
Data-driven Techniques Applied to
Functional Neuroimaging Analyses

by

William Reeves
(Under the Direction of Qun Zhao)

Abstract

The study of magnetic resonance imaging (MRI) data hinges on a strong
methodological foundation. With improvements in data collection, method-
ologies must evolve to keep pace with cutting-edge studies. One such area of
study is in the graphical analysis of functional MRI data. This uses neuroac-
tivational patterns inherent in data to determine which areas are most-highly
linked with each other.

To define these changes, this work begins by exploring ways to increase
sensitivity of pre-existing methods. Using the difference degree test (DDT), it
is shown that a modification to the null-model generation method results in
higher sensitivity while maintaining accuracy of the findings. This results in
the detection of differentially weighted edges which, in turn, help define differ-
entially expressed hub nodes between groups.

Common brain parcellation strategies used in graphical studies often in-
volve the application of an idealized brain parcellation which subdivides the
brain into discreet regions based on anatomical landmarks. In practice, idealized
anatomical parcellations are flawed due to the brain regions being based on ideal-
ized anatomical structures which are not representative of experimental data. A
novel method referred to as the independent component analysis (ICA)-based
parcellation algorithm (IPA) was developed to overcome these shortcomings.
This method employed ICA to detect areas that exhibited similar neuroactiva-
tional patterns and subsequently used them to define regions of interest (ROIs).
The IPA showed high consistency in ROI definition and showed higher homo-
geneity than the standard idealized anatomical parcellation and its usefulness
in graph theoretic analysis.

After development using humans, the performance of an improved IPA
known as the anatomy-free IPA (af-IPS) is profiled using a developmental pig



traumatic brain injury model. The improvements made to the IPA produced
regions of interest which maintained spatial consistency while also removing its
dependence on idealized anatomy. Groupwise differences between treatment
groups were profiled utilizing the subsequent parcellations.

Both the modified DDT and the IPA represent a substantive continuation
of decades of research and methodological refinement in the field. While fur-
ther research must be done to fully explore their potential, the DDT and IPA
can hopefully serve as a springboard for further evolution in analytic method-
ologies.

Index words: Functional magnetic resonance imaging,
Neuroimaging, Statistical analysis, Graph theory,
Graph simulation, Hypertension, Brain parcellation,
Method development, Independent component
analysis, Traumatic brain injury, Pig model
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Chapter 1

The Study of Magnetic
Resonance Imaging Data
and Methodological

Review

1.1 A Brief Introduction to Magnetic Resonance
Imaging

1.1.1 The physical basis of MRI
Magnetic resonance imaging (MRI) relies on subtle changes brought about by
placing nuclei – typically in the form of hydrogen atoms bound within water
or fat molecules – in an external magnetic field and applying a perturbative
radiofrequency (RF) magnetic pulse to the system to measure the amplitude
of these nuclei undergoing precession en masse, known collectively as “bulk
magnetization”. The net magnetization of various tissues is prepared by using
timed applications of additive gradient magnetic fields and RF pulses, leading
to differences in signal arising in each tissue. Biologically, the coherence of
signal “source” from nuclear magnetization depends on the local susceptibility
of tissues, which are indirect measures of physiological structure and processes.
By applying a fast Fourier transform (FFT) to received signals stored in a raw
data space known as “k-space” images of biological tissues can be obtained, with
variations in image contrast correlated with scanner preparatory timing details,
tissue properties, and physiological modulation of the tissue. The use of MRI
can be found in many different fields and applications. Clinically, MRI can be
used to determine pathological changes in a patient’s tissue related to a myriad
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of different disease states including spinal disc herniation (Sollmann et al., 2023),
breast cancer development (Mann et al., 2019), vessel wall imaging (Maupu et
al., 2022), and techniques such as real-time MRI can even be used to guide
surgeons during an operation (Horvath et al., 2007). On the research side,
MRI has been used to study nearly every aspect of the body including liver iron
deposition in mice (Simchick et al., 2018), neurological changes linked with
nutritional changes in pigs (Ahmed et al., 2023), white matter integrity post
traumatic brain injury (TBI) (Fagan et al., 2024), along with many other uses
(Kose, 2021).

1.1.2 Functional MRI
One of the many types of MRI is in functional MRI (fMRI). Built upon the
underlying theory of MRI, fMRI utilizes what’s referred to as the blood-oxygen
level dependent (BOLD) signal to detect small magnetic field inhomogeneities
created by deoxyhemoglobin. The hemoglobin protein has two states – oxy-
and deoxyhemoglobin – which are defined by the presence or absence of bound
oxygen molecules. When oxygen is bound to the hemoglobin protein, the iron
at the center of the heme molecule has no free electrons and creates a bulk
diamagnetic effect in the hemoglobin protein. However, when oxygen isn’t
bound to the protein, there are free electrons located in the heme compound
which causes a global paramagnetic effect in an external field (Brown et al.,
2014). These two susceptibility states manipulate the coherence of MRI sig-
nal in well-perfused tissue, generating image contrast differences on the order
of ∼1% between locally normoxic and hypoxic conditions. The change from
oxyhemoglobin to deoxyhemoglobin represents the consumption of oxygen
in the body as well as the subsequent vasodilation increasing the local ratio of
oxy- to deoxyhemoglobin in active tissue, and when this thought is applied to
fMRI scans of the brain, it often gets tied directly to neuronal oxygen consump-
tion. The relationship between this signal and neuronal oxygen consumption
isn’t as straightforward as it may appear at first glance, however (Hillman, 2014).
Changes in the BOLD signal come from a cascade of microvascular events that
result in increases in blood flow and blood volume (Raichle, 1998). Despite the
BOLD signal often being misattributed directly to neuronal oxygen consump-
tion, repeated studies have used the BOLD signal to show that the brain can
be reliably segmented into functional networks both in humans (B. B. Biswal
et al., 2010; B. Biswal et al., 1995; Smith et al., 2009), and other model animals
(Mantini et al., 2011; Simchick et al., 2019)).

As the BOLD signal is tracked over time, researchers can probe into the
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physiological response to a variety of different conditions using the functional
timeseries. This includes studies focused on having a participant perform a task
or otherwise receive some stimulus (task-based fMRI [tb-fMRI]) or to lie in
the MRI in a state of relaxed wakefulness (resting-state fMRI [rs-fMRI]). Task-
based studies can focus on having subjects perform memory (Kumar et al., 2017;
Prieto Del Val et al., 2016; Serrano et al., 2020), attention (Bagattini et al., 2017;
Meehan et al., 2023), and/or motor (Niu, Cohen, et al., 2021) tasks as well as
other paradigms. Each task is designed to focus in on specific and concentrated
areas of brain activity. For example, if asked to perform certain motor tasks
like tapping your fingers or wiggling your toes, the researchers can specifically
focus on the regions of the brain associated with the sensorimotor network. In
contrast to tb-fMRI, rs-fMRI involves the participant lying still without be-
ing allowed to fall asleep. In this state of relaxed-wakefulness, fMRI can detect
the underlying activity of the brain as it functions as a dynamic network. The
brain’s underlying activity has been used to determine functionally similar ar-
eas of the brain that act as integrated networks which we now call resting-state
networks (Kwong et al., 1992; Ogawa et al., 1990). Resting-state and task-based
fMRI data represent two sides of the same coin in that, taken together, they
each profile different phenomena relating to how the brain acts under certain
conditions. Both methods benefit from their differences (Lemée et al., 2019; S.
Zhang et al., 2016) while also suffering from similar issues (X. Hu & Yan, 2024;
Specht, 2019), but taken together, they allow for a more holistic understanding
of the brain and its function.

1.2 A Discussion of fMRI Analysis Methodology

1.2.1 Voxel-wise analysis
Given the physical basis of the BOLD signal and some of the findings of previ-
ous fMRI studies, the next question that follows is “how does tracking brain
oxygen consumption become a scientifically significant result?” To answer this
question, a review of current methodologies is warranted (Chen et al., 2017; K.
Li et al., 2009; X. Zhan & Yu, 2015) which will be limited solely to rs-fMRI anal-
yses. Regional homogeneity (ReHo) (Jiang & Zuo, 2016; Zang et al., 2004), a
common measurement metric in the field, characterizes the similarity of nearby
voxels (the three-dimensional extension of two-dimensional pixels) to deter-
mine similarities and differences in fMRI data (Xu et al., 2019; F. Zhang et al.,
2021; Z. Zhang et al., 2023). Another metric that seeks to utilize the voxel-wise
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timeseries directly is known as amplitude of low-frequency fluctuations (ALFF)
(Fransson, 2005; Zou et al., 2008). Studies using ALFF quantify spontaneous
fluctuations in the voxel-wise timeseries to obtain the fluctuation amplitude
present in the data and then obtains its power spectrum for further analysis.

1.2.2 Seed-based analysis
Another branch of rs-fMRI analysis employs the use of seed-based techniques
(Andrews-Hanna et al., 2007; Bastos & Schoffelen, 2015; Korgaonkar et al., 2014;
Larson-Prior et al., 2009; Sierakowiak et al., 2015; Song et al., 2008) which use
a priori information to define regions of the brain and subsequently compare
each region to the rest of the brain to find the differences or similarities that exist
in the data. The assumption that all brains can fit into an idealized reference
brain has obvious limitations in morphologically abnormal brains or individ-
uals who otherwise don’t fit into the ideal brain structure that informs those
predefined regions of interest (ROIs). One positive aspect of seed-based tech-
niques is their ease of analysis as the ROIs directly tap into biological sources of
BOLD signal. These studies (Carpenter et al., 1999; Mulert et al., 2004; Yoshino
et al., 2006) often take the timeseries of every voxel and average them to obtain
mean regional timeseries that, when obtained for all ROIs, form what is referred
to as a timeseries matrix. These rectangular matrices contain regional snapshots
of BOLD signals and, when correlation analysis is performed on them, can be
used to build a functional connectivity (FC) matrix.

1.2.3 Quantifying regional similarities
An important aspect of many seed-based studies is the analysis of how simi-
lar regional timeseries are to one another. The analysis methodology can take
many forms, but one common form of quantifying regional similarities is cor-
relation analysis. Correlation analysis between two regions can be quantified
using several metrics (Mahadevan et al., 2021). One common metric is Pearson’s
correlation coefficient used to determine similarities between two vectors. This
metric (ρXY ) is given by the equation

ρXY =
cov (X,Y)

σXσY

(1.1)
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where σA is the standard deviation of a given matrix A and cov (X, Y ) is the
covariance of the two vectors X and Y which is given by

cov (X,Y) = ⟨XY⟩ − µXµY =
N∑
i=1

(xi − x̄) (yi − ȳ)

N
(1.2)

The Pearson’s correlation coefficient has a range of [−1, 1] where 1 implies that
the two vectors perfectly follow the same trend, -1 indicates the two vectors
trend linearly together but have opposite trends, and zero means that there is
no relationship between the trends in the data. A representation of this re-
lationship can be seen in Figure 1.1 While Pearson’s correlation coefficient is
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Figure 1.1: Example BOLD activation timeseries are shown with example Pear-
son’s correlation values listed in the titles. The blue and red lines represent
BOLD activation timeseries that have been Fisher transformed into z-scores
(mean of zero and standard deviation of 1). The top plot shows a correlation
value of approximately zero whereas the bottom figure shows an elevated corre-
lation of 0.449.

mathematically intuitive, it is also the most simplistic. Newer methods like
partial correlation (Marrelec et al., 2009) perform the same task as the Pearson
coefficient, while also regressing out the effects from all other time regional
timeseries. Both the Pearson and partial correlation metrics are instantaneous
measures of FC, but there remains another category of metrics that attempt to
quantify dynamic functional connectivity (dFC). One of the methods used to
quantify dFC is wavelet coherence (Bernas et al., 2018; Cîrstian et al., 2023; Yae-
soubi et al., 2015) which, alongside a measure of correlation, can also quantify if
a given timeseries leads or lags another. Regardless of the method used to obtain
similarities between seed regions, the main goal of this step in processing fMRI
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data is to create a FC matrix that quantifies activation patterns throughout the
brain.

1.2.4 Graph theory applied to functional connectivity
After FC matrices are obtained for every individual in a study, post-processing
must be done to determine what differences exist between groups and/or indi-
viduals. The primary means of extracting information from FC matrices comes
from the application of a subset of mathematics known as graph theory. Graph
theory broadly posits that fundamental traits of complex systems can be pre-
served in structures containing a reduced data content known as graphs, which
are comprised of points, referred to as “nodes” or “vertices”. Furthermore, these
points are connected by structures known as edges1. A large scale example of
a graph can be seen in Figure 1.2. Limiting the discussion to those topics rele-
vant to fMRI analysis (Bullmore & Sporns, 2009; Farahani et al., 2019; van den
Heuvel & Hulshoff Pol, 2010; J. Wang et al., 2010), there are many metrics that
can be calculated from a graph that provide various network-like descriptions
of brain function and connectivity. To gain a deeper understanding of graph
theory metrics and what information can be gleaned from them, it is worth it
to discuss them in greater detail.

Microscale graph theory metrics

This discussion is highly informed by Medaglia, 2017 who provides an excel-
lent overview of graph theory metrics applied to fMRI analyses. Graph theory
metrics can be broken into three different scales – micro, meso, and macroscale
metrics – that describe the topology and organization structure of a graph. Mi-
croscale metrics describe what is occurring on the nodal level. One of the sim-
plest metrics on this scale is nodal degree, which describes the total number of
edges a specific node has connecting it to the rest of the graph. Clustering coeffi-
cient expands on nodal degree by defining the number of connections between
direct neighbors of a specific node: a node’s clustering coefficient quantifies
how interconnected its neighbors are. If a node and its neighbors are fully in-
terconnected, they can be collectively referred to as a clique. Nodal distance
measures how many steps it takes to get from one node to another. Specifi-
cally, a node’s distance refers to the number of edges it must pass through to
get to a terminal node. For example, if two nodes were directly connected, they
would have a distance of one whereas two nodes that are connected through a
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Figure 1.2: An example of a graph is shown where the size of the nodes, shown
in red, represents the number of nodes connected to it. The graph contains 100
total nodes and a minimum nodal degree of six.

single intermediate node would have a distance of 1. A node’s efficiency can be
quantified as the inverse distance. The final category of microscale metrics is
collectivity referred to as centrality. Centrality describes the role a given node
plays in the graph. While there are several different measures of centrality, a few
stand out in the characterization of fMRI data. Betweenness centrality mea-
sures how often a given node appears in the path connecting distant nodes. A
node with high betweenness centrality must be passed through by many other
nodes if they want to interact with other nodes in the graph. Closeness cen-
trality quantifies the average shortest distance connecting a given node to all
other nodes. Nodes with high closeness centrality can easily interact with many
nearby nodes. Lastly, eigenvector centrality describes the relationship of a given
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node’s centrality to its neighbor’s centrality. This metric examines how many
connections a node has with other nodes that exhibit a high degree of other
centrality measures.

A more intuitive understanding of microscale graph theory metrics may be
gained through placing them in the analogy of a person’s social circle. If a node
represents a person and an edge represents the friendship between those two
people, nodal degree represents the number of friends that person has. The
person’s clustering coefficient represents how many of their friends are friends
with each other and the distance/efficiency metrics would represent how close
two people in the friend group are. The various centrality measures would
represent how their friend groups interact with one another. A person with
an increased betweenness centrality would be responsible for connecting all
their friend groups together, the closeness centrality would measure if there
any barriers to communication between friend groups, and their eigenvector
centrality would describe how many influential people that person knows.

Mesoscale graph theory metrics

At the mesoscale, graphs are analyzed to find intermediate-level organizational
patterns involving groups of nodes referred to as nodal clusters. These clusters
of nodes exhibit both internal and external organizational patterns which are
distinct from their local or global effects. One common mesoscale metric is
modularity. Nodes exhibiting an increased modularity arrange themselves such
that they are highly connected to other nodes in their cluster but have few out-
side connections to other nodes. At this scale, clusters can organize themselves
into distinct structures which are classified into a few categories. Clusters and
graphs can be categorized into assortative and disassortative networks. In an
assortative network(Hao & Li, 2011) nodes with similar degree are connected to
one another while a disassortative network does not show the same connectivity
pattern between nodes of the same degree. Modular networks are subdivided
into modules which are often connected to each other through intermediat-
ing nodes referred to as connector hubs. For graphical structures, hubs are
nodes that exhibit high connectivity(Kirkley, 2024) and often exhibit elevated
betweenness centrality. Finally, a core-periphery network is one that exhibits a
central interconnected structure but whose peripheral nodes exhibit low inter-
connectivity. Mesoscale cluster organization can exhibit dynamic connectivity
and can change over time(Khambhati et al., 2018).
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Macroscale graph theory metrics

Macroscale metrics, often called global metrics, profile the organization of a
graph on the whole. One such macroscale metric is graph density, defined as the
ratio of the number of connections present in the graph versus the number of
possible connections in the graph. This metric describes on a macroscale what is
seen on the microscale, and often microscale metrics can be averaged across the
graph to give further insight into macroscale organization. Examples of these
averaged metrics include global clustering coefficient, characteristic path length,
and global efficiency. Of these averaged metrics, the global clustering coefficient
averages the local clustering coefficient of each node to determine to what ex-
tent a graph is interconnected. Another macroscale metric is the characteristic
path length which is the average of all distances in a graph. In the same way that
a node’s efficiency is given as the average inverse of its distances, a graph’s global
efficiency can be measured as the inverse of characteristic path length. A final
metric that is often used in fMRI analysis is the small world index (or small
worldness) of a graph. A graph that exhibits an increased small-world index
shows high interconnectivity inside clusters of nodes while exhibiting low con-
nectivity to nodes outside of the cluster. This small world index differentiates
from the mesoscale modularity in that it attempts to quantify how clusters of
nodes interact with other clusters on the macroscale.

