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Abstract

Modern machine learning (ML) pipelines, especially deep learning (DL)
pipelines, tend to be constrained by the lack of labeled data, whereas raw unla-
beled data is relatively abundant. The process of labeling data requires experts
to leverage domain knowledge to assign potentially-arbitrary labels to samples.
This process is inaccessible to many due to the need of finding a domain expert,
as well as overcoming the financial costs of employing such an expert. Further-
more, there is room for error due to accidental mislabeling by the expert. In
emerging problems, there may not even be a fundamental set of labels agreed
upon by domain experts. Furthermore, labels may be encoded within a hier-
archical label schema at different levels of fidelity, leading to sentimental am-
biguity. For example, while all shirts are tops, not all tops are shirts. Thus the
space of clothing may include labels such as "shirts" and "tops", but whether
one is more appropriate than the other is a problem-dependent answer. Some-
times, greater specificity can lead to more complex and confounding models
with lower efficacy, whereas being too general may lead to coarser models which
do not encode sufficient complexity to model data patterns.

We develop a novel workflow and pipeline to mitigate these problems, built
around HDBSCAN which is the current SOTA unsupervised hierarchical clus-
tering machine learning algorithm. We start by modifying HDBSCAN into
Path-Constrained HDBSCAN (PCH), a semi-supervised algorithm to allow
for expert-sentiment driven hierarchical clustering, which serves to quickly cre-
ate an initial label schema based on the experts’ semantics, amplifying and en-
coding their personal domain knowledge. We also provide a novel sampling
method built specifically for PCH that allows for useful expert queries. We
then train a deep representation network designed to produce a rich represen-
tation space while also learning representative samples from the data. We then



define a workflow for introspecting the learned samples to gain insights which
generalize back to the dataset as a whole.

Index words: Machine Learning, Deep Learning, Semi-Supervised
Learning, Hierarchical Clustering, Clustering
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Chapter 1

Introduction

1.1 Motivation
The conventional process for completing an unlabeled or partially labeled dataset
is to employ an expert to create a set of meaningful labels, and partition the
dataset according to those labels by assigning each sample an appropriate label.
Here, we focus on the prior task of creating the set of labels to apply to the data,
and term it label schema discovery. In some cases, the labels may be obvious, con-
sistent, and well-defined. However, in many difficult tasks, there is not such a
clean, canonical choice of labels. Take for example the CIFAR-10 dataset which
delineates the following labels: “airplane”, “automobile”, “truck”. Although
these three labels can be reasonably distinguished, their utility will depend on
the problem context. For instance, if the goal were to distinguish living crea-
tures from animate objects, it may be more appropriate to consider them as a
singular class of objects generalized by the label of “vehicle”. Conversely, there
may be contexts where greater fidelity is appropriate, such as in self-driving
car algorithms, and “automobiles” may further be distinguished based on e.g.
appearance, form factor, number of wheels, etc. This problem of variable se-
mantic fidelity is especially prevalent in contexts where various experts have
opposing views on the subject matter, and thus may prefer different labeling
schemata. Thus when referring to a label schema we consider not only a final
set of labels, but also inter-label relations.

Label schema discovery is generally a qualitative exploratory task under-
taken by domain experts, often aided by machine learning tools. For example,
an expert may rely on unsupervised clustering tools to estimate the number
of distinct clusters within the data, then refine the clusters based on domain-
specific knowledge. Unfortunately, due to the complexity of real-world data,
these clusters are rarely ideal. Labels often can have overlap due to semantic
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ambiguity. For example, in sentiment analysis of speech one may distinguish be-
tween the sentiments of “angry” and “sad” which linguistically are considered
separate sentiments, yet realistically anger and sadness are often intertwined and
hence inappropriate for a simple label schema expecting a complete partition.

Ultimately, the most comprehensive process of label schema discovery is
to hire a domain expert to manually explore the entire dataset and determine
distinct clusters / labels based on domain standards. However, domain experts’
time is often limited and therefore valuable, ergo this process can be extremely
expensive. Further, the process’s immense scope and repetitive nature intro-
duces great potential for human error and arbitrary fidelity in the generated
labels due to labels being established earlier in the process of exploration poten-
tially biasing the choice of labels later in the process for the sake of consistency.
Methods that are able to either dynamically evaluate the entire label schema or
determine a schema only after considering all the data are resistant to such an
issue.

While there exist semi-supervised tools that bridge the gap between manual
and fully-unsupervised exploration, they are plagued with several inadequacies.
First and foremost, many recent developments in semi-supervised learning fo-
cus on large deep-learning systems and frameworks with billions of learnable
parameters whose computational costs pose a significant barrier to entry, acting
in conjunction with the cost of expert labor. Second, semi-supervised tools can
require rather specific feedback formats, such as comparison triplets in the case
of metric-learning style semi-supervised techniques, which can raise an addi-
tional barrier to entry. For example, asking for metric-learning style comparison
triplets may be difficult due to requiring the domain expert to not only distin-
guish similarity/dissimilarity, but also to impose a consistent partial ordering on
the similarity, which is difficult to do a priori. Third, classical semi-supervised
machine learning methods such as COP-Kmeans often require the number of
assumed clusters as a hyperparameter, making them more appropriate for fine-
tuning based on a previously determined estimate of the number of clusters
than for initial exploration of a dataset.

To address these shortcomings, we develop a modular, mixed machine-
learning / deep-learning framework which interfaces between an expert and
a partially or totally unlabeled dataset in order to facilitate the development of
a hierarchical labeling scheme that emphasizes expert sentiment. The unique
benefits of this framework are that experts do not need to have their own label-
ing schema for the data a priori and that the complexity of the label schema may
develop iteratively based on simple and intuitive feedback.

2



1 Assuming that the back-
bone network is frozen,
though that need not be the
case.

The bulk contribution of this research will be compatible with an arbitrary
vector space. This means that one can leverage any domain-specific feature-
extractor (e.g. ResNet, LSTMs, LLMs, etc.) as a backbone to the framework,
while the unique learnable pieces of the framework may be trained separately1.
Thus the framework as a whole disentangles the feature generation and repre-
sentation steps, allowing for a truly modular solution, greatly expanding the
accessibility and applicability of the framework.

Once a representation is constructed, downstream analysis digests the em-
bedded data along with any partial information provided (e.g. a labeled subset,
or known inter-data relations) agnostic of the specific original data modality.
This analysis results in a new labeling scheme which associates each data sample
with a corresponding label (which may not yet 1-1 align with semantic under-
standings of the data). An expert is then queried by the framework to offer
insights on a subset of the data specially curated to inform the labeling schema.
The requested feedback is qualitative pairwise similarity: whether two samples
are "similar" or "dissimilar" to the expert. The focused scope of the queries trans-
forms an intractable task, asking an expert to comb through an entire dataset
to inform a label schema, into a smaller, more tractable task, asking the expert a
shortlist of similarity questions. This minimizes the risk of an expert mistakenly
offering an incorrect label as feedback, as well as the time and energy that must
be invested by the expert in providing domain-specific guidance.

This makes the framework uniquely suited for novel datasets where there
are not yet any universally agreed-upon labeling schemes, such as in exploration
of a novel disease. The framework may also be useful in cases where there are
different subjective understandings of the same data, wherein different schools
of thought may seek to define their own taxonomies and labeling schemes. For
example, scholars reflecting upon the literary history of a culture may have dif-
ferent opinions on the similarity, and hence underlying structure, of different
historical documents. Under this framework, disagreeing scholars could oper-
ate over the same underlying data, while producing a labeling scheme unique
to their personal understandings of the data through simple feedback. Thus, it
may generate potentially disagreeing label schemes which accurately reflect the
disagreeing semantics of the experts which generated them, allowing multiple
formal and data-driven taxonomies to be developed and explored without the
need for a universal consensus.
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1.2 Formalizing the Problem

1.2.1 Clustering
Generally, the task of establishing a set of distinct labels for a dataset is consid-
ered clustering. Clustering is a deeply studied part of ML and DL with a rich
history. A fundamental aspect of clustering algorithms is the intrinsic trade-off
between expert bias (their semantic understanding of what ought to be clustered
together, or be distinct, expressed through partial labels and prior information)
and the geometric bias of the data (the clusters implied by the data’s geometry,
dependent on the specific algorithm). There is no correct way to balance this
trade-off, and can be considered an expression of one’s uncertainty in the expert
semantics available for a problem. When there is low confidence in the available
expert feedback (e.g. when unsure whether certain expert feedback is useful, or
when facing a lack of expert feedback), one may opt to utilize clustering methods
which rely more strongly on the geometric bias of the data (e.g. DBSCAN and
other fully unsupervised methods). Conversely, favoring the available expert
feedback may prompt the use of semi-supervised methods which may incorpo-
rate the feedback to influence the geometric insights extracted from the data to
varying degrees.

There are a plethora of methods across the spectrum of expert semantic
bias vs geometric bias, however almost all of these methods are only capable of
producing a flat clustering where each label is distinct and totally disjoint from
the others.

Definition. Given a finite datasetX , a flat clustering onX is a complete par-
tition ofX written C = {C1, . . . , Ck}where Ci ⊆ X are thus called clusters.
By definition, we have that

⋃
i Ci = X and that Ci ∩ Cj = ∅ ⇐⇒ i ̸= j.

We refer to each cluster as being indexed by a separate label, drawing a cor-
respondence between the notions of “labels” and “clusters”, often using them
interchangeably. While a single sample must have a clear cluster membership
under a flat clustering, it may also have various cluster membership quantities
with respect to the other available clusters. These membership quantities may
be heuristic values, intermediate values of the clustering algorithm, or genuine
statistical probabilities. A clustering that provides such scores rather than a sin-
gle index for each sample are referred to as a soft clustering, as opposed to a hard
clustering as described above.

Definition. A soft clusteringC = {C1, . . . , Ck} is a flat clustering paired with
an assignment function f : X → [0, 1]k such that ∀x ∈ X

∑
i f(x)i = 1

and argmaxj fj(xi) = k =⇒ xi ∈ Ck.

4



Note that some algorithms satisfy the partition requirement of a flat cluster-
ing by including a “noise” cluster meant to contain any points that the algorithm
cannot confidently cluster, or that the algorithm otherwise rejects, whereas
other algorithms (such as k-means) guarantee a complete partition without the
concept of a noise category.

1.2.2 Hierarchical Clustering
This format is commonly used in traditional single-annotation classification
problems. This comes with many potential downsides, including the inability
to distinguish the relationship between labels which may exist in an ideal se-
mantic analysis. Taking into account the CIFAR-10 example posed earlier, this
inability corresponds to the fact that “airplanes”, “automobiles”, and “trucks”
may all be considered “vehicles” in general, while a flat clustering includes them
as separate disjoint clusters.

The assumption of strictly disjoint clusters greatly limits the expressiveness
of the output clustering. Each point must belong exclusively to a single clus-
ter precluding the clustering from representing multiple direct relationships
between points. In other words, there exists a single relation between points
in the dataset, offering a sort of “one-dimensional” view regarding their rela-
tionships. This problem is alleviated by hierarchical clustering methods such
as the family of agglomerative clustering methods, and HDBSCAN which en-
code not only a flat clustering (and hence the corresponding labels) but also the
hierarchical relationship between labels, often encoded as a dendrogram (see
figure 1.1). More formally, we can define the hierarchy of a given set of labels by
representing the labels as a partially-ordered set (poset).

Definition. Given a datasetX , a hierarchical clustering onX is a finite set of
clusters C = {C1, . . . , Ck} with an additional partial ordering where Ci ≤
Cj ⇐⇒ Ci ⊆ Cj that satisfies the following properties:

1. If Ci ∩ Cj ̸= ∅, then (Ci ⊆ Cj) ∨ (Cj ⊆ Ci).

2. There exists a subset of pairwise disjoint clusters {Ci1 , . . . , Cil} ⊆ C
that covers the dataset. That is, Cia ∩ Cib = ∅ ⇐⇒ a ̸= b, and⋃

j Cij = X .

The final requirement ensures that we can extract a valid flat clustering from
a more general hierarchical clustering.

Note that every flat clustering trivially satisfies the definition of a hierar-
chical clustering. Similarly, every hierarchical clustering can be consistently
extended to include a trivial flat clustering composed of data singletons. Many
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hierarchical clustering algorithms heavily leverage these two facts and rely on
them to generate either agglomerative (“bottom-up”) or divisive (“top-down”)
methods.

Figure 1.1: An example of a dendrogram encoding the hierarchical relationships
between labels. In this example, the labels correspond to the singleton clusters
comprised of individual observations. Notice how highly similar clusters such
as observations 6, 9 are merged in the dendrogram into a “virtual” cluster, rep-
resented as a horizontal line in the hierarchy. This virtual cluster is then further
merged until eventually all clusters are merged, producing a final hierarchical
clustering. A single flat clustering can be extracted at an arbitrary level of fidelity
by “cutting across” the dendrogram at a fixed similarity score – i.e. merging up
to a threshold similarity. The colored groupings represent such a flat clustering
at similarity = 50.

1.2.3 Label Schema Discovery
The objective of “label schema discovery”, given an unlabeled or partially labeled
dataset, is to then develop a label schema such that the data and their labels
correspond to consistent semantic targets as decided by a domain expert. This
is slightly different from simply conventionally labeling a dataset, as the expert
need not know ahead of time what labels are appropriate for the data. This is a
significant advantage when conducting exploratory analysis on novel data that is
not yet well studied. Examples of exploring such novel data include discovering
new pathologies induced by a genetic knockout, evaluating textual sentiment
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2 A reminder that this is the
partial ordering of labels
named after integers, not of
integers themselves.

across a corpus of historical documents, and even image representation learning
on web-scraped data that is unprocessed and highly varied.

We start by constructing a statistical model to represent the available label in-
formation on the dataset. This is constructed from the structure of the learned
embedding in combination with any explicitly provided feedback, such as ini-
tial labels. We must then find a way to effectively propagate the information
contained in the labeling onto the unlabeled data. The main complication of
this task is that, under our problem formulation, the current label schema may
not be surjective onto the label space – that is to say, we may not yet have all
the categories that a “ground truth” labeling would use.

This is generally an insurmountable barrier for conventional algorithms,
where prior-knowledge dictates, to a large degree, the structure of the labeling,
if not the space of labels themselves. The primary novelty of this module is that
is mitigates that requirement, allowing for implicit label schema development.

A labeling schema (L̃, <) is defined as a collection of unique class labels
L̃ alongside a partial ordering between labels (<), indicating an “inheritance”
of sorts. If labels x, y satisfy x ≤ y, then all points labeled x would also be
correctly considered instances of y, whereas the converse is true only when
they are exactly the same label. We may equivalently represent the labeling
schema as a poset which encodes a hierarchical labeling system, similarly to how
we defined a hierarchical clustering. In fact, both structures are equivalent in
the sense that a hierarchical clustering induces a labeling schema by mapping
({C1, . . . , Cj}, <) → ({i, . . . , j}, <) where x ∈ Ci implies that its corre-
sponding label y = i, and that Ci < Cj =⇒ i < j2.

1.2.4 Manifold Hypothesis
Although the information encoded in the labeled data subset is explicit (by way
of the labels themselves), a viable framework should ideally utilize the more
implicit information encoded in the distribution of unlabeled points as well.
The information encoded in the distribution of unlabeled points is largely that
of the geometric structure of the underlying data distribution. Specifically, we
leverage the popular manifold hypothesis to codify this information and analyze
it. The manifold hypothesis claims that all data lie in some lower-dimensional
Riemannian manifold (a manifold with a well-defined Riemannian metric) em-
bedded within the ambient data space, and that the local distribution of points
in an arbitrary neighborhood encodes the local Riemannian metric [22].

We define a manifoldM as a special subset of the ambient space Rn such
thatM is locally linear, enjoying several convenient properties. We focus on
Riemannian manifolds, which come equipped with a Riemannian metric gp :
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Tp(M)× Tp(M)→ Rwhich sends two tangent vectors at a given point p to a
scalar value. The Riemannian metric induces a localized norm ∥ · ∥p : TpM →
R defined by ∥v∥p =

√
gp(v, v). Note that the Riemannian metric exists for

each pointp and thus induced vector norm need not be “constant” (with respect
to e.g. translation invariance) globally.

Functionally, this translates to two assumptions:

1. The data lie on some subset that has volume zero in the ambient space,
but is well-behaved and can be locally approximated linearly.

2. We can define locally-consistent senses of distance on the manifold by
the data sampled from it at arbitrary points.

In particular, data is generally understood to be “noisy”, represented under
the manifold hypothesis as a true data point on the underlying manifold offset
by some amount of random noise. This noise is the primary confounding factor
of analysis under the manifold hypothesis, since it forces the data to occupy non-
zero measure in the ambient space, meaning it is impossible to fit an accurate
underlying manifold to the data without significant overfitting (though the
recent neural scaling laws have challenged this assumption [40]).

A naïve interpretation of the manifold hypothesis would suggest that local
geometry is sufficient to represent the manifold as a whole, however great care
must be taken to ensure that global geometry is not sacrificed to better optimize
for local geometry, as is documented and observed in methods such as t-SNE
which notoriously preserve local geometry at the expense of global geometry.
Indeed a balance of both must be obtained to maximize the accuracy of the
data representation. Some contemporary methods such as Uniform Manifold
Approximation & Projection (UMAP) are better suited for such tasks.

