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ABSTRACT

Inverse input estimation problems, in which a set of inputs are estimated from sparse, noisy system

response measurements, are common in engineering practice. In structural engineering applica-

tions, input estimation problems manifest when the forces on a structure are estimated from mea-

surements of structural motion. Structural inverse problems are almost always ill-conditioned, and

naïve system inversion yields unacceptable force estimates that amplify noise in the response data.

While input force estimation techniques have been well-studied for cases where discrete forces act

at known locations, little work has been done about how these techniques can be extended to cases

where the force locations are unknown or the forces are distributed over the domain.

This dissertation presents three methods of solving distributed and moving force estimation

problems for each of the three types of temporal loading: static, harmonic, and general dynamic.

The techniques presented here supplement common techniques for estimating concentrated loads

at known locations with additional techniques that enable distributed and moving load estimation.

First, a method of estimating distributed static loads is presented along with a method for intelli-

gently placing strain sensors. Second, a method for estimating distributed harmonic forces using

a novel form of Tikhonov regularization is described. Lastly, we outline a Kalman filter-based

method for estimating moving loads. Because these techniques are all extensions of standard

methods, they should be immediately applicable to a wide variety of engineering problems. Addi-



tionally, this manuscript can be viewed as a tutorial that describes the state-of-the-art of structural

input estimation techniques.
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Chapter 1

Introduction

1.1 Motivation

Classical texts on engineering science usually describe physical processes in terms of estimating a sys-

tem’s response to a known input. For instance, the temperature of a solid mass due to a known heat flux

over a portion of the surface, the fluid pressure at a point in a domain given the known free-stream velocity,

and the displacement at the tip of a beam due to a known force applied to the beam all represent system re-

sponses to known inputs. In all of these cases, the known system inputs are used with the system equations

to yield an estimate of the system response that is typically stable to small changes in the input.

These descriptions of physical systems are adequate for understanding the underlying physics and for

many applications. However, there are many practical applications where the system inputs are unknown

and difficult to measure, but the system response can be easily measured. For instance, accelerometers are

relatively inexpensive, small, and simple to configure compared to load cells, and can capture the response

of a structure at any point while the load cell must be collocated with the force to get an accurate measure of

the input. In addition, the number of force sensors required to resolve a distributed load is typically imprac-

tical. It is therefore desirable to estimate the force on a structure using structural response measurements.

Inverse problems, in which the input to physical systems or system parameters are estimated using sparse

measurements of the system response, frequently appear in applications such as control systems, model val-

idation, and structural health monitoring. Structural system identification and input estimation techniques

are examples of inverse problems in the structural engineering domain. System identification problems are

concerned with the estimation of structural parameters such as stiffness or damping, while input estimation

problems are concerned with reconstructing the forces applied to a structure. In either case, structural re-
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sponse measurements enable estimation. Although input estimation and system identification are both types

of inverse problems with similar considerations, the techniques used to solve these classes of problems are

largely disparate. The present work focuses on input estimation problems and describes several techniques

for estimating forces on structures.

Fig. 1.1 shows the archetypal flow of inputs and outputs in an input estimation problem. The top row

of objects represents the forward problem typical of most engineering science texts. The system is excited

by a force configuration, and the result is an estimate of the full response of the system that is typically rep-

resented by displacement, strain, or acceleration. The inversion process begins by taking sparse and noisy

measurements of the full response. The object “Sparse Measurements” in the flow chart has a dashed border

to highlight the fact that it represents an estimate of a subset of the full response. The measurements are

passed through a system inverse to yield a force estimate. Note that the system inverse is typically not a

direct inversion of the system but is rather based on a numerical or empirical approximation of the forward

system. The success of an input estimation technique is evaluated using an error metric between a known

truth force and the force estimate. The final error metric is only used to evaluate the inversion method during

testing, since the truth force is generally unknown in practice. Inverse problems (input estimation problems,

Force System Full
Response

System InverseForce
Estimate

Sparse
Measurements

Er
ro
r

Figure 1.1. Flowchart showing the process of a general inverse problem.

in particular) are typically plagued with numerical difficulties. When the system equations are directly

inverted, the resulting equations are often ill-conditioned, and yield input estimates that are extremely sensi-

tive to noise in the response measurements. Further, the problem is ill-posed if the number of measurements

2



is less than the number of force parameters to be estimated, and the inversion process will not in general

find a unique solution. Additionally, the quality of the force reconstruction depends on the amount of in-

formation provided by the measurements, which is in turn a function of the physical sensor configuration.

Ill-conditioned and ill-posed inverse problems may be made well-conditioned and well-posed by including

a regularization term that includes additional information about the expected form of the solution in the

inversion process itself. Techniques for intelligent sensor system design have also been developed. The

present work describes techniques for obtaining stable force estimates from sparse, noisy response measure-

ments by combining common system inversion techniques with novel sensor placement and regularization

techniques. In particular, this document focuses on estimating distributed static forces, distributed harmonic

forces, and traveling dynamic forces.

1.2 Literature Review

This section presents a review of the relevant literature on structural input estimation problems. The

review is divided into subsections that correspond to methods for solving static, harmonic, and dynamic

force estimation problems. A map summarizing the techniques that fall under structural input estimation

methods is shown in Fig. 1.2 for convenience. In the figure, the subdomains addressed by the present work

are shown in blue.

While there are mathematical differences among the different classes of force estimation problems,

there are also similarities. The motivation for developing solution methods is largely the same in all cases.

Directly measuring the force applied to a structure is typically infeasible due to the system geometry, diffi-

culties with installing the required types of sensors, or the number of sensors required to resolve the applied

load. System inversion methods allow the force on the system to be estimated from sparse structural re-

sponse measurements, which can be obtained from relatively inexpensive and simple to install sensors such

as accelerometers or strain gauges.

Similar mathematical difficulties also exist for all types of inverse problems. When the number of

force parameters to be estimated exceeds the number of available response measurements, the problem is

underdetermined and ill-posed. In this case, it is impossible to find a unique solution, and force estimates

are typically very inaccurate [1]. When the number of force parameters is less than or equal to the number

of response measurements, the problem is overdetermined or even determined, and a unique solution can

3



Structural Input Estimation Methods

Static

Point
[13,14]

Distributed
[3,7,15-27]

Point
[38,39,43]

Distributed
[48,49,52] Point

Stationary
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Figure 1.2. Structural input estimation problems tree with citations to works that detail methods of
solving each problem type. Problems addressed in the present work are placed in blue boxes.

be found. The problem is often still ill-conditioned even in the overdetermined case, which means that the

force estimate is highly sensitive to small changes in the response data [1]. Regularization and intelligent

sensor placement methods can be used to improve the conditioning of inverse problems, and regularization

can even effectively convert ill-posed problems to well-posed problems by introducing prior information

about the solution. The details of the regularization scheme, the sensor placement method, and the inversion

technique of the system depend on the type of force estimation problem.

1.2.1 Static Force Estimation

Engineering structures are routinely subject to static or quasi-static distributed loads such as those from

pressure or thermal fields. However, the quality of force reconstruction from direct system inversion is

typically sensitive to the locations at which the sensors are placed [2, 3]. Although algorithms exist to

determine optimal sensor systems, little guidance is available for setting sensor placement in the absence of

numerical models [2, 3]. Chapter 2 seeks to provide guidance for designing sensor systems on beam-like

structures.
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Methods for solving static inverse problems have been extensively studied [4]. Most of the current

literature on static inverse problems focuses on applications of structural health monitoring, where structural

damage is measured indirectly from quasi-static response data [4–12]. These structural health monitoring

problems belong to the broad field of system identification, where the goal is to estimate—and identify

changes to—system properties (e.g., stiffness) using only response measurements. While inverse methods

for system identification are powerful, they are not generally applicable to the input estimation problems

considered here, where the goal is to calculate an applied force using only the measured response.

Inverse force estimation in static and quasi-static systems has also been studied, but not to the same

extent as inverse methods for structural health monitoring. The influence coefficient methods model a linear

relationship between force and response (typically in the form of strain) as an influence matrix [13–15].

A solution may be attempted by simply inverting the influence matrix, but more accurate solutions can

often be found via regularization [16, 17] or rank reduction of the influence coefficient matrix [18, 19].

A Moore-Penrose pseudo-inverse may be used to achieve a least-squares solution for general rectangular

influence matrices (corresponding to overdetermined or underdetermined systems). Creating the influence

matrix requires the definition of a basis of candidate forces. The estimated load is a linear combination

of these candidate forces. The early sets of candidates consisted of point loads at all relevant degrees of

freedom [13, 14] or continuous linearly independent functions that spanned the domain [15]. However, a

basis consisting of point loads typically has too many unknown variables to be practical, while the success

of a basis consisting of functions spanning the domain depends on the shape of the applied loading and the

choice of basis functions. More sophisticated candidate sets have been developed that use shape functions

from finite element analysis to model the continuous force distribution [19, 20]. Control points are placed

across the domain and shape functions are used to interpolate their values at intermediate locations. The

control points resemble a point load candidate set, but including shape functions reduces the number of

control points needed to approximate an arbitrary distributed load.

Load updating methods have also been studied [21, 22]. In these methods, the load distribution is

assumed to take the form of Legendre polynomials across each element of a finite element mesh. An

optimization algorithm is then used to minimize the error between the simulated response and the measured

response by changing the polynomial coefficients. The load updating method is similar to the influence

coefficient method using a pseudo-inverse since both require an assumed form of the forcing, and both seek
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a least-squares solution. The order of the assumed polynomial loading can be arbitrarily large, but high-

order polynomials introduce more coefficients, which can make the system underdetermined. Hence, the

best results are often achieved when a relatively small number of elements and polynomial coefficients are

used [22]. The load updating method yields accurate results, but directly optimizing the load parameters

is much slower than inverting an influence coefficient matrix, since optimization requires the finite element

model to be solved at every iteration.

Machine learning methods for static load prediction have also been developed [23–27]. It is possible

to achieve results similar to those from the influence coefficient method by using a feed-forward neural

network with a single nonlinear hidden layer and linear output layer [26, 27]. The results show that this

neural network approach is much more robust against noise than the influence coefficient method. These

results are unsurprising since the influence coefficient method can be thought of as a neural network with

a single linear layer where the weight matrix is prescribed rather than learned. In the learned method,

the additional hidden layer preprocesses the strain data, and the training process minimizes the network’s

output error. This method is therefore a generalization of the influence coefficient method. However, the

model must be trained with a large amount of force and response data before it can be used for prediction.

Additionally, the model contains no underlying physics, so even a well-trained network could predict non-

physical results.

Intelligent sensor design can be used to increase the robustness of inverse methods against noise. D-

optimal design attempts to minimize the sensitivity of the solution to changes in measurements by changing

the sensor configuration [2]. The optimal sensor configuration is determined by generating a set of candidate

sensor locations, typically coincident with points on a finite element mesh where sensors could feasibly

be placed. A sequential exchange algorithm determines which candidate points to include in the optimal

configuration. C-optimal design is similar to D-optimal design, but the objective function is the condition

number rather than the sensitivity of the influence matrix [3]. Between these two methods, the C-optimal

design produces optimal configurations that produce a lower prediction error than the D-optimal design,

suggesting that the condition number of the influence matrix is a better proxy of error than the determinant

of the inverse sensitivity [3]. However, C-optimal design is more computationally intensive [3]. A drawback

of both techniques is the practical need for discrete optimization algorithms (e.g., sequential exchange,

successive reduction). To solve the optimization problem using continuous techniques (e.g., sequential
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quadratic programming, particle swarm optimization, etc.), the numerical model of the system would need

to be solved at each query point, which may be inefficient and difficult to implement.

The problem of sensor placement may be somewhat alleviated through distributed sensing. If the struc-

tural response could be easily queried at any surface point without changing the sensor configuration, it

could be possible to tune the measurement points experimentally by querying the system at arbitrary lo-

cations and updating the required portions of the numerical model. An early distributed sensor made of

constantan wire was proposed by Baz and Poh [28]. The wire changes resistance when subject to axial loads

and acts as a distributed strain gauge that can be placed on a structure and probed at any point to obtain

a set of discrete measurements. Similar fiber optic sensors have also been developed [29]. A recent study

developed a method to determine the strain field on a structural surface using only discrete strain measure-

ments [30]. The method uses a novel interpolation scheme to construct the strain field, effectively changing

the question of sensor placement from one of minimizing sensitivity to inversion to one of minimizing in-

terpolation error. However, a designer would still need to carefully choose the locations at which to sample

the strain field for force magnitude estimation purposes, since system inversion would still be necessary to

estimate the applied load. The present work fills an important literature gap by providing insight into the

appropriate placement of sensors for inverse distributed load determination, regardless of whether discrete

or distributed sensors are used.

Many techniques exist for solving inverse problems, but only some provide much insight into the un-

derlying mechanics. The present work uses an analytical influence coefficient method to predict loading

on a 1D beam and gain insights into the mathematical structure of the influence matrix. Additionally, we

use analytical equations to apply a continuous C-optimal design strategy and develop rules of thumb for

near-optimal sensor placement. We assume the loading on a 1D beam may be modeled as a piecewise

uniformly-distributed load (UDL) or linearly-distributed load (LDL) defined by a set of control points. We

limit ourselves to perfectly determined systems, where the number of strain sensors equals the number of

control point magnitudes to be estimated, and we assume that the control points are uniformly spaced. With-

out these limitations, searching for optimal sensor configurations and developing rules of thumb would be

infeasible. By focusing on perfectly determined systems, we can isolate the benefits of optimized sensor

placement without the confounding effects caused by least-squares solutions. The rules-of-thumb devel-

oped in the present work will allow technicians to instrument structures such as press rollers, aircraft wings,
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marine propellers, structural support beams, etc. and obtain reasonable load estimates without the need to

directly optimize the sensors’ locations.

1.2.2 Harmonic Force Estimation

Many engineering structures are subject to harmonic distributed loads during normal operation. For ex-

ample, the unsteady aerodynamic load on an airfoil [31,32] and the acoustic loading on a rocket thruster [33–

35] can be described as spatially distributed harmonic load. Identification of the applied loading in such

cases is important for the specification of environments, structural health monitoring, and active control.

To facilitate the improved inverse calculation of distributed harmonic loads, Chapter 3 presents a new reg-

ularization technique based on generalized Tikhonov regularization that is suitable for under-determined

problems. The regularization method is inspired by Bayesian inference and takes advantage of prior knowl-

edge of the force field to obtain accurate force estimates.

Techniques for estimating continuously distributed loads from partial response measurements have been

actively investigated for the past few decades [13, 14, 19, 20, 36, 37]. The primary difficulty with this type

of problem is that the number of forces that can be estimated without additional assumptions is limited by

the number of response measurements. It is therefore necessary to include additional information about

the force by either regularizing the problem or describing the distributed force using a finite number of

parameters. The force can be described as a set of point loads, but the number of point loads needed to

adequately resolve a distributed load frequently makes the number of sensors required infeasible [13,14]. It

is also possible to describe the force as a linear combination of distributed loads that span the domain, but the

precision of this method depends on the spatial shape of the truth force and the choice of distributed loads

that form the basis [37]. A more general method models the load on small segments of the domain as shape

functions [19, 20, 36]. The shape function method enables a smaller number of parameters to accurately

resolve a continuously distributed load, but the spatial resolution of the estimate is still limited by the spatial

resolution of the shape functions.

Given response measurements, a structural model, and a geometric model of external load, input estima-

tion can be performed by a number of methods. For structures that can be modeled as linear, the FRF matrix

describes the relationship between response and load. The FRF matrix can be inverted and multiplied by the

measured response to calculate the force [38,39]. This method is similar to the influence coefficient method
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commonly used to estimate static and quasi-static loads, but the FRF matrix is inverted at each frequency of

interest [13,14,19,20,36]. The FRF inversion method is straightforward to implement and computationally

efficient, but can suffer from ill-conditioning, especially near resonance frequencies. Direct inversion of

the FRF matrix is adequate for estimating the magnitudes of small sets of point loads or distributed loads

on beam-like structures, but the number of sensors required to accurately resolve distributed loads on 2D

(plate-like) or general 3D structures is frequently infeasible due to the high number of force parameters.

The direct inversion method can be improved by using ℓq regularization to incorporate information about

the expected solution into the least squares problem [40, 41]. Classical regularization introduces a penalty

term that favors solutions with certain global characteristics based on the q-norm of the solution, where q is

the order of the norm (e.g., 1-norm, 2-norm). Tikhonov (ℓ2) regularization promotes qualities such as small

magnitudes [17, 42] or continuity [43], while ℓ1 regularization promotes sparsity [44]. The 1- and 2-norms

are the most common choices for regularization, but q, the order of the norm, is often tuned to find the

optimal norm in machine learning and hierarchical Bayesian methods [45, 46]. However, regardless of the

value of q, the additional information provided to the problem by ℓq regularization usually only promotes

global qualities in the solution and does not incorporate specific prior knowledge.

Force reconstruction methods based on Bayesian inference have become increasingly common in recent

years [47–53]. Instead of estimating the load by inverting a deterministic system model, Bayesian meth-

ods model the force, noise, and modeling errors using probability distributions and use Bayes’ theorem to

estimate the probability distribution of the force given the measured data. The resulting distribution can

be maximized to produce the force that is most likely to have caused the measured response. Bayesian

techniques have been shown to yield excellent input estimates even in the under-determined case [47]. An

advantage of Bayesian techniques over deterministic techniques is the inclusion of the prior distribution,

which provides the method with additional information about the expected form of the solution. This ad-

ditional information effectively converts the under-determined problem into an even- or over-determined

problem. The prior distribution acts functionally like a regularization term that penalizes estimates that are

far from the expected solution, but it differs from classical regularization schemes because it can easily

include more specific information beyond global qualities such as smoothness or sparsity [40].

The present work describes an input estimation method based on direct inversion of the FRF matrix

augmented with a Bayesian-inspired Tikhonov regularization term that captures prior knowledge of the
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spatial distribution of the force. The regularization term emerges naturally from a Bayesian derivation, but

the regularization itself takes place in a standard linear regularization framework. Due to the simplicity of the

direct inversion technique, we expect our method to be immediately applicable to distributed harmonic load

estimation problems from a variety of disciplines including acoustics, fluid dynamics, and aeroelasticity.

1.2.3 Dynamic Force Estimation

Many engineered structures are subject to dynamic loading during normal operation. For monitoring

and control applications, it is useful to know these forces in real time. Traveling dynamic loads on structures

(e.g., vehicles traveling across a bridge or fluid vortices convecting across an airfoil) are typically difficult

to measure directly, so an estimation approach based on system inversion is desirable. In Chapter 4, we

demonstrate how the assumed or measured velocity of a traveling force can be incorporated into an aug-

mented Kalman filter (AKF) to produce an improved time-domain force estimate.

Chapter 3 demonstrates how harmonic forces can be estimated in the frequency domain by inverting the

FRF matrix. In the case of transient dynamic forcing, where the force cannot be resolved into its frequency

components, time-domain techniques are required. It is still possible to frame linear transient problems as

matrix inversion problems by concatenating the equations of motion at each time step and solving the force

at all time steps simultaneously [54–57]. Framing these problems as matrix inversion problems is attractive

because the formulation is simple to implement and the aforementioned matrix regularization techniques

are still directly applicable, but the resulting problem is computationally burdensome. As the matrix size

scales with the length of the time series, the computational load scales super-linearly. Computational effi-

ciency can be improved somewhat by solving time windows sequentially rather than the entire time series

simultaneously, but the length of the window becomes a parameter that affects both the efficiency and accu-

racy of the estimation [57]. Matrix methods for transient force estimation are also not suitable for real-time

applications, since the process operates on full time series rather than single time steps.

