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CHAPTER I

INTRODUCTION

Incidence structures are important objects of study in combinatorics. For exam-
ple, in combinatorial geometry, one incidence structure that has been studied
concerns the number of incidences between points and lines in R?, which we
will define rigorously in the next chapter. Regarding this problem, Erd8s and
Purdy [8] conjectured that for any positive integers m and 7, the number of
incidences between a point set P with n points and a line set £ of size m is
O(m?3n?? 4+ m + n). This was proven by Szemerédi and Trotter in 1983 [rz].
In 1997, Széleky [11] gave a more elegant proof, which we present in Chapter
2. While incidence problems are natural combinatorial problems and are in-
teresting to study in their own right, the results and techniques used to study
them can also be used to tackle a number of seemingly unrelated problems. Two
such problems are the unit distances problem and the distinct distances problem.
These two related problems were introduced in a 1946 paper of Erdds [7]. Both
problems start with a set of n points in a plane. The unit distances problem asks
for an upper bound on the number of pairs of points that could be a unit dis-
tance from each other. The distinct distances problem, on the other hand, asks

for a lower bound on the number of distinct distances that can be determined



by the points. The techniques developed in Chapter 2 are useful in studying
both of these problems. More surprising is the application of incidence geome-
try to the sum-product problem. To state this problem, suppose A is a set with

n real numbers and define

A+A={a+b:abe A} and AA={ab:a,be A}.

Erd8s and Szemerédi [9]] conjectured that for any € > 0,

max {|A + A|, |AA|} = Q.(n*7°).

Using the ideas in Chapter 2, Elekes [4] was able to show that

max {|A + A|, |[AA|} = Q(n®/*).

A natural generalization of point-line incidences is to study incidences in
higher dimensional space. Thus in Chapter 3, we will generalize the problem to
studying point-plane incidences in R? and discuss some results by Elekes and
Téth [6] and by Brass and Knauer [3]. Before we tackle these results, we begin

with some definitions and notation that will be used throughout the thesis.

1.1 Notation and Definitions

Let P denote a set of points either in R? or R3. Usually the context will make
clear whether we are considering a point set in R? or R?; however, if there is
ambiguity, we will specify. Let £ be aset of alines in R? and Q be a set of planes

in R3. Given P and £ in R? or P and Q in R3, we can define incidence.



q1

Figure 1.1: (a) Example of point-line incidences in R? and (b) of point-plane
incidences in R3.

Definition 1.1 (Incidence). An incidence is a pair (p, [) or (p, Q)) wherep €

P,l € L,and ) € Q such that the point p is contained in the line [ or the

plane Q.

Incidences of the form (p, 1) € P x L in R? are called point-line incidences,
and incidences of the form (p, Q) € P x Q in R are called point-plane inci-
dences. We will denote the number of incidences as [ (P, £) and I (P, Q), re-
spectively. As an example of point-line incidences, let P = {p1, p2, p3, P14, D5}
andlet £ = {ly, 1y, 13,14, l5} in R* as shown in Figurea). This configuration
of five lines and five points has 8 incidences, i.e., I (P, £) = 8. In Figure b),
we have P = {x, 29, 23,24}, Q = {q1, 2}, and I (P, Q) = 7.

We remark here that there is dual incidence structure. Given a pair (p, {) or
(p, @) rather than thinking of the point as lying on the line [ or plane (), we can
instead think of the line or plane as lying on the point p. This duality allows us
to interchange the point set and line set (or plane set).

We will use standard asymptotic notation throughout. Let f(n) and g(n)
be functions. We write f(n) = O(g(n)) if there are constants ¢ and N such

that f(n) < cg(n) whenever n > N. If there are constants ¢ and N such



that f(n) > cg(n) foranyn > N, then we say f(n) = Q(g(n)). If f(n) =
O(g(n)) and f(n) = Q(g(n)), then we'll write f(n) = O(g(n)). Finally, we
say f(n) = o(g(n))if f(n)/g(n) — 0asn — oco. We will on occasion write
f(n) = O,(g(n)) by which we mean the constant depends on some parameter
a.

In order to look at some examples of asymptotic notation, let f(n) = 3n*+
n+5. We can write f(n) = O(n?)since 3n*+n+5 < 3n?+n?+5n? = 9n?
whenever n > 1. Similarly, we can write f(n) = Q(n?) since 3n* + n +5 >
3n? foralln > 1. Because f(n) = O(n?) and f(n) = Q(n?), then we can
write f(n) = ©(n?). Now take g(n) = 3n + 4, then we have g(n) = o(n?)

since (3n +4)/n? — 0asn — co.



