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ABSTRACT 

This dissertation consists of three essays on the price behaviors of agricultural commodity 

markets.  It investigates price and volatility dynamics in commodity markets from three aspects: 

volatility spillover, asymmetric price transmission, and extreme price comovements.  The first 

essay studies volatility transmission between U.S. soybeans and Chinese soybean end products.  

A bidirectional volatility spillover is found across the two countries, but its effect has decreased 

since 2009.  In addition, the bilateral trade dispute has had a smaller impact on price volatility in 

futures markets for the soybean complex across countries compared to the 2008 global financial 

crisis.  The second essay applies a multivariate quantile framework to investigate asymmetric 

price responses in a joint production process.  It examines whether output price responses vary 

with the price levels of other jointly produced goods and under which market conditions 

asymmetric price transmission might occur.  The results show prices of end products respond 

more to input price increases rather than decreases when their market is bullish and the other 

product’s market is bearish.  The third essay studies the relationship between information 

releases and extreme price movements in related agricultural commodities, including soybean, 

corn, and wheat.  The study examines whether the release of USDA reports has explanatory 



power for these coexceedances (i.e., more than one market simultaneously suffers from extreme 

events).  After controlling for exposure to other risk factors, most reports increase the probability 

of return and volatility coexceedances, especially in crop markets. 
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Multivariate quantile, Quantile cointegration, Spillover effects, Volatility 
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CHAPTER 1  

                                                         INTRODUCTION 

Agricultural commodities refer to primary agricultural products in their original forms or with 

only basic processing, such as soybean, soybean meal, and corn.  They are raw materials that 

support a range of farm-related industries essential for human survival and economic growth, 

such as food, textile, and biofuel.  In 2021, agriculture, food, and related industries accounted for 

5.4 percent of the U.S. gross domestic product (GDP) and contributed 10.5 percent to U.S. 

employment.1  The importance of agricultural commodities extends beyond their physical uses. 

Their prices directly affect the incomes of farmers and ranchers (e.g., Tomek and Kaiser 2014; 

Nigatu et al. 2020).  Furthermore, price changes in agricultural inputs can pass through to food-

processing costs or food prices.  Investigating the pass-through of agricultural prices provides 

policy implications for the productivity of the agrifood industry and food security (e.g., Morrison 

Paul and MacDonald 2003; Miller and Coble 2007; Gaigné and Mener 2014). 

Price fluctuations are natural characteristics of commodity markets.  In particular, 

agricultural commodity prices are more volatile than the prices of non-farm commodities (Tomek 

and Kaiser 2014; Declerk 2015).  They are influenced by various factors, such as farmers’ 

production strategies and consumers’ preferences.  On the supply side, agricultural production is 

vulnerable to weather uncertainty and disease outbreaks, which stimulate price fluctuations.  For 

instance, the 2018 African swine fever outbreak in China, sharply decreased the China’s annual 

 
1 The data are obtained from the U.S. Department of Agriculture, Economic Research Service, Ag and Food 

Statistics: Charting the Essentials, available at https://www.ers.usda.gov/data-products/ag-and-food-statistics-

charting-the-essentials/, on June 19, 2023.  
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sow inventory by 35% and led to volatile and long-lasting fluctuation of pork prices in the 

domestic market (Li et al. 2021).  On the demand side, changes in consumer preferences and 

policy regulations bring new challenges for agricultural producers and processors, exacerbating 

the fluctuation of agricultural commodity prices.  For instance, environmental regulations and tax 

incentives for sustainable biofuels boost U.S. biodiesel production.  These policies encourage the 

demand for crop feedstocks, such as soybean and palm oil, driving their price volatility (CME 

2022a).  Therefore, unexpected changes in either supply-side or demand-side factors can expose 

market participants to risks resulting from price fluctuations. 

Moreover, price fluctuation in one market can affect the equilibrium prices in other 

markets.  von Cramon-Taubadel and Goodwin (2021) point out, “…arbitrage, or the pursuit of 

riskless profits, is the underlying economic mechanism that maintains linkages and disciplines 

departures from equilibrium.”  When observing an opportunity for arbitrage, rational buyers or 

sellers will react to eliminate price differences by transferring or transforming the commodity 

from an unprofitable market to a lucrative one.  These two actions refer to two strands in price 

and volatility transmission.  Horizontal price transmission involves price linkages among 

spatially separated markets where the same commodity is transferred to various locations, while 

vertical price transmission refers to cases where shocks are transmitted across different stages of 

supply chains.  The first two chapters investigate price relationships among input and its 

marketable outputs, and the third chapter particularly focuses on the extreme events on price 

movements of agricultural substitutes.  This dissertation investigates price and volatility 

dynamics from three aspects: volatility spillover, asymmetric price transmission, and extreme 

price and volatility comovements.  Each chapter aims to empirically explore price and volatility 

dynamics by using advanced econometric models. 
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The second chapter investigates the responses to shocks in a supply chain across 

countries since hyper-efficient globalization connects input and output markets in different 

countries.  We use a multivariate GARCH model with a BEKK specification to explore the 

volatility spillovers between soybeans and their products linked through the cross-border supply 

chain between the two major players in the global market: the U.S. and China.  Given the high 

dependence of China’s soybean crushing industry on soybean imports, we find bidirectional 

spillovers between the U.S. soybean market and Chinese soybean products, but the cross-

volatility spillovers have become weaker after 2009.  We also consider the impacts of two 

significant economic events, the 2008 global financial crisis and the 2018 U.S.-China trade 

dispute, on volatility spillovers.  The key finding shows that volatility significantly responds to 

the global financial crisis instead of the bilateral trade dispute. 

The third chapter considers asymmetric price responses of output prices in a joint 

production process.  We apply a vector error correction quantile (VECQ) framework to fill a gap 

in the test for price transmission from an input to one of its end products that can be affected by 

prices of other jointly-produced outputs.  Specifically, we investigate price responses to soybean 

price changes for every possible pair of the quantile indices of soybean end-product prices.  The 

locality of quantiles reflects the characteristic of data clustering within a specific part of the 

distribution, which reflects the market conditions.  Our model reveals that the rockets and 

feathers pattern, in which output prices respond more to input price increases rather than 

decreases, exist when one of the soybean end-product’s market is bullish whereas the other end-

product’s market is bearish.  In other words, producers are more likely to pass extra production 

costs onto consumers when there is a high demand for one of the end products (bullish 

sentiment) and low demand for the other end product (bearish sentiment). 
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The fourth chapter analyzes whether public information increases the likelihood of 

extreme price and volatility comovements in related agricultural markets.  News and market data 

releases can trigger sharp price movements leading to financial catastrophes, such as flash 

crashes.  In the context of agricultural markets, such news and market data releases are included 

in the reports prepared and published by the U.S. Department of Agriculture (USDA).  In this 

chapter, we estimate the likelihood of extreme price and volatility comovements following major 

USDA reports in the futures markets of three groups of agricultural substitutes: corn-soybean, 

winter wheat-spring wheat, and lean hog-live cattle-feeder cattle.  We use an ordered logistic 

model to investigate whether the release of USDA reports has explanatory power for these 

coexceedances (i.e., more than one market simultaneously suffers from extreme events).  Our 

findings contribute to the literature on the market reactions to USDA reports in two aspects.  

First, we explore the informational value of report clusters on multiple related markets.  The June 

cluster of Acreage and Grain Stocks has the most significant impact on increasing the occurrence 

of return or volatility coexceedances in grain markets, indicating that these two reports have 

substantial informational value.  Second, we suggest trading strategies for traders holding 

portfolios of agricultural substitute-commodity derivative instruments following USDA report 

releases.  Although most report clusters have a dual effect, either increasing the probability for 

portfolio traders to earn or lose money on release days, some of them only impact the occurrence 

of low returns associated with high volatility.  Therefore, corn-soybean traders should avoid 

holding two contracts together on the release days of the GS report in September, while winter-

spring wheat traders should avoid doing so on the release days of PP and GS reports.   

In summary, the essays in this dissertation aim to understand the price linkages of related 

markets linked through a supply chain, which is an important issue for policymakers and 
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producers to evaluate market integration and manage price risks. We list three major policy 

implications from these findings in Chapter 5.  
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CHAPTER 2 

HOW FAR IS TOO FAR FOR VOLATILITY TRANSMISSION?2 

2 Yang. Y., and B. Karali. 2022. Journal of Commodity Markets (26): 100198. 

Reprinted here with permission of publisher. 
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Abstract 

This study investigates the existence of volatility transmission between soybean and its products, 

which are linked through a cross-border supply chain across the U.S. and China.  We estimate a 

multivariate GARCH model with BEKK specification with daily synchronized returns of the 

CBOT soybean, DCE soybean meal, and DCE soybean oil futures contracts.  To better illustrate 

the cross-volatility spillovers, we consider volatility transmission across three markets in two 

subperiods and evaluate the impacts of two significant economic events on price volatility.  The 

estimated results indicate the existence of volatility spillovers to each market from the other two 

markets.  We observe the volatility responses in Chinese soybean product markets to an 

innovation originating from the U.S. soybean have become weaker after 2009.  Moreover, we 

study the volatility reactions to two significant economic events, the 2008 financial crisis and 

2018 U.S.-China trade dispute, but the volatility reactions can only be found in the financial 

crisis.  
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Introduction 

Supply chains are inherently susceptible to risks.  Earlier studies stressed the importance to 

investigate the risks arising from unintended change of flows related to products, information, 

and money in supply networks (Kraljic 1983; Treleven and Schweikhart 1988; Tang 2006).  With 

the development of global trades, the international labor division expands national supply 

networks to the worldwide.  Value-added processing links input and output markets located in 

different countries.  A product is not only consumed in the domestic market, but can also be sold 

as an intermediate good to foreign markets.  The international interdependence of these valued-

added processing ultimately leads to the vulnerability of supply chains to risks (Wagner and 

Bode 2009). 

Price shock is an important source of operational risks in agricultural supply chains.  

Vavra and Goodwin (2005) point out that the adjustment to price shocks along the supply chain 

is an integral part of well-functioning markets and therefore, agricultural economists as well as 

policy makers have been greatly interested in understanding volatility transmission through the 

supply chain.  An extensive literature exists on volatility spillover effects along a supply chain 

within a country (Apergis and Rezitis 2003; Karali and Ramirez 2014; Chavas and Pan 2020), or 

through related markets in different regions or countries (Ceballos et al. 2017; Dahl and Jonsson 

2018; Bronnmann et al. 2020). 

Recent research has realized a more complex aspect of price transmission and explored 

the extent to which products are linked within a cross-border supply chain (Balaguer 2011; 

Landazuri-Tveteraas et al. 2018; Auer, Levchenko, and Sauré 2019).  However, few papers 

empirically investigate the volatility transmission and responses to price shocks in a supply chain 
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across countries.  This could be because an input imported from a foreign market has an 

ambiguous price relation to its value-added commodities produced in the domestic market.  

Moreover, lower frequency of retail or wholesale price data might be limiting a further 

discussion on volatility transmission along the cross-border supply chain.  To deal with these two 

issues, the goal of this paper is to use high-frequency data from futures markets to investigate 

volatility transmission between soybean and its products (soybean meal and oil), which are 

linked in a cross-border supply chain between the U.S. and China. 

As detailed in the next section, China’s soybean crushing industry heavily depends on 

soybean imports, resulting in a strong linkage between the U.S. soybean and Chinese soybean 

products.  In addition, futures markets facilitate efficient transfer of price risks among 

commercial and non-commercial users of commodities and are shown to lead spot markets in 

price discovery (Garbade and Silber 1983; Zapata and Fortenbery 1996; Theissen 2012).  Hence, 

a thorough understanding of volatility spillovers among trading partners provides a new 

perspective for market participants to understand the price relations between upstream and 

downstream products in a global supply chain. 

Moreover, the 2008 global financial crisis and the 25% retaliatory tariff imposed by 

China on the U.S. soybean during the period of 2018 U.S.-China trade dispute, provide us an 

opportunity to discuss the impacts of economic and financial events on volatility transmission in 

the soybean complex (soybean, soybean oil, and soybean meal) across two countries.  To this 

end, we use a multivariate generalized autoregressive conditional heteroskedasticity framework 

with BEKK (Baba-Engle-Kraft-Kroner) specification with exogenous factors in the conditional 

variance equations, MGARCH-X-BEKK, using synchronized daily (close-to-close) returns of 
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the Chicago Board of Trade (CBOT) soybean, Dalian Commodity Exchange (DCE) soybean 

meal, and DCE soybean oil futures contracts.3  Our study contributes to the understanding of the 

volatility spillover effects in a cross-border supply chain in four ways.  First, we test and confirm 

the existence of spillover effects among the U.S. soybean and China’s soybean meal and oil 

markets.  Second, we show that directions of volatility spillovers between soybean and soybean 

meal are different from those between soybean and soybean oil.  Third, we show that these 

spillover effects become much weaker in the current years once we account for the structural 

break in 2009.  Fourth, we show that a global recession spikes price volatility in downstream 

markets more severely than a bilateral trade conflict does. 

Soybean Complex across the U.S. and China 

To accurately measure volatility spillover effects, it is very important to understand the strong 

connection among soybean products in the U.S. and China.  We review the study of horizontal 

(i.e., spatial) and vertical price relationships in soybean complex across these two countries and 

explain the strong connection between U.S. soybean and Chinese soybean products.   

Global soybean trade is highly concentrated geographically with three countries: China, 

the United States, and Brazil.  China accounted for 64.79% of global soybean imports, and Brazil 

and the U.S. together supplied 85.35% of global exports in 2018.4  China is not only the world’s 

largest soybean importer, but also the largest market for the U.S. soybean export.  Before the 

U.S.-China trade dispute in 2018, China spent over $10 billion on purchasing the U.S. soybean 

 
3 Since the U.S. and Chinese futures markets have different trading hours, we synchronize the DCE soybean meal 

and oil returns with the CBOT soybean return. 
4 The data source for soybean import and export is from UN Comtrade Database, retrieved from 

https://comtrade.un.org/data/. 
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since 2010, which accounted for over half of the trade value for total U.S. soybean export.  No 

country like China has such a large share of imports in both global and local soybean trade.  The 

size of soybean market and the rapid growth in its future demand made soybean a focus of 

attention when China imposed a 25% retaliatory tariff on the U.S. soybean in the summer of 

2018 (Muhammad and Smith 2018; Sabala and Devadoss 2019; Ji, Zhang, and Zhu 2020). 

Price and volatility transmission across the U.S. and China soybean markets have long 

been a question of interest for researchers.  An extensive literature has investigated spatial price 

linkages focusing on price and volatility transmission across the U.S. and Chinese soybean 

futures markets.  Their findings provide ample evidence that soybean futures contracts traded at 

the CBOT and DCE are cointegrated in the long term.  While earlier studies found volatility 

spillovers only from the CBOT futures market to the DCE (Fung, Leung, and Xu 2003; Hua and 

Chen 2007), more recent studies found bidirectional but asymmetric volatility spillover effects 

across the two markets (Liu and An 2011; Han, Liang, and Tang 2013; Jiang et al. 2016). 

Soybean is the primary input for soybean processors to produce soybean oil and meal, 

and therefore fluctuations in the price of soybean should result in corresponding fluctuations in 

soybean meal and oil prices.  Previous studies have investigated vertical price linkages by 

focusing on price and volatility transmission between soybean and its products, soybean meal 

and oil, either in the U.S. or in the Chinese futures market.  In the U.S. futures market, price 

comovements in the soybean complex are found (Rausser and Carter 1983); furthermore, the 

price correlations in the soybean complex are utilized in the studies of hedging strategies 

(Garcia, Roh, and Leuthold 1995; Tejeda and Goodwin 2014), the economic value of public 

information (Karali 2012), and arbitrage opportunities for the soybean crush spread (Johnson et 
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al. 1991; Simon 1999; Mitchell 2010; Marowka et al. 2020).  On the other hand, futures prices of 

the Chinese soybean complex are cointegrated in the long run (Li and Zhang 2011; Fung et al. 

2013).  Moreover, volatility spillovers and correlations are also found among soybean, soybean 

meal and oil futures traded at the DCE (Liu and Sono 2016; Ruan, Cui, and Fan 2020). 

However, few papers discuss price relationships between the U.S. soybean and China’s 

soybean meal and oil, which are linked through the supply chain in the global market.  In fact, 

Chinese soybean imports are driven by demand for animal protein and edible oils; nearly all 

soybean imports are used to produce high-protein meals for livestock and cooking oil for food 

consumption (Gale, Valdes, and Ash 2019).  The high dependence of China’s soybean crushing 

industry on soybean imports is a result of (1) rapid growth in food consumption, (2) tariff 

structure in the soybean complex, and (3) the domestic policy for genetically modified organism 

(GMO) soybean.  Rising living standards has spurred a diversifying Chinese diet composed of 

high-protein meal and edible oil since 1990.  Soybean meal is the second major raw material in 

animal feed (Gale 2015); soybean oil is the primary vegetable oil accounting for more than 40% 

of total oil consumption in China.5  Although China is the world’s fourth-largest producer of 

soybean, rapid growth of high-protein food consumption turned the country into the world’s 

largest soybean importer (Gale, Valdes, and Ash 2019).  China’s tariff structure favored imports 

of soybean.  Before implementation of the retaliatory soybean tariff, China’s most favored nation 

(MFN) tariff on soybean imports was 3%, which is the lowest compared to 9% MFN tariff for 

soybean oil and 5% MFN tariff for soybean meal (Gale 2015; Gale, Valdes, and Ash 2019).  

GMO soybean has advantages with low production costs but high quality for oil crushing and a 

 
5 The data source for China’s oil consumption is from a USDA’s monthly report Oilseeds: World Markets and 

Trade, published on November 8, 2019, retrieved from https://usda.library.cornell.edu/concern/publications/tx31qh68h?locale=en. 
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high-protein source for animal feed, and it has been widely used in Chinese soybean crushing 

industry.  Although China has been importing GMO soybean since 1997 and permitted its use as 

an input for soybean crushing in 2004, China has not yet approved any GMO soybeans for 

domestic cultivation.  However, the government has been working on the commercialization of 

GMO soybeans for indirect food use.  The number of biosafety certificates for imported GMO 

soybeans as processing materials has increased from one in 2004 to nineteen in 2021.6  This 

provides a legal support to vary the species of GMO soybeans and further opens China’s market 

to imported GMO soybeans. 

As indicated previously, a strong connection exists between China’s soybean import and 

its domestic production of soybean meal and oil.  This connection motivates our study of 

volatility transmission between the Chinese soybean meal and oil futures markets and the U.S. 

soybean, the second largest source of China’s soybean import.7   

Data Construction and Asynchronous Trading Problem 

Futures contracts and price series 

We use futures contracts traded at the CBOT and DCE.  CBOT, the world’s largest grains futures 

market, provides the most active and liquid U.S. soybean futures contracts.  These contracts have 

seven delivery months with a standard contract size of 5,000 bushels and the price is quoted in 

 
6 Exporters of GMO soybean to China should obtain a biosafety certificate issued by the Ministry of Agricultural 

and Rural Affairs of China (MARA).  The validity of period for both the new and renewed certificates varies from 

three to five years depending on China’s regulatory system.  The list of approved biotechnology products is annually 

updated on the official website of MARA (http://www.moa.gov.cn/ztzl/zjyqwgz/spxx/index.htm).  Using this list, we 

counted the number of approved GMO soybean certificates that are valid until 2021.  
7 U.S. has not been the largest soybean supplier for China since 2013, but it still has been occupying a large share of 

China’s soybean imports.  For example, Brazil exported 38.21 MMT (million metric tons) soybean to China in 2016, 

constituting 45.5% of the Chinese soybean market, while the U.S. exported 34.17 MMT soybean with a 40.7% 

share. 
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U.S. cents per bushel.  On the other hand, DCE is the largest and most active futures market for 

soybean meal and oil in China.  Both contracts have eight delivery months with contract sizes of 

10 metric tons (MT) and the prices are quoted in Yuan per MT.  Table 1 shows specifications for 

these three futures contracts in detail. 

Our futures price data are obtained from Bloomberg covering the period from January 18, 

2006 to December 31, 2019.  We exclude the days with national holidays in either country to 

eliminate mismatched prices and convert all price quotations into U.S. dollar per bushel of 

soybean.8  We create nearby CBOT soybean futures price series by rolling over the contracts at 

the end of the month prior to maturity (to avoid the delivery period) while excluding the 

contracts that are not actively traded (August and September contracts).  To allow time for the 

soybean crushing process (Karali 2012), we use DCE soybean meal and oil contracts that expire 

two to four months later than the soybean contract while excluding the contracts that are highly 

illiquid (March, July, August, November, and December contracts).9  The resulting price series 

are nonstationary, have heteroskedastic variance, and exhibit ARCH effects.10 

Asynchronous and synchronous close-to-close returns 

Asynchronization is an important issue when studying price or volatility transmission and 

 
8 We use daily data on currency exchange rates from the Federal Reserve Bank of St. Louis.  The conversion of 

soybean meal and oil to soybean follows the rules published by the U.S. Soybean Export, retrieved from 

https://ussec.org/resources/conversion-table/. 
9 Table A.1 in the appendix lists the specific futures contracts used in each calendar month to construct futures price 

series. 
10 Table A.2 in the appendix shows summary statistics of the resulting futures price series.  The average price for 

DCE soybean meal, soybean oil, and CBOT soybean are $9.63/bushel, $5.23/bushel, and $10.62/bushel, 

respectively.  The U.S. soybean futures price has the largest standard deviation of 2.52, while the standard deviation 

of the Chinese soybean oil price is the lowest, 1.30.  Based on the augmented Dickey-Fuller (ADF) tests, all price 

series fail to reject the existence of a unit root.  In addition, we reject the existence of homoskedasticity in all price 

series, indicating they have heteroskedastic variances.  While the DCE soybean meal price is normally distributed, 

the DCE soybean oil and CBOT soybean prices are not.  Moreover, we reject both null hypotheses of no ARCH 

effects and no autocorrelation in all price series. 

https://ussec.org/resources/conversion-table/
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correlations between futures markets with different trading hours.  Asset prices will be stale after 

futures markets close, and the use of stale prices in calculating close-to-close returns would 

distort the value of portfolio and value at risk measures (Burns, Engle, and Mezrich 1998).  

Figure 1 illustrates the asynchronous trading hours in China and the U.S.11  The daytime trading 

hours in DCE is from 9:00 am to 11:30 am and from 1:30 pm to 3:00 pm in Beijing time, while 

the nighttime trading hours are from 9:00 pm to 11:30 pm.12  CBOT is open from 8:30 am to 

1:20 pm and its overnight trading hours are from 7:00 pm to 7:45 am in Central Standard Time 

(CST).  Beijing is 13 hours ahead of CST during the standard periods, and it is 14 hours ahead 

during the daylight savings.13 

The Chinese futures market closes first, followed by the U.S. soybean futures market.  

Therefore, while the U.S. futures contracts are being traded, the DCE prices remain the same, 

becoming stale.  As seen in figure 1, the DCE’s asynchronous close-to-close return on day t, 𝑅𝑡, 

calculated using stale closing prices from day t-1 to t, partially overlaps with the CBOT’s close-

to-close return on the same day.  However, “fresh” futures prices can be estimated even when the 

DCE is closed by using the information from the markets that are open.  Therefore, we use the 

information from the U.S. soybean market as an anchor of synchronization to estimate what the 

DCE prices would be if the markets were open.  As a result, the CBOT’s close-to-close soybean 

return remains unchanged, and the DCE’s returns are synchronized by predicting the unobserved 

returns that would have been observed from the closing time of DCE to the closing time of 

 
11 For brevity, we only plot daytime trading hours as we use settlement prices for the daytime trading sessions to 

calculate daily close-to-close returns. 
12 DCE provides overnight trading since 2014 and adjusts the nighttime hours based on trading demand.  For 

example, due to the outbreak of COVID-19, DCE cancelled the overnight trading from February 3, 2020 to May 6, 

2020. 
13 However, daylight savings periods neither affect the measurement of returns nor the synchronization process. 
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CBOT on day t.  Specifically, using the notation in figure 2.1, the synchronized return in DCE 

can be written as: 

(2.1)         𝑅𝑡
𝑆 = 𝑅𝑡 − 𝜉𝑡−1 + 𝜉𝑡,  

where 𝑅𝑡 is the observed, asynchronous return in DCE on day t and 𝜉𝑡 is the unobserved return 

when the DCE is closed.  In other words, the synchronized return equals to the asynchronous 

return plus a correction. 

We follow Audrino and Bühlmann (2004) and Hernandez, Ibarra, and Trupkin (2014) to 

predict the correction for synchronized returns.  Let 𝑃𝑖,𝑡 denote the closing price of commodity i 

on day t, where i = M (DCE soybean meal), O (DCE soybean oil), and S (CBOT soybean).  We 

define the asynchronized returns as the percent change in the asynchronized prices, 𝑅𝑖,𝑡 =

100 × (ln𝑃𝑖,𝑡 − ln𝑃𝑖,𝑡−1).  Analogously, the synchronized returns are measured as 𝑅𝑖,𝑡
𝑠 =

100 × (ln𝑃𝑖,𝑡
𝑠 − ln𝑃𝑖,𝑡−1

𝑠 ).  The expected price on day t+1 is an unbiased estimator of the 

synchronized price on day t, ln 𝑃𝑖,𝑡
𝑠 = 𝐸(ln𝑃𝑖,𝑡+1 |𝐼𝑡), where 𝐼𝑡 is the information set at t 

(Hernandez, Ibarra, and Trupkin 2014).  Therefore, the synchronized returns are written as 

(2.2)       𝑅𝑖,𝑡
𝑠 = 100 × [𝐸𝑡(ln 𝑃𝑖,𝑡+1 |𝐼𝑡) − 𝐸𝑡−1 (ln 𝑃𝑖,𝑡 |𝐼𝑡−1)] 

         = 100 × [𝐸𝑡(ln 𝑃𝑖,𝑡+1 − ln𝑃𝑖,𝑡 |𝐼𝑡) − 𝐸𝑡−1(ln 𝑃𝑖,𝑡 − ln𝑃𝑖,𝑡−1 |𝐼𝑡−1) + ln(𝑃𝑖,𝑡/𝑃𝑖,𝑡−1)] 

         = 𝑅𝑖,𝑡 + 𝐸𝑡(𝑅𝑖,𝑡+1|𝐼𝑡) − 𝐸𝑡−1(𝑅𝑖,𝑡|𝐼𝑡−1) . 

 

The sum of the second and third term in equation (2.2), 𝐸𝑡(𝑅𝑖,𝑡+1|𝐼𝑡) − 𝐸𝑡−1(𝑅𝑖,𝑡|𝐼𝑡−1), 

represents the correction for calculating the synchronized returns.  To calculate this correction, 

we need a model that not only provides these expected returns with a given information set at 

any time, but also the covariance matrix of all returns (Burns, Engle, and Mezrich 1998).  
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GARCH models are the most popular in the application for the synchronization of financial asset 

prices (Audrino and Bühlmann 2004; Hernandez, Ibarra, and Trupkin 2014; Happersberger, 

Lohre, and Nolte 2020).  A GARCH model is also supported for the U.S.-China soybean 

complex based on the Lagrange multiplier tests for ARCH effects in the return series given in 

table 2.2. 

We denote 𝐑t as the vector of asynchronized close-to-close returns in each market and  

𝐑t
s as the vector of synchronized returns.  Based on the Akaike information criterion (AIC), we 

use a vector autoregressive (VAR) model with four lags to estimate the asynchronous returns in 

each market in a trivariate matrix format as follows: 

(2.3)         𝐑t = 𝛍 + 𝛌1𝐑t−1 + 𝛌2𝐑t−2 + 𝛌3𝐑t−3 + 𝛌4𝐑t−4 + 𝛜t,       𝛜t|It−1~𝑀𝑉𝑡𝜐(𝟎, 𝚺t),  

where 𝛍 is a vector of constants, 𝛌j is the matrix of VAR coefficients for lagged returns with lag 

j.  𝛜t is a 3×1 vector of error terms with zero conditional mean based on past information 𝐼𝑡−1, 

and conditional time-varying variance-covariance matrix 𝚺t.  Considering the leptokurtic nature 

of asynchronous return distributions shown in table 2, we assume the error terms follow a 

multivariate Student’s t distribution with degrees of freedom, 𝑣.  Given this VAR(4) structure of 

the asynchronous returns, equation (2.2) can be rewritten as: 

(2.4)         𝐑t
𝑠  = 𝐑t + 𝐸t(𝐑t+1|It) − 𝐸t−1(𝐑t|It−1) 

          = 𝐑t + 𝚪1(𝐑t − 𝐑t−1) + 𝚪2(𝐑t−1 −𝐑t−2) + 𝚪3(𝐑t−2 − 𝐑t−3) + 𝚪4(𝐑t−3 − 𝐑t−4). 

