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ABSTRACT
Atlantic basin hurricanes drive serious meteorological hazards for the southeast United States,
including rainfall-induced freshwater flooding. The well-known Saffir-Simpson Hurricane Wind
Scale (SSHWS) communicates only wind hazard, creating the potential for low wind, high
rainfall storms to be perceived as mild. Researchers have recently emphasized the need to center
rainfall hazard in hurricane warning messaging. This thesis investigates the characterization of
rainfall for three different Atlantic hurricanes: Florence (2018), Michael (2018), and Ian (2022).
Using daily gridded gauge-based rainfall data, the distribution of rainfall is quantified,
visualized, and compared between each storm. Excessive Rainfall Outlooks for each hurricane
are then compared with the actual extent of flash flooding, using statistical methods for
verification. Finally, the impact of rainfall and social vulnerability on FEMA disaster
declarations is assessed. Results of this study assist in validating hurricane rainfall hazard

communications and provide a framework for wider applications.
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CHAPTER 1

INTRODUCTION

Tropical cyclones—the strongest of which known as “hurricanes” in the United States—
are drivers of multiple meteorological hazards. These hazards include rainfall-induced flooding,
storm surge, high winds, and tornadoes. In the United States, hurricane intensity is often
communicated using the Saffir-Simpson Hurricane Wind Scale (SSHWS) (Schott et al. 2012).
This scale classifies tropical cyclones (TCs) as tropical depressions, tropical storms, or
hurricanes, which are additionally specified as category one, two, three, four, or five. These
categories are based solely on wind speed and do not take other hazards into account. While
wind intensity can be representative of a hurricane’s overall threat, researchers are beginning to
note the inadequacy of only considering wind in the communication of anticipated hazard
(Alipour et al. 2022; Bosma et al. 2020; Camelo & Mayo, 2021; Song et al. 2020). Furthermore,
wind was only responsible for about 8% of direct hurricane fatalities between 1963-2012
(Rappaport, 2014). The same study reports that 90% of these fatalities occurred in water-related
incidents, with about 27% being directly attributed to rainfall. Recent data from the National
Hurricane Center indicates that rainfall fatalities have overtaken storm surge fatalities in recent

years, claiming 57% versus 11% of direct deaths between 2013 and 2022 (Brennan et al. 2023).



Hazard % of direct fatalities from this cause | % of direct fatalities from this cause
(1963—2012) (2013—2022)

Storm Surge 49% 11%

Freshwater Flooding 27% 57%

Wind 8% 12%

Surf/Rip Currents 6% 15%

Offshore Marine Incidents | 6% 3%

Tornadoes 3% 2%

Other 1% 1%

Figure 1: 1963-2012 vs. 2013-2022 causes of death for all direct hurricane fatalities. Figure

from Brennan et al. 2023.

Excluding extreme rainfall hazard from the hurricane intensity metric most widely
understood by the public leaves room for misinterpretation. Many would perceive a “weaker”
hurricane on the SSHWS to be minimally life-threatening, though this wind classification does
not necessarily align with other hazards. For example, one can note Hurricane Harvey of 2017.
This storm made landfall in Texas as a major hurricane, but quickly weakened to a tropical storm
(Blake & Zelinsky, 2018). For days, the storm stalled inland near the Gulf coast of Texas,
bringing unprecedented rainfall that amounted to a 9000-year flood in certain neighborhoods
(Oldenborgh et al. 2017). There was a total of 65 deaths directly attributed to freshwater flooding
(Blake & Zelinsky, 2018). The majority of these impacts occurred when Harvey was “weak” by

the parameters of the SSHWS.

More recently, Hurricane Helene’s impact in southern Appalachia in 2024 shows the
importance of warning for potential rainfall impacts. By the time extreme rainfall occurred, the

storm was a weak tropical cyclone and undergoing extratropical transition (Halverson &



Livingston, 2025). The areas most impacted were far from any coast and the populations of the
most impacted areas were largely unprepared for extreme hurricane-related flooding. The death
toll currently stands at 219 and represents the largest loss of life from a U.S. hurricane since
Katrina in 2005. Though Helene is a great example of a hurricane event with extreme rainfall in
the southeast, it too recently occurred for there to be sufficient literature and data for further

analysis.

Nonetheless, hurricanes with extreme rainfall have occurred in the southeast in the near
past. Hurricane Florence of 2018 made landfall over North Carolina as a category one storm and
was soon downgraded to a tropical storm after landfall (Stewart & Berg, 2019). In a similar way
to Harvey, Florence slowed upon landfall, allowing precipitation to accumulate over days. Once
again, the main hazard of this hurricane was rainfall, not wind. The storm brought catastrophic
freshwater flooding to the region, taking dozens of lives and requiring thousands to be rescued
from flood waters. Damage throughout the region amounted to around 24 billion dollars and

rivaled the statistics of many wind-intense hurricanes.

While rainfall can be an underestimated hurricane hazard, it is not always the main
hazard. In 2018, Hurricane Michael caused significant damage and casualties in the Florida
Panhandle as a result of storm surge and heavy winds (Beven II et al. 2019). Very few of these
impacts have been attributed to rainfall. Often, rainfall hazards can vary spatially and throughout
the duration of the storm. Hurricane Ian of 2022 brought hazardous heavy rainfall to the inland
areas of central Florida, but its impacts in southwest Florida were mostly a result of its
devastating storm surge and heavy wind (Bucci et al. 2023). Much like with wind hazards,
rainfall hazards vary from hurricane to hurricane, and within hurricanes over space and time.

This diversity of impact should be evaluated accordingly.



This thesis will investigate the diversity of the rainfall hazard for hurricanes making
landfall in the southeastern United States. I will consider three tropical cyclones as case studies:
the aforementioned hurricanes Florence (2018), Michael (2018), and Ian (2022). The rainfall
from these storms will be compared spatially and temporally using spatial analytical techniques
within QGIS software and evaluated for statistical significance. Next, the flash flooding
outcomes will be validated against Excessive Rainfall Outlooks issued at Days 1, 2, and 3 before
each day of the storm. Maps will be produced and fractional coverage will be determined using
QGIS, and fractional skill scores will be calculated in R to assess the accuracy of the EROs for
each storm. Finally, I will look at Hurricane Florence as a case study to determine how rainfall
and social vulnerability factors played a role in determining FEMA disaster declarations during a
high rainfall impact storm. This will involve creating multinomial logistic regression models in R

and evaluating the significance of each variable.
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Figure 2. Tracks of Hurricane Florence, Hurricane Michael, and Hurricane Ian over the

southeast United States. Data from HURDAT2 (NHC).

Results will determine the extent to which Florence, Michael, and Ian represent a
spectrum of rainfall diversity. Though rainfall diversity will be defined on a relative scale for this
study, the framework will be applicable to future research at larger scales. For example,
researchers may categorize all known Atlantic hurricanes on a scale of rainfall diversity using
similar methods. Additionally, this work will supplement the discussion of improving the
communication of rainfall hazard associated with tropical cyclones. Based on a review of
literature, Excessive Rainfall Outlooks have not yet been thoroughly validated in the context of
tropical cyclones, and moreover have not been evaluated for rainfall-diverse TC scenarios. This
thesis aims to contribute to a growing body of research that is working to improve how rainfall is

integrated into hurricane warnings, which can lead to saving lives, infrastructure, and property.
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This is especially important in the context of climate change, which many researchers believe is
increasing the intensity of tropical cyclones and potentially lowering their translational speeds

(Bender et al. 2010; IPCC, 2023; Wehner & Kossin, 2024).

1.1. Research Questions

1. What are the space-time rainfall distributions of Florence, Michael, and Ian, and how can
we characterize each?

2. Do Excessive Rainfall Outlooks adequately capture diverse hurricane rainfall hazard?

3. For high rainfall impact hurricanes, how do county-level rainfall totals and social

vulnerability factors contribute to FEMA disaster declarations?

1.2. Research Hypotheses

1. The space-time rainfall distributions of Florence, Michael, and Ian will differ, indicating
that average daily rainfall between landfall and extratropical transition can be used to
establish a scale of rainfall diversity.

2. Excessive Rainfall Outlooks and flash flood warnings will evolve similarly over space
and time. Day 3 EROs will be sufficiently accurate when compared to flash flood
observations for all rainfall scenarios; accuracy will not improve significantly for Day 2
and Day 1 EROs. Additionally, the new ERO definition will be more accurate than the
old ERO definition.

3. Rainfall will play a significant role in determining how a county is designated for disaster
relief. Some social vulnerability factors will contribute to designation, while others will

not.



