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Abstract

Biomedical image segmentation is essential for clinical diagnostics, treatment planning, and fundamen-
tal biological research. Yet, the diversity of imaging modalities, complex structures, and the limited avail-
ability of annotated datasets pose significant challenges. Although convolutional neural networks (CNNs)
often deliver state-of-the-art performance, they typically require extensive labeled data and domain-specific
adjustments, restricting their generalizability. To address these limitations, self-supervised and unsuper-
vised segmentation methods have emerged, exploiting unlabeled or weakly labeled data to alleviate the
annotation burden. However, these methods can struggle with segmentation accuracy and robustness
when confronted with complex domain-specific variability. Recent advances in foundation models, par-
ticularly the Segment Anything Model (SAM), suggest a promising path forward. Trained on large-scale,
diverse data, SAM enables generalized segmentation via zero-shot learning, indicating potential applicabil-
ity across a range of biomedical imaging domains. Nonetheless, fine-tuning and adaptation are necessary
to ensure reliable performance and reproducibility in specialized biomedical contexts. This dissertation
bridges these critical gaps. This dissertation introduces a supervised pipeline for 3D cell instance segmen-
tation, tracking, and motility classification, centering on Toxoplasma gondii, alongside self-supervised
and minimally supervised approaches that reduce the annotation burden and enhance model generaliza-
tion across diverse imaging contexts. Additionally, the adaptation of foundation models such as SAM
is explored, detailing fine-tuning techniques that empower reliable biomedical segmentation in special-
ized applications. Collectively, these contributions advance the field of biomedical imaging by mitigating
annotation requirements, improving robustness, and widening applicability. By synthesizing supervised,
self-supervised, and foundation model-based strategies, this dissertation offers a cohesive framework that
addresses critical hurdles including annotation burden, domain generalization, and model adaptability,
paving the way for more efficient, scalable, and broadly accessible biomedical segmentation solutions.

Index words: [Biomedical Image Segmentation, Supervised Learning, Unsupervised Learning,
Foundation Models, Segment Anything Model, 3D Cell Segmentation, Cell
Tracking, Cilia Segmentation, Domain Generalization, Toxoplasma gondii]
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Chapter 1

Introduction

1.1 In Search of a Universal Biomedical Segmentation Model
Biomedical image segmentation is critical for accurate diagnosis, treatment planning, and biological re-
search, as it precisely delineates anatomical structures and pathological changes. Accurate segmentation
enables quantitative analyses, enhancing objectivity, consistency, and reproducibility in medical assess-
ments. Historically, image segmentation relied on traditional methods such as thresholding, watershed
segmentation, and optical flow, primarily utilizing pixel intensity to differentiate image regions. How-
ever, these traditional techniques frequently encountered significant difficulties when applied to noisy
imaging conditions, complex anatomical structures, or subtle intensity gradients, severely limiting their
practical applicability in clinical and research settings. Addressing these limitations necessitated sophisti-
cated computational approaches, driving substantial methodological evolution toward advanced image
segmentation strategies [26], [38].

Traditional rule-based segmentation methods, including thresholding and watershed algorithms, op-
erate by direct pixel intensity analysis to define boundaries but exhibit limited robustness in challenging
imaging conditions characterized by noise or poor contrast. Machine learning-based segmentation tech-
niques, such as Support Vector Machines (SVMs) [14], Random Forest classifiers [4], and contrastive
learning methods [10], subsequently enhanced segmentation capabilities through statistical pattern recog-
nition. These methods provided improved flexibility and accuracy by learning complex data patterns
from annotated examples. Despite these advancements, traditional machine learning methods required
intensive manual feature engineering, constraining scalability and limiting generalization across diverse
biomedical datasets and modalities.

The advent of deep learning approaches effectively addressed these limitations, signifying a transforma-
tive shift in image segmentation research. Deep learning-based segmentation methods, particularly those
leveraging Convolutional Neural Networks (CNNs), revolutionized the field by automatically learning
hierarchical feature representations directly from raw images, thus eliminating the need for manual feature
extraction. CNNs inherently learn both low-level spatial features and high-level semantic features, signifi-
cantly enhancing segmentation accuracy, consistency, and robustness across diverse biomedical datasets.
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These deep learning-based segmentation techniques typically fall into supervised, semi-supervised, and
unsupervised categories, differentiated by the amount and type of annotated data required. Among su-
pervised methods, the U-Net architecture [81], specifically developed for biomedical image segmentation,
has emerged as a cornerstone due to its highly effective feature extraction and superior generalization
capabilities [9], setting foundational benchmarks for current segmentation research.

U-Net and its variants have achieved widespread adoption in biomedical image segmentation due to
their exceptional ability to automate feature extraction directly from images without manual intervention
or extensive preprocessing. Variants include foundational architectures such as the original U-Net [81]
and 3D U-Net [13], specialized for volumetric data segmentation in computed tomography (CT) and mag-
netic resonance imaging (MRI). Advanced variants introduce architectural enhancements [6], including
Attention U-Net for selective feature refinement [73], Inception U-Net for multi-scale context capture
[112], Residual U-Net for deeper training capabilities [1], and Dense U-Net promoting extensive feature
reuse to enhance accuracy and training efficiency [24]. Collectively, these CNN-based architectures cur-
rently represent the state-of-the-art in biomedical image segmentation, significantly advancing diagnostic
precision and enabling more reliable quantitative analyses in medical and biological research.

Biomedical images span diverse imaging modalities, each presenting unique segmentation challenges
due to varying image characteristics, resolution, noise levels, and structural complexity. Clinical imaging
modalities, including CT, MRI, positron emission tomography (PET), and ultrasound imaging, each
feature distinct properties affecting segmentation, such as variable tissue contrast, noise artifacts, and differ-
ing spatial resolutions [34]. Microscopy imaging modalities, such as fluorescence microscopy, bright-field
microscopy, phase-contrast microscopy, and electron microscopy, present unique challenges, including
intricate subcellular structures, variable staining methods, and diverse cellular morphologies. Given the
extensive biological diversity, segmentation targets range widely from microscopic features like nuclei, mi-
tochondria, and cilia to macroscopic anatomical structures like tumors, lesions, blood vessels, bones, brain
anatomy. This combination of biological variability and modality-specific imaging challenges underscores
the necessity for specialized yet adaptable deep learning models [38] capable of efficiently generalizing
across multiple biomedical segmentation tasks without extensive reconfiguration.

Recently, universal segmentation frameworks, exemplified by the Segment Anything Model (SAM)
[49], have emerged as significant advancements aiming to generalize segmentation tasks across diverse
imaging domains. SAM leverages flexible user inputs, including single points, bounding boxes, and tex-
tual descriptions, enabling robust segmentation performance without requiring specialized retraining or
extensive annotated datasets. Its effectiveness arises from a transformer-based architecture combined with
extensive pre-training on large-scale, diverse image datasets, facilitating segmentation even of previously
unseen biomedical structures and modalities, thus significantly reducing the practical barriers for broad
biomedical adoption [65].

The central objective of this dissertation is to systematically address existing gaps in biomedical image
segmentation methodologies, explicitly focusing on enhancing model generalizability, reducing depen-
dency on annotated datasets, and improving usability for practical biomedical applications. Specifically,
the research investigates three interconnected questions:
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1. How can supervised segmentation methods be optimized to enhance performance and generaliza-
tion across diverse biomedical datasets?

2. In what ways can unsupervised and self-supervised learning techniques effectively reduce the need
for extensive annotated biomedical datasets without compromising segmentation accuracy?

3. How can universal segmentation frameworks be adapted and validated for robust performance in
diverse biomedical imaging scenarios?

Despite these methodological advancements, significant barriers persist, hindering wide-scale adop-
tion of deep learning segmentation methods in biomedical imaging. These ongoing challenges include
limited model generalizability, heavy reliance on extensive annotated datasets [97], poor transferability
across distinct biomedical imaging modalities, and practical usability constraints, especially for users lack-
ing extensive computational expertise. The following "Challenges" section delves deeper into these issues,
setting the stage for subsequent chapters, which systematically propose, develop, and evaluate novel solu-
tions addressing these critical barriers.

1.2 Challenges
Biomedical image segmentation, particularly with deep learning models, has seen significant advance-
ments; however, numerous practical and theoretical challenges remain, hindering wider clinical and re-
search adoption. While architectures like nnU-Net [38] and vision foundation models have advanced
biomedical segmentation, persistent challenges in cross-domain robustness and clinical translation con-
tinue to limit adoption, as evidenced by recent multi-modal validation studies [39]. The following sub-
sections explicitly outline these challenges and the potential strategies currently employed to overcome
them.

1.2.1 Generalizability and Transferability
Despite significant success, CNN-based segmentation models often exhibit poor generalizability and lim-
ited transferability across distinct biomedical imaging domains due to variability in imaging protocols,
acquisition settings, and biological structures. CNN architectures like U-Net variants show excellent intra-
domain performance but suffer catastrophic failure when applied cross-domain, as shown in multi-center
MRI studies [17]. These limitations arise largely because obtaining large, accurately labeled biomedi-
cal datasets is costly and time-intensive, often requiring substantial expert knowledge. As a consequence,
researchers often design specialized deep learning models tailored specifically to individual imaging modal-
ities or biological structures, limiting their broader application.

Generalizability specifically denotes a model’s capability to maintain robust performance on previ-
ously unseen datasets, distinct from the original training domain. This property is especially crucial in
biomedical contexts, where significant variability arises due to diverse imaging protocols, acquisition de-
vices, tissue characteristics, and patient-specific differences. Both data augmentation and transfer learning
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are widely utilized strategies to mitigate overfitting and significantly enhance generalization when training
datasets are limited. Despite its proven effectiveness in limited-data scenarios, transfer learning introduces
specific challenges, including domain discrepancies between source and target datasets, increased compu-
tational complexity, potential biases inherited from source domains, and persistent risks of overfitting.

Chapter 5 addresses these limitations by evaluating the SAM [49] as a universal framework to bridge
domain gaps, demonstrating how fine-tuning with biomedical-specific prompts enhances generalizability
across modalities like MRI and fluorescence microscopy.

1.2.2 Data Scarcity and Annotation Strategies
In response to data scarcity and high annotation costs in biomedical segmentation tasks, multiple inno-
vative solutions have emerged to leverage limited annotated data effectively. Semi-supervised learning
[95], for instance, combines limited labeled datasets with abundant unlabeled data, effectively enhanc-
ing segmentation accuracy by exploiting underlying data distributions. Active learning [86] strategically
queries highly informative data points for expert annotation, optimizing labeling efforts and maximizing
the value of limited annotated datasets. Data augmentation approaches, including geometric image trans-
formations and synthetic image generation via Generative Adversarial Networks (GANs) [22], effectively
increase data diversity, reduce overfitting, and substantially enhance model robustness.

Transfer learning leverages knowledge gained from previously trained models on related tasks, sub-
stantially reducing the annotation burden for new segmentation applications. Self-supervised learning
frameworks generate their supervisory signals via pretext tasks, such as predicting spatial positioning or
reconstructing missing image regions [10], thereby facilitating robust representation learning without
explicit annotations. Emerging approaches, including few-shot, one-shot, and zero-shot learning [114],
specifically address extreme annotation scarcity by leveraging generalized representations, semantic meta-
data, or minimal annotated examples to effectively segment unseen biomedical structures.

Chapters 3 and 4 directly address these limitations: Chapter 3 introduces self-supervised pseudo-labels
derived from optical flow to segment cilia without manual masks, while Chapter 4 leverages contrastive
learning to reduce annotation dependence on Cell Tracking Challenge datasets [68].

1.2.3 Complementary Role of Unsupervised Methods
Unsupervised segmentation methods, which operate without annotated datasets or extensive pre-training,
typically employ domain-specific heuristics or clustering techniques to delineate structures. Although
these methods generally yield lower accuracy compared to supervised CNN-based methods, they offer
significant advantages in reproducibility and generalizability due to their independence from prior data
annotations and their minimal reliance on task-specific training [40]. Consequently, these unsupervised
approaches serve as complementary solutions, particularly beneficial in exploratory research contexts or
resource-constrained scenarios.

Chapter 3 exemplifies this approach, using unsupervised motion analysis to generate cilia segmentation
masks, enabling reproducible phenotyping of dyskinetic ciliary motion without labeled training data [93].
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1.2.4 Reproducibility of Deep Learning Models
Reproducibility, the ability to consistently obtain similar outcomes from identical data and computa-
tional procedures, remains a critical requirement in biomedical research to validate findings and ensure
reliable clinical translation. Ensuring reproducibility is fundamental to scientific integrity, enabling in-
dependent verification of results, building trust in methodologies, and facilitating reliable clinical and
research translations. Reproducibility is heavily influenced by factors such as dataset variability, model
architecture choices, optimization strategies, random initialization, and computational environments,
each contributing potential sources of variability in outcomes [67].

Lack of reproducibility not only undermines scientific validity but also results in significant resource
waste, impeded scientific progress, misleading conclusions, and ethical implications, particularly critical
in sensitive biomedical applications. Recent literature emphasizes comprehensive documentation, stan-
dardized model evaluation practices, fixed random seeds, robust cross-validation frameworks, explicit
reporting of evaluation metrics, and open-source sharing of code and datasets to enhance reproducibility
in biomedical deep learning research [80].

To promote reproducibility, this work open-sources code for TSeg in chapter 2 and contrastive learn-
ing pipelines in chapter 4, adopts fixed random seeds, and reports metrics like Dice scores with cross-
validation across all experiments in chapters 2, 3, 4, and 5, and shares relevant datasets publicly through
Zenodo.

1.2.5 Practical Usability and Accessibility
While deep learning models exhibit strong performance across biomedical segmentation tasks, their prac-
tical usability remains contingent on multiple factors, including task complexity, data availability, and
required model customization. For biomedical researchers and clinical practitioners with limited com-
putational expertise, simplicity and ease of use become critical factors influencing adoption and effective
utilization of deep learning-based segmentation tools [97]. These users particularly benefit from segmen-
tation methodologies that offer robust, out-of-the-box performance without extensive hyperparameter
tuning or specialized configuration.

Developing intuitive graphical user interfaces (GUIs) and interactive tools substantially improves
accessibility for non-expert users, such as biologists and clinical practitioners, who require practical seg-
mentation solutions without extensive technical knowledge. Facilitating easier interaction with deep
learning models through user-friendly software not only enhances usability but also accelerates adoption
and effective integration into routine clinical practice and biomedical research workflows [87].

The dissertation is organized to comprehensively address these research questions through a struc-
tured approach, encompassing supervised, self-supervised, and foundation-model-driven segmentation
techniques. The chapters are organized as follows:

• Chapter 2 introduces TSeg, a novel supervised segmentation pipeline explicitly designed for 3D
cell instance segmentation, tracking, and motility classification, particularly optimized for noisy

5



microscopy data such as those of Toxoplasma Gondii. This chapter directly addresses challenges
of robust supervised segmentation and practical usability, showcasing TSeg’s effectiveness and
generalizability to diverse cell types through user-friendly interfaces and optimized workflows.

• Chapter 3 explores self-supervised segmentation methods, proposing an innovative pseudo-labeling
strategy to significantly reduce annotation dependency. Utilizing motion-derived masks to generate
pseudo-labels, this method addresses the scarcity of annotated datasets, particularly demonstrated
in challenging cilia segmentation tasks where annotation efforts are costly and complex.

• Chapter 4 investigates minimally supervised segmentation approaches leveraging contrastive learn-
ing frameworks. By training on minimal labeled data, this chapter assesses and demonstrates the
capability of contrastive learning to improve generalization and robustness across diverse biomedical
imaging modalities, explicitly addressing the challenges of data scarcity and limited generalizability.

• Chapter 5 focuses on adapting and validating universal segmentation frameworks, specifically exam-
ining the Segment Anything Model (SAM) and its applicability to biomedical contexts. Through
prompt engineering and strategic fine-tuning, this chapter systematically addresses domain-specific
adaptation challenges and evaluates the robustness, effectiveness, and reproducibility of SAM-based
segmentation across varied biomedical imaging tasks.

• Finally, Chapter 6 summarizes the methodological advancements described in previous chapters,
discusses their broader implications for biomedical imaging research and clinical applications, iden-
tifies persistent gaps, and proposes promising directions for future research in biomedical image
segmentation.
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Chapter 2

Deep Models For Supervised Image
Segmentation

2.1 Introduction
Quantitative cell research often requires the measurement of different cell properties including size, shape,
and motility. This step is facilitated using segmentation of imaged cells. With fluorescent markers, com-
putational tools can be used to complete segmentation and identify cell features and positions over time.
2D measurements of cells can be useful, but the more difficult task of deriving 3D information from cell
images is vital for metrics such as motility and volumetric qualities.

