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ABSTRACT
Over the past century, the rapidly rising rates of antibiotics resistance has led a global

health crisis being linked with an estimated over 2.5 million infections and 35,000 deaths in the
United States from bacteria such as methicillin resistant Staphylococcus aureus (MRSA). MRSA
infections have been linked lipid rich environments such as skin and heart presenting unexplored
impacts on biofilm formation. This study investigates the role of palmitic (16:0) and oleic acid
(18:1), two straight chain biologically prominent fatty acids (FA), on the biofilm formation of
JE2, parent strain of S. aureus, and fakA::Tn linked with reduced exogenous FA incorporation.
Additionally, growth curves were performed with oleic acid and three derivative whiles being
challenged with daptomycin, an antibiotic for MRSA. The results point towards a FA dependent
and mutant effect on for both biofilm formation and growth curves signifying a complex

interplay is occurring between these systems.
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CHAPTER 1
CHARACTERISTICS OF STAPHYLOCOCCUS AUREUS
1.1 Staphylococcus aureus (S. aureus)

S. aureus is a gram-positive bacterium that has a thick peptidoglycan layer and lacks an
outer membrane.! The cells of S. aureus are sphere-shaped (cocci), the cells are yellow, and they
often cluster together.? S. aureus has a cell membrane with a phospholipid bilayer, and a thick
cell wall comprised of peptidoglycan that maintains the structure of the cell. S. aureus often lives
on the skin of healthy individuals, but it can cause numerous infections. S. aureus can cause skin
infections, pulmonary infections, and urinary tract infections. S. aureus can form biofilm, which
often leads to the bacteria entering the bloodstream, which can cause sepsis.?

1.2 Antibiotic Resistant Bacteria

The ESKAPE pathogens are a group of bacteria that are increasingly becoming more
resistant to antibiotics.® S. aureus is an ESKAPE pathogen, and these infections are difficult to
contain because they spread through skin-to-skin contact, surfaces that are contaminated, and
even water.* The rapid spread of these infections is greatly impacting global health and the
global economy, with some countries spending millions of dollars attempting to fight these
infections.®

Antibiotics have become a crucial part of treating bacterial infections. Unfortunately,
bacteria are constantly evolving and becoming resistant to antibiotics.® Antibiotic resistance is
when bacteria can resist the effects of the antibiotics, which makes them ineffective. This results

from antibiotics being prescribed too frequently and unnecessarily. The bacteria are able to



mutate and create strains resistant to antibiotics. Antibiotic resistant bacteria cause 2.8 million
infections in the United States and result in 35,900 deaths.’

One of the most common types of antibiotic-resistant bacteria is methicillin resistant
staphylococcus aureus (MRSA). MRSA is likely to be transmitted in hospital environments by
workers, patients, and equipment. MRSA strains carry the mec gene, which encodes for the
protein PBP-2a (penicillin-binding protein 2a).8 This protein allows the bacteria to create
peptidoglycan to synthesize the cell wall even in the presence of antibiotics, because it doesn’t
need to bind to beta-lactams.®

Antibiotic resistance is occurring more frequently because of the over-prescription of
existing antibiotics and the lack of production of new antibiotics. Antibiotics are often over-
prescribed by healthcare providers. The over-prescription of antibiotics increases the chance that
resistance will occur sooner. Therefore, pharmaceutical companies don’t want to spend time and
money creating new antibiotics for bacteria to become resistant to them a few years later.

1.3 Phospholipid Synthesis in S. aureus

Phospholipids are an important component of cell membranes. They provide structure to
the cell, and changes in the composition of the membrane can impact processes such as
antimicrobial resistance and other cellular processes.® These lipids contain glycerol with fatty
acids that create the backbone, and phosphoric acid with an alcohol group. The alcohol group
determines what category of phospholipid it is, phosphatidylglycerol (PG),
diglycosyldiacylglycerols (DGDGSs), or a Lysly-phosphatidylglycerols (Lysl-PGs). The acyl tails
of phospholipids impact membrane fluidity. The acyl tails are composed of fatty acids, fatty
acids are long carbon chains with a carboxyl group at one end. Fatty acids can be found in

various locations throughout the cell. They play a crucial part in the phospholipid synthesis of S.



aureus. Saturated fatty acids have no double bonds between the carbon atoms, such as palmitic
acid (PA) or stearic acid (SA).1° Unsaturated fatty acids have at least one double bond between
the carbon atoms, such as oleic acid (OA).%° Saturated fatty acids produce acyl tails without
kinks. This allows for the phospholipids to be tightly packed, creating a rigid membrane.
Unsaturated fatty acids produce acyl tails with kinks. These kinks disrupt the tight packing of the
membrane, which creates a more fluid membrane.

1.4 Antibiotics and Mechanisms of Action

Antibiotics can induce cell death through different mechanisms. Antibiotics can target the
cell wall, DNA gyrase, folate synthesis, and RNA polymerase to induce cell death.!* Penicillin
is one of the most common antibiotics used to treat S. aureus. Penicillin is one of the most
common antibiotics used to treat S. aureus. When penicillin was introduced, there was a
significant improvement in the treatability of S. aureus.!! Penicillin and other P -lactam
antibiotics attack the cell wall of S. aureus. The [ -lactam ring binds to the enzyme responsible
for creating the cell wall in S. aureus.'? This results in the disruption of the cell wall and causes
the bacterial cells to die.*?

Methicillin was the first antibiotic synthesized to be resistant to 8 -lactamase.* p-
lactamase are enzymes that are produced by bacteria and cause resistance to 3 -lactam
antibiotics. They break down the 3 -lactam ring, which causes them to be ineffective. Methicillin
resists the destruction of the 3 -lactam ring, which allows the cell to continue to create a cell wall
and prevent cell death.!

Quinolone antibiotics were originally created for infections caused by gram-negative
bacteria. Soon after, they were used to treat gram-positive infections such as staphylococci.!!

