sets were 

then used in genome-wide association studies and genomic prediction models to evaluate how 

different stringency of marker selection thresholds affect the prediction accuracy. We used both 

simulated and real datasets to evaluate the impact of q-value-based marker selection approach on 

prediction accuracy. Additionally, we compared the effect on prediction accuracy when GWAS 

was performed on full datasets prior to prediction, compared to that when GWAS was performed 

on training data only. This comparison enabled us to assess the potential inflation of accuracy 

when marker selection is not independent of the test set. 

2.8 Validation with True Dataset and QTL Recovery Analysis  

To further evaluate the effectiveness of q-value-based marker selection approach for 

capturing the genetic signals, we performed a QTL recovery analysis using the true dataset. A total 



 

12 

of 152 significant SNPs were identified using GAPIT package in R [21], and these were considered 

as the true QTLs controlling the trait for the purpose of recovery analysis. At each q-value cutoffs 

(0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) we counted the number and 

proportion of true QTLs that were recovered among different marker subsets. This analysis 

allowed use to understand how well different levels of statistical stringency performed to retrieve 

the true QTLs and relate QTL recovery rates to trends in prediction accuracy. 
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CHAPTER 3 

RESULTS 

3.1 Marker Selection Strategies: GWAS-Ranked vs Random 

3.1.1 Scenario 1: Simulated phenotype and simulated genotype (Type I) 

In this scenario, the simulated phenotype is entirely dependent on the simulated genotype, 

representing the ideal case where there is a true underlying genetic basis for the trait, as in the case 

of true phenotype and true genotype. When markers were selected based on GWAS-rankings, the 

highest prediction accuracy was observed with small subsets of highly significant markers (i.e., 

500 to 1000 top-ranked markers). However, as the number of selected markers increased, 

prediction accuracy gradually declined, likely due to the inclusion of less informative or non-

causal markers that may dilute the signal from true QTLs (Figure 1a).  

In contrast, when markers were selected at random, prediction accuracy showed a slight 

increase as the size of the marker subset grew (Figure 1b). This could be due to increased 

probability of capturing true QTLs as more markers are included. Notably, the higher prediction 

accuracy observed under the BayesB model in the random marker selection strategies aligns well 

with its underlying assumption of retaining the effects of large-effect markers while shrinking the 

effects of small or non-informative markers towards zero. 

3.1.2 Scenario 2. Simulated phenotype and simulated genotype (Type II) 

In this scenario, we assumed that there was no correlation, only a very weak correlation by chance, 

between phenotypes and genotypes. As expected, genomic prediction yielded zero or near-zero 

accuracy, regardless of whether markers were selected randomly or based on GWAS rankings. 
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This outcome confirms the absence of any true association between genotype and phenotype and 

serves as a negative control, validating that our prediction models do not capture spurious signals 

when no real genetic effects are present. 

3.1.3 Scenario 3: Simulated phenotype and true genotype. 

In this scenario, where phenotypes were simulated based on the true genotype matrix, the 

prediction accuracy was generally high across all models, reflecting the strong underlying genetic 

control. As shown in Figure 3a, when top-ranked markers were used, the prediction accuracy 

gradually declined with increase in the size of marker subset. However, when markers were 

selected at random, accuracy remained stable over different marker subsets (Figure 3b). 

3.1.4 Scenario 4. True phenotype and genotype data 

 When real genotype and phenotype data was used, the prediction accuracy declined as the marker 

subset size increased as observed in simulation performed in Scenario 1 and 3 (Figure 4a), 

however, the overall accuracy levels were lower than in the simulated scenario, reflecting the 

complexity of the trait architecture and environmental noise present in real data. For random 

marker subsets (Figure 4b), accuracy remained relatively stable across all subset sizes. 
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Figure 1. Prediction accuracy across different models using simulated phenotype and simulated 

genotype (Type I). Phenotype and genotype are entirely dependent. (a) when markers are sorted 

based on p-values, (b) when markers are selected randomly. 
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Figure 2. Prediction accuracy across different models using simulated phenotype and simulated 

genotype (Type II). Phenotype is independent of genotype. (a) when markers are sorted based on 

p-values, (b) when markers are selected randomly. 



