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Abstract

Despite substantial declines in cardiovascular disease (CVD) mortality across counties in the United
States from 2009 to 2018, notable racial/ethnic, socioeconomic, and regional disparities persist. Health
disparities in CVD mortality are closely linked to social determinants of health (SDOH), highlighting
the need to address SDOH domains. Addressing these domains through targeted strategies is vital for
reducing disparities and improving CVD outcomes. Challenges related to longitudinal data on SDOH
include correlations of observations from the same subject and potential time-varying response patterns.
Therefore, it is crucial to utilize statistical models that consider the within-subject correlation and the
time-dependent effects of covariates. Models providing population-averaged effects or individual-specific
estimates have been developed to address these challenges. Missing data often arise in longitudinal studies
and are generally assumed to be missing at random when conditioned on relevant observed information.
Modern longitudinal studies operate within a high-dimensional framework. Variable selection and regu-
larization methods effectively address related challenges in SDOH, as they shrink coefficients to prevent
overfitting and select variables within groups. The Exclusive Lasso manages grouped variables, ensuring
at least one predictor from each predefined group is selected. Given the high-dimensional and longitu-
dinal nature of county-level SDOH data, advanced clustering methods are necessary to reveal variations
in the longitudinal relationship between SDOH domains and CVD mortality. Different subpopula-
tions can demonstrate distinct behaviors over time, highlighting the necessity for clustering techniques
to identify more homogeneous groups. In this dissertation, I developed a novel approach to integrate
Exclusive Lasso into penalized weighted generalized estimating equations to facilitate domain-specific
variable selection under missing at random. Furthermore, I propose a model-based clustering extension
for high-dimensional longitudinal data, utilizing Exclusive Lasso to identify subpopulations of counties
influenced by distinct covariates within each domain. Finally, to enhance this approach, I will employ
the model-based clustering method using Exclusive Lasso to refine our understanding of county-level
variations within each state. By integrating an additional algorithm that considers these variations, we can
categorize counties based on their unique characteristics.
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Chapter 1

Introduction

1.1 Background
Longitudinal data analysis is applied in various fields, including public health, clinical trials, and social
science research. This approach allows for investigating how outcomes change over time and how these
changes are associated with different covariates (Fitzmaurice et al., 2012; Hedeker & Gibbons, 1997). A key
challenge in longitudinal settings is that observations on the same subject are correlated, and responses
may exhibit time-varying structures. Accordingly, statistical models must account for this within-subject
correlation and possible dynamic effects of covariates across different time points (Diggle, 2002; Liu &
Deme, 2012). Generalized estimating equations (GEE) (Liang & Zeger, 1986) and linear or generalized lin-
ear mixed-effect models (LMMs) (Verbeke & Molenberghs, 2000) are popular modeling frameworks for
longitudinal data. GEE targets marginal (population-averaged) inference and can be more robust to cer-
tain covariance mis-specifications than fully likelihood-based methods(Fitzmaurice et al., 2012; Hubbard
et al., 2010). However, if the working correlation structure is incorrectly specified, it can result in a loss of
efficiency or consistency (Fitzmaurice et al., 2012; Hubbard et al., 2010). In contrast, LMMs incorporate
fixed and random effects, enabling the capture of variations at both the population and individual levels.
This flexibility enables LMMs to effectively handle missing information, unbalanced data, and individual
variations from a common pattern. (Laird & Ware, 1982; Verbeke & Molenberghs, 2000). Afterward,
semiparametric mixed-effects models extend the LMMs, which can include an unknown function as an
infinite dimensional parameter, providing flexibility to the model. Semiparametric approaches (Buckley
& James, 1979; D. Y. Lin & Ying, 2001; Tsiatis, 2006) have been increasingly applied in recent longitudinal
study designs to keep the balance between parametric and nonparametric methods and make concise
inferences (Johnson et al., 2008; Wang et al., 2012).

A significant challenge in longitudinal studies is missing data, which often arises from dropout (when
participants leave a study before completion) or intermittent missing observations, such as skipped visits or
lost samples. Missing data mechanisms are typically classified into missing completely at random (MCAR),
missing at random (MAR), and missing not at random (MNAR). MCAR indicates the probability of
missingness is unrelated to any observed or unobserved data; in this ideal case, excluding incomplete obser-
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vations only sacrifices power but does not bias estimates. MAR means the observed data can explain any
systematic differences between missing and observed data. Formally, the probability that an observation
is missing may depend on past observed outcomes or covariates but not on the unobserved value itself.
This is a common assumption in longitudinal studies with dropouts. MNAR (also called informative
missingness) occurs when the missingness depends on the unobserved data, which requires more complex
modeling and is beyond the scope of most standard methods. In practice, dropout in longitudinal stud-
ies is often assumed MAR after conditioning on relevant observed information. It is crucial to address
missingness because simply analyzing complete cases (ignoring subjects after they drop out) can lead to
bias if the missingness is not MCAR. GEE can produce biased estimates unless the MCAR assumption
holds, so weighted GEE (WGEE) methods were developed to address MAR mechanisms by incorporating
inverse probability weighting (Fitzmaurice et al., 2012; Robins et al., 1995). When the dropout model is
correctly specified, WGEE provides consistent estimates of the regression parameters. Notably, if there is
no missing data (or if data are indeed MCAR), the weights are all equal, and WGEE reduces to the GEE,
ensuring no efficiency is lost.

Beyond the need to address correlation and missingness, modern longitudinal studies frequently col-
lect high-dimensional covariates. This high dimensionality can result from repeated measurements of
numerous variables at each time point, which may be further complicated by additional time-varying
factors and interaction effects (J. Fan et al., 2020). Traditional approaches often struggle to maintain
statistical efficiency when the number of covariates grows relative to the sample size. To tackle these chal-
lenges, variable selection and regularization methods such as the Least Absolute Shrinkage and Selection
Operator (Lasso) (Tibshirani, 1996) and smoothly clipped absolute deviation (SCAD) (J. Fan & Li, 2001)
offer potential solutions by shrinking coefficients to control overfitting and select a parsimonious subset
of predictors (Zou, 2006). However, Lasso may ignore the correlation between variables by selecting
only one variable from a group of highly correlated variables (Friedman et al., 2010; Wang et al., 2012).
Furthermore, the shrinkage effect in Lasso can lead to significant bias in parameter estimates, particularly
when variables are highly correlated or organized in grouped structures (Friedman et al., 2010). Most exist-
ing literature on Lasso and SCAD has focused primarily on cross-sectional parametric models (Kowalski
et al., 2018). Consequently, extensions of these methods have been developed for longitudinal contexts,
including penalized GEE (W. J. Fu, 2003; Wang et al., 2012), penalized weighted GEE (Kowalski et al.,
2018) and model selection in LMM (Arribas-Gil et al., 2015; Komárek & Komárková, 2013; Muller et al.,
2013; Proust-Lima et al., 2015).

In addition to high dimensionality, large or complex longitudinal datasets often exhibit substantial
heterogeneity. Different subgroups within the data may exhibit varying behaviors over time, prompting
clustering techniques to identify more homogeneous subpopulations (Arribas-Gil et al., 2015; Proust-
Lima et al., 2015). When both high dimensionality and heterogeneity are present, clustering methods can
simultaneously address variable selection and the grouping of subjects (Komárek & Komárková, 2013;
Yang & Wu, 2022). This combined approach enhances interpretability and predictive performance, which
is particularly valuable in public health and clinical research, where identifying meaningful subgroups is
crucial.
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Building upon these motivations, we propose novel methods for variable selection in longitudinal
analyses with missing information. For variable selection, we primarily incorporated the Exclusive Lasso
to manage grouped variables, ensuring that at least one predictor from each predefined group is selected
(Zhou et al., 2010). Unlike group Lasso (Yuan & Lin, 2006), which imposes an all-or-nothing selection
of groups, Exclusive Lasso guarantees that each group contributes to the prediction of outcomes with at
least one variable. This property is particularly valuable when domains or sets of covariates are thought
to be relevant in principle based on prior knowledge, but the relative importance of variables within each
domain in the relationship with the outcome remains uncertain. For instance, social determinants of
health (SDOH) data often encompass multiple domains, including social context, economic stability,
education, physical infrastructure, and healthcare context, but only a subset of specific variables within
each domain may be crucial for a particular outcome (Son et al., 2023; Zhu & Xie, 2017).

In this dissertation, I developed a novel approach to integrate Exclusive Lasso into penalized weighted
generalized estimating equations (PWGEE) to facilitate domain-specific variable selection under missing
data mechanisms. The study utilizes the Social Determinants of Health database from the Agency for
Healthcare Research and Quality (AHRQ), which comprises numerous county-level SDOH variables
measured repeatedly over a decade across the United States (US) and is linked to county-level cardiovascular
disease (CVD) mortality. In addition to missingness in certain covariates over time, the dataset encom-
passes five broad domains of predictors, each with multiple specific variables. The Exclusive Lasso penalty
employed in PWGEE possesses the potential to retain at least one predictor from each domain while dis-
carding variables that offer no or irrelevant information, thereby enhancing interpretability compared to
group Lasso. Furthermore, CVD mortality exhibits variations across geographic regions and demographic
groups, indicating inherent heterogeneity among counties. Consequently, I propose a model-based clus-
tering extension for high-dimensional longitudinal data, utilizing Exclusive Lasso to identify subgroups
of counties influenced by distinct covariates within each domain. Finally, to enhance this approach, I will
employ a model-based clustering method using Exclusive Lasso to refine our understanding of county-
level variations within each state. By integrating an additional algorithm that considers these variations,
we can categorize counties based on their unique characteristics.

The remainder of this dissertation is organized as follows. In Chapter 2, we present a novel PWGEE
method that integrates Exclusive Lasso to address missing at random and to perform domain-based selec-
tion of variables. Chapter 3 proposes a model-based clustering method that integrates Exclusive Lasso in
high-dimensional longitudinal data to discover latent subgroups of US counties. In Chapter 4, we further
investigate the properties of the proposed model-based clustering for the empirical study, focusing on
reducing clustering variation to assist stakeholders or policymakers in making informed decisions. Final
observations are provided in the Conclusion Chapter.
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1.2 Motivation

1.2.1 The Longitudinal Social Determinants of Health Database
Our study is motivated by research on health disparities in social determinants of health (SDOH) and
their impact on cardiovascular disease mortality. In 2020, the Agency for Healthcare Research and Qual-
ity (AHRQ) compiled and released the SDOH database to better understand the relationship between
community-level factors, healthcare quality and delivery, and individual health to then address emerging
health issues (for Healthcare Research & Quality, 2020). The AHRQ released its database on SDOH
spanning from 2009 to 2018 (for Healthcare Research & Quality, 2020). The SDOH database is publicly
available and compiles data from existing federal datasets and other public data sources (for Healthcare
Research & Quality, 2020). Variables in the dataset are organized into five SDOH domains (Described
in Table 1.1) (for Healthcare Research & Quality, 2020): 1) social context, such as age, race/ethnicity,
and veteran status; 2) economic context, such as income and unemployment, 3) education, 4) physical
infrastructure, such as housing, the built environment, and transportation, and 5) healthcare context,
such as health insurance coverage and health care access (for Healthcare Research & Quality, 2020). Mor-
tality data were sourced from the Interactive Atlas of Heart Disease and Stroke at the Centers for Disease
Control and Prevention (CDC) (of Heart Disease & Stroke, n.d.), which were initially compiled from
two data sources: 1) the National Vital Statistics System at the National Center for Health Statistics, and
2) the hospital discharge data from the Centers for Medicare and Medicaid Services’ Medicare Provider
Analysis and Review (MEDPAR) file (of Heart Disease & Stroke, n.d.). The SDOH data were linked to
the corresponding mortality data at the county level.

Table 1.1: SDOH Domains and Topic Areas Represented in the SDOH Database

SDOH Domain SDOH Topic Area
1. Social context Demographics

Living conditions
Disability
Immigration
Socioeconomic disadvantage indices
Segregation

2. Economic context Income
Employment
Poverty

3. Education Attainment
School system
Educational funding
Literacy

Continued on next page
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Table 1.1 – continued from previous page
SDOH Domain SDOH Topic Area

Numeracy
4. Physical infrastructure Housing

Transportation
Migration
Internet connectivity
Environment
Industry composition
Social services
Food access
Access to exercise
Crime

5. Healthcare context Health insurance status
Characteristics of health care providers
Characteristics of health care facilities
Distance to provider
Utilization and costs
Health behaviors
Health outcomes
health care quality

The SDOH data initially contained a total of 345 variables. However, it was noted that all variables
included missing values, and some were not collected every year. In our previous study, the analytic sample
was based on the following inclusion and exclusion criteria. First, variables that were measured repeatedly
for 10 years were included. Second, variables with more than 60% missing values were excluded. Third,
we eliminated redundant variables with the same or similar definitions (e.g., percentage of native-born
residents and percentage of foreign-born residents) to avoid duplication. After applying these criteria,
78 variables were retained in the analytic sample, which encompassed 3,142 counties. Of these counties,
1,166 were classified as urban, while the remaining 1,976 were classified as rural. The rural-urban status of
a county was determined according to the Urban-Rural Classification Scheme for Counties used by the
National Center for Health Statistics (NCHS) in 2013 (Ingram & Franco, 2014). This Scheme categorized
US counties into six groups based on population size, urbanization, and proximity to major cities (Ingram
& Franco, 2014). Category 1, Large central metro, comprised counties in metropolitan statistical areas
(MSA) with 1 million or more residents that either contained the entire population of the largest principal
city, had their entire population within that city, or included at least 250,000 residents of any principal
city. Category 2, Large fringe metro, included counties in the same large MSA that did not meet the
central criteria, typically representing suburban areas. Category 3, Medium metro, consisted of counties
in MSA with populations ranging from 250,000 to 999,999, while Category 4, Small metro, covered
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counties in MSAs with populations under 250,000. On the rural side, Category 5, Micropolitan, identified
counties in micropolitan statistical areas centered on urban clusters with 10,000 to 50,000 residents, and
Category 6, Noncore, consisted of counties that did not qualify as micropolitan. Counties in Categories
1 through 4 were classified as urban, whereas those in Categories 5 and 6 were classified as rural, offering
a nuanced framework for analyzing differences in infrastructure, economic opportunities, and public
health resources (Ingram & Franco, 2014).

Figure 1.1: Geographic distribution of Age-adjusted Cardiovascular Disease Mortality across Counties in
the United States, 2009 vs. 2018

Figure 1.1 shows the geographic distribution of age-standardized cardiovascular disease (CVD) mor-
tality per 100,000 persons, stratified by race and rural-urban status of US counties in 2009 and 2018. The
overall median CVD mortality rate (239.5; interquartile range [IQR]: 208.3 – 277.0) was used as the bivari-
ate threshold, and a 30% cut-off value was used to define the racial composition of each county, measured
by the percentage of Black residents (Explorer, n.d.). In 2018, the number of counties with a higher CVD
mortality (>239.5) was smaller than those in 2009 in both rural and urban counties. Similarly, counties
with a higher percentage of Black residents tend to show elevated CVD mortality rates compared to those
with fewer Black residents.

Moreover, our previous study (Son et al., 2023) findings identified 17 key SDOH associated with
county-level CVD mortality, including rural-urban status, racial composition, median household income,
food insecurity, and housing instability. Although there was an overall decrease in CVD mortality by 1.08
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deaths per 100,000 people each year from 2009 to 2018, rural counties and those with higher percentages of
Black residents consistently experienced higher CVD mortality rates than urban counties and those with
lower percentages of Black residents. The rural-urban CVD mortality gap did not change significantly over
the past decade, whereas the association between the percentage of Black residents and CVD mortality
showed a significant diminishing trend over time.

Nevertheless, several analytical gaps remain unresolved in this evaluation. First, the analysis did not
address the missing value issues during the variable selection process, which could influence the robustness
of the findings. Second, the analysis did not select variables within each domain, limiting interpretability
regarding domain-specific influences on CVD mortality. Third, the analysis did not consider clustering
across geographic regions, which may bias results by ignoring ecological correlations (Robinson, 2009).
Lastly, the analysis did not account for the state as a natural grouping or clustering factor, potentially
obscuring important variations related to state-specific policies or environmental conditions.

Adverse social and environmental conditions, such as barriers to accessing healthcare, unsafe living en-
vironments, inadequate education, and unequal employment opportunities, which are defined as SDOH,
are associated with poor health outcomes through racial disparities. (Churchwell et al., 2020; Virani et al.,
2021). SDOH can influence disparities in CVD outcomes in various ways. Therefore, it is important to
understand the comprehensive SDOH framework and how the burden of racial disparities contributes
to the risk of CVD (Javed et al., 2022). A nuanced understanding of which SDOH indicators within
specific domains may be more important in determining CVD mortality over time is needed to identify
promising approaches to address disparities in CVD outcomes. Despite a decrease in CVD mortality
over a decade, the decline may not be uniform across different geographic areas. This is evident in the
variation of mortality rates in certain counties differing compared to national levels (Case & Deaton, 2015).
Thus, addressing varying CVD mortality rates at the county, state, or other geographic levels based on
SDOH is important for informing local and national health policies. In our research, addressing missing
data for high-dimensional SDOH indicators presents a challenge when fitting longitudinal models and
interpreting their association with mortality within the SDOH framework. Under the assumption that
the missing data is MAR, and given the large number of predictors and repeated measurements, we aim
to select the variables within the stratified framework. Additionally, we aim to identify variables within
each cluster to describe distinct trends in CVD mortality based on the SDOH framework across counties
or counties within the state.
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Chapter 2

Penalized Weighted Generalized
Estimating Equations via
Exclusive Lasso Penalty

2.1 Introduction
Longitudinal data analysis is a widely used technique in public health, clinical trials, and social science
research. Using data collected from repeatedly measuring individuals over time, this analysis enables the
identification of temporal changes in responses and the elucidation of intricate relationships between
these changes and covariates. Semi-parametric approaches to longitudinal study designs have increasingly
been employed to balance parametric and non-parametric methods and make concise inferences. The gen-
eralized estimating equations (GEE) (Liang & Zeger, 1986) are popular approach for population-averaged
effects and substitute for the likelihood-based generalized linear mixed model, which is more susceptible to
consistency loss when specifying variance structures (Breslow & Clayton, 1993; Diggle, 2002; Fitzmaurice
et al., 2012; Stokes et al., 2012). Subsequently, weighted generalized estimating equations (WGEE), along
with the technique of inverse missing probability weighting (IPW) adjusting for bias, were proposed to
analyze longitudinal data that incorporate missing values (Robins et al., 1995). In the GEE and WGEE ap-
proaches, valid inference for various classes of data distributions is assigned by specifying the conditional
mean of responses given the independent covariates. However, unless the data are missing completely at
random (MCAR), the GEE approach may introduce bias in parametric estimates (Fitzmaurice et al., 2012;
Hardin & Hilbe, 2003; Preisser et al., 2002; Robins et al., 1995). In addition, the WGEE provide consistent
estimates under the missing at random (MAR) mechanism, where the probability of missing responses
is independent of current and future responses, given the observed past responses and covariates, partic-
ularly when a monotone missing data pattern or dropouts occur (Fitzmaurice et al., 2012; Mallinckrodt,
2013; O’Kelly & Ratitch, 2014). Consequently, the WGEE facilitates the adoption of a practical approach
for longitudinal study designs that exhibit missing data patterns.
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Our research is motivated by addressing health disparities related to the social determinants of health
(SDOH) and cardiovascular disease (CVD) mortality. Our dataset, the SDOH database from the Agency
for Healthcare Research and Quality (AHRQ), included variables that have been repeatedly measured
across the United States (US) at the county level. It encompasses a substantial number of multiple mea-
surements on the same subject over time and comprises five domains of variables. Furthermore, besides
the SDOH data, most explanatory variables are subject to some missingness over the course of the study
period. Consequently, model selection presents a significant challenge that arises in a wide range of disci-
plines.

The Lasso and smoothly clipped absolute deviation penalty (SCAD) class of methods has been pop-
ular for variable selection in regression analysis and regularization to deal with high-dimensional data in
clinical and public health research (J. Fan & Li, 2001; Tibshirani, 1996; Zou, 2006). SCAD modifies the
Lasso framework by using a piecewise penalty that reduces bias for larger coefficients while still promoting
sparsity (J. Fan & Li, 2001; J. Fan & Lv, 2011; Tibshirani, 1996; Zou, 2006). In current studies, penalized
generalized estimating equations (PGEE) were derived from applying a framework to the longitudinal
analysis in which regularized penalty methods were used (W. J. Fu, 2003; Wang et al., 2012). In particular,
Wang et al., 2012 developed SCAD penalized GEE to analyze longitudinal data with a high dimensional
framework (large n, diverging p) for simultaneous variable selection and estimation (Blommaert et al.,
2014; Wang et al., 2012). While PGEE and related penalized methods significantly enhance GEE by ad-
dressing high-dimensional covariate selection, they retain GEE’s limitations with regard to missing data.
In particular, these methods typically assume the same missingness conditions as standard GEE, which is
formally derived under the assumption that data are MCAR. If the longitudinal outcome or covariates
are missing in a systematic manner (e.g., missing at random dropout), a penalized GEE without correction
can yield biased estimates and suboptimal variable selection (Blommaert et al., 2014; Wang et al., 2012).
Recently, Kowalski et al., 2018 developed penalized weighted generalized estimating equations (PWGEE),
which integrates the SCAD class of variable selection with weighted GEE under the MAR missing mech-
anism (Kowalski et al., 2018). However, this penalized WGEE method, along with penalties such as Lasso
and SCAD, cannot effectively address variable selection while considering between-group and within-
group correlations in a predefined group structure (Kowalski et al., 2018). This limitation highlights the
need for improved methods that account for these correlations.

Thus, another critical consideration in longitudinal data analysis is the potential grouping of covariates
and the desire for grouped variable selection. Often, covariates can be naturally divided into groups,
such as SDOH domains, multiple measurements related to the same risk factor, gene expression probes
corresponding to the same pathway, or dummy variables representing categories of a factor. Group Lasso
(Yuan & Lin, 2006) selects or discards covariates in predefined groups using an L2 norm within each
group and an L1 penalty across groups, forcing all-or-nothing selection at the group level. However, this
can be restrictive if only a subset of variables in a group is relevant. The Exclusive Lasso (Zhou et al., 2010)
encourages within-group sparsity while ensuring no group is neglected. It uses a combination ofL1 andL2

norms (sometimes called anL1,2 penalty in reverse order) to penalize having multiple non-zero coefficients
in the same group, effectively selecting at least one variable from each group but not necessarily all of them.
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For each group of related features, the Exclusive Lasso tends to pick the single most predictive feature and
set the rest to zero rather than selecting the entire group or potentially dropping the whole group. This
within- and between-grouped variable selection approach is relevant for longitudinal data with covariates
grouped by meaningful criteria (e.g., multiple time-specific measurements of the same variable from each
domain). It ensures each important covariate domain contributes to the model, improving interpretability
and preventing the omission of important factors due to redundancy. Recent studies have explored the
Exclusive Lasso for structured feature selection, showing its advantages in selecting representative features
from each domain (Campbell & Allen, 2017; Kong et al., 2017; Zhao et al., 2018).

Given the gaps in the existing methods, we propose a penalized weighted GEE with an Exclusive
Lasso to tackle missing data and perform variable selection based on predefined domains in longitudinal
analysis. This approach integrates inverse probability weighting for missing data and an Exclusive Lasso
penalty for covariates within predefined domains. Doing so achieves consistent estimates and structured
variable selection, selecting a representative subset from each domain rather than individual covariates.
This extension of the penalized GEE framework accommodates incomplete data and emphasizes group-
level sparsity. The Exclusive Lasso ensures that at least one covariate from each relevant group is retained in
the model. This might be useful in longitudinal settings, such as selecting the most informative time point
for a risk factor measured multiple times since it can incorporate the most relevant time-specific data into
predictive models to improve their accuracy (Chen et al., 2018). The proposed penalized WGEE addresses
two key challenges in longitudinal data analysis: robustness to missing data through weighting and within-
and between-grouped variable selection in complex covariate structures through the Exclusive Lasso. By
leveraging the strength of all available data and encouraging a parsimonious yet domain-conscious model, it
enhances estimation accuracy and interpretability in longitudinal studies of CVD mortality with complex
covariate structures and incomplete observations in SDOH.

2.2 Methods
In this section, we use the composite penalty to extend the WGEE with Exclusive Lasso variable selection
(PWGEE-eLasso), which performs l1 norm within the group by applying separate l2 penalties to each
group. This method can also be extrapolated to other multidimensional social determinant data.

2.2.1 WGEE
At the beginning of this section, we define some underlying notations. For i = 1, ..., n and t = 1, ...,m,
we considern as subjects (i.e., counties in our data) and m assessment times in our longitudinal study. Let
Yit indicate a response for subject i at time t, and let X∗

it denote a p-dimensional vector that includes the
SDOH variables from the ith subject at time t (1 ≤ i ≤ n, 1 ≤ t ≤ m). Xit = (1,X∗

it) have a (1 + p)

column vector, where the first component of the column vector is the constant one and the remaining
p components are the explanatory variables. As is well known, WGEE comprises two modules: 1) the
main module, which estimates the association between primary outcomes and its predictors, and 2) the
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missing data module under MAR assumption. We denote that WGEE in the main module assumes the
relationship between yit and Xit via the conditional mean of Yit given Xit:

E(Yit|Xit) = g(XT
itβ) = git, 1 ≤ i ≤ n, 1 ≤ t ≤ m, (2.1)

where g(·) is a link function (depending on the type of Yit) and β = (β0, β1, ..., βp)
T is a vector of

parameters with β0 denoting the intercept term. The link function depends on the type of yit, but the
identity link function will be used in our study since the study outcome of primary interest is assumed
to follow the Gaussian distribution. Under the MAR missing mechanism, WGEE handles missing data
to perform valid inferences about β. We assume that Yit and Xit are either observed or missing together
at time t (Robins et al., 1995). Suppose that missing data indicators Rit in the missing data module are
defined by:

Rit =

{
1 if (Yit,Xit)is observed
0 otherwise

. (2.2)

Under MAR, the probability of missing data process satisfies:

πit = Pr(Rit = 1|Hit), 2 ≤ t ≤ m,

Hit = {Xit−,Yit−; 2 ≤ t ≤ m},
Xit− = ((X∗

i1)
T , ..., (X∗

i(t−1))
T )T , Yit− = (Yi1, ..., Yi(t−1))

T ,

(2.3)

where Hit denotes the observed information prior to time t(2 ≤ t ≤ m, 1 ≤ i ≤ n). In addition
to Xit− and Yit−, we can incorporate other variables observed before time t. Although these ancillary
variables are not relevant for modeling Yit− in the primary module, they may be useful for modeling Rit.
For simplicity, we assume Xit contains all this information. Ri1 = 1 for all observations 1 ≤ i ≤ n,
i.e., we assume no missing data are observed at baseline t = 1. A monotone missing data pattern, such
as dropouts, is assumed to estimate πit and construct weights to facilitate inference about β in the main
module. Under the monotone missing data pattern, Hit is observed if Hi(t−1) is. This monotone missing
data pattern is a reasonable assumption when dropouts are the major source of missing data, as study
dropouts in longitudinal studies typically follow this type of missing data pattern. Thus, we let pit =
Pr(Rit = 1|Ri(t−1) = 1, Hit).

Consider the following WGEE:

Un(β; ξ) =
n∑

i=1

Ui =
n∑

i=1

DiV
−1
i Wi(Yi − gi) = 0, (2.4)

where

Wit =
Rit

πit
, Wi = diagt(Wit),

Di =
∂gi

∂β
, gi = (gi1, ..., gim)

T , Vi = A
1/2
i R(α)A

1/2
i ,

Ait = V ar(Yit|Xit), Ai = diagt(Ait),

(2.5)
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where ξ is denoted as parameter estimates in the missing data module, diagt(Wit) denotes a m ×m di-
agonal matrix with Wit on the ith elements, a working correlation matrix R(α) is parameterized by α
and Ai is defined by a m×m diagonal matrix with Ait as the tth diagonal elements, diagt(Ait) (Robins
et al., 1995). For inference about β, we will apply a popular two-step procedure (G. Lin et al., 2015). This
procedure first estimates ξ with logistic regression and then solves for β in Equation 2.2 by substituting
such estimates in lieu of ξ in the weight function. Mild regularity conditions in WGEE refer to stan-
dard theoretical assumptions that include the smoothness and differentiability of estimating functions,
boundedness of covariates and weights, correct specification of the regression model mean structure, non-
singularity and positive definiteness of variance-covariance matrices, and proper handling of missing data
mechanisms (Kowalski & Tu, 2008; Robins et al., 1995). These conditions ensure the consistency and
asymptotic normality of parameter estimates, β̂, and are typically met in practical longitudinal analyses.
While the main module is of primary interest, we must also take into account the inference regarding ξ
in the missing data module. This is important because the inference concerning β depends on a set of
WGEE that involves the πit(ξ)

′s (Robins et al., 1995). Using logistic regression, following the one-step
transition probability of observing the subject at t given observing this subject at t− 1 is modeled:

logit(pit(ξt)) = logit[Pr(rit = 1|ri(t−1) = 1, Hit)]

= ξ0 + ξTxt(Xit−) + ξTyt(yit−), 2 ≤ t ≤ m,
(2.6)

where ξt = (ξ0t, ξ
T
xt, ξ

T
yt)

T . Since

πit(ξ) = pitPr(ri(t−1) = 1|Hi(t−1)) =
t∏

s=2

pis(ξs), 2 ≤ t ≤ m, 1 ≤ i ≤ n,

where ξ = (ξT2 , ..., ξ
T
m)

T , the weight function πit in Equation 2.4 can be estimated by the missing data
module in Equation 2.6. Thus, when the number of covariates is large, estimation in models 2.4 and 2.6
becomes challenging. In such instances, it is imperative to employ variable selection techniques, as they si-
multaneously reduce dimensionality and estimate parameters, effectively enhancing model interpretability
and predictive performance (Zou & Hastie, 2005).

2.2.2 Variable Selection
The Exclusive Lasso function will be applied to estimate ξ for the missing data modules. In the main
module, Exclusive Lasso will be further described for the variable selection for our study. Penalty
functions in Exclusive Lasso adaptively shrink parameter estimates to select variables, similar to Lasso
and SCAD. However, the Exclusive Lasso penalty is composed of the l1 norm within groups and the l2
norm between them (Campbell & Allen, 2017). That composite penalty conducts selection within the
group by applying separate Lasso penalties to each group (Campbell & Allen, 2017). Thus, the Exclusive
Lasso always selects one non-zero variable in each group. The Exclusive Lasso assumes two structural
conditions for the parameters in Equation 2.7 (Campbell & Allen, 2017; Zhou et al., 2010):
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Assumption (1): There exists a collection of non-overlapping predefined groups given, G, such
that

⋃
g∈G

g = (1, ..., p), and any pair of groups g, g′ ∈ G satisfies
⋂
g,g′

= ∅.

Assumption (2): The support set S of the true parameter β∗ intersects each group, such that for all
g ∈ G we have S

⋂
g ̸= ∅ and β∗

i ̸= 0 for all j ∈ S.
The penalty function of Exclusive Lasso is captured by the equation:

pλ(β̂) = argmin
1

2
(y −Xβ)2 +

λ

2

∑
g∈G

(∑
j∈g

|βj|
)2

(2.7)

where λ is a regularization parameter controlling overall penalty strength. Building on Equation 2.1 in
the WGEE, we integrate this Exclusive Lasso penalty to achieve robust modeling of correlated data paired
with sparse predictor selection. We implement the penalty function 2.8 to the main and missing data
modules. We denote d1, d2 as the dimension of β(ξ) and let

Pλ = (PT
a ,P

T
b )

T ,

Pa = (pa1(∥ ξ1 ∥21), pa2(∥ ξ2 ∥21), ..., pad1 (∥ ξd1 ∥21))T ,
Pb = (pb1(∥ β1 ∥21), pb2(∥ β2 ∥21), ..., pbd2 (∥ βd2 ∥21))T ,

(2.8)

where Pλ is defined as the Exclusive Lasso penalty and λ = (al, bk) are tuning parameters for penalties
for ξ(1 ≤ l ≤ d1), β(1 ≤ k ≤ d2). By adding penalty functions Pλ to the WGEE in Equation 2.4,
we estimate θ = (β, ξ)T and highlight a set of penalized weighted generalized estimating equations via
Exclusive Lasso (PWGEE-eLasso):

Qn(θ) = Un(θ)− nPλ =
1

n

n∑
i=1

DiV
−1
i Wi(Yi − gi)−PT

λ . (2.9)

We set pλ(|θ|) = 0 for the intercept term, where θ represents either β0 for the main and ξ0j(2 ≤ j ≤
m) for the missing data module, as these parameters θ0 are usually not penalized. To optimize tuning
parameters (λ), cross-validation is conducted.

The algorithm for fitting the model 2.9 follows a two-step procedure for parameter estimation (G. Lin
et al., 2015). In the first step, weights are estimated using predicted probabilities derived from a logistic
regression model, wherein the missing data indicator represents an indicator of missingness. In the logistic
regression, the Exclusive Lasso is added to estimate ξ in equation 2.6:

Qn(pit(ξt)) = Ln(θ) + pa
=

∏n
i=1 P (πit|Xit)

πit · P [1− πit|Xit]
1−πit + pa(ξt),

(2.10)

where
P (πit|Xit) =

1

1 + exp(−(
∑n

i=1X
T
itβ))

, 2 ≤ t ≤ m,

and L denotes the likelihood of a logistic regression.
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Subsequently, an initial parameter estimate is calculated using an ordinary generalized linear model
with Pb in equation 2.9, assuming independence of the responses. This assumption is applied explicitly
in this step to derive an initial estimate without more comprehensive information. We solve equationl 2.9
using a coordinate descent algorithm for the Exclusive Lasso problem as well as an algorithm to compute
the proximal operator (Campbell & Allen, 2017).

Then, following a multi-step approach, the weighted GEE fitting algorithm (G. Lin et al., 2015) is
further implemented to provide robust parameter estimation:

1. The obtained parameter estimates and standardized residuals of model are used to construct a
working correlation matrix with a predetermined structure.

2. The estimated covariance matrix is then calculated using the working correlation matrix.

3. The parameter estimates are updated using the information from the estimated covariance matrix
and the inverse probability weights.

4. The first to third steps are repeated until convergence is achieved, ensuring a refined and accurate
estimation of the model parameters.

2.3 Asymptotic Properties
We assume the following regularity conditions:

Cn =
1

n

n∑
i=1

XiX
T
i → C, (2.11)

where C is a nonsingular definite matrix and

1

n
max
1≤i≤n

XiX
T
i → 0. (2.12)

In practical applications, the covariates usually undergo scaling such that all diagonal elements of matrix
Cn are identically set to one.

To consider the consistency of θ̂, we define the following objective function:

Qn(θ) =
1

n

n∑
i=1

DiV
−1
i Wi(Yi − gi)−

λn

2n

∂

∂θ

∑
g∈G

(∑
j∈g

|θj|
)2

(2.13)

where
θ = (ξ,β)T , Di =

∂gi

∂β
, gi = (gi1, ..., gim)

T ,

Vi = A
1/2
i R(α)A

1/2
i , Ait = V ar(Yit|Xit), Ai = diagt(Ait),
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a working correlation matrix R(α) is parameterized by α and Ai is defined by a m×m diagonal matrix
with Ait as the tth diagonal element, diagt(Ait).

Define

Ln(θ) =
1

n

n∑
i=1

Ŵi(Yi −XT
i θ)

2 +
λn

2n

∑
g∈G

(∑
j∈g

|θj|
)2

(2.14)

Notice that Ln(θ) is convex and Qn(θ) =
∂Ln(θ)

∂θ
.