Quinolones inhibit enzymes that are important for the process of DNA replication DNA gyrase



and topoisomerase 1V.'! These enzymes are responsible for unwinding DNA for replication.*
Without the cells ability to replicate its DNA, it causes the cells to die. Examples of quinolones
include ofloxacin, levofloxacin, and ciprofloxacin.

Vancomycin antibiotics were created to treat infections caused by gram-positive bacteria
that are resistant to other antibiotics.'* Vancomycin prevents the creation of peptidoglycans in
the cell wall.*? The cell wall is composed of N-acetylmuramic acid (NAM) and N-
acetylglucosamine (NAG) glycan chains with cross-linked peptide chains. Vancomycin binds to
D-alanyl D-alanine, which prevents the creation of the NAM and NAG glycan chains.*? Without
the ability to create a cell wall, the bacterial cells will eventually die.*

Daptomycin is a cyclic lipopeptide that treats different infections caused by gram positive
bacteria.’® Daptomycin is used as an alternative to vancomycin against MRSA and other gram-
positive strains.!* In S. aureus, daptomycin targets the cell membrane through a calcium
dependent process. Daptomycin binds to the overall negatively charged portions of the
membrane, for example, at the sites where phospholipid phosphatidylglycerol (PG) are present.®
Daptomycin binds to the cell membrane in clusters, and the clusters integrate themselves into the
membrane to create pores. These pores allow contents of the cell to leak out, which disrupts
various processes within the cell, ultimately resulting in cell death.

1.5 Antibiotic Resistance in S. aureus

Penicillin resistant S. aureus strains were discovered in 1942, shortly after the creation of
the antibiotic.’* S. aureus that are resistant to penicillin is caused by the expression of the blazZ
gene.!! This gene encodes for B -lactamase, which hydrolyzes the ring on B-lactams.!! This

results in the B-lactams being inactive.



S. aureus that are methicillin resistance contain the mecA gene.'!* The mecA gene
encodes for the penicillin-binding protein 2a (PBP2a). This protein allows for the bacteria to
create peptidoglycan, which is the basic structure of the cell wall.** PBP2a inhibits the binding of
all B -lactams but allows for the reaction necessary to produce peptidoglycan.** This mechanism
allows for S. aureus to survive, even in the presence of antibiotics.!

S. aureus resistance to quinolone antibiotics is caused by mutations.** These mutations
are often created by environments with high concentrations of bacteria and low concentrations of
quinolones.! The amino acid changes that occur are in the quinolone resistant-determining
region (QRDR).! These are regions of DNA gyrase and topoisomerase 1V where the specific
mutations occur. The most common mutations occur in the GrlA subunit of topoisomerase 1V
and the GryA subunit of DNA gyrase.'! However, multiple mutations can occur within the
QRDR, which increases S. aureus resistance to quinolones.

S. aureus resistance to vancomycin is caused by the vanA operon. This allows the cell
wall to modify the amino acid residues.* These modifications prevent vancomycin from binding
to the cell wall. The cell wall synthesis continues, and S. aureus becomes resistant to the

antibiotic as shown in Figure 1.1.1
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Figure 1.1. Mechanism of Resistance for S. aureus and Vancomycin.!

1.6 Proposed Mechanism for Daptomycin Resistance in S. aureus

Daptomycin resistance in S. aureus is uncommon, but not impossible.'* Daptomycin
resistance in S. aureus is normally associated with mutations in multiple peptide resistance factor
(mprF), CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase (pgsA), and
cardiolipin synthase (cls2) as shown in Figure 1.2.6 PgsA is responsible for the production of the
PG by converting CDP-diacylglycerol (CDP-DG) to PG. Mutations in pgsA result in a decrease
in production of PG.® This causes a decrease in the overall charge of the membrane.'® This will
result in the repulsion of daptomycin, because daptomycin wants to bind to the negatively
charged portions of the membrane. MprF is the gene responsible for the lysylation of PG, which
results in an L-PG. The headgroup of the L-PG has an overall positive charge. When integrated
into the membrane, it results in an overall increase in the positive charge. The mutation of mprF
will cause over-production in L-PG, which will increase the overall charge of the membrane to
positive.® This will result in the repulsion of daptomycin. Cardiolipin synthase (cls2) is a gene

that encodes for a protein in phospholipid synthesis. Cardiolipins are synthesized by an enzyme



in the membrane, Cls. The mutation of the cls2 gene decreases the function of Cls.*® This results
in an overall decrease in the negative charge of the membrane, which will result in the repulsion

of daptomycin.*®

tRNA Lys-tRNA CDP-DG

Figure 1.2. Proposed Mechanism of Daptomycin Resistance.®

1.7 Phospholipid Synthesis in S. aureus

Phosphatidic acid (PA) is the main precursor in the synthesis of phospholipids. PA is
synthesized through a two-step acylation reaction. This reaction involves the acyl-ACP (acyl
carrier protein) transferases using the PIsX/PIsY/PIsC enzyme pathway. Acyl-ACP is converted
to acyl-phosphate (acyl-POa4) by PIsX. Acy- POy4 catalyzes the acylation of glycerol-3-phosphate
(G3P) to 1-acyl-G3P using the PIsY enzyme pathway. PIsC transfers a fatty acid to acyl-G3P.
This creates a phosphatidic acid, the precursor.® CDP-diacylglycerol (CDP-DAG) is synthesized
from phosphatidic acid and cytidine triphosphate (CTP). The CDP-diacylglycerol-glycerol-3-
phosphate 3-phosphatidyltransferase (pgsA) assists in glycerolphosphate replacing a cytidine

monophosphate.® This step generates a phosphatidylglycerolphosphate (PG-P). PG-P is



dephosphorylated to create a PG.° PG can be synthesized by cls1 and cls2 to produce cardiolipin.
PG can be aminocylated to produce a lysyl-phosphatidylglycerol.®
1.8 Fatty acid Biosynthesis in S. aureus

