THE ROLE OF NUTRITION IN BRAIN DEVELOPMENT AND HEALTH

by

STEPHANIE DUBROF

(Under the Direction of Hea Jin Park)

ABSTRACT

Brain development and health are influenced by nutrients that modulate neurochemical pathways, functional connectivity, and recovery mechanisms. Nutritional interventions, including functional foods rich in essential nutrients and bioactive compounds, support neurodevelopment, mitigate oxidative stress, and promote brain resilience. This dissertation investigates how nutritional and pharmacological interventions, including compounds derived from natural sources, influence brain outcomes using a translational pig model. Study 1 examined the effects of perinatal docosahexaenoic acid (DHA) supplementation on specialized pro-resolving lipid mediators (SPMs) in offspring brains. Perinatal DHA status has previously been associated with enhanced cognitive performance in offspring, potentially mediated by its anti-inflammatory properties. SPMs, derived from DHA, play a crucial role in resolving inflammation and have recently been identified as modulators of cognitive function. DHA supplementation elevated SPM levels in the prefrontal cortex and cerebellum and revealed associations between prefrontal SPMs and cerebellar network functional activation. These findings support a mechanism by which maternal DHA intake enhances neurodevelopment via SPMs. Study 2 expanded the focus

from a single compound to a whole-food approach, investigating perinatal egg yolk supplementation. Egg yolk provides a complex nutrient matrix, including amino acids, fatty acids, vitamins, minerals, and other bioactives linked to infant brain development. Maternal supplementation increased executive and cerebellar functional activity, enhanced hippocampal and cerebellar fiber lengths, and improved behavioral outcomes in offspring. This supports the role of a whole-food based approach to perinatal nutrition in promoting functional neurodevelopment. Study 3 shifted focus to brain injury recovery, evaluating the antioxidant therapeutic CMX-2043 in a pig model of traumatic brain injury (TBI). Treatment altered antioxidant enzyme activity in a route-specific manner, where intravenous administration enhanced liver catalase and brain SOD activity, while subcutaneous delivery increased brain catalase activity. Elevated brain catalase activity correlated with improved MRI-based recovery measures, including reduced lesion volume, midline shift, and swelling and atrophy. Together, these studies highlight the therapeutic potential of both functional foods and bioactive compound-based interventions in supporting brain development and recovery. The findings from this dissertation offer translational insights into how targeted nutrition and therapies can enhance neurodevelopmental outcomes and inform strategies to optimize brain health across the lifespan.

INDEX WORDS: DHA, SPECIALIZED PRO-RESOLVING MEDIATORS,
POLYUNSATURATED FATTY ACID METABOLITES, LIPIDOMICS, EGG YOLK,
NEURODEVELOPMENT, MAGNETIC RESONANCE IMAGING, FUNCTIONAL
MAGNETIC RESONANCE IMAGING, COGNITIVE FUNCTION, BRAIN HEALTH, BRAIN
INJURY, CATALASE, OXIDATIVE STRESS, BRAIN RECOVERY

THE ROLE OF NUTRITION IN BRAIN DEVELOPMENT AND HEALTH

by

STEPHANIE DUBROF

B.S., Florida State University, 2018

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2025

THE ROLE OF NUTRITION IN BRAIN DEVELOPMENT AND HEALTH

by

STEPHANIE DUBROF

Major Professor: Committee: HEA JIN PARK ALEX ANDERSON TODD R. CALLAWAY NIKOLAY M. FILIPOV

Electronic Version Approved:

Ron Walcott Vice Provost for Graduate Education and Dean of the Graduate School The University of Georgia May 2025

ACKNOWLEDGEMENTS

I would not have been able to complete my dissertation, or really be at this point in my life, without the continuous support of very special people who are so close to me. I will forever be indebted to my parents, Jodi and Scott Karlin, who have stood behind me literally every step of the way. You have supported me throughout all of the periods of self-doubt, and you have cheered me on during all of the periods of successes and wins. I am so grateful for your patience, time, and the resources to finally finish this degree. To my love, Scott, who has kept me sane throughout these very challenging five years. I am so grateful for your levelheadedness, your wisdom, and your ability to keep me calm. I know I often made my anxiety your anxiety, but you always have handled it with a composure I could only dream to have. Thank you for bearing with me.

Dr. Park, where do I begin? You are my mentor and my teacher, and you have instilled in me a confidence I have never had before. While the work was not always easy, you have guided me through all of it. There were many times when I felt I could not live up to a task or overcome a challenge, but I deeply appreciate your confidence in my abilities to lead my projects and carry out my research in our lab. Under your guidance, I have become the best student and worker I have ever been, and I cannot wait to carry these skills into my next stage of life. The work would have also been impossible without my fellow lab members and undergraduates. We have made such a good team, and I feel lucky to have worked with all of you.

I would like to give a big thank you to my committee members, Dr. Anderson, Dr. Callaway, and Dr. Filipov. You have provided invaluable advice and have continuously challenged me

throughout my pursuit of this degree. I truly feel that each of you have contributed something unique in order to make this final dissertation a complete work. I appreciate all of the specialized knowledge you have shared with me, and I am so grateful that you gave me the chance to grow into the student I am today. I am beyond fortunate to have had such a dynamic committee.

TABLE OF CONTENTS

		Page
ACKNOV	WLEDGEMENTS	iv
LIST OF	TABLES	ix
LIST OF	FIGURES	x
СНАРТЕ	R	
1	INTRODUCTION	1
	References	5
2	REVIEW OF THE LITERATURE	11
	Introduction	11
	Placental development and nutrient transfer	13
	Breastfeeding	15
	Energy intake	17
	Conclusion	32
	References	33
3	THE EFFECT OF PERINATAL SUPPLEMENTATION OF DHA ON	
	SPECIALIZED PRO-RESOLVING LIPID MEDIATORS IN THE BRAIN OF	
	OFFSPRING	53
	Abstract	54
	Introduction	55
	Methods	57

	Results	60
	Discussion	65
	Conclusion	68
	References	69
4	MATERNAL SUPPLEMENTATION OF EGG YOLK MODULATES BRAIN	
	FUNCTIONAL ORGANIZATION AND FUNCTIONAL OUTCOMES OF	
	OFFSPRING	81
	Abstract	82
	Introduction	83
	Methods	84
	Results	88
	Discussion	91
	Conclusion	95
	References	97
5	CATALASE ACTIVITY IN THE BRAIN IS ASSOCIATED WITH BRAIN	
	RECOVERY IN A PIGLET MODEL OF TRAUMATIC BRAIN INJURY	109
	Abstract	110
	Introduction	112
	Methods	114
	Results	116
	Discussion	120
	Conclusion	123
	Deferences	125

6 SUMMARY AND CONCLUSIONS	35
---------------------------	----

LIST OF TABLES

Page
Table 3.1: Diet composition of the sow basal diet during gestation and lactation for sows
supplemented with or without docosahexaenoic acid
Table 4.1: Diet composition of the sow basal diet during gestation and lactation for sows
supplemented with or without egg yolk powder
Table 4.2: Percentage volumes of anatomical brain regions in piglets from sows supplemented
with or without egg yolk powder
Table 5.1: Correlations of MRI measurements with catalase activity in the brain 42 days after
traumatic brain injury

LIST OF FIGURES

Page
Figure 3.1: Protectin levels in the prefrontal cortex, cerebellum, and hippocampus of weaning
piglets from sows fed a diet with or without docosahexaenoic acid
Figure 3.2: Hydroxydocosahexaenoic acid levels in the prefrontal cortex, cerebellum, and
hippocampus of weaning piglets from sows fed a diet with or without docosahexaenoic
acid75
Figure 3.3: Maresin levels in the prefrontal cortex, cerebellum, and hippocampus of weaning
piglets from sows fed a diet with or without docosahexaenoic acid
Figure 3.4: D-series Resolvin 1 levels in the prefrontal cortex, cerebellum, and hippocampus of
weaning piglets from sows fed a diet with or without docosahexaenoic acid77
Figure 3.5: Hydroxyeicosapentaenoic acid levels in the prefrontal cortex, cerebellum, and
hippocampus of weaning piglets from sows fed a diet with or without docosahexaenoic
acid78
Figure 3.6: E-series Resolvin 1 levels in the prefrontal cortex, cerebellum, and hippocampus of
piglets from sows fed a diet with or without docosahexaenoic acid79
Figure 3.7: Correlation of specialized pro-resolving mediators with activation of brain functional
networks of piglets at weaning80

Figure 4.1: Perinatal egg yolk intake altered brain functional network activation in piglet
offspring104
Figure 4.2: Perinatal egg yolk intake increased white matter fiber length in the hippocampus and
cerebellum in piglet offspring as shown through diffusion tensor imaging analysis105
Figure 4.3: Hippocampal and cerebellar diffusion tensor imaging parameters correlated with
visual and auditory functional activation in weaning piglet offspring106
Figure 4.4: Perinatal egg yolk intake increased proportional frequency in novel object
recognition testing in piglets
Figure 4.5: Functional outcomes in weaning piglet offspring of novel object recognition tests
correlated with brain functional network activation
Figure 5.1: Antioxidant enzymatic activity in plasma from piglets following traumatic brain
injury131
Figure 5.2: Antioxidant enzymatic activity in liver and brain from piglets at 42 days after
traumatic brain injury132
Figure 5.3: Catalase activity at 42 days post-traumatic brain injury in the brain of CMX-2043-
treated piglets stratified by MRI-defined injury severity groups

CHAPTER 1

INTRODUCTION

Early brain development and long-term brain health are influenced by a variety of external factors, with nutrition playing a fundamental role in shaping neurodevelopmental trajectories [1-4]. Indeed, various essential nutrients and non-essential bioactive food compounds have gained increasing attention for their ability to support brain function [5,6] through mechanisms including the reduction of oxidative stress [7,8], modulation of neurochemical pathways [3,9], and facilitating synaptic plasticity [10], ultimately promoting cognitive function [3,10,11] and neuroprotection [8,12] in both healthy and injured brains. This dissertation explores how early-life nutrition shapes neurodevelopment and examines the potential of antioxidant-based interventions in supporting brain repair after injury.

The perinatal period is a critical window for neurodevelopment. During this period, fetal and neonatal neurodevelopmental outcomes are influenced by maternal nutrition status [4,13-21]. Docosahexaenoic acid (DHA) is an omega-3 fatty acid and essential for brain structure and function, contributing to neuronal growth, myelination, and synaptic plasticity [19,21-24]. DHA has been well investigated for its role in early brain development and cognitive outcomes, but the mechanism in which it exerts these benefits remains unclear [25,26]. One potential mechanism involves the conversion of DHA into specialized pro-resolving mediators (SPMs), a novel family of fatty acid-derived metabolites that play a crucial role in regulating neuroinflammation and may ultimately impact cognitive function [27-31]. Pregnancy is characterized by heightened

systemic and placental inflammation, with established mechanistic links between maternal inflammation and an increased risk of neurodevelopmental conditions in offspring [32-34]. This implicates a potential role for SPMs in mitigating inflammation while simultaneously supporting cognitive outcomes. Evaluating DHA-derived metabolites within the brain will further elucidate how DHA status directly influences cognitive function and neurodevelopmental trajectories. A single nutrient, such as DHA, provides targeted effects through its conversion into specific bioactive metabolites that regulate inflammation and cognitive processes, while a nutrient- and bioactive-rich whole food offers a complex food matrix that can broadly support multiple aspects of neurodevelopment. Eggs are a nutrient-dense food commonly recommended during the perinatal period due to their essential macronutrients and bioactive compounds that support fetal and maternal health [35]. While key egg yolk nutrients like choline, lutein, fatty acids, and amino acids have been extensively studied [36-39], research on perinatal supplementation of egg yolk as a whole food remains limited. Investigating how maternal dietary supplementation of a single nutrient or of a whole food impacts offspring brain function is crucial for understanding the role of perinatal nutrition in shaping early cognitive outcomes.

Managing external factors to support brain health is critical not only during healthy neurodevelopment but also following injury, when restoring and preserving brain function becomes essential. Traumatic brain injury (TBI) is a major public health concern, leading to long-term cognitive deficits due to oxidative damage and inflammation followed by the primary injury [40-45]. Oxidative stress negatively impacts brain health by exacerbating neuronal damage and impairing cognitive function, thus strategies that regulate oxidative stress hold promise for preserving brain function. Regulation of oxidative stress using antioxidants have the potential to improve outcomes following brain injury [47,49,53-55]. Therefore, identifying effective

antioxidant-based interventions is crucial for enhancing neuroprotective mechanisms and promoting optimal recovery outcomes in the aftermath of neurological injury.

To explore the impact of both nutritional and therapeutic interventions on brain health, this dissertation utilizes a translational pig model, which offers distinct advantages over other models in neuroscience research [56-58]. Pigs have neuroanatomical and physiological similarities to humans, including comparable brain size, cortical folding, white matter composition, and neurodevelopmental timelines [57,59-62]. Their gyrencephalic brain structure more closely resembles the human brain than the lissencephalic brains of rodents, allowing for better modeling of higher-order cognitive functions and network connectivity [63-65]. Additionally, the pig's extended gestational and postnatal development period allows for controlled perinatal nutritional interventions that mimic human maternal-offspring dietary influences, providing a robust platform for studying nutrient impacts on early-life brain development and cognitive outcomes [58,60,61,66]. In studies of early brain development, pig models have effectively demonstrated that prenatal and postnatal dietary interventions can influence brain maturation, modulate neurotransmitter synthesis, and subsequently shape cognitive function and behavioral outcomes [26,67,68]. For example, one study effectively investigated how diets containing deficient or adequate levels of linoleic acid influenced specific neurotransmitter profiles in the brains of neonatal piglets [67]. These studies have provided critical insights into the mechanisms through which early nutrition can shape neurodevelopmental trajectories in humans. Similarly, pig models have also been extensively employed to investigate neurological injury and recovery [69-74]. Due to similarities in brain anatomy, vascularization, and inflammatory responses, pig models of TBI have enabled precise examination of injury-induced pathologies and assessment of therapeutic efficacy [65,72,73,75]. Pigs have been utilized to assess functional responses and

deficits following TBI, with outcome measures often including clinically relevant modalities such as magnetic resonance imaging (MRI), behavioral assessments, and biomarker analyses [69,71,72]. These characteristics make the pig an ideal model for investigating both the developmental impact of early-life nutrition and the therapeutic potential of antioxidant interventions in brain injury recovery, facilitating more accurate translational applications to human health, as exemplified in this dissertation.

This dissertation is structured into a literature review and three experimental studies. The literature review in Chapter 2 examines how early-life nutrition influences cognitive outcomes, integrating human and animal studies to explore the roles of placental function, breastfeeding, energy intake in shaping neurodevelopment. Chapter 3 details a study that examines how perinatal DHA supplementation influences SPMs using a sow and piglet dyad model to provide insight into the potential mechanistic links between DHA status and early cognitive outcomes. Chapter 4 presents a study that investigates the effects of maternal egg yolk supplementation on functional brain activity and behavioral outcomes in piglet offspring to propose how whole food supplementation during critical developmental periods may influence neurodevelopmental trajectories. While Chapters 3 and 4 focused on nutritional interventions during healthy early brain development, Chapter 5 shifts the focus to therapeutic interventions aimed at mitigating damage and supporting recovery following traumatic brain injury. The study in Chapter 5 explores the impact of a novel antioxidant therapeutic on oxidative stress markers and brain recovery in a pig model of TBI, highlighting the critical role of oxidative stress regulation in supporting neuroprotection and optimizing functional recovery outcomes. Together, these studies provide insight into the potential of functional foods and therapeutic interventions in optimizing brain development, function, and resilience.

REFERENCES

- 1. Cusick, S.E.; Georgieff, M.K. The Role of Nutrition in Brain Development: The Golden Opportunity of the "First 1000 Days". J Pediatr 2016, 175, 16-21, doi:10.1016/j.jpeds.2016.05.013.
- 2. Schwarzenberg, S.J.; Georgieff, M.K.; NUTRITION, C.O.; Daniels, S.; Corkins, M.; Golden, N.H.; Kim, J.H.; Lindsey, C.W.; Magge, S.N. Advocacy for Improving Nutrition in the First 1000 Days to Support Childhood Development and Adult Health. Pediatrics 2018, 141, doi:10.1542/peds.2017-3716.
- 3. Gómez-Pinilla, F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 2008, 9, 568-578, doi:10.1038/nrn2421.
- 4. Likhar, A.; Patil, M.S. Importance of Maternal Nutrition in the First 1,000 Days of Life and Its Effects on Child Development: A Narrative Review. Cureus 2022, 14, e30083, doi:10.7759/cureus.30083.
- 5. John, T.; Samuel, B.; Abolaji, O.; Folashade, O.; Oyetooke, A.; Oluwatosin, F. Functional foods and bioactive compounds: Roles in the prevention, treatment and management of neurodegenerative diseases. GSC Biol Pharm Sci 2020, 11, 297-313.
- 6. Mondal, S.; Soumya, N.P.P.; Mini, S.; Sivan, S.K. Bioactive compounds in functional food and their role as therapeutics. Bioactive Compounds in Health and Disease-Online ISSN: 2574-0334; Print ISSN: 2769-2426 2021, 4, 24-39.
- 7. Teodoro, A.J. Bioactive Compounds of Food: Their Role in the Prevention and Treatment of Diseases. Oxid Med Cell Longev 2019, 2019, 3765986, doi:10.1155/2019/3765986.
- 8. Del Río, C.; Segura-Carretero, A. Neuroprotection with Bioactive Compounds. Nutrients 2023, 15, doi:10.3390/nu15214612.
- 9. Gasmi, A.; Nasreen, A.; Menzel, A.; Gasmi Benahmed, A.; Pivina, L.; Noor, S.; Peana, M.; Chirumbolo, S.; Bjørklund, G. Neurotransmitters Regulation and Food Intake: The Role of Dietary Sources in Neurotransmission. Molecules 2023, 28, 210.
- 10. Begdache, L.; Marhaba, R. Bioactive Compounds for Customized Brain Health: What Are We and Where Should We Be Heading? Int J Environ Res Public Health 2023, 20, doi:10.3390/ijerph20156518.
- 11. Spencer, S.J.; Korosi, A.; Layé, S.; Shukitt-Hale, B.; Barrientos, R.M. Food for thought: how nutrition impacts cognition and emotion. npj Science of Food 2017, 1, 7, doi:10.1038/s41538-017-0008-y.
- 12. González-Fuentes, J.; Selva, J.; Moya, C.; Castro-Vázquez, L.; Lozano, M.V.; Marcos, P.; Plaza-Oliver, M.; Rodríguez-Robledo, V.; Santander-Ortega, M.J.; Villaseca-González, N.; et al. Neuroprotective Natural Molecules, From Food to Brain. Frontiers in Neuroscience 2018, 12, doi:10.3389/fnins.2018.00721.
- 13. Barger, M.K. Maternal Nutrition and Perinatal Outcomes. Journal of Midwifery & Women's Health 2010, 55, 502-511, doi:https://doi.org/10.1016/j.jmwh.2010.02.017.

- 14. Cortés-Albornoz, M.C.; García-Guáqueta, D.P.; Velez-van-Meerbeke, A.; Talero-Gutiérrez, C. Maternal Nutrition and Neurodevelopment: A Scoping Review. Nutrients 2021, 13, doi:10.3390/nu13103530.
- 15. DeCapo, M.; Thompson, J.R.; Dunn, G.; Sullivan, E.L. Perinatal nutrition and programmed risk for neuropsychiatric disorders: A focus on animal models. Biological Psychiatry 2019, 85, 122-134.
- 16. Heland, S.; Fields, N.; Ellery, S.J.; Fahey, M.; Palmer, K.R. The role of nutrients in human neurodevelopment and their potential to prevent neurodevelopmental adversity. Front Nutr 2022, 9, 992120, doi:10.3389/fnut.2022.992120.
- 17. Ho, A.; Flynn, A.C.; Pasupathy, D. Nutrition in pregnancy. Obstetrics, Gynaecology & Reproductive Medicine 2016, 26, 259-264, doi:https://doi.org/10.1016/j.ogrm.2016.06.005.
- 18. Innis, S.M. Impact of maternal diet on human milk composition and neurological development of infants. Am J Clin Nutr 2014, 99, 734s-741s, doi:10.3945/ajcn.113.072595.
- 19. Martinat, M.; Rossitto, M.; Di Miceli, M.; Layé, S. Perinatal Dietary Polyunsaturated Fatty Acids in Brain Development, Role in Neurodevelopmental Disorders. Nutrients 2021, 13, doi:10.3390/nu13041185.
- 20. Moody, L.; Chen, H.; Pan, Y.-X. Early-Life Nutritional Programming of Cognition—The Fundamental Role of Epigenetic Mechanisms in Mediating the Relation between Early-Life Environment and Learning and Memory Process. Advances in Nutrition 2017, 8, 337-350, doi:https://doi.org/10.3945/an.116.014209.
- 21. Taylor, R.M.; Blumfield, M.L.; Ashton, L.M.; Hure, A.J.; Smith, R.; Buckley, N.; Drysdale, K.; Collins, C.E. Macronutrient Intake in Pregnancy and Child Cognitive and Behavioural Outcomes. Children (Basel) 2021, 8, doi:10.3390/children8050425.
- 22. Weiser, M.J.; Butt, C.M.; Mohajeri, M.H. Docosahexaenoic Acid and Cognition throughout the Lifespan. Nutrients 2016, 8, 99, doi:10.3390/nu8020099.
- 23. Zou, R.; El Marroun, H.; Voortman, T.; Hillegers, M.; White, T.; Tiemeier, H. Maternal polyunsaturated fatty acids during pregnancy and offspring brain development in childhood. The American Journal of Clinical Nutrition 2021, 114, 124-133, doi:10.1093/ajcn/nqab049.
- 24. Guesnet, P.; Alessandri, J.-M. Docosahexaenoic acid (DHA) and the developing central nervous system (CNS) Implications for dietary recommendations. Biochimie 2011, 93, 7-12, doi:https://doi.org/10.1016/j.biochi.2010.05.005.
- Lauritzen, L.; Brambilla, P.; Mazzocchi, A.; Harsløf, L.B.; Ciappolino, V.; Agostoni, C. DHA Effects in Brain Development and Function. Nutrients 2016, 8, doi:10.3390/nu8010006.
- 26. Fang, X.; Sun, W.; Jeon, J.; Azain, M.; Kinder, H.; Ahn, J.; Chung, H.C.; Mote, R.S.; Filipov, N.M.; Zhao, Q.; et al. Perinatal Docosahexaenoic Acid Supplementation Improves Cognition and Alters Brain Functional Organization in Piglets. Nutrients 2020, 12, doi:10.3390/nu12072090.

- 27. Jones, M.L.; Mark, P.J.; Keelan, J.A.; Barden, A.; Mas, E.; Mori, T.A.; Waddell, B.J. Maternal dietary omega-3 fatty acid intake increases resolvin and protectin levels in the rat placenta. J Lipid Res 2013, 54, 2247-2254, doi:10.1194/jlr.M039842.
- 28. Mozurkewich, E.L.; Greenwood, M.; Clinton, C.; Berman, D.; Romero, V.; Djuric, Z.; Qualls, C.; Gronert, K. Pathway Markers for Pro-resolving Lipid Mediators in Maternal and Umbilical Cord Blood: A Secondary Analysis of the Mothers, Omega-3, and Mental Health Study. Frontiers in Pharmacology 2016, 7, doi:10.3389/fphar.2016.00274.
- 29. Elliott, E.; Hanson, C.K.; Anderson-Berry, A.L.; Nordgren, T.M. The role of specialized pro-resolving mediators in maternal-fetal health. Prostaglandins, Leukotrienes and Essential Fatty Acids 2017, 126, 98-104, doi:https://doi.org/10.1016/j.plefa.2017.09.017.
- 30. Miyazawa, K.; Fukunaga, H.; Tatewaki, Y.; Takano, Y.; Yamamoto, S.; Mutoh, T.; Taki, Y. Alzheimer's Disease and Specialized Pro-Resolving Lipid Mediators: Do MaR1, RvD1, and NPD1 Show Promise for Prevention and Treatment? Int J Mol Sci 2020, 21, doi:10.3390/ijms21165783.
- 31. Thompson, M.; Ulu, A.; Mukherjee, M.; Yuil-Valdes, A.G.; Thoene, M.; Van Ormer, M.; Slotkowski, R.; Mauch, T.; Anderson-Berry, A.; Hanson, C.K.; et al. Something Smells Fishy: How Lipid Mediators Impact the Maternal-Fetal Interface and Neonatal Development. Biomedicines 2023, 11, doi:10.3390/biomedicines11010171.
- 32. Challis, J.R.; Lockwood, C.J.; Myatt, L.; Norman, J.E.; Strauss, J.F., 3rd; Petraglia, F. Inflammation and pregnancy. Reprod Sci 2009, 16, 206-215, doi:10.1177/1933719108329095.
- 33. Goeden, N.; Velasquez, J.; Arnold, K.A.; Chan, Y.; Lund, B.T.; Anderson, G.M.; Bonnin, A. Maternal Inflammation Disrupts Fetal Neurodevelopment via Increased Placental Output of Serotonin to the Fetal Brain. J Neurosci 2016, 36, 6041-6049, doi:10.1523/jneurosci.2534-15.2016.
- 34. Stolp, H.B.; Turnquist, C.; Dziegielewska, K.M.; Saunders, N.R.; Anthony, D.C.; Molnár, Z. Reduced ventricular proliferation in the foetal cortex following maternal inflammation in the mouse. Brain 2011, 134, 3236-3248, doi:10.1093/brain/awr237.
- 35. Lutter, C.K.; Iannotti, L.L.; Stewart, C.P. The potential of a simple egg to improve maternal and child nutrition. Matern Child Nutr 2018, 14 Suppl 3, e12678, doi:10.1111/mcn.12678.
- 36. Caudill, M.A.; Strupp, B.J.; Muscalu, L.; Nevins, J.E.H.; Canfield, R.L. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double-blind, controlled feeding study. Faseb j 2018, 32, 2172-2180, doi:10.1096/fj.201700692RR.
- 37. Sherry, C.L.; Oliver, J.S.; Renzi, L.M.; Marriage, B.J. Lutein supplementation increases breast milk and plasma lutein concentrations in lactating women and infant plasma concentrations but does not affect other carotenoids. J Nutr 2014, 144, 1256-1263, doi:10.3945/jn.114.192914.
- 38. Zeisel, S.H. Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr 2006, 26, 229-250, doi:10.1146/annurev.nutr.26.061505.111156.

- 39. Zeisel, S.H.; Niculescu, M.D. Perinatal choline influences brain structure and function. Nutr Rev 2006, 64, 197-203, doi:10.1111/j.1753-4887.2006.tb00202.x.
- 40. Cornelius, C.; Crupi, R.; Calabrese, V.; Graziano, A.; Milone, P.; Pennisi, G.; Radak, Z.; Calabrese, E.J.; Cuzzocrea, S. Traumatic brain injury: oxidative stress and neuroprotection. Antioxid Redox Signal 2013, 19, 836-853, doi:10.1089/ars.2012.4981.
- 41. Fesharaki-Zadeh, A. Oxidative Stress in Traumatic Brain Injury. Int J Mol Sci 2022, 23, doi:10.3390/ijms232113000.
- 42. Greve, M.W.; Zink, B.J. Pathophysiology of traumatic brain injury. Mt Sinai J Med 2009, 76, 97-104, doi:10.1002/msj.20104.
- 43. Mustafa, A.G.; Alshboul, O.A. Pathophysiology of traumatic brain injury. Neurosciences (Riyadh) 2013, 18, 222-234.
- 44. Werner, C.; Engelhard, K. Pathophysiology of traumatic brain injury. British journal of anaesthesia 2007, 99, 4-9.
- 45. Shi, K.; Zhang, J.; Dong, J.F.; Shi, F.D. Dissemination of brain inflammation in traumatic brain injury. Cell Mol Immunol 2019, 16, 523-530, doi:10.1038/s41423-019-0213-5.
- 46. Goss, J.R.; Taffe, K.M.; Kochanek, P.M.; DeKosky, S.T. The Antioxidant Enzymes Glutathione Peroxidase and Catalase Increase Following Traumatic Brain Injury in the Rat. Experimental Neurology 1997, 146, 291-294, doi:https://doi.org/10.1006/expr.1997.6515.
- 47. Ismail, H.; Shakkour, Z.; Tabet, M.; Abdelhady, S.; Kobaisi, A.; Abedi, R.; Nasrallah, L.; Pintus, G.; Al-Dhaheri, Y.; Mondello, S.; et al. Traumatic Brain Injury: Oxidative Stress and Novel Anti-Oxidants Such as Mitoquinone and Edaravone. Antioxidants (Basel) 2020, 9, doi:10.3390/antiox9100943.
- 48. Handy, D.E.; Loscalzo, J. Redox Regulation of Mitochondrial Function. Antioxidants & Redox Signaling 2011, 16, 1323-1367, doi:10.1089/ars.2011.4123.
- 49. Lee, K.H.; Cha, M.; Lee, B.H. Neuroprotective Effect of Antioxidants in the Brain. Int J Mol Sci 2020, 21, doi:10.3390/ijms21197152.
- 50. Kucur, M.; Tanriverdi, T.; Dashti, R.; Ak, H.; Yentur, E.; Belce, A.; Uzan, M.; Kaynar, M.Y. Superoxide Dismutase, Catalase, and Guanase in Traumatic Brain Injury. Neurosurgery Quarterly 2005, 15, 186-189, doi:10.1097/01.wnq.0000173450.16339.77.
- 51. Ryan, A.K.; Rich, W.; Reilly, M.A. Oxidative stress in the brain and retina after traumatic injury. Frontiers in Neuroscience 2023, 17, doi:10.3389/fnins.2023.1021152.
- 52. Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine 2018, 54, 287-293, doi:https://doi.org/10.1016/j.ajme.2017.09.001.
- 53. Venegoni, W.; Shen, Q.; Thimmesch, A.R.; Bell, M.; Hiebert, J.B.; Pierce, J.D. The use of antioxidants in the treatment of traumatic brain injury. J Adv Nurs 2017, 73, 1331-1338, doi:10.1111/jan.13259.

- 54. Packer, L.; Tritschler, H.J.; Wessel, K. Neuroprotection by the metabolic antioxidant alphalipoic acid. Free Radic Biol Med 1997, 22, 359-378, doi:10.1016/s0891-5849(96)00269-9.
- 55. Di Pietro, V.; Yakoub, K.M.; Caruso, G.; Lazzarino, G.; Signoretti, S.; Barbey, A.K.; Tavazzi, B.; Lazzarino, G.; Belli, A.; Amorini, A.M. Antioxidant Therapies in Traumatic Brain Injury. Antioxidants (Basel) 2020, 9, doi:10.3390/antiox9030260.
- 56. Hoffe, B.; Holahan, M.R. The use of pigs as a translational model for studying neurodegenerative diseases. Frontiers in physiology 2019, 10, 838.
- 57. Lind, N.M.; Moustgaard, A.; Jelsing, J.; Vajta, G.; Cumming, P.; Hansen, A.K. The use of pigs in neuroscience: modeling brain disorders. Neuroscience & Biobehavioral Reviews 2007, 31, 728-751.
- 58. Miller, E.R.; Ullrey, D.E. The Pig as a Model for Human Nutrition. Annual Review of Nutrition 1987, 7, 361-382, doi:https://doi.org/10.1146/annurev.nu.07.070187.002045.
- 59. Dickerson, J.; Dobbing, J. Prenatal and postnatal growth and development of the central nervous system of the pig. Proceedings of the Royal Society of London. Series B. Biological Sciences 1967, 166, 384-395.
- 60. Mudd, A.T.; Dilger, R.N. Early-Life Nutrition and Neurodevelopment: Use of the Piglet as a Translational Model. Advances in Nutrition 2017, 8, 92-104, doi:https://doi.org/10.3945/an.116.013243.
- 61. Roura, E.; Koopmans, S.-J.; Lallès, J.-P.; Le Huerou-Luron, I.; de Jager, N.; Schuurman, T.; Val-Laillet, D. Critical review evaluating the pig as a model for human nutritional physiology. Nutrition research reviews 2016, 29, 60-90.
- 62. Tanaka, Y.; Imai, H.; Konno, K.; Miyagishima, T.; Kubota, C.; Puentes, S.; Aoki, T.; Hata, H.; Takata, K.; Yoshimoto, Y. Experimental model of lacunar infarction in the gyrencephalic brain of the miniature pig: neurological assessment and histological, immunohistochemical, and physiological evaluation of dynamic corticospinal tract deformation. Stroke 2008, 39, 205-212.
- 63. Tanaka, Y.; Imai, H.; Konno, K.; Miyagishima, T.; Kubota, C.; Puentes, S.; Aoki, T.; Hata, H.; Takata, K.; Yoshimoto, Y.; et al. Experimental model of lacunar infarction in the gyrencephalic brain of the miniature pig: neurological assessment and histological, immunohistochemical, and physiological evaluation of dynamic corticospinal tract deformation. Stroke 2008, 39, 205-212, doi:10.1161/strokeaha.107.489906.
- 64. Conrad, M.S.; Dilger, R.N.; Nickolls, A.; Johnson, R.W. Magnetic resonance imaging of the neonatal piglet brain. Pediatric research 2012, 71, 179-184.
- 65. Simchick, G.; Shen, A.; Campbell, B.; Park, H.J.; West, F.D.; Zhao, Q. Pig Brains Have Homologous Resting-State Networks with Human Brains. Brain Connectivity 2019, 9, 566-579, doi:10.1089/brain.2019.0673.
- 66. Odle, J.; Lin, X.; Jacobi, S.K.; Kim, S.W.; Stahl, C.H. The suckling piglet as an agrimedical model for the study of pediatric nutrition and metabolism. Annu Rev Anim Biosci 2014, 2, 419-444, doi:10.1146/annurev-animal-022513-114158.

- 67. de la Presa Owens, S.; Innis, S.M. Docosahexaenoic and arachidonic acid prevent a decrease in dopaminergic and serotoninergic neurotransmitters in frontal cortex caused by a linoleic and α-linolenic acid deficient diet in formula-fed piglets. The Journal of nutrition 1999, 129, 2088-2093.
- 68. de la Presa Owens, S.; Innis, S.M. Diverse, Region-Specific Effects of Addition of Arachidonic and Docosahexanoic Acids to Formula with Low or Adequate Linoleic and α-Linolenic Acids on Piglet Brain Monoaminergic Neurotransmitters. Pediatric Research 2000, 48, 125-130, doi:10.1203/00006450-200007000-00022.
- 69. Baker, E.W.; Kinder, H.A.; Hutcheson, J.M.; Duberstein, K.J.J.; Platt, S.R.; Howerth, E.W.; West, F.D. Controlled Cortical Impact Severity Results in Graded Cellular, Tissue, and Functional Responses in a Piglet Traumatic Brain Injury Model. J Neurotrauma 2019, 36, 61-73, doi:10.1089/neu.2017.5551.
- 70. Fagan, M.M.; Welch, C.B.; Scheulin, K.M.; Sneed, S.E.; Jeon, J.H.; Golan, M.E.; Cheek, S.R.; Barany, D.A.; Oeltzschner, G.; Callaway, T.R.; et al. Fecal microbial transplantation limits neural injury severity and functional deficits in a pediatric piglet traumatic brain injury model. Front Neurosci 2023, 17, 1249539, doi:10.3389/fnins.2023.1249539.
- 71. Friess, S.H.; Ichord, R.N.; Owens, K.; Ralston, J.; Rizol, R.; Overall, K.L.; Smith, C.; Helfaer, M.A.; Margulies, S.S. Neurobehavioral functional deficits following closed head injury in the neonatal pig. Experimental Neurology 2007, 204, 234-243, doi:https://doi.org/10.1016/j.expneurol.2006.10.010.
- 72. Kinder, H.A.; Baker, E.W.; Wang, S.; Fleischer, C.C.; Howerth, E.W.; Duberstein, K.J.; Mao, H.; Platt, S.R.; West, F.D. Traumatic Brain Injury Results in Dynamic Brain Structure Changes Leading to Acute and Chronic Motor Function Deficits in a Pediatric Piglet Model. J Neurotrauma 2019, 36, 2930-2942, doi:10.1089/neu.2018.6303.
- 73. Kinder, H.A.; Baker, E.W.; West, F.D. The pig as a preclinical traumatic brain injury model: current models, functional outcome measures, and translational detection strategies. Neural Regen Res 2019, 14, 413-424, doi:10.4103/1673-5374.245334.
- 74. Schantz, S.L.; Sneed, S.E.; Fagan, M.M.; Golan, M.E.; Cheek, S.R.; Kinder, H.A.; Duberstein, K.J.; Kaiser, E.E.; West, F.D. Human-Induced Pluripotent Stem Cell-Derived Neural Stem Cell Therapy Limits Tissue Damage and Promotes Tissue Regeneration and Functional Recovery in a Pediatric Piglet Traumatic-Brain-Injury Model. Biomedicines 2024, 12, doi:10.3390/biomedicines12081663.
- 75. White, E.; Woolley, M.; Bienemann, A.; Johnson, D.E.; Wyatt, M.; Murray, G.; Taylor, H.; Gill, S.S. A robust MRI-compatible system to facilitate highly accurate stereotactic administration of therapeutic agents to targets within the brain of a large animal model. J Neurosci Methods 2011, 195, 78-87, doi:10.1016/j.jneumeth.2010.10.023.

