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developments. Finally, I applied modern portfolio theory to optimize timberland investment 

portfolios in the US South. In Chapter 4, I used returns and risks in a mean-variance model and 
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financial decision-making and enhance portfolio management strategies for investors and portfolio 

managers navigating timberland complexities and new market trends. 
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CHAPTER 1 

GENERAL INTRODUCTION 

The US South is home to one of the largest forest sectors in the world. Unlike other regions, 

timber supply is decentralized across thousands of landowners. For these landowners, land costs 

and the biological growth are determining factors in the success of their investments. However, 

after managing their forests for decades, they expect to sell the timber at the best possible price, 

while buyers are constantly seeking to supply their mills at the lowest price. This fascinating and 

complex dynamic is known as the law of supply and demand and will determine timber prices.  

In this thesis, I sought to better understand how this dynamic can affect the success of 

timberland investments in the US South. In Chapter 2, I assessed the spatial price transmission of 

sawtimber stumpage prices in south Georgia, one of the most competitive markets in the US South, 

and 10 adjacent markets in Alabama, Florida, North Carolina, South Carolina, and Tennessee using 

two novel approaches, smooth transition autoregressive and copula-based models.  

In Chapter 3, I estimated potential returns in 15-year timberland investments. I designed a 

strategic landscape planning model and simulated returns in four different scenarios. These 

scenarios included land sales for HBU, leases and option contracts for solar developments on a 

small scale (up to 5% of the investment area). These new land returns have become popular in the 

last couple years across the US South. Small landowners and industries are converting their 

timberland and hosting new solar power plants. On the one hand, they are experiencing higher land 

returns. On the other hand, this could disrupt timber supply and accelerate the land-use change 

process.  
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 Finally, in Chapter 4 I estimated timberland portfolios using a mean-variance model. 

Mean-variance model is a modern portfolio theory tool designed to identify tradeoffs between 

maximizing expected returns and minimizing risks. This study provides empirical support for 

landowners and institutional investors in their decision-making process. 
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CHAPTER 2 

UNRAVELING NONLINEAR AND ASYMMETRIC PRICE TRANSMISSION IN US 

SOUTH TIMBER MARKETS: A COPULA APPROACH¹ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¹Sanquetta, M. N. I, Kanieski da Silva, B., Kinane, S. M., Bettinger, P., Siry, J. To be submitted 

to Empirical Economics 
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Abstract 

The US South is arguably home to the largest forest sector in the world, where timber production 

plays a critical role in supporting the local economy. The timber market in the US South is 

competitive, driven by the interaction between thousands of landowners and thousands of wood-

consuming mills. Many of the landowners are assumed to be either utility or profit maximizers; 

therefore, price movements could affect their harvest and contractual agreements and, 

consequently, the dynamics of timber supply and demand across multiple markets. These 

movements are dictated by multiple external factors, such as microeconomic and macroeconomic 

conditions, and natural catastrophes. To capture price transmission across different regions in the 

US South, we applied two novel approaches, smooth transition autoregressive and copula-based 

models. We used pine sawtimber stumpage prices from the state of Georgia and its adjacent 

markets in Alabama, Florida, North Carolina, South Carolina, and Tennessee, quarterly from 1976 

to 2023. Our findings indicate that logarithmic price ratios in all adjacent markets have a negatively 

skewed distribution and that all markets are cointegrated with south Georgia. Copula-based models 

captured nonlinearities in the extreme of joint distributions and tail dependencies. In most of our 

scenarios, the price transmission occurred when price ratios were between 0.80 and 0.90. 

Landowners and timberland investors could use this study to strategically plan their financial 

decisions after-market shocks. 
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2.1 Introduction 

In the United States (US) South, timber prices are established through a complex 

interaction between wood-consuming mills and landowners (Prestemon and Wear, 2000; 

Prestemon and Abt, 2002; Wear et al., 2013; Sun, 2016; Klepacka et al., 2017; Regmi et al., 2022). 

Knowing the behavior and trend of these prices is extremely important for managerial decisions. 

The expected timber price could lead to a different operational plan, therefore collectively 

affecting supply curves and procurement costs. When abrupt changes in market conditions occur, 

the effect on local prices could be transmitted to adjacent markets, changing supply and demand 

interactions (Bingham et al., 2003). Fluctuations in timber prices and demand can lead to 

significant variations in profitability for landowners (Amacher et al., 2003). Usually, the 

profitability of timberland investments is driven by three main drivers: (1) biological growth, (2) 

land price appreciation, and (3) timber price change (Mei et al., 2010). The contribution of each 

driver can change depending on market conditions. In the US South, timber price fluctuation can 

impact profitability from 33% to 40% (Timberland Investment Resources, 2016). Therefore, it is 

crucial for landowners to understand the spatial relationship between their market and adjacent 

markets to enhance their decision-making process before, during, and after a market structure 

shock.  

Sources and effects of market shocks can influence timber prices in each market 

differently. Recent examples of price-increasing shocks include sawmill expansions (Forisk, 

2023), and price-decreasing shocks include pulp and paper mill closures (Brandeis and Guo, 2016; 

Forisk, 2023), as well as public regulations implemented due to COVID-19 (Bruck et al., 2023), 

the lasting effects of the Great Recession in 2008 (Keegan et al., 2012; Sun and Ning, 2014), and 

natural catastrophes like hurricanes (Blake et al., 2011; Prestemon and Holmes, 2010). The 
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occurrence of market structure shocks implies an imbalance between timber supply and demand 

(Prestemon and Holmes, 2000; Kinnucan, 2016; Bruck et al., 2023; Hlaváčková et al., 2024). This 

imbalance, caused by sudden changes in timber inventory or demand capacity, can result in 

changes in prices (Prestemon and Holmes, 2010; Bruck et al., 2023), leading wood-consuming 

mills to react by expanding or reducing their procurement area in adjacent or closely located 

markets.  

Depending on the magnitude of the supply imbalance, the effects on timber prices can last 

for months or years (Kinnucan, 2016). For example, natural catastrophes such as hurricanes 

(tropical cyclones) can cause significant impacts on timber markets and prices, especially in the 

US South (Prestemon and Holmes, 2000; Prestemon and Holmes, 2010; Kinnucan, 2016; Sartorio 

et al., 2024). The impact of hurricanes on timber prices is evident through varied effects on 

different timber products. Pulpwood prices often decrease due to elevated costs of salvage logging 

and temporary oversupply, while sawlog prices may increase because of supply reductions caused 

by damage within sawlogs (Sun, 2016; Janiskee, 1990; Syme and Saucier, 1992; Prestemon and 

Holmes, 2000).  The tendency is for adjacent markets offering similar products to eventually 

transact in similar prices for the same product, as stated by the law of one price – LOP (Bingham 

et al., 2003; Goodwin et al., 2018).  

This relationship between prices across multiple locations is known as spatial price 

transmission or horizontal price transmission (Meyer and von Cramon-Taubadel, 2004). Although 

the relationship between sawtimber prices has been investigated in the past (e.g., Hood and 

Dorfmann, 2015; Gan et al., 2022), studies on spatial price transmission were typically limited to 

linear methods, which assume linear and static relationships (Daníelsson et al., 2013). These linear 

methods may not adequately capture the dynamics of complex markets, such as those found in the 
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US South, for several reasons. First, they assume constant relationships over time, ignoring how 

market conditions can change due to external factors like economic shocks or policy changes (von 

Cramon-Taubadel and Goodwin, 2021). Second, linear models might miss critical price 

adjustments that occur during extreme market conditions due to their simplification (Meyer and 

von Cramon-Taubadel, 2004). Lastly, these approaches often overlook asymmetrical responses to 

price changes, for which transmission differs according to whether prices are increasing or 

decreasing (Meyer and von Cramon-Taubadel, 2004), which can lead to inaccurate estimations of 

how prices transmit across different markets (Vavra and Goodwin, 2005).  

With this context, this study aims to assess the spatial price transmission of sawtimber 

stumpage prices in south Geogia, one of the most competitive markets in the US South. The state 

of Georgia contains the largest amount of privately-owned timberland (22 million acres of 

commercial timberland) in the US and produces the highest annual harvest volume (Georgia 

Forestry Commission, 2023). More specifically, south Georgia contains the largest privately-

owned timberland area (16.23%) and market values across 22 regions in the US South, and 30.3% 

of the available corporate private timberland as of 2019 (Zhang and Mei, 2019). Hence, these 

events highlight the importance of understanding how prices in one market respond to regional 

supply shocks. By identifying relationships and how prices are spatially transmitted across 

adjacent markets, landowners and investors can mitigate risks and make informed decisions when 

managing their assets. To complement a linear model, we use two nonlinear approaches: smooth 

transition autoregressive (STAR) and copula-based models. Our models use sawtimber stumpage 

prices from eleven timber markets, with south Georgia (GA-02, Figure 2.1) as the reference 

market, and compared our results with the traditional error correction model. The results provide 
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empirical support for the cointegration of these markets but also highlight the importance of 

nonlinearities in the price adjustment process. 

 

2.2 Literature review 

Spatial price transmission refers to the process by which price movements in one market 

are transmitted to prices in geographically separated markets (McNew, 1996; von Cramon-

Taubadel and Goodwin, 2021). This phenomenon can occur due to the efforts of market players to 

capitalize on arbitrage opportunities with risk-free profits (Ganneval, 2016). The foundational 

concept underlying spatial price transmission is the LOP, which asserts that in efficient markets, 

identical goods have identical prices, adjusted only for transaction costs related to spatial trade 

(Fackler and Goodwin, 2001). If prices deviate beyond these transaction costs, it can lead to 

inefficiencies and distortions in decision-making by producers and consumers, ultimately 

impacting overall economic well-being (Cudjoe et al., 2010). Understanding spatial price 

transmission is particularly crucial in the context of timberland investments, as timber prices can 

be influenced by market structure shocks and the interrelationships between different regional 

markets can significantly affect investment strategies and outcomes.  

Several methodologies based on cointegration have been used to evaluate market 

integration and price transmission in agricultural, financial, and timber markets (Frey and Manera, 

2007; Ning and Sun, 2014). Early studies addressed price transmission between markets based on 

simple correlation statistics, ordinary least squares regressions, and linear error correction models 

(Sun and Ning, 2014; Goodwin et al., 2018). More recently, the literature shifted to nonlinear 

models capable of empirically representing regime switches (Ihle et al., 2009; Ganneval, 2016; 

Holt and Teräsvirta, 2020). Often this regime-switching and mean-shifting behavior reflects the 
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influences of unobserved transactions or processing costs, which have been represented through 

the application of various econometric specifications and techniques such as smooth transition 

autoregressive (STAR) (Goodwin et al., 2011; Silva et al., 2020), and discrete threshold error 

correction models (Goodwin and Harper, 2000). Nonlinear models have been applied in different 

areas of economic research to capture the price relationship between markets, such as agriculture 

(Balagtas and Holt, 2009; Ubilava, 2022; Emediegwu and Rogna, 2024), finance (Lamont and 

Thaler, 2003; Chevillon and Hendry, 2005; Teräsvirta et al., 2010), and forest products (Goodwin 

et al., 2018).  

Forest economists have examined the cointegration across different timber products (Ning 

and Sun, 2014; Parajuli et al., 2016; Gan et al., 2022). Most of these studies found that the prices 

of the main products, such as pulpwood, chip-n-saw, and sawtimber, are cointegrated (Nagubadi 

et al., 2001; Tang and Laaksonen-Craig, 2007; Shahi and Kant, 2009; Gan et al., 2022). For 

example, the cointegration between softwood stumpage and lumber prices in the US South is 

reported to be weak (Zhou and Buongiorno, 2005), while hardwood sawtimber and lumber are 

found to be closely correlated (Luppold et al., 1998). However, despite some research on the spatial 

relationship between timber markets (Buongiorno and Uusivuori, 1992; Bingham et al., 2003; 

Silva et al., 2019), there is a lack of literature on the use of nonlinear models in the US South. 

Nonlinear models can capture regime shifting, and asymmetric adjustments that cannot be captured 

by linear models. Regime shifting is a process in which cointegration changes at some time during 

the sample period, while asymmetric adjustments reflect different price reactions to upstream or 

downstream price changes. Silva et al. (2019) investigated the impact of wood pellet mills on the 

pulpwood price structure in the US South using a STAR model. Similarly, Hood and Dorfman 

(2015) modified a time-varying smooth transition autoregressive model (TV-STAR) to examine 
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timber market linkages in the US South. The use of nonlinear approaches, such as STAR, allows 

for more flexibility in determining market linkages. Smooth transition autoregressive models allow 

for the possibility of gradual adjustments between price linkages and structural changes through 

the embedded transition function (Hood and Dorfman, 2015), showing how market dynamics 

change over time (Silva et al., 2019).  

Goodwin et al. (2018) first introduced the use of copula-based models to assess the spatial 

price transmission of forest products. Although copula models have been extensively used in 

financial economics and risk management studies (Patton, 2012; MacKenzie and Spears, 2014; 

Smith, 2023), they have not been applied in modeling nonlinear, spatial arbitrage relationships 

(Goodwin et al., 2018). A copula is a joint cumulative distribution that can describe the dependence 

structure between two or more variables. The formal definition states that a copula is a multivariate 

cumulative distribution function (CDF) that captures the dependence between variables while 

maintaining their individual marginal distributions (Sklar, 1959). Copulas allow for varying 

degrees of tail dependence and thus can capture patterns of adjustment that may arise when price 

differentials are extreme (Dewick and Liu, 2022). Tail dependence indicates that markets are 

linked to each other under extreme market conditions. The dependence on the tails of a distribution 

is particularly important when studying spatial price linkage, especially how extreme price 

movements in one market may lead to extreme movements in another (Goodwin et al., 2011).  

Outcomes from smooth or discrete regime-switching models, such as the STAR model, 

often used in spatial arbitrage studies (Hamulczuk, 2020), suggest that large price differentials, 

which indicate significant deviations from equilibrium, should result in faster adjustment rates to 

restore market equilibrium (Goodwin et al., 2018; Ubilava, 2022). This dependence on large price 

differentials reflects unobservable transaction costs. Small differentials, within transaction costs, 
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do not lead to profitable arbitrage, while large differentials, exceeding transaction costs, are 

quickly eliminated through arbitrage. Copula models are well-suited for analyzing tail behavior as 

they offer flexible characterizations of tail dependence. Hence, this paper aims to complement the 

existing literature on the spatial price transmission of sawtimber stumpage prices in the US South 

using two nonlinear approaches: STAR and copula-based models. 

 

2.3 Microeconomic foundation 

The cointegration of prices in different markets means price variations in one market will 

lead to price variations in another market, indicating price linkage and market dependence (Fackler 

and Goodwin, 2001). These authors defined cointegration as “a measure of the degree to which 

demand and supply shocks arising in one region are transmitted to another region.” Consider the 

one good being traded in two markets A and B with individual prices being represented by 𝑝𝑡
𝐴 and 

𝑝𝑡
𝐵 at some time index T. Price transmission between these markets can be mathematically defined 

as the log price differential 𝑦 = [𝑙𝑛(𝑝𝑡
𝐴) − 𝑙𝑛(𝑝𝑡

𝐵)], as in Goodwin et al. (2018) or equivalently 

by the logarithmic price ratio 𝑦 = [𝑙𝑛 (
𝑝𝑡
𝐴

𝑝𝑡
𝐵⁄ )].  

Considering a homogeneous commodity traded on two markets (A and B) at some time 

index t with their respective logarithmic prices represented by 𝑙𝑛(𝑝𝑡
𝐴) and 𝑙𝑛(𝑝𝑡

𝐵) and the 

transaction cost per unit being 𝑘(0 ≤ 𝑘 ≤ 1), we have a simple model of the LOP that incorporates 

the effects of transaction costs as: 

− ln(1 − 𝑘) ≥ 𝑙𝑛(𝑝𝑡
𝐴 ) − 𝑙𝑛(𝑝𝑡

𝐵 ) ≥ 𝑙𝑛(1 − 𝑘)  (2.1) 

Which is equivalent to: 

− 𝑙𝑛(1 − 𝑘) ≥ 𝑦 = [𝑙𝑛 (
𝑝𝑡
𝐴

𝑝𝑡
𝐵⁄ )] ≥ 𝑙𝑛(1 − 𝑘)  (2.2) 
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In the context of spatial price transmission, Eqs. 2.1 and 2.2 establish a band around zero 

defined by the transaction costs, within which arbitrage is not profitable (Balke and Fomby, 1997). 

When price differentials fall outside this band, arbitrage opportunities emerge, prompting market 

adjustments that bring the price differences back within the band and restore equilibrium. 

 

2.4 Data description 

We analyzed the spatial linkage of sawtimber stumpage prices series in ten different 

markets distributed across six states of the US South (Alabama, Florida, Georgia, North Carolina, 

South Carolina, and Tennessee) (Table 2.1 and Figure 2.1). Sawtimber is the most valuable among 

the main forest products in the US South: pulpwood, chip-n-saw, and sawtimber. The spatial 

linkage of these markets was assessed with respect to the largest regional market (GA-02). All 

stumpage prices are expressed in US dollars per ton and were observed on a quarterly basis from 

1976 (4th quarter) to 2023 (3rd quarter), totaling 187 observations per market (Figure 2.2). 
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Table 2.1. Summary of 11 TimberMart-South markets that neighbors the state of Georgia. 

State TMS 

Market 

Number of 

Counties 

Area of institutional 

timberland (hectares)¹ 

Relative 

area (%) 

Alabama (AL) 
AL-01 41 418,1712 11.65 

AL-02 26 618,981 17.24 

Florida (FL) 
FL-01 28 345,585 9.63 

FL-02 18 236,498 6.59 

Georgia (GA) 
GA-01 52 112,117 3.12 

GA-02 107 1,088,565 30.32 

North Carolina (NC) 
NC-01 40 19,088 0.53 

NC-02 60 624,500 17.40 

South Carolina (SC) 
SC-01 9 579 0.02 

SC-02 37 41,695 1.16 

Tennessee (TN) TN-01 44 83,882 2.34 

  Total 3,589,662 100 

Source: ¹Zhang and Mei (2019). 
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Figure 2.1. Map of TimberMart-South markets that neighbors the state of Georgia.  

 

Figure 2.2. Sawtimber stumpage price index in the US South. Source: TimberMart-South. 
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2.5 Econometrics 

Spatial market linkages are based on simultaneous movements that two or more prices can 

possibly take in the short-term (Silva et al., 2020). In the long-term, however, market and economic 

forces prevent them from moving too far apart (Fackler and Goodwin, 2001). These cointegration 

tests are typically based on a linear combination of two or more series. Two individual time series 

may be non-stationary, but their linear combination may be stationary (Engle and Granger, 1987). 

In this case, the time series are considered cointegrated. The stationary linear combination is called 

a cointegrated equation and can be interpreted as a long-run equilibrium relationship between the 

variables (Yin et al., 2002). To investigate the price linkage between US South timber markets, we 

used a linear Error Correction Model (ECM) as a benchmark to compare both the Logistic 

(LSTAR) and Exponential (ESTAR) Smooth Transition Autoregressive models (Teräsvirta, 1994; 

Silva et al., 2020), and copula-based models (Goodwin et al., 2018).  