 

Following Audrino and Bühlmann (2004), we set up the structure of the VAR coefficient 

matrices, 𝚪j, with two sets of constraints.  First, as the CBOT trading time is the anchor of 

synchronization, the coefficients of the DCE’s returns on the CBOT soybean return are set to 
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zero.  Second, we set the elements of matrix 𝚪j to zero if they are not statistically significant at 

the 5% level.  After imposing these constraints, we re-estimate the VAR(4)-MGARCH(1,1) 

model to obtain the parameter estimates, 𝚪̂j, and calculate the synchronized returns as equation 

(2.4). 

Table 2.2 also reports summary statistics of daily synchronized returns.  The mean of 

synchronized return is very similar to that of the original, asynchronous return for both soybean 

meal and oil.  However, the variance is typically larger for both synchronized returns because of 

the unobservable changes in the period between the closing times of DCE and CBOT.  These 

findings are consistent with the results in previous studies applying the synchronization method 

(Burns, Engle, and Mezrich 1998; Happersberger, Lohre, and Nolte 2020).  The correlations 

across global markets are underestimated by using asynchronous returns (Martens and Poon 

2001; Schotman and Zalewska 2006; Hernandez, Ibarra, and Trupkin 2014).  We show the 

Pearson correlation coefficients among the three returns in table 2.3, and our results find 

evidence of increased correlations after synchronizing the returns.  The correlation between the 

DCE soybean meal and CBOT soybean increases from 0.238 to 0.729 after synchronization, and 

the correlation between the DCE soybean oil and CBOT soybean increases from 0.222 to 0.615.   

Synchronization corrects the underestimation of correlations and allows us to analyze the 

spillover effects across markets when information is flowing.  Moreover, the correlation is a 

simplistic measure of market integration (Goetzmann, Li, and Rouwenhorst 2005; Aityan, 

Ivanov-Schitz, and Izotov 2010), and therefore these increased correlations reflect to some 

degree the market integration between the U.S. and China’s markets. 
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Estimation Methodology 

As shown in table 2.2, all synchronized returns (synchronized CBOT returns are the same as the 

asynchronous returns as CBOT is used as an anchor for synchronization) exhibit 

heteroskedasticity.  Moreover, the existence of ARCH effects cannot be rejected in any of the 

return series, suggesting a time-varying variance.  This time-varying variance represents the risk 

level of a return series, which can be predicted by the past squared residuals (ARCH terms) and 

variance of residuals (GARCH terms).  When dealing with more than one series, multivariate 

GARCH models are commonly used to capture time-varying volatilities and dynamic patterns in 

the joint distribution of daily futures returns.  To determine the volatility transmission in the 

soybean complex across countries, we use a MGARCH model with BEKK specification and 

with exogenous factors in the conditional variance equations, MGARCH-X-BEKK.  These 

exogenous factors are dummy variables for two important events, the 2008 global financial crisis 

and 2018 U.S.-China trade dispute, which might have an impact on the conditional volatility.14  

The advantage of the BEKK specification is its flexibility to estimate spillover effects of both 

ARCH and GARCH terms in the conditional variance and covariance equations.   

The 3×1 vector 𝐑t
𝑠, defined as before, consists of the synchronized close-to-close returns 

in each market i, where i = M, O, and S, representing DCE soybean meal, DCE soybean oil, and 

CBOT soybean, respectively.  Based on the AIC, we fit a VAR(2) model to the daily 

 
14 We define the period for global financial crisis from December 2007 to June 2009 based on the U.S. Business 

Cycle and Contractions from NBER, retrieved from https://www.nber.org/cycles.html.  On the other hand, we define 

the period for trade dispute from April 4, 2018, the date Chinese government announced 25% retaliatory tariff on 

U.S. goods, to December 31, 2019. 
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synchronized returns with residuals modeled as a MGARCH-X(1,1) process.  Consider the 

trivariate VAR(2) model for synchronized returns in matrix form given by: 

(2.5)         𝐑t
s = 𝛍 + 𝛉𝟏𝐑t−1

s + 𝛉𝟐𝐑t−2
s + 𝛆t,  

where 𝛆t is a 3×1 vector of regression error terms following a multivariate Student’s t 

distribution with zero mean, variance 𝐇t, and degrees of freedom 𝜂, 𝛆t~𝑀𝑉𝑡𝜂(𝟎, 𝐇t).
15  The 

conditional variance-covariance matrix in the BEKK specification is defined as: 

(2.6)         𝐇t = 𝐂′𝐂 + 𝐀′𝛆t−1𝛆t−1
′ 𝐀+ 𝐁′𝐇t−1𝐁 + ∑ 𝐆𝒌

′ 𝐆𝒌𝐗𝒌,𝒕
𝑲
𝒌=𝟏 ,  

where 𝐇t is a 3×3 symmetric matrix with variances of residuals on the diagonal and covariances 

off the diagonal, 𝐂 is a 3×3 low triangular matrix of constants, A and B are 3×3 full matrices of 

ARCH and GARCH parameters, respectively.  𝐆𝒌 is a 3×3 low triangular coefficient matrix on 

the dummy variables 𝐗𝒌,𝒕.  Specifically, the matrices are defined as follows: 

(2.7)      

𝐇t = [

h𝑀𝑀,𝑡 ℎ𝑀𝑂,𝑡 ℎ𝑀𝑆,𝑡

ℎ𝑀𝑂,𝑡 ℎ𝑂𝑂,𝑡 ℎ𝑂𝑆,𝑡
ℎ𝑀𝑆,𝑡 ℎ𝑂𝑆,𝑡 ℎ𝑆𝑆,𝑡

],  𝐂 =  [
𝑐𝑀𝑀 0 0
𝑐𝑂𝑀 𝑐𝑂𝑂 0
𝑐𝑆𝑀 𝑐𝑆𝑂 𝑐𝑆𝑆

],  𝐆𝒌 =  [

𝑔𝑘,𝑀𝑀 0 0

𝑔𝑘,𝑂𝑀 𝑔𝑘,𝑂𝑂 0
𝑔𝑘,𝑆𝑀 𝑔𝑘,𝑆𝑂 𝑔

𝑘,𝑆𝑆

], 

 𝐀 = [

𝑎𝑀𝑀 𝑎𝑀𝑂 𝑎𝑀𝑆

𝑎𝑂𝑀 𝑎𝑂𝑂 𝑎𝑂𝑆
𝑎𝑆𝑀 𝑎𝑆𝑂 𝑎𝑆𝑆

],    𝐁 = [

𝑏𝑀𝑀 𝑏𝑀𝑂 𝑏𝑀𝑆

𝑏𝑂𝑀 𝑏𝑂𝑂 𝑏𝑂𝑆
𝑏𝑆𝑀 𝑏𝑆𝑂 𝑏𝑆𝑆

], 

 

where, as before, the subscripts M, O, and S denote the DCE soybean meal, DCE soybean oil, 

and CBOT soybean futures, respectively.  In the BEKK specification, the variances (ℎ𝑀𝑀,𝑡, 

 
15 As shown in table 2.2, all synchronized returns reject the normality.  Therefore, we assume the error terms follow 

a multivariate Student’s t distribution in the MGARCH-X-BEKK model. 
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ℎ𝑂𝑂,𝑡, ℎ𝑆𝑆,𝑡) and the covariances (ℎ𝑀𝑂,𝑡, ℎ𝑀𝑆,𝑡, ℎ𝑂𝑆,𝑡) involve several combinations of the 

estimated parameters in matrices C, A, B and 𝐆𝒌, which are provided in the appendix.  

Intuitively, MGARCH-X(1,1) describes a dynamic path of price volatility in each 

commodity market.  The variance of returns in the next period is a weighted average of the new 

information captured by the most recent squared residuals (ARCH term), the variance for the 

current period (GARCH term), and the long-run average variance (constant term) (Engle 2001).  

It can also be thought of as an adaptive updating mechanism for traders in adjusting their 

prediction on the risk level of returns based on the existing residuals and variances of residuals.  

Results 

We first present the estimation results using the full sample, and then show the results for two 

different sample periods determined by a structural break, which possibly occurred due to 

changes in the trading environment between two countries.  To better illustrate volatility 

spillovers, we perform volatility impulse response analyses to trace the effects of own- and cross-

market shocks in each market. 

Base results for the full sample 

Full sample results are presented in table 2.4 for the conditional mean equations and in table 2.5 

for the conditional variance equations.16,17  The spillover and exogeneity tests (Wald type joint 

exclusion tests) are provided in the bottom part of both tables.  

 
16 For brevity, we do not provide the estimation results for covariance equations; however, they are available from 

authors upon request. 
17 Model diagnostics tests are provided in the appendix table A.3.  The estimated degrees of freedom are small, 

further supporting the use of multivariate Student’s t distribution.  Based on the Ljung-Box test and multivariate Q 

statistics, we fail to reject independence of the standardized residuals.  Moreover, based on the Lagrange Multiplier 

(LM) tests with 5 and 25 lags, we fail to reject the null hypothesis of no ARCH effects for all three squared 

standardized residuals. 
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Estimation results in table 2.4 show that daily returns of all commodities have a first-

degree autocorrelation.  It appears that while the serial correlation in the DCE soybean meal and 

oil futures returns is positive, it is negative for the U.S. soybean returns.  This can be explained 

from substitution effects in the demand.  A high return for the U.S. soybean indicates an increase 

in the production costs for soybean crushing, which dampens the demand for imported soybean 

and raises demand for substitutes of soybean products, such as palm oil and corn, leading to 

lower soybean returns in the next period.  Spillover tests reject for all three commodities the null 

hypothesis of no return spillover from the other markets.  A return spillover from the U.S. 

soybean market to the Chinese soybean meal and oil markets is supported by the significant 

second lag of the U.S. soybean returns in meal and oil equations.  On the other hand, the second 

lags of Chinese soybean meal and oil returns also significantly affect the U.S. soybean returns 

implying a return spillover from Chinese markets to the U.S. market. 

Turning to the conditional variance equations in table 2.5, the coefficients on own-ARCH 

and GARCH terms (𝑎𝑖𝑖 and 𝑏𝑖𝑖, i=M, O, S) are statistically significant and larger than the cross 

coefficients in all three markets.  More specifically, the U.S. soybean market has a higher own-

ARCH coefficient than Chinese markets, but it has the lowest GARCH coefficient among three 

markets.  This suggests, compared to Chinese markets, the own shocks in the U.S. soybean 

market have a relatively significant but short-term effect on its return volatility, while its own 

volatility shocks have a lower level of persistence.  Regarding the cross coefficients, the cross-

ARCH coefficients (𝑎𝑖𝑗, i,j=M, O, S and i≠j ) capture the direct effects of lagged innovations 

from market i to the current conditional variance in market  j, while the cross-GARCH 

coefficients (𝑏𝑖𝑗) capture the direct dependence of volatility in market j on that of market i.  
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These cross- coefficients are statistically significant except two cross-ARCH (𝑎𝑀𝑂 and 𝑎𝑆𝑀) and 

one cross-GARCH (𝑏𝑀𝑂) estimates. 

The suitability of using a non-diagonal BEKK specification can be tested by the joint 

exclusion of the off-diagonal elements in matrices A and B given in equation (2.7).  We see in 

table 4.b that the null hypothesis of a diagonal BEKK specification is rejected at the 1% level, 

indicating that the off-diagonal elements in both matrices A and B are jointly different from zero.  

Analogously, volatility spillover effects in one of these three markets can be tested by the joint 

exclusion of the elements in the A and B matrices associated with the other two markets.  

Specifically, the null hypothesis for a spillover test from markets j and ℓ to market i is 𝑎𝑗𝑖 =

𝑎ℓ𝑖 = 𝑏𝑗𝑖 = 𝑏ℓ𝑖 = 0.  Test results show that there are volatility spillovers to each of these markets 

from the other two.   

Beyond the estimated parameters discussed above, we further consider the transformed 

parameters in conditional variance equations (shown in equations (A.1)-(A.3) in the appendix).18  

The transformed estimated parameters (presented in the appendix table A.4) show that the ARCH 

effect of CBOT soybean (ε𝑆,𝑡−1
2 ) is statistically significant in the conditional variance equation of 

the DCE soybean oil, while its GARCH effect (ℎ𝑆𝑆,𝑡−1) is statistically significant in that of 

soybean meal.  On the other hand, the coefficients on the ARCH and GARCH terms of the DCE 

soybean oil (ε𝑂,𝑡−1
2  and ℎ𝑂𝑂,𝑡−1) are statistically significant in the conditional variance equation 

of the CBOT soybean, while only the GARCH term of the DCE soybean meal (ℎ𝑀𝑀,𝑡−1) is 

statistically significant in the U.S. soybean variance.  This implies a bidirectional spillover 

 
18 For brevity, the transformed estimation results for covariance equations are not provided; however, they are 

available from authors upon request. 
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among the U.S. soybean and the Chinese soybean oil markets in ARCH effects, while there is a 

bidirectional spillover between the U.S. soybean and the Chinese soybean meal futures markets 

in GARCH effects.  Among two economic events considered, only the price spikes caused by the 

financial crisis significantly increased the conditional variances of the DCE soybean meal by 

0.072, implying its predicted conditional variance was systematically different when the financial 

crisis led to a global economic slowdown from 2007 to mid-2009.  

Figure 2.2 depicts predicted conditional variances for all three commodities.  The figure 

shows that the conditional variance of DCE soybean meal spiked during the global financial 

crisis, which is consistent with its transformed parameter estimates significant at the 5% level 

(table A.4 in the appendix).  A spike in the conditional variance can be also observed in figure 

2.2 for both DCE soybean oil and CBOT soybean markets; however, the transformed coefficient 

on the financial crisis dummy is statistically insignificant in either market.  An explanation for 

this contrasting finding could be the calculation of the transformed coefficients, which are 

measured by the summation of squared estimated parameters in the 𝐆𝒌 matrix defined in 

equation (2.7), such as 𝑔1,𝑆𝑂 and  𝑔1,𝑆𝑆.  These estimated parameters are less than 0.04, thus their 

squared values will be further smaller and indifferent to zeros.  To better observe the trend in 

conditional correlations between the commodity pairs, annual conditional correlations are 

presented in figure 2.3.  The figure shows a decreasing level of volatility interdependence in each 

of these correlations, among which the correlation between Chinese soybean meal and oil is the 

lowest and most volatile. 

Volatility spillovers across time 

The identification of volatility spillovers could be affected when neglecting the existing 



25 

 

structural breaks (Van Dijk, Osborn, and Sensier 2005).  We examine whether the volatility 

spillovers across the U.S. soybean and Chinese soybean product markets have changed in 

different sample periods.  To this end, we utilize the multivariate structural break test proposed 

by Qu and Perron (2007) and find a structural break in September 2009.19  This estimated 

structural break is consistent with China’s rapid growth in soybean imports from the U.S. in 

2009, which was 21.81 MMT and increased by 41.32% compared to 2008.20  Therefore, we 

exclude the period during which the structural break occurred and split our sample into two: 

January 24, 2006 through August 31, 2009 and October 9, 2009 through December 31, 2019.21  

The results of the MGARCH-X-BEKK model estimated for each subperiod separately are 

presented in tables 2.6 and 2.7.22 

A comparison of return spillover tests across two subperiods shows a significant lagged 

effect of U.S. soybean returns in the conditional mean equation for Chinese soybean meal market 

in the post-2009 period.  Before August 2009, DCE soybean meal returns are only dependent on 

its contemporaneous values.  However, in more recent years, DCE soybean meal returns not only 

depend on their own past returns, but also on the second lag of CBOT soybean returns, indicating 

a return spillover from the U.S. market.  China’s tariff structure favored the import of 

unprocessed soybean over the import of soybean meal and oil.  The domestic consumption of 

 
19 This test is suitable for studying unknown structural breaks in a multivariate system and avoids inference 

problems when changes in variances are studied in isolation (Casini and Perron 2018; Perron, Yamamoto, and Zhou 

2020).  Test results are presented in the appendix table A.5. 
20 The data source for China’s soybean import from the U.S. is based on UN Comtrade Database, retrieved from 

https://comtrade.un.org/data/.  
21 We confirm the evidence of ARCH effects in all three returns during each subperiod in the appendix table A.6. 
22 The residual diagnostics tests in table A.7 support the use of MGARCH models with multivariate Student’s t 

distribution in both subperiods.  Comparing to the pre-2009 period, MGARCH-X(1,1) is better fitted in the post-

2009 period.  Moreover, we fail to reject the null hypotheses of independence of the residual series and no ARCH 

effects in the residual series in both subperiods. 
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soybean meal has been rapidly growing since 2009 (Gale, Valdes, and Ash 2019), which further 

spurred Chinese soybean import from major soybean suppliers, such as the U.S.  Our result on 

return spillover is consistent with the fact that Chinese soybean import is driven by the rapid 

growth of soybean meal consumption. 

In the conditional variance equations, the magnitude of own-ARCH coefficient on U.S. 

soybean increases after 2009, while those of both Chinese soybean meal and oil decrease.  These 

findings imply an increase in direct effects of own lagged innovations to the current conditional 

variances in the U.S. soybean market as opposed to Chinese soybean oil and meal markets.  On 

the other hand, the own-GARCH coefficients are all large and statistically significant at the 1% 

level in both subperiods, indicating high persistence in own volatility.  Moreover, there is 

statistical evidence of volatility spillover effects and the diagonal BEKK specification is rejected 

for both subperiods.  Although spillover test for DCE soybean meal becomes weaker in the post-

2009 period, the diagonal BEKK test for joint exclusion indicates the cross effects exist during 

both periods. 

Moreover, we consider the impact of either the financial crisis or the retaliatory soybean 

tariff on the conditional variance in each subperiod.  We find an increase in the conditional 

variance of DCE soybean meal by 0.082 and that of DCE soybean oil by 0.087 during the 

financial crisis, while there is no change in conditional variances of all three commodities in 

response to the trade dispute (table A.8 in the appendix).  This finding indicates a global 

recession has more severe impact on price volatility than a bilateral trade conflict does.  

Although U.S. and China are dominant in the global soybean market, the trade conflict between 

two countries does not bring extra volatility in futures markets.  It is because China’s demand for 
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soybean imports is derived from livestock products and edible oil.  The consumption of animal 

protein and edible oils has been increasing since China liberalized its foreign trade in 1990s 

(Gale, Valdes, and Ash 2019) and the steady growth in consumption of livestock products and 

soybean-based foods is expected to continuously drive the rising demand for soybeans in the 

next 10 years (Ministry of Agriculture and Rural Affairs, RPC 2020).  While the trade conflict 

shifted China’ soybean import from the U.S. to other soybean suppliers, it did not shrink China’s 

consumption of soybean meal and oil (Ministry of Agriculture and Rural Affairs, RPC 2020). 

Volatility impulse response functions 

To better illustrate volatility spillovers, we perform impulse response analyses, which measure 

the behavior of a series in response to a shock hitting the series.  We do so to study separately 

how conditional variance of each market responds to a shock originating from another market.  

The traditional impulse function is designed for linear models, and later it is expanded to analyze 

impacts of a shock on nonlinear dynamic structures (Gallant, Rossi, and Tauchen 1993; Koop, 

Pesaran, and Potter 1996) and conditional volatility in GARCH models (Lin 1997; Hafner and 

Herwartz 2006).  To trace the impacts of a shock on volatility in the MGARCH-X-BEKK model, 

we follow Hafner and Herwartz (2006) to convert the full BEKK model to VECH form.23 

Figures 2.4 through 2.6 show the simulated responses in the variance of each market to 

shocks generating from the DCE soybean meal, DCE soybean oil, and CBOT soybean market, 

respectively, during three periods: full sample period, pre-2009 period, and post-2009 period.  

 
23 To trace the impact of a shock in the full BEKK model, we rewrite equation (2.6) in VECH form as follows:  

𝑣𝑒𝑐ℎ(𝐇𝑡) = 𝐜 + 𝛂𝑣𝑒𝑐ℎ(𝛆t−1𝛆t−1
′ ) + 𝜷𝑣𝑒𝑐ℎ(𝐇t−1), where vech( · ) is an operator to stack the lower fraction of  3×3 

matrices, 𝐇t and 𝐇t−1,defined in equation (2.7) to 6-dimensional vectors.  𝛂 and 𝜷 are 6×6 parameter matrices, 

while 𝐜 is 6×1 parameter vector.  We checked all eigenvalues of matrix 𝛂 + 𝜷 whether they have modulus smaller 

than one.  This condition confirms the vector process of 𝛆t is covariance-stationary with its covariance matrix 𝐇t in 

the BEKK-VECH form (Hafer and Herwartz 2006). 
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The shock is equivalent to a 1% increase in the conditional variance of the market where it first 

occurs, and the responses are calculated as percentage change from the initial conditional 

variance in each market. 

Similar to the full-sample results, volatility spillovers from the DCE soybean meal to all 

three markets can be observed in both the pre-2009 and post-2009 period in figure 2.4.  More 

specifically, the conditional variance of DCE soybean meal is instantly and severely affected by 

its own-volatility spillover in the pre-2009 period, and the change in variances is decreasing to 

zero at around 60 days, implying a short-term impact of this own shock.  In addition, we observe 

a similar pattern for cross-volatility spillover from the DCE soybean meal to CBOT soybean 

during the pre-2009 and post-2009 period.  The change in conditional variance of CBOT soybean 

starts at a positive level, slight decreasing with a bottom at 10 days, increasing to a peak around 

35 days, and then slowly decreasing to zero in each subperiod.  On the other hand, the 

conditional variance of DCE soybean oil has a delayed response to this cross-volatility spillover 

after 2009 and presents a longer-lasting decay in the post-2009 period than in the pre-2009.   

In figure 2.5, we also observe volatility spillovers from the DCE soybean oil to both DCE 

soybean meal and CBOT soybean markets during three periods.  Comparing with volatility 

spillovers before 2009, there are two important changes in the post-2009 subperiod: 1) all the 

spillovers have become much weaker after 2009; 2) the spillover does not immediately affect the 

conditional variance and takes a long time to be decayed in DCE soybean meal market.  These 

two changes are consistent with the decreasing predicted correlations between these markets 

estimated from the MGARCH-X-BEKK model, further indicates a weakening impact of cross-

volatility spillovers from DCE soybean oil over time.   
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Similarly, we observe weaker volatility spillovers from the CBOT soybean to both DCE 

soybean meal and oil markets after 2009 (figure 2.6).  Especially in the DCE soybean meal 

market, the instant response to a CBOT soybean shock shrinks from 2.51% in the pre-2009 

period to 0.58% in the post-2009 period.  These findings are not surprising since China has been 

diversifying its soybean import from the U.S. to other South American countries like Brazil and 

Argentina.  Therefore, U.S. soybean price levels and volatility are not the only source to affect 

the volatilities of Chinese soybean products in more recent years, regardless of a stable growth in 

soybean trading volume between two countries. 

Conclusions 

Price volatility is of great concern for farmers to manage the production and a major threat for 

policymakers to guarantee food security in the society.  Volatility transmission along a supply 

chain or among horizontally related markets has been well studied.  However, with the diversity 

of products and the development of globalization, few extensive research has been conducted to 

determine whether volatility transmission exists along a cross-border supply chain.  Our paper 

contributes to this literature by examining the volatility transmission between soybean and its 

products that are linked in a cross-border supply chain between the U.S. and China.  We further 

investigate the changes in spillover effects across two subperiods dictated by the structural break 

in trade relations between two countries. 

The results of full sample provide evidence of volatility spillovers in conditional 

variances across the U.S. soybean and Chinese soybean product markets.  A bidirectional 

spillover across the U.S. soybean and Chinese soybean oil market is found in the ARCH effects 

implying the two-way effect of lagged squared innovations in these markets.  On the other hand, 
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a bidirectional spillover across the U.S. soybean and Chinese soybean meal market found in the 

GARCH effects indicates the two-way dependence on volatility of the other market.  The 

impulse response analyses show 1) an innovation originating from the DCE soybean meal 

market has a long-run impact on its own volatility and volatility of the DCE soybean oil returns; 

2) the volatility of CBOT soybean returns is more sensitive to an innovation from the DCE 

soybean oil market than that from the soybean meal market in the short run. 

Both spillover and diagonal BEKK tests indicate the existence of volatility spillovers to 

each market from the other two markets during both subperiods we considered.  The impulse 

response analyses further confirm the presence of cross-volatility effects among three markets in 

each subperiod.  More specifically, these spillovers have become much weaker in the post-2009 

period, which are consistent to the decreasing conditional correlations in more recent years.  A 

possible explanation for this finding is because China has been diversifying its soybean import to 

other South American countries.  Weakening currency, lower export taxes and prices are major 

incentives for China to import more South American soybean, making Brazil and Argentina 

soybean very competitive against the U.S. soybean (USDA 2017, 2018). 

Our findings for volatility reactions to two significant economic events, the 2008 global 

financial crisis and 2018 U.S.-China trade dispute, show that only the financial crisis 

significantly increased volatility of the Chinese soybean meal returns.  In addition, when we 

break our sample period into two subperiods, we find that the financial crises also significantly 

affected the return volatility of DCE soybean oil in the pre-2009 period.  However, none of the 

markets’ post-2009 volatility is affected by the increased, retaliatory soybean tariff.  These 

findings indicate a bilateral trade conflict does not spike price volatility as a global recession 
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does.  Although the 25% retaliatory tariff on the U.S. soybean led to a dramatic contraction in the 

value of U.S. soybean exports to China from $12.22 billion in 2017 to $3.12 billion in 2018, the 

average export price was $9.68 per bushel in 2018, only declining 4.30% from $10.11 in 2017.24  

This is not surprising because the U.S. shifted its soybean export to other trading partners like 

European Union, which reduced the impact of decreased soybean export to China caused by the 

trade dispute. 

Overall, our paper extends the analysis for volatility transmission to products linked in a 

cross-border supply chain.  With globalization, more countries are closely related to each other in 

various industries, such as agriculture, energy, and manufacturing, and participate in the different 

stages of the cross-border supply chain deriving from each industry.  Moreover, the improvement 

of processing techniques encourages market participants to both trade raw products and produce 

value-added commodities for obtaining high profits in global markets.  Thus, price and volatility 

transmission not only exist in a raw product across the related markets in different countries, but 

they can also be found between the commodity produced in a given country and its products 

processed in other countries.  The analysis of volatility spillovers along a cross-border supply 

chain provides an opportunity to study the connections of price volatility in upstream and 

downstream markets and enhance risk management by international participants.  A better 

understanding of volatility transmission through integrated supply chains in global markets can 

help to capture and forecast the effects of exogenous shocks, such as foreign policies and 

 
24 The annual data for U.S. soybean export prices are drawn from export elevator bids at the Louisiana Gulf reported 

by the USDA’s Agricultural Marketing Service agency, retrieved from https://www.ams.usda.gov/market-

news/custom-reports. 
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economic news, on the price volatility in domestic markets.  It can also help to prevent the 

production loss of domestic farmers or processors caused by price spikes in foreign markets. 

Although Brazil is the biggest competitor for the U.S. to supply China’s soybean imports, 

our study does not account for the effects of Brazilian soybean futures in volatility transmission.  

The reasons are two-fold.  On one hand, the surge in China’s import of Brazilian soybean and the 

decrease import of the U.S. soybean in 2019 due to the trade conflict between the U.S. and China 

did not prove to be long lasting.25  In 2020, the value of U.S. soybean exports to China reached 

to 10.6 billion dollars, up by 59.05% in value and 52.15% in volume from the previous year 

when the U.S. and China reached Phase One trade agreement.  As of April 1, 2021, soybean 

exports to China have nearly tripled from the same period in 2019/2020 marketing year (USDA 

2021).  On the other hand, Li and Hayes (2017) find that U.S. soybean futures prices are leading 

the prices of Brazilian soybeans in the long run.  Moreover, B3 S.A., the main stock exchange in 

Brazil, has been jointly working with the CME Group for technology services and cross-listing 

of futures products since 2007.26  Previous studies on price discovery among internationally 

cross-listed securities find in general that home (origin) markets are dominant to foreign markets 

(Lieberman, Ben-Zion, Hauser 1999; Frijins, Gilbert, Tourani-Rad 2010).  The soybean futures 

contracts traded at B3 are cross-listed mini-soybean futures and options contracts from the CME 

 
25 The U.S. and Brazilian soybeans have different harvest times due to being in the Northern and Southern 

Hemispheres.  Before the U.S.-China trade dispute, there was almost no overlapping in the delivered months of 

imported soybeans: the import of the U.S. soybean typically peaks from November to March each year while that of 

Brazilian soybean peaks from May to September (Gale, Valdes, and Ash 2019).  During the U.S.-China trade 

conflict, China expanded the importing window from Brazil in order to offset declining import from the U.S.  

