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ABSTRACT

Graph datasets are important because they allow for efficient analysis of intercon-
nected data. Also, they enable the exploration of relationships between entities,
facilitating pattern recognition, decision making, classification, clustering and statis-
tical analysis, especially for large datasets. Graph databases are also well-suited for
handling complex data changes with minimal manual input and offer techniques for
data integration and sharing. Graphs are widely used across different fields; such
as: social network analysis, recommendation systems, fraud detection, supply chain
management, bioinformatics and many others. To be able to benefit from the in-
formation of the graph datasets, one has to use different analysis methods including
using query languages such as Cypher and SQL, using GNNs or employ machine
leaning algorithms like community detection, link prediction, or node classification to

gain insights. As already mentioned, graphs usually get large in size and as a result,



it is more efficient in many cases to reduce the size of the graph before applying ma-
chine learning models on them directly. To reduce the size of the graph, we can use
an embedding method. Embedding is the act of translating high dimensional data
into low dimensional ones while keeping the important information. After applying
the embedding method, we can use the machine learning model to obtain the data
we need from the graph. In this research, we focus on graph analysis and how to
use information stored in graphs. First, we introduce a novel method for embedding
graphs. While the resulted embedding can be used for various purposes, we use it for
the link prediction task. Then, we discuss several recent works for embedding graphs,
their advantages and disadvantages and finally compare the model we developed to
them. Then, we introduce another method for graph analysis in which we use LLMs

to generate multi-hop Cypher query and run that query on a Neo4j database.

INDEX WORDS: AT & LLM, Deep Learning, Machine Learning, Natural
Language Processing, Graph
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Chapter 1

Introduction

A graph is a data structure that consists of vertices (nodes) and edges. A vertex,
also called a node, is a point or an object in the graph, and an edge is used to
connect two vertices with each other. Graphs serve as powerful frameworks for
analyzing and solving challenges involving interconnected elements. By repre-
senting interconnected data, graphs can reveal trends, patterns, and relationships
that might not be immediately obvious from raw numbers or text. This allows
for a better understanding, decision-making, and communication of complex data.
They are used in various fields such as: social media, transportation systems and
many others. In social media platforms, individuals appear as nodes and their
connections—friendships, follows, professional associations—function as connect-
ing lines. This structure enables recommendation algorithms to identify potential
new connections based on existing relationship patterns Saadati et al. [2024].

For transportation systems, geographical points (cities, intersections, transit stops)



become nodes, with pathways (roads, routes, transit lines) forming the connections
between them. When structured as a graph, navigation systems can efficiently
calculate optimal routes between any two locations.

The vast architecture of the World Wide Web itself follows a graph model, where
websites exist as nodes, and the hyperlinks connecting them form the network’s
structure. This representation allows search engines to navigate and understand
the relationships between different online resources.

To use the information stored in graphs, we need to analyze them. Graph data
analysis makes it easier to understand and interpret information in graphs. On
the other hand, graphs usually grow large in size, which makes it inconvenient
and impossible to gain information directly from them without using any meth-
ods. As a result, it is necessary to utilize efficient ways to take advantage of the
information stored in graphs.

In this work, our aim is to introduce new methods for graph analysis. There are
different ways for graph analysis; such as using query languages like Cypher or
utilizing machine learning models including but not limited to clustering, classifi-
cation, link prediction and etc. The first two methods, utilizing query languages
and using GNNs, do not require any modification to the graph as these methods
can be applied directly to the graph. However, in most cases, for using machine
learning methods on graphs, we need to reduce the size of the graph. There are
various techniques to reduce the size of data in machine learning including em-
bedding, sampling, compression, and data aggregation. Each of these techniques

come with advantages and limitations. In this work, we focus on embedding, since



it was a better technique to reduce the size of the graph dataset in our case.
Embedding is a technique to reduce the size of the data by convert the data to a
vector space which transfers data from high dimensional space to a lower dimen-
sional space. By embedding, we keep the most important information of the data
and get rid of the unnecessary part. There have been previous novel methods on
embedding graphs and we introduce a new method which stands out by giving
the user more authority.

In addition, we leverage Large Language Models (LLMs) to analyze data in graphs,
too. LLMs are Al models which are basically new technologies that copy how
humans think to tackle problems, make choices, and come up with new ideas.
These systems get smarter by analyzing massive amounts of data and spotting
patterns in all that information. Once they have learned these patterns, Al can
respond to what you ask or tell it in ways that feel pretty natural and human-
like. Also, LLMs have revolutionized many domains in the industry; as they are
widely used in chatbots, customer service, virtual assistants, recommendation sys-
tems and others. While LLMs are already advanced, they are still struggling in
some specific fields. For example, it is challenging for LLMs to answer multi-hop
questions. A multi-hop question is a type of question that requires combining
information from multiple sources or steps to arrive at the correct answer. Unlike
simple fact-based questions that can be answered from a single sentence or pas-
sage, multi-hop questions demand reasoning across several pieces of information,
often spread across documents, sentences, or knowledge bases. That is because

LLMs are not able to always find a path between two nodes of the graphs which



are not connected to each other by an edge. We introduce a new method to solve

this challenge.

1.1 Dissertation Organization

The current chapter (chapter 1) discusses the motivation for our work as well as
challenges and how we address these challenges. Chapter 2 introduces our novel
method for graph embedding. In chapter 3, we summarize recent embedding
method of graphs, their advantages and limitations and comparison of our method
to these ones. In chapter 4, we introduce a new method for generating multi-
hop Cypher queries on graphs using LLMs. We solve two issues in this method:
1. Generating Cypher query using LLMs; which helps users with no to little
knowledge of Cypher language to be able to generate them and use them to gain
more information about the graph dataset. 2. LLMs have challenges finding a path
in multi-hop question answering; in our method we introduce a new way which
helps LLM find a path between two nodes in the graph that are not connected

directly. Finally, in chapter 5, we discuss the conclusion and the future work.

1.2 Motivations

Graph-structured data is ubiquitous across a wide range of real-world domains,

including healthcare, finance, education, and social networks. In these settings,



entities and their complex relationships can be naturally modeled as graphs —
enabling more nuanced reasoning, better predictions, and deeper insights. For
example, patient-treatment interactions, transaction networks, and knowledge hi-
erarchies all benefit from graph-based representations.

While graph neural networks and embedding techniques have shown promising
results in capturing the structure and semantics of such data, there remain open
challenges in designing models that are scalable, interpretable, and effective across
diverse tasks. At the same time, the rapid advancement of large language models
(LLMs) introduces new opportunities for integrating language understanding with
structured graph reasoning, particularly in tasks like multi-hop question answering
and knowledge-based inference.

This thesis is motivated by the need to bridge foundational methods in graph
learning with practical NLP and deep learning techniques that can be applied
across domains. Specifically, it presents: (1) a novel method for graph embedding
that improves structural representation learning, (2) a comprehensive survey of
random walk-based embedding methods, clarifying their theoretical underpinnings
and practical trade-offs, and (3) a framework for multi-hop question answering
using large language models, leveraging graph structure for complex reasoning.

By addressing both theoretical and applied challenges, this work contributes
to the development of general-purpose, graph-aware machine learning techniques
that can support applications across multiple sectors — from personalized edu-
cation and fraud detection to medical knowledge discovery and intelligent search

systems.



1.3 Contributions

This thesis makes the following key contributions to the fields of machine learning,
natural language processing, and graph representation learning:

A novel graph embedding method that captures both structural proximity and
deeperr semantic relationships, improving performance on downstream tasks such
as node classification and link prediction across multiple datasets.

A comprehensive survey and taxonomy of random walk-based graph embed-
ding techniques, covering foundational algorithms, theoretical insights, compar-
ative analysis, and practical guidelines for selecting appropriate methods across
domains.

An approach for multi-hop question answering over knowledge graphs using
large language models (LLMs), combining symbolic graph structure with neural
language representations to enable reasoning across multiple relational paths.

Demonstration of the generalizability of the proposed methods across multiple
real-world domains, including potential applications in healthcare, finance, and
education, showing the adaptability of graph-based models in diverse structured
data settings.

Open-source implementations and reproducible experiments to support further

research and practical adoption of the methods presented in this thesis.



Chapter 2

Subgraph2vec: A random
walk-based algorithm for

embedding knowledge graphs

Graph is an important data representation which occurs naturally in the real world
applications Goyal and Ferrara [2018]. Therefore, analyzing graphs provides users
with better insights in different areas such as anomaly detection Ma et al. [2021],
decision making Fan et al. [2023], clustering Tsitsulin et al. [2023], classification
Wang et al. [2021] and etc. However, most of these methods require high levels
of computational time and space. We can use other ways like embedding to re-
duce these costs. Knowledge graph (KG) embedding is a technique that aims to
achieve the vector representation of a KG. It represents entities and relations of a

KG in a low-dimensional space while maintaining the semantic meanings of them.



There are different methods for embedding graphs including random walk-based
methods such as node2vec, metapath2vec and regpattern2vec. However, most of
these methods bias the walks based on a rigid pattern usually hard-coded in the
algorithm. In this work, we introduce subgraph2vec for embedding KGs where
walks are run inside a user-defined subgraph. We use this embedding for link pre-
diction and prove our method has better performance in most cases in comparison

with the previous ones.

Keywords: Representation Learning, Information Engineering, Link Predic-

tion, Deep Learning, Graph Embedding

2.1 Introduction

Knowledge graphs play a crucial role in organizing, understanding, and leverag-
ing information in various domains. Hence, they become increasingly popular in
different areas due to their valuable features. For example, they are widely used
in recommendation systems in E-commerce to model the relationships between
users and items. Next, they enable personalized recommendations by leveraging
knowledge about user interactions and item characteristics Huang et al. [2004].
As another example, they are widely used in healthcare to support practitioners
for disease diagnosis by knowledge discovery from patients’ personal health repos-
itories Tao et al. [2020]. In addition, they provide a structured way of connecting

entities with relationships, which creates a network to organize and represent in-



formation. Thus, it is easier to discover relevant information either manually, by
navigating through nodes to discover visions, or by using machine learning and
AT to make predictions and generate insights into data. In addition, Knowledge
graphs facilitate querying and discovery of complex patterns within data Verborgh
et al. [2016] and also capture semantic connections which leads to more accurate
queries.

Although knowledge graphs offer many benefits, they have several issues. For
instance, Knowledge graphs are often incomplete Chen et al. [2022], as they are
frequently populated using various external resources which are often incomplete
as well. Also, these outside resources have different structure and format which
makes integrating data more difficult. In addition, knowledge graphs usually
grow in size and complexity which makes them inefficient and therefore special
infrastructure and algorithms are needed to make them more scalable Polleres
et al. [2023]. This complexity also makes interpreting patterns and drawing in-
sights more challenging and time-consuming. Moreover, building and maintaining
knowledge graphs often need domain expertise to ensure the accuracy of the rep-
resented data.

