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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Suppose we are given a finite ring R (in this thesis, we will assume that all rings are com-
mutative and contain a multiplicative identity). For sets X and Y, we define the notation
Y* := {all functions f : X — Y}. Then R® = {all functions f : R — R} is also a ring,
under (pointwise) addition and multiplication of maps.

There is a relation between polynomials as viewed purely as formal objects, finite R-linear
combinations of monomials co+ cit+ - - -+ ¢,t" (elements of R[t]) and polynomials as viewed

as maps (elements of R®). We define the evaluation map
E: R[] - R®
f@) = (x = f(x))

Then we may define the set P(R,R) C R as the image of R[t] under E, and we define
two polynomials in R[t] to be equivalent if they induce the same function in P(R, R) C R%.
P(R, R) is then a subring of R¥, and P(R, R) = R[t]/ Ker E. When R is an infinite domain,
E' is injective. This is the case that is most familiar. In this thesis, we will consider some
questions about P(R, R) when R is finite.

When R is a finite field F,, we can prove that E is surjective. This comes primarily from
the fact that for all o € I,

al—a=0 (1.1)

This fact is trivial if @ = 0, and when a # 0, it is sufficient to prove that a?~! = 1. Lagrange’s

Theorem for multiplicative groups states that if G is a finite group of order n and g € G,

1



CHAPTER 1. INTRODUCTION

then the order of g divides n. In our case, F) = I, \ {0} is a multiplicative group of order
q—1, thus for all @ € F,, the order of a divides ¢—1, so a?~! = 1. Then for every polynomial
f(t) in F,[t], we can divide it by (t? —t) to get an equivalent representative g € F[t] such

that deg(g) < ¢ — 1. There are ¢¢ polynomials in F[t] with degree < ¢ — 1, so

#(F,[t]) < ¢°.

But

#(F") = ¢
So we conclude that £ must be surjective in this case, meaning every map F, — I, can be
represented by a polynomial in F,[¢].

In fact, the converse is also true: if F is surjective, then R is a finite field ([4], Corollary
2.36). Since a? — o = 0 for all @ € F, (we showed this in (1.1)), for every polynomial in
IF,[t], we can divide the polynomial by ¢ —¢ to get an equivalent (induces the same function)
polynomial in F [t] with degree < ¢ — 1, say co + c1t + - - + ¢,—1t%" !, where ¢; € F,[t] for all

1=20,...,9— 1. Now we have a map
{f €F[t]|deg(f) <q—1} = Fy

f — (Co,...,Cq_l)

This is a ring homomorphism, and both sides have cardinality ¢?. Further, by the Root-
Factor Theorem, if f has degree at most ¢ — 1 and vanishes at every point of IF,, then it
must be the zero polynomial. Thus the map above is injective and must be an isomorphism.

For any finite ring R, E fails to be injective, since R[t] will be infinite and P(R, R) C R
will not be. Another way to see this is using the fact that polynomial functions preserve
congruences modulo ideals; if I is an ideal of R and x,y € R are such that x =y (mod I),

then also f(z) = f(y) (mod I). But if 0 # I C R, then the delta function at 0
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does not have this property. 0 21 C R = 0 € I,1 ¢ I, and there is a nonzero element
x € 1. But then x =0 (mod I) but 6¢p(0) =1 # 0 = dp(x) (mod I). So for any finite ring R,

RJt] is not isomorphic to P(R, R).

Since P(R,R) = R[t]/Ker E, and FE is not injective for all finite rings R, it is a useful
question to ask for a nice set of generators for Ker E. When R is a field F,, Chevalley [3]
gave a nice set of generators: for E : R[t] — R Ker E = (t9 — t). This generalizes to N
variables too; if N is a positive integer, for E : R[ty, ..., txn] — RRN, Ker E is generated by
{t] =t}

It is a fact ([5], Theorem 8.35) that any finite ring R has a canonical local decomposition

R= ﬁRZ- (1.2)

where s is the number of maximal ideals in R and R; is a finite local ring of prime power
order. For 1 < k < s, let m; : R — R; be the kth projection map. Then (1.2) induces the

canonical isomorphism

By applying the evaluation map E to (1.3), we obtain a ring isomorphism
P(R,R) = [ [ P(Ri, R;)
i=1

so we are reduced to the local case.

When (R, m) is a finite local ring, Rogers-Wickham [14] gives an explicit set of generators
for the kernel of £ : R[t] — Rf. They do this by finding a set of generators for the ideal
Z(m) of R[t] consisting of polynomials f such that f(z) = 0 for all x € m, then showing that
if {fi}", is a set of generators of Z(m), then {f;(t? —¢)}7_, is a set of generators for Ker E.

When R = 7Z/p°Z, Kempner [8] determined that when a < p, the kernel of the evaluation

map E : Z/p°Z[t] — Z/p*ZFP*D) is (p, P — t). Then:

P(Z/p"Z,Z/p"Z) = (Z[p°Z[t]) /{p, t" — )" (1.4)

3



CHAPTER 1. INTRODUCTION

From (1.4) we can get:

a(a+1)
2

#(P(Z/p"L, L/p" L)) = #(Z[p"Zt)/(p, 1" — 1)) = p"

The result above was reproved by Carlitz [2] and Rosenberg [15]. Kempner also found a (more

complicated) formula for #P((Z/p*Z), Z/p®Z) when a > p, during which #(Z/p*ZZ#/P*2)) <
a(a+1)

pP~ 2 and thus (p, ¥ —t)* C Ker E. And Bandini [1] showed that when a = p+ 1, Ker £ =

(I,(tP —t)? — pP~1(t? — t)). For the next results, we define some terminology:

Definition 1.1. For a local ring (R, m), the residue field is the field R/m, and the residue
cardinality is #(R/m).

Definition 1.2. For a finite local ring (R, m), the nilpotency index is the smallest positive

integer a such that m® = 0.

For a finite local principal ring R with residue field R/m = I, nilpotency index a, and
a < q, Clark [4] (the result seems to appear for the first time here) found that the kernel of

the evaluation map E : R[t] — R? is (r, (t? — t))®. So we have:
P(R, R) = R[t]/(m, ( — 1))" (1.5)

Lemma 1.3. If (R,m = (7)) is a finite local principal ring with nilpotency index a and
residue cardinality ¢, then

(m, (t? —1))* C Ker E.

Proof. Let a € R. Let & denote the image of « under the quotient map R — R/m. Then
since R/m = F,, (1.1) = a?—a = 0, and thus, lifting back to R, ¢ —a € m = (7). So 7
divides a? — « for all a € R.

