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Chapter 1

Introduction

1.1 Background

Suppose we are given a finite ring R (in this thesis, we will assume that all rings are com-

mutative and contain a multiplicative identity). For sets X and Y , we define the notation

Y X := {all functions f : X → Y }. Then RR = {all functions f : R → R} is also a ring,

under (pointwise) addition and multiplication of maps.

There is a relation between polynomials as viewed purely as formal objects, finite R-linear

combinations of monomials c0+ c1t+ · · ·+ cntn (elements of R[t]) and polynomials as viewed

as maps (elements of RR). We define the evaluation map

E : R[t] → RR

f(t) 7→ (x→ f(x))

Then we may define the set P (R,R) ⊆ RR as the image of R[t] under E, and we define

two polynomials in R[t] to be equivalent if they induce the same function in P (R,R) ⊆ RR.

P (R,R) is then a subring of RR, and P (R,R) ∼= R[t]/KerE. When R is an infinite domain,

E is injective. This is the case that is most familiar. In this thesis, we will consider some

questions about P (R,R) when R is finite.

When R is a finite field Fq, we can prove that E is surjective. This comes primarily from

the fact that for all α ∈ Fq,

αq − α = 0 (1.1)

This fact is trivial if α = 0, and when α ̸= 0, it is sufficient to prove that αq−1 = 1. Lagrange’s

Theorem for multiplicative groups states that if G is a finite group of order n and g ∈ G,
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CHAPTER 1. INTRODUCTION

then the order of g divides n. In our case, F×
q = Fq \ {0} is a multiplicative group of order

q−1, thus for all α ∈ Fq, the order of α divides q−1, so αq−1 = 1. Then for every polynomial

f(t) in Fq[t], we can divide it by (tq − t) to get an equivalent representative g ∈ Fq[t] such

that deg(g) ≤ q − 1. There are qq polynomials in Fq[t] with degree ≤ q − 1, so

#(Fq[t]) ≤ qq.

But

#(Fq
Fq) = qq

So we conclude that E must be surjective in this case, meaning every map Fq → Fq can be

represented by a polynomial in Fq[t].

In fact, the converse is also true: if E is surjective, then R is a finite field ([4], Corollary

2.36). Since αq − α = 0 for all α ∈ Fq (we showed this in (1.1)), for every polynomial in

Fq[t], we can divide the polynomial by tq− t to get an equivalent (induces the same function)

polynomial in Fq[t] with degree ≤ q − 1, say c0 + c1t+ · · ·+ cq−1t
q−1, where ci ∈ Fq[t] for all

i = 0, . . . , q − 1. Now we have a map

{f ∈ Fq[t]| deg(f) ≤ q − 1} → FFq
q

f 7→ (c0, . . . , cq−1)

This is a ring homomorphism, and both sides have cardinality qq. Further, by the Root-

Factor Theorem, if f has degree at most q − 1 and vanishes at every point of Fq, then it

must be the zero polynomial. Thus the map above is injective and must be an isomorphism.

For any finite ring R, E fails to be injective, since R[t] will be infinite and P (R,R) ⊂ RR

will not be. Another way to see this is using the fact that polynomial functions preserve

congruences modulo ideals; if I is an ideal of R and x, y ∈ R are such that x ≡ y (mod I),

then also f(x) ≡ f(y) (mod I). But if 0 ̸= I ⊊ R, then the delta function at 0

δ0(x) =


1, x = 0

0, x ̸= 0

2



CHAPTER 1. INTRODUCTION

does not have this property. 0 ̸= I ⊊ R =⇒ 0 ∈ I, 1 /∈ I, and there is a nonzero element

x ∈ I. But then x ≡ 0 (mod I) but δ0(0) = 1 ̸≡ 0 = δ0(x) (mod I). So for any finite ring R,

R[t] is not isomorphic to P (R,R).

Since P (R,R) ∼= R[t]/KerE, and E is not injective for all finite rings R, it is a useful

question to ask for a nice set of generators for KerE. When R is a field Fq, Chevalley [3]

gave a nice set of generators: for E : R[t] → RR, KerE = ⟨tq − t⟩. This generalizes to N

variables too; if N is a positive integer, for E : R[t1, . . . , tN ] → RRN
, KerE is generated by

{tqi − ti}Ni=1.

It is a fact ([5], Theorem 8.35) that any finite ring R has a canonical local decomposition

R =
s∏

i=1

Ri (1.2)

where s is the number of maximal ideals in R and Ri is a finite local ring of prime power

order. For 1 ≤ k ≤ s, let πk : R → Ri be the kth projection map. Then (1.2) induces the

canonical isomorphism

R[t] →
s⊕

i=1

Ri[t], f 7→ (π1(f), . . . πs(f)) (1.3)

By applying the evaluation map E to (1.3), we obtain a ring isomorphism

P (R,R) ∼=
s∏

i=1

P (Ri, Ri)

so we are reduced to the local case.

When (R,m) is a finite local ring, Rogers-Wickham [14] gives an explicit set of generators

for the kernel of E : R[t] → RR. They do this by finding a set of generators for the ideal

Z(m) of R[t] consisting of polynomials f such that f(x) = 0 for all x ∈ m, then showing that

if {fi}ni=1 is a set of generators of Z(m), then {fi(tq − t)}ni=1 is a set of generators for KerE.

When R = Z/paZ, Kempner [8] determined that when a ≤ p, the kernel of the evaluation

map E : Z/paZ[t] → Z/paZ(Z/paZ) is ⟨p, tp − t⟩a. Then:

P (Z/paZ,Z/paZ) ∼= (Z/paZ[t])/⟨p, tp − t⟩a. (1.4)

3



CHAPTER 1. INTRODUCTION

From (1.4) we can get:

#(P (Z/paZ,Z/paZ)) = #((Z/paZ[t])/⟨p, tp − t⟩a) = pp
a(a+1)

2 .

The result above was reproved by Carlitz [2] and Rosenberg [15]. Kempner also found a (more

complicated) formula for #P ((Z/paZ),Z/paZ) when a > p, during which #(Z/paZ(Z/paZ)) <

pp
a(a+1)

2 and thus ⟨p, tp− t⟩a ⊊ KerE. And Bandini [1] showed that when a = p+1, KerE =

⟨I, (tp − t)p − pp−1(tp − t)⟩. For the next results, we define some terminology:

Definition 1.1. For a local ring (R,m), the residue field is the field R/m, and the residue

cardinality is #(R/m).

Definition 1.2. For a finite local ring (R,m), the nilpotency index is the smallest positive

integer a such that ma = 0.

For a finite local principal ring R with residue field R/m ∼= Fq, nilpotency index a, and

a ≤ q, Clark [4] (the result seems to appear for the first time here) found that the kernel of

the evaluation map E : R[t] → RR is ⟨π, (tq − t)⟩a. So we have:

P (R,R) ∼= R[t]/⟨π, (tq − t)⟩a (1.5)

Lemma 1.3. If (R,m = (π)) is a finite local principal ring with nilpotency index a and

residue cardinality q, then

⟨π, (tq − t)⟩a ⊆ KerE.

Proof. Let α ∈ R. Let ᾱ denote the image of α under the quotient map R → R/m. Then

since R/m ∼= Fq, (1.1) =⇒ ᾱq − ᾱ = 0, and thus, lifting back to R, αq − α ∈ m = (π). So π

divides αq − α for all α ∈ R.

Every element of ⟨π, (tq − t)⟩a is of the form f(t) := πi(tq − t)a−i for some i ∈ {0, . . . , a}.

By the conclusion of the last paragraph, f(α) is divisible by πa for every α ∈ R. Since

(π)a = ma = 0, we can conclude that f vanishes identically on R.