A reasonable number of such issues can be addressed using Artificial Intelli-
gence (Al). In fact, different methods of Al can be used for resolving the previous
mentioned problems with knowledge graphs as well as: knowledge graph comple-
tion Chen et al. [2020], node representation learning Zhang et al. [2021], semantic
search Reinanda et al. [2020], question answering Saxena et al. [2020], anomaly

detection Ma et al. [2022], quality assessment Huaman [2022], etc. However, ap-



plying Al algorithms on different types of Knowledge graphs requires a significant
number of adjustments due to the high number of the dimensions of the input
data. In fact, in many cases, these methods cannot be applied on Knowledge
graphs directly. Therefore, it is desired to reduce the number of the dimensions
of the input data or knowledge graph by embedding it with different AT methods.
Knowledge graph embedding is the act of translating the high-dimensional data
to a low-dimensional space, while trying to maintain the semantic meanings of the
KG elements. The embedding of each element in the dataset is a unique vector-
representation of that element. The resulted embedding of the Knowledge graph
can be used for different purposes, such as link prediction, entity classification,
semantic search, and others. There exist different types of embedding methods
for Knowledge graphs based on supervision, which include supervised methods
such as Graph Convolutional Networks (GCNs) Yao et al. [2019], Unsupervised
methods like TransE Bordes et al. [2013] and DeepWalk and Hybrid ones such as
GraphSAGE Hamilton et al. [2017]. In this paper, we introduce an unsupervised
algorithm based on random walks for embedding Knowledge graphs. There are
previous random walk-based methods for embedding knowledge graphs, such as
node2vec, metapath2vec and regpattern2vec. However, these methods come with
challenges. For example, in node2vec the random walks are biased to highly vis-
ible types of nodes, the ones with a dominant number of paths. On the other
hand, in metapath2vec and regpattern2vec the walks are biased by a series of
relationships (or node types) or a fixed regular pattern of relationships (or node

types), respectively. In our method, the user enters an arbitrary pattern which
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defines a schema subgraph in the actual knowledge graph and the walk is done
within this subgraph. In the next section, we will compare our method with the

previous related ones.

2.2 Preliminaries

In this section, we will explain some primitive concepts which are fundamental to
the understanding of our method and the previous ones, starting with the expla-

nation of the Knowledge graphs (or heterogeneous networks).

Knowledge graph: A knowledge graph is a data set that represents real-
world facts and semantic relationships in the form of triplets, where the triplets are
represented as a graph with edges as relations and nodes as entities Bordes et al.
[2011]. Mathematically, consider G = (V, E) where G represents the knowledge
graph and V' are the nodes or entities and E represent the relations.

Walk: A walk is a finite sequence of edges which join a sequence of vertices.
In G = (V,E) where G is a knowledge graph and V represents the nodes and
E represents the edges, a finite walk is a sequence of edges (ey,es,...,e,_1) for
which there is a sequence of vertices (vy, va, ..., v,) such that ¢(e;) = (v;, v41) for
i=1,2,...,n—1. (v1,v9,...,v,) is the vertex sequence of the walk. The walk is
closed if v; = v, and it is open otherwise Wikipedia contributors [2023].

Path: A path is a walk on a graph where the vertices are repeated.

Subgraph: Graph S = (Vg, Es) is considered as a subgraph of G = (Vg, E¢) if

11



and only if its vertex set (Vs) and edge set (Eg) are subsets of those of G. In other
words: Vg € Vi and Eg € Eg.

Schema: Given a knowledge graph GG, an edge with a relation type R connects
source nodes of type S and target nodes of type 7" defines a meta edge S 57, A
schema graph (aka known as meta-template) for G is a set of all such meta edges.
In fact, a schema graph is a directed graph defined over node types T, with edges
from R, denoted as Gg = (T, R) Sipser [2012].

Heterogeneous Network Yang et al. [2018]: or HIN, is a graph denoted as
G = (V,E,T), where each v € V and e € E has a mapping function ®(V) =
V - T, and ¢(F) = E — T, and T, and T, denote sets of node and relation
types where |T,,| + |T.| > 2. In simple words, in these networks, nodes and edges
can belong to different types, and the connections between nodes can have various

semantic meanings.

2.3 Related works

DeepWalk Perozzi et al. [2014], is a graph embedding method which aims to
learn continuous representations of nodes in a graph. For each walk, it begins by
generating the walks from a random starting node and moves to the next random
node on the graph. Each random walk sequence is treated as a sentence, in which
the nodes are considered as the words of the sentence. Next, the word2vec Church
[2017] model from NLP is applied to learn embeddings for the nodes. The result-

ing sentences are embedded by giving them as an input to a Skip-gram model, a

12



variant of the one used in the word2Vec model. After the skip-gram is trained, it
predicts the context nodes based on its input and the output is the embedding of
the nodes.

Node2vec Grover and Leskovec [2016], is a technique for learning node embed-
dings in a graph. In fact, it is an extension of the word2vec model which is a
method for word embedding in textual data. It learns embeddings of the nodes
in a graph by using a neighborhood sampling strategy which captures both local
and global structures. Node2vec generates random walks which are balanced be-
tween breadth-First Search (BFS) and depth-First search (DFS) and applies it on
the input data. After generating random walks, node2vec learns embeddings us-
ing the Skip-gram model. The Skip-gram model predicts the context (neighboring
nodes) of a target node based on its embedding. Node2vec optimizes the obtained
embeddings by maximizing the likelihood of observing neighboring nodes within
the context window of each target node.

Metapath2vec Dong et al. [2017], is a representation learning method designed
specifically for HINs to learn embeddings of the nodes and captures both semantic
and structure of the network. In this method, meta-path guided random walks
are used to make a sentence of the nodes. The meta-paths are created by do-
main experts based on nodes according to the dataset. For example, on a DBLP
computer science bibliographic dataset Ley and Reuther [2006], the created meta-
paths are : APA, APV PA,OAPV PAO, where A represents the author, P the
paper, O the organization and V' the venue. Consider APA as an example. The

first node to choose must be of type A, the second node must be of type P and

13



the third node must be of type A. This means that at each step the next node
to visit is chosen according to a pre-defined meta-path (APA in this example),
ensuring that the walk follows a meaningful path in the network. After generating
a large number of meta-path based random walks, these sequences of nodes are
used as training data for the Skip-gram model. Finally, these embeddings are
aggregated to obtain comprehensive representations for each node in the network
beside capture the diverse relationships and semantic meanings associated with
each node.

Regpattern2vec Keshavarzi et al. [2021], is a method for embedding KGs which
samples a large knowledge graph to learn node embedding while capturing the
semantic relationships among the nodes of the graph. In this method, the walk is
biased by a fixed pattern H/"T] + HT which is based on edges. The walk starts
at a random node from a set of given nodes known as source nodes (S) on the
knowledge graph. After choosing the source node, the walk chooses an edge of
type H and moves to a randomly chosen neighbor creating a path at each time.
Next, the walk chooses a random edge of type ~ 7T and moves to the next random
node. The walk follows the pattern H/"T] + HT and continues the walk according
to the a parameter called walk length. We can control the number of the walks
in each path by walk length and when the number of the walks reaches to walk
length, the walk is complete. Once the first walk is complete, we can start another
walk by choosing a random node from S. The number of the times we start a
new walk is based on a parameter called number of walk. Choosing a node from

the set of source nodes each time as the starting node and creating random walks

14



will result in several paths of random walks. To obtain the embedding of these
nodes, the resulted paths are fed into a modified version of a skip-gram model.
This method of embedding is an unsupervised method and it can be applied on
any given raw text corpus or document. In regpattern2vec, the algorithm runs
the walks on a rigid regular expression H/ T/ + HT which is defined by domain

experts and is hard-coded in the algorithm and cannot be changed.

Contribution: In the previously mentioned methods, the algorithms are either
based on a pre-defined sequence of node/edge types or a pattern designed by
domain experts or is biased toward specific nodes by experts. It means that
they are not generic and the user does not have any role in guiding the walks.
In our algorithm, however, we define a method in which the algorithm runs on
any arbitrary random walk path inside a user-defined schema subgraph based on
edges. The user enters a schema subgraph by entering integers where each integer
represents an edge in the knowledge graph. This schema subgraph defines the
subgraph. After the subgraph is defined, we choose the first random node as the
source node inside this subgraph and continue the walk based on the walk length
parameter and move to any random nodes via any random edges. The walks are
valid only if they are within the subgraph and invalid otherwise. The advantage of
using a subgraph is that it is more permissive; since we can run the walks totally
randomly inside the user-defined subgraph rather than having biased walks based
on a rigid pattern like the previous mentioned methods. The walks are valid as

long as they are within the subgraph and invalid otherwise.
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2.4 Methodology

Our algorithm runs with any user-given schema subgraph (s) based on the edges.
The schema subgraph is entered in the form of integers where each integer denotes
an edge of the KG. This schema subgraph which defines the subgraph (S) is
actually a part of the original graph (G). Let’s assume the user enters a schema
subgraph such as s = "z, 9, 3" where ;- 23 is an integer representing an edge
based on the dataset.

This schema subgraph defines subgraph S = (V', E’) € G = (V, E) where G
is the primary knowledge graph. The algorithm chooses the first node inside S
randomly and from there, uses the below equation to calculate the probability of
each neighbor edge based on its type (¢). To calculate the probability of moving

to the next edge based on subgraph S, we use this equation:

l

Z P(r )t 8) =

L x < (res)

0 Otherwise

where t; denotes each type of edges connected to the current node and 7,

16



denotes the number of the edges of each type. We choose the type of the next
edge based on its probability. An important thing to consider is that we have a
hierarchy of edges in our knowledge graph; which means that a type of edge might
have different sub-types. With that being said, all the sub-types of a specific type
should be considered as the same type.

In addition, we have a parameter called number of walks in our code, which
defines the number of the walks that should be walked in each path. The default
number for it is set as 40, which the user can adjust on their own interest in the

code.

2.4.1 Walk-based Embedding

After the user has entered the schema subgraph, the subgraph (.5) is defined and
we are able to conduct the walk. We start the walk by choosing the first node
randomly within the sub-graph. Then we will choose an edge connected to this
node randomly and if it is inside the schema-graph, the chosen edge is valid which
means we choose the next random edge. Otherwise, we will delete that edge type
from the neighbor of the node and choose another random edge and check its
validation. We have decided to conduct the walk based on 40 steps (walk_length
= 40). We should repeat this scenario for 40 walks (number_of walks = 40)
and these walks are written to a file. Both walk-length and number_of walks
can be modified by the user. After traversing all the walks and writing them on
the file, we obtain the walk file which contains all the walks and their steps and

then we should embed these walks. Embedding, in simple words is translating

17
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high-dimensional vectors to a low-dimensional space. To embed the walks of the
walk file, we can consider each walk as a sentence of the words in which each node
is considered as one word. Therefore, we can get help from the word2vec model
in which a neural network learns node embedding from a corpus.

In this paper, we are using a modified version of the skip gram model which
captures the similarity of the walks based on their types. Skip gram is from
the word2vec family and all of the word2vec models are consisting of two-layer
neural networks used for word embedding. In a general sense, in the skip gram
architecture, the model uses the current word (input) to predict the surrounding
window -usually of size 5 to 10- of the context words (output). In fact, a skip
gram is trying to find a semantic similarity between the words in a context by
learning a meaningful representation of each word (embedding) in the document.
After feeding the walk file as an input to the skip gram model and getting the
embedding file, we are able to use it. The embedding file can be used for various
tasks such as link prediction, node classification, community detection and etc.

In this work, we use the embedding file for link prediction.

2.4.2 Application

In this paper, we decided to move forward with the link prediction task. For
conducting link prediction, we need to train our model first. We do it by using the
vector representation of the current edges in the graph which is considered as the
positive example. Therefore, for negative examples, we can consider combining

pairs of edges in the graph that are not connected. Both of the positive and
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negative examples are used to train the classification model. We use Logistic

Regression as the classifier, which can be used for link prediction as well.

2.5 Experiments

In this section, we will evaluate the conductance of the subgraph2vec method by

running it on different datasets.

2.5.1 Dataset

We use two different datasets to evaluate our model.