Techniques based on Bayesian inference have become increasingly popular for solving inverse problems

because of their ability to easily incorporate measured information and prior knowledge into a single esti-

mate. Bayesian techniques directly relate the probability distribution of the force estimate to the probability

distributions of the measurements and prior knowledge of the force from existing data. Bayesian tech-

niques for transient load estimation can operate on entire time series [45,58] or single samples [59,60], and
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have been shown to produce high-quality input estimates in a wide range of applications. Regularization is

included in Bayesian inference methods via the prior distribution [61]. The family of classical ℓq regulariza-

tion terms have equivalents using the prior distribution, and the Bayesian regularization term can be simply

interpreted in terms of the prior distribution’s mean and covariance if the prior distribution is Gaussian.

In addition, Bayesian inference is suitable for both linear and non-linear applications, while classical ma-

trix techniques can only be used for linear systems [62]. However, many Bayesian techniques–hierarchical

Bayesian methods in particular–do not have a closed-form solution, and the maximum a posteriori esti-

mate that represents the most likely force estimate given the posterior distribution must be calculated via

computationally intensive techniques such as Markov chain Monte Carlo (MCMC).

The Kalman filter is one of the most widely used techniques based on Bayesian inference. Although the

Kalman filter is most commonly used for full state estimation from sparse measurements, variants such as

the augmented Kalman filter (AKF) augment unknown parameters such as the force to the state so that si-

multaneous input-state calculation can be accomplished using the standard Kalman filter equations [63–66].

The Kalman filter is an optimal filter that finds the state estimate that minimizes the estimate uncertainty at

each timestep, and has a closed-form solution. It is computationally efficient compared to matrix-based and

hierarchical Bayesian methods, and it is suitable for real-time applications. It is also suitable for nonlinear

applications through its extended Kalman filter variant [67,68]. However, the Kalman filter’s closed form is

derived from Bayes’ theorem by assuming the prior and likelihood distributions are Gaussian normal. Be-

cause Gaussian normal prior distributions are analogous to ℓ2 regularization schemes, regularization in the

Kalman filter is limited to ℓ2 regularization with the regularization strength controlled by the model covari-

ance. However, it is possible to incorporate ℓ1 regularization into the Kalman filter using relevance vector

machines [69] or pseudo-measurements [70]. In the latter case, the Kalman filter measurement equations

are used to enforce a ℓ1 regularization constraint without modifying the original Kalman filter equations.

Moving load problems, in which the location and magnitude of one or more moving point forces are

estimated from response measurements, have been studied extensively. Moving load estimation techniques

are most commonly applied in weigh-in-motion applications where the weight of a moving train or road

vehicle is estimated during travel [71–74]. The force estimation technique usually begins by measuring

vehicle speed directly using radar or strain pulses [72], and using the estimated velocity as input to the force

estimation process. In this way, the number of parameters to estimate is reduced by half, and the known
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locations help to more accurately predict the force magnitude. The force magnitude may be estimated in

either the time domain directly [75, 76], or estimated first in the frequency domain and transformed into

the time domain after solving [77, 78]. In either case, the equations of motion yield a matrix equation that

can be inverted using the classical regularization techniques discussed previously [57, 74, 76, 79]. The un-

derlying equations for the traditional methods of solving the moving load identification problem are simple

to implement and yield adequate results for weigh-in-motion systems. However, these methods rely on the

assumption that the force velocity is known and constant, all loads travel at the same speed, and all loads

are point loads. Although force velocity can be measured for other types of traveling forces, such as fluid

pressure fields, the assumption that all forces are point loads traveling at the same speed restricts the utility

of these methods to weigh-in-motion systems.

In the present work, we replace the Lagrangian framework used by traditional weigh-in-motion tech-

niques (in which each point force is treated as an object with its own position and magnitude) with an

Eulerian framework that observes the forces that are present at each degree of freedom (DOF) in the domain

at each timestep. Our method consists of a standard AKF that includes a convecting force model that as-

sumes a constant velocity for all forces. However, because the velocity only serves to place the forces near

the proper locations, the method is robust to small changes in the velocity of each force. We also apply ℓ1

regularization through pseudo-measurements using the method of Zhang [70] to reduce the spatial smearing

that occurs due to the assumption that forces occur at all points in the domain. We believe that our method

will be applicable to a wide range of problems where loads travel with approximately constant velocity

across a domain, including weigh-in motion systems and vortex pressure estimation in flowing fluids.

1.2.4 Outline of Present Work

The present work presents techniques for solving force estimation problems in each of the three types

of temporal loading: static, harmonic, and general dynamic. First, a method for estimating distributed

static loads is presented. The method is based on inverting an influence coefficient matrix that describes

the relationship between the applied load and the response to strain. The influence coefficient matrix for

classical beams with various boundary conditions is derived analytically, and a sensor placement method

based on minimizing the condition number of the influence coefficient matrix is used to encourage solutions

that reject noise in the measurements. The methods used here are applied to analytical equations but could
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easily be adapted for purely numerical methods. The results show that the reconstruction quality can be

greatly improved by using an intelligent sensor design, but the results are insensitive to small changes in the

sensor configuration near the optimal configuration. Hence, adequate results will likely be achieved as long

as sensors are placed intelligently, even if the configuration is suboptimal.

A similar inversion method for harmonic distributed load estimation is presented in the following chap-

ter, but the frequency response matrix is inverted at each frequency of interest rather than inverting an

influence coefficient matrix once. However, the chapter on harmonic load estimation also includes a novel

technique for including prior knowledge about the spatial form of the force distribution at each frequency.

The technique is inspired by the prior distribution term from Bayesian inference techniques but is imple-

mented using a standard Tikhonov regularization scheme. The results show that regularizing the system

inversion using a spatial prior enables a large number of force parameters to be estimated from a relatively

small number of measurements. Regularization converts the ill-posed input estimation problem into a well-

posed analogue. The regularization techniques applied to distributed harmonic loading can also be applied

directly to the distributed static loading problem from the previous chapter.

Finally, a method for estimating the location and magnitude of traveling loads in the time domain is

presented. The method is based on the AKF, which enables online force estimation but disables the regular-

ization technique used for harmonic force estimation. Instead, a convecting force model is used instead of

the standard zero-order hold force model traditionally used in the AKF. The force model embedded in the

AKF is functionally equivalent to a regularization term and allows the user to specify the speed at which the

force moves across the domain. A pseudo-measurement technique is also used to encourage sparse force

estimates, which makes the method suitable for estimation of concentrated forces. The results show that

the convecting force model yields much better results than the standard zero-order hold AKF. The results

presented here are mostly focused on the estimation of concentrated moving loads, but results suggest that

the method is also suitable for distributed moving load estimation if the pseudo-measurement technique is

not used.

The primary contributions of this work are as follows:

1. A novel sensor system design technique for static distributed load estimation is developed.
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2. Linear influence coefficient equations that relate the static distributed load on a structure to its stress

response are derived analytically.

3. A novel framework inspired by Bayesian inference for incorporating prior spatial information about

static and harmonic distributed loads via standard Tikhonov regularization is introduced.

4. Experimental validation of the novel scheme for incorporating spatial priors using acceleration re-

sponse measurements from a structural experimental model subject to a harmonic acoustic pressure

field.

5. A convecting force model is appended to an augmented Kalman filter (AKF) technique to enable

traveling force estimation using the standard Kalman filter.

6. The AKF with traveling force model is enhanced with a pseudo-measurement which, in conjunction

with the convecting force model, enables the estimation of both concentrated and distributed traveling

loads.
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Chapter 2

Static Distributed Force Estimation

This chapter presents a method for estimating static distributed forces on beam-like structures from strain

measurements by inverting an influence coefficient matrix. In an effort to provide designers with guidance,

we also identify optimal sensor configurations for predicting static distributed loads on beams with classical

boundary conditions. The loading distribution on the structure is assumed to be either a piece-wise linearly-

distributed load (LDL) or a uniformly-distributed load (UDL), allowing for continuously-distributed loads

to be estimated using the magnitudes of a small number of control points. Given the simplicity of the

beam structure, the equations of the influence coefficient method are derived analytically, which allows for

the sensor placement to be specified using continuous optimization methods. “Rules of thumb” for sensor

placement are presented based on the optimization results. Results show that the optimal and rule-of-thumb

sensor configurations are more resistant to input noise than naïve configurations, with the rule-of-thumb

configurations yielding similar force predictions relative to the optimal configurations. We expect the rules

of thumb to be useful guidelines for engineers designing tests on beam-like structures such as aircraft wings

or marine propellers where the inverse calculation of distributed loads is of interest. The results in this

chapter are published in Ref. [36].
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2.1 Methods

2.1.1 Load-Strain Relationships

For an Euler-Bernoulli beam of uniform cross-section and uniform Young’s modulus E, the transverse

deflection w is related to the applied transverse loading q by

EI
d4w

dx4
= q(x), (2.1)

where I is the area moment of inertia of the beam’s cross section and x is the distance along the beam.

Under the same assumptions, the relationship between loading and internal moment M is

d2M

dx2
= q(x). (2.2)

Eqs. (2.1) and (2.2) provide a relationship between the applied loading and the structural response. Because

strain sensors are commonly used in static structural measurement, we now derive a relationship between

strain and internal moment. The normal stress due to bending at the outermost fiber of the beam is given by

the well-known relationship

σ(x) =
M(x)h

2I
, (2.3)

where h is the beam’s thickness, and σ is the maximum normal stress in the cross section. Moment may be

related directly to strain via Hooke’s law

M(x)h

2I
= Eε(x), (2.4)

where ε is the strain of the outermost material fiber. Notice that if the applied loading q can be separated into

a product of integrable spatially-varying terms and constant magnitudes, Eq. (2.2) may be twice integrated

and combined with Eq. (2.4) to obtain a linear relationship between strain and applied load.

2.1.2 Distributed Loading Configurations

The relationship between loading and strain given by Eqs. (2.2) and (2.4) is valid for arbitrary static

loading on a uniform beam. We assume this loading may be approximated by either a piecewise UDL or

piecewise LDL function spanning the beam. Both of these approximating functions are defined by a finite

number of control points representing the value of the function at the control point positions. A schematic
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of a beam with applied UDL and LDL loading is shown in Fig. 2.1. In the case of a piecewise UDL or

LDL, Eqs. (2.2) and (2.4) may be rewritten as a linear system of equations. The loading distribution for a

piecewise UDL with k control points is defined as

q(x) = pi, ai−1 < x < ai, (2.5)

where p represents the control point values, and a is the control point locations. By convention, a0 = 0, and

the k control points are located at the right side of each segment as shown in Fig. 2.1a. The control points for

both UDL and LDL configurations divide the beam into segments. Segments are numbered consecutively

from left to right.

a0 a1 a2 a3 a4 a5

p1

p2
p3

p4
p5

(a)

a1 a2 a3 a4 a5

p1

p2 p3

p4
p5

(b)

Figure 2.1. (a) UDL and (b) LDL loading configurations with five control points each.

It can be shown via double integration of Eq. (2.2) that the general equation for the moment in segment

i due to the loading in Eq. (2.5) is

Mi(x) = pi

(
aix− x2 + a2i

2

)
+

l−1∑
j=i+1

pj

(
ajx−

a2j
2

− aj−1x+
a2j−1

2

)

+ pl

(
a2l−1

2
− al−1x

)
+ CV x+ CM , i < l,

Mi(x) = −pix
2

2
+ CV x+ CM , i = l, (2.6)

where l is the number of loading segments, and CV and CM are constants of integration, which are de-

termined by the boundary conditions. For a general UDL, l = k. Eq. (2.6) is applicable for l > 1. The

corresponding moment equation for l = 1 is given in B. The values of CV and CM for the four classical

beam boundary conditions (clamped-free (CF), simply supported-simply supported (SS), clamped-clamped

(CC), and clamped-simply supported (CS)) are shown in A.
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The loading distribution for an LDL with k control points is defined as

q(x) =

(
pi+1 − pi
ai+1 − ai

)
(x− ai) + pi, ai < x < ai+1. (2.7)

The first control point for a piecewise LDL is placed at the beam’s root, and subsequent points are placed

at the right side of each segment as shown in Fig. 2.1b. Note that the loading configuration described in

Eq. (2.7) linearly interpolates between the control point values. The general equation for the moment in

segment i may be written for a beam subject to a piecewise LDL

Mi(x) = pi(µf (i, x)) + pi+1(µc(i+ 1, x)− µf (i, x)) + pl(µl(l, x)− µc(l − 1, x))− pl+1

(
µl(l, x) +

x2

2

)
+

l−1∑
j=i+2

pj(µc(j, x)− µc(j − 1, x)) + CV x+ CM , i < l − 1,

Mi(x) = pi(µf (i, x)) + pi+1(µl(i+ 1, x)− µf (i, x))− pl+1

(
µl(l, x) +

x2

2

)
+ CV x+ CM , i = l − 1,

Mi(x) = pl

(( −1

al+1 − al

)(−x3

6
+ al

x2

2

)
− x2

2

)
+ pl+1

((
1

al+1 − al

)(−x3

6
+ al

x2

2

))
+ CV x+ CM , i = l, (2.8)

where l = k−1 and µf (s, x), µc(s, x), and µl(s, x) correspond to the influence of the first, intermediate, and

last load segments, respectively, and are functions of segment number, s, and the spatial variable, x. Eq. (2.8)

is applicable for l > 2. The corresponding moment equation for l ≤ 2 is given in B. The expressions for

µf (s, x), µc(s, x), and µl(s, x) are

µf (s, x) =

( −1

as+1 − as

)(−x3

6
+ as

x2

2
+ a2s+1

(
x(as+1 − 2as)

2as+1
+

as
2

− as+1

3

))
− x2

2
+ as+1x− a2s+1

2
(2.9)

µc(s, x) =

( −1

as+1 − as

)(
x

(
as+1√

2
− as√

2

)2

− a3s
6

+ as
a2s+1

2
− a3s+1

3

)

− x2

2
+ as+1x− a2s+1

2
(2.10)

µl(s, x) =

( −1

as+1 − as

)(
a2s
2
x− a3s

6

)
− x2

2
(2.11)

The values of CV and CM for the four classical beam boundary conditions are given in A.
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Note that the moment equations for both UDL and LDL are linear in p, which is the vector of control

point values. Hence, Eqs. (2.6) and (2.8) may be rewritten in matrix form

M = [A]p, (2.12)

where [A] is the influence matrix relating the applied load to internal moment, and M is a discrete vector of

internal moments at any number of evaluation points. Combining Eqs. (2.4) and (2.12) yields a relationship

between applied loading and strain

[A]p =
2EI

h
ε. (2.13)

Given discrete strain measurements, the influence matrix [A] may be inverted to calculate a UDL or LDL

approximation of an arbitrary distributed loading.

2.1.3 Condition Number and Error

The solution of Eq. (2.13) by inversion tends to amplify errors in the strain data. The condition number

for inversion, κ, quantifies the sensitivity of the solution p to changes in the input, ε. The condition number

for inversion of an arbitrary square influence matrix [A] of size k is defined as

κ =
λmax

λmin
= ∥[A]∥∥[A]−1∥, (2.14)

where λmax and λmin are the largest and smallest singular values of [A], respectively, and ∥∗∥ denotes the

matrix 2-norm [1]. Analogous definitions of the condition number for non-square matrices also exist, but

these are not needed for the perfectly determined systems studied here. Because the condition number

represents the sensitivity of the system matrix inversion to measurement noise, the condition number will be

used as a proxy for error in the inverse-calculated loads.

Figs. 2.2 and 2.3 show condition number and error plots on a beam using two sensors across the domain

of possible sensor placements. Here, xi is the location of sensor i along the beam, L is the length of

the beam, and x̄i = xi/L. For the error calculations in Fig. 2.3, a known UDL or LDL configuration

with p = [17.1, 8.3]T is applied to a wide-flange I beam (metric designation W 200 × 165 × 41.7) with

E = 200 GPa, I = 4.09× 10−5 m4, L = 3.5 m and h = 0.205 m. In the UDL case, a = [6.15, 12.3]T , and

in the LDL case, a = [0, 12.3]T . The strain is calculated using Eq. (2.13). A perturbation of 0.01% of the

measured strain (-0.01% for the first strain, 0.01% for the second) is added to the strain values. A different
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perturbation percentage must be used for each sensor to calculate a meaningful error map since applying the

same percent perturbation to each sensor results in output error equal to the applied perturbation percentage.

Eq. (2.13) is then used to calculate the load configuration from the corrupted strain data. Fig. 2.3 presents the

relative error between the first element of the true loading p1 and the first element of the predicted loading.

From the two figures, it is clear that sensor configurations with large associated errors also have influence

matrices with large condition numbers. However, sensor configurations with large condition numbers do

not necessarily yield large errors. These low-dimensional results show that minimizing condition number

should also yield near-minimum error.
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Figure 2.2. Condition number of the 2×2 influence matrix at all combinations of measurement
locations x1 and x2 for UDL (top) and LDL (bottom) assumed loading configurations and (a) CF,
(b) SS, (c) CC, and (d) CS boundary conditions.

In the present work, the optimal sensor configuration for a given number of sensors is found by mini-

mizing the condition number of the influence matrix. Formally,

ξ = argmin
ξ

κ s.t. 0 ≤ xi ≤ L for 1 ≤ i ≤ m (2.15)

where ξ is a sensor configuration vector containing the locations xi of m sensors along the beam. Note that

κ exhibits symmetry since, for example, a sensor configuration ξ = [x1, x2]
T is equivalent to configuration

ξ = [x2, x1]
T . In principle, this symmetry could be exploited to introduce m more constraints to the op-

timization problem of the form xi < xi+1. However, given our study’s relatively small parameter spaces,
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Figure 2.3. Relative error between the first magnitude of a known loading configuration and a pre-
diction of the same loading configuration using synthesized strain data with a 0.01% perturbation
and a 2×2 influence matrix at all combinations of measurement locations x1 and x2 for UDL (top)
and LDL (bottom) assumed loading configurations and (a) CF, (b) SS, (c) CC, and (d) CS boundary
conditions.

the unconstrained problem may be solved efficiently without constraining the domain. As seen in Fig. 2.2c

and 2.2d, the κ parameter space typically has many local minima, even with only two sensors. Further, the

number of local minima is expected to increase considerably as the number of sensors increases. Classical

gradient-based algorithms (e.g., sequential quadratic programming, interior-point method) often fail to find

the global minimum when many local minima are present [80]. To circumvent this issue, a particle swarm

optimization (PSO) algorithm is used here to search the parameter space more thoroughly, making the dis-

covery of the global optimum far more likely. PSO is a stochastic optimization method that has been widely

applied to optimization problems across several disciplines [81]. The algorithm is initialized by randomly

scattering “particles” across the parameter space. Each particle knows the value of the optimization hyper-

surface at its current location, the position at which it found its personal best solution, and the best solution

found by a set of its nearest neighboring particles. The particles update their positions at each iteration based

on these three pieces of information. This way, the particles can search for minima across a wide parameter

space. For each sensor configuration, a swarm size of 20m is selected. Since the particle swarm algorithm is

not guaranteed to find a global minimum, the algorithm is executed four times during optimization, and the
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configuration that yields the lowest κ is taken as the optimal configuration. It should be noted that, while the

PSO is not guaranteed to find the global minimum in a single execution, it is much more likely to find the

global minimum than a single execution of a gradient-based method on a domain containing several local

minima. A gradient-based method could be applied repeatedly with different initial points to find the global

minimum, but the chances of finding the global minimum would be no better than using the PSO.

