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ABSTRACT

Mercury, the smallest planet in the Solar System and closest planet to the Sun, has

undergone global contraction, which is a process causing the planet to shrink due to its

long, sustained cooling. This has led to the formation of thousands of shortening landforms

distributed across Mercury’s surface. These positive-relief, surface-breaking landforms are

caused by the folding over thrust faults. Traditionally, Mercury’s shortening landforms

have been classified into one of three categories: “lobate scarps”, “wrinkle ridges”, and

“high-relief ridges”. In this dissertation, these categories are assessed through multiple

statistical analyses. The subsurface fault geometry is then modeled for a large sample size

of Mercury’s shortening landforms. These statistical and modeling efforts both inform a

new assessment of Mercury’s global contractional strain. Finally, Mercury’s current orbit

and rotation is assessed for its influence on the observed systemic thrust fault orientations.

Through this work, Mercury’s shortening landforms are found to exist along a

morphological spectrum between “lobate scarp” and “wrinkle ridge” designations,

suggesting that the morphology of Mercury’s shortening landforms does not support these



categories. Mercury’s shortening landforms are also shown to host a wide range of thrust

system geometries that include single-listric faults, imbricate stacks, and push-up

structures. This data set is then used to establish globally observed ranges of geometric

fault parameters which are then used to inform strain calculations. Using multiple thrust

fault data sets, Mercury’s radial contraction is estimated to be multiple kilometers over a

wide range of plausible physical parameters. The systematic orientations of Mercury’s

thrust faults also seem to be influenced by the stresses caused by the planet’s current orbital

configuration overlain onto global contraction. The collection of research presented in this

dissertation provides valuable insight into Mercury’s tectonic character.
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global contraction, geologic modeling
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1

CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

The surface of Mercury is host to a global network of positive relief, surface-

breaking shortening landforms, indicating a complex tectonic history (e.g., Byrne et al.,

2014). Early interpretations attributed these tectonic features to crater forming events

(Strom et al., 1975). However, modeling informed by early observations from the Mariner

10 mission had predicted that Mercury has undergone global contraction: the process in

which a planet shrinks due to long, sustained cooling (e.g., Solomon, 1977). A planet

undergoing global contraction experiences a horizontally isotropic, fully compressional

stress state throughout its lithosphere (Melosh and McKinnon, 1988). This build-up of

stresses would eventually reach the brittle strength of the lithosphere and so initiate the

growth of thrust faults to accommodate the contraction (Solomon, 1978). The shortening

landforms are now widely accepted to be the surface manifestation of thrust faulting and

folding caused primarily by global contraction (Byrne et al., 2018, 2014; Solomon et al.,

2008; Strom et al., 1975). For the work presented here, I use the term “shortening

landforms” as an identifier of all positive-relief landforms that are interpreted as having

been formed by thrust faulting. Other works refer to such landforms as “lobate scarps”,

“wrinkle ridges”, “shortening structures” or “thrust fault-related landforms” but shortening

landforms is the preferred term here for consistency.

Shortening landforms on Mercury, and more generally on all planetary bodies with

a solid surface, are identified as positive-relief cliffs, frequently demarcated by a surface
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break alongside the bottom of the cliff (e.g., Schultz and Watters, 2001; Watters, 2003).

After the exploration of Mercury via three fly-bys by the Mariner 10 mission in 1974 to

1975 where only 45% of the innermost planet were imaged, the MErcury Surface, Space

ENvironment, GEochemistry, and Ranging (MESSENGER) mission fully mapped

Mercury from orbit from 2011 to 2015. It revealed the contractional tectonic character on

Mercury in much greater detail (e.g., Byrne et al., 2018, 2014). On Mercury, these

shortening landforms can have reliefs of up to 3 km and surface breaks that reach up to

1,000 km (e.g., Byrne et al., 2018; Ferrari et al., 2015; Watters et al., 2016). Hundreds to

thousands of landforms that accommodate horizontal shortening have been identified,

indicating extensive contraction of the planet’s lithosphere (e.g., Byrne et al., 2014; Man

et al., 2023a; Watters, 2021).

The geology of Mercury has been classified and mapped as three main

morphological units: the impact crater facies, intercrater plains, and the smooth plains (e.g.,

Denevi et al., 2013, 2009; Trask and Guest, 1975). Impact crater facies are portions of

Mercury’s surface that have formed due to the direct, or long-term, consequences of

medium-, or large-sized meteorite impacts. Intercrater plains are expanses of Mercury’s

surface that have been heavily cratered, representing the oldest surfaces of the planet. It is

thought to consist of ancient volcanic crust. The smooth plains unit is geologically younger,

hosting fewer craters and is thought to have formed by the emplacement of flood-volcanic

lavas (Denevi et al., 2013; Head et al., 2011). Shortening landforms have formed within all

of Mercury’s geologic units (e.g., Byrne et al., 2014).

Recent efforts have been made to map the geology of Mercury’s surface in greater

detail for individual quadrangles (e.g., Buoninfante et al., 2025; Galluzzi et al., 2018, 2016;
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Guzzetta et al., 2017). There are 15 near-equal area quadrangles of Mercury’s surface

divided by the International Astronomical Union, with 10 having been completely mapped

at the 1:3 million scale (Buoninfante et al., 2025; Galluzzi et al., 2016; Giacomini et al.,

2024, 2022; Guzzetta et al., 2017; Malliband et al., 2023; Man et al., 2023b; Mancinelli et

al., 2016; Pegg et al., 2021; Wright et al., 2019). The ongoing mapping has revealed

interesting structural characteristics across Mercury. For example, the recent work of

Buoninfante et al. (2025) showed tectonic structures in the H12 quadrangle outside of the

impact basins trend with primarily northwest–southeast strikes. Such trends have been

observed previously as shortening landforms have systematic orientations on Mercury’s

surface, with strong north–south trends near the equator that become more variable towards

the poles (e.g., Byrne et al., 2018; Klimczak et al., 2015). The, structural analysis of the

H02 Victoria quadrangle on Mercury has revealed similar fault traces which highlighted a

predominate stress field acting in the ENE–WSW direction (Galluzzi et al., 2019).

Systematic fault orientations have been noted in global-scale structural maps and analyses

(e.g., Byrne et al., 2018; Klimczak et al., 2025, 2015).

Other structural trends highlight that mantle convection may have played a role in

deforming Mercury’s surface producing long wavelength topographic undulations

(Klimczak et al., 2013, 2012; Zuber et al., 2012). Additional recent mapping efforts have

revealed small-scaled graben forming at the hinge lines of the anticlinal folding atop

shortening landforms on Mercury, indicating that Mercury’s global contraction may still

be ongoing (Man et al., 2023a). The notion that tectonics are still active throughout

Mercury’s lithosphere has been additionally supported by the presence of relatively smaller

fault segments and thrusts (Banks et al., 2015; Watters et al., 2016). With the BepiColombo
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mission arriving at Mercury in November 2026, it is important to address open questions

that pertain to Mercury’s tectonics to help guide the scientific objectives of this mission

(Benkhoff et al., 2021). This dissertation aims to shed light on the current questions

regarding lithospheric shortening on Mercury.

Diversity of shortening landforms on Mercury

Shortening landforms on Mercury have typically been categorized into three

morphological groups: lobate scarps, wrinkle ridges, and high-relief ridges (e.g., Melosh

and McKinnon, 1988; Watters et al., 2004, 2001; Watters and Robinson, 1999). Lobate

scarps are linear to arcuate surface-break structures in map-view. In cross-section, lobate

scarps are asymmetric, with a steeply sloping forelimb that immediately trails the surface

break, followed by a more gently sloping backlimb (e.g., Strom, 1979; Strom et al., 1975;

Watters, 1993). The direction of tectonic transport, or vergence, is evident by the direction

the forelimb faces, as the hanging wall folds over the footwall at the surface break (e.g.,

Byrne et al., 2014). Wrinkle ridges on Mercury tend to have lower structural reliefs than

lobate scarps, while hosting more complex, often sinuous map patterns. In cross-section,

wrinkle ridges display a superimposed ridge (the “wrinkle”) above a primary, more-broad,

ridge (e.g., Watters, 1988). Although surface breaks are common for wrinkle ridges (e.g.,

Golombek et al., 2001, 1991; Schleicher et al., 2019; Strom et al., 1975; Watters, 1988),

these shortening landforms have often been interpreted as anticlinal structures that form

above blind thrusts (e.g., Schultz, 2000) or back thrusts (Okubo and Schultz, 2004). More

recently, wrinkle ridges have been interpreted as two oppositely facing monoclines that

have formed over two oppositely verging thrusts (Byrne et al., 2018). High-relief ridges

are described as being morphologically similar to lobate scarps but are more symmetric
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due to a steeper backlimb in cross-section (e.g., Watters et al., 2021). These shortening

landforms have then been interpreted as anticlines forming above steeply dipping reverse

faults (e.g., Watters et al., 2001).

The traditional landform categorical names “lobate scarps”, “wrinkle ridges”, and

“high-relief ridges” have only been given qualitative descriptors. It is often difficult for

planetary geologists to categorize landforms as they exhibit characteristics of two, or

sometimes even all three of the traditional categories (i.e., Strom et al., 1975). Other works

of contractional tectonics on Mercury have questioned the use of these traditional

categories and have noted that although endmember shortening landforms of each type

exist, many contractional landforms are difficult to distinguish as lobate scarps, wrinkle

ridges, or high-relief ridges (e.g., Byrne et al., 2018, 2014; Crane and Klimczak, 2019a;

Klimczak et al., 2018). Although terrestrial analogues have been suggested to describe non-

Earth shortening landforms, such terminology has never been used to describe thrust

systems observed on Earth and can often lead to false assumptions of the subsurface fault

architecture and formation of such structures.

A quantitative definition of lobate scarps, wrinkle ridges, and high-relief ridges

does not yet exist. Furthermore, a statistical analysis of the morphology of shortening

landforms on Mercury’s surface has never been performed to test the legitimacy of these

traditional categories. The implementation of such work in this dissertation intends to better

define the structural characteristics of lobate scarps, wrinkle ridges, and high-relief ridges,

or alternatively, may dissuade the scientific community from using such terminology as to

avoid the generalization and misinterpretation of complex contractional tectonics on

Mercury.
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Thrust fault geometries underlying shortening landforms on Mercury

Wrinkle ridges and lobate scarps have been used to describe almost all shortening

landforms on Mercury’s surface (e.g., Melosh and McKinnon, 1988; Watters et al., 2004).

The large variation of thrust systems formed on Earth brings into question this

generalization of Mercury’s shortening landforms into these two groups. Positive relief,

contractional tectonic landforms on Earth are created due to the stresses from plate

tectonics and manifest as mountain ranges produced by complex systems of thrusts and

folds (e.g., Boyer and Elliot, 1982; Chapple, 1978; Crane and Klimczak, 2019b; Matthews

and Work, 1978; McClay, 1978; Morley, 1988). The Earth hosts fold and thrust belts

attributed to large-scale crustal shortening accommodated by multi-fault thrust complexes

(e.g., McClay and Price, 1981). Duplex thrust structures comprised of stacked panels of

rock bounded by thrusts, imbricate thrusts branching of a single décollement, and other

thrust complexes comprised of faults with identical to oppositely senses of vergence are all

examples in the large variety of observed contractional tectonic geometries found on Earth

(Boyer and Elliot, 1982).

Without plate tectonics, global contraction serves as the main driver for lithospheric

deformation on Mercury. Often shortening landforms on non-Earth bodies are modeled

with a single homoclinal-to-listric fault using elastic, dislocation modeling tectonics, or

geologic forward modeling techniques (e.g., Byrne et al., 2016; Egea-Gonzalez et al., 2017;

Egea-González et al., 2012; Peterson et al., 2020; Schultz and Watters, 2001; Williams et

al., 2013). To date, only few works have proposed similar thrust geometries for Mercury’s

shortening landforms to that of the Earth. For example, Rothery and Massironi (2010) have

suggested that Beagle Rupes, a large shortening landform onMercury with apparent strike-
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slip motion at its tips, is the manifestation of an extensive décollement. Crane and

Klimczak (2019a) have proposed that the upper portions of Mercury’s lithosphere may be

mechanically weaker than the lower portions due to fracturing caused by many impacts

over geologically long periods of time. This may influence the propagation of thrusts in

the lithosphere from faulting in the basement rock. Such a mechanism has been linked to

basement-reactivated thin-skinned tectonics, a fault propagation mechanism occurring on

Earth (Pfiffner, 2017).

Currently most studies on the subsurface architecture of non-Earth shortening

landforms have focused on only one landform, or up to just a few landforms, and have

mostly constrained models by matching the overlying observed topography (Egea-

Gonzalez et al., 2017, 2012; Herrero‐Gil et al., 2020, 2019; Mueller et al., 2014; Peterson

et al., 2020; Schultz and Watters, 2001; Williams et al., 2013). A comprehensive modeling

effort for a large number of landforms to investigate the variability of fault geometries

underneath Mercury’s shortening landforms has not been carried out prior to this

dissertation.

Mercury’s global contractional strain

Mercury’s global contraction has produced a horizontal compressive stress stat that

has caused thrust faulting throughout the planet’s lithosphere (e.g., Solomon, 1978). The

amount Mercury has contracted has been estimated using two methods: thermal evolution

modeling (e.g., Breuer et al., 2007; Hauck et al., 2004; Michel et al., 2013; Solomon, 1977;

Tosi et al., 2013) or tectonic mapping and structural analysis (Byrne et al., 2014; Di Achille

et al., 2012; Watters, 2021; Watters et al., 2015a, 2009, 1998; Watters and Nimmo, 2010).

Thermal evolution models solve a series of physical equations to replicate how Mercury’s
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shape and interior structure has changed over time. Alternatively, structural mapping

efforts rely on the sum of the shortening strain accommodated by thrust faults underneath

shortening landforms. These have developed from works that estimate the strain of a

volume using the lengths of a population of faults (Cowie et al., 1993; Scholz and Cowie,

1990). For Mercury, the relief of the shortening landforms is assumed to equal the throw

of the underlying thrust fault (e.g., Byrne et al., 2014; Watters, 2021, Watters et al., 1998).

Lengths of the faults are extracted from global structural maps and the reliefs of a subset

of shortening landforms are extracted. Using trigonometry, and assuming the entire fault

population hosts a common thrust fault dip, the displacement is calculated for this smaller

set thrust faults. Displacement and length of thrust faults are observed to have a power-log

relationship (Clark and Cox, 1996; Cowie and Scholz, 1992), which is used to estimate the

displacement for the entire, mapped population of thrust faults. This method is prone to

disagreement because the derived strain for Mercury’s lithosphere is dependent on the

number of faults studied (e.g., Byrne et al., 2014; Watters, 2021).

The mapping structural analysis technique has been used extensively producing a

wide range of results, with estimates for Mercury’s radial contraction, Δ, to be as little as

0.8 km (Watters et al., 2015a) to as large as 7.1 km (Byrne et al., 2014). The disadvantage

caused by the dependence on the number of shortening structures considered is reflected

in the history of using this method to estimate Mercury’s contraction. Watters et al. (1998)

produced an initial estimate of Mercury’s radial contraction of 1.5–2.9 km which has been

revisited in the works Watters et al. (2009), Watters and Nimmo (2010), Watters et al.

(2015a), and Watters (2021) that each produce a slightly different result by incrementally
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changing the geologic interpretation of the shortening landforms considered for each

respective analysis.

In order to resolve this discrepancy, alternative methods to estimate Mercury’s

global contraction that circumnavigate the dependency of thrust fault sample size are

needed. In particular, the methodology proposed and utilized in Twiss and Marrett (2010a,

b) provides a way to calculate the strain attributed by a population of faults in a faulted

volume using fault-population statistics, which constitutes an independent assessment of

fault strain for the study of global contraction. This method is based on the fact that a

population of faults is never really completely measured when calculating the total strain

of a volume. Prior to this dissertation, this methodology has never been used to estimate

the strain of global contraction.

Fault orientations on a contracting planet

Mercury’s global contraction has produced a widespread population of thrust faults

(e.g., Byrne et al., 2014). The horizontal stresses caused by global contraction are isotropic

(Melosh and McKinnon, 1988), and therefore, the tectonics produced by global contraction

alone would show random orientations. However, the thrust fault orientations across

Mercury’s surface have systematic orientations, showing roughly north–south trends at the

equatorial regions and generally east–west oriented towards the poles (e.g., Byrne et al.,

2018; Klimczak et al., 2015). This systematic fracture pattern indicates that other tectonic

processes have acting in conjunction with global contraction.

