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ABSTRACT

Introduction: Annual vaccines are the primary intervention for limiting the burden

of influenza disease, but vaccine effectiveness (VE) depends on many factors, including

how similar the strains used for vaccine formulation are to circulating influenza strains.

Thus, ensuring that the vaccine induces a broadly-reactive immune response to many

possible strains of influenza is paramount for improving VE. The heterologous immune

response to strains other than those used in vaccine development is understudied and

difficult to measure.

Methods: We use data from a prospective, open annual influenza cohort across

three study sites (Port St. Lucie, FL; Pittsburgh, PA; and Athens, GA) from Fall

2013 through Spring 2022. Each individual could repeat in subsequent years, but was

not required to maintain consecutive enrollment. Every year, individuals contribute

a pre-vaccination blood draw, receive a Fluzone vaccine (Sanofi) and contribute a

post-vaccination blood draw at a followup visit targeted either 21 or 28 days post-

vaccination. All serum samples were used for hemagglutination inhibition (HAI) assays

to a wide panel of homologous and heterologous historical influenza strains. We fit

Bayesian multilevel models to analyze the heterologous immune response and breadth

of vaccine response.



Results: First, we quantified the causal effect of vaccine dose (standard dose vs.

high dose Fluzone) on the heterologous immune response. We found that higher

dose improved the response to some strains, but not all, so higher dose can induce

a less broad vaccine response. In a followup study, we were able to generalize our

strain-specific predictions to predictions about antigenic distance using linked genomic

data. Finally, we developed an overall summary metric for breadth of vaccine response

which had substantially lower variation across data from different labs than current

metrics.

Conclusions: Many factors such as vaccine dose may modulate the heterologous

immune response in unintuitive ways, so breadth must be carefully assessed. Breadth

can be assessed using multiple measures of antigenic distance, but our novel summary

metrics provide a robust measurement for understanding the breadth of response of

vaccine candidates across different lab groups.

INDEX WORDS: Influenza, Influenza vaccine, High-dose vaccines, Heterol-

ogous immunity, Humoral immunity, Antigenic distance,
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Chapter 1

Introduction

Influenza rapidly evolves to escape current vaccines through two major mechanisms:

antigenic drift and shift [1, 2]. Antigenic drift is the gradual process of mutation, driven

by selective pressure. Antigenic shifts are sudden and abrupt changes in influenza

antigens, which occur by recombination with other strains [3].

Seasonal epidemic influenza has a substantive burden [4, 5], especially in children

and older adults [6, 7]. Vaccine effectiveness (VE; a measurement of how protective the

vaccine is) varies widely, and is typically lower when strains used in the seasonal vaccine

do not match circulating strains [8–10]. Even when strains are correctly matched, VE

rarely exceeds 50%. The current strategy of predicting circulating strains to determine

the formulation of the influenza vaccine also leads to low pandemic preparedness. The

spontaneous emergence of new influenza strains, as with the 2009 H1N1 pandemic [11]

or the highly pathogenic H5N1 spillover cases in early 2023 [12] also demonstrate the

need for a broadly protective influenza vaccine. A universal broadly-reactive vaccine,

which protects against current and future influenza variants has the potential to

reduce the burden of seasonal influenza and mitigate future pandemics. Unfortunately,

designing influenza vaccines that induce broad protection against many relevant

variants of influenza is challenging [13–15].

This dissertation aims to improve our understanding of the design of broadly-

1



reactive vaccines by improving the methodology used in the analysis of vaccine studies.

While there are many promising next-generation broadly-reactive influenza vaccines

currently being developed, the best ways to measure breadth of response and compare

broadly-reactive vaccine candidates are unclear. We first conducted an analysis of

a high-dose split-inactivated vaccine, an enhanced vaccination strategy targeted to

protect elderly adults at risk of influenza complications. After finding that breadth of

response is not uniform across many strains of influenza, we investigated the methods

used for assessing response breadth and the heterologous immune response. Finally,

we developed a novel method for robust comparison and evaluation of broadly-reactive

vaccine candidates.

Summary of objectives

The goal of this dissertation is to improve our understanding of the heterologous

humoral immune response, and the breadth of immune response to seasonal influenza

vaccines. The specific aims of our study were as follows.

• Aim 1 (Chapter 2). Quantify the causal effect of vaccine dose on the breadth

of the vaccine-induced immune response.

• Aim 2 (Chapter 3). Evaluate the differences between different antigenic

distance metrics when measuring breadth of vaccine response.

• Aim 3 (Chapter 4). Develop robust metrics for the quantification of the

total immune response to an influenza vaccine, incorporating both strength and

breadth.

Chapter 2

The role of vaccine dose is so important in vaccine response that determining a

dose that balances efficacy and side effects is a crucial part of drug approval in the

United States [8, 13, 16]. High-dose (HD) influenza vaccines are approved for use

2



in older adults and can substantially improve the immune response for older and

otherwise immunocompromised individuals [17–19] and reduce disease severity and

risk of complications [20, 21]. While several studies have shown that HD vaccines

induce a stronger homologous immune response (that is, an immune response to the

strains used for vaccine formulation), no previous studies have examined how HD

vaccination impacts the heterologous response.

Inducing strong cross-reactive responses is crucial for both epidemic and pandemic

preparation, since we cannot perfectly predict which influenza strains will circulate [8,

22]. The HD vaccine could broaden the vaccine-induced immune response, or it could

induce a stronger, narrower response to the vaccine antigens [23], which could have

deleterious effects on the immune repertoire of the recipient that are not realized until

a future season when a novel strain evolves.

We performed a secondary data analysis of a prospective human vaccination cohort,

which included serological assays pre- and post-vaccination of a number of historical

influenza strains using Bayesian multilevel modeling to adjust for causal confounders.

We found that while HD vaccines tended to be beneficial in each season, they can

induce a worse response to some historical influenza strains than the SD vaccine,

potentially suggesting a narrowing of the immune response. If similar phenotypes

to those historical strains emerge in future lineages of influenza, HD vaccines could

induce worse protection, similar to the effect of the 2009 seasonal vaccine on pandemic

swine flu immunity [24].

Chapter 3

We analyzed the effect of vaccine dose on heterologous immunity using a strain-specific

model, which is not generalizable to other influenza strains. Quantifying the degree of

difference between influenza strains is important for understanding the speed of genetic

and antigenic evolution, and for understanding patterns of cross-reactivity in the

3



heterologous immune response. The antigenic distance between two influenza strains

is a measurement of how cross-reactive the immune response to those two strains

is expected to be [25–28]. Strains which have evolved to be highly divergent from

each other should have a high antigenic distance and induce effectively independent

immune responses, while strains with similar antigenic phenotypes have low antigenic

distance and can induce cross-reactive immune responses.

Measuring antigenic distance is difficult, and there are many methods in the

literature, none of which is clearly superior. The most prevalent method is antigenic

cartography, which involves statistical dimension reduction on large panels of serological

data [29]. However, methods based on analyzing the amino acid sequences of influenza

proteins also appear to be effective [30–32] and do not require expensive and time

consuming serological panels. While previous research has shown only moderate

agreement between different measures of antigenic distance [33–35], previous analyses

have only examined antigenic distance measures in a vacuum, without considering the

strength of the immune response at the same time.

We modeled vaccine response using multiple different antigenic distance metrics,

and we compare the predicted vaccine response instead of only comparing distance

metrics in isolation. We found that despite low agreement in antigenic distance

metrics, the metrics produced similar predictions of vaccine response after controlling

for confounding. Our results indicate that sequence-based distance metrics are a viable

alternative to antigenic cartography in the analysis of vaccine breadth, and can avoid

several limitations of antigenic cartography.

Chapter 4

Finally, we aimed to use antigenic distance to improve evaluation and comparison

schema for broadly-reactive vaccine candidates. Previous research on broadly-reactive

vaccines use a simple method to assess response breadth: they test the immune

4



response to many historic strains after vaccination, and count the number of strains

with a clinically meaningful response [36–38]. This method is fast and easy, but is

heavily biased by the set of historical viruses used in the panel. Results cannot be

compared fairly between labs which use different historical panels. Requiring all labs

to use the exact same set of historical strains in every analysis would be inexpensive

and logistically infeasible. Missing data imputation methods are potentially useful

for estimating the response to strains which were not measured [39, 40], but these

methods make strong assumptions and have not been shown to be practically useful

for vaccine comparison.

The more recent development of antibody landscape analysis provides a potential

alternative to missing data imputation. Antibody landscapes are created by modeling

some metric of vaccine response as a function of antigenic distance. These landscapes

are agnostic to the choice of immune assay or outcome [41–44] and to the metric used

for antigenic distance [45, 46]. Antibody landscapes are also agnostic to the choice

of method for estimating the relationship between vaccine response and antigenic

distance – linear or piecewise linear models are common, but flexible models that

account for covariates or nonlinear effects can also be used to estimate the antibody

landscape.

We developed a set of metrics derived from the summary antibody landscape over

a study sample. Incorporating antigenic distance from the antibody landscape into our

summary statistics makes our metrics more robust to the choice of historical strains

used for analyzing the response to a vaccine candidate, and our metrics can be fairly

compared across different virus panels.
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Chapter 2

High dose inactivated influenza vaccine

inconsistently improves heterologous antibody

responses in an elderly human cohort

Billings WZ, Ge Y, Knight JK, et al. 2025. The Journal of Infectious Diseases. Online

ahead of print, jiaf003. Reprinted here with permission of the publisher.
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Abstract

Background: Older adults often mount a weak immune response to standard inactivated

influenza vaccines. To induce a stronger response and better protection, a high-dose (HD)

version of the inactivated Fluzone vaccine is recommended for individuals >65 years of age.

While better immunogenicity and protection against the vaccine strain has been shown, it is

not known if the HD vaccine also induces a robust antibody response to heterologous strains.

Methods: We fit bayesian multilevel regression models to hemagglutination inhibition

(HAI) antibody data from an influenza vaccine cohort spanning the 2013/14-2021/22 influenza

seasons. We used this model to estimate the average causal effect (ACE) of obtaining the

HD vaccine, relative to the SD vaccine.

Results: We show that while there is generally a benefit derived from the HD vaccine,

the impact is small and inconsistent. For some strains, the HD vaccine might even result in

less robust heterologous responses.

Conclusions: We suggest that further increases in dose might be worth investigating to

help induce a stronger broad response.

Keywords: influenza, high-dose influenza vaccine, heterologous responses
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Introduction

Influenza vaccines are an important tool for reducing the burden of seasonal influenza, but

the average effectiveness is often less than 50% [47]. Standard dose (SD) split-inactivated

vaccines, such as Sanofi Pasteur’s Fluzone, comprise the majority of vaccines licensed in the

US [48], and are formulated to contain 15 micrograms (µg) of influenza hemagglutinin (HA)

antigen protein for each strain of influenza included in the vaccine [49]. Influenza vaccines

often induce a weak response in elderly individuals [50, 51]. In response, Sanofi Pasteur

developed a high dose (HD) formulation of the vaccine, Fluzone HD, which contains 60 µg

of HA per strain in one dose [52, 53].

In elderly individuals, HD vaccines induce a stronger homologous antibody response

compared to SD vaccines to the influenza strains contained in the vaccine [20, 54, 55].

Additionally, HD vaccination is associated with reduced disease severity and reduced risk of

complications in elderly individuals who contract influenza after vaccination [20, 21]. HD

vaccines also have the potential to elicit stronger immune responses in younger individuals

[56], but younger individuals can develop protective immune responses with SD vaccine, and

even fractional doses of SD vaccine [57, 58]. Therefore, the HD vaccine is currently only

recommended for elderly individuals.

While several studies have shown the ability of HD vaccines to induce stronger antibody

responses to the HA contained in the vaccine, whether HD vaccines induce a stronger

heterologous antibody response (cross-reactive antibodies to strains not included in the

vaccine formulation) is uncertain [59, 60]. Since our ability to forecast which strains of

influenza will circulate in the upcoming season is imperfect, it is important for influenza

vaccines to induce both homologous and heterologous responses [8, 22].

It is not obvious if HD vaccines are expected to have a positive, negative or no effect on

heterologous responses. A higher dose might stimulate multiple diverse lineages of memory

B-cells, and could enhance both the strength and breadth of protection. However, a higher

amount of HA proteins to the homologous strains could induce a stronger homologous

response, which might out-compete and dominate responses to any cross-reactive or novel
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antigens, resulting in less robust heterologous responses. The potential competition among

HD vaccine-induced B-cells or T-cells might lead to more narrow protection from vaccination

[23], making high-risk populations more vulnerable to vaccine mismatches.

Improving our understanding of the heterologous immune response to influenza vacci-

nation remains a critical step in developing a broadly reactive influenza vaccine. In our

study, we compare the antibody response between HD and SD vaccine recipients in a vaccine

cohort study, using a panel of several historical influenza A strains. We found that while the

HD response was higher for most strains, the impact was not consistent and the effect size

was small, suggesting that HD vaccines could be further improved.

Methods

Data source

We used data from an ongoing human vaccination cohort study, which has been previously

described in detail [61–63]. The study is a prospective open cohort which allows individuals

to enroll in multiple years (potentially non-consecutively), and has been conducted across

three study sites. Investigators annually recruited individuals who had not yet received

an influenza vaccine in the current season (the influenza season refers to the Northern

Hemisphere fall and winter in the United States, typically ranging from October to May

[64]). At intake, individuals provided demographic information, and investigators collected

blood samples before administering a vaccine. Individuals aged 65 and older were given the

choice between Fluzone SD and Fluzone HD, while individuals under 65 were given the SD

vaccine. Individuals were asked to return for post-vaccination blood draws either 21 days

(2013/14 through 2017/18 seasons) or 28 days (2018/19 season onward) after the initial visit.

Investigators ran hemagglutination inhibition (HAI) assays the vaccine strains and several

historical influenza strains for each serological sample.

For our analysis, we extracted previously deidentified records for individuals aged 65

and older from 2013/2014 influenza season through the 2021/2022 influenza season. All

individuals age 65 and older who provided both pre-vaccination and post-vaccination blood
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samples were included in our analysis.

Data processing

The raw data for our study were reciprocal HAI titer values produced by the HAI dilution

assays described in the previous studies, along with limited demographic information for each

participant (study site, season, age, sex, race, and a numeric identifier to track individuals

across participation years). Since the SD vaccine was quadrivalent (containing two influenza

B lineages) while the HD vaccine was trivalent (containing only a single influenza B lineage)

for multiple years of the study, we elected to focus only on the heterologous response to

influenza A virus strains, and excluded all data for influenza B strains. Details on the strains

included in each vaccine formulation and the number of repeated individuals are shown in

the supplement.

The data represent a multilevel structure, where each study site recruited individuals,

each individual could participate in multiple seasons, in each season an individual had a

pre-vaccination and a post-vaccination serological sample, and investigators ran a panel of

HAI assays to multiple strains on each serological sample. The HAI assays had a lower limit

of detection (LoD) of 10 and an upper LoD of 20480. Values below the lower LoD were

coded as 5 in the raw data. No values in our dataset were at the upper LoD. Following

previous studies, [65, 66] we conducted all analyses on the log scale, using the transformation

y = log2

(raw reciprocal HAI titer
5

)
,

where y is the titer variable we analyze. Using this transformation puts the titers on a scale

of 0, (values below the lower LoD), 1, 2, . . . , 12 (values at the upper LoD).

Outcome definitions

We calculated four common outcomes used in influenza vaccine studies [53, 65]. The primary

outcome we used for our study was titer increase, defined as the log (base 2) fold change

between an individual’s post-vaccination and pre-vaccination titer. That is, since the y
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variable is already on the log scale,

titer increase = ypost − ypre.

We present results for titer increase in the main manuscript. As a sensitivity analysis, we

repeated our analysis using three additional outcomes: post-vaccination titer, seroprotection,

and seroconversion. Seroprotection and seroconversion are binary outcomes, and this

dichotomization leads to a loss of statistical power. However, these are commonly reported

measures and can be useful for their clinical interpretation. We used standard definitions

for seroprotection and seroconversion, with seroprotection defined as a post-vaccination titer

greater than 1:40, that is,

seroprotection = I(post-vaccination HAI titer ≥ 40),

where I(·) is the indicator function. The definition of seroconversion we used was seropro-

tection in addition to a titer increase of 2 or higher (i.e., a fold change of 4-fold or higher),

that is,

seroconversion = seroprotection × I(titer increase ≥ 2).

Results for these three additional outcomes are discussed in our results, and the full details

are included in the Supplement.

Statistical analyses

For an initial descriptive analysis of the study population, we calculated summary statistics

for the covariates we included in our models and for each of the model outcomes previously

described. Summary statistics for the outcome variables, including analyses stratified by

vaccine strain and assay strain, are shown in the Supplement. We conducted a crude analysis

of the difference in fold change by dose for each vaccine strain and assay strain, also shown

in the Supplement.

For our main results, we fit bayesian multilevel regression models for each of the
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outcomes [67, 68]. Bayesian multilevel regression can estimate the average effect of dose in

the population, while allowing the effect to vary across strata and flexibly controlling for

nuisance confounders. We allowed the effect of dose to vary by vaccine strain and HAI assay

strain, and effects for different groups were assumed to be correlated with a heterogeneous

unstructured covariance matrix. We used random intercepts for subject and study site to

control for baseline differences, and used smoothing splines to control for the effects of birth

year, age, pre-vaccination titer, and season. For more details, see the Supplement.

We used these models to estimate the effect of dose on each outcome of interest by

calculating the posterior Average Causal Effect (ACE). To do so, we compared each indi-

vidual’s predicted outcome under the dose received (HD or SD) to their predicted outcome

for the counterfactual dose, thereby estimating the individual causal effect (ICE) for each

observation in the dataset. We estimated the ACE by summarizing the overall posterior

distribution of ICEs using the mean point estimate with a 95% highest density credible

interval (HDCI). We also computed conditional ACEs (cACEs) by summarizing the posterior

distribution of ICEs in specific strata: within each season, within each vaccine strain, and

within each assay strain and vaccine strain. In order to aid interpretation, we then base-2

exponentiated the ACEs and the limits of the HDCI. Each ACE represents the average

difference in the model outcome across the full study sample between the high dose and

standard dose vaccines, after controlling for confounders [69, 70]. See the Supplement for

additional details on cACE calculation.

Our study is a secondary data analysis, and the data were not collected with our specific

research questions in mind. Therefore, a strict hypothesis testing framework using p-values is

not appropriate. Any statistical tests we conduct will have inflated false discovery rates and

limited power. Therefore, we implemented models in a bayesian framework, and we focus

on estimating the effect size and uncertainty as captured by credible intervals of the dose

in our dataset, rather than testing hypotheses. The primary limitation of these bayesian

models is the extensive computation time, and our implementation of multilevel models

using Hamiltonian Monte Carlo does not suffer from the convergence issues or error inflation

issues common to similar frequentist models [68, 71].
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Details on model specification, outcome calculation, and details of implementation,

including full data and code to reproduce results, are included in the supplement.

Implementation

We conducted all of our analyses using R version 4.4.2 [72]. We used the tidyverse suite of

packages for data cleaning, manipulation, and visualization [73], along with the packages

tidybayes [74] and ggdist [75, 76]. We used the packages here [77] and renv [78] for

code management. We used ggplot2 for generating all figures [79]. We used the packages

gtsummary [80] and flextable [81] for making all tables. We compiled our manuscript

using Quarto version 1.5.43 [82] with the R packages knitr [83–85], and softbib [86]. We

implemented our Bayesian models using brms [87–89] and cmdstanr [90] with cmdstan

version 2.34.1 [91] as the interface to the Stan probabilistic programming language [71, 92].

More details on implementation are included in the Supplement, along with instructions

for reproducing our results. The code and data are archived on Zenodo at this link:

https://doi.org/10.5281/zenodo.1266697.

Results

Data description

Our data come from a prospective open cohort study and span the influenza seasons from

2013/14 through 2021/22, and included 254 unique individuals across all study sites and

seasons, who provided 668 total observations. Participants aged 65 and older were vaccinated

with either Fluzone SD or HD at one of three study sites (Stuart, FL and Pittsburgh, PA,

from the 2013/14 season – the 2016/17 season and the University of Georgia (UGA) in

Athens, GA from the 2016/17 season – 2021/22 season). Table 2.1 shows the distribution

of observations, stratified by vaccine dose. The three study sites had similar distributions

of demographic characteristics at both the observation and unique participant levels (see

Supplement). Since we only include individuals 65 or older in our study, the age ranges

and birth cohorts were similar for both dose groups. Throughout the course of the study,
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the recommended influenza vaccine composition was updated several times, encompassing 5

different H1N1 strains and 8 different H3N2 strains. A visualization of the overall trend in

pre-vaccination and post-vaccination HAI titers is included in the Supplement.

Table 2.1: Number of observations in our sample, stratified by the dose, and the study
site or season.

SD, N = 234 HD, N = 434 Overall, N = 668
Study, n (%)
FL 82 (35) 41 (9) 123 (18)
PA 73 (31) 146 (34) 219 (33)
UGA 79 (34) 247 (57) 326 (49)
Season, n (%)
2013 - 2014 40 (17) 16 (4) 56 (8)
2014 - 2015 53 (23) 39 (9) 92 (14)
2015 - 2016 40 (17) 58 (13) 98 (15)
2016 - 2017 34 (15) 77 (18) 111 (17)
2017 - 2018 22 (9) 16 (4) 38 (6)
2018 - 2019 11 (5) 8 (2) 19 (3)
2019 - 2020 21 (9) 69 (16) 90 (13)
2020 - 2021 7 (3) 76 (18) 83 (12)
2021 - 2022 6 (3) 75 (17) 81 (12)

Strain-specific effects reveal differences in vaccine response patterns

Our models allowed the effect of dose to vary by the assay strain used for HAI assays, so we

first examined the strain-specific effects of dose.

For the H1N1 vaccine component, the titer increase was higher for HD in all of the

H1N1 strains except for CA/09 (Figure 2.1, where the point estimates for the heterologous

responses were a mix of small positive and small negative values. MI/15 had positive point

estimates for nearly all of the assay strains. Bris/18 showed a negative impact of dose for

the single older strain used for testing, and positive impact for the other strains. GD/19 and

Vic/19 had positive point estimates with almost all of the density of the interval estimate

above 1 for the few strains they were tested against. The effect of the HD vaccine on the

Chi/83 strain was negative for all three of the vaccines which it was tested against, although

the negative effect was very close to 1 for the MI/15 vaccine stratum.
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The effect size for our models in Figure 2.1 and Figure 2.2 and subsequent Figures

is presented as a ratio of fold changes. An effect size greater than 1 (a “positive effect”)

indicates that the HD vaccine induced a higher average fold change than the SD vaccine,

whereas an effect size less than 1 (a “negative effect”) indicates that the HD vaccine induced

a lower average fold change than the SD vaccine. An effect size of 1.25, for example, would

indicate that, averaged across the population, the fold change from an HD vaccine would be

1.25 times larger than from an SD vaccine, assuming that the individuals affected stay the

same in every other aspect. See the supplement for more details on the effect size.

Figure 2.1: Strain-specific ratio of HD over SD antibody responses of heterologous
strains following vaccination with the indicated vaccine strain. All strains shown in
this figure are subtype H1N1. Values above one indicate a better response for the HD
vaccine, values below one indicate a better response for the SD vaccine. For more
recent vaccines, only a subset of data for heterologous responses was available.
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Figure 2.2: Strain-specific ratio of HD over SD antibody responses of heterologous
strains following vaccination with the indicated vaccine strain. All strains shown in
this figure are H3N2 subtype for both the vaccines and the assay strains. Values
above one indicate a better response for the HD vaccine, values below one indicate a
better response for the SD vaccine. For more recent vaccines, only a subset of data
for heterologous responses was available.

Most, but not all, HD vaccine formulations elicited a stronger overall

response

After examining the strain-specific impact of the HD vaccine, we computed the overall

impact of the dose on each vaccine strain, by pooling together all of the posterior samples

within that stratum and calculating the average effect. We found a weakly positive overall

effect of the HD vaccine for all H1N1 strains Figure 2.3. (The estimates in Figure 2.3 are

the same as the "overall" estimates in Figure 2.1 and Figure 2.2 for the appropriate subtype,

but presented alone to allow more detailed comparisons.) While the uncertainty in our

parameter estimates is large, all of the HDCI estimates were consistent with a small positive

benefit from the HD vaccine. For the H3N2 strains, the majority of vaccine strains showed

a benefit for the HD vaccine. However, the HK/14, Sing/16, and Tas/20 vaccines all had
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negative point estimates.

Figure 2.3: Vaccine-specific ratio of HD over SD antibody responses of following
vaccination with the indicated vaccine strain. All individual responses were pooled
together to calculate the cACE for each stratum defined by the vaccine component
received by an individual. individual, listed on the y-axis. Values above one indicate
a better response for the HD vaccine, values below one indicate a better response for
the SD vaccine.

HD vaccines elicited stronger or equal responses in every influenza season

For our final analysis, we pooled the H1N1 and H3N2 responses for a given vaccine and

computed an overall effect of the dose for a given vaccine in each season (ignoring the

influenza B components). We found that an increase in dose had a positive but small impact

for most seasons, while for a few seasons, we did not observe an impact (Figure 2.4). On a

vaccine-level basis, there was no indication of an overall detrimental effect of dose.

Sensitivity analyses

We repeated the analyses shown above for the three other outcomes we defined in the

Methods, i.e., post-vaccination titer, seroconversion rate, and seroprotection rate. While the
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Figure 2.4: Season-specific ratio of HD over SD antibody responses of following
vaccination with the indicated vaccine strain. All responses measured during a given
season were pooled together to estimate the cACE with respect to the season, taking
all vaccine components and historical strains into account. Values above one indicate
a better response for the HD vaccine, values below one indicate a better response for
the SD vaccine.

numerical estimates change slightly, the results were qualitatively similar to what we see

with titer increase.

Specifically, the results for the post-vaccination titer outcome are qualitatively identical

to the results for the titer increase outcome we present here. This is because the two

models are mathematically very similar, and the differences between the two models largely

disappear when we calculate contrasts of the type we present as our main result, but we

include the results for the post-vaccination titer for completeness.

While the trends in cACE estimates for seroprotection and seroconversion are qualitatively

similar, the effect sizes are closer to one for both outcomes. This is driven by the fact that

the majority of individuals in our study did not achieve seroconversion or seroprotection

for many strains. So even though the HD vaccine induces a better post-vaccination titer

or titer increase (which could be important for preventing infection or clinical outcomes),
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this additional signal is lost when we dichotomize the outcomes. For seroconversion in

particular, many of the effect size estimates are close to zero because of the information loss

associated with dichotomization. The full analyses of these other outcomes are shown in the

supplement.

Discussion

We analyzed homologous and heterologous antibody responses to influenza A HD and SD

vaccines across multiple years of influenza vaccinations.

While our estimates had high uncertainties and our secondary analyses should be

interpreted as exploratory, our results preliminarily suggest a small but positive effect of the

HD split-inactivated vaccine compared to the SD vaccine for inducing not only homologous

(similar to prior results; see Supplement) but also better heterologous responses. However,

this was not consistent and for some vaccine strains, there was a trend towards a negative

impact for the HD vaccine. In general, both positive and negative effect sizes were small

and most of the time the credible intervals included both a no-effect as well as positive

and negative effect regions. Given that our analysis is a secondary data analysis of noisy

observational data, and our observed effect sizes were small, the amount of uncertainty we

observed is expected.

Our results suggest that the HD vaccine does induce both better homologous and

heterologous responses for the majority of vaccine strains and thus should be a continued

recommendation for older individuals.

In addition, our results also suggest that the overall impact of the HD vaccine is very

modest at inducing stronger antibody responses. Since we only examined the humoral

immune response, if the mechanisms related to reduced disease severity are driven by cellular

immune responses [93, 94], there could be additional clinical benefits to the HD vaccine that

cannot be learned from the data we used. We have not analyzed any markers of cellular

immunity, and understanding how higher inoculum dosage could affect the breadth of the

cellular immune response is critical information missing from our analysis. We also lack
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outcome data for the individuals in our study, since there was no surveillance component.

So while HD vaccination appears to be more protective against severe disease outcomes [20],

these effects may not be mediated by the differences in immunogenicity we observe.

While we have a large sample size and many years collected immunogenicity data for a

large panel of historical strains with coverage of major antigenic clusters, we lacked detailed

data on previous infection and vaccination history. While we flexibly controlled for prior

antibody titers at the time of vaccination and individual random effects, modeling of the

exposure history would help us discern whether the effects of response blunting due to repeat

vaccination [95–98] or the enhanced vaccine immunogenicity hypothesis [45, 99, 100], among

other effects, are present in our data. In addition, vaccination history could be a useful

proxy for healthcare-seeking behavior and willingness to receive an HD vaccine and thus

could represent unobserved confounding in our data. However, the effect of unobserved

confounding would have to be large to shift our observed causal effects enough (in either

direction) to change our conclusions.

Overall, our results do not preclude a stronger beneficial effect of a higher vaccine

dose. If a higher vaccine dose (above the dose in the current HD vaccine) would further

enhance immunogenicity, we could potentially see a stronger effect than that is consistently

different from the SD vaccine. With a stronger effect size, we could better determine which

heterologous responses are boosted or diminished by increasing the dose. Since the current

HD vaccine seems to be tolerated well, further studies on dose escalation and optimal dosing

in elderly individuals might open avenues for improved vaccine design using the relatively

cheap split-inactivated vaccine vector.
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Chapter 3

Different antigenic distance metrics generate

similar predictions of influenza vaccine response

breadth despite low correlation

Billings WZ, Ge Y, Skarlupka AL, et al. To be submitted to PLOS Computational Biology.
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Abstract

Background: Influenza constantly evolves to escape population immunity, which makes

formulating a vaccine challenging. Licensed vaccine formulations are based on strains that

are expected to circulate, so if the circulating strain is different, vaccine effectiveness (VE)

can be reduced. The effect on vaccine effectiveness should depend on how different the

circulating strain and vaccine strain are, which is measured by antigenic distance. Antigenic

distance is normally quantified using antigenic cartography of hemagglutination inhibition

(HAI) titer data, which is costly and has the potential to produce biased antigenic distances.

While multiple antigenic distance measurements have been developed and compared in

previous literature, they have not been compared in their ability to predict immunological

outcomes. We compare how predicted breadth of vaccine response varies when different

metrics are used to calculate antigenic distance.

Methods: We analyzed data from a seasonal influenza vaccine cohort which collected

serum samples from 2013/14 – 2017/18 at three study sites. The data include pre- and

post-vaccination hemagglutination inhibition titers to the vaccine strains and a panel of

heterologous strains. We used that data to calculated four different antigenic distance

measures between assay strains and vaccine strains: difference in year of isolation (temporal),

p-Epitope (sequence), Grantham’s distance (biophysical), and antigenic cartography distance

(serological). We analyzed agreement between the four metrics using Spearman’s correlation

and intraclass correlation (ICC). We then fit bayesian generalized additive mixed-effects

models (GAMMs) to predict the effect of antigenic distance on post-vaccination titer after

controlling for confounders and analyzed the pairwise difference in predictions between

metrics.

Results: The four antigenic distance metrics demonstrated weak correlations for in-

fluenza subtypes A(H1N1), B (Victoria), and B (Yamagata). The exception was A(H3N2),

which showed high correlations. However, we found that after accounting for pre-vaccination

titer, study site, and repeated measurements across individuals, the predicted post-vaccination

titers conditional on antigenic distance and subtype were nearly identical across antigenic
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distance metrics, with A(H1N1) showing the only notable deviation between metrics.

Conclusions: Despite low correlation among metrics, we found that different antigenic

distance metrics generate similar predictions about breadth of vaccine response. Costly titer

arrays for antigenic cartography may not be needed when simple sequence-based metrics

suffice for quantifying vaccine breadth.

Keywords: influenza, influenza vaccine, heterologous responses, antigenic distance,

cohort study, secondary data analysis
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Introduction

Influenza viruses constantly evolve over time. As host immunity induces selective pressure,

new influenza strains accumulate mutations, a phenomenon called antigenic drift [1–3,

101–103]. As mutations accumulate, antigenic drift leads to vaccine escape [95, 104, 105].

Seasonal influenza vaccines are formulated based on the strains that are expected to circulate,

but these predictions are sometimes incorrect and vaccine effectiveness (VE) varies annually

[106]. A major determinant of VE is the similarity between the strains used for vaccine

formulation and the circulating influenza strains [8, 10, 96, 107–113]. While previous analyses

have analyzed the effect of binary match or mismatch, measuring the full effect of antigenic

distance on vaccine response requires quantitative antigenic distance calculations [25–28,

114].

The most common method for quantifying antigenic distance between influenza strains is

antigenic cartography, which relies on extensive panels of serological data [29]. Cartographic

distance has proven useful in understanding influenza evolution, but validating the ability

of cartography to estimate population-level protection is difficult because of the required

data [33, 46, 115]. Evolution or sequence-based methods can accurately predict cartographic

distance based on genetic sequences of influenza strains, but still rely on accurate serological

data for calibration [34, 39, 116–122]. Furthermore, multiple cartography methods yield

different maps on the same data [29, 33, 123–125]. Maps based on HAI titers also incorporate

bias from HAI assays, which are often not replicable between labs [126, 127] and do not always

accurately reflect differences in antigenic clusters [25–28, 114, 119, 123, 128–130]. While

cartographies can be generated from alternative assays [41–43], HAI is still the most common

immunological assay used for influenza and the majority of highly-cited cartographies in use

are based on HAI [29, 33, 46, 131, 132].

Not all antigenic distance measurements involve serological data, however. Simpler

analyses of the genetic or amino acid sequence of influenza strains can provide reliable

measures of antigenic distance that correlate with vaccine effectiveness at a population level

[30–32], even though they only weakly correlate with serological antigenic distance [33–35].
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Notably, new antigenic lineages can be reliably differentiated by analyzing changes at just a

few sites [133–135], and advanced predictive models consistently identify sequence-based

biophysical and phylogenetic properties as important predictors of antigenic innovation

[136–139]. Analyses of vaccine response or immunogenicity based on temporal [38, 45,

140–143] or sequence-based distances can provide information about breadth of vaccine

response [30–32, 35, 116, 128, 144–146]. Taken together, these results imply that simple

genetic analyses should provide important information about antigenic evolution without

the need for serology. A direct comparison of antigenic distance methods is necessary to

determine whether serological and genetic antigenic distance calculations can provide the

same information in a practical setting.

To compare the implications of multiple antigenic distance metrics on practical outcomes,

we perform a secondary data analysis of an influenza vaccine cohort with a panel of HAI

measurements to historical strains for each individual. We find that, despite the low

correlation in antigenic distance metrics, these different metrics make similar conclusions

about vaccine response to antigenically distant strains. Our results suggest that implementing

costly antigenic analyses or deep learning methods may not be necessary, as simple sequence-

based measures lead to essentially equivalent predictions about vaccine response as antigenic

distance varies.

Methods

Data source

The data for our study are from a prospective, ongoing human vaccination cohort study

which has been described in detail previously [61, 147, 148]. Briefly, the study recruited

participants at three study sites: Pittsburgh, PA, USA, and Port St. Lucie, FL, USA

beginning in the 2013/14 influenza season (approximately September through March [149])

and continuing through the 2016/17 influenza season. Beginning in January 2017, the

study moved to Athens, GA, USA. Participants received Fluzone (Sanofi-Pasteur) vaccines

and donated two serum samples, one before being vaccinated, and one at a follow-up visit
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approximately 21 days after the first visit. The study was a prospective, open cohort design

where individuals could enroll in multiple years in the study, but were not required to

re-enroll in every consecutive year. Individuals under 65 received a standard dose Fluzone

vaccination, and individuals aged 65 and older were given the choice between standard dose

(SD) and high dose (HD) Fluzone vaccines.

Researchers used each serum sample for a panel of hemagglutination inhibition (HAI)

assays to the homologous strains, included in the seasonal vaccine formulation, and a panel

of historical, heterologous influenza virus strains. Strains included in the historical panel

represented the major clades of circulating influenza viruses. In each season, all prior vaccine

strains from 2012 onward were included in the historical panel. See the Supplement for

details on the Fluzone vaccine formulation and for a list of strains used in each season.

For our secondary data analysis, we extracted previously deidentified records from the

2013/14 through 2017/18 influenza seasons. We included all participants with both pre-

vaccination and post-vaccination blood samples in our analysis. Our primary outcome of

interest was the reciprocal post-vaccination HAI titer, which we log transformed:

y = log2

(HAI titer
5

)
.

Note that the raw HAI titer is the reciprocal of the highest serum dilution at which

agglutination occurred in the assay. We divided the raw titer by 5 before taking the log

because the HAI assay had a lower limit of detection (LoD) of 10, and an upper LoD of

20, 480. Values below the LoD were coded as 5 in the dataset. After our transformation,

values below the LoD had a value of 0. All observed values in our dataset were below the

upper LoD. We used the same outcome definitions defined in our previous work on this

dataset [150].

Each HAI assay in our dataset has an associated subtype, vaccine strain, and assay

strain. Here, we use “subtype” for simplicity to describe both Influenza A subtypes (H1N1

and H3N2), and Influenza B lineages (Victoria-like and Yamagata-like). The vaccine strains

associated with an HAI assay are the strains used in the Fluzone vaccine formulation in the
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season when the serum sample was drawn. Each assay has three or four associated vaccine

strains, depending on whether the individual who gave the serum sample received a trivalent

or quadrivalent vaccine (see Supplement for details on the vaccine formulations). The assay

strain for a vaccine is the strain of the actual virus added to the serum sample during the

HAI assay.

We computed the pairwise antigenic distance for all strains used in the dataset (again, see

the Supplement for a complete list). We used four different methods to compute the antigenic

distance: temporal distance, dominant p-Epitope distance [30], Grantham’s distance [151],

and cartographic distance [29]. For complete details on antigenic distance calculation, see

the Supplement.

Statistical analyses

We first summarized demographic information about the cohort in a descriptive analysis,

stratifying by measurements, individuals, and person-years to demonstrate the multilevel

structure of our data.

For our formal analysis, we built generalized additive mixed-effects models (GAMMs)

and linear mixed-effects models (LMMs) [68, 152] (see the Supplement for details). We fit

a separate model for each of the antigenic distance metrics. We used a Gaussian outcome

family with the transformed post-vaccination titer as the outcome and adjusted for censoring

in the outcome [153]. To answer our primary question, we modeled antigenic distance in

two ways. For the LMM, we included a linear effect of antigenic distance which was allowed

to vary by strain type. For the GAMM, we modeled antigenic distance using a flexible

semiparametric spline which allows the relationship to be nonlinear, but constrained.

We fit the LMMs and GAMMs in a Bayesian framework using weakly informative

priors chosen by a prior predictive simulation. We obtained posterior samples of the model

parameters using the No U-Turn Sampler (NUTS) algorithm implemented by Stan [71, 92],

via the brms [87–89] and cmdstanr [90] packages for R [72]. After obtaining the posterior

samples, we calculated marginal posterior predictions for many values normalized antigenic

distance [154]. We summarized the posterior prediction samples with a mean point estimate
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and 95% highest density continuous interval (HDCI). We compared the GAMM and LMM

for each antigenic distance metric using the leave-one-out expected log pointwise predictive

density (LOO-ELPD) which is conceptually similar to model selection using cross-validation

in a frequentist scenario [155, 156]. See the Supplement for extensive details on our models.

To examine the differences in predictions across each of the antigenic distance metrics,

we compared the slope and intercept for LMMs and the fold change in predicted post-

vaccination HAI titer for the LMM and GAMM since the GAMM has no equivalent simple

parametrization (shown in the Supplement).

Implementation

We conducted our analysis with R version 4.4.1 [72] in RStudio version 2024.09.0+375 [157].

We implemented our package as a targets pipeline [158] based on a high performance

computing (HPC) template [159]. We ran our pipeline on UGA’s sapelo2 cluster, which uses

the Slurm scheduling software [160, 161].