Solving Qn(θ) = 0 is equivalent to minimizing the Ln(θ). Thus, it suffices to show that the mini-
mizer of Ln(θ) converges.

Thus, we will show the following proof that θ̂ is consistent provided λn = o(n). We define the
random function Ln:

Ln(θ̂) =
1

n

n∑
i=1

Ŵi(Yi −XT
i θ̂)

2 +
λn

2n

∑
g∈G

(∑
j∈g

|θj|
)2

(2.15)

=
1

n

n∑
i=1

(Wi + o(1/
√
n))(Yi −XT

i θ̂)
2 +

λn

2n

∑
g∈G

(∑
j∈g

|θj|
)2

(2.16)

=
1

n

n∑
i=1

Wi(Yi −XT
i θ̂)

2 + o(1/
√
n) +

λn

2n

∑
g∈G

(∑
j∈g

|θj|
)2

(2.17)

=

{
1

n

n∑
i=1

Wi(Yi −XT
i θ̂)

2 +
λn

2n

∑
g∈G

(∑
j∈g

|θj|
)2}

+ o(1/
√
n), (2.18)

which is minimized at θ̂. By the theorem on asymptotic normality of θ̂MLE , if θ̂ satisfies

n∑
i=1

∂

∂θT
logLn(Yi; θ̂) = 0 and θ̂ →p θ as n → ∞, then

√
n(θ̂ − θ) →d N(0, I(θ)−1) as n → ∞,

thus, with θ̂ − θ = o(1/
√
n), we define Ŵi as

Ŵi = exp(Xiθ̂)/(1 + exp(Xiθ̂)) =
exp(Xi(θ + o(1/

√
n))

(1 + exp(Xi(θ + o(1/
√
n)))

,

then we approximate

exp(Xi(θ + o(1/
√
n)) = exp(o(1/

√
n)) ∗ exp(Xiθ)

≈ (1 + o(1/
√
n)) ∗ exp(Xiθ)

= exp(Xiθ) + o(1/
√
n),
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thus,
Ŵi = Wi + o(1/

√
n). (2.19)

Theorem 2.3.1. Let λn/n → λ0 ≥ 0 (1 ≥ l ≥ d). Under the regularity conditions 2.11, 2.12, θ̂ →p

argmin(L), where

L(θ) = Wi(θ̂ − θ)TC(θ̂ − θ) +
λ0

2

∑
g∈G

(∑
j∈g

|θj|
)2

. (2.20)

Thus, if λn = 0(n), argmin(L) = θ, so that, θ̂ is consistent.

Proof. We will show that
sup
θ∈K

|Ln(θ)− L(θ)− σ2| →p 0 (2.21)

for any compact set K and that
θ̂ = Op(1). (2.22)

Under Equation 2.21 and 2.22,

argmin(Ln) →p argmin(L).

According to Andersen and Gill, 1982; Pollard, 1991, since Ln is convex on θ, by applying standard results
of the convexity lemma, Equation 2.21 and 2.22 follow from the pointwise convergence in probability of
Ln(θ) to L(θ) + σ2 ■

Theorem 2.3.2. Let λn/
√
n → λ0 ≥ 0 (1 ≥ l ≥ d). Under the regularity conditions 2.11, 2.12, then

√
n(θ̂ − θ) →d argmin(Z) (2.23)

where

Z(u) = −2Wiu
TΦ+Wiu

TCu+ λ0

∑
ginG

[ ∑
j∈g∩A−

(2θj)(uj)+ (2.24)

∑
j ̸=j′∈g∩A−

|θjθj′ujuj′|+
∑

j∈g∩A

∑
j′∈g∩A−

|ujθj′|
]
, (2.25)

where Φ ∼ N(0, σ2C), A = {j; θj = 0}, and A− = {j; θj ̸= 0}.

Proof. We define Zn(u) by following function that

Zn(u) =
n∑

i=1

Wi

[
(ϵi − uTXi/

√
n)2 − ϵ2i

]

+λn/2
∑
g∈G

[(∑
j∈g

|θj + uj/
√
n|
)2

−
(∑

j∈g
|θj|

)2]
,

(2.26)
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where u = (u1..., up)
T , and Zn is minimized at

√
n(θ̂ − θ). We first note that

n∑
i=1

Wi

[
(ϵi − uTXi/

√
n)2 − ϵ2i

]
→d −2Wiu

TΦ+Wiu
TCu,

with finite-dimensional convergence holding trivially. Let A = {j; θj = 0}, A− = {j; θj ̸= 0}.

λn

2

∑
g∈G

[(∑
j∈g

|θj + uj/
√
n|
)2

−
(∑

j∈g

|θj|
)2]

=
λn

2

∑
g∈G

[( ∑
j∈g∩A

+
∑

j∈g∩A−

|θj + uj/
√
n|
)2

−
( ∑

j∈g∩A

+
∑

j∈g∩A−

|θj|
)2]

=
λn

2

∑
g∈G

[( ∑
j∈g∩A

|uj/
√
n|+

∑
j∈g∩A−

|θj + uj/
√
n|
)2

−
( ∑

j∈g∩A−

|θj|
)2]

=
λn

2

∑
g∈G

[( ∑
j∈g∩A

|uj/
√
n|
)2

+

( ∑
j∈g∩A−

|θj + uj/
√
n|
)2

+
∑

j∈g∩A

∑
j′∈g∩A−

|uj/
√
n||θj′ + uj′/

√
n| −

( ∑
j∈g∩A−

|θj|
)2]

=
λn

2

∑
g∈G

[ ∑
j∈g∩A

(uj/
√
n)2 +

∑
j ̸=j′∈g∩A

|uj/
√
n||uj′/

√
n|

+
∑

j∈g∩A−

(θj + uj/
√
n)2 +

∑
j ̸=j′∈g∩A−

|θj + uj/
√
n||θj′ + uj′/

√
n|

+
∑

j∈g∩A

∑
j′∈g∩A−

|uj/
√
n||θj′ + uj′/

√
n| −

∑
j∈g∩A−

(θj)
2 −

∑
j ̸=j′∈g∩A−

|θj||θj′ |
]

:=
1

2

∑
g∈G

[
I1 + I2 + I3 + I4 + I5 + I6 + I7

]
,

where

I1 =
∑

j∈g∩A

(uj/
√
n)2, I2 =

∑
j ̸=j′∈g∩A

|uj/
√
n||uj′/

√
n|, I3 =

∑
j∈g∩A−

(θj + uj/
√
n)2,

I4 =
∑

j ̸=j′∈g∩A−

|θj + uj/
√
n||θj′ + uj′/

√
n|, I5 =

∑
j∈g∩A

∑
j′∈g∩A−

|uj/
√
n||θj′ + uj′/

√
n|,

I6 =
∑

j∈g∩A−

−(θj)
2, and I7 =

∑
j ̸=j′∈g∩A−

−|θj||θj′ |.

Thus, I1 + I2 →p 0 and I3 + I6 follows that
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λn

[ ∑
j∈g∩A−

(θj + uj/
√
n)2 −

∑
j∈g∩A−

(θj)
2

]
= λn

∑
j∈g∩A−

[
(θj + uj/

√
n)2 − (θj)

2

]
= λn

∑
j∈g∩A−

(2θj + uj/
√
n)(uj/

√
n)

= λn

∑
j∈g∩A−

(2θj)(uj/
√
n) + λn

∑
j∈g∩A−

(uj/
√
n)2

= λn/
√
n

∑
j∈g∩A−

(2θj)(uj) + λn/
√
n

∑
j∈g∩A−

(u2
j)/

√
n

→ λ0

∑
j∈g∩A−

(2θj)(uj)

Then I4 + I7 follows that

λn

[ ∑
j ̸=j′∈g∩A−

|θj + uj/
√
n||θj′ + uj′/

√
n| −

∑
j ̸=j′∈g∩A−

|θj||θj′ |
]

=
λn√
n

∑
j ̸=j′∈g∩A−

|
√
nθj + uj||θj′ + uj′/

√
n| − λn

∑
j ̸=j′∈g∩A−

|θj||θj′ |

=
λn√
n

∑
j ̸=j′∈g∩A−

sign(θj)(
√
nθj + uj)sign(θj′)(θj′ + uj′/

√
n)− λn

∑
j ̸=j′∈g∩A−

|θj||θj′ |

=
λn√
n

∑
j ̸=j′∈g∩A−

[
sign(θj)sign(θj′)(θjuj′)(θj′uj) + ujuj′/

√
n

]
→ λ0

∑
j ̸=j′∈g∩A−

|θjθj′ujuj′|

Finally, I5 converges

λn

∑
j∈g∩A

∑
j′∈g∩A−

|uj/
√
n||θj′ + uj′/

√
n|

= λn/
√
n

∑
j∈g∩A

∑
j′∈g∩A−

|uj|sign(θj)(θj′ + uj′/
√
n)

→ λ0

∑
j∈g∩A

∑
j′∈g∩A−

|ujθj′ |
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Thus, we have

λn

2

∑
g∈G

[(∑
j∈g

|θj + uj/
√
n|
)2

−
(∑

j∈g

|θj|
)2]

→

λ0

∑
ginG

[ ∑
j∈g∩A−

(2θj)(uj) +
∑

j ̸=j′∈g∩A−

|θjθj′ujuj′|+
∑

j∈g∩A

∑
j′∈g∩A−

|ujθj′ |
]

Thus, Zn(u) →d Z(u) with the finite-dimensional convergence holding tirivially. Since Zn is convex
and Z has a unique minimum, it satisfies that (Geyer, 1996),

argmin(Zn) =
√
n(θ̂ − θ) →d argmin(Z). (2.27)

We note that if λ0 = 0, then argmin(Z) = C−1Φ ∼ N(0, σ2C−1). ■

2.4 Simulation
We conduct a simulation study using continuousyit with time in-variant independent covariates,xit = xi,
which follows a multivariate standard normal distribution with a Toeplitz covariance matrix. We generate
repeated continuous yit’s given xi from a marginal parametric generalized linear model (GLM) under an
AR(1) correlation structure, where

yit|xi ∼ N(µit, 1), µit = g(xT
i β) = xT

i β. (2.28)

We consider three scenarios for the simulation studies: 1) the true parameter is non-zero at one index
in each group and zero at the others. 2) the true parameter is non-zero at two indices in each group. 3)
the true parameter may be non-zero at more than one index in each group. In each scenario, we examine
the impact of varying sample sizes, n, on the performance of predictors measured in p dimensions. We
consider sample sizes of either 100 or 300. The corresponding predictors are as follows: 1) For n = 100,
the predictors are p = (50, 100, 200); 2) For n = 300, the predictors are p = (50, 100, 200); and 3) For
n = 300, the predictors are p = (150, 300, 600). We set five groups, which are of equal or unequal size,
denoted as g = 5. Each dataset simulation is performed 100 times.

In each simulation study, the two main covariance design matrices are set to test the robustness of the
Exclusive Lasso penalty regarding within- and between-group correlations while accounting for domain-
based variables. All covariance design matrices are drawn from a multivariate normal distributionN(0,Σ),
where Σ is a Toeplitz covariance matrix with entries Σij = w|i−j| for correlations among variables within
groups, and Σlm = b|l−m| for correlations among variables between groups. Here, (i, j) ∈ p represents
the ith and jth components of xi, while (l,m) ∈ g denotes the lth and mth groups. The correlation
levels w and b are between 0 and 1. The covariance matrix in the first model sets the constant w = 0.6 and
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b = 0.6 to test moderate correlation within and between groups. The covariance matrix in the second
model sets the high correlation within and between groups, w = 0.9 and b = 0.9.

For p variables, each variable is assigned a group index corresponding to one of five unique groups.
When the groups are of equal size, the covariates are evenly split among all five groups. Conversely, for
unequal-sized groups, half of the variables are shared among the five groups, while the other half is divided
among three groups. The coefficient vectors used in the simulation analysis are structured to mimic the
scenarios of high-dimensional grouped predictors. Thus, we examine three distinct scenarios based on the
number of non-zero coefficients within each group, allowing us to evaluate how effectively the Exclusive
Lasso addresses both homogeneous and heterogeneous sparsity structures in variable selection. These
scenarios increase in complexity, ranging from a simple structure with a single non-zero coefficient per
group to more complex situations with varying numbers of non-zero coefficients across groups. In the
first scenario, exactly one non-zero coefficient is assigned to the first index in each group. Thus, the first
variable in each group has a coefficient of 1, while the others in the same group are zero. An intercept of
0.2 is included. The parameter vectors are:

β =
(
0.2, 1, 0, . . . , 0︸ ︷︷ ︸

g 1

, 1, 0, . . . , 0︸ ︷︷ ︸
g 2

, 1, 0, . . . , 0︸ ︷︷ ︸
g 3

, 1, 0, . . . , 0︸ ︷︷ ︸
g 4

, 1, 0, . . . , 0︸ ︷︷ ︸
g 5

)T

In the second scenario, two covariates per group are significant, giving ten non-zero coefficients, each
set equal to 1. All remaining coefficients are zero:

β =
(
0.2, 1, 1, 0, . . . , 0︸ ︷︷ ︸

g 1

, 1, 1, 0, . . . , 0︸ ︷︷ ︸
g 2

, 1, 1, 0, . . . , 0︸ ︷︷ ︸
g 3

, 1, 1, 0, . . . , 0︸ ︷︷ ︸
g 4

, 1, 1, 0, . . . , 0︸ ︷︷ ︸
g 5

)T

In this third scenario, we assign three significant coefficients to group 1, two non-zero coefficients to
group 2, and one non-zero coefficient each to groups 3, 4, and 5. Each non-zero coefficient equals 1:

β =
(
0.2, 1, 1, 1, 0, . . . , 0︸ ︷︷ ︸

g 1

, 1, 1, 0, . . . , 0︸ ︷︷ ︸
g 2

, 1, 0, . . . , 0︸ ︷︷ ︸
g 3

, 1, 0, . . . , 0︸ ︷︷ ︸
g 4

, 1, 0, . . . , 0︸ ︷︷ ︸
g 5

)T

In every scenario, the regularization parameterλ is selected as λ = maxi |xT
i y|, which is large enough

to ensure that the correct structure is estimated.
The missing-data module consists of one-step transition probabilities pi2 and pi3 modeled by logistic

regression 2.6. We specify ξ01 = −2, ξx1 = (0.5, 0..., 0), ξy1 = 1, ξ02 = −2, ξx2 = (−0.5, 0, ..., 0),
ξy2 = (0.5, 1). This leads to a missing proportion of 25% to 30% at t = 2(= 3) for all three regression
models in 2.28.

To conduct the comparison over our method (PWGEE-eLasso), we implement Monte Carlo (MC)
replicating the experiment 100 times and consider the PWGEE method (Kowalski & Tu, 2008) with
different penalties. We compared our method with the Penalized WGEE with Lasso (PWGEE-Lasso),
SCAD (PWGEE-SCAD), Minimax Concave Penalty (PWGEE-MCP), and composite MCP (PWGEE-
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cMCP). Mean squared error, MSE=∥ θ̂p − θ ∥2, is used to measure the performance of point estimates
from PWGEE-eLasso model selection, where θp denotes the penalized estimate from PWGEE-eLasso,
and θ denotes the empirical estimate. In addition, to measure the performance of selection methods, we
compute a set of metrics denoted by (C, IC, CG), where C is the number of zero coefficients that are
correctly estimated by zero, IC is the number of non-zero coefficients that are incorrectly estimated by
zero, and CG is the number of groups that are correctly selected.

2.5 Results
We consider the performance of the variable selections in a high-dimensional longitudinal study with
missing information. We set the correlation as w = b = 0.6, or w = b = 0.9. The sample size is set as
n = (100, 300), and the number of predictors is set as p = (n/2, n, 2n) in each scenario, respectively. In
addition, we study another setup in which p = (50, 100, 200) when n = 300. Results provide a detailed
overview of the experimental outcomes, showcasing the impact of various factors on the performance
metrics, including C (the number of zero coefficients that are correctly estimated by zero), IC (the number
of non-zero coefficients that are incorrectly estimated by zero), GC (the number of groups that are correctly
selected), and MSE (Mean Squared Error).

In scenario 1, we assess the estimation accuracy performance and the performance of selecting the first
five important predictors in each group. We compare the results of our proposed PWGEE-Exclusive Lasso
(P-eLasso) method to those of PWGEE-Lasso(P-Lasso), PWGEE-SCAD (P-SCAD), PWGEE-MCP (P-
MCP) and PWGEE-cMCP (P-cMCP). In Scenario 2, we explore variable selection using data that include
two significant variables within each equally sized group. Similarly, in scenario 3, data include more than
one significant variable within each equally sized group.

Table 2.1 shows that P-eLasso consistently balances accurately identifying true zero coefficients (C)
and maintaining non-zero coefficients (low IC), resulting in the lowest MSE across all examined scenarios.
For instance, in Scenario 1, with correlations of 0.60 and p = 200, P-eLasso achieves C = 183.79,
IC = 0.00, and MSE = 0.10. This performance outperforms alternatives like P-SCAD and P-MCP,
which have higher IC and larger MSE values. Even in more challenging high-correlation scenarios (corr =
0.90), P-eLasso continues to outperform other methods. In Scenario 2, where the correlations are 0.90
and p = 200, it shows C = 180.39, IC = 2.20, and MSE = 0.86; in contrast, other methods
show significantly higher MSE values, with some reaching as high as 9.62. While P-Lasso frequently
identifies many non-zero coefficients, it tends to produce denser solutions (resulting in a lower C) when
encountering strong correlations. On the other hand, methods based on SCAD, MCP, and cMCP may
yield sparser solutions but carry the risk of inaccurately shrinking true signals, which can result in inflated
MSE. Overall, P-eLasso effectively balances the accurate exclusion of zero coefficients (C) with the precise
retention of non-zero coefficients (IC), enhancing its superior selection properties.
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Table 2.1: C (the number of zero coefficients that are correctly estimated by zero), IC (the number of
non-zero coefficients that are incorrectly estimated by zero), GC (the number of groups that are cor-
rectly selected), and MSE (Mean Squared Error) for PWGEE-Lasso(P-Lasso), PWGEE-SCAD (P-SCAD),
PWGEE-MCP (P-MCP), PWGEE-cMCP (P-cMCP), and PWGEE-Exclusive Lasso (P-eLasso) method
with n = 100 and p =(50, 100, 200) in each scenario.

scenarios corr methods C IC CG MSE C IC CG MSE C IC CG MSE
p=50 p=100 p=200

1 0.60 P-Lasso 31.44 0.02 5.00 0.17 67.40 0.00 5.00 0.20 149.63 0.00 5.00 0.24
P-SCAD 32.08 0.19 4.98 0.40 67.52 0.15 5.00 0.75 151.78 0.20 5.00 1.04
P-MCP 35.30 0.25 4.94 0.42 74.31 0.21 4.99 0.77 159.22 0.34 5.00 1.56
P-cMCP 32.98 0.21 4.94 0.31 69.27 0.14 4.99 0.43 148.32 0.15 5.00 0.81
P-eLasso 38.53 0.01 5.00 0.10 87.43 0.00 5.00 0.09 183.79 0.00 5.00 0.10

0.90 P-Lasso 37.01 0.65 4.87 0.64 81.47 0.77 4.91 0.60 176.04 0.76 4.99 0.55
P-SCAD 35.56 2.29 4.72 2.92 72.77 2.11 4.92 5.93 176.40 2.72 4.91 2.73
P-MCP 36.60 2.24 4.62 2.83 75.73 2.12 4.88 5.53 178.52 2.61 4.84 3.69
P-cMCP 35.68 2.28 4.32 2.69 73.05 2.13 4.87 5.69 177.95 2.66 4.73 2.72
P-eLasso 39.17 0.28 5.00 0.34 87.81 0.17 5.00 0.28 187.61 0.09 5.00 0.19

2 0.60 P-Lasso 27.73 0.26 5.00 0.31 63.25 0.32 5.00 0.39 139.54 0.33 5.00 0.77
P-SCAD 28.11 2.09 4.99 0.80 62.17 2.26 5.00 1.52 145.14 2.92 5.00 2.43
P-MCP 30.89 2.57 4.91 0.81 68.32 2.70 5.00 1.61 149.11 3.20 5.00 3.41
P-cMCP 29.01 2.23 4.88 0.71 64.47 2.07 5.00 1.07 141.92 2.65 5.00 2.24
P-eLasso 32.01 0.17 5.00 0.24 80.27 0.28 5.00 0.25 168.47 0.23 5.00 0.52

0.90 P-Lasso 33.15 3.25 4.86 1.34 76.22 3.26 4.97 1.39 168.29 3.20 4.99 5.50
P-SCAD 31.35 5.93 4.70 5.52 68.75 5.96 4.95 11.71 170.93 6.83 4.93 7.53
P-MCP 31.93 5.95 4.64 5.54 71.68 6.00 4.85 10.58 173.25 6.82 4.89 9.62
P-cMCP 31.56 6.11 4.09 5.53 69.45 6.00 4.78 11.09 173.01 6.83 4.75 6.51
P-eLasso 33.60 2.35 5.00 1.12 80.81 2.48 5.00 1.02 180.39 2.20 5.00 0.86

3 0.60 P-Lasso 28.68 0.11 5.00 0.25 64.64 0.19 5.00 0.32 143.30 0.15 5.00 0.48
P-SCAD 29.55 0.77 4.99 0.57 63.42 1.02 4.99 1.21 147.69 1.47 5.00 1.64
P-MCP 32.72 1.01 4.98 0.58 70.48 1.31 5.00 1.20 152.85 1.76 5.00 2.62
P-cMCP 30.39 0.73 4.92 0.47 65.90 0.92 4.99 0.75 145.00 1.30 5.00 1.52
P-eLasso 31.80 0.16 5.00 0.23 76.37 0.20 5.00 0.26 167.57 0.21 5.00 0.50

0.90 P-Lasso 34.88 2.20 4.82 0.96 77.51 1.99 4.94 1.12 169.93 2.20 5.00 3.77
P-SCAD 32.92 4.76 4.63 4.37 71.14 4.35 4.94 8.08 173.22 5.04 4.90 6.06
P-MCP 33.15 4.70 4.53 4.44 71.95 4.36 4.96 8.19 175.59 5.10 4.84 7.16
P-cMCP 33.54 4.53 4.09 4.01 71.31 4.30 4.75 8.27 175.18 5.00 4.82 4.68
P-eLasso 35.22 1.67 5.00 0.77 82.98 1.55 5.00 0.73 180.76 1.62 5.00 0.72

Note: Bold symbols in the C and CG indicate the highest values, while the lowest values for
IC and MSE are also bolded. The optimal values of C vary by scenario and are determined
by the (p - number of non-zeros). Thus, for p = 50, C = (45, 40, 42); for p = 100, C = (95,
90, 92); for p = 200, C = (195, 190 192). The optimal value for IC is zero.
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Table 2.2: C (the number of zero coefficients that are correctly estimated by zero), IC (the number of
non-zero coefficients that are incorrectly estimated by zero), GC (the number of groups that are cor-
rectly selected), and MSE (Mean Squared Error) for PWGEE-Lasso(P-Lasso), PWGEE-SCAD (P-SCAD),
PWGEE-MCP (P-MCP), PWGEE-cMCP (P-cMCP), and PWGEE-Exclusive Lasso (P-eLasso) method
with n = 300 and p =(50, 100, 200) in each scenario.

scenarios corr methods C IC CG MSE C IC CG MSE C IC CG MSE
p=50 p=100 p=200

1 0.60 P-Lasso 28.19 0.00 5.00 0.11 66.53 0.00 5.00 0.10 144.15 0.00 5.00 0.11
P-SCAD 31.12 0.00 5.00 0.17 68.82 0.00 5.00 0.20 144.29 0.00 5.00 0.31
P-MCP 34.47 0.01 5.00 0.18 76.21 0.00 5.00 0.22 159.51 0.00 5.00 0.36
P-cMCP 31.11 0.02 5.00 0.14 69.91 0.00 5.00 0.13 149.25 0.00 5.00 0.15
P-eLasso 32.88 0.00 5.00 0.09 81.16 0.00 5.00 0.07 181.32 0.00 5.00 0.05

0.90 P-Lasso 30.64 0.30 4.98 0.74 74.46 0.40 4.99 0.51 164.83 0.19 5.00 0.38
P-SCAD 33.16 1.39 4.91 1.90 75.18 1.50 4.98 2.06 161.50 1.44 5.00 2.52
P-MCP 33.90 1.34 4.88 1.85 77.21 1.44 4.94 2.01 166.12 1.49 4.99 2.54
P-cMCP 33.21 1.46 4.59 1.82 74.68 1.51 4.89 1.96 157.95 1.33 5.00 2.42
P-eLasso 31.37 0.13 5.00 0.65 79.16 0.20 5.00 0.39 178.44 0.04 5.00 0.21

2 0.60 P-Lasso 24.70 0.11 5.00 0.22 62.05 0.03 5.00 0.18 140.40 0.00 5.00 0.20
P-SCAD 27.41 0.46 4.99 0.35 63.46 0.20 5.00 0.37 140.16 0.19 5.00 0.52
P-MCP 30.29 0.60 4.99 0.35 71.65 0.32 5.00 0.38 155.53 0.36 5.00 0.56
P-cMCP 26.70 0.49 4.99 0.35 65.07 0.22 5.00 0.31 144.53 0.22 5.00 0.36
P-eLasso 26.80 0.08 5.00 0.20 73.16 0.03 5.00 0.14 171.41 0.01 5.00 0.14

0.90 P-Lasso 27.04 2.61 4.99 1.59 71.11 2.32 5.00 1.13 160.49 1.95 5.00 0.91
P-SCAD 29.00 4.89 4.86 3.91 71.63 5.07 4.98 3.96 156.18 5.18 4.99 5.11
P-MCP 29.58 4.86 4.84 3.77 73.27 5.19 4.93 3.97 162.14 5.33 5.00 4.76
P-cMCP 29.01 4.99 4.56 3.79 72.07 5.16 4.80 3.91 155.20 5.12 4.99 5.34
P-eLasso 26.24 2.03 5.00 1.55 73.18 1.70 5.00 0.99 170.15 1.61 5.00 0.70

3 0.60 P-Lasso 25.19 0.00 5.00 0.16 62.81 0.00 5.00 0.14 140.98 0.01 5.00 0.16
P-SCAD 28.12 0.08 5.00 0.26 64.97 0.03 5.00 0.28 141.95 0.02 5.00 0.40
P-MCP 31.14 0.13 5.00 0.27 72.71 0.06 5.00 0.30 156.99 0.05 5.00 0.45
P-cMCP 27.63 0.14 5.00 0.23 66.36 0.04 4.99 0.21 145.26 0.01 5.00 0.24
P-eLasso 25.83 0.00 5.00 0.17 72.42 0.02 5.00 0.14 169.63 0.02 5.00 0.13

0.90 P-Lasso 28.67 1.63 4.97 1.26 70.95 1.41 5.00 1.01 161.46 1.16 4.99 0.69
P-SCAD 30.86 3.54 4.87 2.99 72.73 3.58 4.98 3.41 158.21 3.61 4.99 4.03
P-MCP 31.14 3.54 4.85 3.00 74.39 3.58 4.97 3.34 162.23 3.65 4.98 4.01
P-cMCP 30.26 3.39 4.53 3.01 72.39 3.63 4.85 3.32 157.46 3.52 4.97 4.05
P-eLasso 26.86 1.30 5.00 1.33 71.80 0.99 5.00 0.93 172.18 1.07 5.00 0.56

Note: Bold symbols in the C and CG indicate the highest values, while the lowest values for
IC and MSE are also bolded. The optimal values of C vary by scenario and are determined
by the (p - number of non-zeros). Thus, for p = 50, C = (45, 40, 42); for p = 100, C = (95,
90, 92); for p = 200, C = (195, 190 192). The optimal value for IC is zero.
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Table 2.3: C (the number of zero coefficients that are correctly estimated by zero), IC (the number of
non-zero coefficients that are incorrectly estimated by zero), GC (the number of groups that are cor-
rectly selected), and MSE (Mean Squared Error) for PWGEE-Lasso(P-Lasso), PWGEE-SCAD (P-SCAD),
PWGEE-MCP (P-MCP), PWGEE-cMCP (P-cMCP), and PWGEE-Exclusive Lasso (P-eLasso) method
with n = 300 and p =(150, 300, 600) in each scenario.

scenarios corr methods C IC CG MSE C IC CG MSE C IC CG MSE
p=150 p=300 p=600

1 0.60 P-Lasso 104.82 0.00 5.00 0.10 225.28 0.00 5.00 0.13 527.72 0.00 5.00 0.09
P-SCAD 106.43 0.00 5.00 0.24 220.40 0.00 5.00 0.47 529.51 0.00 5.00 0.13
P-MCP 117.49 0.00 5.00 0.29 243.35 0.00 5.00 0.52 546.84 0.00 5.00 0.24
P-cMCP 108.95 0.00 5.00 0.14 230.66 0.00 5.00 0.18 533.16 0.00 5.00 0.14
P-eLasso 130.07 0.00 5.00 0.06 280.49 0.00 5.00 0.05 581.11 0.00 5.00 0.05

0.90 P-Lasso 119.53 0.21 4.99 0.40 256.14 0.23 5.00 0.37 566.13 0.26 5.00 0.30
P-SCAD 117.55 1.40 4.97 2.42 244.71 1.47 5.00 3.46 567.15 2.64 4.99 1.20
P-MCP 121.88 1.45 4.97 2.24 254.46 1.59 5.00 3.11 576.47 2.65 4.98 1.24
P-cMCP 116.02 1.33 4.94 2.18 239.62 1.39 5.00 3.41 572.53 2.64 4.98 1.14
P-eLasso 130.93 0.04 5.00 0.21 279.32 0.05 5.00 0.16 577.36 0.05 5.00 0.13

2 0.60 P-Lasso 101.72 0.02 5.00 0.19 219.28 0.01 5.00 0.21 511.11 0.03 5.00 0.19
P-SCAD 103.05 0.26 5.00 0.41 217.50 0.23 5.00 0.75 515.25 0.72 5.00 0.42
P-MCP 114.01 0.40 5.00 0.45 238.21 0.34 5.00 0.82 535.86 0.96 5.00 0.64
P-cMCP 105.32 0.30 5.00 0.34 222.95 0.23 5.00 0.41 519.22 0.62 5.00 0.44
P-eLasso 122.66 0.03 5.00 0.14 272.12 0.03 5.00 0.12 570.57 0.07 5.00 0.13

0.90 P-Lasso 115.91 2.17 5.00 1.06 254.32 1.90 5.00 0.85 563.01 1.85 5.00 0.65
P-SCAD 112.78 5.11 5.00 4.89 242.05 5.22 5.00 6.53 565.43 6.58 4.98 2.38
P-MCP 116.81 5.34 4.95 4.61 252.21 5.40 5.00 5.85 573.55 6.70 4.92 2.32
P-cMCP 113.63 5.24 4.86 4.78 238.37 5.05 5.00 7.22 571.55 6.63 4.92 2.18
P-eLasso 121.48 1.70 5.00 0.84 273.09 1.49 5.00 0.56 573.31 1.36 5.00 0.49

3 0.60 P-Lasso 103.10 0.0 5.00 0.15 218.47 0.0 5.00 0.17 517.67 0.00 5.00 0.14
P-SCAD 104.65 0.03 5.00 0.29 218.41 0.03 5.00 0.59 520.96 0.09 5.00 0.21
P-MCP 115.65 0.05 5.00 0.33 238.82 0.05 5.00 0.66 540.71 0.15 5.00 0.36
P-cMCP 107.07 0.03 5.00 0.21 224.72 0.01 5.00 0.28 524.74 0.08 5.00 0.25
P-eLasso 120.20 0.02 5.00 0.13 268.87 0.01 5.00 0.13 567.09 0.02 5.00 0.12

0.90 P-Lasso 117.50 1.39 5.00 0.78 253.25 1.08 5.00 0.66 563.48 1.15 5.00 0.55
P-SCAD 115.97 3.52 4.99 3.47 240.67 3.43 5.00 5.68 566.05 4.90 4.96 1.91
P-MCP 118.71 3.57 4.98 3.46 249.84 3.64 5.00 5.08 574.52 4.95 4.89 1.88
P-cMCP 116.11 3.47 4.92 3.32 238.22 3.40 4.99 5.83 571.70 4.98 4.95 1.81
P-eLasso 123.18 1.17 5.00 0.66 272.71 1.05 5.00 0.48 571.31 0.87 5.00 0.42

Note: Bold symbols in the C and CG indicate the highest values, while the lowest values for
IC and MSE are also bolded. The optimal values of C vary by scenario and are determined
by the (p - number of non-zeros). Thus, for p = 150, C = (145, 140, 142); for p = 300, C =
(295, 290, 292); for p = 600, C = (595, 590 592). The optimal value for IC is zero.

24



As the sample size increases to n = 300 in Table 2.2, all methods generally show improved estimation
accuracy (lower MSE) and better variable selection outcomes (higher C and lower IC). This improvement
highlights the advantages of increased data for more stable estimates. Notably, P-eLasso continues to
excel in balancing the correct exclusion of zero coefficients (C) while preserving non-zero signals (IC),
especially under moderate correlation (w = b = 0.60). For example, in Scenario 1, when p = 200 and
corr = 0.60, the MSE of P-eLasso decreases from around 0.10 in the n = 100 column to as low as 0.05
in the n = 300 column. Even under higher correlation (corr = 0.90) in Scenarios 2 and 3, P-eLasso
still achieves significantly smaller MSE compared to the other methods. While P-Lasso also benefits from
the larger sample size, showing zero misclassifications (IC = 0) in certain low-correlation conditions, its
performance in high-correlation or more complex signal structures (Scenarios 2 and 3) is less consistent
compared to P-eLasso. Methods using SCAD, MCP, and cMCP also show similar improvements with
a larger sample size, but they are still more likely to incorrectly shrink true signals in highly correlated
situations, as indicated by higher IC and MSE. As n increases, the performance gap narrows somewhat.
However, P-eLasso consistently retains an advantage due to its ability to identify parameters for both
individual coefficients and entire groups with minimal bias and variance.

In Table 2.3, we observe that increasing the dimensionality while maintaining n = 300 results in
a more challenging selection problem. Nevertheless, P-eLasso consistently demonstrates strong perfor-
mance across all scenarios. In moderate-correlation settings (corr = 0.60), all methods generally retain
or improve their ability to correctly exclude zero coefficients (C) compared to Table 2.2. P-eLasso notably
achieves the lowest MSE by combining a high C with an almost zero IC. For example, in Scenario 1 with
p = 600, it reaches a C of 581.11 and an IC of 0.00, resulting in an MSE of only 0.05. In contrast, other
methods occasionally approach a zero IC under a moderate correlation (for example, corr = 0.60 for
P-SCAD at p = 150), but they generally show a larger MSE than P-eLasso. When the correlation is high
(corr = 0.90), it becomes more challenging to distinguish between signals. P-Lasso maintains decent
performance in terms of C (often above 550 at p = 600), yet it still shows a slightly larger MSE compared
to P-eLasso. P-SCAD, P-MCP, and P-cMCP tend to inaccurately set non-zero coefficients to zero, in-
creasing IC and causing elevated MSE in cases of strong correlation and large p. P-eLasso consistently
shows low IC values (0.04 to 1.70) and smaller MSE in Scenarios 2 and 3, even for p = 600. This pattern is
consistent with the results for p = 50, 100, 200, but the gap in MSE becomes more pronounced at higher
dimensionalities, especially under a strong correlation, emphasizing P-eLasso’s advantage in preserving
true signals and effectively excluding irrelevant features as p increases.