Most of the state-of-the-art pipelines are restricted to 2D space which is not a true representative of
the actual motion of the organism. Many of them require knowledge and expertise in programming, or
in machine learning and deep learning models and frameworks, thus limiting the demographic of users
that can use them. All of them solely include a subset of the aforementioned modules (i.e. detection,
segmentation, tracking, and classification) [89]. Many pipelines rely on the user to train their own model,
hand-tailored for their specific application. This demands high levels of experience and skill in ML/DL and
consequently undermines the possibility and feasibility of quickly utilizing an off-the-shelf pipeline and
still getting good results. PlantSeg uses a variant of 3D U-Net, called Residual 3D U-Net, for preprocessing
and segmentation of multiple cell types [101]. PlantSeg performs best among Deep Learning algorithms
for 3D Instance Segmentation and is very robust against image noise [42]. The segmentation module also
includes the optional use of CellPose [89]. CellPose is a generalized segmentation algorithm trained on a
wide range of cell types and is the first step toward increased optionality in TSeg. The Cell Tracking module
consolidates the cell particles across the z-axis to materialize cells in 3D space and estimates centroids
for each cell. The tracking module is also responsible for extracting the trajectories of cells based on the
movements of centroids throughout consecutive video frames, which is eventually the input of the motion
classifier module.

Toxoplasmosis is an infection caused by the intracellular parasite Toxoplasma gondii. (T. gondii) is
one of the most successful parasites, infecting at least one-third of the world’s population. Although
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Toxoplasmosis is generally benign in healthy individuals, the infection has fatal implications in fetuses and
immunocompromised individuals [83]. T. gondii’s virulence is directly linked to its lytic cycle which is
comprised of invasion, replication, egress, and motility. Studying the motility of T. gondii is crucial in
understanding its lytic cycle in order to develop potential treatments.

To address these we present TSeg. It segments T. gondii cells in 3D microscopic images, tracks their
trajectories, and classifies the motion patterns observed throughout the 3D frames. TSeg is comprised of
four modules: pre-processing, segmentation, tracking, and classification. We developed TSeg as a plugin
for Napari [88] - an open-source fast and interactive image viewer for Python designed for browsing,
annotating, and analyzing large multi-dimensional images. Having TSeg implemented as a part of Napari
not only provides a user-friendly design but also gives more advanced users the possibility to attach and
execute their custom code and even interact with the steps of the pipeline if needed. The preprocessing
module is equipped with basic and extra filters and functionalities to aid in the preparation of the input
data. TSeg gives its users the advantage of utilizing the functionalities that PlantSeg and CellPose provide.
These functionalities can be chosen in the pre-processing, detection, and segmentation steps. This brings
forth a huge variety of algorithms and pre-built models to select from, making TSeg not only a great fit
for T. gindii, but also a variety of different cell types.

2.2 Background
The recent solutions in generalized and automated segmentation tools are focused on 2D cell images.
Segmentation of cellular structures in 2D is important but not representative of realistic environments.
Microbiological organisms are free to move on the z-axis and tracking without taking this factor into
account cannot guarantee a full representation of the actual motility patterns. As an example, Fazli et al.
[19] identified three distinct motility types for T. gondii with two-dimensional data, however, they also
acknowledge and state that based established heuristics from previous works there are more than three
motility phenotypes for T. gondii. The focus on 2D research is understandable due to several factors. 3D
data is difficult to capture as tools for capturing 3D slices and the computational requirements for analyzing
this data are not available in most research labs. Most segmentation tools are unable to track objects in
3D space as the assignment of related centroids is more difficult. The additional noise from capture and
focus increases the probability of incorrect assignment. 3D data also has issues with overlapping features
and increased computation required per frame of time.

Fazli et al. [19] studies the motility patterns of T. gondii and provides a computational pipeline for
identifying motility phenotypes of T. gondii in an unsupervised, data-driven way. In that work Ca2+ is
added to T. gondii cells inside a Fetal Bovine Serum. T. gondii cells react to Ca2+ and become motile and
fluorescent. The images of motile T. gondii cells were captured using an LSM 710 confocal microscope.
They use Python 3 and associated scientific computing libraries (NumPy, SciPy, scikit-learn, matplotlib)
in their pipeline to track and cluster the trajectories of T. gondii. Based on this work Fazli et al. [20]
work on another pipeline consisting of preprocessing, sparsification, cell detection, and cell tracking mod-
ules to track T. gondii in 3D video microscopy where each frame of the video consists of image slices
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taken 1 micro-meters of focal depth apart along the z-axis direction. In their latest work Fazli et al. [21]
developed a lightweight and scalable pipeline using task distribution and parallelism. Their pipeline con-
sists of multiple modules: reprocessing, sparsification, cell detection, cell tracking, trajectories extraction,
parametrization of the trajectories, and clustering. They could classify three distinct motion patterns in
T. gondii using the same data from their previous work.

While combining open-source tools is not a novel architecture, little has been done to integrate 3D
cell tracking tools. Fazeli et al. [18], motivated by the interest in providing robust yet accessible tools for
researchers without programming expertise, developed a comprehensive pipeline combining StarDist [98]
and TrackMate [91] for automated 2D cell tracking. This pipeline leverages the ZeroCostDL4Mic [7]
platform, enabling researchers with no coding experience to train deep learning models on their own data,
significantly lowering the barrier to entry. StarDist facilitates segmentation with star-convex polygon ap-
proximation, robustly distinguishing cells from the background even in challenging imaging conditions.
TrackMate then uses these segmentation outputs to reliably track cells across timeframes, providing quan-
titative analytics such as velocity and trajectory characteristics. Despite its utility, the pipeline remains
limited to 2D analysis, highlighting the need for extending such integrative approaches to 3D microscopy,
as we propose with TSeg.

This Stardist pipeline is similar in concept to TSeg. Both create an automated segmentation and
tracking pipeline but TSeg is oriented to 3D data. Cells move in 3-dimensional space that is not represented
in a flat plane. TSeg also does not require the manual training necessary for the other pipeline. Individuals
with low technical expertise should not be expected to create masks for training or even understand the
training of deep neural networks. Lastly, this pipeline does not account for imperfect datasets without the
need for preprocessing. All implemented algorithms in TSeg account for microscopy images with some
amount of noise.

Wen et al. [99] combines multiple existing new technologies including deep learning and presents
3DeeCellTracker. 3DeeCellTracker segments and tracks cells on 3D time-lapse images. Using a small
subset of their dataset they train the deep learning architecture 3D U-Net for segmentation. For tracking,
a combination of two strategies was used to increase accuracy: local cell region strategies, and spatial
pattern strategy. Kapoor et al. [41] presents VollSeg that uses deep learning methods to segment, track,
and analyze cells in 3D with irregular shape and intensity distribution. It is a Jupyter Notebook-based
Python package and also has a UI in Napari. For tracking, a custom tracking code is developed based on
Trackmate.

Many segmentation tools require some amount of knowledge in Machine or Deep Learning concepts.
Training the neural network in creating masks is a common step for open-source segmentation tools.
Automating this process makes the pipeline more accessible to microbiology researchers.
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2.3 Methodologies

2.3.1 Data
Our dataset consists of 11 videos of T. gondii cells under a microscope, obtained from different experiments
with different numbers of cells. The videos are on average around 63 frames in length. Each frame has a
stack of 41 image slices of size 500×502 pixels along the z-axis (z-slices). The z-slices are captured 1μm apart
in optical focal length making them 402μm×401μm×40μm in volume. The slices were recorded in raw
format as RGB TIF images but are converted to grayscale for our purpose. This data is captured using
a PlanApo 20x objective (NA = 0.75) on a preheated Nikon Eclipse TE300 epifluorescence microscope.
The image stacks were captured using an iXon 885 EMCCD camera (Andor Technology, Belfast, Ireland)
cooled to -70°C and driven by NIS Elements software (Nikon Instruments, Melville, NY) as part of related
research by Ward et al. [57]. The camera was set to frame transfer sensor mode, with a vertical pixel shift
speed of 1.0 μs, vertical clock voltage amplitude of +1, readout speed of 35MHz, conversion gain of 3.8×,
EM gain setting of 3 and 2×2 binning, and the z-slices were imaged with an exposure time of 16ms.

2.3.2 Software

Napari Plugin

TSeg is developed as a plugin for Napari - a fast and interactive multi-dimensional image viewer for Python
that allows volumetric viewing of 3D images [88]. Plugins enable developers to customize and extend the
functionality of Napari. For every module of TSeg, we developed its corresponding widget in the GUI,
plus a widget for file management. The widgets have self-explanatory interface elements with tooltips to
guide the inexperienced user to traverse through the pipeline with ease. Layers in Napari are the basic
viewable objects that can be shown in the Napari viewer. Seven different layer types are supported in
Napari: Image, Labels, Points, Shapes, Surface, Tracks, and Vectors, each of which corresponds to a
different data type, visualization, and interactivity [88]. After its execution, the viewable output of each
widget gets added to the layers. This allows the user to evaluate and modify the parameters of the widget to
get the best results before continuing to the next widget. Napari supports bidirectional communication
between the viewer and the Python kernel and has a built-in console that allows users to control all the
features of the viewer programmatically. This adds more flexibility and customizability to TSeg for the
advanced user. The full code of TSeg is available on GitHub under the MIT open source license at
https://github.com/salirezav/tseg. TSeg can be installed through Napari’s plugins menu.

Computational Pipeline

Pre-Processing
Due to the fast imaging speed in data acquisition, the image slices will inherently have a vignetting artifact,
meaning that the corners of the images will be slightly darker than the center of the image - Figure 2.2. To
eliminate this artifact we added adaptive thresholding and logarithmic correction to the pre-processing
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Figure 2.1: TSeg’s Napari Plugin Interface

module. Furthermore, another prevalent artifact on our dataset images was a Film-Grain noise (AKA salt
and pepper noise). To remove or reduce such noise a simple gaussian blur filter and a sharpening filter are
included.

Figure 2.2: On the left, a sample frame of the 3D video of T. gondii cells. The image is captured using
a PlanApo 20x objective (NA = 0.75) on a preheated Nikon Eclipse TE300 epifluorescence microscope.
On the right, the same frame after denoising.

Cell Detection and Segmentation
TSeg’s Detection and Segmentation modules are in fact backed by PlantSeg and CellPose. The Detection
Module is built only based on PlantSeg’s CNN Detection Module [101], and for the Segmentation Module,
only one of the two tools can be selected to be executed as the segmentation tool in the pipeline. Naturally,
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Figure 2.3: The pre-processing widget includes adaptive thresholding, normalization, and noise removal
to enhance image quality.

each of the tools demands specific interface elements different from the others since each accepts different
input values and various parameters. TSeg orchestrates this and makes sure the arguments and parameters
are passed to the corresponding selected segmentation tool properly and the execution will be handled
accordingly. The parameters include but are not limited to input data location, output directory, and
desired segmentation algorithm - Figure 2.4. This allows the end-user complete control over the process
and feedback from each step of the process. The preprocessed images and relevant parameters are sent
to a modular segmentation controller script. As an effort to allow future development on TSeg, the
segmentation controller script shows how the pipeline integrates two completely different segmentation
packages.

Tracking
The tracking widget of TSeg employs connected component analysis and the Hungarian algorithm for
accurate cell tracking across 3D time-lapse images, and, leverages autoregressive modeling to analyze cell
trajectories, enabling these trajectories to be clustered in an unsupervised manner for a deeper understand-
ing of motility - Figure 2.6. Features in each segmented image are found using the scipy label function.
In order to reduce any leftover noise, any features under a minimum size are filtered out and considered
leftover noise. After feature extraction, centroids are calculated using the center of mass function in scipy.
The centroid of the 3D cell can be used as a representation of the entire body during tracking. The tracking
algorithm goes through each captured time instance and connects centroids to the likely next movement
of the cell. Tracking involves a series of measures in order to avoid incorrect assignments. An incorrect
assignment could lead to inaccurate result sets and unrealistic motility patterns. If the same number of
features in each frame of time could be guaranteed from segmentation, minimum distance could assign
features rather accurately. Since this is not a guarantee, the Hungarian algorithm must be used to associate
a cost with the assignment of feature tracking. The Hungarian method is a combinatorial optimization
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Figure 2.4: The CNN Detection widget integrates PlantSeg for tissue-specific 3D segmentation and
CellPose for diverse cell types. These tools are implemented in the backend via their APIs, ensuring
seamless operation.

algorithm that solves the assignment problem in polynomial time. The cost for the tracking algorithm
determines which feature is the next iteration of the cell’s tracking through the complete time series. The
combination of distance between centroids for all previous points and the distance to the potential new
centroid. If an optimal next centroid cannot be found within an acceptable distance of the current point,
the tracking for the cell is considered as complete. Likewise, if a feature is not assigned to a current centroid,
this feature is considered a new object and is tracked as the algorithm progresses. The complete path for
each feature is then stored for motility analysis.

Motion Classification
To classify the motility pattern of T. gondii in 3D space in an unsupervised fashion we implement and
use the method that Fazli et. al. introduced [21]. In that work, they used an autoregressive model (AR);
a linear dynamical system that encodes a Markov-based transition prediction method. The reason is
that although K-means is a favorable clustering algorithm, there are a few drawbacks to it and to the
conventional methods that draw them impractical. Firstly, K-means assumes Euclidian distance, but AR
motion parameters are geodesics that do not reside in a Euclidean space, and secondly, K-means assumes
isotropic clusters, however, although AR motion parameters may exhibit isotropy in their space, without
a proper distance metric, this issue cannot be clearly examined [21].
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Figure 2.5: Left, 3D connected component labeling (CCL) is used to extract features from the segmented
images. Middle, the centroids of the features are calculated using the center of mass function in scipy.
Right, the tracking algorithm connects centroids across time instances to track the cells.

2.4 Evaluation
TSeg’s performance in segmentation was evaluated over datasets introduced in [68]. The Cell Tracking
Challenge (CTC) offers a diverse array of 2D and 3D time-lapse microscopy datasets, each capturing
unique biological specimens under various imaging modalities. Table A.1 contains is an overview of these
datasets, detailing the organisms studied, imaging techniques employed, and acquisition specifics. Table
A.2 shows a sample image of each dataset. CellPose has 26 and PlantSeg has 17 different pre-trained models
that can perform segmentation over 2D and 3D biomedical data. 10 samples from the 2D datasets, and
one from the 3D datasets were randomly selected and processed with each of the 43 models using the API
provided by PlantSeg and CellPose. Each dataset contains sequences of time-lapse video frames, therefore
sample of a 2D dataset is comprised of a single 2D grayscale image, and each sample from the 3D datasets
has a stack of 2D images recorded simultaneously across the z-axis to comprise one frame. The predicted
masks of the models were evaluated against the provided ground-truth data using the Jaccard Index (JI)
score and averaged across all samples of the same dataset. The results of the best performing models of
CellPose and PlantSeg are shown in Table 2.2 and Table 2.3 over 2D and 3D datasets respectively.

The JI scores of all models are available in the appendix. Tables A.3 and A.4 present the performance
metrics for all CellPose and PlantSeg models on the 2D datasets. Tables A.5 and A.6 summarize their
performance on the 3D datasets.

CellPose demonstrated consistently strong performance across the majority of the evaluated 2D datasets,
achieving accuracy levels often exceeding 0.90. Datasets like BF-C2DL-HSC, BF-C2DL-MuSC, and PhC-
C2DL-PSC showed particularly high segmentation accuracy, consistently surpassing 0.95. Notably, Cell-
Pose also maintained robust accuracy on diverse cell types and imaging modalities, indicating its effective
generalization across different contexts.
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Figure 2.6: The tracking widget allows the user to set the parameters for the tracking and clustering
algorithms and visualizes the results.

PlantSeg, evaluated primarily on plant-based imaging datasets, showed impressive robustness and con-
sistently high accuracy, especially for structured cellular patterns. On both 2D and 3D datasets, PlantSeg
achieved similar high-performance metrics to CellPose, often with accuracy scores around 0.96 or higher.

However, during evaluation on 3D datasets, PlantSeg encountered challenges due to computational
constraints. Several large-sized samples could not be fully processed by specific CNN architectures, re-
sulting in incomplete results (indicated by blank cells in Table A.6). This limitation primarily arose in
datasets such as Fluo-N3DH-CE and Fluo-N3DH-SIM+, where the sheer volume of the input data sur-
passed the available computational resources, highlighting the computational demands associated with
sophisticated 3D segmentation tasks. Future enhancements of PlantSeg may involve optimizing CNN
architectures or leveraging computational strategies, such as tiling or cloud processing, to address these
scalability limitations.

