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ABSTRACT 

 Earth harbors vast microbial genetic diversity, yet AI-driven functional prediction remains 

challenging due to underrepresentation in functional reference databases and severe class 

imbalance among 2,200 Enzyme Commission (EC) classes. This project tests three data 

augmentation methods to increase underrepresented EC classes: (1) reverse-complement 

(doubling 150,000 training samples), (2) synonymous codon substitution (generating 600,000 

sequences with 25–70% replacement probability), and (3) conditional GAN generation 

conditioned on GC content and codon frequency. We created class-balanced training datasets and 

trained a classifier using a pretrained DNA encoder, LookingGlass, with a 1D convolutional neural 

network (CNN) decoder. Model performance was evaluated using micro- and macro-averaged F1 

scores. Experiments revealed that codon substitution significantly improved macro-F1 (from 0.15 

to 0.23) and rare-class recall (from 33.42 to 38%), while reverse complementation degraded 

performance by introducing label noise. GAN-based augmentation yielded marginal gains without 

filtering. This work develops a complete training system, evaluation framework, and benchmark 



datasets to enhance AI-driven functional annotation of DNA sequences across Earth’s diverse 

microbial communities. 
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CHAPTER 1 

Introduction  

1.1 The Challenge of Microbial Functional Annotation 

Microbial life represents most of the biological diversity on Earth, spanning every 

environment from deep oceans to hydrothermal vents. This diversity is reflected not only in 

taxonomic variation but also in an immense range of functional capabilities encoded in microbial 

genomes. Yet most microbial organisms remain uncultured, uncharacterized, and functionally 

unannotated – a phenomenon often referred to as "microbial dark matter" (Lloyd et al., 2018). This 

hidden functional potential represents a massive untapped resource for biotechnology, medicine, 

and ecosystem science (Jiao et al., 2021; Cavicchioli et al., 2019). 

    The rise of untargeted metagenomic sequencing has accelerated the discovery of this hidden 

diversity. Large-scale global surveys, such as Tara Oceans (Sunagawa et al., 2015), Bio-GO-SHIP 

(Garcia et al., 2018), and BioGEOTRACES (Biller et al., 2018), have revealed millions of 

previously uncharacterized genes from environmental DNA. These efforts have expanded the 

known functional landscape of environmental microbiomes and led to the identification of 

sequences with biotechnologically relevant properties—such as plastic-degrading enzymes, novel 

antimicrobial peptides, and marine-encoded variants of already known systems like CRISPR-Cas 

(Chen et al., 2024). While CRISPR-Cas systems were originally discovered in cultured 

organisms, these environmental studies extended their presence to marine microbial 

communities, underlining the depth of uncharted functional diversity in the ocean microbiome. 
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    Despite these discoveries, a critical bottleneck remains in functional annotation. Environmental 

sequencing has vastly outpaced our ability to assign biological meaning to genetic data. By the 

mid-2020s, protein sequence databases exceeded 300 million entries, yet fewer than 0.2% of these 

sequences had been experimentally validated (Bateman et al., 2023). 

1.2 Enzyme Class Imbalance and Functional Gaps 

Exacerbating this annotation gap is a severe class imbalance among categories of enzyme 

activities; common functional classes are heavily overrepresented in protein reference databases, 

whereas many enzyme classes have only a few representatives or exist as orphan classes with only 

one protein representing that class. The top 20% of Enzyme Commission (EC) numbers cover 90% 

of enzyme annotations in UniProt, while the remaining 80% represent just 10%, and approximately 

half of the proteins lack any EC annotation (Silveira et al. 2014; De Ferrari et al. 2012; Figure 1). 

 

 

Figure 1: Proteins' Enzyme Commission (EC) numbers are distributed logarithmically  in reference 

databases of proteins and common model organisms, with a few EC classes accounting for the majority of 

representative proteins. Starting with the most frequent EC number, the distribution is shown as a 
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cumulative percentage. Note the logarithmic scale on both axes. (Reproduced from De Ferrari et al., 

2012.) 

 

    Enzyme Commission (EC) numbers categorize enzymes by the chemical transformations they 

catalyze, where each enzyme receives a four-digit number representing a hierarchical numerical 

classification, with each digit describing an increasingly specific molecular function (Han et al. 

2023) (Appendix A, Figure 8). UniProt, the Universal Protein Resource, is a comprehensive 

database providing protein sequences, many of which with EC number functional annotations. Its 

manually curated section, Swiss-Prot, contains sequences with high-quality functional annotations 

and additional information such as enzyme activity, domains, and catalytic residues (Bateman et 

al. 2023). The prediction of enzyme function is made difficult by a severe class imbalance in the 

data, where some EC classes consist of hundreds or thousands of sequences with good 

representation, and many other EC classes consist of only one or a few gene sequences. An AI 

classification model trained on this class imbalance will likely perform better on highly 

represented classes, but worse on underrepresented classes with very few examples. 

    Despite advances in sequencing and annotation tools, several critical gaps persist in the field of 

enzyme function prediction. Homology-based annotation methods cannot capture the full diversity 

of microbial genes, especially those from uncultured organisms or poorly studied environments; 

portions of this "microbial dark matter" remain uncharacterized due to incomplete genome 

annotation across large sections of the bacterial tree of life, and low sequence similarity of genes 

within the same functional (EC) class (Vanni et al., 2022; Hoarfrost et al., 2022; Price et al., 2018). 

    AI-driven functional classification also faces several obstacles to adequate performance, 

particularly for rare EC classes. Most enzyme functional classification datasets exhibit a long-tail 

distribution, where a small number of EC classes dominate the training set, while many rare classes 

contain only a few examples. Standard classifiers often struggle to learn from these 
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underrepresented classes, resulting in biased predictions that favor frequent EC numbers (Dalkiran 

et al., 2018). Additionally, many existing AI-driven classifiers were trained on datasets that split 

data into training, validation, and test sets randomly without regard to sequence similarity of 

sequences across sets, causing homologous sequences with near-identical sequences to appear in 

both training and test sets. This artificially inflates performance by favoring memorization of the 

training set over generalization to true functional features underlying DNA sequences. Newer 

dataset such as BioTalk (Zhang et al., 2024) attempt to address this with sequence similarity-aware 

data splitting (e.g., using UniRef50 clusters such that proteins across sets do not have more than 

50% amino acid similarity), offering a more realistic benchmark for functional prediction (Hou et 

al., 2023). 

