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Abstract

Reconstructing transmission networks is critical for identifying epidemi-
ological factors such as superspreaders and high-risk locations, informing tar-
geted strategies for pandemic prevention and control. This dissertation intro-
duces two Bayesian frameworks designed to reconstruct infectious disease trans-
mission networks by integrating genomic, temporal, and social network data.
The proposed models accommodate within-host genetic diversity, unobserved
infection times, incomplete sampling, latent periods, and symptom onset, sig-
nificantly enhancing the precision of inferred transmission dynamics. Simula-
tion studies demonstrate the robustness of the Bayesian transmission model
without network data, achieving high accuracy in identifying direct transmis-
sion pairs—93% at a genome length of 1× 106 and 100% at 4.4× 106. Hypoth-
esis testing reliably identifies direct transmission events, maintaining an average
false positive proportion of approximately 1%. Meanwhile, sensitivity declines
with decreasing sample sizes due to increased misclassification of indirect trans-
missions. Implementing Nelder–Mead optimization improved sensitivity by
approximately 30%, although it concurrently raised false positives by around
10%, highlighting an inherent trade-off. Furthermore, an Exponential Random
Graph Model (ERGM) fitted to the inferred transmission tree demonstrated
the robust effect of social distance on transmission dynamics, revealing that
each unit increase in social distance decreased transmission likelihood. Pertur-
bation analyses with 5%, 10%, and 20% noise confirmed that ERGM reliably
captured the social-distance effect and remains robust to network uncertainty.
Real-world analysis using a Bayesian model on genomic and temporal data from
93 tuberculosis cases identified 28 direct transmission pairs, highlighting limited
within-neighborhood transmission. ERGM analysis further suggested a trend



toward increased transmission likelihood with greater social distance, implying
that contacts outside immediate neighborhoods potentially drive transmission,
though this association was statistically insignificant and weakened with increas-
ing network uncertainty. Notably, this study represents the first network inves-
tigation of tuberculosis transmission in an endemic region. In future work, we
will combine GPS and cell-phone trajectory data with traditional social network
data using machine learning to derive personal network information, thereby
refining contact probability estimation. Additionally, adopting advanced sub-
stitution models and relaxing assumptions about uniform effective population
size may further enhance model accuracy. Leveraging parallel computing will
improve computational efficiency, increasing the practicality and scalability of
Bayesian methods in epidemiological research.

Index words: [Bayesian Inference, Network Analysis, Phylogeny,
Transmission Network, Infectious Disease]
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Chapter 1

Introduction and
Literature Review

1.1 Introduction
Infectious diseases continue to be a major global health concern, significantly
contributing to morbidity and mortality worldwide, particularly in resource-
limited regions (Fonkwo, 2008). A key strategy for controlling and preventing
the outbreak and spread of infectious diseases is the construction and analysis of
transmission networks, which trace the movement of pathogens through popu-
lations and reveal transmission networks between individuals (Luke and Harris,
2007). By analyzing transmission networks, health professionals can identify
super-spreader events, pinpoint potential outbreak sources, and gain insights
into the dynamics of pathogen transmission (Haydon et al., 2003;Lloyd-Smith
et al., 2005). This information is essential for implementing timely interven-
tions and developing targeted public health strategies to effectively slow or halt
the progression of an epidemic (Ferguson et al., 2001).

1.2 Review of Infectious Disease: Tuberculosis
Tuberculosis (TB) has been a persistent threat to human health for centuries,
with evidence of its existence traced back to ancient civilizations. Known his-
torically as "consumption" due to its wasting effects on the body, TB was once
regarded as a death sentence, claiming countless lives before the advent of mod-
ern medicine. In the 19th and early 20th centuries, TB was one of the leading
causes of mortality worldwide, particularly in overcrowded and impoverished
urban areas, where poor sanitation and malnutrition fueled its spread (Doege,
1965).
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The discovery of Mycobacterium tuberculosis by Robert Koch in 1882 marked
a turning point in understanding the disease (KOCH, 1882). This breakthrough
spurred research into its pathogenesis, transmission, and treatment. The mid-
20th century saw significant advancements, with the development of antibiotics
such as streptomycin and isoniazid, which transformed TB from a terminal ill-
ness into a treatable condition (Schatz et al., 1944;Takayama et al., 1972). The in-
troduction of the Bacillus Calmette-Guérin (BCG) vaccine further bolstered ef-
forts to prevent TB, especially in high-risk populations (Calmette, 1922). These
innovations led to dramatic declines in TB incidence and mortality, prompting
optimism that the disease could be eradicated.

Despite these successes, TB remains a major global health challenge. Its
ability to persist in latent form within hosts and its association with social deter-
minants of health, such as poverty and malnutrition, have hindered its elimina-
tion. The disease disproportionately affects low- and middle-income countries,
where access to healthcare and diagnostic services is limited (Rodrigues and
Smith, 1990). Moreover, the rise of multidrug-resistant (MDR) and extensively
drug-resistant (XDR) TB has compounded the difficulty of treatment, neces-
sitating prolonged and costly regimens with lower success rates (Seung et al.,
2015).

The importance of maintaining TB as a mainstream focus cannot be over-
stated. Unlike emerging infectious diseases that often garner significant media
and research attention, TB represents a long-standing epidemic that silently
impacts millions each year. In 2021 alone, over 10 million new TB cases and 1.6
million deaths were reported, with the majority occurring in resource-limited
settings (Bagcchi, 2023). Its intersection with other global health challenges,
such as HIV/AIDS, further exacerbates its burden, as co-infected individuals
face higher mortality risks and require complex management (Sharma et al.,
2005).

Efforts to eliminate TB require sustained investment in research, innova-
tive diagnostic tools, and effective vaccines. While the BCG vaccine has played
a critical role in reducing severe forms of TB in children, its efficacy against
pulmonary TB in adults—the most transmissible form—remains limited (An-
dersen and Doherty, 2005). Advancing vaccine development, alongside new
drugs and shorter treatment regimens, is essential to overcoming these barriers.

TB also highlights the critical role of public health infrastructure and social
interventions. Addressing factors such as overcrowded living conditions, mal-
nutrition, and stigma is key to reducing transmission and ensuring equitable
access to care. Furthermore, as the COVID-19 pandemic has demonstrated,
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health system disruptions can lead to TB control setbacks, underscoring the
need for resilient and adaptable healthcare systems (Martin-Hughes et al., 2022).

In conclusion, tuberculosis is not merely a disease of the past but a pressing
modern-day challenge. Its history, from a feared plague to a treatable condi-
tion, reflects the remarkable progress of medical science. However, the ongo-
ing global burden of TB serves as a reminder that progress must be sustained
through vigilance, innovation, and a steadfast commitment to eliminating this
ancient disease once and for all.

1.3 Established frameworks and constraints
Substantial efforts have been devoted to developing statistical and computa-
tional tools for constructing transmission networks using epidemiological and
genetic data (Gilbertson et al., 2018; Campbell et al., 2019). Reconstruction of
transmission networks through contact tracing involves systematically identify-
ing and monitoring individuals who have been in close contact with confirmed
cases of an infectious disease (Almutiry and Deardon, 2021). While this survey-
based approach is useful for tracking and controlling disease spread, it can be
labor-intensive and prone to errors due to the complexity of accurately tracing
interpersonal interactions (Gardy et al., 2011).

While contact tracing relies on direct observation, advances in genomic
technology offer complementary insights through pathogen sequencing. The
increasing availability of genomic data has revolutionized the field of epidemi-
ology, providing a powerful tool for inferring transmission networks of infec-
tious diseases (Klinkenberg et al., 2017). By analyzing the genetic variations in
pathogen genomes from infected individuals, researchers can infer transmission
events and identify risk factors (Van der Roest et al., 2023). Whole Genome Se-
quencing (WGS) is particularly effective in environments with high mutation
rates, as it can distinguish closely related transmission chains by comparing
genetic sequences (Campbell et al., 2018; Bandoy and Weimer, 2021). When
combined with epidemiological data, WGS significantly enhances the precision
and effectiveness of infectious disease surveillance and control efforts (Duault
et al., 2022).

1.3.1 Genome-Driven Inference Framework
Phylogenetic methods provide crucial insights into the evolution, transmission,
and management of infectious diseases (Parker et al., 2008;Kendall and Colijn,
2016; Skums et al., 2022). By analyzing phylogenetic variation in pathogen
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genomes, researchers can trace the evolutionary history of infectious agents,
map transmission routes, and determine the geographic and temporal origins
of outbreaks (Ratmann et al., 2017; Didelot et al., 2018; Zhang et al., 2020).
If mutation and transmission occur on similar timescales, combining genetic
sequence data with epidemiological observations can provide valuable insights
into the transmission dynamics of infectious diseases (Morelli et al., 2012; Ypma
et al., 2012;Lau et al., 2015; Duault et al., 2022).

1.3.1.1 SNP Thresholds as Tools for Transmission Clustering

A straightforward computational approach for analyzing whole genome se-
quencing (WGS) data reconstructs transmission events by grouping cases that
share fewer single-nucleotide polymorphisms (SNPs) than a preset threshold
(Martin et al., 2018; Yang et al., 2018; Coll et al., 2020). While computationally
efficient, this method has notable limitations. The selection of the SNP thresh-
old is often arbitrary and uninformed by epidemiological context, which can
result in inaccurate or inconsistent groupings. Moreover, grouping cases based
solely on genetic similarity fails to provide explicit information about the direc-
tionality of transmission or identify "who infected whom." Additionally, the
resulting tree represents a phylogeny—depicting genetic relationships—rather
than a true transmission tree that maps the actual infection pathways. These
limitations underscore the need for more sophisticated frameworks that inte-
grate genomic, epidemiological, and temporal data to improve the accuracy and
reliability of transmission inference.

A probabilistic alternative refines this threshold by integrating SNP differ-
ences with temporal data and transmission dynamics (Stimson et al., 2019). By
incorporating case timing, molecular clock rates, and transmission processes,
this method provides a more accurate estimation of the number of transmis-
sions separating cases. It adapts to the inherent variability of mutation rates
across the genome and leverages additional contextual information, such as spa-
tial distributions and antibiotic resistance patterns, to improve the precision of
transmission clustering. This approach is particularly beneficial in cases where
clock rates are inconsistent or sample collection times are widely dispersed, of-
fering a more reliable framework for identifying direct transmission pathways.

1.3.1.2 Bayesian Frameworks for Genomic-Driven Epidemiological In-
ference

Although probabilistic refinements of SNP threshold-based methods improve
clustering accuracy by incorporating temporal data and accounting for muta-

4



tion rate variability, these approaches remain limited. They primarily focus
on grouping cases by genetic similarity, offering little insight into transmission
directionality or the full complexity of infection pathways. Additionally, they
often overlook critical factors such as within-host genetic diversity, latent peri-
ods, and transmission bottlenecks. These limitations necessitate more advanced
frameworks that jointly capture epidemiological and evolutionary dynamics.

Within-host Evolution Within-host evolution plays a critical role in under-
standing pathogen transmission dynamics, particularly for pathogens with long
latent periods or high mutation rates. During prolonged incubation within a
host, pathogens have sufficient time to accumulate genetic variation through
mutation, selection, and drift. The rate of evolution within hosts can signifi-
cantly affect the genetic divergence between transmitted strains, complicating
the inference of direct transmission pathways. These factors highlight the ne-
cessity of accounting for within-host evolution in transmission models.

The case of Mycobacterium tuberculosis illustrates this complexity, despite
its relatively low mutation rate. With a genome of approximately 4.41 mil-
lion base pairs (Cole et al., 1998) and a mutation rate of 0.3–0.5 mutations per
genome per year (Ford et al., 2013), the prolonged latent period of tuberculosis
(TB), often lasting years, allows significant genetic diversity to emerge (Behr
et al., 2018). This diversity, shaped by immune responses, antibiotic treatment,
and genetic drift, complicates aligning genetic relationships with transmission
events. These characteristics underscore the need to account for within-host
evolution when modeling TB transmission.

Effective population size is a crucial parameter for quantifying genetic diver-
sity and its influence on transmission dynamics. Incorporating this parameter
into transmission models improves the understanding of pathogen diversity
and bottleneck effects, enhancing the reconstruction of transmission networks.
For example, as illustrated in Figure 1.1, within-host evolution (Panel B) gener-
ates genetic variation within a host, while transmission bottlenecks pass only
a subset of this diversity to subsequent hosts. This process results in phyloge-
netic trees (Panel C) that reflect genetic relationships among sampled variants
but may not align with the actual transmission tree (Panel A). Such discrep-
ancies highlight the impact of within-host evolution and bottlenecks on the
correspondence between phylogenetic and transmission dynamics.

Bayesian Framework To fully capture the epidemiological and evolutionary
processes, novel Bayesian frameworks have been developed to simultaneously in-
fer both phylogenetic and transmission trees from epidemiological and genetic
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data (Ypma et al., 2013; Klinkenberg et al., 2017; Skums et al., 2022). These
frameworks account for genetic variation arising from factors such as latent pe-
riods, within-host diversity, and mutation rate heterogeneity, enabling joint in-
ference of both epidemiological and evolutionary dynamics (Didelot et al., 2014;
Hall et al., 2015; De Maio et al., 2016). A critical aspect of these Bayesian frame-
works is their reliance on biologically informed temporal constraints, which
help exclude implausible transmission scenarios and ensure alignment with the
natural history of the pathogen.

Temporal data provides these biologically informed constraints, offering
parameters such as latent periods, infectious periods, and recovery times that
are fundamental for evaluating transmission feasibility. These parameters en-
able the exclusion of implausible transmission scenarios, ensuring that inferred
events align with the pathogen’s natural history. For instance, cases with latent
periods or infection intervals exceeding biologically plausible limits can be ruled
out. By anchoring transmission inference in biological reality, temporal data
enhances the accuracy of reconstructing epidemiological and evolutionary dy-
namics, making it an indispensable component of outbreak analysis. Building
on these temporal constraints, recent advancements in transmission inference
methods have incorporated genetic distances and other data types, streamlining
the reconstruction of outbreak dynamics.

Moreover, a class of transmission network reconstruction methods directly
infer transmission routes from observed genetic distances, bypassing the inter-
mediate step of phylogenetic tree inference (Jombart et al., 2014; Ke and Vikalo,
2023). These methods employ functions that quantify the relationship between
genetic distance and transmission likelihood, providing a more streamlined ap-
proach to reconstructing outbreak dynamics (Worby et al., 2016). De Miao et
al. (2018) presented a Bayesian method for inferring host-to-host transmission
in the presence of sequencing errors. Recent advancements in computational
methods for transmission inference have integrated contact, temporal, and ge-
netic data, leading to a substantial improvement in our capacity to reconstruct
transmission trees (Campbell et al., 2019; FFujikura et al., 2019; Dawson et al.,
2021). By incorporating additional data types, these approaches have greatly
enhanced the accuracy of reconstructing transmission pathways, effectively cap-
turing both the dynamic and geographical aspects of disease spread (Montazeri
et al., 2020).

Despite the potential of genomic data to reveal transmission chains, some
computational methods fail to differentiate between phylogenetic and trans-
mission trees, leading to inaccurate inferences about disease spread (Nübel et
al., 2010; Mutreja et al., 2011; Carson et al., 2024). These methods frequently
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assume that the pathogen genomes evolve along the same path as the infection
process follows, neglecting the genetic diversity that exists within each infected
host. This is particularly problematic for pathogens with high mutation rates
and long incubation periods, as these factors can lead to significant genetic vari-
ation within a single host (Alizon et al., 2011).

The case of Mycobacterium tuberculosis illustrates this complexity, despite
its relatively low mutation rate. With a genome of approximately 4.41 mil-
lion base pairs (Cole et al., 1998) and a mutation rate of 0.3–0.5 mutations per
genome per year (Ford et al., 2013), the prolonged latent period of tuberculosis
(TB), often lasting years, allows significant genetic diversity to emerge (Behr
et al., 2018). This diversity, shaped by immune responses, antibiotic treatment,
and genetic drift, complicates aligning genetic relationships with transmission
events. These characteristics underscore the need to account for within-host
evolution when modeling TB transmission.

Effective population size is a key parameter for quantifying genetic diver-
sity and its role in transmission dynamics. Incorporating this parameter into
transmission models improves the understanding of pathogen diversity and
bottleneck effects, thereby enhancing transmission network reconstruction. As
shown in Figure 1.1, within-host evolution (Panel B) generates genetic variation,
while transmission bottlenecks pass only a subset of this diversity to subsequent
hosts. This process results in phylogenetic trees (Panel C) that represent genetic
relationships among sampled variants but may not align with the actual trans-
mission tree (Panel A). These discrepancies highlight the need to account for
within-host evolution and bottlenecks when modeling transmission dynamics.

Furthermore, certain transmission network construction methods rely on
symptom onset time as a proxy for infection time, ignoring the latent period
and introducing further inaccuracies (Lau et al., 2015; Ayabina et al., 2018).

To overcome these challenges, we propose a novel Bayesian hierarchical
model that incorporates transmission dynamics, mutation processes, within-
host diversity, uncertain infection times, and unobserved cases. By acknowledg-
ing within-host genetic diversity, our model recognizes that transmitted lineages
may differ from those sampled at infection. Additionally, by incorporating the
latent period and distinguishing between symptom onset and actual infection
time, the model enhances the accuracy of transmission dynamics and epidemio-
logical modeling. The ability to account for unobserved cases further reflects the
complexity of real-world transmission events, leading to more realistic models
of pathogen spread and improved epidemiological insights for effective public
health interventions.
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Figure 1.1: Illustration of the relationship between transmission tree, within-
host evolution, and phylogenetic tree. Panel A represents the transmission tree,
showing the infection pathways between hosts A, B, and C. Panel B illustrates
within-host evolution, where genetic diversity (blue for A, green for B, orange
for C) accumulates within hosts, with bottlenecks during transmission passing
only a subset of variants. Panel C shows the phylogenetic tree, which reflects
genetic relationships based on sampled variants.

