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Abstract

This dissertation is about two different aspects of symplectic geometry. The
first part is about the Hofer-Zehnder conjecture. Arnold conjecture says that
the number of 1-periodic orbits of a Hamiltonian diffeomorphism is greater
than or equal to the dimension of the Hamiltonian Floer homology. In 1994,
Hofer and Zehnder conjectured that there are infinitely many periodic orbits
if the equality does not hold. We showed that the Hofer-Zehnder conjecture
is true for semipositive symplectic manifolds with semisimple quantum ho-
mology. The second part is about Lagrangian submanifolds. In [Fuk+12], K.
Fukaya, Y. Oh, H. Ohta, and K. Ono (FOOO) obtained the monotone sym-
plectic manifoldS2×S2 by resolving the singularity of a toric degeneration of a
Hirzebruch surface. They identified a continuum of toric fibers in the resolved
toric degeneration that are not Hamiltonian isotopic to the toric fibers of the
standard toric structure on S2 × S2. We provided a comprehensive classifica-
tion: for any toric fiber in FOOO’s construction of S2 × S2, we determined
whether it is Hamiltonian isotopic to a toric fiber of the standard toric structure
of S2 × S2.
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Chapter 1

Introduction

The first part of this dissertation is from [AL23] and the second part is from
[Lou24].

A symplectic manifold is a pair (M,ω) whereM is a smooth manifold and
ω is a nondegenerate closed 2-form. We call such a form ω a symplectic form. A
time-dependent Hamiltonian is a smooth function

H :M × S1 → R

The Hamiltonian vector fieldXH associated withH is defined by the equation

ω (XH , ·) = −dHt

where Ht(·) = H(·, t). The flow ϕtH of XH , assuming ϕ0
H = id, is called

the Hamiltonian flow. The time-1 map ϕ1
H is called the Hamiltonian diffeo-

morphism. Let x be a fixed point of ϕkH for k ∈ Z. Then a k-period orbit of
XH is defined as x(t) := ϕktH(x). We say x is nondegenerate if the linear map
(dϕ1

H)x(0) does not have eigenvalue 1. The Arnold conjecture [Arn65][Arn86]
gives a lower bound for the number of the nondegenerate 1-periodic orbits,
which is the sum of the Betti numbers ofM , an invariant only depending on
the topology ofM . To prove the Arnold conjecture, A. Floer invented the Floer
homology [Flo86][Flo87][Flo89].

The quantum homology of a symplectic manifold (M,ω) with dimension
2n is the singular homology with coefficients in Novikov ring. The quantum
homology carries a special product defined by Gromov-Witten invariants. Let
A be a homology class inH2(M,Z). Fix a Riemann surface Σ of genus g and
let M∗(A; J) denote the set of all simple J -holomorphic maps u : Σ → M

which represent the classA. By perturbing the almost complex structure J , the
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moduli space M∗(A; J) can be a smooth orientable manifold of dimension

dimM∗(A; J) = n(2− 2g) + 2c1(A)

Denote by M̃g,k(A; J) the space of tuples (u, z1, · · · , zk) consisting of an
element u ∈ M(A; J) together with k pairwise distinct marked points zi ∈
S2. Then we focus on the case where g = 0. Denote by M0,k(A; J) the
quotient of M̃g,k(A; J) by the group PSL(2,C) and M∗

0,k(A; J) the subset
for which u is simple. The evaluation map

M̃0,k(A; J) →Mk

(u, z1, · · · , zk) 7→ (u(z1), · · · , u(z2))

descends to

ev : M∗
0,k(A; J) →Mk

Then the Gromov-Witten invariants are obtained by taking the intersection of
ev with cycles of complementary dimension inMk. See [MS12] for details.

The Hofer-Zehnder conjecture states that if the inequality in Arnold con-
jecture is strict then there are infinitely many periodic orbits. One of the first
results in the direction of the Hofer-Zehnder conjecture is given by J. Franks
[Fra92][Fra96]. J. Franks proved that any time-one map of an area-preserving
isotopy of the sphere with at least three fixed points must have infinitely many
periodic orbits. E. Shelukhin proved the Hofer-Zehnder conjecture for closed
monotone symplectic manifolds with semisimple even quantum homology, see
[She22]. We generalized E. Shelukhin’s result to the closed semipositive sym-
plectic manifolds with semisimple even quantum homology, see [AL23]. S.
Bai and G. Xu proved the Hofer-Zehnder conjecture for toric manifolds, see
[BX23]. These recent works distinguish from each other. For example, the non-
monotone blow-ups of CP 2 are covered by [AL23], but not by [She22]. The
four-point blow-up of CP 2 for certain size of exceptional divisors is covered
by [AL23], but not by [BX23]. Ostrover-Tyomkin’s 8-dimensional monotone
toric manifold whose quantum homology is not semisimple [OT09] is covered
by [BX23], but not by [She22] or [AL23].

Now we state the main result in [AL23], which will be proved in Chapter
2.

Theorem A. Let (M,ω)be a closed semipositive symplectic manifold with semisim-
ple even quantum homologyQHev(M ; ΛK,univ) for a ground field K. Then any
Hamiltonian diffeomorphism ϕ with finitely many contractible fixed points such
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that

N(ϕ,K) =
∑

x∈Fix(ϕ)

dimKHF
loc(ϕ, x) > dimKH∗(M ;K)

must have infinitely many periodic points. IfK has characteristic zero, then ϕ has
a simple contractible p-periodic point for each sufficiently large prime p.

Next, we introduce the second part of the dissertation about the Lagrangian
tori in S2 × S2.

Let (M2n, ω) be a symplectic manifold. A Lagrangian submanifold L is a
submanifold ofM with dimension n such that ω|L = 0. In [Arn86], Arnold
defined a Lagrangian knot as a connected component of the space of Lagrangian
embeddings in a fixed symplectic manifold. For Lagrangian embeddings R2 →
R4(coinciding with embeddings of the plane (z1, 0) outside some sphere in the
standard four-dimensional symplectic space), he also proposed the following
two questions.

Question 1.0.1. [Arn86, section 6] Can any knot in the ordinary sense be realized
by a Lagrangian one?

Question 1.0.2. [Arn86, section 6] Are there purely Lagrangian knots, that is,
Lagrangian embeddings homotopic to the plane in the class of all embeddings,
but non-homotopic in the class of Lagrangian embeddings?

Buliding on Arnold’s questions, several significant works have deepened
our understanding of Lagrangian embeddings. In [Cas86], Y. Chekanov con-
structed the special tori in R2n that are not symplectomorphic to each other.
These tori are examples of monotone Lagrangian tori that are Lagrangian iso-
topic but not Hamiltonian isotopic to an elementary torus. In [EP93], Y. Eliash-
berg and L. Polterovich considered if two Lagrangian embeddings are isotopic
in smooth, Lagrangian, or Hamiltonian sense.

Considering the monotone S2 ×S2, G. Dimitroglou Rizell, E. Goodman,
and A. Ivrii in [RGI16] showed that any two Lagrangian tori are Lagrangian
isotopic. There are several different constructions of monotone Lagrangian tori
inS2×S2 that are not Hamiltonian isotopic to the Clifford torus, the product
of the equators. Using P. Biran’s circle bundle construction in [Bir06] one
can get such a Lagrangian torus. P. Albers and U. Frauenfelder in [AF07] con-
structed a nondisplaceable Lagrangian torus in T ∗S2. Then one can get such
a Lagrangian torus by an embedding from D∗S2, a disk subbundle of T ∗S2,
to S2 × S2. M. Entov and L. Polterovich constructed a non-heavy monotone
Lagrangian torus in [EP09, Example 1.22]. Y. Chekanov and F. Schlenk in
[CS10] also constructed such a monotone Lagrangian torus. J. Oakley and M.
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Usher in [OU16] showed that the above four Lagrangian tori are Hamiltonian
isotopic to each other. A. Gadbled in [Gad13] also showed that the Lagrangian
tori in [CS10] and [Bir06] are Hamiltonian isotopic.

We consider S2 as the unit sphere in R3 with symplectic form ωstd such
that the ωstd-area of S2 is 4π. Then

(
S2, 1

2
ωstd

)
×
(
S2, 1

2
ωstd

)
has a standard

toric structure with the moment map

µ : S2 × S2 → R2

((v1, v2, v3) , (w1, w2, w3)) 7→
(
1

2
v1,

1

2
w1

)
The moment polytope, as in Figure 1.1, is the square

P1 =

{
(x, y) ∈ R2 | −1

2
≤ x ≤ 1

2
,−1

2
≤ y ≤ 1

2

}

Figure 1.1: The moment polytopeP1 for the standard toric structure ofS2×S2.

As in [Fuk+12], S2 × S2 can be obtained by resolving the singularity of
a toric degeneration. Now we recall the construction. The toric Hirzebruch
surfaces F2(α), 0 < α < 1, are toric manifolds with moment polytope

{(x, y) ∈ R2 | 0 ≤ x ≤ 2− 2y, 0 ≤ y ≤ 1− α}

As α → 0, we obtain an orbifold F2(0) with a singularity of the form C2/±.
The moment polytope of F2(0), as in Figure 1.2, is

P2 = {(x, y) ∈ R2 | 0 ≤ x ≤ 2− 2y, y ≥ 0}

and the preimage of the point (0, 1) is the singularity. To resolve the singu-
larity, we replace a neighborhood of it with a neighborhood of the zero sec-
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Figure 1.2: The moment polytope of F̂ (0).

tion of the cotangent bundle T ∗S2. The resulting complex surface is denoted
by F̂ (0). There is a well-known result that F2(α) is symplectomorphic to(
S2, 1−α

2
ωstd

)
×
(
S2, 1+α

2
ωstd

)
, and F̂ (0) is symplectomorphic to

(
S2, 1

2
ωstd

)
×(

S2, 1
2
ωstd

)
[Fuk+12, Proposition 5.1]. We still say the moment polytope of

F̂ (0) is P2 with the preimage of the point (0, 1) being S2.
Given a point (x, y) in the segment

{
(x, y) ∈ P2 | x+ y = 1, 1

2
≤ y < 1

}
,

K. Fukaya, Y. Oh, H. Ohta, and K. Ono in [Fuk+12] have shown the preimage
of (x, y) under the moment map is a nondisplaceable Lagrangian torus using
Lagrangian Floer homology. In particular, the preimage is not Hamiltonian
isotopic to a toric fiber of the standard toric structure. This conclusion can be
obtained from the fact that the only nondisplaceable toric fiber of the standard
toric structure is the Clifford torus and from Theorem 1.1 in [Fuk+12]. J. Oakley
and M. Usher in [OU16] showed that the preimage of

(
1
2
, 1
2

)
is Hamiltonian

isotopic to the Lagrangian torus in [Bir06], [AF07], [EP09], and [CS10]. Then
one can ask the following questions.
Question 1.0.3. Can this discussion be extended to encompass other interior
points within the moment polytopeP2? Specifically, can we show if their preim-
ages are Hamiltonian isotopic to toric fibers of the standard toric structure?
Question 1.0.4. Are there other Lagrangian tori, except those in [Fuk+12], that
are not Hamiltonian isotopic to the product tori in S2×S2? We call a torus of
the formα×β withα and β are embedded curves inS1×{pt} and {pt}×S1

respectively a product torus.
We will prove the following theorems to answer the questions.

Theorem B. Given an interior point (x, y) in P2 with x+ y ̸= 1, let L(x, y)
be the preimage of (x, y) in F̂ (0) and still denote by L(x, y) its image under a
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symplectomorphism from F̂ (0) to S2 ×S2. ThenL(x, y) is a Lagrangian torus
Hamiltonian isotopic to a toric fiber. Furthermore, if we denote the preimage of
an interior point (ξ, ζ) inP1 by T (ξ, ζ), thenL(x, y) is Hamiltonian isotopic to{

T
(
1
2
− y, 3

2
− 2y − x

)
for 1− y < x < 2− 2y

T
(
−1

2
+ x, 1

2
− y
)

for 0 < x < 1− y

Remark 1.0.5. Theorem B does not depend on the choice of the symplectomor-
phism between F̂ (0) andS2×S2 since every symplectomorphism ofS2×S2

can be written as the composition of a Hamiltonian diffeomorphism and the
diffeomorphism that switches the two factors of S2 × S2. See [OU16] and
[Gro85]. In addition, the toric fiber T (ξ, ζ) is Hamiltonian isotopic to T (ζ, ξ)
by [Bre23].

Theorem C. Let (x, y) be an interior point ofP2 and x+ y = 1. ThenL(x, y)
is not Hamiltonian isotopic to a product torus.

Remark 1.0.6. For an interior point (x, y) inP2 withx+y = 1 and0 < y < 1
2

,
the preimage of (x, y) is a displaceable Lagrangian torus, so Theorem C does
not follow from the techniques in [Fuk+12].

Theorem B and Theorem C will be proved in Chapter 3.
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Chapter 2

On the Hofer-Zehnder
Conjecture for

Semipositive Symplectic
Manifolds

Let (M,ω) be a compact symplectic manifold. ForA ∈ π2(M), let v : S2 →
M be a representative ofA. Then

c1(A) :=

∫
S2

v∗c1

where c1 ∈ H2(M) is the first Chern class, and

ω(A) :=

∫
S2

v∗ω.

In this chapter, we consider the compact semipositive symplectic manifolds.

Definition 2.0.1. A compact 2n-dimensional symplectic manifold (M,ω) is
semipositive if for everyA ∈ π2(M),

3− n ≤ c1(A) < 0 =⇒ ω(A) ≤ 0

.
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2.1 Hamiltonian Floer Homology

2.1.1 Novikov Ring
We follow [HS95] for the definition of Novikov ring. Let Γ be a group with a
homomorphism φ : Γ → R and let F be an integral domain. Define

Λ(Γ, φ;F) := {Γ → F : A 7→ λA | # {A ∈ Γ : λA ̸= 0, φ(A) < c} <∞,∀c ∈ R}

with a ring structure given by the convolution

(λ ∗ θ)A =
∑
B∈Γ

λBθB−1A.

Whenφ is injective, Γ is isomorphic to Zm for some positive integerm and

φ(k1, · · · , km) =
m∑
j=1

wjkj

where the wj are positive and rationally independent. Then we can identify
Λ(Γ, φ;F) with{ ∑
k1,··· ,km

ak1,··· ,kmt
k1
1 · · · tkmm | #

{
k : ak ̸= 0,

k∑
j=1

wjkj ≤ c

}
<∞,∀c ∈ R

}

Example 2.1.1. Consider the following maps

φc1 : π2(M) → Z
A 7→ c1(A)

and

φω : π2(M) → R
A 7→ ω(A)

Define Γ0 :=
kerφc1

kerφc1 ∩ kerφω
and the Novikov ring Λω = Λ(Γ0, φω;Z).
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Example 2.1.2 (Universal Novikov Ring). LetR be a commutative unital ring.
The universal Novikov ring overR is defined as

ΛR,univ =

{
∞∑

i=−K

aiT
λi | ai ∈ R, λi ↗ ∞

}

By [HS95, Theorem 4.1], ΛK,univ is a field when K is a field, and we call it
the universal Novikov field over K.

Next, we show some properties of Novikov ring which will be used later
for the semisimplicity of the even quantum homology.

Proposition 2.1.3 ([HS95], Theorem 4.2). The ring ΛZ,univ is a PID. In par-
ticular, every nonzero prime ideal in ΛZ,univ is maximal.

Lemma 2.1.4. Let I be a prime ideal of ΛZ,univ . If ΛZ,univ/I has characteristic
p where p is a prime, then I =< p >. In particular, ΛZ,univ/I = ΛZp,univ

Proof. Since ΛZ,univ is a PID, we can assume that I =< f > for some f ∈
ΛZ,univ. Since ΛZ,univ/I has characteristic p, then p(1+ < f >) =< f >,
which means f |p. Thus there is a g ∈ ΛZ,univ such that fg = p. In particular
p|(fg).

If p|f , then f = puwhere u is invertible. Thus< f >=< p >.
If p ∤ f , then p|g. Thus there ish such that ph = g. Then fph = p, which

implies fh = 1. Thus f is invertible, which contradicts with that< f > is a
prime ideal.

Thus ΛZ,univ/I = ΛZ,univ/ < f >= ΛZ,univ/ < p >= ΛZp,univ.

Theorem 2.1.5. ΛZp,univ is perfect.

Proof. Since ΛZp,univ has characteristic p, we only need to show that for an
element f ∈ ΛZp,univ there is an element g ∈ ΛZp,univ such that f = gp.

Assume f =
∞∑

i=−N

aiT
λi . Then ai ∈ Zp. Since Zp is perfect, then ai = bpi

for some bi ∈ Zp. Take g =
∞∑

i=−N

biT
λi
p . Then gp = f .

Proposition 2.1.6 ([AL23], Proposition 3.1 ). LetFrac(ΛZ,univ) be the field of
fractions of ΛZ,univ . If f ∈ Frac(ΛZ,univ), then it can be written as

∑
cjT

µj ,
where cj ∈ Q and only finitely many primes appear in the denominators of the
coefficients of f .

9



Proof. Note that if h =
∞∑

i=−N

hiT
νi is an element in ΛZ,univ, then T−ν−Nh

only has non-negative exponents. Suppose f ∈ Frac(ΛZ,univ). We may as-
sume without loss of generality that

f =

a0 +
∞∑
i=1

aiT
λi

b0 +
∞∑
j=1

bjT
θj

where 0 < λ1 < λ2 < · · · and 0 < θ1 < θ2 < · · · . Set

A := a0 +
∞∑
i=1

aiT
λi and B := b0 +

∞∑
j=1

bjT
θj

and let g0 =
a0
b0

. Then

A− g0B =
∞∑
i=1

aiT
λi −

∞∑
j=1

a0bj
b0

T θj .

and the leading term has a non-negative exponent.
Case 1. λ1 < θ1 The leading term in A − g0B is a1T λ1 . Define g1 =

a0
b0

+
a1
b0
T λ1 . Then

A− g1B =
∞∑
i=2

aiT
λi −

∞∑
j=1

a0bj
b0

T θj −
∞∑
j=1

a1bj
b0

T λ1+θj

which has the exponent of the leading term greater than λ1.

Case 2. λ1 = θ1 The leading term in A − g0B is
(
a1 −

a0b1
b0

)
T λ1 .

Define g1 =
a0
b0

+

(
a1
b0

− a0b1
b20

)
T λ1 . Then

A− g1B =
∞∑
i=2

aiT
λi −

∞∑
j=2

a0bj
b0

T θj −
∞∑
j=1

(
a1
b0

− a0b1
b20

)
bjT

λ1+θj

which has the exponent of the leading term greater than λ1.
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Case 3. λ1 > θ1 The leading term in A − g0B is −a0b1
b0

T θ1 . Define

g1 =
a0
b0

− a0b1
b20

T θ1 . Then

A− g1B =
∞∑
i=1

aiT
λi −

∞∑
j=2

a0bj
b0

T θj +
∞∑
j=1

a0b1bj
b20

T θ1+θj

which has the exponent of the leading term greater than θ1.
One can repeat this process to get gn for n ∈ N. It is easy to see that the

exponent of the leading term ofA − gnB strictly grows as n grows. Next we
show that the exponent of the leading term ofA− gnB grows to ∞. Then we
can conclude that f = lim gn. Let Σ(A − gnB) be the set of the linear com-
bination of the exponents of the terms inA− gnB over nonnegative integers.
Then

· · · ⊂ Σ(A− gn+1B) ⊂ Σ(A− gnB) ⊂ · · ·Σ(A− g0B)

Thus the exponent of the leading term ofA−gnB strictly grows inΣ(A−g0B).
In particular it grows to ∞.

Hence, the primes appearing in the denominators of the coefficients of f
are the primes dividing b0, of which there are finitely many.

Remark 2.1.7. This result is not true for an arbitrary element inΛQ,univ. Indeed,
one can have elements of the form

∞∑
l=−K

1

l!
T l

which has infinitely many primes in the denominators.

2.1.2 Conley-Zehnder Index
We follow [AD13] for the definition of the Conley-Zehnder Index. LetH be a
time-dependent Hamiltonian onM . Let x(t) be a nondegenerate contractible
1-periodic orbit ofXH . Then there is a map u : D2 →M such that u(eit) =
x(t). We choose a trivialization of x∗TM such that it can be extended to a
trivialization ofu∗TM . For every t, the linear map (dϕtH)x(0) can be considered
as the matrix Φ(t) with respect to the bases of Tx(0)M and Tx(t)M determined
by the trivialization. Then Φ(t) is a path in the symplectic group Sp(2n).

11



Define

Sp(2n)∗ = {Φ ∈ Sp(2n) | det(I − Φ) ̸= 0}

where I is the identity matrix.

