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This dissertation studies the representation theory of classical Lie superalgebras from a categor-

ical point of view. Given a classical Lie superalgebra g = g0̄ ⊕ g1̄, one can consider the category

C(g,g0̄) of g-supermodules which are semisimple as modules over the Lie algebra g0̄. Also, one can

consider the full subcategoryF(g,g0̄) of C(g,g0̄) which consists of the finite-dimensional supermodules.

These are Frobenius categories, so one can form the stable categories Stab(C(g,g0̄)) and stab(F(g,g0̄))

which are triangulated categories. The tensor product of supermodules gives Stab(C(g,g0̄)) and

stab(F(g,g0̄)) the structure of tensor triangulated categories, which raises many deep questions about

the tensor structure.

Balmer associates to each essentially small tensor triangulated category Kc two topological

spaces: Spc(Kc) and Spch(Kc), called the categorical (Balmer) spectrum and the homological

spectrum respectively. When Kc is rigid, in all known examples the comparison map

ϕ : Spch(Kc)→ Spc(Kc)

is a bijection. Balmer’s Nerves-of-Steel Conjecture states that this is always the case. We prove the

conjecture holds for Kc = stab(F(g,g0̄)) for g a Type A Lie superalgebra. The argument involves



using the detecting subalgebras introduced by Boe, Kujawa, and Nakano, as well as the stratification

framework developed by Benson, Iyengar, and Krause. As a consequence, we are able to use the

more recent h-stratification introduced by Barthel, Heard, Sanders, and Zou to classify localizing

subcategories of Stab(C(g,g0̄)), again for Type A Lie superalgebras.
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C H A P T E R 1

I N T R O D U C T I O N

Let g = g0̄ ⊕ g1̄ be a classical Lie superalgebra over the complex numbers C. The representation

theory of such Lie superalgebras was studied via cohomology and support varieties in a series

of early 2000s papers by Boe, Kujawa, and Nakano [BKN09; BKN10; BKN11; BKN17]. They

showed, among other results, that under mild assumptions on the action of the algebraic group

G0̄ on g1̄, there exist subalgebras f = f0̄ ⊕ f1̄ ⊆ g, called detecting subalgebras. Detecting

subalgebras are interesting in the sense that they have markedly simple representation theory, but

they nonetheless determine the relative (g, g0̄)-cohomology. In particular, [BKN10, Theorem 4.1.1]

gives an isomorphism H•(g, g0̄;C) ∼= H•(f, f0̄;C)N , where N is a non-connected reductive group

determined by a choice of detecting subalgebra f. Moreover, H•(f, f0̄;C) ∼= S•(f∗1̄), and the relative

cohomology for detecting subalgebras are polynomial algebras, so relative (g, g0̄)-cohomology is

finitely generated.

One can consider the category C(g,g0̄) (resp. F(g,g0̄)) whose objects consist of all (resp. finite-

dimensional) g-supermodules which are semisimple as modules over g0̄ and whose morphisms

consist of even morphisms between supermodules. These are abelian categories which have enough

projective and injective objects. They are also Frobenius categories; i.e., projective and injective

objects coincide, so one can form the stable module categories Stab(C(g,g0̄)) and stab(F(g,g0̄)).

Objects in Stab(C(g,g0̄)) (resp. stab(F(g,g0̄))) are the same as the objects in C(g,g0̄) (resp. F(g,g0̄)), but
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in the stable category morphisms consist of equivalence classes of morphisms where two morphisms

are considered equivalent if their difference factors through a projective module.

The category Stab(C(g,g0̄)) is a tensor triangulated category which is rigidly-compactly gener-

ated by the full tensor triangulated subcategory stab(F(g,g0̄)) of compact-rigid objects. In [BKN17]

the authors consider the tensor triangular geometry of these categories. Techniques from geometric

invariant theory are used to compute the Balmer spectrum for the detecting subalgebras and for

the Lie superalgebra gl(m|n). For the detecting subalgebras [BKN17, Theorem 4.5.4] gives a

homeomorphism Spc(stab(F(f,f0̄)))
∼= ProjH•(f, f0̄;C) ∼= Proj S•(f∗1̄), but for g = gl(m|n) the

situation is a little different. The Balmer spectrum Spc(stab(F(g,g0̄))) is not homeomorphic to

ProjH•(g, g0̄;C), as one might initially suspect. Instead, one has to consider a stack quotient of

ProjH•(f, f0̄;C), where f ⊆ g is a detecting subalgebra. This is the result of [BKN17, Theorem

5.2.2] which states that there is a homeomorphism Spc(stab(F(g,g0̄)))
∼= N -ProjH•(f, f0̄;C).

Often, the representation theory of classical Lie superalgebras over C resembles representation

theory of finite groups in positive characteristic. If G is a finite group, and k is an algebraically

closed field of characteristic p where p divides the order of G, then the group algebra kG is not

semisimple and most of the time has wild representation type. The categories kG-Mod and kG-mod

consisting of all (resp. finitely generated) left kG-modules are again abelian and Frobenius, so one

can form the stable module categories StMod(kG) and stmod(kG) which are tensor triangulated

categories. An analogous picture holds to Lie superalgebras in that StMod(kG) is a compactly gen-

erated tensor triangulated category whose compact objects are precisely the objects in stmod(kG).

Benson, Carlson, and Rickard first studied the tensor triangular geometry of stmod(kG) in the late

90s, and the main result of [BCR97] is a classification of the thick ⊗-ideal subcategories. This

in turn implies that there is a homeomorphism Spc(stmod(kG)) ∼= ProjH•(G, k). Later on in

the 2000s, Benson, Iyengar, and Krause introduced the notion of a tensor triangulated category

being stratified by the action of a graded-commutative ring R [BIK11a]. This was a fundamentally

new idea that not only allowed for a computation of the Balmer spectrum, but that also had the
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advantage of classifying ⊗-ideal localizing subcategories. BIK’s theory was applied to show that

StMod(kG) is stratified by the action of the cohomology ring H•(G, k), a result which recovers

Benson, Carlson, and Rickard’s contributions, but also gives a classification of ⊗-ideal localizing

subcategories in terms of subsets of ProjH•(G, k).

While stratification was introduced before Boe, Kujawa, and Nakano’s computations of Balmer

spectra for stab(F(f,f0̄)) and stab(F(gl(m|n),gl(m|n)0̄)), the arguments given in [BKN17] do not rely

on any stratification result. In fact, for most classical Lie superalgberas, e.g. gl(m|n), the relative

(g, g0̄)-cohomology ring fails to stratify. It was conjectured, however, that for a detecting subalgebra

the relative cohomology ring H•(f, f0̄;C) should stratify Stab(C(f,f0̄)). This conjecture was proved

in recent work by the author and Nakano [HN24] from the observation that, just as in the case

of elementary abelian two groups in characteristic two, one can reduce the problem to proving a

stratification result for the stable category of modules for the exterior algebra Λ(f1̄) viewed as a

superalgebra by declaring the generators to be odd, which then comes down to a version of the

classical BGG correspondence. In addition to giving a classification of the ⊗-ideal localizing sub-

categories of Stab(C(f,f0̄)), this result was also used in [HN24] to prove results about representations

of Lie superalgebras concerning nilpotence and the newly developed homological spectra [Bal20].

Specifically it was shown that for g a classical Lie superalgebra with a detecting subalgebra z ⊆ g

which is splitting in the sense of [SS23], and satisfying a natural assumption on realization of

supports, then there is a homeomorphism Spch(stab(F(g,g0̄)))
∼= N -Proj(H•(z, z0̄;C)). This result

led to a verification of Balmer’s “Nerves-of-Steel” conjecture for g = gl(m|n) [HN24, Theorem

7.2.1].

While the BIK approach to stratifying tensor triangulated categories represented a major break-

through in the field, the drawback is that it requires that the category be equipped with an action

by a graded-commutative Noetherian ring in order to construct the necessary support theory. For

many TTCs (e.g. stab(F(g,g0̄))), a BIK stratifying ring is either not known or not readily available,

rendering them outside of the scope of the BIK machinery. This prompted Barthel, Heard, and
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Sanders in [BHS23b] to develop a theory of stratification called tensor triangular stratification or

tt-stratification for short. Tt-stratification for compactly generated tensor triangulated categories

is in terms of the support theory developed by Balmer and Favi [BF11] for “big” objects, and

has the advantage that does not presuppose the action of a graded-commutative Noetherian ring.

Instead, the supports are constructed using the more intrinsic Balmer spectrum of the full compact

subcategory. A drawback to tt-stratification is that descent theorems still have to be handled one

TTC at a time. Recently, in [Bar+24], Barthel, Heard, Sanders, and Zou developed a third theory of

stratification, called h-stratification, which is in terms of the homological spectrum. It is also well

behaved under descent. The relationship between tt-stratification and h-stratification becomes tight

for TTCs that satisfy the Nerves-of-Steel Conjecture. These key insights allow us, in particular, to

reduce the problem of studying gl(m|n) to studying a splitting, detecting subalgebra, as well as

subalgebras isomorphic to the queer Lie superalgebra q(1).

The purpose of this thesis is to add categories of representations of Lie superalgebras to the

growing list of tensor triangulated categories for which stratification results are known. We investi-

gate the three notions of stratification for Stab(C(g,g0̄)) when g is a classical Lie superalgebra which

has a splitting detecting subalgebra z ⊆ g. Specifically, our theorem is the following.

Theorem A. Let g be a classical Lie superalgebra with a splitting, detecting subalgebra z ⊆ g and

which satisfies the realization condition of Assumption 7.3.2 [HN24, Theorem 7.2.1]. The tensor

triangulated category Stab(C(g,g0̄)) is tt-stratified by the Balmer spectrum Spc(stab(F(g,g0̄))), and

tt-stratification is equivalent to h-stratification.

Classical Lie superalgebras which satisfy the hypotheses of Theorem A include classical Lie

superalgebras of Type A. As a consequence of stratification, we obtain the classification of ⊗-ideal

localizing subcategories in terms of arbitrary subsets of the Balmer spectrum. This fact, combined

with the Balmer spectrum computations of Boe, Kujawa, and Nakano, yields the following corollary.

4



Corollary B. Let g be a classical Lie superalgebra with a splitting, detecting subalgebra z ⊆ g and

which satisfies the realization condition of Assumption 7.3.2. There is a bijection between the set

of ⊗-ideal localizing subcategories of Stab(C(g,g0̄)) and subsets of N -Proj(H•(z, z0̄;C)).

Our work is inspired in part by the strategy outlined for modular representation theory in

[BIK11b] where BIK stratification was proven for StMod(kG) where G is an arbitrary group

by first proving the result for StMod(kE), where E is an elementary abelian group, and then “boot-

strapping” up by applying a version of Quillen’s stratification theorem and Chouinard’s theorem.

Their argument involves several “change-of-categories” type arguments including a consideration

of the homotopy category of injectives K(Inj kG). We make use of some of the analogous results

in our setting, specifically for studying detecting subalgebras.