1.4 Review of Statistical Methodologies

1.4.1 Bayesian Framework
Bayesian inference has its roots in the work of Reverend Thomas Bayes (Bayes,
1991), an 18th-century mathematician who first introduced the concept of up-
dating probabilities based on new evidence. This approach, later formalized
and expanded by Pierre-Simon Laplace (Laplace, 1774), provides a systematic
framework for reasoning under uncertainty.

At its core, Bayesian inference combines prior knowledge or beliefs about a
parameter with observed data to produce a posterior probability distribution.
This process is grounded in Bayes’ theorem, which mathematically expresses
the relationship between the prior probability, the likelihood of the data, and
the posterior probability. Unlike frequentist methods, which treat parameters
as fixed values, Bayesian inference interprets probability as a measure of belief
or certainty, allowing for more flexibility in decision-making and effectively
incorporating prior information.

8



1.4.2 Markov Chain Monte Carlo (MCMC) with Metropolis-
Hastings sampling

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms used
to approximate complex probability distributions through sampling. These
methods are particularly valuable in Bayesian inference, where calculating pos-
terior distributions often involves high-dimensional integrals that are analyti-
cally intractable or computationally expensive to solve directly. By constructing
a Markov chain that converges to the target distribution, MCMC enables ef-
ficient sampling from this distribution, even when the dimensionality of the
parameter space is high. The motivation for MCMC lies in its ability to approxi-
mate probabilities and expectations with a high degree of accuracy by generating
representative samples, making it an indispensable tool for modern statistical
methods, particularly in scenarios involving hierarchical models, latent variables,
or large datasets.

Metropolis-Hastings (MH) and Gibbs Sampling (GS) are two key methods
within the Markov Chain Monte Carlo (MCMC) framework for sampling
from complex probability distributions. MH generates a Markov chain by
proposing new states from a chosen distribution and accepting them based
on an acceptance ratio, offering flexibility for various target distributions. In
contrast, GS simplifies sampling by iteratively drawing from the conditional
distributions of each parameter, making it particularly effective for structured
models like hierarchical Bayesian frameworks when such conditionals are easy
to compute. While GS is efficient in these cases, its practicality diminishes for
complex models with intractable conditionals. MH, with its broader applicabil-
ity, is therefore selected for this analysis due to its adaptability and robustness
in handling challenging target distributions.

1.4.3 The Coalescent Process
The coalescent process is a fundamental framework in population genetics used
to trace the ancestry of gene sequences and infer evolutionary history. By mod-
eling the lineage of sampled alleles, it provides insights into population size,
mutation rates, and selection pressures. A central concept is the "coalescence
time," representing the time in the past when two or more alleles shared a com-
mon ancestor.

In a haploid population with an effective population sizeNe, the probability
that two sampled gene sequences coalesce in the previous generation is 1/Ne.
The probability of coalescence at a specific generation t is determined by the
product of non-coalescence probabilities over t−1 generations and coalescence
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at generation t. This results in a geometric distribution for coalescence time,
with a mean of Ne, expressed as:

P (t∗ = t) =

(
1− 1

Ne

)t−1
1

Ne

.

When scaled to continuous time using the generation time g, the mean co-
alescence time t∗ becomes θ = Neg, the within-host effective population size.
For large Ne, the geometric distribution approximates an exponential distribu-
tion with a mean of θ, simplifying calculations in continuous time models.

The coalescent process is a robust tool for analyzing genetic diversity and
interpreting population dynamics, precisely linking genealogical patterns to
demographic and evolutionary events.

1.4.4 Nucleotide Substitution Model
The Jukes-Cantor (JC69) model, introduced by Jukes and Cantor in 1969, is
a foundational nucleotide substitution model widely used to reconstruct the
evolutionary history of DNA sequences. This model assumes a simple and uni-
form mutation process, providing a tractable framework for analyzing sequence
evolution.

Key Assumptions of the Jukes-Cantor Model

1. Site Independence: Mutations occur independently at all sites in the
sequence.

2. Equal Base Frequencies: All four nucleotides (A, C, G, and T) are
equally frequent, with πA = πC = πG = πT = 1

4
.

3. Equal Mutation Probability: Each nucleotide is equally likely to mu-
tate into any of the other three, with no preference for specific substitu-
tions.

Transition Matrix

The mutation process is described by the continuous-time Markov chain with
a transition matrix Q, parameterized by the mutation rate µ. The transition
matrix is defined as:
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Q =


−3µ

4
µ
4

µ
4

µ
4

µ
4
−3µ

4
µ
4

µ
4

µ
4

µ
4
−3µ

4
µ
4

µ
4

µ
4

µ
4
−3µ

4

 .

Here, diagonal elements represent the rate of leaving a nucleotide state,
while off-diagonal elements represent the rate of substitution between states.

Transition Probability

The probability of nucleotide change from state i to j after time t is derived
using the matrix exponential P (t) = eQt. Each entry Pij(t) in the matrix
denotes the transition probability, calculated as follows:

Pij(t) =

{
1
4
+ 3

4
e−µt, i = j,

1
4
− 1

4
e−µt, i ̸= j.

For a given evolutionary time t, mutation rate µ, and sequence divergence
d (the number of differing sites between two sequences), the probability of
observing the aligned sequences is calculated as follows:

P (dj1 , dj2 | t, µ,N) = (Pi ̸=j(t))
N−d (Pi ̸=j(t))

d ,

where N is the total sequence length and d is the SNP number.

Applications and Limitations

The Jukes-Cantor model provides a foundational understanding of sequence
evolution and is commonly used as a baseline for more complex models. How-
ever, its simplifying assumptions, such as equal base frequencies and uniform
mutation rates, limit its accuracy for more realistic scenarios. Nonetheless, its
mathematical tractability makes it an essential tool for inferring evolutionary
distances and substitution rates.

1.5 Research Phases and Scope
The dissertation comprises two phases, each integrating increasingly detailed
data sources and analytical goals.

• Phase I: Temporal and Genomic Data.
The groundwork for this phase was established by Hu, 2023, whose dis-
sertation laid the foundation for combining temporal data (e.g., onset
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times) with genomic sequences to infer transmission events. Building
on that foundation, I enhanced the Bayesian model by incorporating
additional parameters to increase its robustness and conducted a more
extensive series of simulation studies under diverse scenarios. In parallel,
I refined the data processing pipeline and carried out an in-depth real-
world data analysis.

• Phase II: Temporal, Genomic, and Network Data.
With the methods from Phase I in place, I am now extending the model to
incorporate network data. This step involves designing additional simula-
tion studies, evaluating the influence of network structures on inference,
and applying the enhanced model to real-world datasets. The goal is to
determine whether network information can improve the accuracy and
interpretability of inferred transmission pathways, while also identifying
any practical challenges related to data availability and model complexity.

Through these two phases, the project evolves from a foundational frame-
work combining temporal and genomic data to a sophisticated model that in-
tegrates multiple data streams. The efforts in Phase I, bolstered by the foun-
dational work of Hu, 2023, have enabled a seamless transition into Phase II,
where network data is further expanding our understanding of transmission
processes.
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Chapter 2

Materials and Methods

As described in the introduction, we adopt Bayesian methods for two primary
reasons: (1) their ability to incorporate prior knowledge into the analysis, en-
abling more robust and informed inference about the transmission tree of infec-
tious diseases, and (2) their flexibility in handling complex, hierarchical models.
These strengths make Bayesian methods particularly well-suited for integrat-
ing heterogeneous data sources and accounting for uncertainties inherent in
epidemiological studies.

To achieve our objectives, we developed two complementary frameworks.
The first framework, based on genomic and temporal data, aligns with estab-
lished methodologies by utilizing genetic distances and the timing of transmis-
sion events to reconstruct transmission trees effectively. The second framework
extends this approach by incorporating network information, which provides
additional insights into the heterogeneity of infection probabilities through
contact likelihoods. In particular, this framework constitutes the first network-
based investigation of tuberculosis transmission, further enhancing our nu-
anced understanding of the dynamics of disease spread.

In this chapter, we first outline the rationale and components of the Bayesian
frameworks employed in this study, beginning with a detailed discussion of the
input data and parameters that form the foundation of the models. Following
this, we provide a rigorous specification of the likelihood and prior distribu-
tions underpinning each framework. A comprehensive account of the Markov
Chain Monte Carlo (MCMC) algorithm is presented, illustrating its role in
deriving posterior estimates and ensuring convergence for reliable results. Addi-
tionally, hypothesis testing procedures are described to identify direct transmis-
sion events within the inferred transmission network. The chapter also delves
into the methodologies used for integrating genomic, temporal, and network
information, with the latter providing heterogeneous infection probabilities
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based on contact likelihoods. Finally, we explore network analysis using Expo-
nential Random Graph Models (ERGMs) to assess the structural characteris-
tics of the social network, further enriching the understanding of transmission
dynamics.

2.1 Input Data and Parameters

2.1.1 Input Data
The Bayesian framework relies on three primary data sources—temporal data,
genomic data, and network data. Together, these data sources provide comple-
mentary information to reconstruct the transmission network and capture the
heterogeneity of infection probabilities.

Temporal Data: Temporal data consist of paired onset and removal times,
where onset times

TO = {TO
1 , TO

2 , . . . , TO
n }

represent the first recorded symptoms for n infected individuals, and removal
times

TR = {TR
1 , TR

2 , . . . , TR
n }

indicate the time at which individuals recover or are quarantined. These data
are sorted by onset times, with TO

1 corresponding to the earliest onset and sub-
sequent times following in ascending order. Patient IDs are assigned based on
this order, such that ID1 represents the individual with the earliest onset time.

The infectious period for each individual is given by

tinf = {TR
i − TO

i | i = 1, . . . , n},

representing the duration between their symptom onset time (TO
i ) and removal

time (TR
i ). Temporal data provide critical information for reconstructing the

transmission network by defining the chronological sequence of infections and
constraining potential transmission events to those that respect the order of
onset and removal times.

Genomic Data: Genomic data are represented by genetic distances (D), stored
as an n× n matrix, where n is the number of infected individuals. Each entry
dij in the matrix represents the pairwise single nucleotide polymorphism (SNP)
distance between the genomes of individuals i and j. SNP distances measure the
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number of genetic differences between pathogen genomes, providing a quanti-
tative assessment of their genetic similarity. Smaller dij values indicate higher
genetic similarity and a greater likelihood of direct transmission. This matrix
allows for the systematic integration of genomic data into the reconstruction
of transmission networks by refining possible transmission pathways based on
genetic relationships.

Network Data and Contact Likelihoods: Network data represent the so-
cial or contact network structure of the population, where nodes correspond to
individuals and edges indicate potential contact or interactions. This informa-
tion introduces additional insights into the heterogeneity of infection probabil-
ities, as the likelihood of transmission is influenced by the strength or frequency
of contact between individuals. Contact likelihoods (wij) are assigned to each
edge, reflecting the probability of interaction and potential transmission be-
tween individuals i and j. This data type ensures that the model considers
variations in contact patterns, adding realism to the reconstructed transmission
network.

2.1.2 Model Parameters
The Bayesian model incorporates several key parameters, which describe the
dynamics of transmission and the evolutionary processes of the pathogen. Each
parameter is informed by the input data described above.

Transmission Network (Φ): The transmission network (Φ) models the
host-to-host spread of pathogens as a directed graph, where nodes represent
infected individuals and edges denote direct transmission events. The validity
of the transmission direction is governed by temporal data and latent periods,
under the key assumption that individuals are infectious (capable of transmit-
ting the pathogen) from the onset of symptoms (TO

i ) until their removal time
(TR

i ). Transmission from individual i to j is only feasible if:

TO
i < TO

j − tLj,i,

where tLj,i is the latent period, defined as the time from when an individual
is infected (receives the pathogen) to the onset of symptoms. In addition to
temporal constraints, network data incorporating contact likelihoods (wij) re-
fine the edges further by quantifying the probability of transmission based on
the frequency and intensity of social or physical interactions. This integration
ensures a comprehensive representation of pathogen transmission dynamics.
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Latent Periods (tL): Latent periods are defined as

tL = {tLi,Ji | i = 2, . . . , n, Ji ∈ {1, . . . , i− 1}},

representing the time delay between the infection of the transmitter (Ji) and
the individual they infect (i). These periods are derived from temporal data and
contribute to the calculation of infection times.

Infection Times (T I ): Infection times are calculated as

T I = {T I
i | i = 2, . . . , n},

where
T I
i = TO

i − tLi,Ji .

This parameter provides temporal resolution for reconstructing the transmis-
sion network.

Infection Rate (α): The infection rate (α) represents the average number
of individuals that an infected person transmits the pathogen to within a year.
It is informed by the structure of the transmission network (Φ) and temporal
data.

Removal Rate (β): The removal rate (β) quantifies the average time it takes
for an infected individual to recover from the onset of symptoms. This param-
eter captures recovery dynamics and is informed by temporal data, specifically
the recovery times (TR) and symptom onset times (TO). The recovery time for
each individual is calculated as the difference between their removal time (TR

i )
and symptom onset time (TO

i ). This information provides critical insight into
the infectious period and overall disease progression.

Mutation Rate (µ): The mutation rate (µ) is the number of mutations per
site per year, representing the rate of pathogen evolution. It links genomic data
(D) to the transmission network by quantifying genetic differences between
pathogens.

Effective Population Size Parameter (θ): The effective population size
parameter (θ) quantifies the average number of mutations introduced per gen-
eration per site within the host population of pathogens. It is calculated as:

θ = µNeg,

16



where µ is the mutation rate per site per year, Ne is the effective population size
of pathogens, and g is the generation time of pathogens.

2.2 Fundamental Assumptions

2.2.1 No co-infection
It is assumed that co-infection doesn’t exist. Each infected patient could be
traced back to the most likely transmitters.

2.2.2 Uninfectious during the latent period
It is assumed that each individual has three time points: time of infection, symp-
tom onset time, and removal time. Each individual is only infectious/contagious
during the period from symptom onset to removal. In other words, the indi-
vidual stay uninfectious during the latent period.

2.2.3 Relaxed bottleneck assumption
Here, we relaxed the complete bottleneck assumption that only a single pathogen
could pass to the infected at the time of infection.

2.3 The Bayesian Framework with Temporal and
Genomic Data

With the input data and parameters well-defined, this framework integrates
temporal and genomic data to infer the transmission network. Temporal data,
comprising symptom onset (TO) and removal times (TR), provide critical in-
formation about the order and duration of infectious periods, ensuring the
inferred transmission tree respects the observed chronology. Genomic data,
represented as pairwise genetic distances (D), quantify the evolutionary rela-
tionships between pathogens, enabling the refinement of potential transmis-
sion pathways based on genetic similarity. Together, these complementary data
sources provide a robust foundation for reconstructing the transmission tree.

The framework is parameterized by the transmission network Φ, which
identifies who infected whom, and the latent periods tL, representing the time
between infection and symptom onset for individuals. Additional parameters
include the infection rate α, which determines how quickly infections occur,
the removal rate β, which captures the average duration of infectiousness, the
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mutation rate µ, which describes the rate at which genetic changes occur, and
the effective population size parameter θ, which shapes the genetic diversity of
the pathogen. Together, these parameters govern the dynamics of transmission
and pathogen evolution within the population.

Using these data and parameters, the posterior probability distribution inte-
grates the likelihood of the temporal and genomic data with prior distributions
over the parameters and transmission network. The posterior is expressed as:

P (Φ, tL, θ, α, β, µ | D,TO, tinf) ∝ P (D,TO, tinf | Φ, tL, θ, α, β, µ)
× P (Φ, tL, θ, α, β, µ) (2.1)

2.3.1 Likelihood
The likelihood function P (D,TO, tinf | Φ, tL, θ, α, β, µ) can be factored into
a product of three conditional probabilities, i.e.,

P (D,TO, tinf | Φ, tL, θ, α, β, µ) = P (D | TO, tinf,Φ, tL, θ, α, β, µ)

× P (TO | tinf,Φ, tL, θ, α, β, µ)

× P (tinf | Φ, tL, θ, α, β, µ)
= P (D | TO, TR,Φ, tL, θ, µ)

× P (TO | tinf,Φ, tL, α)

× P (tinf | β) (2.2)

2.3.1.1 P (tinf | Φ, tL, β)

Assuming that infectious periods tinf follow an exponential distribution with
rate β, the conditional probability can be factorized as a product of individual
exponential probabilities for each infectious period:

P (tinf | β) =
n∏

i=1

P (tinf
i | β) =

n∏
i=1

βe−βtinf
i (2.3)

This compact representation simplifies the likelihood calculation by express-
ing it as a product of exponential terms.