4
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We can also determine the cardinality in this case. Jiang-Peng-Sun-Zhang ([7], Theorem

3) represents every f ∈ P (R,R) by an element of

G :=
a∏

i=1

(R/mi)Ti

where: ω : F×
q → R× is the Teichmüller character ([4], Appendix Section 2) T := ω(F×

q )∪{0},

and Ti is the image of the T under the quotient map R → R/mi. So we get a surjective map

E : G → P (R,R)

that is a homomorphism of additive groups. We see that

#G =
a∏

i=1

#(R/mi)Ti =

(
a∏

i=1

#(R/mi)

)q

so

#P (R,R) ≤

(
a∏

i=1

#(R/mi)

)q

with equality if and only if E is injective. ([4], Theorem A.3) shows then that E is injective

when a ≤ q, so

#(P (R,R)) =

(
a∏

i=1

#(R/mi)

)q

= (qq) · (q2)q · (q3)q . . . (qa)q = qq
a(a+1)

2

whenever a ≤ q.

Progress has been made for the general case, which includes all values of a and not just

a ≤ q: Maxson-van der Merwe [12] found an upper bound for #P (R,R) when R is a finite

local ring, and Necaev [13] found a formula for #P (R,R) when R is moreover principal.

1.2 Results Covered

In Chapter 2, we will examine Bandini’s [1] proof of KerE for when R = Z/paZ and a = p+1

and generalize this result, proving that when R is a finite local principal ring with residue

cardinality q and nilpotency index a such that a = q + 1, KerE = ⟨⟨π, tq − t⟩q+1, (tq − t)q −

πq−1(tq − t)⟩ (Theorem 2.4).

5
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In Chapter 3, we determine the maximal ideals of P (R,R) for finite local principal rings

(R,m) finding that for each x ∈ R, mx = {f ∈ P (R,R)|f(x) ∈ m} is a maximal ideal of

P (R,R) and that mx = my if and only if x and y represent the same class in R/m (Corollary

3.5).

In Chapter 4, we analyze criteria under which every ideal of P (R,R) may be generated

by a single element. We find that for a finite local principal ring R, if nilpotency index a ≥ 2,

then P (R,R) contains ideals that are not principal (Theorem 4.2).

In Chapter 5, we use our results from Chapter 4 to find a local decomposition for P (R,R),

proving Theorem 5.1, which states that for a finite local principal ring R with residue cardi-

nality q, P (R,R) ∼= Rq for some local ring R. We then look at what R is when R = Z/p2Z

(Proposition 5.2) or when R is finite local principal with nilpotency index a ≤ residue car-

dinality q (Theorem 5.3).

In Chapter 6, we ask many of these same questions for the ring

P (RN , R) = {polynomial maps f : RN → R} ⊆ RRN

for when N > 1 and highlight some important results from the literature.

6



Chapter 2

Generalization of Bandini’s computation of Kerϕp+1

As already mentioned, Kempner [8] (and then Carlitz [2] and Rosenberg [15]) found that

KerE = ⟨p, tp − t⟩a when R = Z/paZ and a ≤ p. Bandini [1] extended these results to the

immediate next case, showing that when R = Z/paZ and a = p + 1, if I := ⟨p, tp − t⟩, we

have

KerE = ⟨Ip+1, (tp − t)p − pp−1(tp − t)⟩

In this section, we generalize Bandini’s results to all finite local principal rings.

Lemma 2.1. (Generalization of Bandini’s Lemma 1.3)

Let R be a finite local principal ring with maximal ideal m = (π), residue field R/m ∼= Fq

and nilpotency index a. Then:

1. For all α ∈ R, αq − α is an element of m.

2. For all β ∈ m, there exists α ∈ R such that αq − α = β. In fact, for every A ∈ R, α

can be chosen such that α ≡ A (mod m).

Proof. To prove (1), we refer to (1.1): the fact that for all x ∈ Fq, x
q − x = 0. Let ᾱ ∈ R/m.

Since we know that R/m ∼= Fq, we have that ᾱ
q − ᾱ = 0. Then lifting back to R,αq −α ∈ m.

To prove (2), we proceed by induction on a. If a = 1, then m = (0), and R = Fq
∼= R/m.

For any ᾱ ∈ R/m ∼= Fq, ᾱ
q − ᾱ = 0. ᾱq − ᾱ = 0 ∈ R/m =⇒ lifting back to R,αq − α ∈ m.

Moreover we can choose α to be any value (mod m), since the previous logic holds for all

ᾱ ∈ Fq.

7



CHAPTER 2. GENERALIZATION OF BANDINI’S COMPUTATION OF Kerϕp+1

Now suppose that a ≥ 1 and that the statement holds for nilpotency index a − 1.

Let β ∈ m. Then β = πk for some k. By induction, there exists αa−1 ∈ R such that

αa−1
q − αa−1 ≡ πk (mod πa−1). Then αa−1

q − αa−1 = πk + lπa−1 for some l ∈ R. Then

letting αa := αa−1 + lπa−1,

αq
a − αa ≡

(αa−1 + lπa−1)q − (αa−1 + lπa−1) ≡

αa−1
q + qαa−1

q−1lπa−1 − αa−1 − lπa−1 (mod πa).

But recall that because q = 0 in R/m, we have π|q. So in R,

αa−1
q + qαa−1

q−1lπa−1 − αa−1 − lπa−1 = αa−1
q − αa−1 − lπa−1 = πk = β ∈ m,

where the last step holds by the inductive hypothesis. Note also that αa = αa−1+lπ
a−1 ≡ αa−1

(mod π), and by the inductive hypothesis, for any A ∈ R, we can choose αa−1 such that

αa−1 ≡ A (mod π).

Lemma 2.2. (Generalization of Bandini’s Lemma 1.4)

Let R be a finite local principal ring with maximal ideal m = (π), residue field R/m ∼= Fq

and nilpotency index a ≥ q + 1. Let H2(t) := (tq − t)q − πq−1(tq − t). Then

1. For all β ∈ R, there exists some α ∈ R such that H2(α) = βπq+1.

2. The image of the map H2 : R → R is mq+1.

Proof. Proof of (1): Using Lemma 2.1, take t0 ∈ R such that t0
q − t0 ≡ πβ (mod πa−q). Now

applying Lemma 2.1 once more, take α ∈ R such that αq − α ≡ πt0 (mod πa−q+1). Then:

αq − α = πt0 + πa−q+1y =⇒

H2(α) = (πt0 + πa−q+1y)q − πq−1(πt0 + πa−q+1y)

= (πt0)
q + q(πt0)

q−1(πa−q+1y)q + · · ·+ q(πt0)(π
a−q+1y)q−1 + (πa−q+1y)q − πqt0 + πay

= πq(t0
q − t0)

= πq+1β

8
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So for all β ∈ R, there exists some α ∈ R such that H2(α) = πq+1β.

Proof of (2): We can write H2(α) = (αq − α)((αq − α)q−1 − πq−1).

If αq − α ∈ (π)2, since ((αq − α)q−1 − πq−1) ∈ (πq−1), we’re done.

Otherwise, αq − α /∈ (π2). We know π|(αq − α) so αq − α = Cπ for some C ∈ R×. Then

C̄ ̸= 0 in R/m ∼= Fq, so q|(Cq−1 − 1). Hence Cq−1 − 1 ∈ (π). Then we have that:

(αq − α)q−1 − πq−1

= πq−1Cq−1 − πq−1

= πq−1(Cq−1 − 1) ∈ (π)q.

So H2(α) ∈ (πq+1) = mq+1.