For each loading type (UDL or LDL) and boundary condition (CF, SS, CC, or CS), a “rule-of-thumb” is

also developed by inspection of the optimal sensor configurations. These rules-of-thumb are equations that

seek to generalize the optimal configurations for an arbitrary number of sensors. In practice, we expect the

rules-of-thumb to be a set of guidelines that approximate the optimal configurations, and allow practitioners

to intelligently design sensor systems on beam-like structures in the absence of a detailed numerical model.

The success of each rule-of-thumb is checked by defining a condition number ratio K as the ratio of the con-

dition number of the influence matrix associated with the locally optimal sensor configuration nearest the

rule-of-thumb configuration, κo (calculated using a sequential quadratic programming optimization algo-

rithm with the rule-of-thumb configuration as the initial condition) to the condition number of the influence

matrix associated with the rule-of-thumb, κr

K = κo/κr. (2.16)

A value of K near one indicates the rule of thumb should yield similar error to the true optimal configuration.

In the present work, we limit ourselves to perfectly determined systems (k = m), loading configurations

with uniformly-spaced control points, and the classical boundary conditions described above (CF, SS, CC,

CS). While rules of thumb could in principle be developed for arbitrary combinations of k and m and loading

with control points at arbitrary locations, we do not investigate these cases due to the increase in the size

of the parameter space and the enormous effort required to develop rules-of-thumb. We do not consider

other boundary condition configurations partly due to the larger associated parameter space, but mostly

because every new configuration requires a new set of analytical equations for the influence coefficient

matrix. These configurations could be studied efficiently using numerical techniques, but the optimization

strategies presented here require analytical expressions.

As a note on sensor configuration design, κ for an arbitrary matrix tends to increase with the size of the

matrix. This is implied by Eq. (2.14) since the ratio of the largest singular value of a matrix to its smallest
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will tend to increase as more singular values (corresponding to a higher-rank matrix) are introduced. Hence,

for perfectly determined cases where k = m, results that are more resistant to sensor noise may be achieved

by reducing m. Alternatively, a rank-reduction technique could be used to reduce error for cases where

a large k is required [19]. For the more general case where k ≤ m, better resistance to noise may be

achieved by increasing m while keeping k as low as possible. The resulting over-determined system may

be solved via a Moore-Penrose pseudo inverse to obtain a least-squares solution. In the present work, we

only investigate determined systems, and we do not use rank-reduction. By formally investigating strain

sensor placement without using any techniques to improve the results further, we can understand the extent

to which the accuracy of inverse-calculated loads may be improved by intelligent sensor placement alone.

2.2 Results

2.2.1 Optimization Results

Figs. 2.4-2.11 show the optimal sensor configurations for every combination of load distribution type

(UDL, LDL) and boundary condition (CF, SS, CC, CS), with 2 ≤ m ≤ 8. Also shown are the corresponding

rule-of-thumb sensor configurations described in Tables 2.1 and 2.2 for 2 ≤ m ≤ 8.

The optimal sensor configurations for CF beams are similar for UDL and LDL loading. In both cases,

a sensor is placed at the beam’s root, another is placed near the middle of the first segment, and subsequent

sensors are placed in each of the following loading segments. For UDL loading, no sensors are placed in the

final segment, and intermediate sensors are placed between 55% and 75% of their corresponding segment’s

span. The lack of a sensor in the tip segment is unsurprising since Eqs. (2.6) and (A.3) show that only the

load magnitude of the final segment affects the strain in the final segment. Therefore, more information is

gained by placing sensors nearer the root. If placing a sensor near the root provides that sensor with the

most possible information about all the forces, it may be natural to wonder why all sensors are not placed

in the first segment. Suppose all sensors are placed near each other. In that case, the strain response for

all sensors will be very similar, and the row vectors of the influence matrix will point in approximately

the same direction, implying linear dependence, a nearly singular matrix, and a large condition number.

Hence, optimal sensor placements will typically separate the sensors while simultaneously providing as

much unique information as possible.
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For a CF beam under LDL loading, a sensor is placed in the final segment, but intermediate sensors

are placed at 20% of their segment’s span. Eqs. (2.8) and (A.7) show that only the two load magnitudes

associated with the last LDL segment influence the strain in the last segment. Furthermore, when a sensor

is placed near the root of segment i, the measured strain depends more on pi+1 than pi. Hence, the optimal

configurations shown in Fig. 2.8 allow each sensor to be more sensitive to the control point magnitude at the

tip of its segment. When the sensors are ordered from root to tip, the influence matrix has a nearly upper-

triangular structure for both UDL and LDL loading with CF boundary conditions, except that an additional

non-zero diagonal exists below the main diagonal. The rules of thumb developed for the CF boundary

condition cases are visually similar to the true optimal configurations.

The optimal configurations for both UDL and LDL loading with SS boundary conditions—Figs. 2.5

and 2.9—are symmetric about the center of the beam. For UDL loading, the sensors are placed near the

midpoint of each segment. Sensor placement for LDL loading is slightly more complicated, but sensors

tend to be placed near their corresponding control points, with sensors near the beam’s midpoint placed

closer to their control points than sensors near the root or the tip. Due to this symmetry, when the sensors

are ordered from root to tip, the influence matrices for UDL and LDL loading take on a form where

Ai,j = Am+1−i,m+1−j , (2.17)

i.e., column (or row) j of A is the reverse of column (or row) m+ 1− j. The rules of thumb developed for

the SS boundary condition cases are visually similar to the true optimal configurations.

Given the symmetry of the SS boundary condition cases, the asymmetry in the optimal configurations

for CC boundary conditions is unexpected. Symmetric optimal configurations exist for some m (see, e.g.,

Fig. 2.6, m = 2, 4, 5, and 8; Fig. 2.10, m = 4, 5, 7), but the cases for which symmetric configurations exist

do not seem to follow any particular pattern. We could not develop robust rules of thumb that hold for large

m with CC boundary conditions. However, the presented rules of thumb hold reasonably well for small

numbers of sensors (m < 10). The rules of thumb are developed by assuming symmetry in all cases. This

assumption is justified by recognizing that even in cases where symmetry is not present, the asymmetry is

due mainly to the movement of a small subset of the sensors. No special form of the influence matrix exists

for optimal sensor configurations with CC boundary conditions.
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The optimal configurations for CS boundary conditions do not follow an intuitive pattern. For UDL

loading, the optimal configurations tend to resemble somewhat either an optimal CF (one sensor at the

clamped end, other sensors distributed among the remaining segments, as seen in the m=8 case) or SS

configuration (sensors placed near the midpoint of each segment, as seen in the m=6 case). However, over

several runs of the particle swarm optimization algorithm for a given m, two local optima resembling an

optimal SS configuration and an optimal CF configuration emerge. The corresponding condition numbers of

these configurations are consistently within approximately 10% of each other, and the configuration with the

smaller condition number varies depending on m. Hence, there are two configurations for a given number

of sensors that should yield similar results. We suspect the existence of multiple similar optima can be

explained by the similarity of CS boundary conditions to both CF and SS boundary conditions. To develop

the rule of thumb, we arbitrarily decide that the configuration resembling the optimal CF configuration

should be the target. Consequently, the rule of thumb does not resemble the globally optimal solution for

some configurations.

A more apparent trend emerges for the CS boundary condition with LDL loading. For m ≥ 6, sensors

form two groups near the root and the tip, with at least one segment gap between them. The sensor group

near the clamped side somewhat resembles the optimal configurations for CF boundary conditions, where

two sensors are placed at and near the root, and the remaining sensors are placed uniformly across the span.

The group near the simply-supported end resembles the optimal configurations for SS boundary conditions,

where the sensors are placed uniformly along the beam with an offset on either end. Upon adding a sensor,

the optimal configurations show the existing sensors compressing toward the root and tip, and the additional

sensor added to one of the groups. Occasionally, one of the existing sensors will switch from one group

to the other. This trend persists for m > 8. The order in which sensors are added to each group and

the configurations where sensors move from one side to the other are unclear, so we assume new sensors

are added to each group alternately. No special form of the influence matrix exists for optimal sensor

configurations with CS boundary conditions for either UDL or LDL loading.
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Figure 2.4. Optimal (red dots) and rule-of-thumb (black circles) sensor configurations for a UDL
loading configuration and CF boundary conditions at various m. The vertical lines indicate the
loading segments.
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Figure 2.5. Optimal (red dots) and rule-of-thumb (black circles) sensor configurations for a UDL
loading configuration and SS boundary conditions at various m. The vertical lines indicate the
loading segments.

Fig. 2.12 shows the evolution of K with increasing numbers of sensors for every combination of load

distribution function type and boundary condition. Also shown is the evolution of the ratio between κo

and the condition number of the influence matrix associated with a naïve configuration ξn, κn. Two naïve

configurations are constructed, each meant to represent a configuration developed based on the intuition of

an intelligent designer. The “cantilevered-like” naïve configuration is constructed by dividing the beam into

m equal segments and placing a sensor at the root of each segment. The cantilevered-like configuration is

shown in the bottom plot of Fig. 2.14. The “clamped-like” naïve configuration is constructed by first placing

one sensor near either end of the beam (0.01% and 99.99% of span). The beam is then divided into m − 2
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Table 2.2. Rules of thumb for sensor placement for an assumed LDL loading with constant spacing
in a and k = m. In the context of this table, i is the subscript of the corresponding sensor placement
xi, and “to” means “up to and including”. For the SS and CC cases, the sensor configurations are
symmetric about L/2, and only half the sensors from 0 to L/2 (inclusive) are reported.

BC m Eq (%) Segment #

CF Any

 x1

x2

x3 to xm

 =

 0

40

20


 1

1

i− 1 to m− 1


SS

2 ξ =
[
0.1 99.9

]T [
1 1

]T
3 ξ =

[
23 0 77

]T [
1 2 2

]T
>3

[
x1 to x⌊m−1

2
⌋

]
=
[
30 + (i− 1) 2−30

⌊(m−1)/2⌋−1

]
xm/2 = 90, even m
x⌊m/2⌋+1 = 0, odd m

1 to ⌊m−1
2

⌋
m
2
− 1, even m

⌊m
2
+ 1⌋, odd m

CC

2 ξ =
[
24 76

]T [
1 1

]T
3 ξ =

[
44 51 62

]T [
1 2 2

]T
4 ξ =

[
55 75 25 46

]T [
1 1 3 3

]T
5 ξ =

[
62 98 0 2 38

]T [
1 1 3 4 4

]T

>5

 x1

x2

x3 to x⌊m−1
2

⌋

 =

 0

40

15


xm/2 = 15, even m
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 1

1

i− 1


m/2, even m

(m− 1)/2 + 1, odd m

CS

2 ξ =
[
26 97

]T [
1 1

]T
3 ξ =

[
48 56 94

]T [
1 1 2

]T
4 ξ =

[
48 57 1 82
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1 1 3 3

]T
5 ξ =
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1 2 2 3 4

]T

>5


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0

40 + (i− 2) 10−40
⌊m/2⌋−2

95

40 + (i− (⌈m/2⌉+ 1)) 10−40
m−⌈m/2⌉−2

90

70





1

i− 1

⌈m/2⌉ − 2

i

m− 2

m− 1



28



m=2

m=3

m=4

m=5

m=6

m=7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x̄

m=8

Figure 2.6. Optimal (red dots) and rule-of-thumb (black circles) sensor configurations for a UDL
loading configuration and CC boundary conditions at various m. The vertical lines indicate the
loading segments.

patches, and the remaining sensors are placed at the center of each patch. The clamped-like configuration

is shown in the bottom plot of Fig. 2.17. The cantilevered-like naïve configuration is used for the CF and

CS boundary conditions, while the clamped-like naïve configuration is used for the SS and CC boundary

conditions.

In the cantilevered configurations, K is close to one for all m, suggesting that the rule of thumb is very

close to the true optimal configuration. Similarly, K for the simply supported configurations is above 0.9 for

most m. For the clamped-clamped and clamped-simple configurations, the condition ratio begins decreasing

for configurations with greater than approximately ten sensors, suggesting the rules of thumb do not approx-

imate the true optimal configurations very well at high m. However, K > 0.7 for all m < 10, indicating

a reasonably good match for small sensor configurations. Note for the UDL CS configuration that, since

there typically exist two local minima with similar condition numbers and the rule-of-thumb configuration

does not resemble the global minimizer for some m, κo is calculated using a particle swarm algorithm to

ensure the global minimum is used instead of the local minimum nearest the rule-of-thumb configuration.

Results are similar for the UDL CS case using either the particle swarm or sequential quadratic programming

method.

Since K > 0.3 at all m < 30 for every loading/boundary condition combination, ko is on the same

order of magnitude as kr. By comparing Figs. 2.2 and 2.3, we can see that changes to condition number
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Figure 2.7. Optimal (red dots) and rule-of-thumb (black circles) sensor configurations for a UDL
loading configuration and CS boundary conditions at various m. The vertical lines indicate the
loading segments.

within an order of magnitude typically result in only small changes in estimation error. It is therefore likely

that predictions using either the rule-of-thumb or optimal sensor configuration would yield similar results

even at relatively low K. In contrast, the naïve condition number ratio Kn = κo/κn quickly falls below 0.1

with increasing m for all configurations, indicating an order-of-magnitude difference or greater in condition

numbers between the naïve and locally-optimal configurations, and a corresponding significant increase in

sensitivity to noise.

2.2.2 Case Studies

We present two case studies to demonstrate how an optimized sensor placement leads to more accurate

inverse calculations of distributed loading. The first case study inverse-calculates the static pressure loading

on an aircraft wing, while the second seeks to determine the applied piecewise UDL loading on a clamped-

clamped beam. Before describing the case studies in detail, we first consider the use of discretized UDL or

LDL representations of distributed loads.

If an arbitrary truth function is approximated in a least-squares sense using a UDL or LDL function,

the accuracy will depend on the number of loading segments, l. The mean integrated relative error of an
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Figure 2.8. Optimal (red dots) and rule-of-thumb (black circles) sensor configurations for an LDL
loading configuration and CF boundary conditions at various m. The vertical lines indicate the
loading segments.

approximating function fa(x) compared to a truth function ft(x) is defined as

efa =

∫ L
0 |ft(x)− fa(x)|dx∫ L

0 |ft(x)|dx
, (2.18)

where the subscript on e is the approximating function. To investigate the relationship between e and l, a

random truth function is generated by interpolating five points between 0 and L via cubic spline interpola-

tion. Three of the five points are placed randomly between 0 and L, and the remaining points are placed

at the beam’s ends. Each point is assigned a random value between 2 and 10. A UDL function with l

segments is fit to the resulting truth function by setting the value of each segment to the mean value of the

truth function across that segment. An LDL function with l segments is fit in a least-squares sense to the

resulting truth function. The script used to generate the best-case LDL fit is available in Ref. [82]. For each

l, ten truth functions are generated, and the average error between the truth functions and the UDL and LDL

approximations is presented in Fig. 2.13. The figure shows that a best-fit LDL function converges at lower l

than a best-fit UDL function. The LDL error curve has a slight advantage because an LDL with l segments

has k = l + 1 control points, but shifting the LDL error curve a unit to the right to convert the x axis to k

yields similar results to those shown.

Fig. 2.13 suggests that an LDL is preferred when the loading is continuous. However, the second case

study illustrates that UDL is better able to inverse-calculate a discontinuous truth function.
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Figure 2.9. Optimal (red dots) and rule-of-thumb (black circles) sensor configurations for an LDL
loading configuration and SS boundary conditions at various m. The vertical lines indicate the
loading segments.

2.2.2.1 Aircraft Wing

This case study is based on the aircraft pressure loading reported in Ref. [83]. Consider a turbo-jet-

propelled fighter plane with a wing length L = 5.5 m. The aluminum wing (E = 70 GPa) is assumed to

have CF boundary conditions and to be uniform along its length with a thickness of 0.18 m and a moment

of inertia of 8 × 10−4 m4. At a Mach number of 0.8, the shape of the static load distribution as a function

of distance along the wing is shown in Ref. [83] and reproduced as the truth loading in Fig. 2.15. This

load distribution is obtained by integrating the measured pressure distribution along the wing’s chord. An

LDL approximation with 100 uniformly-spaced control points is used to synthesize the corresponding strain

at any locations along the wing using Eq. (2.13). The high-resolution LDL loading used to calculate the

forward strains is an adequate approximation of the desired continuous loading.

The synthesized strain data are now used to reproduce an LDL approximation of the original loading

with k = 8. Three sensor configurations of eight sensors each are used to predict the loading. These

configurations include the rule-of-thumb configuration for an LDL with CF boundary conditions described

in Table 2.2 (ξr), the locally optimal sensor configuration nearest the rule-of-thumb configuration (ξo), and

a cantilevered-like naïve configuration (ξn). The three sensor configurations are shown in Fig. 2.14. The

sensor placements ξr and ξo are similar, while ξn is only similar to the other configurations at the root
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Figure 2.10. Optimal (red dots) and rule-of-thumb (black circles) sensor configurations for an
LDL loading configuration and CC boundary conditions at various m. The vertical lines indicate
the loading segments.

and high spanwise locations. The condition numbers of the influence matrices associated with the three

configurations are κr = 432, κo = 431, and κn = 2978.

xr
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x̄

xn

Figure 2.14. Rule-of-thumb, refined, and naïve sensor configurations for a cantilevered beam with
assumed LDL loading and m = 8.

For each sensor configuration, the load distribution is reconstructed from the synthesized strain data

using Eq. 2.13. A typical load reconstruction for each sensor configuration is shown in Fig. 2.15, where qt is

the true load profile, and qmax is the largest value of qt. Load distributions qr, qo, and qn are predicted using

sensor configurations ξr, ξo, and ξn, respectively. The strain data used to generate the reconstruction are

corrupted with random noise with a standard deviation of 0.1% of each strain measurement from the rule-of-

thumb configuration. The same noise vector is applied to all sensor configurations for consistency. For the

load reconstruction in Fig. 2.15, exr = 3.51%, exo = 3.57%, and exn = 14.94%. The results using ξr and

ξo are nearly identical, while the results using ξn have half an order of magnitude more error. Note that exo
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Figure 2.11. Optimal (red dots) and rule-of-thumb (black circles) sensor configurations for an
LDL loading configuration and CS boundary conditions at various m. The vertical lines indicate
the loading segments.

is slightly higher than exr , despite the influence matrix associated with ξo having a slightly lower condition

number. From our trials, this result is not atypical. The difference between the two errors depends on the

specific noise profile applied to the strain data. This shows that error in the reconstruction is insensitive to

changes in condition number as long as the condition number is near a minimum. Fig 2.16 shows how error

evolves with the standard deviation of the applied noise (referred to as the “noise level”). Noise with a known

standard deviation (presented as a percentage of each strain measurement) is applied to each set of strain

measurements, the load profiles are reconstructed, and the error between each reconstruction and the truth

loading is calculated. The presented error is the average error over 1000 applied noise profiles. The mean

integrated relative error increases linearly with the amount of noise on the strain data regardless of sensor

configuration. However, the slope corresponding to the ξr and ξo configurations is significantly less than

that of the naïve configuration. Hence, the errors in the predicted loading using the rule-of-thumb or optimal

sensor configurations are less sensitive to noise in the inputs than predictions using a naïve configuration.