Overall, these results demonstrate that P-eLasso consistently achieves the best balance between a high
C and a low IC, leading to the smallest MSE. While P-Lasso identifies many non-zero coefficients, its
solutions are generally denser, which results in a slightly lower C. In contrast, P-SCAD, P-MCP, and
P-cMCP provide sparser solutions than P-Lasso; however, they risk over-penalizing real signals, which can
lead to higher IC and inflated MSE, especially in conditions of strong correlation or when the number
of predictors is large. P-eLasso shows outstanding performance across various sample sizes and dimen-
sions because it effectively reduces irrelevant predictors while preserving truly non-zero coefficients. This
strength becomes particularly noticeable even with rising correlations and an increasing number of pre-
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dictors. Moreover, the results in the Appendix tables vary from those shown in the main tables, as they
focus on scenarios involving unequal group sizes instead of the equal-sized groups discussed in the main
analysis. Despite these differences, performance patterns remain consistent (see Appendix Tables A.2, A.3,
and A.3), reinforcing the robustness of P-eLasso regardless of group size configuration.

Figure 2.1, 2.2, and 2.3 summarizes the results from Tables 2.1 and A.1 (see the Appendix) for n =

100, illustrating the performance of P-Lasso, P-SCAD, P-MCP, P-cMCP, and P-eLasso under varying
correlation levels (Corr = 0.6 and 0.9) and group structures (equal-sized vs. unequal-sized). Each figure
corresponds to a different scenario (1-3), while the left and right columns represent varying correlation
levels (Corr = 0.6 or 0.9). The upper row of the panels displays the percentage of correctly identified
zero coefficients (C), while the lower row presents the percentage of incorrectly excluded true signals
(IC) across various predictor dimensions, p = (50, 100200). The numbers of true zero and non-zero
coefficients are indicated in parentheses with p for C and IC, respectively. P-eLasso consistently achieves
the highest C and the lowest IC, regardless of correlation or group size, demonstrating its robustness in
identifying relevant predictors while excluding irrelevant ones. In contrast, Lasso and SCAD, along with
MCP and cMCP, sometimes struggle with higher correlations or unequal-sized groups, as shown by their
larger IC and lower C values.

Figure 2.4, 2.5, and 2.6 summarize results from Tables 2.2, A.2 (detailed in the Appendix). These
figures also present both equal-sized and unequal-sized group structures in each scenario forn = 300 and
(p = 50, 100200). Additionally, Figures 2.7, 2.8, and 2.9, based on Tables 2.3 and A.3, provide further
information by increasing dimensionality for p = (50, 100, 200) with n = 300. Across all scenarios
and correlation levels, P-eLasso consistently exhibits higher C and lower IC than the compared methods,
indicating lower selection errors and more accurate exclusion of irrelevant predictors. Conversely, P-Lasso
usually detects numerous true signals but yields a lower C value, whereas P-SCAD, P-MCP, and P-cMCP
might achieve sparser solutions at the risk of ignoring truly significant predictors, resulting in a higher
IC. These trends hold true for both equal-sized and imbalanced groups, although the performance gap
may vary slightly depending on the correlation strength and scenario. Overall, the bar plots in P-eLasso
illustrate robustness in accurately differentiating between zero and non-zero coefficients, particularly in
challenging high-correlation or high-dimensional settings.
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(a) Equal-Sized Group in Scenario 1, n=100, p = (50, 100, 200)

(b) Unequal-Sized Group in Scenario 1, n=100, p = (50, 100, 200)

Figure 2.1: Penalized Weighted Generalized Estimating Equations with various penalties: 1) Exclusive Lasso (P-
eLasso), 2) Lasso (P-Lasso), 3) SCAD (P-SCAD), 4) MCP (P-MCP), and 5) Composite MCP (P-cMCP) tested in
Scenario 1 with different data settings. Corr = 0.60 (Left), 0.90 (Right); n = 100; p = (50, 100, 200). The number of
true zero and non-zero coefficients are indicated next to p for C and IC, respectively.
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(a) Equal-Sized Group in Scenario 2, n=100, p = (50, 100, 200)

(b) Unequal-Sized Group in Scenario 2, n=100, p = (50, 100, 200)

Figure 2.2: Penalized Weighted Generalized Estimating Equations with various penalties: 1) Exclusive Lasso (P-
eLasso), 2) Lasso (P-Lasso), 3) SCAD (P-SCAD), 4) MCP (P-MCP), and 5) Composite MCP (P-cMCP) tested in
Scenario 2 with different data settings. Corr = 0.60 (Left), 0.90 (Right); n = 100; p = (50, 100, 200). The number of
true zero and non-zero coefficients are indicated next to p for C and IC, respectively.
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(a) Equal-Sized Group in Scenario 3, n=100, p = (50, 100, 200)

(b) Unequal-Sized Group in Scenario 3, n=100, p = (50, 100, 200)

Figure 2.3: Penalized Weighted Generalized Estimating Equations with various penalties: 1) Exclusive Lasso (P-
eLasso), 2) Lasso (P-Lasso), 3) SCAD (P-SCAD), 4) MCP (P-MCP), and 5) Composite MCP (P-cMCP) tested in
Scenario 3 with different data settings. Corr = (0.60 (Left), 0.90 (Right)); n = 100; p = (50, 100, 200). The number
of true zero and non-zero coefficients are indicated next to p for C and IC, respectively.
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(a) Equal-Sized Group in Scenario 1, n=300, p = (50, 100, 200)

(b) Unequal-Sized Group in Scenario 1, n=300, p = (50, 100, 200)

Figure 2.4: Penalized Weighted Generalized Estimating Equations with various penalties: 1) Exclusive Lasso (P-
eLasso), 2) Lasso (P-Lasso), 3) SCAD (P-SCAD), 4) MCP (P-MCP), and 5) Composite MCP (P-cMCP) tested in
Scenario 1 with different data settings. Corr = 0.60 (Left), 0.90 (Right); n = 300; p = (50, 100, 200). The number of
true zero and non-zero coefficients are indicated next to p for C and IC, respectively.
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(a) Equal-Sized Group in Scenario 2, n=300, p = (50, 100, 200)

(b) Unequal-Sized Group in Scenario 2, n=300, p = (50, 100, 200)

Figure 2.5: Penalized Weighted Generalized Estimating Equations with various penalties: 1) Exclusive Lasso (P-
eLasso), 2) Lasso (P-Lasso), 3) SCAD (P-SCAD), 4) MCP (P-MCP), and 5) Composite MCP (P-cMCP) tested in
Scenario 2 with different data settings. Corr = (0.60 (Left), 0.90 (Right)); n = 300; p = (50, 100, 200). The number
of true zero and non-zero coefficients are indicated next to p for C and IC, respectively.
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(a) Equal-Sized Group in Scenario 3, n=300, p = (50, 100, 200)

(b) Unequal-Sized Group in Scenario 3, n=300, p = (50, 100, 200)

Figure 2.6: Penalized Weighted Generalized Estimating Equations with various penalties: 1) Exclusive Lasso (P-
eLasso), 2) Lasso (P-Lasso), 3) SCAD (P-SCAD), 4) MCP (P-MCP), and 5) Composite MCP (P-cMCP) tested in
Scenario 3 with different data settings. Corr = (0.60 (Left), 0.90 (Right)); n = 300; p = (50, 100, 200). The number
of true zero and non-zero coefficients are indicated next to p for C and IC, respectively.
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(a) Equal-Sized Group in Scenario 1, n=300, p = (150, 300, 600)

(b) Unequal-Sized Group in Scenario 1, n=300, p = (150, 300, 600)

Figure 2.7: Penalized Weighted Generalized Estimating Equations with various penalties: 1) Exclusive Lasso (P-
eLasso), 2) Lasso (P-Lasso), 3) SCAD (P-SCAD), 4) MCP (P-MCP), and 5) Composite MCP (P-cMCP) tested in
Scenario 1 with different data settings. Corr = (0.60 (Left), 0.90 (Right)); n = 300; Increased dimension, p = (150,
300, 600). The number of true zero and non-zero coefficients are indicated next to p for C and IC, respectively.
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(a) Equal-Sized Group in Scenario 2, n=300, p = (150, 300, 600)

(b) Unequal-Sized Group in Scenario 2, n=300, p = (150, 300, 600)

Figure 2.8: Penalized Weighted Generalized Estimating Equations with various penalties: 1) Exclusive Lasso (P-
eLasso), 2) Lasso (P-Lasso), 3) SCAD (P-SCAD), 4) MCP (P-MCP), and 5) Composite MCP (P-cMCP) tested in
Scenario 2 with different data settings. Corr = (0.60 (Left), 0.90 (Right)); n = 300; Increased dimension, p = (150,
300, 600). The number of true zero and non-zero coefficients are indicated next to p for C and IC, respectively.
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(a) Equal-Sized Group in Scenario 3, n=300, p = (150, 300, 600)

(b) Unequal-Sized Group in Scenario 3, n=300, p = (150, 300, 600)

Figure 2.9: Penalized Weighted Generalized Estimating Equations with various penalties: 1) Exclusive Lasso (P-
eLasso), 2) Lasso (P-Lasso), 3) SCAD (P-SCAD), 4) MCP (P-MCP), and 5) Composite MCP (P-cMCP) tested in
Scenario 3 with different data settings. Corr = (0.60 (Left), 0.90 (Right)); n = 300; Increased dimension, p = (150,
300, 600). The number of true zero and non-zero coefficients are indicated next to p for C and IC, respectively.
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2.6 SDOH Data Application
We used county-level data from the 2009 to 2018 SDOH database from the Agency for Healthcare Re-
search and Quality (AHRQ) (for Healthcare Research & Quality, 2020). AHRQ compiled and released
the SDOH database in 2020 to better understand the relationship between community-level factors,
healthcare quality and delivery, and individual health to address emerging health issues. The SDOH
database is publicly available and integrates data from existing federal data sets and other public data
sources spanning multiple years (for Healthcare Research & Quality, 2020). Variables in the data set are
organized into 5 SDOH domains: (1) social context, such as age, race and ethnicity, and veteran status; (2)
economic context, such as income and unemployment; (3) education, such as education levels; (4) physi-
cal infrastructure, such as housing, food insecurity, and transportation; and (5) health care context, such
as health insurance coverage and health care access (for Healthcare Research & Quality, 2020). SDOH
includes 345 variables across 30 specific topics. The social context covers six topics; the economic context
consists of three topics; education encompasses five topics; physical infrastructure includes ten topics;
healthcare consists of eight topics. Details are in Table 1.1 in Chapter 1.

Mortality data were obtained from the Interactive Atlas of Heart Disease and Stroke at the Centers for
Disease Control and Prevention (CDC) (of Heart Disease & Stroke, n.d.), which were initially compiled
from 2 data sources: (1) the National Vital Statistics System at the National Center for Health Statistics,
and (2) the hospital discharge data from the Centers for Medicare&Medicaid Services’ Medicare Provider
Analysis and Review (MEDPAR) file (of Heart Disease & Stroke, n.d.). We linked the SDOH data with
corresponding mortality data at the county level. All data and materials used in this analysis are publicly
available at the AHRQ SDOH Database website and CDC website.

Our SDOH study data included 72 variables in 5 domains and 2,977 counties (detailed in Appendix
Table A.4), not including US territories. Of these counties, 1,149 were classified as urban, while the re-
maining 1,828 were classified as rural. The rural-urban status of a county was determined according to
the Urban-Rural Classification Scheme for Counties used by the National Center for Health Statistics
(NCHS) in 2013 (Ingram & Franco, 2014). Counties in categories 1 through 4 were classified as urban,
while counties in categories 5 and 6 were classified as rural (Ingram & Franco, 2014). We included this
rural-urban indicator as an additional domain to address geographic disparities. In our previous study
(Son et al., 2023), the analytic sample was based on the following inclusion and exclusion criteria. First,
variables that were measured repeatedly for 10 years were included. Second, variables with more than
60% missing values were excluded. Third, we eliminated redundant variables with the same or similar
definitions (e.g., percentage of native-born residents and percentage of foreign-born residents) to avoid
duplication. After applying these criteria, we additionally dropped four variables due to significant base-
line missing information in 2009. Our proposed method assumes a dropout missing pattern with no
missing data observed at t = 1 (see Equation 2.3). Therefore, the following variables are not included:

1. Percentage of workers age 16 and over with at least 60-minute commute time by public transporta-
tion. 2. Beer, wine, and liquor stores per 1,000 people. 3. Community food services (targeting low-income
or elderly) per 1,000 people. 4. Number of people living with diagnosed HIV / 1000.
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In 2009, missing values were still included. Consequently, we excluded an additional 165 counties
from the previous SDOH data (see details in Appendix Table A.6). Ultimately, our analysis of the SDOH
study data reveals several variables with significant missing information regarding physical infrastructure
and healthcare context. Of those, counties display a dropout pattern of missing data, starting with no
missing data at baseline and increasing in the number of counties over the study period of a decade (see
details in Appendix Table A.5). Each domain included different variables: the social context had 22 SDOH
variables, the economic context included 25, the education featured 5, the physical infrastructure had 15,
and the healthcare context contained 5.

Table 2.4: Selected Social Determinants of Healths Associated with Age-Adjusted CVD Mortality:
PWGEE-eLasso, 2009-2018

Domain Variables Estimates, β
Intercept 272.1746

1. Social % Population reporting Black race 0.3114
context % Population divorced or separated (ages 15 and over) 1.1313

% Population that does not speak English at all (ages 5 and over) -0.2687
% Children living with a grandparent householder (ages 17 and under) 0.9175
% Population reporting Hispanic ethnicity -0.3351
% Population who speak other languages (ages 5 and over) -0.2242

2. Economic Gini index of income inequality 40.7584
context % Households that received food stamps/SNAP, past 12 months 0.5939

% Employed working in manufacturing 0.0400
% Population with income to poverty ratio: 2.00 or higher -0.1903
% Population with income to poverty ratio: <1.00 0.6141
% Employed working in transportation and warehousing, and in utilities 0.3785

3. Education % Population with some college or associate’s degree (ages 25 and over) -0.6896
% Population with a bachelor’s degree (ages 25 and over) -2.0069

4. Physical Median home value of owner-occupied housing units -0.0001
infrastructure % Workers taking a car, truck, or van to work (ages 16 and over) 0.0447

% Housing units that are mobile homes 0.0191
% Renter-occupied housing units with children 0.1157
Full service restaurants per 1,000 people -5.4385

5. Healthcare Derived field that equals the ratio of enrollees over eligibles * 100 -0.3940
Geographic identifier 1: Rural, 0: Urban by NCHS 2013 Rural-Urban Classification Scheme 3.1804

We applied our proposed method with Exclusive Lasso (PWGEE-eLasso) in SDOH data. The results
of the selection are summarized in Table 2.4. The final model includes variables from five domains: social
context, economic context, education, physical infrastructure, and healthcare context. Several variables
in the social context domain significantly contributed to the model. For instance, the percentage of the
population reporting Black race (Estimates, β, = 0.31) and the percentage of children living with a grand-
parent householder (β = 0.92) were positively associated with the outcome. Conversely, the percentage
of the population that does not speak English at all (β = -0.27) and the percentage of the population
reporting Hispanic ethnicity (β = -0.34) were negatively associated with the outcome. In the economic
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context, key variables include counties with a Gini index of income inequality (β = 40.76), which ex-
hibited a strong positive association with the outcome. A higher proportion of the population with an
income-to-poverty ratio of less than 1.00 (β = 0.61), households receiving food stamps/SNAP in the past
12 months (β = 0.59), and population employed in transportation and warehousing (β = 0.38) were more
likely to experience a higher CVD mortality, respectively. However, the percentage of the population with
an income-to-poverty ratio greater than 2.00 showed a negative association(β = -0.19). According to the
previous analysis ((Son et al., 2023)), the collinearity problem may still persist among those poverty predic-
tors. Regarding education, the percentage of the population with a bachelor’s degree (β = -2.01) and those
with some college or an associate’s degree (β = -0.69) had a negative relationship with the outcome. It may
not effectively address highly correlated variables when the number of variables in a specific domain is
smaller compared to other domains. Among the physical infrastructure variables, full-service restaurants
per 1,000 people (β = -5.44) had a substantial negative effect. Meanwhile, factors such as the percentage of
workers taking a car, truck, or van to work (β = 0.04) and the percentage of housing units that are mobile
homes (β = 0.02) were positively associated with the outcome. The derived field representing the ratio of
enrollees to eligibles (β = -0.39) was negatively associated with the outcome, indicating that a higher ratio
correlates with a decrease in the dependent variable in the healthcare context. Lastly, a geographic identi-
fier, represented by a rural-urban classification, had a positive association with the outcome. Specifically,
areas classified as rural (β = 3.18) were associated with higher dependent variable values.

Table A.7 in the Appendix presented a comparison of implementing the proposed PWGEE via other
penalties. Overall methods generally exhibited consistent directional associations with the outcome from
the previous SDOH study (Son et al., 2023), although subtle differences in coefficient magnitudes are
evident. For example, while the positive effects of the percentage of the population reporting Black race
and children living with a grandparent householder were observed across all penalized models in the so-
cial context, the estimates under P-eLasso tended to be slightly more moderate than those obtained via
P-Lasso and other non-convex penalties. Similarly, negative associations for variables such as the derived
field representing the ratio of enrollees to eligibles were maintained across models in the healthcare context,
though their effect sizes varied. These differences highlighted that although the underlying relationships
between SDOH and CVD mortality remained robust, the choice of penalization technique could in-
fluence the relative weight and sparsity of predictors. Additionally, when the number of variables in a
specific domain was notably smaller than in other domains, all methods, especially P-Lasso and P-cMCP,
might not have effectively addressed highly correlated variables, leading to less consistent handling of
multicollinearity. PWGEE-eLasso could help address geographic disparities by creating a geographical
indicator, such as rural-urban classification, as a distinct domain. However, other approaches struggled
to address this distinction if they were not specifically tailored for geographic classification.
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2.7 Summary
The penalized weighted generalized estimating equations framework with an Exclusive Lasso penalty
(PWGEE-eLasso) provides a structured approach to managing high-dimensional longitudinal data with
missing observations. By integrating inverse probability weighting for missing data under MAR assump-
tion with a penalty that enforces sparsity within predefined covariate groups, this method simultaneously
achieves two primary objectives: consistent parameter estimation when data are incompletely observed
and enhanced interpretability by selecting significant variables within each group rather than treating all
variables individually or discarding an entire group of covariates.

Simulation studies demonstrate that a notable advantage of the Exclusive Lasso penalty is its ability
to effectively handle overlapping or correlated features. Classical Lasso-based approaches often select
multiple correlated covariates, whereas group-Lasso methods typically either eliminate all features or retain
all features within a given group. The Exclusive Lasso addresses this gap by maintaining within-group
sparsity while allowing for the possibility that each group can contribute at least one non-zero variable
if it is relevant. Compared to SCAD, MCP, and cMCP, which can also induce sparsity, the Exclusive
Lasso penalty demonstrates superior retention of key signals in the presence of multicollinearity without
excessively penalizing important predictors. This minimizes estimation bias and increases the likelihood
of selecting the correct non-zero covariates.

In practical scenarios such as the SDOH analysis, missing information is almost inevitable. IPW
under the MAR assumption ensures consistent estimation of the population-averaged effects, provided
that the missing mechanism is accurately modeled. Standard errors and covariance estimates naturally
accommodate missingness, as the weighting is directly incorporated into the GEE framework. In addition,
many longitudinal data exhibit complex dependencies over time, and a flexible working correlation can
approximate these relationships. Thus, PWGEE-eLasso can be advantageous in these contexts because it
accommodates various correlation structures commonly used within the GEE framework.

The real data analysis demonstrates the practical value of PWGEE-eLasso in identifying meaningful
patterns across multiple SDOH domains. Insights into socio-economic factors, healthcare contexts, and
demographic variables reveal how structural inequalities shape CVD outcomes at the county level. By
preserving at least one predictor from each relevant group, the final model remains interpretable, providing
policymakers and stakeholders with greater clarity on which factors merit targeted interventions.

Even though MAR is commonly assumed in statistical analyses dealing with missing data, future
research should investigate alternative patterns of missingness in real-world data settings. Conducting
sensitivity analyses and using alternative inference methods for non-ignorable missingness would improve
the generalizability of PWGEE-eLasso. Utilizing more flexible or data-driven working correlation ma-
trices could enhance estimation in scenarios with complex dependency patterns. Adaptive weighting or
multi-penalty schemes could assist in refining the selection process, especially when groups vary in size
or when prior information about covariate importance is available. Moreover, as the number of explana-
tory variables in the missingness model increases, penalization can also be implemented in the missing
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data module. This dual-step penalization strategy aims to address large-scale data structures in both the
outcome and missingness models simultaneously.

In summary, PWGEE-eLasso integrates robust missing data handling with principled feature man-
agement in longitudinal studies. Its simulation stability and interpretability in large-scale SDOH data
analysis highlight its practical value for researchers analyzing complex, incomplete datasets with inherent
group structures.
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Chapter 3

Model-based Clustering of
High-Dimensional Longitudinal
Data via Exclusive Lasso Penalty

3.1 Introduction
Cardiovascular disease (CVD) is the leading cause of death in the United States, with an age-adjusted
mortality rate for heart disease of 167.2 deaths per 100,000 individuals reported in 2022. (for Disease
Control & (CDC), 2023). Numerous studies have explored CVD associated with the social determinants
of health (SDOH) using comparable data sources, such as geocoded health records, national survey data,
and census information. These studies aim to develop interventions that improve healthcare access and
quality, as well as to assess risks at both the neighborhood and individual levels (McNeill et al., 2023).

Health disparities in CVD mortality have been reported to be associated with SDOH (for Disease
Control, Prevention, et al., 2019; Frieden et al., 2013). The Centers for Disease Control and Prevention
(CDC) and the American Heart Association highlight the importance of addressing SDOH in public
health initiatives and healthcare practices to reduce disparities among different racial groups and regions
(Banerjee, 2017; Benjamin et al., 2019; Hacker et al., 2022; White-Williams et al., 2020). Specifically,
the CDC identifies five key domains of SDOH that need attention to improve overall health outcomes:
economic stability, education access and quality, healthcare access and quality, neighborhood and built
environment, and social and community context (Hacker et al., 2022). Understanding these domains is
essential for designing targeted strategies aimed at reducing CVD mortality by addressing key risk factors
associated with each domain and tackling existing disparities.

Recent studies have highlighted specific regional disparities in CVD at the state or county level (Son
et al., 2023; Zelko et al., 2023). To address these geographic disparities in CVD, it may be necessary to
integrate SDOH with advanced methodological approaches. This integration should focus on geographic
groups to link the effects of various SDOH domains to similar longitudinal associations between SDOH
and CVD mortality outcomes. This need arises from the findings in our previous study (Son et al., 2023).

41



Furthermore, since the CVD mortality rate varies by geographic and racial groups over time, US counties
may exhibit different characteristics when subjects are clustered based on SDOH in a high-dimensional
longitudinal data setting. New clustering strategies that utilize data on SDOH may help drive heteroge-
neous policy development aimed at reducing the CVD burden and improving CVD outcomes.

The clustering method for high-dimensional longitudinal data has addressed the issue of missing val-
ues. Although there has been recent attention to clustering high-dimensional longitudinal data, advances
in these techniques remain limited, particularly in applications in SDOH research concerning CVD mor-
tality. For instance, existing observational longitudinal data clustering methods have been developed to
group longitudinal trajectories of the outcome variable (Genolini & Falissard, 2010; Jacques & Preda,
2013; McNicholas & Murphy, 2010; Tang & Qu, 2016). However, these methods struggle with handling
missing values and effectively exploring the relationship between dependent and independent variables.
Thus, alternative approaches such as linear mixed-effects models (LMM), generalized linear mixed-effects
models, or semi-parametric mixed-effects models have been introduced to account for the subpopulation
heterogeneity (Arribas-Gil et al., 2015; Komárek & Komárková, 2013; Proust-Lima et al., 2015). Never-
theless, challenges persist, particularly with increasing dimensionality of covariates needed for accurate
estimations.

While most of the existing studies have focused on variable selection in the high-dimensional linear
regression model, only a few investigated high-dimensional linear mixed model settings. Schelldorfer
et al., 2010 introduced a penalized likelihood-based approach for selecting fixed effects while assuming a
fixed structure for random effects. Subsequently, Y. Fan and Li, 2012 developed a two-step method for
selecting both fixed and random effects. More recently, Li et al., 2018 proposed a regularization method
that simultaneously performs estimation and variable selection for both fixed and random effects, allowing
the dimension of fixed and random effects to diverge to infinity as the sample size increases. Furthermore,
several studies have investigated the use of mixture of LMMs with variable selection in high-dimensional
longitudinal data. Du et al., 2013 considered the same penalty function for both fixed and random effects
selection within a finite mixture of LMMs. Yang and Wu, 2022 developed a clustering method for high-
dimensional longitudinal data, which enables the dimensions of fixed and random effects to grow at an
exponential rate relative to the sample size under a general class of penalty functions that satisfy specific
regularity conditions. Their method allows different penalty functions to be utilized for fixed effects
and the diagonal components of random effects, thus allowing various sets of fixed and random effects
to adjust for subgroup heterogeneity. However, these methods do not consider the predefined domain
heterogeneity among variables. Clusters can be determined by different sets of fixed or random effects
within each domain. Therefore, our method will investigate extending prior studies with regularizations
in fixed effects to identify subgroup clusters by US counties by incorporating at least one SDOH from
each predefined domain.
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3.2 Method

3.2.1 Linear Mixed-Effects Model
First, we define some notations for our proposed framework. Suppose the ith subject is measured at mi

time points, i = 1, ..., n. Repeated measures mi may be missed, which means the number of mi can
vary from subject to subject. At time tij , j = 1, ...,mi, we have (yij,Xij,Zij) observarions, where yij
represents the responses, Xij ∈ ℜpn contains the fixed effects covariates, and Zij ∈ ℜqn includes the
random effects covariates. Here, pn and qn denote the dimension of covariates, which increase at a certain
rate as n at a certain rate. We use the following notations for the ith subject: yi = (yi1, yi2, ..., yimi

)T ,
Xi = (XT

i1, ...,XT
imi

)T , and Zi = (ZT
i1, ...,ZT

imi
)T . This framework considers the linear mixed-effects

model (LMM) for the ith subject, and it has the following form:

yi = Xiβ + Zibi + ei, (3.1)

where β is a (pn × 1) vector of parameters referred to the constant fixed effects, bi ∼ N(0, σ2D) is a
(qn × 1) vector of subject-specific random effects coefficients, and ei ∼ N(0, Ri) is a vector of the i.i.d.
random error. D is a (qn× qn) covariance matrix that specifies the among-unit sources, assumed identical
for all units. The covariance matrix of the random error Ri characterizes variance and correlation due to
within-unit sources, and here, Ri is assumed to be σ2Imi

.
In LMM 3.1, yi given Xi, Zi follows a multivariate normal distribution with a particular form of the

covariance matrix, that is, yi|(Xi, Zi) ∼ N(Xiβ, σ
2Vi), where Vi = ZiDZT

i + Imi
. Let Θ include

β,D, where Θ = (β,D). Excluding the constant terms, the overall log-likelihood of the entire data set
under model 3.1 is

ln(Θ, σ2) = −1

2

n∑
i=1

log|σ2Vi|

− 1

2σ2

n∑
i=1

(yi −Xiβ)
TV−1

i (yi −Xiβ).

(3.2)

To maximize the log-likeligood in 3.2 we derive the maximum likelihood estimator of σ2. The maxi-
mum likelihood estimator of σ2 is a function of β and D and is given by

σ̂2
MLE(Θ) =

1

N

n∑
i=1

(yi −Xiβ)
TV−1

i (yi −Xiβ), (3.3)

where N =
n∑

i=1

mi. Next, to derive the profile log-likelihood for β and D we substitute σ̂MLE(β,D)

into Equation 3.2,
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ln(Θ, σ2
MLE) = −1

2

n∑
i=1

[
log|Vi|+ log

{
n∑

i=1

1

N
(yi −Xiβ)

TV−1
i (yi −Xiβ)

}]
− N

2

= −1

2

[
n∑

i=1

log|Vi|+ log
1

N
+ log

{
n∑

i=1

(yi −Xiβ)
TV−1

i (yi −Xiβ)

}]
− N

2

= −1

2

n∑
i=1

log|Vi| −
N

2
log

{
n∑

i=1

(yi −Xiβ)
TV−1

i (yi −Xiβ)

}
+ C,

where C represents a constant. Thus, the profile log-likelihood for β and D is given by

PF (Θ) = −1

2

n∑
i=1

log|Vi|

−N

2
log

{
n∑

i=1

(yi −Xiβ)
TV−1

i (yi −Xiβ)

}
.

(3.4)

In high-dimensional settings, estimating the parameters from 3.4 may require a sparsity assumption,
meaning that only a small set of variables are associated with the response, i.e., only a few elements in
beta coefficients are nonzero. Under this assumption, we expect many coefficients to be zero, effectively
reducing dimensionality by discarding unimportant parameters. Accordingly, we can penalize the profile
likelihood 3.4 with penalty functions applied to both β and D, to shrink negligible fixed and random
effect coefficients to zero while preserving true signals for inference.

Penalized Likelihood Estimation with Fixed Effects Selection

Penalty functions on β and D are applied to both fixed and random effects for simultaneous selection.
By regularizing β, any fixed effect estimated to be zero will be removed from the model. Based on our
previous study (Son et al., 2023), we assume that initial CVD mortality rates differ by county and that
there are no additional random effects. Therefore, we do not impose penalties on D for the random effects
to simplify our framework.

To select the fixed effects, we regularize β in the profile log-likelihood function in 3.4, which leads us
to define the following objective function:

Qn(Θ) = PF (Θ)− 1

2
Pλn

∑
g∈G

(∑
j∈g

|βj|
)2

, (3.5)

where Pλn is non-decreasing penalty functions contingent on the non-negative tuning parameters λn,
and g denotes a collection of non-overlapping predefined domains for all pn. The penalty functions
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1

2
Pλn

∑
g∈G

(∑
j∈g

|βj|
)2

regulates the sparsity of β using an Exclusive lasso penalty. Other penalty func-

tions that can be considered are Lasso and SCAD.

3.2.2 Mixture of LMM with Variable Selection
We have previously provided background on the LMM with a selection of fixed effects for pn and qn.
However, a single LMM may be inadequate for the county-level SDOH data analysis due to geographic
disparities. To address this issue, we assume the counties can be divided into k clusters, each following
a different LMM model. Thus, for those counties within the kth cluster, we reformulate the LMM as
follows:

yi = Xiβk + Zibik + eik, (3.6)

where βk is the fixed effects coefficients of size pnk
in cluster k, bik ∼ N(0, σ2

kDk) is the subject-specific
random effects coefficients of size qnk

in cluster k, and eik is an (ni × 1) error vector with N(0, σ2
kImi

).
In practice, the proposed clustering framework aims to classify a sample of subjects into one of the K
clusters, where K may be unknown, based on a predefined rule of similarities in their observed patterns.
A straightforward approach is to assume that the observed data (yi,Xi,Zi) follows a mixture of LMM
across K groups, and consider each mixture component to be one cluster. It is also assumed that each
mixture component k ∈ {1, ..., K} has cluster-specific parameters, denoted as Θ̃k = (βk,Dk, σ

2
k). The

mixing probability for any subject i to belong to cluster k is represented by P (τi = k) ≡ πk, with the

constraint that
K∑
k=1

πk = 1. Letwik = 1{πi=k} be the binary indicator based on whether subject i belongs

to cluster k. Additionally, let Wk = (w1k, ..., wnK) and W = (W1, ...,WK).
Assume the binary indicators W can not be observed in addition to y, X, Z, then the observed likeli-

hood in model 3.6 is that

f(yi|Xi,Zi, Θ̃) = πkfk(yi|Xi,Zi,Θk)

=
∑K

k=1 πkϕ(yi|Xiβk, σ
2
kVik),

(3.7)

where Θ̃ = (Θ1, ...,ΘK) is the vector of all unkonw parameters, Θk = (β,Dk,wk, πk) denotes the
vector of parameters of the kth components, and ϕ is the multivariate Gaussian function with a mean of
Xiβk and a covariance of σ2

kVik = σ2
k(Z

T
i DkZi + Imi).

Since it is challenging to maximaize the likelihood in 3.7 due to unknown cluster assignments, we
adopt an Expectation-Maximization (EM) approach (Dempster et al., 1977). To illustrate how the EM
algorithm operates, suppose we can observe W in y, X, Z. In this context, the complete log-likelihood is
given by
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log

{
n∏

i=1

K∏
k=1

πwik
k ϕ(yi|Xiβk, σ

2
kVik)

wik

}

=
n∑

i=1

K∑
k=1

{wiklog(πk) + wiklogϕ(yi|Xiβk, σ
2
kVik)}.

(3.8)

The variance, σ2
k, can be expressed as a function of (βk,Dk), hence, the full log-likelihood for the

mixture of LMM (mixLMM) can be rewritten as the following:

lk(Θ) =
K∑
k=1

n∑
i=1

wiklogπk

−
K∑
k=1

{
1

2

n∑
i=1

wiklog|Vik|

+
N

2
log

{
n∑

i=1

wik(yi −Xiβ)
TV−1

i (yi −Xiβ)

}}

=
K∑
k=1

n∑
i=1

wiklogπk +
K∑
k=1

PF (Θk).

(3.9)

The estimate of Θk can be easily obtained if the weights w are known. This can be done by simply
minimizing the profile log-likelihood PF (Θk) with respect to Θk = (β,Dk,wk, πk). In practice, how-
ever, the cluster assignment for each subject i is typically unknown, making w unavailable. Therefore,
this problem can be framed within a missing data context.

The proposed EM algorithm iteratively maximizes the full log-likelihood by alternating between E
and M steps.

(1) E-step: Estimating the W based on current parameter values.

(2) M-step: Updating the parameter estimates Θk by maximizing the expectation of the full log-
likelihood.

Penalized Model-based Clustering

We now introduce a penalized model-based clustering method that focuses on fixed effect selection through
Exclusive Lasso (mixLMM-eLasso) using the following objective function:
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Qn(Θ) =
K∑
k=1

n∑
i=1

wiklogπk +
K∑
k=1

PF (Θk)

−
K∑
k=1

{
1

2
Pλkn

∑
k∈K

(∑
j∈k

|βk|
)2}

=
K∑
k=1

n∑
i=1

wiklogπk +
K∑
k=1

Qn(Θk),

(3.10)

where Qn(Θk) is the objective function within each cluster and is defined in 3.5. The selection and
estimation of the regression coefficients depend on the regularization parameters. The regularization
parameters are denoted by λkn for βk.

To minimize the objective function in equation 3.10, a coordinate descent algorithm embedded within
the EM algorithm is used. Furthermore, the number of clusters in the data needs to be estimated. The
Bayesian Information Criterion (BIC) is used for determining K and the optimal values of λkn, where
λkn = (λ1,1n, ..., λK,n) ∈ ℜK . The BIC is referred by

BIC = −2lk(Θ) + dlogN,

where d is the total number of nonzero parameters in the model and N =
∑n

i=1 mi.

3.2.3 Algorithm
To perform selection within specified groups of variables, the coordinate descent algorithm is used to
solve the Exclusive Lasso problem (Campbell & Allen, 2017). Additionally, for clustering and selections
within the clusters, a nested EM algorithm is adopted to minimize the objective function represented by
Equation 3.10. This process involves minimizing the conditional expectation of penalized log-likelihoods
using a coordinate descent algorithm.