Calculating graph theory measures for an individual or cohort allows for the
comparison and identification of significant differences in network structure.
These findings have been used to study human development (Bassett et al., 2011),
memory (X. Liang et al., 2015), neuropsychiatric disorders (Xia & He, 2011),
neuropathologies (Fornito & Bullmore, 2015), and cognitive dysfunction (Miri
Ashtiani et al., 2018) just to name a few uses its found in specifically fMRI post-
processing.

1.2.5 Blind-source separation and independent component
analysis

While seed-based FC analysis is a very popular method for analyzing fMRI data,
another technique that is widely used is called blind-source separation (BSS).
Broadly speaking, BSS is an umbrella term used to describe techniques that seek
to recover underlying signals based on a condition of independence. There are
two BSS techniques that are widely used: principal component analysis (PCA)
and independent component analysis (ICA). Both methods seek to project the
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data onto axes that maximize independence of the underlying components of
the data. These two methods differ in how the axes are constructed. In PCA
the axes are built based on the variance of the data. PCA has a long history in
the field (Andersen et al., 1999; Viviani et al., 2005) where it has seen use in de-
noising (C. G. Thomas et al., 2002)and dimensionality reduction (Sidhu et al.,
2012) of fMRI data amongst other uses (Smith et al., 2014; Wylie et al., 2024).

Independent component analysis defines its axes of independence based on
measures of non-gaussianity. Through examining the standardized moments
of the data, specifically the kurtosis (or “tailedness”) of the data, ICA estab-
lishes the statistical independence of the underlying signals comprising the data.
ICA assumes that the underlying sources are linearly independent and can be
expressed as X = MS where X is the observed data, S is the source signals,
and M is the so-called “mixing” matrix that describes how the sources are mixed.
Once the mixing matrix M is determined, it is a relatively straightforward task
to recover the source signals (Mika, 2023). Once the mixing matrix has been
calculated, inverting the matrix and applying it to the observed signals yields
the underlying sources of those signals.

One widely available tool for performing ICA is a software suite collectively
referred to as Functional Magnetic Resonance Imaging of the Brain (FMRIB)
Software Library (FSL) (Jenkinson et al., 2012) which can perform three dif-
ferent versions of ICA: single-session ICA, multi-session temporal concatena-
tion, and multi-session Tensor-ICA. Single-session ICA is the simplest case
of ICA where an individual’s data will undergo the ICA process as previously
described. Multi-session temporal concatenation functions much in the same
way that single-session ICA does, but stitches (concatenates) multiple individu-
als’ timeseries together to form one long timeseries that increases the statistical
power of individual components. The multi-session tensor-ICA places individ-
ual data along a higher-dimensional space to create a tensor before performing
ICA on the data to obtain independent components. Each of these methods
produces independent components (ICs) which are represented as spatial ac-
tivation maps. These ICA techniques have been in use for over two decades
(McKeown et al., 1998). In the last two decades however, the classification of
ICs into signal, noise, and artifact categories has remained an open problem
(Chou et al., 2022; Glasser et al., 2019; Griffanti et al., 2017; McKeown et al.,
2003). Regardless of the classification of components, ICA has been used in
many studies for artifact or noise removal (Carone et al., 2017; Griffanti et al.,
2014), identification of RSNs (Pendse et al., 2011), and in the analysis of a variety
of disease states (Cole et al., 2010).
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1.3 Conclusion
Non-invasive studies based on MRI have become commonplace with fMRI
being a very popular option when designing a study due to the statistical power
of the underlying BOLD signal. Applying seed-based techniques to BOLD
signals allows for the construction of graphs which further profile the underly-
ing organizational structure of the brain. It is through the micro-, meso-, and
macroscale analyses of graphs that differences between groups can be discovered.
Additionally, techniques such as ICA can be used to calculate the underlying
temporal or spatial signals present in the fMRI data which further exhibits how
useful the fMRI protocol is. In the subsequent chapters, a discussion of previ-
ous and ongoing research into the areas of algorithm development, statistical
testing, and methodological improvements will be detailed.
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2.1 Abstract

2.1.1 Introduction
Hypertension affects over a billion people worldwide, and the application of
neuroimaging may elucidate changes brought about by the disease. We have
applied a graph theory approach to examine the organizational differences in
resting-state functional magnetic resonance imaging (rs-fMRI) data between
hypertensive and normotensive participants. To detect these groupwise differ-
ences, we performed statistical testing using a modified difference degree test
(DDT).

2.1.2 Methods
Structural and rs-fMRI data were collected from a cohort of 52 total (29 hyper-
tensive, 23 normotensive) participants. Functional connectivity maps were ob-
tained by partial correlation analysis of participant rs-fMRI data. We modified
the DDT null generation algorithm and validated the change through different
simulation schemes, and then applied this modified DDT to our experimental
data.

2.1.3 Results
Through a comparative analysis, the modified DDT showed higher true posi-
tivity rates (TPR) when compared with the base DDT while also maintaining
false positivity rates below the nominal value of 5% in nearly all analytically
thresholded trials. Applying the modified DDT to our rs-fMRI data showed
differential organization in the hypertension group in the regions throughout
the brain including the default mode network. These experimental findings
agree with previous studies.

2.1.4 Conclusion
While our findings agree with previous studies, the experimental results pre-
sented require more investigation to prove their link to hypertension. Mean-
while, our modification to the DDT results in higher accuracy and an increased
ability to discern groupwise differences in rs-fMRI data. We expect this to be
useful in studying groupwise organizational differences in future studies.
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2.2 Introduction
An estimated 1.28 billion people worldwide are living with hypertension ((NCD-
RisC), 2021) which leads to an elevated risk for heart attack, stroke, and Alzheimer’s
disease, among a myriad of other maladies. Due to the global incidence of hy-
pertension, significant effort has been devoted towards characterization of its
manifestations in the body and brain, including the use of neuroimaging (e.g.
Jennings et al., 2008). Functional magnetic resonance imaging (fMRI) is used
in both clinical (e.g. Orringer et al., 2012) and research applications, as it gives
insight into brain function through the blood-oxygen level dependent (BOLD)
effect (Glover, 2011). Resting-state fMRI (rs-fMRI) involves scanning the brain
while the participant is in a state of relaxed wakefulness, to study the brain’s
resting state functional activity. This type of imaging is widely used in both
animal (e.g. Simchick et al., 2019) and human participants (e.g. M. H. Lee et al.,
2013; Smitha et al., 2017). Traditional methods of processing rs-fMRI data in-
volve independent component analysis (e.g. Calhoun and de Lacy, 2017), and
more recent studies have used machine learning (e.g. Khosla et al., 2019) to find
latent structure from rs-fMRI data.

Alongside the increase of machine learning applied to neuroimaging, there
has been a rise in the use of graph theory as a method of analyzing rs-fMRI
data. Graph theory posits broadly that complex systems can be broken down
into a graph which is comprised of distinct points (nodes) and the connections
between those points (edges). Graph theory can be applied to many different
neuroimaging topics including cerebral blood flow in a resting state (Melie-
García et al., 2013), as well as disease states such as hypertension (López-Gil et
al., 2014), traumatic brain injury (Harris et al., 2016), and psychosis (Ganella
et al., 2018). Graph theory can also be applied in the form of a Gaussian graph-
ical model that is built upon structurally informed data (Higgins et al., 2018),
with the best way to optimize these graphs also being an area of ongoing study
(Chung et al., 2021). Many of these studies focus on graph structure such as
nodal degree – a measure of how many connections a node has to other nodes
– and topology (e.g. Bassett and Bullmore, 2006, Colizza et al., 2006, Crossley
et al., 2014). We believe the group-to-group comparisons of nodal expression is
deserving of further investigation, however. In this study we seek to elucidate
the changes brought about by hypertension through group-wise differential
expression of hub nodes.

A recent study (Higgins et al., 2019) demonstrated that a difference de-
gree test (DDT) can be used to identify groupwise differences in resting-state
functional connectivity (rsFC) graphs. The study first identified differentially
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weighted edges (DWEs), then constructed a null model based on this differen-
tial expression and determined a statistical significance threshold of DWEs by
either a theoretical/analytical model (aDDT) or by the empirical spread of the
data (eDDT). These thresholds and null networks were then used to discern
whether a node had a statistically significant number of DWEs attached to it. If
statistical significance could be established, this node was then referred to as a
differentially expressed hub node. This methodology resulted in high statistical
power of results and was validated through simulation in the previous study.
Some applications of the DDT include tracking neurological changes brought
about by dietary restrictions in a porcine model (Ahmed et al., 2023).

The aim of the current study is to identify functional changes in the brain
associated with hypertension to better understand the impacts of the disease.
We hypothesize that the neurological changes caused by hypertension can be
better identified and quantified using a modified DDT compared to the base
DDT. We propose a modification to the DDT that produces higher true pos-
itivity rates (TPR) as compared to the base DDT. With the increase in TPR,
the modification does result in an elevated false positivity rate (FPR) that stays
below a nominal value of 5%. After we validate the proposed modification, we
apply our modified DDT to experimental data to determine the organizational
changes of the hypertensive cohort. In section 2 we detail the simulations that
were performed, and in section 3 we show the results of this simulation along
with the results of applying this modified DDT to our rs-fMRI data.

2.3 Materials and Methods

2.3.1 Participant demographics and data acquisition / pro-
cessing

Our experimentally obtained data consisted of 52 total individuals, the demo-
graphic breakdown of which can be seen in Table 1 below. For a participant to
be classified as normotensive, their measured blood pressure on the day of their
scan must have a systolic pressure below 130 mmHg, a diastolic pressure below
80 mmHg, and must report no ongoing treatment for hypertension. If any of
these criteria were not met, the participant was placed in the hypertension group.
If a participant was currently pregnant or nursing or if the participant had previ-
ous diagnosis of congestive heart failure they would be excluded from the study.
Each participant underwent rs-fMRI and 3D MR structural scanning on a
Siemens 3T Magnetom Vida MRI scanner (Siemens Health Solutions, Malvern,
PA). Resting state fMRI scans (2D-EPI, 48 slices, TR=1200ms, TE=33.00ms,
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FA=57°, FOV=240x240 mm2, matrix=120x120, slice thickness=3mm, 500 total
volumes) were acquired using a BioMatrix Head/Neck 20-channel receive coil.
Structural images were also acquired, using a sagittal 3D scan (MPRAGE, 176
slices, TR=2300ms, TE=2.43ms, FA=9°, FOV=270x270mm2, matrix=240x256,
slice thickness=1.2mm).

Data processing was performed using the Statistical Parametric Mapping

Table 2.1: Demographic information of all individuals involved in the hyper-
tension cohort. The treatment demographic is made up of individuals that are
currently undergoing therapeutic treatment for hypertension.

Hypertension Normotensive Overall
N 29 23 52
Treatment 13 0 13

Age
Mean 41.2 39.7 40.5
Standard Deviation 2.7 3.1 3.0

Diabetes
Diabetic 3 0 3
Non-Diabetic 25 23 48
Unknown 1 0 1

Race
African American 24 10 34
Caucasian 5 13 18

Sex
Female 14 14 28
Male 15 9 24

12 (Penny et al., 2011) toolkit with MATLAB 2021b (MathWorks, Natick, MA).
Preprocessing of the rs-fMRI data began with slice timing correction followed
by unwarping, registration to a reference space, timeseries detrending, and z-
score transformation. The data was further registered to a standard space based
on the MNI152 CerebrA atlas (Fonov et al., 2011) and parcellated into 88 cortical
and subcortical regions using the same atlas. No band-pass filtering was done
due to the detrending and regional averaging proving sufficient to smooth time-
series noise. Normalized rs-fMRI timeseries were averaged to form 88 mean
regional time series, and then a 88× 88 rsFC map was obtained by partial cor-
relation analysis, which was used to infer direct correlation while regressing out
the effects of all other regions in the brain (Smith et al., 2013). This rsFC map
represents regional time series correlations between every region in the atlas.
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2.3.2 Difference Degree Test
The difference degree test (DDT) was used as a statistical test to identify brain re-
gions contributing to changes in gray matter communications between groups.
Figure 2.1 presents a flowchart of DDT processes. We input individual rsFC
maps and participant demographic information into a linear regression algo-
rithm that produced a p-value matrix based on group-wise differential expres-
sion. This step involved building a linear model based on the partial correlation
value of a region over all the participants to obtain a p-value based on those
results for all the regions. As a part of the linear regression, age, sex, race, and
medication status were regressed out as nuisance variables while obtaining their
p-values. Subtracting each p-value from 1 produced a difference network D, a
matrix that represented the group-wise differential expression of each region.
The difference network was then input to the null model generation algorithm
to generate a null model, as well as a threshold value based on either theoretical
or empirical distributions.

After the threshold value and null difference networks were obtained, we
input those along with our difference network into the binomial statistical test.
This step in the DDT used the null difference networks to establish a null proba-
bility based on binomial probability distribution-function (PDF) testing. This
null probability was compared against the binomial PDF-tested difference net-
work to find those differentially expressed hub nodes that exhibited a statistically
significant number of nodes attached to them. The result is a measure of nodal
statistical significance that, when thresholded (α=0.05), tells us which nodes
express significant differential expression between the two groups.

The base DDT (Higgins et al., 2019) null-model generation algorithm was mod-
ified by the implementation of a brute-force mean/variance (BFMV) matching
algorithm. This algorithm (Zalesky et al., 2012) was able to match the mean and
variance of a given matrix with higher accuracy than that of the Hirscheberger-
Qi-Steuer (HQS) algorithm (Hirschberger et al., 2007) found in the previous
study. To achieve higher accuracy, the algorithm iteratively converged toward
the mean and variance of a given matrix via vector addition. An ideal null gen-
eration algorithm produces a null that perfectly matches the mean and variance
of a data matrix while also annihilating its internal structure. Annihilating the
internal structure of the null model is important to avoid unwanted structure.
This unwanted organization can come in the form of increased nodal degree
among other graph theory metrics which can lead to incorrect null probability.
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Figure 2.1: Flowchart of the Difference Degree Test (DDT). The resting state
functional connectivity (rsFC) maps and participant demographic information
are linearly regressed while regressing out the age, sex, and race as nuisance vari-
ables. The difference network (D) is used to generate an adaptive threshold
value, as well as null networks with matching mean and variance with anni-
hilated internal structure. The difference network, threshold, and null net-
works are used in the final statistical testing to obtain nodal statistical signif-
icance which, when thresholded, produces statistically significant differentially
expressed hub nodes.

2.3.3 Data Simulation
To study the performance of the modified DDT, data simulation was performed.
The goal of this data simulation was to build an underlying graphical structure,
to select out and control for different number of hub nodes and DWEs, and to
evaluate with what accuracy the DDT identified the given test parameters. We
used three different simulation structures – random, small-world, and hybrid
– each with differing underlying structure. The process of building the simu-
lations consisted of building a common base matrix that all individuals would
be based off, construction of a symmetric normally distributed perturbation
matrix for each simulated individual, and the addition of an offset for all ran-
domly selected DWEs for the test group. While selecting for the underlying
structure, we also had control of the total number of nodes (N ) representing
brain regions in each simulation and the number of individuals in the groups.
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These values were defined as 35 total nodes and 40 individuals per group for all
simulations.

Building Common Base Matrix and Constructing Simulated Individ-
ual’s Data

For random data simulations, a symmetric matrix of N ×N dimensions was
built with a normal distribution of zero mean and 0.12 standard deviation
(N (0, 0.12)) for all off-diagonal elements manually defining 1 for all diagonal
elements. This represented the common matrix by which all simulated individ-
uals were based on for a random simulation trial. This type of random sampling
resulted in a graph that has intrinsic structure, including some local clustering
and short path lengths commonly seen in small-world graphs (Zalesky et al.,
2012). Because we had no precise control over this common matrix’s under-
lying clustering or path lengths, we differentiated this from the small-world
matrix which has more structural control in its algorithm.

Small-world simulations started with a random rewiring algorithm (Watts
and Strogatz, 1998) for building a small-world network. This small-world graph
was converted into a precision matrix that was subsequently inverted to build a
correlation matrix. The resulting correlation matrix was the small-world com-
mon matrix, and this matrix represented a simulated dataset that shows high
local clustering and short path length in its equivalent adjacency matrix.

Hybrid data simulations were designed to use some of the underlying struc-
ture present in experimental data. By using the data from our study, we could
preserve some of the more nuanced interactions that may be lost by random
sampling of normal distributions. To accomplish this, a normotensive individ-
ual from our study was picked at random andN mean regional time series were
extracted. Pearson correlation was then performed on these regional time series
to obtain the N×N correlation matrix which defined the common matrix for a
given hybrid data simulation.