In [1], Bandini defines the following notation: If P (X) is a non-zero polynomial with

integer coefficients and p a fixed prime in Z, we define dp(P ) as the largest integer k such

that P (a) ≡ 0 (mod pk) for any integer a.

He then shows that: If In is the ideal (Xp − X, p)n for any positive integer n, and

I0 = Z[X], when we have a polynomial Q(X) ∈ In \ In+1 we can write

Q(X) =
n∑

i=0

Qi(X)(Xp −X)ipn−i +R(X) (2.1)

with R(X) ∈ In+1, all coefficients of the Qi(X) prime with p and degQi(X) < p for any i.

Then, finally, he proves the following ([1], Proposition 1.5): Let Q(X) ∈ In \ In+1. Then

dp(Q) ≥ n+ 1 ⇐⇒ H2(X) divides Q(X) (mod In+1) i.e. H2 divides Q(X)−R(X).

We will generalize this to our context of a finite local principal ring R with residue

cardinality q and nilpotency index a = q+1. First, we can generalize Bandini’s (2.1): When

we have a polynomial Q(t) ∈ Ia (I := ⟨π, tq − t⟩), we can write

Q(t) =
a∑

i=0

Qi(t)(t
q − t)iπa−i + r(t) (2.2)

9
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where r(t) ∈ Ia+1, all coefficients of the Qi(t) are units in R and degQi(t) < q for any i. We

can do this in the following way: Let Q ∈ Ia. We take our

Q(t) =
a∑

i=0

Gi(t)(t
q − t)iπa−i

where Gi(t) ∈ R[t] for all i = 0, . . . , a. Using the division algorithm, we rewrite each Gi(t)

as Gi(t) = Pi(t)(t
q − t) +Ri(t), where deg(Ri(t)) ≤ q − 1. Then we have

Q(t) =
a∑

i=0

Pi(t)(t
q − t)i+1πa−i +

a∑
i=0

Ri(t)(t
q − t)iπa−i.

Observe that this first term
∑a

i=0 Pi(t)(t
q − t)i+1πa−i is in Ia+1. Now in order to take the

second term and rewrite it in a special way, consider the injective group homomorphism

ω : F×
q ∪ {0} → R× ∪ {0}

0 ̸= x 7→ xq
a−1

, 0 7→ 0

known as the Teichmüller character (mentioned on Page 5). If q : R× → F×
q is the quotient

map restricted to the unit groups, then q ◦ ω = 1F×
q
.

For any x ∈ R, we can write x = ω(q(x)) + (x− ω(q(x))). Then ω(q(x)) is either 0 or an

element of R×, and x − ω(q(x)) ∈ m; so every element x of R may be written x = A + B

where A is either 0 or a unit in R, and B is divisible by π.

It is this fact that we will use to rewrite the second term
∑a

i=0Ri(t)(t
q− t)iπa−i. For each

i = 0, . . . , a, we can write

Ri(t) = Ai(t) +Bi(t),

where Ai(t) has coefficients that are either 0 or units in R, and Bi(t) has coefficients that

are divisible by π. Thus

a∑
i=0

Ri(t)(t
q − t)iπa−i =

a∑
i=0

Ai(t)(t
q − t)iπa−i +

a∑
i=0

Bi(t)(t
q − t)iπa−i.

But we observe now that term
∑a

i=0Bi(t)(t
q − t)iπa−i is in Ia+1. So we end up with

Q(t) =

(
a∑

i=0

Pi(t)(t
q − t)i+1πa−i +

a∑
i=0

Bi(t)(t
q − t)iπa−i

)
+

(
a∑

i=0

Ai(t)(t
q − t)iπa−i

)

10
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where the first term (
∑a

i=0 Pi(t)(t
q − t)i+1πa−i +

∑a
i=0Bi(t)(t

q − t)iπa−i) is in Ia+1 and the

second term (
∑a

i=0Ai(t)(t
q − t)iπa−i) has coefficients that are either 0 or units in R.

Proposition 2.3. (Partial generalization of Bandini’s Proposition 1.5)

Let R be a finite local principal ring with maximal ideal m = (π), residue field R/m ∼= Fq,

and nilpotency index a = q + 1. Let I = ⟨π, tq − t⟩. Then if Q(t) ∈ Iq and Q(t) vanishes

identically on R, ∃r(t) ∈ Iq+1 such that H2 divides Q(t)− r(t) in R[t].

Proof. Assume Q(t) vanishes identically on R. First, decompose Q(t) in the way described

in (2.2):

Q(t) =

q∑
i=0

Qi(t)(t
q − t)iπq−i + r1(t),

so that r1(t) ∈ Iq+1, all coefficients of the Qi(t) are units in R, and degQi(t) < q for all i.

Since r1(t) ∈ Iq+1, r1(t) vanishes identically on R, and thus so does Q(t)− r1(t). Then

Q(t)− r1(t) =

q∑
i=0

Qi(t)(t
q − t)iπq−i =⇒

q∑
i=0

Qi(t)(t
q − t)iπq−i vanishes identically on R.

Let β ∈ R. By Lemma 2.1, there is α ∈ R such that αq−α = πβ. Then: ∀β ∈ R, there exists

α ∈ R (which, in particular, we may choose to be anything we wish modulo π) such that:

Q(α) = πqβqQq(α) + π · πq−1βq−1Qq−1(α) + · · ·+ πqQ0(α) =⇒

Q0(α) +

q∑
i=1

Qi(α)β
i ≡ 0 (modπ).

Now, if x, y are positive integers and x ≡ y (mod q− 1), then for all β ∈ R (R as above) we

have βx ≡ βy (mod m). This is because ∀x ∈ Fq, x
q−1 = 1 =⇒ for every x ∈ Fq and every

positive integer n, xn = xn (mod q−1), so xn depends only on n modulo q − 1. Define:

P0(t) = Q0(t)

P1(t) = Q1(t) +Qq(t)

Pj(t) = Qj(t), j = 2, . . . , q − 2

Then for all α, β ∈ R we have

q−1∑
j=0

Pj(α)β
j ≡ 0 (mod π)

11



CHAPTER 2. GENERALIZATION OF BANDINI’S COMPUTATION OF Kerϕp+1

That is, for all x, y ∈ Fq,

P 0(x) + P 1(x)y + ...+ P q−1(x)y
q−1 = 0 ∈ Fq,

where P j denotes the reduction of Pj modulo m.

But then using the fundamental fact that a univariate polynomial over Fq of degree less

than q that evaluates to the zero function must be 0, we find that for each fixed x ∈ Fq, the

polynomial P 0(x) + ... + P q−1(x)y
q−1 evaluates to 0 at all y ∈ Fq, hence P 0(x), ..., P q−1(x)

are all 0. In turn, each P j is a polynomial of degree at most q− 1, so applying the same fact

again we get that P j = 0 for all j = 0, . . . , q − 1. Thus every coefficient of Pj is divisible

by π. So we can write each Pj as Pj(t) = πP̃j(t), where each P̃j(t) is a polynomial in R[t].

Note, in particular, that this gives us Q0(t) = P0(t) = 0, since each Qj has coefficients that

are either zero or units in R.

Using Q0(t) = P0(t) = 0 and Qq(t) = P1(t)−Q1(t), we have that in R[t],

Q(t)− r1(t) =

q∑
i=0

Qi(t)(t
q − t)iπq−i

= Q1(t)(t
q − t)πq−1 +

q−1∑
j=2

(
Qj(t)(t

q − t)jπq−j
)
+Qq(t)(t

q − t)q

= Q1(t)
(
(tq − t)πq−1 − (tq − t)q

)
+ πP̃1(t)(t

q − t)q +

q−1∑
j=2

πP̃j(t)(t
q − t)jπq−j

= Q1(t) · (−H2(t)) +

q−1∑
j=2

πP̃j(t)(t
q − t)jπq−j

So if we let r(t) = r1(t) +
∑q−1

j=2 πP̃j(t)(t
q − t)jπq−j ∈ Iq+1, H2(t) divides Q(t) − r(t) in

R[t].