The thesis is organized as follows. Chapter 2 gives an overview of tensor triangular geom-

etry with an aim towards introducing the language needed to state our results. We review the

Balmer spectrum, as well as notion of support data and extending support data. In Chapter 3 we

give an overview of the three stratification setups currently in the literature: BIK stratification,

tt-stratification, and h-stratification. Chapter 4 covers background from Lie superalgebras. We

explain how the tensor triangular theory of the first two chapters can be applied to study representa-

tions of Lie superalgebras. Doing so makes use of detecting subalgebras and splitting subalgebras,

so we explain their construction, some aspects of their representation theory, and how they relate

to projectivity conditions in Chapter 5. In Chapter 6 we explore stratification for the detecting

subalgebras, explain how to construct homological residue fields, and consider various nilpotence

theorems. Chapter 7 discusses the Nerves-of-Steel Conjecture, and the classification of tensor ideal

localizing subcategories in Type A.
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C H A P T E R 2

T E N S O R T R I A N G U L AT E D C AT E G O R I E S

This chapter introduces tensor triangulated categories. We begin by discussing triangulated cat-

egories, giving the basic definitions, and explaining how the basic notions are modified in the

presence of a tensor structure possessed by tensor triangulated categories. We discuss supports, the

Balmer spectrum, and the concept of extending supports to big objects.

2.1 Triangulated categories

Triangulated categories were introduced by Verdier in his thesis [Ver96]. In some sense, their role

is to clarify and extend notions from homological algebra. Recall that a triangulated category T is

an additive category equipped with an auto-equivalence Σ : T → T called the shift, and a class of

distinguished triangles:

M → N → Q→ ΣM

all subject to a list of axioms the reader can find in, for example, [Nee01, Ch. 1].

A non-empty, full, additive subcategory S of T is called a triangulated subcategory if (i) M ∈ S

implies that ΣnM ∈ S for all n ∈ Z and (ii) if M → N → Q → ΣM is a distinguished triangle
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in T, and two of {M,N,Q} are objects in S, then the third object is also in S. A triangulated

subcategory S of T is called thick if S is closed under taking direct summands.

A triangulated subcategory S of T is called a localizing subcategory if S is closed under taking

set-indexed coproducts. It follows from a version of the Eilenberg swindle that localizing subcat-

egories are necessarily thick. Given a triangulated category, it is a central problem to classify its

thick subcategories and localizing subcategories.

An object C ∈ T is called compact if HomT(C,−) commutes with set-indexed coproducts. The

full subcategory of compact objects in T is denoted by Tc, and the triangulated category T is said

to be compactly generated if the isomorphism classes of compact objects form a set, and if for each

non-zero object M ∈ T there is an object C ∈ Tc such that HomT(C,M) ̸= 0.

2.2 Tensor triangulated categories

A tensor triangulated category (TTC) is a triple (K,⊗,1) consisting of a triangulated category K,

a symmetric, monoidal (tensor) product ⊗ : K × K → K which is exact in each variable, and a

monoidal unit 1. For the remainder of this section, K denotes a TTC.

The usual paradigm involves the situation when K is rigidly-compactly generated as a TTC by

its full subcategory of compact-rigid objects Kc. By definition this means that (i) K is closed under

set indexed coproducts, (ii) the tensor product preserves set-indexed coproducts, (iii) K is compactly

generated as a triangulated category, (iv) the tensor product of compact objects is compact, (v) 1 is

a compact object, and (vi) every compact object is rigid (i.e. dualizable).

The additional structure of the tensor product possessed by TTCs makes the problem of classi-

fying localizing subcategories and thick ideals more tractable. When working in the context of a

TTC however, one focuses on classifications for ⊗-ideal localizing subcategories and thick ⊗-ideal

subcategories of compact objects. In many situations these match up with the purely triangular

notions (c.f. [BIK11b, Section 4.1.4]). For example, if K is monogenic (generated by the unit

object 1), as in the case of finite groups, then every localizing subcategory is automatically a ⊗-
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ideal. One difference between previously considered representation categories and our theory is

that the categories of Lie superalgebra representations of interest in this paper are in general not

monogenic. Because of this feature our available tools restrict us to a classification of ⊗-ideal

localizing subcategories rather than arbitrary localizing subcategories.

2.3 Support for objects in TTCs

The study of TTCs frequently involves considering various support spaces and notions of support

for objects. The relevant definition here is that of a support datum, which was originally given in

[Bal05]. The definition we give is slightly more general, and is suited to our paper. Let K be a

TTC, X be a Zariski topological space ([BKN11, Section 2.3]), and let X denote the collection

of all subsets of X . A support datum on K is an assignment V : K → X such that the following

properties hold for M,N,Mi, Q objects in K:

(2.3.1) V (0) = ∅, and V (1) = X;

(2.3.2) V (⊕i∈IMi) = ∪i∈IV (Mi) provided that ⊕i∈IMi is an object of K;

(2.3.3) V (ΣM) = V (M)

(2.3.4) for any distinguished triangle M → N → Q→ ΣM , V (N) ⊆ V (M) ∪ V (Q);

(2.3.5) V (M ⊗N) = V (M) ∩ V (N);

Often useful are support data which satisfy the additional two properties:

(2.3.6) V (M) = ∅ if and only if M = 0.

(2.3.7) for any closed subset U ∈ X , there exists an object M in Kc such that V (M) = U .

Property (2.3.7) is often called the realization property, and support data which satisfy Property

2.3.6 are called faithful.
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2.4 The Balmer spectrum of a TTC

In his 2005 paper, [Bal05], Balmer uses the tensor product and unit object to associate to each TTC

K a topological space known as the categorical (Balmer) spectrum Spc(K) in a way analogous

to the construction of the prime spectrum of a commutative ring. Define a ⊗-ideal in K as a full

triangulated subcategory I of K such that M ⊗N ∈ I for all M ∈ I and N ∈ K. A proper, thick

⊗-ideal P of K is said to be prime if, for objects M and N in K, M ⊗N ∈ P implies that M ∈ P

or N ∈ P. The Balmer spectrum is then defined as

Spc(K) := {P ⊊ K | P is a prime ideal}.

The topology on Spc(K) is the familiar Zariski topology which has the closed sets given by

Z(C) := {P ∈ Spc(K) | C ∩ P ̸= ∅},

where C is an arbitrary collection of objects in K.

An important result of Balmer, [Bal05, Theorem 3.2], has to do with supports for essentially

small TTCs constructed via the Balmer spectrum. One can construct a support datum on Kc as

follows. Given an object M ∈ Kc, define

suppBal(M) := {P ∈ Spc(Kc) |M /∈ P}.

Balmer showed that the support datum given by (Spc(Kc), suppBal(−)) is universal in the sense that

if (X, V ) is any support datum on Kc, then there exists a unique continuous map f : X → Spc(Kc)

such that V (M) = f−1(suppBal(M)).
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2.5 Extending support to big objects

LetK be a rigidly-compactly generated TTC, and letKc denote its full subcategory of compact-rigid

objects. One might try to construct a universal notion of support for big TTCs which generalizes

Balmer’s construction for essentially small TTCs. Morally speaking, Balmer’s construction fails to

provide such a universal support for big objects because one expects that supports for big objects

should be open, while Balmer supports are closed by definition. It turns out that no one has

succeeded in constructing universal support for big objects, and it may be impossible to construct

such a support datum in general (c.f. [BKS20]). Nonetheless, we are still interested in constructing

supports for big objects which, though not universal, still prove useful in practice. The following

definition is then motivated.

Definition 2.5.1. Let K be a rigidly-compactly generated TTC and let Kc denote the full subcat-

egory of compact-rigid objects. Let (X, V ) be a support datum on Kc where supports are closed

subsets of X . The pair (X,V) is said to be an extension of (X, V ) if V is an assignment from K to

arbitrary subsets of X satisfying the following:

(a) V satisfies properties (2.3.1)-(2.3.5) for objects in K;

(b) V(M) = V (M) for all M in Kc; and

(c) if V satisfies (2.3.7) then V satisfies (2.3.7).

Notable examples of extension of support data include Balmer-Favi supports which are reviewed

in Chapter 3 Section 3, as well as homological supports which are reviewed in Chapter 3 Section 5.

See also [Bal20].
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C H A P T E R 3

S T R AT I F Y I N G T E N S O R

T R I A N G U L AT E D C AT E G O R I E S

In this chapter we introduce and discuss the various notions of stratification for tensor triangulated

categories that exist in the literature today. Doing so involves considering different notions of

support for big objects in TTCs. We begin with a discussion of the so-called BIK theory of supports

via the action of a graded-commutative Noetherian ring. This theory naturally lends itself to BIK

stratification. We then discuss so-called Balmer-Favi supports which were used by Barthel, Heard,

and Sanders to develop tensor triangular stratification. Finally, we discuss homological supports

and homological stratification, which were recently developed by Barthel, Heard, Sanders, and

Zou. We caution the reader that absorbing the particular features of each theory are not necessary

to understanding our main results.

3.1 BIK support

Let K be a rigidly-compactly generated TTC, and let Kc denote the full subcategory of compact-

rigid objects. Aimed at obtaining tensor triangular classifications, Benson, Iyengar, and Krause

defined an extension of Balmer’s universal support datum for big objects. The additional assumption
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needed throughout this subsection necessary to define these so-called BIK supports is that of an

auxiliary canonical action of a graded-commutative ring R on K. Let us explain what this means.

One can always consider the graded-center Z•(K) of K which is a graded-commutative ring whose

degree n component is given by

Zn(K) = {η : IdK −→ Σn | ηΣ = (−1)nΣη}.

An action of R on K is a homomorphism of graded-commutative rings ϕ : R → Z•(K). If K

admits an R-action, then K is called R-linear.

Given objects M and N in K, set

Hom•
K(M,N) :=

⊕
i∈Z

HomK(M,ΣiN).

Then Hom•
K(M,N) is a graded abelian group, and End•

K(M) := Hom•
K(M,M) is a graded ring

where the multiplication is given by applying the shift and then composing morphisms. Notice that

Hom•
K(M,N) is a right End•

K(M) and a left End•
K(N)-bimodule. It follows that K being R-linear

is equivalent to their being, for each object M in K, an induced homomorphism of graded rings

ϕM : R→ End•
K(M) such that the induced R-module structures on Hom•

K(M,N) by ϕM and ϕN

agree up to the usual sign.

Using the tensor product in K allows one to construct an action of the graded endomorphism ring

End•
K(1) of the unit object via the maps defined by taking, for each M in K, ϕM : End•

K(1) →

End•
K(M) given by tensoring with M . Provided that End•

K(1) is Noetherian, any action on K

induced via this action is called canonical.

BIK supports for objects in K are given in terms of the homogenous prime ideal spectrum

ProjR of R. For each p ∈ ProjR, a deep result in Bousfield localization allows one to construct

an exact, local cohomology functor Γp : K → K. Properties of these local cohomology functors
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can be found in Section 3.1.2 of [BIK11b]. The space of BIK supports for K is defined to be

SuppBIK(K) := {p ∈ Proj(R) | Γp(K) ̸= 0}.

For an object M ∈ K, the BIK support of M is defined as

SuppBIK(M) := {p ∈ Proj(R) | Γp(M) ̸= 0}.

