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ABSTRACT 

 Early detection of breast cancer is associated with a high survival rate of 99%; 

however, this rate decreases significantly (32%) once the cancer has metastasized. 

Unfortunately, current methods for detecting metastatic breast cancer are limited, and 

metastasis will not be identified until after the disease has spread. To enhance diagnostic 

capabilities, a deeper understanding of the biological mechanisms driving metastasis is 

urgently needed. One hallmark of metastasis is the epithelial-to-mesenchymal transition, 

during which cancer cells shift from an epithelial phenotype, characterized by a cuboidal 

shape and strong adhesion to the basement membrane, to a more elongated, mesenchymal 

phenotype. This transition in the cells reflects a tradeoff between cellular proliferation and 

invasiveness. While two-dimensional cell morphology (i.e. cell shape) has been identified 

as a quantifiable indicator of cell function, debate remains on which cellular structures are 

key to migration and invasion from the primary tumor. In this study, eight mammary cell 

lines, including five triple-negative breast cancer lines, a particularly aggressive subtype, 

were analyzed to produce a comprehensive profile of cancer cell behavior. Morphological 



features were compared with dynamic cellular activities like proliferation, migration, and 

cell-to-cell connectivity. 

This work employs a quantitative approach, using an impedance-based assay for 

real-time analysis of proliferation and migration, offering improvements over traditional 

methods. High-throughput imaging and computational analysis were used to extract and 

quantify morphological features of the cells and their nuclei. The analysis revealed a 

diverse spectrum of morphological traits and aggressive behaviors across all cell lines. 

Overall, cell morphology was linked to behaviors such as migration, although the 

relationship was more complex and abstract than previously hypothesized. The findings 

from this work offer new insights into the cellular traits that influence breast cancer 

metastasis and establish a scalable framework for evaluating cancer cell behavior. By 

integrating detailed morphological and biophysical profiling with minimal sample input, 

this study contributes to the development of more efficient and clinically applicable 

investigative tools. 

 

 

INDEX WORDS: Breast Cancer Metastasis, Epithelial-to-Mesenchymal Transition, 

Morphology, Bioelectronic Assay, Electric Cell-substrate 

Impedance Sensing 

 

  



 

 

QUANTIFIABLE BREAST CANCER CELL CHARACTERISTICS AND THEIR 

LINK TO THE METASTATIC CASCADE 

 

by 

 

KYNDRA S. HIGGINS 

B.S., University of Georgia, 2020 

 

 

 

 

 

 

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial 

Fulfillment of the Requirements for the Degree 

 

DOCTOR OF PHILOSOPHY 

 

ATHENS, GEORGIA 

2025 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2025 

Kyndra S. Higgins 

All Rights Reserved 

  



 

 

QUANTIFIABLE BREAST CANCER CELL CHARACTERISTICS AND THEIR 

LINK TO THE METASTATIC CASCADE 

 

by 

 

KYNDRA S. HIGGINS 

 

 

 

 

      Major Professor: Cheryl T. Gomillion 

      Committee:  Karen J.L. Burg 

         Melissa Davis 

         Melissa Hallow 

         William Kisaalita 

         Ross Marklein 

 

 

 

 

 

 

 

 

 

 

Electronic Version Approved: 

 

Ron Walcott 

Vice Provost for Graduate Education and Dean of the Graduate School 

The University of Georgia 

August 2025 



 

iv 

 

 

DEDICATION 

 I would like to dedicate this to everyone who has supported me and helped carry me 

through this journey. Your love, encouragement, and kindness have meant more than you know. 

  



 

v 

 

 

ACKNOWLEDGEMENTS 

 I would like to thank all of my committee members for your valuable guidance and support 

throughout this project. I know how busy you all are, and I deeply appreciate the time and expertise 

each of you contributed. Your diverse backgrounds and perspectives truly enriched this work.  

Thank you to Dr. Marklein and Kanupriya Daga from the Marklein lab for your assistance 

with cell staining, imaging, and CellProfiler protocols. Your help was essential to the success of 

this research. 

I want to especially thank Dr. Gomillion for being an incredible mentor and a wonderful 

person to work with. I would not be where I am today without your constant support. You've 

helped me grow from a hesitant undergraduate into a confident graduate student—and now, a 

doctor. I know I’m not alone in saying that working in your lab has been an incredible experience. 

I feel lucky to have spent the last six years (wow, is that a new record?) under your guidance. 

To my lab members, past and present—thank you for your support, friendship, and insight. 

Whether I needed help troubleshooting an experiment or just a kind word after a hard day, you’ve 

always been there. I’m truly grateful to be part of such a caring and collaborative group. Damion, 

forever my lab manager, your mentorship and willingness to lend a hand (even during late-night 

experiments) has meant so much to me. I’ve learned so much from you. 

Finally, to my friends, family, and my partner, Evan—thank you for always being there. 

Whether feeding me, spending time with me, or simply holding my hand through the chaos, your 

love and support have been everything. I’m endlessly grateful to have you in my life. 

 



 

vi 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS ............................................................................................................ v 

LIST OF TABLES ........................................................................................................................  ix 

LIST OF FIGURES ........................................................................................................................ x 

CHAPTER 

 1 INTRODUCTION AND STUDY OVERVIEW .......................................................... 1 

   1.1 Introduction ....................................................................................................... 1 

   1.2 Study Overview ................................................................................................ 6 

   1.3 References ......................................................................................................... 9 

 2 IN VITRO MODELS OF BREAST CANCER: CURRENT CHALLENGES AND 

FUTURE PROSPECTS TOWARDS RECAPITULATING THE 

MICROENVIRONMENT AND MIMICKING KEY PROCESSES ......................... 11 

   2.1 Abstract ........................................................................................................... 12 

   2.2 Introduction ..................................................................................................... 13 

   2.3 Processes and Characteristics Influencing Cancer Progression ...................... 14 

   2.4 In Vitro Modeling of Breast Cancer ............................................................... 29 

   2.5 Future Outlook ................................................................................................ 52 

   2.6 Conclusion ...................................................................................................... 56 

   2.7 References ....................................................................................................... 58 

 3 DEVELOPMENT AND VALIDATION OF AN IMPEDANCE-BASED ASSAY 

FOR BREAST CANCER CELL CHARACTERIZATION ....................................... 72 



 

vii 

   3.1 Abstract ........................................................................................................... 73 

   3.2 Background ..................................................................................................... 75 

   3.3 Materials and Methods .................................................................................... 79 

   3.4 Results ............................................................................................................. 84 

   3.5 Discussion ....................................................................................................... 90 

   3.6 Conclusion ...................................................................................................... 96 

   3.7 References ....................................................................................................... 97 

 4 ELECTRICAL IMPEDANCE AS A BIOMARKER FOR BREAST CANCER CELL 

TYPE DISCRIMINATION ...................................................................................... 102 

   4.1 Abstract ......................................................................................................... 103 

   4.2 Introduction ................................................................................................... 104 

   4.3 Materials and Methods .................................................................................. 106 

   4.4 Results ........................................................................................................... 110 

   4.5 Discussion ..................................................................................................... 118 

   4.6 Conclusion .................................................................................................... 120 

   4.7 References ..................................................................................................... 121 

 5 TWO-DIMENSIONAL SINGLE CELL MORPHOLOGY AS AN INDICATOR OF 

BREAST CANCER AGGRESSIVENESS .............................................................. 125 

   5.1 Abstract ......................................................................................................... 126 

   5.2 Introduction ................................................................................................... 127 

   5.3 Materials and Methods .................................................................................. 129 

   5.4 Results ........................................................................................................... 133 

   5.5 Discussion ..................................................................................................... 143 



 

viii 

   5.6 Conclusion .................................................................................................... 147 

   5.7 References ..................................................................................................... 149 

 6 DERIVATION AND ASSESSMENT OF DISTINCT MORPHOLOGICAL 

SUBTYPES WITHIN THE AGGRESSIVE MDA-MB-231 BREAST CANCER 

CELL LINE .............................................................................................................. 153 

   6.1 Abstract ......................................................................................................... 154 

   6.2 Introduction ................................................................................................... 156 

   6.3 Materials and Methods .................................................................................. 157 

   6.4 Results ........................................................................................................... 162 

   6.5 Discussion ..................................................................................................... 169 

   6.6 Conclusion .................................................................................................... 173 

   6.7 References ..................................................................................................... 174 

 7 CONCLUDING REMARKS AND RECOMMENDATIONS FOR FUTURE WORK . 

177 

   7.1 Concluding Remarks ..................................................................................... 177 

   7.2 Recommendations for Future Work.............................................................. 182 

   7.3 References ..................................................................................................... 187 

APPENDICES 

 A SUPPLEMENTARY MATERIALS FOR CHAPTER 3 ......................................... 189 

 B SUPPLEMENTARY MATERIALS FOR CHAPTER 4 ......................................... 192 

 C SUPPLEMENTARY MATERIALS FOR CHAPTER 5 ......................................... 194 

 D SUPPLEMENTARY MATERIALS FOR CHAPTER 6 ......................................... 196 

 E SUPPLEMENTARY MATERIALS FOR CHAPTER 7 ......................................... 199 



 

ix 

 

LIST OF TABLES 

Page 

Table 2.1: Effects of genetic variants on the tumors and surrounding tissue ............................... 18 

Table 2.2: Review of literature on prominent bioprinted breast cancer metastasis models ......... 47 

Table 2.3: Review of literature on prominent breast cancer microfluidic models ........................ 51 

Table 4.1: Mammary cell line information  ................................................................................ 107 

  



 

x 

 

 

LIST OF FIGURES 

Page 

Figure 1.1: Summary of research aims and methods ...................................................................... 7 

Figure 2.1: Breast cancer metastasis ............................................................................................. 15 

Figure 2.2: Breast cancer subtypes ............................................................................................... 17 

Figure 2.3: Four different morphologies of breast cancer cells .................................................... 22 

Figure 2.4: The epithelial-to-mesenchymal transition .................................................................. 23 

Figure 2.5: Schematic diagram of the mature mammary gland anatomy ..................................... 25 

Figure 2.6: Schematic comparing normal mammary extracellular matrix to breast tumor 

extracellular matrix ........................................................................................................... 26 

Figure 2.7: Examples of migration assay methods ....................................................................... 31 

Figure 2.8: Spheroid assembling techniques and characteristics .................................................. 38 

Figure 2.9: Acoustofluidic spheroid assembly.............................................................................. 39 

Figure 2.10: Schematic showing examples of three-dimensional bioprinters .............................. 41 

Figure 2.11: Bioprinting with decellularized tissue extracellular matrix ..................................... 46 

Figure 2.12: Dual lumen rods to study tumor cell interaction with lymphatic vessel .................. 50 

Figure 2.13: Advantages and limitations of 3D in vitro modeling methods ................................. 54 

Figure 3.1: Cell impedance concepts ............................................................................................ 79 

Figure 3.2: Schematic of the experimental flow ........................................................................... 82 

Figure 3.3: Imaging and impedance monitoring of breast cancer cell dynamics  ........................ 86 

Figure 3.4: Wound closure over 36 hours ..................................................................................... 87 



 

xi 

Figure 3.5: Impedance and barrier integrity across the full experimental timeline ...................... 88 

Figure 3.6: Cell spread is more pronounced in elongated breast cancer cell lines ....................... 89 

Figure 3.7: Breast cancer cell monolayer barrier integrity ........................................................... 90 

Figure 4.1: Epithelial-mesenchymal characterization of breast cancer cell lines ....................... 111 

Figure 4.2: Representative images of mammary cell lines with impedance and transepithelial 

electrical resistance values after 36 hours of proliferation ............................................. 114 

Figure 4.3: Rate of migration and impedance measurements during wound healing assay ....... 116 

Figure 4.4: Impedance and transepithelial electrical resistance compared to the rate of wound 

closure  ............................................................................................................................ 117 

Figure 5.1: Representative images of stained mammary cell lines ............................................. 134 

Figure 5.2: Mammary morphology features ............................................................................... 135 

Figure 5.3: Principal component analysis (PCA) of cell and nuclear morphology across 

mammary cell lines ......................................................................................................... 137 

Figure 5.4: Features driving separation between epithelial-to-mesenchymal transition (EMT) and 

normal states ................................................................................................................... 139 

Figure 5.5: A potential link between migration and cell morphology ........................................ 141 

Figure 5.6: Heatmap of the first 10 principal components derived from average cell morphology 

data across 8 mammary cell lines ................................................................................... 142 

Figure 6.1: Clonal colony expansion  ......................................................................................... 163 

Figure 6.2: Clonal colony characterization using CellProfiler ................................................... 164 

Figure 6.3: Principal component analysis (PCA) of morphological features in MDA-MB-231 

clonal colonies ................................................................................................................ 166 

Figure 6.4: Morphology-based grouping of clonal colonies via k-means clustering ................. 167 



 

xii 

Figure 6.5: Functional differences among clonal colonies in proliferation, barrier integrity, and 

migration ......................................................................................................................... 169 

Figure 7.1: Breast cancer cells disrupt endothelial barrier integrity ........................................... 184 



 

 

1 

 

 

CHAPTER 1 

INTRODUCTION AND STUDY OVERVIEW 

1.1 Introduction 

1.1.1 Breast Cancer and the Metastatic Cascade 

Breast cancer is the most lethal cancer in women worldwide 1, with roughly 1 in 8 U.S. 

women diagnosed within their lifetime. When detected early, the rate of breast cancer survival is 

very high (99%), however that rate decreases significantly (30%) once the cancer has metastasized 

to other parts of the body, such as the brain, lungs, bone, and liver 2. Thus, there is still a great 

need to study breast cancer pathophysiology to better predict and prevent breast cancer metastasis.  

Currently, breast cancer aggressiveness is determined by a variety of factors, like tumor 

size, receptor status, proportion of proliferating cancer cells (Ki67 index), and family history. 

There have been significant strides towards the identification and detection of metastatic breast 

cancer through investigation of genomic, proteomic, and metabolomic profiling of samples to 

identify potential biomarkers for breast cancer metastasis correlated to clinical data. Advances in 

these methods, combined with earlier and more frequent screening, have contributed to a steady 

increase in breast cancer survival over the last three decades 2. However, effective methods to 

detect metastatic breast cancer are still limited and ultimately detection will not occur until after 

the cancer has already spread, resulting in crucial time lost towards treatment. To improve 

diagnostic capabilities and ultimately patient outcomes, a deeper understanding of the underlying 

mechanisms that drive the metastatic process is urgently needed.  Specifically, in this work 

multiple factors are explored, including in vitro cell migration, the transition of cells from 

epithelial to mesenchymal phenotype, and cell morphology.  
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1.1.2 Two-Dimensional (2D) Migration as an Indicator for Metastasis 

Once cancer cells have implanted at their primary location and a tumor is formed, the first 

step of metastasis begins with local invasion of the basement membrane and cell migration out 

from the tumor. To migrate into surrounding tissue, breast cancer cells must turn over their focal 

adhesions (FAs); thus, migration speed depends on the strength of attachment. Invasive cancer 

cells have more dynamic FAs than their noninvasive counterparts3, and decreased adhesion 

strength corresponds to increased metastatic potential4. Therefore, 2D migration could be a 

suitable metric for measuring cancer cell aggressiveness.  

A wound closure assay, also known as a wound healing assay or scratch assay, is a common 

in vitro approach used to study cancer metastasis. In this method, cancer cells are seeded at the 

bottom of a well plate and grown to confluence. Once confluent, a physical scratch is made through 

the cell layer, removing cells that were once present in the line of the pipette scratch. Over a set 

time, the remaining cancer cells may migrate towards each other to close the gap (“heal” the 

wound). The distance traveled by the cancer cells and the time it takes to close the gap are 

indicators of a cancer cell’s migratory potential and can be used to determine metastatic potential.  

While wound healing assays are a common and effective tool in evaluating breast cancer 

cell migration, they often involve data collection via imaging over set time points or video 

recording. These methods often rely on image processing software to generate quantitative data, 

which can be labor-intensive and imprecise. To better study the factors influencing cancer 

metastasis, there exists a significant need for a more modern, quantitative approach to measuring 

cell migration, which will yield earlier, more reliable and time-efficient identification of metastatic 

cells. Impedance-based wound healing assays address these challenges by providing a more 
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streamlined, real-time measurement of wound closure, offering an improvement over traditional 

image-based protocols for assessing migratory and metastatic potential of cancer cells. 

 

1.1.3 Electric Cell-substrate Impedance Sensing (ECIS) 

Bioelectronic cell impedance assays, also called ECIS analyses, are quickly gaining 

popularity as a label-free, non-invasive, and non-terminal way to continuously observe cell 

behavior. In ECIS, a small alternating current (I) is applied across an electrode configuration at the 

bottom of a tissue culture surface. This results in a potential (V) across the electrodes, which is 

measured by the ECIS instrument. The impedance (Z) is then determined by Ohm’s law, where Z 

= V/I 5. 

Cells are added to the electrode-fitted culture surface, often with the aid of a coating 

substrate, like poly-lysine, to enhance cell adhesion. Once attached, cells act as insulators, 

increasing the impedance. As cells grow and spread across the electrodes, they further impede 

current flow, allowing a variety of cell characteristics to be measured. When cell function changes 

as a response to the environment (e.g. growth factors, cytokines, hypoxia, cytotoxic agents), so 

does the impedance. At a higher alternating current (AC) frequency, the current predominantly 

flows through transcellular pathways, measuring characteristics directly relating to the cells, like 

cell coverage and morphology. At lower AC frequencies, the current flows via paracellular 

pathways. This evaluates cell barrier integrity, a particularly useful metric in cancer studies where 

migration and invasion leads to a degradation of tight junctions between cancer cells and within 

the endothelium of blood and lymph vessels 6-8.  

Several ECIS systems are commercially available from companies like Applied BioPhysics 

and Axion Biosystems. While many researchers build custom systems 9-12, these often lack cross-
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comparability. Therefore, this work was done using the Maestro Z (Axion Biosystems), which 

features a 96-well plate format with an electrode embedded in the culture surface of each well. 

ECIS assay techniques have predominantly been used with breast cancer cells to quantify drug 

interactions 11,13-15, however an ECIS study that can evaluate multiple breast cancer cell behaviors 

concurrently has great diagnostic potential, and is, therefore, explored in this work. 

 

1.1.4 Epithelial-to-Mesenchymal Transition 

In the tumor microenvironment, metastasis is influenced by physical cues, such as proteins 

present in the extracellular matrix (ECM). The diverse set of proteins, polysaccharides and 

glycoproteins in the ECM drives invasion and migration to secondary sites. A cancer cell’s 

increase in invasiveness is often associated with a transition from an epithelial-like phenotype, 

characterized by a cuboidal shape and strong adhesion to the basement membrane ECM, to a more 

elongated, mesenchymal-like phenotype. This process, referred to as the epithelial-to-

mesenchymal transition (EMT), involves a tradeoff between cellular proliferation and 

invasiveness. EMT is regulated at the epigenetic level, where markers like E-cadherin, 

desmoplakin, and keratin are associated with an epithelial-like state and N-cadherin, vimentin, and 

fibronectin are associated with a mesenchymal-like state 16. Additionally, cells switch from having 

more cell-cell adhesion in an epithelial state, to predominantly cell-matrix adhesion in a 

mesenchymal state.  

Although EMT is often conceptualized as a binary switch, where cancer cells are either 

completely epithelial or mesenchymal in phenotype, most cancer cells rarely achieve a fully 

mesenchymal phenotype, characterized by expression of markers like alpha-smooth muscle actin 

(α-SMA) and fibroblast-specific protein 1 (Fsp-1) 16,17. EMT is one of the most critical processes 
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in tumor progression, linking cancer cell morphology to tumor phenotype, gene expression, and 

metastatic behavior. 

 

1.1.5 Cell Morphology 

Cell shape has long been proposed as a mediating factor in cell migration abilities 18,19 and 

is an easily quantifiable readout of the molecular underpinnings influencing cancer progression. 

Breast cancer cell shape can predict ECM three-dimensional (3D) invasion, while morphological 

heterogeneity can indicate tumor cell plasticity and malignant progression 16,20. A majority of 

breast cancer originates from epithelial cells, which in non-malignant tissue are organized, 

maintain tissue polarity, and eventually halt proliferation. In contrast, malignant cells lose polarity, 

adopt a disorganized architecture, and exhibit uncontrolled growth.  

Cells with an epithelial-like morphology are more differentiated, and have tight cell-to-cell 

junctions, leading to a lower proclivity for migration. Meanwhile, mesenchymal-like cells 

overexpress genes associated with tumor aggressiveness and invasiveness, display a high mitotic-

count, and have less tight-junctions than cells with an epithelial-like morphology 21. Luminal breast 

cancer cells, which are hormone receptor positive, tend to display an epithelial-like morphology, 

whereas triple-negative breast cancer cells are more often mesenchymal-like 22. Nonetheless, 

significant heterogeneity exists within these subtypes and a deeper look into this variability is 

necessary as breast cancer cell morphology grows as a means of evaluating cell behavior and 

cancer progression. For example, Hapach et. al. separated two subpopulations within the 

commonly used MDA-MB-231 triple-negative breast cancer cell line and found that, in an in vivo 

mouse model, each subpopulation exploits different pathways to metastasize, respective to their 
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epithelial/mesenchymal phenotype 23. These findings underscore the importance of studying 

morphology at the single-cell level to better understand metastasis. 

Cell shape is an easily visualized feature that often reflects overall cellular function more 

holistically than monitoring specific molecular outputs. Single-cell measurements are particularly 

influential as they may better correlate key behaviors like migration and metabolic activity, both 

of which can vary widely even within the same cell population. Overall, examining breast cancer 

cell morphology provides critical insights into the biological mechanisms driving tumor 

progression and metastatic potential, offering a valuable lens through which to better predict, 

monitor, and ultimately target aggressive cancer behaviors. 

 

1.2 Study Overview 

1.2.1 Objective and Hypothesis 

The overall objective of this research is to validate single-cell morphology as a readout 

associated with cancer aggressiveness and metastatic potential. To support this work, a novel 

bioelectronic impedance-based assay system will first be implemented to study cell behaviors (e.g. 

proliferation, motility, barrier function, etc.) and to record quantitative metrics for distinct cell 

profiling. Subsequently, these quantitative impedance-based metrics will be linked to single-cell 

morphological features, towards understanding the relationship between these metrics and cell 

function. The motivation for exploring morphology as a metastasis predictor stems from the 

inaccuracy that current methods have in predicting metastasis and the need for a more 

encompassing approach of defining cell migration behavior. Using a combination of impedance 

spectroscopy and fluorescent image analysis, the studies in this dissertation are designed to test 

the hypothesis that cell morphology can be used as a metric for predicting cell migratory potential 
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and that specific morphological subtypes within the most aggressive breast cancer cell lines 

contribute to their aggressiveness.  

 

Figure 1.1: Summary of research aims and methods. This dissertation investigates how cell 

morphology relates to dynamic behaviors associated with cancer aggressiveness. Using electric 

cell-substrate impedance sensing (ECIS), cell behaviors such as proliferation, migration, and 

barrier integrity were quantitatively measured. These impedance-based readouts were then 

correlated with single-cell morphology features to identify characteristics influencing metastatic 

potential. The study is organized around three main aims: (I) Establish an ECIS assay to 

characterize mammary cell behaviors; (II) Quantitatively analyze single-cell morphology and 

correlate these metrics with cancer-relevant behaviors; (III) Generate clonal populations from the 

aggressive MDA-MB-231 cell line to assess behavioral and morphological heterogeneity within a 

single genetic background. 

 

1.2.2 Chapter Organization 

The chapters in this dissertation are organized to present a progressive approach to studying 

breast cancer morphology and its link to metastasis. Chapter 2 is a literature review, under review 

for publication in Advanced Biology, that discusses current challenges in breast cancer modeling, 

highlights the need for more quantitative and reproducible systems, and introduces the promise of 

bioelectronic platforms for studying breast cancer behaviors. Chapter 3 describes the development 
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of an impedance-based migration assay for the bioelectronic analysis of breast cancer behaviors. 

This initial study, submitted to Journal of Biological Engineering, validates the feasibility and 

sensitivity of using Electric Cell-Substrate Impedance Sensing (ECIS) to quantify key cell 

behaviors, including proliferation, migration, and cell–cell barrier function, through an in-depth 

analysis of mammary cell behavior using small cell populations. Chapter 4 builds on this work by 

applying the bioelectronic assay to six breast cancer cell lines and two non-cancerous mammary 

cell lines. This study, to be submitted to Lab On A Chip, characterizes the growth and migratory 

behaviors of these lines and proposes that high-frequency impedance and Trans-

Epithelial/Endothelial Electrical Resistance (TEER) measurements can serve as indicators of 

cellular aggressiveness. Chapter 5 shifts to high-throughput image analysis to quantify cell shape 

and other key morphological features, exploring their relationship to cancer aggressiveness. This 

chapter identifies the morphology features that most significantly correlate with epithelial-to-

mesenchymal transition (EMT) and cellular normalcy and will be submitted to Computers in 

Biology and Medicine. Chapter 6 focuses on cellular heterogeneity by generating clonal colonies 

from a single aggressive breast cancer cell line. This work links variations in cell morphology 

among colonies to differences in their migratory behaviors, providing another layer of insight into 

morphology's connection to cancer aggressiveness. Chapter 6 is being prepared for submittal to 

Biotechnology and Bioengineering. Finally, Chapter 7 presents concluding remarks and offers 

future directions to extend the findings of this comprehensive study. Together, these chapters 

present a detailed overview of current breast cancer modeling strategies and propose an innovative 

framework for quantifying and understanding metastatic behavior. 
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2.1 Abstract 

Each year, approximately 1.6 million women are diagnosed with breast cancer worldwide1. 

Of these cases, 0.5 million cases result in death with over 90% of these deaths resulting from 

metastasis. Since it is one of the top 5 cancers with the highest mortality rates, the development of 

breast cancer models that are physiologically relevant to the human body is severely needed. This 

includes models of the breast tissue microenvironment, the microenvironment of metastatic sites 

(e.g. brain, lungs, bone, liver), and models specifically mimicking each individual step of the 

cancer metastatic cascade. This review focuses on models of the primary tumor environment for 

studying cell invasion and spread within the mammary tissue, prior to metastatic outgrowth. Using 

a combination of methods such as migrations assays, tumor spheroids, three-dimensional (3D) 

printed biomaterials, and microfluidic designs, a variety of in vitro modeling methods exist to 

recapitulate specific aspects of the tumor microenvironment and understand sources of tumor 

heterogeneity. An effective model can be specified to each patient, eliminating the need for human 

trials. Subsequently, as the mechanisms involved in breast cancer metastasis are studied utilizing 

more effective in vitro models, targeted therapeutics can be discovered, thus advancing clinical 

treatment strategies. 
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2.2 Introduction 

Breast cancer is the second most lethal cancer for women in the U.S., with 1 in 8 women 

diagnosed within their lifetime. When caught early, the rate of breast cancer survival is very high 

(99%), however that rate drops significantly (27%) once the cancer has metastasized to other parts 

of the body, like the brain, lungs, bone, and liver 2. Unfortunately, effective methods to detect 

metastatic cancer are limited. If not identified at the original breast cancer diagnosis, detection of 

metastatic breast cancer will not happen until after the cancer has spread to other parts of the body, 

resulting in delayed treatment and often, more advanced/detrimental cancer cases. Thus, there 

exists a critical need for earlier more reliable methods for detecting metastatic cancer. Towards 

this goal, significant research is being performed to understand breast cancer pathophysiology. 

Three-dimensional (3D) in vitro models have emerged as powerful tools in breast cancer 

research because they more accurately recapitulate the architecture, cellular interactions, and 

microenvironment of human tumors than traditional two-dimensional (2D) cell cultures or animal-

based models. This enhanced physiological relevance allows researchers to better investigate key 

processes like tumor growth, invasion, and metastasis, improving the ability to identify early 

biomarkers of disease and evaluate the efficacy of potential therapies in a setting that closely 

mimics in vivo conditions. This review explores the challenges associated with current 3D in vitro 

breast cancer models while highlighting the advantages that 2D cultures continue to offer. It 

specifically examines the complexity and physiological relevance of 3D systems, with a focus on 

modeling breast cancer outgrowth from the primary tumor. While metastasis is a critical aspect of 

breast cancer progression, this review will specifically focus on 3D in vitro models of the primary 

tumor to better understand the early events of tumor outgrowth and local invasion, which are 

foundational to metastatic spread. For comprehensive insight into 3D models of common 
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metastatic sites like bone, lung, liver, and brain, readers are directed to existing reviews that delve 

into the complexity of modeling metastatic microenvironments 3-6.  

 

2.3 Processes and Characteristics Influencing Cancer Progression 

2.3.1 Cellular Events Preceding Metastasis and the Metastatic Cascade 

Although the metastasis of cancer cells is the leading cause of death in cancer patients, the 

process is still poorly understood. This can be attributed to cancer heterogeneity, where a variety 

of factors influence its spread throughout the body. Each step in this cycle is dynamic and thus 

difficult to study. Once cancer cells have implanted at their primary location and a tumor is formed, 

the first step of metastasis (Figure 2.1) begins with invasion and angiogenesis. The hypoxic center 

of solid cancer tumors leads to the upregulation of hypoxia-inducible factors 7. This upregulation 

promotes vascular endothelial growth factor (VEGF) which encourages the endothelial cells in the 

veins to grow toward the tumor tissue. The growth and creation of vasculature supplies the tumor 

with nutrients and oxygen 8 and gives the cancer cells an exit point from which to escape.  