Fatty acid synthesis in S. aureus used fatty acid synthesis type Il (FASII) process. This
pathway involves the use of host derived fatty acids. FASII involves a lot of energy and is
comprised of two important steps, initiation and elongation.*’ Initiation begins with acetyl-CoA
carboxylase (AccABCD) adding a carboxyl to acetyl-CoA to form malonyl-CoA. Manoyl-CoA
is converted to manoyl-ACP by malonyl-CoA:ACP transacylase (FabD).!” p-Ketoacyl-ACP
synthase 111 (FabH) combines malonyl-ACP with acetyl-CoA to create acetoacetyl-ACP.Y" This
reaction begins the elongation process. The acyl chain is extended by p-ketoacyl synthase | or Il
(FabB or FabF). This results in an acyl chain that is two carbons longer.!” This process can
continue for multiple carbon extensions. NAD(P)H-dependent enoyl-ACP reductase (Fabl)
catalyzes the last step of fatty acid synthesis by forming the desired length acyl-ACP.8

This process is so essential in S. aureus, that drugs are often synthesized to disrupt this

pathway. For example, AFN-1252 is an inhibitor of Fabl in S. aureus, as shown in Figure 1.3.

O

Figure 1.3. Structure of Abafacin desphosphono AFN-1252.°
Fabl performs the final step in fatty acid biosynthesis pathway, it is responsible for elongating
the fatty acid.'® This disruption impacts the saturated and unsaturated fatty acid biosynthesis

pathway and will prevent bacterial growth.'® Enoyl-acyl carrier protein (Enoyl-ACP) has four



enzyme forms: Fabl, FabK, FabL, and FabV. Fabl is only present in S. aureus, therefore, it is
essential to cell viability in the Staphylococcus spp.?°
1.9 fakA::Tn and the Incorporation of Straight Chain Fatty Acids

Gram positive bacteria use the fatty acid kinase (fak) complex to gather and
phosphorylate fatty acids to prepare for phospholipid synthesis as shown in Figure 1.4.22 The
complex has two important components, fakA and fakB. fakB is a carrier protein that transports
a fatty acid to fakA for phosphorylation as .?? fakB has two components, fakB1 and fakB2.
fakB1 interacts and incorporates saturated fatty acids.?? fakB2 only interacts with unsaturated
fatty acids, but S. aureus doesn’t incorporate unsaturated fatty acids.?? fakA is responsible for the

phosphorylation and incorporation of exogeneous fatty acids into the lipid membrane.??

| S. aureus Membrane |

16:0 18:1
Extracellular Host Environment

Figure 1.4. Fatty Acid Kinase Dependent Exogenous Fatty Acid Uptake.?!
1.10 Incorporation of OA into PG
S. aureus naturally produces saturated PGs (2).2® Unsaturated PGs are present in S.
aureus because of the supplementation of exogenous fatty acids and the presence of fakA.

Previous work in the Hines lab is shown in Figure 1.5, which shows different strains of S. aureus



supplemented with OA. Saturated fatty acids are present in each of the strains and conditions.
There are only unsaturated fatty acids present in the conditions supplemented with OA and the
strains that contain fakA. fakA phosphorylates the exogenous OA, which is elongated by the
FASII pathway, and incorporated into the membrane as a PGs. Since fakA is only present in the
JE2 and Dap2 strains, there is only unsaturated fatty acids present in those strains with

OA supplementation.

60 10

A) PGs mfakA:Tn+EtOH @fakA::Tn+OA
50 oJE2+EtOH nJE2+O0A
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: il ll’z’l’u I
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Figure 1.5. The PGs in JE2, fakA::Tn, and Dap2 with the supplementation of OA.
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CHAPTER 2
OPTIMIZATION OF S. AUREUS BIOFILM GROWTH AND QUANTIFICATION
1.0 Introduction
1.1 Bacterial Biofilms
Bacterial biofilms are microbial communities that are enclosed in polysaccharides,
proteins, lipids, and DNA produced by the bacteria.! These components, which make up the
extracellular polymetric substances (EPS), protect and provide structure to the biofilm.! The
creation of biofilms is caused by cells aggregating or adhering to surfaces. Due to bacteria’s
ability to attach to a surface and rapidly grow, biofilm bacterial infections can be frequent. The
biofilm acts as a protective barrier over the bacteria, making it hard to treat the infections.! The
bacteria can latch onto skin and a variety of surfaces, such as medical devices, contributing to the
increase of bacterial infections in hospital settings.!

1.2 Bacterial Biofilm Formation
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Figure 1.1. Step by Step Process of Biofilm Formation.!
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The formation of biofilms is a process that involves multiple steps which includes
reversible attachment, irreversible attachment, maturation, and dispersal.! As seen in Figure 1.1,
the cells begin the biofilm formation process by attaching to a surface such as medical devices,
aquatic systems, and the human body. Once the bacteria begin to grow, chemotaxis allows the
bacteria to find nutrient sources and strongly interact with the area of attachment.! However, this
is still considered a reversible attachment. Now that the cells have attached, flagella and fimbriae
begin to form the biofilm. Flagella are responsible for commencing the bacterial cells to adhere
to the area of attachment.! The bacteria begin to produce the extracellular polysaccharide matrix
EPS, which provides structure for the biofilm to properly grow and develop.! The formation of
the EPS protects the bacteria and indicates irreversible attachment. The bacteria begin to mature
and produce colonies within the EPS.! Once the bacteria matured, cells detach from the colonies
that formed, and those cells are dispersed. The dispersed cells can begin to attach to other cells or
another surfaces, and then the process starts from the beginning.!