The basic unit of analysis was the logarithmic price ratio. We used south Georgia (GA-02), 

following the TimberMart-South classification as the reference market A. The logarithmic price 

ratio between the candidate markets and GA-02 was mathematically described as: 

𝑦𝑡
𝑖 = 𝑙𝑛 (

𝑝𝑡
𝑖

𝑝𝑡
𝐴⁄ )     (2.3) 

where i indicates the ith market (e.g., AL-01), A indicates GA-02, t is a time index (quarterly) such 

that 𝑡 ∈ {1,2, … , 𝑇}, where T = 187, and 𝑦𝑡
𝑖 is the logarithmic price ratio between the ith-market and 

A (GA-02).  

After assessing the stationarity of the logarithmic price ratio, we calculated the first-

differenced logarithmic price ratio. The first-differenced logarithmic price ratio (Δyt) was defined 

as the difference between the logarithmic price ratio at time t and the logarithmic price ratio at 

time t-1:  
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𝛥𝑦𝑡
𝑖 = 𝑙𝑛 (

𝑝𝑡
𝑖

𝑝𝑡
𝐴⁄ ) −  𝑙𝑛 (

𝑝𝑡−1
𝑖

𝑝𝑡−1
𝐴⁄ )     (2.4) 

where i indicates the ith market (e.g., AL-01), A indicates GA-02, t is a time index such that t = 1, 

… T, where T = 186, 𝛥𝑦𝑡
𝑖 is the first-differenced logarithmic price ratio between the ith market and 

A (GA-02).  

 

2.5.1 Error Correction Model (ECM) 

We used the Augmented Dickey-Fuller (ADF) to test unity root of the logarithmic price ratio.  

     𝛥𝑦𝑡
𝑖 = 𝛼0 + ∑ 𝛿𝑝𝛥𝑦𝑡−𝑝

𝑖 + 𝛽𝑦𝑡−1
𝑖 + 𝜀𝑡

𝑃
𝑝=1    (2.5) 

where 𝛿𝑝 and 𝛽 are the parameters, p is the optimal lag defined by the lowest Akaike and Bayesian 

information criteria (AIC and BIC) values, and all other variables are previously defined. 

The null hypothesis of the ADF test posits that the logarithmic price ratio possesses a unit 

root, suggesting non-stationarity and a random walk behavior (Dickey and Fuller, 1979). Formally, 

if β = 0, 𝑦𝑡
𝑖 is non-stationary, indicating that the ith-market and market A are not cointegrated. 

Conversely, if β < 0, it implies that 𝑦𝑡
𝑖 is stationary, suggesting that any deviations from the long-

term equilibrium between the ith-market and market A are temporary and the two markets are 

cointegrated. In other words, the ADF test is equivalent to a test that β = (0, 1) is a cointegrating 

vector in the log-linear price relationship 𝑙𝑛(𝑝𝑡
𝐴) − 𝛽0 − 𝛽1𝑙𝑛(𝑝𝑡

𝑖), as similarly employed in 

Goodwin et al. (2011) and Hood and Dorfman (2015). 

 

2.5.2 Smooth Transition Autoregressive Model (STAR) 

Eq. 2.5 assumes that transaction costs are constant and proportional to commodity prices, 

which oversimplifies the reality of discontinuous trade and nonlinear price adjustments 

(Dumas,1992; Baulch, 1997). In addition, Eq. 2.5 fails to capture the variability in relative price 
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relationships, which might have periods with strong cointegrations and others that there is no 

linkage between them at all (Silva et al., 2020). To address these limitations, we expanded the 

ECM specification from Eq. 2.5 to a STAR model, as outlined in Eq. 2.6. The STAR model allows 

for regime shifts between stationary (regime 1) and non-stationary (regime 2) states, providing a 

more accurate representation of the complex dynamics in spatial price transmission. Empirical 

studies on spatial price transmission recognize the presence of transaction costs. Despite being 

difficult to measure, these costs are fundamental in any spatial price transmission because they can 

result in nonlinearities. By expanding the ECM to a STAR model, we account for the impact of 

transaction costs and capture the emergence of arbitrage opportunities that could otherwise be 

masked.  

𝛥𝑦𝑡
𝑖 = (𝛼′0 +∑𝛿′𝑝𝛥𝑦𝑡−𝑝

𝑖

𝑃

𝑝=1

)

⏟              
𝑟𝑒𝑔𝑖𝑚𝑒 1 

+ (𝛼0 +∑𝛿𝑝𝛥𝑦𝑡−𝑝
𝑖

𝑃

𝑝=1

)

⏟            
𝑟𝑒𝑔𝑖𝑚𝑒 2 

𝐺(𝑠𝑡, 𝑦(𝜂), 𝑐) + 𝜀𝑡 

(2.6) 

where 𝐺(𝑠𝑡, 𝑦(𝜂), 𝑐) is the transition function and value ranges from 0 to 1, 𝑠𝑡 is the transition 

variable that determines the threshold for regime shifting, 𝑦(𝜂) is the speed in which the relative 

prices switch between regimes, the higher the value the faster is the change between regimes, and 

all other variables are as previously defined. Because γ must be positive, we opted to transform 

𝑦(𝜂) = −𝑒𝑥𝑝(−𝜂), thus ensuring positive values without imposing further constraints in the model 

(Goodwin et al., 2011), c is the threshold value and 𝜀𝑡 is the error term.  
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The representation of 𝐺(𝑠𝑡; 𝑦(𝜂), 𝑐) is whether a logistic - LSTAR (Eq. 2.7) or exponential 

- ESTAR (Eq. 2.8) function as defined: 

𝐺(𝑠𝑡; 𝑦(𝜂), 𝑐) = [1 + 𝑒𝑥𝑝 (
−𝑦(𝜂)(𝑠𝑡 − 𝑐)

𝜎𝑠𝑡
2 )]

−1

 

            (2.7) 

𝐺(𝑠𝑡; 𝑦(𝜂), 𝑐) = 1 − 𝑒𝑥𝑝 (−
𝑦(𝜂)(𝑠𝑡−𝑐)

2

𝜎𝑠𝑡
2 )   (2.8) 

 After defining the transition function 𝐺(𝑠𝑡; 𝑦(𝜂), 𝑐), we specify the transition variable 𝑠𝑡 

as the four quarter moving average of the first-differenced logarithmic price ratio (Δyt). The 

rationale for four quarters is that the movement between regimes should be affected by a shock to 

change price ratios within a year. Hence, the moving average encompasses 12 months. 

𝑠𝑡 =
1

4
∑ 𝛥𝑦𝑡
𝑁=4
𝑛       (2.9) 

In the following sections, however, 𝑠𝑡 is represented in its exponential value (𝑒𝑠𝑡), 

reflecting the non-logarithmic price ratio. The selection between the logistic (LSTAR) and 

exponential (ESTAR) functions was based on the lowest Akaike and Bayesian information criteria 

(AIC and BIC). 

 

5.3 Copula-based Models 

Copulas are functions that can describe the dependence between two or more random 

variables (Patton, 2012). In other words, copulas are joint cumulative density functions that 

connect the marginal distributions of the individual random variables. Copula-based models 

considered the joint distribution functions of 𝐹(𝑦𝑡
𝑖, 𝑦𝑡−1

𝑖 ) and, alternatively, 𝐹(𝛥𝑦𝑡
𝑖 , 𝑦𝑡−1

𝑖 ). 

According to Sklar’s Theorem (1959), any continuous p-variate cumulative probability function F 

can be represented using the marginals and a unique copula function C(.), for which: 
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𝐹(𝑦1, 𝑦2…𝑦𝑛) = 𝐶{[𝐹(𝑦1), 𝐹(𝑦2)…𝐹(𝑦𝑛)]; 𝜙}   (2.10) 

where Fi (.) are the marginal distributions uniformly distributed on the interval (0,1), yn are the 

dependent variables, and ϕ are the set of parameters that characterize dependence. Copula models 

are capable of tying together marginal probability functions that may be related.  

  

There are several copulas and copulas families that have been described in the literature. 

In this study, we evaluated the two most used copula families, Elliptical forms and Archimedean 

(Schepsmeier, 2015). We tested five different copulas, including two Elliptical forms (Gaussian 

and t-Student) and three Archimedean (Gumbel, Clayton, and Frank). Elliptical form copulas have 

the property of symmetry and have identical tail dependencies in extremes of the distribution. The 

Gaussian copula is the most similar to linear models (Goodwin et al., 2018). It is symmetric and 

allows for no dependence on both tails. The t-Student copula allows for positive and symmetric 

tail dependencies. In contrast, Archimedean copulas are asymmetric and single parameter 

(Rodrigues et al., 2023). The Gumbel copula allows for upper tail dependence, while the Clayton 

copula allows for lower tail dependence. The Frank copula allows no tail dependence. The 

coefficients of upper tail dependence (𝜆𝑈) and lower tail dependence (𝜆𝐿) of each copula studied 

here are defined and expressed in Table 2.2. We selected the copula formulation that presented the 

lowest BIC among the five candidate copula models.
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Table 2.2. Copula models description and mathematical formulation.  

Copula Form Lower tail Upper tail Mathematical formulation 

Gaussian 

Ellip. 

0 0 
𝐶(𝑦𝑡, 𝑦𝑡−1) = 𝜙𝜌[𝜙

−1(𝑦𝑡), 𝜙
−1(𝑦𝑡−1)] or 

𝐶(𝛥𝑦𝑡, 𝑦𝑡−1) = 𝜙𝜌[𝜙
−1(𝛥𝑦𝑡), 𝜙

−1(𝑦𝑡−1)] 

T λ𝐿 = 2𝑡𝑣+1(−√
𝑣 + 1

1 − 𝑝
 λ𝑈 = 2𝑡𝑣+1(−√

𝑣 + 1

1 − 𝑝
 

𝐶(𝑦𝑡, 𝑦𝑡−1) = 𝑡𝑣,𝜌[𝑡𝑣
−1(𝑦𝑡), 𝑡𝑣

−1(𝑦𝑡−1)] or 

𝐶(𝛥𝑦𝑡, 𝑦𝑡−1) = 𝑡𝑣,𝜌[𝑡𝑣
−1(𝛥𝑦𝑡), 𝑡𝑣

−1(𝑦𝑡−1)] 

Gumbel 

Arch. 

0 λ𝑈 = 2 − 2
1
𝜃 

𝐶(𝑦𝑡, 𝑦𝑡−1) = {[−ln (𝑦𝑡)]
𝜃 + [−ln (𝑦𝑡−1)]

𝜃}
1

𝜃 or 

𝐶(𝛥𝑦𝑡, 𝑦𝑡−1) = {[−ln (𝛥𝑦𝑡)]
𝜃 + [−ln (𝑦𝑡−1)]

𝜃}
1
𝜃 

Clayton λ𝐿 = 2
−1
𝜃  0 

𝐶(𝑦𝑡, 𝑦𝑡−1) = (𝑦𝑡
−𝜃 + 𝑦𝑡−1

−𝜃 )
−1

𝜃  or 

𝐶(𝛥𝑦𝑡, 𝑦𝑡−1) = (𝑦𝑡
−𝜃 + 𝑦𝑡−1

−𝜃 )
−1
𝜃  

Frank 0 0 

𝐶(𝑦𝑡, 𝑦𝑡−1) =  −
1

𝜃
ln {1 +

[(𝑒(−𝜃𝑦𝑡)−1)][𝑒(−𝜃𝑦𝑡−1)−1]

𝑒(−𝜃)−1
} or 

𝐶(𝛥𝑦𝑡, 𝑦𝑡−1) =  −
1

𝜃
ln {1 +

[(𝑒(−𝜃𝛥𝑦𝑡)−1)][𝑒(−𝜃𝑦𝑡−1)−1]

𝑒(−𝜃)−1
} 

Where Ellip. means Elliptical copulas, Arch. means Archimedean copulas, ϕp is the cumulative distribution function (CDF) of the 

bivariate normal distribution with correlation coefficient ρ, ϕ-1 is the inverse of the CDF of the standard normal distribution, tvρ is the 

bivariate cumulative distribution function of the t-Student with ν degrees of freedom and correlation coefficient 𝜌, t-1 is the inverse of 

the CDF of the t-Student with ν degrees of freedom. Sources: Bouyé et al. (2000) and Roncalli (2020).
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2.6 Empirical results 

We assessed the spatial price transmission of sawtimber stumpage prices of ten markets 

relative to the largest regional market (GA-02) in the US South. We used logarithmic price ratios 

of these ten market trades to investigate their linkage with the reference market using smooth 

transition autoregressive and copula-based models. In the next topics, we present the results from 

(2.6.1) nonparametric densities, (2.6.2) error correction model, (2.6.3) smooth transition 

autoregressive (2.6.3), and (2.6.4) copula-based models. 

 

2.6.1 Nonparametric densities 

Figures 2.3 and 2.4 illustrate nonparametric densities for price ratios (
𝑝𝑡
𝑖

𝑝𝑡
𝐴⁄ ) and first-

differenced logarithmic price ratios (𝛥𝑦𝑡) for all ten market trades. The average price ratio was 

always smaller than 1, regardless of the market trade. We observed a negative definite pattern of 

basis for price ratios (𝑦𝑡) of the smallest regional markets (FL-02, GA-01, NC-01, SC-01, and TN-

01). This pattern suggests that the prices on these markets are consistently lower compared to those 

on the reference market. The average price ratio was closer to 1 on regional markets with a relative 

acreage close to or higher than 10% (AL-01, AL-02, FL-01, and NC-02). 

The average 𝛥𝑦𝑡 values ranged from -0.0010 (AL-02) to 0.0033 (FL-02), as observed in 

Figure 2.4. These values represent the relative differences between the two consecutive periods. 

Small values imply limited frictions in price adjustments, supporting the notion of cointegration 

in market trades with low transaction costs and with free movement of goods between them (Meyer 

and von Cramon-Taubadel, 2004). A random distribution around 0 suggests random price 

fluctuations. The negative skewness, however, indicates that the largest price differences are 

generally negative and more common in one direction (Goodwin et al., 2021).  
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Figure 2.3. Histograms of quarterly price ratios (
𝑝𝑡
𝑖

𝑝𝑡
𝐴⁄ ) of pine sawtimber stumpage for different 

market trades with respect to GA-02. 
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Figure 2.4. Histograms of quarterly first-differenced logarithmic price ratios (𝛥𝑦𝑡
𝑖) of pine 

sawtimber stumpage for different market trades with respect to GA-02. 

 

2.6.2 Error Correction Model (ECM) 

We first assessed the relationship between the first-differenced logarithmic price ratio (Δyt) 

and its lagged values (𝛥𝑦𝑡−𝑝) using a linear Error Correction Model (Eq. 2.5). The time series 

properties were also evaluated using the Augmented Dickey-Fuller (ADF) test. In every case, the 

ECM presented negative 𝛽̂ values (Table 2.3), rejecting the null hypothesis with 95% confidence 

and suggesting that the price ratios are stationary and deviations from the mean are temporary.  
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This suggests that if the price ratio between the two markets diverges from its equilibrium value, 

market forces act to correct this divergence, restoring the equilibrium relationship. The ADF test 

statistics were lower than the critical values at 1% (rejecting the non-stationary hypothesis) and 

the selected lag was one across all market pairs. 

 

Table 2.3. ECM model statistics for quarterly first-differenced logarithmic price ratios. 

Market 𝜶̂ 𝜷̂ Statistic 

AL-01 -0.0431 (0.0115) -0.2607 (0.0583) -4.4717 

AL-02 -0.0093 (0.0064) -0.3045 (0.0626) -4.8606 

FL-01 -0.0117 (0.0084) -0.1312 (0.0459) -2.8591 

FL-02 -0.0213 (0.0087) -0.1881 (0.0516) -3.6427 

GA-01 -0.0508 (0.0126) -0.2637 (0.0570) -4.6227 

NC-01 -0.0532 (0.0218) -0.1191 (0.0410) -2.9077 

NC-02 -0.0130 (0.0079) -0.2062 (0.0547) -3.7715 

SC-01 -0.0540 (0.0145) -0.2532 (0.0612) -4.1400 

SC-02 -0.0197 (0.0069) -0.2857 (0.0604) -4.7335 

TN-01 -0.1175 (0.0362) -0.1600 (0.0465) -3.4399 

Note: values in parentheses are standard deviations. Lag 1 was consistently selected for all markets 

based on AIC and BIC. The null hypothesis (H0) was always rejected at 5% significance. 

 

2.6.3 Smooth Transition Autoregressive Model (STAR) 

The logistic specification (LSTAR) presented better-fitting statistics for all market trades, 

especially when comparing the goodness-of-fit statistics (AIC and BIC). The final model 

estimation and their respective coefficients are presented in Table 2.4. Figure 2.5 illustrates the 

transition function G(.) over time and against the exponential of the transition variable 𝑠𝑡. G(.) 

describes how the transition between regimes (e.g., from non-stationarity to stationarity) evolves 
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over time and it depends on the transition variable 𝑠𝑡. The rationale of presenting 𝑒𝑠𝑡  instead of 𝑠𝑡 

is the practical considerations in model interpretation; the exponential representation of 𝑠𝑡 provides 

a direct view of actual price ratios between markets. 

Our results indicated that the transition between regimes was fast for most market trades, 

as indicated by the steep line between G(.) = 0 and G(.) = 1. The change from one regime to another 

was indicated by the smoothness coefficient (γ) that ranged from -1.40 (NC-01) to -5.40 (AL-02, 

FL-01, and SC-02). In general, the threshold parameter (c) ranged from -0.33 (NC-01) to -0.11 

(NC-02), except for AL-02 (-0.98) and TN-01 (-0.85). All market trades presented similar behavior 

as their transition variable (𝑠𝑡) changes (Figure 2.5). Most regime shifting from G(.) = 0 to G(.) = 

1 happened when 𝑒𝑠𝑡  was around 0.8 to 0.9 (AL-01 – 0.84, AL-02 – 0.91, FL-02 – 0.85, GA-01 – 

0.91, NC-01 – 0.90, NC-02 – 0.76, SC-01 – 0.87, SC-02 – 0.82), except for FL-01 (1.08) and TN-

01 (0.43), indicating that when the prices in the candidate markets are around 10 to 20% lower 

than the reference market, market prices are nearing a critical threshold where regime shifting is 

likely, triggering a transition from a non-stationary to stationary regimes. In other words, this 

indicates that upon reaching this critical threshold, market forces like supply-demand adjustments 

quickly act to restore price equilibrium.  

Slower transitions were observed in GA-01 and NC-01, as reinforced by lower γ values 

(Table 2.4). The threshold coefficient (c) ranged from -0.98 to 0.21, with higher values for FL-01 

(0.21), NC-02 (-0.11), AL-01 (-0.17), FL-02 (-0.17), and GA-01 (-0.17). The lowest values were 

observed for AL-02 (-0.98) and TN-01 (-0.85). Negative c values indicate that regime changes are 

triggered by relatively smaller deviations in the price ratio. Alternatively, positive c values indicate 

that a larger deviation in the price ratio is required to trigger a regime shift. Nevertheless, all 
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candidate markets were cointegrated with the reference market, as indicated by the statistically 

significant coefficients. 

 

Figure 2.5. Spatial price transmission between pine sawtimber stumpage prices for different 

market trades with respect to GA-02. (A) show the transition function G(.) versus the respective 

transition variable (𝑠𝑡), while (B) have the transition function G(.) over time (1977 to 2023). 
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Table 2.4. STAR model estimates for the first-differenced logarithmic price ratio of pine sawtimber stumpage prices for different market 

trades in the US South. 