(i) The first dataset is YAGO39K Lv et al. [2018], which includes data from
Wikipedia, WordNet and GeoNames and is a subset of the YAGO knowledge base
Chirita et al. [2007]. It contains 123,182 unique entities and 1,084,040 unique edges
with 37 different relation types. (ii) The second dataset used was NELL, which
is built from the Web via an intelligent agent and contains 49,869 unique nodes

296,013 edges and 827 relation types.

2.5.2 Experimental Setup

To apply random walks in Subgraph2vec, we set the number_ of walks = 40 and
maximum walk length = 40. Also, the logistic regression parameters are constant
for all the datasets.

For both of our datasets, we split the dataset in order to train and test for any
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Table 2.1: Statistics of split data (MST method) based on the relation to be
predicted Keshavarzi et al. [2021]

Dataset Relations Train est Test set
CompetesWith 9,154 1,070

NELL PlaysAgainst 2,945 2,225
isLocatedIn 44, 542 44,541

YAGO isCitizenOf 3,128 342
isLeaderOf 855 106

relation we want to predict in either of our datasets. Note that in our model, it is
necessary to have the pair of the nodes we want to do prediction on in both the
training and the test dataset. However, the relation between that pair is different
in each of the train and test dataset. To achieve this goal, we apply minimum
spanning tree method to take the minimum possible nodes from the graph to
prepare the test dataset.

We have split the dataset for each of the relations we want to predict indi-
vidually. Table 1 illustrates the number of the rows for each dataset (split with

MST) based on the relation to be predicted.

2.5.3 Link Prediction

To explain the link prediction, we will give a brief explanation for each dataset.
For the YAGO dataset, we decided to predict these relations: ’'isLocatedIn’, 'isC-
itizenOf’, "isLeaderOf’. Here is S defined for these relations:

For ’isLeaderOf’, S consists of these edges: 'PlayisIn’, 'isLeaderOf” and ’isLo-
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catedIn’. For ’isCitizenOf’, S consists of these edges: ’isCitizenOf’, ’isLocatedIn’
and ’isLocatedIn’. For ’isLeaderOf’, S consists of these edges: ’isLeaderOf’, "isLo-
catedIn” and "wasBornIn’.

For the NELL dataset, we chose two relations of interest: 'competesWith’” and
‘playsAgainst’. For 'competeswith’, S consists of :’Competeswith’, "hasofficeincity’
and ’cityhascompanyoffice’. For playsAgainst’, S consists of :’teamplaysagainst-
team’ or in short ’playsagainst’ which is the link to be predicted, "teamplaysin-
league’ and ’sportsgameteam’.

Figure 1 shows the prediction results on the test datasets. Here, we are com-
paring the results of our method to the results we obtained from running reg-
pattern2vec and metapath2vec algorithms using Nell and YAGO data sets. Our
results imply that our method outperforms the regpattern2vec and metapath2vec
methods in most cases. That is due to being capable of choosing the nodes/edges
randomly within the subgraph rather than choosing them based on a regular ex-

pression. Figure 1 illustrates the ROC curve from each of the algorithms.

2.6 Conclusion and future work

In this paper, we present Subgraph2vec, a random walk-based method in which a
subgraph is used for limiting random walks on a knowledge graph in a generic fash-
ion. There are different random walk-based methods for embedding knowledge

graphs such as node2vec, metapath2vec and regpattern2vec which were discussed
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earlier. In the previous methods, random walks are biased based on different al-
gorithms such as BFS and DFS in node2vec or fixed patterns in metapath2vec
and regpattern2vec. However, our goal is to implement an algorithm which runs
the random walks inside on a user-given subgraph; which makes the embedding
algorithm more broad. The generated walk file is embedded using skipgram and
the resulted embedding files can be used for various purposes such as node clas-
sification, link prediction, community detection and etc. In this work, we decided
to use it for link prediction. Our results on NELL and YAGO datasets prove our
method outperforms other methods such as regpattern2vec and metapath2vec in
most cases. In the future work, we will use the obtained embedding file for the
mentioned tasks and also in another work we will add weights to the edges to

make our model more customizable.
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Chapter 3

A Survey on the Recent Random
Walk-based Methods for
Embedding Graphs

Machine learning, deep learning and NLP methods on graphs are vastly present in
different fields and have important roles in various domains from self-driving cars
to friend recommendations on social media platforms. However, to apply these
methods on graphs, the data usually need to be in an acceptable size and format.
In fact, graphs normally have high dimensions, and therefore we need to trans-
form them to a low-dimensional vector space. Embedding is a low-dimensional
space into which one can translate high dimensional vectors in a way that in-
trinsic features of the input data are preserved. In this review, we first explain

the importance of graphs and the embedding methods applied to them. Next,
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we will review some of the random walk-based embedding methods as well as
their strengths and weaknesses that have been developed recently. Later, we will

address research directions for future research.

3.1 Introduction

Graphs provide a powerful data structure for representing complex relationships
between entities. As a result, they naturally exist in many real-world scenarios;
for example, in social networks, users are represented as nodes and connections
(friendships) as edges Gavagsaz and Souri [2025].  They are also used in web
crawling by modeling websites as nodes and hyperlinks as edges to determine the
relevance of web pages Mohsin et al. [2024]. They are also widely used in naviga-
tion and routing such as Google Maps; representing cities as nodes and roads as
edges to calculate the shortest path between two locations Rajvanshi et al. [2024].
Another area in which they are widely used is knowledge graphs; to represent
information in a structured way for data integration and semantic understanding.
For instance, Google Knowledge Graph uses semantic information from various

sources to enhance its search engine results Steiner et al. [2012].

Furthermore, graphs serve as a foundation for Al and machine learning applica-
tions by providing structured data for different purposes such as training models
and improving the interpretability of the AI systems. As an example, in the fi-

nance area, graphs are used by integrating different data sources and capturing
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relationships between entities and using machine learning and Al techniques to
discover patterns and anomalies indicative of fraud Mao et al. [2022]. In another
case, graphs play a crucial role in drug discovery; they integrate large amounts
of biomedical data and capture complex relationships between biological entities,
facilitate data-driven decision making, and ultimately accelerate the drug devel-
opment process Soleymani et al. [2023]. There are many other areas where graphs
are used, such as networking and telecommunications Krinkin et al. [2020], man-
ufacturing Buchgeher et al. [2021], autonomous vehicles Tezerjani et al. [2024],

smart cities Ahmed et al. [2022], urban planning Liu et al. [2023], and etc.

To take advantage of graphs in various fields, we usually use machine learning,
deep learning, and Al models on graph datasets. However, large graphs have a
high dimension; which makes it challenging for many machine learning models to
work with them. To overcome this problem, we use embedding. Embedding is
a representation learning method to map out data to a lower-dimensional vector
space, while preserving the main features of the input data Luo et al. [2003]. Good
embedding offers a powerful way to represent data in an efficient manner which
leads to semantic understanding, feature extraction and transfer learning capa-
bilities in machine learning and Al. It also helps improve model performance for
various tasks; such as prediction by capturing meaningful relationships, reducing

noise and dimensionality, and generalizing across tasks.

According to Cai et al. [2018], there are five major categories to embed graphs.
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These include matrix factorization, generative models, deep learning, graph ker-
nels, and edge reconstruction-based optimization models. Here is a brief descrip-

tion for each category:

Matrix factorization models Koren et al. [2009]: In this model, the graph
is represented in the form of a matrix, typically an adjacency matrix or a higher-
order proximity matrix (e.g., Laplacian matrix or personalized PageRank matrix).
Each entry in the matrix encodes relationships (e.g., edge weights or similarities)
between nodes in the graph. Then, the matrix factorization method, decomposes
the input matrix M into two smaller matrices: U and V, such that M ~ U - V7,
where U is the embedding matrix of the node where the rows represent the nodes
and the columns are features, V' is another matrix that may encode complemen-

tary information, often equivalent to U in symmetric factorizations.

Generative models Ruthotto and Haber [2021]: Here, the graph is represented
using an adjacency matrix, edge list or a feature matrix (if nodes or edges have
attributes). The model maps out the graph components (e.g nodes) to a latent
space, typically using techniques such as neural networks, matrix factorization or
probabilistic models. Then, each node/edge is assigned a low-dimensional vector
representation. The learned embeddings are used to reconstruct the graph or
generate new graph instances which preserve the properties of the original graph.
In addition, the generative model learns the probability distribution of the graph

structure; which is used for tasks such as graph generation Manchanda et al.
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[2024], link prediction Xian et al. [2022], or node feature reconstruction Hou et al.

2022].

Deep learning models Rumelhart et al. [1986]: Deep learning models for em-
bedding revolutionized how we analyze and utilize graph-structured data, offer-
ing powerful tools for diverse applications. The input data in these models is
the graph structure; such as adjacency matrix or edge list. The input can also
include node/edge features too, but that is optional. Next, the model transforms
high-dimensional or sparse input data into dense, continuous embeddings. Next,

the model uses a loss function to optimize the embedding.

Graph kernels Shervashidze et al. [2011]: In fact, graph kernel is a method
for measuring the similarity between graphs, nodes, or substructures and a key
approach in graph embedding. In this model, the graph is decomposed into smaller
substructures (e.g., walks, paths, trees, or subgraphs). Next, for a pair of graphs,
a kernel function computes the similarity between these substructures. Then, a
similarity matrix is constructed, capturing relationships between the graphs or
their components. The similarity matrix is used as input for algorithms like SVM
to perform classification Nikolentzos et al. [2021], regression Perez et al. [2024], or

clustering Song et al. [2020].

Edge-Reconstruction-Based models Perozzi et al. [2014]: In this model, the

core idea is to embed structural and relational information and ensure that the
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model can predict the presence or weight of edges between nodes. The input is the
adjacency matrix of the graph, the edge list or similar representation (including
node/edge features is optional). Next, the model learns node embeddings that
preserve graph topology and relationships by reconstructing the adjacency matrix
or edge set of the graph. The model tries to minimize a loss function that mea-
sures the difference between the reconstructed (predicted) edges and the actual

(ground truth) edges in the graph.

Each category includes different techniques for embedding knowledge graphs and
several recent ones are summarized in Table 2 for each category. In addition,
there are methods that do not fall into any of these categories entirely because
they are combining a technique from these categories and another model. For
example, there are methods that use random walks to traverse the graph and a
model from the deep learning category to embed. Random walks have been used
in many models for embedding, due to their important features such as exploring
graph structures like local and global context, finding semantically similar nodes,

feature extractions, etc.

To the best of our knowledge, embedding methods have been extensively stud-
ied across various domains of deep learning and random walks independently.
However, there appears to be a lack of survey papers specifically focusing on
random-walk-based embedding methods which combine deep learning models. In

this work, we focus on the well-known random walk-based embedding techniques
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which use a neural network from the deep learning category. These methods limit

the amount of search space in a large graph developed during the recent years.

3.2 Preliminaries

In this section, we explain some preliminary concepts used in this review.

Knowledge Graph Sipser [1996]: A knowledge graph is a directed graph
whose nodes are entities and edges are relations between entities. It is denoted as
G = (V, E) in which v; € V are nodes or entities and e; € E are edges or relations.
Nodes have a type mapping function of ¢ : V' — T where T is the node type, and

edges have a type mapping function of ¢ : E — R where R denotes the edge type.

Homogeneous Network Cai et al. [2018]: Homogeneous Network is a graph
denoted as G = (V, E) where |T"| = |T°| = 1; meaning that all the nodes in G

belong to a single type and all the edges in GG has a single type, as well.

