CRAFTING COMMITMENT: HOW STATES USE INSTITUTIONALIZATION AND PRECISION TO MANAGE

ABANDONMENT AND ENTRAPMENT WITHIN MILITARY ALLIANCES

by

PHILIP LEPPO

(Under the Direction of Andrew Owsiak)

ABSTRACT

Military alliances are an essential cornerstone of the international system. However, scholarship often overlooks how states strategically manage the alliance design process to address their core concerns regarding abandonment and entrapment. This dissertation argues that the states manipulate the level of precision regarding activation conditions and the degree of institutionalization of military integration, which combine to define the depth of the alliance agreement to mitigate the risks of abandonment and entrapment. In Chapter 1, using a large-n analysis of bilateral defensive military alliances post-WWII, I assess how state reliability influences alliance design. My results indicate the presence of a non-linear relationship: institutionalization initially decreases as weak state reliability increases before increasing. In contrast, precision increases as strong state reliability increases before tapering off. In contrast to expectations, deeper alliances correlated with a higher likelihood of conflict, suggesting states may form alliances in anticipation of conflict or that deeper agreements embolden more risky behavior by allies. In Chapter 2, I employ a survey experiment of UGA students to evaluate how variation in threat level and alliance precision influence the perception of reputational damage from violating an alliance and alliance commitment. My results indicate that precise agreement increases the expected reputational damage and the feelings of alliance commitment. However, if weaker alliance partners seek to renegotiate the terms of the alliance agreement, feelings of alliance commitment abate. In Chapter 3, I survey South Korean citizens to assess how variation in alliance partner reliability impacts respondent attitudes regarding alliance security and renegotiation efforts. I find that unreliable partners reduce trust in the agreement and increase South Korean citizens' desire to lessen the degree of military integration between allies. Together, these studies demonstrate how variation in state reliability influences how prospective allies approach the alliance negotiation process, leveraging the dimensions of both precision and institutionalization to address their key concerns.

INDEX WORDS: Alliances, Abandonment, Entrapment, Precision, Institutionalization, Alliance Politics, Alliance Formation

CRAFTING COMMITMENT: HOW STATES USE INSTITUTIONALIZATION AND PRECISION TO MANAGE ABANDONMENT AND ENTRAPMENT WITHIN MILITARY ALLIANCES

by

PHILIP LEPPO

B.S., United States Air Force Academy, 2012M.S., Purdue University, 2016M.A., Troy University, 2021

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2025

CRAFTING COMMITMENT: HOW STATES USE PRECISION AND INSTITUTIONALIZATION TO MANAGE ABANDONMENT AND ENTRAPMENT WITHIN MILITARY ALLIANCES

by

PHILIP LEPPO

Major Professor: Committee: Andrew Owsiak Jeffrey Berejikian Ryan Powers

Electronic Version Approved:

Ron Walcott Vice Provost for Graduate Education and Dean of the Graduate School The University of Georgia August 2025

DEDICATION

To Sylvia, who made all of this possible. Her constant support gave me the strength and perseverance to achieve this goal and I could not have done this without her. To Noah, Elijah, and Levi, your daily laughs and smiles constantly lifted my spirits whenever I felt overwhelmed and I am so proud of how you have grown and how amazing each of you have been during this whole journey.

ACKNOWLEDGMENTS

I would like to thank Andy Owsiak for all the help and mentorship he has provided through this project. I could not have asked for a better person to help guide me along the way and without his support, I would never have made it through this process. Additionally, I want to thank Jeff Berejekian and Ryan Powers for their insights and feedback during this project. Jeff's perspectives and feedback were invaluable in scaling this project and helping me to put forward the best dissertation I could. Ryan's expertise was critical in helping me to develop the survey experiments that formed a crucial part of my project. Without the mentorship and guidance from all three of these individuals, this project would never have been possible.

TABLE OF CONTENTS

		Page
LI	ST OF TABLES	. viii
LI	ST OF FIGURES	ix
IN	TRODUCTION	1
CF	HAPTER	
1	The Cost of Commitment: How State Reliability Shapes Alliance Depth & Deterrence	6
	Introduction	8
	Literature Review	10
	Theoretical Argument	12
	Research Design	19
	Results	27
	Conclusion	36
	Bibliography	38
2	Reading Between the Lines: How Precision Impacts Perceptions of Reputation & Commitment within	
	Asymmetric Alliances	44
	Introduction	46
	Literature Review	47
	Theoretical Argument	51
	Research Design	53
	Results	56
	Conclusion	61
	Bibliography	64
3	When Trust Falters: Measuring the Strategic Impact of Weak State Reliability Perceptions in Asymmetric	
	Alliances	68
	Introduction	70

	Literature Review	Ĺ
	Theoretical Argument	3
	Research Design	5
	Results)
	Conclusion90)
	Bibliography93	3
CON	CLUSION97	7
APP	ENDICES	
	Appendix A	2
	Appendix B	ó
	Appendix C	3

LIST OF TABLES

Page	;
Table 1.1: Typology of Alliance Agreements	í
Table 1.2: Summary Statistics for Reliability Score Components)
Table 1.3: Alliance Agreement Institutionalization Tiers	,
Table 1.4: Institutionalization Score Ex: Egypt–Saudi Arabia (1955–1962)	,
Table 1.5: Alliance Agreement Precision Tiers	Ļ
Table 1.6: Precision Score Ex: United Kingdom–Portugal (1943–1946)	Ļ
Table 1.7: Effect of State Reliability on Alliance Design Dimensions	3
Table 2.1: Treatment & Independent Effects on Reputation & Commitment	1
Table 2.2: Effect of Renegotiation Pressure on Alliance Obligations)
Table 3.1: Summary of Hypotheses and Associated Survey Items	
Table 3.2: Distribution of Responses for Key Dependent Variables	ļ
Table 3.3: Trust Model Results	Ļ
Table 3.4: National Self-Reliance Model Results	j
Table 3.5: Alliance Security and Renegotiation Model Results	,
Table 3.6: Institutionalization Model Results	3
Table 3.7: Alliance Precision Model Results)

LIST OF FIGURES

Page
Figure 1.1: Predicted Probability: Precision
Figure 1.2: Predicted Probability: Institutionalization
Figure 1.3: Predicted Probability: Depth
Figure 1.4: Heckman Model: Coefficients Plot
Figure 1.5: Heckman Model: Active Alliance Predicted Probability
Figure 1.6: Heckman Model: Conflict Occurrence Predicted Probability
Figure 2.1: Predicted Agreement: Reputational Harm & Alliance Commitment (Treatment Assignment)59
Figure 2.2: Predicted Agreement: Reputational Harm & Alliance Commitment (Threat & Precision)60
Figure 2.3: Predicted Agreement: Alliance Obligation
Figure 3.1: Predicted Agreement: Trust
Figure 3.2: Predicted Agreement: National Self-Reliance
Figure 3.3: Predicted Agreement: Security and Renegotiation
Figure 3.4: Predicted Agreement: Institutionalization
Figure 3.5: Predicted Agreement: Alliance Precision

INTRODUCTION

In 1951, the United States and the Philippines formalized their military relationship through the Mutual Defense Treaty (MDT). As the United States sought to stabilize the region following the end of World War II and establish a firm sphere of influence during the early phases of the Cold War, the Philippines provided a strategically important position within the Pacific. The newly independent nation provided access to military bases and staging locations, which enabled the US to project its forces into the region, especially in South and South-East Asia, which US officials highlighted as particularly vulnerable to communist expansion due to its proximity to China¹ Despite its strategic importance, the United States appeared reluctant to commit to an agreement with the Philippines deeply, wary of its domestic instability and ongoing regional tensions (US Department of State 1950, Doc. 85).

To address this concern, the US specifically sought to create a simplified treaty that provided vague conditional support but also granted the US greater institutional control over the forces in the region.² For the Philippines, however, US pursuit of a vaguer agreement represented a grave security vulnerability. Without the capacity to adequately defend itself and being surrounded by rising regional threats, the US alliance was more than an agreement of strategic convenience; it was one of existential importance. To this end, the Philippine government repeatedly pressed for greater, more precise commitments from the US, much like those granted to Australia and New Zealand³

On a surface level, the strategic logic demonstrated through the US-Philippine MDT reflects a longstanding perspective of alliance within international relations. Traditionally, these agreements serve as a means for states to aggregate their power to deter or defeat a common threat, created not out of trust between states but to address a strategic challenge (Morgenthau 1948; Liska 1962; Waltz 1979). As threats emerge, states can either balance against this power or bandwagon with the power to maximize security (Walt 1987; Schweller 1994).

Alliances also serve to advance the policy preferences of its members. Strong states do not offer security guarantees solely for altruistic purposes or mutual interests. Instead, these states seek to extract some beneficial concession from weaker partners (Morrow 1991; Lake 1999; 2009; Palmer and Morgan 2006; Johnson 2015). These concessions can take the form of basing rights, foreign policy alignment, material resource access, etc. In this way, alliances function as vehicles for capability aggregation and as a means to exchange autonomy concessions for security gains. In this light, alliances represent a transactional relationship, serving a capability aggregation function and a means of strategic bargaining. In essence, alliances are not free or merely the product of interest alignment. Instead, they are negotiated

¹US Department of State. (1950). Foreign relations of the United States, 1950, Volume I: National security affairs; foreign economic policy (Doc. 85)

²US Department of State. (1951). Foreign relations of the United States, 1951, Volume VI, Part 1: Asia and the Pacific (Doc. 88).

³US Department of State. (1951). Foreign relations of the United States, 1951, Volume VI, Part 1: Asia and the Pacific (Doc. 95).

relationships shaped by the preferences and calculated concessions of the states within them.

Concessions and guarantees are not the only costs states incur when entering alliance agreements. Concerns related to abandonment—when states fail to fulfill their alliance obligations— and entrapment —when states become embroiled in an undesired or unintended conflict due to alliance obligations—shape alliance relations (Snyder 1984, 1997). The tension between these competing fears forms the core of the alliance security dilemma, and unraveling how states mitigate the two represents a central focus of alliance design and durability research (Walt 1997; Morrow 2000; Mattes 2012). Yet, much of the scholarship centers on exploring how strong states mitigate entrapment concerns through vague guarantees (Kim 2011), imprecise language (Fjelstul and Reiter 2019), or post-alliance messaging (Reiter and Greenhill 2024). This focus results in framing alliance formation as a process dominated by strong state preferences, relegating weak states to passive participants rather than strategic actors within the negotiation. If states can eliminate entrapment risks, the alliance security dilemma tilts heavily towards abandonment, a more pressing and salient concern for weak states. Ultimately, this imbalance presents a fundamental puzzle: If strong states can minimize or even eliminate the risk of entrapment, then why would weak states concede autonomy in exchange for non-binding security guarantees?

A deeper understanding of the MDT negotiation process provides a historical counterpoint to this narrative. As the Philippines initially pressed for a formal agreement, the US exhibited noticeable hesitation. A prior security agreement, established in 1947, provided the US with adequate security support, specifically basing access, and the Joint Chiefs saw little benefit in crafting a more precise agreement.⁴ Despite US reluctance, the Philippines effectively leveraged policy concessions, notably dropping demands for extracting greater reparations from the Japanese, to gain additional security guarantees from the US. Although the MDT did not reflect the ideal security guarantee preferred by the Philippine government, its existence demonstrates an important strategic result: a weak state, constrained by power asymmetries, managed to extract a more precise security agreement, despite initial strong state reluctance. The creation of the MDT challenges the implicit assumption of weak-state passivity within the alliance formation process.

The Philippine case underscores the central dilemma within alliance politics: weak states fear abandonment and seek more precise commitments, while strong states, cautious of entrapment, prefer vague agreements and greater institutional control. This tension between obligation and flexibility lies at the heart of this dissertation, which investigates how states can navigate the alliance formation process to address these competing fears. In particular, I focus on two central alliance design mechanisms—precision and institutionalization— and how states leverage these tools in response to variations in prospective ally reliability. Within my dissertation, I defined precision as "the extent to which the language and conditions within the agreement constrain the range of acceptable interpretations of a state's obligations" and institutionalization as "the rules, regulations, and structures incorporated into an alliance agreement"

⁴US Department of State. (1946). Foreign relations of the United States, 1946, Volume VIII: The Far East (p. 876). US Department of State. (1951). Foreign Relations of the United States, 1951, Volume VI, Part 1: Asia and the Pacific (Doc. 98.

(See Chapter One for further discussion and coding criteria). My central theoretical argument is that states use reliability perceptions to anticipate abandonment and entrapment risks. Through a dynamic negotiation process, they vary the dimensions of precision and institutionalization to procure an acceptable alliance agreement. Across three empirical chapters, I examine how my theoretical argument influences alliance depth and deterrence (Chapter 1), the effectiveness of precision as a mechanism to enhance strong state commitment (Chapter 2), and how changes in strong state reliability impact weak state attitudes towards alliance terms and preferences for renegotiation efforts (Chapter 3).

Within my first chapter, I examine how perceptions of partner reliability influence the institutional design of bilateral asymmetrical alliance agreements. I identify four components constituting reliability: prior alliance violations, peacefulness, political stability, and political similarity. From these components, states develop a sense of the level of abandonment and entrapment risk a prospective ally represents. From this, states adjust their preferred levels of precision and institutionalization. I theorize that when a weak state perceives a strong state as unreliable and thus represents a greater abandonment risk, it will seek to increase the precision within the alliance agreement to bind the strong state more effectively. Conversely, if the strong state perceives the weak state as unreliable—and a greater entrapment risk—it will seek greater institutionalization to enhance its influence over the weaker state. Combined, these two dimensions represent what I term the depth of the alliance agreement.

To evaluate my hypothesized relationships, I first conduct a series of OLS regression models to assess the effect of weak state reliability on institutionalization, strong state reliability on precision, and the reliability of both states on depth. While I anticipated a linear relationship between each of these variables, the results indicate that the dynamic is more complex. Concerning weak state reliability, I found that as weak state reliability increases, institutionalization initially decreases. As the weak state becomes more reliable, however, this effect flattens before decreasing. Conversely, strong state reliability and institutionalization exhibit the opposite relationship, with precision increasing initially as reliability increases before flattening and decreasing.

Next, I used a two-stage Heckman Selection Model to assess the impact of reliability on alliance formation (selection stage) and the effect of alliance depth on deterrence (outcome stage). I theorized that greater reliability would correspond with a greater likelihood of two states sharing an active alliance agreement in a given year. Additionally, I anticipated that greater alliance depth would signal a stronger relationship between the alliance partners, subsequently increasing the deterrent effect of the alliance. This increased deterrent would decrease the probability of the state-dyad experiencing a militarized dispute in a given year. Although the results of the selection stage aligned with my expectations, with greater reliability corresponding with an increased likelihood of alliance agreement, the impact of alliance depth corresponded with an increased likelihood of conflict, suggesting that under certain conditions, deeper alliance agreements may attract conflict.

My second chapter uses a two-stage survey experiment of University of Georgia undergraduate students to examine the effectiveness of precise alliance agreements in enhancing expectations or reputational harm and alliance

commitment. I hypothesized that increased precision enhances respondent expectations of reputational costs for reneging on alliance agreements, making abandonment more costly by extension. In the first stage of the experiment, I manipulated both the level of precision and external threat faced by the alliance. Following the treatment assignment, each respondent provided their level of agreement with two statements: 1) "If the US failed to support the alliance partner in this scenario, it would harm the US's international reputation" and 2) "In the event of a conflict, the US must fulfill this alliance obligation." In support of my hypotheses, I found that increased external threat and precision increase respondents 'expectations related to reputational harm, but only precision increases respondent attitudes concerning alliance commitment.

For the second stage, I assigned respondents to a secondary treatment, where I varied whether the weak state in the alliance pressed for greater security autonomy and decreased military integration or preferred to maintain the alliance agreement status quo. I theorized that when the weak state sought to alter the terms of the alliance agreement, this would upset the balance of the security-autonomy tradeoff and undermine the strong state's feelings of commitment to the alliance. In line with my theory, these renegotiation efforts reduced the respondent's sense of obligation to the weaker state. This effect, however, is mitigated to some degree when the original treatment scenario characterized the alliance as more precise.

In my third chapter, I explore how changes in strong state reliability influence weak state attitudes and preferences related to the alliance agreement. Using an international survey of South Korean citizens, I vary whether the strong state's newly elected leader expresses pro-alliance sentiments (reliable), anti-alliance sentiments (unreliable), or represents an incumbent victory (control). Following the treatment assignment, the respondents provided their level of agreement with a series of statements. These statements dealt with five themes: trust, national self-reliance, alliance security and renegotiation, institutionalization, and precision. Regarding trust, as hypothesized, I found that an unreliable leader decreased the respondent's trust in both the Strong State and its capacity as an ally. Additionally, in line with my hypothesis, an unreliable leader increased agreement that the weak state should decrease its military integration with the strong state, that the alliance agreement did not keep the weak state secure, and that it should pursue renegotiation efforts.

For institutionalization and precision, I asked respondents if renegotiating certain conditions of the alliance agreement improved weak state security. I hypothesized that when the leader represented an unreliable partner, respondents would favor increasing the precision of geographical and support activation terms within the alliance agreement and decreasing the strong state access to basing and critical infrastructure, such as air, land, and sea resources. As expected, respondents favored decreasing the level of institutionalization within the alliance agreement. However, in contrast to my expectations, they disagreed with increasing the precision level. These findings suggest that respondents anticipate abandonment from an unreliable ally, regardless of the terms of the alliance agreement.

Together, these three chapters present a multi-method investigation of how states manipulate the dimensions

of precision and institutionalization within the alliance formation process to address competing abandonment and entrapment concerns. Although prior work recognizes the alliance security dilemma, this dissertation expands on this research by examining state reliability informs state expectations regarding abandonment and entrapment and how the resultant agreements influence the incident of militarized conflict (Chapter 1). Additionally, this research demonstrates the effectiveness of precision as a means for enhancing expected reputational costs from alliance violations and strong state alliance commitment (Chapter 2). Lastly, this work highlights how unreliability can directly influence attitudes and perceptions of alliance trust, national self-reliance, and renegotiation preferences.

CHAPTER 1

⁵Leppo, Philip. To be submitted to the Journal of Strategic Studies

Abstract

State reliability shapes perceptions of abandonment and entrapment risks, influencing how states structure agreements. To address these concerns, states mitigate abandonment and entrapment risks through variation in institutionalization and precision, with the results being the depth of the alliance agreement. To test this argument, I conduct a series of OLS regression models. The findings suggest a nuanced, non-linear relationship between reliability, institutionalization, and precision. At lower levels, increasing weak state reliability correlates with decreasing levels of institutionalization; however, the effect reverses at higher levels of reliability. Interestingly enough, this dynamic is inverted for strong states, with alliance agreements characterized by increased precision until reaching higher levels of reliability. Concerning conflict deterrence, I find results contradictory to expectations: deeper alliances correlate with a higher likelihood of conflict, which suggests deeper agreements may form in anticipation of conflict or embolden conflict-prone behavior, challenging assumptions that depth inherently promotes stability.

Introduction

In the months following President Eisenhower's inauguration, armistice discussions aimed at bringing the Korean War to a close commenced. During the summer of that year, representatives from the United Nations (UN) Command, the North Korean Army, and China's People's Volunteer Army signed an agreement announcing a cease-fire between the combatants and dividing the Korean Peninsula along the 38th Parallel (Garamone 2023). Only South Korean President Syngman Rhee refused to sign the armistice agreement, instead pressing for additional support from the UN to continue the fight and reclaim the entirety of the peninsula (Republic of Korea 1953). In response to the agreement, President Rhee unilaterally released thousands of North Korean prisoners of war— an act which alarmed the US and underlined the rising tensions between the US and its wartime ally (Central Intelligence Agency 1953).

With Cold War relations at a feverish level, the US sought to retain its influence in the region and ensure South Korea remained an effective buffer against communist China and Russia. To address these strategic interests, the US and South Korea negotiated how best to formalize the alliance relationship. President Rhee, fearing possible abandonment by the United States, pressed for strong security guarantees, seeking the inclusion of an automatic activation condition in the event of a conflict, a permanent commitment to long-term US troop presence, and an agreement that the US would support offensive reunification efforts by South Korea (US Department of State 1949, doc 237). The US, in contrast, citing grave concerns about Rhee's unreliable behavior, sought to limit its commitment to South Korea and preferred an agreement that included vaguer security guarantees and greater institutional control over forces in the area (US Department of State 1952, doc 178; US Department of State 1952, doc 285).

The fraught negotiation between the United States and South Korea highlights the central questions explored within this study, namely: How does state reliability influence alliance agreements? In the face of an unreliable ally, do weaker states push for greater precision to bind allies more tightly to mitigate the fear of abandonment? Does the fear of entanglement drive states to include more robust institutionalization conditions to corral destabilizing or aggressive behavior by emboldened weaker partners? How does variation of these dimensions enhance or degrade the deterrent effect of an alliance? Within the high-stakes world of international security, states need partners they can trust, and reliability affects how often states ally and the structure and conditions of the alliance agreement.

In this paper, I argue that state reliability considerations influence abandonment and entrapment concerns. Although state reliability is a frequently researched concept within international relations, identifying a consensus on how best to define it remains elusive. To facilitate my research, I define four primary components comprising a state's reliability: past alliance violations, peacefulness, political stability, and political similarity. Each component helps inform states of the level to which a prospective partner represents an abandonment or entrapment risk.

Prospective alliance partners vary the dimensions of precision or institutionalization in response. Within this study, I define precision as the extent to which the language and conditions within the agreement constrain the range of acceptable interpretations of a state's obligations. Highly precise agreements include clear and specific conditions that

limit a state's ability to reinterpret its commitments in response to changing political or strategic considerations. By limiting this interpretive range, the agreement increases the potential reputational cost of reneging on the alliance.

Institutionalization refers to the rules, regulations, and structures incorporated into an alliance agreement. Provisions regarding basing rights, access to land, air, and sea space, the establishment of a joint command, or specification regarding operational control of military forces —like those established in the US-ROK agreement granting the US command over military operations in South Korea— are all examples of institutionalization within alliance agreements. The intention of these agreements is to limit the ability of a single state within the alliance to act unilaterally, thus reducing the possibility of pulling the alliance members into an unintended or unwanted conflict.

Precision and institutionalization are dimensions that define the depth of the alliance agreement. When both dimensions are elevated, the alliance has greater depth because higher levels of precision limit a state's ability to reinterpret its obligations politically, and greater institutionalization prevents states from acting erratically or overly aggressively. Put more succinctly, a deeper alliance strongly mitigates both states' abandonment and entrapment risk, increasing the level of commitment between the alliance partners and signaling greater credibility to external threats. If either of the dimensions is depressed, it can signal a lack of commitment by one of the alliance partners. Using the US-ROK example, the US's heightened concerns that South Korea would pull it back into a conflict drove it to seek defensive activation conditions and a less precise description of the geographic region where the alliance was active. These less precise commitments indicated that the US did not fully trust its alliance partner and signaled to potential adversaries that it may not abide by the conditions of the agreement.

To evaluate my arguments, I conducted two linear regression models to evaluate how variation in a state's reliability impacted levels of precision and institutionalization within bilateral defensive alliance agreements, specifically looking at the dynamics between strong state reliability on precision and weak state reliability on institutionalization. Following this, I evaluated the effects of each state's reliability on the overall depth of the alliance agreement, including controls related to external threat environments and state power. Lastly, using a Heckman Selection model to account for selection biases regarding alliance formation, I examined how state reliability impacted the probability of an alliance agreement existing between a state-dyad, and how the resultant depth of that alliance agreement impacted the probability of that dyad experiencing a militarized disputed in a given year.

My findings reinforce the notion that alliance relations are complex and nuanced. In line with my theoretical argument, I anticipated that as a strong state demonstrated greater reliability (and, by extension, represented a lower abandonment risk), the level of precision within the alliance agreement would also decrease. In reality, however, as strong state reliability increased, the level of precision also increased. Moreover, the relationship was not linear but curvilinear, with strong state reliability's positive effect on precision flattening before turning negative at higher levels. Regarding institutionalization, the impact of increasing weak state reliability aligned with my expectations. As with precision, however, the effect was non-linear, ultimately reaching a minimum level of institutionalization before

increasing again. The curvilinear effects of reliability on both precision and institutionalization directly influenced the relationship between the state-dyads reliability score and alliance depth, with depth generally increasing in conjunction with reliability before flattening and turning negative at the higher levels.

The most surprising finding within my study, however, dealt with the relationship between alliance depth and the incident of militarized conflict. In contrast to my expectations, alliance depth did not display a deterrent effect on conflict but instead correlated with an increased incident of conflict. This effect held true across varying types of conflict, with greater depth corresponding to higher probabilities of fatal militarized disputes and war, although the effect of depth on war was much less robust than other types of conflict.

From a scholarly standpoint, these findings support the work of others, notably Beckley (2015) and Fjelstul and Reiter (2019). In these works, the authors noted that stronger states preferred less precise alliance agreements to maintain political flexibility regarding their commitment obligations. Additionally, this work offers a unique perspective on Kim's (2011) discussion regarding the alliance entrapment. As Kim asserts, when entrapment risks are high—as when the weak state demonstrates high levels of unreliability— states design alliance agreements to provide increased flexibility. Moreover, when reliability between states is high, they prefer less constraining agreements. The curvilinear relationship between strong state reliability and precision, however, suggests a strategic window where weak states can push to more clearly specify the alliance obligations, challenging Kim's argument that agreements universally reflect strong state preferences for vaguer security conditions.

For policy professionals, these findings indicate that state concerns regarding excessively robust alliance agreements are warranted. The relationship between higher levels of alliance depth and greater incidents of militarized conflict suggests two possibilities: first, states enter deeper alliance agreements in anticipation of future conflict, and second, adversaries recognize the potential dangers of a deep alliance and proactively move to combat that risk. In both cases, policy decision-makers would benefit from carefully considering committing too deeply to alliance partners.

Literature Review

Conflict and competition are inevitable within a competitive, anarchical international system characterized by uncertainty, incomplete information, and an incentive to misrepresent (Morgenthau 1948; Waltz 1979; Gilpin 1987; Milner 1991; Fearon 1995). When interests collide, States have multiple policy options available, one of which is alliance building. Alliances allow states to increase their security capability and signal intentions to adversaries (Morrow 1994). Clear alliance agreements provide states with an avenue to communicate their intentions more directly, demonstrate commitment, and signal resolve.

By crafting strong, binding alliance agreements, states communicate two messages. First, more costly alliance agreements demonstrate a heightened level of reliability to allied partners (Fearon 1997; Morrow 2000; Fuhrmann and Sechser 2014). A formalized agreement with clear support conditions enhances the reliability between alliance

partners by incurring audience costs. Second, alliance agreements signal to adversaries that each state is committed to mutual defense. Use of sunk cost measures, such as stationing troops, increasing military aid, or deploying assets, can signal a state's resolve to support its ally in the event of conflict.⁶

These signals provide information related to the alliance partner's intentions and capabilities, ideally minimizing any adversary biases or misperceptions (Jervis 1982). Clear signals of support and resolve influence a state's calculation of the potential cost of conflict and the probability of success (Fearon 1995; Wright and Rider 2014). When potential cost increases and the probability of success decreases, we anticipate rational states are more likely to refrain from conflict, leading to successful deterrence.

However, the relationship between alliance and deterrence is less direct than anticipated. Often, the type of alliance influences adversary state behavior (Leeds 2003; Johnson and Leeds 2011; Wright and Rider 2014). The deterrent effect of offensive alliances is limited, often inducing conflict vice preventing it. States that sign offensive agreements can feel emboldened, seeking out conflict versus avoiding it (Benson et al. 2013). Neutrality and non-aggression pacts have a similar effect. By formally declaring a willingness to abstain from engaging in the conflict between other states, as is the case with neutrality agreements, or by committing to refrain from direct action against a particular state due to a non-aggression pact, the cost of conflict decreases, resulting in aggressive action. Defensive alliance agreements are the only ones that have demonstrated a notable degree of deterrence.

Benson (2011) takes this one step further, highlighting how the specific condition within the alliance agreement influences the deterrent effect. Benson's findings demonstrate that the presence of an agreement is not enough to deter adversaries; the specifics of the agreement are important as well. These findings support the idea that how states craft agreements is an important consideration when evaluating their effects on state behavior. States do not craft agreements indiscriminately but instead deliberately construct agreements that protect and advance their interests (Koremenos et al. 2001).

External threats are not the only factors states must evaluate when crafting alliance agreements. When states enter alliances, they also open themselves to abandonment and entrapment concerns. Entrapment occurs when a state becomes involved in an unwanted or undesired conflict due to the alliance agreement's constraints and the allied partner's actions (Snyder 1984). States fear emboldening their allies to engage in reckless or aggressive behavior and subsequently craft agreements that allow for greater flexibility concerning commitment obligations. Strong powers prefer to craft agreements that provide maximum flexibility and minimize the risk of entrapment (Smith 1995; Kim 2011; Benson 2012; Beckley 2015). By including vague or incomplete language within the alliance agreements, powerful states have greater leeway in interpreting the specific commitments necessary to fulfill their obligations, which in turn provides a means of decreasing the potential audience costs incurred from reneging and minimizes the

⁶Fuhrmann and Seschser (2014) demonstrate that even high sunk cost signals such as deploying nuclear weapons in defense of an ally did not increase the deterrent effect of the agreement. This finding suggests that the alliance's presence is responsible for inducing deterrence, not necessarily the magnitude of direct military contribution.

possibility of incentivizing more aggressive actions by allied partners (Benson et al. 2014).

Crafting less precise agreements, however, exacerbates the other primary concern within the alliance: abandonment. Abandonment occurs when states fail to meet their alliance commitments (Snyder 1984). For alliance-dependent states—often weaker states heavily reliant on their allied partner to provide security—abandonment represents a highly salient risk (Snyder 1997). To alleviate this risks, states seek greater commitments from their partners, often requiring regular reassurances of the strength of the alliance (Pesu and Sinkkonen 2024).

Incidentally, this presents an interesting paradox concerning alliances with greater powers. Benson (2011) notes that the deterrent effect associated with defensive agreements is most prominent when allying with great powers; however, Fjelstul and Reiter (2019) note that these powers are also more likely to seek the inclusion of vague and incomplete language, which we anticipate would serve to cloud the costly signaling produced via the alliance agreement (see also Guzman 2005). The dynamic described suggests that exploring the specific conditions within defensive agreements better explains their deterrent effect.

Evaluating the effects resulting from alliance agreements remains a challenging prospect. When thinking about an alliance's effectiveness, two aspects often come to mind. First, we ask if the alliance deterred conflict (Smith 1998). Evaluating deterrence can be especially difficult. If states fight, we can generally assume deterrence was unsuccessful. However, when fighting does not occur, we cannot conclude the alliance was the only factor in deterring conflict. One option for investigating the deterrent effects of an alliance is to examine if a conflict escalated into war. In some instances, alliances serve to prevent conflict from escalating by encouraging peaceful behavior on the part of both adversaries and partners. However, in other instances, the presence of an alliance can exacerbate potential conflict, with allies adopting inflexible bargaining positions once conflict has commenced (Leeds et al. 2005).

Theoretical Argument

This paper focuses on the influence of state reliability on alliance depth and deterrent outcomes for bilateral, defensive alliances in the post-1945 era. Following the end of WWII, the number of alliances rapidly expanded. From 1815 until 1945, 219 alliances were formed. In the 73 years since the end of the conflict, nearly 600 alliances emerged (Leeds et al. 2002). Additionally, bilateral agreements account for over 85% of all alliances included within the ATOP dataset. Lastly, of the five alliance types identified by Leeds et al, only defensive and offensive agreement require active military support, whereas non-aggression, neutrality, and consultative agreements include no such requirement. Based on the lack of military support conditions, these types of agreements are fundamentally different in how they influence state decision making and deterrence. Additionally, offensive and defensive alliance agreements serve different purposes, with offensive agreements more closely associated with imminent and ongoing conflict, whereas defensive commitments reflect a focus on future deterrence objectives. As defensive, bilateral agreements in the post-1945 era represent the most common deterrent alliance type, I focus my theoretical argument on these cases.

Assumptions

Three assumptions support the theoretical argument presented. First, I assume states are rational actors. States have specific strategic interests with varying levels of value. When states engage in bargaining or conflict, they recognize that specific courses of action will influence the likelihood of achieving specific outcomes. Rational states understand the relationship between their course of action and their desired outcomes and act to maximize their probability of gaining a preferred outcome.

The second assumption is that for an alliance to exist, a threat must also exist. Alliances are costly in that they constrain state behavior (Fearon 1997; Fang et al. 2014). States are unlikely to pay the costs of forming an alliance without a threat. This paper does not assume the perceived threat is constant between parties within the alliance agreement, as one state likely finds the threat more salient. However, the key assumption is that the threat must be significant enough for both parties to seek an alliance and willingly pay the cost of committing to that partnership.

Lastly, I assume that the power differential between the alliance partners is imbalanced. Even if prospective alliance partners are perceived as relative equals in global standing, the likelihood that the states within an alliance agreement are direct equals in military power is low. Within this argument, the difference in military power establishes one state as a strong state (referred to as State S throughout the rest of the paper) and the other as a weak state (State W). This power differential plays a role in how states approach alliance negotiations, which I will discuss shortly.

Prospect Vetting

Before initiating alliance negotiations, a two-stage vetting process occurs, primarily identifying prospective alliance partners and evaluating their suitability. In the first stage, states evaluate the threat State T poses to them individually, assessing the difference between their individual military capacity versus State T.⁷ If a discrepancy exists, states look for a potential partner to decrease the capability difference. The power difference may provide enough incentive for State W to seek a partner. Conversely, State S may be able to deter or unilaterally defeat State T, but entering an alliance with State W provides other security benefits, such as the ability to forward deploy military assets. If the security benefits gained from allying outweigh the costs, State S and State W continue to the second stage of the vetting process.⁸

One way to conceptualize this process is to narrow down a list of candidates for a job opening. The first step to filling the position is to eliminate candidates who do not possess the minimum requirements for the job. In this instance, the minimum requirement is a certain level of security capacity. For example, imagine Vietnam is concerned

⁷This stage in the vetting process is fundamentally identical to the capability aggregation and balancing approaches to alliance building presented by Walt and Waltz. The theoretical argument presented here asserts these historical models only capture one part of the alliance-building process.

⁸The calculation of a prospective ally's military capacity is based on the perception of the other alliance partner. If State W does not anticipate forming an alliance with State S will help neither deter nor defeat State T nor provide any cost-offsetting benefits, it will not initiate alliance negotiations with that state.

with increasing aggression coming from Cambodia. Vietnam recognizes Cambodia as an emerging threat and elects to combat this threat by allying with another state. Vietnam looks at all the potential alliance partners available and eliminates states such as East Timor and Brunei, as aggregating their security with Vietnam is not enough to effectively deter Cambodia from future aggression or defeat it in the event of a conflict.

During the second stage, State S and State W assess the reliability of their prospective partner. Highly reliable partners fulfill agreements regularly, whereas partners with low reliability do not fulfill obligations regularly. To be a viable alliance partner, a state must meet a minimal reliability threshold. ⁹ If a state cannot be trusted to fulfill its alliance obligations, the benefit of forming an alliance is less than the cost, and a state will not accept that agreement.

Continuing with our previous example, Vietnam evaluates each member's reliability level in the final stage of the vetting process. Considering the past behavior of each state, Vietnam eliminates both Thailand and Laos because they failed to honor a prior alliance agreement, whereas Indonesia has demonstrated consistent support for its allies, reflecting a higher degree of reliability than either. Vietnam identifies Indonesia as its preferred alliance partner based on its greater reliability and sufficient military capacity. Most likely, the vetting process occurs in the order described above. As the emergence of a threat is the initiating event for alliance-seeking behavior, we can anticipate states would evaluate military capacity first in potential partners before evaluating interest alignment. However, it is also likely states retain a degree of awareness of other states' general reliability, which may expedite the process.¹⁰ To this end, I test the following hypotheses:

Hypothesis 1: As Strong state reliability increases, the likelihood of forming an alliance increases.

Hypothesis 2: As Weak state reliability increases, the likelihood of forming an alliance increases.

Alliance Negotiation

Following the vetting process, the focus of each state shifts from external threat concerns to internal risk mitigation. Once states have identified a prospective partner who addresses their security needs, the alliance negotiation process deals with abandonment and entrapment concerns (Snyder 1991). While both State S and State W possess abandonment and entrapment concerns, the experienced magnitude is asymmetrical. For State W, abandonment represents the greatest risk. First, if State W relinquishes some policy autonomy to gain security guarantees from State S, it wants to ensure it "gets its money's worth" from the concession. Additionally, unilaterally deterring or defending against State T is much more difficult for State W, and abandonment from its alliance partner places it a greater risk.

⁹Determining a minimally acceptable reliability threshold depends on the threat level from State T. If the threat is overwhelming, State S or State W may be willing to partner with any state that has the military capacity to diminish the perceived threat. (See Walt 1985, 1987).

¹⁰The theoretical argument does not change if State S, as opposed to State W, opens the negotiations. Likely, the initiating state will experience a more salient threat from T, incentivizing it to pursue an alliance agreement more vigorously. If true, this would place the initiating state at a bargaining disadvantage relative to the non-initiating state. Future research might shed more light on this possibility.