CHAPTER 2

REVIEW OF THE LITERATURE

Early nutritional programming for cognition: how the placenta, breastfeeding, energy intake shape brain development

INTRODUCTION

The developing fetus and infant rely on maternal nutrient delivery systems to support the rapid growth and maturation of the brain during critical periods of neurodevelopment [1-4]. The concept of "nutritional programming" suggests that early-life nutrition exerts long-term effects on cognitive function and brain health, mediated by epigenetic regulation, cellular signaling pathways, and developmental plasticity [5]. In utero fetal neurodevelopment depends on the placenta as the primary interface for nutrient transfer, regulating the supply of essential macronutrients necessary for neuronal proliferation, differentiation, and synaptogenesis [1,6-14]. Infant neurodevelopment continues postnatally with breastfeeding, which serves as a complex behavior that acts as a mechanism that has been shown to influence cognitive outcomes in offspring [1,12-18]. Studies consistently link breastfeeding, when compared to formula feeding, to improved language, memory, and executive function in offspring, highlighting its role in early brain development [15,19-25].

Energy availability is a fundamental requirement for proper neurodevelopment, as the brain is one of the most metabolically demanding organs during early life [26]. In early postnatal life, the brain accounts for up to 60% of total energy expenditure, and disruptions in energy availability, whether through maternal undernutrition, overnutrition, or metabolic disorders, can

alter neurodevelopmental trajectories and impair cognitive outcomes [2,26,27]. Energy is derived from macronutrients, carbohydrates, proteins, and fats, which are the energy-yielding nutrients that not only fuel physiological processes but also serve as critical structural and functional components in the developing brain [13,28,29]. Carbohydrates are the principal energy source for the brain, fueling neuronal metabolism and supporting synaptic plasticity [4,26,30]. Proteins provide amino acids essential to hippocampal formation [31], neurotransmitter synthesis, neurotrophic signaling, thus impacting cognitive processes [13,29]. Fats, particularly polyunsaturated fatty acids, contribute to neurotransmitter production [13], myelination, membrane fluidity, and synaptic efficiency, all of which are essential to higher-order cognitive function [2,32,33]. The balance of these macronutrients is crucial for supporting early neurodevelopmental processes, and disruptions in their intake may have lasting effects on cognition and brain function [27,34]. Furthermore, given the brain's disproportionately high metabolic demands during early life and development, elucidating the role of each macronutrient in shaping neurodevelopment and cognition is essential for understanding how early nutritional exposures influence long-term cognitive potential.

Epidemiological studies provide compelling evidence that highlights a prominent association of perinatal nutrition with cognitive and developmental outcomes. Observational studies and clinical trials have highlighted the role of early nutritional status in supporting optimal neurodevelopment [35]. Complementary to epidemiological studies, animal models have provided mechanistic insights into how nutrients influence cognitive development. These studies enable the exploration of cellular and molecular pathways, such as the role of protein in hippocampal neurogenesis [36,37], a process fundamental to shaping cognitive outcomes. Studies using animal models that explore the associated cognitive outcomes generally involve widely

extended standard tasks that assess for hippocampal-dependent learning and memory processes, which include the Morris water maze, Barnes maze, and novel object recognition tests.

This literature review synthesizes current knowledge on the impact of early-life nutrition status on cognitive outcomes, integrating findings that are complimented by mechanistic insights from animal models. By focusing on placental function, breastfeeding, energy intake, and energy-yielding macronutrient metabolism, this review provides a targeted exploration of how early nutritional exposures shape neurodevelopment. It also identifies gaps in the literature, emphasizing the need for future research that bridges mechanistic and translational perspectives. The findings have critical implications for clinical practice, public health policy, and the development of targeted nutritional interventions to optimize early brain development and lifelong cognitive potential.

Placental development and nutrient transfer

The placenta serves as the critical interface between the mother and the developing fetus, orchestrating the transfer of nutrients necessary for fetal growth and development [6,12,38,39]. Its role is especially significant for brain development, as the fetal brain requires a continuous supply of specific nutrients during critical periods of neurogenesis, synaptogenesis, and myelination [8,9,39,40]. The placenta is highly sensitive to perturbations, which can disrupt placental gene expression, downstream function, and placental signaling, thus influencing neurodevelopmental programming [7-9,38,39]. Seminal research by Jones et al. has provided experimental evidence supporting the hypothesis that the placenta acts as a nutrient sensor [10]. Interestingly, Broad and Keverne proposed that the placenta adapts to short-term food deprivation to protect fetal brain development, particularly the hypothalamus during midgestation [41]. Their findings suggest that maternal nutrient deprivation disrupts synchronized

gene expression between the placenta and hypothalamus, triggering increased protein degradation in the placenta and compensatory upregulation [9,41]. In mice, the placenta-specific deletion of the insulin-like growth factor (IGF) 2 transcript led to intrauterine growth restriction (IUGR), disrupted the balance between fetal nutrient demands and placental supply, and resulted in increased anxiety-like behaviors in offspring [42]. Levitt et al. demonstrated that the placenta is a primary source of serotonin for the developing murine hypothalamus between gestational days 10.5 and 15.5, synthesizing serotonin from maternal metabolites [11]. Serotonin influences neuronal proliferation and axonal outgrowth during early development [43], suggesting that the placenta, as a source of serotonin, could regulate brain development. Serotonin plays a key role in the maturation of neural circuits involved in emotional regulation in mice [44], and polymorphisms in serotonergic genes are associated with depressive symptoms in humans [45], thus alterations in placental serotonin may effect cognitive outcomes. These findings support an association of nutritional status, placental responses, and offspring behavioral changes.

Preeclampsia, a hypertensive disorder of pregnancy characterized by high blood pressure and signs of organ dysfunction, has been associated with impaired placental function and altered nutrient transfer, potentially impacting fetal brain development and cognitive outcomes [46,47]. This condition is linked to placental insufficiency, resulting in reduced oxygen and nutrient delivery to the fetus, which can lead to IUGR and fetal hypoxia [48,49]. Studies suggest that preeclampsia may disrupt the supply of key neurodevelopmental nutrients, including oxygen, glucose, and amino acids, which are essential for neuronal proliferation, synaptogenesis, and myelination [46,47]. Preeclampsia is also associated with increased oxidative stress and systemic inflammation, both of which have been implicated in neurodevelopmental alterations [46,48].

Infants born to mothers with preeclampsia are at greater risk for cognitive and behavioral

impairments later in life, including lower IQ scores, attention deficits, and an increased likelihood of neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) [48,50-52]. For example, neurodevelopment assessed in a cohort of children born from severe preeclamptic pregnancies revealed that, on average, they did not reach appropriate cognitive milestones by three years of age [52]. Studies in animals have demonstrated that preeclampsia-like conditions lead to fetal brain structural abnormalities, including reduced cortical thickness and altered hippocampal connectivity [53], and diminished performance in cognitive tests [54]. In a rodent model of preeclampsia, offspring had increased glucocorticoid receptor expression in the hippocampus compared to controls, suggesting highly activated glucocorticoid signaling, which has been previously associated with preeclampsia and physiological stress responses [39,54]. Furthermore, offspring demonstrated significantly longer escape latencies than controls in the Morris water maze, indicating that the upregulated expression of hippocampal glucocorticoid receptors may contribute to the underlying mechanism [54]. Given these findings, preeclampsia represents a significant prenatal factor that may compromise placental nutrient transfer, underscoring the need for continued research into its long-term effects on neurodevelopment and cognitive outcomes.

Breastfeeding

Breastmilk is uniquely designed to meet infants' nutritional and developmental needs, providing essential energy, nutrients, and bioactive components that support brain development and ultimately cognitive outcomes [15,55,56]. Beyond its composition, breastfeeding also represents a complex feeding behavior that extends the influence of maternal physiology into the postnatal period. The first form of milk produced is known as colostrum, which provides essential factors for immune development [55-59] and primes the gut-brain axis, which is

increasingly recognized for its role in neurodevelopment [59,60]. Breastmilk contains hormones such as cortisol [61], leptin [62], and IGF [18], which can influence brain development and behavior [61-64]. For example, IGF promotes neuronal growth and myelination [64,65], while leptin has been implicated in hippocampal plasticity and cognitive function [66-68]. The presence of these hormones in breastmilk underscores its importance as a dynamic source of bioactive compounds essential for healthy neurodevelopment and long-term cognitive outcomes. Several studies suggest that longer durations of breastfeeding is associated with improved neurocognitive outcomes in childhood and into later life [69-71]. For example, longitudinal studies have demonstrated that prolonged breastfeeding is correlated with higher scores on intelligence quotient (IQ) tests, better academic performance, and enhanced executive function during childhood and adolescence compared to shorter breastfeeding durations or exclusive formula feeding [72,73]. Both prospective and retrospective studies have identified an association between shorter breastfeeding duration and an increased risk of developing ADHD in childhood [74-77], suggesting that components within breastmilk may influence attentional regulation and behavior control in offspring. Observational studies consistently demonstrate that breastfed infants perform better on cognitive tests compared to formula-fed infants, particularly in language, problem-solving, and memory domains [23-25,78-80]. These advantages are often attributed to the unique composition of breastmilk, including its fatty acid and human milk oligosaccharide content, which support gut-brain communication and neurodevelopment [79-84].

Animal models have demonstrated that breastfeed and maternal behaviors that coincide with this period, such as licking, grooming, and arched-back nursing postures, can have an influence on offspring brain development [85-88]. Rodent offspring that experienced prolonged arched-back nursing, as well as licking and grooming, displayed elevated NMDA receptor subunit expression

in the hippocampus and enhanced long-term potentiation, indicating improved synaptic plasticity compared to those with less exposure [86]. This was coupled with a superior performance in the novel object recognition test and Morris water maze, suggesting that increased periods of nursing may improve spatial learning and memory by enhancing NMDA-mediated neuroplasticity in the hippocampus [86,87]. A study by Liu et al. found similar results in rats, where offspring of mothers that engaged in more frequent nursing, licking, and grooming exhibited higher expression of hippocampal NMDA receptor subunits and BDNF mRNA, along with increased cholinergic innervation of the hippocampus [88]. These neurobiological changes were accompanied by enhanced performance in the Morris water maze, indicating improved cognitive function [88]. Early weaned male mice offspring also had decreased BDNF protein expression and neurogenesis in the hippocampus compared to normally-weaned mice [85].

These findings suggest that the breastfeeding period, along with the associated maternal behaviors, represents a critical window in early development that plays a key role in shaping neurodevelopment and cognitive outcomes. The physical interactions associated with breastfeeding influence hippocampal plasticity, synaptic connectivity, and long-term potentiation, contributing to enhanced memory and learning. Studies with animal models emphasize that variations in maternal caregiving behaviors during the breastfeeding period can lead to measurable differences in neurobiological markers and cognitive performance. Future research should explore the mechanisms underlying these behavioral influences, as well as how early maternal-infant interactions during breastfeeding shape long-term neurodevelopmental trajectories.

Energy intake

Adequate calorie and total energy intake during the perinatal period is essential to support the rapid growth and maturation of the brain, which is particularly metabolically demanding during

fetal and early postnatal stages [26,89]. Energy intake plays a fundamental role in brain development, providing the necessary resources to support neurogenesis, synaptogenesis, and myelination, all of which are essential for cognitive function [26], and the high energy requirements of the brain is fulfilled by a constant transport of nutrients via the blood-brain barrier [26,90]. Glucose, derived from dietary carbohydrates, serves as the brain's primary energy source, fueling processes such as neurotransmitter synthesis, neuronal signaling, and synaptic remodeling [26]. A more in depth discussion into the role of glucose will be covered in a later section. During early postnatal development, the brain undergoes rapid maturation, with significant growth in axons, dendritic arborization, synapse formation, and myelination, all of which contribute to heightened metabolic needs. Brain energy demands peak between ages 2 and 3, aligning with maximal synapse formation and myelination, emphasizing the critical role of adequate energy intake during this period to support cognitive development.

Caloric deficiency during early life, as seen in conditions such as IUGR or childhood undernutrition, has been consistently associated with impaired cognitive outcomes [91]. Epidemiological studies reveal that prenatal caloric restriction is linked to reduced brain size, altered cortical development, and lower cognitive performance in offspring [92]. For example, data from the Dutch Hunger Winter study demonstrated that individuals exposed to caloric restriction in utero exhibited lower IQ and higher rates of cognitive dysfunction later in life [93]. Similarly, inadequate caloric intake during early childhood is associated with deficits in attention, memory, and executive function. Stunting, a marker of chronic undernutrition [94], has been shown to correlate with reduced school performance and lower cognitive test scores [94-97]. For instance, the Cebu Longitudinal Health and Nutrition Survey in the Philippines revealed that children with lower energy intake in infancy had reduced cognitive performance, indicated by a

diminished IQ, at school age [98]. Similarly, a study from the MAL-ED cohort, spanning multiple countries, highlighted that children with recurrent episodes of growth faltering due to undernutrition performed poorly on cognitive assessments measuring language development and non-verbal reasoning [99-103]. These findings emphasize that insufficient caloric intake not only hampers physical growth but also critically impairs cognitive development, with effects that can persist in later life stages.

Caloric sufficiency not only provides the energy required for basic cellular processes but also facilitates the synthesis of essential macromolecules and the development of complex neural networks [104,105]. To study the effects of maternal undernutrition, pregnant rabbits were subjected to a 70% reduction in basal food intake beginning at day 22 of pregnancy [106]. This resulted in reduced birth weight, where offspring exhibited impaired neurobehavioral performance. In rhesus macaques models, perinatal caloric restriction has been shown to compromise fetal cerebral development, including widespread postnatal reductions in white matter fractional anisotropy and reduced gray matter cerebral volume [107], which is associated with observed diminished learning abilities [108,109]. Studies in malnourished rat pups demonstrated decreased hippocampal neurogenesis [36,110] and impaired long-term potentiation [36,111-113]. Perinatal caloric deficiency has also been associated with disruptions in BDNF signaling [111], a key regulator of neuronal survival [114], differentiation [115], and synaptic modulation [116,117]. Paredes et al. demonstrated that BDNF deficiency in the neonatal hippocampus of rats led to behavioral changes, emphasizing how early BDNF disruptions due to caloric insufficiency can have enduring epigenetic and cognitive consequences [118]. Behavior assessments in rodent models show that these structural and neurodevelopmental abnormalities, including to neurochemical systems, correlate with impaired performance in tasks measuring

spatial memory, such as the Morris water maze, and deficits in problem-solving and social interaction paradigms [119-124]. For example, malnourished rat pups impaired spatial learning and memory behaviors in the Morris water maze which was accompanied by decreased density in the hippocampus of neuronal cells positive with nitric oxide synthase, an enzyme involved in neuronal survival and synaptic plasticity [121]. These findings emphasize the critical role of adequate nutrition in supporting neurodevelopmental processes that underpin cognitive functions.

On the other hand, caloric excess and maternal obesity during the perinatal period may serve as a critical factor in shaping offspring cognition and mental health. A review by Shook et al. revealed that children born to mothers with obesity during pregnancy exhibited higher rates of cognitive impairments, including difficulties with executive function, attention regulation, and language development [125]. This was seen in a Swedish population-based prospective pregnancy-offspring cohort study that followed children until the age of 5 and found that maternal pre-pregnancy overweight and obesity were associated with increased inattention symptoms in childhood [126]. Supporting these findings, Norr et al. demonstrated that elevated maternal BMI was associated with poorer cognitive outcomes in offspring, particularly in areas related to behavioral regulation and problem-solving skills, observed as early as the infant stage and persisting into early childhood [127]. Furthermore, an analysis of data from participants in Project Viva, a prospective longitudinal pre-birth cohort study, demonstrated that maternal obesity was linked to lower visual-motor integration scores in children, a key predictor of academic achievement and cognitive development [128]. These findings highlight consistent associations between maternal obesity and early cognitive deficits in offspring, including attention problems, executive dysfunction, and reduced academic-related cognitive skills.

Studies using animal models have been conducted to explore how excess caloric intake during the perinatal period affects brain development, synaptic plasticity, and cognitive function in offspring. Rivera et al. examined the effects of a perinatal high-caloric diet on prefrontal cortex function in a rat model, assessing anxiety responses and glutamatergic and GABAergic receptor expression, and it revealed that male offspring exposed to the diet both prenatally and post-weaning exhibited increased anxiety-like behaviors linked to glutamate receptor overexpression in the prefrontal cortex [129]. Early life overfeeding in rodents impaired episodic-like memory [130] and spatial memory performance, which is coupled with reduced ability to regulate neurons and microglia in the context of a learning task [131]. These findings provide strong evidence that excessive caloric intake during critical developmental windows can have lasting consequences on cognitive and emotional regulation in offspring.

Acceptable Macronutrient Distribution Range

The Acceptable Macronutrient Distribution Range (AMDR) provides dietary guidelines for the proportion of daily caloric intake derived from carbohydrates, proteins, and fats, primarily aimed at promoting overall health and reducing the risk of chronic disease [132]. A longitudinal study utilizing data from the Eunice Kennedy Shriver National Institute of Child Health and Human Development examined macronutrient intake among pregnant women in the U.S and assessed if it was within AMDR for pregnant women [132]. The findings revealed that while most women met the AMDR of 10-35% for protein, approximately one-quarter of these women consumed carbohydrates below the AMDR of 45–65%, and nearly half exceeded the AMDR for total fat intake of 20–35% [132]. Although deviations from the AMDR have been extensively studied in relation to long-term health outcomes [133], their specific implications for fetal neurodevelopment remain unclear, highlighting the need for further research in this area.

However, as the aforementioned research has demonstrated, both insufficient and excessive intake of energy-yielding macronutrients during early life can significantly impact brain development and cognitive outcomes [89]. Understanding how deviations from the AMDR during critical developmental periods impact cognitive and neurological outcomes over time is essential. Future research should focus on refining macronutrient recommendations tailored to the unique metabolic demands of early neurodevelopment.

Carbohydrates

Carbohydrates serve as the primary energy source for the developing brain, playing a crucial role in neurodevelopment, neurotransmitter synthesis, and cognitive function during early life [134-137]. In the human brain, glucose, which is derived from dietary carbohydrates, is the primary energy source, and the developing brain has a disproportionally high glucose requirement, with up to 60% of the total energy intake in infancy dedicated to brain function [135-137]. Glucose transport across the blood-brain barrier is mediated by glucose transporter proteins (GLUT) [136,138], and disruptions in glucose availability have been coupled to cognitive deficits [136]. Beyond energy metabolism, glucose supports critical neurodevelopmental processes such as neuronal proliferation [136,139], differentiation [139-141], and synaptic formation and transmission [136,142]. Adequate glucose availability ensures proper myelination, a process crucial for efficient signal transmission between neurons, particularly in the rapidly growing fetal and neonatal brain [136,142]. Moreover, glucose metabolism plays a vital role in neurotransmitter synthesis, as it provides the fuel and the precursors for key neurotransmitters, including glutamate, essential to learning, memory, and executive function [30,143].

Gestational diabetes mellitus (GDM) is a pregnancy-related metabolic disorder characterized by elevated blood glucose levels due to impaired cellular glucose uptake [136,144,145]. It is widely

recognized as a risk factor for adverse developmental outcomes, as excessive maternal glucose exposure can disrupt fetal growth and neurodevelopment [136,144-146]. Intrauterine exposure to abnormal glucose levels has been linked to potential adverse effects on cognitive and behavioral development, though some findings are conflicting [144,147]. A study using diffusion tensor imaging (DTI) found that infants born to mothers with gestational diabetes exhibited white matter abnormalities, which were associated with impaired neurocognitive performance compared to hyperglycemia-unexposed controls [148]. Additionally, a study of 5,126 motherchild pairs found that eight-year-old children born to mothers with GDM had lower verbal IQ scores on the Wechsler Intelligence Scale for Children-Third Edition [149], whereas another study of 785 mother-child pairs reported higher scores in learning, verbal ability, and long-term retrieval among children of mothers with GDM [147]. Differences in cognitive assessment tools, such as the Kaufman Assessment Battery for Children-Second Edition (KABC-II) and the Kohs Block Design Test, may contribute to these inconsistencies. Two systematic reviews concluded that the relationship between maternal diabetes and offspring cognitive development remains unclear [144,146], emphasizing the need for large-scale prospective studies that account for potential confounders.

There is increasing evidence in animal models that support high maternal intake of glucose and GDM can inhibit fetal neuronal development and impair cognition in offspring. Vuong et al. found that maternal obesity associated with gestational diabetes in rats led to offspring neuroinflammation, increased pro-inflammatory cytokines (IL-1β, TNF-α), reduced hippocampal synaptophysin expression, and impaired recognition memory [150]. Another study found a significant reduction in hippocampal size and cellularity in the offspring of diabetic rats, suggesting that elevated maternal glucose levels during neurodevelopment increase neuronal

vulnerability, potentially contributing to learning and memory impairments [151]. Offspring of diabetic rats have shown heightened apoptosis of hippocampal neurons, particularly in regions essential for learning and memory [152], and a decrease in insulin-like growth factor 1 receptor levels was observed in the cerebellum of rats born to diabetic mothers, reinforcing the idea that maternal diabetes negatively impacts motor and cognitive development in offspring [153]. A rodent study of maternal diabetes has been shown to decrease hippocampal BDNF expression, increase TNF-α levels, impair cellular proliferation, and enhance apoptosis in offspring, contributing to neurodevelopmental deficits [154]. Similarly, reduced hippocampal BDNF levels observed in offspring of obese mothers have been linked to cognitive impairments, highlighting how metabolic disturbances during pregnancy can disrupt key pathways of brain homeostasis [155]. Collectively, these findings suggest that elevated maternal glucose levels during pregnancy can impair fetal brain development by disrupting neuronal growth, increasing neuroinflammation, and altering key neurotrophic signaling pathways, ultimately leading to cognitive and motor deficits in offspring.

Dietary fiber, particularly prebiotic fibers, plays a crucial role in shaping brain function by modulating the gut microbiota and influencing neuroinflammatory pathways [134]. The microbiota-gut-brain axis is an emerging area of research demonstrating how dietary components influence cognition through microbial metabolites, immune signaling, and neurotransmitter modulation [156,157]. Prebiotic fibers support beneficial gut bacteria, which produce short-chain fatty acids (SCFAs) like acetate, propionate, and butyrate, playing a crucial role in cognitive function and brain health [157]. Epidemiological studies involving maternal fiber intake and its impact on offspring brain development and function are limited, but there is some evidence to suggest that a low-fiber diet during the perinatal period may impair cognitive outcomes in

offspring [158]. Data analyzed from the Japan Environment and Children's Study, an ongoing nationwide prospective birth cohort study, revealed that low maternal dietary fiber intake was associated with a higher risk of delayed communication, problem solving, fine motor, and personal-social skills compared to the highest intake group [158]. Another study in humans found that maternal serum levels of propionate and butyrate were closely correlated with those in umbilical cord blood, suggesting that maternal SCFA bioavailability may influence fetal neurodevelopment [159]. Supporting this, a mouse study showed that offspring of mothers on a low-fiber diet exhibited motor impairments, learning and memory deficits, increased anxiety-like behavior, and altered hippocampal glutamate receptor expression, which were linked to gut microbiome shifts and reduced SCFA levels [159]. Butyrate supplementation during gestation, however, mitigated these effects, likely by downregulating hippocampal histone deacetylase 4 expression [159]. It has also been demonstrated in a mouse model that a high-fiber diet mitigates maternal obesity-induced cognitive dysfunction in offspring via the gut-brain axis [156].

Proteins

Proteins contribute to the structural integrity and functionality of neurons, glial cells, and the extracellular matrix, and adequate protein intake during early life is therefore crucial for supporting cognitive development. Sloan et al. has previously reported that both low and high protein intake during pregnancy has a quadratic relation with fetal growth [160]. Experimental studies suggest that children born to mothers who consumed high-protein diets and energy-rich beverages exhibited superior intellectual abilities, including enhanced information processing, numeracy, and vocabulary, compared to control children [161]. An examination of early protein intake on preterm-born children found that increased protein consumption in the first weeks of life was associated with enhanced functional connectivity between the thalamus and the default

mode network, which are integral to cognitive processing [162]. This increased connectivity was associated with higher processing speed and visual-motor skills at age seven, suggesting a direct impact of early protein intake on longer-term neurocognitive outcomes [162]. One study investigating maternal macronutrient intake on offspring cognitive and behavioral outcomes at age four found that child externalizing behavior was positively trending with log-transformed maternal protein intake, but this was not statistically significant [89]. There seems to be a gap in evidence pertaining to human subjects and maternal protein intake, thus, additional studies are warranted to further substantiate a connection.

Animal models have shown that protein restriction during the gestation and lactation period impairs the micro-structure of the fetal brain, altering cortical and hippocampal development [163-167]. These structural changes are associated with deficits in neuronal proliferation and dendritic arborization, critical processes for establishing neural networks [168]. Neurotrophic growth factors such as BDNF are critical to optimal neurodevelopment, and levels of BDNF have been observed to be decreased in mice and rat offspring from protein-deficient mothers [167,169-171]. Protein restriction during fetal development has also been shown to alter hippocampal neurogenesis [36,37], leading to reduced levels of insulin-like growth factor [167], as well as decreases in brain and neuronal volume [172] in rodent models. These physiological impairments translate into cognitive deficits, as protein restriction has been shown to correlate with diminished cognitive and behavioral function in offspring [173-175]. Studies in rodents indicate that a maternal low-protein diet during pregnancy and lactation impairs associative learning and reduces motivation in the offspring [175]. These findings underscore that perinatal protein restriction disrupts key neurodevelopmental processes, such as neuronal proliferation, dendritic arborization, and neurotrophic signaling, leading to structural brain impairments that

manifest as cognitive deficits in both animal models and epidemiological studies, reinforcing the critical role of adequate early protein intake for lifelong cognitive health.

Fats

Lipids are fundamental to brain development, serving as structural components of neuronal membranes, regulators of synaptic function, and precursors for signaling molecules that influence cognitive processes [176-178]. The brain is composed of nearly 60% fat, with long-chain polyunsaturated fatty acids (PUFAs), playing critical roles in neurogenesis, myelination, and synaptic plasticity [81,177,179,180]. Additionally, lipids contribute to myelin sheath formation, facilitating rapid signal transmission between neurons, which is crucial for cognitive function and information processing [177,181,182]. Beyond structural roles, lipid metabolism influences inflammatory signaling in the brain, with an imbalance in fatty acid composition linked to neuroinflammation and cognitive dysfunction [176,183-186]. Given the brain's reliance on lipids for both structural integrity and functional regulation, adequate fat intake during early life is essential for optimizing neurodevelopment and cognitive outcomes.

The type and quantity of maternal dietary fat intake can significantly shape neurodevelopmental trajectories, impacting memory, learning, and behavioral outcomes [187]. A high fat diet is typically comprised of saturated fats, and the Western-style diet generally falls into this category. Research suggests that children born to mothers with high-fat, Western-style diets during pregnancy exhibit poorer cognitive performance [128,188], lower IQ scores [189,190], and increased risk of neurodevelopmental disorders such as ADHD [188,191-196]. A study using data from the Generation R cohort revealed that maternal consumption of diets high in fats during pregnancy was associated with lower IQ in school-aged children [197]. Additionally, maternal obesity, which is often linked to high-fat dietary patterns, has been correlated with

altered brain functional connectivity [198-200]. Studies indicate that maternal high-fat intake contributes to gestational diabetes [145,201], which has been linked to poorer cognitive function [146,202] and increased neuropsychiatric risk in offspring [201,203], as mentioned earlier in this discussion. Studies also indicate that early consumption of diets high in saturated fats lead to slower cognitive processing speeds and a compromised capacity to flexibly modulate during cognitive tasks [204].

Maternal obesity is commonly simulated in animal models by feeding adult females a high fat diet (HFD), thus, investigations into the effects of maternal obesity and diet marked by increased fat intake on offspring cognition are commonly interchangeable [125,191,196]. Maternal high-fat diet influences both prenatal and postnatal neurodevelopment in offspring, leading to molecular, cellular, and structural brain alterations observed across fetal, juvenile, and adult stages in mice born to HFD-fed dams [191]. Male and female rodent offspring from mothers fed a HFD diet exhibited impaired long-term memory as evidenced through a reduced preference for novel objects in the novel object recognition test [156,184,205] and a reduced preference for a stranger mouse in the three-chamber test [156,206,207]. Offspring exposed to a HFD during the perinatal period exhibited decreased retention times, higher escape latencies, and less time spent in the target quadrant of the Morris water maze, suggesting diminished spatial memory capacity [155,186,205,208-210]. Other studies on maternal HFD and offspring cognition have yielded mixed results. One report found that rat offspring from HFD-fed dams had better performance in the Morris water maze [211] and spatial memory task [185] compared to control rats, as well as enhanced spatial memory in young piglet offspring exposed to HFD during the perinatal period [212,213]. These discrepancies may relate to timing of dietary exposure, sex, and exact age of offspring during the testing period. The cognitive deficits in offspring from HFD-fed dams

other integral areas of the brain. Offspring exhibited decreased myelination in the prefrontal cortex, and other integral areas of the brain. Offspring exhibited decreased myelination in the prefrontal cortex [184], reduced hippocampal BDNF production [155,205] and impaired neurogenesis, leading to delayed spatial learning [155]. However, some cognitive deficits did not persist into adulthood, suggesting that the effects of maternal high-fat diets on exploratory behaviors may be most pronounced during early development [155]. Maternal and postweaning HFD also downregulated expression of plasticity-related genes in the hippocampus which was coupled with impaired spatial learning and memory [186,208]. These findings suggest that maternal high-fat diet exposure can significantly influence offspring cognitive outcomes, likely through alterations in hippocampal and prefrontal cortex function, neurogenesis, and synaptic plasticity. While deficits in spatial memory and object recognition are commonly observed, inconsistencies in results highlight the role of factors such as sex, timing of dietary exposure, and age at testing. Some cognitive impairments appear transient, indicating a potential window for recovery, but the long-term impact of maternal HFD on neurodevelopment warrants further investigation.

Research on the role of monounsaturated fatty acids (MUFAs) in early neurodevelopment and cognitive outcomes remains limited. Most studies have focused on oleic acid, which is produced endogenously but also obtained through dietary sources [214]. Oleic acid functions as a neurotrophic factor in early development, facilitating neuronal differentiation, neurite extension, neuronal migration, and synapse formation [215-218]. Another MUFA, nervonic acid, is a constituent of white matter lipids and plays a crucial role in myelin biosynthesis [219,220]. Nervonic acid is a natural component of breastmilk, implicating its role in nervous system development [220]. One study found that supplementation with MUFAs, including oleic, nervonic, and lignoceric acids, improved social interaction at one month and enhanced mental,

psychomotor, and behavioral development at 6, 10, and 18 months in preterm infants [219].

Despite these findings, the role of MUFAs in early neurodevelopment remains underexplored, warranting further research to clarify their specific contributions to cognitive outcomes and brain maturation.

Polyunsaturated fatty acids (PUFAs) can primarily be found in fish, nuts, seeds, and oils [2]. PUFAs and their derivatives are essential for optimal myelination, membrane development and function, and synapse function [3]. Docosahexaenoic acid (DHA) comprises 90% of the brain's omega-3 PUFAs, and it is derived from alpha-linolenic and linoleic acids, with other omega-3 and omega-6 fatty acids regulating its levels to support brain function [2,4]. Epidemiological studies suggest that maternal consumption of long-chain PUFAs during pregnancy is associated with cognitive and neural benefits in offspring, particularly in older children [161]. Low maternal DHA levels have been associated with an increased risk of altered neural development, while sufficient DHA intake has been linked to a lower likelihood of low visual acuity in infants [177]. Maternal adrenal acid levels, and omega-6 fatty acids, have also been identified as a key predictor of neural development, even in the absence of DHA deficiency [177]. Research suggests that maternal oily fish consumption during pregnancy correlates with higher stereo acuity in children at 3.5 years, likely due to DHA's role in the maturation of visual processing [178]. Normal maternal omega-3 levels have been associated with a lower risk of reduced IQ [178], better mental processing at age 4 [221], better sequential processing at age 7 [222], and improved verbal abilities [32]. Experimental studies also show that children of mothers who consumed diets rich in cod liver oil or DHA-containing oils during pregnancy scored higher on cognitive assessments [178]. Maternal DHA supplementation has been positively associated with improved infant outcomes at birth, particularly in reducing latencies of visual-evoked responses and

enhancing neuromotor development [33]. However, despite these findings, a meta-analysis by Gould et al. reported no significant differences in cognitive, language, or motor development between supplemented and non-supplemented groups, highlighting the need for additional research [223].

Studies using animal models have provided valuable insights into the role of PUFAs in early cognition that complement findings from human research. Inadequate maternal intake of omega-3 fatty acids in a primate model has been shown to decrease functional connectivity [224] and impair neurotransmitter metabolism, learning, and visual function [2]. Moreover, maternal omega-3 deficiency has been linked to reduced neuronal cell body size in key brain structures such as the parietal cortex and hypothalamus, with potential long-term consequences for neurogenesis, dendritic arborization, myelination, and synaptogenesis [225]. Learning deficits due to omega-3 deficiency are found in rats using the Morris water maze [226,227], and performance has been observed to be restored to control levels with extended repletion [226]. These findings were replicated using the Barnes maze, a less stressful escape task that does not require swimming, where omega-3-deficient rats showed significantly poorer performance, particularly when the escape path was reversed [183]. This impairment, which requires suppressing previously learned information and developing new strategies, highlights deficits in hippocampal-dependent learning and frontal cortex function [183]. Another study showed that rats fed an omega 3deficient diet through pregnancy and lactation led to impaired learning in avoidance tests, which was coupled with significantly lower levels of noradrenaline in the cerebral cortex, hippocampus, and striatum [228]. Conversely, excessive maternal PUFA intake may also negatively impact offspring, as studies in mice and rats have associated high PUFA exposure with reduced hippocampal neurogenesis, altered stress responses, and anxiety-like behaviors, such as

thigmotactic behavior [229]. Furthermore, while the PUFA arachidonic acid indirectly supports brain development by regulating synaptic plasticity, long-term potentiation, and spatial learning via prostaglandin synthesis, docosapentaenoic acid (n-6) cannot replace DHA in promoting neurite outgrowth and formation [2,230,231]. Together, these findings highlight the delicate balance required in maternal PUFA intake, as both deficiencies and excesses can have lasting implications for offspring neurodevelopment and cognitive function.