Heterogeneous Network Li et al. [2018]: is a graph denoted as G = (V, E,T),
where each v € V and e € E has a mapping function ¢(V) = V — T, and
¢(F) = FE — T, and T, and T, denote sets of node and relation types respectively,

where |T,,| + || > 2.

First-order Proximity Tang et al. [2015b]: represents the local pairwise
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output layer
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Figure 3.1: Skip-gram architecture.

relationship between directly connected vertices. For a vertex pair (v;,v;), if
(vi,vj) € E, the first-order proximity is w;;; otherwise, it is 0. This measure

captures direct neighbor relationships between vertices.

Second-order Proximity Tang et al. [2015b]: captures the two-step relation-
ships between vertex pairs. For a pair (v;,v;), it is determined by their shared
neighbors and can be equivalently measured by the two-step transition probability

from v; to v;.

31



3.3 Methods

In this section, we summarize some of the recent algorithms for embedding knowl-

edge graphs which were developed recently. These methods are combination of

random-walk and with a deep learning model. Table 1 summarizes these algo-

rithms.

Table 3.1: Random walk-based algorithms for embedding graphs based on their
network type and used method Wang et al. [2022].

Algorithm Year | Network Type Random Walk Method
DeepWalk 2014 truncated random walks
LINE 2015 | homogeneous heterogeneous edges
Node2vec 2016 BFS + DFS based random walks
PTE 2017 heterogeneous edges
Metapath2vec 2017 meta-path based random walks
Metapath2vec++ | 2019 | heterogeneous meta-path based random walks
Regpattern2vec | 2021 regular expression-based random walks
Subgraph2vec 2024 truncated random walks

3.3.1 DeepWalk Perozzi et al. [2014]

DeepWalk is a method for embedding nodes in a network, such as a social net-

work or a biological network. Previous embedding methods often suffer from

scalability issues and fail to capture the structural properties of large-scale net-

works effectively Tang and Liu [2009, 2011]. DeepWalk overcomes these issues in

an unsupervised manner.
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It is inspired by the techniques used in natural language processing (NLP), partic-
ularly the skip-gram (Fig. 1) framework from the word2vec model Church [2017].
The main idea behind DeepWalk is to treat random walks in a network as "sen-
tences” and learn node embeddings by predicting the context nodes given a target

node in these walks.

The algorithm generates random walks of fixed length in a network, treating each
node as a "word” in a "sentence”. It then uses the skip-gram model to learn node
embedding by predicting the context nodes for each target node in these random
walks. The learned embeddings capture the structural properties of the network,
which can be used for various downstream tasks such as node classification, link

prediction, and community detection.
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Method: The algorithm aims to estimate the likelihood of a word sequence

W = (wows...w,) where w; € V (V is the vocabulary) by maximizing P, (w,|wow;..

over the training corpus. Also, it consists up of two major parts: 1) random walk

generator and 2) update procedure.

Random walk generator: The algorithm has two nested loops; the outer loop,
which represents the number of times (7) the walk should start from each vertex
v; of the graph. DeepWalk starts by generating a random walk W,; in the network
from a random node called root (v;). We set the parameter ¢ to control the walk
length to have walks of fixed length; however, the walks can be of any length
as long as the length is smaller than ¢t. The walks are performed starting from

each node v times and are entirely random which means they can revisit their root.

Update procedure: The inner loop iterates through the nodes of the graph and
starts the walk from each of the vertices. Each random walk captures the local
neighborhood information around each node. The skip-gram model learns embed-
dings for the nodes. The actual input for the original skip-gram model is sentences
of words; therefore, we consider the walks as sentences in which the nodes repre-
sent the words. Given a sequence of nodes by random walk, the skip-gram model
aims to predict the context nodes for each target node in the sequence. We use
skip-gram to update the representations of the nodes according to the following

objective function:
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mim;bmize — 10g P (Vi _y..vi + w v;|P(v;))

where ® is a mapping function ® : v € V — RI"*® This mapping represents
the latent social representation associated with each vertex v in the graph. The
objective function, which uses the skip-gram model, is optimized using stochastic
gradient descent to learn the parameters of the model and is as follows:

i+w

Pr({vicup--visw} \ 0] @) =[] Pr(v;|®(v:))
Jj=t—w
J#

where ¢(v;) represents the embedding of vertex v;.

The embeddings are learned iteratively by maximizing the log-likelihood of ob-
serving context nodes for each target node in the random walks. This involves
updating the embeddings for each node using gradient descent based on the pre-

diction error between the observed and predicted context nodes.

In general, DeepWalk is an unsupervised method for embedding homogenous
graphs which is simple, effective, scalable and captures local structure by leverag-
ing random walks. However, there are some limitations to this method such as: it
generates fixed-length embeddings, it does not capture edge information such as

edge weights or attributes, it only captures local network structure and it is not
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efficient for embedding sparse nodes. Therefore, it is not suitable for dynamic,

complex and heterogenous graphs.

3.3.2 LINE Tang et al. [2015D]

In this section, we review LINE, a method for embedding large networks. LINE
is a suitable method to preserve the local pairwise proximity (local structure) be-
tween the vertices and dealing with very large networks (millions of vertices and

billions of edges) with arbitrary types of edges (directed, undirected, weighted).

The pairwise proximity between vertices includes first-order proximity and second-
order proximity. The first-order proximity illustrates the direct similarity between
two vertices. For example, people who are friends on social networks probably
share similar friends. However, first-order proximity on its own does not preserve
the structure of the network. For example, consider a link is missing between
two vertices sharing common neighbors. Although these two vertices are very
similar, the first-order proximity in this case is 0. Therefore, another parameter
that retains the network structure is needed and that is second-order proximity.
The second-order proximity between a pair of vertices (u, v) implies the similarity
between their neighbors. This helps identify objects that might not be directly

connected but are related through shared neighbors.

Combining both of the above proximities, we form LINE; a method for embedding

very large networks with arbitrary (i.e. directed, undirected, or weighted) edges.
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Method: First, we combine LINE with each of the mentioned proximities in-

dividually and then we merge them. Here is a brief description of the model:

1. LINE with first-order proximity:

Since joint probability also implies dependencies and relationships between ver-

tices in a graph, we model the first-order proximity for the undirected edge (v;, v;)

between vertices v; and v; which is as follows:

pr (s, ;) = ! = (3.1)

1+ exp(—w T - u

where u; and u; represent the vector representation of vertices v; and v; in a
low dimensional space respectively. In particular, the joint probability of an edge
represents the probability that the two specific nodes are connected by an edge
simultaneously. It quantifies the probability of a specific edge which exists in the
graph. On the other hand, there is another parameter to calculate the probability
of edges called empirical probability. The empirical probability of an edge in a
graph is based on observed data and represents the relative frequency with which

a specific edge occurs in the observed graph and is calculated as p(i,7) =

where W = Z(i fer Wij- To preserve the first-order proximity of the network, we

try to minimize the distance between these two functions:

0, = d(ﬁl('?')apl('v')) (32)
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where d(-,-) is the distance between two vertices. We choose to minimize the
KL-divergence of the two probability distributions. KL-divergence is a measure
of how one probability distribution P diverges from a reference distribution Q).
To minimize KL-divergence, we replace it with d(-,-) in the above equation and

remove some constants:

O =— Z w;jlogp: (vs, v;) (3.3)

(i,9)EE

We can represent every node in the d-dimensional space by finding the {71} ——

in any undirected graph.
2. Line with 2"¢ order proximity:

The second-order proximity is applicable on both directed and undirected graphs.
This proximity assumes vertices that share many other connections are similar to
each other. In this proximity, each vertex has two roles: 1. "Vertex” itself and
2. "Context” of other vertices. In the second case, each vertex is considered as
a specific context in which the vertices sharing similar distribution over the con-
texts are considered similar. Therefore, we will have two different representations

for the vertex v;: w; and w) representing the embedding and the context of v,
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respectively.

%
1+ exp(—u,T - )
vilv;) = . 3.4
pe(vsl) [V]eap(u, i) (34)
k=1

where p(-,v;) is the conditional distribution over the contexts and |V| is the
number of vertices or contexts. In addition, this equation defines a conditional
distribution po(-|v;) over the entire set of vertices. To preserve the second-order
proximity, we should minimize the distance between ps(:|v;) and the empirical

distribution ps(+|v;). Therefore:

Oy = Nid(pa(-|v:), pa(-[vi)) (3.5)

eV

where d(-,-) is the distance between two distributions and \; denotes the im-
portance of vertex i, which can be measured by the degree or estimated through
algorithms such as PageRank Brin and Page [1998]. The empirical distribution
is defined as po(-,v;) = w;;/d;, where w;; is the weight of the edge and d; is the
out-degree of vertex i : d; =) ken, Wik where NN; is the set of out-neighbors of v;.
In this method, for simplicity, A = d;. We replace d(-,-) with KL-divergence and

omit some constants, therefore:

O, =— Z wijl09p2(viavj) (3-6)

(i,5)EE
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We can embed node v; in the d-dimensional space by finding the {72-}2.:17”“/|

and {7;}2.:17“”,| in any directed /undirected graph.

In the LINE method, we embed the network with first-order and second-order
proximity separately and then concatenate the embeddings by each of them for
each vertex and get the desired embedding. By and large, here are the strengths
of LINE: It is scalable since it is applicable on large-scale graphs. It also captures
both local and global network structures, and is flexible and works well on both
weighted and unweighted graphs. In addition, it is versatile because it can be ex-
tended on heterogeneous graphs. However, it comes with limitations, too: LINE
is linear and cannot capture non-linear relationships in a graph. Also, although it
can be extended to heterogenous graphs, it is not inherently designed to handle
them. In addition, the embeddings are fixed length and therefore not sufficient to
represent nodes in highly complex graphs. It primarily emphasizes pairwise rela-
tionships (first-order and second-order proximity) and does not naturally model
higher-order structures or communities in the network. Also, LINE does not ac-
count for temporal information and therefore it is not suitable for dynamic graphs.
In fact, LINE is best suited for large-scale homogeneous graphs where scalability

and the preservation of local/global structures are the primary concerns.
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3.3.3 Node2vec Grover and Leskovec [2016]

Node2vec is an embedding algorithm that maps the nodes of a graph to a low-
dimensional space while preserving the structural properties of the network. It
starts by generating random walks on the input graph. The random walks are
biased to explore both local (Breadth-First Search or BFS) and global (Depth-
First Search or DFS) neighborhoods of the nodes. These walks can be considered
as sentences where nodes of the graph are similar to words of a sentence. The
obtained walks are fed into a skip-gram model for embedding. The main reason

developers use BFS and DFS is that they help us find similar nodes.

We measure the similarities between the embedded nodes by homophily Fortu-
nato [2010], Yang and Leskovec [2014] and structural equivalence Henderson et al.
[2012] hypotheses. Homophily refers to the tendency of nodes in a graph to be
connected to other nodes with similar properties or attributes. Structural equiv-
alence refers to the concept that if two or more nodes in a graph have identical
relationships with the rest of the graph, then they are considered structurally
equivalent. In other words, nodes are structurally equivalent if they share exactly
the same neighbors. BFS emphasizes the nodes that are in the same community
and follow the homophily hypothesis and DF'S is used to sample nodes that share
the same structural role and follow the structural equivalence law. Figure 2 illus-

trates BFS and DFS algorithms in a neighborhood.

