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ABSTRACT

Mosquito-vectored pathogens are globally significant sources of disease across equatorial
areas and have expanded into temperate regions of the world. This dissertation examines
heterogeneity in vector-borne disease (VBD) transmission across scales by investigating the
invasive disease vector Aedes albopictus across an urban gradient in Atlanta, Georgia, USA. To
begin with a broader perspective, | developed a synthetic review to critically evaluate different
methods of modelling vector-borne disease systems across spatial scales. | offer perspectives
regarding the importance of choosing the appropriate spatial scale to model transmission in
response to environmental or biological processes. | also address both the relative strengths and
limitations of statistical versus mechanistic representations of VBD systems and advances that
can be made by integrating the two approaches. My empirical work focuses on larval and adult
mosquito populations across a range of impervious surfaces to investigate the effects of human
activity on Ae. albopictus populations. | identify and describe microclimatic and land use
practices that impact vector abundance. This study shows a significant negative effect of

minimum relative humidity and a positive effect of impervious surface coverage and daily



temperature range on adult Ae. albopictus abundance. Canopy cover strongly predicted greater
larval habitat density. As these microclimate and landscape factors change in response to
urbanization, findings here underscore the significance of human activity in determining fine-
scale variation in vector populations. In other work, | measure the genetic population structure of
Ae. albopictus populations across Atlanta using a SNP microarray for 95 mosquitoes collected
across 16 locations. Analysis showed a mosquito population with small but significant genetic
sub-structuring, suggesting a population shaped by a combination of human-mediation dispersal,
natural dispersal, and landscape barriers. Reconstructions of the admixture history of these Ae.
albopictus populations predict a single invasion event during the initial invasion of this species
and population movement across the study area. This research highlights how anthropogenic
landscapes produce fine-scale heterogeneities that drive variation in vector abundance while
facilitating vector dispersal. This work also advises that integrated statistical and mechanistic
models can advance understanding of how heterogeneities in biotic and abiotic factors drive

pathogen transmission across spatial scales.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

Conceptual background

Natural populations often encounter diverse environmental conditions across different
spatial scales. Heterogeneity in microclimate factors such as temperature and relative humidity
can affect ecological processes, including the transmission of infectious diseases. For vector-
borne diseases (VBD), the effect of environmental heterogeneity in temperature and rainfall is
especially important given the poikilothermic nature of arthropod vectors and their often aquatic
larval stages. Environmental variation has long been known to affect the distribution and
abundance of organisms, and the consequences of this variation for population dynamics
represent a fundamental question in ecology. At large spatial scales, environmental determinants
are evident from spatial correlations between species distributions and abiotic and biotic
variables (Stein et al. 2014). More recently, mechanistic models have directly incorporated links
between physiological characteristics and environmental factors to predict species dynamics in
response changing environments (Gotelli and Ellison 2006). This is especially important for
forecasting shifts in species abundance and ranges in the face of climate change and habitat
disruptions (Johnson et al. 2016). Environmental variation also occurs across fine spatial scales,
manifesting as microclimatic heterogeneity and land cover variation across human land uses. In
addition to affecting ecological dynamics of organisms, fine-scale variation can generate

selection pressures through habitat selection, barriers to movement, isolation by distance, vector



control efforts, and human mediated gene flow (Paupy et al. 2004, Hemme et al. 2010, Hlaing et
al. 2010, Richardson et al. 2014). Local adaptation to these selection pressures as well as genetic
drift, founder effects due to invasion history, and mutation can generate ecologically relevant
genetic variation across a landscape. An important open question involves how microgeographic
adaptation and mechanisms that cause this variation will influence the ecological dynamics of
species in nature.

Framework and considerations for modelling VBD systems

Incorporating spatial heterogeneity in environmental factors, socio-demographic factors,
and genetic variation is important for understanding and mitigating VBD transmission. The Ro,
or basic reproductive ratio, of vector-borne pathogens is sensitive to temperature and other
environmental variables, with both empirical measurements and computational models
predicting significant relationships between temperature and variables that feed into VBD
transmission (Murdock et al. 2012, 2014a, Mordecai et al. 2017a). At the same time, the
microclimate that a species encounters in its ecological interactions is often mismatched with a
larger spatial resolution for which environmental data are often available via remote sensing or
weather stations (Potter et al. 2013, Murdock et al. 2017, Evans et al. 2019, Wimberly et al.
2020). Advances in the study of vector microclimate have improved scientific understanding of
the appropriate scale at which climate affects mosquito ecology and arbovirus vectors more
broadly (Cator et al. 2013, Evans et al. 2018, Wimberly et al. 2020, Valentine et al. 2020b). An
important element in determining what variables and spatial scales are most important for a VBD
system is accounting for the biological characteristics of the organisms in question, including
their habitat preferences and dispersal capabilities. Importantly, cities can provide larval habitats

for urban-affiliated mosquitoes, and urban heat islands can affect mosquito life history traits and



VBD dynamics at the scale that an individual vector samples its environment, typically a few
hundred meters (Lacroix et al. 2009). As such, incorporating spatial heterogeneity in
environmental factors, socio-demographic factors, and genetic variation is important for
understanding and mitigating VBD transmission.

The Ross-Mcdonald model, first developed in the 1950s, is widely considered a
cornerstone VBD theory (Smith et al. 2012). This model captures changes in the host and vector
population density, the infection dynamics of both vector and host, disease-induced and
background mortality, mosquito biting rates, and mosquito-human contacts. Many contemporary
statistical and mathematical models focused on understanding the transmission dynamics of
VBD, and on their prevention and control, rely to some extent on the Ross-Macdonald
transmission model (Ruan et al. 2008, Reiner et al. 2013, Ruktanonchai et al. 2016). Mosquito
life history-driven elements of the Ross-Macdonald model (survival, recruitment, biting rate, and
the extrinsic incubation period, and Ro) are especially sensitive to environmental conditions
(Ahumada et al. 2004, Ruan et al. 2008, Tjaden et al. 2013, Ohm et al. 2018). Because of this
environmental sensitivity, VBD risk can vary across heterogenous landscapes, as tracked by
estimates for Ro. Therefore, incorporating spatial heterogeneity into VBD models can help
further scientific understanding of transmission by identifying refugia of disease or vector
hotspots, and spatially explicit models can inform control efforts by determining where to focus
interventions and what spatial coverage is needed to effectively lower transmission (Paupy et al.
2012, Eckhoff et al. 2015, Tokarz and Novak 2018). An understanding of a certain spatial
coverage to achieve effective vector control goes back to the earliest models of VBD, with
Roland Ross’ original conception of a theoretical circle of control where mosquitoes could be

eradicated at the center (Smith et al. 2012). Recent extensions of the Ross-Mcdonald model have



incorporated “patchiness” to model metapopulation dynamics of heterogenous disease risk
(Auger et al. 2008, Gao et al. 2014, Wang et al. 2019), varying degrees of host and vector
movement or mixing (Ruan et al. 2008, Reiner et al. 2013, Perkins et al. 2013, Eckhoff et al.
2015), and seasonal variations in vector abundance (Reiner et al. 2013).
Microclimate impacts on Aedes albopictus in VBD systems

The Asian tiger mosquito Ae. albopictus is a globally invasive vector of several medically
and agriculturally significant VBD, including arboviruses like Dengue, Chikungunya, Zika, and
Japanese Encephalitis, for which outbreaks are now common worldwide from the Americas to
Africa and Southeast Asia (CDC 2024, “Chikungunya | CDC Yellow Book 2024 n.d.). While
Ae. albopictus has spread globally in the last few decades, the earliest recognized introduction of
the species to the continental United States occurred in the 1980’s at the regional urban hubs of
Houston, TX and Memphis, TN (Bonizzoni et al. 2013, Gloria-Soria et al. 2021). By 1994, all
counties in the state of Georgia had reported the presence of Ae. albopictus (Womack et al.
1995), suggesting that the populations of this species in the metro-Atlanta area are at least in part
descended from these original invasive populations. VBD, due to the nature of mosquito
physiology, can be particularly sensitive to environmental variation due to the temperature
dependent life cycles and often localized dispersal of arthropod vectors (Liew and Curtis 2004,
Bellini et al. 2010, Wilke et al. 2017). At regional scales, climate factors such as the seasonal and
latitudinal changes in rainfall, as well as socioeconomic and demographic trends that determine
the contact rates with human hosts, can affect the distribution of suitable habitats and condition
favoring pathogen transmission (Lambin et al. 2010). Fine-scale environmental variation can
also alter vector development rates, reproduction and survival, body size, and overall abundance,

especially in response to temperature and moisture (Murdock et al. 2017, Evans et al. 2019). For



example, mosquito development rates, adult lifespans, biting rates and egg production are
sensitive to temperature, and microgeographic scale variations in temperature and relative
humidity influence vectoral capacity and mosquito abundance (Murdock et al. 2017, Evans et al.
2019, Wimberly et al. 2020, Valentine et al. 2020b).

Fine scale variations in mosquito populations have been observed in many contexts and
across diverse VBD systems. In the case of anthropophilic mosquito vectors, subpopulation
variations may ultimately reflect in divergent urban adapted subpopulations and ancestral
sylvatic populations. An example of this dynamic is seen in Anopheles gambiae genotypes that
have varying tolerances to nitrogenous pollution and predation, allowing more anthropophilic
populations to thrive in urban or agricultural larval environments(Gimonneau et al. 2010, Tene
Fossog et al. 2013). Vector adaptation in response to evolutionary pressures and the
anthropophilic niche of urban landscapes can influence biological characteristics (e.g., fecundity,
biting rates, longevity) relevant to overall transmission potential (Louise et al. 2015).

Genetics of Aedes albopictus

The genome of Ae. albopictus is the largest known for a mosquito species at 1,967 Mb
with over half transposable elements and other repeat sequences; many of these repetitive
elements include gene families involved with insecticide resistance and cold weather diapause
(Chen et al. 2015). Understanding the invasion history of a mosquito vector can be informed by
genetic analysis, which can help predict climate tolerance in the case of Aedes albopictus, where
some subpopulations extend into cooler regions (Bosio et al. 2005, Kamgang et al. 2011, Tippelt
et al. 2020). Phenotypic plasticity that allows for diapausing progeny when Aedes albopictus
experiences reduced photoperiods has heritable genetic underpinnings, and there is evidence of

the rapid evolution of this trait in expanding populations (Urbanski et al. 2012, Poelchau et al.



2013, Chen et al. 2015). The increased winter egg diapause survivability that some Ae.
albopictus lineages exhibit can potentially shift northward the regions of the world at risk from
the spread of this invasive vector beyond previous estimates, as some subpopulations exhibit
more adaptive cold tolerance via female size and cold weather egg survival (Sherpa et al. 2022).
Along the northern edge of the species distribution in the United States, genetic analysis has
revealed a persistent diapausing population rather than seasonal reintroductions, demonstrating
rapid establishment in relatively newer populations across a range of conditions (Gloria-Soria et
al. 2022). Furthermore, the rise of insecticide resistance in some locations makes the
identification of gene flow corridors important to vector control efforts (Vontas et al. 2012,
Demok et al. 2019, Li et al. 2021). These inheritable traits make the identification of temperate
or tropical phylogeographic origins essential for vector control efforts at the northern limits of
Ae. albopictus’ range.

Methodology for measuring genetic differentiation in Ae. albopictus populations has until
recently included allozyme variation, microsatellite polymorphisms, and mtDNA haplotype
analysis (Manni et al. 2015, Schmidt et al. 2017, Zhong et al. 2013, Chareonviriyaphap et al.
2004, Usmani-Brown et al. 2009). Using these tools, identification of population structure and
lineages has been used to intuit the geographic origin of invasion events of Ae. albopictus (Black
et al. 1988, Kambhampati et al. 1991, Urbanelli et al. 2000, Birungi and Munstermann 2002).
The geographic origin of subpopulations of Ae. albopictus and its cousin Aedes aegypti are
shown to impact vector competence at relatively close geographic distances (Failloux et al. 2002,
Paupy et al. 2012, Gloria-Soria et al. 2021). Variability in susceptibility to infection is evident
between Ae. albopictus subpopulations infected with Chikungunya virus and Dengue type 2

virus from identifiably distinct lineages, even when the population structure was not statistically



significant (Vazeille et al. 2001, Vega-RUa et al. 2020). Similarly, both extrinsic incubation
periods and vertical transmission rates of Zika virus in Ae. albopictus can vary between global
populations, associating variability in infection susceptibility with distinct genetic lineages
(Gutiérrez-Ldpez et al. 2019).

Another example of the importance of subpopulation characteristics is a hypothesized
cryptic subspecies of Ae. albopictus, identified through mitochondrial cox1 haplotype
divergence, that exhibits very low Wolbachia inoculation rates and possible Wolbachia
resistance (Guo et al. 2018, Wei et al. 2019). Given the impact of Wolbachia in attenuating the
transmission of Dengue virus in Ae. albopictus populations, identification of distinct lineages of
this species would be informative to public health efforts (Mousson et al. 2012). Anthropophilic
mosquito populations implicated in transmitting VBDs generally have limited innate dispersal
capabilities, from 100-500 meters in the case of Ae. aegypti (Harrington et al. 2005) and often
across similar ranges for Ae. albopictus (Bellini et al. 2010, Marini et al. 2010). In spite of these
limited ranges, genetic structuring has been observed within relatively short distances (Hlaing et
al. 2010, Olanratmanee et al. 2013). Gene flow across larger distances for mosquitoes with
limited flight ranges can be through natural dispersal via host seeking and oviposition
preferences, but it has also been be associated with human mediated movement (Huber et al.
2004, Rasi¢ et al. 2015, Carvajal et al. 2020).

Dissertation overview

The goal of my dissertation is to examine vector-borne disease dynamics through the lens
of vector ecology across spatial scales and in the context of human-altered landscapes. First, |
present a synthetic review to evaluate modelling approaches for VBD transmission across spatial

scales in Chapter 2. In this chapter, | demonstrate the utility and limitations of both mechanistic



and statistical approaches to modelling while advocating for the perspective of choosing the
appropriate spatial scale to describe biological and environmental phenomena that determine
VBD. Then, | demonstrate cases where an integrative approach of using quality fine-scale
empirical field data, statistical models, and mechanistic models together to best represent
potential VBD risk across a landscape. | use the insights from this chapter to inform what spatial
scale to measure vector demographics and the environment variables, resulting in collecting data
across spatial ranges based on knowledge of mosquito movement and life history. Affected
vector characteristics include host-seeking behavior, oviposition preferences, habitat selection,
and movement over the course of an individual vector’s lifetime. This approach to scale then
informs my empirical field work.

In Chapter 3, | conducted a field survey of mosquito populations across the city of
Atlanta, GA to characterize how microclimatic and land cover characteristics associated with
urbanization predict variation in Aedes albopictus populations and larval habitat density. This
research surveyed both adults and larvae at sites across an urban gradient in the city, as
determined by differing degrees of impervious surfaces surrounding each site. Mixed effects
models were built and evaluated to identify and measure the effects of the most significant
covariates predicting these demographic response variables. | found that minimum relative
humidity (RHwmin) had a significant negative effect on adult Ae. albopictus abundance, while
impervious surface coverage and the magnitude of daily temperature range (DTR) had a
significant positive effect on adult abundance. Canopy cover within each study site predicted
greater larval habitat density. | conclude that urbanization, which alters microclimate and is often
characterized by increasing surface imperviousness and heat island effects impacting RH and

temperature, increases Ae. albopictus abundance. The study also suggests that human interaction



with the urban environment significantly drives vector populations through actions like
preserving canopy cover in residential areas and providing larval habitats via landscaping
containers and other cultural practices.

In Chapter 4, | measure the population genetic structure of Ae. albopictus across Atlanta,
GA through the use of next-generation sequencing techniques and a newly developed SNP
microarray. The genetic data showed a minimal degree of genetic differentiation between the
subpopulations across the city, with Fst values only ranging up to 0.019. Although fixation
indices between sites were small, these depressed fixation indices are expected to be lower than
more traditional microsatellite analysis of genetic differentiation given the orders of magnitude
larger number of polymorphism sites the SNP chip assessed. The pairwise genetic variation
between most populations in the study was determined to be significant, with the exception being
with one site near the center of the study area and those sites adjacent to it. Additionally, the
ancestral history and admixture predictions of the population suggest a single introduction of Ae.
albopictus into Atlanta, likely from the initial invasive population in the early 1990’s. The
models of possible admixture events demonstrate population movement across the study area,
sometimes leap-frogging over the nearest sites. This dynamic, along with the high degree of gene
flow, suggests a high degree of dispersal. This population movement is likely facilitated by
human activity and enabled by limited landscape barriers to individual mosquito movement. This
characterization of the genetic structure of Ae. albopictus demonstrates how this anthropophilic

and urban adapted invasive species can rapidly invade and establish populations in a city due to
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limited environmental barriers to dispersal and human mediated dispersal of individuals and
eggs.

In a final conclusions section (Chapter 5), | integrate previously discussed findings
towards developing a predictive framework and clearer understanding of vector ecology within
human-altered environments. Overall, this research demonstrates the importance of incorporating
the approaches of different disciplines (mathematical modelling, empirical measurements and
collections of field samples, and genotyping using next-generation genetic tools) to describe a
VBD system and to better understand the ecological interplay between vectors and

anthropogenic changes to the environment
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CHAPTER 2
THE CHALLENGES OF MODELING SPATIAL VECTOR-BORNE DISEASE DYNAMICS:

NEW APPROACHES GUIDED BY RECENT ADVANCES!

1 Newberry PM, Park AW, Altizer SM, Murdock CC. To be submitted to the Journal of
Parasitology Research.

Author contributions; PMN: conceptualization, investigation, visualization, writing - original
draft preparation, writing — review and editing; AWP: conceptualization, writing - review and
editing; SMA: conceptualization, writing - review and editing; CCM: conceptualization, writing
- review and editing. All authors agree that their contributions can be included in this

dissertation.



12

Abstract

Over the past four decades, researchers have made significant progress incorporating
vector and host dynamics into mathematical models describing vector-borne diseases (VBDS).
Increasingly sophisticated modelling approaches used for predicting vector responses to
environmental variations across space and time have propelled the field forward, with crucial
importance for responding to health challenges posed by climate change, deforestation and
urbanization. Environmental data on temperature, rainfall, and vector habitats is typically
available across large areas at lower resolutions than the scale at which actual transmission
occurs. Determining how fine-scale heterogeneities in vectors, microclimates, and hosts should
be quantified, analyzed and modeled is a persistent challenge in describing and predicting VBD.
Here we review the scale of processes that influence VBDs and propose that integrating the
relative strengths of mechanistic and statistical models offers a powerful strategy for predicting
and mitigating the global burden of VBDs.
Spatial Heterogeneity in Vector-Borne Disease Systems

Vector-borne pathogens are important biological enemies of humans, animals, and plants
and are transmitted by arthropods within and between host species. In humans, despite
significant resources committed to controlling these pathogens, vector-borne diseases (VBD)
account for 17% of all infectious diseases and cause upwards of 700,000 deaths annually (World
Health Organization and UNICEF/UNDP/World Bank/WHO Special Programme for Research
and Training in Tropical Diseases 2017). Vector-borne pathogens impose heavy burdens on
agricultural systems, threatening livestock and crops (Jones et al. 2023), and can also be
devastating for natural ecosystems. This is exemplified by avian malaria-caused extinctions of

Hawaiian Honeycreepers (Samuel et al. 2015) and the widespread declines of crows, jays, and
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other corvids following the introduction of West Nile Virus into North America (LaDeau et al.
2011). To predict and respond to the negative consequences of vector-borne diseases, scientists
have developed mathematical models to explore underlying transmission process, to assess the
efficacy of interventions, and to forecast VBD transmission seasonally, geographically, and in
response to future climate and land use change.