The manifold hypothesis and its implications can be used to guide the de-
velopment of methods such as how to use the spatial distribution of unlabeled
points to aid in the extension of information encoded in labeled points to more
of the data. As an analogy, if a label were to describe the “color” of a point, a
naïve way to propagate the information to nearby unlabeled points would be
to “pour” some paint of that color starting from the labeled point, allowing
it to spread radially outward with respect to the ambient space. However, the
manifold underlying a dataset is often nonlinear, such as a curved piece of pa-
per embedded in 3D space. Leveraging the manifold hypothesis, it would be
more appropriate to allow the paint to spread radially with respect to the lo-
cal geometry, which can be approximated by the local distribution of points, i.e.
distribute the paint as a disk on the paper rather than a ball in the ambient space.
Thusly applying the manifold hypothesis in propagating label information over
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Figure 1.2: A visualization of locality on a data manifold versus its ambient em-
bedding space from [74]. A) shows an embedded dataset in R3. B) shows the
projection of the data onto their underlying manifold as embedded in R3. C)
shows the data manifold itself as an isomorphism to a subset of R2. Note how
spatial locality in the ambient space does not directly correspond to data simi-
larity with respect to the underlying manifold – points on opposite ends of the
manifold may be relatively close in the ambient space, yet be semantically differ-
ent. That difference is best represented with respect to the manifold geometry.

a dataset allows for greater consideration of local spatial information that can
provide new insights in exploring the data that a naïve global approach may not.

1.2.5 Semi-Supervised Feedback
The format and underlying nature of the solicited feedback greatly affects the
efficacy of the framework as a whole. In particular, many conventional algo-
rithms are inadequate for label schema discovery exactly because their feedback
requires a fixed label schema a priori, without the ability to extend it as needed.
This means that an expert must know ahead of time exactly what groups they
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are looking for, and may only learn the distribution of those groups in the data
space. Our proposed framework is free from such a limitation, and accom-
plishes that by relying on simple pairwise similarity constraints. Specifically, we
accept pairwise constraints in the form of "Must-Link" constraints (MLC), and
"Cannot-Link" constraints (CLC). Standard feedback consisting of explicit
labels for specific data can be easily translated to the MLC/CLC format by
comparing whether two samples belong to the same cluster or different clusters,
respectively. By using this pairwise similarity information, experts can provide
feedback to indicate semantically meaningful relationships in the data without
having an explicit label-schema a priori.
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Chapter 2

Path-Constrained
HDBSCAN

2.1 Introduction
We introduce Path-Constrained HDBSCAN (PCH), a novel, fast, semi-supervised
hierarchical density-based clustering algorithm built on top of the state of the
art (SOTA) HDBSCAN algorithm [54]. PCH is a lightweight machine learn-
ing algorithm which can be utilized even in compute-constrained environments
and scales well to large datasets, both in the number of samples and the data
dimensionality. PCH serves as a self-contained exploratory algorithm that de-
livers a robust hierarchical label schema taking into account arbitrary pairwise
MLC/CLC.

Whereas HDBSCAN relies entirely on the geometric information provided
by the unlabeled dataset to build a global hierarchy based on local mutual reach-
ability distances (an approximate estimate of the local metric tensor), PCH
extends this process by further allowing for minimally invasive “virtual” mu-
tations to the data space that encourage not only final clusters which respect
the provided constraints, but an entire cluster hierarchy that reflects the under-
lying constraints. This difference distinguishes it from the original suggested
implementation of a semi-supervised HDBSCAN, which suffers from being
constrained by the original cluster hierarchy of HDBSCAN run on the unla-
beled data, limiting the influence of expert feedback. While the original im-
plementation’s prioritization of spatial information may be beneficial in cases
where the geometric distribution of data corresponds well to the ideal semantic
interpretation of the data, as limiting the influence of expert feedback can be
seen as limiting the introduction of human error to the system, this is almost
never truly the case in practice. Embedding techniques rarely produce such
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ideal representations of the data, and consequently this invariance proves to
be a liability, whereas the robustness of PCH to poorer spatial representations
proves to be an asset.

2.2 Related Works
Semi-supervised clustering is a subset of the more general task of clustering
where, in addition to raw unlabeled data, we have some form of prior informa-
tion regarding the relationship between data and labels or between data points
themselves. Semi-supervised clustering tasks focus on using this prior infor-
mation to improve the clustering process, in particular to align the produced
clusters with the semantic perspectives encoded in that prior information[93].
For example, given a partially-labeled dataset wherein most of the data is tagged
with their corresponding ground-truth labels, extending those labels to the re-
maining few unlabeled observations would be a semi-supervised clustering task.
Another such task would be constructing a clustering over an unlabeled dataset
given only sparse, instance-level information regarding the pairwise similarity or
dissimilarity between data points [14, 103]. In general, semi-supervised cluster-
ing can be understood as the set of clustering tasks wherein prior information
is propagated out to raw unlabeled / unannotated data in a way that is semanti-
cally consistent and aligns with the task at hand [69, 14]. However, the quantity,
format, and reliability of that prior information can vary significantly between
two different semi-supervised clustering tasks.

There are many perspectives one may use to analyze the field of semi-supervised
clustering, with unique taxonomies resulting from choices to organize by clus-
tering strategy, type of prior information, and even type of mechanism for
prior information enforcement [8]. We consider this from the perspective of
what type of prior information is incorporated, since a central constraint to our
problem is the lack of an a priori label schema. Truong et al. partition semi-
supervised clustering based on type of prior knowledge into the categories of
labels, pairwise constraints, and several other miscellaneous formats, such as
prior membership degree and grouping information [86, 95, 62, 97]. From this
perspective, it is clear that label-based methods are untenable, since the problem
presumes a lack of well-established label schema. Indeed, pairwise constraints
and other membership quantities are the only viable options, since pairwise
constraints can be as simple as dictating whether a given pair of points is part of
an MLC or CLC. These constraints can be generated directly given a set of par-
tial labels, however the converse is not necessarily true. Although a trivial label
schema can be generated by the distinct groups of MLCs, it is not necessarily ex-
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haustive; there may be entire classes of observations completely unrepresented
in the pairwise constraints. Moreover, if there are multiple disjoint groups of
MLCs belonging to the same ground-truth label, then naïvely assigning unique
labels to each MLC group would fragment the ground-truth class into different
clusters, even though the absence of an MLC linking the two groups is not itself
an indication of a semantically meaningful distinction between those groups.

Pairwise constraints have been used in a plethora of domains. They’re com-
monly applied in biology, where gene clustering and gene expression data is
often parsed based on co-occurrence, and consequently are a natural source of
abundant MLCs/CLCs [21, 70, 90]. They are also commonly used in semi-
supervised clustering of textual datasets on account of the fact that textual
datasets often present significant semantic ambiguity regarding pairwise con-
nectivity of documents, which pairwise constraints can help clarify to ensure
consistent clustering [58].

In addition to the prior-information based taxonomy, we also consider
the separation of hierarchical and flat clustering techniques. Cai et al. note
that “most semi-supervised hierarchical clustering methods are the [variants]
of the single link, complete link, and average link method” which are cases of
linkage methods, augmented further by Ward’s Linkage and Centroid Link-
age [80]. The linkage methods are relatively straightforward themselves, but
generally do not perform as well as other pairwise-constrained methods such
as the constrained k-means (COP-Kmeans) algorithm, and its related family
of k-means based algorithms such as PCKmeans, MPCKM, SSKFCM, and
SCKMM. These are all generalizations of k-means developed to optimize for
pairwise constraints, yet they are ultimately limited by the linear nature of k-
means [4, 7, 101, 96]. Although they can be effective in various problem contexts,
they are limited in the solution space they cover such that semantic groupings
which are not implied by or even violate the spatial distribution of data are out
of reach. Due to the mean-focused nature of the algorithms, they are also sen-
sitive to the underlying density and distribution of points, failing in cases of
non-convex clusters [4, 101].

Instead of relying on the existing selection of limited semi-supervised hier-
archical models, we turn to two potential options. We may either develop an
existing semi-supervised flat clustering algorithm to produce a hierarchical clus-
tering, or modify an existing hierarchical clustering algorithm to produce semi-
supervised outputs. To that effect, we consider Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN) as proposed in
[10]. HDBSCAN is a fast, effective, SOTA fully-unsupervised hierarchical clus-
tering algorithm that is an incredibly popular tool used widely across domains.
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Its popularity is largely due to an accelerated implementation by McInnes et al.
which was then up-streamed into scikit-learn by Zain et. al [54].

While HDBSCAN has remarkable general use-case efficacy and is an in-
valuable exploratory tool, it lacks the capacity to incorporate prior information
into its clustering procedure. Campello et al. of HDBSCAN included a the-
orized specification for a semi-supervised variant in their original paper [10].
This variant is theoretically limited and has a narrow solution space insufficient
for real-world complexity. In particular, while it is not as tightly constrained
around linearly-separable clusters as methods such as k-means are, it exhibits
strict adherence to its own cluster hierarchy fully determined by the spatial dis-
tribution of points, and is inflexible in assigning clusters that would otherwise
violate this hierarchy. This is discussed in further detail in later sections.

We use HDBSCAN as the basis for our novel semi-supervised PCH to avoid
the assumption that all clusters on the data manifold have points distributed
with a relatively-uniform density.

2.3 HDBSCAN Review

2.3.1 Mutual Reachability
Given a datasetX in a metric spaceRn = (Rn, d) and a fixed parameterk ∈ Z+

which defines the locality of the algorithm, HDBSCAN begins by defining the
notion of a point’s “k-core distance”

dc(x) = d(x, x∗)

where x∗ is the k-th nearest neighbor of x, where x, x∗ ∈ X . Since we keep k

fixed, we elide its mention and succinctly refer to dc as the core distance. This
core distance serves as a local estimate of the metric tensor g for the underlying
data manifold at a given point x ∈ X , denoted g(x).

This estimate is based on the assumption that the neighborhoodB(x, dc(x))

centered at x will, for a small-enough choice of k, be local enough that g is ap-
proximately constant, relying on the locally-euclidean nature of the Rieman-
nian manifold hypothesis. Note that this locality and consistency of the local
metric tensor is better guaranteed for small choices ofk corresponding to taking
the limit of the metric tensor as the neighborhood radius approaches ∥x−xk1∥
wherexk1 is the nearest-neighbor ofx. However, because data generally consists
of “noisy” off-manifold points rather than an idealized lattice of points posi-
tioned precisely on the underlying manifold, small choices of k also become

14



3 In practice HDBSCAN
has both a Prim’s algo-
rithm implementation
and a Borůvka’s algorithm
implementation. These
algorithms are optimal in
different cases depending
on dataset size and dimen-
sionality, yet ultimately both
produce an MST.

more prone to reflecting the noise intrinsic to the data set rather than the actual
metric tensor corresponding to the underlying manifold.

Conversely, taking larger values of k reduces this noise, at the expense of
the metric tensor reflecting an ‘average’ value across a larger region containing x
rather than the instantaneous value at x as desired. In short, small choices of k
exhibit lower bias and higher variance, whereas large values exhibit higher bias
but lower variance. It is important to consider the fact that any given dataset is
a finite collection of samples under the data distribution, and thus the relative
local density of points may differ greatly, resulting in different optimal choices
of k for datasets of different density (number of samples). In general, higher-
density datasets afford higher values of k for an equivalent amount of bias, and
conversely a lower k for an equivalent amount of variance.

The core distances are then used to compute pairwise mutual reachability
distances (MRD). The MRD between points x, y ∈ X is defined as

dm(x, y) = max{dc(x), dc(y), d(x, y)}

which is generally a conservative estimate of the manifold-distance betweenx, y

at local scales, while ambient-space distance dominates at global scales. Note
that the MRD is a proper metric, making (X , dm) a metric space. The use of
MRD is a significant factor in how HDBSCAN manages to combine local and
global geometric information. Refer to figure 2.1 for a visual representation of
core-distances and MRD.

2.3.2 Minimum Spanning Tree
To further refine the geometric information contained within the pairwise MRDs,
HDBSCAN constructs a minimum spanning tree (MST) denoted G using the
MRDs as edge weights, essentially charting the local-connectivity of every point
to its neighbors as mediated by their local metric tensors and estimated by MRD.
The process is a straightforward MST building process, e.g. utilizing Prim’s
algorithm3. The key property of G is that, by the definition of an MST, remov-
ing m edges from G results in exactly m + 1 disjoint connected components.
This insight seems trivial at first glance, but the ingenuity of HDBSCAN lies
in the connection of this fact to two commonly adopted assumptions about
well-defined clusters: data should be dense within clusters, and sparse between
clusters. Granted that the edges of G encode density, HDBSCAN generates a
hierarchy starting with a singular universal data cluster. This cluster is given an
initial label, and is the first of many eventual clusters in the hierarchical cluster-
ing.

15



Figure 2.1: A visualization of the relationship between points’ relative spatial
distributions and their core distances, and consequently their MRD. Note that
the MRD between the blue and green points is equal to the core-distance of the
green point, since it is larger than the blue point’s core-distance, and larger than
their ambient spatial distance. This is an example of how points that are closer
than the k-th nearest neighbor are essentially “pushed” outwards and treated
as being at least core-distance away for the MRD calculation, as the blue point
was here for the green point.

4 In practice, this is actually
computed “backwards”
in that the hierarchy is
generated agglomeratively
starting from singleton sets
of individual data points
and building up based on
the smallest edges in the
MST with non-noise labels
only being issued once the
clusters are merged up to
sufficient sizes. This is
functionally identical, but a
bit more complex to explain
precisely.

The MST is then cut by removing the largest edge in G, bisecting it into
two disjoint components. If the smaller of the two components is sufficiently
large, then it is considered a “new cluster”, and both clusters are given new
labels. If, the smaller of the spawned clusters is too small, then the disjoint
component is considered a collection of “noise”, implying that rather than a
meaningful cluster being found, noisy off-manifold points were separated off
of a larger salient cluster. This means that no new labels are created, and there
is no change to the cumulative hierarchy thus far. This process repeats until all
edges are cut, resulting in an exhaustive hierarchy culled by removing “noisy”
splits. 4
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Figure 2.2: A visualization of an MST with edges colored by their relative
weights (MRD).

2.3.3 Cluster Selection
This hierarchical clustering represents “all possible” clusterings according to
the leaf clusters it has picked up on. To select a singular flat clustering from
this hierarchy, HDBSCAN relies on the heuristic measure known as the “excess
of mass” (EOM) method, which measures the persistence of clusters across
the hierarchy, selecting clusters that had lived for longer than their descendant
clusters as final nodes in a flat clustering. For details on the EOM algorithm,
please refer to [10, 11, 54].
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2.3.4 Semi-Supervised Cluster Selection
The proposed solution to a semi-supervised HDBSCAN as mentioned in Campello
et al. is to modify the cluster selection mechanism to instead optimize for the
number of constraints satisfied (hereafter referred to as the “baseline method”)
[11]. A given flat clustering generated from the hierarchical clustering is evalu-
ated based on the number of constraints that such a clustering satisfies, with the
convention that any point labeled as noise automatically satisfies any CLC it
participates in, whereas it fails any MLC. Consequently, the baseline method is
tightly bound to the hierarchical clustering generated by HDBSCAN, and is un-
able to override the structure of such a clustering. While HDBSCAN extracts
well-structured local geometric information in a globally consistent way, the
baseline method lacks the ability to interfere with the construction of its clus-
tering hierarchy based on external feedback. If two clusters satisfy constraints
when merged together, their method can only merge them through selecting a
common ancestor cluster of both of those clusters, which may implicate other
clusters that otherwise ought to remain separate. Consequently, the scope of
solutions achievable with this method are greatly limited by the spatial locality
of clusters, which itself is a downstream product of whatever representation
space was used for the data (whether raw or processed) and is sensitive to the
quality of the space.

2.4 Methodology
To expand the solution space, and develop a robustness to the choice of repre-
sentation space, we develop a method to intervene at the MST-building stage,
rather than the cluster-selection stage. This earlier intervention allows for the
construction of unique MSTs which may result in genuinely different hierar-
chical relationships between perceived clusters, allowing for greater flexibility
in final cluster selection.

2.4.1 Link Classes
PCH first constructs and maintains a list of disjoint sets representing “tran-
sitive must-link classes” which we refer to as “link classes”. Each link class
is a set of points that not only are directly linked together through an origi-
nal MLC, but are also linked transitively by two or more MLCs. Thus we
turn the otherwise direct pairwise relation of must-link constraints into a tran-
sitive variant, which forms proper equivalence classes. That is to say, given
MLCs (u, v), (x, y), (v, x) for points u, v, x, y ∈ X we use the fact that
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5 Recall that since we are
operating on an MST, each
pair of points has exactly one
unique path which is also
trivially the shortest path
between them.

