ON LOCALIZING SUBCATEGORIES OF LIE
SUPERALGEBRA REPRESENTATIONS

by

MATTHEW H. HAMIL
(Under the Direction of Daniel K. Nakano)
ABSTRACT

This dissertation studies the representation theory of classical Lie superalgebras from a categor-
ical point of view. Given a classical Lie superalgebra g = gg &© g1, one can consider the category
C(g,95) Of g-supermodules which are semisimple as modules over the Lie algebra gg. Also, one can
consider the full subcategory JF4 4.) 0f C(g,4,) Which consists of the finite-dimensional supermodules.
These are Frobenius categories, so one can form the stable categories Stab(C(q,4,)) and stab(Fg q.))
which are triangulated categories. The tensor product of supermodules gives Stab(C(q4)) and
stab(F(q,4,)) the structure of tensor triangulated categories, which raises many deep questions about
the tensor structure.

Balmer associates to each essentially small tensor triangulated category K¢ two topological
spaces: Spc(K¢) and Spc™(XK¢), called the categorical (Balmer) spectrum and the homological

spectrum respectively. When X¢ is rigid, in all known examples the comparison map

¢ : Spc"(K°) — Spc(K©)

is a bijection. Balmer’s Nerves-of-Steel Conjecture states that this is always the case. We prove the

conjecture holds for K¢ = stab(F(q4)) for g a Type A Lie superalgebra. The argument involves



using the detecting subalgebras introduced by Boe, Kujawa, and Nakano, as well as the stratification
framework developed by Benson, Iyengar, and Krause. As a consequence, we are able to use the
more recent h-stratification introduced by Barthel, Heard, Sanders, and Zou to classify localizing

subcategories of Stab(C(gq.)), again for Type A Lie superalgebras.

INDEX WORDS: [Classical Lie superalgebras, Detecting subalgebras, Tensor triangulated

categories, Balmer spectrum, Homological spectrum, Stratification]



ON LOCALIZING SUBCATEGORIES OF LIE
SUPERALGEBRA REPRESENTATIONS

by

MATTHEW H. HAMIL

B.S., University of Georgia, 2019
M.A., University of Georgia, 2020

A Dissertation Submitted to the Graduate Faculty of the

University of Georgia in Partial Fulfillment of the Requirements for the Degree.

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2025



©2025
Matthew H. Hamil

All Rights Reserved



ON LOCALIZING SUBCATEGORIES OF LIE
SUPERALGEBRA REPRESENTATIONS

Electronic Version Approved:

Ron Walcott
Dean of the Graduate School
The University of Georgia

May 2025

by

MATTHEW H. HAMIL

Major Professor:

Committee:

Daniel K. Nakano

Leonard Chastkofsky
William Graham

Nate Harman



ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Professor Daniel K. Nakano, for his guidance
and encouragement throughout my studies. I am also sincerely thankful to Professors Leonard
Chastkofsky, William Graham, and Nate Harman for serving as members of my committee. Finally,

I am profoundly grateful to my family and friends, whose support made this possible.

v



CONTENTS

Acknowledgments
1 Introduction

2 Tensor triangulated categories
2.1 Triangulated categories . . . . . . . . . ... e e e e e
2.2 Tensor triangulated categories . . . . . . . . . ... e e
2.3 Support forobjects in TTCs . . . . . .. . ... .
2.4 The Balmer spectrumof aTTC . . . . . . . ... ... ... .. .. ... .....

2.5 Extending support to bigobjects . . . . ... ... Lo

3 Stratifying tensor triangulated categories
3.1 BIKssupport . . . . . . . e
3.2 BIKstratification . . . . . . ... e
3.3 Balmer-Favisupport . . . . . . . . . ...
3.4 Tensor triangular stratification via Balmer-Favi supports . . . . . .. .. ... ...
3.5 Homological support . . . . . . . . . . e e
3.6 Stratification via homological support . . . . . . .. .. ... oL

3.7 Relationships between stratification theories, pros and cons, etc. . . . . .. .. ..

4 Lie superalgebras and their representations

iv

10

11
11
13
14
15
17
18
19

22



4.1
4.2

4.3

“Super mathematics”: the idea and first definitions

Lie superalgebras and their representations . . . . . . . . . ... ... ...

The categories C(q 4,) and Fg 4y and their stable categories . . . . . . . ..

5 Detecting subalgebras, splitting subalgebras, and projectivity

5.1
5.2
5.3
54
5.5
5.6
5.7

Detecting subalgebras . . . . . . . .. ... Lo o o
Type I Lie superalgebras: . . . . . . .. ... ... .. ... ...,
Examples of Lie Superalgebras with Ample Detecting Subalgebras . . . . .
Cohomological and Rank Varieties . . . . . ... ... ... ........
Projectivity for Type I Lie Superalgebras . . . . . . .. ... ... .....
Projectivity via Ample Detecting Subalgebras . . . . . .. ... ... ...

Splitting subalgebras . . . . . ... oL o oo

6 Nilpotence theorems for Lie superalgebra representations

6.1
6.2
6.3
6.4
6.5

Stratification for detecting subalgebras . . . . . . ... ... ..o
Homological Residue Fields . . . ... ... ... ... ..........
Nilpotence and Colimits . . . . . . ... ... ... ... .. .......
Nilpotence Theorems . . . . . . . .. .. ... ... ... ...

A Nilpotence Theorem via Detecting Subalgebra . . . . . ... ... ...

7 The Nerves-of-Steel Conjecture and localizing subcategories in Type A

7.1 Stratification and the ComparisonMap . . . . . ... ... ... ... ...

7.2 Identifying the Homological Spectrum . . . . . . ... ... ... .....

7.3 The Nerves-of-Steel Conjecture . . . . . . .. .. ... ... .......

7.4  Stratification for Type A Lie superalgebras . . . . . . .. ... ... ....
Bibliography

vi

27
28
29
29
31
32
33
34

35
35
38
39
42
43

45
45
46
48
51

54



CHAPTER 1

INTRODUCTION

Let g = gg & g1 be a classical Lie superalgebra over the complex numbers C. The representation
theory of such Lie superalgebras was studied via cohomology and support varieties in a series
of early 2000s papers by Boe, Kujawa, and Nakano [BKN09; BKN10; BKN11; BKN17]. They
showed, among other results, that under mild assumptions on the action of the algebraic group
Gp on g1, there exist subalgebras f = fg @ fi C g, called detecting subalgebras. Detecting
subalgebras are interesting in the sense that they have markedly simple representation theory, but
they nonetheless determine the relative (g, gj)-cohomology. In particular, [BKN10, Theorem 4.1.1]
gives an isomorphism H*(g, gg; C) = H*(f, f3; C)”, where N is a non-connected reductive group
determined by a choice of detecting subalgebra . Moreover, H*(f, f5; C) = S*(f7), and the relative
cohomology for detecting subalgebras are polynomial algebras, so relative (g, gj)-cohomology is
finitely generated.

One can consider the category Cgg,) (resp. F(g,q,)) Whose objects consist of all (resp. finite-
dimensional) g-supermodules which are semisimple as modules over gg and whose morphisms
consist of even morphisms between supermodules. These are abelian categories which have enough
projective and injective objects. They are also Frobenius categories; i.e., projective and injective
objects coincide, so one can form the stable module categories Stab(C(q ;) and stab(Fgq,))-

Objects in Stab(C(gq,)) (resp. stab(F(gq.)) are the same as the objects in C(q o) (resp. Fgq,)), but



in the stable category morphisms consist of equivalence classes of morphisms where two morphisms
are considered equivalent if their difference factors through a projective module.

The category Stab(C(q,45)) is a tensor triangulated category which is rigidly-compactly gener-
ated by the full tensor triangulated subcategory stab(F(q 4,)) of compact-rigid objects. In [BKN17]
the authors consider the tensor triangular geometry of these categories. Techniques from geometric
invariant theory are used to compute the Balmer spectrum for the detecting subalgebras and for
the Lie superalgebra gl(m|n). For the detecting subalgebras [BKN17, Theorem 4.5.4] gives a
homeomorphism Spc(stab(F;5.))) = Proj H*(f,§5; C) = ProjS*(f;), but for g = gl(m|n) the
situation is a little different. The Balmer spectrum Spc(stab(F(g4.)) is not homeomorphic to
ProjH*(g, go; C), as one might initially suspect. Instead, one has to consider a stack quotient of
ProjH*(f, f3; C), where § C g is a detecting subalgebra. This is the result of [BKN17, Theorem
5.2.2] which states that there is a homeomorphism Spc(stab(F (g 4.1)) = N- ProjH*(f, f5; C).

Often, the representation theory of classical Lie superalgebras over C resembles representation
theory of finite groups in positive characteristic. If G is a finite group, and k is an algebraically
closed field of characteristic p where p divides the order of Gz, then the group algebra kG is not
semisimple and most of the time has wild representation type. The categories kG-Mod and kG-mod
consisting of all (resp. finitely generated) left kG-modules are again abelian and Frobenius, so one
can form the stable module categories StMod(kG) and stmod(kG) which are tensor triangulated
categories. An analogous picture holds to Lie superalgebras in that StMod(kG) is a compactly gen-
erated tensor triangulated category whose compact objects are precisely the objects in stmod(kG).
Benson, Carlson, and Rickard first studied the tensor triangular geometry of stmod(kG) in the late
90s, and the main result of [BCR97] is a classification of the thick ®-ideal subcategories. This
in turn implies that there is a homeomorphism Spc(stmod(kG)) = ProjH*(G, k). Later on in
the 2000s, Benson, lyengar, and Krause introduced the notion of a tensor triangulated category
being stratified by the action of a graded-commutative ring R [BIK11a]. This was a fundamentally

new idea that not only allowed for a computation of the Balmer spectrum, but that also had the



advantage of classifying ®-ideal localizing subcategories. BIK’s theory was applied to show that
StMod (k@) is stratified by the action of the cohomology ring H*(G, k), a result which recovers
Benson, Carlson, and Rickard’s contributions, but also gives a classification of ®-ideal localizing
subcategories in terms of subsets of Proj H*(G, k).

While stratification was introduced before Boe, Kujawa, and Nakano’s computations of Balmer
spectra for stab(Fss;)) and stab(Fgimn)gi(min);))> the arguments given in [BKN17] do not rely
on any stratification result. In fact, for most classical Lie superalgberas, e.g. gl(m|n), the relative
(g, g5)-cohomology ring fails to stratify. It was conjectured, however, that for a detecting subalgebra
the relative cohomology ring H*(f, f5; C) should stratify Stab(Cs,)). This conjecture was proved
in recent work by the author and Nakano [HN24] from the observation that, just as in the case
of elementary abelian two groups in characteristic two, one can reduce the problem to proving a
stratification result for the stable category of modules for the exterior algebra A(f;) viewed as a
superalgebra by declaring the generators to be odd, which then comes down to a version of the
classical BGG correspondence. In addition to giving a classification of the ®-ideal localizing sub-
categories of Stab(C(;,)), this result was also used in [HN24] to prove results about representations
of Lie superalgebras concerning nilpotence and the newly developed homological spectra [Bal20].
Specifically it was shown that for g a classical Lie superalgebra with a detecting subalgebra 3 C g
which is splitting in the sense of [SS23], and satisfying a natural assumption on realization of
supports, then there is a homeomorphism Spc” (stab(Fg ) = N-Proj(H* (3, 35; C)). This result
led to a verification of Balmer’s “Nerves-of-Steel” conjecture for g = gl(m|n) [HN24, Theorem
7.2.1].