M-step

In the Maximization step, the parameter estimate Θ̂k is updated. Initially, the estimates ŵ(r)
ik and π̂

(r)
ik

are considered known, and Θ̂k is adjusted by minimizing the conditional expectation of the objective
function 3.10 through:
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Qn(Θk|Θ(r)) = −
K∑
k=1

{
n∑

i=1

ŵ
(r)
ik logπ̂

(r)
k −

K∑
k=1

n∑
i=1

1

2
ŵ

(r)
ik log|Vik|

−N

2

{
n∑

i=1

ŵ
(r)
ik (yi −Xiβk)

TV−1
ik (yi −Xiβk)

}}

+
K∑
k=1

1

2
Pλkn

∑
g∈G

(∑
j∈g

|βk|
)2

.

(3.11)

Given the computational burden of coordinate descent for Exclusive Lasso within the EM algorithm,
we reformulate the objective function 3.11 and derive the adjusted objective function as

Q∗
n(Θk|Θ(r)) = −

K∑
k=1

{
n∑

i=1

ŵ
(r)
ik logπ̂

(r)
k −

K∑
k=1

n∑
i=1

1

2
ŵ

(r)
ik log|Vik|

−N

2

{
n∑

i=1

ŵ
(r)
ik (yiV

− 1
2

ik −XiV
− 1

2
ik βk)

T (yiV
− 1

2
ik −XiV

− 1
2

ik βk)

}}

+
K∑
k=1

1

2
Pλkn

∑
g∈G

(∑
j∈g

|βk|
)2

= −
K∑
k=1

{
n∑

i=1

ŵ
(r)
ik logπ̂

(r)
k −

K∑
k=1

n∑
i=1

1

2
ŵ

(r)
ik log|Vik|

−N

2

{
ŵ

(r)
ik ∥y∗

i −X∗
iβk∥22

}
−1

2
Pλkn

∑
g∈G

(∑
j∈g

|βk|
)2}

,

(3.12)

where y∗
i = yiV

−1/2
ik , X∗

i = XiV
−1/2
ik , and ∥y∗

i − X∗
iβk∥22 is driven by the Cholesky decomposi-

tion. In adjusted objective function 3.12, the term,
N

2

{
∥y∗

i −X∗
iβk∥22

}
+
1

2
Pλkn

∑
g∈G

(∑
j∈g

|βk|
)2

, is

referred to as Exclusive Lasso function. Thus, the parameter estimate Θ̂ can be updated by minimizing
the Equation 3.12 through the coordinate descent algorithm(Campbell & Allen, 2017) such that

Θ̂
(r+1)
kj = argminΘkj

Q∗
n(Θk|Θ(r)) (3.13)

for j = 1, ..., pn.
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E-step

In the Expectation step, the subject-specific and overall clustering probabilities ŵik and π̂ik from the
current estimates Θ̂k are updated based on the updated estimate Θ̂

(r+1)
from the M-step:

ŵ
(r+1)
ik =

π̂
(r)
k ϕk(yi|Xi, Θ̂

(r+1)
k )∑K

l=1 π̂
(r)
l ϕl(yi|Xi, Θ̂

(r+1)
l )

,

π̂
(r+1)
k =

∑n
i=1 ŵ

(r+1)
k

n
.

(3.14)

3.3 Asymptotic properties
Numerous studies have investigated convergence rates of pn in linear regression models (Lan, 2006; Schell-
dorfer et al., 2010). Recent studies have also focused on convergence rates of qn (Bickel & Levina, 2008;
Bondell et al., 2010; Lam & Fan, 2009; Li et al., 2018; Yang & Wu, 2022). Furthermore, a penalized
likelihood approach and a nested EM algorithm have been introduced to facilitate efficient numerical
computations for finite mixtures of linear mixed effects (FMLME) models (Du et al., 2013). Building
on this FMLME study, We will demonstrate the properties of consistency and sparsity in our proposed
estimators.

First, decompose the parameter vector Θ = (Θ1,Θ2) such that Θ2 contains all zero effects
from all the mixture components, and split the vector of true parameter values accordingly as Θ0 =

(Θ10,Θ20) with Θ20 = 0. Then, denote the elements of Θ10 with a superscript such as β10
kj =

(β10
11 , ..., β

10
1p , ..., β

10
K1, ..., β

10
Kp), for k = 1, ..., K and j = 1, ..., p. Our asymptotic results involve as-

sumptions on the following quantities:

an = maxk,j

{√
n|pλkn

(β10
kj )|

}
bn = maxk,j

{√
n|p′λkn

(β10
kj )|

}
cn = maxk,j

{√
n|p′′λkn

(β10
kj )|

}
,

where pλkn
denotes the penalties imposed on the parameters from the kth mixture components, n is

a measure of effective sample size for the kth subpopulation, and, p′λkn
(·) and p′′λkn

(·) are the first and
second derivatives of the penalty function pλkn

(θ) with respect to θ, respectively. Further, we assume that
the penalty functions pλkn

(θ) satisfy the following conditions:
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(P1) For all n and k, pλkn
(0) = 0 and pλkn

(θ) is symmetric and non-negative. In addition, it is non-
decreasing and twice differentiable for all θ in (0,∞) except at a finite number of points, which
allows for a limited number of special points where the curve is not smooth.

(P2) As n → ∞, an = o(1 + bn), and cn = o(
√
n).

(P3) For Nn = {θ : 0 < θ ≤ n−1/2log(n)}, lim
n→∞

inf
θ∈Nn

√
np′λkn

(θ) = ∞.

Suppose that the data (yi,Xi,Zi) for i = 1, ..., n, is a random sample from the mixture of LMM. We
assume that each mixture component k ∈ {1, ..., K} has cluster-specific parametersΘ = (Θ1, ...,ΘK).
Let f(yi,Xi,Zi;Θ) be the joint density function of (yi,Xi,Zi) and Ω be an open parameter space.

We define the regularity conditions for the consistency and sparsistency below:

(A1) f(yi,Xi,Zi;Θ) is identifiable in Θ up to permutation of the components of the mixture.

(A2) For each Θ0 ∈ Ω, there exist M1i(yi,Xi,Zi), M2i(yi,Xi,Zi), and M3i(yi,Xi,Zi) (possibly
depending on Θ0) such that for Θ in a neighborhood of Θ0,

∣∣∣∣∂logf(yi,Xi,Zi;Θ)

∂θj

∣∣∣∣ < M1i(yi,Xi,Zi),∣∣∣∣∂2logf(yi,Xi,Zi;Θ)

∂θj∂θl

∣∣∣∣ < M2i(yi,Xi,Zi),∣∣∣∣∂3logf(yi,Xi,Zi;Θ)

∂θj∂θl∂θr

∣∣∣∣ < M3i(yi,Xi,Zi),

such that EΘ0(M1i(yi,Xi,Zi)) < ∞, EΘ0(M2i(yi,Xi,Zi)) < ∞,
and EΘ0(M31i(yi,Xi,Zi)) < ∞.

(A3) The Fisher information matrix I(Θ0) is finite and positive definite.

Let (yi,Xi,Zi), i = 1, ..., n, be a random sample from the observed likelihood of LMM 3.7 satisfy-
ing the regularity conditions (A1)−(A3). Theorem 3.3.1 states that when bn is bounded (i.e., bn = O(1)),
there exists a local maximizer Θ̂n of the penalized likelihood function defined in equation 3.10. This max-
imizer converges to 0 at a rate of

√
n. This rate of convergence can be achieved using the Lasso, Exclusive

Lasso, and SCAD penalties, provided that the tuning parameters are chosen appropriately.

Theorem 3.3.1. Suppose the penalty functionpλkn
(θ) satisfies the conditions (P1)and (P2). Then there exists

a local maximizer Θ̂n of the penalized log-likelihood function in 3.10 such that∥Θ̂−Θ0∥ = Op{n−1/2(1+

bn)}.
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Proof. Let rn = n−1/2(1+bn). It suffices to show that for any small enough ϵ > 0, there exists a constant
Mϵ such that for sufficiently large n,

Pr

{
sup

∥u∥=Mϵ

Qn(Θ0 + rnu) < Qn(Θ0)

}
≥ 1− ϵ.

So with large probability, there exists a local maximum in {Θ0+rnu : ∥u∥ ≤ Mϵ}. This local maximizer
Θ̂n satisfies ∥Θ̂−Θ0∥ = Op{n−1/2(1 + bn)}. Let

∆n(u) = Qn(Θ0 + rnu)−Qn(Θ0)

= {ln(Θ0 + rnu)− ln(Θ0)} − {pn(Θ0 + rnu)− pn(Θ0)}.

By condition (P1), pλkn(0) = 0 and hence pn(Θ0) = pn(Θ10). Given that pn(Θ0 + rnu) is a sum of
positive terms, removing terms corresponding to zero components only decreases its value. Therefore,

∆n(u) ≤ {ln(Θ0 + rnu)− ln(Θ0)} − {pn(Θ10 + rnuI)− pn(Θ10)}
≤ {ln(Θ0 + rnu)− ln(Θ0)}+ |pn(Θ10 + rnuI)− pn(Θ10)|,

where uI is the sub-vector of u that corresponds to the nonzero effects. By Taylor’s expansion,

ln(Θ0 + rnu)− ln(Θ0) = rnl
′
n(Θ0)

Tu+
r2n
2
uT (l′′n(Θ0))u

=
(1 + bn)√

n
l′n(Θ0)

Tu+
(1 + bn)

2

2n
uT (l′′n(Θ0))u,

where we omitted the remainder terms since they become negligible as n → ∞ by regularity condition
(A2). For the Hessian matrix l′′n(Θ0), we have

1

n
l′′n(Θ0) →p −I(Θ0).

Therefore,

ln(Θ0 + rnu)− ln(Θ0) =
(1 + bn)√

n
l′n(Θ0)

Tu− (1 + bn)
2

2n
uT I(Θ0)u(1 + op(1))

= (1 + bn)Op(1)∥u∥ −
(1 + bn)

2

2n
uT I(Θ0)u(1 + op(1)), (3.15)

as 1√
n
l′n(Θ0) = Op(1) by regularity conditions. On the other hand, by Taylor’s expansion and the

triangular inequality,
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|pn(Θ10 + rnuI)− pn(Θ10)|

= p′n(Θ10)
T rnuI +

r2n
2
uT
I p

′′
n(Θ10)uI(1 + o(1))

≤ rn|p′n(Θ10)
TuI |+

r2n
2
|uT

I p
′′
n(Θ10)uI |(1 + o(1))

≤ rn∥p′n(Θ10)
T∥ · ∥uI∥+

r2n
2
∥diag(p′′n(Θ10))∥ · ∥uI∥2(1 + o(1)). (3.16)

Let tk be the total number of true nonzero fixed and random effects in the k-th component, and let
t = max{tk, k = 1, ..., K}. Let β10 denote the vectors of β10

kj ’s. We notice that for the first term of
3.16,

∥p′n(Θ10)∥ = ∥p′n(π0
1, ..., π

0
K)∥+ ∥p′n(β10)∥,

where p′n(π0
1, ..., π

0
K) and p′n(β

10) are the gradients of the penalty function pn(·) with respect to the
parameters (π0

1, ..., π
0
K) and (βkj), respectively, evaluated at the true value Θ10.

Recall that

pn(Θ) =
K∑
k=1

n{pλkn
(βkj)},

where pλkn
(βkj) =

λk

2

∑
k∈K

{∑
j∈k

|βkj|

}2

. Therefore,

p′n(π
0
1, ..., π

0
K) =


n
{
pλkn

(β10
1j )

}
...

n
{
pλkn

(β10
Kj)

}
 .

Hence,

∥p′n(π0
1, ..., π

0
K)∥ = n

√√√√ K∑
k=1

{
pλkn

(β10
kj )

}2

≤ n

√√√√ K∑
k=1

{
tk ·

an√
n

}2

= an
√
n

√√√√ K∑
k=1

t2k

≤ an
√
n

√√√√ K∑
k=1

t2 = an
√
n
√
Kt.

Furthermore,
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∥p′n(β10)∥ = ∥∇pn(β
10
11 , ..., β

10
1p , ..., β

10
K1, ..., β

10
Kp)∥

= n∥π1p
′
λ1n

(β10
11), ..., π1p

′
λ1n

(β10
1p), ..., πKp

′
λKn

(β10
K1), ..., πKp

′
λKn

(β10
Kp)∥

≤ n∥p′λ1n
(β10

11), ..., p
′
λ1n

(β10
1p), ..., p

′
λKn

(β10
K1), ..., p

′
λKn

(β10
Kp)∥

= n

√√√√ K∑
k=1

p′λkn
(β10

kj )
2

≤ n

√√√√ K∑
k=1

tk ·

[
bn√
n

]2

=
√
nbn

√√√√ K∑
k=1

tk

≤ bn
√
n
√
K · t.

Combining the two terms, we have

∥p′n(Θ0)∥ ≤ an
√
n
√
Kt+ bn

√
n
√
K · t.

After plugged into 3.16, this leads to

|pn(Θ10 + rnuI)− pn(Θ10)|

≤ rn(an
√
n
√
Kt+ bn

√
n
√
K · t)∥u∥+ r2n

2
∥diag(p′′n(Θ10))∥ · ∥uI∥2(1 + o(1))

=
1 + bn√

n
(an

√
n
√
Kt+ bn

√
n
√
K · t)∥u∥+ (1 + bn)

2

2n
∥diag(p′′n(Θ10))∥ · ∥uI∥2(1 + o(1))

= an(1 + bn)
√
Kt∥u∥+ bn(1 + bn)

√
K · t∥u∥+ (1 + bn)

2

2n
∥diag(p′′n(Θ10))∥ · ∥uI∥2(1 + o(1)).

(3.17)

Furthermore,
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∥diag(p′′n(Θ10))∥ = n

√√√√ K∑
k=1

p′′λkn
(β0

kj)
2π2

k

≤ n

√√√√ K∑
k=1

p′λkn
(β10

kj )
2

≤ n

√√√√ K∑
k=1

tk ·

[
cn√
n

]2

=
√
ncn

√√√√ K∑
k=1

tk

≤ cn
√
n
√
K · t.

Combining this result with 3.17 gives

|pn(Θ10 + rnuI)− pn(Θ10)|

≤ an(1 + bn)
√
Kt∥u∥+ bn(1 + bn)

√
K · t∥u∥+ (1 + bn)

2

2
√
n

cn
√
K · t∥u∥2(1 + o(1)). (3.18)

By condition (P2), an = o(1 + bn) and cn = o(
√
n). Hence, the order comparison of 3.15 and 3.18 im-

plies that−(1 + bn)
2

2
uT I(Θ0)u(1+op(1)) dominates every other term for sufficiently large ∥u∥ = Mϵ.

Therefore, for any given ϵ > 0, there exists sufficiently largeMϵ such that lim
n→∞

Pr
{
sup∥u∥=Mϵ

∆n(u) <

0
}
= 1.

Next, we show that the following Theorem 3.3.2 guarantees that, under mild conditions, the penalized
likelihood estimators have the sparsity property, which allows for consistent variable selection, and they
are asymptotically normally distributed.

Theorem 3.3.2. Assume that the penalty function pλkn
(θ) satisfies the conditions (P1) − (P3), and that

K is known a priori. Then the following statements hold.

(a) For any Θ = (Θ1,Θ2) such that ∥Θ̂−Θ0∥ = O(n−1/2), with probability tending to 1,

Qn(Θ1,Θ2) < Qn(Θ1,0).

(b) For any root-n consistent maximum penalized likelihood estimator Θ̂n = (Θ̂1n, Θ̂2n) of Θ,

(i) Sparsity: Pr{Θ̂2n = 0} → 1, as n → ∞.

54



(ii) Asymptotic normality:

√
n

[{
I1(Θ10) +

p′′n(Θ10)

n

}
(Θ̂1n −Θ10) +

p′n(Θ10)

n

]
→d N(0, I1(Θ10)),

where I1(Θ10) is the Fisher information matrix, and p′(Θ10) and p′′(Θ10) are the first and
second derivatives of the penalty function, respectively, knowing that Θ20 = 0.

Proof. (a) Consider the partitioning Θ = (Θ1,Θ2) for any Θ in the neighborhood ∥Θ −Θ0∥ =

O(n−1/2). By the definition of Qn(Θ), we have

Qn((Θ1,Θ2))−Qn((Θ1, 0))

=
{
ln((Θ1,Θ2))− ln((Θ1, 0))

}
−

{
pn((Θ1,Θ2))− pn((Θ1, 0))

}
. (3.19)

We now find the order of these two differences. By the mean value theorem,

ln((Θ1,Θ2))− ln((Θ1, 0)) =

[
∂ln((Θ1, ξ))

∂Θ2

]T

Θ2, (3.20)

for some ∥ξ∥ ≤ ∥Θ2∥ = O(n−1/2). Then,∥∥∥∥∥∂ln((Θ1,ξ))
∂Θ2

− ∂ln((Θ10,0))
∂Θ2

∥∥∥∥∥
≤

∥∥∥∥∥∂ln((Θ1,ξ))
∂Θ2

− ∂ln((Θ1,0))
∂Θ2

∥∥∥∥∥ +

∥∥∥∥∥∂ln((Θ1,0))
∂Θ2

− ∂ln((Θ10,0))
∂Θ2

∥∥∥∥∥
(3.21)

Applying the mean value theorem again,

∂ln((Θ1, ξ))

∂Θ2

− ∂ln((Θ1, 0))

∂Θ2

=

[
∂2ln((Θ1, ζ1))

∂2Θ2

]
· ξ

for some ∥ζ1∥ ≤ ∥ξ∥ and

∂ln((Θ1, 0))

∂Θ2

− ∂ln((Θ10, 0))

∂Θ2

=

[
∂2ln((ζ2, 0))

∂Θ1, ∂Θ2

]
· (Θ1 −Θ0),
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where ζ2 = Θ10 + t · (Θ1 −Θ10), for some t ∈ [0, 1]. Applying these results to 3.21 and using
the regularity condition (A2) we have∥∥∥∥∥∂ln((Θ1, ξ))

∂Θ2

− ∂ln((Θ10, 0))

∂Θ2

∥∥∥∥∥
≤

[
n∑

i=1

M2i(yi,Xi,Zi)]

]
· ∥ϵ∥+

[
n∑

i=1

M2i(yi,Xi,Zi)]

]
· ∥Θ1 −Θ10∥

= Op(n) ·
{
∥ϵ∥+ ∥Θ1 −Θ10∥

}
= Op(n) ·

{
O(n−1/2) +O(n−1/2)

}
= Op(n

1/2).

By the regularity condition,
∂ln((Θ10, 0))

∂Θ2

= Op(n
1/2) and hence

∂ln((Θ1, ξ))

∂Θ2

= Op(n
1/2).

Applying this result to 3.20, we have

ln((Θ1,Θ2))− ln((Θ1, 0)) = Op(
√
n)

K∑
k=1

[∑
k∈K

{∑
j∈k

|βkj|
}2

]
,

where j = tβk
+ 1, and tβk

is the numbers of true nonzero fixed effects in component k. On the
other hand,

pn((Θ1,Θ2))− pn((Θ1, 0)) =
K∑
k=1

(
πk · n · pλkn

(βkj)
)
.

Therefore,

Qn((Θ1,Θ2))−Qn((Θ1, 0))

=
K∑
k=1

[∑
k∈K

{∑
j∈k

|βkj|
}2

·Op(
√
n)− πk · n · pλkn

(βkj)

]
.

By condition (P3), it is less than 0 in probability. Therefore,

Pr
[
Qn((Θ1,Θ2))−Qn((Θ1, 0)) < 0

]
→p 1.

This completes the proof of (a).

(b) Part (i). Let (Θ̂1n, 0) be the maximizer of the penalized log-likelihood functionQ((Θ1, 0))which
is regarded as a function of Θ1. It suffices to show that in the neighborhood ∥Θ − Θ1∥ =

O(n−1/2), Qn((Θ1,Θ2)) − Qn((Θ̂1n, 0)) < 0 with probability tending to 1 as n → ∞. We
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have that

Qn((Θ1,Θ2))−Qn((Θ̂1n, 0))

=
{
Qn((Θ1,Θ2))−Qn((Θ1,Θ0))

}
+
{
Qn((Θ1,Θ0))−Qn((Θ̂1n, 0))

}
≤ Qn((Θ1,Θ2))−Qn((Θ1,Θ0)) < 0

with probability tending to 1 by (a).

Part (ii). Regard Qn((Θ1, 0)) as a function of Θ1. Using the same argument as in Theorem 3.3.1,
there exists a root-n consistent local maximizer of this function, say Θ̂1n, which satisfies the score-
type equation

Q′
n((Θ̂1n, 0)) = l′n((Θ̂1n, 0))− p′n((Θ̂1n, 0)) = 0. (3.22)

Since Θ̂1n is a root-n consistent estimator, by Taylor’s expansion around the true value, we have

l′n((Θ̂1n, 0)) = l′n((Θ10, 0)) +
[
l′′n((Θ10, 0)) + op(n)

]
(Θ̂1n,−Θ10)

p′n((Θ̂1n, 0)) = p′n((Θ10, 0)) +
[
p′′n((Θ10, 0)) + op(n)

]
(Θ̂1n,−Θ10).

Substituting them into 3.22, we have[
l′n((Θ10, 0))− p′n((Θ10, 0))

]
+
[
l′′n((Θ10, 0))− p′′n((Θ10, 0)) + op(n)

]
(Θ̂1n,−Θ10) = 0.

By rearranging the terms and multiplying both sides of the equation by n−1/2, we get

− n− 1
2

[
l′′n((Θ10, 0))− p′′n((Θ10, 0)) + op(n)

]
(Θ̂1n,−Θ10)

= n− 1
2

[
l′n((Θ10, 0))− p′n((Θ10, 0))

]
.

Then, by the regularity conditions, − 1
n
l′′n((Θ10, 0)) = I1(Θ10) + op(1) and 1√

n
l′n((Θ10, 0)) →d

N(0, I1(Θ10)), where I1(Θ10) is the Fisher information matrix knowing that Θ20 = 0. Thus by
Slutsky’s theorem,

√
n

[{
I1(Θ10) +

p′′n(Θ10)

n

}
(Θ̂1 −Θ10) +

p′n(Θ10)

n

]
→d N(0, I1(Θ10)),

where p′n(Θ10) = p′n((Θ10, 0)) and p′′n(Θ10) = p′′n((Θ10, 0)).
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3.4 Simulation
We conduct empirical simulations to implement our proposed mixLMM with fixed effects selection across
two clusters. The model-based clustering method with variable selection for high-dimensional longitu-
dinal data was recently derived by Yang and Wu, 2022, and they were the first to address the clustering
method with simultaneous effects selection. We adapt their method by substituting various penalties in
our proposed approach. In this section, we evaluate our method’s performance of variable selection using
different penalties within the clusters.

We generate the data using the following LMM for cluster k, k = 1, 2:

yik = Xiβk + Zibik + ϵik. (3.23)

Group structure correlations in Xi are generated from a multivariate normal distribution Xi ∼
N(0,Σ) to mimic the predefined domain-based SDOH data, whereΣ is a Toeplitz covariance matrix with
correlation entries Σij = w|i−j| for variables within group correlation, and Σlm = b|l−m| for between
group correlation. Here, (i, j) ∈ p represents the ith and jth components of Xi, while (l,m) ∈ g

denotes the lth and mth groups. The correlation levels w and b are between 0 and 1. The first covariance
matrix model sets the constant w = 0.6 and b = 0.6 to test moderate correlation within and between
groups. The second covariance matrix model sets the high correlation within and between groups, w =

0.9 and b = 0.9. The random errors were generated as ϵik ∼ N(0,σ2
k), where

σ2
k =

1
n

∑n
i=1

∑K
k=1 (Xiβk + Zibik)

2

SNR
, (3.24)

and the signal-to-noise ratio (SNR) is set to 1 in our simulations.
We set sample sizes of n = (100, 200, 400) with repeated measurements of mi = 10 for each

dataset. Each simulated dataset was replicated 100 times. Additionally, we generated datasets with
varying p-dimensional predictors. Thus, we considered the following combinations: 1) for n = 100,
p = (25, 50, 100); 2) for n = 200, p = (25, 50, 100); and 3) for n = 400, p = (100, 200, 400). The
variables are divided into five groups, where g = 5, which can be equal-sized or unequal-sized.

For p variables, each variable is assigned a group index corresponding to one of five unique groups.
When the groups are of equal size, the covariates are evenly split among all five groups. Conversely, for
unequal-sized groups, half of the variables are shared among the five groups, while the other half is divided
among three groups.

We examine three scenarios involving true fixed effect parameters: 1) one true non-zero fixed effect
at the first index of each group, 2) two non-zero fixed effects at the first two indices for each group, and
3) one or more true non-zero fixed effects in each group. In Scenario 1, each simulated dataset contains
five true non-zero parameters; Scenario 2 includes ten; and Scenario 3 has eight true non-zero parameters.
These three distinct scenarios, based on the number of non-zero coefficients within each group, allow us
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to evaluate how effectively the mixLMM-eLasso addresses both homogeneous and heterogeneous sparsity
structures in grouped variable selection. These scenarios increase in complexity, ranging from a simple
structure with a single non-zero coefficient per group to more complex situations with varying numbers
of non-zero coefficients across structured groups. In the parameter vectors, the intercept β0 for the fixed
effects is set to 1. The true non-zero coefficient is assigned as 1 in cluster 1 and −1 in cluster 2. Therefore,
in the first simulation scenario, the first indexed predictors from each group are significant for both equal-
and unequal-sized groups:

In cluster 1,

β1 =
(
1, 1, 0, . . . , 0︸ ︷︷ ︸

g 1

, 1, 0, . . . , 0︸ ︷︷ ︸
g 2

, 1, 0, . . . , 0︸ ︷︷ ︸
g 3

, 1, 0, . . . , 0︸ ︷︷ ︸
g 4

, 1, 0, . . . , 0︸ ︷︷ ︸
g 5

)T

;

In cluster 2,

β2 =
(
1,−1, 0, . . . , 0︸ ︷︷ ︸

g 1

,−1, 0, . . . , 0︸ ︷︷ ︸
g 2

,−1, 0, . . . , 0︸ ︷︷ ︸
g 3

,−1, 0, . . . , 0︸ ︷︷ ︸
g 4

,−1, 0, . . . , 0︸ ︷︷ ︸
g 5

)T

.

In the second scenario, the first two indices from each group are significant:

β1 =
(
1, 1, 1, 0, . . . , 0︸ ︷︷ ︸

g 1

, 1, 1, 0, . . . , 0︸ ︷︷ ︸
g 2

, 1, 1, 0, . . . , 0︸ ︷︷ ︸
g 3

, 1, 1, 0, . . . , 0︸ ︷︷ ︸
g 4

, 1, 1, 0, . . . , 0︸ ︷︷ ︸
g 5

)T

,

β2 =
(
1,−1,−1, 0, . . . , 0︸ ︷︷ ︸

g 1

,−1,−1, 0, . . . , 0︸ ︷︷ ︸
g 2

,−1,−1, 0, . . . , 0︸ ︷︷ ︸
g 3

,−1,−1, 0, . . . , 0︸ ︷︷ ︸
g 4

,−1,−1, 0, . . . , 0︸ ︷︷ ︸
g 5

)T

.

In the third scenario, we set group 1 to have three non-zero parameters, group 2 to have two non-zero
parameters, and the other three groups to each have exactly one non-zero parameter:

β1 =
(
1, 1, 1, 1, 0, . . . , 0︸ ︷︷ ︸

g 1

, 1, 1, 0, . . . , 0︸ ︷︷ ︸
g 2

, 1, 0, . . . , 0︸ ︷︷ ︸
g 3

, 1, 0, . . . , 0︸ ︷︷ ︸
g 4

, 1, 0, . . . , 0︸ ︷︷ ︸
g 5

)T

,

β2 =
(
1,−1,−1,−1, 0, . . . , 0︸ ︷︷ ︸

g 1

,−1,−1, 0, . . . , 0︸ ︷︷ ︸
g 2

,−1, 0, . . . , 0︸ ︷︷ ︸
g 3

,−1, 0, . . . , 0︸ ︷︷ ︸
g 4

,−1, 0, . . . , 0︸ ︷︷ ︸
g 5

)T

.

The random effects for each group are represented by bi = (bi0, 0, ..., 0), where bi0 ∼ N(0, D).
The intercepts bi0 for the random effects are sampled from N(0, 1) for cluster 1 and N(0, 2) for cluster 2,
respectively. These intercepts are not subject to penalization during estimation.

The results are evaluated regarding the performance of clustering, variable selection, and parameter
estimation. We compared the performance of our proposed method (mixLMM) after applying various
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penalty functions, including Exclusive Lasso (mixLMM-eLasso), SCAD (mixLMM-SCAD), and Lasso
(mixLMM-Lasso). Let λn and λ represent the tuning parameters in Lasso and SCAD, respectively. The
following penalty functions are added to our proposed approach for comparison:

For Lasso,

Pλn

p∑
j=1

|βj| ≤ s,

where s is a predetermined free parameter that defines the level of regularization;
For SCAD,

P ′
λ(|βj|) = λ

{
I(|βj| ≤ λ) +

(aλ− |β|j)+

(a− 1)λ
I(|βj| > λ)

}
, a > 2,

where a is a known constant (J. Fan & Li, 2001), which can be set to 3.7 in common applications, and I(·)
is a set indicator function.

We evaluate clustering accuracy by calculating the adjusted Rand Index (ARI), which measures the
similarity between two cluster partitions while considering the probability of chance clustering (Hubert
& Arabie, 1985). Given a set S of n elements, the ARI between two clusterings, U = {U1, U2, . . . , Ur}
and V = {V1, V2, . . . , Vs}, is defined as (Hubert & Arabie, 1985; Steinley, 2004)

ARI =

∑
ij

(
nij

2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
n
2

)
1
2

[∑
i

(
ai
2

)
+
∑

j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
n
2

) ,
where nij denotes the number of observations in common between Ui and Vj , ai and bj are the sizes of
clusters Ui and Vj , respectively, and n is the total number of observations. The ARI ranges from -1 to
1, with higher values reflecting a more favorable clustering outcome. Additionally, the performance of
selection methods is measured using (C, IC), where C represents the number of zero coefficients correctly
estimated as zero, and IC is the number of non-zero coefficients incorrectly estimated as zero. At last,
Mean squared error, MSE=∥ β̂pk − β ∥2, is used to measure the performance of parameter estimates,
where βpk denotes the penalized estimates, and β denotes the true value of the estimates. Thus, we have

MSE =

∑K
k=1

∑p
j=1 ∥ β̂jk − βjk ∥22∑K

k=1

∑p
j=1 ∥ βjk ∥22

.

3.5 Results
We compared the performance of the proposed method after applying different penalties across various
data settings characterized by sample size n, the number of variables p, and correlation structures. Addi-
tionally, we considered three scenarios (scn) involving true parameters in equal-sized and unequal-sized
groups to assess the effectiveness of variable selection within the specified domains.
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We first examined three scenarios that represent the data design with n = 100 and p = (25, 50, 100)

corresponding to n/4, n/2, and n. The moderate correlation within and between groups was set to 0.6,
while the high correlation was set to 0.9. Each clustering method with Exclusive Lasso (mixLMM-eLasso),
SCAD (mixLMM-SCAD), and Lasso (mixLMM-Lasso) was summarized using the average values of ARI,
C, IC, and MSE (Bold values indicate the best ARI, C, IC, and MSE in the simulation).

In Table 3.1, the results showed that the mixLMM via Exclusive Lasso method consistently outper-
forms all other approaches across various scenarios and metrics, regardless of the correlation level or the
dimensionality of the data. Its ability to balance clustering accuracy, sparsity, and stability made it a pre-
ferred choice for analyzing high-dimensional data. The mixLMM-eLasso achieved the highest ARI in all
scenarios, demonstrating robust clustering performance across low and high correlation levels and varying
dimensionalities. The mixLMM-SCAD and mixLMM-Lasso showed competitive ARI in some cases;
however, their performance deteriorated as the dimensionality increased, especially in high-dimensional
settings. Moreover, the IC and MSE were minimal across all scenarios in the mixLMM-eLasso, indicating
its effectiveness in achieving accurate variable selection and parameter estimation while maintaining spar-
sity. The mixLMM-SCAD and, occasionally, mixLMM-Lasso performed better at accurately identifying
true zero coefficients (C) and increased IC and MSE, particularly as p increases. They may tend to shrink
coefficients to zero incorrectly, especially when the correlation between covariates is strong. This suggested
that both methods are less effective at handling high-dimensional data compared to mixLMM-eLasso.
The performance gap between mixLMM-eLasso and the other methods became more pronounced under
a strong correlation (Corr = 0.9).

Table 3.2 displayed the results of variable selection and prediction error for a dataset withn = 200 and
p = (25, 50, 100). This table followed the same setup as Table 3.1, which highlighted the findings forn =

100. The mixLMM-eLasso consistently outperformed across all metrics, achieving the best ARI, lowest
IC, and lowest MSE in every scenario and correlation level. In Table 3.2, mixLMM-eLasso demonstrated a
slight improvement in ARI, reduced IC, and lower MSE compared to Table 3.1, highlighting the advantages
of a larger sample size (n = 200). While both mixLMM-SCAD and mixLMM-Lasso showed advantages
from the expanded sample size in Table 3.2, these gains were less significant compared to mixLMM-eLasso’s
improvements. When two or more than one non-zero coefficients were allocated to each of the five equal-
sized groups, mixLMM-eLasso remained the leading method in both Table 3.1 and 3.2, maintaining
consistent clustering accuracy and sparsity across all values of p and Corr.

The results presented in Table 3.3 illustrated the performance of various methods on larger datasets
with n = 400 and p = (100, 200, 400). The table indicated that mixLMM-eLasso consistently out-
performed mixLMM-SCAD and mixLMM-Lasso, achieving the highest ARI while minimizing IC and
MSE. This demonstrated that mixLMM-eLasso maintained stable clustering accuracy and parameter es-
timation as the dimensionality increased. While mixLMM-SCAD and mixLMM-Lasso showed marginal
improvements compared to smaller sample sizesn = (100, 200), they still fell short of mixLMM-eLasso’s
performance in high-dimensional settings. In certain scenarios, mixLMM-SCAD provided better indi-
cations of true zero parameters (C) than mixLMM-Lasso; however, it struggled with higher values of
IC and MSE as p and correlation increased. This may have been due to their penalty, which tends to
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excessively shrink coefficients to zero and, therefore, incorrectly sets them to zero when the correlation
between covariates is high and dimensionality increases (J. Fan & Lv, 2010; Zou & Hastie, 2005).

Thus, overall, an increase in n enhanced the statistical efficiency of all methods; however, the per-
formance gap between mixLMM-eLasso and the other methods widened as p and correlation increased.
These results highlighted the effectiveness of mixLMM-eLasso in high-dimensional data analysis by uti-
lizing its simultaneous clustering and variable selection framework to attain superior performance across
various scenarios. Additionally, we presented further simulations with unequal group sizes in the Ap-
pendix (see Tables B.1, B.2, and B.3), using the same data setup as for the equal group sizes. The results were
shown in Table B.1 with n = 100, Table B.2 with n = 200, and Table B.3 with n = 400. These simula-
tions yielded results similar to those of the equal-sized groups, where the mixLMM-eLasso outperformed
all other methods.

Table 3.1: Comparison results averaged by ARI, C, IC, and MSE among the proposed methods(mixLMM)
through Exclusive Lasso (mixLMM-eLasso), SCAD (mixLMM-SCAD), and Lasso (mixLMM-Lasso)
using datasets for n=200, p=(25, 50 100) in equal-sized group.

