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ABSTRACT 

 Monitoring the biomass of cotton allows agriculturalists to modify their management 

practices to optimize yield and address issues such as damage from storms and impacts of climate 

change. Across the 2018 and 2019 growing seasons, remote sensing images were acquired by the 

U.S. Department of Agriculture (USDA) Agricultural Research Service (ARS) via Uncrewed 

Aerial Systems (UAS). These images provided high spatial and temporal resolution, multispectral 

image data for the analysis of cotton at the Ashburn Cooperator Farm in Ashburn, Georgia and the 

Ty Ty Cooperator Farm in Ty Ty, Georgia. Ground measurements of cotton biomass collected by 

the USDA-ARS harvesting plants in representative plots were used to scale up to the field level 

by using geographic artificial intelligence (GeoAI) machine learning models, Random Forest and 

XGBoost. Results displayed models using the raw bands predicted cotton biomass within the 

designated range and outperformed models using vegetation indices.  
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CHAPTER 1 

INTRODUCTION 

As the human population continues to grow exponentially, the demand to produce 

agricultural products also increases. Due to socioeconomic and population growth, it is estimated 

that the current agricultural production will need to double by the year 2050 to sustain humanity 

(Niu et al., 2019). Remotely sensed imagery and precision agriculture techniques enable the 

precise geolocation of within-field variations of crop health to predict Above Ground Biomass 

(AGB). Geographic technologies and analyses can, therefore, help mediate strains on current food 

and fiber production systems caused by changes in precipitation, temperature, and extreme weather 

events. Numerous studies in a variety of domains have geographically analyzed AGB at broad and 

fine scales including the prediction of global AGB of mangrove forests (Hu et al., 2020), and the 

prediction of AGB within an administrative zone of the Amazon Rainforest (D’Oliveira et al., 

2020). Additionally, the pursuit of predicting AGB for agricultural areas has gained momentum 

over recent years (Bazzo et al., 2023).  

Geographic Artificial Intelligence (GeoAI) is the use of artificial intelligence to solve 

geographic problems, and GeoAI has made significant advances in solving geographical problems 

over the past decades (Scheider & Richter, 2023). In particular, GeoAI uses remote sensing 

techniques to predict AGB at varying scales.  

The use of Uncrewed Aerial Systems (UASs) promotes efficiency and innovation within 

modern agrarian practices, including the prediction of AGB. Numerous GeoAI studies have 

utilized imagery acquired from sensors onboard UASs and machine learning techniques to observe 
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vegetation and predict crop yield in relation to total AGB. For example, maize AGB was predicted 

utilizing Vegetation Indices (VIs) and a back-propagation neural network analysis for agricultural 

areas in North Dakota, U.S. (Panda et al., 2010). Predicting AGB is of critical importance to 

various groups including the agriculturalists, consumers, and government, for individuals from 

these groups can produce an accurate budget, prepare contingency plans, and anticipate market 

demands for specific crops (Deb et al., 2021).  

The State of Georgia, U.S., is an agricultural hub dominated by cotton, peanuts, corn, and 

various other agricultural products (USDA, 2024a and 2024c). The southern region of Georgia, in 

the Coastal Plain of southeastern U.S., is where most of the state’s agricultural products are grown. 

Cotton, (Gossypium hirsutum L.), is one of the most abundant crops within this region which 

generated over 868 million dollars for the state of Georgia in 2023, and this statistic places Georgia 

as the second highest cotton producing state in terms of sales (USDA 2024c). The U. S. 

Department of Agriculture - Agricultural Research Service (USDA-ARS) Southeast Watershed 

Research Laboratory (SEWRL) in Tifton, Georgia, has routinely monitored cotton agricultural 

areas in South Georgia, specifically within the Little River Experimental Watershed (LREW) 

(Coffin et al., 2022; USDA, 2024c).  

The SEWRL and the LREW were created to evaluate the region’s agricultural management 

practices and to further the understanding of hydrologic processes in the Coastal Plain region 

(Bosch et al., 2022). Throughout the history of the SEWRL, over 1000 journal articles have been 

published by SEWRL scientists from varying research fields including assessments of the 

hydrology in the watershed, characteristics of the riparian buffer system, impacts of land use 

changes, remote sensing, and water quality trends (Bosch et al. 2021). Utilizing UASs, based on 

its long history of agricultural research, the SEWRL manages the Gulf Atlantic Coastal Plain 
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(GACP) site within the Long-Term Agroecosystem Research (LTAR) network, a network 

operated by the USDA-ARS dedicated to researching agricultural solutions (Figure 1.1). 

Researchers at the GACP seek a better understanding of spatio-temporal patterns of crop growth 

and correlations with factors such as precipitation to scale crop production at multiple scales within 

and across LTAR regions. 

The purpose for this research is to create a UAS and GeoAI framework and workflow 

which accurately predicts cotton AGB at two study sites within the LTAR-GACP for the 2018 and 

2019 growing seasons. Scaling the prediction of AGB from harvested plants to plot and field levels 

was compared using numerous Vegetation Indices (VIs), remote sensing measurements used to 

assess landcover in addition to vegetation, derived from UAS imagery versus simply using the 

UAS raw bands, the latter being standard outputs from popular photogrammetric software, Pix4D 

Figure 1.1: A map that displays all 18 LTAR agroecoregions across the United 

States. Each region consists of major agroecosystems such as cropland, 

graze/rangelands, and integrated systems, respectively (Bean et al., 2021). 
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(Ayanlade, 2017). The importance of scaling is critical to this project, as the stakeholders are 

extremely interested in scaling from plot and field level to regional levels. Additionally, a time-

series of Normalized Difference Vegetation Index (NDVI) imagery acquired over the 2018 and 

2019 growing seasons was used to determine phenological changes related to rainfall. 

STUDY AREA  

The overarching study area is the Gulf Atlantic Coastal Plain (GACP) LTAR site, containing 49 

counties from Georgia and three from Florida, covering an area of 61,418 km2 (Figure 1.2, 

Coffin et al., 2024). The GACP is located within the Southeastern Coastal Plain physiographic 

Figure 1.2: Map of the Gulf Atlantic Coastal Plain (GACP) boundary (outlined in 

black) intersected with county boundaries (indicated in red) as it spans from northern 

Florida through Georgia’s Coastal Plain. The areas highlighted as white are classified 

agricultural land uses derived from the 2018 Cropland Data Layer (Stone, 2023). 

 

https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php
https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php
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region, and encompasses a majority of southern Georgia stretching from the northern portion of 

the Florida panhandle to the South Carolina border. It includes various agricultural, climatic, 

environmental, and social characteristics of the southeast U.S. (USDA, 2024b). The GACP has a 

topography of mild relief, mainly because it is entirely situated within the relatively flat 

Southeastern Coastal Plain. Elevation varies across the GACP ranging from 12 to 163 m above 

sea level (masl), with the average elevation being approximately 75 masl (Coffin et al., 2024a). 

Due to landscape consistency, numerous features are homogenous throughout the region 

including farming practices, geology, land use, and soil composition (Strickland, 2016b). The 

GACP has relatively high average annual rainfall at 1200mm, a mean annual temperature of 

19°C, the coolest month is January at 11°C, and the warmest month is July at 27°C (Coffin et al., 

2024a). Models predict extreme rainfall events to increase while moderate rainfall events 

decrease which heightens the potential for severe drought and flood risk (Coffin et al., 2024a).  

Watering practices vary dramatically from systems of irrigation to natural precipitation. As 

drought conditions persist, supplying croplands with irrigation will become vital as seasonal 

precipitation does not perfectly align with crop production (Coffin et al., 2024a). The Fifth 

National Climate Assessment report of the U.S. Global Change Research Program (USGCRP) and 

the National Centers for Environmental Information of the National Oceanographic and 

Atmospheric Administration (NOAA) detail that agricultural systems within the region are 

subjected to concern due to increasing climatic trends of extreme heat and severe weather (NCEI 

2023, USGCRP 2023). According to statistics derived from the USDA Cropland Data Layer, 

cotton overwhelmingly dominates the agricultural landscape within the GACP region (Figure 1.3) 

(USDA, 2024). The home institution for the GACP region of the LTAR network is the Southeast 

Watershed Research Laboratory (SEWRL) located in Tifton, Georgia (see Figure 1.2). One focus  
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of research by SEWRL is LTAR activities in collaboration with scientists from universities, other 

federal agencies and private landowners (USDA, 2024b). Researchers are committed to promoting 

sustainability within agricultural production by developing biofuels crops, incorporating 

production on marginal lands, integrating crop-livestock production, minimizing the importation 

of animal feeds, reducing agricultural water demand, and continuing to understand human impacts 

on agricultural landscapes (USDA, 2024b). The LREW, a 334 km2 sub-watershed within the 

GACP region, is one of 12 national benchmark watersheds of key interest to the USDA-ARS 

(Sullivan et al., 2007). As a major U.S. interstate basin, the LREW is the headwaters of the 

Suwannee River Basin which begins in Georgia and empties into the Gulf of Mexico (Bosch et al., 

2007). Within the LREW are two privately owned farms which have cooperative agreements with 

the SEWRL. They have been designated as the Ashburn Cooperator Farm (ACF), a non-irrigated 
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https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php
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farm located in Ashburn, Georgia (Figure 1.4a), and the Ty Ty Cooperator Farm (TCF), an 

irrigated farm located in Ty Ty, Georgia (Figure 1.4b). These farms participate in the LTAR 

Network monitoring research for GACP and SEWRL researchers have been collecting AGB, soils, 

and biological data on the cropping systems here since 2014 (Coffin et al. 2024a). 

Figure 1.4: The Ashburn Cooperator Farm (a) and the Ty Ty Cooperator Farm (b) study site 

locations monitored by the LTAR GACP network, and (c) the surrounding contextual area).  