2.3.1.2 P (TO | tinf,Φ, tL, α)

The conditional probability of onset times P (TO | tinf,Φ, tL, α) can be fac-
torized as the product of joint probabilities for the onset times of patients who
share the same infector. Denoting m as the number of individuals who have
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transmitted the infection to at least one other person, each of these individuals,
labeled as j1, . . . , jm, has infected a certain number of individuals, denoted kji ,
who are represented as {l1, . . . , lkji}. Given the infection rate α, the waiting
time until the next infection follows an exponential distribution with density
αe−αt. For each transmitter ji, the probability of observing the infections kji
is expressed as the product of exponential densities of these waiting times. This
yields:

P
(
TO
l1
, . . . , TO

lkji
| TO

ji
, tinf

ji
, tL, α,Φ

)
=

kji∏
k=1

αe
−α
(
TO
lk
−TO

lk−1

)
+ e

−α

(
TO
ji
+tinf

ji
−TO

lkji

)

= αkjie−αtinf
ji (2.4)

This product of joint probabilities, which accounts for each individual’s latent
period to recover their true infection time, provides a comprehensive view of
the transmission dynamics for each transmitter. Aggregating the probabilities
across all transmitters, we obtain:

P (TO | Φ, tinf, tL, α) =
m∏
i=1

(
αkjie−αtinf

ji

)
= αn−me−α

∑m
i=1 t

inf
ji (2.5)

This factorized representation enables us to depict the infection and onset
times for each transmitter, thus illustrating the transmission patterns through-
out the network.

2.3.1.3 P (D | TO, tinf ,Φ, tL, θ, µ)

The probability P (D | TO, tinf ,Φ, tL, θ, µ) of the sequence data D is ob-
tained by integrating the joint density P (D,Ψ | T 0, tinf ,Φ, tL, θ, µ) over all
possible phylogenetic trees Ψ, i.e.,

P (D | TO, tinf ,Φ, tL, θ, µ) =

∫
Ψ

P (D | Ψ)P (Ψ | TO, tinf ,Φ, tL, θ, µ)dΨ

This means that P (D | TO, tinf ,Φ, tL, θ, µ) represents the probability of
observing the sequence data D given the transmission tree Φ and other param-
eters (tL, θ, α, µ) without considering a specific phylogenetic tree. Given that
the (n−1) transmissions {ϕ2, . . . , ϕn} in the networkΦ occur independently,
the probability P (D | T 0, tinf ,Φ, tL, θ, µ) can be expressed as the product
of the probabilities of the two sequences associated with each of the (n − 1)

transmissions {ϕ2, . . . , ϕn}, i.e.,
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P (D | TO, tinf ,Φ, tL, θ, µ) =
n∏

i=2

P (D | ϕi, T
O, tinf , tL, θ, µ)

=
n∏

i=2

P (dJi , di | ϕi, T
O
Ji
, TO

i , tinfJi
, tinfi , tLi,Ji , θ, µ)

(2.6)

In (6),dJi anddi are the sequences of the individualsJi and i associated with
the transmission ϕi : Ji → i. Let xij and pij be the frequency and probability
of the nucleotide doublet ij for i, j ∈ {A,C,G, T}. The term P (dJi , di |
ϕi, T

O
Ji
, TO

i , tinfJi
, tinfi , tLi,Ji , θ, µ) in (6) is a multinomial probability given by

P (dJi , di | ϕi, T
O
Ji
, TO

i , tinfJi
, tinfi , tLi,Ji , θ, µ)

=
N !∏

i∈{A,C,G,T}
∏

j∈{A,C,G,T} xij!

∏
i∈{A,C,G,T}

∏
j∈{A,C,G,T}

(pij)
xij (2.7)

The probability pij of observing the nucleotide doublet ij at a particular
site in the sequences dJi and di can be calculated using a substitution model
and a coalescence process that describes the evolution of nucleotides within
a host. To simplify the calculations, we assume the Jukes-Cantor model for
nucleotide substitutions (Jukes and Cantor 1969), but any substitution model
can be used. Under the Jukes-Cantor model, the 16 possible doublet patterns
can be reduced to two, and the multinomial probability in (8) simplifies to a
binomial probability:

P (dJi, di | ϕi, T
O
Ji
, TO

i , tinfJi
, tinfi , tLi,Ji , θ, µ) =

N !

xi!(N − xi)!
pxi
i (1− pi)

N−xi

(2.8)

where N is the length (i.e., the number of sites) of the sequence alignment
D, pi is the probability of a mutation in a single site, and xi is the frequency of
mutations occurring between the sequences dJi and di.

The probability pi of a mutation in a single locus occurring between the se-
quences dJi anddi is calculated using the Jukes-Cantor model and a coalescence
process that describes the evolution of nucleotides within a host, as detailed in
Section 1.4:
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pi =
3

4
− 3

4
e−µ·t (2.9)

Here, t denotes the evolutionary time, which corresponds to the branch length
in the phylogeny tree. Reconstructing the phylogeny tree of the two sequences
is essential to determine t, as it captures the evolutionary relationships between
the sequences.

t: Evolutionary Time (Branch Duration) The evolutionary time t is de-
fined as the total length of the branch that connects the pathogens sampled dJi
and di to their most recent common ancestor (MRCA). Specifically, t repre-
sents the sum of the time intervals from the MRCA to the removal times of Ji
and i. Mathematically, t is expressed as:

t = (TR
Ji
− TCA) + (TR

i − TCA)

= [(TR
Ji
− T I

i ) + (T I
i − TCA)] + [(TR

i − T I
i ) + (T I

i − TCA)]

= (t1 + t∗) + (t2 + t∗) = t1 + t2 + 2t∗, (2.10)

Here,TCA represents the coalescence time of two sequencesdJi anddi. The
term t1 = TR

Ji − T I
i denotes the duration from i’s infection to Ji’s removal,

while t2 = TR
i − T I

i represents the duration from i’s infection to i’s removal.
The term t∗ captures the time to coalescence, tracing back to the most recent
common ancestor (MRCA) for both lineages. Together, t1, t2, and 2t∗ provide
a complete decomposition of the total time. The relationships between t1, t2,
t∗, and their connection to the coalescence time TCA are visually illustrated in
Figure 2.1, which depicts the within-host evolution of Patients A and B, the
transmission event, and the phylogenetic tree showing the coalescence process.

In the absence of a complete bottleneck, the MRCA may predate the in-
fection time of the transmitter Ji. In such cases, the time to the MRCA, t∗,
can become unbounded. This emphasizes the complexity of tracing lineage
relationships when transmission dynamics do not enforce strict genetic bottle-
necks.

Combining (7), (9), and (10), the probability P (D | TO, tinf ,Φ, tL, θ, µ)

of the sequence data D is given by:
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Figure 2.1: Timeline of within-host evolution and coalescence between Patient
A (blue) and Patient B (red). The green star marks the transmission from A to
B at T I

B . The phylogeny (right) shows the coalescence time t∗ tracing back to
the MRCA. Key intervals include t1 = TR

A −T I
B (A’s removal to B’s infection)

and t2 = TR
B − T I

B (B’s infection to removal).

P (D | TO, tinf,Φ, tL, θ, µ) =
n∏

i=2

(
3

4
− 3

8θ + 4
e−µ(ti,1+ti,2)

)xi

×
(
1

4
+

3

8θ + 4
e−µ(ti,1+ti,2)

)N−xi

(2.11)

Under the assumption of a homogeneous effective population size param-
eter θ across all hosts, the coalescent model for within-host evolution remains
valid and integrates the roles of intermediators in the transmission chain. Con-
sequently, the Bayesian model can effectively account for missing samples, indi-
cating that then−1 transmissions in the transmission network may be indirect.

2.3.2 Prior
Given that the transmission network Φ, the latent periods tL, the population
size parameter θ, the mutation rate µ, and the infection rate α are independent
of each other, the joint prior P (Φ, tL, θ, α, µ) is equal to the multiplication of
five independent priors P (Φ), P (tL), P (θ), P (α), and P (µ), i.e.,

P (Φ, tL, θ, α, µ) = P (Φ)× P (tL)× P (θ)× P (α)× P (µ) (2.12)
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Given that the (n − 1) transmissions in the transmission network Φ =

{ϕ2, . . . , ϕn} occur independently, the prior probabilityP (Φ) of the transmis-
sion network Φ = {ϕ2, . . . , ϕn} is the product of the prior probabilities of
(n− 1) transmissions, i.e.,

P (Φ) =
n∏

i=2

P (ϕi) (2.13)

The prior probability of a transmissionϕi is equal to the probability that Ji
is the infector associated with the transmission ϕi, i.e., P (ϕi) = P (Ji). When
no contact information is available, the prior probability P (Ji) is assumed to
follow a discrete uniform distribution, i.e.,

P (Ji) =
1

i− 1
(2.14)

The prior probabilityP (tL) of latent periods tL is the product of individual
latent period probabilities, i.e.,

P (tL) =
n∏

i=2

P (tLJi,i) (2.15)

where each latent period tLJi,i follows a truncated scaledχ2 distribution with
the upper bound TO

i − TO
Ji

and the lower bound max(0, TO
i − TR

Ji
).

The priors for the effective population size parameter θ, mutation rate µ,
and infection rateα are assumed to be exponential distributions with respective
rates λθ, λµ, and λα.

2.4 The Bayesian Framework with Temporal, Ge-
nomic and Network Data

Our Bayesian framework integrates temporal, genomic, and network informa-
tion to infer infection dynamics by building upon prior methods developed
for temporal and genomic data. The key innovation is the incorporation of
network data G as a hyperparameter, which updates the transmission tree prior
from P (Φ) to P (Φ | G). This modification shifts the model from a uniform
infection probability to one that leverages network-derived contact likelihood
based on social or spatial proximity. The posterior is iteratively updated to reflect
complex interdependencies across temporal, genomic, and network domains,
yielding a comprehensive and precise representation of infection dynamics and
enabling robust inference of transmission pathways.
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Below, we outline the posterior probability as below:

P (Φ, tL, θ, α, β, µ | D,TO, tinf, G)

∝P (D,TO, tinf, G | Φ, tL, θ, α, β, µ)× P (Φ, tL, θ, α, β, µ)

∝P (D | TO, tinf,Φ, tL, θ, α, β, µ)× P (TO | tinf,Φ, tL, α)

× P (tinf | β)× P (Φ | G)× P (G)

× P (tL)× P (θ)× P (α)× P (β)× P (µ). (2.16)

2.4.1 Prior of the transmission tree P (Φ | G)

Assuming independence among transmission events, the prior probability of
the transmission tree, P (Φ | G), can be expressed as the product of n − 1

independent transmission events:

P (Φ | G) =
n∏

i=2

P (ϕi | G).

Each termP (ϕi | G)depends on the proximity between individual i and its cor-
responding transmitterJi within the network, as quantified by the distancegi,Ji .
Recognizing that contact probability typically decays rapidly with increasing
distance, we model this relationship using an exponential function, assuming
that the transmission probability is inversely proportional to the exponential
of the distance:

P (ϕi | G) ∝ 1

egi,Ji
.

To convert these unnormalized weights into valid probabilities, we assign
an arbitrary scalar k to each transmission event. For a given individual i with
transmitter Ji, the unnormalized weight is

k

egi,Ji
,

where gi,Ji denotes the distance between individual i and its transmitter Ji. We
then sum the weights over all possible transmitters (i.e., for all j = 1, . . . , i−1)
and normalize by dividing the individual weight by this sum. Since the scalar k
appears in both the numerator and denominator, it cancels out, yielding

P (ϕi | G) =
1

e
gi,Ji∑i−1

j=1
1

egi,j

.
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We denote the resulting normalization constant byki, so thatk andki effectively
represent the same scaling factor, ensuring that the probabilities sum to one
across all possible transmitters.

2.4.2 P (G)

The probability P (G) represents the likelihood of observing a particular net-
work G among n nodes. Given that there are

(
n
2

)
possible pairs of nodes and

each pair can either be connected or not, there exist 2(
n
2) possible network con-

figurations. However, because G is treated as fixed and known, and P (G) does
not depend on the model parameters, it is absorbed into the normalizing con-
stant of the model. Consequently, there is no need to explicitly specify P (G)

during model evaluation.

2.5 Markov Chain Monte Carlo (MCMC) with
Metropolis-Hastings sampling

Due to the intractability of the posterior probability distributions, we approxi-
mate it by generating a sample of model parameters using a Metropolis-Hastings-
based MCMC approach. In our framework, the parameter set comprisesµ (the
mutation rate), α (the infection rate), θ (the effective population size), and Φ,
whereΦ further includes tb (latent period) andJ (Infection ID). Notably, both
Bayesian models—whether incorporating a contact network or not—utilize this
identical set of parameters. Consequently, the initialization process and the pro-
posal mechanisms for new parameter values can be described uniformly across
models, with differences arising only in the computation of the Hastings ratio,
which is tailored to reflect the distinct structural elements of the two models.

2.5.1 Initialization of Model Parameters.
In the first stage of the MCMC initialization, we identify the most probable
transmitter by assigning each individual i an infectorJi from the set{1, 2, . . . , i−
1}. The assignment is chosen so that the observed genetic differences (SNPs)
between the candidate infector’s sequence dj and the newly infected individ-
ual’s sequence di are minimized. In other words, for each i, we compare di
to all possible dj where j < i, compute the SNP differences, and pick the j
that yields the fewest discrepancies. By relying on this minimal-SNP criterion,
we construct an initial transmission network that is most genetically plausible,
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providing a solid starting point for subsequent updates within the MCMC
procedure.

Based on the assumption that an individual’s infectious period spans from
the symptom onset timeTO to the removal timeTR, we obtain explicit bounds
for the latent period associated with each transmission event. For a transmis-
sion event in which individual j infects individual i (with i = 2, . . . , n and
j = 1, . . . , i− 1), we assume that the latent period tLi,j follows a scaled, trun-
cated chi-squared distribution. This distribution is defined over the interval(
tL,lbi,j , tL,ub

i,j

)
, where the lower bound is given by

tL,lbi,j = max
(
0, TO

i − TR
j

)
and the upper bound by

tL,ub
i,j = TO

i − TO
j .

Using these bounds, the initial value of tLi,j is sampled from a uniform distribu-
tion over the interval

(
tL,lbi,j , tL,ub

i,j

)
for each transmission event, and these values

are stored in an n× n matrix.
In the previous section, we assumed that the mutation rate µ, effective pop-

ulation size θ, and infection rate α have exponential priors with rate parameters
λµ, λθ, and λα, respectively. Their initial values are drawn from uniform distri-
butions over the following intervals:

(θlb, θub) =
(
1× 10−6, 5× 10−6

)
,

(µlb, µub) =
(
5× 10−7, 1× 10−6

)
,

(αlb, αub) = (3, 5).

This approach provides a broad yet plausible initialization for the subsequent
Markov chain Monte Carlo (MCMC) sampling process.

Based on the observed input values for symptom onset time (TO) and re-
moval time (TR), the infectious period for each individual is calculated asTR−
TO. Under the assumption that the removal process is determined solely by this
interval, the removal rate β is estimated as the average infectious period across
all n individuals:

β =
1

n

n∑
i=1

(
TR
i − TO

i

)
.
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2.5.2 Proposal of New Values
In our MCMC procedure, parameter updating relies on three components.
First, iteration allocation is tuned to each parameter’s convergence rate: param-
eters that converge rapidly are updated less frequently, while those that require
more iterations are updated more often. Second, candidate proposals are gener-
ated using a random walk. For continuous parameters, a new value is obtained
by perturbing the current value with a random step drawn from a uniform dis-
tribution defined by preset bounds; for discrete parameters, a new candidate is
randomly chosen from the set of permissible alternatives. Third, the Metropolis-
Hastings acceptance rule determines whether to adopt the proposed update by
comparing the posterior density of the proposed state with that of the current
state. This strategy ensures efficient exploration of the parameter space and lays
the foundation for further detailed discussion of each component.

2.5.2.1 Iteration Allocation

To tailor computational effort, we assign fixed iteration proportions based on
each parameter’s convergence rate. Specifically, the mutation rate µ is updated
in 10% of the iterations, while the effective population size θ, the infection rate
α, and the transmission tree parameters (i.e., branch times tb and infection iden-
tifiers J) are each updated in 30% of the iterations. At each iteration, a random
number r is drawn from a uniform distribution on [0, 1) to determine which
parameter to update: if r < 0.1, update µ; if 0.1 ≤ r < 0.4, update θ; if
0.4 ≤ r < 0.7, update α; and if 0.7 ≤ r < 1, update the transmission tree pa-
rameters. This strategy efficiently allocates computational resources, ensuring
effective exploration of the parameter space and convergence toward the target
posterior distribution.

2.5.2.2 Proposal of new values

A random walk proposal mechanism is used to generate candidate values for the
continuous parameters α, θ, µ, and the latent period tL. For each parameter,
the current value is perturbed by adding a random step drawn from a uniform
distribution. To illustrate, consider the parameter θ. Its candidate value is pro-
posed from a uniform distribution with bounds defined as follows:

Ulb = max (θlb, θcurrent − Step Size) ,

Uub = min (θub, θcurrent + Step Size) .
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Here, θlb and θub denote the predefined lower and upper bounds for θ. For
the parameters α, θ, and µ, the lower bound is set to 0, and an upper bound
of 1 is imposed for θ and µ. The latent period tL is updated similarly using
its own prior-defined bounds. The step size determines the magnitude of the
perturbation, ensuring efficient exploration of the parameter space during the
MCMC process.

For the discrete infection identifierJi corresponding to individual i, we first
compile the list of all potential infectors, that is, all j ∈ {1, 2, . . . , i−1}. Then,
we explicitly remove the current infection identifier Ji from this list. Next, we
randomly shuffle the remaining candidate IDs. Finally, we sequentially con-
sider each candidate from this shuffled list as a new proposed value for Ji. This
procedure ensures that the proposed update represents a genuine alternative
transmission pathway, thereby facilitating a thorough exploration of the trans-
mission network.