Once the common matrix had been constructed, control and test group data
were generated with each group containing the same number of individuals per
group. To build each individual’s data, we added a symmetric perturbation
matrix with N (0, 0.12) distribution to the common matrix. For control indi-
viduals, this resulting matrix was representative of that individual’s data. For
any number of selected DWEs for a given node in the test group, we also intro-
duced a random offset (δ) with a N (0.1, 0.02) distribution for individuals in
the test group representing a differentially weighted edge. Alternatively stated:
the kth individual’s data matrix Mk, with common matrix C and perturbative
matrix Pk, is defined as Mk = C + Pk, and for a test individual’s DWE be-
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tween nodes i and j, (mj,i)k = (mi,j)k = ci,j + (pi, j)k + (δi)k. For a given
simulation, the chosen common matrix stayed the same for all individuals, but
in the case of running multiple trials, this matrix would be randomly rebuilt.
The mean of the perturbation matrix was chosen so that the weights would
have an equal distribution about zero, and the standard deviation was chosen
as it allowed for the inclusion of noise without allowing matrix values to exceed
1.

Comparative Analysis of the DDTs

To quantify the performance of the modified DDT as compared to the base
DDT, a comparative analysis was performed. For this analysis, a simulation’s
true positivity rate (TPR) and false positivity rate (FPR) was calculated and
using the following formulas

TPR =
1

S

S∑
i=1

TPi

TPi + FNi

FPR =
1

S

S∑
i=1

FPi

FPi + TNi

(2.1)

where TP is the true positive, FN is false negative, FP is false positive, and
TN is true negative. These values differ from a per-run TRP/FPR as they were
averaged the results over S=100 trials. Along with these mean TPR and FPR
values, the standard deviation of the simulation’s TPR and FPR values was also
recorded. For each simulation scheme, the process of running 100 trials was
repeated over 1, 3, and 5 hub nodes while also changing the number of DWEs
per hub nodes to be 4, 7, and 11. This means the comparative analysis represents
the results from 2700 individual simulations with the TPR and FPR values
quantifying the accuracy of the modified and base DDTs.

After the comparative analysis and the processing of experimental results,
further simulation was performed to mimic the parameters found through pro-
cessing the experimental data. These experimentally analogous simulations
were designed such that the total number of nodes, number of individuals per
group, number of hubs, and DWEs per hub would be chosen to match the re-
sults seen in the experimental results found by the modified DDT. The purpose
of this test was twofold. First was to compare the modified DDT’s capability
to correctly identify hubs and DWEs given an analogous system to our exper-
imental data to the base DDT, and second was to investigate the sensitivity of
the modified DDT through changing the significance threshold valueα as com-
pared to the base. To the second point, S=100 simulations were performed with
the mean and standard deviations of TPR and FPR of those trials calculated as
previously described for a range of α values from 0.005 to 0.05 in increments
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of 0.0025 resulting in a total of 5700 individual simulations to profile the sensi-
tivity curve as a function of α.

2.4 Results

2.4.1 Comparison of aDDT and eDDT Thresholding Meth-
ods

The results obtained from processing simulated data with one hub node for
different test parameters are seen in Table 2 where the DDT used both aDDT
and eDDT thresholding methods. Nodal TPR for every simulation is at or
above 0.920 (92%) with 13 out of 18 of the tests showing a 100% TPR. Nodal
FPR for all aDDT testing shows a downward trend as the number of DWEs
increases. Nodal FPR for all eDDT tests does not exhibit trending as seen in
aDDT data and is greater than aDDT FPR in every direct comparison. DWE
TPR exhibits roll off as the number of DWEs increases and remains above 80%
in all aDDT simulations. DWE FPR exhibits a decrease in all tests as the number
of DWEs is increased with values at or below 2.1% for all tests. Due to the increase
in FPR, eDDT was not used in further analyses.

2.4.2 Comparative Performance of the Modified DDT
The results of DDT comparative analysis with 1, 3, and 5 hub nodes are shown in
Figure 2.2 below. The modified DDT (Fig. 2.2A-2.2C, upper section) produces
higher nodal TPR values with a lower standard deviation than the base DDT
(Fig. 2.2D-2.2F) in all the reported simulations. Along with this increased nodal
TPR (blue, red, yellow shades), the modified DDT (Fig. 2.2A-2.2C, lower sec-
tion) also presents an increased nodal FPR (purple, green, light blue shades) for
all simulations when compared to the base DDT (Fig. 2.2D-2.2F). While below
a nominal value of 0.05 for 24 out of the 27 simulations, nodal FPR rises above
the nominal value in the case of 5 hub nodes with 11 DWEs per hub (the last 3
columns in Fig. 2.2C).

2.4.3 Experimental Data
Applying the modified DDT to the 52-participant, experimental partial corre-
lation matrices resulted in the discovery of 5 hub nodes with 26 unique connec-
tions attached to those hubs. The anatomical labels associated with the nodes
and DWEs are seen in Table 3 along with their associated resting state networks
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Table 2.2: The true and false positivity rate (TPR, FPR) results from data simu-
lation with one hub node are shown with varying differentially weighted edges
(DWEs). Three network simulation types were performed with different thresh-
olding methods. Thresholding of the data is either done by an analytical model
(aDDT) or by the empirical spread of the data (eDDT).

Nodal Nodal DWE DWE
Simulation Thresholding DWEs TPR FPR TPR FPR

Random

aDDT
4 0.990 0.044 0.918 0.020
7 1.000 0.035 0.894 0.017
11 1.000 0.022 0.882 0.012

eDDT
4 0.980 0.073 0.865 0.011
7 1.000 0.071 0.840 0.009
11 1.000 0.066 0.815 0.007

Small World

aDDT
4 0.980 0.048 0.923 0.021
7 1.000 0.035 0.903 0.016
11 1.000 0.024 0.875 0.013

eDDT
4 1.000 0.070 0.840 0.010
7 1.000 0.069 0.836 0.009
11 1.000 0.064 0.821 0.007

Hybrid

aDDT
4 0.920 0.044 0.873 0.020
7 1.000 0.030 0.880 0.016
11 1.000 0.023 0.856 0.012

eDDT
4 0.990 0.067 0.825 0.011
7 1.000 0.080 0.820 0.010
11 1.000 0.069 0.801 0.007

(Smith et al., 2009). With a median nodal degree of a hub being 5, this resulting
graphical structure is seen in Figure 2.3. From the figure we can see two dis-
creet networks of connections separated by hemispheres. The right thalamus
(34) and right hippocampus (41) exhibit an indirect connection mediated by a
cross-hemisphere connection to the left vermal lobules (87). In a similar fashion,
the left caudal middle frontal (79) and the left pars triangularis (63) exhibit an
indirect connection connected by a cross-hemisphere link to the right caudal
middle frontal (35). The only direct connection between two hub nodes is seen
in the left pars triangularis (63) and left pars orbitalis (81). As shown by Fig-
ure 2.4, hubs are approximately evenly distributed between hemispheres with
3 out of 5 hubs are located on the left hemisphere and the remaining 2 being
located on the right. Tracing the nodes and DWEs back to the individual’s par-
tial correlation value results in the distributions seen in Figure 2.5. The group
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Comparative Analysis Results
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B) Modified DDT, 3 Hubs
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C) Modified DDT, 5 Hubs
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D) Base DDT, 1 Hub
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E) Base DDT, 3 Hubs

4 7 11

Number of DWEs per Hub

0
0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95
1

T
P

R
/F

P
R

 V
al

ue

F) Base DDT, 5 Hubs
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Figure 2.2: The comparative analysis results between the modified (2.2A-2.2C)
and base (2.2D-2.2F) DDT are shown for 1 (2.2A,2.2D), 3 (2.2B,2.2E), and 5
(2.2C,2.2F) simulated hub nodes. The nodal true positivity rate (TPR) and
false positivity rates (FPR) are given along the y-axis, with the different number
(4, 7, or 11) of differentially weighted edges (DWEs) per hub node being shown
along the x-axis. Each different simulation type is shown in the assorted color
combinations with the random (Rand) simulation’s TPR being shown in blue
with FPR in purple, the small world (SmW) TPR in red, FPR in green, and the
hybrid (Hyb) TPR in yellow with the FPR in light blue. The error bars shown in
the plot represent the standard deviation of the simulation’s TPR/FPR values
and are drawn uneven as to illustrate that no T/FPR value ever exceeded 1 or
fell below 0.

partial correlation values shown in Figure 2.5 do not exhibit any simple differ-
ential relationship with both group’s interquartile range overlapping for every
connection at every node.

2.4.4 Experimentally Analogous Simulations
To build experimentally analogous simulations, the total number of nodes (N )
was selected to mimic those found in the experimental cohort, the number of
members per group was set to 30, the number of hubs was set to 7 and the
number of DWEs per hub was set to 5 to match the results shown in Figure 2.5.
The results of this simulation are seen in Figure 2.6. An increase in modified
DDT nodal FPR can be seen in the figure. Mean FPR values for the hybrid
simulation stay below nominal while random and small world simulations do
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Table 2.3: All anatomical information from the experimental results obtained
by DDT processing. Hub nodes are denoted by a red highlight and all
DWEs are listed without highlight where the right (R) and left (L) compo-
nents of brain regions are listed seperately. The associated resting state net-
works with the hub/non-hub nodes include the Auditory (AUDI), Basal Gan-
glia (BASA), Cerebellar (CERE), Default Mode (DEFA), Executive Control
(EXEC), Salience (SALI), and Visual (VISU) networks.

Region Number Region Label Resting State Network
3 R Inferior temporal DEFA
6 R Lateral Orbitofrontal EXEC

12 R Transverse Temporal
24 R Pallidum DEFA
29 R Isthmus Cingulate
33 R Superior Frontal EXEC
34 R Thalamus
35 R Caudal Middle Frontal
38 R Superior Temporal AUDI, SALI
39 R Cerebellum Gray Matter CERE
40 R Posterior Cingulate DEFA
41 R Hippocampus DEFA
57 L Medial Orbitofrontal EXEC, DEFA
58 L Paracentral
59 L Parahippocampal
62 L Putamen BASA
63 L Pars Triangularis
67 L Ventral Diencephalon
69 L Middle Temporal
72 L Pars Opercularis
73 L Isthmus Cingulate
76 L Entorhinal
79 L Caudal Middle Frontal
81 L Pars Orbitalis
83 L Cerebellum Gray Matter CERE
85 L Hippocampus DEFA
87 L Vermal lobules I-V
88 L Supramarginal
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Figure 2.3: A tree graph representation of the hub nodes (red) and differentially
weighted edges (DWE) connection with other non-hub nodes (blue) is shown.
The numbers inside the circle represent the node number.

not. Also seen in Figure 2.6, the modified DDT obtains a higher mean nodal
TPR at every value of α in every simulation type. In 14 out of the 57 total trials
modified nodal TPR values were found to be significant via two-sided t-test
with 99th percentile confidence intervals compared to the base DDT. With 12
out of 14 of the significant TPR values being found at lower α (0.005, 0.0150,
0.0175, and 0.020), the remaining 2 significant modified TPR values were found
at the experimental α value of 0.05 in the small world and hybrid simulations.

2.5 Discussion
In this work, we implemented a modification to the DDT which was validated
through simulation and then applied to our experimental data. Application of
the BFMV matching algorithm modification to the DDT resulted in increased
nodal TPR while still producing below nominal FPR values for nearly all aDDT
simulations. We also reported that the modified DDT proves reliably accurate
against a wide range of simulation parameters. Through rigorous statistical
testing illustrated by Figures 2.2 & 2.6, the modified DDT demonstrated an
ability to pick out the ground truth hub nodes with higher accuracy and more
consistency when compared with the base DDT. This result is exemplified by
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[34] Thalamus (R)

[41] Hippocampus (R)

[63] Pars Triangularis (L)

[79] Caudal Middle Frontal (L)

[81] Pars Orbitalis (L)

Hub Nodes

Figure 2.4: Illustration of the anatomical regions of seven statistically significant
differentially expressed hub nodes. Node 3 is located at the Right (R) Inferior
Temporal (light blue), Node 9 at the Right Inferior Parietal (blue), node 10 at
the Right Lingual Gyrus (purple), node 31 at the Right Lateral Occipital (red),
node 42 at the Right Hippocampus (orange), node 64 at the Left (L) Putamen
(yellow), and node 85 at the Left Cerebellum Gray Matter (GM) (green). Pre-
sented in radiological orientation with left shown on the right side.

the 1 hub node with 4 DWEs test where the modified DDT identified the hub
with higher mean and lower TPR standard deviation for all simulations when
compared with the base DDT. The simulations in Figure 2.6 present two im-
portant reinforcements of the modified DDT. The first result comes from the
higher mean nodal TPR for the modified DDT at every point of every simu-
lation type. This result shows the increased sensitivity of the modified DDT
brought about by the BFMV algorithm. The second is the modified DDT’s
ability to profile data that is more physically relevant. In the hybrid simula-
tions, using experimentally derived mean regional time series of normotensive
participants, using theα=0.05 value used in our experimental analysis, the mod-
ified DDT maintained below nominal FPR values while obtaining a statistically
significant improvement over the base DDT in mean TPR values. Thus, the
modified DDT shows higher statistical power and increased accuracy compared
to the base DDT in analyzing differential expression of resting-state functional
connectivity.

To properly explain how the BFMV algorithm produces an effect on the
DDT, an in-depth look at the statistical testing must be done. Starting with the
null model generation step (Fig. 2.1), the BFMV algorithm is used to build a
null model comprised of individual null matrices designed to match the mean
and variance of the difference network. Typically, 1000 individual null matrices
comprise a single null model used for statistical testing. After building the null
model, it, along with the difference network and threshold value, is put into
the binomial statistical test as illustrated in Figure 2.1. The testing process is
comprised of three main steps: 1) calculating null probability, 2) building a bi-
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Figure 2.5: Group-segregated box plots of partial correlation values are shown
for the seven differentially expressed hub nodes. The group’s partial correlation
value is listed on the y-axis while the x-axis represents different differentially
weighted edges that hub node is connected to (Red: the hypertensive group;
Blue: the normotensive group).

nomial distribution based on the null probability and 3) modeling of observed
probability via a separate binomial distribution. It is step 1 and 2 of this process
where the BFMV modification has an effect. The null probability represents the
likelihood that every edge connected to a given node i would exhibit groupwise
differences under the null hypothesis. The ith node’s null probability, p̂nulli , is
calculated via the formula (Higgins et al., 2019)

p̂nulli =
1

U(N − 1)

U∑
u=1

∑
j∈η,j ̸=i

ā
(u)
ij (2.2)

where U is the total number of null matrices in the null model, N is the total
number of nodes, η is the set of all nodes, and ā

(u)
ij is the individual elements

the uth thresholded null matrix Ā. Once p̂nulli is obtained, the expected null
nodal degree is modelled by Binomial

(
N − 1, p̂nulli

)
. The resulting matrix de-

scribes how likely a given node will have a specific nodal degree under the null
hypothesis. If a less accurate null model is used during these calculations, the
DDT will produce null probability values that may not accurately reflect the
subtle topology present in the data. This is where the BFMV algorithm makes
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B) Small World Simulations
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C) Hybrid Simulations
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Figure 2.6: Modified (Mod) and Base difference degree test (DDT) mean true
positivity rate (TPR) and false positivity rate (FPR) is shown for the random
(6A), small world (6B), and hybrid (6C) simulation schemes. With the Mod
TPR shown as a blue line, the Base TPR in red, Mod FPR in Yellow, and Base
FPR in purple, the TPR and FPR values are shown as a function of α signifi-
cance values. The bars shown on the lines represent a single standard deviation
of the simulation over 100 trials.

its mark as it can more accurately profile the mean and variance of a difference
network in comparison to the HQS algorithm used in the base DDT. Because
the BFMV algorithm produces a more accurate null model when compared to
the HQS algorithm, the resulting null probability and subsequent null bino-
mial distribution is more accurate to the difference network. The result of this,
as implied by Figure 2.6, is smaller nodal significance p-values. These lower p-
values mean that, for a given significance value α, the modified DDT can more
accurately identify hub nodes.

Modifying the null model generation algorithm from the HQS algorithm
to the BFMV algorithm represents a meaningful change to the DDT. Through
simulation, this change allowed us to find high TPR values with FPR still below
the nominal 5% in nearly all aDDT simulations. The brute-force mean/variance
matching algorithm was originally proposed as an alternative to the HQS algo-
rithm in 2012 but, at the time, it was seen as too computationally expensive to
implement. While the HQS algorithm has been widely used due to its compu-
tational efficiency, the BFMV algorithm does not meaningfully impact compu-
tation time in absolute terms (8 seconds for BFMV compared to the 0.5 seconds
of HQS) and is worthy of further investigation to demonstrate its efficacy. Be-
yond demonstrating that the BFMV algorithm improves the DDT, these results
further suggest the idea of other algorithms that could provide greater improve-
ment to the null model generation. In theory, if an alternative algorithm could
better match the difference network while also annihilating its internal struc-
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ture it could further improve the TPR while decreasing FPR. Further pursuit
of alternative null model generation algorithms will be left for future study.

