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Abstract

Deforestation has the potential to alter regional atmospheric dynamics, namely the

motion of vapor, energy partitioning, and convective storm formation. Rates of photo-

synthesis are influenced by these factors, meaning nearby forest productivity can be influ-

enced by the meteorological consequences of deforestation. This thesis uses process-based

models to explore the implications of large, hypothetical deforestation events in Appalachia

on the movement of water and primary productivity outside the deforested region. I found

there was significant pixel-to-pixel and scenario-to-scenario variation in environmental con-

ditions, forest productivity, and atmospheric feedbacks, despite environmental character-

istics changing little on average. Additionally, the relative impact of changing environ-

mental characteristics on changing primary production was dependent on the shape and

extent of deforestation and background environmental conditions. These results suggest

Appalachian forests are resilient to nearby deforestation, though there is heterogeneity in

the environmental response, as deforestation influences environmental characteristics di!er-

ently depending on its size, continuity, and orientation.
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Chapter 1

Introduction

Land cover change has the potential to alter mesoscale meteorological regimes, provided the

magnitude of perturbation is su”ciently large (Mahmood et al. [2014]; Pielke Sr et al. [2011]).

Anthropogenically altering the earth’s surface inherently changes the land’s surface roughness

(Winckler et al. [2019]), energy partitioning (Yuan et al. [2021]), and albedo (Dirmeyer

and Shukla [1994]), all of which exercise significant control over the movement of water

vapor and the development of convective storms (Perugini et al. [2017]). Additionally, with

specific regard to deforestation, the atmosphere loses a significant source of transpiration,

and the surface loses an important temperature regulation mechanism. These disruptions can

cascade into regional climate shifts, altering the movement of vapor, precipitation patterns

(Bagley et al. [2014]), boundary layer convection (Fisch et al. [2004]), and even large-scale

atmospheric circulation (Avissar and Werth [2005]).

The ability of deforestation to influence atmospheric processes has been extensively mod-

eled, particularly in tropical latitudes (Fisch et al. [2004]; Winckler et al. [2019]; Bagley et al.

[2014]; Medvigy et al. [2011]), where a large quotient of rainfall derives from evapotran-

spiration (Schlesinger and Jasechko [2014]). These computational studies investigate how

changing land surface properties, like albedo, roughness, and energy partitioning influence

convective precipitation. From these studies, it has become generally accepted that tropical

deforestation leads to declines in precipitation (Medvigy et al. [2011]). Recently, this pre-

diction has been substantiated by decades of weather station, reanalysis, and satellite data

in Amazonia, the Congo, and southeast Asia (Smith et al. [2023]). This association between
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deforestation and precipitation in the tropics begs the question of whether deforestation has

the same consequence across other biomes and ecoregions.

While there have been many studies assessing how land cover change can induce alter-

ations in hydrologic cycles in tropical environments, less attention has been given to tem-

perate, midlatitude regions. This is likely because proportionately less rainfall is derived

from local moisture cycling, meaning changing the land surface has a relatively smaller

impact on local rainfall comparatively (Boutle et al. [2011]). However, studies focusing on

these interactions in the midlatitudes (Gates and Liess [2001]; Rodgers et al. [2018]; Weaver

and Avissar [2001], for instance) demonstrate that land surface does exert control over the

intensity and frequency of convective storms. In fact, Weaver and Avissar [2001] notes that

synoptic-scale winds play an important role in guiding the direction of the landscape-induced

circulations, as opposed to inhibiting them. Additionally, even if these changes are slight

compared to tropical environments, convective rainfall in the midlatitudes is not negligible

and still exerts control over ecological processes. For instance, deciduous forest primary

production is dependent on the physiology and stomatal aperture of dominant plant species,

both of which are heavily influenced by the atmospheric and edaphic conditions dependent

on hydrology of the region. For example, vapor pressure deficit (VPD) exerts significant

control over photosynthesis and stomatal regulation in mesic environments (Grossiord et al.

[2020]), as do soil moisture (A Al-Ani and Bierhuizen [1971]) and light availability (Shimazaki

et al. [2007]). While the understanding of how plants respond to stress is still developing

(see review by Anderegg [2023]), it is generally accepted that VPD, soil moisture, and light

availability all exert some degree of influence over the rate of carboxylation (Li et al. [2018];

Wei et al. [2008]; Bunce [2016]), stomatal aperture, and conductance.

Additionally, carbon assimilation via photosynthesis and stomatal conductance corre-

spond with energy partitioning at the surface, with vegetation increasing latent heat flux

(Williams and Torn [2015]). Land cover changes that enhance or reduce photosynthesis

therefore impact surface energy partitioning, with significant implications on the local water
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cycle. For instance, enhanced stomatal conductance and photosynthesis typically increase

rates of transpiration, increasing the quotient of vapor in the atmosphere, which increases

convective precipitation events, replenishing soil moisture. However, decreased stomatal

activity may act to reduce the vegetation-controlled flux of precipitation to the atmosphere,

which could limit convective precipitation events. Because moisture changes within an area

of land cover are transported beyond it by atmospheric motion, the potential e!ects of land

cover change could ripple far outward and alter non-local gross primary production (hereafter

GPP) and latent heating significantly over the course of a growing season.

Understanding how land use change influences atmospheric and ecological processes is

of prime importance to understanding the scope of how anthropogenic activity influences

the environment (Pielke Sr et al. [2011]). Therefore, it is important not to neglect tem-

perate, midlatitude regions when investigating the influence of deforestation on mesoscale

weather patterns. In the early-20th century, over 80% of central/southern Appalachia was

clearcut for timber and mineral extraction (Yarnell [1998]). Significant forest cover has since

returned as regional economic activity has decreased (Gragson and Bolstad [2006]) and an

interest in using the land for carbon capture and storage has increased (Shade et al. [2025]).

This, however, may change as e!orts to revitalize the region’s economy continue and climate

change continues to intensify (Butler et al. [2015]). With the understanding that Appalachia

may experience significant deforestation and land use change over the next several decades,

and the understanding that deforestation substantially decreases rainfall in tropical environ-

ments, it is worth exploring how deforestation influences both meteorology and remaining

deciduous forest ecophysiology in the temperate midlatitudes.

This project aims to investigate how deforestation in the temperate deciduous forests

of Appalachia impacts meteorological conditions, and how changes in meteorology influence

primary production in the remaining forested areas. Specifically, using a coupled atmosphere-

land surface modeling appraoch, I aimed to (1) characterize the influence of significant

deforestation on environmental conditions (wind speed & direction, cloud cover, VPD, daily
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rainfall, and soil moisture) both inside and outside the deforested region, placing emphasis on

how prevailing wind direction and distance from the deforestation center influence the spatial

patterns and magnitude of these changes; (2) determine how changes in these environmental

conditions influenced changes in GPP in the remaining deciduous forest; and (3) determine

if changes in GPP correlated with changes in latent heat (LH) due to water loss during

carbon fixation, marking a potential positive feedback in the exchange of water between

the land surface and the atmosphere. These questions were addressed for multiple large-

scale deforestation scenarios across a gradient of size, continuity, and spatial orientation and

between comparatively “dry” years versus “wet” years, to determine whether the relative

importance of di!erent meteorological components in determining changes in GPP shift

based on the climate context.
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Chapter 2

Methodology

2.1 Coupled Model System, Parameterization, & and Domains

The Noah Multiparameterization Land Surface Model (Noah-MP) (version 4.5) allowes for

the dynamic simulation fo carbon biogeochemistry and vegetation physiology (Niu et al.

[2011], He et al. [2023]). I coupled this with the Advanced Research Weather Research

and Forecasting (WRF-ARW) model (version 4.6.0), which is a mesoscale numeric weather

prediction model designed for climatological research and operational forecasting (Skamarock

et al. [2019]). Previous studies have demonstrated the e!ectiveness of utilizing this coupled

model scheme in other contexts (see Yu et al. [2022]), and of using WRF for ecological

purposes (He et al. [2015]). To simulate lateral boundary conditions, WRF make use of High-

Resolution WRF V4 Geographical Statistic Data and ECMWF Reanalysis V5 (ERA5) single

and pressure level data (Hersbach et al. [2020]). WRF is driven by a series of microphysics,

cumulus, radiation, planetary boundary layer, surface, and land-surface physics schemes,

as seen in Table. 2.1. These were chosen by examining successful WRF studies along the

eastern United States. Noah-MP contains a similar set of parameterization schemes, though

all were kept standard except the Canopy Radiation Transfer scheme (Modified Two-Stream,

Niu and Yang [2004]) and the Dynamic Vegetation scheme (fully dynamic).
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WRF Physics Parameters

Component Parameterization Scheme Studies Utilized

Cloud Microphysics WSM6 (Hong and Lim [2006]) Rodgers et al. [2018]; Mallard and Spero [2019]; Gao et al. [2012]

Cumulous Physics Kain-Fritsch* (Kain [2004]) Rodgers et al. [2018]; Mallard and Spero [2019]; Gao et al. [2012]

LW Radiation RRTMG (Iacono et al. [2008]) Mallard and Spero [2019]; Gao et al. [2012]

SW Radiation RRTMG (Iacono et al. [2008]) Mallard and Spero [2019]; Gao et al. [2012]

BL Physics Yonsei University (Hong et al. [2006]) Rodgers et al. [2018]; Mallard and Spero [2019]

Surface Physics Revised MM5 M-O (Jiménez et al. [2012]) Mallard and Spero [2019]

Land-Surface Model Noah-MP

Table 2.1: WRF Parameters used in both synoptic and focal domain simulations. *Kain-

Fritsch was used only by the parent domain. No parameterization was used in the focal

domain.

2.1.1 Simulation Domains

I simulated a large 15→15 km resolution parent domain to resolve large-scale synoptic systems

and a smaller focal domain of 3→3 km resolution over my primary region of interest, as seen

in Fig. 2.1. Adhering to the recommendations resulting from other successful attempts

to model atmospheric processes across the eastern United States with WRF (see Rodgers

et al. [2018], for instance), the synoptic domain extends far west and east, capturing parts of

the Midwest, the Gulf Coast, and the Atlantic Seaboard, while also capturing synoptic air

movement from the Atlantic Ocean and the Northeast. The 1500→1500 km is a total area

large enough to capture large-scale pressure systems, fronts, and jet streams.
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Map of the “Synoptic Domain”

Figure 2.1: Synoptic & Focal Domains relative to the eastern United States. Shading repre-

sents di!erent physiographic regions throughout the continental United States. From bottom

right to top left, the focal domain consists of the Piedmont, Blue Ridge Mountains, Valley

& Ridge, and the Appalachian Plateau.
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The focal domain, which rests inside the synoptic domain, extends 303→303 km across

portions of Virginia, West Virginia, Ohio, Kentucky, Tennessee, and North Carolina (Fig.

2.2). The 3→3 resolution is a computationally e”cient size that is small enough to explicitly

simulate shallow convection, turbulent mixing, and regional carbon dynamics with detail.

This resolution yields a ratio of synoptic to focal domain resolution that is 1:5, allowing

dynamical downsampling to occur without significant error.

Land Use Map of the “Focal Domain”

Figure 2.2: Map of the “focal domain” with land use type and lines denoting physiographic

regions (Bureau [2020]). Focal domain is 303→303 km in area, with a 3 km resolution.

84.26% of the land is classified as “Deciduous Broadleaf Forest”, 5.26% are of di!erent forest

functional types, 0.01% are marked as “Barren or Sparsely Vegetated”, and 10.45% are

classified as di!erent land uses all together. This said, the model recognizes uneven/unequal

distribution of vegetation in each pixel, having varying vegetation fractions for each location.

White dots denote MODIS validation points.
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2.1.2 Focal Domain Physiography

Appalachia is inhomogeneous and contains a variety of physiographic regions with varying

topography and geomorphic structure, resulting in a diversity of climatic and weather con-

ditions along elevation, terrain, and hydrological gradients. The focal domain intends to

capture this diversity, as it includes many physiographic regions, including the Piedmont

foothills, the Blue Ridge Mountains, the Valley and Ridge, and the dominant Appalachian

Plateaus, as seen in Fig. 2.3.