Theorem 2.4. (Generalization of Bandini’s Theorem 2.1)

Let R be a finite local principal ring with maximal ideal m = (π) and residue field R/m ∼= Fq.

Let ϕa : R[t] → RR denote the evaluation map in the case where R has nilpotency index a.

Again let I = ⟨π, tq − t⟩ and H2(t) = (tq − t)q − πq−1(tq − t). Then Kerϕq+1 = (Iq+1, H2).

12
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Proof. To see that (Iq+1, H2) ⊂ Kerϕq+1, that H2 ∈ Kerϕq+1 follows from (Lemma 2.2, Part

2), and Iq+1 ⊂ Kerϕq+1 by Lemma 1.3.

To prove Kerϕq+1 ⊂ (Iq+1, H2), let Q(t) ∈ Kerϕq+1 ⊂ Kerϕq = Iq. We may apply

Proposition 2.3: there exists r(t) ∈ Iq+1 such that H2 divides Q(t) − r(t) in R[t]. Thus

Q(t) = r(t) +H2(t)f(t) for some f(t) ∈ R[t], so Q(t) ∈ (Iq+1, H2).

13



Chapter 3

Maximal ideals of P (R,R)

Let R be a finite local ring with maximal ideal m, nilpotency index a and residue field

R/m ∼= Fq. We may ask: how many maximal ideals does P (R,R) have? What are they?

In the case of a finite field R = Fq, every map f : Fq → Fq can be written as a polynomial

in Fq[t], since E is surjective. In this case, we see that for all x ∈ Fq,

mx := {f ∈ P (Fq,Fq)|f(x) = 0} (3.1)

is a maximal ideal of P (R,R), by being the kernel of the homomorphism P (R,R) → R

defined by evaluating at x (which is surjective since E is surjective).

But now suppose that (R,m) is a finite local ring and m ̸= 0 (that is, R is not a field).

In this case, we define for x ∈ R,

mx := {f ∈ P (R,R)|f(x) ∈ m}. (3.2)

These ideals mx are maximal, this time by being the kernel of the surjective homomorphism

Fx : P (R,R) → R → R/m,

evaluating at x and then taking the canonical quotient map. Notice that when we plug in

m = (0) to (3.2) we recover our definition from (3.1) for the case where R is a field.

3.1 Are these maximal ideals distinct?

When R = Fq, the maximal ideals mx as in (3.1) above are distinct: if α ̸= β ∈ Fq then e.g.

f(x) := x− α is such that f ∈ mα but f /∈ mβ.

14
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When R ̸= Fq, in general, the maximal ideals mx are not distinct. Take, for example:

R = Z/p2Z. Let m0 := {f |f(0) ∈ (p)} and let mp := f(p) ∈ (p)}. We see that 0 ≡ p (mod

p) =⇒ f(0) ≡ f(p) (mod p), since polynomials preserve congruences. Then f(0) ∈ (p) ⇐⇒

f(p) ∈ (p), and thus m0 = mp.

In fact, more generally:

Proposition 3.1. If (R,m) is a finite local ring, if we let mx := {f : f(x) ∈ m}, then for all

x1, x2 ∈ R, mx1 = mx2 ⇐⇒ x1 ≡ x2 (mod m).

Proof. ( ⇐= ) Suppose x1 mod m = x2 mod m. Then for all f ∈ R[t], f(x1) mod m = f(x1

mod m) = f(x2 mod m) = f(x2) mod m.

( =⇒ ) Suppose x1 mod m ̸= x2 mod m. We will show mx1 ̸= mx2 (i.e. there exists f ∈ R[t]

such that f(x1) ∈ m and f(x2) /∈ m). Take f(t) := t − x1. Then f(x1) = 0 ∈ m and

f(x2) /∈ m.

3.2 Are these mx all the maximal ideals of P (R,R)?

More generally, we may ask: if R is a finite ring andm1, . . . ,mr are maximal ideals of R, what

is a criterion for these to be all of the maximal ideals? Let’s first introduce some definitions.

Definition 3.2. For any ring R,

nilR := {x ∈ R : xk = 0 for some k} =
⋂

prime P◁R

P

where the second equality can be found in ([5], Proposition 4.12).

Definition 3.3. We say an ideal I ◁ R is nil if every x ∈ I is nilpotent and that I ◁ R is

nilpotent if Ik = 0 for some nonnegative integer k.

Proposition 3.4. For a finite local ring (R,m), if we define mx := {f ∈ P (R,R)|f(x) ∈ m},

then every maximal ideal of P (R,R) is of the form mx for some x ∈ R.

15



CHAPTER 3. MAXIMAL IDEALS OF P (R,R)

Proof. Since R is finite and P (R,R) ⊂ RR, P (R,R) is also finite and hence Noetherian. So

all prime ideals in P (R,R) are maximal. Then

nilP (R,R) =
⋂

maximal M◁P (R,R)

M

A version ([5], Theorem 4.18) of the Chinese Remainder Theorem tells us in particular that

the if m1, . . . ,mr is a finite set of pairwise comaximal ideals of P (R,R), then the map

P (R,R) →
∏

mi∈MaxSpecP (R,R)

P (R,R)/mi

x 7→ (x+mi)
r
i=1

is surjective. This means that for any proper subset S ⊊ MaxSpecP (R,R), there is an

element x ∈ P (R,R) such that the set {I ∈ MaxSpecP (R,R)|x ∈ I} is precisely S.

Thus, if we intersect over a proper subset of MaxSpecP (R,R), the intersection will

strictly contain nilP (R,R). That is:

S ⊊ MaxSpecP (R,R) =⇒ nilP (R,R) ⊊
⋂
I∈S

I (3.3)

Define the set

A :=
⋂
x∈R

mx

Then

A =
⋂
x∈R

mx =
⋂
x̄∈Fq

mx̄ = {polynomials f : R → R|f(x) ≡ 0 (mod π)∀x ∈ R}.

Let f ∈ A. Then (f(x))a = 0 for all x ∈ R, and consequently fa = 0. We may conclude that

the set A is nilpotent, and so A ⊂ nilP (R,R). We may conclude then, using (3.3), that the

set {mx|x ∈ R} contains all of the maximal ideals of P (R,R).

Corollary 3.5. Given a finite local ring (R,m) with residue field R/m ∼= Fq, P (R,R) has q

maximal ideals

mx = {f ∈ P (R,R)|f(x) ∈ m}, x ∈ R,

one for each equivalence class in R/m.
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Chapter 4

Criteria for P (R,R) to be a Principal Ideal Ring

Let R be a finite local principal ring with unique maximal ideal m = (π), residue field

R/m ∼= Fq, and nilpotency index a. We may then ask: when is every ideal of P (R,R)

principal?

Definition 4.1. We call a ring A a principal ideal ring (PIR) if every ideal of A is

principal.

For the finite field case R = Fq, P (R,R) is, in particular, a principal ideal domain (PID),

because P (Fq,Fq) = Fq
Fq ∼= Fq

q and a finite product of PIDs is a PIR.

We claim that when R is not a field, P (R,R) is no longer a principal ideal ring. To show

this, it is sufficient to find an ideal of I of P (R,R) that is not principal.