 

17 

 

Figure 3. Prediction accuracy across different models using simulated phenotype and true 

genotype. (a) when markers are sorted based on p-values, (b) when markers are selected randomly. 
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Figure 4. Prediction accuracy across different models using true datasets. (a) when markers are 

sorted based on p-values, (b) when markers are selected randomly. 
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3.2 Effect of Underlying QTLs and Heritability on Prediction Accuracy 

Next, we explored how the relationship between prediction accuracy and number of markers varied 

with the heritability and the number of QTL controlling the trait. We observed little to no 

difference in prediction accuracy at low heritability of 0.2, regardless of the number of QTLs 

controlling the trait. However, as heritability increased, traits controlled by few QTLs such as 10 

QTLs (large-effect QTLs) consistently exhibited higher prediction accuracy compared to those 

controlled by many small effect QTLs. This suggests that at higher heritability values, traits 

governed by fewer major QTLs are more predictable, highlighting the advantage of large-effect 

QTLs in genomic prediction models.  

With 10 QTLs, prediction accuracy was always highest with 500 markers selected and 

decreased as the number of selected markers increased. In contrast, with 100 and 500 QTLs, 

prediction accuracy peaked at 1000-1500 selected markers for higher (0.6 and 0.8) heritabilities. 

This is likely because as the number of QTL increases it takes more markers being selected to get 

the same number of QTLs in the selected group. However, it is not clear why this same pattern 

doesn’t hold for lower heritabilities.  
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Figure 5. Prediction accuracy across different combination of heritability values and number of 

QTLs. 

3.3 Effect of Noise markers on Prediction Accuracy 

In order to better understand the how the balance of true QTLs versus noise markers in the 

prediction model impacts prediction accuracy, we conducted simulations in which the number of 

QTLs and noise markers was explicitly specified. In contrast, for the previous simulations the 

number of noise markers versus true QTLs was not specified and arose naturally from the marker 

ranking process.   

 We simulated scenarios in which 25, 50, 75, and all 100 QTLs were included in the model 

and cases with 0, 25, 50, 75, and 100 noise markers of equal variance. As expected, the prediction 

accuracy increases with increased number of true QTLs in the model and fewer noise markers. We 

see that getting a higher proportion of QTLs is generally more important than getting fewer noise 
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markers, up to a point. For example, the model with 75 QTL and 100 noise markers has equal or 

higher accuracy than all of the models with 25 or 50 QTLs, regardless of the number of noise 

markers.  

 

Figure 6. Prediction accuracy across different combination of heritability values and number of 

QTLs including noise markers in the model 

3.4 q-value Cutoffs and Marker Selection Efficiency 

When simulated phenotypes based on simulated genotypes were used to assess the prediction 

accuracy across different q-value cutoffs, we observed a sharp increase in accuracy as the q-value 

threshold increased from 0.001 to 0.2 (GWAS on training data, Figure 7). Beyond this threshold, 

prediction accuracy remained stable despite the inclusion of more markers (Figure 7, Table 1). In 

contrast, when phenotypes were simulated independently of genotypes (i.e., using noise markers), 

prediction accuracies remained consistently near zero across all q-value thresholds, as expected 

(Figure 8). This is because the GWAS generated p-values from unrelated phenotype and genotype 

dataset had uniform-distribution (Figure 9, left panel). The flat distribution is characteristics of the 
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null-scenario, where no true genotype-phenotype association exists. When these p-values were 

converted into q-values (Figure 9, right panel), nearly all q-values were clustered near 1.0, 

indicating a complete lack of statistically significant markers. This outcome is consistent with 

expectations under the null hypothesis and confirms that the q-value method effectively controls 

the false discovery rate and does not detect spurious associations when genotype and phenotype 

were unrelated.  

An important observation was the difference in prediction accuracy depending on whether 

GWAS was conducted on the full dataset or only within the training data during cross-validation 

(Figure 7). When GWAS was conducted on the full dataset prior to prediction, accuracy was 

slightly inflated. In contrast, when GWAS was conducted solely within training folds before 

marker selection, the prediction accuracy remained lower but more realistic. These finding 

highlight the importance of maintaining independence between marker selection and predictions 

steps to avoid overestimating genomic prediction performance.   

 

Figure 7. Prediction accuracy using markers selected based on q-values on simulated dataset 
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Table1: QTLs recovered at different q-value cutoffs using simulated dataset 

q-value 
Number of 

Marker 
No of QTLs 
recovered 

Proportion of QTLs 
recovered 

Average 
Accuracy 

0.001 33.3 4.1 0.08 0.29 
0.01 133.6 8.1 0.16 0.41 
0.05 408.5 16.2 0.32 0.49 
0.1 641.4 20.8 0.42 0.52 
0.2 1005.2 28.7 0.57 0.53 
0.3 1396.1 36.8 0.74 0.53 
0.4 1824 43.2 0.86 0.52 
0.5 2324.5 48.2 0.96 0.53 
0.6 2827.2 49.7 0.99 0.53 
0.7 3240.6 50 1.00 0.53 
0.8 3349.8 50 1.00 0.53 
0.9 3526.5 50 1.00 0.53 

1 3583 50 1.00 0.53 
 

 

 

Figure 8. Prediction accuracy using markers selected based on q-values (model with noise 

markers) 
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Figure 9. Distribution of p-values and q-values in model with noise markers. 

