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ABSTRACT 

The maize weevil, Sitophilus zeamais, is an economically important pest of stored grains causing 

significant losses. This study explored key ecological factors, including temperature and moisture 

that contribute to maize weevil survival. Thermal performance was assessed through critical 

thermal maximum (CTMax) and thermal preference tests, which revealed no significant   differences 

between sexes. Morphological analysis confirmed sexual dimorphism, with females having longer 

rostra and males having wider rostra, but no differences in weight. Moisture effects were evaluated 

through feeding and larval developmental trials under controlled conditions. Feeding was highest 

at 20% moisture content, with males exhibiting greater variability. Statistical analyses confirmed 

differences in feeding between 10% and 20% moisture content. Larval development showed the 

highest F1 progeny emergence at 20% moisture content, a smaller number of emergence at 10% 

moisture content, and no significant sex ratio difference. Grain damage was lowest at 10% 

moisture content. These findings provide insights into S. zeamais adaptability, emphasizing the 

impact of temperature and moisture on its population dynamics.   

INDEX WORDS: Sitophilus zeamais, Thermal Tolerance, Ecophysiology, Critical Thermal 

Maximum (CTMax), Oviposition, Thermal Preference. 
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CHAPTER ONE 

Biology and Economic Impact of the Maize Weevil (Sitophilus zeamais) 

Introduction 

Insects are grouped based on their feeding behavior, including herbivorous species, predators, 

fungivores, and scavengers. Coupled with weeds and diseases, insects are estimated to account for 

40% of the world's food production being lost during the preharvest stage, and another 20% during 

storage (Pimentel & Peshin, 2014;Huey & Stevenson, 1979;Throne & Cline, 1991). There are new 

findings that prove the reverse of this common assertion and argue that, possibly, Hymenoptera 

outnumbers Coleoptera in diversity of species (Forbes et al., 2018). Indeed, Coleoptera remains 

very highly diversified, and estimates done to date vary between 350,000 to 1.5 million species 

globally, (Beutel & Leschen, 2005; Stork et al., 2015). Coleoptera are the most varied group of 

animals on the planet, with about 380,000-400,000 described species to date (Baca et al., 2021; 

Smith & Marcot, 2015). They have been around for at least 285 million years, as evidenced by 

fossil records, with the oldest North American fossil dating back to the Permian period (Lubkin & 

Engel, 2005). Recent phylogenomic studies have provided insights into beetle evolution, 

estimating the origin of modern beetles around 317 Ma in the mid-Carboniferous and the 

divergence between Archostemata and Adephaga around 296 Ma in the early Permian (Baca et al., 

2021). 

Of the 32 insect orders, species from the orders Coleoptera (beetles), Lepidoptera (moths) and 

Psocoptera (psocids) are major stored commodities pests. In contrast, species from Hemiptera 

(bugs) and Hymenoptera (wasps) are mainly predators or parasites of these pests (Rees, 2004). 

Stored product pests are opportunistic and diverse. Many beetles were originally found under the 
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bark of trees, moths came from dead and ripening fruits, and psocids from leaf litter (Rees, 2004). 

However, some pests are specially adapted to storage environments, such as the granary weevil, 

Sitophilus granarius, which has never been found outside of storage (Plarre, 2013). The recording 

of pests of stored products dates to ancient Egypt, where, at that time, Tribolium confusum, 

Oryzaephilus surinamensis, and S. granarius were mentioned (Rees, 2004). Pests in stored 

products can cause serious physical and economic damage to grains, pulses, seeds, and other plant 

and animal materials that are stored (Hill, 2002). Significant financial losses can result from pest 

damage, which can range from physical destruction and quality degradation to decreased 

marketability. Insects are one of the main causes of the estimated 10-50% of stored grain losses 

worldwide that result from pests (Demis & Yenewa, 2022). 

The pests of stored grains and their products can be broadly categorized into primary and 

secondary pests. Primary pests attack whole grains, penetrate undamaged seed coats, and feed on 

embryos, endosperms, or cotyledons. Secondary pests feed on already processed grains or grains 

that are already damaged either by the primary pest infestation or during handling and 

transportation of grains (Daglish & Nayak, 2018). Primary pests generally have narrow food 

preferences, while secondary pests have a wider range of hosts, which include processed food 

items. The genus Sitophilus (Coleoptera: Curculionidae), includes species of economic importance 

as both primary and secondary stored product pests (Arthur & Throne, 2003; Danho et al., 2002; 

Plarre, 2013). Sitophilus species are considered primary pests of stored grains, as they can infest 

whole kernels (Copatti et al., 2013; Trematerra et al., 2004). However, they also contribute to 

secondary pest infestations by creating frass and excavated kernels, which support the 

development of externally feeding beetles (Vendl et al., 2022). First described by Linnaeus in 1758 
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as Curculio, the genus has undergone several reclassifications until it was finalized by Schoenherr 

as Sitophilus in 1838 (Riley & Melville, 1959).  

Sitophilus zeamais is a polyphagous pest that causes significant damage to a variety of processed 

foods and stored grains. It mainly attacks maize, causing 18-40% yield losses (Sebayang et al., 

2023). In addition, it infests processed foods like pasta and biscuits as well as other cereals like 

sorghum, rice, and wheat (Sebayang et al., 2023; Trematerra, 2009). Food source preferences have 

been recorded for S. zeamais showing that superfino and parboiled rice were more attractive to the 

weevils than other rice types. Similarly, among pasta types, corn pasta was the most preferred 

(Trematerra, 2009).   

Economic Importance of Sitophilus zeamais 

The increasing demand for food for a growing global population has led to the increase of global 

cereal production over the past 40 years (Tilman et al., 2002). Primary pests of cereals include 

species such as various Sitophilus species (rice weevil, maize weevil, granary weevil), lesser grain 

borer (Rhyzopertha dominica), larger grain borer (Prostephanus truncatus), and the Angoumois 

grain moth (Sitotroga cerealella). Similarly, primary pests of legumes include bruchids such as 

the bean weevil (Acanthoscelides obtectus) and cowpea weevils (Callosobruchus spp.) (Daglish 

& Nayak, 2018). Secondary pests include Tribolium species (rust red flour beetle and confused 

flour beetle), Cryptolestes species (rusty grain beetle and flat grain beetle), Trogoderma species 

(Khapra beetle and warehouse beetle), saw-toothed grain beetle (Oryzaephilus surinamensis), 

warehouse moth (Cadra cautella), and others (Daglish & Nayak, 2018). Of the stored grain pests, 

only three species of Sitophilus (S. granarius, S. oryzae, and S. zeamais) are considered globally 

significant. These species are among the most damaging pests of stored cereals, causing substantial 
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losses in both quality and quantity (Levinson & Levinson, 1994; Longstaff, 1981; Plarre, 2013; 

Throne & Cline, 1989). 

Damage Caused by Sitophilus zeamais 

The feeding behavior of adult S. zeamais includes both shallow and deep feeding on stored grains, 

with deep feeding closely linked to oviposition (Tipping et al., 1986). The insect's specialized 

mouthparts, including mandibles, maxillae, and a labium with various sensilla, play a vital role in 

its feeding mechanism (Chen et al., 2016). Its ability to damage grains is linked to its alimentary 

canal morphology, including the crop for storage and the proventriculus for grinding food (Sousa 

et al., 2013). Both adults and larvae feed on grains, causing severe post-harvest losses. Females 

chew deep holes into grains, lay eggs, and seal them, allowing larvae to develop inside the grains 

(Longstaff, 1981). The resulting damage reduces grain quality, weight, and commercial value, 

while also producing grain dust that attracts secondary pests like Oryzaephilus surinamensis, 

Tribolium castaneum, and mites (Hill, 2002; Longstaff, 1981). 

Sitophilus. zeamais infestation increases the temperature and humidity of stored grains, thereby 

creating conditions favorable for secondary pests and pathogens to attack (Hardman, 1977; 

Longstaff, 1981). High temperatures significantly accelerate S. zeamais reproduction and damage 

(Copatti et al., 2013; Khan, 2023). Activity of S. zeamais degrades grain quality, as it affects the 

protein composition, reducing wet and dry gluten content, gluten index, and changing protein 

fractions and secondary structures (Wu et al., 2022). Additionally, the activity of S. zeamais 

reduces the protein, starch, and moisture content of maize grains, with the extent of damage 

directly correlating to the insect population size (Osipitan et al., 2012). 

Sitophilus zeamais infestation significantly affects the quality of pasta and wheat products, leading 

to both quantitative losses and alterations in nutritional composition. Susceptibility varies among 
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different pasta types (Babarinde et al., 2013). Infestation of maize leads to reduced germination 

rates, tryptophan content, and commercial quality  (Caneppele et al., 2003; Usman et al., 2016). 

Beyond stored grains, S. zeamais has been reported to damage other crops, including vineyards in 

Brazil, Botton et al., (2005) observed up to 80% of Cabernet Sauvignon grapes damaged by S. 

zeamais in February 2003. The pest has also affected peaches, apples, and grapes in various regions 

of Brazil causing both direct damage through perforation and indirect damage by promoting 

bacterial growth (Botton et al., 2005). Sitophilus zeamais damages corn kernels by grinding 

through the inside of the seed, leaving behind an attack trail marked by pitted and powdery seeds 

among the infested material. These insects can damage corn cobs and seeds from the time they are 

planted in the field until the seeds are stored in warehouses. Pest attacks on seeds leave drill marks 

characterized by holes, with many adult weevils found on the surface of the seeds (Hasnah & 

Suryanti, 2014). 

Economic Losses 

Sitophilus. zeamais results in severe economic losses owing to its infestation, since damage to 

stored materials, often ready for consumption, can mean major financial losses related to quality 

degradation, weight loss, nutritional value, marketability, and contamination from feces or 

aflatoxins (Herlina & Istiaji, 2013; Manueke et al., 2015; Napoleão et al., 2013). Weight losses 

due to infestation in maize have been shown to range from 12.65 to 21.54%, while in rice, it is 

comparatively milder (Arrahman et al., 2022). The damage level has reached as high as 85% in 

South Sulawesi, with up to 17% shrinkage in the stored materials (Hasnah & Suryanti, 2014). 

Infestations of S. zeamais can cause 30-40% damage when the product being stored has a high 

moisture content (Bergvinson & Garcı́a-Lara, 2004; García-Lara & Serna-Saldivar, 2019).   
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Taxonomy 

The genus Sitophilus has had several taxonomic changes: Originally described as Curculio by 

Linnaeus, 1758. Re-named to Calandra by Clairville & Schellenberg, 1798. Then described as 

Sitophilus by Schoenherr, 1838 (O’Brien & Wibmer, 1982). This naming was subsequently ratified 

by the International Commission on Zoological Nomenclature in 1959 (Riley & Melville, 1959). 

The classification of S.  zeamais is as follows: 

• Kingdom: Animalia 

• Phylum: Arthropoda 

• Subphylum: Atelocerata 

• Class: Hexapoda (including Insecta) 

• Subclass: Pterygota 

• Order: Coleoptera 

• Superfamily: Curculionoidea 

• Family: Curculionidae 

• Subfamily: Dryophthorinae 

• Genus: Sitophilus 

• Species: zeamais 

Species Distinctions 

According to (Plarre, (2013), there are 14 species of these weevil pests, including one fossil taxon. 

These include: 

• Sitophilus erosa 

• Sitophilus glandium 

• Sitophilus conicollis 

• Sitophilus cribrosus 

• Sitophilus oryzae (rice weevil) 

• Sitophilus quadrinotatus 

• Sitophilus granarius (wheat or granary weevil) 
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• Sitophilus linearis (tamarind weevil) 

• Sitophilus zeamais (maize weevil) 

• Sitophilus vateriae 

• Sitophilus rugicollis 

• Sitophilus punctatissimus (fossil taxon) 

• Sitophilus sculpturatus 

• Sitophilus rugosus 

Key Differences Among Grain Weevils 

S. granarius is easily distinguished from S. zeamais and S. oryzae by the lack of four reddish-

yellow spots on its elytra and its flightless nature as well (Srivastava & Subramanian, 2016). The 

granary weevil is larger and darker, lacks coloration but has more prominent longitudinal rows on 

elytra. Of the three species, S. granarius, S. oryzae, and S. zeamais, several differences can be 

outlined. The granary weevil is fully synanthropic, adapted to artificial grain storage, and is 

generally found in temperate climates. It is often reported from archaeological contexts but is 

absent from the natural reservoirs (Plarre, 2013; Solomon, 1965). Grain weevils are not strictly 

host-specific, although strong preferences are seen for instance, the larger grain size is preferred 

by S. zeamais, while wheat and rye are better substrates for S. oryzae and S. granarius (Corrêa et 

al., 2013; Haines, 1981; Throne & Cline, 1991). 

Sitophilus zeamais and S. oryzae have conventionally been regarded as two races of a single 

species (Kiritani, 1956; Richards, 1945). Historically, S. zeamais Motschulsky and S. oryzae 

Linnaeus were jointly known as Calandra oryzae. The two species have a very similar morphology 

and ecology and are often misidentified. (Rees, 2004). Some researchers consider S. oryzae and S. 

zeamais as variants of the same species because of similarities in their internal and external 

anatomy. However, these two species differ in habitat and size: S. oryzae is smaller and more 

associated with rice, while S. zeamais is larger and primarily infests maize. 
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Sexual Diagnostic Features  

Correct identification of S. zeamais and S. oryzae is based on the following morphological 

characteristics: Male S. zeamais: Presence of three longitudinal ridges on the outer surface of the 

aedeagus. Male S. oryzae: Outer surface convex (Floyd & Newsom, 1959; Halstead,1963; 

Kuschel, 1961). 

  

Figure 1.1: Aedeagus of (a) Sitophilus oryzae and (b) Sitophilus zeamais, adapted from Rees 

(2004). Note the ridges present on S. zeamais. 

Ecological Preferences 

Sitophilus oryzae is a poor flier, is rarely encountered in field infestations of cereals, and prefers 

subtropical climates (Corrêa et al., 2013; Throne & Cline, 1991), while the stronger flier S. zeamais 

often infests maize before harvest in the field and prefers warmer climates (Corrêa et al., 2013; 

Longstaff, 1981). Sitophilus zeamais is widely distributed across multiple continents. In China, S. 

zeamais is prevalent nationwide, whereas S. oryzae is primarily found in the southern and central 

regions (Wu & Yan, 2018). Similarly, in Brazil, S. zeamais dominates across the country, likely 

due to its preference for maize and adaptation to tropical climates (Corrêa et al., 2013). Its presence 

has also been documented throughout mainland Greece and the island of Crete (Athanassiou & 

Buchelos, 2001). In Benin, West Africa, S. zeamais is commonly found in maize storage facilities, 
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with its incidence fluctuating by season (Meikle et al., 1998). Danho et al, (2002) stated, thus, S. 

zeamais prefers thermal and slightly humid conditions. 