CHAPTER 2

PoINT-LINEINCIDENCES IN

RQ

The material in this section is based on Chapter 1 of Shefter’s book [ro]. Our
goal in this section will be to prove two theorems about point-line incidences
in R2. The first of these results is a theorem due to Szemerédi and Trotter [1z].
To give a proof, we will first prove the Crossing Lemma which concerns vertex-
edge graphs. The second result in this chapter is due to Beck [z]. We will also
define rich lines and rich points, which we will use to reformulate the theorems

of Szemerédi-Trotter and Beck, which will be used in Chapter 3.

2.1 The Crossing Lemma

Our goal in this section is to prove the Crossing Lemma for vertex-edge graphs.
To that end, we begin by stating some definitions and giving examples of graphs
before preceding to the proof of the lemma. Given a set V, which we call the

vertex set, we can define a vertex-edge graph.



(a) (b)
Figure 2.1: (a) A graph H and (b) a drawing of K3 3 with one crossing.

Definition 2.1.x (Vertex-Edge Graph). A vertex-edge graph, G, is an ordered
pair, G = (V, E) where V is a set of vertices called the vertex set, and E'is a

collection of two-element subsets of I whose elements are called edges.

Unless stated otherwise, we will refer to a vertex-edge graph as a graph. At
times, we may write V (G) and E(G) to denote the vertex set and edge set
of G, respectively. The graph represented in figure2.1|(a) has vertex set V' =
{a,b,c,d, e} andedgeset E = {{a, b}, {a, e}, {b,c}, {b, e}, {c,d},{d, e}},
and the graph represented in figureo.1|(b) has vertex set V' = {1, 2, 3,4, 5, 6},
andedgeset B = {{1,2},{1,4},{1,6},{2,3},{2,5},{3,4},{3,6}, {4, 5},
{5,6}}. Having defined a graph, we can now define statistics on G, which we

can study. Of particular interest is the crossing number, cr(G).

Definition 2.1.2 (Crossing Number). The crossing number of a graph G =
(V. E), denoted cr(G), is the smallest non-negative integer k such that G can

be drawn in the plane with & edge crossings.

In order to define the next idea, we need to discuss some basic concepts in
graph theory. A pair of verticesu, v € V are called connected if there exists a walk

from u to v. By a walk, we mean a sequence of edges which join a sequence of
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vertices. If every pair of vertices of G are connected, then we say G is a connected
graph. Finally, if a graph, G, has a crossing number of 0, i.e., cr(G) = 0, then
we say G is planar, which means G can be drawn in the plane without having
edges cross.

We now illustrate these terms using the two graphs in Figureo.1l The vertex
pair (a, d) in H is connected since the sequence of edges ({a, b}, {b, ¢}, {c, d})
is a walk between vertex a and vertex b. Similarly, the vertex pair (1,4) is con-
nected in K3 3 by the walk ({1,4}). Moreover, all the vertices in H and K33 3
are connected, so these are examples of connected graphs. In terms of planarity,
we can see that Graph (a) is planar (and so it has crossing number 0) while K5 3
does not appear to be. At first glance, one may think that it is possible to redraw
K3 5 to avoid a crossing; however, it is known that the crossing number of K3 3
is 1, so any drawing of K3 3 in the plane must contain at least 1 crossing.

If we consider a connected planar graph GG with e edges and v vertices,
then the faces of a drawing of G are the largest 2-dimensional regions that are
bounded by edges, including the outer region. For example, the graph in fig-
ure(a) has two bounded and one unbounded region. If we let f denote the
number of faces of G, then we can state Euler’s formula for a connected planar
graph G as

v+ f=e+2. (2.1)

If G is not connected, then we have v + f > e + 2. Thus for a general planar
graph, we have v + f —2 > e. Note thatevery edge of G is the boundary of two
faces or both sides of the edge are the boundary of the same face. Additionally
if e > 3, every face has a boundary consisting of at least 3 edges. Thus we have
2e > 3f. Note that if G is the path graph on two or three vertices then the

unbounded face does not have at least 3 edges on the boundary; however, when



G is the path graph on three vertices, the inequality is satisfied. Plugging this
into the modified version of equation we can get an inequality that holds

for any planar graph G that is not the path graph on two vertices. Namely,
e§v+f—2§v—|—23—e—2
which we can rewrite using |[E| = eand |V| = v as
|E| < 3|V| —6. (2.2)

With this inequality, we can give a lower bound on cr(G) as stated in the next

lemma.