Multiple works have invoked different processes to try to explain the systematic

fault orientations throughout Mercury’s surface. Mercury’s rotation is thought to have

slowed over time (e.g., Burns, 1975 Kaula, 1968; Melosh, 1977; Melosh and McKinnon,
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1988) which has been modeled to cause north–south oriented thrust faults near the equator

and thrust faults without preferred orientations at the poles (e.g., Klimczak et al., 2015;

Pechmann and Melosh, 1979) or normal faults orientated east–west at the poles (Beuthe,

2010). The Caloris impact driven reorientation, despinning, and global contraction

combined had predicted thrust fault orientations that resembled the tectonic patterns

observed with Mariner 10 data but did not resemble the more complete tectonic maps

produced by MESSENGER data (Matsuyama and Nimmo, 2009).

No process or combination of processes has satisfactorily described the observed

tectonic patterns on Mercury. However, these patterns may also reflect lighting bias as

MESSENGER took imagery observing in the eastern or western directions that would

highlight north–south trending structures. Despite this, previous studies have suggested

that Mercury’s current orbit may affect the fracture patterns on the planet’s surface since

thrust faulting shows concentric patterns around Mercury’s hot poles (e.g., Byrne et al.,

2018; Klimczak et al., 2025, 2015). Mercury is currently in an eccentric 3:2 spin–orbit

resonance with the Sun. It’s current orbital configuration causes pronounced solar tides

within the planet’s lithosphere (Hoolst and Jacobs, 2003). Mercury’s current orbit

superposed onto global contraction warrants further investigation, and a comprehensive

study on how this combination of stresses influences the orientations of Mercury’s

tectonics has not been explored in detail prior to the work presented here. By conducting

such an analysis, Mercury’s current 3:2 spin-orbit resonance can be critically evaluated in

its role in systematic fault patterns.
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Overview and significance of dissertation chapters

Mercury is an ideal planet to directly explore the effects global contraction has on

a brittle lithosphere. Although there has been extensive mapping and modeling efforts of

Mercury’s contractional tectonics, these tectonics have yet to be interpreted at the same

level of detail as contractional tectonic systems on Earth. Furthermore, discrepancies in the

literature regarding Mercury’s amount of global contraction, and the analysis of the stress

state and predicted fault orientations due to different superposed tectonic events leaves

many questions regarding Mercury’s tectonics inadequately answered. The goal of this

dissertation is then to investigate, in great detail, the morphology and subsurface structure

of Mercury’s shortening landforms, as well as to provide an alternative assessment of

estimating Mercury’s contractional strain. In addition, the influence of Mercury’s current

orbital characteristics on the planet’s fault orientations are studied.

Chapter 2 focuses on a statistical analysis of the morphology of the shortening

landforms on Mercury’s surface to test whether traditionally-used landform designations

are indeed morphologically distinct from one another. Two multivariate statistical analyses

assess a sample of 100 shortening landforms on Mercury made up of wrinkle ridges and

lobate scarps. Chapter 3 investigates the variety of thrust systems within Mercury’s

lithosphere by modeling 55 morphologically variable shortening landforms based on the

endmember lobate scarp and wrinkle ridge structures from Chapter 2. Kinematic forward

models are constructed in 2-dimensions with fault-bend fold geometries using the MOVE

geologic modeling software MOVE. The models are used to structurally interpret the

subsurface of shortening landforms across Mercury’s entire surface and to better constrain

subsurface modeling with observations. Chapter 4 adapts the methodology created and
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utilized by Twiss and Marrett (2010a, b) to estimating Mercury’s radial contractional strain

using three different fault data sets available in the literature. Chapter 5 compares

Mercury’s observed fault pattern to one that is predicted for overlapping stresses produced

by solar tides and Mercury’s rotation onto those produced by global contraction.
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CHAPTER 2

A STATISTICAL EVALUATION OF THE MORPHOLOGICAL VARIABILITY OF

SHORTENING LANDFORMS ON MERCURY1

1 Loveless, S.R., Klimczak, C., McCullough, L.R., Crane, K.T., Holland, S.M., Byrne,
P.K., 2024. Icarus 416, 116106. Reprinted here with permission of the publisher.
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Abstract

Observations of Mercury from both the Mariner 10 and MESSENGER missions

showed that Mercury has a global population of shortening landforms, with several

thousands of individual structures identified to date. The accommodation of widespread

tectonic shortening is widely regarded to be the result of global contraction—the long,

sustained cooling of the interior that has caused the planet to shrink. Shortening landforms

on Mercury have been traditionally categorized into three distinct categories: lobate scarps,

wrinkle ridges, and high-relief ridges. Although the clearest examples of shortening

landforms at the time were used to describe and define these categories qualitatively, later

studies showed that shortening landforms on Mercury display morphological

characteristics that do not make for a ready classification into one of these “traditional”

groups. More recently, other studies have classified shortening landforms based on the

terrain that those landforms reside in to avoid generalizing morphology. In this study, we

quantitatively assess the shape of shortening landforms by measuring and compiling a suite

of 12 morphological parameters for 100 such structures across the planet. These parameters

were evaluated for their importance in defining categories using two multivariate statistical

analyses, a Principal Component Analysis (PCA) and Linear Discriminant Analysis

(LDA). These methods allow us to assess any correlation that the traditional categories,

terrain types, or alternative classification schemes have with the variation observed across

our set of measurements. Our results show that the morphologic characteristics of

shortening landforms on Mercury are not accurately captured by traditionally recognized

groups. Instead, shortening landforms fall along a morphological spectrum, where only a

few ideal examples of lobate scarps or wrinkle ridges provide clear endmembers.
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Therefore, despite the frequent use of the terms “lobate scarps” and “wrinkle ridges” in

works regarding planetary tectonics, we find that such terminology does not appropriately

define the morphology of shortening landforms found on Mercury and may lead to the

generalization, or misinterpretation of landforms described as accommodating shortening

on Mercury’s surface. Future studies should test if a distinction between the landforms is

found in the underlying thrust fault systems.
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2.1 Introduction

Categories of shortening landforms

Modeling motivated by early observations from the Mariner 10 mission of crustal

shortening had predicted that Mercury had undergone global contraction, a phenomenon

resulting from the long, sustained cooling of a terrestrial body that leads to a planetary

volumetric decrease (e.g., Solomon, 1977). Global contraction was predicted to be

principally accommodated via widespread thrust faulting throughout the brittle portion of

Mercury’s lithosphere (Solomon, 1978) that manifests at the surface as linear, positive-

relief landforms. Observations from the MErcury Surface, Space ENvironment,

Geochemistry, and Ranging (MESSENGER) mission provided greater detail of the crustal

shortening that accommodated global contraction (e.g., Byrne et al., 2014). In this study,

we focus on these tectonic landforms related to global contraction. We use the strain term

“shortening landforms” as an identifier of all positive-relief landforms we interpret as

having been formed by thrust faulting; such landforms have been described as “shortening

structures” or “thrust fault-related landforms” in earlier works but we prefer this term for

consistency.

Mercury’s surface has been mapped into three main morphologic unit types: inter-

crater plains, smooth plains, and impact crater facies (e.g., Denevi et al., 2013, 2009; Trask

and Guest, 1975). Inter-crater plains are heavily cratered and represent the oldest surfaces

on the innermost planet. Smooth plains are interpreted to be more recently emplaced

expanses of flood-volcanic deposits bearing fewer craters (Denevi et al., 2013; Head et al.,

2011). Impact crater facies are collectively units that formed as direct or long-term

consequences of large impacts, with most being contained within and around their host



17

impact basins. Shortening landforms occur in all surface morphologic units (e.g., Byrne et

al., 2014) and are interpreted to have acquired most of their strain near the end of when the

smooth plains were emplaced and somewhat thereafter (Byrne et al., 2018, 2016; Crane

and Klimczak, 2017).

Shortening landforms are not only found on Mercury but on all major terrestrial

bodies. Generally, they are manifest as surface-breaking scarps showing positive relief

(Schultz and Watters, 2001; Watters, 2003). Early photogeologic data sets of Mercury,

Venus, the Moon, and Mars revealed shortening landforms with several typical

characteristics (e.g., Strom et al., 1975). Strom et al. (1975) attributed the morphology of

shortening landforms onMercury to tectonic processes and crater-forming events. Dzurisin

(1978) initially categorized shortening landforms on Mercury into six morphological

groups: arcuate scarps, lobate scarps, irregular intracrater scarps, irregular Caloris scarps,

linear ridges, and irregular Caloris ridges. Of those, lobate scarps and wrinkle ridges were

used to describe tectonics observed from the Mariner 10 mission (e.g., Strom, 1979) and

were subsequently used widely to categorize shortening landforms throughout the Solar

System, including Mercury (e.g., Melosh and McKinnon, 1988; Watters and Robinson,

1999; Watters et al., 2004), Venus (e.g., Solomon et al., 1992; Squyres et al., 1992), and

Mars (e.g., Watters and Robinson, 1999; Mueller and Golombek, 2004). A few high relief-

ridges have been described in detail on Mercury (Watters et al., 2001). In this paper, we

refer to lobate scarps, wrinkle ridges, and high relief-ridges as the “traditional categories”

by which extraterrestrial crustal shortening structures have been identified and mapped.

Lobate scarps (Figure 2.1a) are linear to bow-like structures in map-view that have

a surface break. In cross-section, they have asymmetric positive relief with a relatively
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steep sloping forelimb that immediately trails the surface break followed by a more gently

sloping backlimb (e.g., Strom et al., 1975; Strom, 1979; Watters, 1993). The shapes of

lobate scarps provide evidence that the vergence, or direction of tectonic transport, of the

thrust system is in the direction of the forelimb with anticlinal folding of the hanging wall

(e.g., Byrne et al., 2014). Named examples of lobate scarps on Mercury have the

International Astronomical Union (IAU) descriptor term rupes (pl. “rupēs”) (e.g., Beagle

Rupes, Enterprise Rupes, Carnegie Rupes, etc.).

Wrinkle ridges on Mercury (Figure 2.1b) generally have lower relief than lobate

scarps and differ from other shortening landforms by their complex, sinuous map pattern

and their superimposed ridge (the “wrinkle”) above a primary broad ridge (e.g., Watters,

1988). Wrinkle ridges are common on the volcanic plains of many terrestrial bodies in the

Solar System (e.g., Nahm et al., 2023; Plescia and Golombek, 1986). They are interpreted

as anticlinal structures formed above blind thrust faults (e.g., Schultz, 2000) and potentially

backthrusts (Okubo and Schultz, 2004); however, surface breaks are common (Golombek

et al., 2001, 1991; Schleicher et al., 2019, Strom et al., 1975; Watters 1988).

High-relief ridges (Figure 2.1c) have been reported by a single author on both

Mercury and Mars (Watters, 1993), with only a few examples on the former. In cross-

section, high-relief ridges are morphologically similar to lobate scarps but are more

symmetric due to the landforms hosting a steeper backlimb (e.g., Watters et al., 2021).

High-relief ridges have been interpreted to be anticlines formed above steeply dipping

reverse faults (e.g., Watters et al., 2001).

Byrne et al. (2014) avoided using these traditional morphological categories and

instead classified shortening landforms by the terrain type in which they are found. These
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authors’ classification includes smooth-plains structures, cratered-plains structures, crater-

related structures, and high-terrain bounding structures. Crater-related structures are

defined as landforms bound to and/or found within an impact basin, and high-terrain

bounding structures are described as landforms separating high-standing from low-lying

terrain. However, both of these structure types still occur in either smooth- or cratered-

plains, and so the four categories in Byrne et al. (2014) can be further simplified to smooth-

plains structures or cratered-plains structures.

Motivation and goal of this study

The traditional landform categories of lobate scarps, wrinkle ridges, and high relief-

ridges are qualitative; no quantified definitions by which these landforms can be

systematically classified or distinguished have been proposed. As Strom et al. (1975) stated

regarding shortening landforms mapped around the Caloris basin using images from the

Mariner 10 mission: “Many of the scarps in the plains surrounding the Caloris Basin grade

into or are transitional with ridges, so that the two structures are difficult to distinguish”.

Other studies of Mercury’s shortening landforms have questioned the traditional

categories: although endmembers of the traditional categories are present, most structures

are not so easily classified (e.g., Byrne et al., 2018, 2014; Crane and Klimczak, 2019a;

Klimczak et al., 2018). We therefore carry out a statistical investigation of the morphology

of the traditional categories of lobate scarps and wrinkle ridges on Mercury to establish

whether there is a quantitative basis by which to use these traditional terms in studying the

planet’s inventory of crustal shortening structures. To do so, we based our study on

multivariate statistical analysis of morphologic measurements of select shortening

landforms of each assessed type. This approach allowed us to not only evaluate whether
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the traditional categories can be distinguished, but also to assess other categorizations, such

as those based on terrain types (e.g., those advocated by Byrne et al., 2014). We do not

consider high-relief ridges in our assessment due to the low sample size of landforms in

this category and the statistical inaccuracies that may arise from it.

2.2 Methods

Data collection

The entire catalogue of global image mosaics at a resolution of 166 m/pixel and

digital elevation models (DEMs) from the MESSENGER mission available on the

Planetary Data System (PDS) was loaded into a Geographic Information System (GIS)

using ArcMap® 10.8. This includes the 250 m/pixel northern hemisphere MLA DTM

(Zuber et al., 2012). We also used the DEMs from MESSENGER flybys (Preusker et al.,

2011) and the more recently resolved DEM of the south pole by Bertone et al. (2023) at a

resolution 250 m/pixel. The lowest-resolution elevation dataset used in this study is the

global USGS DEM, which is based on the Mercury Dual Imaging System narrow-angle

camera and multispectral wide-angle camera and has a resolution of ~665 m/pixel (Becker

et al., 2016). For coverage of topography see supplementary material (Loveless et al.,

2024a).

In ArcMap, Mercury was divided into a 20˚×20˚ grid, producing 162 grid boxes,

of which 100 were randomly selected with uniform probability via a random number

generator. Each grid box was thoroughly surveyed for shortening landforms, and one such

landform was then chosen based on what would be the best candidate with respect to the

rest of the data collection. Selections were made to account for good representations of

global distribution (see Figure 2.2), size, traditional categories, and also DEM availability
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and resolution. If shortening landforms fell into an area with only the lower-resolution,

global DEM topography, only large shortening landforms (>100 km long) were selected to

minimize the effect of DEM spatial resolution on the topographic measurements.

Each selected landform was assigned to a lobate scarp, wrinkle ridge, or transitional

(i.e., a structure that transitions from a lobate scarp to a wrinkle ridge along its length)

classification. High-relief ridges were not considered because only a small number have

been described for Mercury (e.g., Watters, 2021; Watters et al., 2001). Several of the

authors assigned each landform a lobate scarp or wrinkle ridge designation by visual

inspection and then compared their assignments. Transitional structures could also be

categorized as either wrinkle ridges or lobate scarps at the location of the profile showing

the highest structural relief that was also used to collect our measurements. Following

Byrne et al. (2014), we also categorized the shortening landforms as cratered-plains

structures or smooth-plains structures.

All landforms were assigned to one of five map patterns: concave, sinuous, straight,

convex, or switching vergence. Convexity and concavity were defined with respect to the

hanging wall block. In a concave map pattern (Figure 2.3a), the hanging wall creates a

concave scarp shape over the footwall; the concave pattern opens towards the footwall.

Sinuous map patterns (Figure 2.3b) demonstrate a large amount of variation along strike as

the surface break pattern switches between concave and convex patterns along the length

of the structure. Straight map patterns (Figure 2.3c) show little curvature or variability

along the length of the surface break. Convex map patterns (Figure 2.3d) depict the hanging

wall extending in an arching manner over the footwall, such that the concave pattern opens

towards the hanging wall (often described as an arcuate or bow pattern (e.g., Byrne et al.,
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2018; Watters et al., 2015a). Shortening landforms that have a switching vergence map

pattern (Figure 2.3e) demonstrate tectonic movement in opposite directions along the

length of the structures; that is, the hanging wall and footwall switch sides along the

structure’s length (Figure 2.3e).

In ArcMap, each landform was analyzed using a stereographic projection centered

on the landform. We mapped their surface breaks at a 1:250,000 scale as polylines using

the streaming function with vertex placements every 500 meters. Marker points were

placed every 10 km along the polylines/surface breaks, and topographic profiles were

generated perpendicular to the landform at these marker points. Points that comprise the

profile were evenly spaced every 245 m along the length as this is approximately the same

as the highest resolution DEMs used in this work. All topographic profiles along a landform

were compared to determine which displayed the maximum structural relief.