6 Note that the graph is
almost certainly no longer
minimal with respect to the
original MRD distances,
however under special con-
ditions we can guarantee
the existence of a coordinate
system where it is [16]

(u ∼ v) ∧ (v ∼ x) =⇒ u ∼ x to enumerate that

(u ∼ v) ∧ (x ∼ y) ∧ (v ∼ x) =⇒ (u ∼ y) ∧ (v ∼ y) ∧ (u ∼ x)

where we denote a direct or transitive must-link connection between points
p, q with p ∼ q. These equivalence classes derived from a few MLCs lie at the
heart of PCH. We optimize not for just the listed MLCs, but the entire set of
MLCs implied by the equivalence classes, thus re-incorporating implicit expert
feedback without needing to re-query experts directly. This also helps ensure
consistency among the explicitly provided MLCs, maximizing constraint sat-
isfaction. We compute these link classes by starting with every data point as
its own singleton class. As we iterate through the MLCs, we check to see for
each point whether it is already present in a non-singleton set. If both points
are present in the same set, then nothing need be done. If instead each point
belongs to a distinct non-singleton set, then we simply merge the sets. If only
one point belongs to a non-singleton set, we simply add the remaining point
to that set. Finally, if no sets contain any of the points, we initialize a new set
comprised of the two points. Please refer to Algorithm 2 for implementation
details.

2.4.2 Path Must-Link Constraints
We start our enforcement of the MLCs by calculating the path between each
pair of points in the constraints 5. This computation is fairly straightforwards,
and we utilize a depth-first search across the MST to find the shortest path,
recording the edges taken. Once the path for a given constraint is found, we
then truncate the path, removing initial and terminal edges that directly link
two points of the same link class. This ensures that instead of finding a path
between two points we instead find a path between the “boundaries” of their
link classes, which may produce a shorter path. Once a final path is obtained, we
calculate the geometric mean of the edge weights on that path, cut the edge with
the greatest weight that is not the result of a past MLC or CLC, and introduce
a new edge directly between the starting and ending points of the path with
weight equal to the previously calculated geometric mean. Note that since we
remove a single edge, we create two separate components of the graph, but we
immediately “glue” them back together by inserting an edge directly between
the start and end points of the path. This essentially “inverts” the path, yet
preserves the nature of the graph as a spanning tree6.

The choice for the weight of the new edge stems from the fact that the MST
is not only responsible for the clustering hierarchy, but it also determines the
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7 While several options were
tested, the geometric mean
had the best performance
and empirically seemed to
best preserve the distribu-
tion of edge weights. We
suspect that this is due to the
fact that the geometric mean
is more resistant to fluctua-
tions in its inputs, providing
a more robust average.

outcome of the final flat clustering by affecting the stability of points in the
EOM algorithm as determined by their edge weights and local neighborhoods.
This means that simply attempting to assign an arbitrarily low value to the new
edge weight would essentially “pin” those points in place, greatly strengthening
the stability of each of their mutual ancestral clusters, potentially skewing the
entire cluster selection outcome. Instead, we assign a weight which does not
greatly shift the stability of the points within the path. The least invasive option
would be to indeed re-use the weight of the cut edge, but by design we wish to
bring these points closer together on the MST, and since we targeted the largest
edge in the path, it would be counterproductive. Thus, we rely on calculating
the geometric mean 7 of all edge weights in the path as mentioned before.

2.4.3 Path Cannot-Link Constraints
When implementing CLCs, we have greater liberty in the solution design due
to the fact that we need not preserve node/cluster stability since the ultimate
goal is to break clusters apart. To this end, we repeat a similar algorithm as for
MLCs, except instead of replacing the largest edge with a different edge entirely,
we simply mutate the largest edge by adjusting its weight. In particular, since the
hierarchy is constructed using the ordered edge weights, in order to guarantee
separation between points for a CLC, we set the new edge weight to be the
old edge weight plus the greatest edge weight present in the MST minus the
smallest edge weight in the batch of CLCs. This ensures that the first edges
to be cut are those that were mutated due to CLC enforcement, guaranteeing
the separation of points in all descendant clusters while allowing their original
sparsity to dictate their relative ordering.

To prevent a CLC from erasing the effects of a prior MLC, as well as avoid-
ing multiple CLCs affecting the same edge, we alter the conditions slightly so
as to not just affect the largest edge, but rather the largest edge that has not
yet been mutated due to an MLC or CLC. For this we must keep a running
list of edges which we have mutated. The memory and compute footprint for
this is negligible, and we get to ensure consistent and stable MLC and CLC
enforcement.

2.4.4 PCH and HDBSCAN
An interesting consequence of PCH’s early intervention is that it occurs en-
tirely before cluster selection, meaning that it is orthogonal in application to
the cluster-selection approach used by [10] in the baseline semi-supervised HDB-
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Algorithm 1 ReadyPrune
Require: (x, y), a pair of end-points. E a collection of edges in the MST, with

edges in the form E ∋ e = (u, v, w) where u, v denote their starting and
ending node, while w denotes the edge weight. S, a set of link classes.

Ensure: Edges inE are marked to be pruned if they are end-points with neigh-
bors closer to the first boundary.

P ← DFS(E, x, y)
A← LinkClass(S, x)
B ← LinkClass(S, y)
a← x
b← y
ToPrune← [F, . . . , F ]
Initialize c, a placeholder for the largest edge.
if A = B then

break
end if
for e = (u, v, w) ∈ P do

if u ∈ A ∧ v ∈ A then
ToPrune[e] = T
a← v

else
break

end if
end for
for e = (u, v, w) ∈ Reverse(P ) do

if u ∈ B ∧ v ∈ B then
ToPrune[e] = T
b← v

else
break

end if
end for

return ToPrune
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Algorithm 2 PCH MLC enforcement
Require: (x, y), a must-link connection between points x, y. E a collection

of edges in the MST, with edges in the form E ∋ e = (u, v, w) where u, v
denote their starting and ending node, while w denotes the edge weight. S,
a set of link classes.

Ensure: E is altered with minimal changes to include an appropriately-
weighted direct edge between x and y’s link classes through nodes a, b while
remaining an MST.

P ← DFS(E, x, y)
A← LinkClass(S, x)
B ← LinkClass(S, y)
w′ ← 1
wmax ← 0
ToPrune← ReadyPrune(E, x, y, A,B)
c← ∅
if A = B then

break
end if
for e = (u, v, w) ∈ P do

if ToPrune(e) then
Remove(P, e)

else
w′ ← w′ · w
if w > wmax then

wmax ← w
c← e

end if
end if

end for
w′ ← |P |

√
w′

Cut(E, c)
Insert(E, (a, b, w′))
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Algorithm 3 PCH CLC enforcement
Require: (x, y), a CLC between points x, y. E, a collection of edges in the

MST, with edges in the form E ∋ e = (u, v, w) where u, v denote their
starting and ending node, while w denotes the edge weight. S, a set of
link classes. W , the largest edge weight present in the MST. Lists of prior
MLC/CLC edges, EM , EC respectively.

Ensure: E is altered so that the largest edge on the path between x and y’s link
classes is updated to have maximal weight, excepting edges in EM ∪ EC .

P ← DFS(E, x, y)
A← LinkClass(S, x)
B ← LinkClass(S, y)
wmax ← 0
ToPrune← ReadyPrune(E, x, y, A,B)
c← ∅
for e = (u, v, w) ∈ P do

if ToPrune(e) then
Remove(P, e)

else
if w > wmax ∧ e /∈ (EM ∪ EC) then

wmax ← w
w′ ← w +W
c← e

end if
end if

end for
if c ̸= ∅ then

UpdateWeight(c, w′)
Ec ← Ec ∪ {c}

end if
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SCAN method. In practice, we have the option of utilizing both and indeed
find it to be a superior choice.

2.5 Metrics
The difficulty of evaluation stems from the fact that most metrics are designed
as either heuristics regarding cluster geometry – such as the Silhouette score [67],
V-Measure, completeness, homogeneity [66], the Calinski and Harabasz score
[9] and the Davies-Bouldin score [19] – or as metrics against a ground-truth
label set. Consequently, these methods are satisfied by a unique label schema
determined by the ground-truth labels, and are unable to offer insight on the
viability of an arbitrary label schema. In particular, this makes it difficult to
evaluate the efficacy of a hierarchical clustering, which at a given extracted flat
clustering may not be optimal for a given ground-truth label set, yet may contain
an ideal clustering as part of its hierarchy. Indeed, no well-studied metrics satisfy
this niche, thus we approximate it by focusing on two metrics: constraint satis-
faction (CS), wherein we calculate the percent of provided constraints which
are satisfied in the final labeling, and the Adjusted Rand Index (ARI), which
generally is an indicator of the pairwise similarity between two flat clusterings
of arbitrary size without any expectation that the clusterings must abide by the
same label schema [35].

2.5.1 Constraint Satisfaction
Given a flat-clustering C = {C1, . . . , Cn} where C1 defines a “noise” cluster,
we can define a cluster-membership function δ as

δ(x, y) =


1 ∃C ∈ C \ {C1} | x ∈ C ∧ y ∈ C

0 ̸ ∃C ∈ C \ {C1} | x ∈ C ∧ y ∈ C

0 x ∈ C1 ∨ y ∈ C1

Then with a set of r MLCsML = {(xm1 , ym1), . . . , (xmr , ymr)} and sCLCs
CL = {(xc1 , yc1), . . . , (xcs , ycs)}, we can calculate CS as follows:

CS(C,ML,CL) =
1

|ML |+ |CL |

(∑
p∈ML

δ(p) +
∑
p∈CL

(1− δ(p))

)

24



2.5.2 Adjusted Rand Index
Unlike constraint satisfaction, the ARI requires a ground-truth reference clus-
teringD = {D1, . . . , Dm}, which clusters over the same number of elements
as C does. ∑

C∈C

|C| =
∑
D∈D

|D| = n

No such clustering will be available in an actual use-case of developing a
novel label schema, however in the case of controlled / labeled datasets, we
can use their ground-truth labels directly, or an arbitrary labeling derived as an
agglomeration of ground truth labels. We consider a generalized cluster mem-
bership function that does not account for noise

δ(x, y; C) =

{
1 ∃C ∈ C | x ∈ C ∧ y ∈ C

0 ̸ ∃C ∈ C | x ∈ C ∧ y ∈ C

in which case the unadjusted rand index is defined as

RI(C,D) = 1(
n
2

)∑
x∈X

∑
y∈X\{x}

δ(x, y, C)δ(x, y,D)+(1−δ(x, y, C))(1−δ(x, y,D))

From here, the ARI is calculated as

ARI(C,D) = RI(C,D)− E[RI]
1− E[RI]

Alternatively, we can refer to the permutation definition which relies on
the contingency between clusters C,D defining the co-occurrence values nij =

|Ci ∩ Dj|. We define the row and column cumulants as ai =
∑

j nij and
bj =

∑
i nij , allowing us to formulate

ARI =

∑
ij

(
nij

2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
n
2

)
1
2

[∑
i

(
ai
2

)
+
∑

j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
n
2

)
From the permutation formulation, we can also see that if we were to enu-

merate all
(
n
2

)
possible pairwise constraints for a given dataset and evaluate their

enforcement, we would arrive at the ARI. Thus, as the number of pairwise con-
straints increases, the constraint satisfaction approaches ARI. In this way, one
may view ARI as a score of “constraint extrapolation” over the unconstrained
portion of the data, as opposed to constraint satisfaction which evaluates only
the constrained portion. With that being said, this parallel can only be relied

25



on at exceedingly high amounts of constraints, since otherwise the ARI will be
more indicative of the underlying unlabeled clustering than the semi-supervised
component on account of the vast difference in how many pairs of points do, or
do not have constraints. For a dataset of size n with k constraints, the number
of unconstrained pairs of points will be≈

(
n
2

)
−k = O(n2−k). This decreases

if we consider implicit constraints as well (as done in TCS). A naïve approach
to estimating the number of unconstrained points would be to assume that
every point involved in a constraint must be implicitly involved in a constraint
with every other point, leading to O(k2) implicit constraints. Unfortunately,
while we can comfortably extrapolate MLCs due to the transitive nature of the
constraint, the same is not true for CLCs. Instead, a CLC between two link
classes may induce CLCs between each unique pair of points across the two
link classes.

If we have l link classes, the number of implicit MLCs can be approximated
by considering the average number of constraints per link class is O(k

l
), and

with each constraint adding exactly one point to the link class, except the first
which adds two, we have that the average number of points in a link class is
s = O(k

l
+1) = O(k

l
). Noting that every pair of points in a link class form an

MLC, hence for l link classes withspoints each, we getO(l
(
s
2

)
) = O(l(k

l
)2) =

O(k2l−1) MLCs. For O(k) CLCs, we have O(k(k
l
)2) = O(k3l−1) implied

CLCs.
Thus the number of unconstrained pairs of points will be O(n2 − k3l−1).
The main consequence of this fact is that while constraint satisfaction in

its limit is equivalent to ARI, the relationship does not hold at the majority of
scales encountered in practice and ARI cannot be understood to “simply” be
a generalized version of constraint satisfaction as it will generally reflect more
of the performance of the underlying unsupervised component than the semi-
supervised interference. To offset this, instead of directly evaluating ARI, we
evaluate ARI gain as calculated against a reference value of vanilla HDBSCAN
run on the same dataset, thereby indicating the improvement to score offered
by the semi-supervision, regardless of the difficulty of the underlying clustering.

2.5.3 Geometric Heuristics
Note that although metrics that provide heuristic scores for “desirable” geo-
metric qualities in clusters are commonly used, they are inappropriate for this
context due to the fact that what they evaluate, roughly speaking, is the com-
patibility of the spatial distribution of points, and their labels and emergent
clusters. While this makes sense in many cases and is a valuable metric for most,
here it does more harm than good since a primary motivation of our strategy
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Figure 2.3: An example of an impossible cluster assignment under normal HDB-
SCAN rules, which becomes achievable under PCH.

is the understanding that the underlying spatial distribution of points may not
be good enough to provide the clustering required, and thus the mutation of
the MST allows us to circumvent such a restraint. Naturally, the geometric
indicators of a “good” cluster may not be compatible with the clusters formed
from this method, and do not score a clustering’s accomplishment of our goal,
discovery of clusters consistent with the provided constraints.

2.6 Results

2.6.1 Synthetic Linear Dataset
We begin by considering a few synthetic cases to highlight the limitations of
HDBSCAN’s baseline semi-supervised method, as well as the ability of PCH
to overcome those restrictions by restructuring the underlying MST. In partic-
ular, we construct a simple case of four evenly spaced unit normal distributions
with clear separation in a straight line. We set the ground-truth labels to be such
that odd unit normals are part of the same class (note that classes need not be 1-1
with spatial clusters), and the even are part of a second class, as seen in figure 2.3.
Traditional HDBSCAN, and hence the semi-supervised HDBSCAN baseline
algorithm, cannot achieve this clustering because it violates the partial ordering
imposed by the standard hierarchy-building algorithm. This can be visualized
by looking at the dendrogram graphs for HDBSCAN’s clustering hierarchy
such as in figure 2.4. HDBSCAN forms the hierarchy in a partial order based
on the left-to-right order of the distributions, and is unable to alter the order.
Meanwhile, PCH alters the MST directly and hence can engineer a separate clus-

27



Figure 2.4: The clustering hierarchy dendrogram for HDBSCAN on a linear
sequence of clusters with mixed ordering. Each vertical icicle represents a group
of points which slowly fade into noise as the density level (λ, the inverse of
MRD) increases. The width and color of the icicle determines their number of
points. Each horizontal line represents the split of a cluster into smaller salient
groups, starting with the universal cluster at the top.

tering hierarchy which can allow for greater freedom in final cluster selection,
as seen in figure 2.5 where the persistent clusters (icicles) are “rotated/pivoted”
into different positions with respect to the universal cluster, demonstrating the
freedom of arrangement afforded by PCH. Finally, we numerically validate our
qualitative findings by considering the ARI of the produced labelings in figure
2.6. Note how the original baseline suffers from added constraints, whereas
PCH is stable and improves the ARI.

2.6.2 Synthetic Antagonistic Dataset
Stepping up the difficulty a bit, we now consider the case of two pairs of Gaus-
sian distributions, where the true class labels are aligned with one Gaussian
from each pair, violating expectations of spatial locality as well as challenging
partial-ordering as before. The ground truth can be seen in 2.7. HDBSCAN’s
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Figure 2.5: The clustering hierarchy dendrogram for PCH on a linear sequence
of clusters with mixed ordering.

cluster hierarchy and corresponding cluster assignment can be seen in figures
2.8 and 2.9 respectively. Contrasted with the same components from PCH
in figures 2.10 and 2.11, it is clear to see how PCH is able to significantly alter
the clustering hierarchy such that a new appropriate flat clustering can be se-
lected by the underlying HDBSCAN algorithm, while preserving the unique
approach of HDBSCAN and the insights generated by it. We can see in figure
2.12 that across the board, regardless of the number of constraints, PCH holds
a strong advantage over the baseline method which cannot produce results any
better than unsupervised HDBSCAN due to being limited by the shared cluster
hierarchy.

