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Chapter 1

Introduction

Incidence structures are important objects of study in combinatorics. For exam-

ple, in combinatorial geometry, one incidence structure that has been studied

concerns the number of incidences between points and lines in R2, which we

will de�ne rigorously in the next chapter. Regarding this problem, Erdős and

Purdy [8] conjectured that for any positive integers m and n, the number of

incidences between a point set P with n points and a line set L of size m is

O(m3/2n3/2 +m+n). This was proven by Szemerédi and Trotter in 1983 [12].

In 1997, Széleky [11] gave a more elegant proof, which we present in Chapter

2. While incidence problems are natural combinatorial problems and are in-

teresting to study in their own right, the results and techniques used to study

them can also be used to tackle a number of seemingly unrelated problems. Two

such problems are the unit distances problem and the distinct distances problem.

These two related problems were introduced in a 1946 paper of Erdős [7]. Both

problems start with a set ofn points in a plane. The unit distances problem asks

for an upper bound on the number of pairs of points that could be a unit dis-

tance from each other. The distinct distances problem, on the other hand, asks

for a lower bound on the number of distinct distances that can be determined
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by the points. The techniques developed in Chapter 2 are useful in studying

both of these problems. More surprising is the application of incidence geome-

try to the sum-product problem. To state this problem, supposeA is a set with

n real numbers and de�ne

A+ A = {a+ b : a, b ∈ A}, and AA = {ab : a, b ∈ A}.

Erdős and Szemerédi [9] conjectured that for any ε > 0,

max {|A+ A|, |AA|} = Ωε(n
2−ε).

Using the ideas in Chapter 2, Elekes [4] was able to show that

max {|A+ A|, |AA|} = Ω(n5/4).

A natural generalization of point-line incidences is to study incidences in

higher dimensional space. Thus in Chapter 3, we will generalize the problem to

studying point-plane incidences in R3 and discuss some results by Elekes and

Tóth [6] and by Brass and Knauer [3]. Before we tackle these results, we begin

with some de�nitions and notation that will be used throughout the thesis.

1.1 Notation and De�nitions

LetP denote a set of points either in R2 or R3. Usually the context will make

clear whether we are considering a point set in R2 or R3; however, if there is

ambiguity, we will specify. LetL be a set of a lines inR2 andQ be a set of planes

inR3. GivenP andL in R2 orP andQ in R3, we can de�ne incidence.
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Figure 1.1: (a) Example of point-line incidences in R2 and (b) of point-plane
incidences in R3.

De�nition 1.1.1 (Incidence). An incidence is a pair (p, l) or (p,Q) where p ∈

P , l ∈ L, and Q ∈ Q such that the point p is contained in the line l or the

planeQ.

Incidences of the form (p, l) ∈ P ×L in R2 are called point-line incidences,

and incidences of the form (p,Q) ∈ P × Q in R3 are called point-plane inci-

dences. We will denote the number of incidences as I(P ,L) and I(P ,Q), re-

spectively. As an example of point-line incidences, letP = {p1, p2, p3, p4, p5}

and letL = {l1, l2, l3, l4, l5} inR2 as shown in Figure 1.1(a). This con�guration

of �ve lines and �ve points has 8 incidences, i.e., I(P ,L) = 8. In Figure 1.1(b),

we haveP = {x1, x2, x3, x4},Q = {q1, q2}, and I(P ,Q) = 7.

We remark here that there is dual incidence structure. Given a pair (p, l) or

(p,Q) rather than thinking of the point as lying on the line l or planeQ, we can

instead think of the line or plane as lying on the point p. This duality allows us

to interchange the point set and line set (or plane set).

We will use standard asymptotic notation throughout. Let f(n) and g(n)

be functions. We write f(n) = O(g(n)) if there are constants c and N such

that f(n) ≤ cg(n) whenever n ≥ N . If there are constants c and N such
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that f(n) ≥ cg(n) for any n ≥ N , then we say f(n) = Ω(g(n)). If f(n) =

O(g(n)) and f(n) = Ω(g(n)), then we’ll write f(n) = Θ(g(n)). Finally, we

say f(n) = o(g(n)) if f(n)/g(n)→ 0 as n→∞. We will on occasion write

f(n) = Oα(g(n)) by which we mean the constant depends on some parameter

α.

In order to look at some examples of asymptotic notation, let f(n) = 3n2+

n+5. We can write f(n) = O(n2) since 3n2+n+5 ≤ 3n2+n2+5n2 = 9n2

whenever n ≥ 1. Similarly, we can write f(n) = Ω(n2) since 3n2 + n+ 5 ≥

3n2 for all n ≥ 1. Because f(n) = O(n2) and f(n) = Ω(n2), then we can

write f(n) = Θ(n2). Now take g(n) = 3n + 4, then we have g(n) = o(n2)

since (3n+ 4)/n2 → 0 as n→∞.
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Chapter 2

Point-Line Incidences in

R2

The material in this section is based on Chapter 1 of She�er’s book [10]. Our

goal in this section will be to prove two theorems about point-line incidences

in R2. The �rst of these results is a theorem due to Szemerédi and Trotter [12].