    Moreover, few-shot learning remains underexplored. While recent models such as CLEAN (Yu 

et al., 2023) and HDMLF (Zhenkun et al., 2023) attempt to address this via contrastive learning 

and hierarchical structure, systematic frameworks for few- or one-shot function prediction remain 

limited. 

1.3 Addressing Class Imbalance for Deep Learning-Driven Function Prediction with Data 

Augmentation 

Class imbalance in functional annotation presents significant challenges. The dominance of a few 

EC classes biases computational models and annotation pipelines toward well-represented 

functions, diminishing prediction accuracy and functional inference for rare or orphan enzyme 

classes (Yang et al., 2024). Machine learning and homology-based approaches particularly 

struggle with underrepresented classes, exacerbating the functional annotation gap (Radivojac et 

al. 2013). 
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    Sequence similarity does not necessarily imply functional equivalence between proteins 

(Pearson et al. 2013). Proteins with high overall sequence similarity can exhibit distinct 

biochemical functions due to variations in active site residues, and many proteins within the same 

EC number exhibit low sequence similarity (Pearson et al. 2013). 

    Homology-based methods fail to assign functions to proteins that have low sequence similarity 

to existing representatives in reference databases, and frequently misannotated functions of 

proteins based on high sequence similarity of functionally distinct enzymes (Schnoes et 

al. 2009). The assignment of functional labels to proteins thus proves challenging in two cases: 

proteins without closely homologous relatives, and functional classes with few known instances 

(Radivojac et al. 2013). Machine learning-based functional prediction methods use computational 

algorithms to predict protein functions from sequence data. However, class imbalance 

significantly impacts these methods by skewing training datasets toward dominant functional 

classes, reducing accuracy and reliability for predicting rare or novel enzyme classes (Yang et al. 

2024). 

    In response to these challenges, deep learning approaches have shown strong promise for 

functional prediction. Functional annotation refers to the process of predicting the biological role, 

activity, or localization of nucleotide or protein sequences. Recent advances in biological 

foundation models such as ESM (Rives et al. 2021), ProtTrans (Elnaggar et al. 2022), and 

ProteinBERT (Brandes et al. 2022) demonstrate that transformer-based architectures can learn 

complex biological patterns from hundreds of millions of sequences. These pre-trained models 

provide powerful sequence embeddings for downstream tasks, including enzyme classification, 

subcellular localization, and secondary structure prediction. However, these embeddings still 
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require task-specific classifiers to extract actionable predictions, particularly under class imbalance 

(Yang et al. 2024; Zou et al. 2019). 

    To improve model performance in low-data regimes and mitigate class imbalance, data 

augmentation has emerged as a promising strategy in biological sequence modeling (Wen et al. 

2020). In this work, we explore three key augmentation strategies: 

First, reverse complement augmentation (Appendix A, Figure 9) leverages the strand symmetry of 

DNA. Since sequencing technologies can randomly capture either strand, generating reverse 

complements effectively doubles the dataset size while preserving biological validity and has been 

previously used for data augmentation in biological deep learning contexts (Cao and Zhang 2019, 

Hoarfrost et al. 2022). This promotes strand-invariant learning and is particularly useful in 

metagenomic contexts; however, the complementary strand of a gene coding sequence does not 

typically code for the same gene, and the utility of reverse complementation for data augmentation 

in a functional prediction context is unknown. 

    Second, synonymous codon substitution takes advantage of codon redundancy in the genetic 

code. By substituting codons that encode the same amino acid, new gene sequences can be 

generated without changing the encoded protein, thereby enhancing nucleotide diversity while 

preserving biological function (Rodriguez et al., 2024) (Appendix A, Figure 10,11). This method 

mimics natural genetic variation and may strengthen model robustness to unseen codon usage 

patterns. 

    Third, we employ conditional Generative Adversarial Networks (cGANs) (Appendix A, Figure 

14) to synthesize entirely new sequences conditioned on biological features such as EC class 

labels, GC content, and codon frequency. While GANs (Appendix A, Figure 13) have been 

successfully used to generate novel enzymes (Repecka et al. 2021) and functionally constrained 
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protein sequences (Kucera et al. 2022), their use for functional DNA augmentation—particularly 

conditioned on EC labels remains underexplored. The application of generative models for 

biological classification is still poorly understood, particularly in low shot learning contexts. 

Conditional generation enables the enrichment of low-frequency classes with realistic sequences 

that align with biological constraints (Marouf et al. 2020). Our study applies cGANs to address 

this gap. 

    These augmentation methods are evaluated both individually and in hybrid combinations to 

assess their impact on enzyme classification, with an emphasis on rare EC classes. Our research 

investigates how training classifiers with synthetically augmented data affects their ability to 

recognize underrepresented enzyme functions. This study represents a new direction, 

drawing from protein design concepts and generative modeling to enhance functional prediction 

in the context of metagenomic enzyme discovery (Hawkins-Hooker et al. 2021; Marouf et 

al. 2020). 

This work is driven by two research questions: 

1. Can data augmentation improve the classification of rare enzyme classes from gene 

sequence? 

2. Which augmentation strategies offer the greatest improvements? 

To address these questions, we define the following objectives: 

1. Develop and evaluate a functional classification pipeline using embeddings derived from 

a deep learning biological foundation model connected to an enzyme function prediction 

classifier. 
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2. Implement multiple augmentation techniques individually and in hybrid combinations to 

create benchmark augmented datasets that alleviate class imbalance of EC functional 

classes. 