Overall, the evaluations demonstrate that both CellPose and PlantSeg effectively perform cell segmen-
tation tasks across a range of datasets and conditions, with CellPose providing a slightly more versatile and
robust generalization across various cell types and PlantSeg excelling particularly in structured datasets.
Understanding these limitations and strengths will inform users’ selection of the most appropriate tool
based on their dataset characteristics and computational constraints. A comprehensive summary of seg-
mentation performance metrics highlighting key comparative results between CellPose and PlantSeg on
selected 2D and 3D datasets is presented in Tables 2.2 and 2.3. These tables succinctly capture essential find-
ings, facilitating quick comparisons and reinforcing the suitability of TSeg’s modular design in addressing
diverse biomedical segmentation challenges. Furthermore, table 2.1 provides the Jaccard Index of the
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Figure 2.7: Clustering of T. gondii motility patterns in 3D space using an autoregressive model (AR)
as introduced by Fazli et al. [21]. The AR model addresses the limitations of K-means by considering
geodesic distances and non-isotropic clusters.

top performing models from the Cell Tracking Challenge (CTC) 2023 1, showcasing the state-of-the-art
performance of TSeg in comparison to other leading segmentation tools.

2.5 Conclusion and Final Remarks
In this work, we presented TSeg, an intuitive and comprehensive pipeline specifically designed for the
segmentation, tracking, and motility clustering of Toxoplasma gondii in 3D microscopic imaging data.
Our pipeline leverages autoregressive parameterization to effectively capture temporal dependencies, suc-
cessfully identifying distinct motility patterns and accurately clustering them based on their inherent
characteristics. This approach provides insights into the complex motility behavior exhibited by T. gondii
throughout its lytic cycle, facilitating more detailed and quantitative analyses compared to conventional
methods.

One of the key contributions of our work is the seamless integration of state-of-the-art deep learning
methodologies into an accessible and user-friendly platform. By incorporating powerful segmentation
and detection tools such as CellPose and PlantSeg into TSeg, users benefit from high-performing deep
learning algorithms without requiring extensive expertise in deep learning or computer vision frameworks.
Additionally, our implementation of TSeg as a plugin for the Napari viewer further simplifies its adoption,
providing interactive visualization and intuitive manipulation of 3D microscopy data.

TSeg significantly enhances the daily workflow of biological researchers by democratizing the analy-
sis of complex 3D microscopic image data, making sophisticated quantitative studies accessible even to
users without deep learning or extensive programming knowledge. Its implementation as a Napari plu-
gin provides an intuitive graphical interface featuring immediate 3D visualization and feedback at each
stage, allowing users to iteratively refine parameters and evaluate intermediate results. This user-centric

1More information about the top-performing algorithms can be found https://celltrackingchallenge.net/latest-csb-results/
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Table 2.1: Top-Performing Jaccard Index Scores on 2D CTC Datasets.
Dataset/Metric Jaccard Index
BF-C2DL-HSC 0.855
BF-C2DL-MuSC 0.784
DIC-C2DH-HeLa 0.877
Fluo-C2DL-Huh7 0.811
Fluo-C2DL-MSC 0.687
Fluo-C3DH-A549 0.908
Fluo-C3DH-H157 0.890
Fluo-C3DL-MDA231 0.710
Fluo-N2DH-GOWT1 0.938
Fluo-N2DL-HeLa 0.923
Fluo-N3DH-CE 0.759
Fluo-N3DH-CHO 0.925
Fluo-N3DL-DRO 0.760
Fluo-N3DL-TRIC 0.821
Fluo-N3DL-TRIF 0.793
PhC-C2DH-U373 0.931
PhC-C2DL-PSC 0.756
Fluo-C3D-A549-SIM 0.955
Fluo-N2DH-SIM+ 0.832
Fluo-N3DH-SIM+ 0.906

More information about the top-performing algorithms can be found https://celltrackingchallenge.net/latest-csb-results/

design, combined with powerful underlying algorithms leveraging state-of-the-art tools like CellPose and
PlantSeg, substantially improves the speed and quality of cell segmentation and tracking compared to
manual methods or pipelines requiring extensive customization, directly addressing the challenges of
time-consuming and expertise-heavy analysis.

Furthermore, TSeg functions as an adhesive component within the broader open-source scientific
ecosystem. Built upon the familiar SciPy stack and integrated directly into Napari, its utility extends
beyond its initial focus on T. gondii, proving adaptable to various other cell types and organisms. Its
development exemplifies open-science principles through its open-source availability and reliance on well-
regarded packages, aligning with the collaborative spirit fostered by communities such as PyOpenSci and
the Journal of Open Source Software (JOSS). Looking forward, continuous enhancements in computa-
tional efficiency and scalability are envisioned to further broaden TSeg’s usability across larger and more
complex datasets, ultimately fulfilling its significant potential to accelerate biological research by making
advanced analyses readily available to a wider scientific audience.
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Table 2.2: Best Segmentation Performance on 2D CTC Datasets (Jaccard Index)
Dataset Name JI (Best CellPose Model(s)) JI (Best PlantSeg Model) JI (CTC

Benchmark)
BF-C2DL-HSC 0.99 (nuclei / yeast_BF_cp3 ) 0.99 (*) 0.855
BF-C2DL-MuSC 0.99 (nuclei / livecell_cp3 ) 0.99 (*) 0.784
DIC-C2DH-HeLa 0.36 (cyto3 / nuclei ) 0.36 (*) 0.877
Fluo-C2DL-Huh7 0.60 (cyto3 / nuclei ) 0.59 (*) 0.811
Fluo-C2DL-MSC 0.90 (cyto3 / cyto2 ) 0.89 (*) 0.687
Fluo-N2DH-GOWT1 0.89 (cyto3 ) 0.86 (*) 0.938
Fluo-N2DH-SIM+ 0.89 (neurips_grayscale_cyto2 ) 0.80 (*) 0.832
Fluo-N2DL-HeLa 0.75 (cyto3 / nuclei ) 0.75 (*) 0.923
PhC-C2DH-U373 0.87 (cyto3 / nuclei ) 0.87 (*) 0.931
PhC-C2DL-PSC 0.91 (tissuenet_cp3 / livecell_cp3 ) 0.91 (*) 0.756

(*) Indicates confocal_2D_unet_ovules_ds2x.

Table 2.3: Best Segmentation Performance on 3D CTC Datasets (Jaccard Index)
Dataset Name JI (Best CellPose Models) JI (Best PlantSeg Model) JI (CTC

Benchmark)
Fluo-C3DH-A549 0.98 (CPx, CP) 0.96 (*) 0.908
Fluo-C3DH-A549-SIM 0.99 (CPx, CP, TN3) 0.97 (*) 0.955
Fluo-C3DH-H157 0.93 (cyto3, nuclei, cyto2_cp3) 0.88 (*) 0.890
Fluo-N3DH-CE 0.80 (cyto3, nuclei, cyto2_cp3) 0.78 (*) 0.759
Fluo-N3DH-CHO 0.84 (nuclei, tissuenet_cp3 ) 0.84 (*) 0.925
Fluo-N3DH-SIM+ 0.94 (cyto2) — (N/A (Processing failed)) 0.906

(*) Indicates generic_confocal_3D_unet

2.6 Limitations and Future Directions
While TSeg provides an intuitive and integrated pipeline for 3D cell analysis, several limitations should
be acknowledged.

Limitations of TSeg:

• Its performance can face computational constraints when processing large 3D datasets. This is par-
ticularly true when utilizing integrated tools like PlantSeg, which sometimes encountered memory
limitations on complex CTC samples. Consequently, TSeg’s overall accuracy is inherently linked to
the performance and limitations of the specific tools it incorporates, namely PlantSeg and CellPose.
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• The tracking module, relying on centroid calculation and the Hungarian algorithm, may encounter
difficulties with complex cellular events such as division, fusion, or temporary occlusion. This could
potentially lead to assignment errors in dense or highly dynamic scenarios.

• Although designed with generic functions and evaluated on various cell types, TSeg was initially
developed focusing on T. gondii. Its effectiveness might therefore vary on significantly different cell
types or imaging modalities not covered in the evaluations, requiring further validation for broader
generalization.

• Furthermore, the motility classification employs an AR model which might not capture the full
complexity of diverse biological movement patterns observed in different cell types or conditions.

• Finally, while the preprocessing module addresses common artifacts like vignetting and noise, it
may not encompass all specific artifacts encountered in varied microscopy setups, potentially ne-
cessitating external preprocessing steps for optimal results.

Future Directions:

• Addressing the computational bottlenecks to improve scalability and efficiency, especially for large
3D time-lapse datasets, is a key priority for future development. This could involve optimizing
existing algorithms or exploring strategies like data tiling.

• Expanding the repertoire of integrated segmentation and tracking algorithms beyond CellPose and
PlantSeg can offer users greater flexibility. Incorporating more diverse algorithms could provide
potentially improved performance tailored to specific biological contexts or challenging imaging
conditions.

• Enhancing the robustness of the tracking algorithm is crucial for broader applicability. Future
work should focus on better handling complex events like high cell density, cell division, fusion
events, and temporary disappearance or occlusion of cells, perhaps exploring alternative tracking
paradigms. Improving the tracking module could enable TSeg to handle more complex scenarios,
such as mitochondrial dynamics or cell-cell interactions, which are common in biological systems.

• Advancing the motion classification module by exploring non-linear models or alternative machine
learning approaches could provide deeper insights into complex motility phenotypes beyond the
capabilities of the current AR model. Furthermore, exploring the spectrum of motion of param-
eterized trajectories could yield valuable insights into the underlying biological processes if a true
correspondance between the motility phenotypes and the motion manifold is established.

• More extensive validation of TSeg’s generalizability across a wider range of 3D cell types, organisms,
and imaging modalities is needed to better define its scope and reliability in diverse research settings.

• Integrating TSeg’s outputs seamlessly with downstream quantitative analysis tools would facilitate
more comprehensive biological investigations, allowing researchers to easily move from segmenta-
tion and tracking to deeper statistical analysis.
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• Lastly, incorporating mechanisms for user-guided refinement within the Napari interface could
improve usability. Allowing users to interactively correct segmentation or tracking results would
be particularly beneficial in ambiguous or challenging cases.
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Chapter 3

Training a Supervised Cilia
Segmentation Model from

Self-Supervision

3.1 Introduction
Cilia are hair-like membranes that extend out from the surface of the cells and are present on a variety of cell
types such as lungs and brain ventricles and can be found in the majority of vertebrate cells. Categorized
into motile and primary, motile cilia can help the cell to propel, move the flow of fluid, or fulfill sensory
functions, while primary cilia act as signal receivers, translating extracellular signals into cellular responses
[30]. Ciliopathies is the term commonly used to describe diseases caused by ciliary dysfunction. These
disorders can result in serious issues such as blindness, neurodevelopmental defects, or obesity [25]. Motile
cilia beat in a coordinated manner with a specific frequency and pattern [56]. Stationary, dyskinetic, or
slow ciliary beating indicates ciliary defects. Ciliary beating is a fundamental biological process that is
essential for the proper functioning of various organs, which makes understanding the ciliary phenotypes
a crucial step towards understanding ciliopathies and the conditions stemming from it [109].

Identifying and categorizing the motion of cilia is an essential step towards understanding ciliopathies.
However, this is generally an expert-intensive process. Studies have proposed methods that automate the
ciliary motion assessment [110]. These methods rely on large amounts of labeled data that are annotated
manually which is a costly, time-consuming, and error-prone task. Consequently, a significant bottleneck
to automating cilia analysis is a lack of automated segmentation. Segmentation has remained a bottleneck
of the pipeline due to the poor performance of even state-of-the-art models on some datasets. These
datasets tend to exhibit significant spatial artifacts (light diffraction, out-of-focus cells, etc.) which confuse
traditional image segmentation models [63].

Video segmentation techniques tend to be more robust to such noise, but still struggle due to the wild
inconsistencies in cilia behavior: while healthy cilia have regular and predictable movements, unhealthy
cilia display a wide range of motion, including a lack of motion altogether [43]. This lack of motion

21



especially confounds movement-based methods which otherwise have no way of discerning the cilia from
other non-cilia parts of the video. Both image and video segmentation techniques tend to require expert-
labeled ground truth segmentation masks. Image segmentation requires the masks in order to effectively
train neural segmentation models to recognize cilia, rather than other spurious textures. Video segmenta-
tion, by contrast, requires these masks in order to properly recognize both healthy and diseased cilia as a
single cilia category, especially when the cilia show no movement.

To address this challenge, we propose a two-stage image segmentation model designed to obviate
the need for expert-drawn masks. We first build a corpus of segmentation masks based on optical flow
(OF) thresholding over a subset of healthy training data with guaranteed motility. We then train a semi-
supervised neural segmentation model to identify both motile and immotile data as a single segmentation
category, using the flow-generated masks as “pseudo-labels”. These pseudo-labels operate as “ground
truth” for the model while acknowledging the intrinsic uncertainty of the labels. The fact that motile and
immotile cilia tend to be visually similar in snapshot allows us to generalize the domain of the model from
motile cilia to all cilia. Combining these stages results in a semi-supervised framework that does not rely
on any expert-drawn ground-truth segmentation masks, paving the way for full automation of a general
cilia analysis pipeline.

3.2 Background
Dysfunction in ciliary motion indicates diseases known as ciliopathies, which can disrupt the functionality
of critical organs like the lungs and kidneys. Understanding ciliary motion is crucial for diagnosing and
understanding these conditions. The development of diagnosis and treatment requires the measurement
of different cell properties including size, shape, and motility [92].

Accurate analysis of ciliary motion is essential but challenging due to the limitations of manual analy-
sis, which is /labor-intensive, subjective, and prone to error. [110] proposed a modular generative pipeline
that automates ciliary motion analysis by segmenting, representing, and modeling the dynamic behavior
of cilia, thereby reducing the need for expert intervention and improving diagnostic consistency. [75] de-
veloped a computational pipeline using dynamic texture analysis and machine learning to objectively and
quantitatively assess ciliary motion, achieving over 90% classification accuracy in identifying abnormal
ciliary motion associated with diseases like primary ciliary dyskinesia (PCD). Additionally, [109] explored
advanced feature extraction techniques like Zero-phase PCA Sphering (ZCA) and Sparse Autoencoders
(SAE) to enhance cilia segmentation accuracy. These methods address challenges posed by noisy, partially
occluded, and out-of-phase imagery, ultimately improving the overall performance of ciliary motion anal-
ysis pipelines. Collectively, these approaches aim to enhance diagnostic accuracy and efficiency, making
ciliary motion analysis more accessible and reliable, thereby improving patient outcomes through early
and accurate detection of ciliopathies. However, these studies rely on manually labeled data. The segmen-
tation masks and ground-truth annotations, which are essential for training the models and validating
their performance, are generated by expert reviewers. This dependence on manually labeled data is a
significant limitation making automated cilia segmentation the bottleneck to automating cilia analysis.
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In the biomedical field, where labeled data is often scarce and costly to obtain, several solutions have
been proposed to augment and utilize available data effectively. These include semi-supervised learning
[95], [104], which utilizes both labeled and unlabeled data to enhance learning accuracy by leveraging the
data’s underlying distribution. Active learning [86] focuses on selectively querying the most informative
data points for expert labeling, optimizing the training process by using the most valuable examples. Data
augmentation techniques [8], [53], [54], [81], [84], [94], [104], [105], such as image transformations and
synthetic data generation through Generative Adversarial Networks [22], [108], increase the diversity
and volume of training data, enhancing model robustness and reducing overfitting. Transfer learning
[35], [77], [85], [104] transfers knowledge from one task to another, minimizing the need for extensive
labeled data in new tasks. Self-supervised learning [45], [52], [66] creates its labels by defining a pretext
task, like predicting the position of a randomly cropped image patch, aiding in the learning of useful
data representations. Additionally, few-shot, one-shot, and zero-shot learning techniques [58], [70] are
designed to operate with minimal or no labeled examples, relying on generalization capabilities or metadata
for making predictions about unseen classes.

A promising approach to overcome the dependency on manually labeled data is the use of unsuper-
vised methods to generate ground truth masks. Unsupervised methods do not require prior knowledge
of the data [44]. Using domain-specific cues unsupervised learning techniques can automatically discover
patterns and structures in the data without the need for labeled examples, potentially simplifying the pro-
cess of generating accurate segmentation masks for cilia. Inspired by advances in unsupervised methods
for image segmentation, in this work, we firstly compute the motion vectors using optical flow of the
ciliary regions and then apply autoregressive modelling to capture their temporal dynamics. Autoregres-
sive modelling is advantageous since the labels are features themselves. By analyzing the OF vectors, we
can identify the characteristic motion of cilia, which allows us to generate pseudo-labels as ground truth
segmentation masks. These pseudo-labels are then used to train a robust semi-supervised neural network,
enabling accurate and automated segmentation of both motile and immotile cilia.