Mathematical models are often limited by the necessity of simplifying assumptions, the
aggregation of data used to fit the models, and the need to choose what spatial and temporal scale
to use when investigating relevant variables. A major simplifying assumption of most
mathematical models is that host and vector populations mix randomly and contact each other
according to mass action principles. However, real-world patterns of VBD incidence (Chaves et
al. 2011, Perkins et al. 2013) instead show that incidence can vary sharply across space (Lambin
et al. 2010), with some areas highly suitable for transmission serving as persistent reservoirs or
sources of infection (Yoon et al. 2012, Salje et al. 2017). Spatial heterogeneity in VBD incidence
could occur due to geographic variation in abiotic (Murdock et al. 2014a, Evans et al. 2018,
Wimberly et al. 2020) and biotic (Murdock et al. 2014a, Russell et al. 2022) factors and socio-
economic variables that determine people’s risk of exposure to disease. Human-driven
environmental changes in turn influence vector densities, environmental suitability for vector and
pathogen development, and risk for pathogen transmission (Becker et al. 2014, Tesla et al. 2018,
Evans et al. 2018). Incongruence between model assumptions and vector biology was recognized
by Smith et al 2012 (Smith et al. 2012), where they conclude “fluctuations in mosquito
populations are extremely difficult to predict over time and space, and important sources of

heterogeneity and the spatial and temporal scales of transmission remain poorly characterized”.
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As ectotherms, arthropod vectors like mosquitoes, sandflies, and ticks are subject to a
diversity of environmental factors that can interact to affect their fitness, distributions, abundance
and behavior. The include abiotic factors of temperature (Murdock et al. 2014a, Mordecai et al.
2019, Evans et al. 2019, Wimberly et al. 2020), relative humidity (Murdock et al. 2017,
Mordecai et al. 2019, Evans et al. 2019), and precipitation (Mordecai et al. 2019); and biotic
factors like intra- and interspecific competition (Armistead et al. 2008, Evans et al. 2019),
biological enemies (Russell et al. 2022), and the quality/quantity of habitat and resources
(Murdock et al. 2014a, Mordecai et al. 2019, Evans et al. 2019). Environmental determinants of
vector and pathogen distributions occur at different spatial scales, with biotic factors showing
greater heterogeneity at local spatial scales (Murdock et al. 2017, Evans et al. 2019) and climate
factors varying at more regional spatial scales (Tesla et al. 2018, Khan et al. 2020) (Figure 2.1).
Additionally, socioeconomic variables can shape people’s exposure to arthropod vectors in the
case of housing structure, water storage practices, use of outdoor spaces, and access to public
health resources like bed nets and vaccines (Morgan et al. 2021). These social factors vary both
within and between neighborhoods and communities (Figure 2.1). Finally, vectors and the
pathogens they carry can disperse at limited local (natural dispersal or within a community)
(Harrington et al. 2005) or longer-distances (human-mediated) (Hlaing et al. 2010). Inferences
based on drivers of infection dynamics at only a single scale could generate misleading
predictions of pathogen transmission, spatial distribution, and incidence. Thus, a crucial need
remains for mathematical theory and tools that allow scientists to integrate biological processes
that vary across multiple scales into a unified framework to predict the distribution and

abundance of VBDs.
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Another challenge of incorporating spatial variation into mathematical models of vector-
borne disease transmission involves the methods by which both infection data and environmental
metrics are collected and aggregated. The spatial resolution of available data might not match
well with the spatial scale at which key variables have the largest effects on the transmission
process. . For example, macroclimate or socioeconomic data aggregated at coarse spatial scales
could cause researchers to underestimate habitat suitability for pathogen transmission or vector
persistence (Irvine et al. 2018) or to overlook small-scale clusters of VBD transmission (Salje et
al. 2017). Alternatively, if pathogens and vectors are dispersed at larger spatial scales due to
human mobility (Hlaing et al. 2010), then hosts can encounter pathogens from outside the
hotspots predicted by finer-scale data on natural processes.

In this article, we begin by exploring the underlying factors that shape the distribution
and dynamics of VBD transmission and the spatial scales across which these effects are likely
important. We present several modeling frameworks characterizing the spatial risk of VBD
transmission and the merits of approaches at different spatial scales. We also explore the VBD
forecasting implications of mismatches between the relevant spatial scale for a given process and
the spatial scale across which data are collected and aggregated. Finally, we end with a broader
discussion of the future theory and research that is required to move this field forward. These
efforts have the potential to better predict how the geographic distribution and abundance of
VBD will change with climate change and increasing urbanization. Throughout, we focus mainly
on mosquito-borne diseases owing to their public health impacts and economic global burden. In
particular, malaria remains a leading cause of human mortality and morbidity, with
approximately 263 million cases and 597,000 deaths in 2023 alone, primarily in children in sub-

Saharan Africa (World Health Organization n.d.). Further, 2023 saw the highest number of
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dengue cases in history, with over 6.5 million cases and 7,300 deaths. Other mosquito-borne
pathogens of human health concern include chikungunya virus, Zika virus, yellow fever virus,
West Nile virus, and Japanese encephalitis. Collectively, the global cost of treating these and
other mosquito-transmitted diseases exceeds $9 billion per year (Halstead 2007, Packierisamy et
al. 2015, Shepard et al. 2016).
Drivers of Heterogeneity in VBD Across Scales
The risk of mosquito-borne disease varies spatially owing to variation in multiple processes that
affect the distribution and dynamics of both vectors and the pathogens they transmit. These
include environmental variables that affect mosquito fitness, behavior, population dynamics, and
within-host pathogen development as well as processes that affect vector and pathogen
movement (e.g., mosquito dispersal ability, human-mediated dispersal, environmental barriers
and corridors). If significant spatial variation results in barriers to pathogen movement, genetic
variation can also manifest spatially across mosquito populations that in turn influence their
ability to become infected and to transmit pathogens. Finally, variation in socio-economic factors
that influence human exposure to biting mosquitoes and access to public health resources also
exhibit spatial structure. Overall, the combined effects of the various processes determine
patterns of transmission risk and disease incidence. The fact that these processes exhibit variation
at different spatial scales and are measured with different spatial resolutions makes prediction of
these effects on the transmission process challenging (Figure 2.1).

It has long been understood in the field of spatial ecology that three processes generally
determine the distribution of organisms. These are biotic factors (e.g., inter- and intra-specific
competition and trophic-level interactions), abiotic factors that lead to environmental filtering

(e.g., temperature, precipitation, relative humidity, pH and salinity), and the amount of the
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environment an organism can sample (e.g., dispersal range and movement). While substantial
spatial variation exists in both biotic and abiotic environmental variables, this variation does not
necessarily occur at similar spatial scales. For example, climate variables typically vary at
regional spatial resolutions (IPCC 2023), with relatively minor variation at smaller, local scales.
Thus, it has been hypothesized that environmental suitability or filtering will occur at scales >10*
km? in the absence of major elevational changes or landscape disturbances. In contrast, biotic
factors (including species interactions, habitats and resources) often vary at smaller spatial
scales, which is reflected by finer-scale spatial resolution in species composition data. Evidence
for rapid turnover in species composition and biotic interactions is supported across several
wildlife disease systems (e.g., chytrid fungus in frogs, West Nile virus in birds, and Lyme
disease in mammals) (Cohen et al. 2016). This would suggest that the effects of climate variation
on mosquito population and pathogen dynamics will occur across regional scales and that biotic
factors affecting the distribution and carrying capacity of local mosquito populations (largely
unaccounted for in predictive models) likely influence spatial structure at finer spatial scales.
The spatial scale that is relevant for a given biological process will not only depend on
the level of heterogeneity in underlying variables across space, but also on an organism’s
dispersal and ability to sample the environmental space. Variation that might be physiologically
relevant for an organism that has constrained dispersal capabilities can appear as environmental
noise for an organism that can sample wider geographic areas. Interestingly, mosquito-borne
pathogens can be transported via both mosquito movement and human movement. Mosquitoes
vary in their natural capability to disperse, with extreme examples including Aedes aegypti that
exhibit very limited mean dispersal (<100-200m) versus Culex annulirostris with high dispersal

(6200m) capabilities (Verdonschot and Besse-Lototskaya 2014). As a result, mosquito species
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with more limited dispersal can show a high degree of genetic and phenotypic variation across
space, which is amplified by the presence of environmental barriers (e.g., roads or forests
(Hemme et al. 2010)). Host-mediated movement of pathogens or mosquitoes across a landscape
also can also drive the spatial dynamics of pathogen transmission as has been observed for a
multitude of mosquito-borne disease systems of humans (dengue (Hlaing et al. 2010, Araujo et
al. 2015), West Nile virus (Brownstein et al. 2002), malaria (Marshall et al. 2016) and wildlife
systems acting as sylvatic reservoirs or potential targets of novel introductions of VBD
(\Valentine et al. 2019, 2020a, Hanley et al. 2024). The connectivity of humans and animal hosts
will determine how individual hosts move across space and if local mosquito populations and
environmental conditions vary in suitability geographically. Meta-populations can arise in these
VBD systems with source (highly suitable conditions) - sink (unsuitable conditions) transmission
dynamics. An example of a host-mediated source population connecting to increased VBD is the
observed amplification of Dengue in rural Thailand that is driven by a relatively small subset of
houses in the community (Yoon et al. 2012).

For human transmitted vector-borne pathogens, socio-economic and demographic
changes across space will further influence the risk human populations experience in acquiring
mosquito-borne pathogens (Dowling et al. 2013). These include variation in housing structure,
permeability to mosquitoes (e.g., presence of screens, curtains, and enclosed spaces), water
storage practices, access to public health resources, and public sanitation (Caprara et al. 2009). In
urban environments, this heterogeneity can arise across relatively small spatial scales (Figure
2.2) and interact with environmental variables such as urban heat island effects (Araujo et al.
2015) and create human-provided larval habitats in the case of water storage, potted plants, and

discarded household items (Wilke et al. 2019). Construction sites, although temporary, provide
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ample habitat for multiple mosquito populations due to high amounts of standing water, resting
habitat, and often unprotected human laborers to feed on (Wilke et al. 2018). Further, these sites
do not necessarily receive the same level of entomological and epidemiological surveillance as
permanent populations in cities. Importantly, human populations of lower socio-economic
standing tend to exhibit the highest burden of acquiring and transmitting mosquito-borne
pathogens (Dowling et al. 2013, Little et al. 2017, Goodman et al. 2018).

Overall, it is the combined effects of a multitude of environmental parameters, pathogen
dispersal, and social-ecological processes that result in the spatial patterns of transmission risk
and disease incidence (Figure 2.1). To accurately predict the spatial and temporal epidemiology
of a given vector-borne disease, incorporating data describing each process at the appropriate
spatial resolution for transmission and control is critical. Current challenges that constrain the
ability of mathematical models to predict spatial patterns of disease incidence arise because these
processes exhibit variation at different spatial scales. Data collected on these processes can be
aggregated at inappropriate spatial resolutions, and determining the relative importance of
various mechanisms of pathogen dispersal (e.g., vector or host-mediated) is a non-trivial
undertaking.

Modelling VBD Heterogeneity: Approaches and Applications

Mathematical models of pathogen transmission are simplified explicit expressions of a
given system, and when paired with appropriate validation, are an important tool in identifying
the key sources of variation that drive host-pathogen dynamics. The need to model VBDs
accurately across varied landscapes, host patterns, and vector ecologies is partly motivated by the
severe detrimental impacts VBDs have on people, domestic animals, and wildlife. Modeling a

VBD system allows researchers to identify links between mechanisms and patterns. Models are
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also crucial for exploring potential vulnerabilities in transmission that can be targeted in disease
or vector control efforts - ranging from pesticide applications and genetically modified vectors to
larval habitat elimination, indoor residual spraying, and the provisioning of bed nets to affected
communities. Thus, mathematical models are critically important for predicting the elements in a
system that can be leveraged for control or management or used in forecasting the effects of
certain control measures on disease cases (Figure 2.3) (Colon-Gonzélez et al. 2021). Approaches
to modelling these systems broadly separate into (i) mechanistic or (ii) statistical models that use
different, but complimentary, approaches to better understand the factors driving spatial and
temporal disease dynamics.
Mechanistic Models

Mechanistic models mathematically describe how different variables interact to
determine VBD transmission. Identifying links between individual-level components of the
VBD system and population-level effects, such as the prevalence of infection, make these
models informative for vector control efforts. The historic Ross-Macdonald model is an excellent
example of the development and application of mechanistic models in understanding malaria
dynamics and control (Reiner et al. 2013). The development of this simple yet powerful model
helped identify key elements of the transmission cycle on which to focus disease control
measures. The Ross-Macdonald model showed that reducing mosquito longevity yielded the
largest decreases in the basic reproductive number, Ro, due to fewer mosquitoes surviving each
day, which decreases the mosquito-human population ratio and density of mosquitoes living long
enough to become fully infectious. The basic reproductive number (Ro) describes the number of
secondary infections resulting from one initially infected vector given a susceptible host

population; the Ross-Macdonald model helped derive epidemiological expressions describing



21

VBD systems like the entomological inoculation rate and vectorial capacity (Figure 2.3). The
model’s estimations have informed many of the interventions against mosquito-borne disease
used today such as indoor residual spraying and insecticide treated bed nets targeting the adult
stages of mosquito vectors (Reiner et al. 2013, Smith et al. 2021).

To date, mechanistic modeling approaches have incorporated environmental variables
governing mosquito population dynamics that vary spatially and temporally. To do this,
laboratory experiments quantify relationships between key processes that determine transmission
and an environmental factor of interest, such as temperature. Field studies are also useful for
quantifying how temperature (Mordecai et al. 2017a, Ryan et al. 2021), rainfall (Auger et al.
2008, Fukui et al. 2022), and relative humidity (Brown et al. 2023) predict changes in mosquito
densities. These relationships can be incorporated into process-based mathematical models using
functional relationships to couple a rate to an underlying environmental variable (Figure 2.3).
These models can then be used to predict how environmental suitability for the mosquito or the
pathogen, disease incidence, or disease prevalence varies at fine (within city (Wimberly et al.
2020)), regional (within country), or global scales, as well as temporally with season,
interannually (Shutt et al. 2022), or in response to future climate change (Tesla et al. 2018,
Colén-Gonzalez et al. 2021).

Another approach to modeling spatial heterogeneity builds on multi-patch models. Multi-
patch models formalize spatial variation more explicitly by simulating the dynamics of different
host and vector populations that exist in distinct demographic or environmental conditions (Nipa
and Allen 2020, Wu et al. 2023). These models can then explore how variation in patch
characteristics and host connectivity across patches influences transmission dynamics (Auger et

al. 2008, Vyhmeister et al. 2020). In VBD systems, multi-patch models have led to insights
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regarding the importance of human movement and residence time on VBD infection rates(Lee
and Castillo-Chavez 2015, Barrios et al. 2018). These insights include understanding how
occupational commutes between human populations can amplifying VBD case incidence across
a region or even whether the directionality or residence time of inter-patch movement varies the
resulting epidemic size (Lee and Castillo-Chavez 2015, Barrios et al. 2018). Similarly, spatially
explicit models of vector elimination efforts can predict the competing effectiveness of different
methods (i.e. aerial spraying vs. door to door reduction of larval breeding habitats) (Demers et al.
2020).

Individual and agent-based models simulate the encounter rates of individual hosts and
vectors through different decision and encounter probabilities as they move through
heterogenous environments (Wu et al. 2020). Such approaches capture some of the stochasticity
evident in real life systems, especially in low density transmission situations where individual
vector or host actors can have major impacts on the persistence of pathogens (Smith et al. 2018).
Understanding the behavior of an individual mosquito moving through a heterogenous
microclimate as it encounters resources, seeks hosts, oviposits, and encounters vector control
measures has been simulated in some cases (Menach et al. 2005, Gu and Novak 2009). Still these
approaches rely on assumptions of scale and the parameterizations of the vector’s interactions
with its environment, including obstacles, mortality, and host quality. Agent-based models can
also account for variation in host population density, movement patterns, and medical
interventions such as potential vaccines (Carter 2002, Reiner et al. 2014). Decisions on relevant
heterogeneities require knowledge of a VBD system, such as household clustering and vector
dispersal ranges (Wu et al. 2023), as well as the particular human or environmental context that

the vector exists within.
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Mechanistic models, whether they describe individual vector and host actions or the
categorical states of populations interacting with a VBD, are particularly useful for predicting
transmission in novel conditions for which observations are limited or do not exist. However,
one of the constraints mechanistic models face is that parameterization can be data intensive,
requiring detailed experimental work. It can also be difficult connecting experimental results to
field observations in natural settings, making model validation challenging. For example, spatial
variation in the application and effectiveness of vector control measures, can have unexpected
consequences on the sporozoite development rate and the mosquito biting rate (Auger et al.
2008, Perkins et al. 2013, Gao et al. 2014, Smith et al. 2021). Thus, it is critical to determine key
environmental factors that determine transmission and the spatial scale across which they vary
most.

Statistical Models

Statistical models make inferences using observed relationships between mosquito
densities or disease incidence and different environmental or socio-economic metrics that vary
spatially and are hypothesized to affect transmission (Dowling et al. 2013, Little et al. 2017,
Morgan et al. 2021). Statistical models characterizing patterns over space and time can also
explore lagged or non-linear relationships. Additionally, statistical inference from observational
field data relates closely to real-world transmission (Heersink et al. 2016, Fairbanks et al. 2024).
Statistical methods are particularly useful in forecasting and require less a priori knowledge of
the mechanisms governing variation in mosquito densities or disease transmission, so may be
more appropriate than a purely mechanistic approach when the ecology of a vector, for example
is not well-known (Williams et al. 2008, Bondo et al. 2023, Whittaker et al. n.d.). This approach

can also reveal what combinations of covariates (e.g., environmental, socio-economic,
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connectivity) are important for predicting the spatial patterns of disease cases (Becker et al.
2014, Shutt et al. 2022, Bondo et al. 2023).

The most commonly used families of statistical models include ecological niche and
species distribution models. Correlative species distribution models (SDMs) use multiple
regression approaches to infer how the observed distribution of a species or a pathogen varies as
a function of geographically referenced climatic predictor variables (e.g., temperature, rainfall,
relative humidity). In mosquito-borne disease systems, SDMs can generate maps of
environmental suitability for a given mosquito species or for pathogen transmission across
regional (Cianci et al. 2015, Barker and Maclsaac 2022) and continental areas (Rogers et al.
2014, Khan et al. 2020), such as has been demonstrated for Zika and Dengue virus (Messina et
al. 2016, Colon-Gonzélez et al. 2018). These approaches allow researchers to examine how well
different combinations of covariates, and their relationships, match the data using model-fit
metrics like the Akaike Information Criterion (AIC). Choosing the most important elements that
describe a VBD system can be complemented with data reduction methods such as Principal
Component Analysis (PCA), while more general checks for collinearity can help reduce the
number of factors needed to understand transmission. Another family of statistical models
includes machine learning algorithms, which are mathematical methods (e.g., linear regression,
decision trees, random forest, etc.) that find patterns in a set of data. Machine learning algorithms
are trained on a particular set of data and consider various covariates of interest. After training,
the resulting function with rules and data structures is called the trained machine learning model.
The trained, optimized model can then be used to predict these patterns in a previously unseen

dataset. These models perform very well at near-term forecasting of temporal and spatial patterns
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in mosquito abundance or disease cases, and can be updated easily as new data become available
(Laureano-Rosario et al. 2018, Zhao et al. 2020).

While statistical models can make inference with less knowledge of the vector and
pathogen biology and can be operationalized faster, it is important to couple statistical inference
with biological knowledge, especially if non-linear or more complex processes are at play. For
example, strong correlations between different environmental covariates over time could hide
true causal relationships and challenge the ability to identify the biologically meaningful drivers
of VBD dynamics. Further, species distribution models require data not only on species
presences, but also of absences - and for many systems, records of species absences are not
commonly present in the literature. Finally, a general assumption of statistical models is that the
species of interest is at equilibrium with their environment and that the environmental variables
have been adequately sampled. Thus, applying statistical models to novel scenarios, such as in
response to land use change, future climate change, or pathogen emergence can be problematic
(Hay et al. 2009, Lessler and Cummings 2016).

Selecting the best modeling approach for understanding how spatial heterogeneity in
relevant factors influence VBD dynamics often depends on the specific question and system of
interest (Madzokere et al. 2020). Short-term forecasts in focused areas can be managed highly
effectively with statistical approaches that do not require much mechanistic information about a
system if sufficient entomological or epidemiological data are available. In fact, Johnson et al.
2018 (Johnson et al. 2018) demonstrates that mechanistic models performed well at predicting
the seasonality of dengue cases but failed to predict large outbreaks because of error being
introduced in anomalous years. Statistical models performed much better at predicting multi-year

outbreaks because they phenomenologically matched the patterns from disease data alone.
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Further, weighted averages of forecasts from super ensembles (e.g., multiple statistical models)
can reduce model error by smoothing over variation across individual forecast scenarios. In
contrast, mechanistic models are essential for understanding the biological drivers of VBD
dynamics in novel scenarios and for anticipating the effects of vector control or other
interventions on the VBD system (Kearney and Porter 2009, Cator et al. 2020, Ezanno et al.
2020). Ultimately, both modeling frameworks are useful and provide complimentary insights
that can inform and augment each other.