3. Assess the impact of these data augmentation strategies on functional prediction, with an 

emphasis on rare-class enzymes using performance metrics including macro recall and F1-

score.  
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CHAPTER 2 

Methodology 

2.1 Functional Prediction Dataset Curation 

A dataset of gene sequences with known functional annotations was curated from the SwissProt 

database (Bairoch et al., 2000), with each gene DNA sequence associated with EC number 

annotations. A previously described BioTalk dataset (Zhang et al., 2024) associating gene coding 

DNA sequences with functional annotations (EC numbers) was used for training and evaluation. 

This dataset is divided into training, validation, and test sets in a stratified manner as described in 

(Zhang et al., 2024), preserving an approximate 80/10/10 proportion of each enzyme class across 

splits, and maximizing sequence dissimilarity across training, validation, and test sets. In brief, 

training, validation, and test splits use UniRef cluster assignments (Suzek et al., 2015) to ensure 

minimal sequence similarity between partitions. This allows for a more realistic evaluation of 

generalization performance, particularly on novel or rare enzyme classes. This dataset consists of 

151,314 training examples, 19,296 validation examples, and 19,930 test examples spread across 

2,228 EC number categories, with a median count of 4 genes per EC class, a 90th percentile of 248, 

and maximum of 2,288.  

This curated dataset addresses several long-standing challenges in biological functional prediction: 

Realistic class imbalance, reflecting the rarity of many enzyme functions in real-world DNA 
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sequencing datasets; use of high-quality, manually curated SwissProt entries, ensuring accurate 

functional prediction labels; and cluster-aware data splitting using UniRef50–100, ensuring that 

train, validation, and test splits have low sequence similarity, as is expected during deployment. 

    In this work, we use the ‘SwissProt Unbalanced’ set (Benchmark 3) from Zhang et al. 2024, and 

the corresponding Test Set I, which includes EC classes that are also present in the training set. 

This test set enables a meaningful evaluation of the model’s baseline performance for known 

functional categories. In this study, data augmentation strategies were applied only to the training 

set, and the validation and test sets remain unaugmented. 

Table 1: Summary statistics of enzyme classification dataset (Zhang et al., 2024), showing the number of 

unique EC classes, total samples, and class distribution metrics. 

Total EC classes 2,228 

Total training examples  151,314 

Median genes per EC class 4 

EC classes with one example 770 

EC classes with more than 10 examples 267 

Mean genes per EC class 68 
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Figure 2: Distribution of EC classes by support range. Most EC classes (61.3%) fall in the lowest support 

range (0–10 sequences per class), illustrating a highly skewed long-tail distribution. Only 3.5% of EC 

classes have more than 500 examples, highlighting the underrepresentation of most enzyme functions in 

the dataset. 

2.2 Embeddings and Classifier Architecture for Enzyme Function Prediction 

Embedding Generation from LookingGlass 

We leveraged LookingGlass 2.0 (Jha and Hoarfrost 2025), a biological foundation model hosted 

on Hugging Face, to encode baseline and augmented gene sequences as context-rich embedding 

vectors. LookingGlass captures functional features of DNA sequences by transforming them into 

dense embeddings that reflect evolutionary and biochemical relationships—information not 

captured by one-hot encodings or k-mer counts (Hoarfrost et al., 2022). To prevent overfitting, 

model weights were frozen during training, and the fixed-length embeddings were passed directly 

to the CNN classifier. 

Choice of Classifier: 1D Convolutional Neural Networks (CNNs) 
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We designed a 1D Convolutional Neural Network (CNN) as the classification head on top of 

LookingGlass embeddings. CNNs are particularly effective at detecting localized 

motifs and conserved patterns critical for enzyme function, offering strong inductive biases in 

biological sequence analysis. Compared to RNNs and Transformer-based decoders, CNNs 

are computationally efficient, less prone to overfitting, and well-suited for small-to-medium 

datasets (Zeng et al., 2016; Almagro Armenteros et al., 2019;). Recent work demonstrated CNNs’ 

state-of-the-art performance in the Random Promoter DREAM Challenge (Rafi et al., 2024). 

2.3 Data Augmentation Methods 

Reverse Complement Augmenation 

We tested using reverse complementation for a varying number of randomly selected 

underrepresented EC classes. We selected N number of classes [10, 25, 50, 70] such that for N 

percent of underrepresented classes, the reverse complement of each gene within that class was 

added to the augmented dataset, doubling the number of training examples of genes in the selected 

classes (Table 2, Figure 3). This resulted in a training set size ranging from 152,739 to 302,628 

training examples for RC10-RC100 (corresponding to 10-100% of training examples augmented), 

relative to a baseline training set size of 151,314. Here RC (100) is Reverse complement of 100% 

of the original dataset sequences. 
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Table 2: Reverse Complement Augmentation Impact on Training Size. Summary of total and median 

training samples after applying varying levels of reverse complement augmentation. 

Augmenation Variation Total training sample Median  

RC 10 152,739 5.0 

RC 25 152,996 5.0 

RC 50 153,694 6.0 

RC 70 154,234 7.0 

RC 100 302,628 8.0 
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Figure 3: Reverse Complement Probability Based Substituion Flowchart. Workflow for reverse 

complement-based augmentation. Sequences from underrepresented EC classes are probabilistically 

selected and augmented using their reverse complements to expand the training dataset. 

Synonymous Codon Substitution Augmentation 

Codon substitution augmentation was performed using a random selection algorithm for 

augmentation. For each sequence in the training set, synthetic sequence creation involved codon-

by-codon examination, with p representing the probability of selecting a synonymous codon 

from the original sequence. The primary augmentation runs used p = [0.1, 0.25, 0.5, 0.7], 

resulting in approximately 10, 25, 50, or 70% of codons in a gene sequence being replaced by 

different randomly selected synonymous codon (Appendix A, Figure 15). 
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To balance the dataset, the augmentation method was applied iteratively to EC classes with fewer 

than 248 training examples, a threshold selected as it represents the 90th percentile of gene 

sequence counts across all EC classes. This process continued until each EC class contained 248 

gene sequences, resulting in a training set of 615,608 total sequences with a median of 248 genes 

per EC class (Table 3). 

Table 3. Codon Substitution Augmentation Impact on Training Size. Summary of total and median training 

samples after applying varying levels of Codon Substitution augmentation. 