3.3 Methodology
Dynamic textures, such as sea waves, smoke, and foliage, are sequences of images of moving scenes that
exhibit certain stationarity properties in time [16]. Similarly, ciliary motion can be considered as dynamic
textures for their orderly rhythmic beating. Taking advantage of this temporal regularity in ciliary motion,
OF can be used to compute the flow vectors of each pixel of high-speed videos of cilia. In conjunction
with OF, autoregressive (AR) parameterization of the OF property of the video yields a manifold that
quantifies the characteristic motion in the cilia. The low dimension of this manifold contains the majority
of variations within the data, which can then be used to segment the motile ciliary regions.
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3.3.1 Optical Flow Properties
Taking advantage of this temporal regularity in ciliary motion, we use OF to capture the motion vectors
of ciliary regions in high-speed videos. OF provides the horizontal u and vertical v components of the mo-
tion for each pixel. From these motion vectors, several components can be derived such as the magnitude,
direction, divergence, and importantly, the curl (rotation). The curl, in this context, represents the rota-
tional motion of the cilia, which is indicative of their rhythmic beating patterns. We extract flow vectors
of the video recording of cilia, under the assumption that pixel intensity remains constant throughout
the video.

I(x, y, t) = I(x+ uδt, y + vδt, t+ δt) (3.3.1)

(3.3.1) Where Ix,y,t is the pixel intensity at position x, y a time t. Here, ut, vt are small changes in the
next frame taken after t time, andu, v, respectively, are the OF components that represent the displacement
in pixel positions between consecutive frames in the horizontal and vertical directions at pixel location
x, y.

3.3.2 Autoregressive Modeling

Figure 3.1: A sample of three videos in our cilia dataset with their manually annotated ground truth masks.

Figure 3.1 shows a sample of the OF component at a random time. From OF vectors, elemental
components such as rotation are derived, which highlights the ciliary motion by capturing twisting and
turning movements. To model the temporal evolution of these motion vectors, we employ an autore-
gressive (AR) model [36]. This model captures the dynamics of the flow vectors over time, allowing us
to understand how the motion evolves frame by frame. The AR model helps in decomposing the mo-
tion into a low-dimensional subspace, which simplifies the complex ciliary motion into more manageable
analyses.

yt = Cx⃗t + u⃗ (3.3.2)

x⃗t = A1x⃗t−1 + A2x⃗t−2 + ...+ Adx⃗t−d + v⃗t (3.3.3)
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In equation (3.3.2), yt represents the appearance of cilia at time t influenced by noise u. Equation
(3.3.3) represents the state x of the ciliary motion in a low-dimensional subspace defined by an orthogonal
basis C at time t, plus a noise term vt and how the state changes from t to t+ 1.

Equation (3.3.3) is a decomposition of each frame of a ciliary motion video yt into a low-dimensional
state vectorxt using an orthogonal basisC . This equation at positionxt is a function of the sum of d of its
previous positions xt−1, xt−2, xt−d each multiplied by its corresponding coefficientsA = A1, A2, ..., Ad.
The noise terms u and v are used to represent the residual difference between the observed data and the
solutions to the linear equations. The variance in the data is predominantly captured by a few dimensions
of C , simplifying the complex motion into manageable analyses.

Figure 3.2: Representation of rotation (curl) component of OF at a random time.

Each order of the autoregressive model roughly aligns with different frequencies within the data,
therefore, in our experiments, we chose d=5 as the order of our autoregressive model. This choice allows
us to capture a broader temporal context, providing a more comprehensive understanding of the system’s
dynamics. We then created raw masks from this lower-dimensional subspace, and further enhanced them
with adaptive thresholding to remove the remaining noise.

In 3.2 , the first-order AR parameter is showing the most variance in the video, which corresponds to
the frequency of motion that cilia exhibit. The remaining orders have correspondence with other different
frequencies in the data caused by, for instance, camera shaking. Evidently, simply thresholding the first-
order AR parameter is adequate to produce an accurate mask, however, in order to get a more refined
result we subtracted the second order from the first one, followed by a Min-Max normalization of pixel
intensities and scaling to an 8-bit unsigned integer range. We used adaptive thresholding to extract the
mask on all videos of our dataset. The generated masks exhibited under-segmentation in the ciliary region,
and sparse over-segmentation in other regions of the image. To overcome this, we adapted a Gaussian
blur filter followed by an Otsu thresholding to restore the under-segmentation and remove the sparse
over-segmentation. Figure 3.4 illustrates the steps of the process.
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Figure 3.3: The pixel representation of the 5-order AR model of the OF component of a sample video.
The x and y axes correspond to the width and height of the video.

Figure 3.4: The process of computing the masks. a) Subtracting the second-order AR parameter from
the first-order, followed by b) Adaptive thresholding, which suffers from under/over-segmentation. c) A
Gaussian blur filter, followed by d) An Otsu thresholding eliminates the under/over-segmentation.

3.3.3 Training the model
Our dataset includes 512 videos, with 437 videos of dyskinetic cilia and 75 videos of healthy motile cilia,
referred to as the control group. The control group is split into %85 and %15 for training and validation
respectively. 108 videos in the dyskinetic group are manually annotated which are used in the testing step.
Figure 3.1 shows annotated samples of our dataset.

In our study, we employed a Feature Pyramid Network (FPN) [48] architecture with a ResNet-34
encoder. The model was configured to handle grayscale images with a single input channel and produce
binary segmentation masks. For the training input, one mask is generated per video using our methodology,
and we use the first 250 frames from each video in the control group making a total of 18,750 input
images. We utilized Binary Cross-Entropy Loss for training and the Adam optimizer with a learning
rate of 10−3. To evaluate the model’s performance, we calculated the Dice score during training and
validation. Data augmentation techniques, including resizing, random cropping, and rotation, were
applied to enhance the model’s generalization capability. The implementation was done using a library [37]
based on PyTorch Lightning to facilitate efficient training and evaluation. Table 3.1 contains a summary
of the model parameters and specifications.
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Figure 3.5: The model predictions on 5 dyskinetic cilia samples. The first column shows a frame of the
video, the second column shows the manually labeled ground truth, the third column is the model’s
prediction, and the last column is a thresholded version of the prediction.

3.4 Results and Discussion
The model’s performance metrics, including IoU, Dice score, sensitivity, and specificity, are summarized
in Table 3.2. The validation phase achieved an IoU of 0.312 and a Dice score of 0.476, which indicates a
moderate overlap between the predicted and ground truth masks. The high sensitivity (0.999) observed
during validation suggests that the model is proficient in identifying ciliary regions, albeit with a specificity
of 0.813, indicating some degree of false positives. In the testing phase, the IoU and Dice scores decreased
to 0.230 and 0.374, respectively, reflecting the challenges posed by the dyskinetic cilia data, which were
not included in the training or validation sets. Despite this, the model maintained a reasonable sensitivity
of 0.631 and specificity of 0.787.

Figure 3.5 provides visual examples of the model’s predictions on dyskinetic cilia samples, alongside
the manually labeled ground truth and thresholded predictions. The dyskinetic samples were not used
in the training or validation phases. These predictions were generated after only 20 epochs of training
with a small training data. The visual comparison reveals that, while the model captures the general
structure of ciliary regions, there are instances of under-segmentation and over-segmentation, which are
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Table 3.1: Summary of model architecture, training setup, and dataset distribution
Aspect Details
Architecture FPN with ResNet-34 encoder
Input Grayscale video frame with a single input channel
Number of Epochs 20
Batch Size 4
Training Samples 64 videos
Validation Samples 11 videos
Test Samples 108 videos
Loss Function Binary Cross-Entropy Loss
Optimizer Adam optimizer with a learning rate of 10−3

Evaluation Metric Dice score during training and validation
Data Augmentation Techniques Resizing, random cropping, and rotation
Implementation Using a Python library with Neural Networks for Image Seg-

mentation based on PyTorch [37]

more pronounced in the dyskinetic samples. This observation is consistent with the quantitative metrics,
suggesting that further refinement of the pseudo-label generation process or model architecture could
enhance segmentation accuracy.

The observed difference in performance metrics between the validation and testing phases (Table
3.2) is primarily due to the distinct nature of the datasets used. The model was trained and validated
using pseudo-labels generated exclusively from the 75 motile (healthy) cilia videos. Conversely, the testing
phase utilized a separate set of 108 dyskinetic cilia videos, presenting the model with a larger set of unseen
samples. Another potential reason for the performance discrepancy lies in the differing visual presentation
of cilia between the training/validation (motile) and testing (dyskinetic) datasets. In many videos of the
healthy motile set, cilia might prominently extend from the cell surfaces, creating clear, high-contrast
silhouettes against the background or adjacent cell borders. Consequently, the model may have learned
a strong, potentially spurious, correlation associating these distinct border features with the presence
of cilia. However, if the dyskinetic cilia in the test set are less clearly defined, visually blend more with
surrounding tissue, or if similar border/edge features exist in the images without corresponding cilia,
this learned association would be misleading. This reliance on potentially biased visual cues from the
training data, rather than solely on the intrinsic appearance of cilia themselves, would likely contribute to
segmentation errors (e.g., false positives at borders or false negatives for less distinct cilia) and the reduced
performance observed during testing.
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Table 3.2: The performance of the model in validation and testing phases.
Phases IoU over dataset Dice Score Sensitivity Specificity
Validation 0.312 0.476 0.999 0.813
Testing 0.230 0.374 0.631 0.787

These results show the potential of our approach to reduce the reliance on manually labeled data for
cilia segmentation. The use of this unsupervised learning framework allows the model to generalize from
the motile cilia domain to the more variable dyskinetic cilia, although with some limitations in accuracy.
Future work could focus on expanding the dataset and improving the process of generating pseudo-labels
to enhance the model’s accuracy.

Table 3.3: Comparison of Cilia Segmentation Performance Metrics with Zain et al. [109].
Metric Validation Testing Zain et al. [109]
IoU (Jaccard Index) 0.312 0.230 0.441
Dice Score 0.476 0.374 0.585
Sensitivity (Recall) 0.999 0.631 0.624
Specificity 0.813 0.787 N/A

*Best result reported for the corresponding metric in Figure 10 of Zain et al.. Note that the best performance for each metric
might come from slightly different model configurations within that study.

A comparison with the state-of-the-art results reported by Zain et al. [109] highlights the performance
characteristics of our self-supervised approach (Table 3.3). While the overall segmentation overlap metrics
achieved by our model during testing (IoU 0.230, Dice 0.374) are lower than the best scores obtained by
the feature-enhanced supervised method of Zain et al. (IoU 0.441, Dice 0.585), our model demonstrates
comparable performance in identifying true ciliary regions. Specifically, the sensitivity achieved on our
dyskinetic test set (0.631) is notably similar to the best recall reported by Zain et al. (0.624). This suggests
that while challenges remain in achieving precise spatial accuracy using self-supervision, particularly when
generalizing from motile pseudolabels to dyskinetic cilia, our method effectively learns to recognize cilia
presence at a rate comparable to enhanced supervised techniques.

3.5 Conclusions and Final Remarks
In this chapter, we introduced a self-supervised framework for cilia segmentation that obviates the need
for expert-labeled ground truth masks. By leveraging the rhythmic motion signatures of motile cilia, we
generated pseudo-labels from optical flow (OF) properties and an autoregressive model of the flow vectors.
These pseudo-labels were then used to train a semi-supervised neural network on motile cilia, enabling
the model to generalize to dyskinetic cilia without requiring additional annotations.
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Key Contributions. A central contribution of this work lies in showing that motile and dyskinetic
cilia, despite significantly different motion patterns, share enough visual similarity in static frames to be
captured under a single segmentation category. Our motion-based pseudo-label creation removes a major
bottleneck in cilia analysis namely, the laborious process of manually annotating ciliary structures in high-
speed videos. By emphasizing a two-stage pipeline (unsupervised pseudo-label generation followed by
semi-supervised training), we have reduced reliance on large labeled datasets and demonstrated a pathway
for robust segmentation of both healthy and diseased cilia.

Discussion of Performance. Quantitative evaluations on dyskinetic cilia samples which the model
never saw during training revealed moderate segmentation performance (IoU of 0.230 and Dice score of
0.374). While these results are lower than on the validation set (which contained only motile cilia), they
underscore the model’s capacity to transfer knowledge from one domain to another. Visual inspection
of predictions suggests that refining the pseudo-label creation process could further reduce false positives
and improve segmentation boundaries, especially for dyskinetic cilia with complex or minimal motion
signatures.

Limitations. Despite the progress achieved, several limitations persist. First, the OF-based pseudo-
labels can be imperfect whenever extraneous motion (e.g., camera shake) mimics ciliary motion or when
cilia exhibit barely detectable movement. Additionally, the AR modeling approach, although effective for
regular rhythmic patterns, might struggle with extremely irregular or sporadic ciliary motion in advanced
ciliopathies. Finally, our training dataset was comparatively small, which may limit model generalizability
to more diverse clinical scenarios or imaging conditions.

Future Directions. Moving forward, the framework could be refined in multiple ways:

• Improved pseudo-labels: Incorporating additional video processing techniques (e.g., temporal
filtering or background subtraction) could yield higher-quality pseudo-labels, thus reducing noise
and boosting performance on dyskinetic cilia.

• Data Augmentation and Expansion: Given the variability in ciliary motion across different tissue
types and disease states, assembling a larger and more diverse dataset including videos from multiple
clinical centers would likely enhance the model’s robustness.

• Advanced Architectures: Exploring more sophisticated neural network architectures (e.g., trans-
formers or advanced spatio-temporal models) might better capture the nuanced motion of dyski-
netic cilia.

• Clinical Integration: Integrating the pipeline with downstream analysis tools for instance, auto-
mated frequency or beat-pattern quantification could streamline clinical workflows and facilitate
early detection of ciliopathies.
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Broader Implications. Beyond cilia analysis, this chapter illustrates how self-supervision can address
similar bottlenecks in biomedical image analysis, where labeled data are scarce. By turning domain-specific
cues (i.e., ciliary motion) into an automated labeling mechanism, we move closer to high-throughput
analysis pipelines that can adapt to various imaging contexts. As the subsequent chapters will explore
complementary approaches to segmentation and classification tasks, the concepts introduced here espe-
cially the coupling of domain knowledge with unsupervised strategies offer a blueprint for tackling the
annotation scarcity that frequently hinders medical image processing.

In sum, the work presented in this chapter establishes a promising avenue for more efficient and
accurate cilia segmentation. Our self-supervised approach demonstrates that motion and visual cues,
when harnessed effectively, can reduce the need for manual annotation and bolster the performance of
segmentation models in both research and clinical settings. While challenges remain, particularly in
handling more complex dyskinetic patterns, the framework set forth here provides a foundation upon
which future studies can refine and expand, ultimately advancing the automated analysis of ciliopathies
and related conditions.
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Chapter 4

Minimally-Supervised Biomedical
image Segmentation via Contrastive

Learning

4.1 Introduction
Image segmentation is a fundamental process in many computer vision applications and is used to parti-
tion the image into separate regions. It is an essential part in various biomedical applications, including
lesion and tumor detection and analysis, organ localization and identification, diagnosis and monitoring,
and cell and tissue analysis. Similarly, image segmentation is a cornerstone of quantitative cell research,
particularly for studying cellular dynamics like motility [92] and morphological changes. Given its critical
role, it has been the focus of extensive research, with ongoing advancements aimed at improving accuracy,
automation, and generalization across diverse imaging modalities.

Biomedical images come in a vast variety of formats, types, and modalities [62], [96], [115]. Similarly,
due to the variety of biological structures, segmentation targets can vary from nuclei and cell membranes
to organelles such as mitochondria, cilia, tumors, and lesions, as well as blood vessels, bone, and brain
structures [93]. Deep learning (DL) has advanced the field of image segmentation, particularly with the
success of convolutional neural networks (CNN) [100]. While CNNs revolutionized segmentation for
their high accuracy, due to the large diversity in biomedical image modalities, formats, and structures as
well as the scarcity of ground truth data, CNNs are tailored for specific tasks [64] in biomedical image
segmentation and therefore suffer from overfitting and exhibit poor generalizability over unseen data.
Furthermore, their specificity to tasks, high computational demands, and complex implementation limit
their broader application.

Inspired by Large Language Models (LLMs), Foundation Models such as the Segment Anything
Model (SAM) [49] demonstrate excellent zero-shot segmentation performance across a large variety of
general images. Studies that build upon SAM [46] have shown promising zero-shot learning capabili-
ties and can segment objects in biomedical images regardless of their modality. However, when applied
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to biomedical data without fine-tuning, SAM often struggles to match the accuracy of domain-specific
models like U-Net. Its zero-shot performance varies significantly across medical datasets and tasks, high-
lighting the need for fine-tuning to adapt it effectively for biomedical image segmentation. Furthermore,
although SAM excels at segmenting objects with well-defined, envelope or convex geometries, it struggles
with biological structures that exhibit diffuse or punctate patterns such as cilia, which are even difficult
to generate hand-drawn labels for.