2.6.3 Wine Dataset
Moving on from synthetic data, we investigate the efficacy of PCH on real data.
In particular we begin with the wine dataset [60], a very common dataset in
machine learning contexts for both its simplicity, and the difficulty of clustering.
This is partly due to the fact that ultimately the labels on the wine dataset are
based on highly subjective factors, namely an aggregate “wine quality” whereas
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Figure 2.6: The ARI across several methods on a simple linear out-of-order class
assignment problem.

Figure 2.7: A more complex example of an impossible-to-satisfy ground-truth
under HDBSCAN which becomes possible under PCH.
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Figure 2.8: The cluster hierarchy of HDBSCAN on an antagonistic dataset.

Figure 2.9: The final cluster selection of HDBSCAN on an antagonistic dataset.
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Figure 2.10: The cluster hierarchy of PCH on an antagonistic dataset.

Figure 2.11: The final cluster selection of PCH on an antagonistic dataset.
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Figure 2.12: The ARI across several methods on a synthetic antagonistic dataset
with spatial-locality expectation violations.
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the features provided are quantitative analytical quantities from the wine com-
position, meaning there is a significantly subjective nonlinear process from fea-
tures to labels.

Note that for non-synthetic datasets, we evaluate both PCH and the base-
line algorithm multiple times for each number of constraints. Each run is
stochastic in the choice of specific constraints, thus we attach an error bar to
denote the 95% confidence interval across the runs. All claims are made having
verified the statistical significance of results using monte-carlo hypothesis test-
ing, after adjusting p-values based on the Benjaminini-Yekutieli procedure to
ensure that the false-discovery rate for statistical significance is fixed atα = 0.05

despite multiple-hypothesis testing (in the sense that each amount of constraints
serves as a separate hypothesis claiming significance) [6].

In addition to PCH and the HDBSCAN baseline algorithm, we also evalu-
ate COP-KMeans as a representative of the KMeans family of semi-supervised
algorithms. In the cases where COP-KMeans fails to produce a clustering
due to the inability to reconcile new constraints with the enforcement of old
constraints – a common theoretical problem – we take the result to be a score
of zero, corresponding to the null-model of “random chance” labeling.

The data are pre-processed by projecting down to a two-dimensional space
using an un-optimized UMAP projection with no minimum separation be-
tween points, allowing UMAP to optimized projected distances freely [55]. This
projection strategy is the sole pre-processing done, and is repeated for each real-
world dataset.

On this dataset, both PCH and the baseline algorithm gain in clustering
performance, however with two interesting caveats: there seems to be an upper
bound on how much the baseline method can benefit from additional con-
straints at some point, and the original baseline method has reduced constraint
satisfaction as the number of constraints increases, whereas PCH only has a mi-
nor drop, as can be seen in figure 2.13. Furthermore, is competitive with COP-
KMeans on low amounts of constraints, yet dominates at higher amounts. This
is due to the fact that COP-KMeans is a greedy sequential algorithm with re-
spect to constraints, which means that it is liable to arrive at irreconcilable states
resulting in failed clusterings for larger numbers of constraints. This greatly
limits its usability in general at all but the smallest scales.

2.6.4 Fashion-MNIST
Next we evaluate against the Fashion-MNIST dataset, known for its complex-
ity and class ambiguity, making it a popular choice for validating clustering
algorithms [91, 57]. In particular, Fashion-MNIST is a dataset of 28 × 28
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Figure 2.13: Constraint satisfaction and ARI of PCH, baseline semi-supervised
HDBSCAN, and COP-KMeans algorithms on the Wine dataset.

images of articles of clothing, which serves as a great example of data with a
high-dimensional original ambient space, significant complexity regarding rel-
ative feature interactions and correlations, along with a more complex (higher
dimensional) data manifold. To estimate the data manifold, we project the
dataset onto several different euclidean spaces and take the euclidean space with
the highest vanilla HDBSCAN ARI as the closest match to the intrinsic dimen-
sionality of the data manifold, under the assumption that the geometric nature
of HDBSCAN would be most effective when the manifold is embedded in the
same space, as opposed to being projected to lower or higher dimensions. For
Fashion-MNIST, we project down to a 12-dimensional embedding space.

In figure 2.14 we can see that all models have a notably difficult time of-
fering much gain over the traditional HDBSCAN model. This is largely due
to the fact that different classes have incredibly high perceptual similarity and
redundancy, to the point that their projected clusters overlap and intertwine,
which fundamentally indicates that perhaps a different label schema would be
more important. Consequently, there is an upper bound to how well the clus-
ters can be separated in a fixed embedding space, and how well these clustering
algorithms can derive a clustering that suits the semantic labels. That means
that the vanilla HDBSCAN is already near optimal, which poses an especially
interesting edge case. Due to its near optimality, we can see it initially suffering
from having only a few constraints, whereas with sufficient constraints PCH is
able to offer additional gains while the remaining two algorithms cannot.
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Figure 2.14: Constraint satisfaction and ARI of PCH, baseline semi-supervised
HDBSCAN, and COP-KMeans algorithms on the Fashion-MNIST dataset.

2.6.5 Anuran Calls
Finally, we evaluate the algorithm on the relatively recently released Anuran
Calls (AC) dataset [12]. This dataset is a fantastic example of situations where
even well-defined quantitative features are not sufficient to make spatial locality
in the representation space correspond directly to the intended semantics. The
AC dataset consists of features derived from short, approximately 8 second anu-
ran calls, with each sample being multi-labeled according to the family, genus,
and species of the frog which generated the call. The nature of the labels as an
intrinsically hierarchical taxonomy allows us to explore the role of PCH as a
semi-supervised hierarchical clustering mechanism while also testing its ability
to handle spatial-locality expectation violations, since animals that have simi-
lar taxonomies can present with wildly different phenotypes and consequently
may form distinct clusters across the feature space, despite semantically being
grouped together.

To that effect, we evaluate the original HDBSCAN baseline algorithm,
PCH, and COP-KMeans across the AC dataset at all three available taxonomic
levels of family, genus, and species in figures 2.15, 2.16, and 2.17 respectively.
We can readily observe that PCH and the original baseline model tend to per-
form better at greater levels of specificity, peaking at the species level, meanwhile
COP-KMeans performs consistently (poorly) across all three scales, largely due
to its capacity as a greedy global optimizer. Meanwhile, the original baseline
method struggles to make use of the new information presented by constraints,
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Figure 2.15: Constraint satisfaction and ARI of PCH, baseline semi-supervised
HDBSCAN, and COP-KMeans algorithms taken across the AC dataset at the
family level.

since it is limited by the original geometric hierarchy of HDBSCAN, resulting
in decreased constraint satisfaction even when there are gains in ARI. Unlike
the prior methods, PCH is able to significantly improve the ARI and scales well
with the number of constraints, while maintaining constraint satisfaction.
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Figure 2.16: Constraint satisfaction and ARI of PCH, baseline semi-supervised
HDBSCAN, and COP-KMeans algorithms taken across the AC dataset at the
genus level.

Figure 2.17: Constraint satisfaction and ARI of PCH, baseline semi-supervised
HDBSCAN, and COP-KMeans algorithms taken across the AC dataset at the
species level.
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Chapter 3

Learned Data
Introspection

3.1 Introduction
We develop PCH as a mechanism to allow for semi-supervised hierarchical clus-
tering on arbitrary representation spaces in a way that prioritizes constraint
satisfaction and expands the solution space. The expanded solution space is
able to include clusterings which may be potentially non-local and contrary to
spatial bias. While these goals are demonstrably achieved, we further augment
the framework by inspecting the representation space itself and determining
whether there is more to be done there. In particular, how does dimensionality
reduction affect the downstream clustering task? Generally, both clustering
and generative modeling algorithms often perform poorly on ambient-space
data due to their high dimensionality. While there exist many dimensionality-
reducing techniques, they exhibit various tradeoffs regarding the balance be-
tween preservation of local and global structure, computational costs, represen-
tation complexity and its consequences, etc. In this section, we will discuss the
general problem of dimensionality reduction, discuss our preferred method of
dimensionality reduction, as well as introduce Local Two-Stage Variational Au-
toencoder (LST-VAE), a novel architecture for dimensionality reduction that
optimizes for a cluster-friendly structure in its transformation while specifically
preserving the ability to produce arbitrary measure on the data manifold, which
is a property often lost in dimensionality-reduction techniques.
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3.2 Related Works
Dimensionality reduction is generally accomplished by either explicit feature
selection, which aims to retain only the most informative and valuable features
for the task at hand while eliding others, or transformation of inputs into lower-
dimensional outputs based on various methods [76]. Going forward, we refer
only to this latter process as dimensionality reduction, disentangling the notion
of feature selection. Much of the modern data science workload involves com-
plex, raw input data such as images, text, recordings, and other unprocessed
media, all data formats lacking singular, highly informative features, which are
generally an outcome of post-processing on all but the simplest data modali-
ties [38]. The absence of these features makes dimensionality reduction a far
more effective approach than feature selection for such input data. Dimen-
sionality reduction can be further divided into families of linear and nonlinear
methods. Linear methods are relatively constrained yet offer computationally
efficient means of acquiring geometrically simple, interpretable results. In con-
trast, nonlinear methods are often more powerful, offering a wider solution
space at the expense of interpretability and efficiency [24].

Starting with conventional linear models, Cunningham and Ghahrmani
describe them as “program[s] with a problem-specific objective over orthogo-
nal or unconstrained matrices,” [17] noting the description’s applicability to
popular linear methods such as principal component analysis (PCA) [61, 20],
multidimensional scaling (MDS) [85, 16], Fisher’s linear discriminant analy-
sis (LDA) [23, 63], factor analysis (FA) [77], distance metric learning (DML)
[43, 94], canonical correlations analysis (CCA) [34], sufficient dimensionality
reduction (SDR) [26, 1], etc. In particular, they formulate all of these meth-
ods, as well as several others, as a generalized optimization problem of finding
M ∈M to minimize an objective function fX(M) parameterized by the data.
As a result, linear dimensionality reduction resolves down to optimizing a data-
parameterized objective function over a specific matrix manifold. The solution
space for such methods is thus determined by the type of matrix manifold and
the type of optimization function. Often the matrix manifold will either be an
arbitrary, unconstrained rank r mapping or a pseudo-orthogonality constraint
where M⊺M = I , leaving the objective function to further determine the
solution space [17].

As mentioned earlier, while linear models come with many benefits includ-
ing relatively simple interpretations, straightforward application, and gener-
ally efficient computation, they ultimately lack complexity. As formulated by
Cunningham and Gharmani, the reliance of optimization over two particular
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families of matrix manifolds results in a limited solution space that is only fur-
ther specialized by their objective function. While no method is truly universal,
nonlinear methods may optimize over wider domains and may express transfor-
mations and reductions that do not abide by linearity and thus are intrinsically
unattainable by linear methods.

Nonlinear dimensionality reduction techniques include manifold methods,
such as Local Linear Embeddings [68], Isomap [78], Laplacian eigenmaps [5],
diffusion maps [15], t-distributed stochastic neighbor embedding (t-SNE) [51],
and maximum variance unfolding [88], which construct nonlinear manifolds
through local methods. In particular, they often rely on local neighborhoods,
connectivity, geodesic distances, and other forms of graph-based local geometry
to generate a manifold which is both locally consistent and optimal, often at
the expense of global structure. These methods are often ill-conditioned when
mapping pseudo-inverse transformations back into the data space, and do not
provide a linear mapping to the lower-dimensional manifold. Despite some
of these methods relying on eigenvalue problems and solutions and matrix fac-
torization, their construction results in a necessarily nonlinear transformation.
In general, many matrix-factorization methods such as nonnegative matrix fac-
torization (NMF) [45] seem as though they ought to be linear models, yet the
transformations they produce cannot be represented as linear maps and thus
join the ranks of other nonlinear methods. An especially interesting nonlinear
dimensionality reduction technique is uniform manifold approximation and
projection (UMAP) [55]. This algorithm is SOTA and has very few assumptions.
It assumes that the data is uniformly distributed on a Riemannian manifold,
consistent with the manifold hypothesis, that the manifold is locally connected,
and that the Riemannian metric can be approximated as locally constant. The
first and final assumptions are common within the manifold hypothesis, and
indeed we utilized the same assumptions earlier in both HDBSCAN and PCH.
The very act of calculating MRDs is an approximation of the locally-constant
Riemannian metric.

Recent development has highlighted the potential for autoencoders in di-
mensionality reduction, in particular emphasizing the utility of Variational Au-
toencoders (VAEs) [41]. With the rise of deep learning, especially generative
modeling, VAEs have been a go-to strategy for dimensionality reduction in large
models like large language models (LLMs) [56] and modern diffusion-based im-
age generation models [65]. This is owed largely to the fact that VAEs are able
to encode arbitrary information streams without explicit guidance on the struc-
ture of the information by using pseudo-invertible transformations, allowing
a pseudo-bijection between the ambient data space and the learned represen-
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tation space [42, 82]. Recent developments have significantly improved VAE
performance at large, especially with novel perspective on geometric interpreta-
tions of the VAE latent space [2, 18].

As alluded to before, linear methods often struggle in handling more com-
plex, high-dimensional, “natural” data such as images, videos, and other modal-
ities. In particular, they are often unable to discern especially small local sub-
spaces within the data, faring better at ascertaining macroscopic tendencies and
patterns across the data [3]. Turning to nonlinear methods, UMAP is an espe-
cially compelling one since it generally produces high-quality transformations
which preserve local connectivity much like t-SNE and other nonlinear embed-
dings, but also preserves global structure much more strongly, making it usable
and reliable as a pre-processing step, much like PCA and much unlike t-SNE.
Despite preserving semblances of both local and global structure, UMAP does
not preserve the distribution of points in the sense that there are no guarantees
regarding the density of points in the embedding, aside from a minimum dis-
tance hyperparameter which limits how close points may be embedded to each
other.

Preservation of density, or at least the ability to explicitly model the density
distribution of data is an important feature for clustering purposes since many
clustering algorithms rely on underlying assumptions regarding the density of
the data. For example, Gaussian mixture models (GMMs) assume normalcy
of data under individual clusters, and an aggregate form of several clusters in a
uniform mixture (though uniformity is alleviated when using weights on the
GMM). While HDBSCAN and PCH do not have explicit density assumptions,
empirically they work best when clusters are relatively uniform in density, while
they grow sparse at their boundaries.

3.3 Background

3.3.1 Variational Autoencoders
In order to obtain precise control over the analytical distribution of data, we
turn to VAEs which allow us to encode both a prior expectation over how we
want the data to be distributed in its reduced-dimensionality form, as well as
an explicit set of pseudo-inverse maps between the ambient and latent spaces.
In particular, a VAE can be understood as a simple generative model with a few
key components. Given a dataset X = {xi}Ni ⊂ Rn of N i.i.d. samples of
some random variable X (which may be discrete, or continuous), we assume
that the data follow a two-step generative process defined by pθ∗(z)pθ∗(x|z).
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This process first samples a point in some latent space determined by a prior dis-
tribution z ∼ pθ∗(z) which is then used to generate a conditional distribution
in the data space, from which a sample is finally drawn x ∼ pθ∗(x|z). Thus we
define the encoder qθ(z|x), the prior pθ(z), and the decoder pθ(x|z), where a
subscript of θ denotes being parameterized by jointly learnable weights, in order
to model this generative process. While the role of prior and posterior compo-
nents, pθ(z), pθ(x|z) respectively, are obvious since they have corresponding
components in the generative process, the role of the qθ(z|x) distribution is
a bit more subtle, and is necessary to dispel the apparent intractability of the
problem. Generally these components are assumed to come from the same para-
metric family of distributions, however that need not always be the case. For
simplicity, the original VAE will be defined with each component as a param-
eterized Gaussian distribution. In particular, pθ(z), qθ(z|x) are distributions
defined over a lower-dimensional embedding space, known as the latent space,
generally Rd for some d << n.

The optimization target of a VAE is to maximize the likelihood of the data
under the model, i.e. maximize pθ(x). Following the generative process, this
means maximizing

∫
pθ(z)pθ(x|z)dz which is unfortunately intractable due to

the need to integrate over the entire latent space, thereby making it impossible
to differentiate. Moreover, we have that the true posterior density pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
itself is also intractable, meaning that many expectation-maximizing

and variational methods cannot be used [41]. To remedy this issue, Kingma
and Welling consider the variational lower bound on the marginal likelihood.
Specifically

ln pθ(x1, . . . , xN) =
N∑
i=1

ln(pθ(xi))

which can be rewritten by noting that

ln(pθ(xi)) = DKL(qθ(z|xi)||pθ(z|xi))+Eqθ(z|x)[− ln qθ(z|x)+ln pθ(x, z)]

where the first term on the RHS is the Kullback-Leibler divergence [44] be-
tween the approximate and true latent-code posterior and the second term is
the so-called variational lower bound. We may denote the variational lower
bound as

L(θ;xi) = Eqθ(z|x)[− ln qθ(z|x) + ln pθ(x, z)]

noting that L(θ;xi) ≤ ln pθ(xi). Thus, maximizing the variational lower
bound serves as optimizing the lower bound of the marginal likelihood, pro-
viding an indirect mechanism to optimize the system for the generative process.
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This is made much more doable by further decomposing

L(θ;xi) = −DKL(qθ(z|xi)||pθ(z)) + Eqθ(z|xi)[ln(pθ(xi|z))]

which completes our optimization target.
Then, we then may revisit and concretely define the encoding process which

is used to map a data point x to a latent code z ∼ qθ(z|x). Since we have that
qθ(z|x) is some Gaussian, we may denote its parameterization as

qθ(z|x) = N (µθ(x),Σθ(x)) = N (µθ(x), σθ(x))

where for simplicity we assert that Σθ is a diagonal covariance matrix, denoting
it as σθ instead. After encoding, we define decoding as the map from z to

x̂ = pθ(x|z) = N (µx
θ(z), σ

x
θ (z)) = N (µx

θ(z), I)

where generally we fix σx
θ = I for convenience.