Moving the Field forward Conceptually and Practically

The union of mechanistic and statistical approaches for species distribution modelling is
becoming more prevalent in characterizing vector borne disease risk, leveraging broadly
available remote sensing and temperature/humidity data with empirically identified steps in the
ecology of VBD transmission involving the vector, the host, and the pathogen (Madzokere et al.
2020). This provides more precise predictions of potential/realized ranges of VBD due to thermal
responses (key for arthropod vectors) that will result from climactic shifts (Tesla et al. 2018,
Ryan et al. 2021). Mindful application of mechanistic tools accounting for environmental and
vector/host heterogeneity and of statistical models informed and parameterized by empirical
examination of disease processes can overcome the pitfalls sometimes associated with these
approaches on their own (Figure 2.4).

Key to this approach is obtaining data appropriate to the spatial or temporal scale relevant
to the ecology of a particular VBD system. Often fine-scale resolution data are lacking due to
limited resources and the logistical challenges of widescale microclimate and vector monitoring.
Scale mismatches between the processes driving transmission and the data used to validate the

model can make it difficult to gain inference at a desired spatial scale or can obscure patterns that
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arise at fine spatial scales. For example, modeling VBD transmission in urban environments
predicts significant variation at very fine scales - within tens of meters - largely owing to
thermal variability (Romeo-Aznar et al. 2024) and patterns of host population density (Romeo-
Aznar et al. 2022). Further, fine scale temporal modelling of vector systems, such as the
Culicoides-spread hemorrhagic disease in whitetail deer, explains otherwise cryptic larger-scale
patterns of VBD dynamics (Park et al. 2016). Insights gained from more complex mechanistic
models of multi-vector or multi-host systems can then be used in conjunction with statistical
models incorporating environmental variables to both predict and explain relevant levels of VBD
risk regionally (Cleveland et al. 2023).

Future modeling approaches should identify transmission parameters that are most tightly
coupled to environmental variables in an established workflow (Figure 2.4)(Wimberly et al.
2020). Furthermore, understanding heterogeneity in environmental processes that drive
transmission, as well as determining vector and pathogen dispersal, will be critical for targeting
surveillance and vector control strategies. If variation in vector-host contact rates occurs across a
landscape, and if vector control measures such as larval source management (Smith et al. 2013)
or adult control measures are applied unevenly or at inappropriate spatial scales, this can result in
ineffective control (Rochlin et al. 2022, Romeo-Aznar et al. 2024). Alternately, identifying the
most important elements of a patchy environment allows for more effective targeting of vector
and host populations for emerging vaccines, vector sterilization, and broad insecticide
spraying. Genetic tools can be very useful for determining the spatial scales at which population
structure is evident. Advances in single nucleotide polymorphism (SNP) microarrays, affordable
whole-genome sequencing, and microsatellite markers allow for very precise characterization of

a vector species’ admixture history(Bosio et al. 2005, Palatini et al. 2020, Carvajal et al. 2020,
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Wei et al. 2022, Cosme et al. 2024), telling a story of invasions and introductions across
heterogenous landscapes including potential barriers to dispersal (Hemme et al. 2010, Wilke et
al. 2017, Regilme et al. 2021).
Concluding Remarks

Significant computational and methodological advances have been made in recent years
harnessing computing power and the wide collection of empirical data, allowing researchers and
public health professionals to craft increasingly sophisticated models of vector-host-pathogen
systems. Key to maintaining this momentum is continuing to collect data on the relevant drivers
and variables in a complex system to characterize the transmission process, but with more
mindfulness of the spatial scale across which these processes are relevant. Recent advances in
data collection instruments, include the use of embedded sensors, wearable devices, sophisticated
survey tools, and cloud-based platforms now allow for real-time data capture of spatial and
temporal heterogeneities and deeper insights from diverse sources Systems with increased
human dispersal may alternatively approach panmixia as people can sample more environmental
space with modern travel, creating VBD corridors of spread following societal movement
patterns (Marshall et al. 2016, Saucedo and Tien 2022). Studies that synthesize both mechanistic
approaches and statistical techniques are crucial for future predictive models of VBD systems.
Finally, improved mathematical and statistical models of VBD as well as Al-powered machine
learning techniques and big-data analytics can indicate fundamental pitfalls such as scale

mismatches and overlooking important ecological phenomena underpinning VBD transmission.
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Figure 2.1. Vector and human host variables across spatial scales affecting the modelling of vector-borne disease.

Human host and vector variables that determine vector dispersal and pathogen transmission are highlighted in dark red boxes. Factors

that determine the relevant scale for describing a VBD system often depend on the scale at which the vector disperses and interacts



with the host, which in turn depends on vector life history and the movement of infected persons. In human VBD systems, human
movements as well as trade and transport of goods can cause the introduction of vectors to novel locations (variables boxed in red).

Key variables for the mosquito vector and for human hosts that are heterogenous at finer spatial scales are boxed in blue.
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Figure 2.2. Common human-made mosquito habitats in a heterogenous urban
environment. (A) Urban landscape in the island nation of St Kitts and Nevis, a location with

multiple endemic vector-borne diseases spread by mosquito populations such as Dengue virus
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and Chikungunya virus. Larval mosquito habitats vary dramatically at fine spatial scales and are
exposed to significantly different microclimates: (B) rainwater storage barrel, (C) discarded used
tire, and (D) drainage along urban street. Agricultural rain barrels offer more persistent water for
larval habitats than roadside drainage in urban areas, increasing vector abundance in rural
regions. However, a more ephemeral used tire larval habitat may produce fewer mosquito

vectors but be closer to population centers, increasing contact rates between vectors and hosts.
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Figure 2.3. Applying mechanistic models of microclimate impacts on vector-borne disease transmission. (A) The Ross-

MacDonald Model describes the basic reproductive number of a VBD system, derived from and traditionally applied to mosquito

vector-borne disease systems. Variables expected to be significantly heterogenous in space and time are displayed in red: vector

abundance (Nv), biting rate (a), vector susceptibility (by), vector daily survivability (p), and pathogen incubation period (n). These

variables can be informed by empirical field collected microclimate data. Model variables not expected to vary greatly due to
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heterogenous microclimates are displayed in blue: host abundance (Nn), host susceptibility (bn), and host recovery rate (r). (B) Map
representing months of Zika transmission suitability informed by empirical organismal level thermal response data derived from
laboratory experiments. The resulting risk map represents a more accurate expression of months of Zika virus susceptibility than a
purely statistical model portrays. Reproduced and adapted from Tesla et. al. (2018), represented here in accordance with the Creative

Commons Attribution License.
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Attribution License.
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CHAPTER 3
MICROGEOGRAPHIC VARIATION AND LAND COVER INFLUENCES ON MOSQUITO
VECTOR POPULATIONS INCLUDING THE MEDICALLY SIGNIFICANT AEDES
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Abstract

Empirical evidence in recent years has emphasized the importance of microclimate in
influencing the urban adapted and anthropophilic mosquito species Aedes albopictus, a
significant vector of disease worldwide. Environmental variables like temperature, humidity,
canopy cover, and impervious surface cover change as landscapes urbanize, and these factors are
heterogenous within the geographic scale that Ae. albopictus experiences its environment. This
study examines microclimate variables predicted to influence vector-borne disease risk as
modulated through impacts on mosquito abundance. We distributed temperature and relative
humidity data loggers across 12 sites in Atlanta, GA, USA, covering a range of impervious
surface coverage. Microclimate measures were matched with monthly adult mosquito trapping
and larval habitat surveys from Jun-Oct for two consecutive years. Principal component analysis
and mixed-effects models were used to identify the most significant environmental variables and
their respective influences on adult Aedes albopictus abundance and larval habitat density.
Results showed that impervious surface cover and daily temperature ranges with 14-day lags
predicted greater adult Ae. albopictus abundance, whereas mosquito abundance decreased with
greater minimum relative humidity. Larval habitat density increased with canopy cover across
sites. Collectively, our findings predict that Ae. albopictus in urbanizing landscapes are
supported by a mosaic of residential, commercial, and forested areas. We speculated that adult
mosquitoes are attracted to residential and commercial areas with higher human host abundance,
whereas larval development depends on greater forest cover.
Introduction

Human alteration of landscapes can affect the abundance, distribution and characteristics

of aquatic larval habitats and the development of container breeding mosquitoes of medical
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significance, including the globally invasive Asian-tiger mosquito Aedes albopictus. This species
was first identified in the United States in 1985 following an invasion facilitated by the used tire
trade from Asia, and by 1994 all counties in the state of Georgia had reported the presence of Ae.
albopictus (Womack et al. 1995). Ae. albopictus is a competent vector for many arboviruses
including the Dengue, Chikungunya, and Zika viruses. From its ancestral origins in Southeast
Asia, this species has spread globally to all continents except Antarctica. Species distribution
models predict global climate change shifting the range of Ae. albopictus northwards (Rochlin et
al. 2013, Kraemer et al. 2015, Laporta et al. 2023) while also moving the transmission risk of
various arbovirus into regions not accustomed to these arboviruses (Tesla et al. 2018, Leta et al.
2018, Ryan et al. 2021, Gloria-Soria et al. 2021, Bohers et al. 2024). Ae. albopictus is also
known to prefer both general mammalian and specifically human hosts across sylvatic/rural,
residential/suburban, and urban environments, potentially with evidence of different feeding
preferences depending on the physical environment and host community composition (Richards

et al. 2006, Valerio et al. 2010, Faraji et al. 2014).

Given the importance of Ae. albopictus, it is critical to understand the factors that affect
its distribution and abundance to inform surveillance and control efforts as well as to anticipate
future spread. The distribution and abundance of Ae. albopictus depends on abiotic and biotic
variables that determine their development rates, population growth, and daily survival (Alto and
Juliano 2001, Delatte et al. 2009, Brady et al. 2013). These variables directly affect mosquito life
history traits, and effects on juvenile stages can carry-over to affect adult traits (e.g., body size
(Gunathilaka et al. 2019, van Schoor et al. 2020), reproduction (Christiansen-Jucht et al. 2015,
Ezeakacha and Yee 2019, Salim et al. 2023), as well as pathogen susceptibility (Westbrook et al.

2010, Alto and Bettinardi 2013, Moller-Jacobs et al. 2014, Murdock et al. 2014b, Evans et al.
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2018, 2020)). Specifically, temperature and relative humidity are critical determinants of Ae.
albopictus population dynamics (Murdock et al. 2017, Wimberly et al. 2020). Temperature
variation has non-linear and unimodal effects on mosquito life history traits with intermediate
optima (Murdock et al. 2017, Evans et al. 2018, Mordecai et al. 2019). While relatively
understudied, relative humidity is also important (Murdock et al. 2017, Brown et al. 2023). Daily
fluctuations in these two environmental variables have added effects not necessarily captured in
current experimental work (Evans et al. 2018, 2019, Wimberly et al. 2020). These effects, in
turn, influence how mosquito population dynamics vary across space with land use and season
(Richardson et al. 2011, Mordecai et al. 2017a, Evans et al. 2019, Wimberly et al. 2020).
Urbanization, and the heterogeneity in land use associated with the urban environment, results in
temperature and relative humidity variation across urban landscapes at spatial scales not reflected
by local weather station data. The built up environment is often associated with increases in
temperature and decreases in relative humidity through heat island effects resulting from the
thermal properties of urban structures (Arnfield 2003, Mohajerani et al. 2017), reduced air flow,
waste heat, and reduction in vegetation and evaporative cooling (Tan et al. 2018). Some
investigations into VBD in cities also directly implicate expanding urban heat island effects in
increasing Dengue virus or malaria incidence (Araujo et al. 2015, Akhtar et al. 2016, Misslin et
al. 2016, Santos-Vega et al. 2023). The relationship between mosquitoes, urban temperature
effects, and resulting impacts on VBD has been shown to be both significant and heterogenous at

scales of 100m to several km (Nagao et al. 2003, Murdock et al. 2017, Evans et al. 2018, 2019).

In addition to abiotic variation, the quality and quantity of larval habitats is another key
driver of Ae. albopictus population dynamics (Evans et al. 2019). For mosquitoes that thrive in

containers, human activity can directly increase available larval habitats via the increase in the
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prevalence of artificial container habitats that often accompanies human habitation, thus
facilitating mosquito population growth (Li et al. 2014, McClure et al. 2018), and this can vary
with socio-economic status. For example, lower socioeconomic levels may involve a lack of
indoor plumbing and necessitating the household storage of water in containers, while decreased
garbage collection leads to more larval habitats (Nagao et al. 2003). Alternatively, higher socio-
economic status could increase gardening activities and potted plants prevalence, increase local
vegetation and aquatic container habitat. Additionally, higher humidity levels may be seen in
austere housing more open to the outdoor surrounding, facilitating mosquito vector exposure to

the inhabitants (Baruah and Rai 2000).

In this study, we examine microgeographic variables and land cover changes that
facilitate Ae. albopictus populations in urban environments, using measures of mosquito
abundance and larval habitat density as indicators. We accomplish this by investigating sites with
varying impervious surface and forest cover in Atlanta, GA, USA. We placed multiple
temperature and RH loggers across each site to capture microgeographic variation at the scale an
individual mosquito experiences environmental heterogeneity. Paired with adult and larval
mosquito surveys, we investigated the relationships between fine scale microclimate variables
and land cover characteristics with Ae. albopictus abundance and distribution as well as positive
larval habitat density. We predicted that larval mosquitoes would be more common in areas with
higher canopy cover owing to more potential breeding siters, and that adult abundance would

increase in residential and commercial areas with greater human activity and density.
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Materials and Methods
Study site selection:

We collected data between Jun-Oct in 2021 and 2022 in Atlanta, Georgia, USA, between
the city center and the eastern perimeter covering a 15x15km area. The study area contained
diverse urban land uses including commercial centers, forested parks, and suburban residential
zones (Figure 3.1). Twelve survey sites were selected to capture the full spectrum of impervious
surface coverage, maintaining at least 1600 meters between them. Previous research supports
that impervious surface coverage strongly impacts microclimate in urbanized area, so this was
the primary selection metric (Evans et al. 2018, Wimberly et al. 2020). The National Land Cover
Database 2016 dataset was used to generate an impervious surface map with ArcGIS ArcMap
10.7.1 (ESRI) with each site’s impervious surface calculated as the average impervious coverage
within a 500-meter radius of the site center. Each site was also characterized by canopy cover
over a 100-meter radius from the center of the site. The different radii for these landscape
characteristics were informed by previous work in Athens, GA (Murdock et al. 2017, Wimberly
et al. 2020) indicating microclimate effects between 1km to capture urban heat island effects
down to 150m to ensure sensitivity to microhabitat variation. We chose a 500m radius moving
focal window to avoid excessive homogenization of site characteristics and to capture any effects
of heat islands. Sites ranged from 5% to 71.8% impervious surface cover and 0.4% to 95.2%
canopy cover (Table 3.1). An initial set of potential sites covering the range of impervious
surface values was initially chosen across the gridded area, with final site selection informed by
accessibility, ability to gain site permissions, and to ensure sites were independent of each other
(minimum distance between sites was 1670 m). Each of these were delineated by 100-meter

radius from a central point in accordance with previous studies showing most female Aedes
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albopictus dispersal occurs within that range (Figure 3.1)(Bellini et al. 2010, Marini et al. 2010).
See Table 3.1 for the full list of survey sites, site codes, coordinates, and associated land cover
measures. Bounds of the entire study area were approximately 12x12 kilometers, covering
predominantly the eastern half of metro Atlanta across varying levels of urban development from
paved commercial centers and parking lots to forested parks and suburban neighborhoods.
Access and sampling in municipal areas was authorized by local Dekalb County officials. Other
site permissions in residential or commercial areas were granted by homeowners, local business
owners, and private park managers.

Agquatic larval surveys:

We surveyed each site for aquatic larval habitats monthly, with surveys for the 12 sites
separated 30 days and avoiding extreme rainfall events. Each month, we visually inspected every
site for standing water or potential container habitats using a walking survey. We recorded the
long axis, short axis, depth GPS coordinates, canopy cover and description of all larval habitats
noted per site. We estimated canopy cover with a spherical crown forester densitometer with
values rounded to the nearest 10%. If we identified larvae or pupae in a particular habitat, we
used a 1.5 cm volume transfer pipette to collect the mosquito larvae/pupae. Each habitat for a
sampling month/site had a 50 mL Falcon tube with a thin mesh cover and a cotton ball stopper.
We collected a subset of up to 25 larvae/pupae from each habitat to avoid destructive sampling
and to preserve the site population size in subsequent sampling months. Sampled larval tubes
contained the original habitat’s water (20-40 mL) along with 5 mg of dry flake fish food (Tetra
Cichlid) to support development. We added deionized water as needed to prevent evaporation of
water within the larval tube. Larvae were reared in tubes specific to a particular larval habitat and

placed in a Percival Scientific incubator at 28.0°C +/- 0.5°C and 80% +/- 5% RH with a diurnal
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program (14:10 day/night). We checked tubes daily for adult emergence, which were
immediately placed in a -20 °C freezer. Sex and species was determined after freezing following
Darsie and Ward prior to long term storage at -80°C (Darsie and Ward 2005).

Adult trapping:

We sampled Adult mosquito monthly from June to October in both 2021 and 2022 field
seasons in conjunction with larval surveys to measure abundance and community composition of
mosquitoes at each study site. We deployed Biogents Sentinel 2 traps (BGS) (Biogents AG,
Regensburg, Germany) for adult trapping and placed in the center of each site for a 24-hour
period in each sampling month. We baited the traps with octanol lures (Biogents AG, Germany)
and 1000g of dry ice placed in an open insulated water bottle to generate a CO2 plume. The traps
were powered by 12V 1400 mAh batteries, which we ran continuously for each 24-hour period
to reduce the risk of escape. At the end of each sampling period, we sealed the catch bag with
captured mosquitoes within a zippered plastic bag and immediately stored in a cooler of dry ice
until storage in a -20 °C freezer for later identification. Sexing and identification to species was
performed following Darsie and Ward prior to long term storage at -80°C (Darsie and Ward
2005). We recorded the date of each collection as the day the trap was set. Occasionally traps in
public places were stolen, tampered with, or destroyed, necessitating a subsequent adult
sampling period as close to the larval survey date as possible.

Microclimate measurement:

Because weather station data do not accurately reflect the climate conditions mosquitoes
experience (Cator et al. 2013, Paaijmans et al. 2014, Murdock et al. 2017, Wimberly et al. 2020)
due to variation in land cover and surrounding land use, we deployed six data loggers at each site

(n=72 total) to record daily variation in temperature (T) and relative humidity (RH). At each site,
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four RFID Track-It loggers by Monarch Instruments (Amherst, NH) were deployed along with
two MX2300 loggers and solar radiation shields by HOBO (Onset). Logger models were mixed
due to the limited availability of the MX2300 models, which had enhanced data download
capabilities and measurement accuracy/resolution (T accuracy of 0.2°C vs 1.6°C and RH
accuracy 2.5% vs 3%; T resolution of 0.01°C vs 0.5°C and RH resolution of 0.01% vs 0.5%).
Loggers were placed in full shade at 1m high affixed with zip ties to vegetation and with solar
shields for loggers exposed to direct sunlight. The loggers recorded T and RH readings every 15
minutes continuously. Some loggers were lost due to removal by the public or otherwise
destroyed during the sampling period. Loggers would be replaced as soon as the loss was
identified, and all sites had coverage of at least 5 loggers for each day. For each logger on each
day, the average, maximum, and minimum Ts as well as the DTR were calculated. Additionally,
the daily average, maximum, and minimum RHs were calculated along with the daily RH
fluctuation. These daily temperature and RH values were then averaged over the preceding 7 and
14-days from the last survey data to account for different lags associated with mosquito
development times for each site. Intra-site variation between loggers was small for temperature
(0.576 °C) and larger for RH (12.934%).
Data analysis:

To determine the effect of different microclimate variables on Ae. albopictus abundance,
a principal component analysis (PCA) was performed alternatively using 7-day and 14-day lags
for the RH (minimum, maximum, average, and fluctuation) and temperature (minimum,
maximum, average, and DTR) variables after normalization. This PCA identified the strongest
microclimate and landscape predictors of site variation with which to test in downstream models

of adult Ae. albopictus abundance and larval habitat density. Larval habitat density specifically
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refers to a larval habitat that was positive for mosquito larvae, and a larval habitat was
considered positive for larvae if there were any mosquito species identified. This was because
almost all larval habitats that had non-Ae. albopictus mosquito larvae also had Ae. albopictus
larvae present.