2.5.2.3 Update Schemes

In the Metropolis-Hastings algorithm, the acceptance ratio, often called the
Hastings ratio, is computed as the product of two components: the ratio of the
target (posterior) densities of the proposed and current states, and the ratio of
the proposal probabilities for the reverse and forward moves. Mathematically,
this is expressed as

r =
π(x′)

π(x)
× q(x | x′)

q(x′ | x)
,

where π(x) is the posterior density and q(x′ | x) is the proposal probability.
In many cases, when the proposal distribution is symmetric (i.e., q(x′ | x) =
q(x | x′)), the proposal terms cancel out, and the ratio simplifies to the ratio
of the posterior densities. In our setting, fixed lower and upper bounds and a
specified step size in the random walk proposal create an asymmetric proposal
distribution. Consequently, the acceptance ratio must explicitly incorporate
the proposal probability ratio.

For computational stability and efficiency, we work with the logarithm of
the acceptance ratio:

log r = log

(
π(x′)

π(x)

)
+ log

(
q(x | x′)

q(x′ | x)

)
,

which simplifies to

log r =
[
log π(x′)− log π(x)

]
+
[
log q(x | x′)− log q(x′ | x)

]
.
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Using the logarithmic form transforms multiplications into additions and helps
prevent numerical underflow during computation.

The new state is accepted with probability α = min(1, r), ensuring that
moves toward higher posterior density are favored while still allowing explo-
ration of lower-density regions. At each iteration, the Metropolis-Hastings
algorithm determines whether to accept or reject the proposed parameter value
based on the Hastings ratio. A random number k is drawn from a uniform
distribution between 0 and 1, and the acceptance probability A is calculated
using the formula

A = min(1, exp(H)),

where H is the log Hastings ratio. If A > k, the proposed value is accepted;
otherwise, it is rejected. This algorithm is implemented in Julia, a high-level
programming language known for its efficient performance and concise syntax.

θ The effective population size parameter θ is updated using a random walk
with a step size of 5× 10−6. Since θ is constrained between 0 and 1, its proposal
interval is given by

Ulb = max
(
0, θcurrent − 5× 10−6

)
, Uub = min

(
1, θcurrent + 5× 10−6

)
.

A candidate value θ′ is drawn uniformly from this interval, yielding a proposal
density of

q(θ′ | θ) = 1

Uub − Ulb
.

The reverse density q(θ | θ′) is defined analogously.
With the proposal distribution clearly defined, we now derive the log Hast-

ings ratio. First, we consider the Bayesian framework without network infor-
mation. The log Hastings ratio is given by

H1,A = log

(
P (Φ, tL, θ′, α, β, µ | D,TO, tinf)

P (Φ, tL, θ, α, β, µ | D,TO, tinf)
× q(θ | θ′)

q(θ′ | θ)

)
= log

(
P (D | TO, TR,Φ, tL, θ′, µ)P (θ′)

P (D | TO, TR,Φ, tL, θ, µ)P (θ)
× q(θ | θ′)

q(θ′ | θ)

)
= logP (D | TO, TR,Φ, tL, θ′, µ) + logP (θ′) + log q(θ | θ′)
− logP (D | TO, TR,Φ, tL, θ, µ)− logP (θ)− log q(θ′ | θ).

Next, we extend this formulation to the Bayesian framework that incorporates
network information.
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H1,B = log

(
P (Φ, tL, θ, α, β, µ,G | D,TO, tinf)

P (Φ, tL, θ, α, β, µ,G | D,TO, tinf, G)
× q(θ | θ′)

q(θ′ | θ)

)
= log

(
P (D | TO, TR,Φ, tL, θ′, µ)P (θ′)

P (D | TO, TR,Φ, tL, θ, µ)P (θ)
× q(θ | θ′)

q(θ′ | θ)

)
= logP (D | TO, TR,Φ, tL, θ′, µ) + logP (θ′) + log q(θ | θ′)
− logP (D | TO, TR,Φ, tL, θ, µ)− logP (θ)− log q(θ′ | θ).

µ For the mutation rate µ, a finer step size of 1 × 10−7 is chosen. With µ

restricted to the interval [0, 1], the proposal interval is defined as

Ulb = max
(
0, µcurrent − 1× 10−7

)
, Uub = min

(
1, µcurrent + 1× 10−7

)
.

A candidate µ′ is sampled uniformly from this interval, resulting in a proposal
density of

q(µ′ | µ) = 1

Uub − Ulb
.

The reverse move is defined similarly to properly capture any asymmetry.
For the Bayesian framework without network data, the log Hastings ratio

for updating µ is defined as

H1,A = log
P (Φ, tL, θ, α, β, µ′ | D,TO, tinf)

P (Φ, tL, θ, α, β, µ | D,TO, tinf)
+ log

q(µ | µ′)

q(µ′ | µ)

= log
P (D | TO, TR,Φ, tL, θ, µ′)P (µ′)

P (D | TO, TR,Φ, tL, θ, µ)P (µ)
+ log

q(µ | µ′)

q(µ′ | µ)

=
[
logP (D | TO, TR,Φ, tL, θ, µ′) + logP (µ′) + log q(µ | µ′)

]
−
[
logP (D | TO, TR,Φ, tL, θ, µ) + logP (µ) + log q(µ′ | µ)

]
.

When network data G is incorporated, the log Hastings ratio becomes

H1,B = log
P (Φ, tL, θ, α, β, µ′, G | D,TO, tinf)

P (Φ, tL, θ, α, β, µ,G | D,TO, tinf)
+ log

q(µ | µ′)

q(µ′ | µ)

= log
P (D | TO, TR,Φ, tL, θ, µ′)P (µ′)

P (D | TO, TR,Φ, tL, θ, µ)P (µ)
+ log

q(µ | µ′)

q(µ′ | µ)
= logP (D | TO, TR,Φ, tL, θ, µ′) + logP (µ′) + log q(µ | µ′)

− logP (D | TO, TR,Φ, tL, θ, µ) + logP (µ) + log q(µ′ | µ).

30



In both cases, the log Hastings ratio is composed of the difference between
the log posterior (or likelihood-prior product) terms and the log proposal den-
sity terms. The inclusion of network data G in the second case does not alter
the form of the ratio but simply adds the additional conditioning information
in the joint distribution.

α The infection rateα is updated with a step size of0.3, reflecting its expected
scale. Unlike θ andµ,αhas only a lower bound of 0. Thus, the proposal interval
is defined by

Ulb = max (0, αcurrent − 0.3) , Uub = αcurrent + 0.3.

A candidateα′ is drawn from a uniform distribution over this interval, resulting
in a proposal density of

q(α′ | α) = 1

Uub − Ulb
.

The reverse proposal density is defined in the same way to ensure that the asym-
metry in the proposal mechanism is properly accounted for in the acceptance
ratio.

For the Bayesian framework without network data, the log Hastings ratio
for updating the infection rate α is defined as

H1,A = log

(
P (Φ, tL, θ, α′, β, µ | D,TO, tinf)

P (Φ, tL, θ, α, β, µ | D,TO, tinf)
× q(α | α′)

q(α′ | α)

)
= log

(
P (TO | tinf,Φ, tL, α′)P (α′)

P (TO | tinf,Φ, tL, α)P (α)
× q(α | α′)

q(α′ | α)

)
=
[
logP (TO | tinf,Φ, tL, α′) + logP (α′) + log q(α | α′)

]
−
[
logP (TO | tinf,Φ, tL, α) + logP (α) + log q(α′ | α)

]
.

For the Bayesian framework incorporating network data, the log Hastings
ratio for updating α becomes

H1,B = log

(
P (Φ, tL, θ, α′, β, µ,G | D,TO, tinf)

P (Φ, tL, θ, α, β, µ,G | D,TO, tinf)
× q(α | α′)

q(α′ | α)

)
= log

(
P (TO | tinf,Φ, tL, α′)P (α′)

P (TO | tinf,Φ, tL, α)P (α)
× q(α | α′)

q(α′ | α)

)
= logP (TO | tinf,Φ, tL, α′) + logP (α′) + log q(α | α′)

− logP (TO | tinf,Φ, tL, α) + logP (α) + log q(α′ | α).
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Φ During each iteration of updating the transmission tree Φ, we select an
individual i ∈ {2, . . . , n} and update both its infection identifier Ji and its
latent period tL.

To explore alternative transmission pathways, we first identify all candidate
transmitters j ∈ {1, . . . , i−1} (excluding the currentJi) and randomly shuffle
this candidate list to avoid ordering bias. For a candidate transmission event
j → i, the latent period is updated—subject to its upper and lower bounds—so
that it remains consistent with the transmitter’s infectious period. The update
employs an adaptive step size computed as

ϵi,j =
TO
j − T I

i

k
,

with k defaulting to 5, which scales the available interval appropriately while
ensuring that the revised latent period meets all necessary temporal constraints.
Thus, the proposal interval is defined as

Ulb = max
(
max

(
0, TO

i − TR
j

)
, tLi,j − ϵi,j

)
Uub = min

(
TO
i − TO

j , tLi,j + ϵi,j
)

We then draw the candidate tL′
i,j from a uniform distribution over the inter-

val
[
Ulb, Uub

]
. This yields a proposal density

q
(
tL

′

i,j | tLi,j
)

=
1

Uub − Ulb
.

After drawing tL′
i,j , we similarly compute the reverse proposal density q

(
tLi,j |

tL
′

i,j

)
by determining the corresponding interval around tL

′
i,j . These proposal

densities are then used in the Metropolis-Hastings acceptance probability.
First, we consider the Bayesian framework without network information.

The log Hastings ratio is given by

H1,A = log

(
P (Φ′, tL

′
, θ, α, β, µ | D,TO, tinf)

P (Φ′, tL, θ, α, β, µ | D,TO, tinf)
× q(tL | tL′

)

q(tL′ | tL)

)
= log

(
P (di, dj | TO, tinf,Φ′, tL

′
i,j, θ, µ)P (tL

′
i,j)

P (di, dj | TO, tinf,Φ′, tLi,j, θ, µ)P (tLi,j)
×

q(tLi,j | tL
′

i,j)

q(tL
′

i,j | tLi,j)

)
= logP (di, dj | TO, tinf,Φ′, tL

′

i,j, θ, µ) + logP (tL
′

i,j) + log q(tLi,j | tL
′

i,j)

− logP (di, dj | TO, tinf,Φ′, tLi,j, θ, µ)− logP (tLi,j)− log q(tL
′

i,j | tLi,j).
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For the Bayesian framework with network information, the log Hastings
ratio is given by

H1,B = log

(
P (Φ′, tL

′
, θ, α, β, µ,G | D,TO, tinf)

P (Φ′, tL, θ, α, β, µ,G | D,TO, tinf)
× q(tL | tL′

)

q(tL′ | tL)

)
= log

(
P (di, dj | TO, tinf,Φ′, tL

′
i,j, θ, µ)P (tL

′
i,j)

P (di, dj | TO, tinf,Φ′, tLi,j, θ, µ)P (tLi,j)
×

q(tLi,j | tL
′

i,j)

q(tL
′

i,j | tLi,j)

)
= logP (di, dj | TO, tinf,Φ′, tL

′

i,j, θ, µ) + logP (tL
′

i,j) + log q(tLi,j | tL
′

i,j)

− logP (di, dj | TO, tinf,Φ′, tLi,j, θ, µ)− logP (tLi,j)− log q(tL
′

i,j | tLi,j).

After finishing the updating procedure for the latent period for transmis-
sion event j → i, we will now compare the likelihood of j → i versus the
Ji → i where Ji is the inferred infection ID (transmitter) for the individual i.

Under the Bayesian framework without network data, the log Hastings
ratio is given by

H1,A = log

(
P (Φ′, tL

′
, θ, α, β, µ | D,TO, tinf)

P (Φ, tL, θ, α, β, µ | D,TO, tinf)
× q(Φ | Φ′)

q(Φ′ | Φ)

)
= log

(
P (di, dj | TO, tinf,Φ′, tLi,j, θ, µ)P (tLi,j)

P (di, dJi | TO, tinf,Φ, tLi,Ji , θ, µ)P (tLi,Ji)
× q(ϕi | ϕ′

i)

q(ϕ′
i | ϕi)

)
= logP (di, dj | TO, tinf,Φ′, tLi,j, θ, µ) + log q(ϕi | ϕ′

i) + log q(tLi,j | tL
′

i,j)

− logP (di, dJi | TO, tinf,Φ, tLi,Ji , θ, µ)− logP (tLi,Ji)− log q(ϕ′
i | ϕi).

Under the Bayesian framework with network data, the log Hastings ratio
becomes
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H1,B = log

(
P (Φ′, tL

′
, θ, α, β, µ,G | D,TO, tinf)

P (Φ, tL, θ, α, β, µ,G | D,TO, tinf)
× q(Φ | Φ′)

q(Φ′ | Φ)

)
log

(
P (di, dj | TO, tinf,Φ′, tLi,j, θ, µ)P (ϕi | G)P (tLi,j)

P (di, dJi | TO, tinf,Φ, tLi,Ji , θ, µ)P (ϕ′
i | G)P (tLi,Ji)

× q(ϕi | ϕ′
i)

q(ϕ′
i | ϕi)

)
= logP (di, dj | TO, tinf,Φ′, tLi,j, θ, µ) + P (ϕi | G)

+ log q(ϕi | ϕ′
i) + log q(tLi,j | tL

′

i,j)

− logP (di, dJi | TO, tinf,Φ, tLi,Ji , θ, µ) + P (ϕi | G)

− logP (tLi,Ji)− log q(ϕ′
i | ϕi).

In summary, while both H1,A and H1,B share the same structure, the in-
clusion of network data in H1,B introduces additional terms—specifically, the
likelihood components P (ϕi | G) and P (ϕ′

i | G). These extra terms incorpo-
rate the network connectivity information, thereby providing a more detailed
account of the transmission dynamics when network data are available. Con-
sequently, H1,B offers a refined evaluation of the proposed transmission event
compared to H1,A, which does not leverage network information.

2.5.3 MCMC Simulation Setup
In the Markov Chain Monte Carlo (MCMC) setting, we perform a simulation
with a default of N = 100, 000 iterations. The first 20, 000 iterations are dis-
carded as burn-in to allow the chain to converge to its stationary distribution,
ensuring that the initial samples do not influence the final results. After this
burn-in period, we collect every 100th sample, resulting in 800 measurements
for each parameter of interest. This sampling strategy helps mitigate autocorre-
lation between consecutive samples, ensuring the parameter estimates are based
on independent and representative draws from the posterior distribution.

2.6 Hypothesis Testing on Direct Transmissions
Capturing every individual in a full transmission network for infectious diseases
is challenging due to limited healthcare access, undetected asymptomatic carri-
ers, and logistical hurdles in testing and data collection. Typically, only a small
subset of patients have their pathogen genomes collected for genetic analysis.
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Consequently, many transmissions inferred from genetic data do not represent
direct transmissions. To address this, we have developed a statistical tool specifi-
cally designed to identify direct transmissions. LetSi,Ĵi

be the number of SNPs
between two pathogen genomes di and dĴi , where Ĵi is the Bayesian estimate
of the transmitter Ji.

The probability distribution of Si,Ĵi
is Binomial (N, pi,Ĵi), where N is the

total number of nucleotides in the genome and pi,Ĵi is the probability of a mu-
tation occurring at a site between genomes di and dĴi . The probability pi,Ĵi can
be estimated by

p̂i,Ĵi =
3

4
− 3

8θ̂ + 4
e−µ̂(ti,1+ti,2) (2.17)

where θ̂ and µ̂ are the Bayesian estimates of θ andµ. The mean and standard
deviation of Si,Ĵi

are Np̂i,Ĵi and
√

Np̂i,Ĵi(1− p̂i,Ĵi), respectively. The 95%
confidence interval for the number of SNPs can be used to determine whether
the observed SNP count is significantly higher than the expected count and
subsequently identify direct transmissions.

2.6.1 Impact of Hypothesis Performance
The performance of the hypothesis testing method in identifying direct trans-
missions depends on two key factors: (1) SNP sparsity and (2) threshold esti-
mation. These factors influence the ability to distinguish direct from indirect
transmission pairs, as shown in Figure 2.2, where Panel B represents SNP spar-
sity and Panel C illustrates threshold estimation.

2.6.2 SNP Sparsity (Figure 2.2, Panel B)
Classification is more reliable when SNP differences between direct and indirect
pairs are well-separated (Panel A) but becomes challenging when their distribu-
tions overlap (Panel B). To evaluate this effect, we conduct simulations under
various parameter settings, varying infection rate (α), removal rate (β), effective
population size (θ), mutation rate (µ), and sample size. This approach quanti-
fies the influence of each parameter on SNP distributions and assesses its impact
on the power of the hypothesis test, specifically its ability to correctly identify
indirect pairs as indirect.
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Figure 2.2: Impact of SNP distribution and threshold estimation on classifica-
tion performance. This figure illustrates three scenarios of SNP distribution
between direct and indirect transmission pairs and their effect on classification
thresholds:
(A) Scenario 1: Direct and indirect pairs have well-separated SNP distribu-
tions, allowing for an appropriate threshold to distinguish between them.(B)
Scenario 2: Direct and indirect pairs have overlapping SNP distributions, but
the threshold remains appropriately placed for classification.
(C) Scenario 3: SNP distributions are mixed, but the threshold is overestimated,
leading to potential misclassification of direct and indirect pairs.
The red dashed line represents the classification threshold in each scenario, high-
lighting the challenges of SNP sparsity and threshold estimation in direct trans-
mission inference.