CONCLUSION

This literature review provides evidence that underscores the critical influence of early-life nutritional status on neurodevelopment and cognitive outcomes, emphasizing the specific influence of placental function, breastfeeding, and energy-yielding macronutrient intake. The placenta serves as the primary conduit for fetal nutrient supply, regulating the availability of essential substrates that drive key neurodevelopmental processes for the developing baby. Postnatally, breastfeeding extends the impact of maternal physiology through bioactive compounds and behavioral interactions that support brain maturation and cognitive function in offspring. Energy intake, derived from macronutrients, is fundamental for providing both the metabolic fuel and structural components integral to brain development. While research has extensively explored the detrimental effects of imbalanced macronutrient intake, including maternal obesity, gestational diabetes, and protein malnutrition, future studies are warranted to elucidate optimal macronutrient distribution for neurodevelopmental benefits.

REFERENCES

- 1. Cusick, S.E.; Georgieff, M.K. The Role of Nutrition in Brain Development: The Golden Opportunity of the "First 1000 Days". J Pediatr 2016, 175, 16-21, doi:10.1016/j.jpeds.2016.05.013.
- 2. Cortés-Albornoz, M.C.; García-Guáqueta, D.P.; Velez-van-Meerbeke, A.; Talero-Gutiérrez, C. Maternal Nutrition and Neurodevelopment: A Scoping Review. Nutrients 2021, 13, doi:10.3390/nu13103530.
- 3. Prado, E.L.; Dewey, K.G. Nutrition and brain development in early life. Nutrition Reviews 2014, 72, 267-284, doi:10.1111/nure.12102.
- 4. Ho, A.; Flynn, A.C.; Pasupathy, D. Nutrition in pregnancy. Obstetrics, Gynaecology & Reproductive Medicine 2016, 26, 259-264, doi:https://doi.org/10.1016/j.ogrm.2016.06.005.
- 5. Moody, L.; Chen, H.; Pan, Y.-X. Early-Life Nutritional Programming of Cognition—The Fundamental Role of Epigenetic Mechanisms in Mediating the Relation between Early-Life Environment and Learning and Memory Process. Advances in Nutrition 2017, 8, 337-350, doi:https://doi.org/10.3945/an.116.014209.
- 6. Lager, S.; Powell, T.L. Regulation of nutrient transport across the placenta. Journal of pregnancy 2012, 2012, 179827.
- 7. Rosenfeld, C.S. The placenta-brain-axis. J Neurosci Res 2021, 99, 271-283, doi:10.1002/jnr.24603.
- 8. Behura, S.K.; Dhakal, P.; Kelleher, A.M.; Balboula, A.; Patterson, A.; Spencer, T.E. The brain-placental axis: Therapeutic and pharmacological relevancy to pregnancy. Pharmacol Res 2019, 149, 104468, doi:10.1016/j.phrs.2019.104468.
- 9. Zeltser, L.M.; Leibel, R.L. Roles of the placenta in fetal brain development. Proceedings of the National Academy of Sciences 2011, 108, 15667-15668, doi:doi:10.1073/pnas.1112239108.
- 10. Jones, H.; Powell, T.; Jansson, T. Regulation of placental nutrient transport—a review. Placenta 2007, 28, 763-774.
- 11. Bonnin, A.; Goeden, N.; Chen, K.; Wilson, M.L.; King, J.; Shih, J.C.; Blakely, R.D.; Deneris, E.S.; Levitt, P. A transient placental source of serotonin for the fetal forebrain. Nature 2011, 472, 347-350.
- 12. Picciano, M.F. Pregnancy and lactation: physiological adjustments, nutritional requirements and the role of dietary supplements. J Nutr 2003, 133, 1997s-2002s, doi:10.1093/jn/133.6.1997S.
- 13. Cohen Kadosh, K.; Muhardi, L.; Parikh, P.; Basso, M.; Jan Mohamed, H.J.; Prawitasari, T.; Samuel, F.; Ma, G.; Geurts, J.M. Nutritional Support of Neurodevelopment and Cognitive

- Function in Infants and Young Children-An Update and Novel Insights. Nutrients 2021, 13, doi:10.3390/nu13010199.
- 14. Likhar, A.; Patil, M.S. Importance of Maternal Nutrition in the First 1,000 Days of Life and Its Effects on Child Development: A Narrative Review. Cureus 2022, 14, e30083, doi:10.7759/cureus.30083.
- 15. Brown Belfort, M. The Science of Breastfeeding and Brain Development. Breastfeed Med 2017, 12, 459-461, doi:10.1089/bfm.2017.0122.
- 16. Pham, Q.; Patel, P.; Baban, B.; Yu, J.; Bhatia, J. Factors Affecting the Composition of Expressed Fresh Human Milk. Breastfeed Med 2020, 15, 551-558, doi:10.1089/bfm.2020.0195.
- 17. Petersohn, I.; Hellinga, A.H.; van Lee, L.; Keukens, N.; Bont, L.; Hettinga, K.A.; Feskens, E.J.M.; Brouwer-Brolsma, E.M. Maternal diet and human milk composition: an updated systematic review. Frontiers in Nutrition 2024, 10, doi:10.3389/fnut.2023.1320560.
- 18. Alzaree, F.A.; AbuShady, M.M.; Atti, M.A.; Fathy, G.A.; Galal, E.M.; Ali, A.; Elias, T.R. Effect of Early Breast Milk Nutrition on Serum Insulin-Like Growth Factor-1 in Preterm Infants. Open Access Maced J Med Sci 2019, 7, 77-81, doi:10.3889/oamjms.2019.035.
- 19. Koh, K. Maternal breastfeeding and children's cognitive development. Soc Sci Med 2017, 187, 101-108, doi:10.1016/j.socscimed.2017.06.012.
- 20. Wallenborn, J.T.; Levine, G.A.; Carreira Dos Santos, A.; Grisi, S.; Brentani, A.; Fink, G. Breastfeeding, Physical Growth, and Cognitive Development. Pediatrics 2021, 147, doi:10.1542/peds.2020-008029.
- 21. Lewallen, L.P. Breastfeeding is important for cognitive development in term and preterm infants. Evid Based Nurs 2012, 15, 85-86, doi:10.1136/ebnurs-2012-100619.
- 22. Kramer, M.S.; Aboud, F.; Mironova, E.; Vanilovich, I.; Platt, R.W.; Matush, L.; Igumnov, S.; Fombonne, E.; Bogdanovich, N.; Ducruet, T.; et al. Breastfeeding and Child Cognitive Development: New Evidence From a Large Randomized Trial. Archives of General Psychiatry 2008, 65, 578-584, doi:10.1001/archpsyc.65.5.578.
- 23. Isaacs, E.B.; Fischl, B.R.; Quinn, B.T.; Chong, W.K.; Gadian, D.G.; Lucas, A. Impact of breast milk on intelligence quotient, brain size, and white matter development. Pediatric research 2010, 67, 357-362.
- 24. McCrory, C.; Murray, A. The effect of breastfeeding on neuro-development in infancy. Maternal and child health journal 2013, 17, 1680-1688.
- 25. Hallowell, S.G.; Spatz, D.L. The relationship of brain development and breastfeeding in the late-preterm infant. Journal of Pediatric Nursing 2012, 27, 154-162.
- 26. Steiner, P. Brain Fuel Utilization in the Developing Brain. Annals of Nutrition and Metabolism 2020, 75, 8-18, doi:10.1159/000508054.
- 27. Georgieff, M.K.; Brunette, K.E.; Tran, P.V. Early life nutrition and neural plasticity. Dev Psychopathol 2015, 27, 411-423, doi:10.1017/s0954579415000061.

- 28. Georgieff, M.K. Nutrition and the developing brain: nutrient priorities and measurement2. The American Journal of Clinical Nutrition 2007, 85, 614S-620S, doi:https://doi.org/10.1093/ajcn/85.2.614S.
- 29. Muth, A.-K.; Park, S.Q. The impact of dietary macronutrient intake on cognitive function and the brain. Clinical Nutrition 2021, 40, 3999-4010, doi:10.1016/j.clnu.2021.04.043.
- 30. Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 2013, 36, 587-597, doi:10.1016/j.tins.2013.07.001.
- 31. Morgane, P.J.; Mokler, D.J.; Galler, J.R. Effects of prenatal protein malnutrition on the hippocampal formation. Neurosci Biobehav Rev 2002, 26, 471-483, doi:10.1016/s0149-7634(02)00012-x.
- 32. Martins, B.P.; Bandarra, N.M.; Figueiredo-Braga, M. The role of marine omega-3 in human neurodevelopment, including Autism Spectrum Disorders and Attention-Deficit/Hyperactivity Disorder a review. Crit Rev Food Sci Nutr 2020, 60, 1431-1446, doi:10.1080/10408398.2019.1573800.
- 33. Hadders-Algra, M. Prenatal and early postnatal supplementation with long-chain polyunsaturated fatty acids: neurodevelopmental considerations. The American journal of clinical nutrition 2011, 94, S1874-S1879.
- 34. Lucassen, P.J.; Naninck, E.F.G.; van Goudoever, J.B.; Fitzsimons, C.; Joels, M.; Korosi, A. Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends in Neurosciences 2013, 36, 621-631, doi:https://doi.org/10.1016/j.tins.2013.08.002.
- 35. Heland, S.; Fields, N.; Ellery, S.J.; Fahey, M.; Palmer, K.R. The role of nutrients in human neurodevelopment and their potential to prevent neurodevelopmental adversity. Front Nutr 2022, 9, 992120, doi:10.3389/fnut.2022.992120.
- 36. Pérez-García, G.; Guzmán-Quevedo, O.; Da Silva Aragão, R.; Bolaños-Jiménez, F. Early malnutrition results in long-lasting impairments in pattern-separation for overlapping novel object and novel location memories and reduced hippocampal neurogenesis. Scientific reports 2016, 6, 21275.
- 37. Chen, W.; Liu, N.; Shen, S.; Zhu, W.; Qiao, J.; Chang, S.; Dong, J.; Bai, M.; Ma, L.; Wang, S.; et al. Fetal growth restriction impairs hippocampal neurogenesis and cognition via Tet1 in offspring. Cell Reports 2021, 37, 109912, doi:https://doi.org/10.1016/j.celrep.2021.109912.
- 38. Brett, K.E.; Ferraro, Z.M.; Yockell-Lelievre, J.; Gruslin, A.; Adamo, K.B. Maternal–Fetal Nutrient Transport in Pregnancy Pathologies: The Role of the Placenta. International Journal of Molecular Sciences 2014, 15, 16153-16185.
- 39. Shallie, P.D.; Naicker, T. The placenta as a window to the brain: A review on the role of placental markers in prenatal programming of neurodevelopment. International Journal of Developmental Neuroscience 2019, 73, 41-49.

- 40. Bronson, S.L.; Bale, T.L. The Placenta as a Mediator of Stress Effects on Neurodevelopmental Reprogramming. Neuropsychopharmacology 2016, 41, 207-218, doi:10.1038/npp.2015.231.
- 41. Broad, K.D.; Keverne, E.B. Placental protection of the fetal brain during short-term food deprivation. Proceedings of the National Academy of Sciences 2011, 108, 15237-15241.
- 42. Mikaelsson, M.A.; Constância, M.; Dent, C.L.; Wilkinson, L.S.; Humby, T. Placental programming of anxiety in adulthood revealed by Igf2-null models. Nat Commun 2013, 4, 2311, doi:10.1038/ncomms3311.
- 43. Bonnin, A.; Torii, M.; Wang, L.; Rakic, P.; Levitt, P. Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nat Neurosci 2007, 10, 588-597, doi:10.1038/nn1896.
- 44. Ansorge, M.S.; Zhou, M.; Lira, A.; Hen, R.; Gingrich, J.A. Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 2004, 306, 879-881, doi:10.1126/science.1101678.
- 45. Taylor, S.E.; Way, B.M.; Welch, W.T.; Hilmert, C.J.; Lehman, B.J.; Eisenberger, N.I. Early family environment, current adversity, the serotonin transporter promoter polymorphism, and depressive symptomatology. Biological psychiatry 2006, 60, 671-676.
- 46. Zhang, H.; Lin, J.; Zhao, H. Impacts of Maternal Preeclampsia Exposure on Offspring Neuronal Development: Recent Insights and Interventional Approaches. International Journal of Molecular Sciences 2024, 25, 11062.
- 47. Whitehouse, A.J.; Robinson, M.; Newnham, J.P.; Pennell, C.E. Do hypertensive diseases of pregnancy disrupt neurocognitive development in offspring? Paediatric and perinatal epidemiology 2012, 26, 101-108.
- 48. Barron, A.; McCarthy, C.M.; O'Keeffe, G.W. Preeclampsia and neurodevelopmental outcomes: potential pathogenic roles for inflammation and oxidative stress? Molecular Neurobiology 2021, 58, 2734-2756.
- 49. Roberts, J.M.; Escudero, C. The placenta in preeclampsia. Pregnancy Hypertension: An International Journal of Women's Cardiovascular Health 2012, 2, 72-83.
- 50. Gumusoglu, S.B.; Chilukuri, A.S.S.; Santillan, D.A.; Santillan, M.K.; Stevens, H.E. Neurodevelopmental Outcomes of Prenatal Preeclampsia Exposure. Trends Neurosci 2020, 43, 253-268, doi:10.1016/j.tins.2020.02.003.
- 51. Many, A.; Fattal, A.; Leitner, Y.; Kupferminc, M.J.; Harel, S.; Jaffa, A. Neurodevelopmental and cognitive assessment of children born growth restricted to mothers with and without preeclampsia. Hypertens Pregnancy 2003, 22, 25-29, doi:10.1081/prg-120016791.
- 52. Warshafsky, C.; Pudwell, J.; Walker, M.; Wen, S.W.; Smith, G.N. Prospective assessment of neurodevelopment in children following a pregnancy complicated by severe preeclampsia. BMJ Open 2016, 6, e010884, doi:10.1136/bmjopen-2015-010884.

- 53. Rätsep, M.T.; Paolozza, A.; Hickman, A.F.; Maser, B.; Kay, V.R.; Mohammad, S.; Pudwell, J.; Smith, G.N.; Brien, D.; Stroman, P.W.; et al. Brain Structural and Vascular Anatomy Is Altered in Offspring of Pre-Eclamptic Pregnancies: A Pilot Study. AJNR Am J Neuroradiol 2016, 37, 939-945, doi:10.3174/ajnr.A4640.
- 54. Zhu, H.; Zhu, W.; Hu, R.; Wang, H.; Ma, D.; Li, X. The effect of pre-eclampsia-like syndrome induced by L-NAME on learning and memory and hippocampal glucocorticoid receptor expression: A rat model. Hypertension in Pregnancy 2017, 36, 36-43.
- 55. Hamosh, M. Bioactive factors in human milk. Pediatric Clinics of North America 2001, 48, 69-86.
- 56. Andreas, N.J.; Kampmann, B.; Le-Doare, K.M. Human breast milk: A review on its composition and bioactivity. Early human development 2015, 91, 629-635.
- 57. Chiurazzi, M.; Cozzolino, M.; Reinelt, T.; Nguyen, T.D.; Elke Chie, S.; Natalucci, G.; Miletta, M.C. Human Milk and Brain Development in Infants. Reproductive Medicine 2021, 2, 107-117.
- 58. Ballard, O.; Morrow, A.L. Human milk composition: nutrients and bioactive factors. Pediatric Clinics 2013, 60, 49-74.
- 59. Rodríguez, J.M.; Fernández, L.; Verhasselt, V. The Gut–Breast Axis: Programming Health for Life. Nutrients 2021, 13, doi:10.3390/nu13020606.
- 60. Ratsika, A.; Codagnone, M.C.; O'Mahony, S.; Stanton, C.; Cryan, J.F. Priming for Life: Early Life Nutrition and the Microbiota-Gut-Brain Axis. Nutrients 2021, 13, 423.
- 61. Hechler, C.; Beijers, R.; Riksen-Walraven, J.M.; de Weerth, C. Are cortisol concentrations in human breast milk associated with infant crying? Dev Psychobiol 2018, 60, 639-650, doi:10.1002/dev.21761.
- 62. Sinkiewicz-Darol, E.; Adamczyk, I.; Łubiech, K.; Pilarska, G.; Twarużek, M. Leptin in Human Milk-One of the Key Regulators of Nutritional Programming. Molecules 2022, 27, doi:10.3390/molecules27113581.
- 63. Bouret, S.G. Neurodevelopmental actions of leptin. Brain Res 2010, 1350, 2-9, doi:10.1016/j.brainres.2010.04.011.
- 64. O'Kusky, J.; Ye, P. Neurodevelopmental effects of insulin-like growth factor signaling. Front Neuroendocrinol 2012, 33, 230-251, doi:10.1016/j.yfrne.2012.06.002.
- 65. Guo, C.; Cho, K.-S.; Li, Y.; Tchedre, K.; Antolik, C.; Ma, J.; Chew, J.; Utheim, T.P.; Huang, X.A.; Yu, H.; et al. IGFBPL1 Regulates Axon Growth through IGF-1-mediated Signaling Cascades. Scientific Reports 2018, 8, 2054, doi:10.1038/s41598-018-20463-5.
- 66. Irving, A.J.; Harvey, J. Leptin regulation of hippocampal synaptic function in health and disease. Philos Trans R Soc Lond B Biol Sci 2014, 369, 20130155, doi:10.1098/rstb.2013.0155.
- 67. Harvey, J.; Shanley, L.; O'Malley, D.; Irving, A. Leptin: a potential cognitive enhancer? Biochemical Society Transactions 2005, 33, 1029-1032.

- 68. Harvey, J.; Solovyova, N.; Irving, A. Leptin and its role in hippocampal synaptic plasticity. Prog Lipid Res 2006, 45, 369-378, doi:10.1016/j.plipres.2006.03.001.
- 69. Oddy, W.H.; Kendall, G.E.; Blair, E.; De Klerk, N.H.; Stanley, F.J.; Landau, L.I.; Silburn, S.; Zubrick, S. Breast feeding and cognitive development in childhood: a prospective birth cohort study. Paediatric and perinatal epidemiology 2003, 17, 81-90.
- 70. Horwood, L.J.; Darlow, B.A.; Mogridge, N. Breast milk feeding and cognitive ability at 7-8 years. Arch Dis Child Fetal Neonatal Ed 2001, 84, F23-27, doi:10.1136/fn.84.1.f23.
- 71. Mortensen, E.L.; Michaelsen, K.F.; Sanders, S.A.; Reinisch, J.M. The association between duration of breastfeeding and adult intelligence. Jama 2002, 287, 2365-2371, doi:10.1001/jama.287.18.2365.
- 72. Amiel Castro, R.; Glover, V.; Ehlert, U.; O'Connor, T.G. Breastfeeding, prenatal depression and children's IQ and behaviour: a test of a moderation model. BMC Pregnancy and Childbirth 2021, 21, 62, doi:10.1186/s12884-020-03520-8.
- 73. Belfort, M.B.; Rifas-Shiman, S.L.; Kleinman, K.P.; Bellinger, D.C.; Harris, M.H.; Taveras, E.M.; Gillman, M.W.; Oken, E. Infant Breastfeeding Duration and Mid-Childhood Executive Function, Behavior, and Social-Emotional Development. J Dev Behav Pediatr 2016, 37, 43-52, doi:10.1097/dbp.0000000000000037.
- 74. Julvez, J.; Ribas-Fitó, N.; Forns, M.; Garcia-Esteban, R.; Torrent, M.; Sunyer, J. Attention behaviour and hyperactivity at age 4 and duration of breast-feeding. Acta Paediatr 2007, 96, 842-847, doi:10.1111/j.1651-2227.2007.00273.x.
- 75. Kadziela-Olech, H.; Piotrowska-Jastrzebska, J. The duration of breastfeeding and attention deficit hyperactivity disorder. Rocz Akad Med Bialymst 2005, 50, 302-306.
- 76. Mimouni-Bloch, A.; Kachevanskaya, A.; Mimouni, F.B.; Shuper, A.; Raveh, E.; Linder, N. Breastfeeding may protect from developing attention-deficit/hyperactivity disorder. Breastfeed Med 2013, 8, 363-367, doi:10.1089/bfm.2012.0145.
- 77. Shamberger, R. Attention-deficit disorder associated with breast-feeding: a brief report. J Am Coll Nutr 2012, 31, 239-242, doi:10.1080/07315724.2012.10720422.
- 78. Deoni, S.C.L.; Dean, D.C.; Piryatinsky, I.; O'Muircheartaigh, J.; Waskiewicz, N.; Lehman, K.; Han, M.; Dirks, H. Breastfeeding and early white matter development: A cross-sectional study. NeuroImage 2013, 82, 77-86, doi:https://doi.org/10.1016/j.neuroimage.2013.05.090.
- 79. Collins, C.T.; Gibson, R.A.; Anderson, P.J.; McPhee, A.J.; Sullivan, T.R.; Gould, J.F.; Ryan, P.; Doyle, L.W.; Davis, P.G.; McMichael, J.E.; et al. Neurodevelopmental outcomes at 7 years' corrected age in preterm infants who were fed high-dose docosahexaenoic acid to term equivalent: a follow-up of a randomised controlled trial. BMJ Open 2015, 5, e007314, doi:10.1136/bmjopen-2014-007314.
- 80. Berger, P.K.; Ong, M.L.; Bode, L.; Belfort, M.B. Human Milk Oligosaccharides and Infant Neurodevelopment: A Narrative Review. Nutrients 2023, 15, doi:10.3390/nu15030719.

- 81. McCann, J.C.; Ames, B.N. Is docosahexaenoic acid, an n-3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals2. The American Journal of Clinical Nutrition 2005, 82, 281-295, doi:https://doi.org/10.1093/ajcn.82.2.281.
- 82. Guesnet, P.; Alessandri, J.-M. Docosahexaenoic acid (DHA) and the developing central nervous system (CNS) Implications for dietary recommendations. Biochimie 2011, 93, 7-12, doi:https://doi.org/10.1016/j.biochi.2010.05.005.
- 83. McNamara, R.K.; Vannest, J.J.; Valentine, C.J. Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: Mechanisms and implications for psychopathology. World J Psychiatry 2015, 5, 15-34, doi:10.5498/wjp.v5.i1.15.
- 84. Fan, Y.; McMath, A.L.; Donovan, S.M. Review on the Impact of Milk Oligosaccharides on the Brain and Neurocognitive Development in Early Life. Nutrients 2023, 15, doi:10.3390/nu15173743.
- 85. Kikusui, T.; Mori, Y. Behavioural and Neurochemical Consequences of Early Weaning in Rodents. Journal of Neuroendocrinology 2009, 21, 427-431, doi:https://doi.org/10.1111/j.1365-2826.2009.01837.x.
- 86. Bredy, T.W.; Humpartzoomian, R.A.; Cain, D.P.; Meaney, M.J. Partial reversal of the effect of maternal care on cognitive function through environmental enrichment. Neuroscience 2003, 118, 571-576, doi:10.1016/s0306-4522(02)00918-1.
- 87. Kaffman, A.; Meaney, M.J. Neurodevelopmental sequelae of postnatal maternal care in rodents: clinical and research implications of molecular insights. Journal of Child Psychology and Psychiatry 2007, 48, 224-244, doi:https://doi.org/10.1111/j.1469-7610.2007.01730.x.
- 88. Liu, D.; Diorio, J.; Day, J.C.; Francis, D.D.; Meaney, M.J. Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nature Neuroscience 2000, 3, 799-806, doi:10.1038/77702.
- 89. Taylor, R.M.; Blumfield, M.L.; Ashton, L.M.; Hure, A.J.; Smith, R.; Buckley, N.; Drysdale, K.; Collins, C.E. Macronutrient Intake in Pregnancy and Child Cognitive and Behavioural Outcomes. Children (Basel) 2021, 8, doi:10.3390/children8050425.
- 90. Silbereis, J.C.; Pochareddy, S.; Zhu, Y.; Li, M.; Sestan, N. The cellular and molecular landscapes of the developing human central nervous system. Neuron 2016, 89, 248-268.
- 91. Sacchi, C.; Marino, C.; Nosarti, C.; Vieno, A.; Visentin, S.; Simonelli, A. Association of Intrauterine Growth Restriction and Small for Gestational Age Status With Childhood Cognitive Outcomes: A Systematic Review and Meta-analysis. JAMA Pediatrics 2020, 174, 772-781, doi:10.1001/jamapediatrics.2020.1097.
- 92. de Rooij, S.R.; Wouters, H.; Yonker, J.E.; Painter, R.C.; Roseboom, T.J. Prenatal undernutrition and cognitive function in late adulthood. Proceedings of the National Academy of Sciences 2010, 107, 16881-16886, doi:doi:10.1073/pnas.1009459107.
- 93. De Rooij, S.R.; Bleker, L.S.; Painter, R.C.; Ravelli, A.C.; Roseboom, T.J. Lessons learned from 25 Years of Research into Long term Consequences of Prenatal Exposure to the

- Dutch famine 1944–45: The Dutch famine Birth Cohort. International Journal of Environmental Health Research 2022, 32, 1432-1446, doi:10.1080/09603123.2021.1888894.
- 94. De Sanctis, V.; Soliman, A.; Alaaraj, N.; Ahmed, S.; Alyafei, F.; Hamed, N. Early and Long-term Consequences of Nutritional Stunting: From Childhood to Adulthood. Acta Biomed 2021, 92, e2021168, doi:10.23750/abm.v92i1.11346.
- 95. Lestari, E.; Siregar, A.; Hidayat, A.K.; Yusuf, A.A. Stunting and its association with education and cognitive outcomes in adulthood: A longitudinal study in Indonesia. PLoS One 2024, 19, e0295380, doi:10.1371/journal.pone.0295380.
- 96. Gashu, D.; Stoecker, B.J.; Bougma, K.; Adish, A.; Haki, G.D.; Marquis, G.S. Stunting, selenium deficiency and anemia are associated with poor cognitive performance in preschool children from rural Ethiopia. Nutrition Journal 2016, 15, 38, doi:10.1186/s12937-016-0155-z.
- 97. Zerga, A.A.; Tadesse, S.E.; Ayele, F.Y.; Ayele, S.Z. Impact of malnutrition on the academic performance of school children in Ethiopia: A systematic review and meta-analysis. SAGE Open Med 2022, 10, 20503121221122398, doi:10.1177/20503121221122398.
- 98. Adair, L.S.; Carba, D.B.; Lee, N.R.; Borja, J.B. Stunting, IQ, and final school attainment in the Cebu Longitudinal Health and Nutrition Survey birth cohort. Economics & Human Biology 2021, 42, 100999, doi:https://doi.org/10.1016/j.ehb.2021.100999.
- 99. Nahar, B.; Hossain, M.; Mahfuz, M.; Islam, M.M.; Hossain, M.I.; Murray-Kolb, L.E.; Seidman, J.C.; Ahmed, T. Early childhood development and stunting: Findings from the MAL-ED birth cohort study in Bangladesh. Maternal & Child Nutrition 2020, 16, e12864, doi:https://doi.org/10.1111/mcn.12864.
- 100. Koshy, B.; Srinivasan, M.; Murugan, T.P.; Bose, A.; Christudoss, P.; Mohan, V.R.; John, S.; Roshan, R.; Kang, G. Association between head circumference at two years and second and fifth year cognition. BMC Pediatrics 2021, 21, 74, doi:10.1186/s12887-021-02543-0.
- 101. Koshy, B.; Srinivasan, M.; Gopalakrishnan, S.; Mohan, V.R.; Scharf, R.; Murray-Kolb, L.; John, S.; Beulah, R.; Muliyil, J.; Kang, G. Are early childhood stunting and catch-up growth associated with school age cognition?—Evidence from an Indian birth cohort. PLOS ONE 2022, 17, e0264010, doi:10.1371/journal.pone.0264010.
- 102. Koshy, B.; Srinivasan, M.; Bose, A.; John, S.; Mohan, V.R.; Roshan, R.; Ramanujam, K.; Kang, G. Developmental trends in early childhood and their predictors from an Indian birth cohort. BMC Public Health 2021, 21, 1083, doi:10.1186/s12889-021-11147-3.
- 103. Murray-Kolb, L.E.; Rasmussen, Z.A.; Scharf, R.J.; Rasheed, M.A.; Svensen, E.; Seidman, J.C.; Tofail, F.; Koshy, B.; Shrestha, R.; Maphula, A.; et al. The MAL-ED Cohort Study: Methods and Lessons Learned When Assessing Early Child Development and Caregiving Mediators in Infants and Young Children in 8 Low- and Middle-Income Countries. Clinical Infectious Diseases 2014, 59, S261-S272, doi:10.1093/cid/ciu437.

- 104. Rasmussen, J.M.; Thompson, P.M.; Entringer, S.; Buss, C.; Wadhwa, P.D. Fetal programming of human energy homeostasis brain networks: Issues and considerations. Obes Rev 2022, 23, e13392, doi:10.1111/obr.13392.
- 105. Levin, B.E. Interaction of perinatal and pre-pubertal factors with genetic predisposition in the development of neural pathways involved in the regulation of energy homeostasis. Brain Res 2010, 1350, 10-17, doi:10.1016/j.brainres.2009.12.085.
- 106. Illa, M.; Eixarch, E.; Muñoz-Moreno, E.; Batalle, D.; Leal-Campanario, R.; Gruart, A.; Delgado-García, J.M.; Figueras, F.; Gratacós, E. Neurodevelopmental Effects of Undernutrition and Placental Underperfusion in Fetal Growth Restriction Rabbit Models. Fetal Diagn Ther 2017, 42, 189-197, doi:10.1159/000454859.
- 107. Antonow-Schlorke, I.; Schwab, M.; Cox, L.A.; Li, C.; Stuchlik, K.; Witte, O.W.; Nathanielsz, P.W.; McDonald, T.J. Vulnerability of the fetal primate brain to moderate reduction in maternal global nutrient availability. Proc Natl Acad Sci U S A 2011, 108, 3011-3016, doi:10.1073/pnas.1009838108.
- 108. Villain, N.; Picq, J.L.; Aujard, F.; Pifferi, F. Body mass loss correlates with cognitive performance in primates under acute caloric restriction conditions. Behavioural Brain Research 2016, 305, 157-163, doi:https://doi.org/10.1016/j.bbr.2016.02.037.
- 109. Stoodley, C.J.; Limperopoulos, C. Structure–function relationships in the developing cerebellum: evidence from early-life cerebellar injury and neurodevelopmental disorders. In Proceedings of the Seminars in Fetal and Neonatal Medicine, 2016; pp. 356-364.
- 110. Florian, M.L.; Nunes, M.L. Effects of intra-uterine and early extra-uterine malnutrition on seizure threshold and hippocampal morphometry of pup rats. Nutritional Neuroscience 2011, 14, 151-158, doi:10.1179/147683010X12611460764804.
- 111. Hernández, A.; Burgos, H.; Mondaca, M.; Barra, R.; Núñez, H.; Pérez, H.; Soto-Moyano, R.; Sierralta, W.; Fernández, V.; Olivares, R.; et al. Effect of prenatal protein malnutrition on long-term potentiation and BDNF protein expression in the rat entorhinal cortex after neocortical and hippocampal tetanization. Neural Plast 2008, 2008, 646919, doi:10.1155/2008/646919.
- 112. Barra, R.; Soto-Moyano, R.; Valladares, L.; Morgan, C.; Pérez, H.; Burgos, H.; Olivares, R.; Sáez-Briones, P.; Laurido, C.; Hernández, A. Knockdown of α2C-adrenoceptors in the occipital cortex rescued long-term potentiation in hidden prenatally malnourished rats. Neurobiology of Learning and Memory 2012, 98, 228-234, doi:https://doi.org/10.1016/j.nlm.2012.07.006.
- 113. Flores, O.; Pérez, H.; Valladares, L.; Morgan, C.; Gatica, A.; Burgos, H.; Olivares, R.; Hernández, A. Hidden prenatal malnutrition in the rat: role of β1-adrenoceptors on synaptic plasticity in the frontal cortex. Journal of neurochemistry 2011, 119, 314-323.
- 114. Xue, L.L.; Du, R.L.; Hu, Y.; Xiong, L.L.; Su, Z.Y.; Ma, Z.; Tan, Y.X.; Liu, J.; Hu, Q.; Zhu, Z.Q.; et al. BDNF promotes neuronal survival after neonatal hypoxic-ischemic encephalopathy by up-regulating Stx1b and suppressing VDAC1. Brain Res Bull 2021, 174, 131-140, doi:10.1016/j.brainresbull.2021.05.013.

- 115. Ghassabian, A.; Sundaram, R.; Chahal, N.; McLain, A.C.; Bell, E.; Lawrence, D.A.; Yeung, E.H. Determinants of neonatal brain-derived neurotrophic factor and association with child development. Dev Psychopathol 2017, 29, 1499-1511, doi:10.1017/s0954579417000414.
- 116. Arvanian, V.L.; Mendell, L.M. Acute modulation of synaptic transmission to motoneurons by BDNF in the neonatal rat spinal cord. European Journal of Neuroscience 2001, 14, 1800-1808, doi:https://doi.org/10.1046/j.0953-816x.2001.01811.x.
- 117. Zhang, X.L.; Wang, L.; Xiong, L.; Huang, F.H.; Xue, H. Timosaponin B-III exhibits antidepressive activity in a mouse model of postpartum depression by the regulation of inflammatory cytokines, BNDF signaling and synaptic plasticity. Experimental and Therapeutic Medicine 2017, 14, 3856-3861.
- 118. Paredes, D.A.; Jalloh, A.; Catlow, B.J.; Jaishankar, A.; Seo, S.; Jimenez, D.V.; Martinowich, K.; Diaz-Bustamante, M.; Hoeppner, D.J.; McKay, R.D.G. Bdnf deficiency in the neonatal hippocampus contributes to global dna hypomethylation and adult behavioral changes. Brain Res 2021, 1754, 147254, doi:10.1016/j.brainres.2020.147254.
- 119. da Silva Hernandes, A.; Françolin-Silva, A.L.; Valadares, C.T.; Fukuda, M.T.H.; Almeida, S.S. Effects of different malnutrition techniques on the behavior of rats tested in the elevated T-maze. Behavioural Brain Research 2005, 162, 240-245, doi:https://doi.org/10.1016/j.bbr.2005.03.008.
- 120. Laus, M.F.; Vales, L.D.; Costa, T.M.; Almeida, S.S. Early postnatal protein-calorie malnutrition and cognition: a review of human and animal studies. Int J Environ Res Public Health 2011, 8, 590-612, doi:10.3390/ijerph8020590.
- 121. Zhang, Y.; Li, N.; Yang, Z. Perinatal food restriction impaired spatial learning and memory behavior and decreased the density of nitric oxide synthase neurons in the hippocampus of adult male rat offspring. Toxicol Lett 2010, 193, 167-172, doi:10.1016/j.toxlet.2010.01.002.
- 122. Fukuda, M.T.; Françolin-Silva, A.L.; Almeida, S.S. Early postnatal protein malnutrition affects learning and memory in the distal but not in the proximal cue version of the Morris water maze. Behav Brain Res 2002, 133, 271-277, doi:10.1016/s0166-4328(02)00010-4.
- 123. Alamy, M.; Errami, M.; Taghzouti, K.; Saddiki-Traki, F.; Bengelloun, W.A. Effects of postweaning undernutrition on exploratory behavior, memory and sensory reactivity in rats: implication of the dopaminergic system. Physiology & behavior 2005, 86, 195-202.
- 124. Wu, A.; Sun, X.; Liu, Y. Effects of caloric restriction on cognition and behavior in developing mice. Neuroscience Letters 2003, 339, 166-168, doi:https://doi.org/10.1016/S0304-3940(03)00008-9.
- 125. Shook, L.L.; Kislal, S.; Edlow, A.G. Fetal brain and placental programming in maternal obesity: A review of human and animal model studies. Prenatal Diagnosis 2020, 40, 1126-1137, doi:https://doi.org/10.1002/pd.5724.