Morphological measurements were made along the profile with maximum structural relief.

We measured and calculated twelve parameters on each shortening landform

(Figure 2.4). The structural relief (in meters) is the elevation difference measured between

the onset of the forelimb/surface break and the peak of the topographic profile. The breadth

(meters) of the structure is the horizontal distance across the topographic profile measured

from the surface break to the end of the backlimb (Figure 2.4), with the end of the backlimb

being the point on the backlimb where the structure is no longer topographically

distinguishable from the surrounding terrain. The breadth thus represents the final length

of the transect after shortening occurred. Total cross-sectional length (meters) is the

distance along the transect (Figure 2.4) and represents the initial length of the transect

before shortening. Shortening strain (unitless) along the transect is the change in length
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(breadth minus total cross-sectional length) divided by the total cross-sectional length,

under the assumption that the total cross-sectional length is the initial length that was

shortened entirely by the underlying thrust fault to the presently observed breadth.

Forelimb length (meters) is the component of the total cross-sectional length measured

from the surface break to the peak of the shortening landform, and backlimb length (meters)

is the component of the total cross-sectional length measured from the peak of the

topographic profile to the end of the backlimb.

Forelimb slope (measured in degrees, Figure 2.4) is the average slope between each

pair of adjacent points along the transect from the surface break to the peak of the

shortening landform. The same method was applied to find the backlimb slope (degrees).

The forelimb generally slopes upwards, and thus has positive slope values, whereas the

backlimb generally slopes down and thus has negative slope values. Symmetry (degrees) is

the difference of the forelimb slope and absolute value of the backlimb slope. A

symmetrical shortening landform will have a symmetry of 0˚, whereas deviations from 0˚

represent asymmetrical landforms. Percent backlimb downslope is the ratio of down-

sloping (negative) backlimb slope segments to the total number of backlimb slope

segments in the profile. A backlimb that slopes downward everywhere will have a percent

downslope of 100%. This metric captures the complexity of topography on the backlimb,

such as the wrinkle on wrinkle ridges.

The length (meters) of the shortening landform was identified using the mapped

traces of the scarps and ridges (Figure 2.2). To avoid distortions from the projection of

global data, we used the Tools for Graphics and Shapes Plugin for ArcMap 10.8 to calculate
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geodesic lengths. The block diagram in Figure 2.4 shows half of the length of the

shortening landform.

To test if our measurements are biased by dependencies of landform size on terrain

ruggedness or DEM resolution, we also calculated the Topographic Roughness Index

(TRI), given by Riley (1999) as:

TRI = 
1

( − )




,

where N is the number of transect segments measured along the topographic profile, and xi

is the elevation at segment i on the profile.

Statistical analysis

We performed two types of statistical analyses to assess the existence of distinct

categories of morphologic shortening landforms: a principal component analysis (PCA)

and a linear discriminant analysis (LDA), a type of discriminant function analysis. As for

all statistical techniques, these analyses assume random sampling. PCA and LDA also

assume multivariate normality, which is achieved through data transformations of some

variables (see Table A2.1). After the data were transformed, they were scaled by the z-

score of each measurement:  = ( − )/, where  is the measurement,  is the average

of the measurements, and  is the standard deviation. This transformation places each

measurement on the same scale with a mean of zero and a standard deviation of one,

causing the LDA to be influenced purely by the variance of the data and not by the relative

size of different measurements.

PCA is an eigenanalysis-based multivariate statistical method for rotating the data

along orthogonal axes that explain a progressively decreasing proportion of the variance
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(i.e., principal components, PCs; Pearson, 1901). By selecting the PCs that explain the

greatest proportion of the total variance, PCA can be used to reduce dimensionality and

simplify analysis of multivariate data. For this study, these PCs can be used to detect

whether the landforms cluster into distinct categories or lie along a continuum. Each PC is

described by a set of linear coefficients called loadings that describe how much each

variable contributes to each PC. Through these loadings, we can determine which

morphologic characteristics account for the greatest variance in Mercury’s shortening

landforms.

Linear discriminant analysis constructs a linear mathematical model that

maximizes the separation between predefined groups using eigenanalysis methods (Davis,

2002; Maindonald and Braun, 2003). LDA generates  − 1 linear discriminants (LDs),

where  is the number of predefined groups (landform categories or terrain types). Each

sample has scores (positions) along these linear discriminants, and the positions of samples

in this linear discriminant space is used to classify the samples into groups. If the model

can successfully classify the samples into groups based on the morphological variables, the

landform categories assigned by LDA will match those that we assigned during data

collection.

We conducted two LDAs with two groups, one distinguishing lobate scarps and

wrinkle ridges, the other distinguishing smooth-plains and cratered-plains structures. Once

an LDA model was completed, it was evaluated using a “jackknife” validation technique

with the original data to reduce the self-constructed biasing accuracy of the model. The

jackknife technique is a resampling method in which a statistic—in our case the results of

running our sample through our LDAs—is calculated repeatedly with one of the
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observations excluded in turn. By calculating the statistic multiple times, an estimate of the

parameter, or average of how accurate the LDA is, can be found.

2.3 Results

A catalog of 100 shortening landforms was compiled that contains the geographic

position of each shortening landform, the highest-resolution DEM available at the time of

this writing that covers the shortening landform, the 12 collected parameters, the visual

assessment of the traditional category to which the shortening landform ought to be

assigned, the map patterns of the scarp (Figure 2.3), and the terrain type in which the

structure is found. The catalog comprises 75 lobate scarps and 25 wrinkle ridges, and is

included in the supplementary material.

Principal component analysis

For our PCA, Figure A2.1 shows the scree plot that presents the percentage of

variance that is explained by each of the 12 PCs. PCs 1 and 2 together describe 65% of the

variance of the data, and therefore we use them to present and discuss the results for

grouping of shortening landforms. Variable loadings (Table 2.1, columns PC1 and PC2)

describe the contribution of each variable to each principal component. A positive loading

has a positive correlation with its respective PC and likewise a negative loading is

negatively correlated. Loadings for each PC were deemed important contributors if their

absolute value exceeded the value of a loading if each loading contributed equally to the

variance of a PC, i.e., given by1/# of measurements (see the bold values in Table 2.1).

The strongest influencing parameters on PC1 are those that pertain to the size of the

shortening landforms, i.e., relief, breadth, total cross-sectional length, fore- and backlimb

length, and mapped length (Table 2.1). PC2 is most influenced by the shortening strain and
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both fore- and backlimb slopes; however, as shown below, TRI value, breadth, and cross-

sectional length are also influential (Table 2.1).

PCA sample scores form a single cloud of points (Figure 2.5). These scores are

coded in three ways to aid in the interpretation of the PCs (Figure 2.5), including the

traditional categories for a clustering of lobate scarps and wrinkle ridges (Figure 2.5a),

concave, convex, straight, sinuous, and switching vergence map patterns (Figure 2.5b), and

smooth-plains structures and cratered-plains structures (i.e., those shortening landforms

classified solely by terrain type) (Figure 2.5c). For each categorization, there is substantial

overlap in categories with no distinct separation of groups. This indicates that the

morphology of shortening landforms on Mercury provides no evidence of any distinct

groups based on traditional categories, map pattern, or terrain type.

Discriminant function analysis

LDA produces a linear equation that maximizes the separation of pre-defined

groups. LDA loadings are the coefficients (slopes) in this linear equation. Their signs

indicate the directions in which they influence a discriminant function, and their

magnitudes indicates their relative contributions. Therefore, the sign of large loadings is

important in assigning the relative extent of where the shortening landformwould be placed

in LD space. We performed LDAs to classify landforms by traditional types and terrain

types (Table 2.1). For both the traditional categories and structures categorized by their

host terrain, the breadth of the landform holds a strong negative influence on the LDA,

whereas the total cross-sectional length holds an almost equally strong, positive influence

on the LDA. In both cases, breadth and cross-sectional length are substantially more
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influential than any of the other measurements, and so they provide the greatest influence

on the LDA predictions.

A jackknife resampling of the LDA indicates that it is 79% accurate in predicting

the traditional categories of the shortening landforms. The LDA was 76% accurate in

classifying landforms based on terrain type. Both LDAs were only moderately successful

in predicting traditional categories and terrain types, and the 21–24% cases of inaccurate

classification question the support of these classifications.

When a sample is assessed with an LDA, that sample is assigned an LD value that

the LDA uses to distinguish the predefined group to which that sample belongs (Figure

2.6). In an LDA that attempts to distinguish between two groups, samples that cannot be

differentiated would have LD values in and around zero. Our traditional category LDA

(Figure 2.6a) assigns negative LD values to landforms where it predicts are lobate scarps,

and positive LD values where it predicts wrinkle ridges. The negative and positive values

produced by the terrain-type LDA correspond to predictions of cratered- and smooth-plains

structures, respectively (Figure 2.6b).

Both LDAs show a substantial overlap of categories between LD values, with many

structures clustering near zero. The traditional category LDA assigns the landforms of this

work with LDs that fall in the range of −2.33 to +4.60. Of this, a total of 67 structures are

assigned LDs that fall in the range between −0.82 and +1.54. In this range, lobate scarp

designations greatly extend over wrinkle ridge designations, indicating that the quantitative

morphological measurements that define wrinkle ridges and lobate scarps are not distinctly

different when assessed with this method. This result is emphasized by the

misclassification of structures relative to our visual inspection (e.g., wrinkle ridges
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assigned negative-lobate scarp values Figure 2.6b). The overlap of LDs implies that most

shortening landforms exist on a spectrum between lobate scarps and wrinkle ridges,

whereas the small remainder can be identified as distinguishable endmembers. In this work,

33 of the 100 structures are clear endmembers: just 25 lobate scarps and 8 wrinkle ridges

lie outside of this central cluster (Figure 2.6).

The LDA pertaining to the terrain type in which the structures reside (Figure 2.6b)

also depicts a substantial amount of overlap between cratered-plains structures and smooth-

plains structures, albeit with even fewer endmembers. This finding implies that the

morphology of shortening landforms is not distinctly different across the terrains observed

on Mercury’s surface. All the structures in this study exist as either smooth-plains

structures or cratered-plains structures (cf. Byrne et al., 2014), and so we interpret this

result as indicating that a certain morphological variability of shortening landforms on

Mercury is found in both terrain types. Unlike the traditional categories, however,

categorization by terrain type does not assume specific morphological characteristics of

shortening landforms, and so does not require (nor did we expect) the statistical detection

of distinct groups based on morphology that were classified by Byrne et al. (2014)

according to terrain type.

2.4 Discussion

We applied multivariate statistical analyses—principal component analysis and

linear discriminant analyses —to assess if a systematic categorization of shortening

landforms is possible based on morphological measurements alone. Prior to this study,

shortening landforms onMercury were assumed to fall into distinct categories based purely

and subjectively on visual assessment of their map patterns and topography (Dzurisin,
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1978; Melosh and McKinnon, 1988; Strom et al., 1975; Watters et al., 2004). Other studies

have since challenged the use of these categories and have grouped Mercury’s shortening

landforms based on the terrain type in which they are located (e.g., Byrne et al., 2014).

Although this latter approach is agnostic to landform morphology (and allows for the

possibility that a continuum of landform shape exists), it sidesteps the issue of actually

assessing quantitatively the morphology of shortening landforms on Mercury.

As with any statistical testing, it is important to note possible sources of bias and

efforts for bias mitigation. One bias in our data collection may arise from the lack of equal

and global coverage of high-resolution DEMs at present. This variability in data

availability may bias our results toward larger landforms in more rugged terrain, such as

cratered-plains landforms. We tested for dependency of landform size with terrain

ruggedness by calculating the Topographic Roughness Index (TRI) along our profiles and

observed its effect on our statistical results. The loadings of the TRI for both LDAs are

negligible, whereas the loadings of the TRI for the PCA are small compared to the largest

contributors (Table 2.1). A PCA performed without the TRI measurements (not included)

produced nearly indistinguishable results. We take these results as support that our

morphologic measurements are representative for a wide range of landform sizes on

Mercury, irrespective of resolution and coverage of elevation data.

Moreover, our data include shortening landforms spanning a wide range of sizes

(~30–1,000 km in length), thus accounting for a wide range of structure size. We also tested

for size bias by scaling relief to shortening landform length, and then plotting the scaled

relief against the LDs generated by the LDAs. No correlation between relief-to-length ratio

and the LDs was found. Additionally, we performed the LDAs without the breadth and
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topographic profile-length measurements, the most influential parameters in the original

LDAs, to evaluate size bias. Excluding these data produced a similar spectrum rather than

distinct groups: there was a substantial overlap in LD space for both the traditional

categories and terrain type, and the success of the LDA correctly assigning the categories

to our samples was approximately the same (80% and 73% for the traditional categories

and terrain types respectively). These results indicate that additional evaluation of the LDA

does not alter its outcome: the morphology of shortening landforms on Mercury does not

separate such landforms into distinctly different groups.

“Lobate scarps” and “wrinkle ridges”

Our principal component analysis and linear discriminant analyses demonstrate that

morphological measurements do not support the grouping of shortening landforms on

Mercury into distinctly different categories. Only one cluster of data points is displayed

based on the sample scores created in our PCA, showing no distinct patterns within the

data scatter. For shortening landforms classified into the traditional categories (Figure

2.5a), our findings indicate that they are not distinctly different from one another for the

morphologic parameters we assessed. PC1 is strongly anticorrelated with relief, breadth,

total cross-sectional length, fore- and backlimb lengths, and mapped lengths (Table 2.1),

implying that landform size may help in differentiating landform types. Although wrinkle

ridge endmembers have generally lower relief than lobate scarps, there is substantial

overlap of the two groups, with only few distinct lobate scarp and wrinkle ridge

endmembers (note the lobate scarp and wrinkle ridge endmembers on the left and right of

Figure 2.5a, respectively). This finding indicates that the size of the landforms, as a

function of their relief, breadth, and total cross-sectional length, does not unequivocally
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distinguish these categories. PC2 has a strong positive correlation with shortening strain

and the slopes of the fore- and backlimb. Influential parameters on PC2 such as the slopes

and shortening strain are measurements of a landform’s relative shape along its topographic

profile, suggesting that the gradients of shortening landforms are also important in

distinguishing landform type. However, lobate scarps and wrinkle ridges fully overlap

along the PC2 axis, strongly implying that the parameters governing PC2 alone do not

unequivocally distinguish between the traditional categories.

Principal component analysis is based only on the morphological measurements; it

is agnostic to any group classification. In contrast, LDA constructs a linear model that

maximizes the separation of pre-defined groups. In the LDA assessing the difference

between lobate scarps and wrinkle ridges, higher (positive) LD values predicted a structure

to be a wrinkle ridge, whereas lower (negative) LD values predict lobate scarps. Substantial

overlap along the LD axis (Figure 2.6a) highlights a broad region where lobate scarps and

wrinkle ridges cannot be distinguished by this basis. Moreover, ~20% of structures are

misclassified by a jackknife of the LDA. If lobate scarps and wrinkle ridges truly fell into

distinct categories, there would be two clusters on opposite ends of the LD axis with little

to no overlap and a minimum of false predictions. The LDA therefore supports the results

of the PCA, indicating that although clear endmembers of what have been traditionally

identified as “lobate scarps” and “wrinkle ridges” do exist, shortening landforms on

Mercury form a spectrum between these morphologically idealized endmembers. This

result is supported by observations of transitional structures (e.g., Clark et al., 2017;

Watters, 2021; Watters and Nimmo, 2010) and by structures for which traditional

classification is not obvious.
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In the LDA, the total cross-sectional length and breadth are much more influential

than any other measurements (Table 2.1). This is an interesting outcome as both

measurements give first-order estimates of the shortening caused by the faulting and

folding of the structure. Breadth is particularly notable because it is governed by the

geometry of the underlying thrust fault and associated folding (e.g., Brandes and Tanner,

2014). Specifically, shortening-landform breadth is influenced by a combination of fault

and depth of penetration, and it may thus reflect a difference in the type of thrust system

underlying the landforms (e.g., some examples in Boyer and Elliot, 1982; Crane, 2020a;

Martinez-Torrest et al., 1994). Therefore, the distinction between lobate scarps and wrinkle

ridges on Mercury may lie in the underlying thrust system structure rather than their

morphology. Future studies should perform detailed analysis of the underlying fault

geometries of lobate scarps and wrinkle ridges and compare the thrust systems of the two

categories.