The major shortcoming of the DDT modification is the elevated nodal
FPR. This increased FPR is first notable in the results presented in Table 2
where eDDT produced nodal FPR values above the nominal 0.05 in all cases.
After finding this increased FPR, we only used aDDT thresholding in further
testing and recommend using aDDT thresholding in any future studies. Not
only limited to the eDDT however, there is an observable increase in nodal FPR
for aDDT simulations in the comparative analysis. While 24 out of 27 of the
comparative tests performed showed aDDT producing mean nodal FPR values
below the nominal (Figure 2.2), we must also acknowledge the large increase in
FPR seen in the 5 hub, 11 DWE case (Figure 2.2C). Given the number of nodes
in our system is defined as 35, the 5 hubs and 11 DWEs simulation represents
a very noisy dataset where 9.24% of all unique connections could be listed as
differentially weighted. While detecting 5 hubs is clearly within the bounds of
what we can expect from experimental data, the increased experimental node
count coupled with a median hub node degree of 5 means that this simulation
represents an atypical dataset when compared to experimental results. The re-
sults of this simulation were notable as it emphasizes potential limits of the
modified DDT.

When the modified DDT was applied to the experimental partial correla-
tion data, it found 5 differentially expressed hub nodes and 26 unique significant
connections. When the high mean TPR values and nominal mean FPR values
seen in Figure 2.2C are considered within the context of Figure 2.3 showing the
median nodal degree of 5 and 5 total hub nodes, it suggests that the simulations
accurately profile expected results for the experimental data. This extrapolation
is explored in the results shown in Figure 2.6 where, for experimentally analo-
gous simulation parameters, the modified DDT exhibits increased TPR values
for a given α value when compared to the base DDT. Taking all the results
shown in the figures together, we claim that the experimental data is better pro-
filed by our modified DDT than the base DDT.

There still remains a challenge when trying to draw conclusions based on ex-
perimental individual partial correlation values as seen in Figure 2.5. As neither
group exhibits any simple trend when compared to the other, the underpin-
nings and underlying meaning of groupwise correlation differences warrants
further investigation. While groupwise partial correlation values require more
study, the results shown in Figure 2.3 show similarities to previous studies. A
previous hypertension study (Shah et al., 2021) showed rsFC disruptions as-
sociated with the default mode network. We were able to detect a groupwise
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difference in one of the regions of the default mode network, the hippocampus
(node 41), between the two groups which is a reinforcement of the previous
findings. However, we were unable to find disruptions in the dorsal attentional
network as has been reported by other previous studies (Carnevale et al., 2020).
While the study does show lateralization in the functional connectivity data re-
ported as we have shown here, our findings do not further reinforce the study’s
other findings. This discrepancy could come from several sources, but it likely
comes from the use of different statistical testing of the data. Whereas we use
the DDT, the previous study used a general linear model to perform its correla-
tion analysis.

Further exploration of the resting state differences discussed in this study
should be performed to reinforce the claim posited that hypertension leads to
changes in rsFC specifically in regions implicated in the default mode network.
Furthermore, development of alternative null model generation algorithms to
better match the difference network could theoretically reduce simulation FPR
while maintaining high TPR and is likely to improve simulation results. Lastly,
the application of the DDT could be further expanded to find differential ex-
pression of regions of the brain in a myriad of disease states.

2.6 Conclusion
With an estimated 1.28 billion people worldwide living with hypertension, study-
ing how the disease affects the brain is vitally important. The current study
evaluated resting state fMRI data and found evidence that the functional con-
nectivity patterns in the hypertensive group differed from that observed in the
normotensive group. Methodologically, this study is both a reinforcement and
refinement of the findings of the base DDT. Verified by three simulated data
types, the results presented in this study demonstrate promise for the applica-
tion of the DDT in the analysis of groupwise differences. While the nodal FPR
is higher than that in the previous study, we at least matched or, in most cases,
improved upon the TPR in all comparative simulations performed. This sim-
ulation result leads us to have high confidence in our experimental results that
found 5 hub nodes and 26 unique DWEs differentiating the hypertensive and
normotensive group. These experimental findings point to possible functional
connectivity changes associated with hypertension in the default mode resting
state network. Going forward, we expect that the modified DDT will be used
in many rs-fMRI studies and will allow for high statistical power analysis of
differentially expressed regions of the brain.
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Chapter 3

fMRI-based Data-Driven
Brain Parcellation using
Independent Component

Analysis

Originally published in Reeves, W. D., et al. 2025. Journal of Neuroscience Meth-
ods, 110403. Reprinted here with permission of the publisher.
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3.1 Abstract

3.1.1 Background
Studies using functional magnetic resonance imaging (fMRI) broadly require
a method of parcellating the brain into regions of interest (ROIs). Parcellations
can be based on standardized brain anatomy, such as the Montreal Neurological
Institute’s (MNI) 152 atlas, or an individual’s functional activity patterns, such
as the Personode software.

3.1.2 New Method
This work outlines and tests the independent component analysis (ICA)-based
parcellation algorithm (IPA) when applied to a hypertension study (n = 48)
that uses the independent components (ICs) output from group ICA (gICA)
to build ROIs which are ideally spatially consistent and functionally homoge-
neous. After regression of ICs to all subjects, the IPA builds individualized
parcellations while simultaneously obtaining a gICA-derived parcellation.

3.1.3 Results
ROI spatial consistency quantified by dice similarity coefficients (DSCs) show
individualized parcellations exhibit mean DSCs of 0.69 ± 0.14. Functional
homogeneity, calculated as mean Pearson correlation value of all voxels com-
prising a ROI, shows individualized parcellations with a mean of 0.30± 0.14

and gICA-derived parcellations’ mean of 0.38± 0.15.

3.1.4 Comparison with Existing Method(s)
Individualized Personode parcellations show decreased mean DSCs (0.43 ±
0.11) with the individualized parcellations, gICA-derived parcellations, and the
MNI atlas having decreased homogeneity values of 0.28± 0.14, 0.31± 0.15,
and 0.20± 0.11 respectively.

3.1.5 Conclusion
Results show that the IPA can more reliably define a ROI and does so with
higher functional homogeneity. Given these findings, the IPA shows promise
as a novel parcellation technique that could aid the analysis of fMRI data.
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3.2 Introduction
Neuroimaging studies using magnetic resonance imaging (MRI) often require
the use of brain parcellation techniques. Brain parcellations, also known as at-
lases, allow for the segmentation of the brain into different regions of interest
(ROIs) that can be used to study changes in the brain. Parcellations can be
based on the specific anatomical features of the brain, collectively referred to
as anatomical parcellations, or based on brain activation patterns quantified
by functional MRI (fMRI) data, referred to as functional parcellations. The
decision of which parcellation to use is made based on the goals of the study.
Whatever the chosen method may be, brain parcellations can be found ubiq-
uitously throughout the field of neuroimaging, including studies focusing on
network analysis (Bullmore & Sporns, 2009; Melie-García et al., 2013; J. Wang
et al., 2010), studies focusing on white matter tract differences (Y. Li et al., 2013;
Lu et al., 2020), changes in cerebral volume (Terribilli et al., 2011), or those ex-
amining cerebral blood flow (S. Hu et al., 2019; B. P. Thomas et al., 2013).

The consideration of which parcellation is appropriate for use is often a
foregone conclusion. Studies frequently use the Montreal Neurological Insti-
tute (MNI) (Mazziotta et al., 1995) anatomical parcellation, which serves as the
default for many. Use of the MNI atlas includes studies following the minimal
processing guidelines for the human connectome project (HCP) (Glasser et al.,
2016), and is the default for researchers using statistical parametric mapping
(SPM) (Penny et al., 2007), and FMRIB software library (FSL) (Smith et al.,
2004) tools. There are other anatomical atlases available for use, such as the
Chinese2020 atlas (P. Liang et al., 2015) or the techniques proposed to profile
Korean and east Asian brains (J. S. Lee et al., 2005). These atlases could also
be computed based on the structural scans by using tools such as the Auto-
mated Anatomical Labelling atlas (AAL) (Tzourio-Mazoyer et al., 2002) with
the newest being AAL3 (Rolls et al., 2020), the Computational Anatomy Tool-
box (CAT) (Gaser et al., 2022), or the Individual Brain Atlas using Statistical
Parametric Mapping (IBASPM) (Alemán-Gómez et al., 2006; Gaser et al., 2022;
Tzourio-Mazoyer et al., 2002). While many studies are based on anatomical par-
cellations, there have been several advances in the computation of parcellations
based on fMRI. Functional parcellations can be based on spectral clustering
(Craddock et al., 2012), boundary mapping (Gordon et al., 2014), consensus
clustering (Ryali et al., 2015), density peak clustering (Luo et al., 2020), instanta-
neous connectivity patterns (van Oort et al., 2018), or other techniques (Arslan
et al., 2018). In a comprehensive review of contemporary parcellation methods
(Eickhoff et al., 2018), it was stressed that there is no gold-standard of parcella-
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tion. All parcellation methods, whether they are based on functional or struc-
tural attributes, add together to obtain the topographical information of the
brain. The proposed method is therefore not attempting to show its material
superiority over anatomical parcellation, but rather to show a step forward in
functional parcellation methodology.

While there are different approaches for obtaining functional parcellations,
this work focuses on employing independent component analysis (ICA) to
define cortical and subcortical ROIs. The primary method of comparison is
Personode, a MATLAB toolbox designed for semi-autonomous classification
of ICA components (see Pamplona et al., 2020) that allows for the building
of group and individualized parcellations based on canonical human resting
state networks (RSNs). The proposed method differs from Personode in that
it defines smaller scale ROIs without enforcing any shape constraints. We pro-
pose the ICA-based parcellation algorithm (IPA) that takes the independent
components (ICs) output from group ICA (gICA), classifies them into ROI
candidates, and produces both a single gICA-derived group atlas as well as indi-
vidualized atlases based on dual-regression of gICA results.

The IPA was designed with two goals in mind. The first goal of the IPA was
to build individualized atlases with spatially consistent ROI definitions. While
the individuals are expected to exhibit slight differences in the location of a ROI,
the IPA should consistently define a ROI in a specific region of the brain for
each subject. The second goal of the IPA was to build ROIs that are function-
ally homogenous. As has been discussed in previous work (see Craddock et al.,
2012; Gordon et al., 2014; Han et al., 2021; Thirion et al., 2006), these types of
data-derived parcellations should encompass regions that are internally func-
tionally homogeneous.

To assess and contrast their efficacy, Personode and the IPA were applied
to an experimental resting-state fMRI (rs-fMRI) dataset taken from a hyper-
tension study performed on 48 middle-aged adult humans exhibiting either
normal or elevated blood pressure. For this evaluation, IPA and Personode spa-
tial overlap and ROI consistency was quantified by dice similarity coefficient
(DSC), with ROI sizes, and ROI homogeneity being used to further profile the
ROIs produced by each method. In addition to comparing the two parcellation
methodologies, the DSC, ROI sizes, and homogeneity values also allowed for
a comparison between the hypertensive and normotensive individuals. These
comparisons were used to compare not only different methodologies, but also
how a test group affects the results of those methodologies. The parcellations
produced by the IPA are co-registered to a reference subject’s rs-fMRI data. The
output of this process is designed to be a drop-in alternative to current anatom-
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ical or functional parcellations for the researcher. For studies already using the
MNI parcellation, the process can also output ROIs with the same numerical
labels as the MNI152 atlas. However, the IPA is model agnostic and can be
adapted to fit other labelling schemes. The process described here is applied to
human data, but it could be adapted for use in any model system.

3.3 Materials and Methods

3.3.1 Individual data acquisition and preprocessing
The experimental data consisted of 48 total participants (a mean of 40.4± 3.0

years, with 22 males, 26 females, 17 Caucasian, and 31 African American par-
ticipants) divided into two groups. One group of individuals that self-report
ongoing treatment or meet the criteria (blood pressure over 130/80 mmHg)
for hypertension (HTN, n = 26), and another group of normotensive indi-
viduals (NRM, n = 22). Each participant underwent rs-fMRI and 3D MR
structural scanning on a Siemens 3T Magnetom Vida MRI scanner (Siemens
Health Solutions, Malvern, PA) at Augusta University. Resting state fMRI
scans (2D-Gradient echo EPI sequence, 48 slices, TR=1200ms, TE=33.00ms,
FA=57°, FOV=240x240 mm2, matrix=120x120, slice thickness=3mm, 500 total
volumes) were acquired using a BioMatrix Head/Neck 20-channel receive coil.
Structural images were also acquired, using a sagittal 3D scan (MPRAGE, 176
slices, TR=2300ms, TE=2.43ms, FA=9°, FOV=270x270mm2, matrix=240x256,
slice thickness=1.2mm).

Data preprocessing was performed using the Statistical Parametric Map-
ping 12 (Penny et al., 2007) toolkit with MATLAB 2021b (MathWorks, Natick,
MA). Preprocessing steps included masking, unwarping, slice timing correc-
tion, and registration to a reference participant. Group independent compo-
nent analysis was performed by FMRIB software library’s (FSL) (Smith et al.,
2004) MELODIC software on normotensive individuals. For data of hyper-
tensive individuals, FEAT low-level preprocessing was done to prepare the data
for dual-regression.

3.3.2 Building group and individualized atlases via IPA
The ROIs found through IPA depend on ICA, which falls underneath a larger
umbrella term of blind signal segmentation (BSS). Broadly speaking, BSS tech-
niques model observations as a mixture of underlying signals (Naik & Kumar,
2011). ICA accomplishes this task of identifying individual signals by assum-
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ing a given set of N observations [xi(t)] and underlying signals [si(t)] can be
expressed as x(t) = As(t) where A is referred to as the mixing matrix (Naik
and Kumar). Simply put, ICA seeks to solve the mixing matrix by estimating
the underlying signals with the assumptions that they are statistically indepen-
dent and of a non-Gaussian distribution. In the case of the experimental data,
MELODIC solved for 250 ICs during the gICA. The 250 components from
gICA are used as the building blocks for determining ROIs through IPA in
that they are used to find which ICs may show spatial overlap with anatomical
regions. Furthermore, dual-regression requires the ICs from gICA to be used
as the basis in defining an individual’s analogous IC. ICA represents the foun-
dation from which the IPA is built.

The IPA was defined by seven stages shown in Figure 3.1. The first stage
was smoothing and thresholding of the ICs. In this stage, all ICs had a Gaus-
sian smoothing filter applied with a standard deviation of 1.25. The smoothed
volumes were thresholded to remove negative values and to select out high-
activation voxels. The second stage of the IPA involved calculation of spatial
Pearson correlation values. In the case of our data, spatial Pearson correlation
analysis was performed between all ICs and every MNI region. This analysis re-
sulted in aM×N (# MNI ROI by # ICs) matrix of correlation values bounded
between -1 and 1 where higher values indicated increased signal intensity and
spatial overlap between two regions. Stage three of the IPA, referred to as candi-
date IC selection, used the correlation matrix from stage 2 to rank the highest
values per MNI region. The IPA then applied a percentile threshold to spatial
Pearson values which produced a list of candidate ICs highly corresponding to
MNI regions. Different spatial Pearson threshold percentiles were trialed, but
ultimately assigning the threshold at the 60th percentile produced a reasonable
number of ROIs while also choosing only those ICs that highly correspond
to the anatomical reference. The fourth and fifth stages of the IPA involved
Fisher z-score transformation of the data and subsequent z-score thresholding
respectively. A z-score of 3.0 was chosen as it provided high selectivity while also
producing ROIs of reasonable size. The outputs from this stage were spatially
disconnected clusters of voxels that showed large activations in the original IC
which required further processing to address the discontinuity of clusters across
the brain. The sixth stage of the IPA involved ensuring that the ROI definition
was spatially continuous with the area of greatest activation. The first step of
this was to find the max activation voxel (MAV), where ROIs were first masked
by a left/right (L/R) hemisphere mask to ensure the proper side was selected
with defining the MAV. After finding the MAV from the L/R masked ROIs,
the algorithm calculated the position of all voxels still present in the ROI. A
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continuity algorithm was run that started at the MAV and spread out in all
directions until all voxels connected to the MAV were selected. This ensured
that all ROIs were defined by the MAV and only contained spatially contiguous
regions. The seventh stage of the IPA was ROI binarization that set all non-zero
values of an ROI to a specific value.

While the gICA-derived IPA parcellations undergo all 7 stages of processing,
the individualized parcellations do not undergo candidate IC selection (stage 3
in Fig.3.1). Through candidate IC selection as performed on gICA data, the IPA
obtains a list of IC labels that spatially overlap with specific anatomical regions.
The IPA then uses this list of IC labels along with individualized results from
dual-regression to define individualized parcellations. This allows the IPA to
build parcellations that are consistent in both the number of ROIs defined as
well as the spatial distribution of ROIs across individuals.

In the case of overlapping ICs, the IPA employs a winner-takes-all strategy.
Through IC candidate selection, the IPA obtains a list of unique candidate ICs
(no ICs are chosen twice for different ROIs), the anatomical region the ICs
most closely correspond to, and the spatial Pearson value of the ICs with that
corresponding anatomical region. The list of candidates is ranked according to
their spatial Pearson value, and the IPA iteratively moves down the list building
ROIs based on the selected IC’s activation scheme. As the IPA moves down the
list, any previously defined ROI’s voxels are removed from any newly defined
ROI. This results in ICs that better profile the underlying anatomical reference
being chosen as the winner in a head-to-head contest with ICs that may exhibit
overlapping activation schemes.

3.3.3 Quantifying the Parcellations
To profile the performance of the IPA in comparison to other methods, several
quantifications of the parcellations are obtained. The quantifications described
below either profile the performance of the parcellation algorithm (dice coeffi-
cients, homogeneity), or profile differences present in the data that are detected
by using the IPA (two-sided t-test, Wilcoxon rank-sum test, difference degree
test).