 

b a 

c 
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CHAPTER 2  

LITERATURE REVIEW 

Above Ground Biomass (AGB) is an important agronomic parameter monitored in field 

studies, and it is frequently used to assess crop growth, crop health, the effectiveness of agricultural 

practices, and the carbon sequestration capacity of crops (Bendig et al., 2015). The accurate 

estimation of biomass is therefore key to understanding the current conditions impacting crops, 

and it is critical to predict biomass at varying scales. Predicting biomass can be accomplished using 

remotely sensed imagery and machine learning methods that fall within a Geographic Artificial 

Intelligence (GeoAI) framework, which is the application of AI techniques in geography and Earth 

sciences (Janowicz et al., 2019). Measuring biomass traditionally requires destructive 

measurements via harvesting, weighing, and recording crops, and this process is laborious, time-

consuming, and extremely difficult to apply at broad scales for long-term measurements (Yang et 

al., 2018).  

Non-destructive broad-scale biomass estimations have been previously pursued when 

attempting to measure AGB over vast areas of vegetation from remotely sensed images in relation 

to derived VIs computed from band ratios. One such study, pursued by Perry et al. (2014), utilized 

MODIS imagery to predict dryland wheat AGB across 37 paddocks in north-western Victoria, 

Australia. Results from this study yielded satisfactory metrics with a R2 = 0.81 and a RMSE value 

of 164 kg ha-1, but the spatial resolution of MODIS at 250 m, 500 m, or 1000 m depending on the 

band, is often too coarse to implement this framework for smaller farms. MODIS does have a 

tradeoff of high return time, but for this study the resolution is coarse. At a 30-m resolution, 
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Landsat imagery provides enhanced visualization for AGB prediction. Using imagery acquired by 

Landsat-7 Enhanced Thematic Mapper Plus and Landsat-8 Operational Land Imager sensors, 

winter wheat AGB was predicted for two growing seasons across 22 fields in southwestern 

Uruguay using a Simple Regression Model (SRM) with results indicating a RMSE value of 1532 

and 966 kg ha-1 for 2013 and 2014, respectively (Gaso et al., 2019). At a 10-m resolution with 13 

bands ranging from the ultra-blue to the short-wave portion of the electromagnetic spectrum, 

Sentinel satellite imagery is often utilized for numerous agricultural applications. One study 

predicted sorghum AGB using Sentinel-2A and Sentinel-2B imagery across 42 fields near 

Bologna, Italy where an eXtreme Gradient Boosting – xgbtree (GBT) model performed 

consistently well (r ≥ 0.70) in comparison to 13 other machine and deep learning models 

(Habyarimana et al., 2019). While satellite remote sensing is useful for monitoring biomass at 

broad scales, freely available satellite data are often constrained by spatial or radiometric 

resolution limitations which are unsuitable for precision agriculture, and satellite data are also 

subject to atmospheric conditions which may produce cloudy or unusable data (Wang et al., 2021).  

Multispectral sensors mounted in crewed aircraft can be used to image a large area and 

spatial range, but they are typically expensive to acquire. Flying higher to capture a larger area 

within each frame and reduce costs may result in image data of relatively high spatial resolution, 

but the high cost is suitable for this project (Sofonia et al., 2019). UASs, on the other hand, have 

dramatically altered the ability to acquire imagery at a lower cost for precision agriculture. The 

utilization of UASs provides an optimized approach to farming tasks including biomass prediction, 

chemical spraying, field mapping, inventory counting, plant stress detection, and weed 

management. Additionally, UASs can fly visible, multispectral, hyperspectral and LiDAR data in 

different trajectories to photogrammetrically produce 3D models and maps (Hassler et al., 2019). 
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UASs provide a nondestructive approach to obtain spectral, structural, and texture features of 

agricultural areas across differing spatiotemporal scales (Jiang et al., 2019). Data from sensors 

mounted on UASs are suitable for high resolution, spatially explicit estimations of AGB, and they 

have great application potential for precision agriculture (Poley et al., 2020).  

One application of utilizing UASs for precision agriculture was proposed by Gil-Docampo 

et al. (2020), and the authors detailed a methodology to predict herbaceous crop biomass using 

optical cameras and Structure from Motion (SfM) photogrammetry. They computed the difference 

between a digital surface model (DSM) and a bare Earth digital terrain model (DTM) to create a 

canopy height model (CHM). This method can be used to determine AGB by using an in-situ 

calibration density factor that relates crop volume and biomass, and the proposed method was 

intended to be generalized for the extrapolation of AGB in croplands by creating a CHM (Gil-

Docampo et al., 2020). The comparison of SfM-based CHMs and LiDAR-based dense point clouds 

for the estimation of AGB for pasture grass has been analyzed by Walter et al. (2018). For 

clarification, it must be noted that DSM data can be produced from filtering the first returns of 

LiDAR point clouds or from photogrammetric SfM with multiple overlapping aerial images. No 

significant difference was observed between the AGB estimation from dense point clouds and 

CHMs; however, when the objective of the UAS survey is to precisely monitor crops, the dense 

point cloud data is preferred. If the purpose is simply to predict field biomass with little 

requirement of details, the SfM-based DSM data provide the values with comparable accuracy and 

enhanced efficiency (Walter et al., 2018). Additionally, Walter et al. (2018) identified that point 

cloud data derived from a UAS can accurately predict wheat volume with a strong correlation to 

AGB; and canopy height and harvest index values derived from the point cloud data correlated 

well to in-situ measurements.  
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Vegetation Indices (VIs) are derived from two or more spectral bands of remotely sensed 

imagery to assess and depict vegetation characteristics (Jensen, 2007). VIs are extremely useful 

for monitoring plant processes including AGB estimation, groundwater withdraw, net carbon 

fixation, phenology, primary productivity, and rainfall use efficiency (Glenn et al., 2008). One 

commonly used VI is the Normalized Difference Vegetation Index (NDVI) that is a ratio of the 

difference divided by the sum of the surface reflectance of red and near infrared (NIR) bands 

(Rouse et al. 1974, Kriegler et al. 1969). Glenn and Tabb (2018) note NDVI is used to assess green 

biomass based on the relatively strong absorption of red light and reflectance of NIR by 

chlorophyll in the leaves of healthy plants.  They also noted NDVI was recognized as a measure 

of vegetation health because a reduction in chlorophyll production due to stressors such as disease, 

insect damage, lack of nutrients, salinity or drought, would result in an increase in red reflection 

and subsequent decrease in NDVI. Variations on NDVI soon emerged. For example, AGB 

estimation for rice crops in Portugal was pursued by Gerardo & de Lima (2023) using VIs derived 

from UAS RGB imagery. Results detailed that RGB derived indices Visible Atmospherically 

Resistant Index (VARI) and Triangular Greenness Index (TGI) provide a cost-effective for rice 

crop monitoring and management (Gerardo & de Lima., 2023). 

While edible crops are of obvious importance to agriculturalists, cotton is an extremely 

valuable fiber crop typically used for textile purposes. Cotton breeding programs and management 

purposes are of vital importance, so it is critical for agriculturalists to monitor AGB and yield for 

precision agriculture (Siegfried 2021). In one study, VIs derived from UAS imagery were 

compared to cotton yield over numerous years, and NDVI produced more accurate predictions of 

yield than the Normalized Difference Red Edge Index (NDRE), which indicates that NDVI is more 

suitable for quantifying cotton yield (Siegfried 2021). As a temporal feature, NDVI was included 
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along with non-temporal and qualitative data in a machine learning framework to predict cotton 

yield, and results of an artificial neural network predicted yield with reasonable accuracy (R2 = 

0.72) even at 70 days after planting. Deep Learning methods have also been explored for predicting 

cotton AGB and yield. Li et al. (2022) employed a modified DCNN model using pixel-level 

segmentation to predict cotton yield in Xinjiang, China, and results detail an average error in yield 

estimates as low as 6.2% (Li et al., 2022). The relationship between cotton AGB and yield is 

imperative since the cotton fiber represents 90% of the total economic value (Singh et al., 2023). 

Contrary to other crops cotton has a low harvest index, the ratio of harvested biomass to yield, of 

approximately 15-20% (Constable & Bange, 2015). In this research, the primary focus was 

predicting cotton AGB, but the relationship between AGB and yield was explored.  

Stone (2023) pursued a methodology to predict cotton AGB using a Random Forest 

regression with ArcGIS Pro for the 2018 growing season at the Ashburn Cooperator Farm in 

Ashburn, Georgia. A total of 12 VIs were calculated to predict cotton AGB. Pursuing the Random 

Forest regression within ArcGIS Pro required a specific number of training points to be extracted 

from biomass sample plots, in this case 6,000, which was approximately 20% of the pixels within 

each biomass sample plot. To purse agricultural regionalization, the models were then scaled up 

across space to the field level.  

This research builds upon Stone’s (2023) workflow and results. The comparisons of 

predicted AGB based on ground-based, plant harvest measurements scaled up to plot and field 

levels were performed using an additional machine learning algorithm, time-series UAS imagery, 

and derived VIs for two different farms over two growing seasons. An additional 10 VIs, totaling 

21, were calculated to observe if more VIs increased model accuracy. Random Forest and 

XGBoost regressions were pursued using the python library scikit-learn to compare predicted 
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cotton AGB across the 2018 and 2019 growing seasons at the Ashburn Cooperator Farm which 

relies on rainfall and the irrigated Ty Ty Cooperator Farm. Random Forest models were first 

detailed by Chen (2016), and these models can increase the tree-based size to have higher accuracy 

for training and unseen data. XGBoost models were first detailed by Tin (1995), and these models 

use decision trees where new trees correct the errors made by previous trees. Working with python 

allows for enhanced user flexibility during hyperparameter turning. With this methodology, all 

pixels are utilized within the biomass sample plots, which provides a more robust model for cotton 

AGB prediction.  

