TOwWARDS MITIGATING ENVIRONMENTAL
R1SKS FOR SUSTAINABLE DEVELOPMENT:
THE ROLES OF MIGRATION, WIRELESS
EMERGENCY ALERTS, AND FEDERAL
DisASTER AID

by

WENTIAN JIANG
(Under the Direction of Mateusz Filipski)
ABSTRACT

This dissertation examines how migration, public communication, and dis-
aster assistance affect environmental outcomes and recovery. It comprises three
empirical studies using causal inference and high-resolution data to evaluate
policy responses to environmental risks in both developing and developed con-
texts. Chapter 1 investigates how rural out-migration in Mon State, Myanmar,
influences local deforestation. Combining household migration surveys with
satellite data from 2000 to 2015, the study finds that each additional migrant
is associated with reduced forest loss, with remittance income likely enabling
a shift away from biomass fuels. Chapter 2 evaluates the U.S. Wireless Emer-
gency Alerts (WEA) system. Using a Regression Discontinuity in Time design
around the 2012 rollout, the study finds that WEA reduced storm-related deaths
by 4.3 per event day, implying over 3,600 lives saved. Chapter 3 analyzes the ef-
fect of FEMA Public Assistance on post-hurricane recovery. Using county-level
nighttime light data and an event-study difference-in-differences approach, the
study finds that treated counties show stronger recovery trajectories, with eftects
growing over time. Together, these studies highlight how migration behavior,
public information, and federal aid contribute to environmental resilience and

disaster response effectiveness.

INDEX WORDS: [Out-migration, Deforestation, Wireless Emergency
Alerts, FEMA Public Assistance, Disaster recovery,
Remote sensing data, Nighttime lights, Infrastructure

resilience, Causal inference]



TowaRDS MITIGATING ENVIRONMENTAL RISKS FOR
SUSTAINABLE DEVELOPMENT: THE ROLES OF MIGRATION,
WIRELESS EMERGENCY ALERTS, AND FEDERAL DISASTER AID

by
WENTIAN JIANG

M.S., Georgetown University, 2019

A Dissertation Submitted to the Graduate Faculty of the
University of Georgia in Partial Fulfillment of the Requirements for the
Degree.

DocTOR OF PHILOSOPHY

ATHENS, GEORGIA

2025



©2025
Wentian Jiang
All Rights Reserved



TOWARDS MITIGATING ENVIRONMENTAL RISKS FOR
SUSTAINABLE DEVELOPMENT: THE ROLES OF MIGRATION,
WIRELESS EMERGENCY ALERTS, AND FEDERAL DISASTER AID

by

WENTIAN JIANG

Major Professor:  Mateusz J. Filipski

Commnittee: Susana Ferreira
Michael K. Adjemian
Jeftrey H. Dorfman

Electronic Version Approved:

Ron Walcott

Dean of the Graduate School
The University of Georgia
August 2025



DEDICATION

To those who believe that progress and sustainability can coexist.

We live in a world facing immense challenges, with climate change standing
as one of the greatest threats to human well-being. As a future economist, I
dedicate this work to the fight for a more resilient and sustainable future. While
some seek to address environmental problems by urging others to consume
less or slow development, I believe that dignity, prosperity, and environmental

responsibility need not be mutually exclusive.

True solutions will come not from deprivation, but from innovation — from
technological breakthroughs like controlled nuclear fusion to better policy and
economic design. Though economists alone cannot solve the climate crisis, we
can help buy time for science by guiding more efficient resource use, supporting
cleaner energy transitions, and shaping more adaptive, inclusive systems. This
work is a small step toward that goal.
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INTRODUCTION

Climate change, natural disasters, and environmental degradation are among
the most pressing global challenges confronting policymakers and communi-
ties. While the impacts of these risks are increasingly visible, the mechanisms
through which policies, behavior, and institutions shape environmental and
recovery outcomes remain an active area of empirical inquiry. This dissertation
contributes to this literature by examining how migration, public risk commu-
nication, and federal disaster aid interact with local responses to environmen-
tal risk. Across three standalone but thematically related papers, it employs
high-resolution remote sensing data, administrative records, and household
surveys to provide causal evidence on the effects of behavioral and institutional

responses to environmental shocks.

Chapter 1, Causal Effects of Out-Migration on Local Deforestation: Evidence
from Rural Myanmar, explores the relationship between rural out-migration
and deforestation in Mon State, a region marked by rich tropical forests and
sustained deforestation pressures. Using an original panel dataset that merges
household migration surveys with annual forest loss and other environmen-
tal indices from satellite imagery between 2000 and 2015, the chapter employs
dynamic panel system GMM estimation with localized 1000-meter buffers to
measure forest impacts. The findings show that each additional migrant is as-
sociated with more than 5 square meters less forest loss per year. The analysis
suggests that remittance income facilitates a household energy transition away
from biomass fuels, offering a novel mechanism through which migration indi-

rectly reduces local deforestation.

Chapter 2, Do Mobile-Based Emergency Alerts Save Lives? Evidence from a Re-
gression Discontinuity in Time, evaluates the effectiveness of the U.S. Wireless
Emergency Alerts (WEA) system in reducing storm-related mortality. Exploit-
ing the sharp nationwide implementation of WEA in April 2012, the study
applies a Regression Discontinuity in Time design to fatality and damage data



for 361 major storms from 2000 to 2024. It finds that the launch of WEA re-
duced storm-related deaths by an average of 4.3 fatalities per event day, implying
that the system has saved over 3,600 lives since deployment. The analysis quan-
tifies the resulting societal benefit at roughly $so billion, with strong support
from robustness checks and falsification exercises. These results underscore the
role of a centralized wireless risk communication system in delivering life-saving

information under extreme weather risk.

Chapter 3, The Effect of Disaster Aid on Recovery: Evidence from FEMA Public
Assistance Program, examines the post-disaster recovery effects of the FEMA
Public Assistance (PA) program. It constructs a county-level panel from 2017
to 2022 that combines FEMA administrative records, socioeconomic indica-
tors, and VIIRS nighttime lights—a proxy for infrastructure functionality and
economic activity. Using an event-study difference-in-differences design with
inverse probability weighting, the study identifies dynamic treatment effects
across five post-hurricane periods. Counties receiving FEMA PA recovered sig-
nificantly faster than comparable controls, with nightlight intensity increasing
2.3-2.5% more within 6—9 months and 3.3-3.5% more after two years. Results
are robust to alternative specifications and alternative treatment definitions.
This chapter contributes new evidence on the effectiveness of large-scale public
investment programs in fostering community resilience.

Together, these chapters demonstrate how migration, public information sys-
tems, and federal aid shape responses to environmental risks. By integrating
remote sensing data, administrative microdata, and econometric techniques,
this dissertation contributes to the growing body of research on sustainable
development, environmental resilience, and public policy effectiveness in the

context of climate and disaster risk.
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CAUSAL EFFECTS OF
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1.1 Introduction

Migration is one of the most transformative forces shaping rural livelihoods and
landscapes worldwide. Each year, millions of people leave rural areas. They re-
shape local economies through remittances, labor shifts, and transferring ideas,
knowledge, and technologies (Chiodi et al., 2012; Rapoport & Docquier, 2006;
J. E. Taylor et al., 2003). Migration also generates profound environmental con-
sequences in the places of origin. These consequences remain underexplored in
much of the migration literature. Case studies such as Liu et al., 2007 on Wo-
long, China, show that out-migration can reduce local environmental pressures,
including firewood collection. However, remittance income may stimulate con-
struction activities, agricultural expansion, or increased consumption. These
activities can exacerbate resource extraction and environmental pressures (Da-
mon, 2010; Ervin et al., 2020; Gray & Bilsborrow, 2014). The net direction
and magnitude of these effects remain theoretically and empirically ambiguous.
This ambiguity carries important implications for conservation and sustainable
development.

Although the relationship between migration and environmental change has re-
ceived growing attention recently, much of the literature has primarily examined
how environmental stressors—especially climate variability—act as drivers of
human mobility. This perspective frames migration as a form of adaptation to
climate change, and has motivated a substantial body of research in economics
and environmental studies (Cattaneo et al., 2019; Millock, 2015). These studies
focus on how temperature shocks, droughts, or other natural hazards influence

migration patterns, especially in low-income and agrarian settings.

In contrast, much less is known about how migration, once it occurs, affects
environmental outcomes in migrants’ places of origin. A small but growing
number of studies have begun to explore the environmental consequences of
migration, particularly concerning land use and deforestation (Angelsen et al.,
20205 Carr, 2009; Ervin et al., 2020). However, findings from this literature
remain mixed. Some suggest that out-migration reduces local environmental
pressure by lowering household labor supply and firewood demand (Liu et al.,
2007; M. J. Taylor etal., 2016). In contrast, others argue that migration-induced
remittance flows may fuel environmentally intensive activities, such as land
clearing, home construction, or agricultural intensification (Damon, 2010; Gray

& Bilsborrow, 2014).



A major limitation in the existing literature is the difficulty of establishing causal
effects. Because migration is typically non-random and often co-occurs with
environmental shocks or economic changes, distinguishing its independent ef-
fect on forest outcomes is difficult. Few studies explicitly address endogeneity
concerns or leverage panel data and high-resolution spatial indicators to dis-
entangle competing mechanisms. As a result, there is limited causal evidence
on how rural out-migration shapes deforestation in sending areas over time.
We contribute to filling this gap by providing credible causal evidence from
rural Myanmar. Using dynamic panel estimation, we find that out-migration
significantly reduces local deforestation: each additional migrant is associated
with approximately a 5.4 m? reduction in annual forest loss. This relationship

remains robust across multiple model specifications.

Rural Myanmar presents a compelling setting for this inquiry: the country has
one of the highest rates of forest dependency in Southeast Asia, with many ru-
ral households relying on local forests for fuelwood, food, and construction
materials. At the same time, sustained out-migration, especially to neighbor-
ing Thailand, has reshaped household labor dynamics and remittance flows
in forest-adjacent communities. We construct a novel spatial panel dataset by
combining household-level migration histories with high-resolution remote
sensing data on forest loss from 2000 to 2015. While most prior studies rely
on cross-sectional data and descriptive correlations, our approach addresses key
endogeneity concerns, such as unobserved time-invariant household characteris-
tics, reverse causality, and dynamic feedback, using a dynamic panel framework
estimated via System GMM (Blundell & Bond, 1998). Specifically, we exploit
variation in the timing and intensity of household migration events, control
for past deforestation trends through autoregressive terms, and use lagged lev-
els of deforestation as internal instruments. We further incorporate household
and year fixed effects to account for unobserved heterogeneity and standard
shocks. Instrument validity and model specification are rigorously tested using
Hansen J and Arellano-Bond AR(2) diagnostics. In addition, falsification tests
with placebo migration variables and reverse causality checks support the causal
direction from migration to reduced deforestation. Together, these strategies
provide a robust empirical foundation for identifying migration’s environmen-
tal effects in forest-dependent rural settings.

We further explore a novel mechanism through which migration may reduce
deforestation: remittance-induced energy transitions. Specifically, we find that
migration facilitates household access to electricity, particularly for cooking,

thereby reducing reliance on firewood and charcoal. This mechanism highlights



a previously underappreciated channel linking migration and environmental
sustainability.

The remainder of the paper is organized as follows. Section 2 describes the data
sources and construction of the panel dataset. Section 3 explains the empirical
methodology. Section 4 presents the main estimation results. Section s dis-
cusses robustness checks. Section 6 conducts falsification tests, and Section 7
examines reverse causality checks. Section 8 explores the mechanisms underly-

ing the main results, including a novel mechanism. Section 9 concludes.

1.2 Background and Data

This study focuses on rural households in Mon State, located in southeastern
Myanmar, a region known for its rich tropical forests and environmental diver-
sity. Mon State lies along the Gulf of Martaban and borders Thailand, with
communities primarily engaged in subsistence farming, small-scale agriculture,
and natural resource extraction. Forests in this region serve as an essential source
of livelihood, providing firewood, timber, wild foods, and construction mate-
rials, while supporting regional biodiversity. Myanmar is recognized as one of
the most forested countries in Southeast Asia, but it has experienced significant
tropical deforestation in recent decades. In 2001, Mon State contained approxi-
mately 579,200 hectares of tree cover, including primary and secondary forest,
covering about 36% of its land area (Global Forest Watch, 2024). From 2001 to
2024, the region lost more than 145,000 hectares of tree cover, equivalent to a
25% decline from its 2001 baseline (Global Forest Watch, 2024). Although Mon
State has experienced net forest loss from 2001 to 2024, localized studies report
forest growth in certain areas between 2001 and 2010, including annual gains of
60.8 km” and modest carbon sequestration (Kyaw et al., 2020). This suggests
forest dynamics in the region are spatially and temporally heterogeneous. Since
migration is a common livelihood strategy and a primary income source for
many households in Mon State (Filipski et al., 2017), examining its effects on de-
forestation is essential for understanding local forest dynamics. It underscores
the need for household-level analysis of migration’s environmental impacts.

To examine the relationship between migration and deforestation, we use household-
level data from the 2015 Mon State Rural Household Survey (CESD, 2015),
which employed a stratified random sampling design to select a representative
sample of villages, as shown in Figure 1.1, and households across Mon State.



Although the survey was conducted cross-sectionally, it includes retrospective
information on the year each household member migrated out or returned. We
leverage this retrospective detail to reconstruct household-level migration his-
tories and generate a panel structure for out-migration and return migration
events. This approach allows us to track annual changes in migration status for
each household from 2000 to 2015, enabling panel econometric analysis despite
the cross-sectional nature of the baseline survey. From these migration histories,
we construct three key cumulative variables at the household-year level: out-
migration (Out—migrationi’ ;) return migration (Return-migrationL .)»and cur-
rent migrants (Current Migrants; /) Out-migration, , denotes the total num-
ber of household members who had left household 7 between the base year
2000 and year ¢. Return-migration, , captures the cumulative number who
had returned to the household by year t. We then define Current Migrantsh .=
Out-migrationi’ i Return—migrationL ,» representing the number of household
members who remained away as of year t. These cumulative indicators reflect
the intensity and persistence of household migration exposure over time and
allow us to assess both immediate and lasting effects of household demographic

change on local deforestation outcomes.

1.2.1 Construction of the Panel Dataset
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Having constructed a household-level migration panel using retrospective mi-
gration histories, we link each household’s migration status—captured through
Out-migrationt, ¢, Return-migrationz, £, and Current Migrants, ,—to spatially



matched environmental variables. Specifically, we geocode each household
based on GPS coordinates recorded during the baseline survey and generate a
1-kilometer radius buffer around each household location to capture surround-
ing environmental conditions (see Figure 1.2). Within each buffer, we overlay
annual satellite-based raster datasets from 2000 to 2015 and extract environmen-
tal indicators, including forest cover loss (Hansen et al., 2013), precipitation
(Funk et al., 2015), soil temperature, and surface wind speed (Mufoz Sabater,
2019). This data fusion strategy yields a household-year panel dataset with rich
spatiotemporal variation, allowing us to examine how different migration be-
haviors relate to environmental outcomes over time.

Figure 1.3 presents a satellite-based visualization of forest loss in 2015 surround-
ing a selected household in rural Myanmar. The map shows a r-kilometer buffer
(blue circle) centered on the household, overlaid with red pixels representing
areas where forest loss occurred specifically in the year 2015, as identified by the
Global Forest Change (GFC) dataset developed by Hansen et al. (Hansen et
al,, 2013). Each red pixel corresponds to a 30-meter by 30-meter area (900 m*)
where tree canopy cover—originally greater than 30% in the year 2000—was
completely removed in that year. This definition of forest loss captures stand-
replacing disturbances (i.e., complete canopy removal), regardless of the un-
derlying cause, such as agricultural expansion, infrastructure development, or
natural events.



Figure 1.3: Satellite visualization of forest loss (red) in 2015 within a -km bufter
(blue) around a household in Mon State, based on Hansen et al. (2013).

Importantly, this measure of deforestation differs from forest degradation. The
Hansen dataset focuses solely on total canopy loss, thereby providing a conser-
vative estimate of forest change. In contrast, forest degradation refers to partial
canopy removal or other disturbances (e.g., selective logging, fire, or fragmenta-
tion) that reduce forest quality but may not be detected as a loss in this dataset.

1.2.2 Data Overview

Table 1.1 presents summary statistics for key variables in our merged panel dataset.
Forest loss varies widely across households: while some households experience
minimal deforestation (as little as o m? over the sample period), others experi-
ence substantial loss exceeding 471,000 m?. Migration also shows considerable
heterogeneity, with household-level migration events ranging from o to 6 over
the 2000-2015 period. These patterns reflect meaningful variation across both
environmental exposure and household demographic behavior, strengthening
the identification of migration’s effect on deforestation. The variation in out-
comes and treatment intensity supports the feasibility of household-level panel
econometric analysis.



Table r.1: Summary statistics

Variables Mean Min  Max
6
Def. : 5 471
eforestation (m~) (15266.56) o 471346
1276
Out migration o127 6
(0.4346)
Return migration (oéilg; 6 ° 6
> out migration ZZ;;(S)) o 7
0.0806
return migration o) 6
2 & (03577)
. 0.1578
E -0. .
astwind (m/s) (0.2210) 0.348 LIOS
. 0.6180
Northwind (m/s) 1.269
(0.1947)
.8
Precipitation (mm) 222.0785) 328.8 735
. . 300.3
Soil temperature (Kelvin 297.6  302.4
P ( ) (0.8437) e

Number of households 703
Number of observations 11248

Notes: Standard deviations are shown in parentheses.
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1.3 Empirical Methodology

1.3.1 Dynamic Panel Model with Fixed Effects

In this study, we employ a dynamic panel model with fixed effects to estimate
the relationship between migration and deforestation, as specified in Equations
1 and 2. Our key explanatory variables include the number of out-migrants
(Out-migration, ,), return-migrants (Return-migration, ), and current migrants
(Current Migrants, ,) for household 7 in year £.

To ensure our estimates reflect population-level dynamics rather than just the
sampled households, we apply enumeration area (EA)-level survey weights to
the household migration variables. Specifically, each sampled household’s mi-
gration count is multiplied by its corresponding EA weight, approximating the
number of households the sampled unit represents. This weighting adjusts for
the sampling design and helps mitigate the risk of overstating per-migrant ef-
fects. This is particularly important in settings where spatial bufters used for
environmental covariates may encompass other households, including those
not captured in the survey sample.