1.3 Palmitic Acid and Oleic acid

Palmitic acid (16:0), as shown in Figure 1.2, is a common saturated fatty acid that can be
found in multiple types of food, and one of the most common fatty acids in the human body.?
Palmitic acid is highly concentrated in membrane phospholipids and adipose triglycerides.? The
incorporation of palmitic acid into the membrane as a phospholipid and as a free fatty acid
results in a rigid membrane. Rigid membranes increase adhesion in bacterial cells, which can
result in an increase in biofilm formation.? Oleic acid (18:1), as shown in Figure 1.2, is a
common unsaturated fatty acid that can be found in oils, nuts, and meat products. Oleic acid has
been observed to aid in daptomycin resistance. Therefore, it could have interesting impacts on

biofilm production. The incorporation of oleic acid into the membrane as a phospholipid and as a
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free fatty acid result in a more fluid membrane due to the unsaturation creating Kinks in the

structure of the FA.2

0

Ho/”\/\/\/\/\/\/\/\

Palmitic acid (16.0)

HO)L\/\/\/V:\/WV

Oleic acid (18:1)

Figure 1.2. Structures of Palmitic acid and Oleic acid.

2.0 Methods
2.1 Determining ldeal Concentration of Fatty Acid to Optimize Biofilm Growth: Protocol #1

S. aureus JE2 was streaked on tryptic soy agar (TSA) and grown statically overnight at
37°C. The bacterial suspension was made to an optical density of 6.0X108CFU/mL or 2
McFarland in sterile 0.9% w/v sodium chloride. 100 pL of bacterial suspension was added to
tryptic soy broth (TSB) with a fatty acid and a control corresponding to the fatty acid storage
condition. The plate was sealed and incubated at 37 °C for 24 hours, with no shaking. The
medium was removed without disrupting the biofilm. The biofilm was gently but rapidly washed
with 1 mL of 10x PBS. The biofilm was dried until it was no longer milky-white. 500 pL of
0.1% safranin dissolved in 50% ethanol was added to each well for 15 minutes. The safranin was
removed, and each well was washed with 1 mL of 10x PBS. The safranin was eluted with
70/10/20 EtOH/IPA/H20. After 15 minutes, each well was mixed, and the biofilm was scratched
off the bottom of the well with a pipette tip. The de-stain removes the stain from the biofilm, but

the biofilm still remains at the bottom of the well. The biofilm was scratched off the bottom of
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the well to avoid impacting the absorbance readings. The absorbance (A = 530 nm) of each well
was measured. This protocol was obtained from the Peschel lab at the German Center for
Infection Research (DZIF).* In a 24-well plate, 890 pL of TSB, 100 pL of bacterial suspension,
and 10 pL of 5 mM, 10 mM, and 15 mM PA and OA were added to wells in triplicate. The
0.D.s30 readings were obtained to quantify the amount of biofilm produced as shown in Figure

2.1.
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Figure 2.1. S. aureus JE2 Growth in the Presence of Palmitic Acid and Oleic Acid.
The wells containing 150 uM PA had the highest OD reading and therefore, the most biofilm
growth compared to the other experimental concentrations. The wells containing 150 uM OA
had a higher OD than the 100 uM trial, though the OD and biofilm growth was not statistically
different than the 50 uM for the OA wells. Due to the collective performance of the FAs at 150
MM, that concentration was selected for the remainder of the biofilm experiments.
2.2 Incorporating the Centrifuge to Prevent Loss of Biofilm: Protocol #2

While conducting these initial experiments, the biofilm was thin and difficult to work
with. It was difficult to wash the biofilm with 10x PBS without tearing the biofilm within the

well, which causes the O.D.s3o readings to not accurately represent the amount of biofilm that
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grew in the wells. The protocol was altered to incorporate the centrifuge. Centrifuging the 24
well-plates, keeps the biofilm at the bottom of the well while it is washed with 10x PBS.
The plate was sealed and incubated at 37 °C for 24 hours, with no shaking. The medium was
removed without disrupting the biofilm. Instead of washing the biofilm with 1 mL of 10x
PBS, PBS was added to the well and mixed to dissolve the biofilm. The plate was centrifuged at
2000 g for 10 minutes. The supernatant was removed, the biofilm was stained with 500 pL of
0.1% safranin dissolved in 50% ethanol for 15 minutes. The safranin was removed, 10x PBS was
added to the well to dissolve the biofilm. The plate was centrifuged at 2000 rpm for 10 minutes.
The supernatant was removed, de-stain was added, the plate incubated at room temperature for
15 minutes. O.D.s30 readings were collected from the 24 well-plate. 100 puL from each well was
transferred to a 96-well plate for an O.D.s30 reading. These changes to the protocol prevented the
biofilm from tearing during the wash steps and impacting the O.D.s3o readings.

An experiment was conducted with S. aureus JE2 with a final concentration of 150 uM
PA on two identical plates to compare protocol #1 and protocol #2. The experiment was
conducted in a 24 well-plate and then transferred to a 96 well-plate to obtain the O.D.s3 readings
to avoid scratching the biofilm off the bottom of each well. 200 pL of each well was transferred
to a 96 well-plate. An additional 100 pL of each well was transferred to another 96 well-plates

for the O.D.s30 reading.
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Figure 2.2. S. aureus JE2 Growth with 150 uM PA and EtOH: Comparing Protocol #1 and
Protocol #2.
As shown in the OD readings in Figure 2.2, there is more biofilm growth using protocol #2
compared to protocol #1. The addition of the centrifuge prevented biofilm from being lost in the
wash steps. The centrifuge helps the biofilm stay on the bottom of the well. When the biofilm is
washed with PBS, it stays on the bottom of the well instead of detaching from the well. If
detached from the well, the biofilm can be removed from the well with the PBS. Additionally,
there is more error associated with the 200 pL transfer than the 100 pL transfer in protocol #2,
particularly in the PA condition. Based on these results the protocol was modified to incorporate
the changes with the centrifuge and the 100 pL transfer to a new well-plate.
2.3 High Variability from Residual Staining of Plate
While conducting experiments with protocol #2, there was still stain remaining in the
well after washing the biofilm with PBS. As shown in Figure 2.3, the O.D.s30 readings have a
high variability because of the 0.1% safranin remaining in the well after the washing steps while