CHAPTER 2

LITERATURE REVIEW

2.1. Quantifying tropical cyclone rainfall

As a foundation for understanding how hurricane rainfall hazard can be characterized,
this section will provide a review of the meteorological and climatological qualities of TC
rainfall. The Atlantic hurricane season occurs from June through November, but TCs can
sometimes spawn outside of this period (Knight & Davis, 2007). TC rainfall has been shown to
be a significant contributor of seasonal precipitation to the southeast United States, which can be
seen in Figure 3 (Knight & Davis, 2009; Mazza & Chen, 2023; Shepherd et al. 2007). On the
East Coast, this share is most pronounced in North Carolina and northeast Florida (Mazza &
Chen, 2023). Additionally, Knight & Davis (2009) documented that the contribution of TC
rainfall to total precipitation in the coastal southeast has been growing 5-10% each decade since
the mid-20™ century. It has been suggested that warmer sea surface temperatures in the Atlantic
and Gulf of Mexico are creating wetter hurricanes, resulting in the increase in their contribution

to total precipitation.
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Figure 3. Annual average percentage of hurricane-season rainfall arising from tropical

cyclones. Figure from Knight & Davis, 2007.

Rainfall from hurricanes can be measured by gauge stations, weather radars, and/or
satellite/remote sensing (Li et al. 2020; Mazza & Chen, 2023). Each of these methods has its
own advantages and disadvantages. Gauge is considered the most direct measurement, but it is
still subject to error due to splash-out from heavy rain, wind interference, and low sensitivity for
light rain, with the first two issues being particularly important to consider during hurricane
conditions (Li et al. 2020). Additionally, there will always be spatial uncertainty with gauge-
based measurements due to the need for interpolation between stations. Radars allow for more
spatially and temporally continuous measurements and a wider coverage of area. However, they
are subject to errors with calibration and uncertainty of observations. Radar coverage is also
discontinuous in certain areas of the United States. Agreement on radar accuracy during
hurricanes is inconsistent, with some case studies showing significant underestimation of rainfall

and others suggesting overall adequacy (Cao et al. 2018; Medlin et al. 2007). Finally, remote
8



sensing has emerged as an increasingly critical component of TC rainfall calculation, allowing
for global coverage and resolution that improves as technological capability improves. This
method has similar disadvantages to radar by the nature of it being an indirect measurement.
Studies agree that satellite remote sensing often underestimates high rates of rainfall, implying

lower reliability during hurricanes (Li et al. 2020, Mazza & Chen, 2023).

2.2. Rainfall hazard communication frameworks and metrics

As discussed in Section 1, the Saffir-Simpson Hurricane Wind Scale (SSHWS) has
become perhaps the most recognizable metric for discussing hurricane intensity in the United
States. A former version of the SSHWS included considerations for storm surge and central
atmospheric pressure (Schott et al. 2012). In 2009, the scale was modified to instead focus solely
on wind, since this extra category could result in two hurricanes with the same wind speed
having very different labels because pressure, like rainfall, is not always correlated with wind
intensity. This decision was made in hopes of improving public interpretation and the scientific
consistency of the scale. However, many researchers have criticized this simplification, stating
that public perception of hurricane danger can be incomplete if the other hazards are not properly
communicated alongside the SSHWS category (Alipour et al. 2022; Bosma et al. 2020; Camelo

& Mayo, 2021; Song et al. 2020).

In recent years, numerous metrics have been proposed for communicating TC rainfall
hazard. Going back to 2006, Senkbeil & Sheridan proposed a post-landfall hurricane
classification system. This was in response to shortcomings in the SSHWS for capturing

hurricane impacts over land. The Extreme Rain Multiplier (ERM), defined by Bosma et al.



(2020), is based on research that reveals the importance of “anchoring” the perception of risk in
hurricane messaging. When people have a preconceived mental image of the outcome of a risk,
they are more likely to take it seriously (Rickard et al. 2017). In the ERM’s case, this baseline is
rainfall with a local 2-year recurrence interval, which is something that most people will have
experienced during their lifetime. A message that rainfall will likely be, for example, three times
more extreme than a 2-year storm allows people to visualize the hazard based on past
experiences, which can be more impactful to preparedness decisions than simply saying an
amount of rainfall. Alipour et al. (2022) proposes the Multivariate Hurricane Index (MHI),
which categorizes a hurricane as category one through five based on estimated rainfall, storm
surge, and wind speed. This approach was shown to result in the categories being more
correlated with damage outcomes than by following the typical wind-only framework of the
SSHWS. Though many of these metrics have been introduced and still remain in the early stages
of validation, they are a testament to growing scientific dissatisfaction with our current approach

to TC rainfall risk communication.

There are a number of products used operationally to convey forecasts for TC rainfall,
though none of them are a standard tool in the way that SSHWS has become the standard for
communicating TC wind hazard, and none of them are used exclusively for TCs. The NOAA
Weather Prediction Center regularly publishes a Quantitative Precipitation Forecast (QPF)
(WPC, 2024). This forecast simply provides audiences with a numerical estimate of rainfall (ex:
“one inch of rain.”). On one hand, the QPF is quantitative and informative, but on the other hand,
it does not convey any inherent concern about the hazard. Moreover, “one inch of rain” means
something different throughout the landscape of a location, with flooding changing in likelihood

from high-risk to low-risk areas. Recurrence intervals (i.e. “100-year storm”) allow for audiences

10



to conceive danger in a way that is anchored in location, but this language can be problematic
due to public misconceptions of statistics (Bosma et al. 2020). For example, many would take the
phrase “100-year storm” to mean that it occurs every 100 years, when it is more accurate to say it

has a 1% chance of occurring any given year.

Day 2 Excessive Rainfall Outlook . N . -
Valid 12Z Thu Feb 24 2022 . . . . o
Thru 12Z Fri Feb 25 2022 Risk of rainfall exceedln? flash flood guidance o
Issued: 07487 Wed Feb 23 2022 Wilkin 25 M3 0d & Pl g = 2
Forecaster: CAMPBELL HIGH: At Least 70% ‘ : &S0~
DOC/NOAA/NWS/NCEP/WPC MDT: At Least40% MRGL: At Least 5% -

Figure 4. Example Day 2 ERO, issued on 2/23/22 and valid between 2/24/22 and 2/25/22.

(WPC, 2024)

A more effective way of communicating rainfall hazard is to focus on the hazard itself—
the risk of flooding. River Forecast Centers of the United States publish flash flood guidances
(FFGs) which specify the amount of rainfall needed to produce flash flooding in an area over 1,
3, or 6 hours (WPC, 2024). This is determined by assessing factors like ground moisture content,
current stream level conditions, and predecessor rain events (PREs) in the region. The Weather

11



Prediction Center then combines these FFGs with rainfall forecasts to create an accessible
national graphic known as the Excessive Rainfall Outlook (ERO). EROs depict color-coded
contours over the United States that express the likelihood of flash flooding within 25 miles of a
given point for day 1 (approximately the next 24 hours), day 2 (the following 24 hours), and so
on up to day 5 in advance of a rainfall event. These contours specify whether the likelihood of
FFG exceedance is either marginal (>5%), slight (>15%), moderate (>40%), or high (>70%)
(WPC, 2024). Each of these categories was redefined in early 2022 to reflect increased
confidence in the ERO as a result of verification efforts (Vallee, 2022). Before this change,
marginal was 5-10%, slight was 10-20%, moderate was 20-50%, and high was >50%. Figure 4
shows an example of an ERO using the current categories. Note that this figure depicts a day 2
outlook, issued on 2/23/22 and therefore depicting forecasts for the period 2/24/22 127 to

2/25/22 127.

2.3. Future implications for the southeast

As discussed in Section 2.1, the share of annual rainfall in the southeast that is owed to
hurricanes is becoming more prominent (Knight & Davis, 2009; Mazza & Chen, 2023). The
Intergovernmental Panel on Climate Change (IPCC) states in their AR6 report that they have
high confidence that rainfall associated with hurricanes is increasing, and that this precipitation
will increase by up to 28% under a high 4°C warming scenario (IPCC, 2023). Specifically, they
name anthropogenic climate change as a highly likely cause of the extreme rainfall of Hurricane
Harvey (2017), stating that this has likely been true for other rainfall-intense hurricanes as well.
The IPCC has medium confidence that the movement of TCs over the continental United States

is slowing, increasing the hazard duration of rainfall. This is potentially demonstrated by the

12



spatially lingering nature of hurricanes Harvey and Florence leading to severe flooding (Reed et
al. 2020). Additionally, there is medium-high confidence that the proportion of intense hurricanes
to less intense hurricanes is being augmented by climate change. (IPCC, 2023) Some of these
outlooks are shown below in Figure 5, taken from the IPCC’s 2023 Working Group 1 (WGI)

report.