We used the packages here [77], renv [78], and tidyverse [73] for data curation and

project management and the packages marginaleffects [154], tidybayes [74], bayesboot

[162], ggdist [75, 76], and loo [155, 156, 163] for formal analysis. We used the packages

ggplot2 [79] and GGally [164] for generating figures, and the packages gtsummary [80]

and flextable [81] for generating tables. We generated the manuscript using Quarto

version 1.6.40 [82] along with the R packages knitr [83–85] and softbib [86]. We im-

plemented our Bayesian models with the brms package [87–89] using the cmdstanr back-

end and cmdstan version 2.34.1 [90, 91] as the interface to the Stan programming lan-

guage for bayesian modeling. The Supplement contains more exhaustive details on our

methodology, including instructions for reproducing our results. Our dataset and code are

archived on GitHub (https://github.com/ahgroup/billings-comp-agdist-public) and Zenodo

(https://doi.org/10.5281/zenodo.15522148).
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Results

Data description

Our dataset included 54, 101 pairs of pre-vaccination and post-vaccination HAI titer mea-

surements drawn from 677 individuals who contributed 1, 163 person-years to the study

across three different study sites. The contributions of paired measurements, person-years,

and unique participants from each study site are shown in Table 3.1. In a given year, each

individual contributed 4 homologous HAI assay pairs, along with a number of heterologous

assay pairs, which varied by season due to the change in historical panels each year, and by

individual due to random lab and assay issues. Each person-year represented in the data

contributed a median of 48 HAI assay pairs (range: 8 to 52 pairs). Additional demographic

information about our cohort is provided in the Supplement (summaries of race/ethnicity,

sex assigned at birth, contributed person-years, age at enrollment, and pre-vaccination titer).

Table 3.1: Counts of HAI assay pairs, person-years, and unique participants contributed
by each study site for the duration of the study. Note that the PA and FL study
sites operated from September 2013 to December 2016 and the GA study site began
operating in January 2017 (during the 2016/17 influenza season).

Season
2013/14 2014/15 2015/16 2016/17 2017/18 Total

Paired HAI assays, n
FL 2459 6597 6656 6188 0 21900
PA 2163 3716 4131 3136 0 13146
UGA 0 0 0 6815 12240 19055
Overall 4622 10313 10787 16139 12240 54101
Person years, n
FL 60 150 128 119 0 457
PA 73 88 81 64 0 306
UGA 0 0 0 145 255 400
Overall 133 238 209 328 255 1163
New participants, n
FL 60 113 37 31 0 241
PA 73 46 2 12 0 133
UGA 0 0 0 145 158 303
Overall 133 159 39 188 158 677
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Antigenic distance metrics have low correlation for all subtypes except

A(H3N2)

First, we examined the overall agreement between the different distance metrics. We analyzed

agreement using the intraclass correlation (ICC), shown in Table 3.2. ICC was low for all

subtypes except A(H3N2), and the credible interval included zero for all subtypes except

A(H3N2), so despite the moderate point estimate for B/Yamagata with a high upper limit,

there was low consistency in antigenic distance measurements across methods. For A(H3N2),

we observed moderate agreement across methods. Our ICC results indicate for each subtype

except A(H3N2), at least one of the antigenic distance metrics systematically disagrees from

the other.

Table 3.2: Intraclass correlation (ICC) across all antigenic distance measurements,
calculated separately for each subtype or lineage (strain type). The posterior distri-
bution for each ICC was calculated as the ratio of variance components for vaccine
strain and assay strain divided by the sum of all variance components, estimated with
a Bayesian model. Numbers shown are the mean and 95% highest density credible
interval (HDCI) of the posterior distribution of ICCs.

Strain Type ICC
H1N1 0.09 (0.00, 0.24)
H3N2 0.34 (0.19, 0.52)
B-Yam 0.21 (0.00, 0.42)
B-Vic 0.03 (0.00, 0.13)

To better understand the lack of overall agreement, we computed the Spearman rank

correlation between each pair of metrics (again, separately for each subtype). Figure 3.1

shows the pairwise scatterplots and correlation coefficients. The pairwise correlations between

distance measurements varied widely across subtypes and combinations, indicating that low

agreement was not driven by a specific metric or subtype. All distance metrics tended to

correlate well for H3N2. Distance metrics correlated highly for both influenza B subtypes

with the exception of the cartographic distance, which had a moderately high correlation

with the other three distances for B/Yamagata and a low correlation with the other three

distances for B/Victoria. The only high correlation for A(H1N1) was between Grantham and

p-Epitope distance, with small correlations between the other distance metrics. Grantham
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and p-Epitope distances correlated well for all strains (although it was notably lower for

A(H1N1)), which we expected given the similarity between the measures. The Supplement

contains a table with credible intervals for each correlation.

Predicted vaccine response breadth is similar across antigenic distance

metrics, despite the low between-metric correlation

Examining the agreement and pairwise correlations between the different distance metrics

is useful for understanding which metrics disagree most, but these disagreements do not

necessarily translate into different predictions about vaccine response. We built LMMs and

GAMMs to model the effect of antigenic distance after controlling for multiple host and

assay features.

To quantify whether the effect of antigenic distance deviated strongly from a linear effect,

we calculated the LOO-ELPD for the GAMM and LMM models fit with each antigenic

distance metric, shown in Table 3.3. LOO-ELPD is comparable to (W)AIC or BIC, and

differences in ELPD strongly supported the linear model for every antigenic distance metric.

The ratio of the difference in ELPD was always much greater than its standard error, so

the difference between models can be trusted for model selection. Including spline terms to

account for nonlinearity did not improve the model fit.

Table 3.3: Differences in expected log pointwise predictive density (ELPD) from
the best-fitting model, estimated by the leave-one-out (LOO) method for all models
and all antigenic distance metrics. We fit the models separately for each antigenic
distance metric, so comparisons are shown separately. The ∆ ELPD is the difference
in ELPD between the LMM and the GAMM, so a positive number indicates the LMM
performed better than the GAMM, and a larger number means the LMM outperforms
the GAMM more. We show the ∆ ELPD ± its standard error, along with the ratio of
the estimate to its standard error.

Metric ∆ ELPD (LMM - GAMM) ∆ ELPD / SE
Cartographic 106.32 (±19.93) 5.3
Grantham 203.47 (±24.28) 8.4
Temporal 46.30 (±11.14) 4.2
p-Epitope 416.55 (±38.76) 10.7

Figure 3.2 shows how the average post-vaccination titer predicted by the model changes
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Figure 3.1: Distribution and correlation plots for each of the antigenic distance metrics.
For each HAI assay in the dataset, we calculated the antigenic distance between the
vaccine and assay strains with four different methods. We examined the distribution
(shown along the diagonal) and the correlation between the different metrics for the
same pairwise comparisons (we show pairwise scatterplots in the plots below the
diagonal, and overall Spearman’s correlation values in the plots above the diagonal).
We include each unique combination as only one point in this plot. We calculated
correlation coefficients separately for each subtype – colors in the plot indicate subtype.
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along with antigenic distance for each subtype. For both influenza B lineages, the data

were sparsely measured across the span of any of the antigenic distance metrics, making

the GAMM predictions difficult to distinguish from the LMMs. Both influenza A subtypes

showed a larger difference in predictions made by the GAMMs vs. the LMMs where the

GAMMs predicted non-monotone relationships between post-vaccination titer and antigenic

distance. The LMM and GAMM were most similar for cartographic distance for both

A(H1N1) and A(H3N2), perhaps suggesting that cartographic distance partially accounts for

nonlinear effects of antigenic distance, but There were some interesting trends in the shape

of the spline curves, but the nonlinear effects for the p-Epitope and Grantham distance did

not appear to match the distribution of data points well. Combined with the lack of ELPD

support (Table 3.3), the spline models are likely picking up random fluctuations which may

be partially driven by gaps in antigenic distance space rather than by true non-monotone

signals (see the Supplement for an analysis of the gaps in antigenic distance space).

Since the linear model had better ELPD support for all metrics (Table 3.3), we focused

on attempting to understand the effects in the linear model. Other than the normalized

antigenic distance effect, the other effects were similar across the four models (which is what

we expect). Sex and race/ethnicity had almost no effect. The effects of birth year and age

are similar in magnitude, but are counterintuitively in the same direction – these effects are

highly correlated and mostly cancel each other out, as a higher age leads to a lower predicted

titer, while a higher birth year (indicating a lower age) also leads to a lower predicted titer.

Log pre-vaccination titer had a strong positive effect on post-vaccination titer as expected.

The effect of antigenic distance was negative for all four models, as we would expect, but

the magnitude of the effect varied. While the point estimates were similar, the effect size for

p-Eepitope was the smallest and the effect size for cartographic distance was the largest.

The effect size for the cartographic distance also had the most density away from zero with

an upper limit for the 95% HDCI which would still indicate a noticeable effect. Only the

temporal distance model had an HDCI for the distance effect that included zero.

We also attempted to understand the variance contributions of the fixed effects of

interest (Table 3.4) along with the sources of nuisance variation we included in the model by
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Figure 3.2: Model predictions for both the GAMM and LMM. Solid green lines and
green ribbons show the mean and 95% highest density continuous interval (HDCI) for
GAMM predictions. Dashed orange lines and orange ribbons show the mean and 95%
HDCI for LMM predictions. Circular points show the data values. Each subplot shows
the model predictions for a particular subtype (changes by row) using the model for
a particular distance metric (changes by column). Outcomes shown on the plot are
predicted post-vaccination titers for an average individual to an average strain (see
Supplement for computational details).
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decomposing the variance (Table 3.5). The fixed effects explained the most variance of the

three model components in all four models. The contribution of the residual variance was

nearly identical in all four models, suggesting that the random effects are more important

in some models than others, without explaining any additional variance. The variance

explained by the assay strain, vaccine strain, study site, and subject variance components

was similar across the four models, with the most noticeably different contribution being

the effect of the subtype. The subtype apparently explained more variance in the temporal

and grantham distance models than in the cartographic and p-Epitope distance models,

suggesting that those metrics might be more affected by differences in subtypes. Overall,

the fixed effects were typically slightly more important than the random effects, but the

variance explained by the random effects was still large for each model.

Predictions made by different antigenic distance metrics are similar after

accounting for host factors

Finally, we directly compared estimates from the models across normalized antigenic distance

metrics for each subtype (Figure 3.3). Since the LMM is easier to interpret and was supported

by our ELPD analysis, we examined the slope and intercept for each subtype across the four

antigenic distance metrics. The intercepts (representing the predicted post-vaccination titer

to the homologous strain of the specified subtype for an individual with no pre-vaccination

antibodies) were similar across all metrics regardless of the subtype. The slopes varied

more, indicating that the antigenic distance had a stronger effect on predicted titer for some

metrics and subtypes. For both B lineages, estimates of the slope were nearly identical

across antigenic distance metrics. For A(H1N1), the cartographic distance model had a

lower slope than the other three antigenic distance metrics, but the credible interval still

overlapped with the credible interval for the temporal distance. For A(H3N2), the slope

for the p-Epitope distance was much smaller than the other slopes (reflecting our results in

@fig-gamm-plot), despite the high correlation between the antigenic distances for A(H3N2)

(Figure 3.1). We can only perform a visual inspection of these overlaps, because there is no

existing approach to combine posterior distributions across the four models.
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Furthermore, these estimates do not take variance from the random effects in our model

into account. To analyze predictions for both the LMM and GAMM, with the random

effects variances included in uncertainty calculations, we directly compared predictions from

the models and saw much higher overlap (shown in the Supplement), as we would expect

when we include all of the variance in the data.

Figure 3.3: Intercept and slope estimates stratified by subtype for each LMM (one for
each distance metric). Points and intervals show the mean and 95% HDCI of posterior
samples of the indicated parameter. The top row of plots shows the mean and CI
for estimates of the intercept, and the bottom row of plots shows the mean and CI
for estimates of the slope. Columns of plots indicate which subtype the slope and
intercept are for.

We compare the relative LOO-ELPD for each model in Table 3.6. Since the models are

fit to the same set of predictors and data points, and the antigenic distances are normalized,

the ELPDs are on the same scale and we can directly compare them. We found that all of

the models had very similar performances – while the ELPDs were different between the

four models, each contrast was smaller than the SE for either ELPD. For example, while

the cartographic model had an ELPD around 150 points lower than the p-Epitope model,

the SE for both estimates was around 470, so we cannot assume that these contrasts are

meaningful differences. All of the models appeared to fit the data equally well.
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Table 3.4: Coefficients for all of the fixed effects included in our primary models. We fit a separate model for each of the metrics,
but the variables are standardized the same way across all four models so the coefficients are on the same scale across all models.

Metric Birth Year Age Sex1 Race2 Pre-titer3 Ag. dist.4

Cartographic -3.14 (-4.08,-2.19) -3.46 (-4.37,-2.54) 0.01 (-0.05, 0.06) 0.03 (-0.02, 0.08) 0.78 ( 0.77, 0.79) -1.62 (-2.45,-0.63)
Grantham -3.18 (-4.13,-2.23) -3.50 (-4.41,-2.58) 0.01 (-0.05, 0.06) 0.03 (-0.02, 0.08) 0.78 ( 0.78, 0.79) -1.15 (-2.07,-0.04)
p-Epitope -3.21 (-4.16,-2.28) -3.53 (-4.43,-2.62) 0.01 (-0.04, 0.06) 0.03 (-0.02, 0.08) 0.78 ( 0.78, 0.79) -0.77 (-1.54,-0.05)
Temporal -3.17 (-4.11,-2.22) -3.48 (-4.40,-2.56) 0.01 (-0.04, 0.06) 0.03 (-0.02, 0.08) 0.78 ( 0.78, 0.79) -1.24 (-2.38, 0.17)

1Sex assigned at birth; Reference: Male (vs. female); 2Race/Ethnicity; Reference: Non-Hispanic white (vs. other)
3Log scale pre-vaccination HAI titer; 4Normalized antigenic distance

Table 3.5: Variance contributions to the total variance estimated in the model. To estimate the fixed effects variance contribution
as the variance of the estimated linear predictor, while the residual variance and random effects variance contributions (all
variance contributions other than the fixed effects and residual variance) are estimated as model parameters. All contributions
are expressed as the nearest percent and may not sum (rowwise) to 100 due to rounding error.

Specific random effects
Metric Residual var. Fixed eff. All random eff. Subtype Assay strain Vaccine strain Study site Subject

Cartographic 12 (9, 15) 51 (38, 61) 36 (22, 51) 13 (4, 25) 1 (1, 2) 3 (1, 5) 11 (0, 30) 6 (4, 7)
p-Epitope 12 (9, 15) 49 (38, 60) 37 (24, 51) 13 (1, 28) 5 (4, 7) 3 (1, 7) 8 (0, 25) 6 (4, 7)
Grantham 12 (9, 14) 48 (37, 58) 39 (27, 53) 17 (5, 33) 4 (2, 5) 3 (1, 7) 7 (0, 24) 6 (4, 7)
Temporal 11 (8, 13) 44 (34, 54) 44 (32, 57) 23 (9, 40) 4 (2, 5) 3 (1, 7) 7 (0, 23) 5 (4, 6)
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Table 3.6: Expected log pointwise predictive density (ELPD) calculated for each of the
linear mixed-effects models (LMMs) using the leave-one-out (LOO) method. For each
metric, we show the estimated ELPD ± its standard error. The differences between
the model ELPDs were negligible.

Metric LMM LOO-IC

Cartographic 151131.0 ± 471.6
p-Epitope 151277.7 ± 472.6
Grantham 151251.0 ± 472.1
Temporal 151186.8 ± 472.2

Discussion

We computed multiple antigenic distance metrics on the same set of influenza strains. Using

immunogenicity data from a human cohort, we were able to compare cartographic data to

sequence-based, biophysical, and temporal antigenic distance measures which have been

used before for analyzing vaccine breadth. We then fit linear mixed-effects models (LMMs)

and generalized additive mixed models (GAMMs) to the immunological data separately for

each cohort, controlling for subtype, pre-vaccination titer, and multiple sources of random

variation. By comparing the predictions and parameters from the estimated models across

the four antigenic distance metrics, we were able to assess the similarity of the metrics in a

more practical context.

Despite low correlations between the four antigenic distance measures for all subtypes

except A(H3N2), we found that all four antigenic distance measures produced similar

predictions about the heterologous vaccine response, regardless of subtype. Unexpectedly,

the subtype generating the most different predictions was A(H3N2), which had the highest

correlation between metrics. After we account for important confounders and other sources

of variation, the differences between metrics seemed to disappear, with the exception

of the unusually small slope for p-Epitope distance for influenza A(H3N2). Along with

our pointwise prediction comparisons (shown in the supplement), these results suggest a

systematic disagreement on the vaccine outcome scale between p-Epitope distance and other

metrics for A(H3N2), which contrasts with the high pairwise correlations between p-Epitope

and other metrics for this subtype. Perhaps important antigenic changes for H3N2 have
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occurred outside of the immunodominant epitopes, or features like glycosylation which might

be more easily captured by Grantham or cartographic distance are important [165]. Or,

perhaps the difference is due to some form of noise in our study — we have no data from

equivalent human cohort studies with wide heterologous panels to compare our results to, so

we do not know if this result is consistent.

Our overall results could imply that the differences between antigenic distance metrics

can appear large but are small compared to between-subject and between-study variability

in real life, or that accounting for interindividual differences or pre-vaccination titer helps to

explain the differences between metrics. We also found that a linear model was sufficient

for explaining the relationship between post-vaccination titer and antigenic distance, rather

than a nonlinear model which we might expect under the assumption of original antigenic sin

or immune imprinting, which could imply a nonlinear effect where strains with intermediate

antigenic distance from the vaccine have the lowest vaccine response [95, 166]. Notably,

we even found that temporal distance tends to produce similar predictions to cartographic

distance in this setting, despite the evidence for epochal antigenic evolution and emergence

or circulation of multiple clusters in a single year [2, 95, 136, 167].

While we used data from a multicenter study with tens of thousands of measurements

and over one thousand contributed person-years, our study still has some weaknesses. First,

as a secondary data analysis, none of the data were designed with our questions in mind.

While we have attempted to control for as much confounding as possible, we lack data on

the exposure histories, including infections and prior vaccinations outside of the study, of

individuals in our cohort which could confound our results. Our results also only apply to

the split-inactivated Fluzone standard dose vaccine. Higher doses can either help or hinder

heterologous responses [23, 59, 60], and in a previous study we found that the heterologous

antibody response varied by Fluzone vaccine dose [150], so our results might change for

other vaccine doses or formulations. A balanced design with randomized vaccine design

would be preferable for understanding the impact of vaccine design on agreement between

antigenic distance metrics.

We also used cartographies based on our pre-immune human data, which were generated
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on the same data we analyzed. With access to multiple cartographies on the same data

set or imputation techniques [40, 168] we could treat different cartographies as different

antigenic distance metrics and compare cartographic distances in the same way. Our metrics

also did not all cover antigenic distance space evenly as the strains in the historical panel

were selected to cover a wide variety of years. However, there were several “gaps” between

discrete antigenic distance values for A(H1N1) and the two B lineages, which could impact

our estimates (see Supplement for details), and a broader panel with more evenly spaced

strains would make our effect estimates more precise. Finally, we have no real proxy for

the response to "future" strains. We could get a better predictive understanding of how the

vaccine generates immune responses to future strains by testing serum samples from, say,

2016, to novel vaccine strains which have emerged since the samples were collected. Such

measurements would allow us to validate the use of the historical panel as a proxy for future

vaccine response. Longitudinal studies designed with long-term collection and multiplex

assays in mind would be beneficial for answering similar questions about antigenic distance

and vaccine breadth.

Overall, we found that simple antigenic distance metrics like Grantham’s distance

generated very similar predictions about vaccine breadth to distances based on antigenic

cartography in our study. While some distance metrics potentially deviated, the effect

was subtype specific (p-Epitope for A(H3N2) strains). While cartography is important

for understanding the antigenic diversity and evolution of influenza, researchers analyzing

vaccine breadth should not be afraid to use easier, potentially less biased metrics of antigenic

distance.
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Chapter 4

A novel approach for robust evaluation of broadly

reactive influenza vaccine candidates

Billings WZ, Skarlupka AL, Murphy J, et al. To be submitted to a peer-reviewed journal.
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Abstract

Background: Developing broadly-protective vaccines is a clear path towards reducing the

burden of influenza pandemics and seasonal epidemics. However, measuring the breadth

of response of a vaccine or candidate entails estimating the immunogenicity of the vaccine

against many different influenza strains, and then combining these measurements. The

most common method is the proportion of strains to which a vaccine induces a clinically

noticeable immune response, which is strongly dependent on the panel of strains used for

analysis. Estimates of breadth using this method cannot fairly be compared across different

labs or even different studies from the same lab using different virus panels. In our study, we

develop a novel robust metric for quantifying vaccine breadth across labs and virus panels.

Methods: We used data from a prospective, open annual influenza vaccination cohort

across three study sites from Fall 2013/14 through Spring 2017/18. Each individual con-

tributed pre-vaccination and post-vaccination serum samples which were used for a panel

of hemagglutination inhibition (HAI) assays against many strains of influenza, including

the strains used in each season’s vaccine. We computed multiple antigenic distance metrics

between each HAI assay strain and the corresponding seasonal vaccine strain.

Results: First, we calculated antigenic distance metrics using three different methods.

We then fit summary antibody landscapes for vaccine response vs. antigenic distance

using a simple model. From these summary landscapes, we computed our novel metrics

which adjust for antigenic distance and censoring in the reported titers. We also computed

standard breadth metrics from the existing literature, along with adjusted metrics which are

identical to the standard metrics but also control for censoring in the titers. We subsampled

multiple panels of heterologous strains and sets of individuals from our cohort study to create

hypothetical studies, and we computed metrics across these subsampled studies. Finally, we

calculated the intraclass correlation (ICC) to measure how much each metric varied across

labs with different populations and virus panels.

Conclusions: Our novel metrics are much more robust to the panel of viruses chosen

by a given lab than currently used metrics for assessing vaccine breadth. Implementing
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our methods is easy and does not require imputing missing strains from vaccine panels or

costly logistics for coordinating which strains are used in vaccine breadth panels, although a

combination of approaches would be ideal. While a coordinated solution with a multiplex

assay is likely a useful next step for vaccine breadth researchers, our metrics allow for fairer

comparison of vaccine components until coordinated panels are more feasible.

Keywords: influenza, vaccines, heterologous immunity, vaccine breadth, antigenic

distance, universal influenza vaccine, cohort study, secondary data analysis
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Introduction

Developing a broadly-reactive (or “universal”) influenza vaccine is a key goal for reducing

the burden of seasonal influenza and increasing pandemic preparedness [1, 8, 13, 14]. As

a given influenza strain spreads, many hosts develop an immune response to that strain,

placing selective pressure on the virus. Mutant lineages can acquire antigenic changes that

are not recognized by hosts who have previously received vaccines, allowing for vaccine

escape. The rapid evolution and vaccine escape patterns of influenza make developing

a universal vaccine difficult [3, 95, 104, 105]. Many broadly-reactive vaccine candidates

are under development [169], but the best method for assessing the breadth of a vaccine

candidate (how broadly-reactive a vaccine candidate is) is unclear.

In previous research, the breadth of the response is quantified by measuring vaccine-

induced immunogenicity against a panel of historical influenza strains. Among multiple

vaccine candidates, the one that induces a clinically meaningful immune response to the

highest number of strains is considered the most broadly reactive [36, 38, 140, 141, 170, 171].

This method is easy to conduct, but the selection of different virus panels across research

groups makes the results from different labs hard to compare. Some methodological work

has focused on methods for imputing data across different virus panels [39, 40], but there is

no practical exploration of how well these imputation measures work, and they rely on a

low-rank approximation which may be unreliable [125]. Requiring many different labs to

use exactly the same panel of viral strains (including constant monitoring for adaptations,

and ensuring all protocols are the same) is logistically not feasible and would be extremely

expensive. Breadth metrics that are robust to the selection of different panels of viral strains

would circumvent these logistical issues and allow for fair comparisons of broadly-reactive

vaccine candidates across lab groups.

Recent methods have focused on quantitative analysis of individual antibody landscapes,

rather than counting the number of seroprotection events across an immune assay panel.

HAI is the most common assay used for these panels, but inherent biases of the HAI assay

can influence breadth measurements [25, 26, 126, 127], so a method for quantifying vaccine
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breadth should be agnostic to the specific measurement used. Other proposed immunological

assays for breadth calculation include stem-binding neutralization assays [41], binding profiles

[42], neuraminidase inhibition [43], and a multiplex neutralization assay [172]. Regardless

of the assay one uses, an antibody landscape is a curve which depicts antibody response

on the y-axis with respect to some measurement on the x-axis which attempts to order the

responses by the differences between influenza strains (distance metrics). Just as there is

no gold standard for the best immunological assay to use, there is no gold standard for

the distance metric, and different metrics can measure different ways for two strains to be

different. Previously proposed distance metrics include the year of strain isolation [45, 142],

genetic differences [29, 30, 35, 130, 144], biochemical or biophysical differences [151, 173];

and distances derived from antigenic cartography [27, 38, 44, 46, 115, 174]. Previous work

suggests notable differences between different antigenic distance metrics [33], but how these

differences affect breadth quantification is unclear.

In our study, we propose the use of antibody landscapes from influenza vaccine cohort

studies as the basis for measuring vaccine breadth. We develop methods for creating

population-summary antibody landscapes, and metrics derived from the summary antibody

landscape which are more robust to differences in virus panels than previously used methods.

We also include a case study showing how our methods can be used to assess breadth of

response between two different vaccine candidates.

Methods

Data source

For this study, we performed a secondary data analysis of a subcohort from a prospective,

open design ongoing vaccine cohort study. The cohort study has been described previously

[61, 147], but in brief, individuals were recruited one of two study sites (Port St. Lucie,

FL, or Pittsburgh, PA) during the influenza season, donated a pre-vaccination blood draw,

received a Fluzone (Sanofi) seasonal influenza vaccine, and returned at a follow-up visit to

donate a post-vaccination blood draw at approximately 28 days after vaccination. Each
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serum sample was used for a panel of hemagglutination inhibition (HAI) assays to the strains

in the vaccine, as well as for a panel of historical strains. HAI titers (the reciprocal of

the highest serum dilution which showed agglutination) in our study had a lower limit of

detection of 10 and an upper limit of detection of 20, 480. We considered only the influenza

A(H1N1) responses to the standard dose Fluzone vaccine in our study as a proof of concept,

but our methods apply equally to any panel of heterologous assays. We calculated descriptive

statistics for our cohort, including counts per season and demographic summaries.

We calculated the antigenic distance between the vaccine strain (the A(H1N1) strain used

in the vaccine formulation in a given season) and the assay strain (the actual virus strain

added to the serum during the HAI assay) for every HAI assay using three different metrics.

We calculated the temporal antigenic distance, which is the difference in isolation year

between the vaccine strain and the assay strain; the dominant p-Epitope distance [30], which

is the maximum proportion of amino acid differences across the five immunodominant epitope

sites on the hemagglutinin head; and the cartographic distance [29]. Antigenic cartography

employs statistical dimension reduction on a matrix of serological titer data before taking

Euclidean distances between strains. We created a two-dimensional cartographic map with

Racmacs [175] using pre-immune human sera from all assays in our study sample, and used

the lowest stress map from 100 random initializations with 100 L-BFGS optimization rounds

each. To fairly compare across the three antigenic distance metrics, which have different

units, we min-max normalized all of the antigenic distance values within a given season.

Vaccine strength estimation framework

Next, we developed a framework for estimating vaccine performance including both the

magnitude of the response (response to the homologous vaccine strain) and breadth of

response (summary of responses to heterologous strains). Our framework also allows for

estimation of the total strength of a vaccine, which combines the magnitude and breadth

into a one-number summary of the response induced by vaccination. We developed one

metric for each of the magnitude, breadth, and total strength of the response and compared

these to the metrics currently used in the literature.
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Metrics in the current literature (see Introduction) rely on calculating the geometric

mean titer (GMT) or seroconversion rate (SCR) across a panel of historical strains. In

this “current” framework, the estimate of the magnitude of the response is the GMT to the

homologous strain; the estimate of the breadth of response is the seroconversion rate across

all strains in the panel; and the estimate of the total strength of the response is the GMT

across all strains. See the Supplement for mathematical details on these quantities.

Our novel robust metrics are derived from a sample summary antibody landscape. That

is, rather than consider all of the individual antibody landscapes in our study (there is one

per person-year), we fit a model that estimates the summary antibody landscape for our

study sample. Any statistical model that can estimate vaccine outcomes as a function of

antigenic distance could be used here, but for simplicity we used a linear regression model.

In order to fairly weight the contributions of each individual antibody landscape, we modeled

the post-vaccination titer as a Gaussian outcome with a global intercept, a fixed effect

for antigenic distance, and correlated varying intercepts and antigenic distance effects for

each individual. For simplicity, we treated all person-years from the same individual as

independent data. The Supplement contains model formulas and details on our regression

model implementation.

From the population summary antibody landscape, we can derive estimates of the

magnitude, breadth, and total strength of the vaccine response. We estimate the magnitude

as the intercept of the linear regression line (or in general, the predicted response at

an antigenic distance of zero); the breadth as the antigenic distance value where the

summary antibody landscape intercepts the value 40 (the HAI titer accepted as a marker

for seroconversion and seroprotection); and the total strength as the area under the curve

(AUC) of the regression line between antigenic distances of 0 and 1.

Model implementation and censoring correction

We implemented our summary antibody landscape models in a bayesian framework, which

allows us to easily obtain uncertainty estimates for each metric as credible intervals. In

order to fairly compare the current metrics with our novel metrics, we also developed models
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for calculating the current metrics in a bayesian framework to obtain comparable CIs [68,

152, 176]. We estimated the homologous GMT using a Gaussian regression model for

the post-vaccination titer with an intercept only, fit only to titers from the homologous

strain — in this model, the estimate of the intercept estimates the post-vaccination GMT.

Similarly, we estimated the total strength GMT with a Gaussian regression model for the

post-vaccination titer with an intercept only, using data from all assay strains. Finally,

we estimated the seroconversion rate using a logistic regression model with an intercept

only, where the outcome was seroconversion to a given strain. We defined seroconversion

as a post-vaccination titer of at least 40 with a 4-fold change or greater between pre- and

post-vaccination titers.

Because we estimated all of our metrics using regression models, we can apply a correction

to the likelihood to adjust for the interval censoring and limit of detection issues inherent

to HAI titers [153]. We estimated all six of the metrics (the current metrics and our novel

metrics) using models with censoring correction and without a censoring correction, since

censoring is known to artificially deflate the amount of uncertainty. In order to fairly compare

metrics across each study, we min-max normalized each of the metrics within each season.

Since all of the metrics have different units, normalization allows us to compare the relative

spread of each metric fairly.

We estimated these metrics on the entire dataset for each season to determine if vaccine

strength varied seasonally after accounting for the breadth of response, and we calculated

the metrics with and without a censoring correction to gain a baseline understanding of how

much censoring affects the metrics.

Robustness analysis

Next, in order to show that our novel metrics are more robust to comparisons across different

historical strain panels than currently used metrics, we implemented a subsampling analysis.

We created 25 subsampled “studies” which are intended to simulate 25 labs analyzing the

same vaccine candidate using different virus panels. For each of the subsampled studies, we

randomly sampled 9 heterologous strains from the panel of either 15 or 16 for a given season,
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and added the homologous strain for that season to get a panel of 10 viruses for that study.

We also randomly sampled 100 individuals to “participate” in a given study. We calculated

all six metrics on each subsampled study, both with and without a censoring correction.

Once we calculated the metrics for each subsampled study, we used the intraclass

correlation (ICC) as a measure of consistency across the subsamples for a given metric. The

ICC measures the proportion of variance in a statistic that can be attributed to a specific

grouping factor, and ranges from 0 to 1. An ICC close to 0 indicates that the differences

between studies contribute very little to the variation in estimated metrics, while an ICC

close to 1 indicates that the differences between studies are the major source of variation in

estimated metrics. We computed the ICC for each of the six metrics, both with and without

a censoring correction.

We performed this robustness analysis for each seasonal cohort in our study sample to

determine if the ICC for each metric changed seasonally. We calculated each ICC using

a bayesian random effects model which contained only a global intercept and a random

intercept for each subsampled study. The outcome in each model was the metric of interest,

and we used a Gaussian likelihood distribution. See the Supplement for detailed information

on all of our models.

Implementation

We implemented all of our results in a bayesian framework for two main reasons. First,

estimating the vaccine response metrics in a bayesian framework allows us to calculate

CIs for each metric without resorting to bootstrapping or other solutions for frequentist

confidence intervals that can be unreliable. Second, our study is a secondary data analysis,

so any frequentist confidence intervals and p-values we calculate would suffer from inflated

false positive rates. Thus, we do not report any p-values in our results.

Our analysis was conducted with R version 4.4.2 using RStudio version 2024.12.1.563

[177]. Our project was developed as a targets pipeline [158] using renv [78] and here

[77] to enhance reproducibility. We deployed our pipeline using the crew package on the

University of Georgia’s Sapelo2 computing cluster, which uses the Slurm scheduling software
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[160, 161]. We implemented our bayesian models with the brms package [87–89] using

the cmdstanr backend [90] and cmdstan version 2.36.0 [91] as the interface to the Stan

probabilistic programming language [178, 179]. We additionally used the tidyverse package

suite [73] and the packages qs2 [180], tidybayes [74], and pracma [181] for formal analysis.

We created our manuscript and supplement using Quarto version 1.6.40 [82] with

the packages knitr [83–85] and softbib [86]. We made our figures using ggplot2 [79],

patchwork [182], and ggdist [75, 76] and our tables using flextable [81]. The Supplement

contains more details on our methodology, including instructions for running our code. We

archived our dataset and analysis code on Zenodo https://doi.org/10.5281/zenodo.15578876

and GitHub https://github.com/ahgroup/billings-breadth-quantification-public.

Results

Data description and antibody landscape

Our study sample consisted of several thousand pairs of HAI assays (Table 4.1), with at

least 1000 in each study season. These assay pairs represent homologous and heterologous

HAI assay pairs (one pair includes one pre-vaccination and one post-vaccination titer).

Every individual enrolling in a given season contributed the same number of HAI assays

(or was excluded from our analysis if any were missing), and each study site used the same

historical panel in a given season (Table 4.2). Overall, we included 1, 156 person-years of

data, representing 17, 601 pairs of HAI assays. While some individuals re-enrolled in the

study in successive seasons, at the same study site each time, we treated all person-years as

independent for the purpose of our analysis. Thus, 1, 156 is the total number of enrolled

person-years, but the total number of enrolled unique individuals was 675 (241 from the FL

study site, 131 from PA, and 303 from UGA). Summary plots of the sample titer distributions,

along with more information on the heterologous strains used each season, are shown in the

Supplement.

53

https://doi.org/10.5281/zenodo.15578876
https://github.com/ahgroup/billings-breadth-quantification-public


Table 4.1: Count of HAI assay pairs included in our study from each study site during each season. Numbers shown are count
(cell percentage). The only season in which all three study sites operated was 2016/2017, and a dash indicates that the study
site for that row was not operational during the season indicated by the column.

Season

Site 2013/14 2014/15 2015/16 2016/17 2017/18 Overall

PA 638 (4%) 1290 (7%) 1215 (7%) 1024 (6%) — 4167 (24%)
FL 960 (5%) 2250 (13%) 1920 (11%) 1904 (11%) — 7034 (40%)
UGA — — — 2320 (13%) 4080 (23%) 6400 (36%)
Overall 1598 (9%) 3540 (20%) 3135 (18%) 5248 (30%) 4080 (23%) 17601 (100%)

Table 4.2: Count of individuals enrolled in our study from each study site during each season. Numbers shown are count (cell
percentage). The last row of the table shows the number of assay pairs contributed by each individual who enrolled in the study
and completed both study visits.

Season

Site 2013/14 2014/15 2015/16 2016/17 2017/18 Overall

PA 68 (6%) 86 (7%) 81 (7%) 64 (6%) — 299 (26%)
FL 60 (5%) 150 (13%) 128 (11%) 119 (10%) — 457 (40%)
UGA — — — 145 (13%) 225 (22%) 400 (35%)
Overall 128 (11%) 236 (20%) 209 (18%) 328 (28%) 255 (22%) 1156 (100%)

Num. strains 16 15 15 16 16 18
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Figure 4.1 shows our summary antibody landscape for the 2016-2017 influenza season,

pooling data across the three studies. We show the antibody landscapes for the three different

distance metrics, both with and without the censoring correction. Overall, the censoring

correction slightly increased the intercept and made the slope more negative (making the

line slightly steeper) for all three models, but the choice of antigenic distance metric had a

more noticeable impact on the landscapes. The summary landscapes using the cartographic

distance were steeper and had a higher intercept than the p-Epitope landscapes, which in

turn had steeper slopes and higher intercepts than the temporal distance landscapes.

The differences between the antigenic distance metrics are also noticeable in a qualitatively

different ordering and relative placement of certain strains. Using the temporal distance, the

CA/09 strain is more similar to the USSR/77 strain than to the SC/18, which is misleading.

The CA/09 strain represents the pandemic-like H1N1 lineage which is more genetically

and antigenic similar to the SC/18 strain, as reflected in the p-Epitope and cartographic

distance orderings respectively. Notably, the p-Epitope distance placed the three distances

roughly equidistant while the cartographic distance estimates the CA/09 strain as being

more different from either SC/18 or USSR/77 than those strains are to each other, which

intuitively reflects the unique deletions that differentiate the CA/09 clade from other H1N1

variants.

The differences between the metrics and the corrected (for censoring) vs. uncorrected

landscapes is apparent in the vaccine immunogenicity metrics for this subcohort (Table 4.3).

After correcting for censoring, all of the metrics increased (the current metric for breadth,

seroconversion rate, which is based on a binary outcome and therefore cannot be corrected

for censoring, so it did not change). While many of the corrected and uncorrected metrics

had overlapping credible intervals, the intercepts in particular (novel metrics for magnitude)

showed a notable increase for all three antigenic distance metrics. The difference between

censoring methods shows how failing to properly account for censoring can bias vaccine

results towards the null, potentially making vaccine candidates look worse than they are.

Focusing only on the metrics with censoring corrections going forward, the novel metrics

also varied greatly across the three antigenic distance metrics.
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Figure 4.1: Raw data and summary antibody landscapes for the 2016 - 2017 influenza
season. Each point shows the post-vaccination HAI titer to a specific strain with a
specified normalized antigenic distance from the vaccine strain (CA/09 in 2016/17).
The dashed line and envelope show the mean and 95% credible interval (CrI) of the
posterior summary antibody landscape. The strain labels show the relative positions of
three different strains (CA/09, the homologous strain; SC/18, the 1918 pandemic-like
strain; and USSR/77, the most different strain from the vaccine strain in the genetic
comparison. Each column of plots shows a different antigenic distance metric (left:
cartographic distance; center: p-Epitope sequence distance; right: temporal year-based
distance). The two rows show landscapes fitted without a censoring correction (top
row) where values lower than the LoD were set to 5, and the bottom row shows
landscapes with the likelihood-based censoring correction.
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In particular, using the temporal method (the most common method for antibody

landscape analysis in the literature) underestimated all three of the metrics, because the

temporal method is insufficient for capturing antigenic and genetic differences between virus

strains. The p-Epitope metric yielded more optimistic results for breadth and total strength

than the cartographic method, but a smaller estimate of the magnitude. From these data

alone, we cannot tell which metric is more appropriate, but based on the summary landscape

(@fig-landscape), the distances covered by our historical panel were different for cartographic

and p-Epitope distances. While the cartographic distance had a fairly even coverage of

the antigenic distance metric, there was a gap where we had no viruses with a normalized

cartographic distance around 0.25. The p-Epitope metric, however, is discrete and lumps

many more strains close together. Having more strains with normalized antigenic distances

near 1 (which have high leverage in a regression model) may bias the intercept downward,

and correspondingly affect the conditional estimate of the slope. In short, we need a panel

which evenly covers antigenic space for both cartographic and p-Epitope distances before we

can determine which metric produces the “correct” vaccine immunogenicity metrics.

We also noted several differences between the current set of metrics and our novel metrics.

While the temporal metric underestimated immunogenicity for all three metrics relative to

the current metric set, the p-Epitope metric produced a smaller estimate of the magnitude

and higher estimate of the breadth and total strength. Since the novel magnitude estimate

of the cartographic distance was similar to the magnitude estimate from the current metric,

comparisons between current and novel metrics using the cartographic distance may be the

most useful for calibrating our understanding. Both the cartographic and p-Epitope metrics

produced more optimistic metrics of breadth and total strength than the current metrics or

novel metrics using temporal distance, which likely indicates that using a "real" metric of

genetic or antigenic distance allows for less biased estimates of vaccine breadth.

While we show only the results for the 2016/17 season here, the other seasons had similar

trends and we include summary antibody landscapes and metric calculations for the other

seasons in the Supplement.
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Table 4.3: Current and novel vaccine immunogenicity metrics for the 2016/17 season data, shown both with and without the
censoring correction. The ’Novel’ metric sets were each computed using a different metric for antigenic distance. All metrics
were derived from bayesian regression models and numbers shown are the posterior mean and 95% CrI.