Finally, the prior

pθ(z) = N (µp
θ, σ

p
θ) = N (0, I)

is defined as a target such that the VAE learns to produce latent distributions
that follow the distribution of the prior, where for convenience, we generally
take µp

θ = 0, σp
θ = I .

Note that since z := µ+ ϵnΣ for µ ∈ Rn, Σ ∈ Rn×n and ϵn ∼ N (0, In)

is distributed as z ∼ N (µ,Σ), we can further rewrite qθ(z|x) = µθ(x) + ϵd ·
σθ(x) and pθ(x|z) = µx

θ(z) + ϵn where we take the element-wise product
with ϵ, allowing us to directly take the gradient with respect to the parameters
µθ, µ

x
θ , σθ.

Since we are parameterizing the distributions through choices of µ, σ, we
can rephrase the construction of a VAE into that of a neural network directly
providing these parameters. Specifically, we define the encoder f : Rn →
R2×d that mapsx→ µθ(x), σθ(x) providing the parameterization for qθ(z|x).
Similarly, we define the decoder g : Rd → Rn that maps z → µx

θ(z) providing
the parameterization for qθ(z|x).

In which case, our optimization target can be rewritten noting that the
KL-divergence term may be rewritten as

−DKL(qθ(z|xi)||pθ(z)) =
1

2

d∑
j=1

(1 + ln(σθ(xi)
2
j)− µθ(xi)

2
j − σθ(xi)

2
j)
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8 Generally the optimization
target is framed as a mini-
mization objective, so since
we intend to maximize the
variational lower bound, in
the objective function we
minimize the negative of the
bound itself.

and the marginal log-likelihood term can be rewritten as a monte-carlo esti-
mate (since our samples follow p(x) and consequently our latent codes follow
qθ(z|x)). We denote likelihood of a point x underN (µ, σ) as f(x;µ, σ):

Eqθ(z|xi)[ln(pθ(xi|z)] = ln

(
n∏

j=1

f((xi)j; (µ
x
θ)j, (σ

x
θ )j)

)

=
n∑

j=1

ln(f((xi)j; (µ
x
θ)j, (σ

x
θ )j))

= −1

2

(
n ln(2π) +

n∑
j=1

(
2 ln((σx

θ )j) +
((xi)j − (µx

θ)j)
2

(σx
θ )

2

))
(3.1)

which due to our choice of σx
θ = I , and dropping the constant term, simplifies

to

−1

2

n∑
j=1

(
((xi)j − (µx

θ)j)
2
)

Putting it all together, our case of a simple VAE optimizes the final objective
function8 of

−L(θ;xi) =
1

2

n∑
j=1

(
((xi)j − (µx

θ)j)
2
)

− 1

2

d∑
j=1

(1 + ln(σθ(xi)
2
j)− µθ(xi)

2
j − σθ(xi)

2
j)

(3.2)

While this describes the basics of a VAE, as formulated by Kingma and Welling
[41], there are myriad modifications which build atop this framework, usually
by finding unique implementations of qθ(z|x), pθ(z), pθ(x|z) or more rarely
by altering the optimization target and optimization process itself [82, 18, 102,
75, 2]. In the next two sections, we will explore two such modifications.

3.3.2 VampPrior
A noted empirical limitation of VAEs is that setting a unit Gaussian as the prior
tends to be restrictive, making it more difficult for the VAE to learn arbitrary
distributions and distinguish clusters within the dataset while also serving as a
suboptimal target from a theoretical perspective, forcing more work to be done
in the first place [2, 82]. It is worth noting that such a prior is restrictive only in
the empirical sense, since a Gaussian prior does not reduce the solution space of
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a VAE when its latent dimension matches that of the underlying data manifold
[18]. Regardless, much work has been done in pursuit of a flexible, robust, inter-
pretable choice of prior that streamlines training [102, 64, 81, 82]. In a sense, we
can solve for an ideal prior based on the premise of maximizing the variational
lower bound, and indeed this is what Tomczak and Welling do in “VAE with a
VampPrior” [82]. They cleverly consider finding an optimal prior by framing
it as optimizing for the prior which results in the greatest log-likelihood under
the aggregate posterior distribution in the latent space (that is, the aggregate
distribution achieved by mapping the dataset through the encoder). This opti-
mization problem can be written simply as maximizing the following Lagrange
function, with Lagrange multiplier β:

max
pθ(z)
−Ez∼q(z)[− ln(pθ(z))] + β

(∫
pθ(z)dz − 1

)
where the final term is simply the Lagrange multiplier times the constraint that
the function being found is indeed a probability distribution. Almost trivially,
the solution to this optimization is just the aggregate posterior itself:

pθ(z) =
1

N

N∑
i=1

qθ(z|xi)

Despite its simplicity, this solution has its own complexities. It is known
that such a distribution would likely overfit the model to the data, and a full
aggregate posterior is incredibly expensive to compute per-batch, making the
distribution near-intractable for most data [32, 52, 82].

Instead, we can approximate the aggregate prior by including M learnable
tensors {xη

i }Mi=1 in our model. These new tensors, called pseudo-inputs, take
the shape of the input data and exist to be mapped to posterior latent distribu-
tions in order to generate an aggregate distribution to serve as our approximate
prior:

pθ(z) =
1

M

M∑
i=1

qθ(z|xη
i )

We use this approximate prior to compute the KL-divergence term in the
variational lower bound. Thus, the gradient can directly pass through and op-
timize the pseudo-inputs so that they best serve as approximate samples for the
true aggregate prior. It is worth noting that in practice, due to the curse of
dimensionality, pseudo-inputs will often “look” like random noise more than
actual data. This is because, in the case of the manifold hypothesis, the data
manifold has volume zero (even though its noisy expansion has non-zero vol-
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ume), thus it is unlikely (but not impossible) for a pseudo-input to be learned
on the data manifold (or its noisy expansion) itself. We discuss this further in a
later section.

3.3.3 Two-Stage VAE
While conventional wisdom has widely accepted that indeed limited choices of
prior and posterior distributions can make it difficult to produce good results
in practice, this need not be the case. In particular, Dai and Wipf observe that in
the case where the manifold dimensionality matches the ambient space (n = d),
even a simple VAE can achieve a globally optimal solution under the standard
Gaussian parameterizations.

Definition. A k-simple VAE is a VAE with latent dimension d = k whose
encoder and decoder, are both parameterized Gaussian distributions. In par-
ticular, we define pθ(x|z) = N (µx

θ , σ
x
θ ) and, unlike in our earlier discussion

of basic VAEs, we do not set σx
θ = I . Instead, we set σx

θ = γI for a learnable
scalar parameter γ.

Dai and Wipf prove that there exists a sequence of parameterization of a
k-simple VAE, with parameters denoted θ∗t such that

lim
t→∞

DKL(qθ∗t (z|x)||pθ∗t (z|x)) = 0

and
pθ∗t (x)→ p(x) almost everywhere

which is equivalent to an “ideal” VAE distribution, despite the apparent lim-
itations of the choice of prior and posteriors. Please refer to [18] for precise
details on the proof. In the case of ambient space dimension greater than the
manifold dimension (d < n, as is almost always the case) then the situation
is significantly more nuanced. Let λgt be the “ground-truth” measure on the
underlying data manifoldM such that our ideal pθ(x) is actually described by
the measure λgt. In this case, Dai and Wipf similarly show that

lim
t→∞

DKL(qθ∗t (z|x)||pθ∗t (z|x)) = 0

and
lim
t→∞

∫
M
− ln(pθ∗t (x))dλgt = −∞
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9 though technically it is on
the volume-zero overlapping
sets, however it is simpler
and not-much-worse to un-
derstand it as the manifold
itself

while

∀A ⊂ Rn | λgt(∂A ∩M) = 0, lim
t→∞

∫
x∈A

pθ∗t (x)dx = λgt(A ∩M)

Note that there is a similarity with the last case, in that the KL-divergence
can be pushed towards zero reliably. The difference is that while the former case
demonstrated that the parameterized distribution can arbitrarily approximate
the true distribution, here we have a more nuanced version of that: the third
equation can be interpreted as saying that the same KL-minimizing sequence
can match the ground-truth distribution everywhere on the data manifold9

while still observing equation two, which is that the distribution will drive the
lower-bound arbitrarily low, chasing a potentially trivial solution to the opti-
mization problem. Most importantly, the conditions of optimizing the lower
bound and functionally recovering the ground-truth measure are distinct in this
case, meaning that one may be pursued without the other.

The main consequence of this fact is that the intrinsic limitations of a VAE
are more to do with dimensionality than with choice of prior or posterior. Al-
though they may have empirical effects, they are not necessarily bottlenecks
as conventional wisdom suggests. Consequently, Dai and Wipf propose an
implementation-ready solution to this limitation. Since a VAE can only be
guaranteed to have the chance to reach an optimal solution when the manifold
dimension and ambient dimension are equal, they divide up the VAE training
process into two steps, across two different k-simple VAEs. First, they train a
k-simple VAE on the dataset. Note that since their definition of a k-simple VAE
includes a term for the generative posterior variance (γ), it observes Theorem 4
in [18], summarized as:

Theorem. Let θ∗γ denote the parameters of a k-simple VAE where the ambient
dimension is greater than the manifold dimension (k < n) and γ is the sole
optimized parameter in the VAE. Then for any γ > 0, there exists γ′ < γ such
thatL(θ∗γ′) < L(θ∗γ).

Recall that the guarantee of an optimal solution for a VAE is predicated on
the inclusion of γ in the definition of a k-simple VAE. In particular, the pres-
ence of the γ term allows for the decoder distribution to limit towards a fixed
point-wise representation of the output. Semantically, this can be understood
as optimizing for the data manifold (rather precisely) at the expense of a sense
of the underlying distribution on that manifold. While you are likely to ob-
tain a latent embedding yielding a low reconstruction error, it will likely not be
distributed according to pθ(z). To remedy this, we treat the latent embedding
as its own ambient space and train the second k-simple VAE on it. Now we

48



10 assuming an initial choice
of manifold dimension small
enough to match the data
manifold dimensionality

can guarantee that the ambient dimension and manifold dimension are equal10

which means that we can globally optimize the variational lower bound to learn
both the manifold embedding (in this case an involution would suffice) and the
distribution on the manifold.

With this formulation, we now have a concrete handle on the distribution
of the first VAE. In particular, to sample x ∼ pθ(x) one must instead sample
u ∼ pϕ(u) from the second VAE, then take z ∼ pϕ(z|u) and finally x ∼
pθ(x|z). This ancestral sampling allows us to utilize the first VAE as an optimal
choice of decoder, while we leverage the second VAE as a complete prior by
itself.

3.4 Methodology

3.4.1 Natural VampPrior
As we have established, a k-simple VAE is sufficient to obtain a global optimum
in the case of same-dimension representation. However, empirical training
rarely obtains such global optima, and intelligent, deliberate choices of prior
distribution can help stabilize VAE training and produce representations that
are more qualitatively useful regardless of quantitative optimality. To this end,
we favor VampPrior as a choice of prior due to its ability to serve as a GMM while
being entangled directly to the encoder as during optimization. This entangle-
ment further stabilizes the VAEs training and ensures a smoother optimization
[82]. Furthermore, the fact that pseudo-inputs take on the shape of the incom-
ing data inspires hope for the notion that the pseudo-inputs will, in some way,
be representative of the data. Unfortunately, in high-dimensional cases this is
often not the case. We define a uniform random unit vector as U = X

∥X∥ where
X ∼ N (0, In). Consider the product of two uniform random unit vectors,

⟨U, V ⟩ = ⟨X, Y ⟩
∥X∥∥Y ∥

.

Since ⟨X, Y ⟩ is ultimately the sum of n variables XiYi = Zi ∼ W for some
distribution W . Note that

Var(Zi) = Var(XiYi) = Var(Xi)Var(Yi) = 1
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Thus, we may apply the central limit theorem to obtain the fact that ⟨X, Y ⟩ n→∞−−−→√
nN (0, 1). Note that by the law of large numbers, we have that

∥X∥√
n
,
∥Y ∥√

n

n→∞−−−→ 1

meaning that √
n⟨U, V ⟩ n→∞−−−→ N (0, 1)

and therefore
∀ϵ > 0, P (|⟨U, V ⟩| > ϵ)

n→∞−−−→ 0

meaning that as the number of dimensions increase, the probability that two
uniform random vectors are nearly orthogonal gets arbitrarily high. This result
can be readily extended to note that the same is true for an arbitrary set of
k uniform random vectors, showing that a random set of high-dimensional
vectors forms a quasi-orthogonal basis.

Since pseudo-inputs are initialized randomly in the ambient space, they
themselves form an arbitrary quasi-orthogonal basis, often allowing the VAE to
optimize them as “anchor points” that need not lie on the data manifold itself.
Indeed, the learning capacity of the encoder means that it can take those finitely-
many pseudo-inputs and embed them into the latent space in convenient posi-
tions that would imply they are on-manifold, while still being random noise in
the ambient space. As previously discussed in the context of two-stage VAEs,
arbitrary optimization may not lead to proper ground-truth aligned distribu-
tions. This behavior limits the ability of pseudo-inputs to be optimized in a way
that allows them to resemble actual data. This is further complicated by the fact
that there exists a degenerative local minimum to the KL-divergence term of the
variational lower bound for a VampPrior: if each pseudo-input converges to the
average of all pseudo-inputs, this allows input encodings to optimize for similar-
ity to a single Gaussian prior instead of a mixture of multiple distinct Gaussians.
Though this equilibrium may result in lower computed loss, it generally reduces
the model to a regular VAE with a Gaussian prior.

To alleviate both of these issues, we introduce Natural VampPrior (NVP)
which modifies the VampPrior strategy in three key ways:

1. We first initialize the pseudo-inputs based on real data sampled randomly
from the dataset.

2. We freeze the pseudo-inputs during the first stage of VAE training, and
re-train them separately while keeping the rest of the model frozen.
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3. We add an additional regularization term to the loss, which is a parallel
of the usual variational lower bound except as calculated for the pseudo-
inputs.

The first item helps ensure that the pseudo-inputs are, in aggregate, repre-
sentative of the data and provide a reasonable cover (which becomes more true
the more pseudo-inputs are used). The second item instead helps ensure that
we avoid the attractive local optima of homogeneous pseudo-inputs in the first
phase of training. The second phase can be understood as a sort of “projection”
of the pseudo-inputs back onto the data manifold itself in a way that matches
the ground-truth distribution. This is guaranteed by the third item, which sees
us add the following term to the loss as introduced in [98]:

ηLη(θ;xi) = η
[
−DKL(qθ(z|xη

i )||pθ(z)) + Eqθ(z|xη
i )
[ln(pθ(x

η
i |z)]

]
which is equivalent to the variational lower bound applied with the pseudo-

inputs as the data with which to condition the distributions on, as opposed
to real data. The scaling factor of η controls the balance between the pseudo-
inputs and regular data in the final loss term. This term encourages that in
the second phase where only pseudo-inputs are optimized, they learn to get
arbitrarily close to the data manifold in the ambient space. The precision of
such a projection is limited by the capacity and training of the network as a
whole. An example can be seen in figure 3.4.

Another way to project the pseudo-inputs onto the data manifold would
be to instead take the expected value of the latent distribution of the pseudo-
inputs generative variables, z̄ηi = E[qθ(z|xη

i )], and take the expected value of
its conditional distribution in the data space, x̄η

i = E[pθ(xη
i |z̄

η
i )]. This method

fails in the case of a two-stage VAE due to the fact that while the projection can
be reasonably guaranteed to land on the data manifold, due to the disentan-
glement of measure from the first-stage VAE, it may not end up at the right
place on the manifold. This can be alleviated by altering the projection to using
ūη
i = E[qϕ(u|zηi )qθ(z

η
i |x

η
i )] where u is sampled from the second-stage VAE,

z̄ηi = E[pϕ(z|ūη
i )] where now z̄ηi is the expected value from the decoder of the

second-stage VAE, while x̄η
i is calculated analogously by running the first-stage

decoder on z̄ηi .
Empirically we observe that the first method of re-training allows pseudos

to better learn a composition that optimizes the KL-divergence of the posterior
distributions, achieving in some sense a more “optimal” representation than the
second method’s projection would afford. The second method can only indi-
rectly optimize based on the premise that an on-manifold pseudo-input would
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11 Note that we need not
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behavior of the measure off
manifold since by construc-
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exhibit lower loss than an off-manifold pseudo-input. We note this premise is
not necessarily true in the case that the ambient dimension is greater than the
manifold dimension.