State W's primary aim within the alliance negotiation is to make the alliance agreement as binding as possible, and it can use the fear of reputational damage to achieve this goal. Increased precision enhances the cost of reneging on the alliance agreement because it limits the elasticity of the agreement. If the agreement is imprecise, it allows State S to "fulfill" its obligations under a range of conditions (Fjelstul and Reiter 2019; Gibler 2008). For instance, the 1947 defense agreement between Great Britain and Sri Lanka (then known as Ceylon) only includes vague promises of military assistance "as it may be in their mutual interest". Within this type of agreement, Great Britain has greater leeway to determine its required level of support. In contrast, an agreement with precise conditions of fulfillment, like the 1948 USSR-Finland alliance, which identified both an adversary and a location of interest, limits these options and makes reneging more apparent, increasing the likelihood that State S will honor its commitments. To support this argument, I propose the following hypothesis:

Hypothesis 3: As Strong State reliability decreases, the precision of any formed alliance increases.

For State S, the major concern is not abandonment but entrapment. As the stronger power within the alliance, there is a greater chance that State S could unilaterally defeat or deter State T if necessary. Allying with State W may provide additional security benefits, which make combating State T more cost-effective. However, it is unlikely that the loss of State W's support would eliminate State S's ability to defend itself effectively. However, State S is more concerned that forming an alliance may influence State W's behavior in a way that promotes conflict. For instance, prior to an alliance, State W may accept aggressive rhetoric or demands from State T without pushing back. However, after allying with State S, State W may be less willing to accept aggression from State T and push back, causing increased friction and risking possible conflict that may not have occurred absent the alliance.

Faced with this possibility, State S's primary concern is ensuring conflict occurs only during the time and place of its choosing, limiting any unilateral action by State W that may provoke conflict. Increasing the level of institutionalization provides the means to accomplish this by granting State S more influence within the alliance (Wallace 2008). Historically, we have seen that when a strong state provides military support to a weaker state, the weaker state begins to adopt the stronger state's logistical, organizational, and strategic structure. As a major importer of Russian arms, India's mirroring of Russian strategy demonstrates this effect (Bowen 2021; Narang 2021). This argument leads to the following hypothesis:

Hypothesis 4: As Weak state reliability decreases, the institutionalization of any formed alliance increases.

The friction between State W's drive to minimize abandonment concerns through reliability-enhancing conditions

¹¹While strong states, like the US, can unilaterally address any emerging threats, the cost of protecting geographically dislocated interests is high (Boulding 1963). By partnering with regional states, great powers can have pre-stage assets, which decreases the cost of protecting interests overseas

and State S's desire to limit unilateral action, which may induce conflict, highlights the central tension within the alliance negotiations. State W is looking to gain the most robust security guarantee possible while maintaining its greatest level of flexibility. In contrast, State S wants to constrain State W's ability to act without its input while gaining maximum policy concessions. Through alliance negotiations, both states pursue an agreement that balances these competing desires.

Reaching an agreement

As State S and State W work to finalize an agreement, they aim to craft one that reflects their most desired outcome. State S and State W each have levels of precision and institutionalization they would prefer and levels they would not accept as part of the agreement. Table 1.1 provides an overview of the type of alliance reflecting each institutionalization and precision relationship. Variation in precision and institutionalization within agreements, influences the depth of the alliance. As precision and institutionalization increases, depth increases as well.

Table 1.1: Typology of Alliance Design: Precision and Institutionalization

	Low Institutionalization	High Institutionalization	
Low	Loose Affiliation	Guarded Engagement	
Precision	Vague commitments and minimal integration. States may desire ties	State S mitigates entrapment. State W remains uncertain of support.	
	but avoid strong obligations.	Example:	
	Example: Egypt–Iraq (1958–1977)	France-Gabon (1960)	
High	Asymmetric Assurance	Structured Commitment	
Precision	Reduces abandonment risk for State W; does not mitigate S's entrapment concerns.	Mitigates abandonment and entrapment. Strong relationship, though trust not absolute.	
	Example: U.S.–Philippines (1951)	Example: U.S.–Panama (1977–1999)	

In the upper left cell of Table 1.1, alliances characterized by low precision and institutionalization represent a "Loose Affiliation" between State S and State W. In these cases, State S and State W recognize the value of crafting a formal agreement, but remain reluctant to craft an extensive relationship. For both State W and State S, these types of agreements represent a lower cost than agreements which feature more precise commitments or greater institutional conditions, which makes then preferable to more asymmetric alliance relationships. However, overall, they don't provide a high level of alignment with the "idealized" levels of either institutionalization or precision. The 1958 alliance between Iraq and Egypt exemplifies this type of alliance. Within this agreement, both states committed to defending each other in the event of an attack but did not include any specifications on how that defense would occur

or what level of support was required. Additionally, the agreement did not outline any heightened level of integration, such as training exchanges or strategic planning, which would have increased institutionalization.

Alliance agreements characterized by high institutionalization, but low precision represent instances of "Guarded Engagement". These types of agreements more closely represent State S's "idealized" agreements. However, for State W, these agreements do not afford them their desired level of precision, and they come at a high cost. An alliance of this nature would most likely occur if State S views State W as less reliable or if State W lies in an area of characterized by frequent conflict. In 1960, France and Gabon established an alliance agreement that included very high levels of institutionalization, such as coordination of military training, promises of foreign aid for troops and equipment, and establishment of a permanent security council. In this instance, Gabon represents a much less reliable partner within the alliance. ¹² This alliance affords France a great deal of control over Gabon's security autonomy while providing much fewer restrictions on the support obligations required.

An "Asymmetric Assurance" represent agreements with high levels of precision but lower levels of institutionalization. In contrast to Guarded Engagements, these alliances likely occur when State S is less reliable or if State W possess some strategic leverage. State W favors these alliances because they include the least flexible fulfillment obligations but limit State S's influence over security decisions. These types of agreements are the most preferred by State W. Conversely, State S prefers these agreements the least. The US - Philippine alliance reflects this type of relationship. Following the end of World War II, the Philippines was able to extract an alliance agreement that provide greater precision concerning US support commitment, without incurring extensive military institutionalization conditions. In this instance, the Philippines leveraged their reluctance concerning Japanese restitution following the conflict to pressure the US to accept a more explicit security relationship.

The final alliance type represents an agreement defined by both high institutionalization and precision, termed "Structured commitment". Although these types of agreements more closely reflect State S and State W's preferred level of either institutionalization or precision it comes at a greater cost. Generally, alliances of this nature are limited as the relationship is both heavily integrated and represents a deep commitment.¹³

One example of this type of agreement is the US - Panama alliance agreement from 1979-1999. This alliance featured precise conditions regarding when, where, and how each state would support each other, as well as extensive institutional agreements such as joint training, US military presence, and logistical coordination through US Southern Command. Notably, however, this agreement heavily centered on protecting both states' access and usage of the newly constructed Panama Canal. The presence of this strategic resources likely influenced the type of agreement each state

 $^{^{12}}$ I provide further discussion on reliability score calculations in the research design section

¹³While Structured Commitments represent agreements that produce the greatest anticipated deterrent effect, states often fail to construct agreements that fall within this region. States often craft sub-optimal agreements. Various factors may influence the negotiations between states, leading to "satisfactory but suboptimal" agreements (Hopmann 2019). Especially within a charged security environment, achieving a "good enough" agreement can be more important than crafting a perfectly balanced one. Future research could explore how variation between the maximum agreement and a minimally acceptable agreement influences the overall deterrent effect of the alliance.

accepted.

Regardless of the exact type of agreement the states attempt to negotiate, both a power and temporal component may greatly influence the outcomes. If either State feels conflict is imminent, they may accept an agreement that does not reflect their long-term desire for the alliance relationship. I anticipate this agreement to be relatively short-term, as with many agreements before WWII. Additionally, alliance negotiations occur within the shadow of power (Powell 1999). The asymmetric power difference likely affords State S greater leverage in the negotiations, leading to higher levels of institutionalization than precision.

Guarded Engagements and Asymmetric Assurances reflect alliance agreements slanted in favor of either State S or State W. However, Loose Affiliations and Structured Commitments are more nuanced, representing agreements where states accept some cost-benefit trade-off. To help illustrate this argument, envision a car purchase where you are balancing cost and reliability. If a Loose Affiliation represented a vehicle, they would be inexpensive but unreliable. Structured commitments, however, are more expensive but more reliable. States may determine that lower cost is preferable to greater reliability and accept an alliance with low levels of both precision and institutionalization. However, I argue that the relative stability of alliance agreements in the post-WWII era reflects a preference for more costly but long-standing alliance agreements, leading me to argue that Structured Commitments are preferable to Loose Affiliations.

For Structured Commitments, a dynamic relationship between reliability and depth emerges. Previously, the strong state leveraged precision and institutionalization to corral or bind unreliable allies. Structured Commitments, however, likely represent agreements between states that view each other as more reliable. Securing a long-standing agreement is preferable if both states view their alliance partner as reliable. To create a long-standing agreement, State S and State W must ensure their partner gains enough from the proposed alliance that seeking other partners is unnecessary. To obtain this, State S seeks to minimize State W's abandonment concerns by offering greater, more transparent fulfillment guarantees. State W offers greater institutionalization, potentially through favorable basing rights or weapons agreements. The outcome of this trade-off is a deeper alliance relationship, which provides a clear declaration of the commitment between the allies, enhancing the alliance's deterrent effect. To assess the validity of this argument, I test the following hypotheses:

Hypothesis 5: As Strong state reliability increases, the depth of any formed alliance increases.

Hypothesis 6: As Weak state reliability increases, the depth of any formed alliance increases.

¹⁴Additionally, alliances between two unreliable states may have no options other than low-precision, low-institutionalization agreements. To continue the car buying analogy, if a state's "credit" is low enough, they do not even have the option of purchasing a more reliable vehicle.

In essence, deterrence is a form of communication. Through alliance commitments, states communicate intentions and willingness to use force. Increasing precision deepens the alliance commitment because it limits the elasticity of fulfillment options, making reneging more challenging and costly. Increasing institutionalization decreases the potential for unilateral action, which increases the likelihood that allies will act in unison when activated. When allies agree to an alliance with higher levels of both dimensions, they send two signals. First, each state views the other as a reliable ally. Second, securing an alliance with this ally is worth paying additional costs. By signing an agreement of this nature, states send a clear and credible signal to potential threats, increasing the chance that the target state will receive this message and alter its assessment of the situation. To evaluate this argument, I propose the following hypothesis:

Hypothesis 7: As alliance depth increases, the probability that a militarized dispute occurs decreases.

Research Design

The unit of analysis is the dyad-year dataset, which consists of state-state pairs during the period 1945-2010, based on Correlates of War (COW) state system membership. The core empirical question examined in this study is how variation in state reliability and alliance depth impacts alliance formation and deterrence. The dependent variables I use to evaluate these questions are the presence of an alliance agreement and the presence of a militarized interstate dispute (MID). Using the Alliance Treaty Obligations and Provisions dataset (Leeds et al. 2002), I create a binary variable indicating if the state dyad had an active bilateral defensive alliance during the given year. For deterrence, I created a second binary variable indicating if either state within the dyad experienced an external conflict during the given year (Gibler et al. 2016).

State Reliability

Since it serves as the starting point for my theoretical argument, the foundational predictor variable is state reliability. Variation in state reliability influences the dimensions of precision and institutionalization, ultimately impacting the alliance depth. To create a state reliability score, I focused on state behavior patterns and characteristics that inform prospective partners of the abandonment and entrapment risks posed by the alliance partner: alliance violations, peacefulness, political stability, and political similarity.¹⁵ To ensure comparability across components with differing ranges, I normalized the raw values for each before combining the calculated values into a single state reliability score. Table 1.1 below provides the summary statistics for both the raw values and the normalized values for each component within the reliability score.¹⁶

¹⁵See Appendix A1 and Appendix A2 for raw and normalized frequency distributions.

¹⁶It is likely states apply varying levels of importance to each of these characteristics. Within my theoretical argument, State S would place a greater emphasis on state aggression and state stability since the provide more data on the entrapment risk. Conversely, State W has greater

Table 1.2: Summary Statistics for Reliability Score Components (Raw and Normalized)

Component	Raw Values				Normalized Values			
	Min	Max	Median	Mean	Min	Max	Median	Mean
Alliance Violation	0.00	160.22	0.00	13.88	0.00	1.00	0.00	0.09
Peacefullness	-1.93	121.95	19.73	27.78	0.00	1.00	0.17	0.24
Political Stability	-10.96	116.31	3.69	19.83	0.00	1.00	0.12	0.24
Political Similarity	-3.47	1.00	0.15	-0.00	0.00	1.00	0.81	0.78

Alliance Violations

Assuming prior behavior predicts future behavior, prior alliance violations represent a strong indicator of future violations. Expanding on Leeds' prior work, I create a state violation score based on the number of years since a state violated an agreement. If a state has an opportunity to violate its agreement (i.e., its allies request support) and the state violates the agreement, it receives a penalty for its violation score. If, however, the state has an opportunity to violate and fulfill its obligations, it receives a reward, and its score increases. If no violation opportunities exist in a given year, its score remains unchanged. In some cases, states have multiple opportunities to violate, whereas others have limited opportunities. To account for this discrepancy, the number of opportunities scales the state's penalty for violating an alliance. This weighted adjustment reflects the notion that violating one of many alliance agreements is less representative of unreliability than if a state violates its only alliance. Since recent actions are more salient than historical behavior, I included a decay value that lessened the violation's impact over time, reflecting a state's ability to regain credibility.¹⁷ Based on this calculation, a greater violation score indicates that the state consistently fulfilled its alliance obligations. States often never encounter a violation opportunity, and their score remains zero.

Peacefulness

If a state is often embroiled in conflict, it represents a heighten entrapment risk for alliance partners. To account for this risk, I created a metric that reflects a states propensity for avoiding conflict, which I call peacefulness. Pulling from the Gibler MIDS dataset (2016), I calculate a score for each state that decreases if a state initiates or participates in a militarized conflict. If the state refrains from conflict, the score gradually increases over time based on a decay function that reduces the impact of the prior conflict behavior. If the state initiated the conflict, the penalty is steeper than if the state was targeted. If the state remains involved in an ongoing conflict, the peacefulness score decreases.

abandonment concerns, likely weighing prior violations more strongly. For the ease and consistency of analysis, I elected to treat each of these characteristics equally.

¹⁷I used a 5% exponential decay function. Formal research on an appropriate decay value is limited, and I do not have a compelling theoretical reason for any specific value. Further research on perceptions of alliance violations may provide better insight into a more theoretically appropriate level of decay. I pulled the alliance violation data from Leeds' work in 2003, which only covers violations until 1944. I calculated the prior violation score with the decay function from 1848 until 1944 to create my violation score. From there, I slowed the decay function from 5% down to 2% to reflect the lack of more recent data. Updating the Leeds dataset to include more recent violations would provide a more accurate reflection of violation behavior.

If no conflict event occurs, the score remains unchanged. Based on this calculation, lower scores represent decreased peacefulness, whereas higher values reflect greater peacefulness.

Political Stability

Political instability poses an entrapment risk on two fronts. First, instability can lead to civil unrest and civil conflict. Second, states which experience political instability may initiate conflict with rivals more often (Daxecker 2011). In both cases, the risk of entrapment increases, making the partner less reliable. While there are numerous ways to account for political instability, I elected to calculate its value based on the time since irregular regime changes, using the Archigos dataset of political leaders (Goemans, Gleditsch, and Chiozza 2009) and the level of religious and ethnic polarization, using data from "The composition of religious and ethnic groups (CREG) project" (Nardulli et al. 2012).

Regarding irregular regime changes, when a state enters an alliance agreement, it allies with the state and the leader. Abrupt changes in leadership can undermine trust in the political institution and the leaders themselves. Irregular regime changes occur outside of the normal rules and regulations of the state. Coups, assassinations, and removal by external state actors represent irregular changes (Goemans, Gleditsch, and Chiozza 2009). When such events occur, they indicate a failure of the political system and a high degree of turmoil within the state, which can either prevent the ally from fulfilling its alliance obligations or indicate growing instability that may result in civil or external conflict. Polarization is often a factor in research on civil conflict (e.g., Horowitz 1985; Montalvo and Reynal-Querol 2005). Greater polarization can put the state at risk of greater civil instability, limiting an ally's ability to foster support for its obligations, escalate into outright domestic conflict, or destabilize the regional area. Including fractionalization within my metric on political stability allows me to account for background domestic factors that may exacerbate political transitions and underlying structural risks that may impact the alliance relationship.

When a state undergoes an irregular regime change event, its political stability score decreases. To account for the effects of fractionalization, I amplified the penalty associated with an irregular event. In years where no irregular event occurs, the state incurs a penalty relative to its level of fractionalization. However, it receives no additional penalty for an event. Using the same decay function as in prior components, a state's score improves over time, reflecting an improved level of stability demonstrated by the absence of an irregular regime change event. Based on this calculation, a greater value of political stability indicates that the state is more stable, whereas lower values indicate a higher level of instability.

Political Similarity

States with similar political and legal systems tend to ally, indicating a higher baseline level of perceived reliability (Lai and Reiter 2000; Powell 2010). States with similar domestic characteristics tend to form more cooperative

groups (Edgerton 2024). Generally, states that share political similarities tend to work together, reinforcing the idea of a higher baseline of reliability. To account for dynamic, I calculated the difference between the states updated Unified Democracy Scores (UDS). Originally constructed by Pemstein, Meserve, and Melton (2010), Marguez (2016) expanded the dataset to include information from the 1800s until 2015. The UDS incorporates data from 10 different measures of democracy, including commonly referenced measures such as Polity and Freedom House scores. In contrast to previous metrics, which calculated a violation, peacefulness, and stability score for each state-year, political similarity represents a relational score between a state-dyad year. To calculate this score, I subtracted the UDS score of State A in the dyad from the UDS score from State B and took the absolute value of the result. At this stage, lower values indicated greater political similarity. However, for the other components within the state reliability score, higher values represented greater reliability. To address the inverse relationship between similarity and reliability, I subtracted the absolute value from 1, resulting in higher values demonstrating a greater degree of similarity between the two states.

Institutionalization, Precision, and Depth

Institutionalization reflects the various conditions and obligations coded within the ATOP dataset for each individual agreement. Prior research classified alliances into three levels (high, moderate, or low) based on the inclusion of select obligations within the final agreement (Leeds and Anac 2005). I improved upon this approach in two ways. First, I expand the number of institutionalization conditions to cover all obligations coded within the ATOP. Secondly, I create a continuous score for institutionalization that increases as the number of conditions increases.¹⁹

I classified each condition into four tiers. Tier 1 represented highly institutionalized obligations, such as an integrated command and common defense policy. Tiers 2 -4 represented conditions with decreasing levels of institutionalization. Table 1.2 provides a full run-down of each condition and its assigned tier level. To calculate the total institutionalization score, I counted the number of conditions. included from each tier and multiplied them by their associated weight.²⁰ After summing the total institutionalization score, I normalized the values from 0-1. In some instances, the alliance agreement included no specific institutionalization conditions. To differentiate between dyads that included an alliance with no institutionalization value and dyads that did not have an alliance, I set the value for non-alliance dyads at 0 and added a negligible value to dyads with an alliance. To walk through an example of this, I will use the Egypt-Saudi Arabia alliance that existed from 1955 until 1962, as demonstrated in Table 1.3 below:

I calculated the precision score in much the same way (See Table 1.4). Using Fjelstul and Reiter's work as a guide (2019), I classified precision conditions into three tiers. The first tier included activation conditions with an easily identifiable location, target, or adversary. Additionally, this tier included agreements which prohibited renouncement

¹⁸UDS values range from -2.5 to 3.5, with larger values indicating higher levels of democracy.

¹⁹Prior research classified an institution as "highly institutionalized" if it contained any of the conditions identified as high. These effects were not cumulative, in that an alliance with multiple "high" conditions was not differentiated from an alliance with a single condition. Additionally, alliances with multiple "moderate" obligations were never classified as "highly institutionalized", even if they contained all moderate obligations.

²⁰Tier 1 conditions were multiplied by 1. Tiers 2-4 were multiplied by .75, .50, and .25, respectively.

Table 1.3: Alliance Agreement Institutionalization Tiers

Tier Condition	N (%)
Tier 1 (Value = 1.00):	
Integrated command in war and peacetime	9 (7%)
Common defense policy	4 (3.1%)
Joint bases or bases in other nations' territory	2 (1.5%)
Tier 2 (Value = 0.75):	
One state provided basing access	35 (27.1%)
Military aid includes grants/loans and training/tech exchange	7 (5.4%)
Creates a standalone bureaucracy	12 (9.3%)
Organization involved across all areas of interest	8 (6.2%)
States prohibited from establishing separate peace outside the alliance	5 (3.9%)
Tier 3 (Value = 0.50):	
Peacetime military planning and coordination	27 (20.9%)
Creates a named organization	18 (13.9%)
Formal military coordination organization	3 (2.3%)
Training or tech exchange in military aid	24 (18.6%)
Subordination of one force under another in conflict	4 (3.1%)
Separate peace requires approval from members	5 (3.9%)
Members promise to provide territory/resources in conflict	41 (31.8%)
<i>Tier 4 (Value = 0.25):</i>	
Any other institutional variable included in the agreement	14 (10.8%)
Requires officials to conduct regular meetings	8 (6.2%)
Members agree to increase military investments	18 (13.9%)
Members commit to increasing military armaments	6 (4.6%)

Table 1.4: Example Institutionalization Score: Egypt - Saudi Arabia (1955–1962)

Tier Condition	Value
Tier 1 (Value = 1.00):	
Integrated command in war and peacetime	1.00
<i>Tier 2 (Value = 0.75):</i>	
Creates a standalone bureaucracy	0.75
States prohibited from establishing separate peace outside the alliance	0.75
Tier 3 (Value = 0.50):	
Peacetime military planning and coordination	0.50
Training or tech exchange in military aid	0.50
<i>Tier 4 (Value = 0.25):</i>	
Members agree to increase military investments	0.25

Institutionalization Score Equation:

$$Score = 1.00 \; (intcom) + 0.75 \; (organ) + 0.75 \; (seppeace) \\ + 0.50 \; (milcon) + 0.50 \; (milaid) + 0.25 \; (contrib) \\ = 3.75 \\ Normalized Score = $\frac{3.75}{6} = 0.625$$$

of the alliance agreement. The second tier included obligations where a target, location, or adversary was mentioned but was not easily identifiable. Alliances that identified the agreement as perpetual or provided for renouncement after a specific length of time or aggressive action by a participant also fell in this tier. The third tier included conditions outlining a specific length of time for the alliance, allowed for renouncement after notifying other partners, or was renewed automatically fell within this tier. As I did with the institutionalization score, I walk through an example calculation for precision in Table 1.5. In this case, I use the United Kingdom - Portugal alliance that ended in 1946.

Table 1.5: Alliance Agreement Precision Tiers

Tier Condition	N (%)
Tier 1 (Value = 1.00):	
Target clearly identified	15 (11.6%)
Location clearly defined	1 (0.8%)
Adversary specifically identifiable	2 (1.5%)
Tier 2 (Value = 0.66):	
Target identified but vague	1 (0.8%)
Location identified but vague	6 (4.6%)
Adversary identified but vague	20 (15.5%)
Alliance defined as indefinite	12 (9.3%)
Renounce allowed after set time or in case of aggression	2 (1.5%)
Tier 3 (Value = 0.33):	
Alliance established for set time or conditions	87 (67.4%)
Renounce allowed with advance notice	18 (13.9%)
Alliance automatically renewed	69 (53.5%)

Table 1.6: Example Precision Score: United Kingdom - Portugal (1943-1946)

Tier Condition	Value	
Tier 1 (Value = 1.00):		
Target clearly defined	1.00	
Location clearly defined	1.00	
Precision Score Equation:		
	Score = $1.00 \text{ (target)} + 1.00 \text{ (location)} = 2.00$	
Ν	ormalized Score = $\frac{2.00}{2}$ = 1.00	

To calculate the total precision score, I counted the number of conditions within each tier and multiplied them by their respective weights. ²¹ As with agreements that included non-precise conditions, I added a negligible value to their precision score to differentiate between allied dyads and non-allied ones, then normalized between 0-1. Once I had both the precision and institutionalization scores, I added them together, creating my finalized depth score for the alliance.²²

 $^{^{21}}$ Tier 1 conditions were multiplied by 1. Tier 2 and tier 3 conditions were multiplied by .66 and .33.

²²The base depth score comprises a 50/50 split between institutionalization and precision. However, I do not have a specific theoretical argument for making these values equal. To evaluate how variation in weight may impact deterrence, I calculated a 66%/33% and 75%/25% ratio for each dimension. Table A13.1 in Appendix A13 provides the results for models run with these variations.

Controls

Geographical distance plays a sizable role both in alliance formation and conflict. Chung (2020) points out that geographical proximity between allies can exacerbate abandonment and entrapment concerns on the part of the weaker state. Additionally, the effects of contiguity and proximity are well-documented in the conflict literature (See Bremer 1992; Vasquez 1995; Senese 1996). To control for this effect, I include the logged distance between the dyad state capitals.²³

The presence of State T plays a pivotal role in initiating alliance-seeking behavior and can influence the type of agreements a state may sign. To address this influence, I create a threat environment variable. Using Buzan and Waever's (2003) regional security complexes (RSC) as a guide, I identify the region of interest for the weaker state within the dyad. ²⁴ Next, I calculate a threat score for every dyad for State W within its RSC based on the Interstate Conflict Barometer Score (ICSB) (Goertz et al. 2023) and average that score.

Lastly, I control for state power using two different measures. First, I include state CINC scores, which provide information on a state's military and economic capabilities. Specifically, I include these scores during the alliance selection phase of my analysis. I include material military power (MMP) values for each state during the conflict occurrence phases. Including CINC scores during the first stage helps account for characteristics other than military power, which may influence alliance formation. Poast demonstrates that states often link trade cooperation negotiations to military alliance negotiations (Poast 2013). While specifically evaluating this relationship lies beyond the scope of this study, I can account for the potential influence of economic power through the CINC score. Additionally, I use each states respective CINC score to identify the more powerful stat within the alliance agreement.

In comparison to CINC scores, MMP focuses exclusively on military power metrics. Arguing that military power is best evaluated based on weapons systems and armament, Souva (2022) constructed the MMP by aggregating a country's naval, air, land, nuclear, and ballistic missile systems to account for hard power valuations, which CINC does not emphasize. To focus the analysis on the impact of military power, I include MMP as a control when assessing the impact of my models on conflict. I include both controls within my analysis but at different points within my Heckman Selection model analysis (Discussed in the statistical analysis plan section below). In the first stage of the model, which evaluates the incident of alliance formation, I include CINC as a control to account for the potential impact that factors apart from military power may have on alliance formation, such as iron and steel production, which relate to both economic and military interests. In contrast, I use the MMP control to better account for military armament's impact on conflict. Although states may consider population levels and energy consumption when contemplating aggressive action, the number of tanks, planes, and ships in the potential adversary's arsenal represents a much more salient consideration.

²³See Johnson and Leeds 2011; Wright and Rider 2014

²⁴I use the weaker state as the focal point as it is likely the state closest to State T. If State S allies with State W, it is likely due to a security threat within its own RSC or an RSC where State S has a strategic interest. In either event, State W's RSC is more empirically compelling.

Statistical Analysis Plan

To validate my theoretical argument, I must demonstrate the relationship between state reliability and institutionalization, precision, and depth functions as anticipated. Generally, stronger states within the dyad demonstrated higher reliability than weaker ones. Figure A3.1, Appendix A3 displays the reliability density of both strong and weak states. Based on these results, I conduct an OLS regression with robust standard errors comparing strong state reliability to precision levels and weak state reliability to institutionalization levels. Following these models, I explore the interaction between state reliability scores to evaluate its effect on alliance depth.

Although I expect state reliability, precision, and institutionalization will demonstrate a linear relationship, there are some theoretical reasons to anticipate a degree of non-linearity between these variables. As the reliability of both the strong and weak states increases, the alliance partners may shift their focus within the alliance from addressing abandonment and entrapment concerns to prioritizing the military effectiveness of the alliance. If both states demonstrate high reliability, precision may become less important for ensuring alliance compliance. Additionally, institutionalization becomes less a tool for corralling destabilizing behavior and more for enhancing cooperation between two strong partners. To allow for the possibility that state priorities regarding precision and institutionalization may shift over time and across reliability levels, I included a square term for both strong and weak state reliability.

Influential case analysis of my initial models noted three alliance agreements that disproportionately impacted my regression results: Finland-USSR (1948-1992), France-Gabon (1960-Present), Russia-Tajikistan (1993-Present).²⁶ To improve the robustness of my analysis, while maintaining the integrity of the data, I remove these cases from the dataset. For each model, removing the cases did not substantially impact my results. In the results section, the reported findings reflect this trimmed dataset.²⁷²⁸

Validating the relationship between reliability, alliance formation, depth, and MIDs requires addressing potential selection bias concerns. I rationalize that the factors and environmental characteristics that drive alliance-seeking behavior are also related to conflict. For example, the presence of a threat likely incentivizes alliance-seeking behavior because it represents a high risk for conflict. States within high-conflict areas may opt into alliances in a non-random way.

To address this potential bias, I use a Heckman selection model.²⁹ The first stage uses a probit model to estimate

²⁵Initial Breusch-Pagan (1979) and Ramsey (1969) RESET results indicate the presence of non-linearity and heteroskedasticity. To account for this, I include quadratic terms and calculate robust standard errors for each model. See Table A3.1, Appendix A3.

²⁶The alliance between the USSR and Finland represents an agreement less designed to address external security threats and more threats between the allies themselves. Following WWII, Finland sought to preserve its independence and exchanged promises to stay out of NATO in return for guarantees of non-interference from the USSR. France and Gabon signed an alliance agreement shortly after Gabon gained its independence. In exchange for access to Gabon's natural resources and to protect its geopolitical influence in the region, France guaranteed Gabon's security as the newly independent nation established itself. Lastly, the Russia-Tajikistan alliance was less of a security agreement and more of an effort by the Russian government to protect one of its last remaining allies following the collapse of the USSR. With civil war occurring in Tajikistan, Russia signed an agreement to provide troops to protect and assist the fragile government. In each of these cases, the primary focus of the alliance appears less centered on external threat considerations than domestic dynamics.

²⁷(Belsley et al. 1980)

²⁸Results for all full sample and trimmed models and predicted probability comparison plots are located in Appendices A4-A9.

²⁹Heckman 1990

the likelihood that an active alliance is present during the state-dyad-year. The primary predictor variables for this stage are strong and weak state reliability scores. During this stage, I control for state CINC, log distance between the dyad, and threat environment. In the second stage, I model the effect of alliance depth on MID occurrence, conditional on alliance existence, using a probit model. In this stage, I control for military power using MMP scores for both the strong and weak states. Across both stages, Full Information Maximum Likelihood Estimation (FIMLE) jointly estimates the outcome and selection stages simultaneously, accounting for possible selection bias in the outcome stage.

Results

This study sought to answer two main questions. First, does variation in state reliability influence the level of precision and institutionalization within alliance agreements? Second, does the level of depth within those agreements, produced by the combination of precision and institutionalization, influence how often states experience conflict? As the initial starting point of my theoretical argument, I first turn my attention to the relationship between state reliability, precision, and institutionalization. As discussed earlier, I built three linear regression models to examine the interplay between my variables of interest. Due to the presence of non-linearity, I included a quadratic term for both the weak and strong states within their respective models.³⁰

Precision

In the first model, I explored how strong state reliability impacts the level of precision within alliance agreements, using strong state reliability as my independent variable and alliance precision scores as my dependent variable. (See Table 1.6 for results). I argued that weak states would seek to mitigate their abandonment concerns from unreliable strong states by imposing more precise activation conditions within alliance agreements. The results, however, did not support this hypothesis, instead revealing that precision and strong state reliability increase in tandem.

Instead, I detected a curvilinear relationship between strong state reliability and alliance precision. At lower levels, increasing reliability positively and significantly increased alliance precision ($\beta_S = 1.286$, p < 0.01). As strong state reliability approaches the midpoint of the distribution (approximately the 43rd percentile), the effect flattens and turns negative. After that point, any increase in reliability results in a decrease in alliance precision ($\beta_{S^2} = -1.366$, p < 0.001).

Figure 1.3 illustrates this effect. In this figure, the horizontal axis depicts the strong state reliability score, and the vertical access represents the level of precision within the alliance agreement. The red line displays the predicted level of precision at that specific strong state reliability value. Within this figure, I hold weak state reliability constant at the 25th, 50th, and 75th percentiles, as indicated by the blue, red, and green lines. The convex cure highlights the curvilinear relationship between the two variables. The figure shows when an unreliable strong state increases its

 $^{^{30}}eta_S$ and eta_{S^2} represent strong state reliability. eta_W and eta_{W^2} represent weak state reliability. All other variables are identified by $eta_Variable$

Table 1.7: Effect of State Reliability on Alliance Design Dimensions (Robust SE)

	Precision	Institutionalization	Depth
Strong State Reliability	1.286***	0.140	1.147***
	(0.153)	(0.209)	(0.291)
Strong State Reliability ²	-1.366***	0.068	-1.076***
	(0.150)	(0.208)	(0.286)
Weak State Reliability	-0.679***	-2.620^{***}	-3.798***
	(0.137)	(0.197)	(0.266)
Weak State Reliability ²	0.877***	2.523***	3.914***
•	(0.173)	(0.249)	(0.330)
Strong State CINC	0.971***	-0.234^{***}	0.964***
	(0.045)	(0.064)	(0.091)
Weak State CINC	2.512***	1.081***	4.285***
	(0.191)	(0.270)	(0.368)
Threat Environment			-0.0002***
			(0.00004)
Constant	0.023	0.632***	0.868***
	(0.044)	(0.060)	(0.084)
Observations	1,699	1,699	1,586
\mathbb{R}^2	0.442	0.245	0.306
Adjusted R ²	0.440	0.242	0.303
Residual Std. Error	0.117 (df = 1692)	0.166 (df = 1692)	0.212 (df = 1578)
F Statistic	223.01***	91.46***	99.27***

Note:

Robust standard errors in parentheses. *p<0.1; **p<0.05; ***p<0.01

reliability, the level of precision increases as well. However, the effect flattens at approximately the 43rd percentile level (indicated by the dashed vertical line) and then turns negative.

To ensure the relationship between strong state reliability and precision is not driven by alternative alliance dynamics, I included weak state reliability and CINC scores for each state. As with strong state reliability, weak state reliability has a curvilinear relationship with precision. However, the relationship runs in the opposite direction, with Weak state reliability initially exerting a negative and significant effect on precision ($\beta_W = -0.679$, p < 0.01) before flattening and turning positive ($\beta_S = 0.877$, p < 0.01). Stronger ($\beta_S CINC = 0.971$, p < 0.01) and Weaker state ($\beta_W CINC = 2.512$, p < 0.01) power levels do exhibit a positive and significant effect on precision as well.

Although these results contradict my stated hypothesis concerning strong state reliability's effect on precision, they do reinforce my broader theoretical argument: Weak states do possess meaningful agency in crafting alliance terms. Additionally, strong state reliability has a greater impact on precision levels within alliance agreements than weak state reliability, challenging the assumption that strong states can unilaterally impose vague conditions within alliance agreements to avoid entrapment.³¹ Although traditional power and capability considerations remain influential when determining alliance precision, these results provide evidence that weak state abandonment concerns play a central role in shaping alliance precision.

³¹See Table A10.1, Appendix A10 for Relative Importance of Predictors analysis for each model.

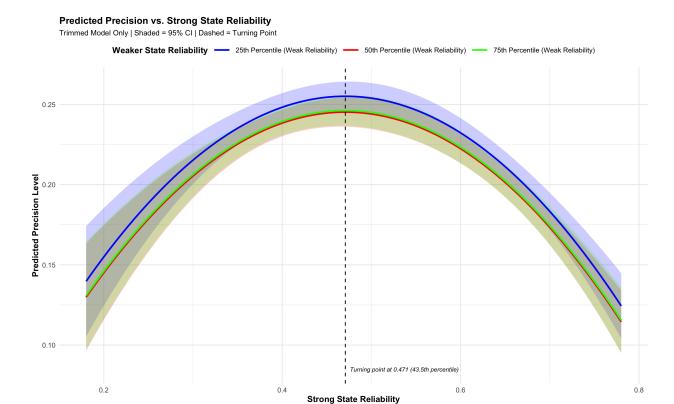


Figure 1.1: Alliance Precision Level Predicted Probability

These results suggest that when a strong state is below a certain threshold of reliability, it may need to "purchase" trust from weak allies to gain an alliance agreement. However, once a strong state achieves a certain level of reliability, that cost goes down, which makes intuitive sense within the context of abandonment. Weak states are primarily concerned with minimizing their risk of abandonment. If a strong state has a prolonged history of fulfilling past commitments and shares a similar political system, weak states may relax their demand for precise commitments. These results do highlight an important distinction from my theorized relationship. I predicted that increasing reliability would contribute to lower precision at all levels of reliability. Instead, it appears strong states must first demonstrate a acceptable level of reliability before they gain access to "discounted" agreements.

Institutionalization

The relationship between weak state reliability and institutionalization levels is nearly the inverse of strong state reliability and precision (See Table 6). Based on the results of model two, initially, when an unreliable weak state increases its reliability, the level of institutionalization decreases in tandem ($\beta_W = -2.620$, p < 0.01). This relationship continues until a turning point where the effect flattens and turns positive ($\beta_{W^2} = 2.523$, p < 0.01). In contrast to precision, where reliability for both states impacted the alliance agreement, strong state reliability does not have a statistically significant effect on institutionalization. Although strong ($\beta_S CINC = -0.234$, p < 0.01) and

weak state CINC values ($\beta_W CINC = 1.081$, p < 0.01) exhibit a statistically significant negative and positive effect respectively, weak state reliability acts as the primary driver of this relationship (See Table A10.1, Appendix A10).