Proposition 2.1.8 ([AD13], Proposition 7.1.4). The open set Sp(2n)∗ has two
connected components, which are

Sp(2n)+ = {Φ ∈ Sp(2n) | det(I − Φ) > 0}

and

Sp(2n)− = {Φ ∈ Sp(2n) | det(I − Φ) < 0}

If det(I − Φ(1)) > 0, then let γΦ be a path connecting Φ(1) to −I in
Sp(2n)∗. If det(I − Φ(1)) < 0, then let γΦ be a path connecting Φ(1) to 2 0

0 1/2
0

0 −I

. Let γ be the concatenated path of Φ(t) and γΦ.

Theorem 2.1.9 ([AD13], Theorem 7.1.3). There exists a continuous map

ρ : Sp(2n) → S1

satisfying the following properties:

(1) Naturality: If Φ and T are in Sp(2n), then

ρ
(
TΦT−1

)
= ρ(Φ)

(2) Product: If Φ ∈ Sp(2m) and Ψ ∈ Sp(2n), then

ρ

[
Φ 0

0 Ψ

]
= ρ(Φ)ρ(Ψ)

(3) Determinant: If Φ ∈ U(n), then

ρ(Φ) = det(X + iY ), where Φ =

[
X −Y
Y X

]

12



(4) Normalization: If Spec(Φ) ∈ R, then

ρ(Φ) = (−1)m0/2

wherem0 is the total multiplicity of the negative real eigenvalues.

(5) ρ(ΦT ) = ρ(Φ−1) = ρ(Φ)

Finally let γ̃ : S1 → R be a lift of ρ ◦ γ : S1 → S1. Then the Conley-
Zehnder index of (x, u) is defined as

CZ(x, u) :=
γ̃(0)− γ̃(1)

π

Define an equivalence relation on the contractible 1-periodic orbits as the
following:

(x, u0) ≡ (y, u1) ⇐⇒ x = y,

∫
D2

u∗0c1 =

∫
D2

u∗1c1,

∫
D2

u∗0ω =

∫
D2

u∗1ω

Denote the equivalent class of (x, u) by [x, u]. Then the Conley-Zehnder index
does not depend on the choice of the representative of [x, u]. Thus define
CZ([x, u]) := CZ(x, u).

An important property of Conley-Zehnder index is

CZ([x, u#A]) = CZ([x, u])− 2c1(A)

where u#A is the connected sum of uwith a spherical classA ∈ H2(M).

2.1.3 Transversality
We follow [HS95] to show that the moduli spaces used to define the Hamilto-
nian Floer homology are compact finite dimensional manifolds.

Definition 2.1.10. An almost complex structure on (M,ω) is a map

J : TM → TM

such that J2 = −id. An almost complex structure is compatible with the
symplectic form ω if ω(·, J ·) defines a Riemannian metric onM .

Definition 2.1.11. A J -holomorphic sphere is a smooth map v : S2 →M such
that

dv ◦ i = J ◦ dv
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where i is the standard complex structure onS2 = C∪{∞}. AJ -holomorphic
curve v is called simple if v = w ◦ ϕwith ϕ : S2 → S2 implies deg(ϕ) = 1.

The first step is to perturb the almost complex structure such that the mod-
uli space of simple J -holomorphic spheres in a homotopy class is a finite dimen-
sional manifold.

Proposition 2.1.12 ([HS95], Section 2). GivenA ∈ π2(M)

kerφc1 ∩ kerφω
, denote

by M(A; J) the space of J -holomorphic spheres in the classA and Ms(A; J) ⊂
M(A; J) the subspace of simpleJ -holomorphic spheres. Then for a generic almost
complex structure J compatible with ω, we have the following results.

(1) Ms(A; J) is a finite dimensional manifold withdimMs(A; J) = 2n+

2c1(A).

(2) If c1(A) < 0 then M(A; J) = ∅.

(3) If n = 2 andA ̸= 0 with c1(A) = 0 then M(A; J) = ∅

(4) If n = 2 and c1(A) = 1 then the moduli space M(A; J)/G is a finite
set, whereG = PSL(2,C) is the group of biholomorphic maps of S2

Denote byMk(c; J) the set of points x ∈M such that there exists a non-

constant J -holomorphic sphere v such that c1(v) ≤ k,E(v) =
∫
S2

v∗ω ≤ c

and x ∈ v(S2).

Proposition 2.1.13 ([HS95], Section 2). Assume 2n ≥ 6 and J is generic. Then
the setMk(c; J) is compact for every c > 0 and every integer k.

Next we perturb the Hamiltonian such that the moduli space of Floer tra-
jectories satisfying a limit condition is a compact finite dimensional manifold.

Definition 2.1.14. Given a HamiltonianH :M×S1 → R, the Floer equation
is the partial differential equation

∂u

∂s
+ J(u)

∂u

∂t
−∇H(t, u) = 0

whereu : R×S1 →M , (s, t) 7→ u(s, t) andJ is an almost complex structure
compatible with ω.

Let [x±, u±] be classes of contractible 1-periodic orbits of HamiltonianH
and J be a generic almost complex structure compatible with ω. Denote by
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M([x−, u−], [x+, u+];H, J) the moduli space of the solutions to the Floer
equations which satisfy the limit condition

lim
x→±∞

u(s, t) = x±(t)

and

[x+, u−#u] = [x+, u+]

Theorem 2.1.15 ([HS95], Section 3). Assume 2n ≥ 4. There is a generic Hamil-
tonianH such that the following results hold.

(1) Every contractible 1-periodic orbit x(t) is non-degenerate.

(2) x(t) /∈ M1(∞; J) for every contractible 1-periodic orbit x(t) and every
t ∈ R.

(3) The moduli space M([x−, u−], [x+, u+];H, J) is a finite dimensional
manifold for all contractible 1-periodic orbits [x±, u±] with

dimM([x−, u−], [x+, u+];H, J) = CZ([x−, u−])− CZ([x+, u+]).

(4) u(s, t) /∈ M0(∞; J) for every u ∈ M([x−, u−], [x+, u+];H, J) with
CZ([x−, u−])− CZ([x+, u+]) ≤ 2 and every (s, t) ∈ R× S1.

(5) Denote by Mk(c,H, J) the set of all points x = u(s, t) ∈ M where
u ∈ M([x−, u−], [x+, u+];H, J) with energy

E(u) =
1

2

∫ ∞

−∞

∫ 1

0

(∣∣∣∣∂u∂s
∣∣∣∣2 + ∣∣∣∣∂u∂t −XH(t, u)

∣∣∣∣2
)
dtds ≤ c

and CZ([x−, u−]) − CZ([x+, u+]) ≤ k. Then the sets M1(c;H, J)

andM2(c;H, J) are compact for every c > 0

2.1.4 Hamiltonian Floer Homology
Definition 2.1.16. The action functional on the contractible 1-periodic orbits
is defined as

AH([x, u]) = −
∫
D

u∗ω +

∫ 1

0

H(t, x(t))dt
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Define the k-th chain group as

CFk(H, J ; Λω) =

{∑
j

λj[xj, uj] | # {j : λj ̸= 0,AH([xj, uj]) < c} <∞,∀c > 0

}

where λj ∈ Λω and [xj, uj] is a class of the contractible 1-periodic orbits with
Conley-Zehnder index k. The action of λj on [xj, uj] is defined as

λj[xj, uj] =
∑
A∈Γ0

λA[xj, uj#A]

where λj =
∑
A∈Γ0

λAT
ω(A) ∈ Λω.

We can extend the coefficient Λω to the universal Novikov ring ΛZ,univ by
tensor product.

CFk(H, J ; ΛZ,univ) = CFk(H, J ; Λω)⊗Λω ΛZ,univ

Define the moduli space

Mk([x−, u−], [x+, u+];H, J) := M([x−, u−], [x+, u+];H, J)/R

whereCZ([x−, u−])− CZ([x+, u+]) = k and the R-action on
M([x−, u−], [x+, u+];H, J) is given by translating the R-coordinate of the
Floer trajectory connecting [x−, u−] to [x+, u+]. By Section 2.1.3, we know
M1([x−, u−], [x+, u+];H, J) is a 0-dimensional compact manifold. Thus
#M1([x−, u−], [x+, u+];H, J) <∞.

Define the differential of the chain complex as

d : CFk(H, J ; Λω) → CFk−1(H, J ; Λω)

[x, u] 7→
∑
[y,v]

CZ([x,u])−CZ([y,v])=1

#M1([x, u], [y, v];H, J)

It was shown that d2 = 0 using M2([x−, u−], [x+, u+];H, J). See [HS95,
Section 5]. Denote the homology of the chain complex (CF∗(H, J ; Λω), d)

by HF∗(H, J ; Λω). The Floer homology HF∗(H, J ; Λω) does not depend
on the generic choice of the Hamiltonian and the almost complex structure as
shown in [HS95].
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2.2 Quantum Homology

2.2.1 Quantum Homology
We follow [MS12] for the definition of the quantum homology. The quantum
homology of (M,ω) is defined byQH∗(M,ΛZ,univ) = H∗(M,Z)⊗ZΛZ,univ.
There is a product on

QHev(M,ΛZ,univ) = ⊕iQH2i(M,ΛZ,univ)

defined as follows. Choose an integer basise0, · · · , eN of the free part ofH∗(M,Z)
such that e0 = [M ] ∈ H2n(M,Z) and each basis element eν has pure degree.
Define the integer matrix gνµ by

gνµ :=

∫
M

PD(ev) ∪ PD(eµ),

and let gνµ denote the inverse matrix. Then the product of a, b ∈ Hev(M,Z)
is defined by

a ∗ b :=
∑
A

∑
ν,µ

GWM
A,3(a, b, eν)g

νµeµT
ω(A)

The product of a and b can also be expressed as

a ∗ b =
∑
A

(a ∗ b)AT ω(A)

where

(a ∗ b)A :=
∑
ν,µ

GWM
A,3(a, b, eν)g

νµeµ ∈ Hdeg(a)+deg(b)+2c1(A)−2n(M,Z)

which is characterized by the condition∫
M

PD((a ∗ b)A) ∪ c := GWM
A,3(a, b, PD(c))

for c ∈ H∗(M,Z).
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2.2.2 PSS Isomorphism
We follow [PSS96] to define the PSS isomorphism between Hamiltonian Floer
homology and quantum homology.

PSSH : QH(M,ΛZ,univ) → HF (H, J ; ΛZ,univ)

Let Σ be a Riemann surface of genus zero with l cylindrical ends Zi =

ϕi((0,∞)× S1) ⊂ Σ. Fix an almost complex structure j on Σ such that ϕ∗
i j

agrees with the standard structure on the cylinders. Also fix lHamiltoniansHi :

R× S1 ×M → R such thatHi(s, ·, ·) vanishes near s = 0 and independent
of s for s ≥ 1.

Given contractible 1-periodic orbits x̃i = [xi, ui] ofXHi
, define the Mod-

uli space

MΣ(x̃1, · · · , x̃l, H1, · · · , Hl, J)

as the space of all smooth maps u : Σ → M which satisfy the following
conditions.

(a) u is J -holomorphic on the complement Σ− ∪iZi.

(b) The maps ui = u ◦ ϕi satisfy

∂ui
∂s

+ J(u)
∂ui
∂t

−∇Hi(s, t, ui) = 0,

xi(t) = lim
s→∞

ui(s, t)

(c) The map u capped off by the disks ui (with opposite orientations) repre-
sents a torsion homology class inH2(M,Z).

Fix d distinct points z1, · · · , zd ∈ Σ and homology classes α1, · · · , αd ∈
H∗(M,Z) such that

l∑
i=1

CZ([xi, ui]) = 2n−
d∑

ν=1

(2n− deg(αν)).

Define the moduli space

MΣ(α1, · · · , αd, x̃1, · · · , x̃l, H1, · · · , Hl, J)

to be the set of all curves u ∈ MΣ(x̃1, · · · , x̃l, H1, · · · , Hl, J) with u(zν) ∈
αν .
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For generic choice of the Hamiltonians and the almost complex structure,
MΣ(α1, · · · , αd, x̃1, · · · , x̃l, H1, · · · , Hl, J) is a finite set. Thus one can de-
fine a multi-linear map ΨΣ from

QH∗(M,ΛZ,univ)⊗ · · · ⊗QH∗(M,ΛZ,univ)

to

HF (H1, J ; ΛZ,univ)⊗ · · · ⊗HF (Hl, J ; ΛZ,univ)

by

ΨΣ(α1, · · · , αd) =
∑
x̃i

#MΣ(α1, · · · , αd, x̃1, · · · , x̃l, H1, · · · , Hl, J)(x̃1, · · · , x̃l)

Example 2.2.1 (Pair-of-Pants Product). Taked = 1 andα1 = [M ] ∈ H2n(M,Z).
Take l = 3,H1 = H2 = H , andH3(t, ·) = −H(−t, ·). Then one can get the
pair-of-pants product on the Floer homology.

HF2n−j(H, J ; ΛZ,univ)⊗HF2n−k(H, J ; ΛZ,univ) → HF2n−(j+k)(H, J ; ΛZ,univ)

by Poincare duality.

Example 2.2.2 (PSS Isomorphism). Take d = l = 1. One can get the PSS
isomorphism

PSSH : QH(M ; ΛZ,univ) → HF (H, J ; ΛZ,univ)

2.2.3 Semisimplicity
Throughout this subsection, we assume thatQHev(M,ΛK,univ) is semisimple
where K is a field with characteristic 0 and .

LetR be a ring and p ∈ Spec(R). Denote byRp the localization at p and
by k(p) the residue fieldRp/(pRp).

The following theorem is Theorem 6.1 in [Ush11b].

Theorem 2.2.3. LetR be a ring containing Q as a subfield and letA be a com-
mutativeR- algebra which, considered as anR- module, is finitely generated and
free. Denote by f : Spec(A) → Spec(R) the morphism of schemes induced by
the unique ring morphismR → A (sending r to r · 1).

(A) The following are equivalent, for a point p ∈ Spec(R):
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(A1) The morphism f is unramified at every point in f−1({p}).

(A2) There exists a field extension k(p) → k such that the mapSpec(A⊗R

k) → Spec(k) induced by the unique ring morphism k → A⊗R k

is unramified.

(A3) There exists a field extension k(p) → k such thatA⊗R k decomposes
as a direct sum of field extensions of k.

(A4) For every field extension k(p) → k the algebraA⊗R k decomposes
as a direct sum of field extensions of k.

Moreover, the setU1 of points p ∈ Spec(R) at which (A1) holds is open in
Spec(R).

(B) The following are equivalent, for a point p ∈ Spec(R):

(B1) There is someq ∈ Spec(A) such thatf(q) = pandf : Spec(A) →
Spec(R) is unramified at q.

(B2) There exists a field extension k(p) → k such that the mapSpec(A⊗R

k) → Spec(k) induced by the unique ring morphism k → A⊗R k

is unramified at some point q ∈ Spec(A⊗R k).

(B3) There exists a field extension k(p) → k and a direct sum splitting of
k-algebrasA⊗R k = K ⊕ S where k → K is a field extension.

(B4) For every field extension k(p) → k there is a direct sum splitting of
k-algebrasA⊗R k = K ⊕ S where k → K is a field of extension.

Moreover, the set U2 of points p ∈ Spec(R) at which (B1) holds is open in
Spec(R).

Remark 2.2.4. SinceA is a finitely generated module in Theorem 2.2.3,A⊗R k

decomposes as a direct sum of algebraic extension of k in (A3) and (A4).

Corollary 2.2.5. QHev(M,Frac(ΛZ,univ)) is semisimple, whereFrac(ΛZ,univ)

is the field of fractions of ΛZ,univ .

Proof. ΛQ,univ contains Q as a subfield. The only prime ideal in ΛQ,univ is {0}
and then ΛQ,univ is the only residue field of itself. Because K has characteristic
0, it is a field extension of Q. Then ΛK,univ is a field extension of ΛQ,univ. Thus
(A3) in Theorem 2.2.3 holds. Now consider the trivial extension of ΛQ,univ, we
haveQH(M,ΛQ,univ) is semisimple.

Frac(ΛZ,univ) is a field containing Q as a subfield. The only prime ideal
in Frac(ΛZ,univ) is {0} and then Frac(ΛZ,univ) is the only residue field of
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itself. ΛQ,univ is a field extension of Frac(ΛZ,univ). Thus (A3) in Theorem
2.2.3 holds. Now consider the trivial extension of Frac(ΛZ,univ), we have
QHev(M,Frac(ΛZ,univ)) is semisimple.

Corollary 2.2.6 ([AL23], Corollary 3.3). Let Frac(ΛZ,univ) be the algebraic
closure of Frac(ΛZ,univ). ThenQHev(M,Frac(ΛZ,univ)) is semisimple.

The following lemma is Lemma 3.6 in [Lor96]

Lemma 2.2.7. LetA be a commutative ring, and letP ⊂ A be a maximal ideal.
Let S ⊂ A\P be a multiplicative set. Then the fields A/P and S−1A/S−1P

are isomorphic.

The following lemma follows from Proposition 2.6.2, Lemma 2.6.4, Theo-
rem 2.1.5 and Lemma 2.2.7.

Lemma 2.2.8. Every residue field of ΛZ,univ is perfect.

Now we rewrite Theorem 6.1 in [Ush11b] to fit our context.

Theorem 2.2.9. LetR be a ring such that every residue field ofR is perfect and
letA be a commutativeR-algebra which, considered as anR-module, is finitely
generated and free. Denote by f : Spec(A) → Spec(R) the morphism of
schemes induced by the unique ring morphismR → A (sending r to r · 1).

(A) The following are equivalent, for a point p ∈ Spec(R):

(A1) The morphism f is unramified at every point in f−1({p}).

(A2) There exists an algebraic field extension k(p) → k such that the map
Spec(A⊗R k) → Spec(k) induced by the unique ring morphism
k → A⊗R k is unramified.

(A3) There exists an algebraic field extension k(p) → k such thatA⊗R k

decomposes as a direct sum of field extensions of k.

(A4) For every algebraic field extension k(p) → k the algebra A ⊗R k

decomposes as a direct sum of field extensions of k.

Moreover, the setU1 of points p ∈ Spec(R) at which (A1) holds is open in
Spec(R).

Definition 2.2.10. LetA be anR- algebra as in Theorem 2.2.9. We say thatA
is generically semisimple if the subset U1 ⊂ Spec(R) of Theorem 2.2.9(A) is
nonempty.
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Corollary 2.2.11. QHev(M,ΛZ,univ) is generically semisimple.

Proof. Frac(ΛZ,univ) is the residue field of ΛZ,univ at the prime ideal {0}. By
Corollary 2.2.5 and Theorem 2.2.9, ΛZ,univ is generically semisimple.

Corollary 2.2.12. QHev(M,ΛZp,univ) is semisimple.

Proof. By Lemma 2.6.4 and Lemma 2.2.7,ΛZp,univ is the residue field ofΛZ,univ

at the prime ideal< p >. By Theorem 2.2.9,QHev(M,ΛZp,univ) is semisimple.

SinceQHev(M,Frac(ΛZ,univ)) is semisimple, let {ei}mi=1 be the idempo-
tents ofQHev(M,Frac(ΛZ,univ)) such that

QHev(M,Frac(ΛZ,univ)) =
m⊕
i=1

ei ∗QHev(M,Frac(ΛZ,univ)).

Denote by

ei =
n∑
j=0

kijhj

wherekij ∈ Frac(ΛZ,univ) andhj ∈ H2j(M). Letpij(x) ∈ Frac(ΛZ,univ)[x]

be the minimial polynomial of kij and {αlij} be all the roots of pij(x). Since

Frac(ΛZ,univ)({αlij)}i,j,l)

is a finite extension, there is an element α ∈ Frac(ΛZ,univ) such that

Frac(ΛZ,univ)({αlij)}i,j,l) = Frac(ΛZ,univ)(α).

In particular,kij ∈ Frac(ΛZ,univ)(α) for any i = 1, · · · ,m andj = 1, · · · , n.
Let f(x) be the minimal polynomial of α. Denote by

f(x) = arx
r + ar−1x

r−1 + · · · a1x+ a0

where ai ∈ Frac(ΛZ,univ). Assume ai =
a′i
a′′i

where a′i, a′′i ∈ ΛZ,univ. Then

r∏
i=1

a′′i · f(x) ∈ ΛZ,univ[x],
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still denote
r∏
i=1

a′′i · f(x) by f(x). Finally we have

Frac(ΛZ,univ)(α) ∼=
Frac(ΛZ,univ)[x]

< f >
.

By reducing the coefficients of f(x) to ΛZp,univ, we get

[f(x)]p = gm1
1 (x)gm2

2 (x) · · · gms
s (x)

in ΛZp,univ[x] where gi(x) are irreducible and distinct from each other.

Claim 2.2.13 ([AL23], Claim 3.4). m1 = m2 = · · · = ms = 1 for sufficiently
large p.

Proof. Since f(x) is irreducible over Frac(ΛZ,univ)[x], then

gcd(f(x), f ′(x)) = 1.