«_Changes in storms with increasing gIobéI warming P

(_ Global Regional ) ‘

¢ Tropical cyclones

+ Extratropical cyclones Tropical cyclones Severe convective storms
¢ Atmospheric river Decreased Increased Slower Longer
exposure  exposure  motion season

Average and maximum
precipitation rates increase
with warming

¢ Tropical cyclones
Increase in strength

30°N

Decreased or unchanged o
enesis frequenc

g quency -

¢ Extratropical cyclones
Changes (increase or
decrease) in wind speed
following storm tracks
poleward shift in some regions

Figure 5. Global and regional changes in storm characteristics. Note the information on
TCs: Increase in strength, decreased/unchanged cyclogenesis, slower motion in southeast

United States. Figure from IPCC WG1 report 2023, p. 1586.

Climate risk is considered a function of hazard, exposure, and vulnerability (IPCC, 2023;
KC et al. 2021). Rainfall hazard is not the only component of climate risk that is increasing in the
southeast. Demographic shifts to hurricane-prone areas are resulting in higher exposure to TC
rainfall hazard, with exposure being a key aspect of overall climate risk (Swain et al. 2020).
Combined with the future TC trends in Figure 5 owed to global climate change, it is evident that

both hazard and exposure are becoming enhanced. The third aspect of risk, vulnerability, is also

13




something that is very prevalent in the southeast. Figure 6 shows the distribution by county of
one vulnerability factor, poverty, across the southeast (CDC/ATSDR 2020). Visual analysis
reveals that poverty becomes more pronounced just inland from the coast. Because TC rainfall
can be an inland hazard (not just coastal, like with storm surge), this is important to consider

when determining the overall risk brought on by rainfall-induced flooding during hurricanes.

Percent of population
<150% poverty

[C18-14.6

[114.6 - 19.3
£19.3-229
B 22.9 - 26.1
W 26.1 - 29.1
N 29.1-32.1
W 32.1 - 35.6
B 35.6 - 39.5
N 39.5 - 44.9
N 44.9 - 56.8

Figure 6. The percentage of population falling below 150% of poverty line by county in the
southeast in 2020. Data from CDC/ATSDR Social Vulnerability Index 2020 (CDC/ATSDR

2020).

When assessing all three factors of hazard, exposure, and vulnerability, it is clear that
future conditions in the southeast United States will become more favorable for creating
devastating consequences for TC rainfall. This emphasizes the importance of venturing to better

14



characterize rainfall diversity of hurricanes in order to improve communication and mitigate the

impacts of these future conditions.

2.4. Social factors and resilience

As shown in Figure 6, counties across the southeast vary significantly in poverty rates.
Variation at the county level also occurs throughout this region with other social factors, such as
unemployment, uninsurance, income level, and mobile home usage (CDC/ATSDR 2020). These
factors are important to consider as they should directly determine, in tandem with the degree of
the hazard, what time of assistance is needed after a natural disaster like a hurricane. A fairly
wealthy county, for example, might require less public assistance after extreme rainfall than a

county with less sufficient infrastructure.

In the U.S, FEMA keeps records of county-level federal assistance designations after
major disasters (FEMA 2024). Governors and Tribal Chief Executives are responsible for
specifying which types of federal assistance programs to request. This assistance can come in the
form of individual assistance (crisis counseling, unemployment assistance, etc), and/or public
assistance, which is broken up into seven categories (A-G) which designate debris removal,
emergency protective measures, roads and bridges, water control facilities, buildings and
equipment, utilities, and parks and recreation, respectively. For determining the activation of
individual assistance, FEMA considers demographic factors of the disaster-affected population
along with other variables like uninsured homes impacted and casualties. For public assistance,
FEMA takes into account cost, localized impacts, compounding hazards, and more. It should be

noted that federal approval of disaster declaration requests is not always unbiased. Political party
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affiliation and upcoming elections have been shown to impact assistance approval rates (Husted
& Nickerson 2014). This demonstrates the need for a more objective process of distributing

federal disaster assistance, which this thesis will further address.
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CHAPTER 3

RESEARCH DESIGN

To investigate the variability of tropical cyclone rainfall hazard, this thesis project will
compare the rainfall profiles of Hurricane Florence (2018), Hurricane Michael (2018), and
Hurricane Ian (2022). Based on background research discussed in Section 1, the rainfall profiles
of these hurricanes seem to differ significantly. This case study approach will allow for an in-
depth assessment of the utility of framing rainfall hazard as a unique component of hurricane
hazard. With the exception of Research Question 3, each hurricane mentioned will be considered

when answering the following research questions:

Research Question 1: What are the space-time rainfall distributions of Florence,

Michael, and Ian, and how can we characterize each?

Research Question 2: Do Excessive Rainfall Outlooks and flash flood warnings

adequately capture diverse rainfall hazard?

Research Question 3: For high rainfall impact hurricanes, how do county-level rainfall

totals and social vulnerability factors contribute to FEMA disaster declarations?
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3.1. Justification for selection of hurricanes

To select the three hurricanes for this study, this research began by narrowing down
possible choices by region (must have impacted southeast U.S.), time frame (occurring between
2018 and 2022), and significance of impact (name retired from future use). Next, NHC Tropical
Cyclone Reports were consulted to assess the role of rainfall in contributing to the impacts of
potential hurricanes to be studied. These reports describe rainfall-related deaths and damage
along with a glimpse at rainfall intensity. For the study, a high rainfall-impact hurricane, a low

rainfall-impact hurricane, and a moderate rainfall-impact hurricane were to be selected.
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Figure 7. Rainfall Totals for Hurricanes Florence, Michael, and Ian as reported in NHC
Tropical Cyclone Reports. Figures from Stewart & Berg (2019), Beven 1I et al. (2019), and

Bucci et al. (2023).

Hurricane Florence (2018) immediately stuck out as a high rainfall impact hurricane in
the region. With a slow forward speed after landfall, the storm lingered over the Carolinas for

days, bringing extreme flash flooding to a large area as shown in Figure 7 (Stewart & Berg
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2019). The vast majority of casualties were due to freshwater flooding, accounting for 17 out of
22 deaths (77.3%). Nearly 100,000 structures were flooded with many experiencing moderate or
major damage. Over 5,000 individuals needed to be rescued from flood waters by boat,

helicopter, or Humvee in North Carolina alone.

Occurring the same year as Hurricane Florence, Hurricane Michael had no deaths
attributed to rainfall before undergoing extratropical transition (Beven II et al. 2019). Most of the
damage and casualties were due to high wind and storm surge that impacted the coastal
panhandle of Florida. Though rainfall was present during Michael, the relatively fast forward
speed of Michael prevented rainfall from accumulating as severely as it did during Florence. In
Figure 7, one can note the large rainfall swatch with a maximum occurring in North Carolina,

which was measured outside of the temporal scope of this study (see Table 1).

Hurricane Ian (2022) had a moderate rainfall impact that fell between the rainfall impact
of Florence and Michael according to a qualitative analysis of data discussed in its tropical
cyclone report (Bucci et al. 2023). During Ian, some inland deaths were attributed to flash
flooding, mostly occurring in east central Florida. There were 66 direct fatalities in total, and 12
were owed to freshwater flooding (18.2%). Most of the devastating impacts to life and property
were caused by storm surge and wind, especially in coastal southwest Florida. As shown in
Figure 7, high amounts of rainfall still occurred in certain areas, though not to the extent of the

maxima that occurred during Florence.
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3.2. Data Sources and Scope

The analysis of each hurricane will occur at daily timesteps, beginning at 12Z (UTC)
immediately before continental U.S. landfall and ending at 12Z before tropical cyclone status
was revoked. This is because most data at daily timesteps is organized in 12Z-12Z periods
(NOAA, 2023). For Hurricane Florence, extratropical transition completed at 12Z on September
17, 2018, so analysis will end at this time rather than before (Stewart & Berg, 2019). Any rainfall
occurring within a 500 km radius of interest (ROI) of the hurricane track will be included in the
analysis, following the conventions of prior studies (Bosma et al. 2020). Only rainfall occurring

over the continental United States will be considered.