Life Cycle 

The life cycle and reproductive characteristics of S. zeamais vary depending on the study and host 

grain. The total development period from egg to adult ranges from 33.5 to 34.7 days, depending 

on the cereal host  (Ojo & Omoloye, 2016).  However, other studies report an egg-to-adult 

development period ranging from 33.5 to 49.13 days (Manueke et al., 2015; Ojo & Omoloye, 

2016b).  The larval stage consists of four instars and lasts between 21.6 and 23.1 days, depending 

on the host grain (Ojo & Omoloye, 2016). After 25 days, the pupa becomes darker and yellow in 

which legs and antenna are separated from body (Figure 1.4). Fecundity varies widely, with a 

single female laying between 38.67 and 400 eggs during her lifetime. Peak egg-laying occurs 

within the first 7-8 weeks (Ojo & Omoloye, 2016; Van Dzuong & Long, 2019).  

The development and reproduction of S. zeamais are shaped by environmental factors like 

temperature, humidity, and host grain type (Ojo & Omoloye, 2016; Visarathanonth et al., 2010). 

Its egg-to-adult developmental period varies between 33.5 and 34.7 days, depending on the host 

grain and temperature (Ojo & Omoloye, 2016). Van Dzuong & Long (2019) reported that on long-

grain rice, egg-laying begins 10 days after eclosion and can last up to 145 days, peaking between 

days 55 and 95.  

Eggs 

Adult S. zeamais burrows into cereal grains using its strong rostrum, creating a cavity into which 

it lays a single egg. Females deposit each egg individually in the hole she creates in grains and 

seals it with a waxy plug (Danho et al., 2002). The eggs are oval, whitish in color, and rounded at 

the bottom (Ojo & Omoloye, 2016b).  The average dimensions of the egg are 0.2 ± 0.01 mm wide 
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and 0.5 ± 0.01 mm long (Ojo & Omoloye, 2016). After hatching, the larva emerges as a creamy 

white, apodous grub with a light brown sclerotized head (Ojo & Omoloye, 2016). Interestingly, 

females prefer to lay eggs on grains already infested with conspecific eggs, resulting in a 

contagious distribution pattern (Danho et al., 2002; Mathias et al., 2015).  

  

 

Figure 1.2: Egg of S.zeamais Motsch (egg enlarged) (from Flay 2010) 

Larvae 

The number of larval instars in Coleoptera varies among species, with four instars commonly 

observed. S. zeamais undergoes four instars, with head capsule widths ranging from 0.225–0.775 

mm (Nguyen et al., 2023). Larval body size increases with each instar, and head capsule width is 

consistent within each stage (Le et al., 2018). They are white, legless, and have dark brown heads. 

The larval stage lasts 22–23 days (Ojo & Omoloye, 2016; Subramanyam, 1995), during which 

larvae consume seed contents, increasing the size of burrows. They excrete fluids into the burrow 

walls, creating a smooth, strong texture for cocoon formation (Pracaya, 2007).  Larval 

development is faster when feeding at the endosperm-germ interface, with resistant maize varieties 

showing shorter fourth instar periods (Urrelo & Wright, 1989). 
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Figure 1.3: Sitphilus zeamais Motsch (larvae). This picture was taken in the present study. 

Pupa 

Pupae are white, 3–4 mm long, and similar in size and shape to adults. The pupal stage takes place 

inside the seed's larval feeding tunnel and lasts for approximately six days, with a range of three 

to nine days (Subramanyam, 1995). The adult imago spends a few days inside the seed after 

pupation before coming out. Pupation takes place within the seed burrow made by the larva. When 

the adult (imago) emerges, it remains inside the seed for several days before leaving. Food host 

also influenced the body measurement of maize weevil pupa, with longest body length and width 

being recorded on maize (3.8 ± 0.04 mm and 1.1 ± 0.02 mm) and the shortest being observed on 

millet (3.1 ± 0.06 mm and 1.0 ± 0.06 mm) (Ojo & Omoloye, 2016b). 

 

Figure 1.4: Pupa of Sitophilus zeamais Motsch (enlarged) (from Flay, C. D. 2010) 

Adult 

Adult Sitophilus zeamais can live for several months and range in length from 2.5 to 4.5 mm  (Le 

et al., 2018; Ojo & Omoloye, 2016) with size influenced by larval diet-corn-fed adults measure 

3.9-4.9 mm, while rice-fed adults are smaller (Maceljski & Korunić, 1973). Adults have 
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mandibulate mouthparts at the tip of their rostrum, with sclerotized mandibles and specialized 

sensory structures on maxillary and labial palps (Chen et al., 2016). High seed moisture content 

(above 15%) facilitates rapid population growth (Teetes et al., 1983).  Adults younger than 36 days 

cause the most damage to stored grains (Nwosu, 2018). 

   

Figure 1.5: Adult S. zeamais Motsch. This picture was taken in the present study. 

Morphology 

Sitophilus zeamais, is reddish-brown to black, with a long, snout-like rostrum and four orange or 

red spots at the corners of the elytra that fade inward toward the middle (Rees, 2004) (Figure 

1.6). The prothorax is strongly pitted, and the elytra have rows of pits arranged within 

longitudinal grooves (Rees, 2004). Each wing (elytron) also has two pale patches. The pronotum 

carries rounded depressions that are fairly close together. The antennae are elbowed and have 

eight segments, and the head is unmistakably snout shaped. They are approximately 3–4 mm in 

length, with the reddish or yellowish markings appearing on the ventral part of the wings (Borror 

& DeLong, 1954; Halstead, 1963; Kartasapoetra, 1991). 

Sexual Dimorphism 

Males and females are similar in general appearance but differ in rostral morphology. Males 

possess shorter, wider rostra with more irregular and larger indentations, while females have 

longer thinner rostra with shallower indentations running consistently along the rostrum 

(Halstead, 1963) (Figure 1.6). Dorsally, male rostra appear larger, dull, and rough while female 
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rostra are smooth and mottled. From a side view, the female rostrum is narrower, longer, and 

slightly curved downward, while the male rostrum is shorter and wider (Flay, 2010). 

 

Figure 1.6: Male and female S. zeamais adapted from (Flay, 2010). 

Mouthpart Morphology 

The elongated rostrum is a distinctive feature of weevils (Curculionoidea), particularly in females, 

serving as a tool for egg deposition in plant tissues (Wilhelm et al., 2011). This sexual dimorphism 

extends beyond length to include material properties and morphological features that enhance 

buckling resistance and flexibility (Matsumura et al., 2021). The mouthparts of Coleoptera exhibit 

remarkable adaptations while retaining a largely conservative structure (Beutel & Yavorskaya, 

2019). Ancestral feeding apparatuses in Myxophaga and basal Polyphaga are characterized by 

large mandibular molae and epi- and hypopharyngeal bulges with microtrichia, suitable for 

processing soft plant tissues (Beutel & Yavorskaya, 2019).  The mouthparts of many insects have 

evolved into highly specialized structures and sensilla for feeding and sensory functions. In S. 

zeamais, mandibulate mouthparts are situated at the tip of the rostrum, consisting of sclerotized 

mandibles, maxillae with four-segmented palps, and a three-segmented labium (Chen et al., 2016). 

Sensilla basiconica on maxillary and labial palps function as chemo- or gustatory receptors in 

many insects (Chen et al., 2016; Gaino & Rebora, 2003; Yan et al., 1987). The number and the 

position of these sensilla vary in different species, which correspond to different modes of life and 

feeding. In addition to the chemoreceptors, there are mechanoreceptors on the mouthparts: sensilla 
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campaniformia and sensilla chaetica habits (Gaino & Rebora, 2003; Giglio et al., 2003). The 

maxillary palps are essential for the processes of food exploration and selection, whereas the labial 

palps facilitate the mechanical examination of substrates (Gaino & Rebora, 2003). 

Flight Capabilities  

The maize weevil has poor flying skills with a flight range of about a quarter mile (Giles, 1969). 

Flight activity is independent of gender and dependent on temperature   (Cui et al., 2016; Williams 

& Floyd, 1970). According to a study by Williams & Floyd (1970), Sitophilus zeamais exhibits 

peak dispersal around July 7, with maximum flight activity occurring between 4–6 PM, coinciding 

with the warmer temperatures in Baton Rouge, Louisiana. High temperatures (34°C) impede flight 

in females, though flying speed is optimal for both sexes at 28°C (Cui et al., 2016). Sitophilus 

zeamais exhibit seasonal flight activity, typically from late March to early November in South 

Carolina, with flight occurring when temperatures exceed 20-23°C  (Throne & Cline, 1989; 

Williams & Floyd, 1970). 

General Mating Behavior 

Sitophilus zeamais exhibits a structured pattern of precopulatory, copulatory, and postcopulatory 

phases in its mating behavior (Walgenbach & Burkholder, 1987). Males use rostral probing or 

antennation to make contact, frequently mounting the female backward before shifting positions. 

While the male clings and occasionally rubs his hind legs against her abdominal sternites, the 

female moves actively. With an average time of 20.2 minutes from first contact to successful 

mounting, the male persistently remounts if dislodged (Walgenbach & Burkholder, 1987). 

Abdominal flexing occurs rhythmically every 28.3 seconds during copulation, which lasts for 

about 4.8 hours and has an unknown purpose. This behavior has been seen in other beetles 

(Hatfield et al., 1982; Lew & Ball, 1979). Although there isn't any solid proof, it might be 
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connected to sperm activation (Khan & Musgrave, 1969). Males extrude their aedeagus within 3.8 

minutes of dismounting, and they frequently repeat this behavior (Walgenbach & Burkholder, 

1987). Virgin females mate more easily than previously mated ones, and mating does not take 

place before three days of age. Males with more experience are more successful, and females who 

have already mated have longer precopulatory periods (Walgenbach & Burkholder, 1987). 

Although mating takes place all day, copulation is considerably sped up and shortened by 

starvation. Compared to Sitophilus granarius (30-72 minutes) and other curculionids, S. zeamais 

has a longer copulation period (4.8 hours) (Wojcik, 1969). According to (Walgenbach & 

Burkholder, 1987a) S. zeamais generally displays a stereotypical mating sequence with protracted 

copulation and persistent male mounting behavior. 

 

Figure 1.7: Abdominal flexing by male maize weevils during copulation Adapted from 

(Walgenbach & Burkholder, 1987b). 

Divergence and Fossil Evidence - Evolutionary 

The first Japanese description of S. zeamais appears in historical records from ca. 1000 BP (Yasue, 

1959, 1976). Genetic and fossil evidence indicates that S. zeamais and S. oryzae diverged 

approximately 8.7 million years ago, long before agriculture (Corrêa et al., 2016). Obata et al. 

(2011) results suggest that eastern Asian grain pests, including the S. zeamais and probably the S. 

oryzae, evolved differently from the granary weevil in Europe (Obata et al., 2011). Obata et al. 

(2011) discovered the world's oldest S. zeamais impressions, dating back ~10,500 BP, in Jomon 
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pottery from the Sanbonmatsu site, Tanegashima Island, Japan, predating European records 

(~7000 BP) (Plarre, 2013). DNA analysis suggests S. zeamais, S. oryzae, and S. granarius share a 

common Asian ancestor (Conord et al., 2008; Lefevre et al., 2004), challenging the belief that 

grain pests originated solely in Southwest Asia. Instead, S. zeamais likely infested stored acorns, 

chestnuts, or bamboo seeds in Jomon-era settlements (Delobel & Grenier, 1993; Obata et al., 2011) 

before transitioning to grains. Unlike flightless S. granarius, S. zeamais can disperse naturally 

(Yoshida et al., 1956). X-ray computed tomography and scanning electron microscopy have been 

used to find impressions and cavities in pottery, revealing evidence of plant seeds and maize 

weevils S. zeamais (Obata et al., 2020; Obata et al., 2011). Recent studies have revealed new 

insights into the genetic structure of S. zeamais populations. While earlier studies showed a 

globally low level of genetic differentiation among worldwide S. zeamais populations (Corrêa et 

al., 2016), more recent genome-wide analysis has shown fine-scale genetic structure in Mexican 

populations, possibly due to human-mediated maize movement and geographical barriers 

(Baltzegar et al., 2022).  In West and Central Africa, high genetic diversity and evidence of 

population growth since the Pleistocene have been observed (Mama Racky et al., 2017). 

Comparative analysis of wet and dry regions in these areas indicated that wet regions possess 

stable populations with low genetic diversity, whereas dry regions have expanding populations 

with greater genetic diversity (Sarra et al., 2022). The Senegalese and Central African populations 

differed genetically, yet there was vast genetic variation between countries but minimal variation 

within subpopulations (Bambou et al., 2014). The origin of cereals in Asia, and subsequently other 

continents, likely enabled grain weevils' initial spread throughout Asia, then to Europe, Africa, and 

the Americas (Obata et al., 2011; Plarre, 2013). These findings challenge the notion that stored-
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product pests spread solely via agriculture and suggest they first adapted to wild plant storage 

before cereal domestication (Plarre, 2013). 

There have been many studies on the biology and life of S. zeamais, but critical questions remain 

about how factors like temperature and corn moisture affect their behavior and physiological 

processes. This study aims to fill these gaps in our knowledge by examining the reaction of S. 

zeamais to thermal and moisture and hopefully providing us with a better insight into how it may 

be able to alter its behavior and physiology based on changing environmental conditions. 
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CHAPTER TWO 

2.1. Thermal Tolerance of Sitophilus zeamais 

Introduction 

Temperature is one of the most important abiotic factors regulating ecological community 

organization and influencing survival of organisms (Angilletta Jr, 2009; Chown & Nicolson, 2004; 

Sibly et al., 2012). Most natural environments, ranging from tundra to deserts, experience >60°C 

temperature fluctuation over a year, and they exhibit high spatial and temporal thermal 

heterogeneity (Ghalambor et al., 2006; New et al., 1999; Overgaard et al., 2014). Insects regulate 

their physiological processes using environmental temperatures; hence they are highly sensitive to 

temperature fluctuations. Their thermotolerance is closely linked to biogeography, with the lowest 

tolerated temperatures corresponding to the minimum temperatures of their natural habitats (Hazell 

et al., 2010; Kellermann, Loeschcke, et al., 2012; Kimura, 2004). Further, researchers have 

proposed that the geographic distribution of insects closely ties with their physiological heat stress 

response (Bozinovic et al., 2011). The climatic variability hypothesis of Addo-Bediako et al. 

(2000), hypothesizes that variation in range size is associated with thermal tolerance. In their study 

of 250 species, Addo-Bediako et al. (2000) observed that broader thermal tolerance exists among 

higher latitude species than in lower latitudes. 