Environmental covariates include total annual precipitation (Precipitation, ,,
in millimeters), average soil temperature (Temperatureh .» in Kelvin), and east
and north wind velocities (Eastwind; ; and Northwind; ;, in meters per sec-
ond). These are constructed from remote sensing data and aggregated within a
1-kilometer radius spatial buffer centered at each household’s exact geographic
coordinates. Since environmental shocks can jointly affect proximate house-
holds, using EA weights is a practical way to reduce bias from potential spatial
clustering and overlapping exposure zones.

Taken together, this modeling approach helps improve population representa-
tiveness and offers a partial correction for potential biases arising from spatial

overlap in buffer-based measurements.

Deforestation; ; = 3y + [31Deforestation; ;1 + ($Current Migrants_ ,+
+ B3Precipitation, , + (4 Temperature, , + [(5Eastwind; ;
+ BgNorthwind; ; + ; + 0, + €4, =1,2,--- |16
(r1)

1I



t
Deforestation; ; = 3y + (31 Deforestation; ;1 + 32 g Out-migration, _
=1
t

+ B3 Z Return—migrationw + B4Precipitationi7 ;
=1

+ BsTemperature, , + SsEastwind; ; + S7Northwind;
+5i+9t+€i,t>t: 1,2,"' ,16
(r.2)

Lagged dependent variables are commonly included in dynamic panel models
to account for temporal persistence in the outcome variable (Slutzky, 1937; Yule,
1927). In the context of deforestation, this approach captures inertia in land-
use practices, gradual forest degradation, and unobserved ecological or socioe-
conomic drivers that evolve over time. Our inclusion of Deforestationi, ¢ — 1
and, in some specifications, Deforestation?, t — 2 helps model this temporal
dimension of forest loss. This is consistent with recent spatial econometric ap-
proaches that explicitly frame deforestation as a spatiotemporal process (Can-
tillo & Garza, 2022).

To address omitted variable bias and unobserved heterogeneity, we also include
two-way fixed effects in Equations (1) and (2)—household fixed effects (6;) and
year fixed effects (6;). These controls, respectively, for time-invariant character-
istics (e.g., soil quality, proximity to roads) and for common temporal shocks
(e.g., national policies, climate anomalies). Together with AR terms, this model-
ing strategy allows us to control for both persistent unobserved household-level
characteristics and shared temporal dynamics that could confound the migra-
tion—deforestation relationship.

1.3.2 Estimation Strategy

We estimate dynamic panel models using the System GMM estimator (Blundell
& Bond, 1998). To address potential endogeneity in migration and the lagged
dependent variable, we simultaneously use the third, fourth, and fifth lags of
deforestation as internal instruments. Including these lagged terms as instru-
ments helps capture the persistence of deforestation over time while ensuring
instrument validity. Furthermore, we use the Hansen-Sargan ] test to check

12



for instrumental validity and apply the Arellano-Bond AR(2) test to check for

second-order serial correlations, ensuring correct model specification.

Unlike the Difference GMM (Arellano & Bond, 1991), which removes fixed
effects by first-differencing and uses lagged levels of the variables as instruments,
System GMM combines equations in both levels and differences. This ap-
proach improves efficiency and instrument strength, especially when variables
are persistent and the time dimension of the panel is short. In our context,
where deforestation and migration evolve gradually over time, System GMM is
preferred because Difference GMM suffers from weak instruments, which can
lead to biased estimates.

1.4 Main Results

Table 1.2 presents estimation results from our specifications utilizing data col-
lected within 1 km bufters, while Figure 1.4 visualizes the key estimates. We
observe a robust and statistically significant negative correlation between cur-
rent migrants or out-migration and deforestation, a finding consistent across
autoregressive (AR) models with different covariate sets. Specifically, our main
specifications (columns (1) and (2)) indicate that an increase of one current mi-
grant is associated with a reduction in deforestation of approximately 5.439 m?.
Similarly, each additional instance of out-migration corresponds to a decrease

in forest loss of around 5.843 m?.

Our estimates reflect the average effect of migration on deforestation, combin-
ing both extensive and intensive margins. While our variable Current Migrantsh .
captures the intensive margin by measuring the number of household mem-
bers currently living away, it does not separately identify the extensive mar-
gin—whether a household has any migration. Similarly, Out—migrationt , re-
flects the cumulative number of individuals who have ever migrated out, blend-

ing presence and scale.

To further validate our model specifications, we conducted a series of robustness
tests, including the Hansen J test, AR(2) tests, and Wald tests for coefficients
and time dummies. Specifically, all Hansen J-test results fail to reject the null hy-
pothesis of instrument validity, indicating our models satisfy over-identification
restrictions. The p-values of the J statistics are moderate (e.g., around o.1s for

the fully specified model), demonstrating that our models do not suffer from

3



p-value inflation, a common issue when excessive GMM instruments are used
(Roodman, 2009). Thus, our number of instruments, three in number (lags 3,
4, and s), is appropriately chosen. The Wald tests for coefhicients strongly reject
the null hypothesis that explanatory variables are jointly zero (P < 0.01), con-
firming their joint significance, including migration and environmental covari-
ates. The Wald tests for time dummies similarly confirm the joint significance
of year-fixed effects, justifying their inclusion.

Additionally, to evaluate the robustness of our results, we compare a fully spec-
ified System GMM model, which includes covariates such as precipitation and
soil temperature, with models excluding these controls. While the migration ef-
fect remains consistent in magnitude and significance, either the Hansen J test or
the Arellano-Bond AR(2) test fails in the models without controls, highlighting
concerns regarding instrument validity. This occurs because omitting impor-
tant covariates like precipitation and soil temperature can cause their effects to
be absorbed into the error term, violating the key assumption that instruments
are uncorrelated with the error term. Such contamination leads to endogeneity
in the instrument set, resulting in test failures. The complete model, incorpo-
rating all relevant controls, passes both the Hansen test (p = 0.145, p = 0.159) and
the Arellano-Bond AR(2) test (p = 0.990, p = 0.994), making it the preferred
specification. These findings suggest our main results are robust and not driven
by omitted variable bias; rather, the inclusion of additional covariates enhances
the reliability and validity of our instrumentation strategy.

Figure 1.4

Main Results (Effect of Current Migrants or Outmigration on Deforestation)

e +

Current Migrants or Outmigration
*

(1) ) (3) (4) 5) 6)
Main models Main models AR(2) models AR(2) models W/Out Controls W/Out Controls
Model Specification
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1.5 Robustness Checks

To ensure the robustness and credibility of our main findings obtained from the
System Generalized Method of Moments (System GMM), we conduct addi-
tional analyses employing Ordinary Least Squares (OLS) to estimate the main
models, which control household and time-invariant characteristics, thus ac-
counting for unobserved heterogeneity that may bias conventional estimations.
Table 1.3 shows the results, and Figure 1.5 visualizes the estimates of current
migrants/out-migration. Although OLS estimation results yield smaller mag-
nitude coefficients than the System GMM estimates, they remain statistically
significant and consistent in direction. Such differences in magnitude are antici-
pated due to methodological distinctions; System GMM eftectively corrects for
potential endogeneity arising from reverse causality and dynamic feedback ef-
fects by incorporating lagged dependent variables and internal instruments. In
contrast, OLS estimations, while robust to fixed unobserved heterogeneity be-
cause of the inclusion of fixed effects in the main models, may underestimate co-
efficients in the presence of endogeneity or dynamic dependencies—conditions
highly likely in our context, as indicated by the significant estimates of the au-
toregressive (AR) terms. Still, the consistent direction and statistical signif-
icance of the OLS estimates corroborate the validity of our primary System
GMM models, reinforcing confidence in our main results regarding the impact

of out-migration on deforestation.

Figure 1.5

Robustness Checks (Effect of Current Migrants or Outmigration on Deforestation)

*k bl e

e e
o

N

Current Migrants or Outmigration

(1) ) (3) (4) (5) (6)
Main models Main models AR(2) models AR(2) models W/Out Controls W/Out Controls
Model Specification
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To test the sensitivity of our findings to the spatial scale of environmental mea-
surement, we re-estimate the system GMM models using alternative bufter
sizes of 500 meters and 2 kilometers. The soo-meter specification yields no sta-
tistically significant results, and the estimated coefficients show no consistent
pattern relative to the main model. This is plausibly due to the buffer being too
narrow to capture forest use for activities like firewood collection or small-scale
land clearing, which likely occur beyond immediate household surroundings.
Conversely, the 2-kilometer bufter produces estimates with similar signs to the
main 1-kilometer model, but statistical significance is limited to only a subset
of specifications. We attribute this attenuation to including a broader, poten-
tially noisier environmental context and more severe buffer overlaps, which may
dilute the relationship between migration and local forest outcomes. Taken to-
gether, these findings suggest that the 1-kilometer buffer strikes a reasonable
balance—broad enough to capture household-related forest use, yet narrow
enough to avoid excessive noise from overlapping exposure zones. Full estima-
tion tables for the soom and 2000m specifications are provided in Appendix
Tables A1 and Ax.

To address potential concerns arising from spatial bufter overlaps in our dataset,
we conduct robustness tests employing two complementary approaches. First,
we estimate the dynamic panel models using ordinary least squares (OLS) with
clustered standard errors at the village level, which accounts for within-village
correlation due to overlapping buffers. These results, presented in Table A3, re-
main consistent in magnitude, direction, and statistical significance compared
to those obtained using conventional standard errors, indicating that clustering
effectively mitigates overlap-induced bias. Second, we re-estimate the models
restricting the sample to observations with buffer overlap lower than 10%, as
shown in Table A4. While the coefficient estimates maintain similar magni-
tudes and directions, their statistical significance diminishes, likely reflecting
reduced sample size and statistical power. Together, these complementary anal-
yses provide reassuring evidence that spatial bufter overlaps do not materially
bias our findings. Nevertheless, future research could further explore advanced
spatial econometric techniques or incorporate spatial fixed effects to more di-

rectly model spatial dependence.
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Figure 1.6

Falsification Tests (Effect of Current Migrants or Outmigration on Deforestation)

Current Migrants or Outmigration

(1 (2) () (4) (6) 6)
Main models Main models AR(2) models AR(2) models W/Out Controls W/Out Controls
Model Specification

1.6 Falsification Tests

We randomly reassign the migration variable across villages and years as a falsi-
fication check. Specifically, we randomly shuffle the migration variable while
preserving the structure of deforestation outcomes and other covariates. This
approach breaks any true link between migration and deforestation, while main-
taining the underlying panel structure, spatial clustering, and temporal varia-
tion in the data.

If the observed association between migration and deforestation in our main
results were due to spurious correlation, common trends, or artifacts of the
panel structure, we would expect to find similar significant effects even after
random reassignment. However, based on the results from Table 1.4 and Figure
1.6, re-estimating our System GMM models with the placebo migration vari-
able yields no statistically significant effects across the different specifications.
This outcome confirms that the statistically significant negative impacts we find
using the main models are unlikely to be driven by spurious correlation, panel

structure artifacts, or model misspecification.
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1.7 Reverse Causality Checks

The potential risk of reverse causality is one of our primary concerns. Therefore,
we conduct reverse causality checks from two different perspectives to assess
its likelihood. First, we include a lead of the migration variable (i.e., future mi-
gration) as a predictor of current deforestation. From results in Table 1.5 and
Figure 1.7, in both our main falsification specification and the extended model
that includes an additional autoregressive term, the coefficient on future migra-
tion is statistically insignificant. Both models also pass the Hansen and AR(2)
diagnostic tests, supporting the validity of the specifications. By contrast, the
model that includes only lead migration and an AR(r) term yields a statistically
significant adverse effect, but fails the Hansen test, indicating that the instru-
ments are invalid. Together, these results support the assumed causal direction
from migration to deforestation.

Second, we explore potential mechanisms through which deforestation might
lead to out-migration. One possibility is that deforestation reduces land-based
income, which in turn induces migration. To examine this, we regress land-
based income on out-migration using cross-sectional survey data collected in
2015. As shown in Table 1.6, we find no evidence that lower land-based income is
associated with higher out-migration. Another hypothesis is that deforestation
degrades the natural environment, prompting households to migrate in search
of areas with better environmental conditions. However, based on our sur-
vey data and our understanding of migration patterns in rural Myanmar, most
migrants move to Thailand primarily for economic reasons rather than envi-
ronmental concerns. Specifically, over 40% of households in Mon State have at
least one member working in Thailand (Filipski et al., 2017). Thus, given this
context, ecological degradation seems unlikely to be the primary driver of migra-
tion. This finding is consistent with broader evidence from climate migration
studies, which suggests that migration decisions are often primarily economi-
cally motivated, even in the face of environmental deterioration (Nawrotzki &
Bakhtsiyarava, 2017). In summary, neither the dynamic reverse causality checks

nor the cross-sectional income analysis provides evidence of reverse causality.
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Reverse Causality Checks (Effect of Lead Current Migrants or Outmigration on Deforestation)
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Table 1.6: Effect of Land-based Income on Out-migration (OLS, 2015)

(1)
Dependent variable: Out-migration (migleft_sum)
Rice income —2.486 x 1078
(4.201 x 10%)
Orchard income —6.968 x 107
(4.328 x 107%)
Rubber income —8.947 x 1078
(1.244 x 1077)
Rice local wage income —0.0906
(0.1625)
Orchard local wage income 0.447*
(0.2327)
Rubber local wage income —0.173
(0.2407)
Parcel size (ha) 0.00652
(0.00633)
Constant 2,171
(0.05999)
Observations 703
R-squared 0.0084
Adjusted R-squared —0.0016
Residual Std. Error 1.302 (df = 695)
F Statistic 0.836 (df = 7; 695)

Note: Robust standard errors in parentheses.
**p < 0.001, **p < 0.01, *p < 0.05, p < 0.1

1.8 Discussion and Mechanisms

In the previous sections, we have shown that out-migration reduces deforesta-
tion at the local level. One immediate mechanism for this effect is a decrease in
daily wood consumption (e.g., firewood, construction wood) due to reductions
in household size resulting from out-migration or changes in land-use strategy
(M. ]. Taylor et al., 2016). However, lifestyle changes, specifically adopting elec-
tricity for heating and cooking, facilitated by remittance income, may also con-
tribute to this outcome. This section presents empirical evidence supporting
this less-recognized pathway through which out-migration may reduce forest

loss via remittance effects.
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To assess the existence of remittance effects, we use cross-sectional household

survey data from 2015 and regress the number of current migrants and house-

hold demographic variables on both total local income and household expen-

diture, measured in thousands of Kyats.> Results in Table 1.7 show that the 5 All monetary values are

number of current migrants has no significant effect on households’ total lo- reported in Myanmar

cal income but has a statistically significant positive impact on their total local
expenditure. This finding provides strong evidence of remittance effects, indi-

Kyat (MMK). The 2015
annual average exchange
rate was approximately

cating that while local income may remain unchanged, additional remittance ;USD = 1,148 MMK (or

income from migrants abroad contributes to higher household spending.

1,000 MMK = 0.87 USD),
based on data from https:
//www.exchange-rates.
org/exchange-rate-history/
mmbk-usd-2015.

Table 1.7: Effect of Migration on Total Income and Expenditure (OLS, 2015)

)

(2)

Dependent variable: Total Local Income  Total Local Expenditure
> Out-migration (unweighted) 32.32 62.29**
(99.82) (25.42)
Household size 250.87** 169.48***
(62.06) (15.80)
Parcel size (ha) 73.84*** 9.78***
(14.83) (3.78)
Age of head —18.94* —7.45%**
(10.10) (2.57)
Occupation of head —50.76 33.75%*
(50.63) (12.89)
Constant 2,652.75*** 1,606.81***
(702.77) (178.95)
Observations 703 703
R-squared 0.070 0.175
Adjusted R-squared 0.063 0.169
Residual Std. Error 3398 (df = 697) 865.4 (df = 697)
F Statistic 10.48™** 29.54"**

Note: Robust standard errors in parentheses.
*p < 0.1,**p < 0.05,***p < 0.01
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Table 1.8: Percent of Each Type of Cooking Fuel

Fuel Type  All households households w/ migrants  households w/o migrants

Electricity 10.65% 12.28% 5.66%
LPG 1.61% 0.81% 3.77%
Kerosene 0.26% 0.48% 1.89%
Firewood 81.81% 79.64% 83.02%
Charcoal 5.68% 6.79% 5.66%

One potential pathway through which out-migration reduces deforestation is
via remittance income, which facilitates the adoption of alternative fuels, such
as electricity, for cooking and heating. This transition reduces reliance on tra-
ditional biomass fuels, including firewood and charcoal. In many developing
countries and regions, including rural Myanmar, firewood and charcoal remain
the primary sources of household energy (Win et al., 2018). The average annual
per capita consumption is estimated at 780 kilograms for firewood and 280 kilo-
grams for charcoal (Kyaw et al., 2020). Meeting these energy needs requires
approximately 36 m” and 820 m” of forest area per person per year, respectively
(Kyaw et al., 2020). In our sample, 85.6% of households report using firewood,
and 13.5% report using charcoal for cooking and heating. As shown in Table
1.8, firewood remains the dominant cooking source, although electricity use is
gradually emerging.

Importantly, in rural Myanmar, local communities often have customary rights
to collect firewood for household use from nearby forests, a practice recognized
under national forest tenure frameworks (Bank, 2020). This institutional con-
text reduces barriers to biomass extraction, which in turn increases household
reliance on local forests for energy. Table 1.8 further shows that households with
out-migrants have a higher rate of electric cooking adoption and less reliance on
firewood than those without migrants. Thus, theoretically, a transition toward
electricity use, facilitated by remittance income, could significantly mitigate

forest loss by reducing pressure on surrounding forest resources.

To test the hypothesis that migration facilitates energy transitions, we estimate
a series of ordinary least squares (OLS) regressions to assess the impact of out-
migration on access to electricity and adoption of electric cooking. Our em-
pirical results, presented in Table 1.9, confirm a positive and statistically signifi-
cant relationship between out-migration and both access to electricity and the
adoption of electric cooking. Although our current data limitations prevent
a comprehensive exploration of this deforestation-reducing pathway, we pro-
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vide strong empirical evidence for its existence and encourage future research
to investigate further the role of remittance-facilitated energy transitions in mit-

igating deforestation.

Specifically, Table 1.9 presents the estimated effects of out-migration on various
energy transition outcomes. The dependent variables include: (1) "Electricity
Connection,” which captures whether a household has an active electricity con-
nection as of 201s; (2) "Electric Cooking,” which measures whether electricity
is the primary fuel used for cooking in 201s; (3) "Private Electricity,” indicating
whether the household purchased electricity from private providers in 2015; and
(4) "Public Electricity,” indicating purchases from public sources in 2015.

