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Abstract

This dissertation addresses two fundamental areas in statistics: the design of
optimal physical experiments and the development of surrogate models for com-
plex computer experiments, with a focus on feature importance and uncertainty
quantification.

In the first part, we investigate locallyD-optimal crossover designs for general-
ized linear models. Model parameters and their variances are estimated using
generalized estimating equations (GEEs). We identify optimal allocations of
experimental units across treatment sequences and demonstrate through simu-
lations that these allocations are reasonably robust to various choices of the cor-
relation structure. Furthermore, we show that a two-stage design—employing
our locallyD-optimal design in the second stage—yields greater efficiency than
a uniform design, particularly in the presence of intra-subject correlation.

The second part of the dissertation extends the principles of Design of Experi-
ments (DoE) to improve reinforcement learning techniques for computer exper-
iments (CEs), which are essential tools for studying phenomena where physical
experimentation is infeasible, such as the spread of COVID-19. Building accu-
rate computer models often involves a high-dimensional input space, making
the identification of active variables critical. We propose a novel variable selec-
tion approach integrated with Active Learning for Lasso Regression, using a
weighted distance function to sequentially guide variable selection. Addition-
ally, we introduce a multi-objective optimization framework to construct effi-
cient Sequential MaxPro Designs and Sequential Orthogonal-MaxPro Designs.
Finally, we explore an extension of this reinforcement learning framework to
Deep Gaussian Process (DGP) models, enabling more flexible modeling and a
deeper understanding of feature importance under uncertainty.
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Chapter 1

Optimal Design of
Experiments

1.1 Overview: Design of Experiments

1.1.1 Industrial Experiments
Experimentation is a crucial method for gaining insights into processes and
products, both in industrial settings and in research. However, conducting ex-
periments in industry is often costly. As a result, alternative approaches, such
as analyzing historical process data or consulting with process experts, are typi-
cally considered first, as they may provide the necessary information at a lower
cost. Nevertheless, there are situations where experimentation remains the most
effective—or even the only viable—way to acquire new knowledge or confirm
suspected behaviors within a process.

An experiment involves conducting one or more tests in which deliberate
changes are made to the input variables of a process or system to observe and
understand how these changes affect the output response (Montgomery, 2009).
The system under study may have a single response or multiple responses (de-
noted as Y ). The main objective is to evaluate how the controllable input vari-
ables (X) influence the outcome. However, in many practical situations, there
are other variables, known as disturbance or noise factors (Z), that also impact
the response but cannot be easily controlled due to practical or cost-related
limitations.

According to (Cox & Reid, 2000), experiments are generally performed in
controlled environments where the experimenter determines the key charac-
teristics of the materials, the type of manipulations applied, and the methods
used for measurement. In contrast, observational studies do not offer full con-
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trol over these elements, even if they share the same research goals. Therefore,
experiments provide a stronger basis for establishing causal links between ex-
perimental factors and responses, something that is often more challenging to
achieve through observational studies.

1.1.2 Design of Experiments
Given the high costs often associated with experimentation, it is important to
obtain as much useful information as possible while using minimal resources.
(C. J. Wu & Hamada, 2011) define Design of Experiments (DoE) as a set of prin-
ciples and techniques that help researchers design more effective experiments,
analyze data efficiently, and connect the results to the study’s original objectives.
DoE is particularly valuable for those seeking to gain insights into and improve
a product or process in a structured and efficient manner.

The foundations of DoE were laid by Ronald A. Fisher and Frank Yates,
who tackled agricultural and biological research challenges at the Rothamsted
Experimental Station in the 1920s and 1930s (Box, 1980). Fisher’s key contri-
butions include advocating for the randomization of experimental treatments,
introducing Analysis of Variance (ANOVA) to assess the significance of effects,
and developing factorial designs. Factorial designs allow researchers to examine
several experimental factors simultaneously, rather than studying them one at
a time (Fisher, 1925).

Since the 1930s, the field of Design of Experiments (DoE) has undergone
substantial evolution. (Steinberg & and, 1984) provide a detailed account of
its progress up to the mid-1980s, with additional historical insights available in
(Montgomery, 2009) and (C. J. Wu & Hamada, 2011). A major advancement
was the development of fractional factorial designs (Finney, 1945). After World
War II, DoE gained prominence as it was adapted to solve challenges in indus-
trial settings, particularly within the chemical industry. Notable contributions
came from George E. P. Box, who played a key role in introducing response
surface methodology and sequential experimentation to optimize processes.
During the 1970s, topics such as optimal design, computer-assisted design tools,
and mixture designs attracted growing interest (Steinberg & and, 1984). In
the 1980s, G. Taguchi’s influential and often debated work shifted attention
toward designing experiments aimed at reducing variability in products and pro-
cesses. According to (Montgomery, 2009), the focus on quality improvement
in Western manufacturing, combined with Taguchi’s approaches, contributed
to the broader adoption of DoE, especially in industries like automotive and
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electronics. Today, DoE is widely used across numerous fields of science and
engineering, far beyond its original applications in agriculture.

DoE involves numerous statistical techniques, making statistical knowledge
essential for understanding how these methods operate. DoE, along with Sta-
tistical Process Control (SPC), was among the first tools adopted by the quality
movement and is often seen as a key component of quality management prac-
tices. Today, the ongoing development of DoE methods is frequently featured
in journals associated with the American Society for Quality and other pub-
lications focused on quality-related topics. Since improving quality typically
involves minimizing variation in processes and products, there is a strong con-
nection between statistical thinking and efforts to enhance quality (Snee, 1990).

As mentioned, statistics is a central part of DoE, but when statistical meth-
ods are applied, it is important not to forget about non-statistical knowledge.
(Box et al., 2005) claim that “statistical techniques are useless unless combined
with appropriate subject matter knowledge and experience.” Thus, both sta-
tistical skills and process knowledge are needed to successfully design, conduct
and analyze an experiment. In this thesis, we focus on one such special class of
designs called crossover designs and work on developing statistical methodology
and applications for crossover trials with non-normal responses.

1.1.3 Crossover Designs
Pharmaceutical companies frequently conduct clinical trials where the outcome
is either the success or failure of a particular therapy. Crossover designs, also
known as repeated measurements designs or change-over designs, have been used
extensively in pharmaceutical research. There is a rich body of literature on opti-
mal crossover designs when the response can be adequately modeled by normal
distributions. However, for a binary outcome, where the response needs to be
described using generalized linear models (GLMs), limited results are known.
Consequently, these trials are usually designed using the guidelines of tradi-
tional crossover designs obtained using the theory of linear models. However,
these designs can be quite inefficient for GLMs. Our goal is to bridge this gap
in the literature and determine efficient designs specifically for crossover ex-
periments with responses under univariate GLMs, including binary, binomial,
Poisson, gamma, inverse Gaussian responses, etc.

Among different types of experiments that are available for treatment com-
parisons with multiple periods, the crossover designs are among the most im-
portant ones. In these experiments, every subject is exposed to a sequence of
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treatments over different time periods, i.e., subjects crossover from one treat-
ment to another. One of the most important aspects of crossover designs is that
we can get the same number of observations as other designs but with less num-
ber of subjects. This is an important consideration since human participants
are often scarce in clinical trials. The order in which treatments are applied to
subjects is known as a sequence and the time at which these sequences are ap-
plied is known as a period. In most of cases, the main aim of such experiments
is to compare t treatments over p periods. In each period, each subject receives
a treatment, and the corresponding response is recorded. In different periods, a
subject may receive different treatments, but the treatment may also be repeated
on the same subject. Naturally, crossover designs also provide within-subject
information about treatment differences.

Most of the research in the crossover design literature dealt with continu-
ous response variables (see, for example, (Carriere & Huang, 2000; Kershner
& Federer, 1981; Laska & Meisner, 1985; Matthews, 1987) and the references
therein. The problem of determining optimal crossover designs for continuous
responses has been studied extensively (see, for example, (Bose & Dey, 2009),
for a review of results). For examples of practical cases where the responses are
discrete in nature, such as binary responses, one may refer to (Kenward & Jones,
2014) and (Senn, 2003).

Among many fixed effects models proposed in the literature, the following
linear model is used extensively to formulate crossover designs.

Yij = λ+ βi + αj + τd(i,j) + ρd(i−1,j) + ϵij, (1.1)

where Yij is the observation from the jth subject in the ith time period, with
i = 1, . . . , p and j = 1, . . . , n. Here d(i, j) stands for the treatment assign-
ment to the jth subject at time period i and λ, βi, αj, τd(i,j), ρd(i−1,j) are the
corresponding overall mean, the ith period effect, the jth subject effect, the
direct treatment effect and the carryover treatment effect respectively. Here
ϵij ’s are the uncorrelated error terms which follow a normal distribution with
zero mean and constant variance. Model (1.1) is sometimes referred to as the
traditional model due to its extensive use in the literature.

As all the effects are fixed, for the linear model (1.1), the Fisher informa-
tion matrix is independent of model parameters. Various optimality criteria
such as A-, D-, E-optimality depend on this information matrix (see, for ex-
ample, (Pukelsheim, 1993)). Numerous results corresponding to the optimality
of crossover designs for linear models are available in the literature. (Cheng &
Wu, 1980; Hedayat & Afsarinejad, 1975; Kunert, 1984) studied the optimality
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of balanced, uniform designs. (Cheng & Wu, 1980) formulated theorems for
optimality of strongly balanced design. (Kunert, 1983) produced results for the
optimality of designs which are neither balanced nor strongly balanced. (Dey
et al., 1983) were among the first ones to provide results for the optimality of
designs when p≤ t. Considering arbitrary p and twith both p ≤ t and p ≥ t,
(Kushner, 1997) obtained conditions for universal optimality through approxi-
mate theory. Such results cannot be readily extended for binary responses since
the Fisher information matrix for GLMs depends on the model parameters
(McCullagh & Nelder, 1989; Stufken & Yang, 2012). In this thesis, we focus on
local optimality to circumvent this problem (Khuri et al., 2006).

1.2 Crossover Designs for GLM
Although there is a rich body of literature on optimal crossover designs for
linear models, the results on crossover designs under GLMs are meager. Before
identifying optimal crossover designs, we first formally introduce the GLM and
the associated optimal crossover designs.

This chapter is organized as follows: we describe a preliminary setup of a
model for crossover designs for GLMs in Section 1.2.1 and then discuss Gener-
alized Estimating Equations in Section 1.2.2. We propose different correlation
structures in Section 1.2.3 and formulate locally optimal crossover designs along
with an algorithm for obtaining such designs, in Section 1.2.4. In Sections 1.3
we provide examples of optimal design for two-treatment crossover trials. We
calculate optimal designs for examples with a binary response in Section 1.3.1
and for examples with a Poisson response in Section 1.3.2. In Section 1.4.1, we
provide examples of optimal designs for multi-treatment crossover trials, where
we use the Latin square design. Sensitivity study and RelativeD-efficiency are
presented in Section 1.4.2. Simulation studies are presented in Section 1.4.3.
The chapter concludes with comments in Section 1.5. Some technical details
and additional results are presented in Appendix A.1.

1.2.1 Preliminary Setup
We consider a crossover trial with t treatments, n subjects, and p periods. The
responses obtained from these n subjects are denoted as Y1, . . . , Yn, where the
response from the jth subject is Yj = (Y1j, . . . , Ypj)

′. As discussed above, we
use a GLM to describe the marginal distribution of Yij as in (Liang & Zeger,
1986). Let µij denote the mean of a binary response Yij . To fix ideas, first
we consider logistic regression, which models the marginal mean µij for the
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crossover trial as

logit(µij) = log
(

µij

1− µij

)
= ηij = λ+ βi + τd(i,j) + ρd(i−1,j), (1.2)

where i = 1, . . . , p; j = 1, . . . , n; λ is the overall mean, βi represents the effect
of the ith period, τs is the direct effect due to treatment s and ρs is the carryover
effect due to treatment s, where s = 1, . . . , t.

Remark: Unlike model 1.1, model 1.2 does not contain a subject effect term
αj . Note that the response here is described by a GLM, where the Fisher in-
formation matrix depends on model parameters. In this thesis, we consider
the local optimality approach of (Chernoff, 1953), in which the parameters are
replaced by assumed values. In the linear model, the subject effect can be esti-
mated from the data, but for our local optimality approach for the GLM, an
educated guess for the subject effect is needed. It would be reasonable to guess
the fixed treatment effects from prior knowledge, while from a design point
of view, the subject effect, if included, has to be treated as random. Instead of
incorporating a random effects term, in this thesis, the mean response is mod-
eled through the logit link function in equation 1.2 with an extra assumption
that the responses from a particular subject are mutually correlated, while the
responses from different subjects are uncorrelated. In the case of GLMs, only
the mean response is modeled through the link function, and hence we are free
to choose a variance-covariance matrix as long as that is positive definite. So, in
this thesis, we use this opportunity to choose the covariance matrix and capture
the subject effect by putting different meaningful structures on this matrix and
studying the robustness of the design. In this way, we can exclude a random
subject effect from the model and calculate optimal designs more easily.

As the main interest is in estimating the treatment effects and variance of
its estimator, carryover effects are treated as nuisance parameters. To ensure
estimability of the model parameters, we set the baseline constraints as β1 =

τ1 = ρ1 = 0. Consider β = (β2, . . . , βp)
′ , τ = (τ2, . . . , τt)

′ and ρ =

(ρ2, . . . , ρt)
′, which define the parameter vector θ = (λ, β, τ, ρ)′. Then the

linear predictor corresponding to the jth subject, ηj = (η1j, . . . , ηpj)
′ can be

written as

ηj = Xjθ.

The corresponding design matrix Xj can be written as Xj = [1p, Pj, Tj, Fj],
wherePj is p×(p−1) such thatPj = [0(p−1)1, Ip−1]

′; whereTj is a p×(t−1)

matrix with its (i, s)th entry equal to 1 if subject j receives the direct effect of

6



the treatment s in the ith period and zero otherwise; where Fj is a p× (t− 1)

matrix with its (i, s)th entry equal to 1 if subject j receives the carryover effect
of the treatment s in the ith period and zero otherwise, where columns of Tj
and Fj are indexed by 2, . . . , t.

If the number of subjects is fixed to n and the number of periods is p, then
we determine the proportion of subjects assigned to a particular treatment se-
quence. As the number of periods is fixed to p, each treatment sequence will
be of length p and a typical sequence can be written as ω = (t1, . . . , tp)

′ where
ti ∈ {1, . . . , t}. Now, let Ω be the set of all such sequences and nω denote the
number of subjects assigned to sequence ω. Then, the total number of subjects
n can be written asn = Σω∈Ωnω, nω ≥ 0. A crossover design ζ in approximate
theory is specified by the set {pω, ω ∈ Ω}, where pω = nω/n is the proportion
of subjects assigned to treatment sequence ω. Such a crossover design ζ can be
denoted as follows:

ζ =

{
ω1 ω2 . . . ωk

pω1 pω2 . . . pωk

}
wherek is the number of treatment sequences involved, such that

∑k
i=1 pωi

=

1, for i = 1, . . . , k. From the definitions of matrices Tj andFj it can be noted
that they depend only on the treatment sequence ω that subject j receives. So
it can be inferred that Tj = Tω and Fj = Fω. This implies, Xj = Xω as
Pj = [0(p−1)1, Ip−1]

′.

1.2.2 Generalized Estimating Equations
Generalized Estimating Equations (GEE) are quasi-likelihood equations which
allow us to estimate quasi-likelihood estimators. In this thesis, instead of using
maximum likelihood estimation (MLE) or ordinary least squares (OLS) to esti-
mate the parameters, we use quasi-likelihood estimation. Earlier, we made one
important assumption in crossover trials that observations from each subject
are mutually correlated while the observations from different subjects are un-
correlated. This dependency between repeated observations from a subject is
modeled using what is called the “working correlation” matrix C . If C is the
true correlation matrix of Yj , then from the definition of covariance we can
write

Cov(Yj) = D
1/2
j CD

1/2
j ,
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whereDj = diag
(
µ1j(1− µ1j), . . . , µpj(1− µpj)

)
. Let us denoteCov(Yj)

by Wj . In (Liang et al., 1988) equation (3.1), it has been shown that for the
repeated measurement model, the GEE are defined to be

n∑
j=1

∂µ′
j

∂θ
W−1

j (Yj − µj) = 0

whereµj = (µ1j, . . . , µpj)
′ and the asymptotic variance for the GEE estimator

θ̂ (see Liang et al., 1988, equation (3.2)) is

Var(θ̂) =

[
n∑

j=1

∂µ′
j

∂θ
W−1

j

∂µj

∂θ

]−1

(1.3)

where Wj = Cov(Yj). As mentioned by (Singh & Mukhopadhyay, 2016) in
the thesis (Liang et al., 1988), equation (3.2) it has also been shown that if the
true correlation structure varies from “working correlation” structure, then
Var(θ̂) is given by the sandwich formula

Var(θ̂) = U−1V U−1,

where the U and V in the above equation are as follows:

U =
∑
ωϵΩ

npω
∂µ′

ω

∂θ
W−1

ω

∂µω

∂θ
. (1.4)

V =
∑
ωϵΩ

npω
∂µ′

ω

∂θ
W−1

ω Cov(Yω)W
−1
ω

∂µω

∂θ
. (1.5)

So, it is expected that the effect of variance misspecification on the locally opti-
mal designs will be minimal. Table A.1 presented in the Appendix A.1 confirms
this.

From above equations 1.3, 1.4 and 1.5, it can be seen that if the true corre-
lation of Yj is equal toC , then Var(θ̂) = U−1. We have considered carryover
effects to be nuisance parameters, since the main interest usually lies in estimat-
ing the direct treatment effect contrasts. So, instead of working with the full
variance-covariance matrix of parameter estimator θ̂, we concentrate only on
the variance of the estimator of treatment effect Var(τ̂) where

Var(τ̂) = HVar(θ̂)H ′, (1.6)
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H is a (t−1)×mmatrix given by [0(t−1)1, 0(t−1)(p−1), It−1, 0(t−1)(t−1)]where
m = p + 2t − 2 is the total number of parameters in θ and 0(t−1)(p−1) is a
(t− 1)× (p− 1) matrix of zeros.

We calculate optimal proportions such that the variances of the treatment
effect estimators are minimized. In this thesis, we focus on D-optimality and
use the determinant of Var(τ̂) as our objective function. Note that other op-
timality criteria, such as A-,E-optimality, can be applied similarly. Then an
optimal design ζ∗ minimizes the determinant of Var(τ̂) in equation (1.6) with
respect to pω such that

∑
w∈Ω pw = 1. For illustration, we give an explicit ex-

pression of the information matrix and present the associated calculations for
a crossover design in Appendix A.1.

1.2.3 Proposed Correlation Structures
As mentioned in the above section, to calculate the variance matrix of param-
eter estimates, a predefined working correlation structure for the responses is
needed. Any correlation structure can be assumed for the responses, but if the
design is not robust, then the optimal proportions will vary as the correlation
structure varies. So, to check the robustness of the design and to make the
design more practically acceptable, optimal proportions using different corre-
lation structures are calculated. For the design in equation (2) with two treat-
mentsA andB, six different types of correlation structures are proposed, and
optimal proportions are calculated. Out of these six correlation structures, the
correlation matrices defined by the first three correlation structures are fixed
and do not depend on treatment sequence, whereas the correlation matrices of
the fourth, fifth and sixth types depend on treatment sequences and vary along
with treatment sequences.

The first correlation structure is a compound symmetric correlation struc-
ture, i.e.,

Corr(1) = (1− ρ)Ip + ρJp,

where Ip is the identity matrix of order p, and Jp is a p × p matrix with all
elements being unity.

The second correlation structure is the AR(1) correlation structure, i.e.,

Corr(2) =
(
ρ|i−i′|

)
,

so that the correlation between responses decreases as the time gap between
responses increases.
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The third correlation structure is as follows:

Corr(3) =


1 ρ 0 . . . 0 0 0

ρ 1 ρ . . . 0 0 0
...

...
...

0 0 0 . . . ρ 1 ρ

0 0 0 . . . 0 ρ 1

 .

For each correlation structure, different correlation matrices using different ρ
values are considered.

To understand the other three correlation structures, we denote the correla-
tion coefficient between the response when a subject receives treatmentA first
and the response when the same subject receives treatmentB after as ρAB , and
ρBA when the subject receives B first and A afterward. Note that in general
ρAB is not necessarily the same as ρBA. In a similar manner, we define ρAA

and ρBB . To define the fourth type of correlation structure, we will use the
same structure as Corr(3) but with different values of the correlation coeffi-
cient for different treatment sequences. For the fourth type of correlation we
use ρAB = 0.2, ρBA = 0.5 and ρAA = 0.1, ρBB = 0.3.

To define the fifth and sixth types of correlation structures, we use the
AR(1) correlation structure with a correlation coefficient depending on the
treatment sequence. For the fifth type, we use the same values for ρAB and
ρBA and for the sixth type of correlation structure, we use different values for
ρAB and ρBA. For both the fifth and sixth types of correlation structure, we
keep ρAA = ρBB . These values may vary from one example to another and
depend on what treatmentsA andB are. As the entries of the correlation ma-
trix depend on which treatment the subject receives in a particular period, these
correlation matrices are different for different treatment sequences. Here, we
aim to see how optimal proportions vary as we vary values of ρAB and ρBA.

As an illustration, we consider p = 2 with treatment sequences AB and
BA. Then the third type of correlation matrices for both treatment sequences
AB and BA will have the same structure as Corr(1). The fourth, fifth and
sixth type correlation matrices will have the same structure as follows, with
different ρ values,

Corr(4/5/6)AB =

(
1 ρAB

ρAB 1

)
, Corr(4/5/6)BA =

(
1 ρBA

ρBA 1

)
.

For the p = 3 case, consider an example with treatment sequences ABB
andBAA. The fourth type of correlation matrix will have values as mentioned
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above. The fifth type correlation matrices for both treatment sequencesABB
andBAAwill be the same if in treatment sequences,A andB are interchange-
able and ρAB = ρBA along with ρAA = ρBB . The sixth type correlation matri-
ces for both treatment sequencesABB andBAAwill be different as ρAB and
ρBA are different. We get

Corr(4)ABB =

 1 ρAB 0

ρAB 1 ρBB

0 ρBB 1

 , Corr(4)BAA =

 1 ρBA 0

ρBA 1 ρAA

0 ρAA 1

 ,

and

Corr(5)ABB = Corr(5)BAA =

 1 ρAB ρ2AB

ρAB 1 ρBB

ρ2AB ρBB 1

 ,

and

Corr(6)ABB =

 1 ρAB ρ2AB

ρAB 1 ρBB

ρ2AB ρBB 1

 , Corr(6)BAA =

 1 ρBA ρ2BA

ρBA 1 ρAA

ρ2BA ρAA 1

 .

Same as the above two cases, for the p = 4 case, we consider an example
with treatment sequencesAABB andBBAA. The fourth type of correlation
matrix will be as given below. The fifth type of correlation matrices for both
treatment sequences AABB and BBAA will be same because in treatment
sequences A, B are interchangeable and ρAA = ρBB and ρAB = ρBA. The
sixth type of correlation matrices for both treatment sequencesABB andBAA
will be different as ρAB and ρBA are different. We get

Corr(4)AABB =


1 ρAA 0 0

ρAA 1 ρAB 0

0 ρAB 1 ρBB

0 0 ρBB 1

 ,

Corr(4)BBAA =


1 ρBB 0 0

ρBB 1 ρBA 0

0 ρBA 1 ρAA

0 0 ρAA 1

 ,

and
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Corr(5)AABB = Corr(5)BBAA =


1 ρBB ρ2BA ρ3BA

ρBB 1 ρBA ρ2BB

ρ2BA ρBA 1 ρBB

ρ3BA ρ2BA ρBB 1

 ,

and

Corr(6)AABB =


1 ρAA ρ2AB ρ3AB

ρAA 1 ρAB ρ2AB

ρ2AB ρAB 1 ρBB

ρ3AB ρ2AB ρBB 1

 ,

Corr(6)BBAA =


1 ρBB ρ2BA ρ3BA

ρBB 1 ρBA ρ2BA

ρ2BA ρBA 1 ρAA

ρ3BA ρ2BA ρAA 1

 .

For the p = 4 case, we discuss another interesting example with four treat-
ments A, B, C and D. The set of treatment sequences for this example is
Ω = {ABCD,BDAC ,CADB,DCBA}.This experiment will be discussed
in detail later in Section 1.4. Note that the treatment sequences are given by a
Latin square design shown below, and the treatments are interchangeable.

A B C D

B D A C

C A D B

D C B A

For this Latin square example, six different types of correlation matrices are
considered. The first three correlation matrices will be the same as above with
ρ = 0.3, ρ = 0.2 and ρ = 0.1 respectively. The fourth type of correla-
tion structure will be defined in a similar manner to that discussed above. The
fifth type correlation matrix is defined using AR(1) correlation structure with
ρAB = ρAC = ρAD = ρBA = ρCA = ρDA = 0.4, ρBC = ρBD = ρCB =

ρDB = 0.3 and ρCD = ρDC = 0.2. For the fourth and sixth types of cor-
relation matrix, ρAB = ρAC = ρAD is taken to be 0.4. In a similar manner
ρBA = ρBC = ρBD is taken to be 0.3 and ρCA = ρCB = ρCD is taken to be
0.2 and ρDA = ρDB = ρDC taken to be 0.1. As the entries of the correlation
matrix depend on which treatment the subject receives in a particular period,
these correlation matrices are different for different treatment sequences and
are listed as follows:
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Corr(4)ABCD =


1 ρAB 0 0

ρAB 1 ρBC 0

0 ρBC 1 ρCD

0 0 ρCD 1

 ,

Corr(4)BDAC =


1 ρBD 0 0

ρBD 1 ρDA 0

0 ρDA 1 ρAC

0 0 ρAC 1

 ,

Corr(4)CADB =


1 ρCA 0 0

ρCA 1 ρAD 0

0 ρAD 1 ρDB

0 0 ρDB 1

 ,

Corr(4)DCBA =


1 ρDC 0 0

ρDC 1 ρCB 0

0 ρCB 1 ρBA

0 0 ρBA 1

 ,

and

Corr(5/6)ABCD =


1 ρAB ρ2AC ρ3AD

ρAB 1 ρBC ρ2BD

ρ2AC ρBC 1 ρCD

ρ3AD ρ2BD ρCD 1

 ,

Corr(5/6)BDAC =


1 ρBD ρ2BA ρ3BC

ρBD 1 ρDA ρ2DC

ρ2BA ρDA 1 ρAC

ρ3BC ρ2DC ρAC 1

 ,

Corr(5/6)CADB =


1 ρCA ρ2CD ρ3CB

ρCA 1 ρAD ρ2AB

ρ2CD ρAD 1 ρDB

ρ3CB ρ2AB ρDB 1

 ,

Corr(5/6)DCBA =


1 ρDC ρ2DB ρ3DA

ρDC 1 ρCB ρ2CA

ρ2DB ρCB 1 ρBA

ρ3DA ρ2CA ρBA 1

 .
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In the above section, we only specified the forms of correlation structures.
Note that for this particular example, the form ofCorr(5) is the same as that
ofCorr(6) since the treatment sequences are obtained using a Latin square de-
sign. In Section 1.4, we will consider the above six types of correlation structures
and calculate the corresponding optimal proportions. We will also perform a
simulation analysis using this example. For simulation analysis, the AR(1) cor-
relation structure will be considered with different ρ values. We have performed
robustness analysis in Appendix A.1 and provided explicit expressions for ob-
taining the objective function in Supplementary Section A.1.

