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ABSTRACT 

Mosquito-vectored pathogens are globally significant sources of disease across equatorial 

areas and have expanded into temperate regions of the world. This dissertation examines 

heterogeneity in vector-borne disease (VBD) transmission across scales by investigating the 

invasive disease vector Aedes albopictus across an urban gradient in Atlanta, Georgia, USA. To 

begin with a broader perspective, I developed a synthetic review to critically evaluate different 

methods of modelling vector-borne disease systems across spatial scales. I offer perspectives 

regarding the importance of choosing the appropriate spatial scale to model transmission in 

response to environmental or biological processes. I also address both the relative strengths and 

limitations of statistical versus mechanistic representations of VBD systems and advances that 

can be made by integrating the two approaches. My empirical work focuses on larval and adult 

mosquito populations across a range of impervious surfaces to investigate the effects of human 

activity on Ae. albopictus populations. I identify and describe microclimatic and land use 

practices that impact vector abundance. This study shows a significant negative effect of 

minimum relative humidity and a positive effect of impervious surface coverage and daily 



temperature range on adult Ae. albopictus abundance. Canopy cover strongly predicted greater 

larval habitat density. As these microclimate and landscape factors change in response to 

urbanization, findings here underscore the significance of human activity in determining fine-

scale variation in vector populations. In other work, I measure the genetic population structure of 

Ae. albopictus populations across Atlanta using a SNP microarray for 95 mosquitoes collected 

across 16 locations. Analysis showed a mosquito population with small but significant genetic 

sub-structuring, suggesting a population shaped by a combination of human-mediation dispersal, 

natural dispersal, and landscape barriers. Reconstructions of the admixture history of these Ae. 

albopictus populations predict a single invasion event during the initial invasion of this species 

and population movement across the study area. This research highlights how anthropogenic 

landscapes produce fine-scale heterogeneities that drive variation in vector abundance while 

facilitating vector dispersal. This work also advises that integrated statistical and mechanistic 

models can advance understanding of how heterogeneities in biotic and abiotic factors drive 

pathogen transmission across spatial scales.  
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

Conceptual background 

Natural populations often encounter diverse environmental conditions across different 

spatial scales. Heterogeneity in microclimate factors such as temperature and relative humidity 

can affect ecological processes, including the transmission of infectious diseases. For vector-

borne diseases (VBD), the effect of environmental heterogeneity in temperature and rainfall is 

especially important given the poikilothermic nature of arthropod vectors and their often aquatic 

larval stages. Environmental variation has long been known to affect the distribution and 

abundance of organisms, and the consequences of this variation for population dynamics 

represent a fundamental question in ecology. At large spatial scales, environmental determinants 

are evident from spatial correlations between species distributions and abiotic and biotic 

variables (Stein et al. 2014). More recently, mechanistic models have directly incorporated links 

between physiological characteristics and environmental factors to predict species dynamics in 

response changing environments (Gotelli and Ellison 2006). This is especially important for 

forecasting shifts in species abundance and ranges in the face of climate change and habitat 

disruptions (Johnson et al. 2016). Environmental variation also occurs across fine spatial scales, 

manifesting as microclimatic heterogeneity and land cover variation across human land uses. In 

addition to affecting ecological dynamics of organisms, fine-scale variation can generate 

selection pressures through habitat selection, barriers to movement, isolation by distance, vector 
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control efforts, and human mediated gene flow (Paupy et al. 2004, Hemme et al. 2010, Hlaing et 

al. 2010, Richardson et al. 2014).  Local adaptation to these selection pressures as well as genetic 

drift, founder effects due to invasion history, and mutation can generate ecologically relevant 

genetic variation across a landscape. An important open question involves how microgeographic 

adaptation and mechanisms that cause this variation will influence the ecological dynamics of 

species in nature.  

Framework and considerations for modelling VBD systems 

Incorporating spatial heterogeneity in environmental factors, socio-demographic factors, 

and genetic variation is important for understanding and mitigating VBD transmission. The R0, 

or basic reproductive ratio, of vector-borne pathogens is sensitive to temperature and other 

environmental variables, with both empirical measurements and computational models 

predicting significant relationships between temperature and variables that feed into VBD 

transmission (Murdock et al. 2012, 2014a, Mordecai et al. 2017a). At the same time, the 

microclimate that a species encounters in its ecological interactions is often mismatched with a 

larger spatial resolution for which environmental data are often available via remote sensing or 

weather stations (Potter et al. 2013, Murdock et al. 2017, Evans et al. 2019, Wimberly et al. 

2020). Advances in the study of vector microclimate have improved scientific understanding of 

the appropriate scale at which climate affects mosquito ecology and arbovirus vectors more 

broadly (Cator et al. 2013, Evans et al. 2018, Wimberly et al. 2020, Valentine et al. 2020b). An 

important element in determining what variables and spatial scales are most important for a VBD 

system is accounting for the biological characteristics of the organisms in question, including 

their habitat preferences and dispersal capabilities. Importantly, cities can provide larval habitats 

for urban-affiliated mosquitoes, and urban heat islands can affect mosquito life history traits and 
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VBD dynamics at the scale that an individual vector samples its environment, typically a few 

hundred meters (Lacroix et al. 2009). As such, incorporating spatial heterogeneity in 

environmental factors, socio-demographic factors, and genetic variation is important for 

understanding and mitigating VBD transmission.  

The Ross-Mcdonald model, first developed in the 1950s, is widely considered a 

cornerstone VBD theory (Smith et al. 2012). This model captures changes in the host and vector 

population density, the infection dynamics of both vector and host, disease-induced and 

background mortality, mosquito biting rates, and mosquito-human contacts. Many contemporary 

statistical and mathematical models focused on understanding the transmission dynamics of 

VBD, and on their prevention and control, rely to some extent on the Ross-Macdonald 

transmission model (Ruan et al. 2008, Reiner et al. 2013, Ruktanonchai et al. 2016). Mosquito 

life history-driven elements of the Ross-Macdonald model (survival, recruitment, biting rate, and 

the extrinsic incubation period, and R0) are especially sensitive to environmental conditions 

(Ahumada et al. 2004, Ruan et al. 2008, Tjaden et al. 2013, Ohm et al. 2018). Because of this 

environmental sensitivity, VBD risk can vary across heterogenous landscapes, as tracked by 

estimates for R0. Therefore, incorporating spatial heterogeneity into VBD models can help 

further scientific understanding of transmission by identifying refugia of disease or vector 

hotspots, and spatially explicit models can inform control efforts by determining where to focus 

interventions and what spatial coverage is needed to effectively lower transmission (Paupy et al. 

2012, Eckhoff et al. 2015, Tokarz and Novak 2018). An understanding of a certain spatial 

coverage to achieve effective vector control goes back to the earliest models of VBD, with 

Roland Ross’ original conception of a theoretical circle of control where mosquitoes could be 

eradicated at the center (Smith et al. 2012). Recent extensions of the Ross-Mcdonald model have 
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incorporated “patchiness” to model metapopulation dynamics of heterogenous disease risk 

(Auger et al. 2008, Gao et al. 2014, Wang et al. 2019), varying degrees of host and vector 

movement or mixing (Ruan et al. 2008, Reiner et al. 2013, Perkins et al. 2013, Eckhoff et al. 

2015), and seasonal variations in vector abundance (Reiner et al. 2013).  

Microclimate impacts on Aedes albopictus in VBD systems 

The Asian tiger mosquito Ae. albopictus is a globally invasive vector of several medically 

and agriculturally significant VBD, including arboviruses like Dengue, Chikungunya, Zika, and 

Japanese Encephalitis, for which outbreaks are now common worldwide from the Americas to 

Africa and Southeast Asia (CDC 2024, “Chikungunya | CDC Yellow Book 2024” n.d.). While 

Ae. albopictus has spread globally in the last few decades, the earliest recognized introduction of 

the species to the continental United States occurred in the 1980’s at the regional urban hubs of 

Houston, TX and Memphis, TN (Bonizzoni et al. 2013, Gloria-Soria et al. 2021). By 1994, all 

counties in the state of Georgia had reported the presence of Ae. albopictus (Womack et al. 

1995), suggesting that the populations of this species in the metro-Atlanta area are at least in part 

descended from these original invasive populations. VBD, due to the nature of mosquito 

physiology, can be particularly sensitive to environmental variation due to the temperature 

dependent life cycles and often localized dispersal of arthropod vectors (Liew and Curtis 2004, 

Bellini et al. 2010, Wilke et al. 2017). At regional scales, climate factors such as the seasonal and 

latitudinal changes in rainfall, as well as socioeconomic and demographic trends that determine 

the contact rates with human hosts, can affect the distribution of suitable habitats and condition 

favoring pathogen transmission (Lambin et al. 2010). Fine-scale environmental variation can 

also alter vector development rates, reproduction and survival, body size, and overall abundance, 

especially in response to temperature and moisture (Murdock et al. 2017, Evans et al. 2019). For 



5 

 

example, mosquito development rates, adult lifespans, biting rates and egg production are 

sensitive to temperature, and microgeographic scale variations in temperature and relative 

humidity influence vectoral capacity and mosquito abundance (Murdock et al. 2017, Evans et al. 

2019, Wimberly et al. 2020, Valentine et al. 2020b).  

Fine scale variations in mosquito populations have been observed in many contexts and 

across diverse VBD systems. In the case of anthropophilic mosquito vectors, subpopulation 

variations may ultimately reflect in divergent urban adapted subpopulations and ancestral 

sylvatic populations. An example of this dynamic is seen in Anopheles gambiae genotypes that 

have varying tolerances to nitrogenous pollution and predation, allowing more anthropophilic 

populations to thrive in urban or agricultural larval environments(Gimonneau et al. 2010, Tene 

Fossog et al. 2013). Vector adaptation in response to evolutionary pressures and the 

anthropophilic niche of urban landscapes can influence biological characteristics (e.g., fecundity, 

biting rates, longevity) relevant to overall transmission potential (Louise et al. 2015).  

Genetics of Aedes albopictus 

The genome of Ae. albopictus is the largest known for a mosquito species at 1,967 Mb 

with over half transposable elements and other repeat sequences; many of these repetitive 

elements include gene families involved with insecticide resistance and cold weather diapause 

(Chen et al. 2015). Understanding the invasion history of a mosquito vector can be informed by 

genetic analysis, which can help predict climate tolerance in the case of Aedes albopictus, where 

some subpopulations extend into cooler regions (Bosio et al. 2005, Kamgang et al. 2011, Tippelt 

et al. 2020). Phenotypic plasticity that allows for diapausing progeny when Aedes albopictus 

experiences reduced photoperiods has heritable genetic underpinnings, and there is evidence of 

the rapid evolution of this trait in expanding populations (Urbanski et al. 2012, Poelchau et al. 
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2013, Chen et al. 2015). The increased winter egg diapause survivability that some Ae. 

albopictus lineages exhibit can potentially shift northward the regions of the world at risk from 

the spread of this invasive vector beyond previous estimates, as some subpopulations exhibit 

more adaptive cold tolerance via female size and cold weather egg survival (Sherpa et al. 2022). 

Along the northern edge of the species distribution in the United States, genetic analysis has 

revealed a persistent diapausing population rather than seasonal reintroductions, demonstrating 

rapid establishment in relatively newer populations across a range of conditions (Gloria-Soria et 

al. 2022). Furthermore, the rise of insecticide resistance in some locations makes the 

identification of gene flow corridors important to vector control efforts (Vontas et al. 2012, 

Demok et al. 2019, Li et al. 2021). These inheritable traits make the identification of temperate 

or tropical phylogeographic origins essential for vector control efforts at the northern limits of 

Ae. albopictus’ range.  

Methodology for measuring genetic differentiation in Ae. albopictus populations has until 

recently included allozyme variation, microsatellite polymorphisms, and mtDNA haplotype 

analysis (Manni et al. 2015, Schmidt et al. 2017, Zhong et al. 2013, Chareonviriyaphap et al. 

2004, Usmani-Brown et al. 2009). Using these tools, identification of population structure and 

lineages has been used to intuit the geographic origin of invasion events of Ae. albopictus (Black 

et al. 1988, Kambhampati et al. 1991, Urbanelli et al. 2000, Birungi and Munstermann 2002). 

The geographic origin of subpopulations of Ae. albopictus and its cousin Aedes aegypti are 

shown to impact vector competence at relatively close geographic distances (Failloux et al. 2002, 

Paupy et al. 2012, Gloria-Soria et al. 2021). Variability in susceptibility to infection is evident 

between Ae. albopictus subpopulations infected with Chikungunya virus and Dengue type 2 

virus from identifiably distinct lineages, even when the population structure was not statistically 
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significant (Vazeille et al. 2001, Vega-Rúa et al. 2020). Similarly, both extrinsic incubation 

periods and vertical transmission rates of Zika virus in Ae. albopictus can vary between global 

populations, associating variability in infection susceptibility with distinct genetic lineages 

(Gutiérrez-López et al. 2019).  

Another example of the importance of subpopulation characteristics is a hypothesized 

cryptic subspecies of Ae. albopictus, identified through mitochondrial cox1 haplotype 

divergence, that exhibits very low Wolbachia inoculation rates and possible Wolbachia 

resistance (Guo et al. 2018, Wei et al. 2019). Given the impact of Wolbachia in attenuating the 

transmission of Dengue virus in Ae. albopictus populations, identification of distinct lineages of 

this species would be informative to public health efforts (Mousson et al. 2012). Anthropophilic 

mosquito populations implicated in transmitting VBDs generally have limited innate dispersal 

capabilities, from 100-500 meters in the case of Ae. aegypti (Harrington et al. 2005) and often 

across similar ranges for Ae. albopictus (Bellini et al. 2010, Marini et al. 2010). In spite of these 

limited ranges, genetic structuring has been observed within relatively short distances (Hlaing et 

al. 2010, Olanratmanee et al. 2013). Gene flow across larger distances for mosquitoes with 

limited flight ranges can be through natural dispersal via host seeking and oviposition 

preferences, but it has also been be associated with human mediated movement (Huber et al. 

2004, Rašić et al. 2015, Carvajal et al. 2020).  

Dissertation overview 

The goal of my dissertation is to examine vector-borne disease dynamics through the lens 

of vector ecology across spatial scales and in the context of human-altered landscapes.  First, I 

present a synthetic review to evaluate modelling approaches for VBD transmission across spatial 

scales in Chapter 2. In this chapter, I demonstrate the utility and limitations of both mechanistic 
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and statistical approaches to modelling while advocating for the perspective of choosing the 

appropriate spatial scale to describe biological and environmental phenomena that determine 

VBD. Then, I demonstrate cases where an integrative approach of using quality fine-scale 

empirical field data, statistical models, and mechanistic models together to best represent 

potential VBD risk across a landscape.  I use the insights from this chapter to inform what spatial 

scale to measure vector demographics and the environment variables, resulting in collecting data 

across spatial ranges based on knowledge of mosquito movement and life history. Affected 

vector characteristics include host-seeking behavior, oviposition preferences, habitat selection, 

and movement over the course of an individual vector’s lifetime. This approach to scale then 

informs my empirical field work. 

In Chapter 3, I conducted a field survey of mosquito populations across the city of 

Atlanta, GA to characterize how microclimatic and land cover characteristics associated with 

urbanization predict variation in Aedes albopictus populations and larval habitat density. This 

research surveyed both adults and larvae at sites across an urban gradient in the city, as 

determined by differing degrees of impervious surfaces surrounding each site. Mixed effects 

models were built and evaluated to identify and measure the effects of the most significant 

covariates predicting these demographic response variables. I found that minimum relative 

humidity (RHMin) had a significant negative effect on adult Ae. albopictus abundance, while 

impervious surface coverage and the magnitude of daily temperature range (DTR) had a 

significant positive effect on adult abundance. Canopy cover within each study site predicted 

greater larval habitat density. I conclude that urbanization, which alters microclimate and is often 

characterized by increasing surface imperviousness and heat island effects impacting RH and 

temperature, increases Ae. albopictus abundance. The study also suggests that human interaction 
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with the urban environment significantly drives vector populations through actions like 

preserving canopy cover in residential areas and providing larval habitats via landscaping 

containers and other cultural practices. 

In Chapter 4, I measure the population genetic structure of Ae. albopictus across Atlanta, 

GA through the use of next-generation sequencing techniques and a newly developed SNP 

microarray. The genetic data showed a minimal degree of genetic differentiation between the 

subpopulations across the city, with FST values only ranging up to 0.019. Although fixation 

indices between sites were small, these depressed fixation indices are expected to be lower than 

more traditional microsatellite analysis of genetic differentiation given the orders of magnitude 

larger number of polymorphism sites the SNP chip assessed. The pairwise genetic variation 

between most populations in the study was determined to be significant, with the exception being 

with one site near the center of the study area and those sites adjacent to it. Additionally, the 

ancestral history and admixture predictions of the population suggest a single introduction of Ae. 

albopictus into Atlanta, likely from the initial invasive population in the early 1990’s. The 

models of possible admixture events demonstrate population movement across the study area, 

sometimes leap-frogging over the nearest sites. This dynamic, along with the high degree of gene 

flow, suggests a high degree of dispersal. This population movement is likely facilitated by 

human activity and enabled by limited landscape barriers to individual mosquito movement. This 

characterization of the genetic structure of Ae. albopictus demonstrates how this anthropophilic 

and urban adapted invasive species can rapidly invade and establish populations in a city due to 
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limited environmental barriers to dispersal and human mediated dispersal of individuals and 

eggs.  

In a final conclusions section (Chapter 5), I integrate previously discussed findings 

towards developing a predictive framework and clearer understanding of vector ecology within 

human-altered environments. Overall, this research demonstrates the importance of incorporating 

the approaches of different disciplines (mathematical modelling, empirical measurements and 

collections of field samples, and genotyping using next-generation genetic tools) to describe a 

VBD system and to better understand the ecological interplay between vectors and 

anthropogenic changes to the environment 
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CHAPTER 2 

THE CHALLENGES OF MODELING SPATIAL VECTOR-BORNE DISEASE DYNAMICS: 

NEW APPROACHES GUIDED BY RECENT ADVANCES1 

  

 
1 Newberry PM, Park AW, Altizer SM, Murdock CC. To be submitted to the Journal of 

Parasitology Research. 

Author contributions; PMN: conceptualization, investigation, visualization, writing - original 

draft preparation, writing – review and editing; AWP: conceptualization, writing - review and 

editing; SMA: conceptualization, writing - review and editing; CCM: conceptualization, writing 

- review and editing. All authors agree that their contributions can be included in this 

dissertation. 
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Abstract 

Over the past four decades, researchers have made significant progress incorporating 

vector and host dynamics into mathematical models describing vector-borne diseases (VBDs). 

Increasingly sophisticated modelling approaches used for predicting vector responses to 

environmental variations across space and time have propelled the field forward, with crucial 

importance for responding to health challenges posed by climate change, deforestation and 

urbanization. Environmental data on temperature, rainfall, and vector habitats is typically 

available across large areas at lower resolutions than the scale at which actual transmission 

occurs. Determining how fine-scale heterogeneities in vectors, microclimates, and hosts should 

be quantified, analyzed and modeled is a persistent challenge in describing and predicting VBD. 

Here we review the scale of processes that influence VBDs and propose that integrating the 

relative strengths of mechanistic and statistical models offers a powerful strategy for predicting 

and mitigating the global burden of VBDs. 

Spatial Heterogeneity in Vector-Borne Disease Systems 

Vector-borne pathogens are important biological enemies of humans, animals, and plants 

and are transmitted by arthropods within and between host species. In humans, despite 

significant resources committed to controlling these pathogens, vector-borne diseases (VBD) 

account for 17% of all infectious diseases and cause upwards of 700,000 deaths annually (World 

Health Organization and UNICEF/UNDP/World Bank/WHO Special Programme for Research 

and Training in Tropical Diseases 2017). Vector-borne pathogens impose heavy burdens on 

agricultural systems, threatening livestock and crops (Jones et al. 2023), and can also be 

devastating for natural ecosystems. This is exemplified by avian malaria-caused extinctions of 

Hawaiian Honeycreepers (Samuel et al. 2015) and the widespread declines of crows, jays, and 
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other corvids following the introduction of West Nile Virus into North America (LaDeau et al. 