Trade 
AL-01/ 

GA-02 

AL-02/ 

GA-02 

FL-01/ 

GA-02 

FL-02/ 

GA-02 

GA-01/ 

GA-02 

NC-01/ 

GA-02 

NC-02/ 

GA-02 

SC-01/ 

GA-02 

SC-02/ 

GA-02 

TN-01/ 

GA-02 

Regime 1 

yt-1 -0.38 (0.08) -0.36 (0.99) -0.21 (0.00) -0.39 (0.11) -0.23 (0.08) -0.41 (0.07) -0.54 (0.09) -0.34 (0.25) -0.32 (0.27) -0.17 (0.10) 

yt-2 -0.42 (0.07) - -0.133 (0.06) -0.37 (0.10) - -0.47 (0.07) -0.49 (0.08) -0.15 (0.15) - - 

yt-3 - - - -0.23 (0.08) - -0.09 (0.06) - -0.64 (0.22) - - 

Transition 

Γ -5.30 (0.00) -5.40 (0.00) -5.40 (0.00) -5.30 (0.00) -1.80 (0.00) -1.40 (0.00) -4.90 (0.00) -3.00 (0.00) -5.40 (0.00) -4.40 (0.00) 

C -0.17 (0.00) -0.98 (0.00) 0.21 (0.00) -0.17 (0.00) -0.17 (0.01) -0.33 (0.04) -0.11 (0.00) -0.29 (0.03) -0.20 (0.00) -0.85 (0.00) 

Regime 2 

Intercept -0.04 (0.00) 0.02 (0.01) 0.24 (0.03) -0.01 (0.01) -0.09 (0.01) -0.19 (0.05) 0.01 (0.01) -0.05 (0.01) -0.01 (0.01) -0.18 (0.03) 

yt-1 -0.16 (0.08) -0.04 (0.07) -0.24 (0.03) -0.22 (0.07) -0.05 (0.08) 0.07 (0.20) -0.31 (0.07) -0.30 (0.07) -0.17 (0.06) -0.25 (0.06) 

yt-2 -0.23 (0.07) - -0.23 (0.08) -0.15 (0.07) - 0.24 (0.19) -0.07 (0.07) -0.09 (0.09) - - 

yt-3 - - - -0.05 (0.07) - -0.14 (0.12) - -0.03 (0.07) - - 

xt-1 -0.54 (0.08) -0.53 (0.06) -0.84 (0.12) -0.32 (0.06) -0.89 (0.01) -0.90 (0.26) -0.41 (0.07) -0.36 (0.06) -0.36 (0.05) -0.30 (0.05) 

BIC -356.004 -361.701 -358.229 -387.856 -399.934 -169.172 -315.248 -318.166 -368.183 -173.774 

AIC -383.625 -383.358 -385.851 -421.336 -421.591 -202.653 -342.869 -351.647 -389.840 -195.431 

RSS 1.105 1.134 1.091 0.873 0.916 2.961 1.388 1.288 1.094 3.241 

SD 0.083 0.079 0.078 0.075 0.082 0.128 0.088 0.085 0.078 0.145 

Note: values in parentheses are standard deviations for each parameter. 
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2.6.4 Copula-based models 

Table 2.5 presents the parameters, tail dependences, and BIC for the optimal copula 

specification fitted to 𝐶(𝑦𝑡
𝑖, 𝑦𝑡−1

𝑖 ) and 𝐶(𝛥𝑦𝑡
𝑖 , 𝑦𝑡−1

𝑖 ). Marginal distributions of each variable are 

represented using nonparametric, empirical cumulative density functions (CDFs).  

In all cases, the Clayton copula was preferred when comparing BIC values with other 

copulas. The negative skewness observed in Figures 2.3 and 2.4 reinforces the advantage of the 

Clayton copula when compared to the other copulas because it was designed to capture asymmetric 

tail dependencies, particularly strong dependencies in the lower tails. In other words, the Clayton 

copula can model joint distributions where extremely low values on both y1 and y2 are highly 

correlated. This dependency highlights the importance of tail-specific adjustments. Interpretation 

of tail dependence in cases where such dependence is only allowed in one tail can be aided by a 

consideration of the typical basis relationships among markets.  

The parameters for 𝐶(𝑦𝑡
𝑖, 𝑦𝑡−1

𝑖 ) in Table 2.5, all positive, ranged from 1.7913 (AL-02) to 

3.8901 (NC-01), indicating a moderate to strong dependence on lower tails. In the context of the 

Clayton copula, these 𝜃 values represent the strength of the asymmetric dependence, particularly 

under extreme low values of 𝑦𝑡
𝑖 and 𝑦𝑡−1

𝑖 . Higher 𝜃 values, such as 3.8901 (NC-01), suggest 

stronger dependence on the lower tails of the joint distributions, implying that when one market 

experiences significantly low prices, the other is likely to mirror this behavior more closely. Lower 

𝜃 values, such as 1.7913 (AL-02) still indicate weaker, lower-tail dependence under extreme 

conditions.  

 In contrast, 𝜃 parameters were all negative for the joint distribution of 𝛥𝑦𝑡
𝑖 and 𝑦𝑡−1

𝑖 , the 

negative parameters suggest that extreme deviations tend to occur in opposite directions. For 

instance, 𝜃 = -0.2257 (AL-02) implies a stronger inverse relationship compared to -0.0715 (NC-
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01), where the inverse dependence is weaker. These results reflect how markets adjust differently 

when considering changes versus levels, providing nuanced insights into price dynamics and inter-

market linkages. Figures 2.6 and 2.7 present the nonparametric densities for 𝐶(𝑦𝑡
𝑖, 𝑦𝑡−1

𝑖 ) and 

𝐶(𝛥𝑦𝑡
𝑖 , 𝑦𝑡−1

𝑖 ) of all 10 market trade pairs. These densities are represented by the standard normal 

marginals on both axes to illustrate the dependencies in the joint distributions. The empirical 

marginals were used to evaluate the price adjustment process (Table 2.5). 

 

Table 2.5. Copula-based model estimates for 𝐶(𝑦𝑡
𝑖, 𝑦𝑡−1

𝑖 ) of pine sawtimber stumpage prices for 

different markets (using empirical marginals). 

Trade Parameter Lower BIC 

AL-01/GA-02 2.2169 (0.216) 0.7315 33.9322 

AL-02/GA-02 1.7913 (0.190) 0.6791 31.9886 

FL-01/GA-02 3.5274 (0.308) 0.8216 -0.0507 

FL-02/GA-02 2.8533 (0.252) 0.7843 22.7542 

GA-01/GA-02 2.3283 (0.220) 0.7425 55.0694 

NC-01/GA-02 3.8901 (0.320) 0.8368 80.2046 

NC-02/GA-02 2.3066 (0.219) 0.7404 44.5999 

SC-01/GA-02 1.9470 (0.206) 0.7005 23.8383 

SC-02/GA-02 2.3989 (0.223) 0.7490 42.3392 

TN-01/GA-02 2.9213 (0.264) 0.7888 26.8825 

Note: Clayton copula was selected for all trades based on the lowest BIC. 
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Figure 2.6. Joint probability density function from the estimated optimal copula, simulated using 

standard normal marginals): 𝐶(𝑦𝑡
𝑖, 𝑦𝑡−1

𝑖 ).  
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Figure 2.7. Joint probability density function from the estimated optimal copula, simulated using 

standard normal marginals): 𝐶(𝛥𝑦𝑡
𝑖, 𝑦𝑡−1

𝑖 ). The tail dependences were reversed by rotating the 

copulas 180o.  
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To illustrate how the price adjustment process varies over the quantiles of the marginal 

distributions, we employed nonparametric density estimates for the marginal distributions and 

parameters from the estimated copula function. We simulated the joint distribution using 

nonparametric densities drawn from the univariate values and then estimated a nonparametric 

inverse CDF. Figure 2.8 displays the relationship between the 𝑦𝑡
𝑖 and its lagged values (𝑦𝑡−1

𝑖 ). In 

contrast, Figure 2.9 highlights the relationship between the first-differenced logarithmic price ratio 

(𝛥𝑦𝑡
𝑖) and the lagged value of the logarithmic price ratio (𝑦𝑡−1

𝑖 ). The mean relationship implied is 

highlighted in blue using splines. The nonlinearities in the error correction price adjustment 

processes indicate market linkages (Figure 2.8), characterized by nonlinearities. In general, large 

deviations typically tend to result in stronger adjustment among prices. However, the degree of 

nonlinearity was more explicit when observing the relationship between the first-differenced 

logarithmic price ratio (𝛥𝑦𝑡
𝑖) and the lagged value of the logarithmic price ratio (𝑦𝑡−1

𝑖 ), as observed 

in Figure 2.9. 
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Figure 2.8. Estimated mean relationship (nonparametric marginals) using Clayton copula for 

𝐶(𝑦𝑡
𝑖, 𝑦𝑡−1

𝑖 ).  
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Figure 2.9. Estimated mean relationship (nonparametric marginals) using Clayton copula for 

𝐶(𝛥𝑦𝑡
𝑖 , 𝑦𝑡−1

𝑖 ). 

 

2.7 Discussion and conclusions 

In this paper, we investigated the spatial price transmission of pine sawtimber stumpage 

prices across the US South with respect to the largest regional market (GA-02). We used two 

approaches to understand the relationship between sawtimber prices in one of the most competitive 
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markets in the world. Our results indicate that, regardless of the modeling approach, the sawtimber 

market in south Georgia is cointegrated with all markets analyzed in this study.  

The ECM results indicated that the price ratios are stationary and deviations from the 

means are temporary. In this case, if the price ratio between two markets diverges from its 

equilibrium value, market forces act to correct this divergence, restoring the equilibrium 

relationship. The STAR model reinforced the idea of cointegration, showing that when prices in 

adjacent markets are around 10 to 20% lower than the reference market, prices are nearing a critical 

threshold where regime shifting is likely, triggering a transition from non-stationary to stationary 

regimes and restoring equilibrium. Ultimately, the Clayton copula highlighted a moderate to strong 

dependence on lower tails for of 𝛥𝑦𝑡
𝑖 and 𝑦𝑡−1

𝑖 . For, 𝛥𝑦𝑡
𝑖 and 𝑦𝑡−1

𝑖 , the Clayton copula suggested 

that markets adjust differently, providing nuanced insights into price dynamics and inter-market 

linkages.  

Studies on price transmission have been an important topic in both theoretical and 

empirical research (Jung and Doroodian, 1994; Goodwin and Holt, 1999; Hänninen et al., 2007; 

Koutroumanidis et al., 2009; Listorti and Esposti, 2012; Sun and Ning, 2014; Fousekis et al., 2016; 

Silva et al., 2020; Kinnucan, 2022). In the US South, forest economists have examined price 

linkage across different products (Yin et al., 2002; Parajuli et al., 2016; Silva et al. 2019) and 

regions (Mei et al., 2010; Hood and Dorfman, 2015). Bingham et al. (2003) showed that 33-42% 

of the US South timber markets are cointegrated when using sawlog prices, while 18% to 28% 

were cointegrated with respect to pulpwood prices. Hood and Dorfman (2015) found that the entire 

Southeastern US was linked during the 2000’s housing bubble. Similarly, Yin et al. (2002) found 

cointegration between 13 pine sawtimber and 11 pulpwood regional markets. Mei et al. (2010) 

observed that North Carolina (NC-02) and Georgia coastal plains (GA-02) can drive the prices in 
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other regional and adjacent markets. These authors also noticed that 12 different markets, 

accounting for 90% of the annual harvested volume, distributed across the states of Alabama, 

Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina and Texas 

should not be considered separate in terms of short-term forecasting.  

In this study, we complement the current literature on spatial price transmission in several 

aspects. First, we found that all 11 price pairs were cointegrated, differing from Yin et al. (2002) 

who suggested that southern US timber markets are not strongly cointegrated. We also observed 

that timber prices in all adjacent markets to the state of Georgia, regardless of their size and 

distance, will respond to movements in the largest regional market (GA-02). When prices in these 

markets are around 10 to 20% lower than the largest regional market, they reach a critical 

threshold, and market forces like supply-demand adjustments quickly act to restore price 

equilibrium. Second, our work reinforces the limitations of Error Correction Models. ECMs 

assume linear and static relationships (Daníelsson et al., 2013), which may not adequately capture 

the dynamics of complex markets that include nonlinear behaviors or asymmetric dependencies. 

Moreover, ECMs are unable to show changing market interactions over time (Hood and Dorfman, 

2015), as highlighted by the STAR model in Figure 2.5. Relative prices can have time periods in 

which there is a strong cointegration and others time periods with no linkage between them at all 

(Silva et al., 2020). Hence, STAR models were designed to recognize and capture nonlinear 

relationships and different market dynamics and behaviors that vary over time. These dynamics 

can depend upon the state of the economy, or they may simply be due to the presence of transaction 

costs in spatial and temporal arbitrage (Hood and Dorfman, 2015). Models such as the STAR 

model have gained popularity due to their capacity to capture essential features of complex 

dynamics and their ability to provide considerable flexibility when assessing horizontal and 
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vertical price transmission (Goodwin et al., 2018; Ubilava, 2022). Several studies have employed 

STAR models on the prices of forest products (Fan and Wei, 2006; Goodwin et al., 2011, Hood 

and Dorfman, 2015; Goodwin et al., 2018; Silva et al., 2019). Hood and Dorfman (2015) 

investigated the cointegration dynamics of sawtimber prices across different markets in the US 

South using an ECON-STAR model, and found that market regimes vary over time, which is 

consistent with our results (Figure 2.5). The flexibility of STAR models in adjusting parameters 

according to the transition variable allowed us to conduct a more detailed analysis of market trade 

dynamics, providing a better understanding of how timber prices adjust under different market 

conditions and shocks. 

We employed copula-based models when modeling nonlinear, spatial price transmission, 

as they are extensively applied in financial economics and risk management (Goodwin et al., 

2018). These models are particularly effective in modeling tail dependencies, which are crucial for 

understanding cointegrations in extreme price scenarios and market volatility (Joe et al., 2010). 

The separation between the modeling of marginal distributions and the dependence structure 

facilitates a flexible and detailed analysis of price relationships, which is essential for validating 

the LOP. Our application of copula-based models was tailored to capture differences in patterns 

of adjustment that may arise when logarithmic price ratios and their first difference are large 

enough to exceed transaction costs. Copulas models can also capture patterns of adjustment that 

may arise when price differentials are extreme (Qiu and Goodwin, 2012), expanding previous 

studies that were limited to threshold effects and regime switching (Rogers, 2014). Our empirical 

approach involved the use of conventional goodness-of-fit statistics, such as the Bayesian 

information criterion (BIC) to determine the optimal copula specification for each of the ten market 



 

38 

trades. The Clayton copula specification was preferred according to the BIC in all market trades, 

which agrees with the logarithmic price ratios and its first-difference distributions.  

Our study brings together two nonlinear approaches that help explain the cointegration over 

time and asymmetric dependencies under extreme low values across different markets in the US 

South. This paper is another contribution of the movement toward increasingly flexible, nonlinear 

models of price linkages, as stated by Goodwin et al. (2018) that first introduced copula-based 

models on spatial price transmission analysis for timber products. We found that imbalances in 

sawtimber prices in the largest regional market can affect prices in all adjacent markets. This 

information can help landowners and corporate investors to understand the impact of possible 

market shocks and disturbances (e.g., hurricanes) on timber supply and prices and, ultimately, help 

forest practitioners to predict price trends.  

Despite the findings in this study, further research can overcome the following limitations: 

1) while the work focused on two aggregated regional (state) markets, this analysis could be used 

in large scale models, such as global timber models or across different local markets; and 2) this 

work was limited to 11 timber markets adjacent to south Georgia (GA-02) yet could be expanded 

further. While the data employed are representative regional markets, future studies can provide 

insights into the spatial price transmission over a broader range of markets across the US South. 

Further, 3) although copula-based models provided a flexible and detailed analysis of price 

relationships, this study was limited to five single parameter copulas. It is possible that other 

copula-based models may result in better fitness and thus stronger capabilities to indicate price 

relationships.  
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Abstract 

Landowners and corporate investors are changing the way they manage timberland in the US South 

due to land returns driven by land sales, leases, and lease-sale call option contracts for solar 

developments. The impact of these new revenue layers on returns and risks of timberland 

investments is unknown. In this paper, we developed a strategic landscape planning model to 

optimize the forest value over 15 years across 22 timber markets in the US South. Also, we 

estimated potential internal rates of return (IRR) and risks (IRR standard deviation) using a 

stochastic simulation process from four different scenarios: S1 - business as usual (only timber 

revenues and land appreciation), S2 – up to 5% land sale, S3 – up to 5% land lease, and S4 - 5-

year call option contract for the total area with up to 5% selling at the strike period. Our results 

indicated a South-wide average return of 8.02% ±3.14% for S1. S2 increased the South-wide return 

by 4.32%, with no significant impact on risk (12.34% ± 3.26%). S3 increased the South-wide 

return by 5.90%. Again, with no significant impact on risk (13.92% ± 3.55). In S3, the average 

increase was higher than the lowest returns in S1. The call option contract increased average 

returns significantly, adding 11.40% to the South-wide average return over 15 years. In this 

scenario, however, the risk increased by 5.51%. Our results indicated increased potential returns 

in all alternative scenarios. Even in the worst case, S2, S3 and S4 are 80% likely to provide higher 

returns when compared to the business as usual (S1). Landowners and corporate investors could 

benefit from these results to better plan their investments. 
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3.1 Introduction 

During the past few decades, timber prices have declined substantially, especially after the 

Great Recession (Keegan et al., 2011; Sun and Ning, 2014) and the COVID-19 pandemic (Bruck 

et al., 2023). Also, timber prices decreased due to mill closures and capacity reductions across the 

US South (Forisk, 2024). All those movements increased concerns about the economic health of 

the forest sector (Riddle, 2021). Although timber prices are one of the most important return 

drivers on timberland investments (Mei et al., 2010), land appreciation could provide substantial 

returns to timberland investments (Caulfield, 1998). Therefore, investors began looking for new 

alternatives to make their land more profitable and offset losses from declining timber prices by 

converting timberland to other land uses such as agriculture or urbanization. For instance, 

urbanization, population growth and other factors reduced forestlands by more than 12 million 

acres in the US South from 1950 until 2020, and it is projected that forestland area will keep 

reducing in the next decades (Alig et al., 2004). 

A recent opportunity for landowners is the conversion of timberlands to new solar power 

plants. Federal policies, such as the Inflation Reduction Act, have boosted the investment in solar 

and wind energy across the United States. Currently, energy generated from renewable sources is 

setting new records and is expected to increase in the next years. In 2024, 37 gigawatts from new 

solar power were added to the national grid last year and almost doubled 2023 solar capacity 

additions (Wall Street Journal, 2024; EIA, 2025). The Energy Information Administration (EIA) 

expects that another 26 gigawatts will be added by 2026.   

Due to the lack of large areas to install solar power plants close to urban areas, investors 

started looking for self-storage buildings, outlet malls, and southern timberlands (Wall Street 

Journal, 2023). In terms of profitability, new solar plants in the US South provide extensive 
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margins to timberland investors (Cooper and Dwivedi, 2024) and there is an increasing interest in 

transitioning from timberlands towards renewable energy (Woodson, 2019; Cooper and Dwivedi, 

2024; Landgate, 2024). Roughly 3 to 7.5 million acres would be needed within the next 20 years 

for new solar power plants (Wall Street Journal 2024; Wear et al., 2025).  