While the BIK approach to stratifying tensor triangulated categories represented a major break-
through in the field, the drawback is that it requires that the category be equipped with an action
by a graded-commutative Noetherian ring in order to construct the necessary support theory. For
many TTCs (e.g. stab(F(yq,))), a BIK stratifying ring is either not known or not readily available,

rendering them outside of the scope of the BIK machinery. This prompted Barthel, Heard, and



Sanders in [BHS23b] to develop a theory of stratification called tensor triangular stratification or
tt-stratification for short. Tt-stratification for compactly generated tensor triangulated categories
is in terms of the support theory developed by Balmer and Favi [BF11] for “big” objects, and
has the advantage that does not presuppose the action of a graded-commutative Noetherian ring.
Instead, the supports are constructed using the more intrinsic Balmer spectrum of the full compact
subcategory. A drawback to tt-stratification is that descent theorems still have to be handled one
TTC at a time. Recently, in [Bar+24], Barthel, Heard, Sanders, and Zou developed a third theory of
stratification, called h-stratification, which is in terms of the homological spectrum. It is also well
behaved under descent. The relationship between tt-stratification and h-stratification becomes tight
for TTCs that satisfy the Nerves-of-Steel Conjecture. These key insights allow us, in particular, to
reduce the problem of studying gl(m|n) to studying a splitting, detecting subalgebra, as well as
subalgebras isomorphic to the queer Lie superalgebra q(1).

The purpose of this thesis is to add categories of representations of Lie superalgebras to the
growing list of tensor triangulated categories for which stratification results are known. We investi-
gate the three notions of stratification for Stab(C(y4,)) When g is a classical Lie superalgebra which

has a splitting detecting subalgebra 3 C g. Specifically, our theorem is the following.

Theorem A. Let g be a classical Lie superalgebra with a splitting, detecting subalgebra 3 C g and
which satisfies the realization condition of Assumption 7.3.2 [HN24, Theorem 7.2.1]. The tensor
triangulated category Stab(C(yq.)) is tt-stratified by the Balmer spectrum Spc(stab(F(q4,))), and

tt-stratification is equivalent to h-stratification.

Classical Lie superalgebras which satisfy the hypotheses of Theorem A include classical Lie
superalgebras of Type A. As a consequence of stratification, we obtain the classification of ®-ideal
localizing subcategories in terms of arbitrary subsets of the Balmer spectrum. This fact, combined

with the Balmer spectrum computations of Boe, Kujawa, and Nakano, yields the following corollary.



Corollary B. Let g be a classical Lie superalgebra with a splitting, detecting subalgebra 3 C g and
which satisfies the realization condition of Assumption 7.3.2. There is a bijection between the set

of ®-ideal localizing subcategories of Stab(Cqy4,)) and subsets of N-Proj(H®(3, 35; C)).

Our work is inspired in part by the strategy outlined for modular representation theory in
[BIK11b] where BIK stratification was proven for StMod(kG) where GG is an arbitrary group
by first proving the result for StMod(k E'), where E is an elementary abelian group, and then “boot-
strapping” up by applying a version of Quillen’s stratification theorem and Chouinard’s theorem.
Their argument involves several “change-of-categories” type arguments including a consideration
of the homotopy category of injectives K(Inj £G). We make use of some of the analogous results
in our setting, specifically for studying detecting subalgebras.

The thesis is organized as follows. Chapter 2 gives an overview of tensor triangular geom-
etry with an aim towards introducing the language needed to state our results. We review the
Balmer spectrum, as well as notion of support data and extending support data. In Chapter 3 we
give an overview of the three stratification setups currently in the literature: BIK stratification,
tt-stratification, and h-stratification. Chapter 4 covers background from Lie superalgebras. We
explain how the tensor triangular theory of the first two chapters can be applied to study representa-
tions of Lie superalgebras. Doing so makes use of detecting subalgebras and splitting subalgebras,
so we explain their construction, some aspects of their representation theory, and how they relate
to projectivity conditions in Chapter 5. In Chapter 6 we explore stratification for the detecting
subalgebras, explain how to construct homological residue fields, and consider various nilpotence
theorems. Chapter 7 discusses the Nerves-of-Steel Conjecture, and the classification of tensor ideal

localizing subcategories in Type A.



CHAPTER 2

TENSOR TRIANGULATED CATEGORIES

This chapter introduces tensor triangulated categories. We begin by discussing triangulated cat-
egories, giving the basic definitions, and explaining how the basic notions are modified in the
presence of a tensor structure possessed by tensor triangulated categories. We discuss supports, the

Balmer spectrum, and the concept of extending supports to big objects.

2.1 'Triangulated categories

Triangulated categories were introduced by Verdier in his thesis [Ver96]. In some sense, their role
is to clarify and extend notions from homological algebra. Recall that a triangulated category 7 is
an additive category equipped with an auto-equivalence Y. : T — T called the shift, and a class of
distinguished triangles:

M—N—=Q—XM

all subject to a list of axioms the reader can find in, for example, [NeeO1l, Ch. 1].
A non-empty, full, additive subcategory § of T is called a triangulated subcategory if i) M € &
implies that "M € 8 forall n € Z and (ii) if M — N — @ — XM is a distinguished triangle



in T, and two of {M, N,Q} are objects in 8, then the third object is also in 8. A triangulated
subcategory S of T is called thick if S is closed under taking direct summands.

A triangulated subcategory & of T is called a localizing subcategory if § is closed under taking
set-indexed coproducts. It follows from a version of the Eilenberg swindle that localizing subcat-
egories are necessarily thick. Given a triangulated category, it is a central problem to classify its
thick subcategories and localizing subcategories.

An object C' € T is called compact if Homgy(C, —) commutes with set-indexed coproducts. The
full subcategory of compact objects in T is denoted by T¢, and the triangulated category 7 is said
to be compactly generated if the isomorphism classes of compact objects form a set, and if for each

non-zero object M € T there is an object C' € T¢ such that Homs(C, M) # 0.

2.2 Tensor triangulated categories

A tensor triangulated category (TTC) is a triple (X, ®, 1) consisting of a triangulated category X,
a symmetric, monoidal (tensor) product ® : K x X — X which is exact in each variable, and a
monoidal unit 1. For the remainder of this section, KX denotes a TTC.

The usual paradigm involves the situation when X is rigidly-compactly generated as a TTC by
its full subcategory of compact-rigid objects K. By definition this means that (i) X is closed under
set indexed coproducts, (ii) the tensor product preserves set-indexed coproducts, (iii) K is compactly
generated as a triangulated category, (iv) the tensor product of compact objects is compact, (v) 1 is
a compact object, and (vi) every compact object is rigid (i.e. dualizable).

The additional structure of the tensor product possessed by TTCs makes the problem of classi-
fying localizing subcategories and thick ideals more tractable. When working in the context of a
TTC however, one focuses on classifications for ®-ideal localizing subcategories and thick ©@-ideal
subcategories of compact objects. In many situations these match up with the purely triangular
notions (c.f. [BIK11b, Section 4.1.4]). For example, if X is monogenic (generated by the unit

object 1), as in the case of finite groups, then every localizing subcategory is automatically a ®-



ideal. One difference between previously considered representation categories and our theory is
that the categories of Lie superalgebra representations of interest in this paper are in general not
monogenic. Because of this feature our available tools restrict us to a classification of ®-ideal

localizing subcategories rather than arbitrary localizing subcategories.

2.3 Support for objects in TTCs

The study of TTCs frequently involves considering various support spaces and notions of support
for objects. The relevant definition here is that of a support datum, which was originally given in
[BalO5]. The definition we give is slightly more general, and is suited to our paper. Let K be a
TTC, X be a Zariski topological space ([BKN11, Section 2.3]), and let X denote the collection
of all subsets of X. A support datum on X is an assignment V' : K — X" such that the following

properties hold for M, N, M;, () objects in K:
(2.3.1) V(0) =0,and V(1) = X;
(2.3.2) V(®ierM;) = UiV (M;) provided that @;c; M, is an object of K;
(23.3) V(EM) =V (M)
(2.3.4) for any distinguished triangle M — N — Q — XM, V(N) CV(M)UV(Q);
235 VIM@N)=V(M)NV(N);

Often useful are support data which satisfy the additional two properties:

(2.3.6) V(M) = (0 if and only if M = 0.
(2.3.7) for any closed subset U € X, there exists an object M/ in K¢ such that V(M) = U.

Property (2.3.7) is often called the realization property, and support data which satisfy Property

2.3.6 are called faithful.



2.4 The Balmer spectrum of a TTC

In his 2005 paper, [Bal05], Balmer uses the tensor product and unit object to associate to each TTC
XK a topological space known as the categorical (Balmer) spectrum Spc(X) in a way analogous
to the construction of the prime spectrum of a commutative ring. Define a ®-ideal in X as a full
triangulated subcategory J of K such that M @ N € Jforall M € Jand N € K. A proper, thick
®-ideal P of X is said to be prime if, for objects M and N in K, M ® N € P implies that M € P

or N € P. The Balmer spectrum is then defined as
Spe(X) := {P C K | P is a prime ideal}.
The topology on Spc(XK) is the familiar Zariski topology which has the closed sets given by
Z(€) :={P € Spc(X) | en P £ 0},

where C is an arbitrary collection of objects in K.
An important result of Balmer, [Bal0O5, Theorem 3.2], has to do with supports for essentially
small TTCs constructed via the Balmer spectrum. One can construct a support datum on X°¢ as

follows. Given an object M € K¢, define
SUpppy (M) := {P € Spc(X°) | M ¢ P}.

Balmer showed that the support datum given by (Spc(K°¢), suppg, (—)) is universal in the sense that
if (X, V) is any support datum on K¢, then there exists a unique continuous map f : X — Spc(XK°)

such that V(M) = f~!(suppgy (M)).



2.5 Extending support to big objects

Let K be arigidly-compactly generated TTC, and let K¢ denote its full subcategory of compact-rigid
objects. One might try to construct a universal notion of support for big TTCs which generalizes
Balmer’s construction for essentially small TTCs. Morally speaking, Balmer’s construction fails to
provide such a universal support for big objects because one expects that supports for big objects
should be open, while Balmer supports are closed by definition. It turns out that no one has
succeeded in constructing universal support for big objects, and it may be impossible to construct
such a support datum in general (c.f. [BKS20]). Nonetheless, we are still interested in constructing
supports for big objects which, though not universal, still prove useful in practice. The following

definition is then motivated.