2011). To predict and respond to the negative consequences of vector-borne diseases, scientists 

have developed mathematical models to explore underlying transmission process, to assess the 

efficacy of interventions, and to forecast VBD transmission seasonally, geographically, and in 

response to future climate and land use change.  

Mathematical models are often limited by the necessity of simplifying assumptions, the 

aggregation of data used to fit the models, and the need to choose what spatial and temporal scale 

to use when investigating relevant variables. A major simplifying assumption of most 

mathematical models is that host and vector populations mix randomly and contact each other 

according to mass action principles. However, real-world patterns of VBD incidence (Chaves et 

al. 2011, Perkins et al. 2013) instead show that incidence can vary sharply across space (Lambin 

et al. 2010), with some areas highly suitable for transmission serving as persistent reservoirs or 

sources of infection (Yoon et al. 2012, Salje et al. 2017). Spatial heterogeneity in VBD incidence 

could occur due to geographic variation in abiotic  (Murdock et al. 2014a, Evans et al. 2018, 

Wimberly et al. 2020) and biotic (Murdock et al. 2014a, Russell et al. 2022) factors and socio-

economic variables that determine people’s risk of exposure to disease. Human-driven 

environmental changes in turn influence vector densities, environmental suitability for vector and 

pathogen development, and risk for pathogen transmission (Becker et al. 2014, Tesla et al. 2018, 

Evans et al. 2018). Incongruence between model assumptions and vector biology was recognized 

by Smith et al 2012 (Smith et al. 2012), where they conclude “fluctuations in mosquito 

populations are extremely difficult to predict over time and space, and important sources of 

heterogeneity and the spatial and temporal scales of transmission remain poorly characterized”. 
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As ectotherms, arthropod vectors like mosquitoes, sandflies, and ticks are subject to a 

diversity of environmental factors that can interact to affect their fitness, distributions, abundance 

and behavior. The include abiotic factors of temperature (Murdock et al. 2014a, Mordecai et al. 

2019, Evans et al. 2019, Wimberly et al. 2020), relative humidity (Murdock et al. 2017, 

Mordecai et al. 2019, Evans et al. 2019), and precipitation (Mordecai et al. 2019); and biotic 

factors like intra- and interspecific competition (Armistead et al. 2008, Evans et al. 2019), 

biological enemies (Russell et al. 2022), and the quality/quantity of habitat and resources 

(Murdock et al. 2014a, Mordecai et al. 2019, Evans et al. 2019). Environmental determinants of 

vector and pathogen distributions occur at different spatial scales, with biotic factors showing 

greater heterogeneity at local spatial scales  (Murdock et al. 2017, Evans et al. 2019) and climate 

factors varying at more regional spatial scales (Tesla et al. 2018, Khan et al. 2020) (Figure 2.1). 

Additionally, socioeconomic variables can shape people’s exposure to arthropod vectors in the 

case of housing structure, water storage practices, use of outdoor spaces, and access to public 

health resources like bed nets and vaccines (Morgan et al. 2021). These social factors vary both 

within and between neighborhoods and communities (Figure 2.1). Finally, vectors and the 

pathogens they carry can disperse at limited local (natural dispersal or within a community) 

(Harrington et al. 2005) or longer-distances (human-mediated) (Hlaing et al. 2010). Inferences 

based on drivers of infection dynamics at only a single scale could generate misleading 

predictions of pathogen transmission, spatial distribution, and incidence. Thus, a crucial need 

remains for mathematical theory and tools that allow scientists to integrate biological processes 

that vary across multiple scales into a unified framework to predict the distribution and 

abundance of VBDs.  
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Another challenge of incorporating spatial variation into mathematical models of vector-

borne disease transmission involves the methods by which both infection data and environmental 

metrics are collected and aggregated. The spatial resolution of available data might not match 

well with the spatial scale at which key variables have the largest effects on the transmission 

process. . For example, macroclimate or socioeconomic data aggregated at coarse spatial scales 

could cause researchers to underestimate habitat suitability for pathogen transmission or vector 

persistence (Irvine et al. 2018) or to overlook small-scale clusters of VBD transmission (Salje et 

al. 2017). Alternatively, if pathogens and vectors are dispersed at larger spatial scales due to 

human mobility (Hlaing et al. 2010), then hosts can encounter pathogens from outside the 

hotspots predicted by finer-scale data on natural processes.  

In this article, we begin by exploring the underlying factors that shape the distribution 

and dynamics of VBD transmission and the spatial scales across which these effects are likely 

important. We present several modeling frameworks characterizing the spatial risk of VBD 

transmission and the merits of approaches at different spatial scales. We also explore the VBD 

forecasting implications of mismatches between the relevant spatial scale for a given process and 

the spatial scale across which data are collected and aggregated. Finally, we end with a broader 

discussion of the future theory and research that is required to move this field forward. These 

efforts have the potential to better predict how the geographic distribution and abundance of 

VBD will change with climate change and increasing urbanization. Throughout, we focus mainly 

on mosquito-borne diseases owing to their public health impacts and economic global burden. In 

particular, malaria remains a leading cause of human mortality and morbidity, with 

approximately 263 million cases and 597,000 deaths in 2023 alone, primarily in children in sub-

Saharan Africa (World Health Organization n.d.). Further, 2023 saw the highest number of 
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dengue cases in history, with over 6.5 million cases and 7,300 deaths. Other mosquito-borne 

pathogens of human health concern include chikungunya virus, Zika virus, yellow fever virus, 

West Nile virus, and Japanese encephalitis. Collectively, the global cost of treating these and 

other mosquito-transmitted diseases exceeds $9 billion per year (Halstead 2007, Packierisamy et 

al. 2015, Shepard et al. 2016).  

Drivers of Heterogeneity in VBD Across Scales 

The risk of mosquito-borne disease varies spatially owing to variation in multiple processes that 

affect the distribution and dynamics of both vectors and the pathogens they transmit. These 

include environmental variables that affect mosquito fitness, behavior, population dynamics, and 

within-host pathogen development as well as processes that affect vector and pathogen 

movement (e.g., mosquito dispersal ability, human-mediated dispersal, environmental barriers 

and corridors). If significant spatial variation results in barriers to pathogen movement, genetic 

variation can also manifest spatially across mosquito populations that in turn influence their 

ability to become infected and to transmit pathogens. Finally, variation in socio-economic factors 

that influence human exposure to biting mosquitoes and access to public health resources also 

exhibit spatial structure. Overall, the combined effects of the various processes determine 

patterns of transmission risk and disease incidence. The fact that these processes exhibit variation 

at different spatial scales and are measured with different spatial resolutions makes prediction of 

these effects on the transmission process challenging (Figure 2.1). 

It has long been understood in the field of spatial ecology that three processes generally 

determine the distribution of organisms. These are biotic factors (e.g., inter- and intra-specific 

competition and trophic-level interactions), abiotic factors that lead to environmental filtering 

(e.g., temperature, precipitation, relative humidity, pH and salinity), and the amount of the 
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environment an organism can sample (e.g., dispersal range and movement). While substantial 

spatial variation exists in both biotic and abiotic environmental variables, this variation does not 

necessarily occur at similar spatial scales. For example, climate variables typically vary at 

regional spatial resolutions (IPCC 2023), with relatively minor variation at smaller, local scales. 

Thus, it has been hypothesized that environmental suitability or filtering will occur at scales >104 

km2 in the absence of major elevational changes or landscape disturbances. In contrast, biotic 

factors (including species interactions, habitats and resources) often vary at smaller spatial 

scales, which is reflected by finer-scale spatial resolution in species composition data. Evidence 

for rapid turnover in species composition and biotic interactions is supported across several 

wildlife disease systems (e.g., chytrid fungus in frogs, West Nile virus in birds, and Lyme 

disease in mammals) (Cohen et al. 2016). This would suggest that the effects of climate variation 

on mosquito population and pathogen dynamics will occur across regional scales and that biotic 

factors affecting the distribution and carrying capacity of local mosquito populations (largely 

unaccounted for in predictive models) likely influence spatial structure at finer spatial scales. 

The spatial scale that is relevant for a given biological process will not only depend on 

the level of heterogeneity in underlying variables across space, but also on an organism’s 

dispersal and ability to sample the environmental space. Variation that might be physiologically 

relevant for an organism that has constrained dispersal capabilities can appear as environmental 

noise for an organism that can sample wider geographic areas. Interestingly, mosquito-borne 

pathogens can be transported via both mosquito movement and human movement. Mosquitoes 

vary in their natural capability to disperse, with extreme examples including Aedes aegypti that 

exhibit very limited mean dispersal (<100-200m) versus Culex annulirostris with high dispersal 

(6200m) capabilities (Verdonschot and Besse-Lototskaya 2014). As a result, mosquito species 
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with more limited dispersal can show a high degree of genetic and phenotypic variation across 

space, which is amplified by the presence of environmental barriers (e.g., roads or forests 

(Hemme et al. 2010)). Host-mediated movement of pathogens or mosquitoes across a landscape 

also can also drive the spatial dynamics of pathogen transmission as has been observed for a 

multitude of mosquito-borne disease systems of humans (dengue (Hlaing et al. 2010, Araujo et 

al. 2015), West Nile virus (Brownstein et al. 2002), malaria (Marshall et al. 2016) and wildlife 

systems acting as sylvatic reservoirs or potential targets of novel introductions of VBD 

(Valentine et al. 2019, 2020a, Hanley et al. 2024). The connectivity of humans and animal hosts 

will determine how individual hosts move across space and if local mosquito populations and 

environmental conditions vary in suitability geographically. Meta-populations can arise in these 

VBD systems with source (highly suitable conditions) - sink (unsuitable conditions) transmission 

dynamics. An example of a host-mediated source population connecting to increased VBD is the 

observed amplification of Dengue in rural Thailand that is driven by a relatively small subset of 

houses in the community (Yoon et al. 2012). 

For human transmitted vector-borne pathogens, socio-economic and demographic 

changes across space will further influence the risk human populations experience in acquiring 

mosquito-borne pathogens (Dowling et al. 2013). These include variation in housing structure, 

permeability to mosquitoes (e.g., presence of screens, curtains, and enclosed spaces), water 

storage practices, access to public health resources, and public sanitation (Caprara et al. 2009). In 

urban environments, this heterogeneity can arise across relatively small spatial scales (Figure 

2.2) and interact with environmental variables such as urban heat island effects (Araujo et al. 

2015) and create human-provided larval habitats in the case of water storage, potted plants, and 

discarded household items (Wilke et al. 2019). Construction sites, although temporary, provide 
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ample habitat for multiple mosquito populations due to high amounts of standing water, resting 

habitat, and often unprotected human laborers to feed on (Wilke et al. 2018). Further, these sites 

do not necessarily receive the same level of entomological and epidemiological surveillance as 

permanent populations in cities. Importantly, human populations of lower socio-economic 

standing tend to exhibit the highest burden of acquiring and transmitting mosquito-borne 

pathogens (Dowling et al. 2013, Little et al. 2017, Goodman et al. 2018). 

Overall, it is the combined effects of a multitude of environmental parameters, pathogen 

dispersal, and social-ecological processes that result in the spatial patterns of transmission risk 

and disease incidence (Figure 2.1). To accurately predict the spatial and temporal epidemiology 

of a given vector-borne disease, incorporating data describing each process at the appropriate 

spatial resolution for transmission and control is critical. Current challenges that constrain the 

ability of mathematical models to predict spatial patterns of disease incidence arise because these 

processes exhibit variation at different spatial scales. Data collected on these processes can be 

aggregated at inappropriate spatial resolutions, and determining the relative importance of 

various mechanisms of pathogen dispersal (e.g., vector or host-mediated) is a non-trivial 

undertaking. 

Modelling VBD Heterogeneity: Approaches and Applications 

Mathematical models of pathogen transmission are simplified explicit expressions of a 

given system, and when paired with appropriate validation, are an important tool in identifying 

the key sources of variation that drive host-pathogen dynamics. The need to model VBDs 

accurately across varied landscapes, host patterns, and vector ecologies is partly motivated by the 

severe detrimental impacts VBDs have on people, domestic animals, and wildlife. Modeling a 

VBD system allows researchers to identify links between mechanisms and patterns. Models are 
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also crucial for exploring potential vulnerabilities in transmission that can be targeted in disease 

or vector control efforts - ranging from pesticide applications and genetically modified vectors to 

larval habitat elimination, indoor residual spraying, and the provisioning of bed nets to affected 

communities. Thus, mathematical models are critically important for predicting the elements in a 

system that can be leveraged for control or management or used in forecasting the effects of 

certain control measures on disease cases (Figure 2.3) (Colón-González et al. 2021). Approaches 

to modelling these systems broadly separate into (i) mechanistic or (ii) statistical models that use 

different, but complimentary, approaches to better understand the factors driving spatial and 

temporal disease dynamics. 

Mechanistic Models 

Mechanistic models mathematically describe how different variables interact to 

determine VBD transmission.  Identifying links between individual-level components of the 

VBD system and population-level effects, such as the prevalence of infection, make these 

models informative for vector control efforts. The historic Ross-Macdonald model is an excellent 

example of the development and application of mechanistic models in understanding malaria 

dynamics and control (Reiner et al. 2013). The development of this simple yet powerful model 

helped identify key elements of the transmission cycle on which to focus disease control 

measures. The Ross-Macdonald model showed that reducing mosquito longevity yielded the 

largest decreases in the basic reproductive number, R0, due to fewer mosquitoes surviving each 

day, which decreases the mosquito-human population ratio and density of mosquitoes living long 

enough to become fully infectious. The basic reproductive number (R0) describes the number of 

secondary infections resulting from one initially infected vector given a susceptible host 

population; the Ross-Macdonald model helped derive epidemiological expressions describing 
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VBD systems like the entomological inoculation rate and vectorial capacity (Figure 2.3). The 

model’s estimations have informed many of the interventions against mosquito-borne disease 

used today such as indoor residual spraying and insecticide treated bed nets targeting the adult 

stages of mosquito vectors (Reiner et al. 2013, Smith et al. 2021).   

To date, mechanistic modeling approaches have incorporated environmental variables 

governing mosquito population dynamics that vary spatially and temporally. To do this, 

laboratory experiments quantify relationships between key processes that determine transmission 

and an environmental factor of interest, such as temperature. Field studies are also useful for 

quantifying how temperature (Mordecai et al. 2017a, Ryan et al. 2021), rainfall (Auger et al. 

2008, Fukui et al. 2022), and relative humidity (Brown et al. 2023) predict changes in mosquito 

densities. These relationships can be incorporated into process-based mathematical models using 

functional relationships to couple a rate to an underlying environmental variable (Figure 2.3). 

These models can then be used to predict how environmental suitability for the mosquito or the 

pathogen, disease incidence, or disease prevalence varies at fine (within city (Wimberly et al. 

2020)), regional (within country), or global scales, as well as temporally with season, 

interannually (Shutt et al. 2022), or in response to future climate change (Tesla et al. 2018, 

Colón-González et al. 2021).  

Another approach to modeling spatial heterogeneity builds on multi-patch models. Multi-

patch models formalize spatial variation more explicitly by simulating the dynamics of different 

host and vector populations that exist in distinct demographic or environmental conditions (Nipa 

and Allen 2020, Wu et al. 2023). These models can then explore how variation in patch 

characteristics and host connectivity across patches influences transmission dynamics (Auger et 

al. 2008, Vyhmeister et al. 2020). In VBD systems, multi-patch models have led to insights 
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regarding the importance of human movement and residence time on VBD infection rates(Lee 

and Castillo-Chavez 2015, Barrios et al. 2018). These insights include understanding how 

occupational commutes between human populations can amplifying VBD case incidence across 

a region or even whether the directionality or residence time of inter-patch movement varies the 

resulting epidemic size (Lee and Castillo-Chavez 2015, Barrios et al. 2018). Similarly, spatially 

explicit models of vector elimination efforts can predict the competing effectiveness of different 

methods (i.e. aerial spraying vs. door to door reduction of larval breeding habitats) (Demers et al. 

2020).  

Individual and agent-based models simulate the encounter rates of individual hosts and 

vectors through different decision and encounter probabilities as they move through 

heterogenous environments (Wu et al. 2020). Such approaches capture some of the stochasticity 

evident in real life systems, especially in low density transmission situations where individual 

vector or host actors can have major impacts on the persistence of pathogens (Smith et al. 2018). 

Understanding the behavior of an individual mosquito moving through a heterogenous 

microclimate as it encounters resources, seeks hosts, oviposits, and encounters vector control 

measures has been simulated in some cases (Menach et al. 2005, Gu and Novak 2009). Still these 

approaches rely on assumptions of scale and the parameterizations of the vector’s interactions 

with its environment, including obstacles, mortality, and host quality. Agent-based models can 

also account for variation in host population density, movement patterns, and medical 

interventions such as potential vaccines (Carter 2002, Reiner et al. 2014). Decisions on relevant 

heterogeneities require knowledge of a VBD system, such as household clustering and vector 

dispersal ranges (Wu et al. 2023), as well as the particular human or environmental context that 

the vector exists within. 
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Mechanistic models, whether they describe individual vector and host actions or the 

categorical states of populations interacting with a VBD, are particularly useful for predicting 

transmission in novel conditions for which observations are limited or do not exist. However, 

one of the constraints mechanistic models face is that parameterization can be data intensive, 

requiring detailed experimental work. It can also be difficult connecting experimental results to 

field observations in natural settings, making model validation challenging. For example, spatial 

variation in the application and effectiveness of vector control measures, can have unexpected 

consequences on the sporozoite development rate and the mosquito biting rate (Auger et al. 

2008, Perkins et al. 2013, Gao et al. 2014, Smith et al. 2021). Thus, it is critical to determine key 

environmental factors that determine transmission and the spatial scale across which they vary 

most.  

Statistical Models 

Statistical models make inferences using observed relationships between mosquito 

densities or disease incidence and different environmental or socio-economic metrics that vary 

spatially and are hypothesized to affect transmission (Dowling et al. 2013, Little et al. 2017, 

Morgan et al. 2021). Statistical models characterizing patterns over space and time can also 

explore lagged or non-linear relationships. Additionally, statistical inference from observational 

field data relates closely to real-world transmission (Heersink et al. 2016, Fairbanks et al. 2024). 

Statistical methods are particularly useful in forecasting and require less a priori knowledge of 

the mechanisms governing variation in mosquito densities or disease transmission, so may be 

more appropriate than a purely mechanistic approach when the ecology of a vector, for example 

is not well-known (Williams et al. 2008, Bondo et al. 2023, Whittaker et al. n.d.). This approach 

can also reveal what combinations of covariates (e.g., environmental, socio-economic, 
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connectivity) are important for predicting the spatial patterns of disease cases (Becker et al. 

2014, Shutt et al. 2022, Bondo et al. 2023). 

The most commonly used families of statistical models include ecological niche and 

species distribution models. Correlative species distribution models (SDMs) use multiple 

regression approaches to infer how the observed distribution of a species or a pathogen varies as 

a function of geographically referenced climatic predictor variables (e.g., temperature, rainfall, 

relative humidity). In mosquito-borne disease systems, SDMs can generate maps of 

environmental suitability for a given mosquito species or for pathogen transmission across 

regional (Cianci et al. 2015, Barker and MacIsaac 2022) and continental areas (Rogers et al. 