Spatial Consistency via Dice Similarity Coefficient

One of the stated goals of the IPA is to produce parcellations with consistent
spatial definitions. Spatial consistency is measured by the dice similarity coeffi-
cient (DSC). The DSC is a number between 0 and 1 that relates to how much

38



Spatial Pearson 
Correlation Matrix 

([MNI roi] ⨉ [# ICs])

3) Candidate IC selection

4) Fisher Transformation

...

Fisher Transformed 
ICs

6) Enforcing 
Spatial Continuity

5) Z-score 
Thresholding

Obtaining ICA-based Parcellation Algorithm ROIs
1) Smoothing &

Thresholding

2) Spatial 
Pearson 

Calculation

0.54-0.06 0.01

0.01 0.01 0.19

0.42 0.05 0.03

ICA-Derived 
Atlas ROIs

...

7) ROI 
Binarization

Reference Space MNI 
Atlas

Figure 3.1: Overview of atlas region of interest (ROI) processing and selection.
Starting from raw group independent component analysis (gICA) independent
components (ICs), initial thresholding and data smoothing is performed. The
smoothed components are then, IC-by-IC and region-by-region, compared
against the Montreal Neurological Institute (MNI) atlas previously processed
to be in reference-subject space to build a M ×N spatial Pearson correlation
matrix that can be used to identify which ICs highly correspond to specific
regions in the brain. These selected ICs are then Fisher transformed and further
processed via z-score thresholding to obtain ICs with high activation values.
Using the max activation voxel (MAV) of the IC, spatial continuity is then
enforced followed by binarization of the IC to build atlas ROIs.
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overlap there is between two matrices. The DSC of two matrices A and B is
calculated by

DSC =
2 |A ∩B|
|A|+ |B|

(3.1)

where the |X| notation refers to the number of elements present in the given
matrix X. A DSC of 0 means that the two matrices have zero elements in com-
mon whereas a DSC of 1 means that the two matrices perfectly overlap with
each other.

DSCs are often used as an alternative to a spatial Pearson correlation as they
perform a similar role in quantifying spatial overlap. The difference between the
DSC and the spatial Pearson value is that the DSC is a purely binary comparison
metric. This means that the value of the overlapping elements plays no role in
the determination of the score whereas the spatial Pearson correlation consid-
ers the intensity of the common entries. For each ROI, the spatial consistency
analysis computed the pairwise DSC for a given ROI between two individu-
als. This process of pairwise DSC calculation was repeated across all ROIs and
individuals to find how consistent the ROI definition was. This process was
done for both the individualized IPA parcellations as well as the individualized
Personode parcellations.

ROI Functional Uniformity by Homogeneity

The second main goal of the IPA was to define ROIs that exhibited similar
functional activation patterns. To measure how similar the voxels comprising
a region were, homogeneity values were calculated. The homogeneity values
of a region were calculated as the average Pearson correlation value between
all voxels in each ROI. This involved extracting the timeseries of each voxel
inside of a ROI, performing Pearson correlation analysis on the resulting matrix,
and averaging all elements of the correlation matrix. Alternatively stated, an
individual’s ith ROI homogeneity value (hi) is calculated using the equation
below

hi =
1

V

V∑
j,k

rj,k = r̄i (3.2)

where V is the number of voxels in the ROI and rj,k is the Pearson correlation
value between two voxelwise timeseries j and k. This process finds a homogene-
ity value for each ROI and each individual.

Homogeneity represents both a metric to quantify the IPA as well as a met-
ric of comparison between parcellation methods. We hypothesize that an atlas
based on functional activation would produce ROIs that are internally homo-
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geneous in that the voxels of the ROI would all be functionally similar (Thirion
et al., 2006). This means that we can compare the performance of the IPA
against the other methods using homogeneity.

Groupwise Differences in Homogeneity Through Statistical Testing

To further profile what differences may be seen in the IPA, the two-sided t-test
and Wilcoxon rank-sum test were applied to groupwise homogeneity. These
two tests profile statistically significant differences found between two sets of ob-
servations. The differentiating factor between them is that the two-sided t-test
assumes that the samples come from a normal distribution while the Wilcoxon
rank-sum test does not. Because the two tests have different underlying expec-
tations they allow for an extra avenue of comparison of the results.

Functional Connectivity Differences Using a Difference Degree Test

The difference degree test (DDT) (Higgins et al., 2019) is a type of statistical
test that can be applied to groups of subjects to detect differences in functional
connectivity patterns. Generally, the DDT attempts to find connections (edges)
between regions (nodes) that show differential expression between groups. If a
node has a significant number of differentially weighted edges (DWEs) attached
to it, it is referred to as a differentially expressed hub node which could warrant
further study. One of the outputs from the DDT is a list of p-values represent-
ing how certain the test is of nodal differential expression. The default setting
for establishing significance in these values is a value of α = 0.05.

Finding groupwise differences using graph theory can be a challenging task
for those using a lower number of ROI in their analyses. The challenge comes
from lower dimensional graphs being highly sensitive to the loss or gain of con-
nections as well as the statistical power loss of having fewer samples in the data.
To examine the role this plays in groupwise analyses via the DDT, the number
of ROIs in IPA parcellations was increased from 35 to 44 in total. To achieve
this, the spatial Pearson threshold was changed from the 60th (Sec. 3.3.2) to 50th

percentile of values.

3.4 Results
The proposed IPA and the Personode toolbox were applied to the experimental
resting-state fMRI dataset to assess and contrast their efficacy in terms of DSC,
ROI sizes, and ROI homogeneity values. The results of the IPA and Personode
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along with the MNI152 anatomical atlas were further tested via statistical tests
and the DDT.

3.4.1 Individualized Spatial Overlap and ROI Size Consis-
tency

IPA parcellation examples are seen in Figure 3.2. For each subject, the IPA de-
fined 35 ROIs while Personode defined 21 ROIs. To quantify ROI overlap,
DSC values for both methods are profiled in Figure 3.3. The DSCs reported in
Figure 3.3 represent a selection of all ROI’s DSC consisting of the intragroup
comparison of all ROIs. As shown in the figure, the IPA shows higher mean
intra-group DSCs as compared with Personode with a mean normotensive DSC
of 0.70±0.13 versus 0.47±0.16 and a mean hypertensive DSC of 0.68±0.14

compared with 0.45 ± 0.15. Looking at all DSCs for all subjects, IPA shows
a mean of 0.69± 0.14 with Personode having an average of 0.43± 0.11. For
both groups using the IPA ROI definitions, there is a spike in the DSC values at
zero that corresponds to regions that do not overlap with other individualized
atlas ROI. A single ROI was constructed without overlap to other individuals
for one normotensive and three hypertensive individuals. These mismatched
ROIs represent 0.2% of all 1680 individualized IPA ROI definitions.

Further analysis of ROI sizes is shown in Figure 3.4. Figures 3.4A and 3.4B
show the size distributions of the normotensive (left violin) and hypertensive
(right violin) individuals as half-violin plots as well as the group-averaged ROIs
as inverted triangles. Overall, Personode ROI definitions are more consistent
in their sizes as compared to the IPA. As shown in Figure 3.4B, network sub-
parcellation - shown as multiple inverted triangles in network - sizes exhibit a
tight grouping around the group-averaged sub-parcellation sizes. When looking
at the IPA (Fig.3.4A), it is shown that there is a much greater variation in ROI
sizes as compared with Personode with the difference in size between individ-
ualized and group-derived ROIs being much greater in the IPA. Notably, the
MNI anatomical ROIs are of a much larger size as compared to the functional
parcellations.

When taking the DSCs and ROI sizes together and comparing to Personode,
the IPA shows more consistency in the location of the ROI but less consistency
when defining the size of the ROI. Both functional parcellation techniques
also show much smaller ROI definitions when compared with the MNI parcel-
lation.
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Figure 3.2: Visualizations of example IPA parcellations. The first column
(2A/2C) shows the group independent component analysis (ICA) derived par-
cellations whereas the second (2B/2D) demonstrates the individualized parcel-
lations. The top row (2A/2B) visualizes parcellations in a normotensive in-
dividual while the bottom row (2C/2D) exemplifies the parcellations in a hy-
pertensive individual. Each parcellation is overlaid atop the specified subject’s
structural T1 data that has been co-registered to fMRI space. The colors present
in the parcellation represent the different ROIs defined by the ICA-based par-
cellation algorithm (IPA) and are consistent across all examples.
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Figure 3.3: Intragroup dice similarity coefficient (DSC) distributions of the
independent component analysis-based parcellation algorithm (IPA) and Per-
sonode individualized parcellations. The data is shown separated into their
groups of either normotensive (NRM – blue) or hypertensive (HTN – orange)
individuals. The DSC represents the simple spatial overlap of two ROI and is
used in this context to quantify the consistency of their definitions. Each DSC
is calculated as the overlap between a specified ROI across each subject. Figure
3.3A shows the DSC distribution for the IPA and Figure 3.3B shows the same
information for Personode.
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Figure 3.4: Parcellation region of interest (ROI) size distributions. Individ-
ualized parcellation size distributions are shown in the violin plots with the
group-derived parcellations being shown by the downward facing triangles in
(3.4A, 3.4B). The individualized parcellation ROI size distributions are further
broken down into groups with the NRM being the left side of the violin plots
shown in light blue and blue, and the HTN being the right side of the violin
plots shown in light orange and orange. For Personode sub-parcellations, the
violin and scatter plots represent the distribution for each sub-parcellation of a
given network. MNI gray matter ROI sizes are shown in 3.4C.
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3.4.2 Homogeneity Comparison
A comparison of parcellation homogeneity values can be seen in Figure 3.5 be-
low showing all homogeneity values calculated across every individual separated
into their respective hypertension status. In comparing the individualized par-
cellations from the IPA (Fig.3.5A) and those from Personode (Fig.3.5C), the
homogeneity values are similar in their distribution. The normotensive indi-
viduals (left violins) show slightly elevated 75th percentiles as compared to the
hypertensive individuals (right violins) in Figure 3.5A whereas 3.5C shows a
more consistent distribution across the groups. The group-averaged parcella-
tion homogeneity values shown for the IPA (Fig.3.5B) and Personode (Fig.3.5D)
both show an elevated distribution to their values as compared with their in-
dividualized counterparts while showing similar distribution patterns to them.
Normotensive individuals again appear to have elevated 75th percentiles to their
data as compared to the hypertensive individuals in the IPA while Personode
parcellation values show similar distributions across the groups.

3.4.3 Groupwise Testing
Application of the two-sided t-test produced no groupwise differences between
any of the methods tested. When the Wilcoxon rank-sum test was applied to all
parcellation methods, IPA gICA-derived parcellation ROI 10 – located at the
right middle temporal – showed statistical significance with a p-value of 0.0290
with no other ROIs or methods showing any significance (α = 0.05). The MNI
homogeneity values show the lowest distributions compared with both the indi-
vidualized and group-averaged functional parcellations. These holistic findings
are quantified in the statistics found in Table 1 below where the homogeneity
values seen in Figure 3.5 have been averaged by group to show groupwise trends
in the data. As seen in Table 1, IPA parcellations exhibit slightly increased homo-
geneity values as compared with the Personode parcellations, while the struc-
tural MNI parcellations showing the lowest homogeneity values; Meanwhile,
normotensive parcellations show higher homogeneity values when compared
with the hypertensive parcellations. The DDT was applied to both the IPA and
Personode parcellations. The DDT produced no significant hub nodes for the
IPA at the default significance level of α = 0.05 as seen in Figures 3.6A and 3.6B.
Performing the same analysis using the Personode parcellations also produced
no significant hub nodes.

When the number of ROIs was increased from 35 to 44, the gICA-derived
and individualized parcellations showed 1 and 2 hub nodes respectively. These
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Figure 3.5: All models’ parcellation homogeneity values are shown as violin plots
where the 25th and 75th percentiles are shown as shaded areas of the violins. In-
dividualized parcellations from the independent component analysis-based par-
cellation algorithm (IPA) and Personode models are shown in Figures 3.5A and
3.5C respectively with their group independent component analysis (gICA) de-
rived parcellation counterparts are shown in Figures 3.5B and 3.5D. Figure 3.5E
presents the 35 IPA-analogous Montreal Neurological Institute (MNI) regions
being shown in Figure 3.4E. For each method, the violin plots were further
subdivided into left and right violins with the left violins shown in light blue
and blue representing the normotensive individuals and the right violins shown
in light orange and orange representing the hypertensive individuals.
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hub nodes are shown in Figures 3.6C and 3.6D below where their nodal degree
and the significance level are shown overlaid on each other. The labels for these
parcellations can be found in the appendix (Table A.1). The two methods share
a hub node detected at the left rostral middle frontal portion of the brain (node
#25 in Fig. 3.6C/D) and the individualized parcellation shows the same node
(#25) and an additional hub node corresponding to the right caudal middle
frontal area (node #17 in Fig. 3.6D).

Table 3.1: The mean and standard deviation of all homogeneity values shown
in Figure 3.4 are shown in the table below with a breakdown of the statistics
per group. As the Montreal Neurological Institute (MNI) parcellation is not
derived from ICA data, it is not counted as a group-independent-component-
analysis (gICA)-derived parcellation denoted by the double line.

Homogeneity
gICA-derived Individualized

Parcellation MNI IPA Personode IPA Personode
Overall 0.20 0.38 0.31 0.30 0.28

±0.11 ±0.16 ±0.15 ±0.14 ±0.14
Normotensive 0.20 0.39 0.32 0.30 0.29

±0.11 ±0.16 ±0.15 ±0.14 ±0.14
Hypertensive 0.20 0.38 0.31 0.29 0.28

±0.11 ±0.15 ±0.15 ±0.14 ±0.15

3.5 Discussion
The first stated goal of this study is to build individualized ROIs that are consis-
tent in their spatial definition. The proposed IPA accomplishes this goal with
elevated DSCs as compared to Personode. As shown in Figure 3.3A, IPA ROI
definitions show high consistency with intra-group DSC being 0.70 and 0.68
for the normotensive and hypertensive groups respectively. When compared
with the Personode DSCs as seen in Figure 3.3B, the IPA clearly shows higher
consistency in ROI definition. With mean intra-group DSCs of 0.45 and 0.42
for the normotensive and hypertensive individuals, Personode exhibits less con-
sistency in network definition as compared to the IPA using these data.

This depression and bimodality of Personode DSCs likely comes from two
sources. First, the ROI definition step relies on a priori anatomical informa-
tion to define the ROI. Personode multiplies RSN templates and ICs together
to obtain a weighted probability map of the RSN which, when selecting the
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Figure 3.6: The nodal p-values and number of differentially weighted edges
(DWEs) are shown in the plots above for different trials of the difference de-
gree test (DDT) using different IPA parcellations. In each plot, the blue circles
represent the nodal p-value while the orange bar plots represent the number
of DWEs attached to each node. 3.6A shows the DDT findings when using
the group independent component analysis (gICA)-derived IPA parcellations
with 35 total ROI definitions, and 3.6B shows the same information for the in-
dividualized parcellations. Figures 3.6C and 3.6D show the DDT results when
the number of ROIs increased to 44 for the gICA-derived (3.6C) and individ-
ualized (3.6D) parcellations. The black line in each figure denotes the default
significance level (α) of 0.05.
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MAV, could result in slight differences in MAV spatial definitions. The second
factor at play is the small sub-parcellations that make up the larger personode
networks. Smaller ROIs are more prone to variance in DSCs due to small fluc-
tuations in spatial definitions resulting in lower overlap between the two ROIs.
This is further exhibited in IPA DSCs where one small ROI’s definition spatial
location being off caused four individuals to exhibit zero overlap with the oth-
ers. This isn’t a statement on one method being superior to another, but it is
instead a result of methodological differences resulting in different outcomes.
The Personode ROI selection methodology causes more consistency in ROI
sizes whereas the IPA results in a more spatially consistent ROI.

While the IPA exhibits high consistency as quantified by the DSCs, there is
a lowered intra-group overlap in the hypertension group. One possible origin
of this effect is the impact of using dual regression on the data. As our gICA
was run on normotensive individuals and then dual-regression was done to
obtain the ICs for both the normotensive and hypertensive individuals, we the-
orize that the dual-regression contributes to lowering hypertensive individual’s
DSCs. This perspective is supported by it being a consistent trend in both the
IPA and Personode results as seen in Table 1. Another observation consistent
with this finding is the increased number of inconsistent ROI definitions in hy-
pertensive individuals as seen in Figures 3.2A. As previously mentioned, three
of the hypertensive individualized ROIs did not show overlap with any of the
others while only one ROI of the normotensive individuals showed this same
result. While these issues represent a very small amount of the overall ROI
definitions, it could be hypothesized that dual regression plays a part in this
issue. It is also notable that Personode achieves higher consistency in ROI size.
Personode and IPA operate in similar ways but differ in some key points. The
Personode algorithm undergoes a step of multiplying ICs by binary canonical
resting state network (RSN) templates. This enforces a general shape onto the
ROIs selected. Personode and IPA attack the problem of ROI definition in two
different ways, but fundamentally the two goals are different.