To visually assess the traditional categories, we first independently (i.e.,

individually) classified the thrust-fault related landforms and compared our heuristic

assessments for each structure. In several instances, we debated our assessments of

structures between our authorship group because our interpretations did not agree or

because it was too difficult to decide between assigning only the terms lobate scarps and

wrinkle ridges to landforms. The quantitative results of the PCA and LDA reflect this

heuristic, qualitative ambiguity. Crane and Klimczak (2019a) reached the same conclusion,

confirming the finding stated in Byrne et al. (2018): “a classification scheme for shortening

structures based on morphology, such as that used historically for Mercury, works only in

a general way but cannot capture the broad variation in geometry of these landforms”.
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One defining criterion of wrinkle ridges is the presence of a wrinkle that typically

sits atop and frequently parallels the strike of the ridge (e.g., Dzurisin, 1978; Nahm et al.,

2023; Strom et al., 1975). Of our 25 wrinkle ridges, 14 do not show this superimposed

wrinkle and their categorization was based purely on the complex map pattern. Most

shortening landforms on Mercury’s smooth plains have a wrinkle-ridge-like map pattern

(Crane and Klimczak, 2019a) but lack a clearly defined, superposed wrinkle that parallels

the main ridge. Although small, wrinkle-like structures are widespread in the planet’s

smooth plains, these structures are frequently not situated atop a broader ridge. That many

ridges lack wrinkles may indicate that wrinkles did not form or that they are too degraded

to be preserved—but speaks subjectively to the conclusion that not all wrinkle ridges are

actually, in fact, wrinkle ridges.

While several thousands of shortening landforms have been mapped across

Mercury’s surface (n ≈ 6000; e.g., Byrne et al., 2014), only a few structures (n ≈ 60) have

been regarded as high-relief ridges (Watters, 2021). Due to this small sample size, high-

relief ridges were not analyzed with the statistical methods presented in this study. High-

relief ridges are noted to be more symmetrical in cross-section, as their general

morphological characteristics resemble that of a lobate scarp aside from a steeper backlimb.

Provided that symmetry and backlimb slope are not the most influential parameters in our

statistical analyses (Table 2.1), and that high-relief ridges previously described in the

literature are on the order of tens to hundreds of km in length (Watters, 2021)—which

scales similarly to many shortening landforms in this work—we anticipate that high-relief

ridges would lie in the shortening landform spectrum produced from our results,

indistinguishable from the other traditional categories.
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The traditional categories of shortening landforms have also been used for Mars

(e.g., Watters and Robinson, 1999), the Moon (Watters, 1988), and Venus (e.g., Bilotti and

Suppe, 1999). Our finding that morphology does not support the classification of landforms

on Mercury into binary categories raises questions about the suitability of these

classifications on other planetary bodies. In a recent study, McCullough et al. (2023)

focused on highlighting the differences between lobate scarps and wrinkle ridges on Mars

by also conducting several LDAs based on morphology of shortening landforms there.

Their LDA focused on surface observations also achieved only 79% accuracy, with broad

overlap between lobate scarp and wrinkle ridge morphology. These results largely match

those in this study and suggest that shortening landforms on Mars also form a

morphological spectrum defined by the “traditional” endmembers, further supporting that

the retention of the existing, binary classification scheme obfuscates the complexity and

natural variability that defines the real-world continuum of shortening landform

morphologies.

Other categories

We also assessed if a distinct grouping of shortening landforms by terrain type can

be statistically detected, as such groupings have been applied to Mercury (Byrne et al.,

2014). Both the PCA and LDA showed that our landforms are not distinctly different from

one another in different geological units across Mercury (Figure 2.4c, 2.6b). There are 8

endmembers for cratered-plains structures, which are the largest shortening landforms of

our analysis. This finding supports the finding by Byrne et al. (2014) that the largest

shortening landforms generally occur in Mercury’s cratered plains. However, our PCA

shows that structure size or strain alone are not unequivocal criteria to distinguish smooth-
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and cratered-plains structures, especially when comparing landforms of intermediate and

smaller sizes (≤ 600 km in length).

The substantial overlap of landforms in the LDA (Figure 2.6b) with many structures

having small absolute LD values shows that the morphology of shortening landforms do

not differ distinctly by terrain type on Mercury. In particular, the loading of the TRI is very

small (Table 2.1), indicating that terrain type does not influence the morphological

variability on Mercury, particularly for attributes related to landform size and shape.

However, as we note above, categorization by terrain type does not rely on morphologic

characteristics of shortening landforms, and we therefore suggest that this classification

scheme is appropriate so long as no assumptions are made regarding the morphology of

the individual landforms themselves.

Finally, we also assessed if shortening landforms can be discretely categorized

based on the map patterns they display (Figures 2.3, 2.4b). Given the varying sample sizes

between the five map patterns, a PCAwas the only suitable method for assessing categories

from map patterns. The PCA sample scores depict no distinct groupings based on map

patterns, and all five patterns collectively form a single cloud of points. These results

indicate that any shortening landform can exhibit any map pattern, regardless of various

morphologic parameters such as those associated in PCs 1 and 2 with landform size and

shape, or accumulated strain amount.

2.5 Conclusions

Shortening landforms on Mercury have been traditionally classified into three

categories: lobate scarps, wrinkle ridges, and high-relief ridges. This distinction has

primarily been based on subjective, visual assessment of structures in photogeologic
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datasets. The goal of this study was to assess if the traditional classification scheme for

shortening landforms on Mercury can be applied based on the morphologic variability

using multivariate statistical tests. We find that the morphology of most shortening

landforms on Mercury is consistent with elements of both wrinkle ridges and lobate scarps,

with few distinct endmembers of either category. We also find that any morphology of

shortening landforms can be observed in any terrain type and that the different observed

map patterns can belong to any shortening landform regardless of its morphology.

In conclusion, the terms “lobate scarp,” “wrinkle ridge,” and “high-relief ridge,”

although having found widespread use in planetary tectonics literature (e.g., Melosh and

McKinnon, 1988; Watters and Robinson, 1999; Watters et al., 2004), do not adequately

capture the variability of shortening landform shape, and can erroneously undermine the

true complexity of such landforms. The continued use of these terms will oppose the

facilitation of new insights into the geometry of crustal shortening on rocky planetary

bodies and may reduce the accessibility of planetary tectonics to those who study

shortening systems on Earth—where such terms have never been routinely used.
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2.8 Figures

Figure 2.1: Examples of the three “traditional” categories of shortening landforms found

on Mercury. a) Map view of an unnamed lobate scarp near the south pole (left) along with

the corresponding topographic profile from x to x’. b) The wrinkle ridge Schiaparelli

Dorsum in map view (left) along with the corresponding topographic profile from y to y’.

c) The high relief-ridge Antoniadi Dorsum in map view (left) and its corresponding

topographic profile from z to z’. All images are shown in a stereographic projection
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centered on the shortening landform and all profiles are shown at ~16 × vertical

exaggeration.

Figure 2.2: Global map of Mercury in Robinson projection, showing the 100 shortening

landforms analyzed in this study. Those that were traditionally identified as lobate scarps

are shown in light blue, while those identified as wrinkle ridges are shown in green.

Smooth-plains units (Denevi et al., 2013) are highlighted in pink. The map indicates the

locations of five examples of shortening landforms, shown in Figure 2.3 (a–e).
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Figure 2.3: Examples of the five scarp map patterns observed in this study. Here, the

hanging walls are denoted with ‘HW’ and the footwalls are labeled with ‘FW’. a) A scarp

with a concave map trace. b) A scarp with a sinuous map trace. c) A scarp with a straight

map trace. d) A scarp with a convex map pattern. e) A scarp for which vergence switching

is evident. All images are shown in a stereographic projection centered on the shortening

landform.
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Figure 2.4: Block diagram of a shortening landform annotated with parameters measured

for each landform in Figure 2.2. The landform shows the shape of the forelimb (in red) and

backlimb (in blue) and part of the map trace (in white) along which the fault length was

measured. The extracted profile with the maximum relief shows the breadth and locations

where symmetry and slopes of the forelimb and backlimb were derived. The horizontal lines

labeled Forelimb Length, Backlimb Length, and total Cross-Sectional Length are

representations of the unfolded topographic profile. Thrust fault geometry in the subsurface

is interpreted based on the morphology of the structure. The assumed fault geometry is

based off simple cross-sectional balancing, and similar fault structures generated in

previous modeling studies (e.g., Herrero-Gil et al., 2020). The dashed line in the subsurface

represents an arbitrary marker horizon to depict deformation along the fault. The image

in this figure is taken from the low-incident angle global mosaic. Elevation (Bertone et al.,

2023) is shown as blue for low-lying areas and brown for high-standing terrain.
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Figure 2.5: PCA sample scores coded by traditional categories (a), map trace (b), and (c)

terrain type.
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Figure 2.6: Classification of landforms by linear discriminant analysis based on

traditional categories (a) and terrain types (b). Note the poor discretization of landforms

in both cases, suggesting that landform morphology does not support the existence of

distinct categories per this technique.
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2.9 Tables

Table 2.1: Loadings of variables on PCs 1 and 2 and linear discriminant loadings for the

traditional category LDA (LD TC) and terrain type LDA (LD TT). Bolded values indicate

the most important loadings for each axis.

Parameter PC1 PC2 LD TC LD TT

Relief -0.38 0.26 -3.70 -2.87

Breadth -0.43 -0.18 -28.97 -39.81

Total Cross-Sectional Length -0.43 -0.18 26.79 42.68

Shortening Strain -0.12 0.50 -0.15 0.72

Forelimb Slope -0.16 0.48 1.70 0.41

Backlimb Slope -0.05 0.43 0.17 -0.25

Symmetry -0.20 0.29 0.13 0.49

Forelimb Length -0.30 -0.17 2.81 0.63

Backlimb Length -0.41 -0.14 1.41 -2.64

% Backlimb Downslope 0.13 0.09 -0.41 -0.10

Mapped Length -0.32 -0.10 0.51 0.18

TRI -0.17 0.21 0.27 0.04



45

CHAPTER 3

GEOMETRIC FORWARD MODELING OF THRUST SYSTEMS UNDERLYING

SHORTENING LANDFORMS ON MERCURY2

2 Loveless, S.R., Klimczak, C., Crane, K.T., and Byrne, P.K., Submitted to Journal of Structural Geology,
2025
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Abstract

Mercury hosts thousands of shortening landforms that are widespread across the

entire planet. The shortening is widely accepted to be caused by a combination of thrust

faulting and folding, resulting from the global contraction of Mercury caused by long,

sustained cooling. Most shortening landforms on Mercury’s surface have been classified

into one of two groups: lobate scarps or wrinkle ridges. There is no distinct statistical

difference in the surface morphology of these shortening landform classifications. Only a

small subset of shortening landforms are clear-endmember wrinkle ridges and lobate

scarps. The difference between geomorphic manifestations of shortening landforms may

be governed entirely by the thrust systems and associated folding that form them. We

therefore model thrust systems associated with 55 lobate scarp and wrinkle ridge

endmember shortening landforms found across the surface of Mercury. Structures were

modeled in 2D sections below the topographic profiles of landforms with the greatest

structural reliefs. Models utilized the fault-bend fold algorithm in the MOVE geologic

modeling software. Once models matched the observed topography and shortening strain,

fault geometric parameters, such as number of structures, dip, depth extent of faulting,

height, etc., were extracted and compiled for all structures. Our modeling shows that

Mercury hosts a wide range of complex thrust systems, including single, listric faults,

imbricate thrusts, and pop-up structures. In particular, the morphologies of lobate scarps

end-member structures are best explained by models of a single, listric fault, whereas most

wrinkle ridge end-member structures require more than one fault. We identify a large

overlap in the variation of fault geometric parameters for both wrinkle ridge and lobate

scarp archetypes, confirming the results of our previous geomorphic analysis that



47

shortening landforms do not comprise two distinct categories. The overlap in geometric

parameters also suggests that global contraction generated most of these structures.
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3.1 Introduction

Mercury hosts a global population of positive-relief, tectonic shortening landforms

as revealed by both the Mariner 10 (e.g., Strom et al., 1975) and MEcury Surface, Space

ENvironment, GEochemistry, and Ranging (MESSENGER) missions (e.g., Byrne et al.,

2018). Such landforms are thought to be produced by global contraction (e.g., Solomon,

1978) and are widely accepted to be formed by thrust faulting and folding (e.g., Byrne et

al., 2018, 2014; Strom et al., 1975). Many terms have previously been used to describe

tectonic landforms formed by thrust faults, e.g., “shortening structures” or “thrust fault-

related landforms”, but for simplicity we will refer to all such structures as “shortening

landforms” throughout this study.

Shortening landforms are common on all major rocky bodies in the Solar System.

Such structures depict positive-relief cliffs, often paralleled by breaks along the surface

(e.g., Schultz and Watters, 2001; Watters, 2003). Since the earliest observations of tectonic

features on terrestrial bodies, shortening landforms have been categorized into groups

based on surface morphology alone (e.g., Dzurisin, 1978; Strom, 1979). Of the different

classifications used to describe shortening landforms, lobate scarps and wrinkle ridges have

been used as designations for almost all shortening landforms found on Mercury’s surface

(e.g., Melosh and McKinnon, 1988; Watters et al., 2004). Lobate scarps are described to

show clear linear-to-arcuate surface breaks in plan view, with topographic characteristics

of steeply sloping forelimbs at the surface break trailed by gradual sloping backlimbs

(Figure 3.1a; e.g., Strom et al., 1979, 1975; Watters, 1993). Such surface expression is

linked to asymmetric anticlinal folding of the hanging wall (Byrne et al., 2014) with the
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asymmetry, or vergence, providing clear indication of tectonic transport to be in the

direction in which the forelimb slopes (i.e., the vergence). This geometry is akin to the

folding geometry of fault-displacement gradient folds described by Wickham (1995).

Wrinkle ridges have been described as having complex, sometimes sinuous map

patterns in plan view that are accompanied by cross-sectional topographic profiles

demonstrating a superimposed ridge (the “wrinkle”) on top of a primary ridge (e.g.,

Watters, 1988). Shortening landforms of this class are common within volcanic plains of

terrestrial planetary bodies throughout the Solar System (e.g., Nahm et al., 2023; Plescia

and Golombek, 1986). On Mercury, wrinkle ridges frequently host faults that break at the

surface (Golombek et al., 2001; Schleicher et al., 2019; Strom et al., 1975; Watters, 1988),

but many have also been interpreted to be anticlinal folds above blind thrust faults (e.g.,

Schultz, 2000) containing backthrusts (Okubo and Schultz, 2004). Byrne et al. (2018)

argued that wrinkle ridges host two oppositely facing monoclines which may indicate

vergence of two opposing thrusts.

The oversimplification that categorizing shortening landforms into these two

groups is challenged by the large variation of thrust systems found on Earth. Mountain

ranges that formed by shortening display a wide range of complex systems of thrust faults

and folds (e.g., Boyer and Elliot, 1982; Crane and Klimczak 2019b; Chapple, 1978;

Matthews and Work, 1978; McClay, 1978; McClay and Price, 1981; Morley, 1988). There

is no evidence that suggests that thrust systems on Earth operate differently and therefore

thrust systems on other planets should not be treated otherwise than those observed on

Earth. Fold and thrust belts are common large-scale crustal shortening systems that are

accommodated by multi-fault thrust complexes (e.g., McClay and Price, 1981). Common
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Earth thrust systems like duplex structures are described with listric or curved fault

geometries with either stacked panels bounded by thrust faults or as imbricate thrusts with

multitude of thrusts branching off a single décollement (Boyer and Elliot, 1982). Many of

these thrust systems are created by displacement along multiple faults to build positive

relief. In contrast, thrust systems on other planets are commonly interpreted as single,

homoclinal (non-curved) fault planes (e.g., Schultz and Watters, 2001).

Few studies have suggested fault geometries on Mercury like to those on Earth.

Some examples include for an extensive décollement underlying Beagle Rupes (Rothery

and Massironi, 2010) and pop-up thrust system structure for shortening landforms and

complex compound landforms on Borealis Planitia (Crane and Klimczak, 2019a). Other

analogies between Earth and Mercury tectonics have been drawn from the

conceptualization of thin- and thick-skinned deformation (Crane and Klimczak, 2019a).