2.2.2.2 Piecewise UDL Loading

Consider a beam of length L = 3.5 m. The beam is constructed of steel (E = 200 GPa) with a square

cross section of side length h = 0.3 m and CC boundary conditions. A piecewise UDL with eight uniformly-

spaced control points and p = [10, 5, 0, 0, 3,−3, 7,−8] is applied to the beam. In this case, the strain at the
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Figure 2.12. Condition number ratio (K, black, solid) and naïve condition number ratio (Kn, red,
dashed) using different numbers of sensors for UDL (top) and LDL (bottom) assumed loading
configurations and (a) CF, (b) SS, (c) CC, and (d) CS boundary conditions.

sensor locations may be calculated directly using the analytical influence coefficient matrix for the applied

UDL.

The synthesized strain data are used to inverse-calculate the applied UDL. Like in the preceding case

study, three sensor configurations of eight sensors each are used to predict the loading. The configurations

include the rule-of-thumb configuration for a UDL with CC boundary conditions described in Table 2.1

(ξr), the locally optimal sensor configuration nearest the rule-of-thumb configuration (ξo), and a clamped-

like naïve configuration. The three configurations are shown in Fig. 2.17. In this case, ξr and ξo are

similar, but not as similar as in the wing case study. The naïve configuration, ξn, is similar to the other two

configurations except for the two sensors at the endpoints. The condition numbers of the influence matrices

associated with the three configurations are κr = 40.36, κo = 34.58, and κn = 680.44.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x̄

xn

Figure 2.17. Rule-of-thumb, refined, and naïve sensor configurations for a clamped-clamped beam
with assumed UDL loading and m = 8.
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Figure 2.13. Integrated relative error between an arbitrary truth loading and the best-fit UDL or
LDL for different numbers of segments l. Each point represents the average error among 10 truth
configurations.

The load distribution is inverse-calculated for each sensor configuration in the same way as the previous

case study. A typical inverse-calculation for each sensor configuration is shown in Fig. 2.18. The strain

data used to generate the reconstruction are corrupted with random noise with a standard deviation of 2%

(relative to the strains measured in the rule-of-thumb sensor configuration). The same noise vector is applied

to all sensor configurations for consistency. For the load reconstruction in Fig. 2.18, exr = 20.41%, exo =

20.33%, and exn = 300.24%. In this case, since the approximating UDL function can exactly determine

the truth loading, the prediction error is purely due to measurement error. Applying no noise to the input

data yields a perfect reconstruction for all three sensor configurations. The error associated with the naïve

configuration is much higher than the other two configurations, and the predicted distribution does not

resemble the truth distribution. The prediction results associated with ξr and ξo are similar to each other as

expected, and approximate the shape of the truth function well.
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Figure 2.15. Normalized truth and approximate loading on a cantilevered aircraft wing. The truth
loading qt is reproduced from [83]. Approximate loads are generated using an LDL with eight
control points and 0.1% added noise.
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Figure 2.18. Normalized truth and approximate loading on a clamped-clamped beam. Approxi-
mate loads are generated using a UDL with 8 control points and 2% added noise.

Fig. 2.19 shows how error evolves with standard deviation of the applied noise. Noise with a known

standard deviation (presented as a percentage of each strain measurement) is applied to each set of strain

measurements, the load profiles are reconstructed, and the error between each reconstruction and the truth

37



0 1 2 3 4 5
0

100

200

300

400

Noise Level (%)

e(
%
)

eqr
eqo
eqn

Figure 2.16. Mean integrated relative error versus strain gauge noise level for an assumed LDL
load configuration with cantilevered (CF) boundary conditions using eight sensors. Displayed error
is the average over 1000 random noise profiles.

loading is calculated. The presented error is the average error over 1000 applied noise profiles. At a noise

level of 0%, the error for all three configurations is 0% as expected. Similar to the LDL case study in Sec-

tion 2.2.2.1, the mean integrated relative error increases linearly with the amount of noise on the strain data.

The slope corresponding to the ξr and ξo configurations is significantly less than that of the naïve configu-

ration. Hence, the errors in the predicted loading using the rule-of-thumb or optimal sensor configurations

are much less sensitive to noise in the inputs than predictions using a naïve configuration. Results using the

naïve configuration yield output errors over 100% for input noise levels over 1.8%, while the rule-of-thumb

and optimal configurations yield less than 100% output noise for noise levels up to 12.2%. Further, the re-

sults from the rule-of-thumb and optimal configurations are nearly identical for this case where K = 0.86,

which shows that results are insensitive to changes in condition number near condition number minima.

An optimal or near-optimal sensor configuration can increase the robustness of the solution to input noise

by nearly an order of magnitude when using eight sensors. The trends shown in Fig. 2.12 suggest that the

advantage would increase with increasing numbers of sensors.
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Figure 2.19. Mean integrated relative error versus strain gauge noise level for an assumed UDL
load configuration with CC boundary conditions using 8 sensors. Displayed error is the average
over 1000 random noise profiles.

2.3 Conclusions

An influence coefficient method capable of predicting general static distributed loading on beam-like

structures is presented here. The method approximates arbitrary distributed loading as LDL or UDL func-

tions, defined using control points with set locations and variable magnitudes. The simple form of the LDL

and UDL functions allows the influence coefficient matrix to be derived analytically. The spatial resolu-

tion of the resulting force estimate is limited by the number of force control points distributed across the

beam, which is itself limited by the number of structural response sensors. The accuracy of the force esti-

mate is highly dependent on both the noise level of the strain data and the sensor placement. The present

work includes a thorough study of optimal sensor placements for various numbers of sensors and structural

boundary conditions. Patterns seen across the optimal sensor configurations are further used to construct

rules of thumb for sensor placement that can guide sensor system design on beam-like structures so that rea-

sonable approximations of the applied load may be obtained without directly optimizing the sensor system.

Results from the presented case studies show that our rules of thumb can be as robust in practice as optimal

configurations. Without guidance from the optimization studies in the present work, engineers would need
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to rely on their intuition when designing sensor configurations, which could easily lead to ill-conditioned

systems and erroneous results.

The present work is the first study to construct the influence matrix using analytical relationships be-

tween the applied load and internal moment. Hence, we are able to place sensors at arbitrary locations,

which allows for the use of continuous optimization methods. Using these optimization techniques on a

continuous domain, we show that the condition number of the influence matrix is a good surrogate for error,

but that an optimal condition number does not necessarily correspond exactly to an optimal error. Sensor

configurations corresponding to near-optimal condition numbers may perform as well or better than the

configuration with the optimal condition number.

Finally, a few limitations of the present technique are noted along with their possible workarounds.

First, as the number of sensors increases, the matrix condition number tends to increase. A large number

of control points is necessary to resolve forces with short-wavelength spatial variation, which may lead

to a large condition number. The effects of ill-conditioning may be reduced for large matrices by using

regularization or a rank-reduction algorithm similar to Ref. [19]. Second, the analytical equations for the

influence matrix presented here are only appropriate for beam-like structures with boundary conditions

at the endpoints. Deriving similar equations for more complicated structures would likely be infeasible.

Instead, the influence matrix for an assumed UDL or LDL distribution could be calculated numerically

using commercial finite element analysis packages. The values in each column of the influence matrix can

be calculated as either internal moment or strain response values at all sensor locations due to a unit value

of the corresponding control point. Previous studies have used this method [13,14,19]. While the analytical

equations and associated results presented here are not a replacement for numerical methods, they may serve

as guidelines for practitioners in the absence of detailed models.
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Chapter 3

Harmonic Distributed Force Estimation

Systems such as rocket engines, submarine propellers, and airplane wings are routinely subject to dis-

tributed dynamic loads, but these loads are often difficult to measure directly. Given a structural dynamic

model and a set of steady-state response measurements, it is theoretically simple to estimate the harmonic

input force(s) that produced the response by inverting the FRF matrix. However, in practice, these in-

verse force determination problems are prone to numerical errors. Classical inversion techniques can be

augmented using Tikhonov regularization, which discourages overfitting and enforces a unique solution

by penalizing solutions with large magnitudes or large gradients. However, the prior information that can

be included in a Tikhonov regularization scheme is limited. Methods based on Bayesian inference have

recently emerged as powerful input estimation schemes incorporating prior knowledge of the form of the

force, thereby reducing the number of sensors required for an adequate solution. In this chapter, we pro-

pose a formulation for generalized Tikhonov regularization that enables a force prior to be embedded in the

regularization term. Numerical results show that this novel Tikhonov regularization method yields high-

quality distributed acoustic pressure estimates using synthesized acceleration measurements from a steel

plate. The inverse load identification technique is also used with experimental measurements and shows

strong agreement with the the experimentally measured pressure field.

3.1 Methods

The force estimation method described here inverts the system FRF by using a novel Tikhnov regu-

larization scheme to incorporate prior knowledge of the spatial form of the force. First, we introduce the

system equations and define the FRF matrix. Next, we introduce an interpolation-based method for reducing
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the ill-posedness of the problem by reducing the number of force parameters. Results show that this inter-

polation method is unnecessary when regularization is used. We then derive the novel generalized Tikhonov

regularization method that allows a spatial prior to be incorporated into the inversion process. Finally, we

introduce the effective independence method for sensor system design along with several error metrics and

other quantities that are used in the presentation of the results.

3.1.1 Physical Equations

The equations of motion for a damped linear structure in modal coordinates are

η̈ + 2ΛΩη̇ +Ω2η = ΦTu, (3.1)

where η is a vector of modal displacements, Φ is the mass-normalized matrix of normal modes, u is the

applied force in physical coordinates, Λ is a diagonal matrix where the jth diagonal entry is the jth modal

damping ratio ζj , and Ω is a diagonal matrix where the jth diagonal entry is the jth structural natural fre-

quency ωj . The relationship between modal displacements η and physical displacements y is

y = Φη. (3.2)

Assuming harmonic forcing of the form

u = Re
(
Ueiωt

)
, (3.3)

where U is the complex-valued forcing amplitude, ω is the forcing frequency, t is time, and i ≡
√
−1. At

steady-state, the system response will take the same temporal form as the forcing, so Eqs. (3.1)—(3.3) can

be used to yield a relationship between the complex-valued, steady-state acceleration response amplitude,

Y , and forcing amplitude, U ,

Y (ω) = H(ω)U(ω) =
N∑
j=1

−ω2ΦjΦ
T
j

ω2
j + 2iζjωjω − ω2

U(ω), (3.4)

where N is the number of included modes. The ratio Y (ω)/U(ω) ≡ H(ω) is known as the acceleration

frequency response function (FRF). Other FRF formulations can be derived for other types of structural

response measurements, such as displacement, strain, or velocity. The FRF matrix can be obtained from a
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structural dynamic model (e.g., a finite element model) or can be populated with post-processed experimen-

tal data.

In the inverse force determination problem, response measurements will only be available at certain

degrees of freedom (DOFs). In this case, the relationship between the response and forcing amplitudes can

be expressed as

Y (ξ, ω) = H(ξ, ω)U(ω), (3.5)

where ξ is a sensor configuration that removes all rows from H except those associated with measured

DOFs. When the there are more forces to estimate than there are response measurements, the problem is

an under-determined (i.e., ill-posed). In practice, systems subject to distributed loading are almost certain

to be ill-posed because the number of discrete force estimates required to spatially resolve the loading will

exceed the number of response measurements that can be practically obtained. The following sections

propose a technique that incorporates additional information into the system inversion, thereby enabling

unique solutions to ill-posed inverse problems of this form.

3.1.2 Force Basis

The dimension of U(ω) in Eq. (3.5) may be reduced by representing the continuous, distributed force

as a linear interpolation between sparse control points. Suppose the distributed load can be approximated as

a linear combination of interpolating functions and frequency-varying amplitudes

U(ω) = BÛ(ω), (3.6)

where B is an interpolation matrix and Û(ω) is a vector of amplitudes. Control points with amplitude Û(ω)

are placed around the edge and interior of the area where the load is applied, and B maps the contribution

from each control point onto the force at each DOF. Substituting Eq. (3.6) into Eq. (3.5) yields a relationship

between the control point magnitudes and system response

Y (ξ, ω) = Ĥ(ξ, ω)Û(ω). (3.7)

where Ĥ = HB can now be treated as a single matrix that can be inverted to estimate the force. The number

of unknowns is now equal to the number of control points rather than the number of DOFs. Including an

interpolation scheme as part of the FRF is not equivalent to estimating a set of sparse point loads and inter-
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polating afterward. Including the interpolation into the FRF assumes a load at every DOF that is included

in the calculation of the forward problem but parameterizes the load so that there are fewer unknowns to

estimate.

The matrix B can be calculated numerically using Eq. (3.6) by setting one Ûj = 1 and all others equal

to zero. The jth column of B can be calculated by linearly interpolating the control points onto all structural

DOFs. In the case of bilinear interpolation among uniformly-spaced control points on a rectangular grid,

the force amplitude at any degree of freedom may be written in terms of the magnitudes of the surrounding

control points

Uj =

(
1− xj − x0

x1 − x0

)(
1− yj − y0

y1 − y0

)
Û00 +

(
1− xj − x0

x1 − x0

)(
yj − y0
y1 − y0

)
Û01

+

(
xj − x0
x1 − x0

)(
1− yj − y0

y1 − y0

)
Û10 +

(
xj − x0
x1 − x0

)(
yj − y0
y1 − y0

)
Û11,

(3.8)

where xj and yj are the coordinates of the jth degree of freedom, Û is a control point at coordinates (x, y)

and the subscripts represent the control point immediately below (0) or above (1) the degree of freedom of

interest in the x and y directions respectively. For example, Û01 is the control point immediately below DOF

j in the x direction, and immediately above DOF j in the y direction. If B is the identity matrix, control

points are placed at every DOF, and the problem is equivalent to Eq. (3.5).

3.1.2.1 Derivation of the regularization term

The proposed regularization technique, though fundamentally deterministic, is derived using Bayesian

inverse methods. Frequency dependence is dropped from the notation in the following derivation for brevity.

Bayes’ rule can be expressed as

p(Û |Y ) ∝ p(Y |Û)p(Û), (3.9)

where p(Û |Y ) is the posterior distribution that represents the probability of a force configuration given

the measured system response, p(Y |Û) is the likelihood distribution that represents the probability of the

measured system response given a force configuration, and p(Û) is the prior distribution that represents

the probability that a given force configuration occurs. The likelihood is modeled as a complex normal

distribution:

p(Y |Û) ∼ Nc(ĤÛ , σ2
nI), (3.10)
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where σ2
n is the variance of additive noise (physically, the noise’s power). The prior distribution is also

modeled as a complex normal distribution:

p(Û) ∼ Nc(0, σ
2
uΣÛ ), (3.11)

where ΣÛ is the force covariance matrix, and σu determines the overall force level. We propose the following

form of the force covariance matrix:

ΣÛ ,jk =
Ûp,jÛ

†
p,k

Û †
pÛp

exp

((
1− 1

s

)
djk
dmax

)
, (3.12)

where ΣÛ is a covariance matrix describing the correlation between entries in Û , Ûp is a prior estimate of

Û , djk denotes the Euclidean distance between Ûj and Ûk, dmax is the largest Euclidean distance between

any two Û , s is a prior correlation parameter, and ∗† denotes the conjugate transpose. The values for Ûp

can be chosen based on simulation results, measured values, or practitioner experience. A vector of ones

indicates no prior knowledge and penalizes forces with a large magnitude. The parameter s defines the

strength of the spatial correlation between parameter pairs, where s = 0 indicates no spatial correlation, and

s = 1 indicates perfect correlation. The analyst chooses s based on the spatial form of the force. Larger

values more strictly penalize rapid spatial variation in estimated loads, and a value of 0 indicates the loads

are completely independent. Spatial correlation is plotted versus normalized distance for a few values of s

in Fig. 3.1. A value of s = 0.6 is used throughout the present work.

Substituting Eqs. (3.10) and (3.11) into Eq. (3.9), defining λ2 = σ2
n/σ

2
u, and rearranging yields an

expression for the posterior distribution,

p(Û |Y ) ∝ exp

[
− 1

σ2
n

(∣∣∣∣∣∣Ÿ − ĤÛ
∣∣∣∣∣∣2
2
+ λ2Û †Σ−1

Û
Û

)]
. (3.13)

The first term inside the parentheses in Eq. (3.13) comes from the likelihood distribution, while the second

term comes from the prior distribution. Though not in standard form, Eq. (3.13) describes a complex

normal distribution on Û . Rearranging to standard form and extracting the mean of that distribution yields

a closed-form solution:

Û = ((Ĥ)†(Ĥ) + λ2Σ−1

Û
)−1(Ĥ)†Y . (3.14)

The prior distribution of Û enables generalized Tikhonov regularization, and warrants additional dis-

cussion. Components of Û that are a priori expected to be larger receive larger values in the diagonal of
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Figure 3.1. Correlations on the off-diagonal of Σ versus normalized distance for a few values of
the correlation parameter, s.

ΣÛ . This means that the “variances” of those components are higher, so large values are penalized less.

Each off-diagonal entry describes the correlation between a pair of loads. If two loads are highly correlated,

there is a harsh penalty when their values are different. Load components that are close together have higher

correlations in Eq. (3.12) because the harmonic force coefficients are expected to be spatially smooth. A

larger value of s indicates a preference for greater smoothness.

3.1.3 Regularization

Equation (3.7) can be inverted directly to estimate the applied load, but the problem is ill-posed if the

number of control points exceeds the number of measurements. For complicated load distributions like

those commonly seen in steady aerodynamic or acoustic loading, the number of measurements required for

an even-determined problem can still be infeasible even when using interpolation to reduce the number of

unknowns. A regularization term based on the force prior term in Sec. 3.1.2.1 can be introduced to include

additional assumptions about the problem that help the inversion to yield a unique, meaningful solution. We

propose a regularization term that allows prior knowledge of the expected force to be included.

The inverse problem Eq. (3.7) can be reformulated as an equivalent least-squares minimization problem

Û(ω) = argmin
Û

||H(ξ, ω)BÛ(ω)− Y (ξ, ω)||22. (3.15)
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Calculating the Cholesky decomposition Σ−1

Û
= R†R of the force covariance in Eq. (3.12), substituting

into the prior term from Eq. (3.13), and combining the prior term from Eq. (3.13) with Eq. (3.15) yields a

minimization problem with a generalized Tikhonov penalty term,

Û(ω) = argmin
Û

||H(ξ, ω)BÛ(ω)− Y (ξ, ω)||22 + λ2(ω)||RÛ ||22. (3.16)

The value of λ(ω) may be calculated at each frequency using the L-curve method [84]. The regularized

force reconstruction can be calculated using Eq. (3.14) or via generalized singular value decomposition [40].