2.6.3 Threshold Estimation (Figure 2.2, Panel C)
The classification threshold is determined by Bayesian estimates of the mutation
rate (µ) and effective population size ((θ)). Panel C illustrates how different
estimation strategies influence classification outcomes. The standard Bayesian
inference of the transmission tree assumes that all inferred transmission pairs are
direct. When the sample size is small, more indirect pairs are included, leading to
more observed SNP differences over short evolutionary timescales. This inflates
the estimates of θ and µ, causing an overestimation of the mutation rate and
effective population size.

To address this bias, we propose an optimization-based approach to itera-
tively refine the threshold. By explicitly incorporating SNP differences from
inferred direct transmission pairs only and optimizing θ andµ, this method cor-
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rects for the overestimation caused by indirect transmissions. The optimization
process follows the algorithm:

Algorithm 1 Optimization of θ and µ for Transmission Pair Classification
Use Bayesian estimates of θ and µ to establish an initial threshold.
repeat

Optimize θ and µ by minimizing the negative log-likelihood of SNP
differences given time for direct pairs.

Define the objective function as:

− log[P (SNP1|time1, θ, µ) · P (SNP2|time2, θ, µ) · · · ]

Apply the Nelder-Mead optimization to estimate optimal values
θ2, µ2.

Update the threshold and reclassify transmission pairs.
until convergence of the classification of pairs

The Nelder-Mead method is a derivative-free optimization algorithm that
updates parameter estimates by evaluating function values at simplex vertices.
It is particularly effective for likelihood-based optimization when gradients are
difficult to compute, making it well-suited for refining model parameters in this
study.

By analyzing SNP sparsity (Panel B) and refining threshold estimation (Panel
C), we assess the robustness of the hypothesis testing method under differ-
ent conditions, improving its power to correctly identify indirect transmission
pairs.

2.7 Network Analysis: Exponential Random Graph
Models

Exponential Random Graph Models (ERGMs) are a statistical framework for
modeling complex network structures by estimating the probability of network
configurations based on specified characteristics and dependencies. ERGMs
are essential for understanding the formation and structure of networks, as they
allow researchers to account for both node-level attributes and relational depen-
dencies, such as clustering and reciprocity. The model’s probability distribution
is expressed as

P (Y = y | θ) = exp(θT s(y))

c(θ)
, (2.18)
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where θ is a vector of parameters, and s(y) represents sufficient statistics
capturing key network features, including dependencies like mutual ties and
triadic closures. The term c(θ) is a normalizing constant. In our context, we
can incorporate social distance by including an edge covariate term

∑
i,j Xijyij ,

where Xij denotes the social path length between nodes i and j. This allows
the model to evaluate how social distance influences tie formation, with shorter
paths potentially indicating stronger social proximity, thus enhancing the prob-
ability of a tie. By modeling dependencies and covariates, ERGMs provide a
rigorous framework for assessing the role of social distance in network cohesion.

In this study, we evaluate the impact of network distance on the probability
of a tie, P (tie), which represents a transmission event in the transmission tree.
To achieve this, we fit an Exponential Random Graph Model (ERGM) using
a Bayesian-inferred transmission tree and its corresponding network distance
matrix.

To assess the robustness of network-based transmission modeling, we intro-
duce noise by modifying a predefined percentage of network connections and
analyzing its effect on the relationship between network distance and transmis-
sion probability. Specifically, we follow the algorithm:

Algorithm 2 Network Perturbation and ERGM Fitting
Retrieve the adjacency matrix from the previously simulated network of
10,000 nodes.
for each noise level do

for iteration = 1 to 3 do
Select a predefined percentage of node pairs (e.g., 10%).
for each selected node pair (i, j) do

if adjacency matrix entry A[i, j] = 1 then
Set A[i, j]← 0 (remove tie).

else if A[i, j] = 0 then
Set A[i, j]← 1 (add tie).

end if
end for
Recompute network distances for individuals in the transmission

network (a subset of the full 10,000-node network) based on the modified
adjacency matrix.

Fit the ERGM using the transmission tree, incorporating the up-
dated network distance matrix.

end for
end for
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This process quantifies the sensitivity of ERGM-based transmission mod-
eling to structural noise, providing insights into the stability of network-based
dependencies and their influence on transmission dynamics.

Figure 2.3: Procedures for introducing noise into the network distance matrix.
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Chapter 3

Simulation Study

This chapter presents the Simulation Framework, providing an overview of
the methodology used in both network-based and non-network-based simula-
tions. The network-based simulation models transmission dynamics within a
structured contact network, while the non-network-based approach simulates
transmission independently of network structure. Following this high-level
overview, the chapter details the simulation procedures for generating different
types of data, including temporal, network, and genetic data, describing the key
assumptions, parameter choices, and computational steps involved. The chap-
ter concludes with the data formatting process for Bayesian framework analysis,
which includes reordering data by symptom onset time, updating patient IDs,
and aligning the network distance and pairwise SNP matrices to ensure proper
integration into the Bayesian model for accurate inference and analysis.

3.1 Simulation Framework: the high-level overview
We conducted two types of simulations: network-based and non-network-based,
as illustrated in Figure 3.1.

For the network-based simulation, we first generated a network of 10,000
nodes, which provided the underlying structure for disease spread. From this,
we constructed a transmission network of 500 individuals, where infection
spread followed the infection rate (α) and removal rate (β), as specified in Ta-
ble 3.1. Rather than being restricted to directly connected individuals, infection
probability was determined based on network distance, allowing transmission
to occur with varying likelihood depending on proximity within the network.
We then simulated pairwise SNP distance matrices based on mutation rate (µ)
and effective population size (θ), as listed in Table 3.1, with a genome length of
4.4× 106 base pairs.
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For the non-network-based simulation, although a network was still gener-
ated, the transmission network of 500 individuals was modeled independently
of the network structure, using only the infection rate (α) and removal rate (β)
from Table 3.1. The SNP simulation remained the same as in the network-based
approach, using θ and µ from Table 3.1.

We subsequently sampled 100 (20%), 200 (40%), and 400 (80%) infected
individuals to compute pairwise SNP distances. Each simulation was repeated
three times.

Table 3.1: Parameter combinations for (α, β) and (θ, µ) with corresponding
values used in the analysis.

Parameter Combination Values
(α, β) (3, 3), (2, 2), (1.5, 1.5)

(θ, µ)

(1× 10−6, 5× 10−7)

(1× 10−6, 1× 10−6)

(1× 10−6, 2× 10−6)

(2× 10−6, 5× 10−7)

(5× 10−6, 5× 10−7)

(5× 10−6, 1× 10−6)

Figure 3.1: Workflow of network-based (top) and non-network-based simula-
tions (bottom).
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3.2 Simulation Implementation: the detailed break-
down

3.2.1 Network Data

3.2.1.1 Empirical Data Sources

To gain insights into simulating a network that accurately reflects real-world
structures, we will rely on the social network data of 11, 840 individuals, which
includes93 tuberculosis (TB) patients within the population(Miller et al., 2021).
This network contains 14, 307 edges, meaning that only 0.02% of all possible
pairs have a direct connection, a key parameter that highlights its sparsity and
serves as a reference for simulation. Preliminary analysis shows that 29% of
the pairs in this network lack a social path, indicating no direct or indirect con-
nections between them. Among pairs with finite social paths, distances are
normally distributed, ranging from 1 to 37. The network itself consists of 47
distinct components, with the largest component dominating the structure by
encompassing 84% of the total population. These characteristics will guide
the design of our simulations, ensuring they realistically capture the observed
connectivity patterns, distances, and low tie probability characteristic of this
sparse social network.

3.2.1.2 Simulation Scheme

To replicate the observed structural properties in our simulation, we construct a
network using a hybrid approach that combines an Erdős-Rényi (ER) random
graph as an initial structure with a Barabási-Albert (BA) preferential attach-
ment model. The Erdős-Rényi model generates an initial sparse network of
1,000 nodes, where edges are assigned independently with a low probability
p = 0.002, ensuring limited initial connectivity. This approach aligns with the
sparsity observed in the real-world dataset.

Subsequently, we apply the Barabási-Albert model to expand the network
to 10,000 nodes, adding one new edge per incoming node (m = 1). The pref-
erential attachment mechanism in the BA model means that new nodes are
more likely to connect to highly connected nodes, leading to a degree distri-
bution characterized by a few central hubs with high connectivity and many
nodes with relatively few connections. This feature captures the heterogeneous
connectivity patterns seen in empirical networks, particularly in social and epi-
demiological contexts. These models are widely used in network science to
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approximate real-world structures (Erdős and Rényi, 1959;Barabási and Albert,
1999).

This approach ensures that the simulated network preserves key proper-
ties such as sparsity, path distribution, and component structure, making it a
reasonable approximation of the observed social network dynamics.

3.2.2 Temporal Data and Transmission Network

3.2.2.1 Without Network Data

1. Initial Infection:

• Begin with a single infected individual (i = 1) at infection time
T I
1 = 0, serving as the source of infection.

• Simulate the onset time TO
1 from a scaled chi-squared (χ2) distri-

bution and the removal time TR
1 from an exponential distribution

with rate β.

2. Secondary Infections:

• Determine the number of secondary infectionsn1 caused by the ini-
tial individual during the infectious period [TO

1 , TR
1 ], drawn from

a Poisson distribution with mean α(TR
1 − TO

1 ).

• Assign IDs to the new infected individuals: 2, . . . , 1 + n1.

3. Infection Timing for New Individuals:

• For each newly infected individual i, draw the infection time T I
i

uniformly from [TO
1 , TR

1 ].

• Generate the corresponding onset time TO
i and removal time TR

i

using the same distributions as before.

4. Iteration:

• Set i = 2 as the next infection source and repeat from step 2 for all
newly infected individuals until all infections surpass a predefined
temporal threshold.

Figure 3.2 illustrates this infection process, showing the transition from
the latent to the infectious period and the sequential spread of infection. The
figure highlights how each infected individual transmits the disease within their
infectious period, with red markers indicating transmission events.
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Figure 3.2: Infection Progression Over Time This figure illustrates infection dy-
namics, with the latent period (blue) followed by the infectious period (yellow).
(A) Initial Infection: Patient 1 transitions from latent to infectious. (B) Two
Infections: Patient 1 transmits the infection to Patient 2 during their infectious
period. (C) Three Infections: Patient 2, now infectious, transmits to Patient
3, continuing the chain. Red markers indicate transmission events occurring
within the infectious period of the transmitter.

3.2.2.2 With Network Data

We consider a network Ψ where transmissions occur as follows:

1. Independent Transmissions: Infections from an infectious individual
a to others are independent events.

2. Single Infection: An individual can only be infected once.

3. Bernoulli Trials: A transmission event xa,b from a to a susceptible in-
dividual b is a Bernoulli trial with a probability mass function:

P (xa,b) = p
xa,b

a,b (1− pa,b)
1−xa,b

where:

• xa,b = 1 if the transmission occurs, 0 otherwise.

• pa,b = ca,b · ka is the transmission probability.

• ca,b = e−da,b is the contact probability, inversely proportional to
the exponential of distance da,b between a and b in the network Ψ.
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• ka = 1−e−α(TR
a −TO

a ) is the transmission probability of individual
a given contact, where:

– α is the infection rate (the probability of an infection per time
given contact).

– TO
a and TR

a are the onset and removal times of individual a,
respectively.

4. Time to New Infection: The infection time of individual b, denoted as
tIb = T I

b − TO
a , follows an exponential distribution:

f(tIb = t) = λe−λt.

Transmission from a to b is only possible when tIb is within a’s infectious
period (TR

a −TO
a ). Thus, the time to infection tIb given a→ b follows a

truncated exponential distribution with an upper bound ofTR
a −TO

a .

Given this, the probability of transmission per contact, ka, is:

ka = P (tIb ≤ TR
a − TO

a ) = FtIb
(TR

a − TO
a ) = 1− e−α(TR

a −TO
a ).

5. Time to Symptom Removal: The time to Symptom Removal tRa =

TR
a − TO

a of individual a follows an exponential distribution with a
removal rate β.

1. Initial Infection:

• Set the onset time of the first infectious individual T I
1 = 0.

• Simulate the onset time TO
1 from a scaled chi-squared (χ2) distri-

bution and the removal time TR
1 from an exponential distribution

with rate β.

• The transmission event set is initialized as empty.

2. Infection Propagation:

• Identify the newly infected individual a as the transmission source
and determine all infectious-susceptible pairs (a → b1, . . . , a →
bm1) associated with that source. The initial infection serves as the
first transmission source.
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• Simulate infection events using a Bernoulli trial as described earlier.
For each successful transmission (infection event = 1), generate
the corresponding infection time and removal time based on the
defined distributions. Add these pairs to the potential transmission
event set.

• Select the transmission event with the earliest infection time from
the potential events and add the infected individual to the infected
population. The newly infected individual becomes the next trans-
mission source. Repeat this process from Step 1.

• Repeat from step 1 until the simulation reaches a predefined end
time or a specific criterion is met (e.g., a certain number of infec-
tions).

Figure 3.3: Infection Progression Under Network Over Time. (A) Possible sec-
ondary infections caused by A within the network (top). Each edge is labeled
with the corresponding transmission probability. Successful transmissions are
marked in red, while unsuccessful attempts are shown in gray. (B) Temporal
simulation of infections initiated by A, illustrating the latent (blue) and infec-
tious (yellow) periods. (C) The individual with the earliest infection time is
selected as the next infection source. (D) Successfully transmitted infections
are added to the potential transmission event set.

3.2.3 SNP Data
To simulate the genomic sequences within the transmission network, we first
generate a full genome sequence for the initial infected patient (i = 1) with a
length ofN , assuming equal nucleotide base frequencies (πA = πC = πG =

πT = 1
4

). This serves as the reference genome for subsequent mutations.
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For direct transmission pairs, we determine the number of single nu-
cleotide polymorphisms (SNPs) between two genomes from Binomial(N, pi,j),
where N is the genome length and pi,j is the probability of a mutation happen
on a single site between two pathogen genomesdi anddj , where j is the Bayesian
estimate of the transmitter of i.

The probability pi,j for the pairs (i, j) involved in the (n−1) transmissions
in the transmission network can be calculated using the formula:

pi,j =
3

4
− 3

8θ̂ + 4
e−µ̂(ti,1+ti,2)

where θ̂ and µ̂ are the Bayesian estimates of θ and µ.Each SNP location is
randomly assigned, and the mutated nucleotide is selected uniformly from the
three possible substitutions. Instead of storing the full genome sequence for
every individual, we simulate the complete genome only for the initial infection
(i = 1). For all subsequent individuals, we record only the loci where muta-
tions occur relative to the reference genome, ensuring efficient storage while
preserving genomic variation.

Specifically, an individual’s genome sequence is represented by inheriting
mutations from its transmitter while accumulating new mutations. As illus-
trated in Figure 3.4, SNPs are identified by comparing the sampled genome
sequences of two patients. For example, if the genome sequence of patient 2,
when compared to the reference genome of patient 1, exhibits a mutation at lo-
cus 2 (A → C), the mutation is recorded as (Locus 2, C). If patient 3 is directly
infected by patient 2, its genome sequence is compared to patient 2’s sequence.
In this case, patient 3 inherits the mutation at locus 2 (C) and accumulates an
additional mutation at locus 4 (T → A), resulting in a recorded sequence of
(Locus 2, C), (Locus 4, A).

After all direct transmission events, the pathogen sequences for all patients
are fully recorded based on their inherited and newly acquired mutations. This
enables comparisons between individuals who do not share a direct transmis-
sion link.

For indirect transmission pairs, the SNP count is determined by identifying
all mutation loci present in either sequence. This includes both inherited mu-
tations from intermediate hosts and independently acquired mutations. For
example, when comparing individual 3 to reference 1, individual 3 inherits a
mutation at locus 2 from individual 2 and acquires an additional mutation at
locus 4. Consequently, the total SNP count between individual 3 and reference
1 is 2. By recording only mutation loci rather than full genome sequences, this
approach efficiently captures genomic variation while optimizing storage.
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Figure 3.4: SNP Simulation in the Transmission Network. This figure illus-
trates how single nucleotide polymorphisms (SNPs) are recorded relative to the
reference genome. (A) Direct pairs with reference ID 1: Mutations are recorded
relative to the full genome of ID 1. Here, ID 2 acquires a mutation at locus 2
(A → C), resulting in SNP = 1. (B) Direct pairs without reference ID 1: ID 3,
directly infected by ID 2, inherits the mutation at locus 2 (C) and accumulates
an additional mutation at locus 4 (T→A). (C) Indirect pairs: ID 3 is compared
to ID 1, considering both inherited and new mutations, resulting in SNP = 2.

3.3 Data Preparation

3.3.1 Format Temporal Data
To ensure consistency in the analysis, we will preprocess the temporal data by
retaining only the observable information of Symptom Onset Time (TO) and
Removal Time (TR). Additionally, we will normalize all symptom onset times
by setting the initial Symptom Onset Time (TO

1 ) as the reference point (0),
meaning all subsequent times will be adjusted by subtracting TO

1 . This normal-
ization ensures a consistent timeline for comparative analysis.

3.3.2 Computing Network Distances
For individuals within the transmission network, we will calculate the network
distances based on their connectivity. These distances represent the relative
proximity between individuals in the network and play a crucial role in under-
standing infection spread patterns.

3.3.3 Reordering Patients by Symptom Onset Time
Next, we will reorder the patients in ascending order of Symptom Onset Time
(TO). This ensures that individuals are arranged chronologically based on when
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symptoms first appear. After reordering, we will update patient IDs accordingly
to maintain consistency in data indexing.