Physiographic Maps of the “Focal Domain”
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Figure 2.3: Figures aimed at characterizing phisiographic diversity across the focal domain.

(a) Soil types across the focal domain: 30.50% “Loam”, 45.52% “Silt Loam”, 18.74% “Sandy

Loam”. (b) Elevation across focal domain. Highest: 1474 m. Lowest: 183 m. White lines

denote physiographic region boundaries: (1) Piedmont, (2) Blue Ridge Mountains, (3) Valley

and Ridge, & (4) Appalachian Plateau.
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2.2 Primary Productivity Characterization, Optimization, & Model Vali-

dation

In Noah-MP, the rate of photosynthesis and GPP for C3 vegetation (the only type in

Appalachian forests of the region) is a function of light, internal partial pressure of CO2,

temperature, soil moisture, foliar nitrogen, and surface air pressure, with the minimum of

light- (Equation (2.1)), rubisco- (Equation (2.2)), or export-limited (Equation (2.3)) rates

prescribing the realized rate (Equation (2.4), Fig. 2.4) (Niu and Yang [2004] & Dickinson

et al. [1998], based upon Farquhar et al. [1980]).

WJ =
max(PCO2,init ↑ Pc,CO2 , 0)→ Je

PCO2,init + 2→ Pc,CO2

(2.1)

Wc =
max(PCO2,init ↑ Pc,CO2 , 0)→ VC,max

PCO2,init + Fwc

(2.2)

We = 0.5→ VC,max (2.3)

PSN = min (WJ ,Wc,We)→ IGS (2.4)

Light-limited photosynthesis depends the rate of electron transport (Je), which is the

product of photon flux, and quantum e”ciency, multiplied a temperature-dependent, satu-

rating function of internal partial pressure of CO2 ((max(PCO2,init ↑ Pc,CO2), 0)/(PCO2,init +

2→Pc,CO2)). Rubisco-limited photosynthesis is a product of maximum rate of carboxylation

(VC,max), which is a product of foliar nitrogen, soil moisture, and a unimodal function of tem-

perature, and a temperature-dependent, saturating function of internal partial pressure of

CO2 (similar to that for light-limited photosynthesis, (max(PCO2,init↑Pc,CO2 , 0)/(PCO2,init+

Fwc). The saturating functions for light- and rubisco-limited photosynthesis are influenced

by half saturation constants for CO2 and O2, and the partial pressure of O2, to incorporate

the e!ect of photorespiration on rate of carbon fixation, and only di!er in their values of
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half-saturation constants. Export-limited photosynthesis is simply half the maximum rate

of carboxylation for rubisco-limited photosynthesis. The realized rate of photosynthesis is

a minimization function of all three limited pathways, multiplied by a binary indicator of

growing season IGS. Stomatal conductance is subsequently computed from the realized rate

of photosynthesis according to the empirical Ball-Berry relationship (Ball et al. [1987]).

2.2.1 Validating GPP

Prior to simulating the e!ects of deforestation, I performed a preliminary one-way, simulation

from January 1, 2017 to November 1, 2018 using WRF’s nesting input preprocessor (ndown)

to determine if the coupled atmosphere and dynamic vegetation model system could accu-

rately simulate GPP for the focal domain. I randomly chose 19 locations (Fig. 2.2) from the

simulation matching the “temperate deciduous forest” land cover type and compared their

8-day GPP averages to corresponding 8-day MODIS Terra GPP data, at a similar resolution,

for the entire growing season (Running and Zhao [2021]). This initial simulation overesti-

mated of GPP across the “temperate deciduous forest” pixels across the focal domain by

> 30%, as seen in Fig. 2.5a. This overestimation is consistent with a recent study (Li et al.

[2022]), which found Noah-MP overestimates primary production (GPP) in the continental

United States by >40% when dynamic vegetation is turned ON.

To address the overestimation of GPP, I worked to identify what parameter values within

Noah-MP might be leading to an overestimation within the “temperate deciduous forest”

land use type. Li et al. [2022] recommended reviewing the parameterization values within

Noah-MP of VCMX25, the maximum rate of carboxylation at 25°C, and AVCMX, the Q10

for VCMX25. Turnbull et al. [2002] found the VCMX25 for three keystone eastern United

States tree species Q. rubra, Q. prinus, and A. rubrum to range between 32.4 and 57.3

µmol CO2 m→2 s→1 and the carbon assimilation rate at 25°C to be between 6.76 and 13.5

µmol CO2 m→2 s→1, depending on the position in the canopy. Noah-MP’s initial param-

eterization held VCMX25 to be at a constant 60 µmol CO2 m→2 s→1 which results in a
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rubisco-limited carbon assimilation rate of 18.8 µmol CO2 m→2 s→1 at 25°C (Fig. 2.4a). I

adjusted VCMX25 to 43 µmol CO2 m→2 s→1 and increased AVCMX from 2.4 to 3.4 in an

e!ort to better reflect seasonality. Altering these values in the model decreased the rubisco-

limited rate of carbon uptake at 25°C to 13.5 µmol CO2 m→2 s→1, which falls appropriately

in the range articulated by Turnbull et al. [2002] (see Fig. 2.4b).

Tuning Model Using Limiting Rates of Photosynthesis in Noah-MP

Figure 2.4: Graphical depiction of limiting photosynthetic rates across a temperature gra-

dient. At 25°C, without limiting light or soil moisture, the out-of-the-box parameterization

(a) found the rate of carbon assimilation to be 18.8 µmol CO2 m→2 s→1. Following adjust-

ments to VCMX25 and AVCMX, (b) the maximum rate of carbon assimilation at 25°C

without limiting light or soil moisture decreased from 18.8 ↓ 13.5 µmol CO2 m→2 s→1 at

25°C, which falls in the range of observed values (Turnbull et al. [2002]).

Following my adjustments to the “temperate deciduous forest” VCMX25 and AVCMX

parameters, I again ran a simulation from January 1, 2017 to November 1, 2018 and compared

the modeled GPP data with MODIS data at the same 19 random points (Fig. 2.5b). The

adjusted carboxylation parameterization fits the MODIS data much better than the ‘o! the

shelf’ parameterization (Fig. 2.5a), and su”ciently well that this parameterization was used

for the deforestation simulations.
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Validation of Model GPP Using MODIS Data
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Figure 2.5: Comparison of MODIS GPP and Modeled GPP between January 1st, 2017 and

November 1st, 2018 averaged across 19 random locations throughout the focal domain. For

a specific map of locations used for validation, see Fig. 2.2. (a) Using Noah-MP’s out-of-the-

box parameterization of VCMAX25 = 60 µmol CO2 m→2 s→1 and AVCMX = 2.4, the model

simulated 4.85 kgC m→2 total, a >30% overestimation. (b) Using the modified parameter-

ization of VCMAX25 = 43 µmol CO2 m→2 s→1 and AVCMX = 3.4,, the model simulated

3.45 kgC m→2 total, a <7% underestimation. Under the modified parameterization, the

correlation increased and R2 decreased.

2.2.2 Validating Precipitation

Additionally, across this simulation, I compared the total rainfall simulated during the two

growing seasons (April-October 2017 and 2018) using PRISM climate data (Group [2019]).

WRF underestimated precipitation by 15.0 % in 2017 (844 mm PRISM, 718 mm WRF) and

27.2% in 2018 (1023 mm PRISM, 745 mm WRF). There were marginal overestimations in

regions with high elevation (see Fig. 2.3). Additionally, there was a border around the edge

of the WRF domain where precipitation did not simulate reasonably. To address this issue,
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I excised a 4-pixel border from WRF and again validated against PRISM. Removing this

border aligned the simulated precipitation much more closely with the reanalysis data, as

seen in Fig. 2.6, and signaled a need to remove a 4-pixel border for all further data processing.

This precipitation validation data is consistent with other successful WRF simulations (see

analysis of precipitation bias over central Europe: Stergiou et al. [2021]).

Validation of Model Precipitation Using PRISM Climate Data

Figure 2.6: A comparison of PRISM Reanalysis precipitation and Modeled precipitation

between April 1st and November 1st in 2017 and 2018 in millimeters. Removing the spurrious

4-pixel border decreased the underestimations to 4.9% in 2017 (846 mm PRISM, 804 mm

WRF) and to 17.0% in 2018 (1018 mm PRISM, 840 mm WRF).

According to PRISM, an average of 846 mm of rain fell between April 1, 2017 and

November 1, 2017 across the focal domain, while 1018 mm of rain fell between April 1, 2018

and November 1, 2018, meaning 2018 received 20.3% more rainfall than 2017. Therefore, run-

ning the deforestation simulations across the growing season for both 2017 and 2018 allows
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for the determination of the impact of total rainfall on the magnitude of changes in envi-

ronmental variables, primary production, and latent heating by comparing a comparatively

“dry” year to a comparatively “wet” year.

2.3 Experimental Setup

Once I successfully validated the model system, I was in a position to simulate deforestation

scenarios, which occurred during the growing season in 2017 and 2018. First, the synoptic

domain was simulated twice, once from March 1, 2017 to November 1, 2017, and again from

March 1, 2018 to November 1, 2018. Using the wrfout* data from the synoptic domain

simulations as input for WRF’s ndown.exe tool, I performed a total of 14 one-way runs

of the focal domain. One-way runs minimize the probability of spurious variation in the

synoptic domain that could lead to unrealistic focal domain phenomena, while increasing

computational e”ciency. To additionally increase model stability, vertical damping was

turned on, decreasing the vertical motion of air above a height of 12,000 m, a height that

will not limit convection nor hinder landscape processes.

I simulated the focal domain 7 times for 2017 and 7 times for 2018, each time with an

altered land cover scheme. For both 2017 and 2018, I first simulated the domain unchanged

(see Fig. 2.2) to establish control conditions. I then simulated six di!erent land cover

treatments, as seen in Fig. 2.7, using NCAR Command Line to manipulate wrfinput files,

changing the LU INDEX (land cover type/plant functional type) across all forest pixels to

16 (“barren or sparsely vegetated”) and the VEGFRA (fraction of vegetation cover per-

pixel) to 0 in a variety of patterns. Doing so reduces the surface roughness coe”cient from

0.15 to 0 and alters albedo (increases or decreases depending on time of day) across each

deforested pixel. Specific details about each land cover treatment are included in Table 2.2.

All land cover alterations stretch a length of 254.558 km, and are designed to determine if the

size, spatial orientation, and continuity of the deforested patch influence how environmental

and ecological components of the landscape respond to the perturbation. To allow for an
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appropriate spin-up period, I excised the first 11 days from the data, meaning “growing

season” shall hereafter refer to March 12 to November 1.

Land Cover Scenario Details

LC Scenario Area (km2) Thickness (km) Orientation Patches

001 17,667 42.426 BL↓TR N/A

002 8,343 21.213 BL↓TR N/A

003 4,599 42.426 BL↓TR 9 km2 with 3 km-thick boundary

004 10,377 42.426 BL↓TR 81 km2 with 3 km-thick boundary

005 17,469 42.426 TL↓BR N/A

006 8,109 21.213 TL↓BR N/A

Table 2.2: Characteristics about each deforestation scenario: how they vary in size, spatial

orientation, and continuity. LC Scenarios oriented from BL-TR follow the orientation of the

prevailing NE winds, while TL-BR scenarios are oriented perpendicular to the prevailing

winds.
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Land Cover Scenarios

Figure 2.7: Maps of the six land cover/deforestation scenarios. Color denotes per-pixel land

use type. See Table 2.2 for specific information regarding size and orientation.

17



2.4 Statistical Methodology

Because I only parameterized the “temperate deciduous forest” land cover type within Noah-

MP, I only considered the environmental, edaphic, and carbon dynamics of these pixels.

