PREDICTING COTTON ABOVE GROUND BIOMASS USING GEOAI AND
MULTISPECTRAL IMAGERY FROM UNCREWED AERIAL SYSTEMS
by
KYLE STEEN
(Under the Direction of Marguerite Madden)
ABSTRACT
Monitoring the biomass of cotton allows agriculturalists to modify their management
practices to optimize yield and address issues such as damage from storms and impacts of climate
change. Across the 2018 and 2019 growing seasons, remote sensing images were acquired by the
U.S. Department of Agriculture (USDA) Agricultural Research Service (ARS) via Uncrewed
Aerial Systems (UAS). These images provided high spatial and temporal resolution, multispectral
image data for the analysis of cotton at the Ashburn Cooperator Farm in Ashburn, Georgia and the
Ty Ty Cooperator Farm in Ty Ty, Georgia. Ground measurements of cotton biomass collected by
the USDA-ARS harvesting plants in representative plots were used to scale up to the field level
by using geographic artificial intelligence (GeoAl) machine learning models, Random Forest and
XGBoost. Results displayed models using the raw bands predicted cotton biomass within the

designated range and outperformed models using vegetation indices.
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CHAPTER 1
INTRODUCTION

As the human population continues to grow exponentially, the demand to produce
agricultural products also increases. Due to socioeconomic and population growth, it is estimated
that the current agricultural production will need to double by the year 2050 to sustain humanity
(Niu et al., 2019). Remotely sensed imagery and precision agriculture techniques enable the
precise geolocation of within-field variations of crop health to predict Above Ground Biomass
(AGB). Geographic technologies and analyses can, therefore, help mediate strains on current food
and fiber production systems caused by changes in precipitation, temperature, and extreme weather
events. Numerous studies in a variety of domains have geographically analyzed AGB at broad and
fine scales including the prediction of global AGB of mangrove forests (Hu et al., 2020), and the
prediction of AGB within an administrative zone of the Amazon Rainforest (D’Oliveira et al.,
2020). Additionally, the pursuit of predicting AGB for agricultural areas has gained momentum
over recent years (Bazzo et al., 2023).

Geographic Artificial Intelligence (GeoAl) is the use of artificial intelligence to solve
geographic problems, and GeoAl has made significant advances in solving geographical problems
over the past decades (Scheider & Richter, 2023). In particular, GeoAl uses remote sensing
techniques to predict AGB at varying scales.

The use of Uncrewed Aerial Systems (UASs) promotes efficiency and innovation within
modern agrarian practices, including the prediction of AGB. Numerous GeoAl studies have

utilized imagery acquired from sensors onboard UASs and machine learning techniques to observe



vegetation and predict crop yield in relation to total AGB. For example, maize AGB was predicted
utilizing Vegetation Indices (VIs) and a back-propagation neural network analysis for agricultural
areas in North Dakota, U.S. (Panda et al., 2010). Predicting AGB is of critical importance to
various groups including the agriculturalists, consumers, and government, for individuals from
these groups can produce an accurate budget, prepare contingency plans, and anticipate market
demands for specific crops (Deb et al., 2021).

The State of Georgia, U.S., is an agricultural hub dominated by cotton, peanuts, corn, and
various other agricultural products (USDA, 2024a and 2024c). The southern region of Georgia, in
the Coastal Plain of southeastern U.S., is where most of the state’s agricultural products are grown.
Cotton, (Gossypium hirsutum L.), is one of the most abundant crops within this region which
generated over 868 million dollars for the state of Georgia in 2023, and this statistic places Georgia
as the second highest cotton producing state in terms of sales (USDA 2024c). The U. S.
Department of Agriculture - Agricultural Research Service (USDA-ARS) Southeast Watershed
Research Laboratory (SEWRL) in Tifton, Georgia, has routinely monitored cotton agricultural
areas in South Georgia, specifically within the Little River Experimental Watershed (LREW)
(Coffin et al., 2022; USDA, 2024c).

The SEWRL and the LREW were created to evaluate the region’s agricultural management
practices and to further the understanding of hydrologic processes in the Coastal Plain region
(Bosch et al., 2022). Throughout the history of the SEWRL, over 1000 journal articles have been
published by SEWRL scientists from varying research fields including assessments of the
hydrology in the watershed, characteristics of the riparian buffer system, impacts of land use
changes, remote sensing, and water quality trends (Bosch et al. 2021). Utilizing UASs, based on

its long history of agricultural research, the SEWRL manages the Gulf Atlantic Coastal Plain



(GACP) site within the Long-Term Agroecosystem Research (LTAR) network, a network
operated by the USDA-ARS dedicated to researching agricultural solutions (Figure 1.1).
Researchers at the GACP seek a better understanding of spatio-temporal patterns of crop growth
and correlations with factors such as precipitation to scale crop production at multiple scales within
and across LTAR regions.

The purpose for this research is to create a UAS and GeoAl framework and workflow
which accurately predicts cotton AGB at two study sites within the LTAR-GACP for the 2018 and
2019 growing seasons. Scaling the prediction of AGB from harvested plants to plot and field levels
was compared using numerous Vegetation Indices (VIs), remote sensing measurements used to
assess landcover in addition to vegetation, derived from UAS imagery versus simply using the

UAS raw bands, the latter being standard outputs from popular photogrammetric software, Pix4D

0 175 350 700 1,050 1,400

o
Esri, HERE, Garmin, (c) OpenStreétMap contributors, and the GIS user community.

Figure 1.1: A map that displays all 18 LTAR agroecoregions across the United
States. Each region consists of major agroecosystems such as cropland,
graze/rangelands, and integrated systems, respectively (Bean et al., 2021).



(Ayanlade, 2017). The importance of scaling is critical to this project, as the stakeholders are
extremely interested in scaling from plot and field level to regional levels. Additionally, a time-
series of Normalized Difference Vegetation Index (NDVI) imagery acquired over the 2018 and
2019 growing seasons was used to determine phenological changes related to rainfall.

STUDY AREA
The overarching study area is the Gulf Atlantic Coastal Plain (GACP) LTAR site, containing 49
counties from Georgia and three from Florida, covering an area of 61,418 km? (Figure 1.2,

Coffin et al., 2024). The GACP is located within the Southeastern Coastal Plain physiographic
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Figure 1.2: Map of the Gulf Atlantic Coastal Plain (GACP) boundary (outlined in
black) intersected with county boundaries (indicated in red) as it spans from northern
Florida through Georgia’s Coastal Plain. The areas highlighted as white are classified
agricultural land uses derived from the 2018 Cropland Data Layer (Stone, 2023).
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region, and encompasses a majority of southern Georgia stretching from the northern portion of
the Florida panhandle to the South Carolina border. It includes various agricultural, climatic,
environmental, and social characteristics of the southeast U.S. (USDA, 2024b). The GACP has a
topography of mild relief, mainly because it is entirely situated within the relatively flat
Southeastern Coastal Plain. Elevation varies across the GACP ranging from 12 to 163 m above
sea level (masl), with the average elevation being approximately 75 masl (Coffin et al., 2024a).
Due to landscape consistency, numerous features are homogenous throughout the region
including farming practices, geology, land use, and soil composition (Strickland, 2016b). The
GACP has relatively high average annual rainfall at 1200mm, a mean annual temperature of
19°C, the coolest month is January at 11°C, and the warmest month is July at 27°C (Coffin et al.,
2024a). Models predict extreme rainfall events to increase while moderate rainfall events
decrease which heightens the potential for severe drought and flood risk (Coffin et al., 2024a).
Watering practices vary dramatically from systems of irrigation to natural precipitation. As
drought conditions persist, supplying croplands with irrigation will become vital as seasonal
precipitation does not perfectly align with crop production (Coffin et al., 2024a). The Fifth
National Climate Assessment report of the U.S. Global Change Research Program (USGCRP) and
the National Centers for Environmental Information of the National Oceanographic and
Atmospheric Administration (NOAA) detail that agricultural systems within the region are
subjected to concern due to increasing climatic trends of extreme heat and severe weather (NCEI
2023, USGCRP 2023). According to statistics derived from the USDA Cropland Data Layer,
cotton overwhelmingly dominates the agricultural landscape within the GACP region (Figure 1.3)
(USDA, 2024). The home institution for the GACP region of the LTAR network is the Southeast

Watershed Research Laboratory (SEWRL) located in Tifton, Georgia (see Figure 1.2). One focus



Top Agricultural Land Uses in the Gulf Atlantic Coastal Plain in 2023
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Figure 1.3: The top agricultural land uses in 2023 by km? as defined by the
Cropland Data Layer. Cotton is the overwhelming leader in agricultural land
use in the GACP with 4580 km? of dedicated land followed by grass / pasture,

peanuts, other hay/non-alfalfa, corn, pecans, and soybeans (USDA, 2024c).

of research by SEWRL is LTAR activities in collaboration with scientists from universities, other
federal agencies and private landowners (USDA, 2024b). Researchers are committed to promoting
sustainability within agricultural production by developing biofuels crops, incorporating
production on marginal lands, integrating crop-livestock production, minimizing the importation
of animal feeds, reducing agricultural water demand, and continuing to understand human impacts
on agricultural landscapes (USDA, 2024b). The LREW, a 334 km? sub-watershed within the
GACP region, is one of 12 national benchmark watersheds of key interest to the USDA-ARS
(Sullivan et al., 2007). As a major U.S. interstate basin, the LREW is the headwaters of the
Suwannee River Basin which begins in Georgia and empties into the Gulf of Mexico (Bosch et al.,
2007). Within the LREW are two privately owned farms which have cooperative agreements with

the SEWRL. They have been designated as the Ashburn Cooperator Farm (ACF), a non-irrigated
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farm located in Ashburn, Georgia (Figure 1.4a), and the Ty Ty Cooperator Farm (TCF), an
irrigated farm located in Ty Ty, Georgia (Figure 1.4b). These farms participate in the LTAR
Network monitoring research for GACP and SEWRL researchers have been collecting AGB, soils,

and biological data on the cropping systems here since 2014 (Coffin et al. 2024a).
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Figure 1.4: The Ashburn Cooperator Farm (a) and the Ty Ty Cooperator Farm (b) study site
locations monitored by the LTAR GACP network, and (c) the surrounding contextual area).