So,

r(x)f(x) + q(x)f ′(x) = 1

for some r(x), q(x) ∈ Frac(ΛZ,univ)[x]. Let Θ ∈ ΛZ,univ be the product of
the denominators of the coefficient of r(x) and q(x). Then

r̃(x)f(x) + q̃(x)f ′(x) = Θ (2.2.1)

where r̃(x) = r(x) ·Θ ∈ ΛZ,univ and q̃(x) = q(x) ·Θ ∈ ΛZ,univ. Denote by

Θ = θ−sT
λ−s + θ−s+1T

λ−s+1 + · · · .

Then for all primes p > |θ−s|, Θ reduces to a nonzero element [Θ]p inΛZp,univ.
Now by reducing the equation 2.2.1 for sufficiently large primes p, we have

[r̃(x)]p[f(x)]p + [q̃(x)]p[f
′(x)]p = [Θ]p

Thus gcd([f(x)]p, [f ′(x)]p) = 1 in ΛZp,univ[x], which means m1 = m2 =

· · · = ms = 1.

Thus, for a sufficiently large prime p, [f(x)]p = g1(x)g2(x) · · · gs(x)
where gi(x) are irreducible and distinct from each other.
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Proposition 2.2.14. For sufficiently large p, the idempotents ei can be reduced
to a nonzero element [ei]p inQHev(M,ΛZp , univ) where ΛZp , univ is the alge-
braic closure of ΛZp,univ .

Proof. Recall that ei =
n∑
j=1

kijhj where kij ∈ Frac(ΛZ,univ)(α) and

Frac(ΛZ,univ)(α) ∼=
Frac(ΛZ,univ)[x]

< f >
.

Then we can write kij asKij(x)+ < f > in Frac(ΛZ,univ)[x]

<f>
.

Since kij is invertible, then there is an elementLij(x) ∈ Frac(ΛZ,univ)[x]

such that

Kij(x)Lij(x)+ < f >= 1+ < f >, i.e. Kij(x)Lij(x) = 1 +Mij(x)f(x).

forMij(x) ∈ Frac(ΛZ,univ)[x]. Let ΥK , ΥL and ΥM be the product of the
denominators of the coefficients of Kij(x), Lij(x) and Mij(x) respectively.
Then

K̃ij(x)L̃ij(x)ΥM = ΥKΥLΥM + M̃ij(x)f(x)ΥKΥL (2.2.2)

where K̃ij(x) = Kij(x) · ΥK ∈ ΛZ,univ[x], L̃ij(x) = Lij(x) · ΥL ∈
ΛZ,univ[x] and M̃ij(x) = Mij(x) · ΥM ∈ ΛZ,univ[x]. For sufficiently large
prime p, [ΥK ]p ̸= 0, [ΥL] ̸= 0, [ΥM ]p ̸= 0 and [f ]p ̸= 0. By reducing the
equation 2.2.2, we have

[K̃ij(x)]p[L̃ij(x)]p[ΥM ]p = [ΥK ]p[ΥL]p[ΥM ]p+[M̃ij(x)]p[f(x)]p[ΥK ]p[ΥL]p
(2.2.3)

Thus [K̃ij(x)]p[L̃ij(x)]p ̸= 0 in ΛZp,univ [x]

[f(x)]p
. In particular [K̃ij(x)]p ̸= 0 in

ΛZp,univ [x]

[f(x)]p
. Then one can reduceKij(x)+ < f(x) > to [K̃ij(x)]p[ΥK ]

−1
p + <

[f(x)]p >∈
ΛZp,univ [x]

<[f(x)]p>

Note that

ΛZp,univ[x]

< [f(x)]p >
=

ΛZp,univ[x]

< g1(x)g2(x) · · · gs(x) >
∼=

s∏
l=1

ΛZp,univ[x]

< gl(x) >
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and each ΛZp,univ [x]

<gl(x)>
is a field because gi(x) is irreducible. Let

Pl :
ΛZp,univ[x]

< [f(x)]p >
→

ΛZp,univ[x]

< gl(x) >

be the projection. Then for at least one Pl such that

Pl([K̃ij(x)]p[ΥK ]
−1
p + < [f(x)]p >) ̸= 0.

Let

ιl :
ΛZp,univ[x]

< gl(x) >
→ ΛZp,univ

be the inclusion. Then

ιl(Pl([K̃ij(x)]p[Υ]−1
p + < [f(x)]p >)) ̸= 0

Thus we have reduced kij to an nonzero element in ΛZp,univ. If we can
reduce one of{kij}nj=1 to a nonzero element inΛZp,univ, then ei can be reduced
to a nonzero element in QHev(M,ΛZp,univ). But each ei is a finite sum and
there are finitely many ei, then one can choose sufficiently large p such that kij
can be reduced to a nonzero element in ΛZp,univ for any i, j.

Remark 2.2.15. Actually, for any l = 1, · · · , s and sufficiently large p,

Pl([K̃ij(x)]p[ΥK ]
−1
p + < [f(x)]p >) ̸= 0.

Otherwise, suppose

Pl([K̃ij(x)]p[ΥK ]
−1
p + < [f(x)]p >) = 0.

Then

[K̃ij(x)]p[ΥK ]
−1
p = gl(x)δ(x)

for some δ(x) ∈ ΛZ,univ[x]. Now we can rewrite the equation 2.2.3 as:

gl(x)δ(x)[ΥK ]p[L̃ij(x)]p[ΥM ]p

= [ΥK ]p[ΥL][ΥM ]p + [M̃ij(x)]pg1(x) · · · gl(x) · · · gs(x)[ΥK ]p[ΥL]p
(2.2.4)
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Let η be a root of gl(x). Plug η into the equation 2.2.4, we get

[ΥK ]p[ΥL]p[ΥM ]p = 0,

which contradicts with our choice of p.

Proposition 2.2.16 ([AL23], Proposition 3.6). The reductions [ei]p are idem-
potents in QHev(M,ΛZp,univ) for i = 1, · · · ,m, [ei]p ∗ [ej]p = 0 for i ̸= j

and
m∑
i=1

[ei]p = 1 where 1 is the multiplication identity inQHev(M,ΛZp,univ).

Proof. SinceQHev(M,Frac(ΛZ,univ)) is semisimple and {ei}mi=1 are idempo-
tents such that

QHev(M,Frac(ΛZ,univ)) =
m⊕
i=1

ei ∗QHev(M,Frac(ΛZ,univ)),

we have the following equations:

ei ∗ ei = ei

for i = 1, · · · ,m,
ei ∗ ej = 0, i ̸= j

for i, j = 1, · · · ,m,
m∑
i=1

ei = 1

Then one can reduce the three equations toQHev(M,ΛZp,univ).

ThusQHev(M,ΛZp,univ) =
m⊕
i=1

[ei]p ∗QHev(M,ΛZp,univ).

Since QHev(M,Frac(ΛZ,univ)) is semisimple and {ei}mi=1 are idempo-
tents, then each ei∗QHev(M,Frac(ΛZ,univ)) is an algebraic field extension of
Frac(ΛZ,univ). But Frac(ΛZ,univ) is the algebraic closure of Frac(ΛZ,univ),
so

ei ∗QHev(M,Frac(ΛZ,univ)) ∼= Frac(ΛZ,univ).
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Also,

QHev(M,Frac(ΛZ,univ)) =
m⊕
i=1

ei ∗QHev(M,Frac(ΛZ,univ))

∼=
m⊕
i=1

Frac(ΛZ,univ).

Thusm = rank(Hev(M)).
SinceQHev(M,ΛZp,univ) is a freeΛZp,univ-module and [ei]p∗QHev(M,ΛZ,univ)

is a submodule, then [ei]p ∗QHev(M,ΛZp,univ) can be written as a direct sum
of ΛZp,univ. Since

m = rank(Hev(M,Q)) = rank(Hev(M,Zp))

for sufficiently large p and [ei]p is nonzero, we have

[ei]p ∗QHev(M,ΛZp,univ) = ΛZp,univ.

ThusQHev(M,ΛZp,univ) is semisimple and generated by the idempotents{[ei]p}mi=1.

2.3 Persistence Module

2.3.1 Non-Archimedean valuation
Definition 2.3.1. A non-Archimedean valuation on a field Λ is a function

ν : Λ → R ∪ {∞}

satisfying the following properties:
(1) ν(x) = +∞ if and only if x = 0,
(2) ν(xy) = ν(x) + ν(y) for all x, y ∈ Λ,
(3) ν(x+ y) ≥ min{ν(x), ν(y)} for all x, y ∈ Λ.
Furthermore, we set Λ0 = ν−1([0,+∞)) to be the subring of elements of

nonnegative valuation.

Example 2.3.2. We defined the universal Novikov field in Example 2.1.2. Let
K be a ground field. A non-Archimedean valuation on ΛK,univ can be defined
as

ν

(
∞∑

i=−K

aiT
λi

)
= λ−K (2.3.1)
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on ΛK,univ\{0} and ν(0) = +∞.
We showed in Proposition 2.1.6 that every element in Frac(ΛZ,univ) can

be written as
∞∑

i=−K

ciT
λi for ci ∈ Q. Thus we can define a valuation ν :

Frac(ΛZ,univ) → R ∪ {∞} as in Equation 2.3.1.

Definition 2.3.3. A non-Archimedean norm on a field Λ is a map | · | : Λ →
R≥0 satisfying the following properties:

(1) |x| = 0 if and only if x = 0,
(2) |xy| = |x||y| for all x, y ∈ Λ,
(3) |x+ y| ≤ max{|x|, |y|} for all x, y ∈ Λ.
Furthermore, Λ is said to be complete with respect to | · | if it is a complete

metric space with respect to the induced topology.

Example 2.3.4. Given a non-Archimedean valuation ν, one can define a non-
Archimedean norm by setting |x| = e−ν(x). Conversely, if | · | is a non-
Archimedean norm, a non-Archimedean valuation can be obtained by setting
ν(x) = − ln(|x|).

2.3.2 Extensions of valuations
Now we use the following results in [Cas86] to define filtration on the exten-
sions of fields.

Lemma 2.3.5 ([Cas86], Chapter 7, Theorem 1.1 ). Let k be a field and complete
with respect to a norm | · | and let K be a finite extension of degree n. Then there
is precisely one extension ∥ · ∥ of | · | to K. It is given by

∥ A ∥= |NK/k(A)|1/n

whereA ∈ K andNK/k(A) is the determinant of the mapB → AB forB ∈ K.
Furthermore, K is complete with respect to ∥ · ∥.

Lemma 2.3.6 ([Cas86], Chapter 9, Lemma 2.1). Let K = k(A) be a separable
extension and let F (x) ∈ k[x] be the minimial polynomial for A. Let k be the
completion of k with respect to a norm | · |. Let F (x) = ϕ1(x) · · ·ϕJ(x) be the
decomposition of F (x) into irreducibles in k[x]. Then the ϕj are distinct. Let
Kj = k(Bj) whereBj is a root of ϕj(x). Then there is an injection

K ↪→ Kj (2.3.2)

extending k ↪→ k under whichA→ Bj . Denote by | · |j the norm on K induced
by equation 2.3.2 and the unique norm on Kj extending | · |. Then the | · |j
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(1 ≤ j ≤ J) are precisely the extension of | · | to K. Furthermore, Kj is the
completion of K with respect to | · |j .

Lemma 2.3.7 ([Cas86], Chapter 7, Corollary 1). There is a unique extension of
| · | to the algebraic closure k of k

For each
∞∑

j=−K

ajT
λj ∈ Frac(ΛZ,univ) with λ−K < λ−K+1 < · · · ,

the valuation ν

(
∞∑

j=−K

ajT
λj

)
= λ−K . Then | · | = e−ν(·) is a norm on

Frac(ΛZ,univ). Since Frac(ΛZ,univ) has characteristic zero, it is perfect and
then Frac(ΛZ,univ)(α) is a separable extension. Now by Lemma 2.3.6 one
can get a norm | · | on Frac(ΛZ,univ)(α). Then − ln(| · |) is a valuation on
Frac(ΛZ,univ)(α).

The valuation on ΛZp,univ is ν

(
∞∑

j=−K

ajT
λj

)
= λ−K where aj ∈ Zp

and λ−K < λ−K+1 < · · · . Then | · | = e−ν(·) is a norm on ΛZp,univ. Recall
f(x) is the minimal polynomial of α and, reducing to ΛZp,univ[x],

[f(x)]p = g1(x)g2(x) · · · gs(x)

where gi(x) are irreducible and distinct from each other. Then

|[f(0)]p| =
s∏
i=1

|gi(0)|.

Thus for some i,

|gi(0)| ≤ |[f(0)]p|1/s.

Without loss of generality, assume |g1(0)| ≤ |[f(0)]p|1/s. There is an algebraic
element γ over ΛZp,univ such that ΛZp,univ [x]

<g1(x)>
= ΛZp,univ(γ). Since ΛZp,univ is

complete, by Lemma 2.3.5, one can get a norm | · | on ΛZp,univ(γ) and then
− ln(| · |) is a valuation on ΛZp,univ(γ).

Lemma 2.3.8 ([AL23], Lemma 4.1). Let b ∈ Frac(ΛZ,univ). Then |b| ≥ |[b]p|
for sufficiently large p.

Proof. Suppose b =
∞∑

i=−K

biT
λi with λ−K < λ−K+1 < · · · . Then ν(b) =

λ−K . Write b−K =
b−K,0

b−K,1
and then [b−K ]p = [b−K,0]p[b−K,1]

−1
p . If [b−K ]p =
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0, then ν(b) < ν([b]p). If [b−K ]p ̸= 0, then ν(b) = ν([b]p). Since | ·| = e−ν(·),
then |b| ≥ |[b]p|.

Remark 2.3.9. The prime p in the above lemma depends on b and there is not
a uniform p for all elements in Frac(ΛZ,univ).

Proposition 2.3.10 ([AL23], Proposition 4.3). |γ| ≤ max{1, |f(0)|}.

Proof. Let Fγ(x) be the characteristic polynomial of γ. Then

Fγ(x) = NΛZp,univ(γ)/ΛZp,univ
(x− γ).

Since the degree of ΛZp,univ(γ) over itself is 1, then Fγ(x) is the minimal poly-
nomial of γ, in particular, Fγ(x) = g1(x). Thus

NΛZp,univ(γ)/ΛZ,univ
(γ) = (−1)Mg1(0)

whereM is the degree of g1(x). Then

|γ| = |NΛZp,univ(γ)/ΛZp,univ
(γ)|1/M = |g1(0)|1/M .

Since |g1(0)| ≤ |[f(0)]p|1/s ≤ |f(0)|1/s, then |γ| ≤ |f(0)|1/sM . Let N
be the degree of f(x). If |f(0)| ≤ 1, then |f(0)|1/sM ≤ 1. If |f(0)| > 1,
|f(0)|1/sM ≤ |f(0)|. Thus, |γ| ≤ max{1, |f(0)|}.

2.3.3 Non-Archimedean filtration
Definition 2.3.11. Let Λ be a field with a non-Archimedean valuation ν. Sup-
poseC is a finite dimensional module over Λ. A non-Archimedean filtration is
a function l : C → R ∪ −∞ satisfying the following properties:

(1) l(x) = −∞ if and only if x = 0

(2) l(λx) = l(x)− ν(λ) for all λ ∈ Λ and x ∈ C

(3) l(x+ y) ≤ max{l(x), l(y)}

Proposition 2.3.12 (Proposition 2.3 in [UZ16]). If l(x) ̸= l(y), then

l(x+ y) = max{l(x), l(y)}

Definition 2.3.13. We call a Λ-basis (x1, · · · , xN) of (C, l) orthogonal if

l
(∑

λixi

)
= max{l(xi)− ν(λi)}

for all λi ∈ Λ. It is called orthonormal if it also satisfies l(xi) = 0 for all i.
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Example 2.3.14 (Non-Archimedean filtration on Floer chain complex). We
choose a ΛK,univ-basis {x1, · · · , xN} of CF (H, J ; ΛK,univ) and set the non-
Archimedean filtration as

A : CF (H, J ; ΛK,univ) → R ∪ {−∞}∑
λixi 7→ max{AH(xi)− ν(λi)}

where AH is the action functional. Equivalently, we declare {x1, · · · , xN} to
be an orthogonal basis of (CF (H, J ; ΛK,univ),A).

The basis given by {x̃1, · · · , x̃N} :=
{
TA(x1)x1, · · · , TA(xN )xN

}
is or-

thonormal.
We now consider the case where we extend the coefficients ofCF (H, J ; ΛK,univ)

toΛK,univ. For an orthogonal basis {x1, · · · , xN} of (CF (H, J ; ΛK,univ),A),
{x1 ⊗ 1, · · · , xN ⊗ 1} is a basis of CF (H, J ; ΛK,univ). We define a non-
Archimedean filtration A onCF (H, J ; ΛK,univ) by setting

A
(∑

λ̄ixi ⊗ 1
)
= max{AH(xi)− ν̄(λ̄i)}

where ν̄ is the extended valuation onΛK,univ of the valuationν onCF (H, J ; ΛK,univ).
Then{x1⊗1, · · · , xN⊗1} is an orthogonal basis and

{
TA(x1)x1 ⊗ 1, · · · , TA(xN )xN ⊗ 1

}
is an orthonormal basis ofCF (H, J ; ΛK,univ).

Let {y1, · · · , yN} be an orthonormal basis ofCF (H, J ; ΛK,univ). Then it
is related to the orthonormal basis{x̃1, · · · , x̃N}by a matrixA ∈ GL(B,Λ0

K,univ)

in the sense thatA (x̃i) = yi, furthermore,

{y1 ⊗ 1, · · · , yN ⊗ 1} = A{x̃1 ⊗ 1, · · · , x̃N ⊗ 1}

is an orthonormal basis ofCF (H, J ; ΛK,univ).

We note that for any non-trivialx ∈ CF (H, J ; ΛK,univ)we haveA(d(x)) <

A(x)whered is the differential of the Floer chain complex. Then, for a constant
c that is not a critical value of action functionalAH , (CF (H, J ; ΛK,univ)

<c, d)

is a chain complex whereCF (H, J ; ΛK,univ)
<c := A−1(−∞, c) and denote

byHF (H, J ; ΛK,univ)
<c the homology of it. We define the Floer complex in

the action window [a, b) as the quotient complex

CF (H, J ; ΛK,univ)
[a,b) :=

CF (H, J ; ΛK,univ)
<b

CF (H, J ; ΛK,univ)<a

and denote by HF (H, J ; ΛK,univ)
[a,b) the Floer homology of this quotient

complex.
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Example 2.3.15 (Non-Archimedean filtration on quantum homology). For
each element

∑
fiαi where fi ∈ ΛZ,univ and αi ∈ H∗(M,K) define the

filtration l : QH(M) → R ∪ {−∞} to be l(
∑
fiαi) = max{−ν(fi)}.

Now, as in [PSS17][She22], for each element α ∈ QH(M,ΛK,univ), we have a
map

α∗ : HF (H, J ; ΛK,univ)
<c → HF (H, J ; ΛK,univ)

<c+l(α)

defined by counting negative g-gradient trajectories γ : (−∞, 0] → M of a
Morse function f onM , for a Morse-Smale pair (f, g), asymptotic to critical
points of f as s → −∞, and with γ(0) incident to Floer cylinders u : R ×
S1 → M at u(0, 0). This construction is reminiscent of the quantum cap
product as in [PSS96][Sch00][Sei02][Flo89].

2.3.4 Spectral invariants
Definition 2.3.16. The spectral invariant of a nontrivial elementα ∈ QH(M,ΛK,univ)

is defined as

c(α,H) := inf {a ∈ R | PSSH(α) ∈ im (HF (H, J ; ΛK,univ)
<a → HF (H, J ; ΛK,univ))}

By [BC09], spectral invariants do not change under extension of coeffi-
cients. Spectral invariants enjoy a wealth of useful properties [Sch00] [Vit92]
[Oh05] [Oh06] [Ush10] [Ush08]. We summarize some of their properties.

Proposition 2.3.17 ([AL23], Proposition 2.10). The spectral invariants satisfy
the following:

(1) Stability:∫ 1

0

min(Ht −Gt)ft ≤ c(α,H)− c(α,G) ≤
∫ 1

0

max(Ht −Gt)dt.

(2) Triangle inequality:

c(α ∗ β,H#G) ≤ c(α,H) + c(β,G)

where

H#G(t, x) := H(t, x) +G(t, (ϕtF )
−1(x))
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(3) Novikov action:

c(λα,H) = c(α,H)− ν(λ)

(4) Non-Archimedean property:

c(α + β,H) ≤ max{c(α,H), c(β,H)}

We remark that by the stability property, the spectral invariants are defined
for all Hamiltonians and all the above listed properties apply in this generality.

2.3.5 Barcode
In this subsection we follow [She22, Section 4.4.1] in order to define persistence
modules and their associated barcodes and discuss the relation between them.

Let K be a field. Denote by VectK the category of finite dimensional K-
vector spaces and by (R,≤) the poset category ofR. A persistence module over
K is a functor

V : (R,≤) → VectK

The collection of such functors together with their natural transformations
form an abelian category Fun((R,≤),VectK). We consider a full abelian sub-
category

pmod ⊂ Fun((R,≤),VectK)

which is defined by requiring that certain technical assumptions are satisfied.
The following definition summarizes the data of such a persistence module.