Every element of (r, (t7 —t))® is of the form f(t) := 7' (t9 —)*~* for some i € {0,...,a}.
By the conclusion of the last paragraph, f(«) is divisible by 7« for every a € R. Since

(m)* = m® = 0, we can conclude that f vanishes identically on R. O
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We can also determine the cardinality in this case. Jiang-Peng-Sun-Zhang ([7], Theorem

3) represents every f € P(R, R) by an element of

a

G:= H(R/mi)ﬂ

where: w : F* — R* is the Teichmiiller character ([4], Appendix Section 2) T":= w(F ) U{0},

and T; is the image of the T' under the quotient map R — R/m’. So we get a surjective map
£:G— P(R,R)

that is a homomorphism of additive groups. We see that

#6 = [ #(rm" = (H #(R/mf))
#P(R, R) < (H #(R/m"))

with equality if and only if £ is injective. ([4], Theorem A.3) shows then that £ is injective

when a < ¢, so

a q
i a a(a+1)
#(P(R,R)) = (H #(R/m )) =(q") - ()" (). .. (¢ =q" =
i=1
whenever a < q.
Progress has been made for the general case, which includes all values of a and not just
a < ¢: Maxson-van der Merwe [12] found an upper bound for #P(R, R) when R is a finite

local ring, and Necaev [13] found a formula for #P(R, R) when R is moreover principal.

1.2 REsuLTts COVERED

In Chapter 2, we will examine Bandini’s [1] proof of Ker E for when R = Z/p°Z and a = p+1
and generalize this result, proving that when R is a finite local principal ring with residue
cardinality ¢ and nilpotency index a such that a = ¢+ 1, Ker E = ({7, 19 — )97 (7 — )7 —
797 1(t9 — t)) (Theorem 2.4).
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In Chapter 3, we determine the maximal ideals of P(R, R) for finite local principal rings
(R, m) finding that for each x € R, m, = {f € P(R,R)|f(x) € m} is a maximal ideal of
P(R, R) and that m, = m,, if and only if z and y represent the same class in R/m (Corollary
3.5).

In Chapter 4, we analyze criteria under which every ideal of P(R, R) may be generated
by a single element. We find that for a finite local principal ring R, if nilpotency index a > 2,
then P(R, R) contains ideals that are not principal (Theorem 4.2).

In Chapter 5, we use our results from Chapter 4 to find a local decomposition for P(R, R),
proving Theorem 5.1, which states that for a finite local principal ring R with residue cardi-
nality ¢, P(R, R) = R for some local ring R. We then look at what R is when R = Z/p*Z
(Proposition 5.2) or when R is finite local principal with nilpotency index a < residue car-
dinality ¢ (Theorem 5.3).

In Chapter 6, we ask many of these same questions for the ring
P(RN, R) = {polynomial maps f : RN — R} C R®"

for when N > 1 and highlight some important results from the literature.



CHAPTER 2

GENERALIZATION OF BANDINI'S COMPUTATION OF Ker ¢,

As already mentioned, Kempner [8] (and then Carlitz [2] and Rosenberg [15]) found that
Ker B = (p,t? — t)* when R = Z/p°Z and a < p. Bandini [1] extended these results to the
immediate next case, showing that when R = Z/p®Z and a = p+ 1, if I := (p,t? — t), we

have
Ker E = (IP™ (17 — )P — pP~ 1 (1 — 1))

In this section, we generalize Bandini’s results to all finite local principal rings.
Lemma 2.1. (Generalization of Bandini’s Lemma 1.3)

Let R be a finite local principal ring with maximal ideal m = (7), residue field R/m = F,

and nilpotency index a. Then:
1. For all &« € R, a? — o is an element of m.

2. For all 8 € m, there exists a € R such that a? — a = . In fact, for every A € R, «

can be chosen such that « = A (mod m).

Proof. To prove (1), we refer to (1.1): the fact that for all z € F,, 27 —2 = 0. Let @ € R/m.

Since we know that R/m = [, we have that @? —a = 0. Then lifting back to R, a? —a € m.

To prove (2), we proceed by induction on a. If @ = 1, then m = (0), and R = F, = R/m.
Foranya € R/'m=F,a’—a=0.a?—a=0¢€c R/m = lifting back to R,a? —a € m.
Moreover we can choose a to be any value (mod m), since the previous logic holds for all

ack,.
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Now suppose that a > 1 and that the statement holds for nilpotency index a — 1.
Let € m. Then § = wk for some k. By induction, there exists a,_1 € R such that
Qg 19 — g1 = wk (mod 77 1). Then ay 17 — a1 = 7k + I7*~* for some [ € R. Then

letting ag := gy + (T,

O[g — Oy =
(gq + 17N — (qqey +In* ) =
Qo 1!+ qag T HUT T — g — 771 (mod 7).

But recall that because ¢ = 0 in R/m, we have 7|q. So in R,

Qa1 T+ G 1 T T — g — I = 1T — gy — I =7k = € m,

where the last step holds by the inductive hypothesis. Note also that o, = g1 +H7m* ! = aq_y
(mod 7), and by the inductive hypothesis, for any A € R, we can choose «, 1 such that

g1 = A (mod 7). O

Lemma 2.2. (Generalization of Bandini’s Lemma 1.4)
Let R be a finite local principal ring with maximal ideal m = (7), residue field R/m = F,

and nilpotency index a > q + 1. Let Hy(t) := (¢¢ — ¢)? — 7% (¢t — ¢). Then
1. For all 8 € R, there exists some o € R such that Hy(a) = Britl.
2. The image of the map H, : R — R is m9t!.

Proof. Proof of (1): Using Lemma 2.1, take ty € R such that ¢, —ty = 75 (mod 7%~ 7). Now
applying Lemma 2.1 once more, take a € R such that a? — a = 7ty (mod 7*~9!). Then:
ol —a=mty + 71y —
Hy(a) = (mty + 7~ y) — 797 (7wty + 72~ 7Ty)
= (mto)? + q(mte) T (I y) T+ - -+ q(mto) (7 I y) T+ (70T Y) — 7y + 7y
= mi(te? — to)

— 7-[-11+1ﬁ
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So for all 8 € R, there exists some a € R such that Hy(a) = 791 5.

Proof of (2): We can write Ho(a) = (a? — a)((a? — )71 — 7971,
If af —a € (7)?, since ((a? — a)? 1 — 7971) € (7971), we're done.
Otherwise, a? — a ¢ (7%). We know 7|(a? — a) so a? — a = Cr for some C' € R*. Then

C#0in R/m =T, soq|(C? ! —1). Hence C7"! — 1 € (7). Then we have that:

(aq _ Oé)qfl _ qul
= qi~toet — gat

=001t 1) € (7).
So Hy(a) € (m?T) = matL, O

In [1], Bandini defines the following notation: If P(X) is a non-zero polynomial with
integer coefficients and p a fixed prime in Z, we define d,(P) as the largest integer k such
that P(a) =0 (mod p*) for any integer a.