Pixels that (1) had a mean relative humidity over 100%, (2) had a mean vegetation tem-

perature ↔0°C, and (3) saw a mean change in vegetation temperature ↗—1.7—°C were

considered outliers and were excised from the data. To characterize the environmental con-

ditions both within the deforested and remaining forest pixels, I chose to focus on VPD

(amount of moisture the atmosphere can hold at saturation minus the amount of moisture

is actually in the atmosphere), soil moisture from the top 10 cm (an important compo-

nent of the water potential gradient), available shortwave radiation reaching the surface

(a reasonable proxy for both cloud cover/convection (see Dirmeyer and Shukla [1994]) and

photosynthetically active radiation), and daily precipitation. I additionally chose to inves-

tigate 10-m u ↑ v wind speed and direction inside the deforested pixels, as I believed this

could play a role in altering the flow of water vapor and influence changes in VPD. I then

investigated how changes in these environmental conditions elicited changes in GPP across

di!erent LC Scenarios and “wet” and “dry” years.

With the understanding that photosynthesis and GPP are intimately linked to stomatal

conductance (see Section 2.2), I investigated how changes in GPP correlated with changes

in Latent Heat (LH) across di!erent LC Scenarios and “wet” and “dry” years. All the

aforementioned variables were outputs of the WRF-Noah-MP coupled model system, with

the exception of VPD. Because VPD is more ecologically relevant, as it captures how plants

respond to water potential gradients between the soil and the atmosphere (see Grossiord

et al. [2020]), I derived it from other output variables using Equation (2.5) (well-established,

see Petty [2008]), where T2 is 2-meter temperature, Q2 is mixing ratio, Psfc is surface-level

pressure, i is longitude, j is latitude, t is timestep (hours), and T is trial (C for control).
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VPDi,j,t,T = 611.2→ exp

(
17.67→ (T2i,j,t,T ↑ 273.15)

(T2i,j,t,T ↑ 273.15) + 243.5

)
↑

Q2
i,j,t,T

→ Psfci,j,t,T

0.622→Q2
i,j,t,T

, (2.5)

Following the completion of the simulations, I first calculated the per-pixel average of

each variable across each growing season for each LC Scenario, xi,j,T , where x is some envi-

ronmental variable. After calculating xi,j,T , I subtracted the per-pixel average of the control

(xi,j,C), giving the average di!erence in x between before and after the deforestation across

the remaining deciduous forest pixels (Equation (2.6)).

#xi,j,T = xi,j,T ↑ xi,j,C (2.6)

To determine how #xi,j,T was changing in space with respect to the center of the focal

domain, I utilized the R package geosphere (Hijmans et al. [2017]) to assign polar coordinates

to each pixel relative to the center of the focal domain, (-81.21869, 37.57799), and to the

east direction (CCW: ω > 0, CW: ω < 0). I then characterized how #xi,j,T changes with

regard to ω to determine the influence of radial direction. This allowed for the determination

of the relative impact of the deforested region’s spatial orientation, relative to the average

wind direction within the deforested pixels. Additionally, I calculated the absolute value for

all #xi,j,T , abs(#xi,j,T ), and plotted it as a function of distance from the center of the focal

domain.

To analyze the influence of deforestation on these environmental and edaphic components,

I used z-score normalization and standardized regression to demonstrate the relative impact

of each #xi,j,T on #GPPi,j,T . Standardized regression allows for the direct comparison

between the strength of the relationship between #GPPi,j,T and di!erent #xi,j,T . Thus,

I could compare the relative impact of a one standard deviation change in one #xi,j,T , to

a one standard deviation change in another #xi,j,T . This allows for the determination of

whether di!erent land cover scenarios influence the relative e!ect of #xi,j,T on #GPPi,j,T

di!erently across “dry” and “wet” years. Because the standard deviations are reasonably
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similar between trials (see Supplemental Fig. 4.1), it is reasonable to use standardized

regression coe”cients to compare the relative e!ect of one variable in one scenario to another

in a di!erent scenario.

I used a series of linear models to make inference about the relationships between envi-

ronmental predictors and GPP and LH flux. I first fit Ordinary Least Squares (OLS) linear

models to relate how a standardized change in #VPDi,j,T , #SoilMoist.i,j,T ,#SW RAD.i,j,T ,

and #Daily Prcp.
i,j,T

imparts a standardized change in #GPPi,j,T across each trial and

across “dry” and “wet” years. After identifying significant spatial autocorrelation using

Moran’s I (hovering near 0.5, see Supplemental Fig. 4.2), I employed the “spatialreg”

and “spdep” R packages to fit spatial lag models and spatial error models, which account

for spatial autocorrelation (Bivand et al. [2017]). Lag models assume that autocorrela-

tion comes from the dependent variable, in this case #GPPi,j,T , while error models assume

it originates from unobserved phenomena (spatially-structured variables omitted from the

model). However, this situation is unique because spatial autocorrelation, in both the pre-

dictors (#VPDi,j,T , #SoilMoist.i,j,T ,#SW RAD.i,j,T , and#Daily Prcp.
i,j,T

) and the response

(#GPPi,j,T ) is likely driven by the formation of clouds and localized convection-driven precip-

itation events. Since pixels within a storm experience similar atmospheric conditions, their

responses are not dependent on immediate neighbors but on the storm itself. Consequently,

the development and distribution of convective storms depends on pixel-to-pixel landscape

features (elevation, albedo, soil moisture, etc.). These factors create spatial e!ects on storm

occurrence and intensity, meaning precipitation exhibits spatial structure tied to underlying

landscape features. This suggests that failing to account for spatial autocorrelation could

misrepresent the relationships between the predictors and #GPPi,j,T . The best models were

selected using AIC values, and Moran’s I, calculated on residuals was used to determine if

spatial autocorrelation was adequately addressed within each model. I then used the same

approach to relate #GPPi,j,T to #LH Fluxi,j,T , with the aim of demonstrating a feedback to
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atmospheric phenomena through water being transported back to the atmosphere through

GPP.
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Chapter 3

Results & Discussion

3.1 Characterizing Environmental Conditions Throughout Focal Domain

Average environmental conditions throughout the focal domain clearly show 2017 to be the

“dry” year and 2018 to be the “wet” year. Soil moisture, daily precipitation, and LH flux

are higher in 2018 than in 2017. This is matched by a much larger VPD in 2017 than in

2018, and increased shortwave radiation at the surface (see Table 3.1).

Average Environmental Conditions Across the Focal Domain

Year VPD(Pa) SWRAD(Wm→2) S.Moist.(m3m→3) DailyPrcp.(mm)

2017 861.1562 260.3207 0.2897 3.6613

2018 779.6536 254.0896 0.2964 4.0463

18(-)17 -81.5026 -6.2311 0.0067 0.3850

Table 3.1: Average values of relevant environmental variables for the 2017 & 2018 control

runs. Supplemental Fig. 4.5 contains values for each individual simulation.

However, year to year means of environmental conditions fail to capture how physiography

and synoptic weather interact to generate interesting spatial variation in these environmental

conditions. For instance, topology and elevation shape the distribution of VPD (as seen in

Fig. 3.1, (a) and (b)). The piedmont region sees a moderately consistent VPD around

↘900 Pa in both years, despite the bordering Blue Ridge having a VPD around ↘650 Pa

both years. The Valley & Ridge region is comparatively “patchy,” with small areas having

low average VPD. The Appalachian Plateau exhibits significant variability, with high VPD

in both years in the western portion of the region and low VPD in the northeast. These
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trends are likely attributable to the elevation gradient throughout the di!erent regions, as

the Piedmont has a lower elevation than surrounding mountainous regions, leading to higher

average temperatures due to the environmental lapse rate, contributing to a comparatively

high VPD. The Blue Ridge is high elevation, and is characterized by comparatively lower

temperatures forcing a lower VPD. The Valley & Ridge, consisting of bands of high mountains

and valleys with low elevations, likely exhibits greater “patchiness” in VPD, in part, due to

temperature gradients across substantial variation in elevation.

Soil moisture is similarly mediated by interactions with the landscape, though soil type

has a pronounced influence soil moisture variation. Average soil moisture is lowest in “Sandy

Loam” soils, found in the Piedmont and Appalachian Plateau, and highest in “Silt Loam”

soils. This is likely due to the ability of silt loam soils hold water tighter than sandy loam. It

is additionally possible, however, that soil moisture is associated with elevation, given higher

temperatures associated with lower elevations in the Piedmont, which could lead to greater

evaporation and soil water loss. Lastly, while there is notable variation in available SW

radiation at the surface, which again can be attributed to the elevation gradient modulating

the flow of vapor across the land surface, it is less pronounced than it is for VPD and soil

moisture. Still, there is unique spatial variation present, most notably the lower average in

the Piedmont in 2017 relative to the Blue Ridge. Interestingly, this pattern is not present in

2018. It is clear that without land surface modification, VPD, soil moisture, and available

shortwave radiation demonstrate significant spatial variability due to land surface features.
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Figure 3.1: The per-pixel average VPD (a) & (b), Soil Moisture (c) & (d), and Available

SW Radiation (e) & (f) for the 2017 and 2018 control trials. Variable arrangement of these

environmental characteristics suggest physiography, primarily topography, elevation, and soil

type play a significant role in distributing water vapor, soil moisture, and photosynthetically

active radiation.
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3.2 Characterizing Changes in Environmental Conditions Across Defor-

ested Pixels and Remaining Deciduous Forest Pixels

3.2.1 Within Deforested Pixels

Deforestation induced substantial changes in environmental conditions, both atmospheric

and terrestrial, within the deforested pixels. Across all deforestation scenarios, 10 m u ↑ v

wind speeds increased by ↘0.4 ms→1 on average within the deforested pixels. Average wind

direction was not di!erent between between deforestation scenarios and controls in 2017,

however average wind direction di!ered considerably between 2017 and 2018. Furthermore,

deforestation scenarios have a slight impact on average wind direction in 2018 (Fig. 3.2).

This increase in wind speed was expected, as the reduction in surface roughness from the

land surface conversion decreases the frictional drag acting against the winds (Gandu et al.

[2004]). The slight change in wind direction is also likely due to this reduction of surface

roughness, as the vegetation could have deformed the prevailing winds. The average wind

vector is well aligned with the major axis of land cover scenarios 001, 002, 003, and 004 (see

Fig. 2.7).
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2017 & 2018 Avg. u↑ v Wind Velocity Vectors Across All Treatments

Figure 3.2: Comparison between control and treatment velocity vectors averaged across all

2017 and 2018 land cover scenarios. A significant increase in the magnitude of the wind vector

between controls and treatments (p < 0.01) was found, but only a very small, marginally

significant di!erence in ω (p < 0.05) was recovered. Mean wind speed & direction, 2017:

1.458 ms→1, 34.348°. Mean wind speed & direction, 2018: 1.337 ms→1, 49.458°.

VPD

Across all deforestation scenarios in 2017 and 2018, average growing season VPD appears

to increase by ↘4% on average in deforested pixels (see Table 3.2). This is likely due to

the altered surface energy partitioning of the “Barren or Sparsely Vegetated” pixels relative

to “Temperate Deciduous Forest.” Without the capacity for transpiration, deforested pixels

will experience a substantial decline in transpiration from the loss of vegetation, limiting

the flow of vapor back into the atmosphere. Furthermore, increased transpiration reduces

temperature, which can limit convective storm formation. The change in a single pixel from

control to treatment of average VPD, #VPDi,j,T , is dependent on the pixel’s radial direction,

relative to the center of the focal domain and the prevailing u↑v wind direction (Fig. 3.3 and

Fig. 3.4). For instance, the point of absolute minimum of #VPDi,j,T across all scenarios in

both 2017 and 2018 is in the direction of the average wind vector. This means that moisture

is being transported across the land surface in the direction of dominant winds. Additionally,

average VPD decreases clockwise of the average wind vector and is higher counterclockwise.
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Average Environmental Conditions In Deforested Pixels

Year LC Applied? VPD(Pa) SWRAD(Wm→2) S.Moist.(m3m→3) DailyPrcp.(mm)

2017 No 807.3279 260.7829 0.3077 4.0420

2017 Yes 840.5400 264.3757 0.2796 3.8458

2017 Delta 33.2121 3.5928 -0.0281 -0.1961

2018 No 728.7491 254.8222 0.3152 4.7311

2018 Yes 757.5173 259.0204 0.2911 4.4593

2018 Delta 28.7681 4.1983 -0.0242 -0.2719

Table 3.2: Average environmental conditions within deforested pixels, before (No) and after

(Yes) the deforestation, and the di!erence between them (Delta). Supplemental Fig. 4.4

contains values for each individual simulation.