Augmenation Variation Total training sample Median support  

CS 10 615,608 248 

CS 25 615,608 248 

CS 50 615,608 248 

CS 70 615,608 248 

 

Conditional GAN-Based Sequence Augmentation 

We trained a conditional Generative Adversarial Network (cGAN) (Appendix A, Figure 14) to 

generate novel DNA sequences for underrepresented enzyme function classes. To tailor sequence 

generation toward specific enzyme classes, the cGAN was conditioned on three biological 

attributes: (i) the EC class label, (ii) codon frequency (Appendix A) vectors, and (iii) GC content 

(Appendix A, Figure 12). These conditioning components were provided to both the generator (G) 

and discriminator (D) to guide generation. GC content quantifies the proportion of guanine (G) 

and cytosine (C) bases characterizing an EC class, which impacts gene stability and expression, 

while codon frequency captures how synonymous codons are preferentially used within enzyme 
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classes. Conditioning G on these features ensures that it produces sequences statistically aligned 

with the characteristics of the original target class. 

    The generator is a fully connected feedforward network that accepts a 100-dimensional noise 

vector along with three conditioning vectors: an EC class embedding (projected to 100 dimensions 

via an embedding layer), a GC content scalar (transformed using a single-layer linear network to 

a 100-dimensional vector), and a codon frequency vector (64-dimensional, also transformed using 

a single-layer linear network to a 100-dimensional vector). Each of these three conditioning inputs 

is projected separately into 100-dimensional vectors. To regulate their influence, we apply a 

conditioning strength parameter (tested between 0.1 and 1.0), which mixes the learned embedding 

with random noise to encourage robustness while preserving biological relevance. The noise vector 

and the three condition vectors are concatenated and passed through a single dense (fully 

connected) layer activated by a ReLU function. This layer transforms the input into a sequence-

length × vocabulary-size matrix, which is reshaped and normalized via a softmax function to 

approximate one-hot encoded DNA sequences. 

    The discriminator is a convolutional neural network (CNN) that receives either a real or 

generated DNA sequence (one-hot encoded), along with the same conditioning inputs: EC label 

embedding, GC content vector, and codon usage profile. The input sequence is passed through 

three stacked 1D convolutional layers with kernel size 4 and stride 2, using increasing filter sizes 

of 64, 128, and 256 (as specified by HIDDEN_DIM), each followed by a LeakyReLU activation 

function. The output of the final convolutional layer is flattened and concatenated with the 

conditioning vectors before passing through two fully connected layers: a hidden layer (with 

LeakyReLU) and a final sigmoid output layer that classifies the input as real or synthetic. 
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    Training was conducted for up to 200 epochs using the Adam optimizer, with learning rates of 

0.0005 for G and 0.0002 for D (β₁ = 0.5, β₂ = 0.999), on a Google Colab Pro instance equipped 

with a NVIDIA A100 GPU (40 GB memory). Mini batches (batch size = 64) were stratified by 

EC class to maintain class distribution during training. We applied label smoothing, assigning real 

labels a value of 0.9 to stabilize discriminator training. While individual generator and 

discriminator losses fluctuated during training, as is typical in adversarial training, progress was 

assessed through the biological plausibility of generated sequences (based on GC content and 

codon usage profiles), training dynamics, and improvements in downstream classifier 

performance, especially for rare EC classes. 

    Effective generator performance was typically observed between 6 to 18 epochs, with earlier 

epochs showing consistent alignment to target class properties and later stages offering 

diminishing returns. These observations guided our final training configuration, with 6 to 18 

epochs producing high-quality synthetic sequences suitable for augmentation. 

    This cGAN framework offers a biologically informed strategy for sequence-level data 

augmentation, particularly for long-tail rare functional classes. By embedding enzyme-specific 

genomic features into the generative process, the model creates class-consistent synthetic 

sequences that help balance training datasets and enhance the functional annotation of rare 

enzymes (Appendix A, Figure 17). This resulted in augmented training sets with rare EC classes 

boosted to a target threshold of 200 sequences per class (Table 4). 
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Table 4: cGAN Augmentation Impact on Training Size. Summary of total and median training samples 

after applying varying levels of cGAN augmentation. 

Augmenation Variation Total training sample Median support  

GAN 30 600,715 248 

GAN 50 615,608 248 

GAN 70 625,678 249 

Hybrid augmentation Techniques: 

We also tested additional combinations of augmentation techniques in two datasets:  

Codon500: In the original codon frequency augmented set, we used dynamic targeting for 

generating new sequences up to a the 90th percentile threshold (248 genes per EC class). We 

additionally create a codon frequency augmented set where the target threshold of number of genes 

per class is 521 (97th percentile), with substitution probability of 25% (Table 5). 

GAN70 +Codon25: We first used the cGAN (with 0.7 conditioning strength) to generate synthetic 

sequences for rare enzyme classes, up to the 90th percentile class size threshold. To introduce 

additional variation, we subsequently applied synonymous codon substitution to the synthesized 

sequences 1x with a 25% probability directly on these GAN-generated sequences. As a result, each 

rare-class sequence from the GAN had a codon-variant counterpart, effectively doubling the 

diversity while preserving functional constraints. This resulted in a training set of 1,325,752 

sequences with a median of 574 sequences per EC class (Table 5).  
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Table 5: Hybrid Augmentation Impact on Training Size. Summary of total and median training samples 

after applying varying types of Hybrid augmentation. 

Augmenation Variation Total training sample Median support  

GAN70 +CODON25 1,325,752 574 

CODON 500 1,208,201 521 

2.4 Classification Model Architecture and Training 

We developed a sequence classification pipeline to predict enzyme functions (EC numbers) trained 

on our baseline benchmark dataset (see above) and its augmented variants. Each gene sequence 

was first embedded using LookingGlass 2.0 (Jha and Hoarfrost 2025), a pretrained DNA language 

biological foundation model, and the resulting fixed-length vectors were used as input to a custom 

1D Convolutional Neural Network (CNN) trained for multiclass classification across all 2,228 EC 

classes in the training set. The embedding dimension was fixed at 512 across all experiments to 

ensure a uniform input shape for the CNN decoder. 