There are several social and environmental benefits of solar energy, such as greenhouse 

gas emission reduction compared to fossil fuel sources (such as coal), reduced local air pollutants, 

decreasing dependence on imported fuels, and low operational costs (Cooper and Dwivedi, 2024; 

Rivera et al., 2024). However, a large-scale timberland conversion into solar power plants can 

significantly impact deforestation rates. New solar developments can increase land conversion 

rates by 39 to 71% every year (Wear et al., 2025). According to these projects, most developments 

are likely to involve switching between agricultural and timberland to solar energy in the US South. 

This process can also generate a shortage of timber inventory in the long term and at regional 

scales, in addition to reduced carbon sinks and ecosystem services.  

 The decision process to convert timberland into a new solar plant depends on several 

factors and can vary depending on the landowner’s preference. One of them is the ability of these 

facilities to increase land profitability and the associated risk. This conversion process can start 

with lease-purchase call option contracts (Landgate, 2025). Call option contracts provide the 

holder the right to either get into a formal lease contract or buy the asset at the “strike” or “exercise” 

price. For solar developments, option contracts have a maturity time of 1 to 5 years (Landgate, 

2024; 2025). Maturity time indicates the period in which the holder can exercise the option and is 

used to assess the feasibility of installing a new facility. By exercising the option, both the 

landowner and the solar developer can enter into a formal land lease (usually 25 to years) or sale 

agreement. 
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Given the low returns of traditional timberland investments, and the surge of alternative 

uses, such as agriculture, urbanization, and solar facilities, the management of timberland is now 

divided into multiple use assets, that combine multiple land use, leasing and options to other uses. 

For instance, Zhang and Mei (2019) assessed returns and risks of timberland investments in the 

US South and compared with other crops; according to the authors, agricultural production could 

substantially increase profits in an investment portfolio. This mix between assets challenge land 

managers to wisely allocate investors resources to increase profitability and reduce risks. In this 

research, we aim to investigate the alternative strategy of land conversion or leasing on timberland 

returns. We extend the studies proposed by Caulfield (1998), Zhang and Mei (2019) and Cooper 

and Dwivedi (2024), by investigating the financial contribution of different land return strategies 

on timberland investments across the US South. In addition, we estimate potential returns and risks 

involved in these strategies employing a strategic landscape planning model and a stochastic 

simulation process. Our results encompassed 22 different regions in the US South and can be used 

in portfolio optimization models, such as Zhang and Mei (2019) and Busby et al. (2020) and 

support the decision-making process of investors and landowners on allocating or converting their 

investments.  

 

3.2 Background  

Several studies have assessed timberland investment returns in the US South (Cubbage et 

al., 2007; Callaghan et al., 2019; Mei, 2015; Chudy et al., 2020; Cubbage et al., 2020; Cubbage et 

al., 2022). However, most of these studies presented at least one of two limitations which we intend 

to address in this study. First, most studies on returns for timberland investments in the US South 

have been conducted at the stand level to determine the contribution of each return driver 
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(biological growth, timber prices, and land appreciation) for a hypothetical stand (e.g., Caulfield, 

1998; Mei et al., 2013). Other studies have compared returns and risks for different species and 

regions and have considered the entire US South as one unique region (e.g., Sedjo, 1984; Thomas, 

2012; Chudy et al., 2020). However, returns can differ significantly depending on regional 

characteristics, especially in large markets such as the US South.  

Second, although the extensive use of the land expectation value as the financial criteria to 

evaluate timberland investments and management (e.g., Chang, 2001; Straka 2007; Cubbage et al., 

2014; Callaghan et al., 2019; Chudy et al., 2020; Cubbage et al., 2020), some studies did not 

include land prices in their discounted cash flow analysis (e.g., Chudy et al., 2020) or assessed the 

impact of land prices on timberland investments (e.g., Cubbage et al., 2014), it implies a 

management over infinite rotations, without any possibility of land conversion. On the other hand, 

institutional timberland investments are commonly closed-end funds with a limited investment 

period of 5 to 20 years (Zhang et al., 2012; Mei and Clutter, 2023), which is shorter than the usual 

loblolly pine rotation age of 20-40 years (Trim et al. 2020, Trlica et al. 2021). In addition, these 

investments are usually a group of different assets (stands) acquired at different ages, not bare 

land, especially in competitive markets such as the US South.  

Caulfield (1998) and Restrepo et al. (2020) simulated a 15-year investment in which a 

hypothetical loblolly pine stand in south Georgia was purchased at age 10 years and sold at age 25 

years. However, the average age of a typical timberland investment is 22 years, according to the 

USDA Forest Inventory Analysis (FIA) (Stanke et al., 2020). Most institutional timberland 

investments are composed of asset with different ages, in which managers can proceed with 

thinning and/or harvests in the first years if there are stands with ages defined by the chosen 

management regimes. Consequently, returns from these investments can differ depending on 



 

56 

several factors. The initial forest structure, in terms of spacing and age, will influence the thinning 

and harvest scheduling (Silva et al., 2024). The productive potential will determine the biological 

growth, tree growth pattern and form (Li et al., 2020; Sanquetta et al., 2020; Yue et al., 2024), and 

consequently merchantable product distribution (e.g., pulpwood, chip-and-saw, and sawtimber). 

The inflow of revenues and costs starts in the initial years as it is not necessary to wait the entire 

rotation period to harvest a stand.  

Furthermore, the conversion of timberlands into solar plants has become more common in 

recent years (Wall Street Journal, 2023). Cooper and Dwivedi (2024) mentioned that these 

conversions were focused on small landowners. Nonetheless, expressive timber companies were 

among the biggest hosts of new solar developments (Wall Street Journal, 2023). This conversion 

process is typically done through land sales, leases, or option contracts (Landgate, 2025). Although 

not new on the financial market (Black and Scholes 1972), option contracts are yet to be explored 

in forestry. To the best of our knowledge, the first studies employing option contracts on 

timberland investments were conducted by Chang and Zhang (2023, 2024). These authors 

employed American put options to outsource timber price uncertainty. Option contracts can either 

provide the holder either the right to buy (call option) or sell (put option) an asset at a specific 

price moment in time (Brennan and Schwartz, 1977; Hull, 2011). Regardless of how the contracts 

are set, the impact of this process on timberland investment returns is still unknown. Similar studies 

conducted previously used indexes such as the National Council of Real Estate Investment 

Fiduciaries (NCREIF) Timberland Index (NTI) and timber firm index (e.g., Sun and Zhang, 2001; 

Mei et al., 2013; Wan et al., 2015). For instance, NCREIF does not capture all land use change 

possibilities explicitly.   
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To provide more detailed information to landowners, institutional investors and other 

stakeholders in the forest sector, we propose an approach that uses a strategic landscape planning 

model and stochastic simulation to enlighten the impact multiple strategies of land use on the 

profitability and risks of timberland investments in the US South. Our contributions to the current 

literature are: (1) we use timberland assets from 22 timber markets that are representative in the 

US South and simulated as if they were a 15-year closed end fund; (2) we assess not only 

timberland returns, but the possibilities of leasing and selling part of the asset for solar energy 

developers; and last, (3) we calculate the expected return and risk of these assets within multiple 

scenarios. 

 

3.3 Methods 

In this section, we present our (3.3.1) strategic landscape planning model developed to 

maximize the forest value. We started our analysis by estimating the bare land, forest and terminal 

values at the stand level. A similar framework developed by Clutter et al. (1983) and replicated by 

González-González et al. (2020) and Silva et al. (2024) was used (see Appendix A). The first step 

was estimating the land expectation value (LEV) to determine the optimal silvicultural treatment 

and rotation age. From them, we estimated the forest and terminal values using a discounted cash 

flow analysis (DCF). The planning horizon was T = 15 years to mimic typical institutional 

timberland investments in the US South (Mei and Clutter, 2023). 

 

3.3.1 Strategic landscape planning model 

A strategic landscape planning model was designed to optimize the forest value by 

scheduling thinning and harvesting operations among each age strata under different silvicultural 
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regimes (Table 3.2). The forest value was the summation of present values ($/acre) of each age 

strata. The mathematical formulation is described as follows: 

𝑚𝑎𝑥
𝐴𝑖,𝑡,𝐻𝑖,𝑡,𝑅𝑖

∑∑∑
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𝑡

𝐼
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(𝐷)

  

            (3.1) 

Subject to: 

𝐴𝑖,𝑡 ≥ 𝐻𝑖,𝑡 ∀ 𝑖 ∈ [0, 𝐼] and 𝑡 ∈ [0, 𝑇]       (3.2) 

𝐴𝑖,𝑡=0 = 𝑎𝑖 ∀ 𝑖 ∈ [0, 𝐼]          (3.3) 

𝐴𝑖,𝑡=𝑇 − 𝐻𝑖,𝑡=𝑇 = 𝑅𝑖 ∀ 𝑖 ∈ [0, 𝐼]         (3.4) 

𝐻𝑖,𝑡 = 0 ∀ 𝑖 ∈ [0, 𝛤] and 𝑡 ∈ [0, 𝑇]         (3.5) 

𝐻𝑖,𝑡 ≤ 𝐴𝑖,𝑡           (3.6) 

where pk is the price if the k product, qi,k is the volume available of the k product at i age per acre, 

r is the discount rate of 4% (Cubbage et al., 2020), Hi,t is the area harvested of age i at period t, Ai,t 

is the area available at age i at period t, ai is the area available at age i, TVi is the terminal value at 

t = T, T is the terminal period (15 years), Ri is the residual area at terminal period t = T, FVi is the 

forest value per acre at age i, Ci is the establishment cost per acre when i = 0, and act is the annual 

cost per acre from t = 0 to T. 

 

Eq. 3.1 is the objective function, in which section (A) represents the present value of 

revenues in $/acre. Section (B) is the terminal value at t = T in $/acre. Section (C) represents the 

initial investment cost at t = 0 in $/acre. Section (D) is the present value of costs in $/acre. Eq. 3.2 

ensures that the harvested area (H) is less than or equal to the area available (A). Eq. 3.3 sets the 

initial forest structure at t = 0. Eq. 3.4 calculates the residual area after harvesting at period T. Eq. 
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3.5 ensures that any stand is at least Γ years before harvest. In our study, we set Γ = 20 years as 

the minimum merchantable age to account for short rotation stands focused on small-end diameter 

logs.  

 

3.3.2 Scenarios and stochastic simulation 

We proposed four scenarios to estimate the impact of different stages of a small-scale lease-

purchase call option contract for solar developments (Table 3.1). The first scenario was (S1) 

business as usual – BAU, in which input variables representing the three main return drivers (i. 

biological growth, ii. timber prices fluctuation, and iii. land price appreciation) were simulated 

1,000 times to generate a stochastic process. The same stochastic process was used to build 

scenarios S2 to S4.  

 

Table 3.1. Description of different scenarios of land returns and call option. 

Scenario Description Additional section on Eq. 3.1 

S1 15-year timberland investment - 

S2 BAU + up to 5% land sale  

(Land selling price - Table 3.3). 

𝐸𝑞. 3.1 +∑
(𝑠𝑡𝑆𝑡)

(1 + 𝑟)𝑡

𝑇

𝑡
 

S3 BAU + up to 5% land lease  

($500/acre per year). 
𝐸𝑞. 3.1 +∑ (

(𝑙𝐿𝑡)

(1 + 𝑟)𝑡
) +

(
𝑙
𝑟
𝐿𝑡)

(1 + 𝑟)𝑇

𝑇

𝑡
 

S4 BAU + 5-years call option + up to 5% land 

sale.  Strike price is equal to S2. 

𝐸𝑞. 3.1 +∑ (
(𝑜𝑂𝑡)

(1 + 𝑟)𝑡
) +

𝑜𝑆𝑡=4
(1 + 𝑟)𝑡=4

4

𝑡
 

Where 𝑠𝑡 is the selling value from Table 3.3; l is the leasing value fixed at $500 per acre per year 

(Landgate, 2024); o is the option value fixed at $25 per acre per year (Landgate, 2024);  𝑆𝑡 is the 

selling area; 𝐿𝑡 is the leasing area; 𝑂𝑡 is the area under option contract. 
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First, growth and yield curves were simulated 1,000 times for each market. To build the 

growth and yield curves, we simulated site indexes (SI) using average and standard deviations 

since they were normally distributed (see Appendix B). Timber prices were randomly selected for 

each product (pulpwood - 𝑝𝑝𝑤, chip-n-saw - 𝑝𝑐𝑛𝑠, sawtimber - 𝑝𝑠𝑡) and market over 1980-2024 

period. In order to mimic the historical difference between their prices, we imposed constraints to 

ensure that 𝑃𝑐𝑛𝑠 ≥ 𝛼1 + 𝑃𝑝𝑤, (ii) 𝑃𝑠𝑡 ≥  𝛼2 +  𝑃𝑝𝑤, (iii) 𝑃𝑠𝑡 ≥ 𝛼3 +  𝑃𝑐𝑛𝑠, where 𝛼1, 𝛼2 and 𝛼3 

are the minimum historical difference between their respective prices. The rationale is that the 

prices of a lower-value product would never be closer or far to the price of a higher-value product 

than historically observed. Finally, land prices were randomly selected from a uniform distribution 

drawn from the minimum and maximum values found for the US South ($1,440.66 to $2,618.79, 

as in Table 3.3). 

Scenarios S2 to S4 considered different stages of a small-scale call option contract. S2 

considered selling up to 5% of the land (for solar development or another higher and better use). 

S3 considered leasing up to 5% of the land for solar development. The annual lease payment was 

set equal to $500 per acre per year (Landgate, 2024). S4 considered the 5-year maturity stage 

period (Landgate, 2025) with up to 5% selling only in the strike period (S4). During the option 

maturity stage period (t = 0 to 4), also known as the development period, an annual payment of 

$25 per acre was added. During the strike period, up to 5% of the land was sold for the same price 

as in S2. These new scenarios imply changes in Section (A) of Eq. 3.1 build for S1 (Table 3.1). 

Similarly, new constraints were imposed. First, the area available (Ai,t) for harvesting was reduced 

in S2 and S3 to the same extent that an area was sold (𝑆𝑖,𝑡=𝑇) or rented (𝐿𝑖,𝑡=𝑇). We also ensured 

that the timber volume was harvested before selling or leasing the land. Considering that solar 

farm leases are usually 25-30 years long (Landgate, 2024), we recognize that this piece of land is 
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unlikely to be converted back into timberland after this period. Hence, we added a perpetuity 

present value of (𝑃𝑉 =  
𝑙𝑖

𝑟
= $12,500 per acre) to reflect the higher market value at the end of the 

planning horizon or liquidation. 

 

3.3.3 Return and risk assessment 

Potential returns and risks were assessed by capital budgeting criteria. We estimated the 

forest value for each 1,000 simulations generated for each market within every scenario. From 

these values, we calculated the internal rates of return (IRR) by setting the discount rate at which 

NPV was equal to zero. The return of each market and scenario combination was equal to its 

average, while the risk was measured by the IRR standard deviation, similar to Cubbage et al. 

(2010), Chudy et al. (2020), and Busby et al. (2020).  

 

3.4 Data 

3.4.1 Study area 

We assessed average potential returns of brownfield investments in 22 different markets 

within 11 states of the US South (Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, 

North Carolina, South Carolina, Tennessee, Texas, and Virginia), as shown in Figure 3.1. These 

22 markets encompassed all TimberMart-South (TMS) regions and more than 35 million acres 

(14.4 million hectares) of privately-owned corporate timberland. Each one of the 11 states has two 

markets, named as: Alabama (AL-01 and AL-02), Arkansas (AR-01 and AR-02), Florida (FL-01 

and FL-02), Georgia (GA-01 and GA-02), Louisiana (LA-01 and LA-02), Mississippi (MS-01 and 

MS-02), North Carolina (NC-01 and NC-02), South Carolina (SC-01 and SC-02), Tennessee (TN-

01 and TN-02), Texas (TX-01 and TX-02), and Virginia (VA-01 and VA-02).  



 

62 

 

Figure 3.1. Map of TimberMart-South regions. Source: TimberMart-South. 

 

3.3.2 Forest structure 

The initial forest structure of each market was assumed to be the current age class 

distribution, according to the USDA Forest Inventory Analysis (FIA). Loblolly pine (Pinus taeda 

L.) stands managed and owned by private entities, both non-corporate and corporate landowners, 

were selected and related at the county level with their respective TMS regions. Age class 

distribution assumed the strata of 5 years from 0 to over 50 years (Figure 3.2). 
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Figure 3.2. Current age class distribution of each timber market. Source: USDA Forest Inventory 

Analysis (FIA). 
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3.4.3 Yield curves 

All yield curves were produced using the 1996 Plantation Research Management 

Cooperative - PMRC model (Harrison and Borders, 1996). Four different silvicultural treatments 

were simulated when building the growth and yield curves. The first treatment considered a low 

initial density of 300 trees per acre (TPA), while the other three treatments considered an initial 

density of 600 trees per acre (TPA). Treatments 1 and 2 were simulated with no thinning, while 

treatment 3 was simulated with one thinning at age 15 years, and treatment 4 with two thinnings 

occurring at ages 15 and 24 years (Table 3.2). The main variables to build the growth and yield 

curves are the initial spacing (TPA), thinning ages (none, 15 and 25 years), residual basal area, 

and site index. Site indexes were sourced from Soil Survey Geographic Database – SSURGO. This 

dataset has site indexes at base age 50 years, which were converted to the base age of 25 years 

using a base-age invariant SI model proposed by Diéguez-Aranda et al. (2006) (See Appendix A). 

Every thinning reduced the basal area to 80 square feet per acre. Three different products were 

considered: pulpwood (6-8”), chip-n-saw (8-11”), and sawtimber (≥12”). 

 

Table 3.2. Silvicultural treatments.  

Treatment TPA 1st thinning 2nd thinning 

1 300 - - 

2 600 - - 

3 600 15 years - 

4 600 15 years 24 years 
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Figure 3.3. Yield curves based for each treatment and timber market.  
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3.3.4 Prices and costs 

 Stumpage timber prices for each product were sourced quarterly from 1980 to 2024 from 

TimberMart-South (2024), see Appendix C. Operational costs were sourced from Costs and 

Trends of Southern Forestry Practices for 2022 (Maggard and Natzke, 2023) and adjusted to 2024 

with the consumer price index - CPI (see Appendix D). The Costs and Trends of Southern Forestry 

Practices dashboard provides operational costs by ecoregion (e.g., Coastal Plains and Piedmont) 

and/or state for different landownerships. We considered data provided only by private institutions 

and weighted the prices according to the area of each ecoregion (Level II from US EPA) within 

the 22 timber markets (See Appendix E). Initial costs included mechanical site preparation, 

planting costs, seedlings, and herbicide application. Annual costs include taxes, maintenance, and 

other costs.  

Timberland prices were used as initial costs for acquiring an asset (land and the existing 

forest), regardless of its age. Due to the lack of available data, we used the TMS South-wide value 

from 2022 and adjusted to 2024 with the CPI (See Appendix D). The South-wide timberland price 

was then weighted according to the last sawtimber price of each state, resulting in timberland 

values ranging from $1,440.66 to $2,618.79 (Table 3.3).   

In our strategic landscape planning model (section 3.3.1), we acknowledged that a small 

portion of the timberland could be converted to another land use, such as annual crops or a new 

solar facility. Despite the trend toward converting timberland into solar arrays, these areas could 

also be converted to agriculture, for example. Therefore, we used farm real estate values from the 

Land Values 2024 Summary (USDA, 2024) as the selling price. These values were adjusted 

annually over the planning period (T = 15 years) according to the average appreciation rate 

observed for the past 15 years (2.2% per year). These values were used to approximate the values 
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mentioned in Wall Street Journal (2024) for a deal between a solar developer and a forest-product 

company. 