Therefore, the market share of Brazilian soybean increased from 53.31% in 2017 to 65.11% in 2019, while that of 

the U.S. soybean sharply decreased from 34.39% to 19.21%.  These data are obtained from the UN Comtrade 

Database, available at https://comtrade.un.org/data/. 
26 The introduction for the existing cooperation between the CME Group and B3 S.A. in soybean futures can be 

retrieved from https://www.cmegroup.com/media-room/press- releases/2020/6/22/cme_group_and_b3tojointly 

developnewsoybeanfuturescontractsconnec.html. 
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Group.  Although Chinese retaliatory tariff caused a six-month divergence between Brazil and 

U.S. prices, anticipation that China might resume its import from the U.S. contributed to rebound 

in futures prices.  For these reasons, our study does not account for the effects from Brazilian 

soybeans in volatility transmission between the U.S. and China futures markets.  As the CME 

Group offers a new contract to reflect Brazilian export prices at the port of Santos since the third 

quarter of 2020, a future study could incorporate the role of Brazilian soybean in the volatility 

transmission across U.S. and China.  
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Table 2.1. Specifications of Futures Contracts 

Exchange  Product  First Trading Date  Delivery Months  Price Quotation  Contract Unit 

DCE  Soybean meal  12/22/2004  Jan., Mar., May, Jul., Aug., Yuan/MT  10MT 
      Sep., Nov., Dec.     

DCE  Soybean oil  1/9/2006  Jan., Mar., May, Jul., Aug., Yuan/MT  10MT 
      Sep., Nov., Dec.     

CBOT  Soybean  10/5/1936  Jan., Mar., May, Jul., Aug., Cent/bushel  5,000 bushels 
      Sep., Nov.     

Notes: DCE = Dalian Commodity Exchange; CBOT = Chicago Board of Trade; MT = Metric ton; 10 MT of soybean meal = 463.9 

bushels of soybeans; 10 MT of soybean oil =2060 bushels of soybeans.  
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Table 2.2. Summary Statistics of Returns 

 Asynchronous Futures Returns   Synchronized Futures Returns 

 DCE  DCE  CBOT  DCE  DCE 

 Soybean Meal  Soybean Oil  Soybean  Soybean Meal  Soybean Oil 

Mean 0.033   0.000    0.030   0.033   -0.001  

Std. Dev. 1.135   1.092   1.450   1.212   1.191  

Min -5.211   -5.661   -7.411   -8.216   -8.412  

Max 5.337   4.772   6.445   6.719   5.434  

Skewness -0.128   -0.421   -0.170   -0.159   -0.376  

Kurtosis 5.668   6.492   5.527   6.101   6.620  

Observations 3256   3256   3256   3252   3252  

ADF test -50.822 *** 
 

-50.434 *** 
 

-57.406 ***  -54.797 ***  -54.480 *** 

Normality 974.894 *** 
 

1750.546 *** 
 

882.117 ***  1316.800 ***  1852.250 *** 

White test 93.304 *** 
 

271.653 *** 
 

141.633 ***  173.648 ***  315.693 *** 

ARCH effect 277.316 *** 
 

458.036 *** 
 

255.154 ***  323.910 ***  419.123 *** 

Ljung-Box(5) 50.510 *** 
 

61.423 *** 
 

3.254   12.789 **  14.627 ** 

Ljung-Box(25) 89.922 *** 
 

83.187 *** 
 

27.325   57.128 ***  44.660 *** 

Notes:  Returns are calculated as the percentage change in the settlement prices from one day to the next. DCE = Dalian Commodity 

Exchange; CBOT = Chicago Board of Trade. ADF test is the augmented Dickey-Fuller stationarity test with the null hypothesis of a 

unit root. Normality test is the Jarque-Bera test with the null hypothesis of normally distributed returns. White test is a 

heteroskedasticity test with the null hypothesis of homoskedasticity. ARCH effect is a Lagrange multiplier test for autoregressive 

conditional heteroskedasticity (ARCH) with the null hypothesis of no ARCH effects. Ljung-Box is an autocorrelation test with the null 

hypothesis of independently distributed returns. Five lags are used for the ADF, White, and ARCH effect tests; both five and twenty-

five lags are used for the Ljung-Box test. The asterisks *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, 

respectively. 
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Table 2.3. Correlations of Returns 

 DCE DCE CBOT 

 Soybean Meal Soybean Oil Soybean 

Asynchronous Returns 

Soybean Meal 1.000   

Soybean Oil 0.639 1.000  

Soybean 0.238 0.222 1.000 

Synchronous Returns 

Soybean Meal 1.000   

Soybean Oil 0.570 1.000  

Soybean 0.729 0.615 1.000 

Notes: The Pearson correlation coefficients are reported. DCE=Dalian Commodity Exchange; 

CBOT = Chicago Board of Trade.  
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Table 2.4. MGARCH-X-BEKK: Conditional Mean Equation Parameters 

 
Notes: The sample period is from January 24, 2006 to December 31, 2019. The estimated 

coefficients on each term in the conditional mean equations given in (2.5) are presented. 

Standard errors are given in parentheses and p-values are in brackets. 𝑅𝑖,𝑡−𝑝 is the continuously 

compounded daily return in market i on day t-p.  DCE = Dalian Commodity Exchange; CBOT = 

Chicago Board of Trade.  Subscripts M, S, and O represent DCE soybean meal, DCE soybean 

oil, and CBOT soybean, respectively.  The spillover test from markets j and ℓ to market i is a 

joint exclusion test of those markets' lagged returns in the return equation of market i,  𝑅𝑖,𝑡−𝑝 =

Rℓ,𝑡−𝑝 = 0, ∀𝑗, ℓ ≠ 𝑖,  ∀𝑝. The overall exogeneity test is a joint exclusion test of all lagged 

returns across all equations.  The asterisks *, **, and *** indicate statistical significance at the 

10%, 5%, and 1% level, respectively. 

 

 

  

 

Constant 0.021 ** -0.003 0.026

(0.011) (0.013) (0.013)

0.046 *** -0.005 -0.006

(0.012) (0.012) (0.015)

-0.018 -0.028 ** -0.030 *

(0.013) (0.013) (0.016)

-0.014 0.043 *** 0.023

(0.014) (0.015) (0.017)

-0.007 0.025 * 0.028 *

(0.012) (0.015) (0.016)

-0.010 -0.006 -0.052 ***

(0.010) (0.011) (0.012)

0.037 *** 0.032 *** 0.009

(0.012) (0.012) (0.015)

Spillover test (    ) 11.442 ** 10.385 ** 11.189 **

[0.022] [0.034] [0.025]

Overall exogeneity test (    ) 33.322 ***

[0.000]

DCE DCE CBOT

Soybean Meal Soybean Oil Soybean

(M) (O) (S)

 𝑀,𝑡−1

 𝑀,𝑡−2

 𝑂,𝑡−1

 𝑂,𝑡−2

 𝑆,𝑡−1

 𝑆,𝑡−2

 2

 2
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Table 2.5. MGARCH-X-BEKK: Conditional Variance Equation Parameters  

 

0.138 *** 0.136 *** 0.150 ***

(0.014) (0.019) (0.036)

0.093 *** -0.091 ***

(0.013) (0.034)

0.083 *

(0.043)

0.138 *** -0.028 0.061 ***

(0.019) (0.020) (0.019)

-0.036 * 0.148 *** 0.081 ***

(0.021) (0.022) (0.020)

-0.039 -0.100 *** 0.158 ***

(0.026) (0.027) (0.027)

0.995 *** 0.014 ** -0.030 ***

(0.006) (0.007) (0.008)

0.003 0.984 *** -0.026 ***

(0.007) (0.008) (0.009)

0.042 *** 0.066 *** 0.925 ***

(0.011) (0.013) (0.013)

0.136 *** 0.214 *** -0.087

(0.046) (0.055) (0.109)

0.105 *** 0.009

(0.037) (0.093)

0.036

(0.130)

-0.039 -0.043 -0.067 *

(0.025) (0.026) (0.040)

0.014 0.053

(0.022) (0.036)

0.090 **

(0.043)

Spillover test (    ) 18.411 *** 32.555 *** 28.866 ***

[0.001] [0.000] [0.000]

Diagonal BEKK test (    ) 86.930 ***

[0.000]

Soybean

(S)

CBOT

Soybean Oil

(O)

DCE

Soybean Meal

(M)

DCE

Notes:  The sample period is from January 24, 2006 to December 31, 2019.  The estimated 

coefficients on each term in the conditional variance equations given in (2.6) are presented.  

Standard errors are in parentheses and p-values are in brackets.  DCE = Dalian Commodity 

Exchange; CBOT = Chicago Board of Trade. Subscripts i  = M , S , and O  represent DCE 

soybean meal, DCE soybean oil, and CBOT soybean, respectively.  The spillover test from 

markets j and ℓ  to market i  is a joint exclusion test of those markets' ARCH and GARCH 

terms in the variance eqution of market i,                                                            .  The 

diagonal BEKK test is a joint exclusion test of all off-diagonal elements in matrices A and B 

defined in equation (2.7).  The asterisks *, **, and *** indicate statistical significance at the 

10%, 5%, and 1% level, respectively.

 2

 2

 𝑗𝑖 = 𝑎ℓ𝑖 = 𝑏𝑗𝑖 = 𝑏ℓ𝑖 = 0,∀𝑗, ℓ ≠ 𝑖

c𝑖𝑀

c𝑖𝑂

c𝑖𝑆

𝑎𝑖𝑀

𝑎𝑖𝑂

𝑎𝑖𝑆

𝑏𝑖𝑀

𝑏𝑖𝑂

𝑏𝑖𝑆

𝑔1,𝑖𝑀

𝑔1,𝑖𝑂

𝑔1,𝑖𝑆

𝑔2,𝑖𝑀

𝑔2,𝑖𝑂

𝑔2,𝑖𝑆
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Table 2.6. MGARCH-X-BEKK in Two Subperiods: Conditional Mean Equation Parameters 

  January 2006 - August 2009   October 2009 - December  2019 

 DCE  DCE  CBOT  DCE  DCE  CBOT 

 

Soybean 

Meal  Soybean Oil  Soybean  Soybean Meal  Soybean Oil  Soybean 

 (M)  (O)   (S)  (M)  (O)   (S) 

Constant 0.072 *  0.091 **  0.096 **  0.013   -0.023   0.011  
 (0.038) 

 

 (0.036) 
 

 (0.047)   (0.017)   (0.018)   (0.021)  
𝑅𝑀,𝑡−1 -0.016   -0.118 ***  -0.019   0.044 *  0.023   -0.015  
 (0.048)   (0.040)   (0.050)   (0.024)   (0.023)   (0.029)  
𝑅𝑀,𝑡−2 0.025   0.015   0.020   -0.031   -0.031   -0.040  
 (0.031)   (0.031)   (0.036)   (0.022)   (0.021)   (0.027)  
𝑅𝑂,𝑡−1 0.038   0.090 **  0.096 **  -0.011   0.030   0.007  
 (0.040)   (0.038)   (0.048)   (0.022)   (0.021)   (0.028)  
𝑅𝑜,𝑡−2 -0.005   -0.007   0.040   -0.018   0.020   0.012  
 (0.032)   (0.034)   (0.040)   (0.021)   (0.022)   (0.027)  
𝑅𝑆,𝑡−1 -0.001   0.064 *  -0.093 **  -0.008   -0.026   -0.030  
 (0.035)   (0.033)   (0.043)   (0.02)   (0.021)   (0.027)  
𝑅𝑆,𝑡−2 -0.032   -0.019   -0.057 *  0.062 ***  0.052 ***  0.032  
 (0.026)    (0.025)    (0.031)     (0.015)    (0.016)   (0.019)   

Spillover test ( 2) 2.697    11.465 **   6.628 
 

 17.923 ***  14.231 ***   2.634  
 [0.610]   [0.022]   [0.157]   [0.001]   [0.007]   [0.621]  
Overall exogeneity 

test ( 2)       
25.873 *** 

       
26.434 *** 

              [0.011]                 [0.009]  

Notes: The estimated coefficients on each term in the conditional mean equations given in (2.5) are presented.  Standard errors are given in 

parentheses and p-values are in brackets. 𝑅𝑖,𝑡−𝑝 is the continuously compounded daily return in market i on day t-p.  DCE = Dalian Commodity 

Exchange; CBOT = Chicago Board of Trade.  Subscripts M, S, and O represent DCE soybean meal, DCE soybean oil, and CBOT soybean, 

respectively.  The spillover test from markets j and ℓ to market i is a joint exclusion test of those markets' lagged returns in the return equation of 

market i,   𝑗,𝑡−𝑝 =  ℓ,𝑡−𝑝 = 0, ∀𝑗, ℓ ≠ 𝑖,  ∀𝑝.  The overall exogeneity test is a joint exclusion test of all lagged returns across all equations.  The 

asterisks *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. 
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Table 2.7. MGARCH-X-BEKK in Two Subperiods: Conditional Variance Equation 

Parameters  

 
Notes: The estimated coefficients on each term in the conditional variance equations given in (2.6) are 

presented.  Standard errors are in parentheses and p-values are in brackets.  DCE = Dalian Commodity 

Exchange; CBOT = Chicago Board of Trade.  Subscripts i = M, S, and O represent DCE soybean meal, 

DCE soybean oil, and CBOT soybean, respectively.  The spillover test from markets j and ℓ  to market i is 

a joint exclusion test of those markets' ARCH and GARCH terms in the variance equation of market i, 

 𝑗𝑖 = 𝑎ℓ𝑖 = 𝑏𝑗𝑖 = 𝑏ℓ𝑖 = 0,  ∀𝑗,  ℓ ≠ 𝑖. The diagonal BEKK test is a joint exclusion test of all off-diagonal 

elements in matrices A and B defined in equation (2.7).  The asterisks *, **, and *** indicate statistical 

significance at the 10%, 5%, and 1% level, respectively. 

 

0.463 *** -0.002 0.157 * 0.142 *** 0.109 *** 0.204 ***

(0.090) (0.060) (0.089) (0.026) (0.034) (0.061)

0.116 *** 0.202 *** 0.046 * -0.158 ***
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Figure 2.1. Trading hours in DCE and CBOT futures markets 

Notes: World time is Greenwich Mean Time.  DCE = Dalian Commodity Exchange; CBOT = Chicago Board of Trade. We calculate 

close-to-close returns by using settlement prices in each market. For brevity, we only plot daytime trading hours, DT.  The shaded area 

shows the overlap of close-to-close returns between DCE and CBOT on day t.  We use CBOT futures market as an anchor for 

synchronization to convert the asynchronous returns (black line) to synchronous returns (red line).  The key for synchronization is to 

predict the unobservable component  𝜉𝑡, representing what the return would be if the market were open.  
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Figure 2.2. Predicted conditional variances 

Notes: The conditional variances are derived from the MGARCH-X-

BEKK estimation results. The sample period is January 24, 2006-

December 31, 2019. 
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Figure 2.3. Annual average conditional correlations 

Notes: Annual average correlations are derived from the daily conditional 

correlations estimated from the MGARCH-X-BEKK model.  The sample 

period is January 24, 2006-December 31, 2019. 
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Figure 2.4. Volatility impulse response functions: DCE soybean 

meal shock 

Notes: The impulse responses are the results of a 1% shock in the conditional 

variance of DCE soybean meal market where the shock first occurs.  The 

responses are derived from the MGARCH-X-BEKK model estimation results 

and measured in percentages.  Days on the horizontal axis refer to the time 

horizon following the shock.  Full period corresponds to January 24, 2006-

December 31, 2019, pre-2009 period to January 24, 2006-August 31, 2009, 

and post-2009 period to October 9, 2009-December 31, 2019. 
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Figure 2.5. Volatility impulse response functions: DCE soybean oil 

shock 

Notes: The impulse responses are the results of a 1% shock in the conditional 

variance of DCE soybean oil market where the shock first occurs.  The responses 

are derived from the MGARCH-X-BEKK model estimation results and measured 

in percentages.  Days on the horizontal axis refer to the time horizon following 

the shock.  Full period corresponds to January 24, 2006-December 31, 2019, pre-

2009 period to January 24, 2006-August 31, 2009, and post-2009 period to 

October 9, 2009-December 31, 2019. 
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Figure 2.6. Volatility impulse response functions: CBOT soybean shock 

Notes: The impulse responses are the results of a 1% shock in the conditional variance of 

CBOT soybean market where the shock first occurs. The responses are derived from the 

MGARCH-X-BEKK model estimation results and measured in percentages.  Days on the 

horizontal axis refer to the time horizon following the shock.  Full period corresponds to 

January 24, 2006-December 31, 2019, pre-2009 period to January 24, 2006-August 31, 

2009, and post-2009 period to October 9, 2009-December 31, 2019. 
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CHAPTER 3 

A MULTIVARIATE QUANTILE APPRROACH FOR TESTING ASYMMETRIC PRICE 

TRANSMISSION IN A JOINT PRODUCTION PROCESS 27 

27 Yang Y., and B. Karali. To be submitted to Journal of Agricultural and Resource Economics 
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Abstract 

Output markets usually respond to input price changes asymmetrically, with prices rising faster 

than they fall, known as the rockets and feathers pattern.  This pattern, however, has not been 

empirically tested in the literature for a joint production process, in which an input is transformed 

into more than one output, despite strong connections among the markets and the possibility that 

one output’s price response to an input price change might depend on the other output’s price 

level.  We fill this gap by applying a vector error correction quantile (VECQ) framework to 

investigate if and under which market conditions such asymmetric price transmission occurs.  

We apply our model to two soybean end products, soybean meal and oil, that are jointly 

produced by crushing soybeans.  We find that the prices of end products respond more to input 

price increases rather than decreases when their own market is bullish but the other product’s 

market is bearish, confirming the rockets and feathers pattern at the extreme deciles of the price 

change distributions. 
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“Prices rise like rockets but fall like feathers.” —Mariano Tappata (Tappata 2009) 

 

Introduction 

Price is one of the mechanisms to transmit shocks among markets linked through the supply 

chain.  A well-known empirical finding is that output prices do not symmetrically react to the 

changes in input prices, with output prices rising faster than they fall, termed as the “rockets and 

feathers” pattern (Bacon 1991).  For instance, retail gasoline prices rise quickly as crude oil 

prices increase, but pump prices remain high even as crude oil prices fall.  While Peltzman 

(2000) finds the prevalence of price asymmetry in more than 250 product categories, other 

researchers have pointed out the challenges in econometric modeling for testing price 

asymmetry.28 

Previous studies, both theoretical and empirical, consider the production process for a 

single output.29  But many raw materials or products can be processed into more than one output.  

von Cramon-Taubadel and Goodwin (2021) point out that price (or volatility) transmission from 

an input to one of its end products can be affected by the prices of other outputs because of 

strong connections among the markets; and therefore, the estimation equations for price 

asymmetry might be misspecified when one ignores the other output’s price levels.  As the 

authors state in their review of price transmission in agricultural markets, the issue of vertical 

 
28 For example, the presence of structural breaks leads to the over-rejection of the null hypothesis of price symmetry 

in Peltzman’s study (von Cramon-Taubadel and Meyer 2001), and the failure to account for the characteristics of 

price series can bias the results of asymmetry tests (Tifaoui and von Cramon-Taubadel 2017). 
29 Although not in the context of vertical price transmission two previous studies investigate the implications of joint 

production on price elasticities of demand.  Houck (1964) theoretically shows the price elasticity of a raw 

agricultural product as the harmonic average of the price elasticities of the jointly-produced end products.  Piggott 

and Wohlgenant (2002) expand on Houck’s model and allow for the possibility of trade of both the raw product and 

its joint outputs. 
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price transmission in joint production has only been touched upon in the literature and the 

standard practice has been to associate the price of an upstream product with the price of only 

one of the downstream products by ignoring the interrelationships among the outputs (e.g., 

Kinnucan and Forker 1987; von Cramon-Taubadel 1998; Serra, Gil, and Goodwin 2006).30 

Our study fills this gap in the empirical literature and contributes to the asymmetric price 

transmission literature both contextually and methodologically.  To the best of our knowledge, 

our study is the first to test for asymmetric price transmission in a  joint production process and 

to allow output price responses to vary with the prices of other end products.  While Borenstein, 

Cameron, and Gilbert (1997) consider the possible impact of heating oil prices in their study of 

gasoline price responses to crude oil price changes, they do not take into account the long-run 

relationships between these products.  On the theoretical side, Antonova (2013) derives 

elasticities of vertical price transmission in joint production and points out that the differences in 

the price transmission of jointly-produced products depend on the independent demands for 

those goods.  Even though her study is the first attempt to investigate the theoretical aspects of 

price transmission for jointly-produced outputs, it falls short of providing an empirical 

application of the theoretical results and leaves it as a future work.  We take up this task and 

provide the first empirical test of price asymmetry in a joint production process.  We accomplish 

this through a multivariate quantile framework that provides flexibility in allowing output price 

responses to depend on each other.31  Specifically, we investigate price responses for every pair 

 
30 In addition to von Cramon-Taubadel and Goodwin (2021), Meyer and von Cramon-Taubadel (2004) and Frey and 

Manera (2007) also provide excellent reviews on the possible reasons for price asymmetry and econometric methods 

used in the literature to identify price asymmetry. 
31 In the case of a single production process, extensive literature empirically tests price asymmetry by threshold 

autoregressive models (e.g., Goodwin and Holt 1999; Richards, Gómez, and Lee 2014), error correction models 

(e.g., von Cramon-Taubadel 1998), and asymmetric multivariate generalized autoregressive conditional 

heteroskedasticity models (e.g., Abdelradi and Serra 2015). 
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of the quantile indices of output prices.  As a result, we test for price asymmetry in the end 

products of a joint production process across the entire distribution and provide a comprehensive 

picture of locations where asymmetry occurs. 

As an application, we choose the soybean complex (soybean, soybean meal, and soybean 

oil) because soybean crushing is a relatively well-defined joint production with fixed 

proportions.  We find evidence of rockets and feathers patterns (i.e., positive price asymmetry) in 

the soybean complex when the realizations of soybean end products are in the opposite extreme 

deciles of their price change distributions.  This finding suggests that a positive price asymmetry 

in jointly produced commodities might exist when one market is bullish whereas the other is 

bearish.  Thus, producers are more likely to pass extra production costs onto consumers when 

there is a high demand for one of the end products (bullish sentiment) and low demand for the 

other end product (bearish sentiment).  This could happen when the end products have unrelated 

demand drivers.  Because soybean meal and oil are consumed for different purposes (animal feed 

for soybean meal; cooking oil and biodiesel for soybean oil), their demands often change 

independently of each other (Dronne and Tavéra 1988; United Soybean Board 2019).  In fact, in 

recent years the demand for soybean oil, and hence its price, surged due to increased demand for 

biodiesel, the vegetable oil shortages out of Ukraine, and drought conditions in South America 

and Canada, leading to an oversupply of soybean meal and thereby reducing meal price (Ates 

and Bukowski 2022; Lusk 2022).  Our study shows that asymmetric price transmission might 

emerge as a pricing strategy in such cases.  Thus, our study not only empirically tests price 

asymmetry in a joint production process for the first time, but also provides an econometric tool 

for a comprehensive analysis of price asymmetry takes into account the dependence of output 

responses on each other. 
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Methods 

To explore whether the occurrence of price asymmetry varies by the market conditions of the 

other jointly-produced output, we expand on the multivariate quantile autoregressive (VARQ) 

model of Montes-Rojas (2019) by incorporating quantile cointegrating relationships.  In this 

section, we first briefly discuss how we test for cointegration in the soybean complex and how 

we base our model on the weak exogeneity of soybean prices, and then we introduce a bivariate 

vector error correction quantile (VECQ) model for soybean end products: soybean meal and 

soybean oil. 

Cointegr tion tests 

Testing for cointegrating relationships among price series is necessary to avoid spurious 

correlations among non-stationary data.  Moreover, soybean meal and oil are jointly produced in 

a fixed proportion when crushing soybeans.  As a result, the price series of the soybean complex 

is expected not to drift too far apart in the long run.32  In the case of cointegrated series, the 

VARQ model is misspecified and therefore a VECQ model needs to be employed. 

We denote the 𝜏𝑖 quantile of log price of commodity i at time t, 𝑝𝑖,𝑡, as 𝑞𝑝𝑖,𝑡(𝜏𝑖), where i 

= M (soybean meal), O (soybean oil), and S (soybean).  The vector 𝐩−i,t =

(… , 𝑝𝑖−1,𝑡, 0, 𝑝𝑖+1,𝑡, … )
′ includes all prices excluding commodity i and ∆𝐩−i,t =

(… , ∆𝑝𝑖−1,𝑡, 0, ∆𝑝𝑖+1,𝑡, … )
′ is the corresponding first differences.  We use the augmented quantile 

 
32 Dronne and Tavéra (1988) theoretically derive a cointegrating relationship among these three commodities by 

maximizing the long-run profit of soybean processors and provide empirical evidence for such a long-run 

equilibrium relationship using the two-step cointegration test of Engle and Granger (1987).  In addition, 

Simanjuntak et al. (2020) examine the international prices provided by the Food and Agriculture Organization and 

find evidence of cointegration in the soybean complex. 
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regression (Xiao 2009) to investigate the cointegrating relationships at different conditional 

quantiles, 𝑞𝑝𝑖,𝑡(𝜏𝑖|𝐩−i,t), as follows: 

(3.1)  𝑞𝑝𝑖,𝑡(𝜏𝑖|𝐩−i,t) = 𝛼 + 𝛃′𝐩−i,t +∑ Δ𝐩−𝑖,𝑡−𝑗
′𝐽

𝑗=−𝐽 𝛑j + 𝐹𝜀
−1(𝜏𝑖), 

where 𝐹𝜀
−1(𝜏𝑖) is the inverse cumulative distribution function of the residuals for each 

commodity i.33  The cointegrating relationships can be tested based on the quantile regression 

residual as 𝜀𝜏𝑖,𝑡 = 𝑝𝑖,𝑡 − 𝑞𝑝𝑖,𝑡(𝜏𝑖|𝐩−i,t).
34 

We follow the Engle-Granger two-step method to identify the existence of cointegrating 

relationships by examining whether the residuals from the conditional quantiles are stationary or 

not.  We select nine quantile indices evenly located in the price distribution of each commodity 

from 0.1 to 0.9 and show that prices are cointegrated at these selected quantile indices, 

necessitating the inclusion of error correction terms in the VARQ model. 

We k exogeneity tests 

Because our main focus is on the asymmetric responses in output prices following a change in 

the input price, we are solely interested in modeling the output price equations.  However, this 

requires the exogeneity of soybean prices.  In fact, Ericsson (1992) argues that the exogeneity 

assumption of the nuisance variables permits simpler modelling strategies and reduces 

computational complexities in a cointegrated system.  Therefore, we first demonstrate that 

soybean prices could be treated as weakly exogenous, allowing us to build a bivariate VECQ 

 
33 Parameters 𝛼, 𝛃′, 𝛑𝐣 are functions of quantile index 𝜏𝑖, and each varies across different quantiles of 𝑝𝑖,𝑡 

distribution.  We omit the subscripts for the quantile index in the equation for a clear exposition. 
34 In our empirical analysis, the number of leads and lags, J, is two based on the Akaike information criterion. 
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model with only soybean end products. We explain these tests in detail and present their results 

in appendix A.   

Testing for  symmetric price responses b sed on condition l qu ntiles 

Quantile regression, introduced by Koenker and Bassett (1978), expands the least squares 

estimation for conditional means to quantile estimation for conditional quantiles over the entire 

distribution of the dependent variable.  The application of univariate quantile regression to price 

series provides more flexible modeling options for risk management and asymmetric price 

dynamics (e.g., Engle and Manganelli, 2004; Laporta, Merlo, and Petrella, 2018).35 

Extending the univariate quantile framework to a multivariate one is complicated because 

the lack of a natural ordering of a multidimensional Euclidean space leads to a loose definition of 

multivariate quantiles (Serfling 2002).  Hallin, Paindaveine, and Šiman (2010) point out a close 

conceptional kinship between the quantile and depth, and bridge the gap between these two 

concepts to provide a hyperplane-based definition of multivariate quantiles and define 

multivariate quantiles of a random vector as directional objects.36,37  Montes-Rojas (2019) 

applies this definition of multivariate quantiles to generalize the univariate quantile 

autoregressive regression proposed by Koenker and Xiao (2006) to a multivariate framework and 

 
35 Univariate quantile methods are used in studies on the price dynamics in energy markets (Schweikert 2019), the 

impacts of public and private stocks on prices in corn and wheat markets (Chavas and Li 2020), the farm-retail price 

relationship in the presence of the pork cycle (Chavas and Pan 2020; Chavas 2021), and the movements in futures 

and spot prices (Huang, Serra, and Garcia 2020). 
36 Another method for modeling multivariate quantiles, for instance, is to factorize the joint distribution in a 

recursive structure (Chavleishvili and Manganelli 2019) or to combine univariate quantile autoregressions via a 

copula function (Li and Chavas 2023).  
37 More specifically, Hallin, Paindaveine, and Šiman (2010) defines the multivariate quantiles of a random vector 

𝐘 = (𝑦1, … , 𝑦𝑚)′ as directional objects: 𝑚 − 1 dimensional hyperplanes indexed by vectors 𝛕 ranging over the open 

unit ball of ℝ𝑚.  The 𝛕 quantile of Y is defined as the 𝜏-quantile hyperplane of regressing 𝐮′Y on the marginals of 

𝚪𝑢
′Y and a constant, where Γ𝑢 is an arbitrary 𝑚 × (𝑚 − 1) matrix representing an orthonormal basis of the vector 

space orthogonal to u. 
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develops a VARQ model.  The VARQ model simultaneously solves a system of univariate 

quantile autoregressive models since the directional quantiles are univariate regression quantiles 

for a fixed orthonormal basis (Montes-Rojas 2017). 