1.2.4 Algorithm for Locally Optimal Crossover Trials
In this section, we propose an algorithm to find locally optimal designs for
crossover trials. Assumed values of the model parameters are obtained from
some prior knowledge or pilot studies. To identify the locally optimal crossover
design, the major challenge lies is in minimizing the objective function. The
complexity of the objective function increases with the increase of t, p and k.
We use the solnp function in R for numerical optimization.

Algorithm : Pseudo-code for finding locally optimal crossover designs.

Given assumed values of the parameters, construct the design matrix, cor-
relation matrix, and the parameter vector.

for
Each subject in each period.
Calculate the mean of the response.

end
for

Each treatment sequence.
Calculate the covariance matrix using the correlation matrix.
Diagonal entries of covariance matrix are variances of observations.
Variance depends on the distribution of the response.
Calculate the inverse of covariance matrix.

end
for

Each treatment sequence.
Calculate the corresponding derivative matrix.
Using calculated matrices and variables corresponding to each treatment
sequence, compute the variance matrix of parameter estimates.
Calculate variance matrix of treatment effects. Its determinant is the
required objective function.
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end
function

Define the objective function along with the constraints, i.e., sum of
proportions is equal to one.

end
solnp Using this constraint optimization function, calculate optimal pro-

portions.

1.3 Optimal Designs for Two-treatment Crossover
Trials

The crossover designs for which we will calculate the optimal proportions are
similar to those discussed by (Laska & Meisner, 1985) and (Carriere & Huang,
2000). Optimal proportions are listed below for p = 2, 3, 4 for the binary
response and for p = 2 for the Poisson response under two sets of parameter
estimates. In this section, we consider only two treatments,A andB. Consid-
ering our baseline constraint to be τA = ρA = 0 and β1 = 0 we only have
p+ 2 parameters in vector θ. So, when there are only two treatments involved
in the crossover trial, the parameter vector θ is [λ, β2, . . . , βp, τ2, ρ2].

Optimal proportions for different crossover designs are calculated with each
of the six different correlation structures mentioned above. For each correlation
matrix that we consider, an optimal design ζ∗ is the one minimizing the deter-
minant ofVar(τ̂) in equation (1.6) with respect to pω such that

∑
w∈Ω pw = 1.

We use different colors to represent different correlation structures. The
color scheme that we use is as follows:

Correlation Structure Color

Corr(1) (1− ρ)Ip + ρJp with ρ = 0.1

Corr(2) ρ|i−i′|, i ̸= i′ with ρ = 0.1

Corr(3) with ρ = 0.1

Corr(4) with ρAB = 0.2, ρBA = 0.5

Corr(5) with ρAB = ρBA = 0.4

Corr(6) with ρAB = 0.4, ρBA = 0.3
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1.3.1 Optimal Designs when Response is Binary
In case of binary response, we calculate locally optimal designs under model 1.2
for different crossover designs.

We first consider the local optimality approach for the p = 2 case. For illus-
tration purpose, we assume that the parameter values areθ1 =[λ, β2, τB, ρB] =

[0.5,−1.0, 4.0, −2.0] which gives us non-uniform optimal allocations and
θ2 = [λ, β2, τB, ρB] = [0.5, 0.06,−0.35, 0.73] which gives us approximately
uniform allocations. Note that we need to know the parameter values before
calculating the optimal proportions. If the initial guess for the model parame-
ters changes, the obtained optimal proportions will change as well. For different
correlation structures, the optimal designs (proportions) are stated in Table 1.1.
The same information is presented in Figure 1.2 and Figure 1.1 as well.

Table 1.1: Optimal proportions for p = 2 case.

Design Points Corr Optimal proportions under θ1 Optimal proportions under θ2

Corr(1) {0.1770, 0.8230} {0.5070, 0.4930}
Corr(2) {0.1770, 0.8230} {0.5070, 0.4930}

{AB,BA} Corr(3) {0.1770, 0.8230} {0.5070, 0.4930}
Corr(4) {0.1770, 0.8230} {0.5070, 0.4930}
Corr(5) {0.1770, 0.8230} {0.5070, 0.4930}
Corr(6) {0.1770, 0.8230} {0.5070, 0.4930}

Corr(1) {0.0908, 0.5207, 0.0315, 0.3570} {0.2633, 0.2425, 0.2722, 0.2220}
Corr(2) {0.0908, 0.5207, 0.0315, 0.3570} {0.2633, 0.2425, 0.2722, 0.2220}

{AB,BA, Corr(3) {0.0908, 0.5207, 0.0315, 0.3570} {0.2633, 0.2425, 0.2722, 0.2220}
AA,BB} Corr(4) {0.0957, 0.4960, 0.0338, 0.3745} {0.2534, 0.2393, 0.2661, 0.2412}

Corr(5) {0.1002, 0.4941, 0.0379, 0.3678} {0.2496, 0.2359, 0.2801, 0.2344}
Corr(6) {0.0972, 0.5050, 0.0367, 0.3611} {0.2502, 0.2400, 0.2808, 0.2290}

It can be seen from the graphs in Figure 1.1 and Figure 1.2 that in the case of
p = 2, the optimal proportions do not vary when the correlation structure
changes both under θ2 and θ1. Uniform designs (same proportions for each
sequence) are often used in practice. Those uniform designs are sub-optimal
under θ1.

Forp = 3 case, as before suppose our guess for the parameter values are θ1=
[λ, β2, β3, τB , ρB] = [0.5,−1.0, 2.0, 4.0,−2.0] which gives us non-uniform
optimal allocations andθ2= [λ ,β2,β3,τB ,ρB] = [0.5, 0.06,−0.53,−0.35, 0.73]
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Figure 1.1: Optimal proportions for p = 2 case under θ1.
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Figure 1.2: Optimal proportions for p = 2 case under θ2.

which gives us approximately uniform optimal allocations. The designs are pre-
sented in Table 1.2, Figure 1.3 and Figure 1.4 for the first example, and in Table 1.3,
Figure 1.5 and Figure 1.6 for the second example. It can be seen that in the case
of p = 3, the optimal proportions do not vary much when the correlation
structure changes under both θ1 and θ2. Similar to the p = 2 case, it is clear
from the above table that uniform designs are sub-optimal for the p = 3 case
with two- and four-treatment sequences under θ1.
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Figure 1.3: Optimal proportions for p = 3 case with two-treatment sequences
under θ1
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Figure 1.4: Optimal proportions for p = 3 case with two-treatment sequences
under θ2
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Figure 1.5: Optimal proportions for p = 3 case with four-treatment sequences
under θ1.
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Table 1.2: Optimal proportions for p = 3 case for designs with two treatment
sequences.

Design Points Corr Optimal propor-
tions under θ1

Optimal propor-
tions under θ2

Corr(1) {0.5756, 0.4244} {0.4880, 0.5120}
Corr(2) {0.5761, 0.4239} {0.4887, 0.5113}

{ABB,BAA} Corr(3) {0.5762, 0.4238} {0.4888, 0.5112}
Corr(4) {0.6120, 0.3880} {0.5416, 0.4584}
Corr(5) {0.5921, 0.4079} {0.4917, 0.5083}
Corr(6) {0.5721, 0.4279} {0.4700, 0.5300}
Corr(1) {0.1768, 0.8232} {0.5070, 0.4930}
Corr(2) {0.1766, 0.8234} {0.5072, 0.4928}

{ABA,BAB} Corr(3) {0.1766, 0.8234} {0.5072, 0.4928}
Corr(4) {0.1756, 0.8244} {0.5217, 0.4783}
Corr(5) {0.1714, 0.8286} {0.5088, 0.4912}
Corr(6) {0.1715, 0.8285} {0.5043, 0.4957}
Corr(1) {0.2713, 0.7287} {0.4927, 0.5073}
Corr(2) {0.2738, 0.7262} {0.4926, 0.5074}

{AAB,BBA} Corr(3) {0.2740, 0.7260} {0.4926, 0.5074}
Corr(4) {0.2685, 0.7315} {0.5181, 0.4819}
Corr(5) {0.2771, 0.7229} {0.4911, 0.5089}
Corr(6) {0.2740, 0.7260} {0.4702, 0.5298}

Table 1.3: Optimal proportions for p = 3 case for designs with four treatment
sequences.

Design
Points

Corr Optimal proportions under θ1 Optimal proportions under θ2

Corr(1) {0.1222, 0.5344, 0.0000, 0.3434} {0.4880, 0.5120, 0.0000, 0.0000}
{ABB, Corr(2) {0.1199, 0.5316, 0.0022, 0.3463} {0.4887, 0.5113, 0.0000, 0.0000}
BAA, Corr(3) {0.1197, 0.5312, 0.0025, 0.3466} {0.4888, 0.5112, 0.0000, 0.0000}
AAA, Corr(4) {0.1115, 0.4975, 0.0100, 0.3720} {0.5398, 0.4556, 0.0046, 0.0000}
BBB} Corr(5) {0.1313, 0.5113, 0.0000, 0.3574} {0.4917, 0.5083, 0.0000, 0.0000}

Corr(6) {0.1233, 0.5236, 0.0018, 0.3513} {0.4700, 0.5300, 0.0000, 0.0000}
Corr(1) {0.0413, 0.1130, 0.4384, 0.4073} {0.3544, 0.1646, 0.3908, 0.0902}

{ABB, Corr(2) {0.0316, 0.1196, 0.4373, 0.4115} {0.4266, 0.0957, 0.4777, 0.0000}
AAB, Corr(3) {0.0304, 0.1204, 0.4371, 0.4121} {0.4271, 0.0953, 0.4776, 0.0000}
BAA, Corr(4) {0.0005, 0.1440, 0.4471, 0.4084} {0.1512, 0.3503, 0.1854, 0.3131}
BBA} Corr(5) {0.0811, 0.1033, 0.4297, 0.3858} {0.4420, 0.0747, 0.4833, 0.0000}

Corr(6) {0.0749, 0.1070, 0.4270, 0.3911} {0.4094, 0.0955, 0.4951, 0.0000}
Corr(1) {0.5755, 0.0000, 0.4244, 0.0000} {0.4606, 0.0194, 0.4710, 0.0490}

{ABB, Corr(2) {0.5761, 0.0000, 0.4239, 0.0000} {0.4430, 0.0391, 0.4526, 0.0653}
ABA, Corr(3) {0.5762, 0.0000, 0.4238, 0.0000} {0.4408, 0.0415, 0.4504, 0.0673}
BAA, Corr(4) {0.6120, 0.0000, 0.3880, 0.0000} {0.4634, 0.1036, 0.4152, 0.0178}
BAB} Corr(5) {0.5921, 0.0000, 0.4079, 0.0000} {0.4582, 0.0280, 0.4642, 0.0496}

Corr(6) {0.5721, 0.0000, 0.4279, 0.0000} {0.4420, 0.0142, 0.4787, 0.0651}19
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Figure 1.6: Optimal proportions for p = 3 case with four-treatment sequences:
θ2.

An interesting thing to observe from Figure 1.5 is that, unlike the previous exam-
ples, here under θ1, the optimal proportions vary a little for different correlation
structures. Also, as before, not only is the uniform design sub-optimal here, but
the first and third designs have optimal allocations very low for some sequences.
In design with {ABB, BAA, AAA, BBB} the optimal proportion corre-
sponding to treatment sequence AAA is almost zero. In design with {ABB,
ABA,BAA,BAB}, the optimal proportions corresponding to the treatment
sequenceABA andBAB are zero. Also, it can be observed from Figure 1.6 that
under θ2 for different correlation structures, some of the optimal proportions
are zero for all three designs. Hence, under θ2 these designs fail to have uniform
allocations.

For p = 4 case, in a similar way, we calculate locally optimal designs with
nominal parameter values as θ1 = [λ, β2, β3, β4, τB , ρB] = [0.5, −1.0, 2.0,
−1.5, 4.0,−2.0] which gives us non-uniform allocations and θ2 = [λ, β2, β3,
β4, τB , ρB] = [0.5, 0.06, −0.53, −0.6, −0.35, 0.73] which gives us approxi-
mately uniform allocations. From Table 1.4 and Figure 1.8 it is clear that, similar
to p = 2 and p = 3 cases, the uniform designs are sub-optimal for p = 4 case
under θ1.
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Figure 1.7: Optimal proportions for p = 4 case under θ1

Table 1.4: Optimal proportions for p = 4 case.

Design Points Corr Optimal propor-
tions under θ1

Optimal propor-
tions under θ2

Corr(1) {0.2723, 0.7277} {0.4953, 0.5047}
Corr(2) {0.2743, 0.7257} {0.4949, 0.5051}

{AABB,BBAA} Corr(3) {0.2744, 0.7256} {0.4949, 0.5051}
Corr(4) {0.2690, 0.7310} {0.5244, 0.4756}
Corr(5) {0.2772, 0.7228} {0.4937, 0.5063}
Corr(6) {0.2745, 0.7255} {0.4700, 0.5300}
Corr(1) {0.6075, 0.3925} {0.4992, 0.5008}
Corr(2) {0.6045, 0.3955} {0.4998, 0.5002}

{ABBA,BAAB} Corr(3) {0.6042, 0.3958} {0.4998, 0.5002}
Corr(4) {0.5815, 0.4185} {0.4927, 0.5073}
Corr(5) {0.6444, 0.3556} {0.5021, 0.4979}
Corr(6) {0.6419, 0.3581} {0.5007, 0.4993}
Corr(1) {0.1763, 0.8237} {0.5071, 0.4929}
Corr(2) {0.1767, 0.8233} {0.5071, 0.4929}

{ABAB,BABA} Corr(3) {0.1767, 0.8233} {0.5071, 0.4929}
Corr(4) {0.1722, 0.8278} {0.5086, 0.4914}
Corr(6) {0.1714, 0.8286} {0.5031, 0.4969}
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Figure 1.8: Optimal proportions for p = 4 case under θ2

In most cases, we may not have a clear idea about the true correlation structure
for responses, and hence we choose a working correlation structure. The results
in this section show that no matter what correlation structure we choose or what
parameter estimates we choose, the proposed design gives almost similar optimal
proportions in each case, which suggests that optimal designs are robust.

1.3.2 Optimal Designs when Response is Poisson
In the case of Poisson response, we calculate the locally optimal design for the
following example under the model,

log(µij) = ηij = λ+ βi + τd(i,j) + ρd(i−1,j), (1.7)

where notations have the same meaning as in equation (1.2).

We consider an example described in (Layard & Arvesen, 1978). In a crossover
clinical trial to test a standard anti-nausea treatment (drugA) against a proposed
treatment (drugB), twenty subjects were tested, ten for each order of adminis-
tration. The response variable is the number of episodes of nausea suffered by
a patient during the first two hours after cancer chemotherapy, and for a given
patient is approximately Poisson distributed.

We calculate optimal designs using two values of parameter estimates. θ1 =
[0.2, 0.34, −1.60,−1.65] represents those parameter estimates that give us
non-uniform designs, andθ2 = [−0.223,−0.875, 0.405,−0.105] corresponds
to parameter estimates guessed from the data presented in the table below.
It can be noted from the above table that when responses are Poisson in na-
ture, the optimal proportions do not vary much when the correlation structure
changes under both θ1 and θ2. This suggests to us that even when responses
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Table 1.5: Optimal Proportions when response is Poisson

Design
Points

Correlation Structure Optimal Design: θ1

Corr(1) (1− ρ)Ip + ρJp with ρ = 0.1 {0.3632, 0.6368}
Corr(2) ρ|i−i′|, i ̸= i′ with ρ = 0.1 {0.3632, 0.6368}

{AB,BA} Corr(3) with ρ = 0.1 {0.3632, 0.6368}
Corr(4) with ρAB = 0.2, ρBA = 0.5 {0.3632, 0.6368}
Corr(5) with ρAB = ρBA = 0.4 {0.3632, 0.6368}
Corr(6) with ρAB = 0.4, ρBA = 0.3 {0.3632, 0.6368}

Design
Points

Correlation Structure Optimal Design: θ2

Corr(1) (1− ρ)Ip + ρJp with ρ = 0.1 {0.5505, 0.4495}
Corr(2) ρ|i−i′|, i ̸= i′ with ρ = 0.1 {0.5505, 0.4495}

{AB,BA} Corr(3) with ρ = 0.1 {0.5505, 0.4495}
Corr(4) with ρAB = 0.2, ρBA = 0.5 {0.5505, 0.4495}
Corr(5) with ρAB = ρBA = 0.4 {0.5505, 0.4495}
Corr(6) with ρAB = 0.4, ρBA = 0.3 {0.5505, 0.4495}

are Poisson in nature, the proposed design gives almost similar optimal propor-
tions for different choices of correlation matrices. Hence, the obtained optimal
designs are robust.

1.4 Optimal Design for Multiple-treatment Crossover
Trials

So far, we have considered crossover designs with two treatments only. In this
section, we extend our study for multiple treatments. This is motivated by a
four-period four treatment trial which was first given in (Kenward & Jones,
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1992) and later discussed as Example 6.1 in their book (Kenward & Jones, 2014),
Design and Analysis for Crossover Trials.

1.4.1 Latin Square Design and Optimal Proportions
In this example, binary responses for a four-period crossover trial were obtained.
There were four treatments, and treatment sequences were allocated at random
to eighty different subjects at four different periods. At the end of each eriod,
efficacy measurement of each subject was recorded as success or failure, which
resulted in joint outcome at theend of the trial as shown in Table 1.6. The dataset
contains four different treatment sequences which were decided before the trial
Ω = {ABCD, BDAC , CADB, DCBA}, along with the joint outcome
of four different periods from the same subject according to a particular treat-
ment sequence. The numbers below each sequence denote how many subjects
received that particular treatment sequence, and the particular response was
recorded.

Table 1.6: Binary data from a four-period crossover trial.

Joint Outcome Frequency of Outcome
(1=Success, 0=Failure) ABCD BDAC CADB DCBA

(0, 0, 0, 0) 1 0 1 1
(0, 0, 0, 1) 0 1 1 0
(0, 0, 1, 0) 1 1 0 1
(0, 0, 1, 1) 1 0 0 0
(0, 1, 0, 0) 1 1 1 0
(0, 1, 0, 1) 1 1 1 2
(0, 1, 1, 0) 1 1 1 2
(0, 1, 1, 1) 0 1 1 0
(1, 0, 0, 0) 1 0 1 0
(1, 0, 0, 1) 1 1 0 0
(1, 0, 1, 0) 1 0 1 0
(1, 0, 1, 1) 2 0 0 1
(1, 1, 0, 0) 1 1 1 0
(1, 1, 0, 1) 0 2 2 4
(1, 1, 1, 0) 2 3 3 0
(1, 1, 1, 1) 4 9 5 10

We use the correlation matrices defined in Section 1.2.3 and calculate the
optimal proportions. As mentioned earlier, for estimating parameters, we have
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considered the baseline constraints as β1 = τA = ρA = 0, so that the design
matrix has full column rank, and all other parameters are estimable.

Using these baseline constraints and theglm function in R, we fit the model,
which gives us parameter estimates for the given data. Then we use these param-
eter estimates to guess values of unknown parameters. Our nominal guess for
the parameter values are θ2 = [0.5, 0.06,−0.53,−0.6,−0.35, 0.025,−0.23,
0.73, 0.23, 0.30]. Now, we follow the same procedure mentioned in the pseudo
code above and calculate the optimal designs for different correlation structures.
We also calculate optimal proportions by considering parameter estimates that
gives non-uniform designs i.e. θ1 = [−2, 0.25, 0, 0.75, 1, 5,−1.5,−3.5, 2.75,
0.75]. As seen from Table 1.7, for the Latin square design the optimal propor-
tions that we obtain using θ1 are non-uniform, and those obtained using θ2 are
nearly uniform.

Table 1.7: Optimal proportions for different correlation matrices

Correlation θ1 θ2

Structure ABCD BDAC CADB DCBA ABCD BDAC CADB DCBA

Corr(1) 0.1725 0.2483 0.2223 0.3569 0.2463 0.2493 0.2504 0.2540

Corr(2) 0.1747 0.2490 0.2184 0.3579 0.2461 0.2493 0.2501 0.2546

Corr(3) 0.1714 0.2480 0.2236 0.3570 0.2461 0.2492 0.2507 0.2540

Corr(4) 0.1788 0.2556 0.2163 0.3493 0.2478 0.2634 0.2334 0.2554

Corr(5) 0.1784 0.2465 0.2101 0.3650 0.2480 0.2517 0.2442 0.2561

Corr(6) 0.1752 0.2531 0.2170 0.3547 0.2470 0.2656 0.2320 0.2554

We also calculate the optimal design considering all 24 sequences. We consider
Corr(2) and calculate optimal proportions for different values of ρ. Please
refer to the Appendix A.1 for details. From the tables in the Appendix A.1 it
can be noted that corresponding to θ1 we have non-uniform allocations for
the Latin Square design, and almost uniform allocation corresponding to θ2.
In case of non-uniform allocations, although nothing is uniform, the optimal
design corresponding to θ1 has more zeros. Also note that the allocations do
not vary a lot as ρ changes, particularly for the sequences where we have zero
allocations.
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1.4.2 Sensitivity Study and Relative D-efficiency
In this section, we study the performance of the proposed locally optimal de-
signs via a sensitivity study in terms of relativeD-efficiencies. Let θt be true pa-
rameter values and θc be assumed parameter values. Then we have correspond-
ing objective functions for these two choices of parameter values i.edet(var(τ̂t))
and det(var(τ̂c)) respectively. Hence the relative loss of efficiency of choosing
θc instead of θt can be formulated as

S(τt, τc) =
det(var(τ̂t))

(− 1
k
) − det(var(τ̂c))(−

1
k
)

det(var(τ̂t))
(− 1

k
)

,

where k is the dimension of τ . Then the relative D-efficiency of the original
design ξ compared to the optimal design ξ∗ can be computed using the formula:

Eξ =

[
det(var(τ̂c))ξ∗

det(var(τ̂t))ξ

]− 1
k

.

For the Latin square design example, we consider the following two cases of
assumed values θc for model parameters. For each case the values of parameters
are simulated from a uniform distribution. The range of uniform distribution is
obtained by±1 and±2 from true parameter values θt for each case, respectively.
Here we consider θt = [0.5, 0.06, −0.53, −0.6, −0.35, 0.025, −0.23, 0.73,
0.23, 0.30].

Table 1.8: Assumed values for model parameters

Parameters θc Case 1 Case 2

λ U(−0.5, 1.5) U(−1.5, 2.5)
β2 U(−0.04, 0.16) U(−0.14, 0.26)
β3 U(−1.53, 0.47) U(−2.53, 1.47)
β4 U(−1.6, 0.4) U(−2.6, 1.4)
τ2 U(−1.35, 0.65) U(−2.35, 1.65)
τ3 U(−0.075, 0.125) U(−0.175, 0.225)
τ4 U(−1.23, 0.77) U(−2.23, 1.77)
ρ2 U(−0.27, 1.73) U(−1.27, 2.73)
ρ3 U(−0.77, 1.23) U(−1.77, 2.23)
ρ4 U(−0.70, 1.30) U(−1.70, 2.30)
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Figure 1.9: Performance of the locally optimal designs

1.4.3 Simulation Studies with Two-Stage Designs
As stated earlier the main aim of this thesis is to determine optimal and efficient
crossover designs for experiments where the GLMs adequately describes the
process under study. Crossover trials are repeated measurement designs, where
repeated measurements on the same subject have great advantages, but there are
also many potential disadvantages associated with them. Nevertheless, the im-
pact of these disadvantages can be minimized or reduced if we choose a proper
design and analysis method. One of the major disadvantages of repeated mea-
surement designs is that the effect of the treatment depends on the subject itself.
Stronger subject effects cause more variation in estimated treatment effects.

The simulation studies are motivated by the real-life example of Latin square
design mentioned above. Since all the correlation structures mentioned in Sec-
tion 1.2.3 perform similarly in Table 1.7, we chooseCorr(2) for illustration pur-
poses. Note that inCorr(2), we have an AR(1) structure, where the correlation
between two responses decreases as the number of periods between responses
increases, which makes good practical sense. For these simulation studies, we are
considering 400 observations and two different types of initial guesses for θ val-
ues. In Case 1 we will use θ2 = [0.5, 0.06,−0.53,−0.6,−0.35, 0.025,−0.23,
0.73, 0.23, 0.30] which is obtained from real data. This choice of θ2 gives op-
timal allocations as (0.2460, 0.2495, 0.2500, 0.2545), which is approximately
uniform. For Case 2 we will use θ1 = [−2, 0.25, 0, 0.75, 1, 5,−1.5,−3.5, 2.75,
0.75] and this guess of θ1 is such that optimal allocations are non-uniform. For
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example, for ρ = 0.1 the optimal allocations are (0.172, 0.248, 0.222, 0.358).
Optimal allocations are similar for other values of ρ.

The simulation process used here has two stages. First for a given parameter
θ, we define a design matrix corresponding to each treatment sequence along
with a correlation matrix.

• First Stage:

1. In this stage, we use the rbin function in R to simulate 30% of
observations uniformly over all four treatment sequences. These
observations serve as our pilot study. Note that we use a uniform
design for a pilot study.

2. From these observations obtained in the above step, we estimate the
correlation coefficient and regression parameters, which are used
as the assumed parameter values for the second stage.

• Second Stage:

1. Based on the assumed parameter values obtained in the first stage
and the algorithm described in Section 2.4, we calculate the optimal
allocation for the remaining 70% of the subjects.

2. Using these optimal allocations, we simulate observations for the
remaining 70% of subjects according to the assumed parameter val-
ues.

3. In case of uniform design, we simulate a total number of obser-
vations uniformly over all treatment sequences, i.e., one-fourth of
the total observations correspond to each of the four treatment
sequence.

During this process, we calculate the parameter estimates based on the sim-
ulated observations and calculate the corresponding Mean Square Error (MSE)
from the true parameter values for each simulation. The above simulation pro-
cedure is repeated 100 times. Finally, we take the average of those individual
MSEs to calculate the overall MSE reported in Table 1.9. We repeat the above
simulation process for different correlation coefficients and for two different
sets of initial θ’s, θ1 and θ2. It is clear from Table 1.9 and Figure 10 that if the
optimal allocations are non-uniform, then the proposed optimal design has a
significant advantage over the traditional uniform designs, for all values of the
correlation coefficients. It should be noted that those high values of MSEs for
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uniform designs are mostly due to a handful of “bad” datasets. In our experi-
ence, the proposed optimal designs never give rise to such data.