For a maximal ideal I in P (R,R), if I is principal, then I/I2 is 1-dimensional as a R/m-

vector space [11]. Thus in order to achieve the above, we will take a maximal ideal I (using

our results from Chapter 3) and show that the dimension of I/I2 over R/m is greater than

1.

4.1 The Case R = Z/p2Z

Let R = Z/p2Z. Recalling the definition from 3.2, we havem0 = {f ∈ P (R,R) : f(0) ∈ (p2)}.

Observe that

m2
0 ⊊ {f ∈ P (R,R) : f(0) ∈ (p2)2 = (0)}.

Take, for example, f(t) = t.We have that f(0) = 0 ∈ (0) = (p2)2, but f(t) cannot be written

f = gh such that g, h have constant terms in (p2), so f(t) = t /∈ m2
0. This is equivalent to
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showing the dimension ofm0/m
2
0 over Fq is > 1.We conclude that when R = Z/p2Z, P (R,R)

is not a principal ideal ring.

4.2 The General Case

We note that for the case of a finite principal local ring R, if nilpotency index a = 1, then

R is a field and our question is answered: P (R,R) = Fq
q is a finite principal ring.

Theorem 4.2. Let R be a finite local principal ring with unique maximal ideal m = (π),

residue field R/m ∼= Fq, and nilpotency index a. Then P (R,R) is not a principal ideal ring

whenever a ≥ 2.

Proof. The elements t and π both lie in the maximal ideal m0 ⊆ P (R,R). We should show

that t and π give Fq-linearly independent elements in m0/m
2
0. Because every element of

P (R,R)/m0
∼= Fq is represented by a constant function (because the residue field of R is

also Fq), it is enough to show that if a1, a2 ∈ R are such that a1t+ a2π ∈ m2
0, then both a1

and a2 lie in m0 :

In general, if I is generated by ⟨x1, ..., xn⟩ then I2 is generated by ⟨xixj|1 ≤ j ≤ n⟩. We

know that m0 is generated by t and π: every polynomial function f such that f(0) lies in m

can be written as a multiple of t plus a constant polynomial, and the fact that f(0) lies in m

means that the constant lies in m and thus is a multiple of π. So m2
0 is generated by t2, πt,

and π2. Thus our assumption is that there are polynomials f1, f2, f3 such that

a1t+ a2π ≡ f1 · t2 + f2 · t · π ·+f3 · π2,

where ≡ means equal as polynomial functions: i.e., plugging in each x in R gives an equality.

Evaluating at x = 0 gives a2 · π = π2 · f3(0) ∈ R, so π divides a2, as desired. Evaluating

at x = π and reducing modulo π2, we get a1 · π = 0 ∈ (R/π2), so π divides a1, as desired.

Thus dim(m0/m
2
0) > 1, so even in the general case, P (R,R) is never a principal ideal ring.
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Note that we are also using that every element of P (R,R) differs from an element of m0

by a constant function,which is why we can assume that a1 and a2 lie in R: this assumption

does not change them modulo m0.
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Chapter 5

Local Decomposition of P (R,R)

Let (R,m) be a finite local ring with nilpotency index a and residue cardinality q. Recall

that since P (R,R) is itself a finite ring, and we now know from Chapter 3 that P (R,R) has

q maximal ideals, (1.2) gives:

P (R,R) ∼=
q∏

i=1

Ri

where each Ri is a finite local ring.

Theorem 5.1. Let R be a finite local principal ring with residue cardinality q. Then

P (R,R) ∼=
q∏

i=1

R,

for some local ring R and so P (R,R) ∼= Rq. That is, Ri = R for all i = 1, . . . , q. (We call

this R the “isotypic ring.”)

Proof. Suppose P (R,R) has distinct maximal idealsm1, . . . ,mq (as defined in (3.2)). Because

P (R,R) is Artinian, P (R,R) satisfies the descending chain condition. That is, there is no

infinite sequence of ideals {Ai} such that Ai+1 ⊊ Ai for all i ∈ Z+ ([5], p.140). Then the

chain mi ⊃ m2
i ⊃ m3

i ⊃ . . . must stabilize, so for 1 ≤ i ≤ q there is some nonnegative integer

li such that mli
i = mli+k

i for all k ≥ 0. Also, li ̸= 0 because no power of a maximal ideal

contains any other maximal ideal.

But now the ideals ml1
1 , ...,m

lq
q are pairwise comaximal (because their radicals are), so

I := ml1
1 · ... · mlq

q = ml1
1 ∩ ... ∩ m

lq
q . And I ⊂ mi for 1 ≤ i ≤ q, so (the ring is Artinian,

hence Noetherian) I is a nilpotent ideal: thus there is some nonnegative integer n such that
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In = 0. On the other hand, if you raise I to any power n, then because ((mi)
li)n = mli

i we

find that I = In. It follows that I = 0.

Then the Chinese Remainder Theorem gives an isomorphism:

P (R,R) = P (R,R)/I →
q∏

i=1

R/mli
i

so the local factors we are looking for are P (R,R)/mli
i .

Claim 1: We may take lx to equal a.

Proof: We have P (R,R) = Rq. So if f is an element of the maximal ideal of R, then

F = (f, 0, ..., 0) is a nilpotent element of P (R,R). The elements of P (R,R) that are nilpotent

are the elements that map every element of R into (π), in which case the a-th power of the

element is 0. So

0 = F a = (fa, 0, ..., 0),

so fa = 0. Thus indeed ma
x = ma+j

x for all j ≥ 0, for all x ∈ R. Further, a is the minimum

such value: the polynomial f(t) = π(t − x + 1) lies in mx and evaluates at x to π, so the

polynomial fa−1 lies in ma−1
x \ma

x. Let Rx := P (R,R)/ma
x. Observe that the ring R embeds

in P (R,R) as the subring of constant functions. This induces a map ϕ : R → P (R,R) → Rx.

Claim 2: ϕ is injective.

Proof: Because m0 = {f : R → R|f(0) ∈ m}, elements of ma
0 evaluate to 0 at 0, and the

only constant function for which this is true is 0 itself. So R∩ma
x = (0). Thus for all x in R,

the map R → P (R,R) → Rx is injective (so each Rx should be a faithful R-algebra). The

embedding of R is injective.

Claim 3: For all x, y ∈ R, the local rings Rx and Ry are isomorphic.

Proof: For all x in R, translation by x is an automorphism of the ring P (R,R). For a

polynomial function f , define

τx(f) : y → f(x+ y)
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Observe that τx is a ring homomorphism whose inverse is τ−x. For x, y in R and k in Z+ we

should have

τy−xm
k
x = mk

y

Thus τy−x induces an isomorphism from Rx = P (R,R)/ma
x to Ry = P (R,R)/ma

y.

5.0.1 The Case R = Z/p2Z

Proposition 5.2. Let R = Z/p2Z. Then P (R,R) = Rp where R ∼= Z/p2Z[pt].

Proof. As we mentioned, if R = Z/p2Z, then P (R,R) = Rp where each R is be a faithful

Z/p2Z-algebra of order p3. Our candidate for R is Z/p2Z[pt].

As a first check, Z/p2Z[pt] has order p3: if f ∈ Z/p2Z[pt] then f(pt) = c0 + c1pt + · · · +

cn(pt)
n with ci ∈ Z/p2Z[pt] for all i = 0, . . . , n but p2 = 0 so we have f(pt) = c0 + c1pt,

where c0 ∈ Z/p2Z and c1 ∈ {p, p+1, . . . , p2 − 1} ⊂ Z/p2Z so there are p2 · p = p3 choices for

c0 and c1.

Claim 1: S := Z/p2Z[pt] ∼= Z/p2Z[x]/(px, x2).