Unsupervised methods, on the other hand, are used in scenarios where domain-specific cues suffice
for crafting an algorithm for segmentation and when obtaining ground truth data is costly [93]. However,
since they are domain-specific, unsupervised methods also exhibit poor generalizability. Self-supervised
learning is also a promising direction in unsupervised segmentation. Contrastive learning (CL) is a suc-
cessful variant of Self-supervised learning and refers to a type of learning where the goal is to learn repre-
sentations by contrasting positive pairs (similar or related data points) against negative pairs (dissimilar
or unrelated data points). This approach is widely used in self-supervised learning where labels are not
available. Contrastive coding (CC), often seen as a subset or a specific implementation of CL, refers more
specifically to the encoding process where contrastive loss functions are used to train models to produce
these discriminative embeddings.

Contrastive learning provides an alternative approach to segmentation by leveraging similarities and
differences in the data rather than relying on explicit labels. For addressing all the aforementioned issues,
we turned to contrastive coding to teach the network to recognize objects of the same texture and con-
figuration. By learning representations that cluster visually similar structures together while separating
dissimilar ones, contrastive learning enables segmentation with minimal user interaction. This makes
it particularly suitable for biomedical image analysis, where labeled data is scarce, and manual annota-
tions are costly and time-consuming. The code to our method is available at https://github.com/
quinngroup/contrastive-coding

4.2 Background
Image segmentation is a crucial topic in computer vision and in particular deep learning. In image seg-
mentation, an input image is broken down into its mutually exclusive semantic constituents such as the
independent objects and the background. To address the first aforementioned shortcoming, Hyunseob
et al. proposed a model called MDNet [72]. MDNet, or Multi Domain Network, is a supervised tracking
method that learns domain-independent representations from pre-training. In supervised learning, a set
including different objects which are semantically similar together, such as "pedestrian", "ball", "car", or
"flower," are used for training. The most important drawback of MDNet, and any supervised segmenta-
tion framework like Mask- and Cascade-RCNN [5], [29] SSD [60], is that it relies on large amounts of
labeled data for training from various objects, while after training the model with such a big dataset, there
is still no guarantee that it can detect any other objects. There always exists sets of objects which are not
used for training, and as a consequence, the network may not detect those types of objects properly.
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Some unsupervised segmentation methods were proposed recently [15], [40], [61], [103], the most
popular of which is W-Net [103]. However, since W-Net has to reconstruct the entire image again from
the segmentation map, background and other objects of no interest have to be present in the segmentation
mask, increasing the burden on the network to perfectly segment them, while they are of no interest.
Indeed, we first started our experimentation to try to extend the work in W-Net, but we found it relied
heavily on the final Conditional Random Field (CRF) module to fix the background creeping, and we
could not distill the objects of interest alone with the segmentation mask. Also, in [15], an unsupervised
segmentation method was proposed for separating the background from foreground using deep learning,
and again, distilling the object of interest alone is still an issue in this work, since sometimes the object of
interest is visually closer to the background than to the foreground, as in some of our data that we present
later.

For addressing all the aforementioned issues we turned to contrastive coding in order to teach the
network to recognize objects of the same texture and con guration. In contrastive coding, the goal is to
represent instances (images/videos/patches) with vectors, and have instances that are similar attract and
instances that are dissimilar repel each other. This is typically done with dot product or cosine similarity
on the learnt vectors. There has been a lot of recent work in unsuper vised contrastive learning [12],
[28], [74], such as SimCLR[10], [11], where patches from the same image are made to attract each other,
while patches from different images are made to repel each other. To aid with better object recognition,
the patches are transformed with the usual image augmentation techniques like color jittering, blurring,
flipping, and rotation.

4.3 Methodology

4.3.1 Network architecture
The network is designed to take in a patch of dimensions i×k×k and output a vector of sized to represent
this patch in the dot product operations. We achieve this with a network constructed as follows: Three
MBConv layers each outputting 32 channels, followed by a max pooling layer that downsizes the image by
half, then another 3 MBConv layers each outputting 64 channels, followed by a global max pooling layer
downsizing the image to d×1×1 followed by a fully connected layer that outputs another d-dimensional
vector with a final activation function of tanh. Figure 4.1(a) illustrates the network architecture and the
application of the network to the current and next video frames. An MBConv layer is adapted from
EfficientNet[90]. Figure 4.1(b) shows the internals of an MBConv layer.

4.3.2 Contrastive training
Let x1, x2, . . . , xN be patches of size i× k × k pixels from an input image It. We aim to represent each
patch with a vector representation of size d. The vector representation of a patch xi is obtained using a
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Figure 4.1: (a) The architecture of our contrastive network applied to two consecutive frames. (b) The
internals of an MBConv layer.

convolutional neural network, whose final output layer produces a d-dimensional vector, i.e., vi = fθ(xi),
where θ represents the parameters of the neural network f .

The goal of contrastive learning is to bring similar vectors closer together while pushing dissimilar
ones farther apart. To achieve this, we need to sample vectors that should be similar and others that should
be dissimilar. We use the observation that our videos are Nyquist sampled, i.e., the sampling rate in our
videos is high relative to the frequency of the recorded motion. This implies that consecutive frames differ
only slightly in content. Therefore, a patch xi from the same location in two consecutive frames It and
It+1 will most likely be similar, and this forms the basis for sampling positive examples.

For negative examples, however, we sample random patches from both the current frame and the next
frame. Even though these random patches might contain objects visually similar to the current patch, we
assume that the corresponding patch from the next frame will be the most similar to the current patch
and should thus be coupled positively above any other pairing. We set a ratio of m : 1 for negative to
positive samples to contrast with the vectors from the current frame.

4.3.3 Datasets
To evaluate the performance of our proposed segmentation method, we utilize a diverse set of biomedical
video datasets. By incorporating datasets with a wide range of cell shapes, sizes, and motility patterns,
we aim to assess the generalizability of our method across different biological structures and imaging
conditions. By applying our method to these datasets, we also aim to evaluate its ability to handle complex,
diffuse, or punctate patterns.
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Table 4.1: Cell Tracking Challenge (CTC) 2D Datasets
Dataset Name Modality Cell Type
BF-C2DL-HSC Brightfield (BF) Mouse hematopoietic stem cells
BF-C2DL-MuSC Brightfield (BF) Mouse muscle stem cells
DIC-C2DH-HeLa DIC HeLa cells on a flat glass
Fluo-C2DL-Huh7 Fluorescence (Fluo) Human hepatocarcinoma-derived cells
Fluo-C2DL-MSC Fluorescence (Fluo) Rat mesenchymal stem cells
Fluo-N2DH-GOWT1 Fluorescence (Fluo) GFP-GOWT1 mouse stem cells
Fluo-N2DL-HeLa Fluorescence (Fluo) HeLa cells expressing H2b-GFP
PhC-C2DH-U373 Phase Contrast (PhC) Glioblastoma-astrocytoma U373 cells
PhC-C2DL-PSC Phase Contrast (PhC) Pancreatic stem cells
Fluo-N2DH-SIM+ Fluorescence (Fluo) Simulated nuclei of HL60 cells

Cell Tracking Challenge Datasets

We use all available 2D datasets from the Cell Tracking Challenge (CTC) [68]. These datasets include
various cell types and imaging modalities, such as fluorescence and phase-contrast microscopy images.
They cover a range of biological structures and provide a diverse testbed for evaluating the performance
of segmentation methods across different imaging conditions.

4.3.4 Training process
Each iteration of the training, we construct the matrix Rn×d which is the set of patches of an image It
after passing them through the representation network where column i represents vi = fθ(xi). To
represent the similarity with all the negative and positive samples, we construct the matrix Mn×(m+1)

where each column is the dot product between the matrix R with a matrix Qn×d of random patches
sampled randomly from the 2N available patches at hand from the current It and next It+1 frames, except
for the last column, the column of positive patches, where the matrix Q is set to be the vectors of the next
patches of the matrix R from the next frame It+1. We also transform the next-frame positive patches by
flipping them horizontally and vertically each with probability 0.5. This is so that the network learns to
associate the same texture in different positions and configurations.

4.3.5 Similarity and loss
We choose the cosine similarity between vectors as our similarity metric. The vector output of the convo-
lutional network is, therefore, projected onto theL2 unit sphere (i.e., normalized), before being used with
dot products. For practical numerical stability, though, we use logSoftmax with negative log-likelihood
instead of softmax and cross-entropy.
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4.3.6 Interactive Segmentation Workflow
Following the contrastive training phase, the model facilitates interactive segmentation of target structures
in new images or videos. The workflow supports two modes of user interaction. In the simpler mode, the
user initiates segmentation by clicking a single point on an example of their region of interest (ROI). The
image patch centered at this point serves as a positive anchor; its learned embedding vector is compared
against the embeddings of all patches across the image using cosine similarity. This process generates a
similarity map highlighting regions visually consistent with the anchor patch, which the user subsequently
thresholds to produce a binary segmentation mask.

For scenarios requiring finer control or dealing with more complex backgrounds, the user can employ
a more complex interaction mode. This involves selecting multiple positive points within the ROI (via
clicks) and specifying multiple negative points representing background or unwanted structures (e.g., via
Shift + click). The system then calculates an average embedding vector for the positive anchor points
and another for the negative points. The final similarity map is computed based on similarity to the
average positive embedding while maximizing dissimilarity to the average negative embedding (concep-
tually achieved by subtracting the negative embedding influence from the positive one). The user then
interactively selects a threshold value for this refined similarity map to generate the final segmentation.

4.4 Results and Discussion
We evaluate our method on a subset of 2D datasets from the CTC. The CTC offers a diverse array of
2D and 3D time-lapse microscopy datasets, each capturing unique biological specimens under various
imaging modalities. Table 4.1 contains an overview of these datasets, detailing the organisms studied,
imaging techniques employed, and acquisition specifics.

For each dataset, or part of dataset, we leave out 20% of the data as a testing portion, and of the
remaining 80%, we take 70% of it for training, and 30% for validation. We use the loss on the validation
to choose the best model, and report the dice coefficient using the best trained model on the testing
portion. In each iteration we sample 1024 patches within the input image, and construct the matrix with
the number of negative samples m = 9, and the size of representation vector d = 64. As noted before,
the contrastive loss only minimizes a lower bound on the error, so the training error of the negative log
likelihood loss never goes down to 0. We train to 50 epochs for each part of the dataset and use the Adam
optimizer as well with the same 10e−3 learning rate. To generate masks we take user’s input in the form
of at least one point indicating the coordinates of the object of interest. These coordinates represent the
center of the patch whose representation vector will be the anchor to compare against. We sweep the
entire image with patches of size 15× 15 and stride of 1, generating a representation vector per each pixel
in the image, and report the dot product of these vectors and the anchor vector. We use reflective padding
instead of zero padding. Finally, the user can select a suitable threshold to binarize the raw mask into the
final mask.
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Figure 4.2: Visual comparison of segmentation performance across different datasets. The variation in
performance across datasets indicates the challenges caused by different imaging modalities and cell types.

For datasets BF-C2DL-HSC and BF-C2DL-MuSC, artifacts in the image that looked similar to the
ROIs shared similar embedding space thus wrongly identified and highlighted as ROI. A simple pre-
processing or post processing could resolve this issue.

Table 4.2 shows a mix of strong and moderate results for dice coefficients and precision. The BF-
C2DL-HSC and BF-C2DL-MuSC datasets exhibit the weakest performance, with Dice scores of 0.341
and 0.261, respectively. This poor performance is due to the artifacts apparent in the images, which share a
strong resemblance with the target stem cells in texture and intensity. These artifacts and shadows within
the hydrogel environment likely contribute to false positives and inconsistent mask predictions. The DIC-
C2DH-HeLa dataset achieves a moderate Dice score of 0.711, showing a reasonable ability to capture cell
structures. However, the fine-grained details of the HeLa cells in differential interference contrast (DIC)
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Table 4.2: Dice coefficients and intersection-over-union (IoU) scores for the CTC datasets.
Dataset Name IoU (JI) Dice CTC Benchmark JI
Fluo-N2DH-GOWT1 0.815 0.8971 0.938
Fluo-N2DL-HeLa 0.487 0.655 0.923
PhC-C2DL-PSC 0.736 0.847 0.756
Fluo-C2DL-Huh7 0.617 0.762 0.811
Fluo-N2DH-SIM+ 0.786 0.7404 0.832
BF-C2DL-HSC 0.206 0.341 0.855
BF-C2DL-MuSC 0.15 0.261 0.784
DIC-C2DH-HeLa 0.551 0.711 0.877
Fluo-C2DL-MSC 0.419 0.591 0.687
PhC-C2DH-U373 0.342 0.51 0.931

JI = Jaccard Index, IoU = Intersection over Union. The CTC benchmark 1 JI is the best performing algorithm on the CTC
datasets in CTC’s website.

imaging pose difficulties in maintaining sharp boundary delineation, leading to a loss in segmentation
accuracy. The top performing algorithms on the 2D CTC datasets are shown in Table 4.3 for comparison.

Table 4.3: Top-Performing Jaccard Index Scores on 2D CTC Datasets.
Dataset/Metric Jaccard Index
BF-C2DL-HSC 0.895
BF-C2DL-MuSC 0.784
DIC-C2DH-HeLa 0.871
Fluo-C2DL-Huh7 0.811
Fluo-C2DL-MSC 0.687
Fluo-N2DH-GOWT1 0.938
Fluo-N2DL-HeLa 0.913
PhC-C2DH-U373 0.931
PhC-C2DL-PSC 0.756

For the Fluo-C2DL-MSC dataset, the Dice coefficient of 0.591 indicates moderate segmentation qual-
ity. The elongated morphology of mesenchymal stem cells complicates boundary definitions, leading to
thresholding artifacts. The PhC-C2DH-U373 dataset, with a Dice coefficient of 0.510, shows lower per-
formance due to halo effects in phase contrast imaging, which interfere with precise boundary extraction
and introduce noise.

The moderate performance on the DIC-C2DH-HeLa dataset (Dice 0.711) can be further understood
by considering the large size and complex internal structure of these cells relative to the fixed patch size
(15x15 pixels) used by our model. Since contrastive learning operates by comparing the local texture within
these small patches, an anchor point selected within a large cell represents only a specific internal feature.
Consequently, the resulting segmentation tends to highlight only those regions across the image sharing
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that particular local texture, often leading to incomplete masks that capture parts of the cell rather than
its entirety.

Challenges were also encountered with the Fluo-N2DL-HeLa dataset (Dice 0.655), primarily stem-
ming from the very low contrast between the labeled cells and the image background. This minimal visual
distinction makes it difficult for the contrastive learning approach, which relies on differentiating similar
and dissimilar patches, to effectively separate cell regions from the background, thus hindering accurate
boundary delineation.

Overall, the results suggest that datasets with clear and well-defined fluorescence-stained boundaries
(such as GOWT1) tend to perform best, while datasets relying on phase contrast, brightfield, or DIC
imaging suffer from boundary inconsistencies and intensity variations that complicate segmentation.

4.4.1 Potential Improvements
Beyond threshold adjustments, a number of strategies could further improve performance on challenging
datasets:

• Use Multi-scale or Pyramid Features. Incorporating a multi-scale approach (e.g., learning fea-
tures from multiple patch sizes) can help capture both the global context of larger cells and the
subtle boundaries in smaller or low-contrast targets.

• Refine Negative Sampling. Randomly sampling negatives can push away genuinely similar patches.
A more stratified or context-aware sampling strategy can reduce such conflicts and help preserve
true positives.

• Domain-specific Augmentations. For brightfield or DIC images, augmentations such as slight
intensity inversions or custom brightness manipulations can help the model learn invariant features
against heterogeneous illumination and shadows.

• Smaller Patches with Additional Context. Reducing the patch size focuses on local cell texture,
but simultaneously providing a lower-resolution context channel can keep global cues. This helps
avoid confusion from large background areas.

• Leverage Small Amounts of Label Information. In practice, adding even sparse or partial labels,
even minimal bounding boxes or scribbles, for a few frames can anchor the contrastive model,
mitigating background confusion in tough domains.

These enhancements can bolster the robustness of contrastive embeddings, especially in complex imag-
ing conditions such as brightfield, DIC, or phase contrast, where artifacts and shadows closely resemble
cellular structures.
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4.5 Conclusion and Final Remarks
We have introduced a method for object segmentation using contrastive coding, requiring minimal user
input to select the object of interest. By enforcing similarity between temporally adjacent patches and
differentiating dissimilar ones, the model learns embeddings that enable segmentation without the need
for labeled datasets. Our approach generates visually plausible masks and demonstrates good results in
some datasets, although it achieves only moderate performance in others. We discuss the reasons for these
varying results and emphasize the novelty of our method. Additionally, we provide a GUI tool to assist
users in marking the object of interest and setting the appropriate threshold for the entire video.