The results show that households experiencing out-migration are significantly
more likely to adopt electricity for general household use and cooking. House-
holds with out-migrants are approximately 3.7% more likely to have an electric-
ity connection and 2.6% more likely to use electricity as their primary cooking
tuel. Additionally, households with out-migrants are marginally more likely to
purchase private electricity, although the effect is statistically significant only at
the 10% level. In contrast, out-migration has no statistically significant impact
on purchasing public electricity. These findings suggest that out-migration facil-
itates energy transitions primarily through increased access to private electricity

sources rather than through public electricity systems.

While these results provide strong cross-sectional evidence, it is essential to ac-
knowledge a limitation: the energy transition data are available only for 2015,
whereas our primary deforestation analysis spans from 2000 to 2015. Thus, we
cannot directly observe dynamic changes in energy adoption over time. Nev-
ertheless, a back-of-the-envelope calculation suggests that the observed magni-
tude of energy transitions is plausibly large enough to explain our estimated
impacts on deforestation. Specifically, given that firewood consumption typi-
cally requires approximately 36 m” of forest area per person annually (Kyaw et
al., 2020), and that each migrant is associated with a reduction of approximately
5.4 m” of forest loss per year based on our System GMM estimates, even partial
adoption of electricity could substantially reduce biomass extraction pressures.
For instance, the 3.7% increase in electricity adoption among migrant house-
holds would imply a meaningful shift away from firewood use, consistent with
the magnitude of observed forest cover savings. Although this rough calcula-
tion does not establish a definitive causal chain, it supports the plausibility of
remittance-driven energy transitions as a key mechanism linking migration to

localized environmental sustainability.
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While our main estimates suggest that current migration significantly reduces
deforestation, we find limited environmental impacts for return migration. This
may reflect the fact that many households have already undergone energy tran-
sitions to cleaner fuels, facilitated by earlier remittance inflows. Preliminary
survey evidence suggests that return migrants often contribute to household
income diversification and bring back accumulated human capital, enabling
access to higher-paying jobs. These improvements may reduce households’ re-
liance on local forests, thereby diminishing the marginal environmental effect

of return migration.

Additionally, the duration of migration spells, the length of time individuals
remain away from their household, likely plays an important role. Longer-term
migration is often associated with more sustained remittance inflows, which
can further enhance household capacity to adopt clean energy sources and shift
away from biomass dependence. Unfortunately, our dataset does not capture
detailed measures of migration duration or remittance timing. Exploring these
temporal dynamics represents a promising avenue for future research to better

understand the long-run environmental impacts of migration.

More broadly, future work can help clarify the mechanisms through which
migration affects land use and forest conservation by differentiating between
migration margins (e.g., first-time vs. circular migration) and incorporating
richer data on migration profiles and remittance intensity.

Figure 1.8 visually summarizes this proposed causal pathway from migration to
environmental outcomes. Overall, the evidence on mechanisms complements
our main causal results, suggesting that the environmental impacts of migration
extend beyond household size changes to include transformative changes in

household energy use.

2.8



Out-Migration

Remittance Income Reduced Household Size
Higher Household Expenditure Lower Daily Wood Consumption

Increased Electricity Access & Use

Reduced Firewood/Charcoal Use

Lower Local Deforestation

Figure 1.8: Two mechanisms linking out-migration to reduced deforestation:
(1) a remittance-facilitated energy transition (left), and (2) reduced household
wood use due to shrinking household size (right).
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.9 Conclusion

This study examines the causal relationship between out-migration and local
deforestation in rural Myanmar by combining household-level migration sur-
vey data with high-resolution remote sensing data over 16 years. Using dynamic
panel estimation techniques, we find robust evidence that out-migration mit-
igates local deforestation at local scales. The credibility of these findings is re-
inforced through extensive robustness checks across alternative model specifi-
cations, falsification tests using randomly reassigned migration variables, and
two complementary reverse causality checks: a dynamic lead-migration test and
a cross-sectional income mechanism test. Neither of these indicates evidence
of reverse causality. In contrast, return migration shows a weak tendency to
increase deforestation, although the mechanisms underlying this effect remain

empirically inconclusive.

We further explore potential mechanisms through which out-migration reduces
forest losses. Our analysis reveals that households experiencing greater out-
migration are significantly more likely to access private electricity and adopt
electric cooking. This suggests that remittance income helps facilitate an energy
transition away from traditional biomass fuels, such as firewood and charcoal,
toward cleaner, electricity-based alternatives. This energy transition mechanism
provides a novel and underexplored pathway through which out-migration con-
tributes to environmental sustainability, beyond the traditional explanation of
reduced household consumption pressure.

Our findings contribute to the growing migration and environmental change
literature. While prior studies, such as Ervin et al., 2020, document associations
between migration and land cover change in sending communities, our study
advances this literature by providing dynamic causal evidence at the household-
buffer level and by identifying remittance-induced energy transition as a new
and substantive mechanism linking migration to reduced deforestation. By fo-
cusing on a rural frontier region like Mon State, Myanmar, our study extends
the geographic scope of migration-environment research beyond the more com-

monly studied settings in Latin America.

This paper offers three primary contributions. First, it reveals the dynamic
causal impact of out-migration on local deforestation and explores the distinct
effects of return migration. Second, it highlights a novel energy transition mech-
anism: out-migration facilitates access to electricity, particularly electric cook-
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ing, through remittance income, offering an important new channel by which
migration can mitigate environmental degradation. Third, it demonstrates how
cross-sectional survey data can be transformed into a spatial panel by combining
migration histories with historical remote sensing data, providing a replicable
approach for studying environmental change in data-scarce settings.

Several caveats should be noted. Although we mitigate omitted variable bias us-
ing autoregressive modeling, fixed effects, and System GMM techniques, data
limitations—such as the cross-sectional nature of the baseline household sur-
vey and the lack of fine-grained ecological variables like soil quality—may still
pose risks to causal interpretation. Additionally, although we hypothesize that
return migration may foster deforestation through agricultural expansion or
construction activities, our empirical analysis does not find statistically signifi-
cant support for these specific mechanisms. Future research with more detailed
land use and infrastructure data could further illuminate the environmental

consequences of return migration.

Overall, our findings reveal that migration’s environmental impacts are not
solely the result of household size changes, but also of profound household-

level transformations in energy use.
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2.1 Introduction

Natural disasters pose threats to life, infrastructure, and the economy. Among
those, storms (including thunderstorms, hurricanes, tornadoes, or blizzards,
depending on geography) have historically been among the most destructive
and deadly (Strader et al.,, 2024; Young & Hsiang, 2024). The United States
spends a considerable amount of public funding on disaster prevention and mit-
igation. In December 2024, the U.S. Congress passed a funding package that
included $110 billion in disaster assistance, allocating $29 billion for FEMA’s
Disaster Relief Fund and $12 billion for the Community Development Block
Grant-Disaster Recovery (CDBG-DR) program (NLIHC, 2024). The Fed-
eral Emergency Management Agency (FEMA) allocated $190.6 million to 1o
pre-disaster mitigation projects (FEMA, 2024). Publicly funded disaster pre-
vention programs include not only critical infrastructure and environmental
buffers, but also effective early warning systems (World Bank & United Na-
tions, 2010). The US has adopted a mobile-based alert system, known as the
Wireless Emergency Alert (WEA), to deliver geographically targeted emergency
notifications directly to mobile devices (FCC, 2012). In this paper, we evaluate
the effectiveness of WEA in reducing storm casualties and provide empirical
evidence that sheds light on the potential benefits of public investment in a
mobile-based alert system.

From a public economics perspective, early warning systems like Wireless Emer-
gency Alerts (WEA) represent a government response to a classic market fail-
ure in risk communication. Hazard warnings are public goods: they are non-
excludable and non-rivalrous. Yet individuals may underutilize or misinterpret
such information due to bounded rationality, coordination problems, or lim-
ited real-time access. Empirical studies show that improving forecast accuracy
can substantially enhance protective behavior and reduce adverse outcomes.
For instance, Shrader et al., 2023 finds that increasing the precision of routine
weather forecasts by half could prevent roughly 2,200 annual deaths in the U.S.
linked to temperature extremes, particularly heat. They estimate this would
yield societal benefits of $2.9 billion annually. Molina and Rudik, 2022 simi-
larly demonstrates that improved hurricane forecasting reduces storm-related
damages by nearly 20%, equivalent to about $5 billion per event. On a global
scale, New et al., 2022 identifies early warning systems as a critical low-regrets
adaptation strategy that already supports over five billion people. Historical ev-
idence further underscores this value: during the 2004 Indian Ocean tsunami,
access to timely disaster warnings significantly lowered mortality in Indian com-
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munities even in the absence of formal evacuation protocols (Vincent & Das,

2009).

Classic alert systems have been based on sirens, radio, or television broadcasts.
They may help people protect themselves and their properties. However, they
may not reach all individuals who could benefit from them. For instance, in-
dividuals who fail to tune in to the specific channels at the time of the alert
are likely to miss the warning alerts and be unable to take action promptly
(Drost et al., 2016). As a potential upgrade to these systems, the United States
introduced the Wireless Emergency Alerts (WEA) in April 2012 (FCC, 2012).
Developed by the Federal Communications Commission (FCC) jointly with
the Federal Emergency Management Agency (FEMA) and other federal agen-
cies, WEA can deliver real-time geographically targeted warnings directly to
mobile devices. The widespread adoption of mobile devices in the 21 century
has significantly expanded the reach of WEA. Meanwhile, mobile-based alert
systems, such as WEA, provide timely and accurate storm warnings directly to
individuals with access to mobile devices in affected areas.

While previous studies have examined various aspects of WEA, most focus on
implementation and technical functionalities, public perception and response,
and content optimization. Regarding functionality, researchers mainly focused
on its geographic targeting capabilities (Gao & Wang, 2021), message dissemina-
tion efficiency (Lambropoulos et al., 2021), integration with mobile networks
(Kumar et al., 2018), reliance on cellular networks (Bitsikas & Popper, 2022; Si-
mon et al., 2015), and effectiveness of warning message compositions (Casteel &
Downing, 2016; Olson et al., 2024). Meanwhile, research on public perception
and response has primarily focused on exploring public awareness, understand-
ing, and trust in warning messages (Bean et al., 2016) and whether targeted recip-
ients take promptaction (Bean & Grevstad, 2022). WEA content optimization,
especially the length of warning messages and information composition, is also
an essential field of WEA studies (Bean et al., 2023; Best, 2017; NASEM, 2018).
As part of ongoing improvements driven by prior research, in 2019, the FCC
introduced several enhancements to the WEA system, including longer alert
messages (90 to 360 characters), support for Spanish language, public safety
messages, and improved display capabilities on mobile devices. Additionally, a
new category of alerts (“State/Local WEA Tests”) was established to enhance
proficiency and public awareness (FCC, 2019).

In contrast, evaluations of WEA’s effectiveness in emergency mitigation are

scarce. Among those, several studies have analyzed the role of WEA and similar

35



mobile-based alert systems in mitigating the spread of COVID-19. Yeon et al.,
2022 investigated how WEA alerts influenced public compliance with social
distancing mandates, finding that regions receiving timely alerts had greater
adherence to movement restrictions and reduced mobility patterns. Bean et
al., 2022 examined the impact of WEA messages on COVID-19 infection rates
and deaths across U.S. states and localities, finding that areas issuing WEA
alerts saw estimated reductions in COVID-19 transmission, suggesting that
mobile-based emergency alerts can play a role in public health crisis manage-
ment. Some research focuses on assessing WEA’s impactin speciﬁc emergency
scenarios. For example, Ferris and Newburn, 2017 examined the effectiveness of
WEA flood alerts in reducing car accidents, showing that drivers who received
timely warnings were more likely to avoid flooding areas, leading to a decline
in flood-related traffic accidents. Meanwhile, a thorough evaluation of WEA’s
performance in storms, the deadliest and most destructive weather-related disas-
ters in the United States (NOAA, 2025), is still lacking. However, such research
is essential to public safety and disaster prevention because it provides empir-
ical evidence of the mobile-based warning system’s performance in storms to
help policymakers assess its effectiveness, justify continued investment, and op-
timize future improvements in storm response strategies. This study fills this
gap by providing the first nationwide empirical assessment and quantification
of WEA’s impact on storm-related fatalities using a Regression Discontinuity

in Time (RDiT) framework over the 2000-2024 period.

To accurately assess the impact of the WEA system on daily average deaths
during severe storms, we employ a Regression Discontinuity in Time (RDiT)
framework, a method well-suited for evaluating interventions with a single
launch date defining clear before and after periods (Hausman & Rapson, 2018).
In this case, we set the cutoft as April 2012, when WEA was implemented. We
use a bandwidth of 12 years, applying data from 2000 to 2024 to compare storm-
caused fatalities before and after introducing WEA. This approach allows for a
clear and precise estimation of the WEA system’s effect on daily average fatali-
ties during storms, isolating the impact of the intervention from other factors
with the assistance of placebo and falsification tests.

Our results indicate that WEA significantly reduces average daily storm-related
fatalities by 4.306 per event. We further conducted placebo tests with alterna-
tive cutoffs in April 2010, 2011, 2013, and 2014 as part of the robustness checks.
The absence of significant effects before 2012 and a less pronounced effect in
2013, likely due to increased smartphone adoption and public familiarity with
WEA, further supports the validity of our findings (Levy, 2015; Morss et al.,
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2017). Furthermore, We perform a falsification test by examining the impact
of WEA on non-flash floods, a category of disasters not covered by WEA. We
do not observe a significant effect on non-flash flood fatalities, reinforcing the
conclusion that the observed reduction in storm-related fatalities is credited
to WEA. Additionally, to address the concern that our findings about WEA’s
impact might partly result from including an extreme event (Hurricane Kat-
rina), we conduct robustness checks using data without Hurricane Katrina to
show the robustness of our results. We further conduct robustness checks on
technological advancement by using the percentage of people with an internet

connection as a proxy.

The remainder of the paper is organized as follows. Section 2 describes the data,
key variables, and the Regression Discontinuity in Time (RDiT) framework,
along with robustness checks, placebo tests, and falsification tests. Section 3
presents the main findings and validation results. Section 4 discusses the study’s
limitations. Finally, Section 5 concludes with key findings and policy implica-

tions.

2.2 Empirical Approach

2.2.1 Data

We investigate the treatment effect of Wireless Emergency Alerts (WEA) using
data primarily from the Emergency Events Database (EM-DAT) provided by
the Centre for Research on the Epidemiology of Disasters (CRED) (D.Guha-
Sapir et al., 2015). EM-DAT contains information on over 22,000 disasters
worldwide, including 704 storms that occurred in the United States, spanning
from 1900 to the present. The database records the destructive consequences
of these disasters.

Table 2.1: Descriptive Statistics: U.S. Storms 2000-2024

Variable Total Mean Standard Deviation
Total Deaths 6888 22.510 108.452
Deaths/day 5.127 9.213
Total Damage (Billions USD$) 1395138  4.697 16.482
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Table 2.2: Categorical breakdown of storm subtypes

Category Frequency Proportion
Tornado 103 0.29
Blizzard/Winter storm 69 0.19
Tropical cyclone 61 0.17
Severe weather 43 0.12
Storm (General) 41 0.11
Lightning/Thunderstorms 32 0.09
Hail 8 0.02
Derecho 2 0.0I1
Extra-tropical storm 1 0.00
Sand/Dust storm I 0.00
Total Storm Counts 361 .00

We present total counts, means, and standard deviations for total deaths, av-
erage daily deaths, and total damages (in billions of US dollars) in Table 2.1,
highlighting the fatality and economic impact of storms in the United States.
From 2000 to 2024, the events in our dataset account for 6,888 deaths and
$1,395.14 billion in property damage, reinforcing the severe destructiveness of
storms. On average, each storm results in 22.51 fatalities, with 5.127 deaths per
day during storm events. Table 2.2 presents the frequency distribution of storm
subtypes and their proportion to recorded storms in our working data. As ex-
pected, tornadoes, blizzards, and tropical cyclones are the most frequent storm
types in the United States, aligning with established meteorological patterns.

2.2.2  Graphical Evidence on The Effects of WEA

Figure 2.1: Storm fatalities 2000-2024

g storm

Average deaths per day during
Average daily deaths per storm

210 2015 2020 2000 2010
Year Year

(a) Yearly average (b) Event-level average
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Figure 2.1illustrates two measures of storm-related fatalities. Figure 2.1a presents
the yearly averages of daily deaths, calculated by first determining the average
daily deaths for each storm within a year and then averaging these values across
all storms in that year. On the other hand, Figure 2.1b shows the event-level
average daily fatalities during individual storms.

In both Figures 2.1a and 2.1b, discernible value breakpoints and a substantial re-
duction in variability are observed immediately following the implementation
of the Wireless Emergency Alerts (WEA) system by the National Weather Ser-
vice in April 2012. This graphical evidence suggests a potential causal impact of
WEA on reducing storm-related fatalities. We employ Regression Discontinu-
ity in Time (RDiT) models to quantify this impact. Additionally, we conduct
robustness checks, placebo tests, and falsification tests to ensure the validity of

our estimates.

2.2.3 Regression Discontinuity in Time (RDiT) Framework

This study adopts a Regression Discontinuity in Time (RDiT) design to iden-
tify the causal effect of Wireless Emergency Alerts (WEAs) on storm-related
mortality. Our key outcome variable is the average number of deaths per day
during each storm event, calculated as the total number of fatalities divided by
the storm duration in days. This normalization accounts for heterogeneity in

storm duration and yields a consistent, policy-relevant measure of event severity.

Measuring Storm fatalities

Given the nature of Wireless Emergency Alerts (WEAs) as an early warning
system, their effectiveness is most salient in preventing imminent storm-related
fatalities. Ideally, the most accurate way to evaluate the impact of WEAs would
be to examine deaths occurring in the first day—or even the first few hours—of
astorm. However, such granular fatality data are unavailable in current disaster
databases.

As a second-best approach, we use the average number of deaths per day during
each storm, calculated as total fatalities divided by storm duration. This measure
helps address several limitations associated with using total deaths alone. First,
total deaths ignore the temporal dimension of storm severity—fatalities can oc-

cur days after a storm’s onset due to secondary hazards such as flooding, infras-
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tructure failure, or disruptions to medical services. Second, total death counts
are highly sensitive to outliers, with a small number of catastrophic events (e.g.,
Hurricane Katrina) disproportionately influencing estimates. As shown in Ta-
ble As, when using total storm fatalities as the outcome, the estimated treatment
effect is heavily distorted by the inclusion of Katrina, illustrating this issue. By
normalizing fatalities by storm duration, our outcome mitigates these biases
and enables more consistent comparisons across events of diftering lengths and

intensities.