CHAPTER 2
LITERATURE REVIEW

Above Ground Biomass (AGB) is an important agronomic parameter monitored in field
studies, and it is frequently used to assess crop growth, crop health, the effectiveness of agricultural
practices, and the carbon sequestration capacity of crops (Bendig et al., 2015). The accurate
estimation of biomass is therefore key to understanding the current conditions impacting crops,
and it is critical to predict biomass at varying scales. Predicting biomass can be accomplished using
remotely sensed imagery and machine learning methods that fall within a Geographic Acrtificial
Intelligence (GeoAl) framework, which is the application of Al techniques in geography and Earth
sciences (Janowicz et al.,, 2019). Measuring biomass traditionally requires destructive
measurements via harvesting, weighing, and recording crops, and this process is laborious, time-
consuming, and extremely difficult to apply at broad scales for long-term measurements (Yang et
al., 2018).

Non-destructive broad-scale biomass estimations have been previously pursued when
attempting to measure AGB over vast areas of vegetation from remotely sensed images in relation
to derived VIs computed from band ratios. One such study, pursued by Perry et al. (2014), utilized
MODIS imagery to predict dryland wheat AGB across 37 paddocks in north-western Victoria,
Australia. Results from this study yielded satisfactory metrics with a R? = 0.81 and a RMSE value
of 164 kg hal, but the spatial resolution of MODIS at 250 m, 500 m, or 1000 m depending on the
band, is often too coarse to implement this framework for smaller farms. MODIS does have a

tradeoff of high return time, but for this study the resolution is coarse. At a 30-m resolution,



Landsat imagery provides enhanced visualization for AGB prediction. Using imagery acquired by
Landsat-7 Enhanced Thematic Mapper Plus and Landsat-8 Operational Land Imager sensors,
winter wheat AGB was predicted for two growing seasons across 22 fields in southwestern
Uruguay using a Simple Regression Model (SRM) with results indicating a RMSE value of 1532
and 966 kg ha for 2013 and 2014, respectively (Gaso et al., 2019). At a 10-m resolution with 13
bands ranging from the ultra-blue to the short-wave portion of the electromagnetic spectrum,
Sentinel satellite imagery is often utilized for numerous agricultural applications. One study
predicted sorghum AGB using Sentinel-2A and Sentinel-2B imagery across 42 fields near
Bologna, Italy where an eXtreme Gradient Boosting — xgbtree (GBT) model performed
consistently well (r > 0.70) in comparison to 13 other machine and deep learning models
(Habyarimana et al., 2019). While satellite remote sensing is useful for monitoring biomass at
broad scales, freely available satellite data are often constrained by spatial or radiometric
resolution limitations which are unsuitable for precision agriculture, and satellite data are also
subject to atmospheric conditions which may produce cloudy or unusable data (Wang et al., 2021).

Multispectral sensors mounted in crewed aircraft can be used to image a large area and
spatial range, but they are typically expensive to acquire. Flying higher to capture a larger area
within each frame and reduce costs may result in image data of relatively high spatial resolution,
but the high cost is suitable for this project (Sofonia et al., 2019). UASs, on the other hand, have
dramatically altered the ability to acquire imagery at a lower cost for precision agriculture. The
utilization of UASs provides an optimized approach to farming tasks including biomass prediction,
chemical spraying, field mapping, inventory counting, plant stress detection, and weed
management. Additionally, UASs can fly visible, multispectral, hyperspectral and LiDAR data in

different trajectories to photogrammetrically produce 3D models and maps (Hassler et al., 2019).
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UASs provide a nondestructive approach to obtain spectral, structural, and texture features of
agricultural areas across differing spatiotemporal scales (Jiang et al., 2019). Data from sensors
mounted on UASs are suitable for high resolution, spatially explicit estimations of AGB, and they
have great application potential for precision agriculture (Poley et al., 2020).

One application of utilizing UASs for precision agriculture was proposed by Gil-Docampo
et al. (2020), and the authors detailed a methodology to predict herbaceous crop biomass using
optical cameras and Structure from Motion (SfM) photogrammetry. They computed the difference
between a digital surface model (DSM) and a bare Earth digital terrain model (DTM) to create a
canopy height model (CHM). This method can be used to determine AGB by using an in-situ
calibration density factor that relates crop volume and biomass, and the proposed method was
intended to be generalized for the extrapolation of AGB in croplands by creating a CHM (Gil-
Docampo et al., 2020). The comparison of SfM-based CHMs and LiDAR-based dense point clouds
for the estimation of AGB for pasture grass has been analyzed by Walter et al. (2018). For
clarification, it must be noted that DSM data can be produced from filtering the first returns of
LiDAR point clouds or from photogrammetric SfM with multiple overlapping aerial images. No
significant difference was observed between the AGB estimation from dense point clouds and
CHMs; however, when the objective of the UAS survey is to precisely monitor crops, the dense
point cloud data is preferred. If the purpose is simply to predict field biomass with little
requirement of details, the SfM-based DSM data provide the values with comparable accuracy and
enhanced efficiency (Walter et al., 2018). Additionally, Walter et al. (2018) identified that point
cloud data derived from a UAS can accurately predict wheat volume with a strong correlation to
AGB; and canopy height and harvest index values derived from the point cloud data correlated

well to in-situ measurements.
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Vegetation Indices (VIs) are derived from two or more spectral bands of remotely sensed
imagery to assess and depict vegetation characteristics (Jensen, 2007). Vs are extremely useful
for monitoring plant processes including AGB estimation, groundwater withdraw, net carbon
fixation, phenology, primary productivity, and rainfall use efficiency (Glenn et al., 2008). One
commonly used VI is the Normalized Difference Vegetation Index (NDVI) that is a ratio of the
difference divided by the sum of the surface reflectance of red and near infrared (NIR) bands
(Rouse et al. 1974, Kriegler et al. 1969). Glenn and Tabb (2018) note NDVI is used to assess green
biomass based on the relatively strong absorption of red light and reflectance of NIR by
chlorophyll in the leaves of healthy plants. They also noted NDVI was recognized as a measure
of vegetation health because a reduction in chlorophyll production due to stressors such as disease,
insect damage, lack of nutrients, salinity or drought, would result in an increase in red reflection
and subsequent decrease in NDVI. Variations on NDVI soon emerged. For example, AGB
estimation for rice crops in Portugal was pursued by Gerardo & de Lima (2023) using Vs derived
from UAS RGB imagery. Results detailed that RGB derived indices Visible Atmospherically
Resistant Index (VARI) and Triangular Greenness Index (TGI) provide a cost-effective for rice
crop monitoring and management (Gerardo & de Lima., 2023).

While edible crops are of obvious importance to agriculturalists, cotton is an extremely
valuable fiber crop typically used for textile purposes. Cotton breeding programs and management
purposes are of vital importance, so it is critical for agriculturalists to monitor AGB and yield for
precision agriculture (Siegfried 2021). In one study, VIs derived from UAS imagery were
compared to cotton yield over numerous years, and NDVI produced more accurate predictions of
yield than the Normalized Difference Red Edge Index (NDRE), which indicates that NDVI is more

suitable for quantifying cotton yield (Siegfried 2021). As a temporal feature, NDVI was included
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along with non-temporal and qualitative data in a machine learning framework to predict cotton
yield, and results of an artificial neural network predicted yield with reasonable accuracy (R? =
0.72) even at 70 days after planting. Deep Learning methods have also been explored for predicting
cotton AGB and vyield. Li et al. (2022) employed a modified DCNN model using pixel-level
segmentation to predict cotton yield in Xinjiang, China, and results detail an average error in yield
estimates as low as 6.2% (Li et al., 2022). The relationship between cotton AGB and vyield is
imperative since the cotton fiber represents 90% of the total economic value (Singh et al., 2023).
Contrary to other crops cotton has a low harvest index, the ratio of harvested biomass to yield, of
approximately 15-20% (Constable & Bange, 2015). In this research, the primary focus was
predicting cotton AGB, but the relationship between AGB and yield was explored.

Stone (2023) pursued a methodology to predict cotton AGB using a Random Forest
regression with ArcGIS Pro for the 2018 growing season at the Ashburn Cooperator Farm in
Ashburn, Georgia. A total of 12 VIs were calculated to predict cotton AGB. Pursuing the Random
Forest regression within ArcGIS Pro required a specific number of training points to be extracted
from biomass sample plots, in this case 6,000, which was approximately 20% of the pixels within
each biomass sample plot. To purse agricultural regionalization, the models were then scaled up
across space to the field level.

This research builds upon Stone’s (2023) workflow and results. The comparisons of
predicted AGB based on ground-based, plant harvest measurements scaled up to plot and field
levels were performed using an additional machine learning algorithm, time-series UAS imagery,
and derived VIs for two different farms over two growing seasons. An additional 10 VIs, totaling
21, were calculated to observe if more VIs increased model accuracy. Random Forest and

XGBoost regressions were pursued using the python library scikit-learn to compare predicted
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cotton AGB across the 2018 and 2019 growing seasons at the Ashburn Cooperator Farm which
relies on rainfall and the irrigated Ty Ty Cooperator Farm. Random Forest models were first
detailed by Chen (2016), and these models can increase the tree-based size to have higher accuracy
for training and unseen data. XGBoost models were first detailed by Tin (1995), and these models
use decision trees where new trees correct the errors made by previous trees. Working with python
allows for enhanced user flexibility during hyperparameter turning. With this methodology, all
pixels are utilized within the biomass sample plots, which provides a more robust model for cotton
AGB prediction.
OBJECTIVES

Utilizing a GeoAl framework, this study utilizes in-situ biomass data and UAS imagery to
predict cotton AGB at plot and field level scales for the Ashburn and Ty Ty Cooperator Farms
across the 2018 and 2019 growing seasons.

