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if the equality does not hold. We showed that the Hofer-Zehnder conjecture
is true for semipositive symplectic manifolds with semisimple quantum ho-
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Fukaya, Y. Oh, H. Ohta, and K. Ono (FOOO) obtained the monotone sym-
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Hirzebruch surface. They identified a continuum of toric fibers in the resolved
toric degeneration that are not Hamiltonian isotopic to the toric fibers of the
standard toric structure on S? x S?. We provided a comprehensive classifica-
tion: for any toric fiber in FOOQO’s construction of S 2 % 52, we determined

whether it is Hamiltonian isotopic to a toric fiber of the standard toric structure

of S? x S2.
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CHAPTER I

INTRODUCTION

The first part of this dissertation is from [AL23] and the second part is from
[Lou24].

A symplectic manifold is a pair (M, w) where M is a smooth manifold and
w is a nondegenerate closed 2-form. We call such a form w a symplectic form. A

time-dependent Hamiltonian is a smooth function
H:MxS'"—=R

The Hamiltonian vector field X pr associated with H is defined by the equation
w(Xy, ) =—dH,

where H,(-) = H(-,t). The flow ¢!, of X}, assuming ¢}, = id, is called
the Hamiltonian flow. The time-1 map ¢}, is called the Hamiltonian diffeo-
morphism. Let x be a fixed point of ¢¥, for k € Z. Then a k-period orbit of
Xy is defined as z:(t) := ¢} (). We say x is nondegenerate if the linear map
(dg})x(0) does not have eigenvalue 1. The Arnold conjecture [Arnés][Arn86]
gives a lower bound for the number of the nondegenerate 1-periodic orbits,
which is the sum of the Betti numbers of M, an invariant only depending on
the topology of M. To prove the Arnold conjecture, A. Floer invented the Floer
homology [Flo86] [Flo87][Flo89].

The guantum homology of a symplectic manifold (M, w) with dimension
2n is the singular homology with coefficients in Novikov ring. The quantum
homology carries a special product defined by Gromov-Witten invariants. Let
A be a homology class in Hy(M, Z). Fix a Riemann surface X of genus g and
let M*(A; J) denote the set of all simple .J-holomorphic mapsu : ¥ — M
which represent the class A. By perturbing the almost complex structure J, the



moduli space M*(A4; J) can be a smooth orientable manifold of dimension
dim M*(A; J) = n(2 — 2g) + 2¢1(A)

Denote by Mvg,k(A; J) the space of tuples (u, 21, - - - , z) consisting of an
element u € M(A; J) together with k pairwise distinct marked points 2; €
S?2. Then we focus on the case where g = 0. Denote by Mo (A; J) the
quotient of/\A/l/g,k (4; J) by the group PSL(2, C) and Mg ,.(A; J) the subset

for which w is simple. The evaluation map

Mo (A: J) — M*

(u, 21, 5 2) = (u(z1), - u(ze))
descends to
ev: Mg (A J) — M*

Then the Gromov-Witten invariants are obtained by taking the intersection of
ev with cycles of complementary dimension in M*. See [MSi2] for details.

The Hofer-Zehnder conjecture states that if the inequality in Arnold con-
jecture is strict then there are infinitely many periodic orbits. One of the first
results in the direction of the Hofer-Zehnder conjecture is given by J. Franks
[Fraga][Fra96|. J. Franks proved that any time-one map of an area-preserving
isotopy of the sphere with at least three fixed points must have infinitely many
periodic orbits. E. Shelukhin proved the Hofer-Zehnder conjecture for closed
monotone symplectic manifolds with semisimple even quantum homology, see
[She22]). We generalized E. Shelukhin’s result to the closed semipositive sym-
plectic manifolds with semisimple even quantum homology, see [AL23|]. S.
Bai and G. Xu proved the Hofer-Zehnder conjecture for toric manifolds, see
[BX23]. These recent works distinguish from each other. For example, the non-
monotone blow-ups of CP? are covered by [AL23], but not by [She22]. The
four-point blow-up of CP? for certain size of exceptional divisors is covered
by [AL23|], but not by [BX23]]. Ostrover-Tyomkin’s 8-dimensional monotone
toric manifold whose quantum homology is not semisimple [OTo9] is covered
by [BX23], but not by [She22]] or [AL23].

Now we state the main result in [AL23], which will be proved in Chapter

2.

Theorem A. Let (M, w) be a closed semipositive symplectic manifold with semisim-
ple even quantum bomology Q H o, (M ; Ak univ) for a ground field K. Then any
Hamiltonian diffeomorphism ¢ with finitely many contractible fixed points such



that

N($,K)= Y dimg HF'"(¢,z) > dimg H.(M;K)
rEFix(¢)

must have infinitely many periodic points. If K bas characteristic zero, then ¢ bas
a simple contractible p-periodic point for each sufficiently large prime p.

Next, we introduce the second part of the dissertation about the Lagrangian
toriin S? x S2.

Let (M?", w) be a symplectic manifold. A Lagrangian submanifold L is a
submanifold of M with dimension n such thatw|;, = 0. In [Arn86], Arnold
defined a Lagrangian knotas a connected component of the space of Lagrangian
embeddings in a fixed symplectic manifold. For Lagrangian embeddings R* —
R*(coinciding with embeddings of the plane (21, 0) outside some sphere in the
standard four-dimensional symplectic space), he also proposed the following

two questions.

Question 1.0.1. [Arn86, section 6] Can any knot in the ordinary sense be realized
by a Lagrangian one?

Question 1.0.2. [Arn86, section 6] Are there purely Lagrangian knots, that is,
Lagrangian embeddings homotopic to the plane in the class of all embeddings,
but non-homotopic in the class of Lagrangian embeddings?

Buliding on Arnold’s questions, several significant works have deepened
our understanding of Lagrangian embeddings. In [Cas86|, Y. Chekanov con-
structed the special tori in R*" that are not symplectomorphic to each other.
These tori are examples of monotone Lagrangian tori that are Lagrangian iso-
topic but not Hamiltonian isotopic to an elementary torus. In [EP93], Y. Eliash-
berg and L. Polterovich considered if two Lagrangian embeddings are isotopic
in smooth, Lagrangian, or Hamiltonian sense.

Considering the monotone S 2% S? G. Dimitroglou Rizell, E. Goodman,
and A. Ivrii in [RGI16] showed that any two Lagrangian tori are Lagrangian
isotopic. There are several different constructions of monotone Lagrangian tori
in S? x S? that are not Hamiltonian isotopic to the Clifford torus, the product
of the equators. Using P. Biran’s circle bundle construction in [Biro6|] one
can get such a Lagrangian torus. P. Albers and U. Frauenfelder in [AFo7] con-
structed a nondisplaceable Lagrangian torus in 7*S?. Then one can get such
a Lagrangian torus by an embedding from D*S 2 a disk subbundle of T* 52,
to S? x S2. M. Entov and L. Polterovich constructed a non-heavy monotone
Lagrangian torus in [EPog, Example 1.22]. Y. Chekanov and F. Schlenk in
[CS10] also constructed such a monotone Lagrangian torus. J. Oakley and M.



Usher in [OU16|] showed that the above four Lagrangian tori are Hamiltonian
isotopic to each other. A. Gadbled in [Gadi3] also showed that the Lagrangian
tori in [[CS10] and [Biro6] are Hamiltonian isotopic.

We consider S? as the unit sphere in R? with symplectic form wg;q such
that the wyg-area of S? is 47, Then (S 2 %wstd) X (S 2 %wstd) has a standard

toric structure with the moment map

p:S?x 8% = R?

1 1
((U17 Vg, U3) ) <w17 Wa, 'l,Ug)) — (51]17 §w1)

The moment polytope, as in Figure is the square
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Figure r.1: The moment polytope P; for the standard toric structure of S 2% 52

As in [Fuk+12], S? X S? can be obtained by resolving the singularity of
a toric degeneration. Now we recall the construction. The toric Hirzebruch
surfaces F5(v), 0 < v < 1, are toric manifolds with moment polytope

{(z,y) eR*|0<2<2-2y,0<y<1-a}

As a — 0, we obtain an orbifold F»(0) with a singularity of the form C?/+.
The moment polytope of F5(0), as in Figurer.2} is

Py={(z,y) eR*|0<z<2—2y,y >0}

and the preimage of the point (0, 1) is the singularity. To resolve the singu-

larity, we replace a neighborhood of it with a neighborhood of the zero sec-



0.57

Figure 1.2: The moment polytope of F (0).

tion of the cotangent bundle 7% S?. The resulting complex surface is denoted
by F (0). There is a well-known result that F5(«) is symplectomorphic to
(SQ, I_T"‘wstd) X (52, HTo‘wstd), andF(O) is symplectomorphic to (52, %wstd) X
(52, fwsta) [Fuk+12, Proposition s.1]. We still say the moment polytope of
F(0) is P, with the preimage of the point (0, 1) being S2.

Givenapoint (z,y)inthesegment {(z,y) € P, |z +y =1, <y <1},
K. Fukaya, Y. Oh, H. Ohta, and K. Ono in [Fuk+12] have shown the preimage
of (x, y) under the moment map is a nondisplaceable Lagrangian torus using
Lagrangian Floer homology. In particular, the preimage is not Hamiltonian
isotopic to a toric fiber of the standard toric structure. This conclusion can be
obtained from the fact that the only nondisplaceable toric fiber of the standard
toric structure is the Clifford torus and from Theorem r.rin [Fuk+12]. J. Oakley
and M. Usher in [OU16] showed that the preimage of (%, %) is Hamiltonian
isotopic to the Lagrangian torus in [Biro6], [AFo7], [EPo9], and [CS1o]. Then
one can ask the following questions.
Question 1.0.3. Can this discussion be extended to encompass other interior
points within the moment polytope P»? Specifically, can we show if their preim-
ages are Hamiltonian isotopic to toric fibers of the standard toric structure?
Question 1.0.4. Are there other Lagrangian tori, except those in [Fuk+12], that
are not Hamiltonian isotopic to the product tori in 52 X S?? We call a torus of
the form o x 3 with o and /3 are embedded curvesin S* x {pt} and {pt} x S*

respectively a product torus.

We will prove the following theorems to answer the questions.

Theorem B. Given an interior point (x,y) in Pywithx + vy # 1, let L(x, y)
be the preimage of (v, y) in F'(0) and still denote by L(x,y) its image under a



symplectomorphism from F(0) to S? x S% Then L(x,vy) is a Lagrangian torus
Hamiltonian isotopic to a toric fiber. Furthermore, if we denote the preimage of
an interior point (€, Q) in Py by T'(€, C), then L(x,y) is Hamiltonian isotopic to

T(3-vy.5-2y—2) forl—y<az<2-2
T(—%—l—x,%—y) foro<x<l—y

Remark1.0.5. Theorem B does not depend on the choice of the symplectomor-
phism between £'(0) and S2 x S? since every symplectomorphism of 52 x S?
can be written as the composition of a Hamiltonian diffeomorphism and the
diffeomorphism that switches the two factors of S? x S2. See [OU16] and
[Gro8s|). In addition, the toric fiber 7'(€, ) is Hamiltonian isotopic to T'(¢, §)
by [Bre23].

Theorem C. Let (x,y) be an interior point of Py and x +vy = 1. Then L(zx, y)

is not Hamiltonian isotopic to a product torus.

Remark1.0.6. Foraninterior point (x,y) in Py withz+y = land0 < y < %,
the preimage of (z, y) is a displaceable Lagrangian torus, so Theorem C does
not follow from the techniques in [Fuk+12].

Theorem B and Theorem C will be proved in Chapter 3.



CHAPTER 2

ON THE HOFER-ZEHNDER
CONJECTURE FOR
SEMIPOSITIVE SYMPLECTIC
MANIFOLDS

Let (M, w) be a compact symplectic manifold. For A € (M), letv : S? —
M be a representative of A. Then

c1(A) = / viey
SQ
where ¢; € H?(M) is the first Chern class, and

W(A) = /S .

In this chapter, we consider the compact semipositive symplectic manifolds.

Definition 2.0.1. A compact 2n-dimensional symplectic manifold (M, w) is
semipositive if for every A € mo(M),

3—n<c¢(4)<0=w(A) <0



2.1 Hamiltonian Floer Homology

2.1.1  Novikov Ring

We follow [HS9s|| for the definition of Novikov ring. Let I" be a group with a
homomorphism ¢ : I' — R and let [F be an integral domain. Define

AT, o;F) :={T 5 F: A= M | #{A €T : A4 #0,0(A) < ¢} <o0,Vec e R}
with a ring structure given by the convolution

(Ax0)a = Apbp-1a.
BeTl

When ¢ is injective, I is isomorphic to Z™ for some positive integer m and
m
@(klv T 7km} = § :wjkj
Jj=1

where the w; are positive and rationally independent. Then we can identify

A(T, ¢; F) with

k
{ Z akl,"'yk'rntlfl o 'tfnm | # {k : ak‘ 7é 07 Zw]kj S C} < OO7VC 6 R}
k

1 km J=1

Example 2.1.1. Consider the following maps

Oy = (M) — Z

A C1(A>
and
Yu m(M) — R
A w(A)
ker ¢, ' _
Define I'y := and the Novikov ring A, = A(To, ¢u; Z).

ker p., Nker ¢,



Example 2.1.2 (Universal Novikov Ring). Let R be a commutative unital ring.
The universal Novikov ring over R is defined as

oo
A
AR,univ = E a; T’
i=—K

aiGR,)\i/‘oo}

By [HSos, Theorem 4.1], Ak yniy is a field when K is a field, and we call it
the universal Novikov field over K.

Next, we show some properties of Novikov ring which will be used later

for the semisimplicity of the even quantum homology.

Proposition 2.1.3 ([HSos], Theorem 4.2). The ring Az yniv 5 a PID. In par-

ticular, every nonzero prime ideal in Nz, iy is maximal.

Lemma 2.x.4. Let I be a prime ideal of Az, univ- If Nz univ/ I bas characteristic
p where p is a prime, then I =< p >. In particular, Ny yniv /1 = Az, univ

Proof. Since Az, yniv is a PID, we can assume that [ =< f > forsome f €
Az univ. Since Az yniv /I has characteristic p, then p(1+ < f >) =< f >,
which means f|p. Thus thereisa g € Az ynip such that fg = p. In particular
pl(f9).

If p|f, then f = pu where w is invertible. Thus < f >=<p >.

Ifp 1 f, then p|g. Thus thereis i such that ph = g. Then fph = p, which
implies fh = 1. Thus f is invertible, which contradicts with that < f >isa
prime ideal.

Thus Az univ/ I = Az univ/ < [ >= Azuniv/ <P >= Az, umiv- [

Theorem 2.1.5. Az, yniv 25 perfect.

Proof. Since Az, univ has characteristic p, we only need to show that for an
element f € Az univ thereis an element g € Az, ypiy such that f = gP.

Assume f = Z a;T*. Then a; € Z,. Since Z,, is perfect, then a; = bY

i
i=—N

0o A

for some b; € Z,,. Take g = Z b;T% . Theng? = f. O
i=—N

Proposition 2.1.6 ([AL23], Proposition 3.1). Let F'rac(Az yniv) be the field of

fractions of Ny, yniv- If | € Frac(Az univ), then it can be written as Z c;TH,

where c; € Q and only finitely many primes appear in the denominators of the

coefficients of f.



Proof. Note thatif h = Z hiT"" is an element in Az 4y, then T7"-Nh
i=—N

only has non-negative exponents. Suppose f € Frac(Az univ). We may as-

sume without loss of generality that

Qo + io: CLZ‘TM
_ =1
bo+ Y b;T"
j=1

where) < A\ < Ag < ---and0 < 0y < by < ---. Set

A:=ag+ ZaiTA" and B :=1by+ Z bjTej

i=1 Jj=1

and let gy = 9 Then
bo

A— goB = i aiT/\ Z aObj TH

i=1 j=1

and the leading term has a non-negative exponent.
Case 1. \; < 0; The leading term in A — gy B is a;T*. Define g, =

(%) a1,y
G0, My,
bo b en

o0

A-gB= iaiT’\i — Z aob] Ry Z albﬁ @105 pai+6;

i=2 j=1 j=1

which has the exponent of the leading term greater than A;.

b
Case 2. \; = 0, The leading term in A — goB is (al — %) TM.
0

3] aoby

ao
Defi
efine g; = b —l—(bo bo

) T™M. Then

- b, b
A= Yart =3 -3 (G
0 0

=2 j=2

which has the exponent of the leading term greater than A;.

10



aoby
Case 3. \; > 0, The leading term in A — gy B is _b_Tal Define

0
Qo a01)1 0,
g1 = b_o — b2 ——T"*. Then
A—ng:ZaiT&—Z““ Z“OUT91+9
i=1 j=2

which has the exponent of the leading term greater than 6.

One can repeat this process to get g, forn € N. It is easy to see that the
exponent of the leading term of A — g, B strictly grows as n grows. Next we
show that the exponent of the leading term of A — g,, B grows to 0o. Then we
can conclude that f = lim g,,. Let X(A — g, B) be the set of the linear com-
bination of the exponents of the terms in A — g,, B over nonnegative integers.

Then
CY(A—-g,B)C2(A—-g,B)C---X(A—goB)

Thus the exponent of the leading term of A— g,, B strictly grows in (A —go B).
In particular it grows to oo.