2014, Khan et al. 2020), such as has been demonstrated for Zika and Dengue virus (Messina et 

al. 2016, Colón-González et al. 2018). These approaches allow researchers to examine how well 

different combinations of covariates, and their relationships, match the data using model-fit 

metrics like the Akaike Information Criterion (AIC). Choosing the most important elements that 

describe a VBD system can be complemented with data reduction methods such as Principal 

Component Analysis (PCA), while more general checks for collinearity can help reduce the 

number of factors needed to understand transmission. Another family of statistical models 

includes machine learning algorithms, which are mathematical methods (e.g., linear regression, 

decision trees, random forest, etc.) that find patterns in a set of data. Machine learning algorithms 

are trained on a particular set of data and consider various covariates of interest. After training, 

the resulting function with rules and data structures is called the trained machine learning model. 

The trained, optimized model can then be used to predict these patterns in a previously unseen 

dataset. These models perform very well at near-term forecasting of temporal and spatial patterns 



25 

 

in mosquito abundance or disease cases, and can be updated easily as new data become available 

(Laureano-Rosario et al. 2018, Zhao et al. 2020). 

While statistical models can make inference with less knowledge of the vector and 

pathogen biology and can be operationalized faster, it is important to couple statistical inference 

with biological knowledge, especially if non-linear or more complex processes are at play. For 

example, strong correlations between different environmental covariates over time could hide 

true causal relationships and challenge the ability to identify the biologically meaningful drivers 

of VBD dynamics. Further, species distribution models require data not only on species 

presences, but also of absences - and for many systems, records of species absences are not 

commonly present in the literature. Finally, a general assumption of statistical models is that the 

species of interest is at equilibrium with their environment and that the environmental variables 

have been adequately sampled. Thus, applying statistical models to novel scenarios, such as in 

response to land use change, future climate change, or pathogen emergence can be problematic 

(Hay et al. 2009, Lessler and Cummings 2016).  

 Selecting the best modeling approach for understanding how spatial heterogeneity in 

relevant factors influence VBD dynamics often depends on the specific question and system of 

interest  (Madzokere et al. 2020). Short-term forecasts in focused areas can be managed highly 

effectively with statistical approaches that do not require much mechanistic information about a 

system if sufficient entomological or epidemiological data are available. In fact, Johnson et al. 

2018 (Johnson et al. 2018) demonstrates that mechanistic models performed well at predicting 

the seasonality of dengue cases but failed to predict large outbreaks because of error being 

introduced in anomalous years. Statistical models performed much better at predicting multi-year 

outbreaks because they phenomenologically matched the patterns from disease data alone. 
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Further, weighted averages of forecasts from super ensembles (e.g., multiple statistical models) 

can reduce model error by smoothing over variation across individual forecast scenarios. In 

contrast, mechanistic models are essential for understanding the biological drivers of VBD 

dynamics in novel scenarios and for anticipating the effects of vector control or other 

interventions on the VBD system (Kearney and Porter 2009, Cator et al. 2020, Ezanno et al. 

2020). Ultimately, both modeling frameworks are useful and provide complimentary insights 

that can inform and augment each other.   

 Moving the Field forward Conceptually and Practically 

The union of mechanistic and statistical approaches for species distribution modelling is 

becoming more prevalent in characterizing vector borne disease risk, leveraging broadly 

available remote sensing and temperature/humidity data with empirically identified steps in the 

ecology of VBD transmission involving the vector, the host, and the pathogen (Madzokere et al. 

2020). This provides more precise predictions of potential/realized ranges of VBD due to thermal 

responses (key for arthropod vectors) that will result from climactic shifts (Tesla et al. 2018, 

Ryan et al. 2021). Mindful application of mechanistic tools accounting for environmental and 

vector/host heterogeneity and of statistical models informed and parameterized by empirical 

examination of disease processes can overcome the pitfalls sometimes associated with these 

approaches on their own (Figure 2.4).  

Key to this approach is obtaining data appropriate to the spatial or temporal scale relevant 

to the ecology of a particular VBD system. Often fine-scale resolution data are lacking due to 

limited resources and the logistical challenges of widescale microclimate and vector monitoring. 

Scale mismatches between the processes driving transmission and the data used to validate the 

model can make it difficult to gain inference at a desired spatial scale or can obscure patterns that 
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arise at fine spatial scales. For example, modeling VBD transmission in urban environments 

predicts significant variation at very fine scales -  within tens of meters -  largely owing to 

thermal variability (Romeo-Aznar et al. 2024) and patterns of host population density (Romeo-

Aznar et al. 2022). Further, fine scale temporal modelling of vector systems, such as the 

Culicoides-spread hemorrhagic disease in whitetail deer, explains otherwise cryptic larger-scale 

patterns of VBD dynamics (Park et al. 2016). Insights gained from more complex mechanistic 

models of multi-vector or multi-host systems can then be used in conjunction with statistical 

models incorporating environmental variables to both predict and explain relevant levels of VBD 

risk regionally (Cleveland et al. 2023).  

Future modeling approaches should identify transmission parameters that are most tightly 

coupled to environmental variables in an established workflow (Figure 2.4)(Wimberly et al. 

2020). Furthermore, understanding heterogeneity in environmental processes that drive 

transmission, as well as determining vector and pathogen dispersal, will be critical for targeting 

surveillance and vector control strategies. If variation in vector-host contact rates occurs across a 

landscape, and if vector control measures such as larval source management (Smith et al. 2013) 

or adult control measures are applied unevenly or at inappropriate spatial scales, this can result in 

ineffective control (Rochlin et al. 2022, Romeo-Aznar et al. 2024). Alternately, identifying the 

most important elements of a patchy environment allows for more effective targeting of vector 

and host populations for emerging vaccines, vector sterilization, and broad insecticide 

spraying.  Genetic tools can be very useful for determining the spatial scales at which population 

structure is evident. Advances in single nucleotide polymorphism (SNP) microarrays, affordable 

whole-genome sequencing, and microsatellite markers allow for very precise characterization of 

a vector species’ admixture history(Bosio et al. 2005, Palatini et al. 2020, Carvajal et al. 2020, 



28 

 

Wei et al. 2022, Cosme et al. 2024), telling a story of invasions and introductions across 

heterogenous landscapes including potential barriers to dispersal (Hemme et al. 2010, Wilke et 

al. 2017, Regilme et al. 2021). 

Concluding Remarks 

Significant computational and methodological advances have been made in recent years 

harnessing computing power and the wide collection of empirical data, allowing researchers and 

public health professionals to craft increasingly sophisticated models of vector-host-pathogen 

systems. Key to maintaining this momentum is continuing to collect data on the relevant drivers 

and variables in a complex system to characterize the transmission process, but with more 

mindfulness of the spatial scale across which these processes are relevant. Recent advances in 

data collection instruments, include the use of embedded sensors, wearable devices, sophisticated 

survey tools, and cloud-based platforms now allow for real-time data capture of spatial and 

temporal heterogeneities and deeper insights from diverse sources  Systems with increased 

human dispersal may alternatively approach panmixia as people can sample more environmental 

space with modern travel, creating VBD corridors of spread following societal movement 

patterns (Marshall et al. 2016, Saucedo and Tien 2022). Studies that synthesize both mechanistic 

approaches and statistical techniques are crucial for future predictive models of VBD systems. 

Finally, improved mathematical and statistical models of VBD as well as AI-powered machine 

learning techniques and big-data analytics can indicate fundamental pitfalls such as scale 

mismatches and overlooking important ecological phenomena underpinning VBD transmission.  
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Figure 2.1. Vector and human host variables across spatial scales affecting the modelling of vector-borne disease.  

Human host and vector variables that determine vector dispersal and pathogen transmission are highlighted in dark red boxes. Factors 

that determine the relevant scale for describing a VBD system often depend on the scale at which the vector disperses and interacts 
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with the host, which in turn depends on vector life history and the movement of infected persons. In human VBD systems, human 

movements as well as trade and transport of goods can cause the introduction of vectors to novel locations (variables boxed in red). 

Key variables for the mosquito vector and for human hosts that are heterogenous at finer spatial scales are boxed in blue.  
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Figure 2.2. Common human-made mosquito habitats in a heterogenous urban 

environment. (A) Urban landscape in the island nation of St Kitts and Nevis, a location with 

multiple endemic vector-borne diseases spread by mosquito populations such as Dengue virus 
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and Chikungunya virus. Larval mosquito habitats vary dramatically at fine spatial scales and are 

exposed to significantly different microclimates: (B) rainwater storage barrel, (C) discarded used 

tire, and (D) drainage along urban street. Agricultural rain barrels offer more persistent water for 

larval habitats than roadside drainage in urban areas, increasing vector abundance in rural 

regions. However, a more ephemeral used tire larval habitat may produce fewer mosquito 

vectors but be closer to population centers, increasing contact rates between vectors and hosts. 
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Figure 2.3. Applying mechanistic models of microclimate impacts on vector-borne disease transmission. (A) The Ross-

MacDonald Model describes the basic reproductive number of a VBD system, derived from and traditionally applied to mosquito 

vector-borne disease systems. Variables expected to be significantly heterogenous in space and time are displayed in red: vector 

abundance (NV), biting rate (a), vector susceptibility (bV), vector daily survivability (p), and pathogen incubation period (n). These 

variables can be informed by empirical field collected microclimate data. Model variables not expected to vary greatly due to 
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heterogenous microclimates are displayed in blue: host abundance (NH), host susceptibility (bH), and host recovery rate (r). (B) Map 

representing months of Zika transmission suitability informed by empirical organismal level thermal response data derived from 

laboratory experiments. The resulting risk map represents a more accurate expression of months of Zika virus susceptibility than a 

purely statistical model portrays. Reproduced and adapted from Tesla et. al. (2018), represented here in accordance with the Creative 

Commons Attribution License. 
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Figure 2.4. Recommended workflow for informing multi-scale models of VBD systems. The demonstrated workflow pictured here 

elegantly incorporates field-derived parameters into a spatially informed model of vectorial capacity. It also represents the synthesis of 

both statistical approaches. Data inputs are displayed in orange boxes, models are displayed in green boxes, and model outputs are 
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displayed in blue boxes. Adapted from Wimberly et. al. (2020), represented here in accordance with the Creative Commons 

Attribution License.  
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CHAPTER 3 

MICROGEOGRAPHIC VARIATION AND LAND COVER INFLUENCES ON MOSQUITO 

VECTOR POPULATIONS INCLUDING THE MEDICALLY SIGNIFICANT AEDES 

ALBOPICTUS ACROSS AN URBAN GRADIENT IN ATLANTA, GEORGIA2 
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Abstract  

Empirical evidence in recent years has emphasized the importance of microclimate in 

influencing the urban adapted and anthropophilic mosquito species Aedes albopictus, a 

significant vector of disease worldwide. Environmental variables like temperature, humidity, 

canopy cover, and impervious surface cover change as landscapes urbanize, and these factors are 

heterogenous within the geographic scale that Ae. albopictus experiences its environment. This 

study examines microclimate variables predicted to influence vector-borne disease risk as 

modulated through impacts on mosquito abundance. We distributed temperature and relative 

humidity data loggers across 12 sites in Atlanta, GA, USA, covering a range of impervious 

surface coverage. Microclimate measures were matched with monthly adult mosquito trapping 

and larval habitat surveys from Jun-Oct for two consecutive years. Principal component analysis 

and mixed-effects models were used to identify the most significant environmental variables and 

their respective influences on adult Aedes albopictus abundance and larval habitat density. 

Results showed that impervious surface cover and daily temperature ranges with 14-day lags 

predicted greater adult Ae. albopictus abundance, whereas mosquito abundance decreased with 

greater minimum relative humidity. Larval habitat density increased with canopy cover across 

sites. Collectively, our findings predict that Ae. albopictus in urbanizing landscapes are 

supported by a mosaic of residential, commercial, and forested areas. We speculated that adult 

mosquitoes are attracted to residential and commercial areas with higher human host abundance, 

whereas larval development depends on greater forest cover. 

Introduction 

Human alteration of landscapes can affect the abundance, distribution and characteristics 

of aquatic larval habitats and the development of container breeding mosquitoes of medical 
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significance, including the globally invasive Asian-tiger mosquito Aedes albopictus. This species 

was first identified in the United States in 1985 following an invasion facilitated by the used tire 

trade from Asia, and by 1994 all counties in the state of Georgia had reported the presence of Ae. 

albopictus (Womack et al. 1995). Ae. albopictus is a competent vector for many arboviruses 

including the Dengue, Chikungunya, and Zika viruses. From its ancestral origins in Southeast 

Asia, this species has spread globally to all continents except Antarctica. Species distribution 

models predict global climate change shifting the range of Ae. albopictus northwards (Rochlin et 

al. 2013, Kraemer et al. 2015, Laporta et al. 2023) while also moving the transmission risk of 

various arbovirus into regions not accustomed to these arboviruses (Tesla et al. 2018, Leta et al. 

2018, Ryan et al. 2021, Gloria-Soria et al. 2021, Bohers et al. 2024). Ae. albopictus is also 

known to prefer both general mammalian and specifically human hosts across sylvatic/rural, 

residential/suburban, and urban environments, potentially with evidence of different feeding 

preferences depending on the physical environment and host community composition (Richards 

et al. 2006, Valerio et al. 2010, Faraji et al. 2014). 

Given the importance of Ae. albopictus, it is critical to understand the factors that affect 

its distribution and abundance to inform surveillance and control efforts as well as to anticipate 

future spread. The distribution and abundance of Ae. albopictus depends on abiotic and biotic 

variables that determine their development rates, population growth, and daily survival (Alto and 

Juliano 2001, Delatte et al. 2009, Brady et al. 2013). These variables directly affect mosquito life 

history traits, and effects on juvenile stages can carry-over to affect adult traits (e.g., body size 

(Gunathilaka et al. 2019, van Schoor et al. 2020), reproduction (Christiansen-Jucht et al. 2015, 

Ezeakacha and Yee 2019, Salim et al. 2023), as well as pathogen susceptibility (Westbrook et al. 

2010, Alto and Bettinardi 2013, Moller-Jacobs et al. 2014, Murdock et al. 2014b, Evans et al. 
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2018, 2020)). Specifically, temperature and relative humidity are critical determinants of Ae. 

albopictus population dynamics (Murdock et al. 2017, Wimberly et al. 2020). Temperature 

variation has non-linear and unimodal effects on mosquito life history traits with intermediate 

optima (Murdock et al. 2017, Evans et al. 2018, Mordecai et al. 2019). While relatively 

understudied, relative humidity is also important (Murdock et al. 2017, Brown et al. 2023). Daily 

fluctuations in these two environmental variables have added effects not necessarily captured in 

current experimental work (Evans et al. 2018, 2019, Wimberly et al. 2020). These effects, in 

turn, influence how mosquito population dynamics vary across space with land use and season 

(Richardson et al. 2011, Mordecai et al. 2017a, Evans et al. 2019, Wimberly et al. 2020). 

Urbanization, and the heterogeneity in land use associated with the urban environment, results in 

temperature and relative humidity variation across urban landscapes at spatial scales not reflected 

by local weather station data. The built up environment is often associated with increases in 

temperature and decreases in relative humidity through heat island effects resulting from the 

thermal properties of urban structures (Arnfield 2003, Mohajerani et al. 2017), reduced air flow, 

waste heat, and reduction in vegetation and evaporative cooling (Tan et al. 2018). Some 

investigations into VBD in cities also directly implicate expanding urban heat island effects in 

increasing Dengue virus or malaria incidence (Araujo et al. 2015, Akhtar et al. 2016, Misslin et 

al. 2016, Santos-Vega et al. 2023). The relationship between mosquitoes, urban temperature 

effects, and resulting impacts on VBD has been shown to be both significant and heterogenous at 

scales of 100m to several km (Nagao et al. 2003, Murdock et al. 2017, Evans et al. 2018, 2019).  

In addition to abiotic variation, the quality and quantity of larval habitats is another key 

driver of Ae. albopictus population dynamics (Evans et al. 2019). For mosquitoes that thrive in 

containers, human activity can directly increase available larval habitats via the increase in the  
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prevalence of artificial container habitats that often accompanies human habitation, thus 

facilitating mosquito population growth (Li et al. 2014, McClure et al. 2018), and this can vary 

with socio-economic status. For example, lower socioeconomic levels may involve a lack of 

indoor plumbing and necessitating the household storage of water in containers, while decreased 

garbage collection leads to more larval habitats (Nagao et al. 2003). Alternatively, higher socio-

economic status could increase gardening activities and potted plants prevalence, increase local 

vegetation and aquatic container habitat. Additionally, higher humidity levels may be seen in 

austere housing more open to the outdoor surrounding, facilitating mosquito vector exposure to 

the inhabitants (Baruah and Rai 2000).   

In this study, we examine  microgeographic variables and land cover changes that 

facilitate Ae. albopictus populations in urban environments, using measures of mosquito 

abundance and larval habitat density as indicators. We accomplish this by investigating sites with 

varying impervious surface and forest cover in Atlanta, GA, USA. We placed multiple 

temperature and RH loggers across each site to capture microgeographic variation at the scale an 

individual mosquito experiences environmental heterogeneity. Paired with adult and larval 

mosquito surveys, we investigated the relationships between fine scale microclimate variables 

and land cover characteristics with Ae. albopictus abundance and distribution as well as positive 

larval habitat density. We predicted that larval mosquitoes would be more common in areas with 

higher canopy cover owing to more potential breeding siters, and that adult abundance would 

increase in residential and commercial areas with greater human activity and density. 
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Materials and Methods  

Study site selection: 

We collected data between Jun-Oct in 2021 and 2022 in Atlanta, Georgia, USA, between 

the city center and the eastern perimeter covering a 15x15km area. The study area contained 

diverse urban land uses including commercial centers, forested parks, and suburban residential 

zones (Figure 3.1). Twelve survey sites were selected to capture the full spectrum of impervious 

surface coverage, maintaining at least 1600 meters between them. Previous research supports 

that impervious surface coverage strongly impacts microclimate in urbanized area, so this was 

the primary selection metric (Evans et al. 2018, Wimberly et al. 2020). The National Land Cover 

Database 2016 dataset was used to generate an impervious surface map with ArcGIS ArcMap 

10.7.1 (ESRI) with each site’s impervious surface calculated as the average impervious coverage 

within a 500-meter radius of the site center. Each site was also characterized by canopy cover 

over a 100-meter radius from the center of the site. The different radii for these landscape 

characteristics were informed by previous work in Athens, GA (Murdock et al. 2017, Wimberly 

et al. 2020) indicating microclimate effects between 1km to capture urban heat island effects 

down to 150m to ensure sensitivity to microhabitat variation. We chose a 500m radius moving 

focal window to avoid excessive homogenization of site characteristics and to capture any effects 

of heat islands. Sites ranged from 5% to 71.8% impervious surface cover and 0.4% to 95.2% 

canopy cover (Table 3.1). An initial set of potential sites covering the range of impervious 

surface values was initially chosen across the gridded area, with final site selection informed by 

accessibility, ability to gain site permissions, and to ensure sites were independent of each other 

(minimum distance between sites was 1670 m). Each of these were delineated by 100-meter 

radius from a central point in accordance with previous studies showing most female Aedes 
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albopictus dispersal occurs within that range (Figure 3.1)(Bellini et al. 2010, Marini et al. 2010). 

See Table 3.1 for the full list of survey sites, site codes, coordinates, and associated land cover 

measures. Bounds of the entire study area were approximately 12x12 kilometers, covering 

predominantly the eastern half of metro Atlanta across varying levels of urban development from 

paved commercial centers and parking lots to forested parks and suburban neighborhoods. 

Access and sampling in municipal areas was authorized by local Dekalb County officials. Other 

site permissions in residential or commercial areas were granted by homeowners, local business 

owners, and private park managers.  

Aquatic larval surveys: 

We surveyed each site for aquatic larval habitats monthly, with surveys for the 12 sites 

separated 30 days and avoiding extreme rainfall events. Each month, we visually inspected every 

site for standing water or potential container habitats using a walking survey. We recorded  the 

long axis, short axis, depth GPS coordinates, canopy cover and description of all larval habitats 

noted per site. We estimated canopy cover with a spherical crown forester densitometer with 

values rounded to the nearest 10%. If we identified larvae or pupae in a particular habitat, we 

used a 1.5 cm volume transfer pipette to collect the mosquito larvae/pupae. Each habitat for a 

sampling month/site had a 50 mL Falcon tube with a thin mesh cover and a cotton ball stopper. 