Scn method Corr ARI C IC MSE ARI C IC MSE ARI C IC MSE
mixLMM- p=25 p=50 p=100

1 eLasso 0.6 0.939 37.99 0.00 0.011 0.940 88.07 0.00 0.006 0.941 187.84 0.00 0.003
SCAD 0.926 38.03 0.51 0.028 0.852 87.65 3.32 0.040 0.674 187.37 4.41 0.026
Lasso 0.926 37.29 0.90 0.032 0.877 87.77 3.70 0.043 0.756 188.59 5.49 0.030
eLasso 0.9 0.947 37.75 0.00 0.016 0.949 87.76 0.06 0.008 0.949 187.66 0.00 0.004
SCAD 0.926 38.29 3.42 0.146 0.912 87.57 4.11 0.085 0.891 187.64 5.03 0.049
Lasso 0.939 38.04 0.34 0.052 0.927 87.64 0.92 0.030 0.910 187.29 1.94 0.019

2 eLasso 0.6 0.949 26.29 0.00 0.038 0.947 76.52 0.00 0.020 0.936 175.42 0.17 0.011
SCAD 0.916 26.34 3.55 0.136 0.862 74.46 6.53 0.105 0.758 173.59 10.12 0.074
Lasso 0.922 26.23 3.02 0.104 0.889 77.07 6.15 0.082 0.747 177.59 11.97 0.067
eLasso 0.9 0.960 27.43 1.13 0.136 0.962 77.69 1.07 0.066 0.952 177.37 1.02 0.033
SCAD 0.939 28.52 11.22 0.584 0.929 76.60 11.25 0.310 0.896 174.61 12.45 0.172
Lasso 0.958 27.81 2.75 0.214 0.955 77.83 3.63 0.113 0.931 176.79 4.74 0.059

3 eLasso 0.6 0.945 24.36 1.05 0.036 0.947 73.74 1.07 0.021 0.937 173.54 1.19 0.012
SCAD 0.912 28.97 3.57 0.074 0.900 77.51 5.33 0.057 0.659 177.68 8.96 0.052
Lasso 0.929 28.17 3.36 0.071 0.910 79.33 6.36 0.066 0.768 180.46 9.53 0.049
eLasso 0.9 0.957 26.99 1.49 0.111 0.957 77.42 1.30 0.054 0.957 177.66 1.31 0.027
SCAD 0.930 30.96 8.42 0.352 0.930 79.75 9.18 0.201 0.907 178.31 9.98 0.117
Lasso 0.945 28.91 2.62 0.140 0.942 79.24 3.70 0.080 0.935 178.41 4.14 0.040

Note: Bold symbols in the ARI and C indicate the highest values, while the lowest values for
IC and MSE are also bolded. The optimal values of C vary by scenario and are determined by
the 2×(p - number of non-zeros). Thus, for p = 25, C = (45, 40, 42); for p = 50, C = (95, 90, 92);
for p = 100, C = (195, 190 192). The optimal value for IC is zero; The method denotes mixLMM
with tested penalties.
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Table 3.2: Comparison results averaged by ARI, C, IC, and MSE among the proposed methods(mixLMM)
through Exclusive Lasso (mixLMM-eLasso), SCAD (mixLMM-SCAD), and Lasso (mixLMM-Lasso)
using datasets for n=200, p=(25, 50 100) in equal-sized group.

Scn method Corr ARI C IC MSE ARI C IC MSE ARI C IC MSE
mixLMM- p=25 p=50 p=100

1 eLasso 0.6 0.936 38.69 0.00 0.005 0.940 88.61 0.00 0.003 0.939 188.38 0.00 0.001
SCAD 0.923 38.92 0.30 0.011 0.913 87.87 1.00 0.013 0.837 188.49 3.03 0.016
Lasso 0.924 37.46 0.50 0.016 0.915 86.08 1.40 0.017 0.877 185.10 3.20 0.017
eLasso 0.9 0.947 38.22 0.00 0.008 0.952 87.92 0.00 0.004 0.946 188.04 0.00 0.002
SCAD 0.923 38.69 1.69 0.069 0.931 88.06 2.34 0.047 0.913 187.22 3.01 0.029
Lasso 0.945 38.14 0.02 0.024 0.949 87.37 0.02 0.013 0.933 186.76 0.51 0.008

2 eLasso 0.6 0.955 27.63 0.00 0.018 0.947 77.27 0.00 0.010 0.955 176.94 0.00 0.005
SCAD 0.949 28.21 0.54 0.033 0.926 76.19 2.62 0.040 0.917 174.37 4.36 0.031
Lasso 0.951 27.18 0.40 0.020 0.937 76.08 1.99 0.031 0.922 176.24 5.80 0.034
eLasso 0.9 0.961 28.04 0.18 0.074 0.956 77.57 0.22 0.037 0.964 177.97 0.16 0.018
SCAD 0.945 28.95 8.81 0.377 0.934 77.29 9.14 0.209 0.934 176.09 10.41 0.121
Lasso 0.959 28.20 0.85 0.114 0.954 77.29 1.01 0.063 0.957 177.00 0.95 0.032

3 eLasso 0.6 0.946 24.41 0.98 0.018 0.943 73.64 0.89 0.011 0.939 172.78 0.93 0.007
SCAD 0.943 30.92 2.39 0.021 0.933 79.68 2.57 0.013 0.858 179.35 5.18 0.022
Lasso 0.944 28.57 1.91 0.020 0.935 78.45 2.80 0.021 0.863 178.64 7.15 0.034
eLasso 0.9 0.956 26.03 0.97 0.070 0.954 75.91 0.83 0.037 0.955 176.47 0.72 0.019
SCAD 0.945 31.18 6.90 0.220 0.939 79.74 7.27 0.129 0.937 179.03 8.65 0.080
Lasso 0.955 28.67 1.60 0.073 0.950 78.10 1.72 0.040 0.948 177.77 1.71 0.021

Note: Bold symbols in the ARI and C indicate the highest values, while the lowest values for
IC and MSE are also bolded. The optimal values of C vary by scenario and are determined by
the 2×(p - number of non-zeros). Thus, for p = 25, C = (45, 40, 42); for p = 50, C = (95, 90, 92);
for p = 100, C = (195, 190 192). The optimal value for IC is zero; The method denotes mixLMM
with tested penalties.
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Table 3.3: Comparison results averaged by ARI, C, IC, and MSE among the proposed methods(mixLMM)
through Exclusive Lasso (mixLMM-eLasso), SCAD (mixLMM-SCAD), and Lasso (mixLMM-Lasso)
using datasets for n=400, p=(100, 200 400) in equal-sized group.

method p=100 p=200 p=400
Scn mixLMM- Corr ARI C IC MSE ARI C IC MSE ARI C IC MSE
1 eLasso 0.6 0.939 188.82 0.00 0.001 0.942 388.81 0.00 0.000 0.944 788.75 0.00 0.000

SCAD 0.899 186.86 1.30 0.007 0.879 387.38 2.80 0.007 0.827 788.15 3.50 0.005
Lasso 0.909 182.46 1.50 0.008 0.886 382.56 3.20 0.008 0.824 781.45 4.59 0.006
eLasso 0.9 0.952 188.38 0.00 0.001 0.950 388.44 0.00 0.001 0.950 788.78 0.00 0.000
SCAD 0.934 187.49 0.84 0.009 0.934 386.58 1.67 0.008 0.902 784.90 2.04 0.004
Lasso 0.945 186.45 0.00 0.003 0.931 385.65 0.70 0.003 0.904 784.63 1.89 0.003

2 eLasso 0.6 0.957 177.59 0.00 0.003 0.955 377.43 0.00 0.001 0.956 777.42 0.20 0.001
SCAD 0.938 176.61 1.60 0.010 0.892 375.58 4.62 0.013 0.834 777.24 7.81 0.010
Lasso 0.940 174.12 2.20 0.014 0.896 372.88 6.80 0.018 0.783 773.80 11.60 0.015
eLasso 0.9 0.964 177.89 0.01 0.009 0.963 378.48 0.00 0.005 0.966 778.38 0.03 0.002
SCAD 0.949 177.17 7.77 0.077 0.956 376.59 8.93 0.046 0.934 775.67 10.52 0.027
Lasso 0.956 176.59 0.17 0.016 0.951 376.02 0.48 0.009 0.930 774.15 3.31 0.008

3 eLasso 0.6 0.946 172.35 0.81 0.004 0.948 372.93 0.83 0.002 0.946 771.99 0.92 0.001
SCAD 0.937 179.16 2.56 0.005 0.904 377.93 5.36 0.010 0.803 780.59 8.29 0.009
Lasso 0.920 173.81 3.58 0.013 0.881 372.68 6.04 0.013 0.824 777.23 9.97 0.012
eLasso 0.9 0.958 175.59 0.62 0.013 0.959 376.07 0.54 0.007 0.960 776.00 0.53 0.004
SCAD 0.946 179.17 5.76 0.040 0.942 378.40 7.09 0.026 0.934 778.39 8.50 0.017
Lasso 0.955 177.82 1.67 0.011 0.946 375.03 1.38 0.005 0.930 773.53 3.40 0.005

Note: Bold symbols in the ARI and C indicate the highest values, while the lowest values for IC
and MSE are also bolded. The optimal values of C vary by scenario and are determined by the
2×(p - number of non-zeros). Thus, for p = 100, C = (190, 180, 184); for p = 200, C = (390, 380,
384); for p = 400, C = (790, 780 784). The optimal value for IC is zero; The method denotes
mixLMM with tested penalties.
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For n = 100, we further illustrated the testing performance of robust sparsity for accurate variable
selection across various group structures using the C and IC criteria, as shown in Figures 3.1, 3.2, and
3.3, based on the results from Table 3.1 and Appendix Table B.1. The upper panels showed results for
equal-sized groups (from Table 3.1), while the lower panels depicted results for unequal-sized groups
(from Appendix Table B.1). Our observations indicated that the method by mixLMM-eLasso consistently
demonstrated superior performance, achieving higher C values and lower IC values, particularly in high
correlation (Corr = 0.9). This underscored the robustness of mixLMM-eLasso in accurately identifying
relevant variables while minimizing classification errors. In contrast, mixLMM-SCAD and mixLMM-
Lasso showed reduced performance compared to mixLMM-eLasso, exhibiting higher IC values and greater
variability, especially under medium correlation (Corr = 0.6). The mixLMM-eLasso maintained its
advantage for unequal-sized groups, although the performance gap narrowed, reflecting the challenges of
variable selection in scenarios with group imbalance.

Similar to the findings for n = 100, the analysis for n = 200 and n = 400 (as shown in Figures 3.4,
3.5, 3.6, and Figures 3.7, 3.8, 3.9, respectively) confirmed the consistent superiority of mixLMM-eLasso in
both equal- and unequal-sized groups. It attained a higher C criterion and a lower IC criterion, particularly
under high correlation (Corr = 0.9), demonstrating robust classification accuracy with minimal variabil-
ity. While both mixLMM-SCAD and mixLMM-Lasso also showed improvements with larger sample
sizes, they continued to exhibit greater variability and higher IC values, especially under high correlation
(Corr = 0.9). MixLMM-eLasso maintained its advantage in unequal-sized groups as well, highlighting its
scalability and robustness across different group structures and sample sizes.
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(a) Equal-Sized Group in Scenario 1, n=100, p = (25, 50, 100)

(b) Unequal-Sized Group in Scenario 1, n=100, p = (25, 50, 100)

Figure 3.1: Model-based Clustering with various penalties: 1) Exclusive Lasso (mixLMM-eLasso), 2) SCAD
(mixLMM-SCAD), and 3) Lasso (mixLMM-Lasso) tested in Scenario 1 with different data settings. Corr = 0.60
(Left), 0.90 (Right); n = 100; p = (25, 50, 100). The number of true zero and non-zero coefficients in a cluster are
indicated next to p for C and IC, respectively.
Note: On the x-axis, the penalties illustrate model-based clustering with the implemented penalties for comparisons.
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(a) Equal-Sized Group in Scenario 2, n=100, p = (25, 50, 100)

(b) Unequal-Sized Group in Scenario 2, n=100, p = (25, 50, 100)

Figure 3.2: Model-based Clustering with various penalties: 1) Exclusive Lasso (mixLMM-eLasso), 2) SCAD
(mixLMM-SCAD), and 3) Lasso (mixLMM-Lasso) tested in Scenario 2 with different data settings. Corr = 0.60
(Left), 0.90 (Right); n = 100; p = (25, 50, 100). The number of true zero and non-zero coefficients in a cluster in a
cluster is indicated next to p for C and IC, respectively.
Note: On the x-axis, the penalties illustrate model-based clustering with the implemented penalties for comparisons.
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(a) Equal-Sized Group in Scenario 3, n=100, p = (25, 50, 100)

(b) Unequal-Sized Group in Scenario 3, n=100, p = (25, 50, 100)

Figure 3.3: Model-based Clustering with various penalties: 1) Exclusive Lasso (mixLMM-eLasso), 2) SCAD
(mixLMM-SCAD), and 3) Lasso (mixLMM-Lasso) tested in Scenario 3 with different data settings. Corr = 0.60
(Left), 0.90 (Right); n = 100; p = (25, 50, 100). The number of true zero and non-zero coefficients in a cluster are
indicated next to p for C and IC, respectively.
Note: On the x-axis, the penalties illustrate model-based clustering with the implemented penalties for comparisons.

68



(a) Equal-Sized Group in Scenario 1, n=200, p = (25, 50, 100)

(b) Unequal-Sized Group in Scenario 1, n=200, p = (25, 50, 100)

Figure 3.4: Model-based Clustering with various penalties: 1) Exclusive Lasso (mixLMM-eLasso), 2) SCAD
(mixLMM-SCAD), and 3) Lasso (mixLMM-Lasso) tested in Scenario 1 with different data settings. Corr = 0.60
(Left), 0.90 (Right); n = 200; p = (25, 50, 100). The number of true zero and non-zero coefficients in a cluster are
indicated next to p for C and IC, respectively.
Note: On the x-axis, the penalties illustrate model-based clustering with the implemented penalties for comparisons.
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(a) Equal-Sized Group in Scenario 2, n=200, p = (25, 50, 100)

(b) Unequal-Sized Group in Scenario 2, n=200, p = (25, 50, 100)

Figure 3.5: Model-based Clustering with various penalties: 1) Exclusive Lasso (mixLMM-eLasso), 2) SCAD
(mixLMM-SCAD), and 3) Lasso (mixLMM-Lasso) tested in Scenario 2 with different data settings. Corr = 0.60
(Left), 0.90 (Right); n = 200; p = (25, 50, 100). The number of true zero and non-zero coefficients in a cluster are
indicated next to p for C and IC, respectively.
Note: On the x-axis, the penalties illustrate model-based clustering with the implemented penalties for comparisons.
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(a) Equal-Sized Group in Scenario 3, n=200, p = (25, 50, 100)

(b) Unequal-Sized Group in Scenario 3, n=200, p = (25, 50, 100)

Figure 3.6: Model-based Clustering with various penalties: 1) Exclusive Lasso (mixLMM-eLasso), 2) SCAD
(mixLMM-SCAD), and 3) Lasso (mixLMM-Lasso) tested in Scenario 3 with different data settings. Corr = 0.60
(Left), 0.90 (Right); n = 200; p = (25, 50, 100). The number of true zero and non-zero coefficients in a cluster are
indicated next to p for C and IC, respectively.
Note: On the x-axis, the penalties illustrate model-based clustering with the implemented penalties for comparisons.
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(a) Equal-Sized Group in Scenario 1, n=400, p = (100, 200, 400)

(b) Unequal-Sized Group in Scenario 1, n=400, p = (100, 200, 400)

Figure 3.7: Model-based Clustering with various penalties: 1) Exclusive Lasso (mixLMM-eLasso), 2) SCAD
(mixLMM-SCAD), and 3) Lasso (mixLMM-Lasso) tested in Scenario 1 with different data settings. Corr = 0.60
(Left), 0.90 (Right); n = 400; p = (100, 200, 400). The number of true zero and non-zero coefficients in a cluster
are indicated next to p for C and IC, respectively.
Note: On the x-axis, the penalties illustrate model-based clustering with the implemented penalties for comparisons.
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(a) Equal-Sized Group in Scenario 2, n=400, p = (100, 200, 400)

(b) Unequal-Sized Group in Scenario 2, n=400, p = (100, 200, 400)

Figure 3.8: Model-based Clustering with various penalties: 1) Exclusive Lasso (mixLMM-eLasso), 2) SCAD
(mixLMM-SCAD), and 3) Lasso (mixLMM-Lasso) tested in Scenario 2 with different data settings. Corr = 0.60
(Left), 0.90 (Right); n = 400; p = (100, 200, 400). The number of true zero and non-zero coefficients in a cluster
are indicated next to p for C and IC, respectively.
Note: On the x-axis, the penalties illustrate model-based clustering with the implemented penalties for comparisons.
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(a) Equal-Sized Group in Scenario 3, n=400, p = (100, 200, 400)

(b) Unequal-Sized Group in Scenario 3, n=400, p = (100, 200, 400)

Figure 3.9: Model-based Clustering with various penalties: 1) Exclusive Lasso (mixLMM-eLasso), 2) SCAD
(mixLMM-SCAD), and 3) Lasso (mixLMM-Lasso) tested in Scenario 3 with different data settings. Corr = 0.60
(Left), 0.90 (Right); n = 400; p = (100, 200, 400). The number of true zero and non-zero coefficients in a cluster
are indicated next to p for C and IC, respectively.
Note: On the x-axis, the penalties illustrate model-based clustering with the implemented penalties for comparisons.
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3.6 SDOH Data Application
We applied the proposed clustering method to the data, which considered the SDOH variables and CVD
mortality in a longitudinal framework. The working SDOH (Son et al., 2023) dataset was described
in Section 1.2.1. The dataset had less than 2% of missing information, and missing values were replaced
using mean imputation, a commonly applied simple imputation technique in statistical analyses (Little
& Rubin, 2019). After this imputation, the dataset included 78 variables across 3,224 counties. This
consisted of 3,142 counties and 82 county-equivalents from US territories, including 78 municipalities
in Puerto Rico, one district in Guam, and three main islands in the US Virgin Islands. Of these 3,142
counties, 1,166 were classified as urban, while the remaining 1,976 were classified as rural. The rural-urban
status of a county was determined according to the Urban-Rural Classification Scheme for Counties
used by the National Center for Health Statistics (NCHS) in 2013 (Ingram & Franco, 2014). Counties in
categories 1 through 4 were classified as urban, while counties in categories 5 and 6 were classified as rural
(Ingram & Franco, 2014); however, US territories were not included in this classification. We included
this rural-urban indicator as an additional domain to address geographic disparities.

Figure 3.10: Mean age-adjusted cardiovascular disease mortality trajectories of the US counties from 2009
to 2018 in the seven clusters identified by the method.
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The proposed clustering method with Exclusive Lasso (mixLMM-eLasso) was applied to our SDOH
study data. To determine the optimal number of clusters, we calculated the BIC criterion, and the results
can be found in the Appendix (see Table B.5). Based on the BIC, seven clusters of counties with similar
CVD mortality trajectories associated with SDOH were identified, as shown in Figure 3.10. This figure
illustrated trends in mean age-adjusted CVD mortalities per 100,000 people across seven clusters from
2009 to 2018, with corresponding statistics provided in the Appendix (see Table B.4). Cluster 1 consisted
of 553 counties and consistently revealed the highest mortality rates. These rates steadily decreased from
299.79 per 100,000 people (95% CI: 294.12, 305.46) in 2009 to 261.85 per 100,000 people (95% CI: 256.13,
267.58) in 2018. Cluster 2, which included the largest group with 809 counties, exhibited a similar decreas-
ing trend, with mortality declining from 269.74 per 100,000 people (95% CI: 266.56, 272.92) in 2009
to 229.80 per 100,000 people (95% CI: 226.70, 232.89) in 2018, highlighting substantial improvements
over the decade. In contrast, Cluster 7, the smallest group with 170 counties, demonstrated the lowest
mortality rates, with a gradual decline from 223.09 per 100,000 people (95% CI: 217.48, 228.69) in 2009
to 212.27 per 100,000 people (95% CI: 206.41, 218.13) in 2018. In addition, Cluster 3 showed a unique
pattern, with a slight increase in mortality from 250.02 per 100,000 people (95% CI: 245.60, 254.44) in
2012 to 263.08 per 100,000 people (95% CI: 258.56, 267.60) in 2018, reflecting a deviation from the overall
downward trend observed in other clusters. Similarly, Cluster 5 represented a somewhat unique pattern
with minimal change over the years, showing a slight decrease followed by a slight increase from 226.05
per 100,000 people (95% CI: 221.58, 230.51) in 2012 to 232.67 per 100,000 people (95% CI: 228.19, 237.15) in
2018. These patterns suggested distinct trajectories in CVD mortality reduction across clusters, potentially
associated with varying SDOH factors across all domains, as shown in Table 3.4.

Figure 3.11 showed the spatial distribution of US counties classified into seven clusters using the pro-
posed method, with detailed results available in Table B.7 (see in the Appendix). However, the figure
did not include the US territories. The clustering results highlighted the differences in county-level char-
acteristics shown in Table B.6 (also in the Appendix). Additionally, it was noted that this rural-urban
frequency table in B.6 did not cover the US territories as the Urban-Rural Classification Scheme for
Counties (Ingram & Franco, 2014) did not provide the rural-urban status for those regions. Cluster 2, the
largest group, accounted for 25.09% of counties and included 27.02% of urban counties and 23.63% of rural
counties. This indicated a substantial presence in both urban and rural areas. Cluster 1, accounting for
17.15% of total counties, reflected a predominantly rural composition. The gap between rural (21.20%) and
urban (7.98%) counties was notably larger in this cluster compared to other clusters, indicating the highest
disparity in the proportion of counties between rural and urban areas. Similarly, Cluster 3, which made
up 15.54% of the total, skewed toward rural areas, with 18.47% of total rural counties and 11.49% of total
urban counties. In contrast, Cluster 6, which represented 11.17% of counties, was more urban-focused,
featuring 19.47% of urban counties and only 6.53% of rural counties. Similarly, Cluster 5 (9.62%) exhibited
a slightly urban-dominant distribution with 11.15% of total urban counties and 9.11% of total rural coun-
ties. Cluster 4 (16.16%) and Cluster 7 (5.27%) displayed mixed distributions, with Cluster 4 containing
14.07% of urban and 17.97% of rural counties, and Cluster 7 having the lowest proportions overall, with
8.83% of total urban and 3.09% of total rural. These results highlighted the geographic heterogeneity in
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CVD mortality distribution, suggesting that SDOH associated with CVD mortality may also have varied
significantly across clusters. Cluster-specific policies and interventions may have been needed to address
the unique challenges faced by rural-dominant clusters like Clusters 1 and 3 and urban-dominant clusters
like Cluster 6. Tailoring strategies to these patterns could have enhanced equity and effectiveness in CVD
management across US counties.

Figure 3.11: Geographic distribution of clusters based on age-adjusted cardiovascular disease mortality
across counties in the United States.
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Table 3.4 highlighted associations between SDOH variables and CVD mortality, providing insights
into how these factors were related across seven clusters. The results also revealed distinct patterns of
SDOH contributions within each domain. The intercepts for each cluster indicated the mean age-adjusted
CVD mortality in each cluster, and they were assumed to vary by geographic distribution. To account for
the heterogeneity, a random effect for the intercept was included in the proposed model. This approach
captured the variability in baseline mortality rates across clusters while modeling the associations between
SDOH variables and CVD mortality. Additionally, the geographic region for the rural and urban indica-
tors was included as a measure of geographic disparity. While all clusters demonstrated varying rural-urban
dynamics, most indicated that CVD mortality rates were higher in rural counties than urban ones.

Cluster 1, characterized by rural dominance, consistently showed the highest CVD mortality rates,
although it had shown a steady decline over time. It had the highest baseline mean CVD mortality rate
of 276.76 per 100,000 people, and most SDOH from the physical infrastructure and healthcare context
were significant. For instance, the presence of community mental health centers (β=-2.6828) and the
number of rural health clinics (β=-0.4263) showed a negative association with mortality rates, highlighting
the benefits of accessible healthcare in rural areas. The number of people living with diagnosed HIV
per 1,000 (β=24.7662) was significantly associated with increased CVD mortality. This could be due
to the complex health challenges experienced by individuals with HIV, particularly in geographically
isolated areas. Additionally, the physical infrastructure domain played a crucial role. Variables such as the
number of beer, wine, and liquor stores (β=9.6685) and convenience stores (β=2.6932) per 1,000 people
indicated potential lifestyle and environmental risks. The high density of liquor and convenience stores
may have affected unhealthy behaviors in this rural-dominant cluster, like increased alcohol consumption
and reliance on processed foods, both of which were associated with poor cardiovascular health. From an
economic perspective, median household income (β=-0.3533) was linked to reduced mortality, suggesting
that higher income levels could alleviate some of the disadvantages faced in these rural-dominant areas.
However, limited education remained a critical issue; a higher percentage of individuals with less than a
high school diploma (β=1.5853) was associated with elevated mortality rates.

Cluster 2, the largest cluster, demonstrated substantial improvements in reducing CVD mortality
rates over the decade. This cluster, an urban-dominant cluster with significant rural representation, had a
baseline mean CVD mortality of 244.49 per 100,000 people. The percentage of the civilian population
from the social context, consisting of veterans (β=1.9300), was positively associated with mortality. Vet-
erans faced unique health challenges, such as higher rates of chronic conditions like hypertension and
diabetes, along with limited access to specialized healthcare services in both urban and rural areas. In
terms of the physical infrastructure, the percentage of housing units with no vehicles available (β=0.2767)
reflected unique challenges, as reliance on public transportation restricted access to healthcare in this clus-
ter. Conversely, the high density of beer, wine, and liquor stores per 1,000 people (β=-2.4785) indicated a
negative association with mortality in this cluster. This may have reflected counties where better regula-
tions and infrastructure mitigated the harmful effects of excessive alcohol availability or where improved
healthcare accessibility helped control heart disease. However, this effect may have differed across clusters,
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where regulatory enforcement could have been weaker, indicating the need for further investigation into
local dynamics.

In Cluster 3, the baseline mean CVD mortality was 256.42 per 100,000 people. This predominantly
rural cluster uniquely showed an increasing trend in CVD mortality from 2012 onward, in contrast to
the overall decline observed in the other clusters. Within the social context domain, the percentage of
the population identifying as Native Hawaiian or Pacific Islander (β=5.5562) was strongly positively as-
sociated with CVD mortality. This association highlighted the unique health challenges faced by the
population in this cluster. In the economic context domain, the percentage of the population that was un-
employed (β=-1.3502) showed a negative association with CVD mortality. This finding may have reflected
the specific dynamics of rural economies, where unemployment could occur alongside protective factors,
such as informal caregiving networks, which may have been associated with health outcomes in differing
ways. Furthermore, the density of full-service restaurants (β=-4.8642) per 1,000 people in the physical
infrastructure was negatively associated with CVD mortality. This suggested that access to a variety of
food options may have promoted healthier dietary habits and reduced cardiovascular risks. From the
healthcare context domain, the number of Federally Qualified Health Centers (β=2.2065) was positively
associated with CVD mortality. This finding may have indicated that these centers were located in areas
without fully addressing healthcare disparities. Similarly, the number of rural health clinics (β=1.4253) also
showed a positive association with mortality, reflecting potential limitations in the capacity or quality of
the healthcare workforce provided by these facilities, particularly in preventive health services for complex
chronic diseases like CVD.

Cluster 4, which indicated a mixed rural-urban composition and moderate CVD mortality rates, had
a baseline mean CVD mortality rate of 233.65 per 100,000 people. In the economic context, the percentage
of people employed in information services (β=2.9559) was possibly associated with the outcome. This link
could be attributed to factors such as occupational stress, sedentary lifestyles, and long working hours that
were often prevalent in information services jobs. In the healthcare context, the number of people living
with diagnosed HIV per 1,000 individuals (β=1.2838) also showed a positive correlation with mortality.
This correlation may have highlighted broader disparities in access to and quality of healthcare services
within underserved populations, where individuals with chronic conditions faced challenges in accessing
comprehensive care.

Cluster 5 maintained relatively stable mortality rates over time, characterized by minimal overall change
but a slight increase in recent years. The baseline average CVD mortality rate was 229.51 per 100,000 peo-
ple. Predominantly urban, the counties in this cluster displayed significant racial disparities, particularly
regarding the percentage of Black residents (β=1.0650) within its social context compared to other clusters.
In the physical infrastructure domain, the percentage of workers using public transportation, excluding
taxicabs, (β=-2.2212) was negatively associated with mortality. This indicated the protective benefits of
active transportation behaviors, such as walking or biking, to access public transit. Conversely, in Cluster
1, this association was slightly positive (β= 0.2784), suggesting that public transportation availability or
usage patterns differed, potentially reflecting limited infrastructure quality, greater travel burden, or fewer
overall benefits of transit systems in predominantly rural areas. Additionally, counties in Cluster 5 could
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have benefited from well-developed public transportation networks that improved access to healthcare
facilities and other essential services, thereby reducing mortality risks. In terms of healthcare context, the
total number of community mental health centers (β=-3.7925) was also negatively associated with mor-
tality. This suggested that increased access to these facilities may have helped address some of the health
disparities faced by populations in this cluster, especially in rural areas where mental health resources were
often scarce.

Clusters 6 and 7, both characterized by their urban dominance, displayed distinct patterns in the
contributions of SDOH while also sharing similarities in some areas. Cluster 6, which showed moderate to
low CVD mortality, had a baseline mean CVD mortality rate of 214.47 per 100,000 people. Cluster 7, the
smallest group, consistently recorded the lowest mortality rates among all clusters, showing steady declines.
It had a baseline CVD mortality rate of 216.77 per 100,000 people. In both clusters, a higher percentage
of individuals with less than a high school diploma was positively associated with CVD mortality, with β

coefficient values of 0.6571 for Cluster 6 and 0.3451 for Cluster 7. Meanwhile, the percentage of individuals
holding a master’s degree or higher was negatively associated with mortality in both clusters, with β

coefficient values of -2.1020 in Cluster 6 and -0.9772 in Cluster 7. However, the economic context revealed
different factors affecting CVD mortality. In both clusters, a higher percentage of workers employed in
manufacturing was positively associated with CVD mortality. Nevertheless, economic vulnerabilities
were highlighted by different variables in each cluster: Cluster 6 obsered a positive association between
CVD mortality and the percentage of employees in construction (β=0.7175) and a negative association
between CVD mortality and households receiving food stamps/SNAP (β=-0.4887). In contrast, CVD
mortality in Cluster 7 was associated with the percentage of households with public assistance income or
food stamps/SNAP (β=-1.7780) and the percentage of workers employed in wholesale trade (β=0.2732).
Additional domains further distinguished the two clusters. In the physical infrastructure domain, the
density of supermarkets and grocery stores (excluding convenience stores) per 1,000 people (β=-3.3162)
was negatively associated with CVD mortality in Cluster 7, while this variable was not associated with
the outcome in Cluster 6. In the social context domain, Cluster 6 had more ethnic and immigration
characteristics associated with CVD mortality compared to Cluster 7.

Distinct patterns of SDOH emerged across different clusters, particularly within each specific domain.
In rural-dominant clusters, such as Clusters 1 and 3, factors from the social context were prominently
represented, highlighting the potential relationship between racial and social inequities. SDOH in the
economic context, like median household income, consistently showed protective effects across clusters;
however, these benefits were less pronounced in rural areas, possibly due to lower baseline income levels.
The education domain underscored the far-reaching effects of limited educational attainment, especially
in rural-dominant clusters. Additionally, factors related to physical infrastructure, such as housing and
transportation, were significant in Cluster 1, where access to infrastructure was directly associated with
mortality outcomes. In rural-dominant clusters, the healthcare context played a particularly crucial role,
with both positive and negative associations reflecting disparities in healthcare access and quality. These
findings illustrated how SDOH factors may have been associated with CVD mortality differently in
rural and urban clusters, emphasizing the need for interventions tailored to the unique challenges of
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each area. Policies aimed at improving educational access, increasing healthcare resources, and enhancing
infrastructure were essential for reducing disparities and promoting health equity across various contexts.

Table 3.4: Selected Social Determinants of Health Associated with Age-Adjusted CVD Mortality by
County-level Clustering: mixLMM-EL, 2009–2018

Domains Variables K1 K2 K3 K4 K5 W6 K7
Int 276.7620 244.4885 256.4248 233.6494 229.5073 214.4745 216.7652

Social % Housing units with more than one occupant per room - - - - -0.0014 - -
context % Population reporting Asian race - - - - -0.0317 -0.0424 -0.6349

% Population reporting Black race -.4084 0.4714 0.6477 0.6587 1.0650 0.5829 0.7612
% Families with Children that are single-parent Families - - 0.0698 - - - -
% Population that does not speak English at all (ages 5 and over) - - - - -0.3375 - -
% Population that is foreign-born -0.7631 - - -0.8383 - -0.0677 -0.2732
% Children living with a grandparent householder (ages 17 and under) - - - - 0.4601 - -
% Occupied housing units without fuel -0.3900 - - - - - -
% Population reporting Hispanic ethnicity -0.4569 -0.6203 -0.2484 -0.3423 - -0.0957 -
% Population reporting multiple races - - - - - -0.1468 -
% Population reporting Native Hawaiian/Pacific Islander race - - 5.5562 - -0.2529 - -
% Population who are not U.S. citizens and entered U.S. before 1990 -0.4616 - -0.8767 - - - -
% Population who speak other languages (ages 5 and over) - - - - - -0.0545 -
% Civilian Population consisting of veterans (ages 18 and over) 0.1744 1.9300 -0.6576 - - 0.9636 -

Economic Median household income (in dollars, inflation-adjusted to file data year) /1000 -0.3533 -0.1674 - -0.2470 - - -
context % Unmarried partner households that received food stamps/SNAP benefits - -0.1586 -0.0018 - - - -

% Employed working in public administration - - - - -0.0435 - -
% Civilian Population in armed forces (ages 16 years and over) 0.8446 - - 0.4130 - - -
% Employed working in arts, entertainment, recreation, etc. - - - - - - -
% Employed working in construction 0.5123 0.5280 - - - 0.7175 -
% Employed working in finance and insurance, real estate, and rental, etc. - - -0.4683 - - - -
% Households that received food stamps/SNAP, past 12 months -0.3562 -0.6349 - - - -0.4887 -
% Households with public assistance income or food stamps/SNAP - - 0.1780 - -0.8084 - -1.7780
% Employed working in information services 0.4056 - -2.1483 2.9559 - - -
% Employed working in manufacturing 0.0031 0.1532 0.1194 0.4356 0.4380 0.7080 0.5038
% Employed working in agriculture, forestry, fishing, etc. (ages 16 and over) -0.7556 -0.1469 -0.1689 - - - -
% Employed working in other services, except public administration - - 0.4962 - - - -
% Population with income to poverty ratio: 1.25-1.99 -0.1478 - - - - - -
% Population with income to poverty ratio: <1.00 - - 0.1889 - - - -
% Employed working in professional, scientific, management, etc. - - -0.0307 - - - -
% Employed working in transportation and warehousing, and in utilities 0.0468 - - - 0.3085 - -
% Population that was unemployed (ages 16 years and over) 0.9503 0.1127 -1.3502 - -1.2396 - -0.0033
% Employed working in wholesale trade 0.0237 1.2932 - - - - 0.2732

Education % Population with some college or associate’s degree (ages 25 and over) - - -0.1901 -0.0167 - - -
% Population with a bachelor’s degree (ages 25 and over) - - -0.3119 - -0.2891 - -
% Population with a master’s or higher degree (ages 25 and over) -0.4596 -2.4459 -0.5556 -0.5819 -0.2080 -2.1020 -0.9772
% Population with only high school diploma (ages 25 and over) 0.51322 - - - - - -
% Population with less than high school education (ages 25 and over) 1.5853 2.1363 1.2619 0.2180 0.6571 0.3451

Physical Median home value of owner-occupied housing units -0.00010 -0.00006 -0.00002 -0.00005 -0.00003 -0.00001 -
Infrastructure % Housing in structures with 10 or more units -0.4236 - - - -0.4568 - -

% Housing units that are mobile homes 0.1264 0.2387 0.4566 0.3299 - 0.7475 0.7655
% Housing units with no vehicle available - 0.2767 - - - - -
% Workers (16 +) with a 60+ min public transit commute 0.0197 0.0074 0.0170 -0.0429 - - -0.0210
% Workers taking public transportation, excluding taxicab (ages 16 and over) 0.2784 - -0.4432 - -2.2212 - -0.0301
% Housing units vacant -0.4797 -0.3654 - -0.0271 - -0.0384 -
Beer, wine and liquor stores per 1,000 people 9.6685 -2.4785 9.7171 - - - -
Convenience stores per 1,000 people 2.6932 - - - - - -
Full service restaurants per 1,000 people -0.2455 -0.6055 -4.8642 - - - -
Supermarkets and other grocery (except convenience) stores per 1,000 people -6.2250 - - - - - -3.3162

Healthcare Number of Federally Qualified Health Centers -0.0610 -0.0761 2.2065 0.1479 0.3110 -0.0394 -0.0165
context Total number of community mental health centers -2.6828 2.4670 -0.0590 - -3.7925 -0.0715 0.4188

Number of rural health clinics -0.4263 0.1236 1.4253 -0.2228 0.6498 - 0.4522
Number of people living with diagnosed HIV / 1000 24.7662 0.1166 - 1.2838 - 0.3998 -
Number of Medicare eligibles in the county -0.0005 - - - - - -
Derived field that equals the ratio of enrollees over eligibles * 100 -0.4353 -0.4647 0.4623 -0.2404 0.0856 -0.2769 -0.1799

Region 1: Rural, 0: Urban by NCHS 2013 Rural-Urban Classification Scheme 5.0422 2.3003 6.9843 -1.2958 7.9543 0.3526 6.4239
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3.7 Summary
This study introduces a novel clustering method specifically designed for high-dimensional longitudinal
data with domain-based structures in covariates. It leverages a finite mixture of LMM combined with
a composite penalty. This approach effectively addresses the challenges of selecting fixed effects within
different domains and provides a new way to identify cluster-specific associations between the outcome
and predictors in high-dimensional contexts. By utilizing an EM algorithm and a composite penalty that
incorporates both l1 and l2 norms, this method provides an effective way of high-dimensional clustering
across within- and between-grouped variables. The inclusion of l1 and l2 norms in Exclusive Lasso balances
between variable sparsity and grouping effects, making the method robust to noise and collinearity in the
data.