Once angiogenesis has vascularized the primary tumor, tumor cells enter these newly 

formed vessels in a process called intravasation. Tumor cells secrete extracellular matrix (ECM) 

destructing enzymes, like matrix metalloproteinases (MMPs)  MMP-2 and MMP-9, to invade local 

stroma, reach the blood or lymph vessel, and intravasate 7. These MMPs can degrade the collagen 

in the basement membrane which allow easy access for intravasation 9. Although not all breast 

cancer cells actively secrete MMPs, collective invasion enables non-invasive follower cells to 

migrate alongside proteolytically active leader cells 10. These leader cells degrade and remodel the 

ECM, creating invasion paths that facilitate the coordinated movement of multicellular strands, 

thereby promoting collective metastasis. Thus, breast cancer cells can locally invade surrounding 
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tissue through two distinct yet occasionally interconnected modes of migration: collective invasion 

and single-cell dissemination 11. 

 

Figure 2.1: Breast cancer metastasis. Breast cancer cells must first detach themselves from the 

primary tumor, then enter the circulation (intravasation), and travel through the body via blood 

vessels. Here, shear stress and natural killer (NK) cells may induce apoptosis. They then leave 

these vessels (extravasation) and colonize a new organ (often the bone, lung, liver, and brain) 

where they multiply and eventually develop into secondary tumors (metastases). Adapted from 

“Breast Cancer to Brain Metastasis”, by BioRender.com (2022). Reproduced with permission. 

Retrieved from https://app.biorender.com/biorender-template. 

 

  

Once the disseminated cancer cells (DTCs) enter the bloodstream, they begin circulation. 

While cancer cell circulation is a relatively short process, with cells reaching other organs in 

minutes, cells must survive a variety of challenges, like anoikis and immune detection. While in 

https://app.biorender.com/biorender-template


16 

circulation, platelets and neutrophils have been shown to aid in cancer cell concealment and 

extravasation12-14. 

 Once CTCs arrest along the vessel wall, they are able to perform extravasation, utilizing 

chemokines like epidermal growth factor, CXCL12, and hepatocyte growth factor to penetrate 

through vascular network 15,16. While this is considered a rate-limiting step, the phenotypic 

plasticity of cancer cells allows them to adapt and respond to their new environment. Foreign 

cancer cells must acclimate to the new microenvironment, different from the original or primary 

tumor site, and create an atmosphere in which they can grow, utilizing local gene mediators to 

enhance their own signaling for survival 7. The seed and soil hypothesis by Paget states that DTCs 

(seed) can metastasize so long as they reach an environment (soil) that is amiable enough for their 

survival and proliferation. 

 

2.3.2 Tumor Cell Receptor Status 

 Traditionally there are four subtypes, as shown in Figure 2.2, based on receptor status of 

the estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor 

receptor 2 (HER2) 7. The ER+ subtype, also known as luminal (LUM), comprises roughly 80% of 

breast cancer cases 17. Luminal subtypes can be LUM-A or LUM-B, with LUM-B breast cancer 

having a poorer prognosis since HER2 overexpression is shown to downregulate ER expression 

18. The HER2+ subtype represents about 5% of cases and is considered HER2 “positive” because 

it carries the receptor for the oncogene ERBB2. This HER2 overexpression is associated with the 

breakdown of cell-to-cell junctions, meaning HER2+ cancers generally have a worse prognosis 

than luminal breast cancers 19. Lastly, the triple negative breast cancer subtype, or basal-like breast 

cancer, accounts for 10% of breast cancer cases and is the most metastatic and deadly of the three 
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subtypes. Triple negative breast cancer gets its name from negative status of all three receptors 20. 

The lack of these receptors makes this cancer subtype the most difficult to treat since many 

therapies target these receptors. As a result, treatment options are limited to surgical removal of 

the breast tissue (e.g. mastectomy, partial mastectomy) and therapies like chemotherapy, 

radiotherapy, CDK4/CDK6 inhibitors, immune checkpoint inhibitors, and PARP inhibitors 21,22. 

Interestingly, the androgen receptor (AR) has been increasingly recognized for its role in breast 

cancer and may provide prognostic and therapeutic value. While AR expression modifies ER 

signaling and is associated with improved survival outcomes for LUM subtypes, quadruple-

negative breast cancers (ER-, PR-, HER2-, AR-) are an aggressive subtype exhibited mainly in 

African-American 54(AA) women 23-25. 

 

 

Figure 2.2: Breast cancer subtypes. Prevalence (%) of breast cancer subtypes in the United States 

from 2017 to 2021, based on data from Giaquinto et al. (2024). Note: Percentages may not total 

100% due to cases with unknown subtypes. Created in BioRender. Gomillion, C. (2025) 

https://BioRender.com/a06c982 

 

 

https://biorender.com/a06c982
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2.3.3 Genetics and Epigenetics 

 It is well established that breast cancer is inherited as a polygenic disease where pathogenic 

variants in breast cancer oncogenes collectively present an increased risk of metastasis and fatality. 

15-20% of breast cancer cases are familial, meaning one or more first- or second-degree relatives 

have the disease 26,27. Thus, it is important to understand the genetic and epigenetic influences on 

breast cancer progression and how they affect interaction with the tumor microenvironment in a 

model setting. Pathogenic variants of BRCA1, BRCA2, TP53, STK11, CDH1, and PTEN are 

strongly associated with breast cancer, accounting for approximately 20% of all familial risk 28. 

The presence of these variants can lead to the recruitment of tumor-associated cells, systemic 

inflammation, and epithelial-to-mesenchymal transition (EMT, discussed in more detail later). A 

detailed list of their documented effects on the behavior of the breast tumor and the peritumoral 

environment are in Table 2.1.  

 

Table 2.1: Effects of genetic variants on the tumors and surrounding tissue 

 

Mutated Gene Response References 

BRCA1 EMTa 

MSCb-activation 

Fibroblast-activation 

29-31 

BRCA2 EMT 29,32 

TP53 TAMc-stimulation 33 

STK11 Autophagy 

Proliferation 

Aerobic Glycolysis 

Cell Polarity 

34-39 

CDH1 EMT 40,41 

PTEN EMT 

Proliferation 

42,43 

a Epithelial-to-mesenchymal transition, b Mesenchymal stromal cell, c Tumor-associated 

macrophage 
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While 5-10% of breast cancers occur due to genetic mutations and 15-20% are considered 

familial, a majority of breast cancer cases are thought to be heavily influenced by epigenetics 28. 

Unlike genetics, which cannot be easily altered, epigenetics have the ability to alter gene 

expression, operating much like a binary switch to turn gene expression "on" or "off". Epigenetic 

changes can be influenced by environment and lifestyle factors, thus explaining how breast cancer 

risk is positively associated with environmental pollutants 44,45, tobacco smoking 46, alcohol 

consumption 47, obesity 48,49, psychological stress 50, lack of exercise 48, and aging 51. Although 

chronological age is a major risk factor for many cancers, rapid biological aging can occur at 

different rates in people. An accelerated biological age has been shown to be statistically 

significant in incidence of invasive breast cancer 51. Additionally, given that the breast tissue is 

comprised mostly of highly secretory adipose tissue, it is especially important to highlight the 

effects of obesity on breast cancer risk and metastasis. Obesity promotes low-grade inflammation 

and can lead to epigenetic dysregulation and changes in cytokine production 52,53. This, in turn, 

alters the phenotypes of immune cells and tumor-associated stromal cells, including fibroblasts, 

macrophages, and endothelial cells. Adipose tissue acts as a main source of estrogen biosynthesis 

in postmenopausal women, potentially explaining the strong causal relationship between obesity 

and postmenopausal breast cancers. Unfortunately, evaluations of the biological mechanisms 

underlying obesity and breast cancer have been conducted predominantly in populations with 

European and Asian ancestry and meta-analyses that examine this association in other racial/ethnic 

groups are severely lacking 54. AA women tend to be diagnosed at a younger age than non-Hispanic 

White women and are diagnosed with higher rates of TNBC often yielding a worse prognosis. 

After adjusting for socioeconomic status, disparities in breast cancer risk for AA populations are 

reduced but not eliminated, suggesting that common genetic variants and epigenetic effects differ 
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according to genetic ancestry. Current research has focused on the pathogenic variants of TP53 

found in AA populations 55-58, as well as the Duffy Antigen Receptor for Chemokines (DARC or 

ACKR1) as a variant prevalent among those with Western Sub-Saharan African ancestry 59-61. This 

gene expression is significant, as tumors that express the DARC variant exhibit a specific immune 

response, helping better define the tumor environment and implications for tumor therapeutic 

response. Finally, groups at University of California Los Angeles and Rutgers University have 

published a variety of papers suggesting the use of genetic variants of adipokines leptin and 

adiponectin as obesity-associated biomarkers for AA women, with lower expression of the leptin 

receptor linked to TNBC especially among AA women 62-64. These protein coding genes and their 

corresponding receptors can explain, in part, how obesity can accelerate breast cancer progression. 

As more efforts have been made to improve our knowledge on the basis of health/disease in diverse 

populations, we will continue to understand the intricacies of genetics in association to breast 

cancer metastasis. 

 

2.3.4 Cancer Cell Morphology 

 Cell shape has long been proposed as a mediating factor in cell migration abilities 65,66 and 

is an easily quantifiable readout of the molecular underpinnings influencing cancer progression. 

Breast cancer cell shape can predict ECM three-dimensional (3D) cell invasion, whereas 

morphological heterogeneity can indicate tumor cell plasticity and malignant progression 67,68. 

Nomenclature and cell line classification based on morphology are widely inconsistent, therefore 

this section will focus on the distinctions between epithelial-like and mesenchymal-like breast cell 

morphologies 18. 
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 A majority of breast cancer originates from epithelial cells. In non-malignant tissue, these 

epithelial cells are organized, maintain tissue polarity, and halt division after a period. This is 

compared to malignant cells that have a loss of tissue polarity, a disorganized architecture, and fail 

to halt growth. Cells with an epithelial-like morphology are more differentiated, and have tight 

cell-to-cell junctions, leading to a lower proclivity for migration. Meanwhile, mesenchymal-like 

cells have an overexpression of genes associated with tumor aggressiveness and invasiveness, tend 

to have a very high mitotic-count, and have less tight-junctions than cells with an epithelial-like 

morphology 69. While luminal cells are typically epithelial-like, HER2-enriched subpopulations 

can encompass both epithelial-like and mesenchymal-like morphological features. Triple-negative 

breast cancer cells are more likely to have a mesenchymal-like morphology however there is 

enormous heterogeneity among these cell lines. Hapach et. al. separated two subpopulations within 

the commonly used MDA-MB-231 cell line and found that, in an in vivo mouse model, each 

subpopulation exploits different pathways to metastasize, respective to their 

epithelial/mesenchymal phenotype 70. In 2D tissue culture, luminal-like cells demonstrate the 

classic cobblestone morphology and expression of cell–cell adhesion molecules such as E-

cadherin, whereas cells with a mesenchymal-like  appearance expressed markers of EMT transition 

such as vimentin 71.  

 It should be noted that 2D morphology of cell lines differs from those grown in 3D culture. 

Kenny et. al. showed breast cancer cells cultured on a 3D layer of Matrigel displayed four different 

morphologies: round, mass, grape-like and stellate 72. These morphologies, shown in Figure 2.3, 

not only correlated with the cell lines’ protein expression and gene expression profiles, but they 

found distinct 3D morphologies were associated with breast cancer cell invasiveness and 

metastatic tendencies. Specifically, every cell line in the stellate group was shown to perform in 
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invasion, suggesting more elongated morphology perform much higher rates of invasion than other 

groups. While 3D morphologies have more physiological relevance than 2D, imaging and 

quantification of 2D morphology is much simpler. As breast cancer cell morphology grows as a 

means of evaluating cell behavior and cancer progression, a deeper look into the differences 

between 2D and 3D cell shape will be necessary. In all, epithelial-like cells have more cell-cell 

contact points, while mesenchymal-like cells can host more cell-matrix adhesion points. More 

aggressive breast cancers can exploit a process known as EMT to switch between phenotypes, 

giving these cells more adaptability during steps of the metastatic cascade. 

 

 

Figure 2.3: Four different morphologies of 3D in vitro breast cancer cells. 3D cultures were 

stained with F-actin (green) and nuclei were counterstained with DAPI (blue). Reproduced with 

permission.64 2007, Elsevier. 
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Figure 2.4: The epithelial-to-mesenchymal transition. In an epithelial state, cells have a higher 

presence of cell-cell adhesion sites (shown as orange), like tight junctions and adherens junctions, 

and a lower presence of cell-matrix adhesion sites. When cells undergo epithelial-to-mesenchymal 

transition (EMT), with the help of TGFβ, TWIST1, and SNAIL, they lose some cell-cell adhesion 

and gain more cell-matrix adhesion. Created with biorender.com. 

 

2.3.5 Epithelial-to-Mesenchymal Transition 

 A cancer cell’s increase in invasiveness is often associated with a transition from epithelial-

like cells, that maintain a cuboidal shape and adhere to the basement membrane, to more elongated 

mesenchymal-like cells. There is an observed tradeoff between the cells’ proliferation and 

invasiveness for this process, EMT. This change occurs on an epigenetic level where markers like 

E-cadherin, desmoplakin, and keratin are associated with an epithelial-like state and n-cadherin, 

vimentin, and fibronectin are associated with a mesenchymal-like state 68. Additionally, cells 

switch from having more cell-cell adhesion in an epithelial state, to more cell-matrix adhesion in 

a mesenchymal state (Figure 2.4). The EMT is often viewed as a binary switch, where cancer cells 

are either completely epithelial or mesenchymal in phenotype. Rarely do cells express a 

“completely mesenchymal“ state by expressing markers like alpha-smooth muscle actin (a-SMA) 

and fibroblast-specific protein 1 (Fsp-1) 68,73. EMT is one of the most significant processes in 
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tumor progression and its link to tumor phenotype, gene expression, and the tumor 

microenvironment are discussed throughout this paper. The reverse process, mesenchymal-to-

epithelial transition (MET) is suggested to be involved in the implantation of cells at a new tumor 

site. 

 

2.3.6 Properties of the Tumor Microenvironment 

Breast Anatomy 

 While a majority of this review focuses on the cellular interactions between the tumor and 

surrounding peritumoral environment, it is important to consider the breast anatomy as a whole. 

The breast is composed of glandular, fatty, and connective tissues and is divided into around 15 to 

20 lobes that can be further broken down into lobules. Ducts connect these structures together 

while fibrous stroma, blood vessels, and lymph vessels make up the rest of the breast anatomy 

(Figure 2.5). The purpose of the stroma, which includes adipocytes, fibroblasts, endothelial cells, 

immune cells, and ECM, is to provide support and protection 20, however these cells can be 

exploited to aid in tumor migration and invasion via cytokine secretion. Fibroblasts synthesize and 

secrete ECM components however when cancer cells defunctionalize these processes, ECM 

stiffness increases.  

 

ECM Stiffness 

 The ECM is an intricate network of macromolecules organized to form a structurally stable 

composite for cells to grow on. It contributes to the mechanical properties of tissues and is a 

reservoir of growth factors and bioactive molecules. ECM within the breast tissue is comprised of 

collagens, fibronectin, laminins, proteoglycans, and matricellular proteins, with collagen 
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amounting up to 90% of ECM components 74. While normal mammary epithelium is soft, with an 

ECM stiffness around 0.15-0.20 kPa, invasive breast tumors are stiff, with an ECM stiffness 

around 1.0-4.0 kPa 75. Hypoxic regions are present in many solid tumors, as oxygen availability is 

limited due to rapid tumor growth and disordered vasculature. As shown in Figure 2.6, the hypoxic 

tumor microenvironment increases ECM stiffness by excess deposition and crosslinking of 

collagen, though specific pathways linking hypoxia and ECM stiffness are not well understood 

76.   

 

Figure 2.5: Schematic diagram of the mature mammary gland anatomy, composed of an epithelial 

compartment of polarized luminal epithelial cells that line the duct and alveoli. Surrounding the 

luminal epithelial cells are myoepithelial cells and a basement membrane. The epithelial 

compartment is embedded within a stroma composed of adipocytes, immune cells, blood vessels, 

fibroblasts, and neurons. Reproduced with permission.66 2022, Elsevier. 

 

 Cell-ECM interactions are mediated via cell surface receptors, like integrin-based cell 

adhesions and calcium ion channels. These mechanosensitive structures act to transmit mechanical 

signals into a cell readable format, often leading to breast cancer phenotypic changes and more 

aggressive invasion and proliferation. The TRPV4 channel in particular has emerged as a 

significant member in the TRPV family contributing to EMT and microenvironment stiffness. 
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Azimi et. al. demonstrated that calcium influx through the TRPV4 pathway is able to trigger EMT 

events. Upon pharmacological activation of TRPV4 in breast cancer cells with a traditionally 

epithelial morphology (MDA-MB-468), there was a significant increase in mRNA levels of 

mesenchymal markers vimentin and N-cadherin as well as a downregulation in epithelial marker 

E-cadherin 77. Separate studies have also shown TRPV4 can potentiate invasion of breast cancer 

cells through calcium-dependent activation of the ATK pathway, leading to changes in actin 

dynamics and downregulation of E-cadherin 78,79. Within the tumor microenvironment, TRPV4 

can affect collagen remodeling, modifying ECM stiffness and potentially causing fibrosis 80-82.  

 

Figure 2.6: Schematic comparing normal mammary ECM to breast tumor ECM. Healthy breast 

ECM is comprised mostly of collagen with proteoglycan and fibronectin and other ECM proteins 

also present. Under cancerous conditions, there is an excess of ECM crosslinking, an increase in 

cytokine secretion, and activated fibroblasts work to reshape the ECM. This, together, gives tumor-

associated ECM a higher mechanical stiffness than normal mammary ECM. Created with 

biorender.com. 
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 The mechanosensing abilities of breast cancer cells are also mediated by integrin-based 

adhesion, which have the ability to interact with collagen and laminin in the ECM 83-85. ECM-

binding integrin focal adhesion kinase (FAK) regulates proliferation, migration, and adhesion and 

high FAK levels are associated with TNBC and increased matrix stiffness 86. Tumor FAK plays a 

role in TNBC angiogenesis and is a significant predictor of overall survival in patients 

87,88.  Stromal fibroblast-derived periostin can activate FAK-Src kinases through integrin-mediated 

signaling, which results in the activation of the YAP/TAZ pathway and, subsequently, IL-6 

expression in tumor cells 89. Additionally, FAK signaling has been shown to promote the secretion 

of enriched exosomes  in a YAP/TAZ pathway-dependent manor, while FAK deletion 

significantly suppressed breast cancer metastasis in in vivo mouse models 76,90. Integrin-mediated 

mechanotransduction regulates the transcriptional activity of YAP/TAZ which, in turn, modulates 

cell proliferation and differentiation 85. While it is well established that a stiffer ECM is associated 

with more aggressive breast cancer, future advances in mechanobiological techniques will shed 

more light on tumor mechanosensing and the pathways exploited during metastasis.  

 

Biochemical Remodeling of the Stroma 

 In addition to mechanical stimuli in the tumor microenvironment, biochemical stimuli play 

a significant role in the severity and progression of breast cancer. In this environment, many 

cytokines exist to increase inflammation, promote angiogenesis, and contribute to the motile 

behavior of cancer cells. 

 VEGF is an angiogenic and proinflammatory cytokine. While the complex mechanism that 

alters the balance between angiogenic inducers and angiogenic inhibitors is still a subject of study, 

the known effect is an increase in growth factors, like VEGF. This in turn encourages the formation 
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of new blood vessels from pre-existing capillaries, providing a means for cancer cell metastasis. 

As a result, elevated levels of VEGF are symptomatic of the aggressive nature of the tumor and 

are linked to a poorer prognosis 91. Closely associated with VEGF is tumor necrosis factor alpha 

(TNFα), which reduces type I collagen gene expression in the tumor microenvironment. This has 

an antifibrotic effect on the tumor environment and encourages breast cancer motility.  

 To complete invasion and begin the process of metastasis, matrix degrading enzymes, like 

matrix metalloproteinases (MMPs), are used. MMP-2 and MMP-9 are matrix degrading enzymes 

known to influence breast cancer development, invasion, and metastasis 92. Increased levels of 

MMP-9 expression was observed in breast cancer tissue compared to healthy breast tissue, as well 

a correlation between high expression and higher tumor histological grade and higher incidence of 

metastasis and relapse 93. Separately, a meta-analysis of 41 studies revealed an overexpression of 

MMP-2 was associated with an unfavorable overall survival, while MMP-9 expression was 

associated with shorter overall survival 94. Evidence also shows a lesser studied, membrane-bound 

membrane type-1 MMP (MT1-MMP) is a significant driver of breast cancer invasion and aids in 

matrix degradation 95. 

 An interesting growth factor, for its initial cancer inhibition but late-stage cancer 

promotion, is transforming growth factor beta (TGF-β). TGF-β is a cytokine and major regulator 

in many processes, including proliferation, differentiation, migration, adhesion, immunity, and 

apoptosis. In breast cancer, TGF-β is thought to play a dual role, inhibiting cancer growth early on 

and later aiding in EMT 96. Cell-cycle arrest is caused by TGF-β in early breast cancer stages by 

inhibiting cyclin-dependent kinases and restricting ER alpha-mediated proliferation 97. Often 

times, TNBCs are resistant to these growth-inhibitory effects, contributing to their aggressiveness.  
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 As previously stated, an increase in inflammation of the tumor’s surrounding tissue 

environment aids in the initiation and promotion of invasion, angiogenesis, and eventually 

metastasis. The interest in breast cancer and obesity stems from the observation that an increase in 

adipose tissues around the tumor also increases an inflammatory response by the body. Adipose 

tissue is a part of the endocrine system, secreting adipokines, like leptin, resistin, adiponectin, 

TNF-α, and interleukin-6 (IL-6). When this tissue becomes dysfunctional, like with obesity, this 

leads to elevated levels of adipokines and an increase in free fatty acids (FFA). High levels of 

FFAs provoke an upregulation of inflammatory signaling through nuclear factor kappa B (NF-κB) 

transcription 98,99. The environment surrounding the tumor is then populated with inflammatory 

cells such as tumor-associated macrophages (TAMs), neutrophils, and mast cells. These 

inflammatory cells aide in tumor growth and angiogenesis as they encourage pro-inflammatory, 

pro-angiogenic factors like VEGF, TNF, IL-1 and IL-6 8,100.  Therefore, angiogenesis is already 

encouraged by the hypoxic center of tumor cells but in an environment with plenty of adipose 

tissue, generates a positive feedback loop. Cytokines like TGF-β and IL-10 are also used by TAMs 

and tumor-induced regulatory T cells to suppress immune response 101,102. While the paracrine 

signaling associated with the tumor microenvironment is incredibly complex and involves many 

pathways and cell-cell interactions, these influences on breast cancer progression should be 

considered when constructing a system to model steps of the metastatic cascade. 

 

2.4 In Vitro Modeling of Breast Cancer 

2.4.1 2D In Vitro Modeling Approaches 

2D in vitro models offer a range of advantages for studying breast cancer metastasis, making 

them indispensable tools in both basic and translational research. Their simplicity and cost-
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effectiveness allow for rapid experimental setup and high-throughput screening, while their 

reproducibility and scalability make them ideal for comparative studies across labs. In the context 

of metastasis research, 2D models are primarily used for adhesion and migration assays. 

Adhesion assays typically involve culturing cancer cells on tissue culture polystyrene coated 

with specific ECM proteins. Cell attachment is then measured over a short time period, typically 

around 30 minutes. The choice of ECM protein can reveal different aspects of the metastatic 

process. For instance, breast cancer cell adhesion to laminin-411 or laminin-511—two proteins 

abundant in the sub-endothelial basement membrane—can provide insights into intravasation and 

extravasation capabilities, respectively 103. 

Migration is another key process in metastasis and is commonly assessed using wound healing 

(scratch) assays or transwell migration assays (Figure 2.7). After tumor formation at the primary 

site, metastasis begins with local invasion through the basement membrane and migration into 

surrounding tissues. This migration requires turnover of focal adhesions (FAs), and the rate of cell 

migration is linked to FA dynamics. Invasive breast cancer cells tend to have more dynamic FAs 

than their non-invasive counterparts 104, and reduced adhesion strength has been associated with 

increased metastatic potential 105. Therefore, 2D migration assays serve as useful proxies for 

assessing cancer cell aggressiveness. 

The wound healing assay, also known as the scratch assay, is a classic in vitro model used to 

study cancer cell migration. In this method, shown Figure 2.7D, cancer cells are seeded into a well 

plate and allowed to grow to confluence. A scratch is then made across the cell monolayer, 

removing cells along the scratch line. Over time, the remaining cells migrate to close the gap. The 

rate and extent of this closure reflect the cells' migratory and metastatic potential. 
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Figure 2.7: Examples of migration assay methods. A) Time-lapse microscopy tracks single-cell 

movement across different groups (e.g., on distinct ECM substrates).67 B) Cell speed and 

persistence can be quantified from time-lapse videos and averaged to compare migration patterns 

across conditions. C) Transwell assays assess migration by separating cancer cells (in the top 

insert) from a chemoattractant (in the bottom well), measuring movement through a porous 

membrane. D) Wound healing (scratch) assays create a physical gap in a cell monolayer, and 

migration is measured by the rate at which cells close the exposed area. 2020, AIP.  

 

 

Another common assay is the transwell or Boyden chamber assay (Figure 2.7C). In this 

setup, a chemoattractant is placed in the lower chamber, and cancer cells are seeded in an upper 

insert separated by a porous membrane (typically 4–8 μm in pore size). Migratory cells move 

through the pores to the underside of the membrane, where they can be imaged and quantified. 

Although 2D models are less complex than 3D systems, they have played a foundational role in 

cancer cell research and continue to offer valuable insights into the molecular mechanisms that 

govern cell adhesion, migration, and metastatic potential. 
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Advantages and Insights Gained from 2D Models 

The widespread use of 2D models has resulted in well-established protocols and a wealth 

of historical data, providing a strong foundation for hypothesis generation and validation. Unlike 

3D models, 2D systems have more established protocols, making high throughput analysis easier. 

Additionally, easier image analysis allows for better study of EMT, including the regulation of key 

molecular markers like E-cadherin, vimentin, and Snail, which are central to metastatic 

progression. For instance, studies have demonstrated that treatment with TGF-β1 in 2D cultures 

induces EMT, characterized by decreased E-cadherin and increased vimentin expression, leading 

to enhanced migratory capabilities of breast cancer cells 106-108.  

Moreover, 2D systems are instrumental in dissecting the roles of cell adhesion molecules, 

MMPs, and pro-metastatic cytokines, all of which contribute to tumor cell invasion and 

dissemination 92,109. Time-lapse microscopy allows for dynamic tracking of cell migration and 

invasion, while high-throughput imaging and morphometric analysis enable quantitative profiling 

of metastatic phenotypes, including cell shape, motility, and protrusion dynamics. These image-

based approaches were combined in a study by the Oudin Lab, that validated 2D cell morphology 

as a predictor of tumorigenicity and metastasis in vivo across multiple triple-negative breast cancer 

cell lines 110. The compatibility of 2D cultures with automated imaging systems facilitates high-

content screening approaches, allowing for the rapid assessment of numerous parameters across 

large datasets and accelerating the discovery of new metastatic processes. Coupled with 

transcriptomic and proteomic profiling, 2D cultures provide valuable molecular signatures of 

metastatic behavior that inform both mechanistic insights and therapeutic development. 
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Limitations of 2D In Vitro Approaches 

Despite the importance of 2D in vitro studies in uncovering fundamental aspects of breast 

cancer metastatic behavior, they can present notable limitations. Primarily, they lack the 3D 

architecture and resulting mechanical cues that are critical for accurately modeling tumor 

progression and cellular responses. These simplified environments fail to fully recapitulate the 

complex tumor microenvironment, like ECM remodeling, though the use of ECM coatings and 

biomimetic substrates can partially mimic the basement membrane to support cell adhesion and 

polarity 67,111,112. Additionally, 2D platforms offer an oversimplified representation of the multi-

step metastatic process and are often used to measure early metastatic behaviors, like EMT, 

migration, and adhesion. To address some of these limitations, recent advances such as 

microfabrication and surface patterning have enabled more precise studies of directional migration 

by guiding cell movement along defined paths 113-115. In parallel, co-culture approaches 

incorporating immune or stromal cells help simulate key aspects of tumor-immune interactions 

within a controlled 2D environment 116,117. Nevertheless, many 2D models continue to exhibit poor 

correlation with in vivo metastatic behavior and offer limited predictive power for clinical 

outcomes, underscoring the need for more physiologically relevant systems. 

 

The Transition from 2D to 3D 

2D breast cancer models serve as a valuable foundation for dissecting fundamental 

mechanisms of metastasis, like cell migration, invasion, and EMT, under controlled and 

reproducible conditions. These systems remain valuable for their high-throughput capabilities and 

ease of imaging. By first identifying key molecular drivers in 2D and then validating their 
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functional relevance in 3D systems, we can bridge the gap between simplicity and biological 

complexity, enabling a more comprehensive understanding of metastatic progression. 

 

2.4.2 3D In Vitro Models 

 ECM-associated Proteins 

Many ECM proteins exist on the market to model 3D breast cancer cell outgrowth from 

the primary tumor and are chosen to fit the needs of the model. To emphasize the role that tumor 

ECM plays in cancer progression, this review will highlight the use of ECM-associated proteins 

in a hydrogel format, however alternative models are discussed in detail in many reviews 76,118. 