- 126. Rodriguez, A. Maternal pre-pregnancy obesity and risk for inattention and negative emotionality in children. J Child Psychol Psychiatry 2010, 51, 134-143, doi:10.1111/j.1469-7610.2009.02133.x.
- 127. Norr, M.E.; Hect, J.L.; Lenniger, C.J.; Van den Heuvel, M.; Thomason, M.E. An examination of maternal prenatal BMI and human fetal brain development. Journal of Child Psychology and Psychiatry 2021, 62, 458-469, doi:https://doi.org/10.1111/jcpp.13301.
- 128. Monthé-Drèze, C.; Rifas-Shiman, S.L.; Gold, D.R.; Oken, E.; Sen, S. Maternal obesity and offspring cognition: the role of inflammation. Pediatric Research 2019, 85, 799-806, doi:10.1038/s41390-018-0229-z.
- 129. Rivera, P.; Tovar, R.; Ramírez-López, M.T.; Navarro, J.A.; Vargas, A.; Suárez, J.; Fonseca, F.R. Sex-Specific Anxiety and Prefrontal Cortex Glutamatergic Dysregulation Are Long-Term Consequences of Pre-and Postnatal Exposure to Hypercaloric Diet in a Rat Model. Nutrients 2020, 12, doi:10.3390/nu12061829.
- 130. Rossetti, M.F.; Schumacher, R.; Canesini, G.; Fernandez, P.; Gaydou, L.; Stoker, C.; Ramos, J.G. Neonatal overfeeding promotes anxiety, impairs episodic-like memory, and disrupts transcriptional regulation of hippocampal steroidogenic enzymes. The Journal of Nutritional Biochemistry 2024, 134, 109739, doi:https://doi.org/10.1016/j.jnutbio.2024.109739.
- 131. De Luca, S.N.; Ziko, I.; Sominsky, L.; Nguyen, J.C.D.; Dinan, T.; Miller, A.A.; Jenkins, T.A.; Spencer, S.J. Early life overfeeding impairs spatial memory performance by reducing microglial sensitivity to learning. Journal of Neuroinflammation 2016, 13, 112, doi:10.1186/s12974-016-0578-7.
- 132. Hinkle, S.N.; Zhang, C.; Grantz, K.L.; Sciscione, A.; Wing, D.A.; Grobman, W.A.; Newman, R.B.; D'Alton, M.E.; Skupski, D.; Nageotte, M.P.; et al. Nutrition during Pregnancy: Findings from the National Institute of Child Health and Human Development (NICHD) Fetal Growth Studies-Singleton Cohort. Curr Dev Nutr 2021, 5, nzaa182, doi:10.1093/cdn/nzaa182.
- 133. National Academies of Sciences, E.; Medicine. Rethinking the Acceptable Macronutrient Distribution Range for the 21st Century: A Letter Report. 2024.
- 134. Ionescu, M.I.; Zahiu, C.D.M.; Vlad, A.; Galos, F.; Gradisteanu Pircalabioru, G.; Zagrean, A.-M.; O'Mahony, S.M. Nurturing development: how a mother's nutrition shapes offspring's brain through the gut. Nutritional Neuroscience 2025, 28, 50-72, doi:10.1080/1028415X.2024.2349336.
- 135. Vannucci, R.C.; Vannucci, S.J. Glucose metabolism in the developing brain. Seminars in Perinatology 2000, 24, 107-115, doi:https://doi.org/10.1053/sp.2000.6361.
- 136. Cacciatore, M.; Grasso, E.A.; Tripodi, R.; Chiarelli, F. Impact of glucose metabolism on the developing brain. Front Endocrinol (Lausanne) 2022, 13, 1047545, doi:10.3389/fendo.2022.1047545.

- 137. Goyal, M.S.; Raichle, M.E. Glucose Requirements of the Developing Human Brain. J Pediatr Gastroenterol Nutr 2018, 66 Suppl 3, S46-s49, doi:10.1097/mpg.000000000001875.
- 138. Devraj, K.; Klinger, M.E.; Myers, R.L.; Mokashi, A.; Hawkins, R.A.; Simpson, I.A. GLUT-1 glucose transporters in the blood-brain barrier: differential phosphorylation. J Neurosci Res 2011, 89, 1913-1925, doi:10.1002/jnr.22738.
- 139. Zheng, X.; Boyer, L.; Jin, M.; Mertens, J.; Kim, Y.; Ma, L.; Ma, L.; Hamm, M.; Gage, F.H.; Hunter, T. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. eLife 2016, 5, e13374, doi:10.7554/eLife.13374.
- 140. D'Andrea, L.; Audano, M.; Pedretti, S.; Pelucchi, S.; Stringhi, R.; Imperato, G.; De Cesare, G.; Cambria, C.; Laporte, M.H.; Zamboni, N.; et al. Glucose-derived glutamate drives neuronal terminal differentiation in vitro. EMBO reports 2024, 25, 991-1021, doi:https://doi.org/10.1038/s44319-023-00048-8.
- 141. Agostini, M.; Romeo, F.; Inoue, S.; Niklison-Chirou, M.V.; Elia, A.J.; Dinsdale, D.; Morone, N.; Knight, R.A.; Mak, T.W.; Melino, G. Metabolic reprogramming during neuronal differentiation. Cell Death & Differentiation 2016, 23, 1502-1514, doi:10.1038/cdd.2016.36.
- 142. Bauernfeind, A.L.; Barks, S.K.; Duka, T.; Grossman, L.I.; Hof, P.R.; Sherwood, C.C. Aerobic glycolysis in the primate brain: reconsidering the implications for growth and maintenance. Brain Struct Funct 2014, 219, 1149-1167, doi:10.1007/s00429-013-0662-z.
- 143. Nimgampalle, M.; Chakravarthy, H.; Devanathan, V. Chapter 8 Glucose metabolism in the brain: An update. In Recent Developments in Applied Microbiology and Biochemistry, Viswanath, B., Ed.; Academic Press: 2021; pp. 77-88.
- 144. Adane, A.A.; Mishra, G.D.; Tooth, L.R. Diabetes in pregnancy and childhood cognitive development: a systematic review. Pediatrics 2016, 137.
- 145. Brawerman, G.M.; Dolinsky, V.W. Therapies for gestational diabetes and their implications for maternal and offspring health: Evidence from human and animal studies. Pharmacological Research 2018, 130, 52-73, doi:https://doi.org/10.1016/j.phrs.2018.02.002.
- 146. Camprubi Robles, M.; Campoy, C.; Garcia Fernandez, L.; Lopez-Pedrosa, J.M.; Rueda, R.; Martin, M.J. Maternal diabetes and cognitive performance in the offspring: a systematic review and meta-analysis. PloS one 2015, 10, e0142583.
- 147. Veena, S.; Krishnaveni, G.; Srinivasan, K.; Kurpad, A.; Muthayya, S.; Hill, J.; Kiran, K.; Fall, C. Childhood cognitive ability: relationship to gestational diabetes mellitus in India. Diabetologia 2010, 53, 2134-2138.
- 148. Xuan, D.S.; Zhao, X.; Liu, Y.C.; Xing, Q.N.; Shang, H.L.; Zhu, P.Y.; Zhang, X.A. Brain Development in Infants of Mothers With Gestational Diabetes Mellitus: A Diffusion Tensor Imaging Study. J Comput Assist Tomogr 2020, 44, 947-952, doi:10.1097/rct.000000000001110.

- 149. Fraser, A.; Nelson, S.M.; Macdonald-Wallis, C.; Lawlor, D.A. Associations of existing diabetes, gestational diabetes, and glycosuria with offspring IQ and educational attainment: the Avon Longitudinal Study of Parents and Children. Journal of Diabetes Research 2012, 2012, 963735.
- 150. Vuong, B.; Odero, G.; Rozbacher, S.; Stevenson, M.; Kereliuk, S.M.; Pereira, T.J.; Dolinsky, V.W.; Kauppinen, T.M. Exposure to gestational diabetes mellitus induces neuroinflammation, derangement of hippocampal neurons, and cognitive changes in rat offspring. Journal of Neuroinflammation 2017, 14, 80, doi:10.1186/s12974-017-0859-9.
- 151. Sadeghi, A.; Asghari, H.; Hami, J.; Roodi, M.M.; Mostafaee, H.; Karimipour, M.; Namavar, M.; Idoon, F. Volumetric investigation of the hippocampus in rat offspring due to diabetes in pregnancy—A stereological study. Journal of chemical neuroanatomy 2019, 101, 101669.
- 152. Lotfi, N.; Hami, J.; Hosseini, M.; Haghir, D.; Haghir, H. Diabetes during pregnancy enhanced neuronal death in the hippocampus of rat offspring. International Journal of Developmental Neuroscience 2016, 51, 28-35.
- 153. Hami, J.; Vafaei-Nezhad, S.; Haghir, D.; Haghir, H. Insulin-like growth factor-1 receptor is differentially distributed in developing cerebellar cortex of rats born to diabetic mothers. Journal of Molecular Neuroscience 2016, 58, 221-232.
- 154. Piazza, F.V.; Segabinazi, E.; de Meireles, A.L.F.; Mega, F.; Spindler, C.d.F.; Augustin, O.A.; Salvalaggio, G.d.S.; Achaval, M.; Kruse, M.S.; Coirini, H. Severe uncontrolled maternal hyperglycemia induces microsomia and neurodevelopment delay accompanied by apoptosis, cellular survival, and neuroinflammatory deregulation in rat offspring hippocampus. Cellular and molecular neurobiology 2019, 39, 401-414.
- 155. Tozuka, Y.; Kumon, M.; Wada, E.; Onodera, M.; Mochizuki, H.; Wada, K. Maternal obesity impairs hippocampal BDNF production and spatial learning performance in young mouse offspring. Neurochemistry international 2010, 57, 235-247.
- 156. Liu, X.; Li, X.; Xia, B.; Jin, X.; Zou, Q.; Zeng, Z.; Zhao, W.; Yan, S.; Li, L.; Yuan, S. High-fiber diet mitigates maternal obesity-induced cognitive and social dysfunction in the offspring via gut-brain axis. Cell metabolism 2021, 33, 923-938. e926.
- 157. Cerdó, T.; Ruíz, A.; Suárez, A.; Campoy, C. Probiotic, Prebiotic, and Brain Development. Nutrients 2017, 9, 1247.
- 158. Miyake, K.; Horiuchi, S.; Shinohara, R.; Kushima, M.; Otawa, S.; Yui, H.; Akiyama, Y.; Ooka, T.; Kojima, R.; Yokomichi, H.; et al. Maternal dietary fiber intake during pregnancy and child development: the Japan Environment and Children's Study. Frontiers in Nutrition 2023, 10, doi:10.3389/fnut.2023.1203669.
- 159. Yu, L.; Zhong, X.; He, Y.; Shi, Y. Butyrate, but not propionate, reverses maternal dietinduced neurocognitive deficits in offspring. Pharmacological Research 2020, 160, 105082, doi:https://doi.org/10.1016/j.phrs.2020.105082.
- 160. Sloan, N.L.; Lederman, S.A.; Leighton, J.; Himes, J.H.; Rush, D. The effect of prenatal dietary protein intake on birth weight. Nutrition research 2001, 21, 129-139.

- 161. Georgieff, M.K.; Ramel, S.E.; Cusick, S.E. Nutritional influences on brain development. Acta Paediatr 2018, 107, 1310-1321, doi:10.1111/apa.14287.
- 162. Duerden, E.G.; Thompson, B.; Poppe, T.; Alsweiler, J.; Gamble, G.; Jiang, Y.; Leung, M.; Tottman, A.C.; Wouldes, T.; Miller, S.P.; et al. Early protein intake predicts functional connectivity and neurocognition in preterm born children. Scientific Reports 2021, 11, 4085, doi:10.1038/s41598-021-83125-z.
- 163. Burdge, G.C.; Dunn, R.L.; Wootton, S.A.; Jackson, A.A. Effect of reduced dietary protein intake on hepatic and plasma essential fatty acid concentrations in the adult female rat: effect of pregnancy and consequences for accumulation of arachidonic and docosahexaenoic acids in fetal liver and brain. British Journal of Nutrition 2002, 88, 379-387.
- 164. Chang, Y.-M.; Galler, J.R.; Luebke, J.I. Prenatal protein malnutrition results in increased frequency of miniature inhibitory postsynaptic currents in rat CA3 interneurons. Nutritional Neuroscience 2003, 6, 263-267.
- 165. Lister, J.P.; Blatt, G.J.; DeBassio, W.A.; Kemper, T.L.; Tonkiss, J.; Galler, J.R.; Rosene, D.L. Effect of prenatal protein malnutrition on numbers of neurons in the principal cell layers of the adult rat hippocampal formation. Hippocampus 2005, 15, 393-403, doi:10.1002/hipo.20065.
- 166. Lister, J.P.; Tonkiss, J.; Blatt, G.J.; Kemper, T.L.; DeBassio, W.A.; Galler, J.R.; Rosene, D.L. Asymmetry of neuron numbers in the hippocampal formation of prenatally malnourished and normally nourished rats: a stereological investigation. Hippocampus 2006, 16, 946-958.
- 167. Wang, L.; Xu, R.-J. The effects of perinatal protein malnutrition on spatial learning and memory behaviour and brain-derived neurotrophic factor concentration in the brain tissue in young rats. Asia Pac J Clin Nutr 2007, 16, 467-472.
- 168. Debnath, M.; Venkatasubramanian, G.; Berk, M. Fetal programming of schizophrenia: select mechanisms. Neurosci Biobehav Rev 2015, 49, 90-104, doi:10.1016/j.neubiorev.2014.12.003.
- 169. Chiaratti, M.R.; Malik, S.; Diot, A.; Rapa, E.; Macleod, L.; Morten, K.; Vatish, M.; Boyd, R.; Poulton, J. Is Placental Mitochondrial Function a Regulator that Matches Fetal and Placental Growth to Maternal Nutrient Intake in the Mouse? PLoS One 2015, 10, e0130631, doi:10.1371/journal.pone.0130631.
- 170. Gao, H.; Sathishkumar, K.R.; Yallampalli, U.; Balakrishnan, M.; Li, X.; Wu, G.; Yallampalli, C. Maternal protein restriction regulates IGF2 system in placental labyrinth. Front Biosci (Elite Ed) 2012, 4, 1434-1450, doi:10.2741/e472.
- 171. Mayeur, S.; Silhol, M.; Moitrot, E.; Barbaux, S.; Breton, C.; Gabory, A.; Vaiman, D.; Dutriez-Casteloot, I.; Fajardy, I.; Vambergue, A.; et al. Placental BDNF/TrkB signaling system is modulated by fetal growth disturbances in rat and human. Placenta 2010, 31, 785-791, doi:10.1016/j.placenta.2010.06.008.

- 172. Coviello, C.; Keunen, K.; Kersbergen, K.J.; Groenendaal, F.; Leemans, A.; Peels, B.; Isgum, I.; Viergever, M.A.; de Vries, L.S.; Buonocore, G.; et al. Effects of early nutrition and growth on brain volumes, white matter microstructure, and neurodevelopmental outcome in preterm newborns. Pediatric Research 2018, 83, 102-110, doi:10.1038/pr.2017.227.
- 173. Reyes-Castro, L.; Rodriguez, J.; Charco, R.; Bautista, C.; Larrea, F.; Nathanielsz, P.; Zambrano, E. Maternal protein restriction in the rat during pregnancy and/or lactation alters cognitive and anxiety behaviors of female offspring. International Journal of Developmental Neuroscience 2012, 30, 39-45.
- 174. Reyes-Castro, L.; Rodriguez, J.; Rodriguez-Gonzalez, G.; Wimmer, R.; McDonald, T.; Larrea, F.; Nathanielsz, P.; Zambrano, E. Pre-and/or postnatal protein restriction in rats impairs learning and motivation in male offspring. International Journal of Developmental Neuroscience 2011, 29, 177-182.
- 175. Reyes-Castro, L.A.; Padilla-Gómez, E.; Parga-Martínez, N.J.; Castro-Rodríguez, D.C.; Quirarte, G.L.; Díaz-Cintra, S.; Nathanielsz, P.W.; Zambrano, E. Hippocampal mechanisms in impaired spatial learning and memory in male offspring of rats fed a low-protein isocaloric diet in pregnancy and/or lactation. Hippocampus 2018, 28, 18-30, doi:10.1002/hipo.22798.
- 176. Gow, R.V.; Hibbeln, J.R. Omega-3 fatty acid and nutrient deficits in adverse neurodevelopment and childhood behaviors. Child Adolesc Psychiatr Clin N Am 2014, 23, 555-590, doi:10.1016/j.chc.2014.02.002.
- 177. Innis, S.M. Dietary omega 3 fatty acids and the developing brain. Brain research 2008, 1237, 35-43.
- 178. Jensen, C.L. Effects of n-3 fatty acids during pregnancy and lactation. The American journal of clinical nutrition 2006, 83, 1452S-1457S.
- 179. Martinat, M.; Rossitto, M.; Di Miceli, M.; Layé, S. Perinatal Dietary Polyunsaturated Fatty Acids in Brain Development, Role in Neurodevelopmental Disorders. Nutrients 2021, 13, doi:10.3390/nu13041185.
- 180. Zou, R.; El Marroun, H.; Voortman, T.; Hillegers, M.; White, T.; Tiemeier, H. Maternal polyunsaturated fatty acids during pregnancy and offspring brain development in childhood. The American Journal of Clinical Nutrition 2021, 114, 124-133, doi:10.1093/ajcn/nqab049.
- 181. Deoni, S.; Dean, D.; Joelson, S.; O'Regan, J.; Schneider, N. Early nutrition influences developmental myelination and cognition in infants and young children. NeuroImage 2018, 178, 649-659, doi:https://doi.org/10.1016/j.neuroimage.2017.12.056.
- 182. Dighriri, I.M.; Alsubaie, A.M.; Hakami, F.M.; Hamithi, D.M.; Alshekh, M.M.; Khobrani, F.A.; Dalak, F.E.; Hakami, A.A.; Alsueaadi, E.H.; Alsaawi, L.S.; et al. Effects of Omega-3 Polyunsaturated Fatty Acids on Brain Functions: A Systematic Review. Cureus 2022, 14, e30091, doi:10.7759/cureus.30091.

- 183. Fedorova, I.; Hussein, N.; Baumann, M.H.; Di Martino, C.; Salem, N., Jr. An n-3 fatty acid deficiency impairs rat spatial learning in the Barnes maze. Behav Neurosci 2009, 123, 196-205, doi:10.1037/a0013801.
- 184. Graf, A.E.; Lallier, S.W.; Waidyaratne, G.; Thompson, M.D.; Tipple, T.E.; Hester, M.E.; Trask, A.J.; Rogers, L.K. Maternal high fat diet exposure is associated with increased hepcidin levels, decreased myelination, and neurobehavioral changes in male offspring. Brain, behavior, and immunity 2016, 58, 369-378.
- 185. Johnson, S.; Javurek, A.; Painter, M.; Murphy, C.; Conard, C.; Gant, K.; Howald, E.; Ellersieck, M.; Wiedmeyer, C.; Vieira-Potter, V. Effects of a maternal high-fat diet on offspring behavioral and metabolic parameters in a rodent model. Journal of developmental origins of health and disease 2017, 8, 75-88.
- 186. Lépinay, A.L.; Larrieu, T.; Joffre, C.; Acar, N.; Gárate, I.; Castanon, N.; Ferreira, G.; Langelier, B.; Guesnet, P.; Brétillon, L.; et al. Perinatal high-fat diet increases hippocampal vulnerability to the adverse effects of subsequent high-fat feeding. Psychoneuroendocrinology 2015, 53, 82-93, doi:10.1016/j.psyneuen.2014.12.008.
- 187. Bordeleau, M.; Fernández de Cossío, L.; Chakravarty, M.M.; Tremblay, M.-È. From Maternal Diet to Neurodevelopmental Disorders: A Story of Neuroinflammation. Frontiers in Cellular Neuroscience 2021, 14, doi:10.3389/fncel.2020.612705.
- 188. Cirulli, F.; Musillo, C.; Berry, A. Maternal Obesity as a Risk Factor for Brain Development and Mental Health in the Offspring. Neuroscience 2020, 447, 122-135, doi:https://doi.org/10.1016/j.neuroscience.2020.01.023.
- 189. Basatemur, E.; Gardiner, J.; Williams, C.; Melhuish, E.; Barnes, J.; Sutcliffe, A. Maternal prepregnancy BMI and child cognition: a longitudinal cohort study. Pediatrics 2013, 131, 56-63.
- 190. Huang, L.; Yu, X.; Keim, S.; Li, L.; Zhang, L.; Zhang, J. Maternal prepregnancy obesity and child neurodevelopment in the Collaborative Perinatal Project. International journal of epidemiology 2014, 43, 783-792.
- 191. Urbonaite, G.; Knyzeliene, A.; Bunn, F.S.; Smalskys, A.; Neniskyte, U. The impact of maternal high-fat diet on offspring neurodevelopment. Frontiers in Neuroscience 2022, 16, doi:10.3389/fnins.2022.909762.
- 192. Edlow, A.G. Maternal obesity and neurodevelopmental and psychiatric disorders in offspring. Prenat Diagn 2017, 37, 95-110, doi:10.1002/pd.4932.
- 193. Krakowiak, P.; Walker, C.K.; Bremer, A.A.; Baker, A.S.; Ozonoff, S.; Hansen, R.L.; Hertz-Picciotto, I. Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics 2012, 129, e1121-e1128.
- 194. Moss, B.G.; Chugani, D.C. Increased risk of very low birth weight, rapid postnatal growth, and autism in underweight and obese mothers. American Journal of Health Promotion 2014, 28, 181-188.

- 195. Reynolds, L.C.; Inder, T.E.; Neil, J.J.; Pineda, R.G.; Rogers, C.E. Maternal obesity and increased risk for autism and developmental delay among very preterm infants. Journal of perinatology 2014, 34, 688-692.
- 196. Sullivan, E.L.; Nousen, E.K.; Chamlou, K.A.; Grove, K.L. The impact of maternal high-fat diet consumption on neural development and behavior of offspring. International Journal of Obesity Supplements 2012, 2, S7-S13, doi:10.1038/ijosup.2012.15.
- 197. Brion, M.-J.; Zeegers, M.; Jaddoe, V.; Verhulst, F.; Tiemeier, H.; Lawlor, D.A.; Smith, G.D. Intrauterine effects of maternal prepregnancy overweight on child cognition and behavior in 2 cohorts. Pediatrics 2011, 127, e202-e211.
- 198. Rajasilta, O.; Häkkinen, S.; Björnsdotter, M.; Scheinin, N.M.; Lehtola, S.J.; Saunavaara, J.; Parkkola, R.; Lähdesmäki, T.; Karlsson, L.; Karlsson, H.; et al. Maternal pre-pregnancy BMI associates with neonate local and distal functional connectivity of the left superior frontal gyrus. Scientific Reports 2021, 11, 19182, doi:10.1038/s41598-021-98574-9.
- 199. Salzwedel, A.P.; Gao, W.; Andres, A.; Badger, T.M.; Glasier, C.M.; Ramakrishnaiah, R.H.; Rowell, A.C.; Ou, X. Maternal adiposity influences neonatal brain functional connectivity. Frontiers in human neuroscience 2019, 12, 514.
- 200. Li, X.; Andres, A.; Shankar, K.; Pivik, R.; Glasier, C.; Ramakrishnaiah, R.; Zhang, Y.; Badger, T.; Ou, X. Differences in brain functional connectivity at resting state in neonates born to healthy obese or normal-weight mothers. International Journal of Obesity 2016, 40, 1931-1934.
- 201. Sullivan, E.L.; Nousen, E.K.; Chamlou, K.A. Maternal high fat diet consumption during the perinatal period programs offspring behavior. Physiology & Behavior 2014, 123, 236-242, doi:https://doi.org/10.1016/j.physbeh.2012.07.014.
- 202. Xu, T.; Faleschini, S.; Rifas-Shiman, S.L.; Monthé-Drèze, C.; Oken, E.; Hivert, M.F.; Tiemeier, H. Maternal glucose tolerance in pregnancy and child cognitive and behavioural problems in early and mid-childhood. Paediatr Perinat Epidemiol 2021, 35, 109-119, doi:10.1111/ppe.12710.
- 203. Li, M.; Fallin, M.D.; Riley, A.; Landa, R.; Walker, S.O.; Silverstein, M.; Caruso, D.; Pearson, C.; Kiang, S.; Dahm, J.L.; et al. The Association of Maternal Obesity and Diabetes With Autism and Other Developmental Disabilities. Pediatrics 2016, 137, doi:10.1542/peds.2015-2206.
- 204. Khan, N.A.; Raine, L.B.; Drollette, E.S.; Scudder, M.R.; Hillman, C.H. The relation of saturated fats and dietary cholesterol to childhood cognitive flexibility. Appetite 2015, 93, 51-56, doi:10.1016/j.appet.2015.04.012.
- 205. Fusco, S.; Spinelli, M.; Cocco, S.; Ripoli, C.; Mastrodonato, A.; Natale, F.; Rinaudo, M.; Livrizzi, G.; Grassi, C. Maternal insulin resistance multigenerationally impairs synaptic plasticity and memory via gametic mechanisms. Nature communications 2019, 10, 4799.
- 206. Bordeleau, M.; Fernández de Cossío, L.; Lacabanne, C.; Savage, J.C.; Vernoux, N.; Chakravarty, M.; Tremblay, M. Maternal high-fat diet modifies myelin organization, microglial interactions, and results in social memory and sensorimotor gating deficits in

- adolescent mouse offspring. Brain Behav Immun Health 2021, 15, 100281, doi:10.1016/j.bbih.2021.100281.
- 207. Buffington, S.A.; Di Prisco, G.V.; Auchtung, T.A.; Ajami, N.J.; Petrosino, J.F.; Costa-Mattioli, M. Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring. Cell 2016, 165, 1762-1775, doi:10.1016/j.cell.2016.06.001.
- 208. Page, K.C.; Jones, E.K.; Anday, E.K. Maternal and postweaning high-fat diets disturb hippocampal gene expression, learning, and memory function. Am J Physiol Regul Integr Comp Physiol 2014, 306, R527-537, doi:10.1152/ajpregu.00319.2013.
- 209. White, C.L.; Pistell, P.J.; Purpera, M.N.; Gupta, S.; Fernandez-Kim, S.-O.; Hise, T.L.; Keller, J.N.; Ingram, D.K.; Morrison, C.D.; Bruce-Keller, A.J. Effects of high fat diet on Morris maze performance, oxidative stress, and inflammation in rats: contributions of maternal diet. Neurobiology of disease 2009, 35, 3-13.
- 210. Can, Ö.D.; Ulupinar, E.; Özkay, Ü.D.; Yegin, B.; Öztürk, Y. The effect of simvastatin treatment on behavioral parameters, cognitive performance, and hippocampal morphology in rats fed a standard or a high-fat diet. Behavioural pharmacology 2012, 23, 582-592.
- 211. Bilbo, S.D.; Tsang, V. Enduring consequences of maternal obesity for brain inflammation and behavior of offspring. The FASEB Journal 2010, 24, 2104-2115.
- 212. Val-Laillet, D.; Besson, M.; Guérin, S.; Coquery, N.; Randuineau, G.; Kanzari, A.; Quesnel, H.; Bonhomme, N.; Bolhuis, J.E.; Kemp, B. A maternal Western diet during gestation and lactation modifies offspring's microbiota activity, blood lipid levels, cognitive responses, and hippocampal neurogenesis in Yucatan pigs. The FASEB Journal 2017, 31, 2037-2049.
- 213. Clouard, C.; Kemp, B.; Val-Laillet, D.; Gerrits, W.J.; Bartels, A.C.; Bolhuis, J.E. Prenatal, but not early postnatal, exposure to a Western diet improves spatial memory of pigs later in life and is paired with changes in maternal prepartum blood lipid levels. The FASEB Journal 2016, 30, 2466-2475.
- 214. Vidal, V.; García-Cerro, S.; Rueda, N.; Puente, A.; Bartesaghi, R.; Martínez-Cué, C. Early postnatal oleic acid administration enhances synaptic development and cognitive abilities in the Ts65Dn mouse model of Down syndrome. Nutritional Neuroscience 2022, 25, 1400-1412.
- 215. Tabernero, A.; Lavado, E.M.; Granda, B.; Velasco, A.; Medina, J.M. Neuronal differentiation is triggered by oleic acid synthesized and released by astrocytes. Journal of neurochemistry 2001, 79, 606-616.
- 216. Medina, J.M.; Tabernero, A. Astrocyte-synthesized oleic acid behaves as a neurotrophic factor for neurons. Journal of Physiology-Paris 2002, 96, 265-271.
- 217. Polo-Hernández, E.; De Castro, F.; García-García, A.G.; Tabernero, A.; Medina, J.M. Oleic acid synthesized in the periventricular zone promotes axonogenesis in the striatum during brain development. Journal of neurochemistry 2010, 114, 1756-1766.
- 218. García-Cerro, S.; Rueda, N.; Vidal, V.; Puente, A.; Campa, V.; Lantigua, S.; Narcís, O.; Velasco, A.; Bartesaghi, R.; Martínez-Cué, C. Prenatal administration of oleic acid or

- linolenic acid reduces neuromorphological and cognitive alterations in Ts65dn down syndrome mice. The Journal of nutrition 2020, 150, 1631-1643.
- 219. Strandvik, B.; Ntoumani, E.; Lundqvist-Persson, C.; Sabel, K.-G. Long-chain saturated and monounsaturated fatty acids associate with development of premature infants up to 18 months of age. Prostaglandins, Leukotrienes and Essential Fatty Acids 2016, 107, 43-49.
- 220. Li, Q.; Chen, J.; Yu, X.; Gao, J.-M. A mini review of nervonic acid: Source, production, and biological functions. Food Chemistry 2019, 301, 125286, doi:https://doi.org/10.1016/j.foodchem.2019.125286.
- 221. Helland, I.B.; Smith, L.; Saarem, K.; Saugstad, O.D.; Drevon, C.A. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children's IQ at 4 years of age. Pediatrics 2003, 111, e39-e44.
- 222. Helland, I.B.; Smith, L.; Blomén, B.; Saarem, K.; Saugstad, O.D.; Drevon, C.A. Effect of supplementing pregnant and lactating mothers with n-3 very-long-chain fatty acids on children's IQ and body mass index at 7 years of age. Pediatrics 2008, 122, e472-e479.
- 223. Gould, J.F.; Anderson, A.J.; Yelland, L.N.; Gibson, R.A.; Makrides, M. Maternal characteristics influence response to DHA during pregnancy. Prostaglandins Leukot Essent Fatty Acids 2016, 108, 5-12, doi:10.1016/j.plefa.2016.03.011.
- 224. Grayson, D.S.; Kroenke, C.D.; Neuringer, M.; Fair, D.A. Dietary Omega-3 Fatty Acids Modulate Large-Scale Systems Organization in the Rhesus Macaque Brain. The Journal of Neuroscience 2014, 34, 2065, doi:10.1523/JNEUROSCI.3038-13.2014.
- 225. Innis, S.M. Impact of maternal diet on human milk composition and neurological development of infants. The American journal of clinical nutrition 2014, 99, 734S-741S.
- 226. Moriguchi, T.; Salem, N., Jr. Recovery of brain docosahexaenoate leads to recovery of spatial task performance. J Neurochem 2003, 87, 297-309, doi:10.1046/j.1471-4159.2003.01966.x.
- 227. Lim, S.-Y.; Hoshiba, J.; Moriguchi, T.; Salem, N. N-3 Fatty Acid Deficiency Induced by a Modified Artificial Rearing Method Leads to Poorer Performance in Spatial Learning Tasks. Pediatric Research 2005, 58, 741-748, doi:10.1203/01.PDR.0000180547.46725.CC.
- 228. Takeuchi, T.; Fukumoto, Y.; Harada, E. Influence of a dietary n-3 fatty acid deficiency on the cerebral catecholamine contents, EEG and learning ability in rat. Behav Brain Res 2002, 131, 193-203, doi:10.1016/s0166-4328(01)00392-8.
- 229. DeCapo, M.; Thompson, J.R.; Dunn, G.; Sullivan, E.L. Perinatal nutrition and programmed risk for neuropsychiatric disorders: A focus on animal models. Biological Psychiatry 2019, 85, 122-134.
- 230. Lim, S.Y.; Hoshiba, J.; Salem, N., Jr. An extraordinary degree of structural specificity is required in neural phospholipids for optimal brain function: n-6 docosapentaenoic acid substitution for docosahexaenoic acid leads to a loss in spatial task performance. J Neurochem 2005, 95, 848-857, doi:10.1111/j.1471-4159.2005.03427.x.

231. Brenna, J.T.; Carlson, S.E. Docosahexaenoic acid and human brain development: Evidence that a dietary supply is needed for optimal development. Journal of Human Evolution 2014, 77, 99-106, doi:https://doi.org/10.1016/j.jhevol.2014.02.017.

CHAPTER 3

THE EFFECT OF PERINATAL SUPPLEMENTATION OF DHA ON SPECIALIZED PRO-RESOLVING LIPID MEDIATORS IN THE BRAIN OF OFFSPRING ¹

¹ Dubrof S, Zukaitis J, et al. The effect of perinatal supplementation of DHA on specialized proresolving lipid mediators in the brain of offspring. Submitted to the Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids, 3/14/2025.

ABSTRACT

The perinatal period is a critical time for fetal neurological development which depends on omega-3 polyunsaturated fatty acids (PUFA) for fundamental processes. Omega-3 PUFA, including docosahexaenoic acid (DHA), are precursors to a novel class of bioactive metabolites called specialized pro-resolving mediators (SPMs), which have been suggested to have a dual purpose in mitigating neuroinflammation while simultaneously supporting cognitive outcomes, implicating a role in offspring neurodevelopment. DHA is evidenced for its role in early brain development, but the underlying mechanism it exerts its cognitive benefits remain unclear. Pregnant sows were fed a control diet (CON; n=6) or a diet with DHA (n=6, 75 mg DHA/kg BW/day) from gestation through lactation. At weaning, piglets (n=2/sow) underwent resting state-functional magnetic resonance imaging (rs-fMRI) to assess brain functional activation. Subsequently, brain tissue from prefrontal cortex, cerebellum, and hippocampus were collected from piglets. Tissue DHA and eicosapentaenoic acid (EPA)-derived SPMs were quantified using LC-MS. Levels of SPMs were higher in the brains of piglets from DHA-fed sows, particularly in the prefrontal cortex and cerebellum, compared to control piglets. Additionally, a distinct association of several prefrontal SPMs with activation of the cerebellar functional network was marked in the piglet offspring. The findings highlight a potential for SPMs to function as mediators for neurodevelopmental programming, through contributing to inflammation resolution and neuronal connectivity. This work underscores the importance of maternal nutrition in shaping offspring brain health and lays the groundwork for targeted interventions leveraging the benefits of DHA and its bioactive metabolites.

INTRODUCTION

The perinatal period is critical for fetal neurological development and relies heavily on polyunsaturated fatty acids (PUFAs) [1-3]. Docosahexaenoic acid (DHA), the predominant omega-3 PUFA in the brain, comprises over 40% of the omega-3 content in neuronal phospholipids and accumulates throughout cortical expansion and maturation during development [4, 5]. Since de novo PUFA synthesis is absent, DHA supplementation is recommended for pregnant mothers to promote endogenous production and enhance its incorporation into the developing brain [6]. Post-natal DHA accumulation in infants is primarily supported via breastmilk, with compelling evidence indicating that maternal dietary DHA intake consistently reinforces its incorporation into the offspring's brain [7, 8].