That (SuppBIK(K), SuppBIK(−)) is a support data on K which extends (Spc(Kc), suppBal(−)) is

the main content [BIK11b, Chapter 3].

3.2 BIK stratification

Let K be a rigidly-compactly generated TTC, and Kc denote the full subcategory of compact objects

of K. Let R be a graded-commutative Noetherian ring, and assume that K is R-linear. For this

section only we follow the lead of BIK by assuming furthermore that K is monogenic; i.e., that K

is compactly generated by the unit object 1 of K.

As a first application of BIK supports, one can construct maps between the collection of⊗-ideal

localizing subcategories of K and arbitrary subsets of ProjR. The maps are defined as follows.

Given a ⊗-ideal localizing subcategory C of K, set

σ(C) = SuppBIK(C) = {p ∈ Proj(R) | Γp(C) ̸= 0}.

Next, given a subset V of Proj(R), set

τ(V ) = {M ∈ K | SuppBIK(M) ⊆ V }.
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BIK stratification has to do with two conditions which, when satisfied, guarantee that σ and τ

provide mutually inverse bijections. The two conditions are the following.

(a) The BIK local-to-global principle: for each object M in K,

Loc⊗⟨{M}⟩ = Loc⊗⟨{ΓpM | p ∈ ProjR}⟩.

(b) The BIK minimality condition: for p ∈ SuppBIK(K), the subcategory ΓpK is a minimal

⊗-ideal localizing subcategory of K.

When conditions (a) and (b) hold, K is said to be stratified in the sense of BIK. The following

theorem [BIK11b, Theorem 4.19] gives the classification.

Theorem 3.2.1. If K is stratified in the sense of BIK, then the maps σ and τ provide mutually

inverse bijections between the set of ⊗-ideal localizing subcategories of K and subsets of ProjR:

{⊗-ideal localizing subcategories of K} σ←→
τ
{subsets of SuppBIK K}.

A useful fact that applies in many practical situations is that the BIK local-to-global principle

automatically holds in instances where the Krull dimension of ProjR is finite. This reduces much

of the work involved with verifying BIK stratification to the minimality condition.

3.3 Balmer-Favi support

Throughout this section, let K be a rigidly-compactly generated TTC, and let Kc denote the full

subcategory of compact-rigid objects. In [BF11], Balmer and Favi construct a support datum on

K which extends Balmer’s universal support for Kc. The key difference, from our point of view,

between BIK supports and Balmer-Favi supports is that constructing Balmer-Favi supports does

not make use of an auxiliary ring action. Instead, supports are constructed based on certain tensor

idempotents which themselves are a tensor triangular abstraction of Rickard’s idempotent modules
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from [Ric97]. Another important difference is that the space of supports is always the Balmer

spectrum Spc(Kc) of the compact subcategory, which is not necessarily the case for BIK supports.

Throughout this section only we impose the additional hypothesis that Spc(Kc) is Noetherian.

One can actually get away with a weaker condition, namely assuming that Spc(Kc) is weakly

Noetherian (cf. [BHS23b, Section 1]). However, since all Balmer spectra we are concerned with

are Noetherian, we work under a Noetherian hypothesis, and hope this provides some comfort to

the reader. The driving force behind the scenes is again Bousfield localization, which guarantees

that for every specialization closed subset W ⊆ Spc(Kc), one can construct two ⊗-idempotents

E(W ) ∼= E(W )⊗ E(W ) and F (W ) ∼= F (W )⊗ F (W ) in K that fit into a distinguished triangle

E(W )→ 1→ F (W )→ ΣE(W ).

The Noetherian hypothesis on Spc(Kc) implies that every point P ∈ Spc(Kc) is visible in the

sense of [BF11, Section 7.9]. From this, [BF11, Lemma 7.8] gives that one can express each

P ∈ Spc(Kc) as P = Y1∩Y c
2 for specialization closed subsets Y1, Y2 ⊆ Spc(Kc). One then defines

a⊗-idempotent g(P) := E(Y1)⊗F (Y2) that depends only on P and not the choice of specialization

closed subsets. For an object M ∈ K, the Balmer-Favi support of M is defined to be

SuppBF(M) := {P ∈ Spc(Kc) |M ⊗ g(P) ̸= 0}.

That (SuppBF(−), Spc(Kc)) is a support datum on K that extends (Spc(Kc), suppBal(−)) is the

content of [BF11, Prop. 7.18].

3.4 Tensor triangular stratification via Balmer-Favi supports

Balmer and Favi’s original motivation that led to the definition of Balmer-Favi support was to

transport methods from modular representation theory to algebraic geometry. A latent application
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however, realized by Barthel, Heard, and Sanders in [BHS23b], is a stratification theory distinct

from the theory developed by BIK which frees one from the requirement of a ring action, and

which is universal in Noetherian contexts. Again, the stratification framework begins with defining

maps that allow one to pass between ⊗-ideal localizing subcategories of K and arbitrary subsets of

Spc(Kc). To that end, given a ⊗-ideal localizing subcategory C of K, set

σ(C) =
⋃
M∈C

SuppBF(M).

Then, given a subset V of Spc(Kc), set

τ(V ) = {M ∈ K | SuppBF(M) ⊆ V }.

The relevant conditions on Balmer-Favi supports which allow for tensor triangular classifica-

tions are the following.

(a) The tt local-to-global principle: for each object M in K,

Loc⊗⟨{M}⟩ = Loc⊗⟨{M ⊗ g(P) | P ∈ Spc(Kc)}⟩.

(b) The tt minimality condition: for each P ∈ Spc(Kc), the subcategory Loc⊗⟨{g(P)}⟩ is a

minimal ⊗-ideal localizing subcategory of K.

When conditions (a) and (b) hold, K is said to be tt-stratified, and [BHS23b, Theorem 4.1]

gives the classification. We record a condensed version here for completeness.

Theorem 3.4.1. If K is tt-stratified, then the maps σ and τ provide bijections between the set of

⊗-ideal localizing subcategories of K and subsets of Spc(Kc):

{⊗-ideal localizing subcategories of K} σ←→
τ
{subsets of SuppBF K}.
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3.5 Homological support

The setup is again the same. Namely, we work in the context where K is a rigidly-compactly gener-

ated TTC, and the full subcategory of compact-rigid objects is denoted Kc. Motivated by a desire

for abstract nilpotence theorems in TTCs, Balmer defined a topological space called homological

spectrum Spch(Kc) (c.f. [Bal20]). A condensed review of the construction is as follows. Let Ab

denote the category of abelian groups. The category Mod-Kc of right Kc-modules is the category

whose objects consist of additive functors M : (Kc)op → Ab, and whose morphisms consist of

natural transformations between functors. The module category Mod-Kc is an abelian category

and receives Kc via the Yoneda embedding which we denote by

h : Kc ↪→ Mod -Kc = Add((Kc)op,Ab)

M 7→ M̂ := HomKc(−,M)

f 7→ f̂ .

Let A denote Mod-Kc. Day convolution gives A a tensor structure which is colimit-preserving in

each variable and which makes h a monoidal functor. The tensor subcategory Afp := mod-Kc ⊆ A

of finitely presented objects is the Freyd envelope of Kc. A homological prime of Kc is defined to

be a maximal, proper, Serre ⊗-ideal subcategory B ⊆ Afp, and the homological spectrum of Kc is

defined to be the set of homological primes:

Spch(Kc) := {B ⊊ Afp | B is a maximal Serre tensor ideal subcategory}.

One can define a support datum on Kc in terms of the homological spectrum by defining the

homological support of on object M in Kc as

supph(M) := {B ∈ Spch(Kc) | M̂ /∈ B}.
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One can view the collection supph(M) as M ranges over all objects of Kc as a basis for the closed

subsets of a topology on Spch(Kc). The universality of the Balmer spectrum and Balmer supports

for objects of Kc implies the existence of a unique continuous map ϕ : Spch(Kc) → Spc(Kc)

called the comparison map. It is known to be surjective assuming the rigidity of Kc. In all known

examples, the comparison map is a bijection. This leads to the following.

Conjecture 3.5.1 (Nerves-of-Steel). Let Kc be rigid. The comparison map

ϕ : Spch(Kc)→ Spc(Kc)

is a bijection.

The homological support for objects in Kc can be extended to a support datum on K via the

following construction. From [Bal20] there is a pure-injective object EB in K corresponding to

each homological prime B ∈ Spch(Kc). For objects M in K, the extended homological support is

defined as

Supph(M) := {B ∈ Spch(Kc) | hom(M,EB) ̸= 0},

where hom(−,−) denotes the internal hom in K.

3.6 Stratification via homological support

In recent work, Barthel, Heard, Sanders, and Zou [Bar+24] developed a notion of stratification in

terms of the homological spectrum and homological support. This theory of stratification, called

homological stratification or h-stratification, has the advantage of satisfying a very general form

of descent. Let K be a rigidly-compactly generated TTC, and let Kc denote the full subcategory

of compact-rigid objects. Homological support determines natural maps σ and τ between ⊗-ideal

localizing subcategories of K and subsets of Spch(Kc). The maps are constructed in a similar way
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to how they are constructed for tt-stratification. Given a ⊗-ideal localizing subcategory C of K, set

σ(C) =
⋃
M∈C

Supph(M).

Then, given a subset V of Spc(Kc), set

τ(V ) = {M ∈ K | Supph(M) ⊆ V }.

As usual K is said to be homologically stratified if these maps give mutually inverse bijections.

The theorem that gives sufficient and necessary conditions for homological stratification is given in

[Bar+24]. We record a slightly modified form of the theorem here.

Theorem 3.6.1. The TTC K is homologically stratified if the following conditions hold.

(a) The homological local-to-global principle: for each object M in K,

Loc⊗⟨{M}⟩ = Loc⊗⟨{M ⊗ EB) | B ∈ Spch(Kc)}⟩.

(b) The homological minimality condition: for each B ∈ Spch(Kc), the subcategory Loc⊗⟨{EB}⟩

is a minimal ⊗-ideal localizing subcategory of K.

3.7 Relationships between stratification theories, pros and cons,

etc.

A developing theme in the area involves the comparison between the various notions of stratification

and the implications that allow one to pass from one notion of stratification to another. As we will

see sometimes it is relatively straightforward to obtain results for a TTC for a particular stratification

theory, but for one reason or another it is convenient to be able to transfer the results to the other

notions where other results can be applied to say something new. First let us consider the pros and

cons.
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Type of stratification Pros Cons

BIK
• Neeman’s theorem to work with • Requires ring action

•Many results in the literature available • End•(1) may not help

Tensor

triangular

• In terms of Spc(Kc) • Need to understand Spc(Kc)

• No ring action required • No general form of descent

Homological
• Spch(Kc) often concrete • Often need Nerves-of-Steel

• Very general form of descent • Local-global principle not trivial

The first implication result we want to highlight [BHS23b, Theorem D] which demonstrates the

universality of tt-stratification in Noetherian contexts. This can be interpreted as “BIK stratification

implies tt-stratification”.

Theorem 3.7.1. Let K be a rigidly-compactly generated TTC which is Noetherian and stratified in

the sense of BIK by the action of a graded-commutative Noetherian ring R. Then the BIK space

of supports SuppBIK(K) is canonically homeomorphic to Spc(Kc) and the BIK notion of support

coincides with the Balmer-Favi notion of support.