Breast ECM-associated proteins, like collagen, fibronectin, and laminin are used in 3D in vitro 

models for their excellent biocompatibility and ability to effectively recapitulate the biochemistry 

of the tumor microenvironment. Given that collagen makes up around 90% of the breast ECM, it's 

a good choice for its biomimetic capabilities. Collagen is made up of many polypeptides called 

alpha chains which are rich in proline and glycine. Three of these alpha chains will become twisted 

to form stiff triple helical structures that aggregate to form collagen fibrils. These fibrils will 

arrange in tissue-specific formations which allow for the identification of the collagen 

type.  Collagen has been used in many studies to examine the effects of collagen fiber alignment 

on cancer cell morphology and invasion through contact guidance 119. In a 2020 paper, Gong et. 

al. developed a method to fabricate collagen bundles by heating up the collagen mixture prior to 

agitation 120. This results in the collagen bundling together, mimicking the stiffening and alignment 

that collagen I undergoes in vivo during cancer progression. Collagen has also been used to 

replicate age in the microenvironment. Yang et. al. developed a 3D scaffold made up of collagen 

extracted from young and aged mouse tail tendons aiming to mimic age-related changes in breast 
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tissue. The collagen from two different age groups were able to demonstrate the young vs aged 

phenotype of increased microenvironment stiffness and motility. The ability to use natural ECM 

proteins from intentionally chosen sources highlights the potential to leverage the vast tunability 

of 3D in vitro modeling.  Breast cancer spheroids of invasive ductal carcinoma have also proven 

to reinforce ECM alignment via LOXL3 secretion 121. Ligands for cancer cell integrin receptors 

exist in proteins like collagens, laminin, fibronectin and are used to identify new signaling 

pathways that may be exploited. Park et. al. created a TNBC model using MDA-MB-231 cells to 

demonstrate that increased fibronectin levels in 3D suspension culture facilitates cancer cell 

attachment and spread using integrins β-5 and Src with targeted Src-based therapies being actively 

pursued 122,123.  

Biomaterials are any type of material that can interact with biological systems 124.  In vitro 

models often rely on naturally and synthetically derived biomaterials to serve as matrices, 

hydrogels, and scaffolds, among other applications. Naturally derived biomaterials can be sourced 

from proteins, polysaccharides, glycosaminoglycans, and decellularized tissues 125. Conversely, 

synthetically derived biomaterials are engineered specifically for their ability to interact with 

biological systems and can be attuned to meet specific standards for molecular weight, degradation 

rates, strength, and spatial structure 126. The utility of synthetic biomaterials arises from its 

controlled composition which reduces unintended results in cell culture experiments. Overall, 

using a composite of natural and synthetic biomaterials creates a biomimetic structure with tunable 

mechanical and chemical properties. 
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 Spheroids 

 Tumor spheroids are spherical cellular clumps that are either self-assembling or are forced 

to aggregate. Their architecture resembles that of the tumor and is often used to assess cell-cell 

communication in a complex 3D system. While some spheroid shaping techniques encourage cells 

to self-assemble, like hanging drop, liquid overlay, and ultra-low attachment (ULA) round-bottom 

plates, methods like centrifugation, spinner flasks, and rotating bioreactors use force to encourage 

cell-cell assemblage (Figure 2.8A). Spheroids are often constructed from single cell populations, 

for their ease of use and accessibility. These spheroids are called multicellular tumor spheroids. 

One of the first scaffold-free methods of creating tumor spheroids is outlined in the protocol by 

Foty127 which uses a small cancer cell suspension that is pipetted to a lid of a 10cm plate and then 

gently placed back onto the plate. Once the cells have aggregated, the tumor spheroids can be 

harvested and grown out or used immediately. The liquid overlay technique (LOT) uses a non-

adherent coating in a cell culture plate with a cell suspension in media that is seeded over this 

coating. This method negates the need for round-bottom plates as the non-adherent coating forces 

the cells to self-aggregate. An important consideration for using tumor spheroids as a breast cancer 

model is the ability to replicate hallmark phenotypes consistent with the breast cancer subtype. 

Dhandapani et al used the LOT to create tumor spheroids in the MCF-7 and MDA-MB-231 cell 

lines 128. In this work, they were able to capture the EMT and cancer stemness in the triple-negative 

breast cancer line and replicate the same immune effects of doxorubicin treatment as in vivo 

studies, which highlights the spheroids ability to be used as an effective drug testing model.  

Another popular method is using ULA round-bottom plates to mimic the same self-aggregation 

technique of hanging-drop, but in a more streamlined way that can sustain larger cell seeding 

volumes. In the paper by Malhão et al, four breast cancer cell lines were aggregated using 96-well 
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ULA plates. It is mentioned that although this method is fast, cost-effective, and reproducible, 

there still lacks significant literature on the characterization of breast cancer tumor spheroids 129.   

Alternatively, surgical resections of breast cancer tissue can be used to create tissue-derived 

spheroids that are often enriched with cancer stem cells. While this method better captures tumor 

complexity, this process has traditionally been difficult due to low cell number and high amount 

of nonmalignant tissue within the samples 130. 

Spheroid diameter can range anywhere from 200-750 μm, depending on cell type and 

culture conditions 131,132. Spheroids larger than 400 μm in diameter develop oxygen gradients 

representing the hypoxic core of aggressive breast cancers 133. As previously discussed, 

intratumoral hypoxia is associated with a more aggressive phenotype and an upregulation of 

hypoxia-inducible factors which support tumor growth and malignant progression (Figure 2.8B). 

Homotypic spheroids, meaning the spheroid is composed of one cell type, have a simplified tumor 

environment that can isolate the cell-cell interactions of the breast cancer cells themselves. For 

example, Huang et. al. exposed MDA-MB-231 spheroids to static conditions and interstitial flow 

and found e-cadherin expression significantly decreased in flow conditions, elucidating the 

relationship between tumor interstitial flow and metastatic cancer motility 134. Heterotypic 

spheroids are used to evaluate the complex cell-cell interactions of breast cancer cells with the 

surrounding tumor stroma. Tumor associated cells, like fibroblasts and mesenchymal stromal cells, 

can be integrated in spheroids to model the heterotypic cell-cell interactions that so heavily 

influence tumor progression 135-137. Lastly spheroids can be encapsulated in ECM proteins as a 

means of studying cell-matrix interactions and tumor invasion. For example, Karrobi et. al. used 

MCF10A and MDA-MB-231 spheroids in a collagen matrix to understand the shift toward 

oxidative phosphorylation in cells in contact with the ECM 138. 



38 

  

 

Figure 2.8: Spheroid assembling techniques and characteristics. A) Simplified diagram of 

different self-assembling and forced assembling spheroid methods. B) Diagram showing the 

gradients and cell heterogeneity within a large tumor spheroid. Adapted with permission.110 2020, 

BMC. 
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Spheroid models can vary in complexity with future sections involving 3D printed and 

microfluidic spheroid systems. While this method is the foundation for many breast cancer models, 

it suffers from poor controllability and challenges in replicating large tumors due to their lack of 

vasculature. Spheroids possess chemical gradients starting at 200 μm in diameter. Given their 

variability in tumor shape and volume, spheroid behavior , like proliferative status 139, can be very 

different, leading to poor reproducibility. Future research includes methods of standardization and 

uniform spheroid fabrication. One research group developed an imaging-based approach to select 

homogenous populations of large spheroids, though the process is time intensive and this process 

eliminated around 30% of spheroids after one week of culture 140. Meanwhile, new manufacturing 

methods like acoustofluidic vibration, shown in Figure 2,9, are used to fabricate uniformly sized 

spheroids with high throughput 141,142. 

 

Figure 2.9: Acoustofluidic spheroid assembly. A) Schematic of high-throughput acoustofluidic 

cell spheroid assembly. This device contains a disposable PDMS components with multiple cell 

assembly channels and a reusable surface acoustic wave generator. B) Schematic of acoustic cell 

assembly where cells are randomly distributed throughout the microchannel, then aggregate into 

cell clusters with acoustics. Adapted with permission.120 2019, The Royal Society of Chemistry. 
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Bioprinted Structures 

The use of bioprinters to create 3D models has grown due to their ability to provide 

intentional structural organization with definite composition 143. The three main types of 3D 

bioprinters are distinguished by their printing methods: line printing, drop-by-drop printing, or 

layer-by-layer printing (Figure 2.10). In line printing, a form of microextrusion, the bioprinter 

extrudes a continuous line of biomaterial or hydrogel through a syringe and needle. This method 

allows the bioprinter to print freely in the X and Y directions, while moving vertically in the Z 

direction to build upon the print or change locations on the platform. Some 3D bioprinters feature 

dual-head attachments or multiple nozzles, enabling them to print with different materials 

simultaneously 144. In a study by Desigaux et. al., a 3D micro-extrusion bioprinted-based model 

was created using photo-polymerizing bioinks made up of cancer and stromal cells. The authors 

developed a model to observe the influences of stromal cells on the ECM and its ability to affect 

tumor response to radiation therapy. Using naturally derived ECM proteins such as methacrylated 

collagen and hyaluronic acid that were functionalized with a laminin-derived peptide. Using this 

3D bioprinting method with this bioink, the authors were able to display a novel aspect of 

maturation in their 3D model, demonstrated by cancer associated fibroblast (CAF)-induced 

remodeling of the ECM. This study also highlights the potential for 3D in vtiro models to be used 

as preclinical models for other cancer treatments such as radiation therapy.  

Drop-by-drop printing can be either inkjet based or laser based 143. Inkjet 3D printing 

differs from line printing in that it uses droplets rather than a continuous line. Inkjet printers can 

be used with a hydrogel support bath, which functions to support the print at certain temperatures 

and liquifies when raised to normal body temperature, allowing for easy release of the print 144. In 
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laser-based 3D printing, also known as stereolithography, a photosensitive biomaterial is cured by 

a laser as it is printed, after the print is completed 144.  

Layer-by-layer (LBL) bioprinting refers to the process of 3D depositing of bioink that 

builds off of each successive layer. This type of printing is generally done following the design of 

a precise binary model of the structure. A sub-type of layer-by-layer printing is photo-patterning, 

which uses photo-crosslinkable hydrogels to cure each layer as it is added. Similar to traditional 

3D-printing, photo-patterning is a form of additive manufacturing that is biocompatible for the 

uses of tissue engineering, drug discovery, and translational medicine. As each layer of bioink is 

printed, the hydrogel is cured to strengthen its stability before the subsequent layers are printed. 

The ability to have a tunable bioink that can be adjusted, either by adjusting the hydrogel 

composition or curing time, to better suit the model is advantageous over other methods that are 

less modifiable. 

 

Figure 2.10: Schematic showing examples of three-dimensional bioprinters. Inkjet and its 

derivation, laser-assisted bioprinters, primarily use droplets whereas extrusion-based and 

stereolithography use continuous streams of bioink. Of the four bioprinting methods, the latter two 

are newer and offer advantages over the inkjet and laser-assisted methods because of their ability 

to create larger scale 3D structures, printing optimizations (temperature, viscosity, and applied 

stress), and higher resolution. Reproduced with permission 145. 2019, Hapres. 

 

 



42 

Regardless of the printing method used, crosslinking, which transforms the solution into a 

stable structure, is a crucial step. The cross-linking agent should be non-toxic, ideally affecting 

only the hydrogel or bioink during the curing process, while preserving the integrity of the cells or 

biofactors. Crosslinking can be achieved through chemical or physical methods, including pH-

driven, temperature-responsive, photo-crosslinking, electric field-responsive, magnetic-

responsive, and ionic crosslinking techniques.  

Using this high-resolution fabrication technique, biomimetic breast cancer models are 

designed with controlled structural and mechanical properties, like porosity, permeability, and 

stiffness. Commonly used natural structures are gelatin, alginate, collagen, hyaluronic acid, 

fibronectin, chitosan, and Matrigel. Collagen is a great option for physiologically similar 

conditions given it is the most abundant protein in the tumor ECM and allows for cell attachment 

via glycoproteins and integrins. Two of the most popular naturally derived biomaterials for bioink 

are gelatin and alginate. Gelatin allows for high cell adhesion and low inflammation induction, 

while alginate has high thermal stability and easier cell encapsulation. Gelatin is a derivation of 

collagen via basic or acidic hydrolysis, therefore its behavior is pH driven. Gelatin is also 

thermoreversible because it gels at room temperature and liquefies at higher temperatures 146. This 

property of gelatin makes it ideal to use as a bioink because it can be heated in the nozzle of the 

bioprinter and extruded into 3D scaffolds that solidify as it cools. While polymeric gelatin is 

naturally equipped with arginylglycylaspartic acid (RGD) sequences which promote cell surface 

adhesion via integrins, its mechanical properties fall short to those desirable in application. Due to 

its lack of stiffness at bodily temperature and low yield strength, natural polymeric gelatin alone 

is not a viable option for a printing material 126. Alginate is derived from brown algae and is 

crosslinked by divalent cations. Alginate is arguably the most used biomaterial for 3D printing due 
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to its biocompatibility, control over mechanical properties, and ability to form highly porous 

structures for cell regeneration 146. Used together, gelatin-alginate composites are a common 

bioink with ideal physical and biological properties under printing stresses. 

Hyaluronic acid is the major component of cartilage ECM and is very hydrophilic. In a 

study by González-Callejo et. al, a blend of decellularized extracellular matrix from breast tissue 

and methacrylated hyaluronic acid with tumor-derived cells and non-cancerous stromal cells, were 

bioprinted as two separate but adjoining compartments and heat cross-linked to create a tumor-

stroma model 147. Chitosan is derived from the exoskeleton of arthropods. The chemical structure 

of chitosan is like glycosaminoglycans (GAGs) which are another large component of the ECM. 

The structure contains highly negative charges and can bring a lot of water into the hydrogel. 

Chitosan hydrogels are often used as a biomaterial to produce bone or cartilage-like scaffolds. 

Matrigel has the advantage of being printed to form scaffolds with an editable architecture through 

the addition of other hydrogel components, though it has batch-to-batch differences, making it 

unsuitable for production of hydrogels with a defined ECM. All of these natural materials have 

high biocompatibility and are ideal for cell encapsulation but generally have lower mechanical 

strength and lower stability at 37℃ than polymers like PCL, PEG, and PLA (commonly used as a 

scaffold for cells to grow on). Therefore, a significant drawback in bioprinting is that materials 

used must be biocompatible as well as stable under printing stresses. However, synthetic polymers 

can be functionalized by mixing scaffolds with certain ECM components 148. In a study by Jaidev 

et. al, polyethyleneimine and citric acid were conjugated to PLA scaffolds and then soaked in 

simulated body fluids to coat the surface with calcium-deficient hydroxyapatite (HA) 149. The 

surface modification allowed the 3D printed PLA to become a synthetically derived biomimetic 

scaffold for bone regeneration. 
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  Different materials have been adapted to overcome this issue. For instance, additives, like 

hydroxyapatite, can increase the mechanical strength of bioinks, like alginate, while mimicking 

the microcalcifications found within breast tissue 150. Alternatively, there has a been a recent trend 

in bioprinting with decellularized tissue ECM for their ability to recapitulate in vivo processes. As 

an interesting example shown in Figure 2.11, Blanco-Fernandez et. al. incorporated porcine breast 

tissue-derived matrices into a GelMA-alignate bioink, to print cell-laden hydrogels with similar 

adhesion sites, viscoelasticity, mechanical properties, and architecture to the TME 151. By seeding 

MCF7 cells into this model, spheroid formation was observed as wells a lower e-cadherin 

expression, higher tumor marker expression, and lower chemo-responsiveness than 2D cultures. 

They even exhibited a way to incorporate a stromal-cell laden outer layer without the bioinks 

merging together.  A separate study by Horder et. al. designed a 3D printed spheroid model to 

evaluate the relationship between the tumor and adipose tissue. After differentiating adipose-

derived stromal cells in adipogenic culture for 21 days, a breast cancer cell (MDA-MB-231) 

compartment was printed onto the adipose tissue constructs where a reduction of lipid content and 

remodeling of ECM was observed over nine days 152. 

While bioprinting is a promising avenue for 3D in vitro breast cancer models, issues like 

cell stress, limited bioink options, and the need for costly/repetitive process optimization are 

challenges that must be overcome before the true potential of bioprinted models can be tapped. 

Maintaining cell viability throughout the printing process is crucial when culturing live cells. 

Excessive mechanical stress during printing can lead to cell death and if the printing speed and 

viscosity are too high, the excessive pressure on the hydrogel will shear the cells. Additionally, 

hydrodynamic pressures and capillary forces can cause apoptosis when the cells land on the 

printing surface. These forces can be minimized by adjusting the printing speed and changing the 
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hydrophobic or hydrophilic tendencies of the printing surface 153. Furthermore, low print speeds 

can reduce the viability of cells as the cells cannot be maintained long term without proper 

maintenance medium. Another technique to address this is computational modeling of printing and 

post-printing dynamics. Mohammadrezaei et. al. developed a predictive model to understand the 

post-printing proliferation and migration of cancer cells in commonly used gelatin/alginate 

structures. Their in silico data was comparable to their in vitro data obtained from MDA-MB-231 

cells in 4% gelatin/4% alginate constructs 154. Meanwhile, others have utilized machine learning 

to anticipate cell viability under different printing parameters 155, like UV crosslinking time, and 

bioink printability 156.  
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Figure 2.11: Bioprinting with decellularized tissue ECM A) Process of making bioink and printing 

tumor coculture with an MCF7 tumor core and human adipose-derived mesenchymal stromal cell 

(hAMSC)-laden stromal layer. Porcine breast tissue was decellularized to make a tissue-derived 

matrix (TDM). The TDM was subsequently combined with GelMA and alginate, and for the 

TGAC group, collagen I, and cells were encapsulated in this bioink for printing.  B) MCF-7 stained 

with phalloidin–rhodamine (red), nuclei are counterstained with DAPI (blue).   Expression of E-

cadherin (green) in MCF-7 clusters is most prominent in hydrogels containing collagen I. All 

images taken after 14 days of culture. C) MCF7 cell viability 48 hours after doxorubicin treatment, 

where all 3D cultures show lower chemoresponsiveness than 2D MCF7 culture. Adapted with 

permission.130 2022, American Chemical Society. 
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Table 2.2: Review of literature on prominent bioprinted breast cancer metastasis models 
Goal of Study Design Advantages Limitations Printing 

Parameters 

Reference 

Develop 3D printed 

scaffold that mimics 

key cell responses of 

patient-derived 

scaffold (PDS) 

cultured cells and to 

use these as tumor 

models for cancer 

drug screening 

8% w/v alginate grid 

lattice scaffold 

enriched with 

periostin and 

hydroxyapatite (HA) 

 

Cells: MCF7 and 

MDA-MB-231 cell 

lines  

Cells cultured on 

the 3D printed 

scaffold (3DPS) 

exhibited similar 

phenotype to 

those cultured on 

PDS 

 

HA rendered a 

stiffer material, 

increasing the 

ratio of cancer 

stem cells  

Cells were not able 

to infiltrate the 

3DPS, as observed 

in PDS 

 

MCF7 cell 

attachment was 

initially lower in the 

3DPS as compared 

to the PDS  

10°C - 20℃ 

temperature 

0.6 bar pressure 

35 mm s-1 

speed 

0.45-0.50 mm 

needle offset 

400 µm needle 

diameter 

*crosslinked 

with CaCl2 

150 

Incorporate alginate 

and GelMA to 

decellularized porcine 

breast tissue-derive 

matrices (TDM) to 

fabricate bioinks with 

suitable mechanical 

properties for 3D 

bioprinting and 

appropriate tumor 

recreation  

2% TDM hydrogel, 

2.5% GelMA, 0.5% 

alginate, 0.15% 

Collagen I, 0.1% 

irgacure 

 

Cells: MCF7 cells 

and primary human 

adipose-derive 

mesenchymal stem 

cells (hASCs)  

Decellularized, 

delipidated ECM 

helps recapitulate 

in vivo processes 

 

Stromal cell-laden 

outer layer 

surrounds  

TDM is from 

healthy porcine and 

cannot fully mimic 

human breast 

cancer ECM 

 

TDM can lack lot-

to-lot 

reproducibility, 

much like Matrigel 

8°C - 20℃ 

temperature 

0.25-0.50 bar 

pressure 

3-5 mm s-1 

speed 

51 mm tip 

diameter 

*crosslinked 

with 37℃, 

CaCl2, and UV 

151 

Combine breast tissue 

mimicking alginate 

hydrogels with bone 

mimicking 

polycaprolactone 

(PCL) scaffolds to 

illustrate how primary 

tumor stiffness and 

ECM composition 

direct invasion and 

metastasis to bone  

Alginate-gelatin 

hydrogels (of varying 

concentrations) atop a 

mineralized  

 

PCL/hydroxyapatite 

biohybrid scaffold  

 

Cells: MDA-MB-231, 

breast cancer bone 

homing MDA-IV, 

and Saos-2  

Describes the 

relationship 

between two 

different tissue 

sites and how 

breast cancer cells 

interpret signals 

across tissue sites 

Simplifies the 

metastatic cascade 

to the primary and 

secondary tumor 

sites, ignoring 

travel through 

vasculature 

130℃ 

temperature 

6.5 bar pressure 

0.6 mm s-1 

speed  

157 

Assess the printability 

of hASC spheroids 

and their ability to 

differentiate into 

adipose-like 

microtissues within 

the printed constructs, 

which is further used 

as the basis for a 3D 

breast cancer-adipose 

tissue model. 

Hyaluronic acid 

hydrogels of varying 

concentrations 

 

Cells: Primary hASCs 

and MDA-MB-231 

Focusses on the 

relationship 

between adipose 

tissue and the 

tumor  

MDA-MB-231 cell-

laden hydrogels are 

printed atop the 

adipose tissue, and 

are not encapsulated 

by the construct 

1-5 bar 

pressure 

250-330µm 

nozzle diameter 

*crosslinked 

with UV 

152 
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 Many of the models discussed so far are static and can lead to an accumulation of 

biochemical waste around the tumor model (particularly with spheroids), ultimately affecting cell 

viability.  The next section will discuss dynamic microfluidic models that are able to circumvent 

some of these limitations and better recapitulate the nutrient diffusion in tumor 

microenvironments. 

 

 Microfluidics 

 Microfluidic models are often fabricated by constructing microchannels on a chip and 

integrating various microelements into these channels to precisely control the pressure, flow rate, 

and flow direction. They can be used to look at gradients in interstitial fluid (IF) pressure, pH, 

nutrients, and oxygen and together, allow for the study of dynamic aspects of tumor progression. 

Given the micro size of these models, they permit real-time imaging of cellular dynamics like 

invasion and migration and are ideal for modelling breast cancer interaction with vasculature.  

  Microfluidic arrays are high throughput, enabling multiple conditions and hundreds of 

replicates on a single chip. This can be used to evaluate a range of biochemical and biophysical 

cues, like flow rates, pressure and oxygen. Fridman et. al. used this as a means to study breast 

cancer cell chemoresistance under an oxygen gradient ranging from 1% oxygen (hypoxia) to 20% 

(normoxia) 158. They found that increased reactive oxygen species production under hypoxic 

conditions led to drug cytotoxicity levels that are similar to in vivo findings, demonstrating the 

importance of tumor hypoxia in tumor aggressiveness. 

  The most widely used model recreates invasive ductal carcinoma (the most common type 

of breast cancer) in the lumen by molding ECM around a rod that is later removed to create an 

open cavity that can be filled with cancer cells. Media can then flow through this cavity, similar to 
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the tumor in vivo, while providing the option to image cell invasion into the surrounding ECM. 

Moon et. el. developed a microfluidic structure with a ductal structure of cancer epithelial cells 

surrounded with a 3D collagen matrix 159. Invasion of two triple-negative cancer lines (MDA-MB-

231, SUM-159T) was clearly observable, while the luminal MCF7 cells did not. One major 

advantage is that different cell types can be co-cultured long term in a controlled 

microenvironment, allowing for the bidirectional crosstalk between cancer cells and other tumor-

associated cells to be fully evaluated. Models incorporating fibroblasts and tumor-associated 

macrophages have been used to evaluate breast cancer cell invasiveness in response to tumor-

associated stromal cells 160,161, while an additional lumen cavity can be lined with endothelial cells 

to observe cancer migration toward vasculature and conditioning of lymphatic vessels 162,163. 

Ayuso et. al. created a chamber with dual lumen rods as seen in Figure 2.12 and, through imaging 

and RT-qPCR, found that MCF7 and MDA-MB-231 cells alone do not negatively impact the 

physical integrity of the vessel or endothelial cell maintenance, but do trigger lymphangiogenic 

sprouting 163. 

 While microfluidic models can recapitulate many aspects of the TME in vivo, some issues 

persist. For instance, the direction of flow for cell growth may not always mimic that inside the 

body. A study by Seibel et. al. seeded a microtumor of MDA-MB-231 cells across from a 

vascularized lumen in collagen I to study breast cancer invasion and escape through lymph vessels 

164. While flow towards the tumor was created by the hydrostatic pressure of an upstream well 

above the lymph channel, this is a non-physiological flow direction. Additionally, the size of 

microfluidic models means that only small tumors can be studied in this capacity, neglecting the 

effects of necrotic tumor cores in metastasis signaling. Finally, there is rarely consistency in model 

designs, leading to issues with reproducibility. 
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Figure 2.12: Dual lumen rods to study tumor cell interaction with lymphatic vessel A) Schematic 

of the breast tumor-lymphatic microfluidic device. The device consists of two 

polydimethylsiloxane (PDMS) layers. The bottom layer contains a chamber and microchannels for 
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suspending two adjacent lumen rods. The top layer contains the ports for fluid exchange. B) Cell 

culture in the device allows the formation of a lumen lined with primary human lymphatic 

endothelial cells (HLECs) and a second lumen filled with breast cancer cells. C) Representative 

confocal image of a 3D lymphatic vessel. D) Representative images of vessel monoculture, 

coculture with MCF7 cells (in yellow), and coculture with MDA-MB-231 cells (in green) in the 

device. E) Confocal images showing the middle plane of lymphatic vessels in monoculture and 

coculture with MCD7 and MDA-MB-231 cells. F) Z-projected images of lymphatic vessels in 

monoculture and coculture with MCF7 and MDA-MB-231 cells. G) Quantification of cell 

coverage for each culture condition showing an average percentage of cell coverage >99% for all 

conditions. H) Crosstalk with the breast cancer cells induced lymphangiogenic sprouting in the 

vessels. There were no observable sprouts in the monoculture control. Three individual vessels (n 

= 3) were measured for each culture condition to determine the average permeability value (mean 

± s.d.). Adapted with permission 163. 2019, Wiley-VCH 

 

 

Table 2.3: Review of literature on prominent breast cancer microfluidic models 
Design Biological Observations/ 

Advantages 

Limitations Reference 

Parallel 3D lumen configuration 

mimicking vascular endothelial 

and mammary epithelial 

respectively; migration ports 

connecting each channel  

 

Cells: MCF10A, MCF7, MDA-

MB-231  

Cells in microfluidic channels 

consume nutrients and accumulate 

waste products due to a 3- to 4-fold 

increase in cell density compared to 

2D culture 

 

Allows for migration from both 

sides, potentially representing 

cancer invasion and angiogenesis   

Does not incorporate 

perfusion and shear flow 

over the endothelium 

 

There is no outer layer of 

myoepithelial cells around 

the inner luminal epithelial 

cells 

162 

Tumor region bordered by a 

stromal outer region of 

fibroblasts encapsulated in 1:1 

mixture of Matrigel and 

collagen I 

 

Cells: SUM-159, patient-derived 

cancer-associated fibroblasts 

(CAFs)  

Bidirectional fibroblast-cancer 

migration visible  

 

Can image cells while in hydrogel, 

for morphometric analysis 

While markers like FAP 

and αSMA are used to 

identify CAFs, there is no 

defined single or set of 

molecular markers that 

exclusively define CAFs 

owing to their 

heterogeneity 

161 

An array layer of alginate-based 

cancer spheroids and a gas 

conditioning layer exposing 

cells to five oxygen levels 

ranging from hypoxia (~1%)  to 

ambient air (~20%)  

 

Cells: MCF7, macrophages  

High experimental throughput with 

multiple oxygen levels (1000 

docking sites total) 

 

There was a significant increase in 

reactive oxygen species (ROS) 

production for both MCF7s and 

macrophages under 1% oxygen 

levels  

Multilayer structure poses 

issues with high resolution 

imaging due to layer 

thickness and phase 

changes 

158 

Two parallel collagen channels 

with macrophages and cancer 

cells respectively, and 

sandwiched between nutrient 

supply channels perfused 

through a vascular endothelial 

layer 

Model shows bidirectional crosstalk 

between macrophages and cancer 

cells 

 

This method could dynamically 

explore the changes in endothelial 

cell permeability over time  

Cellular crosstalk can 

involve multiple 

mechanisms such as 

exosomes, RNAs, or 

mechanical forces that 

were not investigated 

160 
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Cells: MDA-MB-231, 

macrophages, HUVECs  

 

TAMs encouraged the most cancer 

cell migration compared to other 

noncancerous cell lines (U937, 

MCF10A)  
Two layers of microchannels 

made of PDMS with two PCL 

electrospun matrices in between 

 

Cells: MCF7, CAMA-1, MDA-

MB-231  

Shows a way to investigate cancer 

cell invasion, separate from 

proteolytic cleavage 

 

Cells and matrix are more accessible 

than injectable hydrogels, and allow 

for more analytical approaches  

This concept does not 

incorporate ECM and fails 

to acknowledge the 

biochemical influences on 

invasion 

 

Does not co-culture 

additional cells with cancer 

cells  

165 

 

 

2.5 Future Outlook 

While 3D breast cancer models have come very far and are highly refined modeling 

systems as compared to 2D in vitro or 3D in vivo models, there are still improvements to be made. 

A summary of each 3D modeling technique discussed thus far is presented in Figure 2.13, 

highlighting the distinct advantages and limitations associated with each approach. These specific 

characteristics should be carefully weighed when selecting a model to address a particular research 

question. As research needs continue to grow more complex, it is crucial to refine existing models 

and innovate new approaches that address current gaps. Future work is directed towards 

improving/developing reproducibility of results, easier quantification of data, and personalized 

modelling methods. 