To give a proof, we will �rst prove the Crossing Lemma which concerns vertex-

edge graphs. The second result in this chapter is due to Beck [2]. We will also

de�ne rich lines and rich points, which we will use to reformulate the theorems

of Szemerédi-Trotter and Beck, which will be used in Chapter 3.

2.1 The Crossing Lemma

Our goal in this section is to prove the Crossing Lemma for vertex-edge graphs.

To that end, we begin by stating some de�nitions and giving examples of graphs

before preceding to the proof of the lemma. Given a set V , which we call the

vertex set, we can de�ne a vertex-edge graph.
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Figure 2.1: (a) A graphH and (b) a drawing ofK3,3 with one crossing.

De�nition 2.1.1 (Vertex-Edge Graph). A vertex-edge graph,G, is an ordered

pair, G = (V,E) where V is a set of vertices called the vertex set, and E is a

collection of two-element subsets of V whose elements are called edges.

Unless stated otherwise, we will refer to a vertex-edge graph as a graph. At

times, we may write V (G) and E(G) to denote the vertex set and edge set

of G, respectively. The graph represented in �gure 2.1 (a) has vertex set V =

{a, b, c, d, e} and edge setE = {{a, b}, {a, e}, {b, c}, {b, e}, {c, d}, {d, e}},

and the graph represented in �gure 2.1 (b) has vertex set V = {1, 2, 3, 4, 5, 6},

and edge setE = {{1, 2}, {1, 4}, {1, 6}, {2, 3}, {2, 5}, {3, 4}, {3, 6}, {4, 5},

{5, 6}}. Having de�ned a graph, we can now de�ne statistics onG, which we

can study. Of particular interest is the crossing number, cr(G).

De�nition 2.1.2 (Crossing Number). The crossing number of a graphG =

(V,E), denoted cr(G), is the smallest non-negative integer k such thatG can

be drawn in the plane with k edge crossings.

In order to de�ne the next idea, we need to discuss some basic concepts in

graph theory. A pair of verticesu, v ∈ V are called connected if there exists a walk

from u to v. By a walk, we mean a sequence of edges which join a sequence of
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vertices. If every pair of vertices ofG are connected, then we sayG is a connected

graph. Finally, if a graph,G, has a crossing number of 0, i.e., cr(G) = 0, then

we sayG is planar, which meansG can be drawn in the plane without having

edges cross.

We now illustrate these terms using the two graphs in Figure 2.1. The vertex

pair (a, d) inH is connected since the sequence of edges ({a, b}, {b, c}, {c, d})

is a walk between vertex a and vertex b. Similarly, the vertex pair (1, 4) is con-

nected in K3,3 by the walk ({1, 4}). Moreover, all the vertices in H and K3,3

are connected, so these are examples of connected graphs. In terms of planarity,

we can see that Graph (a) is planar (and so it has crossing number 0) whileK3,3

does not appear to be. At �rst glance, one may think that it is possible to redraw

K3,3 to avoid a crossing; however, it is known that the crossing number ofK3,3

is 1, so any drawing ofK3,3 in the plane must contain at least 1 crossing.

If we consider a connected planar graph G with e edges and v vertices,

then the faces of a drawing ofG are the largest 2-dimensional regions that are

bounded by edges, including the outer region. For example, the graph in �g-

ure 2.1 (a) has two bounded and one unbounded region. If we let f denote the

number of faces ofG, then we can state Euler’s formula for a connected planar

graphG as

v + f = e+ 2. (2.1)

IfG is not connected, then we have v + f > e+ 2. Thus for a general planar

graph, we have v+f−2 ≥ e. Note that every edge ofG is the boundary of two

faces or both sides of the edge are the boundary of the same face. Additionally

if e ≥ 3, every face has a boundary consisting of at least 3 edges. Thus we have

2e ≥ 3f . Note that if G is the path graph on two or three vertices then the

unbounded face does not have at least 3 edges on the boundary; however, when
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G is the path graph on three vertices, the inequality is satis�ed. Plugging this

into the modi�ed version of equation 2.1, we can get an inequality that holds

for any planar graphG that is not the path graph on two vertices. Namely,

e ≤ v + f − 2 ≤ v +
2e

3
− 2

which we can rewrite using |E| = e and |V | = v as

|E| ≤ 3|V | − 6. (2.2)

With this inequality, we can give a lower bound on cr(G) as stated in the next

lemma.

Lemma 1. For any graphG = (V,E) that is not the path graph on two vertices,

we have cr(G) ≥ |E| − 3|V |+ 6.