Lemma 1. Forany graph G = (V, E) that is not the path graph on two vertices,
we have cr(G) > |E| — 3|V| + 6.

Proof. Consider a drawing of graph G in the plane that minimizes the number
of crossings. Take £' C E to be a maximum subset of edges such that no
two edges of £ intersect. This edge set determines a new graph G' = (V, E')
which is planar by construction. Substituting this into equation 2.2} we have
that |[E'| < 3|V| — 6. Additionally, by construction, every edge of (£ \ E’)
intersects F’ atleastonce and | E| — |E'| > |E|—3|V|+ 6. Therefore there are
atleast | E| — 3|V| 4 6 crossings in the drawing. Since we drew G to minimize

the number of crossings, we can conclude cr(G) > |E| — 3|V| + 6. O

Using this lemma and a probabilistic argument, we can now prove the Cross-

ing Lemma.

Lemma 2 (The Crossing Lemma). Ler G = (V, E) be a graph with |E| >
AV Then cr(G) = Q| EPP/|V?).



Proof. Consider a drawing of G with cr(G) crossings drawn such that G does
not have any three edges crossing at the same point. Setp = %. By assump-
tion, 0 < p < 1. Constructasubgraph G’ = (V’, E') by removing each vertex
of V' (and adjacent edges) with probability 1 — p, and let ¢’ be the number of
crossings of G that have both of their edges in £'.

We denote the expectation of a random variable as [E[-]. Since every vertex
of V remains in G’ with probability p, we have E[|V’|] = p|V|. Since each
edge contains two vertices, any edge survives only if its endpoints survive. Thus
E[|E’|] = p*|E|. Finally, each crossing remains if the two edges remain (and
thus the four endpoints) which means E[¢'] = pcr(G). (Note, here we’re
relying on the fact that G was drawn such that only two edges determine a

crossing). By lemmalt, we have ¢’ — | E’| 4- 3|V’| > 6 for G'. So using linearity

of expectation, we have

E[¢' — |E'| + 3[V'|] = pex(G) — | B| + 3p|V]

vt £\ v 4V
=2 ) - 2 N e+ 35y
E]* |E? E|
vt AV
- a(G) — L
E]* |E|

Since this is the expected value, there must exist a graph G* = (V*, E*) with

c* (the crossings from GG remaining in G*) such that

44V |4 4|V |2
¢ — 1B + 3| <El¢ — |B] + 3] = TV ey - AVE

= TEp cr(G) B (23)



Combining Inequalitywith the bound implied by lemma we have

44“/’4
|E]*

AP
Bl

0<6<c —|E|+3[V < t(G)

Rearranging this inequality gives us the lower bound stated in the lemma. [

Having proven the Crossing Lemma, we now turn our attention to a theo-
rem of Szemerédi and Trotter which gives us an upper bound on the number

of point-line incidences in R2.

2.2 Szemerédi-Trotter Theorem

Theorem 3 (Szemerédi-Trotter [12]). Let P be a set of i points, and let L be a

set of m lines, both in R2. Then (P, L) = O(m?**n?3 + m + n).

Proof. Write L = {ly,l2,...,l;,},and let n; denote the number of points of
P thatareonl;andso I (P, L) = " | n;. Since we are interested in counting
the number of point-line incidences, we can discard any [; for which n, = 0
since such a line does not contribute to (P, £). The main idea of this proof
is to enumerate I (P, £) in two different ways by creating an abstract graph G
from the given point-line configuration and by considering the given point-line
configuration as a drawing of the graph.

To construct G, we take the vertex set V' to correspond to the points of P.
To construct edges of G, consider two vertices u, v € V. We have {u, v} € E
if the points in P corresponding to w and v are consecutive points (fixing a
direction) on one of the [; € L. See Figure |2.2{for an example. So each [;
contributes exactly n; — 1 edges to F since if there are n; points, there are
n; — 1 consecutive pairs of points. Thus [V| = nand |E| = > 7" (n; — 1) =

I(P,L) —m.

10
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Figure 2.2: (a) A point-line configuration and (b) its corresponding graph.