Moreover, by normalizing deaths by storm duration, we improve comparability
across events and better isolate the actual impact of WEA alerts, avoiding the

risk that longer-duration storms with slower fatalities distort inference.

Importantly, the storm duration we use is based on EM-DAT’s start and end
dates, which follow standardized protocols. For U.S. events, EM-DAT primar-
ily relies on disaster onset and closure dates from sources such as FEMA and
NOAA. In most cases, these dates represent the official declaration period over
which the event had measurable physical or human impact, ensuring consis-

tency aCross storms.

While this measure may still include fatalities from delayed causes (e.g., patients
injured on day 1 who died later), these deaths are still recorded under the origi-
nal event in EM-DAT and are appropriately included in the numerator. Our
denominator, storm duration, does not account for the injury-to-death time
gap, but rather reflects the official time window during which the storm was
active. This ensures the resulting outcome variable remains a reasonable proxy
for the intensity of storm-related mortality.

Interpretation of Treatment Effects

This outcome reflects both the extensive and intensive margins of storm-related
mortality. On the extensive margin, WEAs may reduce the likelihood that any
fatalities occur during a storm. On the intensive margin, conditional on fatal-
ities occurring, WEAs may reduce the number of deaths per day. Since our
outcome is continuous and often zero, our estimates capture a blend of these
two effects. Future work may disentangle them using separate models for death

occurrence and intensity.

40



RDiT Specification

Visual inspection of Figure 2.1 suggests a discontinuity in average daily fatali-
ties after WEAs were introduced in 2012. We use time (centered around April 1,
2012) as the running variable, and define a binary treatmentindicator Threshold;
that switches from o to 1 at the introduction of WEAs. Following Hausman
and Rapson (2018), time can be used as a valid forcing variable when the inter-
vention date is sharp and exogenous.

Deaths/day, = 3y + 31 Threshold; + 33(Date Centered;) + B3Disaster Subtype,
+ B4 Total Damages, + SBsthreshold;Date centered; + ¢;

(2.1)
The Threshold; is defined as:

0, ifDate; < 04/01/2012

Threshold; =
1, ifDate; > 04/01/2012

The Date centered; is defined as:

Date centered; = Date; — 04/01/2012

Our model uses several key variables to investigate their impact on average daily
deaths during storms. First, our response variable, Deaths/day,, quantifies the
daily death count for each storm ¢. To facilitate the application of a regression
discontinuity design, we introduce the binary variable threshold;, which takes
a value of 1if the storm occurs in or after 2012 and o otherwise. We also incor-
porate the term (Date centered;) to capture any linear temporal trend. Addi-
tionally, the variable Disaster Subtype, accounts for the specific subtype of the
storm, while Total Damages; denotes the total damages incurred, adjusted for
inflation, and presented in thousands of US dollars. The coefficients 3 through
B4 are used to estimate the effects of each respective variable on the daily death
count during storms. Finally, we introduce the error term ¢; to account for

unexplained variability in the model.

We have excluded storm magnitudes from our model for two primary reasons.
First, we face data limitations regarding storm magnitudes. Second, and more

importantly, we view Total Damages as a more accurate measure of the storm’s
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threat to people. This metric considers both the storm’s destructiveness and
the value of human property in the disaster area, which is directly correlated
with the number of people affected.

2.3 Empirical Results

In section 3.2, we have provided graphical evidence for the existing discontinu-
ity in daily deaths for storms before and after 2012. In this section, we formally
exploit the discontinuity in daily deaths during storms using the empirical re-
sults generated by estimating the model (2). To ensure robustness, we conduct
Placebo and falsification tests using different thresholds and another disaster
type, which Wireless Emergency Alerts did not focus on.

2.3.1 Main Results

In Table 2.3, we present Regression Discontinuity in Time (RDiT) estimates
using model (1) with data spanning from 2000 to 2024. We set the bandwidth to
12 years. These estimates reveal the impact of key variables of interest, capturing
the discontinuity in 2012 that signifies the eligibility threshold for receiving
wireless emergency alerts (WEA), on daily storm-related deaths (as shown in
Figures 1and 2).

In Table 2.3, column (1) presents estimates without including the interaction
term, providing a baseline assessment of the effect of WEA on daily fatalities
during storms. This specification does not account for potential variation in
the impact of WEA over time. Column (2), on the other hand, includes the in-
teraction term “Threshold x Date centered;", allowing us to assess whether the
effect of WEA on daily fatalities during storms varies across different temporal
trends. Both columns reveal a statistically significant negative impact of WEA
on daily fatalities during storms, with Column (2) providing insights into how
this effect may change over time.

In summary, the empirical findings in Table 2.3 offer robust evidence support-
ing the efficacy of wireless emergency alerts in reducing storm-related fatalities
while also considering potential variations in the effect over time through the
inclusion of the interaction term.
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Table 2.3: RD estimates of the effect of WEA on deaths/day during storms

Dependent variable:
Deaths per day
(1) (2)

Threshold —4.306™* —4.653"*
(1.829) (1.840)
Date (centered) 0.0003 o.0or"
(0.0004) (0.001)

Storm type: Derecho —5.130 —4.304
(5.103) (5-122)

Storm type: Extra-tropical storm —4.907 —4.921
(7.130) (7.13)

Storm type: Hail —1.530 —L176
(33u) (3312)

Storm type: Lightning/Thunderstorms —2.559 —2.537
(2.077) (2.072)

Storm type: Sand/Dust storm —1.049 —0.619
(7.096) (7.085)

Storm type: Severe weather —2.354 —2.019
(1.635) (1.647)

Storm type: Storm (General) —2.759 —2.084
(1.731) (1.787)
Storm type: Tornado —o.18 0.268
(1.345) (1367)

Storm type: Tropical cyclone —L774 —1.360
(1.509) (531)

Total damage (Billions USD) 0.347"** 0.346™**
(0.027) (0.027)

Threshold: Date(centered) —0.00I
(0.001)

Constant 6.954"** 7.971°**
(1.549) (1.694)

Observations 253 253

R? 0.466 0.470
Adjusted R? 0.439 0.442

Residual Std. Error

F Statistic

7.013 (df = 240)
17.424"" (df = 125 240)

6.996 (df = 239)
16.326™* (df = 13; 239)

Note: *p<o.1; **p<o0.0s;

*okok

p<o.o1
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2.3.2 Placebo and Falsification Tests

In our placebo tests, we aimed to strengthen the credibility of our Regression
Discontinuity in Time (RDiT) analysis by using 2010, 2011, 2013, and 2014
as placebo thresholds. Table 2.4 presents the empirical estimates from these
placebo tests. The headers Threshold=2010, Threshold=2011, Threshold=2013,
and Threshold=2014 correspond to the estimated results using 2010, 2011, 2013,

and 2014 as placebo thresholds, respectively.

In the case of April 2010 and 2011, used as a placebo threshold, our analysis re-
veals the non-significant effects of WEA on daily fatalities during storms. This
outcome suggests that no similar negative treatment eftect likely existed before
the implementation of WEA in 2012, reinforcing the validity of our RDD de-
sign.

Conversely, we observe statistically significant results when employing 2013 as a
placebo threshold. This finding aligns with our hypothesis that adopting new
technology is associated with a learning curve. In the early stages following
WEA’s introduction in 2012, it is conceivable that public awareness and under-
standing of the system were still in development, potentially resulting in a less
pronounced immediate effect. However, as time progressed, our results sug-
gest that the impact of WEA on daily storm-related deaths became increasingly
evident, reflecting the gradual growth in public trust and reliance on this life-
saving alert system. Although the results from the 2013 placebo tests offer valu-
able insights into the dynamics of Wireless Emergency Alert (WEA) adoption
and their impact on daily storm-related deaths, it is essential to acknowledge
a limitation of our current study. We do not possess direct empirical evidence
regarding the public’s learning curve associated with WEA adoption and its
gradual increase in awareness and understanding. While we posit that such a
learning curve may have contributed to the delayed impact observed in 2013,
we recognize the need for future studies to provide more concrete evidence. By
setting April 2014 as the threshold, we find that the significance observed in 2013

wore off, reinforcing our hypotheses about the effects seen in the 2013 placebo.

To enhance the robustness and credibility of our primary findings, we employ
falsification tests utilizing daily fatality data associated with non-flash floods.
These falsification tests are particularly pertinent as Wireless Emergency Alerts
(WEA) exclusively address flash floods, leaving non-flash floods, predominantly
riverine, as a suitable counterfactual for assessing the impact of WEA availability.
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The results of our falsification tests are presented in Table 2.5, where we apply
Regression Discontinuity analysis.

Our analysis reveals no statistically significant treatment effect of the WEA avail-
ability threshold on non-flash floods. This finding effectively negates any asser-
tion that WEA has an impact on daily fatalities during non-flash flood events.
Conversely, our results from the falsification tests substantiate the claim that
reducing daily fatalities during storms can be attributed to implementing WEA.
As a result, these falsification tests support the assertion that the observed re-
ductions in daily fatalities are due to the effectiveness of the WEA system.

In summary, our placebo and falsification tests enhance the validity of our main
finding, which is that WEA effectively reduces daily deaths during storms while
further exploring the evolving positive influence that WEA has had over time.
Acknowledging the limitation related to the absence of direct empirical evidence
on the public learning curve serves as an avenue for future research in this critical

study area.
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Table 2.5: RD estimates of falsification tests using Non-flash flood

Dependent variable:
Deaths per day
(1) (2)
Threshold —0.620 —0.724
(0.908) (0.948)
Date (centered) 0.0001 0.0002
(0.0002) (0.0003)
Flood type: Riverine flood —1.256™ —1.411"
(0.601) (0.704)
Total damage (Billions USD) —0.011 —o0.017
(0.070) (0.072)
Threshold: Date (centered) —0.0002
(0.0004)
Constant 2.425"* 2.805™*
(0.688) (1.117)
Observations 49 49
R? 0.121 0.124
Adjusted R? 0.041 0.023

Residual Std. Error
F Statistic

1.488 (df = 44)
1509 (df = 4; 44)

502 (df = 43)
1.222 (df =55 43)

kkk

Note: *p<o.1; **p<o0.05;

p<o.01
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Table 2.6: RDiT estimates of the effect of WEA on deaths/day during storms
(Without Hurricane Katrina)

Dependent variable:
Deaths per day
) (2)
Threshold —4.218™ —4.575"
(1.814) (1.824)
Date (centered) 0.0004 o.o01*
(0.0004) (0.001)
Storm type: Derecho —5.039 —4.184
(5-059) (5.076)
Storm type: Extra-tropical storm —4.766 —4.779
(7.069) (7.050)
Storm type: Hail —1.428 —1.061
(3-283) (3.282)
Storm type: Lightning/Thunderstorms —2.554 —2.532
(2.059) (2.053)
Storm type: Sand/Dust storm —1.221 —0.779
(7.035) (7.021)
Storm type: Severe weather —2.416 —2.071
(1.622) (1.633)
Storm type: Storm (General) —2.705 —2.008
(1.716) (1771)
Storm type: Tornado —0.028 0.372
(1334) (1:356)
Storm type: Tropical cyclone —1197 —0.762
(1517) (1539)
Total damage (Billions USD) 0.289*** 0.288"**
(0.037) (0.036)
Threshold: Date (centered) —o0.001
(0.001)
Constant 6.951"** 8.002"**
(1535) (1.679)
Observations 252, 252,
R? 0.275 0.282
Adjusted R? 0.239 0.243
Residual Std. Error 6.952 (df = 239) 6.933 (df = 238)
F Statistic 7.567°* (df =125 239)  7.203"** (df = 135 238)

sokok

Note: *p<o.1; **p<o.05; ***p<o.o1
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Figure 2.2: Storm Fatalities 2000-2024 (Excluding Hurricane Katrina)

Average deaths per day during storm

Average daily deaths per storm

Year Year

(a) Yearly average (b) Event-level average

2.3.3 Robustness Checks

Robustness to Hurricane Katrina Inclusion

Figures 2.1a and 2.1b show extreme values in 2005, primarily due to Hurricane
Katrina, which claimed over 1,800 lives. While we do not initially filter it out
as an outlier in the primary analysis to maintain data authenticity and ensure
statistical power, concerns may arise that the significant variation caused by
Katrina could skew the results. To address this, we first visualize the yearly
average daily deaths and event-level average daily deaths for storms after filtering
out Hurricane Katrina in figure 2.2 to double-check for apparent cutoffs and
then re-estimate our specification using data that excludes Hurricane Katrina,
ensuring that this outlier event does not drive our findings. The plots in figure
2.2a and 2.2b show sharp cutofts in 2012. Meanwhile, results from table 2.6 are
consistent with our main results in table 2.3, confirming the robustness of our

results regarding the inclusion of Katrina.

Robustness to Technology Advancement

In the first quarter of 21 century, the world experienced rapid technological
advancements. We recognize that new information channels for storm alerts,
such as social media platforms, may have emerged as additional ways for peo-
ple to receive warnings about approaching storms. Although WEA messages
should be more timely and accurate than new information channels, this still
raises concerns about whether these developments could bias our main results.
Specifically, our estimates may overstate the impact of WEA by inadvertently
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Table 2.7: RD estimates of the effect of WEA on deaths/day during storms
(with internet adaptation rate)

Dependent variable:
Deaths per day
) (2)
Threshold —4.008"* —4.519™*
(1.983) (2.0m)
Date (centered) 0.0001 0.00I1
(0.001) (0.001)
Storm type: Derecho —5.030 —4.276
(s.118) (5.135)
Storm type: Extra-tropical storm —5.110 —5.008
(7.161) (7.147)
Storm type: Hail —1.708 —1.258
(3347) (3355)
Storm type: Lightning/Thunderstorms —2.575 —2.545
(2.081) (2.076)
Storm type: Sand/Dust storm —1137 —0.664
(7.112) (7.105)
Storm type: Severe weather —2.326 —2.013
(1.640) (1.651)
Storm type: Storm (General) —2.775 —2.103
(1.734) (1.794)
Storm type: Tornado —0.059 0.286
(1355) (1374)
Storm type: Tropical cyclone —1.761 —1.363
(rs12) (r534)
Total damage (billions USD) 0.346™** 0.346™**
(0.027) (0.027)
Internet percentage 4.578 1.956
(11.611) (11.734)
Threshold: Date (centered) —0.00I1
(0.001)
Constant 3.377 6.425
(9.202) (9.431)
Observations 253 253
R? 0.466 0.470
Adjusted R? 0.437 0.439
Residual Std. Error 7.025 (df = 239) 7.010 (df = 238)
F Statistic 16.039™* (df =13;239)  15.100™** (df = 145 238)

kK

Note: *p<o.1; **p<o.05; **p<o.o1
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capturing the effects of other information channels, such as social media. Given
the difficulty of fully accounting for all new information channels, we use the
percentage of people with internet connections in the U.S. as a proxy. This data
is sourced from Statista, 2024, which reports annual internet penetration rates
from 2000 to 2024. The rationale behind this approach is that regardless of
the apps or devices used, these new channels depend on internet connectivity.
Thus, we use the percentage of people with internet access to approximate the

potential life-saving effects of these new information channels during storms.

From Table 2.7, the results align with our main findings, further reinforcing
the robustness of our estimates regarding WEA’s life-saving impact. Moreover,
we find no evidence that the percentage of people with internet connections
has a significant effect on storm-related fatalities. This finding raises questions
about the effectiveness of new information channels in reducing storm-related
deaths substantially. This result aligns with our expectations, as storm alerts are
time-sensitive. WEA is designed to be faster and more reliable than unofficial
alerts due to its carefully optimized mechanisms. These findings strengthen
our confidence in the robustness of our main results, even in the context of

technological advancements.

2.4 Caveats

This research provides valuable insights into the life-saving impacts of the Wire-
less Emergency Alerts system on storms. Meanwhile, several caveats are worth
considering. Our primary limitation lies in data availability. Unlike recurring
events such as traffic jams or flight delays, storms occur infrequently—an in-
herently positive fact, but one that limits the number of observations we can
collect within a relatively short time frame. Additionally, storms’ sudden and
unpredictable nature prevents us from using statistical tools to simulate data.
As a result, we cannot use narrow bandwidths typical in other Regression Dis-
continuity Designs (RDD). To ensure sufficient observations, we extend the
study period from 2000 to 2024, resulting in a 12-year bandwidth for our analy-
sis. However, a wider bandwidth introduces concerns about potential changes

over time that we may not fully control.

While some studies suggest an increasing trend in the frequency and magnitude
of storms (Emanuel, 2013; Field et al., 2012), there is no evidence of a significant

structural shift in storm patterns over the past two decades that would bias our
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estimates. Even if a gradual increase in fatalities is observed, it would not explain
the sharp reduction in fatalities observed precisely at the policy cutoff. If storm
trends were the primary driver, we would expect a smooth increase in fatalities
over time rather than a discrete drop at a specific date. To further address this
concern, we incorporate an interaction term between the threshold and date
in our model, allowing for the possibility that storm-related fatalities follow an
upward trend that changes post-policy implementation. The insignificance of
this interaction term suggests that the observed reduction in fatalities is not
driven by an underlying increase in storm frequency but rather by implement-
ing the Wireless Emergency Alerts (WEA) system. Additionally, our robustness
checks—such as placebo tests using alternative thresholds—further reinforce
that the observed decline in storm-related deaths is not an artifact of broader
storm trends.

While we are less concerned about changes in storm characteristics, other time-
varying factors could introduce bias into our estimates. These include demo-
graphic shifts, variations in infrastructure, and housing quality, which are diffi-
cultto account for comprehensively. Among these, technological advancements
in the early 21st century present the most significant potential source of bias,
as they could improve early warning systems and influence storm preparedness
independent of WEA. To mitigate this concern, we adopt the percentage of
people with internet connection in the U.S. as a proxy for broader technological
improvements in information access. However, given that this data is available
only at the national level and yearly increments, it may not fully capture local-

level technological changes during each storm event.

The invention of the Wireless Emergency Alerts (WEA) system represents a
remarkable milestone in technological advancement, but it is not the only in-
novation in this domain. The emergence of social media, mobile apps, online
platforms, and other new information sources also holds the potential for serv-
ing as storm alert channels. While the design of WEA ensures its superiority
in delivering messages quickly and accurately compared to other information
channels, we still aim to account for the impacts that might arise from these
alternative sources. Given the impracticality of collecting data on every possible
information channel, we use the percentage of people connected to the internet
as a proxy. This choice reflects our understanding that internet access is a pre-
requisite for obtaining information regardless of the specific apps or platforms
used on various types of devices.
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However, the data we use for the percentage of people with internet connection
is annual and aggregated at the national level, rather than event-level data that
captures the proportion of people with internet access in the affected storm area
at the time of the storm. While we believe this proxy can capture the overall
trend of technological advancements’ impact on storm fatalities (aside from
WEA), its inability to reflect precise, localized, and event-specific conditions
limits its accuracy in addressing these impacts.