More specifically, we first set up directional quantiles of each component in a vector at 

time t conditioning on its lags and exogenous variables, and then simultaneously solve a system 

of conditional directional quantile functions.  We further consider the cointegrating relationships 

among price series and augment the VARQ model with error correction terms to build a VECQ 

model.   

To capture the asymmetric responses of output prices to input price changes we segment 

∆𝑝𝑆,𝑡−𝑗 into increasing and decreasing parts, ∆𝑝𝑆,𝑡−𝑗
+ = 𝑚𝑎𝑥(∆𝑝𝑆,𝑡−𝑗, 0) and ∆𝑝𝑆,𝑡−𝑗

− =

𝑚𝑖𝑛(∆𝑝𝑆,𝑡−𝑗, 0).  After we identify cointegrating relationships, we denote 𝐗t = (∆𝐰t−1
′ , 𝐙t

′)′, 

where 𝐰t = (𝑝𝑀,𝑡, 𝑝𝑂,𝑡)′, 𝐙t = (𝐸𝐶̂𝑡−1, ∑ ∆𝑝𝑆,𝑡−𝑗
+𝐽

𝑗=0 , ∑ ∆𝑝𝑆,𝑡−𝑗
−𝐽

𝑗=0  )′, and 𝐸𝐶̂𝑡−1 are the 

estimated quantile cointegrating relationships defined in equation (3.1) among the price series at 

different multivariate quantiles 𝛎 = (𝜏𝑀, 𝜏𝑂)
′ with 𝜏𝑀 and 𝜏𝑂 representing quantile indices of 

soybean meal and oil, respectively.  We then write the directional quantiles as follows: 

(3.2) {𝜸(𝜏𝑖, 𝐝, 𝚪d)′, 𝛉(𝜏𝑖, 𝐝, 𝚪d)
′, 𝛼(𝜏𝑖, 𝐝)}

′ ≡ argmin E{𝜌𝜏𝑖(𝐝
′∆𝐰t − 𝛋′𝚪𝐝

′∆𝐰t − 𝛉′𝐗t − 𝛼)}, 

where d is a directional vector of any one of the soybean end products and 𝚪𝒅 is a directional 

vector of the other product.  𝜌𝜏𝑖(𝜀) = 𝜀(𝜏𝑖 − 𝐼(𝜀 < 0)), ∀ ε ∈ ℝ, is the loss function, where 𝐼(∙) 

is an indicator that is equal to one if the statement in the parenthesis is correct and zero 

otherwise, and 𝛼 represents a constant.  With a fixed orthonormal basis (𝐝, 𝚪𝑑), and a given 

multivariate quantile 𝛎, the system of two conditional quantile functions can be written as, 
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(3.3)  𝑞𝑀(𝛎|𝐗t) = 𝜅𝑀(𝜏𝑀)𝑞𝑂(𝛎|𝐗t) + ∑ 𝐚Mℓ(𝜏𝑀)
′∆𝐰t−ℓ

ℒ
ℓ=1 + ∑ 𝑏𝑀𝑗

+ (𝜏𝑀)∆𝑝𝑆,𝑡−𝑗
+𝐽

𝑗=0   

+∑ 𝑏𝑀𝑗
− (𝜏𝑀)

𝐽
𝑗=0 ∆𝑝𝑆,𝑡−𝑗

− + 𝑐𝑀(𝜏𝑀)𝐸𝐶̂𝑡−1 + 𝜇𝑀(𝜏𝑀) + 𝜀𝑀,𝑡(𝜏𝑀), 

      𝑞𝑂(𝝂|𝐗t) = 𝜅𝑂(𝜏𝑂)𝑞𝑀(𝛎|𝐗t) + ∑ 𝐚Oℓ(𝜏𝑂)
′∆𝐰t−ℓ

ℒ
ℓ=1 + ∑ 𝑏𝑂𝑗

+ (𝜏𝑂)
𝐽
𝑗=0 ∆𝑝𝑆,𝑡−𝑗

+  

+∑ 𝑏𝑂𝑗
− (𝜏𝑂)

𝐽
𝑗=0 ∆𝑝𝑆,𝑡−𝑗

− + 𝑐𝑂(𝜏𝑂)𝐸𝐶̂𝑡−1+ 𝜇𝑂(𝜏𝑂) + 𝜀𝑂,𝑡(𝜏𝑂). 

Note that our model allows for asymmetry only in the short-run output price responses to 

soybean price shocks while the long-run relationship and short-run output price effects are 

symmetric. 

To simultaneously solve the equations in the above system, we rewrite the coefficients in 

vectors and matrices as follows: 

(3.4)  𝐪∆𝐰𝒕
(𝛎|𝐗t) = (𝑞𝑀(𝛎|𝐗t), 𝑞𝑂(𝛎|𝐗t))

′, 

 𝛋(𝛎) = (𝜅𝑀(𝜏𝑀), 𝜅𝑂(𝜏𝑂))
′,  a(𝛎)=[

a𝑀1(𝜏𝑀) ⋯ a𝑀ℒ(𝜏𝑂)

a𝑂1(𝜏𝑂) ⋯ a𝑂ℒ(𝜏𝑂)
], 

𝐛+(𝛎)=[
𝑏𝑀0
+ (𝜏𝑀) ⋯ 𝑏𝑀𝐽

+ (𝜏𝑀)

𝑏𝑂0
+ (𝜏𝑂) ⋯ 𝑏𝑂𝐽

+ (𝜏𝑂)
], 𝐛−(𝛎) = [

𝑏𝑀0
− (𝜏𝑀) ⋯ 𝑏𝑀𝐽

− (𝜏𝑀)

𝑏𝑂0
− (𝜏𝑂) ⋯ 𝑏𝑂𝐽

− (𝜏𝑂)
], 

𝐜(𝛎) = [
𝑐𝑀(𝜏𝑀)
𝑐𝑂(𝜏𝑂)

], 𝛍(𝛎) = [
𝜇𝑀(𝜏𝑀)
𝜇𝑂(𝜏𝑂)

], and 𝛆t(𝛎) = [
𝜀𝑀,𝑡(𝜏𝑀)

𝜀𝑂,𝑡(𝜏𝑂)
]. 

Following Montes-Rojas (2019), the reduced-form VECQ model is defined as: 

(3.5)     𝐪∆𝐰𝒕
(𝛎|𝐗t) = {𝐈2 − 𝛋(𝛎)}−1

{
 
 

 
 
𝐚(𝛎) [

∆𝐰′
𝐭−𝟏

⋮
∆𝐰′

𝐭−𝓛

] + 𝐛+(𝛎) [

∆𝑝𝑆,𝑡
+

⋮
∆𝑝𝑆,𝑡−𝐽

+
] + 𝐛−(𝛎) [

∆𝑝𝑆,𝑡
−

⋮
∆𝑝𝑆,𝑡−𝐽

−
]

           +𝐜(𝛎)𝐸𝐶′̂
𝑡−1 + 𝛍(𝛎) + 𝛆𝐭(𝛎) }

 
 

 
 

, 
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where 𝐈𝟐 is a 2 ×2 identity matrix.  Therefore, the price responses of soybean end products to 

soybean price increases are 

(3.6)     𝐁+(𝛎):= {𝐈2 − 𝛋(𝛎)}−1𝐛+(𝛎) = [
𝐵𝑀0
+ (𝝂) … 𝐵𝑀𝐽

+ (𝝂)

𝐵𝑂0
+ (𝝂) … 𝐵𝑂𝐽

+ (𝝂)
], 

and the price responses to soybean price decreases are  

(3.7)      𝐁−(𝛎):= {𝐈2 − 𝛋(𝛎)}−𝟏𝐛−(𝛎) = [
𝐵𝑀0
− (𝝂) … 𝐵𝑀𝐽

− (𝝂)

𝐵𝑂0
− (𝝂) … 𝐵𝑂𝐽

− (𝝂)
]. 

In addition, the adjustment speeds, 𝐂(𝛎):= {𝐈2 − 𝛋(𝛎)}−𝟏𝐜(𝛎), measure how quickly the prices 

adjust when they depart from the long-run equilibrium. 

We focus on the coefficients on soybean price changes from (6)-(7) to test price 

asymmetry for short-run responses of soybean end products.  The cumulative price response of 

output i, i = M, O, to an increase in the soybean price at different multivariate quantiles 𝛎 is 

(3.8)        𝜆𝑖
+(𝛎) = ∑ 𝐵𝑖𝑗

+(𝛎)𝐽
𝑗=0 , 

and the cumulative response to a decrease in the soybean price is 

(3.9)       𝜆𝑖
−(𝛎) = ∑ 𝐵𝑖𝑗

−(𝛎)𝐽
𝑗=0 . 

The difference between these responses, 𝜆𝑖 = 𝜆𝑖
+(𝛎) − 𝜆𝑖

−(𝛎), can be used for testing asymmetric 

price transmission.38  If the difference is statistically different from zero, this will suggest 

existence of asymmetric price responses and its magnitude will show the degree of the price 

asymmetry.  If the sign of this difference is positive, there is a positive price asymmetry, where 

output prices respond more fully to a positive shock in soybean prices, an indication of the 

 
38 In our empirical analysis, the number of lags, J, is one based on the Akaike information criterion. 
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rockets and feathers pattern.  Similarly, a negative sign indicates negative price asymmetry, 

where output prices respond more to a negative shock in soybean prices. 

Data 

We use monthly cash prices from January 1984 to January 2020 obtained from Barchart 

(formerly, Commodity Research Bureau Trader) representing input (soybean—#1 yellow, Central 

Illinois,) and output (soybean meal—48% protein, Decatur, Illinois— and soybean oil—crude, 

Decatur, Illinois) prices.39  Typically, one bushel of soybeans is about 60 pounds, which yields 48 

pounds of soybean meal (with 44% protein content), 11 pounds of soybean oil, and one pound of 

waste.40  When soybean meal and oil prices are converted to dollars per bushel, they account for 

the difference in yield from one bushel of soybeans and represent their crush value (Irwin 2017).  

As shown in figure 3.1(a), soybean meal is more highly valued end product of soybeans on a per 

bushel basis.  In contrast, when the difference in the yield is not considered, soybean oil is the 

more valued product on a per pound basis (Irwin 2017).  Figure 3.1(b) displays the combined 

crush value of soybean meal and oil along with soybean prices.  It is evident that the gap 

between the crush gross revenue and the input cost is wider at times, especially during the latter 

part of the sample. 

Table 3.1 reports summary statistics of log prices and their first differences.41  All log 

price series have platykurtic distributions with positive skewness, indicating the right sides of 

 
39 Illinois has been the largest soybean-producing state in the last five years.  According to the National Agricultural 

Statistics Service, Illinois produced 672.64 million bushels of soybeans in 2021, followed by Iowa with 621.86 

million bushels and Minnesota with 356.26 million bushels.  Therefore, Illinois prices can be regarded as 

representative of the U.S. soybean crushing industry. 
40 These conversion factors are published by the U.S. Soybean Export, available at https://ussec.org/resources/ 

conversion-table/. 
41 The first-differenced log prices also represent returns. We use returns, first-differenced log prices, and log price 

changes interchangeably throughout the article. 



59 

 

price distributions are fatter.  Soybean log prices are more skewed to the right than the other two 

commodities.  On the other hand, the first-differenced log prices (i.e., returns) are negatively 

skewed and have leptokurtic distributions, indicating log price series are heavy tailed compared 

to normal distribution.  Moreover, Jarque-Bera tests reject the normality of both log prices and 

their first differences, suggesting asymmetry in these distributions.  Augmented Dickey-Fuller 

tests show that stationarity in log prices is achieved through first differencing, and Ljung-Box 

tests reject the null hypothesis of no autocorrelation in all series.  In addition, based on the 

supremum Wald test we find no structural breaks during our sample period.42 

Empirical Results  

Quantile cointegration test results are presented in table 2.  We report the augmented Dickey-

Fuller (ADF) test statistics for a unit root in the estimated residuals of three log price series based 

on equation (3.1).  We reject the null hypothesis of a unit root at the 5% level or lower for each 

commodity, indicating that log prices are cointegrated at these selected quantile indices.  

Therefore, we augment the VARQ model of Montes-Rojas (2019) by including error correction 

terms to capture the adjustment speed when log prices depart from the long-run equilibrium and 

estimate our VECQ model.  Moreover, as shown in appendix A, the weak exogeneity assumption 

of soybean prices (in log form) is satisfied across selected multivariate quantiles and therefore 

we treat soybean as exogenous and use the bivariate VECQ model in equation (3.5) to test for 

asymmetric output price responses. 

 
42 The supremum Wald statistic is 12.81 with a p-value of 0.27 for soybeans, 15.15 with a p-value of 0.14 for 

soybean meal, and 6.67 with a p-value of 0.90 for soybean oil. 
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All coefficients in (3.5) vary across different quantiles of both soybean meal and oil 

return distributions and using multivariate quantile 𝛎 = (𝜏𝑀 ∈ (0.1, … , 0.9), 𝜏𝑂 ∈ (0.1, … , 0.9))′ 

leads to 81 estimates for each coefficient.  This makes presenting and interpreting the results 

challenging as the pattern of price movements could be affected from two different directions, 

either its own quantiles or quantiles of the other product.  For example, a 1% soybean price 

increase leads to a 1.04% contemporaneous increase in the soybean meal price when its own 

quantile index, 𝜏𝑀, and the quantile of soybean oil, 𝜏𝑂, are both 0.1.  The same input price 

increase, on the other hand, leads to a 1.26% contemporaneous increase in the soybean meal 

price when 𝜏𝑀 increases to 0.9 and 𝜏𝑂 stays at 0.1, and to a 0.90% increase when 𝜏𝑀 stays at 0.1 

and 𝜏𝑂 increases to 0.9.  For brevity, we present the results from the VECQ model at only 0.1, 

0.5, and 0.9 quantiles of both soybean meal and oil to represent extremely low, median, and 

extremely high levels, respectively, in tables 3 and 4.43  Since our main objective is to test for 

asymmetric output price responses to input price changes in the short run to infer existence of the 

rockets and feathers pattern, we only provide coefficient estimates on the soybean log price 

change variables in the table.44  Soybean prices have both contemporaneous and lagged effects 

on the prices of its end products.  Therefore, the cumulative price response of the end products to 

soybean price changes are the sum of the coefficients on the current and lagged changes in the 

soybean log price.  We report those cumulative price responses and the test results for price 

asymmetry (the difference between cumulative responses to positive and negative input price 

changes) in tables 3.3 and 3.4. 

 
43 Full results with fixed quantiles from 0.1 to 0.9 are available from the authors upon request. 
44 We do not discuss price adjustment speeds towards the long-run equilibrium in our study but report the estimated 

coefficients on the error correction term in equation (3.5) at each quantile from 0.1 to 0.9 in appendix tables B.1 and 

B.2 for soybean meal and oil, respectively. 
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The contemporaneous effects in VECQ are statistically significant at the 1% level for 

both soybean meal (table 3) and soybean oil (table 3.4) except for the soybean oil response to a 

negative change in the soybean log price at the high quantile.  While the lagged effects are only 

statistically significant in the soybean meal market when its return is at the median quantile, they 

are significant in the soybean oil market when its log price changes are at the 0.9 quantile.  For 

soybean meal, the cumulative price response to soybean price changes is statistically significant 

at each selected quantile (table 3.3).  Even though the cumulative price response to a 1% increase 

in soybean prices is smaller compared to a 1% decrease at the low and median quantiles (1.299% 

vs 1.74% at the 0.1 quantile and 1.29% vs 1.33% at the 0.5 quantile), their differences are not 

statistically different from zero (p-values of 0.120 and 0.831 for 𝜆𝑀).  However, there is a 

positive price asymmetry at the extremely high quantile, statistically significant at the 10% level, 

with soybean meal prices reacting more fully (1.24%) to soybean price increases than they do to 

soybean price decreases (0.53%).  For soybean oil, the cumulative price responses are 

statistically significant at the extremely low quantile but their difference is statistically different 

from zero (at the 10% level) at the median and high quantile (see table 4).  These results provide 

support to our argument that asymmetric price response in joint production might depend on 

market conditions of all outputs. 

To further demonstrate this, we first fix one of the end product’s quantile at 0.1, 0.5, and 

0.9 again to represent extremely low, median, and extremely high levels, respectively.  Then, for 

each fixed quantile, we investigate the other end product’s cumulative price responses varying its 

own quantile from 0.1 to 0.9.  We present these cumulative price response patterns in figure 
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3.2.45  The left panel in figure 3.2 shows the cumulative price responses to soybean price 

increases estimated by (3.8), and the right panel shows the cumulative responses to soybean price 

decreases given by (3.9).  We calculate the standard errors of the parameter estimates by 

bootstrapping (with resampling 500 times).  In the figures, coefficient estimates that are 

statistically significant at the 5% level or lower are plotted with a filled marker symbol, while 

insignificant estimates are indicated with an open marker.  In addition, for a comparison, the 

estimates of the cumulative coefficients, 𝜆𝑖
+ and 𝜆𝑖

− from a standard vector error correction 

(VEC) model, which focuses on conditional means, are shown by horizontal lines.46 

In figure 3.2(a), all soybean meal cumulative price responses are positive and statistically 

significant at the 5% level or lower, except for four cases when soybean price decreases: at 𝜏𝑀 =

0.9 and 𝜏𝑂 ∈ (0.1, 0.2, 0.3, 0.4).  In the case of soybean price increases, regardless of the 

soybean oil quantile 𝜏𝑂, the smallest price response always occurs at the 0.4 quantile while the 

largest one occurs at the 0.8 quantile of soybean meal.  Specifically, when the soybean oil return 

is in the highest decile of its distribution, the cumulative price response of soybean meal is 

1.43% at 𝜏𝑀 = 0.1, dips to 1.22% at 𝜏𝑀 = 0.4, then reaches its peak of 1.63% at 𝜏𝑀 = 0.8, and 

finally falls back to 1.36% at 𝜏𝑀 = 0.9.  This pattern also holds at the low and median quantiles 

of soybean oil.  Compared to the VEC model estimate of 1.23%, which represents the cumulative 

price response of soybean meal to soybean price increases at the mean of price change 

distributions, all estimates in figure 2(a) are larger, except for 𝜏𝑀 = 0.4, when the soybean oil 

quantile is at 0.9.  In addition, for a given soybean meal quantile 𝜏𝑀, the meal price response is 

 
45 We report the estimated cumulative price responses at each quantile of both end products from 0.1 to 0.9 in 

appendix tables B.3 and B.4 for soybean meal and oil, respectively. 
46 The corresponding methods, tests, and their results for a standard VEC model are available from the authors upon 

request.  
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the largest when the soybean oil price is at its highest decile, while at the same time the 

responses are almost the same at the lowest and median quantiles of oil.  Considering the case of 

soybean price decreases, the largest cumulative price response of soybean meal occurs at 𝜏𝑀 =

0.1, followed by a slightly downward trend as its own quantile increases, regardless of the 

soybean oil quantile.  Again, the soybean meal price responses are larger in magnitude when the 

other end product, soybean oil, is at a high quantile.  Comparing to the VEC model estimate of 

𝜆𝑀
− , given by the horizontal line, price responses estimated by the VECQ model are far above at 

extremely low quantile of soybean meal, especially when the soybean oil quantile 𝜏𝑂 is high.  

Specifically, at 𝜏𝑀 = 0.1 and 𝜏𝑂 = 0.9, the cumulative meal price response to a 1% decrease in 

soybean price is 2.07% compared to the VEC model estimate of 1.12%. 

In figure 3.2(b), regardless of the soybean meal quantile, all cumulative soybean oil price 

responses to increases in the soybean price are also positive, but the response is statistically 

insignificant at its 0.9 quantile.  For a given soybean meal quantile, the price movements across 

its quantile 𝜏𝑂 have a similar M shaped pattern, having two peaks at 𝜏𝑂 = 0.2 and 0.6.  The 

VECQ model estimates of 𝜆𝑂
+(𝛎) at 𝜏𝑂 = 0.4 are the closest to the VEC model estimate of 𝜆𝑂

+ for 

any fixed 𝜏𝑀.  Moreover, the cumulative price responses are very close to each other at the low, 

median, and high quantiles of soybean meal.  This indicates that soybean meal returns do not 

affect the response of soybean oil to increasing input costs.  In the case of decreasing soybean 

prices, there is a downward trend as 𝜏𝑂 increases from 0.1 to 0.9 and the largest responses occur 

at 𝜏𝑂 = 0.1 regardless of the soybean meal quantile.  Although the sign of the cumulative oil 

response is mixed when 𝜏𝑀 is 0.1 or 0.5, the statistically significant estimates are all positive and 

above the VEC model estimate of 𝜆𝑂
−.  When the quantiles of soybean oil and meal are at the 
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extreme low and high, respectively, the cumulative oil price response is 1.49%, well above the 

VEC model estimate of 0.44%. 

Figure 3.3 plots the difference in cumulative responses of both soybean end products to 

positive and negative changes in the soybean log price.  When this difference is statistically 

different from zero, we can reject the null hypothesis of price symmetry and infer the existence 

of price asymmetry.  We again plot coefficient estimates that are statistically significant at the 

5% level or lower with a filled marker symbol and insignificant estimates with an open marker.  

For comparison, we show the VEC model estimates by a horizontal line even though they are not 

statistically different from zero (i.e., there is no price asymmetry).  In figure 3.3(a), the meal 

response to increasing soybean price is larger than the response to decreasing input price when 

the meal log price change itself is at a high quantile of its distribution (𝜏𝑀 = 0.8 and 0.9) but the 

oil price change is at the extremely low quantile.  Similarly, in figure 3.3(b), the soybean oil 

response exhibits the rockets and feathers pattern when it is above the median of its price change 

distribution and the meal return is at the lowest quantile.  As seen in the figure, the VECQ model 

reveals an otherwise-hidden confirmation of the rockets and feathers pattern in both output 

markets. 

In summary, we find evidence of price asymmetry when the two end products are at the 

opposite extremes of their price change distributions.  The largest asymmetry in soybean meal 

and oil prices is 1.06 and 1.07 percentage points, respectively.  Furthermore, the signs of price 

asymmetries found are all positive, indicating that the end products respond more fully to a 

positive shock in the input price. 
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Policy Implications of Asymmetric Price Transmission 

The policy concern behind a positive price asymmetry is that consumers cannot fully benefit 

from falling farm prices (McCorriston, Morgan, and Rayner 2001).  It is easy to understand this 

concern for food products.  Money spent on food items constitutes a large share of household 

expenses, especially for low-income families.  According to the U.S. Department of Agriculture, 

households in the lowest income quantile spent about 30.6% of their income on food in 2021, 

whereas households in the highest income quantile spent 7.6% of their income on food (USDA 

2022). 

A number of theoretical studies on agricultural markets (e.g., McCorriston, Morgan, and 

Rayner 2001; Weldegebriel 2004; Antonova 2013) suggest market power leads to asymmetric 

price transmission, but none predicts a specific pattern of price asymmetry as an optimal pricing 

strategy in non-competitive markets (Meyer and von Cramon-Taubadel 2004; von Cramon-

Taubadel and Goodwin 2021).47  While agricultural markets have been often assumed to be 

competitive, the structure of the U.S. agricultural and marketing systems has been changing 

because of higher product quality, better product differentiation, and increasing vertical 

coordination and control (Sexton 2013; Sexton and Xia 2018).  Growing evidence suggests that 

these systems in developed countries are more appropriately characterized as oligopolistic rather 

than competitive (e.g., Sexton 2000, 2013; McCorriston 2002).  For example, the soybean 

crushing industry, the market we chose as our application for a joint production process, has 

become highly concentrated in the U.S. over the years, with four large processors (ADM, 

 
47 Besides market power, price asymmetry has been also explained by adjustment costs (e.g., Barro 1972; Bailey and 

Brorsen 1989; Buckle and Carlson 2000), search costs (e.g., Tappata 2009; Richards, Gómez, and Lee 2014), 

government intervention (e.g., Kinnucan and Forker 1987), and inventory or stock management (e.g., Blinder 1982). 
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Cargill, Bunge, and Ag Processing) accounting for 74.5% of total sales in 2017 (U.S. Census 

Bureau 2017).48 

The dependence of an end product’s price response on the price level of the other end 

product might be more pronounced in non-competitive markets as oligopolistic firms are flexible 

in their pricing and production.  In fact, both rockets and feathers pattern (i.e., positive price 

asymmetry) and the opposite pattern (i.e., negative price asymmetry) can emerge as their pricing 

strategy.  For example, in a bullish market, where producers are experiencing high demand for 

their products or services, firms can thoroughly pass through an increase in production costs to 

consumers while not lowering their output prices in response to decreasing input costs to keep 

their profit margin high (Meyer and von Cramon-Taubadel 2004).  In a bearish market, 

oligopolistic firms might have two different strategies.  They can still pass through higher costs 

more fully than lower costs since consumers have a small number of alternative producers in the 

short run.  Or, they can respond more fully to decreasing production costs to lower output prices 

in order to squeeze out the weaker rivals and seize a higher share of the market (von Cramon-

Taubadel and Goodwin 2021).  Therefore, price asymmetry might occur at specific, but not all, 

parts of the price distributions, which can be revealed with our multivariate quantile estimation 

approach.  Our study does not formally test the existence or exertion of market power, or 

formally link the price asymmetry to market power, but rather it provides a new perspective for 

the analysis of price asymmetry in joint production that takes into account the dependence of 

output responses on each other. 

 
48 Even though 40 firms entered the soybean crushing industry from 2002 to 2017, the market share of the top four 

largest firms decreased only by 5.4 percentage points from 79.9% to 74.5% (U.S. Census Bureau 2002, 2017). 
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It should be noted that the occurrence of price asymmetry is not guaranteed in non-

competitive markets.  For instance, Weldegebriel (2004) points out “oligopoly and oligopsony 

power do not necessarily lead to imperfect price transmission, although they can.”  Deconinck 

(2021) shows that even in the presence of market power, changes in farmgate prices can be fully 

transmitted to supermarkets with cost-plus contracts between processors and retailers.49  

Therefore, it is important for policymakers to explore and understand the overall functioning of a 

supply chain before implementing policies to balance market power with the welfare of 

participants at various stages of the food chain (i.e., farmers, processors, and retailers). 

Conclusions 

This study contributes to the empirical literature of price asymmetry by testing for the first time 

the occurrence of rockets and feathers pattern in a joint production process and allowing output 

price responses to vary with the prices of other end products.  Our multivariate quantile 

regression framework not only helps us to search for asymmetry over the entire distribution 

rather than just at the conditional mean but also allows us to condition the price response of one 

output on the market conditions of the other output.  This is especially important in non-

competitive markets as firms with market power are more flexible in their pricing and production 

decisions.  We show that price responses in any of the soybean end products are not only related 

to their own return levels but also to the other end product’s return.  This finding supports the 

concern of von Cramon-Taubadel and Goodwin (2021) about the price transmission in the case 

of joint production stating “… the estimation equations may be misspecified because price 

 
49 A cost-plus contract is defined in the Federal Acquisition Regulation as “a cost-reimbursement contract that 

provides for payment to the contractor of a negotiated fee that is fixed at the inception of the contract.” 
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transmission from an agricultural raw product to one of its outputs will likely depend on prices 

for the other outputs.” 