When Ûp = 1 and s = 0, the regularization scheme reduces to standard-form Tikhonov regularization.

We now briefly note the difference between the formulation in Eq. (3.16) and classical generalized

Tikhonov regularization. The pressure field estimation equation using classical generalized Tikhonov regu-

larization is

Û(ω) = argmin
Û

||H(ξ, ω)BÛ(ω)− Y (ξ, ω)||22 + λ2(ω)||L(Û − Ûp)||22, (3.17)

where L is either the identity matrix or a derivative operator [40]. In this form, the force prior is moved from

the regularization matrix R to a bias term, and the regularization matrix is used to encourage qualities such

as small estimation magnitudes (if L is the identity) or smoothness (if L is a derivative operator) in the global

solution. The classical formulation is less flexible in practice than the formulation in Eq. (3.16) because the

force prior is not agnostic of scale. Since the force prior has to have an accurate magnitude when used as a

bias term, the numerical model for the prior must be very accurate, and the method cannot be used for the

common case where the spatial form of the force can be modeled but the magnitude is unknown. When the

prior is instead included in the regularization matrix, only the relative magnitudes in the force prior matter,

and force components with a relatively large corresponding prior component are penalized less than force

components with a relatively small prior component.

3.1.4 Effective Independence

The EI method is a common and efficient method for sensor placement. The EI method places sensors

so that the linear independence of the mode shape matrix at the sensor points is maximized [85]. At each

iteration, an effective independence matrix is calculated as

E = Φr(Φ
T
r Φr)

−1ΦT
r , (3.18)
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where E is the effective independence matrix, and Φr is the mode shape matrix containing all modes with

natural frequencies in the frequency range of interest and all degrees of freedom in the candidate set for

sensor placement. The degree of freedom corresponding to the smallest diagonal entry of E is removed

from the candidate set, and the process is repeated until the candidate set is reduced to the desired number

of sensors.

3.1.5 Error Metrics

We define an error metric eûa so that force estimates can be directly compared across space and fre-

quency

eua =

∫
A

∫ ωh

ωl
|U(ω)−Ua(ω)|dωdA∫

A

∫ ωh

ωl
|U(x, ω)|dωdA , (3.19)

where u is the truth load at all DOFs, ua is an approximate load at all DOFs, and A is the area over which

the load acts. The choice of ωl is somewhat arbitrary but is larger than 0 since the problem tends to be

ill-conditioned near zero regardless of sensor configuration when using acceleration measurements, and the

large errors in this region tend to confound the interpretation of the error metric.

The frequency response assurance criterion (FRAC) is a standard tool in vibration analysis for checking

the similarity between FRFs and is used here as a secondary error metric to check the similarity between

force estimates and the truth. The FRAC takes values between zero and one where zero indicates no corre-

lation and one indicates perfect correlation between the two vectors, and is defined in this context as

FRAC =
|∑ωh

ωl
U(ω)Ua(ω)

†|2∑ωh
ωl

U(ω)U(ω)†
∑ωh

ωl
Ua(ω)Ua(ω)†

. (3.20)

We also apply the modal assurance criterion (MAC), another standard tool often used to check the sim-

ilarity between mode shapes, to check the similarity between the truth and estimated pressure distributions

at a given frequency. Like the FRAC, the MAC takes values between 0 and 1, where a value of 1 indicates

perfect correlation and a value of 0 indicates no correlation. The MAC as applied to pressure distributions

is defined as

MAC =
|U †Ua|2

(U †U)(U †
aUa)

. (3.21)
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3.1.6 Post-Processing

The force estimation methods described here produce a set of force parameters that describe the esti-

mated force magnitude U at discrete locations. These discrete forces are converted to a pressure represen-

tation for direct comparison to a known pressure distribution. The force-to-pressure conversion is typically

accomplished by normalizing the force magnitudes by an effective area over which they act. All of the force

locations in the present work are arranged on a uniform rectangular grid, so the equivalent pressure at each

force location is estimated as

ν =
U

∆x∆y
, (3.22)

where ν is the equivalent pressure magnitude, and ∆x and ∆y are the uniform horizontal and vertical

distances between force locations. If an interpolating force basis is used, ∆x and ∆y are the distances

between the final interpolated forces, not the force basis control points themselves. Equation (3.22) is used

to convert experimental pressures to forces for error calculation via Eqs. (3.19), (3.20), and (3.21), and to

convert force estimates to pressures for visualization.

The pressure is converted to a decibels (dB) scale via

νSPL = 10 log10

(
ν2

ν2ref

)
, (3.23)

where νSPL is the pressure in dB, ν is the fluctuating pressure amplitude, and νref is the reference pressure

(νref = 20µPa in air at standard atmosphere and pressure).

3.2 Results

Our method is validated both numerically and experimentally. Section 3.2.1.1 validates the new Tikhonov

regularization method on a simple pressure distribution and illustrates some features about how the method

behaves for different numbers of sensors and parameters. Section 3.2.1.2 numerically investigates the effi-

cacy of the method as applied to a more realistic configuration of a steel plate coupled to an acoustic duct.

Section 3.2.2 experimentally validates the results from Section 3.2.1.2 using real experimental data from a

coupled acoustic-structural system.
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Figure 3.2. Schematic of the structural CCCC plate model. The numbers and circular mark-
ers (blue and yellow) indicate the locations and indices of structural DOFs for the simulated and
experimental acoustic-structural system. The yellow markers indicate response measurement lo-
cations suggested by the EI method.

3.2.1 Numerical Validation

3.2.1.1 Parameter Study

We first study the reconstruction quality of the Tikhonov regularization method as a function of number

of sensors, number of force parameters, and the choice of regularization scheme. Consider a rectangular

steel plate of width W = 25.4 cm (10 in), height L = 20.32 cm (8 in), Young’s modulus E = 200 GPa,

density ρ = 7700 kg/m3, and Poisson’s ratio γ = 0.3. The plate is clamped on all sides (CCCC) and is

shown in Fig. 3.2. A FEA model of the plate is used to calculate the structural natural frequencies and mode

shapes using the commercial software ANSYS. The plate is subject to a frequency-independent distributed

load of the form

νt(x, y, ω) = sinc

(
2π

(
x

W
− 1

2

))
sinc

(
2π

(
y

L
− 1

2

))
, (3.24)

which is a two-dimensional sinc load centered at the center of the plate and has three peaks in either direction.

The pressure field is converted to force at every DOF by multiplying pressure by the effective area of that

DOF. Tikhonov regularization is used to estimate the sinc loading on the plate using between 3 ≤ ns ≤ 30
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Figure 3.3. Representative acoustic pressure mode shapes on the plate surface computed using
ANSYS. Mode (a) 5 (ωn = 731.7 Hz), (b) 9 (ωn = 889.9 Hz), (c) 27 (ωn = 1595.2 Hz), (d) 33
(ωn = 1713.4 Hz), and (e) 34 (ωn = 1762.8 Hz)

response measurements. Each estimation attempt assumes a force basis based on bilinear interpolation as

proposed in Sec. 3.1.2 with between 2 ≤ nf ≤ 21 control points in each direction. For simplicity, the

number of control points in each direction is equal, so the total number of control points on the plate is

n2
f . For each combination of nf and ns, the EI method is used to determine a suitable sensor configuration.

Additionally, the force estimation is attempted using three regularization configurations: generalized regu-

larization with a force prior calculated as the truth pressure value at each control point (Ûp(x, y) = ν(x, y))

and s = 0.6, standard regularization with a penalty term based solely on estimation magnitude ((Ûp = 1))

and s = 0, and no regularization at all. For error calculation purposes, we let ωl = 282 Hz and ωh = 2139

Hz corresponding to the first and 14th structural natural frequencies.

The results of the parameter study are shown in Fig. 3.4. The error bounds in this figure are defined

from 0-200% for all subfigures because force reconstructions with error in excess of 200% are typically

unacceptable. When generalized regularization with a force prior and non-zero smoothing parameter is used,

the error decreases as nf increases due to an improved ability of the interpolating force basis to approximate

the distributed loading (Fig. 3.4a). The highest error occurs in the overdetermined region (ns ≥ n2
f ) near

the bottom of Fig. 3.4a. Classical system inversion theory suggests that without regularization, an even-

or overdetermined system is required to obtain an acceptable solution, but an underdetermined system with

ns < n2
f may be adequate when using generalized regularization with a high-quality prior. Hence, priority

should be given to increasing the force resolution over maintaining a determined system if it is known that

the prior closely matches the truth. In this case where Up = U , the error depends little on ns since the
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inversion process does not need additional information from the measurements to estimate the shape of the

load.

Standard form regularization with only a magnitude-based penalty term and no smoothing parameter

(Fig. 3.4b) yields much larger error at all combinations of ns and nf than the generalized regularization

case. The error in this case also now depends strongly on ns, where error is reduced as the number of

sensors is increased. This suggests that the larger the difference between the prior and the truth force, the

more error will be attenuated as additional sensors are used. Error also decreases as nf is increased owing to

the improved spatial resolution. Even when no prior knowledge of the form of the force is available, it may

still be more advantageous to prioritize an adequate force resolution over maintaining a determined system

by limiting the number of forces in the loading model. System inversion without regularization performs

poorly at every combination of nf and ns. In this case, the best results are obtained when the system is

overdetermined or even-determined (ns ≥ n2
f ), but the error exceeds 100% even in this region.
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Figure 3.4. Percent relative error between the truth sinc loading and the loading estimated using
Tikhonov regularization with (a) generalized regularization with s = 0.6 and Up = U , (b) standard
regularization with s = 0 and up = 1, and (c) no regularization for various numbers of sensors and
force parameters.

Fig. 3.5 shows the truth load and load reconstructions using generalized Tikhonov regularization for

ns = 30 and n2
f = 441 at y/L = 1/

√
2 and all values of x/W and f . Tikhonov regularization yields

an overall high quality reconstruction. However, the reconstruction error is very large at low frequencies

due to the typically low acceleration magnitudes and signal-to-noise ratios at low frequencies. These errors

decrease at higher frequencies as the acceleration signal quality improves.
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Figure 3.5. (a) Truth frequency-independent sinc pressure load at all x/W for y/L = 1/
√
2, (b)

estimated force for ns = 30 and n2
f = 441 using generalized Tikhonov regularization with s = 0.6

and Ûp = ν, and (c) estimated force for ns = 30 and n2
f = 441 using standard-form Tikhonov

regularization with s = 0 and Ûp = 1

3.2.1.2 Acoustic-Structural Simulation

Before conducting our experiment, we first build a numerical model of the experimental setup to validate

both our method and our experimental results. A finite element (FEA) model of the system is built in

ANSYS. A rigid-walled acoustic duct with dimensions of width W = 25.4 cm (10 in), height L = 20.32

cm (8in), and depth D = 60.96 cm (24in) is coupled on one end to the CCCC plate shown in Fig. 3.2. The

plate is identical to the steel plate used in Sec. 3.2.1.1. The duct is filled with moist air (speed of sound

c = 346m/s, density ρ = 1.05 kg/m3). Some representative acoustic mode shapes on the steel plate surface

are shown in Fig. 3.3. The plate is assumed to have a uniform structural modal damping ratio of ζ = 0.01,

the duct is assumed to have a boundary admittance of β = 50, and the plate and duct experience two-way

fluid-structure coupling. The values of ζ and β are chosen arbitrarily, but represent a lightly damped plate

structure and a duct that loses very little acoustic energy through its sides, respectively. A rectangular patch

on the face of the duct, opposite the plate of 0.2 < x/W < 0.7 and 0.2 < y/L < 0.7, is assigned a

FLOW load, which allows the patch to act as a speaker. The speaker patch is placed slightly off-center so

that odd-numbered transverse modes are excited as they are due to asymmetries in the experimental setup.

Harmonic analysis is performed between 200 Hz and 2000 Hz, and the structural response of the plate and

the pressure at the plate surface are simulated at 500 evenly-spaced intermediate frequencies. The pressure

and response represent the input and output of the structural system.
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The plate dynamics are studied in vacuo using the same FEA model used in the full system described

above, but decoupled from the duct. A modal analysis is used to compute the mode shapes of the plate with

natural frequencies up to 4000 Hz, double the highest forcing frequency of interest. Assuming a uniform

modal damping of ζ = 0.01, the structural FRF H(ω) is calculated using Eq. (3.4) at 500 uniformly-spaced

frequencies between 200 Hz and 2000 Hz.

The prior estimate of the force Ûp is obtained by using the same coupled model described above, but

with dry air. The model for the prior uses air with a speed of sound of c = 343 m/s, density ρ = 1.2kg/m3,

and boundary admittance β =100. A harmonic analysis is performed on the dry air system, and the pressure

field at the structural plate’s surface is saved for use as the pressure prior.

The EI method is used to place sensors on the plate using the numerical structural modes between 200

Hz and 2000 Hz interpolated onto a 6×6 grid of points. Fig. 3.2 shows the grid of candidate locations along

with the final sensor configuration at DOFs 14, 15, 17, 20, 23, and 26. Gaussian noise with a signal-to-noise

ratio of 40 dB is added to the structural response at the sensor locations to synthesize sensor measurements

in the frequency domain. The distributed load is modeled as a set of point loads that coincide with the

6×6 grid of DOFs (B is the 36×36 identity matrix). The 6×6 grid of DOFs corresponds to the DOFs

in the experimental system. To study the effects of the choice of force model, we repeat the numerical

validation twice: once with the response data generated directly in ANSYS using a fine 19×19 pressure

grid, and once with the response data generated by converting the pressure to equivalent forces on a 6×6

grid, and calculating the response using Eq. (3.5). The former case is similar to estimating a true distributed

load, while the latter case uses a truth force that can be exactly represented by the chosen force basis. The

forces are estimated using the Tikhonov regularization method and converted to equivalent pressures using

Eq. 3.22.

The estimated and truth pressures at DOF 16 generated via the fine pressure field are shown in Fig. 3.6a,

and the corresponding estimates at the same location for response measurements generated via the coarse

pressure field are shown in Fig. 3.6b. For the fine pressure field, the Tikhonov regularization scheme (eut =

49.68%,Mean FRAC = 0.46) is qualitatively similar to the truth pressure. There are short frequency ranges

(e.g., near 800Hz and 1300Hz) where the estimated error diverges from the truth, but the estimate is excellent

overall. Despite the force prior having slightly different resonance frequencies than the truth pressure, the

peaks in the estimate align very well with the truth peaks. The results are similar using the coarse pressure
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field, but the Tikhonov (eut = 42.26%,Mean FRAC = 0.48) estimate is improved. In this case, the short

regions of larger error that are present in the fine pressure grid case now match the truth pressure more

closely. This shows that the error in these frequency bands is due to a deficiency in the assumed force

basis. However, even for the fairly coarse force basis assumed in this case, the errors that are present in

the fine pressure grid case are small compared to the magnitudes of the resonance peaks and appear to be

concentrated to short frequency bands. Hence, we can expect to get acceptable results even when using

relatively coarse force bases with experimental response measurements to estimate distributed loads.
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Figure 3.6. Truth and estimated pressure at DOF 16 using measured data generated from (a) forces
on a fine 19× 19 grid (Mean FRAC = 0.46), and (b) forces on a coarse 6× 6 grid (Mean FRAC =
0.48).

Fig. 3.7 shows the truth spatial pressure distributions at representative frequencies, along with pressure

distributions estimated using Tikhonov regularization. The plots show the real part of the pressure estimates

(Pa) for response measurements generated using the fine pressure grid, unity normalized to better show the

similarities in the spatial distributions. Figs. 3.7a and 3.7c are near resonance and have a very similar shape

to the expected mode shapes near these frequencies. Figs. 3.7b and 3.7d lie between resonances and look

like a combination of the neighboring mode shapes. For the four frequencies shown, the MAC values using

Tikhonov regularization are 0.916, 0.998, 0.915, and 0.826. The estimates are generally similar to the truth

distributions at all frequencies.
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Figure 3.7. (top) Simulated acoustic pressure and (bottom) acoustic pressure estimated using
Tikhonov regularization at (a) 745Hz, (b) 945Hz, (c) 1595Hz, and (d) 1750Hz.

3.2.2 Experimental Validation

3.2.2.1 Experimental System

The force estimation methods detailed in Section 3.1 are validated on an experimental acoustic loading

configuration. A rectangular aluminum duct of length 61 cm (24 in), width 25.4 cm (10 in), height 20.3 cm

(8 in), and wall thickness 0.64 cm (0.25 in) with open ends is placed on a bed of soft foam to isolate it from

its surroundings. The duct is seam welded along all edges to maintain rigid boundaries. A speaker (Kicker

46CSC654) is mounted in a hole in a plate with thickness 1.3 cm (0.5 inch), and the plate is clamped to one

end of the duct using a flange-collar assembly. Gaskets of the same shape as the flange-plate interface are

layered between both the speaker-mounting plate and duct, and the plate and collar to maintain a rigid-wall

acoustic boundary at the plate. The experimental duct and speaker plate are shown in Fig. 3.8a. A baseline

pressure field is measured using a microphone array. A 1.27 cm (0.5 in) thick aluminum plate with 36

uniformly-spaced threaded holes is clamped to the far end of the duct away from the speaker plate using

a similar flange-collar-gasket assembly as the speaker plate. Seven microphones are fitted into threaded

plastic housings, which are then threaded into seven of the holes in the plate. The remaining holes are

plugged with bolts that pass through thick washers. The microphone and bolt tips sit flush with the interior

56



(a)

(b) (c)

Figure 3.8. The experimental system showing (a) the duct with mounted speaker and amplifier,
(b) the duct assembly with structural transducer plate and accelerometers attached according to the
EI results, and (c) the duct assembly with rigid microphone plate and microphones arranged in an
example configuration for pressure field measurement.

side of the plate to prevent reflection and refraction off of protruding objects, and all bolts and housings are

fitted with o-rings on the exterior side to ensure an airtight seal. A MATLAB script is used to generate and

play a linear sine sweep from 200 Hz to 2000 Hz with a linear sweep rate of 12.8 Hz/s through an amplifier

(Pyramid PA305) connected to the speaker. The sweep rate is chosen so that the response reaches at least

95% of the steady-state response at all frequencies in the excitation range assuming ζ ≥ 1% for all modes,

per the results in Ref. [86]. The microphones capture the pressures at the measurement locations. Six of

the seven microphones are then moved to a different set of six holes, the previous holes are plugged, and

the experiment is repeated until the pressure time history at all 36 hole locations has been measured. One

microphone is kept near the center of the plate (DOF 15 in Fig. 3.2) during all sine sweeps to ensure the
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placement of the microphones does not significantly affect the pressure field. Fig. 3.8c shows the pressure

measurement plate attached to the duct and fitted with microphones, housings, and interior bolts.

The microphone array plate is then replaced with a steel transducer plate of thickness 1/16 in (1.6 mm)

with no holes, and a roving hammer test is performed to calculate the plate FRF matrix. A 6 × 6 array

of points coincident with the positions in the microphone array is drawn on the plate’s surface to maintain

consistency between DOFs of the acoustic and structural measurements. Six accelerometers are attached to

the plate at a subset of the drawn points using stiff wax, and a calibrated hammer with a steel tip is used to

tap the plate at all points. The FRF of the plate between every excitation and response point on the 6 × 6

grid is calculated as the ratio of the Fourier transform (DFT) of the accelerometer response to the DFT of the

hammer impulse. The FRF functions are refined by using a local modeling technique to reduce noise [87].