The relationships between tt-stratification and h-stratification are not as clear-cut. This has to

do with the fact that h-stratification does not rely on any point-set topological conditions on the

homological spectrum, so h-stratification does not have a strong universality statement available.

However, in weakly Noetherian situations, and when the Nerves-of-Steel Conjecture holds, the

relationship is tight, as demonstrated by [Bar+24, Theorem E], which we record here.

Theorem 3.7.2. If K is a rigidly-compactly generated TTC with Spc(Kc) weakly Noetherian, then

the following are equivalent:

(a) K is tt-stratified;

(b) K is h-stratified and the Nerves-of-Steel Conjecture holds for K.
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As the original authors note, this means that when the Nerves-of-Steel Conjecture holds, it

suffices to consider only h-stratification.

Finally, we want to mention descent. Before h-stratification, descent results had to be verified

one TTC at a time, and general methods were not available. The following theorem [Bar+24,

Theorem A] demonstrates the power of h-stratification in contexts where natural restriction functors

exist.

Theorem 3.7.3. Let (f ∗
i : K → Si)i∈I be a family of exact, symmetric monoidal functors that

preserve set-indexed coproducts and jointly detect when an object of K is zero. Suppose that Si is

tt-stratified for all i ∈ I . If K satisfies the Nerves-of-Steel Conjecture and has a weakly Noetherian

spectrum, then the following are equivalent:

(a) K is tt-stratified

(b) K is h-stratified

(c) K is generated by the images of the right adjoints (fi)∗

This generalizes all the descent results in the literature, and provides a uniform approach for

developing new results, as we will lay out for Lie superalgebras in the following sections.
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C H A P T E R 4

L I E S U P E R A L G E B R A S A N D T H E I R

R E P R E S E N TAT I O N S

This chapter gives an introduction to Lie superalgebras and their representation theory. Throughout

this chapter the ground field is taken to be the complex numbers C. We begin by describing the gen-

eral idea of “super mathematics”. We define super vector spaces, explain basic constructions, and

then define superalgebras, and supermodules including Lie superalgebras and Lie supermodules.

We go on to introduce certain abelian subcategories of Lie supermodules. These categories we

describe are Frobenius, and from their data we explain how to define the stable categories which

are tensor triangulated.

4.1 “Super mathematics”: the idea and first definitions

“Super mathematics” is an informal term to describe the study of algebraic structures equipped with

a Z/2Z-grading. The following definitions also serve as examples to illustrate the general concept.

Definition 4.1.1. A super vector space is a Z/2Z-graded vector space V = V0̄ ⊕ V1̄. Given a

homogeneous element v ∈ Vi, the degree of v is denoted v̄ = i, where i ∈ Z/2Z. Homogeneous

elements of V0̄ are called even, and homogeneous elements of V1̄ are called odd.
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Let V and W be super vector spaces. Many of the usual constructions for vector spaces carry

over to the super setting. For example, the vector space of linear transformations Hom(V,W ) is a

super vector space by setting

Hom(V,W )0̄ = {ϕ | ϕ(Vi) ⊆ Wi}

Hom(V,W )1̄ = {ϕ | ϕ(Vi) ⊆ Wi+1̄}

where the subscripts are read modulo 2. The special case of this construction where W = C viewed

as a super vector space concentrated in degree 0̄ makes the dual space V ∗ into a super vector space.

Moreover, the usual vector space tensor product V ⊗W can be viewed as a super vector space by

taking

(V ⊗W )0̄ = (V0̄ ⊗W0̄)⊕ (V1̄ ⊗W1̄)

(V ⊗W )1̄ = (V0̄ ⊗W1̄)⊕ (V1̄ ⊗W0̄).

We remind the reader that here Hom means HomC and ⊗ means ⊗C.

Definition 4.1.2. A superalgebra is a super vector space A = A0̄ ⊕ A1̄ which is also a unital,

associative algebra whose bilinear multiplication A × A → A is such that AiAj ⊆ Ai+j , where

i, j ∈ Z/2Z; i.e., the multiplication in A respects the Z/2Z-grading.

Example 4.1.3. Let V be a super vector space. The endomorphisms of V denoted End(V ) :=

Hom(V, V ) form a superalgebra under composition.

Definition 4.1.4. Given a superalgebra A, an A-supermodule is a super vector space M = M0̄⊕M1̄

which is also a left A-module such that AiMj ⊆ Mi+j where i, j ∈ Z/2Z; i.e., the action of A on

M respects the Z/2Z-grading. Let M and N be A-supermodules. A supermodule homomorphism

is a module homomorphism that preserves the Z/2Z-grading.
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4.2 Lie superalgebras and their representations

Lie superalgebras are a class of superalgebras that arise in physics as a tool to describe the mathe-

matics of supersymmetry. They are the Z/2Z (“super”) analog of ordinary Lie algebras. We record

the definition here.

Definition 4.2.1. A Lie superalgebra is a super vector space g = g0̄ ⊕ g1̄ together with a bilinear

multiplication [−,−] : g⊗ g→ g called the superbracket which satisfies the following axioms:

1. Skew-supersymmetry: [x, y] = −(−1)x̄ȳ[y, x]

2. Super Jacobi identity: (−1)x̄z̄[x, [y, z]] + (−1)ȳx̄[y, [z, x]] + (−1)z̄ȳ[z, [x, y]] = 0

for homogeneous elements x, y, z ∈ g.

A Lie superalgebra g = g0̄ ⊕ g1̄ is called classical if there is a connected, reductive algebraic

group G0̄ such that Lie(G0̄) = g0̄, and if there is an action of G0̄ on g1̄ which differentiates to the

adjoint action of g0̄ on g1̄ If, in addition to being classical, g has a nondegenerate, invariant, super-

symmetric, even bilinear form, then g is called basic classical. The basic classical Lie superalgebras

were classified by Kac [Kac77].

Given a Lie superalgebra g, there is a universal enveloping superalgebra U(g) which satisfies

a super analog of the PBW theorem for Lie algebras. The category of g-supermodules has as

objects all left U(g)-supermodules. This means that g-supermodules are super vector spaces and

that the g-action is compatible with the Z/2Z-grading. Morphisms between g-supermodules are

even (i.e. degree preserving) morphisms in HomC(M,M ′) which satisfy f(xm) = (−1)f̄ x̄xf(m)

for all m ∈ M and all x ∈ U(g). This makes sense as stated only for homogenous elements, and

should be extended via linearity in general. Given two g-supermodules M,N , one can use the

coproduct and antipode of U(g) to give g-supermodule structures to the vector space tensor product

M ⊗N , and, when M is finite-dimensional, the contragradient dual M∗. Denote the category of

g-supermodules as g-sMod. Because morphisms in g-sMod are even, it is an abelian category. As
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convention and notation we consider Lie algebras as Lie superalgebras concentrated in degree 0̄,

and we refer to supermodules as modules when there is little room for confusion.

4.3 The categories C(g,g0̄) and F(g,g0̄)
and their stable categories

Given a basic classical Lie superalgebra one can consider the C(g,g0̄) which is the category whose

objects are g-modules that, when viewed as modules for the Lie algebra g0̄, are semisimple; i.e.,

are direct sums of finite-dimensional simple g0̄-modules. The full subcategory of C(g,g0̄) consisting

of only finite-dimensional modules is denoted by F(g,g0̄). Both the categories C(g,g0̄) and F(g,g0̄) are

abelian categories. Moreover, C(g,g0̄) and F(g,g0̄) are also Frobenius categories. In other words, these

categories have enough projective and injective objects, and projectives and injectives coincide.

This implies that one can form the stable module categories Stab(C(g,g0̄)) and stab(F(g,g0̄)). Objects

in the stable categories are the same as the objects in the underlying abelian categories from which

they are formed, but morphisms in the stable categories are equivalence classes of morphisms

where two morphisms are considered equivalent if their difference factors through a projective

module. The stable categories are triangulated categories, and the tensor product of modules gives

Stab(C(g,g0̄)) and stab(F(g,g0̄)) the structure of tensor triangulated categories. Moreover, one has

that Stab(C(g,g0̄)) is a rigidly-compactly generated TTC with full subcategory of compact rigid

objects stab(F(g,g0̄)). Let C denote the category C(g,g0̄), and let F denote the category F(g,g0̄). Given

modules M,N in F , the group of degree n extensions, ExtnF(M,N) can be realized via relative

Lie superalgebra cohomology for the pair (g, g0̄):

ExtnF(M,N) ∼= Extn(g,g0̄)(M,N) ∼= Hn(g, g0̄;M
∗ ⊗N).

There exists an explicit Koszul type resolution that can be used to compute relative Lie superalgebra

cohomology. An interesting feature that obtains when considering the relative cohomology ring

Ext•F(C,C) ∼= H•(g, g0̄;C) is that the cochains are uniformly zero. From this, BKN showed in
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[BKN10, Section 2.5] that there is isomorphism

H•(g, g0̄;C) ∼= S•(g∗1̄)
G0̄

of graded rings, and that the relative cohomology is a polynomial algebra [BKN10, Section 8.11].
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C H A P T E R 5

D E T E C T I N G S U B A L G E B R A S ,

S P L I T T I N G S U B A L G E B R A S , A N D

P R O J E C T I V I T Y

This chapter expands upon the previous one. We begin by introducing Boe, Kujawa, and Nakano’s

detecting subalgebras. The detecting subalgebras are useful because they have a simplified represen-

tation theory compared to general classical Lie superalgebras, but they still “determine” cohomology

in a sense that we will explain.

We proceed by defining Type I Lie superalgebras, and define the cohomological support variety.

As in modular representation theory of finite groups, the cohomological support variety admits a

“rank variety” description, and a modified version Dade’s Lemma holds.

Then, the condition of a Type I classical Lie superalgebra having an ample detecting subalgebra

is discussed. The reason for this condition has to do with projectivity upon restriction, and it turns

out that having an ample detecting subalgebra allows for a modified version of Chouinard’s theorem

in modular representation theory.
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Finally, we introduce Serganova and Sherman’s splitting subalgebras, which allow us to make

statements concerning projectivity for infinitely generated modules.

5.1 Detecting subalgebras

Let g = g0̄ ⊕ g1̄ be a basic, classical Lie superalgebra. A remarkable contribution of Boe, Kujawa,

and Nakano was to prove the existence of important subalgebras called detecting subalgebras

f = f0̄⊕ f1̄ ⊆ g which have much easier representation theory than g but which nonetheless “detect”

the relative (g, g0̄)-cohomology. Detecting subalgebras are constructed by considering the action

of the algebraic group G0̄ on g1̄. We recall briefly the parts of their construction that are needed.