Definition 2.3.18. A persistence module V in pmod consists of a family

{V a ∈ VectK}a∈R

of vector spaces and K-linear maps πa,bV : V a → V b for each a ≤ b such that
πa,aV = idV a and πb,cV ◦ πa,bV = πa,cV for all a ≤ b ≤ c. Furthermore, we require
them to satisfy the following:

(1) Support: V a = 0 for all a≪ 0.

(2) Finiteness: there exist a finite subset S ⊂ R such that for all a, b in the
same connected components of R\S, the map πa,bV is an isomorphism.
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(3) Continuity: for every two consecutive elements s < s′ of S, and any
a ∈ (s, s′), the map πa,s

′

V is an isomorphism.

We define V ∞ = lim
a→∞

V a.

The normal form theorem [ZC05][Cra15] implies that the isomorphism
classes of a persistence module V ∈ pmod is determined by its barcode, that is,
a multiset B(V ) = {(Ik,mk)}1≤k≤N of intervals Ik ⊂ R with multiplicities
mk ∈ Z>0. The intervals are of two types, K = K(V ) of them are finite,
Ik = (ak, bk], and B = B(V ) = N − K are infinite, Ik = (ak,∞). The
intervals are called bars and the bar-lengths are defined as |Ik| = bk − ak in the
finite case, and |Ik| = +∞ otherwise.

The isometry theorem [Cha+16][BL15][Cha+09][CEH06] shows that the
barcode assignment map

B : (pmod, dinter) → (barcodes, dbottle)
V 7→ B(V )

is an isometry. The interleaving distance is defined by setting

dinter(V,W ) = inf{δ ≥ 0 | ∃δ − interleaving, f ∈ hom(V,W [δ]), g ∈ hom(W,V [δ])},

where for V ∈ pmod and c ∈ R, V [c] ∈ pmod is given by pre-composing
with the functor Tc : (R,≤) → (R,≤), t 7→ t + c. We say that a pair
f ∈ hom(V,W [c]), g ∈ hom(W,V [c]) is a c-interleaving if

g[c] ◦ f = sh2δ,V , f [c] ◦ g = sh2δ,W

where for c ≥ 0, shc,V ∈ hom(V, V [c]) is the natural transformation idR,≤ →
Tc. Note that, dinter(V,W ) ∈ R≥0 ∪ {∞}, and it is finite if and only if
V ∞ ∼= W∞.

The bottleneck distance is defined as

dbottle(B, C) = inf{δ > 0 | ∃δ − matching between B and C}

where a δ-matching between B, C is defined as bijection σ : B2δ → C2δ be-
tween the sub-multisets B2δ ⊂ B, C2δ ⊂ C, which contains the bars of B, C,
respectively, with bar-length greater than 2δ, such that if σ((a, b]) = (c, d],
then max{|a− c|, |b− d|} ≤ δ. We have that dbottle(B, C) ∈ R∪{∞}, with
it being finite if and only ifB(B) = B(C).

Note that for each c ∈ R there is an isometry given by sending a barcode
B = {(Ik,mk)} to B[c] = {(Ik − c,mk)}. We can therefore consider the
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quotient space (barcodes′, d′bottle) by this isometric R-action, where

d′bottle([B], [C]) = inf
c∈R

dbottle(B, C[c])

We observe that bar-lengths are well-defined in the quotient.
Following the discussion in [She22, Section 4.4], we describe two alternative

descriptions of the bar-length spectrum, which coincide in the semipositive
setting.

Consider the filtered Floer chain complex (CF (H, J ; Λ), d,A), where Λ
is one of the following ΛK, ΛK,univ, A is the non-Archimedean filtration, and
d is the Floer differential. Then, by [UZ16], the complex (CF (H, J ; Λ), d)

admits an orthogonal basis

E = {ξ1, · · · , ξB, η1, · · · , ηK , ζ1, · · · , ζK}

such thatdξj = 0 for allj ∈ {1, · · · , B}, anddζj = ηj for allj ∈ {1, · · · , K}.
The lengths of the finite bars are given by

βj = βj(ϕ
1
H ,K) = A(ζj)−A(ηj)

which we can assume to satisfy β1 ≤ · · · ≤ βK . The length of the largest
finite bar, is the boundary depth introduced by Usher [Ush11a][Ush13], and
denoted by β(ϕ1

H ,K). There areB infinite bar-lengths corresponding to each
ξi. This description yields the identityN = B + 2K , whereN ,B, andK can
be computed by N = dimΛCF (H, J ; Λ), B = dimΛHF (H, J ; Λ), and
K = dimΛ im(d). We denote by

βtot(ϕ
1
H ,K) = β1(ϕ

1
H ,K) + · · ·+ βK(ϕ

1
H ,K)

the total bar-length associated to the barcode.
Following [Fuk+13], the Floer differential d in the orthonormal basis has

coefficients in Λ0. Therefore, one defines a Floer complex (CF (H, J ; Λ), d)
whose homology is a finitely generated Λ0-module, and is therefore of the form
F ⊕ T , where F is a free Λ0-module and T is a torsion Λ0-module. The bar-
lengths are given by the isomorphism

T ∼=
⊕
1≤j≤k

Λ0/(T βj)
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Combining the ideas in the proof of [She22, Lemma 16] and combining
with Proposition 2.1.6 we show that the bar-length spectrum over Zp coincide
with that over Q for a sufficiently large p.

Lemma 2.3.19 ([AL23], Lemma 2.16). Let p be sufficiently large and ϕ be a
Hamiltonian diffeomorphism. The the bar-length spectrum

0 < β1(ϕ,Zp) ≤ · · · ≤ βK(ϕ,Zp)(ϕ,Zp)

over Zp coincides with the bar-length spectrum

0 < β1(ϕ,Q) ≤ · · · ≤ βK(ϕ,Q)(ϕ,Q)

over Q. In particular β(ϕ,Zp) = β(ϕ,Q).

Proof. Let {ξ1, · · · , ξB, η1, · · · , ηK , ζ1, · · · , ζK} be an orthonormal singu-
lar value decomposition of CF (H, J ;Frac(ΛZ,univ)) satisfying dξi = 0 for
all i ∈ {1, · · · , B} and dζj = T βjηj for all j ∈ {1, · · · , K}, where βj is
the j-th bar-length in the spectrum. Note that there is a canonical orthonor-
mal basis {[x̃1, ũ1], · · · , [x̃N , ũN ]} where, [x̃i, ũi] = TA([xi,ui])[xi, ui] for all
i, and {[xi, ui]}Ni=1 is the collection of contractible fixed points ofϕ. These two
orthonormal basis will be related by an matrix Q ∈ GL(N,Frac(ΛZ,univ))

whose coefficients have non-negative valuation, in particular, it is filtration-
preserving. Since Q has only finitely many coefficients, Proposition 2.1.6 im-
plies that for a sufficiently large p, it is possible to reduceQ to a matrix [Q]p ∈
GL(N,ΛZp,univ), i.e. [detQ]p ̸= 0. We can obtain a singular value decomposi-
tion{[ξ1]p, · · · , [ξB]p, [η1]p, · · · , [ηK ]p, [ζ1]p, · · · , [ζK ]p}ofCF (H, J ; ΛZp,univ),
satisfying the same relations as before, by applying [Q]p to the canonical or-
thonormal basis given by the contractible fixed points of ϕ. In particular, it will
have the same bar-length spectrum. On the other hand, {ξ1 ⊗ 1, · · · , ξB ⊗
1, η1 ⊗ 1, · · · , ηK ⊗ 1, ζ1 ⊗ 1, · · · , ζK ⊗ 1} is an orthogonal singular value
decomposition ofCF (H, J ; ΛQ,univ) with the same lar-length spectrum.

2.4 Upper Bound of Boundary Depth

Recall {ei =
n∑
j=0

kijhj}mi=1 are the idempotents ofQHev(M,Frac(ΛZ,univ))

and {[ei]p =
n∑
j=0

[kij]phj}mi=1 are the idempotents of QHev(M,ΛZp , univ)

where kij ∈ Frac(ΛZ,univ)(α) and [kij]p ∈ ΛZp,univ(γ). Suppose kij =
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N∑
s=0

bijsα
s. Then [kij]p =

N∑
s=0

[bijs]pγ
s. Denote by Ξ = max

i,j,s
{|bijs|}. Thus

|[kij]p| ≤ max
0≤s≤N

{|[bijs]pγs|} = max
0≤s≤N

{|[bijs]p||γs|} ≤ Ξ(max{1, |f(0)|})N .

Then

ν([kij]p) ≥ − ln(Ξ(max{1, f(0)})N).

Thus

l([ei]p) = max
0≤j≤n

{−ν([kij]p)} ≤ ln(Ξ(max{1, f(0)})N).

Now we have the following proposition.

Proposition 2.4.1 ([AL23], Proposition 4.4). There is a numberδ, independent
of p, such that l([ei]p) ≤ δ for any i = 1, · · · ,m.

Given a HamiltonianH : S1 ×M → R, define

H̄ : S1 ×M → R
(t, x) 7→ −H(t, ϕtH(x))

Then ϕt
H̄
= (ϕtH)

−1.
Define a bilinear pairing

∆ : CF∗(H, J ; ΛZp,univ)× CF∗(H̄, J ; ΛZp,univ) → ΛZp,univ

(
∑

ai[xi, ui],
∑

bj[xj, uj]) 7→
∑

aibi

where the sums are finite and, for all k, x̄k(t) = xk(1− t)

Lemma 2.4.2 ([AL23], Lemma 2.11). The bilinear pairing ∆ is nondegenerate.

Proof. Suppose

∆(
∑

ai[xi, ui], ·) = 0.

Then for every [xi, ui],

∆(
∑

ai[xi, ui], [xi, ui]) = 0.
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On the other hand,

∆(
∑

ai[xi, ui], [xi, ui]) = ai.

Thusai = 0 for each i, i.e.
∑
ai[xi, ui] = 0. Similarly, if∆(·,

∑
bj[xj, uj]) =

0, then
∑
bj[xj, uj] = 0.

Lemma 2.4.3 ([AL23], Lemma 2.12). ν
(
∆|CF (H,J ;ΛZp,univ)<α×CF (H̄,J ;ΛZp,univ)−α

)
>

0

Proof. Suppose that(∑
ai[xi, ui],

∑
bi[xi, ui]

)
∈ CF (H, J ; ΛZp,univ)

<α × CF (H̄, J ; ΛZp,univ)
<−α

Then

A
(∑

ai[xi, ui]
)
= max{A(ai[xi, ui])}

= max{AH([xi, ui])− ν(ai)} < α.

Thus for each i, AH([xi, ui]) − ν(ai) < α, i.e. ν(ai) > AH([xi, ui]) − α.
Also,

A
(∑

bi[xi, ui]
)
= max{A(bi[xi, ui])}

= max{AH([xi, ui])− ν(bi)}
= max{−AH([xi, ui])− ν(bi)} < −α.

Thus for each i, −A([xi, ui])− ν(bi) < −α, i.e. ν(bi) > −A([xi, ui]) + α.
Then

ν(∆(
∑

ai[xi, ui],
∑

bi[xi, ui])) = ν(
∑

aibi)

≥ min{ν(aibi)}
= min{ν(ai) + ν(bi)}
> AH([xi, ui])− α−AH([xi, ui]) + α

= 0

Lemma 2.4.4 ([AL23], Lemma 2.13). ∆(d(a), b) = ±∆(a, d(b)) for a ∈
CF (H, J ; ΛZp,univ) and b ∈ CF (H̄, J ; ΛZp,univ).

Proof. Denote a basis of CFk+1(H, J ; ΛZp,univ) by {[xi, ui]} and a basis of
CFk(H, J ; ΛZp,univ)by{[yj, vj]}. Then{[xi, ui]} is a basis ofCF−k−1(H̄, J ; ΛZp,univ)
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and{[yj, vj]}is a basis ofCF−k(H̄, J ; ΛZp,univ). Supposed([xi, ui]) =
∑
aj[yj, vj]

and d([yj, vj]) =
∑
bi[xi, ui]. Then

∆(d([xi, ui]), [yj, vj]) = ∆(
∑

aj[yj, vj], [yj, vj]) = aj.

On the other hand

∆([xi, ui], d([yj, vj)])) = ∆([xi, ui],
∑

bi[xi, ui]) = bi.

By definition, aj is the number of the Floer trajectories connecting [xi, ui] and
[yj, vj] and bi is the number of the Floer trajectories connecting [yj, vj] and
[xi, ui]. Thus aj = bi, i.e.

∆(d([xi, ui]), [yj, vj]) = ∆([xi, ui], d([yj, vj])).

Since ∆ is bilinear, then

∆(d(a), b) = ∆(a, d(b))

for any a ∈ CF (H, J ; ΛZp,univ) and b ∈ CF (H̄, J ; ΛZp,univ).

Thus there is an induced pairing on homology.

∆ : HF∗(H, J ; ΛZp,univ)×HF∗(H̄, J ; ΛZp,univ) → ΛZp,univ

The proof of the following proposition is from Corollary 1.4 in [Ush10].

Proposition 2.4.5 ([AL23], Proposition 2.14). Let a ∈ QH(M,ΛZ,univ) be
nontrivial. Then

c(a,H) = − inf{c(b, H̄) | b ∈ QH(M,ΛK,univ), ν(∆(PSSH(a),PSSH̄(b))) ≤ 0}.

Proof. First we show that

−c(a,H) ≥ inf{c(b, H̄) | b ∈ QH(M,ΛK,univ), ν(∆(PSSH(a), PSSH̄(b))) ≤ 0}.

Suppose that α < c(a,H). We have a short exact sequence of chain complexes

0 → CF (H, J ; ΛZp,univ)
<α → CF (H, J ; ΛZp,univ) → CF (H, J ; ΛZp,univ)

[α,∞) → 0

inducing an exact sequence
HF (H, J ; ΛZp,univ)

<α HF (H, J ; ΛZp,univ) HF (H, J ; ΛZp,univ)
[α,∞)iα πα
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The fact that α < c(a,H) means that PSSH(a) is not represented by
any chains of filtration level at most α, so that PSSH(a) /∈ im(iα). Thus
πα(PSSH(a)) ̸= 0.

Claim 2.4.6. Fix a representative ã of PSSH(a). There is b ∈ QH(M,ΛZp,univ)

such that

ν(∆(PSSH(a),PSSH̄(b))) ≤ 0

and

A(b̃) = −A(ã) ≤ −α

where b̃ is a representatives of PSSH̄(b) respectively.

Proof. Consider the dual vector spaceCF (H, J ; ΛZp,univ)
∗ ofCF (H, J ; ΛZp,univ).

Let {ξ1, · · · , ξB, η1, · · · , ηK , ζ1, · · · , ζK} be a singular value decomposition
for the complexCF (H, J ; ΛZp,univ). We recall from [UZ16, Proposition 2.20]
that there is anA∗-orthogonal dual basis{ξ∗1 , · · · , ξ∗B, η∗1, · · · , η∗K , ζ∗1 , · · · , ζ∗K}
of CF (H, J ; ΛZp,univ)

∗ such that A∗(ξ∗i ) = −A(ξi), A∗(η∗i ) = −A(ηi),
and A∗(ζ∗i ) = −A(ζi), where

A∗(f ∗) = sup{−A(θ)− ν(f ∗(θ)) | 0 ̸= θ ∈ CF (H, J ; ΛZp,univ)}

If f =
∑
ai[xi, ui] is an element inCF (H, J ; ΛZp,univ), then we denote

by f̄ the element
∑
ai[x̄i, ūi] inCF (H̄, J ; ΛZp,univ) and f ∗ the dual element

of f inCF (H, J ; ΛZp,univ)
∗. Then

A(f̄) = max{AH̄([x̄i, ūi])− ν(ai)}
= max{−AH([xi, ui])− ν(ai)}
= max{−AH([xi, ui])− ν(f ∗([xi, ui]))}
≤ A∗(f ∗)

Next we check d(ξ̄i) = 0. Assume

d(ξ̄i) =
∑

aij ξ̄j +
∑

bij η̄j +
∑

cij ζ̄j

Then aij = ∆(ξj, d(ξ̄i)) = ∆(d(ξj), ξ̄i) = ∆(0, ξ̄i) = 0. Similarly, bij =

cij = 0. Thus d(ξ̄i) = 0
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Assume ã =
∑
aiξi. Then A(ã) = max{A(ξi) − ν(ai)} = A(ξk) −

ν(ak) for some k. Define b̃ := a−1
k ξ̄k. Then

∆(ã, b̃) = aka
−1
k = 1

We have ν(∆(ã, b̃)) = 0. It also means that [b̃] ̸= 0 inHF (H̄, J ; ΛZp,univ). In
addition, A(b̃) = A(ξ̄k)−ν(a−1

k ) ≤ A∗(ξ∗k)+ν(ak) = −A(ξk)+ν(ak) =

−A(ã). Thus we can take b := PSS−1
H̄
([b̃])

Let α = c(a,H)− ϵ. Then

A(b̃) ≤ −c(a,H) + ϵ

Take ϵ→ 0. Then

A(b̃) ≤ −c(a,H)

We have

inf{c(b, H̄) | b ∈ QH(M,ΛK,univ), ν(∆(PSSH(a), PSSH̄(b))) ≤ 0} ≤ A(b̃)

≤ −c(a,H)

Next we show that

−c(a,H) ≤ inf{c(b, H̄) | b ∈ QH(M,ΛK,univ), ν(∆(PSSH(a), PSSH̄(b))) ≤ 0}.

Suppose thatα > c(a,H). Thus there must be some cycle c ∈ CF (ϕ,ΛZp,univ)
<α

representing the class PSSH(a). If b ∈ QH(M,ΛZp,univ) is an arbitrary class
satisfying ν(∆(PSSH(a), PSSH̄(b))) ≤ 0, then by the definition of ∆ it must
hold that every representation d ∈ CF (H̄,ΛZp,univ) of the class PSSH̄(b) satis-
fies ν(∆(c, d)) ≤ 0. By Lemma 2.4.3, this can only be true if no representation
d of b belongs to CF (H̄,ΛZp,univ)

−α, which amounts to the statement that
c(b, H̄) ≥ −α. Note thatbwas an arbitrary class withν(∆(PSSH(a), PSSH̄(b))) ≤
0, while α was an arbitrary number exceeding c(a, ϕ), and so we obtain that

−c(a,H) ≤ inf{c(b, H̄) | b ∈ QH(M,ΛK,univ), ν(∆(PSSH(a), PSSH̄(b))) ≤ 0}.
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On the other hand, we can define a pairing on the even quantum homology
QHev(M,ΛZp,univ).

∆̃ : QHev(M,ΛZp,univ)×QHev(M,ΛZp,univ) → ΛZp,univ(
2n∑
i=0

aih2i,

2n∑
j=0

bjh2j

)
7→

∑
i+j=n

aibj(h2i ◦ h2j)

where ai, bi ∈ ΛZp,univ and h2i ∈ H2i(M,Zp) for i = 0, · · · , n.
The following result is from [EP03, Section 2.6.8] and [Ush23, Proposition

7.7]

Lemma 2.4.7. Let a, b ∈ QHev(M,ΛZp,univ). Then

∆(PSSH(a),PSSH̄(b)) = ∆̃(a, b) (2.4.1)

As in [EP03, Section 2.3], we have the following lemma.

Lemma 2.4.8. ∆̃(a, b) = ∆̃(a∗b, [M ]). In particular,∆(PSSH(a),PSSH̄(b)) =
∆(PSSH(a ∗ b),PSSH̄([M ]))

Definition 2.4.9. SupposeQHev(M,K) is semisimple andE = {e1, · · · , em}
are idempotents. Then define

γej(H,K) = c(ej, H,K) + c(ej, H,K),

γej(ϕ,K) = inf
ϕ1H=ϕ

{γej(H,K)}

and

γE(ϕ,K) = max
1≤i≤m

{γej(ϕ,K)}.

Lemma 2.4.10 ([AL23], Lemma 4.6). For θ ∈ QH∗(M,ΛZp,univ),

c(θ, 0,ΛZp,univ) ≥ 0

if ν(∆(PSSH(θ),PSSH̄([M ]))) ≤ 0.

Proof. Suppose that θ =
∑
θihi with θi ∈ ΛZp,univ and hi ∈ H∗(M,Zp).

Then

l(θ) = max{−ν(θi)} = −min{ν(θi)}.

42



Observe that ∆(PSSH(θ), PSSH̄([M ])) = θj with hj = [pt]. Then

ν(∆(PSSH(θ), PSSH̄([M ]))) = ν(θj) ≥ −l(θ) = −c(θ, 0,ΛZp,univ).

Since ν(∆(PSSH(θ), PSSH̄([M ]))) ≤ 0, then c(θ, 0,ΛZp,univ) ≥ 0.