He then shows that: If I™ is the ideal (X? — X, p)™ for any positive integer n, and

I° = Z[X], when we have a polynomial Q(X) € I\ I"™ we can write
QX) = QuX)(X” = X)'p" " + R(X) (2.1)
i=0

with R(X) € I""! all coefficients of the Q;(X) prime with p and deg Q;(X) < p for any i.
Then, finally, he proves the following ([1], Proposition 1.5): Let Q(X) € I" \ I"*!. Then
dp(Q) > n+1 <= Hy(X) divides Q(X) (mod I"*!) i.e. Hy divides Q(X) — R(X).
We will generalize this to our context of a finite local principal ring R with residue
cardinality ¢ and nilpotency index a = ¢ + 1. First, we can generalize Bandini’s (2.1): When

we have a polynomial Q(t) € I* (I := (m,t? —t)), we can write

Qt) = Z Qi(t)(t* —t)'7" " +r(t) (2.2)
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where r(t) € I*"!] all coefficients of the Q;(t) are units in R and deg Q;(t) < g for any i. We

can do this in the following way: Let @) € I®. We take our
Q) = Gi()(t* — 1)z
i=0

where G;(t) € R[t] for all i = 0,...,a. Using the division algorithm, we rewrite each G;(t)
as G;(t) = Py(t)(t9 — t) + R;(t), where deg(R;(t)) < ¢ — 1. Then we have

Q) = Y RO -5+ 3 RO~ tn

Observe that this first term "¢, P;(t)(t7 — )" 7" is in It Now in order to take the

second term and rewrite it in a special way, consider the injective group homomorphism

w:Fru{0} = R*U{0}

a—1

O#x—27 00

known as the Teichmiiller character (mentioned on Page 5). If ¢ : R* — F is the quotient
map restricted to the unit groups, then qow = 1]qu.

For any = € R, we can write x = w(q(x)) + (x — w(gq(x))). Then w(g(x)) is either 0 or an
element of R*, and x — w(q(z)) € m; so every element = of R may be written z = A+ B
where A is either 0 or a unit in R, and B is divisible by .

It is this fact that we will use to rewrite the second term Y ¢ | R;(t)(t? —t)'w*"". For each
1=20,...,a, we can write

Ri(t) = Ai(t) + B;(t),

where A;(t) has coefficients that are either 0 or units in R, and B;(t) has coefficients that

are divisible by 7. Thus

a a

Z Ri(t)(t — )77 = A(t)(t" — t)'n" 7 + ) Bit)(t — )7

=0 i=0

But we observe now that term » ¢ B;(¢)(t? — t)'7® " is in I*"'. So we end up with

S]

Qt) = <Z P(t)(7 =) m" T + Y Bit)(t1 — t)iﬂ“) + <Z Ai(0) (" — tW“)

=0

10
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where the first term (3, Pi(¢)(t9 — )T a4+ 30 Bi(t)(t7 — t)'7%7") is in [°*! and the
second term (Y7 A;(¢)(t7 — ¢)'7*~") has coefficients that are either 0 or units in R.

Proposition 2.3. (Partial generalization of Bandini’s Proposition 1.5)
Let R be a finite local principal ring with maximal ideal m = (7), residue field R/m = F,,
and nilpotency index a = ¢+ 1. Let I = (m,t? — t). Then if Q(t) € I and Q(¢) vanishes

identically on R, 3r(t) € I such that H, divides Q(t) — r(t) in R[t].
Proof. Assume Q(t) vanishes identically on R. First, decompose Q(t) in the way described
n (2.2):
Z Qilt )T+ (2),
so that ry(t) € 1971 all coefficients of the @;(t) are units in R, and deg Q;(t) < ¢ for all 7.
Since 7 (t) € 197, ri(t) vanishes identically on R, and thus so does Q(t) — r1(t). Then

—ry(t Z Qi(t )l = Z Qi(t)(t? — t)'79™" vanishes identically on R.

Let 8 € R. By Lemma 2.1, there is @ € R such that a? —a = w3. Then: V3 € R, there exists

a € R (which, in particular, we may choose to be anything we wish modulo 7) such that:

Q(a) = 87Q () + - 711 BTQ 1 () + -+ + TIQp(a) =

Now, if z,y are positive integers and x =y (mod ¢ — 1), then for all 5 € R (R as above) we
have 8% = ¥ (mod m). This is because Va € F,, 29! =1 = for every z € F, and every

positive integer n, " = 2" (M°d4-1) 50 2" depends only on n modulo ¢ — 1. Define:

Po(t) = Qo(t)
Pi(t) = Q1(t) + Qq(1)
Pi(t)=Q;(t),j=2,...,q—2

Then for all a, 5 € R we have
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That is, for all z,y € F,

Po(z) + Pi(z)y + ... + Py_1(2)y" ' =0 € F,,

where P; denotes the reduction of P; modulo m.

But then using the fundamental fact that a univariate polynomial over IF, of degree less
than ¢ that evaluates to the zero function must be 0, we find that for each fixed x € F,, the
polynomial Py(z) + ... + P,_1()y?! evaluates to 0 at all y € F,, hence Py(z), ..., Py_1(z)
are all 0. In turn, each Fj is a polynomial of degree at most ¢ — 1, so applying the same fact
again we get that ﬁj = 0forall j =0,...,¢g — 1. Thus every coefficient of P; is divisible
by 7. So we can write each P; as P;(t) = wP;(t), where each P;(t) is a polynomial in R[t].
Note, in particular, that this gives us Qo(t) = Fy(t) = 0, since each @; has coefficients that
are either zero or units in R.

Using Qo(t) = Py(t) = 0 and Q4(t) = Pi(t) — Q1(t), we have that in RJ[t],

)= i)=Y Q-

= Qu(t)(t* = t)m* 1+Z Qi ()t — ) 77) + Qq(t)(t* — 1)

= Qi) (1 —t)mT' — (#1 = )7) + TP () (81 — )T + _ TP (t) (11 — )i me

J

£}

I|
¥
<

= Qi(t) - (—Ha(t)) + > wPi(t)(t? — )"

So if we let r(t) = r(t) + 23;; TP;(t)(t9 — t)inti € T9%' Hy(t) divides Q(t) — r(t) in
R[t]. O

Theorem 2.4. (Generalization of Bandini’s Theorem 2.1)
Let R be a finite local principal ring with maximal ideal m = (7) and residue field R/m = F,.
Let ¢, : R[t] — R denote the evaluation map in the case where R has nilpotency index a.