The accelerometers are moved around the plate and the experiment is repeated until the entire FRF matrix

is populated.

The acoustic excitation experiment is then performed. Six accelerometers are attached to the plate using

wax according to the results of the EI method using the numerical mode shapes of the transducer plate

between 200 Hz and 2000 Hz and sampled at the experimental DOFs. (Fig. 3.2). A MATLAB script is

used to generate and play a linear sine sweep from 200 Hz to 2000 Hz with a rate of 3.20 Hz/s through an

amplifier connected to the speaker. The sweep rate is chosen so that the response reaches at least 99% of the

steady-state response at all frequencies in the excitation range assuming ζ ≥ 1% for all modes [86]. Note

that the sine sweep for the acoustic excitation experiment has a slower rate than the sweep for the acoustic

pressure measurement experiment because small errors in the response measurements can yield large errors

during the system inversion process, but the difference between the measured pressure field using a 3.20

Hz/s or 12.8 Hz/s sweep would be negligible. The transducer plate fitted with accelerometers according to

the results of the EI placement method is shown in Fig. 3.8b.

The sine sweep data are processed to capture the steady-state magnitude and relative phase between

simultaneous pressure or acceleration measurements. The time series are first trimmed to the duration of

the sine sweep. The time series are divided into 0.1 s windows that are linearly mapped onto frequency

bins from 200 Hz to 2000 Hz. For each window, the first sensor is arbitrarily assumed to have a phase

angle of zero, and the locations of all peaks in the first sensor’s time history are detected. The wavelength

is estimated as the average distance between consecutive peaks. The peaks of each other sensor are then
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detected, and the phase angle is estimated as the ratio of the mean distance between peaks in each sensor

and the first sensor, and the wavelength. That is,

ϕj = 2π

∑Np

1 tpj − tp1
Npl

, (3.25)

where ϕj is the phase angle of sensor j relative to the first sensor, Np is the number of detected peaks, tpj

are the times at which the peaks in sensor j occur, and l is the wavelength. The complex-valued steady-state

response amplitude for each sensor in each frequency bin is then calculated as

P̂j = P̄j(cos(ϕj) + i sin(ϕj)), (3.26)

where P̄j is the average values of the peaks in sensor j. Note that this method only preserves phase infor-

mation within the pressure and acceleration datasets but does not capture phase information between data

sets. The steady state response at frequencies between those explicitly calculated via the above method is

estimated via linear interpolation.

A force prior is calculated using finite element analysis in the ANSYS model. The duct is modeled

as a rigid-walled duct with the same dimensions as the real duct. All nodes on the wall corresponding

to the speaker plate are assigned a “flow” boundary condition with a unit magnitude, which corresponds

to a piston driving the acoustic fluid. A harmonic analysis is performed between 200 Hz and 2000 Hz,

and the resulting pressure field on the rigid wall corresponding to the transducer plate is saved. The force

prior is generated by mapping the pressure values from the FEA model at the desired frequencies onto

the locations of the forces to be estimated. Notice that the FEA model used to create the force prior for

this experimental case is simpler than the model used in the numerical validation. The model used in the

numerical validation is a two-way coupled acoustic-structural model with the speaker modeled over a portion

of the speaker plate. We use a simple, purely acoustic model here to create the prior for the experimental

case to demonstrate that the prior need not be a perfect reflection of reality in order to accurately estimate

the real pressure distribution. Note that this experiment represents an example of a case where classical

generalized regularization (Eq. (3.17)) would be unsuitable since the form of the pressure distribution can

be easily estimated via FEA, but the speaker volume and corresponding pressure magnitude cannot be easily

estimated without directly measuring the pressure field.
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3.2.2.2 Experimental Results

The estimated pressure at DOF 16 on the plate using our generalized Tikhonov regularization scheme

is shown in Fig. 3.9. For the experimental configuration, ns = nf = 6. Overall the Tikhonov estimates νt

(errνt = 52.75%, Mean FRAC = 0.59) are similar to the numerical results shown in Fig. 3.6. The esti-

mates also match the truth pressure distribution much more closely than the prior pressure distribution νp

(Mean FRAC = 0.02), which implies that the regularization scheme correctly incorporates measurements

to refine the prior estimate. The scaling of the prior is arbitrary for force estimation purposes, but is scaled to

match the truth pressure at 200Hz for visualization. The estimated resonance peaks occur at similar frequen-

cies and have similar quality to the measured peaks. The estimated magnitudes of the peaks up to around

1000 Hz also tend to match the truth magnitudes. The lowest-frequency measured peak at approximately

280 Hz does not match the estimated magnitude because the microphones begin clipping at approximately

128 dB. However, the accuracy of the other peaks up to 1000 Hz suggests that it may be possible to use sys-

tem inversion methods to reconstruct high-magnitude loads that would otherwise require specialized sensors

using common acceleration sensors. Above 1000 Hz, the resonance locations are still accurately estimated,

but the magnitudes are frequently underestimated. We believe that this degradation in the estimation qual-

ity is due to a degradation of quality in the experimental structural FRFs at high frequencies. Due to the

relatively compliant structure, the hammer taps excite the higher structural modes significantly less than

the lower frequency modes, leading to a decrease in FRF quality with frequency. Nonetheless, the overall

reconstruction quality across the entire frequency range from 200 Hz to 2000 Hz is adequate to understand

the loading environment.

The unity-normalized measured spatial pressure distribution at a few representative frequencies, along

with the normalized real part of the pressure distribution estimated using our new Tikhonov regularization,

are shown in Fig. 3.10. For the four frequencies shown, the MAC values using Tikhonov regularization are

0.947, 0.379, 0.644, and 0.032. The Tikhonov regularization method yields adequate spatial reconstructions

near resonance (Fig. 3.10a and c). The reconstruction quality above 1000 Hz – where the estimated peak

amplitude is underestimated – is lower near resonance (Fig. 3.10c), but the estimates are still visually similar

to the measured distribution. The spatial reconstructions resemble the measured pressure field far from

resonance as well (Fig. 3.10b), but the results are not as high quality as the equivalent numerical results in

Fig. 3.7. We believe that the reduced quality of these results may be due to a higher influence of measurement
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Figure 3.9. Measured acoustic pressure, pressure estimated from measured response data with
ns = 6, and pressure prior at DOF 16.

bias and noise on the low response amplitudes that occur off-resonance. At high frequency and off resonance

(Fig. 3.10d), the lower signal-to-noise ratio and poorer FRF quality compound to yield force estimates that

do not visually resemble the truth.
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Figure 3.10. (top) Measured acoustic pressure and (bottom) acoustic pressure estimated using
Tikhonov regularization at (a) 745Hz, (b) 945Hz, (c) 1595Hz, and (d) 1750Hz.

3.3 Conclusions

Distributed loads are common in engineered systems, but these loads are often difficult or impossible to

measure directly. However, it is usually feasible to measure the system response at a relatively small number

of locations. It is possible in principle to estimate the distributed loads from response measurements, but the

number of sensors required to render a well-posed problem is often infeasible. The present work adapts a

novel Bayesian spatial prior term for use with a classical Tikhonov regularization scheme. Results show that

the new regularization term is able to estimate complicated distributed pressure fields from a small number

of measurements with acceptable accuracy. Our numerical results are validated with experimental data taken

on a steel plate coupled to an acoustic duct. We expect the results of the present work to help bridge the gap

between input estimation approaches using classical regularization and Bayesian inference.

While the results shown here are promising, future work is still needed. The Tikhonov regularization

approach proposed here is only applicable to inversion methods based on direct matrix inversion. Hence, the

method in its current form is inapplicable to nonlinear systems. A nonlinear analogue could be derived by

replacing the force covariance matrix with a function representation, replacing the Cholesky decomposition
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with a square root operation, and solving the resulting problem via direct optimization. A nonlinear form of

the method presented here would make the method suitable to a much wider variety of problems.

The smoothing parameter s is also difficult to estimate without performing a full parameter study. The

optimal choice of the parameter depends on the form of the truth force, which itself is typically only known

up to the form of the prior. Further, the quality of the estimate typically has a complicated relationship with

the value of s, making an optimal choice of s difficult. While an estimate based on trial and error is often

sufficient, a method of choosing s automatically would make the prior selection process simpler and more

robust.
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Chapter 4

Dynamic Moving Force Estimation

Estimating the dynamic forces on a structure from sparse response measurements is a well-known in-

verse problem. The problem is typically ill-conditioned, and requires regularization to obtain a stable so-

lution. If the force is distributed or moves with time, standard regularization goals such as small force

magnitudes or sparse forces are often insufficient to obtain an acceptable force estimate. In such cases, ad-

ditional information about the force is required to constrain the estimates to reasonable values. This chapter

proposes a moving force estimation technique based on the augmented Kalman filter (AKF) that uses a con-

vecting force model to include additional information on the expected motion of the force. The force model

does not assume the truth force consists of point loads, so the method is suitable for traveling point loads

and convecting distributed loads such as those due to flowing fluids. The force model in combination with

regularization terms from pseudo measurements and the Kalman filter force covariance parameter yields

estimates that are very close to the specified traveling loads. Results show that the AKF with convecting

force model yields significantly improved traveling load estimates when compared to the standard AKF, and

comparable results to those from modern methods for traveling load estimation. Furthermore, the method is

robust to errors in the assumed force velocity because of the statistical nature of the Kalman filter.

4.1 Methods

4.1.1 Structural Model

The equations of motion for a general linear elastic structure may be written as

q̈ + Cq̇ +Kq = ΦTFu+w, (4.1)
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where q is a vector of N generalized coordinates, C is the modal damping matrix, K is the modal stiffness

matrix, Φ is the mode shape matrix, F is a matrix that maps forces to the appropriate degrees of freedom

(DOFs) in physical coordinates, u is a vector of forces, and w is a random vector with the model covariance

matrix Qw. The model covariance Qw represents the amount of uncertainty in the model. When a force is

assumed at every DOF, F becomes the identity. Equation (4.1) may be rewritten in first-order form as{
q̇

q̈

}
=

[
0 I

−K −C

]{
q

q̇

}
+

[
0

ΦTF

]
u+

{
0

w

}
, (4.2)

where I is the identity. Instead of treating the force as a known input, u can be appended to the state vector

and modeled as an unknown, which requires a corresponding force model in the state transition matrix.

When no prior information is available, a zero-order hold model, which assumes the force is static apart

from uncertainty, is typically used. If the force is known to convect at nearly constant velocity, a convecting

force model may be used instead. However, this model cannot be incorporated directly into the continuous-

time Kalman filter. We therefore begin by discretizing the system using the zero-order hold model, and then

substitute the discrete force model with the convecting version. The zero-order hold model is given by

u̇ = 0 + z, (4.3)

where z is a random noise vector with covariance Qz . Equation (4.2) can now be rewritten with the force

augmented to the state,

˙̂q = Aq̂ +G


0

w

z

 , (4.4)

where

q̂ =


q

q̇

u

 , (4.5)

A =

 0 I 0

−K −C ΦTF

0 0 0

 , (4.6)

and

G =

0 0 0

0 I 0

0 0 I

 . (4.7)
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The noise vector covariance matrix for this system may be written

Q =

0 0 0

0 Qw 0

0 0 Qz

 . (4.8)

During numerical simulation, the equations of motion are sampled at regular time intervals of duration

∆t. Equation (4.4) must be cast as a discrete-time recursive equation where the state at time step k+1 may

be calculated from the state at time step k

q̂k+1 = A∗q̂k +G∗


0

w

z


k

, (4.9)

where

A∗ = eA∆t, G∗ =

[∫ ∆t

0
eAtdt

]
G. (4.10)

In practice, the matrices A∗ and G∗ are converted from their continuous time counterparts numerically,

using, for example, the Matlab function c2d. The discretized augmented model covariance matrix is

Q∗ = G∗QG∗T . (4.11)

4.1.2 Measurement Equation

System measurements via sensors are modeled as a linear combination of the state variables.

y = Hq̂ + v, (4.12)

where y is the vector of sensor measurements, H is a measurement matrix that transforms the state vector

into the measurement vector, and v is a random vector of zero mean with a covariance matrix R repre-

senting sensor noise. Displacement measurements are used in the present work, but formulations for H

exist for other types of measurement as well (e.g., accelerometers and strain gauges). If we assume that the

measurements are not correlated, R is a diagonal matrix.

The measurement matrix H includes a map from the state vector in physical coordinates to the mea-

surement vector, and a map from modal coordinates to physical coordinates. The physical state x̂ can be
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mapped on the measurements using the physical measurement matrix Hx

y = Hxx̂+ v, (4.13)

where x̂ = [x, ẋ,u]T is a physical state vector composed of the physical displacement x, physical velocity

ẋ, and force u. The augmented state vector in physical coordinates is related to the modal augmented state

vector by

x̂ =

Φ 0 0

0 Φ 0

0 0 I

 q̂ = Φ̃q̂ (4.14)

For displacement sensors, Hx is a selection matrix with rows of zeros except at indices corresponding to

the measured displacement DOFs.Alternatively, Hx may be thought of as a reduced identity matrix where

only the rows corresponding to the measured DOFs are retained. Substituting Eq. (4.14) into Eq. (4.13), we

arrive at an expression for H ,

H = HxΦ̃. (4.15)

4.1.3 Convecting Force Model

If the force moves across the spatial domain at a nearly constant velocity ν, the zero-order hold model

can be replaced with a convecting force model. This assumption may be appropriate for a vehicle traveling

across a bridge or for vortex-induced forces convecting along an aircraft wing in a uniform freestream. The

convecting force model assumes that the force travels in the flow direction by a distance ν∆t every timestep.

That is,

uξ+ν∆t
k+1 = uξ

k + z, (4.16)

where ξ is a physical location along the flow direction, and uξ is the force at ξ. This model is applied to

every force at least ν∆t from the leading edge of the domain. However, near the leading edge, there is no

upstream value to convect from, so the model must be modified. At these locations, the force is instead

assumed to originate from the leading edge itself, i.e.,

uξ
k+1 = u0

k + z, (4.17)

where ξ < ν∆t is a distance less than the convection distance from the leading edge of the domain.
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It is also possible to introduce a decay term into the force model. The decay term models situations

where the forces are expected to decay exponentially as they convect across the domain. If a decay term is

included, Eqs. (4.16) and (4.17) respectively become

uξ+ν∆t
k+1 = (1− α∆t)uξ

k + z, (4.18)

uξ
k+1 = (1− α∆t)u0

k + z, (4.19)

where 0 ≤ α ≤ 1 is a constant that controls the rate of decay. When α = 0, Eqs. (4.18) and (4.19) become

Eqs. (4.16) and (4.17) respectively. When α > 0, the force is assumed to decay by approximately αuk per

second.

These equations replace the standard zero-order hold equations in Eq. (4.9). Rows in the force model

section of A∗ are replaced with Eqs. (4.16) and (4.17). If ν is constant, A∗ is a static matrix. Otherwise,

A∗ must be re-calculated at every timestep. The convecting force equations cannot be incorporated into the

continuous state transition matrix Eq. (4.4) since the spatial derivative of the force cannot be easily related

to the time derivative. Instead, the standard zero-order hold model is used to obtain a discrete-time form of

the equations of motion that is later replaced with the convecting force model.

4.1.4 Kalman Filter

The Kalman Filter consists of a time update step, during which the system equations of motion Eq. (4.9)

are used to predict the state in the next time step, and a measurement update step, during which the measured

data are used to correct the prediction. The Kalman gain matrix Kg decides how much correction to perform

at each time step based on the covariance of the estimation error P . The algorithm may be written as follows:

Time update:

q̂−k = A∗q̂+k−1, (4.20)

P−
k = A∗P+

k−1A
∗T +Q∗, (4.21)

Measurement update:

Kg = P−
k HT

(
HP−

k HT +R
)−1

, (4.22)

q̂+k = q̂−k +Kg

(
y −Hq̂−k

)
, (4.23)
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P+
k = (I −KgH)P−

k , (4.24)

where the − and + superscripts represent quantities before and after measurement update, the subscript k

represents the timestep, and P is the covariance of the estimation error.

4.1.5 ℓ1 Regularization

We implement ℓ1 regularization via the method of Ref. [70] to encourage sparsity in the estimated forces.

The Kalman filter is an optimal state estimator that provides a minimum mean square error solution between

the estimated state q̂ and the true state q̄,

q̂ = argmin
q̂

(||q̂ − q̄||22). (4.25)

The force portion of this equivalent optimization formulation can be regularized by introducing a penalty

term,

q̂ = argmin
q̂

(||q̂ − q̄||22 + γ||u||1), (4.26)

where γ is a regularization parameter that controls the strength of the regularization, and ||u||1 is the ℓ1

norm of the force portion of q̂, which is simply the sum of the absolute values of the components of u.

Equation (4.26) can be rewritten as an equivalent constrained optimization problem,

q̂ = argmin
q̂

(||q̂ − q̄||22), s.t.||u||1 < ϵγ , (4.27)

where ϵγ is a threshold that takes the place of the regularization parameter γ. The solution of Eq. (4.27)

lies on the boundary ||u||1 − ϵγ = 0 for sufficiently small ϵγ . We can rewrite this boundary as a pseudo-

measurement, which can be directly incorporated into the measurement update portion of the Kalman filter.

0 = H̄q̂k − ϵγ , (4.28)

where H̄(uk) = [01×2N , sign(uk)] is the pseudo-measurement matrix that takes the form of zeros in the

indices corresponding to the modal displacements and velocities, and the sign of each force in the corre-

sponding force indices. The threshold parameter ϵγ can now be treated as a random variable with variance

Rγ . A small value of Rγ corresponds to a large regularization parameter γ, and results in a strong ℓ1

regularization.
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The pseudo-measurement equation can be appended directly to the measurement equation Eq. (4.13)

and incorporated into the standard Kalman filter, Eqs. (4.20)-(4.24). Alternatively, a second measurement

update step following the first measurement update can be iterated using just the pseudo-measurement to

strengthen the regularization effect at each timestep. In this case, the following equations are repeated Nτ

times, where Nτ is chosen to balance computational complexity with the completeness of the regularization

process. The regularized solution typically converges after approximately Nτ = 10 iterations [70].

Pseudo measurement update:

Kg = P+
k H̄T (uk)

(
H̄(uk)P

+
k H̄T (uk) +Rγ

)−1
, (4.29)

q̂+k =
(
I −KgH̄

)
q̂+k , (4.30)

P+
k =

(
I −KgH̄

)
P+
k , (4.31)

4.1.6 Error Quantification

The force predicted using the AKF with or without the convecting force model tends to have a different

magnitude and covers a different sized patch of the beam than the truth force. Since the beam’s response is

similar whether a distributed force with a small magnitude or a concentrated force with a large magnitude is

applied, it is difficult for the AKF method to determine the correct magnitude and distribution of the force

without prior knowledge of one or the other. However, engineers are often only concerned with the total

force and center location of a locally distributed load such as the force of a large vehicle on a bridge or the

resultant force induced by a small vortex as it convects across a structure.