Ultimately, either method yields pseudo-inputs that genuinely look like they
came from the dataset (with fidelity depending on model capacity) and can be
used as quick “representative” samples for the entire dataset. In particular, they
will be representatives in areas of high density, resulting in a distilled snapshot
of the variance across the data, allowing experts to distinguish how many of
the pseudo-inputs represent novel and interesting cases as well as how many
are redundant. The emphasis of distinct pseudo-inputs and the reduction of
redundant pseudo-inputs are discussed further in the next chapter.

3.4.2 Pushforward Measure
While a traditional VAE optimizes both the geometric manifold and geometric
distribution simultaneously, we have established that a two-stage k-simple VAE
system is able to disentangle these aspects and represent them independently.
This has many obvious benefits, including the general reconstruction ability
of the first-stage geometric manifold learning VAE. However, there is a caveat:
there is no longer a known distribution over the latent space that encodes the
ground-truth distribution. The main consequence is that statistical quantities
such as likelihood are no longer obtainable in the same way. Luckily, this can
be easily remedied by considering the pushforward measure. Given a trained
two-stage VAE system, we define a map f : Rn → Rd based on the encoder of
the first stage, which takes x→ µθ(x). Similarly we define g : Rd → Rd, the
encoder for the second-stage VAE where it takes z → µϕ(z)where we use{θ, ϕ}
to denote the independent parameterizations of the two networks. Then, we
define

λp := λd ◦ g ◦ f

whereλd is thed-dimensional measure onM learned by the second-stage VAE11.

3.4.3 Locally Specialized VAE
A natural generalization of VampPrior is to consider the weighted sum of learned
pseudo-input posterior distributions with learnable weightsw. We take this no-
tion and develop it further in the hopes of aiding the separation of clusters in
the latent space, allowing for smoother downstream clustering. First, we intro-
duce a new hidden layer that operates one layer before the latent-dimension
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bottleneck. This layer maps samples to an evidence score distribution which is
used as logits to a softmax operation to determine how to weight the pseudo-
input posteriors when calculating KL-divergence for that sample in particular.
This allows samples to select which distributions they most identify with, al-
lowing them to cluster more tightly and encouraging a spatially-disentangled re-
lationship between pseudo-input posteriors. Specifically, we define W : Rl →
RK a linear map where K is the number of pseudo-inputs, and we set w =

softmax(XW ) as the sample-wise weights where X ∈ Rn×l is the matrix of
samples.

By itself, this mechanism helps with the disentanglement of pseudo-inputs
and their distributions. To further separate them, we introduce a stochastic map
M that samples from a parameterized categorical distribution of K categories,
C = Cat(K). Specifically, M maps xi → ci ∼ C(softmax(xiW )) where
the parameterization ci ∼ C(softmax(xiW )) refers to softmax(xiW ) act-
ing as a list of probabilities for each category. Thus the categorical outcome
of M(xi) determines which pseudo-input is used when calculating the KL-
divergence. In this way we are able to isolate individual gradients to each sample
and ensure that they flow with respect to a single pseudo-input at a time. We
avoid affecting the overall stability of the training process since the stochastic na-
ture the map paired with the many iterations of batch-wise training effectively
enable us to take a monte-carlo estimate of the expected value of the mean dis-
tributions of the categorical maps.

We furthermore introduce a regularization term α to improve the entropy
profile of M . Specifically, we want as many pseudo-inputs to be used as pos-
sible, meaning that across a batch we observe high entropy in M . Meanwhile,
we want each sample to decisively choose its own pseudo-input, meaning for
each distribution M(xi) we want to observe low entropy. Thus, taking pi,j =
PM(xi)(ci = j) and pj =

1
N

∑N
i=1 pi,j we define

α =

(
K∑
j=1

(pj) ln((pj))

)
− 1

N

(
N∑
i=1

K∑
j=1

pi,j ln(pi,j)

)

The first term on the RHS is the batch-wise entropy, which is the entropy
of the aggregate expected value of the categorical distributions. When batch-
wise entropy is high, it means that many pseudo-inputs are being regularly used.
The second term on the RHS is the average sample-wise entropy. When average
sample-wise entropy is low, it means that the categorical distributions of each
sample (i.e. M(xi) are tighter and closer to a decisive choice than a uniform
random one. In particular, the gap in entropy quantities – which is α itself –
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Figure 3.1: The value of α, or the “entropy-gap” over the course of training.

represents how much of the population of pseudo-inputs does an average point
draw from. In particular if we write α = −Hb +Hs where Hb,Hs are batch-
wise and sample-wise entropy respectively, then each sample draws from eα.
Note that we can rewrite

α =
K∑
j=1

E[pi,j] ln(E[pi,j])) + E

[
−

K∑
j=1

pi,j ln(pi,j))

]

= −

[
−

K∑
j=1

E[pi,j] ln(E[pi,j]))

]
+ E

[
−

K∑
j=1

pi,j ln(pi,j))

]

= E

[
−

K∑
j=1

pi,j ln(pi,j))

]
−

[
−

K∑
j=1

E[pi,j] ln(E[pi,j]))

]
= Ei[Hj[pi,j]]−Hj[Ei[pi,j]]

(3.3)

where
H[pj] = −

∑
i

pj ln(pj)

is the entropy over a discrete distribution with probabilities pj . Note that since
x lnx is concave-up, Jensen’s inequality guarantees that α < 0. We can see an
example of this entropy gap in figure 3.1.

Since we separate the generative process into a hierarchical process with
the two-stage VAE framework, we retain the disentanglement of the manifold-
learning and measure-learning by implementing these structural changes in the
second stage VAE, thus only the portion in charge of measure-learning need
worry about the distribution of points and categorical clusters.
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3.5 Results
We measure the efficacy of NVP by considering whether it is able to maintain
or make gains on its loss optimization compared to a vanilla VAE, whether its
representation space is more suitable for clustering, and whether it produces
reasonable pseudo-inputs that can help with introspection. The first two mea-
sures are quantitative, while the last is qualitative and subjective. We perform
our experiments on the Fashion-MNIST dataset using a lightweight residual
convolution architecture consisting of approximately one million parameters,
and limit our representation to two dimensions for computational simplicity
[29]. As we can see in figure 3.5, the training regimes for both models are compa-
rable yet the NVP model converges to a significantly lower loss than the vanilla
VAE. The adoption of pseudo-inputs increases the general performance of the
VAE network, and the use of NVP loss and training regime preserves those gains
[82].

Next, we compare the learned pseudo-inputs to the actual sample data.
Please see figure 3.3 for sample data, and figure 3.4 for an example of learned
pseudo-inputs. Note that the pseudo-inputs generally match the sample distri-
bution in terms of general composition (e.g. many shoes and tops, few purses).
While pseudo-inputs are not as detailed as the true sample data, this is a limita-
tion of the capacity and training of the neural network used in the experiment
rather than an intrinsic flaw of the approach itself. Despite the lack of fine de-
tails, the pseudo-inputs themselves already serve to offer a few easy partitions
among the data for an investigating expert. The composition of the pseudo-
inputs suggests that we can roughly form the following low-fidelity groups:
shirts, pants, purses, and shoes. Investigating further (perhaps with additional
pseudo-inputs) could then suggest stratifying the classes so as to distinguish flat
shoes from heels and ankle-boots, and perhaps fragmenting the “pants” class in
which pants and dresses often co-cluster into one class of true pants and another
class of dresses.

Zooming out, we can see in figure 3.7 that the pseudo-inputs provide a
relatively uniform cover of the empirical distribution in the embedding space.
While pseudo-inputs don’t correspond 1-1 to the canonical labels for the dataset,
they tend to correspond to perceptually similar groups (e.g. long pants and
dresses) and provide a separate and unique perspective on what the “right” clus-
tering on such a dataset would look like.

Next we consider the locally specialized VAE (LSV) model which builds on
top of NVP. We compare it directly against NVP in the same context as the
prior comparison between NVP and a vanilla VAE. Despite the implementation
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Figure 3.2: The embedding space of a trained VAE model. Points are colored
by their ground-truth labels under the Fashion-MNIST dataset.
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Figure 3.3: Sixteen samples drawn from the Fashion-MNIST dataset.
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Figure 3.4: Twenty learned pseudo-inputs from a model trained on the Fashion-
MNIST dataset, recovered via projection onto the manifold.

changes, the net complexity of the LSV model is roughly equivalent to that of
the NVP due to how few added parameters there are. We can see in 3.6 that
over the same number of steps (equating roughly to the same amount of time
passed as well), the LSV model arrives at a lower loss than the NVP is able to
converge to.

Regarding the suitability of the latent space for clustering, we can measure
this indirectly by considering the performance of our algorithms on the various
spaces. In particular, we evaluate the ARI of a vanilla HDBSCAN algorithm
run on the various spaces. We compare this to the two-dimensional UMAP
projection as a gold-standard result in table 3.2. This indirect heuristic is fun-
damentally limited in what it can tell us, since it relies on HDBSCAN’s perfor-
mance. Despite HDBSCAN being free from many of the biased assumptions
that beset standard unsupervised clustering algorithms, it still necessarily has its
own sets of biases. These include, as mentioned in chapter 2, the notion that
clusters are well-separated, which fails in dense representations (something that
is improved by PCH).
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Figure 3.5: The losses of a vanilla VAE (purple) and NVP (orange) model over
the course of 400 epochs.

Figure 3.6: The losses of an LSV (purple) and NVP (orange) model over the
course of 200 epochs
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To demonstrate that the representation power of the methods listed extends
past what appears at first glance, we consider a case study on the embedding
space of an LSV model. As we can see in its embedding in figure 3.8, the points
are densely packed and cluster separation is ambiguous at best. This does not
mean we lose the sense of what clusters may exist, but rather that the infor-
mation is encoded differently. Take, for example, the cover of pseudo-inputs
presented in figure 3.9. While these pseudo-inputs do not correspond directly
to semantic clusters per-se (though it may be reasonable to take this as a crit-
icism of the ground truth labels rather than the pseudo-inputs) they do still
represent local groupings. In fact, if we prune these pseudos intelligently down
to what is shown in figure 3.10, we can generate a set of clusters by consider-
ing the likelihood of each point under each pseudo-input, and assigning a label
to each point corresponding to the pseudo-input with which it has the great-
est likelihood. This is pictured in figure 3.12. Such a strategy alone lends an
ARI of approximately 0.35, which is similar to the score we obtain using HDB-
SCAN. Keep in mind, we did not use any algorithm on top of our model, we
simply took a straightforward maximum likelihood estimate approach under
the (pruned) pseudo-inputs, and were able to obtain a reasonable clustering.

To emphasize the virtue of the maximum likelihood strategy, and what it
means for the representation space, it is worth discussing FMNIST-5 which
is a re-labeling of the Fashion-MNIST dataset that reduces the labels to only
five distinct ones broken down as {Tshirt/Top, Dress}, {Trouser}, {Pullover,
Coat, Shirt}, {Bag}, {Sandal, Sneaker, Ankle Boot} [57]. This is done to respect
the ambiguities and overlap within the original Fashion-MNIST, in hopes of
creating labels more consistent for machine-learning applications. In this case,
evaluating under this re-labeling, we obtain an ARI of 0.52. To be clear, this
is competitive with HDBSCAN, PCH, and COP-KMeans while only making
use of a two-dimensional embedding space. In fact, this score beats other widely
cited fully-unsupervised algorithms on FMNIST-5, such as ClusterGAN with
an ARI of 0.48, agglomerative clustering with an ARI of 0.36, and non-negative
matrix factorization with an ARI of 0.40, as seen in table 3.1.

In summary, NVP offers a drop-in solution for augmenting VAEs with an
improved VampPrior such that the pseudo-inputs actually learn to resemble
genuine data, leading to simple and robust data introspection through focusing
on the pseudo-inputs as learned representatives. Furthermore, we demonstrate
that NVP has greater learning capacity in even low-parameter models (approxi-
mately one million). Finally, we introduce LSV, which allows for us to improve
the geometry of the embedding space by encouraging greater locality and den-
sity due to the stochastic categorical prior, and we demonstrate its ability to
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Table 3.1: The ARI of various models applied to the FMNIST-5 algorithm. Note
that PCH and COP-KMeans were given twenty constraints. The best semi-
supervised, and fully unsupervised scores are in bold.

Model ARI
PCH 0.63

COP-Kmeans 0.48
LSV MLE 0.52

ClusterGAN 0.48
AC 0.36

NMF 0.40

Table 3.2: The ARI of a vanilla HDBSCAN run on the latent space produced
by each representation method.

Model HDBSCAN ARI
VAE 0.14
NVP 0.25
LSV 0.36

UMAP 0.40

generate high-quality embedding spaces. We also demonstrate that the pseudo-
inputs under LSV correspond highly to meaningful local clusters and that light
pruning can generate consistent clusters that match or outperform other SOTA
algorithms for free on top of LSV. Thereby we implement and confirm our the-
oretical findings, demonstrating their feasibility as tools for data introspection
and semantically meaningful representation learning.
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Figure 3.7: The embedding space of a trained NVP model, with pseudo-input
posterior distributions marked as ellipses with crosses at the center. The ellipses
are drawn to one standard deviation along each axis for the distributions they
represent.
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Figure 3.8: The embedding space of a trained LSV model.

Figure 3.9: The embedding space of a trained LSV model, with pseudo-input
posterior distributions marked as ellipses with crosses at the center. The ellipses
are drawn to one standard deviation along each axis for the distributions they
represent.
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Figure 3.10: The embedding space of a trained LSV model, with a pruned set of
pseudo-input posterior distributions.

Figure 3.11: The clusters generated by using a maximum likelihood estimation
technique with respect to the pseudo-inputs’ posterior distributions in an LSV
embedding space.
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Figure 3.12: The embedding space of a trained LSV model, with a pruned set of
pseudo-input posterior distributions. Points are colored by their ground-truth
labels under FMNIST-5.
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Chapter 4

Iterative Refinement

4.1 Introduction
While we have introduced methods both to better represent the underlying fea-
ture space for our data and to cluster our data using semi-supervision by way of
pairwise constraints, we must still develop a third critical aspect of the frame-
work: the infrastructure for iterative refinement. Although plenty of focus
goes towards one-pass algorithms, research is not a one-pass task. As we analyze
novel data, we gain novel insights, and ideally we can leverage these insights in
future analyses to help us learn more accurate and nuanced conclusions from
our initially overwhelmingly complex dataset. We can apply a similar workflow
to our framework to mitigate key problems that arise in semi-supervised tasks
like our own.

For example, despite the surplus of raw, unlabeled data, the availability of
labeled or feedback-paired data is greatly hindered by the expensive and time-
consuming nature of manual expert labeling. Therefore, purposeful and in-
tentional use of labeled data is essential in many resource-constrained contexts,
such as research projects with limited funding, volunteer efforts, non-profits,
and other research contexts which face a lack of direct funding.

To minimize barriers to entry and make the most use of the data we already
have, we develop a framework which allows for iterative development by two
means:

1. intelligently engaging a domain expert to offer feedback on samples that
are viewed as informative and important.

2. using the accumulated semi-supervised understanding of the dataset to
tweak and refine the algorithmic procedure for the next iteration to en-
courage better performance.
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The first item is generally referred to as “active learning” [72, 79, 48] and
the latter item as “self-supervised” learning [27, 37, 59]. A large portion of self-
supervised learning is performed in the context of contrastive learning based on
self-curated similarity / dissimilarity pairs [13, 59], however the technique itself
generalizes to more methods, including the general iterative framework we will
later introduce.

In particular, we introduce

1. a mechanism to leverage the pushforward measure introduced in the pre-
vious chapter to generalize the capacity of PCH to use traditional statis-
tics and information-theory-based active learning sampling techniques.

2. an iterative HDBSCAN-first active querying method to prioritize highly
useful samples for generating pairwise constraints, leveraging the spatial
distribution of points and HDBSCAN results directly for partial self-
supervision.

In practice, this form of self-supervision is consistent with several representation-
based active-learning concepts, thus we will conceptualize it as an active learn-
ing technique so as to disambiguate it from the otherwise large field of self-
supervision.

4.2 Related Works
Active learning attempts to find a set of high-quality data points that are the
most “informative” and “representative” points in the dataset with respect to
a given model such that labeling those points will have the highest return of
similarly-sized data subsets. [79]. Ultimately the study of active learning relates
a model and its latent information with the underlying dataset so as to recom-
mend queries for feedback from experts – also called oracles. These queries can
range from direct and explicit labels to indirect or implicit comparisons (e.g.
“triplet loss” as used in metric learning) [72]. In their landmark active learning
survey, Settles divides active learning scenarios into three major components
[72]:

1. Membership query synthesis, whereby the machine learning system or
algorithm itself generates a new data point which may be particularly
informative (e.g. one that lies on a decision boundary) which is then
queried for feedback, directly allowing the model to choose the informa-
tion it receives through manipulation of the query synthesis.
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2. Stream-based selective sampling, whereby the model is faced with an on-
going stream of potential query samples, deciding directly on which to
query or discard.