Definition 2.5.1. Let X be a rigidly-compactly generated TTC and let X¢ denote the full subcat-
egory of compact-rigid objects. Let (X, V') be a support datum on K¢ where supports are closed
subsets of X. The pair (X, V) is said to be an extension of (X, V') if V is an assignment from X to

arbitrary subsets of X satisfying the following:
(a) V satisfies properties (2.3.1)-(2.3.5) for objects in X;
(b) V(M) =V (M) for all M in K¢; and
(c) if V satisfies (2.3.7) then V satisfies (2.3.7).

Notable examples of extension of support data include Balmer-Favi supports which are reviewed
in Chapter 3 Section 3, as well as homological supports which are reviewed in Chapter 3 Section 5.

See also [Bal20].

10



CHAPTER 3

STRATIFYING TENSOR

TRIANGULATED CATEGORIES

In this chapter we introduce and discuss the various notions of stratification for tensor triangulated
categories that exist in the literature today. Doing so involves considering different notions of
support for big objects in TTCs. We begin with a discussion of the so-called BIK theory of supports
via the action of a graded-commutative Noetherian ring. This theory naturally lends itself to BIK
stratification. We then discuss so-called Balmer-Favi supports which were used by Barthel, Heard,
and Sanders to develop tensor triangular stratification. Finally, we discuss homological supports
and homological stratification, which were recently developed by Barthel, Heard, Sanders, and
Zou. We caution the reader that absorbing the particular features of each theory are not necessary

to understanding our main results.

3.1 BIK support

Let K be a rigidly-compactly generated TTC, and let K¢ denote the full subcategory of compact-
rigid objects. Aimed at obtaining tensor triangular classifications, Benson, Iyengar, and Krause

defined an extension of Balmer’s universal support datum for big objects. The additional assumption

11



needed throughout this subsection necessary to define these so-called BIK supports is that of an
auxiliary canonical action of a graded-commutative ring i on K. Let us explain what this means.
One can always consider the graded-center Z*(X) of K which is a graded-commutative ring whose

degree n component is given by
Z"XK)={n:ldx — X" | nX = (—1)"3n}.

An action of R on X is a homomorphism of graded-commutative rings ¢ : R — Z°*(X). If X
admits an R-action, then X is called R-linear.

Given objects M and N in K, set

Hom$, (M, N) := @D Homy (M, S'N).
i€z

Then Hom3.(M, N) is a graded abelian group, and Endj. (M) := Hom$.(M, M) is a graded ring
where the multiplication is given by applying the shift and then composing morphisms. Notice that
Hom$. (M, N) is aright End}. (M) and a left Endj (/V)-bimodule. It follows that K being R-linear
is equivalent to their being, for each object M in X, an induced homomorphism of graded rings
¢u : R — End}. (M) such that the induced R-module structures on Hom$.(M, N) by ¢, and ¢
agree up to the usual sign.

Using the tensor product in K allows one to construct an action of the graded endomorphism ring
Endj (1) of the unit object via the maps defined by taking, for each M in K, ¢y, : End}.(1) —
End5 (M) given by tensoring with M. Provided that End}.(1) is Noetherian, any action on X
induced via this action is called canonical.

BIK supports for objects in K are given in terms of the homogenous prime ideal spectrum
Proj R of R. For each p € Proj R, a deep result in Bousfield localization allows one to construct

an exact, local cohomology functor I, : X — X. Properties of these local cohomology functors

12



can be found in Section 3.1.2 of [BIK11b]. The space of BIK supports for K is defined to be

Suppgk (K) := {p € Proj(R) | Fp(K) # 0}.

For an object M € X, the BIK support of M is defined as

Suppgi (M) := {p € Proj(R) | I,(M) # 0}.

That (Suppgk (K), Suppgk(—)) is a support data on K which extends (Spc(K€), suppg,(—)) is

the main content [BIK11b, Chapter 3].

3.2 BIK stratification

Let X be a rigidly-compactly generated TTC, and K¢ denote the full subcategory of compact objects
of K. Let R be a graded-commutative Noetherian ring, and assume that K is R-linear. For this
section only we follow the lead of BIK by assuming furthermore that K is monogenic; i.e., that K
is compactly generated by the unit object 1 of X.

As a first application of BIK supports, one can construct maps between the collection of ®-ideal
localizing subcategories of X and arbitrary subsets of Proj R. The maps are defined as follows.

Given a ®-ideal localizing subcategory C of K, set

o(€) = Suppg(C) = {p € Proj(R) | I,(€) # 0}.

Next, given a subset V' of Proj(R), set

7(V) ={M € X | Suppg(M) C V}.

13



BIK stratification has to do with two conditions which, when satisfied, guarantee that o and 7

provide mutually inverse bijections. The two conditions are the following.

(a) The BIK local-to-global principle: for each object M in K,
Locg ({M}) = Locg ({I,M | p € Proj R}).

(b) The BIK minimality condition: for p € Suppg(X), the subcategory [,XK is a minimal

®-ideal localizing subcategory of K.

When conditions (a) and (b) hold, X is said to be stratified in the sense of BIK. The following

theorem [BIK11b, Theorem 4.19] gives the classification.

Theorem 3.2.1. If X is stratified in the sense of BIK, then the maps ¢ and 7 provide mutually

inverse bijections between the set of ®-ideal localizing subcategories of K and subsets of Proj R:
{®-ideal localizing subcategories of K} <7+ {subsets of Suppg X}

A useful fact that applies in many practical situations is that the BIK local-to-global principle
automatically holds in instances where the Krull dimension of Proj R is finite. This reduces much

of the work involved with verifying BIK stratification to the minimality condition.

3.3 Balmer-Favi support

Throughout this section, let X be a rigidly-compactly generated TTC, and let X¢ denote the full
subcategory of compact-rigid objects. In [BF11], Balmer and Favi construct a support datum on
X which extends Balmer’s universal support for X¢. The key difference, from our point of view,
between BIK supports and Balmer-Favi supports is that constructing Balmer-Favi supports does
not make use of an auxiliary ring action. Instead, supports are constructed based on certain tensor

idempotents which themselves are a tensor triangular abstraction of Rickard’s idempotent modules
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from [Ric97]. Another important difference is that the space of supports is always the Balmer
spectrum Spc(K°) of the compact subcategory, which is not necessarily the case for BIK supports.
Throughout this section only we impose the additional hypothesis that Spc(XK¢) is Noetherian.
One can actually get away with a weaker condition, namely assuming that Spc(X¢) is weakly
Noetherian (cf. [BHS23b, Section 1]). However, since all Balmer spectra we are concerned with
are Noetherian, we work under a Noetherian hypothesis, and hope this provides some comfort to
the reader. The driving force behind the scenes is again Bousfield localization, which guarantees
that for every specialization closed subset W C Spc(XK°), one can construct two ®-idempotents

EW)Z E(W)® E(W)and F(W) = F(W) ® F(WW) in X that fit into a distinguished triangle
EW)—=1— F(W)—XEW).

The Noetherian hypothesis on Spc(XK€) implies that every point P € Spc(X°) is visible in the
sense of [BF11, Section 7.9]. From this, [BF11, Lemma 7.8] gives that one can express each
P € Spe(K°) as P = Y; N Yy for specialization closed subsets Y7, Yo C Spc(K°). One then defines
a ®-idempotent g(P) := E(Y7) ® F(Y>) that depends only on P and not the choice of specialization

closed subsets. For an object M € K, the Balmer-Favi support of M is defined to be
Suppgp(M) = {P € Spe(K) | M @ g(P) # 0}.

That (Suppgg(—), Spc(K©)) is a support datum on X that extends (Spc(XK€), suppg,(—)) is the

content of [BF11, Prop. 7.18].

3.4 Tensor triangular stratification via Balmer-Favi supports

Balmer and Favi’s original motivation that led to the definition of Balmer-Favi support was to

transport methods from modular representation theory to algebraic geometry. A latent application
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however, realized by Barthel, Heard, and Sanders in [BHS23Db], is a stratification theory distinct
from the theory developed by BIK which frees one from the requirement of a ring action, and
which is universal in Noetherian contexts. Again, the stratification framework begins with defining
maps that allow one to pass between ®-ideal localizing subcategories of K and arbitrary subsets of

Spc(XK€). To that end, given a ®-ideal localizing subcategory € of K, set

(€)= | J Suppg(M).

MeeC

Then, given a subset V' of Spc(K¢), set
7(V) = {M € X | Suppgp(M) C V}.

The relevant conditions on Balmer-Favi supports which allow for tensor triangular classifica-

tions are the following.

(a) The tt local-to-global principle: for each object M in K,
Locg ({M}) = Locg ({M ® g(P) | P € Spe(Ke)}).

(b) The tt minimality condition: for each P € Spc(XK€), the subcategory Locg ({g(P)}) is a

minimal ®-ideal localizing subcategory of K.

When conditions (a) and (b) hold, X is said to be tz-stratified, and [BHS23b, Theorem 4.1]

gives the classification. We record a condensed version here for completeness.

Theorem 3.4.1. If X is tt-stratified, then the maps o and 7 provide bijections between the set of

®-ideal localizing subcategories of K and subsets of Spc(XK°):

{®-ideal localizing subcategories of K} <% {subsets of SuppgyK}.
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3.5 Homological support

The setup is again the same. Namely, we work in the context where X is a rigidly-compactly gener-
ated TTC, and the full subcategory of compact-rigid objects is denoted K¢. Motivated by a desire
for abstract nilpotence theorems in TTCs, Balmer defined a topological space called homological
spectrum Spc”(K¢) (c.f. [Bal20]). A condensed review of the construction is as follows. Let Ab
denote the category of abelian groups. The category Mod-X° of right K“-modules is the category
whose objects consist of additive functors M : (K°)°® — Ab, and whose morphisms consist of
natural transformations between functors. The module category Mod-K¢ is an abelian category

and receives K¢ via the Yoneda embedding which we denote by

h: K¢ Mod-K¢ = Add((X°)®, Ab)
M — M := Homge(—, M)

f= 1

Let A denote Mod-XK*. Day convolution gives A a tensor structure which is colimit-preserving in
each variable and which makes h a monoidal functor. The tensor subcategory AP := mod-K¢ C A
of finitely presented objects is the Freyd envelope of K¢. A homological prime of K¢ is defined to
be a maximal, proper, Serre ®-ideal subcategory B C A™, and the homological spectrum of K¢ is

defined to be the set of homological primes:
Spc(K¢) := {B C A" | B is a maximal Serre tensor ideal subcategory}.