 

Table 3.3. Average timber prices, land prices and operational costs for each timber market. 

Market 

Timber prices ($/ton)1 Costs ($/acre)2 
Timberland 

cost ($/acre)3 

Land selling price 

($/acre)4 PW CNS ST Initial 
Annual 

(6-8”) (8-11”) (>=12”) 300 TPA 600 TPA Year 0 Year 15 

AL-01 7.37  19.34  28.23  435.24  512.99  12.15  1,778.20  4,000.00 5,440.00 

AL-02 9.22  21.78  31.90  475.70  528.92  9.94  2,039.10  4,000.00 5,440.00 

AR-01 6.86  17.28  29.07  397.91  499.88  11.14  1,918.44  4,110.00 5,696.46 

AR-02 5.76  16.43  24.23  358.83  478.55  12.94  1,832.83  4,110.00 5,696.46 

FL-01 12.10  21.85  29.43  320.16  462.39  8.26  1,991.81  8,300.00 11,503.81 

FL-02 10.78  20.63  28.87  386.91  497.90  9.15  2,263.31  8,300.00 11,503.81 

GA-01 7.77  19.25  27.21  440.03  514.99  11.92  2,004.86  4,500.00 6,137.00 

GA-02 11.51  23.14  32.68  426.33  513.41  9.55  2,168.74  4,500.00 6,137.00 

LA-01 8.25  17.62  28.92  413.17  508.59  9.43  1,922.51  3,720.00 5,155.92 

LA-02 7.29  18.15  27.84  333.32  470.55  8.46  1,817.34  3,720.00 5,155.92 

MS-01 6.47  18.39  27.80  419.64  511.00  9.49  1,752.93  3,490.00 4,837.14 

MS-02 7.45  19.66  30.66  463.36  525.38  9.85  1,950.23  3,490.00 4,837.14 

NC-01 5.38  15.83  20.95  427.58  509.69  12.54  2,061.93  5,190.00 7,193.34 

NC-02 7.07  17.95  30.51  396.48  501.97  9.26  2,618.79  5,190.00 7,193.34 

SC-01 7.23  17.55  26.66  473.15  527.51  10.45  1,705.64  4,500.00 6,237.00 

SC-02 8.88  19.85  30.27  393.64  500.79  9.23  2,048.89  4,500.00 6,237.00 

TN-01 5.41  12.92  16.20  389.10  490.88  14.75  1,440.66  6,710.00 9,300.06 

TN-02 6.10  13.46  18.61  473.62  528.25  9.99  1,629.00  6,710.00 9,300.06 

TX-01 7.76  16.72  28.65  458.37  522.18  11.07  1,778.20  2,800.00 3,880.80 

TX-02 7.38  15.95  29.63  412.35  507.83  9.73  2,039.10  2,800.00 3,880.80 

VA-01 7.11  16.69  19.64  398.20  495.70  14.18  1,918.44  5,850.00 8,108.10 

VA-02 7.84  17.16  24.16  446.23  520.11  9.72  1,832.83  5,850.00 8,108.10 

Source: 1 TimberMart-South (2024); 2 Maggard and Natzke (2023), 3 TimberMart-South (2023); 4 

USDA (2024). 
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3.5 Results 

In this section, we present the results from the stochastic simulation process. Section 3.5.1 

assesses the average potential returns for each market, while section 3.5.2 presents the risk 

assessment, highlighted by the standard deviation of IRR distributions. Section 3.5.3 highlights 

the impact on revenue shares in each scenario.  

 

3.5.1 Average returns 

 The South-wide average potential return for S1 - BAU was 8.02% (± 3.14%), considering 

all 22 timber markets (Table 3.4). Regionally, IRR ranged from 5.14% (MS-01) to 13.18% (FL-

01). Eight markets presented above average returns (VA-01, GA-01, NC-01, GA-02, VA-02, NC-

02, FL-02, and FL-01). The highest returns were found for the state of Florida (FL-01 – 13.18% 

and FL-02 – 12.14%), followed by NC-02 (10.11%), VA-02 (9.95%) and GA-02 (9.78%). South 

Georgia (GA-02) and east North Carolina (NC-02) are some of the largest timber markets, 

encompassing together more than 25% of the private corporate timberland in the US South (see 

Zhang and Mei, 2019). Although representing around 10-11% of the private timberland, the state 

of Florida presented the two highest returns. Although there is no evident correlation between IRR 

and sawtimber prices, FL-01 and FL-02 also presented higher sawtimber prices. From 1996 to 

2007 and 2021 to 2023, the state of Florida experienced sawtimber prices always greater than $35, 

reaching the maximum value of $49.89 per ton. These historical high timber prices are likely to 

help increase IRR. Despite covering more than 13% of the private timberland, Mississippi (MS-

01 and MS-02) presented the two lowest returns among all 22 markets. These two markets were 

followed by TX-01 (6.02%), AR-02 (6.08%), and TX-02 (6.21%). TX-02 also has an extensive 

timberland area.  
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The IRR consistently increased when adding up to 5% land-sale (S2) during the 15-year 

period. The South-wide return for S2 was 12.34%, meaning a 4.32% increase when compared to 

S1. Average potential returns ranged from 9.35% (MS-01) to 17.71% (FL-01). The strategic 

landscape planning model decided to sell 5% of the land for every simulation. Land selling prices 

(Table 3.3) were always higher than the reported timberland market values reported in the literature 

- $2,000 to $3,000 (Wall Street Journal, 2024). From that, we noticed that IRR increased similarly 

among all markets, shifting the IRR distribution to the right when compared to S1 distributions 

(Figure 3.4). When ranking the IRR in ascending order, we noticed that there was no change 

between S1 and S2. This means that it was possible to increase returns by 4.32%, on average, by 

adding small-scale land sale, but the most profitable markets remained the same compared to S1, 

as did the worst ones. In other words, one market did not become more profitable than the other.  

Similarly, potential returns increased for S3 when compared to S1. The South-wide return 

was 13.92%, increasing 5.90% when compared to S1. This 5.90% increase was higher than the 

average return from MS-01 (5.14%) and almost as high as the average return from MS-02 (5.99%) 

in S1. Annual lease payments helped keep the cashflow positive over the planning horizon, 

differently from land sale (S2). In addition, the perpetuity present value increased the selling price 

at the end of the planning horizon. Some markets became more profitable than others in this 

scenario. For example, TN-02 presented the lowest return instead of MS-01 from S1, while MS-

02 became more profitable than AR-02, TX-01, and TN-01. However, the same five most and less 

profitable markets remained the same as in S1 and S2 (not necessarily on the same order).   

The call option contract scenario (S4) presented the highest returns among all scenarios. 

The South-wide return was 19.42%, being 11.40%, 7.08%, and 5.50% higher when compared to 

S1, S2, and S3, respectively. Returns increased for all markets, except for both in Tennessee (TN-
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01 – 8.88% and TN-02 – 9.20%) when compared to S2 and S3. The highest returns were greater 

than 30% (30.96% in GA-02 and 30.95% in FL-01), and 6 other markets presented returns greater 

than 20% (FL-01 – 22.22%, SC-02 – 23.18%, NC-02 – 24.17%, VA-02 – 25.00%, NC-01 – 

25.33%, and SC-01 – 25.57%. All other returns ranged from 14.35% (AL-01) to 19.20% (AL-02).  
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Table 3.4. Internal rate of return (%) across 22 timber markets in the US South. 

Market 
S1 - BAU S2 – Land sale S3 – Land lease S4 – Call option 

Average SD Q1 Q3 Average SD Q1 Q3 Average SD Q1 Q3 Average SD Q1 Q3 

AL-01 6.61 2.11 5.01 8.05 10.87 2.19 9.21 12.37 12.62 2.50 10.80 14.23 14.35 5.10 10.64 17.26 

AL-02 7.80 2.15 6.18 9.32 12.11 2.24 10.43 13.69 13.88 2.78 11.72 15.68 19.20 7.08 13.48 23.42 

AR-01 7.01 2.54 5.19 8.50 11.29 2.64 9.40 12.84 13.16 2.86 11.01 14.95 17.98 8.67 11.62 22.30 

AR-02 6.08 2.18 4.37 7.48 10.32 2.27 8.54 11.78 11.98 2.75 10.01 13.80 16.21 8.86 10.08 20.42 

FL-01 13.18 2.94 10.98 15.06 17.71 3.05 15.41 19.66 17.01 4.15 14.01 19.20 22.22 8.23 16.04 26.76 

FL-02 12.14 2.30 10.36 13.63 16.62 2.39 14.77 18.17 15.52 3.07 13.15 17.58 30.95 12.16 20.97 39.43 

GA-01 9.06 3.01 6.85 10.75 13.42 3.13 11.12 15.18 15.46 3.99 12.68 17.55 16.69 11.56 8.07 21.52 

GA-02 9.78 2.71 7.87 11.50 14.17 2.82 12.18 15.96 16.11 3.32 13.68 18.29 30.96 12.74 20.82 38.99 

LA-01 7.05 2.44 5.22 8.57 11.33 2.54 9.43 12.91 13.01 2.85 10.93 14.86 16.52 6.37 12.18 19.68 

LA-02 6.47 1.87 4.98 7.90 10.73 1.94 9.18 12.22 12.54 2.27 10.74 14.24 15.23 4.58 11.55 18.35 

MS-01 5.14 1.74 3.76 6.45 9.35 1.81 7.91 10.71 10.69 1.94 9.19 12.07 14.40 5.33 10.17 17.65 

MS-02 5.99 1.99 4.49 7.31 10.23 2.07 8.67 11.61 12.45 2.35 10.62 13.99 17.05 6.43 12.35 20.65 

NC-01 9.57 2.78 7.54 11.21 13.96 2.89 11.85 15.66 16.11 3.59 13.45 18.01 25.33 11.13 17.26 30.69 

NC-02 10.11 2.73 8.28 11.72 14.51 2.84 12.61 16.19 16.95 3.86 14.20 19.22 24.17 10.76 16.22 29.69 

SC-01 7.65 2.31 5.91 9.08 11.96 2.40 10.15 13.44 13.95 2.91 11.86 15.66 25.57 12.92 16.04 32.37 

SC-02 7.68 2.31 5.96 9.19 11.99 2.40 10.20 13.56 13.96 2.93 11.76 15.61 23.18 13.45 13.18 31.15 

TN-01 7.04 1.39 5.91 8.11 11.32 1.44 10.15 12.43 12.38 1.57 11.09 13.58 8.88 2.77 7.06 10.82 

TN-02 7.13 1.56 5.88 8.26 11.42 1.62 10.12 12.59 10.60 1.72 9.26 11.88 9.20 2.90 7.25 11.33 

TX-01 6.02 2.57 4.23 7.67 10.26 2.68 8.39 11.97 12.34 3.04 10.11 14.23 18.12 7.86 12.85 21.18 

TX-02 6.21 3.61 3.95 7.66 10.46 3.75 8.11 11.96 13.20 3.31 10.96 15.05 19.06 10.13 12.29 24.25 

VA-01 8.34 2.28 6.69 9.77 12.67 2.37 10.96 14.16 14.07 2.68 12.04 15.84 17.02 9.93 10.67 20.67 

VA-02 9.95 2.68 7.91 11.64 14.35 2.79 12.23 16.10 16.48 3.50 13.81 18.58 25.00 11.29 16.96 31.11 

South-

wide 
8.02 3.14 5.78 9.79 12.34 3.26 10.01 14.18 13.92 3.55 11.39 15.82 19.42 8.65 11.92 24.30 

Note: SD is the standard deviation, Q1 is the 1st quartile, and Q3 is the 3rd quartile.
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Figure 3.4. Potential return distributions for each timber market and land return scenario. 
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To reinforce the increase in IRR in scenarios S2 through S4, we calculated the probability 

that both the lower (Q1 or 0.25 quantile) and upper (Q3 or 0.75 quantile) quartiles of the IRR 

distributions from these scenarios are greater or equal to those in S1 (Table 3.5). To calculate Q1 

and Q3, we split sorted all IRR values for each market and scenario into four equal parts (25% 

each). First, we calculated the Q1 value for each market and then calculated the probability of 

these values being greater or equal than those in S1.  

In every case, it was very likely (from 79 to 100% chance) that average returns from S2 

would be higher than S1 - BAU. For Q1, there was a 99-100% certainty that returns from S2 would 

be higher than S1 - BAU. This value ranged from 79 to 100% for Q3. There was a 97-100% 

certainty that returns from S3 would exceed those found for Q1 in S1 – BAU, while a 63-100% 

likely to exceed those found for Q3, indicating that a 5% land lease can significantly increase the 

returns. S4 increases were not as consistent as in S2 and S3. Although presenting an 81-100% 

chance of exceeding Q1 from S1, the probability of exceeding Q3 ranged from 58 to 99%. This 

means that in the worst case, S2 and S3 are 97-100% likely to provide higher returns than the 

lowest returns from S1. For S4, this probability ranged from 81 to 100%. Probabilities for S2 to 

S4 present higher returns than 75% of all returns from S1 ranged from 79-100%, 63-100%, and 

58-99%, respectively. It is very likely, then, that the returns from these scenarios are higher than 

the business as usual (S1). 
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Table 3.5. Average potential returns change (Δ%) and probabilities (%) of estimated returns of 

each scenario being equal or greater than Q1 and Q3 from S1 – BAU. 

Market 
S2 – Land sale S3 – Land lease S4 – Call option 

Δ 𝑰𝑹𝑹̅̅ ̅̅ ̅̅  Q1 Q3 Δ 𝑰𝑹𝑹̅̅ ̅̅ ̅̅  Q1 Q3 Δ 𝑰𝑹𝑹̅̅ ̅̅ ̅̅  Q1 Q3 

AL-01  4.26 100 91  6.08 100 99  7.74 99 94 

AL-02  4.31 100 91  6.15 100 99  11.40 100 99 

AR-01  4.28 100 89  5.90 100 98  10.97 99 91 

AR-02  4.24 100 91  3.83 100 97  10.13 96 88 

FL-01  4.53 100 79  3.38 97 63  9.04 97 81 

FL-02  4.48 100 92  6.40 99 69  18.81 99 96 

GA-01  4.36 100 81  6.33 100 94  7.63 81 62 

GA-02  4.39 100 83  5.96 100 95  21.18 100 97 

LA-01  4.28 100 87  6.07 100 96  9.47 99 94 

LA-02  4.26 100 95  5.55 100 100  8.76 100 99 

MS-01  4.21 100 97  6.46 100 100  9.26 100 98 

MS-02  4.24 100 94  6.54 100 100  11.06 100 99 

NC-01  4.39 100 83  6.84 100 97  15.76 100 95 

NC-02  4.40 100 86  6.30 100 95  14.06 99 94 

SC-01  4.31 100 90  6.28 100 98  17.92 100 95 

SC-02  4.31 100 90  5.34 100 98  15.50 93 87 

TN-01  4.28 100 100  3.47 100 100  1.84 87 58 

TN-02  4.29 100 100  6.32 100 93  2.07 88 61 

TX-01  4.24 99 84  6.99 100 96  12.10 100 97 

TX-02  4.25 100 81  5.73 100 98  12.85 98 93 

VA-01  4.33 100 92  6.53 100 98  8.68 93 79 

VA-02  4.40 100 84  6.08 100 97  15.05 100 94 
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3.5.2 Risk assessment 

The IRR standard deviation was used to assess the investment’s risk. The South-wide 

standard deviation ranged from 3.14% (S1) to 8.65% (S4), showing a risk increase. South-wide 

risks increased by 0.12% (IRR = 3.26%) and 0.41% (3.55%) in S2 and S3 when compared to S1, 

respectively. Meanwhile, S4 experienced a 5.51% risk increase. 

In S1, risks ranged from 1.39% (TN-01) to 3.61% (TX-02). TX-02 (3.6%) and GA-01 

(3.0%) presented the higher risks among all 22 markets. Meanwhile, TN-01 and TN-02 presented 

the lower risks. This is reinforced by the peaked curves in Figure 3.4. The same behavior persisted 

for both markets in all four scenarios. When comparing S2 and S3 with respect to S1, we noticed 

that, on average, risks slightly increased. In S2, some markets presented lower risks when 

compared to S1. Differently, all 22 markets presented higher risks in S3 when compared to S1. 

Nonetheless, the shape of the IRR distributions remained virtually the same, the main difference 

was that IRR distributions were shifted to the right.  

 S4 provided the highest risk among all scenarios. This is reinforced by the flatter 

distributions in Figure 3.4. Surprisingly, FL-02 (30.95% ±12.16%), GA-01 (16.69% ±11.56%), 

GA-02 (30.96% ±12.74%), NC-01 (25.33% ±11.13%), NC-02 (24.16% ±10.76%), SC-01 (25.57% 

±12.92%), and SC-02 (23.18% ±13.45%) presented high returns at a cost of above average risks. 

Consequently, these markets presented flatter distributions compared to when compared to other 

markets. Despite the significant overall increase in risk for most markets in S4, an investment 

decision based solely on the risk (standard deviation) may be misleading. For most markets, IRR 

distributions for S4 started to the right of S1 tails. This means that S4 investments are very likely 

to generate higher returns than S1. This is reinforced by Q1 probabilities from Table 3.5. On 

average, S4 investments are 97% likely to present higher returns when compared to S1. The less 
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likely markets are GA-01 (81%), TN-01 (87%) and TN-02 (88%), while all other markets are at 

least 93% or more likely to present higher returns than S1. Two main factors could explain this. 

First, the call value added during the maturity stage (first 5 years of the investment) led to positive 

cashflows, and consequently, different harvest schedules and revenue shares (see section 3.5.3). 

Second, higher selling prices in the strike period also resulted in another year with positive cash 

flow, but with significant revenue. 

We noted that in some prices and costs combinations, the strategic landscape planning 

model preferred to harvest forests in the first years in S1. After that, the thinning and harvest 

volume reduced and remained close to zero until the end of the planning horizon. This resulted in 

negative cash flows from year 1 to 14. In contrast, the strategic landscape planning model sought 

to keep positive cashflows throughout the planning horizon, generating high IRR values.  

One analysis that may be of interest to investors is the relationship between returns and 

risks. Figure 3.5A shows this relationship within each market and scenario. The limits for defining 

the quadrants followed the logic of dividing the maximum value on each axis by 2, therefore being 

7.5% for the x-axis (risk) and 17.5% for the y-axis (return). All markets in S1, S2, and S3 were 

located in the II quadrant (low risk - low return), except for FL-01 in S2 (17.71%) which is right 

above the edge of the I quadrant (low risk - high return). S4 investments were spread across all 

four quadrants, reflecting the higher risk of this scenario. The only S4 investment in I quadrant 

was AL-02. When we removed S4 (Figure 3.5B) and adjusted the quadrants’ thresholds, we 

noticed more investments in the I quadrant (mainly S2 and S3), meaning that it is possible to 

achieve returns over 10% with lower risk (>2.5%) in these scenarios. Only one market from S1 in 

I quadrant was FL-02 (12.14% ±2.30%). This information is useful for landowners and investors 

to assist with their portfolio management depending on their risk aversion and return target. It is 
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worth noting that this classification was based on the strategic landscape planning model and the 

stochastic simulation process, as well as the historical prices. Hence, this analysis does not consider 

prices that are outside the ranges observed during the period 1980-2024. 