Hence, the primes appearing in the denominators of the coefficients of f
are the primes dividing by, of which there are finitely many. [l

Remark2.1.7. This resultis not true for an arbitrary elementin Ag yni,. Indeed,
one can have elements of the form

> T
I=—K
which has infinitely many primes in the denominators.

2.1.2  Conley-Zehnder Index

We follow [ADi3] for the definition of the Conley-Zehnder Index. Let H be a
time-dependent Hamiltonian on M. Let x(t) be 2 nondegenerate contractible
1-periodic orbit of X7;. Then there is a map u : D* — M such that u(e") =
x(t). We choose a trivialization of *T'M such that it can be extended to a
trivialization of w*T M. For every t, the linear map (d¢%; ) (o) can be considered
as the matrix ®() with respect to the bases of T},g) M and T}, M determined
by the trivialization. Then ®(¢) is a path in the symplectlc group Sp(2n).

II



Define
Sp(2n)* ={® € Sp(2n) | det(I — @) # 0}
where [ is the identity matrix.

Proposition 2.1.8 ([AD13)], Proposition 7.1.4). The open set Sp(2n)* has two

connected components, which are

Sp(2n)" = {® € Sp(2n) | det(I — ) > 0}
and

Sp(2n)” = {® € Sp(2n) | det(I — @) < 0}

If det( — ®(1)) > 0, then let 4 be a path connecting (1) to —I in
Sp(2n)*. If det(l — (1)) < 0, then let g be a path connecting ®(1) to
2 0 0
0 1/2 . Let 7y be the concatenated path of ®(¢) and 7g.
0 |-I

Theorem 2.1.9 ([AD13)), Theorem 7.1.3). There exists a continunons map
p:Sp2n) — S*
satisfying the following properties:
(1) Naturality: If ® and T are in Sp(2n), then

p (T@T‘l) = p(P)

(2) Product: If © € Sp(2m) and U € Sp(2n), then

. [‘é’ ff,] — §(@)p(¥)

(3) Determinant: If ® € U(n), then

p(®) = det(X +1iY), where d = [X _Y}

Yy X

12



(4) Normalization: If Spec(®) € R, then
@) = (1)

where My is the total multiplicity of the negative real eigenvalues.

(s) p(®T) = p(@71) = p(®)
Finally let 7 : S' — Rbealiftof poy : S — S'. Then the Conley-
Zebnder index of (x, u) is defined as

Define an equivalence relation on the contractible 1-periodic orbits as the
following:

_ * * * *
(x,ug) = (y,u1) <= x = y,/ ey = / ulcl,/ Upw = / (T
D? D? D2 D?

Denote the equivalent class of (x, u) by [, u]. Then the Conley-Zehnder index
does not depend on the choice of the representative of [z, u]. Thus define
CZ([x,u]) = CZ(x,u).

An important property of Conley-Zehnder index is

CZ([x,u#A]|) = CZ([x,u]) — 2¢1(A)

where u#£ A is the connected sum of « with a spherical class A € Hy(M).

2.1.3 Transversality

We follow [HS9s] to show that the moduli spaces used to define the Hamilto-
nian Floer homology are compact finite dimensional manifolds.

Definition 2.r.10. An almost complex structure on (M, w) is a map
J:TM —TM

such that J? = —id. An almost complex structure is compatible with the
symplectic form w if w(+, J-) defines a Riemannian metric on M.

Definition 2.1.11. A J-holomorphic sphere is a smooth map v : S* — M such
that

dvot=Jodv

3



where i is the standard complex structure on S? = CU{00}. A J-holomorphic
curve v is called simple if v = w o ¢ with ¢ : S* — S? implies deg(¢) = 1.

The first step is to perturb the almost complex structure such that the mod-
uli space of simple J-holomorphic spheres in a homotopy class is a finite dimen-
sional manifold.

ma (M)
ker ., Nker ¢,
by M(A; J) the space of J-holomorphic spheres in the class A and M (A; J) C
M A; J) the subspace of simple J-holomorphic spheres. Then for a generic almost

complex structure J compatible with w, we have the following results.

, denote

Proposition 2.1.12 ([HS9s], Section 2). Given A €

(1) M(A; J)isa finite dimensional manifold with dim M (A; J) = 2n+
201 (A)

(z) Ifc1(A) < 0then M(A; J) = 0.

() Ifn = 2and A # 0with ¢;(A) = 0 then M(A; J) =0

(4) If n = 2 and c1(A) = 1 then the moduli space M(A; J)/G is a finite

set, where G = PSL(2, C) is the group of bibolomorphic maps of S*
Denote by Mj,(c; J) the set of points 2 € M such that there exists a non-
constant JJ-holomorphic sphere v such that ¢, (v) < k, E(v) = / viw <ec
S2

and z € v(S5?).

Proposition 2.1.13 ([HSos||, Section 2). Assume 2n > 6 and J is generic. Then
the set My,(c; J) is compact for every ¢ > 0 and every integer k.

Next we perturb the Hamiltonian such that the moduli space of Floer tra-
jectories satisfying a limit condition is a compact finite dimensional manifold.

Definition 2.1.14. GivenaHamiltonian H : M x S' — R, the Floer equation
is the partial differential equation

ou ou
s + J(u)a —VH(t,u) =0

whereu : Rx ST — M, (s,t) — u(s,t)and J is an almost complex structure
compatible with w.

Let [x4, uy] be classes of contractible 1-periodic orbits of Hamiltonian H
and J be a generic almost complex structure compatible with w. Denote by

14



M([z—,u_],[r+,uy]; H, J) the moduli space of the solutions to the Floer
equations which satisty the limit condition

lim wu(s,t) = zy(t)

r—+o0

and

[era u,#u] = [$+7 u+]

Theorem 2.1.15 ([HSos||, Section 3). Assume 2n > 4. There is a generic Hamil-
tonian H such that the following results hold.

(1) Every contractible 1-periodic orbit x(t) is non-degenerate.

(z) x(t) ¢ M(oo; J) for every contractible 1-periodic orbit x(t) and every
teR

(3) The moduli space M([x_,u_), x4, ui]; H,J) is a finite dimensional
manifold for all contractible 1-periodic orbits [x v, uy | with

dim M([z—, u-], [wy, u]s H, J) = CZ([z-,u_]) = CZ([z}, u]).

(4) u(s,t) ¢ My(oo;J) foreveryu € M([x—,u_], [xy,uyl; H, J) with
CZ([x—,u_]) = CZ([xy,uys]) < 2andevery (s,t) € R x S

(5) Denote by My(c, H, J) the set of all points v = u(s,t) € M where
we M(lz_,u_], [xy,uyl; H, J) with energy
2
> dtds < ¢

w5 [

and CZ([x—,u_]) — CZ([xy,uy]) < k. Then the sets My(c; H, J)
and My(c; H, J) are compact for every ¢ > 0

ou|? ou
gL x
as| Tar Xt

2.1.4 Hamiltonian Floer Homology

Definition 2.1.36. The action functional on the contractible 1-periodic orbits

is defined as

A ([, 1)) :—/Du*w+/01H(t,x(t))dt

15



Define the k-th chain group as

CFk(H, J; Aw) = {Z )\j[:vj,uj] ‘ #{j : )\j 7é O,AH([Z']',UJ']) < C} < 00,Ve >0

J

where \; € A, and [z}, u;] is a class of the contractible 1-periodic orbits with
Conley-Zehnder index k. The action of \; on [z, u;] is defined as

Nlzj ) = Aalrg, u#A]

A€l

where \; = Z MM e A,
Aely
We can extend the coefficient A, to the universal Novikov ring Az i, by

tensor product.
CFy(H, J; Az univ) = CFy(H, J; Ay) @a, Az univ
Define the moduli space
Mi(foo,ul, [y, u]s H, ) o= Ml us), oy, ug ] H, J) /R

where CZ([x_,u_]) — CZ(|x+,us]) = k and the R-action on
M([z_,u_], [r4,us]; H, J) is given by translating the R-coordinate of the
Floer trajectory connecting [z_, u_] to [z4,u]. By Section we know
Mi([x—,u_], [xy,us]; H, J) is a 0-dimensional compact manifold. Thus
#Ml([m—v u—]7 [:L‘_,., U+]; H, ‘]) < 0.

Define the differential of the chain complex as

d - CFk(H, J, Aw) — OFk_l(H, J, Aw)
[‘T’U’]'_) Z #Ml([m,u],[y,v],H,J)
[y,v]
CZ ()~ O 7 (ya))=1
It was shown that d*> = 0 using Mo([z_,u_], [xy,uyl; H, J). See [HSos,
Section s]. Denote the homology of the chain complex (C'F,(H, J; A,), d)
by HF,.(H, J;A,). The Floer homology HF.(H, J; A,,;) does not depend

on the generic choice of the Hamiltonian and the almost complex structure as
shown in [HSos].

16
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2.2 Quantum Homology

2.2.1 Quantum Homology

We follow [MSi2] for the definition of the quantum homology. The quantum
homology of (M, w) is defined by Q H. (M, Az, univ) = Ho(M,Z) R7 Mz, univ-

There is a product on
QHev (Ma AZ,univ) = @’LQH2Z (M, AZ,um’v)

defined as follows. Choose anintegerbasiseg, - - - , ey of the free partof H, (M, Z)
such thateg = [M] € Hy, (M, Z) and each basis element e,, has pure degree.
Define the integer matrix g,,,, by

Gup 1= /MPD(eU) UPD(e,),

and let g"* denote the inverse matrix. Then the productof a,b € H., (M, Z)
is defined by

axb:= Z Z GWis(a,b, e,)g e, T

A vp

The product of a and b can also be expressed as

axb= Z(a 5 b) 4T
A

where

(CL * b)A = Z GW%g(CL, b; ey)guueu € Hdeg(a)+deg(b)+201(A)—2n(M7 Z)

v,p

which is characterized by the condition
/ PD((ab)a) Uc = GWY,(a,b, PD(c))
M

forc € H*(M, 7).

17



2.2.2 PSS Isomorphism

We follow [PSS96] to define the PSS isomorphism between Hamiltonian Floer
homology and quantum homology.

PSSH . QH<M7 AZ,univ) — HF(H, J; AZ,univ)

Let X be a Riemann surface of genus zero with [ cylindrical ends Z; =
¢i((0,00) x S') C X. Fix an almost complex structure j on ¥ such that ¢
agrees with the standard structure on the cylinders. Also fix | Hamiltonians H; :
R x S* x M — Rsuch that H;(s, -, -) vanishes near s = 0 and independent
of sfors > 1.

Given contractible 1-periodic orbits Z; = [x;, u;] of Xp,, define the Mod-

uli space
ME(i‘h e 7£Z7H17 T 7Hl7 ’])

as the space of all smooth maps w : ¥ — M which satisty the following
conditions.

(a) wis J-holomorphic on the complement ¥ — U, Z;.
(b) The mapsu; = u o ¢; satisfy

s T/ W5

- vHi(‘Sata ul) = 07

x;i(t) = lim u,(s,t)

S5—00

(c) The map u capped off by the disks w; (with opposite orientations) repre-

sents a torsion homology class in Hy (M, Z).

Fix d distinct points 21, - - - , zg € ¥ and homology classes a1, - - - , aq €
H,.(M,Z) such that
! d
> CZ([ziu)) =2n = (20 — deg(ay)).

i=1 v=1

Define the moduli space
MZ(ah”' aadv‘%h”' a:i‘hHh"' 7Hl7‘])

to be the set of all curves u € Myx(%q,--- , 3y, Hy, -+, H;, J) withu(z,) €
.

18



For generic choice of the Hamiltonians and the almost complex structure,
Ms(ay, -+ 04, T1, -, Ty, Hy, -+, Hy, J) is a finite set. Thus one can de-

fine a multi-linear map Vs, from
QH.(M, Ay univ) ® - @ QH (M, Az univ)
to
HF(Hy, J; Az univ) ® - @ HF(Hy, J; Az univ)

by

\IIZ(ah”' ,Oéd) :Z#ME(O{DU' 7O[d7j.17”' 7jlaH1a”' 7HZ7J)(‘%17'.'

Example 2.2.1 (Pair-of-Pants Product). Taked = land oy = [M| € Ho, (M, Z).

Takel! = 3, H; = Hy = H,and H3(t,-) = —H(—t, -). Then one can get the
pair-of-pants product on the Floer homology.

HF2n—j(H7 J; AZ,um’v) ® HF2n—k(H7 J; AZ,um‘v) — HF2n—(j+k)<Ha J; AZ,um‘v)

by Poincare duality.

Example 2.2.2 (PSS Isomorphism). Take d = [ = 1. One can get the PSS
isomorphism

PSSH : QH(M, AZ,univ) — HF(H7 Ja AZ,univ)

2.2.3 Semisimplicity

Throughout this subsection, we assume that () He,, (M, Ak yniv) is semisimple
where K is a field with characteristic 0 and .
Let Rbearingand p € Spec(R). Denote by R, the localization at p and

by £(p) the residue field R, /(pRy).
The following theorem is Theorem 6.1 in [Ushub].

Theorem 2.2.3. Let R be a ring containing Q as a subfield and let A be a com-
mutative R- algebra which, considered as an R- module, is finitely generated and
free. Denote by f : Spec(A) — Spec(R) the morphism of schemes induced by
the unique ring morphism R — A (sendingrtor - 1).

(4) The following are equivalent, for a pointp € Spec(R):
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(A1) The morphism f is unramified at every point in f~*({p}).
(Az) Thereexistsa field extension €(p) — k such that the map Spec(AR g
k) — Spec(k) induced by the unique ring morphismk — AQpgk

is unramified.

(A3) There exists a field extension €(p) — k such that A @ k decomposes
as a direct sum of field extensions of k.

(A4) For every field extension €(p) — k the algebra A ® g k decomposes
as a direct sum of feld extensions of k.

Moreover, the set Uy of pointsp € Spec(R) at which (A1) holds is open in
Spec(R).

(B) The following are equivalent, for a pointp € Spec(R):

(Bt) Thereissomeq € Spec(A)suchthat f(q) = pand f : Spec(A) —
Spec(R) is unramified at q.

(Bz) Thereexistsa field extension €(p) — k such that the map Spec(ARQ g
k) — Spec(k) induced by the unique ring morphismk — AQgk
is unramified at some point q € Spec(A g k).

(B3) There exists a field extension €(p) — k and a direct sum splitting of
k-algebras A @p k = K © S where k — K is a field extension.

(B4) For every field extension €(p) — k there is a direct sum splitting of
k-algebras A @p k = K @ S where k — K is a field of extension.

Moreover, the set Uy of points p € Spec(R) at which (Br) bolds is open in
Spec(R).

Remark 2.2.4. Since Ais a finitely generated module in Theoremp.2.3) A®g k

decomposes as a direct sum of algebraic extension of & in (A3) and (A4).

Corollary2.2.5. QH.,(M, Frac(Az univ)) issemisimple, where Frac(Az yniv)
is the field of fractions of Nz uni-

Proof. A univ contains Q as a subfield. The only prime ideal in Ag iy is {0}
and then Ag yniy is the only residue field of itself. Because K has characteristic
0, itis a field extension of Q. Then Ak ynv is a field extension of Ag yniv. Thus
(A3)in Theoremholds. Now consider the trivial extension of Ag yniv, We
have QH (M, Ag univ) is semisimple.

Frac(Az univ) is a field containing Q as a subfield. The only prime ideal
in Frac(Azuniv) is {0} and then Frac(Az yniy) is the only residue field of
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itself. A univ is a field extension of Frac(Az yniv). Thus (A3) in Theorem
holds. Now consider the trivial extension of F'rac(Az yniy), we have
QHo(M, Frac(Azuniv)) is semisimple. O

Corollary 2.2.6 ([AL23], Corollary 3.3). Let Frac(Ay univ) be the algebraic
closure of Frac(Az univ). Then QHeo(M, Frac(Az univ)) is semisimple.

The following lemma is Lemma 3.6 in [Lorg6]

Lemma 2.2.7. Let A be a commutative ring, and let P C A be a maximal ideal.
Let S C A\P be a multiplicative set. Then the fields AJP and S~ A)S™'P

are isomorphic.

The following lemma follows from Proposition Lemma Theo-
rem and Lemmal.2.7

Lemma 2.2.8. Every residue field of Ny, iy 75 perfect.
Now we rewrite Theorem 6.1 in [Ushuib] to fit our context.

Theorem 2.2.9. Let R be a ring such that every residue field of R is perfect and
let A be a commutative R-algebra which, considered as an R-module, is finitely
generated and free. Denote by f : Spec(A) — Spec(R) the morphism of
schemes induced by the unique ring morphism R — A (sendingr tor - 1).

(4) The following are equivalent, for a pointp € Spec(R):

(A1) The morphism | is unvamified at every pointin [~ ({p}).

(Az) There exists an algebraic field extension €(p) — k such that the map
Spec(A ®@g k) — Spec(k) induced by the unigue ring morphism
k — A Qg k is unramified.

(A3) There exists an algebraic field extension €(p) — k such that AQp k
decomposes as a dirvect sum of field extensions of k.

(A4) For every algebraic field extension ¥(p) — k the algebra A ®p k

decomposes as a dirvect sum of field extensions of k.

Moreover, the set Uy of pointsp € Spec(R) at which (A1) holds is open in
Spec(R).

Definition 2.2.10. Let A be an R- algebra as in Theorem|o.2.9] We say that A
is generically semisimple if the subset Uy C Spec(R) of Theorem|o.2.9[A) is

nonempty.
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Corollary 2.2.0x. QH.,(M, Az yniv) s generically semisimple.