2.5 Conclusion and Discussion

This study provides empirical evidence that the Wireless Emergency Alerts
(WEA) system significantly reduces storm-related fatalities in the United States,
demonstrating its value as a public investment in disaster preparedness. By de-
livering timely and geographically targeted warnings, WEA helps prevent loss
of life, making it an effective tool for mitigating storm-related risks in an era of

increasing climate threats.

In our dataset of 361 major storm events from 2000 to 2024, we identify 205
events that occurred after implementing the Wireless Emergency Alerts (WEA)
system in April 2012. Based on our estimated treatment effect, which suggests
that WEA reduces daily average fatalities by 4.3 deaths per storm, and the average
length of the included storms is 4.16 days (excluding outlier events with disaster
length over so days), this implies that WEA may have prevented approximately
3,667 storm-related deaths since its launch. Over the 13 years of WEA opera-
tion, this corresponds to roughly 282 lives saved per year. Applying the U.S.
Department of Transportation’s 2024 Value of a Statistical Life (VSL) of $13.7
million (USDOT, 2021), we estimate the total societal benefit from reduced
fatalities at approximately $50.23 billion, or about $3.86 billion per year. These
gains reflect the value of mobile-based, publicly provided risk information as
a public good, mitigating the fatal consequences of coordination failures and
information asymmetries during disasters.

The financial investment required to implement WEA appears modest by com-
parison. The initial $106 million in federal funding for WEA was authorized
under Section 3010 of the Deficit Reduction Act of 2005 (Public Law 109-171),
which established the Digital Transition and Public Safety Fund to support the
development of a national alert system (U.S. Congress, 2006). In a 2021 cost

assessment, the Federal Communications Commission estimated that wireless
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providers would incur a one-time compliance cost of approximately $14.5 mil-
lion for technical upgrades and software implementation (FCC, 2021). While
ongoing maintenance costs are not publicly detailed, the available figures indi-
cate that WEA’s public health and economic benefits substantially outweigh its
implementation costs, which suggests a high benefit-cost ratio. These findings
reinforce WEA’s role as a cost-effective public safety investment with scalable
potential as climate-related weather risks continue to rise.

Our results offer valuable insights for both policymakers and the general public.
For policymakers, WEA’s demonstrated effectiveness suggests that regions with-
out similar alert systems should consider adopting them. Those regions with
existing systems should enhance functionality to improve accuracy, timeliness,
and public trust. For the general public, our findings reinforce the life-saving
importance of acting promptly upon receiving WEA alerts. Public trust and
responsiveness to emergency warnings are essential in maximizing the benefits

of these systems.

Despite its effectiveness, several challenges remain. Alert fatigue—where re-
peated exposure reduces responsiveness—could diminish WEA’s effectiveness
over time (Mileti & Sorensen, 1990; Wogalter, 2018). Similarly, false alarms may
erode public trust and discourage timely action (DeYoung et al., 2019). More-
over, the effectiveness of WEA depends not only on timely delivery but also
on message clarity, ensuring recipients can easily understand and act on the
information (Wood et al., 2012). Increasing public education on WEA’s impor-
tance and integrating disaster preparedness initiatives can further enhance its
impact (Bean & Grevstad, 2022; Wood et al., 2012). Hence, further investments
in message clarity, geo-targeting precision, and public awareness campaigns can
potentially increase WEA’s effectiveness and generate high returns in public
safety at a relatively low cost.

Our study provides novel evidence at the national level on the life-saving effects
of the mobile-based alert system, specifically the Wireless Emergency Alerts
(WEA) system, during severe storms. Even though researchers have long sus-
pected that such systems matter, there has been surprisingly little causal work
at a national scale. We show that WEA reduces fatalities likely in a highly cost-
effective manner. These results make a strong case for keeping, expanding, and
refining mobile-based public warning systems. Our findings have increased rel-
evance in light of the current climatic shifts. As extreme weather risks rise along
with climate change, timely and accurate information may become as impor-

tant as stable physical infrastructure. Mobile-based alerts like WEA help people
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take faster and more effective self-protection actions during extreme weather
events, and that’s a public investment worth making.
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CHAPTER 3

THE EFFECT OF DISASTER
AID ON RECOVERY:
EviDENCcE FROM FEMA
PuBLIC ASSISTANCE
PrROGRAM’

7 Jiang, W. and Filipski, M.
To be submitted to a peer-
reviewed journal.
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3.1 Introduction

Natural disasters impose severe and uneven infrastructure shocks across com-
munities, often disrupting electricity access, transportation networks, and other
essential public services. In response, governments deploy large-scale post-disaster
assistance programs aimed at facilitating recovery. In the United States, the
Federal Emergency Management Agency (FEMA) administers the Public Assis-
tance (PA) program, which allocates funds to eligible jurisdictions to repair and
restore damaged public infrastructure. Despite the program’s scale and fiscal
significance, empirical evidence on its effectiveness remains limited. Moreover,
recent studies highlight that the distributional effects of FEMA’s Individuals
and Households Program (IHP) vary with social vulnerability, raising concerns
about equity and efficiency in federal disaster response. (Emrich et al., 2022).
Similar heterogeneous effects may also be present in the allocation of FEMA
Public Assistance funds.

This study evaluates the causal impact of FEMA Public Assistance on post-
hurricane infrastructure recovery by leveraging satellite-based nighttime light
intensity as a proxy for local infrastructure functionality and economic activity.
Nighttime lights provide consistent, high-resolution coverage of human settle-
ments and have emerged as powerful tools for quantifying disasters’ economic
and infrastructural impacts. The Defense Meteorological Satellite Program
(DMSP) and the Visible Infrared Imaging Radiometer Suite (VIIRS) are the
two main sources of global nightlight data; while DMSP has been used since
the early 1990s, VIIRS—launched in 2011—offers significantly higher spatial
resolution, radiometric sensitivity, and calibration stability. Recent research
demonstrates their validity for this purpose: Gibson et al., 2024 shows that
widely used DMSP data can overstate disaster-related losses by more than 50%,
highlighting the superior accuracy of VIIRS data in post-disaster contexts. Sim-
ilarly, Schippers and Botzen, 2023 finds that changes in VIIRS nightlight inten-
sity after Hurricane Katrina closely track population displacement and employ-
ment shifts. These findings support using VIIRS-based nightlights to measure
FEMA’s impact on recovery objectively. By combining this remote sensing data
with county-level records of hurricane exposure and federal assistance, we assess
how disaster aid shapes recovery trajectories across affected U.S. counties.

Our empirical strategy integrates an event-study difference-in-differences (DiD)
design with inverse probability weighting (IPW), enabling us to compare treated

and untreated counties across multiple pre- and post-hurricane periods while ad-
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justing for observable imbalances. The identification strategy exploits variation
in FEMA Public Assistance (PA) receipt among counties exposed to similar hur-
ricane events between 2017 and 2022. Although treatment is not randomly as-
signed, FEMA allocates aid based on eligibility criteria and demonstrated need;
we take several steps to mitigate concerns about selection bias. First, we in-
clude controls for hurricane severity (e.g., maximum wind speed and disaster
duration) and key socioeconomic characteristics. Second, IPW rebalances the
sample based on observable characteristics, improving comparability between
treated and untreated counties. Third, we test the assumption of parallel trends
using multiple pre-treatment periods. Under the assumption that selection into
treatment is based only on observable characteristics, our approach allows for a
causal interpretation of medium- and long-run treatment eftects.

Residual bias may persist if unobserved damage or vulnerability factors corre-
late with FEMA aid and recovery outcomes. Importantly, our findings show
that treated counties, likely more severely affected, exhibit slower short-term
recovery but ultimately outperform control counties in longer-run recovery
trajectories. This pattern reinforces the interpretation that FEMA PA mean-
ingfully contributes to post-disaster recovery, and may even underestimate its

genuine effect due to conservative bias from non-random assignment.

We find that FEMA assistance leads to statistically and economically significant
improvements in nightlight intensity in the medium and long term. While
treated counties experience more initial light declines following hurricane on-
set—likely reflecting temporary disruptions—light levels begin to rebound by
six months and exceed those of comparable untreated counties within one to
two years. These results hold across multiple specifications, including models
that adjust for social vulnerability, economic conditions, storm severity, and
county fixed effects. Robustness checks using FEMA eligibility as an alterna-
tive treatment definition yield similar patterns, underscoring the credibility of

the findings.

Beyond average effects, we examine whether FEMA PA’s efficacy varies by county
characteristics. Counties are stratified into high and low groups based on the me-
dian of (i) personal income per capita, (ii) unemployment rate, and (iii) minority
population share. Recovery is tracked across short-run (o—-90 days), medium-
run (180-270 and 365-4s5 days), and long-run (730-820 days) periods. The
results reveal that long-run gains are largest and most stable in high-income
(5.13%), low-unemployment (4.25%), and low-minority (4.37%) counties, each
exceeding the 3.45% average effect in the full sample. By contrast, low-income,
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high-unemployment, and high-minority counties show smaller, more volatile
effects, with evidence of pre-trend violations in some cases. These findings sug-
gest that FEMA PA yields its greatest benefits in counties with stronger fiscal
capacity, administrative readiness, and infrastructural resilience, while weaker
recovery in more vulnerable counties underscores the need to improve equitable

access to and absorption of federal disaster assistance.

This paper makes a substantive contribution to disaster recovery and public
finance by delivering novel satellite-based evidence on the effectiveness of fed-
eral disaster aid. By integrating administrative FEMA data with high-frequency
nighttime light indicators in a dynamic panel framework, we illuminate how
post-disaster assistance fosters infrastructure resilience and shapes local recovery
trajectories. Our findings have important implications for designing recovery
policies in an increasingly frequent and severe natural hazards era. They also un-
derscore earlier evidence that strong institutional capacity significantly mitigates
disaster impacts, a theme well-documented in the natural disaster economics

literature (Kahn, 200s; Tol, 2022).

3.2 Data

We construct a county-level panel dataset that combines information on federal
disaster assistance, hurricane severity, nighttime lights, and socioeconomic char-
acteristics. The outcome variable is average nighttime light intensity, measured
using VIIRS Black Marble daily imagery (VNP46A2), which captures local in-
frastructure and economic activity at high spatial and temporal resolution. Our
analysis spans counties across the contiguous United States affected by major

hurricanes between 2017 and 2022.

Treatment is defined as receipt of FEMA Public Assistance (PA) funding, drawn
from the Public Assistance Applicants Program Deliveries dataset (FEMA, 2025).
This dataset also provides each hurricane’s incident start and end dates, which
we use to construct a series of post-hurricane recovery windows. These include
two pre-hurricane periods (180270 days prior and 365—4s5 days prior), one
baseline period (9o days prior), and five post-hurricane periods spanning from
o days to two years after the event.

We include maximum wind speed (from ER As-Land hourly reanalysis data

(C3S, 2019)), hurricane duration, and socioeconomic and demographic covari-
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ates to account for key confounders. Real GDP per capita and personal in-
come data are sourced from the U.S. Bureau of Economic Analysis (BEA)
(BEA, 2025); population is from the U.S. Census Bureau (U.S. Census Bu-
reau, 2025); and social vulnerability indicators (e.g., poverty, unemployment,
minority share, disability) are from the CDC/ATSDR Social Vulnerability In-
dex (SVI) (CDC/ATSDR, 2025).

3.2.1 Nighttime Light Intensity and Recovery Measurement

To measure post-disaster recovery, we use satellite-derived nighttime light inten-
sity from NASA’s VIIRS Black Marble dataset (VNP46A2: Lunar Gap-Filled
BRDF Nighttime Lights Daily L3 Global soom) (Romdn et al., 2018), which
provides cloud-free, gap-filled daily imagery at soo-meter spatial resolution. We
aggregate these data to the county level using spatial overlays and compute mean
intensity values within defined recovery windows centered around each hurri-

cane event.
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(a) Nighttime lights in Calcasieu Parish, (b) Nighttime lights in Calcasieu Parish,
Louisiana, on August 1, 2020, approx- Louisiana, on September 4, 2020, about
imately one month before Hurricane one week after Hurricane Laura’s landfall.
Laura’s landfall. (Image generated using  (Image generated using Google Earth En-
Google Earth Engine) gine)

Figure 3.1: VIIRS Black Marble nighttime light imagery of Calcasieu Parish

before and after Hurricane Laura.

As an illustrative example, Figure 3.1a and Figure 3.1b present VIIRS Black Mar-
ble images of Calcasieu Parish, Louisiana, before and after the landfall of Hur-
ricane Laura on August 277, 2020. The pre-hurricane image, dated August 1,
2020, captures typical nighttime light conditions, while the post-hurricane im-
age, dated September 4, 2020, reflects conditions roughly one week after landfall.
These single-date images were selected from one-month windows before and
after the hurricane based on visual clarity and mean radiance across the county.
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Specifically, we computed the average nightlight intensity for each image over
all pixels within the county boundary, and selected the image with the highest
mean radiance as the clearest available for that time window. This approach
helps avoid cloud-obscured or low-quality images and ensures consistent visual
comparison. Visual inspection suggests a modest decline in radiance, partic-
ularly around the urban center of Lake Charles, consistent with short-term
disruptions to electrical infrastructure.

We define three pre-disaster periods: 365—4s5 days prior (¢ = —2), 180-270
days prior (k = —1), and o—90 days before the disaster (k = 0), which serves as
the baseline. Post-disaster recovery is measured over five windows: o—9o days af-
ter (k = 1), 90-180 days (k = 2), 180—270 days (k = 3), 365455 days (k = 4),
and 730—-820 days after the hurricane (k = 5). This temporal structure enables

us to evaluate both short-term disruptions and long-run recovery trajectories.

3.2.2 Treatment and Hurricane Exposure Variables

Treatment is assigned at the county level and equals one if the county received
FEMA Public Assistance following a hurricane disaster declaration. We restrict
the sample to counties affected by major hurricanes between 2017 and 2022 with
complete records in all data sources. The same FEMA dataset also provides
the incident start and end dates, which we use to calculate hurricane duration
(incident length).

To better capture storm severity, in addition to hurricane duration, we extract
the maximum wind speed for each county during the disaster period from the
ER As-Land hourly reanalysis dataset (C3S, 2019), using both « and v wind

components to compute total wind speed via the Euclidean norm.

3.2.3 Socioeconomic and Demographic Covariates

County-level economic indicators, including real GDP per capita and personal
income per capita, are obtained from the U.S. Bureau of Economic Analysis
(BEA, 2025). County population estimates are drawn from the U.S. Census

Bureau (U.S. Census Bureau, 2025).

We incorporate six social vulnerability indicators from the CDC/ATSDR Social
Vulnerability Index (SVI) (CDC/ATSDR, 2025): poverty rate, unemployment
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rate, elderly share (age 65+), disability rate, minority share, and the propor-
tion of households without vehicles. These measures capture community-level
capacity constraints and exposure to systemic risks, which may confound the

relationship between FEMA assistance and recovery outcomes.

3.2.4 Measurement of Nighttime Light Recovery

To assess post-hurricane infrastructure recovery, we construct county-level av-
erage nighttime light intensity over discrete time windows centered around
each hurricane event. Specifically, we define three pre-hurricane periods: 365
to 455 days before the hurricane (denoted as k = —2), 180 to 270 days before
(k = —1), and the 9o days immediately preceding the hurricane, which serves
as the pre-hurricane baseline (k = 0).

Post-hurricane recovery is measured over five windows: o to 9o days after the
hurricane (k = 1), 9o to 180 days (k = 2), 180 to 270 days (k = 3, representing
a half-year window), 365 to 455 days (k = 4, one-year window), and 730 to 820
days after the hurricane (k = 5, two-year window). This panel structure enables
us to analyze short-term and longer-term recovery trajectories in a dynamic

event-study framework.

3.2.5 Sample Summary and Covariate Balance

Our sample includes all U.S. counties affected by a major hurricane between
2017 and 2022 with available data across all sources. Counties receiving FEMA
Public Assistance following a hurricane are coded as treated. Counties that
experienced hurricane events but did not receive aid serve as controls. We ap-
ply inverse probability weighting (IPW) to improve covariate balance between
treated and untreated groups.

Table 3.1 presents summary statistics comparing treated and control counties
across key characteristics. Statistically significant differences are observed for
most covariates, highlighting important baseline imbalances between the two
groups. For example, treated counties tend to have significantly lower real GDP
per capita (mean = $4s5.3k) than control counties ($49.1k), and smaller popula-
tions on average. Treated counties also exhibit higher poverty rates, disability
shares, and a greater proportion of households without vehicles, all of which
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are statistically significant at conventional levels. Conversely, they have lower
minority population shares and shorter incident durations than controls.

These differences underscore the need to account for covariate imbalance in
the estimation strategy. To address this, we implement inverse probability
weighting (IPW) based on a propensity score model that includes socioeco-
nomic and demographic variables, hurricane characteristics, and county-level
geographic features. By reweighting observations, IPW improves covariate bal-
ance and enhances the credibility of causal estimates derived from our difference-
in-differences framework. Post-weighting balance diagnostics are presented in
Appendix Table A6, and show substantial reductions in standardized mean

differences across all covariates.
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3.3 Empirical Strategy

To estimate the causal impact of FEMA Public Assistance on post-hurricane in-
frastructure recovery, we employ an event-study difference-in-differences (DiD)
framework, leveraging variation in treatment status and precise temporal dis-
tance to hurricane landfall. Our outcome variable—nighttime light intensity—is
derived from satellite-based VIIRS data and serves as a high-frequency, spatially
granular proxy for local infrastructure activity and economic functionality at

the county level.

Compared to traditional administrative indicators such as GDP or employment,
nighttime lights ofter several critical advantages for disaster impact assessment.
First, they provide daily observations, allowing us to measure recovery trajecto-
ries relative to the exact timing of the hurricane, rather than being constrained
by coarse calendar-based reporting periods (e.g., quarterly GDP). This tempo-
ral precision is particularly valuable when recovery efforts begin immediately

following a storm.

Second, nightlight imagery can capture dimensions of recovery that adminis-
trative data may overlook. Employment and GDP figures may reflect broader
labor markets that extend beyond county boundaries, obscuring localized ef-
fects. For example, workers might commute from nearby counties, or reported
income may originate from non-residential activities. In contrast, nighttime
lights respond directly to changes in the built environment and electricity usage,
capturing infrastructure restoration and residential reconstruction that might

not be immediately reflected in employment data.