 

2.5.1 Bioelectronic Assay Systems for In Vitro Modeling 

 Towards the goal of data quantification, a relatively novel technique has emerged: 

bioelectronic assays. Bioelectronic assays can measure values like impedance (resistance and 

reactance) or capacitance by passing small electrical currents through electrodes embedded in a 

cell culturing platform. The flow of electrons is obstructed by the presence of cells, media, and 
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ECM materials, offering a sensitive, label-free, and non-destructive method to continuously 

monitor cells in real time, allowing the assessment of cellular kinetics, like proliferation and 

stimuli/drug response. There are a variety of commercially available electric cell-substrate 

impedance sensing (ECIS) systems, and many researchers build their own platforms 166-169. 

Hedayatipour et. al. provides an in-depth explanation and evaluation of the circuit topologies used 

for cell impedance measurement 170. This assay technique has been used with BC cells to evaluate 

migration 171, drug interactions 166,169, and communication and interaction via co-cultures168 and, 

as more research is done, the varieties and options for ECIS assays will increase. One notable 

example of this is Pan et. al. who have developed a 3D microgroove impedance sensing model that 

can detect changes in cancer cell growth while encapsulated in Matrigel 167. They found that lung 

cancer spheroids suspended in Matrigel exhibited a gradient in response to chemotherapeutic drug 

cisplatin and more chemoresistance than the same cells in 2D culture. Lee et. al. conducted a 

similar study using capacitance sensors using four parallel electrodes stacked along the y-axis of 

a well, measuring the layered cytotoxicity of doxorubicin on MCF7 cells within an alginate 

hydrogel 172.  While this method lacks the specificity of other assays, it allows for continuous 

maintenance of cell behavior over an extended period of time and can provide a lot of information 

from a small population of cells. This is particularly useful if using primary cells from a biopsy, 

where only a small population of cells is available, making it a possible option for personalized 

cancer modeling. 

 

 

2.5.2 Organoids and Patient-specific Models 
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 Currently, cancer treatment approaches are mostly trial-and-error, and it's not entirely 

known how a patient's cancer will respond to different types of treatment, for example like if drug 

resistance will occur. Because of this, patients are often subjected to time-consuming and arduous 

treatment regimens. As a result, many researchers are moving towards developing personalized 

3D breast cancer models that can provide translational information about patient cancer 

aggressiveness and treatment options. Patient-derived tumor components can be incorporated in 

bioprinted and microfluidic systems to study tumor behavior and response to pharmacological 

compounds 161,173,174, however tumor organoids are a more popular option for studying 

physiologically relevant drug response. Tumor organoids can be a powerful in vitro tool for their 

ability to resemble tumor tissue-specific architecture. Organoids are miniature 3D structures that 

mimic the functional, structural and organizational complexity of human tissues and organs and 

they can be a powerful in vitro tool for their ability to resemble tumor tissue-specific architecture. 

Tumor organoids can recapitulate genomic and histological features of the original tumor from 

which they came, hence they can be utilized for personal cancer medicine. Chen et. al. established 

organoids from 99 breast cancer patients with a 75% success rate, focusing on patients with high-

risk clinical features, like drug-resistance and metastasis 175. They found that organoid lines had 

inherited histological features of their parental tumor, as well as preserved receptor status and Ki-

67. They were able to use these organoids to conduct high throughput drug screening with 49 drugs 

and found that the drug-resistant patient-derived organoids showed an especially high resistivity 

to a wide range of the tested drugs, demonstrating that organoids not only serve as a pre-clinical 

model for broader cancer studies but also can provide personalized therapy recommendations for 

patients with advanced disease. Overall, organoids are a promising tool for accurately modelling 
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tumor drug response, with 14 clinical trials actively recruiting patients at the time of publication 

176-189. 

 

Figure 2.13: Advantages and limitations of 3D in vitro modeling methods. Created in BioRender. 

Gomillion, C. (2025) https://BioRender.com/4xv1cci 

 

 

2.5.3 In Silica Modeling Systems 

 All modeling methods discussed thus far are incredibly important to the future of breast 

cancer research, however they can be time consuming to iterate and resource intensive. 

Computational models should be used in conjunction with these in vitro methods to help with data 

analysis and predictive modelling of cell behavior under various modelling conditions. For 

https://biorender.com/4xv1cci
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example, the Mohammadrezaei et. al. paper discussed earlier developed a predictive model to 

understand the post-printing proliferation and migration of cancer cells in commonly used 

gelatin/alginate structures 154. In another notable paper, Baskaran et. al. studied the correlation 

between cell shape and ECM-driven 3D cell invasion 67. Using principal component analysis and 

partial least squares regression, their model suggests that cell adhesion, based on cell morphology 

parameters like form factor, area, and eccentricity, can accurately predict 3D invasion. 

Computational modelling compliments high throughput 2D data collection well and facilitates a 

deeper understanding of cell behaviors and signaling dynamics 190.  Overall, computational models 

and machine learning can help with in vitro model optimization and data processing and should be 

used in conjunction with both 2D and 3D in vitro modeling platforms to determine the most 

significant influences on breast cancer metastasis. 

 

2.6 Conclusion 

Breast cancer metastasis is an incredibly complex process. Tumors are considered 

abnormal organs, displaying several biochemical gradients and physical properties that 

significantly affect cell behavior. There are multiple stromal and epithelial cells associated with 

the TME, and cancer cells exploit several ECM proteins present in the TME. While we understand 

the relationship between cancer phenotype and tumor environmental factors, like hypoxia, ECM 

stiffening, and cytokine secretion, the molecular/mechanical underpinnings of these processes are 

not fully understood. 2D models allow precise control of variables (e.g. substrate stiffness, ECM 

composition, growth factor gradients) but do not fully recapitulate the complexity of the tumor 

microenvironment, as 3D systems do. Therefore, a complementary approach should be used, 

combining 2D and 3D models to address research questions.  
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While 3D in vitro models aim to replicate the complexity of the TME, a critical question 

in the field is: how simple is complex enough? That is, how does one choose a model that provides 

the appropriate level of detail to address specific research questions, balancing simplicity with the 

need for physiological relevance? As 3D modelling techniques continue to advance, determining 

the appropriate level of complexity is crucial for accurately recreating tumoral tissue, while 

maintaining enough simplicity for easy modification and predictability. Although there is no 

straightforward answer to this question, breast cancer models that successfully balance these 

factors will play a pivotal role in advancing research and therapeutic development in the future. 
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3.1 Abstract 

Cellular impedance-based assays offer a sensitive, label-free, and non-destructive method 

to continuously monitor cells in real time, allowing the assessment of both kinetics and degree of 

migration for breast cancer cells. A scratch assay is one of the most commonly used methods for 

testing cell migration in a two-dimensional (2D) monolayer culture. Traditional methods to 

evaluate 2D cancer migration commonly use image analysis to determine the rate of wound closure 

over a set of timepoints as an indicator of migratory/metastatic potential for cancer cells. An 

impedance-based assay system was employed towards establishing a modified wound healing 

assay technique that can measure wound coverage and therefore, 2D cancer migration 

continuously. This method can also be used to measure a variety of cell characteristics, including 

proliferation and epithelial barrier integrity.  

Using the Maestro Z Live-cell Analysis System by Axion Biosystems, cell spread, related 

to single cell morphology, and cell proliferation were observed for multiple breast cancer cell lines. 

A distinct quantifiable difference in the behavior of aggressive triple-negative breast cancer cells 

(HCC1806, MDA-MB-231), compared to less aggressive luminal MCF7 cells was determined. 

With an established assay method, cells were then treated with pro-inflammatory cytokine leptin, 

which plays a crucial role in metabolism and epithelial to mesenchymal transition (EMT), to verify 

assay sensitivity. The effects of leptin concentration in media were measurable for MCF7 and 

HCC1806 cells, and cell barrier integrity was significantly higher in the luminal MCF7 cells as 

compared to the more aggressive triple-negative cell lines. Cell migration to close a physical 

wound was measured over 36 hours, with the modified wound healing assay providing quantifiable 

evidence that the more aggressive breast cancer cells migrated to close the gap. 
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This work validates the use of cellular impedance-based assay systems to evaluate multiple 

cell characteristics. In a single experiment, cell spread onto the substrate, cell proliferation, cell-

cell barrier integrity, and 2D cell migration were able to be quantified. These findings parallel 

previously published data on cell migration of the cell lines used, while highlighting the role of 

leptin in cancer behavior. The potential for bioelectronic impedance assay systems is also 

demonstrated.  
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3.2 Background 

Breast cancer is the second most lethal cancer in women. When detected early, the rate of 

breast cancer survival is high (99%), however that rate decreases significantly (27%) once the 

cancer has metastasized to other parts of the body, such as the brain, lungs, bone, and liver 1. 

Unfortunately, effective methods to detect metastatic cancer are limited. If not identified at the 

original breast cancer diagnosis, detection of metastatic breast cancer will not happen until after 

the cancer has spread to other parts of the body, resulting in delayed treatment and often, more 

advanced/detrimental cancer cases. Thus, early identification and determination of metastatic 

cancer could significantly alter therapeutic approaches worldwide.  

There have been significant strides towards the identification and detection of metastatic 

breast cancer through the investigation of genomic, proteomic, and metabolomic profiling of 

samples to identify potential biomarkers for breast cancer metastasis correlated to clinical data. In 

these instances, there is reliance on multiple analytical methods for sample analysis (i.e. nuclear 

magnetic resonance (NMR) and mass spectrometry (MS) for metabolomics), which can be labor 

intensive and subject to delayed information processing since correlating clinical data may not 

always be readily obtained. Key factors known to influence breast cancer metastasis are receptor 

subtype, environment, and motility. Therefore, a method that allows for evaluation of these factors, 

while yielding an earlier, more reliable, and time-efficient approach for identification of metastatic 

cells is needed.  This research validates the use of a novel bioelectronic assay to characterize breast 

cancer cell motility and response to biochemical stimuli in vitro.  

Breast cancer metastasis remains one of the leading causes of death for women with cancer, 

accounting for 70% of breast cancer deaths, largely because methods to predict metastasis are 

limited. Metastasis remains difficult to predict, in part, due to cancer heterogeneity. Three subtypes 
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of breast cancer can be determined by their receptor status of the estrogen receptor (ER), 

progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2). This 

determines treatment and is correlated to how aggressive/metastatic a cancer may be. The most 

aggressive type of breast cancer is triple negative cancer (ER-, PR- and HER2-). This subtype has 

a high chance of metastasis; therefore, this research includes two different human breast cancer 

cell lines that are defined as triple negative.  

In addition to receptor status, environmental factors can also influence a cancer cell’s 

behavior. Proinflammatory cytokines like leptin, Interleukin (IL)-1β, IL-6, or tumor necrosis factor 

(TNF)-α encourage blood vessel formation (angiogenesis) towards the tumor site, a primary step 

in the metastatic cascade 2,3. Leptin, in particular, can bind to breast cancer cells and trigger 

proliferation, invasion, and migration through oncogenic signaling pathways like mitogen-

activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), and janus kinase/signal 

transducers and activators of transcription (JAK/STAT) 4,5. Additionally, leptin levels have been 

shown to be significantly higher in breast cancer cases with lymph node metastasis, compared to 

no metastasis 6. In this work, we aim to establish the utility of a bioelectronic impedance-sensing 

assay as an alternate in vitro approach applicable for studying cell migration and assessing 

metastatic potential of cancer cells by demonstrating quantifiable effects of leptin concentration 

on breast cancer aggressiveness, separate from leptin-induced immune response 7,8 in vitro. 

A wound closure assay, also known as a wound healing assay or scratch assay, is an 

example of an in vitro assay to study cancer metastasis. In this method, cancer cells are seeded at 

the bottom of a well plate and grown to confluence. Once confluent, a physical scratch through the 

cancer cell monolayer is made, creating a gap. Over a set period, the cancer cells will migrate 

towards each other to close the gap or “heal” the wound. The distance traveled by the cancer cells 
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and the time it takes to close the gap is viewed as a cancer cell’s migratory potential and can be 

used to determine metastatic likelihood. While wound healing assays are a common and effective 

tool in evaluating breast cancer cell migration, they rely heavily on periodic imaging or video 

recording for data collection, which require time-intensive processing and can limit throughput 

precision 9.  

To overcome these limitations, impedance-based techniques, such as Electric Cell-

substrate Impedance Sensing (ECIS), offer a compelling alternative for monitoring cell migration 

and behavior in real time 10,11. Bioelectronic systems, like ECIS, are quickly gaining popularity as 

a label-free, non-invasive, and non-terminal method that continuously measures changes in 

electrical impedance to quantify several aspects of cell behavior. In this technique, a small 

alternating current (I) is applied across an electrode configuration at the bottom of a tissue culture 

surface. This results in a potential (V) across the electrodes which is measured by the ECIS 

instrument. The impedance (Z) is then determined by Ohm’s law where Z = V/I 12. By tracking 

impedance changes as cells adhere, proliferate, and migrate, ECIS provides continuous, 

quantitative data without the need for frequent imaging. 

As cells adhere onto the electrode-coated surface and proliferate, they act as insulators, 

increasing impedance (Figure 3.1). Alterations in impedance reflect key cellular characteristics, 

including surface coverage, morphology, and adhesion, as shown in Figure 3.1B. When cell 

function shifts in response to the environment (e.g. growth factors, cytokines, hypoxia, cytotoxic 

agents), so do the impedance readings. At higher alternating current (AC) frequencies, the current 

travels via transcellular pathways (Figure 3.1B), providing information about cellular surface 

coverage and morphology. Conversely, at lower AC frequencies, the current flows via paracellular 

pathways. To quantify this, trans-endothelial/epithelial electrical resistance (TEER) is widely used 
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as a robust and established method for assessing barrier function in epithelial and endothelial 

monolayer cultures 13,14. This measurement is particularly relevant in cancer studies, where loss of 

barrier integrity reflects the degradation of tight junctions during tumor cell migration and invasion 

through both epithelial layers and vascular endothelium 15-17.   

Given its advantages, ECIS is increasingly being adopted in cancer research. Several 

commercial systems are available from companies like Applied BioPhysics and Axion 

Biosystems, while many researchers also develop custom setups tailored to their experimental 

needs 18-21. Individual systems often lack cross-study comparability, therefore this work utilizes 

the commercially available Maestro Z system (Axion Biosystems) 22,23, ensuring consistency and 

reproducibility. Although ECIS has been used predominantly with breast cancer cells to quantify 

drug interactions 20,24-26, a system that integrates multiple behavioral readouts using ECIS can 

significantly advance efforts to diagnose and characterize metastatic potential in breast cancer.  

To better identify metastatic cancer cells more efficiently in 2D culture, we propose to 

leverage cell impedance for a “smart” in vitro modeling approach to interrogating the relationship 

between specific attributes of cancer cells and their metastatic potential. Such an approach 

provides a modern, quantitative framework for studying cancer cell migration and metastasis and, 

because of its 96-well plate format, small numbers of cells are utilized, making it practical for 

clinical settings where biopsies of human tissues do not typically yield a large quantity of cells for 

culturing 27. Specifically, we first determined the feasibility of a quantitative impedance-based 

assay to characterize cancer cell proliferation and migration. The assay approach was then applied 

to measure the effects of leptin on breast cancer cell behavior to demonstrate assay sensitivity and 

understand how migration is affected by varying leptin concentrations. Overall, the approach 
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established in this work allows for the collection of an array of data within a single experiment, 

streamlining the process of cancer cell characterization. 

 

Figure 3.1: Cell impedance concepts. A) Electrical circuit of an animal cell, where Ro is resistance 

of the surrounding media, Rm is the resistance of the membrane, Cm is the capacitance is the cell 

membrane, and Ri is the resistance of the protoplasm. The lipid bilayer of the cell membrane works 

in both a capacitive and resistive role, which both contribute to impedance. The flow of electrical 

signals through a cell monolayer at different alternating current (AC) frequencies. At low 

frequencies, current primarily travels through paracellular pathways (red arrow), reflecting barrier 

integrity and providing information about cell phenotype or “what kind” of cell. At high 

frequencies, current predominantly passes transcellularly (blue arrows), correlating with cell 

coverage and “how many” cells there are. B) Applications of cell impedance assays for monitoring 

various cellular behaviors. As cells cover the electrode surface, impedance increases. Different 

factors can be measured, depending on frequency, allowing for many practical applications of this 

technology. Created with BioRender.com 

 

 

3.3 Materials and Methods  

3.3.1 Reagents and Cell Lines 

Poly-D-lysine lyophilized powder (Sigma Aldrich) was dissolved in sterilized deionized 

(DI) water to form a 21.3 µM solution. This solution was stored at -20˚C and thawed on ice when 

needed. To prepare leptin, the adipokine used as a cell stimulant, human leptin (Sigma Aldrich) 
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was reconstituted in sterilized DI water to make a 0.5 µg/mL solution and 1.5 µg/mL solution. 

Leptin solutions were stored at 4°C for short term storage and -20˚C for longer storage.  

MCF7, HCC1806, and MDA-MB-231 cells were purchased from American Type Culture 

Collection (ATCC). Characteristics of the cells include: MCF7 cells (metastatic adenocarcinoma, 

ER+, PR+); HCC1806 cells (triple negative ER-/PR-/HER2-), African American donor); and 

MDA-MB-231 (triple negative (ER-/PR-/HER2-), Caucasian donor). All three cell line 

populations were expanded as a monolayer in 75 cm2 flasks (Falcon) at 37˚C and 5% CO2 

atmosphere in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine 

serum (R&D Systems) and 1% penicillin/streptomycin (Gibco), referred to as DMEM-Complete. 

Three days before data collection began, cell media was changed every day and 200 µL of 

stimulant was added. This stimulant was either sterile DI water for the control groups, 0.5 µg/mL 

leptin for the normal concentration groups, or 1.5 µg/mL leptin for the high concentration groups. 

Cells were confirmed to be free of mycoplasma using a commercially available kit (InvivoGen). 

 

3.3.2 Seeding Cells onto CytoView Plates 

Experiments for this work were performed according to the plan shown in Figure 3.2. 

Before cells were added to the CytoView-Z 96-well electrode plates (Axion), the culture surfaces 

were treated with 50 µL of the poly-D-lysine solution (21.3 µM) and incubated at room 

temperature for 1 hour in a biosafety cabinet. Afterward, each well was washed with 50 µL of 

Phosphate Buffered Saline (PBS, Gibco) twice and allowed to dry in the biosafety cabinet. Cells 

were transferred from the 75 cm2 flasks using 0.5% trypsin-EDTA (Gibco). Before seeding the 

cells on the electrode plate, a Media Only Baseline test was performed in the AxisZ software of 

the Maestro Z (Axion) by adding 100 µL of DMEM-Complete to each well of the plate and evenly 
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distributing 8 mL of sterile room temperature DI water to the reservoirs on the CytoView-Z plates 

(shown in Supplementary Figure A.4). The plate was docked in the Maestro Z instrument, and the 

the Media Only Baseline was measured. Once the baseline was measured, the plate was transferred 

to a biosafety cabinet and the cells were added to the CytoView-Z plate. MDA-MB-231 cells were 

plated at a concentration of 75,000 cells/cm2, while MCF7 and HCC1806 cells were plated at 

85,000 cells/cm2 to account for varying growth rates and cell sizes. A volume of 4 µL of the 

stimulant was added to each well and the plate was allowed to rest in a biosafety cabinet at room 

temperature for 1 hour to allow cells to attach to the culture surface and avoid edge effects. Lastly, 

the plate was docked in the Maestro Z and cultured at 37˚C and 5% CO2. Impedance and Barrier 

Index measurements are automatically collected upon plate engagement. 

 

3.3.3 Evaluating Cell Proliferation and Barrier Integrity 

Cell growth was monitored by tracking impedance through the AxisZ software associated 

with the Maestro Z. At 24 hours, the plate was undocked, and the cells were visually checked for 

confluence using an EVOS FLc microscope (Invitrogen). Shown in Figure 3.2, all medium was 

changed to a low-serum medium (DMEM supplemented with 2% fetal bovine serum and 1% 

penicillin/streptomycin) to halt growth. A volume of 4 µL of the stimuli treatment was added to 

each well. The CytoView-Z plate was redocked in the Maestro Z and cells continued to culture for 

12 hours while their growth ceased. Impedance readings were collected on Axion’s AxisZ 

Software approximately every minute and all data exported to Excel at the end of experiment. 

Barrier Index measurements were collected simultaneously with impedance during cell 

proliferation. Barrier integrity was then calculated in AxisZ. 
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Figure 3.2: Schematic of the experimental flow. Created with BioRender.com 

 

3.3.4 Modified Quantitative Wound Healing Assay 

The CytoView-Z plate was undocked from the Maestro Z and placed in a biosafety cabinet. 

To create a physical wound in each well of the plate, a multi-channel micropipettor fitted with 

micropipette tips was used to gently scratch the plate surface in a vertical line. The media was 

replaced by fresh low-serum media and supplemented with 4 µL of stimuli treatment. The plate 

was redocked in the impedance system. After 36 hours, the experiment was terminated. 

 

3.3.5 Transwell Migration Assay 

CellTracker Green (Invitrogen) was used to stain actin of each cell line immediately prior 

to seeding the cells on the inserts. Transwell inserts of 24-mm diameter and  8-µm porosity 

(Corning Costar) were used to evaluate migration potential of each cell line. DMEM-Complete 

was added to the bottom wells and each cell line was seeded on individual inserts at 100,000 
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cells/cm2 using a low-serum medium. Plates were cultured and evaluated at 6, 12 ,18, and 24 hours. 

To image cell nuclei, 2 drops of NucBlue™ Live ReadyProbes™ Reagent (Hoechst 33342, 

Invitrogen) per mL of media were added to each well and allowed to incubate at room temperature 

for 20 minutes. After incubation, each transwell insert was gently rinsed with PBS and transferred 

to a well with fresh PBS. The top of each insert was gently swabbed to remove the non-migrated 

cells. Using the Cytation1 Cell Imaging Multi-Mode Reader (Agilent BioTek), each well was 

imaged in 4 locations, and the nuclei were counted using Gen5 Cell Imaging & Microscopy 

Software (BioTek). Object count was performed using a threshold of 9000, minimum object size 

of 9 microns, and maximum object size of 35 microns. The number of nuclei was used to quantify 

the number of migrated cells per image for each cell type. 

 

3.3.6 Traditional Wound Healing Assay 

MCF7, HCC1806, and MDA-MB-231 cells were seeded onto a standard 96-well plate 

using DMEM-Complete at the same density as the modified wound healing assay. CellTracker 

Green was used to stain the cell actin immediately prior to seeding the cells on the plate. At 24 

hours, the cells were visually checked for confluence using an EVOS FLc microscope (Invitrogen). 

To halt growth, all medium was changed to a low-serum medium. The plate was returned to the 

incubator and cells continued to culture for 12 hours while their growth ceased. After 36 hours of 

culture, nuclei were stained, and cell monolayers were scratched. 

To stain the nuclei, NucBlue (Invitrogen) was added to a stock of DMEM complete at a 

concentration of 2 drops per mL. Spent media was removed from the 96-well plate and 100 µL of 

NucBlue-DMEM solution was added to each well and incubated in a biosafety cabinet for 20 

minutes at room temperature. To create a physical wound in each well, a multi-channel 
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micropipettor fitted with micropipette tips was used to gently scratch the plate surface in a vertical 

line. The media was replaced by fresh low-serum media and the plate was imaged using a Cytation 

1 (Agilent Biotek). Each well was imaged in a two-by-three montage that was stitched into one 

image using Agilent Biotek’s Gen5 software. The plate was imaged every 12 hours for 36 hours 

to visualize wound closure over time. 

 

3.3.7 Data Processing and Statistical Analysis 

Impedance data was exported via Microsoft Excel, where the rate of wound closure was 

calculated. Statistical analyses were calculated using GraphPad Prism 3.9. Statistical significances 

of ECIS data were determined via ordinary one-way ANOVA. Transwell migration significance 

was calculated using an unpaired parametric t-test. 

 

 

3.4 Results 

3.4.1 Determination of Quantitative Impedance Assay Feasibility 

Preliminary evaluation of the efficacy of cell impedance for monitoring changes in breast 

cancer cell behavior was performed. Stained images demonstrating the representative morphology 

of the three tested breast cancer cell lines, MCF7, HCC1806, and MDA-MB-231 cells, are shown 

in Figure 3.3A. Each of the three cell lines were cultured using the Maestro Z Impedance Assay 

System, with a high frequency impedance, measured across the electrodes of each well.  

Initial evaluation of the data for control cell samples without any treatment showed a 

distinct impedance profile for each breast cancer line, where variations in Impedance and Barrier 

Integrity were detected during adhesion, proliferation, and wound healing phases of the culture 
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period (Figure 3.3B and 3.3C, respectively). The graphs obtained show high frequency impedance 

averaged across the set of wells for each cell type. Key points during the culture period are reflected 

in the graphs, where the baseline impedance for each cell line is indicated at 0 hours, and an 

increase in impedance is observed as cells proliferate up to 36 hours. Interruptions in the culture 

process, such as media change at 24 hours or the initiation of wounds for a scratch assay at 

confluence (36 hours) are reflected by an immediate decrease in impedance, and subsequent 

increase, depending on cell response.  

For the tested cell lines, as shown in Figure 3.3B, during the first six to eight hours, the 

MDA-MB-231 and HCC1806 impedance values plateaued. Impedance measurements during the 

first 36 hours of proliferation showed that the MCF7 cells reached the highest impedance for the 

tested cells, and the MDA-MB-231 cells maintained the lowest impedance for the entire culture 

period. The MCF7 cells had an average impedance of 49.5 Ω at confluency, while the HCC1806 

and MDA-MB-231 cells measured as 34.1 Ω and 11.8 Ω respectively. The Barrier Integrity of 

each breast cancer cell monolayer was measured during proliferation by quantifying the ratio 

between low frequency (1 kHz) resistance and high frequency (41.5 kHz) resistance. In addition 

to the highest impedance, the MCF7 cells also had the highest Barrier Integrity among the three 

cell lines tested, which remained the highest during proliferation and wound healing assay phases 

(Figure 3.3C).  
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Figure 3.3. Imaging and impedance monitoring of breast cancer cell dynamics. A) Breast cancer 

cells (green) and their nuclei (blue) stained to visualize morphology. B) Application of impedance 

assay system for simultaneously monitoring Impedance and C) Barrier Integrity during culture. 

Cells were allowed to attach to plate and proliferate for 36 hours (yellow background). Then, each 

well was physically scratched, and wound closure was observed for another 36 hours (purple 

background). 
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Figure 3.4: Wound closure over 36 hours. A) Normalized high frequency (41.5 kHz) impedance 

of breast cancer cells without any treatment. To visualize wound closure, impedance was 

normalized to the value of each well pre-scratch. B) Bar graph of wound closure, measured by 

normalized impedance. Graph shows normalized impedance levels directly after creating a wound 

and 12, 24, and 36 hours after. The grey dotted line represents the point in which the impedance 

matches the pre-scratch impedance. Significance between groups is denoted by asterisks: * p < 

0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. n = 6 wells per condition. 

 

3.4.2 Confirmation of Quantitative Wound Healing Assay Protocol 

When cells reached confluence at 36 hours, the wound healing assay was initiated by 

making a physical scratch within each well, and the impedance was measured for an additional 36 

hours. Impedance was normalized to the point prior to creating a wound. Immediately after the 

scratch a decrease in impedance was observed for each cell type, as indicated in Figure 3.4A.  As 

shown in Figure 3.4B, both triple-negative cell lines were able to close the created wounds within 

36 hours, if not sooner, with the impedance for the HCC1806 and MDA-MB-231 cells reaching 
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or exceeding the impedance values measured before the scratch. The less aggressive MCF7 cells 

showed very little migration, as there was little to no change in the measured MCF7 impedance 

over the 36 hours. These observations were consistent with cell migration measured via a transwell 

migration assay and a traditional wound healing assay performed for each cell line (Supplementary 

Figure A.1). 

 

Figure 3.5: Impedance and barrier integrity across the full experimental timeline. A) High-

frequency impedance (41.5 kHz) and B) barrier integrity measurements for three breast cancer cell 

lines treated with leptin at 0, 10, or 30 ηg/mL. Cells were seeded and allowed to attach and 

proliferate for 36 hours (yellow background). A scratch wound was then created, and wound 

closure was monitored for an additional 36 hours (purple background). n = 6 wells per condition. 

 

3.4.3 Application of Impedance Assay Protocols to Evaluate Cell Behavior 

The high frequency impedance for each cell type treated with either a normal leptin 

concentration (10 ηg/mL) or high leptin concentration (30 ηg/mL) was measured and compared to 

control samples (Figure 3.5A). In addition, the barrier integrity of each breast cancer cell 

monolayer was measured simultaneously (Figure 3.5B).  For each cell type, the effects of leptin 

on cell behavior were assessed by monitoring cells during adhesion, proliferation and wound 

healing phases of culture. For the MCF7 cells, their impedance and barrier integrity across all three 
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leptin levels was significantly higher than either triple-negative cell line. Each cell line had a 

significant change in impedance with response to leptin, however there was no consistent pattern 

of response to leptin across all three cell lines. 

 

 

 

Figure 3.6: Cell spread is more pronounced in elongated breast cancer cell lines. A) High 

frequency impedance recorded in the first 12 hours of the experiment to visualize HCC1806 and 

MDA-MB-231 cell spread. Plate was removed from recording device at t = 6.5 hours (dashed line), 

resulting in a data artifact. B) High frequency (41.5 kHz) impedance recorded in the first 36 hours 

of the experiment to visualize cell spread and proliferation. Media was changed at t = 24 hours 

(dashed line). C) Average impedance (41.5 kHz) at t = 36 hours. * indicates a statistically 

significant comparison where p> 0.05. ** indicates a statistically significant comparison where p 

> 0.01. *** indicates a statistically significant comparison where p > 0.001. **** indicates a 

statistically significant comparison where p > 0.0001. (n=6) 
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At high cell density (t = 36 hours), MCF7 cell barrier integrity is influenced by 

concentration of leptin (Figure 3.7A). Additionally, a significant difference in barrier integrity 

across all three control groups was measured. This is linked to cell-cell adhesion and shows a 

significantly higher barrier integrity for the less aggressive MCF7 cells in comparison to the more 

aggressive triple negative cell lines (Figure 3.7B).  