Thin-skinned deformation is strain accommodated by faults in weak upper horizons of the

lithosphere (originally, for Earth, the sedimentary cover atop crystalline basement rock),

whereas thick-skinned deformation is strain accommodated by faults that have penetrated

deep into the basement (Chapple, 1978; Pfiffner, 2017). Analogies of thrust fault-related

landforms to shortening structures on Earth have been made for thin-skinned tectonics

features like the Yakima fold and thrust belt inWashington State (e.g., Watters et al., 2004),

and the Lesser Himilayan Duplex (Crane and Klimczak, 2019a). Thick-skinned

deformation has been used to describe Mercury’s shortening landforms with comparisons

to theWind River thrust fault (Mueller et al., 2014;Watters and Robinson, 1999). Although

impact-weakened stratigraphic horizons or volcanic layering are frequently invoked as

layers permitting thin-skinned tectonics in volcanic plains, basement-reactivated thin-
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skinned tectonics has been invoked as a hybrid mechanism on Borealis Planitia (Crane and

Klimczak, 2019a). By this mechanism, faulting and folding within the smooth plains are

influenced by fault activity in the basement rock (Pfiffner, 2017).

Many previous subsurface modeling efforts for shortening landforms on rocky

bodies have used the elastic halfspace mechanical dislocation COULOMB code (e.g.,

Byrne et al., 2016; Egea-González et al., 2017, 2012; Peterson et al., 2020; Schultz and

Watters, 2001; Williams et al., 2013) or geometric cross-balancing techniques including

trishear modeling (e.g., Herrero-Gil et al., 2020, 2019) or fault-propagation folding

(Mueller et al., 2014). Using COULOMB, a set of physical parameters for a predefined

fault plane are invoked as the surrounding lithosphere is elastically deformed to match the

observed topography (Toda et al., 2005). Early studies modeled simple homoclinal faults

with uniform displacements (e.g., Schultz and Watters, 2001) that can produce artifacts in

the predicted topography if the superposed displacement is not tapered toward the fault

tips. However, listric fault geometries have also been applied to COULOMB modeling to

produce acceptable model topographies (e.g., Byrne et al., 2016; Peterson et al., 2020;

Watters and Schultz, 2002), but other studies have found listric faults to inaccurately

represent the uplifted topography (e.g., Egea-Gonźalez et al., 2012; Herrero-Gil et al.,

2019). Alternatively, the trishear forward modeling technique recreates fault propagation

folding, which uses cross-balancing techniques that relates folding deformation at the

upper fault tip to a specialized limb angle and hinge ratios. These cross-balancing methods

have been used in conjunction with faulted offset craters to model the underlying fault

geometry (e.g., Herrero-Gil et al., 2020; Mueller et al., 2014). These methods come with a

set of drawbacks. First, not every surface-breaking thrust fault has a superposed offset
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crater. Second, the trishear approach requires introducing additional geometric

complexities and a wide, largely unknown parameter space associated with planetary

shortening landforms.

The goal of this study is to investigate the variety of thrust systems in Mercury’s

subsurface. This is done by modeling 55 morphologically variable shortening landforms

by selecting the endmember lobate scarp and wrinkle ridge structures from the data set

published in Loveless et al. (2024a). To be concise, we refer to these endmember structures

as lobate scarp archetypes and wrinkle ridge archetypes, however, we note that some

wrinkle ridge endmember structures were classified as lobate scarps in the LDA of Chapter

2. Our modeling utilizes the fault-bend fold algorithm in the MOVE geologic modeling

software from PE Limited (Petex). Fault-bend folding is a proven geometric forward-

modeling technique that can be applied to fault displacement-gradient folds (e.g., Brandes

and Tanner, 2014; Connors et al., 2021; Hughes et al., 2014; Medwedeff and Suppe, 1997;

Suppe, 1983). We collect and synthesize fault geometric parameters for our 55 models to

identify the structural characteristics of shortening landforms on Mercury.

3.2 Methods

Landform selection

We previously assessed the morphological variability of 100 randomly selected

shortening landforms on Mercury to distinguish lobate scarps and wrinkle ridges (Chapter

2). In particular, we conducted a Linear Discriminant Analysis (LDA) that maximizes the

difference between two predefined groups by creating a linear equation that classifies cases

based on their correlated parameters. An LDA used to distinguish two groups assigns to

each case a positive or negative value, or linear discriminant (LD) for its classification. For
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example, an LDA of lobate scarps and wrinkle ridges shows a large degree of overlap in

the LD (Figure 2.6; Chapter 2), indicating that the morphology of these shortening

landforms onMercury does not support distinct groups. To further investigate if a structural

difference between these categories exists, we use the end members of the lobate scarps

(n=30) and all of the wrinkle ridges (n=25; Figure 3.2) to model their underlying thrust

systems. We use the terms lobate scarp archetypes and wrinkle ridge archetypes when

referencing these lobate scarp and wrinkle ridge shortening landforms that we model in

this work.

Modeling

We construct models using the 2D Move-On-Fault module in the MOVE modeling

software by PE Limited (Petex). Our models make use of the Fault-Bend Fold algorithm,

which is a geologic restoration technique that directly relates folding in the hanging wall

of the fault to the shape and displacement along the fault plane. Describing deformation as

a fault-bend fold uses structural balancing, which is the integration of satisfying a set of

conditions between the interpreted initial state and observed deformed state of the area or

volume of interest (Dalhstrom, 1969). Such conditions include the maintenance of length

of the interpreted geologic horizons pre- and post-deformation.

A fault-bend fold is a fault-related geometry, where folding of the hanging wall is

caused by distortions along the fault plane (Suppe, 1983). The relationship between the slip

along the fault plane and the folding of the above horizons is modeled through a series of

trigonometric relationships dependent on changes of the fault dip. The specific shape of

the fault and the amount of along-slip displacement govern the distorted shape of the

overlying layers of rock. Whereas a homoclinal fault experiencing simple shear
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accommodates all of the shortening through the displacement along the fault, a fault-bend

fold will drive different amounts of shortening accommodated along the fault plane through

a combination of slip and folding arising from changes in the dip of the fault plane.

Homoclinal portions of a fault in a fault-bend fold will accommodate shortening with more

slip, and as the fault changes dip, or ruptures the surface, folding becomes more prevalent.

The faults modeled in this study break the surface, so the fault-bend fold geometry

simulates how the uplifted hanging wall folds over the footwall.

Such geometric configurations have been used for many years to characterize

contractional tectonic architecture on Earth (e.g., Connors et al., 2021; Suppe, 1983; Suppe

and Namson, 1979). Fault-bend folds are present in seismic reflection profiles of

contractional tectonics on Earth (e.g., Shaw et al., 2005). Fault-bend fold architectures have

also been used to describe or model the structural geology of shortening landforms on

Mercury (Byrne et al., 2018; Crane, 2020a; Crane and Klimczak, 2019a). This type of fault

geometry is a good representation of surface-breaking thrust faults for which displacements

are large enough to permit the hanging wall to fold over the footwall.

We model the fault structure under each of our selected shortening landforms along

the inferred direction of tectonic transport and at the point of highest structural relief along

the topographic profile. The direction of tectonic transport is assumed to be perpendicular

to the long axis of a landform, except where an impact crater is crosscut and shortened by

the fault, indicating the direction of displacement (Galluzzi et al., 2015). The selected

topographic profile is then imported into the MOVE software and 50 arbitrary, evenly

spaced horizontal geologic horizons are constructed underneath the topographic profile to

track the modeled deformation. The uppermost of these horizons is taken as the planetary
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surface. The elevation of this surface horizon is set equal to the measured elevation at the

start of the forelimb. We vary the specific spacing of the horizons based on the length of

the landform.

After the horizons are constructed, we draw a fault plane within the model setup.

We conduct the modeling while simultaneously assessing the photogeology of the

shortening landform to accurately inform the model with all of the available observations.

Initially the fault is assumed to be a homoclinal fault plane with a reverse sense of slip and

a dip angle of 30°. Iterative model previews are generated as the fault plane geometry,

depth, and displacement are changed until the modeled surface horizon matches the

observed topography. Fault parameters were adjusted based on the results from the

previous models by raising or lowering areas the fault in the respective areas of the surface

that needed alterations. The amount by which a fault was changed is relative to the

discrepancy between the modeled surface and the observed surface in the previous model.

Once the observed topography is matched, we calculate the shortening strain from folding

for our model to test against the observed shortening strain as an additional control point.

More details on this control point are provided in section titled Controls of the Models. A

model is deemed to be a successful match once the modeled topography matches the

observed topography within 10% of the maximum relief of the structure and the shortening

strain from folding of the model matches within 0.2% of the observed shortening strain

across the structure (Loveless et al., 2024a).

If two or more surface breaks are present on image data, then we include more than

one fault in the model. In this case, we model the primary fault first, which we determine
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using photogeological observations. The geometries and displacements of any other faults

are subsequently added to replicate the desired deformation.

Once a model was complete, 13 modeled fault parameters were extracted (Figure

3.3), including near-surface fault dip, average dip, maximum dip, input shortening, average

heave, average throw, average slip, maximum slip, depth of faulting, fault height, and

modeled strain from folding. Near-Surface Fault Dip is defined as the dip of the fault in

the uppermost 10% of the fault. Average Dip ( in Figure 3.3) is the average downward

angle the fault makes with a horizontal plane, and Maximum Dip is the maximum

downward angle relative to a horizontal plane. All dips are measured in degrees. Input

Shortening, measured in kilometers, is the horizontal shortening implemented in the Fault-

Bend Fold algorithm to which the model displaces the deformed horizons.

The slip accommodated along a fault in a fault-bend fold structure varies along the

height of the fault (Suppe, 1983); therefore, we include additional measurements from our

models. Average Heave and Average Throw, both measured in kilometers, are the average

horizontal and vertical components of the displacement laterally along the fault. Average

Slip is the average displacement laterally along the fault. Maximum Slip is the maximum

amount of displacement that occurs along the fault. Other measurements include Depth of

Faulting, measured in kilometers, as the depth extent measured vertically from the surface

to the lowermost portion of the fault and Fault Height, measured in kilometers, which is

the down-dip length of the modeled fault plane (red line in Figure 3.3). From fault height,

we calculate Aspect Ratio, which is the fault height divided by the mapped length of the

fault taken from Loveless et al. (2024a). If more than one fault was needed for a model, the

fault height of the largest of the faults is reported. Number of Faults is the number that was
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needed to model the observed deformation for each landform. Finally, the modeled strain

from folding of the uppermost hanging-wall horizon produced by the model is calculated

as:

 =
L − L
L

,

where L is the horizontal hanging wall horizon length and L is the total hanging wall

horizon length.

Thrust System Type and Fault Shape are two qualitative metrics that describe the

subsurface structure of the shortening landforms. Thrust System Type refers to the number

of faults (one, two, or three) and their respective directions of tectonic movement, or

direction of tectonic transport from one another. Fault Shape describes whether the fault

plane is listric (curved) or planar.

Controls of the models

As for cross-section restoration and balancing, a model can be deemed successful

once it satisfies all control parameters. For geologic restoration of studies on Earth, such

controlling parameters include interpretations of seismic sections and lithologic changes

and repeated or missing sequences in borehole data (e.g., Egan et al., 1997; Pierdominici

et al., 2011). Fault geometry, depth, and dip can be directly correlated to the seismic

response of faults in the subsurface, and surface dips from in situ field measurements can

all serve as controls.

For other terrestrial planets, subsurface data and in situ analyses are more difficult

or impossible to obtain. The current standard of fault modeling efforts in the past has been

to match the topography by forward modeling of an initially undeformed surface. This

technique has been applied to many bodies that host faulting such as Mercury (e.g., Crane,
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2020b; Watters et al., 2016), the Moon (e.g., Byrne et al., 2015; Collins et al., 2023;

Williams et al., 2013), and Mars (e.g., Herrero-Gil et al., 2019; Schultz andWatters, 2001).

Topography is a reasonable control for these bodies because they lack substantial surface

erosion. However, forward modeling can produce more than one solution for the same

topography (Egea-González et al., 2017), and that there is an element of non-uniqueness

to such modeling. Therefore, for our modeling efforts we use the matching the topography

within ±10% of the structure’s vertical relief as the minimum criterion to be met for a

model to be deemed acceptable. This is done by creating copies of the topographic profile

at elevations ±10% of the vertical relief and forward modeling the surface until it lies

between those boundaries.

To maximize the likelihood of producing a unique solution for our models, we must

use additional control points aside from the observed topography. To better constrain our

models, the modeled strain from folding must be as close as possible to the observed

shortening strain. The observed shortening strain values are taken from Loveless et al.

(2024a). These values were calculated as the change in length (landform breadth minus the

total cross-sectional length) divided by the total cross-section length. In a fault-bend fold,

shortening along the fault is accommodated by both the heave (the horizontal component

of displacement) and by folding of the hanging wall. The amount of strain accommodated

by folding is a function of the shape of the fault.

At the surface, the amount of shortening accommodated by folding is governed by

the depth of faulting, input shortening, and variations of the fault dip (See Section 3.3). A

deeper modeled fault requires less input shortening to match the actual topography as more

material displaced from depth to the surface, but more folding will be accommodated at
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the surface. An increase in modeled depth of faulting increases the strain from folding.

Alternatively, more shallowly penetrating faults require greater shortening, but the

modeled strain from folding will decrease. Therefore, a unique solution for fault depth,

input shortening, and fault dip is achieved by matching the modeled strain from folding to

the observed shortening strain values in addition to matching the modeled topography with

the observed topography.

We try to match the modeled strain from folding to the observed shortening strain

values exactly but find negligible changes in the overall fault geometry in a ±0.2% range

of the modeled strain from folding. We summarize our strain-matching efforts with box-

and-whisker plots, a non-parametric way to portray variance (Figure 3.4). The distribution

of the sample size for our modeled strain from folding and the distribution of the observed

shortening strain from the same landforms compiled from Loveless et al. (2024a) aligns

well (Figure 3.4). We interpret this as an indication that our models provide a good

representation of the folding at the surface and the subsurface fault architecture of the

shortening landforms.

On Mercury, some shortening landforms crosscut craters. If a crater is assumed to

be initially circular, the overall shortening deformation of the cut crater can be used to

constrain geometric properties of the fault, such as fault dip and displacement vector

(Galluzzi et al., 2015), which can be another control point for a structural model. Most of

the shortening landforms selected in our study do not crosscut craters, and if they do, the

craters are either not adequately deformed enough to extract any meaningful structural

information or are located far from our cross-section line and so do not contain the exact

information needed for our model. Only in a couple instances does this method work in our
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sample of shortening landforms as this method works only on well-preserved craters. For

11 of the 55 landforms, deformed craters were present near the cross-section. However,

most of the faults assessed in this work that show cross-cutting relationships with craters

do not unequivocally show the direction of tectonic transport. Therefore, this is a valid

control point that is considered but is only used for a small subset of our sample size.

3.3 Sensitivity study

We conducted a sensitivity study to test the efficacy of our workflow, the impact

of control points, and the resulting fault geometries. For that, we construct three models

for the same shortening landform (Figure 3.5). All models satisfy the topographic control

point and match the direction of tectonic transport from a nearby shortened crater but vary

with fault geometric parameters (Table 3.1). Out of the three, only one satisfies the second

control point by matching the modeled to the observed strain from folding. In Model 1, we

construct a fault that matches the observed topography and that penetrates to 11.4 km and

dips an average of 9°, leading to a slip on the fault of ~5700 m from an input shortening of

5500 m. In Model 2, we construct a fault that matches the same topography but penetrates

to a depth of 24.2 km and dips at an average 21°. Model 2 requires an input shortening of

2400 m producing a slip along the fault of 2800 m. The fault for Model 3 also was

constructed to match the input topography, but penetrates to 48.1 km, dips at an average of

40°, and requires 850 m of shortening to produce 1673 m of slip on the fault.

The shortening strain observed along the landform for all three models is –0.806%.

The modeled strain from folding is –0.622%, –0.801%, and –1.255% for Models 1 to 3,

respectively (Table 3.1). The modeled strain from folding of Model 1 matches the observed

folding strain with a percent match of 77.2%. The modeled strain from folding of Model 2
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most closely resembled the observed folding strain matching at 99.4% of the observed

value. Model 3 has a percent match of 31.9% to the observed folding strain. Model 2

represents a successful model that both matches the observed topography and accords with

the observed folding strain. The result of this sensitivity study highlights the dependence

of the modeled strain from folding on the depth of faulting, dip of the fault, and input

shortening. Therefore, by using both topography and the strain produced from folding as

control points, we produce well constrained solutions of our shortening landform models.