Censoring correction LoD set to 5

Metric Set Magnitude Breadth Total Strength Magnitude Breadth Total Strength

Current 5.22 (5.07, 5.39) 0.10 (0.09, 0.11) 2.64 (2.58, 2.70) 4.72 (4.55, 4.88) 0.10 (0.09, 0.11) 2.57 (2.52, 2.61)
Novel (Cartographic) 5.23 (5.06, 5.43) 0.50 (0.48, 0.52) 3.00 (2.87, 3.11) 4.61 (4.44, 4.78) 0.45 (0.43, 0.48) 2.83 (2.73, 2.92)
Novel (p-Epitope) 4.52 (4.36, 4.69) 0.60 (0.55, 0.64) 3.25 (3.13, 3.37) 4.05 (3.90, 4.20) 0.52 (0.47, 0.56) 3.04 (2.94, 3.14)
Novel (Temporal) 3.29 (3.17, 3.43) 0.14 (0.08, 0.19) 2.19 (2.05, 2.34) 3.00 (2.89, 3.11) 0.02 (0.00, 0.07) 2.28 (2.19, 2.37)

Table 4.4: Intraclass correlation coefficients (ICCs) for consistency across the subsampled studies. Each number shown is the
posterior mean and 95% CrI for the ICC. An ICC closer to zero indicates that little of the variance in metric estimates is due to
variability across subsamples, while an ICC closer to one indicates that variability across subsamples makes up the majority of
the variation.

Season

Site 2013/14 2014/15 2015/16 2016/17 2017/18 Overall

PA 68 (6%) 86 (7%) 81 (7%) 64 (6%) — 299 (26%)
FL 60 (5%) 150 (13%) 128 (11%) 119 (10%) — 457 (40%)
UGA — — — 145 (13%) 225 (22%) 400 (35%)
Overall 128 (11%) 236 (20%) 209 (18%) 328 (28%) 255 (22%) 1156 (100%)

Num. strains 16 15 15 16 16 18
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Subsampling study results

To show that our novel metrics are more robust to the choice of virus panel than the current

metrics for vaccine breadth, we created 25 subsampled labs from each seasonal subcohort in

our study sample. Each lab had a virus panel consisting of the homologous vaccine strain for

the season and 9 heterologous strains randomly sampled without replacement from the set of

strains used in that season. Figure 4.2 shows the posterior distribution of each metric across

the different subsamples from the 2016/17 subcohort, after correcting for censoring. The

results were clearly different between the current metrics, novel metrics using cartographic

distance, and novel metrics using p-Epitope distance; as well as across the metrics for

magnitude, breadth, and total strength of the vaccine. For magnitude metrics, the current

and novel (Cartographic) metrics distributions looked qualitatively similar, although the

p-Epitope estimates were notably lower (as we observed in @fig-landscape) and there is

considerably more between-group variation.

The breadth metric results were striking: the estimate of breadth using the current

metric (Seroconversion rate) was very consistent around 0.10 across all subsamples – this

appears to be due to a low overall rate of seroconversion in our dataset. Our novel metric

showed a higher overall estimate for both cartographic and p-Epitope antigenic distances,

although the results were much more consistent across subsamples for the cartographic

distance than the p-epitope distance. Finally, the total strength metrics followed the same

trend that we observed in the full cohort (Table 4.3), but the estimates of the novel metrics

using the cartographic dataset were the most consistent across subsamples. These qualitative

results are supported by the intraclass correlation (ICC) that we calculated for each of the 9

immunogenicity metrics (Table 4.4).

The current metric set had the lowest ICC among the three groups we compared for

the magnitude estimate, but the highest ICC for the breadth and total strength estimates,

indicating variability in the current metrics for breath and total strength was dominated by

between-subsample variation. The novel metric set using the p-epitope antigenic distance

had high ICCs for all three metrics. Finally, the novel metrics using the cartographic
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Figure 4.2: Estimated immunogenicity metrics for each simulated lab drawn from the
2016/17 subcohort data. We computed the novel metrics using both the cartographic
distance and the p-Epitope distance for each subsample. The black circles show samples
from the posterior distribution of each metric. The red dotted line shows the overall
mean metric estimate across the subsample, and the red x for each subsample shows the
mean metric estimate for that subsample. We show only 1000 posterior samples for each
subsample/metric to avoid unnecessary overplotting.
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antigenic distance had a comparable ICC to the current metric set for the breadth metrics,

and the lowest ICC for breadth and total strength. In particular, the ICC for total strength

using the cartographic distance was much lower than the current metrics, indicating that

substantially less variability in our novel metrics, when the cartographic distance is used for

estimation, is due to variation across subsamples. The results for the other seasons were

similar and are shown in the Supplement.

Fluzone HD case study

Finally, as a case study for using our novel metrics in context, we compared participants

aged 65 and older between two vaccine groups in the UGAFluVac data. Participants 65

and older could elect to receive Fluzone standard dose (SD; the rest of our study data only

uses Fluzone SD) or Fluzone high dose (HD). Table 4.5 shows the number of individuals

receiving HD vaccines in the study sample, and Table 4.6 shows the number of individuals

aged 65 and up who received SD vaccines in the study sample.

We calculated our metrics for the magnitude, breadth, and total strength on both the SD

and HD participants for each season of data (Figure 4.3). While the SD and HD vaccines

performed similarly in the 2013/14 and 2016/17 seasons across all three metrics, when we

compared results across all three seasons, the HD vaccine was superior in all three metrics.

The credible intervals are large due to the high amount of heterogeneity and relatively small

amount of older individuals in our study sample.
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Table 4.5: Count of participants in each season who received the HD vaccine at each study site in our study sample. Numbers
shown are counts (cell percent).

Season

Site 2013/14 2014/15 2015/16 2016/17 2017/18 Overall

PA 18 (9%) 39 (19%) 36 (17%) 55 (26%) — 148 (71%)
FL — — 22 (11%) 19 (9%) — 41 (20%)
UGA — — — 145 (13%) 225 (22%) 400 (35%)
Overall 18 (9) 39 (19%) 58 (28%) 77 (37%) 16 (8%) 208 (100%)

Table 4.6: Count of participants aged 65 and up in each season who received the SD vaccine at each study site in our study
sample. Numbers shown are counts (cell percent).

Season

Site 2013/14 2014/15 2015/16 2016/17 2017/18 Overall

PA 20 (22%) 19 (10%) 27 (14%) 8 (4%) — 74 (39%)
FL 20 (22%) 35 (18%) 13 (7%) 14 (7%) — 82 (43%)
UGA — — — 23 (6) 22 (12%) 34 (18%)
Overall 40 (21) 54 (28%) 40 (21%) 34 (18%) 22 (12%) 190 (100%)
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Figure 4.3: Estimated metrics derived from the summary antibody using the carto-
graphic distance. Using individuals 65 and older from each seasonal subcohort, we
calculated the metrics for the two vaccine dose groups separately. Points and lines
show the mean and 95% CrI from the bayesian models estimating the metrics; color
and shape indicate vaccine dose.

Discussion

Our novel methods for evaluating broadly-reactive vaccine candidates are more robust to

differences in virus panels than currently used metrics. In addition, our incorporation

of antigenic distance allows our metrics to be used for further analyses which provide

more information about the vaccine-induced immune response than metrics based only

on geometric mean titers and seroconversion rates. We found that current methods for

evaluating breadth and the total strength of the vaccine response (incorporating breadth)

underestimate the true breadth of vaccine response. Methods based on the seroconversion

rate across strains and methods that use year of isolation (or difference between years of

isolation) as a proxy for antigenic distance are the most common methods used for analyzing

breadth in the literature, but neither works well.

Our metrics appear to be more robust and informative than the most common methods

in current use, but rely strongly on the choice of an antigenic distance metric. However, he

metrics we calculate here do not need to account for many sources of intraindivdual variability
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and confounders, and uncertainty is only induced by the uncertainty in estimating model

parameters from the data, so we have a much higher resolution with which to see differences

in antigenic distance metrics. The major issue with choosing the correct antigenic distance

metric is that there is no ontologically correct choice – different antigenic distance metrics

serve different purposes. Our analysis on only A(H1N1) strains suggests that cartographic

distance works well for estimating our metrics, likely because it is continuous (rather than

discrete with a limited number of possible values like p-Epitope), and because the historical

panel of viruses used in our study had good coverage in cartographic distance space. However,

there are many issues with HAI assays [25] and results might vary across cohorts or with

A(H3N2) viruses where HAI assays can be more troublesome. Since cartographic distance is

widely accepted, we feel that recommending the use of cartographic distance for calculating

our robust metrics is not overly hasty, although there is to date no major comparison of

cartographic distances computed from ferret and human sera, or differences in cartographic

maps across human cohorts.

We also do not assess the major alternative strategy for solving the problem of differences

in virus panels. Methods for imputing systematically missing strain data across different

panels also seem promising [39, 40], although we have not attempted to evaluate them in

our subsampling context. Our robust metrics can be used alongside imputation methods,

in situations where imputing titers across strain panels is reliable. A future multi-center

study using the same influenza strains, vaccine candidates, and protocols (preferably with

a high-throughput multiplex assay) at all study sites is necessary to truly evaluate the

robustness of any procedure for measuring response breadth. Such a future study should

also plan to collect sera, store serum samples long term, and run HAI assays for “future”

strains that will evolve after the serum samples are collected. Since we cannot feasibly run

protection or efficacy trials to assess vaccine breadth, analyzing which vaccines induce a

strong response against these “future” strains will be the best surrogate to fairly assess any

metric that estimates vaccine breadth.

In short, our novel metrics can be used to quantify breadth of vaccine response, and

compare broadly reactive vaccine candidates more robustly across labs using different virus
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panels. Understanding the best antigenic distance method to use for quantification is difficult,

but using cartographic distance still provides researchers with much more information than

current methods, despite the limitations of cartography. We hope that in the future our

strategy for analyzing antibody landscapes to understand breadth of vaccine response can

be combined with other promising methods and study designs to further the development of

a universal influenza vaccine.
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Chapter 5

Conclusion

In this dissertation, we aimed to improve our understanding of the heterologous humoral

immune response to seasonal influenza vaccination. We found an inconsistent effect of dose

on the vaccine-induced immune response in our cohort study, where high dose vaccination

had a deleterious effect on the immune response to some heterologous strains. In an

attempt to better understand the breadth of the immune response, we wanted to model the

immune response with antigenic distance instead of using strain-specific effects. We found

that there is no gold-standard metric for antigenic distance in the literature, but multiple

metrics generated similar predictions of heterologous immunity when we compared them in

a multilevel modeling approach. Finally, we applied antigenic distance to develop a robust

framework for evaluating vaccine breadth.

Chapter 2

Overall, we found that high dose vaccines improve the heterologous immune response in an

older cohort. However, our results suggested an inconsistent effect of the high dose vaccine.

The immune response to some of the more distant heterologous strains was lower in the high

dose group compared to the standard dose group, which could indicate a narrowing of the

response.

While our analysis of the average causal effect conditional on the season suggested a
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small positive benefit for every season in our study sample, we cannot brush aside these

concerns about strains with worse responses to the HD vaccine. If a strain evolves that is

more similar to those strains with worse HD responses, vaccine recipients could be at higher

risk in future influenza seasons. This could result in a situation similar to the effect of the

2009 seasonal influenza vaccine on the response to the pandemic-like 2009 influenza strain.

While the HD vaccine should continue to be recommended due to its beneficial effects on

disease severity and lower risk of complications, further studies of the vaccine dose and

careful surveillance are necessary. Monitoring vaccine response breadth should be a critical

component of surveillance instead of monitoring only the VE against any circulating strains.

Our results also potentially suggest that higher vaccine doses could be beneficial. The

split-inactivated vaccine is relatively cheap to produce, and high doses tend to be well-

tolerated with few side effects. If pilot trials indicate that higher doses could be beneficial,

we might see a stronger signal for higher dose vaccines. In some seasons where the circulating

strain is virulent, a narrowing of the response to older strains could be an acceptable trade-off

for a sufficiently beneficial effect against the homologous strain or similar strains.

Our results agree with the current literature on the benefits of the HD split-inactivated

vaccine in older populations, but careful monitoring of the heterologous response is necessary

to avoid unforeseen drops in protection.

Chapter 3

Our analysis suggests that different antigenic distance metrics are only moderately correlated

in isolation, but the degree of difference between these metrics is insubstantial compared to

the magnitude of interindividual variations and the effect of host factors on the immune

response. We analyzed the reliability of multiple metrics of antigenic distance, and found

that they were not reliable measures of the same underlying construct. Instead, these

antigenic distance metrics are likely capturing different aspects of the differences between

viral strains. However, when we used these different antigenic distance metrics as predictors

of the post-vaccination immune response and controller for other important factors and
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nuisance variation, the predicted vaccine outcome (conditional on normalized antigenic

distance) was nearly identical across models.

We found that sources of nuisance variation and other causal inputs to the vaccine

outcome, such as pre-vaccination titer, play a large role in predicting the heterologous

immune response. Since different antigenic distance metrics generated similar predicted

immune responses, we believe that these other sources of variation are more impactful on

predictions than the differences between antigenic distance metrics. There are known issues

with every antigenic distance metric, including cartography, which is often considered the

gold standard despite the known biases that can occur when using HAI to assess antigenic

distance. Sequence-based metrics are much cheaper than cartography and avoid biases

inherent in certain immunological assays, and our results suggest that, in the context of

modeling the heterologous vaccine response, these metrics both make similar predictions

despite the known limitations of each method.

The major limitation of our study is the use of historical strain responses as a proxy for

the breadth of vaccine response. An ideal longitudinal study for understanding antigenic

distance and the breadth of vaccine response would collect serum samples and continuously

test those serum samples against new strains that have evolved since the samples were

collected. Such a study would be logistically difficult and expensive, but new advances in

multiplex assay methodology may make such studies easier in the future.

Chapter 4

We were able to develop new metrics for evaluating breadth of vaccine response that are more

robust to the choice of virus panel than currently used metrics. Accounting for censoring

and incorporating antigenic distance into our metrics allowed us to calculate metrics for

vaccine immunogenicity that take the heterologous response into account and correct for

bias, preventing overly pessimistic vaccine evaluations. In an analysis of subsampled studies

from our study data, our novel metrics were more consistent across subsamples than the

conventional metrics by a notable margin.
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However, the choice of antigenic distance metrics strongly affected our novel metrics,

which was surprising given the results of chapter 3. While differences in antigenic distance

metrics might be drowned out in situations with many covariates and variance components,

our metrics only take into account uncertainty in statistical parameters, and do not include

uncertainty from any of the variance components in our multilevel data structure. In this

setting, the choice of antigenic distance appears to matter more. The results we saw might

also be explained by the coverage of each metric in distance space. The p-epitope metric is

discrete and our historical panel covered the p-epitope distance space more sparsely than

the continuous cartographic distance space. Future studies should carefully consider the

coverage of historical panels across multiple antigenic distance metrics to ensure they can

fairly compare metrics.

While our novel metrics are more robust, they suffer from the same limitation as our

results in chapter 3. We do not have an ultimate comparison group we can examine to

tell which set of metrics gives us the true answer. While metrics that have less across-lab

variability are better at giving us the correct estimate of that metric, we need a study that

measures protection against future strains or synthetic strains to truly understand what

metrics are best at identifying vaccines that we expect to be broadly reactive.
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Appendix A

Supplementary material for Chapter 2

Reproducibility instructions

In order to reproduce our results, you should first download the archived repo from Zenodo

(here: https://doi.org/10.5281/zenodo.12666976) or clone the Git repository (hosted on

GitHub here: https://github.com/ahgroup/Billings-2024-HD-Heterologous). (You can also

download the repository as a zipped folder from the GitHub page). If you use different

software or package versions than what we used, or run the results in a different order, you

may get errors or inconsistent results.

We ran the analysis on a Windows 10 Enterprise 64-bit (build 19045) machine with 64

GB RAM and a 36-core processor. Any statements we make about the execution time of

code will vary across machines, especially if the hardware is different from these specs.

Before you can reproduce our results you will need to install the following software

requirements.

• R version 4.4.1, available from https://cran.r-project.org/.

• RTools 4.4, also available from CRAN.

• The RStudio IDE, available from https://posit.co/download/rstudio-desktop/. We

used version 2023.12.1+402 Ocean Storm (desktop).

• Quarto version 1.5.24, available from https://quarto.org/.

• Version 1.0.7 of the renv package for R, available from https://cran.r-project.org/
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web/packages/renv/index.html.

With the software installed, follow these instructions to reproduce our results.

1. Open the SD-HD-flu-vaccine.Rproj file in RStudio.

2. Once renv initializes, run the command renv::restore() in the Console to be-

gin installing the required packages. If you encounter issues, you may also run

renv::deactivate() and install the packages manually. However, if you do not use

renv or use different package versions, the following instructions might not work as

intended.

3. (Optional) If you want to re-run the Bayesian models, you need to install cmdstan

at this step. If cmdstanr was installed successfully using renv, follow the Cmd-

StanR quick start guide at https://mc-stan.org/cmdstanr/articles/cmdstanr.html,

starting from the section titled Installing CmdStan. Installing cmdstan can be chal-

lenging—please read the instructions carefully. If you encounter issues with the path

or installation, you may need to:

• Open a new R GUI or RStudio session as administrator (on Windows),

• Manually install version v1.0.8 of cmdstanr, and

• Re-run the installation and path setup steps.

If problems persist, the Stan discourse forum (https://discourse.mc-stan.org/) is a

good place to seek help.

4. You should now be able to run the code files in the code directory. These are designed

to run in the following order, although some steps may be skipped since we provide

output files:

• 02-Data-Summary.R: Recreates many of the summary tables using the provided

input files. This script runs quickly.

• 03-Model-Fitting.R: Specifies brms models and runs HMC sampling for Bayesian

regression models. This script is very time-consuming. You do not need to

run it to reproduce the model results, as we provide the fitted model files.

• 04-Posterior-Summaries.R: Computes the (c)ACE estimates from fitted mod-

els. Can be run without executing 03. Execution time: approximately one
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hour. Time estimates are printed after the first set of (c)ACEs is computed.

This script reconstructs model fit files.

• 05-Model-Results.R: Processes (c)ACE estimates into manuscript figures. It

uses the all-cates-combined.Rds file generated by script 04. With cleaned

data and this file, all figures can be reproduced.

• 06-Supplementary-Analyses.R: Contains additional calculations for the Sup-

plement. The first part (DAG and tables) runs with only the cleaned data. We

recommend running script 04 first to ensure model fit files are available.

• The common-functions directory includes various helper functions. Running

these on their own is not particularly useful unless all required packages are

installed correctly.

5. After running all code files, you can render unformatted versions of the manuscript

and supplement by building the following files in RStudio:

• products/manuscript/manuscript.qmd

• products/manuscript/supplement.qmd

When opened in RStudio with Quarto installed, a Render button will appear in the

GUI to facilitate this process.

Note: The script 01-Data-Processing.R generates the finalized data set used in the

Supplement. We do not provide the input file clean-data.Rds due to data sensitivity

concerns. Instead, we provide the output files in the data/processed directory.

Computational Note: The Bayesian models are computationally intensive compared

to frequentist alternatives. Script 03 required several days to run on a relatively powerful

computer and will take substantial time even on modern hardware. We advise re-running

the model fitting step only for readers who wish to validate the results.

Additional Background References

We also consulted additional references on the immunogenicity benefits [18–20, 53–55, 59,

183–187] and clinical benefits [20, 21, 188–193] of the Fluzone HD vaccine relative to the SD
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vaccine. These references are included here due to citation limits in the main text imposed

by JID. Some studies that included younger adults did not find a difference between the HD

and SD vaccines [194].

Notably, in the main text we do not discuss comparisons with vaccines other than

the split-inactivated SD vaccine, but the HD vaccine also appears to perform similarly

to other enhanced vaccines such as those with adjuvants [187, 195, 196]. Unfortunately,

we do not have access to data from study groups that received other enhanced vaccine

candidates, but comparing the effects of, among others, adjuvanted, and high-dose vaccines

on the heterologous antibody response could reveal intriguing differences in the underlying

immunology of the different formulations.

Expanded Methods

Causal model for confounding

Since we used observational data rather than clinical trial data to estimate the effect of

vaccine dose on immunological responses, we needed to adopt a causal model to control

for confounding. A confounder is any other factor which can affect both the treatment an

individual receives (i.e., which dose they got) and the outcome. We represented our causal

assumptions using a directed acyclic graph (DAG), shown in Figure A.1.

In order to show the DAG nicely, the variable names are abbreviated by single letters.

The letters in Figure A.1 correspond to the following variables in our data (Table A.1).

The observed confounders we included in our model were age, calendar time, and birth

year. Age could potentially be a confounder since elderly individuals are more encouraged to

get the high dose vaccine, and older individuals tend to have attenuated immune responses

[37]. Birth year was included as a confounder for the same reason – older individuals

could be more likely to receive HD vaccines, and the cohort effect of birth year imprinting

affects vaccine response independently of age [197–200]. Finally, we included the season

as the calendar year to account for differences in vaccines between seasons. Some vaccine

formulations are more immunogenic than others, which varies by season. Additionally,
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Figure A.1: The DAG we adopted as our causal model. Nodes indicate variables and
arrows follow the direction of causality, i.e., an arrow from X to Y indicates that X is
a cause of Y .

we included this as a confounder because the production and administration rate of HD

vaccines could change by season, although we have no data with which to test this hypothesis.

However, including controlling for a variable which is not actually a confounder does not

include bias in the model results. (Unless collider bias is induced, which we do not believe is

the case here as there are no relevant variables that have both season and dose or season

and vaccine response as common causes. Any such variables are temporally separated from

the treatment and response.)

Table A.1: Abbreviations used for variable names in Figure A.1.

Abbreviation Variable

d Vaccine dose
y Immunological outcome
a Age
t Season
i Other individual effects
U Other unobserved confounders
b Birth year
p Pre-vaccination titer
sv Strain included in vaccine
sa Strain used for assay

We represent unobserved confounding in our DAG as the variable U . There are likely
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many confounders, like individual variables driving vaccine choice, which we cannot account

for because they were not collected as part of the study we used. We attempted to control for

unobserved confounding as best as possible by using a random effects model structure which

can absorb part of the effect of unobserved confounders by modeling between-individual

variability (which we represent as i in the DAG). Not all unobserved confounding effects can

be absorbed by individual random effects, but some, such as for demographic characteristics

like sex and race, potentially can be.

Even though not all of the variables shown are confounders (p, sv, and sa are only

causes of the outcome in our DAG), we include sv and sa so we can obtain stratum-specific

effects for those variables. Controlling for p does not open any backdoor paths (under our

assumed causal model), so since p is a cause of the outcome we can include p in the model

to potentially improve the efficiency of our estimates.

Model Formula and Explanation

The full mathematical equations for our model are shown in the next section. Here, we

briefly explain the model we used and its implementation in brms.

The model formula for our hierarchical models was chosen based on a priori covariate

information from our causal model, along with constraints induced by the estimability of

random effects. We elected not to include interaction terms or any other nuisance covariates

due to the complexity of the model. Notably, our model is unlikely to converge under

frequentist maximum likelihood estimation, such as by the nlme R package or similar

methods. The random effects in the model are overdetermined, which leads to near-zero

(boundary) estimates of random effect covariance terms, preventing maximum likelihood

convergence. However, having similar random effects does not prevent the NUTS algorithm

implemented by Stan/brms from exploring the implied posterior distribution.

We specified our models in brms using the following model formula:
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outcome ~ dose +

s(birth_year_c, k = 5) + s(age_c, k = 5) +

s(log_pretiter, k = 5) + s(year_c, k = 5, by = study) +

(1 | id) + (1 | study) +

(1 + dose | strain_type) + (1 + dose | strain_type:strain_name) +

(1 + dose | vaccine_name) + (1 + dose | vaccine_name:strain_type)

The brms model syntax is explained more fully in the documentation, but we will briefly

explain the model formula here. The outcome ~ specification declares that outcome is the

dependent variable, and everything after the ~ is a predictor. The term dose specifies a

fixed effect, which by default uses indicator (dummy) encoding.

All terms of the form s(variable_name, k = 5) specify smoothing splines. The spline

basis is constructed by the mgcv package before being passed to Stan, and is parametrized

similarly to frequentist models. We used penalized thin-plate regression splines with k = 5

basis functions. For integer-valued predictors, a low value of k provides enough flexibility

while avoiding overparameterization. The option by = study fits separate smoothing splines

of year_c for each level of the study variable, accommodating their differing time ranges.

Random effects terms appear in parentheses with vertical bars (|). A term like (1 | g)

models a varying intercept for each level of grouping variable g, while (1 + v | g) allows

both a random intercept and a random slope for v, correlated across levels of g. Our model

includes random intercepts for individuals (id) and studies (study), allowing heterogeneous

baselines.

We also include random intercepts for strain_type (either H1N1 or H3N2) and random

slopes for dose nested within strain_name (specific virus strains). This allows H1N1 strains

to share information independently of H3N2 strains. Similarly, the vaccine-related terms

allow for variation by strain in the vaccine formulation, not just in the assay.

In short, our model captures correlation across repeated measurements, across strains

and subtypes, and across individuals. The effect of dose is allowed to vary across these

subgroups, following the same correlation structure.

The structure of our random effects is partially nested but not fully crossed, a natural
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result of the influenza vaccine update schedule. We allow correlations among random effects

where meaningful.

Finally, all variables with the _c suffix have been mean-centered to improve numerical

estimation. All transformations (e.g., logs and centering) were performed before passing

data to brms or Stan.

Model likelihood and priors

For the post-vaccination titer and titer increase outcomes, we used a Gaussian (Normal

distribution) likelihood function for the model. Letting the outcome be y, we assumed that

y[i] ∼ Normal
(
µ[i], σ2

)
σ ∼ t+(3, 0, 3)

i = i, . . . , N

where σ is the residual variance, and µ[i] is described by the ‘brms‘ equation above, which

builds a model for the conditional mean of y[i] given the predictor data. Here, N is the

number of data points passed to the model and the index variable i indexes the current data

record.

The model for the mean and the priors we used for the Gaussian outcomes are shown on

the following page.
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µ[i] = α+ β · HD[i] + f [1] (birth_year_c[i]) + f [2] (age_c[i]) +

f [3] (log pre_titer[i]) + f [4, study[i]] (year_c[i]) +

u[1, id[i]] + u[2, study[i]]+

b[1, 0, strain_type[i]] + b[1, 1, strain_type[i]] · HD[i]+

b[2, 0, strain_type[i] · strain_name[i]]+

b[2, 1, strain_type[i] · strain_name[i]] · HD[i]+

b[3, 0, vaccine_name[i]] + b[3, 1, vaccine_name[i]] · HD[i]+

b[4, 0, strain_type[i] · vaccine_name[i]]+

b[4, 1, strain_type[i] · vaccine_name[i]] · HD[i]

f [j](·) =
5∑

k=1
γ[j, k] · ϕ[j, k](·); j = 1, 2, 3

f [4, study[i]](year_c[i]) =
5∑

k=1
η[k, study[i]] · ϕ[4, k](year_c[i])

α ∼ N (0, 5)

β ∼ N (0, 5)

γ[j, k] ∼ N (0, τ [j]) j = 1, 2, 3; k = 1, . . . , 5

τ [s] ∼ t+ (3, 0, 3)

η[k, study[i]] ∼ N (0, ζ[study[i]]) k = 1, . . . , 5

ζ[·] ∼ t+(3, 0, 3)

u[r, ·] ∼ N (0, ω[r]) r = 1, 2

ω[r] ∼ t+(3, 0, 1) b[q, 0, ·]

b[q, 1, ·]

 ∼ MVN
(

0, (diag(ψ[q])L[q])(diag(ψ[q])L[q])T
)

q = 1, . . . , 4

ψ[q] ∼ t+(3, 0, 1)

L[q] ∼ LKJ(2)
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Note that instead of using subscript notation in our model, because of the large number

of nested subscripts and the use of index-variable coding, we elected to use brackets to show

indexing. For example, the notation L[q] in our model is identical to the common notation

Lq, but for index variables such as in the equation for µ[i], the bracket notation avoids small

text which is often difficult to read. Additionally, we use the centered dot symbol (·) to

indicate when there are many valid arguments that would all have the exact same right

hand side (RHS) in a formula. For example, ζ(·) indicates that all subscripts for ζ follow the

same independent distributions, and writing out another index variable would only serve to

make the formula more confusing.

In our model, the ϕ(·) functions represent basis functions for thin plate splines. Internally,

brms uses mgcv to create the spline basis design matrix, which uses a low-rank (in our case,

rank k = 5) approximation of the eigenvalue matrix to create the thin plate spline, which

allows for similar performance to the full-rank eigendecomposition while substantially saving

computational time by elementing dimensions with small eigenvalues which contribute little

to the fitting process. Since our data values are integer-valued (year, birth year, pretiter,

and age are all integer values), the maximum k rank we can choose is equal to the number

of unique values recorded in each variable, but we chose k = 5 in order to preserve the first

five components after eigendecomposition because this balances performance with loss of

data [201–206].

The distributions we refer to are: N (·, ·) for the Normal distribution, parametrized

in terms of the mean and variance; t+(ν, ·, ·) for the location-scale **half** Student’s t

distribution with ν degrees of freedom, which can take on only positive values; MVN(·, ·) for

the multivariate normal distribution parametrized in terms of a mean vector and a covariance

matrix; and LKJ(·) for the Lewandowski-Kurowicka-Joe distribution for Cholesky factors

[207].

To specify the covariance structures for our correlated varying effects, we used the

Cholesky factor parametrization, which is more numerically stable and computationally

efficient than other methods like individually parametrizing each term of the covariance

matrix or specifying an inverse-Wishart prior [179, 208]. We represent the covariance matrix,
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say Σ, using a Cholesky factor and scale parameter as follows:

Σ = diag(σ)ΩΣdiag(σ)

= diag(σ)(LLT )diag(σ)

= (diag(σ)L) (diag(σ)L)T .

Here, L is the Cholesky factor of Ω. We can then specify a strictly positive prior on σ,

the scale parameter, and an LKJ prior on L. Specify, we use an LKJ(2) prior. An LKJ(1)

indicates that all correlations are equally likely, while parameter values less than one indicate

that strong correlations are more likely while parameter values greater than one indicate

that strong correlations are less likely. Therefore, using a parameter value of 2 presumes

slightly weaker correlations a priori, but large and weak correlations can still be learned

from the data.

For the seroconversion and seroprotection outcomes, we used a Bernoulli likelihood with

a logit link function. That is, we assumed that

yi ∼ Bernoulli(pi),

pi = logit−1 (µi) ,

where µi is again described by the right-hand side of the brms formula.

While the structure of the model for the mean is the same for the logistic regression

models, we have to reduce the width of the priors because our outcome is fitted on the logit

scale for the binary outcomes. Using these relatively narrow priors actually gives a more

uniform prior distribution of effects, because of the nonlinear transformation of the linear

predictor, which severely deflates low values and severely inflates high values. There is no

residual variance to estimate in the binary outcome models.

The mean structure and priors used for the logistic regression models are shown on the

following page.
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µ[i] = α+ β · HD[i] + f [1] (birth_year_c[i]) + f [2] (age_c[i]) +

f [3] (log pre_titer[i]) + f [4, study[i]] (year_c[i]) +

u[1, id[i]] + u[2, study[i]]+

b[1, 0, strain_type[i]] + b[1, 1, strain_type[i]] · HD[i]+

b[2, 0, strain_type[i] · strain_name[i]]+

b[2, 1, strain_type[i] · strain_name[i]] · HD[i]+

b[3, 0, vaccine_name[i]] + b[3, 1, vaccine_name[i]] · HD[i]+

b[4, 0, strain_type[i] · vaccine_name[i]]+

b[4, 1, strain_type[i] · vaccine_name[i]] · HD[i]

f [j](·) =
5∑

k=1
γ[j, k] · ϕ[j, k](·); j = 1, 2, 3

f [4, study[i]](year_c[i]) =
5∑

k=1
η[k, study[i]] · ϕ[4, k](year_c[i])

α ∼ N (0, 1)

β ∼ N (0, 1)

γ[j, k] ∼ N (0, τ [j]) j = 1, 2, 3; k = 1, . . . , 5

τ [s] ∼ t+ (3, 0, 1)

η[k, study[i]] ∼ N (0, ζ[study[i]]) k = 1, . . . , 5

ζ[·] ∼ t+(3, 0, 1)

u[r, ·] ∼ N (0, ω[r]) r = 1, 2

ω[r] ∼ t+(3, 0, 1) b[q, 0, ·]

b[q, 1, ·]

 ∼ MVN
(

0, (diag(ψ[q])L[q])(diag(ψ[q])L[q])T
)

q = 1, . . . , 4

ψ[q] ∼ t+(3, 0, 1)

L[q] ∼ LKJ(2)
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The details on notation and priors are the same as for the Gaussian model. The

only changes are for the outcome distribution, the lack of a residual unexplained variance

parameter to estimate, and the narrower variances specified for the prior distributions.

We chose our priors with three major criteria in mind.

1. The priors should reflect true constraints on parameters, but should not impose

arbitrary constraints. So variance parameters should have strictly positive priors,

correlations should be bounded between -1 and 1, etc. The parameter space of each

prior is unbounded other than actual, scientific limitations of parameters.

2. The priors should be skeptical and regularizing. The priors for all of our effects have

a mode of zero – we have effectively presupposed that there are no true effects, and

any effects need to be learned from the data. This is similar to the idea of falsification

in a frequentist framework – we need the data to convince us that an effect is present,

rather than presupposing an effect and working to find it.

3. The priors should allow for large effects if the data support large effects.

Due to our third point, for variance parameters, we have chosen half Student’s t priors.

These are a compromise between half-Gaussian (or half-Normal) priors, which have most of

their mass in the bulk of the distribution, and normal tails, and the Cauchy distribution,

which has fat tails and more easily allows for large effects. The Cauchy distribution is

poorly behaved and hard to sample from because of its pathological properties (e.g. it

has no mean and infinite variance, which certainly does not reflect our prior beliefs about

observable effects). The degrees of freedom parameter for the Student’s t prior controls how

“Cauchy-like” the distribution is, i.e., how fat the tails are. A half-t distribution with ν = 3

degrees of freedom (the value we have chosen for all of our priors) provides the fattest tails

that are easy to sample from without pathological problems, therefore allowing all of our

parameters to become large if the data support large parameters. This principle also reflects

why we chose an LKJ(2) prior for correlation matrices, as explained previously.
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Model Fitting

We implemented our models in brms [87–89], an R package that interfaces with the cmdstanr

package [90] and the cmdstan backend for the Stan probabilistic programming language [91,

179]. Stan is a programming language designed for efficient implementation of Hamiltonian

Monte Carlo (HMC), a state-of-the-art sampling algorithm for Bayesian inference with

continuous parameters [209]. HMC improves upon limitations of traditional MCMC methods

such as random walk Metropolis-Hastings or Gibbs sampling.

We fit all models using 16 parallel chains, with 500 warmup iterations and 1250 sampling

iterations per chain, resulting in 20, 000 post-warmup samples per model. We increased the

adapt_delta parameter to 0.99 to reduce the occurrence of divergent transitions. A fixed

seed was used for each HMC run to ensure reproducibility, but otherwise we used the default

cmdstan control parameters.

cACE Calculation

Our primary post-estimation quantity of interest was the (conditional) Average Causal Effect,

or (c)ACE. The cACE represents the average difference in model predictions under two

counterfactual conditions. Let yi be the observed outcome for individual i, and let ti denote

the treatment assignment for that individual, where ti ∈ {SD,HD}. Using the posterior

predictive distribution from our fitted model, we estimate the two counterfactual potential

outcomes for each individual, denoted by ŷi(HD) and ŷi(SD). The individual causal effect

(ICE) for individual i is then given by

τi = ŷi(HD) − ŷi(SD).

Note that the ICE estimate is not a consistent estimator of the true treatment effect

for each individual, but merely an intermediate step in computing a consistent estimator of

the ACE. We estimate the Average Causal Effect (ACE) by aggregating these ICEs across

the population. If the ACE is positive, this implies that the HD vaccine elicits a stronger

immune response on average in our study sample.
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In a Bayesian framework, we have k posterior samples of τi for each individual (in our

case, k = 20, 000). These samples can be pooled to estimate the posterior distribution of

the ACE, or aggregated within subgroups (strata) to estimate conditional ACEs (cACEs),

where the conditioning is on characteristics such as strain type or vaccine composition. For

example, we can compute the cACE for assays conducted on samples from individuals who

received vaccines containing CA/09-like virus components.

We summarize each (c)ACE using the posterior mean and the 95% Highest Density

Continuous Interval (HDCI). These summaries were computed using the ggdist R package

[75, 76], and we computed HDCIs using a CDF-bounded kernel density estimator with a

Gaussian kernel via the reflection method [210, 211]. We used the Sheather-Jones Direct

Plug-In method to choose the bandwidth [212], and evaluated densities over a grid of 4,096

points. The resulting density is trimmed to the range of the posterior samples.

Effect size transformation from cACE calculation

The cACE (as described in a previous section) is calculated by taking a difference of predicted

model outcomes. Since the model predictions are in units of log titer measurements (regardless

of whether the outcome is post-vaccination titer or titer increase), the cACE is expressed in

log titer units. In order to better communicate the effect size, we transformed the cACE. As

before, let ŷi(SD) be the predicted treatment effect for individual i if that individual had

received an SD vaccine, and let ŷi(HD) be the predicted treatment effect for individual i if

that individual had received an HD vaccine. The estimated ICE is

τ̂i = ŷi(HD) − ŷi(SD),

which represents the estimated benefit that individual i would receive from the HD vaccine.

Our model generates a posterior distribution of the estimated ICE for each individual

The (c)ACE over the study sample is estimated as

ÂCEi = E (τ̂i) = E (ŷi(HD) − ŷi(SD)) ,
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and we compute this by pooling together the posterior distributions of the ICEs and

summarizing them. However, each ICE is in log2-titer units, and so the ACE is also in

log2-titer units. To facilitate interpretation, we can exponentiate (a monotone strictly

increasing transformation) the estimated ACE to obtain an estimate in more interpretable

titer units.

The transformed ACE, which we (arbitrarily) denote as φ̂i is then

φ̂i = 2τi = 2E(ŷi(HD)−ŷi(SD)),

and is in HAI titer units. This number represents the average treatment effect as a ratio of

fold changes, for the results presented in the main text. It can be interpreted analogously for

the other three outcomes we used as sensitivity analyses in a later section of this Supplement.

Analysis of confounders on treatment choice

In the study our data were collected in, participants over age 65 were offered the choice

between SD and HD vaccine, so the treatment (vaccine dose) was not assigned randomly

as it would be in a clinical trial. There are many factors that could affect which treatment

group an individual was likely to choose, including prior knowledge about the HD vaccine,

batch effects in receiving shipments of HD vaccines at the clinical study site, demographic

characteristics, risk-taking behavior, prior adverse events from vaccination, and others. While

we cannot assess many of these characteristics, we did assess the demographic characteristics

that were available to us to inform our selection of confounders in the model.

Table A.2 shows the results of our analysis. We used Bayesian logistic regression to

calculate the odds ratio for receiving the HD vaccine (relative to receiving the SD vaccine).

Each model used the dose as the outcome (with HD coded as an event, that is, SD was coded

as 0 and HD was coded as 1) and we included a single categorical predictor in each model.

The ORs are calculated by exponentiating the mean beta coefficient from 2000 post-warmup

Hamiltonian Monte Carlo samples, implemented using the brms package. We used the same

priors and setup as our main logistic regression model, which are explained in detail in the
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model fitting section. The credible interval shown is the highest density continuous interval

over the post-warmup samples.

Our results (Table A.2) show that several demographic and study-specific variables

affected the odds of receiving an HD vaccine. More HD vaccines were available at the UGA

study site than the PA and FL study sites, and in general HD vaccine uptake increased as the

study continued, although the effect was not strong (the credible interval was wide and had

a large amount of posterior density on either side of 1). Patients who were assigned female

at birth (AFAB) and assigned male at birth (AMAB) had nearly equal odds of receiving HD

vaccines, as did White patients and patients of color. Finally, older patients were somewhat

more likely to receive HD vaccination, although estimating the OR was unstable for the

oldest groups since there were very few patients over age 80. Since our study was conducted

over a small temporal scale, the results for birth year are very similar to the results for age

at enrollment. These odds ratios matched our causal hypotheses about age, birth year, study

site, and calendar time (represented by influenza season) and help justify our inclusion of

these terms in the model as confounders. Since sex assigned at birth and race/ethnicity did

not appear to be associated with which dose was received, we elected not to include these

variables in the model.