following the steps of protocol #2.
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Figure 2.3. S. aureus JE2 Supplemented with PA, OA, EtOH, and Stained with 0.1% Safranin.
To combat this issue, | began staining the biofilm with 0.41% crystal violet instead of 0.1%
safranin, while keeping all other steps of protocol #2 the same, to see if there was a decreased
amount of leftover stain in the well. However, the O.D.sgs readings still have high variability
with the alternate stain as shown in Figure 2.4.
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Figure 2.4. S. aureus JE2 Supplemented with PA, OA, EtOH, and Stained with 0.41% Crystal
Violet
2.4 Biofilm Quantification: Protocol #3
This protocol was obtained from the Endres lab at the University of Nebraska Medical
Center. The bacteria of choice were plated on TSA and grown statically for 24 hours at 37°C.
The bacterial suspension was made in TSB supplemented with 0.5% Glucose and 3% NaCl. The

suspension was diluted to an O.D.s00 Of 0.05. Each condition was pipetted into a 96 well-plate
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and grown statically for 24 hours at 37°C. The plate was washed gently twice with 200 uL of
10x PBS. 100 pL of 100% ethanol was added to each well and incubated at room temperature for
2 minutes. 100 pL of 0.41% crystal violet in 50% ethanol was added to each well for 2 minutes.
The liquid was removed, and the plate was washed three times with 200 uL of 10x PBS. 100%
ethanol was added to each well to de-stain for 10 minutes. 50 pL of the solution from each well
was transferred to another 96 well-plate to obtain an O.D.ess reading.

After conducting multiple trials, there was still 0.41% crystal violet in 50% ethanol that
was remaining in the wells. It was also difficult to remove all the stain from the biofilm to obtain
an accurate O.D.gs5 reading. Therefore, instead of using crystal violet, 0.1% safranin was used to
stain the biofilm. The 0.1% safranin was removed from the sides of the wells, but there was still
stain remaining in the biofilm. When 70/10/20 EtOH/IPA/H20 was used instead of 100%
ethanol, the stain was able to be removed from the biofilm.

2.5 Finalized Biofilm Quantification Protocol

S. aureus JE2 and fakA::Tn were streaked on TSA and grown statically for 24 hours at
37°C. Bacterial was suspended in TSB with 3% NaCl and 0.5% Glucose and then diluted to an
O.D.s00 0f 0.05 in a 96 well-plate. In a 15 mL tube, a 5 mL solution was created with TSB,
bacterial suspension, and fatty acids. Each tube contains a different fatty acid or control. The
TSB and bacterial suspension were added to obtain a final O.D.sgo reading of 0.05. OA and PA
were added to obtain a final concentration of 150 uM.

The solution in the tubes was inverted to mix and 200 pL of each sample was pipetted
into a 96 well-plate. The plate was sealed and incubated at 37 °C for 24 hours, with no shaking.
The medium was removed without disrupting the biofilm. The biofilm was gently but rapidly

washed twice with 200 pL of 10x PBS. Each well was stained with 50 pL of 0.1% safranin in
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50% EtOH for about 15 minutes, ensuring the biofilm has absorbed the stain. The 0.1% safranin
was removed, and each well was washed three times with 200 pL of 10x PBS. The safranin was
eluted with 150 pL of 70/10/20 EtOH/IPA/H,0 for 1 hour on a rotating platform or until the
0.1% safranin is eluted from the biofilm. Transfer 100 pL from each well into a new 96 well-
plate. The absorbance (A = 530 nm) of each well was measured.
2.6 Comparing Data from Previous Protocols to Finalized Protocol

The incorporation of the TSB (Glu + NaCl) and the multiple washing steps promoted
biofilm growth and decreased the variability within the O.D.s30 readings. Figure 2.5 shows the
same experiment conducted using protocol #1 on two separate days. There is variability between
the O.D.s30 readings obtained on different days from the same concentration of fatty acid. There
is also variability between the O.D.s30 readings obtained on the same day at the same
concentration. Figure 2.6 is results from a comparison conducted according to the finalized
protocol. S. aureus JE2 was supplemented with TSB (Glu + NaCl) or TSB, PA, OA, and EtOH.
The results are an average of 3-inter day trials. The results in Figure 2.6 have O.D.s30 readings
that are significantly higher than the readings in Figure 2.5. Supplementing TSB with NaCl and
Glucose significantly increased biofilm production. There is less variability in the results in
Figure 2.6 compared to Figure 2.5. Based on the increase in O.D.s30 readings with a decrease in

variability between the readings, the finalized protocol was implemented.
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Figure 2.5. Biofilms of S. aureus JE2 Supplemented with PA and OA using protocol #1.
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Figure 2.6. Biofilms of S. aureus Supplemented with PA, OA, and EtOH using Finalized
Protocol.
3.0 Results and Discussion
3.1 S. aureus JE2 fakA::Tn Growth Comparison
Using the finalized protocol, S. aureus JE2 and fakA::Tn were grown in the presence of

PA, OA, and EtOH. The results, as shown in Figure 3.1, are an average of 3 Inter-day
Trials. These results differ from the expected trend. JE2 contains fakA, which is responsible for
the phospholipid synthesis by incorporating fatty acids into the lipid membrane of S. aureus.®
The incorporation of PA results in a more rigid membrane, which promotes adhesion and
increases biofilm formation. S. aureus fakA::Tn doesn’t contain fakA, therefore PA can’t be
incorporated into the membrane. Therefore, biofilm formation isn’t promoted. The mutation of
fakA can cause an increase in the production of SdrD adhesion, which increases biofilm
production.® Serine Aspartate repeat containing protein D (SdrD) increases biofilm formation
because it is responsible for bacterial adhesion and colonization.” The presence of free fatty acids

in the membrane of S. aureus fakA::Tn could also cause an increase in biofilm formation.
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Figure 3.1. S. aureus JE2 and fakA::Tn Growth in the Presence of PA, OA, and EtOH using
Finalized Protocol.
3.2 S. aureus JE2 and fakA::Tn Mutant Growth Comparison in the Presence of AFN-1252
Using the finalized protocol, S. aureus JE2 and fakA::Tn mutant was grown in the

presence of PA, OA, DMSO, with the supplementation of AFN-1252. The results, as shown in
Figure 3.2, are an average of 3 Inter-day Trials. S. aureus JE2 produces more biofilm because of
the presence of fakA. fakA phosphorylates PA and OA and incorporates them into the
membrane. The incorporation of PA promotes biofilm formation, and the incorporation of OA
inhibits biofilm formation. The lack of incorporation of exogenous fatty acids and the disruption
of the endogenous fatty acid synthesis by AFN-1252 results in a lack of biofilm formation. AFN-
1252 targets Fabl, an enzyme that is important in fatty acid synthesis, in S. aureus.® Fabl is
responsible for the last step of the fatty acid synthesis pathway.® This disruption can decrease the
amount of biofilm production. Therefore, the combination of the S. aureus fakA::Tn mutant and