We collected a subset of up to 25 larvae/pupae from each habitat to avoid destructive sampling 

and to preserve the site population size in subsequent sampling months. Sampled larval tubes 

contained the original habitat’s water (20-40 mL) along with 5 mg of dry flake fish food (Tetra 

Cichlid) to support development. We added deionized water as needed to prevent evaporation of 

water within the larval tube. Larvae were reared in tubes specific to a particular larval habitat and 

placed in a Percival Scientific incubator at 28.0C +/- 0.5C and 80% +/- 5% RH with a diurnal 
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program (14:10 day/night). We checked tubes daily for adult emergence, which were 

immediately placed in a -20 C freezer. Sex and species was determined after freezing following 

Darsie and Ward prior to long term storage at -80C (Darsie and Ward 2005).  

Adult trapping: 

We sampled Adult mosquito monthly from June to October in both 2021 and 2022 field 

seasons in conjunction with larval surveys to measure abundance and community composition of 

mosquitoes at each study site. We deployed Biogents Sentinel 2 traps (BGS) (Biogents AG, 

Regensburg, Germany) for adult trapping and placed in the center of each site for a 24-hour 

period in each sampling month. We baited the traps with octanol lures (Biogents AG, Germany) 

and 1000g of dry ice placed in an open insulated water bottle to generate a CO2 plume. The traps 

were powered by 12V 1400 mAh batteries, which we ran continuously for each 24-hour period 

to reduce the risk of escape. At the end of each sampling period, we sealed the catch bag with 

captured mosquitoes within a zippered plastic bag and immediately stored in a cooler of dry ice 

until storage in a -20 C freezer for later identification. Sexing and identification to species was 

performed following Darsie and Ward prior to long term storage at -80C (Darsie and Ward 

2005). We recorded the date of each collection as the day the trap was set. Occasionally traps in 

public places were stolen, tampered with, or destroyed, necessitating a subsequent adult 

sampling period as close to the larval survey date as possible.   

Microclimate measurement: 

Because weather station data do not accurately reflect the climate conditions mosquitoes 

experience (Cator et al. 2013, Paaijmans et al. 2014, Murdock et al. 2017, Wimberly et al. 2020) 

due to variation in land cover and surrounding land use, we deployed six data loggers at each site 

(n=72 total) to record daily variation in temperature (T) and relative humidity (RH). At each site, 
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four RFID Track-It loggers by Monarch Instruments (Amherst, NH) were deployed along with 

two MX2300 loggers and solar radiation shields by HOBO (Onset). Logger models were mixed 

due to the limited availability of the MX2300 models, which had enhanced data download 

capabilities and measurement accuracy/resolution (T accuracy of 0.2C vs 1.6C and RH 

accuracy  2.5% vs 3%; T resolution of 0.01C vs 0.5C and RH resolution of 0.01% vs 0.5%). 

Loggers were placed in full shade at 1m high affixed with zip ties to vegetation and with solar 

shields for loggers exposed to direct sunlight. The loggers recorded T and RH readings every 15 

minutes continuously. Some loggers were lost due to removal by the public or otherwise 

destroyed during the sampling period. Loggers would be replaced as soon as the loss was 

identified, and all sites had coverage of at least 5 loggers for each day. For each logger on each 

day, the average, maximum, and minimum Ts as well as the DTR were calculated. Additionally, 

the daily average, maximum, and minimum RHs were calculated along with the daily RH 

fluctuation. These daily temperature and RH values were then averaged over the preceding 7 and 

14-days from the last survey data to account for different lags associated with mosquito 

development times for each site. Intra-site variation between loggers was small for temperature 

(0.576 C) and larger for RH (12.934%).  

Data analysis: 

To determine the effect of different microclimate variables on Ae. albopictus abundance, 

a principal component analysis (PCA) was performed alternatively using 7-day and 14-day lags 

for the RH (minimum, maximum, average, and fluctuation) and temperature (minimum, 

maximum, average, and DTR) variables after normalization. This PCA identified the strongest 

microclimate and landscape predictors of site variation with which to test in downstream models 

of adult Ae. albopictus abundance and larval habitat density. Larval habitat density specifically 
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refers to a larval habitat that was positive for mosquito larvae, and a larval habitat was 

considered positive for larvae if there were any mosquito species identified. This was because 

almost all larval habitats that had non-Ae. albopictus mosquito larvae also had Ae. albopictus 

larvae present.  

The variables explaining the most variation for the 7- and 14-day lags, using a cos2 

quality of representation cutoff of 0.2, were then used to test different generalized linear mixed 

effects models predicting adult Ae. albopictus abundance and larval habitat density for immature 

mosquitoes. Adult abundance of Ae. albopictus was chosen as the primary response variable 

representing population size, while larval habitat density at a particular site was used as a proxy 

for site suitability for mosquito populations. The distribution of the adult count data followed a 

negative binomial pattern (mean = 28.6, variance = 3727.1). Larval habitat density was likewise 

determined to follow a negative binomial distribution, although with a less extreme 

mean/variance ratio (mean = 1.3, variance = vs. 3.4). Models predicting for these response 

variables fitted to a negative binomial distribution outperformed those fitted to a poison 

distribution.  

The glmmTMB package (version 1.1.10) in R was used to build different mixed effect 

models, and model performance was assessed by comparing AIC values, degrees of freedom, 

convergence, and the significance of difference from a null model with only random effects 

tested with likelihood ratio tests. Site and Month/Year were the random effects for each model 

tested, with Month nested within Year. Microclimate temperature and RH variables exhibited 

non-linear relationships with adult abundance and larval habitat density, so these variables 

transformed using a basis spline (b-spline) function for fitting into a linear model. After 

normalization or microclimate variables, basis-spline fitting using the “s()” function in the 
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“splines” R package (version 3.6.2) (R Core Team 2024) was performed on each temperature 

and RH variable in order to improve model convergence. Canopy cover and impervious surface 

coverage also showed a nonlinear effect with larval habitat density and was also transformed 

with a b-spline for the larval habitat density models, while the relationship was more linear 

versus adult abundance. Model fit was tested in the univariate models with and without b-splines 

assigned to the microclimate variables to ensure AIC values and model convergence improved. 

Dispersion and uniformity for each model was tested with the DHARMa R package (version 

0.4.7) (Hartig 2024). The fixed effects tested as predictive of adult abundance and larval habitat 

density were chosen according to the most important elements of the first loading of the PCA. 

Mixed-effects models with these different microclimate variables and combinations of 

microclimate variables were then used to investigate the most important predictors of Ae. 

albopictus abundance. Predictor variables that were highly positively or negatively correlated 

were typically not placed in the same model to avoid the confounding effects of extreme 

covariance between effects. Although RH terms were correlated with DTRs for both 7-day and 

14-day lags (negatively for minimum/average/maximum RH with DTR, positively for RH 

fluctuation and DTR), models with both RH and DTR were tested due to the likely importance of 

both RH and DTR in this system. Adding a term in the mixed effects model to account for the 

interaction between RH and DTR typically improved model fit, but the interactions were not 

significant. Larval habitat density was also added as a fixed effect for the adult abundance model 

to account for the biological importance of larval habitat availability in driving population size.  

For predicting both adult abundance and larval habitat density, a total of 34 mixed effects 

models were tested to evaluate what combinations of fixed effects that best predicted their 

respective response variable. The seven best performing adult abundance models and the three 



48 

 

best performing larval habitat density models are displayed in Table 3.3. The 10 other 

temperature and RH microclimate variables (maximum, average, and minimum temperature; 

maximum and average RH) with both 7-day and 14-day lags were also tested for performance 

against the multivariate models for both adult abundance and larval habitat density for a total of 

an additional 20 models. However, none of these univariate models outranked the multivariate 

models for predicting adult abundance. Larval habitat density was then tested as a univariate 

predictor of larval population density independent of adult abundance, and the univariate models 

here performed better relative to other larval habitat models. See Supplementary Table A.4 for 

the full list of adult abundance model performance and Supplementary Table A.5 for the full list 

of larval habitat density model performance. 

Results 

Specimen and site overview: 

Over the two field seasons, a total of 17 species of mosquito and 4985 mosquito 

specimens were collected, and adult abundance by month peaked from August to September. 

Species richness at the site level ranged from 2 to 10, with an average value of 5.75 and a median 

value of 5.5 species per site. Across all sites, Ae. albopictus was the species that was the most 

prevalent, making up 91.84% of the specimens collected (n=867 larvae and n= 4578 adults) 

(Figure 3.2). A total of 133 unique larval habitats were identified, with 83 positive for mosquito 

larvae (44.8%). Of these larval habitats, 25 were classified as natural (ephemeral drainage 

ditches, stagnant pools, and tree holes) with 20 of these natural habitats being positive for 

mosquito larvae (79.9%). The remaining larval habitats (n=108) were classified as artificial, 

meaning they were directly tied to human activities (e.g., trash containers, buckets, flowerpots, 

planters, stagnant fountains, and water storage tanks). Out of these artificial larval habitats, 63 
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were positive for mosquito larvae (58.3%). The average number of larval habitats for the sites 

was 11.1 with an average of 6.9 of these larval habitats positive for immature mosquitoes. Site 

FR had the most larval habitats (n=34) and site PPR had the second highest (n=26) larval 

habitats, with a correspondingly habitat positivity rate (occupied/total larval habitats) (FR=82.4% 

and PPR=76.9%). Sites FR and PPR also had the most Ae. albopictus larvae collected from them 

(FR: n=250 and PPR: n=214) (Figure 3.3a). Interestingly, despite the low habitat abundance and 

number of larvae collected from sites DD and NDS, these sites had the highest numbers of adult 

Ae. albopictus collected from them (DD: n=1301 and NDS: n=628) (Figure 3.3b). Ae. albopictus 

abundance increased through both seasons, peaking in August and decreasing through October 

(Figure 3.5). Similarly, larval habitat density increased through both seasons, peaking in August 

and decreasing through October (Figure3.7a).  

Over the field seasons, the minimum, average, and maximum temperature values across 

all sites increased together until July before decreasing together until October (Supplementary 

Table A.3 and Supplementary Figure A.1). Minimum, average, and maximum RH values over 

the field seasons likewise tracked together, peaking in August and decreasing until October 

(Supplementary Table A.3, and Supplementary Figure A.2). Averages for each site across the 

field seasons show site MD as having the highest average temperatures and site DD having the 

lowest average temperatures. The highest average RH were at site WG and lowest average RH at 

site DD (Supplementary Table A.2). Classifying the sites by degree of site imperviousness as 

low (<25%), medium (25-45%), and high (45-72%), high impervious sites showed a large degree 

of variation compared to medium and low, corresponding to higher DTR values. All levels of 

imperviousness had similar minimum average temperatures across the seasons (Supplementary 
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Figure A.3).  Low impervious sites showed the highest minimum RH values and high impervious 

sites showed the most variation in maximum RH values (Supplemental Figure A.4). 

Principal component analysis: 

Using 7-day lags, the first and second principal components captured 72% and  18.5% of 

the variability in the dataset, respectively. Using the cos2 quality of representation measures for 

PC1, the most important variables were the minimum RH, fluctuation in RH, average RH, DTR, 

canopy cover (Can100m: 0.263), and impervious surface (Imp500m: 0.228) (Table 3.2a). The 

average of daily  RHMIN and RHMEAN were strongly positively correlated (0.8879679), so only 

RHMIN was used to capture the effect of RH in the microclimate models since it outranked 

average RH in cos2. With the 14-day lags, the first principal component captured 77.2% and the 

second principal component 16% of the variability in the dataset. Using the cos2 quality of 

representation measures for PC1, the same measures as 7-day lags were the most important 

except with 14-day lags: fluctuation in RH, minimum RH, average RH, DTR, canopy cover 

(Can100m), and impervious surface (Imp500m) (Table 3.2b). Likewise, the mean daily RHMIN 

and RHMEAN were strongly positively correlated (0.8511583), so only RHMIN was used as the 

higher quality variable according to cos2 rank. See Supplementary Table 3.1 for a complete list 

of variable correlations and Supplementary Figures A.5 and A.6 for 7-day and 14-day lag 

variable scree plots, respectively.  

Generalized linear mixed effects models 

The temperature and RH variables were tested in univariate models to isolate any 

potentially strong indicators of adult abundance or positive larval habitats that existed 

independent of other variable interactions. None of these univariate models for predicting adult 

abundance outperformed the multivariate models for predicting adult abundance, suggesting the 
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importance of accounting for the effects of T, RH, and land cover variables together. Also, all 

models for adult abundance were tested with larval habitat abundance as a predictor, as this is 

biologically an important limiting factor for population sustainment. While larval habitat density 

was not a significant effect in the adult abundance models, it did however significantly predict 

the actual larval population size of each site in a separate model with just larval habitat density as 

a fixed effect. The close relationship between larval habitat density and actual number of larvae 

is expected given the reliance of identifying a positive larval habitat prior to sampling its larvae 

for the larval specimen count. While this is a less effective measure of population size than adult 

abundance since the larval habitats were not destructively sampled in order to minimize the 

month-to-month influence of sampling, it is potentially informative when accounted for in 

addition to more precise measures of adult abundance. For all models, Site and Month:Year 

(nested) were included as random effects. 

One interesting phenomenon is the disparity regarding high larval populations and larval 

habitat density vs adult population. This may suggest some movement of larval populations once 

they emerge as adults, especially considering mismatch between the sites with the greatest 

abundance of adults and the sites with the most larvae collected (Figure 3.3b). Alternatively, the 

imbalance between larval and adult abundance may be a consequence of whether a study site 

population was sampled immediately after a mass adult emergence somewhat synchronized by a 

rainfall event some days earlier. Additionally, larval abundance in of itself was not necessarily a 

direct representation of every larvae at a site, as larval habitats were not destructively sampled in 

order to mitigate potential month to month influences caused by local extirpation of larvae 

during the preceding sampling event. Larval habitat density as a response variable was most 

strongly predicted by the model just using canopy cover as a fixed effect. Testing other fixed 
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effects both alone and in combinations of T, RH, and landscape variables did not perform as 

well, judged by AIC values and significance of difference from the null model of larval habitat 

density.  

 The best performing model predicting adult abundance was a 14-day lag model (AIC = 

946.2) that incorporated the following fixed effects: daily RHMIN (p= 4.35e-06 *** ), DTR (p = 

0.000175 ***), and impervious surface (spatial resolution 500m; p = 0.007734 **). The second-

best performing model (AIC = 947.8) included the same fixed effects, but with the interaction 

between RHMIN and DTR incorporated in the model: daily RHMin (p= 0.00106 **), DTR (p = 

0.02188 *), impervious surface (spatial resolution 500m; p = 0.00912 **), and RHMin : DTR (p = 

0.51422 ). For this model, the RHMin and DTR interaction was not significant. For both of these 

models, the effects of Site, Month:Year were included as random effects (Table 3.3). 

Additionally, both of these models were significantly different from the null model of adult 

abundance (p = 0.005856 ** without the interaction term RHMIN : DTR and p= 0.009611 ** with 

the interaction term RHMIN : DTR). Adult mosquito abundance increased positively with 

impervious surface coverage (Figure 3.5b) and 14-day DTR (Figure 3.6a), while increases in the 

daily RHMin had a negative effect on adult abundance (Figure 3.6b). The best performing model 

for predicting larval habitat density was a univariate model (AIC = 292.7) with canopy cover 

(100m resolution) as a fixed effect (p = 0.0194*) and Site and Month:Year sampled as random 

effects (Figure 3.7b).  

Time Lag Performance 

The superior performance of 14-day lags for predicting adult abundance may be due to 

longer larval development times at the varying temperatures at the sites. Previous studies into 

development times for Ae. albopictus found egg to adult emergence times at 32C to be 9-10 
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days but as long as 35-40 days at 12C in controlled lab environments with constant 

temperatures (Briegel and Timmermann 2001). While this lower range of minimum temperatures 

was not seen until the end of each season in October when very few mosquitoes were caught, the 

average minimum temperatures did range from 20.5C to 16.57C in June through September, 

supporting that 14-day temperature lags may better capture the biological effects of temperature 

on larval development in this system.  

Discussion  

Mosquito Communities and Larval Habitats 

 The high proportion of Ae. albopictus in all mosquito communities in the study sites 

supports that this species is urban adapted and highly successful in the habitats tied to 

anthropogenic alteration of the landscape. Most larval habitats were artificial and associated with 

human activity, creating ideal habitats for an urban adapted container breeding species like Ae. 

albopictus. The most productive sites for Ae. albopictus were DD, NDS, GPR, and WG. Many of 

the larval habitats at these sites constituted flowerpots, small garden fountains, fishponds, and 

landscaping water containers. Regarding the most predictive microclimate variables, the best 

performing model of adult abundance incorporated impervious surface coverage at 500m, RHMIN 

with a 14-day lag, and DTR with a 14-day lag. The best performing model of larval habitat 

density only included canopy cover as a fixed effect. While this may be a result of more 

vegetation providing more standing water or more refugia for ovipositing adults. But there may 

also be an interesting socio-environmental interaction along with landscape effects for predicting 

larval habitat density. A possible explanation would be that sites representing higher income 

residences or maintained parks may also have increased canopy cover actively cultivated by the 

community, along with landscaping and decorative sources of larval habitat via flower pots and 
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sculptures. Additionally, larval habitat density was a significant predictor of larval specimens 

counts, but not of adult abundance, This suggests a degree of dynamic population movement 

across the urban landscape between immature and adult life stages. 

Variance of microclimate across land cover and over seasons: 

Temperature values increased over each season, peaking in July before decreasing 

through October (Supplemental Figure A.1). Similarly, RH values increased during each season, 

peaking in July and decreasing through October (Supplemental Figure A.2). The relationship 

between microclimate variables and land cover measures tended to be opposite in their 

directional effects on impervious surfaces and canopy cover. For instance, TAvg correlated 

positively with impervious surfaces but negatively with canopy cover, while RHAvg negatively 

correlated with impervious surfaces but positively with canopy cover. These relationships 

between microclimate variables and associated land cover types led to interesting effects such as 

impervious surfaces with RHMin and DTR variables predicting adult abundance, while canopy 

cover best predicting larval habitat density. Potentially different sites alternatively provided 

better habitat for adult or immature stages. 

Determinants of larval habitat density: 

As canopy cover was the strongest predictor of larval habitat density, the correlations of 

canopy cover with other microclimate variables is informative. Canopy cover had the strongest 

negative correlations with impervious surface coverage and RH fluctuation, while the strongest 

positive correlations were with RHMin and RHAvg. However, these microclimate variables were 

not significant predictors of larval habitat density, suggesting that the association of human 

activity with the cultivation of canopy cover in this urban environment may be a stronger 

determinant of larval habitat density than microclimate variables alone. Studies of Ae. albopictus 
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and Ae. aegypti populations in the US state of Florida found significant contribution of human 

supplied container habitats like cemetery flower vases, demonstrating how seemingly minor 

culturally driven alterations in an urban environment can have outsized roles in vector abundance 

(Leisnham and Juliano 2009, Leisnham et al. 2014).  

Determinants of Ae. albopictus abundance: 

The significance of impervious surfaces, RHMin, and DTR in predicting adult abundance 

supports the theory that urbanization increases the abundance of Ae. albopictus, with impervious 

surfaces having a strong positive relationship in the model. This land cover variable likely 

reflects a combination of urban heat island effects supporting faster development of mosquito 

populations and the physical construction of an environment suitable to an urban adapted species 

like Ae. albopictus. Additionally, impervious surface coverage did positively correlate with 

maximum temperature values (0.226), supporting urban heat island theory. The RHMin with a 14-

day lag had a negative relationship with adult abundance in the model, indicating lower relative 

humidity was associated with greater adult Ae. albopictus abundance and higher relative 

humidity correlated with less adult abundance. 