The subject of arthropod thermal tolerance has been of increased interest in recent years, and an 

enormous research effort has been directed towards many insect species, including bees, beetles, 

flies, termites, and true bugs (Hoffmann et al., 2013; Janowiecki et al., 2020; Just & Frank, 2020; 

Kellermann, Overgaard, et al., 2012; Klockmann et al., 2017; Klok et al., 2004; Oyen et al., 2016; 
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Polato et al., 2018; Sheldon & Tewksbury, 2014; Slatyer et al., 2016). Arthropod thermal tolerance 

can be defined by several internal and external reasons (Sinclair et al., 2012). Internal factors 

contributing to variation in thermal tolerance include developmental stage (Kingsolver et al., 

2011), age (Bowler & Terblanche, 2008), gender (Blanckenhorn et al., 2014), physical traits such 

as size and color (Baudier et al., 2015; Rajpurohit et al., 2008), and overall health (Terblanche et 

al., 2011).  

External factors, including diet (Krebs & Loeschcke, 1994), light cycles, (Rodgers et al., 2006) 

oxygen availability (Bozinovic & Pörtner, 2015; Verberk et al., 2016, and parental temperature 

fluctuations (Abram et al., 2017) also play crucial roles in the development of thermal tolerance. 

In addition, different arthropods exhibit different thermal threshold values: Acari and Diptera 

generally have the lowest thresholds, while Coleoptera and Blattodea tend to have the highest 

(Stejskal et al., 2019). The thermal tolerance threshold also differs throughout the lifespan of 

insects. Species with complete life cycles are exposed to different temperature extremes in their 

microhabitats, resulting in physiological trade-offs that reflect common mechanisms across life 

stages (Angilletta Jr, 2009; Huey & Kingsolver, 1993). Survival in warming environments depends 

on thermal tolerance, which involves complex physiological and biochemical mechanisms 

including stress responses, thermoregulation, and metabolic regulation (Dillon et al., 2010; 

Verberk et al., 2016).  

The thermal stress effect is directly connected with its persistence, frequency, and intensity (Cheng 

et al., 2017; Chiu MingChih et al., 2015). Duration beyond CTMax causes permanent damage, 

illustrated in amphibians with a +4°C temperature rise lowering thermal safety margins (TSMs) 

from 11.69°C to 9.41°C in terrestrial environments (Jørgensen et al., 2021). Prolonged exposure 

enhances damage, with recovery only possible below specific thresholds, depending on the balance 
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between injury and repair processes (Faber et al., 2024; Jørgensen et al., 2021). Furthermore, 

repeated thermal stress depletes energy reserve and limits recovery, especially in species with 

limited thermal ranges, such as Mediterranean beetles and Drosophila from stable climates, which 

show restricted plasticity in their optimal temperature range (MacLean et al., 2019).  

Most insect physiologies are significantly under threat by temperatures at the extremes, which 

tends to cause harm to biomolecules such as proteins and DNA, leading to denaturation and cellular 

dysfunction (Abram et al., 2017). The critical thermal maximum (CTMax), the temperature beyond 

which survival becomes impossible, fluctuates together with the thermal optimum and serves thus 

as a good estimator of climatic susceptibility for a particular species (Angilletta Jr, 2009; Cowles 

& Bogert, 1944; Deutsch et al., 2008). As body temperature approaches CTMax, the metabolic rates 

are increased and enzymatic failure probabilities, protein denaturation, and cell membrane 

disruption are enhanced (Hochachka & Somero, 2002; Schulte, 2015). Behavioral adaptations are 

crucial in mitigating these stresses.  

Small ectothermic creatures, such as insects, can obtain body temperatures that vary substantially 

from ambient air temperature via behavioral thermoregulation (Fey et al., 2019; Hunt et al., 2016; 

Kleckova & Klecka, 2016). Some recent research works have shown that gradual exposure of 

insects to high temperature leads to a decreased level of tolerance (Sunday et al., 2014). Heat stress 

can also trigger dispersal, which compels the insects to shift to sites with suitable temperatures to 

find appropriate microhabitats. For example, aphids exhibit heat-avoidance behaviors to cope with 

high temperatures, which are becoming more frequent due to climate warming. These behaviors 

include dropping off host plants and seeking cooler microhabitats (Ma et al., 2018). Most insects 

cope with high temperatures by choosing different microhabitats since they rarely change their 

geographical range (Hughes et al., 2003). Thus, heat-stress in the microhabitat directly influences 



 

21 

 

insects to displace into areas with cooler temperatures. For example, Rhopalosiphum padi avoids 

deleterious heat stress by seeking cooler microhabitats, such as below the soil (Wiktelius, 1987). 

High temperatures are dealt with using a variety of physiological mechanisms developed by 

insects. These include sensory systems that possess neurons and neurotransmitters and that initiate 

metabolic regulation and anaerobic metabolism (Gillooly et al., 2001; Verberk et al., 2016). 

Although insects are ectothermic, they can regulate their body temperature to a certain degree 

through physiological and behavioral adaptations and hence be capable of optimizing performance 

under high temperatures (Chapman, 1998). Primary protection mechanisms involve the production 

of heat shock proteins (HSPs) that shield cells from thermal damage (Feder & Hofmann, 1999). 

Hormones also regulate physiological responses and behavioral adaptations to heat stress, further 

aiding survival (Emerson et al., 2009). Combined, these mechanisms enable insects to successfully 

react to environmental changes, rendering them resilient yet vulnerable under rapidly changing 

climate conditions. 

Climate change is compelling insects to shift their ranges, decrease their abundance, and 

experience increased rates of extinction at an increased rate than other taxonomic groups 

(Parmesan, 2006; Sánchez‐Guillén et al., 2016; Thomas et al., 2004). Habitat loss compounds these 

problems by lowering the availability of thermal refuges and increasing dependence on 

physiological and behavioral adaptations (Denlinger & Yocum, 2019). Phenotypic plasticity in 

such traits is likely of importance in the maintenance of fitness under thermal variation and climate 

change (Gunderson & Stillman, 2015; Sgrò et al., 2016). Survival of S. zeamais is dependent on 

mechanisms of physiological thermotolerance, thermoregulation, and refuge of microclimatic 

character, with population thermal acclimation of considerable importance in heat stress 

alleviation (Gunderson et al., 2017; Gunderson & Stillman, 2015; Sunday et al., 2014). Knowledge 
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of the thermal tolerance of S. zeamais populations is critical in order to predict its survival, 

ecological distribution, and function in stored grain ecosystems under conditions of a changing 

climate. 

Temperature is of paramount significance to the physiological process, survival, and reproduction 

of S. zeamais. Optimum development occurs within the temperature range of 25-30°C; both higher 

and lower temperatures from this optimum impede growth or, in extreme cases, result in 

population collapse (Fields, 1992; Strang, 1992). Environmental temperature also influences flight 

ability, which is vital for dispersal (Cui et al., 2016). Thus, the flight capabilities of S. zeamais are 

influenced by temperature, with both male and female indicating peak flight velocity at 28°C. 

Temperature impacts not only S. zeamais flying ability but also their willingness to take flight (Cui 

et al., 2016). As temperatures increased from 22°C to 31°C, both sexes showed a greater inclination 

and ability to fly; however, this tendency decreased at higher temperatures. While temperature did 

not significantly affect male flight performance, females exhibited reduced flight distance and 

duration at 34°C compared to lower temperatures, suggesting that females are more sensitive to 

temperature changes in terms of their flying capacity (Cui et al., 2016). These temperature limits 

correspond closely to the highest microclimate temperatures usually reached in their natural 

environments (Ceruti et al., 2008; Throne, 1994a; Van der Merwe et al., 1997). Temperature not 

only impacts S. zeamais physiology but also its interactions with other species in stored grain 

ecosystems. Above 25°C, Prostephanus truncatus reproduces more and damages grain more than 

S. zeamais, which has a competitive advantage at warmer temperatures (Baliota et al., 2022; 

Quellhorst et al., 2019).  

Most of the studies on the thermal tolerance of stored-product insects have been directed towards 

establishing lethal temperatures for various species and life stages (Beckett & Morton, 2003; 
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Evans, 1987; Johnson et al., 2003; Mahroof et al., 2003; Mbata & Phillips, 2001). For instance, a 

solar heating experiment on Sitophilus oryzae recorded 100% mortality at 45°C after three hours 

(Abdelsamea et al., 2023). Similarly, S. zeamais adults exposed to 36°C for 1-5 hours showed 

improved survival when later exposed to temperatures that were lethal (43–55°C), with longer 

durations increasing tolerance (Lü & Zhang, 2016). Related results in Tribolium castaneum show 

that exposure to 36°C and 42°C decreased mortality, with 42°C having a more pronounced effect 

(Lü & Liu, 2017).  

However, gender-specific differences in S. zeamais' heat tolerance remain largely unexplored. This 

is a fundamental knowledge gap for the formulation of effective thermal treatment strategies for 

understanding species' responses to thermal tolerance and climate change adaptation. Variations 

in CTMax between male and female adults could significantly impact population dynamics yet have 

been minimally investigated. Here, the objective was to fill these gaps by examining the critical 

thermal maximum (CTMax) of male and female S. zeamais of a Georgia, USA population. 

Specifically, there were two primary questions: (1) What are the highest thermal tolerances of S. 

zeamais populations commonly encountered in Georgia? and (2) Are there differences in thermal 

tolerances between males and females? Grasping these distinctions is vital for enhancing pest 

control methods and forecasting the species' adaptability under shifting climate conditions. 

Materials and Methods 

Sitophilus zeamais were collected from infested field corn weevils on 8/21/2024 from a wagon in 

Tift County, GA in Spring 2024 containing 150 bushels (3, 810 kg) of shelled corn.  The weevils 

were subsequently reared under controlled conditions at 24-25°C with 60-70% relative humidity, 

and a 12:12 (L:D) photophase for several generations. This environment ensured consistent 

conditions for the weevil populations used in the experiments. 
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For the thermal tolerance assays, the S. zeamais had continuous access to maize grain ensuring 

they were well fed prior to the experiment. To account for potential CTMax, the first experiment 

utilized a large sample size of 180 unsexed weevils. The second experiment, aimed at determining 

sex-specific differences in thermal tolerance, involved 30 males and 30 females. These 

experiments sought to describe the critical thermal maximum of the Tift County Georgia 

population and to determine whether thermal tolerance varies between the sexes. 

Maize weevil CTMax was measured using a custom-built temperature control unit. Ten weevils (5 

males, 5 females) were assayed simultaneously per trial, with their behavior closely monitored 

until the onset of muscle spasms (Terblanche et al. 2006) and subsequent loss of righting response 

(LRR) occurred (Shah et al., 2017).  Each weevil was placed in a 1.5 mL Eppendorf tube, which 

was closed tightly with its lid to prevent S. zeamais escape and water penetration. The tubes were 

submerged in a 3L water bath affixed to a magnetic bar. The initial average water temperature 

ranged from 22.2 to 23°C, with an initial hold of 2 minutes. The CTMax Temperature Controller 

(CTC) was set to increase at 0.3°C per minute until the temperature was at CTMax of 60°C to ensure 

the experiment continued until all weevils had reached their CTMax. The CTC included several key 

components: a controller unit (SOLO Temperature SL 9696 Controller, Taiwan) set to the 

temperate ramp protocol, a RTD (resistance temperature detector)-probe that measured the water 

bath temperature in a feedback to the controller unit, Finnex 500W titanium heating rod 

(Edinburgh, Indiana, USA) that was controlled by the control unit, and a 120V (Intertek, Mexico) 

submersible water pump to mix the water and maintain an even temperature. The RTD probe was 

positioned carefully to avoid interference from the titanium heating rod. To account for any 

variation between water temperature and the temperature that the insects were experiencing, a 
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Elitech Hobo thermal probe attached to a HOBO 4-Channel Thermocouple Data Logger (onset, 

USA), was placed within an empty Eppendorf tube that was placed in the water next to trial tubes.  

The ramp time was calculated as follows: 

Ramp Time=
𝑇𝑎𝑟𝑔𝑒𝑡 𝑇𝑒𝑚𝑝−𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑇𝑒𝑚𝑝

𝑅𝑎𝑚𝑝 𝑟𝑎𝑡𝑒
 =

60°𝐶−22°𝐶

0.3°𝐶/𝑚𝑖𝑛
= 126.7 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 

Thus, the system was programmed to run for approximately 2 hours and 6 minutes, with a final 

temperature set at 25°C. This was to prevent the controller from trying to heat the bath after the 

experiment is over upon cooling. 

 

Figure 2.1. Experimental set up for thermal tolerance assays 

A total of 30 males and 30 females were tested to assess potential sex-based differences in thermal 

tolerance. Once CTMax was reached, weevils were immediately removed from the water bath, and 

the corresponding temperature was recorded. Following removal, weevils were allowed to recover 

and only those that recovered to full activity were employed for the ultimate analysis. To avoid 

variability and minimize observer bias, all experiments were performed by a single observer under 

controlled laboratory conditions at temperatures ranging from 20 to 25°C. 
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 Statistical Analysis 

All data were analyzed using the R statistical software (Core Team, 2021). Descriptive statistics, 

including mean, standard deviation (SD), median, minimum, and maximum values, were 

calculated for CTMax in both male and female S. zeamais. Normality of the data was tested using 

the Shapiro-Wilk test. A standard two-sample t-test was used to compare CTMax between males 

and females when equal variances were assumed. However, three male S. zeamais failed to recover 

and were excluded from the analysis. To account for this heteroscedasticity, Welch’s t-test was 

applied. For the analysis, statistical significance was set at p < 0.05. Data visualization was done 

using the 'ggplot2' package to generate box plots and scatter plots for illustrating thermal tolerance 

distributions. The 'dplyr' package was used to make summary statistics tables. 

Results 

The critical thermal maximum (CTMax) values for male and female S. zeamais were similar, with 

males exhibiting an average ± standard deviation of 47.21 ± 0.26°C and females 47.17 ± 0.29°C 

(Table 2.1). The Shapiro-Wilk test indicated that CTMax values were approximately normally 

distributed for both males (W = 0.927, p = 0.06) and females (W = 0.931, p = 0.053). Statistical 

comparisons revealed no significant difference in CTMax between males and females.  Given that 

both sexes satisfied the assumption of normalcy, an F-test was used to compare the equality of 

variances.  The mean differences between the groups were thus compared using Welch's T-test. A 

t-statistic of 0.55 and a p-value of 0.584 were obtained from the test, indicating that there was no 

statistically significant difference in the average CT Max between male and female S. zeamais. 

Table 2.1: Summary statistics of CTMax (°C) for male and female S. zeamais 

Gender/ CT 

Max 

Mean ± SD Median Maximum Minimum 

Female 47.17± 0.29  47.21 47.66 46.7746.54 

Male 47.21± 0.26  47.21 47.66 46.5446.77 
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Table 2.2: Statistical test results comparing CT Max values between male and female S. zeamais 

Test Statistic P values 

Shapiro (Female) 0.931 0.053 

Shapiro-Wilk (Male) 0.927 0.06 

 F-test for Equal Variance 0.844 0.664 

Welch's T-Test 0.550 0.584 

Wilcoxon Test 423.5 0.772 

 

The box plot (Fig. 2.2) visually represents the distribution of CTMax values for both sexes, 

demonstrating overlapping interquartile ranges and nearly identical medians. However, two low 

outliers were observed in the female group, with CTMax values falling below 46.7°C.  