Proof: Consider the homomorphism ψ : Z/p2Z[x] → Z/p2Z[pt] defined uniquely by x 7→

pt. Kerψ = {polynomials P ∈ Z/p2Z[x]|P (pt) = 0 in S}, so (px, x2) ⊂ Kerψ. Also, in

Z/p2Z[x]/(px, x2), x2 = 0, so every polynomial can be written as ax + b with a, b ∈ Z/p2Z.

There are p2 choices for b but only p choices {0, 1, . . . , p − 1} for a, since in this quotient,

px = 0. This gives p · p2 = p3 options for ax+ b. So #(Z/p2Z[x]/(px, x2)) = p3.

Claim 2: LetR be a local ring of order p3 that is a faithful Z/p2Z-algebra and has nilpotency

index 2. Then we claim that R ∼= S.

Proof: There is an isomorphism from the additive group of R to Z/p2Z × Z/pZ that

carries 1 to (1, 0); this comes from the classification of finite abelian groups. Let y be the

element of R that maps to (0, 1) under the isomorphism, so y /∈ Z/p2Z and y has order p,

so R = Z/p2Z[y].
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Since R has characteristic p2 and y has order p, y cannot be a unit in R: if yz = 1, then

p = pyz = 0 · z = 0, contradiction. So y must lie in the maximal ideal of R and thus y2 = 0.

Thus we have a surjective Z/p2Z-algebra homomorphism

Z/p2Z[t]/(t2, pt) → R,

t 7→ y

Since both rings have order p3, this is an isomorphism. Thus the properties we wrote for R

indeed characterize it up to isomorphism, so it must be isomorphic to Z/p2Z[pt], although

the representation Z/p2Z[t]/(t2, pt) may be more useful.

5.0.2 The Case a ≤ q

Theorem 5.3. Let R be a finite local principal ring with maximal ideal m = (π), residue

field R/m ∼= Fq, and nilpotency index a. Suppose a ≤ q. Then

Rq × (R/π)q × · · · × (R/πa−1)q ∼= P (R,R).

Proof. Recall that [4] proves that

P (R,R) ∼= R[t]/⟨πa, πa−1(tq − t), . . . , (tq − t)a⟩.

We know that (tq− t)a = 0 in P (R,R) so we can divide any polynomial by this monic degree

aq polynomial to get a remainder of degree at most aq − 1. Thus

{1, t, . . . tq−1,

(tq − t), t(tq − t), . . . tq−1(tq − t),

(tq − t)2, t(tq − t)2, . . . , tq−1(tq − t)2,

. . .

(tq − t)a−1, t(tq − t)a−1, . . . , tq−1(tq − t)a−1}

is an R-module spanning set for P (R,R) (we have just to choose one monic polynomial for

each degree 0, 1, . . . aq − 1).
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But (tq − t)a−1 is killed by π so we have a surjective R-module homomorphism:

Φ : Raq → P (R,R)

(a0, . . . , aaq−1) 7→

a0 · 1 + . . . aq−1 · tq−1

+aq · (tq − t) + aq+1 · t(tq − t) + · · ·+ a2q−1 · tq−1(tq − t)+

. . .

+a(a−1)q · (tq − t)a−1 + · · ·+ aaq−1 · tq−1(tq − t)a−1

Letting J := (0)q × (πR)q × · · · × (πa−1R)q, then J ⊂ KerΦ. So Φ induces a surjective

R-module map

Raq/J → P (R,R)

But since Raq/J ∼= Rq × (R/π)q × · · · × (R/πa−1)q, we have a surjective map

Rq × (R/π)q × · · · × (R/πa−1)q → P (R,R)

However,

#P (R,R) = qq
a(a+1)

2

and

#(Rq × (R/π)q × · · · × (R/πa−1)q) = (#R)q · (#R/π)q · · · · · (#R/πa−1)q

= (qa)q · (q)q · (q2)q · × · (q(a−1))q = qq
a(a+1)

2

so this map is an isomorphism, and Rq × (R/π)q × · · · × (R/πa−1)q ∼= P (R,R).

Remark. Since we have

P (R,R) ∼= Rq,

we can deduce that when a ≤ q,

R ∼= R⊕R/(π)⊕ · · · ⊕R/(πa−1).
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Kempner’s formula [8] shows that #P (Z/paZ)) < pp
a(a+1)

2 when a > p, and thus in this

case the ideal KerE properly contains I = ⟨p, tp − t⟩a. Then when a > q, we still have an

R-module surjection

R⊕R/(π)⊕ · · · ⊕R/(πa−1) → R

since the argument we used for the surjectivity did not use a ≤ q; we used only that the

elements πa−i(tq− t)i all lie in KerE, which still holds when a > q. But this map is no longer

an isomorphism. Why is this? Define, for 1 ≤ n ≤ #R,

α(n) :=
a∑

i=1

⌊
n

qi

⌋
(5.1)

and for 1 ≤ i ≤ q,

β(i) := the least n such that α(n) ≥ i. (5.2)

When a > q, Necaev’s result [13] says that

#P (R,R) = q
∑a

i=1 β(i)

One can show that for all 1 ≤ i ≤ q, β(i) = qi , so when a > q,

#P (R,R) > q
∑q

i=1 β(i) = qq(
∑a

i=1 i) = qq
a(a+1)

2

So #P (R,R) ̸= #(R⊕R/(π)⊕ · · · ⊕R/(πa−1))q, meaning we cannot have an isomorphism.

Remark. One can compute that for a finite local principal ring (R,m) with nilpotency

index a = 2 and residue field R/m ∼= Fq, the dimension dim(m0/m
2
0) (which we looked at in

Chapter 4) is equal to 2. Though it is not true in general that m2
0 = 0, we may pass to the

local ring. That is, inside of (R,m0),m
2
0 = 0. Then

#P (R,R) = q3q = (q3)q = #(R)q =⇒ #R = q3

and so

#(m0) =
#(R)

q
=
q3

q
= q2 = (#(Fq))

2
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So the dimension over Fq of the local version of m0 is 2, but localization leaves this dimension

unchanged, meaning dim(m0/m
2
0) = 2.

In fact, we can compute dim(m0/m
2
0) for any nilpotency index a. As mentioned in Chapter

4, m0 is generated by π and t. Since m0 can be generated by two elements, certainly m0/m
2
0

can be generated by 2 elements, so dim(m0/m
2
0) ≤ 2. But from Theorem 4.2, we found

dim(m0/m
2
0) > 1. So in general, dim(m0/m

2
0) = 2.
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Chapter 6

Generalizations to N Variables

Let R be a finite ring. Then we may also examine the ring P (RN , R) ⊆ RRN
for finite rings

R, when N > 1. Just as in the N = 1 case, we have an analogous evaluation map

E : R[t1, . . . , tN ] → RRN

f(t1, . . . , tN) 7→ ((a1, . . . , aN) 7→ f(a1, . . . , aN))

We define P (RN , R) as the image of R[t1, . . . , tN ] under E, and consider two polynomials in

R[t1, . . . , tN ] equivalent if they induce the same function RN → R.

We may once again ask the same questions as in the N = 1 case: what are the max-

imal ideals of P (RN , R)? When is every ideal of P (RN , R) principal? What is the local

decomposition of P (RN , R)?

We can immediately reduce to the local case, just as before.