Building upon the framework established by Du et al., 2013, our method extends their work by
focusing specifically on fixed-effect selection within domains. The proposed approach uses a composite
penalty structure to facilitate the selection of domain-based variables, making it particularly suitable
for applications where identifying domain-specific variables and interpreting their associations with the
outcome variable within clusters is essential. This innovative method enhances clustering and variable
selection in high-dimensional longitudinal data.

In the application of SDOH and CVD mortality data, the clustering results revealed distinct patterns
of associations across different clusters. This highlights the variability in SDOH-CVD relationships. For
instance, clusters dominated by rural areas showed higher baseline mortality rates, and they were linked to
limited access to healthcare and lower educational attainment. Conversely, urban-dominant clusters were
characterized by factors such as occupational stress and housing vulnerabilities. These findings point out
the limitations of traditional geographic region-based analyses and emphasize the need for strategies in-
formed by SDOH that are tailored to specific clusters. By identifying cluster-specific associations between
SDOH and CVD mortality, the proposed method offers actionable insights for targeted interventions.
Ultimately, these results suggest that strategies based on SDOH clusters have the potential to address
health disparities more effectively than broad, one-size-fits-all approaches.

From a statistical perspective, this method can be adapted to handle various types of outcomes, in-
cluding binary and count data. It also allows for the integration of different clustering techniques. The
primary strength of this study is the development of a flexible and robust clustering method that incorpo-
rates domain-based covariate selection into longitudinal data analysis. Additionally, the method’s ability
to handle high-dimensional data with missing values enhances its practical utility. However, the dynamic
changes in the associations between SDOH and CVD mortality over time have not been considered
in our current approach. Future research could benefit from the inclusion of random effect selection,
which could provide additional insights, especially in datasets where subject-specific variability is essen-
tial. Incorporating random effects in each domain would further extend the applicability of the method
to a broader range of longitudinal models, allowing for more nuanced clustering and variable selection.
Moreover, while the composite penalty offers a feasible solution for domain-based variable selection, its
computational complexity rises with the number of domains and variables, potentially limiting scalability
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for extremely large datasets. Future work could focus on developing scalable algorithms to overcome these
challenges and enhance the method’s applicability.
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Chapter 4

Use of Model-base Clustering of
High-Dimensional Longitudinal
Data via Exclusive Lasso Penalty
by Different Levels of SDOH Data

4.1 Introduction
The mortality rate of CVD in the US has substantially declined (Mensah et al., 2017). Despite this success,
racial, ethnic, socioeconomic status, and regional disparities in CVD outcomes persist across the US (Gra-
ham, 2015; Post et al., 2022). Based on our data from 2009 to 2018, county-level data indicate an overall
decline in CVD mortality rates; however, distinct geographic and racial differences in CVD mortality con-
tinue to exist (Dong et al., 2023; Son et al., 2023). Notably, a cluster of counties with high CVD mortality
extends from southeastern Oklahoma through the Mississippi River valley to eastern Kentucky, often
referred to as the heartland of the United States. Conversely, areas with the lowest CVD mortality rates
include the San Francisco Bay area, central Colorado, northern Nebraska, central Minnesota, northeast-
ern Virginia, and south Florida (Roth et al., 2017). Furthermore, our study highlights that rural counties
consistently exhibit higher CVD mortality rates compared to urban counties (Son et al., 2023). Similarly,
counties with a higher percentage of Black residents experience higher CVD mortality rates than those
with a lower percentage of Black residents. (Dong et al., 2023; Son et al., 2023).

Health disparities in CVD mortality have been linked to SDOH (for Disease Control, Prevention, et
al., 2019; Frieden et al., 2013). The Centers for Disease Control and Prevention (CDC) and the American
Heart Association highlight the importance of addressing SDOH in public health initiatives and health-
care practices to reduce disparities among different racial groups and regions (Banerjee, 2017; Benjamin
et al., 2019; Hacker et al., 2022; White-Williams et al., 2020). Specifically, the CDC identifies five key
domains of SDOH that need attention to improve overall health outcomes: economic stability, education
access and quality, healthcare access and quality, neighborhood and built environment, and social and
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community context (Hacker et al., 2022). Understanding these domains is essential for designing targeted
strategies aimed at reducing mortality by addressing key risk factors associated within each domain and
tackling existing disparities (Y. Fu et al., 2023; Powell-Wiley et al., 2022).

Recent studies have highlighted specific regional disparities in CVD at the state or county level (Glynn
et al., 2021; Patel et al., 2016; Son et al., 2023; Zelko et al., 2023). To understand and address these geographic
disparities in CVD, it is necessary to analyze SDOH data with advanced methodological approaches. These
approaches should focus on geographic groups to examine the effects of various SDOH domains and their
associations with CVD mortality rates. This limitation has not been addressed in our previous study (Son
et al., 2023). Furthermore, since the CVD mortality rates vary by geographic and racial groups over time,
counties across the US may exhibit different characteristics when subjects are grouped based on SDOH
in a high-dimensional longitudinal data setting. New clustering strategies incorporating data on SDOH
may help drive region-specific interventions aimed at reducing CVD disparities and improving overall
CVD outcomes.

Therefore, I proposed to analyze SDOH indicators and CVD mortality rates at the county level using
the natural cluster of states. Understanding the specific factors influencing CVD mortality across regions,
especially in the context of racial and geographic disparities, allows us to identify more effective, tailored
interventions effectively. A targeted local-level analysis guides stakeholders and policymakers in developing
precise strategies, ensuring that interventions are appropriately adjusted in intensity across sectors, leading
to sustained positive health outcomes. (Roth et al., 2017). To enhance this approach, we will apply a model-
based clustering method using Exclusive Lasso to refine our understanding of county-level variations
within each state. By incorporating an additional algorithm that accounts for these variations, we can
classify counties based on their unique characteristics. The selection of this algorithm will depend on
predefined complexity thresholds within clusters, aiming to minimize intra-cluster variation and improve
differentiation among counties at the state level.

4.2 Method
The Exclusive lasso penalized model-based clustering method is a technique that uses the regularization
of mutually exclusive features within groups of fixed or random effects to cluster subpopulations by US
counties. Each cluster includes at least one SDOH from each predefined domain. However, this method
has limitations. As policies are typically made and implemented at the state level, the clusters identified
by conventional clustering analysis may include too many states, which makes it less useful for real-world
policy-making. In addition, while it classifies groups at the county level, it does not consider variations
within counties in each state.

In this section, we propose a regularization method that incorporates a constraint into the model-based
clustering framework to facilitate a more explainable clustering approach. By building on the Exclusive
lasso penalized model-based clustering method, we introduce a constraint to the clustering method. This
allows us to set cutoff values for the new cluster structure, which helps reduce the number of clusters in
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each state and the state variation within each cluster. A modified EM algorithm will be implemented with
this constraint.

The ith subject (county) is measured at mi time points, i = 1, ..., n. Repeated measures mi may be
missed, which means the number of mi can vary from subject to subject. At time tij , j = 1, ...,mi, we
have (yij,Xij,Zij) observarions, where yij represents the responses as CVD mortality, Xij ∈ ℜpn con-
tains the fixed effects SDOH, and Zij ∈ ℜqn includes the random effects SDOH. Here, pn and qn denote
the dimension of SDOH variables, which increase at a certain rate as n. We use the following notations
for the ith subject: yi = (yi1, yi2, ..., yimi

)T , Xi = (XT
i1, ...,XT

imi
)T , and Zi = (ZT

i1, ...,ZT
imi

)T . This
framework models the linear mixed-effects model (LMM) for the ith subject, and it has the form given by

yi = Xiβi + Zibi + ei, (4.1)

whereβ ∈ R is a vector of fixed-effects parameters,bi ∼ N(0, σ2D) is a (qn×1) vector of subject-specific
random effects, and ei ∼ N(0, Ri) is a vector of the i.i.d. random error. D is a (qn × qn) covariance
matrix that specifies the among-unit sources, and Ri captures within-subject variance and correlation.
In many applications, Ri defines σ2Imi

. In practical terms, βi and bi can vary across clusters based on
different domains of the SDOH, reflecting the heterogeneous associations among different counties, i. We
aim to capture both the average relationships of SDOH across the counties throughβi and the specific risk
variations for each county withbi. Therefore,βi indicates how changes in the SDOH variable, j, correlate
with CVD mortality in relation to the overall average, while bi addresses the unique characteristics of
each county. With assumptions on bi and ei in model 4.1, yi given Xi, Zi follows a multivariate normal
distribution with a particular form of the covariance matrix, that is, yi|Xi, Zi ∼ N(Xiβ, σ

2Vi), where
Vi = ZiDZT

i + Imi
.

We provided background information on the LMM relating SDOH to CVD mortality at the county
level. However, a single LMM may not sufficiently capture the underlying heterogeneity in these relation-
ships due to significant geographic disparities across counties. To address this issue, we assume that each
county belongs to one of K distinct clusters, where each cluster represents a unique subgroup charac-
terized by specific associations between SDOH and CVD mortality. Typically, the cluster membership
for each county remains uncertain. Statistically, this uncertainty can be modeled by assigning a mixing
probability that reflects the likelihood of a county belonging to a specific cluster, where k ∈ {1, ..., K}.
However, this mixing probability is also often unknown and can be estimated from the mixture of LMM
parencitedu2013simultaneous, yang2022model.

For a mixture-LMM, each subject i belongs to one of k latent clusters, with the mixing probablilty

P (τi = k) ≡ πk subject to
K∑
k=1

πk = 1. Let wik = 1{πi=k} be the binary laten indicator for whether

subject i belongs to cluster k, and let Wk = (w1k, ..., wnK) and W = (W1, ...,WK). Clustering aims
to classify a sample of subjects into one of the K groups based on a defined rule of similarity in their
observed patterns. A simple approach is to assume that the observed data (yi,Xi,Zi) follows a mixture
of LMM across K groups. Then, considering each mixture component to be kth cluster, the model
becomes:
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yi = Xiβk + Zibik + eik, (4.2)

where βk is the cluster-specific fixed effects vector of dimension pnk
, bik ∼ N(0, σ2

kDk) is the random
effects voectors of size qnk

, and eik ∼ N(0, σ2
kImi

). Each mixture cluster, k, thus has its own set of
parameters Θk = (βk,Dk, σ

2
k). In addition, penalty functions on β and D are applied to both fixed

and random effects for simultaneous selection in the mixture of LMM. By regularizing β, any fixed effect
estimated to be zero will be removed from the model. However, based on our previous study (Son et al.,
2023), we assume that initial CVD mortality rates differ by county and that there are no additional random
effects. Therefore, we do not impose penalties on D for the random effects.

Cluster assignments for each subject remain uncertain due to the value of w. The Expectation-
Maximization (EM) algorithm (Dempster et al., 1977) is a widely used method to address this issue. Then,
the number of clusters can be determined by comparing models fitted with various K-values using se-
lection criteria like BIC. Our mixture of the LMM framework allows for separate estimation of fixed
effects across multiple clusters, overcoming the limitations of a single LMM in data exhibiting strong
geographic or contextual heterogeneity. A comprehensive explanation of this method is provided in the
method section of Chapter 3.

Furthermore, to determine the optimal number of clusters within each state, we impose constraints on
the EM algorithm. Specifically, the algorithm clusters counties at the state level by applying state-specific
constraints, such as defined cut-off points. This method effectively reduces the total number of clusters
per state, aligning with practical considerations since our work was originally structured at the county
level. Consolidating county-level data into fewer, state-level clusters enhances the interpretation of results
and allows for targeted policymaking interventions at the state level.

To refine the initially estimated clusters, it is important to ensure that the constraints for cutoff value
denoted as f must not exceed 1/max(k), where k = (1, ..., K) represents the number of clusters. This
limitation effectively adjusts the clusters, computing the threshold for the number of counties in each
state and classifying the clusters into two groups such that,

TSl
= CSl

× f, (4.3)

then
G1, when CSl,K > TSl

,

G2, otherwise,
(4.4)

where T represents the threshold defined by the constraint, S denotes an individual state, including US
territories, with a state index ranging from 1 ≤ l ≤ 54, and CSl

indicates the total number of counties
within each respective state Sl. Thus, clusters are categorized into G1 and G2. Group G1 consists of
counties from clusters in each state where the number of counties exceeds the thresholdTSl

, ensuring that
these clusters are substantial enough for independent analysis. While G2 includes the remaining clusters
within the state that do not meet this threshold criterion. The estimation process for Θ̂k is initiated
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upon establishing specific thresholds for each state. This parameter undergoes an iterative updating
process to refine estimates based on current groupings. Subsequently, both subject-specific and overall
clustering probabilities, represented as ŵik and π̂ik respectively, are recalculated using the updated estimate
Θ̂

(r+1)
. This process is executed through the EM algorithm to enhance clustering accuracy. In the next

step, counties within G2 that meet or fall below their state’s threshold are incorporated into the more
robust clusters of G1. In contrast, clusters comprising counties that surpass the threshold TSl

remain
unchanged, preserving their distinct groupings. The following steps elaborate on the methodological
steps and implications of these clustering adjustments:

1. Number of counties by state is stratified by each cluster.

2. Given cutoff, TSl
is calculated by each state.

3. At each state, clusters will be classified into either G1 or G2 according to 4.4.

4. Returning to the EM algorithm, counties in G1 will be fixed and those in G2 clustered to fixed
clusters in G1.

5. It will return until Θ has converged or the Qn(Θ) starts to decrease.

4.3 SDOH Data
In Chapter 3 (Aim 2), we employed model-based clustering using Exclusive Lasso with county-level SDOH
data for empirical data analysis. We used BIC to determine the number of clustering models (as shown
in the Appendix Table B.5). Each number of clustering models was run five times, and the model with
seven clusters was selected based on the smallest BIC.

In this chapter, our objective was to reduce the number of clusters in each state for state-level clustering
while also decreasing the variations among clusters. We aimed to achieve this by clustering counties, which
include only a few counties (≤ threshold), within clusters. Table 4.1 presents the frequency of county
counts by clusters at the state level and specifies thresholds derived from tests under specific constraints.
The cutoff value cannot exceed 1/7, where 7 is the number of clusters. The threshold of county numbers
in each state is calculated by multiplying the total number of counties in each state by the cutoff. For
example, the total number of counties in Georgia is 159, and its maximum threshold is calculated as 159
multiplied by 1/7, resulting in 22 (rounded down). If the cutoff exceeds 1/7, the threshold rises above 22,
and the algorithm stops restricting which cluster a county can belong to. In other words, all counties in
each cluster fall below the threshold, allowing any county to join any cluster. The results of clustering
by constraints are shown in Tables 4.2 and 4.3. Following the threshold with a 1/7 cutoff in Georgia,
clusters K5, K6, and K7, which contain 22 or fewer counties, are grouped into clusters K1-K4 by the EM
algorithm. In contrast, clusters K5 to K7 remain at zero. Otherwise, counties that exceed the threshold
are fixed in clusters. Similarly, we can intuitively observe a reduction in the number of clusters as the
cutoff values increase in other states. In addition, the tables show how the variation decreases across 7
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clusters. For instance, in cluster K1, Table 4.1 initially includes 39 states. However, as the constraints
increase to 1/7, the number of states in K1 decreases to 21 in Table 4.3. This trend is also evident in the
other six clusters.
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Table 4.1: The frequency of county by clusters at the state level and thresholds derived from tests under
specific constraints

GEOID State K1 K2 K3 K4 K5 K6 K7 Total Threshold
1/28 1/14 3/28 1/7

01 Alabama 20 18 12 7 4 3 3 67 2 4 7 9
02 Alaska 14 3 6 2 1 2 1 29 1 2 3 4
04 Arizona 0 4 1 1 3 5 1 15 0 1 1 2
05 Arkansas 18 18 16 13 6 3 1 75 2 5 8 10
06 California 2 24 1 5 6 17 3 58 2 4 6 8
08 Colorado 13 12 6 13 7 6 7 64 2 4 6 9
09 Connecticut 0 2 0 0 0 4 2 8 0 0 0 1
10 Delaware 0 1 0 0 0 1 1 3 0 0 0 0
11 District of Columbia 0 0 0 1 0 0 0 1 0 0 0 0
12 Florida 4 14 5 14 7 13 10 67 2 4 7 9
13 Georgia 47 33 27 34 9 6 3 159 5 11 17 22
15 Hawaii 0 1 0 1 2 1 0 5 0 0 0 0
16 Idaho 8 6 18 6 3 1 2 44 1 3 4 6
17 Illinois 6 30 9 19 19 12 7 102 3 7 10 14
18 Indiana 10 26 10 21 10 11 4 92 3 6 9 13
19 Iowa 9 28 19 18 13 10 2 99 3 7 10 14
20 Kansas 14 18 33 20 6 11 3 105 3 7 11 15
21 Kentucky 47 28 15 13 9 7 1 120 4 8 12 17
22 Louisiana 24 14 16 8 1 1 0 64 2 4 6 9
23 Maine 0 2 2 2 2 5 3 16 0 1 1 2
24 Maryland 0 7 7 5 1 4 0 24 0 1 2 3
25 Massachusetts 0 2 0 0 1 8 3 14 0 1 1 2
26 Michigan 3 21 10 20 10 14 5 83 2 5 8 11
27 Minnesota 2 5 11 25 14 17 13 87 3 6 9 12
28 Mississippi 34 20 16 10 2 0 0 82 2 5 8 11
29 Missouri 27 37 25 10 3 8 5 115 4 8 12 16
30 Montana 8 8 16 10 7 5 2 56 2 4 6 8
31 Nebraska 13 24 11 24 11 8 2 93 3 6 9 13
32 Nevada 4 4 3 2 2 1 1 17 0 1 1 2
33 New Hampshire 0 0 0 2 2 3 3 10 0 0 1 1
34 New Jersey 0 4 0 0 2 10 5 21 0 1 2 3
35 New Mexico 2 5 4 11 8 1 2 33 1 2 3 4
36 New York 6 27 0 8 3 17 1 62 2 4 6 8
37 North Carolina 7 37 8 15 8 21 4 100 3 7 10 14
38 North Dakota 12 8 8 16 6 1 2 53 1 3 5 7
39 Ohio 8 17 13 13 21 9 7 88 3 6 9 12
40 Oklahoma 20 23 25 2 3 3 1 77 2 5 8 11
41 Oregon 0 5 3 9 7 7 5 36 1 2 3 5
42 Pennsylvania 2 28 4 4 4 15 10 67 2 4 7 9
44 Rhode Island 0 1 0 0 0 4 0 5 0 0 0 0
45 South Carolina 5 18 2 9 2 6 4 46 1 3 4 6
46 South Dakota 16 10 15 18 4 2 1 66 2 4 7 9
47 Tennessee 26 19 24 13 6 5 2 95 3 6 10 13
48 Texas 34 53 55 36 39 27 10 254 9 18 27 36
49 Utah 6 4 3 6 7 1 2 29 1 2 3 4
50 Vermont 0 1 2 1 1 2 2 9 0 1 1 2
51 Virginia 3 17 11 14 10 17 3 75 4 9 14 19
53 Washington 0 6 8 3 6 10 6 39 1 2 4 5
54 West Virginia 3 10 3 11 2 5 1 35 1 3 5 7
55 Wisconsin 9 21 7 18 18 8 2 83 2 5 7 10
56 Wyoming 5 7 7 8 5 2 1 35 0 1 2 3
66 Guam 1 0 0 0 0 0 0 1 0 0 0 0
72 Puerto Rico 40 27 2 2 0 4 3 78 2 5 8 11
78 U.S. Virgin Islands 0 0 0 0 0 0 3 3 0 0 0 0

Total (County) 553 809 501 521 310 360 170
Total (State) 39 50 42 47 47 49 4590



Table 4.2: County-level clustering with 1/28 and 1/14 cutoffs

GEOID State 1/28 Cutoff 1/14 Cutoff
K1 K2 K3 K4 K5 W6 K7 K1 K2 K3 K4 K5 W6 K7

01 Alabama 20 18 12 7 4 3 3 20 19 14 14 0 0 0
02 Alaska 14 3 6 3 0 3 0 14 7 8 0 0 0 0
04 Arizona 0 4 1 1 3 5 1 0 4 0 0 5 6 0
05 Arkansas 18 18 16 14 6 3 0 18 19 16 15 7 0 0
06 California 0 25 0 6 7 17 3 0 25 0 6 7 20 0
08 Colorado 13 12 6 13 7 6 7 13 12 6 13 7 6 7
09 Connecticut 0 2 0 0 0 4 2 0 2 0 0 0 4 2
10 Delaware 0 1 0 0 0 1 1 0 1 0 0 0 1 1
11 D.C. 0 0 0 1 0 0 0 0 0 0 1 0 0 0
12 Florida 4 14 5 14 7 13 10 0 15 7 15 7 13 10
13 Georgia 47 33 27 34 11 7 0 47 35 33 44 0 0 0
15 Hawaii 0 1 0 1 2 1 0 0 1 0 1 2 1 0
16 Idaho 8 7 18 6 3 0 2 8 7 19 10 0 0 0
17 Illinois 6 30 9 19 19 12 7 0 34 11 19 20 18 0
18 Indiana 10 26 10 21 10 11 4 10 26 10 22 12 12 0
19 Iowa 9 28 19 18 14 11 0 9 28 19 18 13 12 0
20 Kansas 14 18 33 20 8 12 0 14 18 33 26 0 14 0
21 Kentucky 47 28 15 13 10 7 0 47 31 15 17 10 0 0
22 Louisiana 24 15 16 9 0 0 0 24 15 16 9 0 0 0
23 Maine 0 2 2 2 2 5 3 0 2 2 2 2 5 3
24 Maryland 0 7 7 5 1 4 0 0 7 8 5 0 4 0
25 Massachusetts 0 2 0 0 1 8 3 0 2 0 0 0 8 4
26 Michigan 3 21 10 20 10 14 5 0 22 12 21 11 17 0
27 Minnesota 0 6 12 25 14 17 13 0 0 14 29 14 17 13
28 Mississippi 34 20 18 10 0 0 0 34 20 18 10 0 0 0
29 Missouri 27 37 27 11 0 8 5 27 37 27 24 0 0 0
30 Montana 8 8 16 10 7 5 2 8 8 16 11 8 5 0
31 Nebraska 13 24 11 24 12 9 0 13 24 11 24 12 9 0
32 Nevada 4 4 3 2 2 1 1 4 5 3 3 2 0 0
33 New Hampshire 0 0 0 2 2 3 3 0 0 0 2 2 3 3
34 New Jersey 0 4 0 0 2 10 5 0 4 0 0 2 10 5
35 New Mexico 2 5 4 12 8 0 2 0 5 6 12 10 0 0
36 New York 6 27 0 8 4 17 0 6 27 0 11 0 18 0
37 North Carolina 7 37 8 15 8 21 4 0 41 11 16 9 23 0
38 North Dakota 12 8 8 17 6 0 0 12 8 8 17 7 0 0
39 Ohio 16 31 23 23 15 12 10 16 31 24 26 15 14 0
40 Oklahoma 17 19 22 12 8 3 2 17 19 24 14 8 4 0
41 Oregon 0 5 8 10 3 2 1 0 5 9 10 3 3 0
42 Pennsylvania 6 36 10 21 18 22 9 0 36 10 21 18 25 0
44 Rhode Island 0 0 0 0 0 1 1 0 0 0 0 0 1 1
45 South Carolina 18 18 16 12 2 2 0 18 18 16 13 2 3 0
46 South Dakota 3 3 13 6 5 0 0 3 3 13 7 5 0 0
47 Tennessee 41 24 22 11 0 6 3 41 24 23 13 0 6 0
48 Texas 56 47 30 37 16 22 15 56 50 37 47 0 0 0
49 Utah 6 4 3 6 7 0 3 6 4 3 6 10 0 0
50 Vermont 0 0 0 0 0 2 1 0 0 0 0 0 2 1
51 Virginia 5 16 6 16 4 10 4 0 18 8 17 5 11 0
53 Washington 4 12 13 14 10 15 7 4 12 15 15 12 18 0
54 West Virginia 8 3 10 5 2 0 0 8 3 10 6 2 0 0
55 Wisconsin 4 14 19 20 14 17 6 0 15 20 21 15 17 0
56 Wyoming 7 9 15 9 5 4 3 7 9 15 9 5 4 0
66 Guam 1 0 0 0 0 0 0 1 0 0 0 0 0 0
72 Puerto Rico 42 27 0 0 0 5 4 46 32 0 0 0 0 0
78 U.S. Virgin Islands 0 0 0 0 0 0 3 0 0 0 0 0 0 3

Total (County) 547 817 505 526 316 360 153 531 855 532 598 272 342 94
Total (State) 35 50 40 45 43 42 33 30 48 36 42 28 31 16
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Table 4.3: County-level clustering with 3/28 and 1/7 cutoffs

GEOID State 3/28 Cutoff 1/7 Cutoff
K1 K2 K3 K4 K5 W6 K7 K1 K2 K3 K4 K5 W6 K7

1 Alabama 21 29 17 0 0 0 0 20 30 17 0 0 0 0
2 Alaska 16 0 13 0 0 0 0 16 0 13 0 0 0 0
4 Arizona 0 4 0 0 5 6 0 0 4 0 0 5 6 0
5 Arkansas 18 19 21 17 0 0 0 18 19 19 19 0 0 0
6 California 0 37 0 0 0 21 0 0 37 0 0 0 21 0
8 Colorado 14 15 0 16 9 0 10 14 15 0 35 0 0 0
9 Connecticut 0 2 0 0 0 4 2 0 2 0 0 0 4 2
10 Delaware 0 1 0 0 0 1 1 0 1 0 0 0 1 1
11 D.C. 0 0 0 1 0 0 0 0 0 0 1 0 0 0
12 Florida 0 17 0 27 0 13 10 0 15 0 27 0 13 12
13 Georgia 47 35 33 44 0 0 0 47 36 33 43 0 0 0
15 Hawaii 0 1 0 1 2 1 0 0 1 0 1 2 1 0
16 Idaho 8 7 19 10 0 0 0 9 0 35 0 0 0 0
17 Illinois 0 36 0 27 21 18 0 0 41 0 32 29 0 0
18 Indiana 10 26 10 22 12 12 0 0 40 0 52 0 0 0
19 Iowa 0 35 22 25 17 0 0 0 34 23 42 0 0 0
20 Kansas 14 21 33 37 0 0 0 0 24 44 37 0 0 0
21 Kentucky 47 31 19 23 0 0 0 63 57 0 0 0 0 0
22 Louisiana 24 15 16 9 0 0 0 24 21 19 0 0 0 0
23 Maine 0 2 2 2 2 5 3 0 0 0 0 0 9 7
24 Maryland 0 7 8 5 0 4 0 0 7 7 6 0 4 0
25 Massachusetts 0 2 0 0 0 8 4 0 0 0 0 0 10 4
26 Michigan 0 22 12 23 11 15 0 0 22 0 44 0 17 0
27 Minnesota 0 0 14 29 14 17 13 0 0 0 38 19 17 13
28 Mississippi 34 20 18 10 0 0 0 35 25 22 0 0 0 0
29 Missouri 27 53 35 0 0 0 0 27 53 35 0 0 0 0
30 Montana 8 8 16 16 8 0 0 8 10 18 20 0 0 0
31 Nebraska 13 25 11 30 14 0 0 0 34 0 59 0 0 0
32 Nevada 4 5 3 3 2 0 0 4 6 7 0 0 0 0
33 New Hampshire 0 0 0 2 2 3 3 0 0 0 2 2 3 3
34 New Jersey 0 4 0 0 0 10 7 0 4 0 0 0 10 7
35 New Mexico 0 5 6 12 10 0 0 0 7 0 15 11 0 0
36 New York 0 33 0 11 0 18 0 0 42 0 0 0 20 0
37 North Carolina 0 43 0 34 0 23 0 0 43 0 33 0 24 0
38 North Dakota 12 8 8 18 7 0 0 12 8 9 24 0 0 0
39 Ohio 0 23 16 22 27 0 0 0 26 17 13 32 0 0
40 Oklahoma 20 28 29 0 0 0 0 20 28 29 0 0 0 0
41 Oregon 0 6 0 10 8 7 5 0 0 0 14 13 9 0
42 Pennsylvania 0 39 0 0 0 15 13 0 38 0 0 0 15 14
44 Rhode Island 0 1 0 0 0 4 0 0 1 0 0 0 4 0
45 South Carolina 7 18 0 14 0 7 0 0 25 0 21 0 0 0
46 South Dakota 16 11 16 23 0 0 0 16 11 15 24 0 0 0
47 Tennessee 26 21 31 17 0 0 0 26 34 35 0 0 0 0
48 Texas 34 56 55 60 49 0 0 0 87 93 0 74 0 0
49 Utah 7 6 0 6 10 0 0 7 0 0 12 10 0 0
50 Vermont 0 0 0 3 7 0 4 0 0 0 0 10 0 4
51 Virginia 26 49 23 35 0 0 0 26 67 40 0 0 0 0
53 Washington 0 28 0 0 0 11 0 0 28 0 0 0 11 0
54 West Virginia 10 28 6 11 0 0 0 11 29 0 15 0 0 0
55 Wisconsin 0 16 0 20 11 15 10 0 16 0 34 0 22 0
56 Wyoming 3 7 4 9 0 0 0 0 9 5 9 0 0 0
66 Guam 1 0 0 0 0 0 0 1 0 0 0 0 0 0
72 Puerto Rico 46 32 0 0 0 0 0 43 35 0 0 0 0 0
78 U.S. Virgin Islands 0 0 0 0 0 0 3 0 0 0 0 0 0 3

Total (County) 513 937 516 684 248 238 88 447 1072 535 672 207 221 70
Total (State) 27 47 29 38 21 23 14 21 42 21 27 11 20 11
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Figure 4.1 presents a detailed analysis of data grouped into seven distinct clusters based on various
constraints over the decade from 2009 to 2018. It provides insights into the variability within each cluster.
The data reveals a trend of decreasing mean values of the CVD mortality rate in most clusters over the
observed years, indicating a systematic change or underlying trend affecting the clusters. Standard devia-
tions within each cluster remain relatively stable across the years, suggesting that the variability in the data
within clusters does not significantly fluctuate over time. The trend of each cluster in each figure with
various constraints shows similar trends to the initial analysis. We observe some changes in fluctuations
and slopes, but generally, it retains the same characteristics of the downward trend in CVD mortality. For
example, the mean of age-adjusted CVD mortality by cutoff 1/7, which contains the highest constraint, is
depicted in Table C.1 in the Appendix. The clusters exhibit varying patterns of mortality rate changes,
with most showing a gradual decline over time. In cluster K1, the values decrease from the highest CVD
mortality, 304.75 deaths per 100,000 people (95% CI, 298.15 - 311.36), to 268.41 deaths per 100,000 people
(95% CI, 261.56 - 275.26), with a consistent decline over the sequence (Table C.1 in the Appendix). The
overall decrease rate seems steady, although it may slow from 2012 to 2015. In cluster K2, the values con-
tinue to decrease similar to K1, and the rates in this cluster fluctuate less compared to K1. While there
are some small fluctuations in the rate of decrease, the overall trend is a consistent reduction downward.
Cluster K3 exhibits a more variable pattern. It shows a less pronounced decline compared to the first two
clusters. Around 2016-2017, it plateaus before declining again toward 2018. This cluster has a medium-
high CVD mortality rate, and the increase observed from 2012 to 2016 suggests that the reduction in CVD
mortality is either slower or stalled during this period. Cluster K5 follows a similar trend as K3, but it
has fewer fluctuations and remains consistently in the lower-middle range from 232.58 deaths per 100,000
people (95% CI, 227.55 - 237.61) in 2009 to 227.84 deaths per 100,000 people (95% CI, 222.81 - 232.87)
in 2018. Cluster K4 shows a moderate decline in mortality rates but with less variability and a smoother
downward trajectory. Around 2013-2016, the trajectory is on a plateau, then declines again toward 2018.
Cluster K6 starts with a low mortality rate and experiences a slow but stable decrease, making it one of
the clusters with the best CVD outcomes. Finally, K7 consistently has the lowest CVD mortality rates,
with only minor changes year by year, indicating a stable and positive CVD outcome.

The map in Figure 4.2 shows the geographic distribution of US counties grouped into seven distinct
clusters based on CVD mortality from 2009 to 2018. Each county is color-coded according to the cluster it
belongs to, reflecting different characteristics of CVD mortality patterns within each cluster. Compared to
the map in Figure 3.11, both maps, represented by cutoffs 1/14 and 1/7, demonstrate a decrease in variation
among counties within each state. These counties may represent specific regional trends in healthcare,
lifestyle, or socioeconomic factors that define their CVD mortality patterns. The geographic distribution
of the clustered CVD mortality with a 1/7 cutoff describes that counties in cluster K1 are concentrated
in the southeastern region, especially in states like Kentucky, West Virginia, and parts of Alabama and
Mississippi. These areas may exhibit unique CVD mortality patterns driven by rural healthcare dynamics,
local health infrastructure, or regional health behaviors. Counties in K2 are scattered across the US, with
notable regions in Texas, parts of the Midwest, and the West, while K3 has a broad distribution, spanning
the western and central regions. ClusterK4 counties are primarily found in the West, Midwest, and Great
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Plains. Counties in K7 are clustered mainly in the northeastern states, including Maine, Vermont, and
New Hampshire, and Florida in the south.