The variables explaining the most variation for the 7- and 14-day lags, using a cos2
quality of representation cutoff of 0.2, were then used to test different generalized linear mixed
effects models predicting adult Ae. albopictus abundance and larval habitat density for immature
mosquitoes. Adult abundance of Ae. albopictus was chosen as the primary response variable
representing population size, while larval habitat density at a particular site was used as a proxy
for site suitability for mosquito populations. The distribution of the adult count data followed a
negative binomial pattern (mean = 28.6, variance = 3727.1). Larval habitat density was likewise
determined to follow a negative binomial distribution, although with a less extreme
mean/variance ratio (mean = 1.3, variance = vs. 3.4). Models predicting for these response
variables fitted to a negative binomial distribution outperformed those fitted to a poison
distribution.

The gimmTMB package (version 1.1.10) in R was used to build different mixed effect
models, and model performance was assessed by comparing AIC values, degrees of freedom,
convergence, and the significance of difference from a null model with only random effects
tested with likelihood ratio tests. Site and Month/Year were the random effects for each model
tested, with Month nested within Year. Microclimate temperature and RH variables exhibited
non-linear relationships with adult abundance and larval habitat density, so these variables
transformed using a basis spline (b-spline) function for fitting into a linear model. After

normalization or microclimate variables, basis-spline fitting using the “s()” function in the
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“splines” R package (version 3.6.2) (R Core Team 2024) was performed on each temperature
and RH variable in order to improve model convergence. Canopy cover and impervious surface
coverage also showed a nonlinear effect with larval habitat density and was also transformed
with a b-spline for the larval habitat density models, while the relationship was more linear
versus adult abundance. Model fit was tested in the univariate models with and without b-splines
assigned to the microclimate variables to ensure AIC values and model convergence improved.
Dispersion and uniformity for each model was tested with the DHARMa R package (version
0.4.7) (Hartig 2024). The fixed effects tested as predictive of adult abundance and larval habitat
density were chosen according to the most important elements of the first loading of the PCA.
Mixed-effects models with these different microclimate variables and combinations of
microclimate variables were then used to investigate the most important predictors of Ae.
albopictus abundance. Predictor variables that were highly positively or negatively correlated
were typically not placed in the same model to avoid the confounding effects of extreme
covariance between effects. Although RH terms were correlated with DTRs for both 7-day and
14-day lags (negatively for minimum/average/maximum RH with DTR, positively for RH
fluctuation and DTR), models with both RH and DTR were tested due to the likely importance of
both RH and DTR in this system. Adding a term in the mixed effects model to account for the
interaction between RH and DTR typically improved model fit, but the interactions were not
significant. Larval habitat density was also added as a fixed effect for the adult abundance model
to account for the biological importance of larval habitat availability in driving population size.
For predicting both adult abundance and larval habitat density, a total of 34 mixed effects
models were tested to evaluate what combinations of fixed effects that best predicted their

respective response variable. The seven best performing adult abundance models and the three
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best performing larval habitat density models are displayed in Table 3.3. The 10 other
temperature and RH microclimate variables (maximum, average, and minimum temperature;
maximum and average RH) with both 7-day and 14-day lags were also tested for performance
against the multivariate models for both adult abundance and larval habitat density for a total of
an additional 20 models. However, none of these univariate models outranked the multivariate
models for predicting adult abundance. Larval habitat density was then tested as a univariate
predictor of larval population density independent of adult abundance, and the univariate models
here performed better relative to other larval habitat models. See Supplementary Table A.4 for
the full list of adult abundance model performance and Supplementary Table A.5 for the full list
of larval habitat density model performance.

Results

Specimen and site overview:

Over the two field seasons, a total of 17 species of mosquito and 4985 mosquito
specimens were collected, and adult abundance by month peaked from August to September.
Species richness at the site level ranged from 2 to 10, with an average value of 5.75 and a median
value of 5.5 species per site. Across all sites, Ae. albopictus was the species that was the most
prevalent, making up 91.84% of the specimens collected (n=867 larvae and n= 4578 adults)
(Figure 3.2). A total of 133 unique larval habitats were identified, with 83 positive for mosquito
larvae (44.8%). Of these larval habitats, 25 were classified as natural (ephemeral drainage
ditches, stagnant pools, and tree holes) with 20 of these natural habitats being positive for
mosquito larvae (79.9%). The remaining larval habitats (n=108) were classified as artificial,
meaning they were directly tied to human activities (e.g., trash containers, buckets, flowerpots,

planters, stagnant fountains, and water storage tanks). Out of these artificial larval habitats, 63
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were positive for mosquito larvae (58.3%). The average number of larval habitats for the sites
was 11.1 with an average of 6.9 of these larval habitats positive for immature mosquitoes. Site
FR had the most larval habitats (n=34) and site PPR had the second highest (n=26) larval
habitats, with a correspondingly habitat positivity rate (occupied/total larval habitats) (FR=82.4%
and PPR=76.9%). Sites FR and PPR also had the most Ae. albopictus larvae collected from them
(FR: n=250 and PPR: n=214) (Figure 3.3a). Interestingly, despite the low habitat abundance and
number of larvae collected from sites DD and NDS, these sites had the highest numbers of adult
Ae. albopictus collected from them (DD: n=1301 and NDS: n=628) (Figure 3.3b). Ae. albopictus
abundance increased through both seasons, peaking in August and decreasing through October
(Figure 3.5). Similarly, larval habitat density increased through both seasons, peaking in August
and decreasing through October (Figure3.7a).

Over the field seasons, the minimum, average, and maximum temperature values across
all sites increased together until July before decreasing together until October (Supplementary
Table A.3 and Supplementary Figure A.1). Minimum, average, and maximum RH values over
the field seasons likewise tracked together, peaking in August and decreasing until October
(Supplementary Table A.3, and Supplementary Figure A.2). Averages for each site across the
field seasons show site MD as having the highest average temperatures and site DD having the
lowest average temperatures. The highest average RH were at site WG and lowest average RH at
site DD (Supplementary Table A.2). Classifying the sites by degree of site imperviousness as
low (<25%), medium (25-45%), and high (45-72%), high impervious sites showed a large degree
of variation compared to medium and low, corresponding to higher DTR values. All levels of

imperviousness had similar minimum average temperatures across the seasons (Supplementary
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Figure A.3). Low impervious sites showed the highest minimum RH values and high impervious
sites showed the most variation in maximum RH values (Supplemental Figure A.4).
Principal component analysis:

Using 7-day lags, the first and second principal components captured 72% and 18.5% of
the variability in the dataset, respectively. Using the cos2 quality of representation measures for
PC1, the most important variables were the minimum RH, fluctuation in RH, average RH, DTR,
canopy cover (Can100m: 0.263), and impervious surface (Imp500m: 0.228) (Table 3.2a). The
average of daily RHmin and RHmean were strongly positively correlated (0.8879679), so only
RHwmin was used to capture the effect of RH in the microclimate models since it outranked
average RH in cos2. With the 14-day lags, the first principal component captured 77.2% and the
second principal component 16% of the variability in the dataset. Using the cos2 quality of
representation measures for PC1, the same measures as 7-day lags were the most important
except with 14-day lags: fluctuation in RH, minimum RH, average RH, DTR, canopy cover
(Can100m), and impervious surface (Imp500m) (Table 3.2b). Likewise, the mean daily RHwmin
and RHwvean Were strongly positively correlated (0.8511583), so only RHmin was used as the
higher quality variable according to cos2 rank. See Supplementary Table 3.1 for a complete list
of variable correlations and Supplementary Figures A.5 and A.6 for 7-day and 14-day lag
variable scree plots, respectively.

Generalized linear mixed effects models

The temperature and RH variables were tested in univariate models to isolate any
potentially strong indicators of adult abundance or positive larval habitats that existed
independent of other variable interactions. None of these univariate models for predicting adult

abundance outperformed the multivariate models for predicting adult abundance, suggesting the
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importance of accounting for the effects of T, RH, and land cover variables together. Also, all
models for adult abundance were tested with larval habitat abundance as a predictor, as this is
biologically an important limiting factor for population sustainment. While larval habitat density
was not a significant effect in the adult abundance models, it did however significantly predict
the actual larval population size of each site in a separate model with just larval habitat density as
a fixed effect. The close relationship between larval habitat density and actual number of larvae
is expected given the reliance of identifying a positive larval habitat prior to sampling its larvae
for the larval specimen count. While this is a less effective measure of population size than adult
abundance since the larval habitats were not destructively sampled in order to minimize the
month-to-month influence of sampling, it is potentially informative when accounted for in
addition to more precise measures of adult abundance. For all models, Site and Month:Year
(nested) were included as random effects.

One interesting phenomenon is the disparity regarding high larval populations and larval
habitat density vs adult population. This may suggest some movement of larval populations once
they emerge as adults, especially considering mismatch between the sites with the greatest
abundance of adults and the sites with the most larvae collected (Figure 3.3b). Alternatively, the
imbalance between larval and adult abundance may be a consequence of whether a study site
population was sampled immediately after a mass adult emergence somewhat synchronized by a
rainfall event some days earlier. Additionally, larval abundance in of itself was not necessarily a
direct representation of every larvae at a site, as larval habitats were not destructively sampled in
order to mitigate potential month to month influences caused by local extirpation of larvae
during the preceding sampling event. Larval habitat density as a response variable was most

strongly predicted by the model just using canopy cover as a fixed effect. Testing other fixed
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effects both alone and in combinations of T, RH, and landscape variables did not perform as
well, judged by AIC values and significance of difference from the null model of larval habitat
density.

The best performing model predicting adult abundance was a 14-day lag model (AIC =
946.2) that incorporated the following fixed effects: daily RHmin (p= 4.35e-06 *** ), DTR (p =
0.000175 ***), and impervious surface (spatial resolution 500m; p = 0.007734 **). The second-
best performing model (AIC = 947.8) included the same fixed effects, but with the interaction
between RHwmin and DTR incorporated in the model: daily RHwmin (p= 0.00106 **), DTR (p =
0.02188 *), impervious surface (spatial resolution 500m; p = 0.00912 **), and RHwmin: DTR (p =
0.51422). For this model, the RHwminand DTR interaction was not significant. For both of these
models, the effects of Site, Month:Year were included as random effects (Table 3.3).
Additionally, both of these models were significantly different from the null model of adult
abundance (p = 0.005856 ** without the interaction term RHwmin : DTR and p= 0.009611 ** with
the interaction term RHwin : DTR). Adult mosquito abundance increased positively with
impervious surface coverage (Figure 3.5b) and 14-day DTR (Figure 3.6a), while increases in the
daily RHwmin had a negative effect on adult abundance (Figure 3.6b). The best performing model
for predicting larval habitat density was a univariate model (AIC = 292.7) with canopy cover
(100m resolution) as a fixed effect (p = 0.0194*) and Site and Month:Year sampled as random
effects (Figure 3.7b).
Time Lag Performance

The superior performance of 14-day lags for predicting adult abundance may be due to
longer larval development times at the varying temperatures at the sites. Previous studies into

development times for Ae. albopictus found egg to adult emergence times at 32°C to be 9-10
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days but as long as 35-40 days at 12°C in controlled lab environments with constant
temperatures (Briegel and Timmermann 2001). While this lower range of minimum temperatures
was not seen until the end of each season in October when very few mosquitoes were caught, the
average minimum temperatures did range from 20.5°C to 16.57°C in June through September,
supporting that 14-day temperature lags may better capture the biological effects of temperature
on larval development in this system.
Discussion
Mosquito Communities and Larval Habitats

The high proportion of Ae. albopictus in all mosquito communities in the study sites
supports that this species is urban adapted and highly successful in the habitats tied to
anthropogenic alteration of the landscape. Most larval habitats were artificial and associated with
human activity, creating ideal habitats for an urban adapted container breeding species like Ae.
albopictus. The most productive sites for Ae. albopictus were DD, NDS, GPR, and WG. Many of
the larval habitats at these sites constituted flowerpots, small garden fountains, fishponds, and
landscaping water containers. Regarding the most predictive microclimate variables, the best
performing model of adult abundance incorporated impervious surface coverage at 500m, RHmin
with a 14-day lag, and DTR with a 14-day lag. The best performing model of larval habitat
density only included canopy cover as a fixed effect. While this may be a result of more
vegetation providing more standing water or more refugia for ovipositing adults. But there may
also be an interesting socio-environmental interaction along with landscape effects for predicting
larval habitat density. A possible explanation would be that sites representing higher income
residences or maintained parks may also have increased canopy cover actively cultivated by the

community, along with landscaping and decorative sources of larval habitat via flower pots and
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sculptures. Additionally, larval habitat density was a significant predictor of larval specimens
counts, but not of adult abundance, This suggests a degree of dynamic population movement
across the urban landscape between immature and adult life stages.

Variance of microclimate across land cover and over seasons:

Temperature values increased over each season, peaking in July before decreasing
through October (Supplemental Figure A.1). Similarly, RH values increased during each season,
peaking in July and decreasing through October (Supplemental Figure A.2). The relationship
between microclimate variables and land cover measures tended to be opposite in their
directional effects on impervious surfaces and canopy cover. For instance, Tavg correlated
positively with impervious surfaces but negatively with canopy cover, while RHavg negatively
correlated with impervious surfaces but positively with canopy cover. These relationships
between microclimate variables and associated land cover types led to interesting effects such as
impervious surfaces with RHwmin and DTR variables predicting adult abundance, while canopy
cover best predicting larval habitat density. Potentially different sites alternatively provided
better habitat for adult or immature stages.

Determinants of larval habitat density:

As canopy cover was the strongest predictor of larval habitat density, the correlations of
canopy cover with other microclimate variables is informative. Canopy cover had the strongest
negative correlations with impervious surface coverage and RH fluctuation, while the strongest
positive correlations were with RHwmin and RHavg. However, these microclimate variables were
not significant predictors of larval habitat density, suggesting that the association of human
activity with the cultivation of canopy cover in this urban environment may be a stronger

determinant of larval habitat density than microclimate variables alone. Studies of Ae. albopictus
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and Ae. aegypti populations in the US state of Florida found significant contribution of human
supplied container habitats like cemetery flower vases, demonstrating how seemingly minor
culturally driven alterations in an urban environment can have outsized roles in vector abundance
(Leisnham and Juliano 2009, Leisnham et al. 2014).

Determinants of Ae. albopictus abundance:

The significance of impervious surfaces, RHwmin, and DTR in predicting adult abundance
supports the theory that urbanization increases the abundance of Ae. albopictus, with impervious
surfaces having a strong positive relationship in the model. This land cover variable likely
reflects a combination of urban heat island effects supporting faster development of mosquito
populations and the physical construction of an environment suitable to an urban adapted species
like Ae. albopictus. Additionally, impervious surface coverage did positively correlate with
maximum temperature values (0.226), supporting urban heat island theory. The RHwmin with a 14-
day lag had a negative relationship with adult abundance in the model, indicating lower relative
humidity was associated with greater adult Ae. albopictus abundance and higher relative
humidity correlated with less adult abundance.

Empirical investigations have previously shown that increases in RHwmin and RHavg
significantly decrease the probability of adult emergence from larval habitats (Murdock et al.
2017). This effect suggests a role of RH influencing the physical characteristics of the aquatic
larval habitats. The atmospheric physics of relative humidity interacting with liquid water makes
reductions in surface tension a potential reason, as immature mosquito life stages rely on a
minimum level of surface tension to properly feed, develop, and eclose. This is important enough
to larval development that the mechanism of action for some larvicides is lowering surface

tension of larval habitats (Nayar and Ali 2003, Dawood et al. 2020). As RH values increase,
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surface tension tends to decrease (Pérez-Diaz et al. 2012). Furthermore, RH will decrease as
temperature increases given a set amount of water vapor (US Department of Commerce 2025);
this interaction with temperature makes teasing out the relative impact of each microclimate
variable difficult, especially since an increase in RH coincide with rainfall events which may
also flush out larval habitats (DeGaetano 2005, Dieng et al. 2012).

The Ae. albopictus populations in this study positively increased with the magnitude of
DTR values, but the thermal optimums for mosquito vector systems likely play a concurrent role
in affecting population size. There is previous evidence of the magnitude of temperature
fluctuations being important, with DTRs around 18°C shown to reduce larval survival and adult
fecundity (Carrington et al. 2013b) while also reducing Dengue virus infection rates (Lambrechts
et al. 2011, Carrington et al. 2013a) in Ae. aegypti. The average DTR values in our study were
above 18°C at sites DD (18.2°C), GPR (19.2°C), and NDS (18.9°C), all of which ranked high in
adult Ae. albopictus abundance. This positive relationship may be explained by any negative
impacts on immature mosquito survivability from large temperature fluctuations being offset by
the positive demographic effects of faster generation times at warmer temperatures. Larger DTR
values occurred in sites with higher average maximum temperatures at GPR (36.8°C) and NDS
(37.1°C) when compared to the average maximum temperature across all of the sites (32.9°C).
The association of greater DTR values coinciding with larger mosquito abundances may be
caused by the temperature regime that an individual mosquito experiences shifting into optimum
metabolic ranges. This is seen in the increasing DTR values occurring later each sampling season
coinciding with lower average temperatures in the fall, suggesting a thermal rescue effect in sites
whose land cover characteristics theoretically enabled more time an individual has near its

thermal optimum (Dee et al. 2020). DTR values positively correlated with impervious surface
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coverage (0.462) and negatively with canopy cover (-0.482). Urban heat island effects are often
partially ameliorated by planting vegetation (Soltani and Sharifi 2017), with canopy cover
blocking the absorption of solar radiation that would otherwise be absorbed by low albedo paved
areas and also allowing for more evaporative cooling (Howe et al. 2017). Parts of a city that are
more urban are also observed to have greater diurnal peaks as they absorb solar radiation(Chang
et al. 2021). Urban heat islands in growing municipalities have been associated with truncated
diurnal variation, with minimum daily temperatures increasing faster than daily maximums
(Merkin 2004). In the case of our study, however, temperature fluctuations actually were limited
by increased vegetation and amplified by increased paved areas (Yan et al. 2023). The
explanation of the disparity may have to due with varying size of urban heat islands between
cities and the varying effects of vegetation on lowering daily maximum temperatures.

The actual mechanisms by environmental temperature impacts Ae. albopictus populations
are tied to the thermal physiology of this ectothermic system, which has well-documented
thermal optimums regarding life history traits. For instance, in the Ae. albopictus system, higher
eclosion rates have been observed under modest temperature fluctuations of 25°C to 29°C with a
corresponding drop off in larval survival at 35°C, indicating developmental benefits up until a
thermal limit (Monteiro et al. 2007). This may also indicate higher potential vectorial capacity at
sites with larger temperature fluctuations if they move into predictively modelled (Mordecai et
al. 2017a, 2019, Huber et al. 2018, Shocket et al. 2020) or empirically validated (Shah et al.
2019, Miazgowicz et al. 2020) pathogen thermal optimums resulting in the unimodal
temperature-pathogen response curves expected in many vector-borne pathogen systems

(Mordecai et al. 2017b, Brown et al. 2023). Overall, the dynamic nature of the urban
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temperatures the mosquito populations in this study experienced show the important interplays of
urbanization and vector population dynamics.

The sites had a higher variation in RH with an average standard deviation of 6.07 vs 3.24
in a similarly designed field study in a nearby, but smaller, Georgia city also using
temperature/humidity loggers (Evans et al. 2019). This observation may be explained by site DD
pulling the average variance up due to the high imperviousness of the site matched with a high
canopy cover unusual for highly impervious locations in this study, as DD contained both an
urban park alongside retail and municipal administration spaces. Site DD additionally had a
much higher standard deviation of 18.2 in average RH fluctuations. Without site DD, the average
standard deviation in average RH with 14-day lags was still 4.97, which may be a result of more
RH variation in the larger urban landscape of Atlanta.

A synthesis of the RH literature described in Brown et. al. (Brown et al. 2023) suggests
greater longevity with higher RH, seemingly making the negative role of minimum RH on adult
mosquito populations paradoxical. However, positive effects of RH on mosquito longevity are
generally in regard to the adult life stage (Buckner et al. 2011, Asigau and Parker 2018), while
negative effects seem to be limited to the larval and pupation life stages. The relative magnitude
of RH on the different life stages, as well as any interactions between life stages via carry-over
effects, would be informative future directions of research. The average minimum RH at the
study sites ranged from 41.6% to 70% with an overall site average of 51.0%, and the average
maximum RH for the sites was 98.4%. Although the body of research into the effects of RH on
mosquitoes frequently implicates lower RH values with higher mortality at extreme RH
measures (Schmidt et al. 2018, Brown et al. 2023), the Ae. albopictus in this field study with

dynamic RH values likely only experienced RH levels outside their optimum range
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intermittently. This may result in behavioral modification regarding timing of host seeking,
preferred oviposition locations, and resting spot choice being shifted, causing potentially positive
or negative impacts on abundance depending on other variables.