While our results are encouraging, there are several avenues for future work. First, refining the segmen-
tation boundaries through post-processing or boundary-focused contrastive objectives could help address
residual errors in challenging datasets. Second, extending this framework to three-dimensional or volumet-
ric time-series data would further increase its applicability to advanced imaging techniques. In conclusion,
our contrastive learning-based approach offers a scalable and practical alternative to fully supervised or
foundation-model-driven segmentation pipelines, enabling segmentation of diverse biomedical structures
with zero annotation.
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Chapter 5

Toward a Foundation Model for
Biomedical Image Segmentation

5.1 Introduction
Biomedical image segmentation is pivotal across a diverse array of medical and biological applications, from
diagnostic imaging to cellular analysis. While supervised segmentation methods, especially convolutional
neural networks (CNNs), have achieved remarkable accuracy, their reliance on large, annotated datasets
severely limits their generalizability and transferability, particularly in biomedical contexts where labeled
data is scarce and costly to obtain. Conversely, unsupervised methods, despite being simpler and more
generalizable, often fall short in segmentation precision and robustness, thus failing to meet the accuracy
requirements of clinical and research settings.

Recently, the emergence of Foundation Models (FMs) and the Segment Anything Model (SAM) of-
fers a compelling new direction for addressing these limitations. SAM, introduced by Kirillov et al. [49],
marked a significant advancement by achieving impressive zero-shot segmentation capabilities across var-
ied image domains, relying only on minimal user prompts such as points or bounding boxes. Its successor,
SAM 2, further extends these capabilities into video segmentation, leveraging advanced architectures to
improve accuracy and interaction efficiency [79]. These models are trained on large and diverse datasets,
enabling them to generalize effectively across multiple segmentation tasks without extensive domain-
specific training. Despite their potential, the application of general-purpose SAM models to biomedical
imaging presents unique challenges. The complex and nuanced nature of biomedical images characterized
by varying imaging modalities, structures, textures, and noise levels means that models trained primarily
on general-domain images may struggle to achieve desirable segmentation accuracy [69], [71]. Recog-
nizing this, adaptations of SAM tailored specifically to biomedical contexts have emerged. Models such
as MedSAM [65] and MediViSTA-SAM [47] demonstrate the feasibility of adapting SAM to medical
imaging and video analysis, showing promising results that often surpass specialized, modality-specific
models in robustness and accuracy.
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Alongside spatial segmentation capabilities, the integration of vision-language models like Biomed-
CLIP [111] into SAM workflows has gained considerable attention. BiomedCLIP, trained on extensive
biomedical image-text pairs, provides robust multimodal embeddings that bridge textual and visual do-
mains, enabling powerful text-driven segmentation. Frameworks such as MedCLIP-SAMv2 exemplify
this integration, demonstrating how textual prompts can effectively guide precise segmentation tasks,
from identifying tumors in medical scans to delineating specific cellular structures in microscopy images.
However, the integration of vision-language models with SAM introduces additional layers of complexity
and stochasticity. Variability in outputs stemming from factors such as the fine-tuning process of models
like BiomedCLIP, differences in textual prompts, or randomness in inference strategies can undermine
reproducibility, a critical factor in biomedical research and clinical applications. Thus, understanding and
mitigating this stochasticity is paramount for the practical adoption and reliability of these models.

This chapter aims to comprehensively explore and address these challenges. We focus specifically
on evaluating and enhancing the reproducibility of integrated vision-language segmentation models, in-
vestigating how different factors—including fine-tuning strategies, prompt engineering, and inference
methodologies—influence variability in segmentation outcomes. Our goal is to develop methodologies
that standardize and optimize these variables, ensuring SAM-based models are not only accurate and
versatile but also reliably reproducible in biomedical contexts.

5.2 Background
SAM [49] introduced a groundbreaking promptable segmentation approach, trained on a vast dataset
(SA-1B), featuring over one billion masks. Its architecture comprises three components: a powerful Vi-
sion Transformer (ViT) image encoder, a flexible prompt encoder handling points, boxes, and text, and a
lightweight mask decoder to produce segmentation masks. SAM’s notable innovation lies in its zero-shot
capabilities achieved through prompt engineering, enabling it to generalize well across various segmenta-
tion tasks, even without task-specific fine-tuning. SAM-2 [79] extends SAM’s capabilities to video data,
incorporating a memory attention mechanism that retains information from previous frames, thereby
significantly enhancing segmentation accuracy and interaction efficiency. SAM-2 utilizes a hierarchical
transformer architecture (Hiera) [3], [82] pre-trained with masked autoencoders (MAE) [27], making
it highly effective for real-time segmentation tasks across images and videos. This memory-enhanced ar-
chitecture allows SAM-2 to iteratively refine masks, leading to considerable improvements in temporal
segmentation consistency. A comprehensive survey titled "Foundation Models for Biomedical Image Seg-
mentation" [55] underscores the transformative potential of SAM, summarizing over 100 studies that have
successfully adapted SAM to a wide range of biomedical datasets. The survey highlights SAM’s strong
zero-shot capabilities and outlines various domain-specific tuning methods and data scarcity challenges
that have driven innovation in biomedical segmentation.

The success of the SAM in general-domain image segmentation has inspired adaptations and method-
ological enhancements aimed at tailoring its capabilities specifically for biomedical applications, addressing
unique challenges associated with medical image segmentation. MedSAM [65] and other models, like
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BioSAM-2 [106], have demonstrated the necessity of domain-specific fine-tuning for achieving clinical-
grade accuracy. BioSAM-2, particularly designed for biomedical segmentation, has optimized SAM-2
with medical domain-specific data and additional memory mechanisms for improved performance across
diverse biomedical imaging modalities. Medical SAM Adapter (Med-SA) [102] introduced adaptation
modules such as Space-Depth Transpose (SD-Trans) and Hyper-Prompting Adapter (HyP-Adpt), which
enhance SAM’s performance on medical images through minimal yet strategic parameter adjustments.
These modules have shown significant improvements over traditional segmentation methods by efficiently
incorporating medical domain knowledge.

In the realm of prompt learning and auto-prompting the Segment Any Cell (SAC) [71] framework
leveraged auto-prompting and fine-tuning methods, using Low-Rank Adaptation (LoRA) [31], to auto-
matically generate effective prompts for nuclei segmentation. This method reduced manual intervention
and improved segmentation accuracy in microscopic imaging scenarios. SSPrompt [32] optimized SAM’s
spatial and semantic prompts directly within its embedding space, enhancing its generalization capabili-
ties across complex segmentation tasks. The Segment and Caption Anything [33] model enriched SAM’s
semantic understanding capabilities by integrating a query-based feature mixer, improving semantic pre-
cision and enabling the model to provide meaningful regional captions, thus enhancing segmentation
results through better semantic contextualization.

The support for textual prompts in the original SAM is relatively limited and experimental com-
pared to spatial (points, boxes, masks) prompts. Building upon the advancements in adapting SAM for
biomedical tasks, recent research has increasingly focused on incorporating text prompts and integrating
vision-language models to further enhance segmentation precision and semantic interpretability in medi-
cal imaging. Models like BiomedCLIP [111] and adaptations such as MedCLIP-SAMv2 [50], [51] under-
score the importance of text-driven segmentation approaches, leveraging extensive biomedical image-text
pairs to provide robust multimodal embeddings. This integration enables powerful and precise segmen-
tation guided by textual descriptions, thus bridging visual and textual biomedical data effectively. The
EVF-SAM [113] model exemplifies the integration of early vision-language fusion. It incorporates an early
fusion mechanism, significantly outperforming late fusion models by enhancing text-to-image attention,
which is critical for accurate segmentation guided by referring expressions.

Polyp-SAM++ [2] demonstrated the effectiveness of detailed textual prompts specifically for colorectal
polyp segmentation, showing how text guidance could substantially improve the segmentation accuracy
and robustness of SAM, particularly in clinically relevant contexts . Hi-SAM [107] extended SAM’s
capabilities to hierarchical text segmentation, including pixel-level text, word, text-line, and paragraph
segmentation, thus enabling more structured and detailed biomedical image analyses, crucial for appli-
cations like pathology slide examination. PROMISE [59] and similar models have adapted SAM to 3D
biomedical segmentation, introducing lightweight adapters for depth-related spatial context and achiev-
ing superior performance in tumor segmentation tasks by effectively combining textual prompts with
depth-awareness.

The Segment Anything with Text prompts (SAT) [114] model, trained on an extensive dataset com-
prising over 22,000 medical scans and nearly 500 anatomical classes, exemplifies a universal segmentation
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framework that integrates extensive medical terminologies as textual prompts. This approach empha-
sizes the utility of incorporating domain-specific knowledge directly into the model training, significantly
improving segmentation performance across diverse medical imaging tasks.

When using text-to-segmentation pipelines, segmentation results should ideally be deterministic given
the same input. However, randomness can creep in through various stages, both at inference and during
training. There is growing interest in modeling the stochasticity and uncertainty inherent in medical image
segmentation. In practice, what constitutes the "correct" segmentation can be ambiguous – different
experts may trace slightly different boundaries for the same lesion, especially in low-contrast or complex
cases [78]. Models like SAM produce one deterministic mask per prompt, which doesn’t capture this
ambiguity, however, this ambiguity is maximised when incorporating text-to-segment pipelines, since the
text-image input of the CLIP should be transformed into spacial points to be fed to SAM as input prompts.
In MedCLIP-SAMv2 [50] this step is done with the help of extracting attention maps of BiomedCLIP
given a text-image pair. This saliency map highlights the locations of interest in the image which are then
used to select points or bounding boxes for SAM.

Our methodology builds upon the principles of MedCLIP-SAMv2, integrating the BiomedCLIP
vision-language model with SAM to improve segmentation accuracy and reproducibility in biomedical
applications. Initially, we evaluate the baseline capability of BiomedCLIP to differentiate various biolog-
ical structures, emphasizing its performance on complex and previously unseen entities such as ciliary
regions. Subsequently, we explore the impact of fine-tuning BiomedCLIP, examining how variations in
fine-tuning parameters influence its effectiveness. Lastly, we assess multiple strategies for selecting op-
timal spatial prompts as inputs for SAM, aiming to identify methods that consistently yield accurate
segmentation outcomes.

5.3 Methodology
This chapter outlines a systematic approach developed to enhance segmentation accuracy and repro-
ducibility in biomedical imaging, specifically targeting the segmentation of ciliary regions in nasal ep-
ithelial biopsy videos. Leveraging the BiomedCLIP vision-language model integrated with the SAM, the
methodology involves fine-tuning BiomedCLIP on a specialized dataset containing annotated videos of
nasal epithelial biopsies. These annotations distinctly mark cell bodies and associated ciliary regions, which
vary significantly in visibility—ranging from clearly delineated, easily identifiable structures to overlapping
and out-of-focus regions challenging even to expert human annotators. The methodology rigorously ex-
plores how different fine-tuning parameters, textual prompts, and image pre-processing strategies (masked
versus raw) influence BiomedCLIP’s performance. Subsequently, the trained BiomedCLIP generates pre-
dictive heatmaps on previously unseen data, serving as a basis for strategically selecting spatial prompts
for SAM segmentation. Finally, this research investigates various prompt selection strategies to determine
optimal methods for ensuring consistent, accurate, and reproducible segmentation results.
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5.3.1 Datasets

Cilia Dataset

Our principal dataset comprises 681 microscopy videos of nasal epithelial biopsies, among which 325 videos
have detailed annotations. Each video depicts epithelial cells exhibiting either normal motile cilia, dyski-
netic (immotile) cilia. Annotated masks explicitly identify three types of regions: cell bodies, clearly visible
cilia structures, and overlapping, hard-to-detect cilia. Visible cilia typically extend beyond cell boundaries,
appearing clearly against a blank background, thus facilitating their straightforward identification in static
frames. Conversely, overlapping cilia structures, often oriented vertically toward the microscope lens or
appearing sparse and out of focus, pose significant detection challenges, even to human annotators. Such
challenging structures usually require observing subtle rhythmic patterns across video frames for confident
identification.

For simplicity and consistency within our methodology, both visible and overlapping ciliary regions
were grouped into a single class termed "ciliary structure." To evaluate the effectiveness of fine-tuning
BiomedCLIP and subsequent segmentation using SAM, the annotated cilia dataset was split into training
and testing subsets following a 70/30 ratio.

The Cell Tracking Challenge Dataset [68]:

We employed selected datasets from the Cell Tracking Challenge (CTC), which offers a comprehensive
collection of 2D and 3D time-lapse microscopy images, each representing diverse biological organisms
and imaging modalities. These datasets cover a broad range of specimens, including human, mouse,
rat, Caenorhabditis elegans, Drosophila melanogaster, and others, captured using modalities such as
Brightfield, Differential Interference Contrast (DIC), and Fluorescence microscopy (detailed in Table
2.1). Given the relative uniformity of image slices within individual datasets, a small representative sample
from each was sufficient for benchmarking BiomedCLIP’s inherent segmentation capabilities prior to
fine-tuning.

BiomedCLIP Model

BiomedCLIP, a contrastive vision-language model tailored specifically for biomedical domains, integrates
effectively with segmentation frameworks like SAM, exemplified by models such as MedCLIP-SAMv2.
Trained on 15 million biomedical image-text pairs from PubMed Central, BiomedCLIP leverages a vision
transformer (ViT) for image encoding and PubMedBERT [23] for text encoding. Through contrastive
learning, it aligns related images and textual descriptions into a joint embedding space. Unlike general-
purpose models like CLIP [76], BiomedCLIP captures nuanced, domain-specific features, making it
uniquely suited for precise biomedical image analysis tasks, including saliency-driven segmentation. Fig-
ure 5.1 shows the off the shelf performance of BiomedCLIP over 2D datasets in CTC. The results fall
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significantly short of the performance achieved by state-of-the-art models in the CTC, as shown in Ta-
ble 2.1 1.

Figure 5.1: BiomedCLIP’s out-of-the-box performance over CTC’s 2D datasets

Fine-Tuning Strategies

To investigate the impact of different fine-tuning parameters on BiomedCLIP’s performance for cilia
segmentation, we systematically varied several key factors. These included adjusting the number of training
epochs, comparing fine-tuning on raw images versus masked images (isolating cell bodies and ciliary
structures), utilizing varying lengths of textual descriptions as noted in Table 5.5 (short versus detailed
versus randomized detailed annotations), and experimenting with different configurations of loss function
parameters. The parameter variations are summarized in Table 5.1.

Table 5.1: Fine-Tuning Parameter Variations
Parameter Variation Descriptions
Number of Epochs 2 epochs vs. 32 epochs
Input Images Raw images vs. Masked images
Textual Descriptions Concise vs. Detailed Vs. Randomized detailed descriptions
Loss Function Parameters Default settings vs. Adjusted weighting schemes

The fixed parameters for fine-tuning included the pretrained BiomedCLIP model, a batch size of 32,
learning rate of 1× 10−3, weight decay of 0.1, training duration of 32 epochs, and the DHN-NCE loss
introduced in MedCLIP-SAMv2. Model checkpoints were saved after each epoch.

1More information about the top-performing algorithms can be found https://celltrackingchallenge.net/latest-csb-results/
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DHN-NCE Loss Function

The Decoupled Hard Negative Noise Contrastive Estimation (DHN-NCE) loss is designed to improve
contrastive learning by decoupling positive samples from the denominator and introducing hard negative
sampling. The loss function consists of two terms: one for image-to-text learning and another for text-
to-image learning. Table 5.2 describes the effects of increasing or decreasing each of the loss-function
parameters.

Loss Definition
The overall DHN-NCE loss is defined as:

LDHN-NCE = Lv→t + Lt→v (5.3.1)

Each term is computed as follows:
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where:

• Ip,i and Tp,i are the normalized image and text features.

• B is the batch size.

• τ is the temperature parameter controlling the sharpness of the distribution.

• Wv→t and Wt→v are hardness weights for negative samples.

Hardness Weighting Factors
The hardness weighting factors are defined as:

Wv→t = (B − 1)× eβ1Ip,iT
⊤
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(5.3.4)
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(5.3.5)
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Table 5.2: Effects of parameter changes on DHN-NCE loss.
Parameter Effect of Increasing Effect of Decreasing

Temperature (τ ) Smoother similarity distribution Sharper contrast, possible instability
Hardness (β1, β2) Emphasizes difficult negatives Less focus on hard negatives

Positive Weight (α) More weight on positives, less contrast Stronger negative differentiation

Evaluation of BiomedCLIP Predictions

To quantitatively assess the accuracy of the generated heatmaps, a thresholding method was required
prior to computing evaluation metrics such as Dice coefficient and Intersection over Union (IoU) against
ground-truth masks. Our experiments indicated that the threshold selection critically influences the
evaluation outcomes, and the optimal threshold value differs markedly across various fine-tuning con-
figurations. Specifically, models with minimal or no fine-tuning necessitated relatively lower thresholds,
whereas models subjected to extensive fine-tuning required comparatively higher thresholds to achieve
optimal segmentation performance.