One can define a support datum on X° in terms of the homological spectrum by defining the

homological support of on object M in K° as

supp™(M) := {B € Spc"(KX°) | M ¢ B}.
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One can view the collection supp”(M) as M ranges over all objects of K¢ as a basis for the closed
subsets of a topology on Spc”(K¢). The universality of the Balmer spectrum and Balmer supports
for objects of K¢ implies the existence of a unique continuous map ¢ : Spc"(X¢) — Spc(K°)
called the comparison map. It is known to be surjective assuming the rigidity of K. In all known

examples, the comparison map is a bijection. This leads to the following.

Conjecture 3.5.1 (Nerves-of-Steel). Let K¢ be rigid. The comparison map
¢ : Spc"(K°) — Spc(K©)

is a bijection.

The homological support for objects in K¢ can be extended to a support datum on X via the
following construction. From [Bal20] there is a pure-injective object E5 in K corresponding to
each homological prime B € Spc"(K¢). For objects M in X, the extended homological support is
defined as

Supp" (M) := {B € Sp"(%°) | hom(M, Ex) # 0},

where hom(—, —) denotes the internal hom in X.

3.6 Stratification via homological support

In recent work, Barthel, Heard, Sanders, and Zou [Bar+24] developed a notion of stratification in
terms of the homological spectrum and homological support. This theory of stratification, called
homological stratification or h-stratification, has the advantage of satisfying a very general form
of descent. Let K be a rigidly-compactly generated TTC, and let X denote the full subcategory
of compact-rigid objects. Homological support determines natural maps o and 7 between ®-ideal

localizing subcategories of K and subsets of Spch(fKC). The maps are constructed in a similar way
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to how they are constructed for tt-stratification. Given a ®-ideal localizing subcategory € of X, set
a(€) = | J Supp"(M).
Mee

Then, given a subset ' of Spc(K°), set
7(V) ={M € X | Supp"(M) C V}.

As usual X is said to be homologically stratified if these maps give mutually inverse bijections.
The theorem that gives sufficient and necessary conditions for homological stratification is given in

[Bar+24]. We record a slightly modified form of the theorem here.

Theorem 3.6.1. The TTC X is homologically stratified if the following conditions hold.

(a) The homological local-to-global principle: for each object M in K,
Locg({M}) = Locg({M ® Eg) | B € Spc™(K°)}).

(b) The homological minimality condition: for each B € Spc"(K¢), the subcategory Locg ({ Es})

is a minimal ®-ideal localizing subcategory of XK.

3.7 Relationships between stratification theories, pros and cons,

etc.

A developing theme in the area involves the comparison between the various notions of stratification
and the implications that allow one to pass from one notion of stratification to another. As we will
see sometimes it is relatively straightforward to obtain results for a TTC for a particular stratification
theory, but for one reason or another it is convenient to be able to transfer the results to the other
notions where other results can be applied to say something new. First let us consider the pros and

cons.
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Type of stratification Pros Cons
e Neeman’s theorem to work with e Requires ring action
BIK
e Many results in the literature available e End*(1) may not help

Tensor e In terms of Spc(K°) e Need to understand Spc(K°)
triangular e No ring action required e No general form of descent

e Spc™(XK°) often concrete e Often need Nerves-of-Steel
Homological

e Very general form of descent e Local-global principle not trivial

The first implication result we want to highlight [BHS23b, Theorem D] which demonstrates the
universality of tt-stratification in Noetherian contexts. This can be interpreted as “BIK stratification

implies tt-stratification”.

Theorem 3.7.1. Let K be a rigidly-compactly generated TTC which is Noetherian and stratified in
the sense of BIK by the action of a graded-commutative Noetherian ring R. Then the BIK space
of supports Suppgk (X) is canonically homeomorphic to Spc(K¢) and the BIK notion of support

coincides with the Balmer-Favi notion of support.

The relationships between tt-stratification and h-stratification are not as clear-cut. This has to
do with the fact that h-stratification does not rely on any point-set topological conditions on the
homological spectrum, so h-stratification does not have a strong universality statement available.
However, in weakly Noetherian situations, and when the Nerves-of-Steel Conjecture holds, the

relationship is tight, as demonstrated by [Bar+24, Theorem E], which we record here.

Theorem 3.7.2. If K is a rigidly-compactly generated TTC with Spc(XK¢) weakly Noetherian, then

the following are equivalent:
(a) X is tt-stratified;

(b) K is h-stratified and the Nerves-of-Steel Conjecture holds for K.
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As the original authors note, this means that when the Nerves-of-Steel Conjecture holds, it
suffices to consider only h-stratification.

Finally, we want to mention descent. Before h-stratification, descent results had to be verified
one TTC at a time, and general methods were not available. The following theorem [Bar+24,
Theorem A] demonstrates the power of h-stratification in contexts where natural restriction functors

exist.

Theorem 3.7.3. Let (fF : X — §;);cr be a family of exact, symmetric monoidal functors that
preserve set-indexed coproducts and jointly detect when an object of K is zero. Suppose that §; is
tt-stratified for all ¢ € I. If K satisfies the Nerves-of-Steel Conjecture and has a weakly Noetherian

spectrum, then the following are equivalent:
(a) X is tt-stratified
(b) X is h-stratified
(c) X is generated by the images of the right adjoints (f;).

This generalizes all the descent results in the literature, and provides a uniform approach for

developing new results, as we will lay out for Lie superalgebras in the following sections.
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CHAPTER 4

LIE SUPERALGEBRAS AND THEIR

REPRESENTATIONS

This chapter gives an introduction to Lie superalgebras and their representation theory. Throughout
this chapter the ground field is taken to be the complex numbers C. We begin by describing the gen-
eral idea of “super mathematics”. We define super vector spaces, explain basic constructions, and
then define superalgebras, and supermodules including Lie superalgebras and Lie supermodules.
We go on to introduce certain abelian subcategories of Lie supermodules. These categories we
describe are Frobenius, and from their data we explain how to define the stable categories which

are tensor triangulated.

4.1 “‘Super mathematics’: the idea and first definitions

“Super mathematics” is an informal term to describe the study of algebraic structures equipped with

a 7. /27-grading. The following definitions also serve as examples to illustrate the general concept.

Definition 4.1.1. A super vector space is a 7Z/2Z-graded vector space V' = V5 & Vi. Given a
homogeneous element v € V;, the degree of v is denoted v = 7, where ¢ € Z/27. Homogeneous

elements of Vj are called even, and homogeneous elements of V7 are called odd.
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Let V' and W be super vector spaces. Many of the usual constructions for vector spaces carry
over to the super setting. For example, the vector space of linear transformations Hom(V, W) is a

super vector space by setting

Hom(V, W)y = {¢ | o(Vi) € Wi}

Hom(V,W); = {¢ | #(Vi) € Wi 1}

where the subscripts are read modulo 2. The special case of this construction where W = C viewed
as a super vector space concentrated in degree 0 makes the dual space V* into a super vector space.
Moreover, the usual vector space tensor product V' @ I can be viewed as a super vector space by

taking

(VeoW)s= (Voo Ws) o (Vi ® W)

VoW = (Voo W) e (Vi@ Wy).

We remind the reader that here Hom means Hom¢ and ® means ®c.

Definition 4.1.2. A superalgebra is a super vector space A = Ag @ A; which is also a unital,
associative algebra whose bilinear multiplication A x A — A is such that A;,A; C A, ;, where

i,] € Z/27Z; i.e., the multiplication in A respects the Z/2Z-grading.

Example 4.1.3. Let V' be a super vector space. The endomorphisms of V' denoted End(V) :=

Hom(V, V') form a superalgebra under composition.

Definition 4.1.4. Given a superalgebra A, an A-supermodule is a super vector space M = Mz® Mj
which is also a left A-module such that A;M; C M, ; where i, j € Z/27Z; i.e., the action of A on
M respects the Z/2Z-grading. Let M and N be A-supermodules. A supermodule homomorphism

is a module homomorphism that preserves the Z/27-grading.
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4.2 Lie superalgebras and their representations

Lie superalgebras are a class of superalgebras that arise in physics as a tool to describe the mathe-
matics of supersymmetry. They are the 7 /27 (“super”) analog of ordinary Lie algebras. We record

the definition here.

Definition 4.2.1. A Lie superalgebra is a super vector space g = gg © g7 together with a bilinear

multiplication [—, —] : g ® g — g called the superbracket which satisfies the following axioms:
1. Skew-supersymmetry: [z, y] = —(—1)"]y, x]

2. Super Jacobi identity: (—1)*
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for homogeneous elements z,y, 2z € g.

A Lie superalgebra g = gg @ g1 is called classical if there is a connected, reductive algebraic
group G such that Lie(Gg) = gp, and if there is an action of G on g; which differentiates to the
adjoint action of gy on g7 If, in addition to being classical, g has a nondegenerate, invariant, super-
symmetric, even bilinear form, then g is called basic classical. The basic classical Lie superalgebras
were classified by Kac [Kac77].

Given a Lie superalgebra g, there is a universal enveloping superalgebra U (g) which satisfies
a super analog of the PBW theorem for Lie algebras. The category of g-supermodules has as
objects all left U(g)-supermodules. This means that g-supermodules are super vector spaces and
that the g-action is compatible with the 7 /27-grading. Morphisms between g-supermodules are
even (i.e. degree preserving) morphisms in Home (M, M') which satisfy f(zm) = (—1)z f(m)
for all m € M and all x € U(g). This makes sense as stated only for homogenous elements, and
should be extended via linearity in general. Given two g-supermodules M, N, one can use the
coproduct and antipode of U (g) to give g-supermodule structures to the vector space tensor product
M ® N, and, when M is finite-dimensional, the contragradient dual M *. Denote the category of

g-supermodules as g-sMod. Because morphisms in g-sMod are even, it is an abelian category. As
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convention and notation we consider Lie algebras as Lie superalgebras concentrated in degree 0,

and we refer to supermodules as modules when there is little room for confusion.

4.3 The categories C, ;) and F(y ..y and their stable categories

Given a basic classical Lie superalgebra one can consider the C(4 4.) Which is the category whose
objects are g-modules that, when viewed as modules for the Lie algebra gg, are semisimple; i.e.,
are direct sums of finite-dimensional simple gg-modules. The full subcategory of Cy 4. consisting
of only finite-dimensional modules is denoted by F 4 o). Both the categories C(4 4) and F(g g, are
abelian categories. Moreover, C(q 4.) and F (4 4.) are also Frobenius categories. In other words, these
categories have enough projective and injective objects, and projectives and injectives coincide.
This implies that one can form the stable module categories Stab(C g q,)) and stab(F (g 4.). Objects
in the stable categories are the same as the objects in the underlying abelian categories from which
they are formed, but morphisms in the stable categories are equivalence classes of morphisms
where two morphisms are considered equivalent if their difference factors through a projective
module. The stable categories are triangulated categories, and the tensor product of modules gives
Stab(C(q,q5)) and stab(F(q4,)) the structure of tensor triangulated categories. Moreover, one has
that Stab(Cg4,)) is a rigidly-compactly generated TTC with full subcategory of compact rigid
objects stab(F(q4,))- Let C denote the category C(q 4,), and let F denote the category Fy q,). Given
modules M, N in F, the group of degree n extensions, Ext’-(A/, N) can be realized via relative
Lie superalgebra cohomology for the pair (g, g5):

Ext(M, N) = Ext(, . ,(M, N) = H"(g,g5; M" ® N).