 

Figure 3.5. Return and risk relationship for timberland investments in the US South. 

 

3.5.3 Revenue share 

Figure 3.6 illustrates the share of each revenue layer across all four scenarios. In S1 – BAU, 

land appreciation accounted for 63% of the asset value, while timber revenues comprised 37%. 

This value, however, ranged significantly from 97-3% (TN-02) to 33-67% in FL-02. As expected, 

timber revenues were most significant in FL-01, FL-02, GA-02, and NC-02. These markets 

presented a positive combination of historical timber prices, site indexes, and initial timber stock, 

causing the model to choose to harvest the largest available area over 15 years. In contrast, timber 

share was lower in markets with a negative combination of the three variables. For example, we 

noticed that the area harvested over the 15 years was only, on average, 6% in TN-02. The model 

chose to leave the forest standing and benefit from the constant rate of land appreciation (2.2% per 

year).  
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Land appreciation share reduced from 63% for S1 to 29% for S2 and S3. Timber revenues 

increased significantly from S2 (59%) and S3 (53%) when compared to S1 – BAU. This happened 

to all markets, especially for those with small timber shares in S1 – BAU. Since only 5% of the 

land was sold in S2, the land sale share was consistently around the average (11%), ranging from 

9 to 14%. Similarly, the land formal lease ranged from 13% to 27%, with an average share of 19%. 

The land lease share was higher than the land sale because the cash flow benefited not only from 

annual lease payments but also from the perpetuity present value added in the last year of the 

planning horizon. This also reduced the timber share in S2.  

Although representing only 10% (from 5 to 16%) of the total share, the call option contract 

caused a significant change in the harvest schedule. The annual payment during the option period, 

combined with the 5% selling in the strike period, helped the cash flow to have positive values. 

Depending on the combination of biological growth, timber prices, and asset costs, the harvested 

area changed considerably, resulting in a great IRR variation.  
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Figure 3.6. Revenue share from each land return scenario. 
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3.6 Discussion and conclusions 

In this paper, we assessed maximum potential returns and risks across 22 timber markets 

using four different scenarios of land returns in addition to timber revenues in a 15-year investment 

period. We designed a stochastic simulation process using a strategic landscape planning model to 

account for different growth rates, timber and land prices. We extended the prior literature in three 

different ways. First, we complemented the studies conducted by Caulfield (1998), Mei et al. 

(2013), Restrepo et al. (2020), and Cooper and Dwivedi (2024), estimating potential returns for a 

post-pandemic period with multiple initial age strata, instead of starting at age 0 or 10 years using 

a planning model. Also, estimated returns were generated by a planning model instead of indexes.  

In general, our results from the business as usual scenario (S1 – BAU) are aligned with 

previous research. The south-wide return was 8.02% (± 3.14%), with MS-01 presenting the lowest 

return (5.14% ±1.74%) and FL-01 with the highest return (13.18% ± 2.94%). Some studies 

estimated returns over the entire rotation period (e.g., Chudy et al. 2020), others for a specific 

investment period (e.g., Mei et al., 2013). Nonetheless, returns were similar. For example, Chudy 

et al. (2020) found south-wide returns of 5.97% (± 0.61%) and 7.33% (± 0.63%) for medium and 

high productive sites, respectively. These authors estimated returns over the entire rotation period, 

excluding land costs and compared its effect on timberland returns. The authors also mentioned 

that excluding land could decrease overall returns from 3%. Mei et al. (2013) simulated expected 

returns for 2010-2025 and found average returns ranging from 7.25% (± 3.71%) to 8.35% (± 

1.51%) when using random and mean-reverting timber prices. Callaghan et al. (2019) estimated 

returns for loblolly pine investments in the US South under different cost scenarios. Although they 

did not publish return values, they found positive NPVs using a 7% discount rate, indicating IRRs 
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higher than 7%. Cubbage et al. (2020) found average IRRs of 3.2% and 5.9% with and without 

land costs, respectively.  

The returns varied significantly across the 22 markets. Five markets always presented 

above-average returns in all four scenarios: FL-01, FL-02, GA-02, NC-01, and NC-02. Although 

no regional demand or the actual size of each forest sector was considered in this study, FL-01, 

FL-02, GA-02, and NC-02 are among the biggest regional markets in the US South. We 

acknowledge that NC-01 is a small market compared to other regions. High returns for this market 

can be attributed to input’s combination (timber prices, land appreciation, land selling value). 

Despite the large area of timberland in AL-01, AL-02, MS-01, MS-02 and TX-02, these markets 

always presented one of the lowest returns in this study. This could be attributed to the low timber 

and land selling prices (Table 3.3).  

Regional returns are not commonly published in related literature. As mentioned before, 

most studies reported IRR for the entire US South as a unique region. One exception was the study 

published by Zhang and Mei (2019), in which the authors compared returns across the 22 markets 

with other crops (almonds, apples, corn and others). Similarly, FL-01, FL-02, GA-02, NC-01, and 

NC-02 figured in above-average returns, while AL-01, AL-02, MS-01 and MS-02 presented lower 

returns. However, this study was focused on comparing timberland investments against other 

crops, while our study focused on assessing the impact of land revenues from call option contracts 

for solar developments. Another difference is that these authors used NCREIF and timber prices 

to estimate returns, while our returns were estimated from a landscape planning model. NCREIF 

does not capture the effects of these call option contracts or other land use change possibilities on 

timberland investments. 
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The inclusion of land returns increased timberland investment potential returns and risks. 

This new market trend could increase returns from 4.32 to 11.40%, while risks increased from 

0.14% to 5.51%. Scenario S2 with 5% land sale for another higher and better use could increase 

timberland returns by 4.32%. We acknowledge that not every timberland could be converted to 

solar plants, whether due to the slope or proximity to any facility. However, selling a small piece 

of land that could be used for farm crops would increase returns significantly. Similarly, small-

scale formal lease agreements for solar could also increase a timberland investment significantly 

(by 5.90%, on average). This is true, especially because annual payments benefit the cashflow and 

increase the land selling price. Reported annual payments range from $500 to $2,000 per acre per 

year for 25-30 years.  

Our study presents some limitations. First, we estimated maximum potential returns, 

meaning that no other constraint was added to the strategic planning model. We recognize that 

returns within a context with operational constraints should be lower than those reported. Any 

unforeseen shift in timber prices outside the historical range can result in returns outside the 

distributions. Timber prices in local transactions could differ from the regional average, due to the 

distance to mills or transportation costs. The same applies to yield gaps caused by natural 

catastrophes or diseases. We acknowledge that land prices can also vary significantly depending 

on size, site quality and many other factors. Hence, portfolio managers should take those variables 

into account when performing such financial analysis (Chudy et al., 2020). Our goal was to 

complement the literature by assessing potential returns across different regions in the US South 

and highlight the impact of new revenue layers from land management over timber management. 

It is in the interest of landowners and investors to understand the benefits and losses before 

deciding whether to accept selling or leasing their land. The strategic landscape planning model 
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and the stochastic process we presented here could be expanded to other areas globally or even 

when simulating other local or regional market trends. Finally, we recognize that future 

maintenance and land conversion after the lease period could also decrease returns.  
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Abstract 

Modern portfolio theory is a crucial tool to support budget allocation and risk-efficient 

management of corporate and institutional investments. Timberland portfolios reflected the current 

investment environment at their time. In this study, we used updated returns and risks for 22 timber 

markets across the US South. Using a mean-variance (M-V) model, we estimated three portfolios 

for 22 timber markets in the US South. A total of two portfolios were estimated. The first portfolio 

– P1 considered 15-year timberland investments with timber revenues and land appreciation, while 

the second portfolio - P2 accounted for small-scale land returns from sales, leases and call option 

contracts for solar development and reflected the current market trend. The business as usual 

portfolio presented returns ranging from 5.16% and 11.31% for the risk minimizing and return 

maximizing portfolios. We noticed a 6.23% increase on both risk minimizing and return 

maximizing portfolios for P2 when compared to P1. In the minimum risk case, P2 presented a 

return higher return when compared to P1, highlighting the impact of land returns on timberland 

investments. The Sharpe ratio ranged from 0.54 to 0.99 for P1, and from 1.31 to 1.69 for P2. 

Allocation in FL-01, FL-02, and NC-01 increased as the risk budget increased. 
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4.1 Introduction 

Commercial timberland has received increasing attention from institutional investors in the 

US South during the last decades (Cascio and Clutter, 2008; Waggle and Johnson, 2009; 

Timberland Investment Resources, 2024). Timberland investments have been recognized as a 

mean of portfolio diversification among institutional investors due to low risk, low correlation 

with traditional stocks, bonds, and equities (Liao et al., 2009; Wan et al., 2013; Busby et al., 2020). 

Hence, investment portfolios could benefit from diversification and protection against inflation 

(Binkley et al., 2001). 

According to the financial theory, a portfolio is a collection of different assets/investments 

(Gunjan and Bhattacharyya, 2023). Combining these different assets, investors tend to maximize 

returns and minimize risks. However, high returns often come at the cost of high risks. Depending 

on the degree of risk and return, portfolios can be further characterized as (i) aggressive portfolios, 

(ii) defensive portfolios, (iii) income portfolios, (iv) speculative portfolios, and (v) hybrid 

portfolios. Usually, aggressive portfolios aim for higher returns and undertake high risks, while 

defensive portfolios aim for minimum risks and give minimum returns (Gunjan and Bhattacharyya, 

2023). Income and speculative portfolios are focused on dividends and other types of benefits or 

are somehow similar to gambling. In contrast, hybrid portfolios aim to provide optimum returns 

with optimum degrees of risk. 

To optimize the tradeoffs between maximizing expected returns and minimizing risks, 

Markowitz (1952) proposed the mean-variance (M-V) model. M-V is one of the most common 

approaches for identifying the tradeoffs between maximizing expected returns and minimizing 

risks (Chen et al. 2021). Different studies employed the M-V model to optimize timberland 

portfolios (e.g., Reeves and Haight, 2000; Knoke, 2008; Zhang and Mei, 2019; Busby et al. 2020). 
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Reeves and Haight (2000) ran a harvest schedule model for loblolly pine stands in Georgia, USA, 

and derived returns and risks to employ in an M-V model. Differently, Zhang and Mei (2019) used 

timber prices and NCREIF to calculate returns and risks for 22 markets across the US South and 

compared them with other crops.  

Timberland investments can present very different returns, depending on the region, 

species, timber products, and other factors. One recent study conducted by Busby et al. (2020) 

estimated an optimal portfolio of global timberland portfolio, including different species (e.g., pine 

plantations, Douglas-fir, eucalypt, teak, poplar, and other mixed hardwood and conifers). These 

authors found returns (nominal) ranging from 5.3% to 12.4%. However, even in the same region, 

local variability can result in different returns (see Cubbage et al. 2007; Callaghan et al. 2019; Mei 

et al. 2019; Chudy et al. 2020; Cubbage 2020; Cubbage et al. 2022). This is reinforced by the 

results presented by Zhang and Mei (2019), in which authors found returns ranging from 2.08 to 

8.12%. 

However, since this study, timber prices declined significantly due to the COVID-19 

pandemic and mill closures (Bruck et al. 2023; Forisk Consulting, 2024). Additionally, landowners 

are being exposed to new opportunities to make their land more profitable than focusing solely on 

timber production. The Inflation Reduction Act boosted investments in solar and wind energy 

across the United States. Usually, both solar and wind require big areas to be profitable (Cooper 

and Dwivedi, 2024). It shifted attention to US South timberlands. So far, different states in the US 

South are experiencing a significant transition from timberlands towards new solar plants 

(Woodson, 2019; Cooper and Dwivedi, 2024; Landgate, 2024) and 3 to 7.5 million acres of 

timberland are expected to be converted to solar plants in the next 20 years (Wall Street Journal, 

2024; Wear et al. 2025). 
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Under this context, we complement the literature by: i. calculating returns from different 

regions other than the state of Georgia (Reeves and Haight, 2000) or the average South-wide 

(Busby et al. 2020; Chudy et al. 2020; Restrepo et al. 2020), ii. updating returns and risks from 

Zhang and Mei (2019) after the COVID-19 pandemic. Although these authors used a different 

approach to estimate returns, we encompassed the same markets and considered a larger timber 

prices window (1980-2024). Finally, we extend the literature by building an optimized timberland 

investment portfolio including returns from land returns from solar developments. 

 

4.2 Portfolio optimization model 

The portfolio optimization model used in this study is based on mean-variance (M-V). The 

M-V model was proposed by Markowitz (1952) and can be used for effective portfolio selection 

when the objective is to (i) minimize variance for a given expected return and (ii) maximize 

expected return for a given variance. According to Gunjan and Bhattacharrya (2023), the M-V 

model is fast, useful and easy to implement. It maximizes expected returns at several different 

levels of risk and the objective is to find the weight of the assets that will minimize the variance at 

a given rate of return.  

M-V model was recently applied in Busby et al. (2020) for a global timberland investment 

portfolio. In this study, we replicate the model in the same fashion, in which the model is subject 

to three main constraints. First, the portfolio risk budget must be smaller or equal to the maximum 

level of risk (portfolio variance). Second, the portfolio must be fully invested (i.e., the sum of 

weights has to be equal 1). Finally, weights assigned to each asset have to be non-negative. The 

model is mathematically defined as follows: 
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𝐸(𝑟) = 𝑚𝑎𝑥∑𝑟𝑖𝑤𝑖

𝑛

𝑖=1

 
(4.1) 

Subject to:  

∑𝑤𝑖
2𝑠𝑖
2

𝑛

𝑖=1

+ 2∑𝑤𝑖𝑤𝑗𝑐𝑜𝑣(𝑤𝑖𝑤𝑗) ≤ 𝑠𝑚
2  

(4.2) 

∑𝑤𝑖

𝑛

𝑖=1

= 1.0 
(4.3) 

𝑤1, 𝑤2, … , 𝑤𝑛 ≥ 0 (4.4) 

where E(r) is the expected portfolio return. i and j = 1, 2, …, n is the number of assets, ri is the 

expected return from the ith asset, wi is the weight assigned to the ith asset, 𝑠𝑖
2 is the variance of the 

ith asset and 𝑠𝑚
2  is the maximum level of risk (or the portfolio variance)  

After estimating several portfolios along a range of risk budgets, we generated the risk-

efficient frontier. The risk-efficient frontier is defined as the set of portfolios that maximize E(r) 

across the range of risk budgets. This process was used to generate the highest possible return for 

a specific risk budget and, equivalently, the lowest possible risk at the risk budget range. For each 

combination of maximized return and risk budgets, we estimated the Sharpe ratio (S). The Sharpe 

ratio is a measure of risk-adjusted return, which compares the portfolio return (minus the risk free 

ratio), divided by its risk. 

𝑆 =
𝐸(𝑟) − 𝑟𝑓

𝑠
 

(4.5) 

where S is the Sharpe ratio, r is the portfolio return, rf is the risk-free return rate (2.63%1), and s is 

the portfolio risk. 

 
1 We assumed the risk-free rate to be the average between the 10- and 20-year Treasury Rate from the last 10 years 

to approximate a 15 year Treasury Rate (U.S. Department of the Treasury). 
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To better understand different investment possibilities and account for new land returns, 

we estimated two portfolios. The first portfolio (P1) encompassed all 22 markets in the business 

as usual scenario – S1 BAU (see Section 4.4), in which only timber revenues and land appreciation 

were considered. This was also considered as our business as usual portfolio. In order to have some 

diversification, we constrained the model so no single asset could comprise more than 20% of the 

total portfolio. However, every single market (investment opportunity) had to be investment at 

least 0.1%. Meanwhile, the second portfolio (P2) considered returns and risks from all four 

scenarios. 

After trying to run the model with all 88 investment possibilities, we noticed that the model 

did not converge due to the large number of assets, and when it did converge, the portfolio variance 

was inflated. Also, since this is a matrix-based optimization problem, increasing the number of 

investment options raised computational time. Considering that our objective was to assess the 

impact of different land returns, we decided to create 22 portfolios with the four investment options 

in each of the 22 markets. These portfolios had no diversification constraints. The 22 best 

investment opportunities, one for each market, were chosen to compose the set of possible 

investments in P2. 
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Table 4.1. Set of constraints imposed on the portfolio optimization model. 

Constraint Description 

(P1) and 𝑤1, 𝑤2, … , 𝑤𝑛 ≤ 0.2 The portfolio must include all 22 markets from S1. 

(P2) 𝑤1, 𝑤2, … , 𝑤𝑛 ≤ 0.2 

No single asset can comprise more than 20% of the total 

portfolio. This portfolio considered the 22 selected assets 

from S1 to S4. 

where i and j = 1, 2, …, n is the number of assets and wi is the weight assigned to the ith asset.  

 

4.3 Methods 

In this section, we present the strategic landscape planning model developed to maximize 

the forest value. We started our analysis by estimating the bare land, forest and terminal values at 

the stand level. A similar framework developed by Clutter et al. (1983) and replicated by González-

González et al. (2020) and Silva et al. (2024) was used (see Appendix A). The first step was 

estimating the land expectation value (LEV) to determine the optimal silvicultural treatment and 

rotation age. From them, we estimated the forest and terminal values using a discounted cash flow 

analysis (DCF). The planning horizon was T = 15 years to mimic typical institutional timberland 

investments in the US South (Mei and Clutter, 2023). 

 

4.3.1 Strategic landscape planning model 

A strategic landscape planning model was designed to optimize the forest value by 

scheduling thinning and harvesting operations among each age strata under different silvicultural 

regimes (Table 4.2). The forest value was the summation of present values ($/acre) of each age 

strata. The mathematical formulation is described as follows: 
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𝑚𝑎𝑥
𝐴𝑖,𝑡,𝐻𝑖,𝑡,𝑅𝑖

∑∑∑
(𝑝𝑘𝑞𝑖,𝑘𝐻𝑖,𝑡)

(1 + 𝑟)𝑡

𝑇

𝑡

𝐼

𝑖

𝐾

𝑘⏟              
(𝐴)

+∑
𝐴𝑖,𝑡(𝑇𝑉𝑖𝑅𝑖)

(1 + 𝑟)𝑡=𝑇
   

𝐼

𝑖⏟          
(𝐵)

−∑
(𝐹𝑉𝑖)𝐴𝑖,𝑡=0
(1 + 𝑟)𝑡=0

𝐼

𝑖⏟        
(𝐶)

− ∑∑
𝐴𝑖,𝑡(𝐶𝑖 + 𝑎𝑐𝑡)

(1 + 𝑟)𝑡
 

𝑇

𝑡

𝐼

𝑖⏟              
(𝐷)

  

            (4.6) 

Subject to: 

𝐴𝑖,𝑡 ≥ 𝐻𝑖,𝑡 ∀ 𝑖 ∈ [0, 𝐼] and 𝑡 ∈ [0, 𝑇]       (4.7) 

𝐴𝑖,𝑡=0 = 𝑎𝑖 ∀ 𝑖 ∈ [0, 𝐼]          (4.8) 

𝐴𝑖,𝑡=𝑇 − 𝐻𝑖,𝑡=𝑇 = 𝑅𝑖 ∀ 𝑖 ∈ [0, 𝐼]         (4.9) 

𝐻𝑖,𝑡 = 0 ∀ 𝑖 ∈ [0, 𝛤] and 𝑡 ∈ [0, 𝑇]         (4.10) 

𝐻𝑖,𝑡 ≤ 𝐴𝑖,𝑡           (4.11) 

where pk is the price if the k product, qi,k is the volume available of the k product at i age per acre, 

r is the discount rate of 4% (Cubbage et al. 2020), Hi,t is the area harvested of age i at period t, Ai,t 

is the area available at age i at period t, ai is the area available at age i, TVi is the terminal value at 

t = T, T is the terminal period (15 years), Ri is the residual area at terminal period t = T, FVi is the 

forest value per acre at age i, Ci is the establishment cost per acre when i = 0, and act is the annual 

cost per acre from t = 0 to T. 