Historical and vaccine strain information

Throuhgout our manuscript and supplement, we used the abbreviated names of each strain

throughout the paper in order to simplify tables and graphics. The complete strain names

along with the abbreviated names are shown for H1N1 strains in Table A.3 and for H3N2

strains in Table A.4.

The strains included in influenza vaccines are reviewed annually based on estimates of

the ability of a lab strain to elicit an immune response and antigenic similarity to strains

which are predicted to circulate. If major changes in circulating strains are expected, the

vaccine composition is updated to hopefully induce better immunity to the expected strains.

The vaccine composition for each year is shown in Table A.5.
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Table A.2: Odds ratio (OR) for receiving HD vaccine. I.e., each OR is the odds of
receiving the HD vaccine in the relevant group compared to the reference group for
each variable. Each model was a univariable (simple) logistic regression model where
the dose was the outcome (a patient who received SD was coded as 0 and a patient
who received HD was coded as 1) and one single categorical covariate was included in
the model. OR was calculated by exponentiating the relevant slope coefficient from
the logistic regression model, and thus an OR higher than one indicates a group with
higher odds of receiving the HD vaccine than the reference group for a given variable.
A dash indicates the reference group for a given variable, which means an OR could
not be calculated. CI = Confidence Interval.

Variable OR (95% CI)

Study
UGA —
PA 0.64 (0.44 to 0.94)
FL 0.16 (0.10 to 0.25)
Season
2013 - 2014 —
2014 - 2015 1.88 (0.88 to 3.80)
2015 - 2016 3.71 (1.90 to 7.77)
2016 - 2017 5.84 (2.88 to 12.2)
2017 - 2018 1.85 (0.72 to 4.32)
2018 - 2019 1.82 (0.61 to 5.97)
2019 - 2020 8.48 (4.00 to 18.7)
2020 - 2021 29.6 (11.2 to 80.5)
2021 - 2022 34.1 (12.2 to 97.4)
Sex assigned at birth
Female —
Male 0.94 (0.68 to 1.32)
Age at enrollment
65 - 70 —
71 - 75 1.15 (0.77 to 1.70)
76 - 80 1.56 (0.88 to 2.87)
81 - 85 0.57 (0.14 to 1.99)
Birth year
1930 - 1935 —
1936 - 1940 1.99 (0.77 to 5.64)
1941 - 1945 2.22 (0.80 to 5.80)
1946 - 1950 2.30 (0.92 to 5.90)
1951 - 1955 3.24 (1.23 to 8.56)
1956 - 1960 7.29 (0.54 to 116)
Race/Ethnicity
White or Caucasian —
Black or Afircan American 0.87 (0.55 to 1.39)
Other 0.97 (0.42 to 2.07)
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Table A.3: Abbreviatied strain names used in figures and tables, along with complete
strain names. This table shows all H1N1 strains in our study.

Strain name Short name

A/H1N1/South Carolina/1/1918 SC/18
A/H1N1/Puerto Rico/8/1934 PR/34
A/H1N1/Weiss/43 Wei/43
A/H1N1/Fort Monmouth/1/1947 FM/47
A/H1N1/Denver/1957 Den/57
A/H1N1/New Jersey/8/1976 NJ/76
A/H1N1/Ussr/90/1977 USSR/77
A/H1N1/Brazil/11/1978 Bra/78
A/H1N1/California/10/1978 CA/78
A/H1N1/Chile/1/1983 Chi/83
A/H1N1/Singapore/6/1986 Sing/86
A/H1N1/Texas/36/1991 TX/91
A/H1N1/Beijing/262/1995 Bei/95
A/H1N1/New Caledonia/20/1999 NC/99
A/H1N1/Solomon Islands/3/2006 SI/06
A/H1N1/Brisbane/59/2007 Bris/07
A/H1N1/California/07/2009 CA/09
A/H1N1/Michigan 45/2015 MI/15
A/H1N1/Brisbane/02/2018 Bris/18
A/H1N1/Guangdong-Maonan/SWL1536/201 GD/19
A/H1N1/Victoria/2570/2019 Vic/19

The panel of historical assays used in each year is shown in Table A.6 for the H1N1

subtype strains, and in Table A.7 for the H3N2 subtype strains. Note that the strains for

the historical panel are chosen by our clinical research collaborators. We did not control

which strains were used in each year of the study, and we used all strains available to us for

analysis without omitting any. For the historical panels, strains were chosen to represent a

broad spectrum of historical clades, along with representing all contemporary lineages used

for vaccine development. For example, H1N1 strains cover the 1918-like clade, the 1976 Fort

Dix-like strain, the pre-2009 lineage, and the 2009 pandemic-like viruses. H3N2 strains were

chosen roughly as new clades emerged through time.

Additionally, the influenza viruses used for HAI assays were propagated in eggs, and

may have egg-derived mutations. Some H3N2 strains perform poorly [56, 213] in HAI essays

due to these mutations, but we used all of the heterologous assay available.
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Table A.4: Abbreviatied strain names used in figures and tables, along with complete
strain names. This table shows all H3N2 strains in our study.

Strain name Short name

A/H3N2/Hong Kong/8/1968 HK/68
A/H3N2/Port Chalmers/1/1973 PC/73
A/H3N2/Texas/1/1977 TX/77
A/H3N2/Mississippi/1/1985 MI/85
A/H3N2/Sichuan/2/1987 Sich/87
A/H3N2/Shangdong/9/1993 Shan/93
A/H3N2/Nanchang/933/1995 Nan/95
A/H3N2/Sydney/5/1997 Syd/97
A/H3N2/Panama/2007/1999 Pan/99
A/H3N2/Fujian/411/2002 Fuj/02
A/H3N2/New York/55/2004 NY/04
A/H3N2/Brisbane/10/2007 Br/07
A/H3N2/Wisconsin/67/2005 WI/05
A/H3N2/Uruguay/716/2007 Uru/07
A/H3N2/Perth/16/2009 Per/09
A/H3N2/Victoria/361/2011 Vic/11
A/H3N2/Texas/50/2012 TX/12
A/H3N2/Switzerland/9715293/2013 Switz/13
A/H3N2/Hong Kong/4801/2014 HK/14
A/H3N2/Singapore/infimh-16-0019/2016 Sing/16
A/H3N2/Kansas/14/2017 KS/17
A/H3N2/Hong Kong/2671/2019 HK/19
A/H3N2/South Australia/34/2019 SA/19
A/H3N2/Tasmania/503/2020 Tas/20
A/H3N2/Darwin/9/2021 Dar/21

Table A.5: Composition of the Fluzone vaccine during each influenza season. The
strains used were matched to ACIP/CDC recommendations, and were the same for
both the SD and HD vaccine formulations since we only considered Influenza A in
this study.

Season H1N1 H3N2

2013 - 2014 CA/09 TX/12
2014 - 2015 CA/09 TX/12
2015 - 2016 CA/09 Switz/13
2016 - 2017 CA/09 HK/14
2017 - 2018 MI/15 HK/14
2018 - 2019 MI/15 Sing/16
2019 - 2020 Bris/18 KS/17
2020 - 2021 GD/19 HK/19
2021 - 2022 Vic/19 Tas/20
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Table A.6: Number of assays performed using each component of the historical panel
for a given season. Over the different seasons, strains were added and removed from
the historical panel, indicated by the zeros in the table. The H1N1 strains are shown
in this table.

Season

Strain 13/14 14/15 15/16 16/17 17/18 18/19 19/20 20/21 21/22 Total

SC/18 42 92 98 111 38 0 0 0 0 381
PR/34 42 0 0 0 0 0 0 0 0 42
Wei/43 42 92 98 111 38 0 0 0 0 381
FM/47 42 92 98 111 38 0 0 0 0 381
Den/57 42 92 98 111 38 0 0 0 0 381
NJ/76 42 92 98 111 38 0 0 0 0 381
USSR/77 42 92 98 111 38 0 0 0 0 381
Bra/78 42 0 0 111 38 0 0 0 0 191
Chi/83 42 92 98 111 38 19 90 0 0 490
Sing/86 56 92 98 111 38 19 0 0 0 414
TX/91 56 92 98 111 38 19 0 0 0 414
Bei/95 56 92 98 111 38 19 0 0 0 414
NC/99 55 92 98 111 38 19 0 0 0 413
SI/06 56 92 98 111 38 19 0 0 0 414
Bris/07 56 92 98 111 38 19 90 0 0 504
CA/09 56 92 98 111 38 19 90 83 81 668
CA/78 0 92 98 0 0 0 0 0 0 190
MI/15 0 0 0 111 38 19 90 83 0 341
Bris/18 0 0 0 0 0 0 90 83 81 254
GD/19 0 0 0 0 0 0 90 83 81 254
Vic/19 0 0 0 0 0 0 0 0 81 81
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Table A.7: Number of assays performed using each component of the historical panel
for a given season. Over the different seasons, strains were added and removed from
the historical panel, indicated by the zeros in the table. The H3N2 strains are shown
in this table.

Season

Strain 13/14 14/15 15/16 16/17 17/18 18/19 19/20 20/21 21/22 Total

HK/68 56 92 98 111 38 0 0 0 0 395
PC/73 56 92 98 111 38 0 0 0 0 395
TX/77 56 92 98 111 38 0 0 0 0 395
MI/85 56 92 97 111 38 0 0 0 0 394
Sich/87 42 92 97 111 38 0 0 0 0 380
Shan/93 42 92 98 111 38 0 0 0 0 381
Nan/95 42 92 98 111 38 0 0 0 0 381
Syd/97 56 92 98 111 38 0 0 0 0 395
Pan/99 56 92 98 111 38 19 90 0 0 504
Fuj/02 42 92 98 0 0 0 0 0 0 232
NY/04 56 92 98 111 38 19 0 0 0 414
Br/07 42 0 0 0 0 0 0 0 0 42
WI/05 56 92 98 111 38 19 0 0 0 414
Per/09 56 92 98 111 38 19 0 0 0 414
Vic/11 56 92 98 111 38 19 0 0 0 414
TX/12 56 92 98 111 38 19 90 0 0 504
Switz/13 36 91 98 111 38 19 90 0 0 483
Uru/07 0 92 98 111 38 19 0 0 0 358
HK/14 0 91 98 111 38 19 90 83 81 611
Sing/16 0 0 0 0 38 19 90 83 81 311
KS/17 0 0 0 0 0 0 90 83 81 254
HK/19 0 0 0 0 0 0 90 83 81 254
SA/19 0 0 0 0 0 0 90 0 81 171
Tas/20 0 0 0 0 0 0 0 0 81 81
Dar/21 0 0 0 0 0 0 0 0 81 81
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Descriptive analyses

We conducted a descriptive analysis of the outcomes, stratified by vaccine dose. In order to

determine how different the effect of dose was across the different vaccines and assay strains,

we further conducted stratified analyses.

Table A.8 shows the number of unique individuals who were recruited at each study site,

along with summaries of their age at first enrollment in the study and birth year. The ages

at enrollment and birth years were very similar across the three study sites.

Table A.8: Number of unique individuals who were recruited at each study site, along
with summaries of the age at first enrollment and birth year of participants at each
study site and overall. Age is age at first enrollment and numbers shown are median
(range).
Characteristic FL, N = 52 PA, N = 83 UGA, N = 119 Overall, N = 254

Age 68 (65 - 80) 68 (65 - 82) 68 (65 - 85) 68 (65 - 85)
Birth year 1946 (1933 - 1951) 1945 (1932 - 1951) 1950 (1934 - 1956) 1948 (1932 - 1956)

The study was collected at two different sites (PA and FL) from 2013/14 through 2016/17,

but moved to the UGA site in January 2017. The demographic information stratified by

study site is shown in Table A.9. The FL study site gave fewer HD vaccinations, but there

were no noticeable differences in the age or birth cohort of individuals from the three study

sites.

In addition, several inviduals returned to the study site in multiple years. Table A.10

shows the number of recurring individuals at each study site, with how many times a

participant returned to the study. The PA and FL study sites ran for four years (2013/14

influenza season through 2016/17 influenza season) while the UGA study site had six years

of data we could use for our secondary analysis (2016/17 influenza season through 2021/22

influenza season) and is ongoing.

Since individuals were not required to choose the same vaccine (SD or HD) they received

at their previous visit, some individuals received different doses at subsequent visits, which

is accounted for in our statistical analyses. From Table A.10, we can see that the majority

of individuals did not switch vaccine doses at subsequent visits, and out of all of the times
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Table A.9: Demographics of the study sample stratified by the three study sites and
all influenza seasons, along wiht the number of people who received each vaccine dose.
The only season when all three study sites recruited individuals was 2016/17.

Characteristic FL, N = 123 PA, N = 219 UGA, N = 326 Overall, N = 668

Season, n (%)
2013 - 2014 20 (16) 36 (16) 0 (0) 56 (8)
2014 - 2015 35 (28) 57 (26) 0 (0) 92 (14)
2015 - 2016 35 (28) 63 (29) 0 (0) 98 (15)
2016 - 2017 33 (27) 63 (29) 15 (5) 111 (17)
2017 - 2018 0 (0) 0 (0) 38 (12) 38 (6)
2018 - 2019 0 (0) 0 (0) 19 (6) 19 (3)
2019 - 2020 0 (0) 0 (0) 90 (28) 90 (13)
2020 - 2021 0 (0) 0 (0) 83 (25) 83 (12)
2021 - 2022 0 (0) 0 (0) 81 (25) 81 (12)
Dose, n (%)
SD 82 (67) 73 (33) 79 (24) 234 (35)
HD 41 (33) 146 (67) 247 (76) 434 (65)

an individual switched vaccine doses, almost all of them were switching from HD to SD

vaccines. While a history of adverse events or side effects could account for switching from

HD to SD vaccines, the likely explanation is the availability of HD vaccination at the study

site.

While we do not have access to detailed shipping and receiving logs along with individual

dates of vaccination to confirm this, the study site ordered fewer HD vaccines than SD

vaccines and it is likely than some individuals who would have preferred an HD vaccine

received an SD vaccine since no HD vaccines were available. Most individuals are likely

to prefer receiving an SD vaccine while at the study site rather than returning to receive

an HD vaccine at a later date. To our knowledge, there are no studies, either empirical or

computational, showing whether receiving an SD vaccination instead of HD vaccination is

preferable (in terms of intraseason waning immunity and overall protection from influenza

disease) to waiting to receive an HD vaccine.
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Table A.10: Summary statistics of how many individuals participated in the study in
multiple years at each study site. Individuals were not required to choose the same
vaccine (SD or HD) at subsequent visits, so we also show summary statistics for the
number of times individuals switched which vaccine they received at subsequent visits.

Count UGA, N = 119 FL, N = 52 PA, N = 83 Overall, N = 254

Number of total visits by same individual, n (%)
1 27 (23) 19 (37) 16 (19) 62 (24)
2 23 (19) 7 (13) 20 (24) 50 (20)
3 46 (39) 14 (27) 25 (30) 85 (33)
4 8 (6.7) 12 (23) 22 (27) 42 (17)
5 7 (5.9) 0 (0) 0 (0) 7 (2.8)
6 8 (6.7) 0 (0) 0 (0) 8 (3.1)

Number of SD vaccinations for same individual, n (%)
0 74 (62) 1 (1.9) 36 (43) 111 (44)
1 27 (23) 32 (62) 27 (33) 86 (34)
2 9 (7.6) 12 (23) 15 (18) 36 (14)
3 5 (4.2) 2 (3.8) 4 (4.8) 11 (4.3)
4 2 (1.7) 5 (9.6) 1 (1.2) 8 (3.1)
5 1 (0.8) 0 (0) 0 (0) 1 (0.4)
6 1 (0.8) 0 (0) 0 (0) 1 (0.4)

Number of HD vaccinations for same individual, n (%)
0 19 (16) 30 (58) 11 (13) 60 (24)
1 24 (20) 3 (5.8) 33 (40) 60 (24)
2 23 (19) 19 (37) 13 (16) 55 (22)
3 42 (35) 0 (0) 17 (20) 59 (23)
4 4 (3.4) 0 (0) 9 (11) 13 (5.1)
5 7 (5.9) 0 (0) 0 (0) 7 (2.8)

Number of times an individual switched from HD to SD, n (%)
0 93 (78) 31 (60) 49 (59) 173 (68)
1 25 (21) 21 (40) 34 (41) 80 (31)
2 1 (0.8) 0 (0) 0 (0) 1 (0.4)

Number of times an individual switched from SD to HD, n (%)
0 116 (97) 52 (100) 79 (95) 247 (97)
1 3 (2.5) 0 (0) 4 (4.8) 7 (2.8)
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Pre and post-vaccination titer figures

In order to better conceptualize the data we use for our models, we have included plots of

the pre and post-vaccination titers. Due to technical limitations with how LaTeX processes

the layout for large images, the raw data for each vaccine strain is included in a separate

figure.

In each of the following figures, every person-year of data is represented as a line segment

and a pair of points, one for the recorded pre-vaccination titer and one for the recorded

post-vaccination titer. The line is a visual aid to help gauge the relative titer increase

for that person-year, and to more easily understand for which strains the relevant vaccine

candidate induced an immunogenic response at the cohort level. Each subplot in each figure

corresponds to one assay strain, showing all person-years of data where the noted vaccine

was administered and a response was measured to the noted assay strain.

The following figure numbers correspond to the listed vaccine strains. Please reference

Table A.6 and Table A.7 for the complete strain names.

• Figure A.2: Ca/09 (H1N1) vaccine strain;

• Figure A.3: MI/15 (H1N1) vaccine strain;

• Figure A.4: Bris/18 (H1N1) vaccine strain;

• Figure A.5: GD/19 (H1N1) vaccine strain;

• Figure A.6: Vic/19 (H1N1) vaccine strain;

• Figure A.7: TX/12 (H3N2) vaccine strain;

• Figure A.8: Switz/13 (H3N2) vaccine strain;

• Figure A.9: HK/14 (H3N2) vaccine strain;

• Figure A.10: Sing/16 (H3N2) vaccine strain;

• Figure A.11: KS/17 (H3N2) vaccine strain;

• Figure A.12: HK/19 (H3N2) vaccine strain; and

• Figure A.13: Tas/20 (H3N2) vaccine strain.

133



Figure A.2: Pre and post vaccination titers for all person-years where a participant was
administered a vaccine containing CA/09-like split inactivated virus. Each panel shows
a historical strain which was used for HAI assays, and all H1N1 subtype historical
strains that were used for running assays against CA/09 vaccinated individual samples
are shown.
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Figure A.3: Pre and post vaccination titers for all person-years where a participant was
administered a vaccine containing MI/15-like split inactivated virus. Each panel shows
a historical strain which was used for HAI assays, and all H1N1 subtype historical
strains that were used for running assays against MI/15 vaccinated individual samples
are shown.
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Figure A.4: Pre and post vaccination titers for all person-years where a participant
was administered a vaccine containing Bris/18-like split inactivated virus. Each panel
shows a historical strain which was used for HAI assays, and all H1N1 subtype historical
strains that were used for running assays against Bris/18 vaccinated individual samples
are shown.
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Figure A.5: Pre and post vaccination titers for all person-years where a participant was
administered a vaccine containing GD/19-like split inactivated virus. Each panel shows
a historical strain which was used for HAI assays, and all H1N1 subtype historical
strains that were used for running assays against GD/19 vaccinated individual samples
are shown.
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Figure A.6: Pre and post vaccination titers for all person-years where a participant was
administered a vaccine containing Vic/19-like split inactivated virus. Each panel shows
a historical strain which was used for HAI assays, and all H1N1 subtype historical
strains that were used for running assays against Vic/19 vaccinated individual samples
are shown.
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Figure A.7: Pre and post vaccination titers for all person-years where a participant was
administered a vaccine containing TX/12-like split inactivated virus. Each panel shows
a historical strain which was used for HAI assays, and all H1N1 subtype historical
strains that were used for running assays against TX/12 vaccinated individual samples
are shown.
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Figure A.8: Pre and post vaccination titers for all person-years where a participant
was administered a vaccine containing Switz/13-like split inactivated virus. Each
panel shows a historical strain which was used for HAI assays, and all H1N1 subtype
historical strains that were used for running assays against Switz/13 vaccinated
individual samples are shown.
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Figure A.9: Pre and post vaccination titers for all person-years where a participant was
administered a vaccine containing HK/14-like split inactivated virus. Each panel shows
a historical strain which was used for HAI assays, and all H1N1 subtype historical
strains that were used for running assays against HK/14 vaccinated individual samples
are shown.
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Figure A.10: Pre and post vaccination titers for all person-years where a participant
was administered a vaccine containing Sing/16-like split inactivated virus. Each panel
shows a historical strain which was used for HAI assays, and all H1N1 subtype historical
strains that were used for running assays against Sing/16 vaccinated individual samples
are shown.
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Figure A.11: Pre and post vaccination titers for all person-years where a participant
was administered a vaccine containing KS/17-like split inactivated virus. Each panel
shows a historical strain which was used for HAI assays, and all H1N1 subtype historical
strains that were used for running assays against KS/17 vaccinated individual samples
are shown.
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Figure A.12: Pre and post vaccination titers for all person-years where a participant
was administered a vaccine containing HK/19-like split inactivated virus. Each panel
shows a historical strain which was used for HAI assays, and all H1N1 subtype historical
strains that were used for running assays against HK/19 vaccinated individual samples
are shown.
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Figure A.13: Pre and post vaccination titers for all person-years where a participant
was administered a vaccine containing Tas/20-like split inactivated virus. Each panel
shows a historical strain which was used for HAI assays, and all H1N1 subtype historical
strains that were used for running assays against Tas/20 vaccinated individual samples
are shown.
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Fold change figures

In addition to the previous figures, we also show the distribution of fold changes to each

assay strain that were induced by each vaccine component.

Similar to the previous section, in each of the following figures, every person-year of data

is represented as one point, representing the fold change (i.e., post-vaccination titer divided

by pre-vaccination titer) for that person in a particular season.

The following figure numbers correspond to the listed vaccine strains. Please reference

Table A.6 and Table A.7 for the complete strain names.

• Figure A.14: Ca/09 (H1N1) vaccine strain;

• Figure A.15: MI/15 (H1N1) vaccine strain;

• Figure A.16: Bris/18 (H1N1) vaccine strain;

• Figure A.17: GD/19 (H1N1) vaccine strain;

• Figure A.18: Vic/19 (H1N1) vaccine strain;

• Figure A.19: TX/12 (H3N2) vaccine strain;

• Figure A.20: Switz/13 (H3N2) vaccine strain;

• Figure A.21: HK/14 (H3N2) vaccine strain;

• Figure A.22: Sing/16 (H3N2) vaccine strain;

• Figure A.23: KS/17 (H3N2) vaccine strain;

• Figure A.24: HK/19 (H3N2) vaccine strain; and

• Figure A.25: Tas/20 (H3N2) vaccine strain.
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Figure A.14: Fold-change (post-vaccination titer divided by pre-vaccination titer) for
all person-years where a participant was administered a vaccine containing CA/09-like
split inactivated virus. Each panel shows a historical strain which was used for HAI
assays, and all H1N1 subtype historical strains that were used for running assays
against CA/09 vaccinated individual samples are shown.
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Figure A.15: Fold-change (post-vaccination titer divided by pre-vaccination titer) for
all person-years where a participant was administered a vaccine containing MI/15-like
split inactivated virus. Each panel shows a historical strain which was used for HAI
assays, and all H1N1 subtype historical strains that were used for running assays
against MI/15 vaccinated individual samples are shown.
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Figure A.16: Fold-change (post-vaccination titer divided by pre-vaccination titer) for
all person-years where a participant was administered a vaccine containing Bris/18-like
split inactivated virus. Each panel shows a historical strain which was used for HAI
assays, and all H1N1 subtype historical strains that were used for running assays
against Bris/18 vaccinated individual samples are shown.
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Figure A.17: Fold-change (post-vaccination titer divided by pre-vaccination titer) for
all person-years where a participant was administered a vaccine containing GD/19-like
split inactivated virus. Each panel shows a historical strain which was used for HAI
assays, and all H1N1 subtype historical strains that were used for running assays
against GD/19 vaccinated individual samples are shown.
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Figure A.18: Fold-change (post-vaccination titer divided by pre-vaccination titer) for
all person-years where a participant was administered a vaccine containing Vic/19-like
split inactivated virus. Each panel shows a historical strain which was used for HAI
assays, and all H1N1 subtype historical strains that were used for running assays
against Vic/19 vaccinated individual samples are shown.
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Figure A.19: Fold-change (post-vaccination titer divided by pre-vaccination titer) for
all person-years where a participant was administered a vaccine containing TX/12-like
split inactivated virus. Each panel shows a historical strain which was used for HAI
assays, and all H1N1 subtype historical strains that were used for running assays
against TX/12 vaccinated individual samples are shown.
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Figure A.20: Fold-change (post-vaccination titer divided by pre-vaccination titer) for
all person-years where a participant was administered a vaccine containing Switz/13-
like split inactivated virus. Each panel shows a historical strain which was used for
HAI assays, and all H1N1 subtype historical strains that were used for running assays
against Switz/13 vaccinated individual samples are shown.
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Figure A.21: Fold-change (post-vaccination titer divided by pre-vaccination titer) for
all person-years where a participant was administered a vaccine containing HK/14-like
split inactivated virus. Each panel shows a historical strain which was used for HAI
assays, and all H1N1 subtype historical strains that were used for running assays
against HK/14 vaccinated individual samples are shown.
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Figure A.22: Fold-change (post-vaccination titer divided by pre-vaccination titer) for
all person-years where a participant was administered a vaccine containing Sing/16-like
split inactivated virus. Each panel shows a historical strain which was used for HAI
assays, and all H1N1 subtype historical strains that were used for running assays
against Sing/16 vaccinated individual samples are shown.
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Figure A.23: Fold-change (post-vaccination titer divided by pre-vaccination titer) for
all person-years where a participant was administered a vaccine containing KS/17-like
split inactivated virus. Each panel shows a historical strain which was used for HAI
assays, and all H1N1 subtype historical strains that were used for running assays
against KS/17 vaccinated individual samples are shown.
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Figure A.24: Fold-change (post-vaccination titer divided by pre-vaccination titer) for
all person-years where a participant was administered a vaccine containing HK/19-like
split inactivated virus. Each panel shows a historical strain which was used for HAI
assays, and all H1N1 subtype historical strains that were used for running assays
against HK/19 vaccinated individual samples are shown.
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Figure A.25: Fold-change (post-vaccination titer divided by pre-vaccination titer) for
all person-years where a participant was administered a vaccine containing Tas/20-like
split inactivated virus. Each panel shows a historical strain which was used for HAI
assays, and all H1N1 subtype historical strains that were used for running assays
against Tas/20 vaccinated individual samples are shown.
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Outcome summaries

For each outcome (and additionally the pre-vaccination titer), we computed crude summary

statistics for the SD and HD groups in order to obtain a measure of the crude effect size. For

the pre-vaccination titer, post-vaccination titer, and fold change, we computed the geometric

mean and geometric SD, while for the seroprotection and serconversion, we computed the

number and percentage of individuals for which each event occurred. We also computed

standardized mean differences (SMDs) to compare the groups using the method of Yang

and Dalton [214] via the R package smd [215].

We did not further stratify by each assay strain during the crude analysis, because the

low sample size and number of comparisons would greatly inflate the amount of noise in the

analysis, and understanding the stratified results would be very difficult. Notably, SMDs

can be roughly interpreted by the guidelines shown in Table A.11, although these should

not be strictly or decisively used to make decisions based on the qualitative guidelines alone

[216, 217].

Table A.11: Suggested qualitative interpretations of the Cohen’s d effect sizes repre-
sented by our SMD calculations. Note that these are only rough guidelines.

Cohen’s d Interpretation

0.01 Very small
0.20 Small
0.50 Medium
0.80 Large
1.20 Very large
2.0 Huge
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Pre-vaccination titer

Table A.12 shows the crude analysis of the pre-vaccination titer. In contrast to the results

shown in the main paper, the overall effect and subtype overall effects are all near zero. For

some vaccine strains, the titer was clearly higher for the HD group, potentially due to the

effect of receiving HD vaccines in multiple years. We using a flexible smoothing spline to

control for the effect of pre-vaccination titer in our main model to reduce confounding by

pre-vaccination titer in our main results.

Table A.12: Crude analysis of the pre-vaccination titer, stratified by dose.
n1 Pre-vaccination titer2

Subtype Vaccine strain SD HD SD HD SMD3

Overall Overall 6,668 9,360 16.27 (±3.31) 16.29 (±3.21) 0.00 (-0.03, 0.03)
H1N1 Overall 3,082 4,288 13.40 (±3.04) 12.94 (±2.78) -0.03 (-0.08, 0.01)

CA/09 2,453 2,942 14.53 (±3.17) 13.96 (±2.88) -0.04 (-0.09, 0.02)
MI/15 451 328 10.46 (±2.43) 15.07 (±2.84) 0.38 (0.23, 0.52)
Bris/18 126 414 8.16 (±2.14) 7.66 (±2.06) -0.08 (-0.28, 0.11)
GD/19 28 304 9.28 (±2.09) 12.03 (±2.57) 0.31 (-0.08, 0.70)
Vic/19 24 300 7.49 (±1.71) 11.57 (±2.34) 0.61 (0.20, 1.03)

H3N2 Overall 3,586 5,072 19.22 (±3.46) 19.79 (±3.46) 0.02 (-0.02, 0.07)
TX/12 1,544 972 19.42 (±3.43) 22.34 (±3.56) 0.11 (0.03, 0.19)
Switz/13 720 1,042 15.90 (±3.11) 17.04 (±3.22) 0.06 (-0.04, 0.15)
HK/14 974 1,597 20.16 (±3.62) 24.06 (±3.66) 0.14 (0.06, 0.22)
Sing/16 110 80 36.39 (±4.62) 21.07 (±3.93) -0.38 (-0.67, -0.09)
KS/17 168 552 19.92 (±3.39) 14.80 (±2.94) -0.26 (-0.43, -0.09)
HK/19 28 304 23.20 (±2.54) 21.46 (±3.34) -0.07 (-0.46, 0.31)
Tas/20 42 525 15.87 (±2.88) 15.08 (±3.27) -0.05 (-0.36, 0.27)

1Total number of HAI assays across all assay strains and seasons.
2Pre-vaccination HAI titer. Geometric mean (± geometric standard deviation).
3Standardized mean difference (HD - SD); SMD (95% CI).
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Post-vaccination titer

Table A.13 shows the crude dose-stratified analysis of the post-vaccination titer outcome.

We saw a weakly positive effect of the HD vaccine overall, which matched what we saw

in our primary adjusted analysis. Notably, some strains showed a negative effect of the

HD vaccine, which tended to correspond with the strains where the HD group had higher

pre-vaccination titers (Table A.12) in the crude analysis.

Table A.13: Crude analysis of the post-vaccination titer, stratified by dose.
n1 Post-vaccination titer2

Subtype Vaccine strain SD HD SD HD SMD3

Overall Overall 6,668 9,360 24.68 (±4.10) 28.99 (±4.01) 0.12 (0.08, 0.15)
H1N1 Overall 3,082 4,288 17.29 (±3.35) 20.09 (±3.24) 0.13 (0.08, 0.17)

CA/09 2,453 2,942 18.44 (±3.40) 19.92 (±3.22) 0.06 (0.01, 0.12)
MI/15 451 328 11.68 (±2.74) 19.01 (±3.19) 0.45 (0.30, 0.59)
Bris/18 126 414 16.86 (±3.82) 14.07 (±3.01) -0.15 (-0.35, 0.05)
GD/19 28 304 21.02 (±2.22) 26.29 (±2.96) 0.24 (-0.15, 0.62)
Vic/19 24 300 33.64 (±3.13) 28.95 (±3.49) -0.13 (-0.54, 0.29)

H3N2 Overall 3,586 5,072 33.52 (±4.47) 39.53 (±4.39) 0.11 (0.07, 0.15)
TX/12 1,544 972 28.48 (±3.96) 40.86 (±4.00) 0.26 (0.18, 0.34)
Switz/13 720 1,042 39.09 (±5.33) 45.21 (±5.54) 0.09 (-0.01, 0.18)
HK/14 974 1,597 32.43 (±4.55) 41.23 (±4.41) 0.16 (0.08, 0.24)
Sing/16 110 80 52.78 (±4.80) 31.93 (±4.01) -0.34 (-0.63, -0.05)
KS/17 168 552 60.43 (±4.21) 40.81 (±4.09) -0.28 (-0.45, -0.10)
HK/19 28 304 44.16 (±2.70) 35.37 (±3.37) -0.20 (-0.59, 0.19)
Tas/20 42 525 50.40 (±3.82) 26.71 (±3.61) -0.49 (-0.80, -0.17)

1Total number of HAI assays across all assay strains and seasons.
2Post-vaccination HAI titer. Geometric mean (± geometric standard deviation).
3Standardized mean difference (HD - SD); SMD (95% CI).
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Fold change

The crude analysis of the fold change (Table A.14) was similar to our main adjusted analysis.

The only qualitatively different result was the significant overall SMD, and the significant

SMDs for all H1N1 and all H3N2 strains, indicating a small positive effect of the HD vaccine.

These results are consistent with our main adjusted analysis.

Table A.14: Crude analysis of the fold change, stratified by dose.
n1 Fold change2

Subtype Vaccine strain SD HD SD HD SMD3

Overall Overall 6,668 9,360 1.52 (±2.42) 1.78 (±2.51) 0.18 (0.15, 0.21)
H1N1 Overall 3,082 4,288 1.29 (±2.19) 1.55 (±2.24) 0.23 (0.19, 0.28)

CA/09 2,453 2,942 1.27 (±2.19) 1.43 (±2.15) 0.15 (0.10, 0.21)
MI/15 451 328 1.12 (±1.68) 1.26 (±1.83) 0.22 (0.07, 0.36)
Bris/18 126 414 2.07 (±3.05) 1.84 (±2.15) -0.12 (-0.32, 0.08)
GD/19 28 304 2.26 (±1.98) 2.19 (±2.33) -0.05 (-0.43, 0.34)
Vic/19 24 300 4.49 (±2.48) 2.50 (±2.84) -0.60 (-1.02, -0.19)

H3N2 Overall 3,586 5,072 1.74 (±2.56) 2.00 (±2.69) 0.14 (0.10, 0.18)
TX/12 1,544 972 1.47 (±2.19) 1.83 (±2.62) 0.25 (0.17, 0.33)
Switz/13 720 1,042 2.46 (±3.12) 2.65 (±3.44) 0.06 (-0.03, 0.16)
HK/14 974 1,597 1.61 (±2.40) 1.71 (±2.36) 0.07 (-0.01, 0.15)
Sing/16 110 80 1.45 (±1.79) 1.52 (±2.11) 0.07 (-0.22, 0.35)
KS/17 168 552 3.03 (±3.19) 2.76 (±2.83) -0.09 (-0.26, 0.09)
HK/19 28 304 1.90 (±2.02) 1.65 (±2.04) -0.21 (-0.59, 0.18)
Tas/20 42 525 3.17 (±2.97) 1.77 (±2.11) -0.63 (-0.95, -0.31)

1Total number of HAI assays across all assay strains and seasons.
2Fold change (Geometric mean ± geometric standard deviation).
3Standardized mean difference (HD - SD); SMD (95% CI).
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Seroprotection

Table A.15 shows the crude analysis for the seroprotection outcome. The results were

consistent with our main analysis, as well as the crude analyses of the other outcomes.

Table A.15: Crude analysis of the seroprotection rate, stratified by dose.
n1 Seroprotection2

Subtype Vaccine strain SD HD SD HD SMD3

Overall Overall 6,668 9,360 2822 (42%) 4533 (48%) 0.12 (0.09, 0.15)
H1N1 Overall 3,082 4,288 998 (32%) 1638 (38%) 0.12 (0.08, 0.17)

CA/09 2,453 2,942 847 (35%) 1116 (38%) 0.07 (0.02, 0.12)
MI/15 451 328 88 (20%) 117 (36%) 0.37 (0.22, 0.51)
Bris/18 126 414 36 (29%) 117 (28%) -0.01 (-0.21, 0.19)
GD/19 28 304 10 (36%) 133 (44%) 0.16 (-0.22, 0.55)
Vic/19 24 300 17 (71%) 155 (52%) -0.40 (-0.82, 0.02)

H3N2 Overall 3,586 5,072 1824 (51%) 2895 (57%) 0.12 (0.08, 0.17)
TX/12 1,544 972 733 (47%) 599 (62%) 0.29 (0.21, 0.37)
Switz/13 720 1,042 378 (52%) 616 (59%) 0.13 (0.04, 0.23)
HK/14 974 1,597 471 (48%) 904 (57%) 0.17 (0.09, 0.25)
Sing/16 110 80 72 (65%) 46 (57%) -0.16 (-0.45, 0.12)
KS/17 168 552 118 (70%) 318 (58%) -0.27 (-0.44, -0.09)
HK/19 28 304 21 (75%) 166 (55%) -0.44 (-0.83, -0.05)
Tas/20 42 525 31 (74%) 246 (47%) -0.57 (-0.89, -0.26)

1Total number of HAI assays across all assay strains and seasons.
2Seroprotection events (indicator for post-titer ≥ 40); n (%).
3Standardized mean difference (HD - SD); SMD (95% CI).
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Seroconversion

Table A.16 shows the crude analysis for the seroconversion outcome. The results were

consistent with our main analysis, as well as the crude analyses of the other outcomes.

Notably, some of the vaccines have a much lower rate of seroconversion than seroprotection,

and the SMDs for seroconversion between the two groups are quite negative, which is affected

by both the smaller sample size in those groups as well as the higher pre-vaccination titers

in the HD group.

Table A.16: Crude analysis of the seroconversion rate, stratified by dose.
n1 Seroconversion2

Subtype Vaccine strain SD HD SD HD SMD3

Overall Overall 6,668 9,360 981 (15%) 1710 (18%) 0.10 (0.06, 0.13)
H1N1 Overall 3,082 4,288 267 (09%) 535 (12%) 0.12 (0.08, 0.17)

CA/09 2,453 2,942 203 (08%) 282 (10%) 0.05 (-0.01, 0.10)
MI/15 451 328 19 (04%) 25 (08%) 0.14 (0.00, 0.29)
Bris/18 126 414 23 (18%) 65 (16%) -0.07 (-0.27, 0.13)
GD/19 28 304 6 (21%) 62 (20%) -0.03 (-0.41, 0.36)
Vic/19 24 300 16 (67%) 101 (34%) -0.70 (-1.12, -0.28)

H3N2 Overall 3,586 5,072 714 (20%) 1175 (23%) 0.08 (0.04, 0.12)
TX/12 1,544 972 206 (13%) 211 (22%) 0.22 (0.14, 0.30)
Switz/13 720 1,042 240 (33%) 378 (36%) 0.06 (-0.03, 0.16)
HK/14 974 1,597 155 (16%) 276 (17%) 0.04 (-0.04, 0.12)
Sing/16 110 80 13 (12%) 6 (08%) -0.15 (-0.43, 0.14)
KS/17 168 552 69 (41%) 191 (35%) -0.13 (-0.31, 0.04)
HK/19 28 304 8 (29%) 36 (12%) -0.43 (-0.81, -0.04)
Tas/20 42 525 23 (55%) 77 (15%) -0.93 (-1.25, -0.61)

1Total number of HAI assays across all assay strains and seasons.
2Seroconversion events (indicator for post-titer ≥ 40 and fold change ≥ 4); n (%).
3Standardized mean difference (HD - SD); SMD (95% CI).
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Model diagnostics

We assessed model convergence and sampling using the R̂ statistic and the effective sample

size (ESS) of the parameters. Detailed explainations of these metrics can be found in other

sources [218]. Briefly, R̂ assesses the mixing of the chains, and a large value indicates that

chains have explored separate regions of the posterior or do not agree about the posterior

density. The bulk ESS and tail ESS are two measures of the ESS, which provide information

about how many draws of the parameters we would have if all of our draws were completely

uncorrelated (typically draws from the posterior are correlated and thus have less information

than independent draws)

Since each of the models contains hundreds of parameters, it is not feasible to display

every diagnostic statistic in the summary. Table A.17 contains an abbreviated summary of

the most important diagnostic criteria, which were within acceptable bounds (R̂ ≲ 1.01 and

both ESS ≳ 1000 for all parameters). While there were a handful of divergent transitions,

they were negligible compared to the total amount of samples.