Our results further imply that the occurrence of price asymmetries is related to different 

market conditions.  The locality of quantiles reflects the characteristic of data clustering within a 

specific part of the distribution, which reflects the market conditions.  For example, high returns, 

located in the upper tail of a distribution, might encourage producers to expand their production 

in the future, while low returns clustered in the lower tail might indicate excess supply signaling 

a reduction in future production.  Therefore, an estimation method based on conditional quantiles 

uncovers the heterogeneity in output responses to input price changes at different regions of their 

distributions and captures the magnitude of price asymmetries associated with a specific market 

condition.  Our findings confirm the rockets and feathers pattern in the soybean complex when 

the market conditions of the two end products are contrary to each other.  Specifically, a positive 

price asymmetry (i.e., larger response to input price increases) in any end product occurs when 

its own market is bullish but the other product’s market is bearish.  This finding indicates that 

producers are more likely to pass extra production costs onto consumers when one of the end 

products is facing a high demand (indicating optimistic market sentiment for the future 

production and higher prices) and the other end product has a lower price point resulting from 

either low demand or excess supply (indicating pessimistic market sentiment). 

Our multivariate quantile approach can supplement the analysis of factors affecting the 

magnitude of price asymmetry.  A prevalent method is to regress the degree of asymmetry on a 

list of variables proxying the possible causes (e.g., Peltzman 2000; Loy, Weiss, and Glauben 

2016).  Most previous empirical studies investigate potential causes based on the behavior of 
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input prices, consumer search costs, and the market structure but ignore the heterogeneity in 

output price responses, which can be incorporated with our method. 
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Table 3.1. Summary Statistics of Prices and Their First Differences in the Soybean Complex 

 𝑝𝑖,𝑡 = 𝑙𝑛(𝑃𝑖.𝑡)   ∆𝑝𝑖,𝑡 = 𝑙𝑛(𝑃𝑖,𝑡) − 𝑙𝑛(𝑃𝑖,𝑡−1) 

 M  O  S  M  O  S 

Mean 1.70  1.03  1.98  0.00  0.00  0.00 

Std. Dev. 0.37  0.35  0.35  0.09  0.07  0.07 

Min 0.96  0.27  1.41  -0.48  -0.31  -0.40 

Max 2.65  1.95  2.88  0.30  0.25  0.20 

Skewness 0.45  0.27  0.55  -0.59  -0.21  -1.04 

Kurtosis  2.24  2.78  2.35  7.05  4.72  6.82 

Observations 433  433  433  433  433  433 

ADF test -2.16 
 

-2.31 
 

-2.12  -15.22***  -9.79***  -9.71*** 

Normality 25.14*** 
 

6.11*** 
 

29.34***  321.60***  56.67***  341.00*** 

Ljung-Box 807.17*** 
 

1895.08*** 
 

1562.78***  8.99***  9.00*  12.89*** 

Notes: The variables 𝑝𝑖,𝑡 and ∆𝑝𝑖,𝑡 represent the natural logarithm of cash prices and their first differences for each 

commodity i, where i =M (soybean meal), O (soybean oil), and S (soybean).  ADF test is the augmented Dickey-Fuller 

stationarity test with the null hypothesis of a unit root.  Normality represents the Jarque-Bera test with the null 

hypothesis of normally distributed series.  Ljung-Box is the autocorrelation test with the null hypothesis of 

independently distributed series.  The ADF and the Ljung-Box tests are conducted based on the optimal lag for each 

series chosen by the Akaike information criterion (two for soybean meal, five for soybean oil, and four for soybeans).  

The asterisks *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. 
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Table 3.2. Tests for Cointegrating Relations at Selected Quantile Indices 
 

𝜏𝑖 

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 

𝑝𝑀,𝑡 -4.26  -4.53  -3.79  -3.88  -3.87  -3.47  -3.30  -3.52  -4.38 

𝑝𝑂,𝑡 -4.72  -6.22  -5.94  -5.53  -5.85  -5.36  -4.67  -4.18  -5.67 

𝑝𝑆,𝑡  -4.72  -4.33  -4.00  -3.87  -3.63  -4.56  -4.26  -4.62  -5.04 

Notes: Cointegration is tested via the augmented Dickey-Fuller (ADF) stationarity tests of 

the estimated residuals from equation (3.1) for a given quantile index 𝜏𝑖, where i =M 

(soybean meal), O (soybean oil), and S (soybean).  The ADF statistics shown in regular 

(bold) font are statistically significant at the 1% (5%) level.
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Table 3.3. VECQ Results for Soybean Meal Responses 

  
 

 

 

  

         0.1  0.5  0.9 

∆𝑝𝑆,𝑡
+   0.918***  0.952***  1.130*** 

  (0.199) 
 

(0.098) 
 

(0.205) 

∆𝑝𝑆,𝑡
−   1.063***  0.949***  0.843*** 

  (0.147) 
 

(0.074) 
 

(0.163) 

∆𝑝𝑆,𝑡−1
+   

  0.381  0.333*  0.109 
  (0.267) 

 
(0.196) 

 
(0.264) 

∆𝑝𝑆,𝑡−1
−    0.673***  0.379**  -0.313 

 
 (0.198)  (0.180)  (0.253) 

Cumulative price response:   

 

    

𝜆𝑀
+   1.299***   1.285***  1.240***   

(0.285) 
 

(0.221) 
 

(0.332) 

𝜆𝑀
−    1.736***  1.328***  0.530* 

 
 

(0.259) 
 

(0.178) 
 

(0.297) 

𝜆𝑀  -0.436  -0.043  0.710** 

    [0.120]   [0.831]   [0.065] 

Notes: The estimated coefficients on soybean price changes are presented for 

soybean meal from the VECQ model, in which the soybean oil quantile 𝜏𝑂 is 

fixed at 0.5 and soybean meal quantile 𝜏𝑀 is varied between 0.1, 0.5, and 0.9.  

Standard errors are given in parentheses and p-values are in brackets.  Δ𝑝𝑆,𝑡−𝑗
+  

and  Δ𝑝𝑆,𝑡−𝑗
−  denote, respectively, a positive and negative change in the 

soybean price, where j = 0, 1.  𝜆𝑀
+  and 𝜆𝑀

−  represent the cumulative price 

response of soybean meal to soybean price increases and decreases, 

respectively.  𝜆𝑀 measures the difference between these two cumulative 

responses, 𝜆𝑀 = 𝜆𝑀
+ − 𝜆𝑀

− .  The null hypothesis of symmetry in output price 

responses is 𝜆𝑀 = 0.  The asterisks *, **, and *** indicate statistical 

significance at the 10%, 5%, and 1% level, respectively. 

 

 

 

𝜏𝑀 
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Table 3.4. VECQ Results for Soybean Oil Responses 

  
 

 

 

  

  0.1  0.5  0.9 

∆𝑝𝑆,𝑡
+   0.756***  0.996***  1.029*** 

  (0.182) 
 

(0.146) 
 

(0.158) 

∆𝑝𝑆,𝑡
−   0.833***  0.556***  0.311 

  (0.127) 
 

(0.097) 
 

(0.197) 

∆𝑝𝑆,𝑡−1
+   

 -0.058  -0.345  -0.623** 

  (0.298) 
 

(0.231) 
 

(0.286) 

∆𝑝𝑆,𝑡−1
−   0.098  -0.320  -0.746*** 

 
 (0.380)  (0.190)  (0.261) 

Cumulative price response:         

𝜆𝑀
+   0.698**   0.651***  0.406  

 
(0.334) 

 
(0.245) 

 
(0.342) 

𝜆𝑀
−   

 0.931**  0.236  -0.434 
 

 (0.389) 
 

(0.205) 
 

(0.316) 

𝜆𝑀  -0.233  0.415*  0.841* 

    [0.512]   [0.088]   [0.055] 

Notes: The estimated coefficients on soybean price changes are presented for 

soybean oil from the VECQ model, in which the soybean meal quantile 𝜏𝑀 is 

fixed at 0.5 and soybean oil quantile 𝜏𝑂 is varied between 0.1, 0.5, and 0.9.  

Standard errors are given in parentheses and p-values are in brackets.  Δ𝑝𝑆,𝑡−𝑗
+  

and  Δ𝑝𝑆,𝑡−𝑗
−  denote, respectively, a positive and negative change in the 

soybean price, where j = 0, 1.  𝜆𝑂
+ and 𝜆𝑂

− represent the cumulative price 

response of soybean oil to soybean price increases and decreases, 

respectively.  𝜆𝑂 measures the difference between these two cumulative 

responses, 𝜆𝑂 = 𝜆𝑂
+ − 𝜆𝑂

−.  The null hypothesis of symmetry in output price 

responses is 𝜆𝑂 = 0.  The asterisks *, **, and *** indicate statistical 

significance at the 10%, 5%, and 1% level, respectively. 

𝜏𝑂 
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(a) Crush value of soybean meal and oil 

 
(b) Soybean prices and combined crush value of soybean meal and oil 

Figure 3.1. Prices of the soybean complex
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(a) Soybean meal 

 
(b) Soybean oil 

 

Figure 3.2. Output price responses to soybean price changes 

Notes: Cumulative price responses to soybean price increases and decreases are calculated as in 

equations (3.8) and (3.9), respectively.  Coefficient estimates that are statistically significant at the 5% 

level or lower are plotted with a filled marker symbol, while insignificant estimates are indicated with 

an open marker.  The horizontal lines represent the corresponding estimate from the standard VEC 

model. 



76 

 

 
(a) Soybean meal 

 
(b) Soybean oil 

 

Figure 3.3. Cumulative output price asymmetry in response to soybean price changes 

Notes: Cumulative price asymmetry is calculated as the difference between responses to positive 

and negative price changes.  Positive (negative) values indicate the response to higher (lower) 

soybean prices is larger than the response to lower (higher) soybean prices.  Estimates that are 

statistically significant at the 5% or lower are plotted with a filled marker symbol, while 

insignificant estimates are indicated with an open marker.  The horizontal lines represent the 

corresponding estimate from the standard VEC model.
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CHAPTER 4 

THE ROLE OF USDA REPORTS ON EXTREME PRICE AND VOLATILITY MOVEMENTS 

IN AGRICULTURAL COMMODITIES50 

50 Yang, Y., and B. Karali. To be submitted to American Journal of Agricultural Economics 
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Abstract 

This paper investigates the impact of USDA reports on extreme price movements in three groups 

of agricultural substitutes: corn-soybean, winter-spring wheat, and lean hog-live cattle-feeder 

cattle.  We use an ordered logistic model to investigate whether the release of USDA reports has 

explanatory power for these coexceedances (i.e., more than one market simultaneously suffers 

from extreme events).  After controlling for the exposure to other risk factors, our results show 

evidence of an increased probability of coexceedances following the release of USDA reports.  

Our findings find statistical evidence of an increased return and volatility coexceedances on the 

release days of USDA reports.  More specifically, the June cluster of Acreage (ACR) and Grain 

Stocks (GS) has the most significant impact on increasing the occurrence of return or volatility 

coexceedances in grain markets, indicating that these two reports have substantial informational 

value.  Although most report clusters have a dual effect, either increasing the probability for 

portfolio traders to earn or lose money on release days, some of them only impact the occurrence 

of low returns associated with high volatility.  Our study contributes to the informational value of 

USDA reports on agricultural substitutes and sheds lights on trading strategies for portfolio 

traders who simultaneously hold multiple futures contracts. 
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Introduction 

Extreme price movements, characterized by significant positive and negative returns, pose a 

substantial risk to traders in financial markets.  These movements can lead to rapid collapses or 

rebounds in market indices, resulting in substantial financial losses.  For instance, the 2010 flash 

crash witnessed a sharp and sudden decline in U.S. equity indices, causing nearly one trillion 

dollars in losses.  The Commodity Futures Trading Commission (CFTC 2018) conducted an 

analysis of 2.2 billion transactions across 16 active futures contracts in major markets and 

pointed out “news and market data releases are large drivers of sharp price movements in many 

contracts studied.” 

In agricultural markets, one prominent source of news and market data releases is the 

U.S. Department of Agriculture (USDA).  The USDA reports provide comprehensive 

information on various aspects of the agricultural sector, including supply and demand 

categories, plantings intentions, acreage statistics, and inventories of major crops and livestock.  

These reports have served as a primary source of public information in the agricultural sector for 

many decades.  Extensive literature indicates that market participants closely monitor these 

reports, as they have been found to have a significant impact on price movements and volatility 

in agricultural markets (e.g., Summer and Mueller 1989; Dorfman and Karali 2015; Adjemian 

and Irwin 2018; Fernandez-Perez et al. 2019; Karali, Irwin, and Isengildina-Massa 2020). 

However, the economic value of USDA reports has faced challenges due to factors such 

as the proliferation of private information services, structural changes in market dynamics, and 

pressures related to federal budgetary constraints.  Despite these challenges, recent studies have 

reaffirmed the continued influence of USDA reports on market prices and volatility (e.g., Ying, 

Chen, and Dorfman 2019; Karali et al. 2019; Karali, Isengildina-Massa, and Irwin 2019; 
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Isengildina-Massa et al. 2021).  The impact of these reports on market dynamics highlights the 

significance of information dissemination and its role in shaping market outcomes. 

Most previous studies provide evidence of the significant impacts of USDA report 

releases on individual agricultural commodity markets.  However, USDA reports often contain 

information for various commodities in the same report, particularly for major crops.  Ai, 

Chatrath, and Song (2006) find that supply factors such as planted acreage and yield per acre 

play a significant role in price comovements in corn, soybean, and wheat markets.  The release 

of new commodity information through USDA reports can stimulate price comovements of 

multiple commodities.  These price movements are essential for portfolio traders, an individual 

or entity that manage a combination of various futures contracts, to trade off the return and risks 

and maximize their profit in the portfolio.  For example, spreading, a trading strategy in which 

traders simultaneously buy one futures contract and sell another, is commonly used to mitigate 

price risks associated with outright futures contracts.51  The soybean-corn spread is a popular 

tool for trading the relationship between corn and soybean futures prices.  Similarly, the wheat 

spread relies on the dynamic intermarket relationships in spring and winter wheat futures prices 

for different protein levels in hard red wheat.  Therefore, to determine whether USDA report 

releases lead to market responses resembling a flash crash and undermine the hedging 

effectiveness of portfolio strategies, it is crucial to consider simultaneous price movements in 

commodities that are substitutes in consumption and/or production. 

Our study makes several contributes to the existing literature on the effects of USDA 

reports.  We take into account the clustering of report releases that occur concurrently, examine 

 
51 CME group defines  the term outright as a single purchase or sale of an underlying asset for delivery at a single 

future date.  Spreads have three categories: calendar spreads (or intramarket spreads), intermarket spreads, and 

commodity product spreads. 
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simultaneous price and volatility movements in substitute agricultural commodities, and measure 

the increased likelihood of extreme price and volatility movements around report releases. 

To analyze these dynamics, we adopt the “coexceedance” approach developed by Bae, 

Karolyi, and Stulz (2003).52  This approach allows us to identify instances of simultaneous 

extreme price and volatility changes around USDA report releases in three commodity pairs 

linked through substitution and production processes: corn-soybean, winter wheat-spring wheat, 

and lean hogs-live cattle-feeder cattle.  Unlike previous studies that use a conditional covariance 

framework (e.g., Karali 2012), which treats all observations equally, our coexceedance 

framework focuses on the counts of coexceedances, capturing the number of markets 

experiencing large positive or negative movements simultaneously.  We then employ an ordered 

logistic regression using these count measures to assess whether USDA report releases increase 

the probability of coexceedance occurrences. 

Our study reveals an elevated probability of return and volatility coexceedances on days 

when USDA reports are released.  Compared to livestock markets, the impact of USDA report 

clusters is more pronounced in grain markets.  The effects of USDA reports on return 

coexceedances vary depending on factors such as the number of exceedances, the commodity 

pair, and the tail behaviors (i.e., upper or lower tail).  Notably, the June cluster of Acreage 

(ACR) and Grain Stocks (GS) has the most significant impact on increasing the occurrence of 

 
52 The coexceedance method has been applied in the literature for financial contagion and integration (e.g., Baur and 

Schulze 2005; Christiansen and Ranaldo 2009), extreme price changes in energy futures markets (Koch 2014) and 

agricultural commodities (Algieri, Kalkuhl, and Koch 2017).  Algieri and Leccadito (2021) develop an alternative 

method, an integer-valued GARCH model, to capture the temporal dependence and persistence in the coexceedances 

in various futures markets. 
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volatility coexceedances in grain markets.  This indicates that these two reports have substantial 

informational value. 

On the other hand, sufficient volatility can generate short-run arbitrage opportunities 

within a portfolio (Fernholz, Karatzas, and Rup 2018).  Traders can use portfolios on the release 

days of these reports to increase their chances of benefiting from positive price movements (i.e., 

high returns).  Our findings demonstrate that most report clusters have a dual effect, either 

increasing the probability for portfolio traders to earn or lose money on release days.  However, 

the September release of GS reports and the March cluster of Prospective Planting (PP) and GS 

reports only impact the occurrence of low returns associated with high volatility for the corn-

soybean and winter wheat-spring wheat pairs, respectively.  Corn-soybean traders should avoid 

holding two contracts together on the release days of the GS report in September, while winter-

spring wheat traders should avoid doing so on the release days of PP and GS reports.  This is 

because traders cannot profit or diversify risks effectively with these specific portfolios on the 

release days of these two clusters.  These findings contribute to identifying the impacts of major 

USDA reports on the extreme price movements in futures markets and shed light on the value of 

USDA information for portfolio traders engaged in simultaneous transactions of multiple 

commodity contracts in futures markets. 

Econometric Methods 

Coexceedance counts 

We define daily returns as 

(4.1) 𝑟𝑖𝑡 = (ln(𝑝𝑖𝑡) − ln(𝑝𝑖,𝑡−1)) × 100, 
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where 𝑝𝑖𝑡 is the price of commodity i on day t, and the absolute returns as |𝑟𝑖,𝑡| to represent 

volatility.  To identify an extreme return or volatility for each commodity, we define an 

exceedance as an observation that lies either below the 5% or above the 95% quantile of its 

distribution. 

Large positive or negative price movements provide valuable information about market 

sentiment and trading opportunities.  For example, a sudden and large price increase might 

indicate a positive shock from good news or increased demand, while extreme negative price 

movement might signal market downturns prompting investors to reassess their holdings.  

Therefore, we consider return coexceedances in both upper and lower tails.  The exceedance 

count in the upper tail (i.e., the occurrence of extremely positive returns) is calculated as 

(4.2) 𝑈𝑅𝑡
𝐽 = ∑ 𝐼(𝑁

𝑖=1 𝑟𝑖𝑡 ≥ 𝑄𝑅𝑖
0.95), 

and the number of coexceedance in the lower tail (i.e., the occurrence of extremely negative 

returns) as 

(4.3) 𝐿𝑅𝑡
𝐽 = ∑ 𝐼(𝑁

𝑖=1 𝑟𝑖𝑡 ≤ 𝑄𝑅𝑖
0.05), 

where N is the number of commodities in commodity pair J and 𝐼(∙) is an indicator function that 

equals one if the condition in parenthesis is satisfied and zero otherwise.  We use the 0.95 and 

0.05 quantiles of commodity i’s return distribution, 𝑄𝑅𝑖
0.95 and 𝑄𝑅𝑖

0.05, to represent the 

thresholds for extremely high and low returns. 

As the extant literature shows that volatility increases on report release days, we only 

focus on the occurrence of volatility coexceedances in the upper tail.  The volatility exceedance 

count in the upper tail (i.e., the occurrence of extremely large volatility) is calculated as 
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(4.4) 𝑈𝑉𝑡
𝐽 = ∑ 𝐼(𝑁

𝑖=1 |𝑟𝑖𝑡| ≥ 𝑄𝑉𝑖
0.95). 

Determinants of coexceedances 

We follow Koch (2014) and Algieri, Kalkuhl, and Koch (2017) and use a logistic regression 

model to explore factors that affect the probability of coexceedance occurrences.  All of our 

exceedance counts have a natural ordering since they indicate the number of markets that 

experience extreme price or volatility movements.  Accordingly, for each commodity pair, we 

employ an ordered logit model to estimate the probability of coexceedance occurrences in both 

tails for returns and in the upper tail for volatility.  The probability of observing outcome h 

coexceedance in the ordinal model is, 

(4.5) Pr[𝑊𝑡
𝐽 = ℎ] = Pr[𝛼ℎ−1 < 𝑋′𝛽 + 𝑢 ≤ 𝛼ℎ] 

    =
1

1 + exp (−𝛼ℎ + 𝑋′𝛽)
−

1

1 + exp(−𝛼ℎ−1 + 𝑋′𝛽)
 

where 𝑊𝑡
𝐽 ∈ {𝑈𝑅𝑡

𝐽, 𝐿𝑅𝑡
𝐽, 𝑈𝑉𝑡

𝐽 } and h represents the number of exceedances in each pair: ℎ = 0,

1, 2 for the pairs including two commodities, and ℎ = 0, 1, 2, 3 for the pairs including three 

commodities.  The matrix 𝑋 contains explanatory variables, 𝛽 is the parameter vector, and 𝛼ℎ is 

the cutpoint with 𝛼0 < 𝛼1 < 𝛼2 < 𝛼3.  Specifically, the coefficients of the ordered logistic 

regression, β, indicate changes in the log-odds of being in a higher category of the outcome h 

associated with a one-unit change in the explanatory variable, while holding other variables 

constant.  For a straightforward interpretation, instead of the estimated coefficients, we calculate 

and report average marginal effects (AMEs) given by 

(4.6)  𝐴𝑀𝐸𝑥𝑘(ℎ) =
1

𝐽
 ∑ [𝑃𝑟̂𝑗(𝑋𝑘 = 1|ℎ, 𝑋−𝑘) − Pr𝑗̂(𝑋𝑘 = 0|ℎ, 𝑋−𝑘)

𝐽
𝑗=1 ], 
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where 𝑥𝑘 is the kth explanatory dummy variable, 𝑋−𝑘 is the vector of explanatory variables 

excluding 𝑥𝑘.  J is the number of total observations in each commodity pair.  Pr𝑗̂(∙ |ℎ, 𝑋−𝑘) 

represents the predicted probability of being in outcome h for the jth observation given the other 

explanatory variables 𝑋−𝑘. 

Data  

Commodity returns and volatility 

We conduct our analysis for three substitute commodity pairs: corn-soybean, winter wheat-

spring wheat, and hogs-cattle-feeder cattle.  In the U.S., corn and soybean are close substitutes in 

production and compete for acreage (Goswami and Karali 2022).  Therefore, any news related to 

one of the crops most likely affects the other crop as well.  For example, production surprises in 

the corn market moves soybean futures prices (Karali et al. 2019).  Hard red winter wheat and 

hard red spring wheat are economic substitutes for milling purposes based on their substitution 

elasticities (Marsh 2005).  Hogs and cattle are substitute protein sources and changes in 

consumer preferences, supply shortages, or news related to one of them would affect the other 

market.  Feeder cattle is a young, growing cattle raised on feedlots before it is sold to meat 

processors; thus, it is linked to mature cattle through biological process. 

We use the prices of futures contracts of these commodities from May 1, 1994 to 

December 31, 2022 obtained from Barchart (formerly Commodity Research Bureau).53  Hard red 

spring wheat futures contracts are traded at the Minneapolis Grain Exchange, while corn, 

soybean, and hard red winter wheat futures at the Chicago Board of Trade (CBOT).  Livestock 

 
53 Before May 1994, USDA announces crop production, grain stocks, other significant fundamental information 

with 2:00pm CT release time after futures market close. We choose the sample period to capture the announcement 

effect of USDA reports on the same-day trading.    
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futures are traded at the Chicago Mercantile Exchange (CME).  After excluding weekends and 

holidays, our sample includes 7,222 observations for crops and 7,218 observations for livestock.  

We create the nearby price series by rolling over nearby contracts when the trading volume of 

the next nearest contract exceeds the current one. 

Table 4.1 reports summary statistics of daily returns and absolute returns.  Both returns 

and absolute returns have leptokurtic distributions with positive kurtosis, indicating that they are 

heavy-tailed compared to the normal distribution and have a greater chance of extreme events 

(either positive or negative values).  In addition, the skewness of return distributions implies the 

direction of extremes.  The return series of four commodities (corn, soybean, spring wheat, and 

live cattle) are negatively skewed, implying that most observations are to the right of the mean 

and extreme values are to the further left.  The remaining three (winter wheat, lean hogs, and 

feeder cattle) exhibit positive skewness with a longer right tail.  Of these seven commodities, 

soybean is the most heavily left-skewed, while lean hog has the most highly right-skewed- 

distribution.  Moreover, the distribution is highly asymmetric when the skewness of the 

distribution is greater than 1 or smaller than -1.  The skewness for all absolute returns is greater 

than 1, indicating a substantial departure from symmetry in the distribution of absolute returns.  

USDA reports  nd clustering 

We select ten USDA reports that have been extensively studied in the literature to determine the 

value and market-moving effect of public information.  Table 4.2 describes these selected reports 

in detail.  Majority of the crop reports are released together, known as report clustering.  This 

makes it difficult to differentiate the impacts of multiple reports released on the same day from 

each other, especially when one does not take into account the report content and the associated 
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market expectations. Therefore, we follow the suggestion of Isengildina-Massa et al. (2021) and 

evaluate the impact of reports on returns and volatility by focusing on the releases of the reports 

as a cluster.  As shown in table 4.3, there are six report clusters for both crop pairs.  Crop 

Production Annual Summary (CPAS) reports are released in January, overlapping with the 

January release of WASDE and Grain Stocks (GS).  For the winter wheat-spring wheat pair, this 

cluster also contains Winter Wheat Seedings (WWS), which provides producer planting 

intentions for winter wheat.  The other two annual reports providing information for all selected 

crops are Prospective Plantings (PP) in March and Acreage (ACR) in June.  They are both 

simultaneously released with GS reports.  Monthly WASDE reports summarize supply-use 

balances of major crops from all available sources.  During the growth cycle of each crop, they 

contain the production data, such as area harvested and yield per acre, from the simultaneously-

released Crop Production (CP).  The growth cycle of corn and soybean is from August to 

November, from May to August for winter wheat, and from July to August for spring wheat 

(Isengildina-Massa et al. 2021).  We separate WASDE reports that coincide with the CP reports 

from the other monthly WASDE releases.  For the wheat pair, September release of GS overlaps 

with Small Grains Annual Summary (SGAS) reports.  There is no clustering for livestock 

reports.  In our empirical analysis, we use dummy variables indicating the release of these 

reports and report clusters. 

Other determinants of coexceedances 

Based on the existing literature (Tang and Xiong 2012; Tadesse et al. 2014; Koch 2014; Algieri, 

Kalkuh, Koch 2017; Algieri and Leccadito 2021), we choose other explanatory variables to 

control for the exposure of agricultural futures to common risk factors. Chicago Board of 
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Exchange volatility index (VIX) and S&P 500 index (SP500) are obtained from Barchart.  To 

represent market volatility and sentiment, we include daily news-based economic uncertainty 

index (News), and policy-related economic uncertainty index (EPU), created by Baker, Bloom, 

and Davis (2016).54  A stronger U.S. dollar makes the U.S. exports relatively more expensive and 

reduce the demand for agricultural products from other countries.  We include the daily U.S. 

dollar exchange rate relative to a basket of its trade partners’ currencies (DXY), obtained from 

Barchart.  As agricultural commodity prices are sensitive to inflationary pressures, we include 

both Consumer Price Index (CPI) and Producer Price Index (PPI) as control variables, both 

attained from the Economic Research Division of the Federal Reserve Bank of St. Louis.55  To 

capture the impact of shocks in these other factors on return and volatility coexceedances, we 

create dummy variables accounting for large shocks (i.e., daily changes, or returns, above the 

0.95 quantile of their distributions) and small shocks (i.e., daily changes, or returns, below the 

0.05 quantile).56  

Empirical Results 

Coexceedance counts in the entire sample 

We report the frequency and percentage of return and volatility coexceedances in table 4.4 for 

our entire sample period.  An exceedance of return or volatility is more likely to occur in only 

 
54 EPU or News data are available at https://www.policyuncertainty.com/.  The CPI is for the U.S. urban consumers’ 

payment on food, and its base year is from 1982 to 1984. The PPI is for the U.S. food manufacturing industry, and 

its base year is 1984. 
55 DXY is an index of the value of U.S. dollars relative to a basket of its trade partners’ currencies.  It is a daily 

index and is collected from Barchart.   
56 We take VIX as an example to explain how we calculate an indicator variable for large shocks.  We first calculate 

the returns of VIX and then sort these returns from the smallest to the largest to define the 0.95 quantile of its 

distribution as a threshold for large shocks.  The indicator variable takes the value of one if the return on VIX is 

above this 0.95 quantile threshold and zero otherwise. We construct the indicator variable for small shocks in a 

similar way using the 0.05 quantile. 
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one market for the crop pairs and in two markets for the livestock pair.  The percentage of a 

single exceedance in the corn-soybean pair is almost twice as high as the corresponding 

percentage in the wheat pair, regardless of whether it pertains to return or volatility.  This finding 

aligns with the fact that the corn and soybean markets are more active and volatile compared to 

the wheat market.  According to the CME group, corn and soybean futures are among the most 

liquid commodity futures, with 350,000 and 200,000 contracts traded per day, respectively.   