In the present work, we quantify how well the force estimates match reality by integrating the force

estimate over a portion of the beam’s span. The integrated force as a function of time is given by

ûr%(t) =

∫ L

l
udl, (4.32)

where r = l/L is a fraction of the length of the beam, l is a distance along the beam, and L is the total length

of the beam. For example, û70% represents the integrated force from r = 0.7 to 1. For validation purposes,

the resulting values of ûr% can then be normalized by the largest integrated truth force in the time range of
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interest so that the force estimate can be easily compared to the known truth. We define

ūr% = ûr%/ûmax, (4.33)

where ūr% is the normalized integrated force, and ûmax is the largest value of ûr% in the time range of

interest.

To directly compare the error between the truth and approximated integrated force, we define a mean

squared error metric,

εr% = 100× |ûr%,t − ûr%,a|22
|ûr%,t|22

(4.34)

where ûr%,t and ûr%,a are the integrated truth and approximated forces over the last r% of the beam,

respectively. The 2-norms are taken over the vector of integrated force values at all timesteps.

4.1.7 Parameter Selection

In addition to the physical parameters that describe the system parameters and force dynamics, the

method described in the preceding sections depends on several user-specified parameters including the

model covariance matrix Qw, the force covariance matrix Qz , the measurement covariance R and the ℓ1

pseudo-measurement variance Rγ . The parameters in the present work are selected by trial and error, but

this section describes how parameters might be chosen systematically.

The measurement covariance matrix R can typically be measured experimentally. It represents the

covariance of the noise present in the measurements. The noise level can be calculated by measuring a time

series with only noise (no response), and calculating the variance of this time series. If all measurements

from all sensors are not correlated, R is a diagonal matrix with Rjj equal to the noise variance of the sensor

j.

The model covariance matrix Qw represents the level of discrepancy between the structural model and

the physical system, and is more difficult to quantify than R. When measurements are synthesized using the

same model for both the forward and inverse problems, Qw = 0. Otherwise, Qw is often taken as a diagonal

matrix with entries on the order of the squared maximum expected state values [65]. A rough estimate of

Qw is generally adequate, as the quality of the force estimate is usually not very sensitive to the choice of

Qw.
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The force covariance matrix Qz acts as an ℓ2 regularization parameter that directly controls how much

the force magnitudes are allowed to change each timestep. A large Qz allows the forces to change quickly,

which can result in the response portion of the state overfitting to the measurements and a nonsmooth force

estimate that poorly matches the true force. A small value of Qz does not allow the forces to change quickly

enough to match the true force, resulting in an overly smooth force estimate and a poor match between the

state and the measurements. The unknown force magnitudes are typically assumed to be uncorrelated and

have similar dynamic characteristics, so Qz is usually assumed to be a scaled identity matrix Qz = βI ,

where β is a scaling parameter. The well-known L-curve method can then be used to find the optimal value

of β.

The pseudo measurement variance Rγ acts as an ℓ1 regularization parameter, and is used in tandem with

Qz to control the characteristics of the force estimate. A small Rγ yields a strong ℓ1 regularization and a

sparse force estimate [70]. The Rγ parameter can also be chosen using the L-curve method. However, the

L-curve method in its classical form is only used to estimate one regularization parameter. In the presented

case where Qz = βI and Rγ both must be specified, it should be possible to construct a multidimensional

L-hypersurface where the fitting norm and regularization norm are calculated for every combination of β

and Rγ . The optimal values of both parameters could then be calculated by choosing a configuration that

balances the regularization and the fitting errors. However, this method would be computationally intensive

to implement.

4.2 Results

The AKF method is verified numerically on the cantilevered beam system shown in Fig. 4.1. The beam

is 12.7 cm long and made of steel with a Young’s modulus of 200 GPa, Shear modulus of 79.3 GPa, Poisson’s

ratio of 0.3, and density of 7850 kg/m3. The beam’s cross section has an area moment of inertia of 4.34E-

11 m4. The beam is modeled using 1000 Timoshenko beam elements implemented in the commercial finite

element package ANSYS, wherein the mode shape matrix, ϕ, is calculated.

The beam is subject to a train of distributed forces. The forces take the spatial form of Gaussian normal

distributions with peak magnitudes κi(t) and mean locations λi(t). The distributed force on the beam Fx is
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given by

Fx(l, t) =

Nf∑
i=1

κi(t) exp

(−(l − λi(t))
2

2σ2

)
, (4.35)

where Nf is the number of pulses, and σ is the standard deviation. The center point of the pulse is controlled

by λi, κi controls the magnitude of the pulse, and σ controls the width of the pulse. The values of these

parameters change depending on the experiment. The values of λi, κi, and σ for each case are given in

Table 4.1. The velocity of the pulses is defined by the total number of pulses that travel across the beam

Nf , the number of pulses that exist on the beam simultaneously Ns, and the simulation duration T . These

parameters can be converted to a truth pulse velocity using

νt =
NfL

NsT
. (4.36)

For all cases studied here, T = 1 s, Nf = 6, and Ns = 2. The “Varying Magnitude” and “Varying Spacing”

cases contain parameters A = [20, -30, 10, 20, -5, 40] and B = [0.005, -0.014, 0.032, 0.013, 0.022, 0.026]

that explicitly dictate the magnitude and spacing of each force, respectively.

Response measurements are synthesized by simulating the system response to the applied force. The

system is assumed to start from rest, and Eq. (4.9) is used to simulate the displacement response in discrete

time. When simulating the forward problem, Fx is assigned to every DOF at every timestep by evaluating

Fx at the position of each DOF l. The structural model is truncated to the first 25 modes for the forward

problem. The displacement response is converted to displacement measurements by sampling the response

at the measurement locations and adding Gaussian noise with a signal-to-noise ratio (SNR) of 40dB. Mea-

surements are taken at 50 uniformly spaced locations along the beam’s length. This number of measurement

points would be infeasible using traditional sensors, but is practical using modern laser displacement sensor

systems.

The synthesized measurements are then passed to the force estimation process. The same nominal

structural model is used for the forward and inverse processes, but the model for inversion is truncated to

10 modes instead of the 25 used for the forward model. A vertical force with independent magnitude is

assumed at each DOF on the beam, so F is the identity, and u has 1000 elements. Fewer modes are used

in the inverse model to emulate the truncation error that would be expected when modeling a real system.

The same parameter values are used for most cases. The quality of the estimation is insensitive to the exact
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λi(t)
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Figure 4.1. Schematic of the cantilevered beam system with alternating pulse train forcing. Forces
convect from left to right (λi monotonically increases for all cases)

values of Qw and R, so small values are arbitrarily chosen. The model covariance matrix Qw is a multiple

of the identity matrix with values approximately equal to 10% of the square of the largest value in the state

estimated by inverting the measurement matrix. That is,

Qw,ii = 0.1max(|H†y|)2, (4.37)

where † indicates the pseudo-inverse. A nonzero value of Qw is chosen to account for the truncation error,

even though a value of zero would be appropriate if the forward and inverse models are identical. The

measurements are assumed to be uncorrelated, so R is also assumed to be a diagonal matrix with values

equal to 5% of the square of the largest measurement.

The values of Qz and Rγ are chosen by trial and error. The force estimates are insensitive to changes

in these parameters within an order of magnitude, so the parameters are tuned to an acceptable order of

magnitude. The forces at every DOF are assumed to be uncorrelated and to change at approximately the

same rate, so Qz is a diagonal matrix with 1E4 along the diagonal while Rγ is assigned a value of 1E6.

In the “Larger Varience” case, no ℓ1 regularization is used because the force is distributed enough that a

sparsity constraint is unnecessary.

4.2.1 AKF Without convecting Force Model

We first evaluate the performance of the force estimation via the standard AKF with no convecting force

model and no sparsity constraint. Fig. 4.2 shows a surface plot of the standard AKF results along with the

corresponding force integral plot over the trailing 30% of the beam. For this case, ε70% = 16.37%. The
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Case λi κi σ
Baseline −(i− 1) L

Ns
+ νt 20(−1 + 2(i mod 2)) 0.001

Varying Magnitude −(i− 1) L
Ns

+ νt Ai(−1 + 2(i mod 2)) 0.001
Varying Spacing −(i− 1) L

Ns
+ νt+Bi 20(−1 + 2(i mod 2)) 0.001

Larger Variance −(i− 1) L
Ns

+ νt 20(−1 + 2(i mod 2)) 0.01
Decaying −(i− 1) L

Ns
+ νt 20 exp (−10λi(t))(−1 + 2(i mod 2)) 0.001

Table 4.1. Equations for λi, κi, and σ for various cases. Here, mod is the modulo operator.
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Figure 4.2. (a) Truth force, (b) force estimated using the AKF with a zero-order hold force model,
and (c) force integral over the last 30% of the beam. ε70% = 16.37%.

force integrals for all cases are taken over the last 30% of the beam to measure each pulse individually, since

this range can capture an entire single distributed pulse without also measuring upsteam pulses. The AKF

force estimate is much more spread out in space and time, and has a much smaller magnitude than the truth

force. However, the force integral shows that the total force is similar for both cases near the beam tip. The

state response at the beam tip also matches the input measurements very well as shown in Fig. 4.3, so the

estimated force affects the structure similarly to the truth force. No force is estimated near the beam’s base

at all timesteps because forces near the fixed boundary yield very little response, so the AKF has difficulty

inferring force in this region.

Notice also that the middle point of each pulse seems to rest at one of two positions near the midpoint

and tip of the beam. The standard zero-order hold force model favors force configurations that are similar to

the previous force estimate, while still yielding a response similar to the measurements. Hence, this model

tends to yield force estimates that stay in the same location for as long as possible. The holding location

seems to depend on the number of modes retained in the inverse structural model as shown in Fig. 4.4 where

the ten-mode case is the same as the case presented in Fig 4.2. We suspect that the forces tend to hold at
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Figure 4.3. Measured truth response (black) and response estimated by the standard AKF (blue) at
the beam tip.
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Figure 4.4. Force distribution estimated by the standard AKF using an inverse model truncated to
(a) 1 mode, (b) 2 modes, (c) 5 modes, (d) 10 modes.

the anti-nodes of the set of included modes, since these are locations where the force can maximally affect

the response without changing locations. When one mode is used, the force is always located near the beam

tip coincident with the sole anti-node. When two modes are used, the holding location sits near either the

midpoint or the tip, and has a low magnitude where it transitions between these points. With more than

five modes, the force still holds at the tip, but the midpoint location shifts slightly toward the root, and the

magnitude in the transition region is comparable to the magnitude at the peak.

4.2.2 AKF With Convecting Force Model

We now evaluate the performance of the AKF with both the convecting force model and ℓ1 regularization

via pseudo-measurements. Figure 4.5 shows the results using the AKF with the convecting force model and

ℓ1 regularization for different variations of the pulse train loading configuration. The surface plots in this
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figure are all normalized by the largest force in the domain umax so that all the colorbars vary from -1 to

1. The upper row shows the same configuration as used in Fig. 4.2 with uniform pulse magnitude and

spacing. Compared to the results using the standard AKF, the results incorporating the convecting force

model and ℓ1 regularization demonstrate less spatial smearing, no holding locations, and lower overall error

(ε70% = 9.66% versus 16.37% in the standard case). Further, because of the reduced smearing of the

force estimates, the force integral plots more closely resemble the square-wave pulses of the truth force.

The integrated force magnitude is similar to the truth but tends to slightly underestimate the truth. These

properties can be seen in the force estimates for all cases presented here.

Immediately after each pulse leaves the beam tip in all cases, the estimated magnitude near the beam

tip briefly reverses. This can be seen in both the force estimate surface plots and the integral plots in

Fig. 4.5. We suspect that this artifact is due to the way the AKF estimates forces. Each pulse in the truth

pulse train emerges on the beam discontinuously, but the Qz force covariance term in the AKF attempts

to smooth discontinuities. Forces near the root also yield lower magnitude responses and therefore lower

quality information for the AKF. These effects result in the force magnitude near the root being initially

underestimated while the force at the tip briefly reverses direction so that the estimated response can match

the measured displacement.

The Larger Variance case in the bottom row of Fig. 4.5 demands additional discussion because no ℓ1

regularization via pseudo-measurements is performed. In this case, the truth force is much less sparse than

in the other cases, so no ℓ1 regularization is required. Adding ℓ1 regularization in this case still encourages a

sparse estimate with less smearing, but that is undesirable when the truth force is smeared. This case shows

that ℓ1 regularization serves only to promote sparsity and is not essential to the underlying performance of

the convecting force model.

4.2.3 Effects of Assumed Force Parameters

The convecting force model depends on the parameters ν and α to accurately model the spatial evolution

of the truth force. The velocity parameter ν controls the expected convection velocity, while the decay

coefficient α controls the amount of exponential decay that expected in the truth force. Figure 4.6a shows a

plot of error as a function of the ratio between the assumed and truth velocities, ν/νt. As ν/νt approaches

zero, the force estimate approaches the standard, zero-order hold AKF error of 16.37%. Error decreases
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Figure 4.5. (left) Normalized truth force, (middle) normalized force estimated using the AKF with
a convecting force model, and (right) force integral over the last 30% of the beam for (top row)
evenly spaced, equal magnitude forces (Baseline, ε70% = 9.66%); (second row) evenly spaced,
unequal magnitude forces (Varying Magnitude, ε70% = 10.93%); (third row) unevenly spaced,
equal magnitude forces (Varying Spacing, ε70% = 9.14%); and (bottom row) equal spacing, equal
magnitude forces with larger variance (Larger Variance, ε70% = 4.08%). No ℓ1 regularization is
performed for the final, large variance case.
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monotonically toward the minimum-error case where the assumed velocity is the same as the truth, ν/νt =

1. At ν/νt > 1, the error again increases. Notice that the estimation error is less than the standard AKF

error over the entire range of 0.5 < ν/νt < 1.5 shown in the figure. Hence, if even a rough approximation

of ν is known, the convecting force model can yield a better force estimate than the standard zero-order

hold model. Additionally, ν can typically be accurately measured using radar or machine vision methods to

detect the speed of vehicles, or a flow meter to detect the free-stream velocity of a flowing fluid.

To demonstrate the effects of adding a decay term, we simulate the response of the same system to the

same smeared pulse train, except now the magnitude of each pulse takes the form of a decaying exponential.

The equations for the truth load in this case are given in the “Decaying” row of Table 4.1. Figure 4.6b

shows error for varying values of α. In this case α = −1.58 yields the lowest error, which implies that a

model that amplifies the force yields the lowest error even when the actual force decays. This is because

the chosen Qz = 1E4 slightly underestimates the force integral for α = 0, so adding an amplification term

helps the integral match the truth force. If we instead specify Qz = 1E2, the force integral magnitude is

slightly overestimated for α = 0, and a positive α attenuates the force estimate. The parameter study for

the Qz = 1E2 case is shown in Fig. 4.6c, and α = 2.94 minimizes the error. Figure 4.7 shows the force

integral for Qz = 1E4 and α = 0 and α = −1.6, as well as for Qz = 1E2 and α = 0 and α = 2.94.

The force integral plots reveal that the force estimate does not change appreciably between the α = 0 case

and the minimum error case for either choice of force covariance. From these results, we can see that there
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Figure 4.7. Force integral estimates for (a) Qz = 1E4 and (b) Qz = 1E2 with α = 0 and the α that
takes the value that minimizes the error.

is a complicated relationship between Qz and α since both directly affect the estimated force magnitude.

However, the error changes slowly over a wide range of α. Recall also that α is a physical parameter that

represents a decay rate and should not be arbitrarily specified just to minimize error. Hence, the value of α

should be specified as either 0 (no decay) or an appropriate estimate of the actual decay rate. Both values

will typically yield an acceptable force estimate since the function of Qz is to correct the force estimate

based on response measurements.

4.3 Conclusions

The AKF-based force estimation method with novel convecting force model presented here yields sig-

nificantly improved results for moving force estimation problems when compared to the standard zero-order

hold model. Although the method still struggles to correctly identify the correct spatial distribution and

magnitude of each force in the cases studied here, spatially integrating the truth force yields a resultant that

is very similar to the truth force. The difficulty of correctly estimating the magnitude and spatial distribution

of the force stems from the similarity between responses due to either low magnitude, highly spread forces

or high magnitude concentrated forces. If the expected force magnitude or distribution was known a priori,

it may be possible to include this information using the force model and Rγ terms, respectively. In many

applications, however, the exact force distribution and magnitude are of lesser importance than the resultant

force, so the force integration method used in the present work to compare the truth and estimated forces is

80



sufficient. The level of error presented in our force integral results is similar to the error achieved by mod-

ern moving load estimation techniques, and our technique does not require a precise estimate of the force

velocity [72, 76]. The method is suitable for moving concentrated loads using an ℓ1 regularization scheme,

but the convecting force model can also be used to estimate distributed loads moving if ℓ1 regularization

is not used. We expect that the convecting force model should be immediately applicable to moving force

problems in various domains, including weigh-in-motion systems and dynamic fluid pressure estimation.

The techniques described here require more parameters to be specified than the standard AKF. These

parameters were specified using trial and error in the present work, but more robust automatic parameter

selection techniques should be developed for critical applications. In addition to the standard AKF param-

eters of the measurement covariance, model covariance, and force covariance, the convecting force model

contains a decay term and assumed velocity term, while the ℓ1 regularization technique introduces a pseudo-

measurement covariance. The pseudo-measurement covariance can be tuned in the same way as the force

covariance from the standard AKF using the L-curve method [84]. The assumed velocity parameter can usu-

ally be measured directly from the system, but our results show that even an imprecise estimate still yields

improved results over the standard zero-order hold model. One might expect that adding the decay term

(or another appropriate model of the force magnitude) would yield an improved estimate as well, but the

results presented here suggest that adding a decay term can actually hinder the estimation process because of

the complicated interactions between the decay parameter and force covariance. We therefore recommend

ignoring the decay term and allowing the force covariance term to control the force estimate.

The convecting force model presented here is a simple way to incorporate additional information about

the expected behavior of the force into the AKF since the state transition matrix A∗ remains static. However,

it would be possible to specify other types of assumed force motions by recalculating the state transition

matrix at every timestep based on the instantaneous assumed velocity. This could be useful, for instance, for

weigh-in-motion systems on roads that occasionally reverse directions or fluid systems where the free-stream

velocity changes. In both these cases, the AKF could be augmented by using a velocimeter to continuously

correct the assumed velocity parameter and recalculate the associated state transition matrix. This would be

especially helpful for estimating the fluid pressure over 2D surfaces where the flow can change magnitude

and direction.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Forces on structures can broadly be categorized as static, harmonic, or general dynamic forces. This

dissertation presents a set of methods for estimating loads from each of these categories using sparse mea-

surements of the structural response. While the methods presented in the preceding chapters by no means

represent a comprehensive set of modern techniques for inverse force estimation, the cited literature to-

gether with the details of the described techniques should provide the interested reader with a sufficient set

of methods for solving a wide variety of input estimation problems.

The analytical methods for distributed static force estimation from strain measurements (Ch. 2) demon-

strate how cumbersome the equations governing inverse force estimation problems can be if the equations

are derived analytically. Even for the simplest case of distributed force estimation on a classical beam with

constraints on both ends, the governing equations are unwieldy, and the optimal sensor configurations are

counter-intuitive. Even when the system equations are known exactly and an optimal sensor configuration

is used, the force estimates obtained by inverting the system matrix without regularization are unimpressive.