Table 1.9: Simulation Results

Correlation
Structure

Mean Squared Errors

Corr(2) Case 1 Case 2

Uniform Optimal Uniform Optimal
ρ Design Design Design Design

0.1 0.109 0.108 2.834 0.393

0.2 0.103 0.100 2.718 0.659

0.3 0.101 0.140 4.925 0.490

0.4 0.094 0.127 4.896 0.484

0.5 0.100 0.123 2.596 0.428

0.6 0.088 0.109 2.632 0.469

0.7 0.086 0.095 5.110 0.458

0.8 0.066 0.077 2.705 0.586

0.9 0.050 0.051 2.761 0.559

1.5 Discussion
In practice, it is customary to use uniform designs where the same number of
subjects are assigned to each treatment sequence. In the case of linear models,
such uniform designs are optimal. However, optimal proportions obtained
under GLMs are not uniform. We identified locally optimal designs under
different correlation structures. Tables 1.1 to 1.4 and graphs in Figures 1.1 to 1.8
suggest that the optimal proportions do not vary much from one correlation
structure to another. These results suggest that the identified designs are robust.
Simulation studies and results in Table 1.9 and Figure 1.10 suggest that these
designs are more efficient than uniform designs as well.

29



Case 1 Case 2

Ratio of MSE’s

Different Correlations

R
at

io
 o

f M
S

E
s

0
2

4
6

8
10

12

Figure 1.10: Simulation Results: Ratios of the MSEs of the Uniform versus
optimal deigns, for different values of ρ, for each of the two cases.
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Chapter 2

Optimal Crossover
Designs for GLMs: An
Application to Work

Environment Experiment

2.1 The Work Environment Experiment
We considered the data obtained from the work environment experiment con-
ducted at Booking.com (Pitchforth et al., 2020). In recent years, most corporate
offices and organizations have adopted open office spaces over the traditional
cubicle office spaces. Since there were no previous studies to examine the ef-
fects of office designs in workspaces, Booking.com conducted an experiment to
assess different office spacing efficiency.

In the work environment experiment, there were a total of n = 288 partici-
pants. These participants were divided into four groups,G1, G2, G3, G4, with
each group having an equal number (72) of individual participants. This exper-
iment is essentially an uniform crossover design with p = 4 periods and t = 4

treatments. Periods were named Wave1, Wave2, Wave3 and Wave4, where each
Wave had a duration of 2 weeks. The four treatments involved in this experi-
ment are office designs named asA (Activity-Based),B (Open Plan),C (Team
Offices), andD (Zoned Open Plan), as shown in the figure below:
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A−ACT B−OPEN

C−TEAM D− ZONE.

The images are reproduced from the manuscript (Pitchforth et al., 2020), under
Creative Commons Attribution license (https://creativecommons.org/licenses/
by/4.0/).

During the experiment, each group is exposed to different treatments over
different periods depending on the treatment sequence. At a given period, there
was no interaction between subjects from different groups. A Latin square
design (C. J. Wu & Hamada, 2011) of order four has been used to decide the
sequence of exposure so that no group was exposed to the conditions in the
same order as any other group. The design is shown below in Table 2.1. A total
of m = 23 covariates were involved in the experiment, but we consider only
the most important ones in our fitted model.

Table 2.1: Latin square design

Groups⇒ G1 G2 G3 G3

Period ⇓

Wave 1 OPEN TEAM ZONE ACT
Wave 2 ACT ZONE OPEN TEAM
Wave 3 ZONE ACT TEAM OPEN
Wave 4 TEAM OPEN ACT ZONE

In the following analysis, we consider three different responses that were
recorded during the experiment. We discuss these responses in more detail
in the following sections. These three responses follow three different types of
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distributions. We make an extra assumption that the responses from a particular
subject are mutually correlated, while the responses from different subjects are
uncorrelated. To capture the dependency among the observations coming from
the same subject, we calculate optimal proportions for these different responses
using six different correlation structures proposed in Section 2.3 of (Jankar et
al., 2020) and shown in the Appendix A.1. For each correlation matrix that we
consider, an optimal design ζ∗ is the one minimizing the determinant ofVar(τ̂)
in equation (1.6) with respect to pω such that

∑
w∈Ω pw = 1.

We use different colors to represent different correlation structures. The
color scheme that we use is as follows:

Correlation Structure Color

Corr(1)
Corr(2)
Corr(3)
Corr(4)
Corr(5)
Corr(6)

2.2 Poisson Regression
In the case of Poisson response, we calculate the locally optimal design for the
above example under the model,

log(µij) = ηij = λ+ βi + τd(i,j) + ρd(i−1,j), (2.1)

where notations have the same meaning as in equation (1.2). In the above ex-
periment, there were many different types of responses recorded. We consider
the response commit count to illustrate the optimal crossover design for the
Poisson response. The commit counts were the number of commits submitted
to the main git repository.

2.2.1 Analysis of data
We consider the three main predictors in the model, which are area, wave
and carryover. Here, area corresponds to the direct treatment effect,wave
corresponds to the period effect, and carryover corresponds to the carryover
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effect of a treatment given in a previous period. We use different kinds of corre-
lation matrices and calculate the optimal proportions. As mentioned earlier we
consider baseline constraints as β1 = τ1 = ρ1 = 0, so that all the parameters
are estimable.

We fit the Poisson regression model to the commit data by using the glm
function in R and calculate the parameter estimates. We use these parameter
estimates to make a guess for values of unknown parameters. Our nominal
guess for the parameter values is θ1 = [2, 0.3, 0.8, −0.1, −0.2, 0.04, −0.2,
−0.6, 0.15,−0.4]. It is interesting to note that carryover effects are larger than
direct effects, even though θ1 is calculated using experimental data. Now, we
calculate the optimal designs for different correlation structures by minimizing
the objective function. We also calculate optimal proportions for another pa-
rameter θ2 = [2, 0.3, 0.8,−0.1,−2.0, 0.40,−2.0,−1.0, 0.30,−1.0], which is
significantly different from θ1.

2.2.2 Optimal designs
In Table 2.2, we present the optimal proportions corresponding to Poisson
response for six different choices of the correlation matrix.

Table 2.2: Optimal proportions in case of Poisson response.

Correlation θ1 θ2

Structure BADC CDAB DBCA ACBD BADC CDAB DBCA ACBD

Corr(1) 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
Corr(2) 0.2500 0.2500 0.2500 0.2500 0.2747 0.3113 0.1841 0.2299
Corr(3) 0.2500 0.2500 0.2500 0.2500 0.2795 0.3074 0.1798 0.2333
Corr(4) 0.2500 0.2500 0.2500 0.2500 0.2562 0.3168 0.1860 0.2410
Corr(5) 0.2500 0.2500 0.2500 0.2500 0.2736 0.3138 0.1922 0.2204
Corr(6) 0.2500 0.2500 0.2500 0.2500 0.2537 0.3190 0.1844 0.2429

As seen from Table 2.2, in the case of Poisson response, the optimal proportions
that we obtain using θ1 are nearly uniform and that using θ2 are non-uniform.

The plots in Figures 2.1 and 2.2 represent the optimal proportions for Poisson
response under θ1 and θ2 respectively. It can be seen from these plots that the

34



Figure 2.1: Uniform optimal proportions for Poisson response under θ1

optimal proportions do not vary much when we use different correlation struc-
tures under θ1 and θ2. In practice, uniform optimal designs (the same propor-
tion for each treatment sequence) are often used. It is clear from the above
analysis that those uniform designs are sub-optimal under θ2.

Figure 2.2: Non-uniform optimal proportions for Poisson response under θ2
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2.3 Beta Regression
In the beta response case, we calculate the locally optimal design for the response
from the Booking.com example under two different models. We consider two
different link functions to model the marginal mean of the response as follows:

logit(µij) = log(
µij

1− µij

) = ηij = λ+ βi + τd(i,j) + ρd(i−1,j), (2.2)

and,

log(µij) = ηij = λ+ βi + τd(i,j) + ρd(i−1,j), (2.3)

where notations have the same meaning as in equation (1.2).

To illustrate the optimal proportions in the beta response case, we consider
the normalized response engagement from the work environment experiment.
In the case of this experiment, engagement is a measure of the extent to which
participants felt focused on and excited to complete regular work tasks.

2.3.1 Analysis of data
Similar to the Poisson response analysis, we consider three main predictors in
the model for a beta response: area, wave, and carryover. As mentioned
above, we use six different kinds of correlation matrices and calculate optimal
proportions under two different models with different link functions. As men-
tioned earlier, we consider baseline constraints so that all the parameters are
estimable.

We get the initial estimates of parameters by fitting the beta regression model
to the response. For two different link functions we need to guess two different
sets of parameter values forθ1 andθ2. In case of logit link function, our nominal
guess for the parameter values is θ1 = [1.24,−0.035, 0.17, 0.078,−0.2,−0.3,
0.01, −0.35, −0.62, −0.329] and θ2 = [1.24, −0.035, 0.17, 0.078, −4, −6,
2,−3.5,−3.1,−1.28]. In case of log link function, our nominal guess for the
parameter values is θ1 = [−0.25, −0.01, 0.04, 0.02, −0.05, −0.08, −0.004,
−0.088,−0.172,−0.08] and θ2 = [−0.25,−0.01, 0.04, 0.02,−5,−8,−0.4,
−2.2, −4.3, −2]. Note that, as before, θ1 is an educated guess based on the
data at hand, whereas θ2 has significantly different values for the parameters of
interest than those of θ1.
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2.3.2 Optimal designs
In Table 2.3, we present the optimal proportions corresponding to the logit
link case for six different choices of correlation matrix. As seen from Table 2.3,
in the case of beta response (logit link), the optimal proportions that we obtain
using θ1 are nearly uniform and that using θ2 are non-uniform.

Table 2.3: Optimal proportions in case of beta response (logit link).

Correlation θ1 θ2

Structure BADC CDAB DBCA ACBD BADC CDAB DBCA ACBD

Corr(1) 0.2518 0.2563 0.2465 0.2454 0.3418 0.2085 0.1643 0.2854
Corr(2) 0.2525 0.2572 0.2453 0.2450 0.3316 0.2066 0.1690 0.2928
Corr(3) 0.2515 0.2568 0.2462 0.2455 0.3363 0.2058 0.1682 0.2897
Corr(4) 0.2405 0.2539 0.2419 0.2637 0.3205 0.2043 0.1739 0.3013
Corr(5) 0.2595 0.2542 0.2467 0.2396 0.3250 0.2070 0.1711 0.2969
Corr(6) 0.2366 0.2562 0.2423 0.2649 0.3218 0.2088 0.1668 0.3026

Figure 2.3: Uniform optimal proportions for beta response (logit link) under
θ1
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Figure 2.4: Non-uniform optimal proportions for beta response (logit link)
under θ2

In Table 2.4, we present the optimal proportions corresponding to the log link
case for six different choices of the correlation matrix. As before, in the beta
response (log link) case, the optimal proportions that we obtain using θ1 are
nearly uniform and that using θ2 are non-uniform.

The plots is Figures 2.3, 2.4 and Figures 2.5, 2.6 represent the optimal propor-
tions for beta response under θ1 and θ2 for two different choices of link func-
tions respectively.

Table 2.4: Optimal proportions in case of beta response (log link).

Correlation θ1 θ2

Structure BADC CDAB DBCA ACBD BADC CDAB DBCA ACBD

Corr(1) 0.2522 0.2560 0.2470 0.2448 0.3305 0.1470 0.1930 0.3295
Corr(2) 0.2529 0.2569 0.2458 0.2444 0.3270 0.1200 0.2084 0.3446
Corr(3) 0.2520 0.2564 0.2466 0.2450 0.3290 0.1210 0.2050 0.3450
Corr(4) 0.2410 0.2535 0.2425 0.2630 0.3271 0.1060 0.2137 0.3532
Corr(5) 0.2600 0.2540 0.2460 0.2400 0.3245 0.1101 0.2102 0.3552
Corr(6) 0.2371 0.2558 0.2428 0.2643 0.3272 0.1096 0.2120 0.3512
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Figure 2.5: Uniform optimal proportions for beta response (log link) under θ1

It can be seen from these plots that optimal proportions do not vary much
when we use different correlation structures under θ1 and θ2. In most of the
situations in practice uniform optimal designs are used. The above analysis
shows that those uniform designs are sub-optimal under θ2 irrespective of what
link function is used.

Figure 2.6: Non-uniform optimal proportions for beta response (log link) un-
der θ2

39



2.4 Gamma Regression
In the case of Gamma response, we calculate locallyD-optimal design for the
response from the same Booking.com example under two different models. Sim-
ilar to the beta response, we consider two different link functions to model the
marginal mean of the response. We use the log, and inverse link functions,
and the two models are as follows:

log(µij) = ηij = λ+ βi + τd(i,j) + ρd(i−1,j),

and,

inv(µij) =
1

µij

= ηij = λ+ βi + τd(i,j) + ρd(i−1,j), (2.4)

where, as before, notations have the same meaning as in equation (1.2).

From the work environment experiment, we consider the response satis-
faction. Satisfaction is an essential concept for organizational and office design
research, and it is usually used to measure employees’ sentiments. In the work
environment experiment, the Leesman satisfaction index was used, which is
useful for many benchmark purposes. Since the response is right-skewed, it is
safe to assume that the response follows a gamma distribution.

2.4.1 Analysis of data
Similar to the previous two cases, we consider three main predictors in the
model for gamma response, which are area,wave and carryover. As before,
we consider six different kinds of correlation matrices and calculate optimal pro-
portions under two different models with different link functions. We consider
the same baseline constraints as mentioned earlier. We fit the gamma regression
model to the data with satisfaction as response by using the glm function in
R and calculate the parameter estimates.

In case of log link function, our nominal guess for the parameter values is
θ1 = [2.1, −0.19, −0.04, −0.04, −0.16, −0.4, −0.06, 0.05, 0.005, −0.05]
and θ2 = [2.1,−0.19,−0.04,−0.04,−1.6,−4.0,−0.6, 0.5, 0.05,−0.5]. In
case of inverse link function, our nominal guess for the parameter values is
θ1 = [0.13, 0.03, 0.003, 0.003, 0.025, 0.07, 0.008,−0.007,−0.0001,−0.01]
and θ2 = [0.13, 0.03, 0.003, 0.003, 2.5, 7, 0.8,−0.7,−0.01,−1]. As before,
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θ1 was motivated by the data provided by (Pitchforth et al., 2020) and θ2 is
significantly different from θ1.

2.4.2 Optimal designs
In the Table 2.5, we present the optimal proportions corresponding to log link
case for six different choices of correlation matrix. As seen from Table 2.5, in
case of gamma response (log link) the optimal proportions that we obtain using
θ1 are nearly uniform and that using θ2 are non-uniform.

Table 2.5: Optimal proportions in case of gamma response (log link).

Correlation θ1 θ2

Structure BADC CDAB DBCA ACBD BADC CDAB DBCA ACBD

Corr(1) 0.2500 0.2500 0.2500 0.2500 0.1328 0.2775 0.3336 0.2561
Corr(2) 0.2500 0.2500 0.2500 0.2500 0.1248 0.2639 0.3527 0.2586
Corr(3) 0.2500 0.2500 0.2500 0.2500 0.1258 0.2582 0.3596 0.2564
Corr(4) 0.2500 0.2500 0.2500 0.2500 0.1206 0.2671 0.3451 0.2672
Corr(5) 0.2500 0.2500 0.2500 0.2500 0.1225 0.2770 0.3354 0.2656
Corr(6) 0.2500 0.2500 0.2500 0.2500 0.1195 0.2685 0.3416 0.2704

Figure 2.7: Uniform optimal proportions for gamma response (log link) under
θ1
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Figure 2.8: Non-uniform optimal proportions for gamma response (log link)
under θ2

In Table 2.6, we present the optimal proportions corresponding to the inverse
link case for six different choices of correlation matrix. As before, Table 2.6 in-
dicates that the optimal proportions that we obtain using θ1 are nearly uniform
and that using θ2 are non-uniform in the case of gamma response (inverse
link).

The plots in Figures 2.7, 2.8 and Figures 2.9, 2.10 represent the optimal pro-
portions for gamma response under θ1 and θ2 for two different choices of link
functions respectively.

Table 2.6: Optimal proportions in case of gamma response (inverse link).

Correlation θ1 θ2

Structure BADC CDAB DBCA ACBD BADC CDAB DBCA ACBD

Corr(1) 0.2500 0.2500 0.2500 0.2500 0.2650 0.3093 0.1828 0.2429
Corr(2) 0.2500 0.2500 0.2500 0.2500 0.2486 0.3031 0.1911 0.2572
Corr(3) 0.2500 0.2500 0.2500 0.2500 0.2588 0.3051 0.1879 0.2482
Corr(4) 0.2500 0.2500 0.2500 0.2500 0.2389 0.3087 0.1784 0.2740
Corr(5) 0.2500 0.2500 0.2500 0.2500 0.2406 0.3112 0.1762 0.2720
Corr(6) 0.2500 0.2500 0.2500 0.2500 0.2421 0.3146 0.1740 0.2729

42



Figure 2.9: Uniform optimal proportions for gamma response (inv link) under
θ1

It can be seen from these plots that optimal proportions do not vary much
when we use different correlation structures under θ1 and θ2. In most of the
situations in practice uniform optimal designs are used. The above analysis
shows that those uniform designs are sub-optimal under θ2 irrespective of what
link function is used.

Figure 2.10: Non-uniform optimal proportions for gamma response (inv link)
under θ2
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2.5 Discussion
In many experiments in real life, uniform designs are often used. Uniform
designs are those in which the same number of subjects is assigned to each treat-
ment sequence. These uniform designs are optimal in the linear model case, i.e.
when the response is normally distributed. But, in Chapter 1 we show that the
obtained optimal proportions are not necessarily uniform, in situations where
responses are non-normal. In this chapter, we identify locally optimal designs
for responses belonging to Poisson, beta and gamma distributions. Two differ-
ent link functions were considered in the case of beta and gamma responses.
Tables 2.2 to 2.6 and plots in Figures 2.1 to 2.10 suggest that the obtained opti-
mal proportions are robust for different choices of correlation structures. These
results also suggest that uniform designs are sub-optimal under θ2 irrespective
of the link function used or the response’s distribution. Note that we are using
the local optimality approach of (Chernoff, 1953). In real experiments, it is not
always possible to guess the values of parameter estimates from prior knowledge.
In that case, it is not easy to obtain locally optimal designs. In this thesis, we
consider approximate designs in terms of optimal proportions. While conduct-
ing real-life experiments, the practitioners must use exact designs where these
proportions are to be converted into integers for determining the replication
numbers of the sequences. The rounding off error might be insignificant unless
the total number of observations is large. The Work Environment Experiment
had 288 subjects and hence such issues do not arise.

44



Chapter 3

A General Equivalence
Theorem for Crossover
Designs under GLMs

3.1 Overview
Over the years, optimal crossover designs for normal responses have been widely
studied in the literature, however, there are several examples in real life where re-
sponses are not normal and described by GLMs. In Chapter 1 we provided an al-
gorithm to search locallyD-optimal crossover designs in the case of non-normal
response, and showed that optimal designs obtained for normal responses can
be quite inefficient in the case of GLMs. But there is no guarantee that the
designs obtained by the algorithm were indeed optimal. In this chapter, we
derive a general equivalence theorem specifically for crossover designs under
GLMs, which can be used to verify the optimality of proposed designs. More-
over, it provides an alternative that is faster and numerically more stable than
the general algorithm proposed in Chapter 1.

The General Equivalence Theorem is an important tool in optimum ex-
perimental designs, which has been widely used for checking the optimality of
designs in terms of the Fisher information matrix (Atkinson et al., 2007; Fe-
dorov, 1971, 1972; Fedorov & Leonov, 2014; Fedorov & Malyutov, 1972; Kiefer
& Wolfowitz, 1960; Whittle & Malyutov, 1973). Nevertheless, the traditional
equivalence theorem does not apply to check the optimality of the obtained
crossover designs. The optimal crossover designs under GLMs discussed in
Chapter 1 are identified using GEE and are based on the variance matrix of the
parameters of interest. Since the variance matrix is asymptotically connected
with the inverse of the Fisher information matrix, it is natural to derive a condi-
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tion that can be used to check the optimality of designs (see remarks below for
more details).

For illustration purposes, we consider two real-life motivating examples.
First, we consider an experiment conducted at Booking.com (discussed in Chap-
ter 2) to determine the optimal office design. In addition to that, we discuss
another motivating example in an experiment conducted to investigate the ef-
fects of various dietary starch levels on milk production in cows. (Kenward
& Jones, 1992) discussed this dietary example along with the data set used for
analysis (for more details see (Kenward & Jones, 2014)). The design used in
both these examples is a 4× 4 Latin Square design with four periods and four
treatments.

This chapter is organized as follows: to set up ideas, we describe notation
and definitions for crossover designs in Section 3.2. In Section 3.3 we propose
and derive two different versions of the general equivalence theorem for crossover
designs. More specifically, in Section 3.3.1 we use the variance of all parameter
estimates as an objective function, and in Section 3.3.2 we use the variance of
treatment effects as an objective function to derive two versions of the theorem.
We present an illustration in Section 3.3.3 and real-life motivating examples in
Section 3.4.

3.2 Notation and Preliminaries

A crossover design ξ in approximate theory is specified by the set {pω, ω ∈ Ω},
where pω = nω/n is the proportion of subjects assigned to treatment sequence
ω. As denoted by (Silvey, 1980), such a crossover design ξ can be written as
follows:

ξ =

{
ω1 ω2 . . . ωk

p1 p2 . . . pk

}
, (3.1)

where k is the number of treatment sequences involved, ωi is the ith treatment
sequence and pi is the corresponding proportion of units allocated to that sup-
port point, such that

∑k
i=1 pi = 1, for i = 1, . . . , k. Note in Chapter 1 we

observed that, in the case of non-uniform allocations, only a few sequences
have non-zero proportions. Hence, in our illustrations, we considerΩ to be the
collection of only those sequences that have non-zero allocations.

GEE are quasi-likelihood equations that allow us to estimate quasi-likelihood
estimators (Liang et al., 1988; Prentice, 1988). In crossover trials, it is typical to
assume that the observations from the same subject are correlated while the
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observations from different subjects are independent (Kenward & Jones, 2014).
This dependency among repeated observations from the same subject can be
modeled by the “working correlation” matrix Cα, which is a function of the
correlation coefficient α. If Cα is the true correlation matrix of Yj , then from
the definition of covariance, we can write

Cov(Yj) = Dj
1/2CαDj

1/2,

where Dj = diag
(
V ar(Y1j), . . . , V ar(Ypj)

)
. Let us denote Cov(Yj) by

Wj . In (Liang et al., 1988) (equation (3.1)) it was shown that for repeated mea-
surement models, the GEE are defined to be

n∑
j=1

∂µj
′

∂θ
Wj

−1 (Yj − µj) = 0,

whereµj = (µ1j, . . . , µpj)
′ and the asymptotic variance for the GEE estimator

θ̂ (see (Liang et al., 1988), equation (3.2)) is

Var(θ̂) =

[
k∑

j=1

npj
∂µj

′

∂θ
Wj

−1∂µj

∂θ

]−1

= M−1, (3.2)

where ∂µj
′

∂θ
= Xj

′diag {(g−1)′(η1j), . . . , (g
−1)′(ηpj)} and j stands for the jth

treatment sequence. In Section 3.3, we will define M explicitly for crossover de-
signs. Later, we consider the situation where direct treatment effects are studied
specifically.

Remark: The general equivalence theorem describes the optimality criteria
in terms of the Fisher information matrix. The information matrix for opti-
mal crossover designs under GLMs is defined as the inverse of the variance-
covariance matrix of parameters of interest through GEE, which is easier to
obtain and works similarly to the Fisher information matrix. Here we assume
that the responses from a particular subject are mutually correlated, while the
responses from different subjects are uncorrelated. In Chapter 1, we observe
that the obtained optimal designs are robust to the choices of such working
correlation matrices.

As mentioned in (Atkinson et al., 2007), the general equivalence theorem
can be viewed as a consequence of the result that the derivative of a smooth
function over an unconstrained region is zero at its minimum. In this thesis, we
derive the general equivalence theorem for crossover designs by calculating the
directional derivative of an objective functionΦ(ξ) expressed in terms ofM (ξ).
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Consider ξ̄i to be the design that puts unit mass at the point xi, i.e., the design
supported only at xi, where i = 1, 2, . . . , k. Let ξ′i = (1− h)ξ + hξ̄i. Then
the derivative of Φ(ξ) in the direction ξ̄i or xi in case ofD-optimal criterion is

ϕ(xi, ξ) = lim
h→0+

1

h
[Φ(ξ′i)−Φ(ξi)] = − lim

h→0+

1

h
[ln det(M (ξ′i))−ln det(M(ξi))],

and ξ isD-optimal if and only ifminiϕ(xi, ξ) = 0 and ϕ(xi, ξ) = 0 if pωi
>

0,where this minimum is occurring at the points of support of design.

In the case of crossover designs and estimates using GEE, a different ap-
proach compared to the one mentioned above is needed, as the design points
are finite and pre-specified for crossover designs. We use the technique used
in the supplement materials of (J. Yang et al., 2016). Instead of using ξ′i =

(1− h)ξ+ hξ̄i = ξ+ h(ξ̄i− ξ), they used pr + uδ
(r)
i ,where pr and δ

(r)
i are

defined below. Therefore, the directional derivative ϕ(u,pr) of the objective

function is equal to ∂Φ(pr+uδ
(r)
i )

∂u

∣∣∣∣
u=0

.

Here is the outline of the general equivalence theorem in the case of crossover
designs. Note that 0 ≤ pi < 1 for i = 1, . . . , k, and since

∑k
i=1 pi = 1

we may assume without any loss of generality that pk > 0. Define pr =

(p1, . . . , pk−1)
′, andΦ(pr) = − ln det(M (p1, . . . , pk−1, 1−

∑k−1
i=1 pi)).Let

δ
(r)
i = (−p1, . . . ,−pi−1, 1− pi,−pi+1, . . . ,−pk−1)

′ for i = 1, . . . , k − 1.

δ
(r)
i are defined in such a way that the determinant |(δ(r)

1 , . . . , δ
(r)
k−1)| = pk ̸=

0.Hence,δ(r)
1 , . . . , δ

(r)
k−1 are linearly independent and thus can serve as the new

basis of

Sr = {(p1, . . . , pk−1)
′|

k−1∑
i=1

pi < 1, and pi ≥ 0, i = 1, . . . , k − 1}.