Additionally, the percentage of two exceedances in the hog-cattle-feeder cattle pair is 

2.44%, 2.72%, and 2.48% for the upper-tail coexceedance, lower-tail return coexceedance, and 

volatility coexceedance, respectively.  These figures are approximately 3.71, 2.91, and 3.69 

times lower than the percentage of a single exceedance in the upper-tail return, lower-tail return, 

and volatility, respectively. 

 Upper-tail return coexceedances are seldom, with percentages of 1.87%, 3.03%, and 

0.36% for corn-soybean, winter wheat-spring wheat, and lean hogs-live cattle-feeder cattle pairs, 

respectively.  On the other hand, the percentages of low-tail return coexceedances are slightly 

larger, with 1.97% for corn and soybean, 3.10% for winter wheat and spring wheat, and 0.55% 

for lean hogs, live cattle, and feeder cattle.  Of these three pairs, winter what-spring wheat has 

the largest percentage of coexceedances in both tails, indicating the extreme price movements in 

wheat markets are highly related.  Similarly, the percentage of volatility coexceedances are the 

highest in the wheat markets.  The percentage of coexceedance in the wheat pair is 2.78%, which 

is 1.41 and 9.59 times larger than the corresponding percentages in corn-soybean pair (1.97%) 

and hog-cattle-feeder cattle pair (0.29%).   
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Coexceedance counts on USDA report release days 

We present the percentage of exceedance counts in figures 4.1-4.4.  These counts are calculated 

by dividing the frequency of  𝑊𝑡
𝐽 = ℎ on release days, where J=CS, WSW, LLF and ℎ = 0, 1, 2 

for the corn-soybean and winter-spring wheat pairs, and ℎ = 0, 1, 2, 3  for the hog-live cattle-

feeder cattle pair, by the total number of release days for each report cluster.  The figures depict 

the percentage of both upper-tail return and lower-tail return exceedances. 

For example, in the ACR and GS report cluster, there are 29 release days, and 31.03% of 

those days exhibit lower-tail exceedance in one market, while 10.71% exhibit lower-tail 

exceedance in two markets.  Comparing the exceedance counts across report clusters, extremely 

low returns in one market occur more frequently on the release days of ACR and GS reports 

(31.03%), and less frequently on the release days of the WASDE report (10.10%) in the corn-

soybean pair.  The highest percentage of upper-tail coexceedance in two markets is observed on 

the release day of the January cluster of CPAS, WASDE, and GS reports (14.29%), while the 

lowest percentage is observed on the release day of the WASDE report only (0.05%).  For the 

winter-spring wheat pair, both lower- and upper-tail return coexceedances are more likely to 

occur on the release days of PP and GS reports, with percentages of 17.85% and 10.71%, 

respectively. 

Figure 4.3 displays the exceedance counts for the livestock pair.  Regardless of the upper 

or lower tail, single exceedances occur more frequently on the release days of HP reports (12.5% 

for the lower tail and 13.97% for the upper tail), while three coexceedances occur more 

frequently on the release days of COF reports, with 1.73% of observations below the 5% 

threshold and 1.44% of observations above the 95% threshold. 
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Similarly, the counts for volatility exceedance across report clusters are shown in figure 

4.4.  Either the ACR and GS report cluster or the PP and GS report cluster witness the highest 

percentage of one or two volatility exceedances, while the WASDE report only witnesses the 

smallest percentage in both crop pairs.  Additionally, volatility (co)exceedances are more likely 

to occur on the release days of COF report than the HP report.    

Impacts of USDA reports on return coexceedances 

Using the estimation results from equation (4.6), we present the average marginal effects of 

USDA reports on the lower tail (5%) and upper tail (95%) of returns in table 4.5.57  The average 

marginal effects indicate the average change in the probability of coexceedance occurrences if 

one explanatory variable has a one-unit change, while holding all other variables constant.  The 

explanatory variables for USDA reports indicate the trading days when the reports within the 

same cluster are released.  Therefore, the average marginal effects of USDA reports describe the 

difference in the probability of coexceedance occurrences between release and non-release days. 

As shown in table 4.5, the marginal effects with statistically significance levels at 10% or 

lower are positive, indicating that the release of USDA reports always increases the occurrence 

of extreme returns in corn and soybean markets.  Four out of six report clusters significantly 

increase the probability of one or two exceedances in both tails.  The cluster of ACR and GS 

reports has the largest impact, with the probability of extremely low (negative) returns occurring 

in any one of the markets increasing by 0.228, and the probability of joint occurrence increasing 

by 0.129.  The cluster of WASDE and CP reports has the smallest impact, with an increase in the 

 
57 Since our main focus is to determine whether USDA reports play a role in the occurrence of extreme returns or 

volatility, we only present their associated results in the manuscript and report the results for the other determinants 

of coexceedances in the appendix tables C.1-C.3.   
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probability of one exceedance by 0.095 and that of two exceedances by 0.038 in the lower tail.  

On the other hand, the marginal effect of the CPAS, WASDE, and GS cluster on the occurrence 

of coexceedances in the upper tail is almost indifferent to that of the ACR and GS, with an 

increase of 0.215 and 0.127 in the probability of one and two exceedances, respectively.  In the 

upper tail, the WASDE report has the smallest marginal effect, with the probability of one 

exceedance increasing by 0.031 and that of two exceedances increasing by 0.012. 

For the winter and spring wheat pair in table 4.6, the marginal effects of the ACR and GS 

cluster are very close to those of the PP and GS cluster in the lower tail, as both clusters increase 

the probability of extremely low returns.  Similar to the corn-soybean pair, the cluster of 

WASDE and CP reports has the smallest significant impact on the coexceedance probability in 

both tails.  Moreover, the release of USDA reports is more likely to increase the probability of 

extremely low returns rather than extremely high returns.  For a given report cluster, the 

marginal effects are consistently larger in the lower tail than in the upper tail. 

Similar to the results in grains and oilseed markets, selected USDA reports also increase 

the probability of return exceedances in livestock markets (table 4.7).  However, the magnitude 

of these effects is relatively low compared to the grains.  The largest increase in the exceedance 

probability is only 0.046 on the release days of the HP report.  In addition, we find that the 

probability of all three livestock markets simultaneously suffering from extremely low returns is 

not significantly influenced by the release of HP or COF reports, but the release of HP report 

significantly increases the joint occurrence of extremely high returns by 0.002.  Moreover, the 

COF report does not have any impact on the occurrence of upper-tail coexceedances. 
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Impacts of USDA reports on volatility coexceedances 

We also examine the marginal effects of USDA reports on the probability of coexceedances in 

absolute returns, as higher absolute returns indicate higher volatility.  Given that existing 

literature suggests an increase in futures return volatility on USDA report release days, we focus 

on the occurrence of volatility exceedances only in the upper tail (i.e., absolute returns above the 

0.95 quantiles of their distributions).  The corresponding marginal effects are presented in tables 

4.8-4.10.   

For the corn-soybean pair (table 4.8), all report clusters, except for the WASDE report 

released outside the growth cycle of corn and soybean, significantly increase the probability of 

extremely high volatility in one or more markets.  The heightened probability of volatility 

coexceedances on release days indicates a deviation from market expectations.  Increased 

volatility in investment portfolios may create arbitrage opportunities, as price fluctuations can 

lead to disparities between the current futures price and the intrinsic value of an agricultural 

commodity.   

However, the direction of returns decides whether information releases create short-run 

arbitrages for traders to make a profit.  Moreover, the effects of report releases are also related to 

trading strategies.  For instance, new information, which increases returns, indicates good news 

for long-position traders but bad for short-position ones.  Pardo and Torro (2007) extend good or 

bad news to more detailed types by considering the volatility responses.  Higher returns 

associated with increased volatility suggest that the report release can be regarded as good news 

for traders who hold the positions while lower returns with heightened volatility imply very bad 

news for them as they cannot manage their risks through a combination of substitutes on the 
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release day.  As shown in table 4.5, all five report clusters also increase the probability of lower-

tail return exceedances, with four of them increasing the probability of upper-tail return 

exceedances in the corn-soybean pair.  Except for the GS report, the other four report clusters 

(CPAS, WASDE, and GS reports; WASDE and CP reports; PP and GS reports; and ACR and 

GS reports) have a dual effect of bringing either good news (i.e., unexpected positive returns 

accompanied by increased volatility) or very bad news (i.e., unexpected negative returns 

accompanied by increased volatility).  Thus, traders might either benefit or incur losses by 

simultaneously holding corn and soybean futures.  Among these four clusters, traders who hold 

the corn-soybean portfolio are more likely to obtain profits on the release days of WASDE and 

CP reports, as their marginal effects on upper-tail return (co)exceedances are much higher than 

those in lower-tail coexceedances.  On the other hand, the release of the GS report only increases 

the occurrence of lower-tail return coexceedances, implying a higher probability of a loss on the 

release days of GS reports. 

Regarding winter and spring wheat (table 4.9), five out of six report clusters significantly 

increase the probability of volatility exceedances, but only two of them have an impact on the 

occurrence of a single exceedance.  Similar to the corn-soybean pair, WASDE reports released 

outside the growth cycle of wheat do not affect the probability of extreme volatility occurrences.  

The report effects are relatively smaller in wheat markets compared to corn and soybean 

markets.  For example, the cluster of PP and GS reports increases the probability of one (two) 

volatility exceedance(s) in the corn-soybean pair by 0.261 (0.182), whereas it only increases 

those in the wheat pair by 0.144 (0.153).  These findings align with previous studies that have 

shown muted price and volatility reactions to USDA reports in wheat markets compared to corn 

and soybean markets (Karali et al. 2019; Isengildina-Massa et al. 2021). 
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In the case of livestock markets (table 4.10), only the release of the COF report increases 

the probability of volatility exceedances, with the probability decreasing as the number of 

exceedances increases.  Karali, Isengildina-Massa, and Irwin (2019) find evidence of decreasing 

market reactions to market surprises brought by these two reports after 2010.  Our findings 

regarding the impacts of the HP and COF reports partially align with this previous work, as we 

do not observe a significant impact of the HP report in increasing the probability of volatility 

(co)exceedances.  It is difficult to draw a conclusion regarding the role of HP reports for traders 

holding this livestock complex since they cannot simultaneously increase the probability of 

return and volatility (co)exceedances.  However, for COF reports, we find evidence that their 

release leads to the occurrence of extremely low returns in one or two markets with high 

volatility.  This suggests that traders with hog-cattle-feeder cattle portfolios are likely to partially 

lose their gains on the release day of COF reports. 

Realized volatility coexceedances surrounding report release times 

Since January 2013, USDA has been releasing major crop reports during the trading hours of 

futures markets at 11 am CT.  This provides us a valuable opportunity to analyze the detailed 

impacts of these reports on coexceedance occurrences using intraday data.  Our analysis focuses 

on realized volatility, which is the square root of the sum of squared returns at high sampling 

frequency.58  In the literature, researchers have found that a five-minute sampling frequency is 

optimal for mitigating the bias caused by microstructure noises in high-frequency data (e.g., 

Ghysels and Sinko 2011; Bollerslev, Li, and Zhao 2020).  Consequently, we capture return 

 
58 Because conditional volatility is unobservable, Andersen et al. (2003) suggest measuring price volatility over a 

fixed interval as the square root of the sum of squared returns at high sampling frequency, termed as realized 

volatility. 
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variation within each five-minute interval and calculate realized volatility (RV) for each 

commodity using one-minute bar prices. 

To calculate RV, we first compute the one-minute return, 𝑟𝑖,𝑗,𝑑, for commodity i as: 

(4.7) 𝑟𝑖ℓ𝑡 = 𝑙𝑛(𝑝𝑖ℓ𝑡) − 𝑙𝑛(𝑝𝑖,ℓ−1,𝑡). 

Here,  i represents the commodities and 𝑝𝑖ℓ𝑡 is the price of  commodity i at the ℓth minute on day 

t.  The five-minute realized volatility on day t (𝑅𝑉𝑖𝑞𝑡) is the square root of the sum of squared 

one-minute returns within the interval [ℓ−5, ℓ], 

(4.8) 𝑅𝑉𝑖𝑞𝑡 = √∑ 𝑟𝑖,ℓ−𝑚,𝑡
24

𝑚=0 , 

where subscript q denotes the five-minute interval.   

To analyze the changes in occurrence of extremes before and after the release time, we 

calculate the percentage of exceedance counts at different levels (h = 0,1, 2) on the release days 

of each cluster during day trading sessions.59  The proportion (percentage) of each exceedance 

outcome is determined by dividing the frequency of a specific outcome by the total observations 

at a given time point.  A higher proportion indicates a greater likelihood of observing a specific 

type of coexceedance (either zero, one, or two coexceedances) at that time point. 

In figures 4.5-4.6, the vertical axis represents the percentage of exceedance outcomes, 

ranging from 0% to 100%.  The horizontal axis represents time during trading hours.  The 

 
59 CME Group adjusts the CBOT grain trading hours according to customer feedback.  In our sample period, there 

are two adjustments made.  Beginning on April 8, 2013, there is a break added to the electronic trading from 7:45 

am CT to 8:30 am CT, and CME Globex day-trading session ends earlier at 1:15 pm CT but the overnight trading 

opens later at 7:00 pm CT on weekdays.  Since July 6, 2015, the end of trading hours has been further expanded to 

1:20 pm CT.  In our analysis, we focus on the day-trading hours from 8:30 am to 1:20 pm CT. 
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colored lines represent two outcomes: one exceedance (dark grey) and two exceedances (black).  

The pattern and shapes of these colored lines provide insights into the changes in the probability 

of coexceedances over time. 

Figure 4.5 shows the results for the corn-soybean pair.  All selected report clusters exhibit 

a similar pattern: the line representing two exceedances peaks at 100% at 11:00 am CT, 

indicating that intra-day coexceedance always occurs when the report is released.  Additionally, 

each cluster shows different persistence in volatility coexceedance.  The line representing two 

exceedances for the CPAS, WASDE, and GS reports drops sharply to zero within 30 minutes 

after the release time, while for the ACR and GS reports, it persists slightly longer until noon.  

These findings are consistent with previous studies suggesting that the absorption of USDA 

announcement shocks is relatively quick in the real-time era (Adjemian and Irwin 2018).  We 

also confirm that two markets simultaneously experiencing large volatility are more likely to 

occur from 11:00 am to 11:30 am CT. 

In the wheat markets (figure 4.6), volatility coexceedance also peaks at the release time 

of each cluster.  However, volatility coexceedances at the release time only occur on 80% of the 

release days of the clusters of WASDE and CP reports or PP and GS reports.  This implies that 

the intra-day market reactions to USDA reports in wheat markets are less intense compared to 

corn and soybean markets. 

Conclusions  

USDA reports are an important source of fundamental information on major agricultural 

commodities.  Previous studies have found that their releases lead to price and volatility spikes in 

single agricultural commodity markets.  The same USDA reports include information for 
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multiple agricultural commodities, especially for crops.  In addition, agricultural commodities 

often serve as substitutes for each other in their usage.  For instance, corn and soybean can be 

used for animal feeds and as raw materials for biofuels.  If corn prices rise significantly, 

livestock producers might switch to soybeans since they are alternative feed sources.  In futures 

markets, the dynamic intermarket price relationships, such as intermarket spreads or corn-to-

soybean price ratio, are usually used for risk management or for speculative trading.60 Therefore, 

our study focuses on the extreme returns and volatility in the markets of agricultural substitutes 

and investigates the role of USDA reports in the occurrence of such extreme events.  It aims to 

provide new insights into the empirical linkages between market reactions and public 

information. 

We find statistical evidence of an increased probability of return and volatility 

coexceedances on the release days.  Compared to USDA reports for livestock, grain reports have 

a larger impact on coexceedances.  Specifically, the magnitude of their report effects varies by 

the type of information contained in the reports.  The release of ACR and GS reports in June has 

the largest impact on the occurrence of return coexceedances in the lower tail of the corn-

soybean pair, while its impact on the upper-tail return coexceedances is same as the January 

release of the CPAS, WASDE, and GS reports.  For the wheat pair, the cluster of ACR and GS 

reports is also one of the two clusters with the largest impact on the lower-tail return 

coexceedances, and the other cluster is PP and GS reports.  More importantly, the cluster of ACR 

and GS reports is always the most significant report in increasing the likelihood of volatility 

coexceedances in crop pairs.  These findings are not surprising since the largest survey the NASS 

 
60 The corn-soybean price ratio is a significant indicator for farmers to measure the relative profitability of corn and 

soybean in making their decisions about crop rotations (USDA 2020; CME 2022b). 
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conducts each year is the June Agricultural Survey (Vogel and Bange 1999).  During the first 

two weeks in June, farmers report their acreage planted by crop and the expected harvest 

acreage, and the ACR reports contain these survey responses.  Our results show that 

coexceedances are more likely to occur on the release days of ACR, indicating that the ACR 

brings new information about planted acreage and harvested acreage at the beginning of the 

marketing year. 

Moreover, we observe that USDA reports play a dual role for portfolio traders, 

particularly spread traders, who can either capitalize on profit or face losses in crop markets.  

However, it is important to be aware of the downside risks brought by the release of GS reports 

in September for the corn-soybean pair, the release of PP and GS reports for the wheat pair, and 

the release of the COF report for the livestock pair.  We only observe their impacts on an 

increase in the lower-tail (co)exceedances associated with a higher probability of elevated 

volatility.  These situations indicate that trading strategies based on price relationships among 

each substitute pair might be challenging and risky on the release days of corresponding reports.   

 More importantly, an increased probability of return and volatility coexceedances on the 

release days implies that the release of fundamental commodity information is a significant 

driver of extreme price movements analogous to flash crashes in agricultural commodity 

markets.  In particular, the growing number of automated, algorithmic, and high-frequency trades 

makes the futures market susceptible to extreme fluctuations.  The release of new information 

can be a double-edged sword to improve market transparency and efficiency but trigger extreme 

price and volatility comovements.  Therefore, it is essential for market participants to efficiently 

and correctly interpret the information contained in government reports. 
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Table 4.1. Summary Statistics 

 Grain and Oilseeds   Livestock 

 S C SW W  LH LC FC 

𝑟𝑖,𝑡  

Mean 0.01 0.01 0.01 0.01  0.01 0.01 0.01 

Std. Dev. 1.73 1.56 1.90 1.54  2.28 1.03 1.13 

Min -27.44 -22.47 -11.45 -26.21  -21.85 -6.01 -9.55 

Max 8.68 7.89 10.53 6.68  27.81 8.31 7.83 

Skewness -0.88 -0.43 0.16 -1.66  1.36 0.05 -0.22 

Kurtosis 17.92 11.24 5.20 24.47  26.87 6.41 10.92 

5% quantile -2.57 -2.29 -2.85 -2.24  -3.06 -1.65 -1.67 

95% quantile 2.69 2.47 3.17 2.27  2.95 1.63 1.74 
         

|𝑟𝑖,𝑡|  

Mean 1.21 1.14 1.43 1.07  1.43 0.74 0.77 

Std. Dev. 1.24 1.07 1.26 1.11  1.77 0.71 0.82 

Min 0.00 0.00 0.00 0.00  0.00 0.00 0.00 

Max 27.44 22.47 11.45 26.21  27.81 8.31 9.55 

Skewness 3.85 2.97 1.94 4.77  5.36 2.14 3.19 

Kurtosis 47.11 30.18 8.95 66.39  51.64 11.16 21.11 

95% quantile 3.53 3.14 3.83 3.01  3.88 2.14 2.21 

         

Observation 7222 7222 7222 7222   7218 7218 7218 

Notes: The sample period is from May 1994 to December 2022, where the announcement of 

USDA reports affects the same day trading.  𝑝𝑖,𝑡 represent settlement prices of each commodity i 

on day t. C, S, SW, W, LC, FC, and LH represents corn, soybean, winter wheat, spring wheat, live 

cattle, feeder cattle and lean hogs, respectively.  
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Table 4.2. USDA Reports for Selected Agricultural Commodities, 1994-2022 

USDA 

Report  Content  

Release 

Frequency  Release Days  Release Time 

CPAS 
 

Crop production data for 

the past year and 

information on area planted 

and harvested, yield, and 

production for corn, 

soybean, and wheat 

 
Annually 

 
Between the 10th and 

13th of January, 

except for 2019 (Feb. 

8) and 1994 (Jan. 1) 

 
7:30 am CT (May 1994-December 2012); 

11:00 am CT (January 2013- present) 

         

SGAS 
 

Acreage, area planted and 

harvested, yield and 

production data for wheat 

 
Annually 

 
Usually the last week 

of September, except 

for 1994 (Sep. 1), 

2001(Oct. 1), and 

2005 (Oct. 3) 

 
7:30 am CT (May 1994-December 2012); 

11:00 am CT (January 2013- present) 

WWS 
 

Annual seeded acreage of 

winter wheat, durum 

wheat, and rye crops 

 
Annually 

 
Between the 10th and 

12th of January, 

except for 2019 (Feb. 

8) and 1996 (Jan. 16) 

 
7:30 am CT (May 1994-December 2012); 

11:00 am CT (January 2013- present) 

PP 
 

Expected plantings and last 

year’s harvest for corn, 

soybean, corn, and all 

wheat 

 
Annually 

 
Between the 28th and 

31st of March 

 
7:30 am CT (May 1994-December 2012); 

11:00 am CT (January 2013- present) 

ACR 
 

Acreage or harvested for 

corn, soybeans, and wheat 

 
Annually 

 
Between the 28th and 

30th of June 

 
7:30 am CT (May 1994-December 2012); 

11:00 am CT (January 2013- present) 

GS 
 

Stocks of corn, soybeans, 

and wheat by position (on-

farm or off-farm storage) 

 
Quarterly 

 
Between the 10th and 

12th of January, and 

at the end of March, 

June, and September 

 
7:30 am CT (May 1994-December 2012); 

11:00 am CT (January 2013- present) 
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(Continuous)                                                                                        

HP 
 

U.S. pig crop for 16 major 

states and the U.S. 

 
Quarterly 

(Monthly 

Jan.2001-

Sep. 2003) 

 
Fridays near the end 

of March, June, 

September, and 

December 

 
2:00 pm CT, except for 12:00 pm CT in 

December 2011, and at 11:00 pm CT in 

March and December 2016 

         
COF 

 

Total number of cattle and 

calves on feed, placements, 

marketings, and other 

disappearances 
 

Monthly 

 

Friday on the third 

week of each month 

 

2:00 pm CT, except for December 2005 

(12:00 pm CT), May 2015, and December 

2016 (11:00 am CT) 

         

WASDE 
 

U.S. and world supply and 

use balances of major 

grains 

 
Monthly 

 
Between the 9th and 

12th of each month 

 
7:30 am CT (May 1994-December 2012); 

11:00 am CT (January 2013- present) 

         

CP   Crop production data for 

the U.S., including acreage, 

area harvested, and yield 

  Monthly    Between the 9th and 

12th of each month 

(Only provide 

information based on 

growth cycle) 

  7:30 am CT (May 1994-December 2012); 

11:00 am CT (January 2013- present) 

 

Notes: CPAS=Crop Production Annual Summary, SGAS=Small Grains Annual Summary, WWS=Winter Wheat Seedings (it includes 

three annual reports of wheat: Winter Wheat and Rye Seedings for1994-1999, Winter Wheat Seedings for 2000-2016, and Winter 

Wheat and Canola Seedings for 2017-2022), PP=Prospective Plantings, ACR=Acreage, GS=Grain Stocks, HP=Hogs and Pigs, 

COF=Cattle on Feed, WASDE=World Agricultural Supply and Demand Estimates, CP=Crop Production.
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Table 4.3. USDA Report Clusters for Grains and Livestock 

USDA report cluster   Release months  Number of release days 

1) Corn and Soybean   

CPAS+WASDE+GS  January  28 

WASDE  February, March, April, May, 

June, July, December 
 

198 

WASDE +CP  August, September, October, 

November 
 

115 

PP+GS  March  28 

ACR+GS  June  29 

GS  September  29 
    

 

2) Winter and Spring Wheat  

 

CPAS+WASDE+GS+WWS  January  28 

WASDE   February, March, April, 

September, October, December 
 

197 

WASDE +CP  May, June, July, August  116 

PP+GS  March  28 

ACR+GS  June  29 

GS+SGAS  September  26 
    

 

3) Livestock  

 

HP  March, June, September, and 

December 
 

136 

COF   All months   347 

Notes: For each commodity pair, report clusters that are released simultaneously are presented 

along with their release months. Our sample period is from May 1994 to December 2022. 
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Table 4.4. Contemporaneous Occurrence of Extreme Events in the Tails 

  Corn and Soybean   Winter and Spring Wheat   Lean Hogs, Live Cattle, and Feeder Cattle 

 (CS)  (WSW)  (LLF) 

Number of 

exceedances 
0 1 2  0 1 2  0 1 2 3 

𝑈𝑅𝑡
𝐽
 6640 440 142  6722 276 224  6364 652 176 26 

 (91.83%) (6.30%) (1.87%)  (93.01%) (3.96%) (3.03%)  (88.17%) (9.03%) (2.44%) (0.36%) 

𝐿𝑅𝑡
𝐽
 6632 455 135  6717 286 219  6411 571 196 40 

 (91.94%) (6.09%) (1.97%)  (93.08%) (3.82%) (3.10%)  (88.82%) (7.91%) (2.72%) (0.55%) 

𝑈𝑉𝑡
𝐽
 6640 440 142  6700 321 201  6356 662 179 21 

  (91.94%) (6.09%) (1.97%)   (92.77%) (4.44%) (2.78%)   (88.06%) (9.17%) (2.48%) (0.29%) 

Notes: Table reports the frequency of 𝑈𝑅𝑡
𝐽
, 𝐿𝑅𝑡

𝐽
, and 𝑈𝑉𝑡

𝐽
calculated in equations (4.2)-(4.4) for upper-tail return (co)exceedances, 

lower-tail return (co)exceedances, and volatility (co)exceedances, respectively. The number of exceedances indicates how many 

markets have extreme price or volatility movements in a given time t in each pair.  J represents the pair for corn-soybean, spring-and-

winter wheat, and hog-cattle-feeder cattle, where J=CS, WSW, or LLF.  The percentages are in parentheses.  Total observations for 

corn-soybean and winter-spring pair are 7222, while total observation for lean hog-live cattle-feeder cattle pair is 7218.
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Table 4.5. Effects of USDA Reports on Return Coexceedance: Corn and Soybean 

 Lower tail  (5%)  Upper tail  (95%) 

 

One 

exceedance 

Two 

exceedances  

One 

exceedance 

Two 

exceedances 

CPAS+WASDE+GS 0.168*** 0.079**  0.215*** 0.127*** 

 (0.053) (0.036)  (0.046) (0.048) 

WASDE 0.019 0.006  0.031* 0.012* 

 (0.016) (0.006)  (0.017) (0.007) 

WASDE+CP 0.095*** 0.038***  0.130*** 0.060*** 

 (0.026) (0.012)  (0.026) (0.015) 

PP+GS 0.212*** 0.113***  0.129** 0.060* 

 (0.047) (0.042)  (0.053) (0.032) 

ACR+GS 0.228*** 0.129***  0.215*** 0.127*** 

 (0.043) (0.044)  (0.045) (0.047) 

GS 0.194*** 0.099***  0.030 0.012 

  (0.049) (0.039)   (0.045) (0.018) 

Notes: Table reports average marginal effects representing the difference in the probability of 

(co)exceedance occurrences between the release and non-release days of a given report cluster.  

The results are calculated using average marginal effects estimated in equation (4.6). Standard 

errors are given in parentheses.  The asterisks *, **, and *** indicate statistical significance at 

the 10%, 5%, and 1% level, respectively. 
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Table 4.6. Effects of USDA Reports on Return Coexceedance: Winter and Spring Wheat 

 Lower tail (5%) 
 

Upper tail (95%) 

 

One 

exceedance 

Two 

exceedances  

One 

exceedance 

Two 

exceedances 

CPAS+WASDE+GS+WWS 0.082** 0.089*  0.067** 0.071* 

 (0.034) (0.047)  (0.033) (0.042) 

WASDE 0.013 0.110  0.000 0.000 

 (0.011) (0.01)  (0.010) (0.009) 

WASDE+CP 0.050*** 0.049***  0.031** 0.030* 

 (0.018) (0.018)  (0.017) (0.017) 

PP+GS 0.113*** 0.135**  0.039 0.037 

 (0.032) (0.056)  (0.032) (0.035) 

ACR+GS 0.113*** 0.135**  0.057* 0.058* 

 (0.031) (0.054)  (0.033) (0.040) 

GS+SGAS 0.044 0.042  0.029 0.028 

  (0.033) (0.036)   (0.033) (0.034) 

Notes: Table reports average marginal effects representing the difference in the probability of 

(co)exceedance occurrences between the release and non-release days of a given report cluster.  