Proof. Consider a drawing of graphG in the plane that minimizes the number

of crossings. Take E ′ ⊆ E to be a maximum subset of edges such that no

two edges ofE ′ intersect. This edge set determines a new graphG′ = (V,E ′)

which is planar by construction. Substituting this into equation 2.2, we have

that |E ′| ≤ 3|V | − 6. Additionally, by construction, every edge of (E \ E ′)

intersectsE ′ at least once and |E|−|E ′| ≥ |E|−3|V |+6. Therefore there are

at least |E| − 3|V |+ 6 crossings in the drawing. Since we drewG to minimize

the number of crossings, we can conclude cr(G) ≥ |E| − 3|V |+ 6.

Using this lemma and a probabilistic argument, we can now prove the Cross-

ing Lemma.

Lemma 2 (The Crossing Lemma). Let G = (V,E) be a graph with |E| ≥

4|V |. Then cr(G) = Ω(|E|3/|V |2).
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Proof. Consider a drawing ofGwith cr(G) crossings drawn such thatG does

not have any three edges crossing at the same point. Set p = 4|V |
|E| . By assump-

tion, 0 < p ≤ 1. Construct a subgraphG′ = (V ′, E ′) by removing each vertex

of V (and adjacent edges) with probability 1− p, and let c′ be the number of

crossings ofG that have both of their edges inE ′.

We denote the expectation of a random variable as E[·]. Since every vertex

of V remains in G′ with probability p, we have E[|V ′|] = p|V |. Since each

edge contains two vertices, any edge survives only if its endpoints survive. Thus

E[|E ′|] = p2|E|. Finally, each crossing remains if the two edges remain (and

thus the four endpoints) which means E[c′] = p4cr(G). (Note, here we’re

relying on the fact that G was drawn such that only two edges determine a

crossing). By lemma 1, we have c′− |E ′|+ 3|V ′| ≥ 6 forG′. So using linearity

of expectation, we have

E[c′ − |E ′|+ 3|V ′|] = p4cr(G)− p2|E|+ 3p|V |

=
44|V |4

|E|4
cr(G)− 42|V |2

|E|2
|E|+ 3

4|V |
|E|
|V |

=
44|V |4

|E|4
cr(G)− 4|V |2

|E|
.

Since this is the expected value, there must exist a graphG∗ = (V ∗, E∗) with

c∗ (the crossings fromG remaining inG∗) such that

c∗ − |E∗|+ 3|V ∗| ≤ E[c′ − |E ′|+ 3|V ′|] =
44|V |4

|E|4
cr(G)− 4|V |2

|E|
. (2.3)
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Combining Inequality 2.3 with the bound implied by lemma 1, we have

0 < 6 ≤ c∗ − |E∗|+ 3|V ∗| ≤ 44|V |4

|E|4
cr(G)− 4|V |2

|E|
.

Rearranging this inequality gives us the lower bound stated in the lemma.

Having proven the Crossing Lemma, we now turn our attention to a theo-

rem of Szemerédi and Trotter which gives us an upper bound on the number

of point-line incidences in R2.

2.2 Szemerédi-Trotter Theorem

Theorem 3 (Szemerédi-Trotter [12]). LetP be a set of n points, and letL be a

set ofm lines, both in R2. Then I(P ,L) = O(m2/3n2/3 +m+ n).

Proof. WriteL = {l1, l2, . . . , lm}, and let ni denote the number of points of

P that are on li and so I(P ,L) =
∑m

i=1 ni. Since we are interested in counting

the number of point-line incidences, we can discard any li for which ni = 0

since such a line does not contribute to I(P ,L). The main idea of this proof

is to enumerate I(P ,L) in two di�erent ways by creating an abstract graphG

from the given point-line con�guration and by considering the given point-line

con�guration as a drawing of the graph.

To constructG, we take the vertex set V to correspond to the points ofP .

To construct edges ofG, consider two vertices u, v ∈ V . We have {u, v} ∈ E

if the points in P corresponding to u and v are consecutive points (�xing a

direction) on one of the li ∈ L. See Figure 2.2 for an example. So each li

contributes exactly ni − 1 edges to E since if there are ni points, there are

ni− 1 consecutive pairs of points. Thus |V | = n and |E| =
∑m

i=1(ni− 1) =

I(P ,L)−m.
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Figure 2.2: (a) A point-line con�guration and (b) its corresponding graph.

If |E| < 4|V |, then I(P ,L)−m < 4n and so I(P ,L) < 4n+m. Thus

we have I(P ,L) = O(n + m). If |E| ≥ 4|V |, then we can apply Lemma 2,

and we get

cr(G) = Ω

(
|E|3

|V |2

)
= Ω

(
(I(P ,L)−m)3

n2

)
. (2.4)

Now we draw G according to the given point-line con�guration, i.e., every

vertex is at the corresponding point and every edge is the corresponding line

segment. (We may have to redraw edges ofG such that no three edges intersect

at the same point.) Thus V (G) corresponds to the points ofP andE(G) cor-

responds to the line segments between point, and every crossing in this drawing

of G corresponds to an intersection of two lines in L. Since every two lines

intersect at most once, we have cr(G) ≤
(
m
2

)
= 1/2(m2 −m) = O(m2) and

so cr(G) = O(m2). Combining this with 2.4, we have

Ω

(
(I(P ,L)−m)3

n2

)
= cr(G) = O(m2).