Obijective 1: Reprocess UAS Imagery and Compute Weighted Biomass

The first objective of this study is to reprocess UAS imagery acquired by the USDA for
two farms within the LREW watershed that represent the LTAR GACP region. The reprocessed
UAS imagery acquired on multiple dates during the 2018 and 2019 growing seasons ensures
correct radiometric outputs and improved computation of weighted biomass within USDA field
sample plots. Original processing contained UAS flight lines to and from the launch station
between battery swaps, so sections of the field can look irregularly illuminated due to changing
light conditions. Additionally, for a few UAS flight dates, a radiometric calibration error existed
for a single image which produced incorrect radiometric outputs. After manually identifying and
removing the corrupt images within the image properties editor, the data were reprocessed using

the ‘Camera and Sun Irradiance’ parameter, and the correct outputs were prepared to compute the
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Weighted Wet and Dry Biomass, as described below, for the sample plots from both the Ashburn
and Ty Ty Cooperator Farms.

Hypothesis: Reprocessed UAS imagery will enhance analysis of cotton AGB to produce
higher accuracy for total end of season AGB. This will produce higher confidence in the end of
season AGB predictions.

Obijective 2: Predict AGB for Cotton Fields at Ashburn and Ty Ty farms

The second objective examines the use of 21 VIs to predict cotton AGB at plot and field
level scales for the end of season harvest dates at the Ashburn and Ty Ty Cooperator Farms for
the 2018 and 2019 growing seasons. After running a correlation matrix, the most significant VIs
are identified and implemented for predicting biomass for the remainder of the 2018 and 2019
biomass dates. Models using only the raw UAS bands plus NDVI are also compared against
models using the best VIs for the end of season harvest dates. The comparison of results between
the two model types is significant because the raw bands plus NDVI are output during standard
USDA photogrammetric processing, so it is noteworthy to observe if the effort of computing and
using numerous VIs increases model accuracy. This analysis predicts cotton AGB grown in
irrigated vs. non-irrigated fields (Ashburn and Ty Ty farms, respectively) during a year of
relatively normal precipitation in 2018 and the 2019 drought in Georgia.

Hypothesis: Models using only the raw bands and NDVI will have adequate results for
predicting cotton AGB, but the models incorporating the best of 12 VIs will increase model
accuracy.

Objective 3: Analyze Cotton Growth and Development in Relation to Precipitation

The third objective compares cotton growth and development over the entirety of the two

growing seasons for both study sites based on UAS-derived time-series of computed NDVI.
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Precipitation trends are examined in comparison to the NDVI time-series and the predicted
biomass values to examine any existing relationships among rainfall/irrigation, cotton crop health
indicated by NDVI values and predicted AGB.

Hypothesis: Cotton AGB predictions will be heavily correlated with the results from the
NDVI time series and the precipitation analysis. Study sites with higher NDVI and precipitation
values will yield higher cotton AGB predictions.

DATA SOURCES

Remote Sensing images of the Ashburn Cooperator Farm and the Ty Ty Cooperator Farm
were acquired by the USDA-ARS from a MicaSense RedEdge-3 sensor mounted to a DJI Matrice
100 (Coffin et al., 2023, Coffin et al., 2024b, Table 2.2). The sensor produced output images at a
9-cm spatial resolution and contained a total of five spectral bands including: blue, green, red, red-
edge, and near-infrared (Table 2.1). The data were reprocessed as a part of Objective 1 and
reflectance maps of the raw bands were output, in addition to NDVI maps for use in this research
(Figure 2.1). Precipitation analysis of rainfall trends were conducted for the 2018 & 2019 growing

Table 2.1: The center wavelength and bandwidth of
the five MicaSense multispectral sensor bands.

MicaSense Band Bgzvéﬁih(;i) Bar(lrclizi)dth
Blue 475 20
Green 560 20
Red 668 10
RedEdge 717 10
Near Infrared 840 40
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seasons using public access data from STEWARDS (STEWARDS, 2025). Datasets from
STEWARDS recorded total daily precipitation in mm, and the data for each study site and time

frame were manually reorganized to display cumulative precipitation in mm beginning at planting
and ending on October 14, which is the latest defoliation date across study sites and years. As
cotton is defoliated, the plant essentially dies, so no precipitation data should be considered for
unproductive plants. Two of the four study sites and years did not contain defoliation data, so the
latest defoliation date of October 14" was used as the precipitation cutoff for all study sites and
years. Researchers at the USDA-ARS SEWRL collected field measurements of harvested cotton
throughout the growing season in 2018 and 2019. Measurements included plant height, density,
and water content, along with wet and dry biomass from defined plot boundaries distributed within
the farm fields and were published in the National Agricultural Library Ag Data Commons

repository (https://agdatacommons.nal.usda.gov/; Coffin et al., 2023; Coffin et al., 2024b). To

acquire the biomass measurements, researchers followed a systematic approach that allowed them
to harvest the crop and measure biomass while also preserving the integrity of the surrounding
plants (Figure 2.2). Cotton plants were sampled from within a 30-m x 10-crop row area, which are
hereafter referred to as the sample plots. In 2019, a total of 9 biomass sample plots were used at
the Ashburn Cooperator farm, and 6 biomass plots were used in 2018. For 2019, the Ty Ty
Cooperator Farm had 3 biomass sample plots, but for 2018, only 2 biomass sample plots were
used. A diagram of the collection protocol for 1 x 1 m harvest areas, hereafter called sub-plots,
within the 30-m x 10-row sample plots is shown in Figure 2.2 (Coffin et al., 2024b). Management
practices were considered for this study. The planting date was May 25" for the ACF in 2018, May
24" for the TCF in 2018, May 16" for the ACF in 2019, and May 15" for the TCF in 2019. The

harvest date was November 23" for the ACF in 2018, October 30" for the TCF in 2018, October


https://agdatacommons.nal.usda.gov/
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28" for the ACF in 2019, and November 4" for the TCF in 2019. The TCF was irrigated when the

agriculturalist deemed it necessary. The ACF is unirrigated, so no additional water was provided.

Table 2.2: UAS flight dates used in this study which
correlate with in-situ biomass collections.

(I;/IANS[/}T)l]i;g/l‘l;‘]{);;;’) Ashburn Cooperator Farm Ty Ty Cooperator Farm
10/24/2019 N4
10/07/2019 v
09/19/2019 J
09/18/2019 V4
08/26/2019 J
08/23/2019 4
07/31/2019 v
07/30/2019 J
07/08/2019 J
07/05/2019 V4
06/13/2019 V4
10/17/2018 N4
10/15/2018 v
09/21/2018 v
09/20/2018 V4
08/31/2018 v
08/30/2018 v
08/07/2018 v
08/03/2018 V4
07/13/2018 v
07/11/2018 J
06/19/2018 J
06/18/2018 V4
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Figure 2.1: The Ashburn Cooperator Farm imagery with bands, indices, and color
composite with the blue band (a), green band, (b), red band (c), rededge band, (d),
near-infrared band (e), NDVI (f), RGB composite (g), and Color Infrared composite (h).
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B C D E F G H M P QR S T UV W X Y Z AAAB AC AD AE AF AG AH
NORTH TO EAST PREDOMINANT DIRECTION
15 14 13 12 11 10 S 21211 [12/3 &1S[6|7(819:10111/12:13:14;1S
AL 1 2 3 6 PH x 2 3 4 5 EoN X 81
A2 PH B2
A3 D1 D2 D3 D4} PH D5 D6 D7 B3
A4 1 2 3 7 PH 1 2 X LS 7 B4
AS 1 x 3 6 PH X 2 3 a X 6 7 85
1 2 3 7 PHISM 1 2 x 4 7 B6
A7 1 X 3 6 PH 1 2 3 4 x 6 7 B7
A8 PH B8
A9 D8 D9 D10 D1y PH D12 D13 D14 B9
A10 1 2 3 6 PH x 2 3 4 S 6 X B10
8
B sample event: 1 plant harvested, number identifies sample event; x indicates skipped sample

Center line is laid out perpendicular to row direction.
Orientation of map is north to east depending on predominant row direction,

location of soil moisture sensor

Figure 2.2: Sample site map showing data collection plan. Numbers across the top
indicate meter length subsections (15-1, 1-15) of the sample site. Legend: A, left side
of sample site; B, right side of sample site; SM, soil moisture measurement location
(orange); PH, plant height measurement location; D1 through D14 were internal
flag locations; yellow colored rows indicate areas where no destructive sampling
occurred; green numbered blocks indicate biomass sampling locations by sortie
number (x indicates no sample) (Coffin et al., 2024b, figure used with permission).
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Chapter 3
METHODS