Note that negative ln det is a convex function on a set of positive definite
matrices. Hence, pr minimizes Φ(pr) if and only if along each direction δr

i ,

∂Φ(pr + uδ
(r)
i )

∂u

∣∣∣∣∣
u=0

{
= 0 if pi > 0

≥ 0 if pi = 0

3.3 Equivalence Theorems for Crossover Designs
As defined earlier, Cα is the working correlation matrix and hence is a positive
definite and symmetric matrix. So, there exists a square matrix R such that
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Cα
−1 = RTR. Then the inverse of the variance of the parameter estimates

through GEE is as follows:

M =
k∑

j=1

npj
∂µj

′

∂θ
Wj

−1∂µj

∂θ

=
k∑

j=1

npjXj
TGjDj

− 1
2Cα

−1Dj
− 1

2GjXj (3.3)

where Gj = diag {(g−1)′(η1j), . . . , (g
−1)′(ηpj)} . Equation (3.3) can be fur-

ther simplified as,

M =
k∑

j=1

npj(Xj
∗)T (Xj

∗),

where Xj
∗ = RDj

− 1
2GjXj .

3.3.1 Equivalence Theorem when Objective Function is Vari-
ance of Parameter Estimates

In this section, we present the equivalence theorem for crossover design when
the objective function is a determinant of the variance of parameter estimates.
We also present a special case of the theorem when there are only two treatment
sequences involved in the design.

Theorem 1 (General Equivalence Theorem for Crossover Design when
the objective function is |V ar(θ̂)|): Consider the design ξ with k treatment
sequences as defined in equation (3.1). Then,

(a) The set of optimal designs is convex.
(b) The design ξ isD-optimal if and only if

trace
(
Xi

∗M (ξ)−1Xi
∗T ){ = m if pi > 0

≤ m if pi = 0
,

for each pi ∈ [0, 1], where pi is the allocation corresponding to point ωi of design
ξ for all i = 1, 2, . . . , k, andm is the number of parameters in θ.

Proof of Theorem 3.3.1:
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Let k be the number of treatment sequences involved in the experiment and ξ
be any design, then Φ(M (ξ)) = − ln det(M(ξ)).

Proof of (a):

Let ξ∗1 and ξ∗2 be optimal designs i.e.,

Φ[M (ξ∗1)] = Φ[M (ξ∗2)] = minξΦ[M (ξ)]

and let ξ∗ = (1− γ)ξ∗1 + γξ∗2 , for 0 ≤ γ ≤ 1. Φ[M (ξ)] = − ln det(M (ξ))

is convex on set of positive definite matrices (Boyd & Vandenberghe, 2004).
Therefore,

Φ[M(ξ∗)] ≤ (1− γ)Φ[M (ξ∗1)] + γΦ[M (ξ∗2)] = minξΦ[M (ξ)],

which proves the optimality of ξ∗.

Proof of (b):

We have pr = (p1, p2, . . . , pk−1)
′ and δ

(r)
1 = (1− p1,−p2, . . . ,−pk−1)

′,

δ
(r)
2 = (−p1, 1−p2, . . . ,−pk−1)

′
, . . . , δ

(r)
k−1 = (−p1,−p2, . . . , 1−pk−1)

′.

Hence, pr + uδ
(r)
1 = (p1 + u(1− p1), (1− u)p2, . . . , (1− u)pk−1)

′ ,

pr + uδ
(r)
2 = ((1− u)p1, p2 + u(1− p2), . . . , (1− u)pk−1)

′ , . . . ,

pr + uδ
(r)
k−1 = ((1− u)p1, (1− u)p2, . . . , pk−1 + u(1− pk−1))

′ .

Determinant of (δ(r)
1 , · · · , δ(r)

k−1) = 1− (p1 + p2 + · · ·+ pk−1) = pk.

Then for design with k treatment sequences we can write M as,

M(pr) =
k∑

j=1

npj(Xj
∗)T (Xj

∗) = np1(X1
∗)T (X1

∗)+np2(X2
∗)T (X2

∗)+· · ·

+npk−1(Xk−1
∗)T (Xk−1

∗)+n (1− (p1 + p2 + · · ·+ pk−1)) (Xk
∗)T (Xk

∗)

For illustration purpose consider the direction δ
(r)
1 , and calculations for other

directions can be done similarly,

Φ(pr + uδ
(r)
1 ) = − ln det

[
M
(
{p1 + u(1− p1), (1− u)p2, . . . , (1− u)pk−1}′

)]
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= − ln det

[
n {p1 + u(1− p1)} (X1

∗)T (X1
∗)

+n {(1− u)p2} (X2
∗)T (X2

∗)+· · ·+n {(1− u)pk−1} (Xk−1
∗)T (Xk−1

∗)

+ n(1− u) {1− (p1 + p2 + · · ·+ pk−1)} (Xk
∗)T (Xk

∗)

]
= −m lnn− ln det[M (u,pr)] = −m lnn+ Φ(r)(u),

where M(u,pr) =
M(pr+uδ

(r)
1 )

n
, and Φ(r)(u) = − ln det[M (u,pr)].

The directional derivative of the above objective function along one specific
direction for a design with k treatment sequences can be calculated as follows:

ϕ(u,pr) =
∂Φ(pr + uδ

(r)
1 )

∂u
= lim

h→0

1

h

[
Φ(r)(u+ h)− Φ(r)(u)

]

= − lim
h→0

1

h

{
ln det [M (u+ h,pr)]− ln det [M (u,pr)]

}

= − lim
h→0

1

h

{
ln det

[
M (u,pr)+h(1−p1)X1

∗TX1
∗−hp2X2

∗TX2
∗−· · ·

−hpk−1Xk−1
∗TXk−1

∗−h (1− (p1 · · ·+ pk−1))Xk
∗TXk

∗
]
detM(u,pr)

−1

}

= − lim
h→0

1

h

{
ln det

[
M(u,pr)M(u,pr)

−1 + h
{
X1

∗TX1
∗ −M (pr)

}
M(u,pr)

−1

]}
= − lim

h→0

1

h

{
ln det

[
Ip + h

{
X1

∗TX1
∗ −M(pr)

}
M (u,pr)

−1

]}
Using the approximation of determinant det(I + hA) = 1 + htrace(A) +

O(h2) (Bornemann, 2010) we get,

= − limh→0
1
h

{
ln
(
1 + htrace

[{
X1

∗TX1
∗ −M (pr)

}
M(u,pr)

−1
]
+O(h2)

)}
And using ln(1 + t) = t+O(t2) we get,
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= − lim
h→0

1

h

{
htrace

[
(X1

∗TX1
∗ −M (pr))M(u,pr)

−1
]
+O(h2)

}
= −trace

[
(X1

∗TX1
∗ −M (pr))M(u,pr)

−1

]
= trace

(
M(pr)M (u,pr)

−1
)
− trace

(
X1

∗M(u,pr)
−1X1

∗T )
∂Φ(pr + uδ

(r)
1 )

∂u

∣∣∣∣∣
u=0

= m− trace
(
X1

∗M (pr)
−1X1

∗T ) (3.4)

The proof follows by equating the above expression in equation (3.4) to zero.

3.3.2 Equivalence Theorem when Objective Function is Vari-
ance of Treatment Effect Estimates

As the main interest usually lies in estimating the direct treatment effect con-
trasts, instead of working with the full variance-covariance matrix of parameters
estimate, in this section, we concentrate only on the variance of the estimator
of treatment effects Var(τ̂ ) given as

Var(τ̂ ) = HVar(θ̂)H ′, (3.5)

whereH is a (t−1)×mmatrix given by [0(t−1)1,0(t−1)(p−1), I t−1,0(t−1)(t−1)]

andm = p+2t− 2 is the total number of parameters in θ. Below, we present
the equivalence theorem for crossover design when the objective function is a
determinant of the variance of treatment effects estimate i.e., the determinant
of dispersion matrix.

Lemma 1 Consider function f : Rn
>0 → R>0, such that f(x) = 1∏n

i=1 xi
where

x = (x1, x2, . . . , xn)
′ ∈ Rn

>0. Then f(x) is a strictly convex function.

Proof of Lemma 1:
LetH be the Hessian matrix, i.e., the matrix of second-order partial derivatives.

Then H = f(x)(D + qq′), where D is the diagonal matrix with elements
1/(x1)

2, . . . , 1/(xn)
2 andq is the column vector with elements1/(x1), . . . , 1/(xn).

The lemma follows asH is positive definite. An alternative proof is provided in
the Appendix A.2.
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Theorem 2 General Equivalence Theorem for Crossover Design when
objective function is |V ar(τ̂ )|: Consider the design ξ with k treatment se-
quences as defined in equation (3.1). Then,

(a) The set of optimal designs is convex.
(b) The design ξ isD-optimal if and only if

trace
{
A(Xi

∗)T (Xi
∗)
}{ = t− 1 if pi > 0

≤ t− 1 if pi = 0

for each pi ∈ [0, 1], where A = M−1H ′ (HM−1H ′)−1
HM−1, pi is the

allocation corresponding to point ωi of design ξ for all i = 1, 2, . . . , k, and t is
number of treatments.

Proof of Theorem 3.3.2:

Let k be the number of treatment sequences involved in the experiment and ξ
be any design, then Φ(M (ξ)) = ln det(HM (ξ)−1H ′).

Proof of (a):

Let ξ∗1 and ξ∗2 be optimal designs i.e.,

Φ[M (ξ∗1)] = Φ[M (ξ∗2)] = minξΦ[M (ξ)]

and let ξ∗ = (1− γ)ξ∗1 + γξ∗2 , for 0 ≤ γ ≤ 1.

Since we are using the D-optimality criterion, we prove the following equa-
tion (3.6) to prove the optimality of ξ∗.

|HM (ξ∗)−1H ′| ≤ (1− γ)|HM (ξ∗1)
−1H ′|+ γ|HM (ξ∗2)

−1H ′|. (3.6)

Since both M (ξ∗1) and M (ξ∗2) are positive definite, we can find a non-singular
matrix O−1 such that M (ξ∗1) = OOT and M (ξ∗2) = OΛOT , where Λ =

diag{λ1, . . . , λm} is am×m diagonal matrix (see page 41 Rao, 1973). In this
situation, M(ξ∗) = O((1− γ)I + γΛ)OT . Then (3.6) is equivalent to

|G((1− γ)I + γΛ)−1GT | ≤ (1− γ)|GGT |+ γ|GΛ−1GT |, (3.7)

where G = H(OT )−1. According to Theorem 1.1.2 in (Fedorov, 1972),

|G((1−γ)I+γΛ)−1GT | =
∑

1≤i1<···<iq≤m

|GT [i1, . . . , iq]|2
q∏

l=1

1

(1− γ) + γλil
,
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where GT [i1, . . . , iq] is the q× q sub-matrix ofGT consisting of the i1, . . . , iq
rows of GT . Similarly,

(1−γ)|GGT |+γ|GΛ−1GT | =
∑

1≤i1<···<iq≤m

|GT [i1, . . . , iq]|2
(
1− γ + γ

q∏
l=1

1

λil

)
.

Then (3.7) is true if

q∏
l=1

1

(1− γ) + γλil
≤ 1− γ + γ

q∏
l=1

1

λil
. (3.8)

Sincef(x) = 1∏q
i=1 xi

is convex function (from Lemma 1), we havef ((1− γ)1+ γλ) ≤
(1− γ)f(1)+ γf(λ), where λ = (λi1 , · · · , λiq) and hence the result follows.

Proof of (b):

M (pr) = np1(X1
∗)T (X1

∗) + np2(X2
∗)T (X2

∗) + · · ·+ npk−1(Xk−1
∗)T (Xk−1

∗)

+ n (1− (p1 + p2 · · ·+ pk−1)) (Xk
∗)T (Xk−1

∗).

Φ(pr + uδ
(r)
1 ) = Φ

(
{p1 + u(1− p1), (1− u)p2, . . . , (1− u)pk−1}′

)
= ln det

[
H

{
M
(
{p1 + u(1− p1), (1− u)p2, . . . , (1− u)pk−1}′

)}−1

H ′
]

= −(t− 1) lnn+ ln det

[
H

{
{p1 + u(1− p1)} (X1

∗)T (X1
∗)

+ {(1− u)p2} (X2
∗)T (X2

∗) + · · ·+ {(1− u)pk−1} (Xk−1
∗)T (Xk−1

∗)

+ (1− u) {1− (p1 + p2 + · · ·+ pk−1)} (Xk
∗)T (Xk

∗)

}−1

H ′
]

= −(t− 1) lnn+ ln det
[
HM (u,pr)

−1H ′] = −(t− 1) lnn+ Φ(r)(u),

where now Φ(r)(u) = ln det [HM (u,pr)
−1H ′].

Consider direction δ
(r)
1 , then the directional derivative of the above objective

function for a design with k treatment sequences can be calculated as follows:

ϕ(u,pr) =
∂Φ(pr+uδ

(r)
1 )

∂u
= limh→0

1
h

[
Φ(r)(u+ h)− Φ(r)(u)

]
= lim

h→0

1

h

{
ln det

[
HM (u+ h,pr)

−1H ′]− ln det
[
HM (u,pr)

−1H ′]}
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= lim
h→0

1

h

{
ln det

[
H
{
(1− µ− h)M(pr) + (µ+ h)(X1

∗)T (X1
∗)
}−1

H ′
]

− ln det
[
HM (µ,pr)

−1H ′]}

= lim
h→0

1

h

{
ln det

[
H
{
M (u,pr)− h

(
M (pr)− (X1

∗)T (X1
∗)
)}−1

H ′
]

− ln det
[
HM (u,pr)

−1H ′]}

= lim
h→0

1

h

{
ln det

[
H
{
[M (u,pr)]

[
I − hM (u,pr)

−1
(
M(pr)− (X1

∗)T (X1
∗)
)]}−1

H ′
]

× det
[
HM (u,pr)

−1H ′]−1
}

= lim
h→0

1

h

{
ln det

[
H
{[

I − hM(u,pr)
−1
(
M (pr)− (X1

∗)T (X1
∗)
)]−1

[M(u,pr)]
−1
}
H ′
]

× det
[
HM (u,pr)

−1H ′]−1
}

Assuming h is sufficiently small we use the binomial series expansion (I +

hX)−1 =
∑∞

i=0(−tX)i to obtain,

ϕ(u,pr) = lim
h→0

1

h

{
ln det

[
I + hB +O(h2)

]}
,

B = HM (u,pr)
−1
[
M (pr)− (X1

∗)T (X1
∗)
]
M (u,pr)

−1H ′ [HM (u,pr)
−1H ′]

−1
.

Using ln det [I + hB +O(h2)] = htrace(B) +O(h2) (Withers & Nadara-
jah, 2010),

ϕ(u,pr) = trace
{
HM (u,pr)

−1
[
M(pr)− (X1

∗)T (X1
∗)
]
M (u,pr)

−1H ′

×
[
HM (u,pr)

−1H ′]−1
}

ϕ(u,pr)|u=0 = trace
{
HM (pr)

−1
[
M(pr)− (X1

∗)T (X1
∗)
]
M (pr)

−1H ′

×
[
HM (pr)

−1H ′]−1
}
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= trace
{
I(t−1) −HM (pr)

−1(X1
∗)T (X1

∗)M (pr)
−1H ′

×
[
HM (pr)

−1H ′]−1
}

= (t− 1)− trace
{
HM (pr)

−1(X1
∗)T (X1

∗)M (pr)
−1H ′ (HM (pr)

−1H ′)−1
}

= (t− 1)− trace
{[

M−1H ′ (HM−1H ′)−1
HM−1

]
(X1

∗)T (X1
∗)

}
(3.9)

The proof follows by equating the above expression in equation (3.9) to zero.

3.3.3 Illustration
To illustrate the results of the above general equivalence theorems, we consider
a design space {AB,BA} has k = 2, p = 2. Since we are considering a local
optimality approach, for illustration purposes we assume that the parameter
values are θ = (λ, β2, τB, ρB)

′ = (0.5,−1.0, 4.0,−2.0)′.Note that we need
to assume parameter values before calculating the optimal proportions. Con-
sidering the AR(1) correlation structure with α = 0.1, i.e.,

Cα =
(
α|i−i′|

)
=

(
1 α

α 1

)
,

for the assumed parameter values the optimal proportions are p1 = p2 = 0.5.

The graph of the objective function, Φ(p1) = − ln det(M (p1)) and its
directional derivative trace

(
X1

∗M (p1)
−1X1

∗T ) − m w.r.t p1 ∈ [0, 1] are
shown in Figure 3.1.
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Figure 3.1: Objective function and its directional derivative for designs with two
treatment sequences.
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Graphs in Figure 3.1 verify that the minimum of the objective function
is located at p1 = 0.5 and directional derivative is zero at p1 = 0.5. Using
Theorem 1, we conclude that for assumed values of parameters, design

ξ =

{
AB BA

0.5 0.5

}
is theD-optimal design when the objective function is V ar(θ̂).

Considering V ar(τ̂ ) as the objective function, the graph of the objective
function, Φ(p1) = ln det[HM (p1)

−1H
′
] and it’s directional derivative w.r.t

p1 ∈ [0, 1] are shown in Figure 3.2.
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Figure 3.2: Objective function and its directional derivative for designs with
two treatment sequences.

Graphs in Figure 3.2 verify that the minimum of the objective function is
located at p1 = 0.177 and directional derivative is zero at p1 = 0.177. Using
Theorem 2, we conclude that for assumed values of parameters, design

ξ =

{
AB BA

0.177 0.823

}
is theD-optimal design when the objective function is V ar(τ̂ ).

3.4 Real Example
Consider the first example discussed in Chapter 2, where data is obtained from
the work environment experiment conducted at Booking.com (Pitchforth et al.,
2020). In recent years, many corporate offices and organizations have adopted
open office spaces over traditional cubical office spaces. Since there were no
previous studies to examine the effects of office designs in workspaces, Book-
ing.com conducted an experiment to assess different office spacing efficiency.
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3.4.1 Work Environment Experiment
For illustration purposes, consider the response commit count to illustrate
the optimal crossover design for the Poisson response. The commit count is
the number of commits submitted to the main git repository by each subject.
In the fitted model, we examine three primary predictors: area, wave, and
carryover. Here, area represents the direct treatment effect, wave denotes
the period effect, and carryover represents the effect of the treatment from
the previous period. To illustrate the local optimality approach, we assume
specific parameter values θ = (2.0, 0.3, 0.8, −0.1, −2.0, 0.40, −2.0, −1.0,
0.3,−1.0)′, which lead to non-uniform allocations using the log link function
and AR(1) correlation structure with α = 0.1.

According to Theorem 3.3.1, theD-optimal design, i.e., the optimal propor-
tions, can be obtained by solving the following system of equations instead of
performing constrained optimization:

trace
(
Xi

∗M (pr)
−1Xi

∗T ) = 10,

for i = 1, 2, 3, 4. The resulting D-optimal design is the same as the one ob-
tained through constrained optimization, indicating that the design is given
by:

ξ =

{
BADC CDAB DBCA ACBD

0.2375 0.2894 0.2246 0.2485

}
is theD-optimal design when the objective function is V ar(θ̂).

Similarly, according to Theorem 3.3.2, for the objective function V ar(τ̂ ),
theD-optimal design can be obtained by solving the following system of equa-
tions:

trace
{[

M(pr)
−1H ′

(
HM (pr)

−1H
′
)−1

HM (pr)
−1

]
(Xi

∗)T (Xi
∗)

}
= 3,

for i = 1, 2, 3, 4.Again, the resultingD-optimal design is the same as the one
obtained through constrained optimization, indicating that the design is given
by:

ξ =

{
BADC CDAB DBCA ACBD

0.2900 0.2963 0.1734 0.2403

}
is theD-optimal design.

Remark: In Chapter 1, we study the effect of misspecification of working cor-
relation structures on optimal design. We calculate optimal designs under two
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choices of unknown parameters for a misspecified working correlation struc-
ture. Then we calculate relativeD-efficiency under two parameter choices. The
relativeD-efficiency under two parameter choices suggests that the effect of vari-
ance misspecification on the local optimal designs is minimal. We also study the
performance of proposed locally optimal designs via a sensitivity study in terms
of the relative loss of efficiency for choosing assumed parameter values instead
of true parameter values. The relative loss of efficiency increases as we move
away from true parameter values. However, Figure 1.9 in Chapter 1 suggest that
this loss of efficiency does not go beyond 2%. We also calculate the optimal
designs with all 24 sequences, by considering AR (1) correlation structure and
different values of α. We observe that in the case of non-uniform allocations,
the optimal design has more zeros than non-zero proportions; and these allo-
cations do not vary a lot as α changes, particularly for the sequences where we
have zero allocations.

3.4.2 Dairy Dietary Experiment
In the introduction section of this chapter, we provided a brief overview of a
dairy dietary experiment that aimed to investigate the impact of various dietary
starch levels on milk production in cows. The experiment followed a four-
period four-treatment trial design, as first proposed by (Kenward & Jones, 1992).
To administer the order in which diets were received by cows, a Latin square
design with four treatment sequences was employed.

In this specific example, the researchers obtained binary responses from a
four-period crossover trial. They allocated four treatment sequences to a group
of eighty different subjects across the four periods. At the end of each period,
the efficacy measurement of each subject was recorded as success or failure, de-
pending on whether a diet was effective or not, resulting in a joint outcome
at the end of the trial. The dataset contained the four pre-determined treat-
ment sequencesΩ = ABCD,BDAC,CADB,DCBA along with the joint
outcomes of the four different periods for each subject following a specific treat-
ment sequence. The Latin square design used in the above experiment is an
example of k = 4, p = 4. To illustrate the local optimality approach, we as-
sume specific parameter values θ = (−2, 0.25, 0, 0.75, 1, 5,−1.5,−3.5, 2.75,
0.75)′, which lead to non-uniform allocations with the logit link function and
AR(1) correlation structure with α = 0.1.

According to Theorem 3.3.1, the D-optimal design, i.e., optimal propor-
tions, can be obtained by solving the following system of equations instead of
performing constrained optimization:
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trace
(
Xi

∗M (pr)
−1Xi

∗T ) = 10,

for i = 1, 2, 3, 4. The resulting D-optimal design is the same as the one ob-
tained through constrained optimization, indicating that the design given by:

ξ =

{
ABCD BDAC CADB DCBA

0.3540 0.2108 0.2726 0.1626

}
is theD-optimal design when objective function is V ar(θ̂).

Similarly, according to Theorem 3.3.2, for the objective function V ar(τ̂ ),
theD-optimal design can be obtained by solving the following system of equa-
tions:

trace
{[

M(pr)
−1H ′

(
HM (pr)

−1H
′
)−1

HM (pr)
−1

]
(Xi

∗)T (Xi
∗)

}
= 3,

for i = 1, 2, 3, 4.Again, the obtainedD-optimal design is the same as the one
obtained through constrained optimization, indicating that the design given by

ξ =

{
ABCD BDAC CADB DCBA

0.1725 0.2482 0.2225 0.3586

}
is theD-optimal design.

3.5 Discussion
In many experiments in real life, uniform designs are typically used. Uniform
designs are optimal in the case of a linear model i.e., when the response is nor-
mally distributed. However, in situations where responses are non-normal,
the obtained optimal proportions are not necessarily uniform. In this thesis,
we derive an expression for the general equivalence theorem to check for the
optimality of identified locally D-optimal crossover designs for GLMs. The
equivalence theorem provides us with a system of equations that can calculate
optimal proportions without performing constrained optimization of the ob-
jective function. We derive two different versions of the general equivalence
theorem, one with the objective function V ar(θ̂) and the other with the ob-
jective function V ar(τ̂ ). We illustrate the application of these equivalence
theorems on two real-life examples and obtain the same set of optimal propor-
tions by solving the system of equations as obtained by performing constrained
optimization.
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Chapter 4

Overview: Computer
Experiments

4.1 Surrogates
A surrogate acts as a stand-in for something real. In statistics, predictions made
by a fitted model can serve as a substitute for the actual process that generates the
data. If the model is flexible, properly regularized, trained on sufficient data, and
fitted reliably, this surrogate can be highly useful. Since collecting real data can
be expensive or even impossible in some cases, due to cost, feasibility, or ethical
issues, a surrogate offers a more affordable and practical way to study patterns
and explore hypothetical scenarios. Surrogate models differ from traditional
statistical models in their main purpose. While typical models are often used
for interpretation, identifying causal relationships, or estimating parameters,
surrogates are more focused on accurately and practically replicating system
behavior. Still, this comparison simplifies a more complex distinction.

The concept of surrogate modeling originated in fields like physics, applied
mathematics, and engineering, where mathematical models using numerical
solvers have long been standard practice. As these models grew in complex-
ity and became more resource-intensive to run, practitioners began turning to
meta-models based on a limited number of simulations. These efforts often
involved collaboration with statisticians or used approaches similar to those
found in statistics. The data generated from expensive computer simulations
were used to fit flexible models that could stand in for the simulations themselves.
The reasons for using these models varied, from cutting costs or reducing com-
putational burden to dealing with limitations like expired software licenses or
unavailable computing resources. These fitted meta-models came to be known
as surrogates or emulators, terms that are frequently used interchangeably. Es-
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sentially, a surrogate is meant to replicate the behavior of the original numerical
solver. The entire process of designing, running, and fitting such models is
referred to as a computer experiment.

A computer experiment is similar to a traditional statistical experiment,
with the key difference being that the data come from computer simulations in-
stead of real-world measurements, field studies, or surveys. Surrogate modeling
involves applying statistical methods to the results of these computer experi-
ments. Since simulations are often less costly than collecting physical data, they
can serve as a practical alternative or a preliminary step. Even though simula-
tions can sometimes be just as expensive, they’re often preferred because the
computational setup is more controlled and better understood. For instance,
many numerical solvers are deterministic, while real-world data collection typ-
ically involves noise and measurement errors. Historically, the presence or ab-
sence of noise created a divide between the design and modeling of surrogates
and broader statistical approaches.

The gap between surrogate modeling and traditional statistical methods
is steadily closing, not just because experimentation is evolving (which it is),
but largely due to progress in machine learning. A key example is the Gaussian
Process (GP) regression model, originally adapted from the kriging method
in geostatistics from the 1960s. GPs have become a standard surrogate model,
particularly valuable in settings where prediction is the main goal. Machine
learning researchers have shown that GPs are highly effective across a range of
tasks, including regression, classification, active learning, reinforcement learn-
ing, optimization, and latent variable modeling. They’ve also created accessi-
ble software tools and libraries, making these methods easier for non-experts,
especially in tech, to adopt. We will discuss GP surrogates in more detail in
Chapter 6. For example, retail brands like Amazon and Nike use surrogate
models to personalize their platform and increase user engagement, while Uber
applies surrogates trained on traffic simulations to dynamically route shared
rides, improving efficiency and reducing wait times.

Around the same time, computer simulation began to gain momentum as
a serious tool for scientific investigation. Researchers in fields like mathematical
biology and economics had pushed traditional, closed-form, equilibrium-based
models as far as they could go. Like physicists and engineers before them, they
turned to simulation to explore more complex, dynamic systems. However,
their simulations were often different in nature. Instead of relying on deter-
ministic solvers like finite element methods or Navier–Stokes equations, these
researchers developed stochastic simulations and agent-based models to study
things like predator-prey interactions, disease transmission, and resource man-
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agement in areas like healthcare and economics. This shift was fueled by massive
growth in computing power, better software tools, and improved STEM educa-
tion at earlier stages. Together, these changes led to a revival in simulation-based
science. While we’re still learning how to best model these complex simulation
experiments, one thing is clear: the line between a surrogate model and a tradi-
tional statistical model has nearly disappeared.