Omega-3 PUFA, including DHA, are precursors to a novel family of bioactive metabolites known as specialized pro-resolving mediators (SPMs) [9-11]. SPMs contribute to the crosstalk between glial cells and neurons, as they affect microglia activation [9-11], which can alter the course of events from a pro-inflammatory to an anti-inflammatory status, thus giving it their neuroprotective effects and the potential to influence neurodevelopment. Recently, SPMs have garnered attention for their biological function, with numerous *in vivo* and *in vitro* studies, as reviewed by Weylandt et al. [12] and Serhan et al. [3, 13, 14], highlighting their potent pro-resolving and anti-inflammatory properties. Pregnancy is associated with an increase in systemic and placental inflammation [15], and mechanistic links between maternal inflammation and the risk of neurodevelopmental conditions in offspring have been established [16, 17]. Several SPMs have been detected in the placenta, indicating the potential for placental inflammation to be mediated via the resolution-promoting and inflammation-dampening mechanisms that are characteristic of SPMs [15, 18]. High concentrations of SPMs and SPM pathway markers have

also been quantified in human breastmilk [19]. Moreover, human breast milk isolates accelerated resolution of acute inflammation and infection *in vivo* with isolated human leukocytes, implicating a biological role of SPMs in early neonatal development [20]. Recent studies have identified correlations between cognitive assessments and SPM levels in the cerebrospinal fluid of patients with Alzheimer's disease [21], while postmortem analyses have revealed reduced SPM levels in hippocampal tissue of those with the disease [22]. Notably, in a mouse model of Alzheimer's disease, treatment with SPMs mitigated cognitive decline while also downregulating levels of pro-inflammatory proteins and cytokines in favor of anti-inflammatory ones [23]. These findings collectively suggest that SPMs play a dual role in mitigating neuroinflammation while simultaneously supporting cognitive outcomes.

DHA has been well investigated for its beneficial role in early brain development and influencing cognitive outcomes, but the underlying mechanism through which it exerts its cognitive benefits remain unclear [6, 24]. One potential mechanism may involve the metabolism of DHA into SPMs and SPM pathway markers, and evidence suggests that endogenous synthesis of SPMs may be amplified by increasing substrate supply via dietary supplementation of DHA [18, 25].

The pig is proposed as an effective translational model for studying the effects of maternal nutritional influence on offspring neurodevelopment, given its physiological and anatomical similarities to humans [26]. Both pigs and humans possess a gyrencephalic brain, a feature that enhances neurological complexity by influencing brain activation and function [27]. Additionally, both pig and human brains consist of over 60% white matter [28, 29]. Pigs and humans exhibit similar brain growth patterns, with rapid brain development occurring from the last trimester through lactation in humans and from 50 days pre-farrowing to 40 days post-birth

in pigs [30, 31]. The nutritional needs of piglets also resemble those of human infants [32]. These key parallels make the pig an ideal model for our study.

This study investigated the vertical transfer of perinatally supplementing DHA on SPMs in various brain regions of piglet offspring. A previous study from our laboratory found that perinatally supplementing DHA modulated functional network activation in the brain of offspring [24]. This study further explores the potential association between SPMs and functional network activation in the brain. By exploring this potential mechanistic link, we seek to provide greater insight into how DHA influences cognitive outcomes.

METHODS

Animals and study design

Cross-bred healthy Landrace sows (n=12) were assigned to the DHA (DHA, n=6) or control group (CON, n=6) after accounting for parity and body weight. Sows were fed their corresponding diets from day 70 of gestation and throughout lactation. At farrowing, 1 male and 1 female piglet (CON, n=12; DHA, n=12) nearest the litter's average birth weight were selected to undergo testing for data collection. At weaning (21 days), the selected piglets (n=24) were sacrificed for brain tissue collection. This study was conducted in accordance with the University of Georgia Institutional Animal Care and Use Committee guidelines (Animal Use Protocol: A2021 01-026).

All sows were fed a basal diet (2 kg/day during gestation; ad libitum during lactation) that met the metabolic requirements of maternal health and maximized fetal growth according to the National Research Council's recommendations for swine nutrient requirements (**Table 1**) [33]. DHA sows were supplemented 75 mg/kg BW/day of algae-derived DHA (contains 44.6% DHA, life'sDHA *S40*, DSM Nutritional Products, Inc., Kingstree, SC, USA) mixed into the basal diet.

The dosage of DHA was chosen based on our previous study and other findings that this amount of DHA effectively exerts beneficial health impacts on pregnant sows and piglets [24, 34]. CON sows were fed an isocaloric basal diet mixed with safflower oil (Jedwards International Inc., Braintree, MA, USA), rich in omega-6 fatty acids, primarily linoleic acid (68.46%), with negligible omega-3 content [35].

Fatty acid analysis of colostrum

Colostrum was collected within 12 hours of farrowing from the same teats of all sows. Fatty acid composition analysis was performed using combined gas chromatography-mass spectrometry (GC-MS) as described previously by Patel et al. [36]. Briefly, one weighted drop of colostrum sample was heated with 1 M methanolic HCl in a sealed tube for 14 h at 80 °C. After removal of the solvent, samples were dissolved in water and chloroform. The chloroform phase was transferred to a new tube, concentrated to dryness under nitrogen, and redissolved to make a 10-mg/ml solution in hexane that was injected into the Agilent 7890A GC instrument (Santa Clara, CA, USA).

SPM analysis in brain tissue

At weaning (21 days), study piglets were euthanized via CO2 asphyxiation. Brains were resected and coronally divided into 2-mm-thick slices using a piglet brain slicer (Zivic Instruments, Pittsburgh, PA, USA). Fresh brain tissue slices were individually placed on microscope slides and flash frozen in liquid nitrogen. Micropunches of prefrontal cortex, cerebellum, and hippocampus were acquired from frozen brain tissue slices using a stereotaxic atlas of the porcine brain as reference [37]. Samples were stored in –80 °C until analysis.

Brain tissue samples were subjected to LC-MS analysis using methods previously described [38, 39]. Briefly, the internal standard-spiked samples were loaded onto C18 cartridges, washed

with 15% methanol in water and hexane, and vacuum-dried. Cartridges were eluted with methanol, and the eluate was dried under nitrogen. The residue was dissolved in 50 μl methanol/25 mM ammonium acetate (1:1) for LC-MS analysis. HPLC was performed on a Prominence XR system (Shimadzu, Kyoto, Japan). The eluate was introduced to a QTRAP5500 mass analyzer (AB Sciex, Framingham, MA, USA) (negative ion mode) and analyzed for lipid mediators, using optimized collision energies (18-35 eV) and exit potentials (7-10 V). Spectra for each peak were confirmed using Enhanced Product Ion scans. Data was collected with Analyst 1.6.2 (AB Sciex, Framingham, MA, USA) and quantified using MultiQuant (AB Sciex, Framingham, MA, USA). Internal standard signals were used for normalization, recovery, and relative quantitation of each analyte.

The measured DHA-derived metabolites included protectins, maresin, D-series resolvin 1 (RvD1), and hydroxydocosahexaenoic acids (HDHAs). The EPA-derived metabolites analyzed were E-series resolvin 1 (RvE1) and hydroxyeicosapentaenoic acids (HEPEs).

Functional Magnetic Resonance Imaging

Previously, our lab reported that perinatally supplementing DHA altered brain functional activation in piglet offspring as assessed through resting-state functional magnetic resonance imaging (rs-fMRI) [24]. Piglets in the current study also underwent rs-fMRI at weaning (postnatal day 21) as previously described with modifications on data analysis [40-42]. Briefly, the data was corrected for head motion and slice timing, then registered to a reference template [41]. A binary mask created with 3D Slicer (v4.11, 2021) was applied to remove non-brain signals from the data. The independent components (ICs), representing baseline functional activation maps, were generated using group independent component analysis on CON piglets. FSL's dual regression function was then applied to reconstruct ICs for each individual. Pearson

correlations were calculated for eight resting-state networks: executive control, cerebellar, visual, sensorimotor, auditory, default mode, salience, and basal ganglia networks.

Statistical analysis

Data is expressed as mean ± S.E.M. and analyzed using RStudio (Version 2023.03.0+386, R Foundation for Statistical Computing, Vienna, Austria) and GraphPad Prism (Version 10.1.0, GraphPad Software, Inc.; San Diego, CA, USA). Treatment effects were investigated using a linear mixed-effect model to control for sex as a fixed effect and for maternal (sow) as a random effect. Significance was determined at a significance level of 0.05.

RESULTS

Fatty acid composition of colostrum

The overall fatty acid profile of the colostrum samples (n=12) contained high relative percentage levels of palmitic acid (C16:0, 23.5542 \pm 0.6692), oleic acid (C18:1, 34.2708 \pm 0.8039), and linoleic acid (C18:2, 27.5320 \pm 2.0313), which is similar to that of human colostrum [43]. DHA-supplemented sows (n=6) had significantly greater amounts of DHA (C22:6, undetected and 0.7217 \pm 0.3593 for CON and DHA, respectively) and docosapentaenoic acid (DPA; C22:5, 0.1000 \pm 0.000 and 0.1480 \pm 0.0634 for CON and DHA, respectively) compared to CON (n=6) sows (p<0.0001), demonstrating that the maternal DHA intake vertically transferred from colostrum to piglet offspring. Omega-6 and omega-3 PUFAs are competitively metabolized by the same set of enzymes, thus, supplementing an omega-3 PUFA such as DHA often results in diminished levels of omega-6 PUFAs [44]. Indeed, relative percentage levels of linoleic acid, an omega-6 PUFA, were lower in DHA-supplemented sows compared to CON sows (C18:2; 32.4800 \pm 1.4891 and 26.5583 \pm 1.2400 for CON and DHA, respectively; p=0.0121).

Docosahexaenoic (DHA)-derived specialized pro-resolving mediators

Protectins

The results showing the effect of perinatal DHA supplementation on DHA-derived protectin family metabolites in the brain of offspring are shown in Figure 1. Protectin D1 (PD1) is biosynthesized from DHA and has been observed to exhibit potent neuroprotective actions in the brain and retina [45]. PD1 levels in the prefrontal cortex were 115.63% higher in piglets from DHA-fed sows compared to CON piglets (p=0.0443), while there was no difference observed in the cerebellum or hippocampus (p>0.05) (**Figure 1A**). Protectin DX (PDX) is a positional isomer of PD1, sharing some overlapping but distinct effects on specific target cells [45]. Aspirin triggered-PD1 (AT-PD1) is an epimer of PD1 that also displays comparable potent protective bioactions [45]. With DHA supplementation, PDX levels in the cerebellum were again significantly higher compared to CON piglets (p=0.0177). There was no difference in the prefrontal cortex or hippocampus (p>0.05) (**Figure 1B**). No significant difference were observed for AT-PD1 across the three brain regions (p>0.05) (**Figure 1C**). These results suggest a region-specific increase in protectin metabolites, chiefly in the prefrontal cortex and cerebellum, in response to perinatal DHA supplementation.

The distribution of protectin metabolites in the prefrontal cortex, cerebellum, and hippocampus in CON piglets was analyzed (**Figure 1D**). PDX and AT-PD1 levels were higher in the cerebellum compared to both the prefrontal cortex (p<0.0001 and p=0.0007 for PDX and AT-PD1, respectively) and the hippocampus (p<0.0001 and p=0.0006 for PDX and AT-PD1, respectively). PD1 had no regional differences (p>0.05). This indicates a potential regional preference for PDX and AT-PD1 accumulation in the cerebellum.

Hydroxydocosahexaenoic acids

HDHAs are DHA-derived pathway markers for protectins, resolvins, and maresins [46]. DHA-supplemented piglets exhibited markedly higher levels of the five HDHA metabolites, including 4-, 7-, 13-, 14-, and 17-HDHA, in the prefrontal cortex and cerebellum compared to CON piglets (p<0.05) (Figure 2A-E). Noticeably in the cerebellum of DHA piglets, 17-HDHA levels were particularly higher, measuring 3.4 times higher than piglets in the CON group (Figure 2E). Levels of HDHA metabolites within the hippocampus were not different between groups (p>0.05). These results show that perinatal DHA supplementation selectively increased HDHA metabolites in the prefrontal cortex and cerebellum of offspring, suggesting a region-specific enhancement of these DHA-derived metabolites in response to maternal DHA intake.

Regional distribution of HDHA metabolites varied (Figure 2F). 4-HDHA, 7-HDHA, and 14-HDHA were higher in both the prefrontal cortex (p=0.0051, p=0.0048, and p<0.0001, respectively) and cerebellum (p=0.0238, p=0.0028, and p=0.0029, respectively) compared to the hippocampus. Conversely, 13-HDHA was higher in the hippocampus relative to the prefrontal cortex (p=0.0041). 17-HDHA showed no significant regional differences in the three brain regions (p>0.05). This data reflects regional variability, which may signify distinct metabolic or functional roles of these HDHA metabolites in early brain development.

Maresin and D-series Resolvin 1

Maresins are anti-inflammatory mediators that exhibit protection against nervous system disorders and oxidative stress [46]. DHA piglets exhibited a non-significant trend of higher Maresin1 in the prefrontal cortex and cerebellum compared to CON piglets (p>0.05) (**Figure 3A**). The regional distribution of Maresin1 showed significantly higher levels in the prefrontal cortex compared to the hippocampus (p=0.0061), implying an accumulation of Maresin1 in this brain region (**Figure 3B**).

No significant treatment effect of DHA supplementation on RvD1 levels amongst the three brain regions was observed (p>0.05) (**Figure 4A**). RvD1 was highest in the prefrontal cortex compared to both the cerebellum and hippocampus (p=0.0049 and p=0.0061, respectively) (**Figure 4B**), presenting a similar trend to Maresin1 of a distinct accumulation of this metabolite in the prefrontal cortex.

Eicosapentaenoic (EPA)-derived specialized pro-resolving mediators

Hydroxyeicosapentaenoic acids

Metabolites in the HEPE family demonstrated comparable trends as the DHA-derived metabolites in response to perinatal DHA supplementation. DHA-supplemented piglets showed significantly higher levels of 5-HEPE, 12-HEPE, and 18-HEPE in the prefrontal cortex and cerebellum compared to CON piglets (p<0.05) (**Figure 5A-C**). Interestingly, hippocampal 12-HEPE was also higher in DHA piglets (p=0.0437) (**Figure 5B**).

Regional distribution of the HEPE metabolites varied amongst the three brain regions (**Figure 5D**). For 5-HEPE and 18-HEPE, levels were significantly higher in the prefrontal cortex relative to the cerebellum (p=0.0055 and p=0.0234, respectively), with both metabolites seemingly lowest in the cerebellum amongst the three brain regions. By contrast, 12-HEPE was highest in the cerebellum compared to both the prefrontal cortex and hippocampus (p=0.0019 and p=0.0008, respectively).

E-series Resolvin 1

Perinatal DHA supplementation minimally influenced levels of RvE1, except for in the hippocampus, where it was unexpectedly lower compared to CON piglets (p=0.0415) (**Figure 6A**). Regional distribution of RvE1 in the prefrontal cortex with respect to the cerebellum and

hippocampus (p<0.0001 and p=0.0016, respectively) (**Figure 6B**), following a similar trend to the aforementioned 5-HEPE and 18-HEPE metabolites.

Association of specialized pro-resolving mediators with functional network activation

The rs-fMRI analysis in the current study revealed similar trends in results as previously reported [24]. An appreciable but non-significant (p>0.05) increase in functional activation was observed for DHA piglets compared to CON piglets in the cerebellar network (r=0.3461 \pm 0.0154 and r=0.3816 \pm 0.0183 for CON and DHA, respectively; p>0.05) and visual network (r=0.2993 \pm 0.0151 and r=0.3199 \pm 0.0200 for CON and DHA, respectively; p>0.05). On the other hand, functional activation in the sensorimotor network were significantly lowered in DHA piglets compared to CON piglets (r=0.2840 \pm 0.0110 and r=0.2450 \pm 0.0127 for CON and DHA, respectively; p=0.0485), which is consistent with previously reported findings for this network. Functional activations in the executive, auditory, default mode, salience and basal ganglia networks did not show any cross-group differences (p>0.05).

An analysis of the association between SPMs and functional network activation revealed significant correlations for several metabolites (**Figure 7**). Cerebellar network activation was positively associated with PD1 in the prefrontal cortex (r=0.5193, p=0.0093) (**Figure 7A**). 4-HDHA (r=0.3312, p=0.3312), 7-HDHA (r=0.4501, p=0.0273, and 13-HDHA (r=0.2192, p=0.0210) in the prefrontal cortex also showed significant positive correlations with cerebellar network activation (**Figure 7D**). Similarly, prefrontal levels of Maresin1 and 5-HEPE were positively correlated with cerebellar network activation (r=0.6794, p=0.0003 and r=0.4578, p=0.0245 for Maresin1 and 5-HEPE, respectively) (**Figure 7E and F**). Interestingly, 5-HEPE in the prefrontal cortex was negatively correlated with sensorimotor network activation (r=-0.4209, p=0.0405). SPMs in the cerebellum and hippocampus showed no significant correlations with

the eight functional networks in the brain of piglets (p>0.05). These results indicate that certain SPMs in the prefrontal cortex may be associated with functional network activation at this early stage of brain development.

DISCUSSION

This study is the first to examine the effects of perinatal DHA supplementation on SPMs across brain regions in offspring. Notably, piglets from DHA-fed sows exhibited higher SPM levels, particularly in the prefrontal cortex and cerebellum, compared to the CON group.

Additionally, several prefrontal SPMs were distinctly associated with cerebellar functional network activation. These findings provide novel insights into SPMs during the perinatal period and suggest a potential mechanism linking DHA intake to cognitive outcomes.

While there is limited evidence on the presence and role of SPMs during the perinatal period, the available studies imply that these bioactive lipid mediators may play a critical role in maternal and fetal health [9, 11]. Previously, Mozurkewich et al. found that supplementing DHArich fish oil to pregnant women, resulted in a positive association of DHA-derived SPM pathway markers, including 4-HDHA, 14-HDHA, and 17-HDHA, with DHA levels in maternal blood [25]. Similarly, maternal omega-3 fatty acid supplementation significantly increased 17-HDHA and 18-HEPE in both the rat and human placenta compared to control groups [18, 47]. The presence of SPM pathway markers points toward an overall increase in basal production of their metabolites. Indeed, we observed that heightened HDHAs and HEPEs was concomitant with increased levels of some SPMs, resembling what was previously observed in the rat placenta [18]. Potent SPMs have been observed to exhibit a short half-life, which can make detecting and quantifying in archived samples challenging [48]. This observation may explain the pronounced changes in SPM pathway markers, such as HDHAs and HEPEs, following DHA

supplementation, as well as the higher number of samples with undetectable levels of resolvins and protectins compared to their pathway markers. Conversely, the lack of change in certain SPMs, like hippocampal RvE1, may reflect differences in regulatory mechanisms, such as enzyme expression patterns involved in SPM biosynthesis [45]. Further investigation is needed to elucidate how these enzymatic processes specific to SPM biosynthesis are regulated during critical periods of brain development.

DHA status has been linked to health outcomes in conditions involving disrupter neurodevelopment, inflammation, and neurodegeneration, such as preterm birth and Alzheimer's disease [6]. This study suggests that DHA's cognitive benefits may arise through SPM-mediated neuroinflammation resolution and support of synaptic plasticity [49]. SPMs have been shown to act via specific G-protein-coupled receptors on immune cells, initiating signaling cascades that resolve inflammation while preserving immune function [46, 49], creating an optimal environment for neural development and function. The role of SPMs in mediating inflammatory and neurodegenerative conditions is emerging as a critical area of interest [9-11]. In the context of preterm birth, DHA status has been linked to reduced risk and improved neonatal outcomes [50]. Specifically, average maternal DHA levels were found to be significantly lower in patients with preterm births [51], and pregnant women with plasma DHA concentrations below 2.0-2.5% are considered to be at a greater risk of preterm birth [52]. Furthermore, in a cohort of preterm newborns, higher DHA levels in the first few weeks of life were associated with improved microstructural brain development and corresponding improved developmental scores in a follow-up analysis [53]. Evidence suggests that SPMs may play a protective role by mitigating inflammation in the placenta and fetal tissues [18, 47, 54], a pathology characteristic of preterm birth [15]. The placenta is a modulator that can influence both the maternal and fetal immune

systems, and this has been marked by strong inflammatory responses initiated by placental infections leading to heightened levels of pro-inflammatory cytokines that precede preterm labor [55]. SPM levels have been found to be relatively high in placental tissue, with protectin levels increasing near term, suggesting a role in maintaining inflammatory balance and preventing preterm birth [18].

Similarly, DHA status has been widely studied in Alzheimer's disease, with reduced brain DHA levels linked to increased neuroinflammation and cognitive decline, as reviewed by Devassy et al. [56]. Omega-3 PUFA supplementation in patients with mild cognitive impairment increased RvD1 levels, enhanced amyloid beta plaque phagocytosis, and improved cognitive test scores [57]. Patients with Alzheimer's disease exhibited significantly reduced levels of PD1 and Maresin1 in the hippocampus [22, 58], as well as RvD1 in the cerebrospinal fluid, with lower SPM levels in the cerebrospinal fluid correlating with decreased mini-mental state examination scores, a marker of cognitive function [22]. Interestingly, PD1, Maresin1, and RvD1 administration have shown neuroprotective effects by boosting microglial phagocytosis of amyloid-beta plaques, improving neuronal survival, and shifting microglial activity from proinflammatory to anti-inflammatory [10]. The regional specificity of SPM action observed in this study provides new insights into how DHA and its metabolites may support cognitive resilience in Alzheimer's disease.

The strong correlation between prefrontal SPM levels and activation in cerebellar and sensorimotor networks suggests these metabolites may contribute to inter-regional communication or neuronal connectivity. This study builds on existing research by linking functional network maturation to cognitive development [59]. Specifically, the cerebellar network, traditionally associated with motor control, is increasingly recognized for its role in

cognitive and emotional processing [60]. The cerebellar network activation correlated with SPM levels may reflect broader neurodevelopmental benefits mediated by these metabolites. Similarly, the sensorimotor network, essential for integrating sensory input with motor responses [61], could rely on SPMs for optimal connectivity and function during early development. These results emphasize the potential for DHA-derived metabolites to promote the structural and functional integration of key brain networks critical for higher-order cognitive processes.

These findings highlight the potential of this novel class of metabolites to mediate neurodevelopmental programming by resolving inflammation and enhancing neuronal connectivity. Further research is needed to investigate their impact on cognition later in life and their translational relevance to human health, particularly in at-risk groups such as preterm infants and those with a predisposition to neurodevelopmental disorders. This study underscores the critical role of maternal nutrition in shaping offspring brain health and provides a foundation for targeted interventions utilizing DHA and its bioactive metabolites.

AUTHOR CONTRIBUTIONS

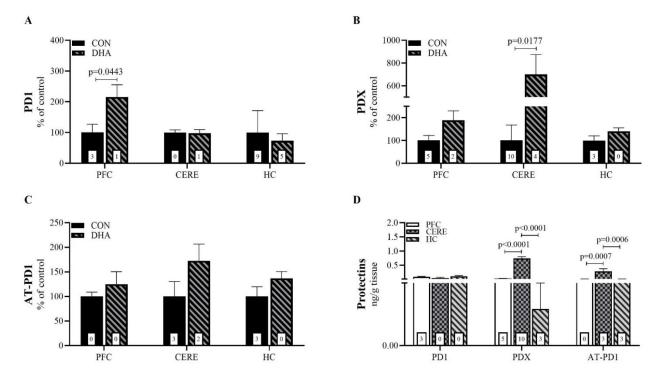
Stephanie Dubrof: Writing – original draft, Visualization, Investigation, Formal analysis. Jillien G. Zukaitis: Investigation. Ishfaque Ahmed: Investigation. Wenwu Sun: Investigation. Qun Zhao: Methodology, Supervision. Hea Jin Park: Writing – review & editing, Methodology, Conceptualization, Supervision, Funding acquisition.

Co-authors have agreed for this work to be included in this dissertation.

REFERENCES

- 1. Cusick, S.E. and M.K. Georgieff, The Role of Nutrition in Brain Development: The Golden Opportunity of the "First 1000 Days". J Pediatr, 2016. 175: p. 16-21.
- 2. Haggarty, P., Fatty acid supply to the human fetus. Annu Rev Nutr, 2010. 30: p. 237-55.
- 3. Serhan, C.N., Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol, 2007. 25: p. 101-37.
- 4. Clandinin, M.T., et al., Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements. Early Hum Dev, 1980. 4(2): p. 121-9.
- 5. Martinez, M., Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr, 1992. 120(4 Pt 2): p. S129-38.
- 6. Lauritzen, L., et al., DHA Effects in Brain Development and Function. Nutrients, 2016. 8(1).
- 7. Hsieh, A.T. and J.T. Brenna, Dietary docosahexaenoic acid but not arachidonic acid influences central nervous system fatty acid status in baboon neonates. Prostaglandins Leukot Essent Fatty Acids, 2009. 81(2-3): p. 105-10.
- 8. Farquharson, J., et al., Infant cerebral cortex phospholipid fatty-acid composition and diet. The Lancet, 1992. 340(8823): p. 810-813.
- 9. Elliott, E., et al., The role of specialized pro-resolving mediators in maternal-fetal health. Prostaglandins, Leukotrienes and Essential Fatty Acids, 2017. 126: p. 98-104.
- 10. Miyazawa, K., et al., Alzheimer's Disease and Specialized Pro-Resolving Lipid Mediators: Do MaR1, RvD1, and NPD1 Show Promise for Prevention and Treatment? Int J Mol Sci, 2020. 21(16).
- 11. Thompson, M., et al., Something Smells Fishy: How Lipid Mediators Impact the Maternal-Fetal Interface and Neonatal Development. Biomedicines, 2023. 11(1).
- 12. Weylandt, K.H., et al., Omega-3 fatty acids and their lipid mediators: towards an understanding of resolvin and protectin formation. Prostaglandins Other Lipid Mediat, 2012. 97(3-4): p. 73-82.
- 13. Serhan, C.N., et al., Protectins and maresins: New pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim Biophys Acta, 2015. 1851(4): p. 397-413.
- 14. Serhan, C.N., S. Yacoubian, and R. Yang, Anti-inflammatory and proresolving lipid mediators. Annu Rev Pathol, 2008. 3: p. 279-312.
- 15. Challis, J.R., et al., Inflammation and pregnancy. Reprod Sci, 2009. 16(2): p. 206-15.
- 16. Goeden, N., et al., Maternal Inflammation Disrupts Fetal Neurodevelopment via Increased Placental Output of Serotonin to the Fetal Brain. J Neurosci, 2016. 36(22): p. 6041-9.
- 17. Stolp, H.B., et al., Reduced ventricular proliferation in the foetal cortex following maternal inflammation in the mouse. Brain, 2011. 134(Pt 11): p. 3236-48.

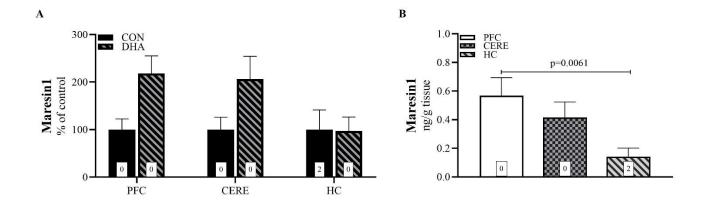
- 18. Jones, M.L., et al., Maternal dietary omega-3 fatty acid intake increases resolvin and protectin levels in the rat placenta. J Lipid Res, 2013. 54(8): p. 2247-2254.
- 19. Weiss, G.A., et al., High levels of anti-inflammatory and pro-resolving lipid mediators lipoxins and resolvins and declining docosahexaenoic acid levels in human milk during the first month of lactation. Lipids Health Dis, 2013. 12: p. 89.
- 20. Arnardottir, H., et al., Human milk proresolving mediators stimulate resolution of acute inflammation. Mucosal Immunology, 2016. 9(3): p. 757-766.
- 21. Do, K.V., et al., Cerebrospinal Fluid Profile of Lipid Mediators in Alzheimer's Disease. Cellular and Molecular Neurobiology, 2023. 43(2): p. 797-811.
- 22. Wang, X., et al., Resolution of inflammation is altered in Alzheimer's disease. Alzheimers Dement, 2015. 11(1): p. 40-50.e1-2.
- 23. Yin, P., et al., Maresin 1 Improves Cognitive Decline and Ameliorates Inflammation in a Mouse Model of Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2019. 13.
- 24. Fang, X., et al., Perinatal Docosahexaenoic Acid Supplementation Improves Cognition and Alters Brain Functional Organization in Piglets. Nutrients, 2020. 12(7).
- 25. Mozurkewich, E.L., et al., Pathway Markers for Pro-resolving Lipid Mediators in Maternal and Umbilical Cord Blood: A Secondary Analysis of the Mothers, Omega-3, and Mental Health Study. Frontiers in Pharmacology, 2016. 7.
- 26. Mudd, A.T. and R.N. Dilger, Early-Life Nutrition and Neurodevelopment: Use of the Piglet as a Translational Model. Advances in Nutrition, 2017. 8(1): p. 92-104.
- 27. Hoffe, B. and M.R. Holahan, The use of pigs as a translational model for studying neurodegenerative diseases. Frontiers in physiology, 2019. 10: p. 838.
- 28. Conrad, M.S., et al., Magnetic resonance imaging of the neonatal piglet brain. Pediatric research, 2012. 71(2): p. 179-184.
- 29. Zhang, K. and T.J. Sejnowski, A universal scaling law between gray matter and white matter of cerebral cortex. Proceedings of the National Academy of Sciences, 2000. 97(10): p. 5621-5626.
- 30. Dickerson, J. and J. Dobbing, Prenatal and postnatal growth and development of the central nervous system of the pig. Proceedings of the Royal Society of London. Series B. Biological Sciences, 1967. 166(1005): p. 384-395.
- 31. Dobbing, J. and J. Sands, Comparative aspects of the brain growth spurt. Early human development, 1979. 3(1): p. 79-83.
- 32. Odle, J., et al., The suckling piglet as an agrimedical model for the study of pediatric nutrition and metabolism. Annu Rev Anim Biosci, 2014. 2: p. 419-44.
- 33. Council, N.R., Nutrient requirements of swine. Natl. Acad. Press, Washington, DC, 2012.
- 34. Smit, M.N., et al., Responses to n-3 fatty acid (LCPUFA) supplementation of gestating gilts, and lactating and weaned sows. Animal, 2013. 7(5): p. 784-92.

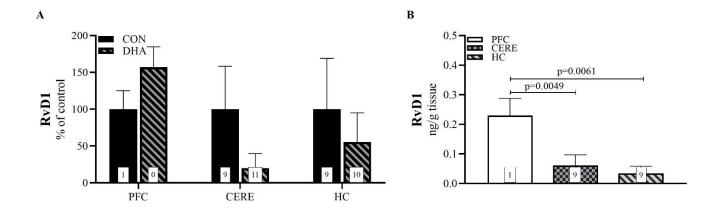

- 35. Orsavova, J., et al., Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int J Mol Sci, 2015. 16(6): p. 12871-90.
- 36. Patel, M.K., S. Das, and J.K. Thakur, GC-MS-Based Analysis of Methanol: Chloroform-extracted Fatty Acids from Plant Tissues. Bio Protoc, 2018. 8(18): p. e3014.
- 37. Félix, B., et al., Stereotaxic atlas of the pig brain. Brain Research Bulletin, 1999. 49(1): p. 1-137.
- 38. Norris, P.C., et al., Identification of specialized pro-resolving mediator clusters from healthy adults after intravenous low-dose endotoxin and omega-3 supplementation: a methodological validation. Sci Rep, 2018. 8(1): p. 18050.
- 39. Maddipati, K.R., et al., Eicosanomic profiling reveals dominance of the epoxygenase pathway in human amniotic fluid at term in spontaneous labor. Faseb j, 2014. 28(11): p. 4835-46.
- 40. Ahmed, I., et al., Nutritional supplement induced modulations in the functional connectivity of a porcine brain. Nutritional Neuroscience, 2024. 27(2): p. 147-158.
- 41. Reeves, W.D., et al., Characterization of Resting-State Functional Connectivity Changes in Hypertension by a Modified Difference Degree Test. Brain Connectivity, 2023. 13(9): p. 563-573.
- 42. Simchick, G., et al., Pig Brains Have Homologous Resting-State Networks with Human Brains. Brain Connectivity, 2019. 9(7): p. 566-579.
- 43. Sinanoglou, V.J., et al., Factors affecting human colostrum fatty acid profile: A case study. PLoS One, 2017. 12(4): p. e0175817.
- 44. Mariamenatu, A.H. and E.M. Abdu, Overconsumption of Omega-6 Polyunsaturated Fatty Acids (PUFAs) versus Deficiency of Omega-3 PUFAs in Modern-Day Diets: The Disturbing Factor for Their "Balanced Antagonistic Metabolic Functions" in the Human Body. Journal of Lipids, 2021. 2021(1): p. 8848161.
- 45. Dyall, S.C., et al., Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog Lipid Res, 2022. 86: p. 101165.
- 46. Ferreira, I., et al., Resolvins, Protectins, and Maresins: DHA-Derived Specialized Pro-Resolving Mediators, Biosynthetic Pathways, Synthetic Approaches, and Their Role in Inflammation. Molecules, 2022. 27(5).
- 47. Keelan, J.A., et al., Effects of maternal n-3 fatty acid supplementation on placental cytokines, pro-resolving lipid mediators and their precursors. Reproduction, 2015. 149(2): p. 171-8.
- 48. Psychogios, N., et al., The human serum metabolome. PLoS One, 2011. 6(2): p. e16957.
- 49. Joffre, C., C. Rey, and S. Layé, N-3 Polyunsaturated Fatty Acids and the Resolution of Neuroinflammation. Front Pharmacol, 2019. 10: p. 1022.

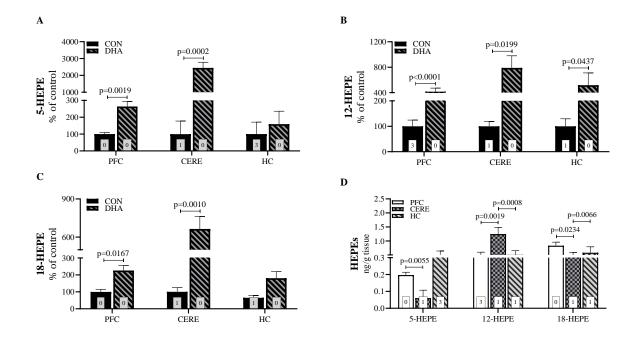
- 50. Valentine, C.J., et al., Higher-Dose DHA Supplementation Modulates Immune Responses in Pregnancy and Is Associated with Decreased Preterm Birth. Nutrients, 2021. 13(12): p. 4248.
- 51. Aziz, M.A., et al., Differential DHA and EPA Levels in Women with Preterm and Term Births: A Tertiary Hospital Study in Indonesia. Med Sci Monit, 2024. 30: p. e943895.
- 52. Olsen, S.F., et al., Plasma Concentrations of Long Chain N-3 Fatty Acids in Early and Mid-Pregnancy and Risk of Early Preterm Birth. eBioMedicine, 2018. 35: p. 325-333.
- 53. Tam, E.W.Y., et al., Early postnatal docosahexaenoic acid levels and improved preterm brain development. Pediatric Research, 2016. 79(5): p. 723-730.
- 54. Ramsden, C.E., et al., Plasma oxylipins and unesterified precursor fatty acids are altered by DHA supplementation in pregnancy: Can they help predict risk of preterm birth? Prostaglandins, Leukotrienes and Essential Fatty Acids, 2020. 153.
- 55. McCracken, S.A., et al., Pregnancy is associated with suppression of the nuclear factor kappa B/I kappa B activation pathway in peripheral blood mononuclear cells. Journal of Reproductive Immunology, 2003. 58(1): p. 27-47.
- 56. Devassy, J.G., et al., Omega-3 Polyunsaturated Fatty Acids and Oxylipins in Neuroinflammation and Management of Alzheimer Disease. Advances in Nutrition, 2016. 7(5): p. 905-916.
- 57. Fiala, M., et al., ω-3 Supplementation increases amyloid-β phagocytosis and resolvin D1 in patients with minor cognitive impairment. The FASEB Journal, 2015. 29(7): p. 2681-2689.
- 58. Lukiw, W.J., et al., A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest, 2005. 115(10): p. 2774-83.
- 59. Tooley, U.A., et al., The Age of Reason: Functional Brain Network Development during Childhood. J Neurosci, 2022. 42(44): p. 8237-8251.
- 60. Lyu, W., et al., The Growing Little Brain: Cerebellar Functional Development from Cradle to School. bioRxiv, 2024.
- 61. Khazipov, R. and M. Milh, Early patterns of activity in the developing cortex: Focus on the sensorimotor system. Semin Cell Dev Biol, 2018. 76: p. 120-129.