Methods for Objective 1: Reprocess UAS Imagery and Compute Weighted Biomass

UAS imagery of the Ashburn and Ty Ty Cooperator Farms was originally processed by
SEWRL personnel using Pix4D Mapper by Pix4D S.A. to generate reflectance orthoimage
mosaics of the study areas during 2018 and 2019. However, due to sensor errors and the presence
of nonparallel flight lines, the data had to be reprocessed in this research to ensure correct
radiometric outputs. Images acquired within the departure and return flight lines from the UAS
launch location were manually excluded to ensure changing light conditions did not disrupt the
appropriate reflectance values across the study sites. Additionally, there were few flight dates
where an unexplained radiometric calibration error existed for a single image which produced
incorrect orthomosaics, so a handful of flight dates contained corrupted images which would
produce irregular reflectance values if not excluded from the processing (Figure 3.1). Upon
removing the problematic images, the index and reflectance maps were reprocessed. The process
for generating the index and reflectance map uses Pix4D to perform SfM, create a DSM and
photogrammetrically orthorectify each of the images per flight. The images are then stitched
together to create a seamless multispectral orthomosaic of 9-cm spatial resolution. Raw UAS
image bands were initially clipped to the boundary of the crop fields, and 21 VIs were then
calculated at field level. To further examine vegetation characteristics including cotton growth and
development and precipitation responses, 9 more VIs were utilized in addition to Stone’s (2023)

original VIs derived from the UAS imagery. In total, 21 VIs were used to explore any advantages
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Figure 3.1: The UAS orthomosaic of the Ashburn Cooperator Farm before

reprocessing (a). Note the blue discoloration in the corners of the image. The

UAS orthomosaic after reprocessing (a) has corrected radiometric calibration.
of using additional Vs that are variations of NDVI (e.g., TDVI1), use the RedEdge band (e.g., RRI1
and RRI2) and use only visible bands (e.g., GDVI) (Table 3.1). Raw bands and Vs were clipped
to the boundary of each 30-m x 10-row sample plot. The raw bands and Vs were then resampled
using a bilinear interpolation method to ensure all data possess identical dimensions which is
critical for running the machine learning models. The methodology by Stone (2023) was replicated
in this study where NDVI values within each 30-m x 10-row sample plot were averaged, and on a
per pixel basis, NDVI was divided by the average NDVI value for the plot to produce the Weighted
NDVI Layer which depicts the distance of each pixel’s NDVI value from the mean NDVI within
the given plot. The Weighted NDVI Layer was then multiplied by the biomass per pixel variable
which is computed by multiplying the average wet weight of harvested biomass for the plot in
grams, the plant density per square meter, and the unit conversion coefficient. The unit conversion
coefficient is calculated by dividing the area of one UAS pixel by the area of one meter squared,

which results in (9cm x 9cm / 100cm x 100cm) = (81cm? / 10,000cm?) = 0.0081. This coefficient

parses the average wet weight biomass times the plant density of the plot, to each individual UAS



Table 3.1: The 21 Vegetation Indices used for initially predicting cotton AGB plus NDVI,
along with the citation for the source of the index equation. The indices which are bold
and underlined are the new indices which Stone (2023) did not pursue in his methodology.

Vegetation Index Name Abbr. Equation Reference
NIR .
Chlorophyll Green Index CGl (—) -1 Gitelson and Merzlyak, 1994
GREEN
Chl hyll Index RedEd Clreded (NIR) Gitel t al., 2003
orophyll Index Re ge rededge (REDEDGE) itelson et al.,
Chlorophyll Vegetation Ind cvi (VIR » RED) Vincini et al., 2008
orophyll Vegetation Index (GREEND) incini et al.,
Enh d Vi tati Ind EVI 2.5 (NIR — RED) Huete et al., 2002
g E -
nhanced Vegetation Index (NIR T 6= RED — 75+ BLUE) + 1 uete et al
Enhanced (NIR — RED) .
R EVI2 25% —————————— J t al., 2008
Vegetation Index (2-band) * (NIR +2.4+RED +1) lang et &
Green Difference Vegetation GDVI NIR — GREEN Tucker, 1979
Index —
2. REEN — RED — BLUE
Green Leaf Index GLI (20-6 UE) Gobron et al. 2000
(2.0 * GREEN + RED + BLUE)
Gree|:)r?ff’\‘0rmaIiZEd GNDVI (NIR — GREEN) Gitelson et al., 1996
ifference (NIR T GREEN) itelson et al.,
Vegetation Index
- ) _ 2 _ _ 05
~ Modified Soil MSAVI (2*NIR +1— (((2*NIR +1)* — 8 « (NIR — RED))">) Qietal., 1994
Adjusted Vegetation Index 2
Normalized (NIR — REDEDGE) .

5 NDRE —_— Gitel d Merzlyak, 1994

Difference Red Edge (NIR + REDEDGE) ftelson and Merzlya
Normalized Difference Vegetation (NIR — RED)
NDVI —_— R , 1974
Index (NIR + RED) ouse
Normalized (GREEN — NIR)
5 NDWI —_— McFeeters, 1996
Difference Water Index (GREEN + NIR) creeters

Optimized Soil (NIR — RED)

. R OSAVI —_— Rond t al., 1996
Adjusted Vegetation Index (NIR + RED + 0.16) ondeauxeta
Normalized Difference (RED — GREEN)

— RI —_— E fal H 1991
Red/Green Redness Index - (RED + GREEN) scadafal and Huete, 199
. NIR
RedEdge Ratio Index 1 RRI1 _ Ehammer et al., 2010
REDEDGE
RedEdge Ratio Index 2 RRI2 % Ehammer et al., 2010
Soil Adjusted (NIR — RED)
. SAVI 14+L)* ——————— Huete, 1988
Vegetation Index (¢ ) (NIR + RED + L) uete
i ifi NDRE
Simplified Canopy Chlorophyll scccl Raper and Varco, 2015
Content Index NDVI
. . NIR
Simple Ratio SR — Jordan, 1969
- RED
i NIR — RED
Transformed Difference TDVI 1.5+ (7) Bannari et al., 2002
Vegetation Index I VNIR? + RED + 0.5
Triangular Vegetation Index TVvI 0.5(120(NIR — GREEN) — 200(RED — GREEN)) Broge and Leblanc., 2001
Visible Atmospherically (GREEN — RED) .
Resistant Index VARI (GREEN + RED — BLUE) Gitelson et al., 2004
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pixel. The AGB protocols are extensively documented by the LTAR (Wilke et al., 2024).
Additionally, note the weights in grams are the sum of all 10 plants harvested for measuring
biomass, so dividing by an additional factor of 10 gives the average biomass weight in grams for
each specific harvest date. Inputting the division by a factor of 10 to the unit conversion coefficient
provides a simple multiplication of three numbers to acquire the biomass in grams per pixel,
namely, the average fresh weight, referred from now on as the average wet biomass weight, the
plant density, and the unit conversion coefficient of 0.00081. The biomass per pixel variable is
multiplied by the Weighted NDVI Layer which produces the Weighted Biomass Layer, and this
layer details the calculated biomass on a per pixel basis within each sample plot for the

corresponding dates (Figure 3.2 and Figure 3.3).

7
[ /
Plant i
\ \
Average
Wet Weight ¥
‘/ [ Average Biomass
Average N?VI F\’/Ialtue Biomass Per
sunda Unit Pixel Variable
| \ Boundary

\ \ Conversion
Coefficient,

Field-Level
NDVI
Raster

[ [ [ Divide | | [

‘ | Plot-Level | NoVI | Weighted | | P
. - '\ i . -
l Clip '—’ NDVI Raster F‘Aii‘:;;y '—’ NDVI Layer [ Multiply ';’ B:::;::s

\ \ | NDVI | \ \

10 Row x J
30m Plot
Boundary

Figure 3.2: Workflow for producing a Weighted Biomass Layer for a singular biomass layer.

Methods for Objective 2: Predict AGB for Cotton Fields at the Ashburn and Ty Ty Farms

After acquiring the Weighted Biomass Layer for each corresponding plot and date, as the
ground-measured AGB, these data are used in machine learning models to predict cotton AGB

first at the plot level and then at the field level for the Ashburnand Ty Ty farms for 2018 and 2019.
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Sample Plot 14

Predicted Dry Biomass (g)

True Color UAS Image

v - O -

Sample Plot 0.0664629 0.851803 0.13284 0.717477

Figure 3.3: True color, NDVI, and predicted dry biomass images
of sample plot 14 at the Ashburn Cooperator Farm (Stone, 2023).

Predicted AGB at the plot level are optimized by comparing predictions made with the five raw
bands and NDVI vs. predictions using all or some of the additional 21 VIs computed from the
UAS imagery. Explanatory variables included the raw bands and the selected vegetation indices
which were used for biomass prediction. Comparatively, predicted cotton AGB is the response
variable. Once the best models are determined, optimized input variables were reshaped into a 2D
array using the NumPy reshape function which gives a new shape to the input array without
changing the data. The reshaped data were input to the machine learning algorithms to predict
AGB for the entire field. Specific methods to first predict AGB at the plot level are depicted in the
workflow shown in Figure 3.4. This workflow was repeated with the substitution of the XGBoost
machine learning algorithm for the Random Forest Regressor. The train/test split for this project
was 80/20 respectively. The ground-measured AGB data per UAS pixel for the sample plots were

imported into python along with the field-level UAS surface reflectance for the five UAS bands
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Create
Random
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Model

Start

Reshape

Test - Train
Split

Reshape
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AGB at Bvaluate | ) o oipie o

Plot-Level Metrics

Figure 3.4: Workflow, reading from right to left, for predicting cotton AGB at plot-level.

and 22 computed VIs. Using scikit-learn, a Python machine learning library, AGB, was first
predicted at the 30-m x 10-row plot level using Random Forest and XGBoost models. Detailed in
Table 3.1 above, 21 VIs were utilized to predict AGB of cotton. These 21 VIs were derived from
each individual UAS flight date, and the additional 10 were selected because they are well-known
VIs utilized for vegetation analysis, many of which are slight variations of more common indices.
After achieving appropriate results, the AGB was predicted for the end-of-season dates for both
study sites in 2018 and 2019.

Within the Random Forest and XGBoost models, a test-train split of 80% / 20% was
applied. All other model parameters were left as default for further exploration of model
optimization. A correlation matrix was produced to determine the most significant, i.e.,

uncorrelated, indices. and these were used to predict AGB for the remainder of the biomass UAS

' | predict |
| Cg:g‘(n [ l \—xReShape ' Tes;p;l;am‘ - '
Fleld Level
'

Figure 3.5: Workflow for predicting cotton AGB at field-level.
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flight dates. A root mean squared error metric and mean absolute error metric was performed to
evaluate model performance and error. Optimal models were then extended from the plot to the
field levels using field-level bands and indices to predict AGB of cotton in fields of irrigated vs.
non-irrigated farms and 2018 vs. 2019 trends in AGB and natural rainfall (Figure 3.5).