  

Figure 2.2: A box plot showing the distribution of CTMax values for male and female S. zeamais, 

with raw data points overlaid as a scatter plot using jitter to prevent overlap 

Discussion 

Here the authors report a thermal tolerance of ~47°C for a Tift County Georgia population of 

Sitophilus zeamais and find no significant difference between the males and females. These 

findings agree with the study on other Coleoptera, tenebrionid beetles included, that exhibit no 



 

28 

 

significant sexual dimorphism of thermal tolerance (Klok et al., 2004). Nevertheless, there was a 

difference indicated in the standard deviation between the females (0.29°C) and the males 

(0.26°C). There were two low outliers also in the females, temperatures lower than 46.7°C. The 

ratio of variances 0.84366 (p = 0.665) indicates a probable sex-specific thermal tolerance 

mechanism. These differences may be ecological (ex. due to physiological adaptation, body size, 

or ecological role) or experimental (ex. the physiological state of the individuals tested or the 

sensitivity of the thermocouples. The presence or absence of sexual dimorphism in thermal 

tolerance varies across taxa. For instance, in butterflies of Thymelicus lineola, males are more 

resistant to heat because they have lower wing loading and longer activity times (Pivnick & 

McNeil, 1986). In contrast, the absence of significant differences in S. zeamais (p = 0.586) may be 

caused by rearing conditions being highly similar to the thermal optimum of S. zeamais, which 

might have minimized sex-specific differences. 

Body mass is usually also associated with thermal tolerance because larger individuals would have 

lower plasticity, particularly in wild populations (Pottier et al., 2021). Body mass is directly related 

to CTMax in Xenoglossa pruinosa bees, particularly for males (Jones et al., 2024). Some females in 

Diptera have demonstrated greater CTMax plasticity than males (Weaving et al., 2023).  In contrast, 

studies on Melanoplus differentialis (Orthoptera) revealed a slight increase in CTMax values for 

heavier males, but no apparent correlation between thermal tolerance and body size (Preston & 

Johnson, 2020).   

Thermal history of insects is an important determinant of their thermal tolerance. Insects cultured 

at high temperatures tend to have a higher survival rate when subjected to acute heat stress due to 

physiological acclimation, whereas those with colder environments preferentially tolerate chronic 

mild heat stress better (Cooper & Shaffer, 2021; Sejerkilde et al., 2003). In this study, S. zeamais 
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were reared at 23-24°C and 60-70% RH-conditions, likely close to their thermal optimum (Throne, 

1994). This may have minimized thermal stress and, as a result, impacted their thermal tolerance. 

Developmental temperature has a large effect on thermal plasticity as adults, with warmer rearing 

temperatures potentially suppressing variance at CTMax (Healy et al., 2019; Kellermann & Sgrò, 

2018). The moderate rearing conditions used here may have limited the strength of adaptive 

responses, contributing to the relative narrow range in females (46.54°C to 47.66°C)   This could 

reflect a general adaptive strategy which enhances survival and reproduction by adjusting 

environmental variation, with no sex-specific differential in thermal resistance. 

For instance, warmer environment flies exhibit higher survival for acute heat stress due to reduced 

cell size, and cooler environment flies exhibit improved performance with longer duration of mild 

heat stress due to increased cell sizes (Verspagen et al., 2019). Such findings suggest that 

developmental conditions have lasting effects on physiological traits that impact thermal 

performance. Additionally, cold-reared flies demonstrate enhanced cold survival and cold-shock 

tolerance compared to warm-reared ones, accompanied by changes in membrane phospholipid 

composition (Overgaard et al., 2008) and enlarged wing areas that improve flight performance at 

lower temperatures (Frazier et al., 2008). These insights highlight the complex interplay between 

developmental history and thermal resilience in insects. 

The absence of significant CTMax differences between male and female S. zeamais, p-value of 

0.586 indicates shared physiological adaptations to high temperatures, likely a reflection of their 

tropical and subtropical origins (Throne, 1994). However, this lack of differentiation may also 

indicate a potential vulnerability to environmental changes that push S. zeamais populations closer 

to their thermal limits. Estimating sex-specific thermal tolerances is essential in predicting 

population responses to climate change. Both sexes of S. zeamais demonstrated high heat-
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tolerance, with CTMax values exceeding 46.8°C, an indication of their adaptive traits that enhance 

survival in warming environments. By maintaining cellular function in the face of heat stress, heat 

shock proteins (HSPs) are essential for thermal tolerance. Numerous insects, including pests of 

stored products, have been shown to upregulate HSPs in response to temperature changes. 

Reiterating the function of HSPs in reducing heat-induced cellular stress, Mahroof et al. (2005) 

showed that Tribolium castaneum displays high hsp70 expression upon exposure to high 

temperatures. Likewise, S. zeamais upregulates several heat shock protein genes, such as Szhsp70, 

Szhsc70, and Szhsp90, in response to temperature stress (Tungjitwitayakul et al., 2015). The most 

upregulated of these was Szhsp70, suggesting that it plays a major part in the response to heat 

stress. In addition to temperature stress, other environmental stressors can cause S. zeamais to 

express HSP. Studies by Tungjitwitayakul et al. (2016) revealed that exposure to UV-C and 

microwave radiation dramatically raised the expression of these genes, especially Szhsp70, 

indicating that HSPs offer protection against more than just temperature extremes. Beyond 

temperature, thermal tolerance interacts with other environmental factors such as humidity and 

food availability, shaping S. zeamais ecology. Khan (2009) highlighted that S. zeamais thrives in 

high humidity, with optimal survival occurring near 100% relative humidity, reinforcing the 

importance of microclimate conditions in defining its ecological niche. Among stored-product 

insects, thermal tolerance varies with environmental conditions. For example, Sitophilus oryzae 

thrives in cool, wet environments, while Cryptolestes ferrugineus prefers warmer, humid 

conditions, and Tribolium castaneum favors warmer, drier environments (Beckett, 2011). Thermal 

stress responses also exhibit variability among beetles. For instance, the dung beetle 

Allogymnopleurus thalassinus has a CTMax exceeding 50°C but displays limited thermal plasticity 

(Machekano et al., 2021). This diversity indicates the complexity of thermal adaptation and 
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highlights how both intrinsic physiological traits and extrinsic environmental factors shape insect 

responses to their surroundings. Understanding these interactions is crucial for assessing how 

insect populations will respond to future climatic shifts. Climate change has added complexity to 

the thermal ecology of S. zeamais. The Intergovernmental Panel on Climate Change (IPCC, 2001) 

projected global temperature increases ranging from 1.1°C to 5.4°C, and empirical data indicate 

an average rise of 0.74°C (Meehl et al., 2007). As temperatures increase, so does heat stress, which 

can disrupt insect behavior, reproductive success, and overall population viability (Bale et al., 

2002; Parmesan & Yohe, 2003). Understanding how S. zeamais copes with these changes is 

essential for predicting its future distribution and ecological impact. 

Future research on gender-specific differences in thermal tolerance should focus on the 

physiological mechanisms underlying these differences, such as metabolic rates, hormonal 

regulation, and enzymatic activity, to determine their adaptive significance (Terblanche et al., 

2010). For instance, Terblanche et al. (2010) demonstrated that thermal acclimatization enhances 

performance in natural environments in Ceratitis capitata, suggesting that similar investigations 

in S. zeamais may provide valuable insight into their thermal tolerance. Moreover, Sasaki et al. 

(2019) showed that reduced thermal tolerance in marine copepods increases their vulnerability to 

climate change, emphasizing the need for similar research in terrestrial species such as S. zeamais. 

Investigating the relationship between CTMax values and field performance in S. zeamais will be 

crucial for forecasting how this species may adapt to changing climatic conditions.  Moreover, 

future research should explore the consequences of thermal tolerance for other fitness-related 

traits, such as reproductive success, foraging ability, and survival in natural ecosystems. 

Understanding how rearing S. zeamais under elevated or fluctuating temperatures influences 

thermal tolerance may reveal important links between developmental environments, CTMax 
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variability, and the adaptive potential of both sexes. These findings could offer valuable insights 

into the ecological resilience of S. zeamais in response to climate change. 

Finally, examining thermal tolerance variation across different populations may show patterns 

related to local adaptation and phenotypic plasticity. Under climate change scenarios, populations 

may exhibit differential responses, which could be critical for management and conservation 

efforts. For instance, Shah et al. (2017) demonstrated that tropical lowland aquatic insects exhibit 

more limited thermal breadths compared to temperate populations, which signifies limited 

acclimatory plasticity in stable environments, which signifies limited acclimatory plasticity in 

constant environments, and that terrestrial insects like S. zeamais can display equivalent adaptive 

tendencies. Future research also needs to study thermal tolerance diversity across development 

stages, populations, and phylogenetically conserved species. Since developmental stages exert 

significant influences on survival and reproduction (Pincebourde & Casas, 2015), examining 

fluctuations in thermal resistance for both larvae and adults of S. zeamais may provide better 

insights into its adaptability. 

Conclusion 

Both male and female S. zeamais from Tifton Georgia with larger than average CTMax values of 

46.5°C showed equal thermal tolerance, indicating that their heat adaptations at a physiological 

level are similar. These findings suggest the species' resistance to heat stress and potential 

susceptibility to climate change. In a warming climate, conservation efforts and pest management 

plans can benefit from an understanding of thermal tolerance mechanisms and how they interact 

with human-induced and environmental factors. 
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2.2. Thermal Preference 

Introduction 

Insects regulate their exposure to thermal extremes behaviorally by choosing warmer or cooler 

microhabitats, a strategy that works to optimize their physiological performance despite individual 

thermal preferences (Coggan et al., 2011; Killen, 2014; Shinner et al., 2020). However, due to their 

small body size, insects are extremely sensitive to temperature change (Digby, 1955). Although 

ectotherms are able to behaviorally regulate body temperature to avoid excessive heat, global 

warming temperatures could still interfere with important processes like nutrient uptake, social 

communication, and reproduction, which are vital for population viability (Basson et al., 2017; 

Huey & Kingsolver, 2019). In some ectotherm species, changed temperatures could impact one 

sex over the other, leading to potential population dynamic asymmetries (Darnell et al., 2013; 

Huey & Pianka, 2007; Lailvaux, 2007). There exists a variety of optimum temperature for survival 

and reproduction for every weevil species. For instance, Metamasius callizona, a bromeliad-

feeding weevil, develops optimally at 25-30°C, with egg-laying occurring between 22–33°C 

(Cooper & Cave, 2016). Similarly, pepper weevil, Anthonomus eugenii, achieves optimal 

development at 30°C whereas the alfalfa weevil, Hypera postica, achieves the highest number of 

progenies at comparatively low 20°C and the highest growth rate at 24°C (Levi‐Mourao et al., 

2022; Toapanta et al., 2005).  

Temperature extremes, either low or high, have a severe impact on insect survival, reproduction, 

and population increase, generally causing increased mortality and geographic range limitations 

(Hallman & Denlinger, 2019; Hoy, 2019). To cope with such thermal stress, including behavioral 

adaptations, dormancy, and seeking thermally appropriate refuges (Hoy, 2019). There is also a 

genetic basis to temperature preference and host-plant resistance to insect pests. Such interactions 
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are significant to predict the responses of insects to climate change and to apply effective pest 

management strategies. 

Temperature plays a significant role in the regulation of all stages of S. zeamais development, and 

every stage responds uniquely to thermal levels. Pupation is optimal at around 25°C, while lower 

temperatures retard the emergence of adults (Pitan & Jallow, 2021). The minimum development 

temperature is around 15.6°C (Arthur et al., 2001), while optimal development for S. zeamais and 

maximum fecundity and progeny production is attained at 30°C and 75% relative humidity 

(Throne, 1994).   

Behavioral thermoregulation allows insects to select optimal thermal habitats that enhance survival 

and fitness (Duffy et al., 2015; Pincebourde & Suppo, 2016; Sunday et al., 2014). Stored-product 

insects such as S. zeamais are highly sensitive to temperature fluctuations since they possess 

limited thermal ranges for development and reproduction (Sinha & Watters, 1985). High pupal-

stage temperatures can inhibit emergence of the adult, and low temperatures retard development, 

affecting population dynamics by desynchronization with the availability of food (Huma et al., 

2019). Comparative studies indicate that S. zeamais is more tolerant to lower temperatures than 

Prostephanus truncatus, which is tolerant to higher temperatures (Copatti et al., 2013). When they 

occur together in mixed colonies, there are competitive interactions, but the two species can coexist 

in the range 25-30°C (Quellhorst et al., 2019). Besides, lower temperatures reduce grain damage 

from S. zeamais as well as by other insects including Oryzaephilus surinamensis and 

Laemophloeus minutus (Copatti et al., 2013). 

Temperature exerts significant influence on metabolic processes within insects and affects the way 

energy stores are converted and utilized (Clarke & Fraser, 2004; Rho & Lee, 2017). Thus, sex-

specific reproductive investment should be balanced in relation to thermal optima that maximize 
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temperature-dependent metabolisms (Forsman, 2018; Rogowitz & Chappell, 2000; Shillington, 

2005). Females may favor temperatures for maximizing nutrient intake to optimize reproduction, 

while males can favor thermals to maximize mating success. Sexual dimorphism often results in 

distinct thermal optima and energetic demands. Thermal preference can be determined by intrinsic 

conditions like developmental stage, age, and sex, and extrinsic conditions like humidity and prior 

thermal experience (Fischer & Karl, 2010; Hoffmann et al., 2005). For instance, females of 

Callosobruchus maculatus prefer warmer temperatures, likely for reproductive reasons, and male 

Mediterranean fruit flies (Ceratitis capitata) prefer more superior temperatures to promote sexual 

performance (Weldon et al., 2022). Similarly, male katydids and crickets also undergo 

thermoregulation to accommodate the metabolic demands necessary for acoustic signaling used in 

mate attraction (Erregger et al., 2017) while male Eucalyptus-boring beetles exhibit higher rates 

of metabolism during mate searching (Rogowitz & Chappell, 2000). 

Thermoregulatory conditions also influence nutrient assimilation efficiency and energy stores. In 

Drosophila melanogaster, reserves of lipids and glycogen are lower at temperatures greater than 

27°C due to increased metabolic needs and lower assimilation efficiency (Klepsatel et al., 2019). 