Method: The algorithm is based on the random walk technique which walks
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Figure 3.2: BFS and DFS algorithms for a neighborhood where node u is the
source node Grover and Leskovec [2016]. Starting from node 1, BFS visits nodes:
1,2,3,4 and DFS visits nodes: 1,2,5,9.

the graph in both the DFS and BFS fashion. Let’s consider u as the source node,
and ¢; as the i node in the walk (therefore ¢y = u). The nodes in the walk are

generated by this distribution:

T (re k)
Ple,=x|c1=v) =
0 others

where 7 is the unnormalized transition probability between nodes v and x and

Z is the normalizing constant.
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The easiest way to bias our random walk is to sample the nodes based on the
static edge weight w,, i.e. m,, = w,,. In this case, if our graph is unweighted, we
consider w,, = 1. While this is the simplest way, it might not be a good choice
since we cannot consider network structure and explore different types of network
neighborhoods. Therefore, we design our algorithm which is a second-order ran-
dom walk (in the first-order random walk, the walker traverses the graph from
one node to a randomly chosen neighbor node at each step. In the second-order
random walk, the walker considers the relationships between nodes based on their
neighbors before moving to the next node). Our walk depends on two parameters
return parameter or p and in-out parameter or ¢ which control how fast the walk
explores and leaves the neighborhood of the starting node u. Let’s assume the
walker just traversed edge (t,v) and now is at node v. The algorithm decides the

next node based on this probability m,, = a,q.w,,, Where:

% diz = 0

1 dtm == ]_
Qpg- Wz =

% diz = 2

\

In this equation, d;, is the shortest distance between the nodes x and t and

can be one of 0, 1,2 values. Based on this formula, if we set p a high value, i.e.
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(> max(q, 1)), it is less likely to revisit a node that was just visited (unless the
next node in the walk has no other neighbor). This strategy leads to moderate
exploration and avoids two-hop redundancy in sampling. On the other hand, if we
set p a low value, i.e. (< min(q,1)), it is more likely that the walk is close to the
source node since it moves the walk one step backward. In addition, if we set ¢ > 1,
the random walk is biased toward nodes close to t; which leads our walk to sample
nodes within a small locality. On the other hand, if we set ¢ < 1, the walk is more

likely to explore further nodes from node ¢ which encourages outward exploration.

The strength of node2vec includes: flexibility in capturing node similarity due
to using both BF'S and DFS which makes it more versatile than simpler methods
like DeepWalk. It is also efficient, scalable and straightforward to use with current
tools such as word2vec model. It can be applied to both homogeneous graphs and
some heterogeneous ones and works well with unlabled or partially labeled data.
However, it is parameter sensitive; which means the quality of the embeddings
highly depends on the choice of p and ¢. Also, it is unsuitable for dynamic or
evolving graphs. It struggles with most of the heterogeneous graphs unless they
are transformed into homogeneous ones, which can lead to loss of information.
For dense and comlicated graphs, they can be computationally expensive. Also,
this method is not able to incorporate node or edge features and focuses only on

graph topology.
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3.3.4 Predictive Text Embedding (PTE) Tang et al. [2015a]

Predictive Text Embedding (PTE) is an extension of the LINE method to embed
heterogeneous networks. It is a semi-supervised method used for embedding text
data, which means it uses both labeled and unlabeled data to train the model.
The labeled and unlabeled data are represented in a large heterogeneous network
and then this heterogeneous network is embedded in a low dimensional space and
can be used for text embedding. Not only does this method preserve the semantic
closeness of the words and documents, but also it has good predictive power.

Compared to the unsupervised text embedding methods such as skip-gram or
Paragraph Vectors (aka Doc2vec) Le and Mikolov [2014], which learn semantic
representations of texts, the goal of this method is to learn a representation of the
text that is optimized for a given text classification task. In other words, the au-
thors anticipate text embedding has a strong predictive power of the performance
of the given task. Since this method is applicable to different networks, we review

some definitions of networks:

Word-Word Network: The word-word network captures the word co-occurrences
in local contexts of unlabeled data. This data is the essential information used
by some word embedding techniques such as skip-gram. Let G = (V, Eyw) be
a graph in which V' is a vocabulary of words and F,,, is the set of edges between
the words. Also, the weight w;; is the number of times words v; and v; appear in

the context window.
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Word-Document Network: Word-document network, denoted as G4 = (V U
D, E,q), is a bipartite network where V' is a set of words and D denotes a set of
documents. FE,, is the set of edges between the words and the documents. The
weight w;; between word v; and document d; is simply defined as the number of
times v; appears in document d;. The mentioned networks are used for encoding

unlabeled data. There is a network for encoding labeled information called the

Word-Label network.

Word-Label Network: Let’s take G,q = (V U L, E,4) as a bipartite network
in which V' is the set of words, L is the set of labels, and F,4 is the set of edges
connecting words and labels. The weight w;; of the edge between word v; and
class ¢; is defined as w;; = Y (d : ld = j)ng;, where ng; is the term showing fre-
quency of word v; in document d, and [d is the class label of document d. The
model embeds a network that is an integration of the above networks. This type

of network is called a heterogeneous text network.

Heterogeneous Text Network: is the combination of word-word, word-document,

and word-label networks constructed from both unlabeled and labeled text data.
Method: Given a large collection of text data with unlabeled and labeled infor-

mation, the PTE algorithm tries to learn the embedding of the text by embedding

the heterogeneous text network built from the collection.
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Figure 3.3: Converting partially labeled text corpora to a heterogeneous text
network. The word-word co-occurrence and word-document networks encode the
unsupervised information, capturing the local context-level and document-level
word co-occurrences respectively. The word-label network encodes the supervised
information, capturing the class-level word co-occurrences Tang et al. [2015a].

The heterogeneous graph is made up of three different bipartite networks, and
therefore we have to embed each of these graphs individually (so far there is no
technique to be able to embed these graphs all together simoltanously). To embed
each of these bipartite graphs individually, we will use the LINE model. As men-
tioned earlier, PTE is an extension of the LINE method but LINE cannot be used
to embed heterogeneous networks. Therefore, to start the embedding, we use the
LINE method to embed a bipartite network. To use LINE, it is essential to make
use of the second-order proximity between vertices; where every two nodes that
have similar neighbors, can be considered similar to each other, which leads to

closer vectors in the embedding space.

Given a bipartite graph, G = (V4 U Vg, E), V,, and V}, are two different types

of nodes and FE is the set of edges between them. For every v; in V,, generated by
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v; in V4, the authors define the below formula to use the second-order proximity:

(3.7)

where u; is the embedding vector of vertex v; € V4, and u; is the embedding
vector of vertex v; € V. For each vertex v; € Vi, Equation (1) defines a condi-
tional distribution p(-|v;) over all of the vertices in the set V4 and for each pair
of vertices v;,v;, the second-order proximity is determined by their conditional
distributions p(-|v;), p(-|vj) respectively. Here is the equation to preserve the

2pq-order proximity:

0= Z/\d ([v;), p(-]v;)) (3.8)

jeEB

where d(-, -) is the KL-divergence between two distributions, A; is the importance
of vertex v; in the network, which can be set as the degree deg; = > w;;, and
the empirical distribution can be defined as p(v;|v;) = w;j/deg;. Omitting some

constants, here is the simpler version of Equation (2):

- Z Wij - 10gp(”j|vz‘) (3.9)

(i,7)EF

We can optimize the above equation using gradient descent which uses edge sam-
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pling and negative sampling.

We can embed our 3 bipartite networks using the above model. Next, we want to
embed the heterogeneous text network which consists of three bipartite networks:
word-word, word-document, and word-label networks. To learn the embeddings
of the heterogeneous network, our approach is to collectively embed the three

bipartite networks by the following equation:

Opte = Oy + Owd + Oy (3.10)

where Oy, Owq and Oy, are calculated individually by Equation (3).

Once the word vectors are learned, the representation learning of any piece of

text can be obtained by averaging the vectors of the words in that piece of text.

d= %Zu (3.11)

In general, PTE uses matrix factorization which makes it scalable and is designed
to work with heterogenous networks. It can generate customized embeddings for
specific downstream tasks, such as text classification or sentiment analysis. It also
allows for edge weighting and multiple edge types. The limitations include failing
to capture global or higher-order graph structures. Also, it depends on static

graphs and does not handle dynamic or evolving graphs. It is best suited for het-
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erogeneous information networks and applications requiring scalable, task-specific
embeddings, but it may fall short for dynamic, highly complex, or attributed

graphs.

3.3.5 Metapath2vec and Metapath2vec++4 Dong et al. [2017]

In this section, we review a neural network-based representation learning algo-
rithm. There are recent different types of algorithms which use neural networks
for embedding the graphs; such as Node2vec, LINE, and DeepWalk which we dis-
cussed earlier. Although these methods have their privileges such as automatic
discovery of latent features from the raw network, they can only be applied to ho-
mogeneous networks. However, a large number of social and information graphs
are heterogeneous; which means they have multiple types of nodes and edges.

Therefore, we need new algorithms to embed them.

Here, we review metapath2vec and metapath2vec++, which are representation

learning methods for embedding heterogeneous networks.

Metapath2vec: is a representation learning method applicable to heterogeneous
networks. The metapath2vec method develops metapath-based random walks to
construct the neighborhood of a node and then feeds the achieved random walks

to a skip-gram model to obtain node embeddings.

Method: As mentioned earlier, metapath2vec generates meta path-based ran-
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dom walks from the nodes of the graph. The most straightforward fashion is to
start the meta path-based walk at a random node and then move to the next
random node. In this context, the probability of moving to the next node is
P(v;y1]v;) regardless of the types of nodes. However, the walks are biased toward
a highly visible type of nodes Sun et al. [2011]. To overcome this issue, given a
graph G = (V, E,T) the authors design a meta-path scheme to guide the walks in

this form:

p=1 By oy By By oLy (3.12)

Hence, the transition probability for moving to the next node is:

(
Nen ) (v ) € B gt =t +1
1y 0 (v, i) € B, p(vi+!) £t +1
P(U |Ut7p) -
0 (v vy e B
\

where v] € V; and Ny (vi) denote the Vi, type of neighborhood of node
vl . Also, meta-paths are designed in a symmetric way; which means the first

node denoted as V; is the same as the last one, V;, and therefore, has the same
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probability of being reached, which means:

p(“i+1|“§) = p(”i+1|“li)> ift =1 (3.13)

For example, consider “APA” and “APVPA” as meta-path schemes where the for-
mer represents the “co-author collaboration on a paper” and the latter represents
“two authors publish papers in the same venue”. In the next step, the algorithm
inputs the achieved random walks to a heterogeneous skip-gram model to embed
the nodes. Given a heterogeneous graph G = (V, E,T'), the objective of using a
heterogeneous skip-gram model is to maximize the network probability in terms

of local structure or Ny, t € Ty, i.e:

argmaxzz Z logp(ct|v; 0) (3.14)

veV teTy, ctENt(’U)
where Nj(,) is neighborhood of v with the ¢{th) type of nodes, and p(c;|v; 6) is
a softmax function, that is p(c;|v;0) = eXe-Xv/ S (u € V)eX=*» where X, is the

Vth row of X, representing the embedding vector for node v.

Metapath2vec incorporates semantic context. While guiding meta-path-based
random walks, it captures meaningful semantic relationships between nodes. For
example, in a graph of authors, papers, and venues, a ”Author-Paper-Author”
meta-path captures co-authorship relationships. In addition, metapath2vec rec-

ognizes the context nodes of node v when constructing its neighborhood function
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N, based on their types. However, it ignores these types in the softmax function.
For example, if a meta-path is A — P — V| during the embedding training, the
method uses all sampled nodes (A, P, V) in the same embedding space. Therefore,

we introduce a modified version of metapath2vec to enhance the results.