Methods for Objective 3: Analyze Cotton Growth and Development in Relation to Precipitation

Precipitation datasets were acquired from public access data available from STEWARDS
(STEWARDS, 2025). Precipitation analysis to compare rainfall trends was conducted by
calculating and comparing the cumulative precipitation throughout the 2018 and 2019 growing
seasons for both study sites. The time series of rainfall from 2018 with a typical rainfall trend in
terms of amount, timing and duration, was compared to rainfall trends during the drought year of
2019. Trends in cotton vegetation health or greenness were compared to rainfall trends by
computing NDVI from multiple dates of UAS imagery acquired for the Ashburn and Ty Ty farm
fields. NDVI analysis was conducted by first clipping the multi-date output NDV1 raster datasets
to the extent of the corresponding fields. Field-level NDV1 was calculated by averaging all values
to produce a single median NDVI value, used for removing the skew from outliers, for the
corresponding UAS flight date. NDV 1 values for each flight date were plotted over time to analyze

the cotton growth and development in relation to precipitation.
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Chapter 4
RESULTS

Results for Objective 1: Reprocess UAS Imagery and Compute Weighted Biomass

Multispectral UAS datasets across the 2018 & 2019 growing seasons at the Ashburn and
Ty Ty Cooperator Farms were reprocessed due to issues with the multispectral sensor and lighting
conditions. Thermal and visible imagery datasets were not reprocessed during this study. A total
of 55 flight dates were reprocessed totaling in excess of 1.35 TBs of data. Only 23 of the UAS
flight dates were utilized for the biomass prediction aspect of this research because they correspond
with the dates of in-situ data collection of AGB (see Table 2.2). The NDVI and precipitation
analysis required 41 of the UAS datasets. All reprocessed datasets had the nonparallel flight lines
where the UAS departed from and returned to the launch site removed to ensure changing light
conditions did not produce radiometrically incorrect orthomosaics. The remaining reprocessed
datasets were from different locations not analyzed in this study.

Additionally, 4 datasets contained corrupt data, where out of the thousands of images used
for photogrammetric processing, a single image lacked radiometric correction, and no sun
irradiance information was provided (Figure 4.1). Within Pix4D Mapper, the processing software
used to produce the orthomosaics, the corrupt images had to be manually removed within the
Image Properties Editor before the Correction Type option ‘Camera and Sun Irradiance’ could be
selected within the Index Calculator Pane (Figure 4.1). Located entirely at the Ashburn
Cooperator Farm, the datasets with corrupt images are entitled ‘L_2018020" (11 July 2018),

‘L_2018025 (3 August 2018), ‘L_2018038" (17 October 2018), and ‘L_2019008" (30 April 2019).
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Upon reprocessing the imagery, output bands were then able to produce field level VIs which were
then clipped down to sample plot level for the computation of the Weighted Biomass Layers. A
total of 234 Weighted Biomass Layers were computed for this research with half of the layers

representing wet biomass and the remaining half representing dry biomass.

DSM and Orthomosaic  Additional Outputs  Index Calculator DSM and Orthomosaic ~ Additional Outputs ~ Index Calculator
Radiometric Processing and Calibration Radiometric Processing and Calibration
RedEdge_5.5_1280x360 (Blue) RedEdge_5.5_1280x960 (Blue)
Correction Type: | Camera and Sun Irradiance ~ Correction Type: |Camera and Sun Irradiance b
Calibration: calibrate. .. Reset Q Calibration: Calbrate. .. Reset Q
RedEdge_5.5_1280x960 (Green) RedEdge_5.5_1280x950 (Green)
Correction Type: |Camera Only ~ Correction Type: |Camera and Sun Irradiance e

\Na Correction

Calibration: Calibration: Calibrate. .. Reset o

Camera and Sun Irradiance

RedEdge_5.5_1280x9€ Camera, Sun Irradiance and Sun Angle RedEdge_5.5_1280x960 (Red)

Correction Type: mE[E" 5”? Iradiance and Sun Angle using DLS TMU Correction Type: | Camera and Sun Irradiance e

Calibration: Calibrate. .. Reset o Calibration: Calibrate... Reset °
RedEdge_5.5_1280x960 (NIR) RedEdge_5.5_1280x960 (MIR)

Correction Type: |Camera Only w Correction Type: |Camera and Sun Irradiance ~

Calibration: Calibrate. .. Reset Q Calibration: Calibrate... Reset Q
RedEdge_5.5_1280x960 (Red edge) RedEdge_5.5_1280x950 (Red edge)

Correction Type: | Camera Only ~ Correction Type: |Camera and Sun Irradiance ~

Calibration: Calibrate. .. Reset Q Calibration: Calibrate... Reset Q

Figure 4.1: The correction type for the raw bands before
(left) and after (right) removing corrupt images.

Results for Objective 2: Predict AGB for Cotton Fields at the Ashburn and Ty Ty Farms

A total of 21 Vegetation Indices (VIs) were computed from the UAS multispectral imagery
using band ratios and formulas described in Table 3.1 as potential predictors of AGB. Collinearity
analysis was performed to assess associations among the predictor variables and remove redundant
variables from the model. In this way, only the most important VIs contributing to predicted AGB
were identified. Collinearity matrices were produced for 21 VIs, wet and dry biomass and wet and
dry biomass per pixel for each year of UAS imagery, i.e., 2018 and 2019, for both the ACF and
TCF farms (Appendix A).

Variables listed on the X axis can be paired with variables listed on the Y axis and the
color-coded value in the intersecting cell indicates the strength of the correlation. A bright red cell

with values approaching 1.00 indicates a pair of variables with strong positive collinearity, i.e., as
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measurements of the predictor variable increase measurements of the paired variable also increase.
Bright blue cells with collinearity values approaching -1.00 conversely indicate variables that are
negatively correlated. Ramped colors and values ranging between 1.00 and -1.00 indicate varying
degrees of collinearity.

Figure 4.2 depicts the collinearity matrix for the ACF in 2019 and represents the findings
from all 4 matrices included in Appendix A. Results indicate the VIs were generally highly
correlated and the 21 original VIs could be reduced to 5 optimal VIs: Normalized Difference Water
Index (NDWI), Optimized Soil Adjusted Vegetation Index (OSAVI), RedEdge Ratio Index 2
(RRI2), Triangular Vegetation Index (TV1), and Visible Atmospherically Resistant Index (VARI).
The Southeast Watershed Research Laboratory, USDA-ARS harvested, dried and weighed cotton
in the ACF. A separate dataset details the end of season, ground-sampled dry AGB values for the
ACF in 2018 with a range from 2,500-5,500 kg/ha for seed cotton and about 5,000 — 16,000 kg/ha
for total biomass (Dr. Tim Strickland, personal communication, June 1, 2023). Since it is known
that the end of season dry biomass range is within 5,000 — 16,000 kg/ha, the raw bands and Vs
were used to first predict cotton AGB for the end of season biomass in kg/ha at the ACF in 2018.
With this known range, the models can be assessed to determine if the models using Vs (Table
4.1) or Raw Bands (Table 4.2) have higher performance to ensure the models are accurately
predicting to field level scales. Validating the predicted end of season biomass within the range of
measured AGB in kg/ha for the ACF in 2018 is critical to assess model accuracy. It was determined
that although model metrics from the raw bands are comparable to the model metrics from the Vs,
the range in predicted AGB in kg/ha from Random Forest to XGBoost for the models using the

raw bands are substantially lower. To visually show the end of season biomass predictions, the
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results are graphically displayed showing the models using raw bands (Figure 4.3) versus the

models using VIs (Figure 4.4).
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Figure 4.2: Correlation matrix of the 21 VIs used
for predicting cotton AGB at the ACF for 2019.
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Table 4.1: Model metrics and predicted total end of season above ground biomass (AGB)
using 5 optimal VIs and two Machine Learning algorithms. Model metrics include accuracy
of training and testing data, root mean square error (RMSE) and mean absolute error (MAE).

Predicted AGB Using Vegetation Indices

Random Forest XGBoost
Predicted Predicted
AGB Train Test RMSE | MAE AGB Train Test RMSE | MAE
(kg/ha) (kg/ha)
_Wet 30,161 0.9894 | 0.9239 | 1.4882 | 0.9204 44 477 0.9395 | 0.9255 | 1.4721 | 0.9424
2018 | Biomass
ACF Bicl?r%ss 16,938 0.9935 | 0.9538 | 0.5922 | 0.3822 23,305 0.9625 | 0.9547 | 0.5862 | 0.3892
Wet
2018 | Biomass 45,567 0.9988 | 0.9917 | 0.8146 | 0.4401 55,706 0.9934 | 0.9917 | 0.8122 | 0.4577
TCF Bicl?r?;ss 20,398 0.9993 | 0.9949 | 0.2889 | 0.1568 26,515 0.9959 | 0.9949 | 0.2869 | 0.1620
.WEt 36,315 0.9836 | 0.8835 | 2.4603 | 1.1809 47,834 0.8969 | 0.8809 | 2.4879 | 1.2287
2019 | Biomass
ACF Dry
Biomass 20,247 0.9867 | 0.9056 | 1.2654 | 0.6985 25,866 0.9160 | 0.9040 | 1.2764 | 0.7181
_Wet 26,384 0.9989 | 0.9925 | 0.7771 | 0.2406 40,349 0.9814 | 0.9788 | 1.3118 | 0.5950
2019 | Biomass
TCF Bicl?r%ss 14,203 0.9990 | 0.9933 | 0.3942 | 0.1213 22,410 0.9833 | 0.9810 | 0.6644 | 0.2970

Table 4.2: Model metrics and predicted total end of season above ground biomass (AGB)
using Raw Bands and two Machine Learning algorithms. Model metrics include accuracy of
training and testing data, root mean square error (RMSE) and mean absolute error (MAE).