Limitations:

While the variables tested in the mixed effects models were chosen according to the
principal component loadings describing the most variation between sites, they were often
correlated to some degree with other variables. These correlations are important in that they may
also describe the underlying mechanistic phenomenon driving positive larval habitat prevalence
and adult Ae. albopictus abundance. For instance, impervious surfaces predicted adult abundance
in the best mixed effects model, while canopy cover alone was the strongest indicator of larval
habitat density. Still, canopy cover and impervious surface measures strongly negatively co-
varied (-0.848), suggesting that understanding canopy cover values of a location may may still
inform our predictions of adult abundance while impervious surfaces may help predict larval
habitat density. Furthermore, some of these correlations are likely tied to the relationships
between relative humidity, temperature, and precipitation. The precipitation variable was not
extensively evaluated in this study. Although most of the artificial larval habitats were
consistently occupied by larvae to some degree throughout each field season, it is possible that
sites with higher canopy facilitated the persistence of more larval habitats by virtue of retaining
precipitation more than high impervious sites.

Ae. albopictus is generally considered a weak flyer, with the average flight ranges largely
be within 100 meters in some mark-recapture studies (Lacroix et al. 2009, Verdonschot and
Besse-Lototskaya 2014). Still, some field trials have found dispersing Ae. albopictus recaptured

at ranges from 200-300 meters (Bellini et al. 2010, Marini et al. 2010, Vavassori et al. 2019).
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One study from Brazil showed female Ae. albopictus traveling over 1000m when released in a
sylvatic habitat; these females were subsequently caught near human habitations, while females
released near homes dispersed little (Maciel-de-freitas et al. 2006). This suggests that female Ae.
albopictus are capable of moving distances of several hundred meters from their original larval
habitats as they quest for preferred host feeding and oviposition areas. Future investigation is
warranted into potential corridors of vegetative refugia (Lacroix et al. 2009) that may connect
disparate mosquito populations. Future research may also include expanding the 100m radius
search area to identify if there are any source populations near these sites with great differences
in adult abundance and larval habitat density.
Conclusions

This study confirms the importance of land cover and microclimate heterogeneities in
temperature and humidity concerning the prediction of adult abundance and the larval habitat
density for the medically significant Ae. albopictus. Collecting climactic data at the scale of
mosquito ecology can be used to identify likely variations in Ae. albopictus habitat suitability,
although this approach is more resource intensive than using distant weather stations and
remotely sensing imagery. The significance of microclimate variables as well as measures of
human alteration of the landscape demonstrate the importance of continued environmental
surveillance to identify the relative risk posed by disease vectors. Whether the apparent
mismatch between larval habitat density and larval abundance vs adult abundance at some sites
is actually caused by movement as opposed to pulsed emergence events tied to precipitation or
other variables also poses a further avenue of study. To identify whether larger adult abundances
are actually showing a recent mass emergence of larvae, more frequent sampling events within

each month can be performed. Testing the relationships between precipitation data vs larval or
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adult abundance may also be informative as well. Movement from ideal larval habitats to
habitats favored by adults for reasons of refugia or host availability can be tested by tracking
population dispersal through urban environments via mark-recapture methodologies. This may
show potential source-sink dynamics associated with human activities and the urban landscape
where resources like hosts, larval habitats, and vegetative refugia are varied. Increasing
urbanization worldwide, along with global climate change, makes understanding the implications
of these fine-scale environmental variables essential for targeted vector control and public health
policy making.
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Tables

Table 3.1. Study site names, locations, impervious surface percent coverage at a 500 m

radius, and canopy cover percent at 100 m radius. Sites are ordered from lowest to greatest

canopy cover.

Site Name Latitude Longitude ImpS00m Canl100m
Deepdene Park DP 33.77222 -84.3197 5.0 95.2
Fernbank Residential FR 33.78627 -84.3188 14.1 73.9
Callanwolde Center CC 33.78175 -84.3458 17.1 49.0
Woodlands Garden WG 33.78621 -84.3037 24.6 89.4
Grant Park East GPE 33.73627 -84.3527 25.8 69.0
Grant Park Residential GPR 33.72621 -84.3685 34.0 14.3
Piedmont Park

Residential PPR 33.78156 -84.3642 37.5 334
[North Druid Hills NDH 33.81758 -84.3111 40.2 0.8
Memorial Drive MD 33.77908 -84.2407 47.6 0.9
Briarcliff BC 33.8272 -84.3321 58.0 0.4
[North Decatur Station NDS 33.79242 -84.2849 61.7 4.7
Downtown Decatur DD 33.77524 -84.2965 71.8 3.4




Table 3.2. Principal component analysis quality of representation (cos2) values for PC1 in

both a) 7-day and b) 14-day lag datasets.

RH7Min 0.402 RH14Flux 0.429
RH7Flux 0.394 RH14Min 0.410
RH7Avg 0.333 RHI14Avg 0.373
Temp7DTR 0.325 Templ4DTR 0.370
Canl00m 0.263 Canl00m 0.288
Imp500m 0.228 Imp500m 0.283
Temp7Avg 0.169 Templ4Avg 0.198
RH7Max 0.056 RHI14Max 0.191
Temp7Min 0.199 Templ4Min 0.139
Temp7Max 0.192 Templ4Max 0.124

LarvalHabitats 0.087 LarvalHabitats 0.088
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Table 3.3. GLMM models predicting Aedes albopictus adult abundance and larval habitat density. Green cells represent models
predicting adult abundance and blue cells represent the larval habitat density model. All models displayed converged, passed
dispersion and uniformity tests, and were significantly different from the null model with only random effects tested via likelihood

ratio tests. The model best describing adult abundance incorporated. Significance thresholds: p < 0.001 (***), p <0.01 (**), p <

0.05 (*).



Fixed Effects

RH14Mm +
Templ4DTR +
Imp500m +
LarvalHabitats

RHI14Min +
Templ4DTR +
Imp3500m +
LarvalHabitats

RH7Flux +
Temp7DTR +
Imp500m +
LarvalHabitats

RHI14Min +
Templ4DTR +
Canl00m +
LarvalHabitats

RH7Flux +
Temp7DTR +
Imp500m + +
LarvalHabitats

RHI14Min +
Templ4DTR +
Canl00m +
LarvalHabitats

Canl00m

Fixed Effect Random
Interactions Effects
na Site
Month/Year
RH14Min: Site
Templ4DTR Month/Year
RH7Min: Site

Temp7DTR  Month/Year

Site

na Month/Year
na Site
Month/Year
na Site
Month/Year
na Site
Month/Year

AIC

946.2

947.8

948.6

950.2

950.3

951.2

20927

Resid Different from

(df)

109

108

108

109

109

109

113

Null Model?
Yes Imp500m: 0.007734 **
RH14Mimn: 4.35e-06 ***
=0.005856 **
B ) Templ4DTR:

0.000175 ***

Yes
(p=0.009611 **)

RH7Flux:Temp7DTR:
Yes 0.03674 *
(p=0.01309 * Temp7DTR:
0.00652 **
Yes Templ4DTR:
(p=0.0281 *) 0.000745 ***
Yes RH7Flux: 0.0121 *
(»=0.02901*)  Temp7DTR: 0.0171 *
Yes RH7Flux: 0.01213 *
(p=0.0345 *) Temp7DTR:0.01705 *
Yes

Canl00m: 0.0194*

(p = 0.02804 *)

Significant Effects

Imp500m: 0.00912 **
RH14Min: 0.00106 **
Templ4DTR: 0.02188 *

65

Direction and Magnitude of
Significant Relationships

Imp500m: +1.5674 +/- 0.5885
RH14Min: -1.5638 +/- 0.3404
Templ14DTR:
+1.0860 +/- 0.2894

Imp500m: +1.5619 +/- 0.5990
RH14Mn: -1.3944 +/- 0.4260
Templ14DTR:
+0.9069 +/- 0.3956

RH7Flux:Temp7DTR:
-4.3960 +/- 2.1047
Temp7DTR:
+2.0822 +/- 0.7654

Templ4DTR:
+1.0679+/-0.3167

RH7Flux:
-1.1327+/-0.4516
Temp7DTR:
0.7678+/-0.3219

RH7Flux:
-1.1327+/- 0.4516
Temp7DTR:
0.7678 +/- 0.3219

CanlO0m:
+1.552 +/- 0.6637



66

Figures

-t RE o

Figure 3.1. Map of impervious surface coverage of the study area. Grey representing impervious
surfaces derived from the National Land Cover Database (2019). Study site locations identified with

Site ID and the 500m radius impervious surface area circumscribed in red.
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Figure 3.2. Mosquito community composition from across sites during the study period. Represents the total adult and larvae
specimens identified from each species, and the percent of the total number of specimens is displayed. The smallest populations found
are represented in the inset circle graph. Aedes albopictus (dark blue) dominated mosquito communities at all sites in this study,

constituting 91.8% of all mosquito specimens.
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Figure 3.3. Larval habitats and 4e. albopictus abundances by site. (a) Total number of unique larval habitats and larval habitats

positive for mosquito larvae across the sites. Dark blue represents total habitats, while light blue represents habitats occupies by

mosquito larvae. (b) Total number of adult and larval Aedes albopictus specimens collected across sites. Larval counts are represented

in light green, and adult counts are represented in dark green.
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Figure 3.4. Principal Component Analysis for biplots of 1" and " PC loadings. (a) 7-day lag variables and (b) 14-day lag
variables. Quality of representation (cos2) values colored with the strongest predictors of variation in green, intermediate predictors

(representing a 0.2 cos2 cutoff) in orange, and the weakest predictors in dark brown and black.
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Figure 3.5. Adult Ae. albopictus abundances vs Month and Surface Imperviousness. (a) Adult Ae. albopictus abundances vs
Month, (b) Adult Ae. albopictus abundances vs percent impervious surfaces at a S00m radius (Imp500). Timepoints are displayed
according to Julian date and labelled by Month. Regression lines displayed with 95% confidence interval and fit with the “loess”

method of localized regression in (a) and the “loess” method in (b) using the gglot2 R package.
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Figure 3.6. Adult Ae. albopictus abundances vs DTR and minimum RH. (a) Adult Ae. albopictus abundances vs DTR with a 14-
day lag (Temp14DTR), and (b) Adult Ae. albopictus abundances vs minimum relative humidity with a 14-day lag (RH14Min).
Timepoints are displayed according to Julian date and labelled by Month. Regression lines displayed with 95% confidence interval

and fit with the “loess” method using the gglot2 R package.

73



Positive Larval Habitats

Larval Habitat Density

75

50

25

00

June

10.0

75

50

25

0o

25

Month

50
Can100m

75

0
T

o0 ®@
o000

.
38

GPE
GPR
MD

NDH
NDS
PPR
WG

Imp500m
60
40
20

74



75

Figure 3.7. Larval habitat density vs Month and Canopy Cover. (a) Larval habitat density vs Month and (b) Larval habitat density
vs canopy cover at a 100m radius (Can100m). Timepoints are displayed according to Julian date and labelled by Month. Regression
lines displayed with 95% confidence interval and fit with the “loess” method of localized regression in (a) and the “Im” method in

(b) using the gglot2 R package.
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CHAPTER 4
POPULATION STRUCTURE OF THE ASIAN TIGER MOSQUITO AEDES ALBOPICTUS
IN AN URBAN ENVIRONMENT IN ATLANTA, GEORGIA USING SNP CHIP

GENOTYPING ARRAYS 3
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Abstract:

Aedes albopictus is a long-established invasive mosquito in the Southeastern United
States and is a competent vector for many arboviruses such as Dengue, Chikungunya, and Zika.
Genetic studies regarding the population structure of this species across regions and within urban
areas vary in the degrees and patterns of relatedness observed, and Ae. albopictus’s reliance on
human mediated dispersal is frequently implicated in shaping patterns of dispersal. This study
uses a recently developed SNP microarray to observe population structure and patterns of gene
flow in Ae. albopictus specimens collected at 12 sites across an urban landscape in Atlanta, GA.
This study found significant but small Fs values between subpopulations within the city as well
as limited association clustering by study site, surface imperviousness, or canopy cover. While
isolation by distance was not significant, there was still a positive correlation between genetic
and geographic distance. Ancestry analysis suggests that the study specimens likely all derived
from a single ancestral population and that multiple subsequent local admixture events occurred.
This study shows a high degree of relatedness and gene flow in the Ae. albopictus populations in
the city, and this panmictic population dynamic shows the suitability in this urban environment
for vector control efforts relying on the dispersal of adult Ae. albopictus.
Introduction

Aedes albopictus, or the Asian Tiger Mosquito, is a an aggressively invasive and
anthropophilic species that serves as a vector for many medically significant arboviruses,
including Dengue, Chikungunya, Zika, Japanese Encephalitis, and Yellow Fever. The expansion
of this species from its original range in Asia makes understanding the history of invasion,
patterns of population connectivity, and variation in population characteristics important avenues

of investigation when developing vector control measures. Genotyping of Ae. albopictus
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populations likewise reflect this ecological history of rapid expansion, with admixture events
showing both repeat and continuing long distance introductions of the species (Kamgang et al.
2011, Schmidt et al. 2020, Lucati et al. 2022, Cosme et al. 2024). These invasion histories are
constructed from genetic comparisons of populations, and they can indicate whether new
introductions are happening, identify barriers or factors that facilitate invasion of new territories,
and highlight vulnerable transportation centers (Zhong et al. 2013, Beebe et al. 2013, Kamgang
et al. 2013, Schmidt et al. 2017).

Understanding the population structure of disease vectors is key to elucidating the
projected patterns of vector-borne disease (VBD) along corridors of population connectivity and
also to revealing the ecological history of this disease system. In the case of Ae. albopictus in the
greater Atlanta region, the population has been present since the early 1990’s, and it remains to
be seen if this is the same long-established population or one admixed with or replaced by
repeated introductions from key ground transportation routes or global air travel through the
Hartsfield-Jackson Atlanta International airport. The prevalence of interstate highways could
predict isolation of populations due to creating impassible areas locally while also facilitating
long range dispersal into or out of the city (Moore and Mitchell 1997). Additionally, rapid global
transportation and shipping may allow repeat invasions of Ae. albopictus (Boukraa et al. 2013,
Willoughby et al. 2024). This vector globally and historically is most notorious for its rapid
global maritime dispersal via used tires and bamboo exports from East Asia, and shipping ports
are likely continuing important sources of introduction (Reiter 1998, Garcia-Rejon et al. 2021,
Swan et al. 2022).

Identifying population structure at spatial scales relevant for mosquito population biology

and control would reveal barriers to movement and facilitators to diuspersal. The often better
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described cousin to Ae. albopictus regarding movement ranges, Aedes aegypti, is often limited in
individual dispersal range while also showing adaptations to human-mediated dispersal corridors
or urban centers (Huber et al. 2004, Costa-da-Silva et al. 2005, Hemme et al. 2010, Vadivalagan
et al. 2016, Joyce et al. 2018, Hopperstad et al. 2019). Long distance dispersal of Ae. albopictus
specifically has directly been observed via car transportation of adults as suggested by evidence
of increased gene flow between population centers and in simulations of Ae. albopictus dispersal
networks (Vazeille et al. 2001, Medley et al. 2015, Eritja et al. 2017, Lucati et al. 2022, Yeo et
al. 2023). Parsing out the connectivity and movement among mosquito vector populations is
crucial for 1) anticipating the rate of spread of insecticide resistance alleles, and 2) planning
vector control measures, especially in the case of emerging vector control technologies (e.g.,
SIT, Wolbachia infection, genetically modification) that rely on gene-drive technologies and
mosquito movement to deliver these control measures to suppress or replace mosquito
populations (Lees et al. 2015, Oliva et al. 2021, Wang et al. 2022). While targeting central source
populations may be ideal for spreading an intervention through a population, identifying
genetically isolated sites may also be desired to better measure effectiveness of a SIT strategy in
testing phases; this strategy also limits any dilution of the demographic effects of a new control
measure due to outside migration of unreachable vector populations (Olanratmanee et al. 2013,
lyaloo et al. 2014, Gouagna et al. 2020). In this way, identifying genetically isolated vector
populations would also be useful.

Studies of Ae. albopictus populations using microsatellite markers and mitochondrial
haplotypes have shown limited genetic diversity and mostly non-significant fixation index values
(Fst) values (Beebe et al. 2013, Goubert et al. 2016, Md. Naim et al. 2020), while some other

studies do indicate significant Fs values and isolation by distance (Paupy et al. 2001, Kamgang
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et al. 2011, Multini et al. 2019, Wei et al. 2019). The spatial distances in previous studies of Ae.
albopictus genetic structure range from subpopulations within hundreds of meters on an island
(Md. Naim et al. 2020) to hundreds of kilometers across oceans and over international borders
(Kamgang et al. 2011, Wei et al. 2019). However, even distant sties separated by water bodies
impassable to individual mosquitoes can have genetically similar Ae. albopictus populations due
to the species’ invasive capacity via international shipping (Beebe et al. 2013). Advances in next
generation sequencing has enabled characterizing polymorphisms at a greater number of marker
sites (Dritsou et al. 2015, Chen et al. 2015), and improving reference genomes of Ae. albopictus
are allowing the measurement of population differences with more precision and at more marker
sites than the traditionally lower cost microsatellite analysis (Chen et al. 2015, Miller et al. 2018,
Palatini et al. 2020, Zimmerman et al. 2020, Cosme et al. 2024). These next-generation
techniques have been increasingly used to identify gene flow across urban areas and major
transportation routes, producing well informed descriptions of Ae. albopictus subpopulations in
human environments (Schmidt et al. 2017, Wei et al. 2022).

The population structure of Ae. albopictus within human impacted landscapes appears to
be affected by the potentially opposing forces of repeat introductions of different subpopulations
from afar and the homogenizing effects gene flow via the natural dispersal of ovipositing females
occurring at much shorter distances of typically less than a few hundred meters in both Ae.
albopictus and Ae. aegypti (Harrington et al. 2005, Bellini et al. 2010, Marini et al. 2010). These
countervailing effects could result in some neighboring populations being less related due to new
migrations through human mediated introductions while other proximal populations show a high
degree interbreeding via natural dispersal (Ismail et al. 2015, Md. Naim et al. 2020). The

extension of the importance of human mediated migration is that geographically distant
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populations of Ae. albopictus may be closely related, resulting in counterintuitive genetic
differentiation patterns of a city exhibiting more genetically distant subpopulations within it than
with subpopulations outside the city (Oliveira et al. 2003, Sherpa et al. 2018). Given the dynamic
nature of the Atlanta metro area with frequent travel and shipping, either a pattern of
homogeneity or genetic differentiation may be expected given the likely presence of both natural
dispersal and human mediated spread within a long-established vector population. The relative
importance of either mechanism of population spread is ecologically informative.