Figure 1.4 highlights this relationship. In this figure, the horizontal axis represents the weak state reliability level, and the vertical axis represents the level of institutionalization within the alliance agreement. The blue red, and green concave lines depict the predicted institutionalization level across the range of weak state reliability values (holding strong state reliability constant at the 25th, 50th, and 75th percentiles). As the figure demonstrates, when a weak state's reliability score lies below the 85th percentile, increasing reliability is associated with decreased levels of institutionalization; however, when a weak state's reliability is above the 86th percentile, institutionalization begins to increase.

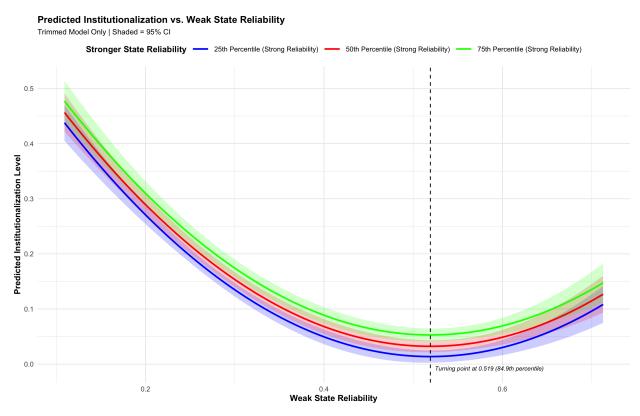


Figure 1.2: Alliance Institutionalization Level Predicted Probability

These findings support my hypothesized relationship between weak state reliability and institutionalization. Additionally, they suggest an interesting dynamic between weak and strong alliance partners. Placing these findings back within the context of entrapment, any increase in reliability is associated with lowered institutionalization "costs" for alliance formation. However, once a weak state proves themselves as highly reliable, we see an increase in institutionalization indicating that once a weak state has demonstrated itself an exceptionally reliable partner, states seek to create more heavily institutionalized agreements to take advantage of the military benefits of greater integration. At lower levels of reliability, institutionalizing may serve as a means of controlling weak state behavior.

At higher levels of reliability states may seek to form more deeply institutionalized agreements in the interest of greater strategic alignment (i.e., The US-South Korean alliance)

Depth

In the third model, I evaluate the impact of both strong and weak state reliability on alliance depth. Overall, the results indicate that my theorized relationship was not accurate. To capture the nuanced relationship between the variables of interest, in addition to the quadratic forms of state reliability, I also include an interactive term. Since alliance depth results from the alliance formation process (where states evaluate numerous considerations beyond reliability), I include threat environment in addition to CINC scores.

The results for the reliability variables (base and quadratic values) reflect the previous findings (See Table 1.6). At lower levels, weak state reliability was associated with a negative and significant relationship with depth ($\beta_W = -3.798$, p < 0.01) and at higher levels, increasing reliability for the weak states was positively and significantly associated with increased depth ($\beta_{W^2} = 3.914$, p < 0.01). For strong state reliability, it has a positive and significant linear relationship with alliance depth ($\beta_X = 1.147$, p < 0.01) at lower levels, but a significant negative effect at higher levels ($\beta_{X^2} = -1.076$, p < 0.01).

For both Strong ($\beta_{CINC_S} = 0.964$, p < 0.01) and Weak states ($\beta_{CINC_W} = 4.285$, p < 0.01), CINC scores had a positive and significant effect on depth however Weak state CINC scores have a more substantial effect on alliance depth. Although the relationship between threat environment and depth is statistically significant ($\beta_{threat} = 0.00032$, p < 0.01), the magnitude of the coefficient indicates the effect is substantively minor.

Based on relative importance analysis (See Table A10.1, Appendix A10), weak state reliability and power considerations acts as the primary drivers for alliance depth.³² Initially, I theorized that when both states are highly reliable, they will pursue a deeper alliance to capitalize on a preferred partner. However, the results suggest maximum alliance depth occurs when a reliable, strong state allies with a moderately reliable weak state, which contradicts my hypothesized relationship.

The results imply an asymmetrical concern regarding abandonment and entrapment between weak and strong states. While the strong state has concerns regarding entrapment, these concerns are relatively low. As the primary providers of security capacity within the alliance, Strong states have an advantageous bargaining position within the relationship to address entrapment concerns (Kim 2011). If the weak state is highly unreliable, the results indicate a strong state includes institutionalization conditions to corral undesirable behavior, but these conditions abate once the weak state demonstrates a moderate degree of reliability. Conversely, abandonment concerns remain salient for weak states until the strong state reaches a moderate level of reliability. Only past that point do weak states begin to relax the precision

³²See Thorhallsson (2017) and Pederson (2023) for a discussion on small state foreign policy and shelter theory, which may shed light on this dynamic.

within the agreement.

Figure 1.5 serves to illustrate the conditional nature of alliance depth and reliability. In this figure, the horizontal axis reflects the strong state reliability value, and the vertical axis reflects the alliance depth. The three lines on the chart depict the predicted depth level at that strong start reliability value. The dashed red line shows weak state reliability held constant at the 25th percentile. The solid purple line holds reliability at the 50th percentile, and the dotted green line holds it at the 75th percentile. The shaded area around the lines indicates the 95% CIs. For each line, alliance depth increases until it reaches a turning point before flattening out and shifting negative.

Contrary to my expectations, depth is highest when weak state reliability is held constant at the 25th percentile, whereas its predicted value is lowest at the 75th percentile. These findings suggest that crafting a deep alliance agreement is challenging when both states are unreliable. The lack of deeper alliance commitments when both states are highly reliable indicates a limited need for deep commitments to ensure cooperation.

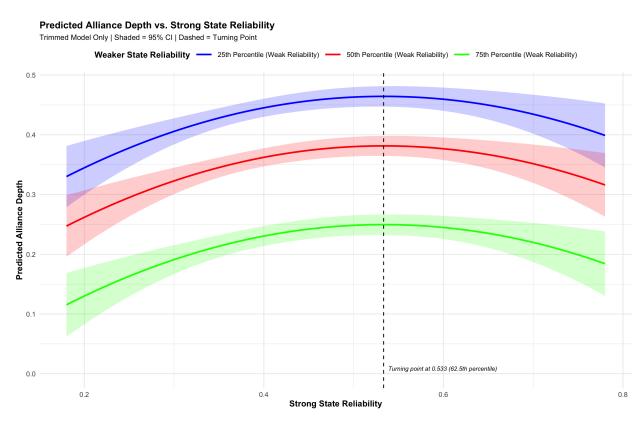


Figure 1.3: Effect of State Reliability on Alliance Depth

Alliance Formation and Conflict Deterrence

Having examined how variation in state reliability impacts alliance depth, I want to focus on the second question explored within this study: Does alliance depth impact the probability the allied dyad will experience an active MID? The challenge with examining the relationship between state reliability, alliances, and conflict is dealing with a possible

selection bias. Intuitively, it makes sense that states seek security partners when concerned about potential conflict. States in high-threat environments or those faced with impending conflict may elect to opt into an alliance agreement, which may bias the relationship between alliance presence and conflict occurrence. I examine alliance presence and conflict occurrence using a two-stage Heckman selection model to control for this potential selection bias.³³

Figure 1.6 depicts the coefficients for each stage of the Heckman model.³⁴ The dots on the plot represent the coefficient value for that variable, and the whiskers show the 95% CI around that value. The blue points represent the variables included in the selection stage, and the red points represent variables associated with the model's second, or outcome stage. The vertical dashed line extends from a value of zero. Any variables whose CIs cross that line are statistically insignificant. Variables to the right of this line are associated with a positive relationship, and variables to the left are associated with a negative relationship

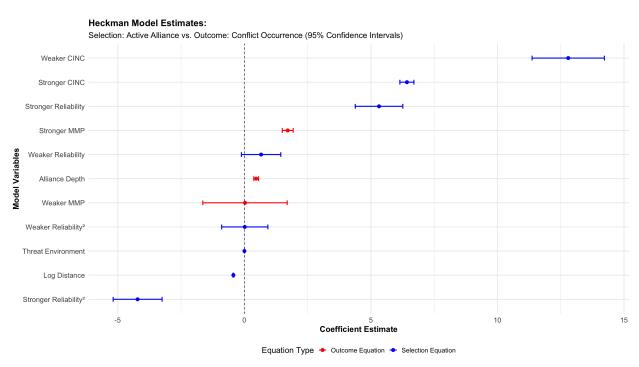


Figure 1.4: Heckman Selection Model: Coefficients Plot

The Heckman model's first (or selection stage) evaluates the probability that the state-dyad has an active alliance commitment for the given year. The relationship is nuanced as with the prior results regarding reliability and its impact on institutionalization and precision. Interestingly, only strong state reliability has a significant effect on alliance presence, At lower levels of reliability, as the strong state in the dyad becomes more reliable, the likelihood increases that the dyad has an active alliance agreement ($\beta_X = 5.320$, p < 0.01). At higher levels, only strong state reliability

 $^{^{33}\}beta_X$ and β_{X^2} represent strong state reliability, β_Z and β_{Z^2} represent weak state reliability, and β_D represents alliance depth. Control variables are denoted as $\beta_{variable}$.

34 See Table A11.1, Appendix A11 for full results

influences active alliances. When a reliable, strong state increases its reliability, there is a decrease in the likelihood of an active alliance between the dyad ($\beta_{X^2} = -4.219$, p < 0.01). Neither the linear weak state reliability variable ($\beta_Z = 0.661$) nor its quadratic function ($\beta_{Z^2} = 0.016$, p < 0.01) demonstrated a statistically significant effect. This counterintuitive relationship between strong state reliability and active alliance agreements indicates formal alliances may become unnecessary when a strong state is highly reliable. Instead, reliable states may be able to rely on informal security agreements to secure their interests.³⁵

Figure 1.7 highlights the dynamic relationship between state reliability and active alliances. This figure's horizontal axis covers the range of strong state reliability values. The vertical axis indicates the predicted probability of an active alliance. Note that active alliance agreements are relatively rare events, as illustrated by the small predicted probability values. The three colored lines represent weak state reliability held constant at the 25th, 50th, and 75th percentiles. As expected from the results, the probability of an active alliance agreement increases at the lower levels of reliability, but at higher levels, the relationship flips, and the probability decreases.

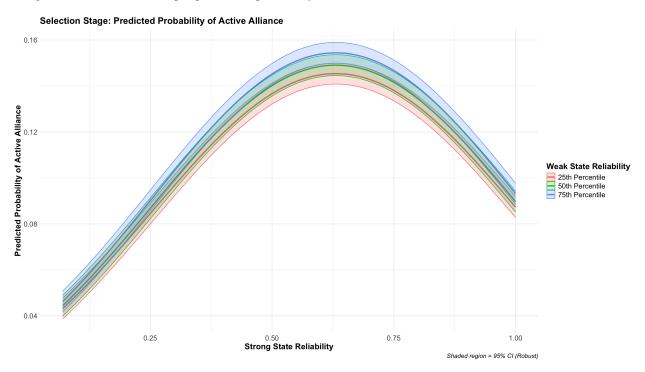


Figure 1.5: Heckman Selection Model: Active Alliance Predicted Probability

In a nod to traditional realists, state CINC scores exert a sizable influence on the presence of active alliances. While strong state CINC scores ($\beta_{CINC_S} = 6.337$, p < 0.01) are associated with an increased likelihood of active alliances, weak state CINC scores ($\beta_{CINC_W} = 12.797$, p < 0.01) have the largest effect. These results suggest that capability aggregation concerns remain the primary driver of initial alliance formation. Weak states with potent levels

³⁵While beyond the scope of this study, the increased usage of defense cooperation agreements (DCAs) may also influence these results. Kinne (2018) demonstrates that more states are leveraging DCAs to address their security concerns, suggesting a potential evolution in the primary vehicles impacting the international security environment.

of power in their own right make for appealing security partners. As anticipated, increased distance between the dyad resulted in a decreased likelihood of an active alliance agreement between the dyad ($\beta_{log_dist} = -0.436$, p < 0.001). Of note, however, while statistically significant, the effect size for threat environment ($\beta_{thrt} = 0.00071$, p < 0.01) was effectively zero.

In the second stage of the model, I evaluate the effect of alliance depth on the likelihood that either state in the dyad experienced an active MID during the year. Inclusion in this stage of the model was conditional on the dyad having an active alliance agreement at the time. Contrary to my hypothesized relationship, the results indicated that alliance depth has a positive and significant effect on the probability the dyad experience active MID during that year ($\beta_D = 0.466$, p < 0.01). As Figure 1.8 demonstrates, increased levels of alliance depth are associated with an increased probability of conflict occurrence. Based on these findings, if an alliance were to deepen its agreement from the 25th percentile to the 75th percentile, the likelihood that the dyad would experience an active MID would increase by 20.29 percentage points. While weak state military power did not impact the livelihood of conflict, strong state military power ($\beta_{S_MMP} = 1.728$, p < 0.01) had the most robust effect. Lastly, the model reported a positive and significant value for ρ (0.225 p < 0.01), validating the usage of this approach and suggesting that factors that drive states to seek alliance agreements may also affect the livelihood they experience a conflict.

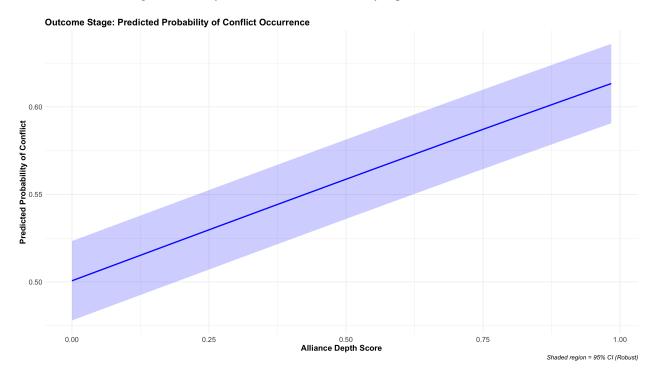


Figure 1.6: Heckman Selection Model: Conflict Occurrence Predicted Probability

Notably, these relationship reported held true across the levels of conflict. When I filtered the model to exclusively evaluate conflicts which entailed the threat of force, the use of force, fatalities, and conflicts that escalated to war,

deeper alliances were associated with a higher likelihood of incident.³⁶

The positive relationship between alliance depth and conflict suggests a few notable arguments. First, taking the influence strong state MMP has on conflict, deeper alliance agreements may embolden states to act. One limitation of the model presented is the inability to differentiate between conflicts initiated by a state within the dyad and ones where they are the target. Second, deeper alliance agreements may form in anticipation of conflict. Finally, deeper alliances may disproportionately form in high-conflict areas, resulting in a selection effect. The positive value of ρ in the selection model lends credibility to this last point, implying that unobserved factors may influence both the formation of alliances and conflict. Evaluating one without the other risks biasing the results.

Conclusion

In this study, I explored the role that state reliability plays on the dimensions of institutionalization and precision within alliance agreements. While the relationship between weak state reliability and institutionalization functions as theorized, strong state reliability and precision levels contradict expectations. Moreover, the reliability dynamic was more nuanced than anticipated, demonstrating a curved relationship where the reliability effects flatten and flip at higher levels.

This complex relationship carries over into my discussion of alliance depth. Assuming states prefer forming alliances with highly reliable partners and would be willing to pay additional costs to secure a more reliable ally, I hypothesized states would accept higher conditional costs within an agreement. For strong states, this would mean including additional institutionalization conditions to dampen concerns related to entrapment, and for weak states, the inclusion of more precise activation conditions to alleviate abandonment risks. Increasing both dimensions of depth would result in a deeper alliance commitment.

However, the data does not support this argument. Instead, the results suggest a potential ceiling effect, where increasing reliability for one state does not increase the depth of the agreement if the other state is already moderately reliable. This dynamic suggests that reliable dyads may experience mutual confidence in their partner's commitment to the relationship, decreasing their incentive to craft overly institutionalized, precise agreements. This heightened confidence may incentivize greater diplomatic flexibility and avoidance of over-commitment.

The results of my Heckman model suggest this caution is warranted. Within this model, I looked at how state reliability affected the probability of a dyad maintaining an active alliance agreement and conditional on that agreement if greater alliance depth increased the likelihood of the dyad experiencing an external conflict. As expected, more reliable states would form alliances more often. However, contrary to my hypothesis, greater levels of depth were associated with an increase in the probability of external conflict, indicating concerns related to emboldenment or overcommitting are valid.

³⁶See Table A12.1 Appendix A12 for full results

However, I advise caution in overinterpreting the decreased deterrent effect results. Within my dataset, any incident of conflict involving a dyad member returned a positive result for conflict in that year, which oversimplifies the concept; however, limitations related to coding and context necessitated this approach. The MIDs dataset provides a wealth of information concerning conflict; however, accurately identifying an initiator and a target remains challenging. It is almost certain that in some cases, alliance members initiated the MID identified in a given year, which would not indicate a failure of deterrence. Additionally, I only code MIDs as a binary, minimizing the effect of multiple MID events, which may obscure the deterrent effect of deeper alliance agreements.

The dynamic between precision and institutionalization is also complex. As Fjestul and Rider point out, states often seek to make agreements deliberately vaguer to afford them greater political maneuverability. Crafting an agreement with highly precise language may afford a state the same interpretive advantage as a vague agreement. Text analysis of legal precision has been a core interest for legal scholars, and extending these techniques and theories to alliance agreements could provide interesting new insights.³⁷.

Additionally, for my analysis, I treated institutionalization as a static characteristic. However, this may not adequately reflect the reality of alliance relationships. For example, the formal agreement between the US and South Korea reflects relatively low institutionalization. Yet, this level has radically increased over time, resulting in a highly integrated, mutually dependent military relationship. This case provides evidence that institutionalization is not static but a dynamic aspect of the evolving relationship between alliance partners. Future research into how changes along this dimension of alliance agreements influence the deterrent effect of the alliance may well produce compelling results.

³⁷See Anesa 2007

Bibliography

- Anesa, Patrizia. 2007. "Vagueness and Precision in Contracts: A Close Relationship." *Linguistica e filologia* 24: 7–38.
- 2. Beckley, Michael. 2015. "The Myth of Entangling Alliances: Reassessing Security Risks of U.S. Defense Pacts." *International Security* 34(4): 7–48.
- 3. Belsley, David A., Edwin Kuh, and Roy E. Welsch. 1980. *Regression Diagnostics: Identifying Influential Data and Sources of Collinearity*. John Wiley & Sons.
- 4. Benson, Brett V. 2011. "Unpacking Alliances: Deterrent and Compellent Alliances and Their Relationship with Conflict, 1816–2000." *The Journal of Politics* 73(4): 1111–27. https://doi.org/10.1017/S0022381611000867.
- 5. Benson, Brett V., Patrick R. Bentley, and James Lee Ray. 2013. "Ally Provocateur: Why Allies Do Not Always Behave." *Journal of Peace Research* 50(1): 47–58. https://doi.org/10.1177/0022343312454445.
- 6. Boulding, Kenneth E. 1963. "Towards a Pure Theory of Threat Systems." *The American Economic Review* 53(2): 424–34.
- 7. Bowen, Andrew. 2021. Russian Arms Sales and Defense Industry. Congressional Research Service. Summary.
- 8. Bremer, Stuart A. 1992. "Dangerous Dyads: Conditions Affecting the Likelihood of Interstate War, 1816-1995." *Journal of Conflict Resolution* 36: 309–41.
- 9. Breusch, T. S., and A. R. Pagan. 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation." *Econometrica* 47(5): 1287. https://doi.org/10.2307/1911963.
- 10. Buzan, Barry, and Ole Waever, eds. 2003. *Regions and Powers: The Structure of International Security*. Cambridge: Cambridge University Press.
- 11. Central Intelligence Agency. 1953. "The Release of North Korean Prisoners of War." *CIA FOIA Electronic Reading Room.* https://www.cia.gov/readingroom/docs/CIA-RDP80R01443R000100230018-8.pdf
- 12. Chung, Jaewook. 2020. "Capability Distribution between Allies, Geographical Proximity and Alliance Duration." *The Korean Journal of International Studies* 18(1): 1–31. https://doi.org/10.14731/kjis.2020.04. 18.1.1.

- 13. Daxecker, Ursula E. 2011. "Rivalry, Instability, and the Probability of International Conflict." *Conflict Management and Peace Science* 28(5): 543–65. https://doi.org/10.1177/0738894211418591.
- Edgerton, Jared F. 2024. "Cooperative Communities in the International System: Networked Cooperation of Similar States." *The Journal of Politics* 86(4): 1509–23. https://doi.org/10.1086/729945.
- Fang, Songying, Jesse C. Johnson, and Brett Ashley Leeds. 2014. "To Concede or to Resist? The Restraining Effect of Military Alliances." *International Organization* 68(4): 775–809. https://doi.org/10.1017/ S0020818314000137.
- 16. Fearon, James D. 1995. "Rationalist Explanations for War." International Organization 49(3): 379-414.
- 17. Fearon, James D. 1997. "Signaling Foreign Policy Interests: Tying Hands Versus Sinking Costs." *Journal of Conflict Resolution* 41(1): 68–90.
- 18. Fjelstul, Joshua C., and Dan Reiter. 2019. "Explaining Incompleteness and Conditionality in Alliance Agreements." *International Interactions* 45(6): 976–1002. https://doi.org/10.1080/03050629.2019.1647838.
- Fuhrmann, Matthew, and Todd S. Sechser. 2014. "Signaling Alliance Commitments: Hand-Tying and Sunk Costs in Extended Nuclear Deterrence." *American Journal of Political Science* 58(4): 919–35. https://doi.org/ 10.1111/ajps.12082.
- 20. Garamone, Jim. 2023. "Long Diplomatic Wrangling Finally Led to Korean Armistice 70 Years Ago." U.S. Department of Defense. https://www.defense.gov/News/News-Stories/Article/Article/3423473/long-diplomatic-wrangling-finally-led-to-korean-armistice-70-years-ago/
- 21. Goemans, H. E., Kristian Skrede Gleditsch, and Giacomo Chiozza. 2009. "Introducing Archigos: A Dataset of Political Leaders." *Journal of Peace Research* 46(2): 269–283.
- 22. Goertz, Gary, Paul Diehl, Andrew Owsiak, and Luis Schenoni. "Tracking the Evolution of Conflict: Barometers for Interstate and Civil Conflict." *United States Institute of Peace*: 23–004.
- 23. Grömping, Ulrike. 2006. "Relative Importance for Linear Regression in R: The Package relaimpo." *Journal of Statistical Software* 17(1): 1–27.
- 24. Guzman, Andrew T. 2005. "The Design of International Agreements." *European Journal of International Law* 16(4): 579–612. https://doi.org/10.1093/ejil/chi134.
- 25. Heckman, James. 1990. "Varieties of Selection Bias." The America Economic Review 80(2): 313-18.

- Hopmann, P. Terrence. 2019. "When Is 'Enough' Enough? Settling for Suboptimal Agreement." In How Negotiations End, ed. I. William Zartman. Cambridge University Press, 265–86. https://doi.org/10.1017/ 9781108567466.016.
- 27. Horowitz, Donald. 1985. Ethnic Groups in Conflict. Berkeley: University of California Press.
- 28. Jervis, Robert. 1982. "Deterrence and Perception." International Security 7(3): 3–30.
- 29. Johnson, Jesse C., and Brett Ashley Leeds. 2011. "Defense Pacts: A Prescription for Peace?: Defense Pacts and Peace." *Foreign Policy Analysis* 7(1): 45–65. https://doi.org/10.1111/j.1743-8594.2010.00122.x.
- 30. Kim, Tongfi. 2011. "Why Alliances Entangle But Seldom Entrap States." *Security Studies* 20(3): 350–77. https://doi.org/10.1080/09636412.2011.599201.
- 31. Kinne, Brandon J. 2018. "Defense Cooperation Agreements and the Emergence of a Global Security Network." *International Organization* 72(4): 799–837. https://doi.org/10.1017/S0020818318000218.
- 32. Koremenos, Barbara, Charles Lipson, and Duncan Snidal. 2001. "The Rational Design of International Institutions." *International Organization* 55(4): 761–99.
- 33. Lai, Brian, and Dan Reiter. 2000. "Democracy, Political Similarity, and International Alliances, 1816-1992." *Journal of Conflict Resolution* 44(2): 203–27.
- 34. Leeds, Brett Ashley. 2003. "Do Alliances Deter Aggression? The Influence of Military Alliances on the Initiation of Militarized Interstate Disputes." *American Journal of Political Science* 47(3): 427–39. https://doi.org/10.1111/1540-5907.00031.
- 35. Leeds, Brett Ashley, and Sezi Anac. 2005. "Alliance Institutionalization and Alliance Performance." *International Interactions* 31(3): 183–202. https://doi.org/10.1080/03050620500294135.
- 36. Leeds, Brett, Jeffrey Ritter, Sara Mitchell, and Andrew Long. 2002. "Alliance Treaty Obligations and Provisions, 1815-1944." *International Interactions* 28(3): 237–60. https://doi.org/10.1080/03050620213653.
- 37. Marquez, Xavier. 2016. "A Quick Method for Extending the Unified Democracy Scores." *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.2753830.
- 38. Milner, Helen. 1991. "The Assumption of Anarchy in International Relations Theory: A Critique." *Review of International Studies* 17(1): 67–85. https://doi.org/10.1017/S026021050011232X.
- 39. Montalvo, José G., and Marta Reynal-Querol. 2005a. "Ethnic Polarization, Potential Conflict, and Civil Wars." *The American Economic Review* 95(3): 796–816.

- 40. Morey, Daniel S. 2014. "Military Coalitions and the Outcome of Interstate Wars." *Foreign Policy Analysis*: n/a-n/a. https://doi.org/10.1111/fpa.12083.
- 41. Morgenthau, Hans J. 1949. *Politics Among Nations: The Struggle for Power and Peace*. New York: Alfred A. Knopf, Inc.
- 42. Morrow, James. 1994. "Alliances, Credibility, and Peacetime Costs." *Journal of Conflict Resolution* 38(2): 270–97.
- 43. Morrow, James D. 2000. "Alliances: Why Write Them Down?" *Annual Review of Political Science* 3(1): 63–83. https://doi.org/10.1146/annurev.polisci.3.1.63.
- 44. Narang, Vipin. 2021. "Russian Influence on India's Military Doctrines." *Journal of Indo-Pacific Affairs* 4(1): 65–73.
- 45. Nardulli, Peter F., Caleb J. Wong, Ahra Wu Singh, Bryan Peyton, and Julia Bajjalieh. 2012. "The Composition of Religious and Ethnic Groups (CREG) Project." Cline Center for Democracy, University of Illinois at Urbana-Champaign.
- 46. Pedersen, Rasmus. 2023. "Small States Shelter Diplomacy: Balancing Costs of Entrapment and Abandonment in the Alliance Dilemma." *Cooperation and Conflict*: 001083672311644. https://doi.org/10.1177/00108367231164497.
- 47. Pemstein, Daniel, Stephen A. Meserve, and James Melton. 2010. "Democratic Compromise: A Latent Variable Analysis of Ten Measures of Regime Type." *Political Analysis* 18(4).
- 48. Pesu, Mikael, and Ville Sinkkonen. 2024. "Trans-Atlantic (Mis)Trust in Perspective: Asymmetry, Abandonment and Alliance Cohesion." *Cambridge Review of International Affairs* 37(2): 206–225.
- 49. Poast, Paul. 2013. "Issue Linkage and International Cooperation: An Empirical Investigation." *Conflict Management and Peace Science* 30(3): 286–303. https://doi.org/10.1177/0738894213484030.
- Powell, Emilia Justyna. 2010. "Negotiating Military Alliances: Legal Systems and Alliance Formation."
 International Interactions 36(1): 28–59. https://doi.org/10.1080/03050620903553855.
- 51. Powell, Robert. 1999. *In the Shadow of Power: States and Strategies in International Politics*. Princeton: Princeton University Press.
- 52. Ramsey, J. B. 1969. "Tests for Specification Errors in Classical Linear Least-Squares Regression Analysis." *Journal of the Royal Statistical Society Series B: Statistical Methodology* 31(2): 350–71. https://doi.org/10.1111/j.2517-6161.1969.tb00796.x.

- 53. Republic of Korea. 1953. "Confidential Memorandum Agreeing to the Armistice Agreement." Wilson Center Digital Archive. https://digitalarchive.wilsoncenter.org/document/confidential-memorandum-agreeing-armistice-agreement
- 54. Senese, Paul D. 1996. "Geographical Proximity and Issue Salience: Their Effects on the Escalation of Militarized Interstate Conflict." *Conflict Management and Peace Science* 15(2): 133–61. https://doi.org/10. 1177/073889429601500202.
- 55. Smith, Alastair. 1995. "Alliance Formation and War." *International Studies Quarterly* 39(4): 405. https://doi.org/10.2307/2600800.
- 56. Smith, Alastair. 1998. "Extended Deterrence and Alliance Formation." *International Interactions* 24(4): 315–43. https://doi.org/10.1080/03050629808434934.
- 57. Pesu, Mikael, and Ville Sinkkonen. 2024. "Trans-Atlantic (Mis)Trust in Perspective: Asymmetry, Abandonment and Alliance Cohesion." *Cambridge Review of International Affairs* 37(2): 206–225.
- 58. Snyder, Glenn H. 1984. "The Security Dilemma in Alliance Politics." World Politics 36(4): 461-495.
- 59. Snyder, Glenn H. 1997. Alliance Politics. Ithaca, NY: Cornell University Press.
- 60. Snyder, Glenn H. 1991. "Alliances, Balance, and Stability." *International Organization* 45(1): 121–42. https://doi.org/10.1017/S0020818300001417.
- 61. Souva, Mark. 2023. "Material Military Power: A Country-Year Measure of Military Power, 1865–2019." Journal of Peace Research 60(6): 1002–9. https://doi.org/10.1177/00223433221112970.
- 62. Thorhallsson, Baldur. 2017. "Small State Foreign Policy." Oxford Research Encyclopedia of Politics.
- 63. U.S. Department of State. 1949. "President Rhee's Questions on U.S. Security Guarantees." *Foreign Relations of the United States, 1949, Volume VII, Part 2, The Far East and Australasia.* https://history.state.gov/historicaldocuments/frus1949v07p2/d237
- 64. U.S. Department of State. 1952–1954. "Despatch from the Ambassador in Korea (Briggs) to the Department of State." *Foreign Relations of the United States, 1952–1954, Volume XV, Part 1, Korea*. https://history.state.gov/historicaldocuments/frus1952-54v15p1/d178
- 65. U.S. Department of State. 1952–1954. Foreign Relations of the United States, 1952–1954, Volume XV, Part 1, Korea, p. 285. https://history.state.gov/historicaldocuments/frus1952-54v15p1/pg_285

- 66. Vasquez, John A. 1995. "Why Do Neighbors Fight? Proximity, Interaction, or Territoriality." *Journal of Peace Research* 32: 257–382.
- 67. Wallace, Geoffrey P.R. 2008. "Alliances, Institutional Design, and the Determinants of Military Strategy." *Conflict Management and Peace Science* 25(3): 224–43. https://doi.org/10.1080/07388940802218978.
- 68. Walt, Stephen M. 1985. "Alliance Formation and the Balance of World Power." *International Security* 9(4): 3. https://doi.org/10.2307/2538540.
- 69. Walt, Stephen M. 1988. "Testing Theories of Alliance Formation: The Case of Southwest Asia." *International Organization* 42(2): 275–316. https://doi.org/10.1017/S0020818300032823.
- 70. Waltz, Kenneth N. 1979. *Theory of International Politics*. Reading, Massachusetts: Addison-Wesley Publishing Company, Inc.
- 71. Wright, Thorin M., and Toby J. Rider. 2014. "Disputed Territory, Defensive Alliances and Conflict Initiation." *Conflict Management and Peace Science* 31(2): 119–44. https://doi.org/10.1177/0738894213503440.

CHAPTER 2

READING BETWEEN THE LINES: HOW PRECISION IMPACTS PERCEPTIONS OF REPUTATION AND COMMITMENT WITHIN ASYMMETRIC ALLIANCES 38

³⁸Leppo, Philip. To be submitted to International Studies Quarterly

Abstract

Alliances are a fundamental part of international politics. States craft agreements that reflect their objectives and interests. Small states dealing with abandonment concerns seek a way to generate greater commitment from large state partners. I hypothesize that greater levels of precision within alliance agreements can increase the expectation of reputational costs for larger states. Due to these increased costs, larger states are more hesitant to renege on agreements, resulting in greater commitment levels. Using a two-stage survey experiment of undergraduate students at the University of Georgia, I demonstrate precise alliance conditions increase respondent agreement that the US has an obligation to support its ally and that failing to do so will result in greater reputational harm. However, efforts by smaller states to renegotiate alliance agreements to regain security autonomy and decrease military integration decreases respondents' feelings of obligation to the alliance partner.

Introduction

In early 2024, President Trump spoke about his strong-arm approach to pressuring NATO allies to increase their monetary contributions. Trump asserted his belief in the transactional nature of alliance agreements, describing how failure to provide adequate contributions could jeopardize the security relationship (C-Span 2024: Cha 2024). Throughout the rest of Trump's 2024 campaign, airing grievances related to underpaying defense partners became a common refrain. President Trump's continued belief in the "quid-pro-quo" nature of alliances has shaken European leaders and exacerbated abandonment concerns, necessitating explicit statements reaffirming commitment from the NATO Secretary General (Colvin 2024).

Despite Trump's divisive rhetoric, NATO's size and level of integration between members alleviate some concerns about abandonment. However, many smaller nations that maintain bilateral alliance agreements with the US do not have the degree of support. Trump's fickle approach to Ukraine highlights the growing risk of abandonment under a second Trump presidency (Ash 2024). Faced with these concerns, smaller alliance members and other small states have a vested interest in understanding the best ways to ensure alliance support in the event of conflict. Although Trump's assertion that increased investments produce increased security assurances, the ability of a smaller state to achieve or maintain that level of commitment is limited. Finding another avenue to improve partner reliability through alliance agreements represents a path toward greater security. Given these concerns, I focus this study on two questions. First, what factors influence a strong state's perceptions of its alliance commitment to a weaker partner? Second, can weaker states mitigate abandonment risks by devising more precise alliance conditions?

By increasing precision within alliance agreements, smaller states can enhance the reputational damage a strong state expects to suffer if it fails to fulfill its alliance obligations adequately. As the strong state is often the primary supplier of military power within the alliance, vague language and imprecise activation conditions grant greater flexibility and provide the strong state a range of response options, some of which may fulfill the letter of the agreement, but not the spirit. For example, each bilateral defense treaty between the US and Japan, South Korea, and The Philippines includes a statement highlighting the danger from an attack in the Pacific region and discusses how each state will meet the common dangers in accordance with its constitutional processes". However, only the Philippine treaty further clarifies that an armed attack includes any action against a Philippine military or public vessel in the region, which makes it more challenging for the US to renege on its commitments if an incident occurs. In essence, less precision provides stronger states, like the US, an "out" if fulfilling the agreement runs contrary to their preferences.

To test this argument, I conducted a survey experiment of University of Georgia undergraduate students and asked them to record their level of agreement with several statements related to reputational harm and alliance commitments. I varied the threat level and alliance precision of a hypothetical agreement between the US and a weaker state. I found support for my argument, with respondents indicating greater anticipated reputational harm and higher alliance commitment when the alliance agreement was more precise. Additionally, I found that while higher threat induced

greater expectations of reputational harm from reneging, it did not affect alliance commitment, indicating that while threat level can enhance the effect of precision, it does not enhance commitment alone.

Considering these results, I sought to answer another research question: Does the effort by the weaker state to alter or adjust the level of military integration between the two alliance partners influence the stronger state's level of commitment to the alliance? Using the logic of the security-autonomy tradeoff, I predicted that efforts by the weaker state to alter the agreement to gain greater security autonomy would undermine the relationship, ultimately decreasing the stronger state's sense of commitment. My findings bear this out, demonstrating that renegotiation efforts of this nature decrease respondents' sense of obligation to support the weaker state if called upon.

The research conducted here provides both scholarly and practical implications. From an academic perspective, my findings support the findings of Fjelstul and Reiter, who demonstrated that states prefer to craft vague agreements to provide greater leeway when fulfilling their obligations. The heightened anticipation of reputational harm demonstrates that failure to abide by the agreement in more precise conditions indicates states are correct in pursuing less precise agreements. Additionally, my results concerning renegotiation efforts extend the literature on the Security-Autonomy tradeoff. If a weaker state endeavors to recoup its security autonomy, the stronger state may respond in kind by withholding its security guarantees.

From a policy perspective, a more precise agreement limits future response options in the event of a conflict. Leaving space for interpretation through vague and imprecise support conditions enhances flexibility and political maneuverability. Concerning renegotiation efforts, these findings indicate that policy practitioners should exercise caution when discussing changes in the alliance structure. Efforts to adjust the level of integration may inadvertently undermine the alliance itself.

Literature Review

Alliances are integral to the international system, as evidenced by the extensive research focused on them. The foundational literature on alliances explored the dynamics of alliance formation. Initially, alliances served as a means to balance against rising powers, with states either joining the side of the rising power through bandwagoning or aligning against the power via balancing (Morgenthau 1949; Waltz 1979). In their critique of the "balance of power" approach, Walt (1985) argued that states were not necessarily concerned with rising power but more a rising threat.

By combining forces, states could more effectively combat adversaries. Morrow (1991) argued, however, that viewing alliances strictly from this perspective did not provide the complete picture of alliance formation. Merely combining forces did not account for the negotiation between the alliance partners. Instead, Morrow modeled alliances as a trade-off between strong and weak states. Strong states typically possess an excess security capacity, allowing them to provide security guarantees to smaller states in exchange for some autonomy concession. These autonomy concessions might be policy positions that favor the strong state or access to strategic basing or logistical routes.