Thermoregulatory differences between sexes may influence nutrient intake, viability, and 

population growth (Huey & Berrigan, 2001; Huey & Kingsolver, 2019). Understanding thermal 

limits and preferences is important for predicting the distribution of insects and responses to 

climate change (Bonebrake & Deutsch, 2012; Deutsch et al., 2008; Dillon et al., 2010). Insects 

regulate their body temperature with morphological, physiological, and behavioral mechanisms 

that avoid unfavorable temperatures (Bursell, 1974; Casey & Hegel, 1981; Clench, 1966; Kreuger 

& Potter, 2001; Schmitz, 1994; Willmer, 1982). Moreover, exposure to pesticides can change 
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thermal choice-prey locusts treated with pyrethroids choose higher temperatures, whereas those 

that receive oxadiazine pesticides choose lower temperatures (Tegowska et al., 2001). 

Sitophilus zeamais populations in South Carolina have a year-round activity, but most activity 

occurs at temperatures greater than 20°C (Throne & Cline, 1991). Infestation level varies by 

climatic regions in Georgia, suggesting that the species is highly climatic-sensitive (Dix & All, 

1986). Though optimal temperature for survival and reproduction has been documented (25-

30°C) (25-30°C) (Ceruti et al., 2008; Throne, 1994), thermal preference, specifically in reference 

to potential variation between the sexes, has been inadequately explored. The objective of this 

study was to investigate the existence or non-existence of sex-specific thermal preference in S. 

zeamais under laboratory conditions. That is, we aim to determine whether males and females 

prefer to be at different temperatures, potentially reflecting differences between their 

reproductive and physiological strategies. We hypothesize that males of S. zeamais will prefer 

low temperatures to enhance mating success and that females will prefer high temperatures to 

optimize reproductive activities such as egg maturation and oviposition. 

Materials and Methods 

Maize weevils were collected from infested field corn in Tift County, Georgia, and maintained in 

the controlled laboratory environment of 24-25°C, 60-70% relative humidity, and 12:12 

light/dark cycle for a number of generations. For consistency, only adult weevils of the same age, 

size, and physiological condition were employed for experiments. A temperature gradient 

apparatus was employed in this experiment to identify the thermal preferences of S. zeamais. The 

apparatus allowed individual weevils to move freely along an experimenter-controlled 

temperature gradient so that direct measurement and observation of their optimal temperature 

ranges could be made. 
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Sitphilus zeamais thermal preference was measured with a temperature-regulated, altered setup 

constructed from (Antoł et al., 2019) originally used to study the heat reaction of woodlice. The 

set-up included a 6 × 24-inch plain aluminum sheet metal plate (Everbilt, Atlanta, USA) with six 

aluminum tracks for concurrent testing of a maximum of six weevils. A layer of thermally 

conductive grease (CRC Industries. Inc, Pennsylvania, USA) was applied to the bottom of these 

tracks to ensure optimal thermal contact with the metal plate. Insects are placed in arenas made of 

thin plastic tubes sealed with parafilm on each end that are set within the aluminum tracks and 

surrounded with water. This set up allows thermal conductivity from the metal plate to the tracks 

and the surrounding water and creates a behavioral arena completely within the manipulated 

thermal range. To create a thermal gradient, a hot plate (Fisher Scientific, Durbuque, Iowa, USA) 

was positioned at one side of the metal plate and an ice bath at the other ensuring a stable 

temperature gradient. Both ends of every corridor were observed with a 1 mm diameter 

thermocouple to within the nearest 0.01°C, ensuring a consistent gradient of between 15°C and 

45°C along the sheet metal. These temperatures were selected according to S. zeamais' previously 

established physiological tolerances to have an appropriate range within which to observe thermal 

preference. 

Experimental Procedure 

For every trial, six adult weevils were randomly picked from laboratory-maintained stock, with 

attempts to balance sex ratio where feasible (Figure 2.3). To reduce positional bias, three weevils 

were placed at the cold end and three at the warm end of apparatus. Every weevil was confined in 

a single plastic tube, sealed on both ends using parafilm to avoid escape. The experiment was 

conducted within a light and sound free room at 24°C to reduce any potential environmental biases. 

Weevils were provided with free movement within the tubes for 30 minutes as initial trials 
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indicated that this was sufficient time for the weevils to acclimatize in desired temperature ranges.

 

Figure 2.3: Experimental Set-up Showing Thermal Preference Assay 

Data Collection 

Surface temperatures within the tubes were recorded at two points: the cold and hot ends of each 

corridor, at both the beginning and end of each trial. At the conclusion of each trial, the position 

of each weevil was marked, and the corresponding temperature was recorded. Weevils were then 

carefully removed, and their sex was determined using morphological characteristics of the 

rostrum and abdominal sternites under a microscope (Halstead, 1963). Prior to digitalization for 

statistical analysis, all data were first entered onto prepared data sheets. To minimize potential 

pheromone contamination due to S. zeamais already tested, tubes were aerated before reuse (Coster 

& Vité, 1972). 

Statistical Analysis  

Normality tests using the Shapiro-Wilk test showed that female temperature data were not 

normally distributed (W = 0.764, p < 0.001), whereas male data followed a normal distribution (W 

= 0.962, p = 0.247). Due to this deviation, both parametric (independent t-test) and non-parametric 

(Wilcoxon rank-sum test) approaches were used for comparison. An independent t-test comparing 
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male and female mean temperatures yielded a t-statistic of 0.307 (df = 68, p = 0.759), with a 95% 

confidence interval ranging from -1.45°C to 1.98°C, indicating no significant difference between 

the sexes. Similarly, the Wilcoxon rank-sum test produced a W-statistic of 622 and a p-value of 

0.911, further confirming the absence of significant differences in median thermal preference. Both 

Levene's test (p = 0.836) and the F-test (p = 0.336, variance ratio = 1.3929) show that there is no 

significant difference in variance between males and females. Descriptive statistics indicated that 

female weevils (n = 34) exhibited a mean preferred temperature of 24.31°C (SD = 3.89°C), with a 

median of 23.8°C and an interquartile range (IQR) of 3.23°C. The male weevils (n = 36) showed 

a mean preferred temperature of 24.05°C (SD = 3.30°C), with a median of 23.5°C and an IQR of 

3.68°C (Table 2.3). 

Results 

Parametric and non-parametric tests were employed to compare male and female weevils' thermal 

preference. Temperature data were plotted in a box plot with overlaid points. Analysis was 

conducted in R version 4.1.0 (R Core Team, 2021), and data visualization was achieved with 

ggplot2 package (Wickham & Wickham, 2016). The results indicated no significant difference in 

thermal preference between male and female weevils (Figure 2.4). There was no difference in 

thermal preference between male and female weevils (Figure 2.4). The independent t-test showed 

no difference (p = 0.759), and the Wilcoxon rank-sum test also showed a non-significant difference 

(p = 0.911). Temperature ranges between trials remained within the same limits, with the 

temperature gradient being preserved. Levene's test shows a p-value of 0.836, indicating no 

difference between the sexes in the variability of temperature, and this is also supported by the 

outcome of the F-test (p = 0.336). Initial temperatures at the cold and warm ends of the apparatus 
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were 19.13°C and 34.13°C, respectively, with final recorded temperatures averaging 22.02°C (cold 

end) and 39.51°C (warm end). 

 

Figure 2.4: Box plot with overlaying raw data points illustrating the distribution of thermal 

preference values for male and female S. zeamais. Note that outliers will be represented twice on 

this graph, once from the boxplot and once from the scatter plot. 

Table 2.3: Summary of Statistical Results 

Summary Statistics Mean Median Standard Deviation 

Female 24.31 23.80 3.89 

Male 24.05 23.50 3.30 

 

Discussion 

This study examined the temperature preferences of Sitophilus zeamais across an average 

temperature gradient of 22.02°C to 39.51°C. Results indicated the mean temperature that female 

S. zeamais preferred was 24.31°C (±0.72°C SE), whereas males preferred a slightly lower but 

statistically insignificantly different 24.05°C (±0.56°C SE). Notably, females appear to exhibit a 

broader temperature range (19.9°C–41.8°C) compared to males (18.7°C–33.3°C), suggesting 
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greater thermal breath in female thermal selection. The variance test further revealed no significant 

difference in temperature variability between males (p = 0.336) and females (p = 0.836), possibly 

reflecting similar physiological or behavioral traits Levene's test for homogeneity of variance on 

weight for both males and females was 0.41, indicating no difference in variability in weight 

between the two sexes. This suggests that the variability in weight is the same for both males and 

females 

The thermal preferences observed in this population of S. zeamais suggest an adaptation to 

moderate thermal conditions with females S. zeamais preferring 24.31°C while male preferred 

24.05 °C. Previous research has documented optimal growth conditions for S. zeamais at 30°C 

with 75% relative humidity (Throne, 1994), while others have reported a developmental optimum 

around 27°C (Dari et al., 2010; Pitan & Jallow, 2021). The lower preferred temperature observed 

in this study may represent a behavioral adaptation to limit intraspecific competition and mortality 

and to facilitate reproductive success under fluctuating environmental regimes. However, choosing 

temperatures within the mid-range, S. zeamais may facilitate survival and reproductive robustness, 

particularly in response to thermal variability. 

Temperature is of primary significance in the regulation of metabolic rates in ectothermic 

organisms, directly influencing growth, reproduction, and survival (Bowler & Terblanche, 2008). 

The ~24°C preference recorded here must be a balance between energy conservation and metabolic 

demands, a trend also observed in other insect orders. For instance, in the case of Hypera postica 

(alfalfa weevil), studies report that it has the highest generation of offspring when maintained at 

20°C and grows the most rapidly at 24°C (Levi‐Mourao et al., 2022; Toapanta et al., 2005), 

Similarly, pine weevils (Hylobius abietis) also exhibit temperature-dependent oviposition and 

feeding behavior, with a preference for thermal regimes of 19°C to 28°C (Son & Lewis, 2005). 
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Similarly, pine weevils (Hylobius abietis) exhibit temperature-dependent feeding and oviposition 

behavior, favoring thermal ranges of 19°C to 28°C (Christiansen & Bakke, 2009). These findings 

support the hypothesis that temperate conditions are essential for the growth and reproduction of 

S. zeamais. Although maize weevils are extremely tolerant of a wide range of temperatures 

(Tungjitwitayakul et al., 2015), their reproductive efficiency appears to be within a more limited 

range of 22°C-28°C. This study discovers ~24°C to be a thermal optimum, an equilibrium point 

between fitness and preventing the cost of fitness in suboptimal temperatures.  

Most insects actively maintain body temperature to avoid costs in fitness during suboptimal 

conditions (Martin & Huey, 2008). These findings show that thermal preference in females 

remains measurable by reproductive condition and metabolic requirements, a trend consistent with 

other taxonomic observations. For instance, Colias butterflies adjust body orientation to regulate 

temperature for optimal flight function (Kingsolver & Watt, 1983). Similarly, S. zeamais females 

may adjust their thermal preferences to maximize fitness under varying environmental conditions. 

Interestingly, there were no significant differences (p = 0.911) in female and male S. zeamais 

thermal preferences as observed, meaning shared ecological strategy in conditions of storage. This 

contrasts with many insect species, where sexual dimorphism in thermal preference is common 

due to divergent reproductive roles (Hallsson & Björklund, 2012; Weldon et al., 2022). Lack of 

appreciable sexual dimorphism in S. zeamais indicates that the two sexes are equally suited to 

storage conditions. The noted preference for ~24°C can be involved in controlling weevil activity 

and reproduction, possibly providing insights into pest management practices that manipulate 

storage temperatures to minimize infestation risks. 

Statistical analysis found no statistical differences in thermal preference between males and 

females. However, the relatively small sample size limits the statistical power of this study, and 
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future research using larger population samples is required to confirm these results. In addition, 

age, reproductive stage, and hormonal fluctuations may influence thermal preference, since this 

too is shown to vary with metabolic and physiological demands and may have been the cause of 

the outlier, as observed in other organisms (Bowler & Terblanche, 2008; Huey & Pianka, 2007). 

Follow-up studies incorporating these factors, as well as mating status, may result in an even more 

refined understanding of S. zeamais thermal preference. Research on other insects, such as 

Enchenopa treehoppers, has demonstrated temperature-dependent mating across a narrow 

temperature range (Macchiano et al., 2019), illustrating the complex role of temperature in insect 

reproduction. 

Conclusion 

This study provides new insights into the temperature preference in S. zeamais for moderate 

temperatures (~24°C), with a minimal sexual dimorphism. The findings suggest that behavioral 

thermoregulation has the potential to buffer this S. zeamais against environmental variation. 

However, with the intensification of climate change, thermal niche shifts can influence their 

physiology, distribution, and survival. An understanding of these thermal preferences is necessary 

to predict how S. zeamais and other ectotherms will respond to rising global temperatures. 

2.3. Measurement Analysis of Sitophilus zeamais 

Introduction 

Morphological features in insects are crucial in identifying their ecological roles and adaptive 

strategies. The body shape and size in ground beetles relate to environmental factors and sexual 

dimorphism (Sukhodolskaya, 2014). For instance, dung beetles require standardized body size to 

get accurate functional diversity estimates, and dry weight is the best method (Gómez & Tonelli, 

2022). Pronotum shape in pygmy grasshoppers reflects macrohabitat adaptation (Rebrina et al., 
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2024), while in ants, body size, eye position, and scape length correlate with trophic level (Drager 

et al., 2023). These studies highlight the need to employ standardized morphometric techniques to 

enhance interspecific comparisons of insects. The morphology of S. zeamais significantly 

influences its feeding behavior, reproductive success, and ecological function. The morphological 

architecture of S. zeamais directly influences its feeding activity, reproductive efficiency, and 

ecological function. The species possesses a clear rostrum, thorax, and pronotum that are required 

in the utilization of resources. The size and shape of the body influence feeding efficiency, 

movement, and reproductive fitness, and the greater specimens exhibit higher survival under stress 

(Greenberg et al., 2005; Wade French & Hammack, 2010). Rostrum length and body size are key 

to species identification within Sitophilus, as morphological determination through pronotal 

punctures is not dependable (Hidayat et al., 1996). Molecular markers and hyperspectral imaging 

are some of the new technologies that improve classification (Cao et al., 2015; Suhriani et al., 

2023). With these technologies, sexual dimorphism of S. zeamais is still yet to be investigated but 

can contribute to ecological differentiation. 

Female S. zeamais would presumably possess longer rostra and larger body sizes, facilitating 

deeper grain penetration during oviposition (Ojo & Omoloye, 2016), while males may possess 

stronger thoracic structures for mating competition. Studies on related weevils suggest rostrum 

length correlates with host seed size, optimizing reproductive efficiency (Hughes & Vogler, 2004). 