3.3.4 Aligning Distance and SNP Matrices
After updating the patient IDs, we will reorder both the distance matrix and the
pairwise SNP matrix to reflect the new patient order. This step ensures that all
datasets remain synchronized, allowing for a seamless integration of temporal,
genetic, and network-based information in the Bayesian model.

By following these steps, we create a well-structured dataset that preserves
key temporal and network relationships, ensures a consistent reference timeline,
and maintains data integrity for further analysis.

3.4 Basic Reproduction Number (R0)

The basic reproduction number, denoted as R0, is a fundamental epidemiolog-
ical metric that quantifies the transmission potential of an infectious disease.
R0 is defined as the average number of secondary infections generated by one
infected individual in a wholly susceptible population. Essentially, it represents
the inherent transmissibility of a pathogen in the absence of any interventions
or acquired immunity.

In network-based models of disease or information spread, each infected
individual transmits the pathogen (or idea) to each neighbor with probability
r. Consequently, the basic reproduction number, R0, which represents the
average number of new infections generated by one infected individual in a
fully susceptible population, can be expressed as:

R0 = r
⟨m2⟩ − ⟨m⟩
⟨m⟩

,

where ⟨m⟩ is the average degree (i.e., the mean number of connections per node)
and ⟨m2⟩ is the mean-square degree. If R0 > 1, on average the infection or
information will propagate through the network; if R0 < 1, it will likely die
out. This formulation highlights how both the infection probability r and the
heterogeneous structure of the network (as captured by ⟨m⟩ and ⟨m2⟩) together
govern the potential for large-scale transmission(Newman, 2008).
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3.4.1 Non-network based Simulation
In our simulation framework without considering network effects, the aver-
age number of infections caused by an individual is determined by both the
infectious period and the infection rate. A higher infection rate implies that
an individual can transmit the infection more rapidly, while a longer infectious
period increases the opportunity for transmission. Accordingly, the expected
number of infections generated by an individual is given by:

E(# infections) = E(infectious period in years)× E(# infections per year)

=
1

β
× α

=
α

β
, (3.1)

where α represents the infection rate (infections per year) and 1
β

is the ex-
pected duration of the infectious period (in years).

3.4.2 Network based Simulation
In our setting, transmission probabilities are heterogeneous across all pairs. In-
stead, we explicitly define the probability of transmission from individual A
to individual B as pA,B , which depends on both A’s infectious period and the
distance between A and B (denoted as gA,B).

Traditionally, the expected number of infections caused by an individual i
is computed as

r · (mi − 1),

where mi is the number of edges (contacts) associated with i, and the term
mi− 1 reflects the exclusion of the edge corresponding to the incoming source
of infection.

Extending this idea, we generalize the computation by summing the trans-
mission probabilities from A to all other individuals following the details in
subsection 3.2.2.2:

n∑
i=1
i ̸=A

pA,i =
n∑

i=1
i ̸=A

cA,i · kA = kA ·
n∑

i=1
i ̸=A

cA,i.

where CA,i is the contact probability between A and i, KA is the transmission
probability of individual A to the other given a contact.
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However, since one of these n − 1 connections represents the incoming
source and should not contribute to further transmissions, we scale the sum to
account for the fact that only n− 2 out of the n− 1 possible edges are available
for transmitting the infection. Therefore, the effective expected number of
transmissions is given by:

n− 2

n− 1
×

n∑
i=1
i ̸=A

pA,i.

This scaling factor n−2
n−1

ensures that our calculation properly excludes the in-
coming source of infection while averaging over the remaining potential trans-
mission pathways.

Lastly, in the conventional method, it needs to weigh over individual A’s
degreemA. Here we may use the expected number of contacts (degree in contact
network)

∑n
i=1
i ̸=A

cA,i to approximate, denoted as cA

R0 =

∑n
i=1 ci ·

n−2
n−1
· ki · ci∑n

i=1 ci
=

n− 2

n− 1
· ki ·

∑n
i=1 c

2
i · ki∑n

i=1 ci
.

3.5 Simulation Data Summary

3.5.1 Temporal Data
We examined the temporal distribution of infections in simulations conducted
to reach a sample size of 500, comparing scenarios with and without network-
based transmission. In the network-based scenario, infections occurred within
a relatively brief interval (Min: 3.467, Max: 8.733), with a median of 4.554 and a
mean of 5.009. This rapid and concurrent spread, driven by social interactions,
led to clusters of closely timed infections.

Conversely, the scenario without network-based transmission exhibited a
significantly prolonged infection period (Min: 14.65, Max: 24.99), character-
ized by a median of 19.93 and a mean of 20.52. This longer duration reflects
a sequential pattern of transmission, where each infection event triggered the
next. These results underscore the critical influence of network structure on in-
fection dynamics, demonstrating that social networks accelerate disease spread
through clustered outbreaks, while their absence results in a slower, incremental
progression.

51



3.5.2 SNP Data
In Figure 3.5, we present violin plots of SNP distributions for direct and indirect
pairs under eight distinct parameter configurations involving θ, µ, α, and β.
Violin plots provide a comprehensive visualization of each distribution’s shape,
range, and interquartile range (IQR), thereby facilitating direct comparisons
between SNP values for different pair types.

Several key observations emerge from these plots. First, across all parameter
settings, indirect pairs display a wider distribution with a higher mean and larger
IQR than direct pairs. Second, as θ increases, the range of SNP values expands
considerably. For instance, from subfigure A to C to E 3.5, the maximum SNP
value among direct pairs grows from 25 to over 60, while the maximum SNP
among indirect pairs increases from approximately 150 to 300 and eventually
exceeds 500. Finally, there is no single universal threshold that cleanly separates
direct from indirect pairs in every scenario, as evidenced by overlapping distri-
butions across all configurations. This finding underscores the limitations of
conventional methods that rely on a fixed SNP cutoff and highlights the im-
portance of a hypothesis-testing framework that can adapt to diverse data and
complex underlying assumptions.

In Figure 3.6, we compare violin plots of SNP distributions for sample sizes
of 500, 400, 200, and 100 under the parameters θ = 1× 10−6, µ = 5× 10−7,
and (α, β) = (3, 3). The overall distribution patterns remain consistent across
all sample sizes, indicating that the sampling procedure successfully preserves
the essential characteristics of the full dataset.

3.6 Data Analysis

3.6.1 Convergence
To evaluate the convergence of the MCMC sampler, we monitored the trace
plots of the log posterior probability over the course of the runs. Convergence is
indicated by a chain that stabilizes around a relatively constant mean, with only
minor fluctuations thereafter. In Figure 3.7, we illustrate four scenarios under
different parameter settings, each showing that after the burn-in period, the log
posterior values remain stable and oscillate within a narrow band. This pattern
confirms that the sampler has adequately converged, allowing us to proceed
with reliable parameter inference.
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3.6.2 Accuracy of Transmission Trees Φ
Overall Accuracy Individuals can be categorized based on two criteria: the
availability of a direct transmitter in the sample and the correctness of the in-
ferred transmission. As shown in Table 3.2, the columns indicate whether the
direct transmitter is present in the sample, and the rows indicate whether the
inferred transmission correctly identifies the true transmitter. Based on this
categorization, we define the overall accuracy as:

n1 + n2

n− 1

where n− 1 excludes the initial infection. This accuracy measure accounts
for correctly identifying the direct transmitter when available and the most re-
cent ancestor when the direct transmitter is missing.

Table 3.2: Summary of Transmission Inference Outcomes.

Transmission
Inference

Direct Transmitter
Availability

Yes No
Correct n1 n2

Incorrect n3 n4

Table 3.8 presents the average overall accuracy under various parameter set-
tings when genome length is set at 1 × 106, grouped by both the simulation
type (with or without network data) and the Bayesian model (with or without
network data). When network data are included in the simulation, the Bayesian
model that also utilizes network information achieves a 5% higher accuracy than
its counterpart without network data, aligning with the expectation that suffi-
cient information improves performance. In contrast, for simulations without
network data, relying on a network-based model leads to a 15% decrease in ac-
curacy, reflecting the adverse impact of misleading network information that
does not match the underlying simulation assumptions.

When the genome length increases to 4.4× 106 (Table 3.9), both Bayesian
models converge to the same average overall accuracy in simulations with net-
work data. This result indicates that sufficiently large genomic information can,
by itself, reliably identify the true transmitter. Nevertheless, in simulations lack-
ing network data, the model incorporating network information remains 16%
less accurate, underscoring the persistent negative impact of relying on irrele-
vant or misleading network assumptions.

In conclusion, when ample genetic information is available (genome length
4.4 × 106), the network-free model demonstrates robust performance across
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diverse simulation scenarios, regardless of the inclusion of social network data.
Moreover, overall accuracy tends to decline as the sample size decreases. This de-
cline arises because smaller samples contain relatively fewer direct transmission
pairs; for individuals without a direct transmitter, correctness is determined by
identifying the most recent ancestor. In such cases, the existence of multiple po-
tential transmitters with similar SNP distances and closer temporal proximity
increases the risk of misidentification.

Accuracy over Direct Pairs More importantly, we focus on the accuracy
among direct transmission pairs. As shown in Table 3.2, this accuracy is defined
as the ratio of correct direct transmission inferences (n1) to all cases where a
direct transmitter is available (both correct, n1, and incorrect, n3):

n1

n1 + n3

.

This metric quantifies the performance of our inference method in correctly
identifying the true direct transmitter when it is present.

Table 3.10 presents the average accuracy over direct pairs for a genome length
of 1×106, while Table 3.11 shows the corresponding results for a genome length
of4.4×106. The observed pattern is consistent with the overall accuracy trends.
When genetic information is abundant, both Bayesian models yield comparable
performance, achieving 100% accuracy. In contrast, the network-based Bayesian
model consistently underperforms in scenarios that do not incorporate network
data, thereby reinforcing the robust performance of the network-free model.
Given that real-world data typically feature a genome length of 4.4× 106, our
results favor the use of the network-free model.

Furthermore, we do not observe a decline in accuracy as the sample size
decreases. This suggests that the adverse impact of smaller sample sizes is pri-
marily limited to cases without a direct transmitter—where correctness depends
on identifying the most recent ancestor—since multiple potential transmitters
with similar SNP distances and temporal proximity may increase the risk of
misidentification.

3.6.3 Posterior Estimates θ, µ, α
We will examine the Bayesian parameters, including θ, µ, and α, by merging
posterior samples obtained after discarding the burn-in phase across three in-
dependent runs to derive the 95% credible intervals. Our goal is to understand
how parameter estimates vary across different sample sizes, simulation schemes,
and Bayesian model structures. Intuitively, we anticipate that smaller sample
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sizes will yield reduced parameter precision, characterized by increased variance
and potential bias. This bias arises partly because smaller samples often contain
a greater proportion of indirectly linked transmission pairs, resulting in extreme
SNP distances that can lead to the overestimation of parameters such as θ andµ.
Here, we aim to provide a high-level summary to guide future hypothesis testing
that critically depends on accurate posterior estimation of these parameters.

We observe consistent trends in the posterior distributions for parameters
θ (Figure 3.12) and µ (Figure 3.13) across simulation scenarios, highlighting how
estimation accuracy is influenced by sample size and network structure. As
sample size decreases, both parameters show increased overestimation accom-
panied by broader credible intervals, reflecting higher uncertainty. Specifically,
network-based simulation scenarios (panels A and B in Figures 3.12 and 3.13)
yield relatively robust and unimodal distributions down to a sample size of
200 (40%), whereas scenarios without network structure (panels C and D) ex-
hibit pronounced bimodality or multimodality at the same reduced sample sizes.
At the smallest sample size (100; 20%), all scenarios consistently demonstrate
multimodal distributions, emphasizing substantial variability due to indirect
transmission pairs and reduced direct linkage data.

In summary, these findings highlight the critical importance of accounting
for potential biases and increased variability in Bayesian parameter estimation
at smaller sample sizes. The observed overestimation and multimodal posterior
distributions for both θ and µ emphasize the need for correction strategies or
methodological adjustments when conducting hypothesis testing under lim-
ited data conditions. Such adjustments are essential to ensure robust inference,
particularly in contexts where indirect transmission pathways and limited direct-
linkage data significantly influence parameter estimates.

The posterior distributions for parameter α (Figure 3.14) show relatively
consistent estimates across various sample sizes compared to the distributions
of θ and µ. Unlike the substantial instability observed for θ and µ, α maintains
greater stability, suggesting that the estimation ofα is less sensitive to reductions
in sample size. Notably, differences in the posterior means of α across scenarios
(panels A–D) are likely attributable to the variability inherent in the simulation
procedures themselves. Specifically, stochastic variation in the simulated trans-
mission networks can lead to fluctuations in estimated α, resulting in values
that are higher or lower relative to the true parameter setting (α = 3). This
randomness highlights how the realization of particular transmission chains,
rather than structural factors like the presence or absence of network data, may
predominantly drive variation in the posterior estimates for α.
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In summary, these results underscore the necessity of implementing correc-
tion strategies or methodological refinements when using posterior estimates
of θ and µ in hypothesis testing, especially under smaller sample sizes. While
α estimates remain relatively stable across scenarios, highlighting their robust-
ness to network structure and sample-size limitations, estimates for θ and µ

are susceptible to overestimation and substantial variability. Thus, to ensure
robust inference, hypothesis-testing procedures must explicitly address biases
and multimodality in parameter estimates resulting from indirect transmissions
and limited direct linkage data.

3.6.4 Hypothesis Testing
In our study, we test the following hypotheses regarding the inferred transmis-
sion pair:

Null Hypothesis (H0): The inferred pair is direct, meaning the SNP fol-
lows a Binomial distribution with genome length N and success probability p
(estimated from the posterior).

Alternative Hypothesis (H1): The inferred pair is indirect, so the SNP does
not follow the Binomial distribution with parameters N and p.

We assess performance using two key metrics: False Positive Proportion
(FPP) and Sensitivity. FPP quantifies the proportion of direct transmission
pairs incorrectly classified as indirect, while Sensitivity measures the proportion
of indirect transmission pairs correctly identified as such. Together, these met-
rics evaluate the hypothesis test’s accuracy in distinguishing between direct and
indirect transmission events.

Furthermore, we categorize each individual based on (i) the true status of the
null hypothesis and (ii) the outcome of the hypothesis test. Table 3.3 summarizes
these categories. When H0 is true, the individual has a direct transmitter in the
sample, and Bayesian inference correctly identifies it; thus, the total number of
cases where H0 is true is n1, consistent with Table ??.

Based on this categorization, the performance metrics are defined as:

False Positive Proportion (FPP) =
n1,R

n1

, Sensitivity =
n1B,R

n− 1− n1

.

This formulation ensures that FPP correctly represents the proportion of
truly direct transmission pairs incorrectly classified as indirect, while Sensitiv-
ity accurately captures the test’s ability to detect indirect transmissions when
present.
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Table 3.3: Summary of Hypothesis Testing Outcomes.

Hypothesis
Testing

Null Hypothesis
True False

Accept H0 n1,A n1B,A

Reject H0 n1,R n1B,R

n1 n− 1− n1

Sensitivity and False Positive Proportion We examine the average false
positive proportion (FPP) and sensitivity across various parameter settings. Over-
all, FPP is well controlled, ranging from 0% to 2% across both simulation schemes
and Bayesian models (see Figure 3.16). In contrast, sensitivity decreases as sam-
ple size diminishes—falling from 68% to 48% for network-based simulations
and from 77% to 65% for network-free simulations. This trend is expected be-
cause smaller samples contain a higher proportion of indirect transmission pairs,
which leads to an overestimation of parameters (θ, µ). The resulting higher hy-
pothesis test threshold reduces sensitivity.

To mitigate this issue, we applied a correction to the hypothesis testing
procedure using Nelder-Mead optimization of the parameters, as described in
the Subsection ??. As shown in Figure ??, this correction yields an average
increase of 30% in sensitivity across scenarios; for smaller sample sizes, the im-
provement is even more pronounced (e.g., an increase from 48% to 88% for
the network-based model). However, this enhancement in sensitivity comes
at the cost of a modest increase in FPP—approximately 9% on average—likely
due to a more conservative threshold that results in the rejection of more null
hypotheses. These findings provide valuable insight into the trade-offs involved
in parameter correction and underscore the need for cautious implementation.

Impacting Factors of Sensitivity In this section, we investigate how key
parameters affect statistical sensitivity in our Bayesian framework. Specifically,
we focus on effective population size θ, mutation rate µ, and the infection and
removal rates α and β. By varying one parameter at a time while holding the
others constant, we can isolate each parameter’s contribution to inference ac-
curacy.

First, we fix θ = 1 × 10−6 and µ = 5 × 10−7. Under these conditions,
we examine three paired (α, β) settings—(3, 3), (2, 2), and (1.5, 1.5)—which
are shown in red, green, and blue bars, respectively. The results are grouped
by sample sizes of 100, 200, and 400. As illustrated in Figure 3.17, sensitivity
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generally increases with both sample size and infection/removal rates, reaching
its peak for (α, β) = (1.5, 1.5) at a sample size of 400. In contrast, higher α
and β values lead to consistently reduced sensitivity, emphasizing the influence
of transmission dynamics on inference accuracy.

Next, we fix θ = 1 × 10−6 and set α = β = 3. Under these conditions,
we vary µ among three values—5× 10−7, 1× 10−6, and 2× 10−6—depicted
by red, green, and blue bars, respectively. Again, the results are grouped by
sample sizes of 100, 200, and 400. As shown in Figure 3.18, higher mutation
rates yield higher sensitivity, while increasing the sample size further improves
performance across all µ values. These patterns highlight the interplay between
mutation rate and sample size in shaping the model’s effectiveness.