OBJECTIVES 

 Utilizing a GeoAI framework, this study utilizes in-situ biomass data and UAS imagery to 

predict cotton AGB at plot and field level scales for the Ashburn and Ty Ty Cooperator Farms 

across the 2018 and 2019 growing seasons. 

Objective 1: Reprocess UAS Imagery and Compute Weighted Biomass 

 The first objective of this study is to reprocess UAS imagery acquired by the USDA for 

two farms within the LREW watershed that represent the LTAR GACP region. The reprocessed 

UAS imagery acquired on multiple dates during the 2018 and 2019 growing seasons ensures 

correct radiometric outputs and improved computation of weighted biomass within USDA field 

sample plots. Original processing contained UAS flight lines to and from the launch station 

between battery swaps, so sections of the field can look irregularly illuminated due to changing 

light conditions. Additionally, for a few UAS flight dates, a radiometric calibration error existed 

for a single image which produced incorrect radiometric outputs. After manually identifying and 

removing the corrupt images within the image properties editor, the data were reprocessed using 

the ‘Camera and Sun Irradiance’ parameter, and the correct outputs were prepared to compute the 
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Weighted Wet and Dry Biomass, as described below, for the sample plots from both the Ashburn 

and Ty Ty Cooperator Farms.  

Hypothesis: Reprocessed UAS imagery will enhance analysis of cotton AGB to produce 

higher accuracy for total end of season AGB. This will produce higher confidence in the end of 

season AGB predictions.  

Objective 2: Predict AGB for Cotton Fields at Ashburn and Ty Ty farms 

 The second objective examines the use of 21 VIs to predict cotton AGB at plot and field 

level scales for the end of season harvest dates at the Ashburn and Ty Ty Cooperator Farms for 

the 2018 and 2019 growing seasons. After running a correlation matrix, the most significant VIs 

are identified and implemented for predicting biomass for the remainder of the 2018 and 2019 

biomass dates. Models using only the raw UAS bands plus NDVI are also compared against 

models using the best VIs for the end of season harvest dates. The comparison of results between 

the two model types is significant because the raw bands plus NDVI are output during standard 

USDA photogrammetric processing, so it is noteworthy to observe if the effort of computing and 

using numerous VIs increases model accuracy. This analysis predicts cotton AGB grown in 

irrigated vs. non-irrigated fields (Ashburn and Ty Ty farms, respectively) during a year of 

relatively normal precipitation in 2018 and the 2019 drought in Georgia. 

 Hypothesis: Models using only the raw bands and NDVI will have adequate results for 

predicting cotton AGB, but the models incorporating the best of 12 VIs will increase model 

accuracy.  

Objective 3: Analyze Cotton Growth and Development in Relation to Precipitation  

 The third objective compares cotton growth and development over the entirety of the two 

growing seasons for both study sites based on UAS-derived time-series of computed NDVI. 
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Precipitation trends are examined in comparison to the NDVI time-series and the predicted 

biomass values to examine any existing relationships among rainfall/irrigation, cotton crop health 

indicated by NDVI values and predicted AGB.  

 Hypothesis: Cotton AGB predictions will be heavily correlated with the results from the 

NDVI time series and the precipitation analysis. Study sites with higher NDVI and precipitation 

values will yield higher cotton AGB predictions. 

DATA SOURCES 

 Remote Sensing images of the Ashburn Cooperator Farm and the Ty Ty Cooperator Farm 

were acquired by the USDA-ARS from a MicaSense RedEdge-3 sensor mounted to a DJI Matrice 

100 (Coffin et al., 2023, Coffin et al., 2024b, Table 2.2). The sensor produced output images at a 

9-cm spatial resolution and contained a total of five spectral bands including: blue, green, red, red-

edge, and near-infrared (Table 2.1). The data were reprocessed as a part of Objective 1 and 

reflectance maps of the raw bands were output, in addition to NDVI maps for use in this research 

(Figure 2.1).   Precipitation analysis of rainfall trends were conducted for the 2018 & 2019 growing 

Table 2.1: The center wavelength and bandwidth of 

the five MicaSense multispectral sensor bands.  
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seasons using public access data from STEWARDS (STEWARDS, 2025). Datasets from 

STEWARDS recorded total daily precipitation in mm, and the data for each study site and time  

frame were manually reorganized to display cumulative precipitation in mm beginning at planting 

and ending on October 14, which is the latest defoliation date across study sites and years. As 

cotton is defoliated, the plant essentially dies, so no precipitation data should be considered for 

unproductive plants. Two of the four study sites and years did not contain defoliation data, so the 

latest defoliation date of October 14th was used as the precipitation cutoff for all study sites and 

years. Researchers at the USDA-ARS SEWRL collected field measurements of harvested cotton 

throughout the growing season in 2018 and 2019. Measurements included plant height, density, 

and water content, along with wet and dry biomass from defined plot boundaries distributed within 

the farm fields and were published in the National Agricultural Library Ag Data Commons 

repository (https://agdatacommons.nal.usda.gov/; Coffin et al., 2023; Coffin et al., 2024b). To 

acquire the biomass measurements, researchers followed a systematic approach that allowed them 

to harvest the crop and measure biomass while also preserving the integrity of the surrounding 

plants (Figure 2.2). Cotton plants were sampled from within a 30-m x 10-crop row area, which are 

hereafter referred to as the sample plots. In 2019, a total of 9 biomass sample plots were used at 

the Ashburn Cooperator farm, and 6 biomass plots were used in 2018. For 2019, the Ty Ty 

Cooperator Farm had 3 biomass sample plots, but for 2018, only 2 biomass sample plots were 

used. A diagram of the collection protocol for 1 x 1 m harvest areas, hereafter called sub-plots, 

within the 30-m x 10-row sample plots is shown in Figure 2.2 (Coffin et al., 2024b). Management 

practices were considered for this study. The planting date was May 25th for the ACF in 2018, May 

24th for the TCF in 2018, May 16th for the ACF in 2019, and May 15th for the TCF in 2019. The 

harvest date was November 23rd for the ACF in 2018, October 30th for the TCF in 2018, October 

https://agdatacommons.nal.usda.gov/
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28th for the ACF in 2019, and November 4th for the TCF in 2019. The TCF was irrigated when the 

agriculturalist deemed it necessary. The ACF is unirrigated, so no additional water was provided. 

 

UAS Flight Date 

(MM/DD/YYYY) 
Ashburn Cooperator Farm Ty Ty Cooperator Farm 

10/24/2019 ✓  

10/07/2019  ✓ 

09/19/2019  ✓ 

09/18/2019 ✓  

08/26/2019  ✓ 

08/23/2019 ✓  

07/31/2019 ✓  

07/30/2019  ✓ 

07/08/2019  ✓ 

07/05/2019 ✓  

06/13/2019 ✓  

10/17/2018 ✓  

10/15/2018  ✓ 

09/21/2018 ✓  

09/20/2018  ✓ 

08/31/2018 ✓  

08/30/2018  ✓ 

08/07/2018  ✓ 

08/03/2018 ✓  

07/13/2018  ✓ 

07/11/2018 ✓  

06/19/2018  ✓ 

06/18/2018 ✓  

Table 2.2: UAS flight dates used in this study which 

correlate with in-situ biomass collections.  
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Figure 2.1: The Ashburn Cooperator Farm imagery with bands, indices, and color 

composite with the blue band (a), green band, (b), red band (c), rededge band, (d), 

near-infrared band (e), NDVI (f), RGB composite (g), and Color Infrared composite (h). 

a 

d 

g h

e f 

c b 
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Figure 2.2: Sample site map showing data collection plan. Numbers across the top 

indicate meter length subsections (15-1, 1-15) of the sample site. Legend: A, left side 

of sample site; B, right side of sample site; SM, soil moisture measurement location 

(orange); PH, plant height measurement location; D1 through D14 were internal 

flag locations; yellow colored rows indicate areas where no destructive sampling 

occurred; green numbered blocks indicate biomass sampling locations by sortie 

number (x indicates no sample) (Coffin et al., 2024b, figure used with permission). 
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Chapter 3 

METHODS 

Methods for Objective 1: Reprocess UAS Imagery and Compute Weighted Biomass 

UAS imagery of the Ashburn and Ty Ty Cooperator Farms was originally processed by 

SEWRL personnel using Pix4D Mapper by Pix4D S.A. to generate reflectance orthoimage 

mosaics of the study areas during 2018 and 2019. However, due to sensor errors and the presence 

of nonparallel flight lines, the data had to be reprocessed in this research to ensure correct 

radiometric outputs. Images acquired within the departure and return flight lines from the UAS 

launch location were manually excluded to ensure changing light conditions did not disrupt the 

appropriate reflectance values across the study sites. Additionally, there were few flight dates 

where an unexplained radiometric calibration error existed for a single image which produced 

incorrect orthomosaics, so a handful of flight dates contained corrupted images which would 

produce irregular reflectance values if not excluded from the processing (Figure 3.1). Upon 

removing the problematic images, the index and reflectance maps were reprocessed. The process 

for generating the index and reflectance map uses Pix4D to perform SfM, create a DSM and 

photogrammetrically orthorectify each of the images per flight. The images are then stitched 

together to create a seamless multispectral orthomosaic of 9-cm spatial resolution. Raw UAS 

image bands were initially clipped to the boundary of the crop fields, and 21 VIs were then 

calculated at field level. To further examine vegetation characteristics including cotton growth and 

development and precipitation responses, 9 more VIs were utilized in addition to Stone’s (2023) 

original VIs derived from the UAS imagery. In total, 21 VIs were used to explore any advantages 
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of using additional VIs that are variations of NDVI (e.g., TDVI), use the RedEdge band (e.g., RRI1 

and RRI2) and use only visible bands (e.g., GDVI)  (Table 3.1). Raw bands and VIs were clipped 

to the boundary of each 30-m x 10-row sample plot. The raw bands and VIs were then resampled 

using a bilinear interpolation method to ensure all data possess identical dimensions which is 

critical for running the machine learning models. The methodology by Stone (2023) was replicated 

in this study where NDVI values within each 30-m x 10-row sample plot were averaged, and on a 

per pixel basis, NDVI was divided by the average NDVI value for the plot to produce the Weighted 