This study of populations of Ae. albopictus in Atlanta makes use of a recently developed
SNP microarray developed for Ae. albopictus by the authors of Cosme et. al. 2024 to investigate
the population structure of Ae. albopictus across an urban landscape (Cosme et al. 2024). This
approach will grow the current body of knowledge of factors influencing Ae. albopictus
population structure by exploring many more polymorphism sites than traditional microsatellite
methods and with potentially more accuracy than other next generation methods as demonstrated
in Cosme et. al. 2024. With this new technique, we will have the capacity to identify patterns of
gene flow with greater resolution and statistical power. The anthropophilic nature of this species
and its exploitation of human-mediated dispersal will help explain what features of the urban
environment impede or facilitate gene flow at spatial scales relevant for control, providing useful
insights for control efforts and public health in the city of Atlanta.
Methods
Study Design:

To examine the effects of spatial variation in land cover on the population structure of
urban Ae. albopictus, 12 study sites were selected randomly across Atlanta, GA to reflect

relevant variation in impervious surface and percent canopy cover (Figure 4.1). We used a
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spatially gridded map with 10m impervious surface and vegetation cover resolution taken from
the National Land Cover Database 2016 dataset. ArcGIS ArcMap 10.7.1 published by ESRI was
used to calculate land cover percentage. Previous research from nearby Athens, GA indicated the
significance of impervious surface and vegetation coverage at ranges up to 1000 meters on Ae.
albopictus populations, so site impervious surface coverage averaged at a distance a radius of
500 meters as a compromise distance to allow for landscape heterogeneity to still be observed
(Wimberly et al. 2020). Each point was the center of a study site and the surface imperviousness
percent coverage within a 500-meter radius was chosen as the distinguishing metric for site
selection. An initial set of potential sites covering the range of impervious surface values were
initially chosen across the gridded area, whereupon final site selection was informed by
accessibility, ability to gain site permissions in the case municipal land and private parks, and the
requirement to keep sites were independent of each other (minimum distance between sites was
1670 m). Each of these were delineated by 100-meter radius from a central point in accordance
with previous studies showing most female Ae. albopictus dispersal occurs within that range
(Figure 4.1)(Bellini et al. 2010, Marini et al. 2010). See Table 4.1 for the full list of survey sites,
site codes, coordinates, and associated land cover measures. Bounds of the entire study area were
approximately 15x15 kilometers, covering predominantly the eastern half of metro Atlanta
across varying levels of urban development from paved commercial centers and parking lots to
forested parks and suburban neighborhoods.
Sampling design:

Ae. albopictus specimens were selected from August 2022 as part of a wider survey of
Ae. albopictus from 2021 to 2022. A single timepoint was chosen to remove any effects of

temporal variation between the populations and individuals genotyped. The month of August
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was chosen because Ae. albopictus populations are generally peaking during the late summer in
this environment, allowing for the maximum number of sites that could provide the goal of at
least 8 individuals for sequencing. Both adults and larvae were sampled across our sites. Adult
Ae. albopictus were sampled using BG-2 Sentinel Traps set for a 24-hour period near the center
of each study site, and each trap was baited with BG-Lures from Biogen and 1000g of dry ice in
an opened insulated container (Cello brand, 900 mL capacity model: 1000g dry ice broken up
occupied approximately 2/3 of bottle at a volume of 641 cubic cm) as described previously
(Evans et al. 2019). At collection, adults in a catch bag were transferred to a sealed plastic bag
and immediately placed in a cooler with dry ice, moved to the lab, and placed in -25°C storage.
Ae. albopictus larvae were collected from any pools of standing water present at each site.
Collected larvae were brought back to the laboratory and maintained in a 50 mL falcon tube in
their original habitat water with 5 mg of finely ground Tetrafin brand flake fish food. Larvae
tubes were then housed in a Percival incubator (36-VL, Percival Scientific) at a 28.0°C (+0.1°C),
80% (+5%) relative humidity with a 14:10 hour day:night diurnal cycle, and sampled larvae were
allowed to develop and emerge as adults for species identification and sexing. A subset of all
captured adults for a site were selected for downstream genotyping, while only one larvae per
aquatic habitat was selected to reduce the likelihood of genotyping siblings from a single
oviposition site in accordance with best practices in other studies (Delatte et al. 2013).
DNA Extraction and SNP Chip Methods:

DNA extraction was performed with the DNEasy (Qiagen) kit following methodology
adapted from the manufacturer’s directions using Dr. Andrea Gloria-Soria (CT-Yale Agricultural
Extension) protocols (see Appendix B: Supplementary Information “DNA Extraction Checklist

for Aedes albopictus” and informed by Cosme 2024 (Cosme et al. 2024)). Key details include
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each mosquito being broken down with a sterile microcentrifuge tube pestle attached to an
electric homogenizer. Proteinase K incubation was in a hot water bath at 56°C for 2 hours, and 4
uL of RNAse A was used. TE solution with low EDTA (0.1 mM) was used for the final DNA
elution. Following DNA extraction, samples with a DNA concentration below 10 ng/uL were
concentrated using an Amicon Ultra 0.5 mL -30k centrifugal unit. All samples were then
normalized to 10 ng/uL and confirmed via Qubit fluorometer using the dsSDNA HS Assay Kit
(Invitrogen). 20 uL of each of the 95x sample solutions was then pipetted into a Beckman
Coulter deep well plate (96x well), leaving the last well empty for the Axiom control reference.
The samples were then sent to the UNC Genomics Core to be genotyped using the “Aecalbo”
SNP Axiom Plate genotyping array developed by the team in Cosme et. al. (2024) and
manufactured by Affymetrix (Cosme et al. 2024). The SNP chip contains probes for 175,396
polymorphic sites covering all three Ae. albopictus chromosomes, and genotype calls were made
using library files developed by Affymetrix for use with the Axiom Analysis Suite 5.4.0.23
software. The resulting SNP data set was exported from Axiom Analysis Suite in .ped and .map
file formats readable by the open-source genetic analysis software PLINK 1.7. The data were
further converted into binary .bed format as well as associated .bim and .fam files. Further
genetic analysis was performed using PLINK 1.7 and RStudio 24.09.0 with R version 4.3.2.
Selection of Single Nucleotide Polymorphisms:

The dataset of 113,841 SNPs exported from Axiom Analysis Suite as “Best and
Recommended” was checked for individuals missing more than 10% of SNPs and for SNPs
missing in more than 10% of the population. All 95 individual mosquito specimens passed. A
minor allele frequency significance cutoff of p = 0.1 was then used to removed 19,867 SNPs, and

filtering for SNPs out of Hardy-Weinberg Equilibrium with the significance cutoff of p <



85

0.000001 removed an additional 5,975 SNPs. The remaining 87,999 SNPs were then screened
for linkage disequilibrium (LD), selecting only for SNPs with the r2 association statistic below
0.1 to ensure independent assortment between retained markers. The LD screen window was
5KB with a moving window of 1 SNP. The r2 < 0.1 value selection was informed by the findings
of Cosme et.al. 2024 comparing r2 values of 0.1 and 0.01. The cutoff of 0.1 balances the need for
maximum retention of any population structure signal while still removing the most correlated
polymorphic markers; the suspected homogeneity between specimens at such fine spatial scales
weighs more towards the need for retaining as many markers as possible for what are likely
closely related specimens. The retained pruned selection of SNPs after the LD filter contained
40,441 SNPs, which were then screened for siblings with the kinship coefficient or relatedness
set to 0.5 (corresponding to parent-offspring and sibling levels of relation). Specimens were then
screened for being heterozygosity outliers (falling > 4sd from the mean heterozygosity). The
specimen FR5 was flagged as > 4sd below average heterozygosity and was removed from Fs
analysis as an excessively homozygous outlier.

To select SNPs as close to neutral as feasibly possible for population structure analysis,
the OutFLANK package developed by Whitlock and Lotterhos (2015) was used to was used to
infer neutral Fst SNP markers and remove outlier markers that may be under selection (Whitlock
and Lotterhos 2015). This step removed a further 2,808 SNPs as Fst outliers, leaving a neutral set
of 37,633 SNPs for population structure analysis. See Figure 4.2 “SNP Filtering Workflow” for a
graphical representation of the SNP marker filtering used in this investigation.

Population Genetic Analyses:
Principal component analysis was used to identify any potential genetically distinct

subpopulations either within or between sites across the study area. PLINK was used to generate
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a 94x94 distance matrix of the remaining specimens using the filtered 37,634 SNPs as input. A
principal component analysis (PCA) of this data set was performed using the cmdscale() function
from the R package “stats™ version 4.3.2 to generate the first 5x principal components from the
distance matrix. Cluster plots were generated with the first 2 principal components, accounting
for 4.85% and 3.24% of the variance in the dataset, respectively. Individual mosquito specimens
identified alternatively by site, impervious surface, canopy cover, and geographic region in the
city to visually check for subpopulation clustering. Sites were binned by landscape
characteristics, with impervious surfaces classified as low (5-25%), medium (25-45%), and high
(45-72%). Canopy cover was likewise binned with Low (0-5%), Medium (5-50%), and High
(50-96%).

Population structure was investigated through generating fixation index (Fst) scores for
each study site out of the total study area. Fs describe the amount of genetic variation within a
subpopulation out of the total population. Similarly, the inbreeding coefficient (Fis) describes the
amount of genetic variation in a subpopulation that is present within an individual. Fs is often
employed to make pairwise comparisons between two populations, while Fis best describes the
degree of inbreeding at site. In both cases, lower values indicate less genetic differentiation with
the scales varying by species and the markers chosen. The fixation index Fst between each site
was found using the R package “StAMPP” version 1.6.3. The SNP dataset was converted into a
genlight object using stamppConvert(), and the pairwise Fs values were calculated using the
function stamppFst() with a 95% confidence interval and 1000x bootstraps to allow for
significance testing. Mean pairwise Fs; values for each site were calculated to characterize the
overall degree of genetic differentiation at each site. For comparing average site Fs values, the

site NDH was excluded as a family due to only having 2x samples compared to the 8-9x samples
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in each of the other populations. The average pairwise Fst values comparing each site were then
averaged for each land cover class (impervious surface and canopy cover) to identify potential
trends of the degree of population differentiation according to landscape.

Fst values were also calculated treating the sites as belonging to geographic regions in the
study area: North (containing sites BC and NDH), South (containing sites GPR and GPE), East
(containing site MD), West (containing sites PPR and CC), and Center (containing sites WG,
DD, FR, DP, and NDS). In the case of generating subpopulation fixation indices using land
cover bins or geographic regions, samples from NDH were included as they were instead treated
as members of a larger subpopulation, reducing potential errors in the Fs characterizations from
a low specimen count. Regions inside the study area were determined such that all sites in a
particular region were within 2.25 km of each other (with the exception of NDS in the center
region, where NDS was assigned the Center region due to its greater proximity to the Center than
the other regions; see Figure 4.1). Fis coefficients of inbreeding were calculated for each
individual within each site, and the Fis values of the individual mosquitoes were then averaged
for each study site.

Isolation by distance was tested for using the Mantel test to see if the spatial distance
between the subpopulations significantly correlated with the genetic distance. The dataset was
converted into the genlight format using R package “adegenet” version 2.1.10. After importing
the latitude and longitude coordinates for each site matched to each sampled mosquito, the R
package “dartR” version 2.9.7 was used to calculate isolation by distance using the gl.ibd()
function. This function was used to perform a Mantel Test incorporating the Fst values from the
genlight object and geographic distances of the site coordinates Mercator projected into meters

and using 999 permutations.
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Reconstructing potential ancestral histories of the Atlanta Ae. albopictus was done to
investigate if multiple invasion events occurred, to map out the possible order of colonization at
the study sites, and to see if there was evidence for discrete admixture events between
subpopulations. Potential numbers of ancestral populations of Aedes albopictus were assessed
using the R package “LEA” version 3.19.1 through sparse non-negative matrix factorization
algorithms via the snmf() function and the genotype data inputted in .geno format. This process
simulates different hypothetical ancestral populations (k) and the corresponding average cross
entropy values to determine the most likely number of ancestral populations (value of k with the
lowest cross entropy). The R package ADMIXTOOLS 2 version 2.04 described in Maier et. al.
2023 was used to calculate f-statistics for the genotyped mosquitoes and to simulate different
potential admixture events by minimizing associated f-statistic residuals(Maier et al. 2023). The
f-statistics utilized by this program describe systematic comparisons of alternate pairings of
subpopulations and the resulting allele similarity to build likely sequences of population
migrations and admixture events(Lipson 2020). Potential admixture graphs were simulated with
an estimated 300 generations corresponding to the approximately 30 years since the introduction
of Aedes albopictus to Atlanta, GA and assuming 10 generations per year. Several admixture
graphs were simulated with different numbers of admixture events. The admixture graphs with
the best correlation to the observed allele frequencies between the populations were selected as
possible representations of a true admixture history of Ae. albopictus populations dispersing
through different sites across Atlanta.

Results
From the PCA on the pruned SNP dataset, the first, second, and third principal

components captured 3.49%, 2.81%, and 2.66% of the genetic variation, respectively. While
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these PC loading values were low compared to other methodologies, they are similar to a study
using the same SNP microarray (Cosme et al. 2024). Using the first and second principal
component (PC) loadings, there was little distinct clustering in the 95 Ae. albopictus specimens
(Figure 4.3). However, there does appear to be some limited association of some specimens
sharing the same site or landcover. This potential association between individuals by site or
landcover characteristics occurred with a high degree of overlap, suggesting some limited and
weak associations. Site MD (Figure 4.3.a) did show a degree of clustering, but other sites also
occupied the same area on the ordination plot suggesting the genetic profile of site MD was
widespread, but other genotypes at other sites were not. This effect was weak, however, with no
strongly evident clusters of genotypic characterizations.

Dividing the sites into geographic regions, the East region appears as a cluster that also
overlaps with the Center, North, and West regions (Figure 4.3.b). When classifying sites by
canopy cover (Figure 4.3.c), there was no clustering observed. However, when classifying
specimens by the imperviousness of their respective sites (Figure 4.3.d), high imperviousness
sites occupied a tighter portion of the plot although with extensive overlap with specimens from
low and medium impervious sites. Observing the first and third PCs, there are two weak
potential clusters evident (Figure 4.4). When classifying specimens by site (Figure 4.4.a), site
MD specimens clustered together while also overlapping with sites DD and BC. Looking at
specimens classified by the geographic region of their sites, the East region specimens all
clustered on the rightmost plot also with a lot of overlap. Similar to the first and second PC plots,
the first and third loading plots showed no clustering according to the canopy cover of the sites
(Figure 4.4.c). The specimens associated with high imperviousness predominantly plotted on the

right cluster (Figure 4.4.d), but also with the same overlap seen before. The lack of tight
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clustering and the presence of overlap in potential clusters shows very little genetic
differentiation using PC1 vs PC2 and PC1 vs PC3.

The pairwise Fs values between the study sites were low, ranging from -0.003 to 0.019
(Figure 4.5.a). The negative Fs values between sites WG:BC and WG:CC were -0.003 and -
0.001, respectively. These values were interpreted as zeroes, with no meaningful genetic
variation between the populations. The highest Fst value of 0.019 between sites MD:DP is in the
general range of very low subpopulation fixation indices, indicating very little genetic distance
between these populations. Averaging the pairwise F values for each study site yielded similar
values, ranging from 0.0023 for WG to 0.012 for MD (Figure 4.5.b). Even though the pairwise
Fst values between sites were low, most sites were found to be significantly different from each
other using 1000 bootstraps to generate significance results. All sites were significantly
genetically distinct in pairwise comparisons except for site WG versus BC, CC, and PPR.

Averaging the Fs values according to impervious Surface Cover and Canopy Cover also
provided low Fs values (Table 4.2). Average Fs values by Impervious Surface Cover were
0.0083, 0.0074, and 0.0076 for Low, Medium, and High, and average Fs: values by Canopy
Cover were 0.0088, 0.0073, and 0.007 for Low, Medium, and High. The inbreeding coefficients
Fis for the Ae. albopictus specimens within each study site yielded values between 0.21 and 0.01,
excluding site NDH due to the low sample size of 2x mosquitoes resulting in elevated Fis values
(0.52 and 0.53). The average Fis values by site likewise excluding NDH ranged from 0.063 to
0.092 (Figure 4.6). A single-factor ANOVA for the inbreeding coefficients of each mosquito did
not show significant differences between the sites (p = 0.904).

Relatedness between individual mosquitoes at each site was investigated to determine

any patterns of generational dispersal, but these familial connections were found to be limited.
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This validated the decision to only sample 1x specimen from each larval habitat to prevent
sampling siblings. At site MD, there were 2x mosquitoes that were 2" order relations. At DP,
CC, WG, and NDS, each site had 2x mosquitoes that were 3™ order relations. Due to the lifespan
of Ae. albopictus in the wild rarely exceeding a month (Maimusa et al. 2016, Cui et al. 2021,
Blanco-Sierra et al. 2023) and the egg/larval development times often around 5-15 days (Evans
et al. 2018, Yang et al. 2020), 2" order and 3™ order relations are not likely. However, some
generational overlap is reasonable to expect in a system containing multiple generations not
dispersing far and not necessarily reproducing synchronously. Sites FR, GPE, GPR, NDH, and
BC did not show any 1% through 3" order relations between the sampled mosquitoes.

Testing for the significance of isolation by distance with the Mantel Test did identify a
positive correlation between genetic distance (measured as inter-site Fs values) and geographic
distance (Euclidean) with a Mantel statistic of 0.3307. While the relationship was not significant
(p = 0.068), given the large number of polymorphism tested in this methodology, the positive
relationship between geographic and genetic distance is still meaningful (Figure 4.7). This
positive relationship indicates that the urban environment does create some important barriers to
geneflow for Ae. albopictus, even if population movement due to human activities are also likely
characteristic of this system.

The Ae. albopictus ancestral population analysis for the study specimens showed that
they all most likely derived from one ancestral population (k = 1), as measured by minimizing
the cross-entropy measure of error. However, the cross-entropy values for two ancestral
populations (k=2) were also low and show that 2 introductions could be possible, if less likely,
than 1 introduction (Figure 4.8). The simulations for the number of admixture events between the

sites after the initial colonization of the area with Ae. albopictus shows that at least 2 admixture
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events likely occurred between the study populations after the initial colonization. The admixture
chart shown in Figure 4.9 demonstrates one possible scenario for how movement of the mosquito
populations may have occurred across the city. This one hypothetical model fits the SNP dataset
the best when comparing F-statistic residuals between simulated admixture histories. Still, even
when simulating other less well performing models of admixture, ADMIXTOOLS 2 consistently
identified 2 admixture events as the likeliest scenario. Notably, the populations shown as
descending from each other do not consistently correlate to geographic proximity. For instance,
site MD is projected to be between FR and DD in genetic lineage even though MD is not
physically between these two sites. This may be a result of human mediated population dispersal
or other stochastic events. Other portions of this admixture history graph do map genetic descent
according to geographic proximity, showing the continued importance of gradual and sequential
dispersal.
Discussion

While the specimens show a degree of positive association for some sites and land cover
characteristics, these clusters were not distinct from other sites or site characteristics due to high
degrees of overlap. This may be a result of near-panmictic conditions where related lineages can
rapidly disperse across the study area. Additionally, given the dense human population density
and similarly high degree of vehicle movement in the study area, human-mediated transportation
likely plays a role in facilitating rapid gene flow. The stochastic nature of container habitats
being deposited by human activity via discarded containers holding either Ae. albopictus larvae
or eggs would likely have a homogenizing effect on genetic variation. The slow natural dispersal
of ovipositing female mosquitoes probably still plays an important role considering the

admixture simulations showing many sites being colonized by neighboring sites. The decades
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since the initial colonization event in Atlanta further supports the effect of population dispersal,
given the time populations have had to gradually spread. Natural dispersal of this nature would
likely be represented by isolation by distance. The Mantel test did show a positive relationship
between physical and genetic distance, albeit not significant, but these results are still
informative. This may indicate that random human mediated movement of eggs or larvae has a
nearly as important or even stronger effect on population dynamics than gradual dispersal.

The highest pairwise Fst values for the sites did not quite reach 0.02 for the most
genetically distant site comparison (MD:DP), with the other pairwise Fs values between sites
often much less. However, these low pairwise Fs values are consistent with what was seen
between Ae. albopictus populations from adjacent or nearby countries covering hundreds of
kilometers, as seen in the Cosme et. al. 2024 study using the same SNP chip (Cosme et al. 2024).
Given the much smaller spatial scale of this study across Atlanta, low Fs values can be expected.
Additionally, the high number of SNPs incorporated into the Fs analysis likely lower the
magnitude of the fixation indices relative to methods more prevalent in the literature such as
microsatellite technigues. The meaningfulness of genetic variation between most sites is
supported by the pairwise Fst comparisons showing significant differences between all sites
except for the pairwise comparisons with WG versus BC, CC, and PPR. Furthermore, studies of
closely related Ae. albopictus populations with low Fs values show significant differences after a
similar significance determination in an island environment (Md. Naim et al. 2020). Such low Fs
values have also been seen to be significant regarding Ae. albopictus populations in China
hundreds of kilometers apart on the Yangtze River, albeit not using genome wide SNPs to
characterize population structure (Ma et al. 2023). Further, another study of Ae. albopictus

population structure in Nanjing, China did find significant pairwise Fs values between sites
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characterized as urban, urban fringe, and rural but no significant isolation by distance (Zhang et
al. 2022b), while similar studies in Chinese cities found no significant population structure
between ports less than 200 km apart (Zhao et al. 2024). This lack of a consistent signal both in
the literature and in this study between distance and population structure suggests a population
dynamic shaped by two drivers: natural dispersal as measured by isolation-by-distance and
human mediated dispersal reflected in non-proximal spread in reconstructed admixture histories.
The upshot is that these mosquito populations depend greatly on the human-vector relationship
in a particular environment; for instance, distant port cities may be closely related due to
invasion dynamics, while nearby subpopulations may be less related due to the same stochastic
dynamic of human aided colonization events.