Empirical investigations have previously shown that increases in RHMin and RHAvg 

significantly decrease the probability of adult emergence from larval habitats (Murdock et al. 

2017). This effect suggests a role of RH influencing the physical characteristics of the aquatic 

larval habitats. The atmospheric physics of relative humidity interacting with liquid water makes 

reductions in surface tension a potential reason, as immature mosquito life stages rely on a 

minimum level of surface tension to properly feed, develop, and eclose. This is important enough 

to larval development that the mechanism of action for some larvicides is lowering surface 

tension of larval habitats (Nayar and Ali 2003, Dawood et al. 2020). As RH values increase, 
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surface tension tends to decrease (Pérez-Díaz et al. 2012). Furthermore, RH will decrease as 

temperature increases given a set amount of water vapor (US Department of Commerce 2025); 

this interaction with temperature makes teasing out the relative impact of each microclimate 

variable difficult, especially since an increase in RH coincide with rainfall events which may 

also flush out larval habitats (DeGaetano 2005, Dieng et al. 2012).  

The Ae. albopictus populations in this study positively increased with the magnitude of 

DTR values, but the thermal optimums for mosquito vector systems likely play a concurrent role 

in affecting population size. There is previous evidence of the magnitude of temperature 

fluctuations being important, with DTRs around 18C shown to reduce larval survival and adult 

fecundity (Carrington et al. 2013b) while also reducing Dengue virus infection rates (Lambrechts 

et al. 2011, Carrington et al. 2013a) in Ae. aegypti. The average DTR values in our study were 

above 18C at sites DD (18.2C), GPR (19.2C), and NDS (18.9C), all of which ranked high in 

adult Ae. albopictus abundance. This positive relationship may be explained by any negative 

impacts on immature mosquito survivability from large temperature fluctuations being offset by 

the positive demographic effects of faster generation times at warmer temperatures. Larger DTR 

values occurred in sites with higher average maximum temperatures at GPR (36.8C) and NDS 

(37.1C) when compared to the average maximum temperature across all of the sites (32.9C). 

The association of greater DTR values coinciding with larger mosquito abundances may be 

caused by the temperature regime that an individual mosquito experiences shifting into optimum 

metabolic ranges. This is seen in the increasing DTR values occurring later each sampling season 

coinciding with lower average temperatures in the fall, suggesting a thermal rescue effect in sites 

whose land cover characteristics theoretically enabled more time an individual has near its 

thermal optimum (Dee et al. 2020). DTR values positively correlated with impervious surface 
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coverage (0.462) and negatively with canopy cover (-0.482). Urban heat island effects are often 

partially ameliorated by planting vegetation (Soltani and Sharifi 2017), with canopy cover 

blocking the absorption of solar radiation that would otherwise be absorbed by low albedo paved 

areas and also allowing for more evaporative cooling (Howe et al. 2017). Parts of a city that are 

more urban are also observed to have greater diurnal peaks as they absorb solar radiation(Chang 

et al. 2021). Urban heat islands in growing municipalities have been associated with truncated 

diurnal variation, with minimum daily temperatures increasing faster than daily maximums 

(Merkin 2004). In the case of our study, however, temperature fluctuations actually were limited 

by increased vegetation and amplified by increased paved areas (Yan et al. 2023). The 

explanation of the disparity may have to due with varying size of urban heat islands between 

cities and the varying effects of vegetation on lowering daily maximum temperatures. 

The actual mechanisms by environmental temperature impacts Ae. albopictus populations 

are tied to the thermal physiology of this ectothermic system, which has well-documented 

thermal optimums regarding life history traits. For instance, in the Ae. albopictus system, higher 

eclosion rates have been observed under modest temperature fluctuations of 25C to 29C with a 

corresponding drop off in larval survival at 35C, indicating developmental benefits up until a 

thermal limit (Monteiro et al. 2007). This may also indicate higher potential vectorial capacity at 

sites with larger temperature fluctuations if they move into predictively modelled (Mordecai et 

al. 2017a, 2019, Huber et al. 2018, Shocket et al. 2020) or empirically validated (Shah et al. 

2019, Miazgowicz et al. 2020) pathogen thermal optimums resulting in the unimodal 

temperature-pathogen response curves expected in many vector-borne pathogen systems 

(Mordecai et al. 2017b, Brown et al. 2023). Overall, the dynamic nature of the urban 
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temperatures the mosquito populations in this study experienced show the important interplays of 

urbanization and vector population dynamics.   

The sites had a higher variation in RH with an average standard deviation of 6.07 vs 3.24 

in a similarly designed field study in a nearby, but smaller, Georgia city also using 

temperature/humidity loggers (Evans et al. 2019). This observation may be explained by site DD 

pulling the average variance up due to the high imperviousness of the site matched with a high 

canopy cover unusual for highly impervious locations in this study, as DD contained both an 

urban park alongside retail and municipal administration spaces. Site DD additionally had a 

much higher standard deviation of 18.2 in average RH fluctuations. Without site DD, the average 

standard deviation in average RH with 14-day lags was still 4.97, which may be a result of more 

RH variation in the larger urban landscape of Atlanta.   

A synthesis of the RH literature described in Brown et. al. (Brown et al. 2023) suggests 

greater longevity with higher RH, seemingly making the negative role of minimum RH on adult 

mosquito populations paradoxical. However, positive effects of RH on mosquito longevity are 

generally in regard to the adult life stage (Buckner et al. 2011, Asigau and Parker 2018), while 

negative effects seem to be limited to the larval and pupation life stages. The relative magnitude 

of RH on the different life stages, as well as any interactions between life stages via carry-over 

effects, would be informative future directions of research. The average minimum RH at the 

study sites ranged from 41.6% to 70% with an overall site average of 51.0%, and the average 

maximum RH for the sites was 98.4%. Although the body of research into the effects of RH on 

mosquitoes frequently implicates lower RH values with higher mortality at extreme RH 

measures (Schmidt et al. 2018, Brown et al. 2023), the Ae. albopictus in this field study with 

dynamic RH values likely only experienced RH levels outside their optimum range 
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intermittently. This may result in behavioral modification regarding timing of host seeking, 

preferred oviposition locations, and resting spot choice being shifted, causing potentially positive 

or negative impacts on abundance depending on other variables.   

Limitations: 

While the variables tested in the mixed effects models were chosen according to the 

principal component loadings describing the most variation between sites, they were often 

correlated to some degree with other variables. These correlations are important in that they may 

also describe the underlying mechanistic phenomenon driving positive larval habitat prevalence 

and adult Ae. albopictus abundance. For instance, impervious surfaces predicted adult abundance 

in the best mixed effects model, while canopy cover alone was the strongest indicator of larval 

habitat density. Still, canopy cover and impervious surface measures strongly negatively co-

varied (-0.848), suggesting that understanding canopy cover values of a location may may still 

inform our predictions of adult abundance while impervious surfaces may help predict larval 

habitat density. Furthermore, some of these correlations are likely tied to the relationships 

between relative humidity, temperature, and precipitation. The precipitation variable was not 

extensively evaluated in this study. Although most of the artificial larval habitats were 

consistently occupied by larvae to some degree throughout each field season, it is possible that 

sites with higher canopy facilitated the persistence of more larval habitats by virtue of retaining 

precipitation more than high impervious sites. 

Ae. albopictus is generally considered a weak flyer, with the average flight ranges largely 

be within 100 meters in some mark-recapture studies (Lacroix et al. 2009, Verdonschot and 

Besse-Lototskaya 2014). Still, some field trials have found dispersing Ae. albopictus recaptured 

at ranges from 200-300 meters (Bellini et al. 2010, Marini et al. 2010, Vavassori et al. 2019). 
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One study from Brazil showed female Ae. albopictus traveling over 1000m when released in a 

sylvatic habitat; these females were subsequently caught near human habitations, while females 

released near homes dispersed little (Maciel-de-freitas et al. 2006). This suggests that female Ae. 

albopictus are capable of moving distances of several hundred meters from their original larval 

habitats as they quest for preferred host feeding and oviposition areas. Future investigation is 

warranted into potential corridors of vegetative refugia (Lacroix et al. 2009) that may connect 

disparate mosquito populations. Future research may also include expanding the 100m radius 

search area to identify if there are any source populations near these sites with great differences 

in adult abundance and larval habitat density. 

Conclusions 

This study confirms the importance of land cover and microclimate heterogeneities in 

temperature and humidity concerning the prediction of adult abundance and the larval habitat 

density for the medically significant Ae. albopictus. Collecting climactic data at the scale of 

mosquito ecology can be used to identify likely variations in Ae. albopictus habitat suitability, 

although this approach is more resource intensive than using distant weather stations and 

remotely sensing imagery. The significance of microclimate variables as well as measures of 

human alteration of the landscape demonstrate the importance of continued environmental 

surveillance to identify the relative risk posed by disease vectors. Whether the apparent 

mismatch between larval habitat density and larval abundance vs adult abundance at some sites 

is actually caused by movement as opposed to pulsed emergence events tied to precipitation or 

other variables also poses a further avenue of study. To identify whether larger adult abundances 

are actually showing a recent mass emergence of larvae, more frequent sampling events within 

each month can be performed. Testing the relationships between precipitation data vs larval or 
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adult abundance may also be informative as well. Movement from ideal larval habitats to 

habitats favored by adults for reasons of refugia or host availability can be tested by tracking 

population dispersal through urban environments via mark-recapture methodologies. This may 

show potential source-sink dynamics associated with human activities and the urban landscape 

where resources like hosts, larval habitats, and vegetative refugia are varied. Increasing 

urbanization worldwide, along with global climate change, makes understanding the implications 

of these fine-scale environmental variables essential for targeted vector control and public health 

policy making. 
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Table 3.1. Study site names, locations, impervious surface percent coverage at a 500 m 

radius, and canopy cover percent at 100 m radius. Sites are ordered from lowest to greatest 

canopy cover. 
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Table 3.2. Principal component analysis quality of representation (cos2) values for PC1 in 

both a) 7-day and b) 14-day lag datasets. 
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Table 3.3. GLMM models predicting Aedes albopictus adult abundance and larval habitat density. Green cells represent models 

predicting adult abundance and blue cells represent the larval habitat density model. All models displayed converged, passed 

dispersion and uniformity tests, and were significantly different from the null model with only random effects tested via likelihood 

ratio tests. The model best describing adult abundance incorporated. Significance thresholds: p < 0.001 (***), p < 0.01 (**), p < 

0.05 (*). 
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Figures

 

 

 

Figure 3.1. Map of impervious surface coverage of the study area. Grey representing impervious 

surfaces derived from the National Land Cover Database (2019). Study site locations identified with 

Site ID and the 500m radius impervious surface area circumscribed in red.   
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Figure 3.2. Mosquito community composition from across sites during the study period. Represents the total adult and larvae 

specimens identified from each species, and the percent of the total number of specimens is displayed. The smallest populations found 

are represented in the inset circle graph. Aedes albopictus (dark blue) dominated mosquito communities at all sites in this study, 

constituting 91.8% of all mosquito specimens.    
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Figure 3.3. Larval habitats and Ae. albopictus abundances by site. (a) Total number of unique larval habitats and larval habitats 

positive for mosquito larvae across the sites. Dark blue represents total habitats, while light blue represents habitats occupies by 

mosquito larvae. (b) Total number of adult and larval Aedes albopictus specimens collected across sites. Larval counts are represented 

in light green, and adult counts are represented in dark green.  
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Figure 3.4. Principal Component Analysis for biplots of 1
st
 and 2

nd
 PC loadings. (a) 7-day lag variables and (b) 14-day lag 

variables. Quality of representation (cos2) values colored with the strongest predictors of variation in green, intermediate predictors 

(representing a 0.2 cos2 cutoff) in orange, and the weakest predictors in dark brown and black.  
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Figure 3.5. Adult Ae. albopictus abundances vs Month and Surface Imperviousness. (a) Adult Ae. albopictus abundances vs 

Month, (b) Adult Ae. albopictus abundances vs percent impervious surfaces at a 500m radius (Imp500). Timepoints are displayed 

according to Julian date and labelled by Month. Regression lines displayed with 95% confidence interval and fit with the “loess” 

method of localized regression in (a) and the “loess” method in (b) using the gglot2 R package.   
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Figure 3.6. Adult Ae. albopictus abundances vs DTR and minimum RH. (a) Adult Ae. albopictus abundances vs DTR with a 14-

day lag (Temp14DTR), and (b) Adult Ae. albopictus abundances vs minimum relative humidity with a 14-day lag (RH14Min). 

Timepoints are displayed according to Julian date and labelled by Month. Regression lines displayed with 95% confidence interval 

and fit with the “loess” method using the gglot2 R package.  

 



74 

 

 



75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Larval habitat density vs Month and Canopy Cover. (a) Larval habitat density vs Month and (b) Larval habitat density 

vs canopy cover at a 100m radius (Can100m). Timepoints are displayed according to Julian date and labelled by Month. Regression 

lines displayed with 95% confidence interval and fit with the “loess” method of localized regression in (a) and the “lm” method in 

(b) using the gglot2 R package.   
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Abstract: 

Aedes albopictus is a long-established invasive mosquito in the Southeastern United 

States and is a competent vector for many arboviruses such as Dengue, Chikungunya, and Zika. 

Genetic studies regarding the population structure of this species across regions and within urban 

areas vary in the degrees and patterns of relatedness observed, and Ae. albopictus’s reliance on 

human mediated dispersal is frequently implicated in shaping patterns of dispersal. This study 

uses a recently developed SNP microarray to observe population structure and patterns of gene 

flow in Ae. albopictus specimens collected at 12 sites across an urban landscape in Atlanta, GA. 

This study found significant but small Fst values between subpopulations within the city as well 

as limited association clustering by study site, surface imperviousness, or canopy cover. While 

isolation by distance was not significant, there was still a positive correlation between genetic 

and geographic distance. Ancestry analysis suggests that the study specimens likely all derived 

from a single ancestral population and that multiple subsequent local admixture events occurred. 

This study shows a high degree of relatedness and gene flow in the Ae. albopictus populations in 

the city, and this panmictic population dynamic shows the suitability in this urban environment 

for vector control efforts relying on the dispersal of adult Ae. albopictus. 

Introduction 

Aedes albopictus, or the Asian Tiger Mosquito, is a an aggressively invasive and 

anthropophilic species that serves as a vector for many medically significant arboviruses, 

including Dengue, Chikungunya, Zika, Japanese Encephalitis, and Yellow Fever. The expansion 

of this species from its original range in Asia makes understanding the history of invasion, 

patterns of population connectivity, and variation in population characteristics important avenues 

of investigation when developing vector control measures. Genotyping of Ae. albopictus 
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populations likewise reflect this ecological history of rapid expansion, with admixture events 

showing both repeat and continuing long distance introductions of the species (Kamgang et al. 

2011, Schmidt et al. 2020, Lucati et al. 2022, Cosme et al. 2024). These invasion histories are 

constructed from genetic comparisons of populations, and they can indicate whether new 

introductions are happening, identify barriers or factors that facilitate invasion of new territories, 

and highlight vulnerable transportation centers (Zhong et al. 2013, Beebe et al. 2013, Kamgang 

et al. 2013, Schmidt et al. 2017).  

Understanding the population structure of disease vectors is key to elucidating the 

projected patterns of vector-borne disease (VBD) along corridors of population connectivity and 

also to revealing the ecological history of this disease system. In the case of Ae. albopictus in the 

greater Atlanta region, the population has been present since the early 1990’s, and it remains to 

be seen if this is the same long-established population or one admixed with or replaced by 

repeated introductions from key ground transportation routes or global air travel through the 

Hartsfield-Jackson Atlanta International airport. The prevalence of interstate highways could 

predict isolation of populations due to creating impassible areas locally while also facilitating 

long range dispersal into or out of the city (Moore and Mitchell 1997). Additionally, rapid global 

transportation and shipping may allow repeat invasions of Ae. albopictus (Boukraa et al. 2013, 

Willoughby et al. 2024). This vector globally and historically is most notorious for its rapid 

global maritime dispersal via used tires and bamboo exports from East Asia, and shipping ports 

are likely continuing important sources of introduction (Reiter 1998, Garcia-Rejon et al. 2021, 

Swan et al. 2022). 

Identifying population structure at spatial scales relevant for mosquito population biology 

and control would reveal barriers to movement and facilitators to diuspersal. The often better 
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described cousin to Ae. albopictus regarding movement ranges, Aedes aegypti, is often limited in 

individual dispersal range while also showing adaptations to human-mediated dispersal corridors 

or urban centers (Huber et al. 2004, Costa-da-Silva et al. 2005, Hemme et al. 2010, Vadivalagan 

et al. 2016, Joyce et al. 2018, Hopperstad et al. 2019). Long distance dispersal of Ae. albopictus 

specifically has directly been observed via car transportation of adults as suggested by evidence 

of increased gene flow between population centers and in simulations of Ae. albopictus dispersal 

networks (Vazeille et al. 2001, Medley et al. 2015, Eritja et al. 2017, Lucati et al. 2022, Yeo et 

al. 2023). Parsing out the connectivity and movement among mosquito vector populations is 

crucial for 1) anticipating the rate of spread of insecticide resistance alleles, and 2) planning 

vector control measures, especially in the case of emerging vector control technologies (e.g., 

SIT, Wolbachia infection, genetically modification) that rely on gene-drive technologies and 

mosquito movement to deliver these control measures to suppress or replace mosquito 

populations (Lees et al. 2015, Oliva et al. 2021, Wang et al. 2022). While targeting central source 

populations may be ideal for spreading an intervention through a population, identifying 

genetically isolated sites may also be desired to better measure effectiveness of a SIT strategy in 

testing phases; this strategy also limits any dilution of the demographic effects of a new control 

measure due to outside migration of unreachable vector populations (Olanratmanee et al. 2013, 

Iyaloo et al. 2014, Gouagna et al. 2020). In this way, identifying genetically isolated vector 

populations would also be useful.  

Studies of Ae. albopictus populations using microsatellite markers and mitochondrial 

haplotypes have shown limited genetic diversity and mostly non-significant fixation index values 

(Fst) values (Beebe et al. 2013, Goubert et al. 2016, Md. Naim et al. 2020), while some other 

studies do indicate significant Fst values and isolation by distance (Paupy et al. 2001, Kamgang 
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et al. 2011, Multini et al. 2019, Wei et al. 2019). The spatial distances in previous studies of Ae. 

albopictus genetic structure range from subpopulations within hundreds of meters on an island 

(Md. Naim et al. 2020) to hundreds of kilometers across oceans and over international borders 

(Kamgang et al. 2011, Wei et al. 2019). However, even distant sties separated by water bodies 

impassable to individual mosquitoes can have genetically similar Ae. albopictus populations due 

to the species’ invasive capacity via international shipping (Beebe et al. 2013). Advances in next 

generation sequencing has enabled characterizing polymorphisms at a greater number of marker 

sites (Dritsou et al. 2015, Chen et al. 2015), and improving reference genomes of Ae. albopictus 

are allowing the measurement of population differences with more precision and at more marker 

sites than the traditionally lower cost microsatellite analysis (Chen et al. 2015, Miller et al. 2018, 

Palatini et al. 2020, Zimmerman et al. 2020, Cosme et al. 2024).  These next-generation 

techniques have been increasingly used to identify gene flow across urban areas and major 

transportation routes, producing well informed descriptions of Ae. albopictus subpopulations in 

human environments (Schmidt et al. 2017, Wei et al. 2022).  