View the set g1̄ as an affine variety with the Zariski topology. A point x ∈ g1̄ is called regular

if the orbit G0̄ · x has maximum possible dimension, and semisimple if G0̄ · x is closed in g1̄. The

action of G1̄ is called stable if g1̄ has an open dense subset consisting of semisimple points. If

there is an open dense subset of g1̄ such that the stabilizer subgroups of any two points in this set

are conjugate subgroups of G0̄, then the stabilizer of such a point is called a stabilizer in general

position. If the action of G0̄ on g1̄ is stable, then such an open set exists in g1̄. Elements of such an

open set are called generic. If the action of G0̄ on g1̄ is stable then g is said to be stable. If g is stable,

then there is necessarily a generic point x0 ∈ g1̄. Let H = StabG0̄
(x0) and N = NormG0̄

(H). Set

f1̄ = gH1̄ , and f0̄ = [f1̄, f1̄]. The Lie superalgebra f = f0̄⊕f1̄ is classical, and is a detecting subalgebra.

The sense in which detecting subalgebras determine cohomology is as follows. The inclusion f ⊆ g

induces a restriction homomorphism S•(f∗1̄)→ S•(f∗1̄) which induces an isomorphism

H•(g, g0̄;C)→ H•(f, f0̄;C)N

in cohomology.

Remark 5.1.1. In [BKN10], the authors construct two families of detecting subalgebras e and f of

g. The subalgebras e are not considered in this paper.
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5.2 Type I Lie superalgebras:

A Lie superalgebra is Type I if it admits a Z-grading g = g−1⊕g0⊕g1 concentrated in degrees−1,

0, and 1 with g0̄ = g0 and g1̄ = g−1⊕g1. Examples of Type I Lie superalgebras include the general

linear Lie superalgebra gl(m|n), as well as the simple Lie superalgebras of types A(m,n), C(n)

and P (n). These all have stable actions of G0̄ on g1̄ which yields Type I detecting subalgebras.

For this dissertation, it will be important to distinguish Type I classical Lie superalgebras that

contain a detecting subalgebra with favorable geometric properties.

Definition 5.2.1. Let g be a Type I classical Lie superalgebra with a detecting subalgebra f =

f−1 ⊕ f0 ⊕ f1. Then f is an ample detecting subalgebra if gj = G0 · fj for j = −1, 1.

As we will see in next section, there is an abundance of examples of Type I Lie superalgebras

with ample detecting subalgebras that encompass many cases of simple Lie superalgebras over C.

5.3 Examples of Lie Superalgebras with Ample Detecting Sub-

algebras

In this section, we will provide examples of Type I classical Lie superalgebras that contain an ample

detecting subalgebra. Many of these actions involving G0 on g±1 arise naturally in the context of

linear algebra. For a more detailed description of these actions, the reader is referred to [BKN11,

Section 3.8].

General Linear Superalgebras:

Let g = gl(m|n). As a vector space this is isomorphic to the set of m + n by m + n matrices.

For a basis, one can take the elementary matrices Ei,j where 1 ≤ i, j ≤ m + n. The degree zero

component is g0 ∼= gl(m)× gl(n) with corresponding reductive group G0
∼= GL(m)×GL(n).
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Constructions of detecting subalgebras for classical Lie superalgebras are explicitly described

in [BKN10, Section 8]. Set r = min(m,n). A detecting subalgebra is given by f = f−1 ⊕ f0̄ ⊕ f1

where f−1 is the span of {Em+i,i : i = 1, 2, . . . , r}, f1 is the span of {Ei,m+i : i = 1, 2, . . . , r}, and

f0̄ = [f1̄, f1].

The action of G0 on g−1 is given by (A,B).X = BXA−1 and on g1 by (A,B).X = AXB−1.

It is a well-known fact from linear algebra that the orbits representatives are the matrices of a given

rank in g±1. It follows that g±1 = G0 · f±1, and f is an ample detecting subalgebra.

Other Type A Lie Superalgebras:

The other Type A Lie superalgebras g are all Type I, and they all have g±1
∼= gl(m|n)±1. Fur-

thermore, one has f as given above for gl(m|n) as a subalgebra of g [BKN11, Sections 3.8.2 and

3.8.3].

When m ̸= n, g = sl(m|n) ⊆ gl(m|n) consists of the matrices of supertrace zero, and

G0̄ =
{
(A,B) ∈ GL(m)×GL(n) | det(A) det(B)−1 = 1

}
.

The G0̄-orbits are the same as the GL(m)×GL(n)-orbits, and f is an ample detecting subalgebra.

For the Lie superalgebra sl(n|n) has a one dimensional center given by scalar multiples of the

identity matrix, and one has

G0̄
∼=

{
(A,B) ∈ GL(n)×GL(n) | det(A) det(B)−1 = 1

}
.

For elements of g±1 with rank strictly less than n, the G0̄-orbits coincide with the GL(n)×GL(n)-

orbits. The orbits of full rank matrices form a one parameter family with each orbit containing a

unique matrix which is a scalar multiple of the identity. The orbit theory for the g = psl(n|n) case

is analogous to sl(n|n). Consequently, in both these setting the algebra f is ample.
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Type C Lie Superalgebras which are Type I:

In this case g = osp(2|2n) with G0̄
∼= C× × Sp(2n). One has g1 ∼= V2n, the natural module for

Sp(2n). The action of Sp(2n) is transitive on V2n ∖ {0}. One has an explicit detecting subalgebra

f = f−1⊕f0̄⊕f1 where dim f±1 = 1. The transitivity of the action of G0̄ on g1 shows that g1 = G0 ·f1.

A similar argument demonstrates that g−1 = G0 · f−1.

Type P Lie Superalgebras:

For Type P Lie superalgebras g = p̃(n) and g = p̃(n) one has an explicit detecting subalgebra

f = f−1 ⊕ f0̄ ⊕ f1 where f±1 contains matrices of all possible ranks.

Let g = p̃(n). Then G0̄
∼= GL(n) and g−1

∼= Λ2(V ∗) and g1 ∼= S2(V ) as G0̄-modules, where V

denotes the natural GL(n)-module. There are a finite number of orbits given again by the condition

on rank, and their closure relation forms a chain. This shows that f is ample.

Now let g = p(n) = [p̃(n), p̃(n)] be the simple Lie superalgebra of type P (n− 1). One has g−1

and g1 are as above but G0̄
∼= SL(n). This case follows the paradigm of sl(n|n). The GL(n)-orbits

corresponding to matrices of rank less than n in g±1 are also G0̄-orbits. The matrices of rank n

yield a one parameter family of orbits that have orbit representatives in f±1, which demonstrates the

ampleness of f.

5.4 Cohomological and Rank Varieties

We review the constructions in [BKN11, Section 3.2] for Type I Lie superalgebras. Let g = g−1 ⊕

g0⊕g1 be a Type I Lie superalgebra. Then g±1 are abelian Lie superalgebras. Consequently, U(g±1)

identifies with an exterior algebra, and the cohomology ring for these superalgebras identifies with

the symmetric algebra on the dual of g±1. Set R±1 = H•(g±1,C) ∼= S•(g∗±1). Let M be a finite-
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dimensional U(g±1))-module and let

JM =
{
r ∈ R±1 | r.m = 0 for all m ∈ Ext•U(g±1)

(M,M)
}

The (cohomological) support variety of M is defined as

Vg±1(M) = MaxSpec (R±1/JM) .

Moreover, the support variety Vg±1(M) is canonically isomorphic to the following rank variety:

V rank
g±1

(M) = {x ∈ g±1 |M is not projective as a U(⟨x⟩)-module} ∪ {0}.

These varieties satisfy many of the important properties of support theory that include (i) the

detection of projectivity over U(g±1) and (ii) the tensor product property.

For a detecting subalgebra f = f−1 ⊕ f0 ⊕ f1, one can apply the prior construction to obtain

support varieties for M ∈ F(f,f0), namely Vf±1(M) and V rank
f±1

(M).

5.5 Projectivity for Type I Lie Superalgebras

For Type I classical Lie superalgebras, one can construct Kac and dual Kac modules (cf. [BKN11,

Section 3.1]). A module in F(g,g0̄) is tilting if and only if it has both a Kac and a dual Kac filtration.

The use of these filtrations was a key idea in proving the following criteria for projectivity in the

category F(g,g0̄) (see [BKN11, Section 3]).

Theorem 5.5.1. Let g be a Type I classical Lie superalgebra and M ∈ F(g,g0̄). The following are

equivalent.

(a) M is a projective module in F(g,g0̄)

(b) M is a tilting module
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(c) Vg1(M) = {0} and Vg−1(M) = {0}

(d) Vrank
g1

(M) = {0} and Vrank
g−1

(M) = {0}

It should be noted that for an arbitrary (infinitely generated) module M ∈ C(g,g0̄), one can have

projectivity over U(g±1), but M may not be projective in C(g,g0̄). For example, if g = gl(1|1), one

can take an infinite coproduct of projective modules in the principal block P = ⊕m∈ZP (m| −m).

By making suitable identifications, one can form an (infinite) “zigzag module” (of radical length 2)

that has a Kac and dual Kac filtration, which is projective upon restriction to U(g±1). The zigzag

module is not projective in C(g,g0̄) because it has radical length less than 4. This construction can

also be performed for projective modules in the principal block for the restricted enveloping algebra

of sl2 (cf. [Pol67]), and has been observed in other situations by Cline, Parshall and Scott [CPS88,

Example 3.2].

5.6 Projectivity via Ample Detecting Subalgebras

The following theorem allows us connect projectivity of a module in F(g,g0̄) to projectivity when

restricting the module to the detecting subalgebra.

Theorem 5.6.1. Let g be a Type I classical Lie superalgebra with an ample detecting subalgebra f.

Let M ∈ F(g,g0̄). Then M is projective in F(g,g0̄) if and only if M is projective in F(f,f0̄).

Proof. Let M be projective in F(g,g0̄). Then by Theorem 5.5.1, Vg±1(M) = {0}. It follows that

Vf±1(M) = {0} and by Theorem 5.5.1, M is a projective module in F(f,f0̄).

Conversely, assume that M is a projective module in F(f,f0̄). Then Vf±1(M) = {0}. Let y ∈

Vg1(M). Then y = g · x where g ∈ G0̄ and x ∈ f1 since f is an ample detecting subalgebra. Since

M is a rational G0̄-module, Vg1(M) is G0̄-stable. This implies that x ∈ Vg1(M) and x ∈ Vf1(M),

and x = 0. Consequently, Vg1(M) = {0}, and by the same reasoning Vg−1(M) = {0}. One can

now conclude by Theorem 5.5.1 that M is a projective module in F(g,g0̄).
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5.7 Splitting subalgebras

In order to make use of the Balmer spectrum computations from [BKN17], and the Nerves-of-

Steel result from [HN24], we need to ensure that our detecting subalgebras satisfy an additional

condition. We need that they are so-called splitting subalgebras. The idea of splitting subalgebras

was introduced by Serganova and Sherman in [SS23]. In the original paper the authors work in

the context of the ambient algebraic supergroup, but for our purposes it will be useful to rephrase

the definitions somewhat into the context of Lie superalgebras. The following definition is from

[HN24] and is equivalent to the original definition.

Definition 5.7.1. Let g = g0̄⊕ g1̄ be a classical Lie superalgebra and G be an algebraic supergroup

scheme with Lie G = g. Moreover, let Z ≤ G be a subsupergroup with z = z0̄ ⊕ z1̄ being classical

and Lie Z = z. Then z is a splitting subalgebra if and only if the trivial module C is a direct

summand of indG
ZC.