3.5 Validation with Real data: q-value thresholds and QTL Recovery 

When the true phenotype and genotype dataset was used, the prediction accuracy across q-value 

cutoffs followed the similar pattern as in the simulated scenario where the phenotype was fully 

dependent on genotype. As shown in the Figure 10, prediction accuracy sharply increased as the 

q-value threshold was relaxed from 0.001 to 0.2, beyond which accuracy plateaued. At very 

stringent thresholds such as 0.001, prediction power was reduced due to missing many true QTLs. 

However, at moderate q-value thresholds such as 0.1 or 0.2, the most informative markers for 

prediction were captured. Adding more markers beyond that point did not contribute additional 

predictive power, likely due to the inclusion of non-informative markers.  
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We validated the results by assessing the count and proportion of true QTLs recovered at 

each q-value threshold for the trait. We considered all 152 significant SNPs identified via GWAS 

using GAPIT as true QTLs for the trait. At very stringent threshold of 0.001, the marker subset 

included ~43% of true QTLs, indicating many true QTLs were missed, reducing the prediction 

power. However, at intermediate threshold such as 0.1 or 0.2, nearly 100% of true QTLs were 

recovered (Table 2). Once all the true QTLs were recovered, additional markers did not increase 

prediction accuracy, yet they may introduce noise into the prediction model (Figure 10, left panel). 

These findings confirm that q-value-based marker selection is effective in prioritizing informative 

markers and optimizing prediction accuracy, especially when the phenotype is strongly influenced 

by underlying genetic variation. The consistency between real and simulated data results also 

validates the robustness of this approach under realistic genetic architecture. 

Figure 10. Prediction accuracy and QTL recovery using markers selected based on q-values on 

true data set 
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Table 2: QTLs recovered at different q-value cutoffs using true dataset 

q-value 
Number of 

Marker 
No of QTLs 
recovered 

Proportion of QTLs 
recovered 

Average 
Accuracy 

0.001 66.9 65.7 0.43 0.25 
0.01 113.4 100.1 0.66 0.29 
0.05 223 132.9 0.87 0.29 
0.1 376.8 150.2 0.99 0.32 
0.2 803.3 152 1 0.36 
0.3 1502.8 152 1 0.36 
0.4 2448.6 152 1 0.35 
0.5 3262.7 152 1 0.35 
0.6 3569.4 152 1 0.35 
0.7 3583 152 1 0.34 
0.8 3583 152 1 0.34 
0.9 3583 152 1 0.34 

1 3583 152 1 0.34 
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CHAPTER 4 

DISCUSSION 

In this study, we presented a comprehensive evaluation of genomic prediction accuracy using 

several simulated and real data scenarios, focusing on the impact of marker selection strategies 

and statistical thresholds. A key findings across all scenarios was that prediction accuracy was 

highest when phenotypes had a strong association with genotypes and when markers were selected 

based on GWAS significance rather than at random. This aligns with prior studies suggesting that 

incorporating informative or trait-associated markers improves prediction performance [11, 22]. 

Specifically, in Scenario 1, where phenotype was entirely dependent on genotype, accuracy peaked 

with smaller subsets of top-ranked markers and declined as more non-informative markers were 

added, likely due to the dilution of true genetic signal by non-causal variants. This observation 

supports the theory that, in highly polygenic traits, prediction performance can be weakened by 

overfitting or the introduction of irrelevant features [23]. However, when markers were selected 

randomly, accuracy increased slightly with larger subsets. This could be due to increased 

probability of including true QTLs as the marker subset size increased.  

Scenario 2 provided a negative control, where phenotype was simulated independently of 

genotype. As expected, the prediction models showed near zero accuracy regardless of marker 

selection strategy. This outcome confirms the statistical validity of the models as well as support 

the notion that strong genetic signal as a pre-requisite for meaningful prediction. 