There exists an explicit Koszul type resolution that can be used to compute relative Lie superalgebra
cohomology. An interesting feature that obtains when considering the relative cohomology ring

Ext%(C,C) = H®(g, g5; C) is that the cochains are uniformly zero. From this, BKN showed in
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[BKNT1O0, Section 2.5] that there is isomorphism

H*(g, g5; C) = S*(g})“0

of graded rings, and that the relative cohomology is a polynomial algebra [BKN10, Section 8.11].
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CHAPTER 5

DETECTING SUBALGEBRAS,
SPLITTING SUBALGEBRAS, AND

PROJECTIVITY

This chapter expands upon the previous one. We begin by introducing Boe, Kujawa, and Nakano’s
detecting subalgebras. The detecting subalgebras are useful because they have a simplified represen-
tation theory compared to general classical Lie superalgebras, but they still “determine” cohomology
in a sense that we will explain.

We proceed by defining Type I Lie superalgebras, and define the cohomological support variety.
As in modular representation theory of finite groups, the cohomological support variety admits a
“rank variety” description, and a modified version Dade’s Lemma holds.

Then, the condition of a Type I classical Lie superalgebra having an ample detecting subalgebra
is discussed. The reason for this condition has to do with projectivity upon restriction, and it turns
out that having an ample detecting subalgebra allows for a modified version of Chouinard’s theorem

in modular representation theory.
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Finally, we introduce Serganova and Sherman’s splitting subalgebras, which allow us to make

statements concerning projectivity for infinitely generated modules.

5.1 Detecting subalgebras

Let g = gy @ g1 be a basic, classical Lie superalgebra. A remarkable contribution of Boe, Kujawa,
and Nakano was to prove the existence of important subalgebras called detecting subalgebras
f = fo © 1 € g which have much easier representation theory than g but which nonetheless “detect”
the relative (g, gg)-cohomology. Detecting subalgebras are constructed by considering the action
of the algebraic group G on gi. We recall briefly the parts of their construction that are needed.
View the set g7 as an affine variety with the Zariski topology. A point x € gg 1s called regular
if the orbit (G - © has maximum possible dimension, and semisimple if G - x is closed in g7. The
action of G7 is called stable if g7 has an open dense subset consisting of semisimple points. If
there is an open dense subset of gi such that the stabilizer subgroups of any two points in this set
are conjugate subgroups of GG, then the stabilizer of such a point is called a stabilizer in general
position. If the action of G5 on g7 is stable, then such an open set exists in g7. Elements of such an
open set are called generic. If the action of GG on g7 is stable then g is said to be stable. If g is stable,
then there is necessarily a generic point zy € gy. Let H = Stabg, (20) and N = Normg, (H). Set
f1 = g{{ , and f5 = [f1, fi]. The Lie superalgebra § = f5®f; is classical, and is a detecting subalgebra.
The sense in which detecting subalgebras determine cohomology is as follows. The inclusion § C g

induces a restriction homomorphism S*(f) — S*(§;) which induces an isomorphism
H*(g, 90; C) — H*(f, fo; C)"

in cohomology.

Remark 5.1.1. In [BKN10], the authors construct two families of detecting subalgebras ¢ and § of

g. The subalgebras ¢ are not considered in this paper.
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5.2 Type I Lie superalgebras:

A Lie superalgebra is Type I if it admits a Z-grading g = g_1 & go P g1 concentrated in degrees —1,
0, and 1 with gg = go and g1 = g_1 & g1. Examples of Type I Lie superalgebras include the general
linear Lie superalgebra gl(m|n), as well as the simple Lie superalgebras of types A(m,n), C(n)
and P(n). These all have stable actions of G on g7 which yields Type I detecting subalgebras.
For this dissertation, it will be important to distinguish Type I classical Lie superalgebras that

contain a detecting subalgebra with favorable geometric properties.

Definition 5.2.1. Let g be a Type I classical Lie superalgebra with a detecting subalgebra § =

f_1 @ fo @ f1. Then § is an ample detecting subalgebra if g; = G - §; for j = —1, 1.

As we will see in next section, there is an abundance of examples of Type I Lie superalgebras

with ample detecting subalgebras that encompass many cases of simple Lie superalgebras over C.

5.3 Examples of Lie Superalgebras with Ample Detecting Sub-
algebras

In this section, we will provide examples of Type I classical Lie superalgebras that contain an ample
detecting subalgebra. Many of these actions involving Gy on g.; arise naturally in the context of
linear algebra. For a more detailed description of these actions, the reader is referred to [BKNI11,

Section 3.8].

General Linear Superalgebras:

Let g = gl(m|n). As a vector space this is isomorphic to the set of m + n by m + n matrices.
For a basis, one can take the elementary matrices £; ; where 1 < 4,7 < m + n. The degree zero

component is gg = gl(m) x gl(n) with corresponding reductive group Gy = GL(m) x GL(n).

29



Constructions of detecting subalgebras for classical Lie superalgebras are explicitly described
in [BKN10, Section 8]. Set r = min(m, n). A detecting subalgebra is given by f = f_1 @ f5 ® f1
where f_; is the span of {E,,,4;;: i =1,2,..., 7}, fiisthespanof {E;,,.;: i =1,2,... 7}, and
fo = [fr. ful.

The action of Gy on g_; is given by (A, B).X = BXA !'andon g, by (A4, B).X = AXB™!.
It is a well-known fact from linear algebra that the orbits representatives are the matrices of a given

rank in g4;. It follows that g1 = Gy - f+1, and f is an ample detecting subalgebra.

Other Type A Lie Superalgebras:

The other Type A Lie superalgebras g are all Type I, and they all have g4, = gl(m|n)y;. Fur-
thermore, one has f as given above for gl(m|n) as a subalgebra of g [BKN11, Sections 3.8.2 and
3.8.3].

When m # n, g = sl(m|n) C gl(m|n) consists of the matrices of supertrace zero, and
Gy = {(A, B) € GL(m) x GL(n) | det(A)det(B) ™" =1} .

The Gg-orbits are the same as the GL(m) x GL(n)-orbits, and f is an ample detecting subalgebra.
For the Lie superalgebra sl(n|n) has a one dimensional center given by scalar multiples of the

identity matrix, and one has

G = {(A, B) € GL(n) x GL(n) | det(A)det(B)™' =1} .

For elements of g4, with rank strictly less than n, the Gg-orbits coincide with the GL(n) x GL(n)-
orbits. The orbits of full rank matrices form a one parameter family with each orbit containing a
unique matrix which is a scalar multiple of the identity. The orbit theory for the g = psl(n|n) case

is analogous to s[(n|n). Consequently, in both these setting the algebra f is ample.
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Type C Lie Superalgebras which are Type I:

In this case g = osp(2|2n) with Gg = C* x Sp(2n). One has g; = V5, the natural module for
Sp(2n). The action of Sp(2n) is transitive on V5, ~. {0}. One has an explicit detecting subalgebra
f =1_1Pfs®f1 where dim f; = 1. The transitivity of the action of G on g, shows that g, = Gy-f;.

A similar argument demonstrates that g_; = G - f_1.

Type P Lie Superalgebras:

For Type P Lie superalgebras g = p(n) and g = p(n) one has an explicit detecting subalgebra
f=1F_1 @ fs ® f1 where f+; contains matrices of all possible ranks.

Let g = p(n). Then G5 = GL(n) and g_; = A*(V*) and g; = S?(V') as Gg-modules, where V'
denotes the natural G L(n)-module. There are a finite number of orbits given again by the condition
on rank, and their closure relation forms a chain. This shows that § is ample.

Now let g = p(n) = [p(n), p(n)] be the simple Lie superalgebra of type P(n — 1). One has g_;
and g, are as above but G = SL(n). This case follows the paradigm of sl(n|n). The G L(n)-orbits
corresponding to matrices of rank less than n in gy, are also G-orbits. The matrices of rank n
yield a one parameter family of orbits that have orbit representatives in f;, which demonstrates the

ampleness of f.

5.4 Cohomological and Rank Varieties

We review the constructions in [BKN11, Section 3.2] for Type I Lie superalgebras. Let g = g_1 &
go D g1 be a Type I Lie superalgebra. Then g, are abelian Lie superalgebras. Consequently, U (g+1)
identifies with an exterior algebra, and the cohomology ring for these superalgebras identifies with

the symmetric algebra on the dual of g.,. Set R1; = H*(g41,C) = S*(g%,). Let M be a finite-
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dimensional U(g4;))-module and let

JM:{TGRﬂ|r.m:0f0rallm€Ext°U( M,M)}

9:!:1)(

The (cohomological) support variety of M is defined as
Voo, (M) = MaxSpec (Ry1/Ju) -
Moreover, the support variety V,,, (M) is canonically isomorphic to the following rank variety:

V(M) = {2 € g1 | M is not projective as a U({z))-module} U {0}.

g+1

These varieties satisfy many of the important properties of support theory that include (i) the
detection of projectivity over U(g+1) and (ii) the tensor product property.
For a detecting subalgebra | = f_; @& fo @ f1, one can apply the prior construction to obtain

support varieties for M € F(;5,), namely V;,, (M) and Vi*™(M).

f1

5.5 Projectivity for Type I Lie Superalgebras

For Type I classical Lie superalgebras, one can construct Kac and dual Kac modules (cf. [BKNI11,
Section 3.1]). A module in F(q 4. is filting if and only if it has both a Kac and a dual Kac filtration.
The use of these filtrations was a key idea in proving the following criteria for projectivity in the

category F(gq,) (see [BKN11, Section 3]).

Theorem 5.5.1. Let g be a Type I classical Lie superalgebra and M € F(q4,). The following are

equivalent.
(a) M is a projective module in Fg o)

(b) M is atilting module
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(©) Vo (M) = {0} and Vy., (M) = {0}
(d) V(M) = {0} and Vy(M) = {0}

It should be noted that for an arbitrary (infinitely generated) module M € C(4q.), One can have
projectivity over U(g+1), but M may not be projective in C(q 4.). For example, if g = gl(1]1), one
can take an infinite coproduct of projective modules in the principal block P = @,z P(m| — m).
By making suitable identifications, one can form an (infinite) “zigzag module” (of radical length 2)
that has a Kac and dual Kac filtration, which is projective upon restriction to U(g+; ). The zigzag
module is not projective in C(q q,) because it has radical length less than 4. This construction can
also be performed for projective modules in the principal block for the restricted enveloping algebra
of sl, (cf. [Pol67]), and has been observed in other situations by Cline, Parshall and Scott [CPS88,
Example 3.2].