AFN-1252 decreased biofilm formation compared to the S. aureus JE2 strain.
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Figure 3.2. S. aureus JE2 and fakA::Tn Growth in the Presence of PA, OA, EtOH and AFN-
1252.
4.0 Conclusions
In conclusion, | finalized a method for quantifying biofilm growth in S. aureus. Using

this method, | compared S. aureus JE2 and fakA::Tn mutant with the supplementation of PA,
OA, and EtOH. S. aureus fakA::Tn mutant produced more biofilm than S. aureus JE2. These
results were different than the expected trend, but the overproduction of SdrD could result in
more biofilm formation. | compared S. aureus JE2 and fakA::Tn mutant grown in the presence of
PA, OA, and EtOH with the supplementation of AFN-1252. JE2 S. aureus with PA and OA
produced more biofilm than S. aureus fakA::Tn mutant. This trend is expected because the S.
aureus fakA::Tn can’t incorporate PA and OA into the membrane. AFN-1252 is targeting the
FASII pathway and disrupting the endogenous FA synthesis. These factors make it difficult for
the fakA::Tn to produce biofilm.
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CHAPTER 3
IMPACT OF FATTY ACIDS AND ANTIBIOTICS ON THE GROWTH OF
STAPHYLOCOCCUS AUREUS
1.0 Introduction
1.1 Bacterial growth cycle
Bacteria that grow in a contained system grow in four phases as shown in figure 1.1.1 The

lag phase is when cells have been re-located to their new environment and are adapting.! The
cells are growing in an environment with broth that contains nutrients that are necessary for cell
growth. As the bacteria adjust to their new environment, the bacterial cells prepare for division.
They often increase in size, but they aren’t dividing yet. The log phase begins when the cells are
dividing and exponentially growing.* The cells are dividing by binary fission, which means they
are doubling each generation. The significant amount of cell growth creates an exponential
curve. The stationary phase begins when the rate of cell growth is equivalent to the rate of cell
death.! The nutrients for the cells are limited, and the conditions are no longer ideal for
reproduction. The death phase begins when the rate of cell death is greater than the rate of cell
growth.! The environment has a buildup of waste and cells are no longer maintaining metabolic

functions.
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Figure 1.1. Growth Pattern of Bacteria in a Contained System.*

1.2 Antibiotics and the Impact on the Growth Cycle

Growth curves provide the opportunity to view the impact of antibiotics on bacterial cell
growth. Antibiotics induce cell death through a few different pathways. Antibiotics can attack a
specific system in the cell. This attack will either cause the cells to die or just prevent them from
growing.? S. aureus JE2 and fakA::Tn mutant are susceptible to daptomycin. Daptomycin binds
to the overall negatively charged portions of the membrane, for example, at the sites where
phospholipid phosphatidylglycerol (PG) are present.® The daptomycin binds to the cell
membrane in clusters, and the clusters integrate themselves into the membrane to create pores.
These pores allow contents of the cell to leak out, which disrupts various processes within the
cell, ultimately resulting in cell death. The impact daptomycin has on the growth of S. aureus can
be observed through growth curves.
1.3 OA Incorporation in S. aureus JE2 and fakA::Tn and the Impact on Daptomycin
Resistance

Previous work in the Hines lab evaluated the impact of OA on daptomycin resistance in
S. aureus JE2 and fakA::Tn. Figure 1.2 shows the growth cycle of JE2 and fakA::Tn. JE2
contains fakA::Tn, which allows the cells to incorporate the exogenous OA into the membrane as

a phospholipid. The fakA::Tn mutant doesn’t contain fakA::Tn, so this strain can only
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incorporate OA as free fatty acids. As shown in Figure 1.2, oleic acid promotes daptomycin
resistance in both strains. In Figure 1.2, the samples supplemented with EtOH and daptomycin
have little or no growth. The samples supplemented with OA and daptomycin, the strains
continue to grow, though to a lesser degree and at a slower rate than without the challenge of
daptomycin. Therefore, OA promotes daptomycin resistance when incorporated as free fatty

acids or fatty acyl tails.
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Figure 1.2. Incorporation of OA and Daptomycin in S. aureus JE2 and fakA::Tn.
1.4 OA is Hydrated by Oleate Hydratase to Produce 10-Hydroxystearic Acid (10-HSA)

Oleate hydratase (OhyA) is an enzyme that catalyzes the addition of water to the double
bond of oleic acid.* This reaction produces 10-Hydroxystearic acid (10-HSA) and so the
presence of 10-HSA can confirm oleic acid incorporation in the membrane. S. aureus JE2,
fakA::Tn, and Dap2 were supplemented with OA and EtOH to assess the 10-HSA presence in the
strains following OA supplementation. Previous work in the Hines lab is displayed in Figure 1.3,
which shows the presence of OA and 10-HSA in the samples where JE2, fakA::Tn, and Dap2
were supplemented with OA. OA and 10-HSA are not present in the samples supplemented with
EtOH while FA 20:1 and FA 22:1 is present in the samples where JE2 and Dap2 were

supplemented with OA. JE2 and Dap2 contain fakA::Tn, which allows them to phosphorylate the
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exogeneous OA and integrate it into the membrane as a phospholipid. After phosphorylation, the
FASII pathway can elongate. OA (18:1) to FA 20:1 and FA 22:1. These fatty acids are not

present in S. aureus fakA::Tn mutant because OA can’t be elongated without the presence of

fakA::Tn.
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Figure 1.3. Incorporation of OA in S. aureus fakA::Tn, JE2, and Dap2.