This is likely due to the prevailing winds that, in the Northern Hemisphere, veer clockwise

with increasing height due to Ekman dynamics in the boundary layer (Lindvall and Svensson

[2019]), resulting in moisture advection eastward.
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Representative Heat Maps of #VPDi,j,T Across Deforested Pixels
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Figure 3.3: Heat maps of the di!erence between average VPD before and after deforestation

across all deforested pixels (#VPDi,j,T ) for (a) Scenario 001 in 2017 and (b) Scenario 005

in 2018. Green arrows depicts the angle of the average prevailing 10-meter winds inside the

deforested pixels, relative to the east (2017: 34.348°, 2018: 49.458°). For all heat maps, see

Supplemental Figures 4.5 & 4.6.

28



Relating #VPDi,j,T Across Deforested Pixels and Radial Direction
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Figure 3.4: A series of GAMs/loess’ relating the di!erence between average VPD before and

after deforestation across all deforested pixels (#VPDi,j,T ) and radial direction, relative to

the east, where ω = 0. ω increases counterclockwise of the east and decreases clockwise

from the east for both (a) 2017 and (b) 2018 trials. For more GAMs/loess’ across the

deforested pixels, see Supplemental Figures 4.1 & 4.2.

Soil Moisture

Across the growing season, average soil moisture declined in every deforested pixel across all

scenarios in both 2017 and 2018. On average, across all scenarios, ↘9.1% in 2017 and ↘7.6%

in 2018 (Table 3.2). This universal decline is a consequence of higher VPD and increased

advective moisture transport, the loss of shade and roots that would otherwise limit soil

water loss, and decreased precipitation (see below). These declines were not correlated with

the pixel’s radial direction relative to the center of the focal domain and the prevailing

u ↑ v wind direction (Supplemental Figs. 4.1 & 4.2), rather these declines took place rel-

atively uniformly across the deforested regions (Fig. 3.5). Additionally, there was minimal
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scenario-to-scenario variation in average per-pixel changes in soil moisture. This suggests

the mechanisms behind fluctuations in #VPDi,j,T and #SoilMoist.i,j,T are di!erent, though

deforestation is influencing both. Although notable, this is not especially unexpected, given

that edaphic conditions are likely to respond to di!erently to deforestation than atmospheric

conditions.

Representative Heat Maps of #SoilMoist.i,j,T Across Deforested Pixels
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Figure 3.5: Heat maps of the di!erence between average soil moisture before and after

deforestation across all deforested pixels (#SoilMoist.i,j,T ) for (a) Scenario 001 in 2017 and

(b) Scenario 006 in 2018. Green arrows depicts the angle of the average prevailing 10-meter

winds inside the deforested pixels, relative to the east (2017: 34.348°, 2018: 49.458°). For

all heat maps, see Supplemental Figures 4.9 & 4.10.

Available Shortwave Radiation

Across all LC scenarios, average available shortwave radiation increased by ↘1.5% on average

in deforested pixels (Table 3.2). Because the amount of available shortwave radiation is

primarily influenced by cloud cover, the increase in available shortwave radiation suggests
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both that the deforestation, by limiting transpiration, has reduced the flux of water vapor into

the atmosphere, and that the altered surface energy balance may have reduced convection

and cloud formation across the deforested pixels. Similar to soil moisture, however, there

does not appear to be any spatial patterns associated with changes in per-pixel average

available shortwave radiation, #SW RAD.i,j,T (Fig. 3.6). Despite being an atmospheric

feedback to the land cover change, the mechanisms shaping the response of #SW RAD.i,j,T

appear to be di!erent than those shaping #VPDi,j,T , another atmospheric feedback.

Representative Heat Maps of #SW RAD.i,j,T Across Deforested Pixels
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Figure 3.6: Heat maps of the di!erence between average available shortwave radiation before

and after deforestation across all deforested pixels (#SW RAD.i,j,T ) for (a) Scenario 001

in 2017 and (b) Scenario 004 in 2018. Green arrows depicts the angle of the average pre-

vailing 10-meter winds inside the deforested pixels, relative to the east (2017: 34.348°, 2018:

49.458°). For all heat maps, see Supplemental Figures 4.13 & 4.14.
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Daily Precipitation

Rainfall, across all LC scenarios, decreased by ↘4.9% in 2017 and ↘5.7% in 2018 within

deforested pixels (Table 3.2). This confirms a decline in convective precipitation, albeit

minor, which can be attributed to both the loss of transpiration and the altered surface

energy budget in the deforested pixels. Similar to #SW RAD.i,j,T , changes in the per-pixel

averages of daily precipitation, #DailyPrcp.
i,j,T

, appears to be di!erent than those shaping

#VPDi,j,T , despite atmospheric vapor being critical to both the development of clouds and

rainfall.

Representative Heat Maps of #Daily Prcp.
i,j,T

Across Deforested Pixels
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Figure 3.7: Heat maps of the di!erence between average daily precipitation before and after

deforestation across all deforested pixels (#DailyPrcp.
i,j,T

) for (a) Scenario 001 in 2017 and

(b) Scenario 002 in 2018. Green arrows depicts the angle of the average prevailing 10-meter

winds inside the deforested pixels, relative to the east (2017: 34.348°, 2018: 49.458°). For

all heat maps, see Supplemental Figures 4.17 & 4.18.
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Summary

Average growing season VPD, soil moisture, available shortwave radiation, and daily pre-

cipitation all change significantly in response to deforestation across the deforested pixels.

#VPDi,j,T is asymmetric, with moisture advection moving decreasing VPD clockwise of the

prevailing winds and increasing VPD counterclockwise of the prevailing winds. Average

soil moisture declined in every deforested pixel across all deforestation scenarios, suggesting

the loss of roots, shade, and transpiration increased the burden on soil moisture to satisfy

evaporative demand. Average available shortwave radiation increased slightly across the

deforested pixels, though it does not follow the clear spatial pattern changes in average VPD

followed. Lastly, there were sizable changes in average daily precipitation across deforested

pixels, likely due to a decreased flux of water vapor from lost transpiration and altered

surface energy budget.

3.2.2 Within Remaining Deciduous Forest Pixels

Substantial changes in environmental conditions across the deforested pixels were expected,

and the more interesting question is whether these e!ects spill over into the remaining

deciduous forest pixels, driving changes in GPP and LH Flux. In short, environmental

conditions changed in response to deforestation, but to a small degree, in remaining deciduous

forest pixels. Average VPD, soil moisture, and daily precipitation all declined, but by ↔1%,

while average available shortwave radiation increased by <1% (Table 3.3). The direction of

these changes are generally consistent with what our analysis of the deforested pixels found.

However, the magnitude of these changes suggests that the remaining deciduous forest and

atmosphere, as a whole, exhibit remarkable stability in response to significant deforestation.

However, there is scenario-to-scenario variation and significant pixel-to-pixel variation within

each scenario that averages fail to capture, including significant radial variation and variation

with distance from the center of the focal domain.

33



Average Environmental Values in Remaining Deciduous Forest

Year LC Applied? VPD(Pa) SWRAD(Wm→2) S.Moist.(m3m→3) DailyPrcp.(mm)

2017 No 871.5590 260.2052 0.2861 3.5831

2017 Yes 870.4085 260.2946 0.2853 3.5717

2017 Delta -1.1506 0.0894 -0.0008 -0.0114

2018 No 788.6834 253.9339 0.2928 3.9129

2018 Yes 786.8223 254.0495 0.2922 3.8880

2018 Delta -1.8611 0.1156 -0.0006 -0.0249

Table 3.3: Average values of relevant environmental variables for each year, control (No) and

treatment (Yes), for the deciduous forest pixels that were not removed/deforested. Supple-

mental Fig. 4.5 contains values for each individual simulation.

VPD

Similar to changes in average VPD across deforested pixels, the di!erence in VPD between

before and after the deforestation across the remaining deciduous forest pixels (#VPDi,j,T )

demonstrates significant spatial variation relative to the internal prevailing wind direction

(Fig. 3.8). This, again, is likely a consequence of Ekman dynamics in the boundary

layer advecting moisture eastward. This eastward decrease in VPD (negative #VPDi,j,T )

from control-to-treatment suggests atmospheric water availability increases and evaporative

demand decreases to the east, potentially reducing plant stress and increasing stomatal con-

ductance and photosynthesis. For instance, there is a consistent decrease in VPD relative to

the control across the di!erent physiographic regions in the southeast corner of the domain.

Given the variation in control VPD between the di!erent physiographic regions in the south-

eastern corner (see Fig. 3.1), the uniform changes in VPD must stem from the deforestation

in 001. The opposite is observed counterclockwise of the prevailing wind direction (Fig. 3.9),

with slight, uniform decreases in VPD. Additionally, these results suggest the radial changes

in VPD depend on the size (magnitude of changes larger for 001 than for 002, and for 005

than for 006), spatial orientation (the pattern exhibited by 001 and 002 is di!erent than 005
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and 006, respectively) of deforestation, can be muted by discontinuities (the amplitude of

003 and 004 are significantly less than 001), and the amplitude of the perturbation appears

to be greater in the “dry” year (the magnitude of the GAMs is lower in 2018, see 005 and

006). However, it is intriguing that all deforestation scenarios across both “wet” and “dry”

years redistribute atmospheric moisture across the remaining forested pixels in a manner

that results in minimal changes on average throughout the focal domain. This suggests the

total vapor in the atmosphere is changing very little, but rather the more pronounced change

is where the vapor is going.

As distance from the center of the focal domain increases, the magnitude of #VPDi,j,T

decreases and gradually attenuates towards zero (Fig. 3.10). Some scenarios appear to have

a steeper curve of attenuation than others and appears to strongly depend on the size of the

deforested region. For instance, deforestation scenario 001 has the highest abs(#VPDi,j,T )

50km away from the center of the focal domain, followed by scenarios 004 and 005. The

smallest scenarios, 002, 003, and 006, see much smaller changes to abs(#VPDi,j,T ). 150 km

away, however, the di!erent deforestation scenarios see approximately equivalent perturba-

tions. Simply, the deforestation generates a pronounced and consistent spatial shift in VPD

in the remaining forest pixels, with the magnitude of this e!ect determined by the spatial

extent of the deforestation. Irrespective of this, however, the e!ects of the deforestation

scenario attenuate a couple hundred kilometers away.
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Representative Heat Maps of #VPDi,j,T Across Remaining Deciduous Forest

Pixels
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Figure 3.8: Heat maps of the di!erence between average VPD before and after deforestation

across all remaining deciduous forest pixels (#VPDi,j,T ) for (a) Scenario 001 in 2017 and

(b) Scenario 005 in 2018. Green arrows depicts the angle of the average prevailing 10-meter

winds inside the deforested pixels, relative to the east (2017: 34.348°, 2018: 49.458°). For

all heat maps, see Supplemental Figures 4.7 & 4.8.
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Relating #VPDi,j,T Across Remaining Deciduous Forest and Radial Direction
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Figure 3.9: A series of GAMs/loess’ relating the di!erence between average VPD before

and after deforestation across all remaining deciduous forest pixels (#VPDi,j,T ) and radial

direction, relative to the east, where ω = 0. ω increases counterclockwise of the east

and decreases clockwise from the east for both (a) 2017 and (b) 2018 trials. For

more GAMs/loess’ relating changes in environmental characteristics to radial direction in

remaining deciduous forest pixels, see Supplemental Figures 4.3 & 4.4.
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Relating abs(#VPDi,j,T ) Across Remaining Deciduous Forest Pixels and

Distance From Center of Focal Domain
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Figure 3.10: A series of GAMs/loess’ relating the absolute value of the di!erence between

average VPD before and after deforestation across all remaining deciduous forest pixels

(abs(#VPDi,j,T )) and linear distance from the center of the focal domain in meters for both

(a) 2017 and (b) 2018 trials.
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Soil Moisture

Similar to average soil moisture across deforested pixels, changes between the before and

after average of soil moisture across remaining forested regions (#SoilMoist.i,j,T ), which are

small, do not appear to depend on the direction of the prevailing winds, nor on the size,

spatial orientation, or continuity of the deforestation scenario (Fig. 3.11). While there are

“patches” of large increases and decreases in soil moisture, it is di”cult to determine con-

sistent patterns across di!erent scenarios or a direct source of this variation, beyond being a

consequence of increased atmospheric instability and slightly altered precipitation patterns

(see precipitation Fig. 3.15). As a whole, soil moisture changed very little and unpredictably.