Name Beginning of  U.S. Landfall End of TC status Days to be
analysis analysis revoked analyzed

Florence 09/13/18 122  09/14/18 112  09/17/18 12Z  9/17/18 12Z 4

Michael 10/10/18 12Z 10/10/18 17Z 10/11/18 12Z 10/12/18 0Z 1

Ian 09/28/22 122 09/28/2219Z  09/30/22 12Z 10/01/22 0Z 2

Table 1. Temporal scope of analysis for each storm

For information relating to storm location, wind strength, pressure, and size, this thesis

will reference the HURDAT?2 database managed by the NHC, which contains data points at 6-

hour intervals for Atlantic tropical cyclones (Landsea & Franklin, 2013). Rainfall measurements

will be sourced from the CPC-Unified data collection and analyzed as daily totals (Xie et al.

2007). This dataset consists of gridded daily gauge-based observations at a .25x.25-degree

resolution. TC-related rainfall will be identified by cropping all CPC-Unified data sets to the 500

km ROI.

To determine the spatial extent of impacts, data from the WPC’s Intense Rainfall and

Flash Flood Reports database will be used. In particular, this will include Stage IV rainfall
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analysis of rainfall exceeding the local FFG inflated to a 40 km radius (Schmidt, 2007).
Additionally, Tropical Cyclone Reports from the NHC and NOAA’s Storm Data publication will
be referenced, which contain data on deaths and damage, distinguishing how each hazard
contributed to overall hurricane impacts (Beven II et al. 2019; Bucci et al. 2023; Stewart & Berg,
2019). These impacts will be analyzed in the context of the CDC’s Social Vulnerability Index
(SVI) to determine how they are distributed across socioeconomic divides (CDC/ATSDR, 2018).
Data from FEMA will provide information on disaster declaration assistance designations at the
county level. Finally, images and shapefiles from the WPC’s Excessive Rainfall Outlook
archives at days 1, 2, and 3 in advance of each storm day will be used, due to EROs before Day 3

not being consistently available.

3.3. Methods: Research Question 1

To address the first component of the research question, a spatiotemporal analysis of
rainfall patterns will be conducted for each storm. NHC’s HURDAT?2 data will be used to place
the tracks in QGIS to define the 500 km ROI. The CPC-Unified rainfall data will then be added
to the maps and clipped to only the areas contained within the ROI. Any pixels containing no
rainfall will be excluded from the analysis. With the precipitation area identified, daily rainfall
maps for each tropical cyclone will be produced using QGIS. This will be done for every day of
every storm, which is delineated in Table 1. Additionally, total rainfall maps will be produced for

each storm, with the total rainfall for each pixel over all days depicted.

Next, rainfall diversity across the three hurricanes will be assessed. This will be done by

dividing the total rainfall for each hurricane (sum of all pixels) by the count of pixels with
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rainfall. This is possible by using the “raster layer statistics” function in QGIS. These averages
will first be compared by average, but then also assessed for differences in maximums, ranges,
and standard deviation to get a sense of all the ways in which the data sets differ. At first, this

comparison will take place at face value before moving to a quantitative analysis in R that also

tests for significance.

In R, all three data sets, which contain measures of totals for each non-zero pixel in the
ROI, will be tested for normality using a Shapiro-Wilk normality test. This test will help
determine the most appropriate significance test to be used. If the data sets are normal, the two-
sample t-test will be used. Otherwise, the Mann-Whitney U test, which does not assume
normality, will be used. The p-values for the result of each significance test will be compared to
the standard p < 0.05 threshold for determining whether differences between data sets are

statistically significant.

3.4. Methods: Research Question 2

To assess how well flash flooding forecasts aligned with observed flash flooding, EROs
will be assessed against a Stage I'V rainfall flash flood proxy. This will be done for each Day 1, 2,
and 3 issuance in advance of each day of the storm as defined in Table 1. First, this will be
conducted as a visual analysis by producing maps in QGIS. Like was done with the rainfall data
in Section 3.2, all flash flooding and ERO polygons will be clipped to the 500 km ROI when
necessary. This will provide a visual component of the forthcoming quantitative analysis, which

will be valuable as a way to verify results.
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Next, using QGIS, fractional coverage will be calculated for each ERO category for each
issuance for each day of each storm (e.x. Florence — 9/13/19 — Day 3 — Marginal: 2.17% covered
by flash flood proxy). Though there are different methods of verification, fractional coverage
was chosen due to its ability to lead to a numerical outcome that can be compared between
categories, days, models, and storms. This procedure is based on a similar procedure performed
in Erickson et al. 2021 for verifying ERO contours. QGIS has a function called “overlap
analysis” for the purpose of calculating fractional coverage. Results will be placed in a
spreadsheet and compared to expected values for the old and new ERO definitions. For instance,
the expected value for the above example (as it’s for Marginal) would be 5-10% for the old
definition or 5% < x < 15% for the new definition. For simplicity, the new definition will be
defined as a range between 5-15%, as the distinction is negligible for the purposes of this study.
The difference between the forecasted range and the calculated fractional coverage will then be
recorded. For a calculated fractional coverage that falls within the forecasted range, the
difference is zero. If the coverage falls below the range, the difference will be coverage — (range
minimum). If the coverage falls above the range, the difference will be calculated as coverage —
(range maximum). These differences will be displayed on a table as well as on charts that show

the evolution of the differences over time and for each hurricane.

Next, to validate the EROs, the Fractional Brier Score (FBS) and Fractional Skill score
(FSS) will be calculated for each hurricane, particularly in the context of both the old and new
ERO definitions. To calculate the FSS, the worst possible Fractional Brier Score (WFBS) must

be calculated as it changes for each event. These scores are defined as:
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NP; ¢ is the forecasted fractional coverage, NP; , is the observed fractional coverage, and WFBS
is the worst possible FBS for the data (Zhao & Zhang 2018, Necker et al. 2024). Like with the
fractional coverage differences, the difference between NP; ¢ and NP; , will be zero if the fraction
is within the forecasted range, otherwise subtracted by the range’s maximum or minimum
depending on where the observation lies. The FBS becomes more accurate as it approaches zero,
but FBS scores cannot be compared between hurricanes due to differences in the definition of
each. To remedy this, the FSS, a normalized form of the FBS, will be calculated. The higher the
FSS result is (i.e. closer to 1), the more skillful the ERO was in predicting the spatial extent of

flash flooding.

3.5. Methods: Research Question 3

Finally, a multinomial logistic regression model will be created in R to determine how
rainfall and social variables may play a role in assigning a county a FEMA disaster declaration
designation after a high rainfall impact hurricane. This part of the thesis will only look at
Hurricane Florence, as this hurricane was undoubtedly the most costly in terms of both lives and

monetary value in the realm of rainfall (Stewart & Berg 2019). This will also help disentangle
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the effects of wind and storm surge from the disaster declaration process, as these two variables
are outside the scope of this thesis. Data from FEMA will provide information on disaster
declarations for each county in North Carolina, the main state of impact for Florence. These
county polygons will be joined with SVI data, particularly with variables like mobile home
percentage, per capita income, and percentage uninsured population. These variables could
potentially have an impact on what kind of funding the disaster declaration accounts for, based
on information from FEMA, especially for the factor of whether or not individual assistance was
designated (FEMA 2024). Next, rainfall values will be sampled at the centroid of each county
and joined to the county-level information to account for the physical hazard component. This
factor is theoretically prerequisite to any social factors, as all counties receiving relief should

have experienced rainfall to some extent.

A multinomial logistic regression model has been chosen for this part of the research as it
handles categorical outcomes, which represents the data for disaster declaration designations.
Other methods, such as multiple linear regression, require the outcome data to be numerical. Two
models will be created to compare the roles of rainfall and social vulnerability in the process.
The first model will represent the county relief designation as a function of only rainfall. This
will illustrate, to an extent, how much of a role rainfall alone played in the designation. It is
assumed that the relationship will be significant as rainfall was the main hazard of Florence.
Next, a multinomial logistic regression model will be created that factors in SVI variables. For
this model, the accuracy will be calculated along with the significance of each SVI variable’s
role in predicting the result. The results for this model will be compared to the rainfall-only
model to provide insight into whether or not social vulnerability was a factor in the relief

provided to counties.
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CHAPTER 4

RESULTS

4.1 Hurricane Rainfall Space-Time Evolution

Daily rainfall during Hurricane Florence (Sept. 13-16, 2018)

09/13/18 09/14/18

{ J Total hurricane-

induced rainfall
(mm)
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||
09/15/18 09/16/18
>0
— Florence
Track

Figure 8. Daily rainfall for Hurricane Florence per .25 degree? pixel with recorded rainfall.
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Hurricane Florence lasted for four days between U.S. landfall and extratropical transition.