5.4 Results and Discussion
To establish a baseline performance for localizing ciliary regions in nasal epithelial biopsy images, the off-
the-shelf BiomedCLIP model was evaluated without domain-specific fine-tuning. Textual prompts of
varying lengths were used during inference: Short ("respiratory cilia"), Medium ("cilia on nasal epithelial
cells"), and Detailed ("normal or abnormal cilia in nasal epithelial biopsy...harder to detect"). As qualita-
tively illustrated in Figure 5.2, the un-tuned model struggled to consistently and accurately identify ciliary
structures, often generating saliency maps poorly aligned with the ground truth masks. Quantitative
metrics calculated from thresholded saliency maps corroborated these limitations. While average IoU and
Dice scores across test samples are presented in Table 5.3, visual inspection and individual sample metrics
revealed that IoU scores for specific predictions rarely exceeded 0.01, underscoring the challenges faced by
the un-tuned model and motivating the need for fine-tuning. It is also important to note that threshold
selection significantly impacts these metrics, adding complexity to direct comparisons based solely on
average scores.

Table 5.3: Average IoU and Dice scores of BiomedCLIP models under different training configurations
Model Variant Average IoU Average Dice
Un-tuned BiomedCLIP (zero-shot) 0.092 0.0033
Fine-tuned for 32 epochs on full images (overfit) 0.000 0.0000
Fine-tuned τ = 0.1, α = 0.9, β1 = 0.95, β2 = 0.05 0.106 0.0040
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Figure 5.2: Performance of off-the-shelf BiomedCLIP with Short, Medium, and Detailed prompts, demon-
strating poor localization without fine-tuning.

5.4.1 Impact of Fine-tuning BiomedCLIP
Our fine-tuning experiments revealed that performance improvements are highly dependent on the spe-
cific training conditions. Fine-tuning BiomedCLIP using full-sized, raw images proved detrimental,
severely impairing the model’s localization capabilities regardless of the number of training epochs, likely
due to the model failing to focus on relevant features amidst complex backgrounds. Conversely, fine-
tuning using masked images, which isolate the cell bodies and ciliary structures, consistently improved
localization accuracy by focusing the model’s learning process. However, training beyond an optimal
number of epochs (empirically found to be around 5 epochs for configurations using masked images)
did not enhance performance further. Instead, extended training introduced overfitting and degraded
generalizability, as indicated by the increasingly sparse and overly specialized activation maps shown for a
32-epoch run in Figure 5.3.

A quantitative assessment using per-pixel confusion matrix metrics (Table 5.4) further elucidates the
impact of fine-tuning. Compared to the untuned model, the fine-tuned version (using the configuration
specified in Table 5.3) demonstrated improved sensitivity, achieving higher average True Positive (TP)
counts and lower average False Negative (FN) counts across Short, Medium, and Detailed prompts. This
confirms the fine-tuned model’s enhanced ability to correctly identify actual positive pixels (cilia). How-
ever, this gain in sensitivity was accompanied by a significant reduction in specificity, evidenced by the
substantial increase in average False Positive (FP) counts and the corresponding decrease in average True
Negative (TN) counts. This indicates the fine-tuned model became more liberal in its classifications,
incorrectly labeling a larger number of background pixels as positive. Notably, the performance variation
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Figure 5.3: Localization results after fine-tuning BiomedCLIP for 32 epochs on full images without masks,
showing incorrect and overly specialized localization.
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Figure 5.4: Impact of adjusted hardness parameters (β1 = 0.65, β2 = 0.65) during fine-tuning, showing
improved localization diversity but potentially higher false-positive rates compared to baseline fine-tuning.
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across different prompt types appeared less pronounced in the fine-tuned model compared to the untuned
one based on these metrics.

Table 5.4: Average Per-Pixel Confusion Matrix Metrics (15 Test Samples)
Model Type Prompt Type Avg. TP Avg. TN Avg. FP Avg. FN
Untuned Short 1370.60 43288.20 2802.40 2714.80

Medium 1203.40 43001.00 3089.60 2882.00
Detailed 1642.80 42078.60 4012.00 2442.60

Fine-tuned Short 1839.80 37405.00 8685.60 2245.60
Medium 1669.80 37407.60 8683.00 2415.60
Detailed 1713.20 37208.80 8881.80 2372.20

Note: TP = True Positives, TN = True Negatives, FP = False Positives, FN = False Negatives. Values represent average
per-pixel counts over 15 test samples. Fine-tuned model corresponds to the configuration: τ = 0.1, α = 0.9, β1 = 0.95,

β2 = 0.05, masked images, 5 epochs, trained on long captions.

5.4.2 Effects of Textual Prompts

Table 5.5: Caption Generation Logic Based on Image Content for Fine-Tuning.
Image Content Short Caption Long Caption

Masked Cell Body
(No Cilia)

Fixed text: nasal epithelial

cell

Fixed text: a microscopy image of

nasal epithelial biopsy containing

epithelial cell

Masked Ciliary Re-
gion

Generated based on the
source video’s label (motile,
immotile, or indeterminate):
Resulting text is like "normal

cilia", "abnormal cilia", or
"indeterminate cilia".

Generated based on source video la-
bel and mask analysis: Starts with
"nasal epithelial biopsy of

[state ] cilia..." (where state reflects
motile/immotile/indeterminate). Continues
by describing visibility based on mask charac-
teristics, using phrases like "...exposed and

clearly visible protruding out..."

for easily detected cilia, or "...overlaying
the body of the cell and are hard

to detect" for obscured cilia.

Note: If both clearly visible and hard-to-detect cilia are present according to the mask analysis, the long caption explicitly
mentions this mixed visibility (e.g., "...some cilia protrude... clearly visible, while some other cilia are overlaying... hard to

detect."). Additionally, to enhance diversity, the exact phrasing and use of synonyms within the descriptive parts of the long
captions were randomized during generation.

The nature of textual prompts used during fine-tuning and inference also significantly impacted model
performance (details of caption generation logic are in Table 5.5). Our experiments showed that employ-
ing short, concise textual prompts generally led to more consistent localization with fewer false-positive
results, particularly when the model was also trained using corresponding short captions. Conversely,
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utilizing longer, more detailed prompts and captions (as seen in Figure A.3) could introduce ambiguity,
sometimes increasing the incidence of both false positives and false negatives. A crucial observation was
the importance of consistency between training captions and inference prompts: models trained with
brief captions performed best with brief prompts, whereas models trained on detailed captions benefited
from detailed prompts during inference.

5.4.3 Hyperparameter Optimization and Stability
Exploration of the DHN-NCE loss hyperparameters revealed nuances in their influence on stability and
accuracy. Within a moderate range, variations in the hardness weighting parameters β1 and β2 showed
minimal impact. However, employing more extreme, asymmetric values (such as β1 = 0.95, β2 = 0.05,
used in the primary fine-tuned configuration reported in Tables 5.3 and 5.4) significantly heightened the
model’s sensitivity to differences in textual prompts, potentially leading to instability. Separate exper-
iments indicated that a balanced beta configuration (e.g., β1 = 0.65, β2 = 0.65), particularly when
combined with long captions during training (as illustrated in Figure 5.4), could offer a good trade-off by
maximizing detection accuracy while potentially mitigating some false positives compared to the more
sensitive configuration. Adjusting the temperature parameter τ also had effects; higher temperatures led
to smoother, more blurred similarity distributions, which could compromise localization precision.

5.4.4 Prompt Selection Strategies for SAM
Finally, our analysis underscored the critical importance of how BiomedCLIP-generated saliency maps
are translated into spatial prompts for the downstream SAM model. We found that common strategies,
such as randomly selecting points solely from the largest detected contour in the thresholded map, were
often inadequate, especially for ROIs like cilia that can be sparse and distributed across multiple small
regions. Our findings emphasize that more nuanced approaches, which consider multiple salient contours
or employ different heuristics based on the map’s characteristics, can significantly enhance segmentation
accuracy, particularly for complex images with overlapping or indistinct ROIs.

5.5 Conclusion and Final Remarks
This chapter investigated the application of foundation models for biomedical image segmentation, focus-
ing specifically on optimizing the BiomedCLIP vision-language model to generate high-quality saliency
maps intended as input for a downstream Segment Anything Model (SAM). Our work, centered on the
challenging task of ciliary region identification, highlighted the limitations of traditional methods and
explored how fine-tuning a vision-language model can enhance the initial, prompt-generation stage of a
SAM-based segmentation pipeline.

A key finding is the observed performance difference in BiomedCLIP before and after fine-tuning for
this specialized task. Our baseline evaluation showed that the off-the-shelf BiomedCLIP model demon-
strated limitations in localization accuracy (e.g., low average IoU scores, high false negatives) and produced
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inconsistent saliency maps across different prompt types (Table 5.3, Table 5.4). In contrast, strategic fine-
tuning resulted in an improvement in BiomedCLIP’s ability to generate stable and accurate saliency maps
relevant to the target structures. Although this fine-tuning increased sensitivity (higher True Positives,
lower False Negatives), it also reduced specificity, evidenced by the increase in average False Positive counts
(Table 5.4). This observed contrast underscores the necessity of domain-specific adaptation for vision-
language models when preparing inputs for subsequent segmentation tasks in specialized biomedical
contexts.

Our investigations demonstrated that the effectiveness of BiomedCLIP fine-tuning is highly sensitive
to the chosen methodology. We found that minimal fine-tuning (e.g., around 5 epochs) using masked
images and concise textual prompts often yielded robust saliency maps. This effectiveness likely stems from
several factors: using masked images focuses the model on relevant features; shorter training durations
prevent overfitting, promoting generalization; and concise prompts provide a clearer, less ambiguous
signal to the model.

The refined saliency maps generated by the optimally tuned BiomedCLIP serve as a more effective
foundation for deriving precise spatial prompts (points or bounding boxes) intended for use with SAM.
The experiments underscored the importance of the prompt selection method, showing that simplistic
strategies (like selecting random points from only the largest contour) are not universally optimal, espe-
cially for sparse or distributed ROIs where multi-contour strategies are preferable. The effectiveness of
any prompt selection strategy is intrinsically linked to the quality and characteristics of the saliency map
produced by the fine-tuned vision-language model.

Furthermore, while this work focused primarily on optimizing and understanding the reproducibility
of the prompt generation stage via BiomedCLIP, achieving reliable end-to-end segmentation necessitates
acknowledging factors beyond this scope. Potential stochasticity within SAM’s internal mask decoding
process or implementation variations could still affect final segmentation reproducibility even with iden-
tical input prompts, representing an area for future investigation relevant to the broader goal of creating
robust biomedical tools. Our results, focused on improving the input to SAM, indirectly support the
notion that an off-the-shelf SAM could be utilized more effectively when provided with high-quality,
targeted prompts derived from a well-tuned upstream model, particularly for tasks where ROIs are clearly
indicated by the prompts. However, the question of whether SAM itself requires fine-tuning for optimal
performance across diverse biomedical conditions remains an open area addressed by other studies in the
field.

In conclusion, a carefully fine-tuned vision-language model, configured with optimized parameters
and training strategies, coupled with intelligent, context-aware selection of spatial prompts derived from
its output, enhances the potential for effective segmentation using an off-the-shelf SAM by providing
it with improved guidance. Future work stemming from this investigation should focus on the prompt
generation and selection process:

• Developing more sophisticated, adaptive, and potentially automated spatial prompt selection al-
gorithms that optimally leverage the information in the refined saliency maps, tailored to specific
biomedical imaging characteristics and ROI distributions.
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• Exploring advanced fine-tuning techniques (e.g., parameter-efficient methods) specifically for the
vision-language model (BiomedCLIP) to further optimize saliency map quality and stability.

• Investigating how variations in the quality and type of prompts generated by different BiomedCLIP
configurations influence the downstream performance and behavior of a fixed SAM model.

By improving the crucial link between textual/visual understanding (BiomedCLIP) and spatial segmenta-
tion (SAM), such advancements will contribute to realizing more robust, reliable, and clinically valuable
biomedical image segmentation frameworks that leverage the power of foundation models.
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Chapter 6

Conclusion

6.1 Summary of Contributions
This dissertation systematically addressed key challenges in biomedical image segmentation by developing
and evaluating supervised, self-supervised, minimally supervised, and foundation model-based segmenta-
tion methods. Collectively, these chapters form a cohesive framework intended to advance segmentation
accuracy, generalizability, and usability across diverse biomedical imaging scenarios.

In Chapter 2, we introduced TSeg, a comprehensive pipeline for 3D cell segmentation, tracking,
and motility analysis, demonstrated with Toxoplasma gondii. TSeg integrates established CNN-based
segmentation tools (CellPose, PlantSeg) with tracking and analysis modules within a user-friendly Napari
plugin, enabling researchers with limited coding expertise to deploy these methods. Its performance
evaluation on Cell Tracking Challenge (CTC) datasets highlights its potential as an applicable tool in
biomedical research requiring 3D analysis.

Chapter 3 presented a self-supervised segmentation method for cilia, generating pseudo-labels via opti-
cal flow and autoregressive modeling of motion patterns. This approach reduces the reliance on manually
annotated datasets for training segmentation models while achieving reasonable performance, particularly
in identifying ciliary regions (comparable sensitivity to supervised methods). Although demonstrated
specifically for cilia segmentation, the core idea of using motion signatures for pseudo-labeling could
potentially be extended to other time-series biomedical imaging tasks, such as cardiac motion analysis or
dynamic cell processes.

In Chapter 4, we leveraged contrastive learning for minimally supervised segmentation, requiring only
simple point-based user interaction to define regions of interest. This self-supervision approach learns
discriminative representations from unlabeled temporal data, enabling segmentation with minimal anno-
tation effort. The framework showed efficacy across various 2D CTC datasets, illustrating the potential
of contrastive methods for tackling data scarcity. One specific future direction is to investigate whether
the contrastive coding strategy developed here could serve as an alternative to standard contrastive loss
functions (e.g., DHN-NCE loss) in vision-language models like BiomedCLIP, potentially improving
their fine-tuning for biomedical applications.
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Chapter 5 explored the role of foundation models, specifically focusing on fine-tuning the Biomed-
CLIP vision-language model to improve the generation of spatial prompts for Segment Anything Models
(SAMs). We investigated the impact of fine-tuning strategies, data masking, prompt consistency, and
hyperparameters on the quality of generated saliency maps. While SAMs provide flexible segmentation so-
lutions, our findings regarding the upstream prompt generation highlight that domain-specific adaptation,
even if minimal, is often beneficial for reliable performance on specialized tasks like cilia identification.
Nonetheless, the accessibility of foundation models like SAM, potentially guided by outputs from mod-
els like BiomedCLIP, opens avenues for broader adoption of advanced segmentation tools in biomedical
image analysis.

6.2 Theoretical and Practical Implications
The proposed methodologies contribute both theoretically and practically to biomedical image segmen-
tation. TSeg serves as an integrated segmentation and tracking solution applicable to various 3D cellular
imaging tasks. Its GUI-driven design lowers the barrier to entry for non-experts, potentially accelerating
the adoption of deep learning techniques in biological research.

The self-supervised motion-based segmentation method (Chapter 3) introduces an efficient way of
generating training data by leveraging inherent temporal dynamics, reducing annotation workload with-
out eliminating the need for model training itself. This makes it well-suited for time-series imaging tasks
where motion is a key characteristic.

Our contrastive learning framework (Chapter 4) further illustrates the efficacy of self-supervision,
learning useful representations directly from unlabeled image sequences with minimal interactive guid-
ance. Exploring its integration into large-scale biomedical models could potentially enhance their ability
to capture subtle morphological differences.

Finally, the investigation of foundation models (Chapter 5) underlines their dual nature: promise cou-
pled with limitations in specialized domains. While generic pretraining might overlook domain-specific
nuances, appropriate adaptation (here, of the prompt-generating model) can yield competitive results.
The ability of foundation models like SAM to deliver usable segmentations with minimal direct supervi-
sion or fine-tuning (when provided good prompts) underscores their potential for widespread application.

6.3 Limitations, Failure Modes, and Future Directions
Despite the advancements presented, several challenges and limitations warrant discussion. Acknowledg-
ing these is crucial for responsible application and identifying pathways for future improvement, while
not negating the utility of the methods in appropriate contexts.
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Limitations and Failure Modes
Data Dependency and Domain Shift: The performance of all developed methods remains partly de-
pendent on the characteristics of the training data. Domain shifts (e.g., applying a model trained on
one microscope to data from another) or datasets with high heterogeneity can degrade accuracy. This
is a common challenge in machine learning but particularly pronounced in biomedical imaging due to
variability in equipment, protocols, and biological samples.