Interestingly, however, as distance increases from the center of the focal domain, the magni-

tude of #SoilMoist.i,j,T , abs(#SoilMoist.i,j,T ), does not decrease and attenuate towards zero

(Fig. 3.12). Rather, soil moisture continues to be perturbed far away from the center of the

focal domain. The lack of attenuation suggests that the e!ects of deforestation on soil mois-

ture can ripple outward a considerable distance, potentially influencing hydrology hundreds

of kilometers away. There does not appear to be any significant impact of the size, spatial

orientation, or continuity of the deforested region on the impact on soil moisture. This is

likely due to the dependency of soil moisture on a multitude of factors (e.g. precipitation,

runo!, vertical infiltration, and evapotranspiration) (see Noah soil moisture scheme utilized

by Noah-MP: Ek et al. [2003]).
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Representative Heat Maps of #SoilMoist.i,j,T Across Remaining Deciduous

Forest Pixels
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Figure 3.11: Heat maps of the di!erence between average soil moisture before and after

deforestation across all remaining deciduous forest pixels (#SoilMoist.i,j,T ) for (a) Scenario

001 in 2017 and (b) Scenario 006 in 2018. Green arrows depicts the angle of the average

prevailing 10-meter winds inside the deforested pixels, relative to the east (2017: 34.348°,

2018: 49.458°). For all heat maps, see Supplemental Figures 4.11 & 4.12.
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Relating abs(#SoilMoist.i,j,T ) Across Remaining Deciduous Forest Pixels and

Distance From Center of Focal Domain
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Figure 3.12: A series of GAMs/loess’ relating the absolute value of the di!erence between

average soil moisture before and after deforestation across all remaining deciduous forest

pixels (abs(#SoilMoist.i,j,T )) and linear distance from the center of the focal domain in

meters for both (a) 2017 and (b) 2018 trials. For all heat maps, see Supplemental Figures

4.11 & 4.12.

Available Shortwave Radiation

Similar to available shortwave radiation across the deforested pixels, the di!erence between

the before and after average of available shortwave radiation across remaining forested regions

(#SW RAD.i,j,T ) appears to change little on average, despite significant pixel-to-pixel vari-

ation (Fig. 3.13). There does not appear to be any spatial dependence relative to the

direction of the prevailing winds. However, across both 2017 and 2018, the magnitude of

#SW RAD.i,j,T is hightest at the edges of the deforested pixels and decreases with distance

(Fig. 3.14), similar to #VPDi,j,T . This suggests fluctuations in cloud cover are occurring
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close the boundary between the di!erent land use types, “Barren or Sparsely Vegetated” and

“Temperate Deciduous Forest”. Vertical motion is known to fluctuate at the convergence of

di!erent land cover types (Cheng and McColl [2023]), though the resolution of the model

limited the ability to identify specific spatial trends in changes in vertical flux changes (see

Supplemental Figs. 4.1, 4.2, 4.3, & 4.4). However, this perturbation in available shortwave

radiation at the edges of the remaining deciduous forest, which is highest for the largest

deforestation scenarios (001, 004, and 005) suggest vertical motion and convection has been

impacted at the land cover boundary. As distance increases from the deforested region,

abs(#SW RAD.i,j,T ) approached zero, and any such e!ects e!ectively disappear.

Representative Heat Maps of #SW RAD.i,j,T Across Remaining Deciduous

Forest Pixels
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Figure 3.13: Heat maps of the di!erence between average available shortwave radiation before

and after deforestation across all remaining deciduous forest pixels (#SW RAD.i,j,T ) for (a)

Scenario 001 in 2017 and (b) Scenario 004 in 2018. Green arrows depicts the angle of the

average prevailing 10-meter winds inside the deforested pixels, relative to the east (2017:

34.348°, 2018: 49.458°). For all heat maps, see Supplemental Figures 4.15 & 4.16.
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Relating abs(#SW RAD.i,j,T ) Across Remaining Deciduous Forest Pixels and

Distance From Center of Focal Domain
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Figure 3.14: A series of GAMs/loess’ relating the absolute value of the di!erence between

average available shortwave radiation before and after deforestation across all remaining

deciduous forest pixels (abs(#SW RAD.i,j,T )) and linear distance from the center of the

focal domain in meters for both (a) 2017 and (b) 2018 trials.
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Daily Precipitation

Daily precipitation changes little on average. However, similar to the other atmospheric

and edaphic features in the remaining deforested region, there appears to be a significant

amount of pixel-to-pixel variation in the di!erence between daily precipitation before and

after the deforestation, or #Daily Prcp.
i,j,T

(Fig. 3.15). These fluctuations are likely due

to changes in cloud formation as indicated by #SW RAD.i,j,T and changes in atmospheric

moisture indicated by #VPDi,j,T . Similar to both abs(#VPDi,j,T ) and abs(#SW RAD.i,j,T ),

the absolute value of #Daily Prcp.
i,j,T

, abs(#Daily Prcp.
i,j,T

), decreases with distance from

the center of the focal domain, suggesting that changes in daily precipitation induced by the

di!erent deforestation schemes in the remaining deciduous forest pixels attenuate to zero

with distance (Fig. 3.16). There does not appear to be significant variation between the

di!erent deforestation schemes on the magnitude of the perturbation to daily precipitation

in remaining deciduous forest pixels, perhaps due to the formulation of precipitation in WRF

being dependent on a myriad of factors, similar to soil moisture.
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Representative Heat Maps of #Daily Prcp.
i,j,T

Across Remaining Deciduous

Forest Pixels
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Figure 3.15: Heat maps of the di!erence between average daily precipitation before and after

deforestation across all remaining deciduous forest pixels (#DailyPrcp.
i,j,T

) for (a) Scenario

001 in 2017 and (b) Scenario 002 in 2018. Green arrows depicts the angle of the average

prevailing 10-meter winds inside the deforested pixels, relative to the east (2017: 34.348°,

2018: 49.458°). For all heat maps, see Supplemental Figures 4.19 & 4.20.
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Relating abs(#Daily Prcp.
i,j,T

) Across Remaining Deciduous Forest Pixels and

Distance From Center of Focal Domain

0.0

0.1

0.2

0.3

0.4

0 50000 100000 150000 200000
Distance (m)

∆
Av

g.
 D

ai
ly

 P
rc

p.
 (m

m
da

y−
1 )

2017, Remaining Deciduous Forest Pixels(a)

0.0

0.1

0.2

0.3

0.4

0 50000 100000 150000 200000
Distance (m)

∆
Av

g.
 D

ai
ly

 P
rc

p.
 (m

m
da

y−
1 )

2018, Remaining Deciduous Forest Pixels(b)

LC Scenario 1

LC Scenario 2

LC Scenario 3

LC Scenario 4

LC Scenario 5

LC Scenario 6

Figure 3.16: A series of GAMs/loess’ relating the absolute value of the di!erence between

average daily precipitation before and after deforestation across all remaining deciduous

forest pixels (abs(#Daily Prcp.
i,j,T

)) and linear distance from the center of the focal domain

in meters for both (a) 2017 and (b) 2018 trials.

Summary

Despite environmental conditions changing mininally on average across all remaining tem-

perate deciduous forest pixels in the focal domain, there is significant pixel-to-pixel variation

in both the average atmospheric (VPD, available shortwave radiation, and daily precipita-

tion) and edaphic (soil moisture) conditions. Changes in average atmospheric conditions

were most pronounced in the remaining deciduous forest pixels closest to the center of the

focal domain, suggesting the atmospheric consequences of the di!erent deforestation sce-

narios attenuate with distance. Changes in average soil moisture, however, did not atten-

uate with distance, and appeared to be relatively uniform across the remaining pixels and
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land cover scenarios. Average VPD appeared to decrease eastward of the deforested region

and increase westward, a consequence of moisture advection due to Ekman dynamics in the

boundary layer, reducing atmospheric moisture in the western portion of the domain and

increasing it in the east.

Size, spatial orientation, and continuity all appeared to play a role in shaping the response

of average VPD across the di!erent deforestation scenarios, with larger, continuous scenarios

aligned with the direction of the prevailing winds having the greatest e!ect. Size played an

additionally critical role in shaping the response of average available shortwave radiation

across the remaining forested pixels. In contrast, size, spatial orientation, or continuity

exerted little influence on average soil moisture or average daily precipitation. Addition-

ally, the results do not suggest any significant influence of “wet” versus “dry” years on the

perturbation of these environmental conditions, with the exception of VPD.

3.3 Characterization of Spatial Variation & Environmental Influence on

Changes in GPP

Average GPP Across Remaining Deciduous Forest Pixels

Year LC Applied? GPP (gCm→2hr→1)

2017 No 0.2969

2017 Yes 0.2964

2017 Delta -0.0005

2018 No 0.2862

2018 Yes 0.2857

2018 Delta -0.0005

Table 3.4: Average values of GPP for each year, control (No) and treatment (Yes), for the

deciduous forest pixels that were not removed/deforested. Supplemental Fig. 4.5 contains

values for each individual simulation.

Similar to the average environmental conditions, the average response of GPP in the

remaining deciduous forest pixels to deforestation was small (Table 3.4). A change of -
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0.0005 gC m→2 hr→1 in GPP corresponds to to a shift of -0.02916 MgC ha→1 (≃-0.2% change)

over the entire growing season. This, coupled with minimal changes in VPD, soil moisture,

and available shortwave radiation, speaks to the resiliency of the landscape to significant

landscape alteration close by. Recognizing the substantial pixel-to-pixel and simulation-to-

simulation variability in atmospheric and edaphic conditions across the remaining deciduous

forest pixels, we might expect the di!erence between the before and after average of GPP

across remaining forested regions #GPPi,j,T , to exhibit similar variability, as GPP depends

on these environmental characteristics. However, #GPPi,j,T does not appear to be influenced

by the prevailing wind direction (Figs. 3.17 & 3.18), suggesting a limited correlation with

#VPDi,j,T . Additionally, abs(#GPPi,j,T ) changes with distance do not attenuate ↘200 kilo-

meters from the center of the focal domain, unlike for abs(#VPDi,j,T ) abs(#SW RAD.i,j,T )

(Fig. 3.19). abs(#GPPi,j,T ) appears to behave very similarly to abs(#SoilMoist.i,j,T ) in with

deviations from the control scenarios persisting hundreds of kilometers away from the site

of deforestation, suggesting #Soil Moist.i,j,T may exercise the most pronounced control over

#GPPi,j,T across the focal domain during the 2017 and 2018 growing seasons.
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Representative Heat Maps of #GPPi,j,T Across Remaining Deciduous Forest

Pixels
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Figure 3.17: Heat maps of the di!erence between average daily precipitation before and

after deforestation across all remaining deciduous forest pixels (#GPPi,j,T ) for (a) Scenario

001 in 2017 and (b) Scenario 006 in 2018. Green arrows depicts the angle of the average

prevailing 10-meter winds inside the deforested pixels, relative to the east (2017: 34.348°,

2018: 49.458°). For all heat maps, see Supplemental Figures 4.21 & 4.22.
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Relating #GPPi,j,T Across Remaining Deciduous Forest and Radial Direction
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Figure 3.18: A series of GAMs/loess’ relating the di!erence between average GPP before

and after deforestation across all remaining deciduous forest pixels (#GPPi,j,T ) and radial

direction, relative to the east, where ω = 0. ω increases counterclockwise of the east and

decreases clockwise from the east.
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Relating abs(#GPPi,j,T ) Across Remaining Deciduous Forest and Distance

From Center
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Figure 3.19: A series of GAMs/loess’ relating the absolute value of the di!erence between

average GPP before and after deforestation across all remaining deciduous forest pixels

(abs(#GPPi,j,T )) and linear distance from the center of the focal domain in meters for both

(a) 2017 and (b) 2018 trials.