Finally, nightlights offer consistent geographic coverage and minimal report-
ing delay, making them especially suited for rapid-response and retrospective
analyses. Prior research validates their reliability in detecting disaster-related
disruptions and recovery patterns across U.S. contexts (Gibson et al., 2024;
Schippers & Botzen, 2023).

Our identification strategy relies on comparing treated and untreated counties’
changes in nightlight intensity across multiple recovery windows relative to the
hurricane event, controlling for county fixed effects and observable covariates.

The baseline model is specified as follows:
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5
log(Nightlight,,) = Z B, - 1{Periody, }i; X Treated; + X/, v+ p1; + € (3.1)
k=—3

log(Nightlight,, ) denotes the natural logarithm of average nighttime light in-
tensity for county ¢ during the recovery period . We define six discrete recovery
periods indexed by £ € {0,1,...,5}: (o) the 9o days before the hurricane
(pre-hurricane baseline), (1) o—90 days after the hurricane, (2) 9o—180 days
after, (3) 180—270 days after (half-year window), (4) 365—4s5 days after (one-
year window), and (s) 730-820 days after (two-year window). The indicator
variable 1(Periody) equals one if the observation falls within recovery window
k, and zero otherwise. Treated; is a binary variable equal to one if county ¢
received FEMA Public Assistance, and zero otherwise. The interaction term
1(Periody,) x Treated; captures the treatment effect of FEMA aid in each post-
hurricane period, relative to the pre-hurricane baseline (Period o), which is
omitted from the model as the reference category.

X denotes a vector of time-varying county-level covariates, including eco-
nomic and demographic controls: real GDP per capita, personal income per
capita, population, and a set of social vulnerability indicators (e.g., poverty rate,
unemployment rate, share of elderly, disabled, minority, and households with-
out vehicles). We also include storm severity controls such as incident duration
and maximum wind speed during the hurricane. j1; denotes county fixed effects,
which control for time-invariant unobservable characteristics. Standard errors

are clustered at the county level.

This specification allows us to examine the dynamic evolution of nightlight
intensity following a hurricane and test whether treated counties recover faster
than comparable untreated counties, conditional on baseline observables. The
event-study formulation is particularly suited to evaluating the persistence and

timing of FEMA’s impact across multiple post-hurricane recovery windows.

3.3.1 Testing for Parallel Trends

A key identifying assumption of the DiD framework is that treated and un-
treated counties would have followed similar pre-hurricane trends in nightlight

intensity in the absence of treatment. To assess this assumption of parallel
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trends, we extend the event-study model to include three pre-hurricane lead pe-
riods and the baseline. Specifically, we collect nightlight data from 365-4s5 days
before the hurricane (coded as & = —2) and 180-270 days before (k = —1),
preceding the go-day baseline period (£ = 0). Accordingly, we re-code the
period indicator Period, tospan k € —2,—1,0,1,...,5.

We then estimate an augmented event-study specification that includes leads
and lags of treatment, with period o (90 days before the hurricane) omitted
as the reference. The coeflicients on the pre-hurricane interaction terms (k =
—2, —1) allow us to directly test for anticipatory or pre-treatment differences
in trends between treated and control counties.

3.3.2 Inverse Probability Weighting for Covariate Balance

Although our model includes a rich set of covariates and county fixed effects,
we further address pre-treatment imbalances by implementing inverse prob-
ability weighting (IPW). This approach re-weights observations to create a
pseudo-population in which treatment assignment is independent of observed

covariates.

We first estimate a propensity score model predicting the likelihood of receiv-
ing FEMA Public Assistance based on pre-hurricane characteristics, including
average nightlight before the hurricane, economic indicators, demographic vul-
nerabilities, county size, forest cover, and storm severity. Stabilized weights are

constructed as:

g if Treated; = 1,
_ ) D
w; = 1—9p
{) if Treated; = 0,
1L —p;

where p; is the estimated propensity score for county ¢ and p is the sample mean
of the treatment indicator.

These inverse probability weights are incorporated into the DiD estimation
to yield IPW-weighted treatment effects. We examine standardized mean dif-
ferences (SMDs) before and after weighting to assess whether the weighting
procedure improves covariate balance. As shown in Appendix Table A6, all
SMD:s fall below the conventional o.1 threshold (Austin, 2009; Stuart, 2010)

67



post-weighting, including the SMD for pre-hurricane log nightlight, which
declines from 0.1888 to 0.0780. Most covariates—particularly socioeconomic
and demographic measures—exhibit SMDs below 0.025, indicating excellent
balance. These results suggest that the IPW procedure substantially enhances
the comparability of treated and control groups.

3.3.3 Summary of Empirical Approach

By combining an event-study difference-in-differences (DiD) design with in-
verse probability weighting (IPW) and an extended set of pre-treatment periods,
our empirical strategy strengthens causal identification along two key dimen-
sions: (1) it supports the parallel trends assumption by explicitly testing for
pre-treatment equivalence in trends, and (2) it improves covariate balance be-
tween treated and control groups through re-weighting. To further assess the
robustness of our findings, we conduct several robustness checks, including re-
defining treatment based on program eligibility rather than actual fund receipt
and excluding the first 30 days of post-hurricane nighttime light data to reduce

noise from short-term power outages.
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3.4 Main Results

Table 3.2: Main Results: Impact of FEMA Public Assistance Program Across
Recovery Periods

(1) (2) () (4) (5)

Treatment Effects
Period -2 X Treated —0.0086 —0.0085 —0.0082 —0.0088 —0.0098
(0.0121) (0.0121) (0.0121) (0.0121) (0.0122)
Period -1 X Treated —0.0003 —0.0002 0.0001 —0.0005 —0.00I15
(0.0057) (0.0057) (0.0058) (0.0057) (0.0056)
Period 1 X Treated —0.0317"*  —0.0316"* —o0.033""* —0.0319"* —0.0329™**
(0.0094)  (0.0094)  (0.0094)  (0.0094)  (0.0094)
Period 2 X Treated 0.0159" 0.0160* 0.0163* 0.0157" 0.0147
(0.0092) (0.0092) (0.0092) (0.0092) (0.0093)
Period 3 X Treated 0.0243™** 0.0244™*  0.0247"*  0.0241""* 0.0231"**
(0.0026) (0.0026) (0.0026) (0.0026) (0.0027)
Period 4 x Treated 0.0006 0.0007 0.0010 0.0004 —0.0006
(0.0034)  (0.0034)  (0.0035)  (0.0034)  (0.0035)
Period 5 X Treated 0.0345"** 0.0346™** 0.0349™™"  0.0344™* 0.0333""*

(0.0044)  (0.0044)  (0.0044)  (0.0044)  (0.0047)

Control Variables

Real GDP per capita —0.0008 —0.0021 —0.0009 - -
(0.0016) (0.0016) (0.0018)
Personal Income per capita  0.0069"**  0.0085***  0.0072"** - -
(0.0017) (0.0014) (0.0013)
Population 7.43¢-07""  1L19€-06™"  1.25€-06™  1.75e-06*** -
(3.07¢-07)  (2.08e-07)  (2.10e-07)  (3.17€-07)
Poverty Rate —0.0024™  —0.0029"*  —o0.0013 0.0028"* -
(0.0011) (0.0010) (0.0011) (0.0012)
Unemployment Rate 0.0058 —0.0002 0.0062* —0.0009 -
(0.0040) (0.0038) (0.0033) (0.0031)
Elder Rate (Age>6s) 0.0025
(0.0075)
Disability Rate —0.0099™*
(0.0046)
Minority Rate 0.0093*
(0.0048)
No Vehicle HH Rate —0.0066
(0.0046)
Incident Length 0.0009™** 0.0014***
(0.0003) (0.0003)
Max Wind Speed —0.0010 —o.0017*
(0.0009) (0.0010)
Observations 22,744 22,744 22,744 22,744 22,744
Fixed Effects County County County County County
RMSE 0.0477 0.0478 0.0480 0.0487 0.0536
Within R? 0.258 0.253 0.247 0.224 0.061

Note: Robust standard errors clustered at the county level in parentheses. *p < 0.1, **p <
0.05, ***p < 0.01. “~” indicates a variable excluded due to model specification.
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Table 3.2 presents the estimated effects of FEMA Public Assistance on post-
hurricane recovery, measured by changes in average nighttime light intensity
at the county level. The analysis is based on an inverse probability weighted
(IPW) event-study difference-in-difterences (DiD) framework with county fixed
effects, which accounts for observable imbalances and time-invariant hetero-
geneity. Nighttime lights are a widely accepted proxy for local infrastructure
functionality and economic activity.

The coefficients on the pre-treatment periods (Periods —2 and —1) are small
in magnitude and statistically insignificant across all specifications. Specifically,
estimates for Period —2 range from —0.0082 to —0.0098, and for Period —1
from 0.0001 to —0.0015, with none reaching statistical significance thresholds.
This lack of differential pre-trends supports the validity of the parallel trends
assumption, strengthening the credibility of our identification strategy.

In the immediate aftermath of hurricanes (Period 1: 0—90 days), treated coun-
ties exhibit significantly slower recovery in nightlight intensity compared to
control counties, with estimated changes indicating 3.13% to 3.29% less growth
(or greater reduction) relative to pre-hurricane levels than the control group
(p < 0.01). This pattern is consistent with delays in FEMA fund disbursement
and greater initial damage in treated areas, reflecting the program’s needs-based
allocation criteria. Although we control for observable disaster severity (e.g.,
wind speed, incident duration), unmeasured damage or vulnerability may still
bias short-run comparisons. Furthermore, nightlight data during this early win-
dow may capture transient disruptions and noisy power outages rather than sus-
tained infrastructure loss. Supporting this interpretation, a robustness check
that excludes the first 30 days post-disaster yields smaller and statistically weaker
negative effects in Period 1.

By Period 2 (90-180 days), the direction of the treatment effect reverses, with
treated counties exhibiting relatively greater growth in nighttime light inten-
sity—1.47% to 1.63% higher than control counties relative to pre-hurricane lev-
els—statistically significant at the 10% level (p < 0.1). These positive recov-
ery effects become stronger and more consistent by Period 3 (180-270 days),
where treated counties experience significantly higher nightlight growth of 2.31%
to 2.47% compared to controls (p < 0.01). The largest treatment effects
are observed in Period 5 (730-820 days), with treated counties showing sus-
tained growth of 3.33% to 3.49% more in light intensity relative to the con-
trol group (p < 0.01). These results indicate that FEMA Public Assistance
supports medium-term recovery and contributes to long-run improvements
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in infrastructure-related activity and local economic recovery and growth, as
proxied by nightlight intensity.

Estimates for Period 4 (365—4s5 days) remain statistically insignificant across all
models, which may reflect an intermediate stage in the recovery process where
resources are still being mobilized or construction projects are underway but
not yet complete. Nonetheless, the pattern of steadily increasing effects across

Periods 2 through s suggests a cumulative and persistent recovery impact from
FEMA Public Assistance.

These results are robust across five model specifications that sequentially adjust
for economic conditions (e.g., personal income, GDP), social vulnerability fac-
tors (e.g., poverty, minority share, disability rate), and hurricane severity (e.g.,
wind speed, incident duration). Inclusion of these covariates improves preci-

sion and confirms the robustness of the treatment effect.

Estimated coefficients for control variables are generally consistent with expec-
tations. Personal income per capita is positively and significantly associated
with light intensity, while higher poverty and disability rates are negatively as-
sociated, reflecting known disparities in economic resilience and infrastructure

investment.

The temporal pattern of treatment effects observed in our analysis aligns closely
with FEMA’s implementation guidelines for Public Assistance (PA). According
to the Public Assistance Applicant Handbook (FEMA, 2010), debris removal and
emergency work must be completed within six months to remain eligible for re-
imbursement, while permanent work must be completed within 18 months of
the disaster declaration. Moreover, FEMA may reimburse up to 100% of perma-
nent work costs if completed within six months, but only 75% thereafter. These
deadlines likely create incentives for local governments to expedite recovery ef-
forts around key thresholds. This helps explain the significant recovery effects
observed in Period 3 (180—270 days), which corresponds to the six-month mark,
and again in Period 5 (730-820 days), which captures the 18-month deadline.
In contrast, the lack of significance in Period 4 (365—455 days) may reflect a lull
between the completion of emergency work and the finalization of permanent
repairs, as jurisdictions await further funding or manage construction timelines.
These institutional constraints and reimbursement incentives provide a plausi-
ble explanation for the observed dynamics of nightlight recovery.

The results provide strong evidence that FEMA Public Assistance has a signifi-

cant and sustained effect on post-hurricane recovery. Treated counties demon-
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strate measurable improvements in infrastructure and local economic activity,
with recovery effects persisting and amplifying over the two years following ma-

jor hurricanes.

3.5 Robustness Checks

3.5.1 Using FEMA Public Assistance Eligibility as Treat-
ment

To test the robustness of our main findings, we re-estimate the event-study
model using eligibility for FEMA Public Assistance as the treatment variable,
rather than actual fund receipt. This specification captures the intent-to-treat
(ITT) effect—i.e., the impact of being targeted for aid, regardless of whether

funds are ultimately disbursed.

Table 3.3 reports the results. The estimated treatment effects remain consistent
with the main specification across all recovery periods. In particular, we observe
significant and positive treatment effects in the medium and long run. The esti-
mated coefficients for Period 3 and Period s are slightly larger than those based
on actual fund receipt (Table 3.2), suggesting that eligibility alone may activate
recovery mechanisms even before aid is disbursed. These mechanisms could
include strategic planning, accelerated local recovery efforts, or the expectation
of forthcoming federal support.

Notably, the parallel trends assumption appears to hold in this specification, as
we observe no statistically significant differences in nightlight trends between
eligible and non-eligible counties during the two pre-hurricane periods (5 =
—2and k = —1). This strengthens the credibility of our identification strategy
by supporting the assumption that, in the absence of treatment, both groups

would have followed similar trajectories.

Overall, the results using eligibility as treatment reaffirm the credibility of the
main findings. The fact that both actual fund receipt and program eligibility
yield similar recovery patterns reinforces the conclusion that FEMA Public As-
sistance substantially accelerates post-hurricane infrastructure recovery.
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Table 3.3: Robustness Checks: Using Program Eligibility as Treatment

O] (2) () (4) (s)
Treatment Effects
Period -2 X Treated —0.0058 —0.0050 —0.0049 —0.0054 —0.0097
(0.0108) (0.0106) (0.0106) (0.0106) (0.0108)
Period -1 X Treated 0.0024 0.0042 0.0043 0.0038 —0.0006
(0.0062) (0.0062) (0.0062) (0.0061) (0.0055)
Period 1 X Treated —0.0250"  —0.0260™"  —0.0260""* —0.0264"* —0.0308"**
(0.0096) (0.0095) (0.0095) (0.0094) (0.0094)
Period 2 x Treated 0.0194™" 0.0189™* 0.0189™* 0.0185™* 0.0141
(0.0094) (0.0090) (0.0090) (0.0090) (0.0091)
Period 3 x Treated 0.0288™** 0.0290™** 0.0290™** 0.0286™** 0.02.42™**
(0.0029) (0.0030) (0.0029) (0.0030) (0.0032)
Period 4 X Treated 0.0041 0.0038 0.0039 0.0034 —0.0009
(0.0038) (0.0040) (0.0040) (0.0040) (0.0039)
Period § x Treated 0.0383™** 0.0372*** 0.0373™** 0.0368*** 0.0325™**

(0.004s) (0.0049) (0.0049) (0.0049) (0.0052)

Control Variables

Real GDP per capita —0.0006 —0.0020 —0.0009 - -
(0.0015) (0.0015) (0.0018)
Personal Income per capita  0.0068*** 0.0085"** 0.0073™** - -
(0.0017) (0.0014) (0.0013)
Population 7.90e-07"*  1L22€-06""  1.28e-06™*  1.81e-06""* -
(3.05e-07)  (2.06e-07)  (2.10e-07) (3.22¢-07)
Poverty Rate —0.0028""*  —0.0030™"* —0.00I5 0.0024™* -
(0.0010) (0.0010) (0.00m) (o0.00m)
Unemployment Rate 0.0052 —0.0001 0.0062** —0.0007 -
(0.0038) (0.0036) (0.0031) (0.0030)
Elder Rate (Age>6s) 0.0043
(0.0072)
Disability Rate —0.0106™*
(0.0045)
Minority Rate 0.0095""
(0.0046)
No Vehicle HH Rate —0.0045
(0.0039)
Incident Length 0.0010™** 0.0014™**
(0.0003) (0.0003)
Max Wind Speed —0.0010 —o.0017"
(0.0009) (0.0010)
Observations 22,744 22,744 22,744 22,744 22,744
Fixed Effects County County County County County
RMSE 0.0471 0.0473 0.0475 0.0483 0.0531
Within R? 0.279 0.277 0.270 0.247 0.088

Note: Robust standard errors clustered at the county level in parentheses. *p < 0.1, **p <
0.05,***p < 0.01. “~” indicates a variable excluded due to model specification.
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3.5.2 Excluding the First 30 Days After Hurricanes

Table 3.4: Robustness Checks: Excluding first 30 days after hurricanes

(1) () () (4) ()
Treatment Effects
Period —2x Treated —0.0102 —o.0I0I —0.0098 —0.0104 —0.0114
(0.0120) (0.0119) (0.0119) (0.0120) (0.0121)
Period —1 x Treated —0.0019 —0.0018 —0.00I5 —0.0021 —0.0032
(0.0056) (0.0056) (0.0056) (0.0056) (0.0054)
Period 1 X Treated —0.0184™  —0.0183"*  —0.0180™ —0.0186"* —0.0196™*
(0.0083) (0.0083) (0.0083) (0.0083) (0.0083)
Period 2 x Treated 0.0143 0.0144 0.0147 0.0141 0.0131
(0.0094)  (0.0094)  (0.0094)  (0.0094)  (0.0095)
Period 3 x Treated 0.0227™** 0.0228™** 0.0231""*  0.0225"*  0.0215™**
0.002 0.002 0.002 0.002 0.0028
7 7 7 7
Period 4 X Treated —0.0010 —0.0009 —0.0006 —o.0011 —0.0022
(0.0033) (0.0033) (0.0034) (0.0033) (0.0034)
Period § x Treated 0.0329™* 0.0331"** 0.0334™*  0.0328""  0.0317"*

(0.0043) (0.0044) (0.0043) (0.0044)  (0.0046)

Control Variables

Real GDP per capita —0.0009 —0.0022 —0.0010 —0.0010 -
(0.0016) (0.0016) (0.0018) (0.0018)
Personal Income per capita  0.0069™** 0.0085*** 0.0072***  0.0072"** -
(0.0017) (0.0014) (0.0013) (0.0013)
Population 7.44€-07""  1.21e-06™*  1.26€-06™*  L75e-06™** -
(3.05e-07)  (2.08e-07)  (2.11e-07)  (3.19¢-07)
Poverty Rate —0.0024"  —0.0029"*  —o0.0013 0.0028"* -
(0.00m) (0.0010) (0.00m) (0.00m)
Unemployment Rate 0.0058 —0.0003 0.0062" —0.0009 -
(0.0040) (0.0038) (0.0033) (0.0031)
Elder Rate (Age>6s) 0.0026
(0.0075)
Disability Rate —0.0098""
(0.0046)
Minority Rate 0.0095*
(0.0048)
No Vehicle HH Rate —0.0065
(0.0045)
Incident Length 0.0009™*  0.0014"**
(0.0003) (0.0003)
Max Wind Speed —0.0009  —o.0017"
(0.0009) (0.0010)
Observations 22,744 22,744 22,744 22,744 22,744
Fixed Effects County County County County County
RMSE 0.0470 0.0472 0.0474 0.0481 0.0531
Within R? 0.25I 0.246 0.239 0.216 0.045

Note: Robust standard errors clustered at the county level in parentheses. *p < 0.1, **p <
0.05, ***p < 0.01. “~” indicates a variable excluded due to model specification.