The following theorem summarizes results in [SS23, Section 2]. The approach presented

here is slightly different and uses the work for BBW parabolic subgroups by D. Grantcharov, N.

Grantcharov, Nakano and Wu [Gra+21].

Theorem 5.7.2. Let g be a classical Lie superalgebra and z be a splitting subalgebra. Let M , N be

modules in C(g,g0̄).

(a) Rj indG
Z C = 0 for j > 0.

(b) M is projective in C(g,g0̄) if and only if M when restricted to z is projective in C(z,z0̄).

(c) For all n ≥ 0, Extn(g,g0̄)(M,N ⊗ indG
Z C) ∼= Extn(z,z0̄)(M,N).

(d) For all n ≥ 0, the restriction map res : Extn(g,g0̄)(M,N)→ Extn(z,z0̄)(M,N) is injective.

Remark 5.7.3. Serganova and Sherman proved that the detecting subalgebra f for classical Lie

algebras of Type A are splitting subalgebras. [SS23, Theorem 1.1].
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C H A P T E R 6

N I L P O T E N C E T H E O R E M S F O R L I E

S U P E R A L G E B R A R E P R E S E N TAT I O N S

6.1 Stratification for detecting subalgebras

We now turn to the problem of showing BIK stratification for the detecting subalgebras. In fact,

we are able to work in a slightly more general setting. Specifically, let z = z0̄ ⊕ z1̄ be a classical

Lie superalgebra such that z0̄ is a torus, and [z0̄, z1̄] = 0. The Lie superalgebras satisfying these

hypotheses encompass all of the detecting subalgebras introduced in the previous section.

Let R := H•(z, z0̄;C). In [BKN17], the authors point out that Stab(C(z,z0̄)) is an R-linear

triangulated category. Also, since dimProjR is finite, the local-global principle holds. It was

conjectured by BKN that R stratifies Stab(C(z,z0̄)). This result would recover their computation of

the Balmer spectrum, but instead other methods were used. The goal of this section is to pursue the

stratification avenue, and to prove the following theorem.

Theorem 6.1.1. The tensor-triangulated category Stab(C(z,z0̄)) is stratified in the sense of BIK by

the action of the relative Lie superalgebra cohomology ring H•(z, z0̄;C) ∼= S•(z1̄
∗).
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Proof. As notation let K = Stab(C(z,z0̄)), let C = C(z,z0̄), and let R = H•(z, z0̄;C). Because of the

previous remarks, it remains only to check the minimality condition. It turns out though, that it is

not convenient to check minimality for K directly. The following argument follows closely that

of [BIK11b, Section 5.2] where the category Stab(kE) is considered, where k is an algebraically

closed field of characteristic two, and E is an elementary abelian 2-group. The idea is to reduce the

problem to a different TTC where the result is known via a version of Neeman’s theorem.

As a first step in this direction we connect C to the category of supermodules for the superalgebra

Λ•(z1̄) which is the exterior algebra on z1̄ viewed as a superalgebra by declaring the generators

to be odd. This is done by observing that because z0̄ is a torus which commutes with z, the

weight space decomposition for a z-supermodule viewed as a module over z0̄ is a decomposition as

z-supermodules. This gives a decomposition of the category C =
⊕

λ∈z∗
0̄
Cλ.

The principal block C0 consists of modules which are annihilated by the ideal I of U(z) gen-

erated by U(z0̄). Therefore, since U(z)/I ∼= Λ•(z1̄), there is an isomorphism of categories

C0 ∼= Λ•(z1̄)-sMod, where again Λ•(z1̄) is the exterior algebra on z1̄ viewed as a superalgebra

by declaring the generators to be odd. This equivalence passes to an equivalence at the level of

the stable module categories: K0
∼= Stab(Λ•(z1̄)-sMod). But from this equivalence one sees that

it suffices to classify localizing subcategories for the principal block because there is a natural

bijection between localizing subcategories for K and localizing subcategories for K0.

Next, we observe that a similar problem obtains as the one that occurs for elementary abelian

groups in modular representation theory. Namely, the graded endomorphism ring of the unit, C,

in C is not the cohomology ring R. Instead, it is an analog of the Tate cohomology ring, which is

typically not Noetherian. To get around this problem we instead consider the homotopy category

of injectives K(Inj C(z,z0̄)). In [Kra05], the author introduces a recollement

Kac(Inj C(z,z0̄)) K(Inj C(z,z0̄)) D(Cg,g0̄)
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that gives an equivalence of tensor triangulated categories between the full subcategory ofK(Inj C(z,z0̄))

consisting of acyclic complexes Kac(Inj C(z,z0̄)) ≃ Stab(C(z,z0̄)).

Now consider the universal enveloping superalgebra of the quotient U(z/z0̄). Then by the

previous paragraph there is an isomorphism of C-algebras U(z/z0̄) ∼= Λ•(z∗
1
). Therefore, there is

an isomorphism of rings Λ•(z∗
1
) ∼= C[z1, . . . , zr]/(z2i ). Choose a basis {y1, . . . , yr} of z∗

1
so that

R ∼= C[y1, . . . , yr] is an isomorphism of rings, and view R as a differential graded algebra with

zero differential and |yi| = 1 for each i.

The C-algebra U(z/z0̄) ⊗C R is graded with degree i component U(z/z0̄) ⊗C Ri and with

multiplication defined by (a⊗ s)(b⊗ t) = ab⊗ st. Consider U(z/z0̄)⊗C R as a differential graded

algebra with zero differential. The degree one element δ defined as

δ =
r∑

i=1

zi ⊗C yi.

satisfied δ2 = 0. Let J denote the differential graded module over U(z/z0̄) ⊗C R with graded

module structure and differential given by

J = U(z/z0̄)⊗C R, d(e) = δe.

Since J is a differential graded module over U(z/z0̄)⊗C R, for each differential graded module

M overU(z/z0̄) there is an induced structure of a differential gradedR-module on HomU(z/z0̄)(J,M).

Then the functor

HomU(z/z0̄)(J,−) : K(Inj C(z,z0̄))→ D(R)

to the derived category is an equivalence of triangulated categories.

To see this first observe that as a complex, J consists of injective U(z/z0̄)-modules. This follows

from the fact that U(z/z0̄) is self-injective. Finally, applying a version of Neeman’s Theorem to

D(R) (c.f. [BIK11b, Section 5.2.3]) yields the result

37



Theorem 6.1.1 gives the following corollary.

Corollary 6.1.2. Tensor ideal localizing subcategories of Stab(C(z,z0̄)) are in bijection with subsets

of the Balmer spectrum Spc(Stab(C(z,z0̄))) ∼= ProjH•(z, z0̄;C).

6.2 Homological Residue Fields

In this section, we recall Balmer’s construction [Bal20] of homological residue fields. One of the

main questions in tensor triangular geometry is to find the appropriate tensor triangular analog to

ordinary fields in commutative algebra. In particular, given K, how does one construct functors

F : K → F to its “residue fields”? This question is explored in [BKS19], and some major

takeaways are that there are several important properties one would like the notion of field to have.

Moreover, there are many examples of tensor triangulated categories that should be considered

as tensor triangulated fields. However, it is not clear exactly what the definition should be. The

following definition was proposed in [BKS19, Definition 1.1], and will be the running definition in

this work.

Definition 6.2.1. A non-trivial (big) tensor triangulated category F is a tensor triangulated field if

every object of F is a coproduct of compact-rigid objects of Fc, and if every non-zero object in F

is tensor-faithful.

While this definition encapsulates many of the desired properties of fields, there is not yet a

purely tensor triangular construction of them analogous to extracting residue fields in commutative

algebra. Instead, Balmer uses the homological spectrum to construct homological tensor functors

to abelian categories:

Definition 6.2.2. Given a homological prime B ∈ Spch(K), the homological residue field corre-

sponding to B is the functor

hB = QB ◦ h : K ↪→ A = Mod -K ↠ A(K,B) :=
Mod -K
⟨B⟩
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composed of the Yoneda embedding followed by the Gabriel quotient.

A natural question at this point is whether or not homological residue fields are related to the

tensor triangular fields of Definition 6.2.2. The answer is yes, and an explicit connection useful for

the computation of homological residue fields in examples is the content of the following theorem

stated in [BC21, Lemma 2.2].

Theorem 6.2.3. Given a big tensor-triangulated category K, a tensor-triangulated field F, and a

monoidal exact functor F : K→ F with right adjoint U, one has the following diagram:

K Mod-Kc

Mod-Kc/Ker(F̂ ) = AB

F Mod-Fc

F U

h

F

h

F̂ Û

U

Q

R

where F̂ is the exact cocontinuous functor induced by F, the functor Q is the Gabriel quotient with

respect to Ker(F̂ ) and the functor F is induced by the universal property, hence F̂ = FQ and F is

exact and faithful.

The adjunctions F ⊣ U, F̂ ⊣ Û , F ⊣ U, and Q ⊣ R, are depicted with F̂ h = hF and Ûh = hU .

Moreover, B := Ker(F̂ )∩Afp is a homological prime and Ker(F̂ ) = ⟨B⟩ and hB = Q◦h : K→ AB

is a homological residue field of K.

6.3 Nilpotence and Colimits

In this section we clarify the notions of nilpotence in the stable categories of Lie superalgebra

representations and relate them to colimit constructions in module categories and homotopy colimits

in the stable categories. We first discuss the concept of nilpotence. Let g = g0̄ ⊕ g1̄ be a classical

Lie superalgebra.

Definition 6.3.1. Let M and N be modules in C(g,g0̄).
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(a) A map f : M → N is called null if f = 0 in Stab(C(g,g0̄)); i.e., f is null if and only if f

factors through a projective module.

(b) A map f : M → N is called tensor nilpotent if there exists some n ∈ Z≥0 such that the

tensor power f⊗n : M⊗n → N⊗n is null.

In the case when M is compact, one can transform the condition of the nilpotence of the map f

to the adjoint map.

Lemma 6.3.2. Let M be a compact object. A map f : M → N is tensor nilpotent if and only if

the adjoint map f̂ : C→M∗ ⊗N is tensor nilpotent.

Proof. Since f is tensor nilpotent, there exists some n such that f⊗n : M⊗n → N⊗n factors

through a projective. But since tensor products of projective modules are projective, tensoring with

(M∗)⊗n gives that f̂⊗n factors through a projective; i.e., that f̂ is tensor nilpotent.

For the converse, if f̂ is tensor nilpotent, then f̂ factors through a projective. By the same

reasoning, tensoring with M⊗n gives a factorization of f via a projective.

Next we need to recall the definition of a colimit in the category C(g,g0̄) and a homotopy colimit

in its stable module category.

Definition 6.3.3. Let g = g0̄ ⊕ g1̄ be a classical Lie superalgebra.

(a) Let

θ : N1
f1→ N2

f2→ N3
f3→ . . .

be a system of modules and homomorphisms in C(g,g0̄). Let γ :
⊕∞

i=1 Ni →
⊕∞

i=1 Ni be

defined by γ(m) = m− fi(m) whenever m ∈ Ni. The colimit of the system is the module

given by coker γ.