The second stated goal of this study is to build ROIs that are functionally
homogeneous. The proposed IPA exhibits elevated ROI homogeneity in both
the group and individualized parcellations implying that it accomplishes its goal.
The caveat to the IPA’s accomplishment is that ROI homogeneity values are
intrinsically linked to their size. While in our testing these quantities do not
exhibit simple linear or quadratic scaling, it is known that the larger ROI sizes
will lower their expected homogeneity value (Gordon et al., 2014). True to this
assumption, we find that many of the ROI homogeneity values shown in Fig-
ure 3.5 appear to be negatively correlated to the ROI sizes seen in Figure 3.4.
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In general, the gICA-derived atlas ROI sizes were smaller and the MNI ROIs
were bigger as compared to the individualized ROIs. This suggests differences
in homogeneity values seen in Figure 3.5 may be explained in part or in total by
the differences in the ROI sizes.

When statistical testing was applied to the homogeneity values to see if there
were any significant differences, nearly all parcellations showed no statistically
significant differences in groupwise expression. All ROIs except for ROI 10 of
the gICA-derived parcellation tested against the Wilcoxon rank-sum test exhibit
no differences between the groups. While this could point to the IPA having
the ability to discern differences in groupwise expression of regions, much more
testing is needed to make such a claim.

Further groupwise differences quantified by the DDT showed no signifi-
cant hub nodes in the 35 ROI tested. Similarly, the Personode parcellations also
did not produce any significant hub nodes. Due to the IPA producing fewer
ROIs, nodal significance is difficult to establish in the DDT trials. With less
than 16% of the total possible connections present in the IPA parcellations as
compared with previous MNI-based studies, the IPA presents difficulties in
being applied to graph theory analyses.

To examine if the number of ROIs was preventing the DDT from detect-
ing significant hubs, a test was performed aimed at building parcellations with
increased numbers of ROI. Changing the spatial Pearson threshold of the IPA
to the 50th percentile resulted in parcellations with 44 regions built by the IPA.
When these parcellations were used in the DDT, the individualized parcellations
resulted in two hub nodes corresponding to the right caudal middle frontal and
left rostral anterior cingulate and the gICA-derived parcellations resulted in
one hub node located in the left rostral anterior cingulate. The caudal middle
frontal (CMF) region of the brain is associated with the sensorimotor network
while the anterior cingulate cortex is involved with the salience network. These
findings imply some possible areas of change related to hypertension and repre-
sent a similar result with our previous work (Reeves, Ahmed, Sun, et al., 2023),
where we used standard MNI parcellation and found 5 ROIs that showed differ-
ential expression in the brain, including the right thalamus, right hippocampus,
left pars triangularis, left caudal middle frontal, and left pars orbitalis. Among
the 5 regions we previously found, the caudal middle frontal was one of them.
In slight contrast, we previously found the left CMF showed differential expres-
sion, we currently find the right CMF shows groupwise changes. This could
point to the differential functional activation patterns of regions in the sensori-
motor cortex of which the CMF is associated. The other hub node found in this
analysis–the left rostral anterior cingulate–points to the consistency between
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the two parcellation methods.
When looking specifically at previously studied methodologies that focus

on employing ICA to analyze the brain, ICs have been used as spatial activation
markers for quite some time. One of these methods involves using the power
spectra and spatial activation scheme of ICs to define ICs of interest (Allen et al.,
2011). Once ICs were validated by several experts, the ICs could be classified as
a RSN and further analyzed for detecting covariate differences. Another study
that focused on defining RSNs directly from ICs did so by utilizing a toolbox
that trained a machine learning model to detect artifactual from signal com-
ponents (Salman et al., 2022). Once trained, the classified ICs could then be
labelled by pre-existing methods such as AAL. Another study inferred RSNs
by matching ICs obtained through ICA on large datasets (Du et al., 2020).
Once RSNs were established, they were then applied to a spatially constrained
adaptive-ICA which quantified individualized metrics. All these methods em-
ploy the ICA to define ROIs, but all approach the issue of ROI definition from
a different perspective. This holds true for the functional parcellation meth-
ods profiled in this study. Neither Personode nor the IPA approach the ROI
definition step in the same way that previous studies have which delineates the
previous studies from this one. There is overlap in the philosophy of employing
ICA to define regions of interest in the brain, but these methods are all distinct
from one another.

Because the IPA is focused on defining smaller ROIs as compared to other
methods, this theoretically allows for a greater number of ROIs to be built.
For some analyses, this represents tremendous flexibility in that the IPA can
be adapted to build differing numbers of ROIs depending on the findings in
the data and the desired analysis method. On the one hand, increasing ROI
count allows for a more powerful analysis when using graph theory (e.g. the
DDT results) or various other analyses. On the other hand, the increased ROI
count comes at the expense of lowering the spatial Pearson threshold. When the
spatial Pearson threshold is lowered, the resulting IC picked for ROI definition
corresponds less precisely to the region attempting to be defined. While this
could cause issues in ROI definitions, our testing found no major issues when
increasing from 35 to 44 ROIs. The flexibility afforded by the IPA allows for
fine control over ROI number and size which results in an algorithm that can
adapt to suit the needs of a study.

An issue that requires further research is determining whether individual-
ized or gICA-derived parcellations more accurately represent functional activa-
tion patterns found in the data. Given the higher homogeneity values found
in the gICA-derived parcellations, it would be natural to draw the conclusion
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that they are more accurately capturing a more functionally distinct ROI, but
there is some uncertainty in that assumption. The uncertainty comes from the
fundamental differences that exist in the data and homogeneity’s large inversely-
proportional dependence on ROI size. Preliminary testing was conducted on
homogeneity values to establish a method of compensating for the effect of
ROI size, but no suitable normalization strategy could be devised. Given that
homogeneity is the primary metric of inter-model comparisons, future work
should focus on developing a method to compensate for size’s effect on the data
and further establish statistical significance of comparisons through the devel-
opment of a null-model generation algorithm.

One of the benefits of using this algorithm to build data derived atlases is
its generalizability to any model system. Figure 3.1 implies that spatial Pearson
correlation with an anatomical atlas is required for candidate IC identification,
however, each study and researcher could adapt this step to their own processes.
Hand-identification of candidate ICs (Griffanti et al., 2017), or newer tech-
niques - such as machine learning - that can identify signal from noise (Chou
et al., 2022; Glasser et al., 2016; Moradi et al., 2020; Thomas Yeo et al., 2011)
could be used as alternatives to candidate IC selection. This means that there
is no intrinsic dependency on the use of an anatomical reference. Because of
this lack of dependency on anatomical parcellations, the IPA could easily be
adapted for use on data that may not have readily available anatomical atlases or
those that don’t fit well with current anatomical atlases, such as those studying
brain tumors (Niu, Wang, et al., 2021) or traumatic brain injury (Simchick et al.,
2021), or functional imaging of patients who have undergone resection.

Another advantage of this method is that it can be inserted into an already
defined processing pipeline. In other words, the output of this algorithm is
an atlas that can be used as a one-to-one replacement for an atlas that is cur-
rently employed. For example, our past work (Reeves, Ahmed, Jackson, Sun,
et al., 2023) used anatomical parcellations to parcellate the brain into differ-
ent ROIs which was then analyzed using the underlying principles of graph
theory. The only change that would need to occur to use the IPA in our previ-
ous work would be a simple replacement of the anatomical parcellations with
those obtained through IPA. Functional parcellations such as the IPA appear
to show greater ROI homogeneity as compared with anatomical parcellations
which means that, when analyzing data based on fMRI scans, it is more likely
to accurately capture regions of functional activation.
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3.6 Conclusion
The work presented here profiles and compares the performance of a data-
driven parcellation algorithm known as the ICA-based parcellation algorithm.
This method shows large consistencies in ROI definitions quantified by dice
similarity coefficients and a higher ROI homogeneity value as compared to
another data-driven parcellation method known as Personode as well as the
Montreal Neurological Institute’s anatomical atlas. Given homogeneity’s very
large inversely-proportional dependence on ROI size, the IPA warrants further
research into how it performs against other data. While it requires further study,
the IPA is model agnostic, can directly replace current methods of parcellating
the brain in studies involving functional MRI data, and could be used to par-
cellate a subject’s brain in their native space resulting in less interpolation of the
timeseries.
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Chapter 4

Evaluation of Functional
Parcellations in a

Longitudinal
Developmental Pig TBI

Model Using the
Anatomy-free IPA

4.1 Introduction
Traumatic brain injury (TBI) is a very serious condition which results in over 2.5
million hospitalizations and 56,800 deaths annually (Peterson et al., 2019). Fur-
thermore, an estimated 3.17 million people are living with a long-term disability
related to their TBI (Zaloshnja et al., 2008), although the number of cases may
be less well-known (e.g. Daugherty et al., 2025). A previous study has demon-
strated a significant increase in the mortality rate of those diagnosed with TBI
versus a control individuals over a thirteen year period (McMillan et al., 2011).
TBI can be stratified into three different categories: mild, moderate, and severe.
Previous categoization was solely based on the Glasgow coma score (Teasdale
& Jennett, 1974), but new clinical guidelines suggest a nuanced approach to
TBI classification that allows for a more tailored treatment plan (Eapen et al.,
2022). While detection methods and classification criteria have improved over
the years, very little improvement has been made in terms of patient outcomes
in recent years (Stein et al., 2010) with up to 20% of mild TBI individuals be-
ing unable to return to work within one year of their injury(Nolin & Heroux,
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2006). As of 2023, a computed-tomography (CT) image without contrast is the
standard of care for acute assessment of TBI (Valente et al., 2023), but a higher
detail can be found in various magnetic resonance imaging (MRI) modalities
(Griffin et al., 2019; Yuh et al., 2013). In the post-acute phase of injury, one MRI
modality of particular interest is functional MRI (fMRI) which can provide a
unique perspective into how the brain function modeulates with TBI (Irimia
& Van Horn, 2015).

One key aspect of fMRI is how brain oxygen consumption is tracked over
time by the blood-oxygen level dependent (BOLD) signal (Logothetis, 2008;
Ogawa et al., 1990; Uludağ, 2023). The ability to build so-called timeseries vec-
tors that track a given region’s BOLD signal over time provides the ability to
compare how two regions act in similar or dissimilar ways. fMRI analyses come
in two flavors: task-based and resting-state studies. While task-based studies fo-
cus on the brain activation during specific experimental tasks (Cao et al., 2014;
McGillivray et al., 2021; Morante et al., 2021), resting-state fMRI (rs-fMRI) fo-
cuses on studying brain activity while the individual is in a relaxed wakeful state.
Through pioneering experiments involving rs-fMRI, resting-state networks of
brain activity were discovered (B. Biswal et al., 1995; Damoiseaux et al., 2006)
which represented a crucial step towards establishing the paradigms currently
in use for rs-fMRI study (Seitzman et al., 2019). By measuring the differences in
timeseries vectors, researchers can establish how functionally connected two re-
gions are. Collectively referred to as the functional connectome, this functional
linkage between different regions of the brain allows researchers to study how
the brain reacts to a myriad of disease states. These connectomes are built on
the underlying principle that the brain can be segmented into discreet regions
or “parcels”. This process is typically performed with standardized parcellations
referred to as atlases. In human studies, one of the standard atlases is the Mon-
treal Neurological Institute atlas (Fonov et al., 2011), but there are several other
techniques for parcellating the brain functionally (Lemaire et al., 2019; Rolls
et al., 2020; Tang et al., 2010). While clinical MRI has been shown to lead to
a higher detection of abnormalities following TBI (B. Lee & Newberg, 2005),
TBI research utilizing fMRI, has had issues with data heterogeneity (Kashou
et al., 2024). In contrast, there is some evidence to suggest that female individu-
als have a higher ability to cope with the injury in a behavioral and pathological
sense (Rubin & Lipton, 2019). While there is evidence to support the increased
ability of female individuals to cope with TBI, a review of clinical data and
animal studies found opposing trends in the data suggesting the data hetero-
geneity, methodology, TBI severity, and many other factors affect the outcome
of a given study (Gupte et al., 2019). Given the prevalence of TBI and the lack
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of consensus on how TBI effects brain function, there is a need to develop a
TBI model system that can be used to study TBI prospectively in parallel with
retrospective clinical studies.

The pig is a translational animal model analogous to humans (Netzley &
Pelled, 2023) as they have a more similar neuroanatomical structure to humans
as compared to the traditional rodent (rat or mouse) model (Meyerholz et al.,
2024). The pig TBI model system is of particular interest as induction of TBI
can be done in a controlled manner (Kinder et al., 2019). In the piglet model, pre-
dictive MRI functional biomarkers have also been found (Ahmed et al., 2025;
Simchick et al., 2019; H. Wang et al., 2021) further showing its promise as a
translational model(Simchick et al., 2022). In this study, a piglet model system
is used to study the neurodevelopmental, sex-linked, and longitudinal effects of
TBI induced in the motor cortex. The process of TBI induction involves the use
of a controlled cortical impact (CCI) (Osier & Dixon, 2016) to create analogous
TBI across multiple individuals. The induced TBIs causes several downstream
effects (Simchick et al., 2021) ultimately resulting in several challenges in data
processing. One of the biggest challenges in TBI data processing is the shifting
of the brain’s midline (Hou et al., 2017) due to swelling. This can be seen in
both the acute- and chronic stages of injury (Puffer et al., 2019) and it causes
a shift in neuroanatomy. This shift in neuroanatomy causes the underlying
assumptions of connectomes to be called into question. Specifically, if there
is swelling and midline shift, the neuroanatomical structures are no longer in
their homeostatic positions which causes issues in assuming the data can fit a
standardized parcellation strategy.

In our previous work (Reeves et al., 2025), a method referred to as the in-
dependent component analysis (ICA)-based parcellation algorithm (IPA) was
proposed for analyzing resting-state fMRI data of hypertensive human volun-
teers. While initially designed for human data analysis, the model-independent
nature of the method allows it to be used in alternative model systems such
as the developmental pig model used here. The IPA has shown promise as an
alternative parcellation method, using ICA as the basis for defining ROIs that
could then be used for further analysis. The IPA produced spatially consistent
ROIs with elevated ROI homogeneity values compared to other parcellation
methods. However, one of the issues of the previous work was the persistent
reliance on a standardized anatomical atlas as the anchor for ROI definitions.
At that time, a standardized anatomical atlas was used to identify possible in-
dependent components (ICs), used in the definition of new ROIs. Given that
one of the goals of the IPA was to remove the standardization of ROI defini-
tions to adapt to individualized changes in BOLD activation, the anatomical

57



anchor prevented the IPA from achieving that goal. In this work, both the
individualized (iIPA) and group-based (gIPA) IPA are refined to remove the
anatomical anchor and to profile how they may aid in the processing of TBI
data. The newly modified IPA will be referred to as the anatomy-free IPA (af-
IPA) to differentiate it from its preceding iteration which will retrospectively be
referred to as the anatomical IPA (a-IPA).With the underlying goals of spatial
consistency and regional homogeneity as important landmarks for the method
to steer towards, the performance of the af-IPA is analyzed anew for this piglet
TBI model system.

4.2 Materials & Methods

4.2.1 Pig demographics, acquisition, and processing
A total of thirty-four pigs were selected for this study which represented a subset
of a larger cohort of individuals in an ongoing study. The demographic informa-
tion of these individuals is provided in Table 4.1 below. Three treatment groups
were established for this study defined by the severity of their induced TBI. TBI
induction was performed by CCI (4 m/s velocity, dwell time of 400 ms) with
an impact depth of 3mm for mild TBI individuals and a 9mm impact depth
for severe TBI individuals (Schantz et al., 2024). A sham group consisting of
individuals that underwent a craniectomy procedure but did not receive CCI
was also established. Craniectomy and TBI procedures occurred when the pigs
were seven weeks old and the pigs were scanned over three sessions one day prior,
one day after, and sixty-three days after their respective surgical procedure.

Table 4.1: Subject demographics of piglet cohort. Three treatment schemes
are shown including sham, mild TBI, and severe TBI. Sham subjects received
a craniectomy but no traumatic brain injury (TBI) induction. The two TBI
groups, mild and severe, are differentiated by their cortical impact parameters
of 3mm and 9mm respectively. Each subject was scanned over 3 timepoints for
a total of 102 scanning sessions.

Sham 3mm 9mm total
female 6 8 8 22
male 4 5 3 12
total 10 13 11 34
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Structural MRI and resting-state fMRI (rs-fMRI) scans were performed
on a GE Discovery MR750 3.0T MRI scanner at the University of Georgia
Bio-Imaging Research Center. The first two sessions were scanned using a 16
channel HD T/R knee coil and the final session scans were obtained using a
16 channel flex coil due to the increase in size of pigs caused by regular growth
and development. A full list of scan parameters is given in table 4.2. Sedation
was administered by intramuscular injections of xylazine (2 mg/kg Rompun,
Dechra) and midazolam (0.2 mg/kg Sagent Pharmaceuticals). After sedation,
topical lidocaine (0.5 mL 4% oral lidocaine, Novitium Pharma) was applied to
the laryngeal folds along with intravenous propofol (0.5 mL to effect, PropoFlo,
Zoetis) to facilitate intubation. Sedation was maintained via 1.0 – 2.5% inhalant
isoflurane (VetOne) in oxygen. Pigs were allowed to respirate spontaneously
while their temperature, respiration and heart rates were monitored. During
the third session of scans the pigs were also given intravenous butorphanol (0.2
mg/kg Torphadine, Dechra). This study was performed in accordance with
the guidelines outlines in the NIH Guide for the Care and Use of Laboratory
Animals (Council, 2011) and was approved by the University of Georgia Animal
Care and Use Committee (Animal Use Protocol: A2023 07-021-Y2-A7).

Table 4.2: Scanning parameters of all functional and structural MRI data.