The main exception is the model for the seroprotection outcome, which had a high

number of divergent transitions. While a few divergences are no cause for concern, and

the number of post-warmup divergences for this model was around 1%, this may indicate

that the seroprotection outcome is more difficult to model than the others. The lower ESS

values for this model also support this assertion. Since the seroconversion model sampled

normally, we attribute this problem to the data collected rather than the parametrization of

the model. Since we encourage the use of the titer increase and post-vaccination titer models

instead, rather than the binary outcome models, we did not attempt any reparametrizations

or extended sampling of the seroprotection model.

Our models have many parameters (451 for the Gaussian models and 450 for the logistic

models due to the lack of a residual variance), so we cannot show parameter-level diagnostics

for all parameters. However, we selected a representative parameter of each major class to

include representative diagnostics for each model. The parameters we selected are:

• b_doseHD, the population-level slope term for the effect of HD vaccination;
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Table A.17: Summaries of R̂, effective sample size, E-BFMI, and number of divergent
transitions for each of the Bayesian models we fit.

Model Divergences min E-BFMI min tail ESS min bulk ESS max R̂

Post titer 2 / 20000 0.615 3682 1982 1.013
Seroconversion 2 / 20000 0.636 5956 2718 1.006
Seroprotection 249 / 20000 0.636 1118 1660 1.012
Titer increase 4 / 20000 0.609 2779 1550 1.013

• bs_sbirth_year_c_1, the first population-level slope term for the smoothing spline

effect of birth year;

• cor_strain_type__Intercept__doseHD, the correlation between the varying inter-

cept effect and the varying effect of HD vaccination for the strain type variable;

• Intercept, the population-level global intercept parameter;

• sd_id__Intercept, the variance parameter for the distribution of intercept effects

which vary by subject ID;

• sd_strain_type__doseHD, the variance parameter for the distribution of HD slope

effects which vary by strain type;

• sd_strain_type__Intercept, the variance parameter for the distribution of intercept

effects which vary by strain type; and

• sds_sage_c_1, the variance parameter for the distribution of slope effects for the

smoothing spline parameters for the effect of age.

Note that diagnostic statistics for every parameter can be generated from our provided

code, and our code can easily be modified to create diagnostic plots for any other parameters.

Trace rank plots

We show trace rank plots (also called rank histograms) for each of these parameters for the

titer increase model in Figure A.26, for the post-vaccination titer model in Figure A.27, for

the seroprotection model in Figure A.28, and for the seroconversion model in Figure A.29.

A rank histogram is created by ranking the relative value of each draw of a parameter across

all chains, binning the ranks (we used a bin size of 500), and creating a separate histogram

for each chains, which are superimposed in each plot. A parameter with chains that have
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mixed will show histograms which constantly swap positions [219]. These plots indicate

good mixing for each of our models, and there is no indication from these plots that hints at

the higher number of divergent transitions for the seroprotection model.

Prior and posterior density comparison

In order to understand which parameters are affected the most by our priors, we compared

the prior and posterior densities visually for the same set of representative parameters.

Figure A.30 shows the density comparison for the model with titer increase as the outcome,

Figure A.31 for the model with post-vaccination titer as the outcome, Figure A.32 for the

model with seroprotection as the outcome, and Figure A.33 for the model with seroconversion

as the outcome. In order to construct the densities, we sampled from the priors (without

updating them with our data) using the same sampling algorithm parameters as we did for

the posterior samples—that is, we obtained 20, 000 prior samples. For both the prior and

posterior samples, we computed the Gaussian kernel density estimate across all samples

for each of the representative parameters, which is the density curve shown in each of the

figures.

In Figure A.30, we can see that many of the parameters behaved as expected. All of

the parameters except for the correlation parameter have clearly moved towards a peak,

indicating strong convergence to a value away from the prior distribution. The posterior

distribution for the correlation parameter, cor_strain_type__Intercept__doseHD, has

some differences from the prior but is largely the same. This is not surprising, because these

correlation parameters can often be difficult to infer. There is no real alternative prior for

the correlation parameters to use as a sensitivity analysis (shrinking the LKJ parameter

would bias our model towards more extreme correlations, whereas 2 is a sensible default),

and the posterior distribution of the correlation parameter merely indicates uncertainty in

the posterior distribution of the correlation, since it is already constrained in the values

which it can take. We do not expect changing the correlation parameter to strongly affect

the model results.

While some of the variance parameters, represented here by sd_strain_type__doseHD
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Figure A.26: Trace rank plot of the representative parameters from the model with
titer increase as the outcome. The histograms oscillate randomly, and constantly swap
positions, indicating good chain mixing.

Figure A.27: Trace rank plot of the representative parameters from the model with
post-vaccination as the outcome. The histograms oscillate randomly, and constantly
swap positions, indicating good chain mixing.
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Figure A.28: Trace rank plot of the representative parameters from the model with
seroprotection as the outcome. The histograms oscillate randomly, and constantly
swap positions, indicating good chain mixing.

Figure A.29: Trace rank plot of the representative parameters from the model sero-
conversion as the outcome. The histograms oscillate randomly, and constantly swap
positions, indicating good chain mixing.
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and sd_strain_type__Intercept stay relatively similar in shape to the priors, they have

more pronounced peaks. These terms are often very small (near zero) and would induce

boundary convergence errors in a frequentist ML formulation of our model, so it is unsur-

prising that they stay relatively similar to our priors, which are close to zero, but allow for

the parameter to move away from zero if the data allow this—in our case, the data do not

appear to support a random effects variance far away from zero. This boundary variance

also compounds the difficulties in estimating the random effects correlation parameters.

The conclusions from Figure A.31 are nearly identical to the conclusions from Figure A.30.

We expect this, because the models are mathematically very similar.

In contrast to the conclusions from Figures A.30 and A.31, some of the conclusions in

Figure A.32 are quite different. In a frequentist context, we would say that this model, with

a dichotomous outcome, has much lower statistical power than the models with continuous

outcomes. The majority of titers in our sample data were below 40, leading to a lack of

events when we analyze seroprotection as a dichotomous outcome, especially for strains

which are very antigenically different from the vaccine. We can see that the Intercept

and bs_sbirth_year_c_1 parameters have moved slightly away from the priors, but not

much, indicating that we cannot learn much from the data about these parameters under

this model. The random effects variance parameters (with the exception of the variance

for the random effect of subject ID) are all very close to zero, near the priors, indicating

that these parameters are not informative for learning about the seroprotection outcome.

Since our priors were chosen as regularizing, skeptical priors (that allow the effects to

become large easily if large effects are suggested by the data), the difficulty of predicting

our underpowered dichotomous outcome is the cause of posterior densities similar to the

prior densities—changing our priors to differently shaped skeptical priors would not make a

difference. This analysis is not suggestive of any issues which would cause the higher number

of divergent transitions for the seroprotection outcome.

The conclusions for the seroconversion model, shown in Figure A.33, are the same as

those shown in Figure A.32. The seroconversion outcome contains even less events than the

seroprotection outcome, leading to angrou even larger issue with statistical power. Because
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Figure A.30: Prior and posterior density plots for each of the representative parameters
for the model where titer increase was the outcome.

Figure A.31: Prior and posterior density plots for each of the representative parameters
for the model where post-vaccination titer was the outcome.

171



Figure A.32: Prior and posterior density plots for each of the representative parameters
for the model where seroprotection was the outcome.

Figure A.33: Prior and posterior density plots for each of the representative parameters
for the model where seroconversion was the outcome.
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the logistic regression models have so little power and many parameters did not move away

from the skeptical prior distributions, we do not recommend interpreting the binary outcome

results directly, which is one reason we focus on the models for titer increase as our main

results.

Homologous model results for titer increase outcome

In the main text, we briefly mentioned that results which compared only the homologous

vaccine response supported a positive effect of the HD vaccine compared to the SD vaccine,

as shown in previous literature. Figure A.34 shows our results when considering only the

homologous response to each vaccine.

Figure A.34: Exponentiated cACE estimates for each vaccine strain and overall. Only
homologous responses to each vaccine were considered.

The credible intervals are wide, consistent with our other findings and in general with this

type of complex observational data. However, all of the point estimates are positive, which

matches previous literature on the effect of the HD vaccine on the homologous response.
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Model results for other outcomes

As a sensitivity analysis, we show the three figures from our main results, but using the

alternative model outcomes post-vaccination titer, seroprotection, and seroconversion.

Post-vaccination titer

All of the figures in this section show the results for post-vaccination titer as the model

outcome. All of our results agreed with the results in the main text.

Figure A.35 shows the cACEs for each vaccine strain when only the heterologous strains

were included. Figure A.36 shows the cACEs for all assay strains. Figure A.37 shows the

cACEs for all vaccine strains, pooling assay strains together within each vaccine strain.

Figure A.38 shows the cACEs for each season, with the vaccine strain and assay strains for

that season all pooled together.

Figure A.35: Exponentiated cACE estimates from the post-vaccination titer model
for each vaccine strain. Only homologous responses to each vaccine were considered.
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Figure A.36: Heterologous post-vaccination cACE estimates (exponentiated) for each
assay strain and vaccine.
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Figure A.37: Heterologous post-vaccination cACE estimates (exponentiated) for each
vaccine.

Figure A.38: Heterologous post-vaccination cACE estimates (exponentiated) for each
season.
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Seroprotection

All of the figures in this section show the results for seroprotection as the model outcome. All

of our results agreed with the results in the main text and there were no major qualitative

differences.

Figure A.39 shows the cACEs for each vaccine strain when only the heterologous strains

were included.

Figure A.40 shows the cACEs for all assay strains.

Figure A.41 shows the cACEs for all vaccine strains, pooling assay strains together

within each vaccine strain.

Figure A.42 shows the cACEs for each season, with the vaccine strain and assay strains

for that season all pooled together.

Figure A.39: Exponentiated cACE estimates from the seroprotection model for each
vaccine strain and overall. Only homologous responses to each vaccine were considered.

177



Figure A.40: Heterologous seroprotection cACE estimates (exponentiated) for each
assay strain and vaccine.
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Figure A.41: Heterologous seroprotection cACE estimates (exponentiated) for each
vaccine.

Figure A.42: Heterologous seroprotection cACE estimates (exponentiated) for each
season.
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Seroconversion

All of the figures in this section show the results for seroconversion as the model outcome.

All of our results agreed with the results in the main text and there were no major qualitative

differences.

Figure A.43 shows the cACEs for each vaccine strain when only the heterologous strains

were included.

Figure A.44 shows the cACEs for all assay strains.

Figure A.45 shows the cACEs for all vaccine strains, pooling assay strains together

within each vaccine strain.

Figure A.46 shows the cACEs for each season, with the vaccine strain and assay strains

for that season all pooled together.

Figure A.43: Exponentiated cACE estimates from the seroconversion model for each
vaccine strain and overall. Only homologous resconses to each vaccine were considered.
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Figure A.44: Heterologous seroconversion cACE estimates (exponentiated) for each
assay strain and vaccine.
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Figure A.45: Heterologous seroconversion cACE estimates (exponentiated) for each
vaccine.

Figure A.46: Heterologous seroconversion cACE estimates (exponentiated) for each
season.
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Appendix B

Supplementary material for Chapter 3

Reproducibility Instructions

In order to reproduce our results, you should first download the archived repository from

either Zenodo (DOI: 10.5281/zenodo.15522148) or clone/download the Git repository (hosted

on GitHub here: https://github.com/ahgroup/billings-comp-agdist-public). Note

that if you use different software, software versions, or run the results in a way that differs

from these instructions, you may encounter errors or differences between your results and

ours.

We ran our analysis pipeline on the University of Georgia’s sapelo2 computing cluster,

which is a distributed computing cluster running CentOS Linux release 7.5 and uses Slurm

to schedule jobs [160, 161]. Our code is written as a targets pipeline [158] and can detect

whether you are running an HPC job in a Slurm environment or not. Notably, if you use a

Slurm cluster computing environment which is configured differently from UGA’s sapelo2

environment, you may need to make changes to the Slurm submission script (job.sh) or to

the portion of the _targets.R script that defines the Slurm jobs. We based our targets

code to schedule HPC jobs on a pre-existing template project [159]. Our code will run on a

local interactive R session as well and will automatically detect the number of cores available

to use. Each Bayesian model currently requests 32 cores and we therefore highly

suggest running the main analysis on a cluster computing setup.
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Once you’ve downloaded the code, you should open the .Rproj file in RStudio. Using the

R project file and RStudio is not mandatory, but if you don’t, we assume you know what you

are doing. You can then run the entire analysis pipeline by running targets::tar_make()

in the console. If you are in an extremely limited computing environment, you can add the

option use_crew = FALSE to force all targets to execute sequentially (although in this case

you probably do not want to run the Bayesian models anyways). You can run the command

targets::tar_visnetwork(TRUE) to see an interactive graph of our analysis pipeline, and

you can pass a vector of target names to tar_make() (potentially using tidyselect to

define the vector) to only run those targets. Note that due to differences in OS and file

systems, targets will likely appear outdated for you even though they are up-to-date. We

also do not provide all of our model result files in the GitHub repository because they are

extremely large (over 100 GB) and infeasible to distribute, so if you want to edit or examine

the Bayesian models, you will need to rerun the code.

Software Requirements

You will need the following software to run our code:

• R version 4.4.1, available from https://cran.r-project.org.

• A working C++ compiler:

– On Linux clusters, this is probably already set up.

– On Windows, you will need RTools 4.4, available from CRAN.

– On macOS, you will need the latest version of the XCode command line tools.

• The RStudio IDE, available from https://posit.co/download/rstudio-desktop.

• Quarto version 16.40, available from https://quarto.org.

• The renv R package, version 1.1.4, available from https://cran.r-project.org/

web/packages/renv/index.html. It will also attempt to install itself the first time

you open our R project.

• Multiple system dependencies, including CMake. On Windows/macOS these are

provided by RTools or XCode respectively. On Linux, there may be additional system

requirements you need to download. Your system should prompt you.
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• The packages specified in the file renv.lock, which can be installed as explained in

the next section.

Running Our Code

With the software installed, follow these instructions to reproduce our results:

1. Open the billings-comp-agdist-public.Rproj file in RStudio.

2. Once renv initializes, run the command renv::restore() in the console to begin

installing the required packages. If you have issues at this stage, you can also install

the dependencies manually, but if you do not use renv or use different package versions

than we did, our code might not work for you.

3. If you want to run any steps that involve Bayesian models, you need to install

cmdstan following the cmdstanr quick start guide at this location: https://mc-

stan.org/cmdstanr/articles/cmdstanr.html. We used cmdstan version 2.36.0 for

this project.

4. Now you can run our pipeline by running targets::tar_make() in the console. If

you are new to targets and want to learn more about how the pipeline works, we

recommend reading the targets manual available at: https://books.ropensci.org/

targets/.

Again, we note that our code is computationally intensive and we ran it on a

distributed computing cluster. It still took multiple days to run, even running

many operations in parallel with many cores each.
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Extended Methods

Antigenic Distance Calculation

We calculated four different antigenic distance metrics for our study. In this section, we

describe how each method is calculated. Note that we only considered pairwise distances

between strains of the same subtype. That is, we only computed distances between two

A(H1N1) strains, between two A(H3N2) strains, or between two influenza B strains; we

did not compute distances between A(H1N1) and A(H3N2) strains or between any A and

B strains. However, since the two B lineages are quite similar and our panel included

pre-divergence influenza B strains, we performed pairwise comparisons of all influenza B

strains. The methods we included in this section are abbreviated, for a full discussion on

antigenic distance metric calculation see Appendix D.

Temporal distance is the absolute value of the difference in the years of isolation

between the two strains. For example, the difference between A/H1N1/California/09 and

A/H1N1/Michigan/15 would be |2015 − 2009| = 6.

Dominant p-Epitope distance is the maximum length-normalized Hamming distance

across the five major epitope sites on the HA head. After aligning the HA amino acid

sequences for all of the strains, we removed the signal peptides from the sequences and

used the previously identified epitope site locations for influenza A [30] and influenza B [32].

Working pairwise with the sequences, we concatenated the residues for each epitope and

calculated the Hamming distance between each epitope. We then divided the Hamming

distance for a given epitope by the number of residues in that epitope. The p-Epitope

distance for that pair of strains was the maximum of those epitope-wise distances.

Grantham’s distance is a weighted distance based on biochemical properties that

considers how different two differing residues at the same position are. We used Grantham’s

substitution matrix [151] to assign a value to each residue site between two sequences, based

on the transition between amino acids. More different transitions are given higher weights.

Then, for each pair of sequences, we summed the weights and divided by the length of the
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sequence.

Finally, cartographic distance is the Euclidean distance between strains on an antigenic

cartography map. We built our cartographic maps from the combined table of post-

vaccination titer data in our study, treating all person-years as independent observations (as

there is no clear meaning for repeat measurements in a dimension reduction analysis). We

used Racmacs, which implements metric multidimensional scaling, to create and optimize

the cartographic map [175]. All of our maps were two-dimensional, and we selected the

best fitting map from 25 distinct Racmacs runs with random initializations, each of which

was allowed to perform up to 100 L-BFGS optimization steps to refine the initial MDS

cartography. Multiple optimization runs are necessary because different initial conditions

can lead to different maps [125]. Although combining multiple runs using methods like

generalized Procrustes analysis is theoretically possible (simple averaging is insufficient due

to rotation and scaling), such approaches have not yet been published. Therefore, we selected

the single best-fitting run.

For our models, we only considered the antigenic distance between the assay strain and

the vaccine strain of the same subtype for a given HAI assay. Some of the assay strains

used were influenza B strains isolated before the Victoria–Yamagata lineage divergence.

Because our primary question was about antigenic distance, we compared pre-divergence B

strains to both the Yamagata and Victoria vaccine strains in our analyses. To facilitate fair

comparisons across subtypes and antigenic distance metrics, we min-max normalized the

antigenic distance measurements within each combination of influenza season, subtype, and

metric. After normalization, the antigenic distance for homologous measurements was set to

0, and the antigenic distance for the most different assay strain used in a given season was

set to 1, with all other values falling in this interval.

Causal Modeling and Model Formulation

While we do not claim that our estimates are causal, we employed a graphical causal model

to formulate our statistical models. While all statistical models are compromises between

practicality and idealism, we hope that by formalizing our assumptions, our models are
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robust and answer our research questions appropriately.

Our original dataset contained one record per HAI assay, indicating the individual,

season, study site, time point (pre- or post-vaccination), vaccine dose, and assay strain for

each record. The dataset also included the following demographic variables: age, birth year,

sex assigned at birth, and reported race/ethnicity. The study provided a list of vaccine

strains for each formulation (see the section on vaccine formulation for details). Note that

we only analyzed standard-dose vaccine recipients, so we do not discuss vaccine dose further.

We built a causal model for the effect of antigenic distance as a directed acyclic graph

(DAG). We include the following variables in our causal model: U , unobserved confounders

that could be partially explained by nuisance variation but are not directly modeled; r, the

self-reported race/ethnicity; s, the sex assigned at birth; p, the pre-vaccination titer; a, the

individual’s age; b, the individual’s year of birth; sv, the vaccine strain (for a given subtype);

and sa, the assay strain for a particular HAI assay. The causal model we selected is shown

in Figure B.1.

Figure B.1: The graphical causal model for our research question represented as a
DAG.

Under this causal model, the only confounders are the vaccine strain and assay strain,

and any unobserved confounders. If we assume no unmeasured confounding, then the
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minimal sufficient adjustment set is only the vaccine strain and assay strain. However, our

goal in this project was to analyze the effect of antigenic distance as a predictor without

incorporating strain-specific effects. So, we stratified our models by vaccine strain (i.e., we

fit all models separately for each vaccine component) and deliberately did not include a

strain-specific effect.

To adjust for nuisance variation (potentially a source of unmeasured confounding), we

included random effects to control for measurements at the same study site and on the

same individual. Finally, we included specific ancestors of the outcome variable, which is

not necessary to close backdoor paths, but does not improve bias and can improve the

efficiency of the estimators of interest. We included pre-vaccination titer and age specifically

in our model. In our previous work, we found that sex and race/ethnicity have minimal

association with the observed HAI titers. Finally, our study was not specifically designed as

an age-period-cohort analysis, and the age and birth year variables are highly correlated in

our study (as one would expect). While our study has multiple longitudinal participants with

different birth years, we elected to add only age to our model for simplicity. We included

pre-vaccination titer in the model as-is, but since the age has a large range (from 11 to

65), we minmax scaled the age before using it in a model. Minmax scaling variables with

large ranges can improve numerical stability of the model, but the model can still make

predictions for any age.

Finally, we note that in some models it is also possible for cross-season differences to

exist when the same vaccine strain was used for multiple years in a row. I.e., we might

expect post-vaccination titers to change due to repeated usage of the same vaccine. However,

since some of the vaccine strains were only used for one year before being replaced, this

seasonal effect is not estimable in all of our models. Therefore, we decided not to include a

seasonal effect in any of the models, especially since the effect of repeated usage of the same

vaccine strain was not our primary research question.
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Model implementation

We fit two models using ‘brms‘, a generalized additive mixed model (GAMM) and a linear

mixed model (LMM). The models were identical other than the specification for the effect

of antigenic distance, so we will first describe the general parts of the model. Note that in

the following mathematical descriptions, we adopt bracket notation rather than subscript

notation following the convention of McElreath [68] due to the large number of subscripts

in our model. That is, we use the notation y[i] in place of the conventional yi. We use

subscripts to instead identify unique parameters. We also used the centered dot symbol (·) to

avoid repetition when there are many valid arguments that would have the same right-hand

side in a formula. For example, ζ[·] indicates that all subscripts for ζ use the same equation.

We modeled our outcome (post-vaccination titer) as a Gaussian random variable, but

due to the censored nature of our data we applied a censoring correction in the likelihood.

Letting the outcome for a specific vaccine component be y, we assumed that

f
(
yi | µ[i], σ2

)
=
∫ U [i]

L[i]
N
(
y[i] | µ[i], σ2

)
dy[i]

σ ∼ t+ (3, 0, 1)

i = 1, . . . , n

where L[i] and U [i] are the lower and upper censoring bounds respectively (see the section

on censoring bounds for details), N (µ, σ2) is the Gaussian (Normal) probability density

function with mean µ and variance σ2, t+(ν, µ, σ) is the location-scale half Student’s t

distribution with degrees of freedom ν, location parameter µ, and scale parameter σ. We

chose a Student’s t prior with ν = 3 degrees of freedom because the distribution has fat tails,

which allows the variance to be large if supported by the data, but we assume a priori that

the distribution of the variance has a finite location and scale parameter (which is only the

case when ν > 2). Here, i is the index for the current data record, representing one HAI

assay, and n is the total number of HAI assays (records) in the dataset.

The model for the mean is shown below, including the priors for each parameter. For

now, we represent the effect of antigenic distance as a function g, which we detail with its
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priors in the next section.

µ[i] = β0 + u
[
1, id[i]

]
+ u

[
2, study[i]

]
+ u

[
3, subtype[i]

]
+

u
[
4, subtype[i] × vaccine strain[i]

]
+ u

[
5, subtype[i] × assay strain[i]

]
+

g
(
antigenic distance[i]

)
+

βp
(
log pre-vaccination titer[i]

)
+ βa

(
scaled age[i]

)
+

βy
(
scaled birth year[i]

)
+ βr

(
race/ethnicity[i]

)
+ βs

(
sex[i]

)
β(·) ∼ N

(
0, 1
)

u[r, ·] ∼ N
(
0, ω[r]

)
r = 1, 2, . . . , 5

ω[r] ∼ t+
(
3, 0, 1

)
The priors follow the same formulation as before, but we chose Gaussian priors for the beta

effects. Gaussian priors have flatter tails than Student’s t priors, which provides a more

regularizing effect for the beta parameters – that is, we presuppose that they are more

likely to be close to zero, and our data needs to be strong enough to move the posterior

distributions away from zero before we can make any conclusions.

The functional form of g is the only difference between the GAMM and the LMM. In

the LMM, g takes a simple linear form:

g(antigenic distance[i]) = βd (antigenic distance[i])

βd ∼ N (0, 1)

where the antigenic distance is minmax normalized for each model as described in the

antigenic distance calculation section. For the GAMM, the function form of g is more

complex. We modeled the antigenic distance effect using a thin-plate basis spline, which

allows for the relationship to be curved in an arbitrary pattern, but constrains the fit so

that rapid changes in the pattern are penalized and must be supported by data [201–204,
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220] . The specific form is

g(·) =
5∑

k=1
γ[k] · ϕ[k](·)

γ[k] ∼ N (0, τ)

τ ∼ t+(3, 0, 0.25)

where the γ[k] are coefficients which are regularized to be similar via an adaptive prior and

the ϕ[k] are thin-plate spline basis functions. Thin-plate splines use a low-rank approximation

of the spline basis for computational efficiency, which can be tuned to balance between

accuracy and efficiency. The maximal k (or size of the spline basis) we can choose is equal to

the number of unique values of the predictor, so we chose k = 5, which was estimable across

all of our antigenic distance metrics. We used Student’s t priors for the adaptive prior on the

variance of the spline coefficients so that the spline can be wiggly if supported by the data,

but we chose a conservative hyperprior variance (0.25, based on a prior predictive simulation)

to constrain the spline towards being flat if the signal from the data is not strong.

The random effects we included in the model represented sources of nuisance variation

which we were interested in controlling for, but not specifically estimating. We included

random effects to capture interindividual variation, variation across study sites, and direct

effects of the influenza strains not explained by the antigenic distance. We included random

intercepts for individuals (u[1, ·]) and study sites (u[2, ·]) in a typical way with regularizing

priors. To control for the direct effects of influenza assay and vaccine strains, we noted that

each strain was nested within a subtype, but the assay strains and vaccine strains were not

themselves crossed or nested (each assay strain could appear with an arbitrary combination

of different vaccine strains, although all assay strains and all vaccine strains are only ever

associated with a single influenza subtype). Including the subtype effect as u[3, ·] and then

including random effects which consider both the subtype and the vaccine strain (u[4, ·]) or

the assay strain (u[5, ·]) allows for assay/vaccine strains within the same subtype to have a

correlated effect, while assay/vaccine strains of different subtypes do not have correlated

effects. Again, we assigne skeptical, regularizing priors to all of these random effects.
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Censoring bounds

HAI titer assays, like all serial dilution assays, produce censored data values. In fact, all

values produced by an HAI assay are censored. We take this censoring into account in the

likelihood of our model by integrating over the censoring bounds for a given data point yi.

All serial dilution assays are censored – for the case of HAI, we assume that there is some

latent, true dilution y∗
i which is the minimal dilution where hemagglutination is not observed.

This is likely some decimal number, and we will never observe this true value. Instead, we

chose a starting dilution, ymin, which is 10 in our dataset. If we observe agglutination at this

starting dilution, we say the value is below the limit of detection and it is recorded as 5 in

our dataset. These values are left censored. In reality, we know that the latent agglutination

dilution for an assay can be any value less than 10, i.e., our censoring bounds for these

assays are (0, 10).

There is also a maximal dilution for the assay, ymax, which was 20480 in our dataset.

In practice, if researchers don’t observe hemagglutination at any dilution, they can simply

continue diluting the assay until they observe agglutination. However, a standard 96-well

plate only has 12 columns, so most studies will report 20480 (the 12th serial dilution for an

HAI assay starting at 10 and doubling each dilution). So these values are right censored, and

the censoring bounds are [20480,∞). Note that the lower bound of the interval is included

because the value *could* be exactly 20480 (though this occurs with probability zero for a

continuous latent variable).

Finally, any other assay with a result between the limits of detection will also be interval

censored, because we only observe certain dilutions. For example, if we observe inhibited

hemagglutination at a dilution of 10, but agglutination occurs at a dilution of 20, we record

the result as 10. However, we don’t know that a dilution of 1:15 wouldn’t cause inhibition,

so we only know that the latent dilution is in the interval [10, 20). Similarly for any value

ymin < y < ymax, the latent dilution is in the interval [y, 2y).

Converting to the log scale, the censoring bounds L and U that we refer to in the previous

equations are as follows (here we omit subscripts to avoid confusion with interval notation,
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but L, U , and y all vary by individual while ymin and ymax are constant):

(L,U) =



(−∞, ymin) y = ymin

[y, y + 1), ymin < y < ymax

[ymax,∞) y = ymax

.

For our study, ymin = log2(10/5) = 1 and ymax = log2(20480/5) = 12.

Stan Implementation

We obtained posterior samples of the model parameters using the No-U-Turn Sampler

(NUTS) algorithm implemented by Stan [71, 92], via the brms [87–89] and cmdstanr [90]

packages for R [72]. In brms, we specified our model formulas as:

y | cens(c, y2) ~ 1 +

birth_year_c + age_c + sex_i + race_i +

log_pretiter + s(d_norm, k = 5, by = strain_type) +

(1 | strain_type) +

(1 | study) + (1 | subject_id) +

(1 | strain_type:vaccine_name) + (1 | strain_type:strain_name)

for the GAMMs, and

y | cens(c, y2) ~ 1 +

birth_year_c + age_c + sex_i + race_i +

log_pretiter + d_norm + (1 + d_norm | strain_type) +

(1 | study) + (1 | subject_id) +

(1 | strain_type:vaccine_name) + (1 | strain_type:strain_name)

for the LMMs. We specified our prior distributions as:
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brms::prior(normal(0,1), class = "Intercept"),

brms::prior(normal(0,1), class = "b"),

brms::prior(student_t(3, 0, 1), class = "sd", lb = 0),

brms::prior(student_t(3, 0, 1), class = "sigma", lb = 0),

brms::prior(student_t(3, 0, 0.25), class = "sds", lb = 0)

for the GAMMs, and

brms::prior(normal(0,1), class = "Intercept"),

brms::prior(normal(0,1), class = "b"),

brms::prior(student_t(3, 0, 1), class = "sd", lb = 0),

brms::prior(student_t(3, 0, 1), class = "sigma", lb = 0)

for the LMMs. Note that the LMMs do not include a prior for parameters of class sds,

which represent the adaptive smoothing priors for spline coefficients.

We sampled the models using 32 chains with 200 warmup iterations and 625 post-warmup

iterations per chain, resulting in 20,000 total post-warmup samples per parameter. The

effective number of samples is reported in the model diagnostics table in a later section. We

also specified an adapt_delta of 0.99 and a maximum treedepth of 12, using recommended

Stan and brms defaults for all other algorithmic parameters. Notably, each chain was

initialized with a random value—although using smarter initial values could potentially

speed up sampling, we found this did not yield a meaningful benefit for our models. The

primary cause of slower sampling was the large dataset size, although the hierarchical nature

of our model also contributed.

Posterior Marginal Effects

To summarize our models, Figure 2 presents a posterior contrast we refer to as a marginal

effect, though it is technically a marginal conditional effect that marginalizes over some

variables while conditioning on others. The posterior effect of interest is the effect of

antigenic distance on post-vaccination titer, conditional on the subtype, for each antigenic

distance metric (each metric was modeled separately). To compute this effect, we constructed

counterfactual predictions over an interpolated grid of antigenic distance values using the
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marginaleffects package [154].

The effects reported in Figure 3.2 represent marginal effects at the mean (MEM),

conditional on the subtype. All four models (corresponding to each antigenic distance

metric) shared the same set of effects, except for the substitution of the respective distance

variable. The marginal effects are conditional on the random effects structure, but the

credible intervals do not incorporate random effect variances, except for the subtype.

We generated predictions on an interpolated grid of normalized antigenic distance values

ranging from 0 to 1 in increments of 0.01, excluded random effects from the prediction, set

categorical fixed effects to their mode, and continuous fixed effects (other than antigenic

distance) to their mean. In this way, the marginal effects approximate the expected post-

vaccination titer for a typical individual similar to those in our sample.

While using average marginal effects (AMEs) and integrating out random effects might

allow more generalizable inference, these approaches significantly increase computational

burden without substantially altering the predicted outcomes. Given the already wide

credible intervals—appropriate for a non-causal observational analysis—we did not find it

necessary to include additional nuisance variation in the predictions. The main goal of the

analysis was to compare predictions across the four antigenic distance models, rather than

isolate a causal effect of antigenic distance.

Specifically, we obtained predictions on a grid using the following marginaleffects

package syntax (model_i refers to each of the individual models).

marginaleffects::datagrid(

model = model_i,

d_norm = seq(0, 1, 0.01),

strain_type = c("H1N1", "H3N2", "B-Vic", "B-Yam")

)
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Vaccine and heterologous strain information

Annual Fluzone vaccine formulation

Table B.1 shows the strains which were included in each season’s formulation of the Fluzone

vaccine. We only show the formulation for the standard dose (SD) vaccine (the HD vaccine

was trivalent throughout the study years we selected, while the quadrivalent formulation of

the SD vaccine became available in 2015/16).

Table B.1: Strains used in the Fluzone standard dose vaccine formulation during each
influenza season for the seasons of data that comprise the study sample in Chapter 3.
In 2013/14 and 2014/15, the vaccine formulation was trivalent and did not contain a
B/Victoria component.

Vaccine component
Season A(H1N1) A(H3N2) B(Victoria) B(Yamagata)
2013/14 CA/09 TX/12 — MA/12
2014/15 CA/09 TX/12 — MA/12
2015/16 CA/09 Switz/13 Bris/08 Phu/13
2016/17 CA/09 HK/14 Bris/08 Phu/13
2017/18 MI/15 HK/14 Bris/08 Phu/13

Annual heterologous strain panel

The strains used in each panel are shown in Table B.2 (influenza A strains) and Table B.3.

An X indicates that the strain indicated by the current row was used as part of the HAI

panel in the season indicated by the current column.

Strain name abbreviations

Throughout the manuscript, we use abbreviated names for each strain. Table B.4 shows

the corresponding abbreviation for the full name of each strain for influenza A strains and

Table B.5 shows the same information for the influenza B strains.
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Table B.2: Influenza A strains used in the heterologous panel during each influenza
season for the seasons of data that comprise the study sample in Chapter 3.

Season
Subtype Strain 13/14 14/15 15/16 16/17 17/18
A(H1N1) SC/18 X X X X X

PR/34 X
Wei/43 X X X X X
FM/47 X X X X X
Den/57 X X X X X
NJ/76 X X X X X
USSR/77 X X X X X
Bra/78 X X X
CA/78 X X
Chi/83 X X X X X
Sing/86 X X X X X
TX/91 X X X X X
Bei/95 X X X X X
NC/99 X X X X X
SI/06 X X X X X
Bris/07 X X X X X
CA/09 X X X X X
MI/15 X X

A(H3N2) HK/68 X X X X X
PC/73 X X X X X
TX/77 X X X X X
MI/85 X X X X X
Sich/87 X X X X X
Shan/93 X X X X X
Nan/95 X X X X X
Syd/97 X X X X X
Pan/99 X X X X X
Fuj/02 X X X
NY/04 X X X X X
Br/07 X
WI/05 X X X X X
Uru/07 X X X X
Per/09 X X X X X
Vic/11 X X X X X
TX/12 X X X X X
Switz/13 X X X X X
HK/14 X X X X
Sing/16 X
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Table B.3: Full strain names and associated abbreviations for each influenza Astrain
used in the Chapter 3 study sample.

Season
Lineage Strain 13/14 14/15 15/16 16/17 17/18
B(Presplit) Lee/40 X X X X

MD/59 X X X
Sing/64 X X X

B(Victoria) Vic/87 X X
HK/01 X X X
Mal/04 X X X
Vic/06 X X X
Bris/08 X X X
CO/17 X X X

B(Yamagata) Yam/88 X X X X X
Harb/94 X X X X X
Sich/99 X X X X X
FL/06 X X X X X
WI/10 X X X X X
TX/11 X X X X X
MA/12 X X X X X
Phu/13 X X X X X
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Table B.4: Influenza A strains used in the heterologous panel during each influenza
season for the seasons of data that comprise the study sample in Chapter 3.

Subtype Strain name Short name
A(H1N1) A/H1N1/South Carolina/1/1918 SC/18

A/H1N1/Puerto Rico/8/1934 PR/34
A/H1N1/Weiss/1943 Wei/43
A/H1N1/Fort Monmouth/1/1947 FM/47
A/H1N1/Denver/1957 Den/57
A/H1N1/New Jersey/8/1976 NJ/76
A/H1N1/Ussr/90/1977 USSR/77
A/H1N1/Brazil/11/1978 Bra/78
A/H1N1/California/10/1978 CA/78
A/H1N1/Chile/1/1983 Chi/83
A/H1N1/Singapore/6/1986 Sing/86
A/H1N1/Texas/36/1991 TX/91
A/H1N1/Beijing/262/1995 Bei/95
A/H1N1/New Caledonia/20/1999 NC/99
A/H1N1/Solomon Islands/3/2006 SI/06
A/H1N1/Brisbane/59/2007 Bris/07
A/H1N1/California/07/2009 CA/09
A/H1N1/Michigan 45/2015 MI/15

A(H3N2) A/H3N2/Hong Kong/8/1968 HK/68
A/H3N2/Port Chalmers/1/1973 PC/73
A/H3N2/Texas/1/1977 TX/77
A/H3N2/Mississippi/1/1985 MI/85
A/H3N2/Sichuan/2/1987 Sich/87
A/H3N2/Shandong/9/1993 Shan/93
A/H3N2/Nanchang/933/1995 Nan/95
A/H3N2/Sydney/5/1997 Syd/97
A/H3N2/Panama/2007/1999 Pan/99
A/H3N2/Fujian/411/2002 Fuj/02
A/H3N2/New York/55/2004 NY/04
A/H3N2/Brisbane/10/2007 Br/07
A/H3N2/Wisconsin/67/2005 WI/05
A/H3N2/Uruguay/716/2007 Uru/07
A/H3N2/Perth/16/2009 Per/09
A/H3N2/Victoria/361/2011 Vic/11
A/H3N2/Texas/50/2012 TX/12
A/H3N2/Switzerland/9715293/2013 Switz/13
A/H3N2/Hong Kong/4801/2014 HK/14
A/H3N2/Singapore/infimh-16-0019/2016 Sing/16
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Table B.5: Influenza B strains used in the heterologous panel during each influenza
season for the seasons of data that comprise the study sample in Chapter 3.

Lineage Strain name Short name
B(Presplit) B/Lee/1940 Lee/40

B/Maryland/1959 MD/59
B/Singapore/1964 Sing/64

B(Victoria) B/Victoria/02/1987 Vic/87
B/Hong Kong/330/2001 HK/01
B/Malaysia/27127/2004 Mal/04
B/Victoria/326/2006 Vic/06
B/Brisbane/60/2008 Bris/08
B/Colorado/06/2017 CO/17

B(Yamagata) B/Yamagata/16/1988 Yam/88
B/Harbin/7/1994 Harb/94
B/Sichuan/379/1999 Sich/99
B/Florida/4/2006 FL/06
B/Wisconsin/01/2010 WI/10
B/Texas/06/2011 TX/11
B/Massachusetts/02/2012 MA/12
B/Phuket/3073/2013 Phu/13
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Descriptive analyses

A summary of the demographic information for the individuals included in our analysis is

shown in Table B.6, and includes information about their reported race/ethnicity, sex assigned

at birth, age at first enrollment, and year of birth. The majority of participants identified

their race as White or Caucasian, and were assigned female at birth. All participants from

the PA and FL study sites were adults, but the UGA study site also recruited teenagers, and

all three study sites included elderly people over 65 years of age. Most participants returned

to the study site in at least one subsequent year, contributing more than one person-year of

data to the study.

Figure B.2 shows a visualization of the collected pre-vaccination titers, and Figure B.3

shows a visualization of the collected post-vaccination titers, ignoring all variables except

for the assay strain.

Qualitatively summarizing the distribution of titers to all of the assay strains from plots

alone is difficult, and the models in the main text are very helpful for understanding the

variation in post-vaccination titers. However, we can make a few observations. Most people

had some prior immunity (Figure B.2) to the A(H3N2) strains which have circulated since

the 80’s or 90’s, with protective (40 or greater) titers to the strains from the 2000’s and

onward. However, most people only had protective titers to the two most recent A(H1N1)

strains, CA/09 and MI/15 which represent the 2009 pandemic lineage. Some people had

immunity to older strains, but the difference was much more stark than for H3N2. Many

people had prior immunity to all of the B strains we examined, and the median was 40 or

greater for all of the B strains except MD/59.

Post-titers were, in general, higher (Figure B.3). The two pandemic-like H1N1 strains

showed a boost on average in the population, and there was noticeable back-boosting to

some of the older H1N1 strains. Many of the H3N2 strains showed backboosting as well,

although there was not much of a response to the oldest H3N2 strains which also had low

pretiters. The median post-titers were above 40 for all of the B strains in our data, with

Yamagata having the highest average titers, followed by Victoria and then the older lineages.
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Table B.6: Demographic characteristics of the study participants. Summary statistics shown are count and column percent for
sex, race, and contributed person-years; and median with range for age at first enrollment, birth year, and contributed HAI
assays. Demographic variables were collected by a questionnaire from participants on the date they enrolled in a study season
and received a vaccine.