3. Pool-based sampling, whereby the model has a large pool of unannotated
data a priori and must select samples from within that pool to query.

Note that the first scenario can be rather difficult to coordinate when the or-
acle is a human, since many potential membership queries can – in the words of
the manifold hypothesis – lie on the boundary of the manifold or off-manifold
entirely, resulting in the synthetic data point resembling semantically ambigu-
ous or even meaningless data. This is less of an issue when the data manifold is
more aligned with the ambient space, e.g. in the case of a phase space for robotics
programming, where each point in the ambient space can correspond to a sensi-
ble configuration for the robot to occupy, hence synthesized queries pose little
challenge. The opposite case would be e.g. semantic data such as images, text,
speech, etc. where the data manifold is a complex structure, and perturbations
in the ambient space align more with “corruption” than smooth deformation.
In general, more complex systems are poorly suited for membership query syn-
thesis, especially with human oracles that are ill-suited to off-manifold semantic
data [99].

Stream-based queries take as premise the notion that obtaining unlabeled
instances of data is relatively free and can be done on demand (which is a valid as-
sumption in many modern cases, e.g. web-scraped datasets). The model learns
by repeatedly being prompted with a new data point, then deciding whether to
discard the point or to query the oracle regarding it. Granted that the distribu-
tion of data is fixed, this method can be understood as a means of generating
the direct membership query scenario since each point will eventually be seen
with probability one. However, this scenario is most useful for describing sit-
uations where the incoming data has some genuine novelty and is unlikely to
be recovered later, in which case the immediate decision on whether to query
the data has a sense of immediacy to it. In the case of an unknown distribution,
due to the underlying assumption of stochasticity in the sampling of the data,
we can be assured it will still follow the ground-truth distribution despite our
lack of a tractable representation of the distribution itself.

Finally, pool-based sampling refers to the situation where we have a labeled
subset of otherwise-unlabeled data. These pools are usually assumed to be fixed,
distinguishing pool-based sampling from the stream-based scenario, which di-
rectly assumes new samples can be obtained, and the synthesis sampling sce-
nario, wherein new samples are created). The fixedness assumption is not strictly
necessary, but it simplifies the problem and allows for the development of greedy
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algorithms for optimization since we have access to all potential queries a priori.
The pool-based sampling method is especially popular in machine-learning con-
texts and has been used for text classification [53, 47, 13, 33, 84], image processing
[100, 83], video classification [92, 28], speech recognition [87], and much more.

The most directly applicable active learning scenario to PCH is the pool-
based labeling scheme, since our data is fixed a priori and finite, thus we cannot
match the assumptions for stream-based learning. However, the representa-
tion learning model from Chapter 3 has the capacity for engaging in member-
ship query synthesis through the use of NVP – since the pseudo-inputs can be
learned to lie on the data manifold in the ambient space, they will be seman-
tically similar to actual data, meaning that a human oracle may interpret the
pseudo-inputs in the problem context. We discuss this in more detail in the
methodology section.

Perhaps the simplest and most straightforward active learning query tech-
nique is uncertainty sampling [46], where queries are determined by how un-
certain the model is regarding their label, i.e. to find

x∗ = argmax
x

(1− Pθ(ŷ|x))

where ŷ = argmaxy Pθ(y|x). This method has several shortcomings, most
prominently in multi-class settings, where most information is, in some sense,
“omitted”. This omission arises from the absolute determination using only
the greatest probability, hence being invariant to the rest of the distribution.
In response, several variants have arisen to address these shortcomings, with
the most prolific being the use of entropy in place of the aforementioned naïve
uncertainty. The entropy-based determination is as follows:

x∗ = argmax
x

H[P (y|x)] = argmax
x
−
∑
i

P (yi|x) ln(P (yi|x))

[73] which clearly incorporates more of the underlying information encoded
in the distribution of probabilities per sample, rather than simple uncertainty.
While maximal samples optimize both forms of uncertainty sampling, the dis-
tribution of “uncertainty score” differs wildly for non-maximal points. This
difference in distribution results in a more robust sampling when using the
entropy criterion.

While these sampling strategies are especially well-suited for probabilistic
models, there has been success in translating them into deterministic problem
contexts using a stochastic ensemble approach to generate a posterior distribu-
tion, essentially taking a monte-carlo estimate of a true underlying posterior
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[46]. That is to say, givenk voting deterministic classifiers (e.g. a random forest),
we can define the posterior distribution

pθ(y|x) =
1

k

k∑
i=1

piθ(y|x)

where piθ(y|x) represents the “stochastic” posterior of the i-th classifier. Gener-
ally piθ(y|x) = δŷi(y) where δ is the delta function and ŷi is the i-th classifier’s
deterministic output label. This simply means that piθ(y|x) = 1 iff y = ŷi.
In this way, the aggregate posterior pθ(y|x) approximates a hidden posterior
p∗θ(y|x), which is the ensemble’s estimate of the true posterior pθ(y|x) [25, 50].

In addition to the information-based approaches presented thus far, there
are representation-based query strategies, which generally attempt to leverage
the structure of the unlabeled data to find points that best represent the given
dataset. The idea is that the information gained from the points’ queries will
provide meaningful gain to all points in their vicinities, resulting in significant
total uplift in performance [79]. In a sense, this strategy is the “opposite” of
the information-based approach. Whereas the information-based approach
attempts to query boundary points or points of great uncertainty, low informa-
tion density, and high entropy, representation-style approaches instead attempt
to find points well-situated within the data distribution – often centroids or
medoids of their local distributions.

Consequently density-based approaches often implement representation
based queries through attempting to find cover sets of the data distribution so
that all data lie within a certain range to the closest queried representative [89,
71]. Similarly, some methods attempt to cluster the data and select representa-
tive points based on those clusters [36, 39]. Ultimately, representation-based
query strategies offer a better “spread” over the data, addressing both the ten-
dency of information-based queries to remain dense in the representation space
(e.g. attracted by a central region of high uncertainty) and their implicit redun-
dancy (one query may clarify the region, no need for multiple) by explicitly
focusing on covering the dataset and matching the implicit geometric structure.
In exchange, representation-based methods suffer from their own form of re-
dundancy, wherein points sampled with respect to data density may not be as
helpful as information-based queries, as the large concentration of data in that
region implies that the machine learning algorithm will be better suited for that
region simply due to the distribution of data itself.
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4.3 Methodology

4.3.1 Pushforward for Statistical Measure
While uncertainty-based sampling is a powerful tool in active learning, HDB-
SCAN by itself (and consequently PCH) is not truly probabilistic and thus is
unable to directly apply uncertainty-based query methods. In particular, given
a fixed dataset, HDBSCAN is deterministic with a notion of “membership
strength” which is a normalized heuristic, but not a true probability in the
sense that it does not refer to a stochastic quantity or process.

The aforementioned strategy of amending the estimated posterior distribu-
tion of labels based on ensemble classification is theoretically possible in one of
two modes: either multiple HDBSCAN models are run with different hyper-
parameters to build an ensemble or multiple neighbors are taken as a source of
label votes such that the ensemble is a local neighborhood around each point.
The former case is infeasible because the computational costs of running HDB-
SCAN multiple times are high and the hyperparameters of HDBSCAN are
many, and it is difficult to predict how hyperparameter changes will affect the
outcome of the algorithm over a given dataset. Furthermore, it is not obvious
what weight ought to be afforded to each voting member of the ensemble, and a
uniform weighting is unlikely to do well due to the model’s nonlinear sensitivity
to hyperparameters. On the other hand, an ensemble of neighbors is reasonable
for boundary points, where local neighborhoods lead to non-trivial posteriors
due to the presence of multiple labels. However, interior points become trivially
confident and do not reflect actual uncertainty, e.g. what is an interior point
with 0 entropy now may become a boundary point with high entropy with a
small change to either the MST or an arbitrary hyperparameter.

Instead, representation-based methods are usable, yet highly redundant due
to the underlying structure of HDBSCAN, wherein labels are assigned on a
cluster-representation basis, meaning that HDBSCAN implicitly applies a triv-
ial cluster-based active learning where each query forms a new label. Similarly,
due to the algorithm’s density-based divisive structure, the same can be said for
implicit use of trivial density-based active learning, where differences in local
density imply different labels.

Thus to augment HDBSCAN in a unique way, we consider the problem of
finding a way to apply uncertainty-based query strategies on this deterministic
algorithm. The simplest way to do so would be to generate a sense of distri-
bution over the underlying dataset. This can be completed simply by fitting a
k-component Gaussian Mixture Model (GMM) over the data, where k is the
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12 Note that here we use
f, g in their capacity as
maps rather than outright
functions, mainly to trans-
form images across domains,
hence why we do not ap-
ply what may seem like the
“usual” calculus in later ap-
plying the Radon-Nikodym
derivative.

number of unique non-noise labels present in the output of HDBSCAN. Once
this distribution is established, we can use uncertainty-based query strategies by
setting the likelihood of each point to its likelihood under the fitted distribu-
tion. Unfortunately, a GMM-based approach relies on the assumption that the
data are fundamentally normally distributed within clusters, and that clusters
are elliptical – neither assumption is necessarily true in practice and depend
greatly on the choice of representation of the data (e.g. t-SNE vs UMAP will
give different distributions). One may instead opt for non-parametric kernel-
density estimates, but the choice of kernel carries with it assumptions about
the underlying distribution of the data in the representation space, which can
significantly impact the final distribution and (e.g. spherical/elliptical in the
case of most kernels).

How do we generate a distribution over the data without assuming the un-
derlying distribution of the data within clusters and within the space? The
two-stage VAE implemented earlier is a rather fitting solution: recall that the
key finding from the two-stage VAE discussion was that even with a Gaussian
prior, a two-stage VAE system can globally optimize the VAE objective while
recovering both the geometric manifold of the data and a sense of measure (i.e.
distribution) over the data manifold. Specifically, we recall the pushforward
measure defined in section 3.4.2, which allows us to use the learned two-stage
VAE to define a distribution over the ambient space, under which we may calcu-
late the likelihood of the data. In particular, forx ∈ X ⊂ Rn with pushforward
measure λp = λd ◦ g ◦ f 12, we can derive likelihood by considering the Radon-
Nikodym derivative of the induced pushforward measure with respect to the
manifold-dimension Lebesgue measure

dλp

dλ
=

dλd

dλ
◦ g ◦ f,

which can be rewritten into

pθ(x) = puθ ◦ g ◦ f

where puθ = dλd

dλ
, corresponding to the prior of the second-stage VAE which

is generally assumed to be puθ (x) = N (0, Id). Now we have defined a concrete,
tractable pθ(x) that assigns likelihood to the data points, enabling uncertainty-
based calculations that rely on the geometric and spatial distribution of points
but not the label distribution.
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13 Note that the spanning
nature of the MST requires
that they are not strictly the
closest points, but they will
often be within k neighbors
thus it suffices to consider
them sufficiently local. The
number of exceptions are
generally few, and corre-
spond to the number of
clusters.

4.3.2 Radial Constraint Sampling
In addition to our use of uncertainty-based active learning queries through
the pushforward measure, we also introduce a novel pairwise-constraint query
method called “Radial Constraint Sampling” (RCS). The key idea of RCS is
to offer an active learning query method that directly leverages the assumptions
of HDBSCAN in a way that will hopefully augment PCH most directly. We
note that HDBSCAN operates off of an MRD MST, so each edge in the MST
corresponds to a “close neighbor” with respect to MRD 13 and thus borrows the
ambient space’s metric for determining connectivity. While uncertainty-based
methods focus on statistical properties, they are often plagued with problems of
poor spatial distribution with respect to spatial diversity and uniformity. Mean-
while, representation-based and density-based query strategies often overfit the
spatial heuristics they optimize for, resulting in an uninformed uniform distri-
bution of queries according to the particular biases of the query method.

Our proposed method of RCS addresses aspects of both schools of thought;
it favors sampling highly-informative points based not on statistical quantities,
but algorithmic properties of HDBSCAN itself. It optimizes for geometric
heuristics based on the clustering bias of PCH which is comprised of dividing
clusters through CLCs, and combining clusters through MLCs.

Formally, we perform RCS by uniformly sampling constraints between
inter-cluster and intra-cluster pairs of points. For inter-cluster pairs, we first
start by sampling anchor points from a cluster C based on the square of their
pairwise ambient-space distance to their closest same-cluster neighbor, written
as

wa(xi) = min
x′∈C\{xi}

∥xi − x′∥2

For each anchor point, we then sample a bridge point outside of the cluster,
weighing the probability each point is chosen based on their inverse-square
distance to the anchor point

wb(xi, yj) = ∥xi − yj∥−2.

This method generally samples anchor points on the boundary of a clus-
ter (where their nearest-neighbor distance is large) and pairs them with bridge
points on the closest external boundary, acting as a means to clarify whether
two adjacent clusters ought to be considered the same or distinct, based on the
farthest pairwise-compatible outliers of each (see algorithm 4).

For intra-cluster pairs, we begin by sampling an anchor point from the clus-
ter with points weighted by the square of the distance to their farthest neighbor
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w′
a(xi) = maxx′∈C\{xi} ∥xi−x′∥2. We then sample a bridge point within the

cluster C , weighing the probability each point is chosen by the square of their
distance to the anchor point,

w′
b(xi, yj) = ∥xi − yj∥2.

With these choices of weights, inter-/intra-cluster sampling act as duals.
Whereas our inter-cluster sampling method seeks the closest pair of relative out-
liers, intra-cluster sampling wants to find the farthest pair of relative outliers.
The inter-cluster sampling asks “should we merge these clusters, or keep them
separate” while intra-cluster sampling asks “should we fragment this cluster, or
keep it whole”, offering two distinct and exclusive ways to generate insightful
MLCs/CLCS.

Of course, this method requires knowing clusters a priori, which would ren-
der it moot for a single-pass constrained clustering algorithm. However, this is
easily solved by utilizing the outputs from a first pass of an unsupervised HDB-
SCAN. We refer to this as “estimate-based RCS”, which is the most readily
available tractable mechanism for RCS in the given problem context. Interest-
ingly, this enables the prospect of iteratively performing estimate-based RCS,
updating the cluster identities every run. This kind of iterative estimate-then-
query approach is closely aligned with the classical approach to data investiga-
tion, wherein with each new insight gained, the bias regarding where to explore
next gets updated.

4.3.3 Pseudo-Input Analysis
Finally, to streamline the analysis of novel datasets using the currently estab-
lished framework of PCH in addition to a two-stage NVP model, we discuss
the nature of pseudo-inputs, generative distributions, and the insights and de-
cisions that come with them. This section focuses on human intervention and
allowing expert semantics to interfere directly in the representation of the model
in a way that affects all other tasks.

First, we discuss prototype discovery, a useful ability of the two-stage NVP
model. When learning a proper representation, the two-stage NVP model opti-
mizes for an aggregate posterior which acts as an estimate to the aggregate prior
distribution,

argmax
q

Ez∼p(z)[q(z)] =
1

N

N∑
i=1

qθ(z|xi) ≈
1

K

K∑
i=1

qθ(z|xη
i )
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Algorithm 4 Inter-cluster Radial Sampling

Require: K , the number of constraints to sample. {xi}Ni = X ⊂ Rn, a set
of points from which to sample. {yi}Ni = L, a set of labels corresponding
to an estimated labeling (xi, yi), and a label-assignment function l(xi) →
yi. An oracle/expert to query, with a corresponding ground-truth similarity
function s such that s(xi, xj) = 1 iff the two points have the same ground-
truth label. Note that this does not require knowing the label, but rather
knowing that they share one.

Ensure: A list of MLCs M and a list of CLCs C such that |M | + |C| = K ,
where constraints are set as MLCs/CLCs based on the estimated labeling of
their comprising points.
M ← {}
C ← {}
wi ← 0 for i ∈ {1, . . . , N}
W ← {w1, . . . , wN}
for y in Unique(L) do

S ← {xk ∈ X | l(xk) = y}
for xi in S do

wi ← minxj∈S ∥xi − xj∥2
end for

end for
for i in {1, . . . , K} do:

ui ← Sample(X ,W )
S ← {xk ∈ X | l(xk) ̸= l(ui)}
for xj in S do

w′
i,j ← ∥ui − xj∥−2

W ′
i ← {w′

i,1, . . . , w
′
i,N}

end for
xj ← Sample(S,W ′

i )
if s(ui, xj) = 1 then

M ←M ∪ {(ui, xj)}
else

C ← C ∪ {(ui, xj)}
end if

end for
return M,C
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14 This will always be an
issue since a true data mani-
fold will almost always have
zero volume in the ambient
space, and hence the best we
can do is to learn the noisy
manifold estimate, meaning
some points will be off-
manifold despite seeming
normal.

which not only learns the general aggregate prior distribution 1
K

∑K
i=1 qθ(z|x

η
i ),

but importantly also the pseudo-inputs {xη
i }ki=1 which parameterize the distri-

bution. As established by Zain et al., when these pseudo-inputs are learned in ac-
cordance to NVP-style training (the additional pseudo-input loss regularization
term), the learned pseudo-inputs are qualitatively similar to true data samples,
yet may exhibit minor artifacts due to being partially off-manifold14[98]. Fur-
thermore, the use of NVP-style loss and training does not decrease the efficacy
of the model itself when compared to the usual VampPrior implementation
[98].