11



Solving for I(P ,L), we �nd I(P ,L) = O(m2/3n2/3 + m). Combining this

result with the result for when |E| < 4|V |, we get I(P ,L) = O(n2/3m2/3 +

n+m) as desired.

In fact, the bound given in Theorem 3 is tight. To see this, we present a

construction by Elekes [5]. When n = Ω(m2), we can take n points on a

single line and obtain n incidences. Similarly, if m = Ω(n2), we can take m

lines through a single point and obtain m incidences. So what remains is to

construct a con�guration with Θ(n2/3m2/3) incidences when n = O(m2) and

m = O(n2). Let r = (n2/4m)1/3 and s = (2m2/n)1/3 and for simplicity,

assume that these are integers. Set

P = { (i, j) : 1 ≤ i ≤ r and 1 ≤ j ≤ 2rs }

and

L = { y = ax+ b : 1 ≤ a ≤ s and 1 ≤ b ≤ rs }

as seen in Figure 2.3. Notice that we have |P| = n and |L| = m since

|P| = 2r2s = 2 ·
(
n2

4m

)2/3

·
(

2m2

n

)1/3

= n,

and

|L| = rs2 =

(
n2

4m

)1/3

·
(

2m2

n

)2/3

= m.

Now if we consider a line l ∈ L, for any x ∈ {1, . . . , r}, there exists a unique

y ∈ {1, . . . , 2rs} such that (x, y) and l are incident. This means that

I(P ,L) = r · |L| =
(
n2

4m

)1/3

·m = 2−
2/3n

2/3m
2/3.
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Figure 2.3: Elekes’s construction rotated by 90◦ with r = 3 and s = 2

Combining the various cases together, we have a construction that show the

upper bound on I(P ,L) given by Theorem 3 is sharp.

2.3 Rich Points

For the results in Chapter 3 on point-plane incidences, we will need a reformu-

lation of the two main theorems of this chapter (Szemerédi-Trotter and Beck)

in terms of rich points. In this section, we reformulate Theorem 3. After we

have proven Beck’s Theorem, we will state and prove a reformulation of that

theorem as well.

De�nition 2.3.1 (k-rich line/plane). Given a point setP ⊆ Rd and a positive

integer k, we say a line is ` is k-rich if |`∩P| ≥ k. Similarly, we say a planeQ is

k-rich if |Q ∩ P| ≥ k.

We can also talk about points being k-rich. In this context, a k-rich point

is one that is incident to at least k lines or k planes depending on if we are

discussing point-line incidences or point-plane incidences. For example in Fig-

ure 1.1, line l2 is 3-rich and plane q1 is 4-rich. We also note that in the same �gure,

point p5 is 3-rich and point x2 is 2-rich.
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We introduce some notation that will be helpful when discussing k-rich

lines. Let x ∈ P be a point and ` ∈ L be a line, then de�ne iP(`) = |P ∩ `|

to be the number of points in P incident to ` and iL(x) = |x ∩ L| to be the

number of lines inL incident to x. Additionally, we let

Lk = {` : iP(`) = k},

which is the collection of lines incident to exactly k points of P , and we can

denote the collection of lines incident to at least k points ofP by Lk which can

be written as the set {` : iP(`) ≥ k}. Using this notation we can write

Lk =
⋃
j≥k

Lj.

We note that Lk is precisely the set of k-rich lines.

We now restate Theorem 3 using this notion ofk-rich lines. Below, we show

that Theorem 3 implies Theorem 4; however, the converse is also true, and thus

the two theorems are equivalent.

Theorem 4 (Szemerédi-Trotter Reformulation). Let P be a set of n points in

R2 and let k be a positive integer. Then the number of k-rich lines,

|Lk| = O

(
n2

k3
+
n

k

)
.

In particular, it is possible to obtain

|Lk| ≤ 84

(
n2

k3
+
n

k

)
.

14



Proof. First note that since every line in Lk is incident to at least k points ofP ,

we have k|Lk| ≤ I(P ,Lk). By Theorem 3, we have the following inequality

k|Lk| ≤ I(P ,Lk) = O
(
n2/3|Lk|2/3 + n+ |Lk|

)
.

We now consider three cases.

Case 1: k|Lk| = O
(
n2/3|Lk|2/3

)
.

In this case, we have for some constant C1 that k|Lk| ≤ C1n
2/3|Lk|2/3

which we can rearrange and �nd that |Lk| ≤ C3
1n

2/k3 and thus |Lk| =

O(n2/k3).

Case 2: k|Lk| = O(n).

We can divide both sides by k, and we get |Lk| = O(n/k).

Case 3: k|Lk| = O(|Lk|).

This means that there is some positive constant C2 such that k|Lk| ≤

C2|Lk| and thus k ≤ C2. Additionally, we know |Lk| is bounded above by the

number of distinct lines which is at most n2. Hence,

|Lk| ≤ n2 = O

(
n2

C2

)
= O

(
n2

k3

)
.