 

 

Figure 3.7: Breast cancer cell monolayer barrier integrity. A) Cell-cell barrier integrity recorded 

in the first 36 hours of the experiment. Media was changed at t= 24 hours (dashed line). (B) 

Average barrier integrity at t= 36 hours. Significance between groups is denoted by asterisks: * p 

< 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. n = 6 wells per condition. 

 

 

3.5 Discussion 

Here, we developed a protocol for impedance-based data collection that evaluates multiple 

cancer cell characteristics in a single experiment. This method is sensitive, label-free, and non-

destructive, making it a suitable option for small cell populations. Cell surface adhesion, 

proliferation, response to stimuli, migration, and barrier integrity were all measured within a single 
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experiment, providing knowledge of how each cell line compares with one another and how leptin 

affects these behaviors.  

 

3.5.1 Determination of Quantitative Impedance Assay Feasibility 

Cell spread and proliferation were evaluated using high frequency (41.5 kHz) impedance. 

At this frequency, the impedance of the cell membrane is relatively low. Thus, most of the current 

couples capacitively through the cell membranes. In other words, the current is traveling in a 

transcellular manner, providing information about the cell layer, such as confluency and surface 

coverage where the cells attach to the electrode surface and spread out. In the first 12 hours of 

culture, the impedance of each triple-negative breast cancer cell group plateaued. This was later 

identified as cell spread as the cells spread out and attach onto the substrate, a phenomenon that is 

well documented using ECIS 28-30. While MCF7 cells have a cobblestone-like morphology, the 

triple-negative breast cancer cell lines are more elongated in shape. Therefore, it is indicated that 

the HCC1806 and MDA-MB-231 cell lines exhibited a plateau in their impedance readings as the 

cells work to fully attach to the plate before proliferating.  

Once cells began to proliferate, the MCF7 cells grew quickly and tended to pack tightly 

together. Because of this, a higher number of MCF7 cells can cover the same surface area as either 

of the triple-negative breast cancer cell lines. This is reflected in the impedance reading at t = 36 

hours, when cells are at their highest density. This alone can give us insight into the growth patterns 

of each cell line and how cells might behave in vivo.  

Endothelial and epithelial cells express tight junctions, allowing them to link tightly with 

their neighboring cells to form a selectively permeable barrier. A cancer cell’s increase in 

invasiveness is often associated with a transition from epithelial-like cells, that maintain a cuboidal 
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shape and adhere to the basement membrane, to more elongated mesenchymal-like cells 31,32. 

There is an observed tradeoff between the cells’ proliferation and invasiveness for this process, the 

epithelial-to-mesenchymal-transition. This change occurs on an epigenetic level where markers 

like E-cadherin, desmoplakin, and keratin are associated with an epithelial-like state and n-

cadherin, vimentin, and fibronectin are associated with a mesenchymal-like state 33. A degradation 

of tight junctions is associated with the transition to a more mesenchymal-like state, leading to 

decreased barrier integrity and a proclivity for migration 34.  

At lower frequencies, electrical signal passes through paracellular pathways, measuring the 

integrity and permeability of a cell monolayer. While this measurement, referred to as trans-

epithelial electrical resistance (TEER) typically requires a fully confluent monolayer to accurately 

measure barrier function, the Maestro Z normalizes this data to cell surface coverage, measured 

with high frequency (41.5 kHz) resistance (Equation 3.1). As a result, this is a unitless measure.  

 

𝐵𝑎𝑟𝑟𝑖𝑒𝑟 𝐼𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 =
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 1 𝑘𝐻𝑧 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [Ω]

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 41.5 𝑘𝐻𝑧 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [Ω]
    (3.1) 

 

This difference in barrier integrity is observable across all three cell lines in Figure 3.3C where 

highly cuboidal and non-migratory MCF7 cells maintain a high normalized TEER value (i.e. 

barrier integrity). The more aggressive HCC1806 and MDA-MB-231 cells have a much lower 

barrier integrity, which associates with their morphology and aggressiveness.  

 

3.5.2 Confirmation of Quantitative Wound Healing Assay Protocol 

Cell migration is essential for many physiological processes including embryonic 

development, wound repair, angiogenesis, and tumor metastasis 35. Cancer cell migration is one of 
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the first steps in the metastatic cascade and is commonly used to evaluate cancer cell 

aggressiveness. 

With high frequency (41.5 kHz) cell impedance being directly related to cell surface 

coverage, we can use this value to determine cell migration as a form of wound closure. Impedance 

was normalized to the value prior to creating a wound, meaning that the wound would be 

effectively covered once the cell value has reached 1.0 again. Over 36 hours of wound closure, the 

luminal MCF7 cells did not show any measurable difference in impedance and did not migrate to 

close the wound at all. This is in contrast to the triple-negative breast cancer cell lines, which 

displayed an increase in impedance over time as they worked to close the wound. The MDA-MB-

231 cells migrated the most and quickest of all three breast cancer cell lines, and eventually began 

to die back, resulting in a drop in impedance between 24 hours and 36 hours of migration. The 

non-migratory tendencies of the luminal MCF7 cell line have been mentioned previously in 

literature 36-40. Luminal cell lines are comparably more differentiated and have a lower propensity 

for migration due to a higher number of tight junctions 41 and MCF7 cells have higher rates of 

claudin-1 than their triple-negative counterparts 34,42. Our data correlates with published 

information; however, we also assessed migration potential of our specific cell populations using 

a more traditional transwell migration assay. Our transwell migration data mirrors our impedance-

measured wound closure where the MCF7 and HCC1806 cells exhibit no migration over 24 hours, 

and the MDA-MB-231 cells do. Notably, the MDA-MB-231 groups displayed immediate and 

rapid migration with both migration assays. All of this further proves the efficacy of impedance-

based cell monitoring to measure cell migration.  
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3.5.3 Application of Impedance Assay Protocols to Evaluate Cell Behavior 

The sensitivity and efficacy of the quantifiable assay approaches developed here was tested 

by treating cultured cells with exogenous leptin added to their culture media at varying levels. It 

was expected that high levels of leptin, commonly associated with diseased states, would impact 

cell proliferation and migration, particularly for the more aggressive cell lines tested. Measurement 

of the impedance and barrier integrity in response to leptin treatment did successfully yield 

quantifiable measures, indicating that this assay approach is sensitive enough to detect subtle 

differences in cell behavior. However, the effects of leptin were not consistent.  

Because MCF7 cells have a cobblestone morphology and grow tightly packed, their 

impedance across all three leptin levels was significantly higher than either triple-negative cell 

line. Each cell line had a significant change in impedance with response to leptin, however there 

was no consistent pattern of response to leptin across all three cell lines. Leptin has previously 

been shown to have an effect on cell breast cancer cell proliferation 43-45, though there is no distinct 

pattern in response across cell lines. Determining leptin receptor (Ob-R) expression for each cell 

line may give us insight into the varied response we measured. Additionally, in this work, leptin 

was shown to have an effect on cell barrier integrity across all three cell lines, but particularly with 

the luminal MCF7 cells. Previous studies have shown than leptin can have an effect on e-cadherin 

expression within breast cancer cells 46,47. Since MCF7 cells have a higher expression of E-

cadherin, this may explain why their barrier integrity is affected more by leptin expression.  

For the modified wound healing assay, since high frequency impedance corresponds to 

electrode surface coverage, it was used to track wound closure. When treated with leptin it was 

expected that high leptin concentrations would yield increased cell migration. However, while 
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there were differences observed between cell types and across all MCF7 cells observed, there was 

no measurable difference in wound closure as a response to leptin (Supplementary Figure A.2). 

Leptin was shown to have no effect on cell migration in this work, although leptin has 

previously been shown to increase cell migration and invasion 48,49. This outcome may be resultant 

from the concentrations of leptin used within this study in comparison to other studies. 

Concentration levels were determined based on a literature review of serum leptin levels 6,50-55, 

however leptin concentrations within the fatty tumor microenvironment are likely higher. 

Additionally, the effect of leptin on breast cancer migration in vivo involves not only oncogenic 

signaling within the cancer cell but can lead to an inflammatory response in macrophages and T-

cells in the surrounding microenvironment. By decoupling the leptin-induced cancer cell and 

immune cell responses, this may understate the effect that leptin plays in breast cancer progression.  

 

3.5.4 Performance and Operational Issues 

Overall, this experimental method proved simple and effective in providing a large 

collection of data on many different cell characteristics. ECIS is non-invasive and non-terminal 

allowing us to evaluate cell spread, proliferation, barrier integrity, and cell motility with the same 

cell population. This is practical in a research setting where there is a small population of cells 

(e.g. derived from a biopsy). The only notable issue of this adapted wound healing assay is creating 

the wound without damaging the electrode imbedded within each well. This is due to the difficulty 

of creating an even distribution of weight across a row of wells with the multichannel pipettor. 

While some wells had damaged electrodes from the pipette tip, others did not show a full scratch. 

In later iterations of this experiment, the user applied a more even distribution of weight by holding 

the pipettor at its base to perform the scratch. In future work, we plan to test higher precision 
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wound-making tools, like the Autoscratch by Agilent. With minimal adaptations, this method can 

be used for an easier wound healing assay that requires less maintenance and gives a much broader 

view of cell behavior and migration over time. 

 

3.6 Conclusion 

Breast cancer metastasis remains one of the leading causes of death in women with cancer. 

While wound healing assays are a common way to evaluate 2D cell migration, traditional methods 

rely on image processing. This method is not only more computationally intense but is less 

quantitative. The methods outlined above propose a modified wound healing assay that can track 

wound closure, as cells migrate to close the gap, with ECIS. Impedance spectroscopy is a label-

free, non-terminal way to continuously observe cell behavior throughout the entire experiment. 

Within this experiment, we were able to measure cell response to leptin (a proinflammatory 

adipokine), track cell spread and proliferation, quantify cell barrier integrity, and determine 2D 

cell migration via a modified wound closure assay. We found leptin to be a contributing factor in 

cancer cell proliferation and barrier integrity, however no variation in migration was recorded 

between our leptin conditions. This method allowed us to characterize cancer cell behavior and 

will be applied to more mammary cell lines in the future to establish a library of data on established 

breast cancer cell lines.  
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4.1 Abstract 

Breast cancer metastasis remains the leading cause of mortality among women with breast 

cancer, with triple-negative breast cancer posing a particularly aggressive and poorly understood 

clinical challenge. This chapter investigates the use of impedance-based techniques, including 

Electric Cell-substrate Impedance Sensing (ECIS) and transepithelial electrical resistance (TEER), 

to quantitatively assess cellular behaviors associated with metastatic potential, with particular 

focus on factors associated with epithelial-to-mesenchymal transition (EMT). Bioelectronic 

impedance assay methods offer a label-free, real-time alternative to conventional wound healing 

assays, providing dynamic measurements of cell adhesion, surface coverage, and migratory 

capacity. Through the application of these techniques across a panel of mammary cell lines, we 

identified distinct behavioral patterns that correlate with known metastatic tendencies. Notably, 

impedance measurements revealed that MDA-MB-453 cells exhibit high migratory behavior 

despite epithelial morphology, challenging the assumption that EMT transition status alone 

predicts metastatic potential. These findings highlight the value of impedance and TEER as 

complementary tools in metastasis research and underscore the need to consider both dynamic and 

morphological cell features. Looking forward, integrating these techniques with image-based 

phenotyping and machine learning holds promise for enhancing the precision of metastatic 

behavior assessments.  
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4.2 Introduction 

 Breast cancer is the leading cause of cancer-related death among women worldwide, with 

over 300,00 new cases expected in the United States alone in 2025 1,2. The majority of these deaths 

result from metastasis, where the cancer spreads to distant organs, like the brain, lungs, liver, and 

bone 3. Among breast cancer subtypes, triple-negative breast cancer (TNBC) accounts for 

approximately 10% of cases 4 and poses a particular challenge due to its difficulty to treat and 

increased aggressiveness. Specifically, TNBC tumors lack all three of the main cell receptors 

related to breast cancer - estrogen receptor (ER), progesterone receptor (PR), and human epidermal 

growth factor receptor type 2 (HER2), which results in greater difficulty treating this type of cancer 

with commonly available targeted therapies. In addition, TNBC has been shown to occur more 

frequently in younger women and is the most aggressive form of cancer, with the highest rates of 

metastasis and mortality.  Hence, there is a significant need to better understand the metastatic 

behaviors of breast cancer, particularly of the TNBC subtype. Gaining insight into the mechanisms 

driving metastatic progression is critical for improving both diagnostic and treatment strategies 

towards improving TNBC patient outcomes. 

One hallmark of metastasis is the epithelial-to-mesenchymal transition (EMT), a metabolic 

shift where epithelial cells acquire mesenchymal properties and transition from a proliferative to a 

migratory state. This transformation occurs on an epigenetic level where markers like epithelial 

cell adhesion molecule (EpCAM), desmoplakin, and keratin are associated with an epithelial-like 

state and n-cadherin, vimentin, and fibronectin are associated with a mesenchymal-like state 5-7. 

This loss of polarity and cell-to-cell adhesion enhances the cells’ invasive and migratory 

capacities, facilitating early metastatic processes 8-10. Tight junction proteins like claudins, 

occludin, and ZO-1 are key regulators of epithelial polarity and cell-to-cell adhesion 11,12, and their 
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downregulation is a critical step during EMT 13,14. The disruption of these junctions compromises 

the epithelial barrier, enabling cytoskeletal remodeling and increased motility, and is especially 

pronounced in aggressive breast cancer subtypes like claudin-low tumors 15. These changes not 

only promote dissemination from the primary tumor but also directly influence how cancer cells 

interact with and migrate through peritumoral tissue 16-19. 

As a tumor establishes itself at the primary site, metastasis begins with local invasion, 

where cancer cells breach the basement membrane and migrate into surrounding tissue. This 

migration requires dynamic regulation of focal adhesions (FAs), which mediate attachment 

between cells and the extracellular matrix (ECM). Invasive breast cancer cells have more dynamic 

FAs than their noninvasive counterparts 20, and a decrease in adhesion strength has been shown to 

correspond to increased metastatic potential 21. Thus, investigating changes in cell adhesion and 

motility can yield valuable insights into metastatic behavior and disease aggressiveness.  

This study employs an impedance-based assay methodology, developed in Chapter 3, to 

quantify metastatic behaviors across a broad panel of mammary cell lines. By integrating 

impedance and resistance measurements, this approach enables the assessment of cell 

proliferation, surface coverage, barrier integrity, and migration within the same population of cells. 

Two non-cancerous lines and six breast cancer cell lines were analyzed to evaluate the relationship 

between EMT and cancer aggressiveness using this approach. Five TNBC lines, selected for their 

diverse morphological profiles, were included to investigate this question within the aggressive 

TNBC subtype, towards identifying key characteristics of these cells that could be used as 

indicators for assessing their metastatic potential. This work aims to identify novel, quantifiable 

patterns of behavior in TNBC cells with distinct morphologies, providing deeper insight into their 

aggressiveness and metastatic potential. 
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4.3 Materials and Methods 

4.3.1 Reagents and Cell Cultures  

Poly-D-lysine lyophilized powder (Sigma Aldrich) was dissolved in sterilized deionized 

(DI) water to form a 21.3 µM solution. This solution was stored at -20˚C and thawed on ice when 

needed. All cell lines were purchased from American Type Culture Collection (ATCC) and 

cultured at 37˚C and 5% CO2 atmosphere. Cell line information, including cell type, and literature-

confirmed receptor status, is summarized in Table 4.1. As outlined in Supplementary Table B.1, 

184B5 and MCF10A cells were cultured in Mammary Epithelial Growth Medium (MEGM; 

Lonza) supplemented with 1 ng/mL cholera toxin (Sigma-Aldrich) and 100 ng/mL cholera toxin 

respectively. HCC70 and BT-549 cells were cultured in RPMI-complete using ATCC’s modified 

RPMI blend (ATCC) supplemented with 10% fetal bovine serum (FBS; R&D Systems) and 1% 

penicillin/streptomycin (P/S; Gibco). HCC1806, MDA-MB-453, and MDA-MB-231 cells were 

cultured in low-glucose Dulbecco’s Modified Eagle Medium (DMEM; Gibco) supplemented with 

10% FBS and 1% P/S to form DMEM-Complete. Lastly, the MCF7 cell line was cultured in 

DMEM-Complete  supplemented with 0.01 mg/mL bovine insulin (Sigma). All cell lines were 

confirmed to be free of mycoplasma using a commercially available kit (InvivoGen). 

 

4.3.2 Mammary Cell Transcriptomic Profiling  

RNA expression data was obtained from the Cancer Dependency Map (DepMap) 22,23, a 

comprehensive resource developed by the Broad Institute to identify genetic and chemical 

vulnerabilities across diverse cancer types. As part of the 24Q4 Public release 24, DepMap provides 

genomic and transcriptomic profiles for a wide range of cancer cell lines, including RNA 

sequencing data for the six cell lines used in this study. This release includes updated data from 
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whole-genome and exome sequencing (copy number variation and mutation status), RNA 

sequencing (gene expression and fusion events), and genome-wide CRISPR-Cas9 knockout 

screens. Expression levels of VIM (vimentin) and EPCAM (EpCAM) were extracted from this 

dataset to quantitatively compare with protein-level expression observed through 

immunofluorescence staining. 

 

Table 4.1: Mammary cell line information  
Cell Line Cell Type Receptor Status Reference 

184B5 

(CRL-8799TM) 

Normal Mammary Gland - 25,26 

MCF10A 

(CRL-10317TM) 

Fibrocystic Disease - 27 

MCF7 

(HTB-22TM) 

Mammary Gland Adenocarcinoma (ER+, PR+, HER2-)  28-30 

MDA-MB-453 

(HTB-131TM) 

Carcinoma (ER-, PR-, HER2-)  29,31-33 

HCC70 

(CRL-2315TM) 

Primary Invasive Ductal Carcinoma (ER-, PR-, HER2-)  31,32,34 

HCC1806 

(CRL-2335TM) 

Primary Squamous Cell Carcinoma (ER-, PR-, HER2-)  31,34,35 

MDA-MB-231 

(HTB-26TM) 

Adenocarcinoma (ER-, PR-, HER2-)  29,31,33,35-37 

BT-549 

(HTB-122TM) 

Ductal Carcinoma (ER-, PR-, HER2-)  31,36,38 

 

 

4.3.3 Immunofluorescence Staining of Mammary Cell Lines 

Immunofluorescent staining was performed to visualize epithelial and mesenchymal 

phenotypic markers in cells. Conjugated antibodies detecting EpCAM (ab237395, Abcam) and 

vimentin (ab202504, Abcam) were diluted to a final concentration of 0.1 µg/mL in phosphate-

buffered saline (PBS; Gibco). The working stain solution was stored at 4°C for up to two weeks, 

while the remaining stock was stored at -20 °C for long-term use. Cells were seeded onto black-

walled, clear-bottom 96-well plates (Corning) at a density of 10,000 cells/cm² and incubated for 
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14 hours to allow full adhesion and cytoskeletal spreading on the tissue culture polystyrene surface. 

Following attachment, cells were fixed with 4% (v/v) paraformaldehyde (PFA; Thermo Scientific) 

in PBS for 15 minutes, then permeabilized with 0.1% (v/v) Triton X-100 (Thermo Scientific) in 

PBS for another 15 minutes. Cells were then blocked with 3% bovine serum albumin (BSA; 

Invitrogen) for 30 minutes and subsequently incubated overnight at 4°C with the anti-EpCAM and 

anti-vimentin antibody solution. Nuclear staining was performed using NucBlue (Invitrogen), with 

a 20-minute incubation period. PBS washes were performed between all staining and blocking 

steps. Imaging was carried out manually at 20× magnification using a Cytation 1 imaging system 

(Agilent BioTek). 

 

4.3.4 Fluorescent Imaging of Mammary Cell Lines 

Mammary cell lines were cultured and stained to assess cellular morphology and growth 

patterns. Each cell line was seeded into 6-well plates (Corning) and cultured in their respective 

growth media, as described in Section 4.3.1, until reaching approximately 50–70% confluence. 

Cells were fixed with 4% PFA in PBS for 30 minutes at room temperature, followed by two washes 

with PBS. For permeabilization and staining, a solution containing 1% (v/v) Tween 20 (Sigma-

Aldrich), 10 µg/mL Hoechst 33342 (Thermo Fisher) to label nuclear DNA, and 1 µg/mL 

Fluorescein-5-Maleimide (Thermo Fisher) to visualize actin filaments was applied to the fixed 

cells. Cells were incubated in this staining solution for 1 hour at room temperature, protected from 

light. Following staining, cells were washed with PBS, and fluorescent images were acquired 

manually using a Cytation 1 imaging system (Agilent BioTek). 
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4.3.5 Seeding Cells onto Cytoview Plates 

Before cells were added to the CytoView-Z 96-well electrode plates (Axion Biosystems), 

the culture surface was treated with a 21.3 µM poly-D-lysine solution and a media baseline test 

was performed as explained in Chapter 3. Each cell line was seeded at a density optimized to 

account for differences in growth rate and cell size, ensuring confluency at 24 hours. The non-

cancerous 184B5 and MCF10A cells were seeded at 100,000 and 110,000 cells/cm2 respectively. 

The MDA-MB-453 and HCC70 groups were seeded at the highest densities, 250,000 cells/cm2 

and 125,000 cells/cm2 respectively, to ensure the highest possible surface coverage. The MCF7 

and HCC1806 groups were seeded at 85,000 cells/cm2 and the more elongated MDA-MB-231 and 

BT549 cells were seeded at 75,000 cells/cm2. To maintain humidity within the Maestro Z system, 

8 mL of sterile deionized (DI) water was added to the peripheral reservoir of the plate. The plate 

was left to rest in a biosafety cabinet for 1 hour to allow the cells to attach and minimize edge 

effects. After one hour, the plate was docked in the Maestro Z system and cultured at 37˚C and 5% 

CO2. High frequency impedance and transepithelial electrical resistance (TEER) measurements 

were automatically recorded at 1-minute intervals upon plate engagement.  

 

4.3.6 Evaluating Cell Proliferation, Barrier Integrity, and Migration 

Cell proliferation and growth patterns were monitored by tracking high frequency (41.5 

kHz) impedance through the AxisZ software compatible with the Maestro Z. At 24 hours, the plate 

was undocked, and the cells were visually checked for confluence using an EVOS FLc microscope 

(Invitrogen). To halt growth, all medium was changed to a nutrient-reduced formula, shown in 

Supplemental Table B.1, and the plate was redocked into the Maestro Z. The cells continued to 

culture for 12 hours while their metabolic function shifted, and cell growth ceased. Impedance was 
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collected continuously, while TEER was measured at confluence as resistance at a 1 kHz frequency 

current. A modified wound healing assay, outlined in Chapter 3, was used to measure cell 

migration through high frequency impedance. After 36 hours of migration, the experiment was 

terminated.  

 

4.3.7 Data Processing and Statistical Analysis 

High-frequency impedance (41.5 kHz) and low-frequency resistance (1 kHz; TEER) data was 

exported from the AxisZ software via Microsoft Excel, where the rate of wound closure was then 

calculated by as the change in impedance from the time immediately after the scratch (0 hours) to 

36 hours post-scratch. The 0-hour timepoint was defined as the measurement taken 5 minutes after 

the plate was redocked and impedance collection resumed, to account for transient spikes in 

impedance caused by handling-related perturbations. This change in impedance was then divided 

by the 36-hour interval to determine the rate of migration. Statistical analyses was performed using 

GraphPad Prism 10.2. Statistical significance was determined via ordinary one-way ANOVA.  

 

4.4 Results 

4.4.1 Immunofluorescence Staining and Transcriptomic Profiling Confirm Epithelial-

Mesenchymal Heterogeneity 

 Immunofluorescence staining for EpCAM and vimentin was performed to assess the 

epithelial-mesenchymal phenotype of each mammary cell line. Imaging results, in combination 

with RNA sequencing data from the DepMap database 24, confirmed heterogeneous expression of 

epithelial (EpCAM) and mesenchymal (vimentin) markers across the panel of cell lines tested. 
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Figure 4.1: Epithelial-mesenchymal characterization of mammary cell lines. A) Representative 

immunofluorescence staining of mammary cell lines showing expression of EpCAM (green, GFP) 

and vimentin (red, TRITC), with nuclear counterstaining using Hoechst (blue, DAPI). Images in 

the left and middle columns were acquired at 20× magnification (scale bars, 100 µm); the right 

column shows magnified regions from the corresponding images (scale bars, 20 µm). B) 

Corresponding gene expression levels of EPCAM and VIM in each cell line, obtained from the 

DepMap Portal 22-24. RNA-seq values are presented as log₂(TPM + 1), where TPM denotes 

transcripts per million. 

 

 

 

Triple-negative breast cancer cell lines MDA-MB-231 and BT549 exhibited strong 

vimentin expression and minimal EpCAM expression (Figure 4.1), consistent with a mesenchymal 

phenotype. These cells also displayed prominent cytoskeletal projections, as seen in Figure 4.1A. 
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In contrast, MCF7 and MDA-MB-453 cells expressed high levels of EpCAM and low levels of 

vimentin, confirming their epithelial morphology. 

HCC1806 cells showed moderately reduced EpCAM expression compared to MCF7 and 

MDA-MB-453 cells, along with a more elongated morphology. However, their overall phenotype 

remained predominantly epithelial, suggesting a potential intermediate or hybrid 

epithelial/mesenchymal state. This mixed phenotype, associated with cellular plasticity and 

enhanced metastatic potential, was more evident in the HCC70 cell line, which seemingly 

expressed both EpCAM and vimentin at substantial levels. Notably, Figure 4.1A highlights cell-

to-cell variability in vimentin expression within the HCC70 population, further supporting the 

existence of phenotypic heterogeneity within this cell line. 

 

 

4.4.2 Impedance Reveals Proliferation Patterns and Surface Coverage in Mammary Cell Lines 

As previously demonstrated in Chapter 3, high-frequency impedance is correlated with cell 

proliferation and surface coverage 39-41. Therefore, impedance was measured across all mammary 

cell lines to explore the relationship between proliferation patterns and cell aggressiveness. 

Impedance values after 36 hours of proliferation, once each cell line reached confluency, are shown 

in Figure 4.2B. MCF10A and MCF7 cells exhibit significantly higher impedance than all other 

cell lines, indicating that they grow more tightly together and cover the growth surface more 

completely. This is consistent with known characteristics of their growth patterns, as shown in 

Figure 4.2A, where they form a tightly packed monolayer. In contrast, the normal mammary cell 

line 184B5 and all TNBC cell lines display markedly lower impedance, suggesting they do not 

cover the electrode surface as fully as MCF10A and MCF7 lines. High-frequency impedance 

provides insight into how each cell line proliferates and covers the growth surface. While 
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decreased proliferation is a hallmark of cancer invasion, it does not fully capture aggressive cancer 

behaviors. To further assess cell aggressiveness, TEER was measured in the same population to 

evaluate cell-to-cell barrier integrity.  

 

4.4.3 Transepithelial Electrical Resistance is Significantly Lower in Triple-Negative Cell Lines 

The number of cell-to-cell connections can decrease as cancer cells undergo phenotypic 

changes and adopt more mesenchymal traits 13,14,42. To evaluate this in our population of mammary 

cell lines, TEER was measured. TEER values, measured concurrently with impedance, were 

obtained after 36 hours of proliferation, once the cells had reached confluency, and are shown in 

Figure 4.2C. All TNBC cell lines exhibited significantly lower TEER values compared to the non-

cancerous cells (184B5 and MCF10A) and the luminal MCF7 cells. This generally correlates with 

cell phenotype, as cells with reduced epithelial traits, like lower claudin and E-cadherin expression, 

show decreased barrier integrity. The MCF10A and MCF7 cells, which have the highest TEER 

values, exhibit a more epithelial phenotype and tighter cell-to-cell connections. The limitation of 

using TEER to quantify barrier integrity is that it can only be measured accurately at confluency, 

when the cells have formed a monolayer. This method can prove less accurate for cells, like the 

HCC70 cell line, that grow in dense patches but fail to fill in gaps in the growth surface even at 

confluence. Overall, these findings support our hypothesis that more aggressive cells, like TNBC, 

have lower barrier integrity, as reflected by their lower TEER values. To further quantify cell 

aggressiveness, a migration assay was performed. 
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Figure 4.2: Representative images of mammary cell lines with impedance and transepithelial 

electrical resistance (TEER) values after 36 hours of proliferation. A) Cells were fixed and stained 

with Hoechst (blue) and fluorescein-maleimide (green) to indicate nuclei and cytoplasm, 

respectively. The white scale bar represents 200 µm. Images are shown for all cell lines used in 

this study. B) High frequency (41.5 kHz) impedance and C) TEER (resistance at 1 kHz) 

measurements of mammary cell lines after 36 hours of proliferation, when each well had reached 

confluency. Data was obtained from 6 independent wells (n=6) per cell line. Statistical significance 

is indicated as follows: $ indicates p < 0.0001 compared to 184B5; # indicates p < 0.0001 compared 

to MCF10A; @ indicates p < 0.0001 compared to MCF7; & indicates p < 0.05 compared to MDA-

MB-453; % indicates p < 0.05 compared to HCC70; and ! Indicates p < 0.05 compared to 

HCC1806. 
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4.4.4 Two-Dimensional Migration Reveals Aggressive Migration Patterns in Triple-Negative 

Cell Lines 

 

To assess cell aggressiveness, two-dimensional (2D) cell migration was measured using a 

modified wound healing assay, where migration is tracked by changes in impedance (representing 

surface coverage). Impedance values immediately after the scratch and 36 hours post-scratch are 

shown in Figure 4.3A. To account for differences in growth patterns, impedance is normalized to 

the value at the time immediately prior to the scratch, when each well was confluent. Four of the 

five TNBC cell lines show a significant change in impedance over 36 hours, indicating migration. 