First Two Timepoints Final Timepoint
Scan Type fMRI Anatomical fMRI Anatomical
Sequence 2D EPI 3D FSPGR 2D EPI 3D FSPGR

Imaging plane coronal axial coronal axial
Slice number 46 112 46 124

Slice Thickness (mm) 2 0.5 2 0.5
Field of View (mm2) 128 x 128 128 x 128 192 x 192 192 x 192

Matrix Size 64 x 64 256 x 256 128 x 128 512 x 512
Repetition Time (ms) 3000 8.4 3000 10.37

Echo Time (ms) 31 3.65 31 4.6
Flip Angle (degree) 80 9 80 9

Total Volumes 300 1 300 1

Data pre-processing was performed using Statistical Parametric Mapping 12
(SPM12) (Penny et al., 2007) on MATLAB 2021b (MathWorks, Natick, MA).
Processing steps included unwarping, slice timing correction, and removal of
the first five volumes of the fMRI data. Individuals’ functional and structural
data were further processed by FMRIB Software Library (FSL) (Smith et al.,
2004). These steps included data masking via FSL’s Brain Extraction Tool
(BET) and registration to reference fMRI space via FMRIB’s Linear Image

59



Registration Tool (FLIRT). Registration allows all individuals to be placed in
the same reference data space which is a requirement for subsequent process-
ing steps. A +63 days sham individual was chosen as the reference space based
on data size and quality considerations. Individual anatomical data were seg-
mented into gray matter maps using FMRIB’s Automated Segmentation Tool
(FAST) before being registered to reference fMRI space via FLIRT. Sham sub-
jects’ group independent component analysis (gICA) data with 250 ICs was
obtained via FSL’s Multivariate Exploratory Linear Decomposition into In-
dependent Components (MELODIC) multi-session temporal concatenation,
and each individual’s ICs were calculated using dual regression after applying
FSL’s FMRI Expert Analysis Tool (FEAT) low-level preprocessing on masked
fMRI data from the TBI individuals. Once the results from gICA are obtained
and each individual has their gray matter maps and dual-regression results, the
af-IPA is then performed.

4.2.2 IPA Overview and Procedure
The af-IPA was performed through several steps that have been detailed in our
previous work. The procedure is largely unchanged except for the final step
of the process which now includes gray matter overlap enforcement and the
candidate IC selection stage. The candidate IC selection process produced a list
of ICs and their corresponding overlap with the gray matter similarly to the a-
IPA method. The difference in candidate IC selection is the shift in focus away
from anatomical landmarks as the anchor points for the ROIs to gray matter
overlap being the anchor point for the ROIs. This is discussed in further detail
in the following section. Due to strict requirements for ROI size and GM
overlap, the af-IPA produced parcellations with a varying number of ROIs.
This stemmed from the slight differences in IC activation between different
individuals along the same IC.

The candidate IC selection procedure

The second stage of the af-IPA was referred to as candidate IC selection is a
complex series of steps which sought to calculate to what extent candidate ICs
overlapped with the gray matter. This process can be broken into two overar-
ching steps. The first step involved clustering ICs into spatially similar groups
and rejecting those ICs that exhibit artifactual patterns (Griffanti et al., 2017).
Adapted from Ji et al., 2016, this clustering process began with dimensional re-
duction of the ICs into vectors via principal component analysis (PCA) which
were concatenated together to form a two-dimensional embedding of the ICs.
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Eta-squared similarity was calculated between all vectorized ICs to form a square
similarity matrix. The normalized Laplacian matrix (Pospelov et al., 2021) was
then obtained from the similarity matrix before eigenvector decomposition
was performed to find the low-dimensional embedding of the data. Optimal
eigenvector dimensionality was calculated by finding the minimum variance of
distance ratios (Shi et al., 2009). With the assumption that the distance in em-
bedded space (dy) should be proportional to the distance in the original space
(dx), finding the minimum of the variance of these distance ratios results in
the ideal embedding dimensionality. During this optimization, eigenvector di-
mensionalities ranging from three to fifteen were tested with the chosen dimen-
sionality resulting in the lowest variance of distance ratios. A square distance
matrix was computed from the city-block distance between the eigenvectors
before density peak clustering (DPC) was performed to find IC cluster assign-
ments. Artifactual ICs are identified by hand, and after cluster assignments are
obtained, those artifactual ICs and any ICs they are grouped with them were
rejected from the list of total ICs.

After artifactual components were removed, the remaining ICs underwent
the final stage of candidate IC selection referred to as gray matter mapping. Gray
matter mapping was performed by quantifying a given IC’s spatial overlap with
the individual’s gray matter map. Both the spatial Pearson and dice similarity co-
efficient metrics were used to rank the ICs in terms of how well they overlapped
with the gray matter probability map. Once the initial rank was established, a
binarized ROI was defined from the IC and removed from gray matter map,
helping to prevent the selection of overlapping ICs. The top IC was marked
in the candidates list and removed from the pool of candidates before repeat-
ing the spatial overlap calculation for all remaining candidates. Once a specific
number of candidates was defined, the GM mapping was stopped, and the final
list of candidate ICs was returned.

4.2.3 Quantifying Parcellation Performance
IPA performance was quantified primarily by two metrics: how consistent were
ROI definitions (spatial consistency) and how similar were the voxel-wise time-
series within the ROI (homogeneity). As discussed in the previous IPA study,
ROI spatial distributions should be relatively constant across individuals while
also allowing for individualization of the ROI. To quantify spatial consistency,
the dice similarity coefficient (DSC) was calculated across all individuals and
ROIs. This metric is a binary measure of overlap between two datasets and is
described in further detail in the previous work.
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To study the functional homogeneity of the parcellations, each voxel inside
of an ROI had its timeseries extracted and had the Pearson correlation calcu-
lated between it and all other voxels in the ROI. Once averaged, this produces
a measure of how similar the voxelwise timeseries are to one another which was
referred to as the ROI’s homogeneity. As a basis of inter-parcellation compar-
ison, common labels between a standardized anatomical atlas and the af-IPA
parcellations were obtained. Since the current IPA method explores the removal
of anatomical markers, to make ROI-to-ROI comparisons, anatomical land-
marks were assigned an IPA ROI label that most closely matched their location
in the brain. This allowed for the comparative analysis of ROIs between the
iIPA, gIPA, and standardized anatomical parcellation methods. To determine
what significant differences may exist, a Wilcoxon rank-sum test was performed
between the sexes in the same group. The Wilcoxon rank-sum test was chosen
because of its non-parametric nature which does not assume the data was sam-
pled from a normal distribution. The rank-sum test was chosen as a post-hoc
measure to match the shape of the data.

Central Moments Analysis of IPA Parcellation ROI Size

Previously gIPA parcellations showed consistently lower ROI sizes as compared
to the iIPA ROIs. This trend was hypothesized to be caused by the shape of
the activation pattern of the ICs produced by gICA (Reeves et al., 2025). To
further investigate this trend a comparative analysis was performed between
the previous study’s data and the data presented here. After loading the gICA
and each individual’s dual-regression maps for both studies, all non-zero voxel
values of candidate ICs were extracted and had their variance, skewness, and
kurtosis calculated. In the previous IPA study, it was hypothesized that activa-
tion differences in the gICA and dual-regression results caused the differences
seen in the ROI sizes. To compare the previous data to the new one, central mo-
ment ratios were calculated by dividing the gICA moments by those moments
obtained from dual-regression data. This allowed for a single value to represent
the relationship between the gICA and dual-regression data for a candidate IC.
This process was repeated for all individuals and candidate ICs to build central
moment ratio vectors. Once each individual’s ICs had their central moment
ratios calculated, outliers were removed and a permutation test was performed
on each of the metrics. This involved two-tailed testing 100,000 permutations
of the data to obtain a measure of how significantly different the two samples’
mean values were. Once significance was established, further one-sided test-
ing was performed to determine whether the ratios were significantly larger or
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smaller than previous.

4.2.4 Overview of Graph Theory Metrics
Once the af-IPA performance was profiled, parcellation ROIs were used as the
seed regions for a graph theory analysis. To obtain graph theory results, subject
fMRI data was parcellated using IPA parcellations to find the ROI’s mean re-
gional timeseries. To obtain the mean regional timeseries, voxel-wise timeseries
were first extracted, transformed into z-scores via Fisher transformation, and de-
trended to remove any linear trends present in the data. Along each timepoint
each voxel in the region was subsequently averaged to build a vector represent-
ing the average activation of the region over time. This process is repeated for
all seed regions to obtain a subject’s timeseries matrix. Once a subject’s time-
series matrix was calculated, Pearson correlation was performed on the matrix to
obtain a functional connectivity (FC) matrix. These FC matrices were thresh-
olded to obtain a fully reachable graph and had several graph theory metrics
calculated from the resulting adjacency matrices.

To quantify graphical structure, density, characteristic path length, modu-
larity, and mean functional connectivity strength were calculated for each in-
dividual’s adjacency matrix. Density measured the average number of connec-
tions between nodes. A graph with increased density is one that exhibited a
higher level of interconnectivity between its nodes. Characteristic path length
assessed the average number of steps it took to move from one node to another.
A graph that exhibited an increased characteristic path length was a less con-
nected, less efficient graph overall. A graph’s modularity represented how many
of the graph’s nodes formed into clusters that are interconnected but exhibited
a low connectivity outside of the group. Lastly, the mean functional connectiv-
ity strength for the individual’s graph was calculated representing how strong
the connections were between various regions in the brain. Of the metrics cal-
culated for each FC matrix, further hypothesis testing was performed. As was
done for the previous metrics, all groupwise sex-linked differences were profiled
using a Wilcoxon rank-sum test.
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4.3 Results

4.3.1 Parcellation ROI Spatial Consistency
Parcellation examples are shown in Figure 4.1 below. Shown in the figure are
ROI examples from the gIPA and iIPA parcellations. For visualization purposes,
the iIPA parcellations were averaged for each of the subjects in a specified session
and sex assignment to build a parcellation that is representative of the whole but
does not exemplify any one subject. As can be seen in Figure 4.1, ROI definitions
are consistent across various groups. This is further described on an individual
scale in Figure 4.2 where the individual-to-individual DSCs are shown. As seen
in the figure, both male and female individuals produce spatially consistent
ROIs with 54.0% of all mean DSC being above 0.40. The lowest consistency
was found in one day post TBI induction male ROIs with the pre-TBI females
exhibiting the highest DSC values. Individualized parcellations contain 21± 2

ROIs.

4.3.2 ROI Size and Central Moment Comparisons
The size of ROIs is shown in Figure 4.3 below. Examining the mean ROI sizes
for male and females over the different scanning sessions, male individuals ex-
hibit more drastic changes in ROI sizes with five ROIs increasing and five ROIs
decreasing across the sessions while female individuals showed four decreasing
ROI sizes and one increasing size. This sex-related difference in ROI sizes also
appears in 3 ROIs that are larger in the males than the females. Two ROIs in
the pre-TBI timepoint (ROIs 64 and 113) and one at one day after TBI induc-
tion (ROI 64) show smaller ROI distributions in females. Meta-analysis of
the central moments derived from the candidate IC activations showed that
each metric is significantly different. The outlier-removed distribution of these
metrics can be seen in Figure 4.4 below. One-sided testing resulted in variance
and kurtosis being significantly larger, and skewness being significantly smaller
in the current data. The variance, skewness, and kurtosis all produced p-values
less than 0.001 with observed differences of 0.004, -24.421, 4.386 and effect sizes
of 0.243, -1.493, and 1.546 respectively.

4.3.3 IPA and Anatomical Parcellation Homogeneity
Homogeneity values for the af-IPA and anatomical parcellations are seen in
Figure 4.5 below. The effect of TBI is seen as Homogeneity values trend down-
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Figure 4.1: Averaged parcellations of the group (gIPA) and individualized IPA
(iIPA) are shown. iIPA ROIs shown are averaged for all subjects in a given ses-
sion and sex assignment where male (4.1A, 4.1D, 4.1F) and female (4.1C, 4.1E,
4.1G) parcellations are shown along the columns and the Pre-TBI(4.1B, 4.1C),
one day after TBI induction(2D, 2E), and sixty-three days after TBI induc-
tion(4.1F, 4.1G) parcellations are shown along the rows. Because there is only
one gIPA parcellation, there is no subdivision along the sessions or sexes. The
different colors shown in the parcellations represent different ROIs of the parcel-
lation with individual colors representing the same ROI across all parcellations.
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Figure 4.2: Dice similarity coefficients (DSCs) are shown for all subjects in violin
plots separated along sessions and sex assignment. Male individuals are shown
in the left violins and females shown in the right violins with the different colors
denoting different ROIs. The mean of each distribution is shown as a darkened
horizontal line in the left and right violins with the 25th and 75th percentiles
being shown in the shaded areas of the violins.
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Figure 4.3: Group (gIPA) and individualized (iIPA) IPA ROI sizes are shown for
all subjects divided along sex (left violin; male, right violin; female) and sessional
assignments. The gIPA ROI sizes are shown as inverted triangles in the plots
while the analogous atlas ROIs are shown as purple triangles. The various colors
shown in the plots are used to discern the various ROIs from each other and
across sessions. The mean of each group is shown as a dark horizontal line in
each of the violins and the shaded areas of each violin represent the area between
the first and third quartiles.

          

       

 

 

 

 

  

  

  

  

  

 
 
  
 
  
  
 
 
 
 
 
  
  
 
  
 
  
  
 
 

        

          

       

   

   

   

 

  

  

  

  

   

   

   

 
 
  
 
  
  
 
 
 
 
 
  
  
 
  
 
  
  
 
 

        

          

       

    

    

    

    

    

    

    

    

 
 
  
 
  
  
 
 
 
 
 
  
  
 
  
 
  
  
 
 

        

Figure 4.4: Ratio of central moments between human and pig datasets is seen
in the figure. The distribution of these data is shown as a box plot with outliers
removed for visualization purposes.
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Figure 4.5: Homogeneity values are shown for individualized IPA (iIPA), group
IPA (gIPA), and the anatomical parcellations separated along sex and sessional
demographics. Various ROIs are shown along the x-axis each of which are
represented by a different color of violin. For visualization purposes, only those
ROIs that exhibit large differences between males and females are shown. The
anatomical atlas demonstrated no sex-linked changes at any timepoint. Male
individuals are shown in the left violins while the females are shown in the right
violins. The mean of each group is shown as a dark horizontal line in each of
the violins and the shaded areas of each violin represent the area between the
first and third quartiles.

wards across the sessions. Notably, while anatomical ROI homogeneity values
are slightly elevated against some IPA ROI, the only ROIs to exhibit any differ-
ence between the sexes are in the af-IPA parcellations with the gIPA showing
the most overall at sixty-three days post TBI induction. The iIPA also exhib-
ited six total sex-linked differences – two at the pre-TBI timepoint and four
at sixty-three days post TBI induction. Examining the sessional performance
of each method quantified by Table 4.3, the af-IPA and anatomical parcella-
tions homogeneity values are very similar. There are specific ROIs that exhibit
higher homogeneity in the af-IPA and those that have higher values through the
anatomical parcellation, but overall trends show similar performance between
the two methods.
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Table 4.3: Sessional averaged homogeneity values are shown for the specified
parcellation methods. Mean values are shown alongside the standard deviation
of the data for the individualized IPA (iIPA), group IPA (gIPA) and anatomical
parcellation methods.

Homogeneity

Male Female

Session 1
iIPA 0.18 ± 0.15 0.19 ± 0.13
gIPA 0.18 ± 0.14 0.18 ± 0.12
Anatomical 0.20 ± 0.11 0.20 ± 0.11

Session 2
iIPA 0.14 ± 0.11 0.16 ± 0.12
gIPA 0.15 ± 0.12 0.15 ± 0.11
Anatomical 0.15 ± 0.09 0.17 ± 0.10

Session 3
iIPA 0.05 ± 0.03 0.06 ± 0.04
gIPA 0.04 ± 0.03 0.06 ± 0.04
Anatomical 0.06 ± 0.05 0.07 ± 0.05

4.3.4 IPA Graph Theory Analysis
The results of applying the af-IPA parcellations to graph theory analysis can
be seen in Figure 4.6 below. Out of the five metrics shown, the iIPA does not
show any significant differences between the sexes under the Wilcoxon rank-sum
test while the gIPA exhibits four. All significant differences occur in the severe
TBI group where a sex-based difference in graph modularity and functional
connectivity strength can be seen for the second session timepoint with further
differences being found in the efficiency and characteristic path length for sixty-
three days post TBI induction data.

4.4 Discussion
Through visual inspection of the average iIPA parcellations seen in Figure 4.1,
ROIs are similar in their spatial definitions across the different groups of indi-
viduals. While individuals exhibit differences in the exact spatial distribution
of ROIs as seen in Figure 4.2, cross-group average anatomical placements are
consistent. When investigating the same trends at the individual level, the con-
clusion isn’t quite as clear. As seen in Figure 4.2 many ROIs exhibit mean DSC
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Figure 4.6: Various graph theory metrics are shown both for the group (gIPA)
and individualized (iIPA) IPA parcellations. The four metrics shown are density
(Den), characteristic path length (CPL), modularity (Mod), and functional con-
nectivity strength (FCS) with male individuals being shown in blue box plots
and females being shown in red box plots. The data is further separated along
sessional lines with the dark vertical lines shown in each plot delineating pre-
TBI, one day post-TBI induction, and 63 days post-TBI induction, while the
different experimental groups are shown along the x-axis for each plot. Signif-
icant differences are also overlaid in the plot with * indicating a p-value of less
than 0.05.