    The CNN architecture (Appendix A, Figure 18) consisted of two sequential 1D convolutional 

layers with 128-dimension filters and a kernel size of 3, using ReLU activation and stride-based 

down sampling in place of traditional pooling layers. Dropout layers with a rate of 0.5 followed 

each convolutional block to reduce overfitting. A global average pooling operation was applied to 

maintain input length invariance and extract compact feature representations, followed by a 256-

unit dense layer and a softmax output layer aligned to the EC label space. This design enabled 

efficient extraction of sequence-level motifs and functional signals from the embedded input. 

     The model was trained using the Adam optimizer with categorical cross-entropy loss. Training 

ran for up to 200 epochs, and early stopping was applied if validation loss failed to improve for 25 
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consecutive epochs. A batch size of 64 was used throughout, and training was conducted on a 

single NVIDIA A100 GPU (80 GB RAM). 

     To ensure reproducibility, a fixed random seed (42) was applied across all components, 

including dataset shuffling and model initialization. Training and validation loss and accuracy 

were recorded at each epoch during training. For the final evaluation of the test set, we selected 

the best-performing model checkpoint based on validation loss using the early stopping criteria 

described above. 

2.5 Implementation and Code Availability 

The CNN classifier and conditional GAN (Paszke et al., 2019) were trained using PyTorch (with 

CUDA support), Biopython was used for sequence manipulation including reverse 

complementation and codon translation (Cock et al., 2009), and fastBio's API was used to 

incorporate pre-trained LookingGlass 2.0 embeddings (Hoarfrost et al., 2022, ref LGv2). Other 

tools included scikit-learn for performance analysis, NumPy for vector projections, and SciPy for 

statistical comparisons and GC content calculation. Large-scale GAN and CNN training was made 

possible by the use of an NVIDIA A100 GPU (40 GB) for both training and experimentation on 

Google Colab Pro. This hardware and software infrastructure enabled our classification pipeline 

and evaluated proposed augmentation methods. 

    All code developed and used in this study, including the preprocessing scripts, synonymous 

codon substitution pipeline, conditional Generative Adversarial Network (cGAN) model, and the 

enzyme classification framework, is publicly available on GitHub.(https://github.com/Hoarfrost-

Lab/DataAugmentation). 

https://github.com/Hoarfrost-Lab/DataAugmentation
https://github.com/Hoarfrost-Lab/DataAugmentation
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2.6 Data Availability  

The datasets used for training and evaluating the models, including the original, augmented, and 

benchmark-ready versions, are hosted on Hugging Face and freely available for academic and 

research use. The dataset repository includes metadata, class distributions, and augmentation 

settings to enable full reproducibility of results presented in this work 

(https://huggingface.co/datasets/HoarfrostLab/Augmented_Dataset_for_EC_Class_Prediction). 

2.7 Model Evaluation and Logging 

To evaluate the performance of our classification pipeline, particularly under conditions of severe 

class imbalance, we employed several standard classification metrics. Each metric provides insight 

into a specific aspect of model behavior, especially in distinguishing well-represented EC classes 

from rare ones (defined here as EC classes with fewer than five training examples). These metrics 

were computed over the held-out test set to assess generalization beyond the training distribution. 

These metrics were computed over the held-out test set to assess generalization beyond the training 

distribution. 

Test accuracy is the most basic metric. It reflects how many predictions the model got right 

overall, regardless of class. Mathematically, it is defined as: 

TP (True Positives) are cases where the model correctly predicted the right enzyme class. 

TN (True Negatives) refer to all the non-target class instances correctly identified as not 

belonging to the predicted class. 

https://huggingface.co/datasets/HoarfrostLab/Augmented_Dataset_for_EC_Class_Prediction
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FP (False Positives) occur when the model incorrectly predicts a sequence to belong to a certain 

EC class when it does not. 

FN (False Negatives) happen when the model fails to detect a class that is present. 

Accuracy =  
TP + TN

TP + TN + FP + FN
 

Precision quantifies the reliability of a positive prediction. In other words, when the model assigns 

a sequence to a specific class, precision measures how often that assignment is correct. 

Mathematically defined as:  

Precision =  
TP

TP +  FP
 

Recall: asks how well the model captures all relevant instances of a class. It answers: “Of all the 

true examples belonging to a class, how many did the model successfully retrieve? 

Recall =  
TP

TP + FN
 

F1 score combines both precision and recall into a single number by taking their harmonic mean. 

It balances the trade-off between being accurate and being complete. 

F1 SCORE = 2 ×
Precision + Recall

Precision ×  Recall
 

This metric gives us a robust sense of per-class performance, especially when both false positives 

and false negatives are of concern.  
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To evaluate performance across the entire EC classification space, we report two types of averaged 

F1 scores: 

Macro F1: calculates the F1 score separately for each EC class and then averages them without 

weighting. Every class, whether frequent or rare, is treated equally. 

Macro F1 =  
1

C
∑ F1i

C

i=1

 

Where: C is the total number of EC classes. F1i is the F1 score computed for class i. 

Weighted F1: also averages F1 scores across classes but assigns higher weight to frequent classes 

based on the number of samples per class. 

Weighted F1 =  ∑
ni

N
.

C

i=1

F1i 

Where ni is the number of samples in class i, N is the total number of samples across all classes, 

and F1i is again the F1 score for class i. 

To further characterize the impact of augmentation strategies on rare enzyme functions, we 

introduce additional evaluation metrics: 

Predicted Classes (PC) refers to the number of unique EC classes the model predicted at least 

once in the test set. 

Rare Predicted Classes (RPC) is the subset of PC that includes only those rare EC classes 

(support < 5) for which the model made at least one correct prediction. 
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Rare Class Coverage (%) quantifies how much of the rare class space was captured: 

Rare Coverage =  
Rare Class Predicted

Total Number of Rare Class
× 100  

This metric directly assesses whether our augmentation strategies help recover functional diversity 

from the long tail of the EC class distribution. 