Figure 8 shows how extreme rainfall occurred each day, with maxima between 140.61 and

347.98 mm (5.54 and 13.7 in.) per day. Maxima, minima, and other basic statistical information

for Florence are listed in Tables 2-5. As shown in Figure 8, rainfall tended to be prevalent around

the right-front quadrant Hurricane Florence, which is considered to be the most hazardous region

of a hurricane. Additionally, maxima were found in both inland and coastal areas, illustrating the

1dea that hurricanes should not be considered a coastal hazard alone.

The third day of Hurricane Florence, 9/15/18, is when the storm peaked for the Max,

Sum, and Mean attributes. Standard deviation also peaked on this day, meaning that rainfall

measurements for each pixel were the least clustered. As shown by the track on each day,

Florence moved slowly inland, allowing rainfall to accumulate over time.

Pixels w/ rainfall 259

Min (mm) 0.021

Max (mm) 140.613
Range (mm) 140.592
Sum (mm) 6935.906
Mean (mm/pixel) 26.780

std dev 38.977
sum_of squares 391962.0356

Table 2: Basic statistics for Florence on 9/13/18.

Pixels w/ rainfall 442

Min (mm) 0.025

Max (mm) 183.417
Range (mm) 183.392
Sum (mm) 14916.250
Mean (mm/pixel) 33.747

std dev 43.661

sum of squares 840655.706

Table 3: Basic statistics for Florence on 9/14/18.
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Pixels w/ rainfall 573

Min (mm) 0.0212

Max (mm) 347.980
Range (mm) 347.959
Sum (mm) 21555.650
Mean (mm/pixel) 37.619
std_dev 59.667

sum of squares 2036438.290

Table 4: Basic statistics for Florence on 9/15/18.

Pixels w/ rainfall 1025

Min (mm) 0.021

Max (mm) 156.799
Range (mm) 156.778

Sum (mm) 24819.473
Mean (mm/pixel) 24.214
std_dev 32913

sum of squares 1109255.807

Table 5: Basic statistics for Florence on 9/16/18.
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Daily rainfall during Hurricane Michael (Oct. 10, 2018)

Total hurricane-
induced rainfall

(mm)
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0
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Figure 9: Daily rainfall for Hurricane Michael per .25 degree? pixel with recorded rainfall.

Hurricane Michael had the shortest period of study out of the three hurricanes chosen in
this case study. Only one full day existed between landfall and extratropical transition. During
this one day, there was significant clustering of rainfall around the center of the storm as seen in
Figure 9, though the maximum rainfall did not reach the extremes of Florence. Max rainfall was
151.3 mm (5.96 in.), with an average of 32.23 mm (1.27 in.) per pixel. At 31.06, the standard
deviation of the pixels was lower than that of any day of Florence, indicating that Michael
distributed rainfall more evenly throughout the ROI. Further basic statistics for Michael are

shown in Table 6.
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Pixels w/ rainfall 1061

Min (mm) 0.039

Max (mm) 151.305
Range (mm) 151.266

Sum (mm) 34194.722
Mean (mm/pixel) 32.229
std_dev 31.059

sum of squares 1022557.217

Table 6: Basic statistics for Michael on 10/10/18.

Daily rainfall during Hurricane Ian (Sept. 28-29, 2022)

9/28/22 9/29/22
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Figure 10: Daily rainfall for Hurricane Ian per .25 degree? pixel with recorded rainfall.

Hurricane lan lasted for two days between landfall and extratropical transition. As seen in
Figure 10, Ian’s eye was located over the Atlantic Ocean for almost all of 9/29/22 after passing
over the Florida peninsula. In the two figures, we see a stark visual difference between rainfall
on the 28" and 29", This difference is noted in the basic statistics shown below in Tables 7 and 8
as well. It should be noted that the presence of Ian over the ocean could be obscuring rainfall

peaks, as the rainfall data used for this study only includes rainfall occurring over land. However,
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because this rainfall at sea would not have any direct societal impacts, including this information

is not necessary for the purposes of this study.

Pixels w/ rainfall 198

Min (mm) 0.026
Max (mm) 383.950
Range (mm) 383.924
Sum (mm) 11011.574
Mean (mm/pixel) 55.614

std dev 76.053

sum_of squares

1139458.693

Table 7: Basic statistics for Ian on 9/28/22.

Pixels w/ rainfall 268

Min (mm) 0.025
Max (mm) 92.087
Range (mm) 92.061
Sum (mm) 4618.316
Mean (mm/pixel) 17.233

std dev 16.417
sum_of squares 71957.313

Table 8: Basic statistics for Ian on 9/29/22.

To categorize the rainfall hazard of each storm, Equation 1 was used, where n is the total

number of pixels with rainfall over the duration of the hurricane, d is the amount of days being

analyzed for the storm, and p; ; is the amount of rainfall at pixel j on day i. This equation was

applied to each storm, and results are shown in Figure 11 along with an aggregate depiction of

total rainfall.

d
=
T—n' pi,j
=1

j=11i

Equation 1
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Total hurricane-induced rainfall (mm)
Bl ]
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Hurricane Florence (2018) Hurricane Michael (2018) Hurricane Ian (2022)
58.3 mm (2.30 in) 32.2mm (1.27in) 42.9 mm (1.69in)

(average rainfall per hurricane day per .25 degree? pixel with recorded rainfall)

Figure 11: Total average hurricane-induced rainfall for hurricanes Florence, Michael, and

Ian within space/time scope of study per .25 degree? pixel.

The results in Figure 11 align with information gathered through background research on
the three hurricanes. For Florence, which has the maximum average rainfall at 58.3 mm, rainfall
was the main hazard and cause of many deaths. For Michael, rainfall was not the main hazard,
and the system was only responsible for flash flood-related deaths after extratropical transition,
which is not examined in this study. Michael had an average rainfall of 32.2 mm. Ian was
somewhere in the middle, with rainfall leading to impacts in a smaller area. Accordingly, the

average rainfall at 42.9 mm was in between that of Florence and Michael.
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Statistic Florence Michael Ian

Pixels w/ rainfall | 1170 1061 364

Min (mm) 0.021 0.039 0.026

Max (mm) 602.425 151.305 383.950
Range (mm) 602.404 151.266 383.924
Sum (mm) 68227.279 34194.722 15629.891
Mean (mm/pixel) | 58.314 32.229 42.939
std_dev 104.354 31.059 64.753
sum_of squares 12730234.819 1022557.217 1522035.404

Table 9: Basic statistics for total rainfall data for each storm, based on the data displayed in

Figure 11.

Table 9 shows the basic statistics for the totals shown in Figure 11. Note that Michael’s is
the same as Table 6 due to the storm lasting for only one day. For Florence and Ian, these
statistics represent the data for the average daily rainfall of every pixel containing rain during the

duration of each hurricane.

To determine which significance test to use for analyzing rainfall differences, a Shapiro-
Wilk Normality test was performed in R to assess the normality of each set of rainfall
measurements. Results are shown in Table 10. For all three hurricanes, the p-value was less than
0.05, indicating that the null hypothesis (Ho) should be rejected and the alternative hypothesis
(H1) should be assumed. Therefore, it can be assumed that the sample does not come from a

normal distribution.
Ho: The sample comes from a normal distribution.

Hi: The sample does not come from a normal distribution.

Hurricane \ p-value

Florence 0.60156 <2.2e-16
Michael 0.87918 <2.2e-16
lan 0.62283 <2.2e-16

Table 10: Results of Shapiro-Wilk Normality Test
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Because the data sets do not follow a normal distribution, validating statistical
significance required the use of a test that does not assume normality. For this purpose, the
Mann-Whiteny U test was deemed most appropriate. This test compares two data sets at a time,
so results are described for all possible pairings (Florence and Michael, Florence and Ian, and
Michael and Ian). Results are shown in Table 11. The null and alternative hypotheses are

described below.

Ho: The hurricane pairs have the same distribution of total rainfall.

Hi: The hurricane pairs do not have the same distribution of total rainfall.