NDVI Layer which depicts the distance of each pixel’s NDVI value from the mean NDVI within 

the given plot. The Weighted NDVI Layer was then multiplied by the biomass per pixel variable 

which is computed by multiplying the average wet weight of harvested biomass for the plot in 

grams, the plant density per square meter, and the unit conversion coefficient. The unit conversion 

coefficient is calculated by dividing the area of one UAS pixel by the area of one meter squared, 

which results in (9cm x 9cm / 100cm x 100cm) = (81cm2 / 10,000cm2) = 0.0081. This coefficient 

parses the  average wet weight biomass times the plant density of the plot, to each individual UAS  

Figure 3.1: The UAS orthomosaic of the Ashburn Cooperator Farm before 

reprocessing (a). Note the blue discoloration in the corners of the image. The 

UAS orthomosaic after reprocessing (a) has corrected radiometric calibration.  
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Vegetation Index Name Abbr. Equation Reference 

Chlorophyll Green Index CGI  
𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁
 − 1 Gitelson and Merzlyak, 1994 

Chlorophyll Index RedEdge CIrededge 
(𝑁𝐼𝑅)

(𝑅𝐸𝐷𝐸𝐷𝐺𝐸)
− 1 Gitelson et al., 2003 

Chlorophyll Vegetation Index CVI 
(𝑁𝐼𝑅 ∗ 𝑅𝐸𝐷)

(𝐺𝑅𝐸𝐸𝑁2)
 Vincini et al., 2008 

Enhanced Vegetation Index EVI 2.5
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

 𝑁𝐼𝑅 +  6 ∗ 𝑅𝐸𝐷 − 7.5 ∗ 𝐵𝐿𝑈𝐸 + 1
 Huete et al., 2002 

Enhanced 

Vegetation Index (2-band) 
EVI2 2.5 ∗  

(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 2.4 ∗ 𝑅𝐸𝐷 + 1)
 Jiang et al., 2008 

Green Difference Vegetation 

Index 
GDVI NIR – GREEN Tucker, 1979 

Green Leaf Index GLI 
(2.0 ∗ 𝐺𝑅𝐸𝐸𝑁 − 𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸)

(2.0 ∗ 𝐺𝑅𝐸𝐸𝑁 +  𝑅𝐸𝐷 + 𝐵𝐿𝑈𝐸)
 Gobron et al. 2000 

Green Normalized 

Difference 

Vegetation Index 

GNDVI 
(𝑁𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁)

(𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁)
 Gitelson et al., 1996 

Modified Soil 

Adjusted Vegetation Index 
MSAVI 

(2 ∗ 𝑁𝐼𝑅 + 1 − (((2 ∗ 𝑁𝐼𝑅 + 1)2 − 8 ∗  𝑁𝐼𝑅 − 𝑅𝐸𝐷 )0.5)

2
 Qi et al., 1994 

Normalized 

Difference Red Edge 
NDRE 

(𝑁𝐼𝑅 − 𝑅𝐸𝐷𝐸𝐷𝐺𝐸)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷𝐸𝐷𝐺𝐸)
 Gitelson and Merzlyak, 1994 

Normalized Difference Vegetation 

Index 
NDVI 

(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 Rouse, 1974 

Normalized 

Difference Water Index 
NDWI 

(𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅)

(𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅)
 McFeeters, 1996 

Optimized Soil 

Adjusted Vegetation Index 
OSAVI 

(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 0.16)
 Rondeaux et al., 1996 

Normalized Difference 

Red/Green Redness Index 
RI 

(𝑅𝐸𝐷 − 𝐺𝑅𝐸𝐸𝑁)

(𝑅𝐸𝐷 + 𝐺𝑅𝐸𝐸𝑁)
 Escadafal and Huete, 1991 

RedEdge Ratio Index 1 RRI1 
𝑁𝐼𝑅

𝑅𝐸𝐷𝐸𝐷𝐺𝐸
 Ehammer et al., 2010 

RedEdge Ratio Index 2 RRI2 
𝑅𝐸𝐷𝐸𝐷𝐺𝐸

𝑅𝐸𝐷
 Ehammer et al., 2010 

Soil Adjusted  

Vegetation Index 
SAVI  1 + 𝐿 ∗  

(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿)
 Huete, 1988 

Simplified Canopy Chlorophyll 

Content Index 
SCCCI 

𝑁𝐷𝑅𝐸

𝑁𝐷𝑉𝐼
 Raper and Varco, 2015 

Simple Ratio SR 
𝑁𝐼𝑅

𝑅𝐸𝐷
 Jordan, 1969 

Transformed Difference 

Vegetation Index 
TDVI 1.5 ∗  

𝑁𝐼𝑅 − 𝑅𝐸𝐷

 𝑁𝐼𝑅2 + 𝑅𝐸𝐷 + 0.5
  Bannari et al., 2002 

Triangular Vegetation Index TVI 0.5(120(NIR – GREEN) – 200(RED – GREEN)) Broge and Leblanc., 2001 

Visible Atmospherically 

Resistant Index 
VARI 

(𝐺𝑅𝐸𝐸𝑁 − 𝑅𝐸𝐷)

(𝐺𝑅𝐸𝐸𝑁 + 𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸)
 Gitelson et al., 2004 

Table 3.1: The 21 Vegetation Indices used for initially predicting cotton AGB plus NDVI, 

along with the citation for the source of the index equation. The indices which are bold 

and underlined are the new indices which Stone (2023) did not pursue in his methodology. 
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pixel. The AGB protocols are extensively documented by the LTAR (Wilke et al., 2024). 

Additionally, note the weights in grams are the sum of all 10 plants harvested for measuring 

biomass, so dividing by an additional factor of 10 gives the average biomass weight in grams for 

each specific harvest date. Inputting the division by a factor of 10 to the unit conversion coefficient 

provides a simple multiplication of three numbers to acquire the biomass in grams per pixel, 

namely, the average fresh weight, referred from now on as the average wet biomass weight, the 

plant density, and the unit conversion coefficient of 0.00081. The biomass per pixel variable is 

multiplied by the Weighted NDVI Layer which produces the Weighted Biomass Layer, and this 

layer details the calculated biomass on a per pixel basis within each sample plot for the 

corresponding dates (Figure 3.2 and Figure 3.3).  

Methods for Objective 2: Predict AGB for Cotton Fields at the Ashburn and Ty Ty Farms  

 After acquiring the Weighted Biomass Layer for each corresponding plot and date, as the 

ground-measured AGB, these data are used in machine learning models to predict cotton AGB 

first at the plot level and then at the field level for the Ashburn and Ty Ty farms for 2018 and 2019. 

Figure 3.2: Workflow for producing a Weighted Biomass Layer for a singular biomass layer. 
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Predicted AGB at the plot level are optimized by comparing predictions made with the five raw 

bands and NDVI vs. predictions using all or some of the additional 21 VIs computed from the 

UAS imagery. Explanatory variables included the raw bands and the selected vegetation indices 

which were used for biomass prediction. Comparatively, predicted cotton AGB is the response 

variable. Once the best models are determined, optimized input variables were reshaped into a 2D 

array using the NumPy reshape function which gives a new shape to the input array without 

changing the data. The reshaped data were input to the machine learning algorithms to predict 

AGB for the entire field. Specific methods to first predict AGB at the plot level are depicted in the 

workflow shown in Figure 3.4. This workflow was repeated with the substitution of the XGBoost 

machine learning algorithm for the Random Forest Regressor. The train/test split for this project 

was 80/20 respectively. The ground-measured AGB data per UAS pixel for the sample plots were 

imported into python along with the field-level UAS surface reflectance for the five UAS bands 

Figure 3.3: True color, NDVI, and predicted dry biomass images 

of sample plot 14 at the Ashburn Cooperator Farm (Stone, 2023).  
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and 22 computed VIs. Using scikit-learn, a Python machine learning library, AGB, was first 

predicted at the 30-m x 10-row plot level using Random Forest and XGBoost models. Detailed in 

Table 3.1 above, 21 VIs were utilized to predict AGB of cotton. These 21 VIs were derived from 

each individual UAS flight date, and the additional 10 were selected because they are well-known 

VIs utilized for vegetation analysis, many of which are slight variations of more common indices. 

After achieving appropriate results, the AGB was predicted for the end-of-season dates for both 

study sites in 2018 and 2019.  

Within the Random Forest and XGBoost models, a test-train split of 80% / 20% was 

applied. All other model parameters were left as default for further exploration of model 

optimization. A correlation matrix was produced to determine the most significant, i.e., 

uncorrelated, indices. and these were used to predict AGB for the remainder of the biomass UAS 

Figure 3.4: Workflow, reading from right to left, for predicting cotton AGB at plot-level.  

 

Figure 3.5: Workflow for predicting cotton AGB at field-level.  
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flight dates. A root mean squared error metric and mean absolute error metric was performed to 

evaluate model performance and error. Optimal models were then extended from the plot to the 

field levels using field-level bands and indices to predict AGB of cotton in fields of irrigated vs. 

non-irrigated farms and 2018 vs. 2019 trends in AGB and natural rainfall (Figure 3.5). 