Predicted AGB Using Raw Bands

Random Forest XGBoost
Predicted Predicted
AGB Train Test RMSE | MAE AGB Train Test RMSE | MAE
(kg/ha) (kg/ha)
.WEt 13,976 0.9892 | 0.9221 | 1.5160 | 0.9481 14,062 0.9209 | 0.9132 | 1.6003 | 1.0146
2018 | Biomass
ACF Dry
Biomass 7,302 0.9934 | 0.9528 | 0.6040 | 0.3937 7,341 0.9499 | 0.9458 | 0.6474 | 0.4193
_Wet 20,794 0.9999 | 0.9999 | 0.0598 | 0.0251 20,712 0.9986 | 0.9975 | 0.4347 | 0.0733
2018 | Biomass
TCF Dry
Biomass 9,559 0.9999 | 0.9999 | 0.0173 | 0.0093 9,528 0.9985 | 0.9974 | 0.2007 | 0.0263
_Wet 18,336 0.9827 | 0.8772 | 2.5338 | 1.2459 18,182 0.8831 | 0.8722 | 2.5844 | 1.3051
2019 | Biomass
ACF Dry
Biomass 10,689 0.9859 | 0.9004 | 1.3030 | 0.7281 10,598 0.9038 | 0.8946 | 1.3406 | 0.7631
.WEt 26,424 0.9987 | 0.9914 | 0.8320 | 0.4292 26,315 0.9904 | 0.9895 | 0.9232 | 0.4429
2019 | Biomass
TCF Dry
Biomass 14,146 0.9994 | 0.9961 | 0.3015 | 0.1559 14,167 0.9942 | 0.9938 | 0.3781 | 0.1647
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Histograms depicting the area per pixel value and maps depicting the field-level biomass
on a per pixel basis are displayed for the following end of season models: 2018 ACF Wet Biomass
Random Forest model (Figure 4.5, Figure 4.6), 2018 ACF Wet Biomass XGBoost model (Figure
4.7, Figure 4.8), 2018 ACF Dry Biomass Random Forest model (Figure 4.9, Figure 4.10), 2018
ACF Dry Biomass XGBoost model (Figure 4.11, Figure 4.12), 2018 TCF Dry Biomass Random
Forest model (Figure 4.13, Figure 4.14), 2018 TCF Dry Biomass XGBoost model (Figure 4.15,
Figure 4.16), 2019 ACF Dry Biomass Random Forest model (Figure 4.17, Figure 4.18), 2019
ACF Dry Biomass XGBoost model (Figure 4.19, Figure 4.20), 2019 TCF Dry Biomass Random
Forest model (Figure 4.21, Figure 4.22), 2019 TCF Dry Biomass XGBoost model (Figure 4.23,
Figure 4.24). Figure axes are not standardized, and this was done to ensure maximum vertical
distribution for each graph. It may appear that some values are zero in the histograms, but no matter
how small the value on the Y axis, each value range on the X axis has an associated value for the

Y axis. Enlarged predicted biomass maps are included in Appendix B.
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Figure 4.3: Total end of season predicted biomass as kg/ha using the 5 VIs.
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Figure 4.4: Total end of season predicted biomass as kg/ha using the Raw Bands.
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Figure 4.5: Histogram displaying the area per pixel value for the 2018 ACF
End of Season Random Field-Level Forest Predicted Wet Biomass model.
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Figure 4.6: Map of field-level predicted biomass for the 2018 ACF End of
Season Random Forest Field-Level Forest Predicted Wet Biomass model.
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Figure 4.7: Histogram displaying the area per pixel value for the 2018

ACF End of Season Field-Level XGBoost Predicted Wet Biomass model.
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Figure 4.9: Histogram displaying the area per pixel value for the 2018 ACF

End of Season Field-Level Random Forest Predicted Dry Biomass model.
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Figure 4.10: Map of field-level predicted biomass for 2018 ACF End
of Season Field-Level Random Forest Predicted Dry Biomass model.
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Figure 4.11: Histogram displaying the area per pixel value for the 2018
ACF End of Season Field-Level XGBoost Predicted Dry Biomass model.
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Figure 4.12: Map of field-level predicted biomass for 2018 ACF
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Figure 4.13: Histogram displaying the area per pixel value for the 2018 TCF
End of Season Field-Level Random Forest Predicted Dry Biomass model.
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Figure 4.14: Map of field-level predicted biomass for the 2018 TCF End
of Season Field-Level Random Forest Predicted Dry Biomass model.
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Figure 4.15: Histogram displaying the area per pixel value for the 2018
TCF End of Season Field-Level XGBoost Predicted Dry Biomass model.
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Figure 4.17: Histogram displaying the area per pixel value for the 2019 ACF
End of Season Field-Level Random Forest Predicted Dry Biomass model.
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of Season Field-Level Random Forest Predicted Dry Biomass model.
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Figure 4.19: Histogram displaying the area per pixel value for the 2019
ACF End of Season Field-Level XGBoost Predicted Dry Biomass model.
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Figure 4.21: Histogram displaying the area per pixel value for the 2019 TCF
End of Season Field-Level Random Forest Predicted Dry Biomass model.
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Figure 4.23: Histogram displaying the area per pixel value for the 2019
TCF End of Season Field-Level XGBoost Predicted Dry Biomass model.
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Results for Objective 3: Analyze Cotton Growth and Development in Relation to Precipitation

Cotton growth and development was analyzed against cumulative precipitation using the
NDVI time series acquired from the UAS multispectral imagery. Cumulative precipitation are
rainfall totals that do not include irrigation. NDV1 values for both study sites for the 2018 and 2019
growing seasons years are plotted in green against cumulative precipitation values shown in blue
(Figure 4.25). The NDVI time series and cumulative precipitation values are plotted against each
other individually for the ACF (Figure 4.26) and the TCF (Figure 4.27).

Cotton AGB was analyzed against cumulative precipitation using the total field-level
biomass predictions acquired from the machine learning models. AGB (kg/ha) values for both
study sites for the 2018 and 2019 growing seasons years are plotted against cumulative
precipitation values (Figure 4.28). The AGB values and cumulative precipitation values are plotted

against each other individually for the ACF (Figure 4.29) and the TCF (Figure 4.30).
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Figure 4.25: NDVI and cumulative precipitation values for the
ACF and TCF throughout the 2018 and 2019 growing seasons.
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Chapter 5
DISCUSSION AND CONCLUSIONS

This research is a continuation and enhancement of the work performed by Stone (2023)
entitled, “A methodology for scaling agricultural biomass from ground to regional scales using
remote sensing and machine learning analysis”. For his M.S. thesis research, Stone (2023)
analyzed the ACF in 2018 using VIs and a Random Forest Model in ArcGIS Pro. Building on
Stone’s findings, the study sites in this current research were the ACF & TCF for both 2018 &
2019. Additionally, Raw Bands and a total of 21 VIs were compared to determine the effectiveness
of each in predicting cotton AGB scaled from the ground to field level with Random Forest and
XGBoost models using the python scikit-learn machine learning library.

The first objective of this study involved reprocessing UAS imagery acquired by the USDA
for the two farms on multiple dates during the 2018 and 2019 growing seasons. Checking and
reprocessing the imagery is critical to ensuring correct radiometric outputs and improved
computation of weighted biomass within USDA field sample plots for scaling AGB to field levels.
For example, the end-of-season field-level biomass raster maps for the ACF in 2018 displayed a
dark strip in the southeast corner. This flight date, October 17, 2018, was one of four reprocessed
datasets where the radiometric calibration had to be reprocessed as detailed in the Results section.
The other three reprocessed datasets include July 11, 2018, at the ACF, August 3, 2018, at the
ACF, and April 30, 2018, at the ACF. The three flight dates in 2018 were aligned with biomass
collection flight dates in 2018, and the 2019 flight date was the baseline bare earth flight date

before planting. After reprocessing, the field-level raster was radiometrically correct, but extreme
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illumination in this area resulted in machine learning models being unable to accurately predict
AGB. Acknowledging the challenges of UAS image data collection in southwest Georgia during
the humid afternoons at the peak of the growing season, these results emphasize the importance of
selecting flight days that have consistent sun illumination. If possible, it is best to avoid: 1) flying
on sunny days with spotty clouds moving in during the duration of the flight; and 2) early morning
and late afternoon flights with low sun angles and long shadows.

A total of 21 Vegetation Indices (VIs) were computed from band ratios of the UAS
multispectral imagery and assessed as potential predictors of AGB. Collinearity analysis was
performed to remove redundant variables and improve the efficiency of the predictive models.
Results for the ACF in 2019 were depicted as a collinearity matrix in Figure 4.2 that represents
the collinearity findings from both farms in 2018 and 2019 (see Appendix A). The 12 original Vs
were highly correlated and reduced to 5 optimal VIs, namely, Normalized Difference Water Index
(NDWI), Optimized Soil Adjusted Vegetation Index (OSAVI), RedEdge Ratio Index 2 (RRI2),
Triangular Vegetation Index (TV1), and Visible Atmospherically Resistant Index (VARI).
Although selecting the most important VIs for the correlation analysis was challenging,
eliminating the most redundant VIs determined that NDWI, OSAVI, RRI12, TVI, and VARI were
the most important Vs for field-level biomass prediction. While it was difficult to find a threshold
to remove variables, and the five VIs did have some collinearity, the five VIs chosen predicted
cotton AGB accurately across the two study sites and years while having less collinearity in
comparison to the other VIs.