1.5 Impact of OA derivatives on S. aureus JE2 and fakA::Tn Mutant

Based on the results in Figure 1.2, the presence and integration of OA in the membrane
promotes daptomycin resistance. OA is hydrated by OhyA to produce 10-HSA. The increased
resistance to daptomycin could be from the OA or the 10-HSA. OhyA only reacts with OA, the
impact of structurally similar FA on daptomycin resistance remains to be determined. Figure 1.4
shows the FA selected to determine the impact of structural differences on daptomycin
resistance. Cis-vaccenic acid (cis-VA, 18:1) is a FA with 18 carbon atoms and 1 double bond, it
is a structural isomer of oleic acid. The double bond location on cis-VA is on carbon 11 and OA
is on carbon 9, as shown in Figure 1.4. cis-VA will help determine if the location of the double
bond impacts the increased resistance to daptomycin. Cis-9,10-methyleneoctadecanoic acid (cis-

MOA) is a fatty acid with 19 carbons with a cyclopropane. Cis-MOA will help determine if the
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presence of a double bond is necessary for daptomycin resistance, or if the presence of a

cyclopropane impacts daptomycin resistance.
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Figure 1.4 Structures of OA, 10-HSA, cis-VA, and cis-9,10-MOA.

2.0 Methodology
2.1 Lipid Extraction

For all LC-MS experiments, 2 mL of 2 McFarland (600 nm) suspensions of S. aureus JE2
were cultured in tryptic soy broth (TSB) and ethanol, OA, cis-VA, cis-9,10-MOA, 10-HSA, so
that the total concentration of exogenous FA was 100 puM. The bacteria grew overnight, in
triplicate, in an incubator shaker at 37°C and 200 rpm. The pellet was washed in 2 mL of sterile
water and the optical densities (ODesoonm) Of each sample was measured. Bacteria pellets were
then extracted using a modified version of the Bligh & Dyer method.>® The pellets were washed
and resuspended in 0.5 mL of HPLC grade water, sonicated, and then 2 mL of chilled 1:2
chloroform/methanol was added. After vortexing periodically for 5 min, 0.5 mL of chilled
chloroform and water were added to induce phase separation. The samples were briefly vortexed
and centrifuged for 10 minutes. The lower organic layer was collected, dried under vacuum, and

reconstituted in 1:1 chloroform/methanol.
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2.2 LC-MS

Lipid extracts and a quality control (QC) pooled mixture of 5 uL of each sample samples
were analyzed using a Waters Acquity FTN I-Class Plus ultra-performance liquid
chromatography (UPLC) system equipped with a Waters CORTECS HILIC (2.1x100 mm, 1.6
pm) column for hydrophilic interaction chromatographic separation. Lipid extracts were
prepared at a 300x dilution. For HILIC, MPA consisted of 95:5 acetonitrile/water with 10 mM
ammonium acetate and MPB consisted of 50:50 acetonitrile/water with 10 mM ammonium
acetate. A 7 min gradient at a 0.5 mL/min flow rate was performed with the following
conditions: 0-0.5 min, 100% MPB; 0.5-5 min, 100-60% MPB; 5-5.5 min, 60% MPB; 5.5-6 min,
60-100% MPB; 6-7 min, 100% MPB.

The column temperature was kept at 40°C and 5 pL injection volume, maintained at 6°C
in the autosampler, was used for each sample. The Waters Acquity UPLC was connected to the
electrospray ionization source of a Waters Synapt XS traveling-wave ion mobility mass
spectrometer (TWIM-MS). Traveling wave separations were done with a wave velocity of 550
m/s and a wave height of 40 V with a nitrogen flow of 90mL/min. Mass calibration was
performed with sodium formate over a 50-1200 m/z mass range. The samples were analyzed in
the negative ionization mode. For HILIC, data was collected over the 7 min with a collision
energy ramp of 40-60 eV.

2.3 Data Analysis

Progenesis QI (v3.0, Waters/Nonlinear Dynamics) was used to analyze the Waters.raw
files with lock-mass correction and align the samples with a quality control reference sample.
Peak picking was performed, and the data was normalized to the reference sample in Progenesis.

The abundance of the peak areas of the PG precursors were calculated in Progenesis and
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exported to Excel. PGs were evaluated as [M-H]- adducts. All lipid precursors were identified
using the database LipidPioneer’ with an accurate mass (< 4 ppm tolerance).

3.0 Methodology

3.1 Growth curve Lag Phase Extension Assay

S. aureus JE2 and fakA::Tn were plated on TSA and grown at 37°C, statically for 24 hours.
Bacterial suspensions were made with 6.0X10:CFU/mL or 2 McFarland in sterile 0.9% w/v
sodium chloride. In a 15 mL tube, 500 pL of the suspension was added to TSB with 100 uM
fatty acid or ethanol. The samples were incubated overnight on an incubator shaker at 37°C. The
following day, the broth was discarded after the samples were centrifuged at 2000 g for 10
minutes, and the pellet was re-suspended in sterile 0.9% w/v sodium chloride. The pellet

was adjusted to 2 McFarland in sterile 0.9% w/v sodium chloride. TSB was divided into three
tubes per condition per fatty acid and ethanol. TSB with 30 mg/mL calcium chloride was used to
overcome the charge-charge repulsion between daptomycin and phospholipids. 2 McFarland
suspension was added to each tube to obtain a final O.D.ese0 reading of 0.05. For each strain and
experimental condition, one tube contains just the fatty acid, one contains fatty acid with 15
ug/mL daptomycin, and one contains fatty acid with 30 ug/mL daptomycin. The tubes were
mixed and then added into a row on a 96 well-plate, with 5 replicates for each condition. The
plate was placed in a plate reader to obtain O.D.« readings for 36 hours. The parameters were
orbital shaking for 30 seconds, frequency of 559 cpm (3mm), delay of 100 m/sec, set point of