Method-Specific Failures:

• TSeg (Chapter 2): Performance is constrained by the chosen backend (CellPose/PlantSeg) and com-
putational resources, especially for large 3D+time datasets. The tracking module struggles with
complex cellular events like dense overlaps, division, or fusion, potentially leading to trajectory
errors.

• Self-Supervised Cilia Segmentation (Chapter 3): Accuracy relies on the quality of motion-derived
pseudo-labels. Extraneous motion (e.g., stage drift) can create false signals, while very slow or ir-
regular cilia movement may not generate strong enough signals, leading to under-segmentation.
Training solely on motile cilia might also bias the model if dyskinetic cilia have distinct static ap-
pearances not captured during training.

• Contrastive Learning Segmentation (Chapter 4): This method struggled with images containing
artifacts visually similar to the target texture (e.g., hydrogel shadows in BF-C2DL datasets) leading
to false positives. Performance also decreased in low-contrast images (Fluo-N2DL-HeLa) or where
cell size and internal texture variation were large compared to the patch size (DIC-C2DH-HeLa),
leading to incomplete masks or imprecise boundaries.

• Foundation Model Prompting (BiomedCLIP, Chapter 5): While fine-tuning improved saliency maps,
it increased false positives. The system remains sensitive to prompt phrasing and hyperparameter
choices, impacting reproducibility of the prompt generation stage. The quality of the final SAM
segmentation (not performed in Chapter 5) would depend heavily on these upstream factors.

Need for Validation: While self-supervision reduces manual annotation for training, expert valida-
tion of the final segmentation outputs remains crucial for biological and clinical relevance, especially in
diagnostic settings.

Scalability: Processing large 3D or 4D datasets remains computationally intensive for methods like
TSeg. Real-time application may require further optimization or specialized hardware.

Uniqueness of Failures in Biomedical Images
Many failures observed (e.g., sensitivity to low contrast, texture variations, similar artifacts) are exacerbated
in biomedical imaging compared to general computer vision. Reasons include the inherent complexity
and subtlety of biological structures, lack of sharp canonical boundaries for many cell types or tissues,
prevalence of imaging artifacts, and inter-sample biological variability.
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Future Directions
Building upon this work, future research could pursue several avenues:

Improving Scalability and Robustness:

• TSeg Scalability: Investigate computational optimizations like data tiling, sparsification techniques,
asynchronous processing, or leveraging cloud/HPC resources. Explore alternative, potentially
lighter-weight segmentation backends.

• Contrastive Learning Boundaries: Enhance boundary definition by incorporating multi-scale patch
analysis, exploring boundary-specific loss terms, refining negative sampling strategies, or integrating
minimal boundary annotations.

Exploring Advanced Architectures: While TSeg currently uses CNNs (U-Nets via CellPose/PlantSeg),
future iterations could explore transformer-based architectures (like Swin-UNET, UNETR) which have
shown promise in capturing long-range spatial dependencies in medical images, potentially improving seg-
mentation of complex or large structures. However, this work did not implement or evaluate transformers
within TSeg.

Enhancing Generalization and Applicability:

• Additional Datasets: Validate methods on a wider range of datasets beyond CTC or the specific cilia
data, such as imaging data from different organisms, other microscopy modalities (e.g., Electron
Microscopy, Confocal), different disease states, or clinical imaging archives (e.g., radiology scans
for foundation models).

• Multimodal Data Integration: Explore fusion techniques to combine imaging data with other
sources. For example, integrating clinical metadata or molecular profiling could potentially guide
segmentation models via attention mechanisms or be used as conditional inputs to improve speci-
ficity.

Leveraging Newer AI Paradigms:

• Foundation Models: Investigate newer foundation models possessing enhanced reasoning capabili-
ties or explicit knowledge integration, potentially improving segmentation accuracy through better
contextual understanding.

• Reinforcement Learning: Explore RL for optimizing interactive segmentation workflows (e.g., learn-
ing the best sequence of user prompts/corrections) or for automated hyperparameter tuning.

Improving Trust and Interpretability: Incorporate uncertainty estimation techniques (e.g., Bayesian
deep learning, ensemble methods) to provide confidence scores for segmentations, and utilize explainabil-
ity methods (e.g., attention maps, Grad-CAM) to understand model decision-making, enhancing clinical
acceptance.
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6.4 Broader Impact and Scientific Contributions
This dissertation advances biomedical image segmentation by introducing tools and methods intended to
improve accessibility, reduce annotation demands, and enhance model robustness. The potential impact
spans multiple domains:

• Clinical Diagnostics: Automated segmentation can facilitate the detection and analysis of condi-
tions such as ciliopathies, cancer, and neurodegenerative disorders, potentially streamlining clinical
workflows and improving patient care.

• Biomedical Research: The proposed segmentation pipelines can be applied to study cellular mor-
phology, motility patterns, and disease progression, potentially accelerating research in areas like
developmental biology, immunology, and infectious disease.

• AI in Healthcare: By making segmentation tools more accessible and less reliant on large annotated
datasets, this work supports broader adoption of AI-driven diagnostics and personalized medicine,
potentially transforming approaches to healthcare challenges.

In conclusion, these contributions establish a foundation for developing more scalable, efficient, and
interpretable biomedical segmentation approaches. By integrating deep learning, self-supervision, and
foundation models, this dissertation aims to bring the field closer to practical, domain-ready, and data-
efficient solutions that can serve a wide range of medical and biological research endeavors.
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Appendix A

Appendices
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Figure A.1: Improved ciliary region localization after fine-tuning BiomedCLIP for one epoch using masked
images with short captions.
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Figure A.2: Effective and balanced localization achieved by fine-tuning BiomedCLIP with a reduced
dataset size (small train) using masked images and short captions for 5 epochs.
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Figure A.3: Localization results demonstrating increased flexibility but higher false positives when fine-
tuning BiomedCLIP using long captions.
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Figure A.4: Localization impact of higher temperature (τ = 0.4) during fine-tuning, resulting in blurred
similarity distributions and compromised accuracy.
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Table A.1: Cell Tracking Challenge Datasets
Dataset Name Organism Description Imaging

Modality
Dimension

BF-C2DL-HSC Mouse Hematopoietic stem cells cultured
in hydrogel microwells.

Brightfield
Microscopy

2D

BF-C2DL-MuSC Mouse Muscle stem cells cultured in hy-
drogel microwells.

Brightfield
Microscopy

2D

DIC-C2DH-HeLa Human HeLa cells cultured on a flat glass
surface.

Differential In-
terference Con-
trast (DIC) Mi-
croscopy

2D

Fluo-C2DL-Huh7 Human Huh7 cells expressing the fusion
protein YFP-TIA-1.

Fluorescence
Microscopy

2D

Fluo-C2DL-MSC Rat Mesenchymal stem cells cultured
on a flat polyacrylamide substrate.

Fluorescence
Microscopy

2D

Fluo-N2DH-GOWT1 Mouse GFP-GOWT1 stem cells. Fluorescence
Microscopy

2D

Fluo-N2DL-HeLa Human HeLa cells stably expressing H2b-
GFP.

Fluorescence
Microscopy

2D

Fluo-C3DH-A549 Human A549 lung cancer cells embedded in
a Matrigel matrix.

Fluorescence
Microscopy

3D

Fluo-C3DH-H157 Human GFP-transfected H157 lung cancer
cells embedded in a Matrigel ma-
trix.

Fluorescence
Microscopy

3D

Fluo-C3DL-MDA231 Human MDA231 human breast carcinoma
cells infected with a pMSCV vector
including the GFP sequence, em-
bedded in a collagen matrix.

Fluorescence
Microscopy

3D

Fluo-N3DH-CE C. elegans Developing C. elegans embryo. Fluorescence
Microscopy

3D

Fluo-N3DH-CHO Chinese Ham-
ster

Chinese Hamster Ovarian (CHO)
nuclei overexpressing GFP-
PCNA.

Fluorescence
Microscopy

3D

Fluo-N3DL-DRO Drosophila
melanogaster

Developing Drosophila
melanogaster embryo.

Fluorescence
Microscopy

3D

Fluo-N3DL-TRIC Tribolium casta-
neum

Developing Tribolium castaneum
embryo (3D cartographic projec-
tion).

Fluorescence
Microscopy

3D

Fluo-N3DL-TRIF Tribolium casta-
neum

Developing Tribolium castaneum
embryo.

Fluorescence
Microscopy

3D
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Table A.2: Overview of Cell Tracking Challenge Datasets with Sample Images.
2D Dataset Name Sample Image 3D Dataset Name Sample Image

BF-C2DL-HSC Fluo-C3DH-A549

BF-C2DL-MuSC Fluo-C3DH-A549-SIM

DIC-C2DH-HeLa Fluo-C3DH-H157

Fluo-C2DL-Huh7 Fluo-C3DL-MDA231

Fluo-C2DL-MSC Fluo-N3DH-CE

Fluo-N2DH-GOWT1 Fluo-N3DH-CHO

Fluo-N2DH-SIM Fluo-N3DH-SIM

Fluo-N2DL-HeLa Fluo-N3DL-DRO

PhC-C2DH-U373 Fluo-N3DL-TRIF

PhC-C2DL-PSC Fluo-N3DL-TRIC
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Table A.3: CellPose Performance on 2D Datasets

dataset name BF
-C

2D
L-

H
SC

BF
-C

2D
L-

M
uS

C

D
IC

-C
2D

H
-H

eL
a

Fl
uo

-C
2D

L-
H

uh
7

Fl
uo

-C
2D

L-
M

SC

Fl
uo

-N
2D

H
-G

O
W

T
1

Fl
uo

-N
2D

H
-S

IM
+

Fl
uo

-N
2D

L-
H

eL
a

Ph
C

-C
2D

H
-U

37
3

Ph
C

-C
2D

L-
PS

C

cyto3 0.98 0.95 0.36 0.60 0.90 0.89 0.82 0.75 0.87 0.87
nuclei 0.99 0.99 0.36 0.60 0.89 0.86 0.80 0.75 0.87 0.90
cyto2_cp3 0.94 0.95 0.35 0.60 0.89 0.87 0.82 0.74 0.85 0.87
tissuenet_cp3 0.98 0.97 0.36 0.59 0.89 0.86 0.80 0.75 0.87 0.91
livecell_cp3 0.98 0.99 0.36 0.59 0.89 0.86 0.80 0.75 0.87 0.91
yeast_PhC_cp3 0.98 0.98 0.34 0.59 0.84 0.86 0.71 0.75 0.86 0.88
yeast_BF_cp3 0.99 0.99 0.36 0.60 0.89 0.86 0.79 0.73 0.87 0.91
bact_phase_cp3 0.97 0.97 0.35 0.59 0.89 0.86 0.79 0.73 0.86 0.89
bact_fluor_cp3 0.93 0.95 0.33 0.59 0.89 0.86 0.79 0.73 0.84 0.89
deepbacs_cp3 0.99 0.99 0.36 0.60 0.89 0.86 0.80 0.75 0.87 0.90
cyto2 0.95 0.96 0.36 0.60 0.90 0.88 0.82 0.73 0.86 0.86
cyto 0.97 0.97 0.35 0.59 0.89 0.87 0.80 0.72 0.84 0.86
CPx 0.97 0.98 0.34 0.59 0.89 0.88 0.80 0.73 0.86 0.90
neurips_grayscale_cyto2 0.99 0.98 0.35 0.60 0.89 0.88 0.89 0.67 0.87 0.91
CP 0.97 0.95 0.35 0.60 0.89 0.88 0.81 0.72 0.86 0.89
TN1 0.98 0.99 0.36 0.60 0.89 0.86 0.80 0.75 0.86 0.91
TN2 0.99 0.98 0.36 0.59 0.89 0.86 0.80 0.75 0.87 0.91
TN3 0.99 0.99 0.36 0.60 0.89 0.86 0.80 0.75 0.87 0.91
LC1 0.99 0.99 0.27 0.59 0.89 0.89 0.79 0.75 0.87 0.91
LC2 0.96 0.97 0.36 0.60 0.89 0.86 0.79 0.75 0.85 0.90
LC3 0.98 0.97 0.33 0.60 0.89 0.86 0.80 0.74 0.82 0.85
LC4 0.95 0.98 0.36 0.59 0.89 0.86 0.80 0.75 0.87 0.83
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Table A.4: PlantSeg Performance on 2D Datasets

dataset name BF
-C

2D
L-

H
SC
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2D
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M
uS

C

D
IC

-C
2D

H
-H
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eL
a
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C

-C
2D

H
-U

37
3

Ph
C

-C
2D

L-
PS

C

confocal_2D_unet_ovules_ds2x 0.99 0.99 0.36 0.59 0.89 0.86 0.80 0.75 0.87 0.91
lightsheet_2D_unet_root_ds1x 0.99 0.99 0.36 0.59 0.89 0.86 0.80 0.75 0.87 0.91
lightsheet_2D_unet_root_nuclei_ds1x 0.99 0.99 0.36 0.59 0.89 0.86 0.80 0.75 0.87 0.91
confocal_2D_unet_sa_meristem_cells 0.99 0.99 0.36 0.59 0.89 0.86 0.80 0.75 0.87 0.91

Table A.5: CellPose Performance on 3D Datasets

dataset_name Fl
uo

-C
3D

H
-A

54
9

Fl
uo

-C
3D

H
-A
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9-

SI
M

Fl
uo

-C
3D

H
-H

15
7

Fl
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-N
3D

H
-C

E

Fl
uo

-N
3D

H
-C

H
O

Fl
uo

-N
3D

H
-S

IM
+

cyto3 0.96 0.97 0.93 0.80 0.83 0.92
nuclei 0.96 0.97 0.93 0.80 0.84 0.93
cyto2_cp3 0.97 0.97 0.93 0.80 0.79 0.93
tissuenet_cp3 0.96 0.97 0.93 0.80 0.84 0.93
livecell_cp3 0.96 0.95 0.93 0.80 0.84 0.93
yeast_PhC_cp3 0.92 0.93 0.88 0.68 0.84 0.86
yeast_BF_cp3 0.95 0.97 0.92 0.80 0.83 0.88
bact_phase_cp3 0.96 0.97 0.93 0.79 0.83 0.93
bact_fluor_cp3 0.96 0.97 0.93 0.80 0.83 0.93
deepbacs_cp3 0.96 0.97 0.93 0.80 0.84 0.93
cyto2 0.96 0.98 0.93 0.80 0.84 0.94
cyto 0.96 0.97 0.93 0.80 0.82 0.93
CPx 0.98 0.99 0.93 0.80 0.83 0.93
neurips_grayscale_cyto2 0.97 0.98 0.93 0.73 0.82 0.92
CP 0.98 0.99 0.93 0.79 0.82 0.93
TN1 0.96 0.97 0.93 0.80 0.84 0.93
TN2 0.96 0.97 0.93 0.80 0.84 0.93
TN3 0.96 0.99 0.93 0.80 0.84 0.93
LC1 0.86 0.97 0.92 0.80 0.82 0.92
LC2 0.96 0.97 0.93 0.80 0.84 0.93
LC3 0.96 0.13 0.93 0.79 0.82 0.30
LC4 0.96 0.97 0.93 0.80 0.84 0.93

70



Table A.6: PlantSeg Performance on 3D Datasets

dataset_name Fl
uo

-C
3D
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-A
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9
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H
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H
O
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-N
3D

H
-S
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+

generic_confocal_3D_unet 0.96 0.97 0.88 0.78 0.84 —
generic_light_sheet_3D_unet 0.96 0.97 0.88 0.78 0.84 —
confocal_3D_unet_ovules_ds1x 0.96 0.97 0.88 0.78 0.84 —
confocal_3D_unet_ovules_ds2x 0.96 0.97 0.88 0.78 0.84 —
confocal_3D_unet_ovules_ds3x 0.96 0.97 0.88 — 0.84 —
lightsheet_3D_unet_root_ds1x 0.96 0.97 0.88 — 0.84 —
lightsheet_3D_unet_root_ds2x 0.96 0.97 0.88 — 0.84 —
lightsheet_3D_unet_root_ds3x 0.96 0.97 0.88 — 0.84 —
lightsheet_3D_unet_root_nuclei_ds1x 0.96 0.97 0.88 — 0.84 —
confocal_3D_unet_sa_meristem_cells 0.96 0.97 0.88 — 0.84 —
confocal_3D_unet_mouse_embryo_nuclei 0.96 0.97 0.88 — 0.84 —
PlantSeg_3Dnuc_platinum 0.96 0.97 0.88 — 0.84 —
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