Finally, we fix µ = 5× 10−7 and set α = β = 3. Under these conditions,
we vary θ among three values—1× 10−6, 2× 10−6, and 5× 10−6—shown in
red, green, and blue bars, respectively. The results, grouped by sample sizes of
100, 200, and 400, are displayed in Figure 3.19. Larger values of θ and greater
sample sizes both contribute to higher sensitivity, underscoring the importance
of effective population size for accurate inference.

Overall, these experiments demonstrate that each of the parameters α, β, µ,
and θ plays a critical role in determining statistical sensitivity. High infection
and removal rates can sometimes reduce sensitivity by increasing the complexity
of transmission dynamics, whereas a sufficiently large sample size or effective
population size (θ) tends to enhance inference accuracy. Mutation rate (µ) also
exerts a clear influence, with higher values generally yielding better performance.
Taken together, these findings emphasize the importance of carefully tuning
epidemiological and genetic parameters to achieve robust Bayesian inference in
transmission modeling.

ERGM Analysis with Network Perturbation
We follow the network perturbation algorithm, starting with fitting an Expo-
nential Random Graph Model (ERGM) to the inferred transmission tree under
the simulation setting with α = β = 3, θ = 1 × 10−6, and µ = 5 × 10−7.
The ERGM includes social distance as an edge covariate to capture its influence
on transmission dynamics. The negative edges coefficient (-4.87930) indicates
a low baseline probability of forming a tie, meaning transmission links are rare.

Additionally, the negative effect of social distance (-0.06836) implies that
for each unit increase in social distance, the probability of a tie **decreases by
approximately 6.6% relative to its previous value**. This follows from the rela-
tionship:
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P (tie|Distance + 1)

P (tie|Distance)
= eβ1 = e−0.06836 ≈ 0.934 (3.2)

which shows that each unit increase in social distance scales the probability
of a tie by 0.934, resulting in a 6.6% reduction per unit increase in distance. As
a result, transmission likelihood declines progressively as individuals become
more socially distant.

To assess the robustness of the model under uncertainty, we introduce noise
by randomly altering 5%, 10%, and 20% of network ties. This involves flipping
the adjacency matrix entries for a selected proportion of node pairs, followed by
recalculating network distances and refitting the ERGM to evaluate its stability
and sensitivity to data perturbations.

Table 3.4: ERGM summary output for the inferred transmission tree using
social distance as an edge covariate.

Term Estimate Std. Error z-value Pr(>|z|)

edges -4.87930 0.14055 -34.715 <1e-04
edgecov.Distance -0.06836 0.01476 -4.631 <1e-04

Null Deviance 172940 on 124750 degrees of freedom
Residual Deviance 6485 on 124748 degrees of freedom
AIC 6489
BIC 6509

Table 3.5: ERGM results for different levels of network noise (5%, 10%, and 20%).
Each noise level is repeated three times.

Metric 5% Noise 10% Noise 20% Noise
Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

Estimate -0.9 -0.15 -0.10 -0.15 -0.12 -0.07 -0.13 -0.14 -0.001
SE 0.05 0.05 0.05 0.068 0.068 0.070 0.079 0.079 0.079
p-value 0.076 0.004 0.057 0.025 0.085 0.333 0.164 0.065 0.994
BIC 6527 6522 6526 6525 6527 6529 6527 6527 6530

As network noise increases from 5% to 20%, the ERGM results show a grow-
ing tendency to classify social distance as an insignificant factor in transmission
dynamics in Table 3.5. At 5% noise, the standard error (SE) remains low ( 0.05),
and the covariate is largely significant. However, at 10% noise, SE increases
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( 0.068), and the p-values show variability, with some runs reaching 0.333, indi-
cating weaker evidence for an effect. At 20% noise, SE continues to rise ( 0.079),
and the p-values become highly inconsistent, with some exceeding 0.99, suggest-
ing that the ERGM frequently fails to detect a significant relationship between
social distance and transmission.

These findings validate that as noise increases, ERGM correctly reflects the
weakening role of social distance in transmission, as the added perturbations
disrupt the original structure of the network. This suggests that under high
levels of noise, the observed transmission links become less dependent on so-
cial distance, leading to an expected loss of significance in the ERGM results.
Thus, the model effectively captures the impact of noise on network structure,
confirming its ability to adapt to changes in connectivity patterns.
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Figure 3.5: Violin plots of SNP distributions for direct and indirect pairs under
eight parameter settings. Each subfigure (A–H) corresponds to a unique com-
bination of θ, µ, α, and β.

61



Figure 3.6: Violin plots of SNP distributions for direct and indirect pairs at
varying sample sizes. Parameters are set to θ = 1× 10−6, µ = 5× 10−7, and
(α, β) = (3, 3).
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Figure 3.7: Trace plots of the log posterior probability for four different param-
eter configurations, demonstrating convergence after the burn-in period.

Figure 3.8: Overall Accuracy under different simulation schemes and Bayesian
models with genome length 1× 106.
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Figure 3.9: Overall Accuracy under different simulation schemes and Bayesian
models with genome length 4.4× 106.

Figure 3.10: Accuracy over direct pairs under different simulation schemes and
Bayesian models with genome length 1× 106.

Figure 3.11: Accuracy over direct pairs under different simulation schemes and
Bayesian models with genome length 4.4× 106.

64



Figure 3.12: Posterior probability distributions of parameter θ across different
combinations of simulation and Bayesian inference scenarios, both with and
without incorporating network effects.All scenarios employed parameter set-
tings (α, β) = (3, 3), θ = 1 × 10−6, and µ = 5 × 10−7. Distributions are
displayed across decreasing sample sizes (Full dataset, n = 400, n = 200, and
n = 100), highlighting the impact of different modeling assumptions and sam-
ple limitations on posterior estimates of θ.
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Figure 3.13: Posterior probability distributions of parameter µ across different
combinations of simulation and Bayesian inference scenarios, both with and
without incorporating network effects.All scenarios employed parameter set-
tings (α, β) = (3, 3), θ = 1 × 10−6, and µ = 5 × 10−7. Distributions are
displayed across decreasing sample sizes (Full dataset, n = 400, n = 200, and
n = 100), highlighting the impact of different modeling assumptions and sam-
ple limitations on posterior estimates of θ.
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Figure 3.14: Posterior probability distributions of parameter α across different
combinations of simulation and Bayesian inference scenarios, both with and
without incorporating network effects.All scenarios employed parameter set-
tings (α, β) = (3, 3), θ = 1 × 10−6, and µ = 5 × 10−7. Distributions are
displayed across decreasing sample sizes (Full dataset, n = 400, n = 200, and
n = 100), highlighting the impact of different modeling assumptions and sam-
ple limitations on posterior estimates of θ.
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Figure 3.15: Sensitivity Before and After Correction of Hypothesis Testing:
genome length 4.4× 106.

Figure 3.16: False Positive Proportion Before and After Correction of Hypoth-
esis Testing: genome length 4.4× 106.

Figure 3.17: Impact of Infection and Removal Rates on Statistical Sensitivity.
Average sensitivity is shown for three paired (α, β) settings—(3, 3) (red), (2, 2)
(green), and (1.5, 1.5) (blue)—across sample sizes of 100, 200, and 400, with
genome length fixed at 4.4× 106.
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Figure 3.18: Effect of Mutation Rate on Statistical Sensitivity. The plot presents
average sensitivity for three mutation rate values—5 × 10−7 (red), 1 × 10−6

(green), and 2 × 10−6 (blue)—grouped by sample sizes of 100, 200, and 400,
with θ = 1× 10−6 and α = β = 3.

Figure 3.19: Impact of Effective Population Size on Statistical Sensitivity. Aver-
age sensitivity is depicted for three effective population sizes—1× 10−6 (red),
2 × 10−6 (green), and 5 × 10−6 (blue)—across sample sizes of 100, 200, and
400, with µ = 5× 10−7 and α = β = 3.
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Chapter 4

Real World Application

4.1 Real-World Data

4.1.1 Study Population and Data Sources
Kakaire et al., 2021 investigated tuberculosis (TB) transmission dynamics in
Kampala, Uganda, by analyzing both household and extra-household contacts
of TB cases. In their study, 123 TB cases and 124 controls were enrolled; the con-
trols were frequency-matched to the index cases by age group, sex, and parish
and were recruited through door-to-door surveys. Whole-genome sequencing
(WGS) data — covering a genome of 411,532 base pairs — was obtained along
with detailed temporal and geographical information for these samples, and
69 TB patients with complete genomic and temporal data were subsequently
selected for analysis using a Bayesian model (Xu et al., 2025). Following the ad-
ditional acquisition of whole-genome sequencing (WGS) data and refinements
in analytical methodologies, the present study now comprises 93 TB patients
with comprehensive genomic and temporal data.

In parallel, Miller et al., 2021 constructed a comprehensive social network
based on the same set of index participants (123 TB cases and 124 controls) using
a two-step egocentric sampling approach. Initially, index participants listed
their immediate contacts- household members and individuals with whom they
had close, regular interactions. In the second step, these first-level contacts
provided the names of their own contacts, thereby generating a second-level
egocentric network. By merging overlapping individuals across these two levels,
the researchers assembled an extensive socio-centric network comprising 11,840
individuals.
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In the present study, we focus on these 93 TB patients—each with complete
genomic and temporal data—and leverage the full socio-centric network to
derive network-based measures (e.g., network distance) among these 93 cases.

4.1.2 Exploratory Data Analysis

4.1.2.1 Temporal Data

The study, which involved 93 patients, lasted 4.4 years – from the onset of the
first patient to the removal of the last.

The infectious periods range from 0.08 to 2.08 years. The median and first
quartile are both 0.25 years (approximately 91 days), while the third quartile is
0.332 years (around 120 days), and the mean is 0.37 years (roughly 135 days). The
mean exceeding the median indicates a right-skewed distribution driven by a
few cases with substantially longer infectious periods. Notably, the first two
patients exhibited infectious periods exceeding 2 years (about 760 days), which
likely contributed to the extensive transmission observed in the study.

4.1.2.2 Genomic Data

The dataset includes 93 strains with SNP counts ranging from 0 to 1935, a me-
dian of 662, and a mean of 731. The interquartile range is 333 to 1167, suggesting
a modest right-skew driven by a few high values.

We analyzed genetic distances from two complementary perspectives. First,
we generated a density plot of all pairwise comparisons among 93 isolates (a total
of
(
93
2

)
comparisons). In this overall analysis, we highlighted a threshold of 20

SNP differences and found that only 50 pairs—less than 1% of all comparisons—
fall below this cutoff (as shown by the light blue area in Figure 4.1).

In a second, patient-level analysis, for each patient, we identified the small-
est SNP difference with a potential transmitter (defined as an isolate with a
smaller ID and an earlier onset time), which yielded 92 values. Applying the
same 20 SNP threshold in this context, we observed that 28 of these patient-
level comparisons (approximately 30% of the patients) have fewer than 20 SNP
differences.

These analyses reveal that only a few strain pairs exhibit the extremely low ge-
netic distances (fewer than 20 SNPs) characteristic of direct transmission. This
suggests that many direct transmitters may be missing from the dataset, causing
a larger proportion of patients to appear linked through indirect transmission
routes when inferring the network.
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Figure 4.1: Density plots of (top) all pairwise SNP differences among 93 patients
and (bottom) the minimum SNP differences per patient. The dashed red line
at 20 SNPs highlights the small fraction of observations below this threshold.

4.1.2.3 Network Data

In subsection 3.2.1, we examined the sociometric network of 11,840 individuals
and found a giant component comprising 84% of the population, along with
46 smaller components. The probability of a direct connection is only 0.02%,
and 29% of all pairs lack any path within the network.

To explore the network distances among the 93 TB patients, we evaluated
all
(
93
2

)
= 4278 pairs, calculating each pair’s shortest path and storing these

values in a 93× 93 distance matrix. We then summarized the pairwise distance
frequencies by assigning the distances into discrete levels and visualized this
distribution using a pie chart (Figure 4.2), which shows that 51% of pairs are
disconnected and only 3% have distances between 1 and 5—indicating that very
few patients are closely connected in the network.

4.2 Results
Based on the robust performance observed for the Bayesian model incorporat-
ing both temporal and genomic data across different simulation scenarios, we
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Figure 4.2: Pie chart illustrating the distribution of pairwise network distances
among the 93 TB patients.

selected this framework for real-world data analysis. In our implementation,
the MCMC algorithm was run for 1,000,000 iterations, including a 20,000-
iteration burn-in period. Parameter estimates were recorded every 100 iterations
following the burn-in, and convergence was assessed using three independent
runs with different initial parameter values. This process was performed for
each Bayesian framework, both with and without network data.
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4.2.1 Convergence
The trace plot 4.3 of the log-posterior probabilities over 1,000,000 iterations
demonstrates that the Markov chain Monte Carlo (MCMC) chains for both
Bayesian models reach convergence by the 20,000th iteration, designated as the
burn-in period. Discarding these initial samples helps remove transient effects
before the chain settles into its stationary distribution. After this burn-in phase,
the trace plots for all three independent chains remain stable and show sub-
stantial overlap, indicating that the chains have converged to the same posterior
region.

We combined the posterior samples after burn-in periods from three inde-
pendent runs. The posterior mean for the effective population size parameter θ
is 8.70×10−7 with the 95% credible interval of [4.45×10−7, 1.28×10−6]. For
the mutation rate, µ, the posterior mean is 2.36× 10−6 with the 95% credible
interval of [1.62× 10−6, 3.24× 10−6]. The posterior mean for the infection
rate is 2.74 with the 95% credible interval of [2.21, 3.33].

Figure 4.3: The trace plot of log-posterior probabilities for the Bayesian model
without network over 1,000,000 iterations where the first 20,000 iterations
(burn-in) are omitted.
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4.2.2 Hypothesis testing
Hypothesis testing for direct transmissions was performed by comparing the
observed number of SNPs to the number expected under the Bayesian model
for direct transmission. A 95% confidence interval [0, u] for the number of SNPs
was constructed. If the observed SNP count for an edge in the inferred network
exceeded or matched the upper bound u of the 95% confidence interval, that
edge was classified as an indirect transmission. The hypothesis test identified 16
direct transmissions (Table 4.1).

Under the Bayesian framework without network data, 28 direct transmis-
sion pairs were identified across three independent runs. The infection IDs
for these 28 patients were identical in every run, indicating consistent inference.
Moreover, 26 pairs were classified as direct transmissions in all three runs, under-
scoring robust and reliable inference for the majority of cases. In contrast, one
pair was identified as direct in only two runs and another in just one run, sug-
gesting some variability, particularly in borderline situations. This variability
could be attributed to uncertainties in parameter estimation, including param-
eters like θ and the latent period tL, which may have a greater impact when the
evidence for direct transmission is marginal.

Under the Bayesian framework without network data, a majority vote across
three independent runs identified 27 direct transmission pairs—each classified
as direct in at least two out of three runs, thereby ensuring a robust consen-
sus—while one additional pair was classified as direct in only a single run.

Network distance among 28 pairs Among the 28 direct transmission pairs
identified using the Bayesian transmission tree without network data, 14 exhib-
ited finite network distances. Table 4.2 presents the distribution of pairwise
SNP differences for these pairs, categorized into three intervals: 2, 6–10, and
11–15. Notably, 64.3% of the pairs fall within the 6–10 SNP range, suggesting
that only a small proportion of infections occur at the neighborhood level (i.e.,
with a network distance of 2 SNP differences). These genomic findings imply
that a significant share of TB transmissions may occur through extra-household
contacts rather than solely within immediate neighborhoods.

This inference is supported by broader empirical evidence indicating that
tuberculosis transmission predominantly occurs outside the household. For
example, Martinez et al., 2017 estimated that less than 20% of transmission is
attributable to household exposure, and Verver et al., 2004 found that only
19% of community transmission occurs within households in high-incidence
settings. Moreover, studies in African urban settings by Kakaire et al., 2021
and Kiwanuka et al., 2024 underscore the substantial role of extra-household
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Table 4.1: Identification of direct transmissions in the transmission network of
69 strains. The Bayesian 95% confidence interval [0, u] for the number of SNPs
associated with each of the 68 edges in the estimated network. Sixteen direct
transmissions were identified as the observed number of SNPs was less than or
equal to the upper bound u.

Case ID Case ID (transmitter) # of SNPs Upper bound u
Run 1 Run 2 Run 3

17 6 8 25 20 25
18 16 1 18 15 15
24 3 1 21 23 19
25 20 27 28 29 30
26 16 2 20 20 15
27 2 1 30 21 42
28 17 10 18 20 19
30 19 4 21 22 20
32 29 3 16 15 15
33 19 0 16 18 15
37 30 0 22 23 19
49 33 0 20 18 15
50 35 4 16 16 14
52 28 1 20 15 16
53 26 2 20 21 19
54 44 0 15 16 16
58 17 13 23 24 19
59 13 1 19 21 25
62 49 3 18 17 17
66 39 15 16 16 18
67 63 17 17 17 16
72 53 10 16 18 17
75 20 31 27 25 33
78 36 8 28 28 27
79 39 17 26 31 25
83 69 0 19 20 20
86 53 13 24 25 27
87 45 20 28 31 27
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contacts and broader social networks in driving the TB spread. Collectively,
these findings highlight the need for public health interventions that target
community-level transmission dynamics.

Table 4.2: Frequency distribution grouped by levels.