    By combining these metrics, we can comprehensively evaluate the effectiveness of the model, 

not only in predicting dominant classes, but more importantly, in uncovering rare and novel 

enzyme functions a key focus of this work. 
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CHAPTER 3 

Results  

This chapter presents a comparative evaluation of different data augmentation strategies for 

enzyme commission (EC) classification, relative to baseline performance on a model trained on 

the training dataset with no augmentation. Our evaluations were conducted with a test set 

comprising 19,929 DNA sequences having 2,228 EC classes, out of which 1,638 classes are 

classified as rare (defined as having five or fewer examples in the test set without augmentation).  

3.1 Baseline Performance 

The baseline classifier was trained on the unaugmented dataset, which showed 24.74% test 

accuracy, with a macro-averaged F1 score of 0.15 and a weighted F1 score of 0.25. The model 

predicted 740 different EC classes in the test set out of a total of 2,228 enzyme classes in the 

dataset. Among these, 545 belonged to the rare class subset, showing a rare class coverage of 33.27 

percent. This indicates that, the classifier is biased toward dominant classes. For instance, EC 

2.7.7.7 (DNA polymerase, with 513 genes representing that category) had an F1 score of 0.92, 

whereas EC 4.1.1.101 (malolactic enzyme, with 3 genes representing that category) had an F1 

score of 0.00 (undetected). This disparity underscores the severe class imbalance present in known 

functional annotation data. 

3.2 Synonymous Codon Substitution (CS) Augmentation 

Augmentations produced by synonymous codon substitution at 10–70% substitution rates of the 

training data showed significant improvement in model performance at all substitution rates, 
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effectively oversampling underrepresented classes without introducing noise (Table 6, Figure 4). 

The highest test accuracy performance was observed at a 25% substitution rate, although 

performance was comparable at 10, 25, and 50% substitution rates. 

Table 6: Codon Substitution Augmentation Performance Metrics. Comparison of models trained with 

varying levels of codon substitution probability, evaluating accuracy, F1 scores, predicted class counts, and 

rare class coverage. 

Augmentation Test Acc Macro-F1 Weighted F1 PC RPC Rare Coverage 

Baseline 24.75% 0.15 0.25 740 545 33.27% 

CS10 43.0% 0.23 0.41 852 629 38.4% 

CS25 44.0% 0.23 0.41 856 628 38.34% 

CS50 43.86% 0.23 0.41 851 625 38.15% 

CS70 31.0% 0.08 0.28 788 580 35.4% 

Notably, rare classes such as EC 4.1.1.101 improved from F1 = 0.00 in the baseline to F1 = 0.55 

(CS50), while EC 4.1.1.103 improved from F1 = 0.00 to F1 = 0.40 (CS25).  
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Figure 4: Performance Metrics for Codon Substitution Augmentation. Charts display changes in test 

accuracy, macro-F1 score, predicted class count (PC), and rare class coverage (%) compared to the 

baseline. 

3.3 Reverse Complement (RC) Augmentation 

Reverse Complement augmentation at varying levels from 10% to 100% of the training data. The 

performance declined sharply with higher augmentation rates (Table 7, Figure 5). Since reverse 

complement sequences typically do not encode the same protein, and may not encode any protein 

at all, this strategy introduced label noise, confusing the model and reducing both rare and common 

class accuracy. 
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Table 7: Reverse Complement Augmentation Performance Metrics. Comparison of models trained with 

varying levels of reverse complement probability, evaluating accuracy, F1 scores, predicted class counts, 

and rare class coverage. 

Augmentation Test Acc Macro-F1 Weighted F1 PC RPC Rare Coverage 

Baseline 24.75% 0.15 0.25 740 545 33.27% 

RC10 25.01% 0.15 0.25 737 540 32.96% 

RC25 23.23% 0.14 0.23 716 519 31.67% 

RC50 24.6% 0.14 0.25 724 529 32.96% 

RC70 23.77% 0.14 0.24 714 521 31.80% 

RC100 13.06% 0.08 0.13 505 375 22.89% 

 

 

Figure 5: Performance Metrics for Reverse Complement Augmentation. Charts display changes in test 

accuracy, macro-F1 score, predicted class count (PC), and rare class coverage (%) compared to the baseline. 
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3.4 cGAN-Based Augmentation 

We integrated class-specific synthetic sequences at 30%, 50%, and 70% of the training size using 

a conditional GAN. Although the overall test accuracy was marginally improved, GAN-based 

augmentation decreased macro-F1 and rare-class recovery (Table 8, Figure 6). This suggests that 

random noise may have been introduced by synthetic sequences, particularly for rare classes, 

resulting in a decline in data quality.  

Table 8: cGAN Augmentation Performance Metrics. Comparison of models trained with varying levels of 

cGAN conditioning factor, evaluating accuracy, F1 scores, predicted class counts, and rare class coverage. 

Augmentation Test Acc Macro-F1 Weighted F1 PC RPC Rare Coverage 

Baseline 24.75% 0.15 0.25 740 545 33.27% 

GAN30 26.37% 0.05 0.22 359 268 16.37% 

GAN50 30.34% 0.07 0.27 398 296 18.07% 

GAN70 31.34% 0.08 0.28 432 325 19.84% 
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Figure 6: Performance Metrics for cGAN Augmentation. Charts display changes in test accuracy, macro-

F1 score, predicted class count (PC), and rare class coverage (%) compared to the baseline. 

 

3.5 Hybrid and Fixed-Size Augmentation 

We also evaluated two composite approaches: a combination of GAN generation and codon 

substitution at a class target threshold of an increased 521 genes per class (Table 5). The hybrid 

GAN70+CS25 approach performs better than GAN30 in both test accuracy (29.24% vs. 26.37%) 

and rare class coverage (18.06% vs. 16.37%), indicating that mixing GAN and codon substitution 

may have the benefits but marginal. Codon25-500 matches Codon25 in accuracy (43.46% vs. 