However, the methods described in the static force estimation chapter are valuable because they provide in-

sights into both the fine details of the influence coefficient model and the mathematical difficulties inherent

to inverse problems.

The methods for distributed harmonic force estimation from acceleration measurements (Ch. 3) is an

expansion on the static force estimation techniques. The static and harmonic techniques both ultimately

rely on inverting a system matrix, but numerical techniques are used to construct the system matrix for the

harmonic force estimation techniques, and modern regularization techniques are used to obtain better force
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estimates using fewer measurements. In addition, the chapter on harmonic force estimation highlights the

relative importance of sensor placement and regularization. While careful sensor placement is important

to ensure the inversion process has enough information to yield an acceptable estimate, regularization is

far more important to improving the results than optimal sensor placement as long as the sensor configu-

ration is chosen intelligently. Additionally, including prior knowledge of the spatial form of the force in

the regularization process enables high-quality force estimates in situations where standard regularization

is inadequate. It is important to note that since the underlying matrix inversion that makes the static and

harmonic force estimation techniques possible is very similar between the two cases, the numerical regular-

ization and structural matrix generation techniques that enhance the harmonic force estimates can also be

directly applied to the static load estimation case.

The moving force estimation technique differs from the static and harmonic force estimation methods

because the dynamic method is not based on direct matrix inversion. Instead, the Kalman filter-based method

provides computational complexity that scales linearly with time, like the harmonic force estimation method

scales with frequency. However, because the method is not based on matrix inversion and the time steps

are interdependent, unlike the frequency steps in the harmonic forcing case, regularization in the dynamic

case must be handled differently. Part of the regularization for the AKF technique is accomplished using a

convecting force model. This model provides additional general information about the force beyond what is

normally captured using the standard zero-order hold force model. Together, the techniques presented here

for static, harmonic, and general dynamic force estimation provide a representative overview of the state

of the art in structural input estimation techniques, complete with a complete discussion of the challenges

inherent to the solution of inverse problems.

5.2 Future Work

Among the three methods presented above, there are many opportunities for future research. This section

outlines some of these possibilities, along with some initial thoughts on research methods and possible

challenges.
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5.2.1 Automatic parameter estimation

When regularization is used, the estimation quality depends on a set of parameters. This is true for ma-

trix regularization as well as the regularization used by the AKF. For instance, the Tikhonov regularization

described in Ch. 3 requires a regularization parameter and a smoothing parameter, while the AKF regular-

ization scheme requires a force covariance and pseudo measurement variance. In classical regularization,

only one parameter (the regularization parameter) is estimated. In this case, the L-curve method can be

used to estimate the optimal value that minimizes both the fitting norm and solution norm [84]. It should be

theoretically possible to use an L-curve like technique to optimize multiple hyperparameters simultaneously

by calculating the fitting and solution norms for combinations of parameters over a wide range of values,

but the computational complexity of this method would scale poorly with the number of parameters. It

may also be possible to take inspiration from hierarchical Bayesian techniques that frame the force estima-

tion problem such that the hyperparameters and force estimates are estimated simultaneously via MCMC

sampling [45]. However, it may be impossible to implement such a technique in other frameworks since

it requires probability distribution representations of the relevant equations to rapidly sample solution and

parameter configurations.

5.2.2 Concentrated forces at unknown locations

The static and harmonic force estimation methods presented in this work are suitable for estimating

loads distributed across a domain, but their ability to estimate point loads at unknown locations has not been

tested. If concentrated loads are applied at known locations, it is trivial to incorporate knowledge about

their locations by reducing the influence coefficient or FRM matrix to a form in which the force magnitudes

are estimated only at the desired locations. However, if the location is not known, it must be estimated

along with the magnitude. The assumed distributed force basis used in the static case would be useless in

this case since that force basis is incapable of yielding concentrated forces. It would be necessary instead

to parameterize the problem as in the harmonic force case by assuming forces at every DOF across the

domain. The ℓ2 regularization used to promote a smooth, distributed solution could be replaced with the ℓ1

regularization that would promote a sparse solution. The same method of incorporating prior knowledge of

the assumed form of the force could still be used with the new ℓ1 regularization scheme. If ℓ1 regularization

was used instead of ℓ2 regularization, the method would no longer be suitable for distributed loads. In
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the general case where it is unknown whether the structure will be subject to distributed or point loads,

it may be possible to implement q-norm regularization instead. This technique would introduce another

hyperparameter that controls the regularization norm, but would allow for general forcing as long as the new

hyperparameter could be tuned automatically.

5.2.3 Distributed transient dynamic forces

The problem of estimating distributed transient dynamic loads on structures can theoretically be handled

using the same AKF method described for moving load estimation in Ch. 4, but the details of the problem

make it much more difficult. First, the convecting force model and pseudo-measurement-based regular-

ization methods do not work for general distributed loads because the force does not necessarily convect

monotonically, and sparsity is not desired. It is possible to provide the AKF with an assumed force at every

time step by returning the AKF state transition equation to its standard Kalman filter form that includes a

control input and using the assumed force at every timestep as a control input. In this case, the force estimate

from the AKF becomes a perturbation term that must be added to the assumed force to obtain the final force

estimate. However, it would likely be impractical in most applications to time-synchronize an assumed force

to the time series response data unless force or pressure sensors are used to supply the force prior in real

time. The only regularization technique remaining then is the force covariance matrix Qz , which acts as

the regularization parameter in standard Tikhonov regularization. It may be possible to obtain an acceptable

force estimate by simply tuning the force covariance matrix for force configurations that vary slowly in

space, but short-wavelength forces may not be adequately reconstructed in the absence of a prior force esti-

mate, since Tikhonov regularization operates by discarding high-frequency content in the solution vector, as

described by the Picard condition [84]. In this case, the AKF may not be suitable for short-wavelength dis-

tributed force reconstruction. Instead, better results may be achieved by using a Bayesian inference scheme

with a prior estimate of the force to estimate the force across the full time series simultaneously. As long as

the force profile changes slowly compared to the timestep and continuously in time, it may be acceptable to

roughly synchronize the force estimate with the response data for offline applications.

85



5.2.4 Different AKF Force Models

The traveling force estimation technique presented here uses a convecting force model that assumes that

force moves monotonically at an approximately constant speed, but other force models are likely possible.

The convecting force model can be readily modified for use with non-constant velocities by recalculating the

augmented state transition matrix at every timestep using the instantaneous assumed force velocity. While

computationally expensive, this technique would be simple to implement since the instantaneous velocity

can be directly measured in many applications.

Other types of force models that are not based on force position are also possible. If the prior estimate of

a force can be represented as a linear combination of state variables (positions, velocities, force magnitudes),

the same force modeling technique demonstrated here can be used. For instance, if a force is due to a linear

spring or damper connected to a structural DOF, the force prior could be represented by placing a stiffness

or damping coefficient in the state transition matrix in the force’s row and the column corresponding to

the DOF’s displacement or velocity. As another example, if all the forces in a region are expected to be

approximately equal (as in the case of a large sled being dragged across the domain), it would be possible

to specify that the associated forces take the mean value of these forces during the next prediction step.
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Appendix A

Boundary Condition Coefficients

This appendix contains the expressions for the boundary condition coefficients CV and CM found in

Eqs. (2.6) and (2.8). The coefficients depend on the boundary condition and the type of loading (UDL or

LDL). The formulations for each configuration are separated into subsections. For the following equations,

we define the following terms for convenience
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A.0.2.2 Simply Supported (SS)
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CV =

1

al+1

(
pl+1

(( −1

al+1 − al

)(−a3l+1

6
+ al

a2l+1

2

))

+pl

((
1

al+1 − al

)(−a3l+1

6
+ al

a2l+1

2

)
+

a2l+1

2

)
− CM

)
(A.8)
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A.0.2.3 Clamped-Clamped (CC)

Cw = p1(νf (1, a2)− τf (1, a2)a2)

+ p2(−νf (2, a2) + νc(2, a2)− νf (1, a2) + τf (2, a2)a2 + τf (1, a2)a2 − τc(2, a2)a2 + νf (2, a3)− τf (2, a3)a3)

+ pl

(
νf (l − 1, al−1)− νc(l − 1, al−1) + τc(l − 1, al−1)al−1 − τf (l − 1, al−1)al−1

+

(
1

al+1 − al

)(
a5l
30

)
+

a4l
24

+ νl(l, al)− νf (l − 1, al)

+

( −1

al+1 − al

)(
a5l
8

− a4l
6

)
− τl(l, al)al + τf (l − 1, al)al

)
+ pl+1

(( −1

al+1 − al

)(
a5l
30

)
− νl(l, al)−

a4l
24

+

(
1

al+1 − al

)(
a5l
8

)
+ τl(l, al)al +

a4l
6

)
+

l−1∑
j=3

pj (νf (j − 1, aj−1)− νc(j − 1, aj−1)− τf (j − 1, aj−1)aj−1

+τc(j − 1, aj−1)aj−1 − νf (j − 1, aj) + τf (j − 1, aj)aj − νf (j, aj) + νc(j, aj) + τf (j, aj)aj

−τc(j, aj)aj + νf (j, aj+1)− τf (j, aj+1)aj+1)

Cθ = p1(τf (1, a2)) + p2(−τf (2, a2)− τf (1, a2) + τc(2, a2) + τf (2, a3))

+ pl

(
−τc(l − 1, al−1) + τf (l − 1, al−1) +

(
1

al+1 − al

)(
a4l
8

)
+

a3l
6

+ τl(l, al)− τf (l − 1, al)

)
+ pl+1

(( −1

al+1 − al

)(
a4l
8

)
− τl(l, al)−

a3l
6

)
+

l−1∑
j=3

pj (τf (j − 1, aj−1)− τc(j − 1, aj−1)− τf (j − 1, aj)− τf (j, aj) + τc(j, aj) + τf (j, aj+1))

CM =
6

a2l+1

(
pl

((
1

al+1 − al

)(−a5l+1

120
+ al

a4l+1

24

)
+

a4l+1

24

)

+pl+1

(( −1

al+1 − al

)(−a5l+1

120
+ al

a4l+1

24

))
− Cθal+1 − Cw

)

− 2

al+1

(
pl

((
1

al+1 − al

)(−a4l+1

24
+ al

a3l+1

6

)
+

a3l+1

6

)

+pl+1

(( −1

al+1 − al

)(−a4l+1

24
+ al

a3l+1

6

))
− Cθ

)

CV =
2

a2l+1

(
pl

((
1

al+1 − al

)(−a4l+1

24
+ al

a3l+1

6

)
+

a3l+1

6

)

+pl+1

(( −1

al+1 − al

)(−a4l+1

24
+ al

a3l+1

6

))
− CMal+1 − Cθ

)
(A.9)
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A.0.2.4 Clamped-Simply Supported (CS)

Cθ and Cw take the same form as in Eqs. A.9.

CV =
1

al+1

(
pl

((
1

al+1 − al

)(−a3l+1

6
+ al

a2l+1

2

)
+

a2l+1

2

)
+ pl+1

(( −1

al+1 − al

)(−a3l+1

6
+ al

a2l+1

2

))
− CM

)

CM =
3

a2l+1

(
pl

((
1

al+1 − al

)(−a5l+1

120
+ al

a4l+1

24

)
+

a4l+1

24

)
+ pl+1

(( −1

al+1 − al

)(−a5l+1

120
+ al

a4l+1

24

))

−a2l+1

6

(
pl

((
1

al+1 − al

)(−a3l+1

6
+ al

a2l+1

2

)
+

a2l+1

2

)

+pl+1

(( −1

al+1 − al

)(−a3l+1

6
+ al

a2l+1

2

)))
− Cθal+1 − Cw

)
(A.10)
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Appendix B

Special Cases for small l

This appendix contains the moment equations and corresponding boundary condition coefficients for

UDL loading with l = 1, and LDL loading with l = 1 or l = 2.

B.0.1 UDL, l = 1

M(x) = −p1
x2

2
+ CV x+ CM (B.1)

B.0.1.1 Clamped-Free (CF)

CV = p1a1

CM = −p1
a21
2

(B.2)

B.0.1.2 Simply Supported (SS)

CV = p1
a1
2

CM = 0

(B.3)

B.0.1.3 Clamped-Clamped (CC)

CV = p1
a1
2

CM = −p1
a21
12

(B.4)
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B.0.1.4 Clamped-Simply Supported (CS)

CV = p1
15a1
24

CM = −p1
3a21
24

(B.5)

B.0.2 LDL, l = 1

M(x) = p1

((
1

a2 − a1

)(
x3

6
− a1

x2

2

)
− x2

2

)
+ p2

(( −1

a2 − a1

)(
x3

6
− a1

x2

2

))
+ CV x+ CM

(B.6)

B.0.2.1 Clamped-Free (CF)

CV = p1

(( −1

a2 − a1

)(
a22
2

− a1a2

)
+ a2

)
+ p2

((
1

a2 − a1

)(
a22
2

− a1a2

))
CM = p1

(( −1

a2 − a1

)(
a32
6

− a1
a22
2

)
+

a22
2

)
+ p2

((
1

a2 − a1

)(
a32
6

− a1
a22
2

))
− CV a2

(B.7)

B.0.2.2 Simply Supported (SS)

CV =
1

a2

(
p1

(( −1

a2 − a1

)(
a32
6

− a1
a22
2

)
+

a22
2

)
+ p2

((
1

a2 − a1

)(
a32
6

− a1
a22
2

)))
CM = 0

(B.8)

B.0.2.3 Clamped-Clamped (CC)

CV =
−6

a22

(
p1

((
1

a2 − a1

)(
a42
24

− a1
a32
6

)
− a32

6

)
+ p2

(( −1

a2 − a1

)(
a42
24

− a1
a32
6

))
+
−2

a2

(
p1

((
1

a2 − a1

)(
a52
120

− a1
a42
24

)
− a42

24

)
+ p2

(( −1

a2 − a1

)(
a52
120

− a1
a42
24

))))
CM =

−2

a22

(
p1

((
1

a2 − a1

)(
a52
120

− a1
a42
24

)
− a42

24

)
+ p2

(( −1

a2 − a1

)(
a52
120

− a1
a42
24

))
+ CV

a32
6

)
(B.9)
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B.0.2.4 Clamped-Simply Supported (CS)

CV =
−3

2a2

(
p1

((
1

a2 − a1

)(
a32
6

− a1
a22
2

)
− a22

2

)
+ p2

(( −1

a2 − a1

)(
a32
6

− a1
a22
2

))
+
−2

a22

(
p1

((
1

a2 − a1

)(
a52
120

− a1
a42
24

)
− a42

24

)
+ p2

(( −1

a2 − a1

)(
a52
120

− a1
a42
24

))))
CM =

−2

a22

(
p1

((
1

a2 − a1

)(
a52
120

− a1
a42
24

)
− a42

24

)
+ p2

(( −1

a2 − a1

)(
a52
120

− a1
a42
24

))
+ CV

a32
6

)
(B.10)

B.0.3 LDL, l = 2

Mi(x) = pi(µf (i, x)) + pi+1(µl(i+ 1, x)− µf (i, x))

− pl+1(µl(l, x) +
x2

2
) + CV x+ CM , i = l − 1,

Mi(x) = pl

(( −1

al+1 − al

)(−x3

6
+ al

x2

2

)
− x2

2

)
+ pl+1

((
1

al+1 − al

)(−x3

6
+ al

x2

2

))
+ CV x+ CM , i = l (B.11)

B.0.3.1 Clamped-Free (CF)

CV = pl+1

(( −1

al+1 − al

)(
alal+1 −

a2l+1

2

))
+ pl

((
1

al+1 − al

)(
alal+1 −

a2l+1

2

)
+ al+1

)

CM = pl+1

((
1

al+1 − al

)(−a3l+1

3
+ al

a2l+1

2

))
+ pl

(( −1

al+1 − al

)(−a3l+1

3
+ al

a2l+1

2

)
− a2l+1

2

)
(B.12)

B.0.3.2 Simply Supported (SS)

CV =
1

a3

(
p2

((
1

a3 − a2

)(−a33
6

+ a2
a23
2

)
+

a23
2

)
+ p3

(( −1

a3 − a2

)(−a33
6

+ a2
a23
2

))
− CM

)
CM = −p1(µf (1, 0))− p2(µl(2, 0)− µf (1, 0)) + p3(µl(2, 0))

(B.13)
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B.0.3.3 Clamped-Clamped (CC)

Cw = −p1(−νf (1, a2) + τf (1, a2)a2)

− p2

(( −1

a3 − a2

a52
30

)
− a42

24
− νl(2, a2) + νf (1, a2) +

(
1

a3 − a2

)(
a42
8

)
a2 +

a32
6
a2 + τl(2, a2)a2 − τf (1, a2)a2

)
− p3

((
1

a3 − a2

a52
30

)
+

a42
24

+ νl(2, a2) +

( −1

a3 − a2

)(
a42
8

)
a2 −

a32
6
a2 − τl(2, a2)a2

)
Cθ = −p1(−τf (1, a2))− p2

(( −1

a3 − a2

)(
a42
8

)
− a32

6
− τl(2, a2) + τf (1, a2)

)
− p3

((
1

a3 − a2

)(
a42
8

)
+ τl(2, a2) +

a32
6

)
CM =

6

a2l+1

(
pl

((
1

al+1 − al

)(−a5l+1

120
+ al

a4l+1

24

)
+

a4l+1

24

)

+pl+1

(( −1

al+1 − al

)(−a5l+1

120
+ al

a4l+1

24

))
− Cθal+1 − Cw

)

− 2

al+1

(
pl

((
1

al+1 − al

)(−a4l+1

24
+ al

a3l+1

6

)
+

a3l+1

6

)
+ pl+1

(( −1

al+1 − al

)(−a4l+1

24
+ al

a3l+1

6

))
− Cθ

)

CV =
2

a2l+1

(
pl

((
1

al+1 − al

)(−a4l+1

24
+ al

a3l+1

6

)
+

a3l+1

6

)

+pl+1

(( −1

al+1 − al

)(−a4l+1

24
+ al

a3l+1

6

))
− CMal+1 − Cθ

)
(B.14)

B.0.3.4 Clamped-Simply Supported (CS)

Cθ and Cw take the same form as in Eqs. B.14.

CV =
1

al+1

(
pl

((
1

al+1 − al

)(−a3l+1

6
+ al

a2l+1

2

)
+

a2l+1

2

)
+ pl+1

(( −1

al+1 − al

)(−a3l+1

6
+ al

a2l+1

2

))
− CM

)

CM =
3

a2l+1

(
pl

((
1

al+1 − al

)(−a5l+1

120
+ al

a4l+1

24

)
+

a4l+1

24

)
+ pl+1

(( −1

al+1 − al

)(−a5l+1

120
+ al

a4l+1

24

))

−a2l+1

6

(
pl

((
1

al+1 − al

)(−a3l+1

6
+ al

a2l+1

2

)
+

a2l+1

2

)

+pl+1

(( −1

al+1 − al

)(−a3l+1

6
+ al

a2l+1

2

)))
− Cθal+1 − Cw

)
(B.15)
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