Again let T = (m,t9 —t) and Ho(t) = (¢t — )9 — 7971 (¢t — t). Then Ker ¢yy1 = (177!, Hy).

12
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Proof. To see that (177!, Hy) C Ker ¢q+1, that Hy € Ker ¢4 follows from (Lemma 2.2, Part
2), and 177! C Ker ¢,41 by Lemma 1.3.

To prove Ker ¢,y C (I, Hy), let Q(t) € Kerg,1 C Kerg, = I7. We may apply
Proposition 2.3: there exists r(t) € I such that H, divides Q(t) — r(¢) in R[t]. Thus

Q(t) = r(t) + Hy(t) f(t) for some f(t) € R[t], so Q(t) € (I97, Hy). O

13



CHAPTER 3

MAXIMAL IDEALS OF P(R, R)

Let R be a finite local ring with maximal ideal m, nilpotency index a and residue field
R/m = F,. We may ask: how many maximal ideals does P(R, R) have? What are they?
In the case of a finite field R = [Fy, every map f : F, — I, can be written as a polynomial

in IF,[t], since E is surjective. In this case, we see that for all z € F,,
mq = {f € P(Fg, Fy)|f(x) = 0} (3.1)

is a maximal ideal of P(R, R), by being the kernel of the homomorphism P(R,R) — R
defined by evaluating at = (which is surjective since E' is surjective).
But now suppose that (R, m) is a finite local ring and m # 0 (that is, R is not a field).

In this case, we define for z € R,

my = {f € P(R,R)|f(z) € m}. (3.2)

These ideals m, are maximal, this time by being the kernel of the surjective homomorphism
F,:P(R,R) - R — R/m,

evaluating at  and then taking the canonical quotient map. Notice that when we plug in

m = (0) to (3.2) we recover our definition from (3.1) for the case where R is a field.

3.1 ARE THESE MAXIMAL IDEALS DISTINCT?

When R = F,, the maximal ideals m, as in (3.1) above are distinct: if a # 8 € I, then e.g.
f(z) := & — a is such that f € m, but f ¢ mg.

14



CHAPTER 3. MAXIMAL IDEALS OF P(R, R)

When R # F,, in general, the maximal ideals m, are not distinct. Take, for example:
R = Z/p*Z. Let mo := {f|f(0) € (p)} and let m, := f(p) € (p)}. We see that 0 = p (mod
p) = f(0) = f(p) (mod p), since polynomials preserve congruences. Then f(0) € (p) <
f(p) € (p), and thus mgy = m,,.

In fact, more generally:
Proposition 3.1. If (R, m) is a finite local ring, if we let m, := {f : f(x) € m}, then for all

1,22 € R, my, =m,, <= 1 =29 (mod m).

Proof. ( <= ) Suppose ;1 mod m = 25 mod m. Then for all f € R[t], f(x;) mod m = f(z,
mod m) = f(xe mod m) = f(x2) mod m.

( = ) Suppose 1 mod m # x5 mod m. We will show m,, # m,, (i.e. there exists f € R[t]
such that f(x;) € m and f(z2) ¢ m). Take f(t) := t — ;. Then f(z;) = 0 € m and
f(x2) ¢ m. O

3.2 ARE THESE m, ALL THE MAXIMAL IDEALS OF P(R, R)?

More generally, we may ask: if R is a finite ring and my, . .., m, are maximal ideals of R, what

is a criterion for these to be all of the maximal ideals? Let’s first introduce some definitions.
Definition 3.2. For any ring R,

nil R :={z € R: 2" = 0 for some k} = ﬂ P

prime P<R

where the second equality can be found in ([5], Proposition 4.12).

Definition 3.3. We say an ideal I < R is nil if every x € [ is nilpotent and that I < R is

nilpotent if /¥ = 0 for some nonnegative integer k.

Proposition 3.4. For a finite local ring (R, m), if we define m, := {f € P(R, R)|f(x) € m},

then every maximal ideal of P(R, R) is of the form m, for some x € R.

15



CHAPTER 3. MAXIMAL IDEALS OF P(R, R)

Proof. Since R is finite and P(R, R) C RE, P(R, R) is also finite and hence Noetherian. So
all prime ideals in P(R, R) are maximal. Then

nil P(R, R) = N M

maximal M<P(R,R)
A version ([5], Theorem 4.18) of the Chinese Remainder Theorem tells us in particular that
the if my,...,m, is a finite set of pairwise comaximal ideals of P(R, R), then the map
P(R,R) — 11 P(R, R)/m;

m;EMaxSpec P(R,R)

= (z+my)i_g
is surjective. This means that for any proper subset S C MaxSpec P(R, R), there is an
element « € P(R, R) such that the set {I € MaxSpec P(R, R)|z € I} is precisely S.

Thus, if we intersect over a proper subset of MaxSpec P(R, R), the intersection will

strictly contain nil P(R, R). That is:

S C MaxSpec P(R,R) = nil P(R,R) € (]I (3.3)

IeS

Define the set

A::mmx

Then

A= ﬂ my = ﬂ mz = {polynomials f : R — R|f(z) =0 (mod 7)Vzx € R}.

TER zeF,
Let f € A. Then (f(x))* =0 for all z € R, and consequently f* = 0. We may conclude that
the set A is nilpotent, and so A C nil P(R, R). We may conclude then, using (3.3), that the

set {m.|r € R} contains all of the maximal ideals of P(R, R). O

Corollary 3.5. Given a finite local ring (R, m) with residue field R/m = F,, P(R, R) has ¢
maximal ideals

m, ={f € P(R,R)|f(x) e m},z € R,
one for each equivalence class in R/m.

16



CHAPTER 4

CRITERIA FOR P(R,R) TO BE A PRINCIPAL IDEAL RING

Let R be a finite local principal ring with unique maximal ideal m = (x), residue field
R/m = F,, and nilpotency index a. We may then ask: when is every ideal of P(R, R)
principal?
Definition 4.1. We call a ring A a principal ideal ring (PIR) if every ideal of A is
principal.

For the finite field case R = F,, P(R, R) is, in particular, a principal ideal domain (PID),
because P(F,,F,) = F, =2 F7 and a finite product of PIDs is a PIR.

We claim that when R is not a field, P(R, R) is no longer a principal ideal ring. To show
this, it is sufficient to find an ideal of I of P(R, R) that is not principal.