The �nal remark in the theorem follows, since it is possible to take the con-

stant in Theorem 3 to be 84.

2.4 Beck’s Theorem

Our next theorem concerns the number of line determined by a set of points

in R2. We say that a set of pointsP determines a line ` if there are two distinct

points of P on `. It is natural to seek a lower bound on the number of lines

15



determined by a planar point set with n points. Let us consider some simple

examples. If all n points are collinear, then only one line is determined. If

instead n − 1 are collinear, then there are n lines determined. The situation

seems to change if no line contains more than n/2 points, in which case it is

challenging to �nd points sets that determine o(n2) lines.

Beck [2] proved an at-�rst-sight unexpected result which roughly states that

every point set either has a near maximum number of collinear points or deter-

mines a near maximum number of lines.

Theorem 5 (Beck). Any n ≥ 4 points on the plane either contain at least 2−16n

collinear points or determine at least 2−36n2 lines.

To prove this theorem, we’ll show that if no line contains 2−16n points,

then we have at least 2−36n2 lines that can be made using the n points. To

accomplish this, we seek to bound |L2| =
∑

k>1|Lk| from below.

Proof. Our main goal is to show that for an appropriate constant K (which

we’ll take to be 216) and assuming no line contains n/K points, that we have

∑
2K<k

k(k − 1)|Lk| ≤
n2

2
.

Begin by noticing that since two points uniquely determine a line, there are

|L2| lines that have exactly two point-line incidences, and if we’re counting

ordered pairs of points, we can weight this with 2(1). Similarly for three point-

line incidences, there are exactly |L3| lines with 3(2) ordered pairs of points.

Continuing in this, way we get n(n − 1) =
∑

k>1 k(k − 1)|Lk|. Now note
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that forK > 1,

∑
k>K

2k|Lk| =
∑
k>K

2k
(
|Lk|+ |Lk+1|+ · · ·

)
= 2(K + 1)

(
|LK+1|+ · · ·

)
+ 2(K + 2)

(
|LK+2|+ · · ·

)
= |LK+1|

[
2(K + 1)

]
+ |LK+2|

[
2(K + 1) + 2(K + 2)

]
+ · · ·

=
∑
k>K

(
k∑

j=K+1

2j

)
|Lk|. (2.5)

We can further simplify this to get rid of the double sum by noting that

k∑
j=K+1

2j = 2

(
k∑
j=1

j −
K∑
j=1

j

)
= 2

(
(k + 1)k

2
− (K + 1)K

2

)
= k2 + k −K2 −K.

Substituting this back into equation 2.5, we see that

∑
k>K

2k|Lk| =
∑
k>K

(k2 + k −K2 −K)|Lk|.

Bounding this from below, we get

∑
k>K

(k2 + k −K2 −K)|Lk| =
∑
k>K

[(k2 −K2) + (k −K)]|Lk|

≥
∑
k>K

(k2 −K2)|Lk|.
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We can take this sum over fewer elements (k > 2K), and under this assumption,

we have

∑
k>K

(k2 −K2)|Lk| ≥
∑
k>2K

(k2 −K2)|Lk| ≥
∑
k>2K

(k2 − (k/2)2)|Lk|

=
3

4

∑
k>2K

k2|Lk|

where we have used that if k > 2K , then k/2 > K and thus−K > −k/2.

Tracing the logic, we have found

∑
k>K

2k|Lk| ≥
3

4

∑
k>2K

k2|Lk|

which implies that

8

3

∑
k>K

k|Lk| ≥
∑
k>2K

k2|Lk| ≥
∑
k>2K

k(k − 1)|Lk|. (2.6)

Since we are looking for an upper bound, we continue bounding the left side

of equation 2.6 from above. We can do that as follows

8

3

∑
k>K

k|Lk| ≤ 4
∑
k>K

k|Lk| = 4

bn/Kc∑
k=K+1

k|Lk|

since 8/3 < 4 and k > K means that k ≥ K + 1 and by assumption, no line

is incident to at least n/K points. So |Lk| = 0 for k > n/K and thus do not

contribute to the sum.

Using Theorem 4, we have |Lk| ≤ 84

(
n2

k3
+
n

k

)
, and so

4

bn/Kc∑
k=K+1

k|Lk| ≤ 214

bn/Kc∑
k=K+1

k

(
n2

k3
+
n

k

)
= 214

bn/Kc∑
k=K+1

(
n2

k2
+ n

)
. (2.7)
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We’ll now bound this above by splitting the sum into two part and bounding

each part from above. First note,

bn/Kc∑
k=K+1

n2

k2
= n2

bn/Kc∑
k=K+1

1

k2
≤ n2

∫ ∞
K

1

x2
dx =

n2

K
.

Additionally, we have

bn/Kc∑
k=K+1

n = n
( n
K
− (K + 1) + 1

)
= n

( n
K
−K

)
≤ n2

K
.