If|E| < 4|V|,then I(P,L) —m < 4nandso I(P, L) < 4n+m. Thus
we have I(P, L) = O(n + m). If |E| > 4|V|, then we can apply Lemmal}

and we get

a(G) = Q (%) o) ((I(P’ £) = m)3) . (2.4)

n2

Now we draw G according to the given point-line configuration, i.e., every
vertex is at the corresponding point and every edge is the corresponding line
segment. (We may have to redraw edges of G such that no three edges intersect
at the same point.) Thus V' (G) corresponds to the points of P and E(G) cor-
responds to the line segments between point, and every crossing in this drawing
of G corresponds to an intersection of two lines in L. Since every two lines
intersect at most once, we have cr(G) < (3) = /2(m* — m) = O(m?) and

2

so cr(G) = O(m?). Combining this With we have

Q <(I(P,i)2— m>3> _ () = O(m?).

II



Solving for I(P, L), we find I(P, L) = O(m**n** + m). Combining this
result with the result for when |E| < 4|V|, we get I(P, L) = O(n**m*® +

n + m) as desired. O

In fact, the bound given in Theorem f3)is tight. To see this, we present a
construction by Elekes [5]. When n = (m?), we can take n points on a
single line and obtain n incidences. Similarly, if m = Q(n?), we can take m
lines through a single point and obtain m incidences. So what remains is to
construct a configuration with ©(n**m*?) incidences when n = O(m?) and
m = O(n?). Letr = (n%/4m)"” and s = (2m?/n)"”* and for simplicity,

assume that these are integers. Set
P={(ij) : 1<i<r and 1<j<2rs}

and

L={y=ar+b:1<a<s and 1<b<rs}

as seen in Figure Notice that we have |P| = nand |£| = m since

2 1
|P|:2T2S:2' n_2 /3. 2_7712 /3:71,
4m n

2\ /3 2\ %/3
2
,£|:rsz:(n_> <£) .
4dm n

Now if we consideraline ! € L, forany x € {1, ..., 7}, there exists a unique

and

y € {1,...,2rs} such that (z,y) and [ are incident. This means that

2

1/3
I(P,L)=r-|C| = <4n_) cm = 27,
m

12



Figure 2.3: Elekes’s construction rotated by 90° with r = 3and s = 2

Combining the various cases together, we have a construction that show the

upper bound on (P, L) given by Theorem[j|is sharp.

2.3 Rich Points

For the results in Chapter 3 on point-plane incidences, we will need a reformu-
lation of the two main theorems of this chapter (Szemerédi-Trotter and Beck)
in terms of rich points. In this section, we reformulate Theorem 3} After we
have proven Beck’s Theorem, we will state and prove a reformulation of that

theorem as well.

Definition 2.3.1 (k-rich line/plane). Given a point set P C R? and a positive
integer k, we say aline is £ is k-rich if |{ NP| > k. Similarly, we say a plane Q) is
k-richif |Q NP| > k.

We can also talk about points being k-rich. In this context, a k-rich point
is one that is incident to at least k lines or k planes depending on if we are
discussing point-line incidences or point-plane incidences. For example in Fig-
ure line [y is 3-rich and plane ¢, is 4-rich. We also note thatin the same figure,

point ps is 3-rich and point x5 is 2-rich.

3



We introduce some notation that will be helpful when discussing k-rich
lines. Let x € P be a pointand ¢ € L be a line, then define ip(¢) = [P N /|
to be the number of points in P incident to £ and iz (z) = |z N L] to be the

number of lines in £ incident to . Additionally, we let
L= {£:ip() = k),

which is the collection of lines incident to exactly & points of P, and we can
denote the collection of lines incident to at least & points of P by IL;, which can

be written as the set {¢ : ip(¢) > k}. Using this notation we can write

Ly = J L;.

Jjzk

We note that Ly, is precisely the set of k-rich lines.
We now restate Theoremusing this notion of k-rich lines. Below, we show
that Theoremimplies Theorem however, the converse is also true, and thus

the two theorems are equivalent.

Theorem 4 (Szemerédi-Trotter Reformulation). Let P be a set of n points in

R2 and let k be a positive integer. Then the number of k-rich lines,

TL2 n

In particular, it is possible to obtain

2
(N n
Lyl <8 (ﬁ—i_E)

14



Proof. First note that since every line in I, is incident to at least £ points of P,

we have k[Ly| < I(P,Ly). By Theorem[} we have the following inequality
k|Ly| < I(P,Ly) = O (n*/*|Li|*® + n + Ly -

We now consider three cases.