The population structure of Ae. albopictus within human impacted landscapes appears to 

be affected by the potentially opposing forces of repeat introductions of different subpopulations 

from afar and the homogenizing effects gene flow via the natural dispersal of ovipositing females 

occurring at much shorter distances of typically less than a few hundred meters in both Ae. 

albopictus and Ae. aegypti (Harrington et al. 2005, Bellini et al. 2010, Marini et al. 2010). These 

countervailing effects could result in some neighboring populations being less related due to new 

migrations through human mediated introductions while other proximal populations show a high 

degree interbreeding via natural dispersal (Ismail et al. 2015, Md. Naim et al. 2020). The 

extension of the importance of human mediated migration is that geographically distant 
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populations of Ae. albopictus may be closely related, resulting in counterintuitive genetic 

differentiation patterns of a city exhibiting more genetically distant subpopulations within it than 

with subpopulations outside the city (Oliveira et al. 2003, Sherpa et al. 2018). Given the dynamic 

nature of the Atlanta metro area with frequent travel and shipping, either a pattern of 

homogeneity or genetic differentiation may be expected given the likely presence of both natural 

dispersal and human mediated spread within a long-established vector population. The relative 

importance of either mechanism of population spread is ecologically informative.   

This study of populations of Ae. albopictus in Atlanta makes use of a recently developed 

SNP microarray developed for Ae. albopictus by the authors of Cosme et. al. 2024 to investigate 

the population structure of Ae. albopictus across an urban landscape (Cosme et al. 2024). This 

approach will grow the current body of knowledge of factors influencing Ae. albopictus 

population structure by exploring many more polymorphism sites than traditional microsatellite 

methods and with potentially more accuracy than other next generation methods as demonstrated 

in Cosme et. al. 2024. With this new technique, we will have the capacity to identify patterns of 

gene flow with greater resolution and statistical power. The anthropophilic nature of this species 

and its exploitation of human-mediated dispersal will help explain what features of the urban 

environment impede or facilitate gene flow at spatial scales relevant for control, providing useful 

insights for control efforts and public health in the city of Atlanta.  

Methods 

Study Design: 

To examine the effects of spatial variation in land cover on the population structure of 

urban Ae. albopictus, 12 study sites were selected randomly across Atlanta, GA to reflect 

relevant variation in impervious surface and percent canopy cover (Figure 4.1). We used a 
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spatially gridded map with 10m impervious surface and vegetation cover resolution taken from 

the National Land Cover Database 2016 dataset. ArcGIS ArcMap 10.7.1 published by ESRI was 

used to calculate land cover percentage. Previous research from nearby Athens, GA indicated the 

significance of impervious surface and vegetation coverage at ranges up to 1000 meters on Ae. 

albopictus populations, so site impervious surface coverage averaged at a distance a radius of 

500 meters as a compromise distance to allow for landscape heterogeneity to still be observed 

(Wimberly et al. 2020). Each point was the center of a study site and the surface imperviousness 

percent coverage within a 500-meter radius was chosen as the distinguishing metric for site 

selection. An initial set of potential sites covering the range of impervious surface values were 

initially chosen across the gridded area, whereupon final site selection was informed by 

accessibility, ability to gain site permissions in the case municipal land and private parks, and the 

requirement to keep sites were independent of each other (minimum distance between sites was 

1670 m). Each of these were delineated by 100-meter radius from a central point in accordance 

with previous studies showing most female Ae. albopictus dispersal occurs within that range 

(Figure 4.1)(Bellini et al. 2010, Marini et al. 2010). See Table 4.1 for the full list of survey sites, 

site codes, coordinates, and associated land cover measures. Bounds of the entire study area were 

approximately 15x15 kilometers, covering predominantly the eastern half of metro Atlanta 

across varying levels of urban development from paved commercial centers and parking lots to 

forested parks and suburban neighborhoods. 

Sampling design: 

Ae. albopictus specimens were selected from August 2022 as part of a wider survey of 

Ae. albopictus from 2021 to 2022. A single timepoint was chosen to remove any effects of 

temporal variation between the populations and individuals genotyped. The month of August 
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was chosen because Ae. albopictus populations are generally peaking during the late summer in 

this environment, allowing for the maximum number of sites that could provide the goal of at 

least 8 individuals for sequencing. Both adults and larvae were sampled across our sites. Adult 

Ae. albopictus were sampled using BG-2 Sentinel Traps set for a 24-hour period near the center 

of each study site, and each trap was baited with BG-Lures from Biogen and 1000g of dry ice in 

an opened insulated container (Cello brand, 900 mL capacity model: 1000g dry ice broken up 

occupied approximately 2/3 of bottle at a volume of 641 cubic cm) as described previously 

(Evans et al. 2019). At collection, adults in a catch bag were transferred to a sealed plastic bag 

and immediately placed in a cooler with dry ice, moved to the lab, and placed in -25C storage. 

Ae. albopictus larvae were collected from any pools of standing water present at each site. 

Collected larvae were brought back to the laboratory and maintained in a 50 mL falcon tube in 

their original habitat water with 5 mg of finely ground Tetrafin brand flake fish food. Larvae 

tubes were then housed in a Percival incubator (36-VL, Percival Scientific) at a 28.0C (+0.1C), 

80% (+5%) relative humidity with a 14:10 hour day:night diurnal cycle, and sampled larvae were 

allowed to develop and emerge as adults for species identification and sexing. A subset of all 

captured adults for a site were selected for downstream genotyping, while only one larvae per 

aquatic habitat was selected to reduce the likelihood of genotyping siblings from a single 

oviposition site in accordance with best practices in other studies (Delatte et al. 2013).  

DNA Extraction and SNP Chip Methods: 

DNA extraction was performed with the DNEasy (Qiagen) kit following methodology 

adapted from the manufacturer’s directions using Dr. Andrea Gloria-Soria (CT-Yale Agricultural 

Extension) protocols (see Appendix B: Supplementary Information “DNA Extraction Checklist 

for Aedes albopictus” and informed by Cosme 2024 (Cosme et al. 2024)). Key details include 
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each mosquito being broken down with a sterile microcentrifuge tube pestle attached to an 

electric homogenizer. Proteinase K incubation was in a hot water bath at 56C for 2 hours, and 4 

uL of RNAse A was used. TE solution with low EDTA (0.1 mM) was used for the final DNA 

elution. Following DNA extraction, samples with a DNA concentration below 10 ng/uL were 

concentrated using an Amicon Ultra 0.5 mL -30k centrifugal unit. All samples were then 

normalized to 10 ng/uL and confirmed via Qubit fluorometer using the dsDNA HS Assay Kit 

(Invitrogen). 20 uL of each of the 95x sample solutions was then pipetted into a Beckman 

Coulter deep well plate (96x well), leaving the last well empty for the Axiom control reference. 

The samples were then sent to the UNC Genomics Core to be genotyped using the “Aealbo” 

SNP Axiom Plate genotyping array developed by the team in Cosme et. al. (2024) and 

manufactured by Affymetrix (Cosme et al. 2024). The SNP chip contains probes for 175,396 

polymorphic sites covering all three Ae. albopictus chromosomes, and genotype calls were made 

using library files developed by Affymetrix for use with the Axiom Analysis Suite 5.4.0.23 

software. The resulting SNP data set was exported from Axiom Analysis Suite in .ped and .map 

file formats readable by the open-source genetic analysis software PLINK 1.7. The data were 

further converted into binary .bed format as well as associated .bim and .fam files. Further 

genetic analysis was performed using PLINK 1.7 and RStudio 24.09.0 with R version 4.3.2.  

Selection of Single Nucleotide Polymorphisms: 

The dataset of 113,841 SNPs exported from Axiom Analysis Suite as “Best and 

Recommended” was checked for individuals missing more than 10% of SNPs and for SNPs 

missing in more than 10% of the population. All 95 individual mosquito specimens passed. A 

minor allele frequency significance cutoff of p = 0.1 was then used to removed 19,867 SNPs, and 

filtering for SNPs out of Hardy-Weinberg Equilibrium with the significance cutoff of p < 
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0.000001 removed an additional 5,975 SNPs. The remaining 87,999 SNPs were then screened 

for linkage disequilibrium (LD), selecting only for SNPs with the r2 association statistic below 

0.1 to ensure independent assortment between retained markers. The LD screen window was 

5KB with a moving window of 1 SNP. The r2 < 0.1 value selection was informed by the findings 

of Cosme et.al. 2024 comparing r2 values of 0.1 and 0.01. The cutoff of 0.1 balances the need for 

maximum retention of any population structure signal while still removing the most correlated 

polymorphic markers; the suspected homogeneity between specimens at such fine spatial scales 

weighs more towards the need for retaining as many markers as possible for what are likely 

closely related specimens. The retained pruned selection of SNPs after the LD filter contained 

40,441 SNPs, which were then screened for siblings with the kinship coefficient or relatedness 

set to 0.5 (corresponding to parent-offspring and sibling levels of relation). Specimens were then 

screened for being heterozygosity outliers (falling > 4sd from the mean heterozygosity). The 

specimen FR5 was flagged as > 4sd below average heterozygosity and was removed from Fst 

analysis as an excessively homozygous outlier.  

To select SNPs as close to neutral as feasibly possible for population structure analysis, 

the OutFLANK package developed by Whitlock and Lotterhos (2015) was used to was used to 

infer neutral Fst SNP markers and remove outlier markers that may be under selection (Whitlock 

and Lotterhos 2015). This step removed a further 2,808 SNPs as Fst outliers, leaving a neutral set 

of 37,633 SNPs for population structure analysis. See Figure 4.2 “SNP Filtering Workflow” for a 

graphical representation of the SNP marker filtering used in this investigation.  

Population Genetic Analyses: 

Principal component analysis was used to identify any potential genetically distinct 

subpopulations either within or between sites across the study area. PLINK was used to generate 
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a 94x94 distance matrix of the remaining specimens using the filtered 37,634 SNPs as input. A 

principal component analysis (PCA) of this data set was performed using the cmdscale() function 

from the R package “stats” version 4.3.2 to generate the first 5x principal components from the 

distance matrix. Cluster plots were generated with the first 2 principal components, accounting 

for 4.85% and 3.24% of the variance in the dataset, respectively. Individual mosquito specimens 

identified alternatively by site, impervious surface, canopy cover, and geographic region in the 

city to visually check for subpopulation clustering. Sites were binned by landscape 

characteristics, with impervious surfaces classified as low (5-25%), medium (25-45%), and high 

(45-72%). Canopy cover was likewise binned with Low (0-5%), Medium (5-50%), and High 

(50-96%). 

Population structure was investigated through generating fixation index (Fst) scores for 

each study site out of the total study area. Fst describe the amount of genetic variation within a 

subpopulation out of the total population. Similarly, the inbreeding coefficient (Fis) describes the 

amount of genetic variation in a subpopulation that is present within an individual. Fst is often 

employed to make pairwise comparisons between two populations, while Fis best describes the 

degree of inbreeding at site. In both cases, lower values indicate less genetic differentiation with 

the scales varying by species and the markers chosen. The fixation index Fst between each site 

was found using the R package “StAMPP” version 1.6.3. The SNP dataset was converted into a 

genlight object using stamppConvert(), and the pairwise Fst values were calculated using the 

function stamppFst() with a 95% confidence interval and 1000x bootstraps to allow for 

significance testing. Mean pairwise Fst values for each site were calculated to characterize the 

overall degree of genetic differentiation at each site. For comparing average site Fst values, the 

site NDH was excluded as a family due to only having 2x samples compared to the 8-9x samples 
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in each of the other populations. The average pairwise Fst values comparing each site were then 

averaged for each land cover class (impervious surface and canopy cover) to identify potential 

trends of the degree of population differentiation according to landscape.  

 Fst values were also calculated treating the sites as belonging to geographic regions in the 

study area: North (containing sites BC and NDH), South (containing sites GPR and GPE), East 

(containing site MD), West (containing sites PPR and CC), and Center (containing sites WG, 

DD, FR, DP, and NDS). In the case of generating subpopulation fixation indices using land 

cover bins or geographic regions, samples from NDH were included as they were instead treated 

as members of a larger subpopulation, reducing potential errors in the Fst characterizations from 

a low specimen count. Regions inside the study area were determined such that all sites in a 

particular region were within 2.25 km of each other (with the exception of NDS in the center 

region, where NDS was assigned the Center region due to its greater proximity to the Center than 

the other regions; see Figure 4.1). FIS coefficients of inbreeding were calculated for each 

individual within each site, and the Fis values of the individual mosquitoes were then averaged 

for each study site.  

Isolation by distance was tested for using the Mantel test to see if the spatial distance 

between the subpopulations significantly correlated with the genetic distance. The dataset was 

converted into the genlight format using R package “adegenet” version 2.1.10. After importing 

the latitude and longitude coordinates for each site matched to each sampled mosquito, the R 

package “dartR” version 2.9.7 was used to calculate isolation by distance using the gl.ibd() 

function. This function was used to perform a Mantel Test incorporating the Fst values from the 

genlight object and geographic distances of the site coordinates Mercator projected into meters 

and using 999 permutations.  



88 

 

Reconstructing potential ancestral histories of the Atlanta Ae. albopictus was done to 

investigate if multiple invasion events occurred, to map out the possible order of colonization at 

the study sites, and to see if there was evidence for discrete admixture events between 

subpopulations. Potential numbers of ancestral populations of Aedes albopictus were assessed 

using the R package “LEA” version 3.19.1 through sparse non-negative matrix factorization 

algorithms via the snmf() function and the genotype data inputted in .geno format. This process 

simulates different hypothetical ancestral populations (k) and the corresponding average cross 

entropy values to determine the most likely number of ancestral populations (value of k with the 

lowest cross entropy). The R package ADMIXTOOLS 2 version 2.04 described in Maier et. al. 

2023 was used to calculate f-statistics for the genotyped mosquitoes and to simulate different 

potential admixture events by minimizing associated f-statistic residuals(Maier et al. 2023). The 

f-statistics utilized by this program describe systematic comparisons of alternate pairings of 

subpopulations and the resulting allele similarity to build likely sequences of population 

migrations and admixture events(Lipson 2020). Potential admixture graphs were simulated with 

an estimated 300 generations corresponding to the approximately 30 years since the introduction 

of Aedes albopictus to Atlanta, GA and assuming 10 generations per year. Several admixture 

graphs were simulated with different numbers of admixture events. The admixture graphs with 

the best correlation to the observed allele frequencies between the populations were selected as 

possible representations of a true admixture history of Ae. albopictus populations dispersing 

through different sites across Atlanta.  

Results 

From the PCA on the pruned SNP dataset, the first, second, and third principal 

components captured 3.49%, 2.81%, and 2.66% of the genetic variation, respectively. While 
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these PC loading values were low compared to other methodologies, they are similar to a study 

using the same SNP microarray (Cosme et al. 2024). Using the first and second principal 

component (PC) loadings, there was little distinct clustering in the 95 Ae. albopictus specimens 

(Figure 4.3). However, there does appear to be some limited association of some specimens 

sharing the same site or landcover. This potential association between individuals by site or 

landcover characteristics occurred with a high degree of overlap, suggesting some limited and 

weak associations. Site MD (Figure 4.3.a) did show a degree of clustering, but other sites also 

occupied the same area on the ordination plot suggesting the genetic profile of site MD was 

widespread, but other genotypes at other sites were not. This effect was weak, however, with no 

strongly evident clusters of genotypic characterizations. 

Dividing the sites into geographic regions, the East region appears as a cluster that also 

overlaps with the Center, North, and West regions (Figure 4.3.b). When classifying sites by 

canopy cover (Figure 4.3.c), there was no clustering observed. However, when classifying 

specimens by the imperviousness of their respective sites (Figure 4.3.d), high imperviousness 

sites occupied a tighter portion of the plot although with extensive overlap with specimens from 

low and medium impervious sites. Observing the first and third PCs, there are two weak 

potential clusters evident (Figure 4.4). When classifying specimens by site (Figure 4.4.a), site 

MD specimens clustered together while also overlapping with sites DD and BC. Looking at 

specimens classified by the geographic region of their sites, the East region specimens all 

clustered on the rightmost plot also with a lot of overlap. Similar to the first and second PC plots, 

the first and third loading plots showed no clustering according to the canopy cover of the sites 

(Figure 4.4.c). The specimens associated with high imperviousness predominantly plotted on the 

right cluster (Figure 4.4.d), but also with the same overlap seen before. The lack of tight 
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clustering and the presence of overlap in potential clusters shows very little genetic 

differentiation using PC1 vs PC2 and PC1 vs PC3. 

The pairwise Fst values between the study sites were low, ranging from -0.003 to 0.019 

(Figure 4.5.a). The negative Fst values between sites WG:BC and  WG:CC were -0.003 and -

0.001, respectively. These values were interpreted as zeroes, with no meaningful genetic 

variation between the populations. The highest Fst value of 0.019 between sites MD:DP is in the 

general range of very low subpopulation fixation indices, indicating very little genetic distance 

between these populations. Averaging the pairwise Fst values for each study site yielded similar 

values, ranging from 0.0023 for WG to 0.012 for MD (Figure 4.5.b). Even though the pairwise 

Fst values between sites were low, most sites were found to be significantly different from each 

other using 1000 bootstraps to generate significance results. All sites were significantly 

genetically distinct in pairwise comparisons except for site WG versus BC, CC, and PPR. 

Averaging the Fst values according to impervious Surface Cover and Canopy Cover also 

provided low Fst values (Table 4.2). Average Fst values by Impervious Surface Cover were 

0.0083, 0.0074, and 0.0076 for Low, Medium, and High, and average Fst values by Canopy 

Cover were 0.0088, 0.0073, and 0.007 for Low, Medium, and High. The inbreeding coefficients 

Fis for the Ae. albopictus specimens within each study site yielded values between 0.21 and 0.01, 

excluding site NDH due to the low sample size of 2x mosquitoes resulting in elevated Fis values 

(0.52 and 0.53). The average Fis values by site likewise excluding NDH ranged from 0.063 to 

0.092 (Figure 4.6). A single-factor ANOVA for the inbreeding coefficients of each mosquito did 

not show significant differences between the sites (p = 0.904).  

Relatedness between individual mosquitoes at each site was investigated to determine 

any patterns of generational dispersal, but these familial connections were found to be limited. 
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This validated the decision to only sample 1x specimen from each larval habitat to prevent 

sampling siblings. At site MD, there were 2x mosquitoes that were 2nd order relations. At DP, 

CC, WG, and NDS, each site had 2x mosquitoes that were 3rd order relations. Due to the lifespan 

of Ae. albopictus in the wild rarely exceeding a month (Maimusa et al. 2016, Cui et al. 2021, 

Blanco-Sierra et al. 2023) and the egg/larval development times often around 5-15 days (Evans 

et al. 2018, Yang et al. 2020), 2nd order and 3rd order relations are not likely. However, some 

generational overlap is reasonable to expect in a system containing multiple generations not 

dispersing far and not necessarily reproducing synchronously. Sites FR, GPE, GPR, NDH, and 

BC did not show any 1st through 3rd order relations between the sampled mosquitoes.  

Testing for the significance of isolation by distance with the Mantel Test did identify a 

positive correlation between genetic distance (measured as inter-site Fst values) and geographic 

distance (Euclidean) with a Mantel statistic of 0.3307. While the relationship was not significant 

(p = 0.068), given the large number of polymorphism tested in this methodology, the positive 

relationship between geographic and genetic distance is still meaningful (Figure 4.7). This 

positive relationship indicates that the urban environment does create some important barriers to 

geneflow for Ae. albopictus, even if population movement due to human activities are also likely 

characteristic of this system. 

The Ae. albopictus ancestral population analysis for the study specimens showed that 

they all  most likely derived from one ancestral population (k = 1), as measured by minimizing 

the cross-entropy measure of error. However, the cross-entropy values for two ancestral 

populations (k=2) were also low and show that 2 introductions could be possible, if less likely, 

than 1 introduction (Figure 4.8). The simulations for the number of admixture events between the 

sites after the initial colonization of the area with Ae. albopictus shows that at least 2 admixture 
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events likely occurred between the study populations after the initial colonization. The admixture 

chart shown in Figure 4.9 demonstrates one possible scenario for how movement of the mosquito 

populations may have occurred across the city. This one hypothetical model fits the SNP dataset 

the best when comparing F-statistic residuals between simulated admixture histories. Still, even 

when simulating other less well performing models of admixture, ADMIXTOOLS 2 consistently 

identified 2 admixture events as the likeliest scenario. Notably, the populations shown as 

descending from each other do not consistently correlate to geographic proximity. For instance, 

site MD is projected to be between FR and DD in genetic lineage even though MD is not 

physically between these two sites. This may be a result of human mediated population dispersal 

or other stochastic events. Other portions of this admixture history graph do map genetic descent 

according to geographic proximity, showing the continued importance of gradual and sequential 

dispersal.  