Analyzing the metrics for the models in Objective 2 also was critical to decide whether the
five optimal Vegetation Indices (VIs) or Raw Bands are best suited for predicting AGB and

creating the field-level biomass maps. While the training, testing, RMSE, and MAE scores were
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comparable between the models using VIs and Raw Bands, the amount of predicted AGB in kg/ha
values were different. Particularly, the kg/ha values for the 2018 ACF dry biomass were examined
since field-measured dry AGB provided known end-of-season biomass values that ranged between
5,000 — 16,000 kg/ha (Dr. Tim Strickland, personal communication, June 1, 2023). Using the VIs,
the 2018 Random Forest dry biomass predicted value was 16,938 kg/ha, and the XGBoost value
was 23,305 kg/ha. For the Raw Bands, the 2018 Random Forest dry biomass value was 7,302 and
the XGBoost value was 7,341 kg/ha. Both models using the VIs predicted AGB greater than the
highest value in the known biomass range, and they are drastically different from each other with
the XGBoost prediction being over 6,000 kg/ha higher than the Random Forest prediction.
Conversely, the predicted AGB values for the two models using Raw Bands were within the range
of the field-measured AGB amounts and had less than a 50 kg/ha difference.

These trends were consistent for the predicted AGB in the ACF in 2019 and in the TCF in
2018 and 2019 (see Table 4.1, Table 4.2, Figure 4.3, and Figure 4.4). The largest difference
between Random Forest and XGBoost for the models using the Vs was 14,316 kg/ha for the 2018
ACF wet biomass. Alternatively, the largest difference between Random Forest and XGBoost for
the models using the Raw Bands was 154 kg/ha for the 2019 ACF wet biomass. Due to the inflated
and large differences between the kg/ha values for the models using the VIs, the models using the
Raw Bands were utilized for scaling up AGB predictions and creating field-level maps. Utilizing
the Raw Bands over the VIs is beneficial because it provides the ability to streamline the process
of regionalization. Removing the calculations of VIs allows users to simply use the Raw Bands for
biomass predictions, and this method can be scaled up to predict cotton at larger geographic ranges

by using only the remote sensing data directly from the sensor.



51

Predicted AGB scaled to field-level was computed for each UAS pixel in the end of season
flights (assumed to be the maximum growth of cotton) in 2018 and 2019 for the ACF and TCF
farms. Histograms depicting the area per pixel value of predicted wet AGB using Random Forest
and XGBoost (see Figure 4.5 and Figure 4.7) and dry AGB (see Figure 4.9 and Figure 4.11) for
the 2018 ACF end-of-season biomass flight date show a normal distribution of AGB peaking at 9
to 10 g for wet and 5 to 6 g for dry AGB. There is a slight bimodal peak towards the lower values
(approximately 3 to 5 g) of both wet and dry biomass predicted using both models. Based upon
the maps of field-level predicted wet and dry biomass for the ACF (see Figures 4.6, 4.8, 4.10 and
4.12), it can be inferred that the small bimodal peaks are a result of the intense illumination in the
southeast section of the fields resulting in low biomass predictions. The histograms for the Random
Forest models have a distribution more akin to a normal distribution in comparison to the
histograms for the XGBoost models. The tails on either end of the histograms are enhanced and
have more extreme values for the XGBoost models in comparison to the histograms for the
Random Forest models. Due to the distribution of biomass values, the field-level maps of predicted
AGB from Random Forest models appear greener in comparison to the XGBoost models.
Additionally, the maps displaying dry biomass also appear greener than the models displaying wet
biomass. The distribution of biomass values in the maps could be due to the different ranges of
predicted biomass and therefore different color ramps. Also, wet biomass contains more water
content, so the NIR reflectance values would be reduced for wet biomass values.

The remainder of this discussion of results will focus on the field-level histograms and
maps displaying predicted dry biomass for the TCF. The histogram depicting the area per pixel
values of predicted AGB for the 2018 TCF end-of-season flight date using the Random Forest

model (see Figure 4.13) has a wider normal distribution with peak values ranging from about 6.5



52

to 9 g and a long tail skewing the data to the lower AGB values of the histogram (i.e., less than 2
g). Otherwise, the data seems relatively normally distributed with the exception of two spikes at
the 5.9 — 6.1 and 6.2 — 6.4 g biomass ranges. The histogram depicting the area per pixel value for
the 2018 TCF end-of-season flight date using the XGBoost model (see Figure 4.15) also has a
wide peak distribution ranging from approximately 7.5 to 8.5 g with two tails on either side of the
normal distribution, and an extremely high spike in the 7.2 — 7.4 g biomass range. When looking
at the field-level predicted biomass maps (see Figure 4.14 and Figure 4.16), there are areas in the
northern portion of the top field and the northwestern portion of the middle field with uniformly
low biomass values. These areas are the result of cloud shadows entering the image and modifying
the reflectance values for the bands, and it can be inferred that these areas result in the high spikes
within the histograms. In general, the map for the Random Forest model appears slightly greener
than the map for the XGBoost model.

The histogram depicting the area per pixel value for the 2019 ACF end-of-season flight
date using the Random Forest model (see Figure 4.17) exhibits a narrower normal distribution
peaking at approximately 7.5 to 9.5 g and a bimodal peak near the lower end of the biomass values
at 1.5 to 2.5 g, and a long tail skewing the dataset towards the higher end of the biomass values
out to 19.5 g. The histogram depicting the area per pixel value for the 2019 ACF end-of-season
flight date using the XGBoost model (see Figure 4.19) is similar, but the tail is longer skewing the
dataset towards the higher end of the biomass values out to 25 g. There is an area near the center
of the fields with low biomass values visible in the field-level predicted AGB maps (see Figure
4.18 and Figure 4.20). These areas of lower biomass values are a result of the low elevation within
the microtopography of the ACF which appears to serve as a drainage and runoff area within the

field. Additionally, along the edge of the fields, tree shadow is present which modifies the biomass
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predictions. For the Random Forest model, these areas are depicted as low biomass values;
however, for the XGBoost models, these areas were assigned No Data values, and removed from
the image. It is difficult to distinguish, but the Random Forest model appears to be slightly greener.

The 2019 TCF maps only have the two most southerly fields in comparison to the 2018
TCF maps because cotton was only grown in these field during the 2019 growing season. The
histogram depicting the area per pixel value for the 2019 TCF end-of-season flight date using the
Random Forest model (see Figure 4.21) is normally distributed with a relatively wide peak (i.e.,
ranging from 7 to 9.5 g) and is skewed on either end of the peak with wide tails along the X axis.
The lower values have a more abrupt cutoff at 3.5 g, and the higher values exhibit a steady decline
from 9.5 to 18.5 g. The histogram depicting the area per pixel value for the 2019 TCF end-of-
season flight date using the XGBoost model (see Figure 4.23) is similar to the Random Forest
histogram peaking at 7.5 to 9.5 g, but the distribution is more compressed. It is difficult to
distinguish which map has a greener appearance.

Random Forest and XGBoost models were utilized in this study because they are suitable
for the given scenario of scaling cotton AGB from the ground to field level. A similar study where
Kaur Dhaliwal et al. (2022) predicted cotton and found that tree-based models (Random Forest
and XGBoost) outperformed four other models (Kaur Dhaliwal et al. 2022). These findings from
Kaur Dhwiwal et al. (2022) support the notion that Random Forest and XGBoost models were
suitable for this project. The model metrics tables, histograms, and maps were analyzed for the
Raw Bands models. In every category, Random Forest out-performed XGBoost. These findings
are similar to the results from Chen et al. (2024) where and Random Forest Regression also

outperformed a Bayesian Ridge Regression (Chen et al. 2024).
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Random Forest models have also performed comparative to deep learning models in cotton
AGB predictions. Ashapure et al. (2020) developed a machine learning-based framework to
predict cotton and found that a Random Forest Regression produced a 0.846 R? value for the
average of 10 runs whereas a deep learning Artificial Neural Network produced a 0.861 R?value
for the average of 10 runs (Ashapure et al. 2020). While the Artificial Neural Network did
outperform the Random Forest Model, the difference was not drastic.

One significant benefit for XGBoost is the decreased time it takes for the models to run. In
this research, the Random Forest models typically required 20-30 minutes of processing time, but
the XGBoost models typically required 5-10 minutes. Upon investigating the inner working for
Random Forest and XGBoost, it is revealed that the difference in computational time is a result of
how the models’ algorithms are designed. Random Forest uses a technique called bagging to create
full decision trees with random samples from the dataset, but XGBoost uses gradient boosting to
aggregate numerous models into a strong model (Fatima et al., 2023). Due to the architecture,
XGBoost models are scalable with high processing speeds in comparison to similar models. Still,
the model metrics from this research demonstrate that Random Forest was more accurate. It must
be noted, however, that if computational time is a strain on a similar project, then XGBoost may
be favored due to its comparable performance.

In Objective 3 of this research, the median field-level NDV1 values for the study areas were
plotted against cumulative precipitation values, acquired from STEWARDS public access data
(STEWARDS, 2025), to assess the impact of precipitation on cotton growth and development (see
Figure 4.25). The 2018 TCF growing season had higher cumulative, and ended up having over

100 mm more precipitation at the end of the growing season. However, in 2019 for the TCF,
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cumulative precipitation started out similar to 2018 in mid-June, was lower from early July to the
end of August and then leveled out with nearly no rainfall in the month of September.
In 2018 for the ACF, rainfall was very slow, and began to pick up during July. At the end of the
season is was the second highest precipitation dataset. For the ACF in 2019, rainfall was steady,
but there was a stretch of minimal rainfall from the beginning of September all the way through
October 14", This difference in rainfall for the two years was reflected in lower NDVI values in
2019. In general, the NDVI values were very low during the beginning and end of the growing
seasons, and plateaued around 0.9 for the middle portion of the growing seasons, from about mid-
June to mid-September.

The predicted AGB values were plotted against cumulative precipitation values (see Figure
4.28). The non-irrigated ACF showed higher predicted dry AGB biomass in the wetter 2018 than
the dryer 2019 growing season from June to early September, while the irrigated TCF showed
higher predicted dry AGB biomass in 2019. Surprisingly, the 2019 growing season had less
cumulative precipitation, yet higher end-of-season AGB values. For both years, the TCF had
higher end-of-season AGB values. As discussed previously, there are areas in the 2018 maps for
both the ACF and the TCF with extremely low values which skewed the data. Due to these factors,
it could explain why the predicted amount of dry AGB biomass in kg/ha in 2018 is lower than
2019 even though the cumulative precipitation in 2018 was higher. Additionally, the agriculturalist
managing these fields at the TCF prefers years of less precipitation because cotton does not grow
as well in oversaturated conditions.