6.0.1 Maximal ideals of P (RN , R)

Let (R,m) be a finite local ring with nilpotency index a and R/m ∼= Fq. We can ask: what

are the maximal ideals of P (RN , R)? In this case, we define (analogously to the N = 1 case),

for all (a1, . . . , aN) ∈ RN :

m(a1,...,aN ) := {f ∈ P (RN , R)|f(a1, . . . , aN) ∈ m}. (6.1)

These ideals m(a1,...,aN ) are maximal, again by being the kernel of the surjective homomor-

phism

F(a1,...,aN ) : P (R
N , R) → R → R/m,

evaluating at (a1, . . . , aN) and then taking the canonical quotient map.
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Are these maximal ideals distinct?

Recall that for the case N = 1 we proved that if (R,m) is a finite local ring, if we let

mx := {f : f(x) ∈ m}, then for all x1, x2 ∈ R, mx1 = mx2 ⇐⇒ x1 ≡ x2 mod (mod m). We

claim the same is true for all N ≥ 1, and the proof is analogous to the N = 1 case:

Lemma 6.1. If (R,m) is a finite local ring, if we letm(a1,...,aN ) := {f ∈ P (RN , R)|f(a1, . . . , aN) ∈

m}, then for all (a1, . . . , aN) and (b1, . . . , bN) ∈ R, m(a1,...,aN ) = m(b1,...,bN ) ⇐⇒ (a1, . . . , aN) ≡

(b1, . . . , bN) (mod m).

Proof. ( ⇐= ) Suppose (a1, . . . , aN) (mod m) = (b1, . . . , bN) (mod m). Then for all f ∈

R[t1, . . . , tN ], f(a1, . . . , aN) (mod m) = f((a1, . . . , aN) (mod m)) (polynomials preserve

congruences) = f((b1, . . . , bN) (mod m)) = f(b1, . . . , bN) (mod m).

( =⇒ ) Suppose (a1, . . . , aN) (mod m) ̸= (b1, . . . , bN) (mod m). We will show

m(a1,...,aN ) ̸= m(b1,...,bN ) by showing there exists f ∈ R[t1, . . . , tN ] such that f((a1, . . . , aN)) ∈

m and f((b1, . . . , bN)) /∈ m).

By hypothesis, for some r ∈ {1, . . . , N}, ar (mod m) ̸= br (mod m). Take f(t1, . . . , tN) :=

tr − ar. Then f(a1, . . . , aN) = 0 ∈ m and f(b1, . . . , bN) /∈ m.

Are these all of the maximal ideals of P (RN , R)?

Yes, by a proof analogous to the result for N = 1:

Proposition 6.2. If we define

m(a1,...,aN ) := {f ∈ P (RN , R)|f(a1, . . . , aN) ∈ m} (6.2)

then every maximal ideal of P (RN , R) is of the form m(a1,...,aN ) for some (a1, . . . , aN) ∈ RN .

Proof. Since R is finite and P (RN , R) ⊂ RRN
, P (RN , R) is also finite and hence Noetherian.

So all prime ideals in P (RN , R) are maximal. Then

nilP (RN , R) =
⋂

maximal M◁P (RN ,R)

M
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A version ([5], Theorem 4.18) of the Chinese Remainder Theorem tells us that if m1, . . . ,mr

is a finite set of pairwise comaximal ideals of P (RN , R), then the map

P (RN , R) →
∏

mi∈MaxSpecP (RN ,R)

P (RN , R)/mi

x 7→ (x+mi)
r
i=1

is surjective. This means that for any proper subset S ⊊ MaxSpecP (RN , R), there is an

element x ∈ P (RN , R) such that the set {I ∈ MaxSpecP (RN , R)|x ∈ I} is precisely S.

Thus, if we intersect over a proper subset of MaxSpecP (RN , R), the intersection will strictly

contain nilP (RN , R). That is:

S ⊊ MaxSpecP (RN , R) =⇒ nilP (RN , R) ⊊
⋂
I∈S

I (6.3)

Define the set

A :=
⋂

(a1,...,aN )∈RN

m(a1,...,aN )

Then

A = ⋂
(a1,...,aN )∈RN

m(a1,...,aN ) =

⋂
(a1,...,aN )∈Fq

m(a1,...,aN ) =

⋂
(ā1,...,āN )∈Fq

m(ā1,..., ¯aN ) =

{f ∈ P (RN , R)|f(a1, . . . , aN) ≡ 0 (mod π)∀(a1, . . . , aN) ∈ RN}.

Let f ∈ A. Then (f(x))a = 0 for all x ∈ RN , and consequently fa = 0.We may conclude that

the set A is nilpotent, and so A ⊂ nilP (RN , R). We may conclude then, using (6.3), that

the set {m(a1,...,aN )|(a1, . . . , aN) ∈ RN} contains all of the maximal ideals of P (RN , R).

Corollary 6.3. Given a finite local ring (R,m) with residue field R/m ∼= Fq, P (R
N , R) has

qN maximal ideals

m(a1,...,aN ) = {f ∈ P (RN , R)|f(a1, . . . , aN) ∈ m}, (a1, . . . , aN) ∈ RN ,
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one for each equivalence class in (R/m)N .

6.1 Computing #P (RN , R)

For a finite local principal ring R, we know the cardinality of P (R,R) in many cases. How

does the size of P (RN , R) change when N > 1?

The result for the case when R is a field Fq is as one would expect. Since FN
q is again a

field, we have #P (RN , R) = qq
N
.

Kempner [9] found the formula for #P ((Z/paZ)N ,Z/paZ). Specker-Hungerbühler-Wasem

reproved this in [16], giving the formula

#P ((Z/paZ)N ,Z/paZ) =
∏

k∈Nd
0,ep(k)<m

pm−ep(k)

where for k = (k1, . . . , kd) ∈ Nd and x = (x1, . . . , xd) ∈ Nd we let

xk :=
d∏

i=1

xi
ki , k! :=

d∏
i=1

ki! , and ep(k) := max{x ∈ Nk|px|k!}.

Li-Sha [10] gives a formula for #P (RN , R) for all finite principal rings R. When R is

local, it reduces to the following:

Theorem 6.4. (Li-Sha) Let R be a finite, local principal ring with residue cardinality q and

nilpotency index a. Then

#P (RN , R) = q
∑

(a−
∑N

i=1 α(ki)),

where α(n) =
∑a

i=1⌊
n
qi
⌋ (note that this is the same α we defined in Equation 5.1) and the

outer sum ranges over N -tuples of non-negative integers (k1, ..., kN) such that α(k1) + ... +

α(kN) < a.

6.2 Criteria for P (RN , R) to be a Principal Ideal Ring

For a finite local principal ring (R,m = (π)), we can again ask: when are all ideals of P (RN , R)

principal? An important observation is that we may think of the 1-variable polynomial ring
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R[t] as a quotient of the N -variable polynomial ring R[t1, . . . , tN ]. We let Φ denote the

projection map R[t1, . . . , tN ] → R[t1, . . . , tN ]/⟨t2, . . . , tN⟩ ∼= R[t], and let Φ̃ denote the map

induced on P (R,R) by Φ (Φ̃(f(t1, . . . , tN)) = f(t, 0, . . . , 0)). Then we have the following

diagram:

R[t1, . . . , tN ] R[t]

P (RN , R) P (R,R)

Φ

E E

Φ̃

Φ̃ is a ring homomorphism, so we must have that if an ideal I of P (RN , R) is principal,

Φ̃∗(I) := ⟨Φ̃(f)|f ∈ I⟩ is principal. But Φ̃ is a quotient map, so Φ̃∗(I) = Φ̃(I).

Then we immediately have that there are ideals in P (RN , R) that are not principal. Take,

for example, m(0,...,0) ⊆ P (RN , R) as in (6.2). We have that

Φ̃(m(0,...,0)) = m0,

where m0 is as in (3.2). We showed that m0 is not principal in P (R,R), so m(0,...,0) is not

principal in P (RN , R).