5.6 Projectivity via Ample Detecting Subalgebras

The following theorem allows us connect projectivity of a module in F (g 4, to projectivity when

restricting the module to the detecting subalgebra.

Theorem 5.6.1. Let g be a Type I classical Lie superalgebra with an ample detecting subalgebra §.

Let M € F(gq,)- Then M is projective in F g 4.y if and only if M is projective in F s, ).

Proof. Let M be projective in F(y ). Then by Theorem 5.5.1, V,,, (M) = {0}. It follows that
Vi, (M) = {0} and by Theorem 5.5.1, M is a projective module in ;).

Conversely, assume that A/ is a projective module in F;5). Then Vi, (M) = {0}. Lety €
Vg, (M). Then y = ¢ -  where g € G and x € f; since f is an ample detecting subalgebra. Since
M is a rational G-module, Vg, (M) is Gg-stable. This implies that x € V,, (M) and = € V;, (M),
and x = 0. Consequently, V,, (M) = {0}, and by the same reasoning V, ,(M) = {0}. One can

now conclude by Theorem 5.5.1 that M is a projective module in Fg g ). [
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5.7 Splitting subalgebras

In order to make use of the Balmer spectrum computations from [BKN17], and the Nerves-of-
Steel result from [HN24], we need to ensure that our detecting subalgebras satisfy an additional
condition. We need that they are so-called splitting subalgebras. The idea of splitting subalgebras
was introduced by Serganova and Sherman in [SS23]. In the original paper the authors work in
the context of the ambient algebraic supergroup, but for our purposes it will be useful to rephrase
the definitions somewhat into the context of Lie superalgebras. The following definition is from

[HN24] and is equivalent to the original definition.

Definition 5.7.1. Let g = g @ g1 be a classical Lie superalgebra and G be an algebraic supergroup
scheme with Lie G = g. Moreover, let Z < G be a subsupergroup with 3 = 35 @ 37 being classical
and Lie Z = 3. Then j is a splitting subalgebra if and only if the trivial module C is a direct

summand of ind5C.

The following theorem summarizes results in [SS23, Section 2]. The approach presented
here is slightly different and uses the work for BBW parabolic subgroups by D. Grantcharov, N.

Grantcharov, Nakano and Wu [Gra+21].

Theorem 5.7.2. Let g be a classical Lie superalgebra and 3 be a splitting subalgebra. Let M, N be

modules in C(g ).
(a) R7ind§ C = 0 for j > 0.
(b) M is projective in C(g 4. if and only if M when restricted to j is projective in C; ;).

(c) Foralln >0, Extf, . (M, N ®indg C) = Ext{, (M, N).

(d) Forall n > 0, the restriction map res : Ext(, . (M, N) — Ext{, ; ,(M, V) is injective.

Remark 5.7.3. Serganova and Sherman proved that the detecting subalgebra § for classical Lie

algebras of Type A are splitting subalgebras. [SS23, Theorem 1.1].
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CHAPTER 6

NILPOTENCE THEOREMS FOR LIE

SUPERALGEBRA REPRESENTATIONS

6.1 Stratification for detecting subalgebras

We now turn to the problem of showing BIK stratification for the detecting subalgebras. In fact,
we are able to work in a slightly more general setting. Specifically, let 3 = 35 @ 37 be a classical
Lie superalgebra such that 35 is a torus, and [35,37] = 0. The Lie superalgebras satisfying these
hypotheses encompass all of the detecting subalgebras introduced in the previous section.

Let R := H*(3,30;C). In [BKN17], the authors point out that Stab(C,;,)) is an R-linear
triangulated category. Also, since dim Proj R is finite, the local-global principle holds. It was
conjectured by BKN that R stratifies Stab(Cy ;,)). This result would recover their computation of

the Balmer spectrum, but instead other methods were used. The goal of this section is to pursue the

stratification avenue, and to prove the following theorem.

Theorem 6.1.1. The tensor-triangulated category Stab(Cy, ;,)) is stratified in the sense of BIK by

the action of the relative Lie superalgebra cohomology ring H*(3,35; C) = S°*(31%).
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Proof. As notation let X = Stab(C(;;,)), let C = C(;;,), and let R = H*(3, 35; C). Because of the
previous remarks, it remains only to check the minimality condition. It turns out though, that it is
not convenient to check minimality for X directly. The following argument follows closely that
of [BIK11b, Section 5.2] where the category Stab(kF) is considered, where & is an algebraically
closed field of characteristic two, and F is an elementary abelian 2-group. The idea is to reduce the
problem to a different TTC where the result is known via a version of Neeman’s theorem.

As a first step in this direction we connect C to the category of supermodules for the superalgebra
A*(31) which is the exterior algebra on 37 viewed as a superalgebra by declaring the generators
to be odd. This is done by observing that because 35 is a torus which commutes with 3, the
weight space decomposition for a 3-supermodule viewed as a module over 35 is a decomposition as
3-supermodules. This gives a decomposition of the category C = ), . . Ca.

The principal block Cy consists of modules which are annihilated by the ideal I of U(3) gen-
erated by U(35). Therefore, since U(3)/I = A®(31), there is an isomorphism of categories
Co = A*(317)-sMod, where again A®(37) is the exterior algebra on 37 viewed as a superalgebra
by declaring the generators to be odd. This equivalence passes to an equivalence at the level of
the stable module categories: Ky = Stab(A®(37)-sMod). But from this equivalence one sees that
it suffices to classify localizing subcategories for the principal block because there is a natural
bijection between localizing subcategories for X and localizing subcategories for K.

Next, we observe that a similar problem obtains as the one that occurs for elementary abelian
groups in modular representation theory. Namely, the graded endomorphism ring of the unit, C,
in C is not the cohomology ring R. Instead, it is an analog of the Tate cohomology ring, which is
typically not Noetherian. To get around this problem we instead consider the homotopy category

of injectives K(Inj Cy; ;,)). In [Kra05], the author introduces a recollement

. % . %
K (Inj C(M())) —— K(Inj C(;,,;,@)) — D(CQ,%)
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that gives an equivalence of tensor triangulated categories between the full subcategory of K(Inj Cy; ;.))
consisting of acyclic complexes K,.(InjC; ;,)) =~ Stab(C;.;,))-

Now consider the universal enveloping superalgebra of the quotient U(3/35). Then by the
previous paragraph there is an isomorphism of C-algebras U(3/35) = A®(37). Therefore, there is
an isomorphism of rings A*(3) = Clzy, ..., 2]/(z}). Choose a basis {y1,...,y,} of 3% so that
R = Cly1, . ..,y is an isomorphism of rings, and view R as a differential graded algebra with
zero differential and |y;| = 1 for each i.

The C-algebra U(3/35) ®c R is graded with degree i component U (3/35) ®c R’ and with
multiplication defined by (a ® s)(b®t) = ab® st. Consider U(3/35) ®c R as a differential graded

algebra with zero differential. The degree one element o defined as

o= Zzi Q¢ Yi-
i=1

satisfied 62 = 0. Let J denote the differential graded module over U(3/35) ®@c R with graded

module structure and differential given by
J =U(3/350) ®c R, d(e) = de.

Since J is a differential graded module over U (3/35) ®c R, for each differential graded module
M over U (3/30) there is an induced structure of a differential graded R-module on Homy ;5. (J, M).
Then the functor

Homy (/50 (J, —) : K(Inj C35)) — D(R)

to the derived category is an equivalence of triangulated categories.
To see this first observe that as a complex, .J consists of injective U (3/35)-modules. This follows
from the fact that U(3/35) is self-injective. Finally, applying a version of Neeman’s Theorem to

D(R) (c.f. [BIK11b, Section 5.2.3]) yields the result O
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Theorem 6.1.1 gives the following corollary.

Corollary 6.1.2. Tensor ideal localizing subcategories of Stab(Cy, ;,)) are in bijection with subsets

of the Balmer spectrum Spc(Stab(C; ;,))) = Proj H*(3, 35; C).

6.2 Homological Residue Fields

In this section, we recall Balmer’s construction [Bal20] of homological residue fields. One of the
main questions in tensor triangular geometry is to find the appropriate tensor triangular analog to
ordinary fields in commutative algebra. In particular, given X, how does one construct functors
F : X — JFtoits “residue fields”? This question is explored in [BKS19], and some major
takeaways are that there are several important properties one would like the notion of field to have.
Moreover, there are many examples of tensor triangulated categories that should be considered
as tensor triangulated fields. However, it is not clear exactly what the definition should be. The
following definition was proposed in [BKS19, Definition 1.1], and will be the running definition in

this work.

Definition 6.2.1. A non-trivial (big) tensor triangulated category J is a tensor triangulated field if
every object of J is a coproduct of compact-rigid objects of F¢, and if every non-zero object in F

is tensor-faithful.

While this definition encapsulates many of the desired properties of fields, there is not yet a
purely tensor triangular construction of them analogous to extracting residue fields in commutative
algebra. Instead, Balmer uses the homological spectrum to construct homological tensor functors

to abelian categories:

Definition 6.2.2. Given a homological prime B € Spc"(X), the homological residue field corre-

sponding to B is the functor

Mod -K

hy = Qs oh: K — A =Mod-X - A(K,B) := )
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composed of the Yoneda embedding followed by the Gabriel quotient.

A natural question at this point is whether or not homological residue fields are related to the
tensor triangular fields of Definition 6.2.2. The answer is yes, and an explicit connection useful for
the computation of homological residue fields in examples is the content of the following theorem

stated in [BC21, Lemma 2.2].

Theorem 6.2.3. Given a big tensor-triangulated category X, a tensor-triangulated field &, and a

monoidal exact functor F' : K — J with right adjoint U, one has the following diagram:

K —" s Mod-K¢

B

F||U Fllo Mod-K¢/Ker(E) = As

=

where F' is the exact cocontinuous functor induced by F', the functor () is the Gabriel quotient with

F — Mod-F*

respect to Ker(F) and the functor F is induced by the universal property, hence F' = F(Q and F is
exact and faithful.

The adjunctions F' = U, F A U, F —U,and Q 1 R, are depicted with Fh=hFand Uh = hU.
Moreover, B := Ker(EF)NA™ is a homological prime and Ker(F) = (B) andhg = Qoh : K — As

is a homological residue field of XK.