In a fault-bend fold, the strain accommodated by folding varies fault geometry

(Figure 3.5, Table 3.1). Therefore, matching the observed and modeled folding strain plus

the observed topography yields unique, doubly constrained solutions for the underlying

fault geometry. Folding at the surface is directly related to the dip and depth of faulting.

For the same landform, a fault penetrating to greater depths will have a greater dip than

those penetrating to shallower depths. Slip in fault-bend folds decreases with steeper dips

while greater amounts of deformation are accommodated by antiformal folding (Suppe,

1983). Therefore, our models produce less folding if the modeled fault penetrates to

shallower depths, and the average slip along the fault increases (Table 3.1).

Larger amounts of input shortening and thus slip along the fault are needed to uplift

the hanging wall block to match the topography (Model 1, Figure 3.5). This increases the

total shortening strain of the surface, with consequently less strain accommodated by only

the folding (Model 1, Table 3.1). We interpret such fault geometry as overestimating the

accommodated shortening but producing faults that are too shallow with too gentle dips.

Faults penetrating deeper need lower amounts of input shortening and so accommodate

more folding at the surface (Model 2, Figure 3.5). Model 2 is the best-fit solution in which
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the model matches the observed topography and strain from folding, and so we take the

modeled fault geometry as the best representation of reality. The smallest amount of input

shortening, largest fault dip and deepest extent of fault produce equally good topographic

matches, but the modeled strain from folding exceeds the observed strain (Model 3, Table

3.1). This model likely underestimates the accommodated shortening while producing very

deep faults that dip too steeply.

3.4 Results

We applied our workflow and matched the two or, where possible, three controls

to model the thrust systems of 55 shortening landforms on Mercury. From these models,

13 values were compiled to study the variability of these thrust systems. Additionally,

thrust system type and overall fault shape (i.e., listric or homoclinal) was specified for each

landform. We summarize our observation in a catalogue containing 30 lobate scarp and 25

wrinkle ridge archetypes. The summary of observations and individual MOVE models are

published in the online repository accompanying this paper (Loveless et al., 2024b).

Thrust system types

Among the 55 landforms, we modeled thrust systems that can be described as

having one of three general geometries. The most prominent thrust system type we model

are single, listric faults (Figure 3.6a), with 38 shortening landforms showing this geometry.

In these thrust systems, the depth and curvature of the fault dictate how the hanging wall

is folded. The large variety of modeled listric fault shapes span the entire range of modeled

fault parameters, accommodating small and large strains and lithospheric penetration

depths from <10 km to as deep as ~50 km.
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The remaining 17 modeled thrust systems have multiple faults. Of those, we

modeled seven imbricate thrusts (Figure 3.6b). These are a series of sub-parallel thrusts

for which tectonic transport is occurring in the same direction and that may be rooted by a

floor-thrust or décollement (Boyer and Elliot, 1982). Such structures are known on Earth

to consist of overlapping, stacked series of blocks of rock separated by subparallel thrust-

faults (Hopgood, 1987). Imbricate thrusts were modeled to occur underneath shortening

landforms that displayed vergence in the same or nearly the same direction and to be

tectonically related by their geographic proximity to one another or by their map patterns.

In some instances, the vergence may change along the length of the shortening landform

resulting in possible changing thrust system geometries underneath the shortening

landform. This phenomenon occurs at the shortening landform shown on the right panel of

Figure 3.6b. Along the surface break towards the southwest, one of the shortening

landforms changes vergence and thus may transition from an imbricate thrust to a pop-up

structure.

Indeed, pop-up structures comprise the third thrust system type we identified, of

which we modeled 10 of them. Pop-up structures were interpreted to occur under those

shortening landforms that have two or more sets of tectonic vergence in opposite directions

(Figure 3.6c). These pop-up structures host a central crustal block that has been uplifted

due to two oppositely dipping thrust faults that border its sides, where the bigger structure

is the primary thrust and the smaller structure the secondary or back thrust (Butler, 1987).

Generally, pop-up structures on terrestrial planets are found to vary in terms of the size

relation of the primary thrust and secondary thrust. Most pop-up structures we model on
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Mercury, however, show a primary thrust that greatly exceeded the size of the back thrust

in terms of fault depth and height, similar to the example in Figure 3.6c.
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Comparison between shortening landform archetypes

We average all of the parameters generated by the modeled shortening landforms

in this work (Table 3.2). Across all structures, the average near surface fault dip, average

dip, and maximum dip are 21°, 22°, and 40°, respectively. The average input shortening

for all shortening landforms is ~1.5 km. The mean values for average heave, average slip,

maximum slip, and average throw are 1.2 km, 1.4 km, 1.6 km, and 0.6 km, respectively.

The average depth of faulting across all shortening landforms is 21.9 km and the average

fault height is 65.4 km. The sample of shortening landforms in this work produced a

modeled strain from folding of –0.28%.

We compiled the parameters of our models to analyze their averages and variability

for the wrinkle ridge (n = 25) and lobate scarp archetypes (n = 30) for their comparison.

First, we averaged each parameter for each archetype landform to identify what defines a

typical lobate scarp and wrinkle ridge on Mercury; the results are presented in Table 3.2.

The representative thrust fault architecture underlying a lobate scarp archetype is a single,

listric thrust fault that shallows with depth (e.g., Figure 3.5 Model 2; Figure 3.6a). These

shortening landforms have an average dip of ~26° and fault to depths of ~27 km. The faults

accommodate an average of ~2 km of slip and produce an average of –0.4% of modeled

shortening strain from folding in the hanging wall.

The typical trust system underlying a wrinkle ridge archetype requires more than

one fault, either as imbricate thrusts (Figure 3.6b) or pop-structures (Figure 3.6c). The most

representative wrinkle ridge archetype model is shown in Figure 3.6c. Such shortening

landforms are underlain by faults with an average dip of ~19° that penetrate to depths of
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~13 km. These structures accommodate an average slip of ~0.7 km and produce an average

of –0.16% of modeled shortening strain from folding in the hanging wall.

Second, we compute box-and-whisker plots for the aspect ratio, depth of faulting,

the maximum and average dip angles, the maximum and average slip, the input shortening,

and the shortening strain from folding (Figure 3.7) to document and compare the variability

of the fault geometries associated with wrinkle ridge and lobate scarp archetypes on

Mercury. We find that these parameters capture all aspects of modeled fault geometries.

As with Figure 3.4, the bold lines within the boxes indicate the median value for each

distribution, whereas the upper and lower bounds of the boxes are the first and third quartile

values of each distribution. Minima and maxima data are indicated by the bounds of the

line segment. Statistical outliers are shown as hollow dots along the axis.

The majority of aspect ratios for both wrinkle ridge and lobate scarp archetypes fall

between 0.1 and 0.6 (Figure 3.7a). The average aspect ratio among all shortening landforms

is 0.4. The range of aspect ratios for lobate scarp archetypes is from 0.1 to 1.3. Wrinkle

ridge archetypes have an aspect ratio range of 0.1 to 1.4. Both archetypes show large

overlap, but generally lobate scarp archetypes have higher aspect ratios as a result of their

greater relief with respect to their lengths than wrinkle ridge archetypes do. We also find

that lobate scarp archetypes penetrate to greater depths than their wrinkle ridge archetype

counterparts (Figure 3.7b). Lobate scarp archetypes host faults that penetrate to depths of

8.4 km to 48 km, whereas the range of wrinkle ridge archetypes depth of faulting spans

from 1.9 km to 38 km. These ranges of depths are nearly identical as only 6 lobate scarp

archetypes are modeled to fault at depths greater than 38 km and only 7 wrinkle ridge

archetypes are modeled to fault at depths less than 8.4 km.
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Lobate scarp archetypes host faults with a median maximum and a median average

dip of 43° and 24° respectively (Figure 3.7c and d). Wrinkle ridge archetypes dip more

shallowly than lobate scarp archetypes with a median maximum dip of 36° and a median

average dip of 17°. The range for both maximum and average dip values overlap for both

wrinkle ridge and lobate scarp archetypes. The maximum dip angle for lobate scarp

archetypes ranges from 21° to 66° and wrinkle ridge archetype maximum dip angles ranges

from 16° to 60° (Figure 3.7c), almost covering the same range of dip angles.

For both maximum and average slip values, wrinkle ridge archetypes overlap with

the lower extent of lobate scarp archetype values (Figure 3.7g and h). A similar trend is

shown in the ranges of input shortening values for wrinkle ridge and lobate scarp

archetypes, where wrinkle ridge archetypes overlap with the lower extent of lobate scarp

archetype values. The modeled strain from folding for wrinkle ridge and lobate scarp

archetypes also demonstrates considerable overlap (Figure 3.7h). More negative values of

modeled strain from folding indicate a greater amount of folding. Wrinkle ridge archetypes

show less modeled shortening strain from folding than lobate scarp archetypes, but almost

the entire range of wrinkle ridge archetype values falls within the lower range of modeled

strain from folding values for lobate scarp archetypes.

The largest shortening landform on Mercury: Enterprise Rupes

Enterprise Rupes is widely regarded as one of the largest shortening landforms on

Mercury’s surface (e.g., Byrne et al., 2018; Ferrari et al., 2015; Watters et al., 2016) so we

include it in our analysis (Figure 3.8a). Its highest vertical relief exceeds 3 km, and it has

a mapped fault length of ~1000 km (Loveless et al., 2024a). Owing to its size, Enterprise

Rupes was statistically classified with the highest lobate scarp designation in Chapter 2.
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Enterprise Rupes is located in the southern hemisphere and crosscuts multiple impact

craters including Rembrandt Basin: a large, 715 km diameter impact basin. Its highest

structural relief towards the southeastern portion of its surface break. In this region,

Enterprise Rupes is unaffected by large impacts or the geology of the Rembrandt basin,

which is host to other smaller impacts, extensional and contractional tectonic features, thus

providing an ideal cross-section to model the subsurface structure solely as it relates to the

underlying fault architecture.

Northwestward along the surface break, there are notable topographic highs that

are likely unrelated to the deformation produced by the primary fault that formed Enterprise

Rupes. To better constrain the shortening strain of Enterprise Rupes, we subtract these

topographic variations from the observed topography (light blue line, Figure 3.8b). The

displacement and strains generated by our model can therefore be assumed to be a lower

bound for the possible displacements and strains. In this region, the morphology of

Enterprise Rupes indicates two fault surface breaks and forelimbs with opposing vergence.

The primary direction of tectonic transport along Enterprise Rupes is towards the southeast,

as indicated by the pronounced forelimb along much of the structure and the multiple

impact craters that Enterprise Rupes crosscuts.

The vertical relief at this area has been measured to be 3.3 km (Loveless et al.,

2024a). The backlimb beyond the pop-up created by the oppositely verging thrust is also

uplifted. To achieve such relief, a model input of 9 km of shortening was applied to the

main thrust. The role of the secondary thrust only affects the peak at the tip of the

shortening landform. The input shortening for this thrust was 2.7 km. These input

shortenings for the primary and secondary thrusts translated to a maximum slip value of
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9.3 km and 2.7 km, respectively. The primary fault has an average dip of 9° and a maximum

dip of 17°. The secondary fault has an average dip of 11° and a maximum dip of 21°. The

lower average dip angles are because of the extensive listric architecture of the fault

geometry. We model Enterprise Rupes to fault to a depth of 34 km. The modeled strain

from folding for Enterprise Rupes is –0.13, which is less than the median value of –0.34

found among lobate scarp archetypes (Figure 3.7h). However, the maximum slip, average

slip, and slip components (average heave and throw) for Enterprise Rupes are,

unsurprisingly, the largest values modeled in our data set.

3.5 Discussion

Lobate scarp and wrinkle ridge archetype thrust systems

We modeled the subsurface structure of 55 shortening landforms on Mercury to

learn about the thrust systems that generated them. The results of our study show a large

variation of fault geometric parameters (Figure 3.7). This finding demonstrates that thrust

systems on Mercury are complex and host a large variation of thrust geometries, similar to

what is observed in thrust systems on Earth. Based on a linear discriminant analysis of the

shapes of these landforms (Chapter 2), we selected those shortening landforms for our

modeling that showed the biggest differences to one another with the intention of analyzing

the broadest variation of thrust system morphologies that occur on Mercury’s surface. We

interpret the large variation of dip angles, depth of faulting, and slip as indicative of

highlighting the innate complexities of Mercury’s thrust systems.

The morphology of shortening landforms on Mercury supports wrinkle ridges and

lobate scarps as endmember categories on a spectrum of shortening landforms (Chapter 2).

The results in this study provide additional support for these as archetypes as the average
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values for all shortening landforms consistently lie between average parameter values for

the archetypes (Table 3.2). In addition, the distributions of fault parameters of wrinkle ridge

and lobate scarp archetypes either overlap or form a continuum, as seen in the first and

third quartile values of wrinkle ridge archetypes beginning or ending where those of lobate

scarp archetypes end or begin (see position of boxes in Figure 3.7).

The most notable difference between archetype types is the number of faults, and

the least amount of overlap occurs in the depth of faulting. A typical lobate scarp archetype

was modeled using one listric thrust fault that penetrated to depths of ~27 km (e.g., Figure

3.6a) whereas a typical wrinkle ridge archetype was modeled with 2 faults (Table 3.2) and

penetrates only to depths of ~13 km (e.g., Figure 3.6c). The differences between wrinkle

ridge and lobate scarp archetypes are likely to arise differences in host lithology. Most of

the wrinkle ridge archetypes in this study are situated in the smooth plains units, whereas

most of the lobate scarp archetypes are located in the intercrater plains units (Figure 3.2).

Regardless, with an average depth of faulting of 13 km, wrinkle ridge archetypes penetrate

deeper than estimates of up to 2 km for the depth of the volcanic emplacements that make

up the smooth plains units (Du et al., 2020; Head et al., 2011; Ostrach et al., 2015). This

geometry suggests that the mechanisms that produce lobate scarp and wrinkle ridge

archetypes are the same. However, geographically, the lithosphere underlying the smooth

plains units may have hosted very deeply penetrating thrust faults, the surface expression

of which would have been muted by the subsequent emplacement of relatively well-layered

smooth plains. These newer mechanical layers were not present in the intercrater plains,

and such faulting underneath the smooth plains lava emplacements may have been

reactivated upward, creating the shortening landforms observed in these units without slip
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occurring at deeper depths. When a geologically younger, thin unit of rock is placed on top

of a faulted rock volume and is then mechanically faulted through, more complex

deformation in the upper layer is caused by the basement-reactivated fault.

Both endmember types vary widely in subsurface geometry, with some wrinkle

ridge archetypes being modeled with single faults and some lobate scarp members hosting

multi-fault thrust systems. These results illustrate further that the “typical” archetype lobate

scarp and wrinkle ridge structures show some differences, but that the spectrum of thrust

architecture underlying both of these landform types shows substantial overlap. These

findings echo those of Chapter 2, further corroborating that shortening landforms on

Mercury’s surface exist on a spectrum between the traditional nomenclature of lobate

scarps and wrinkle ridges.

Tectonic architecture of thrust systems on Mercury

All shortening landforms in this study are underlain by listric faults (e.g., Figure

3.6). The typical lobate scarp archetype structure contains only a single, listric fault.

Shortening landforms that are modeled with more than one fault may either be constructed

with multiple listric faults, or the secondary (and possibly tertiary) faults may have a more

homoclinal geometry (e.g., the secondary faults in Figure 3.6c and Figure 3.8). The listric

geometry of the fault is what dictates the shape of the overlying topography in a fault-bend

fold. When comparing lobate scarps on Mercury with tectonic deformational features on

Earth, Byrne et al. (2018) had described lobate scarps “as upthrust volumes of rock that are

likely the folded portions of hanging walls atop of thrust faults.” This analogy describes

lobate scarps that have formed from surface breaking thrusts on Mercury as fault-bend

folds.
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Previous studies using the COULOMB dislocation modeling found listric faults to

be a viable architecture underlying contractional tectonics on terrestrial planets (e.g.,

Peterson et al., 2020; Watters and Schultz, 2002). However, these studies also show that

listric faults and homoclinal faults generate similar topography, suggesting non-unique

solutions. Other studies using the same modeling technique have argued that listric faults

fail to accurately generate observed topography (e.g., Egea-González et al., 2012; Herrero-

Gil et al., 2019). This modeling technique does not consider folding. If the hanging wall is

faulted over the footwall at the surface, it will likely fold over the fault. By using a fault-

bend-fold geometry, our models replicate this folding. In a fault-bend-fold model, the listric

shape of the underlying fault greatly affects the way the surface folds after the input

shortening is applied. The change in dip along a listric geometry affects the displacement

along the fault as governed by the same trigonometric relationships described by a ramp-

up structure in Suppe (1983).