Combining these together with Inequality 2.7, we see that

4

bn/Kc∑
k=K+1

k|Lk| ≤ 214

(
n2

K
+
n2

K

)
=

215n2

K
.

Tracing the work up to this step, we have shown that

∑
k>2K

k(k − 1)|Lk| ≤
215n2

K

or equivalently,

−
∑
k>2K

k(k − 1)|Lk| ≥ −
215n2

K
.

Now suppose that K = 216, then using the equality above in addition to

splitting a sum over k > 1 into two sums one with 1 < k ≤ 217 and the other
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with k > 217, we get

∑
1<k≤217

k(k − 1)|Lk| =
∑
k>1

k(k − 1)|Lk| −
∑
k>217

k(k − 1)|Lk|

≥ n2 − n− n2

2

=
n2

2
− n.

To complete the proof, we need one last observation

234
∑

1<k≤217
|Lk| =

∑
1<k≤217

217 · 217|Lk| ≥
∑

1<k≤217
k(k − 1)|Lk|.

Using this fact, we have for n ≥ 4

∑
k>1

|Lk| ≥
∑

1<k≤217
|Lk| ≥ 2−34

∑
1<k≤217

k(k − 1)|Lk|

≥ 2−34
(
n2

2
− n

)
≥ 2−36n2.

We now reformulate and prove Theorem 5 using the language of rich points.

As with the reformulation of Szemerédi-Trotter, we only prove one direction

of the implication; however, Theorem 5 and Theorem 6 are equivalent.

Theorem 6 (Beck Reformulation). Let P be a finite set with n ≥ 4 points in

R2. If no line ` ∈ L contains 2−17n points of P , then there are at least 2−19n

points of p that are (2−19n)-rich.

Proof. In the proof of Theorem 5 above, we showed that for n ≥ 4

∑
1<k≤217

k(k − 1)|Lk| ≥
n2

2
− n ≥ n2

4
.
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Since no line inL is incident to 2−17n points, we have by de�nition of Lk

I(P ,L) =
∑

1<k≤217
k|Lk|.

Because k ≤ 217, we know k − 1 ≤ 217 − 1. Using this observation with the

bound derived at the beginning, we get the following lower bound.

∑
1<k≤217

k|Lk| ≥
∑

1<k≤217

k(k − 1)

217 − 1
|Lk| =

1

217 − 1

∑
1<k≤217

k(k−1)|Lk| ≥
n2

219
.

We will now partition the point set into the points that are (2−19n)-rich and

those that are not. We’ll call the set of (2−19n)-rich points P1, and the other

set of pointsP2. Thus we’ve de�ned

P1 =
{
x ∈ P : iL(x) ≥ n

219

}

and

P2 =
{
x ∈ P : iL(x) <

n

219

}
.

SinceP1 andP2 are disjoint sets, we can write I(P ,L) = I(P1,L)+I(P2,L).

Our goal will be to put an upper bound on I(P2,L). We will then use this

bound to show that 2−19n2 ≤ I(P1,L) ≤ n|P1|. From this we get |P1| ≥

2−19n as desired.

To proceed, note that each point of P2 is incident to at most 219n points

and thus

I(P2,L) =
∑
x∈P2

iL(x) ≤ |P2|
n

219
≤ n2

219

21



sinceP2 ⊆ P and |P| = n. Now since I(P1,L) = I(P ,L)− I(P2,L), and

we have appropriate bounds on I(P ,L) and I(P2,L), we have

I(P1,L) ≥ n2

218
− n2

219
=
n2

219
.

Finally, since each point ofP1 is incident to at most n− 1 lines determined by

P , and so to at most n lines ofL, we have

n2

219
≤ I(P1,L) =

∑
x∈P1

iL(x) ≤ n|P1|.

22



Chapter 3

Point-Plane Incidences in

R3

In the previous chapter, we examined point-line incidences in R2. Using these

results, we will prove some results on point-plane incidences in R3. Following

Elekes and Tóth [6], we make the following de�nitions. Note Elekes and Tóth

proved results in a general d-dimension setting; however, since our focus is on

point-plane incidences in R3, we will take d = 3 and modify the de�nitions to

apply in this speci�c case.

3.1 Preliminaries

De�nition 3.1.1 (γ-saturated). Given a point setP , a planeQ inR3, andγ > 0.

We say thatQ is γ-saturated if the point setQ ∩ P spans at least γ · |Q ∩ P|2

distinct lines.

De�nition 3.1.2 (α-degenerate). Given a point set P , a plane Q in R3, and

α > 0. We say that Q is α-degenerate if Q ∩ P is non-empty and at most

α · |Q ∩ P| points ofQ ∩ P lie in a line.
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Theorem 7. (Erdős-Beck [2]) Let x and k be integers with 0 < x ≤ k. There

is an absolute constant c0 such that if P is a set of k points in the plane, at most

k − x of which are collinear, then P spans at least c0xk lines.