The results are calculated using average marginal effects estimated in equation (4.6). Standard 

errors are given in parentheses.  The asterisks *, **, and *** indicate statistical significance at 

the 10%, 5%, and 1% level, respectively. 
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Table 4.7. Effects of USDA Reports on Return Coexceedance: Lean Hogs, Live Cattle, and 

Feeder Cattle 

 Lower tail (5%) 
 

Upper tail (95%) 

 

One 

exceedance 

Two 

exceedances 

Three 

exceedances  

One 

exceedance 

Two 

exceedances 

Three 

exceedances 

HP 0.038* 0.016* 0.003  0.046** 0.015* 0.002* 

 (0.021) (0.009) (0.002)  (0.023) (0.008) (0.001) 

COF 0.022* 0.009* 0.002  0.017 0.005 0.001 

  (0.012) (0.005) (0.001)   (0.014) (0.005) (0.001) 

Notes: Table reports average marginal effects representing the difference in the probability of 

(co)exceedance occurrences between the release and non-release days of a given report cluster.  

Average marginal effects are estimated in equation (4.6). Standard errors are given in 

parentheses.  The asterisks *, **, and *** indicate statistical significance at the 10%, 5%, and 

1% level, respectively. 
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Table 4.8. Effects of USDA Reports on Volatility  

Coexceedance: Corn and Soybean 

 Upper tail (95%) 

 

One 

exceedance 

Two 

exceedances 

CPAS+WASDE+GS 0.273*** 0.205*** 

 (0.03) (0.062) 

WASDE  0.019 0.007 

 (0.015) (0.006) 

WASDE+CP  0.164*** 0.079*** 

 (0.026) (0.017) 

PP+GS 0.261*** 0.182*** 

 (0.033) (0.054) 

ACR+GS 0.293*** 0.280*** 

 (0.016) (0.064) 

GS 0.161*** 0.080*** 

 (0.051) (0.035) 

Notes: Table reports average marginal effects representing 

the difference in the probability of (co)exceedance 

occurrences between the release and non-release days of a 

given report cluster. Average marginal effects are estimated 

in equation (4.6). Standard errors are given in parentheses.  

The asterisks *, **, and *** indicate statistical significance 

at the 10%, 5%, and 1% level, respectively. 
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Table 4.9. Effects of USDA Reports on Volatility 

 Coexceedance: Winter and Spring Wheat 

 Upper tail (95%) 

 

One 

exceedance 

Two 

exceedances 

CPAS+WASDE+GS+WWS 0.066* 0.054 

 (0.038) (0.036) 

WASDE  0.008 0.006 

 (0.012) (0.009) 

WASDE+CP  0.052** 0.041** 

 (0.018) (0.016) 

PP+GS 0.144*** 0.153*** 

 (0.034) (0.059) 

ACR+GS 0.152*** 0.167*** 

 (0.031) (0.058) 

GS+SGAS 0.075* 0.063 

  (0.039) (0.040) 

Notes: Table reports average marginal effects representing 

the difference in the probability of (co)exceedance 

occurrences between the release and non-release days of a 

given report cluster. Average marginal effects are 

estimated in equation (4.6).  Standard errors are given in 

parentheses.  The asterisks *, **, and *** indicate 

statistical significance at the 10%, 5%, and 1% level, 

respectively. 
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Table 4.10. Effects of USDA Reports on Volatility Coexceedance: Lean Hogs, Live Cattle, 

and Feeder Cattle 

  Upper tail (95%) 

 One exceedance Two exceedances Three exceedances 

HP 0.011 0.003 0.000 

 (0.021) (0.007) (0.001) 

COF 0.029** 0.010* 0.001*  
(0.014) (0.005) (0.001) 

Notes: Table presents average marginal effects representing the difference in the probability of 

(co)exceedance occurrences between the release and non-release days of a given report cluster. 

The results are average marginal effects estimated based on equation (4.6). Standard errors are 

given in parentheses. The asterisks *, **, and *** indicate statistical significance at the 10%, 5%, 

and 1% level, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



111 

 

 

(a) Lower-tail (5%) coexceedances 

 

 

(b)  Upper-tail (95%) coexceedances 

 

Figure 4.1. Percentage of return exceedance counts in the corn-soybean pair on release 

days 

Notes: The percentage of exceedance counts on release days is measured by dividing the 

frequency of exceedance counts at different levels by the total number of observations on release 

days of each cluster.  The number of release days for each cluster is shown in table 4.3.  
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(a) Lower-tail (5%) coexceedances 

 

 

(b)  Upper-tail (95%) coexceedances 

Figure 4.2. Percentage of return exceedance counts in the winter-spring wheat pair on 

release days 

Notes: The percentage of return exceedance counts on release days is measured by dividing the 

frequency of exceedance counts by the total number of observations on release days of each 

cluster.  The numbers of release days for each cluster are shown in table 4.3.  
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(a) Lower-tail (5%) coexceedances 

 

 

(b)  Upper-tail (95%) coexceedances 

Figure 4.3. Percentage of  return exceedance counts in the hog-live cattle-feeder cattle pair 

on release days 

Notes: The percentage of exceedance counts on release days is measured by dividing the 

frequency of exceedance counts by the total number of observations on release days of each 

cluster.  The numbers of release days for each cluster are shown in table 4.3.  
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(a) Corn and soybean 

 

 

 

 

(b) Winter and spring wheat 

 

 
(c) Lean hog, live cattle, and feeder cattle 

 

Figure 4.4. Percentage of  volatility exceedance counts on release days 

Notes: The percentage of exceedance counts on release days is measured by dividing the 

frequency of exceedance counts at different levels by the total number of observations on release 

days of each cluster.  The numbers of release days for each cluster are shown in table 4.3. 
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 (a) CPAS, WASDE, and GS reports                                             (b) WASDE and CP reports 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (c) PP and GS reports                                                            (d) ACR and GS reports       

               

Figure 4.5. Percentage of realized volatility coexceedance in the corn-soybean pair on the release days of selected reports 

Notes: The spot represents the share of one or two exceedances from 8:30 am to 1:20 pm CT on the release days of selected reports. 

The vertical axis represents the percentage of each outcome on the total number of observations, while the horizontal axis represents 

the time. The red dash line is for the release time of USDA reports at 11:00 am CT. 
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    (a) CPAS, WASDE, GS, and WWS reports                                             (b) WASDE and CP reports 

 

 

 

 

 

 

 

 

 

 

 

 

 

       (c) PP and GS reports                                                                            (d) ACR and GS reports 

                        

Figure 4.6. Percentage of realized volatility coexceedance in the winter-and spring wheat pair on the release days of selected 

reports 

Notes: The spot represents the share of one or two exceedances from 8:30 am to 1:20 pm CT on the release days of selected reports. 

The vertical axis represents the percentage of each outcome on the total number of observations, while the horizontal axis represents 

the time. The red dash line is for the release time of USDA reports at 11:00 am CT.
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CHAPTER 5  

                                                            CONCLUSIONS 

In conclusion, this dissertation contributes to a better understanding of agricultural commodity 

markets by examining price and volatility dynamics from three distinct perspectives.  There are 

three policy implications based on these findings.  First, policymakers need to be aware of the 

interdependencies in global agricultural markets linked through food supply chains, particularly 

for major suppliers and consumers in the global markets.  While a bilateral trade dispute can 

heavily impact exports/imports, its impact on volatility spillovers across countries is less 

significant than that of the global financial crisis. 

Second, modern agricultural markets are often characterized as oligopolistic.  The 

dependence of an end product’s price response on the price level of the other end product is more 

pronounced in non-competitive markets.  Price changes in downstream markets are not solely 

attributable to price shocks from upstream markets but can also result from the responses of 

jointly produced goods.  Especially for the food industry, it is essential to have a proper 

understanding of price transmission from farms to tables.  The full pass-through of decreasing 

agricultural prices can lead to discounted food prices and further benefit the low-income families 

struggling for food security.  But it is questionable whether low-income families could benefit 

from the decreasing farm prices.  Moreover, decreasing farm prices harms the incomes of 

farmers and ranchers and depresses their willingness to produce more goods in the long run.  

Policymakers should therefore explore and understand the price linkages among markets linked 

through supply chains before designing appropriate policies that ensure the welfare of market 

participants (i.e., farmers, processors, and food consumers) at each stage of supply chains.  



118 

 

Finally, the completeness and accuracy of the information that contributes to price 

determination have a significant impact on the decisions of buyers and sellers.  Government 

reports providing supply-use information can be a double-edged sword to improve market 

transparency and efficiency but trigger extreme price movements analogous to flash crashes in 

agricultural markets.  Therefore, traders or market participants might need extra guidance to 

utilize and interpret public reports for agricultural fundamentals effectively. 

Overall, these policy implications emphasize the importance of understanding 

interdependencies, supply chain dynamics, and the role of information in agricultural commodity 

markets.  By considering these factors, policymakers can make informed decisions and create a 

more efficient and resilient market environment. 
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APPENDICES 

A APPENDIX FOR CHAPTER 2 

We expand the elements in matrix 𝐇t given in (2.6) and (2.7).  The equations for conditional 

variances (ℎ𝑀𝑀,𝑡 , ℎ𝑂𝑂,𝑡, ℎ𝑆𝑆,𝑡 ) and covariances (ℎ𝑀𝑂,𝑡 , ℎ𝑀𝑆,𝑡, ℎ𝑂𝑆,𝑡) are given by: 

(A.1) ℎ𝑀𝑀,𝑡 = (𝑐𝑀𝑀
2 + 𝑐𝑂𝑀

2 + 𝑐𝑆𝑀
2 ) + 𝑎𝑀𝑀

2 𝜀𝑀,𝑡−1
2 + 𝑎𝑂𝑀

2 𝜀𝑂,𝑡−1
2 + 𝑎𝑆𝑀

2 𝜀𝑆,𝑡−1
2 + 

                           2𝑎𝑀𝑀𝑎𝑂𝑀𝜀𝑀,𝑡−1𝜀𝑂,𝑡−1 + 2𝑎𝑀𝑀𝑎𝑆𝑀𝜀𝑀,𝑡−1𝜀𝑆,𝑡−1 + 2𝑎𝑂𝑀𝑎𝑆𝑀𝜀𝑂,𝑡−1𝜀𝑆,𝑡−1 + 

                         𝑏𝑀𝑀
2 ℎ𝑀𝑀,𝑡−1 + 𝑏𝑂𝑀

2 ℎ𝑂𝑂,𝑡−1 + 𝑏𝑆𝑀
2 ℎ𝑆𝑆,𝑡−1 + 2𝑏𝑀𝑀𝑏𝑂𝑀ℎ𝑀𝑂,𝑡−1 + 

                         2𝑏𝑀𝑀𝑏𝑆𝑀ℎ𝑀𝑆,𝑡−1 + 2𝑏𝑂𝑀𝑏𝑆𝑀ℎ𝑂𝑆,𝑡−1 + ∑ (𝑔𝑘,𝑀𝑀
2𝐾

𝑘=1 + 𝑔𝑘,𝑂𝑀
2 + 𝑔𝑘,𝑆𝑀

2 )𝑋𝑘,𝑡 

(A.2)  ℎ𝑂𝑂,𝑡 = (𝑐𝑂𝑂
2 + 𝑐𝑆𝑂

2 ) + 𝑎𝑀𝑂
2 𝜀𝑀,𝑡−1

2 + 𝑎𝑂𝑂
2 𝜀𝑂,𝑡−1

2 + 𝑎𝑆𝑂
2 𝜀𝑆,𝑡−1

2 + 2𝑎𝑀𝑂𝑎𝑂𝑂𝜀𝑀,𝑡−1𝜀𝑂,𝑡−1 + 

                        2𝑎𝑀𝑂𝑎𝑆𝑂𝜀𝑀,𝑡−1𝜀𝑆,𝑡−1 + 2𝑎𝑂𝑂𝑎𝑆𝑂𝜀𝑂,𝑡−1𝜀𝑆,𝑡−1 + 𝑏𝑀𝑂
2 ℎ𝑀𝑀,𝑡−1 + 𝑏𝑂𝑂

2 ℎ𝑂𝑂,𝑡−1 + 

                        𝑏𝑆𝑂
2 ℎ𝑆𝑆,𝑡−1 + 2𝑏𝑀𝑂𝑏𝑂𝑂ℎ𝑀𝑂,𝑡−1 + 2𝑏𝑀𝑂𝑏𝑆𝑂ℎ𝑀𝑆,𝑡−1 + 2𝑏𝑂𝑂𝑏𝑆𝑂ℎ𝑂𝑆,𝑡−1 + 

                       ∑ (𝑔𝑘,𝑂𝑂
2𝐾

𝑘=1 + 𝑔𝑘,𝑆𝑂
2 )𝑋𝑘,𝑡 

(A.3) ℎ𝑆𝑆,𝑡 = 𝑐𝑆𝑆
2 + 𝑎𝑀𝑆

2 𝜀𝑀,𝑡−1
2 + 𝑎𝑂𝑆

2 𝜀𝑂,𝑡−1
2 + 𝑎𝑆𝑆

2 𝜀𝑆,𝑡−1
2 + 2𝑎𝑀𝑆𝑎𝑂𝑆𝜀𝑀,𝑡−1𝜀𝑂,𝑡−1 + 

                         2𝑎𝑀𝑆𝑎𝑆𝑆𝜀𝑀,𝑡−1𝜀𝑆,𝑡−1 + 2𝑎𝑂𝑆𝑎𝑆𝑆𝜀𝑂,𝑡−1𝜀𝑆,𝑡−1 + 𝑏𝑀𝑆
2 ℎ𝑀𝑀,𝑡−1 + 𝑏𝑂𝑆

2 ℎ𝑂𝑂,𝑡−1 + 

                        𝑏𝑆𝑆
2 ℎ𝑆𝑆,𝑡−1 + 2𝑏𝑀𝑆𝑏𝑂𝑆ℎ𝑀𝑂,𝑡−1 + 2𝑏𝑀𝑆𝑏𝑆𝑆ℎ𝑀𝑆,𝑡−1 + 2𝑏𝑂𝑆𝑏𝑆𝑆ℎ𝑂𝑆,𝑡−1 + 

                       ∑ 𝑔𝑘,𝑆𝑆
2𝐾

𝑘=1 𝑋𝑘,𝑡 

(A.4) ℎ𝑀𝑂,𝑡 = (𝑐𝑂𝑀𝑐𝑂𝑂 + 𝑐𝑆𝑀𝑐𝑆𝑂) +  𝑎𝑀𝑀𝑎𝑀𝑂𝜀𝑀,𝑡−1
2 + 𝑎𝑂𝑀𝑎𝑂𝑂𝜀𝑂,𝑡−1

2 + 𝑎𝑆𝑀𝑎𝑆𝑂𝜀𝑆,𝑡−1
2 + 

                         (𝑎𝑀𝑀𝑎𝑂𝑂 + 𝑎𝑀𝑂𝑎𝑂𝑀)𝜀𝑀,𝑡−1𝜀𝑂,𝑡−1 + (𝑎𝑀𝑀𝑎𝑆𝑂 + 𝑎𝑀𝑂𝑎𝑆𝑀)𝜀𝑀,𝑡−1𝜀𝑆,𝑡−1+ 

                      (𝑎𝑂𝑀𝑎𝑆𝑂 + 𝑎𝑂𝑂𝑎𝑆𝑀)𝜀𝑂,𝑡−1𝜀𝑆,𝑡−1 + 𝑏𝑀𝑀𝑏𝑀𝑂ℎ𝑀𝑀,𝑡−1 + 𝑏𝑂𝑀𝑏𝑂𝑂ℎ𝑂𝑂,𝑡−1 + 

                       𝑏𝑆𝑀𝑏𝑆𝑂ℎ𝑆𝑆,𝑡−1 + (𝑏𝑀𝑀𝑏𝑂𝑂 + 𝑏𝑀𝑂𝑏𝑂𝑀)ℎ𝑀𝑂,𝑡−1 + (𝑏𝑀𝑀𝑏𝑆𝑂 + 𝑏𝑀𝑂𝑏𝑆𝑀)ℎ𝑀𝑆,𝑡−1 + 

        (𝑏𝑂𝑀𝑏𝑆𝑂 + 𝑏𝑂𝑂𝑏𝑆𝑀)ℎ𝑂𝑆,𝑡−1 + ∑ (𝑔𝑘,𝑂𝑀𝑔𝑘,𝑂𝑂 + 𝑔𝑘,𝑆𝑀𝑔𝑘,𝑆𝑂)𝑋𝑘,𝑡
𝐾
𝑘=1  
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(A.5) ℎ𝑀𝑆,𝑡 =  𝑐𝑆𝑀𝑐𝑆𝑆 +  𝑎𝑀𝑀𝑎𝑀𝑆𝜀𝑀,𝑡−1
2 + 𝑎𝑂𝑀𝑎𝑂𝑆𝜀𝑂,𝑡−1

2 + 𝑎𝑆𝑀𝑎𝑆𝑆𝜀𝑆,𝑡−1
2 + 

                        (𝑎𝑀𝑀𝑎𝑂𝑆 + 𝑎𝑀𝑆𝑎𝑂𝑀)𝜀𝑀,𝑡−1𝜀𝑂,𝑡−1 + (𝑎𝑀𝑀𝑎𝑆𝑆 + 𝑎𝑀𝑆𝑎𝑆𝑀)𝜀𝑀,𝑡−1𝜀𝑆,𝑡−1+ 

                    (𝑎𝑂𝑀𝑎𝑆𝑆 + 𝑎𝑂𝑆𝑎𝑆𝑀)𝜀𝑂,𝑡−1𝜀𝑆,𝑡−1 + 𝑏𝑀𝑀𝑏𝑀𝑆ℎ𝑀𝑀,𝑡−1 + 𝑏𝑂𝑀𝑏𝑂𝑆ℎ𝑂𝑂,𝑡−1 + 

                    𝑏𝑆𝑀𝑏𝑆𝑆ℎ𝑆𝑆,𝑡−1 + (𝑏𝑀𝑀𝑏𝑂𝑆 + 𝑏𝑀𝑆𝑏𝑂𝑀)ℎ𝑀𝑂,𝑡−1 + (𝑏𝑀𝑀𝑏𝑆𝑆 + 𝑏𝑀𝑆𝑏𝑆𝑀)ℎ𝑀𝑆,𝑡−1 + 

     (𝑏𝑂𝑀𝑏𝑆𝑆 + 𝑏𝑂𝑆𝑏𝑆𝑀)ℎ𝑂𝑆,𝑡−1 + ∑ 𝑔𝑘,𝑆𝑀𝑔𝑘,𝑆𝑆𝑋𝑘,𝑡
𝐾
𝑘=1  

(A.6) ℎ𝑂𝑆,𝑡 = 𝑐𝑆𝑂𝑐𝑆𝑆 +  𝑎𝑀𝑂𝑎𝑀𝑆𝜀𝑀,𝑡−1
2 + 𝑎𝑂𝑂𝑎𝑂𝑆𝜀𝑂,𝑡−1

2 + 𝑎𝑆𝑂𝑎𝑆𝑆𝜀𝑆,𝑡−1
2 + 

                        (𝑎𝑀𝑂𝑎𝑂𝑆 + 𝑎𝑀𝑆𝑎𝑂𝑂)𝜀𝑀,𝑡−1𝜀𝑂,𝑡−1 + (𝑎𝑀𝑂𝑎𝑆𝑆 + 𝑎𝑀𝑆𝑎𝑆𝑂)𝜀𝑀,𝑡−1𝜀𝑆,𝑡−1+ 

                     (𝑎𝑂𝑂𝑎𝑆𝑆 + 𝑎𝑂𝑆𝑎𝑆𝑂)𝜀𝑂,𝑡−1𝜀𝑆,𝑡−1 + 𝑏𝑀𝑂𝑏𝑀𝑆ℎ𝑀𝑀,𝑡−1 + 𝑏𝑂𝑂𝑏𝑂𝑆ℎ𝑂𝑂,𝑡−1 + 

                      𝑏𝑆𝑂𝑏𝑆𝑆ℎ𝑆𝑆,𝑡−1 + (𝑏𝑀𝑂𝑏𝑂𝑆 + 𝑏𝑀𝑆𝑏𝑂𝑂)ℎ𝑀𝑂,𝑡−1 + (𝑏𝑀𝑂𝑏𝑆𝑆 + 𝑏𝑀𝑆𝑏𝑆𝑂)ℎ𝑀𝑆,𝑡−1 + 

                      (𝑏𝑂𝑂𝑏𝑆𝑆 + 𝑏𝑂𝑆𝑏𝑆𝑂)ℎ𝑂𝑆,𝑡−1 + ∑ 𝑔𝑘,𝑆𝑂𝑔𝑘,𝑆𝑆𝑋𝑘,𝑡
𝐾
𝑘=1  
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Table A.1.  Futures Contracts Used in Constructing Price Series 

 

 

 

 

 

 

 

 

 

Notes: DCE= Dalian Commodity Exchange; CBOT= Chicago Board of Trade. 

The subscript, t or t+1, refers to the year of the futures contract expiration date  

relative to the year t of the daily price being calculated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DCE DCE CBOT 

Calendar Month  Soybean Meal Soybean Oil Soybean

Januaryt Mayt Mayt Mart

Februaryt Mayt Mayt Mart

Marcht Sept Sept Mayt

Aprilt Sept Sept Mayt

Mayt Sept Sept Jult

Junet Sept Sept Jult

Julyt Jant+1 Jant+1 Novt

Augustt Jant+1 Jant+1 Novt

Septembert Jant+1 Jant+1 Novt

Octobert Jant+1 Jant+1 Novt

Novembert Mayt+1 Mayt+1 Jant+1

Decembert Mayt+1 Mayt+1 Jant+1
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Table A.2. Summary Statistics of Futures Prices 

 
Notes: DCE= Dalian Commodity Exchange; CBOT= Chicago Board of Trade. 

ADF test is the augmented Dickey-Fuller stationarity test with the null hypothesis 

of a unit root. Normality test is the Jarque-Bera test with the null hypothesis of  

normally distributed prices.  White test is a heteroskedasticity test with the null  

hypothesis of homoskedasticity.  ARCH effect is a Lagrange multiplier test for 

autoregressive conditional heteroskedasticity (ARCH) with the null hypothesis  

of no ARCH effects. Ljung-Box is an autocorrelation test with the null hypothesis 

of independently distributed returns.  Five lags are used for the ADF, White, and  

ARCH effect tests; both five and twenty-five lags are used for the Ljung-Box test. 

The asterisks *, **, and *** indicate statistical significance at the 10%, 5%, and 1%  

level, respectively.  

 

 

 

 

 

 

 

 

Mean 9.629 5.229 10.624

Std. Dev. 1.719 1.298 2.515

Min 5.872 2.967 5.385

Max 14.762 9.622 17.683

Skewness -0.016 0.699 0.308

Kurtosis 2.838 2.567 2.562

Observations 3256 3256 3256

ADF test -2.633 -2.506 -2.553

Normality 3.706 290.979 *** 77.711 ***

White test 128.047 *** 764.957 *** 674.251 ***

ARCH effect 3229.222 *** 3241.312 *** 3228.252 ***

Ljung-Box(5) 15916.44 *** 16106.66 *** 15967.50 ***

Ljung-Box(25) 72791.71 *** 76950.99 *** 74425.82 ***

DCE DCE CBOT

Soybean Meal Soybean Oil Soybean
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Table A.3.  MGARCH-X-BEKK Model Diagnostics: Full Sample Period 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Diagnostics tests for the model in table 2.4 are presented.  DCE= Dalian Commodity  

Exchange; CBOT= Chicago Board of Trade.  AIC= Akaike information criterion.  Ljung- 

Box and multivariate Q statistics test the independence of the residuals separately and 

jointly, respectively.  Both five and ten lags are used for Ljung-Box and multivariate Q 

tests.  Five and twenty-five lags are used for testing ARCH effects.  The asterisks *, **,  

and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively.  

 

 

 

 

 

 

 

 

 

 

 

Log-likelihood -12989.1

AIC 8.024

Degrees of freedom 7.618 ***

(0.291)

DCE DCE CBOT

Soybean Meal Soybean Oil Soybean

(M) (O) (S)

Ljung-Box (5) 2.611 4.706 4.802

[0.760] [0.453] [0.440]

Ljung-Box (10) 10.962 13.553 13.970

[0.361] [0.194] [0.174]

Multivariate Q (5) 51.692

[0.229]

Multivariate Q (10) 97.361

[0.280]

ARCH (5) 0.209 3.134 3.249

[0.999] [0.679] [0.662]

ARCH (25) 4.856 13.357 20.850

[1.000] [0.972] [0.701]

Model diagnostics I: Goodness of fit 

Model diagnostics II: Residuals 

Model diagnostics III: Squared residuals
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Table A.4. MGARCH-X-BEKK: Transformed Conditional Variance Equation 

 Parameters 

 
Notes: The transformed coefficients on each term in the conditional variance equation 

(A.1)-(A.3) are presented with standard errors in parentheses.  The sample period is 

From January 24, 2006 to December 31, 2019.  DCE= Dalian Commodity Exchange;  

CBOT= Chicago Board of Trade.  Subscripts M, S, and O represent DCE soybean meal, 

DCE soybean oil, and CBOT soybean, respectively.  The asterisks *, **, and *** indicate  

Statistical significance at the 10%, 5%, and 1% level, respectively.  

Constant 0.060 *** 0.017 ** 0.007

(0.015) (0.007) (0.007)

0.019 *** 0.001 0.002

(0.005) (0.002) (0.002)

0.001 0.022 *** 0.010 *

(0.001) (0.007) (0.005)

0.004 0.007 ** 0.025 ***

(0.002) (0.003) (0.009)

-0.008 -0.011 * 0.008

(0.005) (0.006) (0.006)

0.017 *** -0.006 -0.012

(0.004) (0.005) (0.010)

-0.003 0.024 *** -0.031 ***

(0.003) (0.005) (0.011)

0.989 *** 0.000 0.002 **

(0.013) (0.000) (0.001)

0.000 0.969 *** 0.004 ***

(0.000) (0.017) (0.002)

0.001 * 0.001 0.855 ***

(0.001) (0.000) (0.024)

0.028 ** 0.005 0.006 **

(0.014) (0.013) (0.002)

-0.060 *** 0.000 0.078 ***

(0.017) (0.000) (0.019)

-0.001 -0.051 *** 0.122 ***

(0.001) (0.018) (0.022)

Financial crisis 0.072 ** 0.011 0.001

(0.033) (0.007) (0.009)

Trade dispute 0.008 0.003 0.008

(0.007) (0.004) (0.008)

(M) (O) (S)

 Var Var Var

 𝑀,𝑡−1
2

 𝑂,𝑡−1
2

 𝑆,𝑡−1
2

 𝑀,𝑡−1 𝑂,𝑡−1

 𝑀,𝑡−1ε𝑆,𝑡−1

h𝑀𝑀,𝑡−1

h𝑂𝑂,𝑡−1

h𝑆𝑆,𝑡−1

h𝑀𝑂,𝑡−1

h𝑀𝑆,𝑡−1

h𝑂𝑆,𝑡−1

 𝑂,𝑡−1ε𝑆,𝑡−1
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Table A.5. Multivariate Structural Break for One Unknown Break Point 

 

 

 

 

Notes: The tests are proposed by Qu and Perron (2007).  The alternative hypothesis of 

this test is the existence of one structural change point.  The supLR tests against a fixed 

number of changes while the WDmax test is for an unknown number of changes up to 

some pre-specified maxima.  The estimated break is selected by 𝑠𝑒𝑞(ℓ + 1|ℓ) test.  The 

number of observations are shown in results.  The estimated break point, 858, represents 

the break date as 09/15/2009.  The asterisks *, **, and *** indicate statistical significance 

at the 10%, 5%, and 2.5% level, respectively.  
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Table A.6. Summary Statistics of Synchronized Returns in Two Subperiods 

 

 

 

 

 

 

 

 

 

 

Notes: Returns are calculated as the percentage change in the settlement price from one day to the next.  DCE= Dalian Commodity 

Exchange; CBOT= Chicago Board of Trade.  ADF test is the augmented Dickey-Fuller stationarity test with the null hypothesis of a 

unit root.  Normality test is the Jarque-Ber test with the null hypothesis of normally distributed returns.  White test is a 

heteroskedasticity test with the null hypothesis of homoskedasticity.  ARCH effect is a Lagrange multiplier test for autoregressive 

conditional heteroskedasticity (ARCH) with the null hypothesis of no ARCH effects.  Ljung-Box is an autocorrelation test with the 

null hypothesis of independently distributed returns. Five lags are used for the ADF, White, and ARCH effect test; both five and 

twenty-five lags are used for the Ljung-Box test.  The asterisks *, **, and *** indicate statistical significance at the 10%, 5%, and 1% 

level, respectively.  