Such allometric relationships influence feeding efficiency, mobility, and reproductive success, 

although no quantitative studies exist for S. zeamais. Morphological traits, particularly rostrum 

and mouthpart structure, directly impact feeding behavior, because well-developed rostrum assists 

grain kernel penetration (Cordeiro et al., 2017). Conversely, smaller individuals may navigate 

stored grains more efficiently (Ngom et al., 2021). More fecund and longer-lived females would 
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be the larger ones in order to lay more eggs (Wade French & Hammack, 2010). Similarly, larger 

males will also possess longer copulation durations, enhancing reproductive success (Greenberg 

et al., 2005). Weight, particularly dry weight, is a reflection of energy reserve and nutritional state, 

and heavier ants exhibit greater survival capability upon starvation (Richards, 1945; Tan et al., 

2010). In weevils, body weight is linked to flight ability, reproductive success, and mortality, 

which are established by larval diet, metabolic reserves, and genetics (Greenberg et al., 2005; 

Šešlija & Tucić, 2003).  

Sexual size dimorphism in S. zeamais may have significant ecological and physiological 

implications. Larger size females tend to have higher reproductive potential, as seen in boll weevils 

(Greenberg et al., 2005), while male body mass will most likely influences mating competition 

and flight capability. In bean weevils, trade-offs between body mass, reproductive output, and 

lifespan suggest that size variation is a key life-history trait (Šešlija & Tucić, 2003). Body size also 

determines tolerance to environmental stressors, including desiccation and temperature extremes. 

Dry body mass serves as an index of energy reserves, with heavier individuals demonstrating better 

survival and reproductive fitness (Bolívar-Silva et al., 2018; Richards, 1948). Advanced resolution 

examination and digital imaging techniques can be used to connect morphology variation with 

functional traits such as reproductive success and feeding efficacy. Regional studies in Nigeria 

have documented morphometric divergence between Sitophilus populations (Oyewale et al., 

2022), though their ecological adaptive significance and relevance to sex-related traits remain 

uncertain. 

The objective of the study was to fill knowledge gaps by analyzing sex-specific morphological 

traits in S. zeamais, with a focus on their ecological and physiological significance. By measuring 

rostrum length, thoracic dimensions, and body weight in 30 males and 30 females, this research 



 

46 

 

seeks to establish the presence of sexual dimorphism and its functional implications. The authors 

hypothesized that females would have larger body sizes and longer rostra, reflecting their roles in 

oviposition and resource allocation, whereas males will display adaptations related to reproductive 

competition and mobility. These findings will increase the understanding of morphological 

diversity within S. zeamais. 

Materials and Methods 

The weevils used in this study were initially used to conduct behavioral assays before being used 

for morphological measurements. A total of 30 specimens, comprising both males and females, 

were examined. Prior to measurement, the weevils were soaked in 70 % ethanol for six hours to 

ensure euthanasia and remove remaining corn dust that may interfere with accurate measurements. 

Morphometric measurements were conducted using a VHX-7000 Digital Microscope (Osaka, 

Japan) at 30x magnification, with a 250 µm calibration scale applied for all measurements. The 

morphological measurements such as dry weight, pronotum length, rostrum length, and rostrum 

width were obtained. Specimens were handled carefully to avoid breakage, and each was allocated 

to a well within one multi-well plastic container after measurement to avoid misidentification or 

cross-contamination. During measurement intervals, weevils were kept chilled to preserve 

specimen integrity. Following morphometric measurement, all the weevils were air-dried to be 

measured for dry weight. Specimens were dried in a Thermo Scientific Heratherm OGS180 oven 

(Langenselbold, Germany) at 56°C for 24 hours to eliminate variations due to water content. Once 

dried, the weevils were weighed using a Toledo Model TS-U-2 microbalance scale (Swedesboro, 

NJ, USA) to ensure high accuracy in dry weight measurements. 
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Statistical Analysis 

All statistical analyses were performed in R (version 4.4.2) using the ggplot2, dplyr, patchwork, 

effsize, and MASS packages. The Shapiro-Wilk test was used to assess the normality of each 

morphological variable. Welch’s t-test was applied to compare normally distributed parameters 

between male and female weevils (p > 0.05), while a Wilcoxon rank-sum test was used for non-

normally distributed parameters (p < 0.05) to ensure robust comparisons. Levene's test for 

homogeneity of variance on weight between males and females yielded a p-value of 0.41 

Results 

The Shapiro-Wilk normality test indicated that rostrum length, rostrum width, and weight followed 

a normal distribution (p > 0.05) in both sexes. However, pronotum length was not normally 

distributed in females (p = 0.005) but conformed to normality in males (p = 0.606). Based on these 

results, Welch’s t-tests were conducted for normally distributed variables, while a Wilcoxon rank-

sum test was applied for pronotum length due to its deviation from normality in females. 

Significant differences were observed in several morphological traits between sexes. Females 

showed significantly longer rostra (1172 ± 80.1 µm) than males (1112 ± 80.9 µm) (t = 2.885, df = 

57.995, p = 0.005. Conversely, males had significantly wider rostra (192 ± 17.3 µm) compared to 

females (180 ± 16.5 µm) (t = -2.721, df = 57.863, p = 0.009). Pronotum length also differed 

significantly between sexes, females showed longer pronotums on average (1384± 95.5 µm) than 

males (1320 ± 84.6 µm), as confirmed by the Wilcoxon rank-sum test (W = 603.5, p = 0.024). 

However, no statistical difference was detected in weight between males and females (t = 1.955, 

df = 55.813, p = 0.056). Levene's test for homogeneity of variance on weight between males and 

females yielded a p-value of 0.41, indicating no significant difference in weight variability between 

the sexes. This suggests that the distribution of weight is similar for both males and females in the 

sample. The mean weight for females was 0.00145 g, while for males was 0.00130 g. The standard 
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deviations (SD) for females and males were 0.000333 g and 0.000272 g, respectively. The p-value 

for the comparison between males and females was 0.056. Antenna width measurements were not 

feasible for all 30 individuals per sex during data collection. The antennae were often hidden, 

nestled between the limbs of the weevils. They were not forced to be adjusted for measurement to 

avoid damaging the specimens. This limitation highlights the need for improved methodologies in 

future studies to enhance the completeness of morphometric data collection. 

Table 2.4:  Summary of Morphometric Measurements in Male and Female S. zeamais 

Mean Female Male SD Female SD Male p- value 

Weight (g) 0.00145    0.00130 0.000333 0.000272 0.056 

Length of 

Rostrum (µm) 

1172 1112 80.1 80.9 0.005 

Width of rostrum 

(µm)   

180 192 16.5 17.3 0.009 

Pronotum length 

(µm)   

1384 1320 95.5 84.6 0.008 

  

 

Figure 2.5: Boxplots of Rostrum Length, Rostrum Width, Weight, and Pronotum Length in Male 

and Female S. zeamais. 
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Discussion 

This study highlights notable sexual dimorphism in the morphological features of Sitophilus 

zeamais, contributing to a deeper understanding of their reproductive biology and ecological 

adaptations.  In insects, body weight is frequently used as a stand-in for body size, indicating that 

females may typically be larger. This result is consistent with the known pattern of sexual size 

dimorphism (SSD) in insects, where females tend to be larger because of the higher energy 

expenditure needed for reproduction, especially the production of eggs (Hayward & Gillooly, 

2011; Teder & Tammaru, 2005). The "fecundity advantage" hypothesis (Darwin, 1871) proposes 

that larger female size enhances reproductive output; however, further studies with expanded 

sample sizes are needed to determine whether this hypothesis applies to S. zeamais. SSD is 

frequently attributed to fecundity selection, as larger females tend to produce more offspring 

(Afaq, 2013). Empirical studies indicate that SSD often increases with body size across insect 

species and that female size is more responsive to environmental factors (Teder & Tammaru, 

2005). For instance, a selection experiment in Drosophila demonstrated that artificial selection for 

increased fecundity resulted in larger female body size compared to males (Reeve & Fairbairn, 

1999). The degree of SSD is also strongly associated with sex-specific differences in larval 

developmental time, with the larger sex generally requiring a longer developmental period (Teder, 

2014). Collectively, these findings show the role of fecundity-related factors in shaping SSD 

patterns among insect populations. 

The most pronounced sexual dimorphism in S. zeamais was observed in rostrum dimensions. 

Female weevils exhibited significantly longer rostra (1172 ± 80.1 µm) than males (1112 ± 80.9 

µm, p = 0.0055), which is consistent with their oviposition role requiring penetration into hard 

plant tissues for egg deposition (Manivannan & Ezhilvendan, 2017; Zhang, 2021). Conversely, 

males had significantly wider rostra (192 ± 17.3 µm) compared to females (180 ± 16.5 µm, p = 
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0.009), potentially enhancing feeding efficiency or serving other ecological functions (Shine, 

1988). These differences reflect evolutionary adaptations that optimize reproductive and survival 

strategies in each sex. Additionally, females exhibited significantly longer pronota than males (p 

= 0.008), possibly as an adaptation for reproductive efficiency and oviposition. Pronotum size has 

been linked to increased fecundity in other insects, including mantids and beetles, and may provide 

structural support during egg-laying (Kingsolver & Norris, 1977; Maxwell & Frinchaboy, 2014). 

In contrast, male pronotal traits may be influenced by selective pressures related to mating 

competition or mobility. 

The observed sexual dimorphism in S. zeamais supports the hypothesis that morphological 

differences between males and females reflect adaptations to their respective reproductive and 

ecological roles. The elongated rostrum in females aligns with oviposition demands, while the 

broader rostrum in males may provide functional advantages such as increased feeding efficiency. 

These patterns are consistent with findings in other weevil species, where rostrum size and shape 

correlate with host plant selection and reproductive strategies (Hughes & Vogler, 2004; Zhang, 

2021). Future research should investigate potential geographic or environmental influences on 

morphological traits, as well as the relationship between body size, sexual dimorphism, and 

reproductive success in S. zeamais.  

Conclusion 

This study demonstrates clear sexual dimorphism in S. zeamais, particularly in rostrum dimensions 

and pronotum length. While females exhibited traits that facilitate reproductive efficiency, such as 

longer rostra and pronota, males displayed adaptations such as wider rostra that may enhance 

feeding and survival. These findings contribute to understanding the evolutionary pressures 

shaping sexual dimorphism in insects and provide valuable insights into the ecological roles of S. 
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zeamais. Future studies should expand sample sizes and examine additional morphological traits 

to refine understanding of the selective forces driving dimorphic patterns in S. zeamais. 
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CHAPTER THREE 

3. 1. Amount of food eaten 

Introduction 

Moisture content is one of the most important environmental parameters that impact the growth 

and behavior of insects, particularly in near-optimal conditions (Hagstrum & Milliken, 1988). 

Moisture is an essential parameter that affects the feeding habits of stored-product insects, grain 

palatability, insect survival, and efficiency of feeding. Studies indicate that grains with optimal 

moisture content are more susceptible to infestation due to softened kernel texture, which leads to 

increased feeding activity and greater damage (Phokwe & Manganyi, 2023). Sitophilus zeamais 

exhibits two primary feeding behaviors in maize kernels: shallow feeding on the endosperm 

surface and deep feeding into the kernel (Tipping et al., 1986). Insects get moisture primarily from 

food and atmospheric humidity, and excessive grain moisture has been found to enhance weevil 

feeding efficiency and population development (Arlian, 1979). Further, previous work has 

established that insect feeding is able to alter grain moisture content in response. For instance, in 

wheat, increased weevil activity increases moisture levels in the kernel, stimulating fungal growth, 

which in turn influences grain quality (Agrawal et al., 1958; Christensen & Hodson, 1960). In 

stored maize, S. zeamais feeding facilitates easy entry by fungi such as Aspergillus flavus, which 

produce aflatoxins (Beti et al., 1995).  

Sexual dimorphism in insect feeding behavior has been observed in many species and is often 

linked to reproductive investment. In S. zeamais, females possess a longer rostrum than males, 

enabling them to penetrate deeper into kernels (Wilhelm et al., 2015, also see chapter 2). While 

this morphological advantage is hypothesized to facilitate greater food consumption, no study has 



 

53 

 

directly tested whether rostrum length correlates with feeding quantity in S. zeamais. However, 

similar patterns have been observed in other stored-product pests; for instance, in Sitophilus 

granarius, wheat extracts influence both feeding and oviposition, with water acting as a key 

stimulant (Levinson & Kanaujia, 1982). Feeding activity is also influenced by environmental 

factors such as darkness, which has been shown to increase food intake in stored-product insects 

(Barnes & Ratcliffe, 1967; Koehler & Gyrisco, 1963). Although there has been intensive research 

on S. zeamais feeding damage, there is limited information on the effect of moisture content on 

food consumption over short time intervals, especially by sex. Previous studies have concentrated 

on grain quality deterioration and infestation levels, with no information on how moisture content 

affects immediate feeding behavior. The research explores the effects of varying maize kernel 

moisture content (10%, 20%, and 30%) on food consumption by male and female S. zeamais in a 

24-hour time frame. A 24-hour time frame provides a perspective of short-term feeding preference, 

which has the potential to influence early infestation dynamics and, subsequently, population 

growth. By quantifying weight loss due to feeding, the authors aim to provide estimates of food 

intake and ascertain whether moisture differentially affects feeding rates for the sexes. 

Given the improved palatability and softer kernel that makes ingestion easier, the authors predict 

that food consumption will increase with higher grain moisture. Furthermore, because of their 

higher nutritional needs for reproduction and the benefit of having a longer rostrum for more 

effective deep feeding, the authors hypothesize that females will consume more than males. To 

understand the wider ecological significance of S. zeamais feeding behavior and its association 

with moisture content, it is important to explore these interactions between varying moisture 

content and food consumption. The study will provide insights into pest dynamics for enhancing 

the development of pest risk assessment and forecasting patterns of infestation under varying 
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conditions of the environment. It can also support predictive models of grain susceptibility by 

identifying moisture levels influencing feeding activity. 

Materials and methods 

The maize cultivar, P1870YHR used for all the experiments in this study as it is a popular cultivar 

in Georgia. The samples were manually cleaned to remove all foreign materials such dust, dirt, 

small broken and immature kernels and was sieved over a U.S. standard number 6 sieve (sieve 

openings 3.35 mm) before use. The moisture content of all grain samples used in the experiment 

was initially 13%, as measured with an AMTAST Grain Moisture Meter (AMTAST Inc., Florida, 

USA). Maize weevils were collected from infested field corn in Tift County, Georgia, and reared 

under controlled conditions at 24-25°C with 60-70% relative humidity and a 12:12 light/dark cycle 

for several generations (Revco Scientific, Inc., North Carolina, USA). Only adult weevils of 

uniform age, size, and were selected for the experiments to ensure consistency. 

Maize samples used for the experiment were first conditioned to obtain different moisture contents. 

The samples of the desired moisture level, thus 20% and 30% wet base (w.b.) were prepared using 

the common rewetting technique (Brusewitz, 1975; Nimkar & Chattopadhyay, 2001; Shepherd & 

Bhardwaj, 1986) by adding the amount of distilled water as calculated from the following equation, 

(Balasubramanian, 2001) 

𝑄 =
𝑊𝑖(𝑀𝑓 − 𝑀𝑖)

100 − 𝑀𝑓
 

Where: Q is the mass of added water (kg), Wi is the initial mass of the sample (kg), Mi is the initial 

moisture content of the sample in % w.b. and Mf is the final desired moisture content of the sample 

in % d.b. 