Caser: k|Li| = O (n?/[Ly|*/?).

In this case, we have for some constant C that k|L,| < Cyn?/3|L,|*/?
which we can rearrange and find that |L;| < C?n?/k® and thus |L;| =
O(n?/k3).

Case 2: k|Ly| = O(n).

We can divide both sides by k, and we get |Ly| = O(n/k).

Case 3: k|Ly| = O(|Lg|).

This means that there is some positive constant C such that k|Ly| <
(5| L] and thus & < C5. Additionally, we know |LLy | is bounded above by the

number of distinct lines which is at most n?. Hence,

2 2
L,| < 2:0(”-):0(”-).
Lol < m C e

The final remark in the theorem follows, since it is possible to take the con-

stant in Theorem 3] to be 8. [

2.4 Beck’s Theorem

Our next theorem concerns the number of line determined by a set of points
in R%. We say that a set of points P determines aline € if there are two distinct

points of P on £. It is natural to seek a lower bound on the number of lines

15



determined by a planar point set with n points. Let us consider some simple
examples. If all n points are collinear, then only one line is determined. If
instead n — 1 are collinear, then there are n lines determined. The situation
seems to change if no line contains more than n/2 points, in which case it is
challenging to find points sets that determine o(n?) lines.

Beck [z] proved an at-first-sight unexpected result which roughly states that
every point set either has a near maximum number of collinear points or deter-

mines a near maximum number of lines.

Theorem s (Beck). Anyn > 4 points on the plane cither contain at least 2~ *n

collinear points or determine at least 2~°°n? lines.

To prove this theorem, we’ll show that if no line contains 2~ 16p, points,
then we have at least 272712 lines that can be made using the n points. To

accomplish this, we seek to bound |Ly| = >, _,|L| from below.

Proof. Our main goal is to show that for an appropriate constant K (which

we’ll take to be 216) and assuming no line contains n/ K points, that we have

2
> k(k =L < -

2K <k

Begin by noticing that since two points uniquely determine a line, there are
|Lo| lines that have exactly two point-line incidences, and if we’re counting
ordered pairs of points, we can weight this with 2(1). Similarly for three point-
line incidences, there are exactly | Ls| lines with 3(2) ordered pairs of points.

Continuing in this, way we getn(n — 1) = >, _, k(k — 1)|Lx|. Now note

16



that for K > 1,

> 2klLul = Y 2k (1Ll + 1Ll + )

k>K k>K

:2(K+1)<|LK+1|+---) +2(K+2)(|LK+2|+---)

= |L41| [2(K+ 1)} + | Lx o [2(K+ 1) +2(K+2)} 4

:Z<i%ym (2:5)

E>K \j=K+1

We can further simplify this to get rid of the double sum by noting that

Z 2j:2<zj_zj> _2( k:+1)k:_(K+21)K>

j=K+1

=k +k- K- K.
Substituting this back into equation|a.s} we see that

> kLl =) (K + k- K* = K)|L.

k>K k>K

Bounding this from below, we get

SR+ k- K= K)|Li| =Y [(k = K?) + (k — K)]|L|

k>K k>K

> (K = K?)|Ly.

k>K

7



We can take this sum over fewer elements (£ > 2K’), and under this assumption,

we have

D =KLl = Y (K = K2 Ll > Y (K — (k/2)%)| L]

k>K k>2K k>2K

_ % S R

k>2K

where we have used thatif k¥ > 2K, then k/2 > K and thus — K > —k/2.

Tracing the logic, we have found
S 2k > 2 3 L
— 4
k>K k>2K
which implies that
8
3 0 MILel = D RLil > Y k(k = 1)|L] (2.6)
k>K k>2K k>2K

Since we are looking for an upper bound, we continue bounding the left side

of equationfrom above. We can do that as follows

[n/K]
- Z ELil <4) klLil =4 ) kL]
k>K k>K k=K+1

since 8/3 < 4and k > K means that k > K + 1 and by assumption, no line
is incident to at least n/ K points. So |Lg| = 0 for £ > n/K and thus do not

contribute to the sum.