Despite little variation in average GPP across LC scenarios (Table 3.4), #GPPi,j,T

exhibits substantial spatial variation that’s di!erent across scenarios that is well predicted

by #VPDi,j,T , #Soil Moist.i,j,T , #SW RAD.i,j,T , and #Daily Prcp.
i,j,T

. Relative variation in

soil moisture di!erences were most strongly associated with relative variation in GPP di!er-

ences; the normalized coe”cient for #SoilMoist.i,j,T was the largest out of all predictors for

all deforestation scenarios. The spatial variation in #GPPi,j,T , which is explicitly addressed

by the spatial error model, indicates that GPP has pronounced patches of significant high

and low values, likely due to isolated storms, soil moisture anomalies, topography, runo!, or

vertical infiltration.
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Spatial Error Models Relating #GPPi,j,T to #xi,j,T by Simulation

Model Parameters Z-Normalized Coe!cients Coe!cients in Original Units

LC Year R2 Spat.Depend. #VPDi,j,T #S.M.i,j,T #SWi,j,T #D.Prcp.
i,j,T

#VPDi,j,T #S.M.i,j,T #SWi,j,T #D.Prcp.
i,j,T

001 2017 0.791 ε = 0.876 -0.153 0.615 0.166 0.148 -0.000064 0.802199 0.000776 0.002492

001 2018 0.779 ε = 0.892 0.384 0.874 0.107 0.118 0.000225 1.243490 0.000660 0.002404

002 2017 0.791 ε = 0.883 0.203 0.770 0.126 0.115 0.000119 0.999389 0.000661 0.001873

002 2018 0.807 ε = 0.866 0.277 0.894 0.094 0.083 0.000218 1.272820 0.000653 0.001639

003 2017 0.765 ε = 0.822 0.160 0.779 0.110 0.132 0.000106 0.984857 0.000579 0.002176

003 2018 0.796 ε = 0.846 0.225 0.908 0.106 0.065 0.000199 1.261513 0.000674 0.001178

004 2017 0.788 ε = 0.835 0.073 0.757 0.151 0.109 0.000036 0.949951 0.000727 0.001872

004 2018 0.786 ε = 0.857 0.293 0.903 0.118 0.067 0.000198 1.272676 0.000722 0.001301

005 2017 0.778 ε = 0.831 0.021 0.764 0.160 0.106 0.000010 0.920131 0.000742 0.001723

005 2018 0.777 ε = 0.852 0.371 0.983 0.098 0.019 0.000253 1.385014 0.000634 0.000355

006 2017 0.744 ε = 0.916 0.591 0.887 0.094 0.104 0.000374 1.168818 0.000537 0.001803

006 2018 0.779 ε = 0.847 0.346 0.978 0.102 0.046 0.000289 1.364736 0.000662 0.000844

Table 3.5: Presents the results of spatial error models relating #GPPi,j,T ↘ #VPDi,j,T +

#SoilMoist.i,j,T +#SW RAD.i,j,T +#Daily Prcp.
i,j,T

for all simulations. Z-score normalized

coe”cients showing relative impact and the coe”cients in standard units included. The

presented models have the lowest AIC and Moran I statistic, and the highest Moran P-

value of any model tested for that LC Scenario and Year. All OLS models demonstrated

significantly high Moran I statistics. See appendix for full model results (Supplemental Fig.

4.2) and table of standard deviations (Supplemental Fig. 4.1).

Intriguingly, the models suggest the relative influence of the drivers of #GPPi,j,T is more

consistent and less variable in the wetter year (2018) than during the drier year (2017) (refer

to Fig. 3.20). Spatial extent of deforestation also plays a role, with the observed changes in

the relative importance of#VPDi,j,T , #SoilMoist.i,j,T and#SW RAD.i,j,T changing the most

between years in scenarios 001 and 005. In 2018, #VPDi,j,T coe”cients vary between 0.225

and 0.384, #SoilMoist.i,j,T coe”cients vary between 0.874 and 0.983, and #SW RAD.i,j,T

coe”cients vary between 0.094 and 0.118 (Fig. 3.5). In 2017, the influence of these

drivers was far more variable, with #VPDi,j,T coe”cients varying between -0.153 and 0.591,

#SoilMoist.i,j,T coe”cients varying between 0.615 and 0.887, and#SW RAD.i,j,T coe”cients

varying between 0.094 and 0.166. In 2018, the higher quotient of soil moisture and lower
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vapor pressure deficit reduced plant stress and potentially increased conductance and pho-

tosynthesis (see Fig. 2.4, as reduced soil moisture stress results in higher rates of GPP

when RuBisCO is limiting), minimizing variation in the relationship between how changes

in #SoilMoist.i,j,T and #VPDi,j,T give rise to changes in #GPPi,j,T . The largely consistent

association (with the exception of 006) between how standardized di!erences in soil moisture

and VPD impact standardized changes in GPP between LC scenarios and associated con-

trols reflects the formulation of water relations and limitation in Noah-MP, and the shift in

climate influence space between 2017 and 2018 indicates that deforestation-driven changes

in local meteorology shift the relative influence of the primary drivers of GPP, namely light,

and water potentials. For example, in 2017 which is drier than 2018, the relative influence

of changes in both soil moisture and VPD on GPP is muted, and the relative influence of

light is higher (again, see Fig. 2.4, as warmer temperatures increase the likelihood of light

limitation, and drier conditions correspond with warmer temperatures). One explanation is

that with less moisture in the environment in general, variation in moisture in the air and in

soils has less of an impact on GPP. And, with greater SW RAD in 2017, almost certainly due

to reduced convective cloud formation, appears to be relatively more responsive to changes

in photosynthetically active radiation, which makes sense if GPP is light-limited.
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Z-Normalized Coe!cients from #GPPi,j,T Spatial Error Models

Figure 3.20: Demonstrating the change in coe”cients relating #GPPi,j,T to #VPDi,j,T ,

#SoilMoist.i,j,T , and #SW RAD.i,j,T in the spatial error models for both “dry” and “wet”

years.

It is clear GPP fluctuates throughout the domain in response to changes in environ-

mental conditions induced by the di!erent deforestation scenarios. While #GPPi,j,T did not

follow any clear radial trends or trends with distance from the center of the focal domain

in relation to the di!erent deforestation scenarios, there are di!erences in how #VPDi,j,T ,

#SoilMoist.i,j,T , #SW RAD.i,j,T , and #Daily Prcp.
i,j,T

influence #GPPi,j,T across “wet”

and “dry” years, and across the di!erent deforestation scenarios. The specific response of

changes in GPP to changes in environmental characteristics depends on this larger “climate

space”, with changes in GPP being more closely correlated with changes in VPD and soil

moisture in wetter years, and more closely correlated with changes in available shortwave
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radiation in drier years. Scaled up to the entire focal domain, however, the total average

GPP throughout the entire focal domain and growing season changes very little.

3.4 Characterization of Spatial Variation & Influence of GPP on Changes

in LH

Similar to the environmental variables that drive GPP, and to GPP itself, average LH flux

di!ers minimally between years, it’s ↘3% higher in the wetter conditions of 2018 than in

2017 (Table 3.6). Also consistent with the changes in GPP, the deforestation scenarios

caused average LH to decrease by <1% on average across all remaining deciduous forest

pixels. This suggests that, while the deforestation scenarios are still influencing LH in the

remaining deciduous forest pixels, changes are extremely minor and likely do little to impact

overall atmospheric stability.

Average LH Across Remaining Deciduous Forest Pixels

Year LC Applied? LH (Wm→2)

2017 No 82.5218

2017 Yes 82.3164

2017 Delta -0.2054

2018 No 85.2596

2018 Yes 85.0560

2018 Delta -0.2036

Table 3.6: Average values of LH for each year, control (No) and treatment (Yes), for the

deciduous forest pixels that were not removed/deforested. Supplemental Fig. 4.5 contains

values for each individual simulation.

Spatially, #LH Fluxi,j,T follows a variable pattern, one similar to #GPPi,j,T (Figs. 3.17

& 3.21, and Figs. 3.18 & 3.22). For instance, the 2018 directional plot of #LH Fluxi,j,T have

similar radial peaks and troughs for simulations 002 and 005 at ≃60° and ≃-60°, respectively.

Additionally, similar to both #GPPi,j,T and #SoilMoist.i,j,T , as distance from the center of
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the focal domain increases, #LH Fluxi,j,T does not attenuate towards zero for any of the

scenarios, meaning the influence of the deforestation schemes continues far from the cite of

deforestation (Fig. 3.23).

Representative Heat Maps of #LHi,j,T Across Remaining Deciduous Forest

Pixels
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Figure 3.21: Heat maps of the di!erence between average daily precipitation before and

after deforestation across all remaining deciduous forest pixels (#LHi,j,T ) for (a) Scenario

001 in 2017 and (b) Scenario 006 in 2018. Green arrows depicts the angle of the average

prevailing 10-meter winds inside the deforested pixels, relative to the east (2017: 34.348°,

2018: 49.458°). For all heat maps, see Supplemental Figures 4.23 & 4.24.
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Relating #LHi,j,T Across Remaining Deciduous Forest and Radial Direction
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Figure 3.22: A series of GAMs/loess’ relating the di!erence between average LH before

and after deforestation across all remaining deciduous forest pixels (#LHi,j,T ) and radial

direction, relative to the east, where ω = 0. ω increases counterclockwise of the east and

decreases clockwise from the east.
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Relating abs(#LHi,j,T ) Across Remaining Deciduous Forest and Distance From

Center
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Figure 3.23: A series of GAMs/loess’ relating the absolute value of the di!erence between

average LH before and after deforestation across all remaining deciduous forest pixels

(abs(#LHi,j,T )) and linear distance from the center of the focal domain in meters for both

(a) 2017 and (b) 2018 trials.
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Across all scenarios, there was a tight correlation between #LH Fluxi,j,T and #GPPi,j,T ,

with normalized coe”cients ranging between 0.792 and 0.952, and R2 ranging between 0.766

and 0.883 (Table 3.7). The normalized coe”cients relating #GPPi,j,T to #LH Fluxi,j,T are

higher, though more variable in “dry” 2017 deforestation scenarios, while the relationship is

marginally weaker, though more consistent in “wet” 2018 (Fig. 3.24). The largest magnitude

change between years was seen for the largest extents of deforestation, scenarios 001 and 005,

similar to what was observed for the relationship between #GPPi,j,T and environmental

conditions (Figs. 3.5, 3.20). The coupling of #LH Fluxi,j,T and #GPPi,j,T depends on the

larger climate space, with #GPPi,j,T decreasing in importance with increased precipitation

and soil moisture and decreased VPD between 2017 and 2018. Changes in latent heat are

more sensitive to changes in GPP under drier conditions compared to wetter conditions,

potentially because of greater evaporative demand in the canopy and less soil moisture

contributing to evapotranspiration as a whole.
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Spatial Error Models of #LHi,j,T by Simulation

LC Scenario Year R2 Spat. Dependence Z-Norm. GPP Original Units GPP

001 2017 0.800 ε = 0.886 0.952 241.537

001 2018 0.857 ε = 0.828 0.821 208.109

002 2017 0.835 ε = 0.821 0.884 216.702

002 2018 0.883 ε = 0.804 0.831 209.106

003 2017 0.829 ε = 0.767 0.880 217.900

003 2018 0.881 ε = 0.751 0.859 219.499

004 2017 0.766 ε = 0.845 0.879 222.240

004 2018 0.840 ε = 0.818 0.829 208.080

005 2017 0.793 ε = 0.840 0.856 211.692

005 2018 0.862 ε = 0.817 0.792 203.986

006 2017 0.844 ε = 0.793 0.832 198.077

006 2018 0.870 ε = 0.781 0.827 209.492

Table 3.7: Presents the results of spatial error models relating #LHi,j,T ↘ #GPPi,j,T for all

simulations. Z-score normalized coe”cients showing relative impact and the coe”cients in

standard units included. The presented models have the lowest AIC and Moran I statistic,

and the highest Moran P-value of any model tested (see Supplemental Fig. 4.3, and for

standard deviations, see Supplemental Fig. 4.1).
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Z-Normalized Coe!cients from #LHi,j,T Spatial Error Models