The samples along with the calculated necessary additional water were placed in high-density thick 

polyethylene bags, and the bags were sealed separately tightly using Metronic Impulse Sealer 
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(Jiaro International, Texas, USA) and kept in an incubator at 5°C for a week to ensure uniform 

distribution of moisture throughout the sample. The mass of distilled water needed to achieve the 

target moisture level was measured using a pipette. About 0.5ml extra distilled water was added 

to compensate for the loss of water adhering to the wall of the polyethylene bags.  

To achieve a moisture content of 10%, corn kernels were placed in a tared moisture dish and dried 

in an oven dried using the 30GC analog lab oven (Quincy Lab, Inc, Illinois, USA) at 103ºC for 72 

h (Gupta & Das, 2000) at a consistent temperature. The drying process was carefully monitored to 

ensure that the kernels reached the 10% moisture level. After the drying period, the samples were 

allowed to cool in a desiccator. When the grain's moisture content was extremely low, the moisture 

meter was unable to measure moisture levels accurately, the formula given by Hellevang (1995) 

and Shrink (1991) was used to verify that the kernels had attained the desired moisture content of 

10%. This method was required: 

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑆ℎ𝑟𝑖𝑛𝑘 (%) =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 (%) − 𝐹𝑖𝑛𝑎𝑙 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 (%)

100 − 𝐹𝑖𝑛𝑎𝑙 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 (%)
× 100 

Figure 3.1a: Flowchart of Experimental Test 
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To measure food consumption by S. zeamais, we adapted the method described by Simon et al., 

2023, which accounts for natural weight loss due to desiccation. The experiment was conducted at 

three grain moisture levels (10%, 20%, and 30%), with 30 replicates for each condition. Weevils 

were separated by sex according to Halstead’s (1963) method, with separate groups for males and 

females, each consisting of 30 replicates per moisture level. Experimental groups consisted of 

individual weevils placed with a single maize kernel in separate 2 oz plastic containers, while 

control groups contained only maize kernels without weevils. Initial kernel weights of both the 

experimental and control groups were measured using a Toledo Model TS-U-2 balance 

(Swedesboro, NJ, USA). All experiments were incubated at 24°C (±0.5°C) and 60%-70% relative 

humidity for 24 hours to ensure consistent environmental conditions. After 24 hours, both 

experimental and control groups were weighed again. The food consumption by the weevils was 

calculated by subtracting the average weight change observed in the corresponding control group 

(which accounts for environmental desiccation or hydration) from the total measured weight 

change. This adjustment ensured that the weight change attributable to desiccation or hydration 

was not considered in the calculation of food consumption. 

Results 

The analysis revealed significant differences in feeding behavior when grouped by gender and 

moisture content. The mean feeding rate values ranged from -0.00768g for males at 10% moisture 

to 0.00159g for males at 20% moisture (Figure 3.1b). Males exhibited greater variability at 10% 

moisture (SD = 0.0746, VAR = 0.00557) compared to females, who had lower variability (SD = 

0.00317, VAR = 0.0000100). Across all treatments, female’s kernels exhibited slightly higher 

mean weight gain (-0.00388g) than male’s kernels (-0.00446g), but males showed greater 

variability (SD = 0.0456, VAR = 0.00208). When data from both male and female weevils were 
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combined, the average change in feeding remained close to zero at all moisture levels: -0.00651 g 

(10%), -0.000463 g (20%), and -0.00555 g (30%). These near-zero values suggest that weevils 

either consumed very little kernels or any feeding was offset by weight loss, possibly due to 

moisture stress. The highest variability in responses occurred at 10% moisture, especially among 

males, indicating inconsistent feeding behavior. This inconsistency may be due to stress from the 

dry conditions or differences in individual feeding motivation. 

 

Figure 3.1b: Raw Values Depicting the Change in Weight of all Experimental Groups  

Interestingly some kernels appeared to gain weight even when accounting for the control samples 

which resulted in negative feeding rate values. This unexpected outcome suggests greater moisture 

absorption by the kernels or condensation effects than feeding effects. Due to this, a reduced 

dataset was generated where only measurable observed feeding values were analyzed in (Figure 

3.1c). These are cases where the change in weight of the experimental kernel was greater than the 

average change in weight of the control samples. This filtered dataset showed the highest mean 

feeding rate for males at 10% moisture (0.0555g, SD = 0.0546) and females at 20% moisture 

(0.0326g, SD = 0.0326). The sample sizes, however, varied across treatments, with females at 10% 
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moisture content having only three samples with measurable feeding, while males at 20% moisture 

had the highest count (n = 16). A bar plot (Figure 3.1e) illustrated the variation in sample sizes 

across moisture levels. 

 

Figure 3.1c: Box Plot Showing Feeding Mass Consumed by Maize Weevils Above Zero Delta 

Feeding at Different Moisture Contents. 

The three-sample test for equality of proportion of number of experimental weevils with 

measurable feeding revealed a marginally significant result (χ² = 5.95, df = 2, p = 0.051), 

suggesting potential differences across moisture levels. Pairwise comparisons indicated a 

significant difference between 10% and 20% moisture (p = 0.032), but no significant differences 

between 10% and 30% (p = 0.635) or 20% and 30% (p = 0.143). Confidence intervals for feeding 

proportions were estimated, with the highest feeding occurrence at 20% moisture (proportion = 

0.441, 95% CI = [0.314, 0.575]). A final visualization of feeding proportions (Figure 3.1d and 

Figure 3.1e) highlighted these differences across moisture levels and sex. 
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Figure 3.1d: Sex Distribution of S. zeamais with Measurable Feeding Across Treatment 

 

  

Figure 3.1e. Box Plot Showing Raw Values of Total Number of Measurable Feeding Across 

Treatment 

Discussion 

The study examined the effect of moisture content on S. zeamais feeding activity. The maximum 

number of weevils with observable feeding was at 20% moisture, indicating that moderate 

moisture enhances feeding by offsetting kernel softness and energy expenditure. In contrast, the 
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minimum observable feeding was at 10% moisture, perhaps due to kernel hardness preventing 

feeding. A proportion test suggested a potential difference in feeding across moisture levels (p = 

0.051), with a significant pairwise difference between 10% and 20% moisture (p = 0.032). This 

marginally significant result suggests that there is a trend for a moisture effect on feeding that a 

larger sample size may detect as significant. This agrees with previous findings that weevil 

infestation and feeding behavior are influenced by moisture content of grain in storage. The grains 

more prone to infestation by the weevil have higher moisture content (Babarinde & Kolawole, 

2012; Mandizvidza et al., 2015). Similarly, with varying moisture levels, feeding as well as 

oviposition activities differ in the rice water weevil Lissorhoptrus oryzophilus (Stout et al., 2002). 

These findings further support this relationship, as we observed that S. zeamais responded 

differently to grains with varying moisture contents, reinforcing the role of moisture in shaping 

infestation dynamics. At 10% moisture, the average feeding rate was -0.00530 g for females and -

0.00768 g for males, suggesting minimal or no feeding, and possibly weight loss. At 20% moisture, 

males showed a slight positive mean (0.00159 g), indicating some feeding, while females still had 

a negative mean (-0.00245 g). only measurable observed feeding values were analyzed in (Figure 

3.1c). These are cases where the change in weight of the experimental kernel was greater than the 

average change in weight of the control samples. Measurable observed feeding dataset showed the 

highest mean feeding rate for males at 10% moisture (0.0555g, SD = 0.0546) and females at 20% 

moisture (0.0326g, SD = 0.0326). The sample sizes, however, varied across treatments, with 

females at 10% moisture content having only three samples with measurable feeding, while males 

at 20% moisture had the highest count (n = 16), which contrasts with previous research that 

suggests females, with higher energy demands for reproduction, feed more consistently (Van 

Dzuong & Long, 2019). The slight positive mean (0.00159g) in male feeding behavior at lower 
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moisture levels may reflect an opportunistic strategy in response to resource scarcity. Additionally, 

the small number of measurable feeding females at 10% moisture (n = 3) may have introduced 

variability, complicating sex-based comparisons. Similar patterns have been observed in 

Rhyzopertha dominica, where females exhibit more foraging behavior under resource-limited 

conditions (Cordeiro et al., 2016), further supporting the idea that environmental constraints 

influence feeding strategies differently cross sexes. 

Contrary to the initial hypothesis, males showed slight positive mean feeding particularly at 10% 

moisture, while females, despite elevated reproductive energy demands, fed less under low-

moisture conditions. This suggests that females require stable conditions for consistent feeding, 

whereas males may adopt an opportunistic approach, driven by competition and dispersal pressures 

(Carval et al., 2015; Li & Kokko, 2019). Although no visible mold was found during the 24-hour 

experiment, male feeding rate remained even at 30% moisture. If this was the case, feeding 

behavior would be shaped differently for each sex, implying a trade-off between diet quality and 

moisture availability. This possible relationship between moisture, fungal growth, and feeding 

behavior is consistent with earlier studies that demonstrated the species- and life-stage-specific 

effects of volatile organic compounds (VOCs) generated by fungi on insect feeding preferences. 

For instance, Sitophilus oryzae interacts more with grain that has been infected by Aspergillus 

flavus's in the sexual growth stage compared to the asexual growth stage  (Ponce et al., 2022). 

Similarly, larvae of Tenebrio molitor exhibit species-specific behavior, avoiding Fusarium 

avenaceum but preferring kernels infested by F. proliferatum and F. poae (Guo et al., 2014). 

Both the males and the females S. zeamais exhibited their minimal feeding rate at 10% moisture 

with no difference between sexes. This suggests a similar physiological response to moisture 

stress, potentially driven by metabolic or genetic factors. While S. zeamais populations are 
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typically female-biased, early colonizing groups tend to have a higher proportion of males, which 

may influence feeding dynamics (Dix & All, 1986). Notwithstanding these results, sample size 

differences between treatments could have influenced statistical power, especially for females at 

10% moisture. Environmental conditions, with temperature maintained at 24°C (± 0.5°C) and 

relative humidity at 60%–70%, were controlled ensuring that variations in feeding were primarily 

influenced by moisture content rather than broader abiotic factors. Temperature fluctuation in 

subsequent research should explore its effect on S. zeamais feeding, weight loss, and reproduction. 

Observational study may assist in establishing whether and how males respond with exploratory 

feeding behavior when under moisture stress. Further research should also explore how S. zeamais 

survival and reproduction are influenced by fungal metabolites and feeding activity. 

Understanding the microbial associations between weevil feeding and moisture-rich kernels could 

provide valuable insights into postharvest pest dynamics. 

Conclusion 

With ideal feeding taking place at 20% moisture content, this study emphasizes the important 

influence of moisture content on Sitophilus zeamais feeding behavior. Feeding activity at lower 

moisture rate was higher among males than females, which may be a reflection of sex-dependent 

responses to resource abundance, even though females were expected to have higher food 

requirements due to greater energy demands. These results demonstrate the intricate connections 

among weevil consumption, food quality, and moisture. 

3.2 Larval development 

Introduction 

Environmental conditions, particularly during early developmental stages, play a crucial role in 

influencing growth, reproduction, and long-term fitness in insects, including stored-product pests 
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such as Sitophilus zeamais (Bateson et al., 2014; Bradshaw, 1965; Eyck et al., 2019). Maternal 

oviposition choices directly influence offspring performance, including larval development and 

survival (Agrawal et al., 2002; Ballabeni et al., 2001; Craig et al., 1989). Factors like food quality, 

moisture availability, and predation risk shape reproductive success and adult traits (Craig et al., 

1989; Mainali et al., 2015; Rajapakse & Walter, 2007). Variation in resource quality during 

development affects adult body condition, reproductive performance, and fitness (Dmitriew & 

Rowe, 2011). 

Grain moisture content is a critical factor that significantly influences the biology and behavior of 

S. zeamais, affecting egg viability, larval survival, and adult emergence (Powell & Floyd, 1960; 

Sedlacek et al., 1991). While related species such as S. granarius and S. oryzae have been 

extensively studied in this context (Longstaff, 1981b; Richards, 1948; Segrove, 1951), research on 

S. zeamais remains limited. Grain moisture content includes one of the most essential factors that 

have a very decisive effect on the biology and behavior of S. zeamais. Optimal moisture levels 

promote larval survival and adult emergence, while both excessively low and high moisture 

content hinder developmental processes and reduce reproductive success (Sedlacek et al., 1991; 

Strong & Sbur, 1964). 

Despite the importance of moisture content, the quantitative relationship between moisture levels 

and the biology of S. zeamais has not been thoroughly investigated. The oviposition behavior of 

S. zeamais is highly adaptive, with females modifying egg-laying strategies based on host grain 

moisture content, which in turn affects offspring viability and reproductive success (Honěk, 1993; 

Smith, 1987). This adjustment influences egg distribution, adult emergence rates, and progeny 

viability (Danho et al., 2002; Stejskal & Kučerová, 1996). However, while studies have shown 

that high grain moisture contents reduce the efficacy of protectants against S. zeamais (Mutambuki, 
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2013; Superfine, 2012) much remains unknown about the moisture-related effects on life-history 

traits such as body weight, sex ratio, and progeny emergence. 

Sitphilus zeamais can lay 38.67 eggs on average in 145 days, and the highest egg production is in 

days 55-95 (Van Dzuong & Long, 2019). Maize has been found to be a preferred host for S. 

zeamais, which is more fecund (290.30 eggs/female) than other cereals (Salim et al., 2023). 

Moisture content can be one of the most significant parameters that determine egg viability and 

larval survival; at optimal levels, moisture ensures proper development. Moisture content 

influences developmental traits and reproductive capacity as seen in the carob moth, where lower 

moisture content in fruit increased larval mortality, extended developmental times, and reduced 

egg production (Nay & Perring, 2006). 

Environmental factors, including moisture and temperature, are known to affect sex determination 

in various species. In some reptiles, wetter and cooler conditions produce more males, while drier 

and warmer conditions favor females (Lolavar & Wyneken, 2017; Sifuentes-Romero et al., 2018). 

Similarly, in insects, abiotic stresses such as temperature, nutritional condition and humidity could 

affect hormonal and genetic signals governing sex determination and create sex ratio bias (Verma 

et al., 2024). The impact of moisture on sex ratio has been studied in various organisms, but its 

influence on Sitophilus zeamais remains unexplored. Understanding how moisture affects sex ratio 

in S. zeamais is important, as it could shed light on population dynamics and the ecophysiology of 

S. zeamais in varying moisture condition. In addition, grain weight loss and damage following S. 

zeamais infestation may be dependent on moisture levels. For instance, earlier research showed 

that S. zeamais causes grain weight losses of up to 21.54% in wet conditions (Arrahman, et al., 

2022) and 35.8% in open stored conditions (Likhayo et al., 2018).    
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The objective of this study was to compare the effect of different moisture levels in maize grains 

of S. zeamais. It explores, particularly, the effect of moisture content on number of emerged 

offspring (F1 progeny emergence and weight), grain damage, developmental time, and sex ratio 

(male:female). Understanding these factors is crucial to predicting how populations of S. zeamais 

may evolve in storage environments, improve the pest management procedures and provide new 

insight into grain moisture influences on growth and reproduction of S. zeamais that are relevant 

to a wider set of knowledge on stored-product insects' ecology and biology. 