37°C. The O.D.e readings were recorded after 30-minute time intervals of orbital shaking.
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4.0 Results and Discussion
4.1 Unsaturated PGs Present in S. aureus JE2 with FA Supplementation

JE2 was supplemented with 10-HSA, cis-VA, cis-9,10-MOA, OA, and EtOH. The
unsaturated PGs are shown in Figure 4.1. There are unsaturated PGs present in each of the
samples except the ones supplemented with EtOH. These results show that fakA::Tn is
phosphorylating the FA, integrating them into the membrane as a phospholipid, and elongating
them through the FASII pathway. PG 32:1 occurs from the combination of endogenous FA 14:0
with the exogenous cis-VA or OA. The presence of PG 32:1 in S. aureus supplemented with 10-
HSA is likely from OA as well, since OA can be produced from 10-HSA by the reverse activity
of OhyA. There is no PG 32:1 in the bacteria supplemented with cis-9,10-MOA because it is a
19-carbon fatty acid. However, the combination of cis-9,10-MOA with FA 15:0, the most
abundant endogenous FA in S. aureus, results in the high abundance of PG 34:1. The
combination of the 18-carbon exogenous FAs, 10-HSA, cis-VA, and OA, with endogenous FA
15:0 results in PG 33:1, while cis-9,10-MOA combines with FA 14:0 to produce PG 33:1. The
presence of PG 35:1 is evidence of elongation through FASII, as the 18:1 exogenous FAs are
elongated to 20:1 and combined with FA 15:0. These lipidomics data confirm that the various
structures of unsaturated fatty acids can be phosphorylated by fakA and incorporated into

membrane PGs, with or without elongation by FASII.
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Figure 4.1. Unsaturated PGs Present with the Supplementation of 10-HSA, cis-VA, cis-MOA,
and OA
4.2 OhyA Impacts OA and Not cis-VA or cis-9,10-MOA
We next evaluated the presence and abundance of 10-HSA in all bacteria cultured with

exogenous FAs to confirm the specificity of OhyA for cis-geometry double bonds in the A9. The
abundance of each exogenous FA and 10-HSA is shown in Figure 4.2 for all the FA-
supplemented conditions. As expected, 10-HSA was only detected in the conditions where
bacteria were provided OA or 10-HSA. These results confirm that OhyA is highly specific for

the OA and cannot act on cis-VA or cis-9,10-MOA.
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Figure 4.2. Abundance of 10-HSA in each JE2 and FA Sample.
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4.3 Influence of OA Analogs on Daptomycin Tolerance of S. aureus JE2 and fakA::Tn

To determine whether the protective effect against daptomycin was unique to OA, we
performed daptomycin lag-phase extension assays on S. aureus JE2 and fakA::Tn in the presence
of the OA analogs 10-HSA, cis-VA, and cis-9,10-MOA. Figure 4.3 shows the impact that cis-
VA had on the growth of JE2 and fakA::Tn when challenged with 15 or 30 pug/mL of
daptomycin. While the fakA::Tn mutant appears to be inherently more tolerant of daptomycin, 30
pg/mL of daptomycin is sufficient to inhibit the growth of both JE2 and fakA::Tn in the absence
of an exogenous FA. However, the presence of cis-VA enabled the fakA::Tn mutant to grow in
15 pug/mL of daptomycin after a short delay in entering the lag-phase. The growth of JE2 was

more stunted by daptomycin, even in the presence of cis-VA.
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Figure 4.3. S. aureus Growth in the Presence of cis-VA and Daptomycin.

Figure 4.4 shows the impact that cis-9,10-MOA had on the growth of JE2 and fakA::Tn
when challenged with 15 or 30 pg/mL of daptomycin. Similarly to the previously described cis-
VA, the fakA::Tn mutant appears to be more tolerant to low levels of daptomycin exposure, as
seen with the 15ug/mL, yet at higher levels of daptomycin, this effect is reverse not conferring
resistance to the bacteria. Within the JE2 sample, the addition of the fakA protein is seen to

allow for adaptation and growth of the bacteria both at the 15 and 30 pg/mL concentrations.
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While there were some struggles with growth at 15 pg/mL, it is evident that incorporation of cis-

9,10-MOA is more important for resistance than its presence alone.
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Figure 4.4. S. aureus Growth in the Presence of cis-9,10-MOA and Daptomycin.

Figure 4.5 shows the impact that 10-HSA had on the growth of JE2 and fakA::Tn when
challenged with 15 or 30 pug/mL of daptomycin. As additionally seen within Figure 4.3 and 4.4,
JE2 and fakA::Tn mutant seem equally tolerant of daptomycin. However, 30 pg/mL of
daptomycin is sufficient to cause a delay in the lag phase in JE2 and fakA::Tn. Compared to cis-
VA and cis-9,10-MOA, the supplementation of 10-HSA with daptomycin resulted in more
promotion of resistance to daptomycin. Additionally, compared to the other supplemented
species, both the incorporation into phospholipids along with general presence in the bacterial
membrane are able to confer resistance to higher concentration of daptomycin. This could be
from the presence of the hydroxyl group. We are unaware of how that functional group truly

impacts the resistance to daptomycin.
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Figure 4.5. S. aureus Growth in the Presence of 10-HSA and Daptomycin.

5.0 Conclusions

The presence of OA promotes daptomycin resistance as shown in Figure 1.2. The
presence of certain unsaturated PGs is because of the presence of fakA and the supplementation
of FA. OhyA hydrates OA to produce 10-HSA, but this reaction doesn’t occur with any other
FA. The incorporation of cis-VA and cis-9,10-MOA promotes daptomycin resistance in JE2. The
presence of cis-VA, Cis-9,10-MOA, or another process within the cell promotes daptomycin
resistance in fakA::Tn. The presence of 10-HSA strongly promotes daptomycin resistance,
potentially because of the structural differences between 10-HSA and the other FA.
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