This means that they are uniquely well-suited to introspection, and can
play the role of “prototypes” for the data distribution as a whole. These learned
prototypes can then be inspected directly, with their structure offering insights
to the domain expert regarding the structure and distribution of the underlying
data. Take, for example, figure 3.4, which shows how the set of pseudo-inputs
can serve as a learned “representative” sample of the underlying data. Note that
the pseudo-inputs will almost surely have several redundancies within them as
part of their design – the number of pseudo-inputs ought to be significantly
greater than the number of suspected classes to increase the chance of obtaining
a representative from each interesting class. Pruning pseudo-inputs is relatively
straightforward as well, meaning that you can simplify the model and remove
pseudo-inputs which are deemed unnecessary or redundant. Note that redun-
dancies occur in proportion to the relative density of classes within the dataset
as a whole, and therefore contain information regarding the data distribution.
It is not necessarily “optimal” (with respect to model loss) to prune these re-
dundancies, however it can easily be done in the case a one-to-one relationship
between pseudo-inputs and classes is desired.

Manual inspection for redundancies is viable in the case of relatively sim-
ple data and models with relatively few pseudo-inputs, but quickly becomes
intractable for models with a great number of pseudo-inputs. Therefore, we de-
termine the relative redundancy of pairs of psuedo-inputs by considering their
relative distance. A naïve approach would consider the distance between two
pseudo-inputs with respect to the ambient data metric, but distances in the
ambient space correspond poorly to semantic factors due to the dimensional-
ity gap with the underlying data manifold, and consequently measures noise
more than semantic dissimilarity. A more informed approach is to consider
not the pseudo-inputs directly, but the posterior distributions they induce, i.e.
qθ(z|xη

i ), in which case we need to utilize a statistical distance. A classic go-to
statistical distance heuristic is KL-divergence, which fails to be a proper distance
due to its asymmetry in its arguments. Instead, we opt for the Hellinger dis-
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tance [30]. Specifically, we define the squared Hellinger distance between two
distributions P,Q as

H2(P,Q) =
1

2

∫
X

(√
p(x)−

√
q(x)

)2
λ(dx)

where we take λ to be an auxiliary measure such that both P,Q are absolutely
continuous with respect to λ. Note that the existence of such a measure is
guaranteed and can be trivially taken as λ = P +Q. Then, the functions p, q
are defined as the Radon-Nikodym derivatives dP

dλ
, dQ
dλ

respectively. Note that
the choice of λ does not affect the final value of the Hellinger distance, only
its computation (via determination of p, q). In particular, taking λ to be the
standard Lebesgue measure, we can rewrite

H2(P,Q) = 1−
∫
X

√
p(x)q(x)dx

When bothP,Q are parameterized Gaussian distributionsP = N (µ1,Σ1), Q =

N (µ2,Σ2) we have that

H2(P,Q) = 1− |Σ1|
1
4 |Σ2|

1
4

|1
2
Σ1 +

1
2
Σ2|

1
2

exp(−1

8
(µ1−µ2)

⊺(
1

2
Σ1+

1

2
Σ2)

−1(µ1−µ2))

Alternatively, one may also consider the Jensen-Shannon divergence (JS-
divergence) [49] which is a symmetrization of the standard KL-divergence for
distributions P,Q:

DJS(P,Q) =
1

2
(DKL(P,Q) +DKL(Q,P ))

Note that Jensen-Shannon divergence is not directly a distance metric, but
its square-root is:

dJS(P,Q) :=
√
DJS(P,Q)

Both distance measures offer alternative mechanisms for comparing the
similarity of two distributions, and preference between them is at this point
merely heuristic.

Thus pruning pseudo-inputs may be as simple as a matter of removing
pseudo-inputs that have the lowest pairwise distance from their posterior dis-
tributions to other pseudo-inputs’ posteriors. An important nuance, however,
is to consider which pseudo-input to prune when considering a pair with low
pairwise distance. Pruning both would be erroneous, since they are only nec-
essarily redundant with respect to each other, so we must choose one of the
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Figure 4.1: Fifteen learned pseudo-inputs from a model trained on the Fashion-
MNIST dataset, recovered via projection onto the manifold, after having re-
dundancies pruned.

two. To do this, we consider again the KL-divergence and specifically prune the
distribution with the lowest directed KL-divergence to its partner, i.e.

argmin
P

DKL(P,Q)

where with some abuse of notation we take Q to be the “other” distribution for
a given P . Consequently, we remove the pseudo-input with the lower directed
KL-divergence and proceed as normal.

For example, we can prune five pseudo-inputs in this way from figure 3.4 to
arrive at a total of fifteen pseudo-inputs in figure 4.1. While the pruned version
seems to still cover the dataset will and represent all the data, there still seems
to be some room for culling redundancies. At this point, we must consider a
mechanism for suggesting how many redundancies there may be in a given set
of learned pseudo-inputs. Utilizing the notion of sample-entropy and batch-
entropy mentioned in section 3.4.3 we can consider two heuristics: the entropy
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gap α, and the cumulative batch entropy

Hj[Ei[pji]] =
1

N

(
N∑
i=1

K∑
j=1

pi,j ln(pi,j)

)

. In practice, the cumulative batch entropy serves as a better heuristic due to
the fact that the entropy gap α is contingent on the ability of the network to
specify exactly which posterior a data point ought to be attributed to, which
will never be perfect since in practice the semantic overlap between posteriors
implies that there ought to be a stochastic chance that a sample originates from
one of many posteriors.

Interestingly enough, it is not necessary for the pseudo-inputs to greatly
resemble data for them to be useful. Indeed, poor quality pseudo-inputs con-
vey the fact that they may represent regions with greater uncertainty (leading
to reduced reconstruction quality) which may itself be valuable for directing
manual inspection and labeling. In a way, this is a subjective uncertainty mea-
sure, similar to quantitative “subjective” information scores such as the Fréchet
inception distance (FID) [31]. In a way, the pseudo-inputs reflect the subjective
and qualitative understanding of the model regarding how to represent the data
distribution.

Ultimately, the use of NVP and the local two-stage VAE framework enables
a great deal of augmented data introspection in a semi-automated way. Each
step of introspection focuses on allowing a domain expert to make the ultimate
determination, yet affords them guidelines and suggestions in both explicit rec-
ommendations (e.g. pseudo-input redundancy scores) and open-ended options
(e.g. introspection of pseudo-input quality). The feedback mechanisms exist
both within the framework itself (e.g. pseudo-input pruning) and outside the
framework, in the realm of data curation (e.g. augmenting data corresponding
to blurry/uncertain pseudo-inputs).

4.4 Results

4.4.1 Radial Constraint Sampling
HDBSCAN in a semi-supervised context requires careful consideration of how
to employ active learning and partial information. In fact, naive methods can ac-
tually decrease the performance of both the original baseline method for HDB-
SCAN, as well as PCH. We evaluate the proposed radial sampling method
over both PCH and the baseline method and show the relative performance
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Figure 4.2: A comparison of the relative efficacy of radial and uniform sam-
pling over the Wine dataset when using the original baseline algorithm for semi-
supervised HDBSCAN.

Figure 4.3: A comparison of the relative efficacy of radial and uniform sampling
over the Wine dataset when using PCH.

Figure 4.4: A comparison of the relative efficacy of radial and uniform sampling
over the Anuran Calls dataset using species-level labels when using the original
baseline algorithm for semi-supervised HDBSCAN.
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Figure 4.5: A comparison of the relative efficacy of radial and uniform sampling
over the Anuran Calls dataset using species-level labels when using PCH.

gains/losses as compared to a control run of vanilla HDBSCAN, similar to the
benchmarks in chapter 2, which we refer the reader to for the sake of greater
in-depth comparison.

We begin by noting that, as previously mentioned, a poor approach to in-
cluding partial information can actually harm the models’ performances. We
demonstrate this by utilizing a uniform sampling pairwise constraints, wherein
both points within a constraint are sampled randomly, and the nature of the
constraint as an MLC or CLC is decided by the ground-truth labels, such that it
mimics the response offered by an expert. We can see the relative performances
of our proposed radial method versus a naïve uniform method in figures 4.2,
4.3 which evalute both the original baseline method and PCH over the Wine
dataset, and figures 4.4, 4.5 which do the same over the Anuran Calls dataset
with species-level labeling. We can see in these cases that uniform sampling
actually tends to make performance worse.

Specifically, we can infer that the sampling methods induce extreme amounts
of noise in the algorithms’ outputs, which result in a lowered ARI due to the
inability to cluster many, or even the majority of points. Radial sampling does
not have this issue, and indeed shows strong performance boosts for both the
baseline method, and PCH with the latter gaining by far the most uplift, most
likely due to having a higher representation capacity so as to make use of the
information afforded by the radial method. We note that while constraint sat-
isfaction seems to decrease for both methods when using PCH, it is generally
due to the algorithms being able to actually find new clusterings that can consis-
tently satisfy the radially-sampled constraints, which may sometimes be at the
expense of a few constraints, whereas with uniform sampling the clusterings are
near-identical or even worse compared to the fully unsupervised clusterings.

81



4.4.2 Pseudo-Input Analysis
Having access to pseudo-inputs which are able to learn to mimic/emulate gen-
uine data allows a brand new type of analysis, which we term surrogate analysis.
We consider the pseudo-inputs as representative, approximately-on-manifold
samples from an estimate of the data distribution generated by the underly-
ing VAE model. This means that they jointly encode both information from
the underlying data, and from the underlying VAE model, which can be triv-
ially observed from their construction as learned parameters. We proceed with
pseudo-input based surrogate analysis case study, abiding by the following pro-
cedure over the Fashion-MNIST dataset:

1. Initial observations and tuning of expert sentiment.

2. Estimates regarding the number of geometry-driven clusters.

3. Calculation of relative statistical distances between pseudo-input poste-
riors.

4. Ranking of pseudo-input pairs based on statistical distances for pseudo-
input pruning proposals.

5. Pruning until subjective satisfaction.

We utilize the same approximately 1M parameter NVP model from earlier
experiments, with an initial count of 20 pseudo-inputs initialized randomly.
The model is trained for 100 epochs with a maximum learning rate of 0.003
which decays as training goes on. Training uses batches of size 256, with a
warmup period of upwards-ramping learning rate.

Initial observations are comprised of considering both the generated psuedo-
inputs and samples from the actual data distribution, as can be seen in figures
3.4 and 3.3 respectively. The data samples give us the semantic bias that we are
looking at clothes in a certain particular format, priming us for interpreting the
pseduo-inputs. When looking at the pseudo-inputs, we can immediately tell
that the model has picked up on a certain level of fidelity it finds appropriate
(generally this is bounded by the capacity of the model, as well as the distinction
of the underlying data). In this case, we note that the general categories that the
pseudo-inputs have aligned with are: pants (7, 9, 12), short-sleeved shirts (19),
long-sleeved shirts (2, 8, 11, 16), flat shoes (3, 4, 5), heeled shoes (17, 18, 20), purses
(1, 13, 14), and dresses (6, 10). Viewing it more coarsely, one may choose not to
discern between shirts regardless of sleeve length, or perhaps shoes regardless
of structure, in which case we arrive at the FMNIST-5 re-interpretation of the
Fashion-MNIST dataset [57].
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Figure 4.6: A heatmap of the KL-divergences between ordered pairs of pseudo-
input posteriors. The rows indicate the first argument to KL-divergence.

From here, we consider the entropy of the batch-wise entropy of the model.
At the end of training, we have Hb ≈ 2.23 meaning that we can, as a rough
heuristic, expect at least ⌊exp(Hb)⌋ = 9 pseduo-inputs that the model views
as necessary. Note that were the model trained longer, or with higher capacity,
it is likely it would rely on fewer pseudo-inputs since batch-wise entropy starts
maximal (in the case of 20 pseudo-inputs, we have that initiallyHb = ln(20) ≈
2.99.

Given this heuristic, we now consider the statistical distances between points.
For this case study, we use the symmetric JS-divergence. We can see the heatmap
of KL-divergences in figure 4.6, which is then symmetrized to a heatmap of
JS-divergences in figure 4.7. Note that the diagonals are empty since they are
trivially zero and are not relevant to this procedure. From this heatmap, we
can find the 11 pseudo-inputs that ought to be trimmed according to our en-
tropy estimate.As mentioned earlier, given a pair of pseudo-inputs (xη

i , x
η
j ), we

remove the one that produces the lower KL-divergence when in the first argu-
ment, corresponding to the more “redundant” input with respect to its partner.
Using this process, we prune the pseudo-inputs in figure 3.4 down to the nine
pictured in figure 4.8.

Note that these correspond well to the five distinct classes of FMNIST-5,
and are roughly proportional to, and representative of, the full Fashion-MNIST
label scheme. These nine pseudo-inputs represent a learned surrogate sample of
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Figure 4.7: A heatmap of the JS-divergences between ordered pairs of pseudo-
input posteriors.

the entire dataset, and can be generated with no expert intervention. Should an
expert have a preference, they may have chosen to prune fewer, or more pseudos
than the heuristic recommends. Ultimately, this depends on the level of fidelity
sought after by the expert.

Thus, we demonstrate that the data-like pseudo-inputs under NVP are vi-
able surrogate samples to inspect as a means of gaining generalizable understand-
ing over the dataset as a whole, and we demonstrate a heuristic-driven process
that can be customized by expert intervention to prune the pseudo-inputs into
a representative sample. Such a method can greatly improve the development
of a label schema by allowing experts to get an at-a-glance view at the diversity
and distribution of points across a complex dataset with trivial examples that are
simpler to analyze. The most important part is that the majority of this process
is entirely unsupervised, requiring no input whatsoever.
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Figure 4.8: The nine remaining pseudo-inputs after the heuristic pruning pro-
cess.
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Chapter 5

Conclusion

In this dissertation, we have formalized the concept of “label schema discov-
ery” as a problem context and proposed a series of novel contributions built on
an established scientific basis to extend a new framework which allows for an
accelerated, minimal-assumption workflow, combining automated geometric
insights from the data with poignant and curated expert feedback. The method-
ology is designed around and validated on lightweight machine learning models
or lightweight deep learning models, demonstrating that the efficacy of frame-
work does not lie in over-complication and over-parameterization, but rather
in the fundamental viability of the underlying approach.

We introduced PCH, a novel algorithm built atop the SOTA HDBSCAN
algorithm, allowing for fast, well-scaling, semi-supervised hierarchical cluster-
ing. We demonstrate its efficacy over a standard suite of benchmark datasets
used for validating conventional clustering algorithms, and even demonstrate
its superiority to the practice-standard implementation of COP-Kmeans and
the HDBSCAN original semi-supervised algorithm as suggested by Campello
et al. [10]. We demonstrate PCH’s flexibility when it comes to honing in on ar-
bitrary levels of label fidelity by evaluating over the Anuran Calls dataset, which
is organized with a hierarchical label schema, allowing for explicit comparison.

Next, we developed NVP, a novel algorithm which is an extension to a
popular and commonly used VAE implementation. We demonstrate NVP’s
unmatched capacity to generate synthetic data to act as representative samples
of the underlying dataset. We then disentangled the learned geometric manifold,
and learned distribution, to allow for improved model efficacy and representa-
tion quality. We further developed a pushforward metric parameterized by the
two-stage VAE implementation to allow for explicit likelihood calculations of
the data under the ancestral sampling process. We validated the efficacy of NVP
against a standard VAE and demonstrate its learning capacity increase. We then
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inspected the pseudo-inputs of the NVP and compare against real data, show-
ing that even at tiny model capacities, we are able to arrive at interpretable and
usable pseudo-inputs. We also introduced LSV, which builds atop the NVP
framework to further localize spatial regions in the learned geometric mani-
fold. We demonstrated its learning capacity by directly considering the labels
obtained by MLE estimation over a subset of its pseudo-inputs and compare it
against both unsupervised, and semi-supervised methods.

Finally, we proved that the pushforward metric induced by the LSV can be
used as a stand-in for a distribution likelihood function over a discrete dataset
without the need for any explicit parameterizations and distribution assump-
tions, in effect unlocking a suite of active learning methods for otherwise-deterministic
methods such as PCH. We then introduce the radial sampling method for itera-
tive improvement of the underlying PCH model, developing an active-learning
scheme specialized for the algorithm itself. We demonstrated the efficacy of
radial sampling against uniform sampling, and note its informative nature. Fi-
nally, we proposed a workflow for pseudo-input introspection so as make the
most out of the LSV model. We demonstrated through a case study that the
workflow is easy, mostly automated, and able to include expert sentiment ex-
plicitly through determining how many pseudo-inputs to prune, effectively
selecting the level of label fidelity in a globally consistent way. We furthermore
demonstrated that an expert need not intervene, and that information-theoretic
heuristics can be used to fully automate the process while still delivering high
quality results.

Thus, we provided a complete system of tools for data representation, semi-
supervised clustering, high-efficacy querying, and robust data introspection for
label schema discovery.
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