A typical archetype wrinkle ridge structure requires two or more faults to accurately

replicate topographic observations (Figure 3.7c). Pop-up structures are more common than

imbricate thrusts for multi-fault thrust systems used to model wrinkle ridge archetypes. For

wrinkle ridge archetypes, we see that the folding of the hanging wall produced by the pop-

up structure creates a plateau flanked on either side by monoclines that are folded over

their fault plains. This agrees with previously proposed structural interpretations of wrinkle

ridges (Byrne et al., 2018). Slope-asymmetry analysis of wrinkle ridges on Mars supports

similar geometries (Okubo and Schultz, 2004). These Martian wrinkle ridges are the

accumulation of a primary thrust and secondary back and fore thrusts that branch off the

primary thrust. We find some similar subsurface geometries for shortening landforms with
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opposing thrust-fault vergence. However, the wrinkle ridge archetypes on Mercury

described here have greater relief than the Martian landforms analyzed in Okubo and

Schultz (2004). We also find simpler fault architectures to be able to replicate many of our

wrinkle ridge archetypes than some of the geometries suggested by Okubo and Schultz

(2004). Additionally, contractional tectonics on Earth that result in a hanging-wall folding

over the thrust and footwall (e.g., Last et al., 2012; Petterson et al., 1997) are frequently

used as analogous structures for contractional tectonics on other terrestrial planets (e.g.,

Crane, 2020b; Crane and Klimczak, 2019a; Plescia and Golombek, 1986; Watters, 1988).

The results presented here then suggest that fault-bend fold architectures should be further

utilized when structurally assessing contractional tectonics in Mercury’s smooth plains.

Imbricate thrust structures are the least common fault geometry we model in our

sample of shortening landforms. Only two lobate scarp archetypes and five wrinkle ridge

archetypes were modeled as imbricate thrusts. The small sample size of multi-fault lobate

scarp archetypes is likely a result of the sample selection process, as the LDA in Chapter

2 classified the most endmember lobate scarps by their larger sizes. The size of these

structures may be indication that the faults matured to the point that previous imbricate

thrusts linked into a large singular fault plane, indicative of how Cowie and Scholz (1992)

suggest faults grow within the Earth’s lithosphere. Alternatively, more shortening

landforms occupy the geologically younger smooth plains than the geologically older

intercrater plains units (Byrne et al., 2014). The concentration of shortening landforms in

the smooth plains attests to the greater number of shortening landforms we modeled in the

smooth plains to host more than one fault in the underlying structure. However, many

shortening landforms on Mercury display multiple sub-parallel to parallel surface breaks
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similar in photogeology to the imbricate thrusts modeled here (e.g., Crane and Klimczak,

2019a). Expanding the sample size of this work may then increase the shortening landforms

in the intercrater plains units.

Implications for Mercury tectonics

Many studies use the vertical relief of a structure as equal to the throw of the

underlying fault to infer the displacement along the fault plane (e.g., Byrne et al., 2014;

Klimczak et al., 2018; Watters, 2021; Watters et al., 2001). Friction theory predicts optimal

dip angles for thrust faults in a basaltic rock volume to be ~31° and thus displacements are

typically inferred for angles of 30°±5°. Results of our analysis show that the average and

maximum dip angles of thrust faults on Mercury are ~22° to ~40°, respectively (Table 3.2).

This is a larger range of dip angles of thrust faults than used previously, including thrust

faults with much shallower and steeper dips. Our results thus warrant considerations of a

wider range of dip angles for any analysis inferring thrust fault displacements from

measurements of structural relief. Using the traditional method of deriving shortening

strain for planetary thrust faults (e.g., Byrne et al., 2014; Watters, 2021), an average dip

value of ~22° would increase previous estimates of Mercury’s global strain whereas an

angle of 40° would reduce strain estimates (e.g., Byrne et al., 2014; Watters 2021). The

larger range of dip angles found in this study suggests that previous assumptions of the

range of dip angles for Mercury’s population of thrust faults yielded a too narrow range of

strain estimates.

Enterprise Rupes is a shortening landform that Galluzzi et al. (2015) assessed with

crosscut craters. They found a large range of dip angles for the faults underlying Enterprise

Rupes, ranging from 15°±5° to 57°±16°, which agrees well with our range of modeled dips.
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Our results indicate that Enterprise Rupes has an average dip angle of ~10° and a maximum

dip of 21° close to the surface, agreeing well with the lower estimates of two of the three

crosscut craters near our transect. However, the crater evaluated by Galluzzi et al. (2015)

that is closest to our transect has the steepest dip angles. This mismatch may be due to the

degradational state of this crater or to the natural complexity of the fault system in this area.

Galluzzi et al. (2015) consider a single fault when assessing the deformation of this crater,

while multiple faults are required to match the map pattern and topography of Enterprise

Rupes. If this crater was deformed by two opposing faults, this may explain the mismatch

between the two analyses.

A second shortening landform in our study also crosscuts a crater assessed by

Galluzzi et al. (2015) (their Crater 05-C). We find a near-surface dip angle and average dip

angle of 29° and 30°, respectively, which is relatively close to the dip angle range of 20° ±

3° reported in Galluzzi et al. (2015). The discrepancies of our results may be due to the fact

that a crosscut crater only captures the local, near-surface dip of the fault. Our modeling

efforts capture the broader structure and take into account the topography beyond the extent

of the crater.

The mean of the average dips for our modeled lobate scarp archetypes averages at

~27° for all models. This value agrees with previous modeling results of individual or small

sets of shortening landforms (e.g., Egea-González et al., 2017, 2012; Schultz and Watters,

2001). The mean of the maximum dips for lobate scarp archetypes is ~43°, with a few

individual structures even showing maximum dips of ~60° (Figure 3.7c), which is rather

atypical for thrust faults. However, our wrinkle ridge archetypes have an average dip of

~19°. This value is considerably less than the range of dip angles found in COULOMB
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dislocation modeling efforts by Peterson et al. (2020). Multiple models constructed in

Peterson et al. (2020) were shown to produce similar topographies for the same shortening

landform and listric fault geometries were created by using a step curvature function from

one fault tip to the other. In our study we find that folding at the surface plays a substantial

role in dictating the depth and dip angle of our faults. The COULOMB modeling software

cannot take into account distortion from folding and instead assumes fully elastic

deformation around the fault from a single faulting event, scaled up to the shape of the

landforms after many slip events, which becomes unrealistic for the large displacements

associated with these shortening landforms. This limitation in COULOMB is likely the

reason for the discrepancy in dip angles for wrinkle ridge archetypes in the two approaches.

Our models indicate a wide range of depths of faulting for all shortening landforms.

The average depth of faulting for all modeled shortening landforms is ~22 km and

shortening landforms inside the intercrater plains fault to an average depth of ~27 km.

Intercrater plains likely are composed of a brittle volume of basaltic crust that may act as

a single mechanical unit. The greatest penetration depths we find extend to ~48 km (Figure

3.7b), suggested that the faulted volume of Mercury’s lithosphere reaches depths perhaps

as much as 50 km. Previous studies that have investigated the depth extent of faulting for

shortening landforms on Mercury provide similar values, such as 25–40 km for faults in

the intercrater plains (e.g., Egea-González et al., 2012; Ritzer et al., 2010; Watters and

Schultz 2002).

Alternatively, the basaltic lava emplacements of the smooth plains units are only

estimated to be only a few hundred meters to up to ~2 km thick and they sit on top of

basement rock (Du et al., 2020; Head et al., 2011; Ostrach et al., 2015). The modeled
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average depth of faulting of 13 km for the wrinkle ridge archetypes in this study greatly

exceeds these thickness estimates. This model depth indicates that many of the modeled

wrinkle ridge archetypes are not by any measure constrained to within the smooth plains

units. Previous work has also suggested that smooth plains structures can fault to

comparable depths to intercrater plains structures (e.g., Peterson et al., 2020). In these

geographic regions, Mercury’s lithosphere is composed of volcanic deposits overlaying

mechanically weak layers of rock due to impacts. Therefore, there are likely multiple

mechanical interfaces of different deformed basaltic layers, and so the terms thin and thick-

skinned tectonics as described for Earth’s tectonics by Pfiffner (2017) are likely an

inaccurate way to structurally describe Mercurian tectonics. However, we find that these

faulting depths for wrinkle ridge archetypes agree with the term “basement involved thin-

skinned tectonics” attributed to Mercury’s tectonics by Crane and Klimczak (2019a). In

this case, the deformation in the smooth plains units are influenced by the faulting in the

underlying basement rock such that deformation in the basement produces a series of

structural geometries and patterns in the smooth plains that are characteristic of thin-

skinned deformation. Many of our wrinkle ridge archetype models are consistent with

basement involved thin-skinned tectonics, where, for example, pop-up structures that

reside in the smooth plains units typically contain a primary fault that penetrates 10 km

below the surface but the secondary fault only penetrating no deeper than ~ 3 km (Figure

3.6c). In a 2–3 km thick smooth plains units, then, these secondary faults may be the result

of more complex deformation occurring solely within these unit but that connect to, and

were initiated by faulting at depth, in the underlying basement rock. The mechanically

distinct plains units may then partition strain off of the primary, deeply rooted thrust,
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resulting in additional faults and folds that are only confined to the smooth plains units.

This is similar to the process described by Crane and Klimczak (2019a) for contractional

tectonics in Mercury’s smooth plains units where thrusts rooted in the underlying

lithosphere causes deformation in the overlying, mechanically-weak layer.

Wrinkle ridges in the smooth plains units on Mercury have been compared with

shortening structures in the lunar maria, with those landforms on the Moon being ascribed

to loading-induced subsidence with contributions from global contraction (Schleicher et

al., 2019). However, loading-induced subsidence is inconsistent with basement-involved

thin-skinned thrust tectonics and a formation of such structures on Mercury by global

contraction alone is more plausible. In fact, thrust faults underlying shortening landforms

described as wrinkle ridges found in several mare units in lunar mascon basins are found

to be deep-seated (Byrne et al., 2016; Collins et al., 2023). Their origin is ascribed to

mascon tectonics (Byrne et al., 2015), and their continued growth and surface expression

in the surficial mare units did not require loading stresses from the mare units whereas

contributions of stresses from the lunar global contraction are plausible (Byrne et al., 2015).

We do not detect a systematic pattern of the distribution of shortening strains across

Mercury, albeit wrinkle ridge archetypes tend to produce somewhat less strain than lobate

scarp archetypes. However, the variance of shortening strain from wrinkle ridge archetypes

and lobate scarp archetypes overlaps substantially (Figure 3.7f). These findings agree with

previous studies that observed geologic trends in morphology and timing (e.g., Banks et

al., 2015; Crane and Klimczak, 2019a; Peterson et al., 2019). If global contraction were the

source of stresses driving faulting, there would be no systematic pattern of strain

distribution expected, even if it overlapped with other processes. Other processes that have
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been invoked for Mercury to produce global fracture patterns like despinning (e.g.,

Matsuyama and Nimmo, 2009; Melosh, 1977) or reorientation (Matsuyama and Nimmo,

2009) would only influence the orientation of fracture patterns (Klimczak et al., 2025)

when working in conjunction with global contraction. However, the shortening strain of

the landforms likely would not have a global systematic pattern if global contraction is the

primary source of stresses to cause faulting.

3.6 Conclusions

We investigated the thrust fault geometries beneath 55 shortening landforms on

Mercury. We specifically selected wrinkle ridge and lobate scarp archetypes to highlight

the differences in thrust system geometries that are present within Mercury’s lithosphere.

We find that while Mercury hosts diverse thrust systems, including single, listric faults,

imbricate thrusts, and pop-up structures, the thrust fault geometries of wrinkle ridge and

lobate scarp archetypes overlap or form a continuum (Figure 3.7). This overlap and

continuation in range of fault geometric parameters confirm our previous results (Chapter

2), where shortening landforms on Mercury form a spectrum of landform shapes rather

than discrete categories. The results of the work presented here further illustrates the

impracticality of traditional “lobate scarp” and “wrinkle ridge” nomenclature to describe

landforms that are much more similar than they are different.

We find a large range of fault geometric parameters for the thrust systems that

underly Mercury’s shortening landforms. The average fault dip of all the structures ranges

from ~22° and to ~40°. We also find that the deepest fault penetrates Mercury’s lithosphere

to 48 km, whereas the average depth of faulting for all studied structures is 22 km. These



80

parameters may serve to better constrain future studies estimating fault strain or analyzing

lithospheric structure on Mercury.

Our modeling results inform an understanding of Mercury’s tectonic character. The

shortening landforms that reside in Mercury’s smooth plains units are likely caused by the

basement involved thin-skin tectonics mechanism suggested by Crane and Klimczak

(2019a), with thrusts penetrating well below the lavas that makeup the smooth plains units.

As the faults penetrate deep into the underlying basement rock and show no noticeable

difference in strain compared with faults in intercrater plains, the formation of these thrusts

by loading-induced subsidence can be ruled out and instead are likely to have been

primarily driven by global contraction.
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3.9 Figures 
 
 

 

Figure 3.1: Examples of what have been classified as "!abate scarps" (a) and "wrinkle 

ridges" (b) on Mercury (modified from Chapter I). a) Map view of an unnamed !abate 

scarp near the south pole (left) with the corresponding topographic profile from x to x' 

(right). b) Map view of Schiaparelli Dorsum, a prominent wrinkle ridge (left) with the 

corresponding topographic profile from y' (right). Maps use a stereographic projection 

centered on the shortening landform. Both profiles are shown at ~J 6x vertical 

exaggeration. 
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Figure 3.2: Global distribution of 55 shortening landforms modeled in this study shown in 

Robinson projection. Landforms traditionally identified as !abate scarps are shown in 

magenta, while those previously identified as wrinkle ridges are shown in green. For 

reference, the smooth-plains units (Denevi et al., 2013) are shaded in gray. The LDA 

analysis of the 100 shortening landforms assessed in Chapter 2 is shown on the LD axis 

below. 



83

Figure 3.3: Block diagram of a shortening landform with stylized fault plane to highlight

the fault geometric parameters extracted from each model. The dashed line in the

subsurface represents an arbitrary marker horizon to depict deformation along the fault.

The image in this figure is taken from the MESSENGER low-incident angle global mosaic

(Denevi et al., 2017). Elevation data are from Bertone et al. (2023).
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Figure 3.4: Box and whisker plot of the observed strain from folding compared with the

modeled strain from folding. Bold lines indicate the median, the left and right edges of the

gray box are the first and third quartiles, and maxima and minima are indicated by the

vertical segments. Outliers are shown as dots.
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Figure 3.5: Three thrust fault models replicating the topography of the shortening

landform depicted in Figure 3.3. All models are shown with 2× vertical exaggeration. Red

line is the modeled fault. Blue lines are arbitrary horizons used to visualize subsurface

deformation. Gray lines are observed topography; black, the modeled topography.
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Figure 3.6: Three different thrust fault systems from Mercury with subsurface models

shown on the left and map view on the right panel. a) An example of a single, listric fault

(1.8× vertical exaggeration). b) An imbricate thrust (3.0× vertical exaggeration). c) A
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pop-up structure (1.8× vertical exaggeration). Model line colors are the same as in

Figure 3.5.
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Figure 3.7: Box-and-whisker plots for eight parameters of our model solutions, showing

the distributions of fault geometries of wrinkle ridge and lobate scarp archetypes on

Mercury. These plots show comparisons of: (a) aspect ratios; (b) depth of faulting; (c)

maximum dip; (d) average dip; (e) maximum slip; (f) average slip; (g) input shortening;

(h) modeled strain from folding.
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Figure 3.8: Top panel depicts the photogeology of Enterprise Rupes. Bottom panel depicts

the model constructed underneath the transect E to E’ in the image. Color coding is the

same as in Figure 3.5 but observed topography corrected for anomalous topographic

variations is shown in light blue. Model and topography in 4× VE.
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3.10 Tables

Table 3.1: Comparison of parameters for the three subsurface models of the same

shortening landform in Figure 3.4. Input shortening is a constraint of the model.