Figure 4.1: Mean age-adjusted cardiovascular disease mortality, per 100,000 people, trajectories of the US
counties from 2009 to 2018 in the seven clusters identified by the method: 1. CVD mortality trajectories
with cutoff 1/28 (Upper Left); 2. CVD mortality trajectories with cutoff 1/14 (Upper Right); 3. CVD
mortality trajectories with cutoff 3/28 (Lower Left); 4. CVD mortality trajectories with cutoff 1/7 (Lower
Right).
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Figure 4.2: Geographic distribution of clusters based on age-adjusted cardiovascular disease mortality per
100,000 people across counties in the United States, clustering via 1/14 cutoff versus 1/7 cutoff.
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The variables selected for each cluster with a 1/7 cutoff are listed in Table 4.4 (Additional Appendix
Table C.2 provides the information for a 1/14 cutoff). The clusters in the table have a distinct intercept,
which reflects the mean age-adjusted CVD mortality rate, allowing for varying intercepts across clusters.
The geographic indicator for rural-urban status is selected for all clusters since it is the predominant variable
in the geographic domain. After adjusting the model with the constraint, rural counties in all clusters
have an increased overall CVD mortality rate compared to urban counties. Especially, the changes in
CVD mortality between rural and urban counties are higher in cluster K1 (β = 6.53), K3 (β = 5.99),
K5 (β = 6.67), and K7 (β = 6.75). Additionally, the percentage of Black residents, employment in
manufacturing, population with graduate degrees, and those with less than a high school education, the
total number of community mental health centers, the number of people living with diagnosed HIV per
1,000 people, and the ratio of Medicare coverage among the Medicare-eligible population are identified
as significant variables associated with CVD mortality over time in overall clusters.

The selected variables vary across clusters, highlighting different SDOH factors associated with CVD
mortality patterns in these groups. ClusterK1 includes 447 counties, exhibiting the highest average CVD
mortality intercept at 281.52 per 100,000 people. In this social context, a higher percentage of Black resi-
dents, single-parent families with children, children living with a grandparent householder aged 17 and
under, and a civilian population consisting of veterans (age ge 18) are associated with a higher CVD death
rate within this cluster. Conversely, a lower CVD mortality rate is linked to a higher percentage of housing
units with more than one occupant per room, American Indian/Alaska Native and Hispanic ethnicity
residents, a population not speaking English at all (age ge 5), foreign-born residents, occupied housing
units without fuel, and a population that is not US citizens and entered the US before 1990. From the
economic perspective, higher median household income and a greater percentage of jobs in arts, entertain-
ment, recreation, accommodation, food services, finance, insurance, real estate, rental, and leasing, along
with households that have received food stamps/Supplemental Nutrition Assistance Program (SNAP) in
the past 12 months, are associated with a decrease in CVD mortality. Additionally, employment in agricul-
ture, forestry, fishing, hunting, and mining (age ≥ 16) and a population with an income-to-poverty ratio
of 1.25 to 1.99 also correlate with lower CVD mortality rates. Conversely, an increase in the percentage of
the civilian population in the armed forces (age≥ 16), as well as those employed in construction, manufac-
turing, other services (excluding public administration), transportation, warehousing, and utilities, along
with unemployed individuals (age ≥ 16), is associated with higher CVD mortality rates. In the context of
education, a higher percentage of people aged 25 and older who have only a high school diploma, along
with those with lower education levels, is associated with increased CVD mortality. Conversely, an inverse
association is observed with the percentage of the population holding a master’s degree or higher in the
same age group. From the domain of physical infrastructure, an increase in the median home value of
owner-occupied housing units, as well as the presence of full-service restaurants and supermarkets per
1,000 people, is associated with a decrease in CVD mortality. Additionally, a higher percentage of housing
in structures with 10 or more units and the percentage of vacant housing units also contribute to lower
CVD mortality rates. Conversely, the percentage of housing units that are mobile homes is inversely
related to mortality rates. Moreover, workers aged 16 and older who experience a public transit commute
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longer than 60 minutes, along with a higher density of liquor stores, community food services aimed at
low-income or elderly individuals, and convenience stores per 1,000 persons, are correlated with an in-
crease in CVD mortality. Most variables in the healthcare context were selected. CVD mortalities increase
with the number of federally qualified health centers and the number of people living with HIV diag-
nosed per 1,000 people. Conversely, the total number of community mental health centers, the number
of Medicare-eligible individuals in the county, and the ratio of Medicare Advantage enrollees to original
Medicare-eligible individuals are associated with a decrease in CVD mortality.

We can describe the selected variables similarly to those in cluster K1. In cluster K2, the largest study
sample comprised 1,072 counties across 42 states, accounting for 33.25% of the total counties. In contrast,
only 70 counties from 11 states were associated with cluster K7. Most healthcare-related variables have
been included across all clusters. Clusters K3 and K4 include all five education-related variables; however,
the percentage of the population without a high school education shows an inverse relationship within
cluster K3. Likewise, the ratio of Medicare Advantage enrollees to original Medicare-eligible individuals
demonstrates inverse relationships with CVD mortality across all other clusters.

Finally, we map the nonzero coefficients selected across all seven clusters, as shown in Figure 4.3. This
mapping characterizes the spatial structures of these coefficients, highlighting how the selected estimates
correspond to the various clusters within each county across the state. Figure 4.3 describes the spatial
structures of estimates selected using a cutoff of 1/7, which were previously described. Additionally,
Figure C.1 in the appendix presents the spatial distribution of the nonzero coefficients, chosen without
any constraints, related to CVD mortality across US counties. They include factors such as the percentage
of Black residents, employment in manufacturing, and individuals aged 25 or older with a master’s degree
or higher, the number of Federally Qualified Health Centers, the ratio of Medicare Advantage enrollees
to individuals eligible for original Medicare, and the distinction between rural and urban regions.
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Table 4.4: Selected social determinants of health associated with age-adjusted CVD mortality in each
cluster by 1/7 cutoff county-level clustering: Model-based clustering via Exclusive lasso with random
effects in intercepts, 2009–2018

Domains Variables K1 K2 K3 K4 K5 W6 K7
Int 281.5173 244.3994 257.6984 227.4570 228.0588 209.0151 209.7441

1 % Housing units with more than one occupant per room -0.1895 0 0 0 0 0 0
1 % Population reporting American Indian/Alaska Native race -0.0135 0 0 0 0 0 0
1 % Population reporting Asian race 0 0 0 0 -0.4806 -0.1099 -0.7479
1 % Population reporting Black race 0.2784 0.4295 0.6935 0.7863 0.9746 0.4836 0.6204
1 % Families with Children that are single-parent Families 0.0539 0 0.05396535 0 0 0 0
1 % Population that does not speak English at all (ages 5 and over) -0.1886 0 0 0 -0.4286 0 0
1 % Population that is foreign-born -0.4619 -0.0394 -0.5077 -0.6380 0 0 0
1 % Children living with a grandparent householder (ages 17 and under) 0.0103 0 0.1460 0 0.2014 0 0.3904
1 % Occupied housing units without fuel -0.2480 0 0 0 0 0 -0.0319
1 % Population reporting Hispanic ethnicity -0.5767 -0.5985 -0.0688 -0.2313 0 0 0
1 % Population reporting multiple races 0 0 0 0 0 -0.4620 0
1 % Population reporting Native Hawaiian/Pacific Islander race 0 -0.1545 4.4824 0 -0.2368 0 0
1 % Population who are not U.S. citizens and entered the U.S. before 1990 -0.2524 0 -0.1831 0 0 0.0379 0.4696
1 % Population who speak other languages (ages 5 and over) 0 0 0 -0.1318 -0.0273 0 0
1 % Civilian Population consisting of veterans (ages 18 and over) 0.1349 1.9593 -0.6942 0 0 1.2679 0
2 Median household income (in dollars) /1000 -0.3694 -0.2141 -0.0865 -0.0788 0 0 0
2 % Unmarried partner households that received food stamps/SNAP benefits 0 -0.1872 -0.0103 -0.0428 0 0 0
2 % Employed working in public administration 0 -0.0492 -0.0151 0 -0.0055 0 0
2 % Civilian Population in armed forces (ages 16 years and over) 0.8712 0 0.1504 0.0369 0 0 0
2 % Employed working in arts, entertainment, recreation, etc. -0.0752 0 0 0 0.0248 0 0
2 % Employed working in construction 0.7018 0.1660 0.0473 0 0 0.4971 0.1406
2 % Employed working in finance and insurance, real estate, etc. -0.1748 0 -0.0824 0 0 0 0
2 % Households that received food stamps/SNAP, past 12 months -0.1768 -0.7203 0 0 0 -0.6180 -0.2044
2 % Households with public assistance income or food stamps/SNAP 0 0 0 0 -0.8760 0 -0.7822
2 % Employed working in information services 0 0 -0.5012 2.4148 0.3287 0 0.4650
2 % Employed working in manufacturing 0.0007 0.1454 0.1442 0.3733 0.3540 0.6239 0.3015
2 % Employed working in agriculture, forestry, fishing, etc. (ages 16 and over) -0.7061 -0.0488 -0.2288 -0.1613 0 0 0
2 % Employed working in other services, except public administration 0.3180 0 0 -0.1973 0 0 0.2731
2 % Population with income to poverty ratio: 1.25-1.99 -0.1974 0 -0.1098 0 0 0 0
2 % Population with income to poverty ratio: <1.00 0 0 0.1436 0 0 0 0
2 % Employed working in professional, scientific, management, administrative, etc. 0 0 -0.0394 0 0 0 0
2 % Employed working in transportation and warehousing, and in utilities 0.0613 0.1371 0 0 0.3688 0 0
2 % Population that was unemployed (ages 16 years and over) 0.8257 0.1272 -0.9676 -0.5223 -1.0294 0 -0.2140
2 % Civilian veterans in labor force (ages 18–64) 0 0 -0.0029 0 0 0 0
2 % Employed working in wholesale trade 0 0.7144 0.6180 0 0 0.0825 0
3 % Population with some college or associate’s degree (ages 25 and over) 0 0 -0.0489 -0.0265 0 0 0
3 % Population with a bachelor’s degree (ages 25 and over) 0 0 -0.2129 -0.2163 0 0 0
3 % Population with a master’s or higher degree (ages 25 and over) -0.3743 -1.8717 -0.6684 -0.3960 -0.3789 -1.7894 -0.9483
3 % Population with only high school diploma (ages 25 and over) 0.3667 0 0.1780 0.1678 0.0375 0 0.0480
3 % Population with less than high school education (ages 25 and over) 1.6628 2.1361 -0.0131 0.8744 0.3266 0.6380 0.2165
4 Median home value of owner-occupied housing units -0.00012 -0.00005 -0.00003 -0.00007 -0.00005 0 0
4 % Housing in structures with 10 or more units -0.2798 -0.1710 0 -0.1538 0 0 0
4 % Workers with at least 60-minute commute time (ages 16 and over) 0 0 -0.0238 0 0 -0.1070 0
4 % Housing units that are mobile homes 0.0635 0.2240 0.2984 0.3081 0 0.7395 0.8406
4 % Housing units with no vehicle available 0 0.3094 0.0106 0.0370 0 0 0
4 Workers (16 +) with a 60+ min public transit commute 0.0224 0.0076 0 -0.0187 0.0067 -0.0099 -0.0452
4 % Workers taking public transportation, excluding taxicab (ages 16 and over) 0 0 0 0 -1.5002 -0.0406 0
4 % Rental units with rent equal to 30 percent or more of household income 0 0 -0.0698 0 0 0 0
4 % Housing units vacant -0.4077 -0.3791 0 0 0 0 -0.0017
4 Beer, wine and liquor stores per 1,000 people 16.1077 -3.4531 9.1692 0 3.2268 0 0
4 Community food services (targeting low-income or elderly) per 1,000 people 10.6486 0 -4.1385 0 0 0 -0.2572
4 Convenience stores per 1,000 people 4.0803 0 0 1.2887 0 0 0
4 Full service restaurants per 1,000 people -1.4146 0 -2.5332 0 0 -0.2352 0
4 Supermarkets and other grocery (except convenience) stores per 1,000 people -16.2587 3.1321 -0.8939 0 -2.8575 0.4692 0
5 Number of Federally Qualified Health Centers 0.1070 -0.0045 1.5150 0.4217 0 -0.0554 0
5 Total number of community mental health centers -1.8538 -0.3279 -0.3137 -0.0106 -1.4840 -0.1028 0.8425
5 Number of rural health clinics 0 0.1367 0.8509 -0.1625 0.7734 0 0.0377
5 Number of people living with diagnosed HIV / 1000 20.0988 0.4038 0.3568 0.5933 -0.9707 0.0930 0.0072
5 Number of Medicare eligibles in the county -0.0006 0 0 0 0 0 -0.00001
5 Medicare, ratio of enrollees over Medicare- eligible, % -0.4495 -0.3824 0.4043 -0.1036 -0.0128 -0.2488 -0.0667
6 1: Rural, 0: Urban by NCHS 2013 Rural-Urban Classification Scheme 6.5296 2.3053 5.9880 0.1211 6.6734 1.7759 6.7509
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Figure 4.3: The spatial structures of nonzero coefficients with 1/7 cutoff threshold associated with age-
adjusted cardiovascular disease mortality across counties in the United States, Left: % Population report-
ing Black race, % Population with a master’s or higher degree, Total number of community mental health
centers, Medicare, ratio of enrollees over Medicare eligible, %; Right: % Employed working in manu-
facturing, % Population with less than high school education, Number of people living with diagnosed
HIV/1000, Rural-Urban Classification.
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4.4 Summary
This chapter introduced a refined model-based clustering strategy using an Exclusive Lasso penalty to
analyze high-dimensional, county-level SDOH data associated with CVD mortality. The approach builds
upon a mixture of linear mixed-effects models to group counties into clusters exhibiting similar CVD
mortality patterns associated with SDOH. Subsequently, additional state-level constraints are imposed
to reduce the number of clusters and refine within-state variation.

The initial clustering employs a mixture of linear mixed-effects models for the county-level dataset.
An Exclusive Lasso penalty enforces sparsity in selecting fixed-effect coefficients, identifying each cluster’s
most relevant SDOH variables linked to CVD mortality. A Bayesian Information Criterion determines
the optimal number of clusters. The method introduces state-level constraints after identifying a global
solution (e.g., seven clusters). A cutoff threshold limits the size of clusters within each state, ensuring prac-
ticality for policy-making. Counties in tiny clusters are reassigned to more extensive, fixed clusters via the
EM algorithm. This systematic reduction in within-state cluster heterogeneity preserves the fundamental
SDOH patterns elucidated by the model.

The final clustering results, validated with various cutoff values, demonstrate geographically coherent
clusters exhibiting distinct CVD mortality trajectories from 2009 to 2018. Most clusters exhibit a general
decline in mortality, although the magnitude and slope of reduction vary across groups. Rural counties
consistently exhibit higher mortality rates compared to urban counties. Factors such as the percentage of
Black residents, educational attainment, and the number of community mental health centers significantly
influence the mortality trajectory. The relative importance and direction of these SDOH factors differ
across the seven identified clusters.

By simultaneously balancing interpretability (fewer clusters in each state) and modeling accuracy (via
Exclusive Lasso in a mixture framework), this method provides detailed insights into how various socioeco-
nomic and health-related factors (i.e., SDOH variables) associate with CVD mortality at the county level
within each state. The spatial mapping of nonzero coefficients and cluster assignments highlights localized
disparities between rural and urban areas and identifies variables, such as employment in manufacturing,
HIV prevalence, and educational attainment, that could inform more targeted health interventions.

This chapter illustrates how a penalized model-based clustering approach can efficiently handle large-
scale longitudinal data, minimize unnecessary fragmentation within states, and provide more precise
insights into the SDOH factors that correlate significantly with CVD mortality. The proposed framework
serves as a valuable resource for health policymakers aiming to identify and prioritize strategies tailored to
specific regions to address ongoing cardiovascular health disparities.
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Chapter 5

Conclusion

This dissertation enhances methodological approaches for examining high-dimensional longitudinal data
with missing information, focusing on CVD mortality disparities associated with SDOH. While over-
all CVD mortality rates in the US have significantly decreased, notable geographic, racial, ethnic, and
socioeconomic disparities continue to persist.

The study addresses several key limitations observed in existing analytical methods. Initially, the
proposed penalized weighted GEE with Exclusive Lasso regularization directly addresses missing data
by employing IPW under MAR assumptions. This method integrates robust estimation procedures
and effectively addresses the gaps left by traditional approaches that do not accommodate missingness
in penalized longitudinal data analysis, ensuring more reliable and unbiased inferences. In addition, the
Exclusive Lasso penalty is uniquely used to support domain-specific grouped variable selection. Unlike
traditional penalization methods, such as Lasso or group Lasso, the Exclusive Lasso approach selectively
identifies representative predictors from each defined domain, improving model interpretability while
retaining critical information from complex covariate structures.

Given the inherent geographic and demographic diversity, a new model-based clustering technique for
high-dimensional longitudinal data is proposed. This approach employs Exclusive Lasso regularization to
identify variables across various county subpopulations, each influenced by different SDOH associated
with CVD mortality. Additionally, the model-based clustering incorporates regularization for mutually
exclusive features in domains to address variability within states, enhancing the precision of subgroup
identification at the state level.

A limitation of this study is that the Exclusive Lasso mandates the selection of at least one variable from
each domain, potentially leading to the inclusion of weak predictors when specific domains do not present
any truly significant SDOH variables. This mandatory selection across all domains could introduce noise
and reduce model precision. Furthermore, our analysis neglected to consider the spatial correlation among
counties, which is a significant oversight, as geographic proximity often results in similar socioeconomic
conditions and health outcomes. Future research can employ domain-flexible selection algorithms that
allow for the exclusion of entire domains when supported by the data. This might involve developing
hybrid approaches that combine Exclusive Lasso with other variable selection methods to establish domain-
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specific significance thresholds. Furthermore, integrating spatial econometric modeling techniques such
as spatial lag or spatial error models would address geographic interdependencies, potentially uncovering
regional variations in SDOH impact that our current approach obscures.

In conclusion, our proposed methodological advancements significantly enhance analytical capabili-
ties in addressing high-dimensional longitudinal data with missing values and multimodal covariate struc-
tures. By improving the interpretability and precision of statistical inferences, these methods provide
valuable tools for stakeholders and policymakers, enabling targeted and evidence-based interventions to
reduce disparities in CVD mortality across geographic and demographic groups within the US.
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Appendix A

Penalized Weighted Generalized
Estimating Equations via
Exclusive Lasso Penalty
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Table A.1: C (the number of zero coefficients that are correctly estimated by zero), IC (the number of
non-zero coefficients that are incorrectly estimated by zero), GC (the number of groups that are cor-
rectly selected), and MSE (Mean Squared Error) for PWGEE-Lasso(P-Lasso), PWGEE-SCAD (P-SCAD),
PWGEE-MCP (P-MCP), PWGEE-cMCP (P-cMCP), and PWGEE-Exclusive lasso (P-eLasso) method
with n = 100 and p =(50, 100, 200), which has unequal group sizes, in each scenario.

scenarios corr methods C IC CG MSE C IC CG MSE C IC CG MSE
p=50 p=100 p=200

1 0.60 P-Lasso 31.44 0.02 5.00 0.17 67.40 0.00 5.00 0.20 149.63 0.00 5.00 0.24
P-SCAD 32.08 0.19 4.98 0.40 67.52 0.15 5.00 0.75 151.78 0.20 5.00 1.04
P-MCP 35.30 0.25 4.93 0.42 74.31 0.21 5.00 0.77 159.22 0.34 4.99 1.56
P-cMCP 32.80 0.20 4.93 0.31 69.08 0.13 5.00 0.43 148.09 0.15 4.99 0.87
P-eLasso 38.46 0.01 5.00 0.10 87.03 0.00 5.00 0.10 185.13 0.00 5.00 0.10

0.90 P-Lasso 37.01 0.65 4.83 0.64 81.47 0.77 4.91 0.60 176.04 0.76 4.94 0.55
P-SCAD 35.56 2.29 4.60 2.92 72.77 2.11 4.83 5.93 176.40 2.72 4.69 2.73
P-MCP 36.60 2.24 4.54 2.83 75.73 2.12 4.79 5.53 178.52 2.61 4.59 3.69
P-cMCP 35.56 2.32 4.19 2.73 72.93 2.09 4.70 5.84 178.02 2.66 4.52 2.52
P-eLasso 39.16 0.26 5.00 0.37 88.17 0.17 5.00 0.26 186.76 0.07 5.00 0.32

2 0.60 P-Lasso 27.73 0.26 5.00 0.31 63.25 0.32 5.00 0.39 139.54 0.33 5.00 0.77
P-SCAD 28.11 2.09 4.95 0.80 62.17 2.26 4.99 1.52 145.14 2.92 5.00 2.43
P-MCP 30.89 2.57 4.88 0.81 68.32 2.70 5.00 1.61 149.11 3.20 5.00 3.41
P-cMCP 29.01 2.23 4.85 0.71 64.53 2.06 4.97 1.06 141.66 2.70 5.00 2.29
P-eLasso 32.19 0.18 5.00 0.24 80.12 0.26 5.00 0.25 171.39 0.22 5.00 0.43

0.90 P-Lasso 33.15 3.25 4.79 1.34 76.22 3.26 4.97 1.39 168.29 3.20 4.96 5.50
P-SCAD 31.35 5.93 4.63 5.52 68.75 5.96 4.84 11.71 170.93 6.83 4.70 7.53
P-MCP 31.93 5.95 4.52 5.54 71.68 6.00 4.74 10.58 173.25 6.82 4.69 9.62
P-cMCP 31.30 6.11 3.97 5.56 70.78 6.10 4.62 10.19 173.64 6.84 4.57 5.13
P-eLasso 33.70 2.33 5.00 1.07 81.60 2.47 5.00 0.95 182.73 2.23 5.00 0.63

3 0.60 P-Lasso 28.68 0.11 4.99 0.25 64.64 0.19 5.00 0.32 143.30 0.15 5.00 0.48
P-SCAD 29.55 0.77 4.95 0.57 63.42 1.02 4.98 1.21 147.69 1.47 5.00 1.64
P-MCP 32.72 1.01 4.87 0.58 70.48 1.31 4.95 1.20 152.85 1.76 4.98 2.62
P-cMCP 30.52 0.76 4.88 0.48 65.84 0.99 4.96 0.76 144.49 1.26 4.99 1.70
P-eLasso 32.88 0.13 5.00 0.22 77.69 0.23 5.00 0.26 169.22 0.25 5.00 0.46

0.90 P-Lasso 34.88 2.20 4.71 0.96 77.51 1.99 4.90 1.12 169.93 2.20 4.94 3.77
P-SCAD 32.92 4.76 4.39 4.37 71.14 4.35 4.85 8.08 173.22 5.04 4.75 6.06
P-MCP 33.15 4.70 4.39 4.44 71.95 4.36 4.83 8.19 175.59 5.10 4.65 7.16
P-cMCP 33.02 4.57 3.89 4.26 70.17 4.33 4.65 8.82 174.93 5.01 4.54 4.30
P-eLasso 35.82 1.70 5.00 0.76 81.91 1.63 5.00 0.83 180.13 1.61 5.00 0.73

Note: Bold symbols in the C and CG indicate the highest values, while the lowest values for
IC and MSE are also bolded. The optimal values of C vary by scenario and are determined
by the (p - number of non-zeros). Thus, for p = 50, C = (45, 40, 42); for p = 100, C = (95,
90, 92); for p = 200, C = (195, 190 192). The optimal value for IC is zero.
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Table A.2: C (the number of zero coefficients that are correctly estimated by zero), IC (the number
of non-zero coefficients that are incorrectly estimated by zero), GC (the number of groups that are cor-
rectly selected), and MSE (Mean Squared Error) for PWGEE-Lasso(P-Lasso), PWGEE-SCAD (P-SCAD),
PWGEE-MCP (P-MCP), PWGEE-cMCP (P-cMCP), and PWGEE-Exclusive lasso (P-eLasso) method
with n = 300 and p =(50, 100, 200), which has unequal group sizes, in each scenario.

scenarios corr methods C IC CG MSE C IC CG MSE C IC CG MSE
p=50 p=100 p=200

1 0.60 P-Lasso 28.19 0.00 5.00 0.11 66.53 0.00 5.00 0.10 144.15 0.00 5.00 0.11
P-SCAD 31.12 0.00 5.00 0.17 68.82 0.00 5.00 0.20 144.29 0.00 5.00 0.31
P-MCP 34.47 0.01 5.00 0.18 76.21 0.00 5.00 0.22 159.51 0.00 5.00 0.36
P-cMCP 30.90 0.01 5.00 0.14 69.71 0.00 5.00 0.13 149.11 0.00 5.00 0.15
P-eLasso 32.97 0.00 5.00 0.09 81.16 0.00 5.00 0.07 180.88 0.00 5.00 0.05

0.90 P-Lasso 30.64 0.30 4.95 0.74 74.46 0.40 4.99 0.51 164.83 0.19 5.00 0.38
P-SCAD 33.16 1.39 4.73 1.90 75.18 1.50 4.85 2.06 161.50 1.44 4.97 2.52
P-MCP 33.90 1.34 4.72 1.85 77.21 1.44 4.85 2.01 166.12 1.49 4.94 2.54
P-cMCP 32.96 1.35 4.49 1.80 74.68 1.45 4.77 1.92 159.03 1.37 4.95 2.37
P-eLasso 32.03 0.10 5.00 0.61 79.40 0.13 5.00 0.39 179.40 0.05 5.00 0.19

2 0.60 P-Lasso 24.70 0.11 5.00 0.22 62.05 0.03 5.00 0.18 140.40 0.00 5.00 0.20
P-SCAD 27.41 0.46 5.00 0.35 63.46 0.20 5.00 0.37 140.16 0.19 5.00 0.52
P-MCP 30.29 0.60 4.99 0.35 71.65 0.32 5.00 0.38 155.53 0.36 5.00 0.56
P-cMCP 26.77 0.53 4.99 0.34 65.10 0.24 5.00 0.31 144.95 0.20 5.00 0.36
P-eLasso 27.31 0.06 5.00 0.20 72.82 0.03 5.00 0.15 171.56 0.00 5.00 0.13

0.90 P-Lasso 27.04 2.61 4.97 1.59 71.11 2.32 4.97 1.13 160.49 1.95 4.99 0.91
P-SCAD 29.00 4.89 4.81 3.91 71.63 5.07 4.88 3.96 156.18 5.18 4.99 5.11
P-MCP 29.58 4.86 4.74 3.77 73.27 5.19 4.84 3.97 162.14 5.33 4.97 4.76
P-cMCP 28.56 5.00 4.34 3.82 71.99 5.24 4.70 3.90 155.98 5.17 4.97 5.24
P-eLasso 26.50 1.99 5.00 1.61 73.73 1.77 5.00 0.95 170.52 1.61 5.00 0.71

3 0.60 P-Lasso 25.19 0.00 5.00 0.16 62.81 0.00 5.00 0.14 140.98 0.01 5.00 0.16
P-SCAD 28.12 0.08 4.99 0.26 64.97 0.03 5.00 0.28 141.95 0.02 5.00 0.40
P-MCP 31.14 0.13 4.99 0.27 72.71 0.06 5.00 0.30 156.99 0.05 5.00 0.45
P-cMCP 27.83 0.17 4.97 0.23 66.15 0.04 5.00 0.21 145.10 0.02 5.00 0.24
P-eLasso 26.02 0.01 5.00 0.17 73.44 0.02 5.00 0.14 170.02 0.04 5.00 0.13

0.90 P-Lasso 28.67 1.63 4.90 1.26 70.95 1.41 4.96 1.01 161.46 1.16 4.98 0.69
P-SCAD 30.86 3.54 4.71 2.99 72.73 3.58 4.91 3.41 158.21 3.61 4.95 4.03
P-MCP 31.14 3.54 4.68 3.00 74.39 3.58 4.84 3.34 162.23 3.65 4.92 4.01
P-cMCP 30.39 3.46 4.36 3.04 73.24 3.55 4.64 3.22 156.77 3.51 4.95 4.13
P-eLasso 28.02 1.34 5.00 1.25 72.77 1.12 5.00 0.90 172.76 1.19 5.00 0.56

Note: Bold symbols in the C and CG indicate the highest values, while the lowest values for
IC and MSE are also bolded. The optimal values of C vary by scenario and are determined
by the (p - number of non-zeros). Thus, for p = 50, C = (45, 40, 42); for p = 100, C = (95,
90, 92); for p = 200, C = (195, 190 192). The optimal value for IC is zero.
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Table A.3: C (the number of zero coefficients that are correctly estimated by zero), IC (the number of
non-zero coefficients that are incorrectly estimated by zero), GC (the number of groups that are cor-
rectly selected), and MSE (Mean Squared Error) for PWGEE-Lasso(P-Lasso), PWGEE-SCAD (P-SCAD),
PWGEE-MCP (P-MCP), PWGEE-cMCP (P-cMCP), and PWGEE-Exclusive lasso (P-eLasso) method
with n = 300 and p =(150, 300, 600), which has unequal group sizes, in each scenario.

scenarios corr methods C IC CG MSE C IC CG MSE C IC CG MSE
p=150 p=300 p=600

1 0.60 P-Lasso 104.82 0.00 5.00 0.10 225.28 0.00 5.00 0.13 527.72 0.00 5.00 0.09
P-SCAD 106.43 0.00 5.00 0.24 220.40 0.00 5.00 0.47 529.51 0.00 5.00 0.13
P-MCP 117.49 0.00 5.00 0.29 243.35 0.00 5.00 0.52 546.84 0.00 5.00 0.24
P-cMCP 109.03 0.00 5.00 0.14 230.52 0.00 5.00 0.18 533.31 0.00 5.00 0.14
P-eLasso 131.01 0.00 5.00 0.06 281.95 0.00 5.00 0.05 581.31 0.00 5.00 0.05

0.90 P-Lasso 119.53 0.21 5.00 0.40 256.14 0.23 5.00 0.37 566.13 0.26 5.00 0.30
P-SCAD 117.55 1.40 4.94 2.42 244.71 1.47 5.00 3.46 567.15 2.64 4.93 1.20
P-MCP 121.88 1.45 4.92 2.24 254.46 1.59 5.00 3.11 576.47 2.65 4.85 1.24
P-cMCP 115.52 1.37 4.90 2.23 239.99 1.38 5.00 3.40 572.48 2.63 4.86 1.14
P-eLasso 130.71 0.03 5.00 0.21 279.57 0.06 5.00 0.16 578.28 0.05 5.00 0.13

2 0.60 P-Lasso 101.72 0.02 5.00 0.19 219.28 0.01 5.00 0.21 511.11 0.03 5.00 0.19
P-SCAD 103.05 0.26 5.00 0.41 217.50 0.23 5.00 0.75 515.25 0.72 5.00 0.42
P-MCP 114.01 0.40 5.0 0.45 238.21 0.34 5.00 0.82 535.86 0.96 5.00 0.64
P-cMCP 105.50 0.29 5.00 0.33 223.74 0.25 5.00 0.41 519.17 0.61 5.00 0.44
P-eLasso 123.51 0.02 5.00 0.14 271.94 0.02 5.00 0.12 571.16 0.08 5.00 0.13

0.90 P-Lasso 115.91 2.17 5.00 1.06 254.32 1.90 5.00 0.85 563.01 1.85 5.00 0.65
P-SCAD 112.78 5.11 4.96 4.89 242.05 5.22 4.99 6.53 565.43 6.58 4.90 2.38
P-MCP 116.81 5.34 4.91 4.61 252.21 5.40 4.96 5.85 573.55 6.70 4.82 2.32
P-cMCP 112.77 5.17 4.83 4.88 237.49 5.13 4.93 7.53 571.59 6.62 4.80 2.18
P-eLasso 122.61 1.63 5.00 0.82 271.01 1.56 5.00 0.58 572.88 1.41 5.00 0.49

3 0.60 P-Lasso 103.10 0.02 5.00 0.15 218.47 0.00 5.00 0.17 517.67 0.00 5.00 0.14
P-SCAD 104.65 0.03 5.00 0.29 218.41 0.03 5.00 0.59 520.96 0.09 5.00 0.21
P-MCP 115.65 0.05 5.00 0.33 238.82 0.05 5.00 0.66 540.71 0.15 5.00 0.36
P-cMCP 107.15 0.04 5.00 0.21 224.47 0.00 5.00 0.28 524.50 0.07 5.00 0.25
P-eLasso 120.93 0.02 5.00 0.13 269.43 0.00 5.00 0.13 566.51 0.02 5.00 0.12

0.90 P-Lasso 117.50 1.39 4.99 0.78 253.25 1.08 5.00 0.66 563.48 1.15 4.99 0.55
P-SCAD 115.97 3.52 4.98 3.47 240.67 3.43 5.00 5.68 566.05 4.90 4.88 1.91
P-MCP 118.71 3.57 4.94 3.46 249.84 3.64 4.98 5.08 574.52 4.95 4.83 1.88
P-cMCP 116.94 3.60 4.84 3.25 237.30 3.39 4.96 6.06 571.69 4.98 4.78 1.81
P-eLasso 124.47 1.28 5.00 0.65 272.40 1.05 5.00 0.50 572.04 0.99 5.00 0.43

Note: Bold symbols in the C and CG indicate the highest values, while the lowest values for
IC and MSE are also bolded. The optimal values of C vary by scenario and are determined
by the (p - number of non-zeros). Thus, for p = 150, C = (145, 140, 142); for p = 300, C =
(295, 290, 292); for p = 600, C = (595, 590 592). The optimal value for IC is zero.
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Table A.4: SDOH Domains and Topic Areas Represented in the SDOH Database

IND Domain Variable Name Variable Label Data
Source

0 Identifier YEAR SDOH file year
1 Social context ACS_HH_SIZE Average Household size ACS
2 Social context ACS_MEDIAN_AGE Median age ACS
3 Social context ACS_PCT_1UP_PERS_1ROOM % Housing units with more than one occupant per room ACS
4 Social context ACS_PCT_AIAN % Population reporting American Indian/Alaska Native race ACS
5 Social context ACS_PCT_ASIAN % Population reporting Asian race ACS
6 Social context ACS_PCT_BLACK % Population reporting Black race ACS
7 Social context ACS_PCT_CHILD_1FAM % Families with children that are single-parent families ACS
8 Social context ACS_PCT_CTZ_US_BORN % Population consisting of U.S. citizens born in United States, Puerto Rico, or U.S. Islands ACS
9 Social context ACS_PCT_DIVORCE_SEPARAT % Population divorced or separated (ages 15 and over) ACS
10 Social context ACS_PCT_ENGL_NOT_ALL % Population that does not speak English at all (ages 5 and over) ACS
11 Social context ACS_PCT_FEMALE % Population that is female ACS
12 Social context ACS_PCT_FOREIGN_BORN % Population that is foreign-born ACS
13 Social context ACS_PCT_GRANDKID_TOT % Children living with a grandparent Householder (ages 17 and under) ACS
14 Social context ACS_PCT_HH_1PERS % Households with only one occupant ACS
15 Social context ACS_PCT_HH_NO_FUEL % Occupied Housing units without fuel ACS
16 Social context ACS_PCT_HISPAN % Population reporting Hispanic ethnicity ACS
17 Social context ACS_PCT_MULT_RACE % Population reporting multiple races ACS
18 Social context ACS_PCT_NHPI % Population reporting Native Hawaiian/Pacific Islander race ACS
19 Social context ACS_PCT_NONCTN_1990 % Population who are not U.S. citizens and entered U.S. before 1990 ACS
20 Social context ACS_PCT_OTH_LANG % Population who speak other languages (ages 5 and over) ACS
21 Social context ACS_PCT_VA % Civilian Population consisting of veterans (ages 18 and over) ACS
22 Social context ACS_PCT_WHITE % Population reporting White race ACS
23 Economic context ACS_GINI_INDEX Gini index of income inequality ACS
24 Economic context ACS_MEDIAN_HH_INCOME_N Median Household income (in dollars, inflation-adjusted to file data year) /1000 ACS
25 Economic context ACS_PCT_1FAM_HH_FOOD_STMP % Unmarried partner Households that received food stamps/