Proof. Frac(Az univ) is the residue field of Az 4, at the prime ideal {0}. By
Corollary and Theorem Az, univ is generically semisimple. L]

Corollary 2.2.12. QH.,(M, Az, univ) s semisimple.

Proof. By Lemma and Lemma Az, univ is the residue field of Az iy
atthe primeideal < p >. By Theorem QHey(M, Az, univ) is semisimple.
O

Since QH., (M, Frac(Az yniv)) is semisimple, let {€;}1" ; be the idempo-
tents of QHe, (M, Frac(Az univ)) such that

m

QHev(Ma FT@C(AZ,univ)) - @Ez * QHev<M7 FTaC(AZ,uniU))~
=1
Denote by
éi — Eijhj
7=0

where k;j € Frac(Azuniv)andh; € Hoj(M). Letpij(z) € Frac(Azuniv)[z]
be the minimial polynomial of k;; and {aéj} be all the roots of p;;(z). Since

Frac(Azuniv) ({aij ) }i,j,l)
is a finite extension, there is an element & € Frac(Ayz yniv) such that

Frac(AZﬂmw)({aﬁj)}ml) = Frac(Az univ) ().

In particular, Eij € Frac(Az univ)(a)foranyi =1,--- ;mandj=1,--- ,n.
Let f(z) be the minimal polynomial of .. Denote by

f(x) =aa" +ar 12"+ - ayx + ag

1) 7

a
where a; € Frac(Azuniv). Assume a; = — where aj, a; € Az uniy. Then
7
.,

H CL;/ . f(x> € AZ,univ [ZII],

i=1
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still denote H a; - f(x) by f(z). Finally we have

=1

Frac(Az univ)|7]
< f> '

I

Frac(Azuniv) (@)

By reducing the coefficients of f(z) to Az, univs We get

[f(@)]p = 91" ()95 () - - - 95" ()

in Az, univ|[x] where g;(x) are irreducible and distinct from each other.

Claim 2.2.13 ([AL23], Claim 3.4). m1 = my = --- = mg = 1 for sufficiently
large .

Proof. Since f(z) is irreducible over Frac(Az, univ)[x], then
ged(f(z), f'(z)) = 1.
So,
r(z) f(z) +q(z)f'(z) =1

for some (), ¢(x) € Frac(Azyniv)[x]. Let © € Az ynip be the product of
the denominators of the coefficient of () and ¢(x). Then

rf(\m/)f(%) + qf(\x/)f/(m) =0 (2.2.1)

whererf(?v/) =7r(z) -0 € Az univ andqf(\/x) = ¢(z) - © € Az yniv. Denote by
O=0_T +6_ T =+ + ...

Then forall primes p > |0_;|, © reduces to a nonzero element [O],, in Az, univ-

Now by reducing the equation for sufficiently large primes p, we have

Thus ged([f(z)]p, [f'(z)]p) = 1in Az, univ[z], which means m; = msy
=y =1,

s 0Ol

Thus, for a sufficiently large prime p, [f(2)], = ¢1(z)ga(x)--- gs(z
where g; () are irreducible and distinct from each other.
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Proposition 2.2.14. For sufficiently large p, the idempotents €; can be reduced
to a nonzero element [€;], in QH, (M, Az, , univ) where Nz, , univ is the alge-
braic closure of Nz, univ-

Proof. Recall thate; = ZEijhj where Eij € Frac(Azuniv)(c) and
j=1

Frac(Azuniv)|2]
<f> '

1%

Frac(Az univ) (@)

FTaC(AZ,uniU)[I]
- <f>
Since k;; is invertible, then there is an element L;j(x) € Frac(Az yniv)|x]

such that

Then we can write k;j as K;;()+ < f > in

for M;;(z) € Frac(Azuniv)|[z]. Let T, Y1 and T s be the product of the
denominators of the coefficients of K;;(x), L;;j(x) and M;;(x) respectively.
Then

Kij(x) Lij(x) Yo = Y YTy + Mij(2) f(2) T Ty (2.22)
where Kij(z) = Kij(z) - T € Agwniolt], Lij(z) = Li(z) - Tp, €
Az univ|z] and M;;(x) = Mij(z) - Tar € Azuniv[z]. For sufficiently large
prime p, [Tk, # 0, [Y1] # 0, [Yar], # 0and [f], # 0. By reducing the
equation we have

—~— —_—

(K (2)]p[Lij (2)]p[ Y]y = [T r]p[ T L]l T arlp+[Mij ()] f (2)]p[ T ][ T i

(2.2.3)
Thus [K;;(z)]p[Lij(x)], # 0in AZ&F;)HU[ il In particular [K;;(z)], # 0in
AZG(";)T[CE] Then one canreduce K;;(x)+ < f(x) >to [K;;(x)],[T ];1"‘ <

F@))y >€ s

<[f(@)]p>
Note that
AZp,um'v ['ﬂ _ AZp umv ~ H AZp umv
<[f@),> <gq(@)g(z)- - -1 < g
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and each % is a field because g;() is irreducible. Let
AZp,univ [fL’] AZp,univ [ZE]

@, s T <al) >

be the projection. Then for at least one P such that

P([Ky(2)p[ k], '+ < [f(2)], >) #0.

Let

. AZp,umv [x]

; — A ;
2] < gl(:c) > ZLp ,univ

be the inclusion. Then

P

u(P([Ki (@) (Y], + < [f(@)]p >)) #0

Thus we have reduced k;; to an nonzero element in Az, . If we can
reduce one of {k;; }?:1 to a nonzero elementin Az, uniy, then €; can be reduced
to a nonzero element in Q He, (M, Az, univ). But each €; is a finite sum and
there are finitely many €;, then one can choose sufficiently large p such that &

can be reduced to a nonzero elementin Az i, for any i, j. O

Remark 2.2.15. Actually, forany ! = 1,--- | s and sufficiently large p,

—~——

P([Kij(@)]p[ Tkl + < [f(2)], >) #0.

Otherwise, suppose

PR, @[ Txly + < [f(2)], >) = 0.

Then

(K (2)],[ k], = gi(2)d(x)

for some §(x) € Ay yniv|2]. Now we can rewrite the equationas:

gi()o(x) [TK]p[Lij (x)]p[TM]p

= [Yxlp[ Tl Tarlp + [Mij(2)]pg1(x) - - (@) - - g5 (@) [T o [Tl
(2.2.4)
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Let 1) be a root of g;(x). Plug 7 into the equation [2.2.4} we get
[TK]p[TL]p[TM]p =0,

which contradicts with our choice of p.

Proposition 2.2.16 ([AL23|, Proposition 3.6). The reductions [€;],, are idem-
potents in QHo,(M, Az, univ) fori = 1,--- .m, [&l, * [€], = 0 fori # j

and Z[Ei] p = Lwhere 1 is the multiplication identity in QHo,(M, Az, univ)-

=1

Proof. Since QH,,(M, Frac(Az univ)) is semisimple and {€; }7; are idempo-
tents such that

QHev(Ma FraC(AZ,univ)) = @gz * QHev<M> FT&C(AZ,univ))7

i=1
we have the following equations:
fori =1,--- ,m,
eixe;=0,i#]

fort,7=1,---,m,

m

E e =1

i=1
Then one can reduce the three equations to Q H., (M, AZp,univ>- ]

m

Thus QHCU(Ma AZp,um'v) = @[Ez]p * QHEU(M7 AZp,univ)~

=1

Since QH.,(M, Frac(Az univ)) is semisimple and {€;}; are idempo-
tents, then each € * QH, (M, F'rac(Az univ)) is an algebraic field extension of
Frac(Az univ)- But Frac(Az unqy) is the algebraic closure of Frac(Az univ),
)

Ei * QHGU(M7 FraC(AZ,univ)) = FTaC(AZ,univ)-
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Also,

m

QHEU(Ma FTGC(AZ,QtniU>> - @Ez * QHev(M7 Frac(AZ,univ))

i=1
= @ Frac(Az.univ)-
i=1
Thusm = rank(H.,(M)).
Since QH.,(M, Azp,um-v) isafree Az, ynip-moduleand [€]p*QHe,, (M, Az univ)

is a submodule, then [€;], ¥ QHey, (M, Az, univ) can be written as a direct sum
of Az, univ- Since

m = rank(H.,(M,Q)) = rank(H.,(M,Z,))
for sufficiently large p and [€;],, is nonzero, we have

[éz]p * QHeU(Ma AZp,univ) = AZp,univ~

Thus QH., (M, Az, univ) is semisimple and generated by the idempotents { [€;],, } 1 ;.

2.3 Persistence Module

2.3.1 Non-Archimedean valuation

Definition 2.3.1. A non-Archimedean valuation on afield A is a function
v:AN— RU{oo}

satisfying the following properties:
(1) v(z) = +ooifand onlyif x = 0,
(2)v(zy) = v(z) + v(y) foralz,y € A,
B)v(r+y) > min{v(z),v(y)} forallz,y € A.
Furthermore, we set A = v~ 1([0, +-00)) to be the subring of elements of

nonnegative valuation.

Example 2.3.2. We defined the universal Novikov field in Example[z.1.2] Let
K be a ground field. A non-Archimedean valuation on Ax y;, can be defined
as

v ( Z aiT)‘Z) =g (2.3.1)
i=——K
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on AK,um’v\{O} and V(O) = +00.
We showed in Proposition that every element in Frac(Az yniv) can

be written as Z ¢; TN for ¢; € Q. Thus we can define a valuation v :
i=—K

Frac(Azuniv) — RU {00} asin Equation
Definition 2.3.3. A non-Archimedean norm onafield Aisamap|-|: A —
R~ satistying the following properties:

(1) |z| = 0ifand only if x = 0,

(2) |zy| = |x||y| forall z,y € A,

(3) [z + y| < max{|z|, |y|} forallz,y € A.

Furthermore, A is said to be complete with respect to | - | if it is a complete
metric space with respect to the induced topology.

Example 2.3.4. Given a non-Archimedean valuation v, one can define a non-
Archimedean norm by setting |z| = e7®). Conversely, if | - | is a non-

Archimedean norm, a non-Archimedean valuation can be obtained by setting

v(z) = —In(|z|).

2.3.2 Extensions of valuations

Now we use the following results in [Cas86] to define filtration on the exten-
sions of fields.

Lemma 2.3.5 ([Cas86], Chapter 7, Theorem 1.1 ). Let £ be a field and complete
with respect to a norm | - | and let R be a finite extension of degree n. Then there
is precisely one extension || - || of | - | to R It is given by

I A= [ Nape(A)"
where A € R and Ngjp(A) is the determinant of the map B — AB for B € &

Furthermore, R is complete with respect to || - |.

Lemma 2.3.6 ([Cas86], Chapter 9, Lemma 2.1). Ler 8 = €(A) be a separable
extension and let F(z) € €[z] be the minimial polynomial for A. Let € be the
completion of € with respect to a norm | - |. Let F(x) = ¢1(x) - - - ¢ () be the
decomposition of F(x) into irreducibles in €[x]. Then the ¢; are distinct. Let
R; = E(B;) where Bj is a root of (). Then there is an injection

R—= K (2.3.2)

extending € — € under which A — Bj. Denote by | - |; the norm on 8 induced
by equation 3.2 and the unique norm on K; extending | - |. Then the | - |;
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(1 < j < J) are precisely the extension of | - | to R Furthermore, R; is the
completion of R with respect to | - |,.

Lemma 2.3.7 ([Cas86], Chapter 7, Corollary 1). There is a unique extension of
| - | o the algebraic closure € of €

For each Z ajT)‘j € Frac(Azuniv) with A_g < Mg < ---,

j=—K

o0
the valuation v ( E ajT)‘J) = Ag. Then | | = e ¥() is a norm on
i=—K
Frac(Azuniv). Since Frac(Az univ) has characteristic zero, it is perfect and

then F'rac(Azuniv) () is a separable extension. Now by Lemma one
can getanorm | - | on Frac(Az yniv)(@). Then —In(| - |) is a valuation on
Frac(Azuniv) ().
The valuation on Az, yniy is v ( Z ajT’\J) = A_k wherea; € Z,
j=—K
and \_g < A_g41 < . Then|-| = ¢7*0) isanorm on Az, univ- Recall
f(z) is the minimal polynomial of o and, reducing to Az, univ (2],

[F(@)lp = 91(2)g2() - - - gs()

where ¢;(x) are irreducible and distinct from each other. Then

L (0)]p] = H 19:(0)]-
Thus for some 7,

19:(0) < |[FO)], ',

Without loss of generality, assume |g; (0)| < |[f(0)],|*/*. There is an algebraic
element v over Az, yniy such that % = Az, univ (7). Since Az, univ 1
complete, by Lemmalz.3.5} one can get a norm | - | on Az, univ(7) and then

—In(| - |) is a valuation on Az, univ (7).

Lemma 2.3.8 (J[AL23], Lemma 4.1). Lerb € Frac(Az univ). Then |b| > |[b],]
for sufficiently large p.

Proof. Suppose b = Z biTY with A\_gr < A_gy1 < ---. Thenv(b) =
i=—K

Ak Write b_g = Z:i? and then [b_x|, = [b_kolplb-xa], " If [b_x]p, =
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0, thenv(b) < v([b],). If [b_k], # 0, then v(b) = v([b],). Since || = 1),
then [b] > |[b],]. O

Remark 2.3.9. The prime p in the above lemma depends on b and there is not
auniform p for all elements in Frac(Az univ)-

Proposition 2.3.10 ([AL23], Proposition 4.3). || < max{1,|f(0)|}.
Proof. Let F,(z) be the characteristic polynomial of 7. Then

F’Y(x) = NAZp,uniU('Y)/AZp,uniu (l’ - 7)

Since the degree of Az yniv(7) over itself is 1, then F, () is the minimal poly-
nomial of v, in particular, F, (z) = g1(x). Thus

NAZP,U’M’U ('Y)/AZ,univ (Py) = (_ 1)Mgl (O)
where M is the degree of g1 (x). Then

‘,‘Y‘ = ’NAZp,univ('V)/AZp,univ (7)‘1/M = ’gl(o>’1/M

Since [g1(0)| < |[f(0)],|"/* < [F(0)['/*, then |y| < |£(0)['/*". Let N
be the degree of f(z). If | f(0)| < 1, then |f(0)[/*M < 1. If|£(0)| > 1,
[FO)[/* < [£(0)]. Thus, |y] < max{1,|f(0)[}.

O]

2.3.3 Non-Archimedean filtration

Definition 2.3.11. Let A be a field with a non-Archimedean valuation v. Sup-
pose C'is a finite dimensional module over A. A non-Archimedean filtration is
afunction! : C' = R U —oo satisfying the following properties:

(1) {(x) = —ooifand onlyifx =0

(2)l(Ax) = l(x) —v(\) forall A € Aandz € C

(3)l(z +y) < max{l(x),1(y)}

Proposition 2.3.12 (Proposition 2.3 in [UZ16])). Ifl(x) # l(y), then
l(z +y) = max{l(x), l(y)}
Definition 2.3.13. We call a A-basis (x1, - - -, xn) of (C, 1) orthogonal if
z (Z )\x) = max{l(z;) — v(\)}
forall \; € A. Itis called orthonormal if it also satisfies I (z;) = 0 for all 7.
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Example 2.3.14 (Non-Archimedean filtration on Floer chain complex). We
choose a Ak ynip-basis {x1, - -+ ,xn} of CF(H, J; Ak yni») and set the non-

Archimedean filtration as

,,4 : CF(H, J; A]K,univ) — RU {_OO}
Z iz — max{Ag(z;) —v(\)}

where Ap is the action functional. Equivalently, we declare {z1,- -+, xx} to
be an orthogonal basis of (C'F (H, J; Ak univ), A).

The basis given by {Z1,--- ,Zn} = {TA(“)J:I, e ,TA(IN)QJN} is or-
thonormal.

We now consider the case where we extend the coefficients of C F'( H, J; Ak univ)
to Ak univ- Foran orthogonal basis {z1, - -+ , x5} of (CF(H, J; Ak univ), A),
{r;®1, -+ 2y ® 1} is a basis of CF(H, J; Ak univ). We define a non-
Archimedean filtration A on C'F(H, J; A univ) by setting

A (D N @1) = max{Ay(z:) - #(A)}

where 7 is the extended valuation on mof the valuationv on CF(H, J; Ak univ)-
Then {z1®1, -+ , xy®1}isan orthogonal basis and {TA(xl)xl ®1, -, TAEN) gy ® 1}
is an orthonormal basis of CF(H, J; Ak univ)-
Let{y1,- - ,yn} bean orthonormal basis of C F'(H, J; Ak yniv). Then it
is related to the orthonormal basis {1, - - - , T } byamatrix A € GL(B, A 5,)
in the sense that A (Z;) = y;, furthermore,

is an orthonormal basis of CF'(H, J; Ak univ)-

We note that forany non-trivialz € CF(H, J; Ak yniy) wehave A(d(z)) <
A(z) where d is the differential of the Floer chain complex. Then, fora constant
c thatis not a critical value of action functional Ay, (CF(H, J; Ak univ) ¢, d)
is a chain complex where CF(H, J; Ag univ) < := A~ (=00, ¢) and denote
by HF(H, J; Ak univ) < the homology of it. We define the Floer complex in

the action window [a, b) as the quotient complex

[a,b) — CF(HJ ‘]a A]K,univ)<b

CF(H, J,AK,unw) CF(H, J, A]K,univ)<a

and denote by HF (H, J; AK,unw)[“’b) the Floer homology of this quotient

complex.
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Example 2.3.15 (Non-Archimedean filtration on quantum homology). For
each element ) | f;a; where f; € Az yniv and o € H, (M, K) define the
filtration [ : QH(M) — RU {—o00} tobe l(>_ fia;) = max{—v(fi)}.
Now, as in [PSS17] [She22], for each element o« € QH (M, Ak univ), we have a
map

ok - HF<H7 Ja A]K,univ)<c — HF(H, (], AKyunw)<C+l(a)

defined by counting negative g-gradient trajectories ¥ : (—00,0] — M of a
Morse function f on M, for a Morse-Smale pair ( f, ¢), asymptotic to critical
points of f as s — —o0, and with 7(0) incident to Floer cylinders u : R x
St — M atu(0,0). This construction is reminiscent of the quantum cap
product as in [PSS96][Schoo| [Seioz] [Flo89).