A critical point of Morrow's model is recognizing the inherent imbalance within the security areas regarding strong and weak states. Strong states often possessed a resource and production advantage over weak states, allowing them to pursue various policy options to address security concerns. This production capability enabled strong states to produce a robust military capacity domestically, whereas weak states often lacked this capability(Waltz 1979; Walt 1985; Snyder 1991).

Based on this imbalance, scholars such as Thorhallsson and Steinsson (2017) critique the historical literature on alliances, arguing that the approach focused heavily on greater powers but did not adequately represent the challenges faced by smaller states. This critique gave rise to research on how smaller states functioned within the international system (Pederson 2023).

Shelter theory, initially explored by Thorhallsson (2018), examines how smaller states are fundamentally different from their more powerful counterparts, which influences how these states approach international relations. Vaicekauskaitė (2017) argues that weak states often have three avenues to address their security concerns. First, they may pursue neutrality. Smaller states near hostile, stronger powers may view neutrality to mitigate tensions and protect their autonomy. A prime example of this approach is Switzerland and Finland's decision to remain neutral as friction between NATO and the USSR increased during the Cold War.

Second, they may pursue a strategic hedging policy. In this approach, the weak state does not align with a particular stronger state; instead, it balances multiple policies between stronger states. Thailand has pursued this approach in recent years, attempting to navigate the increasing competition between the United States and China (Feng and Netkhunakorn 2024). As the friction between the US and China has grown, more Southeast Asian states have begun implementing hedging strategies to preserve their autonomy and mitigate regional tensions. Strategic hedging provides smaller states a means of maintaining positive relations with the stronger powers in the region without tying too tightly with any one state, avoiding unnecessarily provoking a stronger state and limiting the weak state's policy options.

The third option is building alliances with stronger states. Under this approach, smaller states subordinate themselves to stronger patrons. This approach gives smaller states a direct boost to their security capacity and enhances their territorial integrity, which can deter future threats and even allow the weaker state to redistribute its spending towards domestic interests (Lake 2009; Digiuseppe and Poast 2016; Alley 2021).

Securing an alliance agreement provides smaller states with an expedient and resource-efficient means of protecting their security interests. However, these agreements also incur costs. In addition to the concession the smaller state provides to procure the security guarantees from the stronger state, alliances also typically include commitments of military investments, often in the form of arms procurement and joint exercises (Leeds et al 2002). Additionally, alliances are costly because they bind a state's policy options. As a public declaration, states are putting their reputations at risk if they fail to follow through on support promises in the event of a conflict (Morrow 2000; Gibler 2008).

When states fail to support alliance agreements, other states notice this failure and adjust their perspective of

the reneging state as a potential partner (Crescenzi et al. 2012). States run the risk of developing a reputation for unreliability, which can spill over into other arenas, making potential partners reluctant to formalize partnerships and limiting future opportunities for cooperation (Jervis 1989; Cole and Kehoe 1998; Guzman 2008; Crescenzi et al. 2012; Narang and LeVeck 2019).

Additionally, reneging can have domestic ramifications. Leaders, particularly within democratic countries, can pay domestic costs if they fail to comply with alliance agreements.³⁹ Tomz and Weeks (2021) highlight how the US public retains a strong moral commitment to honoring alliance agreements and a vested interest in maintaining a robust military reputation. As the threat level rises, citizens punish their leaders even more harshly for reneging on alliance agreements (Davies and Johns 2013).

Moreover, alliance agreements expose states to abandonment and entrapment risks (Snyder 1984). Entrapment occurs when an ally's overly aggressive or reckless behavior pulls the other alliance member into an unwanted or unanticipated conflict. Abandonment represents the risk that an ally will fail to abide by its alliance agreement. Although abandonment and entrapment pose risks to both strong and weak states, they are especially salient for weak states.

As the security guarantors within the alliance, stronger states typically can unilaterally defeat or deter an adversary. Entering an alliance agreement with a smaller state often gives the stronger state a strategic advantage, making defensive efforts less logistically costly (Boulding 1963). For instance, the US's alliances with Japan, South Korea, and the Philippines provide the US with basing rights and the ability to forward deploy assets into the strategically important Asian region. If conflict with China or North Korea broke out and the US allies reneged on their support agreements, the US would lose access to the strategic basing locations. However, this would not necessarily represent an existential threat to the US; instead, it would only increase the cost of engaging in the conflict.

For a weaker state, however, abandonment does represent an existential threat. Using the same example, if South Korea engaged in conflict with North Korea or China and the US elected to renege on its security promise, the impact would be devastating. South Korea may possess the domestic security capability to defeat North Korea, but it would come at a significant cost (Daniels 2017). In the case of China, the possibility that South Korea could defend or defeat its adversary is doubtful.

Although entrapment represents a potential risk for both states, the level of risk is under debate. Kim argues that evidence of entrapment remains limited, and historical cases of its existence are meager. More broadly, Kim and others (i.e., Beckley 2015; Fjelstul and Reiter 2019) suggest that stronger states actively pursue agreements that afford them greater latitude to abandon their allies if necessary. Using imprecise language and vague guarantees, states can limit

³⁹Reiter and Greenhill (2024) highlight that leaders have the capacity to reduce or eliminate domestic audience costs through effective messaging and signaling strategies. Although, these strategies may mitigate the domestic cost leaders face when choosing to renege on alliance agreements, the authors do not explore the impact that signaling may have on international audiences. While this study does not explicitly focus on domestic costs as the primary driving factor for alliance commitment, Reiter and Greenhill's findings raise an interesting question for future research: do domestic or international reputation considerations factor more heavily within a leader's decision making process concerning alliance commitments?

the likelihood of becoming involved in a conflict. Within this context, abandonment may represent not merely a "bug" within an alliance agreement but a desired feature.

Kim's argument presents a significant challenge to my argument concerning alliance precision. If states routinely structure their agreements to afford greater latitude, is the assertion that weaker states can reshape alliance agreements in a manner that meaningfully addresses their abandonment concerns credible? Rather than evading this critique, this study seeks to engage it directly. I would highlight two considerations regarding Kim's critique. First, as Morrow (2000) notes, writing down alliance agreements increases their credibility. Almost by definition, this act introduces a level of precision within the alliance partnership. In his discussion on the difference between alignment and alliance, Wilkins (2012) highlights this dynamic, describing how alliance introduces "formality and precision" to the coordinated relationship between states with shared interests. From this perspective, precision is not merely an aspect of alliance formation but arguably the foundation of the process.

Second, if alliance agreements truly provided stronger states with total flexibility regarding their fulfillment obligations, it would undermine a key function within the security-autonomy trade-off (Morrow 1991). If stronger states can craft non-binding agreements, it is logical to question why any weak state would willingly concede any measurable degree of autonomy. If the trade-off process reflects a spectrum of acceptable alliance arrangements, then offering greater autonomy concessions mandates the strong state provide an equally valuable security guarantee—most likely in the form of a more precise, binding agreement. If weak states cannot extract these more precise agreements, the logic of the security-autonomy trade-off fractures.

Although Kim's critique regarding entrapment highlights the constraint weaker states face within the alliance formation process, it does not invalidate these states' efforts to address their security needs. Instead, it emphasizes the necessity of identifying a mechanism that better explains how weaker states can shape the conditions of asymmetrical alliance agreements despite their strategic disadvantages. Legalization theory provides insight into the potential tools—however meager— weaker states have at their disposal to address their abandonment concerns. Through precision, these states can manipulate the levels of delegation and obligation throughout the alliance formation process to moderate their abandonment concerns and protect their strategic interests.

Legalization theory defines international agreements along three dimensions: obligation, delegation, and precision (Keohane 1984; Abbott et al. 2000). Obligation refers to the extent to which the agreement legally binds parties. Delegation involves granting authority to third parties to interpret or enforce the agreement. Precision reflects how clearly the terms of the agreement are defined. Together, these dimensions determine the "hardness" of an international commitment.

While Abbot et al. describe each dimension as distinct and equally important aspects of legalization, research frequently marginalizes precision, focusing more heavily on obligation and delegation (Bélanger and Fontaine-Skronski 2012). In practice, however, precision is foundational to both obligation and delegation. Without clearly defined terms,

legal obligation lacks enforceability, and effective delegation becomes challenging. Yet, despite its foundational role, Limited research directly evaluates how variation in precision influences perceptions of reputational harm and alliance commitments. This study addresses that gap. Through a survey experiment, I demonstrate that greater precision in alliance agreements increases a strong state's perception of reputational risk and strengthens its sense of obligation toward a weaker partner.

Theoretical Argument

States do not arbitrarily enter alliances; they craft agreements that reflect their preferences and strategic interests (Koremenos et al 2001). During the alliance formation process, states negotiate a wide range of support conditions and expectations. From the perspective of legalization theory, the conditions and commitments outlined in the alliance agreement help define the level of obligation and delegation. However, precision underpins each of these dimensions. By varying the level of clarity of the expectations, conditions, and commitment within the agreement, states can either enhance or degrade the degree of credibility and enforceability of the alliance.

Prior research by Fjelstul and Reiter (2019) and Beckley (2015) indicate that states inherently recognize the importance of precision with respect to international agreements. They often seek to minimize precision within alliance agreements to protect their policy flexibility. This strategic avoidance indicates that the state views precision as a critical aspect of the alliance agreement. Greater levels of precision constrain states by limiting the range of interpretation concerning alliance obligations.

Returning to the example of the US-Philippine alliance, Article IV of the mutual defense agreement stipulates that if "an armed attack in the Pacific Area on either of the parties," each state would "act to meet the common demands in accordance with its constitutional processes" (Mutual Defense Treaty Between the United States and the Republic of the Philippines 1951). The Japanese and South Korean mutual defense treaties include nearly identical articles (Mutual Defense Treaty between the US and the Republic of Korea 1953; Treaty of Mutual Cooperation and Security Between Jampan and the United States of America 1960). However, Article V in the Philippine treaty designates an armed attack that includes an "attack on the metropolitan territory of either of the Parties or on the island territories under its jurisdiction in the Pacific or on its armed forces, public vessels or aircraft in the Pacific."

This clarification provides a subtle but significant addition to the alliance agreement. Imagine a South Korean or Japanese vessel comes under attack in a contested area of the Pacific. Absent the language specifically identifying public vessels or aircraft, the US has the flexibility to debate its support obligations, for example, arguing that the alliance agreement only dictates support in the event of an attack on military vessels. The more precise language within the Philippine treaty precludes this argument, constraining US policy actions.

Thus, increasing the precision of alliance language raises the reputational stakes because the terms of support are clearly defined and leave less room for ambiguity or plausible denial. They cannot easily claim misinterpretation

or ambiguity, and third parties, whether domestic audiences or other international actors, are more likely to view non-compliance as a deliberate breach of the agreement. As the expectation of reputational damage increases, the alliance agreement binds the allies closer, enhancing the level of commitment between the two states. This dynamic leads to my first set of testable hypotheses:

Hypothesis 1: As alliance precision increases, the strong state's expected reputational damage from reneging increases.

Hypothesis 2: As alliance precision increases, the strong state's sense of commitment to the alliance increases.

Two contextual factors also impact this dynamic. The first is the level of external threat. Alliance negotiations occur under the shadow of threat. The inherent constraining nature of alliance agreements dictates that a threat must exist to some degree for states to accept the costs of the agreement and expose themselves to the risks of abandonment and entrapment. Within a high-threat environment, alliance commitments take on greater significance due to the elevated potential for conflict. As this probability of conflict increases, the risk of abandonment becomes more salient, particularly for weaker states. South Korea provides an example of this dynamic. At times, the threat level extending from North Korea is very high, as when North Korea conducts missile launch tests or during events like the sinking of the Cheonan in 2010 (Lendon 2010). If these events were to elevate into open conflict and the US reneged on its agreement, its reputation damage would likely be substantial. During times of conflict, the international community tends to focus heavily on these locations. When allies fail to abide by their agreements, their non-compliance is highly visible and more easily interpreted as evidence of unreliability, which leads to my second set of testable hypotheses:

Hypothesis 3: As external threat increases, the strong state's expected reputational damage from reneging increases.

Hypothesis 4: As external threat increases, the strong state's sense of commitment to the alliance increases.

The security-autonomy trade-off inherent in asymmetrical alliances is the second contextual factor influencing the relationship. Central to the alliance formation process is that to gain a security commitment, weaker states offer some autonomy concession to the stronger state. The weaker states then push for increased precision within the agreement to enhance the security commitment of the stronger states, binding it more tightly. However, if the weaker state attempts to renegotiate the agreement to regain lost autonomy, it undermines this binding effect. If the stronger state views the benefits gained from the alliance agreement as diminishing, it may erode its sense of obligation to the weaker states, undermining the alliance's credibility. Based on this argument, I develop my final testable hypothesis:

Hypothesis 5: When the weaker state attempts to renegotiate for reduced autonomy concessions, the strong state's perceived obligation to the alliance decreases.

Research Design

To evaluate these hypotheses, I conducted a survey experiment of 1162 undergraduate students from the University of Georgia. Per GA Code § 20-3-68 (2023), all public university students are required to take an introductory political science course during their first year, which provides access representative sample from the student population. Of the initial 1162 respondents, 1099 completed the survey in its entirety. Access to the survey opened on November 7, 2024 and closed on December 2, 2024. Any student currently taking the required course was eligible to partake in the survey. Appendix B1 Table B1.1 provides additional information regarding respondent demographics.⁴⁰

To ensure reliability of the responses, I reviewed the responses to evaluate attentiveness and quality. First, I included an attention check immediately following the scenario description. Out of the 1099 individuals who completed the survey, 390 respondents failed the check. Second, I identified individuals who straightlined their responses. Straightlining refers to cases when the respondent provides the same answer (or a nearly identical answer) to every question within the survey. Responses of this nature indicate inattentiveness, may introduce random noise into the survey and can influence analysis (Yan 2008; Greszki et al 2015). I identified 47 cases of straightlining within the survey and removed those cases from my analysis. Next, I identified cases of both low and high variance in responses. Low variance cases were those that fell below the 25th percentile in response variance and high variance cases were those above the 99th percentile. Within my study, 242 cases fell within the low variance category and 11 within the high variance category. After dropping these cases, the final number of cases for my trimmed dataset was 473.⁴²

This study aims to examine how the level of external threat and precision within alliance agreements influences elite decision makers' attitudes and perceptions concerning reputational harm and alliance commitment, particularly those representing strong states. Due to access, resources, and time constraints, I cannot survey elites directly. (Kertzer and Renshon 2022). Although using undergraduate respondents may appear ill-suited to proxy elite decision-makers—given differences in experience and issue knowledge—there is evidence that the difference in opinions between elites and the public is not as significant as anticipated, with the direction and magnitude of the treatment effect generally holding constant (Barabas and Jerit, 2010; Mullinex 2015; Kertzer 2022). Although this approach may not directly measure elite preferences, it can provide insight into the general decision-making dynamics that may occur. Nonetheless, generalizing the results to elites broadly warrants caution (Mintz et al. 2006)

Survey Design

I conduct a two-stage survey experiment to examine the relationship between precision, threat environment, and

⁴⁰In comparison the general public, the respondent pool is more conservative and more female. My theoretical argument does not assume gender and ideology differences influence potential effects, however to control for potential effects, I include them within my models.

⁴¹Chi-Sq analysis indicates no statistically significant difference in failure rate between treatment groups. See Appendix B1 Table B1.2 for results ⁴²Analysis of the full dataset is included in the appendix next to analysis of the trimmed dataset. While some variation in the magnitude of the coefficients occurred, across all models, the directionality and statistical significance of my findings remained consistent between the full and trimmed datasets.

public opinion. The dependent variables of interest within this study are threat level and the level of precision of an alliance agreement. At the onset of the experiment, all respondents are introduced the survey. In particular, the experiment represented a hypothetical scenario regarding an alliance agreement between the US and an unidentified smaller country. Next, the respondents received the scenario description.

Scenario:

Over the past five years, an adversary has indicated that it seeks to establish itself as the dominant country within a strategic area of interest for the United States. The United States has recently formalized a defensive alliance agreement with a smaller country located in this area. The United States has promised to come to the aid of the smaller country in the event of the conflict.

Immediately following this scenario, I included an attention check to evaluate the quality of survey responses. Individuals were tasked with correctly identifying the type of alliance agreement between the US and the smaller country. If they failed to correctly identify the alliance type, I removed the case from the dataset. Next, I instructed respondents to indicate their level of agreement with the following statements on a scale from 0 - 100.⁴³ A score of 0 indicated no agreement with the statement and a score of 100 indicated total agreement with the statement:

Reputational Harm:

"If the US failed to support the alliance partner in this scenario, it would harm the US's international reputation."

Alliance Commitment:

"In the event of a conflict, the US must fulfill this alliance obligation."

After recording respondents baseline level of agreement, I randomly assigned individuals to one of four treatment groups. Each groups received additional information outlining the threat environment and the level of precision in the alliance agreement between the US and the small country. Below is the specific text provided to each treatment group:

Treatment Group 1: Low Threat / Imprecise Agreement

"The adversary has not demonstrated any military modernization efforts and has maintained the same military troop levels for the past five years. The alliance agreement does not contain any precise conditions which outline when and where the US is required to provide support to its alliance partner."

Treatment Group 2: Low Threat / Precise Agreement

"The adversary has not demonstrated any military modernization efforts and has maintained the same military troop levels for the past five years. The alliance agreement contains precise conditions which outline when and where the US is required to provide support to its alliance partner."

Treatment Group 3: High Threat/Imprecise Agreement

⁴³This initial response occurs prior to treatment assignment. Due to this, I can measure not only the impact that treatment has on total level of agreement across treatment groups, but also how exposure to treatment changes individual respondent's level of agreement. Additionally, if baseline results are statistically insignificant, any significance found post-treatment is assumed as an effect of exposure to treatment.

"The adversary has rapidly modernized its military capacity and aggressively expanded its military forces over the last five years. The alliance agreement does not contain any precise conditions which outline when and where the US is required to provide support to its alliance partner."

Treatment Group 4: High Threat / Precise Agreement

"The adversary has rapidly modernized its military capacity and aggressively expanded its military forces over the last five years. The alliance agreement contains precise conditions which outline when and where the US is required to provide support to its alliance partner."

Following treatment, each respondent was asked again to provide their level of agreement on a scale from 0 to 100 with the reputational harm and alliance commitment statements presented above.⁴⁴

Next, I conducted the second stage of my experiment by randomly assigning respondents from each treatment group to one of two additional treatments. I evaluated how pressure for greater security autonomy and decreased US military presence would impact the level of agreement with the following statement. As with the prior statements, respondents indicated their agreement on a scale from 0 to 100, with 0 representing no agreement and 100 representing total agreement:

Renegotiation:

"The US will feel compelled to honor its alliance commitments to the small country if called upon."

Respondents in the status quo and renegotiation treatments received the following additional information:

Status Quo Treatment:

"Over the last few months, the regional environment has stabilized. The regional adversary remains a potential threat. The smaller alliance partner has asked the US to retain its current military presence in the county and maintain its current level of autonomy in making security decisions"

Renegotiation Treatment:

"Over the last few months, the regional environment has stabilized. The regional adversary remains a potential threat. The smaller alliance partner has repeatedly asked the US to reduce its military presence in the county and has pushed for greater autonomy in making security decisions"

Statistical Analysis Plan

This study has two primary goals: First, to examine how variation in threat level and alliance agreement precision influences perceptions of reputational harm and alliance commitment, and second, how pressure by smaller countries to renegotiate the conditions of the alliance agreement can influence the larger state's feelings of obligations towards the agreement. To evaluate these individual aims, I used the respondent's level of agreement with the survey statements. If respondents reported higher levels of agreement with the reputational harm statement, this indicates they believe the US would face greater harm from reneging. For the alliance commitment, greater levels of agreement indicate a

⁴⁴See Appendix B2 - B4 for frequency distributions across treatment groups for each statement.

stronger commitment to the partnership. Higher agreement during the renegotiation second stage of the study reveals greater feelings of obligation to support the alliance partner.

Starting with the reputational harm and alliance commitment analysis, I approached the research from two angles. First, I assessed the independent effects of threat level and alliance agreement precious. Individuals exposed to the high-threat treatment received a value of 1 for the variable high threat, whereas I coded low-threat treatment respondents as 0. Regarding precision, a value of 0 represents an imprecise agreement, while a 1 reflects a precise agreement. Additionally, I evaluated the between treatment groups effects, assigning each group a value of 1-4. Due to normality violations in both, I constructed robust regression models for each statement (Shapiro and Wilk 1965; Nugroho et al 2020). In total, I created eight models during the first stage of the study: four that evaluated reputational harm and four that evaluated alliance commitment Across all models, the included control variables were statistically insignificant, and AIC scores (Found in Appendix B5 Table B5.3) indicate that the simplified models better fit the data. Moving forward, I will report the findings of the simplified models.

For the second stage of the experiment, I created two additional models. In addition to the independent variable of treatment assignment (with 0 representing assignment to the status quo agreement and 1 indicating assignment to the renegotiation treatment), I included first-stage treatment assignment and the control variables in the reputational harm and alliance commitment models. The simplified model removes all the demographic controls, leaving only first-stage treatment. While a few control variables with the full model were statistically significant, their effects on the treatment results were marginal. As my theoretical argument did not focus on demographics, and in the interests of consistency with the prior models, I elected to report the results from the simplified model.

Results

Reputational Harm

Turning first to reputational harm, I previously hypothesized that greater threat level and precision within the alliance agreement between the weak state and the US would increase the harm of failing to fulfill alliance obligations, and the results (presented in Table 2.1) indicate both hypotheses were correct. Respondents in both the high threat/precise (β = 14.729, p < 0.01). and high threat/imprecise (β = 7.303, p < 0.01) treatment groups, in comparison to individuals within the low threat/imprecise reference group, reported significantly higher levels of agreement that reneging would harm the US's reputation. The relationship between threat and reputational harm remained consistent when I isolated each scenario component.⁴⁷ Individuals who received exposure to scenarios characterized by higher threat levels, relative to individuals who received a low threat treatment, demonstrated significantly higher levels of agreement (β =

⁴⁵The third regression model included in the results tables with the appendix analyzes the full dataset, including unreliable responses based on failed attention checks, straight-lining, or variance issues.

⁴⁶See Appendices B6 - B10 for full results

⁴⁷The lack of significance of the interactive term found in the full model, coupled with the magnitude of the coefficients within the base model, indicates that the relationship between threat and precision is additive rather than conditional.

4.660, p < 0.01). These findings indicate that as the external threat becomes greater, individuals anticipate allies (and non-allies) will punish them more severely than if they reneged in less critical times.

Increasing precision within the alliance agreement demonstrated an even more robust impact on respondents' agreement level, with individuals in both the low threat/precise (β = 12.966, p < 0.01) and high threat/precise treatment groups reporting significantly higher levels in comparison to their imprecise counterparts. Interestingly, assignment to the Low threat/Precise treatment had even greater impacts on agreement than assignment to the High Threat/Imprecise treatment, suggesting alliance precision plays a foundational part in shaping respondent's attitudes. The results of the independent effects models corroborate this relationship, as an assignment to scenarios characterized by precise alliance conditions increased respondent's agreement levels by over 10 points (β = 10.081, p < 0.01)., while elevated threat increased agreement by approximately 4.7 points (β = 4.660, p < 0.01). When alliance agreements include more precise support conditions, they indicate clearly defined expectations of conduct for each party within the alliance. When states fail to uphold those conditions, it is clearly visible to all states, increasing the level of anticipated harm. These results support both Hypothesis 1 and Hypothesis 2, demonstrating that threat and precision influence respondents' expectations of reputational harm in the face of reneging, with alliance precision demonstrating a more substantial impact in shaping these views.

Table 2.1: Treatment and Independent Effects on Reputation and Commitment

	Treatment Effects		Independent Effects	
	Harm (1)	Commit (2)	Harm (3)	Commit (4)
Low Threat / Precise	12.966*** (3.000)	14.027*** (2.958)		
High Threat / Imprecise	7.303** (2.906)	5.120* (2.865)		
High Threat / Precise	14.729*** (2.919)	11.893*** (2.878)		
High Threat			4.660** (2.108)	1.801 (2.117)
Precise			10.081*** (2.112)	10.447*** (2.121)
Constant	56.258*** (1.988)	57.318*** (1.961)	57.563*** (1.747)	58.954*** (1.754)
Observations Residual Std. Error	473 21.587 (df = 469)	473 22.548 (df = 469)	473 21.288 (df = 470)	473 21.877 (df = 470)

Alliance Commitment

Note:

As with reputational harm, I predicted that increased levels of threat and precision would correspond with higher

*p<0.1; **p<0.05; ***p<0.01

levels of commitment to fulfilling alliance obligations. Table One provides the results of the analysis. In contrast to reputational harm, threat does not significantly impact attitudes regarding alliance commitment. Looking first at the independent effects, characterizing the security environment as high threat did not significantly elevate respondents' feelings of commitment to the alliance ($\beta = 1.801$, p > 0.05). Treatment group results mirror this relationship. Although individuals assigned to the High Threat/Precise treatment group indicated greater levels of agreement ($\beta = 11.893$, p < 0.01), individuals within the High Threat/Imprecise group did not indicate significantly higher levels of agreement compared to individuals in the Low Threat/Imprecise group ($\beta = 15.120$, p > 0.05). This dynamic may indicate a degree of hesitancy on the part of respondents to fulfill obligations within a high-threat environment, even in the face of expected reputational harm. Increased precision, in contrast to imprecise alliance agreement conditions, however, significantly impacted respondents' attitudes, raising their level of agreement by over 10 points ($\beta = 10.447$, p > 0.05). Notably, assignment to the Low Threat/Precise treatment group ($\beta = 14.027$, p < 0.01) increased respondent agreement to an even greater degree than assignment to the High Threat/Precise group ($\beta = 11.893$, p < 0.01). These findings suggest that states feel more bound by the agreement's constraints when alliances include precise conditions. However, a greater threat may dampen this effect slightly, as indicated by the larger coefficient for the Low Threat/Precise treatment compared to the High Threat/Precise group.

Figure 2.1 and Figure 2.2 help to visualize the relationships described previously. In Figure 2.1, we can see the relationship between the treatment groups concerning reputational harm and alliance commitment using the predicted level of agreement for each group. Within this figure, the vertical axis measures the level of agreement, while the horizontal axis denotes the specific treatment group. The points indicate the predicted agreement level for respondents with the assigned group, with the bars representing the 95% confidence interval. The red plots are the predicted level of agreement for reputational harm, while the blue plots represent the alliance commitment. As Figure 2.1 demonstrates, the predicted level of agreement between the Low Threat/Precise and High Threat/Precise treatment groups are relatively comparable. However, we see a noticeable dip in respondents' agreement level within the High Threat/Imprecise treatment group.

Figure 2.2 shows how each independent component influences changes in respondents' attitudes regarding reputational harm and alliance commitment. This figure depicts the predicted change in a respondent's level of agreement from their initial baseline responses pre-treatment.⁴⁸ Within Figure 2.2, the Y-axis depicts the predicted change from baseline responses, and the X-axis displays the individual scenario components. The plotted points indicate the predicted change, with the bars representing the 95% confidence interval. Reputational harm predictions are colored red, and alliance commitment predictions are blue. As anticipated based on the results of the treatment

⁴⁸Estimates for this plot come from a robust regression model evaluating the change from the baseline (post-treatment level of agreement minus the pre-treatment level of agreement. See Appendix B11 for model results.)

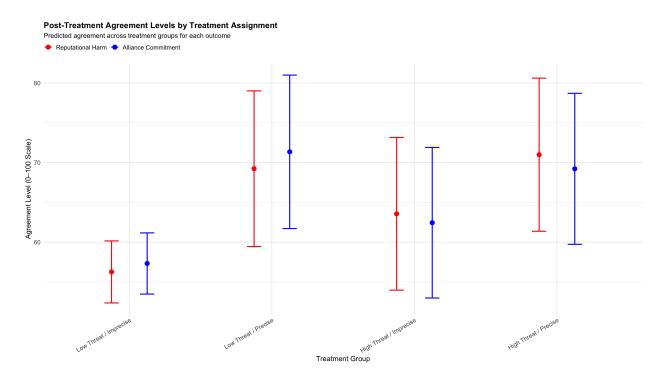


Figure 2.1: Treatment Effect: Reputational Harm and Alliance Commitment.

and independent effects models, increased alliance precision has a significant effect on attitudes for both reputational harm and alliance commitment. Increased threat increases respondents' level of agreement concerning expectations of reputational harm but does not significantly affect alliance commitment.

Renegotiation

Regarding renegotiation, I hypothesized that pressure from the weak state to renegotiate the level of military integration between the two states would undermine the relationship and result in a decreased sense of commitment from the strong state. The results of my analysis support this hypothesis. As Table 2.2 shows, exposure to the renegotiation treatment decreases the level of agreement by respondents by 8.4% (β = -5.226, p < 0.01), relative to individuals who recieved the status quo treatment. However, prior assignment to the low threat/precise treatment group mitigated this negative effect (β = 5.979, p < 0.05). This dynamic indicates that while efforts to renegotiate by the smaller country may undermine the perceptions of alliance obligation by the strong state, this does not carry over when the prior agreement contains precise conditions, and the security environment is not threatening. In the respondents' minds, combining a low-threat environment and precise alliance conditions may represent an opportune time to discuss and clarify the alliance relationship between the two states.

Figure 2.3 provides a visualization of this relationship. With the treatment groups along the horizontal axis and the predicted level of agreement along the vertical axis, the points indicate the level of agreement bounded by a 95%

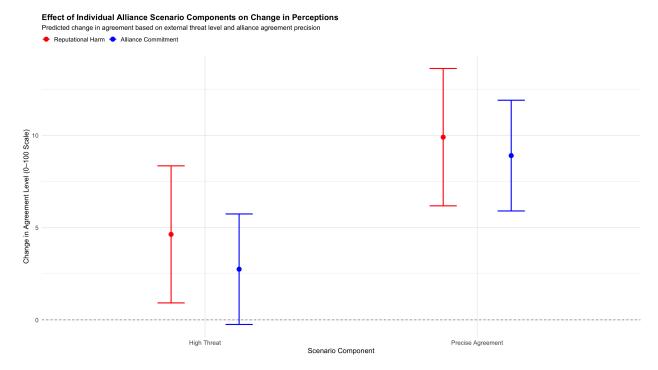


Figure 2.2: Threat and Precision Effect: Reputational Harm & Alliance Commitment

Table 2.2: Effect of Renegotiation Pressure on Alliance Obligations

	Dependent variable:
	(1)
Renegotiation Pressure	-5.226*** (1.985)
Low Threat/Precise	5.979** (2.811)
High Threat/Imprecise	0.084 (2.723)
High Threat/Precise	3.153 (2.735)
Constant	61.939*** (2.139)
Observations Residual Std. Error	473 19.731 (df = 468)
Note:	*p<0.1; **p<0.05; ***p<

confidence interval. Within this plot, the green points represent the predicted level of agreement for respondents who received the status quo treatment, while the orange points indicate exposure to the renegotiating treatment. As expected, exposure to the renegotiation treatment decreases the agreement level across the treatment groups. However, the agreement level for respondents within the low threat/precise treatment group is higher than the other groups, reinforcing the previously identified effect of that assignment.

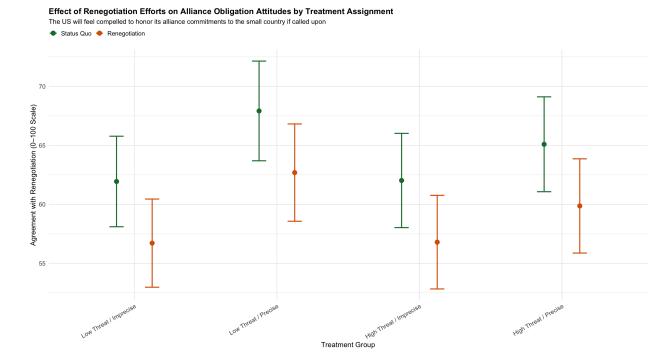


Figure 2.3: Predicted Respondent Agreement Level on Alliance Obligation.

Conclusion

In this two-part study, I first examined how threat level and precision variation impact respondents' perceptions of reputational harm and alliance commitment. I anticipate that increased levels of both threat and precision would raise the anticipated cost of reneging and enhance the degree of commitment to the alliance partner. Generally, the results support my hypotheses. When I characterized the alliance agreement between the US and a hypothetical smaller state, respondents reported higher levels of agreement that failing to fulfill its obligations would damage the US's international reputation. A similar dynamic occurred regarding alliance commitment sentiment. Increasing precision corresponded with an increase in agreement that the US should fulfill its alliance obligations in the event of a conflict.

States often prefer to craft ambiguous alliance agreements to gain political flexibility (Fjelstul and Reiter 2019). The results presented here explain why states may prefer these types of agreements. Concern for reputational damage is often cited as the primary motivator for states when evaluating their alliance obligations. If precise alliance conditions enhance reputational damage expectations, states would seek to mitigate this risk by crafting more imprecise agreements. The question remains, however, if the rise in alliance commitment is independent of this anticipated rise in reputational harm, or a byproduct of the increased damage.

Concerning my predictions on the importance of threat, I found some support for my hypotheses, but the effect was inconsistent between reputational harm and alliance commitment. Higher threat levels increased expectations of reputational cost but did not increase perceptions of alliance commitments. This dynamic may indicate that while

respondents view reneging when the stakes are high as more damaging, there are lingering concerns about getting involved in a conflict in a high-threat environment.

In the second stage of this study, I explored how pressure from the weaker state to alter the level of military integration impacts the US's sense of obligation to the weaker state, hypothesizing that renegotiation efforts would undermine this sense of obligation. Under the umbrella of the security-autonomy tradeoff, large states "purchase" favorable policy environments and greater control over security matters by providing security support to smaller allies. If these allies attempt to recoup some of those autonomy losses, the findings indicate that the larger state may mirror that action by decreasing its commitment to the smaller state. Notably, this effect is mitigated by exposure to a low-threat security environment and an imprecise alliance commitment. Respondents in this treatment group reported elevated levels of agreement that the US should fulfill its military commitment if called upon. No such dynamic occurred across all the other treatment groups, indicating that this type of environment may represent a "window of opportunity" for renegotiation.

From a policy perspective, this experiment's results provide several insights. The findings indicate that greater precision may enhance the level of commitment between a weak and strong state by enhancing reputational costs or increasing a general sense of obligation between the states. Weak state leaders can potentially use precision to obtain greater assurances from a strong state to combat abandonment concerns, and stronger states should exhibit caution when committing to precise agreements to mitigate entrapment risks.

The result of the renegotiation stage highlights that policy practitioners should approach renegotiation efforts with a degree of caution. Pressure to alter an already precise agreement or within an elevated threat environment could easily damage the alliance relationship during a critical period. However, patience and restraint may allow renegotiation when the threat dissipates or if the conditions of the agreement would benefit from greater precision.

In addition to providing useful information for both policy professionals and scholars, the results of this study suggest worthwhile avenues for future research. While this study examined respondents' perceptions of reputational harm and commitment in the face of threat and alliance precision, it does not necessarily provide a clear indication of how these perceptions may influence behavior. For instance, while a respondent may exhibit increased agreement that the US may suffer reputational harm for reneging on an alliance agreement, would they still support a president who chose to renege anyway? Do voters punish elected officials for reneging in a high-threat environment or when the agreement is precise more than if the threat is low and the agreement vague? While this study provides insight into how respondents perceive the cost and commitment, it does not necessarily indicate if they alter their behavior in kind.

Lastly, while I identified the alliance commitment as either imprecise or precise, certain provisions may be more salient to respondents than others. For instance, alliance commitments that include promises of troop basing or military sales may influence respondent agreement more than alliances that include training exchanges and joint military exercises. Alliance agreements are as varied as the states that use them. Future research on how changes in

specific conditions influence respondents may provide greater insight into how the public perceives these agreements.

Bibliography

- Abbott, Kenneth W, Robert O Keohane, Andrew Moravcsik, Anne-Marie Slaughter, and Duncan Snidal. 2000.
 "The Concept of Legalization." *International Organization* 54: 401–19.
- 2. Alley, Joshua. 2021. "Alliance Participation, Treaty Depth, and Military Spending." *International Studies Quarterly* 65(4): 929–43. doi:10.1093/isq/sqab077.
- 3. Ash, Timothy. 2024. "Trump's Return Is Terrible News for Ukraine. Europe Should Step into the Breach but Will It?" *European Council on Foreign Relations*. https://ecfr.eu/article/trumps-return-is-terrible-news-for-ukraine-europe-should-step-into-the-breach-but-will-it/.
- 4. Barabas, Jason, and Jennifer Jerit. 2010. "Are Survey Experiments Externally Valid?" *American Political Science Review* 104(2): 226–42.
- 5. Beckley, Michael. 2015. "The Myth of Entangling Alliances: Reassessing Security Risks of U.S. Defense Pacts." *International Security* 34(4): 7–48.
- Bélanger, Louis, and Kim Fontaine-Skronski. 2012. "Legalization' in International Relations: A Conceptual Analysis." Social Science Information 51(2): 238–62. doi:10.1177/0539018412437110.
- 7. Boulding, Kenneth E. 1963. "Towards a Pure Theory of Threat Systems." *The American Economic Review* 53(2): 424–34.
- 8. Cha, Victor. 2024. "How Trump Sees Allies and Partners." *Center for Strategic and International Studies*. https://www.csis.org/analysis/how-trump-sees-allies-and-partners.
- 9. Cole, Harold L., and Patrick J. Kehoe. 1998. "Models of Sovereign Debt: Partial Versus General Reputations." International Economic Review 39(1): 55. doi:10.2307/2527230.
- 10. Colvin, Jill. 2024. "Trump Says He Once Told a NATO Ally to Pay Its Share or He'd 'Encourage' Russia to Do What It Wanted." *Associated Press*. https://apnews.com/article/trump-nato-foreign-aid-russia-2b8054a9fe185eec34c2c541cece655d.
- 11. Crescenzi, Mark J.C., Jacob D. Kathman, Katja B. Kleinberg, and Reed M. Wood. 2012. "Reliability, Reputation, and Alliance Formation." *International Studies Quarterly* 56(2): 259–74. doi:10.1111/j.1468-2478.2011.00711.x.