Hurricane Pairs \ p-value
Florence and Michael 673377 0.0005251
Florence and lan 237816 0.0007509
Michael and Ian 195014 0.7778

Table 11: Results of Mann-Whitney U Test

These results show the significance of the differences between total average rainfall per
pixel for each hurricane. Florence and Michael and Florence and Ian were found to be strongly
significantly distinct. The p-values for these comparisons were both well less than .001,
indicating that H; can be accepted at the 99.9'" percentile. However, for Michael and Ian, there
was not a significant difference that could be indicated by the Mann-Whitney U test. With the
result of 0.778, the null hypothesis could not be rejected, and we are unable to assume that the

distributions of rainfall for Michael and Ian are different.
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4.2 Comparing ERQO:s to flash flooding observations

Using QGIS, maps were produced that compare Day 3, 2, 1 and one ERO forecasts to the
observed extent of flash flooding based on a Stage IV rainfall flash flood proxy. Figures 12-15
show these evolutions for each day of the storm being analyzed. From a visual analysis, the maps
for Florence seem to display a generally accurate depiction of where flash flooding was to take

place. For all days, the High category seems to clearly align better with the actual extent of flash

flooding as the date of the event gets closer.

Excesssive Rainfall Outlooks for Hurricane Florence compared to Stage IV

rainfall flash flood proxy - Sept. 13, 2018

Day 3

0 75 150 km
.

Day 2

Day 1

Excessive Rainfall Outlook
0 Marginal
Slight
I Moderate
B High

== Florence track

Rainfall exceeding flash

flood guidance

Figure 12: Excessive Rainfall Outlooks for Hurricane Florence compared to Stage IV

rainfall flash flood proxy — 9/13/18
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Excesssive Rainfall Outlooks for Hurricane Florence compared to Stage IV
rainfall flash flood proxy - Sept. 14, 2018

Day 3 Day 2 Day 1

0 75 150 km
|-
Excessive Rainfall Outlook == Florence track
W Marginal Rainfall exceeding flash
Slight flood guidance
B Moderate
[0 High

Figure 13: Excessive Rainfall Outlooks for Hurricane Florence compared to Stage IV

rainfall flash flood proxy — 9/14/18

It should be noted that many of the EROs issued went out of the 500 km ROI at their
periphery, so there could be some hurricane-related issuances that were not accounted for. For
consistency, all EROs were clipped to the ROI. However, no flash flooding occurred outside of
the ROI, according to the data from the proxy. Furthermore, most flash flooding was confined

within the ERO contours for all days.
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Excesssive Rainfall Outlooks for Hurricane Florence compared to Stage IV
rainfall flash flood proxy - Sept. 15, 2018

Day 3 Day 2 Day 1

0 75150 km
[ |
Excessive Rainfall Outlook == Florence track
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Slight flood guidance
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I High

Figure 14: Excessive Rainfall Outlooks for Hurricane Florence compared to Stage IV

rainfall flash flood proxy — 9/15/18

Excesssive Rainfall Outlooks for Hurricane Florence compared to Stage IV
rainfall flash flood proxy - Sept. 16, 2018

0 75150 km
||
Excessive Rainfall Outlook == Florence track
I Marginal Rainfall exceeding flash
Slight flood guidance
[ Moderate
[ High

Figure 15: Excessive Rainfall Outlooks for Hurricane Florence compared to Stage IV

rainfall flash flood proxy — 9/16/18
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From a visual analysis, it seems that some Marginal and Slight outlook areas were
overwarned across the maps. For example, in Figure 14, these contours contain minimal to no
amount of the proxy. This is problematic as it could indicate overwarning, which could
potentially contribute to warning fatigue among populations of affected areas if it occurs too
often, resulting in people taking warnings less seriously. On the other hand, Figure 12 shows a
potential example of underwarning for the Moderate category. Underwarning could lead to grave
consequences, and this should also be analyzed further. A quantitative look at these disparities is

performed in Section 4.2 and visualized in Table 12.

Excessive Rainfall Outlooks for Hurricane Michael compared to
Stage |V rainfall flash flood proxy

Day2 |
ay s 4
Excessive Rainfall Outlook = Michael track
[ Marginal (5-10%) Rainfall exceeding flash
Slight (10-20%) flood guidance

[ Moderate (20-50%)

Figure 16: Excessive Rainfall Outlooks for Hurricane Michael compared to Stage IV

rainfall flash flood proxy — 10/10/18

For Hurricane Michael, flash flooding tended to occur to the left of the storm track.

Notably, there were no High warnings issued during the day of study for this hurricane. This
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indicates underwarning being a significant issue for the EROs issued during Michael. However,
it should be noted that the forecast does appear to align more with the observation as the day of
the event is approached. This suggests forecasts getting better over time, though in an ideal
world, forecasts would be as accurate as possible as early as possible. A visual analysis suggests
that underwarning was present for all three categories, which is exacerbated by the lack of any

High contours. Again, this is discussed quantitatively in Section 4.2.

Excessive Rainfall Outlooks for Hurricane Ian compared to Stage IV
rainfall flash flood proxy - Sept. 28, 2022

“a

S
S
Day 3 % Day 2 . @ | Day 1

Excessive Rainfall Outlook = Ian track
27 Marginal (>5%) Rainfall exceeding flash
Slight (>15%) flood guidance

I Moderate (>40%)
[ High (> 70%)

Figure 17: Excessive Rainfall Outlooks for Hurricane Ian compared to Stage IV rainfall

flash flood proxy — 9/28/22

Like with Michael, flash flooding for Ian tended to the left side of the storm track for
both 9/28/22 and 9/29/22. Based on background research, there were a lot of difficulties with

forecasting the track of Ian and this seems to be shown in the EROs as well. lan was predicted to
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go through the Tampa area up until very close to landfall, when the track shifted to predict
landfall around Fort Myers. It seems this track error is a factor in both Day 3 and Day 2 shown in
Figures 17 and 18. We can also see the dramatic changes in contours in Figure 18 that indicate
this uncertainty. By Day 1, the contours appear more accurate, but the High area is not well-

aligned with the observed flash flooding.

Excessive Rainfall Outlooks for Hurricane Ian compared to Stage IV
rainfall flash flood proxy - Sept. 29, 2022

Day 3 vZ/ Day 2 \/}/ Day 1

Excessive Rainfall Outlook = Ian track
[ Marginal (>5%) Rainfall exceeding
Slight (>15%) flash flood guidance

[ Moderate (>40%)
[ High (>70%)

Figure 18: Excessive Rainfall Outlooks for Hurricane Ian compared to Stage IV rainfall

flash flood proxy — 9/29/22

For 9/28/22, the Day 3 and 2 forecasts omitted a High outlook, representing potential
underwarning. By Day 1, however, much of the area was overwarned for Marginal, Slight, and
Moderate categories. Overwarning was also prominent on 9/29/22 for all forecast days, though

Day 1 seems to suffer most from contours that were slightly too northward. If not for this, it
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appears that the forecast would be reasonably representative of the actual extent of flash

flooding.

The quantitative part of this verification consists of comparing observed fractional
coverage to expected fractional coverage. Fractional coverage is defined as the area of overlap of
flash flooding and a contour divided by the total area of the contour. This is then compared to the
expected fractional coverage, which is based on the criteria for each ERO category. As discussed
in the background, the ERO categories (Marginal, Slight, Moderate, High) were defined
differently before 2022 (5-10%, 10-20%, 20-50%, 50-100%, respectively) and after early 2022
(>5%, >15%, >40%, >70%). Because Florence and Michael occurred in 2018 while Ian
occurred in late 2022, all fractional coverage was compared to both the old definitions and new

definitions in order to assess the redefinition of the metric.

Hurricane |Date Forecast Day Marginal [Marginal |[Marginal Slight [Slight Slight Moderate Moderate Moderate |High High High
overlap |obs.-exp. |obs.-exp. |overlap |obs.-exp. [obs.-exp. |overlap |obs.-exp. |obs.-exp. |overlap (obs.-exp. obs.-exp.