Figure 3.24: Demonstrating the change in coe”cients relating #LHi,j,T to #GPPi,j,T in

spatial error models between “dry” and “wet” years. The relationship is stronger, though

the variation is greater in the drier year than in the wetter year. This suggests that the

relative impact of #GPPi,j,T on #LHi,j,T is di!erent across climate space.
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Chapter 4

Conclusions, Limitations, and Future Directions

In the first growing season following significant deforestation, average changes to environ-

mental conditions (VPD, soil moisture, available shortwave radiation, and daily precipita-

tion), GPP, and LH are minor, as reported in Tables 3.1, 3.4, & 3.6. However, there is

significant pixel-to-pixel and scenario-to-scenario variation in environmental characteristics

owing to the wind direction, physiography, and the altered flow of vapor within the lower

atmosphere. These environmental conditions, in flux, influence GPP, with changes in soil

moisture primarily driving changes in GPP. In drier conditions, however, this relationship

becomes less coupled due to the climate space having higher average VPD, light availability,

and temperatures, and decreased average soil moisture, making changes in VPD and available

SW radiation more relevant (see Figs. 2.4 3.20). Despite the minimal e!ect of deforestation

on GPP averaged across the focal domain and growing season, deforestation does impact

the spatial variability in both environmental conditions that influence GPP and GPP, as

well as plant-mediated feedbacks to the atmosphere via latent heat flux. The strength of the

relationship between changes in GPP and changes in LH also varied depending on climate

space, with drier conditions increasing the relative impact of GPP on LH. These results

suggests that changes in environmental conditions, as a response to nearby deforestation,

depend on the larger environmental context.

Given that changes to environmental conditions in the remaining deciduous forest pixels

were minimal on average, these results speak to the resilience of the carbon and hydrologic

cycles to significant land cover change in Appalachia. However, these simulations were con-

ducted over only one growing season. Given the feedbacks presented, it is possible that
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e!ects could compound over multiple years and significantly alter nearby deciduous forest

carbon and hydrologic cycling. This warrants further investigation into the potential biotic

responses to the atmospheric impacts of deforestation and land use change more broadly.

Additionally, while these results are ecologically reasonable and the model describes reality

with reasonably accurate precision (see Fig. 2.5), there is a significant margin of error that

could be reduced as land surface models continue to improve in their ecological realism. More

e!ort is necessary to improve the representation of ecophysiology and the predictability of

land surface models, starting with the development of models that contain greater ecolog-

ical nuance and complexity, despite potential computational constraints (Fisher and Koven

[2020]). However, the underlying mechanistic understanding of plant responses to anthro-

pogenic stress across landscapes is not yet well understood (Blumstein [2024]; Anderegg

[2023]). Incorporating what is known about the nuanced, context-dependent stress responses

of vegetation to unfavorable water potentials in land surface models is critical to improve

the forecasting of the influence of anthropogenic disturbance on carbon and water cycling.
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Appendix

Standard Deviations of All #xi,j,T

LC Scenario Year GPP (gCm→2hr→1) VPD (Pa) Soil Moisture (m3m→3) SW RAD (Wm→2) Daily Prcp. (mm) LH Flux (Wm→2)

001 2017 0.00528 12.649 0.00404 1.126 0.313 1.339

001 2018 0.00796 13.579 0.00560 1.285 0.391 2.017

002 2017 0.00511 8.738 0.00394 0.977 0.314 1.254

002 2018 0.00753 9.543 0.00529 1.089 0.380 1.896

003 2017 0.00462 6.945 0.00365 0.879 0.281 1.143

003 2018 0.00649 7.345 0.00467 1.021 0.358 1.658

004 2017 0.00489 10.024 0.00389 1.015 0.284 1.236

004 2018 0.00732 10.810 0.00519 1.199 0.379 1.835

005 2017 0.00517 11.142 0.00429 1.113 0.318 1.278

005 2018 0.00721 10.556 0.00512 1.115 0.377 1.858

006 2017 0.00528 8.351 0.00401 0.924 0.303 1.257

006 2018 0.00652 7.813 0.00467 1.004 0.357 1.652

Table 4.1: Standard deviations of all #xi,j,T for all LC scenarios. Due to the similarity

between the SDs across the di!erent LC scenarios, it is reasonable to assume normalized

coe”cients are appropriate.
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All #GPPi,j,T Models

Treatment & Model Fit & Autocorrelation Z-Normalized Coe!cients

LC Scenario Year Model R2 MoranStat MoranPVal AIC SpatialDependence #VPDi,j,T #S.M.i,j,T #SWi,j,T #D.Prcp
i,j,T

001 2017 OLS 0.791 0.645 0 6773 NA -0.234 0.702 0.229 0.0841

001 2017 SLM 0.791 0.284 0 3842 ϑ = 0.584 -0.0622 0.438 0139 0.0342

001 2017 SEM 0.791 0.0293 0.00024 1862 ε = 0.876 -0.153 0.615 0.166 0.148

001 2018 OLS 0.779 0.563 0 7161 NA -0.00998 0.848 0.148 0.0460

001 2018 SLM 0.779 0.223 0 4971 ϑ = 0.540 0.0492 0.530 0.0894 0.0252

001 2018 SEM 0.779 -0.00270 0.617 3055 ε = 0.892 0.384 0.874 0.107 0.118

002 2017 OLS 0.791 0.523 0 8080 NA -0.189 0.745 0.193 0.0504

002 2017 SLM 0.791 0.216 0 5539 ϑ = 0.530 -0.0459 0.494 0.126 0.0161

002 2017 SEM 0.791 -0.0141 0.965 3729 ε = 0.883 0.203 0.770 0.126 0.115

002 2018 OLS 0.807 0.511 0 7618 NA -0.0369 0.845 0.152 0.0369

002 2018 SLM 0.807 0.217 0 5399 ϑ = 0.492 0.0163 0.556 0.0943 0.0196

002 2018 SEM 0.807 0.00248 0.366 3460 ε = 0.866 0.277 0.894 0.0945 0.0827

003 2017 OLS 0.765 0.510 0 9329 NA -0.0859 0.763 0.170 0.0765

003 2017 SLM 0.765 0.199 0 7034 ϑ = 0.497 0.0103 0.541 0.123 0.0388

003 2017 SEM 0.765 -0.0173 0.989 5355 ε = 0.822 0.160 0.779 0.110 0.132

003 2018 OLS 0.796 0.523 0 8493 NA -0.0210 0.866 0.172 0.00985

003 2018 SLM 0.796 0.237 0 6175 ϑ = 0.484 0.0406 0.601 0.117 0.00600

003 2018 SEM 0.796 0.00341 0.317 4073 ε = 0.846 0.225 0.908 0.106 0.0650

004 2017 OLS 0.788 0.534 0 7827 NA -0.152 0.736 0.233 0.0959

004 2017 SLM 0.788 0.229 0 5514 ϑ = 0.500 -0.0338 0.513 0.165 0.0531

004 2017 SEM 0.788 0.00329 0.329 3856 ε = 0.835 0.0730 0.757 0.151 0.109

004 2018 OLS 0.786 0.524 0 7985 NA -0.01570 0.873 0.190 0.0184

004 2018 SLM 0.786 0.221 0 5768 ϑ = 0.498 0.0393 0.578 0.128 0.0171

004 2018 SEM 0.786 -0.00670 0.799 3899 ε = 0.857 0.293 0.903 0.118 0.0675

005 2017 OLS 0.778 0.563 0 7073 NA -0.200 0.729 0.226 0.0702

005 2017 SLM 0.778 0.230 0 5148 ϑ = 0.514 -0.0714 0.478 0.143 0.0328

005 2017 SEM 0.778 -0.0166 0.975 3544 ε = 0.831 0.0215 0.764 0.160 0.106

005 2018 OLS 0.777 0.528 0 7240 NA 0.0920 0.983 0.157 -0.0634

005 2018 SLM 0.777 0.219 0 5320 ϑ = 0.503 0.124 0.663 0.0994 -0.0446

005 2018 SEM 0.777 -0.00028 0.505 3673 ε = 0.852 0.371 0.983 0.0979 0.0186

006 2017 OLS 0.744 0.452 0 9349 NA -0.0686 0.814 0.173 0.0143

006 2017 SLM 0.744 0.159 0 7117 ϑ = 0.540 0.0566 0.545 0.118 0.00349

006 2017 SEM 0.744 -0.0235 0.999 5116 ε = 0.916 0.591 0.887 0.0940 0.104

006 2018 OLS 0.779 0.479 0 8528 NA 0.0401 0.904 0.140 -0.00200

006 2018 SLM 0.779 0.229 0 6783 ϑ = 0.462 0.0818 0.645 0.0992 -0.00868

006 2018 SEM 0.779 0.0148 0.0261 4808 ε = 0.847 0.346 0.978 0.102 0.0463

Table 4.2: All #GPPi,j,T ↘ #VPDi,j,T + #SoilMoist.i,j,T + #SW RAD.i,j,T +

#Daily Prcp.
i,j,T

models. Spatial error models (SEM) outperformed spatial lag models

(SLM) and ordinary least squares (OLS) models.
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All #LH Fluxi,j,T Models

LC Scenario Year Model R2 MoranStat MoranPVal AIC SpatialDependence Z-Norm. #GPPi,j,T Coe”.

001 2017 OLS 0.800 0.711 0 6521 NA 0.895

001 2017 SLM 0.800 0.366 0 4418 ϑ = 0.504 0.560

001 2017 SEM 0.800 0.0100 0.113 706 ε = 0.886 0.952

001 2018 OLS 0.857 0.566 0 4804 NA 0.926

001 2018 SLM 0.857 0.323 0 2658 ϑ = 0.465 0.602

001 2018 SEM 0.857 0.00454 0.287 1151 ε = 0.828 0.821

002 2017 OLS 0.835 0.578 0 6565 NA 0.914

002 2017 SLM 0.835 0.338 0 4656 ϑ = 0.434 0.620

002 2017 SEM 0.835 0.0168 0.0143 2166 ε = 0.821 0.884

002 2018 OLS 0.883 0.494 0 4419 NA 0.940

002 2018 SLM 0.883 0.296 0 2227 ϑ = 0.414 0.647

002 2018 SEM 0.883 0.00949 0.105 948 ε = 0.804 0.931

003 2017 OLS 0.829 0.538 0 7170 NA 0.911

003 2017 SLM 0.829 0.306 0 5490 ϑ = 0.386 0.669

003 2017 SEM 0.829 -0.0108 0.922 3385 ε = 0.767 0.880

003 2018 OLS 0.881 0.487 0 4797 NA 0.939

003 2018 SLM 0.881 0.281 0 2878 ϑ = 0.369 0.690

003 2018 SEM 0.881 -0.0182 0.992 1530 ε = 0.751 0.859

004 2017 OLS 0.766 0.650 0 8415 NA 0.875

004 2017 SLM 0.766 0.329 0 6080 ϑ = 0.508 0.566

004 2017 SEM 0.766 -0.00443 0.706 3152 ε = 0.845 0.879

004 2018 OLS 0.840 0.594 0 6199 NA 0.916

004 2018 SLM 0.840 0.323 0 3741 ϑ = 0.465 0.607

004 2018 SEM 0.840 -0.00848 0.856 1797 ε = 0.818 0.829

005 2017 OLS 0.793 0.651 0 6703 NA 0.890

005 2017 SLM 0.793 0.319 0 4463 ϑ = 0.508 0.560

005 2017 SEM 0.793 -0.00942 0.864 2184 ε = 0.840 0.856

005 2018 OLS 0.862 0.507 0 4644 NA 0.928

005 2018 SLM 0.862 0.285 0 2468 ϑ = 0.445 0.625

005 2018 SEM 0.862 -0.00020 0.500 1849 ε = 0.817 0.792

006 2017 OLS 0.844 0.507 0 6188 NA 0.919

006 2017 SLM 0.844 0.301 0 4236 ϑ = 0.414 0.642

006 2017 SEM 0.844 0.0111 0.0718 2685 ε = 0.793 0.832

006 2018 OLS 0.870 0.463 0 5109 NA 0.933

006 2018 SLM 0.870 0.284 0 3047 ϑ = 0.401 0.672

006 2018 SEM 0.870 0.00478 0.260 2021 ε = 0.781 0.827

Table 4.3: All#LH Fluxi,j,T ↘#GPPi,j,T models. Spatial error models (SEM) outperformed

spatial lag models (SLM) and ordinary least squares (OLS) models.
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Average Environmental Values in Deforested Pixels