Remark. Just as in the N = 1 case, we can compute bounds for the dimension of m0/m
2
0.

In N variables, the analogous upper bound would come from the fact that the natural set of

generators for m(0,...,0) is (t1, ..., tN , π), so we get that the dimension is at most N + 1.

6.3 Local Decomposition of P (RN , R)

Let (R,m) be a finite local ring with nilpotency index a and residue cardinality q. Since

P (RN , R) is itself a finite ring, and we showed that P (RN , R) has qN maximal ideals, (1.2)

again gives

P (RN , R) ∼=
qN∏
i=1

Ri

where each Ri is a finite local ring.

Theorem 6.5. If R is a finite local ring with residue cardinality q, then P (RN , R) ∼= RqN

for some finite local ring R.
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Proof. Suppose P (RN , R) has distinct maximal ideals m1, . . . ,mqN (recall that these max-

imal ideals correspond to the ideals m(a1,...,aN ), (a1, . . . , aN) ∈ RN , with notation matching

that of (6.2)).

Because P (RN , R) is Artinian, for 1 ≤ i ≤ qN there is some li such that mli
i = mli+k

i

for all k ≥ 0. Also, li ̸= 0 because no power of a maximal ideal contains any other maximal

ideal.

But now the ideals ml1
1 , ...,m

l
qN

r are pairwise comaximal (because their radicals are), so

I := ml1
1 · ... ·m

l
qN

1 = ml1
1 ∩ ... ∩m

l
qN

1 . And I ⊂ mi for 1 ≤ i ≤ qN , so (the ring is Artinian,

hence Noetherian) I is a nilpotent ideal: thus there is some n such that In = 0. On the other

hand, if you raise I to any power n, then because ((mi)
li)n = mli

i we find that I = In. It

follows that I = 0.

Then the Chinese Remainder Theorem gives an isomorphism:

P (RN , R) = P (RN , R)/I →
qN∏
i=1

R/mli
i

so the local factors we are looking for are P (RN , R)/mli
i .

Claim 1: We may take li to equal a.

Proof : We have P (RN , R) = RqN . So if f is an element of the maximal ideal of R, then

F = (f, 0, ..., 0) is a nilpotent element of P (RN , R). The elements of P (RN , R) that are

nilpotent are the elements that map every element of R into (π), in which case the a-th

power of the element is 0. So

0 = F a = (fa, 0, ..., 0),

so fa = 0. Thus indeed ma
(a1,...,aN ) = ma+j

(a1,...,aN ) for all j ≥ 0, for all x ∈ R. Further,

a is the minimum such value: if x = (a1, . . . , aN) ∈ RN , the polynomial f(t1, . . . , tN) =

π((t1 − a1) . . . (tN − aN) + 1) lies in m(a1,...,aN ) and evaluates at (a1, . . . , aN) to π, so the

polynomial fa−1 lies inma−1
(a1,...,aN )\ma

(a1,...,aN ). LetR(a1,...,aN ) := P (RN , R)/ma
(a1,...,aN ). Observe

that the ring R embeds in P (RN , R) as the subring of constant functions. This induces a

map ϕ : R → P (RN , R) → R(a1,...,aN ).
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Claim 2: ϕ is injective.

Proof: Because m(0,...,0) = {f : RN → R|f(0, . . . , 0) ∈ m}, elements of ma
(0,...,0) evaluate to 0

at (0, . . . , 0), and the only constant function for which this is true is 0 itself. SoR∩ma
(a1,...,aN ) =

(0). Thus for all (a1, . . . , aN) in RN , the map R → P (RN , R) → R(a1,...,aN ) is injective (so

each R(a1,...,aN ) should be a faithful R-algebra). The embedding of R is injective.

Claim 3: For all (a1, . . . , aN), (b1, . . . , bN) ∈ RN , the local rings R(a1,...,aN ) and R(b1,...,bN )

are isomorphic.

Proof: For all (a1, . . . , aN) in RN , translation by (a1, . . . , aN) is an automorphism of the

ring P (RN , R). For a polynomial function f , define

τ(a1,...,aN )(f) : (b1, . . . , bN) → f((a1, . . . , aN) + (b1, . . . , bN))

Observe that τ(a1,...,aN ) is a ring homomorphism whose inverse is τ−(a1,...,aN ). For (a1, . . . , aN), (b1, . . . , bN)

in RN and l in Z+ we should have

τy−(a1,...,aN )m
l
(a1,...,aN ) = ml

(b1,...,bN )

Thus τ(b1,...,bN )−(a1,...,aN ) induces an isomorphism from R(a1,...,aN ) = P (RN , R)/ma
(a1,...,aN ) to

R(b1,...,bN ) = P (RN , R)/ma
(b1,...,bN ).
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Chapter 7

Open Problems

1. Can we extend Li-Sha’s results [10] to give the R-module structure of P (RN , R) for

any finite local principal ring R? Note that when N = 1 this generalizes the work of

Necaev [13].

2. Extend Rosenberg’s work [15] from Z- algebras to R-algebras for a finite local principal

ring R.

3. For a ring R, define µ∗(R) := sup{µ(I)|I ◁ R}, where µ(I) = the least number of

generators of I. When (R,m) is a finite local principal ring with nilpotency index a, it

turns out that µ∗(R[t]) = a ([6], Corollary 4.6).

(a) What is µ∗(P (R
N , R))? When N = 1, for example, we found in Chapter 3 that

µ(mx) = 2, so µ∗(P (R,R)) ≥ 2. But what about other cases?

(b) If S surjects onto T, then µ∗(T ) ≤ µ∗(S), so since P (R,R) is a quotient of

R[t], µ∗(P (R,R)) ≤ µ∗(R[t]) = a. Is there ever equality? When N ≥ 2,

µ∗(R[t1, . . . , tN ]) = ∞. But µ∗(P (R
N , R)) < ∞ so in this case the answer is

no, but what about when N = 1?

4. Let R1, R2 be finite local principal rings. If P (R1, R1) ∼= P (R2, R2), does that imply

R1
∼= R2? If R is a finite local principal ring, then from the isomorphism class of

P (R,R) we can determine three invariants of R:

(a) The residue cardinality q, since q is the residue cardinality of the localization of

P (R,R) at any maximal ideal.
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(b) The nilpotency index a, since a is the nilpotency index of the localization of

P (R,R) at any maximal ideal. (Note that (1) and (2) give that the order #R = qa

is also an invariant).

(c) The characteristic (this is the least positive integer n such that n · 1 = 0 ∈ R),

since we have ring inclusions

R ⊆ P (R,R) ⊆ R#R

and the characteristics of R and R#R are the same.

We observe that since the characteristic of R is also the unique positive integer

n such that R is a faithful Z/nZ-algebra, in particular, Z/nZ is a subring of R.

Applying Lagrange’s Theorem to the additive groups, we get that n|#R = qa

(but q must be a power of p; say q = pr for a positive integer r) so qa = pra, so n

is also a power of p, say n = pb. Moreover, because p lies in the maximal ideal of

R, we have pa = 0 ∈ R and thus b ≤ a.

Then to a finite local principal ring we have associated four parameters: a prime number

p that is the residue characteristic and positive integers r and b ≤ a. In what cases do

these invariants completely determine our ring R? Are there any other invariants?

5. Are there any cases other than a = 1 or R = Z/p2Z where R and P (R,R) can be

determined explicitly?

6. For a finite local principal ring (R,m = (π)) with nilpotency index a and residue

cardinality q such that a = q + 1, again letting H2(t) = (tq − t)q − πq−1(tq − t), what

is the structure of R[t]/⟨H2⟩?
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