This theorem is similar to Theorem 6 and follows a similar proof. As a

special case of Theorem 7, we can take x = max(b(1− α)kc, 1), and thus for

α < 1, we have every α-degenerate plane is c0(1− α)-saturated.

De�nition 3.1.3 (w-strongly incident). Given a point setP ⊆ R3 and a plane

Q, a point p ∈ P ∩ Q is w-strongly incident to Q if Q contains at least w

points q1, q2, . . . , qw ∈ P \ {p} such that the lines pqi are all distinct for

i = 1, 2, . . . , w.

Lemma 8. For a point set P and a k-rich γ-saturated plane Q, at least γk/2

points are (γk/2)-strongly incident toQ.

Proof. Consider a γ-saturated planeQ. Trimming down, we can assume k =

|Q ∩P|. Since we are interested in points that are (γk/2)-strongly incident to

Q, each of these points must be on at least γk/2 lines. Thus we can delete all

points ofQ ∩ P that are incident to fewer than γk/2 lines spanned byQ ∩ P .

We deleted points from at most k(γ · k/2) = (γk2/2) lines spanned byQ∩P

since there are k points inQ ∩ P and each deleted point is incident to at most

γ · k/2 lines. Since Q is γ-saturated, we knowQ ∩ P spans at least γk2 lines,

and thus we have not deleted any point from at least γk2/2 lines. Therefore the

remaining points ofQ∩P still span γk2/2 distinct lines. Finally, because every

point is incident to at most k lines ofQ, there are at least (γk2/2)/k = γk/2

points which are (γk/2)-strongly incident toQ.

24



3.2 Elekes-Tóth Theorem

Theorem 9 (Elekes-Tóth [6]). For any α < 1 and for any set of n points in R3,

the number of k-rich α-degenerate planes is

Oα

(
n3

k4
+
n2

k2

)
.

The general idea of the proof is as follows, we would like to reduce the

question of point-plane incidences to a question about point-line incidences

which will allow us to use Theorem 4. To accomplish this we will choose a

plane and project points of P from a point with a lot of strong point-plane

incidences.

Proof. Recall that everyα-degenerate plane isγ-saturated whereγ = c0(1−α).

Let P be a set of n points, and let q denote the number of γ-saturated k-rich

planes. Applying Lemma 8 to each such plane S, we �nd γk/2 points that

are (γk/2)-strongly incident to S. Since this is true for each of the s planes,

we have at least sγk/2 strong point-plane incidences. Additionally, since we

have n points, we must have at least one point, p1, with the property that p1 is

(γk/2)-strongly incident to at least sγk/(2n) planes.

Now choose π to be a plane not incident to p1. We project every point ofP

from p1 to π (see Figure 3.1). The imageP ′ of this projection contains at most

n− 1 distinct points. Because this mapping projects planes to lines,P ′ has the

property that there are sγk/(2n) distinct lines, each containing at least γk/2

distinct points ofP ′.
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p1

x1

x′1

x2

x′2

x3

x′3

π

S

Figure 3.1: An example of the projection from the point p1 on S to the plane π.

By Theorem 4, we have

sγk

2n
= O

(
n2

(γk/2)3
+

n

γk/2

)
.

Solving for s, we get that

s = Oγ

(
n3

k4
+
n2

k2

)
= Oα

(
n3

k4
+
n2

k2

)
.

We now give a construction of Elekes-Tóth and show that the bound given

above is tight. For this construction, assume k is even and n is an integer multi-

ple of 2k. We will give two constructions which depend on whether k ≤
√
n

or k ≥
√
n.

For k ≤
√
n, letP be the k

2
× 2× n

k
grid

P =

{
(x, y, z) ∈ Z3 : 1 ≤ x ≤ k

2
, 1 ≤ y ≤ 2, 1 ≤ z ≤ n

k

}
.
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If we focus on the two planes y = 1 and y = 2, we notice that in either plane,

every line

z = mix+ bi where 1 ≤ mi ≤
n

k2
, 1 ≤ bi ≤

n

2k
,

passes through the points whose x-coordinate ranges over 1, 2, . . . , k/2. Thus

each plane contains many (k/2)-rich lines. If we choose a line from each plane

such that the two lines are parallel, i.e.,

{y = 1, z = mix+ bi} and {y = 2, z = mix+ bj}, (3.1)

then we can de�ne a plane π which contains these two lines. We take the plane

setQ to be the collection of all such planes π. Note that π intersects P in k

points and is 1/2-degenerate (see Figure 3.2). Since we get a plane π for each

triple (mi, bi, bj), the number of distinct planes is

n

k2
· n

2k
· n

2k
=

n3

4k4
.