(b) Let

θ : X1
f1→ X2

f2→ X3
f3→ . . .
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be a system of modules and homomorphisms in Stab(C(g,g0̄)). The homotopy colimit of the

system is the module obtained by completing the map

⊕
Xi

1−f→
⊕

Xi

to a triangle:

⊕
Xi

1−f→
⊕

Xi → hocolim(Xi)→ .

The following lemmas are given in [Ric97], the second of which is modified here for Lie

superalgebra representations.

Lemma 6.3.4. Let X1
α1→ X2

α2→ · · · be a sequence of maps in a triangulated category with count-

able direct sums. If for each i > 0 there exists k > i such that α1 . . . αk = 0, then hocolim(Xi) ∼= 0.

The next lemma clarifies the relationship between homotopy colimits in the stable category

with colimits in the ordinary module category.

Lemma 6.3.5. LetX1
α1→ X2

α2→ · · · be a sequence of modules and homomorphisms in Stab(C(g,g0̄)).

The colimit colim(Xi) in C(g,g0̄) is isomorphic in Stab(C(g,g0̄)) to the homotopy colimit hocolim(Xi).

These two lemmas together allow one to derive the analog of [BC18, Lemma 2.3]

Theorem 6.3.6. A map f : k → N is ⊗-nilpotent if and only if the colimit of

θ : k
f−→ N

f⊗1−→ N ⊗N
f⊗1⊗1−→ N ⊗N ⊗N −→ · · ·

is projective.

Proof. First suppose that f : k → N is ⊗-nilpotent. Then there exists some n for which f̂ : k →

N⊗n is null. Therefore, Lemma 6.3.4 implies that the homotopy colimit of the system viewed in
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the stable category is isomorphic to zero, which is to say that the colimit of the system is projective

by Lemma 6.3.5.

Now suppose that the colimit of the system is projective. Since our category is Frobenius, the

colimit is injective as well, and the map from k to the colimit factors through the injective hull I(k)

of k which is a finite-dimensional projective module. But then the map from I(k) to the colimit

must factor through some finite stage of the system. In other words, for some n > 0 the composition

f : k → N⊗n is null, which implies that f is ⊗-nilpotent.

6.4 Nilpotence Theorems

Nilpotence theorems have played an important role in cohomology and representation theory. Dev-

inatz, Hopkins, and Smith showed in [DHS88] that a map between finite spectra which gets an-

nihilated by all Morava K-theories must be tensor-nilpotent. Neeman [NB92] and Thompson

[Tho97] proved nilpotence theorems for maps in derived categories using ordinary residue fields,

and Benson, Carlson, and Rickard [BCR97] proved nilpotence theorems in modular representation

theory, where the residue fields are given by cyclic shifted subgroups, or, in the case of finite group

schemes, π-points [FP07]. With these examples in mind, Balmer used homological residue fields

to present a unified treatment that applies to all tensor triangulated categories [Bal20]. In the case

where Kc sits inside of a big rigidly-compactly generated tensor triangulated category K, one can

make a connection to the homological spectrum. In particular, he proved the following theorem

[Bal20, Corollary 4.7]:

Theorem 6.4.1. Let K be a rigidly-compactly generated “big” tensor-triangulated category with

full subcategory of compact rigid objects Kc. Let f : x → Y be a morphism in K with x ∈ Kc

and Y arbitrary. If h(f) = 0 in A(Kc;B) for every homological residue field hB, then there exists

n ≥ 1 such that f⊗n = 0 in K.
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The nilpotence theorem stated above can combined with the theory of detecting subalgebras

developed by Boe, Kujawa, and Nakano, to the study of nilpotence in the stable categories of Lie

superalgebra representations. The following nilpotence theorem via homological residue fields is a

direct translation of Theorem 6.4.1 in the context of superalgebra representations.

Theorem 6.4.2. Let g = g0̄⊕g1̄ be a classical Lie superalgebra, and let f : M → N be a morphism

in Stab(C(g,g0̄)) with M ∈ stab(F(g,g0̄)). Suppose that hB(f) = 0 for all B ∈ Spch(stab(F(g,g0̄))).

Then there exists n ≥ 1 such that f⊗n = 0 in Stab(C(g,g0̄)).

Proof. This is immediate since stab(F(g,g0̄)) sits inside of Stab(C(g,g0̄)) as the compact objects:

stab(F(g,g0̄)) = (Stab(C(g,g0̄)))
c. Moreover, the compact objects and the rigid objects coincide and

generate Stab(C(g,g0̄)) as a tensor-triangulated category. This is the setup of Theorem 6.4.1.

6.5 A Nilpotence Theorem via Detecting Subalgebra

The salient feature first discovered about detecting subalgebras was that these subalgebras detect

nilpotence in cohomology. We will now show that a remarkable feature for classical Lie subalgebras

with a splitting subalgebras is that nilpotence of arbitrary maps in the stable module category is

governed by nilpotence when restricting the the map to a splitting subalgebra. In particular, to show

that a morphism f : M → N is nilpotent in the big stable module category where M is compact,

it is enough to check vanishing on those homological residue fields constructed via homological

primes from the stable categories of modules over the splitting subalgebra.

Theorem 6.5.1. Let g = g0̄ ⊕ g1̄ be a classical Lie superalgebra with a splitting subalgebra

z = z0̄ ⊕ z1̄ ⊆ g. Let f : M → N be a morphism in Stab(C(g,g0̄)) with M ∈ stab(F(g,g0̄)).

Let res : Stab(C(g,g0̄)) → Stab(C(z,z0̄)) be the usual restriction functor. If hB(res(f)) = 0 for all

B ∈ Spch(stab(F(z,z0̄)), then there exists n ≥ 1 such that f⊗n = 0 in Stab(C(g,g0̄)).

Proof. By our hypothesis, hB(res(f)) = 0 for all B ∈ Spch(stab(F(z,z0̄)). Theorem 6.4.2 implies

that res(f) is tensor nilpotent in Stab(C(z,z0̄)).
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It follows that res(f̂) : C→M∗ ⊗N is tensor nilpotent in Stab(C(z,z0̄)), and by Theorem 6.3.6

its associated colimit is projective in C(z,z0̄). Therefore, the colimit as an object in C(g,g0̄) is projective

by part (b) of Theorem 5.7.2. Invoking Theorem 6.3.6 again implies that f̂ is tensor nilpotent, thus

f is tensor nilpotent.

44



C H A P T E R 7

T H E N E RV E S - O F - S T E E L C O N J E C T U R E

A N D L O C A L I Z I N G S U B C AT E G O R I E S I N

T Y P E A

The goals of this section are to determine the homological spectrum for stab(F(z,z0)
) and stab(F(g,g0)

),

where g is a classical Lie superalgebra with splitting subalgebra z. We also consider the comparison

map defined in Section 3.5.

7.1 Stratification and the Comparison Map

The first result we state involves using the classification of localizing subcategories for the detecting

subalgebras from the previous section in order to verify the Nerves-of-Steel Conjecture in this

setting. We state the theorem with the most general hypothesis.

Theorem 7.1.1. Let z = z0̄ ⊕ z1̄ be a classical Lie superalgebra with z0̄ a torus and [z0̄, z1̄] = 0.

Then the comparison map

ϕ : Spch(stab(F(z,z0)
)→ Spc(stab(F(z,z0)

))

45



is a bijection.

Proof. Since stab(F(z,z0̄)) is rigid, the map ϕ is surjective. The injectivity of ϕ follows from the

argument outlined in [Bal20, Example 5.13]. The main point is to use the classification of local-

izing subcategories of Stab(C(z,z0̄)) and the existence of pure injective objects. See also [BKS19,

Corollary 4.26].

Remark 7.1.2. A more general argument showing that BIK stratification and tt-stratification imply

the Nerves-of-Steel Conjecture can be found in [BHS23a, Theorem 4.7].

7.2 Identifying the Homological Spectrum

Let g be a classical Lie superalgebra and z be a detecting subalgebra in g. We will need to work with

a field extension K of C such that the transcendence degree is larger than the dimension of z. Note

that this is the analogous setup as in [BC21, Example 3.9]. The stable module categories involved

will be viewed over the field extension K. Let Px be the prime ideal in Proj(S•(z∗1̄)) associated

with the “generic point” x (cf. [BCR96, Sections 2 and 3] for an explanation of this terminology).

For x ∈ z1̄, with z1̄ viewed as a vector space over K, let ⟨x⟩ denote the Lie subsuperalgebra

generated by x. One has U(⟨x⟩) is either K[x]/(x2) or U(q(1)). In either case, the blocks are either

semisimple or have finite representation type, and one can verify that Stab(C(⟨x⟩,⟨x⟩0̄)) is a tensor

triangular field. For x ∈ z1̄, one has two monoidal exact functors given by restriction:

πg
x : Stab(C(g,g0̄))→ Stab(C(⟨x⟩,⟨x⟩0̄)) (7.2.1)

πz
x : Stab(C(z,z0̄))→ Stab(C(⟨x⟩,⟨x⟩0̄)) (7.2.2)

Let res : Stab(C(g,g0̄))→ Stab(C(z,z0̄)) be the natural functor obtained by restricting g-modules

to z-modules. Then πg
x = πz

x ◦ res for all x ∈ z1̄.
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Now one can apply Theorem 6.2.3 (where F = πg
x and πz

x), to obtain Bx a homological prime

(resp. B′
x) associated to πg

x (resp. πz
x). Similarly, let hBx (resp. hB′

x
) be the homological residue field

corresponding to Bx (resp. B′
x).

The goal now is the show that {Bx}x∈z1̄ contains all of the homological primes. Our main tool

is the following result given by [Bal20, Theorem 5.4].

Theorem 7.2.1. Let K be a big tensor-triangulated category which is rigidly-compactly generated

by the full subcategory of compact objects Kc. Consider a family E ⊆ Spch(Kc) of points in the

homological spectrum. Suppose that the corresponding functors

{
hB : K→ A(Kc;B)

}
B∈E

collectively detect ⊗-nilpotence in the following sense: If f : x→ Y in K is such that x ∈ Kc and

hB(f) = 0 for all B ∈ E then f⊗n = 0 for some n ≥ 1. Then we have E = Spch(Kc).

We are now ready to provide conditions on when one can identify a collection of homological

primes that detect nilpotence on stab(F(g,g0̄)).

Theorem 7.2.2. Let g = g0̄⊕g1̄ be a classical Lie superalgebra and z ⊆ g be a Lie subsuperalgebra.

Denote by G, G0̄ and Z the associated supergroup (schemes) such that g = LieG, g0̄ = LieG0̄ and

z = LieZ. Set N = NormG0̄
(z1̄). Assume that

(a) z = z0̄ ⊕ z1̄ with z0̄ a torus and [z0̄, z1̄] = 0;

(b) Z is a splitting subgroup of G.

Then E/N = {Bx : x ∈ z1̄}/N (i.e., a set of N -orbit representatives) detects nilpotence in

stab(F(g,g0̄)).