The central location of the WG site may play a role in its less significant differentiation
from other sites. Again, the close association of human activity with the successful dispersal of
this anthropophilic species, human-mediated transportation is very likely a major force behind
population mixing as well as dispersal of populations that may be closely related (Manni et al.
2017). The close geographic distances between the study sites in this investigation, however, also
allow natural dispersal to also be a significant driver of genetic mixing between subpopulations.
Additional analysis across months and years could potentially reveal relatedness and if offspring
are moving between these sites as well as the time it takes for the dispersal. Very fine scale (10
km radius) surveys of population structure in the related species Aedes aegypti likewise
identified significant population structure across both time and distance, with temporal structure
suggesting outsized contributions of just a few key source populations producing seasonal waves
of closely related adults (Olanratmanee et al. 2013). The difference here with the ecologically

similar Ae. albopictus showing very little population structure within a city may have to do with
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the recentness of its invasion of the region. While Ae. aegypti invaded many regions globally
hundreds of years ago, many Ae. albopictus populations outside of Asia are only a few decades
old. Some studies posit that repeated invasion events in a short period of time allow multiple
distinct lineages of Ae. albopictus to persist and counter-balance genetic bottleneck effects (Maia
et al. 2009, Eskildsen et al. 2018, Kamgang et al. 2018, Motoki et al. 2019), but other
investigations show rapid human-mediated transportation having a homogenizing effect in some
heavily urbanized areas (Zhang et al. 2022a). The case of Atlanta’s Ae. albopictus populations
seem to reflect the latter phenomenon of rapid colonization followed by likely human-mediated
panmictic dispersal conditions, resulting in little population structure.

The average fixation indices in this study were lower than values found in other
investigations of Ae. albopictus populations sampled from the northern edge of the species’
expanding range in the United States (Gloria-Soria et al. 2022). This may be a result of different
genotyping techniques, or perhaps the lower Fst measures in Atlanta are a result of sequencing
within a city population versus across multiple states. The number of ancestral populations, most
likely only k=1, supports the scenario where a single invasion event occurred. The invasion event
predicted in the admixture model was likely the seminal observation of Ae. albopictus spreading
across all counties in the state of Georgia by 1994 (Womack et al. 1995).

The early invasion of Ae. albopictus followed interstate highway corridors (Moore and
Mitchell 1997), showing that rapid human-mediated dispersal played an important early and
likely continuing role in the establishment of this vector across the region. Another study
comparing Ae. albopictus populations worldwide using a similarly large set of SNP markers
identified multiple invasion events reflected in the admixture reconstructions of invasive

populations (Kotsakiozi et al. 2017). The admixture simulations in our study show that, most
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likely, two admixture events occurred between the Ae. albopictus subpopulations in the city. It
shows largely unimpeded dispersal of individuals to new sites, as many sites most close in
admixture genealogical and admixture history are adjacent geographically. However, as some of
these hypothesized population admixtures occurred between sites non-adjacent to each other,
human facilitated dispersal is also indicated.
Conclusions

The ecological history and the current genetic characterization of Ae. albopictus in
Atlanta is important to understand as a model of invasion and establishment of a medically
significant vector species. The high level of population movement and gene flow indicates that
sterile insect technique, Wolbachia inoculation, or the release of genetically modified mosquitoes
resistant to pathogens would require less population coverage than if significant population
structure was present. However, insecticide resistance or other inheritable adaptations introduced
to the population may also likewise spread quickly and impede control measures. This research
provides valuable insight into the invasion ecology, dispersal dynamics, population structure, and
vector control options regarding this invasive and damaging species.
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Tables

Table 4.1. Survey sites, site codes, coordinates, and landscape characteristics.
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Site . Canopy Cover Canopy Y REAZ DI Imperviousness . .
Site Name e e Surface Cover e e Latitude  Longitude

Code (100m)  Classification (500m) Classification

DP Deepdene Park 95.2 high 5 low 33.77222 84.31966
FR Fernbank Residential 73.9 high 14.1 low 33.78627 84.31875
CcC Callanwolde Center 49 med 17.1 low 33.78175 84.34579
WG Woodlands Garden 89.4 high 24.6 low 33.78621 84.30366
GPE Grant Park East 69 high 25.8 med 33.73627 84.35269
GPR Grant Park Residential 14.3 med 34 med 33.72621 84.36847
PPR  Piedmont Park Residential 334 med 37.5 med 33.78156 84.36424
NDH North Druid Hills 0.8 low 40.2 med 33.81758 84.3111
MD Memorial Drive 0.9 low 47.6 high 33.77908 84.24073
BC Briarchiff 0.4 low 58 high 33.8272 84.33205
NDS North Decatur Station 4.7 low 61.7 high 33.79242 84.28486
DD Decatur Downtown 3.4 low 71.8 high 33.77524 84.29651
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Table 4.2. Fst values calculated by landscape characteristics: (a) canopy cover and (b)

impervious surface cover across study sites.

Impervious Surface Cover Mean F
Low (5-25%) 0.0083
Med (25-45%) 0.0074
High (45-72%) 0.0076
Canopy Cover Mean F
Low (0-5%) 0.0088
Med (5-50%) 0.0073
High (50-96%) 0.007
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Figures

Figure 4.1. Survey Sites (x12) across Atlanta. GA: DP, FR, CC, WG, GPE, GPR, PPR, NDH,

MD, BC, NDS, and DD. Distance scale and North indicated.
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Figure 4.2. Genotyping array workflow for SNP markers. The workflow displayed represents the selection criteria and filters applied

to the SNP dataset for the set of 95x Aedes albopictus specimens.
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Figure 4.3. Principal components 1 and 2 loading plots for sampled mosquitoes color coded by
(a) site, (b) geographic region, (c) canopy cover, and (d) impervious surface cover. Very
clustering was evident with these loadings and for these variables (site, region, canopy cover,
and imperviousness. a) The site MD cluster is marked with a maroon oval. (b) The East region
cluster is designated with a green oval. (c) No distinct cluster was identified by canopy cover.

(d) the High Imperviousness cluster is marked with an orange oval.
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cluster containing sites BC, DD and MD are marked red, gold, and maroon, respectively. (b) The
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canopy cover. (d) The High imperviousness cluster is marked with an orange oval. .
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Figure 4.5. Pairwise Fst values by site. Values represent Fst values between study sites with 8-

9x individual Aedes albopictus per site, with * denoting significant variation (p = 0.05) measured

by Fst between sites using results from n = 1000 bootstraps).
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CHAPTER 5

CONCLUSIONS

Synthesis of Key Findings

The guiding motivation of this dissertation was to conceptualize vector-borne disease
(VBD) dynamics and vector ecology in the context of human-altered landscapes using Aedes
albopictus populations across an urban areas as the system of interest. This was accomplished by
critically reviewing modelling approaches to describing VBD systems and determining the most
informative spatial scales at which to describe the ecology of this vector species. A review of
empirical studies as well as previous empirical work in Ae. albopictus in the southeastern US
helped determine the spatial scale of this vector’s biology and informed the spatial distances at
which microclimate variables were measured. | also recommend the integration of different
modelling approaches with empirical investigation to fully employ the relative strengths of
different approaches. This additionally led to selecting the appropriate modelling tools with
which to determine the most important environmental and land cover effects and to develop
vector control insights. Through the use of statistical modelling and the field collection of fine
scale microclimate data, my research identified significant relationships between environmental
variables associated with urbanization and the Ae. albopictus populations of Atlanta, GA.

Generalized linear mixed effects models of the field derived adult abundance data
identified significant positive effects of impervious surfaces and daily temperature range (DTR)

on adult Ae. albopictus abundance and significant negative effects of minimum relative humidity
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(RHwin). Mixed effects models describing larval habitat density identified a significant positive
effect of canopy cover. Larval habitat density was not a significant predictor in the adult
abundance model, but it was a significantly positive predictor of larval abundance. Beyond the
abundance of refugia for adult mosquitoes and potentially greater persistence of aquatic larval
habitats under canopy cover, | argue that the connection of canopy cover to the human curated
environments associated with residential areas also leads to more larval habitats. Even sites in
my study not economically stressed yielded large larval populations and high larval habitat
density, mostly due to human provisioned container habitats like flowerpots. This research
highlights the importance of RH, temperature, and land cover in predicting Ae. albopictus
population characteristics. | connect these variables to increasing urbanization, further supporting
the characterization of Ae. albopictus as an urban adapted anthropophilic vector species.

The significant but limited genetic structure of the Ae. albopictus populations across this
study area portrays a landscape with few barriers to gene flow. While highways and other human
structures have been seen to create isolation by distance and by barrier in mosquito populations,
any impedance posed by urban architecture and roads is eventually overcome either by gradual
natural dispersal or perhaps more rapid human mediated spread of eggs. Rapid and stochastic
establishment of populations may arise from a single productive larval habitat, with some larval
habitats like used tires or buckets being easily moved and reconstituted with rainfall. Overall,
these findings demonstrate the impact of both unimpeded natural dispersal and stochastic human
events in facilitating the establishment and continued gene flow of vector populations. The
ancestral models of this population show a single source population, suggesting a highly
successful single invasion event near the onset of Ae. albopictus’s colonization of North

America, followed by admixtures and population movement between sites.
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Novelty and Added Benefit of Research

While other studies have measured the effects of microclimate variables on mosquito
vector ecology, this is the first study to apply this methodology of collecting detailed fine-scale
temperature and relative humidity data using large numbers of data loggers in the field in
Atlanta, GA. The large size of this urban area provides a valuable data point in characterizing
sizable municipal regions with likely increased heat island effects. This genetic component of
this research was novel both in the use of a newly developed SNP-chip offering high
polymorphism coverage and improved genetic variation measurement resolution. While this SNP
chip has been used and validated in one other study (Cosme et al. 2024), this is the first
application of this specific SNP microarray tool in measuring population structure within a
relatively small spatial scale inside one urban region. The viewpoint of synthesizing different
approaches to modelling and choosing appropriate scales of measurement and analysis is a
perspective that has been employed in other forms, but this approach is useful in its novel
application to the Atlanta vector ecology system.
Recognizing the Effect of Urbanization in Exposure to VBD

The modelling of microclimate variables impacting adult Ae. albopictus abundance
provides insights into how urbanization may contribute to larger populations of arbovirus
vectors. As urbanization traditionally increases paved areas and thus urban heat island effects
(Mohajerani et al. 2017), alternate approaches to urban planning could include more water-
permeable green spaces like parks, which would likely also reduce the daily temperature swings
(Yan et al. 2023). More broadly, outreach campaigns communicating risks of VBD as urban
areas expand globally in the coming decades (Population Division United Nations 2018).

Additionally, the negative effect of minimum RH on Ae. albopictus populations in this research
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indicates a surface tension alteration increasing larval and pupal survival. Reducing surface
tension is already a modality of larval control (Dawood et al. 2020), but this effect could be
applied widely in urban parks where water features like fountains may be common as they were
in some sites in this study.

Implications of human provisioning of larval habitat

This characterization of Ae. albopictus in Atlanta, GA is consistent with the conventional
understanding of this species’ ecology. While treeholes, the ancestral larval habitat for many
container breeding mosquitoes, were identified in this study, no Ae. albopictus were found in
these arboreal larval habitats. During the invasion and establishment of Ae. albopictus in North
America, competition experiments predicted that the endemic Aedes triseriatus populations
would persist in treehole larval environments due to competitive nutritional advantages over Ae.
albopictus (Livdahl and Willey 1991). In my research, Ae. triseriatus was indeed found in
treeholes, meaning that undeveloped landscapes may reduce the competitive edge of Ae.
albopictus and be less vulnerable to the invasion and establishment by this urban adapted
mosquito.

As most larval habitats | found were artificial, accounting for the cultural practices of the
community is important for understanding larval habitat provisioning. The suburban residential
sites in my study provided an abundance of larval habitats for Ae. albopictus largely from
decorative planters and gardening water storage containers. There is a body of research
indicating an association with depressed socioeconomic areas with an increased burden of
mosquitoes and VBD, tied to factors like limited plumbing creating a reliance on household
water containers (Ali et al. 2017) or the increased presence of discarded tires, disused containers,

or abandoned swimming pools resulting from economic distress (Harrigan et al. 2010, LaDeau et
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al. 2013, Dowling et al. 2013). Financial crises have actually shown acute increases of human
West Nile Virus cases linked to vacant homes (Reisen et al. 2008). However, of the sites in this
research, only one qualitatively showed signs of economic distress as indicated by multiple
abandoned residences and persistent discarded containers serving as larval habitats. Other sites
with less signs of economic distress were just as or even more abundant in adult Ae. albopictus
and larval habitat density. A similar dynamic in a US city was seen in a study of Culex breeding
sites in Los Angeles, CA. This mosquito survey also demonstrated a counterintuitive result with
affluent neighborhoods provisioning more larval habitat due to widespread landscaping irrigation
(Reisen et al. 1990). This effect of landscaping practices providing larval habitats matches what
we saw in my research with positive larval habitat density being highest at some residential
neighborhood sites with well-maintained single-family homes and landscaping. These insights
regarding both the canopy influences on larval habitat density and the importance of social
practices tell us that larval source management efforts in Atlanta should focus on education of
communities regarding the risk landscaping and garden containers present in Ae. albopictus
exposure.
Findings in context of the phylogeography of Aedes albopictus

Tracking the invasion dynamics of Ae. albopictus often relies on genetic tools, and
reconstructing the genetic phylogeography of this species reveals many interesting phenomena
regarding human mediated invasions and VBD spread. Recent investigations into the
phylogenetic past of this species shows a slow dispersal from Asia in the Pleistocene to islands in
the Indian Ocean through medieval trade routes (Delatte et al. 2011, Porretta et al. 2012). The
last several decades illustrate a rapid dispersal worldwide from the Indo-Pacific region across

Africa and into temperate zones in North America and Europe (Mousson et al. 2005,
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Raharimalala et al. 2012, Maynard et al. 2017). The significance of identifying genetically
distinct subpopulations is due to different interactions of vector genotype and environment
leading to local variations in vectoral competence in mosquito species (Lambrechts 2011,
Dickson et al. 2014, Severson and Behura 2016, Kristan et al. 2018). Mosquito lineages can
differ biologically in ways important for pathogen transmission dynamics and may reflect
different degrees of urban adaptation (Paupy et al. 2004, 2008, Costa-da-Silva et al. 2005).
Vectorial capacity can be influenced by genetic variations between the vector and the pathogen
with multiple gene pathways determining transmission potential (Beerntsen et al. 2000), while
different permethrin resistant genotypes have been seen to respond differently to temperature and
relative humidity conditions (Kristan et al. 2018). In the context of the research in this
dissertation, which found very little variation between Ae. albopictus subpopulations in Atlanta,
identifying the parent lineage and any genetic traits such as insecticide resistance or degrees of
temperate tolerance would be meaningful for control efforts. Perhaps more worryingly, the rapid
gene flow between these populations suggests that the introduction of insecticide resistant Ae.
albopictus would likely result in rapid spread of this trait under the right selection pressures.
Future research directions

The mismatch between larval habitat density and adult abundance within the sites of this
research should be a future avenue of investigation. This disparity indicates that some sites are
functioning as ecological sources. Ae. albopictus has been observed moving distances exceeding
the typical dispersal range, up to several hundreds of meters, in the sech for adequate hosts
(Maciel-de-freitas et al. 2006). A similar variation in resources may be driving movement from
larval habitat dense areas hundreds of meters to sites with better host access or refuge spaces.

Identifying potential corridors of population movement, and if landscape characteristics shape
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movement patterns, would be valuable for ecological understanding of this species as well as
advancing vector control knowledge. Regarding population structure, limited resources only
allowed for one time point (August 2022) in the study to be sequenced. Future research could
examine specimens from another field season (2021) to identify any temporal shifts in genotypes
or site subpopulation dynamics. Shifts in genetic characteristics or even identification of
different orders of relatives between sites may reveal some dispersal paths in this system.
Finally, a further research effort will include the creation of VBD risk map for Atlanta showing
varying levels of exposure according to microclimate and landscape characteristics using the
abundance model developed in this study and a mechanistic model of vectorial capacity. This
would follow the general methodology of a similar risk map created of Athens, GA (Wimberly et
al. 2020).

The landscape and the microclimates of heterogenous urban environments result in
varying abundances of Ae. albopictus and larval habitat density. This dissertation demonstrates
the key human element in creating the urban environments this vector species is so well adapted
to, including the facilitation of invasion and further gene flow once Ae. albopictus is established
in a new location. Modeling approaches and cross-scale discernment informed these research
efforts, and ideally this multi-discipline approach will help inform predictions of VBD risk. The
research in this dissertation advances our knowledge of this globally destructive and invasive
mosquito vector while informing policy makers on how to reduce the risk of VBD in the face of

increasing urbanization.
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Supplementary Table A.1. All study site variable correlations for both 7-day lags and 14-day lags with positive larval habitat

characteristics and land cover traits.

c x o« ] x o

= ) = > c % x o0 = o
-2 = = a 3 £ 3 E S 5 = & Z = 8 5 ® = =
] < < < < = = o << = ™
> = P~ ~ ~ Ly = e << (=3 =}
& = - L= L=} = < <t <t < o a o o ~ ~ ™~ ~ 77} -
T 2 o =3 =3 a ~ ~ ha - -9 c
¢ £ £ £ £ f ¥ ® & § F F EF = % & & E §

@ o« o =
e 2 2 < e 2 2 2 S

-0.033 -0.352 0.137 0354 0.104 -0.324 0.308 0.285 -0.058 -0.327 0.188 0.328 0.066 -0.332 0.302 -0.336 0.341
-0.408 0.324 0.071 -0.040

)
©

LarvalHabitats

Temp14Min 0.295

Templ4Max -0.033 0.387 -0.165 0.226 -0.369

Temp14DTR -0.352 0.635 -0.468 0.462 -0.482

Templ4Avg 0.197 -0.084 0.071 0.104 -0.182

RH14Min 0.354 -0.801 0.730 -0.602 0.624

RH14Max 0.104 0.017 0.154 -0.320 0.172

RH14Flux -0.324 0.671 -0.609 0.584 -0.573

RH14Avg 0.308 -0.486 0.628 -0.579 0.500

Temp7Min  0.285 -0.420 0.336 0.072 -0.052

Temp7Max -0.058 0.454 -0.281 0371 -0.451

Temp7DTR  -0.327 0.853 -0.610 0.307 -0.408

Temp7Avg 0.188 -0.125 0.058 0.222 -0.254

RH7Min 0.329 -0.892 0.888 -0.451 0.532

RH7Max 0.066 0.059 0.329

RH7Flux -0.332 -0.408 0.387 0.635 -0.084 -0.801 0.017 0671 -0.486 -0.420 0.454 0.853 -0.125 -0.992 -0.209
RH7Avg 0.302 0.324 -0.165 -0.468 0.071 0.730 0.154 -0609 0.628 0.336 -0.291 -0.610 0.058 0.888 0.569
Imp500m  -0.336 0.071 0.226 0.462 0.104 -0.602 -0.320 0.584 -0.579 0.072 0.371 0307 0.222 -0451 -0.301
Can100m  0.341 -0.040 -0.369 -0.482 -0.182 0.624 0.172 -0.573 0.500 -0.052 -0.451 -0.408 -0.254 0.532 0.182
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Supplementary Table A.2. Average study site temperature and relative humidity variables during study period displayed with

standard deviation (+/-).