70



values above 0.5 with some reaching a DSC of 0.6 implying large consistencies in
ROI definition, many ROIs exhibit poor overlap with other individuals in the
group. Because iIPA ROI definitions are directly based on the dual-regression
of gICA components, inconsistencies in ROI definitions all stem from indi-
vidual differences in IC activation. This presents a challenge in longitudinal
analyses where, especially in the case of acute TBI, anatomical features may
shift due to swelling and cerebral hemorrhage. Despite some inconsistencies
in spatial distribution, ROI sizes are very consistent across males and females
with only 3 ROIs showing any significant difference. These data also result in
gIPA and iIPA ROIs that are closer in size than what was seen in our previous
work (Reeves et al., 2025). Previous changes in ROI sizes were linked with the
difference in activation between gICA and dual-regression ICs. Following that
same logic, the difference between gICA and dual-regression map activation
patterns must be smaller. This was confirmed by central moment analysis where
pig kurtosis ratios were significantly lower than those in humans and showed
the largest effect size of -0.459. This change in kurtosis ratios between the gICA
and dual-regression results (shown in Figure 4.4) is likely what leads to the dif-
ference in the gIPA/iIPA ROI size distributions between our previous study
and this one. This finding helps reinforce the hypothesis originally proposed.

While spatial definitions appear positive, the lack of clear IPA superiority in
ROI homogeneity values versus the anatomical parcellation is an issue. More
surprising than the af-IPA performance, is the ability of the anatomical parcel-
lation to maintain higher homogeneity values in many ROIs than IPA. In our
previous study, ROI homogeneity was clearly inversely proportional to ROI
size, but the pig data presented here doesn’t show such a clear trend. Some
ROIs that are smaller in the anatomical parcellation (i.e. ROIs 88, 128, and 140)
exhibit clearly depressed homogeneity values as compared to other small ROIs
such as ROI 64. Given that ROI 64 is much larger in the gIPA parcellations and
shows similar homogeneity values to the anatomical, it is difficult to establish
the same inverse relationship between ROI size and homogeneity in this model
system. Homogeneity appears to be more related to the location of the ROI
than the size of the ROI. This could be related to the young developing pig
brains as compared to fully matured humans.

Two factors that weren’t previously explored were the impact of acute in-
jury and how the af-IPA can perform in a longitudinal analysis. From Figure
4.5 we can see a clear reduction in homogeneity values which may be related to
known regional homogeneity decreases related to development (Hong, 2023),
but could also be linked to expected deficiencies caused by TBI (J. Zhan et al.,
2015). The effects of TBI may be seen in sex-linked differences observed in the
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parcellations, however. Through analyzing sex-based differences in homogene-
ity distributions, Figure 4.5 shows IPA can produce a significant difference in
homogeneity values for certain ROIs. Specifically, across both IPA methods,
ROIs 2 and 18 show an elevated homogeneity in the female individuals. When
looking at all significant differences shown in parcellation methods, the female
individuals always show an elevated mean homogeneity as compared to their
male counterparts. Given that the majority of these significant changes occur
at the session 3 timepoint, these differences could be indicative of sex-linked
difference in TBI compensatory mechanisms.

The method described here is highly dependent on the quality of ICA per-
formed prior to its implementation. The gICA and dual-regression ICs are
what ultimately become the ROIs defined in the different parcellations, so en-
suring those are the best representations of the data is of vital importance to
ROI definition. This becomes especially salient when devising the best strategy
for longitudinal studies. In this study, it was decided to improve the statistical
power of the data by using as many sham individuals as possible which means
that sessions one, two, and three sham individuals were used as one dataset
for gICA. This ensures consistency of IC number across the data and that all
sessions and data start from the same gICA, but it also means that the gICA is
based on data of developing pigs over a two-month span. ROI assignment num-
ber consistency is a very helpful result of this gICA scheme as a given IC will
represent the same activation scheme across all individuals and timepoints. An
alternative to this strategy is to run multiple gICAs across the different sessions
which could be a better snapshot in time but doing so results in lower statisti-
cal power and inconsistencies in IC assignment number. While this method is
appealing due to it being more sensitive to sessional changes, the ICs assigned
in the gICA would be inconsistent across timepoints requiring further analysis
to define analogous ROIs over time.

ROI assignments with the longitudinal ICA resulted in ICs that were consis-
tently labelled over each session, but when making comparisons to the anatomi-
cal ROIs, ROI reassignment was performed. This ROI reassignment is a proba-
bilistic process which places all ROIs on top of each other to calculate an overlap
score. Based on the highest overlap, original ROI labels are reassigned to analo-
gous ROI labels. This process is used to take anatomical labels to IPA labels but
could be adapted to find consistent ROIs across time using a sessional gICA
scheme. A final issue with the current scheme of IPA is the inconsistencies in
the number of ROI defined in iIPA. Initial testing found that ROI size thresh-
olding plays a large role in the consistency of ROI definitions. This effect is
more pronounced in ROIs that are near the minimum size threshold, but be-
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cause of differences in individual data can affect larger ROIs as well. Allowing
for smaller ROIs or removing the strict GM overlap requirement would lead
to an increase in consistency of the number of ROIs defined.

Global graph theory metrics shown in Figure 4.6 show sex-linked differences
in the gIPA parcellations but no significant differences in the iIPA parcellations.
This likely stems from the differences observed in ROI size, number, and po-
sition which produced slightly different distributions FC values resulting in
divergent graphical organization. The one day post TBI induction timepoint
sex-linked differences in functional connectivity strength and modularity im-
ply that the female severe TBI group is, even at one day after TBI induction,
responding in a different fashion to TBI than the male individuals. The gIPA
severe TBI group 63 days post TBI efficiency and characteristic path length
differences are two sides of the same coin implying that these graphs are less
connected, and information moves less freely throughout the graph for female
individuals. Furthermore, sixty-three days post TBI induction graphs clearly
exhibit an overall different organization strategy as compared to sessions one
and two. It is unclear exactly what factors influence the change in graph theory
metrics, but one day post TBI induction differences may be tied to compensa-
tion related to the acute TBI while sixty-three days post TBI differences may
be connected to a deeper restructuring of brain functional activation patterns.
While there is evidence to suggest that females in animal models exhibit better
outcomes than their male counterparts, methodology and experimental design
play a large role in that finding. It is difficult to say definitively what differences
exist and what the expectations should be for the individuals in this acute and
post-acute phase of TBI, but the gIPA appears to match those findings in the
literature for human TBI (McGlade et al., 2015; S. Wang et al., 2018).

The af-IPA underperforms in attempting to achieve its goals of spatial con-
sistency and functional homogeneity. Being unable to match spatial consistency
of the a-IPA while also being unable to outperform the idealized anatomical
atlas are troubling findings. To get a broader perspective on the IPA’s perfor-
mance, however, there must be a discussion of the factors that produced these
results. The purpose of this study was to discover sex-linked differences in a de-
velopmental pig TBI model. While the goals of this study are lofty and worth
striving for, they bring with them many confounding variables that make data
processing difficult. First, The difference in weight between when the pigs enter
and when they leave the study can be upwards of 200 pounds. This means that
physical considerations such as which coils to use and how best to scan the indi-
viduals are a serious consideration. Based on physical changes, data quality, and
scanning optimization, different coils were used for the different timepoints and
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concordantly data sizes changed over time. Further confounding the results,
there is an expectation of sex-linked differences in response to TBI (S. Wang
et al., 2018) as well as the separation of the individuals into three distinct treat-
ment groups. Taking all these factors into account, the confounding variables
in the system produce a complex and challenging dataset to work with. Placed
under this lens doesn’t absolve the af-IPA of its performance issues, but it helps
describe a possible origin for the underlying difficulties. Despite the analytical
challenges, the af-IPA is capable of building adaptable parcellations based on
the underlying data present in the experimental data.

4.5 Conclusion
In this work, the performance of an improved version of the independent com-
ponent analysis based parcellation algorithm (IPA) known as the gray matter
IPA (af-IPA) was further profiled. Through the dice similarity coefficient, the af-
IPA was able to show consistency in ROI definition but couldn’t significantly
outperform the anatomical parcellation in terms of region of interest homo-
geneity. This underscores the challenges in the processing of this model system,
especially in the acute phase when individuals may exhibit large areas of signal
loss. While the individualized parcellations couldn’t detect any sex-linked differ-
ences in graph theory metrics, group IPA was used to find significantly increased
functional connectivity strength in the female individuals which match find-
ings in the literature. While the TBI model system presents many challenges in
methodological development, the af-IPA represents an adaptable method for
parcellating the brain into regions of interest. The removal of an anatomical
anchor allows for adaptability in cases of midline shift or other scenarios where
signal loss or swelling causes a shift in the anatomical landmarks which idealized
anatomical parcellations are particularly susceptible to.
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Chapter 5

Conclusion

The evolving data acquisition strategies for MRI and their proliferation in num-
ber demand improvements in research and analysis methodology. Increasing
field strengths, improved scanning techniques (e.g., simultaneous multislice
imaging (SMS) techniques Barth et al., 2016) and reconstruction methods (e.g.,
super-resolution Payne et al., 2023) are producing MRI images with greater
resolution and detail than ever before. Due to the improvement in data quality
but also the sheer volume of data, fMRI shows promise towards revealing a
more sophisticated interpretation of function of the human brain. Through
functional imaging, we are beginning to unravel many aspects of human con-
sciousness and disease states by applying the inherent activation pattern of the
brain to higher level analyses, although the scope and utility of what we may
learn remains to be seen. It is at the intersection of increasing field strength
and improvements in fMRI methodology that the preceding work has made its
mark.

The initial work discussed here represented a very specific but meaningful
change to statistical testing which produced significant changes in the detection
of group-based differences. The brute-force mean-variance matching algorithm
significantly improved the performance of the difference degree test (DDT) by
increasing true positivity rates while also maintaining nominal false positivity
rates. By increasing the sensitivity of the DDT and applying it to experimental
data, several regions that could be linked to neurological adaptations to hyper-
tension were found, and given the increase in sensitivity, the results are more
likely representative of the data than the previous unmodified version. The
DDT is at the forefront of determining graph-based group-linked changes in
the data and the improvement made here helps to further its goal of aiding
those analyses. While the work was able to improve the performance signifi-
cantly, there is an upper limit to the progress than can be made by focusing
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on improving the performance of that specific test. The development of the
IPA symbolizes a step in the right direction of methodological development.
The focus of the IPA is not limited to statistical testing, but to answer a larger
question in the field: “what method of parcellation best represents the data?”
Whether the effect of the IPA is large or small in the field is still to be seen, but
the philosophy used in the development of the IPA is what is required to im-
prove the field. To push forward, we must identify problems in the field and
work along several paths to achieve a more wholistic result.

The foundational thesis of the IPA was to reduce the influence of interpola-
tion and to allow the data to speak for itself. There are very real issues that come
with assuming an individual can or should fit an idealized anatomy. Beyond the
fact that a researcher’s internal biases can influence the output of a study, the
individuals chosen for study also shape the output on an individual level based
on their own personal anatomical differences or clinical history. When the se-
lection and research biases play into construction of idealized parcellations, the
resulting atlas is then shaped by these factors. These issues were at the forefront
when initially designing the functionality of the IPA.

Initial development of the anatomical IPA (a-IPA) provided a strong base
from which further improvements could be made. It could build spatially con-
sistent and functionally homogeneous ROIs which yielded parcellations that
could be used in post-hoc analyses. Its use in functional connectivity analyses
is of particular interest, as the ROIs are defined from functional activation pat-
terns of the data. While this was a solid starting point, one of the larger goals of
the a-IPA was to remove the requirement of idealized anatomical parcellations.
This led to the development of the anatomy-free IPA (af-IPA) which removed
the need for an idealized anatomical atlas from the ROI construction procedure
by replacing it with a need for structural scans obtained from the same individ-
ual. This step produced parcellations that were able to address real-world issues
in acute-phase traumatic brain injury. Issues like signal drop out and midline
shift can now be compensated for by using the af-IPA. By using the individ-
ual’s own structural scans, af-IPA parcellations can adapt to large anatomical
changes.

While the IPA is a very useful tool, the field of MRI research is currently
grappling with issues that will likely cause great change over the next few years.
One immediately prescient issue is data reproducibility (Stikov et al., 2019;
Stöcker et al., 2025). The IPA is just another tool in the analytical toolbelt, but
too much heterogeneity in the field has led to a divergence of findings across
studies (Vogt, 2023). While it may not be the final answer to data reproducibil-
ity, the IPA helps reduce the effect of interpolation on the data, which could

76



improve the homogeneity across studies. Another force of change in the field
is the advent of so-called “artificial intelligence” algorithms. These algorithms
have already made an impact the field of radiology and the clinical use of MRI
(Mitsuyama et al., 2025; Stöcker et al., 2025; Truhn et al., 2023), and they are
increasingly relied upon for nearly every task (Morgenstern et al., 2021). Ma-
chine learning algorithms have already had an impact on the field (Gassenmaier
et al., 2021), but the proliferation “AI” promises to drastically change analyses in
the near-term. One issue that machine learning and now “AI” algorithms have
is their incredibly massive power consumption which has led to full-scale and
scalable power plants being designed solely for their use. In contrast to these
methods, the IPA can run in a matter of minutes on a relatively low-powered
consumer-grade desktop computer. Another more technical issue plaguing cur-
rent “AI” systems is the so-called “AI hallucination” (Slater & Humphries, 2025)
where the information being presented is false either in part or in its entirety.
Techniques must advance and new technologies must be explored for the bet-
terment of science, but the exponential growth in power and data consumption
will likely be unsustainable in the long run.

Current methods rely too much on idealizing the individual and guessing
what data might look like. The IPA fills an analysis niche by reducing the effect
of interpolation and allowing the individual’s data to speak for itself. Because of
the specific role the IPA fills, it still can be used to help and improve the analysis
of fMRI data. The next step in the journey of the IPA is in building upon the
function and further profiling its capabilities. Further improvements to the
method would give it greater power and allow it to continue competing with
other cutting-edge techniques. Refining the noise and artifactual component
identification would be of great benefit as it would allow for the construction
of an all-in-one package which would require little human feedback to take the
output from independent component analysis and output the highest quality
parcellations. Refinement and development of the software into a standalone
package would also help get it into the hands of more researchers which could,
in turn, help refine the method even further. Both in its current state and
with future improvements, the IPA is a promising direction towards assisting
researchers in finding the next great breakthrough in neuroimaging.
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Chapter 3
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ROI ID IPA 35 Anatomy IPA 44 Anatomy Personode RSN
1 Right Rostral Middle Frontal Right Rostral Middle Frontal Dorsal Attention
2 Right Superior Parietal Right Pericalcarine Auditory
3 Right Inferior Parietal Right Superior Parietal Basal Ganglia
4 Right Lingual Right Inferior Parietal Cerebellum
5 Right Medial Orbitofrontal Right Lingual Cognition/Emotion
6 Right Putamen Right Postcentral Default Mode, Dorsal/Posterior
7 Right Pars Triangularis Right Medial Orbitofrontal Default Mode, Medial
8 Right Ventral Diencephalon Right Vermal lobules VIII-X Executive Control
9 Right Middle Temporal Right Putamen Frontoparietal, Left
10 Right Precuneus Right Pars Triangularis Frontoparietal, Right
11 Right Pars Opercularis Right Ventral Diencephalon Ventral Stream, Left
12 Right Lateral Occipital Right Middle Temporal Ventral Stream, Right
13 Right Caudal Middle Frontal Right Precuneus Postcentral
14 Right Cuneus Right Pars Opercularis Precentral
15 Right Superior Temporal Right Lateral Occipital Precuneus
16 Right Cerebellum Gray Matter Right Superior Frontal Salience
17 Right Posterior Cingulate Right Caudal Middle Frontal Sensorimotor
18 Right Vermal lobules I-V Right Cuneus Visual, Primary I
19 Right Supramarginal Right Superior Temporal Visual, Primary II
20 Left Rostral Middle Frontal Right Cerebellum Gray Matter Visual, Medial
21 Left Rostral Anterior Cingulate Right Posterior Cingulate Visual, Higher Level
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22 Left Superior Parietal Right Vermal lobules I-V
23 Left Inferior Parietal Right Supramarginal
24 Left Lingual Left Rostral Middle Frontal
25 Left Medial Orbitofrontal Left Rostral Anterior Cingulate
26 Left Paracentral Left Superior Parietal
27 Left Pars Triangularis Left Inferior Parietal
28 Left Middle Temporal Left Lingual
29 Left Caudal Anterior Cingulate Left Medial Orbitofrontal
30 Left Precuneus Left Paracentral
31 Left Pars Opercularis Left Putamen
32 Left Lateral Occipital Left Pars Triangularis
33 Left Thalamus Left Middle Temporal
34 Left Cerebellum Gray Matter Left Caudal Anterior Cingulate
35 Left Supramarginal Left Precuneus
36 Left Pars Opercularis
37 Left Lateral Occipital
38 Left Thalamus
39 Left Caudal Middle Frontal
40 Left Superior Temporal
41 Left Cerebellum Gray Matter
42 Left Caudate
43 Left Vermal lobules I-V
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44 Left Supramarginal
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