2.3.4 Spectral invariants

Definition 2.3.16. Thespectral invariant of anontrivialelementaw € QH (M, Ag yniv)
is defined as

(o, H) :=inf {a € R | PSSy () € im (HF(H, J; A univ)<* — HF(H, J; Ak univ)) }

By [BCoo], spectral invariants do not change under extension of coeffi-
cients. Spectral invariants enjoy a wealth of useful properties [Schoo] [Vitg2]
[Ohos|| [Oho6] [Ushio] [Usho8]. We summarize some of their properties.

Proposition 2.3.17 ([AL23], Proposition 2.10). The spectral invariants satisfy
the following:

(1) Stability:
1 1
/ min(H; — Gy) ft < c¢(a, H) — ¢(a, G) < / max(H; — Gy)dt.
0 0
(2) Triangle inequality:
(o % 8, HHG) < cla, H) + (5, C)

where

H#G(t,z) = H(t,z) + G(t, (¢p) " (7))
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(3) Novikov action:

c(Aa, H) = c(a, H) — v(X)

(4) Non-Archimedean property:

cla+ 8, H) < max{c(a, H),c(B,H)}

We remark that by the stability property, the spectral invariants are defined
for all Hamiltonians and all the above listed properties apply in this generality.

2.3.5 Barcode

In this subsection we follow [She22, Section 4.4.1] in order to define persistence
modules and their associated barcodes and discuss the relation between them.

Let K be a field. Denote by Vectxk the category of finite dimensional K-
vector spaces and by (R, <) the poset category of R. A persistence module over
K is a functor

ViR, <) — Vectk

The collection of such functors together with their natural transformations
form an abelian category Fun((R, <), Vectk ). We consider a full abelian sub-
category

pmod C Fun((R, <), Vectk)

which is defined by requiring that certain technical assumptions are satisfied.
The following definition summarizes the data of such a persistence module.

Definition 2.3.18. A persistence module V' in pmod consists of a family
{Va c VCCtK}aeR

of vector spaces and K-linear maps 7T€/’b - Ve — Vb foreach a < bsuch that

a,a __ - b,c ab _ _ac .
T/ = tdyeand ) omy = 7/ foralla < b < c. Furthermore, we require

them to satisty the following:
(1) Support: V¢ = 0foralla < 0.

(2) Finiteness: there exist a finite subset S C R such that for all a, b in the
b . .
same connected components of R\ S, the map 7" is an isomorphism.
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(3) Continuity: for every two consecutive elements s < s’ of S, and any
!
a € (s,s"), the map 77 is an isomorphism.

We define V>° = lim V.

a—o0

The normal form theorem [ZCos][Crars] implies that the isomorphism
classes of a persistence module V' € pmod is determined by its barcode, that is,
amultiset B(V') = {(I), my) h1<k<n of intervals [, C R with multiplicities
my € Zsg. The intervals are of two types, K = K (V') of them are finite,
Ity = (ak,bg],and B = B(V) = N — K are infinite, I, = (ay, 00). The
intervals are called bars and the bar-lengths are defined as | I;,| = b, — ay, in the
finite case, and |[;,| = 400 otherwise.

The isometry theorem [Cha+16][BL15] [Cha+o9] [CEHo6] shows that the
barcode assignment map

B : (pmod, d;pte) — (barcodes, dpotc)
Vi B(V)

is an isometry. The znterleaving distance is defined by setting
Ainter (V. W) = inf{d > 0 | 36 — interleaving, f € hom(V, W[d]), g € hom(W, V[d])},

where for V' € pmod and ¢ € R, V[c] € pmod is given by pre-composing
with the functor 7. : (R, <) — (R, <),t +— t 4 c. We say that a pair
f € hom(V,Wic]), g € hom(W, V[c]) is a c-interleaving if

gldo f= shas v, flcJog= shasw

whereforc > 0, sh.y € hom(V, V|[¢]) is the natural transformation idg < —
T,. Note that, dipe,(V, W) € Rxo U {00}, and it is finite if and only if
Voo 2 e,

The bottleneck distance is defined as

dpottie(B,C) = inf{d > 0 | 30 — matching between B and C}

where a d-matching between B, C is defined as bijection o : B* — C? be-
tween the sub-multisets B2 C B, C? C C, which contains the bars of B, C,
respectively, with bar-length greater than 26, such thatif o((a, b)) = (c,d],
then max{|a — ¢/, |b—d|} < 0. We have that dpess1e (B, C) € RU {00}, with
it being finite if and only if B(B) = B(C).

Note that for each ¢ € R there is an isometry given by sending a barcode
B = {(Ix,my)} to Blc] = {(Ix — ¢,my)}. We can therefore consider the
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quotient space (barcodes’, d},,,,.) by this isometric R-action, where
dg)ottle([BL [C]) = (1:2112 dbottle(B7 C[CD

We observe that bar-lengths are well-defined in the quotient.

Following the discussion in [[She22, Section 4.4], we describe two alternative
descriptions of the bar-length spectrum, which coincide in the semipositive
setting.

Consider the filtered Floer chain complex (C'F(H, J;A),d, A), where A
is one of the following Ak, m, A is the non-Archimedean filtration, and
d is the Floer differential. Then, by [UZ16], the complex (C'F(H, J;A), d)

admits an orthogonal basis

E={&, &m0k, G, Ck}

suchthatd¢; = Oforallj € {1,--- , B},andd(; = n,forallj € {1,--- , K}.
The lengths of the finite bars are given by

B; = Bi(on, K) = A(g) — A(ny)

which we can assume to satisty 5; < --- < Bg. The length of the largest
finite bar, is the boundary depth introduced by Usher [Ushiza] [Ushis], and
denoted by 5(¢};, K). There are B infinite bar-lengths corresponding to each
&. This description yields the identity N = B 4 2K, where N, B, and K can
be computed by N = dimy CF(H, J;A), B = dimy HF(H, J;A), and
K = dim, im(d). We denote by

ﬁtot(gbllLI?K) = Bl(gb}{’K) T+ +6K(¢}{’K)

the total bar-length associated to the barcode.

Following [Fuk+13]), the Floer differential d in the orthonormal basis has
coefficients in A’. Therefore, one defines a Floer complex (C'F(H, J; A), d)
whose homology is a finitely generated A°-module, and is therefore of the form
F & T, where F is a free A°>-module and 7T is a torsion A°-module. The bar-

lengths are given by the isomorphism

T @ AT

1<j<k
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Combining the ideas in the proof of [She22, Lemma 16] and combining
with Proposition [2.1.6 we show that the bar-length spectrum over Z, coincide
with that over Q for a sufficiently large p.

Lemma 2.3.19 ([AL23], Lemma 2.16). Let p be sufficiently large and ¢ be a
Hamiltonian diffeomorphism. The the bar-length spectrum

0< ﬁl<¢> Zp) <o < BK(¢,Z;7) (¢7 Zp)

over Ly, coincides with the bar-length spectrum

0< 61(¢7Q) S T S ﬁK(d’,Q)((baQ)
over Q. In particular 5(p, Z,) = (¢, Q).

Proof. Let {&,--- ,&B,m, - ,NK,C1, -+ ,Cx} be an orthonormal singu-
lar value decomposition of CF(H, J; Frac(Azuniv)) satisfying d§; = 0 for
alli € {1,---,B}andd(; = TPip; forallj € {1, -+, K}, where j; is
the j-th bar-length in the spectrum. Note that there is a canonical orthonor-
mal basis {[Z1, %], - - - , [Tn, Un]} where, [T, ©%;] = T4 (2, 4] for all
iyand {[x;, u;] }¥., is the collection of contractible fixed points of ¢. These two
orthonormal basis will be related by an matrix ) € GL(N, Frac(Azuniv))
whose coefficients have non-negative valuation, in particular, it is filtration-
preserving. Since () has only finitely many coefficients, Proposition im-
plies that for a sufficiently large p, it is possible to reduce () to a matrix [()], €
GL(N, Az, univ), ie. [det Q], # 0. We can obtain a singular value decomposi-
ton {[&i]p, -+, [€Blp, My Nk, [Glps -+ 3 [Ci]p} of CF(H, J; Az unio)s
satisfying the same relations as before, by applying ()], to the canonical or-
thonormal basis given by the contractible fixed points of ¢. In particular, it will
have the same bar-length spectrum. On the other hand, {{; ® 1,--- ,{p ®
Lm®l,- g ®1,G®1,--, (g ® 1} is an orthogonal singular value
decomposition of CF(H, J; Ag,univ) with the same lar-length spectrum. [

2.4 Upper Bound of Boundary Depth

Recall {¢; = Z Eij h;}, are the idempotents of Q H.,, (M, Frac(Az univ))

J=0
n

and {[&;], = Z[Eij}phj}?ll are the idempotents of Q He,, (M, Az, , univ)
=0
where Eij € Frac(Azuniv) () and [Eij]p € Az, univ(7). Suppose Eij =
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N N
Z bz‘jSOzS. Then [Eij]p = Z[bijs]p’}/s. Denote by == maX{|b”S|} Thus
1,7,8

s=0 s=0

(il < max {|[biss]py°* 1} = max {|[bislplly*[} < E(max{1, |F(0)[})".

~ 0<s<N 0<s<N

Then

v([kijlp) = —In(E(maz{1, f(0)})"Y).

Thus

[([el]p) = max {—v([k;;],)} < In(E(maz{L, f(OH").

0<j<n
Now we have the following proposition.

Proposition 2.4.1 ([AL23], Proposition 4.4). Thereisa number?d, independent
of p, such that l([€;],) < 6 foranyi=1,--- ,m.

Given a Hamiltonian H : S' x M — R, define
H:S'xM->R
(t,2) = —H(t, oy (x))

Then ¢l = (¢) .

Define a bilinear pairing

A CF.(H, J; Az univ) X CF(H, J; Az, univ) = Az univ
(Z a;[x;, wl, Z bz, 4,)) — Z a;b;
where the sums are finite and, for all k, z1.(t) = z4(1 — ¢)
Lemma 2.4.2 ([AL23], Lemma 2.11). The bilinear pairing A\ is nondegenerate.

Proof. Suppose

A ailwiwi),) =0.

Then for every [Z;, U],

A ailag, wi), [7:,m]) = 0.
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On the other hand,

A(Z a;lzi, wl, [T, W) = a;.
Thusa; = Oforeachi,ie. Y a;[z;, u;] = 0. Similarly, if A(-, Y b;[7;,3;]) =
0, then Z bj [fj, ﬂ]] = 0. [

Lemma2.4.3 ([AL23], Lemma2.12). v (A]CF(HJ;W)@XcF(HJ;W)W) >
0

Proof. Suppose that

(Z a'i[-ria ui]7 Z bz[flaﬂz]> € OF(Ha J7 AZP,univ)<a X CF([_{7 J7 AZp,um'v)<_a
Then

A <Z a;[z;, uz]> = max{A(a;[z;, u;])}
= max{Ag([z;, w]) — v(a;)} < a.

Thus for each i, Ay [z, u;)) — v(ai) < a,ie v(a;) > Ag([zi, w]) — a.
Also,

A (D bifms,w]) = max{ A(bifzi,w))}
= max{ Ay ([T, T]) — v(b;)}
= max{—AH([xi, Ul]) — V(bl)} < —q.

Thus for each i, —A([z;, w;]) — v(b;) < —a,ie v(b;) > —A([x;, ui]) + .
Then

V(A ailwiw), Y bilELw]) = v aib)
> min{v(a;b;)}
= min{v(a;) + v(b;)}
> Ay ([, w]) — o — Ag ([, u)) + «
=0

]

Lemma 2.4.4 ([AL23), Lemma 2.13). A(d(a),b) = £A(a,d(b)) fora €
OF(H, J; AZp,univ) andb € CF(H, J; AZp,um'v)-

Proof. Denote a basis of CFjy1(H, J; Az, univ) by {[7:, w;]} and a basis of
CFy(H, J; Az, univ) by {[yj, v;]}. Then {[7;, ;) }isabasisof CF 1 (H, J; Az, univ)
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and{[@j,ﬁj]}isabasis of CF_(H, J; Az, univ). Suppose d( [z, u;]) = D a;[y;, vj]
and d([y;,7;]) = >_ bi[¥;, W;]. Then

A(d([z, ui]), [ y]JUJ Za’] Yj> V5], y]7UJ]>
On the other hand
A([zs, wil, d([7;,0))) = Allwi, w], > bil@i, w]) = bi.

By definition, a; is the number of the Floer trajectories connecting [z;, u;] and
[yj,v;] and b; is the number of the Floer trajectories connecting [7/,, 7] and
[fi, ﬂz] Thus a; = bia ie.

Ad([zs wl), [y, vi]) = Allzi, wil, d([y;, vi]))-
Since A is bilinear, then
A(d(a),b) = A(a,d(b))

foranya € CF(H,J; Az, yniv) and b € CF(H,J; Az, univ)- O

Thus there is an induced pairing on homology.

A:HE(H,J; Az, univ) X HE(H, J; Az, univ) = Nz unio
The proof of the following proposition is from Corollary 1.4 in [Ushio.

Proposition 2.4.5 ([AL23], Proposition 2.14). Lera € QH (M, Ay ynip) be
nontrivial. Then

c(a, H) = —inf{c(b, H) | b € QH(M, Ax univ), V(A(PSSy(a), PSS7(b))) < 0}.
Proof. First we show that

—c(a, H) > inf{c(b, H) | b € QH (M, Ag univ), ¥ (A(PSSz(a), PSS (b)) < 0}
Suppose that & < ¢(a, H). We have a short exact sequence of chain complexes

0 — CF(H,J; Agyumin) = = CF(H, J; Ay umiv) — CF(H, J; Az i) — 0

inducing an exact sequence
HF(H> ']; AZp,um'v)<a l_a> HF(H> J; AZp,univ) L HF(H? ‘]; Azpv“mv)[apo)
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The fact that @« < ¢(a, H) means that PSSy (a) is not represented by
any chains of filtration level at most «, so that PSSy (a) ¢ im(i,). Thus

7o (PSSy(a)) # 0.

Claim 2.4.6. Fixa representative a of PSS (a). Thereisb € QH (M, Az, univ)
such that

V(A(PSSy(a), PSS;(b))) <0
and
A(b) = —A(a) < —«

where b is a representatives of PSS (D) respectively.

Proof. Consider the dualvectorspace CF(H, J; Az, univ)* of CF(H, J; Az, univ)-
Let{&, -, &, M, sMK.C1, -+, Ci } be asingular value decomposition
for the complex CF'(H, J; Az, univ). We recall from [UZ16, Proposition 2.20]

thatthereisan A*-orthogonal dual basis {&5, - - - , &5, 75, -+, i, Gy -+ L G}
of CF(Ha J; AZp,univ)* such that "4* (5:) = _A(gl)’ A* (77:) = _A(Th)’
and A*((;) = —A((), where

A7) = sup{—A(0) = v(f*(0)) | 0# 0 € CF(H, J; Az, univ) }

If f =3 a;[z,u;) isan element in CF(H, J; Az, univ), then we denote
by f the element Y a;[7;, 4;] in CF(H, J; Az, univ) and f* the dual element
of fin CF(H, J; Az, univ)*. Then

A(f) = max{Ag([z:, w]) — v(a;)}
= max{—Apg ([, w]) = v(a;)}
= max{—Ag([z;, w]) = v(f*([z:, w]))}
< AY(f7)
Next we check d(£;) = 0. Assume

d&) =Y ay&+ > b+ > i

Then aij - A(fj_’d Z)) - A(d(gj),éz) = A(O,él) = 0 Similarly, bij =
Cij = 0. Thus d(fz) =0
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Assume a = > a;§;. Then A(a) = max{A(&;) — v(a;)} = A(&) —
v(ay) for some k. Define b := a,'&;. Then

A(a,b) = agay ' =1

We have IJ(A~(&, B)) = 0. Italso means that [l;] #0inHF(H, J; Az, univ)- In
addition, A(b) = A(&,) —v(a; ') < A(&) +v(an) = —A(&) +v(ar) =
—A(@). Thus we can take b := PSS ([b]) O

Leta = c¢(a, H) — €. Then

A(b) < —c(a, H) + ¢

Take ¢ — 0. Then

A(b) < —c(a, H)
We have

inf{c(b, ) | b € QH (M, Agumiv), V(A(PSSy (a), PSS (D)) < 0}

Next we show that
—c(a, H) < inf{c(b, H) | b € QH(M, Ax univ), V(A(PSSg(a), PSS (b)) < 0}.