For a maximal ideal I in P(R, R), if I is principal, then I/I? is 1-dimensional as a R/m-
vector space [11]. Thus in order to achieve the above, we will take a maximal ideal I (using

our results from Chapter 3) and show that the dimension of I/I% over R/m is greater than

1.

4.1 Tue CASE R =Z/p*Z

Let R = Z/p*Z. Recalling the definition from 3.2, we have mo = {f € P(R, R) : f(0) € (p*)}.

Observe that
my G {f € P(R,R): f(0) € (»")* = (0)}
Take, for example, f(t) = t. We have that f(0) =0 € (0) = (p?)?, but f(¢) cannot be written

f = gh such that g, h have constant terms in (p?), so f(t) =t ¢ m?2. This is equivalent to

17
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showing the dimension of mg/m3 over I, is > 1. We conclude that when R = Z/p*Z, P(R, R)

is not a principal ideal ring.

4.2 THE GENERAL CASE

We note that for the case of a finite principal local ring R, if nilpotency index a = 1, then

R is a field and our question is answered: P(R, R) = [F? is a finite principal ring.

Theorem 4.2. Let R be a finite local principal ring with unique maximal ideal m = (7),
residue field R/m = F,, and nilpotency index a. Then P(R, R) is not a principal ideal ring

whenever a > 2.

Proof. The elements ¢ and 7 both lie in the maximal ideal my C P(R, R). We should show
that ¢ and 7 give F,-linearly independent elements in mg/m3. Because every element of
P(R,R)/my = F, is represented by a constant function (because the residue field of R is
also F,), it is enough to show that if a;,as € R are such that a1t + aom € m%, then both aq
and ay lie in mg :

In general, if I is generated by (z1,...,x,) then I? is generated by (z;z;]1 < j < n). We
know that my is generated by ¢ and 7: every polynomial function f such that f(0) lies in m
can be written as a multiple of ¢ plus a constant polynomial, and the fact that f(0) lies in m
means that the constant lies in m and thus is a multiple of 7. So m3 is generated by 2, 7t,

and 72. Thus our assumption is that there are polynomials fi, fa, f3 such that

at+aym = fi P+ fort-mo+fam

where = means equal as polynomial functions: i.e., plugging in each z in R gives an equality.
Evaluating at x = 0 gives ay - 7 = w2 - f3(0) € R, so 7 divides ay, as desired. Evaluating
at = m and reducing modulo 72, we get a; - ™ = 0 € (R/7?), so « divides ay, as desired.

Thus dim(mg/m3) > 1, so even in the general case, P(R, R) is never a principal ideal ring.

18
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Note that we are also using that every element of P(R, R) differs from an element of mg
by a constant function,which is why we can assume that a; and a, lie in R: this assumption

does not change them modulo my. O]
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CHAPTER 5

LocAL DECOMPOSITION OF P(R, R)

Let (R, m) be a finite local ring with nilpotency index a and residue cardinality ¢. Recall
that since P(R, R) is itself a finite ring, and we now know from Chapter 3 that P(R, R) has

g maximal ideals, (1.2) gives:

where each R; is a finite local ring.

Theorem 5.1. Let R be a finite local principal ring with residue cardinality ¢q. Then

P(R,R) = ﬁR,

i=1
for some local ring R and so P(R, R) = R%. That is, R; = R for all i = 1,...,q. (We call

this R the “isotypic ring.”)

Proof. Suppose P(R, R) has distinct maximal ideals my, ..., m, (as defined in (3.2)). Because
P(R, R) is Artinian, P(R, R) satisfies the descending chain condition. That is, there is no
infinite sequence of ideals {A;} such that A;.; C A; for all i € ZT ([5], p.140). Then the
chain m; D m? D m? D ... must stabilize, so for 1 < i < ¢ there is some nonnegative integer
I; such that m = mli™ for all k > 0. Also, I; # 0 because no power of a maximal ideal
contains any other maximal ideal.

But now the ideals m!, ...,méq are pairwise comaximal (because their radicals are), so

Iy lq

T=mb . md=mn..n méq. And I C m; for 1 < i < ¢, so (the ring is Artinian,

hence Noetherian) I is a nilpotent ideal: thus there is some nonnegative integer n such that
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I" = 0. On the other hand, if you raise I to any power n, then because ((m;)%)" = mk we
find that I = I™. It follows that [ = 0.
Then the Chinese Remainder Theorem gives an isomorphism:
q
P(R,R) = P(R,R)/T — [[ R/m}

i=1
so the local factors we are looking for are P(R, R)/mb.
Claim 1: We may take [, to equal a.
Proof: We have P(R,R) = RY. So if f is an element of the maximal ideal of R, then
F =(f,0,...,0) is a nilpotent element of P(R, R). The elements of P(R, R) that are nilpotent
are the elements that map every element of R into (7), in which case the a-th power of the

element is 0. So
0=F*=(f"0,..,0),

so f¢ = 0. Thus indeed m? = m2™ for all j > 0, for all x € R. Further, a is the minimum
such value: the polynomial f(¢) = 7w(t — x + 1) lies in m, and evaluates at x to 7, so the
polynomial f*~! lies in m&~ '\ m¢. Let R, := P(R, R)/m¢. Observe that the ring R embeds
in P(R, R) as the subring of constant functions. This induces a map ¢ : R — P(R, R) — R,.
Claim 2: ¢ is injective.

Proof: Because mg = {f : R — R|f(0) € m}, elements of m3 evaluate to 0 at 0, and the
only constant function for which this is true is 0 itself. So RNm¢ = (0). Thus for all z in R,
the map R — P(R, R) — R, is injective (so each R, should be a faithful R-algebra). The
embedding of R is injective.

Claim 3: For all z,y € R, the local rings R, and R, are isomorphic.

Proof: For all z in R, translation by z is an automorphism of the ring P(R, R). For a

polynomial function f, define

w(f) 1y = flz+y)
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Observe that 7, is a ring homomorphism whose inverse is 7_,. For x,y in R and k in Z* we

should have

k_ 0k
Ty—aMy =M,

Thus 7,_, induces an isomorphism from R, = P(R, R)/m§ to R, = P(R, R)/mj,. O

5.0.1 THE CASE R =Z/p’Z
Proposition 5.2. Let R = Z/p*Z. Then P(R, R) = R? where R = Z/p*Z[pt].

Proof. As we mentioned, if R = Z/p?Z, then P(R, R) = R? where each R is be a faithful
Z/p*Z-algebra of order p®. Our candidate for R is Z/p*Z[pt].