One potential concern in using nighttime lights as a proxy for infrastructure
recovery is that immediate post-hurricane reductions in light intensity may pri-
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marily reflect temporary power outages rather than actual damage to infras-
tructure or sustained economic disruption. In the aftermath of hurricanes,
widespread power loss is common and may not accurately represent long-term
recovery conditions. To address this concern, we re-estimate our main model
after redefining the first post-hurricane recovery window (Period 1) to exclude
the first 30 days. In this alternative specification, Period 1 captures the 30-90
day window following the hurricane, thereby aiming to diminish the influence
of transitory outages and better isolate changes associated with substantive re-

COVCI'y pI'OCCSSCS.

As shown in Table 3.4, the results remain consistent with our main findings. In
particular, we continue to observe a statistically significant negative treatment
effect in Period 1, with treatment estimates slightly attenuated in magnitude
compared to the original specification (e.g., —0.0185 vs. —0.0317 in column
1). This pattern is consistent with the interpretation that power outages tem-
porarily depress observed nightlightlevels immediately following hurricanes. By
excluding the first 30 days, we obtain a more conservative and arguably cleaner
estimate of the short-term disruption in local infrastructure and economic ac-
tivity. The persistence of significant positive treatment effects in later periods
(Periods 3 and ) further confirms the robustness of the FEMA assistance effect

over medium- and long-term horizons.

3.5.3 Hurricane Preparedness Across Counties

To address concerns about heterogeneity in disaster preparedness across coun-
ties, we construct an experience-based proxy using the number of FEMA Public
Assistance (PA) applications each county submitted before a given hurricane.
Specifically, for each disaster, we count the total number of PA applications the
county filed in response to earlier events, using FEMA’s application-level data.
This proxy reflects administrative preparedness, capturing institutional famil-
iarity with the federal aid system, staff capacity, and procedural readiness, rather
than physical preparedness such as shelters or levees. We include this variable as
a control to assess whether baseline differences in administrative capacity bias
our estimates. The results, reported in Appendix Table A7, show no statistically
significant effect of this preparedness measure on recovery outcomes, and our

main estimates remain robust to its inclusion.
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3.6 Heterogeneity Analysis

To assess whether the effects of FEMA Public Assistance program vary across so-
cioeconomic contexts, we conduct a heterogeneity analysis by stratifying coun-
ties based on three key baseline characteristics: personal income, unemploy-
ment rate, and minority population share. For each dimension, counties are
divided into high and low groups using the median value in the pre-disaster
period. Table 3.5 presents estimates from the main specification for each sub-
group. Specifically, we report the interaction effects between treatment and
recovery periods across high- and low-income, high- and low-unemployment,
and high- and low-minority counties. The results suggest notable differences in
both the magnitude and statistical significance of estimated treatment effects
across groups. Full regression tables, including all model specifications and

control variables, are reported in the Appendix.
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3.6.1 Heterogeneous Effects by County Personal Income

We stratify counties into high- and low-income groups based on the median
of personal income per capita. The results indicate that FEMA Public Assis-
tance generates more robust and sustained recovery in high-income counties.
In the short run (within 9o days), treated high-income counties experience a
significant decline in nighttime light intensity, consistent with the average post-
disaster impact. However, by the medium run (half to one year), light levels be-
gin to rebound, and by the long run (two years), treated counties exhibit a 5.13%
increase in nighttime lights relative to controls—surpassing the 3.45% effect ob-
served in the full sample (Table 3.2). In contrast, while low-income counties
also show a positive recovery trend, the effects are smaller, more volatile across
periods, and accompanied by evidence of pre-trend violations. These patterns
suggest that FEMA assistance may be more effective in areas with greater fiscal
and institutional capacity to absorb and implement aid. Higher-income coun-
ties typically have stronger local tax bases, more experienced administrative per-
sonnel, and better pre-existing infrastructure—all of which could potentially
facilitate a faster and more efficient recovery process. In addition, wealthier ar-
eas may benefit from broader insurance coverage and private-sector investment,

which can complement and amplify the impact of federal disaster support.

3.6.2 Heterogeneous Effects by County Unemployment Rate

To examine heterogeneous treatment effects of FEMA Public Assistance, we
stratify counties based on pre-disaster unemployment rates. Specifically, coun-
ties are divided into two groups—those with unemployment rates below the
median (referred to as “low-unemployment counties”) and those above the me-
dian (“high-unemployment counties”). In low-unemployment counties, treat-
ment effects are not only statistically significant but also larger in magnitude
than those estimated using the full sample. Specifically, in low-unemployment
counties, nighttime light intensity in treated areas is approximately one percent-
age point higher two years after the hurricane than the effect estimated using
the full sample, suggesting stronger long-term recovery. This may indicate that
FEMA assistance is more effective in counties with stronger labor market condi-
tions, potentially due to better administrative capacity, infrastructure, or access
to complementary resources that facilitate more efficient recovery. In contrast,
treatment effects in high-unemployment counties are notably smaller, and ev-

idence of pre-trend violations raises concerns about the credibility of causal
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interpretation. While this divergence hints at meaningful heterogeneity in dis-
aster recovery outcomes, the findings for high-unemployment counties should
be viewed cautiously. Still, the larger and more robust effects observed in low-
unemployment areas provide suggestive evidence that the benefits of FEMA

PA may be concentrated in counties with lower unemployment rates.

3.6.3 Heterogeneous Effects by County Minority Rate

We stratify counties into high- and low-minority groups based on the median
share of minority population. The results reveal notable differences in the mag-
nitude and stability of recovery. In low-minority counties, treatment effects are
statistically significant and follow a clear upward trajectory over time. Specifi-
cally, nighttime light intensity initially declines in the short run (o—9o days post-
disaster), begins to recover in the medium run (180-270 days, 365—455 days), and
reaches a long-run (730-820 days) increase of 4.37% relative to control coun-
ties. This long-run effect is notably larger than the 3.45% observed in the full
sample (Table 3.2), suggesting that low-minority counties may experience more

sustained gains from FEMA Public Assistance.

In contrast, high-minority counties also show positive recovery in the medium
and long run, with a long-run treatment effect of 2.58%, but estimates are more
volatile across periods. Moreover, the presence of a statistically significant de-
cline in nighttime lights during the pre-hurricane period (—2) indicates a viola-
tion of the parallel trends assumption. This undermines the credibility of causal
interpretation in high-minority counties, and results for this group should there-
fore be interpreted with caution.

One possible explanation for the stronger recovery in low-minority counties
is that these areas may have better access to institutional resources or stronger
networks to navigate federal aid programs eftectively. They may also face fewer
administrative, linguistic, or procedural barriers in applying for and deploying
FEMA assistance, enabling faster and more coordinated recovery efforts. Dif-
ferences in political representation or historical patterns of underinvestment
in minority communities could further exacerbate disparities in how disaster

assistance is accessed and utilized.
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3.7 Caveats

One primary caveat concerns the potential for selection bias in treatment as-
signment. FEMA Public Assistance is not randomly allocated. Given FEMA’s
eligibility criteria and needs-based allocation, countries that received aid may
have been systematically more damaged by hurricanes than those that did not.
While our empirical strategy controls for storm severity (e.g., maximum wind
speed, incident duration) and improves balance on observed covariates through
inverse probability weighting, unobserved differences in initial damage may
persist. Consequently, the lower relative nightlight growth (or greater relative
reduction) observed for treated counties in the immediate post-hurricane pe-
riod (Period 1) could partially signal more extensive initial disruption, rather
than an ineffective or delayed policy response. Importantly, the fact that treated
counties recover more fully and exceed control levels in subsequent periods, de-
spite likely being hit harder, reinforces the conclusion that FEMA assistance
plays a meaningful role in facilitating recovery in the medium to long run.

3.8 Conclusion

This study examines the impact of FEMA Public Assistance on post-hurricane
recovery, using satellite-based nighttime light intensity to track recovery tra-
jectories at the county level. By combining an inverse probability weighted
difference-in-difterences framework with rich panel data on disaster aid, local
conditions, and hurricane severity, we provide robust evidence that federal assis-
tance significantly boosts medium- and long-term infrastructure and economic
recovery. Treated counties show stronger gains in nightlight intensity, exceed-
ing comparable controls by 3.45% two years after the hurricane, suggesting that
FEMA aid plays a meaningful role in enhancing local resilience.

Importantly, our heterogeneity analysis reveals that the benefits of FEMA Pub-
lic Assistance are not evenly distributed. Recovery outcomes are significantly
stronger and more sustained in counties with higher income levels, lower unem-
ployment rates, and smaller minority populations. Long-run gains in nighttime
lightintensity reach 5.13% in high-income counties, 4.25% in low-unemployment
counties, and 4.37% in low-minority counties—each surpassing the average ef-
fectin the full sample. In contrast, recovery in low-income, high-unemployment,

and high-minority counties is more volatile, with some evidence of pre-trend
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divergence that limits causal interpretation. These disparities highlight the im-
portance of fiscal capacity, administrative readiness, and equitable access to aid

in shaping recovery trajectories.

Our findings yield several important policy implications. As climate-related
disasters grow more frequent and severe, timely and sustained federal assistance
is essential for effective recovery. However, the uneven distribution of benefits
underscores the need for a more inclusive and adaptive approach. Policymakers
should consider tailoring aid delivery strategies to local capacities and investing
in the administrative infrastructure of underserved communities. Reducing
procedural hurdles and supporting institutional readiness in high-vulnerability

areas could help ensure that assistance reaches those most in need.

Alongside these efforts, policymakers should consider integrating advances in
artificial intelligence, machine learning, and satellite remote sensing to enhance
the speed and precision of disaster impact assessments. These technologies can
enable semi-automated systems for early damage detection, cost estimation, and
needs-based fund allocation. For instance, automated pre-payments based on
real-time satellite assessments could provide immediate relief while more de-
tailed evaluations are underway. Similarly, centralized planning systems pow-
ered by real-time data and logistical modeling could support optimized deploy-
ment of recovery resources. By shortening the delay between disaster and recon-
struction, such innovations can reduce inequities in aid delivery—especially in

historically underserved or high-risk regions.

To our knowledge, this is the first study to provide a national-level assessment
of FEMA Public Assistance effectiveness using high-frequency, spatially disag-
gregated indicators. By integrating VIIRS nightlight data with administrative
FEMA records and socioeconomic controls in a dynamic panel framework, we
contribute novel evidence on the role of federal aid in fostering recovery. Our
results emphasize not only the overall effectiveness of public assistance but also
the critical need to address structural disparities that shape who benefits most

from disaster recovery programs.
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CONCLUSION

This dissertation investigates how migration behavior, wireless public disaster
warning, and federal disaster assistance influence environmental outcomes and
recovery processes in the face of rising climate-related risks. Across three chap-
ters, it combines rich spatial and administrative datasets with causal inference
techniques to evaluate policies and behavioral responses that affect sustainabil-
ity and resilience in both developing and developed contexts.

Chapter 1 explored the environmental consequences of rural out-migration in

Mon State, Myanmar, using a dynamic panel model with household-level survey

data and satellite-based forest cover observations between 2000 and 2015. The re-
sults reveal that out-migration significantly reduces local forest loss within 1000-
meter bufters surrounding villages. Each additional migrant is associated with

over a s-square-meter decrease in deforestation annually. The study finds sugges-
tive evidence that remittance income enables households to shift from firewood

and charcoal to electricity for cooking, highlighting a remittance-facilitated en-
ergy transition channel. This chapter contributes to the migration—environment
literature by identifying a novel behavioral mechanism that links demographic

mobility with environmental sustainability.

Chapter 2 evaluated the life-saving effects of the U.S. Wireless Emergency Alerts
(WEA) system using a Regression Discontinuity in Time (RDiT) design. Ex-
ploiting the April 2012 nationwide rollout of WEA as a sharp policy threshold, it
analyzes storm-related mortality from 361 major events between 2000 and 2024.
The study finds that WEA reduced fatalities by approximately 4.3 deaths per
storm, resulting in an estimated 3,667 lives saved. This translates into a societal
benefit of approximately $50 billion, achieved with relatively low implementa-
tion cost. Robustness checks, including placebo and falsification tests, support
the validity of the identification strategy. These findings position WEA as a
cost-eftective digital public good with scalable potential for disaster risk reduc-
tion.
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Chapter 3 examined the effect of FEMA Public Assistance on post-hurricane
infrastructure recovery in the United States. Using a county-level panel from
2017 to 2022 and VIIRS nighttime light intensity as a proxy for infrastructure
functionality, the study implements an event-study difference-in-differences
framework with inverse probability weighting. Counties that received FEMA
PA experienced significantly faster and more sustained recovery, with treated
areas showing 2.3—2.5% higher light intensity within 6—9 months post-disaster
and 3.3-3.5% higher after two years. The results remain robust across multiple
model specifications and treatment definitions, including those based on eligi-
bility thresholds. This chapter provides new causal evidence on the effectiveness
of public infrastructure aid in supporting disaster resilience.

Taken together, these studies demonstrate how behavioral, technological, and
institutional mechanisms shape environmental outcomes and disaster responses.
They highlight the importance of integrating migration policy, information sys-
tems, and federal assistance programs into a broader sustainable development
agenda.

Future research could extend this work in several directions. For the Myanmar
study, better data on remittance use and household energy consumption could
further validate the proposed mechanisms. In the WEA chapter, micro-level
exposure data could refine the estimated treatment effect and address spatial
heterogeneity. The FEMA aid study could be extended to examine longer-term
effects on economic activity and incorporate more accurate assessments of dis-
aster damage and recovery. More broadly, this dissertation points to the need
for interdisciplinary approaches that combine causal inference, spatial data, and

panel analysis to evaluate policy responses under environmental uncertainty.
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APPENDIX A

ADDITIONAL TABLES
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Table As: OLS Estimates of the Effect of WEA Threshold on Storm-Related
Deaths per Storm

Dependent variable:
Total Deaths
(1) Full Sample (2) No Katrina
Threshold —29.167 —21.470™*
(20.192) (7.509)
Date (centered) 0.00I1 0.0035"
(0.0040) (0.0015)
Disaster Subtype: Derecho —34.817 —28.234
(56339) (20.961)
Disaster Subtype: Extra-tropical storm —28.349 —17.782
(78.724) (29.282)
Disaster Subtype: Hail —20.674 —13.295
(36.554) (13.598)
Disaster Subtype: Lightning/Thunderstorms —16.450 —16.165*
(22.927) (8.529)
Disaster Subtype: Sand/Dust storm 1.388 —10.683
(78.341) (29.143)
Disaster Subtype: Severe weather —11.675 —16.637**
(18.056) (6.747)
Disaster Subtype: Storm (General) —18.549 —14.447"*
(19.108) (7.108)
Disaster Subtype: Tornado —12.576 —6.299
(14.847) (5:548)
Disaster Subtype: Tropical cyclone —60.621"* —20.348"**
(16.655) (6.317)
Total damage (billions USD) 5441 1.42.8***
(0.297) (0.152)
Constant 34.371° 33.535™**
(17.098) (6.431)
Observations 253 253
R? 0.597 0.315
Adjusted R? 0.577 0.280

Residual Std. Error

F Statistic

77.43 (df = 240)
29.66™* (df = 12; 240)

28.80 (df = 239)

9.14™* (df = 125 239)

Note: *p<o.1; **p<o0.0s;

*okk

p<0.0I
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Table A6: Covariate Balance Before and After IPW

Variable SMD (Unweighted) SMD (Weighted)
Outcome and Covariates

log(Nightlight) —0.1846 0.0801
Real GDP per capita —0.1486 —0.0075
Personal Income per capita 0.0588 0.0049
Population —0.2904 0.0010
Poverty Rate 0.4640 —0.0234
Unemployment Rate 0.0071 —0.0165
Elderly Rate (Age > 65) —0.0046 —0.0030
Disability Rate 0.1676 —0.0055
Minority Rate —0.2876 —0.0126
No Vehicle HH Rate 0.1989 —0.0077
Incident Length —0.4946 0.0090
County Area (km?) —0.1205 0.0069
Forest Cover (%) 0.1228 0.0024
Max Wind Speed (During Incident) —0.0740 0.0060
Effective Sample Sizes Control Treated
Unadjusted 11,296 11,448
Adjusted 9,372.07 10,235.51

Note: Standardized mean differences (SMD) are shown before and after applying inverse

probability weighting (IPW).
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Table A7: Robustness Check: Controlling for County-Level Hurricane Pre-
paredness