To further validate these results, the rate of migration was averaged over the 36-hour period, as 

shown in Figure 4.3B. The MDA-MB-453 and MDA-MB-231 groups were the only cell lines with 

significantly higher migration rates compared to the non-migratory MCF7 cells, suggesting that 

these cell lines are highly aggressive. In contrast, the HCC1806 and BT-549 groups exhibited 

moderate migration. Both the change in impedance over 36 hours and the rate of wound closure 

confirm that luminal MCF7 cells and triple-negative HCC70 cells show little to no migration. Both 

non-cancerous groups, 184B5 and MCF10A, show a negative rate of migration with the 184B5 

cells showing a significant decrease in impedance over 36 hours. This indicates that these cell 

groups did not perform migration but began to die from long-term confluence-induced contact 

inhibition. Impedance, TEER, and rate of wound closure were measured in the same cell 

population and subsequently compared to identify patterns in impedance and TEER relative to 

migration potential. 
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Figure 4.3: Rate of migration and impedance measurements during wound healing assay. A) 

Impedance values normalized to the point immediately prior to the scratch (confluency), showing 

impedance at both 0 and 36 hours after the scratch. B) Average rate of wound closure across 36 

hours. Significance is only shown among cancer groups. Data was obtained from 4-6 independent 

wells (n = 4-6) across all cell lines. Statistical significance is indicated as follows: * p < 0.05; ** 

p< 0.01; and **** p < 0.0001. 

 

 

 

4.4.5 Low Impedance and Low Transepithelial Electrical Resistance Are Linked with Cancer 

Aggressiveness 

 

To investigate the relationship between epithelial barrier integrity and migratory behavior, 

impedance and TEER measurements at confluency were compared with wound closure rates. As 

shown in Figure 4.4A, cell lines demonstrating moderate (blue) to high (red) migratory capacity 

exhibit impedance values at confluency below 35.5 ohms. This finding suggests that highly 

migratory cell populations may achieve lower surface coverage at confluency, in contrast to less 
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migratory or non-aggressive cell lines, which do not display a consistent impedance profile. A 

comparable trend is evident in Figure 4.4B, where TEER values are analyzed in relation to 

migration rates. Aggressive cell lines consistently exhibit TEER values below 44.6 ohms, 

representing the lower spectrum of the range observed across mammary epithelial cell lines. This 

data imply that increased migratory potential is associated with reduced cell-cell adhesion and 

barrier function. While low impedance or TEER values alone are not exclusive indicators of 

aggressive migration, all highly migratory cell lines analyzed display reduced impedance and 

TEER values relative to the luminal MCF7 and non-tumorigenic MCF10A cell lines. 

 

 

Figure 4.4: Impedance and transepithelial electrical resistance (TEER) compared to the rate of 

wound closure. A) High-frequency (41.5 kHz) impedance and B) TEER (resistance at 1 kHz) 

measurements of mammary cell lines after 36 hours of proliferation (confluency), compared with 

average rate of migration over 36 hours. Impedance, TEER, and rate of wound closure values are 

matched per well. Grey data points represent groups where no migration was performed 

(highlighted by a grey-shaded box). Blue data points represent groups (HCC1806 and BT549) 

where moderate migration occurred, and red data points represent groups (MDAMB231 and 

MDAMB453) with high migration (highlighted by a blue and red-shaded box). Dashed line 

represents the highest value of impedance and TEER recorded by the migratory cell lines, 35.5 Ω 

and 44.6 Ω respectively. Data were obtained from 4–6 independent wells (n = 4–6) across all cell 

lines. 
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4.5 Discussion  

These results demonstrate that bioelectronic measurements, like impedance and TEER, can 

capture functional differences in breast cancer cell behavior, particularly regarding cell spreading, 

barrier formation, and migration. The previous chapter established impedance spectroscopy as a 

tool for quantifying key cell properties. Building on that foundation, this chapter leverages 

impedance to investigate how EMT-related features correlate with metastatic potential across a 

panel of breast cancer cell lines. 

EpCAM and vimentin expression highlight the epithelial-mesenchymal heterogeneity among 

the breast cancer cell lines analyzed. EMT is widely recognized as a hallmark of breast cancer 

metastasis, and cells exhibiting a more mesenchymal phenotype are generally expected to 

demonstrate higher migratory potential 43,44. Our modified wound healing assay revealed a 

spectrum of migratory behaviors, with non-cancerous lines, MCF7, and HCC70 showing limited 

migration, a behavior measured in previous studies  45,46. The BT-549, HCC1806, and especially 

MDA-MB-231 and MDA-MB-453 cells exhibited higher motility. These results support the role 

of EMT in enabling migration but also highlight the limitations of relying solely on morphological 

phenotype to predict metastatic potential. 

Surprisingly, the MDA-MB-453 cell line exhibited significant migration despite its 

predominantly epithelial morphology. While previous work has reported variable behavior in this 

cell line 46,47, our findings align with those of Xu et al., who observed comparable migration rates 

between MDA-MB-453 and the more mesenchymal MDA-MB-231 cells 48. Interestingly, MDA-

MB-453 cells are classified as triple-negative status, yet do not align with typical basal-like or 

claudin-low TNBC subtypes 49. Instead, they belong to the luminal androgen receptor (LAR) 

subtype 50,51, characterized by AR expression and a more epithelial-like gene signature. Despite 
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their epithelial morphology, these cells exhibit low expression of some tight junction genes such 

as CLDN1 (Supplementary Figure B.1) and lack strong junctional integrity 22,24. This decoupling 

of epithelial morphology from junctional function may contribute to their high migratory behavior 

and underscores the complexity of using EMT markers in isolation to assess metastatic potential. 

 The HCC70 cell line presents a particularly complex case. Despite showing minimal 

migratory activity, it co-expresses both EpCAM and vimentin, with notable intrapopulation 

variability in vimentin levels. This phenotypic heterogeneity reflects a degree of plasticity often 

associated with increased metastatic potential and therapeutic resistance. However, in this study, 

that potential did not translate into migratory behavior, highlighting the limitations of using EMT 

marker expression alone to predict functional outcomes. 

Further complicating interpretation, HCC70 cells exhibited low TEER values despite forming 

visible cell-cell junctions. Morphological inspection revealed large gaps in the monolayer (Figure 

1A), likely disrupting overall barrier integrity. Yet at the molecular level, HCC70 cells expressed 

high levels of OCLN (Occludin) and other tight junction-associated genes (Supplementary Figure 

B.1) 22-24, suggesting a strong inherent capacity for junctional connectivity 52. This apparent 

mismatch between gene expression and barrier function underscores the importance of considering 

growth architecture and spatial organization when interpreting impedance-based measurements. 

These findings reinforce that junctional gene expression, EMT marker status, and migratory 

behavior do not always align neatly in breast cancer models. Among all lines analyzed, MDA-

MB-231 cells, known for their mesenchymal phenotype and low tight-junction expression, 

exhibited the most rapid and extensive migration, as expected. In contrast, HCC70’s static yet 

transcriptionally ambiguous phenotype illustrates the nuanced relationship between EMT, 

junctional integrity, and metastatic potential. 
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4.6 Conclusion 

This study reveals how diverse patterns of EMT marker expression, tight junction gene 

profiles, and migratory behavior intersect to shape metastatic potential in breast cancer cells. While 

EMT is often used as an indicator for aggressiveness, these findings illustrate that migratory 

potential is not always accurately predicted by a cell’s phenotype or gene expression signature, 

reflecting the complexity of cancer cell behavior. For example, the high motility of MDA-MB-

453 cells, despite their epithelial morphology, highlights the limitations of morphology-based 

predictions. Conversely, HCC70 cells exhibited strong expression of both epithelial and 

mesenchymal genes, suggesting phenotypic plasticity, yet showed little to no migration, 

emphasizing the influence of growth pattern and spatial organization on functional outcomes. 

These discrepancies underscore the need for integrated, multidimensional approaches in 

studying cancer progression. While impedance and TEER provide a useful lens for examining 

barrier integrity and migration, their greatest value lies in complementing, not replacing, molecular 

and imaging-based methods. Together, such approaches can capture the full complexity of cancer 

cell behavior across diverse subtypes. In the future, combining impedance-based assays with high-

throughput imaging and computational morphology profiling may offer a more comprehensive 

framework for assessing cancer aggressiveness. This study advances this broader goal and shows 

that functional assays capturing real-time cellular behavior can effectively elucidate the 

relationships between EMT, junctional integrity, and metastatic risk in breast cancer. Looking 

forward, integrating these techniques with image-based phenotyping and machine learning holds 

promise for enhancing the precision of metastatic behavior assessments. 
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5.1 Abstract 

Cell morphology reflects the combined outputs of genetic and signaling pathways and is 

becoming increasingly recognized as a functional readout of cancer cell behavior. In breast cancer, 

particularly in triple-negative breast cancer (TNBC), morphological variation has been linked to 

metastatic potential and cellular plasticity, but the full extent of this relationship remains unknown. 

Despite growing interest, few studies have comprehensively analyzed how morphology and cell 

phenotypic behaviors correlate across diverse TNBC models. Here, we demonstrate that cell 

morphology features can quantitatively predict epithelial-mesenchymal status, cell normality, and 

migration behavior across a panel of eight mammary cell lines, including one luminal breast cancer 

line and five TNBC lines, using high-throughput image analysis. 

CellProfiler™ cell image analysis software was employed to extract quantitative single-

cell morphological features from cellular- and nuclear-stained images, linking these features with 

migration measurements across all cell lines. Specific morphological traits, including cell 

elongation, nuclear irregularity, and cellular protein texture, captured meaningful variation in 

epithelial-mesenchymal state, cell normality, and motility. These results underscore the utility of 

cell morphology as a highly dimensional proxy for aggressive behavior in breast cancer and 

support the use of image-based phenotyping to explore functional heterogeneity in aggressive 

cancer subtypes. 
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5.2 Introduction 

Cell morphology serves as a powerful phenotypic readout that captures the integrated 

output of gene expression, signaling, and cytoskeletal architecture. In cancer biology, particularly 

in breast cancer, cell shape has long been proposed as a critical element of cell behavior, including 

migration, invasion, and metastatic potential 1-3. Morphological traits not only reflect the 

underlying biology of the cell but can also predict functional behaviors. For example, breast cancer 

cell shape has been shown to correlate with extracellular matrix (ECM) invasion in 3D 

environments, while morphological heterogeneity can indicate tumor cell plasticity and malignant 

progression 3,4. 

Breast cancer primarily arises from epithelial cells, which in normal tissue are highly 

organized, maintain apicobasal polarity, and exhibit contact inhibition. In contrast, malignant 

epithelial cells often lose polarity, adopt disorganized tissue architectures, and proliferate 

uncontrollably. Morphologically, cells with an epithelial-like appearance are more differentiated 

and are characterized by tight cell-to-cell junctions, resulting in limited motility 5. In comparison, 

mesenchymal-like cells, often associated with the epithelial-to-mesenchymal transition (EMT), 

exhibit more elongated shapes, weakened cell-to-cell adhesions, and a higher proliferative and 

invasive potential 6. This morphological distinction is reflected at the molecular level where 

luminal breast cancers (typically hormone receptor-positive) often retain epithelial morphology, 

while triple-negative breast cancer (TNBC) subtypes are more frequently mesenchymal-like 7. 

Nonetheless, significant phenotypic diversity exists even within the same molecular 

subtypes. For example, work by Hapach et al. demonstrated that subpopulations within the TNBC 

cell line MDA-MB-231 can adopt distinct morphologies and utilize different metastatic programs 

in vivo depending on their epithelial or mesenchymal state 8. These findings highlight the 
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limitations of static molecular classifications and underscore the need to better understand the 

range of morphological and behavioral traits in breast cancer. Since single-cell morphology is an 

easily observable and quantifiable trait, it offers a powerful window into the otherwise complex 

and heterogeneous nature of cancer progression. 

Additionally, single-cell morphology provides advantages over conventional molecular 

profiling in that it can capture population-level heterogeneity and may correlate better with 

emergent behaviors like migration and metabolic activity. In this work, cell morphology is 

analyzed across eight mammary cell lines and compared with migration potential, measured in 

Chapter 4. Together, these analyses aim to examine how cell line morphological features relate to 

cell type classification and aggressive migration, a preliminary step in the metastatic process. 

CellProfiler™, a high-throughput image analysis platform that enables automated 

quantification of cell features from microscopy images 9,10, was employed to carry out this 

analysis. CellProfiler™ can extract measurements describing cell and nuclear shape (e.g., area, 

eccentricity), staining intensity, and texture features, like granularity and spatial variation. Among 

these, Haralick texture features, derived from gray-level co-occurrence matrices, quantify second-

order statistics in pixel intensity, capturing patterns like contrast, entropy, and homogeneity within 

cellular compartments 11. These features are particularly useful for assessing subcellular protein 

organization and cytoskeletal rearrangement, which are hallmarks of dynamic cell states. For 

example, texture measures from actin staining can reveal the presence of stress fibers, 

lamellipodia, or filopodia, all structures associated with migration and invasive potential 12. 

In this analysis, eight mammary cell lines are examined, including two non-cancerous 

epithelial lines (MCF10A and 184B5) and six breast cancer lines. Notably, five of the cancer lines 

represent TNBC, a clinically aggressive and molecularly diverse subtype lacking expression of the 
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estrogen receptor, progesterone receptor, and HER2. While several of these cell lines have been 

independently characterized, they have not, to our knowledge, been analyzed together in a single, 

morphologically focused study. By applying high-throughput morphological profiling across this 

diverse panel, we provide one of the most comprehensive comparative analyses to date of TNBC 

cell morphology. These lines span a wide range of phenotypes, from compact epithelial-like 

morphologies to highly elongated mesenchymal-like states, offering a unique opportunity to study 

the relationship between shape, heterogeneity, and migratory behavior across the epithelial-

mesenchymal spectrum. This integrative approach allows for the exploration of both cell line 

variability and intra-line heterogeneity, providing valuable insight into the cellular plasticity and 

functional diversity of breast cancer. 

 

5.3 Materials and Methods 

5.3.1 Cell Lines 

All cell lines were purchased from American Type Culture Collection (ATCC) and 

cultured at 37˚C and 5% CO2 atmosphere. 184B5 and MCF10A cells were cultured in Mammary 

Epithelial Growth Medium (MEGM; Lonza) supplemented with 1 ng/mL cholera toxin (Sigma-

Aldrich) and 100 ng/mL cholera toxin respectively. HCC70 and BT-549 cells were cultured in 

RPMI-complete using ATCC’s modified RPMI blend (ATCC) supplemented with 10% fetal 

bovine serum (FBS; R&D Systems) and 1% penicillin/streptomycin (P/S; Gibco). HCC1806, 

MDA-MB-453, and MDA-MB-231 cells were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM; Gibco) supplemented with 10% FBS and 1% P/S to form DMEM-Complete. Lastly, the 

MCF7 cell line was cultured in DMEM-Complete supplemented with 0.01 mg/mL bovine insulin 
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(Sigma). All cell lines were confirmed to be free of mycoplasma using a commercially available 

kit (InvivoGen). 

 

5.3.2 Cell Staining and Imaging 

Cells were seeded into black-walled 96-well plates (Corning) at a density of 10,000 

cells/cm² to enhance contrast between cell borders and facilitate identification of cytoskeletal 

projections. After a 15-hour incubation to allow for attachment and spreading, cells were fixed 

with 4% paraformaldehyde (PFA; Thermo Fisher) in phosphate-buffered saline (PBS; Gibco) for 

30 minutes at room temperature, followed by two PBS washes. Permeabilization and staining were 

performed using a solution containing 1% (v/v) Tween-20 (Sigma-Aldrich), 10 µg/mL Hoechst 

33342 (Thermo Fisher) for nuclear labeling, and 1 µg/mL Fluorescein-5-Maleimide (Thermo 

Fisher) for cell protein visualization. Cells were incubated in this staining solution for 1 hour at 

room temperature, protected from light. After staining, cells were rinsed with PBS, and 

fluorescence imaging was performed using the Cytation 1 Cell Imaging Multimode Reader 

(Agilent Biotek). Each well was imaged using a 4×4 montage (16 fields of view) for both nuclear 

(DAPI) and cellular (GFP) channels, resulting in 32 images per well and a total of 3,072 images 

per cell line. 

 

5.3.3 Image Analysis with CellProfiler™ 

After image acquisition, high-throughput single-cell morphological analysis was 

performed on individual cells using CellProfiler™ (Broad Institute), an open-source image 

analytical platform. A custom pipeline was developed to quantify morphological features from 

each cell (key features described in Supplemental Table C.1). Image metadata, including cell line 



131 

and location, were embedded, and DAPI and GFP channels were merged to generate overlaid 

images. These images were aligned and cropped to uniform size and illumination was normalized 

within each cell line dataset using the background and applied with a median smoothing filter.  

Following preprocessing, segmentation was performed to identify individual nuclei and 

cells. Nuclei were segmented using adaptive Otsu thresholding, and corresponding cells were 

delineated via a propagation method. For each segmented object, numerous morphological features 

were quantified, including size, shape descriptors (e.g. form factor, solidity, extent, eccentricity), 

fluorescence intensity, texture metrics, and number of neighboring cells. 

For reference and segmentation verification, overlay images showing segmented cell and 

nuclear boundaries were generated and exported. All extracted data and associated metadata were 

stored in SQL database files. These databases were processed in RStudio (Posit Software), where 

filtering steps were applied to remove segmentation artifacts. Objects smaller than 500 pixels² 

were excluded to prevent any false cell identification, and only isolated (non-touching) cells (i.e. 

those with zero recorded neighbors) were retained for further analysis. The final datasets were 

exported to Excel for downstream statistical analysis.  

 

5.3.4 Principal Component Analysis of CellProfiler™ Data 

Following cell morphology quantification in CellProfiler™, individual cell measurements 

were aggregated into per-well mean values using RStudio to account for cell-to-cell variability. A 

similarity matrix of CellProfiler™ features was generated using Morpheus (Broad Institute), and 

features with a high Pearson correlation coefficient (r ≥ 0.90) were removed to reduce 

multicollinearity and minimize risk of model overfitting. This filtering resulted in 48 retained 

features describing cell and nuclear shape, stain intensity, and texture. Z-scores were then 



132 

calculated for the per-well averages, and features with absolute z-scores greater than 3 (|z| > 3) 

were classified as outliers and excluded from further analysis. This threshold identifies extreme 

values while preserving the core data distribution, assuming approximate normality. Finally, 

principal component analysis (PCA) was conducted in RStudio to reduce dimensionality. PCA 

loadings, scores, and eigenvalues were analyzed to interpret the contribution of retained features 

to morphological variation. 

 

5.3.5 EMT Gene Expression Analysis Using DepMap RNA-Seq Data 

RNA-seq gene expression data was obtained from the DepMap Project, a resource 

developed by the Broad Institute that compiles genetic and molecular profiling data from a diverse 

panel of human cancer models. Expression values (log₂[TPM + 1]) were used to compare EMT 

gene expression patterns with results from PCA of the breast cancer cell lines used in this study. 

A panel of 39 EMT-related genes was assembled based on established markers reported in relevant 

literature 13-22. The results were visualized as a robust z-score heatmap generated in Morpheus and 

hierarchical clustering of cell line expression data was performed using Pearson correlation and 

average linkage.  

 

5.3.6 Univariate Statistical Analysis 

Violin plots were generated using GraphPad Prism (version 10.2), and statistical 

significance was assessed using one-way ANOVA. Individual morphology features were 

normalized to the mean of the normal 184B5 cell line to highlight relative increases or decreases 

in comparison to the control group. Heatmaps of CellProfiler features and EMT-associated 
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genomic data, shown in Figure 5.2 and 5.4 respectively, were created in Morpheus using a robust 

z-score method.  

 

5.4 Results 

5.4.1 Observable Difference in Morphology Among All Eight Cell Lines 

A total of 330 features related to cellular and nuclear morphology were measured, 

including parameters describing shape, staining intensity, and texture. As expected, significant 

morphological variation was observed across the eight mammary cell lines (Figures 5.1 and 5.2), 

particularly in cell shape-related features, like form factor, extent, and maximum Feret diameter. 

Most cancerous lines exhibited a higher max Feret diameter and lower form factor and extent 

compared to the normal epithelial 184B5 line (Figure 5.2 B, C, and D), indicating a more elongated 

shape with increased cytoskeletal projections, a phenotype broadly associated with mesenchymal 

traits. Among the cancerous lines, MCF7 showed the greatest morphological similarity to 184B5, 

consistent with its more epithelial-like behavior. In contrast, MDA-MB-453 cells displayed 

morphological features that deviated from the typical cancer-associated phenotype, exhibiting a 

more rounded and compact shape, which distinguishes it from other breast cancer lines. While 

these individual morphological features offer insight into cell line-specific variation, they do not 

fully capture the complexity of phenotype across the dataset. Therefore, to reveal underlying 

patterns and reduce dimensionality, principal component analysis (PCA) was applied and 

composite axes of morphological variation were identified. 
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Figure 5.1: Representative images of stained mammary cell lines. The DAPI channel labels nuclei, 

while cells are visualized via the GFP channel. The bottom row presents an overlay of the DAPI 

and GFP channels, with segmentation borders from CellProfiler indicating nuclear (yellow) and 

cell (red) boundaries. 
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Figure 5.2: Mammary morphology features. A) Heatmap displaying all morphological features 

extracted using the CellProfiler pipeline. Each column represents the average z-score per well, 

grouped by cell line, and each row corresponds to one of 330 quantified cellular or nuclear 

variables. B) Violin plot of cell extent, reflecting how well each cell fits within its bounding box. 

C) Violin plot of cell form factor, representing cell circularity. D) Violin plot of maximum Feret 

diameter, indicating the longest measurable axis of the cell. All violin plots are normalized to the 

normal mammary epithelial cell line 184B5. Statistical significance compared to 184B5 is denoted 

as: § p < 0.0001. 
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5.4.2 PCA Shows a Distinction Between EMT State and Normality 

To better understand how combinations of features contribute to morphological diversity, 

PCA was performed, producing composite dimensions that summarize the most significant 

variations in the dataset. After reducing redundant variables using a similarity matrix, 48 features 

related to cell and nuclear morphology were used. Principal component 1 (PC1) accounted for 

30.1% of total variance, while PC2 accounted for an additional 13.4%. Plotting the cell lines along 

PC1 and PC2 (Figure 5.3A) revealed a clear separation among groups. The normal 184B5 line and 

the highly epithelial MDA-MB-453 cells occupy distinct positions from the rest of the cell lines, 

suggesting these components capture meaningful biological differences. When PC1 and PC2 are 

examined individually (Figure 5.3B and 5.3C), additional structure appears. PC1 seems to reflect 

EMT-related morphological traits. Cell lines with low PC1 scores, like the rounded, epithelial-like 

MDA-MB-453 line, exhibit compact morphology, while lines with high PC1 scores, like MDA-

MB-231 and BT-549 cells, are more elongated and mesenchymal-like. PC2, by contrast, seems to 

separate normality from malignancy. The 184B5 line has the lowest PC2 score, while all cancerous 

lines show elevated PC2 values. The non-tumorigenic MCF10A cells, which originate from 

fibrocystic tissue, have the second-lowest PC2 score, suggesting an intermediate state that is 

distinct from both normal and malignant profiles. Taken together, PC1 appears to capture variation 

related to EMT state, while PC2 reflects a dimension of cellular normality or deviation from it. To 

better understand the biological relevance of these components, the individual morphological 

features most strongly influencing PC1 and PC2 were analyzed next. 
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Figure 5.3: Principal component analysis (PCA) of cell and nuclear morphology across mammary 

cell lines. PCA was performed on morphological features extracted from 8 mammary cell lines, 

with each data point representing the average morphology of cells imaged in a single well. A) 

Scatter plot of the first two principal components (PC1 and PC2), where PC1 primarily separates 

epithelial-like from mesenchymal-like morphologies, and PC2 is associated with the degree of 

normality among the cell lines. Data points are colored by cell line, highlighting morphology-

based clustering. B) Violin plot of PC1 scores by cell line, showing variation along the epithelial–

mesenchymal axis. C) Violin plot of PC2 scores by cell line, reflecting differences related to 

normal versus transformed cell states. Each point represents one well; n = 76–84 wells per cell 

line. Significance compared to the normal cell line, 184B5: † p < 0.05, ‡ p < 0.001, § p < 0.0001. 
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5.4.3 PC1 Reflects EMT-Related Phenotypic Plasticity, Integrating Cell Shape, Intensity 

Asymmetry, and Nuclear Texture Features  

 

A PCA loadings plot (Figure 5.4A) was created to identify the morphology features most 

strongly associated with principal components 1 and 2. Multiple variables related to cell and 

nuclear shape, texture, and intensity contributed to PC1, which appears to capture EMT-related 

phenotypic variation. Among these, the cell-to-nucleus area ratio emerged as the most influential 

feature. This ratio was calculated as the difference between the nuclear area and the remaining 

cytoplasmic area of the cell, not overlapping with the nucleus. The epithelial breast cancer cell 

lines MCF7 and MDA-MB-453 exhibited significantly higher cell-to-nucleus ratios than all other 

lines, including the non-cancerous controls. In contrast, more mesenchymal-like cancer cell lines 

showed cell-to-nucleus ratios lower than the normal 184B5 cells. This pattern may reflect complex 

interactions between cytoplasmic spread and nuclear area. While MCF7 and MDA-MB-453 cells 

exhibit a similar epithelial shape to the normal 184B5 cell lines, they are also characterized by 

relatively large nuclei (Figure 5.4C), explaining their elevated cell-to-nucleus ratios as compared 

to the normal cell line. This highlights the multifaceted nature of EMT-associated morphological 

variation. To confirm the morphology relationship with EMT status, gene expression data from 

the DepMap portal was analyzed (Figure 5.4D). Hierarchical clustering of 39 EMT-related genes 

across the breast cancer cell lines using Pearson correlation and average linkage revealed a pattern 

consistent with the morphological PCA results (note: DepMap portal includes only cancer lines). 

This supports the conclusion that morphology features derived from cell and nuclear staining are 

sufficient to capture key EMT-related phenotypes. Next, we investigated the specific 

morphological features contributing to PC2 and their relationship to cell normality. 
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Figure 5.4: Features driving separation between EMT and normal cell states. A) Loadings plot for 

principal components PC1 and PC2, highlighting morphology variables with absolute loading 

scores > 0.7. Variables contributing to the first two components are color-coded: cell-related 

(green), nucleus-related (blue), and other (grey). B) Violin plot of the cell-to-nucleus area ratio, 

normalized to the mean of the 184B5 group. This is the most influential feature in PC1. C) Violin 

plot of nuclear radius, also normalized to the 184B5 group mean, representing another key 

contributor to PC1. D) Violin plot of nuclear maximum Feret diameter, similarly normalized. This 

is the most influential feature in PC2. E) Heatmap of EMT-associated gene expression, sourced 

from the DepMap Portal. Pearson correlation and average linkage were used for hierarchical 

clustering of cell lines. Each point represents one well; n = 76–84 wells per cell line. Significance 

compared to the normal cell line, 184B5: † p < 0.05, ‡ p < 0.001, § p < 0.0001. 
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5.4.4 Nucleus Maximum Feret Diameter is Correlated with PC2 and Normality 

Among all measured variables, only nuclear maximum feret diameter (MFD), which 

quantifies the longest axis of the nucleus, had a strong loading score for PC2 (|loading| > 0.7), 

indicating it is the primary contributor to this principal component (5.4D). An increased MFD can 

reflect either an overall increase in nuclear size, potentially related to elevated ploidy, or irregular 

nuclear shape, both common features in malignancy. All cell lines exhibited a higher mean MFD 

compared to the non-malignant 184B5 cell line, indicating abnormal nuclear morphology across 

both cancerous and non-cancerous cell types. MCF10A cells, although non-tumorigenic, also 

showed an elevated MFD, though to a lesser extent than the cancer groups. This suggests a partial 

departure from normal nuclear architecture, possibly related to their fibrocystic origin. MFD 

values align with previous observations of nuclear radius (Figure 5.4C), which was highest in the 

epithelial breast cancer cell lines MCF7 and MDA-MB-453. Given their large nuclear size, it 

follows that these cell lines would also have elevated MFD values. Together, PC1 and PC2 

highlight distinct and biologically meaningful axes of morphological variation (EMT-related 

features and nuclear abnormalities) that distinguish cell lines by functional and phenotypic state.  

 

5.4.5 Cellular Protein Distribution Patterns Drive a Morphological Signature Correlated with 

Cell Migration 

 

 To further investigate potential links between cell morphology and cellular aggressiveness, 

the contributions of PC3 and PC4 were examined. While PC4 explains 9% of the total variance, 

less than the more dominant PCs, it exhibited a partial correlation with migratory potential across 

cell lines. Specifically, PC4 values increased along a gradient that broadly mirrored the progression 

from non-tumorigenic to highly aggressive phenotypes (Figure 5.5.). Although not perfectly 
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aligned with migration rates, which followed a slightly different order, the general trend suggests 

that PC4 captures morphological changes relevant to migratory behavior.  

 

 

Figure 5.5: A Potential link between migration and cell morphology. A) Violin plot of PC4 scores 

by cell line, ordered from lowest to highest average score. Each data point represents one well; n 

= 76–84 wells per cell line. B) Violin plot of the rate of migration (Ω/hr) for each cell line, 

determined in chapter 4. Cell groups are ordered from lowest to highest average rate of migration. 