(%) (old) (new) (%) (old) (new) (%) (old) (new) (%) (old) (new)
Florence | 9/13/2018 3 2.17 -2.83 -2.83 6.76]  -3.24 -8.24 65.1 15.1 0 n/a n/a n/a
2 3.25 -1.75| -1.75 15.7] 0 0 86 36 16 100 0 0
[ 1 3.08 -1.92| -1.92] 257 5.7 0 72.5 225 25 99.6 0| 0
9/14/2018 3 11 1 0 30.7 10.7 0 100 50 30 100 0 0
2 1.56 -3.44| -3.44 14.1] 0 0.9 96 46 26 100 0 0
[ 1| 4.02 -0.98| 2098 333 667 -1167 472 0 of 937 0| 0
9/15/2018 3 0.97 -4.03 -4.03 529 -4.71 9.71 63.3 133 0 100 0 0
2 257 -2.43| 243 091  -9.09  -14.09 27.2 0 -12.8 90 0 0
1 1.68 3.32)  -332) 182 88|  -13.8 15.4 4.6 -24.6 88 of 0
9/16/2018 3 10.2 0.2 0 42.4 224 24 73.8 23.8 3.8 92.9 0 0
2 5.63 0| 0 44.4| 244 44 82.1 32.1 12.1 99.1 0 0
1 15 -3.5] 35 144 0 -0.5 71.2 212 12 995 of 0
Michael  [10/10/2018 3 39.2 29.2 24.2 54.3 343 14.3 78.9 28.9 8.9 n/a n/a n/a
2 40.1 30.1] 25.1 33.1] 13.1 0 76.4 26.4 6.4 n/a n/a n/a
1] 21.2 11.2] 62 385 18.5 0 86.7 36.7 16.7 n/a n/a n/a
Ian 9/28/2022 3 8.32 0 0 19.6 0 0 50.1 0.1 0 n/a n/a n/a
2 4.78 -0.22| 0.22 12.8] 0 2.2 483 0 0 n/a n/a n/a
\ 1| 0 | 5| 347 653 11.53 11.7 8.3 283 68.3 o/ -1.7
9/29/2022| 3| 0 -5 5 0 -10 15 8.52]  -11.48 31.48 n/a n/a| n/a
2 0 -5 5 0 -10 15 0 20 40 153 -347 54.7
| 1] 3.33 -1.67 167 10.1 0 4.9 32.5 0 7.5 9.32]  -40.68]  60.68

Table 12: Fractional coverage and deviation from expected values for each category of each

forecast for each day of each hurricane, for old and new ERO definitions
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In Table 12, the results of the process described above is shown. Figure 19 depicts these
differences as charts to get a better visual sense of the difference between expected and observed
fractional coverages. Positive values represent underwarning, while negative values represent

overwarning. The closer the values are to 0, the more accurate the forecast was.

Looking at the table and charts, we can generally see that for Florence and Michael, the
new ERO definitions produce more accurate (closer to 0) results. With Ian, the results for the
new definitions tended to deviate more from 0. It is also interesting to analyze how the EROs
evolve over time for each day of the storm. In some cases, like for Florence under the old ERO
definition for 9/14 and 9/15, the values tend closer to 0 as we get closer to the day the forecast is
issued for. In other cases, the values seem to get less accurate, like with Ian. This could be due to
the fact that no High warnings were issued for Ian until the final day, as well as the inaccurate

track forecasting as discussed earlier.
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Figure 19: Comparing time/accuracy evolution of EROs between old/new ranges (positive

values=underestimation, negative=overestimation) (note that ranges differ per hurricane)
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To verify the ERO forecasts against observations by obtaining a quantitative score of
ERO performance, Fractional Brier Scores and Fractional Skill Scores were calculated. The
Fractional Brier Score (FBS) is analogous to the typical Brier Score used for forecast
verification, but works by comparing forecasted fractional coverage to observed fractional
coverage rather than comparing fractional forecasts to binary outcomes. Like with the Brier
Score, the FBS deems a forecast more accurate the closer to 0 it is. However, it is inappropriate
to compare FBSs to one another, as the definition changes for every calculation. The Fractional
Skill Score (FSS) combats this. The FSS takes the worst possible FBS (WFBS) for the particular
calculation and compares it to the calculated FBS. The equations used are shown below. The

resulting FSS is more accurate the closer to 1 it is.

1
1
FBS = TZ(NPi’f - NPi’O)Z
i=1

1 1
_1 2 2
WEBS == () NP+ ) NPfo)
i=1 i=1

FBS

FSS=1- WEBS'

Results for each hurricane for both new and old ERO definitions are shown in Table 13.
The FBS scores all appear fairly close to 0, but as discussed above, this tells us little about how
they compare to each other. Accordingly, the WFBS scores were calculated, allowing for FSS
scores to be determined. All scores were greater than 50%, indicating that the EROs were useful
according to the standards described in Necker et al. 2024, and all were additionally greater than
75%, representing significantly higher skillfulness than the 50% standard. Additionally, all FSS

scores for the new ERO definition were higher than those for the old ERO definition, validating
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the 2022 choice to change the definition. Hurricane Florence had the most accurate EROs across

both categories, while Hurricane Ian had the least accurate EROs. This aligns well with the

visual analysis of the EROs vs observed flash flooding for each hurricane discussed previously in

this section, shown in figures 12-18.

Hurricane | FBS old FBS new | WFBS old | WFBS new | FSS old FSS new
Florence 0.0222 0.0098 0.2669 0.3391 0.9168 0.9710
Michael 0.0717 0.0206 0.4189 0.5361 0.8288 0.9615
Ian 0.0180 0.0230 0.0839 0.1101 0.7855 0.7912

Table 13: FBS, WFBS, and FSS results for each hurricane under old and new ERO

definitions.
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4.3. Rainfall, Social Vulnerability, and Disaster Declaration in Florence

Figure 20 shows the official FEMA-approved disaster declaration designations in North
Carolina after the Hurricane Florence event in September 2018. As discussed in Section 2.4,
these designations can include individual assistance and/or public assistance, with categories A-
G representing full-spectrum public assistance. This figure can be compared with Figure 21,
which shows Hurricane Florence’s rainfall and 2018 demographic statistics for North Carolina

counties.

FEMA-4393-DR, North Carolina Disaster Declaration as of 11/15/2018
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Figure 20: FEMA disaster declarations in North Carolina after Hurricane Florence.
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Figure 21: Florence total rainfall and social vulnerability factors by county. Rainfall from

CPC-Unified dataset, social data from SVI (2018).

This visual analysis is important as it provides insights into why a particular county may
have been designated the way it was. For example, Wake County, depicted in Figure 20,
experienced a significant amount of rainfall according to Figure 21 but was not assigned any
federal disaster relief. Looking at the demographic factors in Figure 21, it can be seen that Wake
County is consistently resilient by all the listed factors, as it is high in Per Capita Income and low
in all hardship measures. This provides preliminary evidence that social factors were taken into
account when providing deferral relief after Hurricane Florence, however, certain distinctions are
less clear. Randolph County only received public assistance, not individual, despite being
similarly or more vulnerable than nearby Guilford County, which received both after a similar

amount of rainfall.
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To perform the multinomial logistic regression model aspect of this analysis, first, a rain-
only model was made for Florence’s impact in North Carolina. After training the model in R, a
process that calculated the optimal coefficients for each variable, the model had a 73% accuracy
rate when predicting disaster designation based on county rainfall alone. To examine these
results further, we can look at the coefficients (Table 14) and corresponding p-values (Table 15).
A closer look at predicted designations versus true designations is available in Table 18. The
possible designations are shown in Figure 20, and the shorthand key for each value in the table is

listed below.

0 — No designation

1 — Individual Assistance

2 — Individual Assistance and Public Assistance

3 — Individual Assistance and Public Assistance (Categories A-G)

4 - Public Assistance

In Tables 14 and 15, each row compares the odds of the 0 (no designation) category to
category 1, 2, 3, or 4. The coefficient is only notable if the corresponding p-value indicates that
the coefficient is significant. For the rain-only model, the coefficients are significant for all
categories except 1, which is likely due to there being only one data point assigned to the
Individual Assistance Only category (see Figure 20). Positive coefficients indicate that as rainfall
increases, the likelihood of the county being assigned the designation vs no designation
increases. With this baseline accuracy, we can go on to produce a model that takes SVI variables

into account.
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(Intercept) Coefficients: rain$Band1
1| -7.685600 0.03364345
2 1-10.777711 0.05997723
31 -11.865540 0.07027526
41 -2.880751 0.01917204
Table 14: Coefficients for Rain-Only Model (green shading = significant to p <.05)
(Intercept) P Values: rain$Band1
1 | 3.099274e-02 1.583157e-01
2 | 6.840698¢-05 2.056865¢-04
31 1.223372e-05 1.463243¢-05
4| 3.442519¢-04 6.310509¢-03

Table 15: p-values for Rain-Only Model (green shading = significant to p <.05)

Tables 16 and 17 show the coefficients and p-values for this more complex rain + SVI

model. After going through the same process of optimizing coefficients and assessing ultimate

accuracy, this model has a 79% accuracy of predicting the correct category, which is notably

greater than the rain-only model. Again, the significant p-values and their corresponding

coefficients are highlighted.