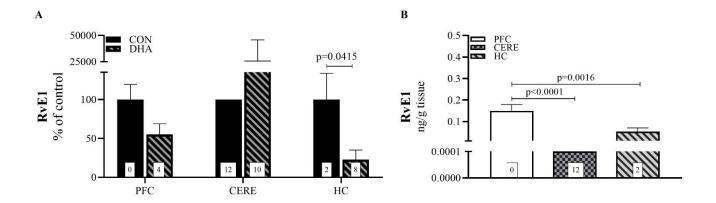
Table 3.1. Diet composition of the sow basal diet during gestation and lactation for sows supplemented with or without docosahexaenoic acid

Ingredients (g/kg)	Gestation Diet ¹	Lactation Diet ¹
Corn	535.4	389.6
Soybean Meal	32.3	172.3
Distillers Dried Grains with	400.0	400.0
Solubles		
Fat		4.6
Dicalcium Phosphate	2.8	
Limestone	17.4	21.6
Salt	3.5	3.5
Vitamin pre-mix ²	2.5	2.5
Trace Mineral pre-mix ³	1.5	1.5
Sow Vitamin pre-mix ⁴	2.5	2.5
L-Lysine HCl	2.1	2.0
Total	1000.0	1000.0
Calculated Analysis		
Crude Protein, %	17.4	22.4
Metabolizable Energy, kcal/kg	3330	3300
Crude Fiber, %	4.18	5.10
Ether Extract, %	6.23	6.14
Lysine, %	0.70	1.10
TSAA, %	0.68	0.86
Threonine, %	0.64	0.92
Tryptophan, %	0.15	0.25
Ca, %	0.79	0.90
Total P, %	0.52	0.57
Available P, %	0.29	0.40


¹Basal diet was supplemented daily with 75 mg/kg BW/day DHA or 75 mg/kg BW/day safflower oil in the DHA group and CON group, respectively. ²Supplied per kg of premix: vitamin A 4400 IU; vitamin D 660,000 IU; vitamin E 17,600 IU; vitamin K 1760 IU; riboflavin 3960 mg; niacin 22,000 mg; vitamin B12 17,600 μg. ³Supplied per kg of premix: iron 110,000 mg; copper 11,000 mg; manganese 26,400 mg; zinc 110,000 mg; iodine 198 mg; selenium 198 mg. ⁴Supplied per kg of premix: biotin, 88 mg; choline, 220.5 g; folic acid, 661.5 mg; pyridoxine, 1.98g; vitamin E8,882 IU.


Figure 3.1. Protectin levels in the prefrontal cortex, cerebellum, and hippocampus of weaning piglets from sows fed a diet with (n=12) or without (n=12) docosahexaenoic acid. Shown as percent change relative to control: levels of PD1 (**A**), levels of PDX (**B**), levels of AT-PD1 (**C**). Brain regional differences of PD1, PDX, and AT-PD1 in CON (n=12) piglets (**D**). Number in box indicates the number of samples below the level of detection (0.0001 ng/g tissue). CON: control; DHA: docosahexaenoic acid; PD1: protectin D1; PDX: protectin DX; AT-PD1: aspirin triggered protectin D1; PFC: prefrontal cortex; CERE: cerebellum; HC: hippocampus.


Figure 3.2. Hydroxydocosahexaenoic acid levels in the prefrontal cortex, cerebellum, and hippocampus of weaning piglets from sows fed a diet with (n=12) or without docosahexaenoic acid (n=12). Shown as percent change relative to control: levels of 4-HDHA (**A**), levels of 7-HDHA (**B**), levels of 13-HDHA (**C**), levels of 14-HDHA (**D**), levels of 17-HDHA (**E**). Brain regional differences of 4-,7-.13-,14-, and 17-HDHA in CON (n=12) piglets (**F**). Number in box indicates the number of samples below the level of detection (0.0001 ng/g tissue). CON: control; DHA: docosahexaenoic acid; HDHA: hydroxydocosahexaenoic acid; PFC: prefrontal cortex; CERE: cerebellum; HC: hippocampus.


Figure 3.3. Maresin levels in the prefrontal cortex, cerebellum, and hippocampus of weaning piglets from sows fed a diet with (n=12) or without docosahexaenoic acid (n=12). Maresin levels shown as percent change relative to control (**A**). Brain regional differences of Maresin in CON (n=12) piglets (**B**). Number in box indicates the number of samples below the level of detection (0.0001 ng/g tissue). CON: control; DHA: docosahexaenoic acid; PFC: prefrontal cortex; CERE: cerebellum; HC: hippocampus.

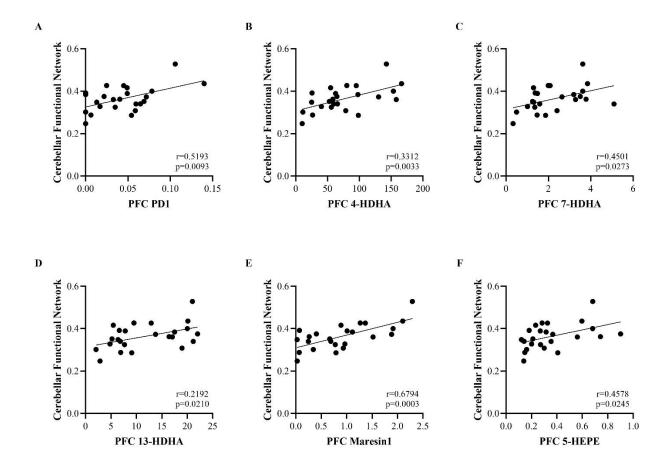

Figure 3.4. D-series Resolvin 1 levels in the prefrontal cortex, cerebellum, and hippocampus of weaning piglets from sows fed a diet with (n=12) or without docosahexaenoic acid (n=12). RvD1 levels are shown as percent change relative to control (**A**). Brain regional differences of RvD1 in CON (n=12) piglets (**B**). Number in box indicates the number of samples below the level of detection (0.0001 ng/g tissue). CON: control; DHA: docosahexaenoic acid; RvD1: D-series resolvin 1; PFC: prefrontal cortex; CERE: cerebellum; HC: hippocampus.

Figure 3.5. Hydroxyeicosapentaenoic acid levels in the prefrontal cortex, cerebellum, and hippocampus of weaning piglets from sows fed a diet with (n=12) or without docosahexaenoic acid (n=12). Shown as percent change relative to control: 5-HEPE (**A**), 12-HEPE (**B**), 18-HEPE (**C**). Brain regional differences of 5-, 12-, and 18-HEPE in CON (n=12) piglets (**D**). Number in box indicates the number of samples below the level of detection (0.0001 ng/g tissue). CON: control; DHA: docosahexaenoic acid; HEPE: hydroxyeicosapentaenoic acid; PFC: prefrontal cortex; CERE: cerebellum; HC: hippocampus.

Figure 3.6. E-series Resolvin 1 levels in the prefrontal cortex, cerebellum, and hippocampus of piglets from sows fed a diet with (n=12) or without docosahexaenoic acid (n=12). RvE1 levels are shown as percent change relative to control (**A**). Brain regional differences of RvE1 in CON (n=12) piglets (**B**). Number in box indicates the number of samples below the level of detection (0.0001 ng/g tissue). CON: control; DHA: docosahexaenoic acid; RvE1: E-series resolvin 1; PFC: prefrontal cortex; CERE: cerebellum; HC: hippocampus.

Figure 3.7. Correlation of SPMs with activation of brain functional networks of piglets at weaning. PFC PD1 (**A**), PFC 4-HDHA (**B**), PFC 7-HDHA (**C**), PFC 13-HDHA (**D**), PFC Maresin1 (**E**), PFC 5-HEPE (**F**) correlated with cerebellar functional network activation. PFC: prefrontal cortex; PD1: protectin D1; HDHA: hydroxydocosahexaenoic acid.

CHAPTER 4

MATERNAL SUPPLEMENTATION OF EGG YOLK MODULATES BRAIN FUNCTIONAL ORGANIZATION AND FUNCTIONAL OUTCOMES OF OFFSPRING ¹

¹ Dubrof S, Zukaitis J, et al. Maternal supplementation of egg yolk modulates brain functional organization and functional outcomes of offspring. 2024. *Nutrition Research*. 131:147-158. Reprinted here with permission of the publisher.

ABSTRACT

Maternal nutrition during the perinatal stage is critical to offspring brain development. Egg yolks are a balanced and nutrient-dense food that are rich in bioactive components crucial to optimal neurodevelopment early in life. Egg consumption is often recommended to pregnant women to enhance both maternal and fetal health. We hypothesized that maternal intake of egg yolk from late gestation and throughout lactation would enhance functional organization and cognitive developmental outcomes in offspring using a pig model. Sows were fed a control diet (n=6) or a diet containing egg yolks (n=5, 350 mg egg yolk powder/kg BW/day, equivalent to ~3 eggs/day for humans) from late gestation through lactation. At weaning, piglet offspring (n=2/sow, total n=22) underwent structural magnetic resonance imaging (MRI) and resting-state functional MRI (rs-fMRI). Piglets underwent novel object recognition (NOR) testing to assess hippocampaldependent learning and memory. fMRI results demonstrated that egg yolk significantly increased functional activation in the executive network (p=0.0343) and cerebellar network (p=0.0253) in piglets when compared to control. DTI analysis showed that perinatal intake of egg yolks significantly increased white matter fiber length in the hippocampus (p=0.0363) and cerebellum (p=0.0287) in piglet offspring compared to control piglets. Furthermore, piglets from egg yolkfed sows spent significantly more proportional frequency exploring the novel object than the familiar object in NOR testing (p=0.0370). The findings from this study support egg yolk-altered activation of specific brain networks may be associated with functional cognitive outcomes in weaning piglets.

INTRODUCTION

The perinatal period is a critical phase of brain development to ensure healthy brain function [1]. Maternal diet and supplement intake can greatly influence neurocognitive development during this crucial period of life, as optimal nutrition status has been highlighted as having a major impact on brain function throughout all stages of life [2-4]. Diminished prenatal nutrition may negatively impact essential neurodevelopmental processes such as neurogenesis and synaptic plasticity, therefore, a well-balanced and adequate maternal diet during the perinatal period is vital to proper brain development [5, 6].

Eggs are a nutrient rich food often recommended for consumption during the perinatal period to benefit both fetal and maternal health [7]. Eggs serve as a proficient source of several essential macronutrients and bioactive compounds, such as fatty acids and proteins, that are vital to infant brain development and cognitive outcomes [7-10]. Consumption of eggs by children has been shown to reduce stunted growth, which is a marker that is highly attributed to diminished cognitive outcomes [11]. Specifically, consumption of the egg yolk has been observed to result in increased short-term learning and memory scores when compared to egg white consumption alone in children, overall supporting a higher cognitive performance [12]. Evidence of the beneficial effects of specific egg yolk nutrients, such as choline and lutein, have on infant neurodevelopmental outcomes following maternal intake has been compelling and extensively studied [13, 14]. Investigation into perinatally supplementing egg yolk as a whole food, however, has been limited.

The pig is suggested as a more robust translational animal for investigating the effects of maternal nutritional programming in offspring neurodevelopment, as compared to rodents, due to several physiological and anatomical similarities they share with humans [15-17]. Most notably, while rodents have a lissenphalic brain, both pigs and humans have a gyrencephalic brain, which

have a direct effect on brain activation and function and is well attributed to increased neurological intricacy [18-20]. Both the swine and human brain are comprised of more than 60% white matter, while the rodent brain is composed of approximately 12% or less [21, 22]. The pig and human experience similar brain growth spurts and maturation patterns, with the human brain growing the fastest at the last trimester of pregnancy until end of lactation and the pig brain growing the fastest from about 50 days prior to farrowing to about 40 days after birth [23, 24]. Previous longitudinal magnetic resonance imaging (MRI) studies quantified neonatal pig brain volumes to investigate brain growth and showed that 95% of all brain growth had occurred by the age of 21-23 weeks, which is similar and translatable to that of human neonates [25, 26]. These key similarities in early brain development between humans and pigs make the pig an excellent model to study the effects of egg yolk on perinatal brain development.

In this novel study, we aim to investigate how perinatal supplementation of egg yolk can modulate neurodevelopment by influencing brain structure, functional activation, and early cognition in offspring, as evaluated by structural MRI, resting state-fMRI (rs-fMRI), and cognitive behavior testing. We hypothesized that maternal intake of egg yolk from late gestation and throughout lactation would alter and potentially enhance brain structural and functional development and cognition in offspring. The findings of this study provide novel insights into the critical role of perinatal nutrient intake throughout this crucial period of early pediatric brain development.

METHODS

Animal Handling and Study Design

A cross-bred commercial line of healthy Landrace sows (n=11) were artificially inseminated at the University of Georgia Swine Unit and delivered to the Large Animal Research Unit animal facility at approximately day 60-65 of gestation. Sows were assigned to treatment group

accounting for parity and body weight. Sows were fed a treatment diet with (EGG, n=5) or without egg yolk powder (CON, n=6) from day 70 of gestation and throughout lactation. All sows were fed a basal diet throughout gestation and lactation that met the metabolic requirements of maternal health and maximized fetal growth as according to the National Research Council's recommendations for the nutrient requirements of swine (Table 1) [27]. Animal numbers for this study were determined by a power analysis. The basal diet fed to sows in the EGG group was supplemented with 350 mg of dried egg yolk powder (NestFresh, Fullerton, CA) per kg of body weight each day, which is equivalent to approximately 3 large eggs per day for an adult human. This dose was chosen based on previous evidence that about three egg yolks per day can improve cognitive function while not causing adverse health outcomes [11, 28-30]. At birth, 1 male and 1 female piglet nearest the average birth weight from each litter were chosen to include in the study (CON, n=12; EGG, n=10). At weaning, approximately postnatal day (PND) 20-21, piglets underwent MRI and behavior testing. This study was conducted in accordance with the University of Georgia Institutional Animal Care and Use Committee guidelines (Animal Use Protocol: A2021 01-026).

MRI Acquisition and Analysis

Acquisition

At weaning (PND 20-21), piglets (CON, n=12; EGG, n=10) underwent structural MRI, including diffusion tensor imaging (DTI) to acquire detailed information pertaining to white matter fibers, and rs-fMRI as previously described [31-33] using a 3.0 Tesla General Electric HDx scanner and a quadrature 8-channel knee coil at the University of Georgia's Bioimaging Research Center [34]. Briefly, piglets were sedated with propofol and maintained under mild anesthesia with 1.5% isoflurane throughout the scan. The data acquisition sequence consisted of:

1) 3D fast spoiled gradient echo sequence (repetition time = 5.5 seconds, echo time = 2.1 ms, flip

angle = 9° , field-of-view = $12.8 \times 12.8 \times 6.4$ cm, slice thickness = 1 mm, a reconstruction matrix size of $256 \times 256 \times 112$, axial slice plane and an acquisition time of 10 minutes and 57 seconds; 2) a spin-echo echo-planar imaging (EPI) sequence (TR = 15.5 s, TE = min-full, FOV = $12.8 \times 12.8 \times 6.4$ cm, acquired matrix = $64 \times 64 \times 32$, and 30 diffusion weighted images using b = $1000 \times 12.8 \times 12.$

Anatomical Analysis

Each piglet brain image was coregistered with a previously standardized pig brain atlas [35] using MATLAB's (The MathWorks, Inc., Natick, MA, USA) Statistical Parameter Mapping 12 (SPM12) toolbox. Percentage volumes for 19 brain regions were calculated using MATLAB.

DTI Analysis

To remove motion and susceptibility artifacts, all DTI datasets were minimally preprocessed using FMRIB Software Library (FSL, v6.0) followed by manual segmentation with 3D Slicer from non-brain tissues and skull. Mapping of the white matter tracts, or tractography, was implemented utilizing the Tensor Toolkit in MedInria for tensor estimation and tensor tractography analysis. DTI datasets for each piglet subject were individually coregistered with a three-dimensional digital segmented pig brain atlas [33] through MATLAB's (The MathWorks, Inc., Natick, MA, USA) SPM12 toolbox to subsequently obtain mean diffusivity (MD), fractional anisotropy (FA), and fiber length (FL) in targeted brain structures.

Functional Activation Analysis

Rs-fMRI data was preprocessed and analyzed as previously described [33, 34, 36]. Briefly, all rs-fMRI data was converted from digital imaging and communications in medicine (DICOM)

format to neuroimaging informatics technology initiative (NIfTI) format utilizing the MRIcron software package (v1.0.20190902). SPM12 toolbox based on MATLAB (The MathWorks, Inc., Natick, MA, USA) was used to apply head motion corrections, to apply slice timing corrections, and to register individual subject data to the reference template subject [36]. The non-brain signals were removed from the data by applying a binary mask that was created using 3D Slicer (4.11.20210226). The baseline functional activation maps (independent components, ICs) were estimated by running an independent component analysis on control group only (group ICA, gICA) for subsequent group comparison. The baseline functional activation maps were regressed in each individual via FSL's dual regression command followed by spatial normalization to a higher resolution space/anatomical space (image dimensions of 129x129x57 and voxel size 1x1x1 mm³). Spatial Pearson correlation values were computed for eight resting state networks (RSNs) including the executive control network (ECN), cerebellar network (CERE), visual network (VIS), sensorimotor network (SMN), auditory network (AUD), default mode network (DMN), salience network (SMN), and basal ganglia network (BGN) for each subject.

Novel Object Recognition Test

The novel object recognition (NOR) test was conducted to evaluate memory retention, which has effectively been carried out in pigs previously [31, 32, 37, 38]. Piglets took part in behavior testing at weaning (PND 20-21) (CON, n=12; EGG, n=10). Testing occurred in a 2.7 x 2.7 m² arena. The NOR test is made up of two test trials, including a sample trial to rule out any innate preference to location in the arena and a test trial. The sample trial consisted of a ten minute session for the piglet to explore two identical objects attached in the center of the open arena. The piglet was then removed from the arena for a 10-minute interphase, where one of the objects was replaced with a novel object. The subsequent test trial was an additional ten minutes in the

arena for the piglet to explore the novel and the familiar object. The amount of time the piglet spent exploring each of the objects was measured using EthoVision software (Noldus, Wageningen, the Netherlands). The proportional time was calculated as the ratio of time exploring the novel object to the total time exploring both objects, and the proportional frequency was calculated as the ratio of visits to the novel object to the total number of visits to both objects. Piglets were handled daily from birth to the day of the behavior test to habituate them to human interaction and being temporarily away from the litter mates.

Statistical Analyses

Data expressed as mean ± S.E. was analyzed using RStudio (Version 2022.07.2+576, R Foundation for Statistical Computing, Vienna, Austria) and GraphPad Prism (Version 9.00, GraphPad Software, Inc.; San Diego, CA, USA). Treatment effects were analyzed using a linear mixed-effect model to control for sex as a fixed effect and for maternal as a random effect. NOR behavior data was analyzed using a linear mixed-effect model with logit transformation to test for differences in time spent with each object. Significance of the treatment effect was determined at a significance level of 0.05 based on t-test statistics.

RESULTS

Food intake was similar amongst sows

Daily sow feed intake was measured throughout the study to ensure that potential outcomes were not due to differences in feed intake. Sows were fed 2.04 kg of basal feed per day during gestation, and sows consumed similar amounts of feed during lactation per day $(16.60 \pm 0.32 \text{ kg})$ and $16.24 \pm 0.33 \text{ kg}$, CON and EGG, respectively, p>0.05)

Maternal egg yolk intake showed limited effects on anatomical brain volumes in offspring

Key brain structures, such as the hippocampus and thalamus, were measured for volumetric

changes utilizing structural MRI in weaning piglets from both CON and EGG sows (Table 2).

Given that these are healthy piglets, profound differences in brain structure volumes were not expected following maternal dietary intervention. However, it was observed that EGG piglets had a decreased left cortex volume, increased right cortex volume, and increased left hippocampal volume when compared to CON piglets. While there were some changes in brain structural volumes, the clinical significance of these findings is unclear.

Perinatal egg yolk intake altered brain functional network activity in offspring

Functional activation maps in eight resting state networks (RSNs) were examined to determine the influence of perinatal egg supplementation in the offspring brain. Figure 1A shows representative visualizations of the maximum activation maps of eight resting state networks in piglet brains. Maternal egg yolk supplementation during late gestation and lactation resulted in a significant hyper functional activity, with a 15.63% increase (p=0.0343) in activation in the executive control network when compared to the control (Figure 1B). Furthermore, maternal egg yolk intake caused a significant increase (p=0.0253) in cerebellar functional activation by 4.95% in piglet offspring when compared to the control (Figure 1B). These results demonstrate that maternal egg yolk consumption may enhance the performance of brain networks associated with high-level cognitive processes and voluntary motor function in offspring. In other RSN's of the brain, no significant (p>0.05) change (hyper or hypo) in terms of functional activation was determined (Figure 1B).

Perinatal egg yolk intake increased fiber length in the hippocampus and cerebellum in offspring

DTI allows for white matter tract-specific analysis of fiber length and integrity, which are vital for optimal information processing and neuronal communication. The hippocampus is a structure critical to memory formation, the cerebellum contributes to increased cognitive

function, and the thalamus is crucial for distributing sensory information to the appropriate cortical regions. Perinatal egg yolk supplementation was found to significantly increase fiber length in the hippocampus and the cerebellum (16.83 ± 1.40, and 13.61 ± 1.20, respectively) of offspring when compared to control (**Figure 2C** and **2F**), suggesting that perinatal egg supplementation may enhance white matter structural integrity in the hippocampus and cerebellum in developing piglets. Perinatal egg yolk intake did not influence fiber length within the thalamus (p>0.05) (**Figure 2I**). Egg yolk supplementation did not alter mean diffusivity (**Figure 2A, 2D,** and **2G**) or fractional anisotropy (**Figure 2B, 2E,** and **2H**) in hippocampus, cerebellum, or thalamus (p>0.05).

White matter structural fiber length was associated with functional activation in piglet brains

To further investigate changes in offspring neurodevelopment, we evaluated the association of fractional anisotropy and white matter structural fiber length with functional activation.

Interestingly, we observed that hippocampal fractional anisotropy was positively correlated with functional activation of the visual network, while cerebellar fractional anisotropy was negatively associated with visual network activation (**Figure 3**). In addition, cerebellar fiber length was negatively correlated with auditory network functional activation (**Figure 3**). These findings suggest that brain structural development and integrity may be associated with functional network activation early in neurodevelopment.

Perinatal egg yolk intake increased proportional frequency in the NOR test in piglets

Piglets showed no preference in exploring the two identical objects in the sample test (p>0.05), which indicated that there was no preference in location in the behavior arena. In the NOR test, CON piglets spent similar proportional frequency (**Figure 4A**) and proportional time (**Figure 4B**) engaging with the familiar and novel objects (p>0.05). Interestingly, EGG piglets

spent significantly more proportional frequency (**Figure 4C**) exploring the novel object than with the familiar object, although proportional time (**Figure 4D**) was statistically similar (p>0.05).

Proportional time and frequency in the NOR was associated with default mode network activation

To assess the association between the NOR outcomes of proportional time and frequency and functional activation, we assessed the potential for correlations between these NOR metrics and rs-fMRI network activity. Functional activation of the default mode network was found to be negatively associated with both proportional time and frequency spent with the novel object in NOR testing (**Figure 5A and 5B**, both p-value <0.05), suggesting that development of the functional network activation may be associated with observed cognitive outcomes early in life.

DISCUSSION

In this study, we demonstrated that maternal supplementation of egg yolk from late gestation throughout lactation led to enhanced functional activation in the executive and cerebellar networks and lengthened white matter fiber length in the hippocampus and cerebellum in the piglet brain. These changes in brain organization were accompanied by cognitive changes in the NOR test that may be associated with hippocampal-dependent performance. These findings add credence to the importance of maternal nutrition status during this critical period of neurodevelopment and how it can impact brain functional organization, white matter fiber length, and functional outcomes in offspring.

The perinatal stage is a period of rapid and dynamic brain development that is foundational for lifelong memory, learning and processing functions, and emotional regulation [39, 40]. During this amenable time, the brain undergoes periods of structural refinement and neural network formation that are largely associated with maternal nutrition status [41, 42]. Maternal

nutrition characterized by low macronutrient and micronutrient intake during pregnancy and breastfeeding has been associated with increased risk of neurodevelopmental disorders, cognitive impairments, and behavioral challenges in children, suggesting an unsupplemented maternal diet may be inadequate for the required nutrients for optimal fetal health and neurodevelopment during this critical time [43, 44]. Supplementation of both macronutrients, such as polyunsaturated fatty acids, and micronutrients, such as choline, is evidenced to have a favorable effect on neurodevelopment [4, 45]. In our study, we used a sow and piglet dyad model to supplement a nutrient-dense whole food, the egg yolk, which likely enhanced maternal nutrition status, thus aiding in establishing indicators of brain health and functional outcomes that were observed in offspring.

We found that maternal supplementation of a human dose equivalent to three egg yolks per day led to changes in neurodevelopmental markers in piglet offspring, as illustrated through MRI analysis and behavior testing. Lutter et al. [7] have provided considerable evidence indicating that maternal consumption of eggs could potentially improve birth outcomes, childhood nutrition status, and brain development due to eggs being a major source of protein, fatty acids, and other bioactive compounds shown to play a role in early neurodevelopment. Previously, childhood consumption of eggs as a whole decreased the incidence of stunted growth and development in children, which is an indicator strongly correlated with diminished cognitive development [11, 46]. Specifically, the egg yolk contains the bulk of the lipids, vitamins, and minerals that comprise the egg's nutritional value [47]. Choline is in high demand during the perinatal period, as it is essential for neuronal membrane formation, neurotransmission, and brain development in offspring [13, 47, 48]. The egg yolk is a considerable source of choline, providing 680 mg per 100 g of egg yolk [47]. Studies using a rodent model have repeatedly highlighted several markers

of enhanced offspring memory and overall cognitive function following maternal supplementation of choline during the perinatal period [49-52]. Egg yolk also contains a significant amount of lutein, approximately 640 ug per 100 g of egg yolk, a carotenoid that is the most abundant and preferentially accumulates in the developing brain [53, 54]. Lutein comprises about 50% of the total carotenoid composition in human breast milk, implicating its possible role in infant neurodevelopment [55]. Maternal supplementation of lutein during lactation resulted in a significant increase of lutein concentration in breast milk, maternal plasma, and infant plasma [14]. Interestingly, post-mortem metabolomic analyses on human infant brain tissue in regions integral to memory and learning revealed that lutein concentration is positively associated with amino acid neurotransmitters in the infant hippocampus and occipital cortex [56]. Moreover, lutein was positively associated with the antioxidant homocarnosine in the infant hippocampus and frontal cortex, providing evidence as to how lutein may influence early learning and memory [56]. Consequently, it is possible that the NOR test outcomes associated with heightened cognitive function observed in this study may be due to the choline or lutein content present in egg yolk.

In addition, egg yolk is a rich source of essential fatty acids, including linoleic acid, which is a fatty acid that cannot be synthesized and thus must be obtained through diet [47, 57]. Linoleic acid is of particular importance as it is an essential precursor to arachidonic acid, a major long-chain polyunsaturated fatty acid in the brain, therefore, integral in neurodevelopment [58, 59]. Notably, the egg yolk provides 15.9 grams of protein per 100 grams of egg yolk, making it a considerable source of protein for the maternal diet [47]. Protein is essential for the fundamental formation and repair of tissues and for the production of enzymes, hormones, and antibodies [60]. Further research is warranted to fully understand how choline, lutein, protein, and the other

nutrients in egg yolk may mechanistically work together to ultimately have an impact on the brain of the developing infant.

Optimal white matter growth in the developing brain during the perinatal period is critical, as white matter consists of myelinated axons that facilitate the rapid communication between different brain regions [61, 62]. Proper white matter development in the cerebellum is essential for the transmission of signals between different regions, ensuring efficient motor control and cognitive functioning [63]. White matter integrity and growth in the hippocampus are vital for the integration of information and communication between the hippocampus and other brain regions, supporting memory consolidation and emotional processing [64]. Although present in relatively smaller quantities in egg yolk, iron and DHA are nutrients that have been observed to be involved in white matter integrity [65-68]. In our study, DTI analysis revealed enhanced white matter fiber length in the cerebellum and hippocampus of weaning offspring following perinatal egg yolk supplementation, which may be attributed to the iron and DHA found in egg yolk [7, 65-68].

Using rs-fMRI analysis, we observed that maternal supplementation of egg yolk enhanced functional activation in the cerebellar network and the executive network in the brain of offspring. Recent findings investigating the relationship between functional activation and perinatal nutrition suggest a significant association between protein and lipid intake in the first postnatal month with functional activation at preschool age [69]. Furthermore, a study using a translational macaque model found that a supplemented carotenoid-enriched formula, including lutein, was associated with functional activation outcomes in infant macaques [70]. Our findings of enhanced functional activation in offspring following maternal egg yolk supplementation may be, in part, due to egg yolk's rich protein, lipid, and lutein content.

In this study, we observed an association of hippocampal and cerebellar fractional anisotropy and cerebellar fiber length with functional activation in the visual and auditory networks.

Perinatal nutritional status and nutrient intake has been noted for its association with both infant white matter development and establishing functional activation in the brain [71-74]. Evidence has suggested that maternal adiposity is correlated with changes in resting-state functional activation and is negatively associated with white matter development in the newborn offspring's brain [72-74]. Additionally, total white matter volume was lower in children born to mothers with low intake of omega-3 fatty acid during pregnancy, and a recent neuroimaging study found that low DHA levels during perinatal development resulted in impaired functional activation in some cortical networks in young adult monkeys [71, 75]. These previous findings and the findings from this current study support the idea that brain structural organization and activation may be interrelated and likely influenced by maternal nutritional status and specific nutrient intake.

In conclusion, the findings from this study suggest an association of perinatal egg yolk intake with brain developmental outcomes in piglet offspring. This data offers preclinical evidence that maternal supplementation of egg yolk may enhance white matter tracts, modulate brain functional organization, and lead to improved cognitive outcomes in weaning offspring. The insights from this translational research will aid in bridging the gap of further understanding the role of maternal nutrient intake and optimal nutritional status throughout gestation and lactation on the developmental trajectory in the brain of offspring.

AUTHOR CONTRIBUTIONS

Stephanie Dubrof: Writing – original draft, Investigation, Formal analysis. Jillien G. Zukaitis: Investigation, Formal analysis. Ishfaque Ahmed: Formal analysis. Wenwu Sun: Formal analysis. Kelly M. Scheulin: Methodology, Formal analysis. Xi Fang: Investigation. Julie Jeon: Investigation. Franklin D. West: Writing – review & editing, Project administration, Methodology. Qun Zhao: Writing – review & editing, Methodology, Formal analysis. Hea Jin Park: Writing – review & editing, Supervision, Project administration, Funding acquisition, Conceptualization.

Co-authors have agreed for this work to be included in this dissertation.

REFERENCES

- 1. Rice, D. and S. Barone, Jr., Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect, 2000. 108 Suppl 3(Suppl 3): p. 511-33.
- 2. Cortés-Albornoz, M.C., et al., Maternal Nutrition and Neurodevelopment: A Scoping Review. Nutrients, 2021. 13(10).
- 3. Miele, M.J., et al., Maternal Nutrition Status Associated with Pregnancy-Related Adverse Outcomes. Nutrients, 2021. 13(7): p. 2398.
- 4. Cusick, S.E. and M.K. Georgieff, The Role of Nutrition in Brain Development: The Golden Opportunity of the "First 1000 Days". J Pediatr, 2016. 175: p. 16-21.
- 5. Monk, C., M.K. Georgieff, and E.A. Osterholm, Research review: maternal prenatal distress and poor nutrition mutually influencing risk factors affecting infant neurocognitive development. J Child Psychol Psychiatry, 2013. 54(2): p. 115-30.
- 6. Kang, H.J., et al., Spatio-temporal transcriptome of the human brain. Nature, 2011. 478(7370): p. 483-9.
- 7. Lutter, C.K., L.L. Iannotti, and C.P. Stewart, The potential of a simple egg to improve maternal and child nutrition. Matern Child Nutr, 2018. 14 Suppl 3(Suppl 3): p. e12678.
- 8. Hadley, K.B., et al., The Essentiality of Arachidonic Acid in Infant Development. Nutrients, 2016. 8(4): p. 216.
- 9. Goyal, M.S., L.L. Iannotti, and M.E. Raichle, Brain Nutrition: A Life Span Approach. Annu Rev Nutr. 2018. 38: p. 381-399.
- 10. Zeisel, S.H., Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr, 2006. 26: p. 229-50.
- 11. Iannotti, L.L., et al., Eggs in Early Complementary Feeding and Child Growth: A Randomized Controlled Trial. Pediatrics, 2017. 140(1).
- 12. Kucab, M., et al., Effects of Eggs and Egg Components on Cognitive Performance, Glycemic Response, and Subjective Appetite in Children Aged 9–14 Years (P14-017-19). Current Developments in Nutrition, 2019. 3: p. nzz052.P14-017-19.
- 13. Caudill, M.A., et al., Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double-blind, controlled feeding study. Faseb j, 2018. 32(4): p. 2172-2180.
- 14. Sherry, C.L., et al., Lutein supplementation increases breast milk and plasma lutein concentrations in lactating women and infant plasma concentrations but does not affect other carotenoids. J Nutr, 2014. 144(8): p. 1256-63.
- 15. Mudd, A.T. and R.N. Dilger, Early-Life Nutrition and Neurodevelopment: Use of the Piglet as a Translational Model. Adv Nutr, 2017. 8(1): p. 92-104.
- 16. Roura, E., et al., Critical review evaluating the pig as a model for human nutritional physiology. Nutrition Research Reviews, 2016. 29(1): p. 60-90.