- 12. Daniels, Jeff. 2017. "Pentagon Scenario of a New Korean War Estimates 20,000 Deaths Daily in South Korea, Retired US General Says." CNBC. https://www.cnbc.com/2017/09/25/korean-war-simulation-by-dod-estimates-20000-deaths-daily-in-south.html.
- 13. Davies, Graeme A. M., and Robert Johns. 2013. "Audience Costs among the British Public: The Impact of Escalation, Crisis Type, and Prime Ministerial Rhetoric." *International Studies Quarterly* 57(4): 725–37. doi:10.1111/isqu.12045.
- 14. Digiuseppe, Matthew, and Paul Poast. 2016. "Arms versus Democratic Allies." *British Journal of Political Science* 48(4): 981–1003.
- 15. Feng, Yongping, and Chanattaporn Netkhunakorn. 2024. "Thailand's Hedging Strategy Under the Strategic Competition between China and the United States." *Berumpun: International Journal of Social, Politics, and Humanities* 7(1): 39–51. doi:10.33019/berumpun.v7i1.122.
- 16. Fjelstul, Joshua C., and Dan Reiter. 2019. "Explaining Incompleteness and Conditionality in Alliance Agreements." *International Interactions* 45(6): 976–1002. doi:10.1080/03050629.2019.1647838.
- 17. "Former President Trump Campaigns in Conway, South Carolina." 2024. *C-Span*. https://www.c-span.org/program/campaign-2024/former-president-trump-campaigns-in-conway-south-carolina/638238.
- 18. Greszki, R., Meyer, M., & Schoen, H. (2015). "Exploring the Effects of Removing 'Too Fast' Responses and Respondents from Web Surveys." *Public Opinion Quarterly* 79(2): 471–503.
- 19. Gibler, Douglas M. 2008. "The Costs of Reneging: Reputation and Alliance Formation." *Journal of Conflict Resolution* 52(3): 426–54.
- 20. Guzman, Andrew. 2008. How International Law Works: A Rational Choice Theory. Oxford University Press.
- 21. Jervis, Robert. 1989. "Rational Deterrence: Theory and Evidence." World Politics 41(2): 183–207. doi:10.2307/2010407.
- 22. Keohane, Robert O. 1984. *After Hegemony: Cooperation and Discord in the World Political Economy*. Princeton, N.J: Princeton University Press.
- 23. Kertzer, J. D. (2022). Re-Assessing Elite-Public Gaps in Political Behavior. *American Journal of Political Science*, 66(3), 539–553. https://doi.org/10.1111/ajps.12583
- 24. Kertzer, J. D., & Renshon, J. (2022). Experiments and Surveys on Political Elites. *Annual Review of Political Science*, 25(1), 529–550. https://doi.org/10.1146/annurev-polisci-051120-013649

- 25. Kim, Tongfi. 2011. "Why Alliances Entangle But Seldom Entrap States." *Security Studies* 20(3): 350–77. doi:10.1080/09636412.2011.599201.
- 26. Koremenos, Barbara, Charles Lipson, and Duncan Snidal. 2001. "The Rational Design of International Institutions." *International Organization* 55(4): 761–99.
- 27. Lake, David A. 2009. Hierarchy in International Relations. Ithaca: Cornell University Press.
- 28. Leeds, Brett, Jeffrey Ritter, Sara Mitchell, and Andrew Long. 2002. "Alliance Treaty Obligations and Provisions, 1815–1944." *International Interactions* 28(3): 237–60. doi:10.1080/03050620213653.
- 29. Lendon, Brad. 2010. "S. Korea's Final Report Affirms Cheonan Was Sunk by N. Korean Torpedo." *CNN*. https://www.cnn.com/2010/WORLD/asiapcf/09/13/south.korea.cheonan.report/index.html.
- 30. Mintz, Alex, Steven B. Redd, and Arnold Vedlitz. 2006. "Can We Generalize from Student Experiments to the Real World in Political Science, Military Affairs, and International Relations?" *Journal of Conflict Resolution* 50(5): 757–776. doi:10.1177/0022002706291052.
- 31. Morgenthau, Hans J. 1949. *Politics Among Nations: The Struggle for Power and Peace*. New York: Alfred A. Knopf, Inc.
- 32. Morrow, James D. 1991. "Alliances and Asymmetry: An Alternative to the Capability Aggregation Model of Alliances." *American Journal of Political Science* 35(4): 904. doi:10.2307/2111499.
- 33. Morrow, James D. 2000. "Alliances: Why Write Them Down?" *Annual Review of Political Science* 3(1): 63–83. doi:10.1146/annurev.polisci.3.1.63.
- 34. Mullinix, Kevin J., Thomas J. Leeper, James N. Druckman, and Jeremy Freese. 2015. "The Generalizability of Survey Experiments." *Journal of Experimental Political Science* 2(2): 109–38. doi:10.1017/XPS.2015.19.
- 35. Narang, Neil, and Brad L. LeVeck. 2019. "International Reputation and Alliance Portfolios: How Unreliability Affects the Structure and Composition of Alliance Treaties." *Journal of Peace Research* 56(3): 379–94.
- Pedersen, Rasmus. 2023. "Small States Shelter Diplomacy: Balancing Costs of Entrapment and Abandonment in the Alliance Dilemma." Cooperation and Conflict. doi:10.1177/00108367231164497.
- 37. Snyder, Glenn H. 1984. "The Security Dilemma in Alliance Politics." World Politics 36(4): 461–95. doi:10.2307/2010183.
- 38. Snyder, Glenn H. 1991. "Alliances, Balance, and Stability." *International Organization* 45(1): 121–42. doi:10.1017/S0020818300001417.

- 39. Thorhallsson, Baldur (Ed.). 2018. Small States and Shelter Theory: Iceland's External Affairs. Routledge.
- 40. Thorhallsson, Baldur, and Sverrir Steinsson. 2017. "Small State Foreign Policy." Oxford Research Encyclopedia of Politics.
- 41. Tomz, Michael, and Jessica L. P. Weeks. 2021. "Military Alliances and Public Support for War." *International Studies Quarterly* 65(3): 811–24. doi:10.1093/isq/sqab015.
- 42. Vaicekauskaitė, Živilė Marija. 2017. "Security Strategies of Small States in a Changing World." *Journal on Baltic Security* 3(2): 7–15.
- 43. Walt, Stephen M. 1985. "Alliance Formation and the Balance of World Power." *International Security* 9(4): 3–43. doi:10.2307/2538540.
- 44. Waltz, Kenneth N. 1979. Theory of International Politics. Reading, MA: Addison-Wesley.
- 45. Wilkins, Thomas S. 2012. "'Alignment', Not 'Alliance'–The Shifting Paradigm of International Security Cooperation: Toward a Conceptual Taxonomy of Alignment." *Review of International Studies* 38(1): 53–76.
- 46. Yan, T. (2008). "Nondifferentiation." In P. J. Lavrakas (Ed.), *Encyclopedia of Survey Research Methodology* (pp. 520–521). Newbury Park, CA: Sage.

CHAPTER 3

WHEN TRUST FALTERS: MEASURING THE STRATEGIC IMPACT OF WEAK STATE RELIABILITY $\text{PERCEPTIONS IN ASYMMETRIC ALLIANCES}^{49}$

⁴⁹Leppo, Philip. To be submitted to Contemporary Security Policy

Abstract

This study explores how variation in the reliability of allied leadership affects preferences within the alliance agreement. I argue that a more unreliable leader will induce renegotiation-seeking behavior by the allied partner. In order to decrease rising abandonment concerns stemming from lower reliability levels, I hypothesize that states will seek to increase precision within alliance agreements and will aim to decrease their reliance on and integration with unreliable allies. I find mixed results concerning my theory through an international survey of 1017 South Korean respondents. Although lower levels of reliability undermine trust in an alliance partner and increase the desire for renegotiation, states do not perceive higher precision as beneficial to enhancing their security. Although states agreed with decreasing integration with an unreliable ally and restricting their ability to station troops within the country, increased precision was associated with lower levels of security.

Introduction

Do unreliable leaders incite allies to renegotiation the alliance terms? If so, what priorities and mechanisms do states pursue as part of these negotiations? Questions such as these are at the forefront of contemporary politics as leaders wrangle with an impending Trump presidency and a rightward shift in international politics. Before the US election, for example, European leaders discussed ways to insulate their alliances with the US from the incoming president, exploring how to "Trump-proof" NATO (Bateman 2024). Speaking at a European Summit in November 2024, French President Macron spoke of the need for Europe to take greater initiative and no longer "delegate our security to the Americans forever" (European Political Community Summit 2024).

Although an increased desire by Europe to fund and invest in regional security capacity may be welcome news to many US leaders, it reveals an underlying sense of unease about the strength of US commitment to its long-standing alliances. As former Russian advisor to Trump, Fiona Hill, discussed during a podcast with the European Council on Foreign Relations in October 2024, the world is potentially entering into a time where the US has backed away from its role as the "world leader" (Aydıntaşbaş et al. 2024). US partners and allies appear ready to increase their own self-sufficiency, not fully disengaging from the US but rather shifting their focus away from the US-centric security environment towards greater regional integration and domestic capability (Cha 2024). Exploring how these shifts influence official renegotiations and alliance politics may shed light on the evolving nature of the current security environment.

Scholarship exploring the relationship between a state's reputation and alliances has a rich history within international relations literature and recent studies have elevated the importance of understanding how leader-specific reputations help shape alliance attitudes and perceptions. Contemporary scholarship reinforces Wolford's argument (2007) that leaders act as the "fundamental unit of analysis in international relations." Leaders figure prominently in a state's decision-making process, and their behavior at the onset of their tenure lays the foundation for their international reputation (Renshon et al. 2018; Lupton 2018). Shelling's work connects a reputation for resolve to threat credibility and sets the stage for discussion on reputation as a central point in international relations (Schelling 1980).

In this paper, I continue this line of questioning, exploring how a leader's reputation can influence alliance partner behavior. Pulling from legalization theory, a leader's reputation can change how states seek to codify their alliance agreements. Although legalization theory predominantly concentrates on obligation and delegation as the primary focal points, precision — specifically regarding alliance conditions — can serve as a tool to enforce state compliance, mitigating the risks of abandonment in the face of an unreliable ally. Additionally, higher levels of institutionalization, most often through varying degrees of military integration, provide states a means to corral more "imperialistic" leaders. Through more significant levels of integration, states can limit the unilateral action of alliance partners, moderating hawkish behavior and entrapment risks.

Using an international survey of South Korean citizens, I explore how exposure to an unreliable state leader

influences respondents' attitudes regarding trust, self-reliance, state security, and alliance renegotiation. Characterizing an unreliable leader as "divisive" and skeptical of alliance agreements that do not provide quantifiable benefits to the stronger partner, I evaluate how the arrival of a leader akin to President Trump may reduce trust in the allied state and its commitment to the alliance agreement. Additionally, I examine how variation in reliability may impact perceptions of state security and how a state may adjust the levels of precision and institutionalization within the alliance agreement to address increased abandonment risks.

Prior studies have examined how a leader may establish their own reputation apart from the state (Lupton 2014) and how a prominent leader's reputation can influence international perceptions (Renshon et al. 2018). I expand on this research, focusing on how variation in leader-specific reputations influences policy outcomes. By examining survey respondents' attitudes regarding trust, security, and renegotiation, I approximate the effects of variation in leader reliability on elite decision-makers and state policy. This work confirms that an unreliable leader can directly undermine trust in a country's commitment to an alliance partner and the overall sense of security the alliance provides.

The effects of unreliability on preferences regarding alliance renegotiation, however, are mixed, with respondents supporting a decreased degree of alliance institutionalization, but expressing restraint regarding increased levels of precision. When faced with an unreliable ally, states seek to insulate themselves by decreasing military integration within the alliance. From a US policy perspective, this can directly affect US basing agreements and international security relations. While the effects of unreliability on precision contradicted my prior assumptions, these results open the door for future research regarding the diminishing returns of precision within international agreements.

Literature Review

Alliances

Alliance agreements are a central component of the international security environment. In response to threats and geopolitical shifts, states craft these agreements to achieve desired security guarantees and to gain favorable policy concessions from their partners. Not all alliance agreements, however, are identical. Instead, they reflect the preferences and interests of the states involved (Koremenons et al.2001). Historical scholarship on alliance formation discusses how states procure partners to balance against a rising power or threat (Morgenthau 1949; Waltz 1979; Walt 1985).

Morrow (1991) expanded on this perspective, arguing that states were not solely focused on building up military capacity, but were also interested in gaining favorable policy concessions from partners and preserving their autonomy. States with abundant security capacity could provide security guarantees to less powerful states in exchange for concessions. Conversely, the less powerful state gains additional security for the price of autonomy. States, in other words, barter their competitive advantage to maximize their gains.

While the "goods" offered in this negotiation are relatively straightforward, states must remain cautious. Establishing and maintaining an alliance with another state is not cheap; there is a cost to fostering and cultivating the alliance

relationship and to restraining effects associated with tying the states to each other (Morrow 1994; Alley and Furhmann 2022). Additionally, states within alliances open themselves up to other risks, particularly abandonment and entrapment (Snyder 1984).

Abandonment represents the risk that an alliance partner would not fulfill its support obligations if called upon (Snyder 1997). When states are more reliant on their alliance partners to provide security support, the risks of abandonment increase. Often weaker states may exacerbate this issue further, by reallocating domestic funds away from military investments, which makes them even more dependent foreign support for. security. (Alley 2021). If the stronger, supporting state elects to renege on the agreement, the supported state may not have the domestic security capacity to defend or deter.

Abandonment constitutes a particularly salient risk for the weaker alliance partner within a bilateral agreement. To address this concern, the weaker partner seeks a way to restrain the stronger state (Morrow 2000). Increased levels of precision within the agreement serve this purpose. Precision reflects the degree of specificity and preciseness of the alliance agreement, particularly with respect to the alliance activation requirements. More precise requirements increase the reputational cost associated with reneging on the agreement. As the primary driver behind alliance compliance, increasing costs deters the states within the agreement from reneging on their obligations (Gibler 2008).

Entrapment, in contrast, occurs when states become engaged in unanticipated or unwanted conflicts due to the actions of their alliance partner (Snyder 1984). To corral unnecessarily aggressive or destabilizing behavior, states seek ways to limit the ability of any state within the alliance partnership to act unilaterally, increased levels of institutionalization within the agreement address this desire. Greater levels of institutionalization allow for greater levels of integration as a cohesive fighting force (Leeds and Anac 2005; Wallace 2008). This, however, comes at a cost. It makes the states more dependent on each other to fight effectively. In turn, this makes unilateral action by either state difficult or impossible without some degree of forewarning.

State Reputation

State reputations are complex and multi-faceted, comprised of elements of past behavior (Leeds 2003; Gibler 2008), leader characteristics (Press 2005; Renshon et al 2018), domestic characteristics (Schultz 2001; Goldfien et al 2023), and international interpretation (Mercer 1996). Additionally, state reputation is not necessarily indivisible. Instead, states can have differing reputations across areas of interest, whether economic, military, or other sectors. Spillover effects from behavior related to one area can influence the state's reputation within another sector. For example, a state may have cultivated a reputation for reliability and support within the economic arena based on prior reliable behavior and compliance with international rules and regulations. However, they may have demonstrated themselves as an unreliable military alliance partner by reneging on security commitments or failing to provide adequate military investments. Failure to comply with international agreements or to uphold commitments can result in a generalized

reputation for unreliability, which can be particularly damaging to a state's prospects. A state's reputation directly influences the perceived level of abandonment and entrapment risk. Reliability, as a reflection of past behavior, provides states with information to assume future behavior. Consistent fulfillment of prior agreements demonstrates to states with more significant abandonment concerns that they can anticipate the partner will be a good steward of the agreement and will fulfill their obligations in the future. Additionally, consistent behavior alleviates entrapment concerns because it provides states with a strong sense of how the partner will act in the future. Within the alliance context, state reputations influence how other states manage their risks. When states are viewed as reliable, partners anticipate lower levels of risk, which can increase the opportunities for future alliances (Crescenszi et al. 2012). When they are perceived as unreliable, the risk is higher. States then must either insulate themselves— through hedging strategies where they purse relationships with multiple major powers (Lee 2017; Vaicekauskaitė 2017) — or isolate the unreliable party — often by crafting broader multilateral agreements that diminish the influence and risk from the unreliable state (Narang and LeVeck 2019).

Theoretical Argument

I begin with two countries: Country A and Country B. These two countries have an established alliance agreement. As the smaller country within the agreement, Country B gains additional security benefits, while Country A receives favorable policy concessions. These concessions could be access to Country B's logistical resources (i.e., how Pakistan allowed the US overflight rights to support the conflict in Afghanistan), basing rights (i.e., US status of forces agreements), etc. In exchange for these policy gains, Country A provides Country B security resources and guarantees. The rest of my theoretical argument centers on Country B.

At some point following the alliance creation, a new leader comes to power for Country A. ⁵⁰ If the new leader's behavior remains consistent with prior leadership, the alliance relationship remains stable. If, however, the new leader acts erratically, divisively, or aggressively, alliance partners may begin perceiving the new leader as unreliable. As this behavior continues, the new leader's reputation may undermine international trust and force allies to reevaluate their relationship with Country A and the alliance agreement's quality. This leads me to my first testable hypothesis:

Hypothesis 1: As the strong state leader becomes more unreliable, the weak state's trust in the alliance decreases.

The presence of unreliable leadership exacerbates Country B's abandonment concerns. As a smaller state, abandonment represents an existential risk. In contrast to larger more powerful states, who have a greater capacity to defend themselves even if an ally reneges, smaller states often become dependent on the larger state to provide the

⁵⁰The form of government does not matter within my theoretical argument. If decision-making power is heavily concentrated under a single individual, the salience of unreliable behavior may increase, this does not mean state with more distributed decision-making power are exempt from the effects of unreliable leader behavior (i.e. The emerging friction between the US and its international allies).

necessary "hard power" to deter or defeat a threat. If the larger state elects to renege on its security agreements, the smaller state is in a more perilous position. The combination of limited trust and greater abandonment risk impacts Country B's perception of the value of its alliance agreement with Country A, and by extension, its sense of security. This leads me to my next testable hypothesis:

Hypothesis 2: As the strong state leader becomes more unreliable, the weak state will feel less secure.

In response to Country A's unreliable leadership, Country B now faces a projected security deficit. As Country B cannot fully trust in its alliance with Country A, it has two avenues to address its security deficit. The first option is to improve its self-reliance, either through increased military spending or by decreasing the degree of military integration with Country A. Increasing its military spending directly increases Country B's security capacity, however, this represents a costly and slow-moving approach. Military investments require reallocating funds from other sources, which local politicians may resist. Additionally, shifting funds does not immediately produce results because manufacturing or purchasing takes time ⁵¹. Decreasing the level of military integration provides Country B greater flexibility regarding its military operations, but this comes at a cost as well. Often the weaker state defers to their strong allies when it comes to strategic functions, such as intelligence and war planning. Although Country B may gain greater capabilities in the long run, in the short term it will take time to train and expand its domestic capacities. To evaluate the veracity of this argument, I present my second testable hypothesis:

Hypothesis 3: As the strong state leader becomes more unreliable, the weak state pursues greater self-reliance.

The second option available to the weaker state is to renegotiate the alliance agreement. Within the framework of the security-autonomy trade off, the presence of an unreliable ally disrupts the balance between Country A's security guarantees and Country B's autonomy concessions. By renegotiating the agreement, Country B can pull the alliance back into balance. To accomplish this, Country B can either decrease the amount of autonomy it concedes to Country A, or it can increase the quality of Country A's security guarantee.

Recouping autonomy concessions in effect decreases the level of institutionalization within the alliance agreement. Institutionalization refers the degree that alliances formalize the rules, mechanism, and procedures that govern military actions. Often this takes the form of basing agreements, joint commands, and integrated war planning. Although decreasing institutionalization may appear to lessen County B's security, it enhances the state's foreign policy flexibility and can lower the states visibility as a potential target for adversaries. ⁵² This discussion leads me to my fourth testable

⁵¹Often domestic production is not available because the smaller state lacks the manufacturing capacity to produce enough arms. Additionally, arms procurement may be ineffective because often the stronger states within the alliance serve as the primary arms suppliers. For example, according to SIPRI (2023), five of the top ten weapons manufactures are US companies.

⁵²Take the South Korea agreement for example. North Korea has repeatedly identified US-South Korea exercises as destabilizing to the peninsula. If South Korea were to decrease the number of exercises, and by extension the level of institutionalization between itself and the US, this may depress the level of hostility within the region.

hypothesis:

Hypothesis 4: During renegotiations with an unreliable strong state partner, the weak state will decrease the level of alliance institutionalization.

In order to improve the quality of Country A's security guarantee, Country B needs to identify some mechanism to force an unreliable partner to act more reliable. One method of accomplishing this is to increase the level of precision within the alliance agreement. Precision within this context refers to the clarity and specificity of the alliance obligations and the conditions which govern those obligations. Often in alliance agreements, partners define the regional areas which the alliance agreement is in effect (i.e. the Asian region or internationally recognized territory) or they may define the specific acts which would activate the alliance support requirements (i.e. an attack on military vessels).

By increasing the degree of precision within the agreement, the weaker state limits the strong state's freedom to interpret their obligations. One of the primary mechanisms compelling states to honor their alliance commitments is the fear that failing to do so will damage their international reputation. When an alliance agreement is vague or imprecise, states have greater political maneuverability within an agreement. This maneuverability affords them a spectrum of response options they can argue fulfills their commitment, which in turn mitigates damage to their reputations. If, however, the alliance agreements are more precise, this spectrum shrinks and the strong state must now decide between providing the outlined support and fulling its commitment or reneging on the agreement and incurring the reputational harm. Based on this perspective, I present my fifth testable hypothesis:

Hypothesis 5: During renegotiations with an unreliable strong state partner, the weak state will increase the level of precision within the alliance agreement.

Research Design

I conducted an international survey experiment of 1268 South Korean citizens to evaluate my hypotheses. Qualtrics obtained a representative sample of South Korean citizens ages 18+.⁵³ The survey experiment evaluated how a leader's reputation and public perception impact trust in alliance agreements and renegotiation interests. By varying leader characteristics and public statements, I can isolate the effect of variation in perceptions of reliability.

Out of the 1268 responses, 1025 respondents completed the survey in its entirety. To evaluate the quality of responses, I included two attention checks immediately after presenting respondents with the scenario text and removed 353 respondents from the survey sample for failing at least one of the checks. Lastly, I identified 36 respondents who provided the same response across all 11 survey questions and removed them from the sample, leaving 642 respondents within the study.

⁵³Questions regarding respondent demographics were included at the end of the survey. Respondents provided their age, gender, military experience, and years of military experience if they served. Of the 1268 respondents, eight identified as a third gender or did not wish to report their gender. As gender is not a central theme within my theoretical argument and due to concerns of data sparseness, I elected to drop these cases from the sample

In Appendix C2 – C13, I provide the frequency distributions for both the reported datasets and the problematic cases. Generally, problematic case responses, identified by either failed attention checks or straightlining, cluster around the middle of the distribution. This dynamic reinforces concerns of inattentiveness, and including the data within the full model likely weakens the treatment effect, resulting in smaller coefficients and reduced statistical significance. As an additional robustness check, I evaluate my statistical models with both the trimmed and full datasets (including the problematic cases). As anticipated, the full data set models returned weaker coefficients. However, the direction of the relationship and significance of the treatment effects are consistent across the trimmed and full sample.

The theoretical argument examines how elite opinions on foreign leaders influence their perceptions of the allied state as an alliance partner and preferences towards alliance renegotiation. Ideally, this survey would include elite decision-makers. However, gaining access to elite respondents is challenging and time-consuming (Kertzer and Renshon 2022). Research suggests, however, that the elite-public gap is not as wide as assumed. Generally, the direction and size of the treatment effect are consistent between elite and public survey experiments (Kertzer 2022).

I selected South Korea for this survey for two reasons. First, my theoretical argument centers on bilateral alliance agreements between states. In Europe, NATO dominates the security environment, as does the Rio Treaty in Central and South America. The Commonwealth of Independent States encompasses much of Southwest Asia, and the Five Eyes alliance pulls both New Zealand and Australia into a multilateral agreement with the US, UK, and Canada. However, the security environment in Asia rests heavily upon bilateral agreements between the states, with notable defense agreements between the US and Japan, South Korea, and the Philippines, as well as the China-North Korean alliance (Cha 2010).

Second, the US-South Korean alliance is very salient in the minds of the South Korean public. In a 2023 public opinion poll conducted by the East Asia Institute, South Koreans identified the US-Korean relationship as the most important diplomatic relationship and strengthening the US-ROK alliance as the top foreign policy priority (EAI 2023). The perspective of being in a highly salient alliance agreement with a major power and understanding the political realities of being the weaker party to that alliance makes South Korean respondents appropriate for evaluating my theoretical argument.

It is important to note that this experiment occurred during an exceptional political moment within South Korea. In Dec 2024, President Yoon declared martial law, prompting mass protests and civil unrest (Klug 2024). While my theoretical argument does not explicitly address domestic politics, the current political environment in South Korea may heighten respondent sensitivities to questions regarding leader reliability and alliance relationships. While research directly tying domestic unrest to foreign policy opinions is relatively scant, Bowler and Karp (2004) note that political scandals undermine trust in democratic institutions, which may, in turn, undermine faith in international institutions generally. As such, the results of this study may reflect both the influence of the assigned treatment and the effects of the pre-treatment impact of civil unrest at the time of the survey experiment.

Survey Design

At the start of the survey experiment, I presented respondents with information associated with two Countries (A and B). This information describes the alliance relationship between the two states and identifies Country A as the more powerful state. Next, the scenario describes the alliance's defensive role and lists four specific terms codified within the agreement. The terms included in this scenario are nearly identical to those in the US-South Korean defense agreement (Mutual Defense Treaty between the US and the Republic of Korea 1953).

Survey Text

- For many years, Country A and Country B have shared a military alliance.
- Country A is a global power. It has national interests around the world.
- Country B is a smaller power. Its main interest is countering a hostile state on its border.
- Country A provides security to Country B. Country A supplies most of Country B's military equipment, training, and has stationed a significant number of troops in Country B.
- Country B provides Country A basing locations to store additional equipment and troops, allowing Country A to protect its interests in the region.
- The two countries regularly share military intelligence and conduct joint exercises.
- There are Four Central Terms to the alliance agreement between Country A and Country B:
 - 1. The alliance is defensive and only activates if either country is attacked.
 - 2. The attack must occur within a vaguely defined area that includes Country B and its regional surroundings.
 - 3. Both countries must consult each other before any major military actions in the region.
 - 4. Country A may station troops in Country B and has access to Country B's land, air, and sea for military purposes.

After receiving the scenario information, I randomly assigned respondents to one of three treatment groups: a control, a reliable, and an unreliable treatment. Within each treatment group, I informed respondents that Country A had completed an election for its new leader, a characterization of the leader's campaign, and information about their attitude towards international cooperation and the alliance between Country A and Country B. Additionally, respondents received a statement pulled from the leader's acceptance speech explicitly stating the leader's view on alliances and their opinion of the agreement between A and B. For the control group, I identified the leader as the incumbent. The hypothetical acceptance speech statement did not discuss attitudes toward foreign relations but centered on domestic infrastructure, healthcare, and education issues.

Survey Text

Unreliable Actor

The election for national leader for Country A has just concluded. The winner ran a chaotic campaign filled with divisive and dishonest statements. During the campaign, the newly elected leader, along with members of their political

party, questioned the value of working with other countries on global issues, raising doubts about their commitment to international cooperation generally and the alliance between Country A and Country B specifically. During their acceptance speech following their election, the newly elected leader made the following statement:

"International alliances are only valuable to the extent they support our interests. If agreements, like the defensive alliance between our Country and Country B, do not add value, we must reevaluate the exchange of training, supplies, and support between our two countries."

Reliable Actor

The election for national leader for Country A has just concluded. The winner ran a well-ordered campaign filled with inclusive and honest statements. During the campaign, the newly elected leader, along with members of their political party, emphasized the value of working with other countries on global issues, reaffirming their commitment to international cooperation generally and the alliance between Country A and Country B specifically. During their acceptance speech following their election, the newly elected leader made the following statement:

"International alliances are immensely valuable as they support our interests around the world. Alliances, such as the one between our country and Country B, are critical to maintaining stability and security, and I remain committed to fostering this relationship as part of my administration."

Control Actor

The election for national leader for Country A has just concluded. The incumbent leader was re-elected. During their acceptance speech following their re-election, the leader made the following statement:

"I pledge to continue the work we accomplished during my administration's first term in office. We will continue developing our infrastructure, improving our healthcare system, and investing in the education of our citizens."

While I used a hypothetical naming convention for the two states within this experiment, the similarity of the alliance agreement, coupled with the salience of the US-South Korean relationship within South Korean politics, respondents likely imagined the US as Country A within this experiment. While South Korean opinion of the US-South Korean relationship has remained generally stable, South Koreans tend to view President Trump with less confidence than past presidents (Wike et al. 2024). Estimating the combination of Trump's election, the salience of the US-South Korean relationship, and the assignment to the "unreliable" treatment group, I anticipate the effects of the "unreliable" treatment are much more potent than either the "control" or "reliable" treatments.

Following the scenario descriptions. I next include two attention checks to assess the quality of the survey responses ⁵⁴. The first attention check asked respondents to identify the global power within the scenario. One hundred thirty individuals failed this attention check. The second attention check asked respondents whether the alliance agreement was offensive or defensive. Two hundred twenty-four individuals failed this attention check. I removed any individuals who failed one or more attention checks from the survey.

After the attention checks, I asked respondents to identify their level of agreement with 12 different statements. The first two statements generally deal with perceptions of reliability for the new leader and Country A. The first statement serves as a manipulation check to assess the effectiveness of the treatment. The second statement evaluates

⁵⁴Abbey and Meloy 2017

how perceptions of a leader's reliability influence respondents' views of the country. I provide the survey text below:

Survey Text

How much do you agree with the following statements:

- Country A is a reliable alliance partner.
- The new leader of Country A is a reliable leader.

Following these statements, respondents received a statement about the level of reputational harm they expected Country A to suffer if it failed to fulfill its alliance obligations. There were six response options: No Damage, Minimal Damage, Some Damage, Moderate Damage, High Damage, and Severe Damage. Including this statement as part of the survey indicated how respondents might punish reneging based on their perceptions of the leader.

Survey Text

Failing to support Country B in a conflict would harm Country A's international reputation.

Next, respondents received the following statements. I present these statements altogether but randomize the order within the text block.

Survey Text

Given the outcome of the election, how much do you agree or disagree with the following statements:

- Country B can trust Country A to come to its aid in the event of a conflict.
- Country B should divert resources to build up its own military capability.
- Country B should renegotiate its security alliance with Country A.
- Country B should decrease its military integration with Country A.
- The alliance agreement keeps Country B secure.

I designed these statements to evaluate multiple alliances and alliance behavior topics. Combining responses regarding Country B's trust in Country A with the prior statement related to reputational harm, I gained insight into how variation in reliability can impact the trust between states. Increasing domestic military capability indicates a desire to cultivate security apart from the alliance partner, while decreasing military integration indicates the state's desire to decrease its reliance on the partner state and a greater desire for security autonomy. Lastly, the statements on alliance security and alliance renegotiation are central to the theoretical argument that the leader reliability of alliance partners influences how states perceive their own security, and lower reliability can undermine that trust, leading to renegotiation-seeking behavior. The next section of the survey explored how states might renegotiate the alliance agreement. Four statements are included in this section. Two evaluate changes in precision within the alliance agreement, and two are associated with changes at the institutional level. Respondents evaluate how specific changes

make Country B more or less secure following the election in Country A. As with the previous statement block, I present these statements as a single text block but randomize the order of the individual statements.

Survey Text

Given the outcome of the election in Country A, Country B would be more secure if:

- The alliance more precisely defined the geographical area as part of the terms of the agreement.
- Country B restricted Country A's rights to station military forces in its country.
- Country B restricted Country A's access to its land, air, and sea.
- The agreement provided more specific details on when Country A would be required to support Country B in a conflict.

Table 3.1 below provides an overview of my testable hypotheses, along with the survey statements intended to evaluate them. For each of my hypotheses, I assess whether the model results for each statement support the anticipated outcome. The hypothesis is confirmed if both relevant statements align with my theorized outcome. If neither statement aligns, then the hypothesis is not confirmed. If only one statement aligns, then I characterized the results as mixed.

For all statements, excluding reputational harm, respondents indicated on a 6-level Likert scale how much they agreed with each statement. The six response options were: strongly disagree, disagree, slightly disagree, slightly agree, agree, and strongly agree. When reviewing the frequency distribution for each statement, I noted that respondents rarely indicated a level of agreement at the extreme ends of the spectrum. ⁵⁵ To mitigate the effects of sparse data, I collapsed the 6-level Likert scale into a 4-level scale by combining the "strongly disagree" and the "strongly agree" with the "disagree" and "agree" levels, respectively. For the reputational harm statement, I collapsed the 6-level responses into four levels to address sparse data at the extreme ends of the response spectrum, combining the "No Damage" and "Severe damage" into the "minimal damage" and "high damage" levels. I provide the distribution of 4 level responses for each statement in Table 3.2 below.

Results

To facilitate readability, I report my models thematically. Of note, an incumbent victory serves as the reference group for all model results. First, I interpret the results concerning trust. As part of this section, I assess respondents' views of Country A as a partner (Country Trust) and expectations that Country A will fulfill its alliance obligations (Alliance Trust). Next, I evaluate respondents' views of self-reliance. This section includes statements related to shifting domestic investments to increase military capacity (Military Investment) and adjusting the level of military integration between the alliance partners (Alliance Integration). In the section on security and renegotiation, I evaluate respondents' perceptions of the security provided by the alliance (Alliance Security) and the desire to renegotiate the terms of the agreement (Renegotiation).

⁵⁵See Appendix C2 – C13 for frequency distribution figures for each individual statement.

Table 3.1: Summary of Hypotheses and Associated Survey Items

Hypothesis	Description and Supporting Survey Items
As the leadership of the stronger state in the alliance and list the survey items associated with each theme.	As the leadership of the stronger state in the alliance becomes more unreliable, citizens in the weaker allied state update their alliance attitudes. The hypotheses below outline these expected changes and list the survey items associated with each theme.
H1: Decline in trust in the stronger state and the alliance agreement	Respondents will report lower trust in the alliance partner and the agreement itself. Related items: - Country Trust: "Country A is a reliable alliance partner" - Alliance Trust: "Country B can trust Country A to come to its aid in the event of a conflict"
H2: Increased preference for national self-reliance	Respondents will prefer that Country B reduce dependence on the alliance and invest more heavily in its own military capabilities. Related items: - Domestic Investment: "Country B should divert resources to build up its own military capability" - Alliance Integration: "Country B should decrease military integration with Country A"
H3: Decrease in perceived alliance-based security	Respondents will express less confidence in the alliance's ability to provide security and increased interest in renegotiating the alliance. Related items: - State Security: "The alliance agreement keeps Country B secure" - Renegotiation: "Country B should renegotiate its security alliance with Country A"
H4: Reduced support for institutionalization of alliance commitments	Respondents will support limiting the stronger state's military presence and restricting its access to national infrastructure. Related items: - Basing Rights: "Country B restricted Country A's right to station military forces in its country" - Resource Access: "Country B restricted Country A's access to its land, air, and sea"
H5: Increased support for precise alliance commitments	Respondents will favor agreements that more clearly define when and how the stronger state is expected to provide support. Related items: - Geographic: "The alliance more precisely defined the geographical area as part of the terms of the agreement" - Activation: "The agreement provided more specific details on when Country A would be required to support Country B in a conflict"

Table 3.2: Distribution of Responses for Key Dependent Variables (4-Level Version)

Item	Disagree	Slightly Disagree	Slightly Agree	Agree	Appendix Figure
Trust Country A is a reliable alliance partner Country B can trust Country A to come to its aid in the event of a conflict	56 (8.7%) 73 (11.4%)	113 (17.6%) 125 (19.5%)	257 (40.0%) 251 (39.1%)	216 (33.6%) 193 (30.1%)	App. C3 App. C4
Self-Reliance Country B should divert resources to build up its own military capability Country B should decrease its military integration with Country A	27 (4.2%) 160 (24.9%)	49 (7.6%) 167 (26.0%)	206 (32.1%) 212 (33.0%)	360 (56.1%) 103 (16.0%)	Арр. С5 Арр. С6
Security and Renegotiation The alliance keeps Country B secure Country B should renegotiate its security alliance with Country A	45 (7.0%) 80 (12.5%)	83 (12.9%) 124 (19.3%)	253 (39.4%) 266 (41.4%)	261 (40.7%) 172 (26.8%)	Арр. С7 Арр. С8
Institutionalization Country B restricted Country A's rights to station military forces in its	156 (24.3%)	194 (30.2%)	186~(29.0%)	106 (16.5%)	App. C9
country Country A's access to its land, air, and sea	199 (31.0%)	211 (32.9%)	151 (23.5%)	81 (12.6%)	App. C10
Alliance Precision The alliance more precisely defined the geographical area as part of the	46 (7.2%)	105 (16.4%)	$270~(42.09_0)$	221 (34.4%)	App. C11
terms of the agreement The agreement provided more specific details on when Country A would be required to support Country B in a conflict	30 (4.7%)	82 (12.8%)	237 (36.9%)	293 (45.6%)	App. C12
Reputational Harm Failing to support Country B in a conflict would harm Country A's international reputation	Min: 90 (14.0	Min: 90 (14.0%), Some: 136 (21.2%), Mod: 184 (28.7%), High: 232 (36.1%)	.), Mod: 184 (28.7%),	High: 232 (36.1%)	App. C13

Note: Percentages are based on a total of 642 respondents. Items were originally measured using a six-point scale but were collapsed into four ordinal categories for analysis. Full histograms of the original response distributions are provided in Appendix C2-C13.