LC Applied? LC Scenario Year GPP (gCm→2hr→1) VPD (Pa) S.Moist. (m3m→3) SW RAD (Wm→2) Daily Prcp. (mm)

No 001 2017 0.3093 790.8603 261.1872 0.3125 3.9828

Yes 001 2017 0 820.5131 265.2873 0.2826 3.7373

No 001 2018 0.3035 711.1294 255.0177 0.3202 4.7592

Yes 001 2018 0 731.3864 259.8845 0.2954 4.4609

No 002 2017 0.3062 751.7219 260.6451 0.3171 4.0905

Yes 002 2017 0 776.3500 264.8981 0.2886 3.8667

No 002 2018 0.3064 668.1973 254.6533 0.3279 5.1603

Yes 002 2018 0 683.8566 259.7770 0.3020 4.7288

No 003 2017 0.3095 791.5515 261.1434 0.3124 3.926

Yes 003 2017 0 820.4128 263.6972 0.2860 3.8910

No 003 2018 0.3033 711.1532 254.9318 0.3202 4.7509

Yes 003 2018 0 735.4421 258.1700 0.2978 4.5775

No 004 2017 0.3103 788.7940 261.0758 0.3127 4.0293

Yes 004 2017 0 816.3299 263.8209 0.2855 3.8905

No 004 2018 0.3035 710.4188 254.8664 0.3201 4.7738

Yes 004 2018 0 730.7572 258.3751 0.2976 4.6091

No 005 2017 0.3100 863.7647 260.4853 0.2957 4.0215

Yes 005 2017 0 910.4856 264.5762 0.2667 3.7678

No 005 2018 0.2990 788.3080 254.7741 0.3016 4.4614

Yes 005 2018 0 838.3588 259.1169 0.2761 4.1169

No 006 2017 0.3111 857.2750 260.1607 0.2958 4.1450

Yes 006 2017 0 899.1484 263.9748 0.2682 3.9218

No 006 2018 0.2993 783.2882 254.6896 0.3012 4.4812

Yes 006 2018 0 825.3026 258.7991 0.2775 4.2623

Table 4.4: Average environmental values in deforested pixels for all simulations for both

control (NO) and treatment (YES) pixels.
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Average Environmental Values in Remaining Deciduous Forest Pixels

LC Applied? LC Scenario Year GPP (gCm→2hr→1) VPD (Pa) S.Moist. (m3m→3) SW RAD (Wm→2) Daily Prcp. (mm) LH Flux (Wm→2)

NO 001 2017 0.2956 886.4643 0.2815 260.0087 3.5456 82.0726

YES 001 2017 0.2950 8828609 0.2805 260.1186 3.5301 81.7043

NO 001 2018 0.2838 804.0163 0.2879 253.7597 3.7928 84.6715

YES 001 2018 0.2832 799.1482 0.2873 253.7526 3.7544 84.2931

NO 002 2017 0.2977 877.2363 0.2858 260.2553 3.5967 82.8740

YES 002 2017 0.2972 875.2922 0.2851 260.2663 3.5782 82.6553

NO 002 2018 0.2865 795.3239 0.2920 254.0098 3.8896 85.4776

YES 002 2018 0.2864 791.9678 0.2917 253.9876 3.8714 85.3694

NO 003 2017 0.2983 867.2288 0.2879 260.2308 3.6363 82.9681

YES 003 2017 0.2978 868.2134 0.2872 260.2881 3.6177 82.8798

NO 003 2018 0.2879 784.6936 0.2947 254.0271 3.9944 85.7278

YES 003 2018 0.2874 784.7604 0.2940 254.1626 3.9684 85.6261

NO 004 2017 0.2970 875.4701 0.2853 260.1575 3.5915 82.5936

YES 004 2017 0.2967 874.2965 0.2846 260.3283 3.5714 82.5128

NO 004 2018 0.2863 792.3224 0.2921 253.9475 3.9131 85.3227

YES 004 2018 0.2853 791.2310 0.2910 254.1682 3.8518 85.0730

NO 005 2017 0.2958 860.7525 0.2875 260.2528 3.5362 81.9515

YES 005 2017 0.2952 859.5164 0.2867 260.3975 3.5425 81.7184

NO 005 2018 0.2855 776.5907 0.2946 253.8523 3.9011 84.8094

YES 005 2018 0.2848 775.2252 0.2940 254.1328 3.8994 84.5500

NO 006 2017 0.2972 862.2022 0.2888 260.3261 3.5924 82.6709

YES 006 2017 0.2964 862.2712 0.2880 260.3687 3.5202 82.4277

NO 006 2018 0.2875 779.1536 0.2957 254.0071 3.9864 85.5487

YES 006 2018 0.2871 778.6013 0.2955 254.0935 3.9825 85.4243

Table 4.5: Average environmental conditions across all simulations for both control (NO)

and treatment (YES) pixels.
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2017, Treatment - Control, DEFORESTED Pixels

Figure 4.1: 2017 simulations, ONLY deforested pixels. A series of GAMs/loess’ charac-

terizing how the di!erence between control and treatment (#xi,j,T ) of a given environ-

mental variable varies with space relative to the center of the focal domain. Created using

‘geom smooth’ in Tidyverse (Wickham et al. [2019]). (col. a) The average value of #xi,j,T

for a given radial direction, relative to the +x-axis. (b) The average of POSITIVE #xi,j,T

values with radial distance r. (c) The average of NEGATIVE #xi,j,T values with radial

distance r.
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2018, Treatment - Control, DEFORESTED Pixels

Figure 4.2: 2018 simulations, ONLY deforested pixels. A series of GAMs/loess’ charac-

terizing how the di!erence between control and treatment (#xi,j,T ) of a given environ-

mental variable varies with space relative to the center of the focal domain. Created using

‘geom smooth’ in Tidyverse (Wickham et al. [2019]). (col. a) The average value of #xi,j,T

for a given radial direction, relative to the +x-axis. (b) The average of POSITIVE #xi,j,T

values with radial distance r. (c) The average of NEGATIVE #xi,j,T values with radial

distance r.
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2017, Treatment - Control, Remaining Deciduous Forest Pixels

Figure 4.3: 2017 simulations, ONLY remaining deciduous forest pixels. A series of

GAMs/loess’ characterizing how the di!erence between control and treatment (#xi,j,T ) of

a given environmental variable varies with space relative to the center of the focal domain.

Created using ‘geom smooth’ in Tidyverse (Wickham et al. [2019]). (col. a) The average

value of #xi,j,T for a given radial direction, relative to the +x-axis. (b) The average of POS-

ITIVE #xi,j,T values with radial distance r. (c) The average of NEGATIVE #xi,j,T values

with radial distance r.
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2018, Treatment - Control, Remaining Deciduous Forest Pixels

Figure 4.4: 2018 simulations, ONLY remaining deciduous forest pixels. A series of

GAMs/loess’ characterizing how the di!erence between control and treatment (#xi,j,T ) of

a given environmental variable varies with space relative to the center of the focal domain.

Created using ‘geom smooth’ in Tidyverse (Wickham et al. [2019]). (col. a) The average

value of #xi,j,T for a given radial direction, relative to the +x-axis. (b) The average of POS-

ITIVE #xi,j,T values with radial distance r. (c) The average of NEGATIVE #xi,j,T values

with radial distance r.
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2017, #VPDi,j,T , Deforested Pixels
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Figure 4.5: Heat maps of #VPDi,j,T across the deforested pixels of all LC Scenarios in 2017.
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2018, #VPDi,j,T , Deforested Pixels
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Figure 4.6: Heat maps of #VPDi,j,T across the deforested pixels of all LC Scenarios in 2018.
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2017, #VPDi,j,T , Remaining Deciduous Forest Pixels
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Figure 4.7: Heat maps of #VPDi,j,T across the remaining deciduous forest pixels of all LC

Scenarios in 2017.
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2018, #VPDi,j,T , Remaining Deciduous Forest Pixels
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Figure 4.8: Heat maps of #VPDi,j,T across the remaining deciduous forest pixels of all LC

Scenarios in 2018.
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2017, #Soil Moist.i,j,T , Deforested Pixels
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Figure 4.9: Heat maps of #SoilMoist.i,j,T across the deforested pixels of all LC Scenarios in

2017.
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2018, #Soil Moist.i,j,T , Deforested Pixels
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Figure 4.10: Heat maps of #SoilMoist.i,j,T across the deforested pixels of all LC Scenarios

in 2018.
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2017, #Soil Moist.i,j,T , Remaining Deciduous Forest Pixels
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Figure 4.11: Heat maps of #SoilMoist.i,j,T across the remaining deciduous forest pixels of

all LC Scenarios in 2017.
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2018, #Soil Moist.i,j,T , Remaining Deciduous Forest Pixels
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Figure 4.12: Heat maps of #SoilMoist.i,j,T across the remaining deciduous forest pixels of

all LC Scenarios in 2018.
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2017, #SW RAD.i,j,T , Deforested Pixels
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Figure 4.13: Heat maps of #SW RAD.i,j,T across the deforested pixels of all LC Scenarios

in 2017.
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2018, #SW RAD.i,j,T , Deforested Pixels
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Figure 4.14: Heat maps of #SW RAD.i,j,T across the deforested pixels of all LC Scenarios

in 2018.
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2017, #SW RAD.i,j,T , Remaining Deciduous Forest Pixels
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Figure 4.15: Heat maps of #SW RAD.i,j,T across the remaining deciduous forest pixels of

all LC Scenarios in 2017.
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2018, #SW RAD.i,j,T , Remaining Deciduous Forest Pixels
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Figure 4.16: Heat maps of #SW RAD.i,j,T across the remaining deciduous forest pixels of

all LC Scenarios in 2018.
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2017, #Daily Prcp.
i,j,T

, Deforested Pixels
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Figure 4.17: Heat maps of #Daily Prcp.
i,j,T

across the deforested pixels of all LC Scenarios

in 2017.
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2018, #Daily Prcp.
i,j,T

, Deforested Pixels
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Figure 4.18: Heat maps of #Daily Prcp.
i,j,T

across the deforested pixels of all LC Scenarios

in 2018.
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2017, #Daily Prcp.
i,j,T

, Remaining Deciduous Forest Pixels
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Figure 4.19: Heat maps of #Daily Prcp.
i,j,T

across the remaining deciduous forest pixels of

all LC Scenarios in 2017.
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2018, #Daily Prcp.
i,j,T

, Remaining Deciduous Forest Pixels
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Figure 4.20: Heat maps of #Daily Prcp.
i,j,T

across the remaining deciduous forest pixels of

all LC Scenarios in 2018.
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2017, #GPPi,j,T , Remaining Deciduous Forest Pixels
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Figure 4.21: Heat maps of #GPPi,j,T across the remaining deciduous forest pixels of all LC

Scenarios in 2017.
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2018, #GPPi,j,T , Remaining Deciduous Forest Pixels
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Figure 4.22: Heat maps of #GPPi,j,T across the remaining deciduous forest pixels of all LC

Scenarios in 2018.
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2017, #LHi,j,T , Remaining Deciduous Forest Pixels
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Figure 4.23: Heat maps of #LHi,j,T across the remaining deciduous forest pixels of all LC

Scenarios in 2017.
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2018, #LHi,j,T , Remaining Deciduous Forest Pixels
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Figure 4.24: Heat maps of #LHi,j,T across the remaining deciduous forest pixels of all LC

Scenarios in 2018.
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