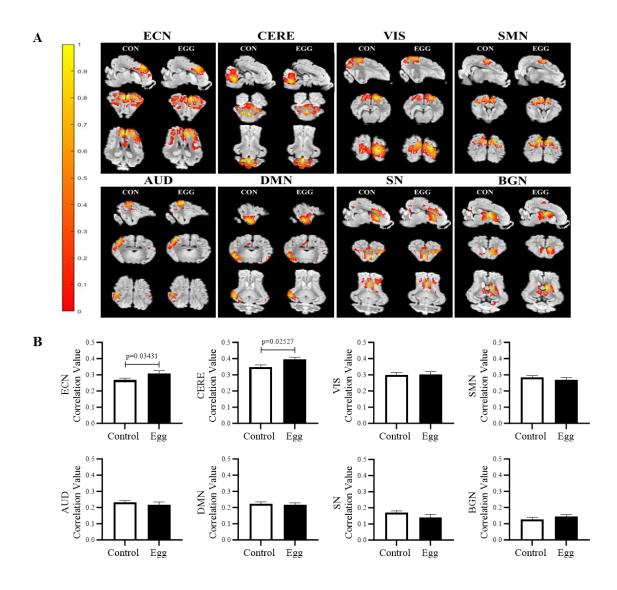
- 17. Miller, E.R. and D.E. Ullrey, The pig as a model for human nutrition. Annu Rev Nutr, 1987. 7: p. 361-82.
- 18. Lind, N.M., et al., The use of pigs in neuroscience: modeling brain disorders. Neurosci Biobehav Rev, 2007. 31(5): p. 728-51.
- 19. Tanaka, Y., et al., Experimental model of lacunar infarction in the gyrencephalic brain of the miniature pig: neurological assessment and histological, immunohistochemical, and physiological evaluation of dynamic corticospinal tract deformation. Stroke, 2008. 39(1): p. 205-12.
- 20. Hoffe, B. and M.R. Holahan, The Use of Pigs as a Translational Model for Studying Neurodegenerative Diseases. Front Physiol, 2019. 10: p. 838.
- 21. Conrad, M.S., et al., Magnetic resonance imaging of the neonatal piglet brain. Pediatr Res, 2012. 71(2): p. 179-84.
- 22. Zhang, K. and T.J. Sejnowski, A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci U S A, 2000. 97(10): p. 5621-6.
- 23. Dobbing, J. and J. Sands, Comparative aspects of the brain growth spurt. Early Hum Dev, 1979. 3(1): p. 79-83.
- 24. Dickerson, J.W. and J. Dobbing, Prenatal and postnatal growth and development of the central nervous system of the pig. Proc R Soc Lond B Biol Sci, 1967. 166(1005): p. 384-95.
- 25. Conrad, M.S., R.N. Dilger, and R.W. Johnson, Brain growth of the domestic pig (Sus scrofa) from 2 to 24 weeks of age: a longitudinal MRI study. Dev Neurosci, 2012. 34(4): p. 291-8.
- 26. Knickmeyer, R.C., et al., A structural MRI study of human brain development from birth to 2 years. J Neurosci, 2008. 28(47): p. 12176-82.
- 27. Council, N.R., Nutrient Requirements of Swine: Eleventh Revised Edition. 2012, Washington, DC: The National Academies Press. 420.
- 28. Goodrow, E.F., et al., Consumption of one egg per day increases serum lutein and zeaxanthin concentrations in older adults without altering serum lipid and lipoprotein cholesterol concentrations. J Nutr, 2006. 136(10): p. 2519-24.
- 29. Schnohr, P., et al., Egg consumption and high-density-lipoprotein cholesterol. J Intern Med, 1994. 235(3): p. 249-51.
- 30. Vishwanathan, R., et al., Consumption of 2 and 4 egg yolks/d for 5 wk increases macular pigment concentrations in older adults with low macular pigment taking cholesterol-lowering statins. Am J Clin Nutr, 2009. 90(5): p. 1272-9.
- 31. Fang, X., et al., Perinatal Docosahexaenoic Acid Supplementation Improves Cognition and Alters Brain Functional Organization in Piglets. Nutrients, 2020. 12(7).
- 32. Kaiser, E.E., et al., An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model. Neural Regen Res, 2021. 16(5): p. 842-850.

- 33. Simchick, G., et al., Pig Brains Have Homologous Resting-State Networks with Human Brains. Brain Connect, 2019. 9(7): p. 566-579.
- 34. Ahmed, I., et al., Nutritional supplement induced modulations in the functional connectivity of a porcine brain. Nutritional Neuroscience, 2023: p. 1-12.
- 35. Saikali, S., et al., A three-dimensional digital segmented and deformable brain atlas of the domestic pig. J Neurosci Methods, 2010. 192(1): p. 102-9.
- 36. Reeves, W.D., et al., Characterization of Resting-State Functional Connectivity Changes in Hypertension by a Modified Difference Degree Test. Brain Connect, 2023. 13(9): p. 563-573.
- 37. Fleming, S.A. and R.N. Dilger, Young pigs exhibit differential exploratory behavior during novelty preference tasks in response to age, sex, and delay. Behavioural Brain Research, 2017. 321: p. 50-60.
- 38. Kinder, H.A., et al., Controlled Cortical Impact Leads to Cognitive and Motor Function Deficits that Correspond to Cellular Pathology in a Piglet Traumatic Brain Injury Model. J Neurotrauma, 2019. 36(19): p. 2810-2826.
- 39. Lebel, C. and S. Deoni, The development of brain white matter microstructure. Neuroimage, 2018. 182: p. 207-218.
- 40. Stiles, J. and T.L. Jernigan, The basics of brain development. Neuropsychol Rev, 2010. 20(4): p. 327-48.
- 41. Marshall, N.E., et al., The importance of nutrition in pregnancy and lactation: lifelong consequences. Am J Obstet Gynecol, 2022. 226(5): p. 607-632.
- 42. Prado, E.L. and K.G. Dewey, Nutrition and brain development in early life. Nutrition Reviews, 2014. 72(4): p. 267-284.
- 43. Bale, T.L., et al., Early life programming and neurodevelopmental disorders. Biol Psychiatry, 2010. 68(4): p. 314-9.
- 44. Brown, A.S., et al., Further evidence of relation between prenatal famine and major affective disorder. Am J Psychiatry, 2000. 157(2): p. 190-5.
- 45. Larson, L.M., K.S. Phiri, and S.R. Pasricha, Iron and Cognitive Development: What Is the Evidence? Ann Nutr Metab, 2017. 71 Suppl 3: p. 25-38.
- 46. Suta, S., et al., Prolonged Egg Supplement Advances Growing Child's Growth and Gut Microbiota. Nutrients, 2023. 15(5).
- 47. Réhault-Godbert, S., N. Guyot, and Y. Nys, The Golden Egg: Nutritional Value, Bioactivities, and Emerging Benefits for Human Health. Nutrients, 2019. 11(3).
- 48. Zeisel, S.H. and M.D. Niculescu, Perinatal choline influences brain structure and function. Nutr Rev, 2006. 64(4): p. 197-203.
- 49. Loy, R., et al., Choline-induced spatial memory facilitation correlates with altered distribution and morphology of septal neurons. Adv Exp Med Biol, 1991. 295: p. 373-82.

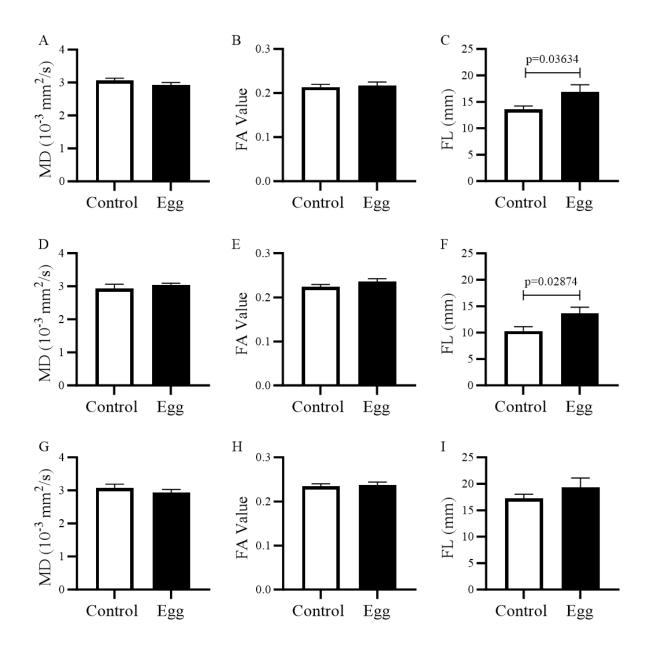
- 50. Meck, W.H., R.A. Smith, and C.L. Williams, Pre- and postnatal choline supplementation produces long-term facilitation of spatial memory. Dev Psychobiol, 1988. 21(4): p. 339-53.
- 51. Meck, W.H. and C.L. Williams, Choline supplementation during prenatal development reduces proactive interference in spatial memory. Brain Res Dev Brain Res, 1999. 118(1-2): p. 51-9.
- 52. Williams, C.L., et al., Hypertrophy of basal forebrain neurons and enhanced visuospatial memory in perinatally choline-supplemented rats. Brain Res, 1998. 794(2): p. 225-38.
- 53. Johnson, E.J., Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutr Rev, 2014. 72(9): p. 605-12.
- 54. Khalid, Z., Hen egg carotenoids (lutein and zeaxanthin) and nutritional impacts on human health: a review. CyTA Journal of Food, 2017. 15: p. 1-14.
- 55. Gossage, C.P., et al., Carotenoid composition of human milk during the first month postpartum and the response to beta-carotene supplementation. Am J Clin Nutr, 2002. 76(1): p. 193-7.
- 56. Lieblein-Boff, J.C., et al., Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain. PLoS One, 2015. 10(8): p. e0136904.
- 57. Whelan, J. and K. Fritsche, Linoleic acid. Adv Nutr, 2013. 4(3): p. 311-2.
- 58. Belkind-Gerson, J., et al., Fatty Acids and Neurodevelopment. Journal of Pediatric Gastroenterology and Nutrition, 2008. 47: p. S7-S9.
- 59. Taha, A.Y., Linoleic acid-good or bad for the brain? NPJ Sci Food, 2020. 4: p. 1.
- 60. Switkowski, K.M., et al., Maternal protein intake during pregnancy and linear growth in the offspring. Am J Clin Nutr, 2016. 104(4): p. 1128-1136.
- 61. Sampaio-Baptista, C. and H. Johansen-Berg, White Matter Plasticity in the Adult Brain. Neuron, 2017. 96(6): p. 1239-1251.
- 62. Soares, J., et al., A hitchhiker's guide to diffusion tensor imaging. Frontiers in Neuroscience, 2013. 7.
- 63. Salman, M.S. and P. Tsai, The Role of the Pediatric Cerebellum in Motor Functions, Cognition, and Behavior: A Clinical Perspective. Neuroimaging Clin N Am, 2016. 26(3): p. 317-29.
- 64. Tan, J., et al., Alterations in Human Hippocampus Subregions across the Lifespan: Reflections on White Matter Structure and Functional Connectivity. Neural Plast, 2023. 2023: p. 7948140.
- 65. Beard, J.L. and J.R. Connor, Iron status and neural functioning. Annu Rev Nutr, 2003. 23: p. 41-58.
- 66. Weiser, M.J., C.M. Butt, and M.H. Mohajeri, Docosahexaenoic Acid and Cognition throughout the Lifespan. Nutrients, 2016. 8(2): p. 99.

- 67. Mudd, A.T., et al., Early-Life Iron Deficiency Reduces Brain Iron Content and Alters Brain Tissue Composition Despite Iron Repletion: A Neuroimaging Assessment. Nutrients, 2018. 10(2).
- 68. Chhetry, B.T., et al., Omega-3 polyunsaturated fatty acid supplementation and white matter changes in major depression. J Psychiatr Res, 2016. 75: p. 65-74.
- 69. Sato, J., et al., Social-Cognitive Network Connectivity in Preterm Children and Relations With Early Nutrition and Developmental Outcomes. Frontiers in Systems Neuroscience, 2022. 16.
- 70. Miranda-Dominguez, O., et al., Carotenoids improve the development of cerebral cortical networks in formula-fed infant macaques. Scientific Reports, 2022. 12(1): p. 15220.
- 71. Zou, R., et al., Maternal polyunsaturated fatty acids during pregnancy and offspring brain development in childhood. The American Journal of Clinical Nutrition, 2021. 114(1): p. 124-133.
- 72. Li, X., et al., Differences in brain functional connectivity at resting state in neonates born to healthy obese or normal-weight mothers. Int J Obes (Lond), 2016. 40(12): p. 1931-1934.
- 73. Salzwedel, A.P., et al., Maternal Adiposity Influences Neonatal Brain Functional Connectivity. Front Hum Neurosci, 2018. 12: p. 514.
- 74. Ou, X., et al., Maternal adiposity negatively influences infant brain white matter development. Obesity (Silver Spring), 2015. 23(5): p. 1047-54.
- 75. Grayson, D.S., et al., Dietary omega-3 fatty acids modulate large-scale systems organization in the rhesus macaque brain. J Neurosci, 2014. 34(6): p. 2065-74.

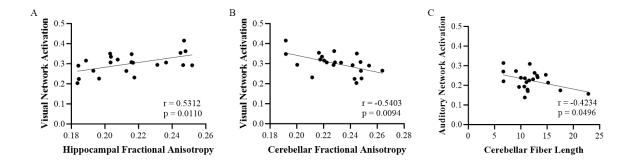
Table 4.1. Diet composition of the sow basal diet during gestation and lactation for sows supplemented with or without egg yolk powder

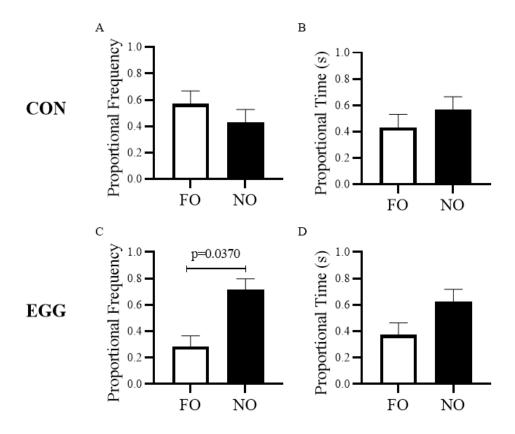

Ingredients (gram per kilogram of feed)	Gestation Diet ¹	Lactation Diet ¹	
Corn	689.95	664.55	
Soybean Meal	65.00	280.00	
Distillers Dried Grains	200.00	0.00	
with Solubles			
Fat	10.00	20.00	
Dicalcium Phosphate	1.50	6.20	
Limestone	18.50	15.20	
Salt	3.50	3.50	
Vitamin pre-mix ²	2.50	2.50	
Trace Mineral pre-mix ³	1.50	1.50	
Sow Vitamin pre-mix ⁴	5.00	5.00	
L-Lysine HCl	2.30	1.30	
Phytase	0.25	0.25	
Total (g)	1000.00	1000.00	
Calculated Analysis			
Crude Protein, %	17.40	22.40	
Metabolizable Energy,	3330.00	3300.00	
kcal/kg			
Crude Fiber, %	4.18	5.10	
Ether Extract, %	6.23	6.14	
Lysine, %	0.70	1.10	
TSAA, %	0.68	0.86	
Threonine, %	0.64	0.92	
Tryptophan, %	0.15	0.25	
Ca, %	0.79	0.90	
Total P , %	0.52	0.57	
Available <i>P</i> , %	0.29	0.40	

¹Basal diet was fed daily to CON (n=6) group. Basal diet was supplemented daily with 350 mg/kg BW/day egg yolk powder to the EGG (n=5) group. ²Supplied per kg of premix: vitamin A 4400 IU; vitamin D 660,000 IU; vitamin E 17,600 IU; vitamin K 1760 IU; riboflavin 3960 mg; niacin 22,000 mg; vitamin B12 17,600 μg. ³Supplied per kg of premix: iron 110,000 mg; copper 11,000 mg; manganese 26,400 mg; zinc 110,000 mg; iodine 198 mg; selenium 198 mg. ⁴Supplied per kg of premix: biotin, 88 mg; choline, 220.5 g; folic acid, 661.5 mg; pyridoxine, 1.98g; vitamin E 8,882 IU. TSAA: total sulfur amino acids; Ca: calcium; *P*: phosphorous.


Table 4.2. Percentage volumes of anatomical brain regions in piglets from sows supplemented with or without egg yolk powder

Brain Region	CON	EGG	p-Value
Caudate	0.8603 ± 0.0004	0.8600 ± 0.0007	0.6107
Cerebellum	11.3890 ± 0.0012	11.3870 ± 0.0014	0.2360
Left Cortex	31.2630 ± 0.0012	31.2590 ± 0.0017	0.0446
Right Cortex	31.1420 ± 0.0007	31.1460 ± 0.0015	0.0320
Lateral Ventricle	1.0117 ± 0.0008	1.0122 ± 0.0009	0.7273
Third Ventricle	0.1065 ± 0.0004	0.1063 ± 0.0003	0.8082
Cerebral Aquaduct	0.0734 ± 0.0003	0.0737 ± 0.0002	0.3665
Fourth Ventricle	0.0996 ± 0.0002	0.0994 ± 0.0002	0.5243
Left Hippocampus	0.9141 ± 0.0006	0.9160 ± 0.0007	0.0493
Right Hippocampus	0.9242 ± 0.0005	0.9235 ± 0.0007	0.4129
Medulla	3.3614 ± 0.0009	3.3612 ± 0.0011	0.8929
Midbrain	3.4119 ± 0.0013	3.4114 ± 0.0009	0.7866
Pons and Globus Pallidus	2.1559 ± 0.0007	2.1573 ± 0.0005	0.1223
Putamen	0.7310 ± 0.0006	0.7297 ± 0.0007	0.1504
Hypothalamus	0.5014 ± 0.0004	0.5012 ± 0.0005	0.7304
Thalamus	2.7686 ± 0.0007	2.7671 ± 0.0007	0.1461
Olfactory Bulb	4.6325 ± 0.0010	4.6330 ± 0.0007	0.7056
Corpus Callosum	0.7752 ± 0.0009	0.7760 ± 0.0010	0.5782
Internal Capsule	2.8777 ± 0.0011	2.8800 ± 0.0021	0.3114
Total Voxels	411294 ± 16.8750	411319 ± 15.8330	0.3032


Percentages of volumes of brain regions in weaning piglet offspring from sows fed a CON (n=12) or EGG (n=10) diet. Data is expressed as the mean \pm S.E.M. A linear mixed-effect model was used to control for sex (fixed) and maternal (random) effects.


Figure 4.1. Perinatal egg yolk intake altered brain functional network activation in piglet offspring. Visualization of sagittal (top), coronal (middle), and axial (bottom) images of maximum activation maps within eight resting state networks, including ECN, CERE, VIS, SMN, AUD, DMN, SN, and BGN in piglets born to sows fed a CON (n=12) or EGG (n=10) diet. Yellow patterns are resting-state network atlases and orange patterns are the activations within the region (**A**). Analysis of functional activation from rs-fMRI scans of eight resting state networks in weaning piglet offspring from sows fed a CON (n=12) or EGG (n=10) diet. Graphs display correlation coefficients of the activation maps of piglet offspring (**B**). A linear mixed-effect model was used to control for sex (fixed) and maternal (random) effects. ECN: executive control network; CERE: cerebellar network; VIS: visual network; SMN: sensorimotor network; AUD: auditory network; DMN: default mode network; SN: salience network (SN); BGN: basal ganglia network. p values greater than 0.05 are not shown.

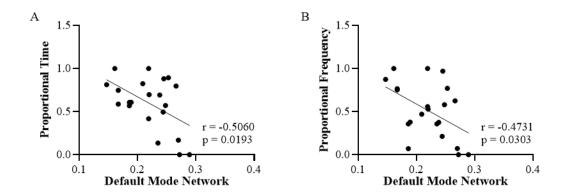

Figure 4.2. Perinatal egg yolk intake increased white matter fiber length in the hippocampus and cerebellum in piglet offspring as shown through diffusion tensor imaging analysis. Data shows DTI MRI analysis for CON (n=12) and EGG (n=10) piglets. Hippocampal mean diffusivity (**A**), fractional anisotropy (**B**), and fiber length (**C**). Cerebellar mean diffusivity (**D**), fractional anisotropy (**H**), and fiber length (**F**). Thalamic mean diffusivity (**G**), fractional anisotropy (**H**), and fiber length (**I**). Data is expressed as the means \pm S.E.M. A linear mixed-effect model was used to control for sex (fixed) and maternal (random) effects. MD: mean diffusivity; FA: fractional anisotropy; FL: fiber length. p values greater than 0.05 are not shown.

Figure 4.3. Hippocampal and cerebellar diffusion tensor imaging parameters correlated with visual and auditory functional activation in weaning piglet offspring. Data shows correlation results for all piglets (n=22). Hippocampal fractional anisotropy correlated with visual network functional activation (\mathbf{A}), cerebellar fractional anisotropy correlated with visual network functional activation (\mathbf{B}), and cerebellar fiber length correlated with auditory network functional activation (\mathbf{C}). $\mathbf{r} = \mathbf{Pearson}$'s correlation coefficients; $\mathbf{p} = \mathbf{r}$ values less than 0.05 are shown.

Figure 4.4. Perinatal egg yolk intake increased proportional frequency in novel object recognition testing in piglets. Proportional frequency (**A**) and proportional time (**B**) CON (n=12) piglets spent with each object. Proportional frequency (**C**) and proportional time (**D**) EGG (n=10) piglets spent with each object. Data was analyzed using a linear mixed-effect model with logit transformation to test for differences in time spent with each object. FO: familiar object; NO: novel object.

Figure 4.5. Functional outcomes in weaning piglet offspring of novel object recognition tests correlated with brain functional network activation. Data shows correlation results for all piglets (n=22). Default mode network activation correlated with proportional time with novel object ($\bf A$) and default mode network activation correlated with proportional frequency with novel object ($\bf B$). $\bf r = Pearson$'s correlation coefficients; p values less than 0.05 are shown.

CHAPTER 5

CATALASE ACTIVITY IN THE BRAIN IS ASSOCIATED WITH RECOVERY FROM BRAIN INJURY IN A PIGLET MODEL OF TRAUMATIC BRAIN INJURY ¹

¹ Dubrof S, Schantz S, et al. Catalase activity in the brain is associated with recovery from brain injury in a piglet model of traumatic brain injury. To be submitted to *Brain Sciences*.

ABSTRACT

Traumatic brain injury (TBI) is a global leading cause of disability and death with millions of new cases added each year. Oxidative stress significantly exacerbates the primary TBI injury leading to increased levels of intracerebral cell death, tissue loss, and long-term functional deficits in surviving patients. Catalase and superoxide dismutase (SOD) mitigate oxidative stress and play a critical role in dampening injury severity. This study examines the neuroprotective effects of the novel antioxidant alpha lipoic acid-based therapeutic, CMX-2043, on antioxidant enzymes in a preclinical TBI model via various drug administration routes. Piglets (n=28) underwent cortical controlled impact to induce moderate-severe TBI and were assigned to placebo (n=10), subcutaneous CMX-2043 (SQ, 10 mg/kg; n=9), or intravenous CMX-2043 (IV, 9 mg/kg; n=9) treatment groups. Treatments began 1 hour after TBI induction and continued for 5 days. MRI was performed throughout the study period to evaluate brain recovery. Blood was collected at 1, 7, and 42 days post-TBI, and liver and brain tissues were collected at 42 days post-TBI to measure catalase and SOD activity. CMX-2043 IV-treated piglets showed 46.3% higher hepatic catalase activity than placebo (p=0.0038), while the SQ group did not show significant changes in hepatic catalase activity compared to placebo. In the brain, SQ-treated piglets had significantly higher catalase activity than both IV (p=0.0163) and placebo (p=0.0003) groups $(45.8340 \pm 3.0855, 36.4822 \pm 1.5558, 31.6524 \pm 1.3129 \text{ nmol/min/mg protein for SQ, IV},$ and placebo, respectively), while IV-treated piglets did not show significant changes compared to placebo. IV-treated piglets did exhibit 39.3% higher brain SOD activity than placebo (p=0.0148), while the SQ group did not show a significant change. CMX-2043 treatment did not alter plasma antioxidant enzyme activity during the study period. Importantly, within CMX-2043 treated TBI groups, piglets with significantly decreased lesion volumes, midline shift, and combined swelling and atrophy had better brain recovery, determined by MRI on day 1, 7, and 42 days post-injury TBI, exhibited higher brain catalase activity at 42 days post-injury TBI regardless of administration route, suggesting a link between improved recovery and sustained local catalase activity. This study highlights the impact of administration route on tissue-specific antioxidant responses, with IV administration enhancing liver catalase and brain SOD activity, while SQ administration primarily elevated brain catalase activity. In addition, this study shows an association between increased brain catalase activity and decreased TBI brain lesioning, midline shift, and combined swelling and atrophy, thus emphasizing the role of antioxidant defenses in neuroprotection post-injury.

INTRODUCTION

Traumatic brain injury (TBI) is a leading cause of disability and death worldwide with millions of new cases added each year [1]. TBI tissue damage is a combined result of a complex injury and pathophysiology including the primary and secondary injury pathways [2-5]. The primary injury is typically due to a mechanical insult such as a jolt or blow to the head leading to brain lesioning, hemorrhage, swelling, and atrophy [2,3]. This primary injury is quickly followed by the activation of a secondary injury cascade that includes oxidative stress, excitotoxicity, and inflammation, resulting in increased neuropathology [1,5,6]. Specifically, oxidative stress occurs as a result of a loss of equilibrium between free radical formation and the antioxidant system leading to a buildup of free radicals such as superoxide anion (O₂.-), hydroxyl radicals (OH), and hydrogen peroxide (H₂O₂) [6,7]. Moreover, the brain is more susceptible to oxidative damage due to a high amount of peroxidizable fatty acid content [6,8]. In response to injury, however, the brain can initiate the transcription of genes encoded for endogenous antioxidant systems, such as catalase and superoxide dismutase (SOD), that can terminate free radical reactions before there is widespread permanent damage [9,10]. The persistence of oxidative stress with higher levels of catalase and SOD in the brain correlates with neural damage and functional impairment, highlighting the potential for these antioxidant enzymes to serve as biomarkers for assessing injury severity and therapeutic efficacy [1,5,11].

Catalase and SOD are key components of the brain's physiological antioxidant defense system, playing essential roles in neutralizing reactive oxygen species (ROS) and mitigating oxidative damage [12]. Together, these enzymes regulate redox balance and safeguard cells from oxidative injury, which is especially vital in the brain due to its high metabolic activity and lipid-

rich composition, making it particularly vulnerable to oxidative damage [12-14]. Dysregulation of catalase and SOD activity has been implicated in various neurodegenerative diseases and injury models, including TBI, where excessive ROS production exacerbates secondary injury [6,15]. Understanding the regulation of these antioxidant enzymes in response to injury and therapeutic interventions is essential for developing targeted neuroprotective strategies.

CMX-2043 is a novel alpha-lipoic acid (ALA) based therapeutic compound that has neuroprotective, metabolic, and antioxidative properties that may limit TBI-induced tissue damage and long-term functional deficits [16]. ALA is a metabolic antioxidant proven to be a potent protector of neuronal cells from oxidative stress in in vitro and in vivo animal and human studies [16-19]. However, CMX-2043 has demonstrated superior antioxidant potential than ALA in preclinical studies, showing enhanced efficacy in protecting cardiac cells from ischemia-reperfusion injury [16]. In this context, the antioxidant CMX-2043 is a promising candidate for mitigating TBI-associated oxidative damage.

Route of administration can affect drug bioavailability, distribution, and metabolism, ultimately influencing its capacity to reach target tissues [20,21]. Intravenous delivery ensures rapid systemic distribution, potentially leading to higher concentrations in circulation [22], whereas subcutaneous administration may result in slower absorption and prolonged release [23,24]. Examining how these differences may influence antioxidant enzyme activity and recovery outcomes is essential for optimizing treatment strategies for TBI [21]. Therefore, this study examines both subcutaneous and intravenous administration of CMX-2043 to compare therapeutic efficacy.

While previous research has shown that CMX-2043 enhances antioxidant capacity in vitro [16], its effects on enzymatic antioxidant activity within the brain remain unexplored. This study

examines the effects of CMX-2043 administered both subcutaneously and intravenously on antioxidant enzyme activity in a preclinical pig TBI model and explores its potential role in neuroprotection by assessing the relationship between oxidative stress markers and MRI based injury and recovery metrics. The translational pig model employed in this study closely mimics the human brain in anatomy and physiology, increasing the clinical relevance and overall translation of these findings [25-27].

METHODS

Animal handling and study design

Six week old Yorkshire crossbred piglets (n=28) were used for this study. Piglets were allowed ad libitum access to a standard pig diet. At 6 weeks of age, piglets were randomly assigned to experimental groups: saline (placebo, 40 mg/kg; n=10), subcutaneous administration of CMX-2043 (SQ, 10 mg/kg; n=9), or intravenous administration of CMX-2043 (IV, 9 mg/kg; n=9). SQ piglets were given CMX-2043 beginning 1 hour post-TBI and continued thereafter every 8 hours for a total period of 5 days. IV piglets were given CMX-2043 beginning 1 hour post-TBI and continued every 12 hours for a total period of 5 days. The inclusion of both subcutaneous and intravenous administration allowed for the evaluation of potential differences in drug efficacy, which may influence treatment outcomes. Piglets underwent MRI analysis at 1, 7, and 42 days post-TBI using methods as previously described [28,29]. Briefly, multiplanar MRI sequences, including T2 Weighted (T2W), were acquired to assess lesion volume, hemispheric swelling, and atrophy [28,29]. Using T2W sequences, trained and blinded analysts manually identified regions of interest (ROIs), and OsiriX software calculated ipsilateral and contralateral hemisphere volumes (cm³), lesion volumes (cm³), and midline shift (MLS) by measuring the deviation from the ideal midline (mm) [28,29]. This study was conducted in accordance with the University of Georgia

Institutional Animal Care and Use Committee guidelines (Animal Use Protocol: A2022 08-005-Y1-A0).

Controlled cortical impact of traumatic brain injury

The TBI induction procedure was carried out using previously established methods [25,26,28-30], including controlled cortical impact to induce a moderate-severe TBI. Briefly, a 4 cm left-sided incision was made to expose the skull. A 20 mm craniectomy was performed over the motor cortex, and TBI was induced using a controlled cortical impact device with a 15 mm blunt impactor tip (4 m/s velocity, 9 mm depression depth, 400 ms dwell time).

Plasma, liver, and brain tissue collection

Blood samples were collected from all piglets via jugular vein access into EDTA tubes to isolate plasma. Blood was collected at baseline (pre-TBI), immediately prior to treatment administration on day 1 post-TBI, and again at 7 and 42 days post-TBI. Plasma samples were flash frozen in liquid nitrogen and stored in -80°C until analysis.

At 42 days post-TBI, all piglets were sacrificed, and liver and brain tissues were collected. Liver and brain tissue samples were immediately flash frozen in liquid nitrogen and stored in -80°C until analysis.

Measurement of catalase and superoxide dismutase activity in plasma and tissue

Catalase and SOD activity in plasma, liver, and brain tissue were assessed to evaluate antioxidant defense in piglets. Tissue samples from the liver and brain were homogenized in potassium phosphate buffer for the catalase assay and in HEPES buffer for the SOD assay.

Catalase and SOD activity were measured using the catalase assay kit (Cayman, Ann Arbor, MI, USA) and SOD assay kit (Cayman, Ann Arbor, MI, USA), following the manufacturer's instructions. Protein content of the homogenates was quantified using the Pierce BCA protein

assay (Thermo Fisher Scientific, Waltham, MA, USA), and catalase and SOD activity were normalized to protein content.

Statistical analysis

Treatment and time effects were analyzed using one-way ANOVA. Data is expressed as mean \pm S.E.M. Pearson correlations were performed to determine relationships between brain catalase and SOD activity with MRI measurements that were obtained following TBI, including midline shift (mm), lesion volume (cm3), and swelling/atrophy (cm3). To further investigate the relationship between antioxidant activity and brain preservation and recovery, MRI measurements of CMX-2043-treated piglets were stratified into top and bottom half groupings and analyzed in relation to catalase activity, allowing for a focused assessment of antioxidant levels and their potential link to MRI outcomes. An unpaired t-test was used to assess for differences in catalase activity in the brain in treated piglets based on these MRI-defined recovery groups. All analyses were done using GraphPad Prism (Version 10.1.0, GraphPad Software, Inc.; San Diego, CA, USA).

RESULTS

Antioxidant enzyme activity in plasma changed over time following TBI

Catalase and SOD activity was measured in plasma collected from piglets at baseline (pre-TBI) and on days 1, 7, and 42 following TBI (**Figure 1**). Catalase exhibited temporal changes following TBI, with an initial increase followed by a decline over time in all three groups (**Figure 1A**). The area under the curve (AUC) analysis for catalase activity (**Figure 1B**) revealed no significant differences between the treatment groups, suggesting that CMX-2043 administration did not significantly alter overall catalase activity in plasma. SOD activity (**Figure 1C**) also showed an early (1 and 7 days) increase post-TBI and a decrease at 42 days but

still remained elevated relative to baseline. However, the AUC analysis for SOD activity (**Figure 1D**) again showed no significant differences between treatment groups, further reinforcing that the treatment did not significantly alter overall SOD activity in plasma.

Despite the lack of significant treatment effect, there was a significant effect of time on antioxidant enzymatic activity in plasma following TBI. This indicates that while treatment did not directly influence plasma antioxidant activity, the temporal changes observed may reflect the natural physiological response associated with limiting TBI injury and promoting recovery.

**Administration route of CMX-2043 differentially altered antioxidant status in the liver and brain following TBI*

Catalase and SOD activities were assessed in both the liver and brain to evaluate tissue-specific antioxidant responses following TBI (**Figure 2**). CMX-2043 increased hepatic catalase activity, as well as catalase and SOD activity in the brain. Interestingly, administration route of CMX-2043 influenced catalase and SOD activity differently in brain and liver tissues. Specifically, IV piglets exhibited 46.3% higher catalase activity in the liver than placebo (5.7900 \pm 0.4518 μ mol/min/mg protein and 3.6126 \pm 0.2608 μ mol/min/mg protein for IV and placebo, respectively; p=0.0038), while the SQ group was not statistically different (4.6410 \pm 0.4894 μ mol/min/mg protein; p>0.05) (**Figure 2A**). SOD activity in the liver did not differ significantly between SQ, IV, and placebo treatment groups (83.6760 \pm 5.2844, 71.5300 \pm 4.1467, 77.4373 \pm 7.0645 U/mL/mg protein, respectively; p>0.05).

Administration route of CMX-2043 also differentially affected catalase and SOD activity in the brain (**Figure 2B**). SQ-treated piglets had significantly higher brain catalase activity than both IV (p=0.0163) and placebo (p=0.0003) groups (45.8340 ± 3.0855 , 36.4822 ± 1.5558 , 31.6524 ± 1.3129 nmol/min/mg protein for SQ, IV, and placebo, respectively). IV piglets' brain

catalase activity was not different from placebo (p>0.05). However, brain SOD activity in IV piglets was 39.3% higher than placebo piglets (0.8522 ± 0.0875 and 0.5722 ± 0.0475 U/mL/mg protein for IV and placebo, respectively; p=0.0148), while the SQ group did not show a significant difference relative to placebo (0.7330 ± 0.0521 U/mL/mg protein; p>0.05). These findings demonstrate that CMX-2043 enhances antioxidant enzyme activity in a tissue and delivery dependent manner, as IV administration increased catalase activity in the liver and SOD activity in the brain, while SQ administration primarily elevated brain catalase activity.

Additionally, catalase and SOD activity in the brain was notably lower than activity levels in the liver (**Figure 2**), thus supporting previous literature that characterized antioxidant activities in the mouse brain and liver, where brain antioxidant activity was substantially lower than liver antioxidant activity [31]. This difference highlights tissue-specific enzymatic activity and suggests that the liver may play a larger role in systemic antioxidant defense following TBI. Moreover, the brain's heightened vulnerability to oxidative damage is partly due to its relatively weak antioxidant defense systems, which is consistent with the lower antioxidant activity levels observed [1,11].

Catalase activity in the brain is associated with decreased brain tissue damage following TBI

To evaluate the relationship between antioxidant status and tissue damage within the brain post-TBI, catalase and SOD activity values were assessed against MRI measurements in piglets to identify correlations (**Table 1**). It was observed that catalase activity in the brain was negatively correlated with multiple MRI measurements, including 1 day midline shift (r=-0.4557, p=0.0148), 7 day midline shift (r=-0.6241, p=0.0004), and 42 day midline shift (r=-0.5448, p=0.0033). There was a trending negative correlation between catalase activity in the brain with 1 day (r=-0.3433, p=0.0860) and 7 day (r=-0.3419, p=0.0749) lesion volume, as well as a

significant negative correlation with 42 day lesion volume (r=-0.5770, p=0.0016). A significant negative correlation between catalase activity and 1 day swelling/atrophy was also observed (r=-0.4084, p=0.0383).