As a first check, Z/p*Z[pt] has order p*: if f € Z/p*Z[pt] then f(pt) = cy + cipt + -+ +
co(pt)™ with ¢; € Z/p*Zpt] for all i = 0,...,n but p?> = 0 so we have f(pt) = ¢y + c1pt,
where cg € Z/p*Z and ¢, € {p,p+1,...,p* — 1} C Z/p*Z so there are p? - p = p® choices for
co and c;.

Claim 1: S :=Z/p*Zpt| = Z/p*Z|z]/(px, ?).

Proof: Consider the homomorphism ¢ : Z/p*Z|z] — Z/p*Z[pt] defined uniquely by x
pt. Kerv) = {polynomials P € Z/p*Z[z]|P(pt) = 0 in S}, so (pz,2?) C Kert. Also, in
Z)p*Z]x]/(pz,2?), 2* = 0, so every polynomial can be written as ax + b with a,b € Z/p*Z.

There are p* choices for b but only p choices {0,1,...,p — 1} for a, since in this quotient,

pr = 0. This gives p - p? = p* options for az + b. So #(Z/p*Z[z]/(px, x?)) = p>.

Claim 2: Let R be alocal ring of order p* that is a faithful Z/p?Z-algebra and has nilpotency
index 2. Then we claim that R = S.

Proof: There is an isomorphism from the additive group of R to Z/p*Z x 7 /pZ that
carries 1 to (1,0); this comes from the classification of finite abelian groups. Let y be the
element of R that maps to (0,1) under the isomorphism, so y ¢ Z/p*Z and y has order p,
so R = Z/p*Zly).
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Since R has characteristic p? and y has order p, y cannot be a unit in R: if yz = 1, then
p=pyz =0-2z =0, contradiction. So y must lie in the maximal ideal of R and thus y? = 0.

Thus we have a surjective Z/p?Z-algebra homomorphism
Z/p°Zlt] /(¢ pt) — R,
t—y

Since both rings have order p3, this is an isomorphism. Thus the properties we wrote for R
indeed characterize it up to isomorphism, so it must be isomorphic to Z/p*Z[pt], although

the representation Z/p?Z[t]/(t?, pt) may be more useful. O

5.0.2 THE CASE a <gq

Theorem 5.3. Let R be a finite local principal ring with maximal ideal m = (), residue

field R/m = F,, and nilpotency index a. Suppose a < ¢q. Then
R x (R/m)? x --- x (R/7* 1)1~ P(R,R).
Proof. Recall that [4] proves that
P(R,R) = R[t]/(x®, 7 1 (tT —t),..., (t7 — t)*).

We know that (t7—¢) = 0in P(R, R) so we can divide any polynomial by this monic degree

aq polynomial to get a remainder of degree at most aq — 1. Thus
{1,¢,...t771,
(T — 1), t(t1 —t),.. .t (7 — ),

(t7 — )%t (11 — ), .. T (#1 — )2,

(t? — 1)t — )t — 1))

is an R-module spanning set for P(R, R) (we have just to choose one monic polynomial for

each degree 0,1,...aq — 1).
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But (t7 — ¢)*~! is killed by 7 so we have a surjective R-module homomorphism:
¢ : R — P(R,R)
(agy ..., 0Qaq-1) —
ao-l—l—...aq,l-tq*l

tag - (9 —1) +agpr -t — 1)+ aggy T =)+

a1y (BT =)+ aggr (=)

Letting J := (0)? x (7R)? x -+ x (7*'R)?, then J C Ker®. So ® induces a surjective
R-module map
R[] — P(R,R)
But since R*/J = R? x (R/m)? x --- x (R/7* )9, we have a surjective map
RIx (R/m)% % -+ x (R/7* )" — P(R, R)
However,
#P(R,R) = ¢""%"

and

B(RY 5 (R/m)Tx -+ x (RN = (#R)T - (4R/7)T - - (R /7)1
= (@) @ (@) () =g
so this map is an isomorphism, and R? x (R/7)? x --- X (R/7*1)? =~ P(R, R). O
Remark. Since we have
P(R,R) = RY,
we can deduce that when a < ¢,
R2ROR/(m)®--dR/(x* ).
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a(a+1)

Kempner’s formula [8] shows that #P(Z/p°Z)) < p°~ 2 when a > p, and thus in this

case the ideal Ker E properly contains I = (p,t’ — t)*. Then when a > ¢, we still have an

R-module surjection
ROR/(m)® - ®R/(m* ') = R

since the argument we used for the surjectivity did not use a < ¢; we used only that the
elements 7% (9 —t)* all lie in Ker E, which still holds when a > ¢. But this map is no longer

an isomorphism. Why is this? Define, for 1 <n < #R,

a(n) == Z FJ (5.1)

and for 1 <17 <,

B(1) := the least n such that a(n) > i. (5.2)

When a > ¢, Necaev’s result [13] says that
#P(R, R) = ¢>= 7

One can show that for all 1 <i <g¢, (i) = ¢i , so when a > g,

a(a+1)
2

#P(R,R) > ¢tz P0) — qa(Ziead) — g

So #P(R,R) # #(R® R/(m)®---® R/(7* 1)), meaning we cannot have an isomorphism.

Remark. One can compute that for a finite local principal ring (R, m) with nilpotency
index a = 2 and residue field R/m = F,, the dimension dim(mg/m?) (which we looked at in
Chapter 4) is equal to 2. Though it is not true in general that mg = 0, we may pass to the

local ring. That is, inside of (R, mg), mg = 0. Then
#P(R,R) = q" = (¢')" = #(R)" = #R=¢"

and so
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So the dimension over [, of the local version of my is 2, but localization leaves this dimension
unchanged, meaning dim(mg/m3) = 2.

In fact, we can compute dim(mg/m3) for any nilpotency index a. As mentioned in Chapter
4, my is generated by 7 and ¢. Since mg can be generated by two elements, certainly mg/mg
can be generated by 2 elements, so dim(mgy/m3) < 2. But from Theorem 4.2, we found

dim(mg/m3) > 1. So in general, dim(mqy/m3) = 2.
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CHAPTER 6

GENERALIZATIONS TO N VARIABLES

Let R be a finite ring. Then we may also examine the ring P(R™, R) C REY for finite rings

R, when N > 1. Just as in the N =1 case, we have an analogous evaluation map
E:R[t;,... ty] = R®"
f(t17"'atN) = ((ala"‘7aN) Hf(ah‘"aa]\f))

We define P(RY, R) as the image of R[t;,...,ty] under E, and consider two polynomials in
R[t1,...,ty] equivalent if they induce the same function RY — R.