Suppose thatae > c(a, H). Thus there mustbesomecyclec € CF(¢, Az, yniv) <
representing the class PSS (a). Ifb € QH (M, Az, univ) is an arbitrary class
satisfying (A (PSSy (a), PSSz (b))) < 0, then by the definition of A it must
hold thatevery representation d € C'F(H, Az, i) of the class PSS ;7 (b) satis-
fiesv(A(c, d)) < 0. By Lemmal.4.3 this can only be true if no representation
d of b belongs to CF(H, Az, univ) ", which amounts to the statement that
c(b, H) > —a. Note that bwas an arbitrary class with (A (PSS (a), PSS (b)) <

0, while o was an arbitrary number exceeding c(a, ¢), and so we obtain that
—c(a, H) < inf{c(b, H) | b € QH (M, Ag univ), v(A(PSSg(a), PSS (b)) < 0}.

]
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On the other hand, we can define a pairing on the even quantum homology

QHeU (M> AZP,univ)-

g : QHEU(M7 AZ;,,um'v) X QHev(M7 AZ;,,univ) — AZp,um'v

2n 2n
(Z a;ho;, ijh2j) = D aib(hi 0 hyy)
i=0 Jj=0

i+j=n

where ag, b’L S AZp,um'v and h?i € HQi(M, Zp) fori = 0, e LN
The following result is from [EPo3, Section 2.6.8] and [Ush23, Proposition
7.7]

Lemma 2.4.7. Leta,b € QH.,(M, Az, univ). Then
A(PSS(a), PSSz (b)) = Ala, b) (2.4.1)

Asin [EPo3, Section 2..3], we have the following lemma.

Lemmaz2.4.8. A(a,b) = A(axb, [M)). In particular, A(PSSg (a), PSSg (b)) =
A(PSSy(a*b), PSSz ([M]))

Definition 2.4.9. Suppose QH., (M, K)issemisimpleand £ = {ey,-- - , e, }
are idempotents. Then define

”yej(H, K) = c(ej, H, K) + c(ej,ﬁ, K),

Ve; (¢, K) = ¢iln:f¢{%j (H,K)}
and

VE(¢7 K) = nax {"Y@j <¢7 K)}

1<i<m
Lemma 2.4.10 ([AL23], Lemma 4.6). For 0 € QH.(M, Az, univ),
(0,0, Az, univ) >0
i v(A(PSSy(0), PSSz (IM]))) < 0.

Proof. Suppose that @ = > 0;h; with 0; € Ay univ and h; € H. (M, 7Z,).
Then

[(0) = max{—v(6;)} = —min{v(6;)}.
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Observe that A(PSSy(0), PSS ([M])) = 0; with h; = [pt]. Then
v(A(PSSy(0), PSSy ([M]))) = v(6;) = —1(0) = —c(0,0, Az, univ)-
Since v(A(PSSg (), PSS ([M]))) < 0, then (0,0, Az, univ) > 0. O

Lemma 2.4.11 ([AL23), Lemma 4.7). For0 € QH.,(M, Az, univ) and [€;], *
0 # 0, we have that

C(([éz]p * 0)_17 07 AZp,univ) + C([Ei]p * 97 07 AZp,univ) - 20([61']]3’ 07 AZp,um'U)‘
where the inversion is taken in the field [€;], * QH e, (M, Az, univ)-

Proof. Because [€;], ¥ QHey(M, Az, univ) = Az, univ> then there is 6 €
Az, univ such that €], * 0 = 0[€;] . Thus ([€;], * 0)~! = 5_1[@]73.
We obtain that

c(([Edp *0) 7,0, Az umiv) + c([Eilp * 0,0, Az, i)
= (67 Eilps 0, Az umin) + c(0[Eilp, 0, Bz umiv)

= c([Eilp, 0, Azyumiv) — v(07) + c([Eilp, 0, Az univ) — v/(6)
= 2¢([€i]p, 0, Az, univ)-

]
Proposition 2.4.12 ([AL23], Proposition 4.8). Forsufficientlylargep, let QHe,(M, Az, univ)
be semisimple, and E, = {[€1]p, - - - , [Em|p} be the idempotents such that
QHev(Ma AZp,univ) = @[éz]p * QHGU(M7 AZp,univ>
i=1

and [€], * QHeo(M, Az, univ) = Az, univ- Then there is a constant D inde-
pendent of p such that vg,(¢) < D foreach ¢ € Ham(M,w)

Proof. First by Proposition

C([éi]p’ H) + C([éi]pv H)
= c([&]p, H) —inf{c(b,H) | b € QH(M, Az, univ), V(A(PSSH(b), PSSg([€lp))) < 0}
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By Lemmal2.4.§]
C([éi]m H) + C([éi]m H)

— (@], H) — inf {c<b, o be QH(M, Az, i), }

v(A(PSSy([M]), PSSy([eil, b)) <0

be QH(M, AZp,um'v); }
v(A(PSSy([M]), PSSg([ei], * b)) <0

= sup { (e ) — olt, 1)

By the triangle inequality of spectral invariants we have

c([éilp, H) < c([&i]p * b, H) + c(([€i], + b)), 0)

c([élp, 0) + (b, H) + c(([e], + b) ™", 0)

IA A

where the inverse ([€;], * b) ! is taken in the field [¢;],, * Q H, (M, Az, univ)-
Since ¢([€;],,0) = I([€i],), then, by Proposition [2.4.1}

c([ey, H) — (b, H) < c(([ei]p )71, 0) + 6
. By Lemmal]z.4.10}

c([ei]p, H) — c(b, H) < e(([e], * )7, 0) + c([ei], * b,0) + &

By Lemmal2.4.11]
(e, H) — (b, H) < 26([e1,,0) + 8
- 2l([éz‘]p) +9
<30

]

The proof of the following proposition is the same as that of Proposition
12 in [She22].

Proposition 2.4.13 ([AL23], Proposition 4.9). Forsufficiently largep, let QH o,,(M, Az, univ)

be semisimple, and E, = {[€1]p, - - - , [Em|p} be the idempotents such that
QHev<M7 AZp,univ) - @[Ez]p * QHev(M7 AZP,univ)
i=1
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and [éz]p * QHEU(M7 AZp,univ) = AZp,univ‘ Then

|B<¢7 AZp,univ) - B<¢7 AZp,univ>| S VE,,@W_I» AZp,um'U> + d

Proof. Given that Q He,, (M, Ag univ) is semisimple, we have shown that Q He,, (M, Az, univ)
is semisimple and {[€;],, };~ are theidempotents generating Q) He,, (M, Az, univ)-

Forany a € QHc,(M, Az, univ), there is a morphism by taking product
with a

ax : HE.,(H, J; Az, univ) — HEuo(H, J; Az yniv)[l(a)]

Consider the composition property,

(ax) o (bx) : HF.o(H, J; Az univ) = HFeo(H, J; Mgy univ)[[(a) + 1(D)]
Define §(a,b) := I(a) + 1(b) — l(a * b). If §(a,b) > 0and a * b # 0, then

(ax) o (bx) = shg(ap) © ((a*b)x*)
Ifaxb=0,then
(ax) o (bx) = 0.

Consider the additive property,

(a+b)x: HE,,(H, J; Mgy univ) = HFeo(H, J; Az, yniv) [max{l(a), 1(b)}]
Define l(a, b) = max{l(a),l(b)}. If a + b # 0, then

Shi(a,b)-(a+b) © ((a + b)*) = shy(a,p)-1(a) © (@*) + Shu(ap)-1) © (%)
Ifa+b=0,then
(a+b)x =0.

Now we consider persistence modules without finiteness conditions. A
persistence module V over a field K is just a collection of functions ¢ — V}
from the poset category of R to the category of vector spaces over K.

Lemma 2.4.14. Thepersistence modules H F,,(H, J; Az, yniv) and @ im([€;]p%)
i=1

arel(E,)— interleaved where|(E,) = max {U([&]p)} In particular, the inter-
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leaving distance between HF,,(H, J; Az, univ) and @ im([€;]p%) i5s at most
i=1

[(Ep)
Proof. First we define a morphism

m

fi: HEW(H, J3 Rz, i) = @ im([@],%) [1(E,)]

i=1

as following. Consider the morphism

i=1
e ([elpxm, - [Emlp * 2)
Take fE = Shl(Ep) o f~E
Then we define a morphism
ge : @ im([E],%) = HFoo(H, J; Az unin) [1(E)].
i=1
as following. Let
LE : @im([éi]p*) — @HFSU(H, J5 Az univ) [L([E] )]
i=1 i=1

be the inclusion. Then define a shift map

ShE : @ HFev(Ha Ja AZp,univ)[l([Ei]p)] — @ HFev(Ha Ja AZp,univ)[l(Ep>]
i=1 =1

(at, -+ am) = (shie,) -1, (@1), s Shis,)—i(Eml,) (@m))

and a sum map

Z:E‘ : @ HFev(H7 ']7 AZp,um'v)[l(Ep)] — HFev<H7 J7 AZp,univ)[l<Ep)]
=1

m
(Glf" aam) — Zai
i=1

Take gg = Ypo shgoLg.
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Now we can compute
gell(Ep)] o fu(r) = gull(Ep)] (shue,) ([Edp * ), -+ shu,) ([Emlp * 7))
= Z shigs,) -tz © shis,) (Blp * )

= Shzl(Ep> ([M] )

= Shgl(Ep)(.iL’).

Note thatd([eq,, [ei],) = U([ei]p) and then ([e;]px) o (el ) = shuey,)0
([ilp*)

fell(Ep)] o gr ([E1]p * ai, - -+, [Emlp * am)
=fell(E})] (Z shug,) -1, ([Eilp ai))

e (Z[ez] * shy(,)—i(ei],) (ai)>

—Shz(Ep ( 61

||M3

ez % shugs,) iz, (@), [Bmlp ¥ Y @], * ShZ(EpH([ei]p)(@i))

P i=1
:Shl(Ep) ([ €1lp é ] Shl(Ep l([el]p)(CLl) T [ém]P * [Em} * Shl(Ep)_l([Em]p)(am))
:Shl(Ep (Shl [61 0 1 p * Shl (Ep)—I([e1]p )(Gl), T Shl( [Emlp) [5m]p * Shl(Ep)—l([Em]p)(am))
:Shl(Ep (Shl 1 P al)a e 78hl(Ep)([ m]p * am))
:Shm(Ep) ([e l]p * Ay, [ém]p * )

O]

In great generality, one can define the boundary depth 5(V) of the persis-
tence module V as the infimum of all A € (0, o) with the property that, for
all s € R,

ker (vs — lim Vt) — ker (V, = Vi)

Note the set on the left hand side is the same as the ascending union Uye[s o0y ker (Vi — V;).
Depending on V, there might be no A with this property, in which case 5(V) =

oo. However, asin [UZ16], the Floer homology persistence module H F'(H, J; W)
can easily be checked to have 3 ((b}{, W) equal to the length of the longest
finite-length bar in the barcode (or zero if there are no finite-length bars). Note
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also that, for the finite collection of persistence modules {im([e;],*)},

B(@;im([€],*)) = max B(im([e;],*)).

J

One has the following stability result:

Lemma 2.4.15. The boundary depth B(®;im([€;],%)) is finite and

1B(Sh, Az, univ) — B(@jm([E]x))| < 21(E,)
Proof. Let B > B(¢};, Az, univ) be arbitrary. Let

7 € ker ((@sim([eily) < — lim(@jim([e], ) <) |
say  — 0 under
(@jim([E]y%))=* — (@jim([ei]y*)) =

it suffices to show that in fact z +— 0 under

(@57l > (@i (o) 250

Since ¢p is a morphism of persistence modules, it follows that gg(x) +— 0

under

HF(H, J; Az unio) ) — HF(H, J; Mg, i) T EP)
From the definition of 3(¢};, Az, univ) e see that gg(x) — 0 under

HF(H, J; Az, unio) ') — HF(H, J; Mg, i),
But then fg o gg(z) — 0 under

(@5im((E],) ) (@i [e]w)) <257
Sosince fi 0 gp(z) is the image of « under
(@5im([&i],%))=" — (@jim([ei]yx)) <),

it follows that indeed x — 0 under

(@jim([e],#)) < = (@5im((e],0) <20
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]

Thus B(¢};, Az, univ) < max 3 (im([&;],*)) + [(E,). Next, we need to
bound /3 (im([€;] %))

Let F'and G be Hamiltonians such that ¢}. = ¢ and ¢, = 1. In the fol-
lowing discussion, /" and G are not necessarily nondegenerate. Choose € > 0.
Let F; and G be perturbations of F and G respectively such that the following
conditions hold.

. F.,G.,GH#F.and F.#G, are nondegenerate.

2. || Fe=F llon || Ge =G oo || Ge#tFe — G#F || and || F#tGe —
F#G ||c2 are far less than €.

Forey < € letcg y7 € CF o (Ge#F, Az, univ) be the an element repre-
senting PSS 7. ([€i]p) with

AGG#E(CGE#E) < (€], G #F., Azp,um‘u) + €o.

Letey, 45, € Clan(Fe 4G, Az, univ) bean elementrepresenting PSSy, 45 ([€i],)
with

AFE#@(CFE#@) < c([Eilp, F#G., AZp,univ) + €o

When F (resp. () is degenerate, CF(F, Az, univ) (resp. CF (G, Az, univ))
is defined as the colimit of the chain complex of the perturbed Hamiltonian

and almost complex structure. Then there are continuation maps
Cr: CF(F, W}“‘ — CF(F,, J; m)<a+g+(Fe—F)
and
Cq, : CF(G,, J; m)@ — CF(G, m)«w&(c—ce)'
By taking product with ¢ 47 we can geta chain map

CG&#FE : CF(FG’ J7 AZp,univ) - CF(G67 Ja AZp,um'v>

T CouF, ¥ T

Then define CG#? = CGeOCGE#FEOCF : CF(F, AZp,univ> — CF(G, AZp,umv)-
Similarly, one can define Cp 5 : CF (G, Az, univ) = CF(F, Az, univ)-
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We have

Ac(Coyr(®) = Ac(cgyr, * Cr(z)) + E4(G = Ge)

< Ag, 7. (cou7.) T Ar(Cr(z)) + E4(G - Go)

< c([&]ps GAH#E e, Ay univ) + €0 + Ap. (Cr(2)) + E4(G = G.)
< c([Eilp, GHF, Az, univ) + E+ (GHF . — GHF) + ¢

+ Ap(z2)+ E(F.— F)+&E.(G - G,)

= c([&]p, G#F, Az, univ) + Ar(z) + €

Similarly, one can have AF(C’F#G(y)) < c([€i]p, F#@, Azp,umv) +Aq(y)+
€1. Thus there are induced morphisms

[CG’#f] : HFev(Fa AZp,univ) — HFev(Ga AZp,univ) [C([éi]pa G#F, AZp,univ) + 61]

[Cp#é] . HFev(G> AZp,uniU) — HFev<F> AZp,univ) [C([éi]py F#@, AZp,um'v) + 61]

Denote by [€;],0 € CF(f, Az, univ) a chain in the Morse complex com-
puting QH (M, Az, univ) representing [€;], with A([€;],0) = I([€:],).

Lemma 2.4.36. There exist chain homotopies

Rp : CF(F, Az, univ) = CF(F, Agy univ)[1]
and

Rg : CF(G, Agyuniv) = CF (G, Agyunin)[1]
of degree 1, such that

Crug © Cour = (*[€ilpo) + dRp — Rpd
Cour © Cryg = (%[€ilpo) + dRe — Rad
AF(RF(I’)) S c([éi]lﬂ F#a7 AZp,univ) + c([éi]pa G#F7 AZp7uniu) + €9 + AF(.I')

AG(Rg(ZE)) S C([éi]py F#E, AZp,univ) + C([éi]py G#Fa AZp,univ) + €2 + Ag<l')

Joreachx € CF(F, Az, univ), ¥ € CF(G, Az, univ)-
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Proof. Let h be a small Morse function. Then there are two pair-of-pants prod-
ucts.

*/ . CF(Fe#éa J7 AZp,um'v) ® OF(GE#Ea Ja AZp,univ) — CF(h, Ja AZp,univ)

*'! : OF<ha Ja AZp,univ) ® CF(Fa Ja AZp,univ> — CF(F7 J7 AZp,univ)

By the associativity of pair of pants product, ther is a chain homotopy R7,, ,
such that

bx(ax-)= (b a)+" (-) +dRp,, + Ry .d
and
Ap(REy4(7) < Agyr(a) + Ap e (b) + &2 + Ap(z)

Consider the PSS isomorphism W : CM (f) — CF(h)and V¥ : CF(h) —
CM(f). Itis a standard action estimate to show that

An(¥(2)) < An(z) + €
Moreover there exists a chain homotopy R, such that

VoW =1+dRy,+ Ryd
and

An(Bi(y)) < An(y) + €

foreachy € CF(h).

Finally, by gluing and homotopy of domain-dependent almost complex
structures, we see that U(a ' b) and W(z) *” (+) are homotopic to @ * b and
x % (-) respectively, with homotopies , ;, and R, that do notincrease the action
by more than €.