Methods for Objective 3: Analyze Cotton Growth and Development in Relation to Precipitation  

Precipitation datasets were acquired from public access data available from STEWARDS 

(STEWARDS, 2025). Precipitation analysis to compare rainfall trends was conducted by 

calculating and comparing the cumulative precipitation throughout the 2018 and 2019 growing 

seasons for both study sites. The time series of rainfall from 2018 with a typical rainfall trend in 

terms of amount, timing and duration, was compared to rainfall trends during the drought year of 

2019. Trends in cotton vegetation health or greenness were compared to rainfall trends by 

computing NDVI from multiple dates of UAS imagery acquired for the Ashburn and Ty Ty farm 

fields. NDVI analysis was conducted by first clipping the multi-date output NDVI raster datasets 

to the extent of the corresponding fields. Field-level NDVI was calculated by averaging all values 

to produce a single median NDVI value, used for removing the skew from outliers, for the 

corresponding UAS flight date. NDVI values for each flight date were plotted over time to analyze 

the cotton growth and development in relation to precipitation.  
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Chapter 4 

RESULTS 

Results for Objective 1: Reprocess UAS Imagery and Compute Weighted Biomass 

 Multispectral UAS datasets across the 2018 & 2019 growing seasons at the Ashburn and 

Ty Ty Cooperator Farms were reprocessed due to issues with the multispectral sensor and lighting 

conditions. Thermal and visible imagery datasets were not reprocessed during this study. A total 

of 55 flight dates were reprocessed totaling in excess of 1.35 TBs of data. Only 23 of the UAS 

flight dates were utilized for the biomass prediction aspect of this research because they correspond 

with the dates of in-situ data collection of AGB (see Table 2.2). The NDVI and precipitation 

analysis required 41 of the UAS datasets. All reprocessed datasets had the nonparallel flight lines 

where the UAS departed from and returned to the launch site removed to ensure changing light 

conditions did not produce radiometrically incorrect orthomosaics. The remaining reprocessed 

datasets were from different locations not analyzed in this study.  

Additionally, 4 datasets contained corrupt data, where out of the thousands of images used 

for photogrammetric processing, a single image lacked radiometric correction, and no sun 

irradiance information was provided (Figure 4.1). Within Pix4D Mapper, the processing software 

used to produce the orthomosaics, the corrupt images had to be manually removed within the 

Image Properties Editor before the Correction Type option ‘Camera and Sun Irradiance’ could be 

selected within the Index Calculator Pane (Figure 4.1).  Located entirely at the Ashburn 

Cooperator Farm, the datasets with corrupt images are entitled ‘L_2018020’ (11 July 2018), 

‘L_2018025’ (3 August 2018), ‘L_2018038’ (17 October 2018), and ‘L_2019008’ (30 April 2019). 
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Upon reprocessing the imagery, output bands were then able to produce field level VIs which were 

then clipped down to sample plot level for the computation  of the Weighted Biomass Layers. A 

total of 234 Weighted Biomass Layers were computed for this research with half of the layers 

representing wet biomass and the remaining half representing dry biomass.  

Results for Objective 2: Predict AGB for Cotton Fields at the Ashburn and Ty Ty Farms 

A total of 21 Vegetation Indices (VIs) were computed from the UAS multispectral imagery 

using band ratios and formulas described in Table 3.1 as potential predictors of AGB. Collinearity 

analysis was performed to assess associations among the predictor variables and remove redundant 

variables from the model. In this way, only the most important VIs contributing to predicted AGB 

were identified. Collinearity matrices were produced for 21 VIs, wet and dry biomass and wet and 

dry biomass per pixel for each year of UAS imagery, i.e., 2018 and 2019, for both the ACF and 

TCF farms (Appendix A).  

Variables listed on the X axis can be paired with variables listed on the Y axis and the 

color-coded value in the intersecting cell indicates the strength of the correlation. A bright red cell 

with values approaching 1.00 indicates a pair of variables with strong positive collinearity, i.e., as 

Figure 4.1: The correction type for the raw bands before  

(left) and after (right) removing corrupt images. 
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measurements of the predictor variable increase measurements of the paired variable also increase. 

Bright blue cells with collinearity values approaching -1.00 conversely indicate variables that are 

negatively correlated. Ramped colors and values ranging between 1.00 and -1.00 indicate varying 

degrees of collinearity. 

Figure 4.2 depicts the collinearity matrix for the ACF in 2019 and represents the findings 

from all 4 matrices included in Appendix A. Results indicate the VIs were generally highly 

correlated and the 21 original VIs could be reduced to 5 optimal VIs: Normalized Difference Water 

Index (NDWI), Optimized Soil Adjusted Vegetation Index (OSAVI), RedEdge Ratio Index 2 

(RRI2), Triangular Vegetation Index (TV1), and Visible Atmospherically Resistant Index (VARI). 

The Southeast Watershed Research Laboratory, USDA-ARS harvested, dried and weighed cotton 

in the ACF. A separate dataset details the end of season, ground-sampled dry AGB values for the 

ACF in 2018 with a range from 2,500-5,500 kg/ha for seed cotton and about 5,000 – 16,000 kg/ha 

for total biomass (Dr. Tim Strickland, personal communication, June 1, 2023). Since it is known 

that the end of season dry biomass range is within 5,000 – 16,000 kg/ha, the raw bands and VIs 

were used to first predict cotton AGB for the end of season biomass in kg/ha at the ACF in 2018. 

With this known range, the models can be assessed to determine if the models using VIs (Table 

4.1) or Raw Bands (Table 4.2) have higher performance to ensure the models are accurately 

predicting to field level scales. Validating the predicted end of season biomass within the range of 

measured AGB in kg/ha for the ACF in 2018 is critical to assess model accuracy. It was determined 

that although model metrics from the raw bands are comparable to the model metrics from the VIs, 

the range in predicted AGB in kg/ha from Random Forest to XGBoost for the models using the 

raw bands are substantially lower. To visually show the end of season biomass predictions, the 
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results are graphically displayed showing the models using raw bands (Figure 4.3) versus the 

models using VIs (Figure 4.4).  

 

 

 

 

Figure 4.2: Correlation matrix of the 21 VIs used 

for predicting cotton AGB at the ACF for 2019.   
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Predicted AGB Using Raw Bands 

Random Forest XGBoost 

Predicted 

AGB 

(kg/ha) 

Train Test RMSE MAE 

Predicted 

AGB 

(kg/ha) 

Train Test RMSE MAE 

2018 

ACF 

Wet 

Biomass 
13,976 0.9892 0.9221 1.5160 0.9481 14,062 0.9209 0.9132 1.6003 1.0146 

Dry 

Biomass 
7,302 0.9934 0.9528 0.6040 0.3937 7,341 0.9499 0.9458 0.6474 0.4193 

2018 

TCF 

Wet 

Biomass 
20,794 0.9999 0.9999 0.0598 0.0251 20,712 0.9986 0.9975 0.4347 0.0733 

Dry 

Biomass 
9,559 0.9999 0.9999 0.0173 0.0093 9,528 0.9985 0.9974 0.2007 0.0263 

2019 

ACF 

Wet 

Biomass 
18,336 0.9827 0.8772 2.5338 1.2459 18,182 0.8831 0.8722 2.5844 1.3051 

Dry 

Biomass 
10,689 0.9859 0.9004 1.3030 0.7281 10,598 0.9038 0.8946 1.3406 0.7631 

2019 

TCF 

Wet 

Biomass 
26,424 0.9987 0.9914 0.8320 0.4292 26,315 0.9904 0.9895 0.9232 0.4429 

Dry 

Biomass 
14,146 0.9994 0.9961 0.3015 0.1559 14,167 0.9942 0.9938 0.3781 0.1647 

 

Predicted AGB Using Vegetation Indices 

Random Forest XGBoost 

Predicted 

AGB 

(kg/ha) 

Train Test RMSE MAE 

Predicted 

AGB 

(kg/ha) 

Train Test RMSE MAE 

2018 

ACF 

Wet 

Biomass 
30,161 0.9894 0.9239 1.4882 0.9204 44,477 0.9395 0.9255 1.4721 0.9424 

Dry 

Biomass 
16,938 0.9935 0.9538 0.5922 0.3822 23,305 0.9625 0.9547 0.5862 0.3892 

2018 

TCF 

Wet 

Biomass 
45,567 0.9988 0.9917 0.8146 0.4401 55,706 0.9934 0.9917 0.8122 0.4577 

Dry 

Biomass 
20,398 0.9993 0.9949 0.2889 0.1568 26,515 0.9959 0.9949 0.2869 0.1620 

2019 

ACF 

Wet 

Biomass 
36,315 0.9836 0.8835 2.4603 1.1809 47,834 0.8969 0.8809 2.4879 1.2287 

Dry 

Biomass 
20,247 0.9867 0.9056 1.2654 0.6985 25,866 0.9160 0.9040 1.2764 0.7181 

2019 

TCF 

Wet 

Biomass 
26,384 0.9989 0.9925 0.7771 0.2406 40,349 0.9814 0.9788 1.3118 0.5950 

Dry 

Biomass 
14,203 0.9990 0.9933 0.3942 0.1213 22,410 0.9833 0.9810 0.6644 0.2970 

Table 4.1: Model metrics and predicted total end of season above ground biomass (AGB) 

using 5 optimal VIs and two Machine Learning algorithms. Model metrics include accuracy 

of training and testing data, root mean square error (RMSE) and mean absolute error (MAE). 