Data was obtained from 4-6 independent wells (n = 4-6) across all cell lines. Significance 

compared to the normal cell line, 184B5: † p < 0.05, $ p < 0.01, ‡ p < 0.001, § p < 0.0001. 

 

To better understand the biological meaning of PC4, we examined its feature loadings. 

Two features related to the cellular stain, maximum intensity and difference entropy, had the 

strongest contributions to PC4 (|loadings| > 0.7). Maximum cellular protein intensity could reflect 

localized enrichment of actin structures such as lamellipodia or stress fibers, while difference 

entropy, a Haralick texture metric, quantifies spatial complexity in protein organization. Together, 

these features suggest that PC4 represents a morphological signature characterized by both the 

intensity and heterogeneity of protein distribution, which could be linked to the cytoskeletal 
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remodeling observed in migratory and aggressive cells, something that can be measured via an 

actin-specific stain in future studies. These findings suggest that even lower-variance components 

like PC4 can reveal biologically meaningful patterns. 

 

 

Figure 5.6: Heatmap of the first 10 principal components (PCs) derived from averaged cell 

morphology data across 8 mammary cell lines. Each row represents a single well, where the values 

reflect the mean morphological features of cells within that well. Columns correspond to the first 

10 PCs, which capture the major sources of variation in the dataset. Hierarchical clustering of the 

wells was performed using Ward's minimum variance method to reveal patterns and similarities 

in morphological profiles across cell lines. 
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5.4.6 Principal Component Analysis Emphasizes EMT as Primary Driver of Morphological 

Variation and Highlights Subtle Heterogeneity within Cell Lines 

 

 To assess overall patterns across the mammary cell lines, a heatmap of the first 10 principal 

components, together accounting for over 85% of the variance in the dataset (Supplementary 

Figure C.1), was created and is shown in Figure 5.6. PC1, which explains the largest proportion of 

variance, is primarily associated with EMT. Accordingly, much of the observed cell separation 

and hierarchical clustering reflects differences along the epithelial-mesenchymal phenotypic axis. 

Interestingly, non-cancerous and cancerous cell lines do not form entirely distinct clusters, 

suggesting that, while normality is detectable through PC2, it contributes less to the overall 

variance than EMT-related morphological changes. Hierarchical clustering also reveals that, 

generally, replicates from the same cell line cluster together, however, some wells are clustered 

separately from their counterparts. This highlights the inherent heterogeneity within breast cancer 

cell lines and underscores the complexity of analyzing cancer-associated phenotypes through 

morphological profiling. 

 

5.5 Discussion 

This study presents a comprehensive morphological analysis of eight mammary cell lines 

by integrating high-throughput imaging with PCA. By analyzing 48 of the 330 originally measured 

features, encompassing cell and nuclear morphology, texture, and staining intensity, distinct 

morphological traits associated with biological processes like EMT, cellular normality, and cancer 

aggressiveness were identified. The first principal component (PC1), accounting for the largest 

portion of variance (30.1%), was strongly associated with features traditionally linked to EMT, 

including cell elongation, reduced cellular extent, and increased cytoskeletal projections 5,23. These 

morphological changes are consistent with mesenchymal transformation, a commonly researched 
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process in cancer metastasis. The association of PC1 with EMT was further corroborated by its 

correlation with gene expression signatures from EMT-related genes in cancer cell lines, provided 

by the DepMap Portal 24, reinforcing the value of morphological features as a proxy for underlying 

transcriptional state.  

Among all contributing features, the cell-to-nucleus ratio emerged as the most influential. 

This metric, calculated as the ratio of nucleus area to the remaining cell area, captures a 

combination of both nuclear size and overall cell morphology. Notably, MCF7 and MDA-MB-453 

cells exhibited the highest cell-to-nucleus ratios. Both of these lines are compact and epithelial-

like in morphology, but are distinguished by having relatively large nuclei 25 (Figure 5.3C). This 

combination results in a high nucleus-to-cell proportion, driving their elevated cell-to-nucleus ratio 

and lower PC1 scores. In contrast, the non-cancerous epithelial cell lines, 184B5 and MCF10A, 

while also epithelial in shape, have significantly smaller nuclei relative to their overall cell size, 

resulting in a lower cell-to-nucleus ratio. This distinction highlights the strength of this feature in 

capturing both aspects of cell identity: nuclear enlargement, which is often associated with 

malignancy 26-28, and overall cell shape, linked to EMT status 5,29. Thus, the cell-to-nucleus ratio 

serves as a composite marker that integrates information about both cellular elongation and nuclear 

size, two dimensions of morphological change that are key to differentiating between cancerous 

and non-cancerous, as well as epithelial and mesenchymal states. Despite its utility, however, the 

cell-to-nucleus ratio, and PC1 more broadly, does not effectively distinguish between cancerous 

and non-cancerous cell lines. This separation is better captured along the second principal 

component, PC2, which isolates differences in nuclear morphology more directly. 

PC2, the second most significant component (13.4% variance), primarily separated the 

normal epithelial 184B5 cells from all other lines, based largely on nucleus morphology. This 
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correlates with previous studies of cell 30-35 and tissue 26,35-37 nucleus morphological analysis as an 

indicator of genomic instability and prognosis. Distorted or enlarged nuclei may indicate 

dysregulated DNA replication, aneuploidy, genomic instability, or genetic mutations that 

compromise the stability and function of the nuclear envelope 27. Additionally, components of the 

nuclear envelope interact with both chromatin and transcription factors, contributing to the spatial 

regulation of gene transcription and expression 27,38, validating the use of nuclear morphology as 

an indicator of cellular transformation and malignancy. The most influential feature on PC2 was 

nuclear MFD, which captures the longest axis of the nucleus. Elevated MFDs in all atypical lines 

suggest widespread nuclear irregularities across both malignant and non-malignant cells 31,39. 

While MCF10A cells are non-tumorigenic, their elevated MFD and intermediate PC2 score reflect 

a partial deviation from normal nuclear architecture, consistent with their origin from fibrocystic 

disease tissue and a behavior that has been recorded in previous studies 40-42. A comprehensive 3D 

morphometric analysis demonstrated that MCF10A cells possess larger nuclei and a higher 

nucleus-to-cytoplasm volume ratio compared to normal HME1 cells 40. Additionally, MCF10A 

nuclei exhibited increased chromatin clumping and irregularities in nuclear shape, indicating 

structural deviations from typical normal epithelial cells. These findings suggest that MCF10A 

cells, despite being non-malignant, display nuclear features that are not entirely representative of 

normal breast epithelium, correlating with our results. These findings indicate that nuclear 

elongation and irregularity are morphological features that vary along a range, rather than serving 

as binary markers of tumorigenicity. 

Further analysis of PCs 3 and 4 revealed that even components accounting for relatively 

low variance (10.9% and 9% respectively) can reflect biologically meaningful behaviors. 

Specifically, PC4 was moderately associated with cell migration rates, measured in Chapter 4, and 
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was driven by cell stain-related features: maximum intensity and Haralick texture difference 

entropy. Maximum cellular protein intensity could reflect concentrated F-actin structures like 

lamellipodia, filopodia, and stress fibers 43, which are indicative of cytoskeletal remodeling 

associated with aggressive behavior 12,44. The Haralick difference entropy metric captures spatial 

complexity in protein distribution, with higher values indicating more heterogeneous and dynamic 

protein staining. These observations suggest that PC4 distinguishes a signature of cell protein 

organization and may indicate cytoskeletal reorganization, a known facilitator of cell motility. This 

is something that can be evaluated in the future using an F-actin-specific stain, like phalloidin. 

Furthermore, it would be interesting to analyze this relationship with respect to collective cancer 

cell migration, a process that enables non-invasive follower cells to migrate alongside 

metabolically active leader cells 45,46. These leader cells tend to have a mixed epithelial-

mesenchymal phenotype, where the leading edge undergoes cytoskeletal reorganization and can 

exhibit actin-rich protrusions, while the trailing edge retains cell-to-cell junctions and epithelial 

characteristics 47. This uneven distribution of F-actin may be measurable through Haralick texture 

features, providing additional areas of exploration with this technique. Although PC4 did not 

perfectly predict migration behavior, the observed trends support the utility of morphological 

features in capturing functional states like migratory potential.  

Combined PCA and hierarchical clustering analyses (Figure 5.6) highlighted EMT as the 

dominant axis of morphological variation while also revealing intra-cell line heterogeneity. 

Replicate wells of the same cell line generally clustered together, but occasional deviations may 

point to phenotypic variability within cell lines. This heterogeneity aligns with the known plasticity 

of cancer cells and underscores the limitations of using static or single-feature markers to define 
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complex cell states. Overall, these findings highlight the value of morphological analysis not only 

for classifying cell types but also for assessing heterogeneity within cellular populations. 

In summary, this study demonstrates that high-dimensional morphological profiling, 

coupled with PCA, uncovers biologically relevant axes of variation across mammary cell lines. 

EMT-associated features dominate the morphological landscape, while nuclear abnormalities and 

cellular protein dynamics emerge as secondary, but informative, signatures linked to 

transformation and motility. Although migration behavior did not strongly correlate with any 

single morphological axis, the trends observed reflect the multifaceted nature of cancer cell 

behavior and the challenges inherent in modeling metastatic potential. Future studies may benefit 

from focusing on morphological heterogeneity within aggressive cell lines to better understand its 

relationship with migration potential, a direction we pursue in Chapter 6. Overall, this 

multidimensional approach offers valuable insights into cellular heterogeneity and tumor 

progression in breast cancer. 

 

5.6 Conclusion 

This study establishes a framework for leveraging high-throughput and highly dimensional 

morphological profiling to uncover the biological underpinnings of breast cancer heterogeneity. 

By integrating imaging-based metrics with PCA, axes of variation linked to EMT, nuclear 

transformation, and cytoskeletal remodeling, three hallmarks of cancer progression, were 

identified. These findings reveal that complex morphological traits, particularly the cell-to-nucleus 

ratio, nucleus MFD, and cellular texture features, can serve as composite biomarkers that 

encapsulate key cellular states beyond simple cancer versus normal classification. Moreover, the 

partial discrimination of non-tumorigenic but atypical lines like MCF10A underscores the nuanced 
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spectrum of phenotypic states present across mammary cell models. The presence of 

heterogeneity, even within well-characterized cell lines, highlights the dynamic nature of cancer 

cell identity and challenges the use of static molecular labels to capture functional potential. While 

migration behavior did not align neatly with any single morphological component, its reasonable 

association with PC4 reinforces the notion that motility is regulated by complex, multifactorial 

processes. Collectively, this work supports the use of comprehensive morphological analysis as a 

scalable and insightful method for dissecting cancer cell behavior and provides a foundation for 

future investigations into how morphological heterogeneity contributes to tumor aggressiveness. 
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6.1 Abstract 

Tumor heterogeneity is a defining characteristic of many aggressive cancers and is 

associated with therapeutic resistance and poor prognosis. Even established cell lines like MDA-

MB-231 cells, commonly used to model triple-negative breast cancer, display significant 

phenotypic diversity at the single-cell level. In this study, cell line heterogeneity was investigated 

by isolating and expanding individual clonal colonies from single MDA-MB-231 cells. Clonal 

outgrowth revealed a spectrum of growth behaviors and morphologies, including a unique colony 

(denoted as NC) that exhibited self-aligned, web-like architecture, suggestive of intrinsic collective 

migration behavior. 

High-content imaging and quantitative analysis captured over 300 features related to cell 

and nuclear morphology, while principal component analysis (PCA) discerned differences in cell 

shape and nuclear architecture. These components correspond to known indicators of genomic 

instability, proliferation, and metastatic potential. K-means clustering identified three distinct 

morphological groups, though some colonies remained unclassifiable due to morphological 

ambiguity. To assess functional heterogeneity, quantitative impedance-based assays were 

performed to measure proliferation, cell-to-cell connectivity (transepithelial electrical resistance; 

TEER), and migration. Impedance and TEER values varied widely across colonies, including those 

within the same morphological cluster, suggesting that morphology traits alone do not fully predict 

dynamic behavior in this cell line. Migration rates were generally comparable across colonies, 

when compared to the parental MDA-MB-231 group, suggesting an alternative migratory strategy 

previously overlooked by the traditional epithelial-to-mesenchymal transition model. 

Together, these findings demonstrate substantial clonal heterogeneity within the MDA-

MB-231 cell line and highlight the value of combining single-cell clonal expansion with 
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morphological and functional profiling. This approach enables the identification of interesting 

phenotypes, like the self-aligning NC colony, which may hold relevance for understanding 

collective metastasis behaviors, mechanobiology, and drug resistance in heterogeneous tumor 

populations.  
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6.2 Introduction 

Intratumoral heterogeneity remains one of the most significant challenges in cancer 

biology, contributing to drug resistance, disease progression, and metastatic spread 1,2. Among 

triple-negative breast cancers (TNBC), this heterogeneity is particularly pronounced, with distinct 

subpopulations within a tumor exhibiting variable behaviors in proliferation, migration, 

invasiveness, and therapeutic response 3-5. The MDA-MB-231 cell line, a widely studied model 

for TNBC, is representative of this complexity, possessing mesenchymal-like features, high 

motility (as validated in Chapter 5), and significant genetic heterogeneity. Despite its frequent use 

in mechanistic and therapeutic studies, the degree of functional and morphological diversity that 

persists in this popular cell line remains underexplored. 

Current efforts to understand the implications of cancer cell heterogeneity have turned to 

clonal isolation strategies, in which individual cells from a parental population are expanded to 

form daughter colonies 6-10. This approach allows researchers to uncover subpopulations within a 

heterogeneous cell line and define population characteristics that may be masked in bulk analyses, 

providing insights into how heterogeneity affects population behavior and phenotype. The process 

of clonal expansion can impose selective difficulties, as large cell populations are not easily 

obtained 11, and the relationship between observable morphological traits and underlying cellular 

function remains complex and incompletely understood. Therefore, this study uses small cell 

populations to quantify both cell morphology traits and their dynamic behaviors.  

High-throughput image analysis and subsequent morphometric feature quantification has 

been previously shown to act as a unique readout of cell phenotypic behaviors 6,12,13. Using the 

morphology analysis principles outlined in Chapter 5, subtle variations in nuclear architecture, cell 

shape, and cytoskeletal organization can be captured. These features can then be linked to 
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biological processes like proliferation, chromosomal instability, and epithelial-to-mesenchymal 

transition (EMT), which play critical roles in tumor progression 14-17. Furthermore, clustering 

techniques can help categorize morphologically distinct subpopulations, potentially defining 

deeper genomic patterns and epigenetic differences within the parental cell line 6,13. 

Yet morphology alone cannot capture the full spectrum of cancer cell metastatic behavior. 

Therefore, quantitative bioelectronic assays that can provide real-time insights into dynamic 

properties like cell proliferation, adhesion, and barrier formation complement cell morphology 

information well 18-20. When combined with wound healing or migration assays, as done in 

Chapters 3 and 4, these tools offer a broader perspective on how structural traits relate to key 

behaviors relevant to migration and metastasis. Discrepancies between morphological 

classification and functional output highlight the need to integrate both static and dynamic 

phenotyping to more accurately define cell states. 

In this context, the present study explores phenotypic and functional diversity within clonal 

colonies derived from the MDA-MB-231 line. By combining morphometric profiling, 

unsupervised clustering, and impedance-based functional analysis, we aim to deepen our 

understanding of how heterogeneity manifests at the single-cell level, and how it may contribute 

to broader patterns of behavior in aggressive breast cancers. 

 

6.3 Materials and Methods 

6.3.1 Cell Culture 

MDA-MB-231 cells were obtained from the American Type Culture Collection (ATCC) 

and maintained at 37 °C in a humidified atmosphere with 5% CO₂. Both the parental cell line and 

derived clonal colonies were cultured in Dulbecco’s Modified Eagle Medium (DMEM; Gibco) 
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supplemented with 10% fetal bovine serum (FBS; R&D Systems) and 1% penicillin-streptomycin 

(P/S; Gibco), denoted as DMEM-complete. For the impedance-based wound healing assay, a 

nutrient-reduced medium was used, consisting of DMEM supplemented with 2% FBS and 1% P/S. 

The parental cell line was verified to be free of mycoplasma contamination using a commercially 

available detection kit (InvivoGen). 

 

6.3.2 Isolating MDA-MB-231 Clonal Colonies  

Clonal colonies were derived from passage 7 of the parental MDA-MB-231 cell line. Cells 

in the logarithmic phase of growth were detached using 0.05% Trypsin-EDTA (Gibco), and the 

resulting cell pellet was resuspended and serially diluted to a final concentration of 1,000 cells/mL. 

A volume of 1 µL of this diluted suspension was seeded into each well of a 96-well plate (Corning). 

Wells were inspected using an EVOS FL Digital Inverted Fluorescence Microscope (Invitrogen), 

and those containing a single cell were documented. Subsequently, 200 µL of DMEM-complete 

was added to each selected well. Media was changed every three days to minimize cell disturbance. 

Colonies were allowed to grow until a dense patch formed, at which point they were transferred to 

a 24-well plate. Cells were progressively expanded to 6-well plates and eventually to T-75 flasks. 

A portion of each colony was used for cell staining and imaging, while the remaining cells were 

cryopreserved for future use. 

 

6.3.3 Cell Staining and Imaging 

Cells were seeded into black-walled 96-well plates (Corning) at a density of 10,000 

cells/cm² to enhance contrast between cell borders and facilitate identification of cytoskeletal 

projections. After a 15-hour incubation to allow for attachment and spreading, cells were fixed 
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with 4% paraformaldehyde (PFA; Thermo Fisher) in phosphate-buffered saline (PBS; Gibco) for 

30 minutes at room temperature, followed by two PBS washes. Permeabilization and staining were 

performed using a solution containing 1% (v/v) Tween-20 (Sigma-Aldrich), 10 µg/mL Hoechst 

33342 (Thermo Fisher) for nuclear labeling, and 1 µg/mL Fluorescein-5-Maleimide (Thermo 

Fisher) for cell protein visualization. Cells were incubated in this staining solution for 1 hour at 

room temperature, protected from light. After staining, cells were rinsed with PBS, and 

fluorescence imaging was performed using the Cytation 1 Cell Imaging Multimode Reader 

(Agilent Biotek). Each well was imaged using a 4×4 montage (16 fields of view) for both nuclear 

(DAPI) and cellular (GFP) channels, resulting in 32 images per well and a total of 3,072 images 

per colony. 

 

6.3.4 Image Analysis with CellProfilerTM 

After image acquisition, high-throughput single-cell morphological analysis was 

performed on individual cells using CellProfilerTM (Broad Institute), an open-source image 

analytical platform. The custom pipeline developed in Chapter 5 was use to quantify 

morphological features from each cell colony. Image metadata, including cell colony and location, 

were embedded, and DAPI and GFP channels were merged to generate overlaid images. These 

images were aligned and cropped to uniform size and illumination was normalized within each 

cell line dataset using the background and applied with a median smoothing filter.  

Cell processing and segmentation was performed as described in Chapter 5. For reference 

and segmentation verification, overlay images showing segmented cell and nuclear boundaries 

were generated and exported. All extracted data and associated metadata were stored in SQL 

database files. These databases were processed in Rstudio (Posit), where filtering steps were 
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applied to remove segmentation artifacts. Objects smaller than 500 pixels² were excluded to 

prevent any false cell identification, and only isolated (non-touching) cells (i.e. those with zero 

recorded neighbors) were retained for further analysis. The final datasets were exported to Excel 

for downstream statistical analysis. 

  

6.3.5 Principal Component Analysis of CellProfilerTM Data 

Following cell morphology quantification in CellProfilerTM, individual cell measurements 

were aggregated into per-well mean values using RStudio to account for cell-to-cell variability. A 

similarity matrix of CellProfiler features was generated using Morpheus (Broad Institute), and 

features with a high Pearson correlation coefficient (r ≥ 0.90) were removed to reduce 

multicollinearity and minimize risk of model overfitting. This filtering resulted in 45 retained 

features describing cell and nuclear shape, stain intensity, and texture. Z-scores were then 

calculated for the per-well averages, and features with absolute z-scores greater than 3 (|z| > 3) 

were classified as outliers and excluded from further analysis. This threshold identifies extreme 

values while preserving the core data distribution, assuming approximate normality. Finally, 

principal component analysis (PCA) was conducted in RStudio to reduce dimensionality. PCA 

loadings, scores, and eigenvalues were analyzed to interpret the contribution of retained features 

to morphological variation. 

 

6.3.6 Clustering Clonal Colonies 

 Principal components 1 through 10 were used to cluster clonal colonies into 

morphologically distinct groups. Four clustering algorithms were evaluated: k-means clustering, 

hierarchical clustering, density-based spatial clustering, and Gaussian mixture modeling. Among 
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these, k-means clustering with a cluster size of three provided the best fit, as determined by 

silhouette analysis (see Supplementary Figure D.1). Various distance metrics were tested within 

the k-means framework, including Euclidean, Manhattan, Mahalanobis, and cosine distances, but 

all resulted in similar clustering outcomes. Two clonal colonies, designated NH and MA, did not 

cluster consistently and exhibited data points distributed across all three groups. As a result, these 

colonies were excluded from further analysis to maintain a focus on morphologically distinct and 

well-defined clusters. 

 

6.3.7 Impedance-based Proliferation and Migration Assay 

Cell proliferation, barrier integrity, and migration were evaluated as described in Chapter 

3 using the Maestro Z system (Axion Biosystems). Wells were coated with 21.3 µM poly-D-lysine 

(Sigma-Aldrich) in deionized water to promote cell adhesion. Cell colonies were seeded at a 

density of 90,000 cells/cm² in complete DMEM growth medium. Once confluence was reached, 

the medium was replaced with a nutrient-reduced formulation. After 12 hours, a scratch was 

introduced to each well, followed by a medium change with fresh nutrient-reduced medium. Cell 

impedance and TEER data were exported from the Axis Z software to evaluate proliferation, 

barrier function, and migration rates, following the same analytical procedures detailed in Chapter 

3. 

 

6.3.8 Univariate Statistical Analysis 

Violin plots were generated using GraphPad Prism (version 10.2), and statistical 

significance was assessed using one-way ANOVA. Individual morphology features were 
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normalized to the mean of the normal 184B5 cell line to highlight relative increases or decreases 

in comparison to the control group. 

 

6.4 Results 

6.4.1 Observed Differences in Clonal Colony Growth and Behavior 

 A total of 13 clonal colonies were isolated and expanded from a mycoplasma-free 

population of MDA-MB-231 cells, as illustrated in Figure 6.1. During expansion, clear visual 

differences in growth behavior emerged among colonies. While some wells seeded with a single 

cell failed to proliferate beyond a few cells over a 25 day period, others quickly developed into 

dense patches within the 96-well plates (Figure 6.1A). The degree of patch density varied, 

suggesting differential abilities of clonal groups to migrate and spread across the growth surface. 

In addition to differences in single-cell morphology, distinct growth patterns were observed across 

colonies. Notably, one colony (denoted as NC) exhibited an organized, web-like alignment pattern 

(Figure 6.1B, right image), unlike the more disorganized morphology seen in others. Quantitative 

morphological analysis using CellProfiler confirmed measurable differences between colonies. 

These are visualized in a heatmap representing all 330 features analyzed (Figure 6.2B). Based on 

these findings, dimensionality reduction was subsequently applied to further explore and 

characterize the diversity among clonal colonies. 
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Figure 6.1: Clonal colony expansion. A) Representative images showing the expansion of a 

colony from a single cell (marked with a red arrow) over a 10-day period. B) Illustration of the 

procedure for growing clonal colonies from the parental MDA-MB-231 cell line. A cell suspension 

was serially diluted to achieve a final concentration of 1,000 cell/mL. A 1 μL droplet was placed 

into each well, and wells containing a single cell were cultured to form colonies. The images at 

the bottom highlight the different cell morphologies and growth patterns observed across various 

colonies. 
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Figure 6.2: Clonal colony characterization using CellProfiler. A) Representative images of clonal 

colonies alongside the parental MDA‑MB‑231 cell line. B) Heatmap summarizing morphological 

features extracted via the CellProfiler pipeline. Each column represents the average z-score for a 

single well, grouped by colony identity, while each row corresponds to one of 330 quantified 

cellular or nuclear features. 
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6.4.2 Morphological Variation Among Clonal Colonies Mapped by PCA 

After eliminating variable redundancy using a similarity matrix, 45 features related to cell 

and nuclear morphology were selected for principal component analysis (PCA). When plotting the 

two most significant components, PC1 and PC2, clonal colonies were distributed across all 

quadrants (Figure 6.3A), indicating a wide range of morphological diversity. Analysis of the 

features contributing to each principal component revealed that PC1 was primarily associated with 

nuclear morphology, while PC2 was more closely related to cellular morphology. Lower PC1 

values, observed in the parental cell line and colonies RI, PA, and CT, were significantly correlated 

with high nuclear entropy and irregular nuclear shapes, potentially reflecting disorganized or 

heterogeneous chromatin structure. In contrast, higher PC1 values, seen in colonies DE, VA, GA, 

SC, NY, and NC, were linked to increased nuclear stain intensity, greater texture variance, and 

larger or more structured nuclei. These features suggest that PC1 may capture differences in 

nuclear activity or chromatin organization, potentially reflecting variations in proliferation, 

genomic instability, and metastatic potential. 

PC2, on the other hand, was strongly influenced by cell shape descriptors like perimeter 

and eccentricity. Colonies with higher PC2 scores, including the parental MDA-MB-231 cell line, 

exhibited more elongated and irregular cell shapes, indicative of a more mesenchymal-like 

morphology. In contrast, lower PC2 scores were associated with rounder, more compact cells, 

suggesting lower migratory or invasive potential. To explore these interpretations further, colonies 

were grouped based on their morphological profiles derived from PCA, and dynamic cellular 

behaviors were subsequently assessed using the impedance-based assay developed in Chapter 3. 
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Figure 6.3: Principal component analysis (PCA) of morphological features in MDA‑MB‑231 

clonal colonies. A) Scatter plot of the first two principal components (PC1 and PC2), illustrating 

morphology-based clustering of individual clonal colonies. Data points are color-coded by colony 

identity. B) Loadings plot for PC1 and PC2, showing morphological features with absolute loading 

scores > 0.7. Features are color-coded by type: cell-related (green), nucleus-related (blue), and 

other (gray). 
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6.4.3 Clonal Colonies Cluster into Three Distinct Morphological Groups 

To categorize clonal colonies based on morphological features, multiple clustering 

algorithms were evaluated, including k-means clustering, hierarchical clustering, density-based 

clustering, and Gaussian mixture modeling. These methods were compared using silhouette scores, 

which assess how well each data point fits within its assigned cluster (Supplementary Figure D.1). 

The analysis identified k-means clustering with three clusters as the best-fitting model. When k-

means clustering was applied to the PCA-transformed dataset using the first 10 principal 

components, three well-separated morphological groups emerged, with most colonies being 

clearly classified (Figure 6.4). Two colonies, NH and MA, did not cluster cleanly, displaying data 

points scattered across all three groups. Therefore, these colonies were excluded from further 

analysis due to their morphological ambiguity. 

 

 

Figure 6.4: Morphology-based grouping of clonal colonies via k-means clustering. K-means 

clustering (k = 3) was applied to PCA-transformed morphological data to classify clonal colonies 

into distinct groups based on cell and nuclear features. Colonies NH and MA were excluded from 

clustering due to inconsistent morphology and lack of clear cluster assignment. 
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6.4.4 Impedance Analysis Reveals Functional Heterogeneity Among Clonal Colonies 

To investigate dynamic cellular behaviors and assess the relationship between 2D 

morphology and functional traits like motility, impedance-based measurements were performed 

using our developed quantitative wound healing assay. Impedance and TEER were recorded at the 

point immediately prior to the wound scratch, when cell colonies had reached maximum 

confluence (Figure 6.5A, B). High-frequency impedance (41.5 kHz) serves as an indicator of cell 

proliferation and surface coverage, while TEER indicates cell-to-cell connectivity. 

Both impedance and TEER values varied across clonal colonies, demonstrating 

heterogeneity, not only between individual lines, but also within morphologically defined clusters. 

Notably, all clonal groups deviated from the parental MDA-MB-231 cell line, though the direction 

and magnitude of these differences were inconsistent. Some colonies exhibited higher impedance 

and TEER values than the parental line, while others were lower, suggesting that functional 

behavior does not uniformly track with morphological traits. 

Migration rate, measured post-scratch (Figure 6.5C), showed only modest variation across 

clonal colonies. Colonies SC and VA exhibited increased migratory activity, whereas RI and MD 

showed reduced migration relative to the parental line. Regardless, overall differences in migration 

rates were limited, indicating that most clonal colonies retained comparable motility to the 

heterogeneous parental population. These results suggest that dynamic cell behaviors like 

proliferation, migration, and cell-to-cell connectivity do not correlate strongly with the 

morphological clusters identified in this study. 
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Figure 6.5: Functional differences among clonal colonies in proliferation, barrier integrity, and 

migration. A) Impedance measurements at confluence, reflecting cell proliferation and surface 

coverage. B) Transepithelial electrical resistance (TEER) at confluence, indicating cell-to-cell 

barrier integrity. C) Migration rate over 36 hours, calculated as the change in impedance over time 

(Ω/hour). Dotted lines delineate morphology-based groupings defined by k-means clustering. Each 

data point represents an average from 10–12 wells per colony or parental line. Statistical 

significance compared to the parental MDA-MB-231 line: † p < 0.05, ‡ p < 0.01, § p < 0.0001. 

 

6.5 Discussion 

 Differences were observed among colony behavior, even during the expansion process. 