Lemma 2.4.11 ([AL23], Lemma 4.7). For θ ∈ QHev(M,ΛZp,univ) and [ēi]p ∗
θ ̸= 0, we have that

c(([ei]p ∗ θ)−1, 0,ΛZp,univ) + c([ei]p ∗ θ, 0,ΛZp,univ) = 2c([ei]p, 0,ΛZp,univ).

where the inversion is taken in the field [ēi]p ∗QHev(M,ΛZp,univ).

Proof. Because [ei]p ∗ QHev(M,ΛZp,univ)
∼= ΛZp,univ, then there is δ ∈

ΛZp,univ such that [ei]p ∗ θ = δ[ei]p. Thus ([ei]p ∗ θ)−1 = δ−1[ei]p.
We obtain that

c(([ei]p ∗ θ)−1, 0,ΛZp,univ) + c([ei]p ∗ θ, 0,ΛZp,univ)

= c(δ−1[ei]p, 0,ΛZp,univ) + c(δ[ei]p, 0,ΛZp,univ)

= c([ei]p, 0,ΛZp,univ)− ν(δ−1) + c([ei]p, 0,ΛZp,univ)− ν(δ)

= 2c([ei]p, 0,ΛZp,univ).

Proposition 2.4.12 ([AL23], Proposition 4.8). For sufficiently largep, letQHev(M,ΛZp,univ)

be semisimple, andEp = {[e1]p, · · · , [em]p} be the idempotents such that

QHev(M,ΛZp,univ) =
m⊕
i=1

[ei]p ∗QHev(M,ΛZp,univ)

and [ei]p ∗ QHev(M,ΛZp,univ)
∼= ΛZp,univ . Then there is a constant D inde-

pendent of p such that γEp(ϕ) ≤ D for each ϕ ∈ Ham(M,ω)

Proof. First by Proposition 2.4.5,

c([ēi]p, H) + c([ēi]p, H̄)

= c([ēi]p, H)− inf{c(b,H) | b ∈ QH(M,ΛZp,univ), ν(∆(PSSH(b), PSSH̄([ēi]p))) ≤ 0}
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By Lemma 2.4.8

c([ēi]p, H) + c([ēi]p, H̄)

= c([ēi]p, H)− inf

{
c(b,H)

∣∣∣∣ b ∈ QH(M,ΛZp,univ),

ν(∆(PSSH([M ]), PSSH̄([ēi]p ∗ b))) ≤ 0

}
= sup

{
c([ēi]p, H)− c(b,H)

∣∣∣∣ b ∈ QH(M,ΛZp,univ),

ν(∆(PSSH([M ]), PSSH̄([ēi]p ∗ b))) ≤ 0

}
By the triangle inequality of spectral invariants we have

c([ēi]p, H) ≤ c([ēi]p ∗ b,H) + c(([ēi]p ∗ b)−1, 0)

≤ c([ēi]p, 0) + c(b,H) + c(([ēi]p ∗ b)−1, 0)

where the inverse ([ēi]p ∗ b)−1 is taken in the field [ēi]p ∗QHev(M,ΛZp,univ).
Since c([ēi]p, 0) = l([ēi]p), then, by Proposition 2.4.1,

c([ēi]p, H)− c(b,H) ≤ c(([ēi]p ∗ b)−1, 0) + δ

. By Lemma 2.4.10,

c([ēi]p, H)− c(b,H) ≤ c(([ēi]p ∗ b)−1, 0) + c([ēi]p ∗ b, 0) + δ

By Lemma 2.4.11

c([ēi]p, H)− c(b,H) ≤ 2c([ēi]p, 0) + δ

= 2l([ēi]p) + δ

≤ 3δ

The proof of the following proposition is the same as that of Proposition
12 in [She22].

Proposition 2.4.13 ([AL23], Proposition 4.9). For sufficiently largep, letQHev(M,ΛZp,univ)

be semisimple, andEp = {[e1]p, · · · , [em]p} be the idempotents such that

QHev(M,ΛZp,univ) =
m⊕
i=1

[ei]p ∗QHev(M,ΛZp,univ)
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and [ei]p ∗QHev(M,ΛZp,univ)
∼= ΛZp,univ . Then

|β(ϕ,ΛZp,univ)− β(ψ,ΛZp,univ)| ≤ γEp(ϕψ
−1,ΛZp,univ) + δ

Proof. Given thatQHev(M,ΛK,univ) is semisimple, we have shown thatQHev(M,ΛZp,univ)

is semisimple and{[ei]p}mi=1 are the idempotents generatingQHev(M,ΛZp,univ).
For any a ∈ QHev(M,ΛZp,univ), there is a morphism by taking product

with a

a∗ : HFev(H, J ; ΛZp,univ) → HFev(H, J ; ΛZp,univ)[l(a)]

Consider the composition property,

(a∗) ◦ (b∗) : HFev(H, J ; ΛZp,univ) → HFev(H, J ; ΛZp,univ)[l(a) + l(b)]

Define δ(a, b) := l(a) + l(b)− l(a ∗ b). If δ(a, b) ≥ 0 and a ∗ b ̸= 0, then

(a∗) ◦ (b∗) = shδ(a,b) ◦ ((a ∗ b)∗)

If a ∗ b = 0, then

(a∗) ◦ (b∗) = 0.

Consider the additive property,

(a+ b)∗ : HFev(H, J ; ΛZp,univ) → HFev(H, J ; ΛZp,univ)[max{l(a), l(b)}]

Define l(a, b) = max{l(a), l(b)}. If a+ b ̸= 0, then

shl(a,b)−l(a+b) ◦ ((a+ b)∗) = shl(a,b)−l(a) ◦ (a∗) + shl(a,b)−l(b) ◦ (b∗)

If a+ b = 0, then

(a+ b)∗ = 0.

Now we consider persistence modules without finiteness conditions. A
persistence module V over a field K is just a collection of functions t 7→ Vt
from the poset category of R to the category of vector spaces overK .

Lemma 2.4.14. The persistence modulesHFev(H, J ; ΛZp,univ)and
m⊕
i=1

im([ei]p∗)

are l(Ep)− interleaved where l(Ep) = max
1≤i≤m

{l([ei]p)}. In particular, the inter-
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leaving distance between HFev(H, J ; ΛZp,univ) and
m⊕
i=1

im([ei]p∗) is at most

l(Ep)

Proof. First we define a morphism

fE : HFev(H, J ; ΛZp,univ) →
m⊕
i=1

im([ei]p∗)[l(Ep)]

as following. Consider the morphism

f̃E : HFev(H, J ; ΛZp,univ) →
m⊕
i=1

im([ei]p∗)

x 7→ ([e1]p ∗ x, · · · , [em]p ∗ x).

Take fE = shl(Ep) ◦ f̃E .
Then we define a morphism

gE :
m⊕
i=1

im([ei]p∗) → HFev(H, J ; ΛZp,univ)[l(Ep)].

as following. Let

ιE :
m⊕
i=1

im([ei]p∗) →
m⊕
i=1

HFev(H, J ; ΛZp,univ)[l([ei]p)]

be the inclusion. Then define a shift map

shE :
m⊕
i=1

HFev(H, J ; ΛZp,univ)[l([ei]p)] →
m⊕
i=1

HFev(H, J ; ΛZp,univ)[l(Ep)]

(a1, · · · , am) 7→ (shl(Ep)−l([e1]p)(a1), · · · , shl(Ep)−l([em]p)(am))

and a sum map

ΣE :
m⊕
i=1

HFev(H, J ; ΛZp,univ)[l(Ep)] → HFev(H, J ; ΛZp,univ)[l(Ep)]

(a1, · · · , am) 7→
m∑
i=1

ai

Take gE = ΣE ◦ shE ◦ ιE .
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Now we can compute

gE[l(Ep)] ◦ fE(x) = gE[l(Ep)]
(
shl(Ep)([e1]p ∗ x), · · · , shl(Ep)([em]p ∗ x)

)
=

m∑
i=1

shl(Ep)−l([ei]p) ◦ shl(Ep) ([ei]p ∗ x)

= sh2l(Ep) ([M ] ∗ x)
= sh2l(Ep)(x).

Note thatδ([ei]p, [ei]p) = l([ei]p) and then ([ei]p∗)◦([ei]p∗) = shl([ei]p)◦
([ei]p∗)

fE[l(Ep)] ◦ gE ([e1]p ∗ a1, · · · , [em]p ∗ am)

=fE[l(Ep)]

(
m∑
i=1

shl(Ep)−l([ei]p)([ei]p ∗ ai)

)

=fE[l(Ep)]

(
m∑
i=1

[ei]p ∗ shl(Ep)−l([ei]p)(ai)

)

=shl(Ep)

(
[e1]p ∗

m∑
i=1

[ei]p ∗ shl(Ep)−l([ei]p)(ai), · · · , [em]p ∗
m∑
i=1

[ei]p ∗ shl(Ep)−l([ei]p)(ai)

)
=shl(Ep)

(
[e1]p ∗ [e1]p ∗ shl(Ep)−l([e1]p)(a1), · · · , [em]p ∗ [em]p ∗ shl(Ep)−l([em]p)(am)

)
=shl(Ep)

(
shl([e1]p) ◦ [e1]p ∗ shl(Ep)−l([e1]p)(a1), · · · , shl([em]p) ◦ [em]p ∗ shl(Ep)−l([em]p)(am)

)
=shl(Ep)

(
shl(Ep)([e1]p ∗ a1), · · · , shl(Ep)([em]p ∗ am)

)
=sh2l(Ep) ([e1]p ∗ a1, · · · , [em]p ∗ am)

In great generality, one can define the boundary depth β(V) of the persis-
tence module V as the infimum of all λ ∈ (0,∞) with the property that, for
all s ∈ R,

ker
(
Vs → lim

−→
Vt

)
= ker (Vs → Vs+λ)

Note the set on the left hand side is the same as the ascending union∪t∈[s,∞) ker (Vs → Vt).
Depending onV, there might be noλwith this property, in which caseβ(V) =
∞. However, as in [UZ16], the Floer homology persistence moduleHF (H, J ; ΛZp,univ)

can easily be checked to haveβ
(
ϕ1
H ,ΛZp,univ

)
equal to the length of the longest

finite-length bar in the barcode (or zero if there are no finite-length bars). Note
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also that, for the finite collection of persistence modules {im([ēj]p∗)},

β(⊕j im([ēi]p∗)) = max
j
β(im([ēi]p∗)).

One has the following stability result:

Lemma 2.4.15. The boundary depth β(⊕jim([ēi]p∗)) is finite and

|β(ϕ1
H ,ΛZp,univ)− β(⊕jim([ēi]p∗))| ≤ 2l(Ep)

Proof. Let β > β(ϕ1
H ,ΛZp,univ) be arbitrary. Let

x ∈ ker
(
(⊕j im([ēi]p∗))<s → lim

−→
(⊕j im([ēi]p∗))<t

)
,

say x 7→ 0 under

(⊕j im([ēi]p∗))<s → (⊕j im([ēi]p∗))<s+λ;

it suffices to show that in fact x 7→ 0 under

(⊕j im([ēi]p∗))<s → (⊕j im([ēi]p∗))<s+2l(Ep)+β.

Since gE is a morphism of persistence modules, it follows that gE(x) 7→ 0

under

HF (H, J ; ΛZp,univ)
s+l(Ep) → HF (H, J ; ΛZp,univ)

s+λ+l(Ep)

From the definition of β(ϕ1
H ,ΛZp,univ) we see that gE(x) 7→ 0 under

HF (H, J ; ΛZp,univ)
s+l(Ep) → HF (H, J ; ΛZp,univ)

s+β+l(Ep).

But then fE ◦ gE(x) 7→ 0 under

(⊕j im([ēi]p∗))<s+2l(Ep) → (⊕j im([ēi]p∗))<s+2l(Ep)+β.

So since fE ◦ gE(x) is the image of x under

(⊕j im([ēi]p∗))<s → (⊕j im([ēi]p∗))<s+2l(Ep).

it follows that indeed x 7→ 0 under

(⊕j im([ēi]p∗))<s → (⊕j im([ēi]p∗))<s+2l(Ep)+β.
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Thus β(ϕ1
H ,ΛZp,univ) ≤ max β (im([ēi]p∗)) + l(Ep). Next, we need to

bound β (im([ēi]p∗))
Let F andG be Hamiltonians such that ϕ1

F = ϕ and ϕ1
G = ψ. In the fol-

lowing discussion, F andG are not necessarily nondegenerate. Choose ϵ > 0.
LetFϵ andGϵ be perturbations ofF andG respectively such that the following
conditions hold.

1. Fϵ,Gϵ,Gϵ#F ϵ and Fϵ#Gϵ are nondegenerate.

2. ∥ Fϵ−F ∥C2 , ∥ Gϵ−G ∥C2 , ∥ Gϵ#F ϵ−G#F ∥C2 and ∥ Fϵ#Gϵ−
F#G ∥C2 are far less than ϵ.

For ϵ0 ≪ ϵ, let cGϵ#F ϵ
∈ CF2n(Gϵ#F ϵ,ΛZp,univ) be the an element repre-

senting PSSGϵ#F ϵ
([ei]p) with

AGϵ#F ϵ
(cGϵ#F ϵ

) ≤ c([ei]p, Gϵ#F ϵ,ΛZp,univ) + ϵ0.

LetcFϵ#Gϵ
∈ CF2n(Fϵ#Gϵ,ΛZp,univ)be an element representingPSSFϵ#Gϵ

([ei]p)

with

AFϵ#Gϵ
(cFϵ#Gϵ

) ≤ c([ei]p, Fϵ#Gϵ,ΛZp,univ) + ϵ0

WhenF (resp. G) is degenerate,CF (F,ΛZp,univ) (resp. CF (G,ΛZp,univ))
is defined as the colimit of the chain complex of the perturbed Hamiltonian
and almost complex structure. Then there are continuation maps

CF : CF (F,ΛZp,univ)
<a → CF (Fϵ, J ; ΛZp,univ)

<a+E+(Fϵ−F )

and

CGϵ : CF (Gϵ, J ; ΛZp,univ)
<a → CF (G,ΛZp,univ)

<a+E+(G−Gϵ).

By taking product with cGϵ#F ϵ
we can get a chain map

CGϵ#F ϵ
: CF (Fϵ, J ; ΛZp,univ) → CF (Gϵ, J ; ΛZp,univ)

x 7→ cGϵ#F ϵ
∗ x

Then defineCG#F = CGϵ◦CGϵ#F ϵ
◦CF : CF (F,ΛZp,univ) → CF (G,ΛZp,univ).

Similarly, one can defineCF#G : CF (G,ΛZp,univ) → CF (F,ΛZp,univ).
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We have

AG(CG#F (x)) = AGϵ(cGϵ#F ϵ
∗ CF (x)) + E+(G−Gϵ)

≤ AGϵ#F ϵ
(cGϵ#F ϵ

) +AFϵ(CF (x)) + E+(G−Gϵ)

≤ c([ei]p, Gϵ#F ϵ,ΛZp,univ) + ϵ0 +AFϵ(CF (x)) + E+(G−Gϵ)

≤ c([ei]p, G#F ,ΛZp,univ) + E+(Gϵ#F ϵ −G#F ) + ϵ0

+AF (x) + E+(Fϵ − F ) + E+(G−Gϵ)

= c([ei]p, G#F ,ΛZp,univ) +AF (x) + ϵ1

Similarly, one can haveAF (CF#G(y)) ≤ c([ei]p, F#G,ΛZp,univ)+AG(y)+

ϵ1. Thus there are induced morphisms

[CG#F ] : HFev(F,ΛZp,univ) → HFev(G,ΛZp,univ)[c([ei]p, G#F ,ΛZp,univ) + ϵ1]

[CF#G] : HFev(G,ΛZp,univ) → HFev(F,ΛZp,univ)[c([ei]p, F#G,ΛZp,univ) + ϵ1]

Denote by [ei]p,0 ∈ CF (f,ΛZp,univ) a chain in the Morse complex com-
putingQH(M,ΛZp,univ) representing [ei]p with A([ei]p,0) = l([ei]p).

Lemma 2.4.16. There exist chain homotopies

RF : CF (F,ΛZp,univ) → CF (F,ΛZp,univ)[1]

and

RG : CF (G,ΛZp,univ) → CF (G,ΛZp,univ)[1]

of degree 1, such that

CF#G ◦ CG#F = (∗[ei]p,0) + dRF −RFd

CG#F ◦ CF#G = (∗[ei]p,0) + dRG −RGd

AF (RF (x)) ≤ c([ei]p, F#G,ΛZp,univ) + c([ei]p, G#F ,ΛZp,univ) + ϵ2 +AF (x)

AG(RG(x)) ≤ c([ei]p, F#G,ΛZp,univ) + c([ei]p, G#F ,ΛZp,univ) + ϵ2 +AG(x)

for each x ∈ CF (F,ΛZp,univ), y ∈ CF (G,ΛZp,univ).
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Proof. Let h be a small Morse function. Then there are two pair-of-pants prod-
ucts.

∗′ : CF (Fϵ#Gϵ, J ; ΛZp,univ)⊗ CF (Gϵ#Fϵ, J ; ΛZp,univ) → CF (h, J ; ΛZp,univ)

∗′′ : CF (h, J ; ΛZp,univ)⊗ CF (F, J ; ΛZp,univ) → CF (F, J ; ΛZp,univ)

By the associativity of pair of pants product, ther is a chain homotopyR′′
F,b,a

such that

b ∗ (a ∗ ·) = (b ∗′ a) ∗′′ (·) + dR′′
F,b,a +R′′

F,b,ad

and

AF (R
′′
F,b,a(x)) ≤ AGϵ#Fϵ

(a) +AFϵ#Gϵ
(b) + ϵ2 +AF (x)

Consider the PSS isomorphismΨ : CM(f) → CF (h) andΨ : CF (h) →
CM(f). It is a standard action estimate to show that

Ah(Ψ(x)) ≤ Ah(x) + ϵ2

Moreover there exists a chain homotopyRh such that

Ψ ◦Ψ = 1 + dRh +Rhd

and

Ah(Rh(y)) ≤ Ah(y) + ϵ2

for each y ∈ CF (h).
Finally, by gluing and homotopy of domain-dependent almost complex

structures, we see that Ψ(a ∗′ b) and Ψ(x) ∗′′ (·) are homotopic to a ∗ b and
x∗(·) respectively, with homotopies ra,b andRx that do not increase the action
by more than ϵ2.

Now we preceed by noting first that by the compatibility of the pair-of-pants
product and the quantum product under the PSS isomorphism,

[cFϵ#Gϵ
∗ cGϵ#Fϵ

] = [ei]p ∗ [ei]p = [ei]p = [ei]p,0
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Hence g = cFϵ#Gϵ
∗ cGϵ#Fϵ

− [ei]p,0 is a boundary in the Morse complex of
f . Moreover

A(g) ≤ max{γ[ei]p(G#F ,ΛZp,univ) + ϵ2, l([ei]p)}
= γ[ei]p(G#F ,ΛZp,univ) + ϵ2

since γ[ei]p(G#F ,ΛZp,univ) ≥ l([ei]p). However, since β(CM(f)) = 0,
there exists an element rF ∈ CF (f) with

A(rF ) ≤ γ[ei]p(G#F ,ΛZp,univ) + ϵ2

and g = cFϵ#Gϵ
∗ cGϵ#Fϵ

− [ei]p,0 = d(rF ).
Finally, by the Leibnitz rule

(rF∗) : CF (F ) → CF (F )[1]

gives a homotopy between (cFϵ#Gϵ
∗ cGϵ#Fϵ

) ∗ (·) and [ei]p,0 ∗ (·). Thus

RF = R′′
F,cFϵ#Gϵ

,cGϵ#Fϵ
+ (Rh(cGϵ#Fϵ

∗′ cFϵ#Gϵ
)) ∗′′ (·)

+RΨ(cGϵ#Fϵ
∗′cFϵ#Gϵ

) + rcGϵ#Fϵ
,cFϵ#Gϵ

∗ (·) + (rF∗)

gives the required homotopy.

Then the following composition relations hold

shϵ2−2ϵ1 ◦ [CF#G][c([ei]p, G#F ,ΛZp,univ) + ϵ1] ◦ [CG#F ]

= shγ[ei]p (G#F ,ΛZp,univ)+ϵ2−A([ei]p,0)
([ei]p∗)

shϵ2−2ϵ1 ◦ [CG#F ][c([ei]p, F#G,ΛZp,univ) + ϵ1] ◦ [CF#G]

= shγ[ei]p (G#F ,ΛZp,univ)+ϵ2−A([ei]p,0)
([ei]p∗)

In the first equation, the morphisms on both sides are from

HF (F,ΛZp,univ)

to

HF (F,ΛZp,univ)[γ[ei]p(G#F ,ΛZp,univ) + ϵ2].
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In the second equation, the morphisms on both sides are from

HF (G,ΛZp,univ)

to

HF (G,ΛZp,univ)[γ[ei]p(G#F ,ΛZp,univ) + ϵ2].