Table 4.2: Model metrics and predicted total end of season above ground biomass (AGB) 

using Raw Bands and two Machine Learning algorithms. Model metrics include accuracy of 

training and testing data, root mean square error (RMSE) and mean absolute error (MAE). 
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Histograms depicting the area per pixel value and maps depicting the field-level biomass 

on a per pixel basis are displayed for the following end of season models: 2018 ACF Wet Biomass 

Random Forest model (Figure 4.5, Figure 4.6), 2018 ACF Wet Biomass XGBoost model (Figure 

4.7, Figure 4.8), 2018 ACF Dry Biomass Random Forest model (Figure 4.9, Figure 4.10), 2018 

ACF Dry Biomass XGBoost model (Figure 4.11, Figure 4.12), 2018 TCF Dry Biomass Random 

Forest model (Figure 4.13, Figure 4.14), 2018 TCF Dry Biomass XGBoost model (Figure 4.15, 

Figure 4.16), 2019 ACF Dry Biomass Random Forest model (Figure 4.17, Figure 4.18), 2019 

ACF Dry Biomass XGBoost model (Figure 4.19, Figure 4.20), 2019 TCF Dry Biomass Random 

Forest model (Figure 4.21, Figure 4.22), 2019 TCF Dry Biomass XGBoost model (Figure 4.23, 

Figure 4.24). Figure axes are not standardized, and this was done to ensure maximum vertical 

distribution for each graph. It may appear that some values are zero in the histograms, but no matter 

how small the value on the Y axis, each value range on the X axis has an associated value for the 

Y axis. Enlarged predicted biomass maps are included in Appendix B.  
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Figure 4.3: Total end of season predicted biomass as kg/ha using the 5 VIs.   

 

Figure 4.4: Total end of season predicted biomass as kg/ha using the Raw Bands.   
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Figure 4.5: Histogram displaying the area per pixel value for the 2018 ACF 

End of Season Random Field-Level Forest Predicted Wet Biomass model. 

 

Figure 4.6: Map of field-level predicted biomass for the 2018 ACF End of 

Season Random Forest Field-Level Forest Predicted Wet Biomass model. 
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Figure 4.7: Histogram displaying the area per pixel value for the 2018 

ACF End of Season Field-Level XGBoost Predicted Wet Biomass model. 
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Figure 4.8: Map of field-level predicted biomass for the 2018 ACF 

End of Season Field-Level XGBoost Predicted Wet Biomass model. 
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Figure 4.9: Histogram displaying the area per pixel value for the 2018 ACF 

End of Season Field-Level Random Forest Predicted Dry Biomass model.  

model. 
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Figure 4.10: Map of field-level predicted biomass for 2018 ACF End 

of Season Field-Level Random Forest Predicted Dry Biomass model. 
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Figure 4.11: Histogram displaying the area per pixel value for the 2018 

ACF End of Season Field-Level XGBoost Predicted Dry Biomass model.  

model. 
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Figure 4.12: Map of field-level predicted biomass for 2018 ACF 

End of Season Field-Level XGBoost Predicted Dry Biomass model.  
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Figure 4.13: Histogram displaying the area per pixel value for the 2018 TCF 

End of Season Field-Level Random Forest Predicted Dry Biomass model. 
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Figure 4.14: Map of field-level predicted biomass for the 2018 TCF End 

of Season Field-Level Random Forest Predicted Dry Biomass model. 
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Figure 4.15: Histogram displaying the area per pixel value for the 2018 

TCF End of Season Field-Level XGBoost Predicted Dry Biomass model. 

 

Figure 4.16: Map of field-level predicted biomass for the 2018 TCF 

End of Season Field-Level XGBoost Predicted Dry Biomass model. 
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Figure 4.17: Histogram displaying the area per pixel value for the 2019 ACF 

End of Season Field-Level Random Forest Predicted Dry Biomass model. 
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Figure 4.18: Map of field-level predicted biomass for 2019 ACF End 

of Season Field-Level Random Forest Predicted Dry Biomass model. 
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Figure 4.19: Histogram displaying the area per pixel value for the 2019 

ACF End of Season Field-Level XGBoost Predicted Dry Biomass model. 
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Figure 4.20: Map of field-level predicted biomass for 2019 ACF 

End of Season Field-Level XGBoost Predicted Dry Biomass model. 
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Figure 4.21: Histogram displaying the area per pixel value for the 2019 TCF 

End of Season Field-Level Random Forest Predicted Dry Biomass model. 
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Figure 4.22: Map of field-level predicted biomass for the 2019 TCF End 

of Season Field-Level Random Forest Predicted Dry Biomass model. 
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Figure 4.23: Histogram displaying the area per pixel value for the 2019 

TCF End of Season Field-Level XGBoost Predicted Dry Biomass model. 

 

 

Figure 4.24: Map of field-level predicted biomass for the 2019 TCF 

End of Season Field-Level XGBoost Predicted Dry Biomass model. 
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Results for Objective 3: Analyze Cotton Growth and Development in Relation to Precipitation 

Cotton growth and development was analyzed against cumulative precipitation using the 

NDVI time series acquired from the UAS multispectral imagery. Cumulative precipitation are 

rainfall totals that do not include irrigation. NDVI values for both study sites for the 2018 and 2019 

growing seasons years are plotted in green against cumulative precipitation values shown in blue 

(Figure 4.25). The NDVI time series and cumulative precipitation values are plotted against each 

other individually for the ACF (Figure 4.26) and the TCF (Figure 4.27). 

 Cotton AGB was analyzed against cumulative precipitation using the total field-level 

biomass predictions acquired from the machine learning models. AGB (kg/ha) values for both 

study sites for the 2018 and 2019 growing seasons years are plotted against cumulative 

precipitation values (Figure 4.28). The AGB values and cumulative precipitation values are plotted 

against each other individually for the ACF (Figure 4.29) and the TCF (Figure 4.30). 

Figure 4.25: NDVI and cumulative precipitation values for the 

ACF and TCF throughout the 2018 and 2019 growing seasons.  

0

100

200

300

400

500

600

700

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
6

-M
ay

2
3

-M
ay

3
0

-M
ay

6
-J

u
n

1
3

-J
u
n

2
0

-J
u
n

2
7

-J
u
n

4
-J

u
l

1
1

-J
u
l

1
8

-J
u
l

2
5

-J
u
l

1
-A

u
g

8
-A

u
g

1
5

-A
u
g

2
2

-A
u
g

2
9

-A
u
g

5
-S

ep

1
2

-S
ep

1
9

-S
ep

2
6

-S
ep

3
-O

ct

1
0

-O
ct

1
7

-O
ct

2
4

-O
ct

C
u

m
u

la
ti

v
e 

P
re

ip
ic

at
io

n
 (

m
m

)

N
D

V
I

ACF 2018 NDVI ACF 2019 NDVI TCF 2018 NDVI TCF 2019 NDVI

ACF 2018 Precipitation ACF 2019 Precipitation TCF 2018 Precipitation TCF 2019 Precipitation



45 

 
    

Figure 4.26: NDVI and cumulative precipitation values for the 

ACF throughout the 2018 and 2019 growing seasons.  

Figure 4.27: NDVI and cumulative precipitation values for the 

TCF throughout the 2018 and 2019 growing seasons.  
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Figure 4.28: Cotton AGB and cumulative precipitation values for the 

ACF and TCF throughout the 2018 and 2019 growing seasons.  

Figure 4.29: Cotton AGB and cumulative precipitation values 

for the ACF throughout the 2018 and 2019 growing seasons.  
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Figure 4.30: Cotton AGB and cumulative precipitation values 

for the TCF throughout the 2018 and 2019 growing seasons.  
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Chapter 5 

DISCUSSION AND CONCLUSIONS 

This research is a continuation and enhancement of the work performed by Stone (2023) 

entitled, “A methodology for scaling agricultural biomass from ground to regional scales using 

remote sensing and machine learning analysis”. For his M.S. thesis research, Stone (2023) 

analyzed the ACF in 2018 using VIs and a Random Forest Model in ArcGIS Pro. Building on 

Stone’s findings, the study sites in this current research were the ACF & TCF for both 2018 & 

2019. Additionally, Raw Bands and a total of 21 VIs were compared to determine the effectiveness 

of each in predicting cotton AGB scaled from the ground to field level with Random Forest and 

XGBoost models using the python scikit-learn machine learning library.  

The first objective of this study involved reprocessing UAS imagery acquired by the USDA 

for the two farms on multiple dates during the 2018 and 2019 growing seasons. Checking and 

reprocessing the imagery is critical to ensuring correct radiometric outputs and improved 

computation of weighted biomass within USDA field sample plots for scaling AGB to field levels. 

For example, the end-of-season field-level biomass raster maps for the ACF in 2018 displayed a 

dark strip in the southeast corner. This flight date, October 17, 2018, was one of four reprocessed 

datasets where the radiometric calibration had to be reprocessed as detailed in the Results section. 

The other three reprocessed datasets include July 11, 2018, at the ACF, August 3, 2018, at the 

ACF, and April 30, 2018, at the ACF. The three flight dates in 2018 were aligned with biomass 

collection flight dates in 2018, and the 2019 flight date was the baseline bare earth flight date 

before planting. After reprocessing, the field-level raster was radiometrically correct, but extreme 
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illumination in this area resulted in machine learning models being unable to accurately predict 

AGB. Acknowledging the challenges of UAS image data collection in southwest Georgia during 

the humid afternoons at the peak of the growing season, these results emphasize the importance of 

selecting flight days that have consistent sun illumination. If possible, it is best to avoid: 1) flying 

on sunny days with spotty clouds moving in during the duration of the flight; and 2) early morning 

and late afternoon flights with low sun angles and long shadows. 

A total of 21 Vegetation Indices (VIs) were computed from band ratios of the UAS 

multispectral imagery and assessed as potential predictors of AGB. Collinearity analysis was 

performed to remove redundant variables and improve the efficiency of the predictive models. 

Results for the ACF in 2019 were depicted as a collinearity matrix in Figure 4.2 that represents 

the collinearity findings from both farms in 2018 and 2019 (see Appendix A). The 12 original VIs 

were highly correlated and reduced to 5 optimal VIs, namely, Normalized Difference Water Index 

(NDWI), Optimized Soil Adjusted Vegetation Index (OSAVI), RedEdge Ratio Index 2 (RRI2), 

Triangular Vegetation Index (TV1), and Visible Atmospherically Resistant Index (VARI). 