(Intercep | rain$Ban | EP_UNIN | EP_UNE | EP_POV | EP_ MOB | E PCI

t) d1 SUR MP ILE
1|-5.8426 -0.5385 5.6257 -10.118 3.3598 -10.557 1.3383¢-03
2| -17.375 0.0603 -0.1909 -0.0412 0.1252 0.0053 2.2418e-04
31-20.442 0.0674 0.4108 0.1886 0.0499 0.0074 6.8628e-05
413.4398 0.0211 -0.0931 -0.2182 -0.0530 0.0173 -1.3691e-04

Table 16: Coefficients for Rain + SVI Model

(Intercep | rain$Bandl | EP_UNINS | EP_ UNEM | EP POV | EP MO | E PCI

t) UR P BILE
1]-5.8426 0.0000e+0 0.0000e+0 0.0000e+0 0.0000 0.0000 0.9045
21 -17.375 7.1623e-7 0.0000e+0 5.2637e-5 0.0002 0.9139 0.0014
3 (-20.442 6.8854e-7 0.0000e+0 0.0000e+0 0.4100 0.8356 0.3650
413.4398 3.7471e-3 1.2001e-10 0.0000e+0 0.3568 0.6800 0.0008

Table 17: p-values for Rain + SVI Model
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In this model, we can see which SVI variables are most significant when predicting
county disaster designation. Rainfall, percent uninsured, and percent unemployed all had
universally significant impacts on the accuracy of the model. On the other hand, percent below
the poverty line, percent of mobile homes, and per capita income had variable outcomes, with

improved accuracy for some categories but not for others.

For further insight into the testing outcomes of the model, Table 18 shows the predicted
designations for 25 counties versus their actual designations. Predictions for both models (rain
and rain + SVI) are shown, with highlighted numbers representing a correct prediction. From this
closer analysis, we can note particular counties, such as Ashe and Chatham, where SVI variables
contributed to a correct prediction. In Ashe County, the consideration of rain only resulted in an
incorrect prediction of no federal assistance. However, when SVI variables were considered, the
model gave a correct prediction of public assistance. On the other hand, for Chatham County, the
rain only model predicted more assistance (Individual & Public A-G) than was needed. When
considering the low social vulnerability of the county, the model correctly went on to predict that

less assistance was needed.
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County

Designation

Rain Only prediction

Rain + SVI prediction

Alamance

Alexander

Alleghany

Anson

Ashe

Avery

Beaufort

Bertie

Bladen

Brunswick

Buncombe

Burke

Cabarrus

Caldwell

Camden

Carteret

Caswell

Catawba

Chatham

Cherokee

Chowan

Clay

Cleveland

Columbus

Craven
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Table 18: Designations vs. predicted designations for 25/100 counties.

These results should be considered in the context of the small sample size, which

51

included only the 100 counties of North Carolina, and the fact that these models were only tested
on one hurricane event with extreme rainfall. Adding other hazard measures to the model, such
as max wind speed or tornado presence, could result in increased accuracy of predictions.

Though there was a clear increase from the accuracy of the rainfall-only model (73%) to the




accuracy of the rainfall plus SVI model (79%), it is difficult to say how significant this difference
is. It is also uncertain whether the SVI variables contributed to directly the designations or

whether the relationship was indirect or by chance.
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CHAPTER 5

CONCLUSION

5.1. Discussion

The results of this thesis reveal various components of how hurricane rainfall hazard is
characterized. Because of the nature of this study, which only looks at three hurricanes, it is
difficult to draw conclusions beyond the hurricanes considered in this analysis. However, the
methodology can provide a framework for future studies that consider a larger sample of
hurricane rainfall data, which would be particularly useful for the ERO verification conducted as

part of Research Question 2.

For the first research question concerning how rainfall was distributed over space and
time for Hurricanes Florence, Michael, and Ian, it can be concluded from a visual analysis and
by comparing basic statistics that all three had different rainfall profiles in a qualitative sense.
However, when testing for quantitative significant differences in the distributions, it was found
that, by the chosen method, Michael and Ian were not significantly different from each other.
From this result, we can conclude that even for seemingly very different hurricane profiles,

rainfall is not necessarily significantly diverse.

The second aspect of this thesis concerned comparing EROs with the actual extent of
flash flooding during each hurricane. The strongest conclusions can be drawn when looking at

the Fractional Skill Scores for each definition. Florence had the most accurate EROs, Michael
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had the second most accurate EROs, and Ian had the least accurate EROs. This indicates that
ERO accuracy differs by each hurricane and may be highly dependent on track predictions and
other factors that are not necessarily at play in EROs for non-hurricane events. Additionally,
there was not a consistent increase in accuracy from Day 3 to Day 1 measurements. This is
problematic, as forecasts should theoretically consistently get better the closer we get to the
anticipated event. We can also conclude that the new ERO definition is more accurate than the
old ERO definition, though, again, the small sample size does not allow us to test for the

significance of these differences.

Finally, with Research Question 3, it can be concluded that rainfall likely played a factor
in county-level FEMA disaster declaration designations, and that social vulnerability variables
potentially played a role. It should be noted that the accuracy did not decrease with the SVI
variables, so we can likely rule out there being a negative relationship. Again, a larger sample
size is required to draw further conclusions about how these SVI variables played a role
compared to the role of rainfall. Furthermore, there are many variables unaccounted for that may

have confounded the results.

These conclusions can be applied in varied ways. The successful verification of the
skillfulness of EROs supports their future use for warning populations of flash flooding during
hurricanes. Emergency managers should take ERO issuances seriously as early as Day 3 in order
to provide information to regions which may be at risk of experiencing flash flooding. In
particular, any area designated with a High outlook should be warned as early as possible, as
fractional coverage analysis showed that issuances of this category are highly accurate, even
early on. Warnings based on EROs should include actionable information to prevent harm to life,

infrastructure, and property. When determining the recommended action (i.e. shelter in place or
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evacuate), local factors like elevation, water management infrastructure, and structural soundness
should be considered. Accordingly, blanket statements of recommended actions at, say, the
county level may not be appropriate. Individuals will need to play a role in their own decisions.
In order for the public to make informed decisions, it must be ensured that EROs are well
understood. Research on the social science side of risk communication should be performed,
looking at how people perceive EROs and what preventative actions they end up taking based on
the messaging. Other metrics, such as the Extreme Rain Multiplier discussed earlier, could be

evaluated as well and compared to the conceivability of EROs.

5.2. Future Work

Future research should continue to validate the efficacy of EROs under hurricane
conditions. These validations can become part of NHC Tropical Cyclone Reports for all US-
landfalling tropical cyclones. The utility of verifying EROs in Tropical Cyclone Reports is
already demonstrated by the newly released report for Hurricane Helene (Hagen et al. 2025).
Though the report utilizes a different verification method (practically perfect rather than
fractional coverage), it represents what is likely the first time that ERO verification has been
included in a Tropical Cyclone Report. It is clear that the utility of verifying EROs in the context

of hurricanes has been recognized, and future work should continue in this direction.
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Figure 46. Forecast evolution of the Weather Prediction Center’'s Excessive Rainfall Outlook valid 1200 UTC 26 September to 1200 UTC
27 September 2024. The “practically perfect verification” is derived from a field of observations and attempts to depict what a
perfect WPC Excessive Rainfall Outlook would have looked like. The observations it incorporates include: local storm reports
of flooding, flash flood guidance exceedance, annual recurrence interval exceedance and USGS river gauge flooding.

Figure 22: ERO forecast verification for Hurricane Helene (2024) as seen in the Tropical

Cyclone Report by Hagen et al. 2025.

Expanding the space and time scope of this work is also an important measure to be
taken. With this thesis project only covering a select number of recent hurricanes in the
southeast, it would be interesting to see similar methods performed for hurricanes making
landfall in other parts of the United States and at different points in history. A component of a
temporal-based analysis could be determining how hurricane-induced rainfall has evolved as a
result of climate change and investigating whether or not climate change has had an influence on
the accuracy of forecasts. It will also be important for future work to continue to explore the role
of rainfall and social variables in FEMA disaster declarations, especially considering the context

mentioned in Section 2.4 that there can be political motivations behind approving disaster
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declarations at the federal level. These political biases could be combatted by creating a more
objective machine learning model based on a function of county-level hazards, exposure, and
vulnerability to determine the most appropriate category of federal funding to distribute to each
affected county. However, a model of this sort could obscure the nuance of disaster, and
qualitative analysis of the situation should always be performed in tandem if such an algorithm
were to be created. In all, it is clear that rainfall hazard should be considered in the context of

exposure and vulnerability.
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