n2
Using Theorem | we have |L;| < 8* <k3 + %) ,and so

|n/K] [n/K] /K
4> kL <2t Y k(k3 )_214 > (F+n> (2.7)
k=K+1 k=K+1 k=K+1

18



We’ll now bound this above by splitting the sum into two part and bounding

each part from above. First note,

[n/K ln/K]

J 2 [e%s) 2
nso o, 1 9 1 n
k=K1 k=K+1
Additionally, we have
/K] n n n?
3 n:n<?—(K+1)+1> :n<?—K> <.

k=K+1

Combining these together with Inequality we see that

[n/K] 2 2 15,2
n n 2°n
Myt K K K

Tracing the work up to this step, we have shown that

915,,2
S k(- el < 2]
k>2K

or equivalently,

9152
— Y k(k=1)|Li| > - i
k>2K

Now suppose that K = 2'%, then using the equality above in addition to

splitting a sum over £ > 1 into two sums one with 1 < & < 217 and the other

9



with k& > 27 we get

> k= DLl = > k(k = DLl = > k(k —1)| Ly

1<k<217 k>1 k>217
2
9 n
>n®—n— —
2
n2
= — —n.
2

To complete the proof, we need one last observation

2% N Ll = > 2 2TLy > Y k(k = 1)[ L.

1<k<217 1<k<217 1<k<217

Using this fact, we have forn > 4

Sz Y Iz 2% Y k(k - DIL

k>1 1<k<217 1<k<217
n2
Z 2734 (7 — n) Z 2736712. O]

We now reformulate and prove Theoremusing the language of rich points.
As with the reformulation of Szemerédi-Trotter, we only prove one direction

of the implication; however, Theorem s|and Theorem 6|are equivalent.

Theorem 6 (Beck Reformulation). Let P be a finite set withn > 4 points in
R2. If noline U € L contains 2717 points of ‘P, then there are at least 27199

points of p that are (27n)-rich.
Proof. In the proof of Theorem above, we showed that forn > 4

2 2
S k(k-DIL =5 >
2 1

1<k<217
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Since no line in £ is incident to 27"n points, we have by definition of L,

I(P,L)= > kL.

1<k<217

Because k < 27, weknow k — 1 < 217 — 1. Using this observation with the

bound derived at the beginning, we get the following lower bound.

k(k—1) 1 n?
ST KL= Y S Il = 5 > k(k=1)[Ly| > 10"

1<k<217 1<k<217 1<k<217

We will now partition the point set into the points that are (27n)-rich and
those that are not. We’ll call the set of (27n)-rich points P, and the other
set of points P,. Thus we’ve defined

plz{xeP:ic(f)Z%}

and

P2:{$€P2i£($)<%}.

Since P; and P, are disjoint sets, we can write I (P, L) = I(Py, L)+1(Pa, L).
Our goal will be to put an upper bound on (Ps, £). We will then use this
bound to show that 27n? < I(Py, L) < n|P;|. From this we get [P;| >
27197 as desired.

To proceed, note that each point of P is incident to at most 2199 points

and thus

[(Po, L) =) ic(x) <[Py
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since Py C P and |P| = n. Nowsince I (Py, L) = (P, L) — I(Ps, L), and

we have appropriate bounds on I(P, £) and I(Ps, L), we have

n? n? n?

Finally, since each point of P; is incident to at most  — 1 lines determined by

P, and so to at most n lines of L, we have
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CHAPTER 3

PoiINT-PLANE INCIDENCES IN

RB

In the previous chapter, we examined point-line incidences in R2. Using these
results, we will prove some results on point-plane incidences in R3. Following
Elekes and Téth [6], we make the following definitions. Note Elekes and Téth
proved results in a general d-dimension setting; however, since our focus is on
point-plane incidences in R3, we will take d = 3 and modify the definitions to

apply in this specific case.

3.1 Preliminaries

Definition 3.1.1 (y-saturated). Givena pointset P,aplane Q) in[R?,andy > 0.
We say that Q is y-saturated if the point set ) N P spans at least v - |Q N P|?

distinct lines.

Definition 3.1.2 (a-degenerate). Given a point set P, a plane () in R3, and
a > 0. We say that Q) is a-degenerate it () N P is non-empty and at most

a - |@Q N P| points of Q@ N P lie in a line.
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Theorem 7. (Erdds-Beck [2]) Let x and k be integers with 0 < x < k. There
is an absolute constant cq such that if P is a set of k points in the plane, at most

k — x of which are collinear, then P spans at least coxk lines.