Because [CG#F ] and [CF#G] commute with [ei]p∗, then there are induced
maps

Φ′
G#F

: Im([ei]p, F ) → Im([ei]p, G)(c([ei]p, G#F ,ΛZp,univ) + ϵ1)

Φ′
F#G

: Im([ei]p, G) → Im([ei]p, F )(c([ei]p, F#G,ΛZp,univ) + ϵ1)

where

Im([ei]p, F ) = im([ei]p∗ : HF (F,ΛZp,univ) → HF (F,ΛZp,univ)[l([ei]p)])

and

Im([ei]p, G) = im([ei]p∗ : HF (G,ΛZp,univ) → HF (G,ΛZp,univ)[l([ei]p)])

Then the following relations hold.

shϵ2−2ϵ1 ◦ Φ′
F#G

[c([ei]p, G#F ,ΛZp,univ) + ϵ1] ◦ Φ′
G#F

= shγ[ei]p (G#F ,ΛZp,univ)+ϵ2

shϵ2−2ϵ1 ◦ Φ′
G#F

[c([ei]p, F#G,ΛZp,univ) + ϵ1] ◦ Φ′
F#G

= shγ[ei]p (G#F ,ΛZp,univ)+ϵ2

Then define

ΦG#F = sh 1
2
c([ei]p,F#G,ΛZp,univ)− 1

2
c([ei]p,G#F ,ΛZp,univ)+

1
2
ϵ2−ϵ1

ΦF#G = sh 1
2
c([ei]p,G#F ,ΛZp,univ)− 1

2
c([ei]p,F#G,ΛZp,univ)+

1
2
ϵ2−ϵ1

The following relations hold

ΦF#G[
1

2
γ[ei]p(G#F ,ΛZp,univ) +

1

2
ϵ2] ◦ ΦG#F = shγ[ei]p (G#F ,ΛZp,univ)+ϵ2
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ΦG#F [
1

2
γ[ei]p(G#F ,ΛZp,univ) +

1

2
ϵ2] ◦ ΦF#G = shγ[ei]p (G#F ,ΛZp,univ)+ϵ2

Thus the persistence modules Im([ēi]p, F ) and Im([ēi]p, G) are(
1

2
γ[ēi]p(G#F̄ ,ΛZp,univ) +

1

2
ϵ2

)
-interleaved. By Lemma 2.4.15,β(Im([ēi]p), F )

and β(Im([ēi]p), G) are finite and

|β(ϕ1
F ,ΛZp,univ)−max β(Im([ēi]p, F ))| ≤ 2l(Ep)

|β(ϕ1
G,ΛZp,univ)−max β(Im([ēi]p, G))| ≤ 2l(Ep)

|max β(Im([ēi]p, G))−max β(Im([ēi]p, F ))| ≤ γ[ēi]p(G#F̄ ,ΛZp,univ) + ϵ2

By Proposition 2.4.12 and Proposition 2.4.13, we have the following theo-
rem.

Theorem 2.4.17 ([AL23], Theorem 4.10). Suppose that QHev(M,ΛK,univ)

is semisimple. Then the boundary depth of each ψ ∈ Ham(M,ω) satisfies
β(ψ,ΛZp,univ) ≤ D + δ, whereD + δ is independent of p.

Since β(ψ,ΛZp,univ) = β(ψ,ΛZp,univ), we have the following corollary.

Corollary 2.4.18 ([AL23], Theorem 4.11). Suppose that QHev(M,ΛK,univ)

is semisimple. Then the boundary depth of each ψ ∈ Ham(M,ω) satisfies
β(ψ,ΛZp,univ) ≤ D + δ, whereD + δ is independent of p.

2.5 Zp-equivariant Floer Homology

2.5.1 The Zp-equivariant Floer Homology ofCF (ϕ,Λ0
Zp
)⊗p

The definition of the Zp-equivariant Floer homology ofCF (ϕ,Λ0
Zp
)⊗p is the

same with that in [She22]. Let K = Zp[u−1, u]]. Then Λ0
K is a certain comple-

tion of Λ0
Zp

⊗Zp K. Define a Zp-action on

CF (ϕ; Λ0
Zp
)⊗p ⊗Λ0

Zp
Λ0

K ⟨θ⟩ ,

where deg(u) = 2, deg(θ) = 1 and θ2 = 0, by the Λ0
K ⟨θ⟩-linear extension of

τ(x0 ⊗ · · · ⊗ xp−1) = (−1)|xp−1|(|x0|+···+|xp−2|)xp−1 ⊗ x0 · · · ⊗ xp−2
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for x0 ⊗ · · · xp−1 ∈ CF (ϕ,Λ0
Zp
)⊗p. Define the differential by the Λ0

K-linear
extension of

dTate(x⊗ 1) = d(p)) + θ(1− τ)x

dTate(x⊗ θ) = θd(p)x+ u(1 + τ + · · ·+ τ p−1)x

where d(p) is the differential onCF (ϕ; Λ0
Zp
)⊗p induced by the Floer differential

onCF (ϕ; Λ0
Zp
). We denote the induced homology byH(Zp, CF (ϕ; Λ0

Zp
)⊗p).

2.5.2 The Zp-equivariant Floer Homology of CF (ϕp,Λ0
Zp
)

We follow the ideas of Sugimoto in [Sug21] to define the Zp-equivariant Floer
homology ofCF (ϕp,Λ0

Zp
).

Let f be a Zp-invariant Morse function on S∞, where the Zp-action on
S∞ is given by the scalar multiplication by the p-th root of unity. Then for each
degreek, k ∈ N, there are p critical points denoted byZm

k ,m ∈ {0, 1, · · · , p−
1}. Then one can identify the Morse chain complex with K[Zp]JuK ⟨θ⟩. The
critical points contained in S2k−1 are {Zm

j } with j ∈ {0, 1, · · · , 2k + 1} and
m ∈ {0, 1, · · · , p− 1}. Consider the following perturbed Cauchy-Riemann
equation {

∂Ju+XHt,w(s)
(u)0,1 = 0

∂sw +∇f(w) = 0

with limit conditions{
lims→−∞(u(s, t), w(s)) = (x+(t+m), Zm

i )

lims→∞(u(s, t), w(s)) = (x−(t), Z0
α)

where α is 0 or 1 and x± are fixed points of ϕp. The almost complex structure
in the equation are parametrized by S∞ and satisfies the conditions given in
Section 6.1 of [SZ21]. One can define a linear map

di,mα : CF (ϕp,Λ0
Zp
) → CF (ϕp,Λ0

Zp
)
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by counting the solutions to the above perturbed Cauchy-Riemann equation
for i ∈ {0, 1, · · · , 2k + 1} andm ∈ {0, 1, · · · , p− 1}. Take

diα =

p−1∑
m=0

di,mα .

We have the so-calledXk-module (CF (ϕp,Λ0
Zp
)⊗Λ0

Zp
Λ0

K, {diα}2k+1
i=0 ) in [Sug21].

By [Sug21, Lemma 5.5 ], i.e. [Fuk+10, Lemma 7.2.184], we can have an X∞-
module (CF (ϕp,Λ0

Zp
)⊗Λ0

Zp
Λ0

K, {diα}∞i=0). Then, we can define the differen-
tial onCF (ϕp,Λ0

Zp
)⊗Λ0

Zp
Λ0

K as follows:

dZp(x⊗ 1) =d00(x)⊗ 1 + ud20(x)⊗ 1 + u2d40(x)⊗ 1 + · · ·
+ d10(x)⊗ θ + ud30(x)⊗ θ + u2d50(x)⊗ θ + · · ·

dZp(x⊗ θ) =d11(x)⊗ θ + ud31(x)⊗ θ + u2d51(x)⊗ θ + · · ·
+ ud21(x)⊗ 1 + u2d41(x)⊗ 1 + u3d61(x)⊗ 1 + · · ·

We denote the homology byH(Zp, CF (ϕp; Λ0
Zp
)).

2.5.3 The Zp-equivariant Pair of Pants Product
Denote by Sp the (p + 1)-punctured sphere. Let h : Sp → R × S1 be the
branched cover of R× S1 at (0, 0) ∈ R× S1 of ramification index p.

ϵ+i : [1,∞)× S1 → Sp, i ∈ {0, 1, · · · , p− 1}.

and

ϵ−i : (−∞,−1]× S1 → Sp, i ∈ {0, 1, · · · , p− 1}.

are the trivialization of cylindrical ends as in [SZ21].
Given a fixed point x− of ϕp and fixed points {x+0 , x+1 , · · · , x+p−1} of ϕ,

consider the following equation{
(du− Yz) ◦ j = Jz,w ◦ (du− Yz)

∂sw +∇f(w) = 0
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with limit conditions{
lims→−∞(u(ϵ−0 (s, t)), w(s)) = (x+(t), Z0

α)

lims→∞(u(ϵ+m(s, t)), w(s)) = (x+m(t), Z
m
i )

where α is 0 or 1 and {Zm
i } with j ∈ {0, 1, · · · , 2k + 1} are critical points in

S2k−1. The almost complex structure J and Hamiltonian perturbation Y in
the equation satisfy the conditions in [SZ21, Section 8.1].

Then one can define a linear map

P i,m
α : CF (ϕ,Λ0

Zp
)⊗p → CF (ϕp,Λ0

Zp
)

by counting the solutions to the above perturbed Cauchy-Riemann equation
for i ∈ {0, 1, · · · , 2k + 1} andm ∈ {0, 1, · · · , p− 1}. Take

P i
α =

p−1∑
m=0

P i,m
α .

We have the so-calledXk-homomorphism {P i
α}2k+1

i=0 in [Sug21]. Then, we can
get the anX∞-homomorphism by [Sug21, Lemma 5.5]. Finally, define the equiv-
ariant pair of pants product as following.

P (x⊗ 1) =P 0
0 (x)⊗ 1 + uP 2

0 (x)⊗ 1 + u2P 4
0 (x)⊗ 1 + · · ·

+ P 1
0 (x)⊗ θ + uP 3

0 (x)⊗ θ + u2P 5
0 (x)⊗ θ + · · ·

P (x⊗ θ) =P 1
1 (x)⊗ θ + uP 3

1 (x)⊗ θ + u2P 5
1 (x)⊗ θ + · · ·

+ uP 2
1 (x)⊗ 1 + u2P 4

1 (x)⊗ 1 + u3P 6
1 (x)⊗ 1 + · · ·

One can define the equivariant pair of pants coproduct in the same way and
then the equivariant pair of pants product is an isomorphism.

2.5.4 Total Bar Length
Once the equivariant Floer homology and equivariant pair of pants product are
defined, we can prove the following theorem in the same way as in [She22].

Theorem 2.5.1 ([AL23], Theorem 5.1). Let ϕ ∈ Ham(M,ω) be a Hamilto-
nian diffeomorphism of a closed semipositive symplectic manifold (M,ω). Sup-
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pose that fix(ϕp) is finite. Then

p · βtot(ϕ,Zp) ≤ βtot(ϕ
p,Zp).

First note thatHF (ϕ,Λ0
Zp
)⊗Λ0

Zp
Λ0

K is isomorphic toH(Zp, CF (ϕ,Λ0
Zp
))

since the Zp-action onCF (ϕ,Λ0
Zp
) is trivial. Secondly, one can get the relation

between bar lengths of H(Zp, CF (ϕ,Λ0
Zp
)) and H(Zp, CF (ϕ,Λ0

Zp
)⊗p) by

quasi-Frobenius isomorphism x → x ⊗ · · · ⊗ x on the chain level. Then
equivariant pair of pants product gives the relation between bar lengths of
H(Zp, CF (ϕ,Λ0

Zp
)⊗p) and H(Zp, CF (ϕp,Λ0

Zp
)). Finally, using homologi-

cal perturbation and cone map, one can get the relation of bar lengths between
H(Zp, CF (ϕp,Λ0

Zp
)) and HF (ϕp,Λ0

Zp
) ⊗Λ0

Zp
Λ0

K. In addition, due to the
local equivariant Floer homology argument in [She22], it is not necessary to
assume that ϕ is nondegenerate.

2.6 Degeneracy

2.6.1 Definition of local Floer homology
Let x be an isolated fixed point of a Hamiltonian diffeomorphism ϕ and ϕt be
a Hamiltonian isotopy with ϕ1 = ϕ. Then x(t) = ϕt(x) is an 1-periodic orbit.
Let x̃ : S1 → S1 ×M be the graph of x.

Take Ũ to be a small enough neighborhood of x̃ and U = pM(Ũ) where
pM : S1 ×M →M is the projection. When x is a degenerate fixed point, we
can take a sufficiently small non-degenerate perturbation ϕ1 of ϕwith support
in U such that the Floer trajectories connecting the 1-periodic orbits of ϕ1 in
U are contained in U . Thus every broken trajectory is also contained in U . Let
CF (ϕ1, x) be the vector space generated by the 1-periodic orbits of ϕ1 in U
over K. Then we can define the Floer homology inU , which is independent of
the choice of the perturbation and of the almost complex structure. We call this
Floer homology inU the local Floer homology atx and denote byHF loc(ϕ, x).

By the definition of local Floer homology, one can easily see that

HF loc(ϕ, x) ∼= K

generated by x.
Let [x, u] and [x, v] be two different capped periodic orbits. Then

CZ([x, u]) = CZ([x, v]) mod 2.
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Thus there is a well-defined Z/2-grading on HF loc(ϕ, x). When x is non-
degenerate,HF loc(ϕ, x)⊗KΛK,univ contributes a copy ofΛK,univ inCFk(ϕ,ΛK,univ).

For any two capped periodic orbits [x, u] and [y, v] ofϕ, there exists a cross-
ing energy 2ϵ0 > 0 such that all Floer trajectories, or product structures with
[x, u] and [y, v] among their asymptotes carry energy at least 2ϵ0.

Definition 2.6.1. An iteration ϕk of ϕ is admissible at a fixed point x of ϕ if
λk ̸= 1 for all eigenvalues λ ̸= 1 of dϕx.

For example, when none of λ ̸= 1 are roots of unity, ϕk is admissible for
k > 0. Otherwise, ϕpn is admissible for sufficiently large p and n > 0

By Theorem 1.1 and Remark 1.2 in [GG10], we have the following theorem.

Theorem 2.6.2. Let ϕk be an admissible iteration of ϕ at an isolated 1-periodic
orbit x ofϕ. Then the k-iteration xk of x is an isolated 1-periodic orbits ofϕk and
HF loc(ϕk, xk) ∼= HF loc(ϕ, x).

Remark 2.6.3. Let ϕk1 and ϕk2 be admissible iterations of ϕ at an isolated 1-
periodic orbit x of ϕ, thenHF loc(ϕk1 , xk1) ∼= HF loc(ϕk2 , xk2) by Theorem
2.6.2.

2.6.2 The construction of a canonicalFrac(ΛZ,univ)
0
-complex

The contents in this section are from Section 3.4.7 in [She22]
Let ϕ be a Hamiltonian diffeomorphism. For each isolated 1-periodic orbit

x of ϕ, there is a neighborhood Ux of x. Let ϕ1 be a sufficiently small non-
degenerate perturbation of ϕ. Because there are finitely many isolated 1− peri-
odic orbits, one can choose ϕ1 = ϕ outside

⋃
x∈Fix(ϕ)

Ux.

Theorem 2.6.4 ([AL23], Theorem 2.20). There is a homotopically canonical
Λ0

K,univ-complexCF (ϕ,Λ0
K,univ) with the following properties.

(1) As a Λ0
K,univ-module,

CF (ϕ,Λ0
K,univ)

∼=
⊕

x∈Fix(ϕ)

HF loc(ϕ, x)⊗K Λ0
K,univ.

(2) Its differential is defined over Λ0
K,univ .

(3) The homology of

CF (ϕ,ΛK,univ) = CF (ϕ,Λ0
K,univ)⊗Λ0

K,univ
ΛK,univ

is isomorphic toHF (ϕ1,ΛK,univ).
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(4) The bar length spectrum associated toCF (ϕ,ΛK,univ), denoted by

β′
1(ϕ,ΛK,univ) ≤ · · · ≤ β′

K(ϕ,ΛK,univ)
(ϕ,ΛK,univ),

satisfies β′
1(ϕ,ΛK,univ) > ϵ0 and is 2δ0-close to the part

βK′+1(ϕ1,ΛK,univ) ≤ · · · ≤ βK′+K(ϕ,ΛK,univ)(ϕ1,ΛK,univ)

of the bar length spectrum of ϕ1 above ϵ0 where

βK′(ϕ1,ΛK,univ) < 2δ0 ≪ ϵ0

and δ0 ≪ ϵ0 is a small parameter converging to 0 as ϕ1 converges to ϕ in
theC2-topology.

(5) Theβ′
j(ϕ,ΛK,univ) for1 ≤ j ≤ K(ϕ,ΛK,univ)have a limitβj(ϕ,ΛK,univ)

as the Hamiltonian perturbation goes to zero in theC2-topology.

Proof. We start withCF (ϕ1,Λ
0
K,univ). The differential dϕ1 can be written as

dϕ1 = dϕ1,loc + T ϵ0Dϕ1

where dϕ1,loc is the direct sum of the differentials of the local Floer complexes
CF loc(ϕ1, x) ⊗K Λ0

K,univ over all 1-periodic orbits of ϕ. By crossing energy,
Dϕ1 is defined over Λ0

K,univ
Let [x, u] be a capped 1-periodic orbits of ϕ. Then each 1-periodic orbits

of ϕ1 in Ux can inherit a capping from [x, u]

LetH1 be a Hamiltonian generating ϕ1. Let x1 be an 1-periodic orbits of
ϕ1 with capping u1 inheriting from some [x, u]. Then

AH1(x1)−AH1(dϕ1,loc(x1)) < δ0

for some δ0 ≪ ϵ0 where

AH1(x1) =

∫ 1

0

H1(t, x1(t))dt−
∫
D2

u∗1ω.

In fact, we can make the perturbation sufficiently small such that

|AH(x)−AH1(x1)| <
δ0
2

and δ0 ≪ ϵ0 where x1 is any 1-periodic orbits of ϕ1 in Ux.
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As in [UZ16], there is a singular value decomposition for the complex

(CF (ϕ1,Λ
0
K,univ), dϕ1,loc),

denoted by

(ξ1, . . . , ξB, η1, . . . , ηK , ζ1, . . . , ζK)

with

dϕ1,loc(ξi) = 0, dϕ1,loc(ζj) = T δjηj

for i = 1, . . . , B, j = 1, . . . , K . By the previous paragraph, one can see
δj < δ0 ≪ ϵ0 for j = 1, . . . , K . If we denote

N =
∑

x∈Fix(ϕ)

dimΛK,univ
CF loc(ϕ1, x)⊗K ΛK,univ,

then

K =
N −B

2

and

B =
∑

x∈fix(ϕ)

dimΛK,univ
HF loc(ϕ, x)⊗K ΛK,univ.

Let

X = spanΛ0
K,univ

{ξ1, . . . , ξB}

be the free part of the homology of (CF (ϕ1,Λ
0
K,univ), dϕ1,loc). Let

π : CF (ϕ1,Λ
0
K,univ) → X

be the projection and

ι : X → CF (ϕ1,Λ
0
K,univ)

be the inclusion. Define

Θ : CF (ϕ1,ΛK,univ) → CF (ϕ1,ΛK,univ)
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to be the linear map such that

Θ(ξi) = 0,

Θ(ηj) = T−δjζj

and

Θ(ζj) = 0

for i = 1, . . . , B, j = 1, . . . , K .
Now define a differential forX by the basic perturbation lemma in [Mar00].

Lemma 2.6.5. Given chain complexes (M,dM), (N, dN), chain maps

F : (M,dM) → (N, dN),

G : (N, dN) → (M,dM)

and a chain homotopy

H :M →M

satisfying

(1) FdM = dNF

(2) GdN = dMG

(3) GF − idM = dMH +HdM

(4) FG = idN

(5) HH = 0

(6) HG = 0

(7) GF = 0

d̃M is a perturbation of dM on M . Then there are perturbations d̃N , F̃ , G̃
and H̃ of dN , F ,G andH that satisfy

(1) F̃ d̃M = d̃N F̃
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(2) G̃d̃N = d̃MG̃

(3) G̃F̃ − idM = d̃MH̃ + H̃d̃M

(4) F̃ G̃ = idN

The perturbation (d̃N , F̃ , G̃, H̃) is given by the following explicit formulas.

d̃N = dN + F (∂M + ∂MH∂M + ∂MH∂MH∂M + ∂MH∂MH∂MH∂M + . . . )G

F̃ = F + F (∂M + ∂MH∂M + ∂MH∂MH∂M + ∂MH∂MH∂MH∂M + . . . )H

G̃ = G+H(∂M + ∂MH∂M + ∂MH∂MH∂M + ∂MH∂MH∂MH∂M + . . . )G

H̃ = H +H(∂M + ∂MH∂M + ∂MH∂MH∂M + ∂MH∂MH∂MH∂M + . . . )H

where ∂M := d̃M − dM .