Cotton overwhelmingly dominates the global natural fiber industry where in 2021, cotton
alone represented 76% of the global natural fiber industry, and the average cotton lint yield in the

U.S. from 2013 — 2023 was 946 kg/ha (Singh et al., 2023). However, under irrigated conditions, a
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potential lint yield of 3,500 kg/ha is obtainable (Constable & Bange, 2015). Exploring the
relationship between cotton AGB and yield by analyzing the cotton AGB using a harvest index
(HI), the ratio of harvested biomass to yield, is imperative to understanding the economic value
from a harvest. In comparison to other crops, cotton has a low HI of approximately 15-20%
(Constable & Bange, 2015). Using the Raw Band models and the 20% HI value, the predicted
2018 field-level ACF dry yield values are 1,460 kg/ha and 1,468 kg/ha for Random Forest and
XGBoost, respectively (Table 5.1). Alternatively, using the VI models and the 20% HI value, the
2018 ACF dry yield values are 3,388 and 4,661 kg/ha for Random Forest and XGBoost,
respectively (Table 5.2). While the yield results using the Raw Band models are above the 10-year
average from 2013 — 2023, they are still well below the potential maximum of 3,500 kg/ha. The
yield results for the VI models are extremely high with both the Random Forest and XGBoost
predictions exceeding the potential 3,500 kg/ha maximum which is unexpected, especially

considering the ACF is not irrigated.

Table 5.1:Predicted cotton yield from models
using the VIs with a 20% Harvest Index value.

Predicted Yield Values Using Vegetation Indices
Random Forest XGBoost
Predicted Yield (kg/ha) Predicted Yield (kg/ha)
2018 | Vet Yield 6,032 8,895
ACF | bry Yield 3,388 4,661
2018 | Vet Yield 9,113 11,141
TCF | bry vield 4,079 5,303
2019 | Vet Yield 7,263 9,567
ACF | bry Yield 4,049 5,173
o019 | Wet Yield 5,277 8,070
TCF | bry vield 2,841 4,482




57

Table 5.2:Predicted cotton yield from models using
the Raw Bands with a 20% Harvest Index value.

Predicted Yield Values Using Raw Bands
Random Forest XGBoost
Predicted Yield (kg/ha) Predicted Yield (kg/ha)
2018 Wet Yield 2,795 2,812
ACF | Dry Yield 1,460 1,468
2018 Wet Yield 4,159 4,142
TCF | Dry Yield 1,912 1,905
2019 Wet Yield 3,667 3,636
ACF | Dry Yield 2,138 2,120
o019 | Wet Yield 5,285 5,263
TCF | Dry Yield 2,829 2,833

CONCLUSIONS
Regarding the hypothesis for Objective 1, the reprocessed UAS imagery enhanced the
analysis of cotton AGB. By removing the nonparallel flight lines and the images lacking the sun
irradiance information, the reprocessed, radiometrically correct orthomosaics provide higher
confidence in the end-of-season cotton AGB predictions.

Regarding the hypothesis for Objective 2, the Raw Band models outperformed the models
using the VIs. Additionally, 12 VIs still provided extremely high collinearity, so the number of
VIs was reduced to five to minimize collinearity and to match the number variables in the Raw
Band models. NDV1 was not used in this analysis since it is used for creating the weighted biomass
layers, which is what the models are attempting to predict to at plot-level, yet further exploration
of using NDVI1 is suggested.

Regarding the hypothesis for Objective 3, in general, the NDV1 values for the ACF & the

TCF for 2018 & 2019 growing seasons were comparable. Precipitation for the 2018 growing
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season was higher than 2019 for nearly the entirety of the growing seasons, but the end-of-season
predicted cotton AGB was higher for the study sites in 2019 than in 2018.

In this research, it was found that models scaling up plot-level ground measurements of
cotton AGB to predicted field levels utilizing the Raw Bands of multispectral UAS imagery of
high spatial resolution outperformed the predictive models utilizing the VIs. Also, the Random
Forest models outperformed the XGBoost models, but the XGBoost models had a shorter
processing time. The end-of-season predicted cotton AGB was comparable for the models using
the Raw Bands, but there were stark differences with the models using the VIs.

Other Remote Sensing imagery, including hyperspectral data from UASs or satellite
imagery, can be used for scaling up ground measurements and predicting cotton AGB at broader
scales. As the LTAR aims to scale up AGB predictions to regional level, this study acknowledged
as a framework for scaling up to field-level, and the methodology in this paper can be utilized for
further extrapolation to county, watershed, and even regional levels. The models using surface
reflectance from 5-band multispectral imagery from the MicaSense RedEdge-3 sensor provided
better results than the computed Vs, so it would be interesting to observe how effective the models
would be with dozens of raw bands. Utilizing the microtopography of the field is also expected to
provide insight into the field variations affecting plant growth and field-level predicted AGB.
Pursuing a Principal Component analysis will allow for further understanding of collinearity
between the various Vs and raw bands. Exploring the cost benefit of analysis for the irrigation at
the TCF is important to determine if spending the extra funds to irrigate the crops is worthwhile
for the increased crop yield. Lastly, exploring other machine learning and deep learning algorithms
will improve the confidence of the current models including linear regression, lasso regression,

ridge regression, support vector regression and artificial neural network.
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This research will aid in the prediction of above ground biomass across the LTAR Gulf
Atlantic Coastal Plain region by scaling ground measurements at the plot level to field levels using
UAS imagery, best performing vegetation indices, raw bands, and optimized machine learning
predictive models. Predicting biomass of crops at varying scales is important to farm owners
because, in general, it allows agriculturalists to have an accurate prediction of the potential crop
yield. Additionally, the prediction of biomass is also important to the government and consumers
because it allows accurate market forecasts for the crops to be analyzed. While the biomass
prediction of cotton for this project is constrained to localized areas, the overarching goal for the
USDA is to extrapolate to watershed, county, and potentially even regional scales. Future work

will leverage the methodology and results presented to predict cotton AGB at broader scales.
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APPENDIX A

Correlation Matrices Among the Varying Vegetation Indices
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Figure A.1: Correlation matrix of the 21 VIs used
for predicting cotton AGB at the ACF for 2018.
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Figure A.2: Correlation matrix of the 21 VIs used
for predicting cotton AGB at the ACF for 2019.
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Figure A.3: Correlation matrix of the 21 VIs used
for predicting cotton AGB at the TCF for 2018.



77

DryWeight_G
WetWeight_G

Dry_Biomass_Per_Pixel 1.00

Wet_Biomass_Per_Pixel X 00 098 0 0 0 099 -1.00

CGl E 9 0.84 1.00 1.00

Clrededge - 0. 1 0.88
- 0.50
cvi
EVI
EVI2 4 1 oo J0 X . 0 .00 00 0 1.00
GDVI .98 C .94 1.00 100 1 1 1 0 X 0 1 -0.25
GLI
GNDVI
MSAVI -0.00
NDRE
NDWI
osavi | s
RI
RRIT X 95 0 7 7 3 0 0 9 0.99
RRI2
- —0.50
SAVI
sccel
SR -
-0.75
TDVI
™I 4 [S8N 090 8 100 1 0 100 -0.97
VARI
=1.00
W v T T = s 3 s o I I 3 5 W 3T 3 F o o T § & 5 3 =
9 % ¢ F sz & F oz 33 Eoz t i EOFozoFoE
5 5 oo = ° 5 £ = = & £ b -
£ 2 & ¢ z
[l 3 m‘ m‘ ©
[a} = ©
EE
=} °
E‘ @,
=
N

Figure A.4: Correlation matrix of the 21 VIs used
for predicting cotton AGB at the TCF for 20109.



APPENDIX B

Predicted Biomass Raster Maps
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3.2 . 22.5
grams / pixel

Figure B.1: Field-level predicted biomass for the 2018 ACF End of
Season Random Field-Level Forest Predicted Wet Biomass model.
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0.1 . 31.3
grams / pixel

Figure B.2: Field-level predicted biomass for the 2018 ACF End of
Season Field-Level XGBoost Predicted Wet Biomass model.




81

1.2 . 11.5
grams / pixel

Figure B.3: Field-level predicted biomass for 2018 ACF End of
Season Field-Level Random Forest Predicted Dry Biomass model.
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1.0 . 14.1
grams / pixel

Figure B.4: Field-level predicted biomass for 2018 ACF End
of Season Field-Level XGBoost Predicted Dry Biomass model.




0.8 . 1.7
grams / pixel

Figure B.5: Field-level predicted biomass for the 2018 TCF End of
Season Field-Level Random Forest Predicted Dry Biomass model.
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2.5 . 12.4
grams / pixel

Figure B.6: Field-level predicted biomass for the 2018 TCF End of
Season Field-Level XGBoost Predicted Dry Biomass model.
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0.9 . 20.2
grams / pixel

Figure B.7: Field-level predicted biomass for 2019 ACF End of
Season Field-Level Random Forest Predicted Dry Biomass model.
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0.0 . 25.6
grams / pixel

Figure B.8: Field-level predicted biomass for 2019 ACF End
of Season Field-Level XGBoost Predicted Dry Biomass model.
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2.5 . 18.9
grams / pixel

Figure B.9: Field-level predicted biomass for the 2019 TCF End of
Season Field-Level Random Forest Predicted Dry Biomass model.
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0.1 . 20.0
grams / pixel

Figure B.10: Field-level predicted biomass for the 2019 TCF End
of Season Field-Level XGBoost Predicted Dry Biomass model.