Now we preceed by noting first that by the compatibility of the pair-of-pants
product and the quantum product under the PSS isomorphism,

[CFE#Gi * Cce#ﬁ] = [&], * [€ilp, = [@i]p = [Eilpo
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Hence g = ¢ 4. * Cq, 47 — |€ilpo is a boundary in the Morse complex of
f. Moreover

A(g) S maX{V[Ei]p(G#Fa AZp,um'v) + €2, l([éz}p)}
= Vel (G#F7 AZp,univ) + €

since Yfg;),, (G#F, Az, univ) > U([El]p). However, since 5(CM(f)) = 0,
there exists an element 7 € C'F(f) with

A(TF) S V[Ei]p<G#F’ AZp,unifu> + €2

and g = cp g * Coum — [€ilpo = d(rp).
Finally, by the Leibnitz rule

(rpx): CF(F) — CF(F)[1]
gives a homotopy between (¢, 4 * ¢, 477) * (+) and [€],0 * (+). Thus

Ry = RllngFe#GivCGe#Fi ™ (Rh<CGe#K + CFe#Gi)) + ()
+R§(CG€#FT*'CFC#G*E) T Teg procraa: ¥ () + (rex)
gives the required homotopy. O
Then the following composition relations hold

3h€2*261 © [CF#é] [C([Ei]pv G#F, AZp,um'v) + 61] © [CG’#f]

- Shv[zi]p (G#F Az, univ)+e2—A([Eilp,0) ([Ei]p*)

3h€2*261 © [CG#f] [C([Ei]pv F#@, AZp,Um'v) + 61] © [CF#G]

- Shv[zi]p (G#F Az, univ)+e2—A([Eilp,0) ([Ei]p*)

In the first equation, the morphisms on both sides are from
HF(Fa AZp,univ)
to

HF(Fa AZp,um'v) [P)/[Ei}p (G#Fa AZp,uniU) + 62] .
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In the second equation, the morphisms on both sides are from

HF<G7 AZp,univ>

to
HF (G, Az unio) Ve, (GHE, Az univ) + €3]
Because [C, 7] and [C' 5] commute with [€;],%, then there are induced
maps
Cyr  In[Eily, F) = In([Eilyp, G)(c([€ilp, GHF, Az univ) + €1)
Vo Lm([Eilp, G) = Ln([Elp, F) (c([Eilp, FH#G, Az, univ) + €1)
where

Im([éi]m F) = im([éi]p* : HF(F7 AZp,um'v> - HF(Fv AZp,univ)[l([éi]p)])

and

Im([éi]pv G) = im([éi]p* cHF(G, AZp,univ> - HF(Gv AZp,univ)[Z([éi]p)D
Then the following relations hold.

/ — T A /
Shey—2e, © Ppygle([Cilp, GHE, Az univ) + €] 0 Pyp = shy (GuF Rey i) +er

Sh62_2€1 © q)/G#F[C([éZ]p’ F#67 AZP’“‘”M)) + 61] © q)/F#é - ShV[Ei]p(G#vaZp,univ)'i'Q

Then define

®G#F - Shéc([Ei]paF#éaAZp,univ)_%C([Ei]PaG#FaAZp,univ)'i'%62_61

Py = SN (el GHF oy umin)— e([Bilp FA4C By umin)+ hea—c1

The following relations hold

1 - — 1
QF#é[iv[Ez]p<G#F7 AZp,'U,TLi’U) + 562] © ®G#f = Sh’yr ]p(G#F,AZp,univ)-f—EQ

€4
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S 1
qDG#f[éW[a]p(G#F s Az, univ) + 562] o Ppun = Shy[@]p(G#f,AZp,um)ﬁQ

Thus the persistence modules 1,,,([€;],, F') and I,,,([€;],, G) are

1 S 1
(57[61.117(67#]7, Az, univ) + 562)-interleaved. By Lemmal.4.15, 5( 1, ([€],), F')

and B(I,,([&;],), G) are finite and

1B(k, Az, univ) — max B(In([Ely, F))| < 20(E})
18(6, Az, univ) — max B(In([€]p, G))| < 2U(E})

| max B(Ln([ei], G)) — max B(In([€ilp, F))| < Ve, (GHEF, Azyunmin) + €2
]

By Proposition and Proposition we have the following theo-

rem.

Theorem 2.4.r7 ([AL23], Theorem 4.10). Suppose that QH.,,(M, Ak yniv)
is semisimple. Then the boundary depth of each ) € Ham(M,w) satisfies
B, Az, univ) < D+ 0, where D + 0 is independent of p.

Since 3(1), Az, univ) = B(¥, Az, univ), we have the following corollary.

Corollary 2.4.18 ([AL23|, Theorem 4.11). Suppose that QH.,(M, Ak yniv)
is semisimple. Then the boundary depth of each v € Ham(M,w) satisfies
B, Az, univ) < D + 0, where D + 0 is independent of p.

2.5 Z,-equivariant Floer Homology

2.5.1 The Z,-equivariant Floer Homology of C'F'(¢, A%p)®p

The definition of the Z,-equivariant Floer homology of C'F'(¢, A%p)®p is the
same with that in [She22]. Let K = Z,[u™", u]]. Then A} is a certain comple-
tion of A%p ®z, K. Define a Zy-action on

CF(8:0%,)7 92y AL(0),
where deg(u) = 2, deg(f) = 1 and 6% = 0, by the A% (6)-linear extension of

(T ® - @ xp 1) = (_1)|93p—1|(|x0|+'“+\1p—2|)$p_1 ®Tg- @ Tp o
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forzg® - -x,01 € CF(9, AOZP)@)p . Define the differential by the A{-linear

extension of

dTate(x ® 1) = d(p)) + 9(1 _ 7_)$

drate(x @ 0) = 0dP z + w(l4+7+-+ Tp—l)x

where d®) is the differential on C'F'(¢; A3,)®? induced by the Floer differential
on C'F(¢; Aj, ). We denote the induced homology by H (Z,, C'F(¢; A )®P).

2.5.2 The Z,-equivariant Floer Homology of C'F'(¢”, A%p)

We follow the ideas of Sugimoto in [Sug21] to define the Z,-equivariant Floer
homology of C'F(¢?, A%p).

Let f be a Z,-invariant Morse function on S°°, where the Z,-action on

S is given by the scalar multiplication by the p-th root of unity. Then for each
degree k, k € N, there are p critical points denoted by Z;*, m € {0,1,--- ,p—
1}. Then one can identify the Morse chain complex with K[Z,]|[u] (¢). The
critical points contained in 5%~ are { Z*} with j € {0,1,--- , 2k + 1} and
m € {0,1,---,p — 1}. Consider the following perturbed Cauchy-Riemann
equation

a]u + XHt,w(s) (U)O’l =0

Osw+ Vf(w)=0

with limit conditions

{limﬁ_oo(U(s, t),w(s)) = (¥ (t +m), Z")
im0 (u(s, t), w(s)) = (z7(t), Z3)

where avis 0 or 1 and 2™ are fixed points of ¢”. The almost complex structure
in the equation are parametrized by S°° and satisfies the conditions given in
Section 6.1 of [SZ21]. One can define a linear map

d;"  CF(¢7,Az,) — CF(¢",Az,)
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by counting the solutions to the above perturbed Cauchy-Riemann equation
fori €{0,1,--- ,2k+1}andm € {0,1,--- ,p — 1}. Take
p—1
di, = dim.

m=0

We have the so-called Xj,-module (C'F (¢, A%p)®/\%p A {di 2R in [Sugai).
By [Sug2r, Lemma s.5 ], i.e. [Fuk+10, Lemma 7.2.184], we can have an X -
module (CF(¢?, A ) @ A9 AY {d }2°,). Then, we can define the differen-
tial on CF(¢?, Ay ) @0 AR as follows:

dz,(z® 1) =d)(z) ® 1 + udg(z) ® 1 + u’dy(z) @ 1+ - -
+ dp(7) @ 0 + udy(z) @ 0 + u’d)(z) ® 0 + - - -

dz,(x ® 0) =d;(z) @ 0 + ud;(v) ® 0 + v’d; () @O + - - -
+udi(z) ® 1+ uidi(z) @ 1+ u’dS(x) @ 1+ - - -

We denote the homology by H(Z,,, CF(¢*; AOZP)).

2.5.3 The Z,-equivariant Pair of Pants Product

Denote by S, the (p 4+ 1)-punctured sphere. Let b : S, — R x S* be the
branched cover of R x St at (0,0) € R x S! of ramification index p.

e [1,00) xS = S, ie{0,1,---,p—1}.
and
¢ i (—00,—1]xS' =8, ie{0,1,---,p—1}.

are the trivialization of cylindrical ends as in [SZz21].

Given a fixed point 2~ of ¢” and fixed points {z§,z{,--- , 2, ,} of ¢,

consider the following equation

(du—Y,)oj=J.po(du—Y,)
Osw+ Vf(w)=0
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with limit conditions

{hmH so(uleq (1)), w(s)) = (x*(t), Z3)
lim oo (u(ef, (5,1)), w(s)) = (2,(t), Z7")

where vis O or land {Z™} with j € {0, 1,--- ,2k 4 1} are critical points in
S2k=1 The almost complex structure .J and Hamiltonian perturbation Y in
the equation satisfy the conditions in [SZ21, Section 8.1].

Then one can define a linear map

Py CF (¢, A7,)%" — CF(¢",Ay,)
by counting the solutions to the above perturbed Cauchy-Riemann equation
fori € {0,1,--- ,2k+1}andm € {0,1,--- ,p — 1}. Take
p—1
PL=> P
m=0

We have the so-called X}-homomorphism { P }2%{1 in [Sug2i]. Then, we can
getthean X, -homomorphism by [Sug21, Lemmas.s]. Finally, define the equiv-
ariant pair of pants product as following.

Plz®1)=P)(2)®1+uP(z)®1+u*PH(z) @1 +---
+ Py (2) @ 0+ uPy(x) @ 0+ u?Py(z) @60 + - - -

Plz®0)=Pl(z)®0 +uP}(z)® 0+ u*P)(x) @60 + -
+uPi(z) ® 1 +u*Plz) @1 +u*Pl(r) @14 ---
One can define the equivariant pair of pants coproduct in the same way and

then the equivariant pair of pants product is an isomorphism.

2.5.4 Total Bar Length

Once the equivariant Floer homology and equivariant pair of pants product are

defined, we can prove the following theorem in the same way as in [She22].

Theorem 2.5.1 ([AL23], Theorem s.1). Let ¢ € Ham(M,w) be a Hamilto-
nian diffeomorphism of a closed semipositive symplectic manifold (M, w). Sup-
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pose that fix(¢P) is finite. Then

p- Btot(¢7 Zp) < ﬁtot<¢p7Zp)'

First note that H F'(¢, AOZP>®A% A isisomorphic to H (Z,, CF (¢, A%p))
since the Z,-action on C'F'(¢, A%p) is trivial. Secondly, one can get the relation
between bar lengths of H(Z,, CF (¢, A%p)) and H(Z,,CF(¢, A%p)@’p) by
quasi-Frobenius isomorphism £ — = ® --- ® x on the chain level. Then
equivariant pair of pants product gives the relation between bar lengths of
H(Z,,CF(¢, A%p)®p) and H(Z,, CF(¢?, A%p)). Finally, using homologi-
cal perturbation and cone map, one can get the relation of bar lengths between
H(Z,,CF(¢", AOZP)) and HF (¢, A%p) ®ay, AY.. In addition, due to the
local equivariant Floer homology argument in [She22], it is not necessary to
assume that ¢ is nondegenerate.

2.6 Degeneracy

2.6.x  Definition of local Floer homology

Let 2 be an isolated fixed point of a Hamiltonian diffeomorphism ¢ and ¢’ be
a Hamiltonian isotopy with ¢' = ¢. Then z(t) = ¢'(x) is an 1-periodic orbit.
Let  : S — ST x M be the graph of z.

Take U to be a small enough neighborhood of # and U = p;(U) where
par 2 ST x M — M is the projection. When x is a degenerate fixed point, we
can take a sufficiently small non-degenerate perturbation ¢, of ¢ with support
in U such that the Floer trajectories connecting the 1-periodic orbits of ¢, in
U are contained in U. Thus every broken trajectory is also contained in U. Let
CF(¢1, ) be the vector space generated by the 1-periodic orbits of ¢ in U
over K. Then we can define the Floer homology in U, which is independent of
the choice of the perturbation and of the almost complex structure. We call this
Floer homology in U the local Floer homology at  and denote by H F'°¢(¢), z).

By the definition of local Floer homology, one can easily see that

HF"(¢,2) 2K

generated by .
Let [z, u] and [z, v] be two different capped periodic orbits. Then

CZ([z,u]) = CZ(Jx,v]) mod 2.
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Thus there is a well-defined Z/2-grading on H F'°(¢, ). When z is non-

degenerate, H F'°°(¢, ) @k Ak univ contributes a copy of Ak univ in C Fi (¢, Ak univ)-
For any two capped periodic orbits [, u] and [y, v] of ¢, there exists a cross-

ing energy 2¢y > 0 such that all Floer trajectories, or product structures with

[z, u] and [y, v] among their asymptotes carry energy at least 2¢.

Definition 2.6.1. An iteration ¢" of ¢ is admissible at a fixed point x of ¢ if
AF £ 1 for all eigenvalues A # 1 of d¢,.

For example, when none of A # 1 are roots of unity, @" is admissible for
k > 0. Otherwise, ¢" is admissible for sufficiently large pand n > 0
By Theorem 1.1 and Remark 1.2 in [GGro], we have the following theorem.

Theorem 2.6.2. Let ¢" be an admissible iteration of ¢ at an isolated 1-periodic
orbit x of ¢. Then the k-iteration x* of x is an isolated 1-periodic orbits of ¢ and
HFloc((blc’ l‘k) o HFIOC(¢, HZ’)

Remark 2.6.3. Let ¢*' and ¢*? be admissible iterations of ¢ at an isolated 1-
periodic orbit x of ¢, then H F'°¢(¢™  z*1) 2 H Flo¢(¢k2 x*2) by Theorem

0
2.6.2 The construction of a canonical F'rac(Az ni,) -complex

The contents in this section are from Section 3.4.7 in [She22]]

Let ¢ be a Hamiltonian diffeomorphism. For each isolated 1-periodic orbit
x of ¢, there is a neighborhood U, of z. Let ¢; be a sufficiently small non-
degenerate perturbation of ¢. Because there are finitely many isolated 1— peri-

odic orbits, one can choose ¢; = ¢ outside U U,.
xEFiz(¢p)

Theorem 2.6.4 ([AL23]), Theorem 2.20). There is a homotopically canonical

A univ-complex CF (¢, Ay s,) with the following properties.
(1) As a Ny 5-module,
( K umv g @ HFZOC A](I)§ uUniv*

zeFiz ()

(2) Its differential is defined over A}

K,univ*

(3) The bomology of
F(¢7 AK,univ) CF(¢ A]K umv) A%,univ AK,U"W

is isomorphic to HF (1, Ak univ)-
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(4) The bar length spectrum associated to C'F (¢, Ak yniv ), denoted by

ﬂ{(gb: AK,um'U) S et S 6}((¢,AK,unw)<¢7 AK,univ)a

satisfies 31 (P, Ag univ) > €0 and is 20-close to the part

6K’+1(¢17 AK,univ) S e S BK’—i-K((b,AK,umU)(gbl; AK,um'U)

of the bar length spectrum of ¢1 above ey where
B (1, Ak univ) < 200 < €9

and 0y <K € is a small parameter converging to 0 as ¢y converges to ¢ in

the C*-topology.

(5) The ﬂj/ (¢7 AK,univ)_fO}’l S ] S K<¢7 AK,um'v) havea ll’ml’l‘ﬁj(ﬁb, AK,univ)

as the Hamiltonian perturbation goes to zero in the C*-topology.

Proof. We start with C'F(¢1, Ak ;). The differential dy, can be written as

K,univ
d¢1 = d¢1,lOC + T D¢1

where dy, o is the direct sum of the differentials of the local Floer complexes

CF (¢, 1) @K A over all 1-periodic orbits of ¢. By crossing energy,

K,univ

Dy, is defined over A

K,univ

Let [z, u| be a capped 1-periodic orbits of ¢. Then each 1-periodic orbits
of ¢y in U, can inherit a capping from [z, u]

Let H; be a Hamiltonian generating ¢;. Let 1 be an 1-periodic orbits of
¢1 with capping u; inheriting from some [z, u]. Then

AHI (xl) - AHI (dﬁbl,lOC(xl)) < 50

for some 0y < €y where

A, (1) = /01 Hy(t, 0 (8))dt — /D wiw.

In fact, we can make the perturbation sufhiciently small such that

0
[An(2) = A (1) < 5

and §y < € where z; is any 1-periodic orbits of ¢; in U,.
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As in [UZ16], there is a singular value decomposition for the complex
(CF (01, AL univ)s oy joc),
denoted by
(&1, €8,my Mk, Cly o5 CK)
with
oy joc(&) = 0, dyyioe(G) = TP

fori = 1,...,B,7 = 1,..., K. By the previous paragraph, one can see
J; < dp K gpforj=1,..., K.If wedenote

N - Z dimAK,univ CFIOC(¢17 .I') ®K AKzun“”

z€Fiz(p)

then
N —-B
K =
2
and
B= Y dimy,,  HF*(¢,7) ®x Aguniv-
z€ fiz ()
Let

X =span,o {&, ..., &6}

K,univ

be the free part of the homology of (CF(¢1, A% ,niv)s Aoy toc)- Let

K,univ
7 CF (¢, AY i) — X

K,univ

be the projection and

L: X = CF(o1,AY iv)

K,univ

be the inclusion. Define

@ : OF(¢17 AK,univ) — CF(¢17AK,univ)
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to be the linear map such that

and
O(¢) =0

fori=1,...,B,j=1,..., K.
Now define a differential for X by the basic perturbation lemma in [Maroo].