Characteristic FL, N = 2411 PA, N = 1331 UGA, N = 3031 Overall, N = 6771
Sex Assigned at Birth
Female 184 (76%) 93 (70%) 168 (55%) 445 (66%)
Male 57 (24%) 40 (30%) 135 (45%) 232 (34%)
Race/Ethnicity
White 190 (79%) 70 (53%) 233 (77%) 493 (73%)
Black or American American 14 (6%) 52 (39%) 24 (8%) 90 (13%)
Other 12 (5%) 8 (6%) 33 (11%) 53 (8%)
Hispanic or Latino 24 (10%) 3 (2%) 13 (4%) 40 (6%)
Unknown 1 (0%) 0 (0%) 0 (0%) 1 (0%)
Age at First Enrollment 42 (20 - 80) 60 (26 - 81) 25 (12 - 83) 40 (12 - 83)
Year of Birth 1972 (1933 - 1996) 1954 (1932 - 1987) 1991 (1934 - 2006) 1975 (1932 - 2006)
Contributed HAI assays 85 (40 - 189) 94 (8 - 185) 48 (47 - 95) 52 (8 - 189)
Contributed person-years
1 114 (47%) 44 (33%) 206 (68%) 364 (54%)
2 52 (22%) 31 (23%) 97 (32%) 180 (27%)
3 61 (25%) 32 (24%) 0 (0%) 93 (14%)
4 14 (6%) 26 (20%) 0 (0%) 40 (6%)
1n (%); Median (Min - Max)
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Figure B.2: Pre-vaccination titers in our study to each of the assay strains. The point
shows the median and the line shows the IQR.
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Figure B.3: Post-vaccination titers in our study to each of the assay strains. The
point shows the median and the line shows the IQR.

205



Metric agreement analysis

Before we built statistical models for the post-vaccination titer, we first performed a

simple unadjusted analysis of the consistency (or agreement) between the antigenic distance

measurements. As an omnibus test of agreement, we calculated the intraclass correlation

(ICC) across the four antigenic distance measurements (Table 3.2), separately for each strain

type. We used a Bayesian model with a fixed effect for antigenic distance metric and random

intercepts for both assay strain and vaccine strain, and calculated the ICC as the ratio of

variance explained by the assay and vaccine strain variance components to the total variation.

The Spearman rank correlations show in the main text can be viewed as a post-hoc analysis

of the ICC which provide more information about specific comparisons.

Specifically, the model we fit for each subtype can be written as follows.

d[i] ∼ N (µ[i], σ2)

µ[i] = α1 · I(method[i] = temporal) + α2 · I(method[i] = p-Epitope)+

α3 · I(method[i] = Grantham) + α4 · I(method[i] = cartographic)+

u[1, assay strain[i]] + u[2, vaccine strain[i]]

α[k] ∼ t (3, 0, 5) ; k = 1, 2, 3, 4

u[r, ·] ∼ N (0, ζ[r]); r = 1, 2

ζ[r] ∼ t+(3, 0, 1)

σ ∼ t+(3, 0, 1)

We fit the model using Stan’s NUTS sampler using 12 chains, each with 1000 warmup

iterations and 1000 post-warmup sampling iterations and an adaptive delta of 0.99. Model

diagnostics were all sufficient (data not shown, the model is easy to sample from and samples

quickly). We then calculate the ICC as

ICC = ζ[1]2 + ζ[2]2

ζ[1]2 + ζ[2]2 + σ2 ,
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over the posterior samples of all parameters. That is, the ICC represents the ratio of variance

due to strain effects only to the total variance after controlling for fixed effects. In the

psychometric literature, this is referred to as a one-way ICC for consistency – if the ICC

is close to one, it means the variance from the random effects dominates the model. We

summarized the ICC as the mean and 95% HDCI across the posterior samples.

As a sensitivity analysis, we considered an alternative agreement statistic based on a

different variance decomposition. We fit the same models as before, but then computed

the variance of the posterior predictions for every point in the dataset without taking the

random effects into account (the “fixed effects” predictions), i.e.

σ2
FE = Varn

i=1 (α[method[i]]) ,

where we choose the correct α parameter based on the method for dataset entry i (we omit

writing all four alpha parameters and indicator functions for readability). Then, we compute

the variance of the posterior predictions for each entry in the dataset taking the random

effects and fixed effects into account:

σ2
ME = Varn

i=1 (α[method[i]] + u[1, assay strain[i]] + u[2, vaccine strain[i]]) .

We can then compute an alternative agreement statistic as the variance ratio

1 − σ2
FE/σ

2
ME,

which will be close to one if the random effects dominate the prediction variance, or

close to zero if the random effects have only a small contribution to the prediction variance.

Table B.7 shows our results using this metric. All of the results indicate low agreement but

with a much higher uncertainty, and this metric is less charitable to the A(H3N2) consistency,

although we observed strong pairwise correlations between all of the A(H3N2) metrics as

shown in the main text.
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Table B.7: Prediction variance ratio across all antigenic distance measurements, calcu-
lated separately for each subtype or lineage (strain type). The posterior distribution
for each ratio was calculated as one minus the ratio of the prediction variance ignoring
random effects to the prediction variance including random effects, estimated with
a Bayesian model. Numbers shown are the mean and 95% highest density credible
interval (HDCI) of the posterior distribution of variance ratios.

Strain Type PPD Ratio
H1N1 0.03 (-0.28, 0.30)
H3N2 0.21 (0.01, 0.39)
B-Yam 0.14 (-0.25, 0.48)
B-Vic -0.05 (-0.75, 0.57)

Correlation coefficients and CIs

Table B.8 shows the Spearman correlation coefficients and 95% HDCIs for the correlations

shown in Figure 1 of the manuscript. The estimates and CIs are arranged by subtype in

the table in the same order in which they are shown in the plot. The coefficients may be

slightly different from the point estimates we presented in the main text due to rounding

error. We calculated the estimates and HDCIs shown here as the mean and 95% HDCI of

4000 samples from a posterior distribution created by Bayesian bootstrapping, which we

performed independently on each subtype using 4000 resamples of the observed data points.

Notably, the credible intervals are quite wide for all subtypes other than A(H3N2),

which showed strong agreement in both the reliability and correlation assessments. For

influenza B subtypes, the width of the credible intervals is almost certainly due to the

low number of vaccine/assay strain pairs we observed in our dataset. For A(H1N1), we

suspect that the wide credible intervals are due to the multiple clusters in the data, which

could violate the assumptions of calculating a correlation coefficient (specifically, Spearman’s

rank correlation assumes that the rank distributions are bivariate normal between the two

variables of interest, which is unlikely to hold in a variable which represents information

from multiple heterogeneous clusters). However, our point estimates which reflect low overall

agreement are A(H1N1) are similar to the previous results obtained by Bedford et al. [33],

and large credible intervals can indicate the lack of a strong signal in the data, so we feel that
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the conclusions presented in the main text (a lack of agreement across metrics for A(H1N1)

and B subtype, and a paucity of influenza B data) are not affected by the presence of wide

credible intervals for the correlation coefficients.

Table B.8: Spearman correlation coefficients and 95% HDCIs estimated by Bayesian
bootstrap for each influenza subtype. Each pairwise comparison is shown only once to
prevent confusion.

Subtype Cartographic p-Epitope Grantham

A(H1N1) Temporal 0.45 ( 0.13, 0.74) 0.11 (-0.26, 0.51) -0.25 (-0.64, 0.17)
Cartographic 0.60 ( 0.34, 0.83) 0.35 (-0.01, 0.68)
p-Epitope 0.74 ( 0.52, 0.93)

A(H3N2) Temporal 0.93 ( 0.88, 0.97) 0.93 ( 0.89, 0.97) 0.96 ( 0.93, 0.98)
Cartographic 0.93 ( 0.87, 0.97) 0.93 ( 0.88, 0.97)
p-Epitope 0.97 ( 0.95, 0.99)

B/Yamagata Temporal 0.66 ( 0.35, 0.89) 0.82 ( 0.69, 0.95) 0.83 ( 0.67, 0.97)
Cartographic 0.64 ( 0.39, 0.86) 0.67 ( 0.36, 0.91)
p-Epitope 0.91 ( 0.80, 0.99)

B/Victoria Temporal 0.55 ( 0.01, 0.97) 0.78 ( 0.47, 0.99) 0.71 ( 0.31, 0.99)
Cartographic 0.52 (-0.04, 0.92) 0.37 (-0.24, 0.88)
p-Epitope 0.96 ( 0.85, 1.00)

Overall Temporal 0.77 ( 0.67, 0.86) 0.65 ( 0.51, 0.77) 0.55 ( 0.39, 0.70)
Cartographic 0.83 ( 0.77, 0.89) 0.77 ( 0.68, 0.86)
p-Epitope 0.95 ( 0.92, 0.97)

Antigenic distance evenness and dispersion analysis

Rather than a uniform distribution of data points across distance space, each antigenic

distancemetric had gaps in the distribution of observed distances, which varied by metric

and subtype (Figure B.4A). The two B lineages had much larger gaps due to the sparser

historical panels. For influenza A, all metrics were more uniform for A(H3N2) than for

A(H1N1), suggesting their different evolutionary patterns across the time spanned by the

historical panel. Notably, while the temporal metric was the most uniform for all strains

(an artifact of how the historical panel was chosen), the Grantham and p-Epitope metrics

tend to discretize the number of potential distances and result in less uniformly distributed

values for the historical panel used in our study.

We quantified the uniform spread of points for each antigenic distance metric and subtype
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using the gap standard deviation, where a higher gap standard deviation indicates more

irregularity in the spacing of data points. The gap standard deviation is calculated as the

standard deviation of the consecutive differences in the sorted antigenic distance values for

a given metric. That is, assume x, a vector of measurements from i = 1, . . . , n is already

sorted in increasing order so that x1 ≤ x2 ≤ . . . ≤ xn.

Then, the gap standard deviation is computed as

dk = xk+1 − xk; k = 1, . . . , i− 1

d̄ = 1
n

i−1∑
k=1

di

σgap =

√√√√ 1
n− 2

i−1∑
k=1

(
dk − d̄

)2
.

For a random variable with a uniform distribution,

lim
n→∞

σgap = 0.

Figure B.4B shows the estimated gap standard deviations. Both B lineages had higher

gap standard deviations for all methods than either influenza A subtype. For A(H3N2), the

gap standard deviations were similar across antigenic distance methods, and for A(H1N1)

the differences were still small but larger than A(H3N2), representing the diversity of

strains in the historical panel for type A influenza strains. The differences were much more

noticeable for both B lineages, with Grantham distance having notably higher gap standard

deviation than the other metrics for both influenza B lineages, indicating lower diversity in

the normalized distance values.
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Figure B.4: A) parallel coordinates plot showing how the estimated pairwise antigenic
distances change for each of the antigenic distance metrics. Each line in the plot
represents one vaccine strain and assay strain pair, and the connected points are
the pairwise distance measured under each metric shown on the x-axis. When two
lines cross, this indicates that two metrics assigned a different relative order to the
pairwise combination. Note that Grantham and especially p-Epitope distances are
integer-valued and concentrate measurements to specific points which potentially
overlap (temporal distance is also integer valued but has enough spread to avoid a
similar issue). B) The gap standard deviation (gap SD) for each subtype and antigenic
distance metric. The posterior distribution of gap SDs was calculated using the
bayesian bootstrap with reweighting. The red horizontal bar shows the mean of the
bootstrap posterior and the error bars show the 95% highest density credible interval
(HDCI).
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Model diagnostics

We examined the key model diagnostics for all of our models to ensure they converged. The

main diagnostics with target criteria identified by the Stan development team [179] are:

• R̂, which measures chain mixing, should be < 1.01 for all parameters;

• Bulk and tail ESS, measures of the number of samples drawn if all of the samples

were independent, should be greater than 100 times the number of chains;

• Number of divergent transitions should be less than 1% of samples;

• Number of treedepth exceedences should be less than 1% of samples;

• E-BFMI should be greater than 0.3 for all chains.

These diagnostics are presented in Table B.9. We did not achieve all of the target

diagnostic criteria for the most difficult to sample parameters, but we achieved sufficient

diagnostic criteria for preliminary evaluation of our results.

We also examined trace plots of the parameters to ensure there were no obvious errors

(and, in general, errors in the trace plots will be noticeable in the R̂ statistic). We also

examined the prior/posterior shrinkage and visually inspected prior/posterior plots. Since

we have many models, each with thousands of parameters, we did not include the plots

here. We observed good values of shrinkage (far from 1, indicating a divergence away from

the prior) for most parameters, with the exception of some highly constrained parameters,

typically correlations and GAMM regularizing variance parameters. Some of the random

effects for individuals had poor shrinkage as well, but overall the shrinkage for random

effects and for the random effects variances was far from 1. Since the GAMM was not

supported by ELPD anyways, we did not investigate prior sensitivity analysis further since

all of the LMM parameters had good shrinkage. Therefore, we feel safe about our choice of

regularizing priors and a prior sensitivity analysis would require extensive computational

time without being useful.

While less important for our purposes, we also sampled from the priors in order to

examine the prior/posterior shrinkage and to visualize our prior predictive simulations. Such

an analysis requires substantially less computational power than sampling from the posterior
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distribution, but we still need to ensure that we have sampled from the priors enough to get

good estimates of the prior distributions of some highly constrained parameters. So, our

prior sampling diagnostics are shown in Table B.10.

Since there are thousands of parameters per model, we do not show the shrinkage

parameters or prior distributions of all parameters here, but they are easy to produce from

the code and results we provide.

ELPD Diagnostics

Similar to frequentist AIC/BIC and Bayesian WAIC, ELPD relies on a computationally

efficient approximation to leave-one-out cross validation that allows estimation of a goodness-

of-fit metric without having to refit a computationally impossible number of models. However,

unlike other informatic criteria, the LOO-IC based on the leave-one-out expected log pointwise

predictive density provides diagnostics to determine if the approximation is trustworthy

[155, 156]. Table B.11 shows the diagnostic measures for each of our models. The maximum

Pareto k diagnostic is the primary value indicating whether the LOO-ELPD approximation

is accurate – all Pareto k values (one per observation) should be below 0.7. The Neff value

is the effective sample size for the approximation, and the ratio of the effective sample size

to the actual sample size should be greater than 0.5 to ensure that the threshold of 0.7 is

reliable. If the number of effective samples is greater than 2200 however, the threshold of

0.7 is useful regardless of the ratio.

Pointwise prediction comparisons

To examine the difference in predictions across each of the antigenic distance metrics, we

computed the fold change in predicted post-vaccination HAI titer conditional on normalized

antigenic distance and strain type for each unique pair of antigenic distance metrics. We

visually inspected the conditional fold changes between metrics using a limit of agreement

approach with a clinically defined threshold for whether the difference between predictions

should matter, which is commonly defined as a 4-fold change for HAI measurements.
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Table B.9: Model diagnostics for the posterior samples from the GAMMs and LMMs fit with each of the antigenic distance
metrics. We show the total number of divergences out of the number of samples, percent treedepth exceedences, minimum ESS
across all parameters, the minimum E-BFMI across chains, and the maximum R hat across all parameters.

Model Pct. Divergences Pct. TD Exceeded min ESS (tail) min ESS (bulk) min E-BFMI max R_hat

GAMM 0.0% 100.0% 2858 1595 0.57 1.02
0.2% 99.9% 4182 2407 0.53 1.01
0.0% 100.0% 477 464 0.57 1.05
0.1% 100.0% 567 372 0.51 1.06
0.0% 100.0% 2066 956 0.53 1.03

100.0% 1062 529 0.54 1.05
LMM 100.0% 2054 970 0.49 1.03

0.2% 99.8% 3068 2109 0.50 1.01
0.0% 100.0% 2969 1188 0.54 1.03
0.2% 100.0% 2239 1077 0.52 1.02
0.0% 100.0% 1793 894 0.57 1.03
0.2% 99.8% 2400 1108 0.56 1.03

Table B.10: Model diagnostics for the prior samples from the GAMMs and LMMs fit with each of the antigenic distance metrics.
We show the total number of divergences out of the number of samples, percent treedepth exceedences, minimum ESS across all
parameters, the minimum E-BFMI across chains, and the maximum R hat across all parameters.

Model Pct. Divergences Pct. TD Exceeded min ESS (tail) min ESS (bulk) min E-BFMI max R_hat

GAMM 0.0% 0.0% 9051 6896 0.89 1.00
8915 7012 0.88 1.00
8830 7469 0.90 1.01
8644 7494 0.88 1.01
8312 7353 0.94 1.01
8475 7486 0.91 1.00

LMM 7363 6808 0.89 1.00
7849 6856 0.82 1.00
7719 6873 0.83 1.01
7327 6789 0.87 1.01
6999 6599 0.82 1.01
8269 6823 0.87 1.00
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Table B.11: Diagnostics for the LOO-IC ELPD approximation. Pareto k is the primary
diagnostic indicating whether the approximation is trustworthy and all Pareto k values
should be below 0.7. The Neff is the effective sample size and Reff is the ratio of the
effective sample size to the true sample size – if there are too few effective samples
relative to actual samples, we can get an optimistic evaluation of the approximation
quality, but in general this matters less if the ESS is sufficiently high.

Metric Model Max. Pareto k Min. N_eff Max. R_eff

Cartographic GAMM 0.39 4368.8 1.00
LMM 0.44 3704.8 1.00

p-Epitope GAMM 0.40 3738.7 1.00
LMM 0.44 4289.5 1.00

Grantham GAMM 0.36 3803.0 1.00
LMM 0.35 3936.8 1.00

Temporal GAMM 0.49 3365.6 1.00
LMM 0.43 3850.4 1.00

We performed the fold change between predictions calculations for both the GAMM and

LMM with each antigenic distance metric. Figure B.5 shows the prediction comparisons

across antigenic distance metrics for each subtype using the LMMs. In contrast to our

agreement analysis, where the H3N2 metrics showed the strongest agreement across metrics

(and the highest pairwise correlations), H3N2 was the only strain with noticeable trends

in the contrasts between metrics. In particular, all of the comparisons with p-Epitope for

H3N2 had a noticeable trend – even though the mean fold change in predictions always

stayed within the measurement error boundaries we set a priori, sometimes the credible

interval did not fully cover the measurement error boundaries and there was a noticeable

slope. These trends suggested that p-Epitope measurements underestimated the expected

change in post-vaccination titer compared to Grantham and cartographic distance, while

p-Epitope overestimated the difference compared to temporal methods. These results suggest

that perhaps biochemical features like glycosylation sites or changes to the virus outside of

the immunodominant epitope region are important, because these features are detected by

cartographic and Grantham distance, but not by p-Epitope distance.

Figure B.6 shows the prediction comparisons across antigenic distance metrics for each

subtype using the GAMMs. Even though the GAMM was not supported by our ELPD

analysis, we used the GAMM for analyzing pairwise differences in predictions in case the
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Figure B.5: Pairwise comparisons of predictions (from the LMMs) between each
unique set of two metrics. The y-axis shows the fold change in predictive titers
between metrics, and the two metrics being compared in each subplot are shown as
the subplot labels. Each line represents the predictions for the first metric in the pair
at a given antigenic distance value divided by the predictions for the second metric in
the pair. Color and linetype correspond to different strain types. The solid black lines
on the plot are reference lines at a value of 1 for no effect, and at 4 and 1/4, effect
values which would represent a clinically notable deviation in HAI predictions beyond
what is expected from measurement error. Lines represent the mean of the posterior
distribution of the contrast and the colored ribbons represent the 95% highest density
credible interval (HDCI) for each strain type in each subplot.
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nonlinear signal was biologically important with a weak signal. Unlike our simple correlation

analysis, this analysis examines the predicted protection for an average individual exposed to

an antigenically distant strain after vaccination, rather than only taking antigenic distance

into account. We saw that the fold change in predicted HAI titers was almost always less

than four for every pairwise comparison between two metrics. A four-fold change in HAI

titer is considered a clinically relevant difference between two measurements, so in almost

every case we saw that changing the antigenic distance metric would not lead to a clinically

relevant difference in predicted post-vaccination HAI titer. The primary exception was strain

type A(H1N1), which exceed 40 at a few antigenic distance values for some of the pairwise

comparisons (around a normalized antigenic distance of 0.25 for the cartographic/Grantham

and Cartographic/p-Epitope comparisons, and around a normalized antigenic distance of

0.75 for the Grantham/temporal distance comparisons). Due to the large standard errors

and the number of comparisons we make, we are comfortable attributing these fluctuations

to measurement error, although the large variability across antigenic clusters for A(H1N1)

strains (pdm-like vs. non-pdm-like) could contribute as well.

However, the differences in comparisons for A(H3N2) was not completely trivial either.

Figure B.6 shows that for A(H3N2), the temporal distance overwhelming underestimates the

fold change in predictions for the largest antigenic distances compared to both Grantham

and p-Epitope measurements, with some interesting trends in the comparisons between

cartographic distance as well. These results support our conclusion that further research

into which of these metrics actually captures useful and interesting features is warranted,

because it is difficult to tell whether we are capturing noise from our study or actual patterns

that suggest different metrics are identifying different relevant characteristics of the viruses.

In both models, nearly all contrast predictions fall within the clinically irrelevant reference

bounds, although the credible intervals for all predictions are wide because our bayesian

models fairly account for many sources of uncertainty in the data. However, our results for

the GAMM model suggest some interesting exceptions for the A(H1N1) strains that are

likely related to the pandemic-like and non-pandemic-like cluster differences. Our results for

the GAMM and LMM model for A(H3N2) seem to suggest that perhaps different metrics
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Figure B.6: Pairwise comparisons of predictions (from the GAMMs.) between each
unique set of two metrics. The y-axis shows the fold change in predictive titers
between metrics, and the two metrics being compared in each subplot are shown as
the subplot labels. Each line represents the predictions for the first metric in the pair
at a given antigenic distance value divided by the predictions for the second metric in
the pair. Color and linetype correspond to different strain types. The solid black lines
on the plot are reference lines at a value of 1 for no effect, and at 4 and 1/4, effect
values which would represent a clinically notable deviation in HAI predictions beyond
what is expected from measurement error. Lines represent the mean of the posterior
distribution of the contrast and the colored ribbons represent the 95% highest density
credible interval (HDCI) for each strain type in each subplot.
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are picking up different relevant features, as we noted in the main text discussion.

Vaccine-specific predictions

In order to analyze the differences between vaccine strains, we also examined the results

conditional on the specific strain used in a vaccine (for a given subtype). Figure B.7 shows

the fitted models. Within a given subtype, there were no striking results across the different

vaccine components. In the main text, we show that direct causal effects of vaccine and assay

strain contribute very little to the variance in the outcomes after controlling for antigenic

distance.

Alternative distance metrics

Because we chose to include the dominant p-Epitope distance and Grantham’s distance in

our final manuscript, we also analyzed other sequence-based and biochemical distances to

determine if our arbitrary choice was misleading and we should consider further antigenic

distance measures. So, we compared the dominant p-Epitope distance [30, 31] with the

p-all-Epitope distance [31, 35] and the Hamming distance [221]. Furthermore, we compared

Grantham’s distance [151] with the Hamming distance and with the FLU substitution model,

an evolutionary amino acid substitution matrix model derived specifically for influenza

sequences [173] (there are other indices like Grantham’s index, but we felt that the comparison

to a model specifically for influenza amino acid substitutions was sufficient).

When we compared the FLU substitution model to Grantham’s distance and the simple

Hamming distance, we found that all three metrics were highly correlated for all subtypes

except A(H1N1), with relatively small credible intervals from Bayesian bootstrapping

(Table B.12). For A(H1N1), Grantham and Hamming distances were also highly correlated,

but the correlations between Hamming and FLU substitution and Grantham and FLU

substitution distances were moderate at best, with credible intervals that covered quite low

values. The original study which developed the FLU substitution matrix used a mix of

influenza virus sequences across multiple proteins and types/subtypes [173], so it is unclear
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Figure B.7: Model predictions for both the GAMM and LMM, conditional on the vaccine
strain rather than only on the subtype (shown in the main text). Solid green lines and green
ribbons show the mean and 95% highest density continuous interval (HDCI) for GAMM
predictions. Dashed orange lines and orange ribbons show the mean and 95% HDCI for
LMM predictions. Circular points show the data values. Each subplot shows the model
predictions for a particular subtype (changes by row) and distance metric (changes by
column). Outcomes shown on the plot are predicted post-vaccination titers for an average
individual to an average strain.
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why the difference would be so stark for A(H1N1). Regardless, because the difference was

only noticeable for A(H1N1) we decided to use the Grantham distance in our main analysis.

Despite high similarity to the Hamming distance across all subtypes, Grantham distance

contains more information by design and better antigenic coverage of Influenza B strains in

a future study might reveal further differences between Grantham distance and Hamming

distance.

Table B.12: Pairwise Spearman rank correlations between antigenic distance values
using the Grantham, FLU Substitution, and Hamming distance metrics. We calculated
correlations between two distances using the normalized distance values between every
vaccine/assay strain pair for the given subtype. Numbers shown are the mean and 95%
highest density continuous interval (HDCI) calculated by Bayesian bootstrapping.

Subtype Grantham FLU Substitution

A(H1N1) Hamming 0.91 ( 0.82, 0.98) 0.62 ( 0.35, 0.85)
Grantham 0.41 ( 0.05, 0.75)

A(H3N2) Hamming 0.99 ( 0.98, 1.00) 0.97 ( 0.94, 0.99)
Grantham 0.96 ( 0.93, 0.98)

B/Yamagata Hamming 0.98 ( 0.93, 1.00) 0.94 ( 0.86, 1.00)
Grantham 0.91 ( 0.80, 0.98)

B/Victoria Hamming 0.99 ( 0.97, 1.00) 0.97 ( 0.89, 1.00)
Grantham 0.97 ( 0.88, 1.00)

Overall Hamming 0.99 ( 0.97, 1.00) 0.94 ( 0.91, 0.96)
Grantham 0.91 ( 0.88, 0.95)

We also examined the pairwise Spearman correlations between the Hamming distance,

the (dominant) p-Epitope method which we present in the main analysis, and the p-all-

Epitope distance, which is calculated by averaging the Hamming distance across all 5 of the

immunodominant HA epitope sites. Again, the correlations were overall high Table B.13,

with A(H1N1) displaying a notably lower correlation across differences. These supplementary

results suggest that different antigenic distance metrics may have the strongest effect on

understanding the immune response to A(H1N1), probably in accounting for noteable

differences across clusters. The multiple clusters in A(H1N1) antigens are the primary

differentiating factor from the ladder-like continuously evolutionary pattern in A(H3N2) and

might explain the differences, although we lack the ability to analyze this further. The high

correlation between sequence-based metrics for A(H3N2) provides strong support against the
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idea that specific epitopes or mutations outside of the epitope region drive the unexpected

results we saw with H3N2 and the p-Epitope distance in our model. In particular, there

may be few specific sites [133] or specific changes in glycosylation sites [165] that are lost in

the noise from other mutations when we use these metrics.

Table B.13: Pairwise Spearman rank correlations between antigenic distance values
using the Grantham, FLU Substitution, and Hamming distance metrics. We calculated
correlations between two distances using the normalized distance values between every
vaccine/assay strain pair for the given subtype. Numbers shown are the mean and 95%
highest density continuous interval (HDCI) calculated by Bayesian bootstrapping.

Subtype p-Epitope p-All-Epitope

A(H1N1) Hamming 0.81 ( 0.64, 0.95) 0.89 ( 0.78, 0.97)
p-Epitope 0.83 ( 0.68, 0.95)

A(H3N2) Hamming 0.97 ( 0.93, 0.99) 0.99 ( 0.97, 0.99)
p-Epitope 0.97 ( 0.94, 0.99)

B/Yamagata Hamming 0.93 ( 0.84, 0.99) 0.94 ( 0.86, 1.00)
p-Epitope 0.98 ( 0.95, 1.00)

B/Victoria Hamming 0.95 ( 0.81, 1.00) 0.97 ( 0.88, 1.00)
p-Epitope 0.93 ( 0.78, 1.00)

Overall Hamming 0.95 ( 0.92, 0.97) 0.98 ( 0.96, 0.99)
p-Epitope 0.97 ( 0.95, 0.99)

Due to the relative consistency across these other antigenic distance metrics, we did not

fit further models to other antigenic distance metrics. The models require a great deal of

computational time and power, and since we found overall good agreement between these

additional metrics (and a large amount of disagreement within A(H1N1), as we found for

the metrics in the main analysis), we felt that this did not justify a further investigation.

However, a future study with an expansive panel of serological data to A(H1N1) and A(H3N2)

strains to further explore why A(H1N1) metrics have lower agreement would be useful for

further understanding these results.
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Appendix C

Supplementary material for Chapter 4

Reproducibility instructions

To produce our results, you can access our code and data on the Zenodo archive (https://

doi.org/10.5281/zenodo.15578876) or the GitHub page (https://github.com/ahgroup/

billings-breadth-quantification-public). You will need to install the following soft-

ware requirements.

• R version 4.4.2, available from https://cran.r-project.org.

• A C++ compilation toolchain that is compatible with R – on Windows you should

install RTools 4.4 (also available from CRAN). On MacOS you need the XCode

command line tools. On a Linux computing cluster, this has probably already been

set up for you.

• (Optional) We used the RStudio IDE which provides many convenience features,

especially when working with targets, which is available from https://posit.co/

download/rstudio-desktop.

• If you want to reproduce the manuscript or supplement documents you will need

Quarto version 1.6.40, available from https://quarto.org.

• The R package renv, version 1.1.4, which can be installed from CRAN and will

attempt to bootstrap itself the first time you open our R project.

• The packages specified in the renv.lock file, which can be installed with

223

https://doi.org/10.5281/zenodo.15578876
https://doi.org/10.5281/zenodo.15578876
https://github.com/ahgroup/billings-breadth-quantification-public
https://github.com/ahgroup/billings-breadth-quantification-public
https://cran.r-project.org
https://posit.co/download/rstudio-desktop
https://posit.co/download/rstudio-desktop
https://quarto.org


renv::restore().

• Once you’ve installed the cmdstanr package, you also need to install the cmdstan

utility by following the cmdstan quick start guide (https://mc-stan.org/cmdstanr/

articles/cmdstanr.html). We used cmdstan version 2.36.0.

• Many of those packages have system utilities, which you will need to install yourself

on most Linux systems.

We ran our pipeline on the sapelo2 computing cluster at the University of Georgia,

which runs CentOS Linux release 7.5. and uses Slurm to schedule jobs [160, 161]. We

developed our pipeline using the R workflow management package targets [158], and

configured the pipeline to run automatically on both our local Windows environment and

on sapelo2. If you use a different HPC environment or a different local environment, you

may need to make edits to _targets.R, which configures the distributed computing setup

for the pipeline, or job.sh, the Slurm submission script, for the pipeline to run the way you

intended (this is no different from running any other scripting language program on multiple

platforms, we cannot guarantee cross-platform compatibility).

You can run our entire pipeline in one step by opening the Rproj file in RStudio, and

running targets::tar_make() in the console. Notably, to run all code sequentially and avoid

any issues with distributed computing setup, you can run targets::tar_make(use_crew

= FALSE) but this will be much slower if you are on a multicore computer. You do not need

to use RStudio or targets to reproduce our results, but if you run our code in any other

way we assume you know enough about R programming to know what you are doing.

Finally, note that our pipeline is computationally intensive and requires a large amount

of storage — you should have at least 100 GB of available storage space on the drive where

you store this project. Regardless, the pipeline will take a long time to execute, typically at

a full day. Depending on your HPC setup (with potential alterations to the setup scripts) or

local machine, it might be faster but this analysis will take multiple hours at a minimum to

run. We do not recommend running this pipeline on a machine with less than 16 cores and

32 GB of RAM. Note that differences between local systems and program setups can make

even robust code difficult to reproduce.
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Expanded methods

The methods included in the main text are a summary of the most important methods we

used to conduct our analysis. Here, we include a more detailed explanation of many aspects

of the methods used.

Antigenic distance calculation

Here, we briefly summarize our methods for calculating antigenic distances. We give a

complete description of the methods in Appendix D.

We calculated the antigenic distance for all of the influenza strains that were used in the

cohort data. We calculated the distances pairwise between each set of two strains, and we

calculated all distances separately between H1N1 and H3N2 influenza strains. That is, we

did not calculate the distance between any H1N1 and H3N2 strains. We used three different

distance metrics to measure antigenic distance. All three have been previously described.

The first metric we used was the temporal antigenic distance. Many existing papers in

the literature either order strains in year order and then count the distances between them

as equal, regardless of the number of years elapsed [38, 140]; or assign distance based on the

year of isolation [45, 142]. The temporal distance is based on the year of isolation for each

strain, and measures how much chronological time has passed since the strains were first

observed and sequenced. Letting s1 and s2 be two influenza strains from the same subtype,

and t(s(·)) be the year of isolation for an arbitrary strain, the temporal distance is given by

dtemporal(s1, s2) = |t(s1) − t(s2)| .

That is, the temporal distance is equal to the absolute difference between the year of isolation

for the strains. For our study, the absolute value is not necessary because we do not have

any assay strains that were isolated after the vaccine strain to which they were compared.

However, in such a study, the absolute temporal distance should be compared with the

directional temporal distance as future years might have a greater impact on evolution than
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past years.

The second metric we used was a sequence-based metric called the dominant p-epitope

metric [30]. First, the p-epitope distance is calculated for each of the five antigenic sites

on the hemaaglutinin head domain. The five antigenic sites are composed of residues with

known positions using a standard numbering scheme for HA proteins which varies by subtype

[222]. Notably, the numbering for the residues refers to the sequence after the sequence for

the signal peptide has been removed. For H1 HA proteins, the signal peptide is typically 18

residues in length. For a given epitope site, the p-epitope distance is calculated as

depitopei
(s1, s2) = dH(s1, s2)

length of sequences

where dH(·, ·) is the standard Hamming distance [221] which counts the number of differences

between two strings. The dominant p-epitope distance is then the maximum of the p-epitope

distance for each set:

dp−epitope(s1, s2) = max
{
depitopei

(s1, s2)
}

i∈I
; I = {A,B,C,D,E}.

Here the index set I contains the letters which are typically used as names for each of the

antigenic sites. A table of the site residues can be found in Appendix D.

Appendix D also gives details on how we obtained the sequences used in our study. In

order to calculate the p-epitope distance, we first preprocessed the sequences by removing

the signal peptide sequence from the beginning of each sequence. After preprocessing, we

computed the p-epitope distance for each of the epitopes, and then we took the maximum

across all epitopes for each strain pair to obtain the dominant p-epitope distance.

The third method we used to calculate antigenic distance was antigenic cartography

[29, 44]. The goal of antigenic cartography is to estimate distances between strains from

immunological data by a dimension reduction algorithm. We used the HAI titers against

the panel of strains from our cohort data for antigenic cartography. First we had to create

a titer matrix, which has one row for each individual in the dataset and one row for each

strain observed in the dataset.
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We used the methods from the Racmacs [175] R package for antigenic cartography, which

accepted our titer matrix as the input. Racmacs uses a variant of classical multidimensional

scaling (MDS) for the dimension reduction algorithm, which finds a two-dimensional repre-

sentation of the data that minimizes a particular loss function. In simpler terms, Racmacs

finds a way to represent our data in two dimensions that preserves the most amount of

information possible. Classical MDS does not account for missing or censored data, which are

both present in our titer matrices. However, Racmacs implements an optimization routine

called dimensional annealing to numerically minimize the classical MDS loss function.

First, the censored and missing data points are randomly imputed, taking into account

only the range of the immunological values provided. We pass the imputed data to a

standard implementation of classical MDS and calculate the resulting stress (another term

for the loss function in this scenario). Then, the data are passed to a numerical optimization

routine (L-BGFS) which relaxes the coordinates in the reduced dimensional space in order

to reduce the stress. We performed 100 optimization rounds for our cartographic maps in

order to account for the randomness in the algorithm. We repeated the entire map creation

process 25 times to allow for different initial conditions which could lead the optimizer to

local minima, and chose the best overall map after all optimizations.

Once we obtained the optimized antigenic map, we found the positions of each strain in

the resulting two-dimensional space and calculated the pairwise Euclidian distances, giving

us the pairwise cartographic distances.

Likelihood adjustment for censoring

In the following sections about estimating our various metrics, we will employ the same

correction to the regression model likelihood to adjust for censoring [153]. Letting y represent

an HAI titer measurement, and the outcome for a regression model, if we say that

yi ∼ N
(
µi, σ

2
)
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we can adjust for censoring in y by writing the likelihood function as

f
(
yi | µi, σ

2) =
∫ U

L
ϕ
(
yi | µi, σ

2
)

dyi

where f is the probability density function of Yi and ϕ is the normal density function. Here,

L is the lower censoring bound and U is the upper censoring bound.

The censoring bounds are easy to determine as long as we know how our assay of interest

was conducted. HAI is a serial dilution assay, and so produces interval censored values, and

has both a lower and an upper limit of detection (LoD). For an observed HAI value yi, we

assume there is some latent "true" dilution y∗
i which will be a positive real number that

represents the minimal dilution where hemagglutination is not observed. The latent dilution

can never be observed because of how we conduct the assay. First, we choose a starting

dilution, which is constrained by the proportion of reagents we need to add to our assay.

We call the starting dilution ymin and it is 10 in our dataset. That is, the HAI assays in our

study were performed with an initial dilution of 1:10 serum to other assay ingredients.

If we observe hemagglutination at this starting titer, we record the assay value as below

the limit of detection – by convention, this is often recorded as half the limit of detection, as it

is in our study data. Although it is important to note that as long as we keep track of which

assay measurements are below the limit of detection, these values are really meaningless and

such not be treated as numbers (but they usually are).

Regardless, we will dilute the assay solution 2-fold and look for agglutination again,

continuing to dilute the amount of serum in solution. The maximal dilution we perform for

the assay, ymax is the upper limit of detection. While 20480 was the theoretical upper LoD

in our study, we did not observe any values at this level.

Any result that is within the limits of detection is still interval censored, i.e., we only

know that it lies within a particular interval. For example, if we observe agglutination at

a dilution of 1:40, but not at 1:20, we know that the true minimal inhibition dilution is

somewhere between 20 and 40. We know it is higher than 20, and less than 40, but not

where it falls in that range.
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For an HAI titer assay conducted in this manner, we can write the censoring bounds L

and U for a given titer y (leaving out subscripts from this formula for simplicity) on the log

scale as

(L,U) =



(−∞, ymin), y = ymin

[y, y + 1), ymin < y < ymax

[ymax,∞), y = ymax

.

We use this same censoring correction in all of the corrected models.

Methods for calculating current immunogenicity metrics

Our methods for calculating the metrics are laid out without much technical detail in

Appendix E, so we refer readers looking for a tutorial to that section. In this section we will

briefly list the relevant technical details for our estimation models.

We will use the following notation to define our formulas for the current immunogenicity

metrics.

• i = 1, . . . , n indexes study subjects, where n is the sample size.

• The variable s = 0, 1, . . . , S indexes different strains, and s = 0 is the homologous

strain.

• We define seroprotection as a post-vaccination HAI titer greater than 40, and serocon-

version as a post-vaccination fold-change of 4-fold or higher along with seroprotection.

• We use GMT as an abbreviation for geometric mean titer.

Homologous GMT (magnitude): The simple formula for the homologous GMT

without considering censoring is

GMT0 = exp
(

1
n

n∑
i=1

log titeri,s=0

)
.

The regression model we fit to estimate the homologous GMT in the same framework as

our novel metrics is given as

log titeri,s=0 ∼ N
(
α, σ2

)
.
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In this model, the parameter α estimates the mean of the outcome values.

Seroconversion rate (breadth): The simple formula for the seroconversion rate

without considering censoring or the overall estimation framework is

SCR = 1
n

1
S

n∑
i=1

S∑
s=0

I(patient i seroconverted to strain s)

where I() is the indicator function.

The regression model we fit to estimate the seroconversion rate is

Seroconvertedi,s ∼ Bernoulli(p)

logit(p) = α

where α estimates the overall seroconversion rate.

Overall GMT (magnitude): The simple formula for the overall GMT is

GMT = exp
(

1
n

1
S

n∑
i=1

S∑
s=0

log titeri,s

)
.

and the regression model is

log titeri,s ∼ N
(
α, σ2

)
.