The varying growth patterns and single-cell morphologies among the colonies reflect the diversity 

present in the heterogeneous parental MDA-MB-231 cell line. It is important to note that some 
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cells failed to expand into colonies, which could be attributed to several factors. First, successful 

expansion requires cells to be proliferative. However, as previously discussed, aggressive cancer 

cells often exhibit a tradeoff between proliferation and migration 21. Cells with a more migratory 

phenotype may not thrive under standard culture conditions or achieve sufficient proliferation to 

form colonies. Additionally, population age may play a role, as even immortalized cell lines can 

show signs of genetic drift after long-term growth. These observations highlight an important 

consideration when using clonal expansion methods. Not all cells are equally capable of clonal 

outgrowth, and their failure to expand may carry biological significance related to metabolic status. 

Flow cytometry cell sorting offers an alternative means of separation and has previously been used 

to distinguish MDA-MB-231 cells based on EMT-related markers 22. While this approach would 

reduce the number of population doublings required to obtain sufficient cell numbers, it would not 

yield the same degree of homogeneity as clonal isolation. 

In addition to the single-cell differences observed across colonies, notable differences in 

growth patterns were also recorded. Most prominently, the NC clonal group exhibited a unique 

tendency to grow in highly aligned, web-like patches (Supplementary Figure D.2). Although this 

feature was not captured by our fluorescent image-analysis pipeline, due to its focus on non-

touching, individually stained cells, it was clearly visible during colony expansion. This alignment 

likely reflects more than just a structural artifact. Rather, it may indicate an intrinsic cellular 

behavior reminiscent of collective migration, a process increasingly associated with migration and 

metastatic potential 23-26 that has been previously studied in MDA-MB-231 cells 27. Notably, this 

organized behavior emerged even in the absence of exogenous extracellular matrix components, 

suggesting that these cells may be intrinsically predisposed to sense or replicate the aligned 

architecture of collagen fibers commonly found in the tumor microenvironment. Collagen 
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alignment has been shown to facilitate directional invasion, and tumor cells that preferentially 

align in vitro may exploit similar structures in vivo 28,29. Thus, the NC clonal group’s self-alignment 

could serve as a surrogate marker for an invasive phenotype, potentially driven by cytoskeletal 

dynamics, cell-cell adhesion, or altered mechanotransduction pathways. Future studies could 

explore this further by culturing these cells on ECM-mimicking substrates, performing live-cell 

imaging, or conducting an in-depth migration study, potentially uncovering key links between in 

vitro self-organization and in vivo aggressiveness.  

PCA of quantified cell properties revealed notable variation between the parental MDA-

MB-231 cell line and its daughter colonies. PC1 primarily captured features related to nuclear 

morphology, including differences in nuclear size, border irregularity, staining intensity, and 

texture. These traits are often associated with proliferation status, genomic instability, and 

metastatic potential. For example, enlarged nuclei suggest increased DNA content (polyploidy), 

which has been linked to heightened aggressiveness and drug resistance 30. Similarly, increased 

nuclear texture may reflect chromosomal instability, another hallmark of metastatic capability 

15,31,32. 

PC2 was more indicative of overall cell shape. Higher PC2 scores corresponded to 

elongated cell morphologies with pronounced cytoskeletal protrusions, while lower PC2 scores, 

like those observed in the RI colony, indicated a rounder and less elongated form. Despite this 

variation, all colonies originated from the MDA-MB-231 parental line, which has a mesenchymal-

like, elongated phenotype (as established in Chapter 5). Thus, even the most circular colonies in 

this study remain more mesenchymal than epithelial, particularly when compared to mammary 

cell lines such as MDA-MB-453 examined in earlier chapters. 
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K-means clustering of morphological data grouped colonies into three distinct clusters. 

However, colonies NH and MA did not cluster cleanly. This could suggest that these colonies 

exhibit more average or intermediate nuclear morphology, particularly given their relatively low 

PC1 scores. Alternatively, their distribution across multiple clusters may indicate underlying 

heterogeneity within the colony itself, potentially arising from point mutations or subtle genomic 

shifts. Due to this clustering ambiguity, NH and MA were excluded from further analysis involving 

impedance measurements. 

Impedance and TEER measurements varied across all colonies—even among those 

assigned to the same morphological cluster. Within the largest cluster (Cluster 1), significant 

differences emerged: colonies DE and NJ exhibited notably higher impedance and TEER values 

compared to the parental line, suggesting greater surface coverage and enhanced cell-cell 

connectivity. In contrast, other colonies within the same cluster (GA, SC, NC, MD, and NY) 

showed significantly lower values than the parental line. These discrepancies may partially reflect 

differences in growth rates. Although all colonies were seeded at equal density, they reached 

confluence at varying times (see Supplementary Figure D.3). Overall, migration rates were not 

significantly different for most colonies relative to the parental line, suggesting that the MDA-

MB-231 cells may engage distinct or previously underappreciated mechanisms of migration that 

are not captured by traditional assays. 

In the future, refinements in colony isolation methods could improve experimental 

consistency and reduce degradation over time. For example, future work might involve using lower 

passage numbers to derive colonies, limiting expansion periods, or employing alternative isolation 

techniques. While clonal colonies derived from the MDA-MB-231 line clearly demonstrate 

underlying heterogeneity within the parental population, this heterogeneity was not directly linked 
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to differences in migration potential in the current study. However, certain clonal populations, like 

the self-aligning NC colony, may represent promising models for future investigation. These 

colonies could be studied individually to explore specific mechanisms of cell migration, such as 

collective migration dynamics or interactions with collagen-aligned matrices. 

 

6.6 Conclusion 

This study highlights the significant phenotypic and functional heterogeneity that exists 

within a single, widely used breast cancer cell line (MDA-MB-231). Results show that, through 

clonal expansion and quantitative profiling, even cells derived from the same tumor population 

can diverge in morphology and behavior dynamics. While dimensionality reduction and clustering 

techniques allowed for the identification of distinct morphological subtypes, an impedance-based 

analysis demonstrated that morphology alone does not fully predict cellular behavior. These 

findings underscore the importance of integrating both structural and dynamic phenotyping to 

better understand tumor cell heterogeneity. Future work would best be suited towards 

understanding the specific migration mechanisms and pathways of one or two select colonies. 

Together, these observations reinforce the value of clonal analysis in cancer metastasis research 

and suggest that cell-intrinsic heterogeneity could play a critical role in shaping tumor progression, 

therapeutic response, and metastatic capacity.  
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CHAPTER 7 

CONCLUDING REMARKS AND RECOMMENDATIONS FOR FUTURE WORK 

 

7.1 Concluding Remarks 

Breast cancer (BC) metastasis remains one of the leading causes of cancer-related deaths 

among women. There is a significant need to better understand the fundamental mechanisms 

driving metastasis, particularly the complex phenotypic changes that tumor cells undergo during 

disease progression. A deeper understanding of these processes could lead to earlier detection of 

metastatic cells and improved therapeutic strategies. 

One key mechanism implicated in metastasis is the epithelial-to-mesenchymal transition 

(EMT), during which epithelial-like cells, typically cuboidal in shape and tightly adhered to the 

basement membrane, adopt a more elongated, mesenchymal-like morphology. This transformation 

is closely associated with increased motility and invasiveness. EMT plays a central role in tumor 

progression by linking changes in cell shape to alterations in gene expression, phenotype, and 

metastatic behavior. Because morphology is both highly indicative of cellular state and relatively 

easy to quantify, it serves as a valuable proxy for studying the molecular underpinnings of cancer 

progression. Still, the exact relationship between cell shape and metastatic potential remains 

incompletely understood. 

This dissertation investigates that relationship by analyzing single-cell morphology both 

across various breast cancer cell lines and within a highly aggressive subpopulation. The goal is 

to identify measurable morphological features that correlate with metastatic behavior. To achieve 
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this, we developed a novel approach that combines Electric Cell-substrate Impedance Sensing 

(ECIS) with high-throughput imaging to more precisely and objectively characterize cancer cell 

traits. 

A key advantage of this methodology is its compatibility with small cell populations, 

making it highly relevant for clinical applications where tissue biopsies often yield limited 

material. Our approach enables the assessment of cell morphology, growth dynamics, migration, 

and response to external stimuli using fewer than two million cells, well within the range typically 

obtained from patient-derived samples. 

The resulting dataset provides new insights into the cellular features that influence breast 

cancer metastasis, while also offering a scalable framework for evaluating cancer cell behavior. 

By capturing detailed morphological and biophysical profiles from minimal sample input, this 

work supports the development of more efficient and clinically applicable diagnostic tools. 

Overall, this dissertation advances the goal of establishing robust, quantitative methods for 

assessing breast cancer aggressiveness. Through the integration of impedance- and image-based 

analyses, it highlights the diagnostic and research potential of single-cell morphology in 

understanding and predicting metastatic progression. 

Chapter 2 reviewed current in vitro modeling techniques used to study breast cancer 

metastasis, with an emphasis on cell invasion and spread within mammary tissue. While 2D 

models cannot fully replicate the complexity of the human body, they offer valuable advantages, 

such as precise control of experimental variables and compatibility with high-throughput analysis 

methods like automated imaging. These features make 2D systems particularly suitable for 

preliminary cell analysis and large-scale screening. 
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Additionally, the chapter highlighted 3D modeling approaches, including bioprinting and 

microfluidics, which better mimic physiological conditions such as dynamic flow, extracellular 

matrix composition, and cell–cell interactions. Despite these strengths, 3D systems face 

limitations, like high costs (e.g., bioinks in bioprinting) and a lack of standardization. Thus, 

choosing the appropriate model depends heavily on the specific research question. As research 

demands evolve, there is a pressing need to refine existing models and develop new platforms that 

improve reproducibility, enable more accessible data quantification, and support personalized 

cancer modeling. 

Towards the goal of enhancing quantification, the chapter introduced bioelectronic assays 

as a promising technique. While these assays may lack the specificity of some biochemical 

methods, they allow for continuous, non-invasive monitoring of cell behavior and require only 

small cell populations, making them ideal for studies involving patient-derived biopsy samples. 

The remaining chapters build on this foundation, aiming to quantify mammary cell characteristics 

and validate single-cell morphology as a meaningful readout of cancer aggressiveness and 

metastatic potential. The work is conducted in 2D systems to leverage their compatibility with 

machine learning pipelines and impedance-based migration measurements. 

Chapter 3 presented a preliminary bioelectronic assessment of breast cancer cell 

proliferation and motility, establishing impedance sensing as a reliable, non-invasive method to 

evaluate metastatic behavior. This approach streamlines wound-healing assays by enabling real-

time, quantitative monitoring of cell migration. Three breast cancer cell lines were analyzed for 

spread, proliferation, barrier integrity, and migratory capacity. Additionally, responses to leptin, a 

proinflammatory cytokine, demonstrated the sensitivity of impedance measurements in detecting 

cell behavior changes. These findings aligned with previous migration studies and further 
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emphasized leptin’s role in promoting proliferation and weakening cell–cell barriers, highlighting 

the potential of bioelectronic assays for broader adoption in cancer research. 

Chapter 4 expanded upon the impedance-based approach by applying the developed 

protocols to a panel of eight mammary cell lines with varying metastatic tendencies. Quantitative 

measurements revealed distinct behavioral patterns aligned with known levels of aggressiveness. 

Notably, MDA-MB-453 cells exhibited high migratory activity despite maintaining epithelial 

morphology, challenging the assumption that epithelial-to-mesenchymal transition (EMT) status 

alone determines metastatic potential. These results underscore the value of integrating dynamic 

impedance measurements and TEER with traditional morphological assessments, advocating for 

a more nuanced and multi-parametric evaluation of metastatic capacity. This chapter laid the 

groundwork for integrating machine learning and image-based phenotyping to further enhance 

assessment precision. 

Chapter 5 introduced high-throughput image analysis combined with machine learning to 

evaluate single-cell morphology as a predictive marker of cancer cell function. Using the same 

eight cell lines from Chapter 4, cell morphology metrics were extracted from cellular- and nuclear-

stained images via CellProfiler. These features were then correlated with migration behavior and 

EMT status. The analysis identified key morphological traits, including cell elongation, nuclear 

irregularity, and cell protein texture, that effectively differentiated between normal and cancerous 

cells and between mesenchymal and epithelial phenotypes. These findings validated morphology 

as a high-dimensional, quantifiable proxy for aggressive behavior and highlighted image-based 

phenotyping as a powerful method for characterizing functional heterogeneity in breast cancer. 

Chapter 6 built upon previous findings by assessing heterogeneity within a single 

aggressive cell line, the triple-negative MDA-MB-231 cell line. Thirteen sub-populations were 
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derived via low-density seeding and analyzed for both morphology and dynamic behavior. K-

means clustering of morphological features identified three distinct groups with varying structural 

profiles. Subsequent impedance measurements revealed functional diversity among these sub-

clones, including differences in proliferation, migration, and barrier integrity, but ultimately did 

not correlate with morphology groupings. These findings demonstrate that significant 

heterogeneity can exist even within a well-characterized cell line, emphasizing the importance of 

sub-clonal analysis in understanding metastatic potential. 

Collectively, this work presents a comprehensive overview of breast cancer metastasis 

modeling and introduces a multi-faceted framework that integrates bioelectronic impedance 

sensing, high-throughput image analysis, and machine learning. This combinatorial approach 

enables more nuanced and scalable assessments of metastatic behavior, offering new avenues for 

both research and clinical application in personalized cancer modeling.  

Altogether, this work highlights a broader opportunity to bridge experimental biology with 

computational analysis in healthcare research. While machine learning tools are increasingly 

applied to biological datasets, these tools are often developed without a deep understanding of the 

cellular mechanisms that generate the data. By integrating biologically grounded measurements, 

such as cell morphology, dynamic cell behaviors, and gene expression, this study demonstrates 

how computational pipelines can be informed through biological and mechanistic insight. This 

approach enhances both the interpretability and relevance of machine learning outputs, ultimately 

supporting the development of more effective and clinically meaningful models. As precision 

medicine continues to evolve, these interdisciplinary strategies will be essential for advancing 

personalized diagnostics and therapeutic decision-making. This dissertation therefore contributes 
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not only to cancer research, but also to the growing intersection of data science and experimental 

biology, an area with vast potential for future discovery. 

 

7.2 Recommendations for Future Work 

The studies presented in this dissertation contribute to the validation of single-cell 

morphology as a meaningful readout associated with cancer aggressiveness and metastatic 

potential. To further expand and strengthen these findings, several directions for future work are 

recommended. 

 

7.2.1 Validate Findings Across Additional Mammary Cell Lines 

This study offers a detailed look at a broad set of mammary cell lines, with a particular 

focus on triple-negative breast cancer. While we were able to identify meaningful patterns, like 

connections between cell shape and dynamic behaviors, the ability to measure how strong or 

reliable these patterns are is limited. This is mainly due to the small sample sizes, as in the limited 

number of cell lines used, which make it harder to apply statistical tools that typically help confirm 

whether such patterns are likely to hold up across broader datasets (confidence intervals, etc.). To 

address this, future studies should expand the current cell line panel to include additional cells, 

particularly those found in the peritumoral microenvironment (e.g. fibroblasts). This would allow 

for a more robust analysis of motility, morphology, and the ability to distinguish cell types within 

a heterogeneous population. A suggested list of additional cell lines is provided in Supplementary 

Table E.1. 
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7.2.2 Alternative Methods for Evaluating Cancer Cell Aggressiveness 

In this study, 2D migration served as the primary metric for evaluating cancer cell 

aggressiveness and metastatic potential. This method, while widely used and easily quantifiable 

via impedance measurements, captures only the initial step of metastatic escape from the primary 

tumor 1-4. Nonetheless, recent studies have questioned its clinical relevance as a predictor of in 

vivo metastatic behavior 5-9. For example, subpopulations of MDA-MB-231 cells with low 

migratory ability have still demonstrated metastatic competence when injected into mammary fat 

pads of SCID mice 10. Other research has identified mechanisms by which weakly migratory 

cancer cells can stimulate stromal cells through microvesicle signaling and enhance dissemination 

11. In all, these findings emphasize that migration alone may not fully capture metastatic potential. 

To address this limitation, it is recommended that future work incorporate assays that better 

mimic the tumor microenvironment and more complex steps of the metastatic cascade, such as 

intravasation. One promising approach is to use an impedance-based endothelial barrier disruption 

assay (methods described in Appendix E). In a preliminary study, human umbilical vein 

endothelial cells (HUVECs) were cultured on a collagen IV-coated electrode plate to simulate the 

basement membrane and endothelial layer. Cancer cell lines were then seeded onto this monolayer, 

and changes in barrier integrity were measured via TEER (trans-endothelial electrical resistance), 

as shown in Figure 7.1. Notably, while MDA-MB-231 cells caused significant and sustained 

barrier disruption, MDA-MB-453 cells, despite showing high migration in earlier assays (Chapter 

4), had no measurable effect on HUVEC integrity. This highlights the importance of using 

complementary metrics to assess aggressiveness. 
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Figure 7.1: Breast cancer cells disrupt endothelial barrier integrity. A) Trans-endothelial electrical 

resistance (TEER) measurements over time for a monolayer of human umbilical vein endothelial 

cells (HUVECs). The HUVEC monolayer formed during the initial 13 hours. At this point 

(indicated by the grey line), cancer cell lines (MCF7, MDA-MB-453, MDA-MB-231) or the non-

cancerous control line (MCF10A) were introduced. Barrier integrity was monitored for an 

additional 35 hours. Undosed wells (HUVECs only) served as a control. B) TEER values 3 hours 

after cell dosing, normalized to the average TEER of the undosed HUVEC control group. C. TEER 

values after 12 hours of dosing, also normalized to the undosed control. (n = 8) 

 

 

 

Interestingly, MCF10A (a non-tumorigenic control) induced modest barrier disruption, 

suggesting that minimal TEER changes are not exclusive to malignant cells. MCF7 cells initially 

decreased barrier integrity but later appeared to increase it. This dynamic behavior could be due 

to paracrine signaling, possibly involving VEGF secretion by MCF7 cells, prompting HUVECs to 

reinforce their junctions via reciprocal signaling  12. Alternatively, the observed TEER increase 

might be a measurement artifact resulting from MCF7 cells spreading over the HUVEC layer and 

increasing electrical resistance. This hypothesis could be tested using live-cell staining and 

imaging of the co-culture system. Overall, these preliminary findings support the utility of this 

assay in assessing metastatic potential beyond migration alone. 
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7.2.3 A Closer Look into Migration Mechanisms and Their Morphological Expression 

Beyond evaluating alternatives to migration-based assays, future studies should also focus 

on understanding the specific mechanisms of migration and if they are morphologically linked. In 

Chapter 6, clonal analysis suggested that collective migration may support the high motility 

observed in MDA-MB-231 cells. In collective migration, invasive leader cells coordinate 

movement with non-invasive follower cells, an emerging concept in metastatic progression 13,14.  

Leader cells often display a hybrid epithelial–mesenchymal phenotype, featuring 

mesenchymal-like cytoskeletal restructuring at the leading edge and retained epithelial cell-to-cell 

junctions, and epithelial characteristics at the trailing edge 15. Morphological signatures of this 

phenotype could be identified using Haralick texture features, as discussed in Chapter 5, to 

quantify cytoskeletal organization and reorganization with an F-actin stain like phalloidin. These 

techniques could be applied across cell lines or within specific clones to explore the mechanistic 

underpinnings of collective migration and their association with quantifiable cell features. 

 

7.2.4 Further Exploration of Clonal Development and Intra-cell Line Heterogeneity 

Finally, clonal analysis should be expanded to include a wider range of cell lines and more 

comprehensive characterization metrics. Isolating clones from additional aggressive lines, like 

HCC1806, and BT-549, would enable the recognition of broader trends related to cancer cell 

heterogeneity. It is also advised to use ultra-low passage parental lines and to minimize clonal 

expansion, maintaining clonal integrity and reducing the risk of genetic drift. 

In addition to expanding the number of clonal colonies, deeper characterization of each 

clonal population would enhance the interpretation of observed phenotypes. Proteomic and 

transcriptomic profiling could provide molecular context for behavioral differences between 
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clones, even among those with similar morphologies. These high-dimensional datasets could be 

analyzed using PCA, clustering, or other modeling approaches introduced in Chapters 5 and 6. 

Clonal forming efficiency (CFE), which reflects the proportion of single cells that form colonies, 

can provide insight into clonogenic potential and may correlate with the presence of cancer stem-

like cells 16. Lastly, doubling time and growth rates are straightforward measurements of 

proliferative capacity that could be linked to migratory and invasive behaviors. 

Taken together, these recommendations outline a multifaceted path forward for building 

upon this dissertation work. Expanding cell line diversity, incorporating alternative functional 

assays, dissecting migration mechanisms, and deepening clonal characterization will collectively 

refine our understanding of how cell morphology relates to cancer aggressiveness and metastatic 

behavior. 
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APPENDIX A 

SUPPLEMENTARY MATERIALS FOR CHAPTER 3 

 

Figure A.1: A) Example of an image of nuclei (blue) migrated to through the transwell membrane. 

The top of the insert was swabbed to remove the non-migrated cells so only the migrated cells 

were left. The HCC1806 nuclei were counted using Gen5 software’s object count analysis, adding 

a yellow border around each counted nucleus. B) Quantitative results of the transwell migration 

object count for 12 and 24 hours. **** indicates a statistically significant comparison where p > 

0.0001. (n=12 images for each cell line/timepoint) C) Stitched images of wound closure of cell 

monolayers using a traditional wound healing method, where cells are stained green and nuclei are 

blue.  
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Figure A.2: A) Impedance during wound coverage for each leptin group, normalized to the 

impedance value prior to the scratch. B) Normalized impedance immediately after the scratch and 

every 12 hours after. The dotted line effectively represents the impedance before the scratch. While 

all HCC1806 and MDA-MB-231 groups exhibited wound closure over 36 hours, leptin 

concentration did not affect wound closure for any group. * indicates a statistically significant 

comparison where p > 0.05; **** indicates a statistically significant comparison where p > 0.0001. 

(n=6) 
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Figure A.3: Cytoview-Z plate. Each well contains one gold electrode on the culture surface, with 

a viewing window in the middle to visualize/image cells (top). To maintain humidity and minimize 

edge effects, the wells are bordered by a water reservoir (bottom). 
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APPENDIX B 

SUPPLEMETARY MATERIALS FOR CHAPTER 4 

Table B.1: Nutrient reduced media formulations 
Cell Line Basal Media Growth Supplements Nutrient-reduced 

Supplements 

184B5  

(CRL-8799) 

MEBM MEGM SingleQuots (without GA-1000), 1 

ng/mL CTX 

- 

MCF10A  

(CRL-10317 

MEBM MEGM SingleQuots (without GA-1000), 

100 ng/mL CTX 

- 

MCF7  

(HTB-22) 

DMEM 10% FBS, 1% P/S, 0.01 mg/mL insulin 2% FBS, 1% P/S 

MDA-MB-453  

(HTB-131) 

DMEM 10% FBS, 1% P/S 2% FBS, 1% P/S 

HCC70  

(CRL-2315) 

RPMI 10% FBS, 1% P/S 2% FBS, 1% P/S 

HCC1806  

(CRL-2335) 

DMEM 10% FBS, 1% P/S 2% FBS, 1% P/S 

MDA-MB-231  

(HTB-26) 

DMEM 10% FBS, 1% P/S 2% FBS, 1% P/S 

BT-549  

(HTB-122) 

RPMI 10% FBS, 1% P/S 2% FBS, 1% P/S 

Abbreviations: MEBM, Mammary Epithelial Basal Media; MEGM, Mammary Epithelial Growth Media; 

CTX, cholera toxin; DMEM, Dulbecco’s Modified Eagle Media; FBS, fetal bovine serum; P/S, 

penicillin/streptomycin; RPMI, Roswell Park Memorial Institute Media 
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Figure B.1: Expression of tight junction-associated genes in each breast cancer cell line, sourced 

from the DepMap Portal. RNA-seq gene expression values are shown as log₂(TPM + 1), where 

TPM denotes transcripts per million. TJP1 corresponds to Zonula Occludens-1 (ZO-1); CLDN1 

and CLDN3 represent claudins 1 and 3, respectively; OCLN denotes occludin.  
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APPENDIX C 

SUPPLEMETARY MATERIALS FOR CHAPTER 5 

Table C.1: Significant features measured with CellProfiler 

Feature PC1 Interpretation 

Area/Shape Features 

Extent Ratio of the object's area to the area of its bounding box; measures how 

well the object fills its bounding box. 

Form Factor Calculated as 4*π*Area/Perimeter2; A circularity measure where 1 

indicates a perfectly circular object.  

Max Feret 

Diameter 

The longest distance between any two points along the object's boundary; 

a measure of object length. 

Area Total number of pixels within the object's boundary; represents object 

size. 

Compactness Measure of how densely packed the object is. A filled circle will have a 

compactness of 1, with irregular objects or objects with holes having a 

value greater than 1. 

Mean Radius The mean distance from the object's centroid to its boundary. 

Cell-to-Nuclear 

Area Ratio 

Ratio of the cell area to the nuclear area; indicates the relative size 

difference between nucleus and the cytoplasm not overlapping with the 

nucleus. 

Intensity Features 

Mass 

Displacement 

Distance between the intensity-weighted centroid and the geometric 

centroid; reflects asymmetry in intensity distribution. 

MAD Intensity Median Absolute Deviation of pixel intensities; a robust measure of 

intensity variation within the object. 

Max Intensity Maximum pixel intensity within the object; indicates the brightest pixel. 

Haralick Texture Features 

Difference  

Entropy 

Feature from Haralick analysis that quantifies local intensity contrast 

within an image. 

Entropy Feature measuring randomness or complexity in intensity values; higher 

entropy implies more complexity. 

Variance Measure of intensity dispersion or spread in the object’s pixel values. 

Correlation Feature indicating the linear dependency of grey levels between 

neighboring pixels. 

Info Measurement 

1 

Feature that quantifies how much information one can predict from the 

neighboring pixel intensities. 
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Figure C.1: Cumulative and individual variance explained by the first 10 principal components 

(PCs). Together, these PCs account for 85.1% of the total variance in the dataset. The bars 

represent the individual variance explained by each PC, while the line indicates the cumulative 

variance. 
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APPENDIX D 

SUPLEMETARY MATERIALS FOR CHAPTER 6 

 

 
 

Figure D.1: Evaluation of Clustering Methods Using Silhouette Scores. Silhouette scores for A) 

hierarchical and B) k-means clustering across a range of cluster numbers (2–11). The highest 

silhouette score was observed for k-means clustering with k = 3, indicating that this method and 

cluster number best fit the PCA-transformed morphological data. 
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Figure D.2: NC clonal colony expansion over time. A. Cell growth observed 4 days after single-

cell seeding. B. Colony expansion at 10 days in culture, showing increased cell density. C. Colony 

morphology at 23 days, where cells exhibit self-alignment along the tissue culture polystyrene 

surface.  
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Figure D.3: Representative bright phase images of clonal colonies. Images are taken from the 

viewing window of the Cytoview-Z plate, immediately prior to creating the scratch. 
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APPENDIX E 

SUPLEMETARY MATERIALS FOR CHAPTER 7 

Table E.1: Additional cell lines to include in future work 

Cell Line Cell Type 

Hs27 

 

(HTB-122) 

Fibroblast 

AG11132 

 

(from Coriell Institute) 

Epithelial 

BT-20 

 

(HTB-19) 

Carcinoma 

 

TNBC 

MDA-MB-468 

 

(HTB-131) 

Adenocarcinoma 

 

TNBC 

MDA-MB-436 

 

(HTB-122) 

Adenocarcinoma 

 

TNBC 

MDA-MB-157 

 

(HTB-24) 

Carcinoma, Medullary 

 

TNBC 

Hs 578T 

 

(HTB-122) 

Carcinoma 

 

TNBC 

Abbreviations: TNBC, Triple-negative breast cancer 
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E.1 Supporting Methods 

E.1.1 HUVEC and Mammary Cell Culturing 

Human umbilical vein endothelial cells (HUVECs; CC-2519, Lonza) were cultured in 

Endothelial Cell Growth Medium-2 (EGM-2; Lonza) following the manufacturer’s protocol. To 

prevent degradation from repeated warming and cooling, the necessary volume of EGM-2 was 

aliquoted at a time and warmed in a water bath only once per use. Mammary cell lines MCF10A, 

MCF7, MDA-MB-453, and MDA-MB-231 were cultured in their respective standard growth 

media, as detailed in Appendix B, Table B.1.  

 

E.1.2 Experimental Seeding and Impedance Analysis 

Each well of a 96-well CytoView-Z impedance plate (Axion Biosystems) was coated with 

50 μL of a 50 μg/mL collagen IV solution (Abcam), prepared in sterile glacial acetic acid (Sigma-

Aldrich). The plate was incubated at room temperature for one hour and then washed with 

phosphate-buffered saline (PBS; Gibco). Following this, the plate was inserted into the Maestro-

Z impedance system (Axion Biosystems) to collect a media-only baseline, as outlined in Chapter 

3. HUVECs were seeded at a density of 70,000 cells/cm². According to Lonza’s guidelines, 

complete endothelial barrier formation occurs within 12 to 16 hours. After 13 hours, TEER 

measurements confirmed barrier establishment, indicating a stable monolayer. At this point, the 

plate was undocked and brought to the biosafety hood for dosing with the mammary cell lines. 

100 μL of media were removed from each well and mammary cells (MCF10A, MCF7, MDA-MB-

453, MDA-MB-231) were added at a density of 10,000 cells/cm² in fresh EGM-2 to dose the wells. 

Undosed control wells received 100 μL of fresh EGM-2 to serve as vehicle-only HUVEC controls. 
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The plate was subsequently returned to the Maestro-Z instrument, and changes in trans-endothelial 

electrical resistance (TEER) were monitored continuously for an additional 35 hours. 