Lemma 2.6.5. Given chain complexes (M, dyy), (N, dn), chain maps

F (M,dM) — (N,d]v),

G (N,d]v) — (M,dM)

and a chain homotopy

H:M—M
satisfying
(1) Fdy = dyF
(z) Gdy = dyG

(4) FG =idy
(s) HH =0
(6) HG =0
(7) GF =0

d;\/[ is a perturbation of dyy on M. Then there are perturbations dNN, F.G
and H of dn, F, G and H that satisfy

(1) Fdy = dnF
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(2) Gdy = dyG
() GE —idy = dyH + Hdy,
(4) FG=idy

The perturbation (dy, F', G, H) is given by the following explicit formulas.

dy = dy + F(9y + Oy HOwy + On HonHowg + Oy HOy HOy HOyy + .. )G

F=F+F(Oy+ 0yHOy + 0y HOyHOy + Oy HOyHOWHOy + .. )H

G =G+ H(Oy + OnHOn + Oy HONHOy + Oy HOyHOy HOy + ... )G

H = H+ H(Oy + O HOn + Oy HOy HOy + Oy HON HONHOy + ..V H

where Oy = d;w — dyr.

Now we apply the lemma to
(CF(¢17 AK,univ); dd)l,loc)
with perturbation

(CF(¢1> AK,umv)7 d¢1 = d¢>1,loc + T€0D¢>1>7

(X ®A0

K,univ

AK,uniw 0)7

T CF(¢17AK,univ) —+ X ®A0

K,univ

AK,unim

L X ®AHO< univ AK,uniU — CF(¢17 AK,univ)
and
O: CF(¢1a AK,um’v) — CF(¢1> AK,univ)-

Then we get a differential dy on X where

dy = m(TDy, + T?**Dy, 0Dy, + T*°Dy, 0Dy, ODy, + ...
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is the perturbation of 0. Since §; < dy < €, then dy, 7, 7and T%@ are defined
over AR ,.;, where T, 7 and © are perturbations of , + and © respectively.

Take CF (¢, AR s) to be X and its differential to be dy. The conditions
(1) and (2) in Theorem are satisfied.

Since O is a chain homotopy between C'F(¢1, Ak univ) and X ® AL i
AK univ> the condition (3) in Theoremis satisfied.

Because

dy =T (m(Dy, + T®Dy,ODy, +T** Dy ODy ODy, + ...)1)

and
T(Dy, + TDy,ODy, +T** Dy, ©Dys, 0Dy, + ... )t
is defined over Ay ., then the barlength 3/(¢, Ak univ) of (CF (¢, Ak univ ), des)

is always greater than .
Since

and

%0 — T%depg, 0y = dp, TO + T%Od,,

% univ
then
ol = id
and
L (T%7), = (T%id),

on the homology group. Thus H (X, dy) is isomorphic to the direct sum of the
free partand torsion parts with torsion greater than €y of H (C'F (¢, A%umv) ,dg,)-
Onecanalsosee CF(¢, Ak univ) and CF (91, Ak yniv) are %O-quasiequivalence.
Then by Corollary 8.8 in [UZ16],

185(0, Ak univ) — Brr45 (01, Ak univ)| < 0 < 200

fOI‘j = 17 <o 7K(¢a AK,univ)'
Note that S+ j(¢1, Ak univ) converges as ¢ converges to ¢ and the limit
only depends on ¢. Then 6; (¢, AK univ) converges and the limit only depends
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on ¢ since

|B; (¢, AK,univ) - /BK’+j(¢17 AK,um'v)| < 260

Denote the limit by 5;(¢, Ak univ) for j = 1,..., K(¢, Ak univ). We get
condition (5) in Theorem [

2.7 Proof of Theorem A

First we consider the case where K has characteristic 0 and the Hamiltonian
diffeomorphism ¢ and all of its iterates are nondegenerate. By the inequality

D 6tot(¢7 Zp) S ﬁtot((bpa Zp)

and the simple observation that

5t0t(w7 K) < K(wa K) ' ﬁ<w7 K)

for any Hamiltonian diffeomorphism 1) and base field K, we have

D 5tot<¢7 Zp) S Btot((bpa Zp) S K((bp, Zp) : ﬁ((bp’ Zp)

We note that for sufficiently large primes p we have by [She22, Lemma 16]
the following equalities N (¢, Q) = N (¢, Z,),dimg H,(M; Q) = dimg, H.(M,F,),
and (¢, Q) = S(¢,F,) for any Hamiltonian diffeomorphism ¢. If K has
characteristic 0, it is a field extension of Q, which by [She22, section 4.4.4]
implies that N(¢, Q) = N(¢,K), dimg H.(M;Q) = dimg(M;K), and

B¢, Q) = B(¢,K).
The assumption that N (¢, K) > dimg H,(M;K) implies that the total

bar length SB;,1(¢, Z,,) is positive for a sufficiently large prime p. Furthermore,
the inequality

5(¢ka Zp) S C

yields

p- ﬁtot(QSv Zp) <C- K(¢p7 ZP)
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which means that K (¢, K) grows at least linearly with respect to p. We now
observe that in the nondegenerate setting the equation

N(¢,K) = dimg H,(M;K) + 2K (6, K)
yields
Fix(¢”) = dimg H.(M;K) + 2K (¢7, K)

which implies that ¢ must have infinitely many contractible periodic orbits.
In general, when the Hamiltonian diffeomorphism ¢ is degenerate, we can
use the local equivariant Floer homology argument [She22, Section 7.4]. Fur-
thermore, by the canonical complex whose properties are listed in Theorem
the upper bound for the boundary depth, which is also independent of
p, continues to hold. Therefore, we can use the same argument as in the nonde-
generate case to obtain the linear growth of K (¢, K) and, thus, of N (¢, K).
To conclude the argument, we assume that p is large enough to guarantee ¢” is

admissible iteration in the sense of Deﬁnition it then follows by Theorem
that

HF" (", x) = HF'"(¢", x)

forall z € Fix(¢P*) for any two primes ps > p; > p. In particular, there must
be a new simple p'-periodic point for each prime p’ > p. In fact, if Fix(¢?*) =
Fix(¢"?) for po > p1 > p, then N (¢, K) = N(¢?, K) contradicting the
linear growth of N (¢, K) for p’ > p. A similar argument works when K has
characteristic p the details of which can be found in [She22} Section 8].
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CHAPTER 3

ONLAGRANGIAN TORIIN

S2 % 52

3.1 Proof of Theorem B

J. Oakley and M. Usher gave an explicit expression of the symplectomorphism
from F(O) to (52, %wstd) X (52, %wstd) in [OU16, Proof of Proposition 2.1].
The image of L(, y) under this symplectomorphism, still denoted by L(z, y),

is
, ol 1 1
L(z,y) =13 (v,w) € S*x S ‘§|v+w|~l—§(v+w)-el:x,1—§|v+w|:y
={(v,w) € xS |v+w =2(x+y—1),v-w=21-y)? -1}

where (e1, 2, €3) is an orthonormal basis for R?. Then we change the coordi-
nates by

p=z+y—1
qg=1-y

Under the coordinates (p, ¢), the moment polytope P, becomes
{(pg) eR*| —g<p<qq<1}
and we still denote it by P,. The Lagrangian torus L(z, y) can be written as

Li(p.q) = {(v,w) € S® x S | vy + wy =2p,v-w =2¢" — 1}
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Similar to [OU16} Proof of Proposition 2.4], we can prove the following
result.

Proposition 3.r.1 ([Lou24], Proposition 2.1). For (p,q) € Int(Ps) the La-
grangian torus L1 (p, q) is the orbit of an embedded curve T'y in S* X S? under
the St-action (Ry, Ry), where

1 0 0
R, = |0 cos(t) —sin(t)
0 sin(t) cos(t)

is the rotation around eq-axis by angle t.

Proof. Note that

(vo, wo) = ((Pa\/l—q VP _p>7<p7—\/1—q2,\/q2—p2>>

is a pointin L1 (p, ¢). Then we rotate vy and wy around the vector vy + wg by

angle 6 to get an embedded curve

p+ —w sin(6) e \/_

p— sin(6)
r, = V1= ¢q?cos(h) : s/l—q cos(@) 6 € [0, 27]
VE=7 = in )| [ V@ =+ B sin(0)

Now we consider the Hamiltonians
o 1 2 1 2
(Fl,F2)i S>§wstd X S7§Wstd —+R
v-w
|_> J— .
(an) ( (U+U}> €1, 4q )

Then L;(p, q) is the regular level set (£7, F2>_1 (—2p, 24
nian vector field X, of F} is

—1). The Hamilto-
q

Xro) = (

VXW WXV
29 ' 2q
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Take (v, w) € I'y. Then one can compute

_dn
do

where 71 is a parametrization of I'; such that

P+ —w sin(6) p— YL VI \/_ sin(0)
1(0) = V1 —q?cos(0) , —y/1 - q cos(@)
VE=7 = in) | (V@ + B sin(0)

Thus I'y is an integral curve of Xp,. Since { F1, 5} = 0, then Ly (p, q) is the
orbit of the curve I'; under the flow of F7, which gives the S Laction (Ry, Ry).
O

As in [OU16, Proof of Proposition 2.4] and [Gadr3, Lemma 2.4], the action
(R, R¢) and (R;, R_;) are conjugate in SO(3) x SO(3), i.e.

(Rt7Rt) = (Db DQ)_l (RIHR*IL) (D17 D2>

1 00 -1 0 0

whereD; = [0 1 0|andDy= | 0 —1 0f.Definel'y = (D, Dy) Ty
0 0 1 0 0 1

and Ly (p, q) to be the orbit of T’y under the S*-action (R;, R_;). Note that

(D1, D3) Li(p, q) = La(p, q)

and (D1, D5) is a Hamiltonian diffeomorphism. Thus we have the following
result.

Proposition 3.1.2 ([Lou24|, Proposition 2.2). L;(p, q) is Hamiltonian isotopic
to Lo (p, q)-

301 Caser: 0 < p? < ¢*

In this case neither of the components of I'y passes through —e;.
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As in [OU16, Proof of Proposition 2.4], we consider the symplectomor-

phism

ooy : (B(1),2dx A dy) — (52\{—61}, %wstd>

re — <1 — 212, 2rV1 — r2cos(6), 2rvV1 — r? sin(Q))
where B?(1) is the open ball in C with radius 1. Note that

Yoy (e" - re®) = Rpp_ i (re'?).
Let

Ty = (-1 x 1) (Ta).
Then Ly(p, q) is symplectomorphic to the Lagrangian torus Ly(p, q) in
(B*(1),2dz A dy) x (B*(1),2dz A dy),

that is the orbit of the curve 'y under the S'-action (e, e~*).
Now we describe Lo(p, q) in the way in [EP93]. Note that the S*-action
(e, e~) is the Hamiltonian flow of the function

H ((CQ, Zle VAN dél + ZdZQ A dzg) — R

(21, 22) = |21 = [22f?
Claim 3.1.3 ([Louz4], Claim 2.3). H(T3) = —p.
Proof. Consider
h:S*xS5* R
(01,3, ), (0,0, 05)) 5 — 3 (01— wn)
Then
ho(_yx9_q)=H.

Take (v, w) € I's. Then

U1:p+

2 2 42
VE-PVI=E o
q
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and

2_ 2. /1_ 2
=-p+ Wt VAR sin(0).

o q
Thus h(v, w) = —p, furthermore, H(T'y) = h(T'y) = —p O
Consider the function
F:C*=>C

(217 22) = 2129

LetI' = F(Iy). Itis easy to see that

Ly(p,q) € F7HT)NH ™ ({—p}).

By [EP93, Lemma 4.2 A], F~1(I") N H~'({—p})) is a Lagrangian torus since
I is an embedded curve in B?(1) and p # 0. Thus

Ly(p,q) = F~' () n H ' ({—p}).

Remark 3.1.4. Since the radius of B*(1) is 1, we can restrict F' to B*(1) X
B2(1) — B*(1).

Given a function K : (B%(1),2dz A dy) — R, one can show that, for
any (Zl, 22) S Bz(l) X B2(1),

oK 00K 0
Oy Odr  Ox Oy

AP (Xrarn, ) = 51+ |2 (-5 o

by direct computation. Since K o Fis invariant under the flow of X, we have
dH(Xfor) = 0. Thus we can restrict X o to H ' ({—p}). Then

1 0K 0 0K 0
dF (Xgo —1f_ = —\/p?24+14 2 - -
Define the vector field V7% on B?(1) by
1 oK 0 0K 0
Vp,K — 224l == = 4 22 2
(2) VI 12 ( Oy Ox * Oz 83/)
We have

dF(Xgor (21, 20)) = VPE(F (21, 2)), for (21, 20) € H*({—p}) (3.1.1)
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Lemma 3.5 ([Lou24], Lemma 2.5). Let ¢"P% be the flow of VP, Then
For(La(p,q)) = F~H (¢"PH(D)) N H™ ({-p}).
Proof. By equation we have
F o @igop(21,22) = 6" 0 F(21, 20)

for (z1,2) € H'({—p}). Take (21, %) € La(p,q). Then F(zy,2) € T
and F 0 ¢lgope(21,22) € ¢"PF(T). Thus dlope(21, 22) € F~ (¢"PK(T)).
Since H (¢op(21,22)) = H(z1,22), then @ieop(21,22) € H ' ({-p}).
Thus or(La(p. ) © F~ (695 (1) 1 H({—p}).

Since —p # 0, F~' (¢"PX(T")) N H~'({—p}) is a Lagrangian torus for
each ¢ by [EP93]. Then ¢’ is an embedding from torus L(p, q) to torus
F=1 (¢"»(I')) N H Y ({—p}). Thus

Okor(La(p,q) = F~ (¢"P5(D)) N H'({—p}).

]

Proposition 3.1.6 ([Lou24|, Proposition 2.6). There is a smooth function K
such that 9*P5 (L) = S(r) for some r where S*(r) = {re? e C|0< 0 <
27}

Proof. We consider the symplectic form

2 2
WP = ————dr A dg =

N N R

on B?(1). Since we assume z +y # 1,ie. p # 0 in Theorem B, w? is
defined at (0, 0). One can show that, for any K, the vector field V7 is the
Hamiltonian vector field of K under the symplectic form w”. Then we choose
rsuch thatI"and S (r) enclose the same w?-area. This implies that I and S* (7

dx N dy

are Hamiltonian isotopic in (B*(1), w?). Thus there is a Hamiltonian K such

that o175 (T) = St(r). O

Lemma 3.1.7 ([Lou24|, Lemma 2.7). The Lagrangian torus

(1 x ) (F7H(SY () N H ({=p})

is the toric fiber

Y

T<1+p— pP4+4r2 1 —p— p2+4r2>
2 2 ‘
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Proof. Let (6, C) with & = Itp—y/p +dr® \/2732"'47"2 and ¢ = 1—p—\/2p2+4r2

point in P, the moment polytope of the standard toric structure on S 2 x S

Then the toric fiber over (£, () is

be an interior

3 2¢
T, Q) = V1 —4€2cos(01) |, |\/1—4C%cos(y)| | € 5% x S*|0< 6,0, <2rm
V1 —4&%sin(6;) V1 — 4¢%sin(6y)

Then

(1 x 1) (T(,Q)) = { (\/ T _22%%) e C?

which is the fiber over (1 — 2¢, 1 — 2¢) under the moment map of C>.
One can easily check that

0 S 91,(92 S 27T}

(o1 X -1) " (T(E.Q) € FH(S (r)) N H ' ({=p))-

Let (21, 22) be a pointin F~1(S1(r)) N H=Y({—p}). Write z; as r;e'%
forj =1,2. Thenriry = rand ’l"% — 7“% = —p. We can solve

—p+ \/P? + 4r? 1—2¢
ne 2 V2

and
_\/P+\/p2+47‘2_ 1—-2¢
ro = 9 - T
Thus (21, 22) € (Y_1 X 1/1—1)_1 (T'(¢,Q)). -

Proposition 3.1.8 ([Lou24|, Proposition 2.8). The Lagrangian torus L1(x,y)
is Hamiltonian isotopic to a toric fiber of the standard toric structure on S 2 x 82,

Proof. By Lemma and Proposition L (p, q) is Hamiltonian isotopic
to F~H(SY(r)) N H*({—p}) by ¢%. where K is a Hamiltonian such that

I"and S*(r) are Hamiltonian isotopic in (B?(1),w?). Then

Ly(p,q) = (-1 X 1) (iz(p, Q)>
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is Hamiltonian isotopic to (¢)_1 x t_1) (F~1(S*(r)) N H~'({—p})) thatis
a toric fiber by Lemmaf3.1.7] By Proposition[3.1.2} we have Ly (2, y) = L1(p, q)

is Hamiltonian isotopic to a toric fiber. O

Next we are going to figure out which fiber Ly (x, y) is Hamiltonian iso-
topic to. By Proposition I" and S*(r) should enclose the same w?-area
P — 2r
where w \/mdr A do.
Proposition 3.1.9 ([Lou24], Proposition 2.9). The wP-area enclosed by I is
2 — 2mq for 0 < p* < ¢*

Proof. See Appendix. O

Proposition 3.r.10 ([Lou24], Proposition 2.10). The Lagrangian torus L1(p, q)
is Hamiltonian isotopic to the toric fiber

T(g—3,9—p—3) for0<p<g
T(p+q—5.49-3) for —¢><p<0

T ¢) = {

Proof. The explicit expression of the curve I' is given in Appendix. Then we
note that I rotates clockwise as 6 changes from 0 to 27. Thus we choose S* ()
to rotate clockwise. Then the wP-area of S*(r) is 7|p| — m/p? + 4r2. Since
" and S*(r) have the same w?-area, we have

r?=(g—1°—pl(¢g—1)

According to Lemmalf.1.7] L1 (p, ¢) is Hamiltonian isotopic to the fiber over

the point (£, ¢) where { = RV ”2p2+4r2 and ( = RV o '2p2W. Note that
0 < q < 1. We have

—1 for0 < p < g? —p—1 for0<p<g?
e 170 or0<p<gq and (=10 L for0<p<gq
p+q—% for —¢? <p<0 q—% for —¢? <p<0
See Figure[3.11and Figure
O

3.2  Case2: p* > ¢*

We will use symmetric probes introduced by M. Abreu, M. Borman and D.
McDuff in[ABM14], generalizing the definition of probes introduced by D.
McDuff in [Maroo|.
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Figure 3.1: The case where 0 < p < ¢*
Since{ =¢—2and(=¢g—p—3then—& -1 <(<¢

Figure 3.2: The case where —¢*> < p < 0
Sincefzp—i-q—%and(zq—%then—gz—i<§<C

Definition 3.r.mi. A probe P in a rational polytope A C R" is a directed
rational line segment contained in A whose initial point bp lies in the interior
ofafacet Fip of A and whose direction vector v, € Z" is primitive and integrally
transverse to the facet F'p.A probe P is symmetric it the endpoint e p lies on the

interior of a facet F, that is integrally transverse to vp.