When working with real-world data, like from a past epidemic, further ex-
perimentation is often limited to simulations and mathematical modeling. You
can’t ethically or practically infect a community with something like Ebola just
to observe the outcome. Instead, simulations that model how virtual agents
spread disease are run, and surrogates are built from these costly, complex runs.
These surrogates can then be calibrated using limited real data. Getting mean-
ingful insights from this process relies heavily on good surrogate modeling and
experimental design. Traditional statistical methods aren’t much help here.
Concepts like population or causality are less relevant, causal relationships are
built directly into the simulation itself. What matters more is whether the sur-
rogate provides reliable, flexible predictions. That involves more than just repli-
cating the simulated dynamics; it means creating models that can be fit with
minimal intervention, yet still offer robust diagnostics, sensitivity analysis, and
tools for optimization and refinement, either automatically or with expert guid-
ance. All of this must also be computationally efficient; a surrogate model that’s
more expensive than the original simulation defeats the purpose. Efficiency and
practicality are key to effective meta-modeling.

4.2 Review: Space-Filling and Orthogonal De-
signs

Many industries are shifting toward using computer simulations to model prod-
ucts and processes instead of relying entirely on physical experimentation. While
this approach offers efficiency and cost savings, it raises a legitimate concern:
if the computer model does not accurately mirror the real-world system, the
outcomes it produces could be significantly off-target. Despite this limitation,
calibrating a computer model with a small number of physical experiments is
often far more practical than building a statistical model purely from experimen-
tal data. When appropriately calibrated, a computer model can offer superior
predictive performance, as it integrates the physical principles governing the
system (Joseph & Melkote, 2009; Kennedy & O’Hagan, 2001). Such models
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are especially useful for guiding early-stage prototyping and design, enabling
quicker optimization of the physical system with fewer experimental trials.

To improve the realism and accuracy of computer models, the underlying
mathematical representations are becoming increasingly complex. These mod-
els often involve systems of partial differential equations that require advanced
numerical methods, such as finite element analysis, for their solution. As a
result, running such simulations can be computationally expensive and time-
intensive, making it challenging to explore and optimize the model efficiently.
This is where experimental design and statistical modeling techniques can play
a critical role, helping to streamline the process and reduce computational bur-
den.

4.2.1 Space Filling Designs
The deterministic nature of computer experiments marks a significant depar-
ture from traditional experimental design practices used in physical experiments.
For instance, replication, randomization, and blocking, cornerstones of phys-
ical experimentation, are generally unnecessary in computer experiments (see
(C. F. J. Wu, 2015)). Additionally, the absence of random error allows for ex-
ploration across a much broader experimental region than would typically be
feasible in physical settings. Another advantage is that all input factors can be
easily varied, even those with many levels, which is often impractical in physi-
cal experiments. These distinctions, however, introduce unique challenges for
experimental design and analysis in computer experiments (Sacks et al., 1989).
Standard linear regression models, commonly applied in physical experiments,
are less appealing here because residuals, used to assess model fit, are irrelevant
in a deterministic setting. Furthermore, the expansive experimental region in-
creases the likelihood of complex, nonlinear behavior, rendering simple polyno-
mial models insufficient. As a result, interpolation-based methods like kriging
are preferred, as they can effectively capture intricate nonlinear surfaces (Santner
et al., 2003). To support such modeling, experimental designs must be carefully
constructed to extract the most information possible about the underlying re-
sponse surface.

In physical experiments, the design process typically begins by selecting a
few discrete levels for each factor and arranging them using a factorial structure
to accommodate a fixed number of experimental runs (C. J. Wu & Hamada,
2011). However, in computer experiments, changing the levels of input factors
incurs no additional cost, which opens the door to a completely different design
strategy. Rather than focusing on a limited set of levels, the goal shifts to intel-
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ligently distributing design points throughout the entire experimental region.
This gives rise to the concept of space-filling designs. Simply put, a space-filling
design aims to spread points evenly across the design space, minimizing gaps
and ensuring that no region is left unexplored.

A natural and intuitive strategy for designing computer experiments is to
place the design points so that they thoroughly cover the experimental region.
That is, for any location within the region, there should be a nearby design
point. To formalize this idea, suppose there are p factors and let X represent
the experimental region. In most cases, this region can be rescaled to the unit
hypercube, X = [0, 1]p, which simplifies both the design and analysis of the
experiment. LetD = {x1, . . . ,xn} denote a set of design points, where each
xi lies within the unit hypercube [0, 1]p. For any arbitrary point x in this space,
its distance to the nearest design point is defined as mini d(x,xi), where the
distance function is given by

d(u,v) =

(
p∑

j=1

|uj − vj|s
)1/s

.

The parameter s determines the metric: s = 1 gives the Manhattan (rectangu-
lar) distance, and s = 2 gives the Euclidean distance. The point in the exper-
imental space that is farthest from all design points represents the worst-case
location in terms of coverage. The corresponding distance to the nearest design
point is expressed as maxx∈[0,1]p mini d(x,xi). To ensure a well-distributed
design, we aim to minimize this worst-case distance. This leads to the following
optimization problem:

min
D

max
x∈X

min
i
d(x,xi) (4.1)

which defines the minimax distance design (Johnson et al., 1990) a widely
used criterion for constructing space-filling designs.

Since computer experiments are deterministic and contain no measurement
error, the information obtained from two nearby points is often redundant.
This insight motivates an alternative strategy for achieving space-filling designs:
placing design points as far apart from each other as possible. To formalize
this idea, we compute the minimum distance among all pairs of design points
mini ̸=j d(xi,xj). A space-filling design can then be obtained by maximizing
this minimum distance:

max
D

min
i ̸=j

d(xi,xj). (4.2)
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This approach is known as the maximin distance design (Johnson et al.,
1990). Compared to minimax distance designs, maximin designs are computa-
tionally simpler to construct, as they require only the pairwise distances among
the design points rather than distances across the entire experimental region.

One limitation of minimax and maximin distance designs is that they tend
to perform poorly when projected onto lower-dimensional subspaces. For in-
stance, projecting a minimax design with seven points onto the x1 axis might
result in only three distinct values, while the same projection of a maximin de-
sign might yield just four. This is problematic when a factor like x2 has little to
no effect on the response, as the extra runs corresponding to repeated x1 values
offer no additional information. This inefficiency is especially concerning in
light of the effect sparsity principle, which suggests that in most systems, only
a few of the many input factors are truly influential. As a result, it is advanta-
geous in computer experiments to use designs that avoid replicating values in
lower-dimensional projections. One effective solution to this problem is the
Latin hypercube design (McKay et al., 1979), which ensures that the projections
along each factor span the experimental region more uniformly.

To construct a Latin hypercube design (LHD) with n runs, the range of
each input factor is divided inton equally spaced intervals. A single value, often
the midpoint, is sampled from each interval, ensuring that each factor level
appears exactly once in the design. As a result, when projected onto any single
factor, the design consists of n unique levels. This makes LHDs particularly
suitable when only a few factors significantly influence the response. However,
not all LHDs are equally effective. For example, simply placing points along the
diagonal of the grid yields a valid LHD, but one that lacks desirable space-filling
properties. To address this, (Morris & Mitchell, 1995a) proposed the maximin
Latin hypercube design (MmLHD), which maximizes the minimum distance
between any pair of design points. They introduced the following criterion to
evaluate and search for high-quality MmLHDs:

min
D

{
n−1∑
i=1

n∑
j=i+1

1

dk(xi,xj)

}1/k

, (4.3)

where d(xi,xj) is the distance between design points and k is a large positive
constant. Minimizing this objective encourages large pairwise distances and
improves the overall space-filling nature of the design. It is easy to see that as
k →∞ this criterion becomes the maximin distance criterion in 4.2.

(Morris & Mitchell, 1995a) recommended selecting the smallest value of k
that still yields a maximin Latin hypercube design. This strategy helps reduce
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the number of point pairs with the minimum distance, a count referred to as the
index of the design. Designs with a lower index are typically more desirable due
to better spacing among points. Beyond MmLHDs, several alternative space-
filling LHDs have been proposed using different optimality criteria. These
include orthogonal array–based LHDs (Owen, 1994; Tang, 1993), orthogonal
LHDs (Ye, 1998), uniform LHDs (Jin et al., 2005), orthogonal-maximin LHDs
(Joseph & Hung, 2008), and generalized LHDs (Dette & Pepelyshev, 2010),
among others. Among these, the MmLHD remains one of the most widely
used designs in practice due to its simplicity and ease of implementation in
software.

In addition to Latin hypercube–based designs, other types of designs have
been developed for computer experiments. These include uniform designs
(Fang, 1980), maximum entropy designs (Shewry & Wynn, 1987), integrated
mean squared error designs (Sacks et al., 1989), nested space-filling designs (Qian
et al., 2009), sliced space-filling designs (Qian & Wu, 2009), multilayer designs
(Ba & Joseph, 2011), minimum energy designs (Joseph, Dasgupta, et al., 2015),
and bridge designs (Jones et al., 2015). Further information can be found in the
comprehensive texts by (Santner et al., 2003) and (Fang et al., 2006). In the next
section, we introduce a design known as the maximum projection (MaxPro)
design, developed by (Joseph, Gul, & Ba, 2015). We use the MaxPro criterion
to obtain a space-filling design with our algorithm.

4.2.2 Maximum Projection Design
(Joseph, Gul, & Ba, 2015) introduced the maximum projection design (MaxPro)
to ensure desirable projection properties across all subspaces of the factors. The
method is based on a weighted distance function:

d(xi,xj;θ) =

(
p∑

l=1

θl|xil − xjl|s
)1/s

,

where θ = (θ1, . . . , θp), with
∑p

l=1 θl = 1 and θl ≥ 0. The weights θl rep-
resent the relative importance of the lth factor. To focus on a sub-dimensional
space, one sets θl = 1 for the relevant factors and 0 otherwise.

To achieve good projections in all subspaces, a prior distribution p(θ) is
assigned to the weight vector, and the reciprocal distance criterion is averaged
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over this distribution:

min
D

n−1∑
i=1

n∑
j=i+1

∫
1

dk(xi,xj;θ)
p(θ) dθ. (4.4)

While this formulation is generally difficult to evaluate and optimize, it simpli-
fies considerably under a uniform prior on θ and with k = sp, yielding the
criterion:

min
D

n−1∑
i=1

n∑
j=i+1

1∏p
l=1 |xil − xjl|s

. (4.5)

Typically, the exponent s is set to 2. This simplified criterion is computation-
ally convenient and effective, as it enforces the Latin hypercube structure by
penalizing repeated coordinates through the product term.

The resulting designs exhibit good space-filling properties along with favor-
able projections. A key difference between these designs and MmLHDs is that
the factor levels in MaxPro designs are not equally spaced; instead, they tend
to cluster toward the boundaries of the design space. Whether this is advan-
tageous depends on the goal of the computer experiment. For instance, if the
aim is prediction, which is the common case, then concentrating points near
the boundaries is beneficial (Dette & Pepelyshev, 2010). On the other hand, if
the purpose is numerical integration through sample averages, then uniform
distribution of the design points is preferable. As such, MaxPro designs are
well-suited for most computer experiments, especially those focused on predic-
tion. When integration is the primary objective, the uniformity of MaxPro
designs can be enhanced by imposing equally spaced level constraints, called
MaxProLHD.

4.2.3 Orthogonal Design
Latin Hypercube Sampling (LHS) possesses several strengths:

(a) it is computationally efficient to construct;

(b) it scales well with a large number of design points and input dimensions;
and

(c) it typically results in a sample mean with lower variance compared to
simple random sampling.

Nevertheless, LHS does not attain the theoretically minimal variance for the
sample mean. To enhance its performance, various researchers have sought
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modifications aimed at further reducing variance. Notably, (Owen, 1994) and
(Tang, 1993) independently explored the use of randomized orthogonal arrays
to achieve this goal.

An orthogonal array (OA) of strength t, with n runs and s factors, is de-
noted by OA(n, s, q, r). It can be viewed as a fractional factorial design (FFD)
in which every projection onto any m ≤ r factors yields a complete factorial
design. Orthogonal arrays of strength two are widely used for experiment plan-
ning across numerous domains and are frequently represented in the form of
orthogonal design tables.

(Tang, 1993) proposed to construct orthogonal array-based LHDs (OAL-
HDs) from existing orthogonal arrays (OAs). The key idea of this construc-
tion is to deterministically replace OA entries with a random permutation of
LHD elements. OALHDs inherit the properties of OAs and tend to have bet-
ter space-filling properties compared to random LHDs. Note that the design
sizes of OALHDs rely on the existence of corresponding OAs. Search algo-
rithms should be used to generate optimal LHDs when no construction meth-
ods are available. (Morris & Mitchell, 1995a) proposed a simulated annealing
(SA) algorithm, which randomly exchanges elements to seek improvements
over iterations to identify the global best LHDs. Following the work of (Morris
& Mitchell, 1995a) and (Leary et al., 2003; Tang, 1993) proposed to construct
orthogonal array-based LHDs (OALHDs) using the SA algorithm. They pro-
posed to exchange elements that share the same original OA entry randomly.
(Joseph & Hung, 2008) proposed a multi-objective criterion and developed a
modified SA algorithm to generate optimal LHDs having good space-filling
properties as well as orthogonality. This algorithm can lead to many good de-
signs, but it is often computationally heavy, since it calculates all average pairwise
correlations and row-wise distances at each iteration.

Orthogonal LHDs (OLHDs) are another type of optimal LHDs which
aim to minimize the correlations between factors (Georgiou, 2009; Steinberg
& Lin, 2006; Sun & Tang, 2017). Two correlation-based criteria are often used
to measure designs’ orthogonality: the average absolute correlation criterion
and the maximum absolute correlation criterion (Georgiou, 2009), which are
defined as

ρ2 =
2
∑k−1

i=1

∑k
j=i+1 ρ

2
ij

k(k − 1)
and max ρ2 = max

i,j
ρ2ij, (4.6)
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where ρ2ij is the correlation between the ith and jth columns in the design
matrix. Orthogonal designs may not exist for all sizes. In practice, designs with
small ρ2 or max(ρ2) are preferred.

In literature, construction methods of OLHDs are widely explored. Specif-
ically, (Ye, 1998) proposed a method to construct OLHDs with run sizes n =

2m + 1 and factor sizes k = 2m − 2, where m is any integer no less than 2.
(Cioppa & Lucas, 2007) extended the work of (Ye, 1998) to accommodate more
factors. (Steinberg & Lin, 2006) developed a method based on factorial designs
with group rotations forn = 22

m and k = 2mt, wherem is any positive integer
and t is the number of rotation groups. (Sun et al., 2010) improved their earlier
work (Sun et al., 2009) to construct OLHDs with even more flexible run sizes:
n = r2c+1 or n = r2c+1 + 1 and k = 2c, where c and r are any two positive
integers. (J. Yang & Liu, 2012) proposed to use generalized orthogonal designs
to construct OLHDs and nearly orthogonal LHDs (NOLHDs) withn = 2r+1

or n = 2r+1 + 1 and k = 2r, where r is any positive integer. (Georgiou &
Efthimiou, 2014) proposed to take advantage of OAs and their full fold-overs
for OLHDs with n = 2ak runs and k factors, where k is the size of the or-
thogonal matrix and a is any positive integer. (Butler, 2001) implemented the
Williams transformation (E. Williams, 1949) to construct OLHDs with odd
prime run-size n and factor-size k ≤ n− 1. (Lin et al., 2009) proposed to cou-
ple OLHDs or NOLHDs with OAs to accommodate large numbers of factors
with fewer runs: n2 runs and 2fp factors, where n and p are design sizes of the
OLHDs or NOLHDs and 2f is the number of columns in the coupled OA.
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Chapter 5

Lasso Surrogate for
Complex Computer

Experiments

5.1 Overview
As discussed in Chapter 4, computer experiments involve using complex sim-
ulations based on mathematical models derived from engineering or physical
principles to replicate real-world phenomena. Because these simulations pro-
duce deterministic results, repeating the same input conditions (replicates) is
unnecessary and should be avoided. Furthermore, following the effect sparsity
principle, which states that only a small number of input variables typically
have a significant impact, it is important to design experiments that minimize
replicates, even when considering subsets of the input factors.

Latin hypercube designs (LHDs) (McKay et al., 1979) are widely used in
computer experiments because they provide stratified sampling along each in-
put dimension. However, LHDs generated randomly can be suboptimal. One
issue is that their columns may exhibit high correlations, making it difficult
to separate the effects of different factors. Another concern is that the design
points (rows) might not be well distributed across the input space, limiting
the design’s ability to thoroughly explore the experimental region. To address
these issues, as discussed in Chapter 4 various criteria have been proposed in the
literature to enhance both the space-filling and correlation properties of LHDs.

Most space-filling designs emphasize coverage in the full-dimensional input
space but may exhibit poor projection behavior onto lower-dimensional subsets
(Joseph, Gul, & Ba, 2015). In computer experiments, where often only a small
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subset of factors significantly influences the output, this can be problematic. To
address this, maximum projection (MaxPro) LHDs are commonly used, as they
enhance space-filling properties across all possible subsets of factors. Similar to
orthogonal space-filling LHDs, which are suitable when all factors are active,
orthogonal-MaxPro LHDs are more appropriate when only a few factors drive
the system’s behavior. Recently, (Wang et al., 2024) proposed an algorithm for
an efficient construction of one-shot orthogonal-MaxPro LHDs.

A widely adopted strategy in statistical modeling is the use of regulariza-
tion penalties during model fitting (Hoerl & Kennard, 1970). By minimizing a
combination of empirical error and a penalty term, regularization aims to pro-
duce models that both fit the data well and avoid excessive complexity, thereby
reducing variance. A notable example is the Lasso method (Tibshirani, 1996),
which introduces an l1-penalty to encourage sparsity in the coefficients. This
often results in models with sparse solutions, enhancing interpretability, a key
advantage in scientific and social science applications. In contrast, traditional
model selection methods typically rely on computationally intensive combina-
torial searches to identify sparse models. Orthogonal (or nearly orthogonal)
LHDs, where the correlations between columns are zero (close to zero), are
particularly effective for parameter estimation. Their structure allows for inde-
pendent estimation of linear main effects, as the absence of correlation prevents
confounding among input variables. In fact, orthogonal designs support consis-
tent model selection when using methods like Lasso. Conversely, space-filling
designs are valuable for thoroughly exploring the response surface, making it
easier to identify significant factors.

The remainder of this chapter is organized as follows: in Section 5.2, we first
introduce a new criterion, the weighted MaxPro criterion, designed to construct
space-filling designs concerning significant factors. Building on this, in Sec-
tion 5.3 we propose a multi-objective criterion, the orthogonal-weighted Max-
Pro criterion, which integrates both correlation and weighted MaxPro metrics
to enhance design quality for important variables. To ensure that the weighted
MaxPro criterion is well-defined, with a clear interpretation of weights and
a bounded range from 0 to 1, we derive theoretical bounds specific to LHDs.
Next, in Section 5.4 we present a sequential design strategy using active learning,
resulting in Sequential Orthogonal Weighted MaxPro designs. To efficiently se-
lect the next design point, we develop a modified simulated annealing algorithm
that is significantly faster than existing global search methods. Numerical results
demonstrated in Section 5.5, show that our proposed algorithm efficiently gen-
erates Sequential Orthogonal Weighted MaxPro, which outperforms existing
one-shot orthogonal LHDs and MaxPro designs in terms of both orthogonal-
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ity and space-filling properties, as well as in terms of identifying significant and
weakly significant factors.

5.2 Weighted MaxPro Criterion
Let p be the dimension of the input space, then consider p binary random
variables corresponding to each input parameter as follows:

θi =

{
1 with probabilitywi

0 with probability 1− wi

, where i = 1, . . . , p andwi is the inclusion probability for input parameter i,
andwi = g(ci) where ci is the coefficient estimate obtained from Lasso regres-
sion. The random variables θ1, . . . , θp are assumed to be independent but not
identically distributed. The joint distribution of the vectorθ = (θ1, θ2, . . . , θp)

is given by

P (θ) =

p∏
i=1

wθi
i (1− wi)

1−θi . (5.1)

For instance, if θ∗ = (1, 0, 1, 0, . . . , 0), then the corresponding joint proba-
bility is P (θ∗) = w1(1− w2)w3(1− w4) · · · (1− wp).

For illustration, consider the p = 3 case. Then, the vector θ can take values
in the set {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)},
representing all non-zero combinations of three binary indicators. When a
design is projected onto a subspace, the distances between the points are calcu-
lated with respect to the factors that define the subspace. Therefore, define a
weighted Euclidean distance between the points xi and xj with weights θ, as

dk(xi, xj;θ) =

{
p∑

l=1

θl(xil − xjl)2
}k/2

.

, where θl = 1 for all factors defining the subspace and θl = 0 for the remaining
factors. It makes sense to use weights between 0 and 1, which can be viewed
as measures of importance for the factors, but we use 0 to denote insignificant
factors and 1 to denote significant factors. By setting k = 2p, the expecta-
tion of the weighted reciprocal distance function ϕk(D;θ), as introduced in
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Equation 4.4, takes the following form:

E {ϕk(D;θ)} =
n−1∑
i=1

n∑
j=i+1

{
w1(1− w2)(1− w3)

((xi1 − xj1)2)p
+

(1− w1)w2(1− w3)

((xi2 − xj2)2)p

+
(1− w1)(1− w2)w3

((xi3 − xj3)2)p
+

w1w2(1− w3)

((xi1 − xj1)2 + (xi2 − xj2)2)p

+ · · ·+ w1w2w3(∑3
l=1(xil − xjl)2

)p
}
.

Each term corresponds to a particular realization of θ, weighted by the prod-
uct of the corresponding inclusion probabilities and their complements. This
formulation provides an interpretable, probabilistically weighted criterion for
space-filling based on the influence of input parameters.

For a general input dimension p, the expected value of the weighted recip-
rocal distance function ϕk(D;θ) can be expressed as

Theorem 3 If k = 2p, then under the prior in 5.1

E {ϕk(D;θ)} =
n−1∑
i=1

n∑
j=i+1

{
p∑

m=1

(1− w1) · · ·wm · · · (1− wp)

((xim − xjm)2)p

+
∑

1≤m<l≤p

(1− w1) · · ·wmwl · · · (1− wp)

((xim − xjm)2 + (xil − xjl)2)p

+ · · ·+
∏p

m=1wm

(
∑p

m=1(xim − xjm)2)
p

}
.

This formulation enumerates all non-zero combinations of active input
variables θ, each weighted according to its joint probability. Based on this, we
propose the following new criterion for Weighted MaxPro Designs:

min
D

ψp(D) =

{
1(
n
2

)E {ϕk(D;θ)}

}1/p

. (5.2)

This criterion balances space-filling properties across all possible projections,
giving greater weight to projections aligned with more influential input variables
as indicated by their inclusion probabilities.

The proposed criterion ψp(D) satisfies several important properties that
align with the principles of LHDs. First, the criterion is non-negative, i.e.,
ψp(D) ≥ 0 for any design D. Second, if for any coordinate l, there exists a
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pair of points i ̸= j such that xil = xjl, then the criterion evaluates to infinity,
i.e., ψp(D) =∞. This implies that to avoid singularities, the design must have
distinct values in each factor for all design points. Consequently, any design
that minimizes ψp(D) must have n distinct levels for each factor. Therefore,
the Latin hypercube property is inherently enforced by the criterion, without
the need for additional constraints.

5.3 Orthogonal Weighted MaxPro Criterion
The objective is to identify a design D that simultaneously minimizes both
the squared correlation measure ρ2, defined in equation 4.6, and the weighted
space-filling criterionψp(D), defined in equation 5.2. The straightforward idea
is to adopt a weighted average τ1ρ2 + τ2ψp, where τ1 and τ2 are some weights.
However, it is important to note that ρ2 ∈ [0, 1], while the value of ψp(D)

is not bounded above and can exceed 1. To enable a meaningful trade-off be-
tween these two objectives,ψp(D) must be rescaled to the unit interval. This is
achieved by identifying a lower bound ψp,L and an upper bound ψp,U for ψp,
and then normalizing it accordingly.

Theorem 4 For any LHD (n, p), we have 0 < ψp ≤ ψp,U with,

ψp,U =

{(
n

2

)−1 n−1∑
i=1

n− i
i2p

}1/p

.

Theorem 4 is the extension of Theorem 1 in (Wang et al., 2024) for the Weighted
Max-Pro criterion. The upper boundψp,U is achieved by the worst-case scenario
LHD (n, p):

Dworst =


0 0 · · · 0

1 1 · · · 1
...

...
...

n− 1 n− 1 · · · n− 1


and inclusion probability vector w = (1, 0, . . . , 0), since only one factor is
significant. This design is worse under both space-filling criteria and orthogo-
nal criteria, which have all points on a straight line and a correlation of 1 be-
tween any two columns. For simulation purposes, we consider a loose lower
boundψp,L = 0, since calculating the strict lower bound would require certain
distance constraints on the design points, which sequential design might not
satisfy.
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The resulting composite criterion is defined as

Ψp = τ1ρ
2 + τ2

{
ψp − ψp,L

ψp,U − ψp,L

}
, (5.3)

where τ1andτ2 ∈ (0, 1) are some user-specified weights controlling the trade-
off between orthogonality and space-filling. A design that minimizes the com-
bined criterion Ψp is referred to as an Orthogonal-Weighted MaxPro Design.

5.4 Sequential Variable Selection Algorithm
(Morris & Mitchell, 1995b) developed a simulated annealing algorithm, referred
to as MMA, to optimize theϕk criterion. The algorithm starts from a randomly
selected LHD and iteratively explores the design space by generating perturbed
designs. Each perturbationXtry is created by randomly choosing a column of
the current designX and interchanging two randomly selected entries within
that column. If the perturbed design improves the value of ϕk, it is accepted as
the new current design. The modification of the above algorithm was proposed
by (Joseph & Hung, 2008).

In the original algorithm, a column and two elements within that column
are chosen randomly to generate a perturbation. But to make better improve-
ments, especially for our multi-objective purpose, it’s better to choose them
more carefully. As the search progresses, some columns may already become al-
most uncorrelated. Then, perturbing such columns won’t help much. Instead,
it’s better to pick a column that is still highly correlated, because perturbing
it may help reduce correlation and improve the objective function. Similarly,
if a point is already far away from the others, there’s no need to perturb the
elements in that row. Instead, we should focus on points that are too close to
others. Perturbing such points could increase their distance from the rest and
thus improve the objective function. We propose a slightly modified version of
the above algorithm to fit an active learning, i.e., sequential framework.