Site

BC
CcC
DD
DP
FR
GPE
GPR
MD
NDH
NDS
PPR
WG

Temp14DTR

14.83+/-2.55
12.86+/-2.18
18.19+/-8.57
8.91+/-2.63
13.78+/-3.58
15.58+/-3.6
19.23+/-3.55
17.42+/-2.88
16.61+/-3.22
18.93+/-3.30
13.85+/-2.83

13.3+/-3.06

Temp14Min

19.45+/-3.69
18.31+/-3.94
19.15+/-3.43
18.24+/-3.43
18.15+/-3.82
18.17+/-3.99
17.53+/-4.37
18.65+/-3.83
18.26+/-3.94
18.18+/-3.66
18.39+/-4.23

18.49+/-3.78

Temp14Avg

24.7+/-3.2
22.87+/-3.12
21.39+/-5.98
21.73+/-2.64
22.92+/-2.83
23.314/-3.12
23.83+/-3.11
24.93+/-3.28
23.94+/-3.11
24.314/-3.05
23.7+/-3.23

22.54+/-2.88

Temp14Max

34.28+/-3.05
31.17+/-2.9
28.19+/-8.19
27.154/-1.23
31.934/-1.16
33.76+/-3.74
36.76+/-2.62
36.07+/-4.26
34.86+/-1.54
37.124/-3.76
32.24+4/-2.36

31.79+/-2.44

RH14Flux

53.31+/-5.68
43.81+/-6.47
63+/-24.4
29.2+/-8.67
44.56+/-7.62
49.43+/-8.5
53.58+/-7.98
56.17+/-7.72
51.18+/-7.49
55.18+/-7.29
49.38+/-6.73

39.51+/-7.79

RH14Min

45.614+/-6.15
55.75+/-6.98

41.63+/-14.14
70.58+/-8.84
55.42+/-7.63
50.23+/-8.66
46.27+/-8.27
43.33+/-7.67
48.59+/-7.69
44.73+/-7.37
49.56+/-7.59

60.42+/-7.85

RH14Avg

78.78+/-4.88
85.14+/-5.31
68.61+/-18.23
92+/-4.97
88.01+/-4.23
82.96+/-5.09
82.98+/-5.46
78.79+/-5.18
82.66+/-4.45
80.91+/-4.81
79.85+/-4.99

88.47+/-5.31

RH14Max

98.92+/-1.52
99.56+/-0.65
84.9+/-21.67
99.78+/-0.35
99.98+/-0.07
99.65+/-0.80
99.85+/-0.46
99.5+/-1.27
99.77+/-0.40
99.9+/-0.19
98.94+/-1.51

99.93+/-0.20



Supplementary Table A.3. Average monthly temperature and relative humidity variables across site displayed with standard deviation

calculated with (a) 7-day and (b) 14-day lags.

a. Month
June
July
August
September
October

b. Month
June
July
August
September
October

Temp7DTR
15.63+4/-3.44
13.72+/-5
12.234/-3.82
16.14+/-3.64
18.84+/-3.75

Temp14DTR
14.69+/-3.17
13.41+/-3.82
13.78+/-4.93
15.38+/-4.77
19.2+/-4.26

Temp7Min
19.614/-1.38
21.73+/-0.52
20.69+/-0.62
17.82+/-1.37
10.23+/-0.76

Temp14Min
19.56+/-0.68
3.82+/-21.52
4.93+/-20.5
4.77+/-18.87
4.26+/-11.62

Temp7Avg
25.76+/-1.99
25.91+/-1.37
24.86+/-1.32
23.39+/-1.23

17.1+/-0.74

Temp14Avg
25.12+/-1.24
25.8+/-1.35
24.22+/-3.14
23.45+/-2.65
18.15+/-1.14

Temp7Max
35.24+/-3.73
35.45+/-5.11
32.92+/-4.14
33.96+/-3.37
29.07+/-3.32

Temp14Max
34.25+/-3.14
34.93+/-4.06
32.98+/-4.15
32.94+/-4.66
29.62+/-5.07

RH7Min
45.35+/-9.31
58.15+/-9.66
61.72+/-12.2
49.56+/-7.45
42.89+4/-8.07

RH14Min
47.7+/-7.84
56.38+/-9.1

56.71+/-12.8
52.44+/-10.05
41.82+/-9.57

RH7Avg
76.2+/-6.45
88.69+/-4.18
89.24+/-5.38
82.47+/-4.73
79.07+/-4.63

RH14Avg
78.42+/-4.97
86.98+/-4.73

85.73+/-11.96
83.17+/-9.52
77.84+/-7.43

161

RH7Max
98.16+/-2.39
99.99+/-0.03
99.97+/-0.09
99.86+/-0.5
99.14+/-1.74

RH14Max
98.59+/-1.66
99.83+/-0.44
98.51+/-7.23

98.1+/-9.01

96.93+/-11.52
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Supplementary Table A.4. Adult Abundance Models Performance. Models are ranked by AIC performance. Models significantly
different from the null model, passing uniformity/dispersion tests via DHARMa, and converging are marked in green. Models not

significantly different from the null model or failing uniformity/dispersion tests via DHARMa are marked in orange. Models
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Response . Fixed Effect Random DHARMa Diff. df. .
F E fi E
Variable bxed Effects Interactions Effects Problem?  Null? resid Significant Effects
s(RH14Min) + Site Imp500m: 0.007734 ** ,
alboTotalA s(Templ4DTR) + Month/\’(ear 946.2 N Y 109 RH14Min: 4.35e-06 ***,
Imp500m Templ4DTR:0.000175 ***
S(RH14Flux) + :
Stte, Imp500m: 0.01893 *,
alboTotalA s(Templ4DTR) + Morth/Year 947.5 Y ) Templ4DTR: 0.00307 **
Imp500m
s(RH14Min) + . . Imp500m: 0.00912 **,
RH14Min: Site, .
aboTotalA s(Templ4DTR) + 4D'$R Month/eYear 947.8 N Y 109  RH14Min:0.00106 **,
Imp500m : Templ4DTR: 0.02188 *
S(RH7FIux) + .
RH7Flux: Site RH7Flux:-Temp7DTR: 0.03674 *
IboTotalA ’ 948.6 N Y 109 ’
aboTotlA — s(Temp/DTR) + 0 7DTR MonthvYear Temp7DTR: 0.00652 **
Imp500m
s(RH14Flux) + :
RH14Flux: Site, : 7
alboTotalA s(Temp14DTR) + Temp14DTR Month/Year 949.5 Y Y 109 Imp500m: 0.0207
Imp500m
S(RH14Flux) + 7
alboTotalA s(Temp14DTR) + : 950 Y N Templ4DTR: 0.00557 **
Month/Year
Canl100m
S(RH7Flux) + ;
RH7Flux: Site
lboT: : i Y Y oz
- Temp7DTR Month/Year - . o
Canl100m
s(RH14Min) + Site
alboTotalA s(Temp14DTR) + : 950.2 N Y 110 Templ4DTR:0.000732 ***
Month/Year
Can100m
s(RH7Min) + Z ;
RH7Min: Site
lboTotalA ’ ; Y 5 %
- o Temp7DTR Month/Year o > o

Imp500m
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Response

Fixed Effect

DHARMa

Diff.

df.

Variable Fixed Effects Interactions Null?  resid Significant Effects
S(RH7FIlux) +
RH7Flux: 0.01213 *
IboTotalA 950.3 Y 110 ’
S UBELS, - SRR TR Month/Year Temp7DTR: 0.01705 *
s(RH7Min) + X
RH7Min:0.000318 ***
lboTotalA 951 N 110 :
NN AT TR Month/Year Temp7DTR:0.023369 *
s(RH14Min) + . .
RH14Min: RH14Min: 0.00228 **
IboTotalA 951.2 Y 109 ’
alboTotlA ~s(Templ4DTR) + 1o 014DTR MonthYear Templ4DTR: 0.03180 *
s(RH7Min) +
IboTotalA 951.9 Y 109 RH7MinTemp7DTR:0.0469 *
- - Temp7DTR Month/Year )
s(RH14Flux) +
RH14Flux:
IboTotalA 951.9 Y 109
alboTotalA s(Templ4DTR) + Temp14DTR Month/Year none
S(RH7FIux) + RH7Flux: 0.0174 * ,
alboTotalA 952.1 A
/ s(Temp7DTR) + Month/Year Temp7DTR:0.0183 *
s(RH14Flux) +
alboTotalA o 953.4 N 112 none
alboTotalA s(RH14Flux) L 953.5 N 113 none
alboTotalA s(RH7Flux) 953.6 N 113 none

Month/Year
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Response . Fixed Effect Random DHARMa  Diff.  df. -
; Fixed Effects . AIC ) Significant Effects
Variable Interactions Effects Problem? Null?  resid g
s(RH7Min) + Site, RH7Min: 0.00046 ***,
alboTotalA 953.6 N N 110
s(Temp7DTR) + Month/Year Temp7DTR: 0.02832 *
RH7FL i Site,
iy o 953.8 N N 112 RH7FLux: 0.00671 **
Imp500m Month/Year
Site, :
alboTotalA s(RH7Min) 953.9 N N 113 RH7Min: 0.0153 *
Month/Year
s(RH7Min) + Site, :
alboTotalA 953.9 N N 112 RH7Min: 0.00621 **
Imp500m Month/Year
s(RH14Flux) + Site,
alboTotalA . - 954.5 Y N 112
s(RH7Flux) + Site,
alboTotalA . o 955.1 N N 112 none
s(RH7Min) + Site, 5 7
alboTotalA P o 955.3 N N 112 RH7Min: 0.0101
Imp500m + Site,
lboTotalA 956.1 Y N 113
o Can100m Month/Year o
Site,
lboTotalA RH14Mi . Y N 11
alboTota s( in) O 956.3 3 none
s(RH14Min) + Site
alboTotalA : 957.9 na na na **nN0 convergence**
Canl100m Month/Year 9
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Response . Fixed Effect Random DHARMa  Diff. df. -
i Fixed Effects . AIC . Significant Effects
Variable Interactions Effects Problem? Null?  resid g
Site,
alboTotalA s(Temp14DTR) Month/Year 57.9 Y N 113 none
Imp500m + Imp500m: Site,
. Can100m Can100m Month/Year > Y - o none
Site,
alboTotalA s(Temp7DIR) Month/Year 58.1 Y N 113 none
S(RH14Min) + Site X
alboTotalA ; conver na na na **n0 convergence**
Imp500m Month/Year g g
ence
Site,
alboTotalA Can100m 56.1 Y N 114 none
Month/Year
Site,
alboTotalA Imp500m 55.4 Y N 114 none

Month/Year
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Supplementary Table 5. Larval Habitat Density Models Performance. Models are ranked by AIC performance. Models
significantly different from the null model, passing uniformity/dispersion tests via DHARMa, and converging are marked in green.
Models not significantly different from the null model or failing uniformity/dispersion tests via DHARMa are marked in orange.

Models failing to converge are colored in grey.
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. Fixed Effect Random DHARMa Different from . L
R F E f fi E
esponse xed Effects Interactions Effects Problem? Null Model? df.resid Significant Effects
LarvalHabitats Canl100m Sl 292.7 N Y 113 Can100m: 0.0194 *
Month/Year
2 S(RH14Min) + Site, 7 7
LarvalHabitats {mp500m Mot/ Year 293.1 N N 112 RH14Min; 0.0152
: . Site, e Fkk
LarvalHabitats ~ s(Temp7Min) Mot ear 293.6 N N 113 Temp7Min: 9.89e-06
/ Site, 7 *
LarvalHabitats s(Templ4DTR) Morti/ear 294.3 N N 113 Templ4DTR: 0.0251
Z s(RH14Flux) + Site,
LarvalHabitats mpS00m Morthear 2945 N 112 none
’ Site, ¢ *
LarvalHabitats Imp500m Mot ear 294.6 Y N 114 Imp500m: 0.0476
Z Imp500m + Site,
LarvalHabitats Car00m Mot/ ear 294.7 Y N 113 none
Z Imp500m + Imp500m: Site,
LarvalHabitats . . 294.7 Y N 113 none
S(RH14Min) + Site
LarvalHabitats s(Temp14DTR) + ’ 295.4 N N 110 none
Month/Year
Canl100m
; Site
L H Ti TA ; 295, N N 114 T TA
arvalHabitats emp7Avg Morth/Year 95.9 emp7Avg
LarvalHabitats ~ RH14Max . 295.9 N N 114 none
Month/Year
S(RH14Min) + Site
LarvalHabitats s(Temp14DTR) + / 296.5 Y N 110 none
Month/Year
Imp500m
S(RH14Min) + 7 Z
LarvalHabitats s(Templ4DTR) + _ oo - Y N 109 none

Canl00m

Templ4DTR Month/Year
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. Fixed Effect ~ Random DHARMa  Different from : -
R Fixed Effect . df.resid Significant Effect
esponse e cs Interactions Effects Problem?  Null Model? res! gnicar es
: Site,
LarvalHabitats  s(RH7Max) MorthiYear 298.1 N N 114 none
; Site
LarvalHabitats  Templ4Awv ; 298.3 N N 114 none
P g Month/Year
: S(RH7Flux) + Site,
LarvalHabitats 298.5 Y N 112 none
Imp500m Month/Year O
s(RH14Min) + 7 z
: RH14Min; Site
LarvalHabitats ; 298.5 N N 109 none
- Templ4dDTR Month/Year
Imp500m
; s(RH14Flux) + RH14Flux: Site
LarvalHabitats Z 299.2 N N 109 none
s(Templ4DTR) + Templ4DTR Month/Year
; Z Site
LarvalHabitats S(RH7Min Z 300 N N 113 none
( ) Month/Year
: Site
LarvalH RH7FI Z 7 N N 11 non
a abitats  s( ux) . 300 2 one
LarvalHabitats ~ s(Temp7Max) - 3003 N N 113 none
P Month/Year '
s(RH7Min) + Site
LarvalHabitats s(Temp7DTR) + ’ 302.4 A N 110 none
Month/Year
Imp500m
S(RH7Flux) + Site
LarvalHabitats s(Temp7DTR) + ’ 302.4 7 N 110 none
Month/Year
Imp500m
S(RH7Flux) + Z
% RH7Flux: Site, : 7
LarvalHabitats s(Temp7DTR) + Temp7DTR _Month/Year 302.5 Y N 109 Can100m: 0.025

Can100m
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. Fixed Effect Random DHARMa Different from . o
R Fixed Effect . df.resid Significant Effect:
espornse be s Interactions Effects Problem?  Null Model? res! ‘gnrican s
; s(RH7Min) + RH7Min: Site,
LarvalHabitats 302.6 Y N 109 Canl100m: 0.0258 *
s(Temp7DTR) + Temp7DTR Month/Year
S(RH7Flux) + Z
7 RH7Flux: Site
LarvalHabitats : 304.3 X N 109 none
g Temp7DTR  Month/Year
Imp500m
LarvalHabitats s(Temp7DTR) Mor?trl:f\’(ear na na na na **no convergence**
S(RH7Min) + R 3
LarvalHabitats s(Temp7DTR) + RH7;\/ID|[1I_.;emp Mor?tE(/e\’(ear na na na na **no convergence**
Imp500m
3 s(RH7Min) + Site,
LarvalHabitats na na na na **no convergence**
s(Temp7DTR) + Month/Year N
S 3
LarvalHabitats 3 (iEeRmH;;:;J':%) N Morigf\,(ear na na na na **no convergence**
3 in) + i
LarvalHabitats S(gggll\(;l(l)rg Mor?rgf\’(ear na na na na **no convergence**
: in) + i
LarvalHabitats S(IIQnTpYSI\éI (')?1 Morigf\’(ear na na na na **no convergence**
: S(RH7Flux) + Site,
LarvalHabitats na na na na **no convergence**
Can100m Month/Year N
: s(RH14Flux) + Site,
LarvalHabitats na na na na **no convergence**
s(Temp14DTR) + Month/Year g
: S(RH14Flux) + RH14Flux: Site
LarvalH : n n n n **no convergence**
ANAIHADIEE | ovpl4DTR) ¢ Tempi4DTR MontvYear ™ 8 3 3 D=
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Response Fixed Effects 'I:r:):;(_ja;:geﬁst R;f?::t;n AIC [;::)?E:\nﬂj [[)\:ﬁr:;;g;;n df.resid Significant Effects
LarvalHabitats S(Rcl_;lﬂzm \ MonStirt]/e\’(ear na na na na **no convergence*™*
LarvalHabitats S(igiiggir? \ Mor?tgf\’(ear na na na na **no convergence**
LarvalHabitats  s(RH14Flux) Mor?tir:z(ear na na na na **no convergence**
LarvalHabitats  s(RH14Min) WK na na na na **no convergence**

Month/Year
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Supplemental Figure A.1. Daily temperature values across the study sites by month. Monthly values include both the 2021 and 2022

field season values. The red dashed line represents maximum temperatures, the green solid line represents average temperatures, and

the blue dashed line represents minimum temperatures



173

Max RH
£
£ Avg RH
g
2
a

Min RH

Month

Supplemental Figure A.2. Daily relative humidity values across the study sites by month. Monthly values include both the 2021 and
2022 field season values averages. The red dashed line represents maximum RH values, the green solid line represents average RH

values, and the blue dashed line represents minimum RH values.
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Supplemental Figure A.3. Average maximum and minimum temperature values by month and site imperviousness. Monthly values
include both the 2021 and 2022 field season values averages. The red plot represents High Imperviousness Sites, the blue plot

represents Medium Imperviousness Sites, and the green plot represents Low Imperviousness Sites.
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Supplemental Figure A.4. Daily relative humidity values across the study sites by month. Monthly values include both the 2021 and
2022 field season values averages. The red plot represents High Imperviousness Sites, the green plot represents Medium

Imperviousness Sites, and the blue plot represents Low Imperviousness Sites.
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Supplemental Figure A.5. 7-day lag variables scree plot. Principal component analysis dimensions 1 through 7 represented with their

respective percentage of explained variance.
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Supplemental Figure A.6. 14-day lag variables scree plot. Principal component analysis dimensions 1 through 7 represented with

their respective percentage of explained variance.
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APPENDIX B

CHAPTER 4 SUPPLEMENTARY INFORMATION
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Supplemental B: DNA Extraction Checklist for Aedes albopictus.
Using DNeasy Kit (Qiagen):
] Take mosquito in 1.5 mL microcentrifuge tube, noting the sample ID #1-95
o Add 180ul ATL Buffer
o Grind with pestle for 1 min
o Add 20 uL Proteinase K
o Vortex for 15 seconds
o Incubate in hot water bath at 56°C for 2 hours
o Remove from hot water bath and vortex for 15 seconds
] Add 4 uLL RNAse A, vortex, incubate at room temperature for 2 minutes
[1 Add 200 uL Buffer AL, vortex
1 Add 200 uL Ethanol (100%), vortex
1 Transfer to DNeasy spin column with 2 mL collection tube (#1)
o Centrifuge at 8000 rpm for 1 min, discard flow through and tube
] Transfer spin column to new 2 mL collection tube (#2)
o Add 500 uL Buffer AW1
o Centrifuge at 8000 rpm for 1 min, discard flow through and tube
1 Transfer spin column to new 2 mL collection tube (#3)
o Add 500 uL Buffer AW2

o Centrifuge at 14,000 rpm for 2 min, discard flow through and tube

]

Transfer spin column to new 2 mL collection tube (#4)
o Do not add more buffer (drying out last of the ethanol)

o Repeat centrifuge at 14,000 rpm for 1 min, discard tube
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] Transfer spin column to new 1.5 mL microcentrifuge tube for DNA elution

o

(@]

(@]

o

(@]

o

Add 100 uL TE buffer (1x if already low EDTA 0.1mM, 1/10x if regular EDTA)
Let TE Buffer sit on spin filter for 5 min

Centrifuge for 1 min at 8000 rpm, retaining 1.5 mL tube with the DNA

Add another 100 uL. TE Buffer (low EDTA or 1/10x dilution)

Let TE Buffer sit for S min

Centrifuge for 1 min at 8000 rpm, retaining 1.5 mL tube with the DNA

(1 Test potentially high concentration DNA samples (female Ae. albopictus) with Qubit to

see if minimum 10ng/uL concentration met after first elution. Set these aside for final

pipetting without second elution or spin concentration.

1 Other samples in 1.5 mL microcentrifuge tubes will have approximately 200 uL of eluted

DNA.

1 Pipette all of the ~200 uL of eluted DNA into an Amicon Ultra 0.5 mL -30k centrifugal

unit with attached 2 mL collection tube below it to collect the flow through; discard the

spin filter from the previous steps.

o

Spin the concentrator centrifugal unit at 14,000g or ~13,500 rpm (for 7 cm rotor
radius average) for 10 min at 4°C

Discard the flow through and the 2 mL collection tube

Place filter column, now with the 15k DNA caught within it, flipped upside
down into a new 2 mL collection tube

Spin at 1,000g or ~3,500 rpm (for 7 cm rotor radius average) for 2 min at 4°C
Approximately 26 uL of concentrated DNA will be at the bottom of the 2 mL

collection tube.
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"] Prepare a 500 uL Qubit sample tube with 199 ulL HS dsDNA working solution
o Add 1 uL. DNA sample concentrate from the 2 mL spin tube to Qubit sample tube
o Vortex for 3 seconds and let rest at room temperature for 2 minutes
o Read concentration 3x times with Qubit and record the average
1 Calculate the volume of ddH20 and DNA concentrated solution that must be added to
obtain 22 uL of 10ng/uL solution in a 500 uL microtube.
o Use spreadsheet formula and double check final values (220 ng of DNA)
o Pipette needed volume of concentrated DNA solution and molecular grade ddH20
into a 500 uL microtube.
o 22 ul is mixed so that 20 uL can be pipetted into the final deep well plate,
allowing for a small amount of loss due to surface adhesion.
] Pipette the calculate volume of DNA solution and ddH20 into the well code
corresponding to the sample ID #1-95
o Leave well H12 empty for the control run
o Seal 96-well plate Beckman Coulter deep well plate with Thermo Scientific plate
seals, store at -20°C until shipment to UNC Genomics Core.

o Store any remaining sample DNA solutions at -20°C.

Preparation Notes:
e Label initial sample tubes #1-95 with corresponding well ID’s
e Label spin columns with corresponding well ID’s
e Label final elution spin tube with corresponding well ID’s

e Label Qubit sample tubes with corresponding well ID’s
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e Label both 2 mL spin tubes for samples undergoing Amicon Ultra spin concentration
e Can stop procedure after proteinase K digest/hot water bath for 6 months at room

temperature.