Eq. 4.6 is the objective function, in which section (A) represents the present value of 

revenues in $/acre. Section (B) is the terminal value at t = T in $/acre. Section (C) represents the 

initial investment cost at t = 0 in $/acre. Section (D) is the present value of costs in $/acre. Eq. 4.7 

ensures that the harvested area (H) is less than or equal to the area available (A). Eq. 4.8 sets the 

initial forest structure at t = 0. Eq. 4.9 calculates the residual area after harvesting at period T. Eq. 

4.10 ensures that any stand is at least Γ years before harvest. In our study, we set Γ = 20 years as 

the minimum merchantable age to account for short rotation stands focused on small-end diameter 

logs.  



 

102 

4.3.2 Scenarios and stochastic simulation 

We proposed four scenarios to estimate the impact of different stages of a small-scale lease-

purchase call option contract for solar developments (Table 4.2). The first scenario was (S1) 

business as usual – BAU, in which input variables representing the three main return drivers (i. 

biological growth, ii. timber prices fluctuation, and iii. land price appreciation) were simulated 

1,000 times to generate a stochastic process. The same stochastic process was used to build 

scenarios S2 to S4.  

 

Table 4.2. Description of different scenarios of land returns and American call options. 

Scenario Description Change in section (A) - Eq. 4.6 

S1 15-year timberland investment 

 
- 

S2 BAU + up to 5% land sale 

(Land selling price - Table 4.4). 
𝐸𝑞. 4.6 +∑

(𝑠𝑡𝑆𝑡)

(1 + 𝑟)𝑡

𝑇

𝑡
 

S3 BAU + up to 5% land lease  

($500/acre per year). 𝐸𝑞. 4.6 +∑ (
(𝑙𝐿𝑡)

(1 + 𝑟)𝑡
) +

(
𝑙
𝑟
𝐿𝑡)

(1 + 𝑟)𝑇

𝑇

𝑡
 

S4 BAU + 5-years call option + 

up to 5% land sale.  

Strike price is equal to S2. 

𝐸𝑞. 4.6 +∑ (
(𝑜𝑂𝑡)

(1 + 𝑟)𝑡
) +

𝑜𝑆𝑡=4
(1 + 𝑟)𝑡=4

4

𝑡
 

Where 𝑠𝑡 is the selling value from Table 4.4; l is the leasing value fixed at $500 per acre per year 

(Landgate, 2024); o is the option value fixed at $25 per acre per year (Landgate, 2024);  𝑆𝑡 is the 

selling area; 𝐿𝑡 is the leasing area; 𝑂𝑡 is the area under option contract. 

 

First, growth and yield curves were simulated 1,000 times for each market. To build the 

growth and yield curves, we simulated site indexes (SI) using average and standard deviations 

since they were normally distributed (see Appendix B). Timber prices were randomly selected for 

each product (pulpwood - 𝑝𝑝𝑤, chip-n-saw - 𝑝𝑐𝑛𝑠, sawtimber - 𝑝𝑠𝑡) and market over 1980-2024 

period. In order to mimic the historical difference between their prices, we imposed constraints to 
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ensure that 𝑃𝑐𝑛𝑠 ≥ 𝛼1 + 𝑃𝑝𝑤, (ii) 𝑃𝑠𝑡 ≥  𝛼2 +  𝑃𝑝𝑤, (iii) 𝑃𝑠𝑡 ≥ 𝛼3 +  𝑃𝑐𝑛𝑠, where 𝛼1, 𝛼2 and 𝛼3 

are the minimum historical difference between their respective prices. The rationale is that the 

prices of a lower-value product would never be closer or far to the price of a higher-value product 

than historically observed. Finally, land prices were randomly selected from a uniform distribution 

drawn from the minimum and maximum values found for the US South ($1,440.66 to $2,618.79, 

as in Table 4.4). 

Scenarios S2 to S4 considered different stages of a small-scale call option contract. S2 

considered selling up to 5% of the land (for solar development or another higher and better use). 

S3 considered leasing up to 5% of the land for solar development. The annual lease payment was 

set equal to $500 per acre per year (Landgate, 2024). S4 considered the 5-year maturity stage 

period (Landgate, 2025) with up to 5% selling only in the strike period (S4). During the option 

maturity stage period (t = 0 to 4), also known as the development period, an annual payment of 

$25 per acre was added. During the strike period, up to 5% of the land was sold for the same price 

as in S2. These new scenarios imply changes in Section (A) of Eq. 4.6 build for S1 (Table 4.2). 

Similarly, new constraints were imposed. First, the area available (Ai,t) for harvesting was reduced 

in S2 and S3 to the same extent that an area was sold (𝑆𝑖,𝑡=𝑇) or rented (𝐿𝑖,𝑡=𝑇). We also ensured 

that the timber volume was harvested before selling or leasing the land. Considering that solar 

farm leases are usually 25-30 years long (Landgate, 2024), we recognize that this piece of land is 

unlikely to be converted back into timberland after this period. Hence, we added a perpetuity 

present value of (𝑃𝑉 =  
𝑙𝑖

𝑟
= $12,500 per acre) to reflect the higher market value at the end of the 

planning horizon or liquidation. 
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4.3.3 Return and risk assessment 

Potential returns and risks were assessed by capital budgeting criteria. As beforementioned, 

we estimated the forest value for each 1,000 simulations generated for each market within every 

scenario. From these values, we calculated the internal rates of return (IRR) by setting the discount 

rate at which NPV was equal to zero. The return of each market and scenario combination was 

equal to its average, while the risk was measured by the IRR standard deviation, similar to Cubbage 

et al. (2010), Chudy et al. (2020), and Busby et al. (2020).  

 

4.4 Data 

4.4.1 Study area 

We assessed average potential returns of brownfield investments in 22 different markets 

within 11 states of the US South (Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, 

North Carolina, South Carolina, Tennessee, Texas, and Virginia), as shown in Figure 4.1. These 

22 markets encompassed all TimberMart-South (TMS) regions and more than 35 million acres 

(14.4 million hectares) of privately-owned corporate timberland. Each one of the 11 states has two 

markets, named as: Alabama (AL-01 and AL-02), Arkansas (AR-01 and AR-02), Florida (FL-01 

and FL-02), Georgia (GA-01 and GA-02), Louisiana (LA-01 and LA-02), Mississippi (MS-01 and 

MS-02), North Carolina (NC-01 and NC-02), South Carolina (SC-01 and SC-02), Tennessee (TN-

01 and TN-02), Texas (TX-01 and TX-02), and Virginia (VA-01 and VA-02).  
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Figure 4.1. Map of TimberMart-South regions. Source: TimberMart-South. 

 

4.4.2 Forest structure 

The initial forest structure of each market was assumed to be the current age class 

distribution, according to the USDA Forest Inventory Analysis (FIA). Loblolly pine (Pinus taeda 

L.) stands managed and owned by private entities, both non-corporate and corporate landowners, 

were selected and related at the county level with their respective TMS regions. Age class 

distribution assumed the strata of 5 years from 0 to over 50 years (Figure 4.2). 
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Figure 4.2. Current age class distribution of each timber market. Source: USDA Forest Inventory 

Analysis (FIA). 
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4.4.3 Yield curves 

All yield curves were produced using the 1996 Plantation Research Management 

Cooperative - PMRC model (Harrison and Borders, 1996). Four different silvicultural treatments 

were simulated when building the growth and yield curves. The first treatment considered a low 

initial density of 300 trees per acre (TPA), while the other three treatments considered an initial 

density of 600 trees per acre (TPA). Treatments 1 and 2 were simulated with no thinning, while 

treatment 3 was simulated with one thinning at age 15 years, and treatment 4 with two thinnings 

occurring at ages 15 and 24 years (Table 4.3). The main variables to build the growth and yield 

curves are the initial spacing (TPA), thinning ages (none, 15 and 25 years), residual basal area, 

and site index. Site indexes were sourced from Soil Survey Geographic Database – SSURGO. This 

dataset has site indexes at base age 50 years, which were converted to the base age of 25 years 

using a base-age invariant SI model proposed by Diéguez-Aranda et al. (2006) (See Appendix A). 

Every thinning reduced the basal area to 80 square feet per acre. Three different products were 

considered: pulpwood (6-8”), chip-n-saw (8-11”), and sawtimber (≥12”). 

 

Table 4.3. Silvicultural treatments.  

Treatment TPA 1st thinning 2nd thinning 

1 300 - - 

2 600 - - 

3 600 15 years - 

4 600 15 years 24 years 
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Figure 4.3. Yield curves based for each treatment and timber market.  
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4.4.4 Prices and costs 

 Stumpage timber prices for each product were sourced quarterly from 1980 to 2024 from 

TimberMart-South (2024), see Appendix C. Operational costs were sourced from Costs and 

Trends of Southern Forestry Practices for 2022 (Maggard and Natzke, 2023) and adjusted to 2024 

with the consumer price index - CPI (see Appendix D). The Costs and Trends of Southern Forestry 

Practices dashboard provides operational costs by ecoregion (e.g., Coastal Plains and Piedmont) 

and/or state for different landownerships. We considered data provided only by private institutions 

and weighted the prices according to the area of each ecoregion (Level II from US EPA) within 

the 22 timber markets (See Appendix E). Initial costs included mechanical site preparation, 

planting costs, seedlings, and herbicide application. Annual costs include taxes, maintenance, and 

other costs.  

Timberland prices were used as initial costs for acquiring an asset (land and the existing 

forest), regardless of its age. Due to the lack of available data, we used the TMS South-wide value 

from 2022 and adjusted to 2024 with the CPI (See Appendix D). The South-wide timberland price 

was then weighted according to the last sawtimber price of each state, resulting in timberland 

values ranging from $1,440.66 to $2,618.79 (Table 4.4).   

In our strategic landscape planning model (section 4.3.1), we acknowledged that a small 

portion of the timberland could be converted to another land use, such as annual crops or a new 

solar facility. Despite the trend toward converting timberland into solar arrays, these areas could 

also be converted to agriculture, for example. Therefore, we used farm real estate values from the 

Land Values 2024 Summary (USDA, 2024) as the selling price. These values were adjusted 

annually over the planning period (T = 15 years) according to the average appreciation rate 

observed for the past 15 years (2.2% per year). These values were used to approximate the values 
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mentioned in Wall Street Journal (2024) for a deal between a solar developer and a forest-product 

company. 

 

Table 4.4. Average timber prices, land prices and operational costs for each timber market. 

Market 

Timber prices ($/ton)1 Costs ($/acre)2 
Timberland 

cost ($/acre)3 

Land selling price 

($/acre)4 PW CNS ST Initial 
Annual 

(6-8”) (8-11”) (≥12”) 300 TPA 600 TPA Year 0 Year 15 

AL-01 7.37  19.34  28.23  435.24  512.99  12.15  1,778.20  4,000.00 5,440.00 

AL-02 9.22  21.78  31.90  475.70  528.92  9.94  2,039.10  4,000.00 5,440.00 

AR-01 6.86  17.28  29.07  397.91  499.88  11.14  1,918.44  4,110.00 5,696.46 

AR-02 5.76  16.43  24.23  358.83  478.55  12.94  1,832.83  4,110.00 5,696.46 

FL-01 12.10  21.85  29.43  320.16  462.39  8.26  1,991.81  8,300.00 11,503.81 

FL-02 10.78  20.63  28.87  386.91  497.90  9.15  2,263.31  8,300.00 11,503.81 

GA-01 7.77  19.25  27.21  440.03  514.99  11.92  2,004.86  4,500.00 6,137.00 

GA-02 11.51  23.14  32.68  426.33  513.41  9.55  2,168.74  4,500.00 6,137.00 

LA-01 8.25  17.62  28.92  413.17  508.59  9.43  1,922.51  3,720.00 5,155.92 

LA-02 7.29  18.15  27.84  333.32  470.55  8.46  1,817.34  3,720.00 5,155.92 

MS-01 6.47  18.39  27.80  419.64  511.00  9.49  1,752.93  3,490.00 4,837.14 

MS-02 7.45  19.66  30.66  463.36  525.38  9.85  1,950.23  3,490.00 4,837.14 

NC-01 5.38  15.83  20.95  427.58  509.69  12.54  2,061.93  5,190.00 7,193.34 

NC-02 7.07  17.95  30.51  396.48  501.97  9.26  2,618.79  5,190.00 7,193.34 

SC-01 7.23  17.55  26.66  473.15  527.51  10.45  1,705.64  4,500.00 6,237.00 

SC-02 8.88  19.85  30.27  393.64  500.79  9.23  2,048.89  4,500.00 6,237.00 

TN-01 5.41  12.92  16.20  389.10  490.88  14.75  1,440.66  6,710.00 9,300.06 

TN-02 6.10  13.46  18.61  473.62  528.25  9.99  1,629.00  6,710.00 9,300.06 

TX-01 7.76  16.72  28.65  458.37  522.18  11.07  1,778.20  2,800.00 3,880.80 

TX-02 7.38  15.95  29.63  412.35  507.83  9.73  2,039.10  2,800.00 3,880.80 

VA-01 7.11  16.69  19.64  398.20  495.70  14.18  1,918.44  5,850.00 8,108.10 

VA-02 7.84  17.16  24.16  446.23  520.11  9.72  1,832.83  5,850.00 8,108.10 

Source: 1 TimberMart-South (2024); 2 Maggard and Natzke (2023), 3 TimberMart-South (2023); 4 

USDA (2024). 
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4.5 Estimated returns and risks 

Table 4.5 presents returns and risks estimated for every market within each scenario using 

the strategic landscape model described in the previous sections. The South-wide average potential 

return for S1 - BAU was 8.02% (± 3.14%), considering all 22 timber markets (Table 4.5). 

Regionally, IRR ranged from 5.14% (MS-01) to 13.18% (FL-01). Eight markets presented above 

average returns (VA-01, GA-01, NC-01, GA-02, VA-02, NC-02, FL-02, and FL-01  

The IRR consistently increased when adding up to 5% land-sale (S2) during the 15-year 

period. The South-wide return for S2 was 12.34%, meaning a 4.32% increase when compared to 

S1. Average potential returns ranged from 9.35% (MS-01) to 17.71% (FL-01). The strategic 

landscape planning model decided to sell 5% of the land for every simulation. Similarly, potential 

returns increased for S3 when compared to S1. The South-wide return was 13.92%, increasing 

5.90% when compared to S1. This 5.90% increase was higher than the average return from MS-

01 (5.14%) and almost as high as the average return from MS-02 (5.99%) in S1. Annual lease 

payments helped keep the cashflow positive over the planning horizon, differently from land sale 

(S2). In addition, the perpetuity present value increased the selling price at the end of the planning 

horizon.  

The call option contract scenario (S4) presented the highest returns among all scenarios. 

The South-wide return was 19.42%, being 11.40%, 7.08%, and 5.50% higher when compared to 

S1, S2, and S3, respectively. Returns increased for all markets, except for both in Tennessee (TN-

01 – 8.88% and TN-02 – 9.20%) when compared to S2 and S3. The highest returns were greater 

than 30% (30.96% in GA-02 and 30.95% in FL-01), and 6 other markets presented returns greater 

than 20% (FL-01 – 22.22%, SC-02 – 23.18%, NC-02 – 24.17%, VA-02 – 25.00%, NC-01 – 

25.33%, and SC-01 – 25.57%. All other returns ranged from 14.35% (AL-01) to 19.20% (AL-02). 
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The IRR standard deviation was used to assess the investment’s risk. The South-wide 

standard deviation ranged from 3.14% (S1) to 8.65% (S4), showing a risk increase. South-wide 

risks increased by 0.12% (IRR = 3.26%) and 0.41% (3.55%) in S2 and S3 when compared to S1, 

respectively. Meanwhile, S4 experienced a 5.51% risk increase. 

In S1, risks ranged from 1.39% (TN-01) to 3.61% (TX-02). TX-02 (3.6%) and GA-01 

(3.0%) presented the higher risks among all 22 markets. Meanwhile, TN-01 and TN-02 presented 

the lower risks. When comparing S2 and S3 with respect to S1, we noticed that, on average, risks 

slightly increased. In S2, some markets presented lower risks when compared to S1. Differently, 

all 22 markets presented higher risks in S3 when compared to S1. S4 provided the highest risk 

among all scenarios. Surprisingly, FL-02 (30.95% ±12.16%), GA-01 (16.69% ±11.56%), GA-02 

(30.96% ±12.74%), NC-01 (25.33% ±11.13%), NC-02 (24.16% ±10.76%), SC-01 (25.57% 

±12.92%), and SC-02 (23.18% ±13.45%) presented high returns at a cost of above average risks. 

We noticed that in some prices and costs combinations, the strategic landscape planning 

model preferred to harvest forests in the first years in S1. After that, the thinning and harvest 

volume reduced and remained close to zero until the end of the planning horizon. This resulted in 

negative cash flows from year 1 to 14. In contrast, the strategic landscape planning model sought 

to keep positive cashflows throughout the planning horizon, generating high IRR values.  

 

 

 

 

 



 

113 

Table 4.5. Returns and risks for four different investment scenarios across 22 timber markets in 

the US South. 

State Market 
S1 – BAU S2 – Land sale S3 – Land lease S4 – Call option 

IRR SD IRR SD IRR SD IRR SD 

Alabama 
AL-01 6.61 2.11 10.87 2.19 12.62 2.50 14.35 5.10 

AL-02 7.80 2.15 12.11 2.24 13.88 2.78 19.20 7.08 

Arkansas 
AR-01 7.01 2.54 11.29 2.64 13.16 2.86 17.98 8.67 

AR-02 6.08 2.18 10.32 2.27 11.98 2.75 16.21 8.86 

Florida 
FL-01 13.18 2.94 17.71 3.05 17.01 4.15 22.22 8.23 

FL-02 12.14 2.30 16.62 2.39 15.52 3.07 30.95 12.16 

Georgia 
GA-01 9.06 3.01 13.42 3.13 15.46 3.99 16.69 11.56 

GA-02 9.78 2.71 14.17 2.82 16.11 3.32 30.96 12.74 

Louisiana 
LA-01 7.05 2.44 11.33 2.54 13.01 2.85 16.52 6.37 

LA-02 6.47 1.87 10.73 1.94 12.54 2.27 15.23 4.58 

Mississippi 
MS-01 5.14 1.74 9.35 1.81 10.69 1.94 14.40 5.33 

MS-02 5.99 1.99 10.23 2.07 12.45 2.35 17.05 6.43 

North 

Carolina 

NC-01 9.57 2.78 13.96 2.89 16.11 3.59 25.33 11.13 

NC-02 10.11 2.73 14.51 2.84 16.95 3.86 24.17 10.76 

South 

Carolina 

SC-01 7.65 2.31 11.96 2.40 13.95 2.91 25.57 12.92 

SC-02 7.68 2.31 11.99 2.40 13.96 2.93 23.18 13.45 

Tennessee 
TN-01 7.04 1.39 11.32 1.44 12.38 1.57 8.88 2.77 

TN-02 7.13 1.56 11.42 1.62 10.60 1.72 9.20 2.90 

Texas 
TX-01 6.02 2.57 10.26 2.68 12.34 3.04 18.12 7.86 

TX-02 6.21 3.61 10.46 3.75 13.20 3.31 19.06 10.13 

Virginia 
VA-01 8.34 2.28 12.67 2.37 14.07 2.68 17.02 9.93 

VA-02 9.95 2.68 14.35 2.79 16.48 3.50 25.00 11.29 

 South-wide 8.02 3.14 12.34 3.26 13.92 3.55 19.42 8.65 

Where IRR is the average internal rate of return and SD is the IRR standard deviation (risk). 
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4.6 Results 

The efficient frontier for business as usual timberland investments in the US South is 

presented on Fig. 4.4.  The efficient frontier represents a set of optimal portfolios that offer the 

highest expected return for different levels of risk, reflecting the tradeoff between risk and return. 