We may once again ask the same questions as in the N = 1 case: what are the max-
imal ideals of P(RY, R)? When is every ideal of P(RY, R) principal? What is the local
decomposition of P(RY, R)?

We can immediately reduce to the local case, just as before.

6.0.1 MAXIMAL IDEALS OF P(RY R)

Let (R, m) be a finite local ring with nilpotency index a and R/m = F,. We can ask: what
are the maximal ideals of P(RY, R)? In this case, we define (analogously to the N = 1 case),

for all (a,...,ay) € RY:

Miar,..an) ‘= Lf € P(RY,R)|f(ai,...,ax) € m}. (6.1)

-----

These ideals mq,

phism
ay) i P(RY,R) = R — R/m,

77777

evaluating at (aj,...,ay) and then taking the canonical quotient map.
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ARE THESE MAXIMAL IDEALS DISTINCT?

Recall that for the case N = 1 we proved that if (R,m) is a finite local ring, if we let
mg = {f : f(z) € m}, then for all z1,29 € R, m,, = m,, <= x; =z mod (mod m). We

claim the same is true for all N > 1, and the proof is analogous to the N =1 case:

Lemma 6.1. If (R, m) is a finite local ring, if we let m,,, _qy) := {f € P(RY,R)|f(a1,...,an) €

77777

m}, then for all (ay,...,ay)and (by,...,bx) € R, M(ay,....an) = Mbr,..0n) == (C1,--.,anN)

(b1,...,bx) (mod m).

Proof. ( <= ) Suppose (ay,...,ay) (mod m) = (by,...,by) (mod m). Then for all f €
Rlty,...,tn], f(a1,...,ay) (mod m) = f((ay,...,an) (mod m)) (polynomials preserve
congruences) = f((by,...,by) (mod m)) = f(by,...,by) (mod m).

( = ) Suppose (ai,...,ay) (modm) # (by,...,by) (modm). We will show
,,,,, an) 7 Mbr,...by) Dy showing there exists f € R[t,...,tx] such that f((ai,...,an)) €
m and f((by,...,bn)) ¢ m).

By hypothesis, for some r € {1,..., N}, a, (mod m) # b, (mod m). Take f(ty,...,tn) :=

t, — a,. Then f(ay,...,ay) =0€ mand f(by,...,by) ¢ m. O

ARE THESE ALL OF THE MAXIMAL IDEALS OF P(RYN R)?

Yes, by a proof analogous to the result for N = 1:

Proposition 6.2. If we define

-----

May,....ay) = {f c P(RN,R)\f(al, o ,CLN) € m} (62)

then every maximal ideal of P(R", R) is of the form mq, 4y for some (ay,...,ay) € RY.

-----

Proof. Since R is finite and P(RN, R) ¢ R®", P(RN, R) is also finite and hence Noetherian.

So all prime ideals in P(RY, R) are maximal. Then

nil P(RY, R) = N M

maximal M<P(RYN R)
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A version ([5], Theorem 4.18) of the Chinese Remainder Theorem tells us that if my, ..., m,
is a finite set of pairwise comaximal ideals of P(RY R), then the map

P(RY,R) — 1T P(R™, R)/m;

m;EMaxSpec P(RN ,R)

x— (z+m;)i_,
is surjective. This means that for any proper subset S C MaxSpec P(RY, R), there is an
element # € P(RM, R) such that the set {I € MaxSpec P(RY, R)|x € I} is precisely S.
Thus, if we intersect over a proper subset of MaxSpec P(RY, R), the intersection will strictly

contain nil P(RY, R). That is:

S ¢ MaxSpec P(RN, R) = nil P(RY,R) C (I (6.3)
IeS
Define the set

Then

{f e P(RY,R)|f(a1,...,any) =0 (mod 7)¥(ai,...,ay) € RV}
Let f € A. Then (f(x))* = 0 for all z € R, and consequently f@ = 0. We may conclude that
the set A is nilpotent, and so A C nil P(RY, R). We may conclude then, using (6.3), that

the set {Mma,,. an)l(a1,...,an) € RN} contains all of the maximal ideals of P(RY, R). [

Corollary 6.3. Given a finite local ring (R, m) with residue field R/m 2 F,, P(R", R) has

¢ maximal ideals

M(ay,....an) ={f e P(RY,R)|f(ar,...,an) €m}, (ai,...,an) € RY,

.....
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one for each equivalence class in (R/m)".

6.1 COMPUTING #P(RN, R)

For a finite local principal ring R, we know the cardinality of P(R, R) in many cases. How
does the size of P(RY, R) change when N > 17

The result for the case when R is a field F, is as one would expect. Since F' is again a
field, we have #P(RY, R) = g7

Kempner [9] found the formula for #P((Z/p*Z)N, Z/p*Z). Specker-Hungerbiihler-Wasem
reproved this in [16], giving the formula

#P((Z/p"L)"  Z/p"Z) = pmr®
keNd ep(k)<m

where for k = (ki,...,kg) € N and x = (z1,...,74) € N? we let

d d
xK = szk k! = Hk"! , and e, (k) := max{x € N¥|p*|k!}.

i=1 i=1
Li-Sha [10] gives a formula for #P(RY, R) for all finite principal rings R. When R is

local, it reduces to the following:

Theorem 6.4. (Li-Sha) Let R be a finite, local principal ring with residue cardinality ¢ and
nilpotency index a. Then

#P(RN, R) = ==Xk otk)

where a(n) = 377, |7:| (note that this is the same a we defined in Equation 5.1) and the
outer sum ranges over N-tuples of non-negative integers (ki, ..., ky) such that a(ki) + ... +

a(ky) < a.

6.2 CRITERIA FOR P(RY R) TO BE A PRINCIPAL IDEAL RING

For a finite local principal ring (R, m = (7)), we can again ask: when are all ideals of P(RY, R)

principal? An important observation is that we may think of the 1-variable polynomial ring
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RJt] as a quotient of the N-variable polynomial ring Rl[ti,...,ty]. We let ® denote the
projection map Rty ..., tx] = R[t1,...,tx]/(ts, ..., tx) = R[t], and let ® denote the map
induced on P(R,R) by ® (®(f(t1,...,ty)) = f(,0,...,0)). Then we have the following

diagram:
Rlty,...,tn]| — R|t]

‘| ‘|

P(RY,R) — P(R,R)
® is a ring homomorphism, so we must have that if an ideal I of P(RN,R) is principal,
d, (1) := (®(f)|f € I) is principal. But ® is a quotient map, so ®,(I) = &(I).
Then we immediately have that there are ideals in P(R™, R) that are not principal. Take,

.....
.....