(1) (2)
Treatment Effects
Period —2 X Treated —0.0087 —0.0086
(0.0m9) (0.0m9)
Period —1 x Treated —0.0002 —0.0001
(0.0057) (0.0057)
Period 1x Treated —0.0316™* —0.0315"**
(0.0093) (0.0093)
Period 2x Treated 0.0160" 0.0161*
(0.0091) (0.0092)
Period 3x Treated 0.0243™** 0.02.44™**
(0.0026) (0.0026)
Period 4 x Treated 0.0006 0.0007
(0.0034) (0.0034)
Period 5x Treated 0.0345"** 0.0346***
(0.0044) (0.0044)
Control Variables
Real GDP per capita —0.0008 —0.0021
(0.0016) (0.0016)
Personal Income per capita  0.0069™** 0.0085***
(0.0017) (0.0014)
Population 7.45€-07"" 1.20€-06™**
(3.07€-07) (2.08¢-07)
Poverty Rate —0.0024™* —0.0029™**
(0.00m) (0.0010)
Unemployment Rate 0.0058 —0.0002
(0.0040) (0.0038)
Elder Rate (Age > 65) 0.0025
(0.0075)
Disability Rate —0.0099™*
(0.0046)
Minority Rate 0.0093*
(0.0048)
No Vehicle HH Rate —0.0066
(0.0046)
Incident Length 0.0009*** 0.0014™**
(0.0003) (0.0003)
Max Wind Speed —0.0010 —o.0017"
(0.0009) (0.0010)
Past PA Applications —9.62¢-07 —1L41e-06
(2.14€-06) (2.56€-06)
Observations 22,744 22,744
Fixed Effects County County
RMSE 0.0477 0.0478
Within R? 0.257 0.253

Note: Robust standard errors clustered at the county level in parentheses. ***p < 0.01,
**p < 0.05, *p < 0.1. Past PA Applications is the preparedness proxy based on previous
FEMA applications.
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Table A8: High-Income Counties — Impact of FEMA Public Assistance
Across Recovery Periods

(1) (2) () (4) (5)
Treatment Effects
Period -2 x Treated —0.0090 —0.0089 —0.0087 —0.0085  —0.0077
(0.0236) (0.0236) (0.0236) (0.0237) (0.0236)
Period -1 X Treated —o0.0135 —o.0135 —o0.0132 —o0.0131 —o0.0123
(0.0084) (0.0084) (0.0084) (0.0084)  (0.0088)
Period 1 x Treated —0.0446™  —0.0445""  —0.0443"" —o0.0441" —0.0433"*
(0.0183) (0.0183) (0.0182) (0.0182) (0.0183)
Period 2 x Treated 0.0183 0.0184 0.0186 0.0188 0.0196
(0.0182) (0.0182) (0.0182) (0.0181) (0.0181)
Period 3 x Treated 0.0295"™*  0.0296™*  0.0299™*  0.0300"*  0.0308***
(0.0045)  (0.0045)  (0.0045)  (0.0044)  (0.0045)
Period 4 x Treated 0.0091 0.0092 0.0094 0.0096 0.0104
(0.0084) (0.0084) (0.0084) (0.008s) (0.0087)
Period § x Treated 0.0513"** 0.0514™** 0.0516™** 0.0518""  0.0526™**
(0.0077) (0.0077) (0.0077) (0.0077)  (0.0080)
Control Variables
Real GDP per capita 0.0037 —0.0021 —0.0001 - -
(0.0030) (0.0027) (0.0026)
Personal Income per capita 0.0030 0.0083™** 0.0070™** - -
(0.0031) (0.0018) (0.0019)
Population 2.57€-06™  2.10€-06™*  2.40e-06™*  2.40e-06™* -
(4.07¢-07)  (4.60e-07)  (4.78e-07)  (9.28¢-07)
Poverty Rate —o.ou8™*  —0.0048" —0.0021 0.0025 -
(0.0037) (0.0027) (0.0018) (0.0021)
Unemployment Rate 0.0162 0.0091 0.0089 —0.0142 -
(0.0139) (0.0162) (0.0124) (0.019)
Elder Rate (Age>65) 0.0634***
(0.0207)
Disability Rate 0.0019
(0.0161)
Minority Rate —0.0055
(0.0091)
No Vehicle HH Rate 0.0244"*
(0.0071)
Incident Length 0.0020"™*  o.001r*** - - -
(0.0006) (0.0005)
Max Wind Speed —0.0020 —0.0031 - - -
(0.0023) (0.0024)
Observations 11,368 11,368 11,368 11,368 11,368
Fixed Effects County County County County County
RMSE 0.0541 0.0542 0.0542 0.0546 0.0578
Within R? 0.2187 0.2164 0.2156 0.2049 0.1087

Note: Robust standard errors clustered at the county level in parentheses. *p < 0.1, **p <
0.05, ***p < 0.01. “~” indicates a variable excluded due to model specification.
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Table Ag: Low-Income Counties — Impact of FEM A Public Assistance Across

Recovery Periods
@) &) () (4) (s)
Treatment Effects
Period -2 X Treated —0.0084™  —0.0084™ —0.0086™ —0.0094™* —0.0096"**
(0.0036) (0.0036) (0.0035) (0.0036) (0.0036)
Period -1 X Treated 0.0128"** 0.0128"** 0.0126*"* 0.018*** 0.0116™**
(0.0030) (0.0031) (0.0031) (0.0031) (0.0030)
Period 1 X Treated —o0.0179"*  —o0.0179"* —o0.0181"* —0.0189"*  —o0.0191"**
(0.0033) (0.0034)  (0.0033) (0.0033) (0.0034)
Period 2 x Treated 0.0132"** 0.0132*** 0.0130™** 0.01227** 0.0120™**
(0.0035) (0.0036) (0.0036) (0.0036) (0.0035)
Period 3 X Treated o.0191"** o0.0191"** 0.0190™** 0.0181"** 0.0179***
(0.0029) (0.0029) (0.0029) (0.0030) (0.0030)
Period 4 X Treated —0.0079™  —0.0079"*  —0.0081" —0.0089""  —o0.0091""
(0.0036) (0.0037) (0.0036) (0.0036) (0.0036)
Period 5 X Treated 0.0170™** 0.0170™** 0.0168™** 0.0160*** 0.0158***
(0.0051) (0.0051) (0.0050) (0.0050) (0.0051)
Control Variables
Real GDP per capita 0.0029" —0.0003 —0.0006 - -
(0.0017) (0.0013) (0.0021)
Personal Income per capita  0.0128"* o.o113™** 0.0079™** - -
(0.0014) (0.0013) (o.0015)
Population —1.26e-07  1.02e-06™*  133e-06™"  1.53e-06"** -
(2.90e-07)  (1.97e-07)  (r75¢-07)  (3.43e-07)
Poverty Rate —0.0024"**  —0.0031"*  —0.0005 0.0009 -
(0.0009) (0.0009) (0.0015) (0.0012)
Unemployment Rate 0.0061 0.0031 o.o13™** 0.0013 -
(0.0038) (0.0031) (0.0026) (0.0033)
Elder Rate (Age>6s) —o.om*
(0.0059)
Disability Rate —o.0147**
(0.0066)
Minority Rate 0.0114"**
(0.0029)
No Vehicle HH Rate 0.0026
(0.0093)
Incident Length 0.0013™** 0.0019™** - - -
(0.0002) (0.0003)
Max Wind Speed —o.0013"*  —0.0022** - - -
(0.0006) (0.0010)
Observations 11,376 11,376 11,376 11,376 11,376
Fixed Effects County County County County County
RMSE 0.0381 0.0382 0.0384 0.0388 0.0406
Within R? 0.1628 0.1558 0.1472 0.1313 0.0466

Note: Robust standard errors clustered at the county level in parentheses. *p < 0.1, **p <
0.05, ***p < 0.01. “~” indicates a variable excluded due to model specification.
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Table Aro: High-Unemployment Counties — Impact of FEMA Public Assis-
tance Across Recovery Periods

(1) (2) () (4) (5)

Treatment Effects

Period —2x Treated —0.0154**  —0.0156** —0.0158** —0.0161** —0.0160**
(0.0071) (0.0071) (0.0070) (0.0070) (0.0070)

Period —1 % Treated 0.000I1 —0.0001 —0.0003 —0.0006 —0.0005
(0.0107) (0.0106) (0.0106) (0.0105) (0.0105)

Period 1x Treated —0.0207** —0.0209** —0.0211*** —0.0214** —0.0213***
(0.0066) (0.0067) (0.0067) (0.0067) (0.0067)

Period 2% Treated 0.0249** 0.0247** 0.0245** 0.0243** 0.0243**
(0.0103) (0.0103) (0.0104) (o0.0104) (0.0104)

Period 3% Treated 0.0237** 0.0235** 0.0234*** 0.0231*** 0.0231**
(0.0029) (0.0029) (0.0030) (0.0031) (0.0031)

Period 4 x Treated —0.0034 —0.0036 —0.0037 —0.0040 —0.0040
(0.0048) (0.0047) (0.0047) (0.0047) (0.0047)

Period 5x Treated 0.0260*** 0.0258*** 0.0257*** 0.0254*** 0.0254***
(0.0062) (0.0062) (0.0062) (0.0063) (0.0063)

Control Variables

Real GDP per capita 0.0007 0.0008 —0.0004 - -
(0.0008) (0.0018) (0.0021)

Personal Income per capita 0.0022 0.0051*** 0.0037* - -
(0.0016) (0.0012) (0.0018)

Population 3.69e-06*  5.20e-06***  3.21e-06* 2.11e-06* -

(Ls9e—06)  (r10e—06) (1.40e—06) (1.256—06)

Poverty Rate —0.0049*  —0.0018 —0.0012 0.0000 -
(0.00m) (0.0011) (0.0011) (0.0010)

Unemployment Rate 0.0019 —0.0027 0.0002 —0.0027 -
(0.0036) (0.0045) (0.0028) (0.0026)

Elder Rate (Age>6s) 0.0213 - - - -
(0.0145)

Disability Rate 0.0150* - - - -
(0.0063)

Minority Rate 0.0191*** - - - -
(0.0053)

No Vehicle HH Rate —0.0147** - - - -
(0.0042)

Incident Length 0.0031*** 0.0014** - - -
(0.0009) (0.0003)

Max Wind Speed —0.0003 —0.0014 - - -
(0.0010) (0.0012)

Observations 11,368 11,368 11,368 11,368 11,368

Fixed Effects County County County County County

RMSE 0.0399 0.0400 0.0401 0.0401 0.0401

Within R? 0.091 0.089 0.086 0.083 0.083

Note: Robust standard errors clustered at the county level in parentheses. *p < 0.1, **p <

0.05, ***p < 0.01. “~” indicates a variable excluded due to model specification.
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Table Arr: Low-Unemployment Counties — Impact of FEMA Public Assis-
tance Across Recovery Periods

(1) ) () (4) ()

Treatment Effects
Period —2x Treated —0.0039 —0.0038 —0.0035 —0.0036 —0.0043
(0.0203) (0.0203) (0.0202) (0.0203) (0.0204)
Period —1 X Treated —0.0016 —0.0015 —0.0011 —0.0013 —0.0020
(0.0052) (0.0052) (0.0053) (0.0052) (0.0053)
Period 1x Treated —0.0401**  —0.0400** —0.0396** —0.0398*** —0.0404***
(0.0151) (o.0151) (0.0152) (o.0151) (0.0152)
Period 2 x Treated 0.0074 0.0075 0.0079 0.0077 0.0071
(0.0125) (0.0125) (0.0126) (0.0125) (o.0125)
Period 3x Treated 0.0247** 0.0248*** 0.0252*** 0.0250*** 0.0244**
(0.0044) (0.0045) (0.0045)  (0.0044) (0.0045)
Period 4 x Treated 0.0050 0.0052 0.0055 0.0053 0.0047
(0.0046) (0.0046) (0.0047) (0.0046) (0.0051)
Period 5% Treated 0.0425** 0.0427*** 0.0430™** 0.0428"* 0.0422%*

(0.0067) (0.0067) (0.0067) (0.0066) (0.0073)

Control Variables

Real GDP per capita —0.0049 —0.0059 0.0017 - -
(0.0039) (0.0040) (0.0029)

Personal Income per capita 0.0055* 0.0100*** 0.0051* - -
(0.0029) (0.0031) (0.0021)

Population 4.50e-07 1.36e-06™  1.30e-06*  2.28e-06*** -

(4.41e—07) (5.08e—07) (6.43¢—07) (9.61e—07)

Poverty Rate —0.0076***  —0.0074**  —0.0043 0.0007 -
(0.0021) (0.0032) (0.0030) (0.0037)

Unemployment Rate —0.0114 —0.0270 —0.0308  —0.0453** -
(o.012) (0.0165) (0.0227) (0.0204)

Elder Rate (Age>6s) 0.0255 - - - -
(0.0138)

Disability Rate —0.0247* - - - -
(0.0116)

Minority Rate 0.0112 - - - -
(0.0074)

No Vehicle HH Rate —0.0418* - - - -
(0.0245)

Incident Length 0.0018* 0.0016* - - -
(0.0007) (0.0007)

Max Wind Speed —0.0003 —0.0019 - - -
(0.0010) (0.0013)

Observations 11,376 11,376 11,376 11,376 11,376

Fixed Effects County County County County County

RMSE 0.0536 0.0538 0.0540 0.0542 0.0595

Within R? 0.244 0.238 0.234 0.226 0.070

Note: Robust standard errors clustered at the county level in parentheses. *p < 0.1, " p <
0.05,***p < 0.01. “~” indicates a variable excluded due to model specification.
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Table Ar2: High Minority Counties — Impact of FEMA Public Assistance
Across Recovery Periods

(1) (2) () (4) (5)

Treatment Effects

Period —2x Treated —0.0222**  —0.0222"* —0.0222"* —0.0223""* —0.0236***
(0.0059) (0.0059) (0.0059) (0.0059) (0.0057)

Period —1x Treated —0.0075 —0.0074 —0.0074 —0.0075 —0.0089
(0.0090) (0.0091) (0.0091) (0.0091) (0.0087)

Period 1x Treated —0.0166™* —0.0165** —0.0165*** —0.0167** —0.0180***
(0.0041) (0.0041) (0.0041) (0.0041) (0.0044)

Period 2x Treated 0.0280*** 0.0280*** 0.0280*** 0.0279*** 0.0266**
(0.0092) (0.0092) (0.0092) (0.0093) (0.0096)

Period 3x Treated 0.0263** 0.0263*** 0.0263*** 0.0262*** 0.0249**
(0.0031) (0.0031) (0.0031) (0.0031) (0.0033)

Period 4 x Treated —0.0070*  —0.0070*  —0.0070* —0.0071*  —0.0084**
(0.0041) (0.0041) (0.0041) (0.0041) (0.0038)

Period 5x Treated 0.0258*** 0.0259*** 0.0259*** 0.0257** 0.0244*
(0.0042) (0.0042) (0.0042) (0.0042) (0.0043)

Control Variables

Real GDP per capita 0.0024 0.0010 0.0004 - -
(0.0025) (0.0023) (0.0020)

Personal Income per capita 0.0025 0.0051* 0.0053** - -
(0.0023) (0.0023) (0.0016)

Population 6.79e-07***  1.02e-06**  1.03e-06***  1.27e-06*** -

(2.48¢—07) (1.s3e—o07) (L.66e—o07) (L79e—07)

Poverty Rate —0.0010 —0.0016 —0.0004 0.0037** -
(0.0020) (0.0015) (0.0013) (0.0018)

Unemployment Rate 0.0019 —0.0049 0.0036 —0.0007 -
(0.0044) (0.0041) (0.0042) (0.0050)

Elder Rate (Age>6s) 0.0023 - - - -
(0.0139)

Disability Rate —0.0081 - - - -
(0.0066)

Minority Rate 0.0103 - - - -
(0.0072)

No Vehicle HH Rate —0.0077 - - - -
(0.0083)

Incident Length 0.0002 0.0010** - - -
(0.0004) (0.0005)

Max Wind Speed 0.0024 0.0005 - - -
(0.0021) (0.0016)

Observations 11,368 11,368 11,368 11,368 11,368

Fixed Effects County County County County County

RMSE 0.0397 0.0398 0.0399 0.0402 0.0450

Within R? 0.281 0.277 0.274 0.261 0.073

Note: Robust standard errors clustered at the county level in parentheses. *p < 0.1, **p <

0.05, ***p < 0.01. “~” indicates a variable excluded due to model specification.
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Table A13: Low Minority Counties — Impact of FEMA Public Assistance
Across Recovery Periods

(1) (2) G) (4) ()

Treatment Effects

Period —2x Treated 0.0045 0.0048 0.0053 0.0051 0.0040
(0.0202) (0.0202) (0.0201) (0.0203) (0.0205)

Period —1 x Treated 0.0059 0.0063 0.0067 0.0066 0.0054
(0.0051) (0.0051) (0.0052) (0.0051) (0.0052)

Period 1x Treated —0.0461"*  —0.0458** —0.0453*** —0.0455"** —0.0466™**
(0.0157) (0.0158) (0.0158) (0.0157) (0.0156)

Period 2x Treated 0.0043 0.0046 0.0051 0.0049 0.0038
(0.0128) (0.0129) (0.0129) (0.0128) (0.0127)

Period 3x Treated 0.0228*** 0.0231*** 0.0235** 0.0234*** 0.0222***
(0.0041) (0.0041) (0.0042) (0.0041) (0.0043)

Period 4 x Treated 0.0082* 0.0086* 0.0090** 0.0089** 0.0077
(0.0045) (0.0045) (0.0045) (0.0044) (0.0050)

Period 5x Treated 0.0437*** 0.0441** 0.0445** 0.0444** 0.0432***
(0.0076) (0.0076) (0.0075) (0.0075) (0.0082)

Control Variables

Real GDP per capita 0.0026* —0.0000 0.0024 - -
(0.0013) (0.0016) (0.0035)

Personal Income per capita  0.0045** 0.0059*** 0.0048*** - -
(0.0015) (0.0012) (0.0018)

Population 1.52¢-06**  2.19e-06™**  2.06e-06***  2.88e-06*** -

(3.52¢—07)  (236e—07) (2.93¢—07) (3.89¢e—07)

Poverty Rate —0.0022*  —0.0038*** —0.0015 0.0003 -
(0.0012) (0.0011) (0.0019) (0.0019)

Unemployment Rate 0.0050 —0.0042 0.0060 0.0002 -
(0.0047) (0.0043) (0.0054) (0.0045)

Elder Rate (Age>6s) 0.0036 - - - -
(0.0061)

Disability Rate —0.0183** - - - -
(0.0048)

Minority Rate 0.0122%** - - - -
(0.0041)

No Vehicle HH Rate —0.0001 - - - -
(0.0040)

Incident Length 0.0011*** 0.0020*** - - -
(0.0004) (0.0004)

Max Wind Speed —0.0009 —0.0018* - - -
(0.0006) (0.0008)

Observations 11,376 11,376 11,376 11,376 11,376

Fixed Effects County County County County County

RMSE 0.0533 0.0535 0.0540 0.0544 0.0599

Within R? 0.274 0.268 0.255 0.244 0.082

Note: Robust standard errors clustered at the county level in parentheses. *p < 0.1, **p <

0.05, ***p < 0.01. “~” indicates a variable excluded due to model specification.
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