It is also bound by the risk-minimizing and return-maximizing limits (Table 4.6).  

 

 

Figure 4.4. Risk-efficient frontier based S1 – BAU investment possibilities. 

 

Table 4.6. Efficient frontier for portfolios 1 and 2. 

 P1 P2 

 
Risk 

min 

Return 

max 

Sharpe ratio 

max 

Risk 

min 

Return 

max 

Sharpe ratio 

max 

E(r) 5.16% 11.31% 6.25% 11.39% 17.54% 12.26% 

Risk (s) 5.64% 8.81% 6.46% 6.70% 8.82% 7.10% 

Sharpe ratio 0.76 0.54 0.99 1.36 1.31 1.69 
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The P1 return ranged from 5.16% (risk minimizing) to 11.31% (return maximizing), while 

risk ranged from 5.64% to 8.81%, respectively (Table 4.7). We noticed that markets with above-

average returns (Table 4.1), such as FL-01, FL-02, GA-02, and NC-01 represented over 35% of 

the return maximizing portfolio. Meanwhile, most selected markets on the risk minimizing 

portfolio (AR-01, FL-01, MS-01, TX-01, and VA-02) presented below-average returns and low 

risks. LA-02 and FL-01 were the two markets that approximated the 20% upper bound on both the 

risk minimizing and return maximizing portfolios from S1. All 22 markets were invested, with 

minimum values of 0.2% (GA-02) and 0.5% (AL-01). In contrast, the two most invested markets 

in each portfolio accounted for 12.36% (TX-01) and 15.42% (FL-01). We also optimize a third 

portfolio for both P1 and P2 to maximize the Sharpe ratio. As beforementioned, this portfolio 

assumed a risk-free rate of 2.63%. The maximum Sharpe ratio portfolio presented an average 

return of 6.25% (±6.46%), with a Sharpe ratio of 0.99. 

 

Table 4.7. Portfolios’ allocation for risk minimization, return maximization, and Sharpe ratio 

maximization. 

Portfolio P1 P2 

Market 
Risk  

Min 

Return 

 Max 

Sharpe 

ratio 

Risk  

Min 

Return 

Max 

Sharpe 

ratio 

AL-01 2.64 0.45 6.64 0.88 2.25 5.20 

AL-02 1.35 2.40 1.09 3.10 6.87 2.41 

AR-01 9.09 2.48 9.84 5.12 1.28 1.85 

AR-02 0.18 1.84 7.29 19.95 0.54 6.59 

FL-01 7.43 15.42 9.22 13.24 14.78 1.87 

FL-02 11.00 10.85 0.75 2.37 10.94 1.54 

GA-01 3.27 1.89 6.80 4.46 4.08 4.34 

GA-02 0.03 5.70 4.28 2.31 4.90 7.23 

LA-01 0.74 5.85 8.05 7.06 0.04 5.32 

LA-02 2.43 2.95 3.31 4.87 9.12 8.16 

MS-01 7.76 1.84 2.51 6.78 1.08 5.23 

MS-02 3.38 0.78 2.28 0.63 5.10 3.96 

NC-01 3.19 13.69 4.12 0.31 11.80 8.17 
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NC-02 0.91 2.06 1.56 1.95 0.68 3.25 

SC-01 1.16 5.37 6.09 9.05 3.22 2.19 

SC-02 2.68 0.84 3.28 0.84 0.64 1.94 

TN-01 4.05 8.07 6.44 13.06 9.87 11.07 

TN-02 4.18 3.09 3.57 0.63 1.46 0.74 

TX-01 12.36 0.85 1.42 0.53 1.83 5.15 

TX-02 6.88 7.38 1.33 1.85 2.64 0.63 

VA-01 7.27 2.40 2.56 0.44 2.05 7.91 

VA-02 8.03 3.80 7.57 0.55 4.81 5.24 

 

When optimizing single market portfolios, we noticed that S1 and S4 were not selected as 

the best investment possibilities for any market. S2 and S3 were the best investment possibilities 

in 10 and 12 markets, respectively. Markets in which the best investment possibility was S2: AL-

02, FL-01, FL-02, GA-01, GA-02, NC-01, NC-02, SC-02, TN-02, and VA-02. Meanwhile, the 

best investment possibilities from S3 were AL-01, AR-01, AR-02, LA-01, LA-02, MS-01, MS-

02, SC-01, TN-01, TX-01, TX-02, and VA-01 (refer to returns and risks from Table 4.5). We 

optimized portfolios - P2 using the best investment possibilities from each market. P2 return 

ranged from 11.39% to 17.54% for risk minimizing and return maximizing, respectively. Returns 

increased from 5.16% to 11.39% on the risk minimizing portfolio and from 11.31% to 17.54% for 

the maximizing portfolio. We noticed that, for both risk minimization and return maximization 

portfolios, returns increased around 6.0% when compared to P1. This reinforces the impact of land 

returns (from land sales and leases) on timberland investments, even at a small scale of (up to) 5%. 

Portfolio risk did not increase significantly, especially for the return maximizing portfolio when 

compared to P1 (8.81 and 8.82%). A 1.06% increase in risk was observed for the risk minimizing 

portfolios, when comparing P1 and P2, while a 0.01% and 0.64% for return and Sharpe ratio 

maximizing. The Sharpe ratio decreased as the return increased. The maximum Sharpe ratio was 

found around the 15th percentile of the efficient frontier. It ranged from 0.54 to 0.99 in P1, and 

from 1.31 to 1.69 for P2  
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4.7 Discussion and conclusions 

Our results indicated that land returns for solar developments, such as small-scale land sale 

and lease (up to 5%), can increase timberland investment returns by 6.23%. This increase was 

observed for both risk minimizing and return maximizing portfolios. Both S2 and S3 increased 

returns significantly, adding 4.32% and 5.90% to the South-wide return. On the other land, risks 

did not increase on the dimension. Risks increased by 0.14% and 0.41% when compared to S1. 

From that, we could expect that P2 would present higher returns. 

 The risk minimizing portfolio (P1) allocated more than 40% in four markets (AR-01, FL-

02, TX-01, and VA-02). AR-01, TX-01, and VA-02 presented below-average returns and average 

risks. Similarly, over 48% of return maximizing - P1 was allocated in four markets (FL-01, FL-

02, NC-01, and TN-01). Using a different set of possible investments, Chudy et al. (2020) noticed 

that their portfolio allocated over 40% of the portfolio in three different regions. This high 

concentration is expected when possible investments present high returns and considerably low 

risks. This study also used average returns to optimize a global timberland investment portfolio. 

The authors considered an average return of 5.0% (real) and 7.3% (nominal) for the US South, 

with a standard deviation of 0.0863 (8.63%). Despite considering the US South as one region, our 

risk minimizing portfolio – P1 presented a similar return (5.16%-11.31%), especially after 

optimizing the allocation across 22 timber markets. 

 In 2019, Zhang and Mei published two optimized portfolios for the same 22 markets we 

used in this study. These authors used timber prices and NCREIF to estimate quarterly returns and 

compared timberland investments with other crops. Two portfolios were optimized with US$2 and 

US$10 billion, respectively. Our return maximizing P2 presented some similarities with the 

unconstrained portfolio from Zhang and Mei (2019). Two markets (FL-01 and NC-01) presented 
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a high proportion of the invested universe. Their portfolios, however, did not account for the same 

period for timber prices (1980-2024 in this study). In their study, Zhang and Mei (2019) considered 

prices from 2000-2016. We acknowledge that after that, the COVID-19 pandemic affected the 

prices (Bruck et al. 2023). In addition, the US South forest sector also experienced declined timber 

prices due to mill closures. Hence, in this study we assessed how different scenarios of land returns 

influenced portfolio allocation and returns across the US South. Unlike previous studies that 

compared timberland with other crops (e.g., Zhang and Mei, 2019), our scenarios considered up 

to 5% land sale, lease, and call option contracts for solar developments. In the recent years, there 

has been a recent increase of land use conversion to solar developments in the US South (Landgate, 

2024; Wall Street Journal, 2024).  

 When analyzing the results from P1 and P2, we noticed that even the risk minimizing 

portfolio from P2 presented higher returns (risk minimizing return of 11.39%) when compared to 

the return maximizing portfolio from P1 (11.31%). These results reinforce the findings from 

Cooper and Dwivedi (2024). These authors found that new solar plants can provide extensive 

margins to timberland investors, by providing higher returns and when compared to loblolly pine 

plantations. Consequently, any small piece of land sold or leased for solar development can 

increase significantly a timberland investment return. Especially when considering the land sale at 

higher prices, and the selling of the lease area, timberland portfolios can benefit from a high land 

market value at the liquidation.  

 Despite presenting new findings to assist corporate investors and market analysis, this 

study presents some limitations that could be addressed by future studies. First, although we have 

used historical timber prices in a stochastic process, returns only cover a limited period of time. 

Consequently, our M-V model provided returns from portfolios invested during that period. 
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Furthermore, constraints imposed on the minimum and maximum weights to be invested can also 

influence the portfolio outcomes. Future studies are needed to address this issue through imposing 

different lower and upper bounds for weights.  
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CHAPTER 5 

CONCLUSIONS 

 This thesis aimed to investigate the gaps and opportunities in timberland investments by 

analyzing key factors affecting investment returns, market trends and structure shocks, and spatial 

price transmission in the US South. Through comprehensive economic approaches, this research 

contributes to a deeper understanding of how these elements interact, shaping strategic decisions 

for investors and policymakers. 

Results from Chapter 3 indicated a South-wide average return of 8.02%, similar to previous 

studies. The alternative scenarios increased the average return by 4.32% (S2), 5.90% (S3), and 

11.40% (S4). Risk increased slightly for S2 (0.14%) and S3 (0.41%), while S4 saw a more 

significant rise of 5.51%. The revenue share from land appreciation declined as additional land 

revenues were introduced, even on a small scale of 5%. Based on the portfolio optimization model 

from Chapter 4, a timberland investment portfolio in the US South can achieve returns ranging 

from 5.16% to 17.54%, while risks ranged from 5.64% to 8.82%. Risk minimizing and return 

maximizing portfolios presented different allocation. On both portfolios, however, the state of 

Florida presented a high allocation, as well as NC-01, LA-02, and TN-01.  

In conclusion, this research underscores the potential of timberland investments as a 

strategic asset class. However, several limitations must be acknowledged, including data 

constraints, methodological assumptions, and market-specific factors that could influence 

investment outcomes. Future studies could expand the geographic scope to include international 

markets or even look at the multiple markets in each state in the US South, bringing more details 
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to transaction prices and reflect the reality faced by different timberland investors. Additionally, 

further research is needed to better understand the effects of land use change process in the US 

South from the timber supply perspective and how timberland investors can protect their portfolio 

under the uncertainty of high returns from solar developments or lease contracts that could not 

succeed in the long term. By addressing these aspects, future research can enhance decision-

making in timberland investments and help both institutional and individual landowners. 
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APPENDIX A. Forest value estimation framework 

The forest value followed a rule depending on the current forest age. The bare land value 

(land expectation value – LEV), optimal silvicultural prescription and rotation was estimated using 

Eq. A1 (Faustmann, 1849). Eqs. A2 and A3 were used to estimate the forest value when the forest 

was younger or (equal or) older than the optimal age, respectively. The terminal value was 

estimated using Eq. A4. 

 

A.1 Land expectation value (LEV) 

𝐿𝐸𝑉𝑖∗ =
∑ 𝑝𝑘𝑞𝑖∗,𝑘
𝐾
𝑘 −∑ 𝐶𝑖(1+𝑟)

𝑖∗−1𝑖∗

𝑖=0

(1+𝑟)𝑖∗−1
        (A1) 

where i* is the age when the rotation is optimal, r pk is the price if the k product, qi*,k is the volume 

available of the k product at i* age per acre, r is the discount rate of 4% (Cubbage et al. 2020), 

LEVi* is the LEV for rotation age i*, and Ci are the operational costs from age zero to i*. 

 

A.2 Young forest (i < i*) 

 The forest value of a stand younger than the optimal rotation age (i*) is based on the 

potential income in future years and the LEVi*: 

𝐹𝑉𝑖 =
∑ 𝑝𝑘𝑞𝑖∗,𝑘
𝐾
𝑘 −∑ 𝐶𝑖(1+𝑟)

𝑖∗−1𝑖∗

𝑖=0 +𝐿𝐸𝑉𝑖∗

(1+𝑟)(𝑖
∗−𝑖)         (A2) 

where FVi is the forest value per acre at age i, ∑ 𝑝𝑘𝑞𝑖∗,𝑘
𝐾
𝑘 − ∑ 𝐶𝑖(1 + 𝑟)

𝑖∗−1𝑖∗

𝑖=0  represents timber 

revenues. 
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A.3 Mature forest (i ≥ i*) 

The value of a stand that is equal to or older than the optimal rotation age (i*) is estimated 

by calculating the current revenues and costs and the LEVi*: 

𝐹𝑉𝑖 = ∑ 𝑝𝑘𝑞𝑖∗,𝑘 − 𝐶𝑖 + 𝐿𝐸𝑉𝑖∗
𝐾
𝑘         (A3) 

where all variables were previously defined.  

 

A.4 Terminal value 

 The terminal value is defined as the timberland value upon liquidation and is estimated as 

the present value of the forest value: 

𝑇𝑉𝑖 =
𝐹𝑉𝑖

(1+𝑟)𝑡=𝑇
           (A4) 

where TVi is the terminal value per acre at t = T, T is the terminal period, and FVi is the forest value 

estimated using the previous equations. 
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APPENDIX B. Site index estimation 

In order to mimic the potential productivity on each market, we used loblolly pine site 

index (SI) data from Soil Survey Geographic Database - SSURGO. This dataset has site index at 

base age 50 years, which was converted to the base age of 25 years using a base-age invariant SI 

model from Diéguez-Aranda et al. (2006): 

𝑌 =
85.75 + 𝑋0

1 +
4474

𝑋0𝑡−1.107
⁄          (B1) 

where Y0 and to represent the predictor height (feet) and age (years), Y is the predicted height at 

age t, and  

𝑋0 = 0.5 (𝑌0 − 85.75 + √(𝑌0 − 85.75)2 + 4 . 4474𝑌0𝑡0
−1.107)    (B2) 

 

 Hence, to estimate the site index at the desired age of 25 years, we substituted Y0 and ts for 

t0 in Equation B2. Average SI was weighted by acreage for every market (Table B1 for SI 

distribution). Figure B1 highlights the average yield curves for each treatment and timber market.  
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Figure B1. Site index distribution of TimberMart-South markets. Source: adapted from Soil 

Survey Geographic Database (SSURGO). 
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Table B1. Average site index (feet) at base age 25 years weighted by acreage for each market. 

Market 
Site index (feet) 

25 years² SD Min Max 

AL-01 69.66 13.27 41.84 93.51 

AL-02 73.79 11.06 52.35 93.51 

AR-01 66.54 15.48 47.94 88.84 

AR-02 68.02 20.39 39.25 88.84 

FL-01 69.23 12.86 51.47 89.77 

FL-02 70.36 11.33 51.37 89.77 

GA-01 64.35 12.61 39.25 85.11 

GA-02 70.68 13.79 39.25 89.77 

LA-01 73.53 16.42 52.35 101.96 

LA-02 77.54 9.71 54.13 92.57 

MS-01 73.33 12.40 47.94 89.77 

MS-02 74.60 11.71 52.35 92.57 

NC-01 61.80 10.87 39.25 85.11 

NC-02 71.52 13.90 39.25 93.51 

SC-01 65.41 14.51 39.25 93.51 

SC-02 71.14 14.72 39.25 93.51 

TN-01 65.78 12.73 47.94 84.19 

TN-02 68.56 14.64 52.35 88.84 

TX-01 70.28 15.12 47.94 93.51 

TX-02 71.34 19.51 44.44 101.96 

VA-01 67.30 11.81 47.94 88.84 

VA-02 69.05 12.71 39.25 90.70 

Sources: SSURGO Data (USDA) and Diéguez-Aranda et al. (2006). 
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APPENDIX C. Historical timber prices 

 

Figure C1. Historical stumpage sawtimber prices indexes. Source: TimberMart-South (TMS). 

Timber prices were indexed by setting the first value (It when t = 0) to 1. Subsequent values were 

calculated as the cumulative sum of differences between prices at time t and t-1 (𝐼𝑡 = 𝐼𝑡−1 +

[𝑃𝑡 − 𝑃𝑡−1]). 
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APPENDIX D. Historical consumer price index (CPI). 

 

Figure D1. (A) Historical Consumer Price Index (CPI) from 1980 to 2024 and (B) U.S Inflation 

rate. Source: U.S. Bureau of Labor Statistics 
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APPENDIX E. Ecoregion estimation. 

 

Figure E1. Ecoregions of TimberMart-South markets. Source: United States Environmental 

Protection Agency. 
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Table E1. Ecoregions of TimberMart-South markets.  

Ecoregion 
 

South. C. Plain North. C. Plain Piedmont and others Total 

AL-01 - 59.6% 40.4% 100% 

AL-02 3.2% 96.8% - 100% 

AR-01 24.2% 45.9% 29.8% 100% 

AR-02 30.8% 3.0% 66.1% 100% 

FL-01 93.2% 6.8% - 100% 

FL-02 45.2% 54.8% - 100% 

GA-01 - 64.0% 36.0% 100% 

GA-02 24.2% 75.8% - 100% 

LA-01 30.7% 69.3% - 100% 

LA-02 82.2% 17.8% - 100% 

MS-01 27.5% 72.5% - 100% 

MS-02 8.0% 92.0% - 100% 

NC-01 - 52.3% 47.7% 100% 

NC-02 39.7% 60.3% - 100% 

SC-01 - 91.6% 8.4% 100% 

SC-02 41.3% 58.7% - 100% 

TN-01 - 10.8% 89.2% 100% 

TN-02 3.5% 95.5% 1.1% 100% 

TX-01 - 79.9% 20.1% 100% 

TX-02 28.7% 66.3% 4.9% 100% 

VA-01 - 21.4% 78.6% 100% 

VA-02 15.1% 84.8% 0.1% 100% 

Where Southern Coastal Plain accounts for Mississippi Alluvial and Southeast USA Coastal Plains 

and Texas-Louisiana Coastal Plain, Northern Coastal Plain accounts for Southeastern USA Plains, 

Piedmont and others accounts for Ozark Ozark/Ouachita-Appalachian Forests and South Central 

Semi-Arid Prairies, adapted from Ecoregions of North America Level II. Source: United States 

Environmental Protection Agency. 