Now we apply the lemma to

(CF (ϕ1,ΛK,univ), dϕ1,loc)

with perturbation

(CF (ϕ1,ΛK,univ), dϕ1 = dϕ1,loc + T ϵ0Dϕ1),

(X ⊗Λ0
K,univ

ΛK,univ, 0),

π : CF (ϕ1,ΛK,univ) → X ⊗Λ0
K,univ

ΛK,univ,

ι : X ⊗Λ0
K,univ

ΛK,univ → CF (ϕ1,ΛK,univ)

and

Θ : CF (ϕ1,ΛK,univ) → CF (ϕ1,ΛK,univ).

Then we get a differential dϕ onX where

dϕ = π(T ϵ0Dϕ1 + T 2ϵ0Dϕ1ΘDϕ1 + T 3ϵ0Dϕ1ΘDϕ1ΘDϕ1 + . . . )ι
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is the perturbation of0. Since δj < δ0 ≪ ϵ0, thendϕ, π̃, ι̃ andT δ0Θ̃ are defined
over Λ0

K,univ where π̃, ι̃ and Θ̃ are perturbations of π, ι and Θ respectively.
TakeCF (ϕ,Λ0

K,univ) to beX and its differential to be dϕ. The conditions
(1) and (2) in Theorem 2.6.4 are satisfied.

Since Θ̃ is a chain homotopy between CF (ϕ1,ΛK,univ) and X ⊗Λ0
K,univ

ΛK,univ, the condition (3) in Theorem 2.6.4 is satisfied.
Because

dϕ = T ϵ0(π(Dϕ1 + T ϵ0Dϕ1ΘDϕ1 + T 2ϵ0Dϕ1ΘDϕ1ΘDϕ1 + . . . )ι)

and

π(Dϕ1 + T ϵ0Dϕ1ΘDϕ1 + T 2ϵ0Dϕ1ΘDϕ1ΘDϕ1 + . . . )ι

is defined overΛ0
K,univ, then the bar lengthβ′

i(ϕ,ΛK,univ)of (CF (ϕ,ΛK,univ), dϕ)

is always greater than ϵ0.
Since

π̃ι̃ = idX

and

T δ0 ι̃π̃ − T δ0idCF (ϕ1,Λ0
K,univ)

= dϕ1T
δ0Θ̃ + T δ0Θ̃dϕ1 ,

then

π̃∗ι̃∗ = id

and

ι̃∗(T
δ0 π̃)∗ = (T δ0id)∗

on the homology group. ThusH(X, dϕ) is isomorphic to the direct sum of the
free part and torsion parts with torsion greater than ϵ0 ofH(CF (ϕ1,Λ

0
K,univ), dϕ1).

One can also seeCF (ϕ,ΛK,univ) andCF (ϕ1,ΛK,univ) are δ0
2

-quasiequivalence.
Then by Corollary 8.8 in [UZ16],

|β′
j(ϕ,ΛK,univ)− βK′+j(ϕ1,ΛK,univ)| ≤ δ0 < 2δ0

for j = 1, . . . , K(ϕ,ΛK,univ).
Note that βK′+j(ϕ1,ΛK,univ) converges as ϕ1 converges to ϕ and the limit

only depends on ϕ. Then β′
j(ϕ,ΛK,univ) converges and the limit only depends
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on ϕ since

|β′
j(ϕ,ΛK,univ)− βK′+j(ϕ1,ΛK,univ)| < 2δ0.

Denote the limit by βj(ϕ,ΛK,univ) for j = 1, . . . , K(ϕ,ΛK,univ). We get
condition (5) in Theorem 2.6.4.

2.7 Proof of Theorem A
First we consider the case where K has characteristic 0 and the Hamiltonian
diffeomorphism ϕ and all of its iterates are nondegenerate. By the inequality

p · βtot(ϕ,Zp) ≤ βtot(ϕ
p,Zp)

and the simple observation that

βtot(ψ,K) ≤ K(ψ,K) · β(ψ,K)

for any Hamiltonian diffeomorphism ψ and base field K, we have

p · βtot(ϕ,Zp) ≤ βtot(ϕ
p,Zp) ≤ K(ϕp,Zp) · β(ϕp,Zp)

We note that for sufficiently large primes pwe have by [She22, Lemma 16]
the following equalitiesN(ϕ,Q) = N(ϕ,Zp),dimQH∗(M ;Q) = dimFp H∗(M,Fp),
and β(ϕ,Q) = β(ϕ,Fp) for any Hamiltonian diffeomorphism ϕ. If K has
characteristic 0, it is a field extension of Q, which by [She22, section 4.4.4]
implies that N(ϕ,Q) = N(ϕ,K), dimQH∗(M ;Q) = dimK(M ;K), and
β(ϕ,Q) = β(ϕ,K).

The assumption that N(ϕ,K) > dimKH∗(M ;K) implies that the total
bar length βtot(ϕ,Zp) is positive for a sufficiently large prime p. Furthermore,
the inequality

β(ϕk,Zp) ≤ C

yields

p · βtot(ϕ,Zp) ≤ C ·K(ϕp,Zp)
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which means thatK(ϕp,K) grows at least linearly with respect to p. We now
observe that in the nondegenerate setting the equation

N(ϕ,K) = dimKH∗(M ;K) + 2K(ϕ,K)

yields

Fix(ϕp) = dimKH∗(M ;K) + 2K(ϕp,K)

which implies that ϕmust have infinitely many contractible periodic orbits.
In general, when the Hamiltonian diffeomorphism ϕ is degenerate, we can

use the local equivariant Floer homology argument [She22, Section 7.4]. Fur-
thermore, by the canonical complex whose properties are listed in Theorem
2.6.4, the upper bound for the boundary depth, which is also independent of
p, continues to hold. Therefore, we can use the same argument as in the nonde-
generate case to obtain the linear growth ofK(ϕp,K) and, thus, ofN(ϕp,K).
To conclude the argument, we assume that p is large enough to guarantee ϕp is
admissible iteration in the sense of Definition 2.6.1, it then follows by Theorem
2.6.2, that

HF loc(ϕp1 , x) ∼= HF loc(ϕp2 , x)

for all x ∈ Fix(ϕp1) for any two primes p2 ≥ p1 ≥ p. In particular, there must
be a new simple p′-periodic point for each prime p′ > p. In fact, if Fix(ϕp1) =
Fix(ϕp2) for p2 ≥ p1 ≥ p, then N(ϕp1 ,K) = N(ϕp2 ,K) contradicting the
linear growth ofN(ϕp

′
,K) for p′ ≥ p. A similar argument works when K has

characteristic p the details of which can be found in [She22, Section 8].
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Chapter 3

On Lagrangian Tori in
S2 × S2

3.1 Proof of Theorem B
J. Oakley and M. Usher gave an explicit expression of the symplectomorphism
from F̂ (0) to

(
S2, 1

2
ωstd

)
×
(
S2, 1

2
ωstd

)
in [OU16, Proof of Proposition 2.1].

The image ofL(x, y) under this symplectomorphism, still denoted byL(x, y),
is

L(x, y) =

{
(v, w) ∈ S2 × S2

∣∣∣ 1
2
|v + w|+ 1

2
(v + w) · e1 = x, 1− 1

2
|v + w| = y

}
=
{
(v, w) ∈ S2 × S2 | v1 + w1 = 2(x+ y − 1), v · w = 2(1− y)2 − 1

}
where (e1, e2, e3) is an orthonormal basis for R3. Then we change the coordi-
nates by

p = x+ y − 1

q = 1− y

Under the coordinates (p, q), the moment polytope P2 becomes{
(p, q) ∈ R2 | −q ≤ p ≤ q, q ≤ 1

}
and we still denote it by P2. The Lagrangian torus L(x, y) can be written as

L1(p, q) =
{
(v, w) ∈ S2 × S2 | v1 + w1 = 2p, v · w = 2q2 − 1

}
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Similar to [OU16, Proof of Proposition 2.4], we can prove the following
result.

Proposition 3.1.1 ([Lou24], Proposition 2.1). For (p, q) ∈ Int(P2) the La-
grangian torus L1(p, q) is the orbit of an embedded curve Γ1 in S2 × S2 under
the S1-action (Rt, Rt), where

Rt =

1 0 0

0 cos(t) − sin(t)

0 sin(t) cos(t)


is the rotation around e1-axis by angle t.

Proof. Note that

(v0, w0) =
((
p,
√

1− q2,
√
q2 − p2

)
,
(
p,−

√
1− q2,

√
q2 − p2

))
is a point inL1(p, q). Then we rotate v0 andw0 around the vector v0 + w0 by
angle θ to get an embedded curve

Γ1 =



 p+

√
q2−p2

√
1−q2

q
sin(θ)√

1− q2 cos(θ)√
q2 − p2 − p

√
1−q2
q

sin(θ)

 ,
 p−

√
q2−p2

√
1−q2

q
sin(θ)

−
√
1− q2 cos(θ)√

q2 − p2 +
p
√

1−q2
q

sin(θ)



∣∣∣∣∣∣∣∣ θ ∈ [0, 2π]


Now we consider the Hamiltonians

(F1, F2) :

(
S2,

1

2
ωstd

)
×
(
S2,

1

2
ωstd

)
→ R2

(v, w) 7→
(
−(v + w) · e1,

v · w
4q

)
Then L1(p, q) is the regular level set (F1, F2)

−1 (−2p, 2q
2−1
4q

). The Hamilto-
nian vector fieldXF2 of F2 is

XF2(v, w) =

(
v × w

2q
,
w × v

2q

)
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Take (v, w) ∈ Γ1. Then one can compute

(
v × w

2q
,
w × v

2q

)
=



√
q2−p2

√
1−q2

q
cos(θ)

−
√

1− q2 sin(θ)

−p
√

1−q2
q

cos(θ)

 ,
−

√
q2−p2

√
1−q2

q
cos(θ)√

1− q2 sin(θ)
p
√

1−q2
q

cos(θ)




=
dγ1
dθ

where γ1 is a parametrization of Γ1 such that

γ1(θ) =


 p+

√
q2−p2

√
1−q2

q
sin(θ)√

1− q2 cos(θ)√
q2 − p2 − p

√
1−q2
q

sin(θ)

 ,
 p−

√
q2−p2

√
1−q2

q
sin(θ)

−
√

1− q2 cos(θ)√
q2 − p2 +

p
√

1−q2
q

sin(θ)




Thus Γ1 is an integral curve ofXF2 . Since {F1, F2} = 0, then L1(p, q) is the
orbit of the curve Γ1 under the flow of F1, which gives the S1-action (Rt, Rt).

As in [OU16, Proof of Proposition 2.4] and [Gad13, Lemma 2.4], the action
(Rt, Rt) and (Rt, R−t) are conjugate in SO(3)× SO(3), i.e.

(Rt, Rt) = (D1, D2)
−1 (Rt, R−t) (D1, D2)

whereD1 =

1 0 0

0 1 0

0 0 1

 andD2 =

−1 0 0

0 −1 0

0 0 1

. DefineΓ2 = (D1, D2) Γ1

and L2(p, q) to be the orbit of Γ2 under the S1-action (Rt, R−t). Note that

(D1, D2)L1(p, q) = L2(p, q)

and (D1, D2) is a Hamiltonian diffeomorphism. Thus we have the following
result.

Proposition 3.1.2 ([Lou24], Proposition 2.2). L1(p, q) is Hamiltonian isotopic
to L2(p, q).

3.1.1 Case 1: 0 < p2 < q4

In this case neither of the components of Γ2 passes through −e1.
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As in [OU16, Proof of Proposition 2.4], we consider the symplectomor-
phism

ψ−1 :
(
B2(1), 2dx ∧ dy

)
→
(
S2\{−e1},

1

2
ωstd

)
reiθ 7→

(
1− 2r2, 2r

√
1− r2 cos(θ), 2r

√
1− r2 sin(θ)

)
whereB2(1) is the open ball in C with radius 1. Note that

ψ−1(e
it · reiθ) = Rtψ−1(re

iθ).

Let

Γ̃2 = (ψ−1 × ψ−1)
−1 (Γ2) .

Then L2(p, q) is symplectomorphic to the Lagrangian torus L̃2(p, q) in(
B2(1), 2dx ∧ dy

)
×
(
B2(1), 2dx ∧ dy

)
,

that is the orbit of the curve Γ̃2 under the S1-action (eit, e−it).
Now we describe L̃2(p, q) in the way in [EP93]. Note that the S1-action

(eit, e−it) is the Hamiltonian flow of the function

H :
(
C2, idz1 ∧ dz̄1 + idz2 ∧ dz̄2

)
→ R

(z1, z2) 7→ |z1|2 − |z2|2

Claim 3.1.3 ([Lou24], Claim 2.3). H(Γ̃2) = −p.

Proof. Consider

h : S2 × S2 → R

((v1, v2, v3), (w1, w2, w3)) 7→ −1

2
(v1 − w1)

Then

h ◦ (ψ−1 × ψ−1) = H.

Take (v, w) ∈ Γ2. Then

v1 = p+

√
q2 − p2

√
1− q2

q
sin(θ)
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and

w1 = −p+
√
q2 − p2

√
1− q2

q
sin(θ).

Thus h(v, w) = −p, furthermore,H(Γ̃2) = h(Γ2) = −p

Consider the function

F : C2 → C
(z1, z2) 7→ z1z2

Let Γ = F (Γ̃2). It is easy to see that

L̃2(p, q) ⊂ F−1(Γ) ∩H−1({−p}).

By [EP93, Lemma 4.2 A], F−1(Γ) ∩H−1({−p})) is a Lagrangian torus since
Γ is an embedded curve inB2(1) and p ̸= 0. Thus

L̃2(p, q) = F−1(Γ) ∩H−1({−p}).

Remark 3.1.4. Since the radius of B2(1) is 1, we can restrict F to B2(1) ×
B2(1) → B2(1).

Given a function K : (B2(1), 2dx ∧ dy) → R, one can show that, for
any (z1, z2) ∈ B2(1)×B2(1),

dF (XK◦F (z1, z2)) =
1

2
(|z1|2 + |z2|2)

(
−∂K
∂y

∂

∂x
+
∂K

∂x

∂

∂y

)
by direct computation. SinceK ◦F is invariant under the flow ofXH , we have
dH(XK◦F ) = 0. Thus we can restrictXK◦F toH−1({−p}). Then

dF
(
XK◦F |H−1({−p})

)
=

1

2

√
p2 + 4|z1z2|2

(
−∂K
∂y

∂

∂x
+
∂K

∂x

∂

∂y

)
Define the vector field V p,K onB2(1) by

V p,K(z) =
1

2

√
p2 + 4|z|2

(
−∂K
∂y

∂

∂x
+
∂K

∂x

∂

∂y

)
We have

dF (XK◦F (z1, z2)) = V p,K(F (z1, z2)), for (z1, z2) ∈ H−1({−p}) (3.1.1)
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Lemma 3.1.5 ([Lou24], Lemma 2.5). Let ϕt,p,K be the flow of V p,K . Then

ϕtK◦F (L̃2(p, q)) = F−1
(
ϕt,p,K(Γ)

)
∩H−1({−p}).

Proof. By equation 3.1.1, we have

F ◦ ϕtK◦F (z1, z2) = ϕt,p,K ◦ F (z1, z2)

for (z1, z2) ∈ H−1({−p}). Take (z1, z2) ∈ L̃2(p, q). Then F (z1, z2) ∈ Γ

and F ◦ ϕtK◦F (z1, z2) ∈ ϕt,p,K(Γ). Thus ϕtK◦F (z1, z2) ∈ F−1
(
ϕt,p,K(Γ)

)
.

Since H (ϕtK◦F (z1, z2)) = H(z1, z2), then ϕtK◦F (z1, z2) ∈ H−1({−p}).
Thus ϕtK◦F (L̃2(p, q)) ⊂ F−1

(
ϕt,p,K(Γ)

)
∩H−1({−p}).

Since −p ̸= 0, F−1
(
ϕt,p,K(Γ)

)
∩ H−1({−p}) is a Lagrangian torus for

each t by [EP93]. Then ϕtK◦F is an embedding from torus L̃2(p, q) to torus
F−1

(
ϕt,p,K(Γ)

)
∩H−1({−p}). Thus

ϕtK◦F (L̃2(p, q)) = F−1
(
ϕt,p,K(Γ)

)
∩H−1({−p}).

Proposition 3.1.6 ([Lou24], Proposition 2.6). There is a smooth function K
such that ϕ1,p,K(Γ) = S1(r) for some r where S1(r) = {reiθ ∈ C | 0 ≤ θ ≤
2π}.

Proof. We consider the symplectic form

ωp =
2r√

p2 + 4r2
dr ∧ dϕ =

2√
p2 + 4x2 + 4y2

dx ∧ dy

on B2(1). Since we assume x + y ̸= 1, i.e. p ̸= 0 in Theorem B, ωp is
defined at (0, 0). One can show that, for any K , the vector field V p,K is the
Hamiltonian vector field ofK under the symplectic form ωp. Then we choose
r such thatΓ andS1(r) enclose the sameωp-area. This implies thatΓ andS1(r)

are Hamiltonian isotopic in (B2(1), ωp). Thus there is a HamiltonianK such
that ϕ1,p,K(Γ) = S1(r).

Lemma 3.1.7 ([Lou24], Lemma 2.7). The Lagrangian torus

(ψ−1 × ψ−1)
(
F−1(S1(r)) ∩H−1({−p})

)
is the toric fiber

T

(
1 + p−

√
p2 + 4r2

2
,
1− p−

√
p2 + 4r2

2

)
.
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Proof. Let (ξ, ζ) with ξ = 1+p−
√
p2+4r2

2
and ζ = 1−p−

√
p2+4r2

2
be an interior

point in P1, the moment polytope of the standard toric structure on S2 × S2.
Then the toric fiber over (ξ, ζ) is

T (ξ, ζ) =



 2ξ√

1− 4ξ2 cos(θ1)√
1− 4ξ2 sin(θ1)

 ,
 2ζ√

1− 4ζ2 cos(θ2)√
1− 4ζ2 sin(θ2)


 ∈ S2 × S2

∣∣∣∣∣∣∣ 0 ≤ θ1, θ2 ≤ 2π


Then

(ψ−1 × ψ−1)
−1 (T (ξ, ζ)) =

{(√
1− 2ξ

2
eiθ1 ,

√
1− 2ζ

2
eiθ2

)
∈ C2

∣∣∣∣∣ 0 ≤ θ1, θ2 ≤ 2π

}

which is the fiber over (1− 2ξ, 1− 2ζ) under the moment map of C2.
One can easily check that

(ψ−1 × ψ−1)
−1 (T (ξ, ζ)) ⊂ F−1(S1(r)) ∩H−1({−p}).

Let (z1, z2) be a point in F−1(S1(r)) ∩ H−1({−p}). Write zj as rjeiθj
for j = 1, 2. Then r1r2 = r and r21 − r22 = −p. We can solve

r1 =

√
−p+

√
p2 + 4r2

2
=

√
1− 2ξ

2

and

r2 =

√
p+

√
p2 + 4r2

2
=

√
1− 2ζ

2
.

Thus (z1, z2) ∈ (ψ−1 × ψ−1)
−1 (T (ξ, ζ)).

Proposition 3.1.8 ([Lou24], Proposition 2.8). The Lagrangian torusL1(x, y)

is Hamiltonian isotopic to a toric fiber of the standard toric structure on S2 × S2.

Proof. By Lemma 3.1.5 and Proposition 3.1.6, L̃2(p, q) is Hamiltonian isotopic
to F−1(S1(r)) ∩H−1({−p}) by ϕtK◦F where K is a Hamiltonian such that
Γ and S1(r) are Hamiltonian isotopic in (B2(1), ωp). Then

L2(p, q) = (ψ−1 × ψ−1)
(
L̃2(p, q)

)
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is Hamiltonian isotopic to (ψ−1 × ψ−1) (F
−1(S1(r)) ∩H−1({−p})) that is

a toric fiber by Lemma 3.1.7. By Proposition 3.1.2, we haveL1(x, y) = L1(p, q)

is Hamiltonian isotopic to a toric fiber.

Next we are going to figure out which fiber L1(x, y) is Hamiltonian iso-
topic to. By Proposition 3.1.6 Γ and S1(r) should enclose the same ωp-area
where ωp = 2r√

p2+4r2
dr ∧ dϕ.

Proposition 3.1.9 ([Lou24], Proposition 2.9). The ωp-area enclosed by Γ is
2π − 2πq for 0 < p2 < q4.

Proof. See Appendix.

Proposition 3.1.10 ([Lou24], Proposition 2.10). The Lagrangian torusL1(p, q)

is Hamiltonian isotopic to the toric fiber

T (ξ, ζ) =

{
T
(
q − 1

2
, q − p− 1

2

)
for 0 < p < q2

T
(
p+ q − 1

2
, q − 1

2

)
for − q2 < p < 0

Proof. The explicit expression of the curve Γ is given in Appendix. Then we
note that Γ rotates clockwise as θ changes from 0 to 2π. Thus we choose S1(r)

to rotate clockwise. Then the ωp-area of S1(r) is π|p| − π
√
p2 + 4r2. Since

Γ and S1(r) have the same ωp-area, we have

r2 = (q − 1)2 − |p|(q − 1)

According to Lemma 3.1.7 L1(p, q) is Hamiltonian isotopic to the fiber over

the point (ξ, ζ) where ξ =
1+p−

√
p2+4r2

2
and ζ =

1−p−
√
p2+4r2

2
. Note that

0 < q < 1. We have

ξ =

{
q − 1

2
for 0 < p < q2

p+ q − 1
2

for − q2 < p < 0
and ζ =

{
q − p− 1

2
for 0 < p < q2

q − 1
2

for − q2 < p < 0

See Figure 3.1 and Figure 3.2.