This regression model is exactly the same as the model for GMT0, but for the GMT0

model we only include homologous strains in the fitting, and for the GMT , which is estimated

by α as well, we include all strains in the model fitting to get an overall estimate.

Methods for calculating novel immunogenicity metrics

In order to calculate our novel immunogenicity metrics, we first need to fit a summary

antibody landscape model to the titer data. Letting ds be the antigenic distance from the

current season’s vaccine to assay strain s (recall that we treat all seasons independently

and fit a separate model to each season) we define a multilevel linear regression model to
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construct the summary antibody landscape. The multilevel model is defined as

yi,s ∼ N
(
µi,s, σ

2
)

µi,s = (β0 + b0,i) + (β1 + b1,i) · dsb0,i

b1,i

 ∼ MVN
(
0⃗,Σb

)

where we have a random intercept and random antigenic distance slope for each individual

i, and the random effects for each individual are allowed to be correlated with a correlation

matrix shared by all individuals. We will discuss priors in the model implementation section,

but for all other models we have chosen weakly informative independent priors. However,

allowing the random effects to be correlated as we do here is often beneficial for model

fitting.

In order to calculate our metrics from this model we need to calculate what brms calls

expectation predictions or epreds. This refers to the predicted values µ̂ for some values

of the predictors. Specifically, we use the population average epreds which are estimated

conditionally on the random effects but do not include random effects deviations in the

predictions, i.e.,

µ̂ | dnew = (β̂0 + 0) + (β̂1 + 0) · dnew.

We calculated these epreds on an interpolated grid of normalized antigenic distance values,

d⃗new = 0, 0.01, 0.02, . . . , 0.99, 1.00. The granularity of the predictions can be increased if

desired, but we found this granularity to give a good balance between resolution and memory

usage.

Our novel metrics are then derived from the epreds.

Intercept (magnitude): The intercept is simply defined as

E(µ̂ | dnew = 0).

That is, we average over the posterior samples of the epreds for an antigenic distance value
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of 0.

Proportion above threshold (breadth): The proportion above the threshold is

defined as the distance value where the horizontal line y = 3 (on the log scale) intersects the

summary antibody landscape. That is,

E

(
argmin

d∗

∣∣∣∣(µ̂ | d∗) − 3
∣∣∣∣) ,

which for the linear regression model has a simple closed form of

E

(
3 − β̂0

β̂1

)

but might not have a simple closed form for more complicated models, so we find the

interpolated value of dnew in our grid which minimizes g(dnew) = abs (µ̂ | dnew − 3).

Area under the curve (total strength): The formula for the area under the curve

(AUC; between the normalized antigenic distance values of 0 and 1) is

E

(∫ 1

0
µ̂ | x dx

)
.

For each posterior sample, we approximate this integral numerically using the trapezoid

method implemented by pracma::trapz() with default iteration settings.

General details for model implementation

We estimated all of these metrics using bayesian models, which produce a distribution of

posterior samples for all model parameters. Whenever we summarize posterior samples to

obtain a point estimate and credible interval, we calculate the mean and 95% highest density

continuous interval (HDCI), implemented as tidybayes::mean_hdci().

For all of our regression models, we specified general weakly informative priors. Because

the models converged and moved away from the priors, the specific priors are not very

important. That being said, we used t(3, 0, 3) priors for regression coefficients and t+(3, 0, 1)

priors for variance parameters, where t(ν, λ, τ) is the location-scale Student’s t distribution
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with ν degrees of freedom, location parameter λ and scale parameter τ ; and t+(·) is the

half-Student’s t distribution constrained to be strictly positive with the same arguments.

We use 3 degrees of freedom for all of our Student’s t priors because the variance is infinite

for smaller degrees of freedom. Using ν = 3 allows for the prior distribution to have fat

tails, so if the data support a large parameter value the model likelihood will allow that,

but this tends to be much less pathological than trying to sample from priors with ν = 1 or

2. For our multilevel summary landscape models, we specified the priors on the covariance

matrix using a Cholesky factor decomposition with an LKJ-corr-cholesky(2) prior [207] on

the Cholesky factor and independent t+(3, 0, 1) priors on the vector of variance parameters.

Intraclass correlation (ICC) calculation

To estimate the intraclass correlation coefficients, we employed a second Bayesian model.

We fit a one-way random effects model where the outcome was the posterior samples of a

given metric (from a given season) and the predictors were a global intercept parameter and

a random intercept for the subsample. We can write the regression model for calculating

the ICC as
Metric samplei,k ∼ N

(
µi,k, σ

2
)

µi = α+ bk

bk ∼ N (0, σ2
k)

where k indexes the subsamples from the same cohort. We also fit the models separately

for each of the six different metrics, using the p-epitope and cartographic distances for the

novel metrics, and for metrics calculated with and without the censoring correction.

Once we fit the regression model, we calculated the posterior samples of the ICC as

ICC = σ2
k

σ2
k + σ2

and summarized this as the mean and 95% HDCI over the posterior samples, which is what

we report as our ICC results.
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Supplementary results

We conducted a number of additional analyses which are tangential to those presented in

the main text. However, they provide more context to our results so we present them here.

In the main text and in any of these results, we use abbreviated names for the influenza

strains we discussed. The abbreviated strain names along with the full strain names used on

GenBank are shown in Table C.1.

Table C.1: Full strain names as they appear on Genbank along with our abbreviated
names for each strain included in the study sample for Chapter 4.

Short Name Full Name
SC/18 A/H1N1/South Carolina/1/1918
PR/34 A/H1N1/Puerto Rico/8/1934
Wei/43 A/H1N1/Weiss/1943
FM/47 A/H1N1/Fort Monmouth/1/1947
Den/57 A/H1N1/Denver/1957
NJ/76 A/H1N1/New Jersey/8/1976
USSR/77 A/H1N1/Ussr/90/1977
Bra/78 A/H1N1/Brazil/11/1978
CA/78 A/H1N1/California/10/1978
Chi/83 A/H1N1/Chile/1/1983
Sing/86 A/H1N1/Singapore/6/1986
TX/91 A/H1N1/Texas/36/1991
Bei/95 A/H1N1/Beijing/262/1995
NC/99 A/H1N1/New Caledonia/20/1999
SI/06 A/H1N1/Solomon Islands/3/2006
Bris/07 A/H1N1/Brisbane/59/2007
CA/09 A/H1N1/California/07/2009
MI/15 A/H1N1/Michigan 45/2015

For the duration of our study, the A(H1N1) vaccine component was only updated once.

The Fluzone standard dose vaccine included the CA/09 strain from 2013/14 through 2016/17,

and was updated to contain the MI/15 strain in 2017/18.

The panel of historical strains for A(H1N1) stayed fairly consistent for the duration of

our study, and was the same at all study sites within a given season. The 2013/14 season

used a panel of 16 strains, the 2014/15 and 2015/16 seasons used a panel of 15 seasons, and

the 2016/17 and 2017/18 seasons used a panel of 16 strains. The additional strain used
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in 2013/14 was PR/34, which was only used during that season. In 2016/2017 after the

MI/2015 virus was isolated and sequenced, that virus was added to the panel of viruses for

all following study seasons.

Participant demographics for each seasonal cohort are shown in Table C.2, including

sex assigned at birth, self-reported race/ethnicity, age in years, birth year, and the study

site an individual enrolled at. The majority of participants in our study were white and

female. Demographics were fairly consistent across the seasonal cohorts with the exception

of age. The UGA study site which began recruiting patients in 2016/2017 recruited younger

patients, which was not a primary focus of the other two study sites, so the 2016/17 and

2017/18 cohorts have more young people than the preceding cohorts.
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Table C.2: Participant demographics for each of the seasonal cohorts in our study sample.
Characteristic 2013/14, N = 128 2014/15, N = 236 2015/16, N = 209 2016/17, N = 328 2017/18, N = 255 Overall, N = 1156

Sex assigned at birth, n (%)
Female 97 (76) 170 (72) 156 (75) 221 (67) 142 (56) 786 (68)
Male 31 (24) 66 (28) 53 (25) 107 (33) 113 (44) 370 (32)
Race/Ethnicity, n (%)
White 89 (70) 158 (67) 147 (70) 235 (72) 203 (80) 832 (72)
Black or African American 24 (19) 39 (17) 35 (17) 43 (13) 17 (7) 158 (14)
Other 13 (10) 17 (7) 13 (6) 31 (9) 25 (10) 99 (9)
Hispanic or Latino 2 (2) 21 (9) 13 (6) 18 (5) 10 (4) 64 (6)
Unknown 0 (0) 1 (0) 1 (0) 1 (0) 0 (0) 3 (0)
Age (years), Median (Min - Max) 58 (23 - 81) 57 (20 - 83) 56 (21 - 84) 44 (18 - 82) 25 (12 - 83) 48 (12 - 84)
Birth year, Median (Min - Max) 1956 (1932 - 1990) 1957 (1932 - 1994) 1960 (1932 - 1994) 1972 (1934 - 1998) 1991 (1934 - 2006) 1968 (1932 - 2006)
Study site, n (%)
FL 60 (47) 150 (64) 128 (61) 119 (36) 0 (0) 457 (40)
PA 68 (53) 86 (36) 81 (39) 64 (20) 0 (0) 299 (26)
UGA 0 (0) 0 (0) 0 (0) 145 (44) 255 (100) 400 (35)
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Summary antibody landscapes for all seasons

Here, we include the summary antibody landscapes for all of the seasons in our study. The

general trends were the same across all landscapes, so we chose to report the 2016/2017

landscape in the main text due to the large number of participants.

• Figure C.1 shows the summary landscape for the 2013/14 seasonal cohort.

• Figure C.2 shows the summary landscape for the 2014/15 seasonal cohort.

• Figure C.3 shows the summary landscape for the 2015/16 seasonal cohort.

• Figure C.4 shows the summary landscape for the 2016/17 seasonal cohort. This figure

is also included in the main text but is reproduced here for easier comparison.

• Figure C.5 shows the summary landscape for the 2017/18 seasonal cohort.
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Figure C.1: Raw data and summary antibody landscapes for the 2013 - 2014 influenza
season. Each point shows the post-vaccination HAI titer to a specific strain with a
specified normalized antigenic distance from the vaccine strain (CA/09 in 2013/14).
The dashed line and envelope show the mean and 95% credible interval (CrI) of the
posterior summary antibody landscape.
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Figure C.2: Raw data and summary antibody landscapes for the 2014 - 2015 influenza
season. Each point shows the post-vaccination HAI titer to a specific strain with a
specified normalized antigenic distance from the vaccine strain (CA/09 in 2014/15).
The dashed line and envelope show the mean and 95% credible interval (CrI) of the
posterior summary antibody landscape.

239



Figure C.3: Raw data and summary antibody landscapes for the 2014 - 2015 influenza
season. Each point shows the post-vaccination HAI titer to a specific strain with a
specified normalized antigenic distance from the vaccine strain (CA/09 in 2014/15).
The dashed line and envelope show the mean and 95% credible interval (CrI) of the
posterior summary antibody landscape.
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Figure C.4: Raw data and summary antibody landscapes for the 2016 - 2017 influenza
season. Each point shows the post-vaccination HAI titer to a specific strain with a
specified normalized antigenic distance from the vaccine strain (CA/09 in 2016/17).
The dashed line and envelope show the mean and 95% credible interval (CrI) of the
posterior summary antibody landscape.
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Figure C.5: Raw data and summary antibody landscapes for the 2017 - 2018 influenza
season. Each point shows the post-vaccination HAI titer to a specific strain with a
specified normalized antigenic distance from the vaccine strain (MI/15 in 2017/18).
The dashed line and envelope show the mean and 95% credible interval (CrI) of the
posterior summary antibody landscape.
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Summary landscape metrics for all seasons

Table C.3 shows the summary metrics for all of the seasonal cohorts. The trends for the

other seasons are similar to the 2016/17 results, but we include the other seasons here

for completeness. In general the metrics are overall more optimistic in the 2016/2017 and

2017/18 cohorts, but this is because those cohorts had much more young people relative

to the total sample size for that season. We elected to present these results in the main

text because the signal is consistent with the other seasons, but easier to see. We chose the

2016/17 cohort for the main results because it used the same vaccine as the older cohorts

and contains a mix of individuals from both, so it is easier to compare to the older cohorts

directly. We only show the censoring-corrected metrics here.

Table C.3: Current and novel vaccine immunogenicity metrics for each season, shown
both with and without the censoring correction. The ‘Current’ metric set uses the
homologous GMT for magnitude, the seroconversion rate across the historical panel for
breadth, and the GMT across all strains for the total strength. The ‘Novel’ metric sets
are based on the corresponding summary landscape. The novel metrics are regression
line intercept for magnitude, proportion of the line above a titer of 40 for breadth,
and area under the curve for total strength. All metrics were derived from bayesian
regression models and numbers shown are the posterior mean and 95% CrI.

Season Metric Set Magnitude Breadth Total Strength

2013 - 2014 Current 3.45 (3.15, 3.75) 0.09 (0.07, 0.10) 2.09 (1.96, 2.21)
Novel (Cartographic) 3.65 (3.30, 4.00) 0.25 (0.15, 0.37) 2.35 (2.09, 2.62)
Novel (p-Epitope) 2.71 (2.39, 3.04) 0.00 (0.00, 0.00) 2.32 (2.08, 2.57)
Novel (Temporal) 2.29 (1.98, 2.58) 0.00 (0.00, 0.00) 1.99 (1.72, 2.29)

2014 - 2015 Current 3.61 (3.40, 3.82) 0.08 (0.07, 0.08) 2.26 (2.18, 2.34)
Novel (Cartographic) 3.88 (3.65, 4.12) 0.32 (0.26, 0.39) 2.51 (2.35, 2.67)
Novel (p-Epitope) 2.84 (2.58, 3.08) 0.01 (0.00, 0.06) 2.46 (2.29, 2.63)
Novel (Temporal) 2.31 (2.11, 2.49) 0.00 (0.00, 0.00) 2.23 (2.06, 2.40)

2015 - 2016 Current 3.93 (3.73, 4.13) 0.07 (0.06, 0.08) 1.73 (1.64, 1.82)
Novel (Cartographic) 4.69 (4.42, 4.90) 0.34 (0.31, 0.38) 2.21 (2.05, 2.37)
Novel (p-Epitope) 2.99 (2.72, 3.27) 0.03 (0.00, 0.14) 2.19 (2.00, 2.37)
Novel (Temporal) 2.29 (2.12, 2.47) 0.00 (0.00, 0.00) 1.41 (1.20, 1.60)

2016 - 2017 Current 5.22 (5.07, 5.39) 0.10 (0.09, 0.11) 2.64 (2.58, 2.70)
Novel (Cartographic) 5.23 (5.06, 5.43) 0.50 (0.48, 0.52) 3.00 (2.87, 3.11)
Novel (p-Epitope) 4.52 (4.36, 4.69) 0.60 (0.55, 0.64) 3.25 (3.13, 3.37)
Novel (Temporal) 3.29 (3.17, 3.43) 0.14 (0.08, 0.19) 2.19 (2.05, 2.34)

2017 - 2018 Current 5.57 (5.40, 5.75) 0.10 (0.09, 0.11) 2.14 (2.06, 2.23)
Novel (Cartographic) 5.95 (5.77, 6.14) 0.51 (0.50, 0.53) 3.06 (2.94, 3.18)
Novel (p-Epitope) 5.57 (5.37, 5.75) 0.59 (0.57, 0.62) 3.41 (3.30, 3.54)
Novel (Temporal) 3.19 (3.04, 3.33) 0.07 (0.02, 0.11) 1.72 (1.58, 1.86)
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Subsample metrics plot for each season

We also repeated the subsampling analysis using data from the other cohorts. Again, because

the signal is stronger in the 2016/17 and 2017/18 cohorts we presented those results in the

main text. The results for the other seasons showed a similar pattern, and we include them

here for completeness.

• Figure C.6 shows the posterior distribution of the vaccine metrics for all of the

subsamples from the 2013/14 cohort data.

• Figure C.7 shows the posterior distribution of the vaccine metrics for all of the

subsamples from the 2014/15 cohort data.

• Figure C.8 shows the posterior distribution of the vaccine metrics for all of the

subsamples from the 2015/16 cohort data.

• Figure C.9 shows the posterior distribution of the vaccine metrics for all of the

subsamples from the 2016/17 cohort data. This figure is included in the main text

but reproduced here for easier comparisons.

• Figure C.10 shows the posterior distribution of the vaccine metrics for all of the

subsamples from the 2017/18 cohort data.

All of these figures show the current metrics for magnitude, breadth, and total strength,

and the novel metrics using both the cartographic distance and the p-Epitope distance for

each subsample. The black circles show samples from the posterior distribution of each

metric. The red dotted line shows the overall mean metric estimate across the subsample,

and the red x for each subsample shows the mean metric estimate for that subsample. In

general, metrics with lower ICCs (less variation explained by subsample grouping) will have

group means that are more similar to the overall mean. We show only 1000 posterior samples

for each subsample/metric to avoid unnecessary overplotting.
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Figure C.6: Estimated immunogenicity metrics for each simulated lab drawn from the
2013/14 subcohort data.
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Figure C.7: Estimated immunogenicity metrics for each simulated lab drawn from the
2014/15 subcohort data.
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Figure C.8: Estimated immunogenicity metrics for each simulated lab drawn from the
2015/16 subcohort data.
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Figure C.9: Estimated immunogenicity metrics for each simulated lab drawn from the
2013/14 subcohort data. This figure is included in the main text but reproduced here
for easier comparisons.
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Figure C.10: Estimated immunogenicity metrics for each simulated lab drawn from
the 2017/18 subcohort data.
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Intraclass correlation (ICC) analysis for all seasons

To quantify the results in the subsampling figures, we also include the ICC estimates for

each of the seasonal cohorts. Yet again, the results were similar to the 2016/17 cohort with

some outliers and expected sampling variation, but we include them here for completeness

in Table C.4.

Table C.4: Intraclass correlation coefficients (ICCs) for consistency across the sub-
sampled studies. Each number shown is the posterior mean and 95% CrI for the ICC,
which we calculated as the between-groups variance for subgroups divided by the
between-groups variance for subgroups plus the residual error variance. An ICC closer
to zero indicates that little of the variance in metric estimates is due to variability
across subsamples, while an ICC closer to one indicates that variability across sub-
samples makes up the majority of the variation.

Season Metric Set Magnitude Breadth Total Strength

2013 - 2014 Current 0.14 (0.08, 0.22) 0.54 (0.36, 0.66) 0.71 (0.54, 0.80)
Novel (Cartographic) 0.35 (0.24, 0.48) 0.30 (0.19, 0.44) 0.39 (0.24, 0.47)
Novel (p-Epitope) 0.66 (0.49, 0.73) 0.63 (0.50, 0.74) 0.52 (0.36, 0.63)

2014 - 2015 Current 0.42 (0.29, 0.54) 0.51 (0.35, 0.62) 0.90 (0.82, 0.93)
Novel (Cartographic) 0.51 (0.38, 0.60) 0.42 (0.28, 0.55) 0.64 (0.46, 0.74)
Novel (p-Epitope) 0.63 (0.47, 0.73) 0.59 (0.40, 0.70) 0.69 (0.51, 0.76)

2015 - 2016 Current 0.30 (0.18, 0.44) 0.89 (0.80, 0.93) 0.85 (0.75, 0.90)
Novel (Cartographic) 0.72 (0.60, 0.80) 0.65 (0.48, 0.74) 0.57 (0.44, 0.67)
Novel (p-Epitope) 0.74 (0.58, 0.82) 0.72 (0.59, 0.80) 0.71 (0.55, 0.80)

2016 - 2017 Current 0.55 (0.36, 0.65) 0.79 (0.68, 0.85) 0.88 (0.82, 0.93)
Novel (Cartographic) 0.59 (0.43, 0.70) 0.53 (0.38, 0.67) 0.54 (0.39, 0.66)
Novel (p-Epitope) 0.79 (0.69, 0.85) 0.75 (0.62, 0.82) 0.78 (0.66, 0.86)

2017 - 2018 Current 0.30 (0.21, 0.40) 0.86 (0.75, 0.91) 0.94 (0.87, 0.96)
Novel (Cartographic) 0.81 (0.71, 0.87) 0.80 (0.65, 0.87) 0.80 (0.70, 0.87)
Novel (p-Epitope) 0.82 (0.73, 0.88) 0.72 (0.61, 0.80) 0.74 (0.61, 0.83)
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Appendix D

Extended methods for antigenic distance calculation

We calculated pairwise antigenic distances using multiple methods for all of the influenza

strains used in the UGAFluVac cohort from the 2013/14 season through the 2017/18

season. The methods we support (either here or in the extended R package at https:

//github.com/ahgroup/agdist) include the following methods: temporal, Hamming (and

any other string-based distances supported by the stringdist R package), p-epitope,

cophenetic distances from trees, cartographic distances from antigenic maps, and substitution

matrix distances such as Grantham’s distance. Here, we will explain in detail the methods

we use for calculating antigenic distances.

Sequence retrieval

We manually obtained hemagglutinin (HA) amino acid sequences for each of the strains used

in UGAFluVac from either the U.S. National Center for Biotechnology Information (NCBI)’s

GenBank database [223, 224], the UniProt dataset [225], or GISAID’s EpiFlu database [226,

227]. The attribution and accession numbers for each strain are listed in Table D.1.

GenBank and UniProt information

Most of the sequences we used from GenBank and UniProt are not associated with particular

publications and are only able to be referenced via their accession numbers. The following
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sequences have formal references: AAD17229.1 [228]; AAA67338.1 [229]; AAP34324.1 [230];

ADE28750.1 [231]; ACP41953.1 [232]; ABQ97200.1 [233]; AAA62338.1 [234]; AIW60702.1

[235]; P03460 and P03461 [236]; and P12443 [237].

GISAID information

The sequences we used from GISAID are accessible via GISAID Identifier EPI_SET_250609vz

and DOI 10.55876/gis8.250609vz. EPI_SET_250609vz is composed of 9 individual genome

segments. The collection dates range from 1999-12-31 to 2023-04-25. Data were collected in

7 countries and territories.

All genome sequences and associated metadata in this dataset are published in GISAID’s

EpiFlu database. To view the contributors of each individual sequence with details such as

accession number, virus name, collection date, originating lab and submitting lab, and the

list of authors, visit 10.55876/gis8.250609vz.

Table D.1: Strain names, source locations, and accession numbers for each of the sequences
we used in our dataset

Strain Name Source Accession #

A/H1N1/South Carolina/1/1918 GenBank AAD17229.1

A/H1N1/Puerto Rico/8/1934 GenBank AGU93019.1

A/H1N1/Weiss/1943 GenBank ABD79101.1

A/H1N1/Fort Monmouth/1/1947 GenBank AAA67338.1

A/H1N1/Denver/1957 GenBank ABD15258.1

A/H1N1/New Jersey/8/1976 GenBank AGB51356.1

A/H1N1/Ussr/90/1977 GenBank ABD95350.1

A/H1N1/Brazil/11/1978 GenBank ABO38065.1

A/H1N1/California/10/1978 GenBank ABP49338.1

A/H1N1/Chile/1/1983 GenBank ABO38340.1

A/H1N1/Singapore/6/1986 GenBank ABO38395.1

A/H1N1/Texas/36/1991 GenBank ACF41933.1
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Table D.1: Strain names, source locations, and accession numbers for each of the sequences
we used in our dataset (continued)

Strain Name Source Accession #

A/H1N1/Beijing/262/1995 GenBank ACF41867.1

A/H1N1/New Caledonia/20/1999 GenBank AAP34324.1

A/H1N1/Solomon Islands/3/2006 GenBank ABU99109.1

A/H1N1/Brisbane/59/2007 GenBank ADE28750.1

A/H1N1/California/07/2009 GenBank ACP41953.1

A/H1N1/Michigan 45/2015 GenBank AMV49034.1

A/H1N1/Brisbane/02/2018 GISAID EPI1415369

A/H1N1/Guangdong-Maonan/SWL1536/2019 GISAID EPI3133357

A/H1N1/Victoria/2570/2019 GenBank WEY08940.1

A/H3N2/Hong Kong/8/1968 GenBank ABQ97200.1

A/H3N2/Port Chalmers/1/1973 GenBank ABE12532.1

A/H3N2/Texas/1/1977 GenBank AFM68965.1

A/H3N2/Mississippi/1/1985 GenBank AAA62338.1

A/H3N2/Sichuan/2/1987 GenBank AFG72085.1

A/H3N2/Shandong/9/1993 GenBank AFH00285.1

A/H3N2/Nanchang/933/1995 GenBank AFG72625.1

A/H3N2/Sydney/5/1997 GenBank ACO95259.1

A/H3N2/Panama/2007/1999 GenBank ABF21273.1

A/H3N2/Fujian/411/2002 GenBank AFG72823.1

A/H3N2/New York/55/2004 GenBank ACF41900.1

A/H3N2/Wisconsin/67/2005 GenBank AHG96791.1

A/H3N2/Brisbane/10/2007 GenBank AIW60702.1

A/H3N2/Uruguay/716/2007 GenBank ACD47213.1

A/H3N2/Perth/16/2009 GenBank ACS71642.1

A/H3N2/Victoria/361/2011 GenBank AIU46088.1
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Table D.1: Strain names, source locations, and accession numbers for each of the sequences
we used in our dataset (continued)

Strain Name Source Accession #

A/H3N2/Texas/50/2012 GenBank AGL07159.1

A/H3N2/Switzerland/9715293/2013 GISAID EPI530687

A/H3N2/Hong Kong/4801/2014 GISAID EPI834581

A/H3N2/Singapore/infimh-16-0019/2016 GISAID EPI780183

A/H3N2/Kansas/14/2017 GenBank AVG71503.1

A/H3N2/South Australia/34/2019 GISAID EPI1387331

A/H3N2/Hong Kong/2671/2019 GenBank WMW30924.1

A/H3N2/Tasmania/503/2020 GenBank WMW30850.1

A/H3N2/Darwin/9/2021 GenBank WND60806.1

B/Lee/1940 UniProt P03460

B/Maryland/1959 UniProt P03461

B/Singapore/1964 UniProt P12443

B/Victoria/02/1987 UniProt A4D5N9

B/Hong Kong/330/2001 GenBank ABL77178.1

B/Malaysia/27127/2004 GenBank AFJ80733.1

B/Victoria/326/2006 GenBank AGX18732.1

B/Brisbane/60/2008 GenBank AFH57909.1

B/Colorado/06/2017 GenBank ASK81305.1

B/Washington/02/2019 GenBank WIM08940.1

B/Michigan/01/2021 GenBank WMW30908.1

B/Austria/1359417/2021 GISAID EPI1868375

B/Yamagata/16/1988 GenBank ABL77255.1

B/Harbin/7/1994 GenBank ACR15721.1

B/Sichuan/379/1999 GISAID EPI2085837

B/Florida/4/2006 GenBank ACA33493.1
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Table D.1: Strain names, source locations, and accession numbers for each of the sequences
we used in our dataset (continued)

Strain Name Source Accession #

B/Wisconsin/01/2010 GenBank AET22057.1

B/Texas/06/2011 GenBank AGI64713.1

B/Massachusetts/02/2012 GenBank AGL06036.1

B/Phuket/3073/2013 GISAID EPI3555941

Sequence processing

We saved all of our sequences in the file data/raw/raw-sequences.xlsx, which we imported

into R using the readxl package [73]. We standardized sequence formatting by converting

all sequences to lowercase and removing all white space characters from the sequence. We

aligned the sequences separately for each subtype (A/H1N1, A/H3N2, and all B sequences

pooled together) using a two-stage alignment method. Since some sequences were not full

length, we first performed a multiple sequence alignment with the msa package [238] using the

MUSCLE algorithm [239]. From a brief examination, we noticed several inconsistencies across

the alignment generated using MUSCLE, so we only used the multiple alignment to find the

start and end position of the non-full length sequences. The only sequences which were not

full length were A/H3N2/Mississippi/1/1985, B/Singapore/1964, and B/Sichuan/379/1999.

Once we estimated the start and end positions of the non-full length sequences relative to

the full length sequences (which made up the majority of the dataset), we manually aligned

the sequences for each subtype based on the known deletions for different clades of influenza

viruses. Since all of the HA sequences were very similar in length, with known deletions

that explained the differences, the manual alignment was easier than dealing with the errors

introduced by an MSA algorithm.

All of the A(H3N2) sequences were aligned with a final length of 566 amino acids (starting

from the beginning of the signal peptide, which we included in our sequences) after we found
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the starting position for the MI/85 sequence. In order to align the A(H1N1) sequences, we

added a gap character at position 148 (position 130 after the 17 residue signal peptide is

accounted for) [240] if the sequence was length 565. All A(H1N1) sequences were full length

and were either 565 or 566 residues long. The type B sequences were the most complicated

to align because we needed to account for the 1DEL, 2DEL, and 3DEL lineages. We based

our alignment off the gaps in the Lee40 standard numbering: if a sequence was length 585,

we did not need to add gaps; if a sequence was length 584 it was a 1DEL strain and we

added a gap at position 163; if a sequence was length 583 it was a 2DEL strain and we

added gaps at positions 163 and 165; and finally if a sequence was length 582 it was a 3DEL

strain and we added gaps at positions 163, 164, and 164 [241, 242]. After alignment, all type

B sequences were 585 residues long, including the signal peptide.

Distance calculation

Once the sequences are aligned (within each subtype), we can calculate the different antigenic

distances. All of the antigenic distance metrics we used are based on the sequences and

metadata, except for the cartographic distance which relies on actual titer data. We’ll

discuss the data that is necessary for cartography in that subsection.

As a brief note, we applied our sequence-based distances to the entire HA sequence

(except for p-Epitope which only uses specific sites and is discussed in detail). Some people

have suggested applying sequence differences to NA as well, or to the entire genome, or to

specific parts of HA like HA1 or HA2. Using the entire uncleaved HA sequence is the easiest

and appears to work well enough, although a detailed comparison might be necessary to

determine the best way to calculate these distances.

Temporal distance

The simplest distance metric we used, what we call the temporal distance, does not use the

actual sequence or titer information about any strains. Instead, the temporal distance is
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based only on the years of isolation between two strains:

dtemporal(strain i, strain j) =
∣∣ isolation yearstrain i − isolation yearstrain j

∣∣.
Some studies have proposed using a directional temporal difference (i.e. without the absolute

value) that allows for positive and negative temporal distances [243]. This might be useful

in some cases, but we caution using this definition with the word distance because a

mathematical distance cannot take on negative values. Some authors have also used a much

simpler version of the temporal distance where they place strains in order of isolation year,

and treat the distance between any two consecutive ordered strains as 1, regardless of the

difference in isolation years between those strains. This approach should not be used in

practice, as the difference in years is simple to calculate and more accurate.

However, we encourage authors not to use any temporal distances. Sequences

for all well-characterized influenza strains are available, and even the simple Hamming

distance on the HA sequence tends to perform better than the temporal distance. We know

that influenza evolution does not occur at a constant rate, particularly for lineages like

A(H1N1) which have multiple clades that are better defined by genetic similarity than time

– indeed, using the temporal metric for H1N1 strains assigns a large distance value to 1918

pandemic-like strains and 2009-pandemic like strains, when these lineages are more similar to

each other than they are to the 1999 seasonal virus-like circulating strains with an acquired

deletion.

Temporal distances might work okay for lineages like A(H3N2), but they are less accurate

than any distances based on actual metrics of genetic or antigenic change, and so we believe

they should not be used. We include them in our comparisons to show how different they

are from other distance metrics, not because they should be interpreted as a valid antigenic

distance metric.
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Hamming distance and string distances

The simplest metric for calculating the antigenic distance from sequence data is the Hamming

distance [221]. The Hamming distance between two strings is simply the number of spots

between those two (aligned) strings that are different, so in our case, it is the number of

mutant residues between two HA sequences. We can also compute the normalized Hamming

distance by dividing the Hamming distance for two strings by the length of those strings.

In general, we use the fast implementation of the Hamming distance in the stringdist

package [244]. The stringdist package also supports other information-theoretic distance

metrics between two strings such as the (restricted) Damerau-Levenshtein distance and

multiple distances based on q-grams. There is no current evidence showing that any of

these other distance metrics are preferable to the Hamming distance for applications to

influenza evolution, but we refer the interested reader to the stringdist package for more

information.

p-Epitope distance

The p-Epitope distance is based on computing normalized Hamming distances across five

immunodominant epitope sites on the influenza HA, and has been shown to correlate with

vaccine effectiveness in the literature [30–32]. Defining the residue sites is the difficult part;

once the residue sites are defined, the normalized Hamming distance at each site between

two sequences is easy to calculate.

The original papers using p-Epitope for A(H3N2) distance calculation [30] and A(H1N1)

distance calculation [31] do not include the list of residues included in each epitope, and

the citations they refer to for these epitope sites appear to be permanently broken. Thus,

we used previously compiled tables of residue sites based on combining computational

modeling strategies with earlier structural biochemistry results for A(H1N1) [245] with

numbering following the A/California/04/2009; and A(H3N2) [246]. Influenza A numbering

is standardized and begins after the signal peptide which is 17 residues long for A(H1N1)

and 16 residues long for A(H3N2) [222]. We reproduce the residue sites from those sources
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in Table D.2.

Table D.2: Subtype-specific epitope sites used for p-epitope distance for influenza A.
Model Epitope Residues

A(H1N1) A 118 120 121 122 126 127 128 129 132 133 134 135 137 139 140 141 142 143
146 147 149 165 252 253

B 124 125 152 153 154 155 156 157 160 162 183 184 185 186 187 189 190 191
193 194 195 196

C 34 35 36 37 38 40 41 43 44 45 269 270 271 272 273 274 276 277 278 283 288
292 295 297 298 302 303 305 306 307 308 309 310

D 89 94 95 96 113 117 163 164 166 167 168 169 170 171 172 173 174 176 179
198 200 202 204 205 206 207 208 209 210 211 212 213 214 215 216 222 223
224 225 226 227 235 237 241 243 244 245

E 47 48 50 51 53 54 56 57 58 66 68 69 70 71 72 73 74 75 78 79 80 82 83 84 85
86 102 257 258 259 260 261 263 267

A(H3N2) A 122 124 126 130 131 132 133 135 137 138 140 142 143 144 145 146 150 152
168

B 128 129 155 156 157 158 159 160 163 165 186 187 188 189 190 192 193 194
196 197 198

C 44 45 46 47 48 50 51 53 54 273 275 276 278 279 280 294 297 299 300 304
305 307 308 309 310 311 312

D 96 102 103 117 121 167 170 171 172 173 174 175 176 177 179 182 201 203
207 208 209 212 213 214 215 216 217 218 219 226 227 228 229 230 238 240
242 244 246 247 248

E 57 59 62 63 67 75 78 80 81 82 83 86 87 88 91 92 94 109 260 261 262 265

Calculating the p-Epitope distance for influenza B is a bit trickier. Influenza B has

different major immunodominant epitopes than influenza A [247], but previous studies still

found a correlation between p-epitope distance and VE for influenza B (likely because the

Hamming distance would also be informative and the epitope sites captured by p-Epitope

partially overlap with the real immunodominant sites) [32]. We cannot ensure that our

p-Epitope definition is consistent with the previous literature, because the previous literature

does not provide an example of the non-standard numbering they use to define the residue

sites used for flu B strains. We used numbering based on our B/Lee40 numbering alignment

[241], and since Pan and Deem report using only HA1 in their alignment, we removed the

first 15 residues, which comprise the signal peptide for influenza B [248, 249]. We then used

the residues they identified in their table, which is reproduced below in Table D.3 [32].

We also found that, in general, the two B lineages were much more cross-reactive than

the influenza A subtypes, and we preferred to use trees and cartographic maps built on all

B strains simultaneously (data not shown, a formal comparison is likely necessary to make
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Table D.3: Lineage-specific epitope sites used for p-epitope distance for influenza B.
Model Epitope Residues

Victoria A 121 122 123 125 126 134 135 136 137 139 141 142 144 146 147 148 149 150
151 155 157 177

Victoria B 127 129 133 160 161 162 163 164 165 166 168 172 174 196 197 198 199 200
202 203 204 206 207 208 209

Victoria C 34 35 36 37 38 39 40 289 291 292 293 294 309 315 317 318 320 321 323 324
325 326 327

Victoria D 93 101 102 116 120 176 179 180 182 183 184 185 186 187 188 190 212 214
218 219 220 223 224 225 226 227 228 229 230 233 242 243 244 245 246 254
255 256 257 258

Victoria E 42 44 48 56 58 59 63 71 73 75 77 78 79 80 83 84 85 88 89 91 108 273 276
277 280

Yamagata A 121 122 123 125 126 134 135 136 137 139 141 142 144 146 147 148 149 150
151 155 157 176

Yamagata B 127 129 133 160 161 162 163 164 165 167 171 173 195 196 197 198 199 201
202 203 205 206 207 208

Yamagata C 34 35 36 37 38 39 40 288 290 291 292 293 308 314 316 317 319 320 322 323
324 325 326

Yamagata D 93 101 102 116 120 175 178 179 181 182 183 184 185 186 187 189 211 213
217 218 219 222 223 224 225 226 227 228 229 232 241 242 243 244 245 253
254 255 256 257

Yamagata E 42 44 48 56 58 59 63 71 73 75 77 78 79 80 83 84 85 88 89 91 108 272 275
276 279

further conclusions). So instead of using the lineage-specific epitope sites, we combined

them together to create a “unified” list of sites for influenza B – for each epitope site, we

combined together all of the B/Yamagata and B/Victoria residues. The combined residues

are shown together in Table D.4.

Table D.4: Unified epitope sites used for p-epitope distance for influenza B.
Epitope Residues

A 121 122 123 125 126 134 135 136 137 139 141 142 144 146 147 148 149 150
151 155 157 176 177

B 127 129 133 160 161 162 163 164 165 166 167 168 171 172 173 174 195 196
197 198 199 200 201 202 203 204 205 206 207 208 209

C 34 35 36 37 38 39 40 288 289 290 291 292 293 294 308 309 314 315 316 317
318 319 320 321 322 323 324 325 326 327

D 93 101 102 116 120 175 176 177 178 179 180 181 182 183 184 185 186 187
188 189 190 211 212 213 214 217 218 219 220 222 223 224 225 226 227 228
229 230 232 233 241 242 243 244 245 246 253 254 255 256 257 258

E 42 44 48 56 58 59 63 71 73 75 77 78 79 80 83 84 85 88 89 91 108 272 273
275 276 277 279 280

Once the residue sites are defined, we compute the normalized Hamming distance between

all five epitopes for the two sequences (that is, the proportion of amino acids that are different
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at the same site within each epitope only). This gives us five epitope distances for each pair

of sequences. Multiple methods have been suggested in the literature for reducing these five

distances into one measure of antigenic distance between each pair of strains.

• The dominant p-Epitope method was the original proposed method [30] and uses

the maximum normalized Hamming distance across the five epitope sites.

• The p-all-Epitope method uses the normalized Hamming distance across all epitope

sites (the total number of changes divided by the total number of epitope residues in

all sites) [31].

• An alternate definition of p-all-Epitope uses the mean of the epitope-specific nor-

malized Hamming distances [35]. We refer to this definition as p-epitope-Anderson

to avoid confusion.

• The p-2-Epitope method uses the fraction of substitutions in the two epitopes

with the highest number of substitutions [32], and could easily be generalized to

p-k-Epitope for k ∈ {2, 3, 4}.

When we say p-Epitope without an additional descriptor, we always refer to the

dominant p-Epitope distance.

Substitution matrix distances

While the p-Epitope distance has been correlated with vaccine effectiveness in the literature,

it uses a function of the normalized Hamming distance at each epitope. The Hamming

distance treats all substitutions equally, and basic protein biochemistry tells us that this is,

in general, untrue — some substitutions matter more than others because they can change

protein structure or function. In general, a leucine to isoleucine mutation will affect the

basic properties of a protein less than a leucine to glutamine mutation. Incorporating an

amino acid substitution matrix into our antigenic distance calculations can help to account

for the specific mutations between two sequences instead of treating all substitutions equally.

This can, for example, assign higher distances to sequences where a glycosylation site has

changed which might be an important factor in antigenic evolution [165].

To our knowledge, substitution matrix distances have not been validated against im-
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munological or epidemiological data in the same way that p-Epitope has, but they offer a

compelling alternative to the simple Hamming distance. However, the selection of an appro-

priate substitution matrix is a necessary component of calculating the antigenic distance in

this way. We have primarily used Grantham’s amino acid substitution index [151], but there

are many other amino acid substitution matrices (https://en.wikipedia.org/wiki/Amino_

acid_replacement) including those developed in a sequence alignment or phylogenetic con-

text (https://en.wikipedia.org/wiki/Substitution_matrix). The FLU substitution

model [173] was developed specifically for influenza evolution, but to our knowledge there is

no comparison of these different substitution matrices in the context of sequence distances.