For k ≥
√
n, we use the same point setP de�ned above; however, in this

case, we consider two horizontal lines

{y = 1, z = hi} and {y = 2, z = hj} (3.2)

where hi, hj ∈ {1, . . . , n/k}. In this case we can de�ne a plane π as the plane

containing these two horizontal lines (see Figure 3.3). There are (n/k)2 =

n2/k2 such planes (one for each pair of hi and hj). Furthermore, each of these

planes is 1/2-degenerate since each horizontal line passes through k/2 points
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y = 1 y = 2

π

Figure 3.2: An example of such a plane π satisfying equation 3.1.

of P and thus the planes determined by two lines pass through k points. We

take the plane setQ to be the set of all planes de�ned in this way.

Combining the two cases together, we have the bound given in Theorem 9

is sharp.

3.3 Brass-Knauer Theorem

In the previous section, we saw an upper bound on the number of point-plane

incidences for arbitrary points sets. In this section, we show a lower bound by

constructing an in�nite family of (P ,Q) that have "many" incidences. The

usage of "many" will be clari�ed below. We begin with a de�nition that will be

used in the proof of the main theorem in this section.
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y = 1 y = 2

π

Figure 3.3: An example of such a plane π satisfying equation 3.2.

De�nition 3.3.1 (Primitive vector). We say a point (x, y, z) in Z3 is primitive

ifx, y, and z have no common factors. We de�ne a primitive vector as the vector

between the origin and a primitive point.

Additionally, in order to state the main theorem, we de�ne incidence graph

in the context of point-plane incidences.

De�nition 3.3.2 (Incidence graph). An incidence graph is a bipartite graph

where the vertex set is the disjoint union of a plane setQ and a point setP and

the edge (Q, p) is included in the edge set ifQ ∈ Q, p ∈ P , and p ∈ Q.

Theorem 10 (Brass-Knauer [3]). For infinitely many m,n, there is a set of n

points andm planes in R3 such that there are Ω((nm)7/10) incidences and the

incidence graph does not contain aK3,2.

Proof. We begin by constructing our point set X and a vector set Y . We will

use these to de�ne the set of planesQ as those that have normal vectors in Y
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and contain at least one point ofX and then argue that this point and plane set

has Ω((nm)7/10) incidences using a theorem of Bárány et al. [1].

Let X = {1, . . . , ν}3. We’ll choose Y from the primitive vectors of a

3-dimensional lattice cube {1, . . . , µ}3 such that every 2-dimensional linear

subspace contains at most 2 vectors of Y . We’ll takeQ to be the set of all planes

that have normal vectors from Y and contain at least one point ofX .

There are at most 3µν distinct planes for each vector in Y since the inner

product of a point fromX and a vector from Y is at most 3µν. Thus there are

|X| points and at most 3µν|Y | planes. There are |X||Y | incidences since given

x0 ∈ X and y0 ∈ Y there is a unique plane determined by x · y0 = x0 · yo.

If x, x0 ∈ X lie on the same plane with normal vector y0, then the generated

plane will be the same, but we get a new incidence.

Under this construction the incidence graph does not contain aK3,2 since

any three planes with non-empty intersection must have three distinct normal

vectors from Y . These normal vector span a space of dimension at least 3 by the

way Y was chosen, so the intersection is an a�ne space of dimension at most 0,

a point.

To get the desired bound, we need to know the maximum number of prim-

itive vector from {1, . . . , µ}3 such that any 2-dimensional linear subspace con-

tains at most two vectors. We will denote this quantity f lin(µ, 3, 2, 3). Note

this determines the (maximum) size of Y . Clearly, |X| = ν3 as there are no

restrictions on howX was chosen.

Bárány and colleagues found that f lin(µ, 3, 2, 3) = Θ(µ3/2) and thus we

have C1µ
3/2 ≤ |Y | ≤ C2µ

3/2 for some constants C1 and C2. By removing

points, we may assume |X| = C1µ
3/2. Since we know I(X,Q) = |X||Y |, we

can substitute and write I(X,Q) = C1ν
3µ3/2. We would like to relate this
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bound back to |Q|. Using the bounds constructed above as well as the upper

bound implied by Bárány et al., we get

|Q| ≤ 3µν|Y | = 3C1νµ
5/2.

We can rearrange this to get a lower bound on µ3/2

µ3/2 ≥ |Q|3/5

(3C1)3/5ν3/5
.

Substituting this back into the expression for I(X,Q), we �nd

I(X,Q) = C1ν
3µ3/2 ≥ C1ν

3

(3C1)3/5ν3/5
|Q|3/5.

Simplifying and using that ν12/5 = ν3(4/5) = |X|4/5 we get

I(X,Q) ≥ K|X|4/5|Q|3/5

for a constantK .

To �nish, let |X| = n and |Q| = m. We consider two cases, when n ≥ m

and n < m. In the �rst case, we have

I(X,Q) ≥ Kn7/10n1/10m6/10 ≥ Kn7/10m1/10m6/10 = K(nm)7/10.

In the second case, we can repeat the arguments above using the dual construc-

tion, which would give us I(X,Q) ≥ K ′m4/5n3/5 and for a similar reason

as case one, this implies I(X,Q) ≥ K ′(mn)7/10. Thus we can conclude

I(X,Q) = Ω((nm)7/10).
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