6.3 Nilpotence and Colimits

In this section we clarify the notions of nilpotence in the stable categories of Lie superalgebra
representations and relate them to colimit constructions in module categories and homotopy colimits
in the stable categories. We first discuss the concept of nilpotence. Let g = g5 & g1 be a classical

Lie superalgebra.
Definition 6.3.1. Let M and N be modules in C(gq).
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(@) Amap f : M — N is called null if f = 0in Stab(C(yg,)); i-€., f is null if and only if f

factors through a projective module.

(b) Amap f : M — N is called tensor nilpotent if there exists some n € Zx( such that the

tensor power f&" : M®" — N®" is null.

In the case when M is compact, one can transform the condition of the nilpotence of the map f

to the adjoint map.

Lemma 6.3.2. Let M be a compact object. A map f : M — N is tensor nilpotent if and only if

the adjoint map f : C — M* ® N is tensor nilpotent.

Proof. Since f is tensor nilpotent, there exists some n such that f©" : M®* — N®" factors
through a projective. But since tensor products of projective modules are projective, tensoring with
(M*)®" gives that f ®" factors through a projective; i.e., that f is tensor nilpotent.

For the converse, if f is tensor nilpotent, then f factors through a projective. By the same

reasoning, tensoring with M ®" gives a factorization of f via a projective. 0

Next we need to recall the definition of a colimit in the category C(g 4,y and a homotopy colimit

in its stable module category.
Definition 6.3.3. Let g = gy &® g1 be a classical Lie superalgebra.

(a) Let
engNggNgg

be a system of modules and homomorphisms in Cyq.). Lety : @5, N; = @;°; N; be
defined by v(m) = m — f;(m) whenever m € N;. The colimit of the system is the module

given by coker 7.

(b) Let
eXnggfngg
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be a system of modules and homomorphisms in Stab(C(g 4.)). The homotopy colimit of the

system is the module obtained by completing the map
B D

to a triangle:

P x: = @ X — hocolim(X;) — .
The following lemmas are given in [Ric97], the second of which is modified here for Lie
superalgebra representations.

Lemma 6.3.4. Let X; =% X, 33 ... be a sequence of maps in a triangulated category with count-

able direct sums. If for each ¢ > 0 there exists & > i such that a; . .. a; = 0, then hocolim(X;) = 0.

The next lemma clarifies the relationship between homotopy colimits in the stable category

with colimits in the ordinary module category.

Lemma 6.3.5. Let X; <} X, %3 ... be a sequence of modules and homomorphisms in Stab(Cig,gq))-

The colimit colim(X;) in C(q 4 is isomorphic in Stab(C(4 q,)) to the homotopy colimit hocolim(Xj;).
These two lemmas together allow one to derive the analog of [BC18, Lemma 2.3]

Theorem 6.3.6. A map f : £k — N is ®-nilpotent if and only if the colimit of

0.k LN NN ES No NN — -

is projective.

Proof. First suppose that f : k — N is ®-nilpotent. Then there exists some n for which f k=

N®" is null. Therefore, Lemma 6.3.4 implies that the homotopy colimit of the system viewed in

41



the stable category is isomorphic to zero, which is to say that the colimit of the system is projective
by Lemma 6.3.5.

Now suppose that the colimit of the system is projective. Since our category is Frobenius, the
colimit is injective as well, and the map from £ to the colimit factors through the injective hull 7 (k)
of k& which is a finite-dimensional projective module. But then the map from (k) to the colimit
must factor through some finite stage of the system. In other words, for some n > 0 the composition

f : k — N®"is null, which implies that f is ®-nilpotent. [

6.4 Nilpotence Theorems

Nilpotence theorems have played an important role in cohomology and representation theory. Dev-
inatz, Hopkins, and Smith showed in [DHS88] that a map between finite spectra which gets an-
nihilated by all Morava K-theories must be tensor-nilpotent. Neeman [NB92] and Thompson
[Tho97] proved nilpotence theorems for maps in derived categories using ordinary residue fields,
and Benson, Carlson, and Rickard [BCR97] proved nilpotence theorems in modular representation
theory, where the residue fields are given by cyclic shifted subgroups, or, in the case of finite group
schemes, m-points [FP07]. With these examples in mind, Balmer used homological residue fields
to present a unified treatment that applies to all tensor triangulated categories [Bal20]. In the case
where K¢ sits inside of a big rigidly-compactly generated tensor triangulated category X, one can
make a connection to the homological spectrum. In particular, he proved the following theorem

[Bal20, Corollary 4.7]:

Theorem 6.4.1. Let X be a rigidly-compactly generated “big” tensor-triangulated category with
full subcategory of compact rigid objects K¢. Let f : x — Y be a morphism in K with x € K¢
and Y arbitrary. If h(f) = 0 in A(X¢; B) for every homological residue field hg, then there exists

n > 1 such that f®" = 0 in X.
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The nilpotence theorem stated above can combined with the theory of detecting subalgebras
developed by Boe, Kujawa, and Nakano, to the study of nilpotence in the stable categories of Lie
superalgebra representations. The following nilpotence theorem via homological residue fields is a

direct translation of Theorem 6.4.1 in the context of superalgebra representations.

Theorem 6.4.2. Let g = g5 g7 be a classical Lie superalgebra, and let f : M — N be a morphism
in Stab(Cqq,)) With M € stab(Fgq.)). Suppose that hg(f) = 0 for all B € Spc”(stab(Fg 45)))-

Then there exists n > 1 such that f®" = 0 in Stab(Cqq,))-

Proof. This is immediate since stab(Fy,)) sits inside of Stab(C(y4,)) as the compact objects:
stab(F(g,q5)) = (Stab(C(g,q,)))¢. Moreover, the compact objects and the rigid objects coincide and

generate Stab(C(yq,)) as a tensor-triangulated category. This is the setup of Theorem 6.4.1. [

6.5 A Nilpotence Theorem via Detecting Subalgebra

The salient feature first discovered about detecting subalgebras was that these subalgebras detect
nilpotence in cohomology. We will now show that a remarkable feature for classical Lie subalgebras
with a splitting subalgebras is that nilpotence of arbitrary maps in the stable module category is
governed by nilpotence when restricting the the map to a splitting subalgebra. In particular, to show
that a morphism f : M — N is nilpotent in the big stable module category where M is compact,
it is enough to check vanishing on those homological residue fields constructed via homological

primes from the stable categories of modules over the splitting subalgebra.

Theorem 6.5.1. Let g = g & g7 be a classical Lie superalgebra with a splitting subalgebra
3 =3 @31 € g Let f: M — N be amorphism in Stab(C(y4,)) With M € stab(Fyq,))-
Let res : Stab(C(g4,)) — Stab(Cy;;,)) be the usual restriction functor. If hg(res(f)) = 0 for all

B € Spc”(stab(F(; ;,)), then there exists n > 1 such that f®" = 0 in Stab(Cg,))-

Proof. By our hypothesis, hg(res(f)) = 0 for all B € Spc"(stab(F; .)). Theorem 6.4.2 implies

that res( f) is tensor nilpotent in Stab(Cy, ;.))-
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It follows that res(f) : C — M* ® N is tensor nilpotent in Stab(C; ;,)), and by Theorem 6.3.6
its associated colimit is projective in C(; ;). Therefore, the colimit as an object in C(q 4,) is projective
by part (b) of Theorem 5.7.2. Invoking Theorem 6.3.6 again implies that fis tensor nilpotent, thus

f is tensor nilpotent. [
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CHAPTER 7

THE NERVES-OF-STEEL CONJECTURE
AND LOCALIZING SUBCATEGORIES IN

TYPE A

The goals of this section are to determine the homological spectrum for stab(F; ) ) and stab(F(g.q.));
where g is a classical Lie superalgebra with splitting subalgebra 3. We also consider the comparison

map defined in Section 3.5.

7.1 Stratification and the Comparison Map

The first result we state involves using the classification of localizing subcategories for the detecting
subalgebras from the previous section in order to verify the Nerves-of-Steel Conjecture in this

setting. We state the theorem with the most general hypothesis.
Theorem 7.1.1. Let 3 = 35 @ 37 be a classical Lie superalgebra with 35 a torus and [3g, 31] = 0.

Then the comparison map

o : Spch(stab(]-'(z,,z,ﬁ)) — Spc(stab(}"(j,z,ﬁ)))
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is a bijection.

Proof. Since stab(F(; ) is rigid, the map ¢ is surjective. The injectivity of ¢ follows from the
argument outlined in [Bal20, Example 5.13]. The main point is to use the classification of local-
izing subcategories of Stab(C(; ;,)) and the existence of pure injective objects. See also [BKS19,

Corollary 4.26]. 0

Remark 7.1.2. A more general argument showing that BIK stratification and tt-stratification imply

the Nerves-of-Steel Conjecture can be found in [BHS23a, Theorem 4.7].

7.2 Identifying the Homological Spectrum

Let g be a classical Lie superalgebra and 3 be a detecting subalgebra in g. We will need to work with
a field extension K of C such that the transcendence degree is larger than the dimension of 3. Note
that this is the analogous setup as in [BC21, Example 3.9]. The stable module categories involved
will be viewed over the field extension K. Let P, be the prime ideal in Proj(S®(37)) associated
with the “generic point” x (cf. [BCR96, Sections 2 and 3] for an explanation of this terminology).

For x € 31, with 37 viewed as a vector space over K, let (x) denote the Lie subsuperalgebra
generated by . One has U ({x)) is either K[z]/(z?*) or U(q(1)). In either case, the blocks are either
semisimple or have finite representation type, and one can verify that Stab(C(),(x,)) is a tensor

triangular field. For « € 371, one has two monoidal exact functors given by restriction:

7Tg : Stab(C(M(_))) — Stab(C(@),@)G)) (7.2.1)
Fi : Stab(C(a,aﬁ)) — Stab(C(<x>7<x>6)) (7.2.2)

Let res : Stab(C(q4,)) — Stab(C(;;,)) be the natural functor obtained by restricting g-modules

to 3-modules. Then 7 = 7l ores for all x € 31.
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Now one can apply Theorem 6.2.3 (where [’ = 7% and 73), to obtain B, a homological prime
(resp. BB,) associated to ¢ (resp. m3). Similarly, let hg, (resp. hg, ) be the homological residue field
corresponding to B, (resp. B.,).

The goal now is the show that {1, },¢;. contains all of the homological primes. Our main tool

is the following result given by [Bal20, Theorem 5.4].

Theorem 7.2.1. Let X be a big tensor-triangulated category which is rigidly-compactly generated
by the full subcategory of compact objects K¢. Consider a family £ C Spc"(X¢) of points in the

homological spectrum. Suppose that the corresponding functors
{hp : K — A(K; B)}Bes
collectively detect ®-nilpotence in the following sense: If f : x — Y in X is such that x € K and

hi(f) = 0 forall B € £ then f®" = 0 for some n > 1. Then we have £ = Spc"(K°).