This theorem is similar to Theorem [6{ and follows a similar proof. As a
special case of Theorem [z} we can take 2 = max ([ (1 — @)k, 1), and thus for

a < 1, we have every a-degenerate plane is ¢o(1 — a)-saturated.

Definition 3.1.3 (w-strongly incident). Given a pointset P C R® and a plane
Q, apointp € P N Q is w-strongly incident to () if () contains at least w
points ¢1,q2,...,qw € P\ {p} such that the lines pg; are all distinct for

1=1,2,...,w.

Lemma 8. For a point set P and a k-rich y-saturated plane Q), at least vk /2

points are (Yk [ 2)-strongly incident to Q.

Proof. Consider a y-saturated plane (). Trimming down, we can assume k =
| N P|. Since we are interested in points that are (yk/2)-strongly incident to
@, each of these points must be on at least v& /2 lines. Thus we can delete all
points of () N P that are incident to fewer than vk /2 lines spanned by @ N P.
We deleted points from at most k(7y - k/2) = (7k?/2) lines spanned by Q NP
since there are k points in () N P and each deleted point is incident to at most
7 - k/2 lines. Since @ is y-saturated, we know ) N P spans at least vk? lines,
and thus we have not deleted any point from at least v4? /2 lines. Therefore the
remaining points of @ NP still span vA? /2 distinct lines. Finally, because every
point is incident to at most k lines of @), there are at least (yk?/2) /k = vk /2

points which are (yk/2)-strongly incident to (). O
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3.2 Elekes-T6th Theorem

Theorem 9 (Elekes-Toth [G])). Forany o < 1 and for any set of n points in R?,

the number of k-rich a-degenerate planes is

n3 n2
O (F + p) :

The general idea of the proof is as follows, we would like to reduce the
question of point-plane incidences to a question about point-line incidences
which will allow us to use Theorem |4, To accomplish this we will choose a
plane and project points of P from a point with a lot of strong point-plane

incidences.

Proof. Recall that every a-degenerate plane is y-saturated where v = ¢o(1—av).
Let P be a set of n points, and let ¢ denote the number of y-saturated k-rich
planes. Applying Lemma to each such plane S, we find vk /2 points that
are (7k/2)-strongly incident to S. Since this is true for each of the s planes,
we have at least 57k /2 strong point-plane incidences. Additionally, since we
have n points, we must have at least one point, p;, with the property that p; is
(7k/2)-strongly incident to at least 7k /(2n) planes.

Now choose 7 to be a plane not incident to p;. We project every point of P
from p; to 7 (see Figure[3.1). The image P’ of this projection contains at most
n — 1 distinct points. Because this mapping projects planes to lines, P’ has the
property that there are syk/(2n) distinct lines, each containing at least y& /2

distinct points of P’.
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Figure 3.1: An example of the projection from the point p; on S to the plane 7.

By Theorem |4}, we have

=0 ((v/jz)s ’ 71?/2> |

Solving for s, we get that

nd n? nd n?
S:OV(E—FE):OQ(E—FE). D

We now give a construction of Elekes-Téth and show that the bound given

above is tight. For this construction, assume k is even and n is an integer multi-
ple of 2k. We will give two constructions which depend on whether & < y/n

ork > +/n.
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If we focus on the two planes y = 1 and y = 2, we notice that in either plane,

every line
z=mr +b; where 1§mi§%,1§bi§%’
passes through the points whose z-coordinate ranges over 1,2, . .., k/2. Thus

each plane contains many (k/2)-rich lines. If we choose a line from each plane

such that the two lines are parallel, i.e.,

{y=1z=miz+b} and {y=22=mx+0b;} (3.1)

then we can define a plane 7 which contains these two lines. We take the plane
set Q to be the collection of all such planes 7. Note that 7 intersects P in k
points and is 1/2-degenerate (see Figure[s.2). Since we get a plane 7 for each

triple (m;, b;, b;), the number of distinct planes is

k2 2k 2k 4k%

For k > \/n, we use the same point set P defined above; however, in this

case, we consider two horizontal lines

{y=1,2=h;} and {y=2,z=h;} (3.2)

where h;, h; € {1,...,n/k}. In this case we can define a plane 7 as the plane
containing these two horizontal lines (see Figure .3). There are (n/k)? =
n?/k* such planes (one for each pair of h; and h;). Furthermore, each of these

planes is 1/2-degenerate since each horizontal line passes through k/2 points

27



Figure 3.2: An example of such a plane 7 satisfying equation

of P and thus the planes determined by two lines pass through k points. We
take the plane set Q to be the set of all planes defined in this way.
Combining the two cases together, we have the bound given in Theorem

is sharp.