In , J. Brendel proved that for two points = and 2’ in the symmetric
probe, equidistant from the boundary of the probe, the toric fibers over these
two points are Hamiltonian isotopic. His result was proven for the toric mani-
folds. In our case we will take a probe not passing through the singularity, then
the result will also hold. We give the proof for the special case used to prove our
result.

Proposition 3.r.12 ([Louz4|], Proposition 2.12). Given the symmetric probe o =
{p=a}, =1 < a < landa # 0, in the polytope Py, let (a,q1), (a,q2) € 0
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be at equal distance to the boundary of the symmetric probe, then Lo(a, q1) and
Ly(a, q2) are Hamiltonian isotopic.

Proof. In [OU16], J. Oakley and M. Usher gave the moment map of F (0) as
(F+G,1—F)where F(v,w) = 1|v+w|and G(v, w) = (v +w;) with
the moment polytope

{(z,y) eR*|0< 2 <2—2y,y>0}

Recall we changed the coordinatesby p = x +y — 1and ¢ = 1 — y. Then the
preimage Z of o N P5 under the moment map is

Z ={(v,w) € 5% x $* | v; +w; = 2a}

We will apply toric reduction to Z as in [Bre23, Theorem 2.4]. Recall the
moment polytope is in t* 22 R?. We denote the two generators of t* by e} and
es. Let K = exp(ey) x {1}. Then K acts freely on Z. In fact, given § € K

0 - ((v1,v2,v3), (2a — vy, W, w3))
U1 2a — 1
= | |vecos(f) —vzsin(f) | , [wycos(f) — wssin(6)
vg sin(6) 4 v3 cos () wy sin(f) + w; cos(6)

Then
9 . ((U17027U3)7 (2a — VU1, Wa, w3)) == ((1)1,/[)2,7)3), (2a — VU1, W3, wS))

implies that 0 = 0 or vy = v3 = wy = w3 = 0. In the later case v; = £1 and
2a —v; = £1. Thena = —1, 0, or 1 contradicting with the assumption of a.

Thus Z/K is a toric manifold with toric action given by {1} x exp(ez)
with moment polytope o N . Then Z/K is a sphere and the preimages of
(a,q1) and (a, g2) under the moment map are two circles, denoted by S,, and
Sy, respectively. Since the two points (a, ¢1) and (a, ¢2) are at equal distance to
the boundary of the symmetric probe, then Sy, and S;, bound the disks with
the same area on Z/ K. Thus S, and S, are Hamiltonian isotopic. Then we
lift the corresponding Hamiltonian to Z and extend it to the whole manifold
S? x S? by cutoff function, see [AMi13], [Bre20o]. 0
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Now L (p, ¢) is Hamiltonian isotopic to L; (p, 1 — g+ |p| ). By Proposition
Ly(p,1 — g+ |p|) is Hamiltonian isotopic to

{T@—q+n%—® forg> <p<gq
T(5—¢5-q-p) for —q<p<—¢°

As in [Bre23)], in the standard toric structure of S? x S?, the toric fiber

{T@—q+n%—® forg? <p<gq
T(5—¢5-q-p) for —q<p<—¢°

is Hamiltonian isotopic to
T(g—3.q9—-p—3) forg?<p<q
T(q+p—3.q—3) for —g<p<—¢°

See Figure 3.3and Figure Thus we have proven the following proposition.

Figure 3.3: The case where ¢* < p < ¢
Sincef:q—%andczq—p—%thenf—(:p

Figure 3.4: The case where —q < p < —¢?
Since{ =q+p—2Land(=g—Lthené —(=p
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Proposition 3.1.13 ([Lou24|), Proposition 2.13). The Lagrangian torus L1(p, q)
is Hamiltonian isotopic to the toric fiber

) ford? <p<gq

yd —P—
q—13) for —q<p<—¢

T(.0) :{ )
Finally, when we change the coordinates (p, ¢) back to (z, y), we get The-

orem B.

3.2 Proof of Theorem C

In Theorem C,  +y = 1, which means p = 0. In [Fuk+12], they have proven
that L1(0, q) with 0 < ¢ < 1 are not Hamiltonian isotopic to toric fibers
for the standard toric structure. Thus we focus on L1 (0, ¢) with % <qg<l1
Based on Theorem B, the moment polytope P; for the standard toric structure
has been filled in by L1 (p, ¢) with p # 0 except the diagonal. Thus if L, (0, q)
is Hamiltonian isotopic to a fiber T'(&, ¢) in the standard toric structure, it
must be able to be Hamiltonian isotopic to some T'(€, €). Otherwise, assume
L4(0, ¢) is Hamiltonian isotopic to some T'(, ¢) with |£]| # |¢|. Denote the
Hamiltonian isotopy by ¢%. By Weinstein’s Lagrangian neighborhood theorem,
there is a symplectomorphism from a neighborhood of T'(&, ¢) to a neighbor-
hood of the zero section of T*T'(£, ¢) which takes a Lagrangian torus C''-close
to T'(&, ¢) to the image of a closed 1-form in T*T'(§, ¢). Denote the 1-form
corresponding to ¢5 (L1 (€, q)) by Ay for sufficiently small € and the 1-forms
corresponding to toric fibers T'(¢’, (') by Aer—¢ ¢—¢ for (£, (") close enough to
(&, (). Then there is toric fiber T'(£’, (') such that

Ne-ec-c) = [M] € HY(T(E,¢), R).
Thus there is a smooth function
h:T(¢,()—R
such that
Aer—gcr—¢c — M1 = dh.

Then IToh generates a Hamiltonian isotopy between ¢ & (L1 (€, ¢)) and T'(¢', (')
where Il : T*T'(¢,() — T'(&, ¢) is the projection. On the other hand, L1 (€, q)
is Hamiltonian isotopic to T’ (q — %, q—€— %) for positive € by Theorem B.
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Ifeissmallenough, T'(¢', (') is not Hamiltonian isotopic to 7" (q — %, q—e€— %

by [Bre23]. We get a contradiction.
Then we will compute the displacement energy germ introduced in [CSio]

to show that it is not possible that L; (0, ¢) is Hamiltonian isotopic to some

T(&,8).

Definition 3.2.1 ([CS10]). Let (M, w) be a symplectic manifold and L be a
closed embedded Lagrangian submanifold. The displacement energy germ is a
function germ

S¢ . HY(L,R) — [0, 0]
at the point 0 € H' (L, R) defined as
S1.(0) = e(Ls)

where L; is the image of a closed 1-form on L representing a sufficently small
classd € H'(L,R) and e(L;) is the displacement energy of L.

Proposition 3.2.2 ([CSio]). For each symplectomorphism 1) we have
Si(L) = S7 o (¥[L)".

Note that the displacement energy of T'(€, ¢) with (£, ¢) # (0,0) is

1 1
win {5~ 1el5 - 161}

since the displacement energy of the circle v; = a(# 0) in S? is

Also see [Bre2o, Example 4.1].
Now we compute the displacement energy germ of Ly (0, ¢). Since

H'(L1(0,9),R) = Hy(L(0,q),R),

then a neighborhood of 0 € H'(L(0, q), R) can be identified with a neigh-
borhood of the point (0, ¢) in the moment polytope P,. Let (41, d2) € R? be
close enough to (0,0) and 67 # 0. Then

Sil(o,@(él, 02) = e(L1(01,q + 62)).
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First we consider the case where §; > 0. By Theorem B, L1 (61, ¢ + 62)
is Hamiltonian isotopic to the toric fiber T' (q + 09 — %, q+ 02 — 01 — %)
Thus the displacement energy is

. 1 1] 1 1
e(L1(517q+62)):m1n{§— ‘Q+52—§‘7§—‘Q+52—51—§’}

Since ¢ > %, we can choose 01 and d3 small enough such that g 4 2 — % >0
andq + 0y — 01 — % > 0. Thus the displacement energy is

. 1 1 1 1
e(L1(01,q + 02)) :mm{§— <Q+52—§) 5 (Q+52—51—§>}
=min{l —q—0s,1 —q— 02+ 1}

=1- q— 52
The last equality is from d; > 0.
Then we consider the case where 0; < 0. By Theorem B, L;(d1, g + d2) is

Hamiltonian isotopic to the toric fiber T’ (q + 01+ 09 — %, q+ 09 — %) The
displacement energy is

. 1 1 1 1
e(L1(517q+52)):m1n{§— <Q+51+52—§>,§— (Q+52—§)}

=min{l —q— 3§ —ds,1 — q— 02}
=1-q—9

The last equality is from 6; < 0
Thus

Sil(o,q)(él, 02) =1—q— 0

when d; # 0

Next we compute the displacement energy germ of T'(§, £). Let (67, 05) €
R? be close enough to (0, 0). If§ > 0, then & + &) > Oand  + 85 > 0 for
small enough 07 and 5. Thus

S%(&,{) (6/17 5;) = 6<T(£ + 5175 + 55))

(1 1 ,
:mln{§—§—51,§—§—52}.
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If¢ < 0,thené + 07 < 0and £ 4 65 < O for small enough ¢} and §5. Thus

Tiee) (015 05) = e(T(§ + 01,§ + 85))
1 1
=mind = +&{+0, - +E{+0 .
2 2
The displacement energy germ of 7'(€, &) is determined by two linearly in-

dependent functions but the displacement energy germ of L4 (0, ¢) is determine
by a single function when d; # 0. Thus there is not a linear isomorphism on

R? taking ST (0,0 (01,02) 10 S7¢ (81, 65). Thus L(0, ¢) and T'(€, ) are not

symplectomorphic, in particular, not Hamiltonian isotopic.
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APPENDIX A

AREA ENCLOSED BY A CURVE

Lemma A.o.x. Let 2 be a point in the curve I'. Then

2
1 p N p— 1
ZJZQ” Py qsinw)) 1y

Proof. First we write down the explicit expression of the curve I

1— 2% + p? — L) 5029 4 20, /g7 — /T -

q? cos(6

2\/<1 Y sm<9)) _p

Forapointz = (z,y) in T,

1—2¢° + p? — L0 2 ()

\/(1+ ve \/_sm( )) —p?
- 2J< s —p\/l—q sm@)) —p?
N 1—q2+—wsm(9)

\/<1 Y sin(0)>2 _ 2
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q

<1 e VS sin<9>>2
: 2
1+ Mw)

_p2

2 — L et VA sm(G)

—1+gq .
and
)= 21/¢% — p*\/1 — ¢?cos(f)
2\/(1 + Y \/_ sm(&)) — p?
I o p2)(1 —q )0082(2)
(1 + Y \/_ sm(&)) — p?
Note that

-+ =V quQﬂsin :
(1 T @) (@ - 1)1 ) cos?(9)

2

5 +
(me@) e (H_W—pz Vi Sin((,)) L

(1 Vi —p \/l—q sin( 9))2—11)2

4

L]
Proposition A.0.2. The wP-area enclosed by T is 21w — 27q for 0 < p* < ¢*.

Proof. First we determine a 1-form o such that do = w?. Note that o can be
arranged to have the form

(Y52 c)

d¢. On one hand we can compute

2r
———————dr ANdp =7m\/p>+4—7lp
/()Vp+4ﬂ |
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On the other hand,

2r VPR 412
—d’r’/\d S+ C | dop = 7w\/p? + 4+27C
/]32(1) VD? + 4r? = 51 ( 2 ) i Y

Thus €' = —land o = [ V222 _ ) gg,

2

Now we compute fF P2+ 4Ar2de = fF Vp?+ 47’22—‘£d9. Note that
| - VErYInE sin(#) > 0. By Lemma|A.o.1, we have

2 _ 2 —_ 02
\/p2—4r2:1—\/q PV sin(0)

q

By taking the derivative with respect to € on both sides of

tan(gﬁ):y: 24/ — p2\/1 — g% cos(0
Tl —2¢%2+p? —Wsm (0)
we can get
do —2/4*—p?/1—¢?sin(0)
q

- (1+V_“_sm<>) pZI-[(l—“_“_smu) p2]

= +pr1-¢)  (@®=p)0—¢) .,
(g, oo )
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Now
/F VP + dr2dg
2n 1— —*/ﬁ " Sin(0)
) /0 2 (1 — —\/ﬁm sin(e))2 —p?

_ (p2 —¢+p’(1-¢%) (@ -p)(1-¢)

+
q q

/27r 1 1 - ¥ TV 7 q2_pz Vi sin(#)
_ -3 . )
0 (1 + Y= - q2_pz V1d* sin(ﬁ)) — p?

2 9 201 _ 2 2 2\(1 — o2
(p ¢rr-¢) (& =) Q)Sin2<9))d9
q q
In the first integral we replace 6 with 2 — 6. Then
/\/p2+4r2d¢
r
1 27 2 _ 2 2 1 — 2 2 _ 2 1— 2
:__/ (p ¢+r(-¢) (& =) Q)Sin2(9))
2 Jo q q
QVEPVIE Gy (g) M

==

Note that

P —¢+p°(1—q*) N (> —p*)(1—q°) in?(6)

q q
2
2 _ 2. /1_ o2
=q et Ve sin(f) + 1
q
22 2 _ 2. /1_ o2
t+q|—p? 22 2p _2\/(] Ve sin(&)]
q q
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Then

/\/p2+4r2d<;5
r
2 2 _ 2 —_ 02
2\/q b \/1 a sin(0)do

_50

+q/:” <q2—p \/q —pzx/l—q sin 9)>

q2

| VIR Gy, ()
(1 Yy sin(@))2

do

_p2

o[ (S )
| VIV G )
<1 Y sin(e))2

de
— p?

since fo 2Y- — V-~ ” Sln( )df = 0. Note that
2 .2 2 2. /1= 2 2_ 2 /T— o2
(q 2 Vi —rVi—g sin(9)> V- pV1-g sin(0)
q q q
2
2_ 2. /1 — 2
- (\/q pq\/ a sin(0) + 1) — p?
2 | 2
1-—
_prta VE -V 81n9)—1+p2
i q
We have
2m 2m — p+q v v sm( )—1+p?
/\/p2+47‘2d¢:2q/ 1d0+2q/ < 5 do
r 0 0 (1 + Y- vV ¢ _pq V1= Siﬂ(@)) —p?
2m P24 Vi s sin(f) + 1 — p?
=dmq — Zq/ 4 { 5 de
0 (1 + —@ﬂ sin(9)> —p?
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Now we focus on the integral
or P24q2 VPP 1-¢ sin(0) + 1 — P2
/ ¢ q do
2
0 (1 + —@ﬂ sin(&)) — p?

_ 1L+ p)( +p) /2” 1 40
20° O 14+p+¥X—V— (Ve sin(0)
q
L A=n)e-p) /2” 1 &0
2 2_ 2 —q2
2(] 0 1 _p+ V4 pq\/l q sm(@)

One can easily compute

/2” 1 o 2T
(i /1a 21
O 14p+¥—Y—sin(h) ¢ TP

and
/2” 1 g0 — 2mq
[2_ 2. /1_,2 T2
0 1 _p4 YL PNV T pq i’ sin(6) TP
Thus
/2””“ T Sm(>+1—p2d9 o
. _ 27
0 (1—1——"1_1)(1 ”l_qsin(e)) —p? K
Then

/ 2+ 4r2do = Arq — 4w
r

Next one can follow the same process to show that

/F“;quﬁ:o

Thus if the curve I is reparametrized by replacing 6 with 2 — 6, then the

wP-area enclosed by I is 27 — 27q. ]
/ 2 /21 4z2 /02 1 42
Remark A.o.3. If we write the 1-form p22+4 deas —~ 21() ; fy ay? do+2Y2 ;‘_‘W ay? dy,
then itis easy to see that —”172;47& d¢ is not defined at (0, 0). On the other hand
pPHar2 p| d —2y d 2z du is defined
( 2 > 0= /P2 +4a? +4y2+p| v V/ P2+ +4y2+p| Y18 Getmne

at (0,0).
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