To further validate the prediction pattern observed in Scenario 1, we incorporated two 

additional scenarios: Scenario 3, where phenotype was simulated using the true genotype matrix, 
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and Scenario 4, which utilized real observed phenotype and genotype data from a sorghum F2 

population. In both cases, we observed higher prediction accuracy with smaller marker subsets 

derived from GWAS-ranked p-values, which was consistent with the simulated scenario (Scenario 

1) and highlights the potential of genomic prediction in real breeding contexts [24]. Random 

selection of markers, however, demonstrated stable, but generally lower prediction accuracy, 

reinforcing the advantage of informed marker selection. 

We also evaluated how prediction accuracy is affected by the genetic architecture of traits, 

namely the number of QTLs controlling the traits and trait heritability. Prediction accuracy was 

substantially higher for traits governed by a small number of large-effect QTLs, particularly at 

higher heritability levels. These results aligns with theoretical expectations and empirical findings 

that traits with simpler, more additive architectures tend to yield higher prediction accuracies [25, 

26]. On the other hand, the inclusion of non-informative (noise markers) in the model consistently 

reduced prediction performance regardless of the trait architecture, highlighting the importance of 

marker quality over quantity in building effective models. 

Another major focus of our study was evaluating the utility of q-value-based marker 

selection. The q-value, as proposed by Storey and Tibshirani (2003) [19], controls the false 

discovery rate (FDR), and provides a way to balance true discovery and Type I error in multiple 

testing scenarios as in genome-wide association studies. We found that using q-values to filter 

markers at moderate thresholds (i.e., 0.1 to 0.2) led to optimal prediction accuracy, corresponding 

to the recovery of nearly all true QTLs as evident in the true datasets. Importantly, at more stringent 

thresholds such as 0.001, the model excluded many true positives, while at more relaxed threshold, 

the model added non-informative markers (noise), confirming the importance of an intermediate 

q-value cutoff for practical use. These results are consistent with prior work suggesting that 
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stringent threshold reduces power, while liberal thresholds increase the false positives [19, 27]. 

The findings from our study demonstrate that similar or even higher prediction accuracy can be 

achieved using fewer but more informative markers. This approach offers several advantages, 

including and an increased the signal to noise ratio, reduced computational burden, and lower 

genotyping costs–ultimately making the genomic prediction process more efficient and cost-

effective. 

Furthermore, our study showed that performing GWAS on the full dataset prior to marker 

selection, resulted in slightly inflated prediction accuracy, likely due to data leakage that violates 

the independence assumption in cross-validation. In contrast, GWAS solely on the training data, 

preserved the statistical integrity and yielded more realistic estimated of prediction accuracy, thus 

reinforces the best practices in genomic selection pipelines, where marker selection must remain 

independent of the test data to avoid biased results. 

The effectiveness of q-value based marker selection was further validated by QTL recovery 

analysis using true datasets. We utilized 152 significant SNPs identified through GAPIT as a proxy 

for true QTLs. We found that only ~43% of true QTLs were recovered at a q-value threshold of 

0.001, while 100% were recovered at 0.2. Beyond this point, adding more markers failed to 

improve prediction accuracy, suggesting that q-value based selection is not only statistically 

robust, but also biologically meaningful in prioritizing markers that influences trait variation. 

In summary, our findings demonstrate that q-value–based marker selection approach is an 

effective and reliable method for optimizing genomic prediction. The consistency of results across 

simulated and real datasets supports the robustness of this framework for use in real-world 

practical breeding applications. 
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CHAPTER 5 

CONCLUSION 

In this study, we evaluated genomic prediction accuracy across multiple simulated scenarios and 

real datasets, focusing on the effects of marker selection strategies and statistical thresholds. Our 

results consistently showed that prediction accuracy was highest when phenotypes had a strong 

genetic basis and when markers were selected based on GWAS significance rather than at random. 

Marker selection using q-values at moderate thresholds (e.g., 0.1– 0.2) was especially effective 

since they recovered most true QTLs and avoided the inclusion of noise or irrelevant markers, 

thereby optimizing prediction accuracy.  

Additionally, we found that the genetic architecture of traits strongly influenced the 

prediction accuracy. Traits with few, large-effect QTLs and high heritability were more predictable 

than highly polygenic traits or those with low heritability. Importantly, conducting GWAS on the 

training set rather than the full dataset avoided data leakage and provided unbiased estimates of 

model performance, reinforcing best practices for genomic selection pipelines. Real dataset from 

sorghum F2 populations confirmed the patterns observed in simulations, highlighting the practical 

relevance of these findings. Overall, our study demonstrates that q-value–based marker selection 

is an effective strategy for enhancing genomic prediction in plant breeding. 
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