We are now ready to provide conditions on when one can identify a collection of homological

primes that detect nilpotence on stab(F g q.))-

Theorem 7.2.2. Let g = g5 &b g7 be a classical Lie superalgebra and 3 C g be a Lie subsuperalgebra.
Denote by G, G and Z the associated supergroup (schemes) such that g = Lie G, g5 = Lie G and
3 = Lie Z. Set N = Normg,(31). Assume that

() 3 = 30 P 31 with 35 a torus and [35, 31] = 0;
(b) Z is a splitting subgroup of G.

Then E/N = {B, : = € 31}/N (i.e., a set of N-orbit representatives) detects nilpotence in

Stab(}-(g,%))'

Proof. The idea of the proof is to find a set of homological primes £ that detects nilpotence in

Stab(Cg,g5))- Then one can apply Theorem 7.2.1 (e.g., [Bal20, Theorem 5.4].)
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The first step is to compare homological residue fields for g and 3. If f : M — N is in
Stab(Cg,q,)) With M compact then one can compare the diagrams for hp, and HB& to conclude the

following.

(1) Ifhg, (f) = O then hg (ves(f)) = 0 for x € 31.

Now one can apply the stratification result for detecting subalgebras, Theorem 7.1.1, to con-
clude that {8}, : x € 31} are the homological primes for stab(F(;.)). Therefore, by (1) and
Theorem 6.4.2, one has
(2) If hp, (ves(f)) = O for all x € 31 thenxes(f) : M — N is @-nilpotent in Stab(C(; ;.)).

Applying Theorem 6.5.1 since 3 is a splitting subalgebra of g, one can conclude that f : M — N
is ®@-nilpotent in Stab(C(qq.)). Let & = {B, : x € 31}/N. Since M is a Gy-module, it follows
that the functors 78 (resp. 7% ) will provide the same decomposition of M in Stab(C(z),(z)y))
(resp. Stab(C((na),(na)g)))- By considering Theorem 6.2.3, it follows that hg, (f) = 0 if and only if

hg,, (f) = 0. Therefore, £ /N detects nilpotence.
[l

In the previous theorem, one can state that £/N = Spc”(stab(Fy4,))). However, with the
definition of £/N there are certain homological primes that might be identified in the set. We
will show in the following section that different N-orbit representatives yield different elements in

Spc”(stab(Fgg,)))-

7.3 The Nerves-of-Steel Conjecture

There are noticeable differences between the stable module category for finite group schemes versus

the stable module category for Lie superalgebras. For example, the map:

Spc(stab(F(gq5))) — Proj(H*(g, g5; C)) (7.3.1)
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is not always a homeomorphism (e.g., when g = gl(m|n)). In general, the cohomology ring
H*(g, gg, C) does not stratify Stab(C(y q.)), and there are many examples where the support theory
does not detect projectivity. This is the main reason one needs to use the cohomology of the
detecting subalgebra to realize the homological spectrum and the Balmer spectrum.

Boe, Kujawa and Nakano [BKN17] showed that for g = gl(m|n), one has a homeomorphism:
Spc(stab(Fg,g5))) = N-Proj(H*(f, f5; C)) (7.3.2)

where f is a detecting (splitting) subalgebra of g and N is the normalizer of 1 in GG5. From this
example, it is clear that in order to compute the Balmer spectrum for Lie superalgebras one needs
to find a suitable replacement for the cohomology ring.

From Section 3.5, when one has a splitting subalgebra 3 of g, one can compute the homological

spectrum and show there is a surjection:

Spc”(stab(Fg45))) — N-Proj(H* (3,30, C)) (7.3.3)
In other words, since J—"(g’%) is rigid, the comparison map

¢ : Spc(stab(Fg.q,))) — Spe(stab(Fg.g))) (7.3.4)

is surjective. Our goal is to use the prior calculation of the homological spectrum to give conditions
on when the Nerves-of-Steel Conjecture holds (i.e., when ¢ is bijective).
We can now identify the homological spectrum and the Balmer spectrum for classical Lie

superalgebras with a splitting subalgebra under a suitable condition on realization of supports.

Theorem 7.3.1. Let g be a classical Lie superalgebra with a splitting, detecting subalgebra 3 =

30 P 317. Assume that

(i) 3 = 30 @ 37 where 3; is a torus and [3g, 37] = 0.
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(i) Given W an N-invariant closed subvariety of Proj(S®(37)), there exists M & stab(F(gq.))

with Vi ;) (M) = W.
Then

(a) There exists a 1-1 correspondence
{thick tensor ideals of stab(F(g4.))} <> Xsp

where X = N-Proj(S*(31)), and X, is the set of specialization closed sets of X.
(b) There exists a homeomorphism 7 : N-Proj(S*(31)) — Spe(stab (F ;. ))-
(c) The comparison map ¢ : Spc”(stab(Fg4,))) — Spe(stab(Fgqq))) is bijective.

Proof. (a) and (b) follow by [BKN17, Theorems 3.4.1, 3.5.1]. For part (c), let p = ~! which is
given by a concrete description in [NVY?24, Corollary 6.2.4]. Consider the following diagram of

topological spaces:

Spc (stab(F40))) —— Spe(stab(F ) —— Proj(S*(37))

le l’* l’r (7.3.5)

Spc® (stab(Fgg)) —— Spe(stab(Figgn)) —— N-Proj(S*(31))

One has that p’ is a homeomorphism and ¢’ is a bijection for 3. From part (b), the map p is a
homeomorphism. The maps 7 and 7 are surjections. The map 6 sends B, to B., in £/N. Suppose
that ¢(B,,) = ¢(B.,). Then using the commutativity, one has P,, = P,, in N-Proj(S*(37)) which
means that 1 and x5 are N-conjugate. This proves that B,, = B,, in £/N.

O]

We remark that the verification of the Nerves-of-Steel Conjecture in the previous theorem uses

stratification results only for Stab(C(; .)), unlike the the case for finite group schemes where the
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stratification is needed for StMod(kG). Because the assumption needed to prove the Nerves-of-

Steel Conjecture will come up again in the next section, we state it here.

Assumption 7.3.2. Suppose g be a classical Lie superalgebra with a splitting, detecting subalgebra

3 = 35 D 31. Assume that
(i) 3 = 30 @ 31 where 35 is a torus and [3, 37] = 0.

(ii) Given IV an N-invariant closed subvariety of Proj(S®(37)), there exists M € stab(F(qq;))

with Vi; . (M) = W.
Theorem 7.3.3. Assumption 7.3.2 holds for Lie superalgebras of Type A.

Proof. For g = gl(m/|n) this was done by Boe, Kujawa, and Nakano in [BKN17, Theorem 7.21.1].
The case g = sl(m|n) is [HN24, Theorem 8.3.2]. O

7.4 Stratification for Type A Lie superalgebras

Now, we turn our attention to Stab(Cq 4,)), Where g is a classical Lie superalgebra which satisfies
Assumption 7.3.2. Boe, Kujawa, and Nakano computed the Balmer spectrum to be N- Proj(H*(3, 35; C)),
and showed that Stab(Cq 4,)) is not stratified in the sense of BIK by the cohomology ring H*(g, gg; C).
The natural question then is whether or not Stab(C(g 4,)) is tt-stratified or h-stratified. That for
Stab(C(q,45)) these notions are equivalent and satisfied is Theorem A, which we restate now for

convenience.

Theorem A. Let g be a classical Lie superalgebra with a splitting, detecting subalgebra 3 C g
and which satisfies the realization condition of Assumption 7.3.2. The tensor triangulated cate-
gory Stab(Cgq,)) is tt-stratified by the Balmer spectrum Spc(stab(F(q 4,))), and tt-stratification is

equivalent to h-stratification.
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Proof. First note that by Theorem 7.3.1, the Nerves-of-Steel Conjecture holds for stab(Fg.))-
Therefore, since Spc(stab(F(q 4,))) is Noetherian, the equivalence of tt-stratification and h-stratification
of Stab(C(g,q,)) follows from Theorem 3.7.2.

Next, in order to show that the equivalent conditions of tt-stratification and h-stratification hold
for Stab(C(q,45)), We show that Stab(Cyg,)) is h-stratified. For this, our tool is Theorem 3.7.3. For
this step, we need to work over an extension field K of C such that the transcendence degree is
larger than the dimension of 3 (c.f. [HN24, Section 6.2] or [BC21, Example 3.9]). Consider the

family of monoidal, exact functors

{Wg : Stab(C(g,%)) — Stab(C(<$>,<x>6))} (7.4.1)

x€31 )
where (z) denotes the Lie subsuperalgebra generated by z and is either a one-dimensional abelian
Lie subsuperalgebra, or a subsuperalgebra isomorphic to the queer Lie superalgebra ¢(1). In any
case, the relevant fact is that for each x € 31, Stab(C’(<x>7<x>6)) is BIK stratified, and therefore tt-
stratified and h-stratified. Moreover, the collection of functors in 7.4.1 jointly detect when an object
of Stab(C(q,4,)) is zero. Thus, in order to prove that Stab(C(yq,)) is h-stratified, we need to show
that Stab(Cg,q,)) is generated by the images of the right adjoints of the functors in 7.4.1.

It turns out to be convenient to work in the context of the ambient algebraic supergroup scheme.
Let GG denote the ambient algebraic supergroup scheme such that Lie(G) = g, and let Z < G be a
subsupergroup scheme such that Lie(Z) = 3. By [Gra+21] the categories Stab(C(q 4,)) and Rep(G)

are equivalent. The corresponding family of functors to consider is

{res§ : Stab(Rep(G)) — Sta‘b(Rep(X)}XeZi (7.4.2)
which has right adjoints given by induction:

{ind§ : Stab(Rep(X)) — Stab(Rep(G)} ., - (7.4.3)
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We need to show that the images of the functors in 7.4.3 generate Stab(Rep(G)). Notice that by

transitivity of induction we have
ind$ (—) = ind$ind% ().

Since Z < G is a splitting subgroup the image of ind5 (—) generates Stab(Rep(G)). To see this let

M be a module in Stab(Rep(G)), because Z is splitting, M is a direct summand of ind5res§ M.
It only remains to show that the images (ind%(—)) vez, generate Stab(Rep(Z )). To prove

this, we again appeal to Theorem 3.7.3, but in a different way. This time, we use the fact that

Stab(Rep(Z)) being generated by the images of (ind%(—)) is equivalent to Stab(Rep(Z))

XezZy

being tt-stratified. But Stab(Rep(Z)) is BIK stratified by 6.1.1 which implies tt-stratification. [

As a consequence, we obtain the classification of tensor ideal localizing subcategories of

Stab(C(q,45))- the content of Corollary B, which we repeat here.

Corollary B. Let g be a classical Lie superalgebra with a splitting, detecting subalgebra 3 C g and
which satisfies the realization condition of Assumption 7.3.2. There is a bijection between the set

of ®-ideal localizing subcategories of Stab(C g 4,)) and subsets of N-Proj(H*(3, 35; C)).
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