Metapath2vec++: is an extension of metapath2vec designed to improve the
quality of the embeddings in heterogeneous graphs. MetaPath2Vec++ enhances
metaPath2Vec by introducing type awareness during the embedding learning pro-
cess, making it more suitable for heterogeneous graphs with rich node and edge
semantics. In metapath2vec++, the softmax function is normalized with respect

to the type of the context node ¢:

(3.15)

where X, represents the embedding of ¢; and p(c;|v; 0) is adjusted to the node type
t and V; is the node set of type t. In this case, we will have one set of multinomial
distributions for each type of the ¢; in the output layer of the skip-gram model.

Figure 4, illustrates the differences among embedding results of some models:

Overall, metapath2vec++ is an appropriate method of embedding heterogenu-
ous networks because it preserves the semantic and structural roles of different
node types and their interactions. In addition, it filters out irrelevant relation-

ships by focusing on type-specific contexts during embedding learning. However,it
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comes with weaknesses, too. Type-aware context sampling and embedding learn-
ing makes this method computationally expensive compared to metapath2vec.
Similar to metapath2vec, the quality of the embedding highly depends on the

choice of metapath.

3.3.6 Regpattern2vec Keshavarzi et al. [2021]

In this section, we explain a method for embedding heterogeneous information
networks (HINs). Regpattern2vec is an embedding algorithm which uses a fixed
regular pattern (regular expression) to bias the random walks and then feeds the
achieved walks to a modified version of the skip-gram to embed the walks. This
fixed algorithm is helpful to speed up the random walk process especially on large
graphs. In the original paper, the resulted embeddings are used for the link pre-
diction task. Before explaining the regpattern2vec algorithm, we describe some

preliminary concepts:

Regular expression: A regular expression or regular pattern defines a search
pattern in a text in the form of a sequence of characters Rabin and Scott [1959]. In
other words, a regular expression defines a set of strings matching it Friedl [2006].
Regular expressions can contain both ordinary and special characters. Ordinary
characters refer to alphabets and numbers such as A,b,5. Special characters are
non-alphabets and non-numbers such as ‘(‘ and ‘?’. Special characters have spe-
cial meanings in regular expressions. Some examples of regular expressions are

a3,5, “The.*Spain , H"T] + HT.
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Regular pattern on knowledge graph: If G = (V| E) is a knowledge graph
which has a node type mapping function ¢ : V' — T and an edge type mapping
function ¢ : E — R. A regular pattern r on G is formed over either set T or R as

the alphabet.

Finite State Machine Lee and Yannakakis [1996]: also called Finite State
Automaton, is a mathematical representation of computation which is an abstract
concept but can also be implemented in software and hardware for different pur-
poses; such as reducing the mathematical work in the theory of computation,
pattern matching and lexical analysis. A Finite State Machine can be classified
into two types: Deterministic Finite Automaton (DFA) and Non-Detereminsitic
Finite Automaton (NDFA /NFA). Since our model is using the DFA, we only give

a brief explanation of it.

As explained earlier, the codes accept a user input regex. Before running the
random walk, we first want to make sure that the regex is valid and that random
walks with that regex are applicable. We evaluate this validation via DFA. In this
method, we have a DFA consisting of 5 states; in which we start from state 0 as
the initial state and try to move through the states via the transition function,
and then return to the final state (which is again state 0 in our case). If we arrive
at the final state, the regex is valid; otherwise, the user should enter a different

regex. If the regex is valid, the algorithm runs the walk based on this regex. Af-
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ter the walk is finished, we feed the generated walks to a skip-gram for embedding.

Deterministic Finite Automata Lee and Yannakakis [1996]: or DFA, is a
Finite State Machine that reads a string of symbols and either accepts or rejects
it. For each input symbol, a state in the DFA is determined to which the ma-
chine moves. A DFA can be represented by a 5-tuple (Q, %, 6, go, F') in which: @
denotes the set of states, 3 (also called alphabet) denotes a finite set of symbols,
J is the transition function (§ : Q x ¥ — @), qo denotes the initial state (¢o € Q)
and F denotes the final state/states (F C @)). Basically, the machine works as
follows: First, it takes the string (S5) over the alphabet (X) as the input. Then,
starting from the initial state (qp), while reading each character of the string S,
the machine moves to the next state by using the transition function. If the last
alphabet of S makes the machine stop in F (the final state/any of the final states),

the machine accepts the string, otherwise, rejects it.

Method: Here, we explain how regpattern2vec works. The algorithm runs on
a fixed regular expression which is r = H/"T] + HT based on the edges of the
graph. Each of (H,T,”T) denotes an edge type which has different sub-types.
The user enters a regular expression based on the sub-types () of the edges and
the algorithm uses DFA to check the validation of the entered regular expression.
If the user-given regular expression matches the r = H/"T] + HT format and the
types of the chosen edges are compatible, the algorithm runs the walks based on

this regular expression.
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According to r, the random walk chooses the first edge randomly from any edges
of type H, and the next edge is of any random edge from any type but 7', and
then chooses another available random edge of type H and then the next edge is
of type T'. In this case, the walk length is 4, however, if the walk length is more
than 4, the algorithm repeats the walk in a back-and-forth fashion. This shows
the walk moves backward and for the next edge, the walk chooses an edge of type
H, and then chooses an edge of any type but 7', then chooses type H and again
moves forward afterward. The walk repeats the same thing until it reaches the
walk length. At each step, the probability that a specific type of node is chosen

is calculated as follows:

Ny, 1 ’
L reG
I i=1 Ny

0 (0", 0™ ¢ @

Here, |N,| is the degree of node v,v; indicates the current node, and vy is

the next candidate node.

Then, the random walks based on the defined regular expression are created.
Next, we use a modified-version of the skip-gram to embed these walks. To cap-

ture the similarity of the edges based on their types and have close embeddings
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in the latent space, our modified skip-gram takes into account the types of the
edges. We use these biased walks as an input to the skip-gram and the output is
the embeddings of these walks. In general, regpattern2vec is a flexible method due
to supporting more complex and dynamic relationship patterns than traditional
meta-path-based methods. Also, it can model intricate network traversal rules
using regular expressions, accommodating diverse network structures. On the
other hand, patterns used in it require expertise and can become more complex
for large-scale networks. Also, the effectiveness of the embeddings relies greatly

on the quality of the regpatterns chosen for the task.

3.3.7 Subgraph2vec Bozorgi et al. [2024]

Subgraph2vec is a representation learning technique that demonstrates the vec-
tor representation of the entities and relations of a knowledge graph in a low-
dimensional space while maintaining their semantic meanings. The algorithm
uses random walks and a modified version of the skip-gram to create the embed-
dings. In this method, the user enters a schema subgraph (i.e. subgraph of the
complete schema graph), with the desire to bias the random walks on a specific
part of the entire knowledge graph. The schema graph is in the form of an ar-
bitrary set of integers based on the edges where each integer represents an edge.
After the sub-graph is given, the algorithm chooses a random node inside the sub-
graph and starts the random walk. The next edge is chosen randomly inside the
subgraph which moves to the next random node. The walk continues based on a

parameter called walk length. Each chosen node/edge is valid only if it is within
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the user-defined subgraph. This method is supposed to solve the deficiency of the
previous random walk-based methods such as regpattern2vec and metapath2vec;
where the walks are fixed and the experts have to define it.

By having a user-defined regular pattern, we focus the walks on important aspects
of the graph rather than focusing it on any random part. In some of the previous
mentioned methods, either the walk is biased on a fixed regular expression which
is defined by experts or the user cannot give any pattern to guide the walk. How-
ever, this method is based on arbitrary random walks; as long as they are within

the defined subgraph.

Method: The user enters a schema subgraph (S”) in the form of integers, repre-
senting the edges of the schema subgraph. Let’s, assume the user has entered this
subgraph: S’ = x1, x9, x3, where each = denotes an edge in the graph. After the
subgraph is given, a random node is chosen within this subgraph as the starting
node. The walk starts at this node and in each step of the walk, a random edge
is chosen. The chosen random edge is valid only if it is within the subgraph and
invalid otherwise. The probability of choosing the next edge is calculated with

this formula:
I

Z P(Ti+1|’/‘i,5) _

i=1+1
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L‘X; (TES)

0 (rt, rt, Pty ¢ 9

where ¢; denotes the type of each edge connected to the current node and r,
denotes the number of edges of each type. We choose the next edge from our valid

set of edges according to its probability.

Subgraph2vec, is a flexible and customizable method becuase it depends on the
user to define the subgraph rather than a fixed method and does not need exper-
tise. By defining a subgraph, we can accelerate the walking process on the desired
aspects of the knowledge graph. However, it may miss the global graph context

and might face redundancy if the sugraphs overlap.
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3.4 Conclusion

In this work, we reviewed some methods for graph embedding based on the
random-walk and deep learning. There are five different categories of methods
for embedding graphs which include: matrix factorization, generative models,
deep learning, graph kernels, and edge reconstruction-based optimization mod-
els. Each of these categories includes distinct subcategories and each subcategory
contains different methods. We have provided examples and its relevant model
type for each subcategory in Table 2. On the other hand, there are other meth-
ods that do not fall into any of these categories entirely. For example, there are
methods that use random walks and a deep learning architecture. To the best of
our knowledge, there appears to be a lack of survey papers specifically focusing on
random walk-based embedding methods which combine a deep learning model.

We have summarized several recent random walk-based algorithms for embedding
graphs which limit the amount of search space in a large graph. In addition, we
have classified these methods based on the random walk technique in Table 1.

In addition, we have compared the methods explained in this paper in terms
of computational efficieny, embedding quality, adaptability to graph structures,
scalability and key strength and weakness. Table 3 summarizes these compar-
isons. The audience can choose the appropriate method for their work based on
comparisons of the features in the tables. The future direction includes summa-
rizing non-random walk based methods combining the deep learning category, a
survey on the methods of other categories or a survey on methods for embed-

ding dynamic graphs. Also, one can explore the applications of these methods in
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real-world scenarios for different purposes such as: link prediction, visualization,
clustering, anomaly detection, recommendation systems, fraud detection, etc. We

hope that this survey gives better insights to the researchers in this field.
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Chapter 4

Multi-hop Natural Language

Question Answering on Graphs

by Using LLMs

Widely used in different domains such as dialog interfaces and chat-bots, Question-
Answering (QA) models are Al models that are often capable of answering ques-
tions given some context, as well as without any context, e.g. open-domain QA.
LLMs are leveraged to enhance QA models, but only work well on one-hop ques-
tions (a type of question that can be answered by retrieving a single piece of
information from one source or a single step of reasoning): the questions that can
be answered with only one hop on their respective knowledge graph. In this work,
we present a novel method to enable LLM enhanced QA models to answer multi-

hop questions. Our proposed method consists of three steps: 1) in the first step,
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we use LLMs for creating one-hop question answers for each edge of the graph
schema and store these one-hop QAs in a Neo4j database, 2) next, the LLM uses
these QAs to find the answer to the user’s question, and 3) the LLM then gen-
erates Cypher query of the answers found in the previous step. We evaluate our
method on two datasets in Neo4j. Our results indicate improvements in question

answering with LLMs compared to the previous methods.

4.1 Introduction

Question answering (QA) on graphs has gained increasing popularity recently
since it allows users to retrieve information from structured data. Using QA, the
user does not need to have information about the underlying schema of the graph.
QA is widely used in various fields such as chatbots (Dayal et al. [2023]), customer
support services, personalized recommendations (Tai et al. [2021]), biomedical
research and healthcare (Lin et al. [2024]), financial services (Tao et al. [2024])
and etc. While LLMs are widely used for simple question answering, there are
still challenges in using them for multi-hop queries. In this work, we introduce a
new method for question answering by using prompt engineering technique and
build a novel system for multi-hop question answering.