Once we have chosen a suitable substitution matrix, calculating the distance is simple.

For every site in two aligned sequences, we look up the score for that substitution (0 if

there is no substitution) in the substitution matrix. We can then sum those scores to

get a substitution matrix difference, or take the mean to get a normalized substitution

matrix difference. We typically refer to these by the name of the substitution matrix, e.g.,

Grantham’s distance or the FLU substitution distance.

Cophenetic distance

The cophenetic distance is a generalized notion of distance based on dendrogram clustering.

In the specific case of protein sequences, we can build a phylogenetic tree (a specific type

of dendrogram or hierarchical clustering model) and extract the cophenetic distances from

the tree, which estimate the amount of total genetic divergence that has occurred between

two strains. Building a correct (or at least acceptable) phylogenetic tree is the difficult part;

once the tree is built with branch lengths, the cophenetic distance is well-defined and easy

to calculate.

In order to calculate the cophenetic distances for the UGAFluVac data, we built one

maximum likelihood tree for each subtype (that is, A(H1N1), A(H3N2), and all B strains

together). We used the R package phangorn [250, 251] to build unrooted trees with the

following specifications. We used the FLU + G(20) + I evolutionary model which assumes

substitution likelihoods follow the FLU substitution matrix [173], with a discrete gamma
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model for rate variation across sites that has 20 categories. The FLU matrix is time-reversible

and uses fixed substitution rates and amino acid frequencies estimated from a large dataset

of influenza sequences. The evolutionary rate at each site is drawn from the discrete gamma

distribution with a shape parameter estimated from the data and then discretized; the model

also estimates the proportion of invariant sites that are conserved and never change [252,

253]. We ran a preliminary test of multiple models (data not shown) and found that this

model performed well. Most models only use k = 4 or k = 8 for the discrete gamma model,

but a high k ensures a robust fit if the discrete gamma model assumption is violated [254].

We used Laguerre gamma quadrature [255] to estimate the gamma likelihood accurately

with a high number of categories, but we had a low number of sequences per tree so the

computational time was sufficiently fast. Finally, we implemented 100 stochastic search

rearrangements per tree similar to the method used by IQ-TREE [256].

We calculated the cophenetic distance matrix from each tree using the method from the

ape package [257].

Cartographic distance

Antigenic cartography uses multidimensional scaling of immunological assay data to estimate

distances in antigenic shape space between influenza strains [29]. Specifically, cartography

for influenza uses a matrix of data where one dimension (say, rows, without loss of generality)

indexes different serum samples, and the other dimension indicates influenza virus strains

which were used to conduct immunological assays. For a simple setup, suppose a study

recruits multiple individuals. Each of those individuals donates a serum sample, and each

serum sample is used for multiple hemagglutination inhibition (HAI) assays, each to a specific

strain of influenza. (In principle, any strain-specific assay can be used, but in practice, HAI

is by far the most common assay at time of writing.) An HAI assay for a specific strain of

influenza measures the amount of antibodies in an individual’s serum that are capable of

binding to the HA head domain of that influenza strain. We then arrange our data into a

matrix with individuals (or serum samples if individuals donated multiple serum samples)

indexing columns and influenza strains indexing rows. We use a statistical method like
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multidimensional scaling (MDS) [258] to reduce the data into k columns, typically two, so

we then have two dimensions associated with each influenza strain and we can plot the

reduced coordinates on a two-dimensional figure. Some results suggest that two is too few

dimensions [259], but it is the most common because plotting in two dimensions is easy.

We specifically used Racmacs [175] to build a two-dimensional cartographic map for each

subtype (A(H1N1), A(H3N2), and all B strains together) using post-vaccination HAI titers

from individuals who received standard dose influenza vaccines at a UGAFluVac study site

from the 2013/14 through 2017/18 influenza seasons. Beginning in 2018/19, UGAFluVac

decreased the size of the panel of viruses they were using for HAI assays, which limits our

ability to create a stable cartographic map, so we only used data from the seasons with a

large panel of historical strains. These maps created from post-vaccination human serum

have some differences from previously published cartographic maps on ferrets, but a detailed

investigation warrants its own publication (data not shown). Racmacs does not use the

simple MDS implemented that we used as an example: instead, Racmacs performs a matrix

expansion that allows us to place both serum samples and virus strains on the cartographic

map simultaneously, and randomly assigns starting values to missing and censored (below

the HAI limit of detection) titer values in the matrix. Racmacs then applies metric MDS to

the full distance table before using a stochastic L-BFGS optimization routine to reduce the

stress of the map. The stress of an MDS map measures how much pairwise distances have

changed in the dimension reduction step, so the stochastic optimization step improves the

quality of the map in terms of the original goal of MDS.

Since the stochastic optimization method used by Racmacs can be sensitive to initial

conditions [125], we created 25 cartographic maps (per subtype), and ran 100 L-BFGS

optimization rounds per map. Then, for each subtype, we selected the map with the overall

minimum stress across all initial conditions and optimization rounds. Finally, we extracted

the pairwise Euclidean distances between all of the viral strains in each of the fitted maps.
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Implementation

We implemented our pipeline for calculating antigenic distances in R 4.4.2 [72] using RStudio

2024.12.1+563 “Kousa Dogwood” Release [177]. We developed our pipeline using targets

[158] and ran it locally on a Windows 10 Enterprise 64-bit machine and on UGA’s sapelo2

computing cluster, which is a distributed computing cluster running CentOS Linux release

7.5 that uses Slurm [160, 161] to schedule jobs. We developed this writeup using Quarto

version 1.6.40 [260] and the flextable [81] and softbib [86] packages.

Where possible, we have specifically acknowledged the R packages we used throughout

our methods. However, for completeness we include a list of all R packages we explicitly

used in our code here: ape [257], BiocManager [261], crew [262], crew.cluster [263], dplyr

[264], forcats [265], here [77], janitor [266], knitr [83–85], parallelly [267], phangorn

[250, 251], purrr [268], Racmacs [175], readr [269], readxl [270], renv [78], rlang [271],

rmarkdown [272–274], stringdist [244], stringr [275], tarchetypes [276], tibble [277],

tidyr [278], and visNetwork [279]. Many of these packages are part of the tidyverse suite

of packages [73].

We have also implemented these methods in an R package called agdist (this link is to

an archived version at time of writing), as well as a pipeline that computes all distances

for the UGAFluVac study up to 2017/18 (also link to an archived version). At time of

writing, the agdist package can compute Hamming (and other distances from stringdist),

p-Epitope, Grantham, FLU substitution, and temporal distances; and can process tree

models and antigenic map objects to extract the distances from those. However, package

development is ongoing, and the latest package source or latest pipeline source may have

different or altered functionality.
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Appendix E

Extended methods for calculation of vaccine

evaluation metrics

In this document, we will use an example to show how our summary statistics are calculated.

Note that using our method requires adopting a Bayesian approach. At this time, it

is quite difficult to fit a frequentist model that simultaneously accounts for

censoring and incorporates random effects. Because the censoring correction seems to

be incredibly important for our results, we strongly recommend using the Bayesian approach.

However, if you must use a frequentist method for some reason, you could apply frequentist

mixed-effects models to our data and use bootstrapping procedures to get confidence intervals

for the statistics of interest. If you know of an R package which can fit mixed-effects models

with censored outcomes, please let us know so we can update these instructions.

Data description and format

The type of data that our methods apply to are panels of immunological assays to multiple

different influenza strains. The following example data are a completely randomized,

anonymized subset of the UGAFluVac HAI data from Ted Ross’s lab group. So our results

in this document might not make sense, but they are used for a calculation example, not to

draw any conclusions. Table E.1 shows the example dataset before preprocessing. We do

not include any pre-titer or demographic information in these calculations right now.
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We store the data in “long form” so that each immunological assay represents one

record in the dataset (i.e., one row of data). Before we can fit any models there are several

preprocessing steps that should be performed first.

First, post-vaccination titer should be transformed to the log-scale. We always normalize

the HAI titers based on the limit of detection (LoD) of 10 also, so that the values coded as

5 (below LoD) become 0 on the log scale. If x is the natural scale HAI titer, like the ones

shown in Table E.1, you can get the log-scale values y using the transformation

y = log2

(
x

5

)
.

The antigenic distance should be normalized. We use min-max normalization to ensure

that the range of the datapoints is transformed to [0, 1]. If d is a raw distance value like you

see in Table E.1, and dnorm is the normalized antigenic distance, the formula for min-max

normalization is

dnorm = d− min(d)
max(d) − min(d) .

Min-max normalization is a linear and monotonic transformation, so it preserves all of the

statistical properties we care about. Using min-max normalization on the antigenic distance

makes sure that AUC values using different antigenic distance methods and different assay

panels can be fairly compared against each other (as long as the outcome is HAI). Other

normalization methods like z-score standardization might be useful but we haven’t compared

them.

Table E.2 shows the same example data after processing.

We also recommend visualizing the data before proceeding to ensure there are no issues.

Since the HAI titers are integer-valued, we apply a small amount of random jitter to the

data before plotting. (If you use ggplot2 like we do, we recommend adding jitter manually

rather than using ggplot2’s built-in jitter functionality. As of the time of writing, there is

no way to have ggplot2’s built-in jitter apply the same jitter to both ends of a line and to

a point.)

As you can see in Figure E.1, the individual landscapes are extremely messy. This is due
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Table E.1: Example uncleaned dataset for analysis.
ID Assay Strain Post-vac HAI Ag. Distance

01 HK/68 5 5.37
01 PC/73 5 6.23
01 TX/77 5 6.29
01 MI/85 5 4.78
01 Sich/87 20 4.68
...

83 Uru/07 1280 0.50
83 Per/09 2560 0.35
83 Vic/11 2560 0.70
83 Tx/12 2560 0.87
83 HK/14 1280 0.00

Table E.2: Example pre-processed dataset for analysis.
ID Assay Strain Post-vac HAI Ag. Distance

01 HK/68 0 0.85
01 PC/73 0 0.99
01 TX/77 0 1.00
01 MI/85 0 0.76
01 Sich/87 2 0.74
...

83 Uru/07 8 0.08
83 Per/09 9 0.06
83 Vic/11 9 0.11
83 Tx/12 9 0.14
83 HK/14 8 0.00

in part to the inherent measurement error in HAI titers, along with the variance induced by

strain-specific effects (i.e. some strains tend to work better with HAI than others, regardless

of how many antibodies are in the serum sample). The messy appearance of these individual

landscapes is to be expected. That is why we need to fit a summary curve.

Coding censored data

We still have one more essential data cleaning step, however. We will fit all of our Bayesian

models using the accessible and performant brms package. However, brms requires us to

code our censored outcome in a specific way, which is documented in the brmsformula

information (https://paulbuerkner.com/brms/reference/brmsformula.html).

We know that our HAI data has both left-censored and interval-censored values, and no
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Figure E.1: Transformed titer vs. normalized antigenic distance. Each point represents
one HAI titer measurement and each line connects all of the measurements for a
particular subject.

completely observed (un-censored). Figure E.2 shows an example of the censoring mechanism

for HAI. Other immunological assays will have different mechanisms for censoring, so this

particular step only applies to HAI.

Coding censored data with mixed censoring types in brms format is a bit annoying.

Instead of having one posttiter variable, we need to have three variables in the data which

are called y, c, and y2 in the brms documentation. Since the data below the LoD are coded

as 0, but the actual LoD is 10 (or 1 in the transformed HAI data), we have to do some

cleanup.

1. The variable c is an indicator for the censoring status. We set it to "left" if our value

is left-censored, which occurs when the posttiter is 0, and we set it to "interval"
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Figure E.2: Censoring mechanisms that apply to the latent or underlying continuous
titers (left panel) during the measurement process to produce interval censored
observations (middle panel), which are binned continuous values, and left censored
observations (right panel), which are below the limit of detection.

otherwise, which is all of our other observations.

2. The variable y should be coded as the lower limit of detection (i.e., 1 on our transformed

scale) for left-censored observations, which is easy, because we already did that in the

HAI processing transformation. For interval-censored observations, y needs to be the

lower bound of the interval. Since HAI titers are always rounded down as part of the

data-generating mechanism, our outcome variable is already correctly coded, so we

don’t need to do anything else here.

3. The variable y2 represents the upper bound for an interval-censored observation, so

for left-censored observations it should be the same as y, but for interval-censored

observations, it should be y + 1.

If you use R and tidyverse, you can use this code for cleaning up the censored data. If

you prefer not to use tidyverse, the ifelse() statements in the code will still work, you

just need to make sure to use a function like transform() or with(), or manually specify

the dataset for each column every time, i.e. titer_data$posttiter if you aren’t using a

function that adds the column names to the scope. In this code, titer_data is the dataset

shown in Table E.2, and posttiter is the name of the column containing the HAI data.
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titer_data_cens <-

titer_data |>

dplyr::mutate(

c = ifelse(posttiter == 0, "left", "interval"),

y = ifelse(c == "left", 1, posttiter),

y2 = ifelse(c == "left", 1, posttiter + 1)

)

Table E.3 shows the dataset with the variables correctly encoded for the censoring

correction. Now that the data are processed and ready to use we can calculate the statistics

of interest.

Table E.3: The cleaned dataset with the new columns c, y, and y2 that must be
passed to brms to correctly apply the likelihood correction for censoring.

id assay_strain posttiter distance c y y2

1 HK/68 0 0.85 left 1 1
1 PC/73 0 0.99 left 1 1
1 TX/77 0 1 left 1 1
1 MI/85 0 0.76 left 1 1
1 Sich/87 2 0.74 interval 2 3
...

83 Uru/07 8 0.08 interval 8 9
83 Per/09 9 0.06 interval 9 10
83 Vic/11 9 0.11 interval 9 10
83 TX/12 9 0.14 interval 9 10
83 HK/14 8 0 interval 8 9

Mathematical notation

We’ll use the following notation in all of our math formulas.

• i = 1, . . . , n indexes study subjects, where i = 1 represents the first study subject and

n represents the sample size.

• s = 0, . . . S indexes the different assay strains. Here, s = 0 is the homologous strain,

and s = 1, . . . , S are the heterologous strains – the particular order of the strains

doesn’t matter.
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• ds is the antigenic distance between strain s and the vaccine strain. Thus, d0 = 0 for

the homologous strain and 0 < ds ≤ 1 for every other 0 < s ≤ S.

We also define seroprotection and seroconversion as follows:

Seroprotectedi,s = I
(
post-vaccination titeri,s ≥ 40

)
,

and

Seroconvertedi,s = I

(
post-vaccination titeri,s

pre-vaccination titeri,s

≥ 4
)

× I
(
Seroprotectedi,s

)
.

Note that on the log-scale, we have

Seroconvertedi,s = I

(
log

post-vaccination titeri,s

pre-vaccination titeri,s

≥ 2
)

×I
(
log post-vaccination titeri,s ≥ 3

)
.

Current statistics

First, we want to calculate the statistics that do not take antigenic distance into account.

The formulas without taking censoring into account are as follows. All are simple to

calculate and can be done in a spreadsheet or with basic R code.

1. Magnitude: measured by the geometric mean titer to the homologous strain:

GMT0 = exp
(

1
n

n∑
i=1

log titeri,s=0

)
.

2. Breadth: measured by the seroconversion rate across all strains. Note that since

seroconversion status is binary, taking the mean gives us a proportion:

SCR = 1
n

1
S

n∑
i=1

S∑
s=0

Seroconvertedij .

3. Strength: measured by the geometric mean titer across all of the observed strains:

GMT = exp
(

1
n

n∑
i=1

S∑
s=0

log titeri,s

)
.

273



However, when we take censoring into account we actually need to fit a model.

Homologous GMT

Note that when we fit a regression model that only has an intercept term, say

yi = α+ εi,

the estimate of α actually estimates ȳ, the mean of the response variable. Since we can

easily apply a censoring correction to a regression model, fitting an intercept-only regression

model provides an easy way to estimate the mean while correcting for censoring.

To estimate GMT0, we need to fit an intercept-only regression model to the post-

vaccination titer data for only the homologous strain. We can do this in brms while applying

a censoring correction like this (make sure to run library(brms) at the top of your R

script!). Note that you can set the seed to any integer number, but if you use our example

data, setting the seed will ensure our results can be reproduced without differences due

to random number generation. A full tutorial on the brms package is beyond the scope

of our instructions, but excellent tutorials can be found on the brms package website

(https://paulbuerkner.com/brms/). We will provide a brief explanation of the arguments

we chose.

titer_data_homologous <- dplyr::filter(titer_data_cens, distance == 0)

gmt_0_model <- brms::brm(

formula = y | cens(c, y2) ~ 1,

data = titer_data_homologous,

family = gaussian,

prior = c(

brms::prior(student_t(3, 0, 3), class = "Intercept"),

brms::prior(student_t(3, 0, 3), class = "sigma")

),

cores = 4,
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chains = 4,

warmup = 250,

iter = 1250,

backend = "cmdstanr",

seed = 213948

)

• formula: follows the brms syntax for censoring, which is y | cens(c, y2) as ex-

plained earlier. The ~ separates the response terms from the predictor terms, and

having 1 as the only predictor fits a regression model with only an intercept.

• data: the data we want to fit the model to goes here. All of the variables mentioned

in formula have to match a column in data.

• family: "gaussian" indicates that we want to fit a standard regression model where

the error term has a normal (or Gaussian) distribution.

• prior: since we are using a Bayesian model, we have to set priors. Setting priors can

be contentious, and in general you can use whichever priors you prefer. We advocate

for using generic student_t(3, 0, 3) priors for these models, because they allow

for large parameter estimates if they are supported by the data, but they prefer to

be skeptical and assume that parameters are small, similar to how we assume a null

hypothesis is true and try to falsify it in frequentist hypothesis testing.

• cores: if your computer has multiple cores (most modern computers have at least 4),

you can run multiple model chains in parallel to speed up the model fitting.

• chains: each “chain” of the model starts from a different initial condition and then

tries to sample from the posterior distribution. Running multiple chains and making

sure they agree provides evidence that we are sampling from the whole posterior

distribution. Most Bayesian statisticians recommend running at least 4 chains per

model.

• warmup: the number of samples the model should draw in the warmup step, when it

is calibrating. These will not be used for inference, but if you do not run enough it

will degrade the quality of your model fit.
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• iter: the number of total samples the model should draw (per chain), so the number

of post-warmup samples you will use for inference is iter - warmup.

• backend: we strongly recommend using the cmdstanr package here, because it is more

modern and has more tools available for use than the default rstan package. However,

if you have difficulties installing cmdstanr, you can use rstan instead, which is easier

to set up.

• seed: you have to specify this to make sure your results are exactly reproducible. It

can be any integer number, but different values will result in different random number

draws and thus slightly different results.

We should also check the model diagnostics by looking at the summary. Again, we will

not do an in-depth explanation of Bayesian model diagnostics here, but typically you want

all of the Rhat estimates to be 1.00 (sometimes 1.01 can be acceptable for quick checks),

and you want both bulk ESS and tail ESS to be above 500 (or above 1000 if you need

precise estimates of quantiles or variances).

summary(gmt_0_model)

Family: gaussian

Links: mu = identity; sigma = identity

Formula: y | cens(c, y2) ~ 1

Data: titer_data_homologous (Number of observations: 83)

Draws: 4 chains, each with iter = 1250; warmup = 250; thin = 1;

total post-warmup draws = 4000

Regression Coefficients:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 5.19 0.16 4.87 5.51 1.00 2291 2578

Further Distributional Parameters:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 1.49 0.13 1.27 1.77 1.00 2572 2569
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Draws were sampled using sample(hmc). For each parameter, Bulk_ESS

and Tail_ESS are effective sample size measures, and Rhat is the potential

scale reduction factor on split chains (at convergence, Rhat = 1).

We see that our model passes those quick diagnostic guidelines. We’ll skip these checks for

the rest of these instructions because I already checked the models, but whenever you fit your

bayesian models, you need to check these diagnostics. If any of the checks don’t pass, you

should try increasing warmup (above 500 typically is not useful, though) and iter (increase

this one as much as needed until you reach the diagnostic targets). More troubleshooting

advice is easy to find on the Stan discourse forum (https://discourse.mc-stan.org/).

Now with the arguments explain we can use this code to extract the posterior samples of

the intercept, which correspond to the posterior samples of the GMT. Then we can summarize

the posterior samples into a point estimate and credible interval for our metric. We typically

use the mean as the point estimate along with a 95% highest density continuous interval

(HDCI), implemented through tidybayes::mean_hdci(). You could also use the median

or the mode (also called the MAP or Maximum a posteriori estimate; this is actually what

we prefer but some reviewers find it too technically difficult) for the point estimate, and you

could also use an equal-tailed credible interval. The choice depends on personal preference

and interpretation.

gmt_0_samples <-

gmt_0_model |>

tidybayes::tidy_draws() |>

dplyr::select(b_Intercept)

tidybayes::mean_hdci(gmt_0_samples) |>

# This step back-transforms the log-scale estimates

dplyr::mutate(

dplyr::across(c("b_Intercept", ".lower", ".upper"), \(x) 5 * 2 ^ x

)

)

# A tibble: 1 x 6
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b_Intercept .lower .upper .width .point .interval

<dbl> <dbl> <dbl> <dbl> <chr> <chr>

1 183. 146. 227. 0.95 mean hdci

So our censoring-corrected estimate of the GMT0 metric is 183 with a 95% CI of

(146, 227).

Seroconversion rate

Now that we’ve estimated the GMT0, the other parameters will be simpler because almost

everything stays the same. Because all seroconversion measurements are binary (they are

either 0 for not seroconverted or 1 for seroconverted), several things are different about this

model.

First we need to calculate the seroconversion status, which is easy. However, you must

have the pre-vaccination titers. We have them for our example data, but if you don’t have

pre-vaccination data, you can only look at seroprotection, not seroconversion. Note that we

calculate the fold change (ratio of post-vaccination titer divided by pre-vaccination titer)

using a difference instead of a division because the log of a fraction is equal to the difference

of the logs. That is, log(a/b) = log(a) − log(b).

titer_data_sc <-

titer_data_cens |>

tibble::add_column(pretiter = log2(example_data_pretiters / 5)) |>

dplyr::mutate(

fold_change = posttiter - pretiter,

seroprotection = posttiter >= 3,

seroconversion = seroprotection * (fold_change >= 2)

)

We don’t have to correct for censoring, and we need to fit a logistic regression model

instead of a linear regression model. Even though we don’t apply censoring corrections here,

we choose to fit this with a bayesian model anyways to ensure our CI’s are comparable. In

the code for this model, notice that we only have one prior – because logistic regression
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models don’t have a σ2 residual variance parameter, we don’t need a prior for it.

scr_model <- brms::brm(

formula = seroconversion ~ 1,

data = titer_data_sc,

family = bernoulli("logit"),

prior = c(

brms::prior(student_t(3, 0, 3), class = "Intercept")

),

cores = 4,

chains = 4,

warmup = 250,

iter = 1250,

backend = "cmdstanr",

seed = 213948

)

scr_samples <-

scr_model |>

tidybayes::tidy_draws() |>

dplyr::select(b_Intercept)

tidybayes::mean_hdci(scr_samples)

# A tibble: 1 x 6

b_Intercept .lower .upper .width .point .interval

<dbl> <dbl> <dbl> <dbl> <chr> <chr>

1 -1.30 -1.43 -1.18 0.95 mean hdci

So we fit the model, and summarize the posterior samples of the intercept, and our

estimate of the seroconversion rate is 0.21 with a 95% CI of (0.19, 0.24).
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Overall GMT

Estimating the GMT is exactly the same as estimating the GMT0, except we use the entire

dataset instead of only the homologous strain measurements. We extract and summarize

the posterior samples of the intercept, exactly the same as the GMT0.

gmt_model <- brms::brm(

formula = y | cens(c, y2) ~ 1,

data = titer_data_cens,

family = gaussian,

prior = c(

brms::prior(student_t(3, 0, 3), class = "Intercept"),

brms::prior(student_t(3, 0, 3), class = "sigma")

),

cores = 4,

chains = 4,

warmup = 250,

iter = 1250,

backend = "cmdstanr",

seed = 213948

)

gmt_samples <-

gmt_model |>

tidybayes::tidy_draws() |>

dplyr::select(b_Intercept)

tidybayes::mean_hdci(gmt_samples) |>

dplyr::mutate(

dplyr::across(c("b_Intercept", ".lower", ".upper"), \(x) 5 * 2 ^ x

)

)

280



# A tibble: 1 x 6

b_Intercept .lower .upper .width .point .interval

<dbl> <dbl> <dbl> <dbl> <chr> <chr>

1 65.9 59.8 73.0 0.95 mean hdci

So our censoring-corrected estimate of the GMT metric is 66 with a 95% CI of (60, 73).

Novel metrics

Now, calculating the models with antigenic distance included is a bit more involved. The

first step is to fit our antibody landscape model.

Summary antibody landscape

The first step in calculating the antigenic-distance based metrics is to compute the summary

antibody landscape. This is a mathematical model that takes all of the individual antibody

landscapes from Figure E.1 as the input, and produces a study-level summary curve that

represents the average antibody landscape in the study sample.

We use a multilevel linear regression (AKA mixed-effects regression) model to construct

the summary antibody landscape. Letting the log postvaccination titers by y, the model is

as follows.
yi,s ∼ Normal

(
µi,s, σ

2
)

µi,s = β0 + b0,i + (β1 + b1,i) · dsb0,i

b1,i

 ∼ MVN
(
0⃗,Σb

)

We have a population level intercept and slope for distance, and each individual i also

gets their own intercept and slope, which are correlated and drawn from a distribution that

we can estimate. Because we are using a Bayesian model, we also have to specify priors. Here

we use priors that are sensible for most similar problems. The Student t priors are the same

as those we used in the simpler models. However, the multivariate normal distribution can

be problematic to parametrize, especially in terms of a prior for Σb, the covariance matrix
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of the random effects. The best solution, and the one used by brms, is to use a Cholesky

decomposition of the covariance matrix and apply a Lewandowski-Kurowicka-Joe prior to

the Cholesky factor of Σb. We recommend η = 2 as a sensible default for the covariance

Cholesky factor prior.

summary_landscape_model <-

brms::brm(

formula = y | cens(c, y2) ~ 1 + distance + (1 + distance | id),

data = titer_data_cens,

family = gaussian,

prior = c(

brms::prior(student_t(3, 0, 3), class = "Intercept"),

brms::prior(student_t(3, 0, 3), class = "b"),

brms::prior(student_t(3, 0, 3), class = "sd"),

brms::prior(student_t(3, 0, 3), class = "sigma"),

brms::prior(lkj(2), class = "cor")

),

cores = 4,

chains = 4,

warmup = 250,

iter = 1250,

backend = "cmdstanr",

seed = 213948

)

Note that in the above code, the formula part 1 + distance adds the study-level (fixed

effects) parameters for the intercept and the antigenic distance slope, and the part (1 +

distance | id) adds the individual-level (random effects) parameters for each individual

id.

Now that we fit the model (and I made sure to check that the diagnostics are sufficient

as mentioned earlier) we want to extract the summary antibody landscape fit. Because we

used a multilevel model, there are many ways to get predictions and uncertainty about the

best antibody landscape that summarizes the population level. However, we chose to use
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the global grand mean prediction and associated HDCI. When we talk about the grand

mean prediction, there is unfortunately no standard language used to describe these different

methods, other than getting lost in describing different parts of the model as marginal

or conditional. We adopt the terminology of Andrew Heiss, who provides an excellent

layman-friendly explanation of this issue in a blog post (https://www.andrewheiss.com/

blog/2021/11/10/ame-bayes-re-guide/).

Make sure to keep the entire set of posterior predictions, because the AUC and other land-

scape metrics are calculated from the posterior samples. (That’s summary_landscape_preds

in our code below.) Also note the variable h that we assign below – this is called the step

size for our interpolated predictions. Making h smaller will result in more fine-grained

predictions and thus more accurate metric calculations, but the storage space and memory

requirements for the posterior samples increase rapidly as h decreases. We have found that

h = 0.01 offers a good balance between memory usage and prediction accuracy.

h <- 0.01

summary_landscapes_preds <-

summary_landscape_model |>

tidybayes::epred_draws(

newdata = data.frame(distance = seq(0, 1, h)),

re_formula = NA

) |>

dplyr::ungroup()

summary_landscape_intervals <-

summary_landscapes_preds |>

dplyr::summarize(

tidybayes::mean_hdci(.epred),

.by = distance

)

Now we’ll take our previous plot of the individual antibody landscapes and add the
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summary antibody landscape on top (Figure E.3). We’re currently experimenting with

nonlinear methods for fitting the summary antibody landscape, but right now this linear

regression version appears to be doing okay. Now that we have the summary antibody

landscape posterior samples, we can calculate the metrics based on the posterior samples.

Now, all three of the landscape-based statistics can be expressed as functions of the posterior

predictions of the summary antibody landscape, so we’ll use that to calculate them.

Figure E.3: Individual antibody landscapes (lines) and observed HAI data (points),
with the study-level posterior mean summary landscape and 95% HDCI (blue line
and ribbon).

Magnitude

We measure the magnitude of the summary landscape as the intercept of the line – recall

that we only saved the posterior samples of the conditional predictions though, so we should
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express this as the average prediction when d = 0. That is,

Magnitude = 1
m

m∑
j=1

β̂0,j ,

where j = 1, . . . ,m indexes the posterior samples from the model. Estimating this from the

posterior samples is easy because all we have to do is average the predictions where d = 0.

summary_landscapes_preds |>

dplyr::filter(distance == 0) |>

dplyr::summarize(tidybayes::mean_hdci(.epred))

# A tibble: 1 x 6

y ymin ymax .width .point .interval

<dbl> <dbl> <dbl> <dbl> <chr> <chr>

1 5.92 5.57 6.28 0.95 mean hdci

So we see that our estimate for the magnitude is 5.92 with a credible interval of (5.57, 6.28).

We can also backtransform this one to HAI units to compare it to the GMT0 estimate.

5 * 2 ^ c(5.92, 5.57, 6.28)

[1] 302.7384 237.5238 388.5424

As you can see, this is actually larger than the GMT0 estimate – accounting for the

antigenic distance allows us to get a better estimate of the average homologous response.

Breadth

Our estimate of the breadth is the intersection between the horizontal line y = 3 (or y = 40

on the natural scale of the HAI titers) and the summary antibody landscape. This estimates

the antigenic distance where we expect post-vaccination HAI titers to drop below the clinical

protection threshold. The first thing we need to do is for each sample find the predicted

values that are closest to 3. Then we get the distance value associated with that prediction,

and that is our measurement of the breadth.

summary_landscapes_preds |>
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# minimizing |prediction - 3| over the draws will tell us which x-value is

# closest to a y-value of 3.

dplyr::mutate(

diff_from_threshold = abs(.epred - 3)

) |>

dplyr::summarize(

# For each posterior sample (aka posterior draw) of the summary

landscape,

# get the predicted y-value that is closest to 3.

closest = min(diff_from_threshold),

# Now get the x-value that’s associated with that y-value -- this

is the

# estimate for that posterior draw.

breadth = distance[which.min(diff_from_threshold)],

.by = .draw

) |>

# Summarize the posterior samples into a point estimate and CI

dplyr::summarize(

tidybayes::mean_hdci(breadth)

)

# A tibble: 1 x 6

y ymin ymax .width .point .interval

<dbl> <dbl> <dbl> <dbl> <chr> <chr>

1 0.613 0.56 0.66 0.95 mean hdci

So our estimate of the breadth for our example data is 0.61 with a 95% CI of (0.56, 0.66).

Strength

The last metric we need to calculate is the AUC. Because we’re using a linear regression

model, we could actually write out a formula to easily calculate the AUC from the intercept

and slope samples. But because we want to generalize to potentially more complicated

models, we need to do some numeric calculations (this is true for the breadth estimate as
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well).

Since we already have the interpolated posterior samples, we can calculate the nu-

meric AUC using any of the existing methods for numerical integration (see, e.g., https:

//en.wikipedia.org/wiki/Numerical_integration). The computationally fastest and

simplest to implement is the trapezoidal rule, which has a computationally efficient imple-

mentation in the function pracma::trapz(). All we have to do is put in the interpolated

distance values and their corresponding posterior predictions and this function estimates

the area under the curve for us — we repeat this for each posterior sample of the summary

landscape to get a credible interval.

summary_landscapes_preds |>

# Calculate the AUC for each posterior sample of the line

dplyr::summarize(

AUC = pracma::trapz(x = distance, y = .epred),

.by = .draw

) |>

# And summarize it into a point estimate and interval

dplyr::summarise(

tidybayes::mean_hdci(AUC)

)

So our estimate for the AUC for the example data is 3.54 with a 95% CI of (3.31, 3.78).

Normally, the units for the AUC estimate are a product of the units for the x-variable

and the units for the y-variable. But since we min-max scaled the x-variable, it is actually

unitless — that means we can interpret the AUC as an average log-titer measurement over

the antigenic distances. So, we can backtransform the AUC to the natural HAI scale to get

a better understanding.

5 * 2 ^ c(3.54, 3.31, 3.78)

These numbers are on the same order of magnitude as the GMT estimates, but a bit

smaller – it’s still hard to interpret this number, but it can be easily used for comparison

across multiple vaccines, panels of historical viruses, or subsamples.
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Appendix F

Comparing neighbor-joining antigenic distance

trees with phylogenetic trees

Project summary: Developing universal influenza vaccines will require improved under-

standing of how influenza variants differ from each other. We find that temporal distances

perform poorly overall, but even sequence distances which match phylogenetic distances well

do not match cartographic distances based on actual immune response data.

Introduction

Influenza A virus causes seasonal epidemics worldwide, primarily driven by continual

evolution of the virus under selective pressure by host immunity [1]. Development of a

universal influenza vaccine which can protect against novel strains of influenza has many

challenges, including surveillance of new genomic variants and predicting which will be

successful [8]. Statistical modeling and phylodynamic approaches are crucial tools in the

development of a more broadly-protective influenza vaccine, but these methods rely on

understanding how different each genomic variant of influenza actually is from its predecessors

[280].

Many different metrics for assessing the antigenic difference between two influenza strains

currently exist, including phylogenetic methods [281], sequence distances [30, 35], and

antigenic cartography, which is based on observed immunological data [44]. To understand
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the agreement in different distance measurements, we obtained data from a cohort study that

has been previously described [61, 63]. Using data from this study, we compared antigenic

cartography and sequence methods to phylogenetic methods.

Study methodology

Briefly, our study data [61, 63] consisted of volunteers enrolled at three different study sites

from 2013 – 2019 who received a FluZone (Sanofi Pasteur) vaccine, and gave pre-vaccination

and post-vaccination (21 or 28 day) serum samples. The serum samples were used for

HAI assays against a panel of historical viruses. We computed the Hamming distance [35],

p-Epitope distance [30], and the absolute difference in the year of isolation of strains [45] from

the sequences of all influenza viruses used for HAI assays, and used Racmacs to compute

antigenic cartography distances from the HAI data [175]. All of our analyses were conducted

separately for H1N1 and H3N2 strains.

In order to compare with phylogenetic methods, we first computed a multiple sequence

alignment (MSA) using the MUSCLE algorithm [239]. The Hamming and p-Epitope distances

were computed based on this MSA. We had 18 H1N1 strains and 21 H3N2 strains in total.

We then used both alignments to construct maximum likelihood (ML) unrooted phylogenetic

trees using the FLU amino acid substitution model. We extracted the cophenetic distances

between taxa from the ML trees, and compared these distances to our other distance metrics

(temporal, Hamming, p-Epitope, and cartography) using Pearson’s correlation.

For each of the four distance metrics, we also built distance-based trees using neighbor

joining. To compare the methods, we calculated the likelihood of each of the distance-based

trees, then estimated the Shimodaira-Hasegawa test statistic to compare each of the distance

trees to the ML tree. Finally, we computed the Robinson-Foulds distance between each

set of trees. Our analyses were implemented with R version 4.3.3 [72] using the packages

phangorn [250] and msa [238].
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Study Results

We found that all four distance metrics were strongly correlated with cophenetic tree distance

for H3N2, but for H1N1, only the Hamming and p-Epitope distances had a strong correlation

with the tree distance (Figure F.1). H1N1 has two clusters, 2009 pandemic-like (pdm) and

non-pdm. The pdm-like strains are genetically more similar to the 1918 pandemic strain

than to most strains which circulated from 1950 – 2009, so the temporal distance correlation

is weak, as expected.

The cartographic distance correlation for H1N1 is also moderate, indicating that the

evolutionary pattern of H1N1 strains does not necessarily explain variation in observed

immune responses. For H3N2, the cartographic correlation was the lowest, and the two

distances become less correlated as the distance values become larger. For closely related

H3N2 strains the ability of the tree distance to predict differences in immune response

appears to attenuate as strains drift further away.

The ML trees for both subtypes were able to reconstruct the patterns we expect for H1N1

and H3N2 influenza (Figure F.2). The H1N1 strains form two clades, one pdm-like clade

which contains SC/18 (the 1918 pandemic strain), NJ/76 swine influenza, and the modern

pdm-like strains. The other clade contains the H1N1 strains which circulated between

the 1918 pandemic and the 2009 pandemic. The H3N2 strains tend to follow a similar

ladder-like pattern, beginning with HK/68 and primarily separating by temporal distance,

which corroborates the correlations between temporal and cophenetic distance (Figure F.1).

For brevity, we do not show all 8 of the distance-based neighbor joining phylogenies.

However, we conducted SH tests and computed the RF distance between each of the distance-

based trees and the ML tree for the same subtype (Table F.1). For the H1N1 strains, the

temporal distance and cartographic distance trees were different from the maximum likelihood

tree based on the SH test, and these trees also had a much higher RF distance from the ML

tree than the Hamming and p-Epitope distance trees. For the H3N2 strains, the p-Epitope

distance tree was different from the ML tree, and the cartographic tree was extremely

different from the ML tree. The ML tree, temporal distance, and Hamming distance trees
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Figure F.1: Scatterplots showing the cophenetic tree distance on the x-axis and the
other distance metrics we calculated on the y-axes. The plots on the left are for H1N1
strains and the plots on the right are for H3N2 strains. The box shows Pearson’s
correlation (R) along with a 95% Wald-type confidence interval.

Figure F.2: Maximum likelihood phylogenetic trees for H1N1 strains (left) and H3N2
strains (right). Both trees are rooted at the midpoint for display purposes, but the
root was not optimized during fitting.
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were all similar. All of the changes in log likelihood for the H3N2 trees were smaller in

magnitude than for H1N1. Notably, the temporal distance tree had a much lower likelihood

than the ML model for H1N1.

Table F.1: Log likelihood of all constructed trees (ℓ), along with the decrease in log
likelihood (∆ℓ) from the ML model, the p-value of the Shimodaira-Hasegawa test (pSH ;
evaluated on one million bootstrap resamples), and the Robinson-Foulds distance from
the ML tree (dRF ).

Tree ℓ ∆ℓ pSH dRF

H1N1 ML (baseline) -3468.8 0.0 N/A 0
Temporal -5708.2 2239.4 <0.001 26
Hamming -3469.4 0.6 0.875 2
p-Epitope -3543.3 74.5 0.299 8
Cartographic -3980.1 511.3 <0.001 24

H3N2 ML (baseline) -3065.6 0.0 N/A 0
Temporal -3102.7 37.2 0.270 8
Hamming -3110.2 44.6 0.214 4
p-Epitope -3171.3 105.7 0.014 12
Cartographic -3442.2 376.6 <0.001 30

Conclusion

Many papers still use the temporal method for calculating antigenic distance. However,

for H1N1, the temporal distance completely fails to reconstruct any genetic changes. For

H3N2, the temporal distance was similar to the ML distance. The Hamming and p-Epitope

distances were similar for both subtypes.

The cartographic distance tree was substantially different from the ML tree for both

H1N1 and H3N2. Since cartographic distance is based on observed immune response data,

this implies that the hemagglutinin sequence is not the only factor in determining individual

immune responses. Our sample is likely not representative, so similar analyses should be

repeated on other cohorts. Performing similar analyses using neuraminidase sequence and

inhibition data would complete our findings well.

Overall we find that temporal methods should be avoided and are not suitable for

calculating evolutionary distance between influenza strains. Additionally, the genetic distance
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between influenza strains does not match the cartographic difference from observed immune

response data, indicating that genetic and antigenic evolution do not always agree.
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