Supplemental Nutrition Assistance Program (SNAP) benefits ACS
26 Economic context ACS_PCT_ADMIN % Employed working in public administration ACS
27 Economic context ACS_PCT_ARMED_FORCES % Civilian Population in armed forces (ages 16 years and over) ACS
28 Economic context ACS_PCT_ART % Employed working in arts, entertainment, recreation, and accommodation and food services ACS
29 Economic context ACS_PCT_CONSTRUCT % Employed working in construction ACS
30 Economic context ACS_PCT_EDUC % Employed working in educational services, and healthcare and social assistance ACS
31 Economic context ACS_PCT_FINANCE % Employed working in finance and insurance, real estate, and rental and leasing ACS
32 Economic context ACS_PCT_FOOD_STAMP % Households that received food stamps/SNAP, past 12 months ACS
33 Economic context ACS_PCT_HH_PUB_ASSIST % Households with public assistance income or food stamps/SNAP ACS
34 Economic context ACS_PCT_INFORM % Employed working in information services ACS
35 Economic context ACS_PCT_MANUFACT % Employed working in manufacturing ACS
36 Economic context ACS_PCT_NATURE % Employed working in agriculture, forestry, fishing and hunting, and mining (ages 16 and over) ACS
37 Economic context ACS_PCT_OTHER % Employed working in other services, except public administration ACS
38 Economic context ACS_PCT_PERSON_INC124 % Population with income to poverty ratio: 1.00-1.24 ACS
39 Economic context ACS_PCT_PERSON_INC199 % Population with income to poverty ratio: 1.25-1.99 ACS
40 Economic context ACS_PCT_PERSON_INC200 % Population with income to poverty ratio: 2.00 or higher ACS
41 Economic context ACS_PCT_PERSON_INC99 % Population with income to poverty ratio: <1.00 ACS
42 Economic context ACS_PCT_PROFESS % Employed working in professional, scientific, management, administrative,

and waste management services ACS
43 Economic context ACS_PCT_RETAIL % Employed working in retail trade ACS
44 Economic context ACS_PCT_TRANSPORT % Employed working in transportation and warehousing, and in utilities ACS
45 Economic context ACS_PCT_UNEMPLOY % Population that was unemployed (ages 16 years and over) ACS
46 Economic context ACS_PCT_VA_LABOR_FORCE % Civilian veterans in labor force (ages 18–64) ACS
47 Economic context ACS_PCT_WHOLESALE % Employed working in wholesale trade ACS
48 Education ACS_PCT_ASSOCIATE_DGR % Population with some college or associate’s degree (ages 25 and over) ACS
49 Education ACS_PCT_BACHELOR_DGR % Population with a bachelor’s degree (ages 25 and over) ACS
50 Education ACS_PCT_GRADUATE_DGR % Population with a master’s or professional school degree or doctorate (ages 25 and over) ACS
51 Education ACS_PCT_HS_GRADUATE % Population with only high school diploma (ages 25 and over) ACS
52 Education ACS_PCT_LT_HS % Population with less than high school education (ages 25 and over) ACS
53 Physical infrastructure ACS_MEDIAN_HOME_VALUE Median home value of owner-occupied Housing units ACS
54 Physical infrastructure ACS_MEDIAN_RENT Median gross rent as a % Household income ACS
55 Physical infrastructure ACS_PCT_10UNITS % Housing in structures with 10 or more units ACS
56 Physical infrastructure ACS_PCT_COMMT_60MINUP % Workers with at least 60-minute commute time (ages 16 and over) ACS
57 Physical infrastructure ACS_PCT_DRIVE_2WORK % Workers taking a car, truck, or van to Work (ages 16 and over) ACS
58 Physical infrastructure ACS_PCT_MOBILE_HOME % Housing units that are mobile homes ACS
59 Physical infrastructure ACS_PCT_NO_VEH % Housing units with no vehicle available ACS
60 Physical infrastructure ACS_PCT_PUBL_TRANSIT % Workers taking public transportation, excluding taxicab (ages 16 and over) ACS
61 Physical infrastructure ACS_PCT_RENT_COST_30PCT % Rental units with rent equal to 30 percent or more of Household income ACS
62 Physical infrastructure ACS_PCT_RENTED_HH % Occupied Housing units: rented ACS
63 Physical infrastructure ACS_PCT_RENTER_HH_CHILD % Renter-occupied Housing units with children ACS
64 Physical infrastructure ACS_PCT_VACANT_HH % Housing units vacant ACS
65 Physical infrastructure CCBP_RATE_CS_PER_1000 Convenience stores per 1,000 people CCBP
66 Physical infrastructure CCBP_RATE_FSR_PER_1000 Full service restaurants per 1,000 people CCBP
67 Physical infrastructure CCBP_RATE_SOGS_PER_1000 Supermarkets and other grocery (except convenience) stores per 1,000 people CCBP
68 Healthcare context AHRF_FED_HLTH_CNT Number of Federally Qualified Health Centers AHRF
69 Healthcare context AHRF_MENTL_HLTH_CNT Total number of community mental health centers AHRF
70 Healthcare context AHRF_RURAL_H_CLINIC Number of rural health clinics AHRF
71 Healthcare context MP_ELIGIBLES Number of Medicare eligibles in the county MP

Continued on next page
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Table A.4 – continued from previous page

IND Domain Variable Name Variable Label Data
Source

72 Healthcare context MP_PERCPEN Derived field that equals the ratio of enrollees over eligibles * 100 MP
73 Geography UR2013 1: Rural, 0: Urban by NCHS 2013 Rural-Urban Classification Scheme NCHS
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Appendix B

Model-based Clustering of
High-Dimensional Longitudinal
Data via Exclusive Lasso Penalty
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Table B.1: Comparison results averaged by ARI, C, IC, and MSE among the proposed methods(mixLMM)
through Exclusive Lasso (mixLMM-eLasso), SCAD (mixLMM-SCAD), and Lasso (mixLMM-Lasso)
using datasets for n=100, p=(25, 50 100) in unequal-sized group.

Scn method Corr ARI C IC MSE ARI C IC MSE ARI C IC MSE
p=25 p=50 p=100

1 eLasso 0.6 0.937 38.00 0.00 0.011 0.939 88.40 0.00 0.006 0.942 187.72 0.00 0.003
SCAD 0.920 38.03 0.71 0.032 0.853 87.64 3.33 0.041 0.670 187.34 4.50 0.027
Lasso 0.925 37.32 1.10 0.036 0.879 87.58 3.70 0.043 0.755 188.60 5.49 0.030
eLasso 0.9 0.946 37.91 0.00 0.016 0.951 88.02 0.00 0.007 0.949 187.76 0.00 0.004
SCAD 0.923 38.29 3.42 0.146 0.912 87.43 4.07 0.084 0.891 187.56 5.02 0.050
Lasso 0.939 38.04 0.34 0.052 0.926 87.59 0.92 0.030 0.910 187.31 1.94 0.019

2 eLasso 0.6 0.948 26.54 0.00 0.038 0.947 76.70 0.11 0.021 0.946 175.50 0.00 0.010
SCAD 0.917 26.29 3.52 0.135 0.865 74.55 6.56 0.106 0.752 173.46 9.95 0.073
Lasso 0.922 26.23 3.02 0.104 0.889 77.07 6.15 0.082 0.757 177.53 11.76 0.066
eLasso 0.9 0.961 27.53 1.12 0.136 0.962 77.41 1.08 0.066 0.953 177.50 1.01 0.033
SCAD 0.939 28.52 11.22 0.584 0.931 76.63 11.24 0.310 0.904 174.81 12.50 0.171
Lasso 0.958 27.82 2.75 0.214 0.955 77.83 3.63 0.113 0.931 176.79 4.74 0.059

3 eLasso 0.6 0.946 24.64 1.11 0.035 0.946 74.74 1.16 0.021 0.925 173.41 1.32 0.012
SCAD 0.911 28.88 3.43 0.071 0.901 77.39 5.07 0.054 0.655 177.55 8.82 0.051
Lasso 0.929 28.10 3.20 0.068 0.911 79.26 6.22 0.064 0.766 180.21 9.24 0.048
eLasso 0.9 0.959 27.28 1.51 0.110 0.957 77.36 1.33 0.055 0.957 177.67 1.30 0.027
SCAD 0.928 31.06 8.42 0.349 0.926 79.70 9.17 0.200 0.909 178.31 9.98 0.117
Lasso 0.949 28.96 2.62 0.140 0.942 79.24 3.70 0.080 0.933 178.44 4.25 0.040

Note: Bold symbols in the ARI and C indicate the highest values, while the lowest values for
IC and MSE are also bolded. The optimal values of C vary by scenario and are determined
by the 2×(p - number of non-zeros). Thus, for p = 25, C = (45, 40, 42); for p = 50, C = (95,
90, 92); for p = 100, C = (195, 190 192). The optimal value for IC is zero; The method denotes
mixLMM with tested penalties.
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Table B.2: Comparison results averaged by ARI, C, IC, and MSE among the proposed meth-
ods(mixLMM) through Exclusive Lasso (mixLMM-eLasso), SCAD (mixLMM-SCAD), and Lasso
(mixLMM-Lasso) using datasets for n=200, p=(25, 50 100) in unequal-sized group.

Scn method Corr ARI C IC MSE ARI C IC MSE ARI C IC MSE
p=25 p=50 p=100

1 eLasso 0.6 0.937 38.72 0.00 0.005 0.940 88.46 0.00 0.003 0.938 188.39 0.00 0.001
SCAD 0.923 38.99 0.40 0.013 0.913 87.90 1.00 0.013 0.832 188.47 3.22 0.017
Lasso 0.925 37.55 0.50 0.016 0.915 86.18 1.40 0.017 0.869 185.81 3.29 0.018
eLasso 0.9 0.947 38.34 0.00 0.008 0.952 87.91 0.00 0.004 0.945 187.99 0.00 0.002
SCAD 0.920 38.68 1.68 0.068 0.932 88.11 2.37 0.047 0.917 187.47 3.07 0.029
Lasso 0.945 38.14 0.02 0.024 0.947 87.25 0.02 0.013 0.934 186.80 0.41 0.008

2 eLasso 0.6 0.955 27.57 0.00 0.018 0.947 77.28 0.00 0.010 0.955 176.96 0.00 0.005
SCAD 0.949 28.25 0.56 0.033 0.926 76.15 2.61 0.040 0.916 174.34 4.36 0.031
Lasso 0.951 27.20 0.40 0.029 0.937 76.15 1.99 0.031 0.923 176.30 5.60 0.033
eLasso 0.9 0.961 28.05 0.20 0.073 0.957 77.64 0.23 0.037 0.965 177.81 0.17 0.018
SCAD 0.942 28.91 8.83 0.377 0.935 77.28 9.14 0.209 0.938 176.10 10.39 0.122
Lasso 0.959 28.20 0.85 0.114 0.954 77.26 1.01 0.063 0.959 177.14 0.95 0.032

3 eLasso 0.6 0.947 24.96 1.02 0.017 0.943 73.89 0.92 0.011 0.940 173.10 0.92 0.006
SCAD 0.943 30.94 2.41 0.021 0.930 79.71 2.71 0.015 0.848 179.31 5.18 0.021
Lasso 0.944 28.55 1.91 0.020 0.934 78.22 2.80 0.022 0.862 178.71 7.29 0.035
eLasso 0.9 0.957 26.27 0.98 0.070 0.953 76.21 0.87 0.037 0.954 176.48 0.76 0.019
SCAD 0.946 31.22 6.84 0.217 0.945 79.72 7.26 0.129 0.935 179.02 8.68 0.081
Lasso 0.955 28.67 1.60 0.073 0.950 78.09 1.73 0.040 0.948 177.77 1.71 0.021

Note: Bold symbols in the ARI and C indicate the highest values, while the lowest values for
IC and MSE are also bolded. The optimal values of C vary by scenario and are determined
by the 2×(p - number of non-zeros). Thus, for p = 25, C = (45, 40, 42); for p = 50, C = (95,
90, 92); for p = 100, C = (195, 190 192). The optimal value for IC is zero; The method denotes
mixLMM with tested penalties.
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Table B.3: Comparison results averaged by ARI, C, IC, and MSE among the proposed meth-
ods(mixLMM) through Exclusive Lasso (mixLMM-eLasso), SCAD (mixLMM-SCAD), and Lasso
(mixLMM-Lasso) using datasets for n=400, p=(100, 200, 400) in unequal-sized group.

Scn method Corr ARI C IC MSE ARI C IC MSE ARI C IC MSE
p=100 p=200 p=400

1 eLasso 0.6 0.939 188.80 0.00 0.001 0.943 388.98 0.00 0.000 0.944 788.86 0.00 0.000
SCAD 0.897 186.58 1.30 0.007 0.880 387.37 2.70 0.007 0.827 788.04 3.50 0.005
Lasso 0.909 182.42 1.50 0.008 0.886 382.87 3.10 0.008 0.832 781.18 4.69 0.006
eLasso 0.9 0.952 188.22 0.00 0.001 0.951 388.50 0.00 0.001 0.951 788.78 0.00 0.000
SCAD 0.933 187.48 0.85 0.009 0.932 386.64 1.66 0.008 0.904 784.99 2.05 0.004
Lasso 0.945 186.46 0.00 0.003 0.930 385.73 0.80 0.004 0.904 784.65 1.89 0.003

2 eLasso 0.6 0.957 177.89 0.00 0.003 0.955 377.56 0.00 0.001 0.956 777.54 0.00 0.001
SCAD 0.939 176.64 1.60 0.010 0.891 375.58 4.62 0.013 0.826 777.24 7.81 0.010
Lasso 0.941 174.27 2.20 0.014 0.896 372.85 6.80 0.018 0.784 773.86 11.60 0.015
eLasso 0.9 0.963 177.77 0.01 0.009 0.963 378.39 0.00 0.005 0.965 778.22 0.02 0.002
SCAD 0.949 177.16 7.77 0.078 0.951 376.69 8.99 0.046 0.933 775.63 10.49 0.027
Lasso 0.956 176.50 0.17 0.016 0.951 376.30 0.48 0.009 0.932 773.92 3.31 0.008

3 eLasso 0.6 0.946 172.85 0.84 0.004 0.949 373.33 0.87 0.002 0.946 772.05 1.00 0.001
SCAD 0.937 179.17 2.56 0.005 0.902 378.43 5.50 0.011 0.813 780.59 8.29 0.009
Lasso 0.921 173.78 3.58 0.013 0.882 372.68 6.04 0.013 0.824 777.22 9.97 0.012
eLasso 0.9 0.958 175.19 0.67 0.013 0.959 376.03 0.55 0.007 0.960 775.54 0.55 0.004
SCAD 0.946 179.13 5.75 0.040 0.944 378.27 7.02 0.026 0.937 778.83 8.59 0.017
Lasso 0.955 177.73 1.67 0.011 0.946 375.14 1.38 0.005 0.933 773.50 3.24 0.005

Note: Bold symbols in the ARI and C indicate the highest values, while the lowest values for
IC and MSE are also bolded. The optimal values of C vary by scenario and are determined
by the 2×(p - number of non-zeros). Thus, for p = 100, C = (190, 180, 184); for p = 200, C =
(390, 380, 384); for p = 400, C = (790, 780 784). The optimal value for IC is zero; The method
denotes mixLMM with tested penalties.

115



Ta
bl

eB
.4

:M
ea

n
of

A
ge

-A
dj

us
te

d
C

V
D

M
or

ta
lit

yb
yC

ou
nt

y-
lev

el
C

lu
ste

rs
,2

00
9–

20
18

A
ge

-a
dj

us
te

d
C

ar
di

ov
as

cu
la

rM
or

ta
lit

y
R

at
ep

er
10

0,
00

0
pe

op
le

cl
us

te
r

n
Es

ti
m

at
es

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

1
55

3
M

ea
n

29
9.

78
69

29
0.

67
25

28
4.

59
85

27
8.

97
76

27
6.

77
32

27
5.5

14
4

27
4.

56
35

27
0.

53
97

26
6.

62
63

26
1.8

53
4

SD
67

.8
65

4
63

.36
91

62
.6

74
6

62
.18

21
63

.37
62

66
.8

57
4

68
.6

70
5

70
.2

71
9

68
.7

91
6

68
.56

05

95
%

C
I

(2
94

.11
81

,3
05

.4
55

6)
(2

85
.37

93
,2

95
.9

65
7)

(2
79

.36
34

,2
89

.8
33

7)
(2

73
.7

83
5,

28
4.

17
16

)
(2

71
.4

79
5,

28
2.

06
70

)
(2

69
.9

29
9,

28
1.0

99
0)

(2
68

.8
27

5,
28

0.
29

95
)

(2
64

.6
69

9,
27

6.
40

95
)

(2
60

.8
80

2,
27

2.
37

24
)

(2
56

.12
66

,2
67

.58
02

)

2
80

9
M

ea
n

26
9.

73
96

26
1.5

49
6

25
5.2

26
0

24
8.

69
82

24
3.3

98
3

24
0.

37
66

23
6.

38
57

23
4.

29
53

23
1.0

36
0

22
9.

79
53

SD
46

.0
33

8
44

.54
99

44
.31

58
44

.8
78

4
45

.6
18

6
45

.9
09

4
45

.55
32

44
.9

43
2

44
.6

28
7

44
.8

00
0

95
%

C
I

(2
66

.56
27

,2
72

.9
16

4)
(2

58
.4

75
1,

26
4.

62
41

)
(2

52
.16

76
,2

58
.2

84
3)

(2
45

.6
01

0,
25

1.7
95

3)
(2

40
.2

50
0,

24
6.

54
65

)
(2

37
.2

08
3,

24
3.5

44
9)

(2
33

.2
41

9,
23

9.
52

94
)

(2
31

.19
37

,2
37

.39
69

)
(2

27
.9

56
1,

23
4.

115
9)

(2
26

.7
03

6,
23

2.
88

70
)

3
50

1
M

ea
n

26
1.1

98
0

25
3.4

01
1

24
9.

93
83

25
0.

02
11

25
1.8

10
1

25
5.7

77
2

25
9.

43
19

26
3.0

89
8

26
3.7

47
1

26
3.0

79
2

SD
50

.16
89

49
.53

93
49

.4
44

2
50

.32
21

50
.8

78
6

52
.2

22
9

52
.18

71
52

.4
58

0
52

.2
37

8
51.

52
64

95
%

C
I

(2
56

.7
94

3,
26

5.6
01

6)
(2

49
.0

52
7,

25
7.

74
96

)
(2

45
.59

82
,2

54
.2

78
3)

(2
45

.6
04

0,
25

4.
43

82
)

(2
47

.34
41

,2
56

.2
76

1)
(2

51.
19

32
,2

60
.36

11)
(2

54
.8

510
,2

64
.0

12
7)

(2
58

.4
85

2,
26

7.
69

44
)

(2
59

.16
18

,2
68

.33
23

)
(2

58
.55

63
,2

67
.6

02
0)

4
52

1
M

ea
n

24
6.

31
03

23
9.

59
67

23
4.

84
54

23
2.

58
15

23
1.3

68
1

23
1.4

08
4

23
0.

66
46

23
0.

38
58

22
7.

37
27

22
5.8

17
7

SD
39

.4
513

38
.34

54
38

.0
87

6
38

.8
49

3
39

.50
66

40
.10

28
39

.39
72

38
.30

42
37

.56
46

37
.8

14
4

95
%

C
I

(2
42

.9
14

8,
24

9.
70

58
)

(2
36

.2
96

4,
24

2.
89

70
)

(2
31

.56
73

,2
38

.12
36

)
(2

29
.2

37
8,

23
5.9

25
2)

(2
27

.9
67

8,
23

4.
76

83
)

(2
27

.9
56

8,
23

4.
86

00
)

(2
27

.2
73

8,
23

4.
05

55
)

(2
27

.0
89

0,
23

3.6
82

6)
(2

24
.13

96
,2

30
.6

05
9)

(2
22

.56
31

,2
29

.0
72

3)

5
31

0
M

ea
n

23
3.7

21
0

22
7.

62
29

22
6.

62
07

22
6.

04
61

22
6.

95
55

22
9.

21
19

22
9.

70
52

23
1.8

95
8

23
2.

20
97

23
2.

66
97

SD
39

.4
37

2
39

.0
64

9
40

.19
89

39
.9

63
7

39
.6

41
7

40
.17

56
40

.51
01

39
.9

89
5

40
.4

25
9

40
.0

47
3

95
%

C
I

(2
29

.31
36

,2
38

.12
83

)
(2

23
.2

57
2,

23
1.9

88
6)

(2
22

.12
82

,2
31

.11
31

)
(2

21
.57

99
,2

30
.51

23
)

(2
22

.52
53

,2
31

.38
57

)
(2

24
.7

22
1,

23
3.7

01
8)

(2
25

.17
79

,2
34

.2
32

4)
(2

27
.4

26
7,

23
6.

36
49

)
(2

27
.6

91
8,

23
6.

72
75

)
(2

28
.19

42
,2

37
.14

52
)

6
36

0
M

ea
n

23
0.

10
55

22
3.9

98
0

22
0.

19
13

21
6.

24
24

21
3.1

05
2

21
1.6

96
6

21
0.

17
80

20
9.

69
16

20
8.

41
24

20
7.

44
83

SD
30

.0
58

9
30

.58
78

30
.9

114
31

.4
28

4
31

.4
38

6
31

.7
30

9
31

.8
97

9
31

.9
71

9
31

.8
35

6
31

.51
42

95
%

C
I

(2
26

.9
89

9,
23

3.2
21

0)
(2

20
.8

27
6,

22
7.

16
84

)
(2

16
.9

87
4,

22
3.3

95
2)

(2
12

.9
84

9,
21

9.
49

99
)

(2
09

.8
46

6,
21

6.
36

38
)

(2
08

.4
07

7,
21

4.
98

55
)

(2
06

.8
71

8,
21

3.4
84

2)
(2

06
.37

78
,2

13
.0

05
4)

(2
05

.11
27

,2
11.

71
21

)
(2

04
.18

19
,2

10
.7

14
7)

7
17

0
M

ea
n

22
3.0

89
2

21
9.

25
50

21
7.

23
39

21
5.4

76
2

21
4.

25
39

21
4.

63
62

21
3.6

90
9

21
4.

25
39

21
3.4

30
3

21
2.

26
86

SD
37

.0
22

9
37

.4
30

7
37

.16
96

37
.6

32
0

38
.2

25
9

38
.7

86
9

38
.58

21
38

.2
60

1
38

.7
84

8
38

.6
85

0

95
%

C
I

(2
17

.4
83

6,
22

8.
69

47
)

(2
13

.58
78

,2
24

.9
22

3)
(2

11.
60

61
,2

22
.8

61
6)

(2
09

.7
78

5,
22

1.1
74

0)
(2

08
.4

66
2,

22
0.

04
15)

(2
08

.7
63

6,
22

0.
50

88
)

(2
07

.8
49

3,
21

9.
53

25
)

(2
08

.4
61

0,
22

0.
04

67
)

(2
07

.55
81

,2
19

.30
26

)
(2

06
.4

114
,2

18
.12

57
)

N
ot

e:
n

de
no

te
st

he
nu

m
be

ro
fc

ou
nt

ies
in

ea
ch

di
sti

nt
clu

ste
r.

SD
de

fin
es

as
ta

nd
ar

d
de

vi
at

io
n.

116



Table B.5: BIC Values for Different Numbers of Clusters

BIC Number of Clusters
No. of try 1 2 3 4 5 6 7 8

1 1× 107 275697.5 273242.8 271502.7 270913.5 270451.6 270179.1 270356.8
2 1× 107 275708 273007.4 271626.6 270940 270640.6 270288.5 270313
3 1× 107 275680.9 273069.3 271675.7 271440 270676.2 270417.8 270395.4
4 1× 107 275665.8 273056.9 271544 270948.6 270637.1 270173.5 270227.7
5 1× 107 275730.4 273135.9 271494.3 271011.4 270718.6 270498.1 270272.9

Table B.6: Number of Rural-Urban Counties within Clusters, excluding US territories

Cluster Urban (%) Rural (%) Total
1 93 (7.98) 419 (21.20) 512
2 315 (27.02) 467 (23.63) 782
3 134 (11.49) 365 (18.47) 499
4 164 (14.07) 355 (17.97) 519
5 227 (11.15) 129 (6.53) 356
6 130 (19.47) 180 (9.11) 310
7 103 (8.83) 61 (3.09) 164

Total 1166 (100) 1976 (100) 3142
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Table B.7: State-wise breakdown of county counts by cluster categories.

GEOID State K1 K2 K3 K4 K5 K6 K7 Total
01 Alabama 20 18 12 7 4 3 3 67
02 Alaska 14 3 6 2 1 2 1 29
04 Arizona 0 4 1 1 3 5 1 15
05 Arkansas 18 18 16 13 6 3 1 75
06 California 2 24 1 5 6 17 3 58
08 Colorado 13 12 6 13 7 6 7 64
09 Connecticut 0 2 0 0 0 4 2 8
10 Delaware 0 1 0 0 0 1 1 3
11 District of Columbia 0 0 0 1 0 0 0 1
12 Florida 4 14 5 14 7 13 10 67
13 Georgia 47 33 27 34 9 6 3 159
15 Hawaii 0 1 0 1 2 1 0 5
16 Idaho 8 6 18 6 3 1 2 44
17 Illinois 6 30 9 19 19 12 7 102
18 Indiana 10 26 10 21 10 11 4 92
19 Iowa 9 28 19 18 13 10 2 99
20 Kansas 14 18 33 20 6 11 3 105
21 Kentucky 47 28 15 13 9 7 1 120
22 Louisiana 24 14 16 8 1 1 0 64
23 Maine 0 2 2 2 2 5 3 16
24 Maryland 0 7 7 5 1 4 0 24
25 Massachusetts 0 2 0 0 1 8 3 14
26 Michigan 3 21 10 20 10 14 5 83
27 Minnesota 2 5 11 25 14 17 13 87
28 Mississippi 34 20 16 10 2 0 0 82
29 Missouri 27 37 25 10 3 8 5 115
30 Montana 8 8 16 10 7 5 2 56
31 Nebraska 13 24 11 24 11 8 2 93
32 Nevada 4 4 3 2 2 1 1 17
33 New Hampshire 0 0 0 2 2 3 3 10
34 New Jersey 0 4 0 0 2 10 5 21
35 New Mexico 2 5 4 11 8 1 2 33
36 New York 6 27 0 8 3 17 1 62
37 North Carolina 7 37 8 15 8 21 4 100
38 North Dakota 12 8 8 16 6 1 2 53
39 Ohio 8 17 13 13 21 9 7 88
40 Oklahoma 20 23 25 2 3 3 1 77
41 Oregon 0 5 3 9 7 7 5 36
42 Pennsylvania 2 28 4 4 4 15 10 67
44 Rhode Island 0 1 0 0 0 4 0 5
45 South Carolina 5 18 2 9 2 6 4 46
46 South Dakota 16 10 15 18 4 2 1 66
47 Tennessee 26 19 24 13 6 5 2 95
48 Texas 34 53 55 36 39 27 10 254
49 Utah 6 4 3 6 7 1 2 29
50 Vermont 0 1 2 1 1 2 2 9
51 Virginia 3 17 11 14 10 17 3 75
53 Washington 0 6 8 3 6 10 6 39
54 West Virginia 3 10 3 11 2 5 1 35
55 Wisconsin 9 21 7 18 18 8 2 83
56 Wyoming 5 7 7 8 5 2 1 35
66 Guam 1 0 0 0 0 0 0 1
72 Puerto Rico 40 27 2 2 0 4 3 78
78 U.S. Virgin Islands 0 0 0 0 0 0 3 3

Total (County) 553 809 501 521 310 360 170 3224
Total (State) 39 50 42 47 47 49 45
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Appendix C

Use of Model-base Clustering of
High-Dimensional Longitudinal
Data via Exclusive Lasso Penalty
by Different Levels of SDOH Data
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Table C.2: Selected social determinants of health associated with age-adjusted CVD mortality in each
cluster by 1/14 cutoff county-level clustering: Model-based clustering via Exclusive lasso with random
effects in intercepts, 2009–2018

Domains Variables K1 K2 K3 K4 K5 W6 K7
Int 276.6916 244.7261 257.2023 233.3886 225.7982 212.7531 211.4275

1 % Housing units with more than one occupant per room 0 0 0 0 0 0 -0.0165
1 % Population reporting Asian race 0 0 0 0 -0.1058 -0.0950 -0.6253
1 % Population reporting Black race 0.3756 0.4497 0.6409 0.6672 1.0288 0.5762 0.7010
1 % Families with Children that are single-parent Families 0.0279 0 0.0861 0 0 0 0
1 % Population that does not speak English at all (ages 5 and over) -0.1868 0 0 0 -0.3084 0 0
1 % Population that is foreign-born -0.7811 0 0 -0.8865 0 -0.0552 -0.1739
1 % Children living with a grandparent householder (ages 17 and under) 0 0 0 0 0.3819 0 0
1 % Occupied housing units without fuel -0.2844 0 0 0 0 0 0
1 % Population reporting Hispanic ethnicity -0.4567 -0.5666 -0.2274 -0.3057 0 -0.0048 0
1 % Population reporting multiple races 0 0 0 0 0 -0.2423 0
1 % Population reporting Native Hawaiian/Pacific Islander race 0 0 5.5601 -0.0849 -0.2624 0 0
1 % Population who are not U.S. citizens and entered the U.S. before 1990 -0.0774 0 -0.8147 -0.0915 0 0 0
1 % Population who speak other languages (ages 5 and over) 0 0 0 0 0 0 -0.0052
1 % Civilian Population consisting of veterans (ages 18 and over) 0.0408 2.0556 -0.6133 0 0 1.0664 0.0387
2 Median household income (in dollars) /1000 -0.3358 -0.1748 0 -0.2230 0 0 0
2 % Unmarried partner households that received food stamps/SNAP benefits 0 -0.1366 -0.0120 0 0 0 -0.0004
2 % Employed working in public administration 0 0 0 -0.0229 0 0 0
2 % Civilian Population in armed forces (ages 16 years and over) 0.8621 0 0 0.3457 0 0 0
2 % Employed working in construction 0.5574 0.4894 0 0 0 0.5752 0.0809
2 % Employed working in finance and insurance, real estate, etc. 0 0 -0.4522 0 0 0 0
2 % Households that received food stamps/SNAP, past 12 months -0.3261 -0.7405 0 0 0 -0.5241 0
2 % Households with public assistance income or food stamps/SNAP -0.0726 0 0 0 -0.8127 0 -1.1433
2 % Employed working in information services 0.2305 0 -2.2572 2.9907 0 0 0
2 % Employed working in manufacturing 0.0177 0.1295 0.1262 0.3837 0.4092 0.7210 0.5077
2 % Employed working in agriculture, forestry, fishing, etc. (ages 16 and over) -0.7732 -0.0883 -0.1458 0 0 0 0
2 % Employed working in other services, except public administration 0 0 0.7127 0 0 0 0
2 % Population with income to poverty ratio: 1.25-1.99 -0.1000 0 0 0 0 0 0
2 % Population with income to poverty ratio: <1.00 0 0 0.1859 0 0 0 0
2 % Employed working in professional, scientific, management, administrative, etc. 0 0 -0.0454 0 0 0 0
2 % Employed working in transportation and warehousing, and in utilities 0.0383 0 0 0 0.2355 0 0
2 % Population that was unemployed (ages 16 years and over) 0.9293 0.0592 -1.1274 -0.0288 -1.2616 0 -0.1005
2 % Employed working in wholesale trade 0.3539 1.1166 0 0 0 0 0.4549
3 % Population with some college or associate’s degree (ages 25 and over) 0 0 -0.1832 -0.0119 0 0 0
3 % Population with a bachelor’s degree (ages 25 and over) 0 0 -0.3475 0 -0.1323 0 0
3 % Population with a master’s or highter degree (ages 25 and over) -0.4561 -2.3631 -0.5953 -0.5655 -0.1505 -2.0155 -0.8791
3 % Population with only high school diploma (ages 25 and over) 0.4930 0 0 0 0.0358 0 0
3 % Population with less than high school education (ages 25 and over) 1.4860 2.0879 0 1.2639 0.2948 0.4909 0.3696
4 Median home value of owner-occupied housing units -0.00011 -0.00006 -0.00001 -0.00006 -0.00003 -0.00001 0
4 % Housing in structures with 10 or more units -0.3532 0 0 -0.0378 -0.4332 0 0
4 % Workers with at least 60-minute commute time (ages 16 and over) 0 0 0 0 0 -0.0028 0
4 % Housing units that are mobile homes 0.1622 0.2433 0.3848 0.2865 0 0.7600 0.8139
4 % Housing units with no vehicle available 0 0.30143 0 0 0 0 0
4 Workers (16 +) with a 60+ min public transit commute 0.0143 0.0116 0.0161 -0.0402 0 0 -0.0283
4 % Workers taking public transportation, excluding taxicab (ages 16 and over) 0.3540 0 -0.6969 0 -2.2075 0 0
4 % Rental units with rent equal to 30 percent or more of household income 0 0 -0.0228 0 0 0 0
4 % Housing units vacant -0.4469 -0.3841 0 -0.0200 0 -0.0048 0
4 Beer, wine and liquor stores per 1,000 people 10.4898 -2.6260 7.1360 0 0 0 0
4 Convenience stores per 1,000 people 3.4677 0 0 0 0 0 0
4 Full service restaurants per 1,000 people -0.1267 -0.4046 -4.6795 0 0 0 0
4 Supermarkets and other grocery (except convenience) stores per 1,000 people -6.8065 0 0 0 0 0 -1.7719
5 Number of Federally Qualified Health Centers -0.1200 -0.0746 2.2300 0.1338 0.2636 -0.0389 -0.0381
5 Total number of community mental health centers -1.9253 1.7287 -0.0950 0 -4.0280 -0.0690 0.5185
5 Number of rural health clinics -0.2207 0.0837 1.2492 -0.1563 0.5956 0 0.3225
5 Number of people living with diagnosed HIV / 1000 23.1298 0.0789 0 1.2689 0 0.2428 0
5 Number of Medicare eligibles in the county -0.0005 0 0 0 0 0 0
5 Medicare, ratio of enrollees over Medicare- eligible, % -0.4200 -0.4640 0.4354 -0.2307 0.0732 -0.2662 -0.1593
6 1: Rural, 0: Urban by NCHS 2013 Rural-Urban Classification Scheme 4.9288 2.0972 6.7817 -1.4872 7.7028 1.2883 6.3794
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Figure C.1: The spatial structures of nonzero coefficients associated with age-adjusted cardiovascular dis-
ease mortality across counties in the United States, Left: %Population reporting Black race,%Population
with a master’s or higher degree, Medicare, ratio of enrollees over Medicare- eligible, %; Right: %Employed
working in manufacturing, Number of Federally Qualified Health Centers, Rural-Urban Classification.
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