Materials and Methods 

Sitophilus zeamais were originally sampled from field corn infested in Tift County, Georgia, and 

cultured over several generations in the Salzman Lab under standard conditions (24-25°C, 60-70% 

relative humidity, and a 12:12 light/dark photoperiod, cite incubator here). To ensure uniformity, 

adult weevils of similar age and size were chosen. Maize grains were stored at -20°C for one week 

to kill any potential contaminants and then equilibrated for 36 hours and conditioned to three 

moisture levels: 10% (low), 18% (medium), and 20% (high). The study examined the effect of 

grain moisture content on S. zeamais F1 offspring emergence, adult weight at emergence, sex ratio, 

and grain damage. For each moisture treatment, 10 kernels were placed in 2 oz plastic containers 

with 3 tiny perforations in the lids to allow air circulation. Three males and three females of the 

adult S. zeamais, were sexed based on rostrum and abdominal sternite morphology under a 

microscope (Halstead, 1963) and introduced into each container to ensure balanced mating and 

oviposition. The experiment had 30 replicates per treatment. Adult weevils were removed via 

sieving after a week of mating and oviposition, and infested kernels were kept in their respective 

containers for development of larvae. 
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Containers were monitored daily for the emergence of adults. Data collected included temperature 

and relative humidity, number of adults emerged, each adult's date of emergence and weight, 

emergent offspring total per treatment, and kernel damage. To minimize potential spatial effects, 

treatments were set randomly within the incubator. Grain damage was taken at the end of the 

experimental period. All kernels were inspected with a hand-held magnifying glass and 

categorized as undamaged, insect-damaged (existent feeding holes), broken (mechanical damage 

or damage not caused by existing holes), or insect-damaged and broken. Developmental time was 

calculated as the number of days between parent adult removal and F1 progeny emergence 

determined. 

Percentage insect damaged grain =
𝑁𝑑

(𝑁𝑑 + 𝑁𝑢)
 𝑥 100 

 with Nd representing the number of insect damaged grains, and Nu representing the number of 

undamaged or non-insect damaged grains (Boxall, 1986).  

Statistical Analysis 

All statistical analyses were performed with R (version 4.4.1). Generalized linear mixed models 

with negative binomial distribution were used to estimate emergence success with treatment and 

sex as fixed and replicate as a random factor. Model fit was tested with residual diagnostics 

(DHARMa package), and the significance was tested with Type II Wald chi-square tests. 

Estimated marginal means (EMMs) were back-transformed for inference. For F1 emergence 

weight, a one-way ANOVA was conducted to test treatment effects, and Tukey's HSD to make 

pair-wise comparisons. Shapiro-Wilk and Kolmogorov-Smirnov tests were utilized to test 

normality; where there was violated normality, non-parametric tests such as Kruskal-Wallis and 

Wilcoxon rank-sum were conducted. Chi-square tests were used to test differences in sex ratios 

between treatments. Development time was fitted with a linear model, and comparisons between 
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male and female weevils were made with Mann-Whitney U tests. The Shapiro-Wilk test revealed 

that the percentage damage data was not normally distributed (W = 0.9042, p < 0.001).   

Results 

A total of 165 F1 emergence events were assessed in the three-moisture treatments: 10% (n = 9), 

18% (n = 69), and 20% (n = 87). The sex ratio showed that at 10% t females66.7%; males 33.3% 

at 18%, females: 43.5%; males 56.5% at 20%, females: and 49.4%; males 50.6 at moisture content 

(Figure 3.2a). Chi-square tests revealed no statistical difference in sex ratios between treatments 

(p = 0.317, p = 0.279, p = 0.915), which implies that the relative number of males and females was 

not affected by the moisture content. 

 

Figure 3.2a: Impact of Moisture Content on Sex Ratio in Sitophilus zeamais F1 Progeny 

Emergence 

The highest emergence occurred at 20% moisture, but it was more consistent at 18%, with more 

pronounced peaks at 20% (Figure 3.2b and 3.2c). A generalized linear mixed model (GLMM) 

demonstrated a significant impact of moisture on emergence (χ² = 12.45, df = 2, p = 0.002), 

while sex (χ² = 0.78, df = 1, p = 0.377) and the interaction between treatment and sex (χ² = 1.12, 

df = 2, p = 0.571) showed no significant effects. The most consistent emergence was observed at 

18% moisture (mean = 42.7, SE = 3.2), followed by 20% (mean = 36.5, SE = 2.8), and lastly at 
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10% (mean = 21.3, SE = 2.1). Overall, emergence was faster and higher in the highest moisture 

content grain (Figure 3.2c). 

 

Figure 3.2b: Effect of Moisture Content on Sitophilus zeamais F1 Emergence Patterns 

 

 

Figure 3.2c: Cumulative Sitophilus zeamais F1 Emergence Over Time Across Moisture 

Treatments 

F1 emergence weight varied among treatments (Figure 3.2d). F1 progeny at 10% moisture 

averaged 0.00323 g (SD = 0.000408), at 18% moisture averaged 0.00318 g (SD = 0.000428), and 
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at 20% moisture averaged 0.00336 g (SD = 0.000358). ANOVA showed a significant effect of 

moisture on larval weight (F(2,162) = 4.457, p = 0.0131), with post-hoc Tukey’s HSD showing 

F1 at 20% moisture was significantly heavier than those at 18% moisture (p = 0.00998), but no 

significant difference was found between 10% and 18% or 10% and 20%. 

 

Figure 3.2d: Distribution of Sitophilus zeamais F1 Emergent Body Weight Across Treatments. 

Development time significantly differed with moisture treatments (χ² = 9.83, df = 2, p = 0.007), 

with larvae at 18% (mean = 32.5 days, SE = 1.8) and 20% moisture content (mean = 34.1 days, 

SE = 2.0) developing faster than those at 10% (mean = 39.8 days, SE = 2.4) (Figure 3.2c). 

When male and female development time was compared within each treatment, there were no 

statistical differences (χ² = 0.56, df = 1, p = 0.452). However, females appeared to develop slightly 

faster than males across all treatments (Figure 3.2e). At 10% moisture, males took 62.1 days on 

average to develop, while females took 57.7 days. Similarly, at 18% moisture, males developed in 

51.7 days, while females developed in 47.3 days. The trend was repeated at 20% moisture, with 

males requiring 46.9 days and females 42.5 days. Despite these differences, the sex-based variation 

in developmental time was not statistically significant. 
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Figure 3.2e: Developmental Time Across Treatment 

For percentage damage, the Kruskal-Wallis test revealed differences between treatments (χ² = 

19.72, p < 0.001). Post-hoc Dunn test revealed statistically significant differences between 

treatments 10 and 18 (p = 0.00598) and between treatments 10 and 20 (p < 0.0001) in percentage 

damage but no difference was found between treatments 18 and 20 (p = 0.6725). Corn kernel 

damage varied with moisture. The 10% moisture content treatment had the lowest mean damage 

(17.7% ± 8.62%), while treatments 18% moisture content (31.0% ± 16.0) and 20% moisture 

content (37.3% ± 19.6) showed significantly higher damage levels. Boxplots (Figure 3.2f) 

confirmed these trends, with treatment 10% moisture content consistently exhibiting lower 

damage. 
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Figure 3.2f: Boxplot showing Percentage Damage by Treatment 

Discussion 

This study identifies moisture content as a key factor in S. zeamais F1 emergence and development. 

Emergence was fastest and highest at 20% moisture content, followed by 18%, and was lowest at 

10% indicating that higher moisture supports larval development and adult emergence (Powell & 

Floyd, 1960). While emergence at 18% was evenly distributed, 20% showed more peaks.   

Moisture had minimal effect on the sex ratio, with females comprising 66.7% at 10%, 43.5% at 

18%, and 49.4% at 20%, supporting previous findings that environmental factors influence insect 

growth but not sex determination (Pittendrigh et al., 1997; Throne, 1994).  As S. zeamais sex ratios 

vary between generations (Dix & All, 1986), These results suggest moisture alone does not drive 

sex allocation. Further research is needed to explore potential physiological or behavioral 

influences. 

Moisture content significantly impacted S. zeamais F1 emergence success (p = 0.002), with 

maximum emergence being observed at 18% and 20%, and minimum at 10%. This finding affirms 
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the requirement of moisture for larval feeding, metabolism, and pupation, while desiccation stress 

induced by low moisture content (10%) suppresses development (Hagstrum & Milliken, 1988; 

Punzo & Mutchmor, 1980). Moisture acts in combination with temperature to influence insect 

growth, tending to act more at temperatures near optimum (Hagstrum & Milliken, 1988). The most 

stable rate of emergence was 18%, followed by 20% and 10% moisture content. The emergence 

at 18% moisture content was more uniformly distributed over time, but the overall emergence 

peaked at 20% moisture content. This could be because a more gradual emergence pattern is 

supported by a stable balance between moisture loss and availability. The more intense emergence 

at 20% moisture content, on the other hand, might be explained by rapid development brought on 

by high moisture levels at first, followed by decreased moisture availability. This supports the 

important role of moisture in the population biology of stored-product insects (Powell & Floyd, 

1960). Similar trends in thrips and beetles link emergence to moisture content (Holland et al., 2007; 

Juncá‐Morales et al., 2025). Sitophilus zeamais progeny emerged at higher rates from corn with 

12.3% moisture compared to 9.7%, particularly at 22°C and 29°C (Sedlacek et al., 1991),  

suggesting optimal development occurs within a moisture range. Moisture influences larval 

development to a greater degree than temperature, particularly at species' thermal optima 

(Hagstrum & Milliken, 1988), highlighting the need for further research on moisture variations in 

stored environments. 

Moisture content significantly impacted F1 progeny emergence weight with the highest mean 

weight observed at 20% moisture content, significantly higher than 18% (p = 0.01). No significant 

differences were found between 10% and 18% moisture content (p = 0.938) or between 10% and 

20% moisture content (p = 0.568). Greater moisture content likely supports growth by enhancing 

nutrient access utilization (Cammack & Tomberlin, 2017; Kröncke & Benning, 2022).  On the 
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other hand, to make up for water loss by generating metabolic water, insects typically consume 

more food in drier environments. Nevertheless, this increased consumption of food frequently 

results in slower development and smaller body size rather than faster growth  (Fraenkel & 

Blewett, 1944). The greater F1 weight observed at 20% moisture content confirms the role of 

moisture in optimizing digestion and growth, yet the absence of significant differences between 

10% and 20%  suggests other factors, such as texture of the grain or microbial interaction may also 

influence growth. Moisture influenced developmental time (p = 0.007) with 18% and 20% 

moisture content treatments developing faster than 10% treatments. Development was slowest at 

10% moisture content, likely due to difficulties in maintaining water balance, which could have 

influenced enzymatic activity and metabolism. For instance, insects display developmental 

plasticity in response to moisture changes (Barnes, 2021), with diet moisture influencing larval 

development, weight, and adult emergence, as seen in flies breeding on carrion (Bauer et al., 2020). 

This study showed moisture content to have significant effects on insect growth, with the level of 

moisture decreasing progressively across the experiment. Initial moisture content (20% and18%) 

declined to approximately 12% moisture content towards the end of the experiment, except for the 

10% moisture content treatment, which slightly increased to 11.5%. This decline likely caused 

desiccation stress, impacting growth and modifying emergence patterns. Future research should 

employ using desiccators with saturated salt solutions to ensure equilibrium grain moisture content 

stays stable ((Ellis & Hong, 2007). Low moisture enhances mortality and delays development, 

whereas ideal moisture enhances rapid growth (Hagstrum & Milliken, 1988; Nay & Perring, 2006). 

Although faster development and emergence were made possible by higher initial moisture, 

variation in emergence peaks was influenced by the decrease in kernel moisture. Although 

hygroscopic absorption is indicated by the slight increase in moisture at 10% treatment, the initial 
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moisture deficit was not sufficiently addressed because development was still delayed. Future 

research should determine the ideal peak moisture levels for insect development and examine how 

insects adjust to future moisture reductions. 

Males generally took longer to develop, consistent with findings that developmental time is often 

female-skewed due to reproductive effort  (Jarošík & Honek, 2007). Despite sexual size 

dimorphism (SSD) tending to associate with developmental time variation in the larva (Teder, 

2014), no interacting effect was apparent between sex and moisture content, suggesting that both 

sexes responded in like manner to change in moisture. Larger sample sizes and future studies are 

needed to substantiate these patterns. In turtles, Trachemys scripta elegans moisture during 

embryogenesis influences developmental rates, with cold and damp conditions delaying 

development (Sifuentes-Romero et al., 2018) and wetter substrates produced more males 

(Sifuentes-Romero et al., 2018). Similarly, a meta-analysis determined that substrate dampness 

significantly affects turtle sex ratios, but not for other squamates (Bell et al., 2025). 

While weight change of the corn was not explicitly tested for, we did observe that the 10% moisture 

content treatment, while having lower emergence, resulted in higher weight loss (0.462%) 

compared to the 20% (0.165%). This was likely due to longer developmental time (mean = 39.8 

days) which lengthened the feeding period and consequently the weight loss despite fewer numbers 

of emerging F1 progeny. Similar outcomes were observed for Bactrocera minax larvae, where low 

moisture extended development and feeding duration (Li et al., 2019). In contrast, 18% and 20% 

moisture treatments had higher F1 emergence rates but also higher damage (31.0% and 37.3%, 

respectively), consistent with studies relating higher emergence to increased kernel damage 

(Hamby & Zalom, 2013). The lower moisture content in the 10% treatment may have induced 

more intensified feeding activity, as observed in Manduca sexta (Van’t Hof & Martin, 1989). 
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These results show how significant a role moisture plays in insect development and damage, and 

that further research on environmental conditions such as temperature and humidity, as well as 

with other stored product insects, may optimize pest management in storage systems. Investigating 

the physiological mechanisms of weight loss and damage, particularly in relation to feeding and 

development, would offer valuable insights into S. zeamais ecophysiology. 

Conclusion 

Moisture content had a significant effect on S. zeamais emergence, weight, and development time, 

with optimal emergence and development at 18–20% moisture. Sex ratio was not influenced, 

however, which implies that moisture alone does not influence sex allocation. Low moisture 

content (10%) extended development time, perhaps due to physiological stress, with possible 

consequences for overall survival and pest dynamics. These findings stress the overriding role of 

moisture in the regulation of the behavior of storage-product pests, particularly for growth, 

emergence, and survival. 
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