Although selecting the most important VIs for the correlation analysis was challenging, 

eliminating the most redundant VIs determined that NDWI, OSAVI, RRI2, TVI, and VARI were 

the most important VIs for field-level biomass prediction. While it was difficult to find a threshold 

to remove variables, and the five VIs did have some collinearity, the five VIs chosen predicted 

cotton AGB accurately across the two study sites and years while having less collinearity in 

comparison to the other VIs.  

Analyzing the metrics for the models in Objective 2 also was critical to decide whether the 

five optimal Vegetation Indices (VIs) or Raw Bands are best suited for predicting AGB and 

creating the field-level biomass maps. While the training, testing, RMSE, and MAE scores were 
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comparable between the models using VIs and Raw Bands, the amount of predicted AGB in kg/ha 

values were different. Particularly, the kg/ha values for the 2018 ACF dry biomass were examined 

since field-measured dry AGB provided known end-of-season biomass values that ranged between 

5,000 – 16,000 kg/ha (Dr. Tim Strickland, personal communication, June 1, 2023). Using the VIs, 

the 2018 Random Forest dry biomass predicted value was 16,938 kg/ha, and the XGBoost value 

was 23,305 kg/ha. For the Raw Bands, the 2018 Random Forest dry biomass value was 7,302 and 

the XGBoost value was 7,341 kg/ha. Both models using the VIs predicted AGB greater than the 

highest value in the known biomass range, and they are drastically different from each other with 

the XGBoost prediction being over 6,000 kg/ha higher than the Random Forest prediction. 

Conversely, the predicted AGB values for the two models using Raw Bands were within the range 

of the field-measured AGB amounts and had less than a 50 kg/ha difference.  

These trends were consistent for the predicted AGB in the ACF in 2019 and in the TCF in 

2018 and 2019 (see Table 4.1, Table 4.2, Figure 4.3, and Figure 4.4). The largest difference 

between Random Forest and XGBoost for the models using the VIs was 14,316 kg/ha for the 2018 

ACF wet biomass. Alternatively, the largest difference between Random Forest and XGBoost for 

the models using the Raw Bands was 154 kg/ha for the 2019 ACF wet biomass. Due to the inflated 

and large differences between the kg/ha values for the models using the VIs, the models using the 

Raw Bands were utilized for scaling up AGB predictions and creating field-level maps. Utilizing 

the Raw Bands over the VIs is beneficial because it provides the ability to streamline the process 

of regionalization. Removing the calculations of VIs allows users to simply use the Raw Bands for 

biomass predictions, and this method can be scaled up to predict cotton at larger geographic ranges 

by using only the remote sensing data directly from the sensor.  



51 

 

Predicted AGB scaled to field-level was computed for each UAS pixel in the end of season 

flights (assumed to be the maximum growth of cotton) in 2018 and 2019 for the ACF and TCF 

farms. Histograms depicting the area per pixel value of predicted wet AGB using Random Forest 

and XGBoost (see Figure 4.5 and Figure 4.7) and dry AGB (see Figure 4.9 and Figure 4.11) for 

the 2018 ACF end-of-season biomass flight date show a normal distribution of AGB peaking at 9 

to 10 g for wet and 5 to 6 g for dry AGB. There is a slight bimodal peak towards the lower values 

(approximately 3 to 5 g) of both wet and dry biomass predicted using both models. Based upon 

the maps of field-level predicted wet and dry biomass for the ACF (see Figures 4.6, 4.8, 4.10 and 

4.12), it can be inferred that the small bimodal peaks are a result of the intense illumination in the 

southeast section of the fields resulting in low biomass predictions. The histograms for the Random 

Forest models have a distribution more akin to a normal distribution in comparison to the 

histograms for the XGBoost models. The tails on either end of the histograms are enhanced and 

have more extreme values for the XGBoost models in comparison to the histograms for the 

Random Forest models. Due to the distribution of biomass values, the field-level maps of predicted 

AGB from Random Forest models appear greener in comparison to the XGBoost models. 

Additionally, the maps displaying dry biomass also appear greener than the models displaying wet 

biomass. The distribution of biomass values in the maps could be due to the different ranges of 

predicted biomass and therefore different color ramps. Also, wet biomass contains more water 

content, so the NIR reflectance values would be reduced for wet biomass values.  

The remainder of this discussion of results will focus on the field-level histograms and 

maps displaying predicted dry biomass for the TCF. The histogram depicting the area per pixel 

values of predicted AGB for the 2018 TCF end-of-season flight date using the Random Forest 

model (see Figure 4.13) has a wider normal distribution with peak values ranging from about 6.5 
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to 9 g and a long tail skewing the data to the lower AGB values of the histogram (i.e., less than 2 

g). Otherwise, the data seems relatively normally distributed with the exception of two spikes at 

the 5.9 – 6.1 and 6.2 – 6.4 g biomass ranges. The histogram depicting the area per pixel value for 

the 2018 TCF end-of-season flight date using the XGBoost model (see Figure 4.15) also has a 

wide peak distribution ranging from approximately 7.5 to 8.5 g with  two tails on either side of the 

normal distribution, and an extremely high spike in the 7.2 – 7.4 g biomass range. When looking 

at the field-level predicted biomass maps (see Figure 4.14 and Figure 4.16), there are areas in the 

northern portion of the top field and the northwestern portion of the middle field with uniformly 

low biomass values. These areas are the result of cloud shadows entering the image and modifying 

the reflectance values for the bands, and it can be inferred that these areas result in the high spikes 

within the histograms. In general, the map for the Random Forest model appears slightly greener 

than the map for the XGBoost model. 

The histogram depicting the area per pixel value for the 2019 ACF end-of-season flight 

date using the Random Forest model (see Figure 4.17) exhibits a narrower normal distribution 

peaking at approximately 7.5 to 9.5 g and a bimodal peak near the lower end of the biomass values 

at 1.5 to 2.5 g, and a long tail skewing the dataset towards the higher end of the biomass values 

out to 19.5 g. The histogram depicting the area per pixel value for the 2019 ACF end-of-season 

flight date using the XGBoost model (see Figure 4.19) is similar, but the tail is longer skewing the 

dataset towards the higher end of the biomass values out to 25 g. There is an area near the center 

of the fields with low biomass values visible in the field-level predicted AGB maps (see Figure 

4.18 and Figure 4.20). These areas of lower biomass values are a result of the low elevation within 

the microtopography of the ACF which appears to serve as a drainage and runoff area within the 

field. Additionally, along the edge of the fields, tree shadow is present which modifies the biomass 
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predictions. For the Random Forest model, these areas are depicted as low biomass values; 

however, for the XGBoost models, these areas were assigned No Data values, and removed from 

the image. It is difficult to distinguish, but the Random Forest model appears to be slightly greener.   

The 2019 TCF maps only have the two most southerly fields in comparison to the 2018 

TCF maps because cotton was only grown in these field during the 2019 growing season. The 

histogram depicting the area per pixel value for the 2019 TCF end-of-season flight date using the 

Random Forest model (see Figure 4.21) is normally distributed with a relatively wide peak (i.e., 

ranging from 7 to 9.5 g) and is skewed on either end of the peak with wide tails along the X axis. 

The lower values have a more abrupt cutoff at 3.5 g, and the higher values exhibit a steady decline 

from 9.5 to 18.5 g. The histogram depicting the area per pixel value for the 2019 TCF end-of-

season flight date using the XGBoost model (see Figure 4.23) is similar to the Random Forest 

histogram peaking at 7.5 to 9.5 g, but the distribution is more compressed. It is difficult to 

distinguish which map has a greener appearance.  

Random Forest and XGBoost models were utilized in this study because they are suitable 

for the given scenario of scaling cotton AGB from the ground to field level. A similar study where 

Kaur Dhaliwal et al. (2022) predicted cotton and found that tree-based models (Random Forest 

and XGBoost) outperformed four other models (Kaur Dhaliwal et al. 2022). These findings from 

Kaur Dhwiwal et al. (2022) support the notion that Random Forest and XGBoost models were 

suitable for this project. The model metrics tables, histograms, and maps were analyzed for the 

Raw Bands models. In every category, Random Forest out-performed XGBoost. These findings 

are similar to the results from Chen et al. (2024) where and Random Forest Regression also 

outperformed a Bayesian Ridge Regression (Chen et al. 2024).  
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Random Forest models have also performed comparative to deep learning models in cotton 

AGB predictions. Ashapure et al. (2020) developed a machine learning-based framework to 

predict cotton and found that a Random Forest Regression produced a 0.846 R2 value for the 

average of 10 runs whereas a deep learning Artificial Neural Network  produced a 0.861 R2 value 

for the average of 10 runs (Ashapure et al. 2020). While the Artificial Neural Network did 

outperform the Random Forest Model, the difference was not drastic.  

One significant benefit for XGBoost is the decreased time it takes for the models to run. In 

this research, the Random Forest models typically required 20-30 minutes of processing time, but 

the XGBoost models typically required 5-10 minutes. Upon investigating the inner working for 

Random Forest and XGBoost, it is revealed that the difference in computational time is a result of 

how the models’ algorithms are designed. Random Forest uses a technique called bagging to create 

full decision trees with random samples from the dataset, but XGBoost uses gradient boosting to 

aggregate numerous models into a strong model (Fatima et al., 2023). Due to the architecture, 

XGBoost models are scalable with high processing speeds in comparison to similar models. Still, 

the model metrics from this research demonstrate that Random Forest was more accurate. It must 

be noted, however, that if computational time is a strain on a similar project, then XGBoost may 

be favored due to its comparable performance.  

 In Objective 3 of this research, the median field-level NDVI values for the study areas were 

plotted against cumulative precipitation values, acquired from STEWARDS public access data 

(STEWARDS, 2025), to assess the impact of precipitation on cotton growth and development (see 

Figure 4.25). The 2018 TCF growing season had higher cumulative, and ended up having over 

100 mm more precipitation at the end of the growing season. However, in 2019 for the TCF, 
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cumulative precipitation started out similar to 2018 in mid-June, was lower from early July to the 

end of August and then leveled out with nearly no rainfall in the month of September.  