Following this section, I evaluate two aspects of the alliance agreement and ask respondents how altering the agreement may improve Country B's security. The first section deals with respondents' attitudes toward adjusting the level of institutionalization with the alliance agreement, specifically in terms of basing rights (Basing Restriction) and access to Country B's infrastructure (Access Restriction). Lastly, I examine respondents" preferences concerning the level of precision within the alliance agreement. In this section, respondents reported their attitudes toward increasing the precision of the geographic description within the alliance (Geographic Precision) and the requirements outlining support requirements for Country A (Activation Precision).

For each statement, I fit four ordinal linear regression models: a 6-level response model, a 4-level model, and an additional model for each response level, which included controls for gender and age level. To assess the quality of each model, I evaluated both the proportional odds assumption⁵⁶ and AIC scores.⁵⁷ Across each model, the 4- level models represented a much better fit for the data.⁵⁸ Although including controls improved AIC scores in some instances, the improvement was minor. To ensure consistency across outcomes, I elected to report the findings from the 4-4-level models without controls.

Across all models, there was no statistically significant differences between respondents assigned to the Reliable treatment and those in the Incumbency control group. These results are consistent with the findings from the manipulation check. I asked respondents to indicate their level of agreement with the statement, "The new leader of Country A is a reliable leader." Compared to the control group, respondents within the unreliable treatment group were significantly more likely to disagree with the statement ($\beta = 1.16$, p < .01). Although individuals who received the reliable treatment reported higher levels of agreement, there was no statistically significant difference between these individuals and the control group ($\beta = 0.26$, p = .14). As the control group represented an incumbent victory, this may indicate an assumption of reliability associated with incumbency. Further differentiation between a control scenario and a reliable leader scenario may offer more significant insights in future experiments.

Trust

Concerning trust (Reported in Table 3.3 below), respondents assigned to the Unreliable treatment, compared to the control treatment (Incumbency), were significantly less likely to agree that Country A was a reliable ally $(\beta = -0.872, p < 0.01)$ and significantly less likely to believe Country A would fulfill its obligations in the event of a conflict $(\beta = -0.889, p < 0.01)$. Figure 3.1 represents predicted probabilities related to respondents' perceptions of

⁵⁶Brant test results available upon request

⁵⁷See Appendix C27 Table C27.1 for AIC scores

⁵⁸Of note, two of the ordinal logistic models —Military Integration and Alliance Security— failed the proportional odds assumption. I re-estimated these models using a generalized ordered logit (GOL) model to assess their robustness (See Appendix C26 Table C26.1 and C26.2. For each model, the direction and significance of the treatment effects remained consistent. Within the GOL models, the treatment was insignificant at the lower end of the agreement range (e.g. "disagree" to "slightly disagree"), but was significant at upper end (e.g. "slightly agree" to "agree"). Given the substantive results remain stable across the ordinal logistic and GOL models, I elected to report the 4-level models to maintain consistency within my results.

trust in Country A. The left side of the plot represents the predicted level of agreement that Country A is a reliable alliance partner. The plot on the right represents the predicted level of agreement that Country B can trust Country A to provide support in the event of a conflict. Each plot has three columns representing the three treatment groups. Each color within the stacked bar plot corresponds to a response level in the survey. As anticipated based on the model results, respondents within the unreliable treatment groups are much more likely to either disagree or slightly disagree that Country A is a reliable ally and will honor its alliance commitments. These results indicate that when individuals perceive a leader as unreliable, this effect carries over into respondents' view of the country in general. Based on these results, I find support for my hypothesis that as the leadership of a strong country within an alliance agreement (Country A) becomes more unreliable, weak state trust in the alliance decreases.

Of note, however, the level of leader reliability did not impact the reputational harm respondents assigned to

Table 3.3: Trust Model Regression Results

	Country Trust	Alliance Trust	
	(1)	(2)	
Reliable	0.045	-0.236	
	(0.177)	(0.176)	
Unreliable	-0.873***	-0.889***	
	(0.183)	(0.182)	
Observations	642	642	

Note: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01

reneging on alliance agreements. Although respondents in the reliable treatment group reported slightly higher levels of anticipated harm from reneging ($\beta = 0.183$) compared to individuals assigned to the unreliable treatment group ($\beta = 0.084$), the results were not statistically significant. Respondents' beliefs regarding the reputational costs of abandonment remained relatively stable, regardless of a leader's perceived reliability.

National Self-Reliance

Concerning respondents' attitudes towards self-reliance, (See Table 3.4) treatment assignment had minimal impact on respondents' level of agreement regarding military investments. Although individuals in the reliable treatment expressed slightly higher levels of support for increasing military investment ($\beta = 0.162$), their views were not significantly different from their counterparts in the unreliable treatment ($\beta = 0.067$).

In contrast, exposure to unreliable leaders significantly positively impacted respondents' attitudes to decreasing military integration between Country A and Country B ($\beta = 0.698, p < 0.01$). Figure 3.2 supports these findings, depicting the predicted levels of agreement regarding military investment and alliance integration across treatment

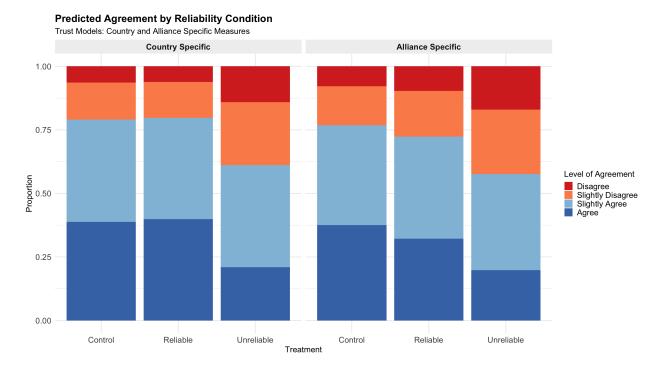


Figure 3.1: Predicted Respondent Agreement Level: Trust.

Table 3.4: National Self-Reliance Model Regression Results

	Military investment	Alliance Integration
	(1)	(2)
Reliable	0.162	0.188
	(0.185)	(0.170)
Unreliable	0.067	0.698***
	(0.193)	(0.181)
Observations	642	642

Note: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01

groups. On the left side of the plot, the figure highlights the consistency of respondents' attitudes towards military investment, regardless of treatment assignment. Across the board, respondents agreed that Country B should increase its military investments. On the right side of the plot, views on military integration are much less consistent, with individuals assigned to the unreliable treatment predicted to report much higher levels of agreement that Country B should decrease its military integration with Country A than individuals in either the reliable or control groups.

These results make sense within the context of South Korean security. The proximity of North Korea makes military investments worthwhile regardless of the quality of an alliance partner. Additionally, respondents may look at military investments as a separate category from the alliance partnership. Military spending is a domestic act that promotes a state's security. More simply, the state is looking out for itself.

Regarding alliance integration, however, there is a relational aspect to consider. If the ally is unreliable, there is a

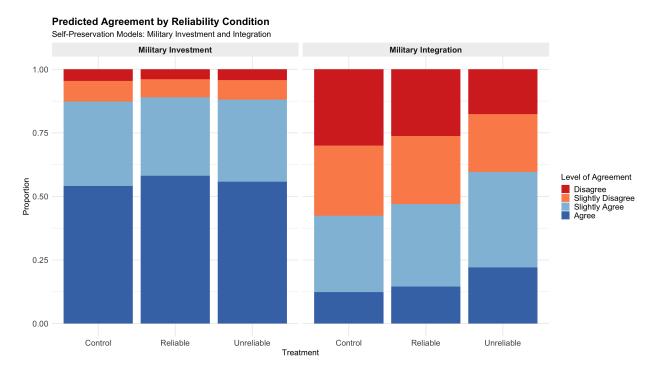


Figure 3.2: Predicted Respondent Agreement Level: National Self-Reliance.

risk that the partner states are actively undermining their own security. In this instance, decreased integration provides the weaker state with greater insulation from the unreliable ally. Based on these results, I find partial support for my hypothesis that as the strong state leader becomes more unreliable, weak state partners pursue greater self-reliance.

Alliance Security and Renegotiation

Exposure to an unreliable leader significantly affected a respondent's level of agreement concerning the security provided by the alliance and their attitude toward renegotiation (See Table 3.5 for results). Individuals assigned to the unreliable treatment group reported statistically significant lower levels of agreement ($\beta = -0.766$, p < 0.01). Consistent with these security concerns, individuals expressed significantly higher levels of agreement that Country B should renegotiate the agreement when they viewed the new leader as more unreliable ($\beta = 0.487$, p < 0.01).

Figure 3.33 helps to illustrate the relationship. In the predicted probability plot below, the left side depicts respondents' views regarding the level of security the alliance agreement provides. Individuals in the control and reliable treatment groups have nearly identical predicted levels of agreement that the alliance keeps Country B secure. Among those in the unreliable treatment, however, predicted disagreement increased substantially. A similar pattern emerges on the right side of the plot, where individuals in the unreliable treatment express more significant levels of agreement that Country B should pursue renegotiation.

Table 3.5: Alliance Security and Renegotiation Model Results

	Alliance Security	Renegotiation
	(1)	(2)
Reliable	0.001	0.036
	(0.179)	(0.173)
Unreliable	-0.766***	0.487***
	(0.186)	(0.183)
Observations	642	642

Note: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01

Predicted Agreement by Reliability Condition Security Models: Alliance Security and Renegotiation Renegotiation **Alliance Security** 1.00 0.75 Level of Agreement Proportion 05.0 Disagree Slightly Disagree Slightly Agree 0.25 0.00 Control Reliable Unreliable Control Reliable Unreliable Treatment

Figure 3.3: Predicted Respondent Agreement Level: Security and Renegotiation.

These findings align with previous results regarding trust. When the allied leader demonstrates greater unreliability, the weaker alliance partner expresses strong concerns that the alliance does not provide the desired level of security. Within the framework of the security-autonomy trade-off, this suggests that the weak state is no longer receiving the appropriate value for its autonomy concessions and would logically seek to adjust the alliance relationship in response. Of note, even though individuals in the unreliable treatment reported greater levels of disagreement regarding their belief that the alliance kept Country B secure, nearly 75% of the time, respondents were predicted to agree or slightly agree, indicating an underlying faith in the alliance agreement despite reliability concerns. Likewise, although individuals exposed to the unreliable treatment exhibited more significant support for renegotiation, all respondents across the treatment groups favored updating the agreement, suggesting a broader preference for adapting alliance terms regardless of leader reliability. Overall, these findings support my hypothesis that as the strong state leadership

becomes more unreliable, the level of security provided by the alliance agreement would decrease.

Institutionalization

Having established that respondents favor alliance renegotiation, I evaluate the specific aspects that individuals prioritize as part of the renegotiation. Focusing first on institutionalization within the agreement, I assess respondents' attitudes towards basing and access restrictions on Country A (See Table 3.6). Regarding both basing ($\beta = 0.645$, p < 0.01) and access restrictions ($\beta = 0.507$, p < 0.01), respondents demonstrated significantly higher levels of agreement that restrictions made Country B more secure when Country A's leader demonstrated greater unreliability.

Table 3.6: Institutionalization Model Results

	Basing Restrictions	Access Restrictions
	(1)	(2)
Reliable	0.165	0.230
	(0.172)	(0.173)
Unreliable	0.645***	0.507***
	(0.180)	(0.180)
Observations	642	642

Note: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01

Figure 3.4 illustrates these patterns through predicted probabilities. On the left side of the plot, which depicts predicted levels of agreement regarding basing restrictions, over half of the respondents within the unreliable treatment are predicted to agree with limiting Country A's basing rights. This pattern remains consistent in the right-side plot, where individuals in the unreliable treatment group exhibit elevated levels of agreement towards restricting access to Country B's land, air, and sea resources and infrastructure.

One notable difference between respondents' attitudes towards basing and access restrictions is the level of agreement across the treatment groups. Generally, respondents favored basing restrictions over access restrictions. These findings are slightly surprising considering prior research on the value of using troop mobilization to reassure allies through sunk costs (e.g., Fearon 1997). If, however, we view troop basing as an autonomy concession on the part of Country B, the pattern becomes more understandable. Respondents may have perceived troop basing as a more salient autonomy concession than access rights. Additionally, basing may have felt more tangible and familiar to respondents than access rights, which are more theoretical in nature. Regarding these results, I find support for my hypothesis that during renegotiations with an unreliable strong state partner, the weak state will decrease the level of alliance institutionalization.

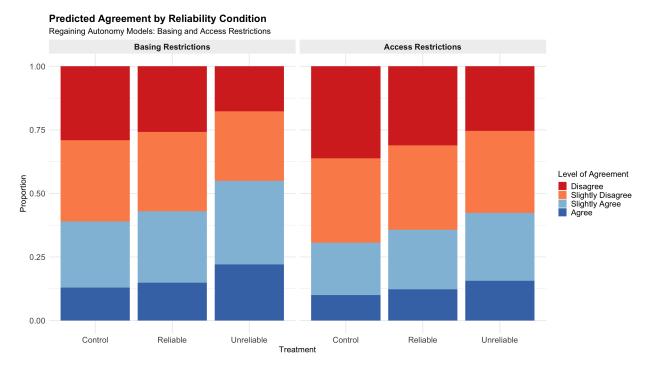


Figure 3.4: Predicted Respondent Agreement Level: Institutionalization.

Precision

The final theme I discuss is the degree of precision within the alliance agreement. In contrast to my expectations, when the strong state leader demonstrated greater unreliability, respondents decreased their support of more precise alliance terms (See Table 3.7). Within the unreliable treatment group, individuals expressed a significantly lower level of agreement that more precise conditions outlining the geographical boundaries of the alliance agreement made Country B more secure ($\beta = -0.521$, p < 0.01). This pattern also held true for precise support conditions, with respondents reporting statistically lower levels of agreement.($\beta = -0.403$, p < 0.01)

Table 3.7: Alliance Precision Model Results

	Geographic Precision	Activation Precision
	(1)	(2)
Reliable	-0.194	-0.075
	(0.177)	(0.181)
Unreliable	-0.521***	-0.403**
	(0.183)	(0.185)
Observations	642	642

Note: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01

Figure 3.5 highlights some important nuances regarding respondent's attitudes regarding precision. Using predicted

probabilities, the left side of the plot depicts the respondents' level of agreement regarding more precise geographical conditions. Although individuals in the unreliable treatment group demonstrate lower levels of agreement, respondents heavily favor increasing the precision of the alliance terms across all treatment groups. Regarding support conditions depicted on the right side of the plot, the consistency of thought across treatment groups is even stronger. Even though exposure to an unreliable leader decreased an individual's level of agreement, over 75% of respondents across treatment groups felt that increasing the precision of the support conditions within the alliance would make Country B more secure. In light of these findings, however, I do not find support for my hypothesis that when the strong state leader becomes more unreliable, weak states increase the level of precision within the alliance agreement.

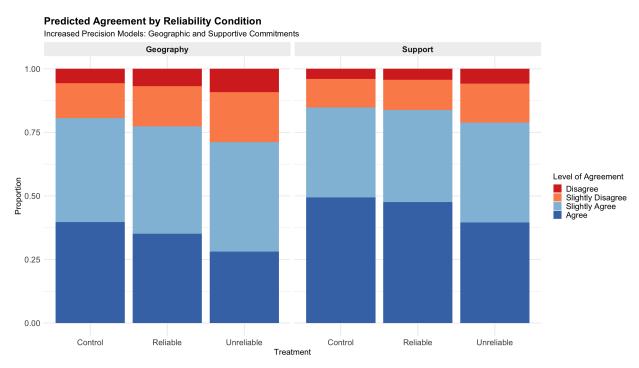


Figure 3.5: Predicted Respondent Agreement Level: Alliance Precision.

Conclusion

The results of this survey experiment raise an important question regarding the relationship between reputational damage and reneging on an alliance agreement: Does reputational damage stem merely from the act of reneging or is the impact of reneging heightened when the agreement is more precise? While I isolate the effects of precision on reputational damage, it is unlikely that all prospective allies or adversaries are deeply analyzing the specific texts of the alliance agreements. Instead, reneging has both a direct and an indirect effect on actors depending on their relationship with the reneging state.

For an ally within the reneging states' alliance network, reneging on a clear, precise agreement, especially if it resembles their agreement, likely results in sizable damage to the offending state's reputation. Presumably, these states

possess greater insight into the obligations of the violated agreement. Additionally, they are more sensitive to what the state's failure to abide by those agreements signals for future reliability.

For prospective allies or adversaries, the effects of reneging on a precise agreement are likely indirect. Three features characterize precise agreements: they clearly articulate party obligations, it is easier to identify when violations occur, and it is more difficult to excuse violations. Based on these characteristics, prospective allies and adversaries—even without an extensive reading of the agreement— may notice when allies violate this type of agreement due to the clarity of the breach and the reaction from the abandoned ally. Precision functions as a signal in two ways: it clarifies the obligations of the original agreement, and it enhances the reputational costs of non-compliance. As a result, prospective allies may adjust their approach to future alliance negotiations, increasing their reluctance to concede security autonomy. Additionally, potential adversaries may view subsequent agreements with increased skepticism, anticipating lower levels of commitment from the reneging state across a broader range of alliance agreements.

All survey experiments and research have limitations; this study is no exception. First, this study focused heavily on military-related alliance interests and sampled exclusively from South Korea, a highly militarized democratic country with mandatory conscription. Due to its conscription policy, a sizeable portion of the population has military experience, which may uniquely shape respondents' attitudes toward alliance relations. Additionally, as only males are required to serve, the potential that military experience and gender combine in unanticipated ways, potentially obscuring the independent effects of either characteristic. Re-running this experiment in another country, such as Japan, where the regional threat remains salient but military service is voluntary, may help clarify the effects of gender and military experience on alliance attitudes.

Second, although I discussed the high possibility that respondents pictured the US and South Korea as Country A and Country B respectively, the use of a hypothetical leader example may not fully reflect the complexity of real-world politics. Additionally, the lack of distinction between the control and reliable treatment effects suggests robust perceptions of reliability regarding incumbent leaders. Explicitly identifying the US and South Korea as the countries of note within the experiment or framing the leaders as prior incumbents embarking on a second term while holding the reliability and unreliability description consistent may help respondents conceptualize the alliance relationship and generate a more significant disparity between the treatment groups.

The survey results highlight how an unreliable leader can influence the perceptions and decisions of other states. At the onset of this study, I sought to demonstrate how variation in the perceived reliability of an incoming leader might impact the alliance relationship between two states. I anticipated states would be willing to deepen their agreements with a reliable partner and insulate themselves from an unreliable one. After analyzing the results, however, I found mixed levels of support for my argument. While the presence of an unreliable leader did decrease the level of trust between allied partners and incited alliance renegotiation preferences, the characteristics of the alliance renegotiation ran counter to my expectations. Instead of leveraging greater precision to bind an unreliable alliance partner more

tightly, respondents associated it with lower levels of anticipated security. Additionally, I found little support for the argument that states would decrease alliance institutionalization to recoup autonomy losses. Contrary to my initial assumptions, variation in leader reliability is more nuanced than anticipated.

Although the specific characteristics associated with the alliance renegotiation did not align with my hypotheses, this study produced some findings with policy implications. Of note, the presence of an unreliable leader corresponded with greater levels of agreement in favor of alliance renegotiations. Contrary to other forms of diplomatic renegotiation, military renegotiations appear grounded in faltering trust between partners. For a policy practitioner, these findings may prove insightful. Alliance partners often seek avenues to communicate fluctuating desires and interests, and pressure from an ally may indicate that the level of trust and commitment is faltering. Military integration was the most substantial effect noted in this study (apart from trust). Fundamentally, alliances are vehicles to improve the capability and effectiveness of the combined military. Integration is central to enhancing this capability. The presence of an unreliable leader dramatically impacts the desire for an allied partner to continue integrating. In the context of the US-South Korean alliance, this could directly impact critical aspects of the alliance agreement, such as training, military exercises, and logistical support. Undermining any of these aspects of the military relationship, in conjunction with the effect unreliability had on preferences towards basing restrictions, could have long-ranging impacts on the ability of an alliance of that nature to remain effective in a crisis.

This study offers several new insights, but it also reveals avenues for future research. This study limited its focus to questions of precision and institutionalization as part of an alliance agreement. However, states may not interpret alliance agreements in this manner. The hesitation associated with increasing the precision of an alliance agreement may indicate that the effect of more precise alliance agreements has a curve. Moving from vague conditions towards more precise ones may improve security up to a point beyond which any additional security gains may be neutral or even harmful. Exploring the nature of this curve may provide greater insight into the dynamics of vague commitments and their impact on security between states. Lastly, this study examined the effect of reliability from the perspective of the smaller states within an alliance agreement. Examining reliability from the viewpoint of the strong ally may produce differing effects. While an unreliable strong partner may induce renegotiation efforts, an unreliable junior partner may result in greater coercion or direction. Investigating how unreliability influences weak and strong allies provides an interesting area for continued research.

Bibliography

- 1. Abbey, J. D., & Meloy, M. G. (2017). Attention by Design: Using Attention Checks to Detect Inattentive Respondents and Improve Data Quality. *Journal of Operations Management*, 53–56(1), 63–70. https://doi.org/10.1016/j.jom.2017.06.001
- 2. Alley, J. (2021). Alliance Participation, Treaty Depth, and Military Spending. *International Studies Quarterly*, 65(4), 929–943. https://doi.org/10.1093/isq/sqab077
- 3. Alley, J., & Fuhrmann, M. (2021). Budget Breaker? The Financial Cost of US Military Alliances. *Security Studies*, 30(5), 661–690. https://doi.org/10.1080/09636412.2021.2021280
- 4. Aydıntaşbaş, F. Hill US Leadership, A., Shapiro, J., & Hill, Fiona on Ukraine's Future. the Post-Election World. https://ecfr.eu/podcasts/episode/ and swamp-chronicles-fiona-hill-on-us-leadership-ukraines-future-and-the-post-election-world/
- 5. Bateman, T. (2024). US Allies Try to 'Trump-Proof' NATO but Is That Even Possible? *BBC*. https://www.bbc.com/news/articles/c3gr90jnxjvo
- Bowler, S., & Karp, J. A. (2004). Politicians, Scandals, and Trust in Government. *Political Behavior*, 26, 271–287. https://doi.org/10.1023/B:POBE.0000043456.87303.3a
- 7. Cha, V. (2010). Powerplay: Origins of the U.S. Alliance System in Asia. *International Security*, 34(3), 158–196.
- 8. Cha, V. (2024). Foreword: An Election of Global Consequence. In *The Global Impact of the 2024 U.S. Presidential Election*. CSIS Geopolitics and Foreign Policy Department. https://www.csis.org/analysis/foreword-election-global-consequence
- 9. Crescenzi, M. J. C., Kathman, J. D., Kleinberg, K. B., & Wood, R. M. (2012). Reliability, Reputation, and Alliance Formation. *International Studies Quarterly*, 56(2), 259–274. https://doi.org/10.1111/j.1468-2478. 2011.00711.x
- East Asia Institute. (2023). 2023 EAI Public Opinion Poll on East Asia: The US and the ROK-US Relations.
 EAI Public Opinion Briefing.
- 11. Fearon, J. D. (1997). Signaling Foreign Policy Interests: Tying Hands Versus Sinking Costs. *Journal of Conflict Resolution*, 41(1), 68–90.

- 12. Gibler, D. M. (2008). The Costs of Reneging: Reputation and Alliance Formation. *Journal of Conflict Resolution*, 52(3), 426–454. https://doi.org/10.1177/0022002707310003
- 13. Goldfien, M. A., Joseph, M. F., & McManus, R. W. (2023). The Domestic Sources of International Reputation. *American Political Science Review*, 117(2), 609–628. https://doi.org/10.1017/S0003055422000855
- 14. Kertzer, J. D. (2022). Re-Assessing Elite-Public Gaps in Political Behavior. *American Journal of Political Science*, 66(3), 539–553. https://doi.org/10.1111/ajps.12583
- 15. Kertzer, J. D., & Renshon, J. (2022). Experiments and Surveys on Political Elites. *Annual Review of Political Science*, 25(1), 529–550. https://doi.org/10.1146/annurev-polisci-051120-013649
- What 16. Klug, F. (2024).Know about South Korea's Martial Law and AP. the Impeachment Vote Threatening Its President. https://apnews.com/article/ south-korea-martial-law-north-korea-emergency-b310df4fece42c27051f58b8951f346f
- 17. Koremenos, B., Lipson, C., & Snidal, D. (2001). The Rational Design of International Institutions. *International Organization*, 55(4), 761–799.
- 18. Lee, J. Y. (2017). Hedging Strategies of the Middle Powers in East Asian Security: The Cases of South Korea and Malaysia. *East Asia*, *34*, 23–37. https://doi.org/10.1007/s12140-016-9264-8
- 19. Leeds, B. A. (2003). Alliance Reliability in Times of War: Explaining State Decisions to Violate Treaties. *International Organization*, *57*(4), 801–827. https://doi.org/10.1017/S0020818303574057
- 20. Leeds, B. A., & Anac, S. (2005). Alliance Institutionalization and Alliance Performance. *International Interactions*, 31(3), 183–202. https://doi.org/10.1080/03050620500294135
- 21. Lupton, D. L. (2014). Leaders, Perceptions, and Reputations for Resolve (PhD Dissertation). Duke University.
- 22. Lupton, D. L. (2018). Signaling Resolve: Leaders, Reputations, and the Importance of Early Interactions. *International Interactions*, 44(1), 59–87. https://doi.org/10.1080/03050629.2017.1316268
- 23. Macron, E. (2024). Europeans Must Believe in Their Sovereignty, Says President. Speech presented at the European Political Community Summit, Budapest. https://uk.ambafrance.org/Europeans-must-believe-in-their-sovereignty-says-President
- 24. Mercer, J. (1996). Reputation and International Politics. New York: Cornell University Press.
- 25. Morgenthau, H. J. (1949). *Politics Among Nations: The Struggle for Power and Peace*. New York: Alfred A. Knopf, Inc.

- 26. Morrow, J. D. (1994). Alliances, Credibility, and Peacetime Costs. *Journal of Conflict Resolution*, 38(2), 270–297.
- 27. Morrow, J. D. (1991). Alliances and Asymmetry: An Alternative to the Capability Aggregation Model of Alliances. *American Journal of Political Science*, *35*(4), 904. https://doi.org/10.2307/2111499
- 28. Morrow, J. D. (2000). Alliances: Why Write Them Down? *Annual Review of Political Science*, *3*(1), 63–83. https://doi.org/10.1146/annurev.polisci.3.1.63
- 29. Mutual Defense Treaty Between the United States and the Republic of Korea. (1953).
- 30. Narang, N., & LeVeck, B. L. (2019). International Reputation and Alliance Portfolios: How Unreliability Affects the Structure and Composition of Alliance Treaties. *Journal of Peace Research*, 56(3), 379–394. https://doi.org/10.1177/0022343318808844
- 31. Press, D. G. (2005). *Calculating Credibility: How Leaders Assess Military Threats*. New York: Cornell University Press.
- 32. Renshon, J., Dafoe, A., & Huth, P. (2018). Leader Influence and Reputation Formation in World Politics. American Journal of Political Science, 62(2), 325–339. https://doi.org/10.1111/ajps.12335
- 33. Schelling, T. C. (1980). The Strategy of Conflict. Harvard University Press.
- 34. Schultz, K. A. (2001). Democracy and Coercive Diplomacy. Cambridge University Press.
- 35. Snyder, G. H. (1984). The Security Dilemma in Alliance Politics. *World Politics*, 36(4), 461–495. https://doi.org/10.2307/2010183
- 36. Snyder, G. H. (1997). Alliance Politics. New York: Cornell University Press.
- 37. Stockholm International Peace Research Institute. (2024). The SIPRI Top 100 Arms-Producing and Military Services Companies, 2023. https://www.sipri.org/visualizations/2024/sipri-top-100-arms-producing-and-military-services-companies-world-2023
- 38. Vaicekauskaitė, Ž. M. (2017). Security Strategies of Small States in a Changing World. *Journal on Baltic Security*, *3*(2), 7–15. https://doi.org/10.1515/jobs-2017-0006
- 39. Wallace, G. P. R. (2008). Alliances, Institutional Design, and the Determinants of Military Strategy. *Conflict Management and Peace Science*, 25(3), 224–243. https://doi.org/10.1080/07388940802218978
- 40. Walt, S. M. (1985). Alliance Formation and the Balance of World Power. *International Security*, 9(4), 3. https://doi.org/10.2307/2538540

- 41. Waltz, K. N. (1979). Theory of International Politics. Reading, MA: Addison-Wesley Publishing Company, Inc.
- 42. Wike, R., Fetterolf, J., Smerkovich, M., & Austin, S. (2024). *Globally, Biden Receives Higher Ratings Than Trump*. Pew Research Center. https://www.pewresearch.org/global/2024/06/11/globally-biden-receives-higher-ratings-than-trump/
- 43. Wolford, S. (2007). The Turnover Trap: New Leaders, Reputation, and International Conflict. *American Journal of Political Science*, *51*(4), 772–788. https://doi.org/10.1111/j.1540-5907.2007.00280.x

CONCLUSION

Within this dissertation, I sought to understand better a central question within alliance politics: How do states, dealing with competing concerns regarding abandonment and entrapment, craft their alliance agreement? President Rhee's struggles to procure a stable, binding agreement with the United States following the end of the Korean War highlights the strategic limits of a weak state's ability to address its abandonment concern effectively. Yet, despite US reluctance, President Quirino's success in extracting an formal (albeit vague) mutual defense agreement demonstrates that weak states engaging in bilateral alliance negotiations are not completely powerless in pursuing their desired outcomes.

Each case highlights strong and weak states' fundamentally different approaches regarding alliance negotiations and relationships. Strong states often resist agreements with clearly defined roles and support obligations, instead favoring alliances that grant them greater flexibility and control to prevent entrapment. Weak states, who recognize their dependence on external support for security, press for explicit agreements with more binding terms to mitigate their abandonment concerns. The resulting negotiations reflect this central tension. History demonstrates that weak states often find themselves at a strategic disadvantage within the alliance negotiation process. However, the Philippine example reveals that they can still shape the resultant agreement meaningfully.

To better make sense of the dynamic between weak state abandonment concerns and strong state entrapment fears, I explore two specific mechanisms states use within the alliance negotiation process: Precision and Institutionalization. Precision reflects the degree to which the language and conditions of the agreement restrict state response options once an agreement activates. Institutionalization encompasses the rules, regulations, and structures within the agreement. Each of these mechanisms serves different purposes, and states do not employ their usage randomly. Instead, they use them strategically based on how large or small they perceive the abandonment and entrapment risk the prospective ally represents.

Before deciding the level of precision or institutionalization within the alliance agreement, states must determine the degree of risk their potential partner poses. I argue that state reliability represents the best way to evaluate this risk. From a strong state perspective, a reliable partner will not act in a way that unnecessarily antagonizes a potential threat or exposes the alliance to unnecessary risk. Conversely, for a weak state, a reliable partner is one who will fulfill its alliance agreements when necessary. Within this project, characteristics such as prior alliance violation, peacefulness, political stability, and political similarity serve to inform state perceptions of reliability. If a state demonstrates a history of prior reneging on agreements or possesses a notably different political system, it may represent a greater abandonment risk. If the state often finds itself embroiled in conflict or demonstrates unstable domestic characteristics,

it may pose a greater entrapment risk. Based on these characteristics, states evaluate their prospective partner and determine the level of risk they represent.

States' assessments based on partner reliability directly influence how they structure the alliance agreement. When weak states perceive their stronger partners as unreliable or moderately reliable, they push for greater levels of precision within the agreement to mitigate their abandonment concerns (Chapter 1). Precision shapes how the alliance partners understand and evaluate their obligations within the agreement. Agreements that include these precise conditions increase a strong state's commitment toward the alliance (Chapter 2). The enhancing effect of precise agreements on expectations of reputational harm from reneging points to a possible cause of this increased commitment (Chapter 2). As the strong state demonstrates high reliability, the risk of abandonment declines, and the need for restrictive language decreases (Chapter 1).

For strong states, institutionalization provides a means to better corral weak state behavior. When a weak state demonstrates low reliability, strong states may embed rules and regulations, such as command authority or consultation requirements, to minimize its ability to act unilaterally (Chapter 1). As the weak state becomes more reliable, these types of restrictions become unnecessary, as strong states trust their ally will not act recklessly.

Once both the weak and strong states demonstrate a certain reliability level, the dynamics of the alliance formation process shift. An alliance agreement is more likely when each state views the other as a reliable partner (Chapter 1). These types of alliances often represent strategic value, and the depth of the alliance — reflects both the level of precision and institutionalization within the agreement—, which increases in turn (Chapter 1). Within these types of cases, the precise conditions remain in place, as weak states are reluctant to expose themselves to an existential abandonment risk. Additionally, institutionalization levels also increase—not necessarily to constrain entrapment risks, but as a means of enhancing the alliance's operational capacity. In these cases, the states invest in the alliance through institutionalization structures like intelligence sharing, joint training, arms agreements, and joint planning. To this end, these types of features represent not a means of controlling reckless behavior by an ally but a method of improving capability.

I assumed that these deeper alliance agreements would produce a greater deterrent effect. As an agreement between mutually reliable states and strengthened by both precision and institutionalization, it stands to reason this type of relationship would serve as a credible signal to adversaries, making them reevaluate their chances of succeeding in a conflict against an integrated and clearly defined alliance. Yet, my findings did not align with this assumption. Instead, as the alliance agreement deepened, the likelihood of conflict increased (Chapter 1). This finding suggests that depth while representing a more robust commitment between two reliable states, may represent a strategic threat to the states in opposition to the allies. Additionally, deeper agreements may increase the participants' confidence and lead them to behave more assertively within foreign relations. The outcome of this dynamic is that alliance depth may reshape the strategic environment in ways that incite conflict.

But even the deepest alliances are only as stable as the states within them. Although the frameworks of these agreements may remain quite firm, the structures, rules, and regulations within them provide states a means to respond to changes in reliability. A strong state, once viewed as a reliable partner, can become unpredictable within a very short span, leaving allies to question the value and security provided by the agreement (Chapter 3)—President Trump's first term and reelection campaign in 2024 display this dynamic. When reliability shifts, it forces the states to reassess their level of abandonment and entrapment risks, which can drive them to recalibrate the terms of the alliance agreement (Chapter 3). I had anticipated that weak states would also seek to clarify the obligations within the alliance, pressing for greater precision. However, my findings did not support this assumption. Rather, gaining greater autonomy and control by restricting access to basing and critical infrastructure produces a greater sense of security (Chapter 3). Notably, weak states' efforts to recoup their own autonomy may come at the cost of undermining strong state commitment to the agreement (Chapter 2).

This dissertation makes several contributions to the study of alliance formation and politics. First, it challenges the assumption that weak states are passive participants in the alliance formation process. Instead, weak states actively push for greater clarity regarding strong state commitments and achieve some manner of success, especially when the strong state ally possesses a reputation for poor reliability (Chapter 1). Moreover, my results demonstrate that precision levels is most influence not by weak state reliability—which would align with the argument that strong state restrict precision to counter entrapment—but by strong state reliability. This result contradicts the assumption that strong states unilaterally impose vague agreements unto weak state allies.

Second, this project provides evidence that precision remains a valuable tool for weak state alliance negotiations. Although after-the-fact messaging by leaders lies beyond the scope of this study, my results indicate that precise agreements enhance both strong state commitment and the expectation of reputational harm. Most notably, the effect of precision was greater than the effect of external threat on both outcomes (Chapter 2). Additionally, the curvilinear relationship between strong state reliability and precision suggest states simply maximize its usage, but instead leverage this mechanism strategically.

Third, it examines alliance renegotiations, an understudied aspect of alliance research. Although research often explores the alliance formation process, this study looks at how variation in ally reliability can influence the attitudes and perceptions toward the alliance relationship. Additionally, my findings show that declining trust leads not to changes in precision but a preference for renegotiating the level of institutionalization within the agreement (Chapter 3).

This study is not without its limitations, however. Although this project advances precision and institutionalization as useful mechanisms for understanding alliance negotiations, there is room for improvement. This study's coding for each concept remains in line with prior works. However, both would benefit from greater clarity and granularity concerning the individual conditions and obligations within alliance agreements. Further research into the specific subcomponents

of alliances—such as activation clauses, joint planning agreements, and operational control regulations—might reveal greater insights. Pulling in scholarship from other disciplines with a long history of examining the text of legal agreements and evaluating the impacts of organizational structures—such as legal studies, industrial-organizational psychology, or strategic communications—may produce interesting results. This study focused exclusively on bilateral, asymmetrical alliances, and the dynamics between reliability, precision, and institutionalization may differ in multilateral agreements or within alliances with greater power parity.

Lastly, this study examined precision's impact on attitudes and perceptions, but the greater question concerns its impact on behavior. Although individuals may feel that precision increases their commitment level, are they willing to punish leaders if they break more precise agreements? Does precision and institutionalization impact how leaders negotiate other aspects of foreign policy, or does it impact how military officers plan for and engage in conflict? Exploring how changes in attitudes and perceptions impact behavior represents a logical next step from the work presented here.