44.0%) but slightly improves weighted F1 (0.44 vs. 0.41) and maintains rare class coverage 

(38.34%), suggesting that combining GAN and codon substitution may have some advantages, 

albeit slight ones. Codon25-500 maintains rare class coverage (38.34%) and slightly improves 

weighted F1 (0.44 vs. 0.41) while matching Codon25 in accuracy (43.46% vs. 44.0%), suggesting 

more consistent gains are provided by fixed per-class targets. According to these findings, codon 
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substitution augmentation consistently improves model performance, and more research is 

necessary to determine the ideal target threshold of labels for each category. 

Table 9: Hybrid Augmentation Performance Metrics. Comparison of models trained with varying levels of 

hybrid augmentation (along with baseline of individual techniques) evaluating accuracy, F1 scores, 

predicted class counts, and rare class coverage. 

Augmentation Test Acc Macro-F1 Weighted F1 PC RPC Rare Coverage 

Baseline 24.75% 0.15 0.25 740 545 33.27% 

GAN70+CS25 (Hybrid) 29.24% 0.06 0.25 394 298 18.06 

Codon25-500 43.46% 0.22 0.44 856 628 38.34% 

GAN30 26.37% 0.05 0.22 359 268 16.37% 

CS25 44.0% 0.23 0.41 856 628 38.34% 

 

Figure 7: Performance Metrics for Hybrid Augmentation. Charts display changes in test accuracy, macro-

F1 score, predicted class count (PC), and rare class coverage (%) compared to the baseline. 
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CHAPTER 4 

Discussion and Conclusion 

4.1 The Role of Biologically Informed Augmentation in Rare-Class Prediction 

This study demonstrates the significant improvement in enzyme function prediction under severe 

class imbalance that can be achieved through biologically based augmentation techniques. The 

most successful approach among the methods assessed was synonymous codon substitution (CS). 

In contrast, reverse complement augmentation degraded performance in most cases, while GAN-

based synthetic sequences marginally improved overall performance but resulted in especially 

poor performance in rare functional classes.  

Codon substitution introduces variation at the nucleotide level while maintaining protein-

level semantics by taking advantage of the genetic code's redundancy. Instead of learning 

sequence-level artifacts, this motivates the classifier to learn domain-level features. Codon 

substitution increased test accuracy by up to 1.8x (from 24.75% to 44%), macro F1 by 1.5x (from 

0.15 to 0.23), and weighted F1 by 1.6x (from 0.25 to 0.41) across all experiments. Moreover, the 

number of rare class categories predicted at least once by the classifier increased from 545 to 629, 

and rare-class coverage improved by approximately five percentage points (33.27% to 38.4%). 

Even well-represented classes such as EC 2.7.7.7 (DNA polymerase) saw performance gains, with 
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F1 rising from 0.92 to 0.94—demonstrating the robustness of CS across both abundant and sparse 

classes (Table 5, Figure 3) 

4.2 Pitfalls of Reverse Complement and Synthetic GAN-Based Augmentation 

On the other hand, reverse complement (RC) augmentation continuously degraded model 

performance. At higher integration levels (e.g., RC100), accuracy dropped to 13.06%, macro-F1 

dropped to 0.08, and rare-class coverage dropped to 22.89% (Table 6, Figure 4). This degradation 

result is in line with biological expectations, in particular the fact that reverse strands typically do 

not encode the same protein as the original strand, rendering the reverse-complemented sequences 

functionally invalid. The inclusion of these sequences introduced noise that hampered the learning 

process and label integrity. Reverse complementation can be a helpful augmentation strategy in 

self-supervised learning settings (Hoarfrost et al. 2022), where these sequences are biologically 

valid and labels are not present. This strategy, however, is inappropriate in a labeled classification 

context, where it is unlikely that the reverse complement strand will have the same label. 

GAN-based augmentation presented a different set of challenges. Although conceptually 

attractive for balancing rare classes, cGAN-generated sequences struggled to maintain functional 

validity, particularly for rare classes. This is likely due to the severe data limitation in the rare EC 

classes, many of which have only single digit training examples, which was insufficient to provide 

enough context to produce viable synthetic sequences for those classes. While minor gains in test 

accuracy were observed at some GAN integration levels, particularly for more abundant EC 

classes, macro-F1 scores dropped to as low as 0.05, and rare-class coverage sank to around 16–

20% (Table 7, Figure 5). These results stress the importance of sequence validation in generative 
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pipelines and the challenges of deploying raw synthetic data in biological tasks with severe class 

imbalance, particularly for rare classes with very low support. 

4.3 Evaluating Combined and Fixed-Size Augmentation Strategies 

The evaluation included both Hybrid augmentation strategies GAN70+CS25 and fixed-threshold 

codon substitution (Codon500). The hybrid GAN70+CS25 method failed to achieve better results 

than the individual codon substitution approach. The GAN70+CS25 model achieved 29.24% 

accuracy and 18.06% rare-class coverage, while Codon500 reached 43.46% accuracy and 38.34% 

rare-class coverage (Table 8, Figure 6). The results indicate future research should explore 

adaptive augmentation strategies that adjust their approach based on the level of class scarcity and 

augmentation response metrics. 

4.4 Implications for Enzyme Annotation in Novel Microbial Contexts 

The enhanced detection of rare classes has substantial effects on future applications. The majority 

of functions remain poorly documented in reference databases, yet the environment contains 

numerous sequences with rare or new functions which scientists have yet to discover (Griesemer 

et al., 2021; Steen et al., 2023). A 5% improvement in rare-class coverage would allow researchers 

to detect thousands of new enzyme candidates from metagenomic datasets that contain tens of 

millions of unknown genes (Sunagawa et al. 2015). These sequences may encode novel 

biocatalysts, ecological biomarkers, or metabolic intermediates with important ecological function 

and/or industrial potential, especially relevant in biodiversity-rich biomes.  

4.5 Conclusion and Future Directions 
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This research shows how specific augmentation methods decrease the functional annotation gap 

in enzyme classification. The most effective method to enhance annotation capabilities at scale 

while maintaining biological soundness involves codon substitution. This approach delivered 

significant improvements in rare class recall through its biological augmentation methods without 

requiring extensive architectural changes. The model performance suffered from poorly managed 

or biologically invalid augmentations when unfiltered GANs and reverse complement 

augmentation approaches were used, demonstrating the importance of domain-aware 

augmentation. Together these results suggest that bioinformatic pipelines require function-

preserving task-specific augmentation techniques when working with insufficient annotations. 