Discussion 

 While the specimens show a degree of positive association for some sites and land cover 

characteristics, these clusters were not distinct from other sites or site characteristics due to high 

degrees of overlap. This may be a result of near-panmictic conditions where related lineages can 

rapidly disperse across the study area. Additionally, given the dense human population density 

and similarly high degree of vehicle movement in the study area, human-mediated transportation 

likely plays a role in facilitating rapid gene flow. The stochastic nature of container habitats 

being deposited by human activity via discarded containers holding either Ae. albopictus larvae 

or eggs would likely have a homogenizing effect on genetic variation. The slow natural dispersal 

of ovipositing female mosquitoes probably still plays an important role considering  the 

admixture simulations showing many sites being colonized by neighboring sites. The decades 
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since the initial colonization event in Atlanta further supports the effect of population dispersal, 

given the time populations have had to gradually spread. Natural dispersal of this nature would 

likely be represented by isolation by distance. The Mantel test did show a positive relationship 

between physical and genetic distance, albeit not significant, but these results are still 

informative. This may indicate that random human mediated movement of eggs or larvae has a 

nearly as important or even stronger effect on population dynamics than gradual dispersal.   

The highest pairwise Fst values for the sites did not quite reach 0.02 for the most 

genetically distant site comparison (MD:DP), with the other pairwise Fst values between sites 

often much less. However, these low pairwise Fst values are consistent with what was seen 

between Ae. albopictus populations from adjacent or nearby countries covering hundreds of 

kilometers, as seen in the Cosme et. al. 2024 study using the same SNP chip (Cosme et al. 2024). 

Given the much smaller spatial scale of this study across Atlanta, low Fst values can be expected. 

Additionally, the high number of SNPs incorporated into the Fst analysis likely lower the 

magnitude of the fixation indices relative to methods more prevalent in the literature such as 

microsatellite techniques. The meaningfulness of genetic variation between most sites is 

supported by the pairwise Fst comparisons showing significant differences between all sites 

except for the pairwise comparisons with WG versus BC, CC, and PPR. Furthermore, studies of 

closely related Ae. albopictus populations with low Fst values show significant differences after a 

similar significance determination in an island environment (Md. Naim et al. 2020). Such low Fst 

values have also been seen to be significant regarding Ae. albopictus populations in China 

hundreds of kilometers apart on the Yangtze River, albeit not using genome wide SNPs to 

characterize population structure (Ma et al. 2023). Further, another study of Ae. albopictus  

population structure in Nanjing, China did find significant pairwise Fst values between sites 
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characterized as urban, urban fringe, and rural but no significant isolation by distance (Zhang et 

al. 2022b), while similar studies in Chinese cities found no significant population structure 

between ports less than 200 km apart (Zhao et al. 2024). This lack of a consistent signal both in 

the literature and in this study between distance and population structure suggests a population 

dynamic shaped by two drivers: natural dispersal as measured by isolation-by-distance and 

human mediated dispersal reflected in non-proximal spread in reconstructed admixture histories. 

The upshot is that these mosquito populations depend greatly on the human-vector relationship 

in a particular environment; for instance, distant port cities may be closely related due to 

invasion dynamics, while nearby subpopulations may be less related due to the same stochastic 

dynamic of human aided colonization events.  

The central location of the WG site may play a role in its less significant differentiation 

from other sites. Again, the close association of human activity with the successful dispersal of 

this anthropophilic species, human-mediated transportation is very likely a major force behind 

population mixing as well as dispersal of populations that may be closely related (Manni et al. 

2017). The close geographic distances between the study sites in this investigation, however, also 

allow natural dispersal to also be a significant driver of genetic mixing between subpopulations. 

Additional analysis across months and years could potentially reveal relatedness and if offspring 

are moving between these sites as well as the time it takes for the dispersal. Very fine scale (10 

km radius) surveys of population structure in the related species Aedes aegypti likewise 

identified significant population structure across both time and distance, with temporal structure 

suggesting outsized contributions of just a few key source populations producing seasonal waves 

of closely related adults (Olanratmanee et al. 2013). The difference here with the ecologically 

similar Ae. albopictus showing very little population structure within a city may have to do with 
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the recentness of its invasion of the region. While Ae. aegypti invaded many regions globally 

hundreds of years ago, many Ae. albopictus populations outside of Asia are only a few decades 

old. Some studies posit that repeated invasion events in a short period of time allow multiple 

distinct lineages of Ae. albopictus to persist and counter-balance genetic bottleneck effects (Maia 

et al. 2009, Eskildsen et al. 2018, Kamgang et al. 2018, Motoki et al. 2019), but other 

investigations show rapid human-mediated transportation having a homogenizing effect in some 

heavily urbanized areas (Zhang et al. 2022a). The case of Atlanta’s Ae. albopictus populations 

seem to reflect the latter phenomenon of rapid colonization followed by likely human-mediated 

panmictic dispersal conditions, resulting in little population structure. 

 The average fixation indices in this study were lower than values found in other 

investigations of Ae. albopictus populations sampled from the northern edge of the species’ 

expanding range in the United States (Gloria-Soria et al. 2022). This may be a result of different 

genotyping techniques, or perhaps the lower Fst measures in Atlanta are a result of sequencing 

within a city population versus across multiple states. The number of ancestral populations, most 

likely only k=1, supports the scenario where a single invasion event occurred. The invasion event 

predicted in the admixture model was likely the seminal observation of Ae. albopictus spreading 

across all counties in the state of Georgia by 1994 (Womack et al. 1995). 

The early invasion of Ae. albopictus followed interstate highway corridors (Moore and 

Mitchell 1997), showing that rapid human-mediated dispersal played an important early and 

likely continuing role in the establishment of this vector across the region. Another study 

comparing Ae. albopictus populations worldwide using a similarly large set of SNP markers 

identified multiple invasion events reflected in the admixture reconstructions of invasive 

populations (Kotsakiozi et al. 2017). The admixture simulations in our study show that, most 
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likely, two admixture events occurred between the Ae. albopictus subpopulations in the city. It 

shows largely unimpeded dispersal of individuals to new sites, as many sites most close in 

admixture genealogical and admixture history are adjacent geographically. However, as some of 

these hypothesized population admixtures occurred between sites non-adjacent to each other, 

human facilitated dispersal is also indicated.   

Conclusions 

The ecological history and the current genetic characterization of Ae. albopictus in 

Atlanta is important to understand as a model of invasion and establishment of a medically 

significant vector species. The high level of population movement and gene flow indicates that 

sterile insect technique, Wolbachia inoculation, or the release of genetically modified mosquitoes 

resistant to pathogens would require less population coverage than if significant population 

structure was present. However, insecticide resistance or other inheritable adaptations introduced 

to the population may also likewise spread quickly and impede control measures. This research 

provides valuable insight into the invasion ecology, dispersal dynamics, population structure, and 

vector control options regarding this invasive and damaging species. 
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Tables 

Table 4.1. Survey sites, site codes, coordinates, and landscape characteristics. 
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Table 4.2. Fst values calculated by landscape characteristics: (a) canopy cover and (b) 

impervious surface cover across study sites. 
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Figures 

Figure 4.1. Survey Sites (x12) across Atlanta. GA: DP, FR, CC, WG, GPE, GPR, PPR, NDH, 

MD, BC, NDS, and DD. Distance scale and North indicated.  

 



100 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Genotyping array workflow for SNP markers. The workflow displayed represents the selection criteria and filters applied 

to the SNP dataset for the set of 95x Aedes albopictus specimens.  
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Figure 4.3. Principal components 1 and 2 loading plots for sampled mosquitoes color coded by 

(a) site, (b) geographic region, (c) canopy cover, and (d) impervious surface cover. Very 

clustering was evident with these loadings and for these variables (site, region, canopy cover, 

and imperviousness. a) The site MD cluster is marked with a maroon oval. (b) The East region 

cluster is designated with a green oval. (c) No distinct cluster was identified by canopy cover.  

(d) the High Imperviousness cluster is marked with an orange oval. 
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Figure 4.4. Principal components 1 and 3 loading plots for sampled mosquitoes color coded by 

(a) site, (b) geographic region, (c) canopy cover, and (d) impervious surface cover. These 

loadings produced very little distinct clustering, which also occurred with high overlap. (a) The 

cluster containing sites BC, DD and MD are marked red, gold, and maroon, respectively. (b) The 

East region cluster is designated with a green oval. (c) No distinct cluster was identified by 

canopy cover. (d) The High imperviousness cluster is marked with an orange oval. . 



103 

 

 

Figure 4.5. Pairwise FST values by site. Values represent FST values between study sites with 8-

9x individual Aedes albopictus per site, with * denoting significant variation (p = 0.05) measured 

by Fst between sites using results from n = 1000 bootstraps). 
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Figure 4.6. Average FIS inbreeding coefficient for the individual Aedes albopictus sampled at 

each study site. Error bars represent the standard deviation for each site’s average inbreeding 

coefficient. 
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Figure 4.7. Genetic distance (Site-Site pairwise FST) vs geographic distance (km). Best fit line 

represented in blue and variance in the Mantel Test permutations are represented in grey. 
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Figure 4.8. Potential ancestral populations (k) and corresponding cross-entropy values. Lowest 

error values at k=1 ancestral populations (indicated by orange line).  

 

 

 

 

 

 

 

 

 

 



107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. Potential admixture history of Aedes albopictus populations across study sites. 

Simulated 300 generations since introduction, F-statistic residual score was 969.68. Two 

admixture events shown here.  
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CHAPTER 5 

CONCLUSIONS 

 

Synthesis of Key Findings  

The guiding motivation of this dissertation was to conceptualize vector-borne disease 

(VBD) dynamics and vector ecology in the context of human-altered landscapes using Aedes 

albopictus populations across an urban areas as the system of interest. This was accomplished by 

critically reviewing modelling approaches to describing VBD systems and determining the most 

informative spatial scales at which to describe the ecology of this vector species. A review of 

empirical studies as well as previous empirical work in Ae. albopictus in the southeastern US 

helped determine the spatial scale of this vector’s biology and informed the spatial distances at 

which microclimate variables were measured. I also recommend the integration of different 

modelling approaches with empirical investigation to fully employ the relative strengths of 

different approaches. This additionally led to selecting the appropriate modelling tools with 

which to determine the most important environmental and land cover effects and to develop 

vector control insights. Through the use of statistical modelling and the field collection of fine 

scale microclimate data, my research identified significant relationships between environmental 

variables associated with urbanization and the Ae. albopictus populations of Atlanta, GA.  

Generalized linear mixed effects models of the field derived adult abundance data 

identified significant positive effects of impervious surfaces and daily temperature range (DTR) 

on adult Ae. albopictus abundance and significant negative effects of minimum relative humidity 
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(RHMin). Mixed effects models describing larval habitat density identified a significant positive 

effect of canopy cover. Larval habitat density was not a significant predictor in the adult 

abundance model, but it was a significantly positive predictor of larval abundance. Beyond the 

abundance of refugia for adult mosquitoes and potentially greater persistence of aquatic larval 

habitats under canopy cover, I argue that the connection of canopy cover to the human curated 

environments associated with residential areas also leads to more larval habitats. Even sites in 

my study not economically stressed yielded large larval populations and high larval habitat 

density, mostly due to human provisioned container habitats like flowerpots. This research 

highlights the importance of RH, temperature, and land cover in predicting Ae. albopictus 

population characteristics. I connect these variables to increasing urbanization, further supporting 

the characterization of Ae. albopictus as an urban adapted anthropophilic vector species.  

The significant but limited genetic structure of the Ae. albopictus populations across this 

study area portrays a landscape with few barriers to gene flow. While highways and other human 

structures have been seen to create isolation by distance and by barrier in mosquito populations, 

any impedance posed by urban architecture and roads is eventually overcome either by gradual 

natural dispersal or perhaps more rapid human mediated spread of eggs. Rapid and stochastic 

establishment of populations may arise from a single productive larval habitat, with some larval 

habitats like used tires or buckets being easily moved and reconstituted with rainfall. Overall, 

these findings demonstrate the impact of both unimpeded natural dispersal and stochastic human 

events in facilitating the establishment and continued gene flow of vector populations. The 

ancestral models of this population show a single source population, suggesting a highly 

successful single invasion event near the onset of Ae. albopictus’s colonization of North 

America, followed by admixtures and population movement between sites. 
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Novelty and Added Benefit of Research 

While other studies have measured the effects of microclimate variables on mosquito 

vector ecology, this is the first study to apply this methodology of collecting detailed fine-scale 

temperature and relative humidity data using large numbers of data loggers in the field in 

Atlanta, GA. The large size of this urban area provides a valuable data point in characterizing 

sizable municipal regions with likely increased heat island effects. This genetic component of 

this research was novel both in the use of a newly developed SNP-chip offering high 

polymorphism coverage and improved genetic variation measurement resolution. While this SNP 

chip has been used and validated in one other study (Cosme et al. 2024), this is the first 

application of this specific SNP microarray tool in measuring population structure within a 

relatively small spatial scale inside one urban region. The viewpoint of synthesizing different 

approaches to modelling and choosing appropriate scales of measurement and analysis is a 

perspective that has been employed in other forms, but this approach is useful in its novel 

application to the Atlanta vector ecology system.  

Recognizing the Effect of Urbanization in Exposure to VBD 

 The modelling of microclimate variables impacting adult Ae. albopictus abundance 

provides insights into how urbanization may contribute to larger populations of arbovirus 

vectors. As urbanization traditionally increases paved areas and thus urban heat island effects 

(Mohajerani et al. 2017), alternate approaches to urban planning could include more water-

permeable green spaces like parks, which would likely also reduce the daily temperature swings 

(Yan et al. 2023). More broadly, outreach campaigns communicating risks of VBD as urban 

areas expand globally in the coming decades (Population Division United Nations 2018). 

Additionally, the negative effect of minimum RH on Ae. albopictus populations in this research 
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indicates a surface tension alteration increasing larval and pupal survival. Reducing surface 

tension is already a modality of larval control (Dawood et al. 2020), but this effect could be 

applied widely in urban parks where water features like fountains may be common as they were 

in some sites in this study. 

Implications of human provisioning of larval habitat   

This characterization of Ae. albopictus in Atlanta, GA is consistent with the conventional 

understanding of this species’ ecology.  While treeholes, the ancestral larval habitat for many 

container breeding mosquitoes, were identified in this study, no Ae. albopictus were found in 

these arboreal larval habitats. During the invasion and establishment of Ae. albopictus in North 

America, competition experiments predicted that the endemic Aedes triseriatus populations 

would persist in treehole larval environments due to competitive nutritional advantages over Ae. 

albopictus (Livdahl and Willey 1991). In my research, Ae. triseriatus was indeed found in 

treeholes, meaning that undeveloped landscapes may reduce the competitive edge of Ae. 

albopictus and be less vulnerable to the invasion and establishment by this urban adapted 

mosquito.  

As most larval habitats I found were artificial, accounting for the cultural practices of the 

community is important for understanding larval habitat provisioning. The suburban residential 

sites in my study provided an abundance of larval habitats for Ae. albopictus largely from 

decorative planters and gardening water storage containers. There is a body of research 

indicating an association with depressed socioeconomic areas with an increased burden of 

mosquitoes and VBD, tied to factors like limited plumbing creating a reliance on household 

water containers (Ali et al. 2017) or the increased presence of discarded tires, disused containers, 

or abandoned swimming pools resulting from economic distress (Harrigan et al. 2010, LaDeau et 
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al. 2013, Dowling et al. 2013). Financial crises have actually shown acute increases of human 

West Nile Virus cases linked to vacant homes (Reisen et al. 2008). However, of the sites in this 

research, only one qualitatively showed signs of economic distress as indicated by multiple 

abandoned residences and persistent discarded containers serving as larval habitats. Other sites 

with less signs of economic distress were just as or even more abundant in adult Ae. albopictus 

and larval habitat density. A similar dynamic in a US city was seen in a study of Culex breeding 

sites in Los Angeles, CA. This mosquito survey also demonstrated a counterintuitive result with 

affluent neighborhoods provisioning more larval habitat due to widespread landscaping irrigation 

(Reisen et al. 1990). This effect of landscaping practices providing larval habitats matches what 

we saw in my research with positive larval habitat density being highest at some residential 

neighborhood sites with well-maintained single-family homes and landscaping. These insights 

regarding both the canopy influences on larval habitat density and the importance of social 

practices tell us that larval source management efforts in Atlanta should focus on education of 

communities regarding the risk landscaping and garden containers present in Ae. albopictus 

exposure.  

Findings in context of the phylogeography of Aedes albopictus 

Tracking the invasion dynamics of Ae. albopictus often relies on genetic tools, and 

reconstructing the genetic phylogeography of this species reveals many interesting phenomena 

regarding human mediated invasions and VBD spread. Recent investigations into the 

phylogenetic past of this species shows a slow dispersal from Asia in the Pleistocene to islands in 

the Indian Ocean through medieval trade routes (Delatte et al. 2011, Porretta et al. 2012). The 

last several decades illustrate a rapid dispersal worldwide from the Indo-Pacific region across 

Africa and into temperate zones in North America and Europe (Mousson et al. 2005, 
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Raharimalala et al. 2012, Maynard et al. 2017). The significance of identifying genetically 

distinct subpopulations is due to different interactions of vector genotype and environment 

leading to local variations in vectoral competence in mosquito species (Lambrechts 2011, 

Dickson et al. 2014, Severson and Behura 2016, Kristan et al. 2018). Mosquito lineages can 

differ biologically in ways important for pathogen transmission dynamics and may reflect 

different degrees of urban adaptation (Paupy et al. 2004, 2008, Costa-da-Silva et al. 2005). 

Vectorial capacity can be influenced by genetic variations between the vector and the pathogen 

with multiple gene pathways determining transmission potential (Beerntsen et al. 2000), while 

different permethrin resistant genotypes have been seen to respond differently to temperature and 

relative humidity conditions (Kristan et al. 2018). In the context of the research in this 

dissertation, which found very little variation between Ae. albopictus subpopulations in Atlanta, 

identifying the parent lineage and any genetic traits such as insecticide resistance or degrees of 

temperate tolerance would be meaningful for control efforts. Perhaps more worryingly, the rapid 

gene flow between these populations suggests that the introduction of insecticide resistant Ae. 

albopictus would likely result in rapid spread of this trait under the right selection pressures.  

Future research directions  

The mismatch between larval habitat density and adult abundance within the sites of this 

research should be a future avenue of investigation. This disparity indicates that some sites are 

functioning as ecological sources. Ae. albopictus has been observed moving distances exceeding 

the typical dispersal range, up to several hundreds of meters, in the sech for adequate hosts 

(Maciel-de-freitas et al. 2006). A similar variation in resources may be driving movement from 

larval habitat dense areas hundreds of meters to sites with better host access or refuge spaces. 

Identifying potential corridors of population movement, and if landscape characteristics shape 
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movement patterns, would be valuable for ecological understanding of this species as well as 

advancing vector control knowledge. Regarding population structure, limited resources only 

allowed for one time point (August 2022) in the study to be sequenced. Future research could 

examine specimens from another field season (2021) to identify any temporal shifts in genotypes 

or site subpopulation dynamics. Shifts in genetic characteristics or even identification of 

different orders of relatives between sites may reveal some dispersal paths in this system. 

Finally, a further research effort will include the creation of VBD risk map for Atlanta showing 

varying levels of exposure according to microclimate and landscape characteristics using the 

abundance model developed in this study and a mechanistic model of vectorial capacity. This 

would follow the general methodology of a similar risk map created of Athens, GA (Wimberly et 

al. 2020).  