The proposed algorithm begins with a randomly selected MaxPro LHD
consisting of ninitial runs. In each step of the active learning process, we ran-
domly select a new point xnew to add to the design, resulting in a new design
matrixX . To guide the search, we first compute a correlation measure for each
column l = 1, . . . , p, defined as

ρ2l =
1

p− 1

∑
j ̸=l

ρ2lj.
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We then identify the column l∗ that is most correlated with the others and per-
form a first perturbation by swapping the valuexnew,l∗ with a randomly selected
value. This gives a perturbed designXtry. If ρ2(Xtry) ≤ ρ2(X), we accept the
perturbation and update X . Next, to address the space-filling property, we
compute the distance-based criterion between the new point and each existing
point i = 1, . . . , n using the weighted MaxPro formulation:

ϕnew(X;θ) =

{
p∑

m=1

(1− w1) · · ·wm · · · (1− wp)

((xnew,m − xi,m)2)p

+
∑

1≤m<l≤p

(1− w1) · · ·wmwl · · · (1− wp)

((xnew,m − xi,m)2 + (xnew,l − xi,l)2)p

+ · · ·+
∏p

m=1wm

(
∑p

m=1(xnew,m − xi,m)2)p

}
.

We then identify the coordinate m∗ in the row closest to xnew (in that coordi-
nate) and perturb xnew,m∗ by swapping it with a random value. If this reduces
ϕnew(X;θ), we accept the perturbation. This modified xnew is then used as the
starting point in a simulated annealing algorithm to optimize the orthogonal-
weighted MaxPro criterion defined in Equation 5.3. In essence, the search for a
new design point is initialized in a region that is far from existing points and will
likely reduce the correlation between columns, resulting in a nearly orthogonal
space-filling design.

Algorithm: Pseudo-code for Orthogonal-Weighted MaxPro Design and
Variable Selection through Active Learning

• Define the number of factors p, initial design size ninitial, final design size
nfinal, number of active learning steps sim = nfinal − ninitial, annealing
temperature τ , and number of repetitionsM.

• Enumerate all 2p − 1 values of θ (excluding the null model).

• Define the Objective Function Ψp and the Simulation Function.

• Compute lower and upper bounds ψp,L and ψp,U for normalization.

for j = 1 toM

• Data: Start with initial designX of size ninitial and response vector Y .

for i = 1 to sim
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– Randomly generate a new point xnew and response ynew, then ap-
pend toX and Y .

– Fit an initial Lasso model to identify significant variables.

– Compute weights wi = g(ci), and evaluate p(θ) for each θ.

– Modified Simulated Annealing:

* Identify column b that is highly correlated with others. Per-
turb it:

X[last row, b]← runif(1)
* Identify row a that is closest to xnew in some dimension a1.

Perturb it:
X[last row, a1]← runif(1)

* Perform constrained optimization of Ψp using simulated an-
nealing, with initial starting point =X[last row, :].

– Fit the final Lasso model using the updated design.

– Store estimated coefficients and weight vector wi.

end for

• Store final coefficients, weights, and design matrix for repetition j.

end for

It is worth noting that the proposed exchange procedure can also be com-
bined with other stochastic optimization algorithms, such as the columnwise-
pairwise algorithm (Li & Wu, 1997; Ye et al., 2000), the threshold accepting
heuristic (Winker & Fang, 1998), or the stochastic evolutionary algorithm (Jin
et al., 2005).

5.5 Simulation Study
In this section, we benchmark our proposed method against several established
techniques. To ensure a fair comparison, all parameters of the simulated an-
nealing algorithm are set to the recommended values provided by (Morris &
Mitchell, 1995a). To illustrate the proposed method, consider a synthetic test
function incorporating a decreasing coefficient structure and four fake factors.
The function is defined as

f(x) = 0.2x1 +
0.2

2
x2 +

0.2

4
x3 +

0.2

8
x4

+
0.2

16
x5 +

0.2

32
x6 + higher-order interaction terms.
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This linear function is intentionally constructed to evaluate the sensitivity of
the algorithms. The coefficients decay geometrically, implying that variables
associated with smaller coefficients are less influential, though not entirely neg-
ligible. For this simulation, we consider p = 10 input factors, with the first six
having decreasing importance. The design begins with ninitial = 10 runs and is
sequentially augmented to a final size of nfinal = 40. Each scenario is replicated
M = 100 times to assess variability. To evaluate the ability of the design to
identify important factors, we use two different threshold values to determine
the significance of a factor based on its estimated Lasso coefficient. Any factor
with a coefficient estimate below the threshold is deemed insignificant in the
corresponding analysis.

Table 5.1 presents the discovery rates of each input factor under different de-
sign strategies and significance thresholds based on Lasso coefficient estimates.
The goal is to assess the ability of each method to correctly identify both strongly
active and weakly active features. A value of 1 indicates the feature was consis-
tently identified as active across all replications, while lower values reflect de-
creasing frequency of detection.

Table 5.1: Discovery rate of active and weakly active features under two threshold
levels.

Threshold Design x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Seq-W-Ortho-MaxPro 1 1 1 1 0.70 0.50 0.10 0.10 0.10 0.10
0.005 One Shot MaxPro 1 1 1 1 1 0.10 0.10 0.10 0.10 0.10

One Shot OLHD 1 1 1 1 1 0 0 0 0 0

Seq-W-Ortho-MaxPro 1 1 1 1 0.60 0.20 0 0 0 0
0.01 One Shot MaxPro 1 1 1 1 0.50 0 0 0 0 0

One Shot OLHD 1 1 1 1 0.04 0 0 0 0 0

The results indicate that all design methods consistently identify the most
significant variables (x1 to x4). However, the proposed sequential Weighted-
Orthogonal-MaxPro design shows a clear advantage in detecting weakly active
features such as x5 and x6, particularly under tighter threshold levels. In con-
trast, one-shot designs like OLHD tend to miss these subtle effects entirely,
while MaxPro captures them to a lesser extent. This highlights the strength of
the sequential approach in adaptively exploring variable importance.

Figure 5.1 illustrate the properties of a design generated by the proposed
sequential Weighted-Orthogonal MaxPro method. The correlation matrix con-
firms that the design is nearly orthogonal, a property that supports consistent
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variable selection when using Lasso-based methods. Additionally, the scatter
plot demonstrates that the design points are well-distributed throughout the
input space, avoiding concentration near the boundaries. This space-filling be-
havior ensures effective exploration of the response surface, particularly within
the interior of the domain, which is essential for building accurate surrogate
models.

Figure 5.1: Illustration of the proposed design’s nearly orthogonal (above) and
space-filling (below) properties.
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5.6 Discussion
In this chapter, we proposed a novel sequential design framework that con-
structs orthogonal space-filling designs tailored to the significant factors. Cen-
tral to our approach is a new variable selection method that integrates active
learning with Lasso regression and employs a weighted distance function to
guide the sequential selection of variables. To identify informative design points,
we formulated a multi-objective optimization strategy for generating high-quality
Sequential Weighted MaxPro Designs and Sequential Orthogonal-Weighted
MaxPro Designs. Although Lasso is used as the surrogate model in our im-
plementation, the framework is flexible and can readily accommodate other
surrogate models. Simulation results show that our sequential design performs
comparably to traditional one-shot designs in identifying significant factors,
while offering superior performance in detecting weakly active variables. The
resulting designs are nearly orthogonal, as reflected in their correlation struc-
ture, which contributes to the model selection consistency of Lasso. Addition-
ally, they are nearly space-filling and avoid boundary points, thus promoting
thorough exploration of the response surface within the interior of the input
space. These findings highlight the effectiveness of the proposed sequential de-
sign methodology in addressing the dual goals of factor screening and efficient
surrogate modeling.
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Chapter 6

Deep Gaussian Process
Surrogate for Complex
Computer Experiments

6.1 Overview
A computer experiment is a system of complex computer codes simulating a
physical process, where inputs are varied to observe different outputs. Com-
pared to a traditional laboratory experiment, this automation can reduce the
cost, time, and/or management expenses (see, for example (Gramacy, 2020)).
Computer experiments are often deterministic (specified inputs will always pro-
duce the same output), making the results more stable and less prone to random
errors than physical experiments. Researchers can adjust the code to systemati-
cally explore a wide range of inputs and generate outputs based on the objective
of the study. These computer experiments are instrumental in cases where a
physical experiment would be impossible to conduct, such as modeling a black
hole formation (Kidder et al., 2000).

As discussed in Chapter 4, computer experiments are often computation-
ally intensive, despite the recent development of modern computing technology.
To reduce the computational expenses, emulators (surrogate models) are used
to rapidly generate many outputs. Emulators also allow uncertainty quantifica-
tion, a quantitative characterization to determine how likely certain outcomes
are if some aspects of the system are not exactly known. The Gaussian Pro-
cess (GP) model is widely used as an emulator (Gramacy, 2020; Sacks et al.,
1989). The GP assumes all observations follow a multivariate normal distribu-
tion, characterized by a mean vector and a variance-covariance matrix. The GP
model would interpolate the observations, which is desirable for computer ex-
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periments having deterministic outputs. It also allows for accurate uncertainty
quantification for model outputs. By specifying different types of covariance
functions, researchers may further include prior knowledge about the shape of
the response surface.

The GP model has been applied to many computer experiments in chem-
istry, computational biology, robotics and others (Kruckow et al., 2018). As
an illustration, it has accurately simulated the collision dynamics of complex
molecules (Cui & Krems, 2015), the spread of COVID-19 (Velásquez & Lara,
2020), online heart rate prediction (Zhang et al., 2019) and autonomous learn-
ing in robots (Deisenroth et al., 2015). Data scientists at Microsoft introduced
a framework that enables application of GP models to data sets containing mil-
lions of data points (Hensman et al., 2013). (Ek et al., 2008) used a Bayesian
framework for tracking human body pose, as pictured in Figure 6.1. Instead of
using computationally expensive Bayesian techniques, an efficient GP model
can be used to take in a description of a human silhouette as input and identify
human pose as an output (Zhu & Fujimura, 2010). Another useful applica-
tion of the GP in Astronomy is modeling the collision of two black holes (D.
Williams et al., 2019). Researchers cannot have black holes at their disposal to
observe and experiment with, so computer experiments offer a viable alternative
to incorporate the scientific knowledge and simulate their formation and colli-
sions. Figure 6.2 illustrates that computer models and GP emulators are created
based on the known properties of black holes and the surrounding system of
space. They are compared to the naturally observed black hole movements to
assess the accuracy of the computer model (D. Williams et al., 2019). Another
interesting application of the GP is in car crash simulation to study the dam-
age to the car (Bayarri et al., 2009). Here, models are validated by comparing
simulation results with controlled physical crashes.

Figure 6.1: An example of a Bayesian framework for human pose tracking
Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292173/ (Zhu &

Fujimura, 2010)
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Figure 6.2: Computer simulation of two black holes colliding.
Source: https://www.black-holes.org/code/SpEC.html

The remainder of this chapter is organized as follows: in Section 6.2, we
systematically review the GP models. Specifically, we discuss the ordinary and
universal GP along with their model estimations and uncertainty quantification.
In Section 6.3, details of the fully-Bayesian Deep Gaussian Process (DGP) are
provided. In Section 6.4, the reference distribution variable selection (RDVS)
methodology is introduced in detail, and a variable selection criterion is pro-
posed. We finish the chapter with some concluding remarks in Section 6.5.

6.2 Shallow Gaussian Process
In this section, we aim to understand the GP as a flexible nonparametric re-
gression for surrogate modeling in computer experiments. The GP is widely
used in many statistical and probabilistic modeling enterprises. The GP is a
very generic term, and all it means is that any finite collection of realizations
is modeled as having a multivariate normal (MVN) distribution. That means
a finite collection of n observations can be completely characterized by their
mean vector µ and covariance matrix Σ.

Let y(xi) be the output which is assumed to be a deterministic real-valued
function of the p-dimensional variable xi = (xi1, . . . , xip)

T ∈ D ⊂ Rp, for
i = 1, 2, . . . , n. Let (Yx)x∈D be a square-integrable random field and y is a
realization of (Yx)x∈D. Let Xn = {x1, . . . ,xn} be the points where their re-
sponses have been observed, which is denoted by Yn = (y(x1), . . . , y(xn))

T .
The aim of GP is to optimally predict Yx by a linear combination of the obser-
vations Yn, for any x ∈ D.
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6.2.1 Model Formulation
Ordinary GP, a.k.a. ordinary Kriging, has the form

y(xi) = µ+ Z(xi), (6.1)

whereµ is the mean vector andZ(xi) is a GP such thatZ(xi) ∼ GP (0, σ2Σ).
In the above model,Z(xi) is GP with zero mean, and the covariance function
ϕ(·) = σ2Σ(·|θ),where θ = (θ1, . . . , θp)

T is the vector of unknown correla-
tion parameters with all θk > 0 (k = 1, . . . , p) and Σ is a stationary correla-
tion function that determines the correlation between inputs with parameters
θ. The mean of the GP controls the trend, whereas the correlation function
controls the smoothness of its sample paths. Power-exponential, Gaussian and
Matérn correlation functions are the most widely used ones in literature.

In the power-exponential correlation structure, the (i, j)th element in the
correlation matrix is defined as follows:

Σ (xi,xj | θ) =
p∏

k=1

exp
{
−θk |xik − xjk|lk

}
for all i, j, (6.2)

with two inputs xi = (xi1, . . . , xip)
T and xj = (xj1, . . . , xjp)

T and smooth-
ness parameters l1, . . . , lp which lie between 0 and 2, with 0 giving the most
rough results and 2 giving the most smooth. If we take lk = 2 for all k =

1, . . . , p then it results in the popular Gaussian correlation function:

Σ (xi,xj | θ) =
p∏

k=1

exp
{
−θk |xik − xjk|2

}
for all i, j. (6.3)

The correlation functions of Matérn family is given by:

Σ(h | θ) =
p∏

k=1

1

Γ(v)2v−1

(
2
√
v |hk|
θk

)v

Kv

(
2
√
v |hk|
θk

)
, (6.4)

where v > 0 is a smoothness parameter, Γ(·) is the Gamma function, and
Kv(·) is the modified Bessel function of order v. Two commonly used orders
are v = 3/2 and v = 5/2.

Different correlation functions mentioned above impose different charac-
teristics for function draws, allowing for different properties when modeling
computer models. For example, when using the power exponential function, all
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sample paths are infinitely differentiable when hk = 2. For the Matérn correla-
tion function, when we have p = 1, all sample paths are ⌈v⌉ − 1 differentiable.
Hence, v is viewed as a smoothness parameter.

In the literature, two important assumptions are often imposed on the ordi-
nary GP model to effectively analyze computer experiments. One assumption is
that the GP is separable (Doob & Doob, 1953), which means finite-dimensional
distributions can determine sample path properties of function draws, which
are usually infinite-dimensional. The second important assumption is that the
model is stationary. Consider {x1, . . . ,xn} ∈ D and any h ∈ R, then a GP
model is said to be stationary if the random vectors (Y (x1), . . . , Y (xn)) and
(Y (x1 + h), . . . , Y (xn + h)) follow the same distribution. This means that
both of these random vectors should have the same mean and covariance.

The second assumption is restrictive, and we may need more flexibility while
modeling computer experiments. One popular approach is to extend the above
ordinary GP model to incorporate a global trend function for the mean part.
This extended model is known as Universal Kriging, which has the form:

y(x) = µ(x) + Z(x), (6.5)

with µ(x) = f(x)Tβ =
∑m

s=1 βsfs(x), where f is a m-dimensional known
function and β = (β1, . . . , βm)

T is a vector of unknown parameters. The
idea is to rely on functions in f(x) to detrend the process and then model any
residual variation as a zero-mean stationary GP. Taking the constant mean
f(x) ≡ 1 results in the ordinary GP model discussed above. The stationary
correlation functions discussed above in Equations (6.2) and (6.4) can also be
applied here, that is,

Cov (Z(x+ h), Z(x)) = σ2Σ(h),

where correlation functionΣ(h) is positive semi-definite function withΣ(0) =
1 and Σ(h) = Σ(−h).

6.2.2 Estimation and Uncertainty Quantification
In this section, we present equations used for predicting and quantifying un-
certainty on y(x) given observed responses Yn = (y(x1), . . . , y(xn))

T . The
question we are trying to answer is: given examples of function in pairs Dn =

(x1, y(x1)), . . . , (xn, y(xn)) = (Xn,Yn), what random function realiza-
tions could explain or could have generated those observed values? In other
words, we want to calculate the conditional distribution (Y (x1), . . . , Y (xn)) |Dn.
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Before we calculate the predictive distribution, we need to address the key
question of how the parameters β, σ2 and θ are estimated from data Dn. The
most popular approach for parameter estimation is maximum likelihood esti-
mation (MLE), and the log-likelihood function under the above assumed GP
model can be written as:

logL
(
β, σ2,θ

)
= −1

2

[
n log σ2 + log detΣθ +

1

σ2
RTΣ−1

θ R

]
, (6.6)

where Σθ = [Σ(xi,xj)]
n n
i=1 j=1, R = (y − Fβ) and F = [fs(xi)]

n m
i=1 s=1.

Hence, the MLEs for (β, σ2,θ) are the parameter estimates that maximize the
above log-likelihood function. ML estimates of (β, σ2) for fixed value of θ can
be easily obtained as follows:

β̂θ =
(
FTΣ−1

θ F
)−1

FTΣ−1
θ y (6.7)

and

σ̂2
θ =

1

n

(
y − Fβ̂θ

)T
Σ−1

θ

(
y − Fβ̂θ

)
(6.8)

Substituting these ML estimates back into Equation (6.6), we get the profile
likelihood function as follows:

logL
(
β̂, σ̂2,θ

)
= −1

2

[
n log σ̂2 + log detΣθ + n

]
, (6.9)

where the MLE of θ is one that maximizes above function in Equation (6.9).
This optimization problem does not enjoy a closed form solution, and numeri-
cal methods, e.g. quasi-Newton algorithms (Nocedal & Wright, 2006) are used
for solving the problem.

Once we have estimates of parameters, we can calculate the conditional
distribution as mentioned above. Let

(
β̂, σ̂2, θ̂

)
denote the ML estimates of

unknown parameters for a given GP model. Then for a new input x∗ ∈ Rp,
the mean and variance of random variable Y (x∗|y) is as follows:

ŷ (x∗) = E [Y (x∗) | y] = fT (x∗) β̂ + rT
θ̂
(x∗)Σ−1

θ̂

(
y − Fβ̂

)
, (6.10)

s (x∗)2 = Var [Y (x∗) | y] = σ̂2
(
1− rT

θ̂
(x∗)Σ−1

θ̂
rθ̂ (x

∗)
)
, (6.11)
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where the covariance vector rθ̂ (x
∗) = [Σθ̂ (x

∗,x1) , . . . ,Σθ̂ (x
∗,xn)]

T.

When some observed data points are very close to each other, the covariance
matrix Σθ̂ may become nearly singular, making it difficult to obtain a stable
inverse matrixΣ−1

θ̂
. This is a common issue for GP models when the run and/or

factor sizes are large. One way to deal with this problem is to add a positive scalar
g, called the nugget parameter, to the diagonal elements inΣθ̂, i.e., replacingΣθ

with Σθ + gI, where I is an identity matrix. Adding g is analogous to adding
the ridge parameter in ridge regression, which helps in moving the smallest
eigenvalue of Σθ away from zero, thus stabilizing the calculation of its inverse.

For large data size, the estimation of GP models can be very time consuming,
mainly due to the matrix inverse calculation of orderO(n3). To deal with this
problem, (Gramacy & Apley, 2015) proposed a localize GP (LaGP) approach.
Based on a local subset of the data, they provide a family of local sequential
design schemes that define a GP predictor’s support points. The idea is to en-
sure that for a given choice of covariance structure, the data points far from
the target location x∗ will have little effect on the prediction. Hence, it is not
unwise to calculate the inverse of the full covariance matrix, as the elements cor-
responding to “far away” points will contribute very little to predicting y(x∗).
Interested readers may refer to (Gramacy & Apley, 2015) for further details.

Given Dn, and under settings of hyperparameter (either MLE or via pos-
terior sampling), the posterior predictive distribution for an n′ × dmatrix of
multiple testing locationsX has a closed form and follows a multivariate normal
distribution:

Y (X ) | Dn ∼ N (µY (X ),ΣY (X )) .

The predictive mean and covariance are given by

µY (X ) = Σ (X ,Xn)Σ
−1
n Yn,

ΣY (X ) = Σ(X )−Σ (X ,Xn)Σ
−1
n Σ (Xn,X ) ,

where Σ (X ,Xn) is an n × n′ matrix derived by extending the kernel across
training and testing locations. These expressions allow the GP to interpolate
training observations and quantify uncertainty in its predictions at testing input
locations.

The GP model described is stationary because it depends solely on the rel-
ative distances between training and testing inputs (as in Equation 6.3). This
implies that the same input-output relationship is assumed to hold throughout
the entire input space, which can be restrictive in certain computer simulations.
A notable example arises in aeronautics or computational fluid dynamics, where
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lift forces on an aircraft vary significantly between low and high speeds, espe-
cially near the speed of sound, where an abrupt transition occurs (Pamadi et al.,
2004). This assumption of stationarity poses a limitation and is further com-
pounded by computational challenges. Even when the stationarity constraint
is removed, detecting distinct behavioural regimes typically demands a large
volume of training data.

6.3 Deep Gaussian Process
A deep Gaussian process (DGP) is a hierarchical extension of the standard GP
model, in which each layer produces a multivariate normal distribution con-
ditioned on the previous layer (Damianou & Lawrence, 2013). (Dunlop et al.,
2018) outlined four distinct frameworks for constructing DGPs, each balancing
computational feasibility with interpretability in different ways. Among these,
treating DGPs as functional compositions offers a particularly intuitive and
easily implemented perspective.

In this formulation, the input data Xn is passed through one or more hid-
den GP layers before producing the final response Yn. These hidden layers
introduce latent variables that are not observed directly but serve to transform
the input space in a nonlinear manner. This warping can help approximate
stationarity in regions of the input space even when the global behavior is non-
stationary. From this point forward, we refer to standard GP regression (as
introduced in Section 6.2) as a “single-layer” GP.

In a two-layer DGP, we define a latent variable matrix W, where each col-
umn corresponds to a latent feature or “node.” Each Wk is modeled as a GP
over Xn, while Yn is modeled as a GP over the latent space W. The model can
be specified hierarchically as:

Yn |W ∼ Nn (0,Σ(W)) , (6.12)
Wk ∼ Nn (0,Σk(Xn)) , k = 1, . . . , p. (6.13)

Here, W = [W1, . . . ,Wp] is an n× pmatrix in which each row corresponds
to one input point and each column to a latent dimension. Each latent node
has its own kernel function Σk(Xn), which may differ across dimensions in
terms of kernel type or hyperparameters.

Although deeper networks may provide increased model flexibility, these
gains tend to diminish beyond a certain depth. Damianou and Lawrence (Dami-
anou & Lawrence, 2013) demonstrated that a five-layer DGP can be beneficial
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in some classification tasks, but further layering may not yield significant ad-
ditional improvements. Two- and three-layer DGPs have been sufficient for
real-valued outputs common to computer surrogate modeling (Radaideh &
Kozlowski, 2020).

(Dunlop et al., 2018) advocate for architectures with only two or three layers,
a recommendation that aligns well with our proposed method. In this work, I
constrain the number of latent nodes to be no greater than the input dimension
and limit the network depth to three layers or fewer. Furthermore, fixing the
number of latent nodes equal to the input dimension allows us to perform
variable selection for DGPs more effectively. Nonetheless, the methods and
implementation I propose are not inherently confined to these architectural
choices.

Given covariance functions Σ(·) and Σk(·), the marginal likelihood of the
observed outputsYn given inputsXn is formulated as an integral over the latent
variables W:

L(Yn | Xn) =

∫
L(Yn |W)

p∏
k=1

L(Wk | Xn) dW, (6.14)

where logL(Yn |W) and logL(Wk | Xn) follow analogous forms to Equa-
tion 6.6. A three-layer DGP introduces two latent layers, typically denoted Z

and W, and corresponds to three stacked GP mappings. In this setting, the
marginal likelihood becomes a double integral over both Z and W.

As inputs Xn, often assumed uniformly distributed, are passed through
successive layers, their representations are nonlinearly warped. This warping
breaks the original stationarity of the process, changing the distribution of out-
puts in meaningful ways. Such transformations have notable consequences for
active learning (AL). The induced nonstationarity effectively reshapes distances
in the latent space, guiding the acquisition function toward regions of higher
informativeness rather than promoting uniform coverage. This adaptation im-
proves the efficiency of sample selection. However, fully Bayesian treatment of
DGPs with two or more layers is analytically intractable, since the marginal like-
lihood in Equation (6.14) cannot be evaluated in closed form due to the need
to integrate out latent variables. Variational inference and other optimization-
based methods (Damianou & Lawrence, 2013; Salimbeni & Deisenroth, 2017)
are often computationally efficient, but they tend to produce posterior approx-
imations that may oversimplify uncertainty quantification (UQ), potentially
under-representing the true variability in the model.
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6.3.1 Model Formulation
In DGPs, extreme flexibility often comes at the cost of identifiability and com-
putational practicality. To mitigate these challenges, we use a modeling tem-
plate that has demonstrated strong performance in surrogate modeling across
several realistic applications and is also well-suited to support downstream tasks
such as active learning (AL).

A two-layer DGP configuration, where the hierarchical structure is defined
via distance-based covariance functions, is expressed as:

Yn |W ∼ Nn

(
0, σ2

(
Kθy(W) + gIn

))
,

Wk
iid∼ Nn

(
0, Kθw[k](Xn)

)
, (6.15)

where k = 1, . . . , p and the response vectorYn is conditionally Gaussian given
the latent layer Wn, with covariance scaled by σ2 and stabilized using a nugget
term g. The hidden layers are assumed to be noiseless and unit-scaled, which
empirically improves the stability and reliability of posterior inference.

As mentioned earlier, setting p = dim(W) = dim(Xn) is generally effec-
tive in variable selection tasks, although smaller values for pmay be advisable in
high-dimensional input spaces. Each Wk corresponds to a latent feature evalu-
ated across then training points, analogous to a column of the input matrixXn

or the response vectorYn. Although a joint model overW incorporating cross-
covariances is possible (e.g., see Schmidt and O’Hagan, 2003), we recommend
the following simplifying assumptions suggested in (Sauer et al., 2022):

1. The latent dimensionsWj andWk are conditionally independent given
X, for all j ̸= k (Salimbeni & Deisenroth, 2017).

2. Each Wk is modeled using an isotropic kernel (6.3) in inputs Xn with
its own scalar lengthscale θw[k], for each k = 1, . . . , p, regardless of the
input dimension d.