3.3 Brass-Knauer Theorem

In the previous section, we saw an upper bound on the number of point-plane
incidences for arbitrary points sets. In this section, we show a lower bound by
constructing an infinite family of (P, Q) that have "many” incidences. The
usage of "many" will be clarified below. We begin with a definition that will be

used in the proof of the main theorem in this section.
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Figure 3.3: An example of such a plane 7 satisfying equation

Definition 3.3.1 (Primitive vector). We say a point (, y, z) in Z? is primitive
if z, y, and z have no common factors. We define a primitive vector as the vector

between the origin and a primitive point.

Additionally, in order to state the main theorem, we define incidence graph

in the context of point-plane incidences.

Definition 3.3.2 (Incidence graph). An incidence graph is a bipartite graph
where the vertex set is the disjoint union of a plane set Q and a point set P and

the edge (@, p) is included in the edge setif Q € Q,p € P,andp € Q.

Theorem 10 (Brass-Knauer [3]). For infinitely many m,n, there is a set of n
points and m planes in R® such that there are Q((nm)7"/1°) incidences and the

incidence graph does not contain a K .

Proof. We begin by constructing our point set X and a vector set Y. We will

use these to define the set of planes Q as those that have normal vectors in Y’

29



and contain at least one point of X and then argue that this point and plane set
has Q((nm)7/19) incidences using a theorem of Bdrany et al. [1].

Let X = {1,...,v}®. We’ll choose Y from the primitive vectors of a
3-dimensional lattice cube {1,. .., u}* such that every 2-dimensional linear
subspace contains at most 2 vectors of Y. We’ll take Q to be the set of all planes
that have normal vectors from Y and contain at least one point of X.

There are at most 3pv distinct planes for each vector in Y since the inner
product of a point from X and a vector from Y is at most 3p1v/. Thus there are
| X| points and at most 3p|Y| planes. There are | X ||Y| incidences since given
xo € X and yp € Y there is a unique plane determined by = - yo = ¢ - .
If x, 29 € X lie on the same plane with normal vector gy, then the generated
plane will be the same, but we get a new incidence.

Under this construction the incidence graph does not contain a K3 5 since
any three planes with non-empty intersection must have three distinct normal
vectors from Y. These normal vector span a space of dimension at least 3 by the
way Y was chosen, so the intersection is an affine space of dimension at most 0,
a point.

To get the desired bound, we need to know the maximum number of prim-
itive vector from {1, ..., u}” such that any 2-dimensional linear subspace con-
tains at most two vectors. We will denote this quantity f(u, 3,2, 3). Note
this determines the (maximum) size of Y. Clearly, | X'| = 1/ as there are no
restrictions on how X was chosen.

Bérdny and colleagues found that f1(p1, 3,2, 3) = ©(/?) and thus we
have Cy i3/ < Y| < Cyu®/? for some constants C; and Cs. By removing
points, we may assume | X | = Cy%/2. Since we know I(X, Q) = | X||Y|, we

can substitute and write /(X, Q) = (4 V3 ,u3/ 2, We would like to relate this
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bound back to |Q|. Using the bounds constructed above as well as the upper

bound implied by Birdny et al., we get
19| < 3uv|Y| = 3Cwu>

We can rearrange this to get a lower bound on /2

s 1O
= (3C,)3/513/5

Substituting this back into the expression for (X, (0), we find

3
I(X,Q) = Cu? > O

3/5
~ (3Ch)3/Pw/s Q.

Simplifying and using that 12/° = 13(4/%) = | X |/ we get
I(X,Q) > K|X|"°|QP*/?

for a constant K.
To finish, let | X'| = n and |Q| = m. We consider two cases, whenn > m

and n < m. In the first case, we have
I(X, Q) > Kn/"0p!/1006/10 > ppT/10p1/10,,6/10 — (1) 7/10,

In the second case, we can repeat the arguments above using the dual construc-
tion, which would give us (X, Q) > K'm*°n3/> and for a similar reason
as case one, this implies (X, Q) > K’'(mn)"/'°. Thus we can conclude

I1(X, Q) = Q((nm)7/19). O
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