-----

principal in P(RY, R).
Remark. Just as in the N =1 case, we can compute bounds for the dimension of mg/mZ.

In N variables, the analogous upper bound would come from the fact that the natural set of

.....

6.3 LocAL DECOMPOSITION OF P(RN R)

Let (R,m) be a finite local ring with nilpotency index a and residue cardinality ¢. Since
P(RY | R) is itself a finite ring, and we showed that P(RY R) has ¢" maximal ideals, (1.2)

again gives

where each R; is a finite local ring.

N

Theorem 6.5. If R is a finite local ring with residue cardinality ¢, then P(RY R) & RY

for some finite local ring R.
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Proof. Suppose P(R™, R) has distinct maximal ideals my, ..., m,~ (recall that these max-
imal ideals correspond to the ideals ma,,  ay); (@1, .., an) € RN, with notation matching
that of (6.2)).

Because P(RY™, R) is Artinian, for 1 < i < ¢V there is some [; such that mil = mﬁi%

for all £ > 0. Also, l; # 0 because no power of a maximal ideal contains any other maximal

ideal.
!
But now the ideals mlf, - ma" are pairwise comaximal (because their radicals are), so
l l . . . .
Ti=ml . m =mln..nm . And I € m; for 1 <i < ¢V, so (the ring is Artinian,

hence Noetherian) I is a nilpotent ideal: thus there is some n such that /™ = 0. On the other
hand, if you raise I to any power n, then because ((m;)%)" = m} we find that I = I". It
follows that I = 0.

Then the Chinese Remainder Theorem gives an isomorphism:
qN

P(RN,R) = P(RV,R)/I — [[ R/m}
i=1

so the local factors we are looking for are P(RN, R)/ml.
Claim 1: We may take [; to equal a.

Proof: We have P(RY,R) = R So if f is an element of the maximal ideal of R, then
F = (f,0,...,0) is a nilpotent element of P(R™,R). The elements of P(RY,R) that are

nilpotent are the elements that map every element of R into (7), in which case the a-th

power of the element is 0. So

so f¢* = 0. Thus indeed m? = m& for all j > 0, for all x € R. Further,
(a1,..,an) (a1,...,an)

a is the minimum such value: if z = (ay,...,ay) € RY, the polynomial f(ti,...,ty) =

7((ty — a1) ... (ty — an) + 1) lies in myq,,. qy) and evaluates at (ai,...,an) to m, so the

polynomial fo! lies in m?xwam\m‘gal ’’’’’ ax): L€t Riay ay) = P(RY, R)/m{,

uny- Observe
,,,,,,, ~)

that the ring R embeds in P(RY, R) as the subring of constant functions. This induces a
map ¢ : R — P(RY,R) — Riar,..an)-

32
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Claim 2: ¢ is injective.

.........

each Ra, ... ay) should be a faithful R-algebra). The embedding of R is injective.
Claim 3: For all (ay,...,ay), (by,...,by) € RN, the local rings Riar,..an) a0d R, by)
are isomorphic.
Proof: For all (ay,...,ay) in RN, translation by (ai,...,ay) is an automorphism of the
ring P(RY, R). For a polynomial function f, define
Tlar,an) () 1 (b1, ... 0n) = f((@1, ... an) + (b1, ..., bN))
Observe that 7(q, ... ay) is & ring homomorphism whose inverse is 7_(4, .. .ay)- For (a1, ..., an), (b1,
in RN and [ in ZT we should have
! l
Ty—(a1,.an)M(ay,..an) = TUby,...bn)
Thus 7(4,,..by)—(ar,...ay) induces an isomorphism from R, . ay) = P(RN,R)/m‘(lOL1 ’’’’’ ay) O
R(bl 77777 by) = P(RN’ R)/m?bl 77777 by)" O
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CHAPTER 7

OPEN PROBLEMS

1. Can we extend Li-Sha’s results [10] to give the R-module structure of P(RY, R) for
any finite local principal ring R? Note that when N = 1 this generalizes the work of
Necaev [13].

2. Extend Rosenberg’s work [15] from Z- algebras to R-algebras for a finite local principal

ring R.

3. For a ring R, define p,(R) := sup{u(l)|I < R}, where p(I) = the least number of
generators of I. When (R, m) is a finite local principal ring with nilpotency index a, it

turns out that u.(R[t]) = a ([6], Corollary 4.6).

(a) What is p.(P(RY,R))? When N = 1, for example, we found in Chapter 3 that

pu(my) =2, so e (P(R, R)) > 2. But what about other cases?

(b) If S surjects onto T, then p.(7) < p«(S), so since P(R,R) is a quotient of
R[t], m(P(R,R)) < pu«(R[t]) = a. Is there ever equality? When N > 2
p(R[t1, ..., tn]) = oo. But p.(P(RY,R)) < oo so in this case the answer is

no, but what about when N = 17

4. Let Ry, Ry be finite local principal rings. If P(Ry, R1) = P(Ra, Rs), does that imply
Ry = Ry? If R is a finite local principal ring, then from the isomorphism class of

P(R, R) we can determine three invariants of R:

(a) The residue cardinality ¢, since ¢ is the residue cardinality of the localization of

P(R, R) at any maximal ideal.
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(b) The nilpotency index a, since a is the nilpotency index of the localization of
P(R, R) at any maximal ideal. (Note that (1) and (2) give that the order #R = ¢*

is also an invariant).

(¢) The characteristic (this is the least positive integer n such that n-1 =0 € R),

since we have ring inclusions
RC P(R,R) C R*

and the characteristics of R and R#® are the same.

We observe that since the characteristic of R is also the unique positive integer
n such that R is a faithful Z/nZ-algebra, in particular, Z/nZ is a subring of R.
Applying Lagrange’s Theorem to the additive groups, we get that n|#R = ¢“
(but ¢ must be a power of p; say ¢ = p” for a positive integer r) so ¢* = p™®, so n
is also a power of p, say n = p’. Moreover, because p lies in the maximal ideal of

R, we have p® =0 € R and thus b < a.

Then to a finite local principal ring we have associated four parameters: a prime number
p that is the residue characteristic and positive integers r» and b < a. In what cases do

these invariants completely determine our ring R? Are there any other invariants?

. Are there any cases other than a = 1 or R = Z/p*Z where R and P(R, R) can be

determined explicitly?

. For a finite local principal ring (R,m = (7)) with nilpotency index a and residue
cardinality ¢ such that a = ¢ + 1, again letting Hy(t) = (19 — ¢)? — 7971 (19 — t), what

is the structure of R[t]/(Hj)?
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