3.1.2 Case 2: p2 ≥ q4

We will use symmetric probes introduced by M. Abreu, M. Borman and D.
McDuff in[ABM14], generalizing the definition of probes introduced by D.
McDuff in [Mar00].
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Figure 3.1: The case where 0 < p < q2

Since ξ = q − 1
2

and ζ = q − p− 1
2

then −ξ2 − 1
4
< ζ < ξ

Figure 3.2: The case where −q2 < p < 0
Since ξ = p+ q − 1

2
and ζ = q − 1

2
then −ζ2 − 1

4
< ξ < ζ

Definition 3.1.11. A probe P in a rational polytope ∆ ⊂ Rn is a directed
rational line segment contained in ∆ whose initial point bP lies in the interior
of a facetFP of∆ and whose direction vectorvp ∈ Zn is primitive and integrally
transverse to the facetFP .A probeP is symmetric if the endpoint eP lies on the
interior of a facet F ′

P that is integrally transverse to vP .

In [Bre23], J. Brendel proved that for two points x and x′ in the symmetric
probe, equidistant from the boundary of the probe, the toric fibers over these
two points are Hamiltonian isotopic. His result was proven for the toric mani-
folds. In our case we will take a probe not passing through the singularity, then
the result will also hold. We give the proof for the special case used to prove our
result.

Proposition 3.1.12 ([Lou24], Proposition 2.12). Given the symmetric probeσ =

{p = a}, −1 < a < 1 and a ̸= 0, in the polytope P2, let (a, q1), (a, q2) ∈ σ
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be at equal distance to the boundary of the symmetric probe, then L2(a, q1) and
L2(a, q2) are Hamiltonian isotopic.

Proof. In [OU16], J. Oakley and M. Usher gave the moment map of F̂ (0) as
(F +G, 1−F ) whereF (v, w) = 1

2
|v+w| andG(v, w) = 1

2
(v1 +w1) with

the moment polytope

{(x, y) ∈ R2 | 0 ≤ x ≤ 2− 2y, y ≥ 0}

Recall we changed the coordinates by p = x+ y− 1 and q = 1− y. Then the
preimageZ of σ ∩ P2 under the moment map is

Z = {(v, w) ∈ S2 × S2 | v1 + w1 = 2a}

We will apply toric reduction to Z as in [Bre23, Theorem 2.4]. Recall the
moment polytope is in t∗ ∼= R2. We denote the two generators of t∗ by e∗1 and
e∗2. LetK = exp(e1)× {1}. ThenK acts freely onZ . In fact, given θ ∈ K

θ · ((v1, v2, v3), (2a− v1, w2, w3))

=

 v1
v2 cos(θ)− v3 sin(θ)

v2 sin(θ) + v3 cos(θ)

 ,
 2a− v1
w2 cos(θ)− w3 sin(θ)

w2 sin(θ) + w3 cos(θ)


Then

θ · ((v1, v2, v3), (2a− v1, w2, w3)) = ((v1, v2, v3), (2a− v1, w2, w3))

implies that θ = 0 or v2 = v3 = w2 = w3 = 0. In the later case v1 = ±1 and
2a− v1 = ±1. Then a = −1, 0, or 1 contradicting with the assumption of a.

Thus Z/K is a toric manifold with toric action given by {1} × exp(e2)

with moment polytope σ ∩ P2. Then Z/K is a sphere and the preimages of
(a, q1) and (a, q2) under the moment map are two circles, denoted by Sq1 and
Sq2 respectively. Since the two points (a, q1) and (a, q2) are at equal distance to
the boundary of the symmetric probe, then Sq1 and Sq2 bound the disks with
the same area onZ/K . Thus Sq1 and Sq2 are Hamiltonian isotopic. Then we
lift the corresponding Hamiltonian toZ and extend it to the whole manifold
S2 × S2 by cutoff function, see [AM13], [Bre20].
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NowL1(p, q) is Hamiltonian isotopic toL1(p, 1−q+|p|). By Proposition
3.1.10, L1(p, 1− q + |p|) is Hamiltonian isotopic to{

T
(
1
2
− q + p, 1

2
− q
)

for q2 ≤ p < q

T
(
1
2
− q, 1

2
− q − p

)
for − q < p ≤ −q2

.

As in [Bre23], in the standard toric structure of S2 × S2, the toric fiber{
T
(
1
2
− q + p, 1

2
− q
)

for q2 ≤ p < q

T
(
1
2
− q, 1

2
− q − p

)
for − q < p ≤ −q2

is Hamiltonian isotopic to{
T
(
q − 1

2
, q − p− 1

2

)
for q2 ≤ p < q

T
(
q + p− 1

2
, q − 1

2

)
for − q < p ≤ −q2

.

See Figure 3.3 and Figure 3.4. Thus we have proven the following proposition.

Figure 3.3: The case where q2 ≤ p < q
Since ξ = q − 1

2
and ζ = q − p− 1

2
then ξ − ζ = p

Figure 3.4: The case where −q < p ≤ −q2
Since ξ = q + p− 1

2
and ζ = q − 1

2
then ξ − ζ = p
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Proposition 3.1.13 ([Lou24], Proposition 2.13). The Lagrangian torusL1(p, q)

is Hamiltonian isotopic to the toric fiber

T (ξ, ζ) =

{
T
(
q − 1

2
, q − p− 1

2

)
for q2 ≤ p < q

T
(
q + p− 1

2
, q − 1

2

)
for − q < p ≤ −q2

Finally, when we change the coordinates (p, q) back to (x, y), we get The-
orem B.

3.2 Proof of Theorem C
In Theorem C, x+ y = 1, which means p = 0. In [Fuk+12], they have proven
that L1(0, q) with 0 < q ≤ 1

2
are not Hamiltonian isotopic to toric fibers

for the standard toric structure. Thus we focus on L1(0, q) with 1
2
< q < 1.

Based on Theorem B, the moment polytopeP1 for the standard toric structure
has been filled in by L1(p, q) with p ̸= 0 except the diagonal. Thus ifL1(0, q)

is Hamiltonian isotopic to a fiber T (ξ, ζ) in the standard toric structure, it
must be able to be Hamiltonian isotopic to some T (ξ, ξ). Otherwise, assume
L1(0, q) is Hamiltonian isotopic to some T (ξ, ζ) with |ξ| ̸= |ζ|. Denote the
Hamiltonian isotopy byϕtS . By Weinstein’s Lagrangian neighborhood theorem,
there is a symplectomorphism from a neighborhood of T (ξ, ζ) to a neighbor-
hood of the zero section of T ∗T (ξ, ζ) which takes a Lagrangian torusC1-close
to T (ξ, ζ) to the image of a closed 1-form in T ∗T (ξ, ζ). Denote the 1-form
corresponding to ϕ1

S(L1(ϵ, q)) by λ1 for sufficiently small ϵ and the 1-forms
corresponding to toric fibers T (ξ′, ζ ′) by λξ′−ξ,ζ′−ζ for (ξ′, ζ ′) close enough to
(ξ, ζ). Then there is toric fiber T (ξ′, ζ ′) such that

[λξ′−ξ,ζ′−ζ ] = [λ1] ∈ H1(T (ξ, ζ),R).

Thus there is a smooth function

h : T (ξ, ζ) → R

such that

λξ′−ξ,ζ′−ζ − λ1 = dh.

ThenΠ◦h generates a Hamiltonian isotopy betweenϕ1
S(L1(ϵ, q)) andT (ξ′, ζ ′)

whereΠ : T ∗T (ξ, ζ) → T (ξ, ζ) is the projection. On the other hand,L1(ϵ, q)

is Hamiltonian isotopic to T
(
q − 1

2
, q − ϵ− 1

2

)
for positive ϵ by Theorem B.
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If ϵ is small enough,T (ξ′, ζ ′) is not Hamiltonian isotopic toT
(
q − 1

2
, q − ϵ− 1

2

)
by [Bre23]. We get a contradiction.

Then we will compute the displacement energy germ introduced in [CS10]
to show that it is not possible that L1(0, q) is Hamiltonian isotopic to some
T (ξ, ξ).

Definition 3.2.1 ([CS10]). Let (M,ω) be a symplectic manifold and L be a
closed embedded Lagrangian submanifold. The displacement energy germ is a
function germ

SeL : H1(L,R) → [0,∞]

at the point 0 ∈ H1(L,R) defined as

SeL(δ) = e(Lδ)

where Lδ is the image of a closed 1-form on L representing a sufficently small
class δ ∈ H1(L,R) and e(Lδ) is the displacement energy of Lδ.

Proposition 3.2.2 ([CS10]). For each symplectomorphism ψ we have

Seψ(L) = SeL ◦ (ψ|L)∗.

Note that the displacement energy of T (ξ, ζ) with (ξ, ζ) ̸= (0, 0) is

min

{
1

2
− |ξ|, 1

2
− |ζ|

}
since the displacement energy of the circle v1 = a(̸= 0) in S2 is

min

{
1

2
− |a|

2

}
.

Also see [Bre20, Example 4.1].
Now we compute the displacement energy germ of L1(0, q). Since

H1(L1(0, q),R) ∼= H1(L1(0, q),R),

then a neighborhood of 0 ∈ H1(L1(0, q),R) can be identified with a neigh-
borhood of the point (0, q) in the moment polytope P2. Let (δ1, δ2) ∈ R2 be
close enough to (0, 0) and δ1 ̸= 0. Then

SeL1(0,q)
(δ1, δ2) = e(L1(δ1, q + δ2)).
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First we consider the case where δ1 > 0. By Theorem B, L1(δ1, q + δ2)

is Hamiltonian isotopic to the toric fiber T
(
q + δ2 − 1

2
, q + δ2 − δ1 − 1

2

)
.

Thus the displacement energy is

e(L1(δ1, q + δ2)) = min

{
1

2
−
∣∣∣∣q + δ2 −

1

2

∣∣∣∣ , 12 −
∣∣∣∣q + δ2 − δ1 −

1

2

∣∣∣∣}
Since q > 1

2
, we can choose δ1 and δ2 small enough such that q + δ2 − 1

2
> 0

and q + δ2 − δ1 − 1
2
> 0. Thus the displacement energy is

e(L1(δ1, q + δ2)) = min

{
1

2
−
(
q + δ2 −

1

2

)
,
1

2
−
(
q + δ2 − δ1 −

1

2

)}
= min {1− q − δ2, 1− q − δ2 + δ1}
= 1− q − δ2

The last equality is from δ1 > 0.
Then we consider the case where δ1 < 0. By Theorem B, L1(δ1, q + δ2) is

Hamiltonian isotopic to the toric fiberT
(
q + δ1 + δ2 − 1

2
, q + δ2 − 1

2

)
. The

displacement energy is

e(L1(δ1, q + δ2)) = min

{
1

2
−
(
q + δ1 + δ2 −

1

2

)
,
1

2
−
(
q + δ2 −

1

2

)}
= min {1− q − δ1 − δ2, 1− q − δ2}
= 1− q − δ2

The last equality is from δ1 < 0

Thus

SeL1(0,q)
(δ1, δ2) = 1− q − δ2

when δ1 ̸= 0

Next we compute the displacement energy germ of T (ξ, ξ). Let (δ′1, δ′2) ∈
R2 be close enough to (0, 0). If ξ > 0, then ξ + δ′1 > 0 and ξ + δ′2 > 0 for
small enough δ′1 and δ′2. Thus

SeT (ξ,ξ)(δ
′
1, δ

′
2) = e(T (ξ + δ′1, ξ + δ′2))

= min

{
1

2
− ξ − δ′1,

1

2
− ξ − δ′2

}
.
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If ξ < 0, then ξ + δ′1 < 0 and ξ + δ′2 < 0 for small enough δ′1 and δ′2. Thus

SeT (ξ,ξ)(δ
′
1, δ

′
2) = e(T (ξ + δ′1, ξ + δ′2))

= min

{
1

2
+ ξ + δ′1,

1

2
+ ξ + δ′2

}
.

The displacement energy germ of T (ξ, ξ) is determined by two linearly in-
dependent functions but the displacement energy germ ofL1(0, q) is determine
by a single function when δ1 ̸= 0. Thus there is not a linear isomorphism on
R2 taking SeL1(0,q)

(δ1, δ2) to SeT (ξ,ξ)(δ
′
1, δ

′
2). Thus L(0, q) and T (ξ, ξ) are not

symplectomorphic, in particular, not Hamiltonian isotopic.
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Appendix A

Area Enclosed by a Curve

Lemma A.0.1. Let z be a point in the curve Γ. Then

||z|| =

√√√√1

4

(
1−

√
q2 − p2

√
1− q2

q
sin(θ)

)2

− 1

4
p2

Proof. First we write down the explicit expression of the curve Γ

Γ =


1− 2q2 + p2 − (q2−p2)(1−q2)

q2
sin2(θ) + 2i

√
q2 − p2

√
1− q2 cos(θ)

2

√(
1 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2

∣∣∣∣∣∣∣∣∣∣
0 ≤ θ ≤ 2π


For a point z = (x, y) in Γ,

x =
1− 2q2 + p2 − (q2−p2)(1−q2)

q2
sin2(θ)

2

√(
1 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2

= −1

2

√√√√(1 + √q2 − p2
√

1− q2

q
sin(θ)

)2

− p2

+
1− q2 +

√
q2−p2

√
1−q2

q
sin(θ)√(

1 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2
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x2 =
1

4

(1 + √q2 − p2
√

1− q2

q
sin(θ)

)2

− p2



+

(
1− q2 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

(
1 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2

− 1 + q2 −
√
q2 − p2

√
1− q2

q
sin(θ)

and

y =
2
√
q2 − p2

√
1− q2 cos(θ)

2

√(
1 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2

y2 =
(q2 − p2)(1− q2) cos2(θ)(

1 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2

Note that(
1− q2 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

(
1 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2
+

(q2 − p2)(1− q2) cos2(θ)(
1 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2
= 1−q2

Then

x2 + y2 =
1

4

(
1−

√
q2 − p2

√
1− q2

q
sin(θ)

)2

− 1

4
p2

Proposition A.0.2. The ωp-area enclosed by Γ is 2π − 2πq for 0 < p2 < q4 .

Proof. First we determine a 1-form σ such that dσ = ωp. Note that σ can be
arranged to have the form(√

p2+4r2

2
+ C

)
dϕ. On one hand we can compute

∫
B2(1)

2r√
p2 + 4r2

dr ∧ dϕ = π
√
p2 + 4− π|p|
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On the other hand,∫
B2(1)

2r√
p2 + 4r2

dr∧dϕ =

∫
S1

(√
p2 + 4 · 12

2
+ C

)
dϕ = π

√
p2 + 4+2πC

ThusC = − |p|
2

and σ =

(√
p2+4r2

2
− |p|

2

)
dϕ.

Now we compute
∫
Γ

√
p2 + 4r2dϕ =

∫
Γ

√
p2 + 4r2 dϕ

dθ
dθ. Note that

1−
√
q2−p2

√
1−q2

q
sin(θ) > 0. By Lemma A.0.1, we have

√
p2 − 4r2 = 1−

√
q2 − p2

√
1− q2

q
sin(θ)

By taking the derivative with respect to θ on both sides of

tan(ϕ) =
y

x
=

2
√
q2 − p2

√
1− q2 cos(θ)

1− 2q2 + p2 − (q2−p2)(1−q2)
q2

sin2(θ)

we can get

dϕ

dθ
=

−2
√
q2−p2

√
1−q2 sin(θ)

q[(
1 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2

]
·

[(
1−

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2

]

·
(
p2 − q2 + p2(1− q2)

q
+

(q2 − p2)(1− q2)

q
sin2(θ)

)

= −1

2

 1(
1−

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2
− 1(

1 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2


·
(
p2 − q2 + p2(1− q2)

q
+

(q2 − p2)(1− q2)

q
sin2(θ)

)

84



Now ∫
Γ

√
p2 + 4r2dϕ

=

∫ 2π

0

−1

2

1−
√
q2−p2

√
1−q2

q
sin(θ)(

1−
√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2

·
(
p2 − q2 + p2(1− q2)

q
+

(q2 − p2)(1− q2)

q
sin2(θ)

)
dθ

−
∫ 2π

0

−1

2

1−
√
q2−p2

√
1−q2

q
sin(θ)(

1 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2
·

(
p2 − q2 + p2(1− q2)

q
+

(q2 − p2)(1− q2)

q
sin2(θ)

)
dθ

In the first integral we replace θ with 2π − θ. Then∫
Γ

√
p2 + 4r2dϕ

= −1

2

∫ 2π

0

(
p2 − q2 + p2(1− q2)

q
+

(q2 − p2)(1− q2)

q
sin2(θ)

)

·
2

√
q2−p2

√
1−q2

q
sin(θ)(

1 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2
dθ

Note that

p2 − q2 + p2(1− q2)

q
+

(q2 − p2)(1− q2)

q
sin2(θ)

= q

(√
q2 − p2

√
1− q2

q
sin(θ) + 1

)2

+ q

[
−p2 − 2

q2 − p2

q2
− 2

√
q2 − p2

√
1− q2

q
sin(θ)

]
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Then ∫
Γ

√
p2 + 4r2dϕ

= −q
2

∫ 2π

0

2

√
q2 − p2

√
1− q2

q
sin(θ)dθ

+ q

∫ 2π

0

(
q2 − p2

q2
+

√
q2 − p2

√
1− q2

q
sin(θ)

)

·
2

√
q2−p2

√
1−q2

q
sin(θ)(

1 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2
dθ

= q

∫ 2π

0

(
q2 − p2

q2
+

√
q2 − p2

√
1− q2

q
sin(θ)

)

·
2

√
q2−p2

√
1−q2

q
sin(θ)(

1 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2
dθ

since
∫ 2π

0
2

√
q2−p2

√
1−q2

q
sin(θ)dθ = 0. Note that(

q2 − p2

q2
+

√
q2 − p2

√
1− q2

q
sin(θ)

)√
q2 − p2

√
1− q2

q
sin(θ)

=

(√
q2 − p2

√
1− q2

q
sin(θ) + 1

)2

− p2

− p2 + q2

q2

√
q2 − p2

√
1− q2

q
sin(θ)− 1 + p2

We have

∫
Γ

√
p2 + 4r2dϕ = 2q

∫ 2π

0

1dθ + 2q

∫ 2π

0

−p2+q2

q2

√
q2−p2

√
1−q2

q
sin(θ)− 1 + p2(

1 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2
dθ

= 4πq − 2q

∫ 2π

0

p2+q2

q2

√
q2−p2

√
1−q2

q
sin(θ) + 1− p2(

1 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2
dθ
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Now we focus on the integral

∫ 2π

0

p2+q2

q2

√
q2−p2

√
1−q2

q
sin(θ) + 1− p2(

1 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2
dθ

=
(1 + p)(q2 + p)

2q2

∫ 2π

0

1

1 + p+

√
q2−p2

√
1−q2

q
sin(θ)

dθ

+
(1− p)(q2 − p)

2q2

∫ 2π

0

1

1− p+

√
q2−p2

√
1−q2

q
sin(θ)

dθ

One can easily compute∫ 2π

0

1

1 + p+

√
q2−p2

√
1−q2

q
sin(θ)

dθ =
2πq

q2 + p

and ∫ 2π

0

1

1− p+

√
q2−p2

√
1−q2

q
sin(θ)

dθ =
2πq

q2 − p

Thus ∫ 2π

0

p2+q2

q2

√
q2−p2

√
1−q2

q
sin(θ) + 1− p2(

1 +

√
q2−p2

√
1−q2

q
sin(θ)

)2

− p2
dθ =

2π

q

Then ∫
Γ

√
p2 + 4r2dϕ = 4πq − 4π

Next one can follow the same process to show that∫
Γ

|p|
2
dϕ = 0

Thus if the curve Γ is reparametrized by replacing θ with 2π − θ, then the
ωp-area enclosed by Γ is 2π − 2πq.

Remark A.0.3. If we write the1-form
√
p2+4r2

2
dϕ as −y

√
p2+4x2+4y2

2(x2+y2)
dx+

x
√
p2+4x2+4y2

2(x2+y2)
dy,

then it is easy to see that
√
p2+4r2

2
dϕ is not defined at (0, 0). On the other hand(√

p2+4r2

2
− |p|

2

)
dϕ = −2y√

p2+4x2+4y2+|p|
dx + 2x√

p2+4x2+4y2+|p|
dy is defined

at (0, 0).
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