LLMs are broadly used for question answering purposes and are trained on

large datasets utilizing different techniques. Here, we discuss some of the training

methods for LLMS:

 Retrieval-augmented generation (RAG). RAG is an innovative approach in
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the field of NLP that enhances the quality of the generated text by com-
bining the strengths of retrieval-based and generation-based models (Rizzi
[2024]). In traditional LLMs, the generated responses are based on the
data used for training the LLMs; which probably do not include the latest
or accurate information in a specific field. RAG addresses this shortcom-
ing by integrating retrieval-based models which grants access to the external

databases, APIs or document repositories to the model (Gupta et al. [2024]).

Fine-tuning. Fine-tuning is the process of taking a pre-trained model and
training it further on a smaller, domain-specific dataset to adapt it to a
specific task. It improves the accuracy of the model for specific tasks. Fine-

tuning helps to reduce training time, resources and other computational

expenses (VM et al. [2024]).

Prompt engineering. A prompt is a natural language request that asks an
LLM to perform a specific task or action. It gives the model context via to-
kens, and sidesteps the model’s potential limitations, so that the model can
give you a response. Prompt engineering in LLMs is the process of design-
ing and optimizing prompts to obtain relevant, accurate and high-quality
responses from language models (Zaghir et al. [2024]). There have been
recent works on leveraging LLMs for multi-hop question answering. One
recent work is (Shah and Tian [2024]), in which the authors use prompt
engineering to train the LLM and use chain of hops reasoning for question

answering.
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o Another work in this field is Allemang and Sequeda [2024] in which the
authors increase the accuracy of question answering on graphs by using
ontologies and LLMs. By combining deterministic ontology checks with
LLM-based repair, the approach significantly enhances reliability and cor-
rectness in QA systems, showcasing the power of knowledge graph semantics

in boosting LLM performance.

o Few-Shot Knowledge Base Question Answering (FlexKBQA): Introduced
by Li et al. [2024]; FlexKBQA improves knowledge base question answering
by decomposing complex questions into interpretable components such as
entity linking, relation extraction, and query structure prediction. These
components are processed through a modular pipeline, allowing for flexi-
bility, better error handling, and easier adaptation to new domains. The
outputs are then combined to generate accurate SPARQL queries. This
modular design enables the system to generalize effectively across different

datasets and knowledge bases.

« Knowledge graph in the medical field (LLM-KGMQA), proposed in (Wang
et al. [2025]). In this work, the authors leveraged LLMs to propose a method
for multi-hop knowledge path reasoning and entity linking. Regarding the
multi-hop knowledge path reasoning, the method proposed a three-step rea-
soning framework including an n-hop subgraph construction algorithm, a

semantics-based knowledge pruning algorithm and a knowledge fusion algo-
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rithm.

Problem: In this work, we use LLMs to generate a Cypher query for the
user’s multi-hop question in natural language. We cannot use LLMs directly to
answer the user’s question; because LLMs have challenges to answer multi-hop
questions Huang et al. [2024]. For example, let’s assume we have a graph dataset
which represents an NFL player and their relevant information. The schema of

this graph looks like this (Figure 1):
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Figure 4.1: The Schema of the NFL Player and their information.

If the user asks a question about two connected nodes, such as nodes ’player’

and ’address’, the LLM can respond to the user’s question properly. For example:

Q: Where does the player live in?
A: The player lives in Athens, GA.

However, if the user asks a question about two nodes that are not connected
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with an edge such as 'place’ and ’post’, such as:

Q: What is the place of the player who posted on their twitter about the game?

the LLM has difficulties in answering the question for various reasons; which
means that the LLM does not respond at all or respond with a wrong query. One
reason is that the LLM cannot find the correct path between these two nodes.
Another reason is that even by having the correct path, the LLM might not find
all the relevant nodes; e.g if the player has several addresses assigned to them, the

LLM might find only one of the addresses. Therefore, here we solve two problems:

follow

/
\> // lived_in belong_to
player ———————> | address | ———> | place

Figure 4.2: The Schema of the NFL Player and their information: The goal is to
answer a question that connects the node "post’ to 'place’.

training LLMs to find a path for multi-hop question answering and generating a
Cypher query of the user’s question. We introduce a new method and leverage
prompt engineering to train the LLM to find the right path for multi-hop question

answering.
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4.2 Related works

There are various approaches used for QA, and here is a list of some of the

commonly used ones:

o Semantic Parsing Nguyen et al. [2024]; which involves converting a question
in natural language into a machine readable language including query lan-
guages such as Cypher; which retrieves information from knowledge graphs.
Another approach is Deep Learning Zhang et al. [2025], which uses trained
neural networks to reason over knowledge graphs to answer questions or

map questions directly to their corresponding answers.

« Using Neural Machine Translation (NMT); a method that uses machine
learning to translate one language into another Stahlberg [2020]. In this
case, NMTs can be leveraged to translate natural language to a structured

language like Cypher.

» Large Language Models (LLM). LLMs are based on transformer architec-
tures and trained on large volumes of data, and designed to handle human
form of written language. The transformer model, which was introduced in
2017 in Zhang et al. [2024], is a type of neural network architecture that
stands out at processing sequential data. As a result, they are mainly asso-
ciated with LLMs but they are used in other fields such as computer vision
Dubey and Singh [2024], time series Ni et al. [2024] and others. There are
other well-known transformer-based architectures such as BERT and T5

which are used for natural language processing purposes including question
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answering Chelliah et al. [2024], Yin et al. [2024] using different mechanisms.
For example, T5 (Text-to-Text Transfer Transformer) developed by Google,
converts all NLP tasks into a text-to-text format Grover et al. [2021]. On
the other hand, BERT (Bidirectional Encoder Representations from Trans-
formers) processes text bidirectionally, considering context from both left
and right sides of a token Wang et al. [2024]. However, LLMs are generative,
auto-regressive models that learn uni-directional (from left to right). LLMs
have revolutionized NLP by using deep learning techniques to understand
and generate human-like text. Due to their numerous benefits, various busi-
nesses take advantage of them in different domains such as customer service
Larsen et al. [2024], healthcare Qiu et al. [2024], software development Man-

ish [2024] and others.

The above mentioned research works are not accurate in answering quesitons
that require multi-hop reasoning. In this work, we propose a multi-hop QA model

to bridge this gap.

4.3 Methodology

In this work, we design an algorithm that translates user’s multi-hop question from
natural language into Cypher query. This helps users with no knowledge of the
Cypher language to ask their questions in natural language and convert them to
Cypher language in the chain-of-hops format. Then, the user runs this query on a

Neod4j database to get the answer to their question. Let’s explain the concept with
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an example: Consider the Movies dataset where we have 6 different node types
(Figure 4 (b)). The user wants to get more information about the genres of the
movies and the actors acted in them. For example the user asks: "Which genres
did (actor) Hugo Weaving act in?”. This is an example of the multi-hop question

since there is no direct edge between the nodes Actor (Hugo Weaving) and Genres.

Since it is a multi-hop question, the LLM on its own is typically not able to
answer it. We train the LLM to find a path between the nodes ”Actor” and
"Genre” by prompt engineering. We teach it that the path is consisted of two
steps: first find the connection between the nodes ”"Actor” and "Movie” and then
"Movie” and "Genre”. Next, we convert the user’s question to a Cypher query
by using LLMs and run the Cypher query on the Neo4j database to get the final
answer. Our assumption is that the user does not have enough knowledge of the
Cypher language to write the query on their own. This algorithm helps the user
to obtain the Cypher format of their question and get the answer by running the
Cypher query against the Neo4j database. Our algorithm is applicable on any
graph dataset; however, in this paper, we get the results on two datasets: Mowvies
(neo4j-graph examples) and Northwind (Neo4j [2020]) . This method consists of

three different steps (Figure 5 illustrates the structure of this method):

1. Let’s assume we store the graph dataset and its schema in database (A) in
Neodj. We use LLM to generate one-hop QAs (in natural language format) for

each edge type between any two nodes in the graph by using the data in database
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A. We store the results in another Neo4j database (database B). For example, in
the Movies dataset, we have 6 different node types (Figure 4 (b)). Considering the
nodes Actor: Hugo Weaving and Mowie: Proof, Cloud Atlas, The Dressmaker, V
for Vendetta, Babe, Matrix The, Interview The, Adventures of Priscilla, Queen of
the Desert, The and the edge type connecting them which is Acted-In (Figure 4),

LLM generates a question answer (QA) like this:

Q: Did Hugo Weaving act in any movies?
A: Yes, Hugo Weaving acted in different movies such as Proof, Cloud Atlas, The
Dressmaker, V for Vendetta (Figure 3).

Interview,
The

Figure 4.3: The movies which "Hugo Weaving” acted in.

2. Next, we run the algorithm which gets the user’s question in natural lan-
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Figure 4.4: The schemas of the Movies and Northwind datasets.

guage and breaks down the user’s question into smaller QAs by using database B.
As mentioned earlier, the user’s question is "Which genres did Hugo Weaving act
in?”. To find the answer, we train the LLM on how to find the path between the
nodes "Actor” and "Genre”. The path consists of two steps: 1. connecting nodes
"Actor” and "Movie” 2. connecting the node "Movie” to "Genre”. By leverag-
ing prompt engineering, the LLM finds the path between the nodes ”Actor” and
"Genre” by finding the relevant QA from the database B: User’s question: Which
genres did Hugo Weaving act in? Using the few-shot training the LLM find the
first step of the path from database B: Q1: Did Hugo Weaving act in any movies?
Al: Yes, Hugo Weaving acted in different movies such as Proof, Cloud Atlas, The
Dressmaker, V for Vendetta

Comparing Figure 3 and the LLM’s response, the LLM has not found all the

movies which Hugo Weaving acted in. That is one of the challenges of the LLM
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to find all the connected Movie nodes to the Actor node. However, the good point
is that it has found a connection between Hugo Weaving and the movies; which is

the first step of the path. The second question that LLM finds from Database B is:

Q2: Are the genres of the movies Proof, Cloud Atlas, The Dressmaker, V for
Vendetta available ? A2: Yes, the genres of these movies are drama, fiction,

comedy in order.

3. In the last step, the code uses LLM and inputs the QAs in the previous step and
generates Cypher queries for them. These queries are in format of Chain-of-hops.
For example, considering the QAs in the previous step, here are the generated

Cypher queries:

Query of the Q1:

MATCH (a:Actor name: "Hugo Weaving”)-[r: Acted-In]-(m:Movie name: "Proof,

Cloud Atlas, The Dressmaker, V for Vendetta, Babe, Matrix The, Interview The,

Adventures of Priscilla, Queen of the Desert, The’)

RETURN m

Query of the Q2:

MATCH (g:Genre)-[]-(m:Movie name: 'Proof, Cloud Atlas, The Dressmaker, V
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for Vendetta, Babe, Matrix The, Interview The, Adventures of Priscilla, Queen
of the Desert, The’ )

RETURN g

The code later deletes the names of the movies from the query for a more ac-
curate one resulting in:

MATCH (a:Actor name: "Hugo Weaving”)-[r: Acted-In]-(m:Movie)

MATCH (g:Genre)-[]-(m:Movie)

RETURN g
ROC curve ROC curve
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Figure 4.5: The framework used in the algorithm.
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4.4 Experiments

In this section, we design a set of numerical experiments, in order to depict the
efficiency and effectiveness of our proposed algorithm. To run the experiments,

we used GPT-40 mini for all LLMs in the algorithm.