Proof. The idea of the proof is to find a set of homological primes E that detects nilpotence in

Stab(C(g,g0̄)). Then one can apply Theorem 7.2.1 (e.g., [Bal20, Theorem 5.4].)
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The first step is to compare homological residue fields for g and z. If f : M → N is in

Stab(C(g,g0̄)) with M compact then one can compare the diagrams for hBx and hB′
x

to conclude the

following.

(1) If hBx(f) = 0 then hB′
x
(res(f)) = 0 for x ∈ z1̄.

Now one can apply the stratification result for detecting subalgebras, Theorem 7.1.1, to con-

clude that {B′
x : x ∈ z1̄} are the homological primes for stab(F(z,z0̄)). Therefore, by (1) and

Theorem 6.4.2, one has

(2) If hB′
x
(res(f)) = 0 for all x ∈ z1̄ then res(f) : M → N is ⊗-nilpotent in Stab(C(z,z0)).

Applying Theorem 6.5.1 since z is a splitting subalgebra of g, one can conclude that f : M → N

is ⊗-nilpotent in Stab(C(g,g0)). Let E = {Bx : x ∈ z1̄}/N . Since M is a G0̄-module, it follows

that the functors πg
x (resp. πg

nx) will provide the same decomposition of M in Stab(C(⟨x⟩,⟨x⟩0̄))

(resp. Stab(C(⟨nx⟩,⟨nx⟩0̄))). By considering Theorem 6.2.3, it follows that hBx(f) = 0 if and only if

hBnx(f) = 0. Therefore, E/N detects nilpotence.

In the previous theorem, one can state that E/N = Spch(stab(F(g,g0̄))). However, with the

definition of E/N there are certain homological primes that might be identified in the set. We

will show in the following section that different N -orbit representatives yield different elements in

Spch(stab(F(g,g0̄))).

7.3 The Nerves-of-Steel Conjecture

There are noticeable differences between the stable module category for finite group schemes versus

the stable module category for Lie superalgebras. For example, the map:

Spc(stab(F(g,g0̄)))→ Proj(H•(g, g0̄;C)) (7.3.1)
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is not always a homeomorphism (e.g., when g = gl(m|n)). In general, the cohomology ring

H•(g, g0̄,C) does not stratify Stab(C(g,g0̄)), and there are many examples where the support theory

does not detect projectivity. This is the main reason one needs to use the cohomology of the

detecting subalgebra to realize the homological spectrum and the Balmer spectrum.

Boe, Kujawa and Nakano [BKN17] showed that for g = gl(m|n), one has a homeomorphism:

Spc(stab(F(g,g0̄)))
∼= N -Proj(H•(f, f0̄;C)) (7.3.2)

where f is a detecting (splitting) subalgebra of g and N is the normalizer of f1̄ in G0̄. From this

example, it is clear that in order to compute the Balmer spectrum for Lie superalgebras one needs

to find a suitable replacement for the cohomology ring.

From Section 3.5, when one has a splitting subalgebra z of g, one can compute the homological

spectrum and show there is a surjection:

Spch(stab(F(g,g0̄)))→ N -Proj(H•(z, z0̄,C)) (7.3.3)

In other words, since F(g,g0̄) is rigid, the comparison map

ϕ : Spch(stab(F(g,g0̄)))→ Spc(stab(F(g,g0̄))) (7.3.4)

is surjective. Our goal is to use the prior calculation of the homological spectrum to give conditions

on when the Nerves-of-Steel Conjecture holds (i.e., when ϕ is bijective).

We can now identify the homological spectrum and the Balmer spectrum for classical Lie

superalgebras with a splitting subalgebra under a suitable condition on realization of supports.

Theorem 7.3.1. Let g be a classical Lie superalgebra with a splitting, detecting subalgebra z ∼=

z0̄ ⊕ z1̄. Assume that

(i) z = z0̄ ⊕ z1̄ where z0̄ is a torus and [z0̄, z1̄] = 0.
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(ii) Given W an N -invariant closed subvariety of Proj(S•(z∗1̄)), there exists M ∈ stab(F(g,g0̄))

with V(z,z0̄)(M) = W .

Then

(a) There exists a 1-1 correspondence

{thick tensor ideals of stab(F(g,g0̄))} ↔ Xsp

where X = N -Proj(S•(z1̄)), and Xsp is the set of specialization closed sets of X .

(b) There exists a homeomorphism η : N -Proj(S•(z1̄))→ Spc(stab (F (g,g0̄)
)).

(c) The comparison map ϕ : Spch(stab(F(g,g0̄)))→ Spc(stab(F(g,g0̄))) is bijective.

Proof. (a) and (b) follow by [BKN17, Theorems 3.4.1, 3.5.1]. For part (c), let ρ = η−1 which is

given by a concrete description in [NVY24, Corollary 6.2.4]. Consider the following diagram of

topological spaces:

Spch(stab(F(z,z0̄))) Spc(stab(F(z,z0̄))) Proj(S•(z1̄))

Spch(stab(F(g,g0̄))) Spc(stab(F(g,g0̄))) N -Proj(S•(z1̄))

ϕ′

θ

ρ′

π̂ π

ϕ ρ
(7.3.5)

One has that ρ′ is a homeomorphism and ϕ′ is a bijection for z. From part (b), the map ρ is a

homeomorphism. The maps π and π̂ are surjections. The map θ sends Bx to B′
x in E/N . Suppose

that ϕ(Bx1) = ϕ(Bx2). Then using the commutativity, one has Px1 = Px2 in N -Proj(S•(z1̄)) which

means that x1 and x2 are N -conjugate. This proves that Bx1 = Bx2 in E/N .

We remark that the verification of the Nerves-of-Steel Conjecture in the previous theorem uses

stratification results only for Stab(C(z,z0̄)), unlike the the case for finite group schemes where the
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stratification is needed for StMod(kG). Because the assumption needed to prove the Nerves-of-

Steel Conjecture will come up again in the next section, we state it here.

Assumption 7.3.2. Suppose g be a classical Lie superalgebra with a splitting, detecting subalgebra

z ∼= z0̄ ⊕ z1̄. Assume that

(i) z = z0̄ ⊕ z1̄ where z0̄ is a torus and [z0̄, z1̄] = 0.

(ii) Given W an N -invariant closed subvariety of Proj(S•(z∗1̄)), there exists M ∈ stab(F(g,g0̄))

with V(z,z0̄)(M) = W .

Theorem 7.3.3. Assumption 7.3.2 holds for Lie superalgebras of Type A.

Proof. For g = gl(m|n) this was done by Boe, Kujawa, and Nakano in [BKN17, Theorem 7.21.1].

The case g = sl(m|n) is [HN24, Theorem 8.3.2].

7.4 Stratification for Type A Lie superalgebras

Now, we turn our attention to Stab(C(g,g0̄)), where g is a classical Lie superalgebra which satisfies

Assumption 7.3.2. Boe, Kujawa, and Nakano computed the Balmer spectrum to be N -Proj(H•(z, z0̄;C)),

and showed that Stab(C(g,g0̄)) is not stratified in the sense of BIK by the cohomology ring H•(g, g0̄;C).

The natural question then is whether or not Stab(C(g,g0̄)) is tt-stratified or h-stratified. That for

Stab(C(g,g0̄)) these notions are equivalent and satisfied is Theorem A, which we restate now for

convenience.

Theorem A. Let g be a classical Lie superalgebra with a splitting, detecting subalgebra z ⊆ g

and which satisfies the realization condition of Assumption 7.3.2. The tensor triangulated cate-

gory Stab(C(g,g0̄)) is tt-stratified by the Balmer spectrum Spc(stab(F(g,g0̄))), and tt-stratification is

equivalent to h-stratification.
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Proof. First note that by Theorem 7.3.1, the Nerves-of-Steel Conjecture holds for stab(F(g,g0̄)).

Therefore, since Spc(stab(F(g,g0̄))) is Noetherian, the equivalence of tt-stratification and h-stratification

of Stab(C(g,g0̄)) follows from Theorem 3.7.2.

Next, in order to show that the equivalent conditions of tt-stratification and h-stratification hold

for Stab(C(g,g0̄)), we show that Stab(C(g,g0̄)) is h-stratified. For this, our tool is Theorem 3.7.3. For

this step, we need to work over an extension field K of C such that the transcendence degree is

larger than the dimension of z (c.f. [HN24, Section 6.2] or [BC21, Example 3.9]). Consider the

family of monoidal, exact functors

{
πg
x : Stab(C(g,g0̄))→ Stab(C(⟨x⟩,⟨x⟩0̄))

}
x∈z1̄

, (7.4.1)

where ⟨x⟩ denotes the Lie subsuperalgebra generated by x and is either a one-dimensional abelian

Lie subsuperalgebra, or a subsuperalgebra isomorphic to the queer Lie superalgebra q(1). In any

case, the relevant fact is that for each x ∈ z1̄, Stab(C(⟨x⟩,⟨x⟩0̄)) is BIK stratified, and therefore tt-

stratified and h-stratified. Moreover, the collection of functors in 7.4.1 jointly detect when an object

of Stab(C(g,g0̄)) is zero. Thus, in order to prove that Stab(C(g,g0̄)) is h-stratified, we need to show

that Stab(C(g,g0̄)) is generated by the images of the right adjoints of the functors in 7.4.1.

It turns out to be convenient to work in the context of the ambient algebraic supergroup scheme.

Let G denote the ambient algebraic supergroup scheme such that Lie(G) = g, and let Z ≤ G be a

subsupergroup scheme such that Lie(Z) = z. By [Gra+21] the categories Stab(C(g,g0̄)) and Rep(G)

are equivalent. The corresponding family of functors to consider is

{
resGX : Stab(Rep(G))→ Stab(Rep(X)

}
X∈Z1̄

(7.4.2)

which has right adjoints given by induction:

{
indG

X : Stab(Rep(X))→ Stab(Rep(G)
}
X∈Z1̄

. (7.4.3)
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We need to show that the images of the functors in 7.4.3 generate Stab(Rep(G)). Notice that by

transitivity of induction we have

indG
X(−) = indG

Z indZ
X(−).

Since Z ≤ G is a splitting subgroup the image of indG
Z(−) generates Stab(Rep(G)). To see this let

M be a module in Stab(Rep(G)), because Z is splitting, M is a direct summand of indG
Z resGZM .

It only remains to show that the images
(
indZ

X(−)
)
X∈Z1

generate Stab(Rep(Z)). To prove

this, we again appeal to Theorem 3.7.3, but in a different way. This time, we use the fact that

Stab(Rep(Z)) being generated by the images of
(
indZ

X(−)
)
X∈Z1

is equivalent to Stab(Rep(Z))

being tt-stratified. But Stab(Rep(Z)) is BIK stratified by 6.1.1 which implies tt-stratification.

As a consequence, we obtain the classification of tensor ideal localizing subcategories of

Stab(C(g,g0̄)), the content of Corollary B, which we repeat here.

Corollary B. Let g be a classical Lie superalgebra with a splitting, detecting subalgebra z ⊆ g and

which satisfies the realization condition of Assumption 7.3.2. There is a bijection between the set

of ⊗-ideal localizing subcategories of Stab(C(g,g0̄)) and subsets of N -Proj(H•(z, z0̄;C)).
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