The results I present here propose just as many questions as they answer. First, within these studies, I look at alliance agreements in isolation, focusing exclusively on the relationship between the states. However, alliances rarely function independently, and often, strong states cultivate expansive alliance networks. States regularly form alliances in response to the ratification of other agreements, so evaluating these agreements within the context of the larger network may provide greater insight into the alliance negotiation dynamics at play. Concerning negotiation dynamics, much of the alliance negotiation research remains limited by the static nature of the current data available. Although the ATOP dataset provides a wealth of information, it only includes data from the finalized alliance agreement. Due to this, scholars have little insight into the intricacies of the negotiation itself. Information on what states offered versus what they rejected provides invaluable insight into how states approach this process. Engaging in a deeper qualitative analysis of one or more of the most prominent alliances discussed in this project would assist in revealing more about the nature of alliance negotiations. Additionally, while this study shows that attitudes regarding alliance negotiations ebb and flow in response to the perception of reliability, little work exists on how these renegotiations occur. Generally, alliance agreements are sticky, rarely changing over time. However, the conditions within the alliance relationship often evolve, as with the US-South Korean relationship. Using Defense Cooperation Agreements, Memorandums of Understanding, and Status of Forces agreements, states might adjust and balance the levels of precision and institutionalization within the alliance relationship without disrupting the strategic agreement. Understanding how these mechanisms influence the alliance relationship may provide valuable insight into the alliance renovation literature.

Although many of the core concepts examined within this study—such as abandonment, entrapment, and reliability—are familiar to policymakers, this work offers a more refined understanding of how the mechanisms of precision and institutionalization can influence state behavior. First, it highlights that weak states are not purely passive receivers of security guarantees who hope strong states abide by their agreements. Instead, weak states can

influence alliance obligations using precision, enhancing strong state commitment to the agreement.

Additionally, this project highlights how precision can have an even greater impact on alliance commitments than external threats, demonstrating the strength that alliance design has on perceptions of obligations. Most critically, the results highlight the impact of state reliability as a factor within alliance politics. Shifts in the reliability of a leader directly impact ally perceptions of the alliance's security value. These shifts can trigger renegotiation preferences, drastically shaping the alliance's relationship and operational capacity. Policymakers should note the preference for shifting the level of institutionalization in response to perceived unreliability. Public declarations of support or clarification of the level of obligation towards an ally may not garner the level of assurance previously thought. Policy practitioners should prepare for greater negotiations regarding specific institutional features within the alliance to repair a damaged alliance relationship.

APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 1

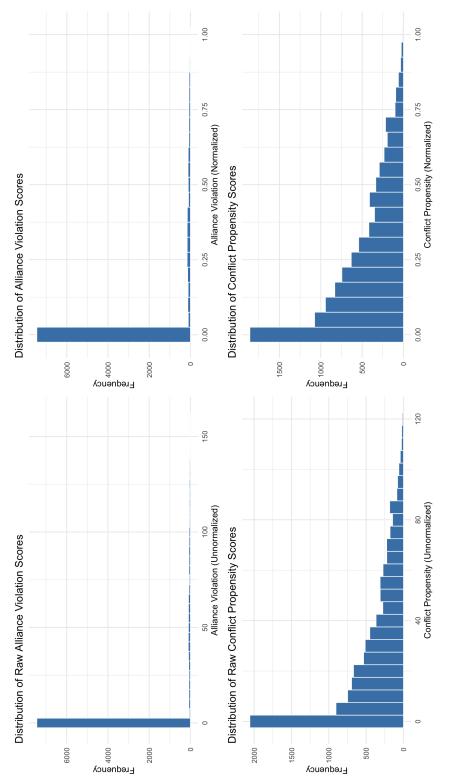


Figure A1.1: Frequency distribution for State Reliability Components: Alliance Violation & Conflict Propensity.

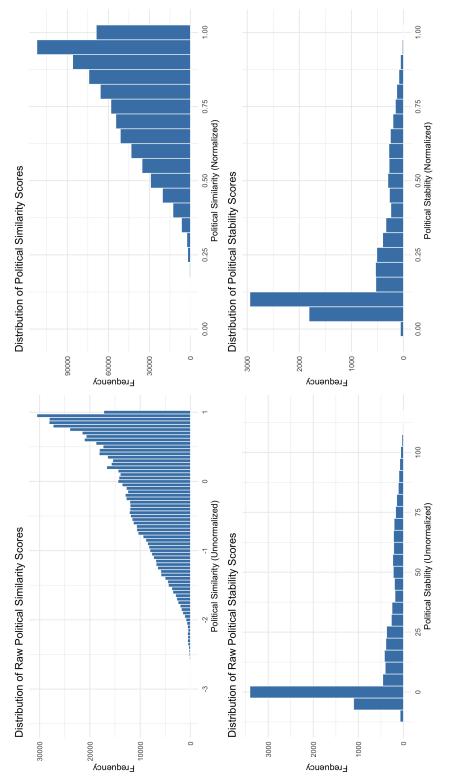


Figure A2.1: Frequency distribution for State Reliability Components: Political Similarity & Political Stability.

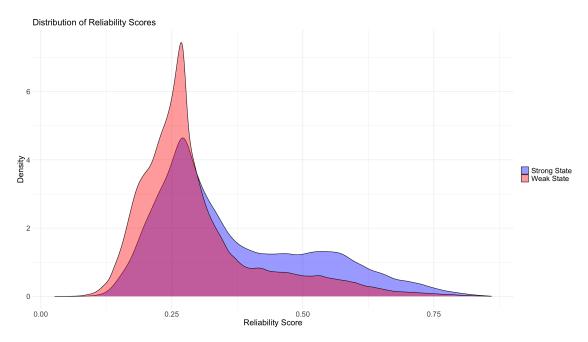


Figure A3.1: State Reliability Distribution

Table A3.1: Breusch-Pagan and RESET Test Results (Model Assumption Diagnostics)

Reliability Model	Heteroscedasticity (BP)	Non-Linearity (RESET)
Precision:		
Strong State (Full)	44.67 * $(p = 2.0e-10)$	108.33 * (<i>p</i> < 2.2 <i>e</i> -16)
Strong State (Trimmed)	36.37 * (<i>p</i> = 1.27 <i>e</i> -08)	92.21 * (<i>p</i> < 2.2 <i>e</i> -16)
Institutionalization:		
Weak State (Full)	97.58 * (<i>p</i> < 2.2 <i>e</i> -16)	4.33 * $(p = 0.0375)$
Weak State (Trimmed)	64.93 * (<i>p</i> = 7.96 <i>e</i> -15)	16.27 * $(p = 5.75e-05)$

Note: * indicate a statistically significant violation of model assumptions (p < 0.05).

Table A4.1: Effect of State Reliability on Alliance Precision (Robust SE)

	Full	Reduced	Basic	(Full Sample)
Strong Reliability	1.286***	2.276***	2.370***	1.761***
	(0.169)	(0.196)	(0.199)	(0.189)
Strong Reliability ²	-1.366***	-2.056***	-2.132***	-1.860^{***}
	(0.161)	(0.187)	(0.189)	(0.183)
Weak Reliability	-0.679***	-0.484***		-0.416**
	(0.124)	(0.140)		(0.146)
Weak Reliability ²	0.877***	0.766***		0.453**
•	(0.151)	(0.169)		(0.180)
Strong CINC	0.971***			1.281***
	(0.040)			(0.061)
Weak CINC	2.512***			1.653***
	(0.307)			(0.272)
Constant	0.023	-0.244***	-0.331^{***}	-0.116^*
	(0.052)	(0.061)	(0.049)	(0.059)
Observations	1,699	1,699	1,699	1,744

Note:

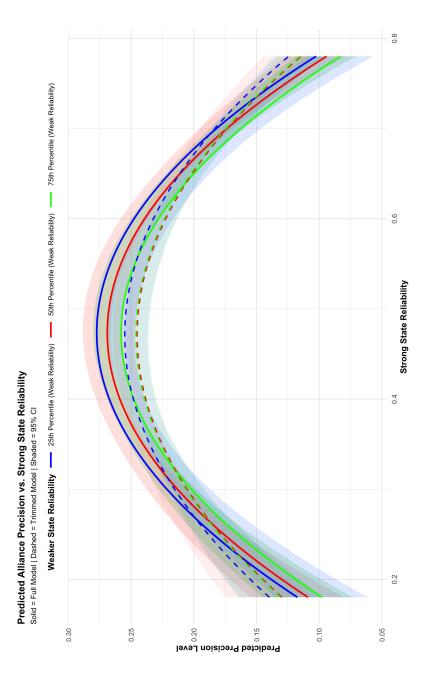


Figure A5.1: Effect of Influential Cases: Precision

Table A6.1: Effect of State Reliability on Institutionalization (Robust SE)

	Full	Reduced	Basic	(Full Sample)
Weak Reliability	-2.620***	-2.486***	-2.482***	-2.951***
•	(0.173)	(0.163)	(0.164)	(0.200)
Weak Reliability ²	2.523***	2.389***	2.423***	2.782***
	(0.210)	(0.200)	(0.200)	(0.242)
Strong Reliability	0.140	0.039		0.430^{*}
	(0.197)	(0.207)		(0.242)
Strong Reliability ²	0.068	0.135		-0.018
	(0.204)	(0.214)		(0.255)
Strong CINC	-0.234***			-0.639***
_	(0.068)			(0.077)
Weak CINC	1.081***			1.170***
	(0.292)			(0.298)
Constant	0.632***	0.627***	0.676***	0.642***
	(0.058)	(0.059)	(0.031)	(0.065)
Observations	1,699	1,699	1,699	1,744

Note:

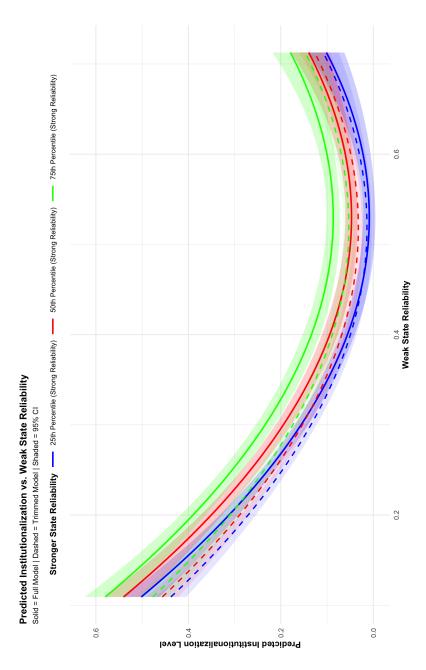


Figure A7.1: Effect of Influential Cases: Institutionalization

Table A8.1: Effect of State Reliability on Alliance Depth (Robust SE)

	Trimmed Sample	Full Sample
Strong Reliability	1.148***	2.080***
	(0.280)	(0.325)
Strong Reliability ²	-1.076***	-1.820***
	(0.287)	(0.335)
Weak Reliability	-3.798***	-4.103***
	(0.223)	(0.250)
Weak Reliability ²	3.914***	3.965***
·	(0.272)	(0.303)
Strong CINC	0.964***	0.911***
•	(0.090)	(0.100)
Weak CINC	4.285***	4.093***
	(0.596)	(0.561)
Threat Environment	-0.00020***	-0.00036***
	(0.00004)	(0.00005)
Constant	0.868***	0.791***
	(0.078)	(0.088)
Observations	1,699	1,744

Note:

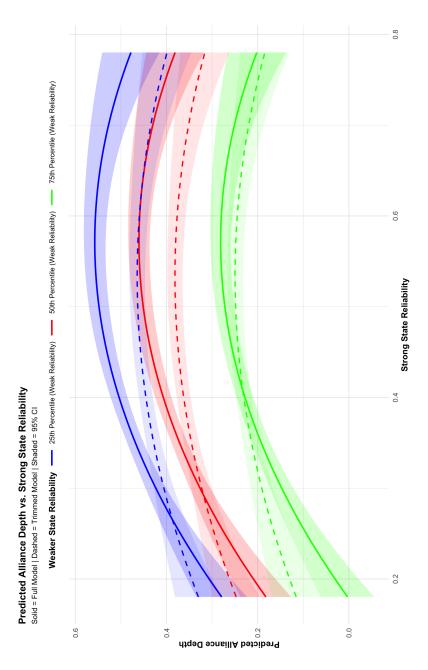


Figure A9.1: Effect of Influential Cases: Alliance Depth

Table A10.1: Relative Importance of Predictors Across Alliance Design Dimensions

	Precision	Institutionalization	Depth
Strong State Reliability	6.89%	1.82%	3.96%
Strong State Reliability ²	6.06%	1.91%	3.13%
Weak State Reliability	2.01%	53.17%	25.56%
Weak State Reliability ²	2.36%	40.23%	18.41%
Strong State CINC	55.04%	1.20%	23.24%
Weak State CINC	27.63%	1.68%	17.79%
Threat Environment			7.91%

Note: Values represent the proportion of model R^2 explained by each predictor using the Lindeman, Merenda, and Gold (LMG) method, normalized to sum to 100% (Grömping 2006).

Table A11.1: Heckman Selection Results: Base vs. Trimmed Model (Robust SE)

	Base Model	Trimmed Model
First Stage: Alliance Presence Constant	-1.339*** (0.145)	-1.347*** (0.147)
Strong State Reliability	5.894*** (0.471)	5.320*** (0.480)
Strong State Reliability ²	-4.720*** (0.483)	-4.219*** (0.493)
Weak State Reliability	0.243 (0.385)	0.661* (0.397)
Weak State Reliability ²	0.342 (0.454)	0.016 (0.466)
Strong State CINC	6.442*** (0.137)	6.422*** (0.142)
Weak State CINC	12.497*** (0.730)	12.797*** (0.729)
Distance (Log)	-0.436*** (0.009)	-0.436*** (0.009)
Threat Environment	0.00060*** (0.00007)	0.00071*** (0.00008)
Second Stage: External Conflict Constant	0.032 (0.063)	0.062 (0.066)
Alliance Depth	0.303*** (0.038)	0.466*** (0.049)
Stronger Military Power	1.887*** (0.106)	1.713*** (0.110)
Weaker Military Power	1.124 (0.821)	0.025 (0.850)
Error Terms		
Sigma	0.402*** (0.008)	0.389*** (0.008)
Rho	0.264*** (0.056)	0.209*** (0.063)
Observations Log-Likelihood	720,363 -9,481.68	720,249 -8,863.29

Note:

Table A12.1: Heckman Selection Results: Conflict Type Models (Robust SE)

	Threat Only	Force Only	Fatal MIDs	War
First Stage: Alliance Presence				
Constant	-1.332^{***}	-1.332***	-1.267^{***}	-1.309***
	(0.148)	(0.147)	(0.147)	(0.148)
Stronger State Reliability	5.238***	5.277***	5.035***	5.139***
	(0.480)	(0.477)	(0.477)	(0.480)
Stronger State Reliability ²	-4.088***	-4.179***	-3.866***	-3.968***
	(0.492)	(0.490)	(0.489)	(0.493)
Weaker State Reliability	0.512	0.677*	0.568	0.545
•	(0.395)	(0.395)	(0.394)	(0.395)
Weaker State Reliability ²	0.131	0.007	0.091	0.099
,	(0.466)	(0.465)	(0.464)	(0.465)
Stronger State CINC	6.420***	6.430***	6.439***	6.425***
	(0.142)	(0.142)	(0.142)	(0.142)
Weaker State CINC	12.820***	12.818***	12.756***	12.757***
	(0.728)	(0.728)	(0.731)	(0.731)
Distance (Log)	-0.435***	-0.435***	-0.436***	-0.435***
	(0.009)	(0.009)	(0.009)	(0.009)
Threat Environment	0.00078***	0.00068***	0.00068***	0.00075***
	(0.00007)	(800008)	(800008)	(0.00007)
Second Stage: External Conflict				
Constant	0.077	-0.147**	-0.257***	-0.135**
	(0.072)	(0.069)	(0.071)	(0.063)
Alliance Depth	0.355***	0.483***	0.435***	0.109**
•	(0.055)	(0.051)	(0.052)	(0.046)
Stronger MMP	0.931***	1.863***	1.849***	1.251***
	(0.124)	(0.114)	(0.118)	(0.106)
Weaker MMP	2.156*	0.813	2.521**	0.793
	(0.952)	(0.881)	(0.900)	(0.805)
Error Terms				
Sigma	0.432***	0.410***	0.415***	0.365***
	(0.008)	(0.010)	(0.009)	(0.007)
Rho	-0.025	0.302***	0.259***	0.136**
	(0.063)	(0.060)	(0.062)	(0.066)
Observations	720,249	720,249	720,249	720,249
Log-Likelihood	-9,058.61	-8, 911.16	-8,948.66	-8,780.45
N .	>, 00 0.01		1. 1	

Note:

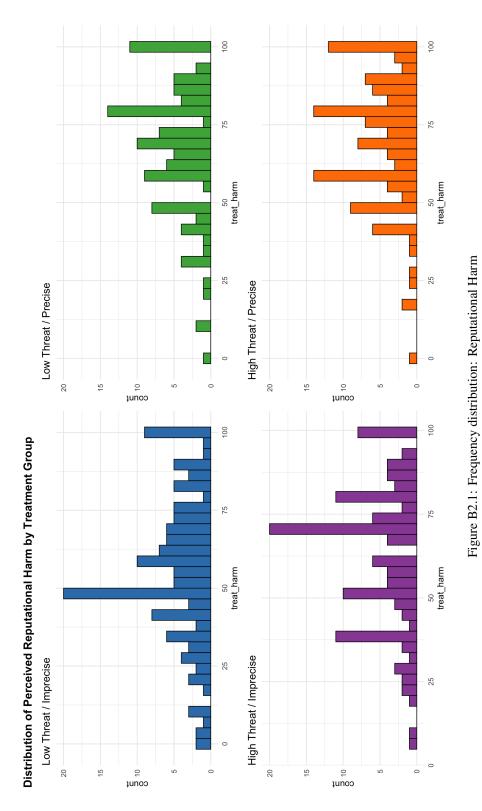
Table A13.1: Heckman Selection Results: Depth Variations (Robust SE)

I-P (25-75)	I-P (33-66)	I-P (66-33)	I-P (75-25)
-1.361***	-1.350***	-1.335***	-1.335***
(0.147)	(0.147)	(0.147)	(0.147)
5.365***	5.329***	5.272***	5.268***
(0.479)	(0.480)	(0.479)	(0.479)
-4.289***	-4.232***	-4.145***	-4.140***
(0.494)	(0.493)	(0.492)	(0.492)
0.742*	0.675*	0.590	0.586
(0.396)	(0.397)	(0.397)	(0.397)
-0.046 (0.465)	0.005	0.069	0.071
	(0.466)	(0.466)	(0.466)
6.426***	6.422***	6.421***	6.421***
(0.142)	(0.142)	(0.142)	(0.142)
12.731***	12.788***	12.819***	12.817***
(0.730)	(0.729)	(0.729)	(0.729)
-0.436***	-0.436***	-0.435***	-0.435***
(0.009)	(0.009)	(0.009)	(0.009)
0.00069***	0.00071***	0.00074***	0.00074***
(0.00008)	(0.00008)	(0.00008)	(0.00008)
-0.021	0.046	0.185**	0.198***
(0.066)	(0.066)	(0.066)	(0.066)
0.557***	0.588***	0.712***	0.716***
(0.077)	(0.064)	(0.059)	(0.059)
1.791***	1.720***	1.814***	1.851***
(0.116)	(0.112)	(0.099)	(0.097)
0.029	-0.024 (0.858)	1.259	1.534*
(0.888)		(0.803)	(0.799)
0.402***	0.391***	0.378***	0.377***
(0.009)	(0.008)	(0.007)	(0.007)
0.296***	0.225***	0.116*	0.111*
(0.059)	(0.062)	(0.066)	(0.066)
720,249	720,249	720,249	720,249
-8,881.54	-8,866.80	-8,838.89	-8,836.68
	-1.361*** (0.147) 5.365*** (0.479) -4.289*** (0.494) 0.742* (0.396) -0.046 (0.465) 6.426*** (0.142) 12.731*** (0.730) -0.436*** (0.009) 0.00069*** (0.0008) -0.021 (0.066) 0.557*** (0.077) 1.791*** (0.116) 0.029 (0.888) 0.402*** (0.009) 0.296*** (0.059) 720,249	-1.361***	-1.361***

Note:

APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 2


Table B1.1: Respondent Pool General Demographics (Trimmed vs. Full Sample)

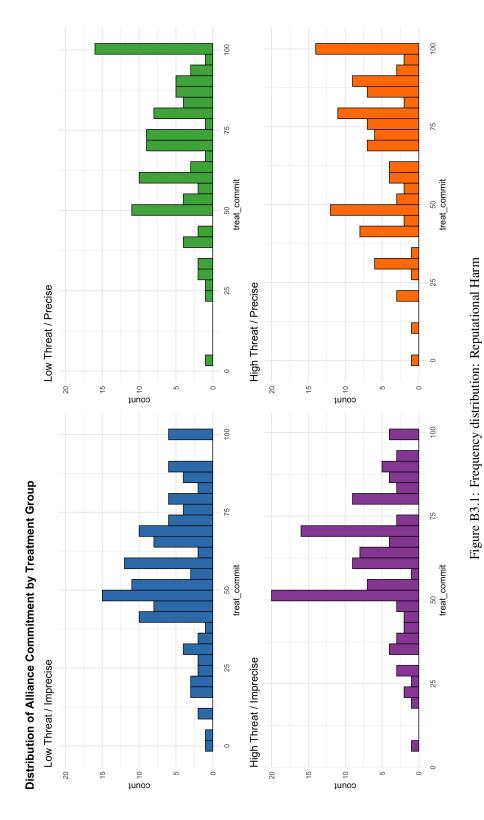

Characteristic	Trimmed (N = 473)	Full (N = 1,015)
Political Party		
Democrat	185 (39%)	350 (34%)
Independent	82 (17%)	169 (17%)
Republican	195 (41%)	473 (47%)
Other/Don't Know	11 (2.3%)	23 (2.3%)
Ideology		
Liberal	205 (43%)	378 (37%)
Moderate	55 (12%)	142 (14%)
Conservative	213 (45%)	495 (49%)
Gender		
Male	184 (39%)	402 (40%)
Female	282 (60%)	600 (59%)
Other/Prefer not to disclose	7 (1.5%)	13 (1.3%)
Race		
White	345 (73%)	730 (72%)
Black	29 (6.1%)	57 (5.6%)
Hispanic	21 (4.4%)	44 (4.3%)
Asian	49 (10%)	127 (13%)
Multi-racial/Other Minority	29 (6.1%)	57 (5.6%)
Religion		
Protestant	152 (32%)	325 (32%)
Catholic	98 (21%)	209 (21%)
Jewish	15 (3.2%)	44 (4.3%)
Muslim	5 (1.1%)	12 (1.2%)
Other	93 (20%)	229 (23%)
None	110 (23%)	196 (19%)

Table B1.2: Pearson's Chi-squared Test Results

	Chi-square	d Test	Statistics
	X-squared	df	p-value
Test Statistic	1.3901	3	0.7079

Note: A *p*-value greater than 0.05 suggests no significant association.

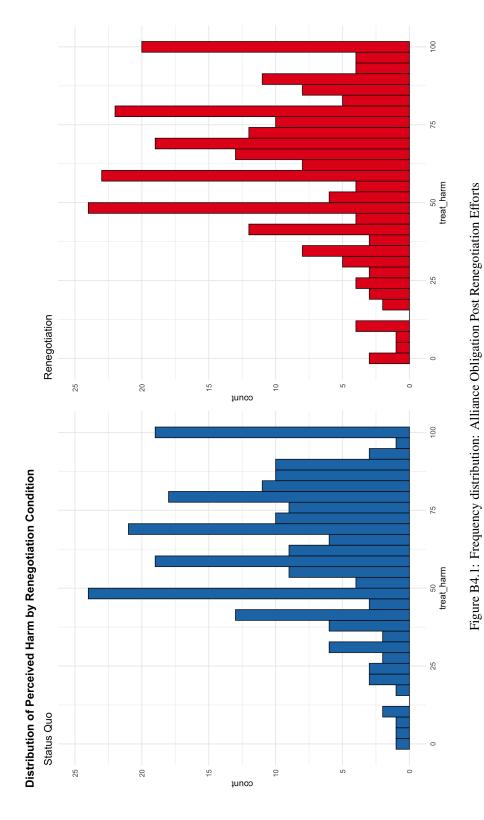


Table B5.1: Shapiro-Wilk Test p-Values for Normality Assumption

		Depend	lent variable:	
	Rep Harm	Commitment	Harm Change	Commit Change
Hi Thrt/Precise	1.46×10^{-3}	2.16×10^{-4}	2.67×10^{-4}	1.62×10^{-3}
Hi Thrt/Imprecise	2.65×10^{-2}	2.02×10^{-1}	1.58×10^{-4}	1.10×10^{-5}
Low Thrt/Precise	1.11×10^{-3}	1.74×10^{-3}	3.82×10^{-4}	2.31×10^{-5}
Low Thrt/Imprecise	3.67×10^{-2}	2.06×10^{-1}	1.32×10^{-1}	2.93×10^{-4}

Note: p-values below 0.05 indicate a violation of the normality assumption.

Table B5.2: Fligner-Killeen Test for Homogeneity of Variances

(a) Reputational Harm		(b) Commitment		
	Value		Value	
Chi-squared	2.335	Chi-squared	6.4699	
Degrees of Freedom (df)	3	Degrees of Freedom (df)	3	
<i>p</i> -value	0.5059	<i>p</i> -value	0.09086	
(c) Harm Chang	ge	(d) Commitment Cl	nange	
	Value		Value	
	3.476	Chi-squared	0.93486	
Chi-squared	J. 4 /0			
Chi-squared Degrees of Freedom (df)	3.470	Degrees of Freedom (df)	3	

Note: p-values below 0.05 indicate a violation of the homogeneity of variances assumption.

Table B5.3: Akaike Information Criterion (AIC) for Model Comparisons

Model	AIC (Simplified Model)	AIC (Full Model)
Reputational Harm	4284.122	4306.362
Change in Reputational Harm	4318.766	4337.007
Alliance Commitment	4257.044	4281.895
Change in Alliance Commitment	4117.953	4142.260
Renegotiation	4183.557	4186.380

Note: Lower AIC values indicate better model fit.

Table B6.1: Effect of Threat and Precision on Reputational Harm

	Dependent variable: treat_harm		
	Base Model	Full Model	Full Dataset
High Threat	4.660**	6.944**	6.151***
C	(2.108)	(2.932)	(2.086)
Precise	10.081***	13.271***	11.391***
	(2.112)	(3.060)	(2.075)
Independent		6.439*	0.394
1		(3.829)	(2.727)
Republican		4.635	1.047
•		(4.697)	(3.327)
Other		10.473	4.175
		(7.879)	(5.303)
Liberal		1.239	0.499
		(4.593)	(3.256)
Moderate		-2.725	-3.076
		(4.264)	(2.778)
Female		1.848	-1.214
		(2.347)	(1.574)
Other Gender		11.983	-2.253
		(9.392)	(6.759)
Black		5.139	1.609
		(4.803)	(3.420)
Hispanic		4.364	-0.278
-		(5.269)	(3.686)
Asian		-0.542	-1.044
		(3.988)	(2.449)
Multi-racial/Other		2.349	2.470
		(4.805)	(3.378)
Catholic		0.261	-0.442
		(3.070)	(2.115)
ewish		2.186	2.604
		(6.347)	(3.864)
Muslim		2.975	1.406
		(11.007)	(7.097)
Other		1.860	-0.864
		(3.307)	(2.136)
Vone		2.197	0.366
		(3.247)	(2.325)
High Threat × Precise		-5.876	-3.659
		(4.292)	(2.952)
Constant	57.563***	49.930***	57.575***
	(1.747)	(5.331)	(3.862)
Observations	473	473	1,015
Residual Std. Error	21.288 (df = 470)	22.605 (df = 453)	21.363 (df = 99

Note:

*p<0.1; **p<0.05; ***p<0.01

Table B7.1: Effect of Treatment on Reputational Harm

	Dependent variable: treat_l		harm
	Base Model	Full Model	Full Dataset
Low Threat/Precise	12.966***	13.271***	11.391***
	(3.000)	(3.060)	(2.075)
High Threat/Imprecise	7.303**	6.944**	6.151***
	(2.906)	(2.932)	(2.086)
High Threat/Precise	14.729***	14.339***	13.882***
	(2.919)	(2.949)	(2.075)
ndependent		6.439*	0.394
•		(3.829)	(2.727)
Republican		4.635	1.047
•		(4.697)	(3.327)
Other/Don't Know		10.473	4.175
		(7.879)	(5.303)
iberal		1.239	0.499
		(4.593)	(3.256)
/Ioderate		-2.725	-3.076
		(4.264)	(2.778)
emale		1.848	-1.214
		(2.347)	(1.574)
Other/Prefer not to disclose		11.983	$-2.25\hat{3}$
		(9.392)	(6.759)
lack		5.139	1.609
		(4.803)	(3.420)
lispanic		4.364	-0.278
1		(5.269)	(3.686)
sian		-0.542	-1.044
		(3.988)	(2.449)
Iulti-racial/Other Minority		2.349	2.470
		(4.805)	(3.378)
Catholic		0.261	-0.442
		(3.070)	(2.115)
ewish		2.186	2.604
		(6.347)	(3.864)
Muslim		2.975	1.406
		(11.007)	(7.097)
Other		1.860	-0.864
		(3.307)	(2.136)
Ione		2.197	0.366
		(3.247)	(2.325)
Constant	56.258***	49.930***	57.575***
	(1.988)	(5.331)	(3.862)
Observations	473	473	1,015
tesidual Std. Error	21.587 (df = 469)	22.605 (df = 453)	21.363 (df = 99)
esiduai Std. Effor	21.387 (u1 = 409)	22.003 (u1 = 433)	41.303 (ui = 99

Table B8.1: Effect of Threat and Precision on Alliance Commitment

	Dependent variable: treat_commit		
	Base Model	Full Model	Full Dataset
High Threat	1.801	5.127*	4.961**
	(2.117)	(2.890)	(2.038)
Precise	10.447***	15.136***	10.940***
	(2.121)	(3.016)	(2.027)
ndependent	` ′	2.587	-1.950
1		(3.774)	(2.664)
Republican		3.238	-1.634
1		(4.630)	(3.250)
Other		7.944	-8.402
		(7.767)	(5.181)
iberal		-1.109	-2.272
		(4.527)	(3.181)
Moderate		0.166	-2.255
		(4.203)	(2.714)
emale		-0.179	-2.681^{*}
		(2.313)	(1.538)
Other Gender		2.295	-5.109
		(9.258)	(6.603)
lack		2.248	-2.629
		(4.735)	(3.341)
lispanic		4.485	-1.282
		(5.193)	(3.601)
sian		-1.732	-2.350
		(3.931)	(2.393)
fulti-racial/Other		-0.301	4.232
Tutti Tuciai/Otilci		(4.736)	(3.301)
atholic		-3.839	-1.053
actione		(3.026)	(2.067)
ewish		4.256	6.508*
CW1311		(6.257)	(3.775)
Muslim		-6.763	-7.772
Iusiiiii		(10.850)	(6.933)
Other Religion		2.386	2.644
ther rengion		(3.260)	(2.087)
lone		1.484	2.020
TOTIC		(3.201)	(2.271)
ligh Threat × Precise		-8.043*	-4.067
ngn Tincat A FIECISE		(4.230)	(2.884)
Constant	58.954***	55.339***	61.375***
Onstant	(1.754)	(5.255)	(3.773)
N	· · · · · ·	· , , ,	`
Observations	473	473	1,015
esidual Std. Error	21.877 (df = 470)	23.031 (df = 453)	22.240 (df = 99)

Note:

*p<0.1; **p<0.05; ***p<0.01

Table B9.1: Effect of Treatment on Alliance Commitment

	Depen	dent variable: treat_c	commit
	Base Model	Full Model	Full Dataset
Low Threat/Precise	14.027***	15.136***	10.940***
	(2.958)	(3.016)	(2.027)
High Threat/Imprecise	5.120*	5.127*	4.961**
	(2.865)	(2.890)	(2.038)
High Threat/Precise	11.893***	12.219***	11.834***
	(2.878)	(2.907)	(2.027)
Independent		2.587	-1.950
•		(3.774)	(2.664)
Republican		3.238	-1.634
_		(4.630)	(3.250)
Other/Don't Know		7.944	-8.402
		(7.767)	(5.181)
Liberal		-1.109	-2.272
		(4.527)	(3.181)
Moderate		0.166	-2.255
		(4.203)	(2.714)
Female		-0.179	-2.681^*
		(2.313)	(1.538)
Other/Prefer not to disclose		2.295	-5.109
		(9.258)	(6.603)
Black		2.248	-2.629
		(4.735)	(3.341)
Hispanic		4.485	-1.282
		(5.193)	(3.601)
Asian		-1.732	-2.350
		(3.931)	(2.393)
Multi-racial/Other Minority		-0.301	4.232
		(4.736)	(3.301)
Catholic		-3.839	-1.053
		(3.026)	(2.067)
fewish		4.256	6.508*
		(6.257)	(3.775)
Muslim		-6.763	-7.772
		(10.850)	(6.933)
Other		2.386	2.644
_		(3.260)	(2.087)
None		1.484	2.020
~		(3.201)	(2.271)
Constant	57.318***	55.339***	61.375***
	(1.961)	(5.255)	(3.773)
Observations	473	473	1,015
Residual Std. Error	22.548 (df = 469)	23.031 (df = 453)	22.240 (df = 99)

Table B10.1: Effect of Renegotiation Pressure on Agreement

	Dependent variable: renegotiate_agreement		
	Base Model	Full Model	Full Dataset
Renegotiation Pressure	-5.226***	-5.438***	-5.697***
_	(1.985)	(1.983)	(1.341)
Low Threat/Precise	5.979**	6.442**	5.903***
	(2.811)	(2.834)	(1.880)
High Threat/Imprecise	0.084	-0.118	0.928
	(2.723)	(2.715)	(1.891)
High Threat/Precise	3.153	3.202	3.102*
	(2.735)	(2.732)	(1.883)
Independent		1.172	-1.695
•		(3.550)	(2.477)
Republican		-2.403	-0.065
-		(4.350)	(3.016)
Other/Don't Know		-14.172*	-6.850
		(7.297)	(4.808)
Liberal		-8.463**	-2.346
		(4.255)	(2.952)
Moderate		-7.326^{*}	-1.126
		(3.949)	(2.518)
Female		$-1.81\acute{5}$	-3.955***
		(2.174)	(1.427)
Other/Prefer not to disclose		3.116	-9.287
		(8.699)	(6.128)
Black		-4.835	-3.996
		(4.456)	(3.101)
Hispanic		10.004**	2.022
1		(4.897)	(3.345)
Asian		-4.182	-5.422 ^{**}
		(3.693)	(2.219)
Multi-racial/Other Minority		8.567*	6.217**
•		(4.452)	(3.062)
Catholic		-3.538	-1.168
		(2.843)	(1.919)
Jewish		-0.207	0.402
		(5.884)	(3.505)
Muslim		-5.031	-4.048
		(10.197)	(6.432)
Other		2.773	0.414
		(3.083)	(1.944)
None		1.982	0.413
		(3.007)	(2.107)
Constant	61.939***	68.089***	68.153***
	(2.139)	(5.096)	(3.590)
Observations	473	473	1,014
Residual Std. Error	19.731 (df = 468)	19.475 (df = 452)	20.279 (df = 99)
Residual Stu. EHUI	17.731 (u1 – 400)	19.473 (u1 – 432)	20.219 (u1 – 99)

Table B11.1: Effect of Scenario Components on Change in Agreement

Dependent variable:		
Reputational Harm	Alliance Commitment	
(1)	(2)	
4.633**	2.746*	
(1.894)	(1.527)	
9.900***	8.902***	
(1.898)	(1.531)	
-14.811***	-10.946***	
(1.570)	(1.266)	
473	473	
19.011 (df = 470)	15.124 (df = 470)	
	Reputational Harm (1) 4.633** (1.894) 9.900*** (1.898) -14.811*** (1.570) 473	

APPENDIX C

SUPPLEMENTARY MATERIAL FOR CHAPTER 3

Table C1.1: General Demographics (Full Sample vs. Trimmed Sample)

Characteristic	Full	Trimmed
	(N = 1,015)	(N = 642)
Gender		
Male	492 (48%)	323 (50%)
Female	523 (51%)	319 (50%)
Age Group	·	` ´
18–24	74 (7.3%)	46 (7.2%)
25–34	222 (22%)	139 (22%)
35–44	172 (17%)	110 (17%)
45–54	147 (14%)	86 (13%)
55–64	275 (27%)	172 (27%)
65+	125 (12%)	89 (14%)
Prior Military Experience	, ,	,
Yes	454 (45%)	286 (45%)
No	561 (55%)	356 (55%)
Province	` /	` /
Seoul Metropolitan City	339 (33%)	217 (34%)
Gyeonggi-do	266 (26%)	166 (26%)
Gyeongsang-do	122 (12%)	77 (12%)
Chungcheong Province	78 (7.8%)	57 (8.9%)
Busan Metropolitan City	73 (7.2%)	42 (6.5%)
Jeolla-do	61 (6.0%)	33 (5.1%)
Gangwon-do	32 (3.1%)	22 (3.4%)
Jeju Special Self-Governing Province	15 (1.5%)	11 (1.7%)
Other	29 (2.9%)	17 (2.6%)

¹ n (%)

Table C1.2: Chi-square Results: Differences in Demographic & Treatment After Trimming

	χ^2	df	p-value
Treatment Group	2.97	2	0.2265
Age Group	4.99	5	0.4164
Gender	2.17	1	0.1409
Province	7.97	8	0.4363
Military Status	0.01	1	0.9311

Note: Results from Pearson's chi-square tests comparing the distribution of each variable before and after trimming. No significant differences observed at the p < 0.05 level.