The landscape and the microclimates of heterogenous urban environments result in 

varying abundances of Ae. albopictus and larval habitat density. This dissertation demonstrates 

the key human element in creating the urban environments this vector species is so well adapted 

to, including the facilitation of invasion and further gene flow once Ae. albopictus is established 

in a new location. Modeling approaches and cross-scale discernment informed these research 

efforts, and ideally this multi-discipline approach will help inform predictions of VBD risk. The 

research in this dissertation advances our knowledge of this globally destructive and invasive 

mosquito vector while informing policy makers on how to reduce the risk of VBD in the face of 

increasing urbanization.  
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Supplementary Table A.1. All study site variable correlations for both 7-day lags and 14-day lags with positive larval habitat 

characteristics and land cover traits.   
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Supplementary Table A.2. Average study site temperature and relative humidity variables during study period displayed with 

standard deviation (+/-). 
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Supplementary Table A.3. Average monthly temperature and relative humidity variables across site displayed with standard deviation 

calculated with (a) 7-day and (b) 14-day lags.  
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Supplementary Table A.4. Adult Abundance Models Performance. Models are ranked by AIC performance. Models significantly 

different from the null model, passing uniformity/dispersion tests via DHARMa, and converging are marked in green. Models not 

significantly different from the null model or failing uniformity/dispersion tests via DHARMa are marked in orange. Models 

failing to converge are colored in grey. 
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Response 

Variable
Fixed Effects

Fixed Effect 

Interactions

Random 

Effects
AIC

DHARMa   

Problem?

Diff. 

Null?

df.    

resid
Significant Effects

alboTotalA

s(RH14Min) + 

s(Temp14DTR) + 

Imp500m

Site, 

Month/Year
946.2 N Y 109

Imp500m: 0.007734 ** ,                    

RH14Min: 4.35e-06 ***,              

Temp14DTR: 0.000175 ***

alboTotalA

s(RH14Flux) + 

s(Temp14DTR) + 

Imp500m

Site, 

Month/Year
947.5 Y Y 110

Imp500m: 0.01893 *,                      

Temp14DTR: 0.00307 **

alboTotalA

s(RH14Min) + 

s(Temp14DTR) + 

Imp500m

RH14Min: 

Temp14DTR

Site, 

Month/Year
947.8 N Y 109

Imp500m: 0.00912 **,                       

RH14Min: 0.00106 **,                  

Temp14DTR: 0.02188 * 

alboTotalA

s(RH7Flux) + 

s(Temp7DTR) + 

Imp500m

RH7Flux: 

Temp7DTR

Site, 

Month/Year
948.6 N Y 109

RH7Flux:Temp7DTR: 0.03674 *,    

Temp7DTR: 0.00652 **

alboTotalA

s(RH14Flux) + 

s(Temp14DTR) + 

Imp500m

RH14Flux: 

Temp14DTR

Site, 

Month/Year
949.5 Y Y 109 Imp500m: 0.0207 *

alboTotalA

s(RH14Flux) + 

s(Temp14DTR) + 

Can100m

Site, 

Month/Year
950 Y Y 110 Temp14DTR: 0.00557 ** 

alboTotalA

s(RH7Flux) + 

s(Temp7DTR) + 

Can100m

RH7Flux: 

Temp7DTR

Site, 

Month/Year
950.2 Y Y 109 none

alboTotalA

s(RH14Min) + 

s(Temp14DTR) + 

Can100m

Site, 

Month/Year
950.2 N Y 110 Temp14DTR: 0.000732 ***

alboTotalA

s(RH7Min) + 

s(Temp7DTR) + 

Imp500m

RH7Min: 

Temp7DTR

Site, 

Month/Year
950.3 Y Y 109 none
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Response 

Variable
Fixed Effects

Fixed Effect 

Interactions

Random 

Effects
AIC

DHARMa   

Problem?

Diff. 

Null?

df.    

resid
Significant Effects

alboTotalA

s(RH7Flux) + 

s(Temp7DTR) + 

Imp500m

Site, 

Month/Year
950.3 N Y 110

RH7Flux:  0.01213 * ,                     

Temp7DTR: 0.01705 * 

alboTotalA

s(RH7Min) + 

s(Temp7DTR) + 

Imp500m

Site, 

Month/Year
951 Y N 110

RH7Min:0.000318 ***,    

Temp7DTR:0.023369 * 

alboTotalA

s(RH14Min) + 

s(Temp14DTR) +   

Can100m

RH14Min: 

Temp14DTR

Site, 

Month/Year
951.2 N Y 109

RH14Min: 0.00228 **,                  

Temp14DTR: 0.03180 * 

alboTotalA

s(RH7Min) + 

s(Temp7DTR) + 

Can100m

RH7Min: 

Temp7DTR

Site, 

Month/Year
951.9 Y Y 109 RH7Min:Temp7DTR: 0.0469 *

alboTotalA

s(RH14Flux) + 

s(Temp14DTR) + 

Can100m

RH14Flux: 

Temp14DTR

Site, 

Month/Year
951.9 Y Y 109 none

alboTotalA
s(RH7Flux) + 

s(Temp7DTR) + 

Site, 

Month/Year
952.1 Y Y 110

RH7Flux: 0.0174 * ,                 

Temp7DTR:0.0183 *

alboTotalA
s(RH14Flux) + 

Imp500m
Site, 

Month/Year
953.4 Y N 112 none

alboTotalA s(RH14Flux)
Site, 

Month/Year
953.5 Y N 113 none

alboTotalA s(RH7Flux)
Site, 

Month/Year
953.6 Y N 113 none
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Response 

Variable
Fixed Effects

Fixed Effect 

Interactions

Random 

Effects
AIC

DHARMa   

Problem?

Diff. 

Null?

df.    

resid
Significant Effects

alboTotalA
s(RH7Min) + 

s(Temp7DTR) + 
Site, 

Month/Year
953.6 N N 110

RH7Min: 0.00046 ***,     
Temp7DTR: 0.02832 * 

alboTotalA
s(RH7Flux) + 

Imp500m
Site, 

Month/Year
953.8 N N 112 RH7Flux: 0.00671 **

alboTotalA s(RH7Min)
Site, 

Month/Year
953.9 N N 113 RH7Min: 0.0153 *

alboTotalA
s(RH7Min) + 

Imp500m
Site, 

Month/Year
953.9 N N 112 RH7Min: 0.00621 **

alboTotalA
s(RH14Flux) + 

Can100m
Site, 

Month/Year
954.5 Y N 112

alboTotalA
s(RH7Flux) + 

Can100m
Site, 

Month/Year
955.1 N N 112 none

alboTotalA
s(RH7Min) + 

Can100m
Site, 

Month/Year
955.3 N N 112 RH7Min: 0.0101 *  

alboTotalA
Imp500m + 
Can100m

Site, 
Month/Year

956.1 Y N 113 none

alboTotalA s(RH14Min)
Site, 

Month/Year
956.3 Y N 113 none

alboTotalA
s(RH14Min) + 

Can100m

Site, 

Month/Year
957.9 na na na **no convergence**
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Response 

Variable
Fixed Effects

Fixed Effect 

Interactions

Random 

Effects
AIC

DHARMa   

Problem?

Diff. 

Null?

df.    

resid
Significant Effects

alboTotalA s(Temp14DTR)
Site, 

Month/Year
957.9 Y N 113 none

alboTotalA
Imp500m + 
Can100m

Imp500m:  
Can100m

Site, 
Month/Year

958 Y N 112 none

alboTotalA s(Temp7DTR)
Site, 

Month/Year
958.1 Y N 113 none

alboTotalA
s(RH14Min) + 

Imp500m

Site, 

Month/Year

no 

converg

ence

na na na **no convergence**

alboTotalA Can100m
Site, 

Month/Year
956.1 Y N 114 none

alboTotalA Imp500m
Site, 

Month/Year
955.4 Y N 114 none
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Supplementary Table 5. Larval Habitat Density Models Performance. Models are ranked by AIC performance. Models 

significantly different from the null model, passing uniformity/dispersion tests via DHARMa, and converging are marked in green. 

Models not significantly different from the null model or failing uniformity/dispersion tests via DHARMa are marked in orange. 

Models failing to converge are colored in grey. 
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Response Fixed Effects
Fixed Effect 

Interactions

Random 

Effects
AIC

DHARMa   

Problem?

Different from 

Null Model?
df.resid Significant Effects

LarvalHabitats Can100m
Site, 

Month/Year
292.7 N Y 113 Can100m: 0.0194 *

LarvalHabitats
s(RH14Min) + 

Imp500m

Site, 

Month/Year
293.1 N N 112 RH14Min: 0.0152 *

LarvalHabitats s(Temp7Min)
Site, 

Month/Year
293.6 N N 113 Temp7Min: 9.89e-06***

LarvalHabitats s(Temp14DTR)
Site, 

Month/Year
294.3 N N 113 Temp14DTR: 0.0251 *

LarvalHabitats
s(RH14Flux) + 

Imp500m

Site, 

Month/Year
294.5 N 112 none

LarvalHabitats Imp500m
Site, 

Month/Year
294.6 Y N 114 Imp500m: 0.0476 *

LarvalHabitats
Imp500m + 

Can100m

Site, 

Month/Year
294.7 Y N 113 none

LarvalHabitats
Imp500m + 

Can100m

Imp500m:  

Can100m

Site, 

Month/Year
294.7 Y N 113 none

LarvalHabitats

s(RH14Min) + 

s(Temp14DTR) + 

Can100m

Site, 

Month/Year
295.4 N N 110 none

LarvalHabitats Temp7Avg
Site, 

Month/Year
295.9 N N 114 Temp7Avg 

LarvalHabitats RH14Max
Site, 

Month/Year
295.9 N N 114 none

LarvalHabitats

s(RH14Min) + 

s(Temp14DTR) + 

Imp500m

Site, 

Month/Year
296.5 Y N 110 none

LarvalHabitats

s(RH14Min) + 

s(Temp14DTR) + 

Can100m

RH14Min: 

Temp14DTR

Site, 

Month/Year
297.4 Y N 109 none
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Response Fixed Effects
Fixed Effect 

Interactions

Random 

Effects
AIC

DHARMa   

Problem?

Different from 

Null Model?
df.resid Significant Effects

LarvalHabitats s(RH7Max)
Site, 

Month/Year
298.1 N N 114 none

LarvalHabitats Temp14Avg
Site, 

Month/Year
298.3 N N 114 none

LarvalHabitats
s(RH7Flux) + 

Imp500m

Site, 

Month/Year
298.5 Y N 112 none

LarvalHabitats

s(RH14Min) + 

s(Temp14DTR) + 

Imp500m

RH14Min: 

Temp14DTR

Site, 

Month/Year
298.5 N N 109 none

LarvalHabitats
s(RH14Flux) + 

s(Temp14DTR) + 

RH14Flux: 

Temp14DTR

Site, 

Month/Year
299.2 N N 109 none

LarvalHabitats s(RH7Min)
Site, 

Month/Year
300 N N 113 none

LarvalHabitats s(RH7Flux)
Site, 

Month/Year
300.1 N N 113 none

LarvalHabitats s(Temp7Max)
Site, 

Month/Year
300.3 N N 113 none

LarvalHabitats

s(RH7Min) + 

s(Temp7DTR) + 

Imp500m

Site, 

Month/Year
302.4 Y N 110 none

LarvalHabitats

s(RH7Flux) + 

s(Temp7DTR) + 

Imp500m

Site, 

Month/Year
302.4 Y N 110 none

LarvalHabitats

s(RH7Flux) + 

s(Temp7DTR) + 

Can100m

RH7Flux: 

Temp7DTR

Site, 

Month/Year
302.5 Y N 109 Can100m: 0.025 *
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Response Fixed Effects
Fixed Effect 

Interactions

Random 

Effects
AIC

DHARMa   

Problem?

Different from 

Null Model?
df.resid Significant Effects

LarvalHabitats
s(RH7Min) + 

s(Temp7DTR) + 

RH7Min: 

Temp7DTR

Site, 

Month/Year
302.6 Y N 109 Can100m: 0.0258 *

LarvalHabitats

s(RH7Flux) + 

s(Temp7DTR) + 

Imp500m

RH7Flux: 

Temp7DTR

Site, 

Month/Year
304.3 Y N 109 none

LarvalHabitats s(Temp7DTR)
Site, 

Month/Year
na na na na **no convergence**

LarvalHabitats

s(RH7Min) + 

s(Temp7DTR) + 

Imp500m

RH7Min:Temp

7DTR

Site, 

Month/Year
na na na na **no convergence**

LarvalHabitats
s(RH7Min) + 

s(Temp7DTR) + 

Site, 

Month/Year
na na na na **no convergence**

LarvalHabitats
s(RH7Flux) + 

s(Temp7DTR) + 

Site, 

Month/Year
na na na na **no convergence**

LarvalHabitats
s(RH7Min) + 

Can100m

Site, 

Month/Year
na na na na **no convergence**

LarvalHabitats
s(RH7Min) + 

Imp500m

Site, 

Month/Year
na na na na **no convergence**

LarvalHabitats
s(RH7Flux) + 

Can100m

Site, 

Month/Year
na na na na **no convergence**

LarvalHabitats
s(RH14Flux) + 

s(Temp14DTR) + 

Site, 

Month/Year
na na na na **no convergence**

LarvalHabitats
s(RH14Flux) + 

s(Temp14DTR) + 

RH14Flux: 

Temp14DTR

Site, 

Month/Year
na na na na **no convergence**
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Response Fixed Effects
Fixed Effect 

Interactions

Random 

Effects
AIC

DHARMa   

Problem?

Different from 

Null Model?
df.resid Significant Effects

LarvalHabitats
s(RH14Flux) + 

Can100m

Site, 

Month/Year
na na na na **no convergence**

LarvalHabitats
s(RH14Min) + 

Can100m

Site, 

Month/Year
na na na na **no convergence**

LarvalHabitats s(RH14Flux)
Site, 

Month/Year
na na na na **no convergence**

LarvalHabitats s(RH14Min)
Site, 

Month/Year
na na na na **no convergence**
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Supplemental Figure A.1. Daily temperature values across the study sites by month. Monthly values include both the 2021 and 2022 

field season values. The red dashed line represents maximum temperatures, the green solid line represents average temperatures, and 

the blue dashed line represents minimum temperatures 
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Supplemental Figure A.2. Daily relative humidity values across the study sites by month. Monthly values include both the 2021 and 

2022 field season values averages. The red dashed line represents maximum RH values, the green solid line represents average RH 

values, and the blue dashed line represents minimum RH values. 
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Supplemental Figure A.3. Average maximum and minimum temperature values by month and site imperviousness. Monthly values 

include both the 2021 and 2022 field season values averages. The red plot represents High Imperviousness Sites, the blue plot 

represents Medium Imperviousness Sites, and the green plot represents Low Imperviousness Sites. 
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Supplemental Figure A.4. Daily relative humidity values across the study sites by month. Monthly values include both the 2021 and 

2022 field season values averages. The red plot represents High Imperviousness Sites, the green plot represents Medium 

Imperviousness Sites, and the blue plot represents Low Imperviousness Sites. 
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Supplemental Figure A.5. 7-day lag variables scree plot. Principal component analysis dimensions 1 through 7 represented with their 

respective percentage of explained variance. 
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Supplemental Figure A.6. 14-day lag variables scree plot. Principal component analysis dimensions 1 through 7 represented with 

their respective percentage of explained variance. 
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Supplemental B: DNA Extraction Checklist for Aedes albopictus.  

Using DNeasy Kit (Qiagen): 

 Take mosquito in 1.5 mL microcentrifuge tube, noting the sample ID #1-95 

o Add 180ul ATL Buffer 

o Grind with pestle for 1 min 

o Add 20 uL Proteinase K 

o Vortex for 15 seconds 

o Incubate in hot water bath at 56C for 2 hours  

o Remove from hot water bath and vortex for 15 seconds 

 Add 4 uL RNAse A, vortex, incubate at room temperature for 2 minutes 

 Add 200 uL Buffer AL, vortex 

 Add 200 uL Ethanol (100%), vortex 

 Transfer to DNeasy spin column with 2 mL collection tube (#1) 

o Centrifuge at 8000 rpm for 1 min, discard flow through and tube 

 Transfer spin column to new 2 mL collection tube (#2) 

o  Add 500 uL Buffer AW1 

o Centrifuge at 8000 rpm for 1 min, discard flow through and tube 

 Transfer spin column to new 2 mL collection tube (#3) 

o Add 500 uL Buffer AW2 

o Centrifuge at 14,000 rpm for 2 min, discard flow through and tube 

  Transfer spin column to new 2 mL collection tube (#4) 

o Do not add more buffer (drying out last of the ethanol)  

o Repeat centrifuge at 14,000 rpm for 1 min, discard tube 
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 Transfer spin column to new 1.5 mL microcentrifuge tube for DNA elution 

o Add 100 uL TE buffer (1x if already low EDTA 0.1mM, 1/10x if regular EDTA) 

o Let TE Buffer sit on spin filter for 5 min 

o Centrifuge for 1 min at 8000 rpm, retaining 1.5 mL tube with the DNA 

o Add another 100 uL TE Buffer (low EDTA or 1/10x dilution) 

o Let TE Buffer sit for 5 min 

o Centrifuge for 1 min at 8000 rpm, retaining 1.5 mL tube with the DNA 

 Test potentially high concentration DNA samples (female Ae. albopictus) with Qubit to 

see if minimum 10ng/uL concentration met after first elution. Set these aside for final 

pipetting without second elution or spin concentration.  

 Other samples in 1.5 mL microcentrifuge tubes will have approximately 200 uL of eluted 

DNA.  

 Pipette all of the ~200 uL of eluted DNA into an Amicon Ultra 0.5 mL -30k centrifugal 

unit with attached 2 mL collection tube below it to collect the flow through; discard the 

spin filter from the previous steps.  

o Spin the concentrator centrifugal unit at 14,000g or ~13,500 rpm (for 7 cm rotor 

radius average) for 10 min at 4°C 

o Discard the flow through and the 2 mL collection tube 

o Place filter column, now with the 15k DNA caught within it, flipped upside 

down into a new 2 mL collection tube 

o Spin at 1,000g or ~3,500 rpm (for 7 cm rotor radius average) for 2 min at 4°C 

o Approximately 26 uL of concentrated DNA will be at the bottom of the 2 mL 

collection tube.  
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 Prepare a 500 uL Qubit sample tube with 199 uL HS dsDNA working solution 

o Add 1 uL DNA sample concentrate from the 2 mL spin tube to Qubit sample tube 

o Vortex for 3 seconds and let rest at room temperature for 2 minutes 

o Read concentration 3x times with Qubit and record the average 

 Calculate the volume of ddH2O and DNA concentrated solution that must be added to 

obtain 22 uL of 10ng/uL solution in a 500 uL microtube.   

o Use spreadsheet formula and double check final values (220 ng of DNA) 

o Pipette needed volume of concentrated DNA solution and molecular grade ddH2O 

into a 500 uL microtube.  

o 22 uL is mixed so that 20 uL can be pipetted into the final deep well plate, 

allowing for a small amount of loss due to surface adhesion.  

 Pipette the calculate volume of DNA solution and ddH20 into the well code 

corresponding to the sample ID #1-95 

o Leave well H12 empty for the control run 

o Seal 96-well plate Beckman Coulter deep well plate with Thermo Scientific plate 

seals, store at -20°C until shipment to UNC Genomics Core.    

o Store any remaining sample DNA solutions at -20°C.  

 

Preparation Notes: 

• Label initial sample tubes #1-95 with corresponding well ID’s 

• Label spin columns with corresponding well ID’s  

• Label final elution spin tube with corresponding well ID’s  

• Label Qubit sample tubes with corresponding well ID’s  
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• Label both 2 mL spin tubes for samples undergoing Amicon Ultra spin concentration  

• Can stop procedure after proteinase K digest/hot water bath for 6 months at room 

temperature. 

 

 