Future research should explore more sophisticated functional discovery methods to 

advance these findings. The performance of GAN and other generative pipelines may improve 

through post-generation quality control procedures, such as embedding similarity thresholds and 

validated conserved motifs to ensure biological plausibility. Finally, the development of adaptive 

augmentation frameworks using AutoML or reinforcement learning to dynamically determine 

augmentation rates per class may produce improved per-class performance. Over time, additional 

experimental annotation with real-world unannotated genes coupled with iterative fine-tuning of 

functional prediction models will further reduce reliance on synthetic data while increasing 

trustworthiness and utility in functional prediction tasks for rare functional classes. 
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APPENDIX A  

Background and Flowcharts 

EC Number 

Enzyme Commission (EC) number describes the molecular function of a protein and chemical 

reaction it catalyzes. It has a hierarchical organization, with four digits which describe the 

molecular function of the protein with increasing specificity for each subsequent digit (Figure 8) 

 

Figure 8: Enzyme Commission (EC) Number Hierarchy. Visual representation of the Enzyme Commission 

(EC) number system.  

Reverse Complement 

The DNA sequence augmentation process involved generating reverse complements of DNA 

sequences. DNA is double stranded and is read from the 5’ to 3’ direction on both strands, so the 

reverse complement of a DNA sequence represents the opposing strand of a protein-coding gene 
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at that site. The reverse complement of DNA sequence data can be derived from sequence reversal 

followed by nucleotide complements exchanges (A ↔ T, C ↔ G). For example, the reverse 

complement of the sequence 5'-ATG CCG-3' is 5'-CGG CAT-3'. 

 

Figure 9: Example of DNA Reverse Complement. Illustration of DNA base-pair complementarity used to 

generate reverse complement sequences. The top strand (5'–3') is paired with its reverse complement strand 

(3'–5') using standard base-pairing rules.  

The augmentation process adds reverse complements of each sequence while preserving their 

original labels. While these sequences are not generally protein-coding regions that code the same 

protein, sequencing technologies are equally likely to sequence the reverse strand as the protein-

coding strand. This technique produces one deterministic reverse complement for each original 

sequence, effectively doubling the sample size for every class. 

Synonymous Codon Substitution 

This augmentation technique utilizes the redundancy of the genetic code by substituting different 

codons that encode the same amino acids (Figure 10,11). Each 3-mer of DNA encodes one of 20 

amino acids; since there are 64 possible codons for the 4 nucleotides in DNA, this results in 

redundancy in the translation of different codons into the same amino acid. By introducing 

synonymous mutations into a gene’s DNA sequence substituting individual nucleotides to produce 

different codons that produce the same amino acid this codon substitution process creates new 

DNA sequences through changes that preserve the encoded protein and its resulting function. The 
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generation of synonymous variants produces sequence diversity that mirrors potential natural 

variations in biodiversity. 

 

Figure 10: Codon Table for Amino Acid Translation. Standard genetic codon table showing all 64 

nucleotide triplets (codons) and their corresponding amino acids or stop signals. Each codon is composed 

of three DNA bases. 

 

 

Figure 11: Example of Synonymous Codon Substitutions. Illustration of synonymous substitutions that 

preserve amino acid identity. 
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Codon Frequency 

Codon frequency refers to how often each of the 64 possible codons is used to encode amino acids 

in each organism’s genome. 

GC content  

GC content refers to the percentage of cytosine (C) and guanine (G) bases in a DNA molecule. 

DNA is made up of four nucleotides adenine (A), thymine (T), guanine (G), and cytosine (C). 

(Figure 12) 

 

Figure 12: GC Content Calculation Example. An illustrative example showing how GC content is 

calculated from a DNA sequence. 

GAN 

The architecture of the GAN consists of two neural networks, the generator (G) and the 

discriminator (D). G and D operate via iterative competition, in which G generates artificial data 
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and D predicts whether data belong to the training set or are produced by G. Over training 

iterations, G learns to generate more realistic data (Figure 13). 

 

Figure 13: Architecture of a Standard GAN. 

cGAN 

The architecture of the conditional GAN (cGAN) consists of two neural networks, the generator 

(G) and the discriminator (D). Similarly to a traditional GAN, G and D operate via iterative 

competition, however, in a conditional GAN G generates artificial data conditioned on specific 

inputs such as class labels, GC content, or codon frequency and D predicts whether a given data 

instance and its associated condition originate from the training distribution or were produced by 

G. Over successive training iterations, G learns to generate increasingly realistic data that not only 

resemble true samples but also reflect the desired biological or structural conditions of specific 

classes. This enables controlled data synthesis, especially useful in domains with class imbalance 

or limited annotated examples (Figure 14). 
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Figure 14: Architecture of a Standard cGAN. 

 

Figure 15: Codon Substitution Augmentation Workflow. Flowchart representing the codon substitution 

augmentation process. For EC classes with fewer than the target number of samples, additional sequences 

are generated using probabilistic synonymous codon substitution and appended to the dataset until target 

support is reached. 
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Figure 16: Conditional GAN Architecture. Schematic representation of the conditional Generative 

Adversarial Network (cGAN) used for sequence generation. The generator takes a noise vector and three 

conditioning inputs—EC class label, GC content, and codon frequency—all projected into 100-dimensional 

embeddings and concatenated before transformation into nucleotide sequences. The discriminator receives 

either a real or generated sequence, alongside the same conditioning inputs, and outputs a probability score 

indicating whether the sequence is real or synthetic. 
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Figure 17: cGAN-Based Sequence Augmentation Flow. Flowchart illustrating the cGAN-based data 

augmentation process. For each enzyme class (EC) with a sample count below the defined target threshold, 

synthetic DNA sequences are generated using the trained GAN model.  
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Figure 18: CNN-Based Sequence Classification Model. Architecture of the 1D convolutional neural 

network used for enzyme function prediction.  
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