3. The output Yn is also modeled isotropically over the latent representa-
tion W, using a scalar lengthscale θy.

Figure 6.3 presents a two-layer model architecture, where the latent layer
W serves as input to the observed output Y. Two modeling constraints, (i)
conditional independence and (ii) isotropy, are key to limiting the model’s com-
plexity while preserving flexibility. Notably, even a low-dimensional latent space
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Figure 6.3: Two Layer Deep Gaussian Process
Source: (Sauer et al., 2022)

(e.g., a single-node W layer) can approximate a wide range of kernel behaviors.
When p ≫ 1, this flexibility becomes especially useful. For instance, when
the dimension of latent space is p, the model can emulate anisotropic or separa-
ble covariance structures without assigning distinct lengthscales to each input
dimension. If the data indicate weaker correlation along one coordinate axis,
components of W can self-organize to reflect that, for example, Wj may ex-
hibit greater variability than Wk. The filled circle between W and Y in the
diagram visually encodes constraint (iii): the entire W vector influences the
output layer Y via a GP with a shared, isotropic lengthscale θy.

This structure can be extended to a three-layer model by introducing an
additional latent layer Z. The generative structure becomes:

Y |W ∼ Nn

(
0, τ 2

(
Kθy(W) + gIn

))
,

Wk | Z
ind∼ Nn

(
0, Kθw[k](Z)

)
, k = 1, . . . , p,

Zj
ind∼ Nn

(
0, Kθz [j](X)

)
, j = 1, . . . , p. (6.16)

As with the earlier model, both W and Z are governed by conditional inde-
pendence and isotropic GP priors. To maintain a balance between expressive-
ness and tractability, it is often helpful to match the dimension ofZwith that of
W, i.e., dim(Z) = dim(W) = p. Each Zj is an n-dimensional latent variable
vector. Figure 6.4 depicts this extended model, with the filled circle connecting
theZ andW layers, with bidirectional edges extending to each node, represent-

92



ing a fully connected structure between the two layers. This “dense interaction
structure” encodes the p2 possible dependencies between the components of
Z and W. In this setup, each latent variable Zj (for j = 1, . . . , p) contributes
to the generation of every Wk (for k = 1, . . . , p). These relationships are gov-
erned by GP kernels based on inverse distances. Each of these kernels uses a
scalar lengthscale parameter θw[k] to modulate the smoothness of the mapping
from Z to the corresponding Wk.

Figure 6.4: Three Layer Deep Gaussian Process
Source: (Sauer et al., 2022)

6.3.2 Hyperparemter Prior
One of the most widely used covariance functions in GP modeling is the radial
basis function (RBF) kernel, also known as the squared exponential kernel. Its
functional form is:

C(xi,xj) = σ2 exp

(
−1

2

p∑
k=1

(xi,k − xj,k)2

θ2k

)
,

where σ2 is the marginal variance, θk is the lengthscale parameter associated
with the k-th input dimension, and the hyperparameters that control the shape
of the GP.

Despite its popularity, the standard RBF kernel poses interpretational chal-
lenges when applied in the context of variable selection. Specifically, the mean-
ing of the lengthscale parameters becomes less intuitive: larger lengthscales im-
ply lower importance of the associated input dimensions, which complicates
regularization since we typically prefer to penalize irrelevant inputs. To address
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this issue, we adopt a reparameterized version of the RBF kernel, referred to
here as the inverse-RBF kernel, defined as:

C(xi,xj) = σ2 exp

(
−1

2

p∑
k=1

θ2k(xi,k − xj,k)2
)
, (6.17)

where θk denotes the inverse lengthscale parameter for thek-th input dimension.
In this formulation, large values of θk imply high sensitivity of the covariance to
variations in the k-th input, indicating that the input is important. Conversely,
ifθk is near zero, thekth input has a negligible effect on the covariance, effectively
removing it from the model. This makes the interpretation of θk analogous to
that of coefficients in standard generalized linear models (GLMs), facilitating
regularization and model selection.

To enable variable selection in DGP models, it is necessary to regularize
the inverse length-scales so that uninformative input dimensions are shrunk
toward zero. This requires a prior distribution that places substantial mass near
zero. Since the inverse length-scales θ2w and θ2z are constrained to be nonnegative,
we place an exponential prior on them: π(θ2w) ∝ exp(b[θw]θ

2
w) and π(θ2z) ∝

exp(b[θz ]θ
2
z), which corresponds to a Gamma distribution θ2w ∼ G

(
1, 1

b[θw ]

)
and θ2z ∼ G

(
1, 1

b[θz ]

)
respectively. For other hyperparameters, such as θy and

the nugget g, we adopt independent Gamma priors of the form {θy, g}
iid∼

G
(
3/2, 1

b[·]

)
, where the rate parameter b[·] is chosen based on the specific pa-

rameter. A hierarchical structure is encouraged by setting b[θy ] ≤ b[θw] ≤ b[θz ],
reflecting the prior belief that deeper layers should exhibit smoother (less wig-
gly) behaviour. In cases where the outer layer models a deterministic computer
simulation, the nugget g is fixed to a small constant ϵ > 0.

6.3.3 Posterior Distribution for DGPs
The posterior distribution in a two-layer DGP model is derived by first express-
ing the log-likelihood of the observed data Yn conditioned on the latent vari-
ables W, the length-scale θy, and the nugget g:

logL (Yn |W, θy, g) ∝ −
n

2
log(nσ̂2)− 1

2
log
∣∣Kθy(W) + gIn

∣∣ ,
where the variance estimator is defined as σ̂2 = Y⊤

n

(
Kθy(W) + gIn

)−1
Yn/n.

The full log-likelihood for the DGP is the sum of this outer-layer term and the
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log-likelihood of the latent variables W under the GP prior given Xn and θw:

logL(Yn |W,Xn, θy, θw, g) = logL(Yn |W, θy, g)+logL(W | Xn, θw).

Combining this likelihood with the prior distributions yields the joint posterior:

π(W, θw, θy, g | Dn) ∝ L(Yn |W,Xn, θw, θy, g)× π(θy, g)× π(θw).

Taking logarithms and simplifying, the log-posterior becomes

log π(W, θw, θy, g | Dn) ∝ logL(Yn |W,Xn, θw, θy, g)

+ log π(θy, g)− b[θw]

p∑
k=1

θ2w,k.

The final term, b[θw]

∑p
k=1 θ

2
w,k, acts as a regularization penalty, shrinking large

values of θ2w and thus encouraging sparsity in the latent representation. Increas-
ing the rate parameter b[θw] intensifies this shrinkage effect, offering a mecha-
nism to control model complexity.

6.4 Variable Selection Algorithm
GP models provide a highly adaptable approach for modeling response surfaces,
offering significantly greater flexibility than conventional linear or polynomial
regression techniques. This adaptability enables GPs to naturally accommo-
date complex features such as non-linear trends and interactions among input
variables. However, this same flexibility introduces difficulties in determining
which input factors have a substantial effect on the response and which can
be regarded as negligible. With p input variables, the number of possible com-
binations of active and inactive factors is 2p, resulting in a vast model space.
(Chipman et al., 2001) presents an insightful treatment of how model priors
can be assigned in such high-dimensional contexts. In a fully Bayesian setting,
variable screening often entails specifying prior beliefs across all 2p potential
models, an undertaking that is not only computationally intensive but also con-
ceptually demanding. Furthermore, the decisions regarding which variables to
retain are frequently influenced by the prior structure, making them inherently
subjective and potentially unstable under different prior choices.

In this section, we extend the reference distribution variable selection (RDVS)
method introduced by (Linkletter et al., 2006) to DGPs. The task of determin-
ing which individual estimates of θw[k] are sufficiently small, meaning they
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deviate substantially from one, to indicate the presence of a significant factor,
is conceptually similar to the frequentist methodology for variable selection.
The main challenge lies in defining an appropriate reference distribution and
a selection criterion that allows for the systematic evaluation of each factor’s
relevance in the experimental setting.

To outline the approach, consider two-layer DGP model outlined in equa-
tion 6.15. Because the relevant factors are unknown at the outset, identifying
them is the primary objective of this work. It can be challenging to directly
interpret the relative magnitudes of the θw[k] values. In RDVS, an artificial
variable that is known to be inert, that is, it does not influence the response,
is added to the design matrix. This known null variable provides a baseline,
offering insight into how an inactive factor typically behaves. By comparing the
behavior of actual factors against this benchmark, one can more reliably assess
their importance. Specifically, using the distribution of the posterior median
for the inert variable as a reference distribution for evaluating which of the real
factors are active.

Consider a design matrix X of dimension n × p, where each row corre-
sponds to the settings of p continuous variables in an individual experimental
run. To introduce a reference (null) variable into the analysis, construct an ex-
panded design matrix of size n × (p + 1) by adding a new column, denoted
Xinert = (x1,0, x2,0, . . . , xn,0)

T . This added column is designed to resemble
the structure of the original covariates, with values spanning the interval [0, 1],
consistent with the scaling applied to the original matrix X. Ideally, this syn-
thetic variableXinert should exhibit no linear association with any of the existing
variables in X, that is, it should be orthogonal to all columns in X. However,
due to practical constraints, achieving perfect orthogonality is typically not fea-
sible, so we aim to add an inert column that minimizes correlation with the
existing design columns.

It is important to note that the augmented variable is deliberately constructed
to have no effect on the response. The analysis is conducted as though there are
p+ 1 input variables, but the added variable is known a priori to be inert. As a
result, the posterior distribution of θw[0] reflects the behavior of a lengthscale
parameter associated with an inactive factor. Because the objective of variable
selection is to identify which covariates exert a meaningful influence on the re-
sponse, distinguishable from random variation, the posterior distributions of
the actual experimental variables can be compared to those of the inert variable.
In essence, the posterior of the inert variable serves as a baseline or reference
distribution, analogous to the role of a null distribution in frequentist hypoth-
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esis testing, for evaluating the significance of the θw[k] values linked to the true
experimental factors.

A central advantage of the RDVS approach is that it eliminates the need to
define a threshold for determining when a particular θw[k] is "sufficiently small",
that is, the experimenter does not need to subjectively decide how far from one
a value must be to indicate significance. This is particularly beneficial because
what constitutes a “small” value of θw[k] can vary depending on the specific
data set. Instead, the only decision required is whether the posterior distribu-
tions of the experimental variables are distinguishable from that of the known
inert variable. The ideal scenario would involve selecting Xinert so that it is or-
thogonal to all columns in X, thereby ensuring that the posterior distribution
of θw[0] is unaffected by the specific configurations of the actual experimental
factors. However, achieving perfect orthogonality is generally impractical. To
overcome this, Xinert is randomly drawn from the same design space as X, and
the DGP model is fit accordingly, and this procedure is repeated multiple times.
The posterior distributions obtained for each realization of the inert variable
are then pooled to construct a composite reference distribution representing a
typical null variable. This effectively averages across different instances ofXinert,
smoothing out the influence of any single realization.

There are several potential methods for comparing the posterior distribu-
tions of the experimental factors to those of the inert (null) variable. One prac-
tical option involves utilizing the full set of MCMC samples, comparing the
values of the experimental and null variables at each iteration of the sampling
process. But the MCMC approach is known to be computationally expensive.
Instead, consider the following variational inference (VI) approach, which has
gained popularity in recent years due to its computational efficiency (see, Blei
et al., 2017; Hensman et al., 2013; Hoffman et al., 2013). In the VI framework,
the goal is to approximate the true posterior distribution p(θ | y) of a latent
variable θ, given observed data y, by selecting a tractable family of distributions
q(θ). The optimal variational distribution q∗(θ) is obtained by minimizing the
Kullback-Leibler (KL) divergence between q(θ) and the true posterior. This
converts the inference problem into an optimization problem, where the objec-
tive is to solve:

q∗(θ) = argmin
q

KL(q(θ)∥p(θ | y)).

This variational objective enables efficient posterior approximation and param-
eter estimation, provided the joint distribution p(θ, y) is specified. For GP
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models in particular, (Hensman et al., 2013, 2015) offer detailed discussions on
implementing VI effectively.

Let θ̂w[j]
2
= (θ̂w[j]

2

1, . . . , θ̂w[j]
2

m, . . . , θ̂w[j]
2

M)T , where θ̂w[j]
2

m denotes
the maximum a posteriori (MAP) estimate of the inverse length-scale for the
input variable xj obtained from the mth iteration of the VI algorithm, for
j = 0, 1, . . . , p. For each input j, we assess its importance by comparing the
distribution of θ̂w[j]

2
to that of the inert input, ̂θw[0]

2
. More specifically,

we use the qth percentile of the null distribution, denoted by αq, as a decision
threshold. If the median of θ̂w[j]

2
is less than αq, the corresponding feature

xj is deemed inactive and may be excluded from the model.

Variable Selection with RDVS for DGPs
1. Standardize the design matrix X.

2. Form = 1, . . . ,M :

• Sample a random nuisance column x0 from the design space.

• Form the augmented matrix X∗ = (x0,X).

• Fit the DGP model using variational inference (VI).

• Record the MAP estimates of inverse length-scales for all columns
in X∗.

3. Collect MAP estimates as L = ( ̂θw[0]
2
, ̂θw[1]

2
, . . . , ̂θw[p]

2
), where

each θ̂w[j]
2
∈ RM .

4. Compute αq, the qth percentile of the values in ̂θw[0]
2
.

5. For k = 1, . . . , p:

• If median( ̂θw[k]
2
) ≥ αq, classify feature xk as active.

• Else, classify feature xk as inactive.

6. Output: Indices of features classified as active.

The choice of the threshold percentile q reflects the researcher’s tolerance
for false positives, that is, the likelihood of incorrectly classifying an inactive fea-
ture as active. Researchers may also choose to apply different threshold values
for different features if desired. Selecting a higher value of q imposes a stricter cri-
terion, thereby reducing the probability of falsely identifying inactive variables
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as active. However, this also raises the risk of missing genuinely weak but ac-
tive features. Empirically, the threshold can be intuitively interpreted as setting
(100− q)% as the upper bound on the acceptable false positive rate.

6.5 Discussion
In this chapter, we studied DGPs, which extend standard GP models by in-
troducing a hierarchical structure with multiple hidden layers. These layers
contain latent variables that are not directly observed but act as nonlinear trans-
formations of the input space, allowing the model to better accommodate non-
stationarity. We derived the posterior distribution for the DGP and introduced
a modified formulation that utilizes an inverse-RBF kernel along with an ex-
ponential prior on the inverse length-scale parameters, inspired by LASSO, to
encourage sparsity and enhance model interpretability. In addition, we adapted
the reference distribution variable selection technique to the DGP context,
yielding a novel framework for identifying influential variables within hierarchi-
cal GP models. This framework provides a flexible modeling approach while
performing feature importance by identifying significant input variables in high-
dimensional, non-stationary environments.
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Chapter 7

Extension and
Conclusion

This thesis presents significant methodological advancements in the optimal
design of experiments, with a particular focus on crossover designs under GLMs
and the development of surrogate models for complex computer experiments.

In the first part of the thesis, we studied optimal crossover designs for ex-
periments with non-normal responses modeled using GLMs. While uniform
designs are optimal for linear models, our results demonstrate that they are gen-
erally sub-optimal under GLMs. Through extensive numerical illustrations and
simulations, we identified locallyD-optimal designs that outperform uniform
designs in terms of efficiency, and we showed that these optimal designs remain
robust across different correlation structures.

Building on this foundation, we applied these methods to a real-world
dataset from a work environment experiment, illustrating the practical value of
optimal designs for Poisson, beta, and gamma responses. The results indicated
that the optimal allocation of sequences depends heavily on the assumed param-
eter values and the choice of link functions, with non-uniform designs often
yielding substantial improvements in efficiency. Importantly, these findings
reinforce the limitations of conventional uniform designs in applied settings.

Next, we derived a general equivalence theorem tailored to crossover de-
signs under GLMs. This development provides a theoretically grounded and
computationally efficient method to verify the optimality of a proposed design.
Two versions of the theorem were established, one targeting the variance of all
parameters and the other focusing solely on treatment effects. Applications
of the theorem to real-life examples demonstrated that the optimal designs de-
rived from solving the system of equations aligned closely with those obtained
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through constrained optimization. An interesting extension would be to use
the Bayesian approach to avoid guessing the values of unknown parameters.

In the second part of the thesis, the focus shifted to surrogate modeling
for complex computer experiments. We highlighted the importance of using
space-filling and orthogonal designs in constructing effective surrogates and
introduced the weighted MaxPro and orthogonal weighted MaxPro criteria
for this purpose. A sequential variable selection algorithm was proposed to
enhance model sparsity and interpretability. Simulations showed that the pro-
posed methods yield better discovery rates and more stable estimates than ex-
isting one-shot designs. A natural extension of this framework would be to
Gaussian Process models that accommodate both qualitative and quantitative
factors, such as the EzGP (Xiao et al., 2021) and MaGP (Xiao et al., 2022) models.
These models are capable of capturing complex input structures, including cases
where the inputs may themselves be probability distributions and the response
is non-normal. Extending the sequential design framework to such settings
would be particularly valuable, enabling efficient learning in high-dimensional,
heterogeneous design spaces. Such an extension holds significant promise for
advancing the field of computer experiments.

Finally, we discuss surrogate modeling with Deep Gaussian Process (DGP)
surrogates, which are capable of capturing nonstationary and highly complex
input-output relationships more effectively than traditional Gaussian Processes.
We propose a novel framework that integrates DGP models with a reference dis-
tribution variable selection algorithm, facilitating efficient dimension reduction
and enhancing surrogate accuracy. These advances illustrate how modern statis-
tical learning techniques can be combined with classical design of experiments
principles to support and improve scientific discovery in complex modeling
scenarios.

A promising direction for future work is the extension of the sequential vari-
able selection framework developed in Chapter 5 to the Deep Gaussian Process
(DGP) models introduced in Chapter 6. Although this thesis lays the ground-
work for incorporating variable selection into DGP surrogates, a fully adaptive
sequential design strategy, capable of updating both sampling locations and
feature importance across DGP layers, remains an open area for development.
Future research could focus on designing active learning algorithms that are
tailored to the hierarchical and nonstationary nature of DGPs, accounting for
both local and global predictive uncertainty.

Another important extension would be the development of sequential de-
sign strategies for calibration using Deep Gaussian Processes (DGPs). DGPs
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have demonstrated strong performance in calibration settings (Marmin & Fil-
ippone, 2022), offering the flexibility to model nonstationary and hierarchical
relationships that are common in complex simulators. At the same time, se-
quential design approaches for calibration using stationary Gaussian Processes
are only beginning to emerge (Koermer et al., 2023). Integrating these two de-
velopments, nonstationary DGP modeling with adaptive calibration strategies,
could yield a powerful framework for efficient and accurate model calibration,
particularly in high-dimensional or computationally intensive settings.

In summary, this thesis makes key contributions to both the theory and
practice of experimental design. It expands the frontier of crossover design un-
der non-normal settings, introduces an equivalence theorem for designs under
GLMs, and proposes cutting-edge surrogate modeling strategies.
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Appendices

A.1 Appendix A: Optimal Crossover Designs

Effect of Misspecification of Working Correlation Structures

Table 1: Optimal Design under Variance Misspecification

True
Correla-
tion

Working
Correla-
tion

Optimal proportions for θ1 Optimal proportions for θ2 Relative D-efficiency

Structure Structure ABCD BDAC CADB DCBA ABCD BDAC CADB DCBA under θ1 under θ2

Corr(2) 0.1723 0.2483 0.2222 0.3572 0.2463 0.2493 0.2504 0.2540 0.9999 0.9999

Corr(3) 0.1726 0.2483 0.2223 0.3568 0.2463 0.2493 0.2504 0.2540 0.9999 0.9999

Corr(1) Corr(4) 0.1723 0.2513 0.2202 0.3562 0.2500 0.2500 0.2500 0.2500 0.9997 0.9988

Corr(5) 0.2447 0.1713 0.2495 0.2223 0.3569 0.2475 0.2557 0.2521 0.9994 0.9995

Corr(6) 0.2500 0.1724 0.2508 0.2197 0.3571 0.2500 0.2500 0.2500 0.9999 0.9984

Corr(1) 0.1745 0.2489 0.2183 0.3583 0.2462 0.2493 0.2500 0.2545 0.9999 0.9999

Corr(3) 0.1744 0.2489 0.2182 0.3585 0.2462 0.2493 0.2500 0.2545 0.9999 0.9999

Corr(2) Corr(4) 0.1745 0.2514 0.2177 0.3564 0.2500 0.2500 0.2500 0.2500 0.9998 0.9987

Corr(5) 0.1740 0.2503 0.2180 0.3577 0.2450 0.2480 0.2530 0.2540 0.9997 0.9997

Corr(6) 0.1744 0.2512 0.2174 0.3570 0.2463 0.2497 0.2505 0.2535 0.9999 0.9985

Corr(1) 0.1714 0.2480 0.2236 0.3570 0.2461 0.2492 0.2507 0.2540 0.9999 0.9999

Corr(2) 0.1711 0.2480 0.2235 0.3574 0.2462 0.2492 0.2506 0.2540 0.9999 0.9999

Corr(3) Corr(4) 0.1713 0.2516 0.2209 0.3562 0.2500 0.2500 0.2500 0.2500 0.9996 0.9987

Corr(5) 0.1700 0.2463 0.2235 0.3572 0.2441 0.2476 0.2561 0.2522 0.9992 0.9995

Corr(6) 0.1713 0.2510 0.2204 0.3573 0.2500 0.2500 0.2500 0.2500 0.9999 0.9984

Corr(1) 0.1783 0.2585 0.2140 0.3492 0.2500 0.2637 0.2347 0.2516 0.9994 0.9987

Corr(2) 0.1784 0.2580 0.2156 0.3480 0.2486 0.2640 0.2344 0.2530 0.9996 0.9987

Corr(4) Corr(3) 0.1782 0.2592 0.2131 0.3495 0.2498 0.2643 0.2342 0.2517 0.9992 0.9986

Corr(5) 0.1778 0.2579 0.2167 0.3476 0.2470 0.2650 0.2343 0.2537 0.9992 0.9993

Corr(6) 0.1790 0.2555 0.2165 0.3490 0.2485 0.2631 0.2337 0.2547 0.9999 0.9999

Corr(1) 0.1774 0.2477 0.2092 0.3657 0.2466 0.2501 0.2486 0.2547 0.9994 0.9999

Corr(2) 0.1776 0.2476 0.2099 0.3649 0.2470 0.2506 0.2470 0.2554 0.9997 0.9999

Corr(5) Corr(3) 0.1770 0.2477 0.2087 0.3666 0.2462 0.2503 0.2485 0.2550 0.9992 0.9999

Corr(4) 0.1776 0.2492 0.2108 0.3624 0.2472 0.2538 0.2450 0.2540 0.9996 0.9994

Corr(6) 0.1774 0.2496 0.2110 0.3620 0.2465 0.2535 0.2456 0.2544 0.9998 0.9991

Corr(1) 0.1748 0.2553 0.2142 0.3557 0.2482 0.2652 0.2332 0.2534 0.9997 0.9985

Corr(2) 0.1748 0.2551 0.2160 0.3541 0.2470 0.2657 0.2329 0.2544 0.9999 0.9985

Corr(6) Corr(3) 0.1748 0.2558 0.2133 0.3561 0.2482 0.2660 0.2325 0.2533 0.9996 0.9984

Corr(4) 0.1754 0.2530 0.2172 0.3544 0.2476 0.2652 0.2324 0.2548 0.9999 0.9999

Corr(5) 0.1741 0.2556 0.2180 0.3523 0.2452 0.2669 0.2339 0.2540 0.9994 0.9991

Optimal Design for Latin Square Example with24 Sequences.
The following tables represent optimal designs for the Latin square example
with 24 sequences under θ1 and θ2.
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Table 2: Optimal design considering 24 sequences under θ1

Treatment
Se-
quence

Optimal Designs for θ1

ρ = 0.1 ρ = 0.2 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.9

ABCD 0.0094 0.0071 0.0109 0.0119 0.0125 0.0122

ABDC

ACBD 0.0716 0.1037 0.1148 0.1156 0.1153 0.1115

ADBC 0.1096 0.0820 0.0753 0.0795 0.0859 0.1003

ACDB

ADCB

BACD 0.0513 0.0537 0.0459 0.0417 0.0362 0.0250

BADC

CABD 0.1254 0.1162 0.1042 0.1007 0.0972 0.0878

DABC 0.0200 0.0447 0.0469 0.0421 0.0356 0.0194

CADB

DACB 0.0122

BCAD

BDAC 0.1735 0.1993 0.2055 0.2045 0.2031 0.2019

CBAD

DBAC 0.1667 0.1404 0.1374 0.1461 0.1588 0.1924

CDAB 0.1265 0.1426 0.1483 0.1473 0.1448 0.1358

DCAB 0.1114 0.1082 0.1108 0.1107 0.1106 0.1120

BCDA

BDCA 0.0224 0.0003

CBDA

DBCA

CDBA

DCBA
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Table 3: Optimal design considering 24 sequences under θ2.

Treatment
Se-
quence

Optimal Designs for θ2

ρ = 0.1 ρ = 0.2 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.9

ABCD 0.1105 0.1107 0.0875 0.0870 0.0876 0.0846

ABDC 0.0112

ACBD 0.0488 0.0525 0.0615 0.0624 0.0625 0.0522

ADBC 0.0347 0.0329 0.0516 0.0561 0.0618 0.0807

ACDB 0.0402 0.0348 0.0126 0.0128 0.0135 0.0247

ADCB 0.0370 0.0417 0.0645 0.0625 0.0587 0.0383

BACD 0.0052

BADC 0.1125 0.1109 0.0903 0.0855 0.0801 0.0545

CABD 0.0467 0.0419 0.0127 0.0087 0.0054 0.0125

DABC 0.0041 0.0213 0.0192 0.0152

CADB 0.0611 0.0619 0.0729 0.0733 0.0737 0.0674

DACB 0.0136 0.0198 0.0272 0.0537

BCAD 0.0363 0.0371 0.0472 0.0441 0.0392 0.0141

BDAC 0.0034 0.0003 0.0008 0.0027 0.0224

CBAD 0.0004 0.0360 0.0427 0.0503 0.0744

DBAC 0.1034 0.1056 0.0854 0.0859 0.0858 0.0728

CDAB 0.0055

DCAB 0.1157 0.1163 0.0946 0.0915 0.0888 0.0780

BCDA 0.0241 0.0294 0.0361 0.0617

BDCA 0.0882 0.0901 0.0719 0.0728 0.0733 0.0678

CBDA 0.0239 0.0297 0.0369 0.0356 0.0326 0.0166

DBCA 0.0276 0.0201 0.0238 0.0192 0.0153 0.0109

CDBA 0.1100 0.1093 0.0913 0.0907 0.0902 0.0802

DCBA 0.0106

Explicit Expression of the Objective Function
We give an example of a Latin square design to illustrate how we obtain the
objective function. We useCorr(1) correlation structure with ρ = 0.2.
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First, we look at the design matrix for each of the subjects. The design matrix is
obtained by using the expression ofXj mentioned in Section 1.2.1.