 

 

Mean 0.052 0.062 0.086 0.028 -0.020 0.012

Std. Dev. 1.606 1.635 1.880 1.038 0.986 1.259

Min -8.216 -8.412 -7.411 -4.557 -4.645 -6.540

Max 6.719 5.434 6.445 5.754 4.852 6.366

Skewness -0.343 -0.649 -0.332 0.077 0.022 -0.045

Kurtosis 5.321 5.677 4.636 4.696 4.210 4.989

Observations 848 848 848 2383 2383 2383

ADF test -27.541 *** -26.130 *** -28.519 *** -47.445 *** -49.541 *** -50.194 ***

Normality 206.953 *** 312.707 *** 110.128 *** 287.875 *** 145.572 *** 393.492 ***

White test 38.870 *** 70.718 *** 21.164 *** 78.315 *** 80.187 *** 250.797 ***

ARCH effect 77.310 *** 105.625 *** 60.523 *** 99.352 *** 41.732 *** 90.735 ***

Ljung-Box (5) 8.787 16.061 *** 1.252 8.123 6.123 9.111

Ljung-Box (25) 42.331 ** 40.892 ** 16.749 30.225 34.980 * 33.708

CBOT DCE DCE CBOT

 October 2009 - December  2019January 2006 - August 2009

DCE DCE

SoybeanSoybean Meal Soybean Oil Soybean Soybean Meal Soybean Oil
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Table A.7.  MGARCH-X-BEKK Model Diagnostics: Two Subperiods 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Diagnostics tests for the model in table 2.5 are presented.  DCE= Dalian Commodity Exchange; CBOT = Chicago Board of 

Trade.  AIC= Akaike information criterion.  Ljung-Box and multivariate Q statistics test the independence of the residuals separately 

and jointly, respectively.  Both five and ten lags are used for Ljung-Box and multivariate Q tests.  Five and twenty-five lags are used 

for testing ARCH effects.  The asterisks *, **, and ***, indicate statistical significance at the 10%, 5%, and 1% level, respectively.    
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Table A.8. MGARCH-X-BEKK in Two Subperiods: Transformed Conditional Variance Equation Parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: The transformed coefficients on each term in the conditional variance equation (A.1)-(A.3) are presented. Standard  

errors are in parentheses.  DCE= Dalian Commodity Exchange; CBOT = Chicago Board of Trade.  Subscripts M, S, and O 

represent DCE soybean meal, DCE soybean oil, and CBOT soybean, respectively.  The asterisks *, **, and *** indicate  

statistical significance at the 10%, 5%, and 1% level, respectively. 

Constant 0.239 *** 0.054 ** 0.000 0.073 ** 0.027 *** 0.000

(0.085) (0.023) (0.000) (0.032) (0.010) (0.000)

0.226 ** 0.002 0.014 0.019 ** 0.000 0.010

(0.095) (0.005) (0.022) (0.007) (0.001) (0.007)

0.046 0.033 ** 0.020 0.002 0.009 * 0.011

(0.033) (0.015) (0.015) (0.002) (0.005) (0.008)

0.026 0.002 0.000 0.006 0.008 * 0.059 ***

(0.017) (0.003) (0.001) (0.004) (0.004) (0.016)

-0.204 * -0.015 -0.033 -0.011 -0.004 0.020 *

(0.109) (0.025) (0.036) (0.007) (0.005) (0.011)

-0.154 ** -0.003 -0.003 0.021 *** -0.003 -0.047 **

(0.073) (0.008) (0.015) (0.005) (0.005) (0.023)

0.069 ** 0.015 0.003 -0.006 0.016 *** -0.051 **

(0.035) (0.014) (0.016) (0.005) (0.004) (0.021)

0.458 ** 0.003 0.001 1.020 *** 0.000 0.006 **

(0.230) (0.006) (0.004) (0.026) (0.000) (0.003)

0.053 * 1.021 *** 0.014 0.001 1.023 *** 0.006 **

(0.028) (0.046) (0.010) (0.001) (0.020) (0.002)

0.002 0.000 0.875 *** 0.003 0.003 0.779 ***

(0.008) (0.001) (0.069) (0.002) (0.002) (0.041)

0.311 *** -0.101 -0.006 0.054 ** 0.037 0.012 **

(0.063) (0.122) (0.022) (0.022) (0.026) (0.005)

0.056 0.001 -0.044 -0.114 *** -0.002 0.132 ***

(0.112) (0.002) (0.159) (0.036) (0.002) (0.030)

0.019 -0.022 0.221 *** -0.003 -0.114 *** 0.138 ***

(0.045) (0.057) (0.081) (0.002) (0.036) (0.025)

Financial crisis 0.082 * 0.087 * 0.000

(0.045) (0.051) (0.000)

Trade dispute 0.014 0.023 0.040

(0.017) (0.093) (0.082)

(O) (S)(M) (O) (S) (M)

 January 2006 - August 2009  October 2009 - December 2019

Var Var VarVarVar Var

 𝑀,𝑡−1
2

 𝑂,𝑡−1
2

 𝑆,𝑡−1
2

 𝑀,𝑡−1 𝑂,𝑡−1

 𝑀,𝑡−1ε𝑆,𝑡−1

h𝑀𝑀,𝑡−1

h𝑂𝑂,𝑡−1

h𝑆𝑆,𝑡−1

h𝑀𝑂,𝑡−1

h𝑀𝑆,𝑡−1

h𝑂𝑆,𝑡−1

 𝑂,𝑡−1ε𝑆,𝑡−1
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B APPENDIX FOR CHAPTER 3  

Weak Exogeneity Test across Multivariate Quantiles 

Based on the exogeneity definition of Engle, Hendry, and Richard (1983), weak exogeneity tests 

of potentially endogenous variables are performed in partial models of a cointegrated system 

(Ericsson 1992; Boswijk 1995; Johansen 1992; Johansen and Juselius 1992; Urbain 1993; 

Boswijk and Urbain 1997).  An advantage of either error correction or autoregressive model is 

that one can form a partial system as a conditional model, in which equations with variables of 

interest can be regressed on weakly exogenous variables.  The partial model is efficient as long 

as it contains as much information as the full system about the short- and long-run parameters 

(Johansen 1992). 

Being able to treat soybean prices as weakly exogenous in the analysis of soybean meal 

and oil equations becomes much more important in the multivariate quantile framework due to 

computational challenges.  Our model is a system of three conditional directional quantile 

functions, and each conditional quantile is estimated with an arbitrary quantile index 𝜏 ∈ (0,1).  

Since we select nine quantile indices of each commodity’s price distribution, the multivariate 

quantile 𝛕∗ = (𝜏𝑀, 𝜏𝑂 , 𝜏𝑆)
′ provides 729 combinations of quantile indices to be estimated in the 

VECQ model.  Treating soybean prices as weakly exogenous reduces the dimension of the 

multivariate quantile 𝛕∗ from three to two, largely reducing the computational complication (2-

dimensional multivariate quantile only has 81 combinations of quantile indices). 

To test weak exogeneity of soybean prices across multivariate quantiles, we follow 

Urbain (1993)’s method introduced in the preliminary analysis to decompose the trivariate VEC 

model into a structural VEC model for soybean end products and a marginal reduced-form model 

for soybeans.  Tests of weak exogeneity are carried out by estimating the marginal model for 
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soybean prices based on quantile regression, where the coefficients are functions of multivariate 

quantile 𝛕∗.  Then, the weak exogeneity of 𝑝𝑆,𝑡 can be tested by the joint null hypothesis: 

(B.1) 𝐻0: 𝛾𝑆(𝛕
∗) = 0, 𝛉(𝛕∗) =  𝟎. 

Figure B.1 presents the histogram of the p-values, associated with 729 F-statistics for the 

joint hypothesis tests in equation (B.1), along with a vertical line at the p-value of 0.05.  All p-

values are greater than even 0.1, showing that both estimated residuals (𝛖t) and the error 

correction (𝐸𝐶̂𝑡−1) term are jointly no different than zero in the marginal model.  This indicates 

that weak exogeneity assumption of soybean prices is satisfied across selected multivariate 

quantiles.  

 

Figure B.1. Weak exogeneity tests for soybean log prices across multivariate quantiles 

Notes: Tests of weak exogeneity of soybean log prices are carried out by estimating the marginal 

reduced-form model for soybeans based on a quantile regression.  The histogram of the p-values 

for 729 null hypotheses given in equation (B.1) are plotted.  The vertical line indicates the p-

value of 0.05.  
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Adjustment Speed Parameter Estimates of Soybean End Products 

Table B.1. Adjustment Speed of Soybean Meal towards the Long-Run Equilibrium 

       𝜏𝑀      
 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 0.1 -0.09** -0.08* -0.08 -0.04 -0.01 0.00 0.00 0.03 -0.02 

  (0.04) (0.04) (0.05) (0.05) (0.05) (0.05) (0.05) (0.06) (0.07) 

 
          

 0.2 -0.11*** -0.10*** -0.10** -0.06 -0.02 -0.02 -0.02 0.01 -0.03 

  (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.05) (0.06) (0.06) 

 
          

 0.3 -0.11*** -0.10*** -0.10** -0.07 -0.03 -0.02 -0.02 0.01 -0.04 

  (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04) (0.05) (0.06) 

 
          

 0.4 -0.13*** -0.12*** -0.13*** -0.09** -0.05 -0.04 -0.04 -0.01 -0.06 

  (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04) (0.05) (0.06) 

 
          

𝜏 𝑂
 

0.5 -0.14*** -0.13*** -0.13*** -0.09** -0.06* -0.05 -0.05 -0.02 -0.06 

  (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04) (0.05) (0.06) 

 
          

 0.6 -0.14*** -0.13*** -0.14*** -0.10** -0.07* -0.06 -0.06 -0.03 -0.07 

  (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 

 
          

 0.7 -0.13*** -0.12*** -0.13*** -0.09** -0.06 -0.05 -0.05 -0.02 -0.06 

  (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) 

 
          

 0.8 -0.11** -0.10** -0.10** -0.07 -0.03 -0.02 -0.03 0.00 -0.04 

  (0.05) (0.05) (0.05) (0.05) (0.04) (0.04) (0.04) (0.05) (0.06) 

 
          

 0.9 -0.07 -0.06 -0.06 -0.03 0.01 0.01 0.01 0.04 0.00 

  (0.06) (0.05) (0.06) (0.06) (0.05) (0.05) (0.05) (0.06) (0.06) 

Notes: 𝜏𝑖 represents the quantile index of each commodity, where the subscript i=M, O 

represents soybean meal and soybean oil, respectively. The results are rounded to two decimals.  

Hypothesis testing is based on bootstrapped standard errors given in parentheses. The asterisks *, 

**, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. 
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Table B.2. Adjustment Speed of Soybean Oil towards the Long-Run Equilibrium 

       𝜏𝑂      
 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 0.1 -0.06 -0.03 -0.02 0.02 0.02 0.04 0.02 -0.02 -0.10 

  (0.07) (0.04) (0.04) (0.04) (0.05) (0.05) (0.05) (0.08) (0.09) 

 
 

         
 0.2 -0.07 -0.04 -0.03 0.01 0.02 0.03 0.01 -0.03 -0.11 

  (0.07) (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) (0.08) (0.08) 

 
 

         
 0.3 -0.07 -0.04 -0.03 0.01 0.02 0.03 0.01 -0.03 -0.11 

  (0.07) (0.05) (0.04) (0.04) (0.04) (0.05) (0.05) (0.07) (0.09) 

 
 

         
 0.4 -0.10 -0.06 -0.06 -0.01 0.00 0.01 -0.01 -0.05 -0.13 

  (0.07) (0.05) (0.04) (0.04) (0.04) (0.05) (0.05) (0.07) (0.09) 

 
 

         

𝜏 𝑀
 

0.5 -0.12* -0.09* -0.08** -0.04 -0.03 -0.01 -0.03 -0.08 -0.15* 

  (0.07) (0.05) (0.04) (0.04) (0.04) (0.04) (0.04) (0.07) (0.08) 

 
 

         
 0.6 -0.13* -0.10** -0.08** -0.05 -0.03 -0.02 -0.04 -0.08 -0.15* 

  (0.07) (0.05) (0.04) (0.04) (0.04) (0.04) (0.04) (0.07) (0.08) 

 
 

         
 0.7 -0.13* -0.10* -0.09** -0.05 -0.03 -0.02 -0.04 -0.08 -0.15* 

  (0.07) (0.05) (0.04) (0.04) (0.04) (0.05) (0.04) (0.06) (0.08) 

 
 

         
 0.8 -0.15* -0.12** -0.11** -0.07 -0.05 -0.04 -0.06 -0.10 -0.17** 

  (0.08) (0.06) (0.05) (0.05) (0.05) (0.05) (0.05) (0.07) (0.08) 

 
 

         
 0.9 -0.12 -0.09 -0.08 -0.04 -0.02 -0.01 -0.03 -0.07 -0.14* 

  (0.08) (0.06) (0.05) (0.05) (0.05) (0.05) (0.05) (0.07) (0.08) 

Notes: 𝜏𝑖 represents the quantile index of each commodity, where the subscript i=M, O 

represents soybean meal and soybean oil, respectively.  The results are rounded to two decimals.  

Hypothesis testing is based on bootstrapped standard errors given in parentheses. The asterisks *, 

**, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. 
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Cumulative Price Responses to Soybean Price Changes 

Table B.3. Cumulative Price Response of Soybean Meal to Soybean Price Changes 

       𝜏𝑀      

     0.1    0.2 0.3 0.4 0.5 0.6 0.7 0.8   0.9 

0.1 + 1.28 1.29 1.09 1.05 1.26 1.19 1.35 1.50 1.21 
 − 1.40 1.00 0.90 1.02 0.94 0.86 0.87 0.63 0.15  

 [0.67] [0.25] [0.46] [0.91] [0.19] [0.18] [0.15] [0.03]** [0.02]** 

0.2 + 1.22 1.23 1.03 0.99 1.20 1.14 1.30 1.46 1.16 
 − 1.44 1.04 0.94 1.06 0.98 0.89 0.90 0.66 0.17  

 [0.43] [0.40] [0.70] [0.75] [0.31] [0.28] [0.22] [0.04]** [0.02]** 

0.3 + 1.28 1.30 1.10 1.06 1.27 1.20 1.36 1.51 1.22 
 − 1.51 1.12 1.02 1.14 1.07 0.97 0.98 0.74 0.27  

 [0.42] [0.46] [0.74] [0.71] [0.32] [0.29] [0.22] [0.04]** [0.02]** 

0.4 + 1.36 1.37 1.18 1.14 1.35 1.28 1.43 1.58 1.30 
 − 1.67 1.27 1.19 1.31 1.24 1.12 1.13 0.88 0.42  

 [0.27] [0.69] [0.96] [0.44] [0.56] [0.48] [0.32] [0.05]** [0.03]** 

𝜏 𝑂
 

0.5 + 1.30 1.31 1.12 1.09 1.29 1.22 1.37 1.52 1.24 

 − 1.74 1.36 1.28 1.39 1.33 1.21 1.21 0.97 0.53 

  [0.12] [0.85] [0.48] [0.16] [0.83] [0.96] [0.60] [0.12] [0.07]* 

0.6 + 1.20 1.21 1.02 0.98 1.18 1.12 1.27 1.42 1.14 
 − 1.72 1.34 1.26 1.38 1.31 1.20 1.20 0.96 0.53 

  [0.07]* [0.58] [0.26] [0.08]* [0.48] [0.73] [0.81] [0.19] [0.10]* 

0.7 + 1.25 1.26 1.07 1.04 1.23 1.18 1.33 1.47 1.20 
 − 1.73 1.35 1.27 1.39 1.32 1.21 1.21 0.97 0.54 

  [0.11] [0.73] [0.39] [0.13] [0.67] [0.89] [0.70] [0.15] [0.07] 

0.8 + 1.33 1.34 1.14 1.11 1.31 1.25 1.40 1.55 1.27 
 − 1.88 1.50 1.42 1.54 1.48 1.34 1.34 1.09 0.65  

 [0.08]* [0.57] [0.28] [0.08]* [0.48] [0.70] [0.86] [0.21] [0.09]* 

0.9 + 1.43 1.44 1.26 1.22 1.42 1.34 1.49 1.63 1.36 
 − 2.07 1.71 1.64 1.75 1.71 1.55 1.55 1.30 0.89 

  [0.07]* [0.39] [0.20] [0.08]* [0.32] [0.49] [0.87] [0.40] [0.21] 

Notes: 𝜏𝑖 represents the quantile index of each commodity, where the subscript i=M, O 

represents soybean meal and soybean oil, respectively. For each quantile index, cumulative price 

responses to soybean price increases are presented in the first row and that to decreases are in the 

second row. Estimates that are statistically significant at the 10% level or lower are indicated 

with a bold font. Hypothesis testing of price asymmetry (equality of first and second rows) is 

based on bootstrapped standard errors and p-values are given in brackets. The asterisks *, **, and 

*** indicate statistical significance at the 10%, 5%, and 1% level, respectively. 
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Table B.4. Cumulative Price Response of Soybean Oil to Soybean Price Changes 

       𝜏𝑂      

     0.1    0.2 0.3 0.4 0.5 0.6 0.7 0.8   0.9 

0.1 + 0.69 0.79 0.67 0.53 0.64 0.83 0.73 0.59 0.40 
 − 0.61 0.52 0.40 0.10 -0.03 0.01 -0.01 -0.30 -0.66  

 [0.83] [0.40] [0.35] [0.12] [0.02]** [0.00]*** [0.02]** [0.02]** [0.02]** 

0.2 + 0.68 0.78 0.66 0.52 0.64 0.83 0.72 0.58 0.40 
 − 0.89 0.82 0.67 0.37 0.22 0.24 0.22 -0.04 -0.44  

 [0.53] [0.89] [0.98] [0.58] [0.11] [0.03]** [0.09]* [0.08]* [0.06]* 

0.3 + 0.82 0.93 0.80 0.66 0.76 0.95 0.85 0.71 0.51 
 − 0.96 0.89 0.74 0.43 0.27 0.29 0.28 0.01 -0.40  

 [0.70] [0.89] [0.80] [0.37] [0.05]** [0.01]*** [0.04]** [0.04]** [0.04]** 

0.4 + 0.85 0.96 0.83 0.68 0.78 0.97 0.87 0.74 0.53 
 − 0.87 0.80 0.65 0.35 0.19 0.22 0.20 -0.07 -0.46  

 [0.94] [0.59] [0.49] [0.18] [0.02]** [0.00]*** [0.02]** [0.02]** [0.03]** 

𝜏 𝑀
 

0.5 + 0.70 0.80 0.68 0.53 0.65 0.85 0.74 0.60 0.41 

 − 0.93 0.86 0.71 0.40 0.24 0.26 0.24 -0.03 -0.43 

  [0.51] [0.85] [0.93] [0.58] [0.09]* [0.01]*** [0.06]* [0.06]* [0.06]* 

0.6 + 0.74 0.85 0.73 0.59 0.69 0.88 0.78 0.65 0.45 
 − 0.99 0.92 0.77 0.48 0.31 0.34 0.32 0.06 -0.34 

  [0.50] [0.80] [0.87] [0.66] [0.13] [0.03]** [0.08]* [0.08]* [0.07]* 

0.7 + 0.63 0.73 0.62 0.48 0.60 0.78 0.68 0.54 0.36 
 − 0.98 0.92 0.77 0.48 0.31 0.33 0.32 0.06 -0.34 

  [0.36] [0.57] [0.61] [0.99] [0.31] [0.10]* [0.20] [0.17] [0.12] 

0.8 + 0.52 0.62 0.51 0.37 0.50 0.69 0.59 0.44 0.28 
 − 1.15 1.10 0.93 0.65 0.47 0.49 0.47 0.23 -0.18  

 [0.12] [0.19] [0.19] [0.38] [0.93] [0.49] [0.69] [0.56] [0.30] 

0.9 + 0.73 0.83 0.71 0.57 0.68 0.87 0.77 0.63 0.44 
 − 1.49 1.45 1.26 0.97 0.76 0.76 0.75 0.53 0.07 

  [0.09]* [0.13] [0.12] [0.25] [0.82] [0.74] [0.96] [0.79] [0.41] 

Notes: 𝜏𝑖 represents the quantile index of each commodity, where the subscript i=M, O 

represents soybean meal and soybean oil, respectively.  For each quantile index, cumulative price 

responses to soybean price increases are presented in the first row and that to decreases are in the 

second row. Estimates that are statistically significant at the 10% level or lower are indicated 

with a bold font. Hypothesis testing of price asymmetry (equality of first and second rows) is 

based on bootstrapped standard errors and p-values are given in brackets. The asterisks *, **, and 

*** indicate statistical significance at the 10%, 5%, and 1% level, respectively. 
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C APPENDIX FOR CHAPTER 4  

Table C.1. Marginal Effects of Other Factors on Return Coexceedances: Corn and Soybean 

  Bottom (5%)   Top  (95%) 

 

One 

exceedance 

Two 

exceedances  

One 

exceedance 

Two 

exceedances 

Small Shocks   
    

VIX -0.015 -0.005  0.012 0.004 

 (0.011) (0.003)  (0.012) (0.004) 

SP500 0.021 0.007  -0.027*** -0.009*** 

 (0.012) (0.004)  (0.009) (0.003) 

DXY -0.011 -0.004  0.057*** 0.022*** 

 (0.01) (0.003)  (0.013) (0.006) 

News -0.009 -0.003  0.003 0.001 

 (0.011) (0.003)  (0.011) (0.004) 

EPU -0.028*** -0.009***  -0.004 -0.001 

 (0.009) (0.003)  (0.011) (0.004) 

CPI -0.014 -0.005  0.005 0.002 

 (0.01) (0.003)  (0.011) (0.004) 

PPI 0.042*** 0.015***  0.039*** 0.015*** 

 (0.013) (0.005)  (0.013) (0.005) 

Large Shocks       

VIX 0.044*** 0.016***  -0.003 -0.001 

 (0.014) (0.006)  (0.013) (0.005) 

SP500 -0.004 -0.001  0.017 0.006 

 (0.012) (0.004)  (0.012) (0.005) 

DXY 0.064*** 0.023***  -0.020** -0.007** 

 (0.014) (0.006)  (0.01) (0.003) 

News -0.003 -0.001  -0.022** -0.008** 

 (0.011) (0.003)  (0.009) (0.003) 

EPU -0.002 -0.001  0.005 0.002 

 (0.01) (0.003)  (0.011) (0.004) 

CPI 0.027** 0.009**  0.018 0.007 

 (0.012) (0.004)  (0.012) (0.005) 

PPI 0.032** 0.011**  0.014 0.005 

  (0.013) (0.005)   (0.012) (0.005) 

Notes: The average marginal effects of other market shocks are reported in the table.  These 

covariates are indicator variables and are divided into two categories.  For the category for small 

(large) shocks, the variable sets to one if its return is below the 5% (95%) tail of the return 

distribution, and zero otherwise. Standard errors are given in parentheses.  The asterisks *, **, and 

*** indicate statistical significance at the 10%, 5%, and 1% level, respectively. 
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Table C.2. Marginal Effects of Other Factors on Return Coexceedances: Winter and 

Spring Wheat 

  Bottom (5%)  Top  (95%) 

 

One 

exceedance 

Two 

exceedances  

One 

exceedance 

Two 

exceedances 

Small Shocks  
    

VIX -0.007 -0.006  -0.002 -0.002 

 (0.007) (0.006)  (0.007) (0.006) 

SP500 0.011 0.009  -0.005 -0.004 

 (0.008) (0.007)  (0.007) (0.006) 

DXY -0.007 -0.006  0.033*** 0.031*** 

 (0.007) (0.006)  (0.009) (0.009) 

News -0.011 -0.009  0.006 0.005 

 (0.007) (0.006)  (0.008) (0.007) 

EPU -0.006 -0.005  -0.004 -0.004 

 (0.007) (0.006)  (0.007) (0.006) 

CPI 0.005 0.004  0.001 0.001 

 (0.008) (0.007)  (0.008) (0.007) 

PPI 0.014* 0.012  0.017** 0.016** 

 (0.008) (0.008)  (0.008) (0.008) 

Large Shocks     

VIX 0.041*** 0.037***  0.011 0.010 

 (0.011) (0.011)  (0.009) (0.009) 

SP500 0.000 0.000  0.019** 0.018** 

 (0.008) (0.007)  (0.009) (0.009) 

DXY 0.036*** 0.033***  -0.007 -0.006 

 (0.009) (0.009)  (0.007) (0.006) 

News -0.007 -0.006  -0.008 -0.007 

 (0.007) (0.006)  (0.006) (0.006) 

EPU -0.011* -0.009*  0.004 0.004 

 (0.006) (0.005)  (0.007) (0.006) 

CPI 0.028*** 0.025***  0.021** 0.020** 

 (0.009) (0.008)  (0.009) (0.008) 

PPI 0.026*** 0.023***  0.007 0.006 

  (0.009) (0.008)   (0.008) (0.007) 

Notes: The average marginal effects of other market shocks are reported in the table.  These 

covariates are indicator variables and are divided into two categories.  For the category for small 

(large) shocks, the variable sets to one if its return is below the 5% (95%) tail of the return 

distribution, and zero otherwise. Standard errors are given in parentheses.  The asterisks *, **, 

and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. 
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Table C.3. Marginal Effects of Other Factors on Return Coexceedances: Lean hogs, Live 

Cattle, Feeder Cattle 

 Bottom (5%)  Top  (95%) 

 

One 

exceedance 

Two 

exceedance

s 

Three 

exceedance

s 

 
One 

exceedanc

e 

Two 

exceedance

s 

Three 

exceedance

s 

Small 

Shocks  

     

 

VIX 0.001 0.000 0.000  0.009 0.003 0.000 

 (0.013) (0.005) (0.001)  (0.013) (0.004) (0.001) 

SP500 0.008 0.003 0.001  0.001 0.000 0.000 

 (0.012) (0.005) (0.001)  (0.015) (0.005) (0.001) 

DXY 0.004 0.002 0.000  0.006 0.002 0.000 

 (0.012) (0.005) (0.001)  (0.013) (0.004) (0.001) 

News 0.018 0.007 0.002  -0.012 -0.004 -0.001 

 (0.013) (0.005) (0.001)  (0.013) (0.004) (0.001) 

EPU 0.023* 0.009* 0.002*  0.031** 0.010** 0.002* 

 (0.012) (0.005) (0.001)  (0.014) (0.005) (0.001) 

CPI 0.032** 0.013** 0.003**  0.027* 0.009* 0.001* 

 (0.013) (0.006) (0.001)  (0.014) (0.005) (0.001) 

PPI 0.037*** 0.015*** 0.003***  0.027* 0.009* 0.001* 

 (0.013) (0.006) (0.001)  (0.014) (0.005) (0.001) 

Large 

shocks        

VIX 0.066*** 0.029*** 0.006***  -0.028*** -0.008*** -0.001*** 

 (0.015) (0.008) (0.002)  (0.012) (0.004) (0.001) 

SP500 -0.030*** -0.011*** -0.002***  0.027* 0.009* 0.001* 

 (0.01) (0.004) (0.001)  (0.014) (0.005) (0.001) 

DXY 0.02 0.008 0.002  -0.012 -0.004 -0.001 

 (0.012) (0.005) (0.001)  (0.012) (0.004) (0.001) 

News 0.040*** 0.017*** 0.004***  0.040*** 0.013*** 0.002*** 

 (0.013) (0.006) (0.001)  (0.014) (0.005) (0.001) 

EPU 0.012 0.005 0.001  0.018 0.006 0.001 

 (0.012) (0.005) (0.001)  (0.013) (0.004) (0.001) 

CPI 0.012 0.005 0.001  0.057*** 0.019*** 0.003*** 

 (0.013) (0.005) (0.001)  (0.015) (0.006) (0.001) 

PPI -0.009 -0.003 -0.001  0.010 0.003 0.000 

  (0.011) (0.004) (0.001)   (0.013) (0.004) (0.001) 

Notes: The average marginal effects of other market shocks are reported in the table.  These 

covariates are indicator variables and are divided into two categories.  For the category for small 

(large) shocks, the variable sets to one if its return is below the 5% (95%) tail of the return 

distribution, and zero otherwise. Standard errors are given in parentheses.  The asterisks *, **, 

and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively.   