In 2018 for the ACF, rainfall was very slow, and began to pick up during July. At the end of the 

season is was the second highest precipitation dataset. For the ACF in 2019, rainfall was steady, 

but there was a stretch of minimal rainfall from the beginning of September all the way through 

October 14th. This difference in rainfall for the two years was reflected in lower NDVI values in 

2019. In general, the NDVI values were very low during the beginning and end of the growing 

seasons, and plateaued around 0.9 for the middle portion of the growing seasons, from about mid-

June to mid-September.  

The predicted AGB values were plotted against cumulative precipitation values (see Figure 

4.28). The non-irrigated ACF showed higher predicted dry AGB biomass in the wetter 2018 than 

the dryer 2019 growing season from June to early September, while the irrigated TCF showed 

higher predicted dry AGB biomass in 2019. Surprisingly, the 2019 growing season had less 

cumulative precipitation, yet higher end-of-season AGB values. For both years, the TCF had 

higher end-of-season AGB values. As discussed previously, there are areas in the 2018 maps for 

both the ACF and the TCF with extremely low values which skewed the data. Due to these factors, 

it could explain why the predicted amount of dry AGB biomass in kg/ha in 2018 is lower than 

2019 even though the cumulative precipitation in 2018 was higher. Additionally, the agriculturalist 

managing these fields at the TCF prefers years of less precipitation because cotton does not grow 

as well in oversaturated conditions.  

Cotton overwhelmingly dominates the global natural fiber industry where in 2021, cotton 

alone represented 76% of the global natural fiber industry, and the average cotton lint yield in the 

U.S. from 2013 – 2023 was 946 kg/ha (Singh et al., 2023). However, under irrigated conditions, a 
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potential lint yield of 3,500 kg/ha is obtainable (Constable & Bange, 2015). Exploring the 

relationship between cotton AGB and yield by analyzing the cotton AGB using a harvest index 

(HI), the ratio of harvested biomass to yield, is imperative to understanding the economic value 

from a harvest. In comparison to other crops, cotton has a low HI of approximately 15-20% 

(Constable & Bange, 2015). Using the Raw Band models and the 20% HI value, the predicted 

2018 field-level ACF dry yield values are 1,460 kg/ha and 1,468 kg/ha for Random Forest and 

XGBoost, respectively (Table 5.1). Alternatively, using the VI models and the 20% HI value, the 

2018 ACF dry yield values are 3,388 and 4,661 kg/ha for Random Forest and XGBoost, 

respectively (Table 5.2). While the yield results using the Raw Band models are above the 10-year 

average from 2013 – 2023, they are still well below the potential maximum of 3,500 kg/ha. The 

yield results for the VI models are extremely high with both the Random Forest and XGBoost 

predictions exceeding the potential 3,500 kg/ha maximum which is unexpected, especially 

considering the ACF is not irrigated.  

 

 

 

 

 

 

 

 

 

 

Predicted Yield Values Using Vegetation Indices 

Random Forest XGBoost 

Predicted Yield (kg/ha) Predicted Yield (kg/ha) 

2018 

ACF 

Wet Yield 6,032 8,895 

Dry Yield 3,388 4,661 

2018 

TCF 

Wet Yield 9,113 11,141 

Dry Yield 4,079 5,303 

2019 

ACF 

Wet Yield 7,263 9,567 

Dry Yield 4,049 5,173 

2019 

TCF 

Wet Yield 5,277 8,070 

Dry Yield 2,841 4,482 

Table 5.1:Predicted cotton yield from models 

using the VIs with a 20% Harvest Index value.  
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CONCLUSIONS 

Regarding the hypothesis for Objective 1, the reprocessed UAS imagery enhanced the 

analysis of cotton AGB. By removing the nonparallel flight lines and the images lacking the sun 

irradiance information, the reprocessed, radiometrically correct orthomosaics provide higher 

confidence in the end-of-season cotton AGB predictions.  

   Regarding the hypothesis for Objective 2, the Raw Band models outperformed the models 

using the VIs. Additionally, 12 VIs still provided extremely high collinearity, so the number of 

VIs was reduced to five to minimize collinearity and to match the number variables in the Raw 

Band models. NDVI was not used in this analysis since it is used for creating the weighted biomass 

layers, which is what the models are attempting to predict to at plot-level, yet further exploration 

of using NDVI is suggested.  

 Regarding the hypothesis for Objective 3, in general, the NDVI values for the ACF & the 

TCF for 2018 & 2019 growing seasons were comparable. Precipitation for the 2018 growing 

 

Predicted Yield Values Using Raw Bands 

Random Forest XGBoost 

Predicted Yield (kg/ha) Predicted Yield (kg/ha) 

2018 

ACF 

Wet Yield 2,795 2,812 

Dry Yield 1,460 1,468 

2018 

TCF 

Wet Yield 4,159 4,142 

Dry Yield 1,912 1,905 

2019 

ACF 

Wet Yield 3,667 3,636 

Dry Yield 2,138 2,120 

2019 

TCF 

Wet Yield 5,285 5,263 

Dry Yield 2,829 2,833 

Table 5.2:Predicted cotton yield from models using 

the Raw Bands with a 20% Harvest Index value.  
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season was higher than 2019 for nearly the entirety of the growing seasons, but the end-of-season 

predicted cotton AGB was higher for the study sites in 2019 than in 2018.  

In this research, it was found that models scaling up plot-level ground measurements of 

cotton AGB to predicted field levels utilizing the Raw Bands of multispectral UAS imagery of 

high spatial resolution outperformed the predictive models utilizing the VIs. Also, the Random 

Forest models outperformed the XGBoost models, but the XGBoost models had a shorter 

processing time. The end-of-season predicted cotton AGB was comparable for the models using 

the Raw Bands, but there were stark differences with the models using the VIs.  

 Other Remote Sensing imagery, including hyperspectral data from UASs or satellite 

imagery, can be used for scaling up ground measurements and predicting cotton AGB at broader 

scales. As the LTAR aims to scale up AGB predictions to regional level, this study acknowledged 

as a framework for scaling up to field-level, and the methodology in this paper can be utilized for 

further extrapolation to county, watershed, and even regional levels. The models using surface 

reflectance from 5-band multispectral imagery from the MicaSense RedEdge-3 sensor provided 

better results than the computed VIs, so it would be interesting to observe how effective the models 

would be with dozens of raw bands. Utilizing the microtopography of the field is also expected to 

provide insight into the field variations affecting plant growth and field-level predicted AGB. 

Pursuing a Principal Component analysis will allow for further understanding of collinearity 

between the various VIs and raw bands. Exploring the cost benefit of analysis for the irrigation at 

the TCF is important to determine if spending the extra funds to irrigate the crops is worthwhile 

for the increased crop yield. Lastly, exploring other machine learning and deep learning algorithms 

will improve the confidence of the current models including linear regression, lasso regression, 

ridge regression, support vector regression and artificial neural network.  
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This research will aid in the prediction of above ground biomass across the LTAR Gulf 

Atlantic Coastal Plain region by scaling ground measurements at the plot level to field levels using 

UAS imagery, best performing vegetation indices, raw bands, and optimized machine learning 

predictive models. Predicting biomass of crops at varying scales is important to farm owners 

because, in general, it allows agriculturalists to have an accurate prediction of the potential crop 

yield. Additionally, the prediction of biomass is also important to the government and consumers 

because it allows accurate market forecasts for the crops to be analyzed. While the biomass 

prediction of cotton for this project is constrained to localized areas, the overarching goal for the 

USDA is to extrapolate to watershed, county, and potentially even regional scales. Future work 

will leverage the methodology and results presented to predict cotton AGB at broader scales.   
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APPENDIX A 

Correlation Matrices Among the Varying Vegetation Indices  

 

Figure A.1: Correlation matrix of the 21 VIs used 

for predicting cotton AGB at the ACF for 2018.   
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Figure A.2: Correlation matrix of the 21 VIs used 

for predicting cotton AGB at the ACF for 2019.   
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Figure A.3: Correlation matrix of the 21 VIs used 

for predicting cotton AGB at the TCF for 2018.   
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Figure A.4: Correlation matrix of the 21 VIs used 

for predicting cotton AGB at the TCF for 2019.   
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APPENDIX B 

Predicted Biomass Raster Maps 
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Figure B.1: Field-level predicted biomass for the 2018 ACF End of 

Season Random Field-Level Forest Predicted Wet Biomass model. 

. 
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Figure B.2: Field-level predicted biomass for the 2018 ACF End of 

Season Field-Level XGBoost Predicted Wet Biomass model. 
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Figure B.3: Field-level predicted biomass for 2018 ACF End of 

Season Field-Level Random Forest Predicted Dry Biomass model. 
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Figure B.4: Field-level predicted biomass for 2018 ACF End 

of Season Field-Level XGBoost Predicted Dry Biomass model.  
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Figure B.5: Field-level predicted biomass for the 2018 TCF End of 

Season Field-Level Random Forest Predicted Dry Biomass model. 
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Figure B.6: Field-level predicted biomass for the 2018 TCF End of 

Season Field-Level XGBoost Predicted Dry Biomass model. 
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Figure B.7: Field-level predicted biomass for 2019 ACF End of 

Season Field-Level Random Forest Predicted Dry Biomass model. 
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Figure B.8: Field-level predicted biomass for 2019 ACF End 

of Season Field-Level XGBoost Predicted Dry Biomass model. 
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Figure B.9: Field-level predicted biomass for the 2019 TCF End of 

Season Field-Level Random Forest Predicted Dry Biomass model. 
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Figure B.10: Field-level predicted biomass for the 2019 TCF End 

of Season Field-Level XGBoost Predicted Dry Biomass model. 