Group Distance Count Percentage
2 1 7.1%

2 1 7.1%
6–10 9 64.3%

6 2 14.3%
7 1 7.1%
8 1 7.1%
9 4 28.6%
10 1 7.1%

11–15 4 28.6%
11 1 7.1%
13 1 7.1%
15 2 14.3%

4.2.3 Posterior Probability of Transmission Events
To evaluate the posterior probability of the transmission tree and its correspond-
ing transmission events, we merged the infection ID estimates from three inde-
pendent runs after the burn-in period, yielding a total of 29,400 estimates for
each individual. For each infection, we selected the transmitter with the high-
est frequency among these estimates and computed its posterior probability by
dividing the frequency by 29,400. This probability is taken as the measure of
confidence in the inferred transmitter.

Table 4.3 demonstrates that the posterior probabilities are highly concen-
trated at the lower and upper extremes, with few values observed in the inter-
mediate range. This bimodal distribution suggests that the model differentiates
clearly between transmission pairs with minimal support and those with near-
certain support, with only a minority of cases exhibiting moderate levels of
confidence.

The observed bimodal distribution of posterior probabilities appears to
be driven by the underlying genetic distances between individuals and their
potential transmitters. In cases where the posterior estimate is low (i.e., <0.1),
potential transmitters typically exhibit substantial SNP differences from the
individual, indicating a lack of sufficient genetic similarity to support a direct
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Table 4.3: Frequency and percentage of posterior estimates for transmission
confidence levels.

Posterior Porbability Count Percentage
1 36 39%

[0.8, 1) 1 1%
[0.5, 0.8) 2 2%
[0.2, 0.5) 3 3%
[0.1, 0.2) 5 5%
[0, 0.1) 44 48%

transmission link. To illustrate this phenomenon, Table 4.4 presents the mini-
mum SNP distances among potential transmitters for individuals with poste-
rior estimates below 0.1.

Among individuals with extremely low posterior probabilities (i.e., <0.1),
candidate transmitters consistently exhibit substantial SNP differences and un-
favorable temporal profiles relative to the focal case. This pronounced lack of
genetic and temporal support results in negligible posterior confidence for any
direct transmission link. Table 4.4 substantiates this observation by showing
that 98% of these individuals have a minimum SNP distance exceeding 50. In
addition, 71% of the individuals have a minimum SNP distance exceeding 100,
with the maximum observed minimum SNP distance reaching 1734. These
findings underscore the significant genetic divergence between individuals and
their potential transmitters, thereby reinforcing the extremely low posterior
estimates.

In contrast, individuals with a posterior probability of 1 represent cases
where the inference has stabilized after the burn-in period, indicating high con-
fidence in the transmission link. For these cases, the genetic data show markedly
lower distances between the individual and the potential transmitters. Specifi-
cally, among the 36 transmission pairs in this category, 72% exhibit a minimum
SNP distance of less than 20, and 89% have a distance below 40.

These findings underscore the bimodal nature of the posterior estimates:
one extreme is associated with significant genetic divergence and minimal pos-
terior support, while the other is characterized by strong genetic similarity and
robust confidence in the inferred transmission link.
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Table 4.4: Minimum SNP distances among potential transmitters for individu-
als with posterior estimates < 0.1.

Min. SNP Distance Frequency Percentage

[16, 50) 1 2%
[50, 100) 12 27%
[100, 200) 16 36%
[200, 500) 11 25%
[500, 1743) 5 11%

4.2.4 Transmission Tree
Based on the hypothesis testing results and the posterior probabilities from the
transmission tree, we constructed a transmission network Figure 4.4. In this
visualization, edges are rendered as solid lines when they converge (i.e., posterior
probability≥ 0.8) and as dashed lines when they do not. Furthermore, edge
colors differentiate transmission types: red indicates inferred direct transmis-
sions, while black denotes inferred indirect transmissions. Notably, all direct
transmission pairs exhibit convergence.

The transmission tree reveals several key findings. For example, Patient 16
emerges as the source of a lineage comprising 10 converged pairs, including 7
direct transmissions, whereas Patient 6 is identified as the source of a lineage
with 4 direct transmissions. These individuals are highlighted as high-priority
candidates for further investigation.

4.2.5 ERGM
In this analysis, we employ an exponential random graph model (ERGM) to
examine how distance within a social network influences the likelihood of a
tie forming between two nodes. By incorporating distance as a covariate, each
estimated coefficient in the ERGM contributes additively to the log odds of a tie.
Once the model is fitted, we transform these log odds via the logistic function
to obtain Pr(tie = 1 | covariate). We then extend this calculation by applying
a weighted sum over the distribution of the distance covariate values, thereby
deriving Pr(tie = 1, covariate = specific value). This approach allows us to
quantify both the conditional probability of tie formation given a particular
distance and the overall probability of observing a tie at that distance level, thus
elucidating the role of social distance in shaping network structure.
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The ERGM results indicate that the baseline propensity for tie formation
is captured by the edges term, which is both negative and highly significant
(p < 1 × 10−4). This negative coefficient reflects the inherent sparsity of the
network, in part because our model restricts each individual to a single primary
infection source (i.e., coinfection is not permitted), thereby reducing the overall
likelihood of tie formation. In contrast, the coefficient for the distance-based
covariate (Distance) is positive, suggesting that increased distance is associated
with a higher probability of tie formation, although this effect is not statistically
significant (p = 0.313). Notably, these results are consistent with our prelimi-
nary findings: among direct pairs with a distance of≤ 2, only 1 out of 28 pairs
formed a connection, while nearly half remained disconnected. Overall, the
model fit—as indicated by a reduction in deviance and acceptable AIC (891.4)
and BIC (904.2) values—demonstrates that the ERGM reasonably captures
the network structure. These results imply that while network sparsity is ro-
bustly captured by the edges term, additional covariates may be required to
fully explain the dynamics of tie formation.

Building on this robust network characterization, our analysis reveals that
most transmission occurs via weak ties—casual contacts between individuals
who do not know each other—rather than within closely connected social net-
works (defined as groups with paths 2). This finding aligns with Granovet-
ter’s key insight that weak ties serve as critical bridges connecting disparate so-
cial groups, thereby facilitating the flow of information—or, in this context,
pathogens—across otherwise isolated clusters Granovetter, 1973.

Table 4.5: ERGM summary output for Model 1.

Term Estimate Std. Error z-value Pr(>|z|)

edges -3.933e+00 1.598e-01 -24.615 <1e-04
edgecov.Distance 1.813e-05 1.797e-05 1.009 0.313

Null Deviance 5930.6 on 4278 degrees of freedom
Residual Deviance 887.4 on 4276 degrees of freedom
AIC 891.4
BIC 904.2

Computing Transmission Probabilities by Distance To quantify the like-
lihood of transmission occurring within a specific distance threshold (e.g.,≤ 2),
we follow these steps:
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Step 1: Conditional Probability: Using the fitted ERGM, derive the condi-
tional probability of tie formation given a particular distance,

Pr(tie = 1 | distance = g),

where g represents discrete distance bins (e.g., g = 1, 2, . . .).

If the edge covariate equals 1, the log odd of a tie is calculated as:

log-odds = βedges+βedgecov×1 = −3.933+1.813×10−5 = −3.93298187.

Next, we convert this log-odds value to a probability using the logistic
function:

Pr(tie = 1 | covariate = 1) =
exp(log-odds)

1 + exp(log-odds)
=

exp(−3.93298187)
1 + exp(−3.93298187)

.

Numerically, exp(−3.93298187) ≈ 0.01948, so

Pr(tie = 1 | covariate = 1) ≈ 0.019 (i.e., 1.9%).

Step 2: Empirical Frequency: Compute the empirical frequency of each dis-
tance value, Pr(distance = g), from the observed distance matrix. As
shown in Table 4.6, nearly half of all pairs (51.3%) are disconnected, un-
derscoring the inherent sparsity of the network.

Step 3: Joint Probability: Calculate the joint probability of a tie and a specific
distance as

Pr(tie = 1, distance = g) = Pr(tie = 1 | distance = g)×Pr(distance = g),

for g = 1, 2, . . . ,∞. In cases where a pair is disconnected, we assign a
distance of 11,839, which corresponds to one less than the total number
of nodes in the complete social network (11,840).

Step 4: Relative Contribution: Determine the relative contribution of trans-
mission events at a specific distance (e.g., g = 1) by computing

Pr(tie = 1, distance = 1)∑
g Pr(tie = 1, distance = g)

.

This ratio represents the proportion of transmission events occurring at
distance 1 relative to all transmission events across the range of distances.
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Table 4.6: Frequency, percentage, Pr(tie | distance), and Pr(tie, distance) for
each distance.

Distance Frequency Percentage P(tie | distance) P(tie, distance)

1 8 0.2% 0.01920897 3.592141e-05
2 19 0.4% 0.01920932 8.531486e-05
3 25 0.6% 0.01920966 1.122584e-04
4 28 0.7% 0.01921000 1.257316e-04
5 51 1.2% 0.01921034 2.290153e-04
6 86 2.0% 0.01921068 3.861895e-04
7 126 2.9% 0.01921102 5.658226e-04
8 186 4.3% 0.01921136 8.352767e-04
9 224 5.2% 0.01921171 1.005943e-03
10 255 6.0% 0.01921205 1.145178e-03
11 243 5.7% 0.01921239 1.091307e-03
12 207 4.8% 0.01921273 9.296483e-04
13 173 4.0% 0.01921307 7.769662e-04
14 127 3.0% 0.01921341 5.703842e-04
15 92 2.2% 0.01921376 4.131991e-04
16 62 1.4% 0.01921410 2.784652e-04
17 40 0.9% 0.01921444 1.796582e-04
18 34 0.8% 0.01921478 1.527121e-04
19 27 0.6% 0.01921512 1.212736e-04
20 15 0.4% 0.01921546 6.737540e-05
21 19 0.4% 0.01921581 8.534369e-05
22 19 0.4% 0.01921615 8.534521e-05
23 5 0.1% 0.01921649 2.245967e-05
24 4 0.1% 0.01921683 1.796805e-05
25 6 0.1% 0.01921717 2.695256e-05
26 1 0.0% 0.01921751 4.492173e-06
27 1 0.0% 0.01921786 4.492253e-06

11839 2195 51.3% 0.02369852 1.215948e-02

This structured approach clearly delineates each component of the analysis,
ensuring that the methodology is both transparent and accessible.

Here, when we are interested in the accountability of the neighbourhood
level (i.e, g<=2) among transmission, we may have
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∑
g=1,2 Pr(tie = 1, distance = g)∑

g Pr(tie = 1, distance = g)

=
3.592141e− 05 + 8.531486e− 05

0.02151417

=0.6%

Or if we would further expand the radius to a distance 5, we may have∑
g=1,2,3,4,5 Pr(tie = 1, distance = g)∑

g Pr(tie = 1, distance = g)

=
0.0005882416

0.02151417

=2.7%

This structured approach clearly delineates each component of our analysis,
ensuring that the methodology is both transparent and accessible. To assess the
contribution of transmission events occurring within local neighborhoods (i.e.,
distances g ≤ 2), we compute the ratio∑2

g=1 Pr(tie = 1, distance = g)∑
g Pr(tie = 1, distance = g)

.

Substituting the corresponding values yields

3.592141× 10−5 + 8.531486× 10−5

0.02151417
≈ 0.6%.

If we expand the neighborhood radius to include distances up to g = 5, the
ratio becomes∑5

g=1 Pr(tie = 1, distance = g)∑
g Pr(tie = 1, distance = g)

=
0.0005882416

0.02151417
≈ 2.7%.

These results suggest that only a small fraction of transmission events occur
within the immediate neighborhood, and this proportion increases slightly
when a broader distance threshold is considered.
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Figure 4.4: The transmission tree of 93 TB patients. Solid black edges denote
inferred indirect transmission events with a posterior probability≥ 0.8, solid
red edges denote inferred direct transmission events with a posterior probability
≥ 0.8, and dashed black edges denote inferred indirect transmissions with a
posterior probability < 0.8.

84



Chapter 5

Conclusion

5.1 Summary of Findings
Reconstructing transmission networks is crucial for identifying critical epidemi-
ological factors, such as superspreaders and high-risk locations, which inform
effective strategies for pandemic prevention and control. In this dissertation,
we propose two Bayesian frameworks designed to reconstruct infectious dis-
ease transmission networks by integrating genomic and temporal data, with
one framework further incorporating network data. The Bayesian transmis-
sion models account for within-host genetic diversity, unobserved infection
times, and incomplete sampling of infected individuals. Transmission network
inference is accomplished through the estimation of posterior probabilities of
transmission events among infected cases. Our Bayesian framework simulta-
neously integrates sequence data, phylogenetic trees, and the transmission tree.
By analytically marginalizing the phylogenetic tree during posterior probabil-
ity computations, our approach circumvents the computational burdens com-
monly associated with existing methods.

To evaluate the impact of incorporating network data, we designed two sim-
ulation scenarios—one with network information and one without—to assess
the performance of the two Bayesian frameworks. Simulation results indicate
that the Bayesian transmission model without network data accurately iden-
tifies direct transmission pairs, achieving 93% accuracy at a genome length of
106 and 100% accuracy at 4.4× 106. Conversely, the Bayesian model incorpo-
rating network data demonstrates only limited improvement when network
data are included and substantially decreased accuracy when network data are
absent. Thus, the simulations confirm the robustness and reliability of the
Bayesian transmission model without network data, especially in scenarios lack-
ing ground truth knowledge.
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Hypothesis testing identifies direct transmission events with an average false
positive rate of approximately 1% across diverse sample sizes and scenarios. No-
tably, sensitivity declines from 78% to 50% as the sample size decreases, primarily
because smaller samples are more likely to omit direct transmitters, leading to
indirect transmitters with larger SNP distances being misclassified as direct. In
addition, we observe that applying Nelder–Mead optimization—implemented
to correct an overestimated parameter in the hypothesis test—boosts sensitivity
by 30% while increasing the false positive rate by 10%. These findings illustrate
the inherent trade-off between sensitivity and specificity, particularly in smaller
datasets.

Furthermore, we fitted an Exponential Random Graph Model (ERGM) to
the inferred transmission tree, incorporating social distance as an edge covari-
ate to capture its impact on tie formation. The model revealed a low baseline
transmission probability, with each unit increase in social distance reducing
tie probability by approximately 6.6%. When network noise was introduced
at levels of 5%, 10%, and 20%, the uncertainty of the social distance effect in-
creased, eventually rendering it statistically insignificant. These results suggest
that under higher noise conditions, the impact of social distance on transmis-
sion dynamics becomes less detectable.

For the real-world data analysis, we applied a Bayesian model that integrates
temporal and genomic data to reconstruct the transmission tree for 93 tuber-
culosis patients. We assessed edge confidence by designating those with pos-
terior probabilities above 0.8 as converged. In addition, hypothesis testing
identified 28 converged direct transmission pairs, with only one (4%) linked
to neighborhood-level transmission (social distance 2), confirming the rarity
of within-neighborhood infections. We further fitted an exponential random
graph model (ERGM) that incorporated social distance as an edge covariate and
accounted for network sparsity—partly due to the constraint that each individ-
ual has a single primary infection source. Although increased social distance
was associated with a higher probability of tie formation, this effect was not
statistically significant.

5.2 Limitations and Future Directions
Limited pathogen genome availability significantly impacts the Bayesian trans-
mission model’s ability to accurately estimate key parameters, including infec-
tion rate, mutation rate (µ), and effective population size (θ). In smaller samples,
indirect transmissions are more prevalent, leading the model to overestimate
both θ and µ. This overestimation consequently decreases hypothesis-testing
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sensitivity. Although our correction procedure improves sensitivity by over 30%,
it simultaneously increases the false positive proportion by approximately 10%.
Further refinement is therefore required to enhance sensitivity while effectively
controlling false positives.

Nevertheless, our simulations demonstrate that, despite these estimation
challenges, the model robustly reconstructs transmission networks and reliably
identifies direct transmission pairs. This finding confirms that accurate infer-
ence of transmission dynamics remains achievable even with limited sample
sizes.

Currently, the Bayesian model assumes uniform effective population size
across hosts, an assumption that could be relaxed to accommodate host-specific
variations. However, allowing such variability would substantially increase pa-
rameter complexity and necessitate larger sample sizes for reliable estimation.
Under the Jukes-Cantor model, pairwise SNP distances suffice for model fit-
ting. Employing more complex substitution models would allow the Bayesian
approach to utilize additional genomic information via sequence-based likeli-
hood functions, thereby enhancing inference accuracy.

Presently, we adopt social network data to inform heterogeneous infec-
tion probabilities, yet this method may overlook random encounters between
strangers. Our next phase entails integrating social network data with predicted
location trajectories obtained from GPS and cell phone data through machine
learning. This integration will enable us to accurately infer instances of col-
location among individuals and improve estimates of contact likelihood. By
uniquely combining personal network data with trajectory predictions, our
approach refines the identification of frequent or close interactions and rep-
resents the first application of network analysis to tuberculosis transmission
in an endemic region. This innovative framework ultimately deepens our un-
derstanding of disease spread dynamics. Additionally, adopting non-uniform
priors could offer targeted insights into public health interventions, enabling
authorities to focus resources effectively on specific social groups or communi-
ties.

Bayesian transmission network analysis can be computationally demanding
due to the calculation of posterior distributions over extensive parameter spaces,
particularly in large datasets. Leveraging parallel computing techniques and op-
timized software significantly reduces computational time by distributing cal-
culations across multiple processors. Thus, effective computational strategies
can substantially enhance the practicality and scalability of Bayesian methods
in epidemiological investigations.
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