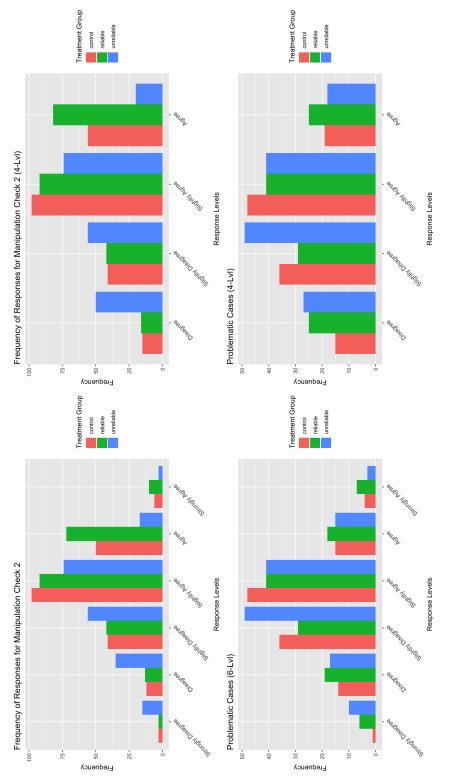


Figure C2.1: Response distribution for Manipulation Check: The new leader of Country A is a reliable leader.

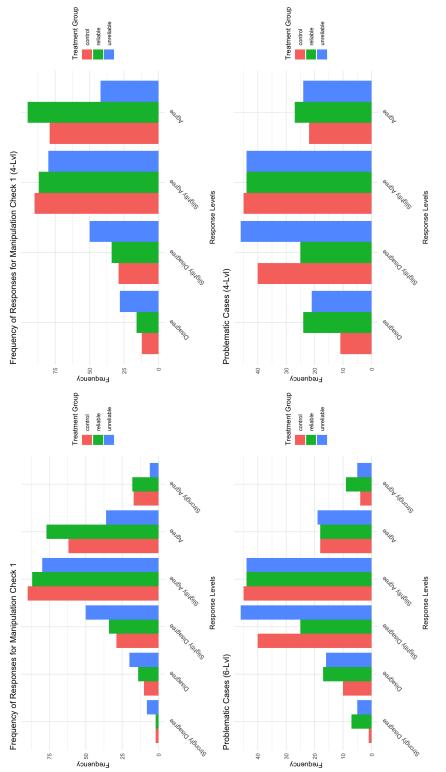


Figure C3.1: Response distribution for Country Trust: Country A is a reliable alliance partner.

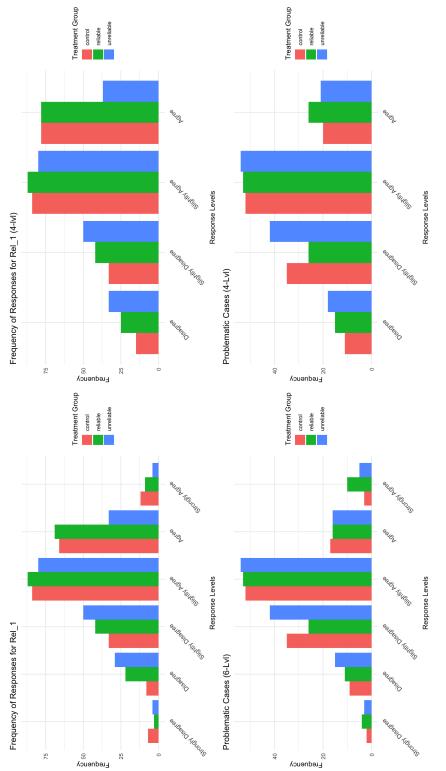


Figure C4.1: Response distribution for Alliance Trust: Country B can trust Country A to come to its aid.

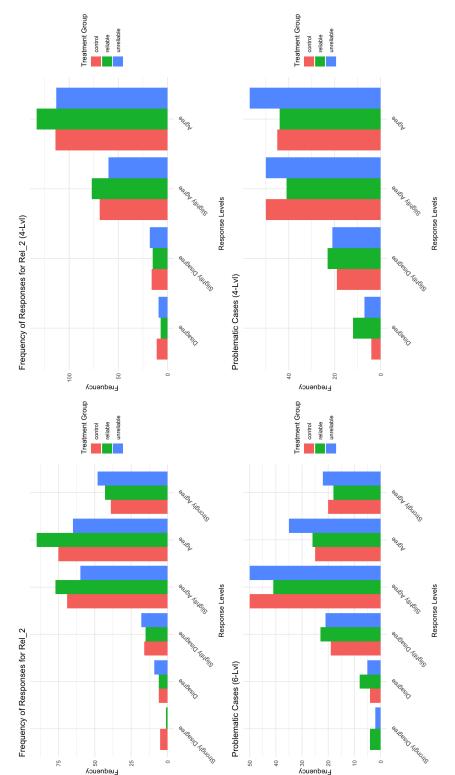


Figure C5.1: Response distribution for Military investment: Country B should build up its own military capability.

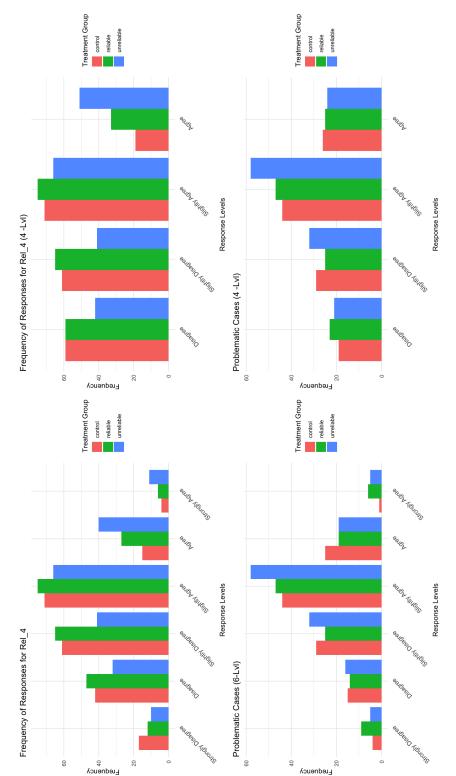


Figure C6.1: Response distribution for Alliance integration: Country B should decrease military integration with Country A.

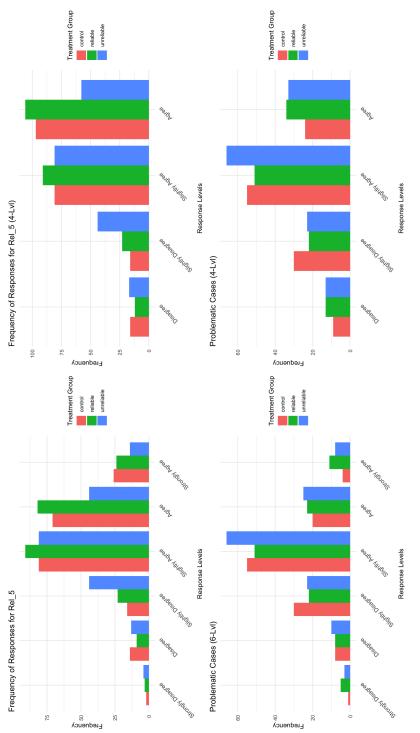


Figure C7.1: Response distribution for Alliance security: The alliance keeps Country B secure.

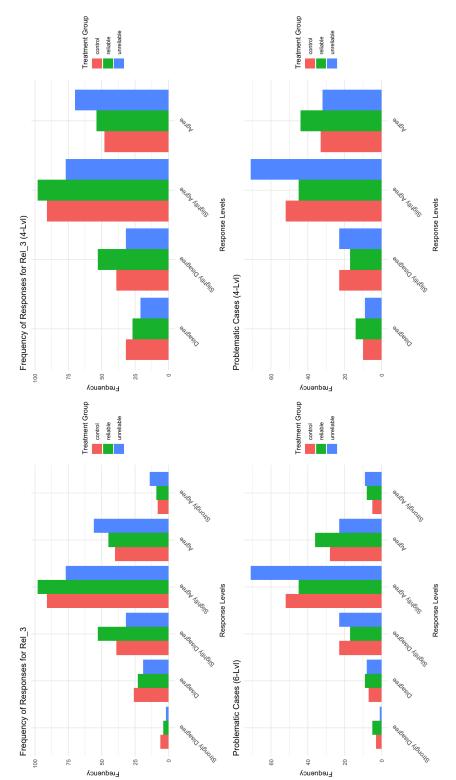


Figure C8.1: Response distribution for Renegotiation: Country B should renegotiate its security alliance with Country A.

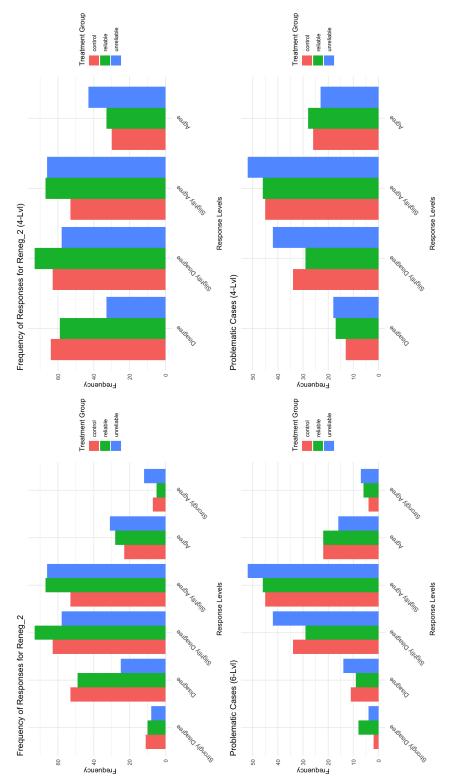


Figure C9.1: Response distribution for Basing Restrictions: Country B restricted Country A's military presence.



Figure C10.1: Response distribution for Access Restrictions: Country B restricted Country A's access to land, air, and sea.

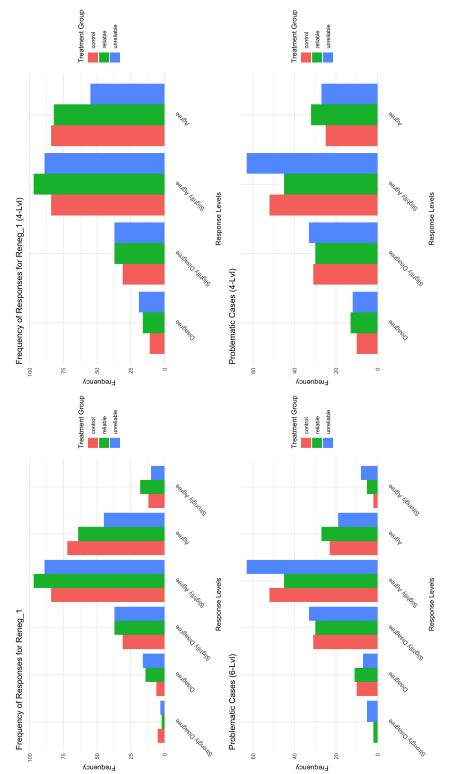


Figure C11.1: Response distribution for Geography: The alliance defined the geographic area of responsibility.

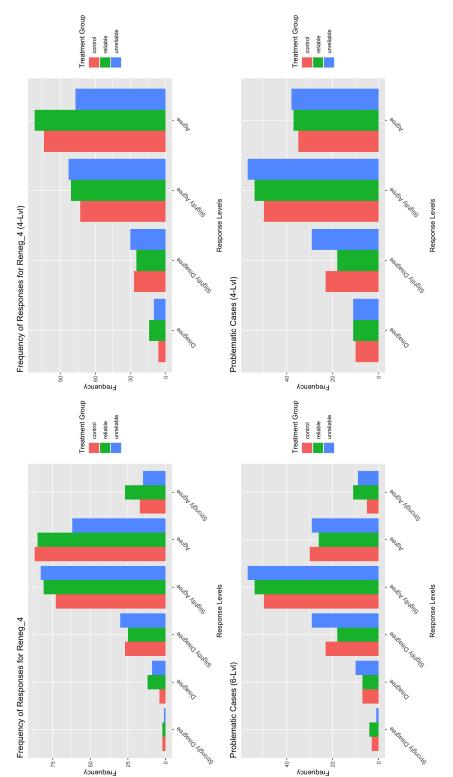


Figure C12.1: Response distribution for Support: The agreement clarified when Country A must support Country B.

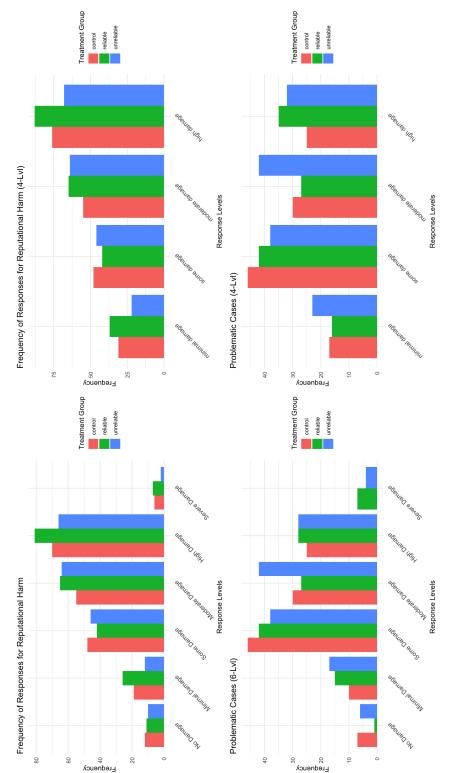


Figure C13.1: Response distribution for Rep_Harm: Perceived reputational harm from not supporting Country B.

Table C14.1: Ordinal Logistic Regression Results: Manipulation Check

			Depe	ndent Varia	Dependent Variable: Level of Agreement	Agreement		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)
	9-Tvl	9-Lvl	4-Lvl	4-Lvl	6-Lvl (Full)	$6\text{-}Lvl\left(Full\right) \;\; 6\text{-}Lvl\left(Full\right) \;\; 4\text{-}Lvl\left(Full\right) \;\; 4\text{-}Lvl\left(Full\right)$	4-Lvl (Full)	4-Lvl (Full)
Reliable	0.260	0.279	0.259	0.284	0.164	0.175	0.162	0.176
	(0.175)	(0.176)	(0.176)	(0.177)	(0.140)	(0.140)	(0.141)	(0.141)
Unreliable	-1.162^{***}	-1.193***	-1.161^{***}	-1.200***	-0.881^{***}	-0.900***	-0.872***	-0.895***
	(0.184)	(0.185)	(0.185)	(0.186)	(0.142)	(0.142)	(0.142)	(0.143)
Female		-0.487***		-0.488***		-0.380^{***}		-0.370^{***}
		(0.162)		(0.164)		(0.127)		(0.128)
Age: 18–24		1.299***		1.376***		0.784***		0.810^{***}
		(0.320)		(0.331)		(0.243)		(0.246)
Age: 25–34		0.567***		0.546**		0.575***		0.556***
		(0.212)		(0.213)		(0.167)		(0.168)
Age: 35-44		0.732***		0.733***		0.636**		0.643***
		(0.244)		(0.243)		(0.187)		(0.188)
Age: 45–54		0.703***		0.717***		0.521***		0.534^{***}
		(0.253)		(0.255)		(0.196)		(0.197)
Age: 65+		0.559**		0.601**		0.568***		0.619***
		(0.243)		(0.244)		(0.199)		(0.201)
Observations	642	642	642	642	1,015	1,015	1,015	1,015

Note: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01

Table C15.1: Ordinal Logistic Regression Results: Country Trust

			Дере	ndent Varia	Dependent Variable: Level of Agreement	Agreement		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)
	6-Lvl	9-Lvl	4-Lvl	4-Lvl	6-Lvl (Full)	6-Lvl (Full) 6-Lvl (Full) 4-Lvl (Full) 4-Lvl (Full)	4-Lvl (Full)	4-Lvl (Full)
Reliable	0.031	0.043	0.045	0.075	0.053	0.064	0.051	0.071
	(0.174)	(0.175)	(0.177)	(0.178)	(0.139)	(0.140)	(0.141)	(0.141)
Unreliable	-0.889***	-0.930^{***}	-0.873***	-0.903***	-0.636***	-0.665***	-0.630^{***}	-0.656***
	(0.182)	(0.184)	(0.183)	(0.185)	(0.140)	(0.141)	(0.141)	(0.142)
Female		-0.618***		-0.585***		-0.432^{***}		-0.415^{***}
		(0.163)		(0.165)		(0.127)		(0.128)
Age: 18–24		0.807**		0.746**		0.285		0.260
		(0.328)		(0.327)		(0.246)		(0.245)
Age: 25-34		0.568***		0.565***		0.461***		0.453***
		(0.214)		(0.215)		(0.167)		(0.168)
Age: 35-44		0.841***		0.848***		0.555***		0.566***
		(0.243)		(0.246)		(0.186)		(0.188)
Age: 45-54		0.325		0.353		0.110		0.134
		(0.249)		(0.252)		(0.193)		(0.194)
Age: 65+		0.780***		0.837***		0.657***		0.704***
		(0.242)		(0.249)		(0.200)		(0.205)
Observations	642	642	642	642	1,015	1,015	1,015	1,015
								Ш

Note: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01

Table C16.1: Ordinal Logistic Regression Results: Alliance Trust

			<i>Deper</i>	ıdent Varia	Dependent Variable: Level of Agreement	Agreement		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)
	9-Tvl	9-Lvl	4-Lvl	4-Lvl	6-Lvl (Full)	6-Lvl $(Full)$	6-Lvl (Full) 6-Lvl (Full) 4-Lvl (Full) 4-Lvl (Full)	4-Lvl (Full)
Reliable	-0.241	-0.258	-0.236	-0.252	-0.070	-0.080	-0.084	-0.093
	(0.174)	(0.175)	(0.176)	(0.177)	(0.140)	(0.141)	(0.141)	(0.142)
Unreliable	-0.884^{***}	-0.891***	-0.889***	-0.894***	-0.634***	-0.639***	-0.648***	-0.652^{***}
	(0.181)	(0.182)	(0.182)	(0.183)	(0.141)	(0.142)	(0.142)	(0.142)
Female		-0.074		-0.091		-0.052		-0.048
		(0.161)		(0.162)		(0.127)		(0.127)
Age: 18–24		0.210		0.250		0.190		0.219
		(0.320)		(0.323)		(0.243)		(0.246)
Age: 25-34		0.205		0.194		0.229		0.214
		(0.211)		(0.211)		(0.168)		(0.168)
Age: 35-44		0.651***		0.646***		0.554***		0.559***
		(0.239)		(0.241)		(0.187)		(0.188)
Age: 45–54		0.182		0.186		0.180		0.165
		(0.250)		(0.253)		(0.194)		(0.196)
Age: 65+		0.165		0.159		0.369^{*}		0.384*
		(0.238)		(0.241)		(0.197)		(0.199)
Observations	642	642	642	642	1,015	1,015	1,015	1,015

Note: Standard errors in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01

Table C17.1: Ordinal Logistic Regression Results: Reputational Harm

			Dep	endent Va	Dependent Variable: Level of Agreement	l of Agreemer	ut	
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)
	6-Lvl	6-Lvl	4-Lv l	4-Lv l	6-Lvl $(Full)$	6-Lv l (Fu ll)	4-Lvl (Full)	$6\text{-}Lvl\left(Full\right) \ 6\text{-}Lvl\left(Full\right) \ 4\text{-}Lvl\left(Full\right) \ 4\text{-}Lvl\left(Full\right)$
Reliable	0.089	0.105	0.027	0.033	0.183	0.187	0.122	0.120
	(0.173)	(0.174)	(0.183) (0.184)	(0.184)	(0.139)	(0.139)	(0.148)	(0.149)
Unreliable	0.033	0.005	0.019	-0.016	0.084	0.049	0.001	-0.037
	(0.176)	(0.177)	(0.187)	(0.188)	(0.138)	(0.139)	(0.149)	(0.150)
Female		-0.318**		-0.314*		-0.266**		-0.215
		(0.158)		(0.169)		(0.125)		(0.134)
Age: 18–24		0.072		-0.104		-0.183		-0.328
		(0.300)		(0.322)		(0.234)		(0.255)
Age: 25-34		0.542**		0.564**		0.414^{**}		0.392^{**}
		(0.211)		(0.224)		(0.167)		(0.179)
Age: 35-44		0.031		0.079		0.114		0.076
		(0.233)		(0.250)		(0.184)		(0.199)
Age: 45–54		0.118		0.151		0.078		0.141
		(0.248)		(0.264)		(0.192)		(0.207)
Age: 65+		0.329		0.300		0.339*		0.309
		(0.241)		(0.253)		(0.198)		(0.211)
Observations	642	642	642	642	1,015	1,015	1,015	1,015

Note: Standard errors in parentheses. ${}^*p < 0.1; {}^{**}p < 0.05; {}^{***}p < 0.01$

Table C18.1: Ordinal Logistic Regression Results: Military Investment

			Det	endent Va	Dependent Variable: Level of Agreement	of Agreemen	ű	
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)
	9-Lvl	6-Lvl	4-Lvl	4-Lvl	6-Lvl (Full)	6-Lvl (Full)	$6-Lvl\left(Full\right) \;\; 6-Lvl\left(Full\right) \;\; 4-Lvl\left(Full\right) \;\; 4-Lvl\left(Full\right)$	4-Lvl (Full)
Reliable	0.121	0.145	0.162	0.184	0.010	0.024	0.034	0.055
	(0.171)	(0.172)	(0.185)	(0.187)	(0.138)	(0.138)	(0.145)	(0.146)
Unreliable	0.150	0.139	0.067	0.056	0.079	0.064	0.048	0.039
	(0.181)	(0.182)	(0.193)	(0.194)	(0.140)	(0.141)	(0.147)	(0.148)
Female		-0.110		-0.091		0.001		0.073
		(0.162)		(0.173)		(0.126)		(0.133)
Age: 18–24		-0.308		-0.429		-0.380		-0.476^{*}
		(0.310)		(0.322)		(0.236)		(0.244)
Age: 25-34		-0.464**		-0.503**		-0.476***		-0.556***
		(0.213)		(0.226)		(0.169)		(0.177)
Age: 35-44		-0.184		-0.172		-0.359*		-0.432^{**}
		(0.240)		(0.259)		(0.186)		(0.196)
Age: 45-54		-0.218		-0.291		-0.194		-0.334
		(0.250)		(0.266)		(0.195)		(0.204)
Age: 65+		0.586**		0.501*		0.596***		0.555**
		(0.243)		(0.282)		(0.197)		(0.225)
Observations	642	642	642	642	1,015	1,015	1,015	1,015

Note: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01

Table C19.1: Ordinal Logistic Regression Results: Alliance Integration

			Dep	endent Va	Dependent Variable: Level of Agreement	of Agreemen.	<i>t</i>	
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)
	6-Lvl	6-Lvl	4-Lvl	4-Lvl	6-Lvl (Full)	6-Lvl (Full) 6-Lvl (Full) 4-Lvl (Full) 4-Lvl (Full)	4-Lvl (Full)	4-Lvl (Full)
Reliable	0.204	0.194	0.188	0.173	0.106	0.094	0.098	0.083
	(0.168)	(0.169)	(0.170)	(0.170)	(0.137)	(0.137)	(0.138)	(0.138)
Unreliable	0.705***	0.727***	***869.0	0.718***	0.447***	0.458***	0.438***	0.449***
	(0.180)	(0.181)	(0.181)	(0.181)	(0.140)	(0.140)	(0.141)	(0.141)
Female		0.192		0.181		0.235*		0.225^{*}
		(0.156)		(0.157)		(0.124)		(0.125)
Age: 18–24		090.0		0.047		-0.00002		-0.009
		(0.308)		(0.307)		(0.238)		(0.238)
Age: 25–34		-0.285		-0.293		-0.215		-0.211
		(0.208)		(0.209)		(0.165)		(0.166)
Age: 35–44		-0.025		-0.032		-0.090		-0.103
		(0.236)		(0.236)		(0.186)		(0.186)
Age: 45–54		-0.212		-0.261		-0.027		-0.046
		(0.244)		(0.247)		(0.190)		(0.192)
Age: 65+		-0.164		-0.208		-0.213		-0.245
		(0.234)		(0.239)		(0.194)		(0.197)
Observations	642	642	642	642	1,015	1,015	1,015	1,015

Note: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01

Table C20.1: Ordinal Logistic Regression Results: Alliance Security

			Deper	ıdent Varia	Dependent Variable: Level of Agreement	Agreement		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)
	9-Lvl	6-Lvl	4-Lvl	4-Lvl	6-Lvl (Full)	$6\text{-}Lvl\left(Full\right) \;\; 6\text{-}Lvl\left(Full\right) \;\; 4\text{-}Lvl\left(Full\right) \;\; 4\text{-}Lvl\left(Full\right)$	4-Lvl (Full)	4-Lvl (Full)
Reliable	-0.029	-0.020	0.001	0.013	0.110	0.119	0.117	0.129
	(0.173)	(0.174)	(0.179)	(0.181)	(0.140)	(0.141)	(0.143)	(0.143)
Unreliable	-0.765***	-0.752***	-0.766***	-0.751^{***}	-0.402***	-0.409***	-0.405***	-0.410^{***}
	(0.184)	(0.184)	(0.186)	(0.187)	(0.142)	(0.143)	(0.143)	(0.144)
Female		-0.062		-0.002		-0.055		-0.005
		(0.162)		(0.166)		(0.127)		(0.129)
Age: 18–24		0.654^{**}		0.618*		0.341		0.316
		(0.320)		(0.333)		(0.242)		(0.246)
Age: 25–34		0.655***		0.610^{***}		0.549***		0.509***
		(0.214)		(0.220)		(0.170)		(0.172)
Age: 35-44		0.567**		0.455*		0.439**		0.389**
		(0.239)		(0.243)		(0.186)		(0.189)
Age: 45–54		0.073		0.032		0.059		0.025
		(0.247)		(0.253)		(0.195)		(0.197)
Age: 65+		0.340		0.280		0.555***		0.530^{***}
		(0.242)		(0.246)		(0.200)		(0.204)
Observations	642	642	642	642	1,015	1,015	1,015	1,015

Note: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01

Table C21.1: Ordinal Logistic Regression Results: Renegotiation

			Dep	endent Va	Dependent Variable: Level of Agreement	of Agreemen	<i>t</i>	
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)
	9-Tvl	9-Tvl	4-Lvl	4-Lvl	6-Lv l (Full)	$6\text{-}Lvl\left(Full\right) \;\; 6\text{-}Lvl\left(Full\right) \;\; 4\text{-}Lvl\left(Full\right) \;\; 4\text{-}Lvl\left(Full\right)$	4-Lvl (Full)	4-Lvl (Full)
Reliable	0.039	0.031	0.036	0.023	0.090	0.090	0.089	0.089
	(0.172)	(0.173)	(0.173)	(0.174)	(0.140)	(0.140)	(0.141)	(0.141)
Unreliable	0.495***	0.534***	0.487***	0.518***	0.322**	0.332**	0.303**	0.316^{**}
	(0.182)	(0.182)	(0.183)	(0.184)	(0.142)	(0.142)	(0.142)	(0.143)
Female		0.268*		0.250		0.243^{*}		0.243*
		(0.162)		(0.163)		(0.128)		(0.129)
Age: 18–24		0.352		0.280		0.063		0.052
		(0.338)		(0.339)		(0.261)		(0.262)
Age: 25-34		-0.441*		-0.469*		-0.389**		-0.393^{**}
		(0.247)		(0.249)		(0.195)		(0.196)
Age: 35-44		0.081		0.093		-0.121		-0.103
		(0.254)		(0.257)		(0.201)		(0.203)
Age: 55–64		0.053		0.048		-0.067		-0.056
		(0.246)		(0.248)		(0.194)		(0.196)
Age: 65+		-0.113		-0.143		0.028		0.043
		(0.289)		(0.291)		(0.234)		(0.237)
Observations	642	642	642	642	1,015	1,015	1,015	1,015

Note: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01

Table C22.1: Ordinal Logistic Regression Results: Basing Restrictions

			Dep	endent Va	Dependent Variable: Level of Agreement	of Agreemeni	•	
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)
	9-Tvl	6-Lvl	4-Lvl	4-Lvl	6-Lvl (Full)	6-Lvl (Full) 6-Lvl (Full) 4-Lvl (Full)	4-Lv l (Fu ll)	4-Lvl (Full)
Reliable	0.157	0.137	0.165	0.143	0.073	0.064	0.087	0.076
	(0.171)	(0.172)	(0.172)	(0.173)	(0.138)	(0.139)	(0.139)	(0.140)
Unreliable	0.638***	0.670***	0.645***	0.676***	0.333**	0.354^{**}	0.334**	0.357**
	(0.179)	(0.180)	(0.180)	(0.180)	(0.139)	(0.140)	(0.140)	(0.141)
Female		0.426***		0.417***		0.428***		0.431***
		(0.160)		(0.161)		(0.126)		(0.126)
Age: 18-24		0.214		0.147		0.192		0.152
		(0.325)		(0.315)		(0.246)		(0.242)
Age: 25-34		-0.136		-0.109		-0.071		-0.055
		(0.210)		(0.211)		(0.166)		(0.166)
Age: 35-44		0.099		0.137		-0.017		-0.004
		(0.239)		(0.240)		(0.185)		(0.186)
Age: 45–54		0.192		0.194		0.340^{*}		0.353*
		(0.240)		(0.243)		(0.189)		(0.190)
Age: 65+		-0.349		-0.395*		-0.360^{*}		-0.392**
		(0.231)		(0.237)		(0.193)		(0.197)
Observations	642	642	642	642	1,015	1,015	1,015	1,015

Note: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01

Table C23.1: Ordinal Logistic Regression Results: Access Restrictions

			Dep_{ν}	endent Vai	Dependent Variable: Level of Agreement	of Agreement		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)
	9-Tvl	6-Lvl	4-Lvl	4-Lvl	6-Lvl (Full)	6-Lvl (Full) 6-Lvl (Full) 4-Lvl (Full) 4-Lvl (Full)	4-Lvl (Full)	4-Lvl (Full)
Reliable	0.195	0.176	0.230	0.208	0.205	0.188	0.223	0.205
	(0.171)	(0.172)	(0.173)	(0.175)	(0.138)	(0.138)	(0.139)	(0.140)
Unreliable	0.513***	0.568***	0.507***	0.564***	0.248*	0.277**	0.245^{*}	0.276^{*}
	(0.178)	(0.179)	(0.180)	(0.182)	(0.139)	(0.140)	(0.140)	(0.141)
Female		0.437***		0.435***		0.288**		0.282**
		(0.160)		(0.160)		(0.126)		(0.127)
Age: 18-24		0.782^{**}		0.747**		0.665***		0.656***
		(0.323)		(0.319)		(0.247)		(0.246)
Age: 25-34		0.019		0.047		0.035		0.048
		(0.209)		(0.211)		(0.166)		(0.166)
Age: 35-44		0.261		0.299		0.145		0.176
		(0.237)		(0.238)		(0.185)		(0.186)
Age: 45–54		0.502**		0.544**		0.498***		0.530^{***}
		(0.242)		(0.244)		(0.188)		(0.189)
Age: 65+		-0.532**		-0.528**		-0.565***		-0.560^{***}
	(0.235)		(0.243)		(0.197)		(0.201)	
Observations	642	642	642	642	1,015	1,015	1,015	1,015

Note: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01

Table C24.1: Ordinal Logistic Regression Results: Geographic Precision

			Denez	dent Varia	Denendent Variable: Level of Aoreement	Aoreement		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)
	6-Lvl	6-Lvl	4-Lv l	4-Lv l	6-Lv l (Fu ll)	6-Lvl (Full)	6-Lvl (Full) 6-Lvl (Full) 4-Lvl (Full) 4-Lvl (Full)	4-Lvl (Full)
Reliable	-0.149	-0.140	-0.194	-0.190	-0.049	-0.038	-0.078	690.0-
	(0.174)	(0.175)	(0.177)	(0.178)	(0.140)	(0.141)	(0.142)	(0.143)
Unreliable	-0.487***	-0.492***	-0.521^{***}	-0.528***	-0.309**	-0.318**	-0.339**	-0.348**
	(0.181)	(0.181)	(0.183)	(0.184)	(0.141)	(0.142)	(0.142)	(0.143)
Female		-0.059		-0.082		-0.045		-0.051
		(0.163)		(0.164)		(0.128)		(0.129)
Age: 18–24		0.112		0.012		-0.024		-0.083
		(0.329)		(0.327)		(0.250)		(0.250)
Age: 25–34		0.031		-0.010		-0.048		-0.082
		(0.215)		(0.217)		(0.170)		(0.171)
Age: 35-44		0.324		0.328		0.149		0.150
		(0.240)		(0.245)		(0.187)		(0.190)
Age: 45–54		-0.039		-0.101		0.030		-0.009
		(0.250)		(0.251)		(0.193)		(0.194)
Age: 65+		0.379		0.368		0.391^{**}		0.386*
		(0.238)		(0.244)		(0.196)		(0.200)
Observations	642	642	642	642	1,015	1,015	1,015	1,015

Note: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01

Table C25.1: Ordinal Logistic Regression Results: Activation Precision

			Depe	ndent Varı	Dependent Variable: Level of Agreement	f Agreement		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)
	9-Tvl	6-Lvl	4-Lvl	4-Lvl	6-Lvl (Full)	6-Lvl (Full) 6-Lvl (Full) 4-Lvl (Full) 4-Lvl (Full)	4-Lvl (Full)	4-Lvl (Full)
Reliable	-0.007	-0.004	-0.075	-0.074	0.056	990.0	-0.002	0.010
	(0.175)	(0.175)	(0.181)	(0.182)	(0.140)	(0.141)	(0.143)	(0.144)
Unreliable	-0.357**	-0.366**	-0.403**	-0.416**	-0.255*	-0.268*	-0.295**	-0.310**
	(0.180)	(0.180)	(0.185)	(0.185)	(0.141)	(0.141)	(0.144)	(0.144)
Female		-0.113		-0.085		-0.219*		-0.204
		(0.163)		(0.166)		(0.127)		(0.130)
Age: 18-24		0.050		-0.210		-0.060		-0.158
		(0.323)		(0.315)		(0.245)		(0.243)
Age: 25–34		0.098		-0.030		0.192		0.123
		(0.215)		(0.219)		(0.169)		(0.171)
Age: 35-44		0.255		0.236		0.224		0.215
		(0.240)		(0.250)		(0.187)		(0.192)
Age: 45–54		0.114		-0.007		0.288		0.246
		(0.250)		(0.256)		(0.194)		(0.199)
Age: 65+		0.345		0.305		0.404^{**}		0.388*
		(0.238)		(0.251)		(0.195)		(0.202)
Observations	642	642	642	642	1,015	1,015	1,015	1,015

Note: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01

Table C26.1: Generalized Ordered Logit Model for Alliance Integration

Variable	Threshold 1	Threshold 2	Threshold 3		
Reliable	-0.136	-0.150	-0.511		
	(0.215)	(0.192)	(0.305)		
Unreliable	-0.385	-0.631**	-1.236***		
	(0.232)	(0.200)	(0.290)		
Cutpoint: Disagree vs Higher	-0.940*** (0.154)				
Cutpoint: Slightly Disagree vs Higher	0.288* (0.139)				
Cutpoint: Slightly Agree vs Agree	2.308*** (0.241)				
Observations	1920				

Note: Standard errors in parentheses. *p < 0.05; **p < 0.01; ***p < 0.001; *p < 0.1

Table C26.2: Generalized Ordered Logit Model for Alliance Security

Variable	Threshold 1	Threshold 2	Threshold 3		
Reliable	-0.413	-0.012	0.020		
	(0.394)	(0.266)	(0.191)		
Unreliable	0.119	0.892***	0.743***		
	(0.363)	(0.246)	(0.208)		
Cutpoint: Disagree vs Higher	-2.495*** (0.260)				
Cutpoint: Slightly Disagree vs Higher	-1.716*** (0.192)				
Cutpoint: Slightly Agree vs Agree	0.153 (0.138)				
Observations	1920				

Note: Standard errors in parentheses. *p < 0.05; **p < 0.01; ***p < 0.001

Table C27.1: AIC Comparison Across Model Types

Model	6-Lvl	6-Lvl (C)	4-Lvl	4-Lvl (C)
Trust				
Country Trust	1855.881	1839.190	1584.751	1569.129
Alliance Trust	1870.265	1874.152	1645.915	1650.136
Self-Reliance				
Military Investment	1820.807	1811.325	1317.303	1312.223
Alliance Integration	2020.910	2028.160	1735.289	1742.353
Security & Renegotiation	i			
Alliance Security	1846.852	1844.537	1506.633	1506.712
Renegotiation	1897.506	1895.682	1663.977	1662.182
Institutionalization				
Basing Restriction	2011.753	2004.333	1744.331	1736.530
Access Restriction	2007.111	1978.240	1710.238	1681.538
Alliance Precision				
Geographic Precision	1825.418	1832.416	1563.550	1569.672
Activation Precision	1783.514	1792.468	1457.881	1465.629
Reputational Harm				
Reputational Harm	1951.125	1948.532	1717.707	1715.861

Note: Lower AIC values indicate better model fit. Models identified with (C) include controls for gender and age level.