X1 = XABCD =


1 1 0 0 0 1 0 0 0 0 0 0 0

1 0 1 0 0 0 1 0 0 1 0 0 0

1 0 0 1 0 0 0 1 0 0 1 0 0

1 0 0 0 1 0 0 0 1 0 0 1 0

 ,

X2 = XCADB =


1 1 0 0 0 0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 1 0 1 0 0

1 0 0 1 0 1 0 0 0 0 0 0 1

1 0 0 0 1 0 0 1 0 1 0 0 0

 ,

X3 = XBDAC =


1 1 0 0 0 0 0 1 0 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0 1 0

1 0 0 1 0 0 0 0 1 1 0 0 0

1 0 0 0 1 0 1 0 0 0 0 0 1

 ,

X4 = XDCBA =


1 1 0 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 0 0 1 0 0 0 0 1

1 0 0 1 0 0 1 0 0 0 0 1 0

1 0 0 0 1 1 0 0 0 0 1 0 0

 .

Now, using the above design matrix for each subject and estimates of parameter
values, we consider θ̂ = [0.5, 0.06,−0.53,−0.6,−0.35, 0.025,−0.23, 0.73,
0.23]. Then the values of ηj = Xj θ̂ for each subject can be obtained as follows:

η1 = X1θ̂ =


0.534

0.278

0.761

−0.070

 , η2 = X2θ̂ =


0.185

1.131

0.307

−0.050

 ,
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η3 = X3θ̂ =


0.557

0.857

−0.220
−0.122

 , η4 = X4θ̂ =


0.307

0.950

−0.112
0.658

 .

Hence, using model (1.2) mentioned in Section 1.2.1, we can get corresponding
µj =

exp{ηj}
1+exp{ηj} , they are as follows:

µ1 =
exp{η1}

1 + exp{η1}
=


0.6304156

0.5690558

0.6815708

0.4825071

 ,
µ2 =

exp{η2}
1 + exp{η2}

=


0.5461185

0.7560234

0.5761528

0.4875026

 ,

µ3 =
exp{η3}

1 + exp{η3}
=


0.6357581

0.7020335

0.4452208

0.4695378

 ,
µ4 =

exp{η4}
1 + exp{η4}

=


0.5761528

0.7211152

0.4720292

0.6588110

 .

We are using compound symmetric correlation structure Corr(1) with ρ = 0.2. Hence we
have C(α) = Corr(1) as true correlation matrix.

Correlation matrix C(α) and matrix H can be written down as follows:

C(α) =


1 0.2 0.2 0.2

0.2 1 0.2 0.2

0.2 0.2 1 0.2

0.2 0.2 0.2 1

 , H =


0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

 .

Using the expression for Cov[Yj ] mentioned below we compute covariance matrix for each
subject. We denote this covariance matrix by Wj for each subject j:

Cov[Yj ] = Wj = D
1/2
j Corr1D

1/2
j

where Dj in above equation is diag
(
µ1j(1− µ1j), . . . , µpj(1− µpj)

)
and p is number of

periods.

Hence corresponding Dj for Latin square example are as follows:

D1 =


0.23 0 0 0

0 0.24 0 0

0 0 0.22 0

0 0 0 0.25

 , D2 =


0.25 0 0 0

0 0.18 0 0

0 0 0.24 0

0 0 0 0.25

 ,
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D3 =


0.23 0 0 0

0 0.21 0 0

0 0 0.25 0

0 0 0 0.25

 , D4 =


0.24 0 0 0

0 0.20 0 0

0 0 0.25 0

0 0 0 0.22

 .

Calculating matrix D1/2
j and using the above formula for Wj , we have inverse of Wj matrices

as follows:

W−1
1 =


4.69 −0.65 −0.69 −0.65
−0.65 4.46 −0.68 −0.63
−0.69 −0.68 5.04 −0.67
−0.65 −0.63 −0.67 4.38

 ,

W−1
2 =


4.41 −0.73 −0.64 −0.63
−0.73 5.93 −0.74 −0.73
−0.64 −0.74 4.48 −0.63
−0.63 −0.73 −0.63 4.38

 ,

W−1
3 =


4.72 −0.71 −0.65 −0.65
−0.71 5.23 −0.69 −0.68
−0.65 −0.69 4.43 −0.63
−0.65 −0.68 −0.63 4.39

 ,

W−1
4 =


4.48 −0.70 −0.63 −0.67
−0.70 5.44 −0.70 −0.73
−0.63 −0.70 4.39 −0.66
−0.67 −0.73 −0.66 4.87

 .

Note that Dω = Dj and Wω = Wj .

The variance of parameter estimate Var(θ̂) =
[∑

ωϵΩ npω
∂µ′

ω

∂θ W−1
ω

∂µω

∂θ

]−1

has another

component which is ∂µω

∂θ and the ith row of ∂µω

∂θ is x′
idi, where xi is the ith row of design

matrix Xω and di corresponds to ith diagonal entry of matrix Dj .

Hence, ∂µω

∂θ matrix for each subject are as follows:

∂µ1

∂θ
=


0.23 0.23 0 0 0 0.23 0 0 0 0 0 0 0

0.24 0 0.24 0 0 0 0.24 0 0 0.24 0 0 0

0.22 0 0 0.22 0 0 0 0.22 0 0 0.22 0 0

0.25 0 0 0 0.25 0 0 0 0.25 0 0 0.25 0

 ,

∂µ2

∂θ
=


0.25 0.25 0 0 0 0 0.25 0 0 0 0 0 0

0.18 0 0.18 0 0 0 0 0 0.18 0 0.18 0 0

0.24 0 0 0.24 0 0.24 0 0 0 0 0 0 0.24

0.25 0 0 0 0.25 0 0 0.25 0 0.25 0 0 0

 ,
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∂µ3

∂θ
=


0.23 0.23 0 0 0 0 0 0.23 0 0 0 0 0

0.21 0 0.21 0 0 0.21 0 0 0 0 0 0.21 0

0.25 0 0 0.25 0 0 0 0 0.25 0.25 0 0 0

0.25 0 0 0 0.25 0 0.25 0 0 0 0 0 0.25

 ,

∂µ4

∂θ
=


0.24 0.24 0 0 0 0 0 0 0.24 0 0 0 0

0.20 0 0.20 0 0 0 0 0.20 0 0 0 0 0.20

0.25 0 0 0.25 0 0 0.25 0 0 0 0 0.25 0

0.22 0 0 0 0.22 0.22 0 0 0 0 0.22 0 0

 .

Using above calculated inverse of each Wω matrix, and the corresponding calculated ∂µω

∂θ ma-
trices we can calculate required 13× 13 matrices ∂µ′

ω

∂θ W−1
ω

∂µω

∂θ for each ω.

Further, inverse of
[∑

ωϵΩ npω
∂µ′

ω

∂θ W−1
ω

∂µω

∂θ

]
i.e Var(θ̂) is found numerically and calculate

objective function Var(τ̂) = HVar(θ̂)H ′, where we try to minimize Var(τ̂) w.r.t pω. These
values of pω , which minimizes the objective function, are the optimal proportions we are look-
ing for.
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A.2 Appendix B: A General Equivalence Theo-
rem for Crossover Designs

Alternative Proof of Lemma 1:

We use the first-order condition of a convex function stated in equation (3.2) of (Boyd & Van-
denberghe, 2004), A differentiable function f defined on a convex domain is convex if and only
if f(x) ≥ f(y) +∇f(y)T (x− y) hold for all x,y in the domain.

Let x = (x1, x2, . . . , xn)
′, y = (y1, y2, . . . , yn)

′ ∈ ℜn
>0.

Then, we want to show

f(x) ≥ f(y) +∇f(y)T (x− y),

i.e., to show,
1∏n

i=1 xi
− 1∏n

i=1 yi
≥
[

−1
y2
1y2...yn

. . . −1
y1...yn−1y2

n

]
x1 − y1
x2 − y2

. . .

xn − yn

 ,

i.e., to show,
1∏n

i=1 xi
− 1∏n

i=1 yi
≥ y1 − x1

y21y2 . . . yn
+ · · ·+ yn − xn

y1 . . . yn−1y2n
,

i.e., to show,
1∏n

i=1 xi
− 1∏n

i=1 yi
≥ n∏n

i=1 yi
−

n∑
i=1

xi

y1 . . . y2i . . . yn
,

i.e., to show,
1∏n

i=1 xi
+

n∑
i=1

xi

y1 . . . y2i . . . yn
≥ n+ 1∏n

i=1 yi
.

Since x,y > 0, the LHS is the mean of (n + 1) positive terms. By applying AM ≥ GM
inequality, the result follows.

110



Bibliography

Atkinson, A., Donev, A., & Tobias, R. (2007). Optimum experimental designs,
with sas.

Ba, S., & Joseph, V. R. (2011). Multi-layer designs for computer experiments.
Journal of the American Statistical Association, 106, 1139–1149.

Bayarri, M. J., Berger, J. O., Kennedy, M. C., Kottas, A., Paulo, R., Sacks, J.,
Cafeo, J. A., Lin, C.-H., & Tu, J. (2009). Predicting vehicle crashwor-
thiness: Validation of computer models for functional and hierarchical
data. Journal of the American Statistical Association, 104(487), 929–943.

Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A
review for statisticians. Journal of the American Statistical Association,
112(518), 859–877. https://doi.org/10.1080/01621459.2017.1285773

Bornemann, F. (2010). On the numerical evaluation of fredholm determinants.
Mathematics of Computation, 79(270), 871–915.

Bose, M., & Dey, A. (2009). Optimal crossover designs. World Scientific.
Box, G. (1980). Sampling and Bayes’ inference in scientific modelling and ro-

bustness (with discussion). Journal of the Royal Statistical Society, Series
A, 143.

Box, G., Hunter, J., & Hunter, W. (2005). Statistics for experimenters: Design,
innovation, and discovery. Wiley.

Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge
University Press.

Butler, N. A. (2001). Optimal and orthogonal Latin hypercube designs for
computer experiments. Biometrika, 88(3), 847–857.

Carriere, K. C., & Huang, R. (2000). Crossover designs for two-treatment
clinical trials. J. Statist. Plann. Inference, 87, 125–134.

Cheng, C. S., & Wu, C. F. (1980). Balanced repeated measurements designs.
Ann. Statist., 8, 1272–1283.

Chernoff, H. (1953). Locally optimal designs for estimating parameters. Ann.
Math. Statist., 24, 586–602.

Chipman, H. A., George, E. I., & McCulloch, R. E. (2001). The practical
implementation of bayesian model selection. In Model selection (pp. 65–

111



134, Vol. 38). Institute of Mathematical Statistics. https://doi.org/10.
1214/lnms/1215540960

Cioppa, T. M., & Lucas, T. W. (2007). Efficient nearly orthogonal and space-
filling Latin hypercubes. Technometrics, 49(1), 45–55.

Cox, D., & Reid, N. (2000). The theory of the design of experiments. Taylor &
Francis. https://books.google.com/books?id=bPijngEACAAJ

Cui, J., & Krems, R. V. (2015). Gaussian process model for collision dynamics
of complex molecules. Physical Review Letters, 115(7). https://doi.org/
10.1103/physrevlett.115.073202

Damianou, A., & Lawrence, N. D. (2013). Deep gaussian processes. Artificial
Intelligence and Statistics, 207–215.

Deisenroth, M., Fox, D., & Rasmussen, C. (2015). Gaussian processes for data-
efficient learning in robotics and control. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37, 408–423.

Dette, H., & Pepelyshev, A. (2010). Generalized latin hypercube design for
computer experiments. Technometrics, 52, 421–429.

Dey, A., Gupta, V. K., & Singh, M. (1983). Optimal change-over designs.
Sankhya B45, 233–239.

Doob, J., & Doob, J. (1953). Stochastic processes. Wiley.
Dunlop, M. M., Girolami, M. A., Stuart, A. M., & Teckentrup, A. L. (2018).

How deep are deep gaussian processes? Journal of Machine Learning
Research, 19(54), 1–46.

Ek, C. H., Torr, P. H. S., & Lawrence, N. D. (2008). Gaussian process latent
variable models for human pose estimation. In A. Popescu-Belis, S.
Renals, & H. Bourlard (Eds.), Machine learning for multimodal inter-
action (pp. 132–143). Springer Berlin Heidelberg.

Fang, K.-T. (1980). The uniform design: Application of number-theoretic
methods in experimental design. Acta Mathematica Applicate Sinica,
3, 363–372.

Fang, K.-T., Li, R., & Sudijanto, A. (2006). Design and modeling for computer
experiments. Chapman Hall.

Fedorov, V. V. (1971). The design of experiments in the multiresponse case.
Theory Probab. Appl., 16, 323–332.

Fedorov, V. V. (1972). Theory of optimal experiment. Academic Press.
Fedorov, V. V., & Leonov, S. L. (2014). Optimal design for nonlinear response

models. Chapman & Hall/CRC.
Fedorov, V. V., & Malyutov, M. B. (1972). Optimal designs in regression prob-

lems. Math. Operat. Statist., 3, 281–308.

112



Finney, D. (1945). The fractional replication of factorial arrangements. Annals
of Eugenics, 12.

Fisher, R. (1925). Statistical methods for research workers. Edinburgh Oliver &
Boyd.

Georgiou, S. D. (2009). Orthogonal Latin hypercube designs from general-
ized orthogonal designs. Journal of Statistical Planning and Inference,
139(4), 1530–1540.

Georgiou, S. D., & Efthimiou, I. (2014). Some classes of orthogonal Latin
hypercube designs. Statistica Sinica, 24(1), 101–120.

Gramacy, R. B. (2020). Surrogates: Gaussian process modeling, design and
optimization for the applied sciences. Chapman Hall/CRC.

Gramacy, R. B., & Apley, D. W. (2015). Local gaussian process approximation
for large computer experiments. Journal of Computational and Graph-
ical Statistics, 24(2), 561–578. https://doi.org/10.1080/10618600.2014.
914442

Hedayat, A., & Afsarinejad, K. (1975). Repeated measurements designs, i. In
J. N. Srivastava (Ed.), A survey of statistical designs and linear models
(pp. 229–242). North-Holland.

Hensman, J., Fusi, N., & Lawrence, N. D. (2013). Gaussian processes for big
data. arXiv preprint arXiv:1309.6835. https://arxiv.org/abs/1309.6835

Hensman, J., Matthews, A., & Ghahramani, Z. (2015). Scalable variational
gaussian process classification. Proceedings of the 18th International Con-
ference on Artificial Intelligence and Statistics (AISTATS), 38, 351–360.
https://proceedings.mlr.press/v38/hensman15.html

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12(1), 55–67.

Hoffman, M. D., Blei, D. M., Wang, C., & Paisley, J. (2013). Stochastic varia-
tional inference. Journal of Machine Learning Research, 14, 1303–1347.
http://jmlr.org/papers/v14/hoffman13a.html

Jankar, J., Mandal, A., & Yang, J. (2020). Optimal crossover designs for gener-
alized linear models. Journal of Statistical Theory and Practice, 14, 23.

Jin, R., Chen, W., & Sudjianto, A. (2005). An efficient algorithm for construct-
ing optimal design of computer experiments. Journal of Statistical Plan-
ning and Inference, 134, 268–287.

Johnson, M. E., Moore, L. M., & Ylvisaker, D. (1990). Minimax and maximin
distance designs. Journal of Statistical Planning and Inference, 26, 131–
148.

113



Jones, B., Silvestrini, R. T., Montgomery, D. C., & Steinberg, D. M. (2015).
Bridge designs for modeling systems with low noise. Technometrics, 57,
155–163.

Joseph, V. R., Dasgupta, T., Tuo, R., & Wu, C. F. J. (2015). Sequential explo-
ration of complex surfaces using minimum energy designs. Technomet-
rics, 57, 64–74.

Joseph, V. R., Gul, E., & Ba, S. (2015). Maximum projection designs for com-
puter experiments. Biometrika, 102, 371–380.

Joseph, V. R., & Hung, Y. (2008). Orthogonal-maximin latin hypercube de-
signs. Statistica Sinica, 18, 171–186.

Joseph, V. R., & Melkote, S. N. (2009). Statistical adjustments to engineering
models. Journal of Quality Technology, 41, 362–375.

Kennedy, M. C., & O’Hagan, A. (2001). Bayesian calibration of computer
models. Journal of the Royal Statistical Society: Series B, 63, 425–464.

Kenward, M. G., & Jones, B. (1992). Alternative approaches to the analysis of
binary and categorical repeated measurements. Journal of Biopharma-
ceutical Statistics, 2, 137–170.

Kenward, M. G., & Jones, B. (2014). Design and analysis of cross-over trials
(3rd). Chapman; Hall.

Kershner, R. P., & Federer, W. T. (1981). Two-treatment crossover designs for
estimating a variety of effects. J. Amer. Statist. Assoc., 76, 612–619.

Khuri, A. I., Mukherjee, B., Sinha, B. K., & Ghosh, M. (2006). Design issues
for generalized linear models: A review. Statistical Science, 21, 376–399.

Kidder, L. E., Scheel, M. A., Teukolsky, S. A., Carlson, E. D., & Cook, G. B.
(2000). Black hole evolution by spectral methods. Phys. Rev. D, 62,
084032. https://doi.org/10.1103/PhysRevD.62.084032

Kiefer, J., & Wolfowitz, J. (1960). The equivalence of two extremum problems.
Canadian Journal of Mathematics, 12, 363–366.

Koermer, S., Loda, J., Noble, A., & Gramacy, R. B. (2023). Active learning for
simulator calibration. arXiv preprint arXiv:2301.10228. https://arxiv.
org/abs/2301.10228

Kruckow, M., Tauris, T., Langer, N., Kramer, M., & Izzard, R. (2018). Progen-
itors of gravitational wave mergers: Binary evolution with the stellar
grid-based code combine. Monthly Notices of the Royal Astronomical
Society, 481, 1908–1949.

Kunert, J. (1983). Optimal design and refinement of the linear model with
applications to repeated measurements designs. Ann. Statist., 11, 247–
257.

114



Kunert, J. (1984). Optimality of balanced uniform repeated measurements
designs. Ann. Statist., 12, 1006–1017.

Kushner, H. B. (1997). Optimal repeated measurements designs: The linear
optimality equations. Ann. Statist., 25, 2328–2344.

Laska, E., & Meisner, M. (1985). A variational approach to optimal two-treatment
crossover designs: Application to carryover effect models. J. Amer.
Statist. Assoc., 80, 704–710.

Layard, M. W., & Arvesen, J. N. (1978). Analysis of poisson data in crossover
experimental designs. Biometrics, 34, 421–428.

Leary, S., Bhaskar, A., & Keane, A. (2003). Optimal orthogonal-array-based
Latin hypercubes. Journal of Applied Statistics, 30(5), 585–598.

Li, W., & Wu, C. F. J. (1997). Columnwise-pairwise construction of supersatu-
rated designs. Statistica Sinica, 7, 639–652.

Liang, K. Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized
linear models. Biometrika, 73, 13–22.

Liang, K. Y., Zeger, S. L., & Albert, P. S. (1988). Models for longitudinal data: A
generalized estimating equation approach. Biometrics, 44, 1049–1060.

Lin, C. D., Mukerjee, R., & Tang, B. (2009). Construction of orthogonal and
nearly orthogonal Latin hypercubes. Biometrika, 96(1), 243–247.

Linkletter, C., Bingham, D., Hengartner, N., Higdon, D., & Ye, K. Q. (2006).
Variable selection for gaussian process models in computer experiments.
Technometrics, 48(4), 478–490. https://doi.org/10.1198/004017006000000222

Marmin, S., & Filippone, M. (2022). Deep gaussian processes for calibration of
computer models. Bayesian Analysis, 1–30. https://doi.org/10.1214/21-
BA1293

Matthews, J. N. S. (1987). Recent developments in crossover designs. Internat.
Statist. Rev., 56, 117–127.

McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd). Chap-
man; Hall.

McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of
three methods for selecting values of input variables in the analysis of
output from a computer code. Technometrics, 21, 239–245.

Montgomery, D. (2009). Introduction to statistical quality control. Wiley.
Morris, M. D., & Mitchell, T. J. (1995a). Exploratory designs for computer

experiments. Journal of Statistical Planning and Inference, 43, 381–402.
Morris, M. D., & Mitchell, T. J. (1995b). Exploratory designs for computational

experiments. Journal of Statistical Planning and Inference, 43(3), 381–
402.

Nocedal, J., & Wright, S. (2006). Numerical optimization. Springer New York.

115



Owen, A. (1994). Controlling correlations in latin hypercube samples. Journal
of the American Statistical Association, 89, 1517–1522.

Pamadi, B., Covell, P., Tartabini, P., & Murphy, K. (2004). Aerodynamic char-
acteristics and glide-back performance of langley glide-back booster.
22nd Applied Aerodynamics Conference and Exhibit, 5382.

Pitchforth, J., Nelson-White, E., van den Helder, M., & Oosting, W. (2020).
The work environment pilot: An experiment to determine the optimal
office design for a technology company. PLOS ONE, 15(5). https://doi.
org/10.1371/journal.pone.0232949

Prentice, R. L. (1988). Correlated binary regression with covariates specific to
each binary observation. Biometrics, 44(4), 1033–1048.

Pukelsheim, F. (1993). Optimal design of experiments. Wiley.
Qian, P. Z. G., Tang, B., & Wu, C. F. J. (2009). Nested space-filling designs for

experiments with two levels of accuracy. Statistica Sinica, 19, 287–300.
Qian, P. Z. G., & Wu, C. F. J. (2009). Sliced space-filling designs. Biometrika,

96, 945–956.
Radaideh, M. I., & Kozlowski, T. (2020). Surrogate modeling of advanced

computer simulations using deep gaussian processes. Reliability Engi-
neering & System Safety, 195, 106731.

Rao, C. R. (1973). Linear statistical inference and its applications. John Wiley
& Sons, Ltd.

Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn, H. P. (1989). Design and analysis
of computer experiments. Statistical Science, 4, 409–423.

Salimbeni, H., & Deisenroth, M. (2017). Doubly stochastic variational infer-
ence for deep gaussian processes. arXiv preprint arXiv:1705.08933.

Santner, T. J., Williams, B. J., & Notz, W. I. (2003). The design and analysis of
computer experiments. Springer.

Sauer, A., Gramacy, R. B., & Higdon, D. (2022). Active learning for deep
gaussian process surrogates. Technometrics, 65(1), 4–18. https://doi.
org/10.1080/00401706.2021.2008505

Schmidt, A. M., & O’Hagan, A. (2003). Bayesian inference for non-stationary
spatial covariance structure via spatial deformations. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 65(3), 743–
758.

Senn, S. (2003). Cross-over trials in clinical research (2nd). Wiley.
Shewry, M. C., & Wynn, H. P. (1987). Maximum entropy sampling. Journal

of Applied Statistics, 14, 165–170.
Silvey, S. D. (1980). Optimal design.

116



Singh, S. P., & Mukhopadhyay, S. (2016). Bayesian crossover design for gener-
alized linear models. Computational Statistics and Data Analysis, 104,
35–50.

Snee, R. D. (1990). Statistical thinking and its contribution to total quality.
The American Statistician, 44(2).

Steinberg, D. M., & and, W. G. H. (1984). Experimental design: Review and
comment. Technometrics, 26.

Steinberg, D. M., & Lin, D. K. J. (2006). A construction method for orthogonal
Latin hypercube designs. Biometrika, 93(2), 279–288.

Stufken, J., & Yang, M. (2012). Optimal designs for generalized linear models.
In K. Hinkelmann (Ed.), Design and analysis of experiments, volume 3:
Special designs and applications. Wiley.

Sun, F., Liu, M.-Q., & Lin, D. K. J. (2009). Construction of orthogonal Latin
hypercube designs. Biometrika, 96(4), 971–974.

Sun, F., Liu, M.-Q., & Lin, D. K. J. (2010). Construction of orthogonal Latin
hypercube designs with flexible run sizes. Journal of Statistical Planning
and Inference, 140(11), 3236–3242.

Sun, F., & Tang, B. (2017). A general rotation method for orthogonal Latin
hypercubes. Biometrika, 104(2), 465–472.

Tang, B. (1993). Orthogonal array-based latin hypercubes. Journal of the Amer-
ican Statistical Association, 88, 1392–1397.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288.

Velásquez, R., & Lara, J. V. M. (2020). Forecast and evaluation of covid-19
spreading in usa with reduced-space gaussian process regression. Chaos
Solitons & Fractals, 136, 109924.

Wang, Y., Liu, S., & Xiao, Q. (2024). Construction of orthogonal-maxpro latin
hypercube designs. Journal of Quality Technology, 56(4), 342–354.

Whittle, P., & Malyutov, M. B. (1973). Some general points in the theory of
optimal experimental design. J. Roy. Statist. Soc. Ser., 35, 123–130.

Williams, D., Heng, I., Gair, J., Clark, J., & Khamesra, B. (2019). A precessing
numerical relativity waveform surrogate model for binary black holes:
A gaussian process regression approach. arXiv: General Relativity and
Quantum Cosmology. https://arxiv.org/abs/1903.09204

Williams, E. (1949). Experimental designs balanced for the estimation of resid-
ual effects of treatments. Australian Journal of Chemistry, 2(2), 149–
168.

117



Winker, P., & Fang, K.-T. (1998). Applications of threshold accepting to the
evaluation of the quality of experimental designs. Mathematical and
Computer Modelling, 27(1-2), 1–15.

Withers, C. S., & Nadarajah, S. (2010). Expansion for functions of determi-
nants of power series. Canadian Applied Mathematics Quarterly, 18(1),
107–114.

Wu, C. F. J. (2015). Post-fisherian experimentation: From physical to virtual.
Journal of the American Statistical Association, 110, 612–620.

Wu, C. J., & Hamada, M. S. (2011). Experiments: Planning, analysis, and
optimization. John Wiley & Sons.

Xiao, Q., Mandal, A., & Deng, X. (2022). Modeling and active learning for ex-
periments with quantitative-sequence factors. Journal of the American
Statistical Association, 119(545), 407–421.

Xiao, Q., Mandal, A., Lin, C. D., & Deng, X. (2021). Ezgp: Easy-to-interpret
gaussian process models for computer experiments with both quantita-
tive and qualitative factors. SIAM/ASA Journal on Uncertainty Quan-
tification, 9(2), 333–353.

Yang, J., Mandal, A., & Majumdar, D. (2016). Optimal design for 2k factorial
experiments with binary response. Statistica Sinica, 26(1), 385–411.

Yang, J., & Liu, M.-Q. (2012). Construction of orthogonal and nearly orthogo-
nal Latin hypercube designs from orthogonal designs. Statistica Sinica,
433–442.

Ye, K. Q. (1998). Orthogonal column latin hypercubes and their application in
computer experiments. Journal of the American Statistical Association,
93, 1430–1439.

Ye, K. Q., Li, W., & Sudjianto, A. (2000). Algorithmic construction of optimal
supersaturated designs. Journal of Statistical Planning and Inference,
90(1), 145–159.

Zhang, M., Dumitrascu, B., Williamson, S., & Engelhardt, B. (2019). Sequen-
tial gaussian processes for online learning of nonstationary functions.
ArXiv, abs/1905.10003.

Zhu, Y., & Fujimura, K. (2010). A bayesian framework for human body pose
tracking from depth image sequences. Sensors (Basel, Switzerland), 10,
5280–5293.

118