To further investigate this, an analysis of only piglets treated with CMX-2043 (n=19) was conducted to substantiate if there was a relationship between catalase activity and MRI markers of TBI injury. Piglets were stratified into two groups based on midline shift, lesion volume, and swelling/atrophy severity using MRI measures, creating "low" and "high" groups for each parameter (Figure 3). The catalase activity was then compared between low and high groups within a given parameter allowing for a more focused assessment of catalase activity across varying degrees of injury. The results indicated that among CMX-2043 treated piglets, those with improved MRI-assessed markers of brain injury also exhibited higher catalase activity in the brain, independent of administration route. Specifically, catalase activity in the brain trended higher in the low 1 day midline shift group $(44.8512 \pm 2.1394 \text{ nmol/min/mg protein})$ compared to the high group $(37.5749 \pm 3.2969 \text{ nmol/min/mg protein}; p=0.0760)$ (Figure 3A). Catalase activity in the brain was significantly higher in the low 7 day midline shift group (46.5803 \pm 2.6927 nmol/min/mg protein) versus the high group (35.6537 \pm 1.7765 nmol/min/mg protein; p=0.0042) (Figure 3B). Similarly, catalase activity in the brain was higher in the low 7 day lesion volume group $(43.7768 \pm 2.2649 \text{ nmol/min/mg protein})$ relative to the high group $(36.7293 \pm 2.3542 \text{ nmol/min/mg protein}; p=0.0465)$ (Figure 3C), as well as in the low 42 day swelling/atrophy group (44.2151 ± 2.8407 nmol/min/mg protein) compared to the high group $(36.2910 \pm 1.3349 \text{ nmol/min/mg protein; p=0.0225})$ (Figure 3D). These findings demonstrate that within CMX-2043 treated piglets, higher catalase activity in the brain suggested reduced TBI-induced neural injury based on MRI biomarkers. Importantly, this relationship was

independent of the route of administration (SQ or IV), suggesting that catalase brain activity may serve as a potential marker of recovery following treatment. Furthermore, catalase activity in the brain at 42 days post-TBI, which is also long after the final treatment, remained a predictor of recovery across the multiple MRI time points. These results also emphasize the variability in antioxidant responses and the need for further investigation to establish a causal link between antioxidant enzyme activity and brain recovery post-TBI.

DISCUSSION

CMX-2043 treatment significantly increased hepatic catalase activity, as well as brain catalase and SOD activity in a piglet TBI model. Additionally, the effects of CMX-2043 on antioxidant enzyme activity in tissue varied depending on SQ or IV administration, influencing catalase and SOD activity differently in the liver and brain. Notably, our findings showed that higher catalase activity in the brain at 42 days post-TBI was related to improved MRI-based biomarkers of brain injury in CMX-2043 treated piglets, regardless of administration route. CMX-2043 treatment did not affect plasma antioxidant enzyme activities, although TBI itself altered these systemic markers throughout the study period. This is the first study to show that CMX-2043 treatment leads to increased levels of catalase and SOD brain activity in a post-TBI large animal model and that increased levels of brain catalase is associated with decreased brain injury. This highlights the potential of CMX-2043 to serve as a therapeutic agent for enhancing brain antioxidant defenses and promoting recovery after injury.

Catalase is a key endogenous antioxidant enzyme that helps remove ROS and mitigate oxidative damage following TBI [12]. Physiologically, superoxide anion is rapidly and efficiently converted into $H_2O_2 + O_2$ by the enzyme SOD, and H_2O_2 is then detoxified into $O_2 + H_2O$ mainly by glutathione peroxidase and, partly, by catalase [13,14]. This enzymatic process involving

catalase and SOD is essential for mitigating the detrimental effects of oxidative damage [14] and promoting recovery [15] after TBI. Maintaining the proper function and activity levels of these antioxidant enzymes is therefore crucial for facilitating the brain's recovery [1,3,6]. This study demonstrates that higher brain catalase activity correlates with improved MRI measures, suggesting a potential link between antioxidant enzyme activity and TBI recovery. While this association was independent of administration route, SQ administration may offer logistical advantages in acute settings, as it can be administered more rapidly and without the need for trained personnel, unlike IV treatment [52]. Earlier intervention is vital given the rapid onset of secondary injury following TBI. Although direct measurement of brain catalase requires invasive, post-mortem tissue collection, these findings highlight the critical role of antioxidant defenses in neuroprotection and the importance of oxidative stress regulation in recovery [1,3,32]. To address this limitation, non-invasive biomarkers that reflect similar oxidative stress responses should be explored. Emerging techniques such as magnetic resonance spectroscopy (MRS) offer a promising approach for assessing oxidative stress-related metabolites in the brain, enabling evaluation at earlier stages of recovery [33,34].

Antioxidants, often supplemented through diet [35], can diminish the potency of various oxidants [12,13,36]. Although endogenous antioxidants can mitigate free radical damage, elevated free radicals can overwhelm the body's natural defenses, thus supplementing the brain's antioxidant capacity may help prevent and alleviate oxidative damage during injury [35,36]. Studies have shown that alpha-lipoic acid, the analog of CMX-2043, can increase the activity of the antioxidant enzymes catalase and SOD in various models of diseases linked to oxidative stress, such as kidney and heart conditions [19,37,38]. In the liver of experimental hyperoxaluric rats, administration of ALA was found to enhance catalase activity and decrease peroxidative

levels [39]. Similarly, ALA supplementation significantly increased serum SOD activity in patients undergoing hemodialysis [37], and markedly restored SOD activity in both the serum and renal cortex of diabetic rats [38]. CMX-2043 is composed of ALA covalently linked to a dipeptide adduct molecule [16]. In an investigation evaluating the antioxidant capacity of CMX-2043, ALA, and the dipeptide adduct individually, CMX-2043 demonstrated superior efficacy in scavenging peroxyl radicals, as measured by the oxygen radical absorbance capacity assay [16]. Notably, the dipeptide adduct had minimal antioxidant activity [16]. These findings suggest that the structural combination of ALA with the dipeptide is essential for enhancing the overall antioxidant potential of CMX-2043 [16]. The current study demonstrated that CMX-2043 treatment increased hepatic catalase activity and increased catalase and SOD activity in the brain, reinforcing the potential of the novel antioxidant molecule of CMX-2043 to restore antioxidant enzyme function under oxidative stress conditions.

Our findings also indicated that elevated catalase activity in the brain was related to improved MRI markers of TBI injury in piglets treated with CMX-2043. Prior research has shown that enhanced activity of endogenous antioxidants, such as SOD and glutathione peroxidase, correlate with reduced oxidative damage and improved neuroprotection in both preclinical and clinical settings [12,40,41]. Despite this association, there remains no established approach for the use of antioxidants in the post-injury period to alleviate the effects of TBI [35]. Many studies have assessed the efficacy of other antioxidants to reduce TBI-associated oxidative damage in animal models and in a limited number of clinical trials as reviewed by Di Pietro et al. [35]. For example, vitamin E is a powerful antioxidant, as it can aggressively scavenge reactive oxygen species [42]. In a rodent model of TBI, Wu et al. found that vitamin E supplementation following TBI significantly normalized levels of oxidative markers, including SOD [42].

Administration of quercetin, another antioxidant, in a rodent TBI-model reduced cognitive deficit and increased catalase and SOD antioxidant activity in the hippocampus [43]. In a rat model of TBI assessing the effects of the antioxidant hydroxysafflor yellow A, it was observed that hydroxysafflor yellow A reduced markers of oxidative stress as observed through increased activity of both catalase and SOD in the brain [44]. These results fall in line with what was observed in the current study, as we also observed changes in enzymatic activity in the liver and brain in response to antioxidant administration. While the findings from this study contribute to the growing body of evidence, further work is needed to establish a rigorous protocol for antioxidant administration in the acute phase post-TBI.

The route of administration of CMX-2043 had distinct effects on antioxidant enzyme activity in the liver and brain. When administered SQ, a drug may be more readily absorbed and metabolized in the subcutaneous adipose tissue before reaching the liver and brain [20,24,45]. This could result in lower levels of the active drug reaching the intended tissue compared to IV administration, which would allow the drug to more directly access these organs due to increased bioavailability [20,46]. Studies have shown that differences in pharmacokinetics can impact drug bioavailability and distribution, ultimately influencing its therapeutic efficacy in different organs [47,48]. For instance, in a rodent study, IV administration of ALA resulted in higher peak plasma levels compared to oral intake, though both routes shared comparable elimination half-lives [49]. Another rodent study revealed that IV administration of CMX-2043 showed rapid clearance of the drug, exhibiting a half-life in rats of about 10 minutes [50]. Conversely, subcutaneous (SQ) administration involves ALA absorption through the interstitial tissues, leading to a slower onset and prolonged presence in circulation. In California sea lions, a single SQ dose of 10 or 20 mg/kg ALA peaked within 20 to 30 minutes, with a half-life of 40 and 32 minutes for 10 and 20

mg/kg doses, respectively [51]. Our results specifically indicated IV administration enhanced catalase activity in the liver and SOD activity in the brain, while SQ administration increased catalase activity in the brain, suggesting the administration route can differentially impact the ability of antioxidant therapies to modulate enzymatic activity in key tissues.

Though CMX-2043 treatment did not alter catalase or SOD activity in the plasma, a significant overall time difference was observed in the antioxidant activity of the plasma following TBI. In a cohort of patients with subarachnoid hemorrhage, SOD concentrations in plasma increased from day 1 to day 7 [53]. This falls in line with the observations in our study where there is an apparent increase in SOD activity on day 7 before it begins to return to normal levels. Among ROS, the superoxide anion is the first to be produced after TBI by cerebral cells via multiple mechanisms, but mainly through the malfunctioning of the mitochondrial electronic transport chain [54]. This may explain why plasma SOD activity on day 1 was 83% higher than baseline, while plasma catalase activity increased by only 35% from baseline on the same day following TBI.

In conclusion, this study demonstrates a dynamic relationship between brain catalase activity and improved MRI markers of injury following TBI. Moreover, CMX-2043 treatment increased brain catalase levels, which was associated with reduced lesion volume, midline shift, and swelling/atrophy. These findings reinforce the critical role of antioxidant defenses in neuroprotection and post-injury repair. Importantly, CMX-2043 treatment enhanced antioxidant enzyme activity in the liver and brain, with its effects varying by administration route, thus highlighting the importance of delivery method in optimizing therapeutic efficacy for TBI recovery. Future research should focus on elucidating the causal pathways linking antioxidant responses to structural and functional recovery, exploring the integration of enzymatic

biomarkers with imaging modalities, and leveraging advanced analytics to enhance prognostic and therapeutic strategies. By addressing these gaps, we can advance our understanding of TBI pathology and develop more targeted interventions to improve outcomes.

AUTHOR CONTRIBUTIONS

Stephanie T. Dubrof: Methodology, Formal analysis, Investigation, Data curation, Writing - original draft preparation. Sarah L. Schantz: Formal analysis, Investigation, Data curation.

Taylor H. LePage, Sydney E. Sneed, Savannah R. Cheek: Formal analysis. Holly A. Kinder,

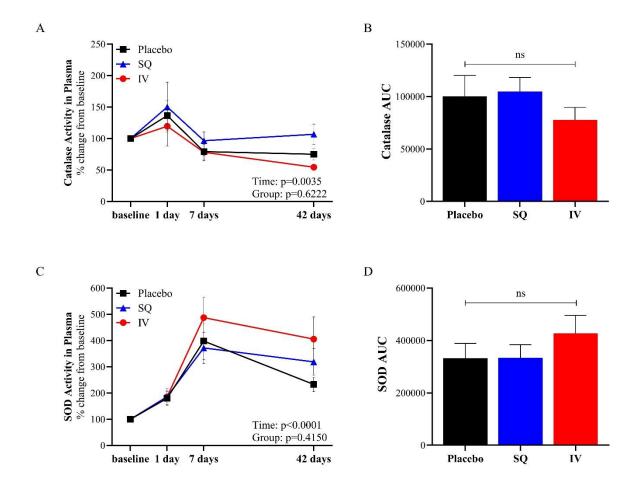
Kylee J. Duberstein: Methodology, Writing – review & editing. Erin E. Kaiser: Formal analysis, Methodology, Validation, Writing – review & editing, Project administration,

Supervision, Funding acquisition. Franklin D. West: Methodology, Validation, Writing – review & editing, Project administration, Supervision, Funding acquisition. Hea Jin Park:

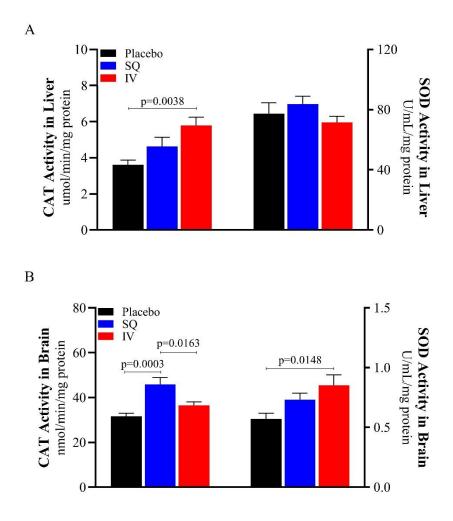
Conceptualization, Writing – review & editing, Supervision, Funding acquisition.

Co-authors have agreed for this work to be included in this dissertation.

REFERENCES


- 1. Fesharaki-Zadeh, A. Oxidative Stress in Traumatic Brain Injury. Int J Mol Sci 2022, 23, doi:10.3390/ijms232113000.
- 2. Mustafa, A.G.; Alshboul, O.A. Pathophysiology of traumatic brain injury. Neurosciences (Riyadh) 2013, 18, 222-234.
- 3. Ryan, A.K.; Rich, W.; Reilly, M.A. Oxidative stress in the brain and retina after traumatic injury. Frontiers in Neuroscience 2023, 17, doi:10.3389/fnins.2023.1021152.
- 4. Werner, C.; Engelhard, K. Pathophysiology of traumatic brain injury. British journal of anaesthesia 2007, 99, 4-9.
- 5. Greve, M.W.; Zink, B.J. Pathophysiology of traumatic brain injury. Mt Sinai J Med 2009, 76, 97-104, doi:10.1002/msj.20104.
- 6. Cornelius, C.; Crupi, R.; Calabrese, V.; Graziano, A.; Milone, P.; Pennisi, G.; Radak, Z.; Calabrese, E.J.; Cuzzocrea, S. Traumatic brain injury: oxidative stress and neuroprotection. Antioxid Redox Signal 2013, 19, 836-853, doi:10.1089/ars.2012.4981.
- 7. Shi, K.; Zhang, J.; Dong, J.F.; Shi, F.D. Dissemination of brain inflammation in traumatic brain injury. Cell Mol Immunol 2019, 16, 523-530, doi:10.1038/s41423-019-0213-5.
- 8. Cenini, G.; Lloret, A.; Cascella, R. Oxidative Stress in Neurodegenerative Diseases: From a Mitochondrial Point of View. Oxidative Medicine and Cellular Longevity 2019, 2019, 2105607, doi:https://doi.org/10.1155/2019/2105607.
- 9. Goss, J.R.; Taffe, K.M.; Kochanek, P.M.; DeKosky, S.T. The antioxidant enzymes glutathione peroxidase and catalase increase following traumatic brain injury in the rat. Exp Neurol 1997, 146, 291-294, doi:10.1006/exnr.1997.6515.
- 10. Ismail, H.; Shakkour, Z.; Tabet, M.; Abdelhady, S.; Kobaisi, A.; Abedi, R.; Nasrallah, L.; Pintus, G.; Al-Dhaheri, Y.; Mondello, S.; et al. Traumatic Brain Injury: Oxidative Stress and Novel Anti-Oxidants Such as Mitoquinone and Edaravone. Antioxidants (Basel) 2020, 9, doi:10.3390/antiox9100943.
- 11. Floyd, R.A.; Carney, J.M. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 1992, 32 Suppl, S22-27, doi:10.1002/ana.410320706.
- 12. Lee, K.H.; Cha, M.; Lee, B.H. Neuroprotective Effect of Antioxidants in the Brain. Int J Mol Sci 2020, 21, doi:10.3390/ijms21197152.
- 13. Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Archives of Toxicology 2024, 98, 1323-1367, doi:10.1007/s00204-024-03696-4.
- 14. Handy, D.E.; Loscalzo, J. Redox Regulation of Mitochondrial Function. Antioxidants & Redox Signaling 2011, 16, 1323-1367, doi:10.1089/ars.2011.4123.

- 15. Armogida, M.; Nisticò, R.; Mercuri, N.B. Therapeutic potential of targeting hydrogen peroxide metabolism in the treatment of brain ischaemia. Br J Pharmacol 2012, 166, 1211-1224, doi:10.1111/j.1476-5381.2012.01912.x.
- 16. Lader, A.S.; Baguisi, A.; Casale, R.; Kates, S.A.; Beeuwkes III, R. CMX-2043 mechanisms of action in vitro. Journal of Cardiovascular Pharmacology 2016, 68, 241-247.
- 17. Packer, L.; Tritschler, H.J.; Wessel, K. Neuroprotection by the metabolic antioxidant alphalipoic acid. Free Radic Biol Med 1997, 22, 359-378, doi:10.1016/s0891-5849(96)00269-9.
- 18. Tirosh, O.; Sen, C.K.; Roy, S.; Kobayashi, M.S.; Packer, L. Neuroprotective effects of alphalipoic acid and its positively charged amide analogue. Free Radic Biol Med 1999, 26, 1418-1426, doi:10.1016/s0891-5849(99)00014-3.
- 19. Rochette, L.; Ghibu, S.; Richard, C.; Zeller, M.; Cottin, Y.; Vergely, C. Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Mol Nutr Food Res 2013, 57, 114-125, doi:10.1002/mnfr.201200608.
- 20. Kim, J.; De Jesus, O. Medication Routes of Administration. In StatPearls; StatPearls Publishing. Copyright © 2025, StatPearls Publishing LLC.: Treasure Island (FL), 2025.
- Diaz-Arrastia, R.; Kochanek, P.M.; Bergold, P.; Kenney, K.; Marx, C.E.; Grimes, C.J.; Loh, L.T.; Adam, L.T.; Oskvig, D.; Curley, K.C.; et al. Pharmacotherapy of traumatic brain injury: state of the science and the road forward: report of the Department of Defense Neurotrauma Pharmacology Workgroup. J Neurotrauma 2014, 31, 135-158, doi:10.1089/neu.2013.3019.
- 22. Open Resources for, N. Open RN OER Textbooks. In Nursing Pharmacology, Ernstmeyer, K., Christman, E., Eds.; Chippewa Valley Technical College: Eau Claire (WI), 2023.
- 23. 4 Subcutaneous Drug Administration. In Techniques in the Behavioral and Neural Sciences, Claassen, V., Ed.; Elsevier: 1994; Volume 12, pp. 35-45.
- 24. Kim, H.; Park, H.; Lee, S.J. Effective method for drug injection into subcutaneous tissue. Sci Rep 2017, 7, 9613, doi:10.1038/s41598-017-10110-w.
- 25. Baker, E.W.; Kinder, H.A.; Hutcheson, J.M.; Duberstein, K.J.J.; Platt, S.R.; Howerth, E.W.; West, F.D. Controlled Cortical Impact Severity Results in Graded Cellular, Tissue, and Functional Responses in a Piglet Traumatic Brain Injury Model. J Neurotrauma 2019, 36, 61-73, doi:10.1089/neu.2017.5551.
- 26. Schantz, S.L.; Sneed, S.E.; Fagan, M.M.; Golan, M.E.; Cheek, S.R.; Kinder, H.A.; Duberstein, K.J.; Kaiser, E.E.; West, F.D. Human-Induced Pluripotent Stem Cell-Derived Neural Stem Cell Therapy Limits Tissue Damage and Promotes Tissue Regeneration and Functional Recovery in a Pediatric Piglet Traumatic-Brain-Injury Model. Biomedicines 2024, 12, doi:10.3390/biomedicines12081663.
- 27. White, E.; Woolley, M.; Bienemann, A.; Johnson, D.E.; Wyatt, M.; Murray, G.; Taylor, H.; Gill, S.S. A robust MRI-compatible system to facilitate highly accurate stereotactic administration of therapeutic agents to targets within the brain of a large animal model. J Neurosci Methods 2011, 195, 78-87, doi:10.1016/j.jneumeth.2010.10.023.


- 28. Fagan, M.M.; Welch, C.B.; Scheulin, K.M.; Sneed, S.E.; Jeon, J.H.; Golan, M.E.; Cheek, S.R.; Barany, D.A.; Oeltzschner, G.; Callaway, T.R.; et al. Fecal microbial transplantation limits neural injury severity and functional deficits in a pediatric piglet traumatic brain injury model. Front Neurosci 2023, 17, 1249539, doi:10.3389/fnins.2023.1249539.
- 29. Kinder, H.A.; Baker, E.W.; West, F.D. The pig as a preclinical traumatic brain injury model: current models, functional outcome measures, and translational detection strategies. Neural Regen Res 2019, 14, 413-424, doi:10.4103/1673-5374.245334.
- 30. Kinder, H.A.; Baker, E.W.; Wang, S.; Fleischer, C.C.; Howerth, E.W.; Duberstein, K.J.; Mao, H.; Platt, S.R.; West, F.D. Traumatic Brain Injury Results in Dynamic Brain Structure Changes Leading to Acute and Chronic Motor Function Deficits in a Pediatric Piglet Model. J Neurotrauma 2019, 36, 2930-2942, doi:10.1089/neu.2018.6303.
- 31. Sani, M.; Sebaï, H.; Gadacha, W.; Boughattas, N.A.; Reinberg, A.; Mossadok, B.A. Catalase activity and rhythmic patterns in mouse brain, kidney and liver. Comp Biochem Physiol B Biochem Mol Biol 2006, 145, 331-337, doi:10.1016/j.cbpb.2006.08.005.
- 32. Nishimura, K.; Cordeiro, J.G.; Ahmed, A.I.; Yokobori, S.; Gajavelli, S. Advances in Traumatic Brain Injury Biomarkers. Cureus 2022, 14, e23804, doi:10.7759/cureus.23804.
- 33. Joyce, J.M.; La, P.L.; Walker, R.; Harris, A.D. Magnetic Resonance Spectroscopy of Traumatic Brain Injury and Subconcussive Hits: A Systematic Review and Meta-Analysis. J Neurotrauma 2022, 39, 1455-1476, doi:10.1089/neu.2022.0125.
- 34. Huang, S.; Lyu, Y.; Liu, T.; Zhu, D. Metabolite changes and impact factors in mild traumatic brain injury patients: A review on magnetic resonance spectroscopy. Meta-Radiology 2024, 2, 100056, doi:https://doi.org/10.1016/j.metrad.2024.100056.
- 35. Di Pietro, V.; Yakoub, K.M.; Caruso, G.; Lazzarino, G.; Signoretti, S.; Barbey, A.K.; Tavazzi, B.; Lazzarino, G.; Belli, A.; Amorini, A.M. Antioxidant Therapies in Traumatic Brain Injury. Antioxidants (Basel) 2020, 9, doi:10.3390/antiox9030260.
- 36. Venegoni, W.; Shen, Q.; Thimmesch, A.R.; Bell, M.; Hiebert, J.B.; Pierce, J.D. The use of antioxidants in the treatment of traumatic brain injury. J Adv Nurs 2017, 73, 1331-1338, doi:10.1111/jan.13259.
- 37. Mahdavi, R.; Khabbazi, T.; Safa, J. Alpha lipoic acid supplementation improved antioxidant enzyme activities in hemodialysis patients. Int J Vitam Nutr Res 2019, 89, 161-167, doi:10.1024/0300-9831/a000552.
- 38. Wang, L.; Wu, C.G.; Fang, C.Q.; Gao, J.; Liu, Y.Z.; Chen, Y.; Chen, Y.N.; Xu, Z.G. The protective effect of α-Lipoic acid on mitochondria in the kidney of diabetic rats. Int J Clin Exp Med 2013, 6, 90-97.
- 39. Sumathi, R.; Jayanthi, S.; Kalpanadevi, V.; Varalakshmi, P. Effect of DL α-Lipoic Acid on Tissue Lipid Peroxidation and Antioxidant Systems in Normal and Glycollate Treated Rats. Pharmacological Research 1993, 27, 309-318, doi:https://doi.org/10.1006/phrs.1993.1031.
- 40. Tsuru-Aoyagi, K.; Potts, M.B.; Trivedi, A.; Pfankuch, T.; Raber, J.; Wendland, M.; Claus, C.P.; Koh, S.E.; Ferriero, D.; Noble-Haeusslein, L.J. Glutathione peroxidase activity

- modulates recovery in the injured immature brain. Ann Neurol 2009, 65, 540-549, doi:10.1002/ana.21600.
- 41. Crack, P.J.; Taylor, J.M.; de Haan, J.B.; Kola, I.; Hertzog, P.; Iannello, R.C. Glutathione Peroxidase-1 Contributes to the Neuroprotection Seen in the Superoxide Dismutase-1 Transgenic Mouse in Response to Ischemia/Reperfusion Injury. Journal of Cerebral Blood Flow & Metabolism 2003, 23, 19-22, doi:10.1097/01.Wcb.0000035181.38851.71.
- 42. Aiguo, W.; Zhe, Y.; Gomez-Pinilla, F. Vitamin E protects against oxidative damage and learning disability after mild traumatic brain injury in rats. Neurorehabil Neural Repair 2010, 24, 290-298, doi:10.1177/1545968309348318.
- 43. Yang, T.; Kong, B.; Gu, J.W.; Kuang, Y.Q.; Cheng, L.; Yang, W.T.; Xia, X.; Shu, H.F. Antiapoptotic and anti-oxidative roles of quercetin after traumatic brain injury. Cell Mol Neurobiol 2014, 34, 797-804, doi:10.1007/s10571-014-0070-9.
- 44. Wang, Y.; Zhang, C.; Peng, W.; Xia, Z.; Gan, P.; Huang, W.; Shi, Y.; Fan, R. Hydroxysafflor yellow A exerts antioxidant effects in a rat model of traumatic brain injury. Mol Med Rep 2016, 14, 3690-3696, doi:10.3892/mmr.2016.5720.
- 45. Dabrowska-Schlepp, P.; Busch, A.; Shen, J.-S.; Cheong, R.Y.; Madsen, L.B.; Mascher, D.; Schiffmann, R.; Schaaf, A. Comparison of efficacy between subcutaneous and intravenous application of moss-aGal in the mouse model of Fabry disease. JIMD Reports 2023, 64, 460-467, doi:https://doi.org/10.1002/jmd2.12393.
- 46. Moeller, J.; Green, M.D.; Ramnath, N. Pros and cons of subcutaneous (SC) versus intravenous (IV) administration of immune checkpoint inhibitors in non-small cell lung cancer. Translational Lung Cancer Research 2024, 13, 1444-1449.
- 47. Taylor, S.D.; Hart, K.A.; Vaughn, S.; Giancola, S.C.; Serpa, P.B.S.; Santos, A.P. Effects of intravenous administration of ascorbic acid (vitamin C) on oxidative status in healthy adult horses. Journal of Veterinary Internal Medicine 2024, 38, 460-468, doi:https://doi.org/10.1111/jvim.16934.
- 48. Dias-Junior, C.A.; Souza-Costa, D.C.; Zerbini, T.; da Rocha, J.B.T.; Gerlach, R.F.; Tanus-Santos, J.E. The Effect of Sildenafil on Pulmonary Embolism-Induced Oxidative Stress and Pulmonary Hypertension. Anesthesia & Analgesia 2005, 101.
- 49. Uchida, R.; Okamoto, H.; Ikuta, N.; Terao, K.; Hirota, T. Enantioselective Pharmacokinetics of α-Lipoic Acid in Rats. Int J Mol Sci 2015, 16, 22781-22794, doi:10.3390/ijms160922781.
- 50. Baguisi, A.; Casale, R.A.; Kates, S.A.; Lader, A.S.; Stewart, K.; Beeuwkes, R. CMX-2043 Efficacy in a Rat Model of Cardiac Ischemia–Reperfusion Injury. Journal of Cardiovascular Pharmacology and Therapeutics 2016, 21, 563-569, doi:10.1177/1074248416640118.
- 51. Field, C.L.; Whoriskey, S.T.; Zhao, X.; Papich, M.G. PHARMACOKINETICS OF SUBCUTANEOUS ALPHA LIPOIC ACID, A PROPOSED THERAPEUTIC AID FOR DOMOIC ACID INTOXICATION IN CALIFORNIA SEA LIONS (ZALOPHUS CALIFORNIANUS). J Zoo Wildl Med 2021, 52, 872-879, doi:10.1638/2020-0223.

- 52. Caccialanza, R.; Constans, T.; Cotogni, P.; Zaloga, G.P.; Pontes-Arruda, A. Subcutaneous Infusion of Fluids for Hydration or Nutrition: A Review. Journal of Parenteral and Enteral Nutrition 2018, 42, 296-307, doi:https://doi.org/10.1177/0148607116676593.
- 53. Krenzlin, H.; Wesp, D.; Schmitt, J.; Frenz, C.; Kurz, E.; Masomi-Bornwasser, J.; Lotz, J.; Ringel, F.; Kerz, T.; Keric, N. Decreased Superoxide Dismutase Concentrations (SOD) in Plasma and CSF and Increased Circulating Total Antioxidant Capacity (TAC) Are Associated with Unfavorable Neurological Outcome after Aneurysmal Subarachnoid Hemorrhage. J Clin Med 2021, 10, doi:10.3390/jcm10061188.
- 54. Kang, D.; Narabayashi, H.; Sata, T.; Takeshige, K. Kinetics of superoxide formation by respiratory chain NADH- dehydrogenase of bovine heart mitochondria. J Biochem 1983, 94, 1301-1306, doi:10.1093/oxfordjournals.jbchem.a134475.

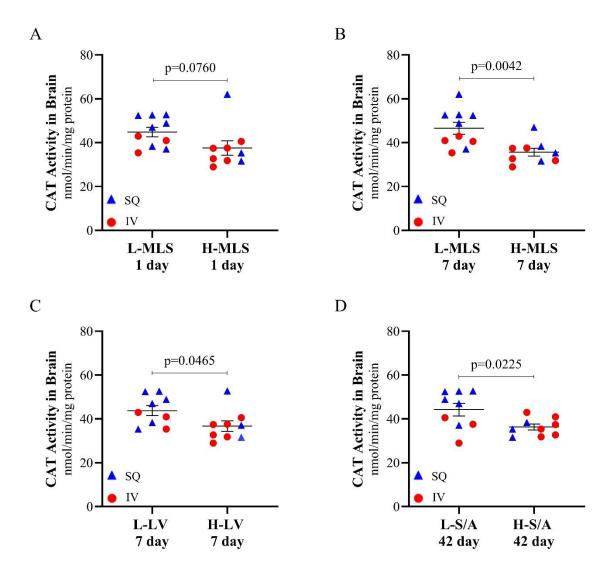

Figure 5.1. Antioxidant enzymatic activity in plasma from piglets following TBI induction. Catalase activity in plasma (**A**), AUC calculated from catalase activity in plasma from baseline to 42 days post-TBI (**B**), SOD activity in plasma (**C**), and AUC calculated from SOD activity in plasma from baseline to 42 days post-TBI (**D**). AUC: area under the curve; SOD: superoxide dismutase. SQ: subcutaneous treatment group; IV: intravenous treatment group.

Figure 5.2. Antioxidant enzymatic activity in liver and brain from piglets at 42 days after traumatic brain injury. Catalase and SOD activity in liver (**A**), catalase and SOD activity in brain (**B**). CAT: catalase; SOD: superoxide dismutase; SQ: subcutaneous treatment group; IV: intravenous treatment group.

Table 5.1. Correlations of MRI measurements with catalase activity in the brain 42 days after traumatic brain injury. Pearson's correlations between MRI measurements of midline shift, lesion volume, and swelling/atrophy at 1, 7, and 42 days post-TBI and catalase activity in the brain of all piglets (n=28). r=Pearson's correlation coefficient.

MRI Measurement	r	p-value
1 Day Midline Shift	-0.4557	0.0148
7 Days Midline Shift	-0.6241	0.0004
42 Days Midline Shift	-0.5448	0.0033
1 Day Lesion Volume	-0.3433	0.0860
7 Days Lesion Volume	-0.3419	0.0749
42 Days Lesion Volume	-0.5770	0.0016
1 Day Swelling/Atrophy	-0.4084	0.0383
42 Days Swelling/Atrophy	0.1686	0.4005

Figure 5.3. Catalase activity at 42 days post-traumatic brain injury in the brain of CMX-2043-treated piglets stratified by MRI-defined injury severity groups. Catalase activity is stratified by low and high 1 day midline shift (**A**), low and high 7 day midline shift (**B**), low and high 7 day lesion volume (**C**), and low and high 42 day swelling/atrophy (**D**) in piglets receiving CMX-2043 treatment (n=19). CAT: catalase; L-: low group; H-: high group; MLS: midline shift; LV: lesion volume; S/A: swelling/atrophy; SQ: subcutaneous treatment group; IV: intravenous treatment group.

CHAPTER 6

SUMMARY & CONCLUSIONS

The overarching objective of this dissertation was to investigate the role of nutritional and therapeutic interventions in brain development and brain health. This dissertation aimed to 1) examine how perinatal supplementation of docosahexaenoic acid (DHA) impacts specialized pro-resolving lipid mediators (SPMs) in offspring brains, 2) assess the functional outcomes associated with perinatal egg yolk supplementation on offspring brain activity, and 3) evaluate the effects of an antioxidant therapeutic drug on oxidative stress markers and neuroprotection in a traumatic brain injury (TBI) model.

In Chapter 3, perinatal DHA supplementation significantly elevated SPM levels in the offspring brain, particularly within regions associated with cognitive function, such as the prefrontal cortex and cerebellum. Notably, increased prefrontal cortex SPM levels correlated with enhanced functional activation in the cerebellar network, revealing a potential mechanism through which maternal DHA intake may shape early cognitive processes in offspring. These findings reinforce the significance of maternal dietary DHA intake for modulating neurodevelopmental pathways that underpin early brain connectivity and function, highlighting a promising mechanism for DHA in optimizing cognitive outcomes through its anti-inflammatory and pro-resolving properties. Collectively, this research provides essential preclinical support for maternal DHA supplementation as a nutritional intervention to promote cognitive outcomes, potentially guiding dietary recommendations aimed at optimizing brain developing during pregnancy and lactation.

In the second study presented in Chapter 4, maternal egg supplementation significantly enhanced brain functional organization and cognitive performance in offspring, as demonstrated by increased activation in the executive and cerebellar networks compared to controls.

Additionally, piglets from egg yolk-supplemented sows exhibited enhanced hippocampal-dependent learning and memory. These findings underscore the critical role of maternal diet quality, particularly the consumption of nutrient-rich whole foods like egg yolk, which provide essential nutrients such as choline and lutein to support optimal neurodevelopment and cognitive function in offspring. Overall, this study provides critical preclinical support for maternal egg yolk supplementation as a nutritional strategy to enhance offspring cognitive development, highlighting its potential importance in promoting lifelong brain health.

In Chapter 5, findings revealed significant tissue-specific differences in antioxidant responses within the liver and brain, which were distinctly influenced based on the administration route of CMX-2043. Specifically, intravenous administration effectively increased liver catalase and brain superoxide dismutase (SOD) activity, while subcutaneous administration predominantly increased brain catalase activity. Importantly, the elevated brain catalase activity was associated with reduced brain lesion volume, decreased midline shift, and diminished brown swelling and atrophy. These findings highlight the essential role of antioxidant defenses in protecting neural tissue. Collectively, this study provides evidence supporting targeted antioxidant therapy as a promising approach for improving neuroprotection and recovery outcomes following TBI in humans, potentially shaping clinical strategies for managing brain injury.

In conclusion, this dissertation demonstrates that nutritional and therapeutic interventions have profound potential to shape the trajectory of brain development, cognitive performance, and recovery following neurological injury. By identifying specific nutritional components, such as

DHA and nutrient-rich whole foods like egg yolk, along with therapeutic strategies that leverage antioxidant defenses, these studies provide critical evidence to inform dietary and clinical recommendations. The clear mechanistic insights and translational findings presented here underscore the necessity of prioritizing maternal nutritional status and targeted antioxidant therapies to enhance cognitive resilience, mitigate neurological damage, and ultimately promote optimal lifelong brain health.