4.4.1 Datasets

For the experiments, we use two different datasets. One of them is the Northwind
dataset; which is a dataset containing purchase history. This dataset simulates a
fictitious company, "Northwind Traders”, which deals with specialty food imports
and exports. The database is widely used for educational purposes and practice;
particularly with relational database management systems such as Neoj4 and SQL
Servers.

This dataset consists of 1,035 nodes and 3,139 edges. You can see the schema
of this dataset as shown in Figure 4 (a). The second dataset is called "Movies”
dataset; which is a graph of popular movies and actors. This dataset consists of
28,863 nodes and 166,261 edges. You can see the schema of this dataset as shown

in Figure 4 (b).

4.4.2 Results

For the Northwind dataset, we ran our experiments for one-hop edge (between
two nodes connected by one edge), two-hop edge (between three nodes connected

by two edges). We implemented the algorithm on this dataset and shared the
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results in Appendix A. Here are some of the results:

User Question: What products did Antonio Moreno order?

Answer:

MATCH (c:CustomercustomerName: ’Antonio Moreno’)-[:placed]->(0:Order)
MATCH (o0:Order)-[:contains]->(p:Product)

RETURN p.productName AS Products

User Question: Which category does the supplier “New Orleans Cajun De-
lights” supply?

Answer:

MATCH (s:SuppliercompanyName: 'New Orleans Cajun Delights’)-[:supplies]-
> (p:Product)

MATCH (p:Product)-[:part-of]->(c:Category)

RETURN p.productName, c.categoryName

User Question: Which category does supplier “Ezotic liquids” supply?
Answer:

MATCH (s:SuppliercompanyName: 'Exotic Liquids’)-[:supplies]->(p:Product)
MATCH (p:Product)-[:part-of]->(c:Category)

RETURN p.productName, c.categoryName

User Question: Which category does supplier “Grandma’s Boysenberry Spread”
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supply?

Answer:

MATCH (s:SuppliercompanyName: ”Grandma Kelly’s Homestead”)-[:supplies]-

> (p:Product) MATCH (p:Product)-[:part-of]->(c:Category) RETURN c.categoryName
ASc

User Question: What product did Ana Trujillo order?

Answer:

MATCH (c:CustomercustomerName: ’Ana Trujillo’)-[:placed]->(0:Order)
MATCH (o0:Order) -(o0)-[:contains]->(p:Product)

RETURN p.productName AS p

User Question: What products did Maria Anders order?

Answer:

MATCH (c:CustomercustomerName: "Maria Anders’)-[:placed]->(0:Order)
MATCH (0:Order)-[:contains]->(p:Product)

RETURN p.productName AS p

User Question: What categories are in order id 102507
Answer:

MATCH (o0:Orderorderld: 10250)-[:contains]->(p:Product)
MATCH (p:Product)-[:part-of]->(c:Category)

RETURN p.productName AS Product, c.categoryName AS Category
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User Question: What categories are in order id 102487
Answer:

MATCH (o0:Orderorderld: 10248)-[:contains]->(p:Product)
MATCH (p:Product)-[:part-of]->(c:Category)

RETURN p.productName AS Product, c.categoryName AS Category

User Question: What categories did Thomas Hardy order from?
Answer:

MATCH (c:CustomercustomerName: "Thomas Hardy’)-[:placed]->(0:Order)
MATCH (p:Product)-[:part-of]->(c:Category)

RETURN p.productName, c.categoryName AS Category

User Question: What categories did Hanna Moos order from?
Answer:

MATCH (c:CustomercustomerName: "Hanna Moos’)-[:placed]->(0:Order)
MATCH (o0:Order)-[:contains]->(p:Product)

MATCH (p:Product)-[:part-of]->(c:Category)

RETURN p.productName, c.categoryName

Also, we implemented the algorithm and ran the code using the Movies dataset.
We ran our experiments for one-hop edge (between two nodes), two-hop edge

(between three nodes) and three-hop edge (between four nodes). Our results are
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accurate for all the one-hop edge questions and in most cases for two-hop ones
(above 80%). We shared the Cypher commands generated for ten QAs with this

dataset in appendix B. Here are some of the results:

User Question: Which actors acted in Susannah of the Mounties?

Answer:

MATCH (m:Movie name: ’Susannah of the Mounties”)<-[r:ACTED-IN]-(a:Actor)
RETURN a.name AS a”

User Question: Who directed the movie “Just Around the Corner”?

Answer:

MATCH (m:Movie name: "Just Around the Corner’)<-[r:DIRECTED]-(d:Director)
RETURN d.name AS d”

User Question: What are the movies in Children genre?

Answer:
MATCH (g:Genre name: 'Children’)<-[r:IN-GENRE]-(m:Movie)
RETURN m.name AS m

User Question: Which Genres did Channing Tatum act in?
Answer:
MATCH (a:Actor name:’Channing Tatum’)-[r: ACTED-IN]-(m:Movie)-[r1:IN-GENRE]-

(g:Genre)
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RETURN g

User Question: Which genres did Ron Perlman act in?
Answer:

MATCH (m:Movie)-[:IN-GENRE]->(g:Genre)

WHERE m.name IN ['Hellboy’, "Pacific Rim’, ’Cronos’]

RETURN m.name, collect(g.name) AS genres

User Question: Which Genres did Donal Crisp direct?

Answer:

MATCH (d:Director name:'Donal Crisp’)-[r:DIRECTED]-(m:Movie)

MATCH (d:Director name:'Roberts Gannaway’)-[r: DIRECTED]->(m:Movie)-[r2:IN-
GENRE]->(g:Genre)

RETURN g.name AS Genre

User Question: Which genres did Sam Raimi direct?
Answer:
MATCH (m:Movie)-[:IN-GENRE]->(g:Genre)

RETURN m.name as Movie, collect(g.name) as Genres
User Question: Which movies did George Davis act in?
Answer:

MATCH (a:Actor name:’George Davis’)-[r:ACTED-IN]-(m:Movie)
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RETURN m.name AS m

User Question: Which actors act in War genre?

Answer:

MATCH (g:Genre name:’War’)-[r:IN-GENRE]-(m:Movie)
(a:Actor)-[r:ACTED-IN]->(m:Movie)

WHERE m.name IN ['Saving Private Ryan’, 'Black Hawk Down’, "Platoon’; "Full
Metal Jacket’]

RETURN a.name AS Actor, m.name AS Movie

4.5 Conclusion

In this paper, we introduced a new method for multi-hop question answering on
graphs. Question answering is important since they are used in different domains
such as chatbots, virtual assistants, information retrieval systems and etc. On the
other hand, LLMs facilitate advancements in question answering by enabling rapid
and accurate retrieval of information from extensive datasets, thereby streamlining
both learning processes and decision-making.

As a result, we leverage them for question answering in our method. While LLMs
facilitate QA, they are challenged for multi-hop queries; since LLMs cannot easily
answer them. While there are recent articles introducing new methods for multi-
hop question answering, this area is still challenging. Our method helps users to

ask their multi-hop (or one-hop) question in natural language and translate it to
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Cypher query. The user can run the resulted Cypher query on a Neo4j database
and get the answer to their question.

Our method solves two issues: 1. translate the multi-hop question in natural
language to Cypher query using LLMs 2. train the LLM using prompt engineering
to find a path between two nodes of a graph.

The future work includes but not limited to: modifying the algorithm to make it
more efficient, train the LLM on more complicated graphs, use other methods for
training the LLM rather than prompt engineering, use other LLMs and compare

the performance and results to the one we used.
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Chapter 5

Conclusions and Future Work

In this knowledge, we focused on introducing and applying new machine learning
methods for graph analysis. Graphs are fundamental data structures that capture
relationships and connections in ways that traditional tabular data cannot. Here
are some reasons why they’re particularly important:

Natural representation of interconnected systems: Many real-world phe-
nomena are inherently relational - social networks, biological systems, transporta-
tion networks, the internet, financial transactions, and knowledge graphs. Graphs
preserve the structural information that gets lost when you flatten these relation-
ships into tables.

Rich analytical capabilities: Graph datasets enable unique types of analysis
that are impossible with other data structures. You can identify influential nodes,
detect communities, find shortest paths, measure network resilience, and discover

patterns of information flow. In social networks, this translates to understanding
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how ideas spread, identifying key influencers.

Machine learning advantages: Graph neural networks and embedding tech-
niques can leverage both node features and network structure simultaneously.
This is crucial for tasks like recommendation systems (leveraging user-item and
user-user connections), fraud detection (analyzing transaction patterns), or drug
discovery (molecular structure analysis).

Scalability insights: Graphs reveal how systems behave at scale. Small changes
in network structure can have dramatic effects on information propagation, sys-
tem robustness, or computational complexity. Understanding these properties is
essential for designing resilient systems.

Cross-domain applications: The same graph algorithms and insights apply
across diverse fields - from analyzing protein interactions in biology to optimizing
supply chains in logistics. This universality makes graph theory a powerful ana-
lytical lens. Social networks specifically showcase these benefits because human
behavior emerges from complex social structures that graphs capture naturally -
something that would be nearly impossible to model effectively with traditional

data representations.

In this work, we presented different methods on how to take advantage of the
information in graphs. In the first chapter, we introduce subgraph2vec, which is
a method for embedding graphs. This method is based on random walks where
the user has the authority to guide the walks. The user separates a subgraph

(by entering the edge types) from the original graph and the random walks starts
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within this subgraph. The obtained random walks are fed into a skip-gram for
embedding and while the resulted embeddings can be used for various tasks, in

this case they are used for link prediction using logistic regression.

In the next chapter, we discuss a survey some of the recent well-known methods
for embedding graphs. In addition, we discuss their advantages and disadvantages

and also compare subgraph2vec to them.

In the following chapter, we introduce a method to answer multi-hop questions on
graphs using LLMs. We discuss how Al has affected people’s lives and how one
can benefit from LLMs for question answering. In general, question answering is
used widely in different domains including chatbots, financial services, educational
technology and others. As a result, we leverage LLMs to answer multi-hop ques-
tions by translating the user’s question (in natural language) to Cypher format.
Users can run this query on a Neo4j database and get the response to their ques-
tion. We solve 2 challenges: 1. introducing a method to find a path between two
unconnected nodes is that LLMs have challenges answering multi-hop questions.
That is because they are often unable to find a path between two unconnected
nodes. We address this issue by introducing a new method. 2. our method helps
the users with little knowledge of Cypher to be able to use Neo4j database: Many
people might not be familiar with the Cypher language but they may need to use
Neo4j database; as a result we help these users to ask their questions in natural

language while running the algorithm and get the equivalent of their question in
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Cypher format. The user can run this Cypher query on a Neo4j database and get

the answer to their question.

5.0.1 Future work

There are different ways to use information in graphs. While we introduced and
discussed several ways in this work, one can focus on different ways for graph
analysis. Regarding the graph embedding, one way is to apply subgraph2vec
on larger graphs and modify the code for better efficency. Also, we ran our
experiments on static graphs; while many graphs nowadays are dynamic. So,
another possible direction is to run subgraph2vec on dynamic graphs. Also, for
the multi-hop question answering, while we address the challenge of LLMs in
finding a path in graphs, our method is not 100% accurate. As a result, the
researcher can focus on how to improve the results by modifying the method or
even introduce another fashion to solve this issue in different ways such as training

the LLMs using other methods than prompt engineering.
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