Parameters Model 1 Model 2 Model 3

Observed Folding Strain [%] -0.81 -0.81 -0.81

Modeled Strain from Folding [%] -0.62 -0.80 -1.36

% of Match Modeled to Observed Folding Strain 77.2 99.4 31.9

Input shortening [km] 5.5 2.4 0.9

Depth of Faulting [km] 11.4 24.2 48.1

Average dip [°] 9 21 40

Maximum slip [km] 5.9 3.2 2.3
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Table 3.2: Averaged values of modeled parameters for lobate scarp and wrinkle ridge

archetypes. Medians and ranges of these modeled parameters are shown in Figure 3.7.

Modeled Parameter All Shortening

Landforms

Lobate Scarp

Archetypes

Wrinkle Ridge

Archetypes

Near Surface Fault Dip (°) 21 25 17

Average Dip (°) 22 26 19

Maximum Dip (°) 40 43 36

Input shortening (km) 1.5 2.0 1.0

Average Heave (km) 1.2 1.7 0.7

Average Slip (km) 1.4 2.0 0.7

Maximum Slip (km) 1.6 2.2 0.9

Average Throw (km) 0.6 0.8 0.3

Depth of Faulting (km) 21.9 27.4 13.3

Fault Height (km) 65.4 90.0 64.5

Modeled Strain from

Folding (%)
–0.28% –0.39% –0.16

Number of Faults 1.36 1.12 1.7

Aspect Ratio 0.41 0.44 0.28



92

CHAPTER 4

SEVERAL KILOMETERS OF GLOBAL CONTRACTION ON MERCURY: A

SAMPLE-SIZE INDEPENDENT ASSESSMENT OF FAULT STRAIN.3

3 Loveless, S.R. and Klimczak, C. Submitted to AGUAdvances, 2025.
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Abstract

Mercury underwent global contraction due to the sustained cooling of the planet.

Positive-relief landforms, found widespread across Mercury, are thought to be the surface

expressions of thrust faults accommodating the contraction. Disagreement exists in the

literature on the amount of contraction, with estimates of radius change ranging from ~1 to

7 km. These differences solely arise from the method used to estimate the fault population

strain, which relies on the number of structures. Here, we adapt previous framework by

which the continuum approximation to shortening strains can be determined from fault

length and displacement statistics for an incompletely sampled fault population. We apply

this method to three datasets that sample different numbers of faults. Our results show that

even for conservative fault parameters, two to three kilometers of radial contraction are

returned, irrespective of the dataset used, and thus resolving the debate on the amount of

global contraction on Mercury.
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4.1 Introduction

Disagreement on Mercury’s radial contraction.

Thermal evolution models and observations of Mercury’s surface indicate that the

planet has undergone global contraction, a process caused by long, sustained planetary

cooling (e.g., Solomon, 1978). Shortening strain from global contraction is widely accepted

to be accommodated in the lithosphere via thrust faulting, which manifest at the surface as

positive-relief landforms (Byrne et al., 2018, 2014; Solomon et al., 2008; Strom et al.,

1975). Previous studies measured the length and relief of these shortening landforms to

estimate the total contractional strain of Mercury (Di Achille et al., 2012; Byrne et al.,

2014; Watters and Nimmo, 2010; Watters et al., 1998). These previous studies rely on the

same method, by which a map of thrust fault related landforms is produced, lengths of the

landforms are extracted, relief of a subset of structures is measured and assumed to be

related to fault displacement via the fault dip such that a displacement-to-length

relationship is established, which then is extrapolated to all mapped structures. Strain is

then calculated for the area of the faulted domain by summing the strain of each of the

mapped structures. This method is thus dependent on the number of structures considered.

The dependency on the number of faults produced a discrepancy in radius change

estimates in the literature. Watters (2021), who used n=653 faults, calculated Mercury’s

radius to have decreased by 0.9–1.3 km, whereas (Byrne et al., 2014), who considered a

population of faults containing n=5934 structures, determined a range of 3.1-7.1 km of

radius change. Watters (2021) assumed that shortening landforms in Mercury’s smooth

plains units are attributed to lithospheric loading and associated subsidence from the

emplacement of the volcanic units rather than global contraction and thus excluded the
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structures and area covered by plains units from the calculation. Byrne et al. (2014)

considered a wider range of possibilities, including and excluding the smooth plains units.

In their work, radial shortening was calculated using shortening landforms across eight

great circles and by using the displacement length scaling. In all cases, with or without the

shortening landforms in the smooth plains units, Byrne et al. (2014) mapped more faults in

the same area that was considered by Watters (2021). Therefore, the method used in these

studies is a disadvantage, as different geological interpretations result in a different number

of considered structures, and in turn, cause the discrepancy in estimates of the amount of

global contraction despite sampling the same population of faults.

An additional component of radius change occurs prior to the onset of faulting

because the lithosphere resists faulting until its strength is reached (Klimczak, 2015). For

a wide range of strength considerations, Klimczak (2015) estimates an additional 0.4 to 2.1

km of radius decrease to be added to the estimates calculated from fault strain. This results

in radius changes from as little as 1.3 km, when adding the lowest possible amounts from

Watters (2021) and Klimczak (2015), to as much as 9.2 km, when considering the upper

estimates from Byrne et al. (2014) and Klimczak (2015). This range of values is a critical

constraint for thermal evolution models, whereby the most plausible solutions require a

radial shortening of ~5–10 km (Breuer et al., 2007; Hauck et al., 2004; Michel et al., 2013;

Solomon, 1977; Tosi et al., 2013). Driven by the constraint of low values of radial

contraction by Watters et al. (1998), Tosi et al. (2013) identified a very small fraction of

model solutions that required less than 3.5 km of radial shortening when assuming very

large reference viscosities.
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The large range of estimated amounts of radial shortening on Mercury is only a

very loose constraint for thermal evolution models, highlighting the need for improvement

in the method on which the estimations are based on. Thus, we provide an alternative

assessment of Mercury’s global contractional strain, for which we apply fault strain theory

introduced and tested by Twiss and Marrett (2010a, b) to three published Mercury thrust

fault datasets to reevaluate to amount of radial contraction.

4.2 Methods

The fault strain theory laid out by Twiss and Marrett (2010a) is based on the fact

that an entire population of faults is never really fully considered when estimating the strain

of a faulted volume. Instead, this approach utilizes the displacement of the largest fault in

the population, which is easiest to detect, and scales it using both displacement-to-length

and fault-length-frequency statistics to estimate the total strain of the faulted volume. This

method assumes infinitesimal strain, where the faulted volume must be large relative to the

dimensions of the largest fault. This assumption is valid for our purposes, as we are

considering the entire brittle volume of Mercury’s lithosphere. This method also assumes

that all structures in the population have the same fault geometric parameters, such as dip

and fault shape, which was also assumed in previous works (Byrne et al., 2014; Di Achille

et al., 2012; Watters et al., 1998; Watters and Nimmo, 2010).

The method by Twiss and Marrett (2010a) allows us to calculate the strain in

Mercury’s faulted portion of the lithosphere independent of the number of considered

faults. We test this approach for three different datasets in the literature that sample

substantially different numbers of thrust faults from the same population of structures

(Figure 4.1). We use the previously mentioned data from Byrne et al. (2014) who sample
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n=5934 structures, from Watters (2021), who samples n=653 structures, and from Chapter

2, 3 and Loveless et al. (2024b), in which n=100 structures were considered.

Twiss andMarrett (2010a) derived the equation for the total strain of faults sampled

in three dimensions of a volume in the horizontal direction t:

,
 = ,

()
1 + 2

1 −  +
2


 , 1

where ,
()is the shortening strain of the fault with the highest displacement in the volume.

The parameters p and s are derived from statistics based on the total population of fault

parameters (Table 4.1). The strain of fault i in direction t is given by:

() = ,
() 

() cos()


 , 2

where () is the displacement of the ith fault and  is the angle between the horizontal

direction t and the slip direction on the fault (Figure 4.2), corresponding to subtracting the

fault dip, , from 180°. Here, () is the probability of the fault being intersected by a

random line parallel to t. The parameter  is the dimensional length of the faulted volume

in direction t (Figure 4.2). The probability for an individual fault written as a continuous

function of fault-displacement  is:

,
() =


 cos 


=



 cos()



()


. 3

Here,  is the area of the fault plane. The angle  is measured between the normal vector

to the fault plane and t, or by subtracting a from 90° (Figure 4.2). The denominator, , is

the total cross-sectional area of the faulted volume, which is normal to t. The parameter 

is a geometrical shape factor that accounts for the fault height, as defined by down-dip
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minor axis length, l, and the length, L, specifying either rectangular or elliptical shapes of

the fault tip line. For rectangular fault shapes,  is simply the ratio of l and L (as shown in

Figure 4.2), whereas for elliptical shapes this ratio is multiplied by /4. The factor B is a

scaling parameter derived from the displacement-to-length statistic of the faults (see

below). The probability in Eq. 3 then is the ratio of the area of the fault plane that is

projected onto the total cross-sectional area of the faulted volume to the total cross-

sectional area (Figure 4.2). This probability can be estimated for any fault in a population,

as the areas of the fault planes are obtained from the displacement-length and cumulative

number-length relationships. Note the absence of the superscript  for the geometric

parameters  and  on the right-hand side of Eq. 3, as these are assumed to be the same for

all faults in the population.

The faulted volume, V, is then calculated as the product of  and T. We define the

faulted volume to be equal to the outer shell of Mercury that has a thickness defined by the

depth-extent of the deepest faults, , and planetary radius, , as:

 =  =





 −



(

 − ). 4

Following the approach by Twiss and Marrett (2010a) we combine Eqs. 1 to 4,

yielding:

,
 =



 cos  cos


()



 

1 + 2

1 −  +
2


 . 5

Here, the displacement, , has the superscript of (1), indicating that it is only the value

from the largest fault.
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Finally, the amount to radial contraction can be derived by calculating the initial

radius of Mercury,  , from the fault population strain in Eq. 5 via the relation presented

by (Watters and Nimmo, 2010):

 = 



,
 + 1


.

, 6

where  is the final radius, which we take to be Mercury’s current mean radius of 2440

km. The change in radius, corresponding to the radius decrease from global contraction, is

then calculated as Δ =  − .

Parameterization

We use the data from Byrne et al. (2014), Watters (2021), and the data from

Chapters 2, 3, and Loveless et al. (2024b), hereon referred to as the Loveless et al. dataset,

to parameterize Eq. 5 with all required fault-geometric values (Table 4.1). Geometric

forward modeling of 55 shortening landforms on Mercury (Chapter 3) yielded thrust fault

parameters that provide detailed observational constraints, including ranges of values for

fault dips and fault aspect ratios needed here to calculate the geometric shape factor. In

particular, Chapter 3 establishes that the average ranges of fault dip on Mercury are

between 22° and 40°, a wider range than those considered in the previous global

contractional strain analyses of Mercury. We therefore calculate the fault strain for dip

values bounded by 22° and 40°, as well as the case for rock-mechanically calculated

optimal dips of 30°. The depth extent of the faulting was determined to be 22 km on average

with the largest structures to be no deeper than ~50 km (Chapter 3), and thus we use values

of 30 km, 40 km, and 50 km in our calculations to constrain the thickness of the faulted

volume, which agree well with lithospheric thickness and crustal depth estimates (Padovan
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et al., 2015). We find that a value of 40 km best represents the thickness of the faulted

volume because the vast majority of fault models return faults with shallower depths and

only a few faults exceed depths of 40 km (Chapter 3). This thickness is not likely to be

constant throughout Mercury, and a thickness of 40 km likely averages variations in the

faulted volume.

We parameterize the shape factor  by taking the average aspect ratio derived in

Chapter 3 as the ratio of the modeled down dip length of the fault plane to the map-view

length of the fault (Table 4.1). This value was found to be 0.41 and is thus equal to  if all

faults are assumed to be rectangular. If faults are assumed to have an elliptical planar

geometry, then we multiply this aspect ratio by /4, providing a value of  = 0.32. The

aspect ratio was derived from listric fault geometries modeled in Chapter 3. It is defined

only by the horizontal and downward dipping dimensions of the fault plane and not by

variations in dip along the fault plane (i.e., listric or homoclinal). We note that the block

diagram in Figure 4.2 shows a rectangular shape of a homoclinal plane for simplicity.

Enterprise Rupes is the largest shortening landform on Mercury both in mapped

length and vertical relief (Byrne et al., 2018; Ferrari et al., 2015; Watters et al., 2016) and

thus is likely underlain by the thrust fault accommodating the largest displacement on

Mercury. In order to detect the maximum displacement of the fault, Chapter 3 constructed

a 2D balanced cross-section of the fault system along the location of maximum relief,

matching observed topography, shortening strain from folding, and the slip vector that was

indicated by offset impact craters. It was found that Enterprise Rupes consists of two

oppositely dipping thrust faults with the primary thrust showing a displacement of value of

() = 9300 m.
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Values  and p in Eq. 5 are identified from the power-law displacement-to-length

relationship of the population of faults (Cowie and Scholz, 1992):

 =
1

. 7

Previous studies used model 1 regressions to derive a scaling relationship (e.g., Byrne et

al., 2014; Watters, 2021). To provide statistically unbiased results for the regression

parameters, we apply a model 2 linear regression to all datasets, as the independent

variables (x values) of the regression, i.e., the fault length values, are not taken at controlled

intervals, which is an assumption of a model 1 least squares regression (Sokal and Rohlf,

1995).

The fault displacements in Byrne et al. (2014) and Watters (2021) were found by

relating the observed structural relief via the fault dip, where dips were assumed to be 25°,

30°, and 35°. We carry out three model 2 regressions for these two datasets to account for

the updated range of dip angles (Chapter 3). We show those regression results in Figure

4.3a along with displacement-to-length data derived from 55 balanced cross-sections of

thrust fault systems in Chapter 3. From these regressions, we extracted the values  and 

and listed their values in Table 4.1. Because no fault dip values are known in the structural

relief measurements by Byrne et al. (2014) and Watters (2021) the three different

assumptions of dips produce three different values for parameter . The values for

parameter  remain unchanged for different assumptions of fault dip values.

The value for  used in Eq. 5 is derived from the slope, −, of the power-law

length-frequency distribution, NUM(L), of the mapped fault population (Cladouhos and

Marrett, 1996; Watterson et al., 1996) as follows:
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() =  ;  =


. 8

Here, G is the scaling factor relating the cumulative number of faults to the fault length. It

is equal to the cumulative number of faults that have a unit length (Twiss and Marrett,

2010a). Because extrapolation over the total spread of the cumulative length frequency

distribution produces overestimates of the strain, we follow practices laid out in Twiss and

Marrett (2010a) and apply a regression to only its linear portion (Figure 4.3b). For each

dataset, we extract the values for  , calculate  (Eq. 8) and list the results in Table 4.1.

We note that the displacement-to-length data for all three datasets (Figure 4.3a) is a subset

of the fault sample size (Figure 4.3b), producing a different number of data points between

the two graphs.

4.3 Results

Radial contraction estimates

We present our results of radial contraction for the combination of possible

geometric properties in Table 4.2. Overall, our analysis reveals that the amount of radial

contraction on Mercury is anywhere between 1.5 and 4.4 km for the Loveless et al. dataset,

0.9 and 7.6 km for the Watters (2021) dataset, or 1.3 and 8.4 km for the Byrne et al. (2014)

dataset. These total ranges depend on the combination of the thickness of the faulted

volume, fault dips, and shapes of the fault plane. Thinner faulted volumes, higher fault

dips, and rectangular fault shapes produce higher amounts of strain when compared to

thicker faulted volumes, shallower fault dips, and elliptical fault shapes, respectively.

In particular, the volumetric strain decreases the deeper we assume the faulted

volume to extend. With decreasing dip, the one-dimensional strain of the largest fault

increases (i.e., the term in brackets in Eq. 2), but the proportion of the projected area of the
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fault plane onto the cross-sectional area of the faulted volume goes down, and thus the

probability, , goes down (Eq. 3). Therefore, the strain calculated in one dimension

follows the trend in Byrne et al. (2014) and Watters (2021) where strain estimates increase

with lower fault dips. However, the probability governs the total outcome of Eq. 5, and

therefore, explains why lower amounts of strain are produced for lower dip angles.

Rectangular shapes of the fault tip line create a larger area of fault planes to be projected

onto the cross-sectional area of the faulted volume than elliptical shapes. Therefore, the

calculated amount of strain is larger for rectangularly shaped fault tip lines.

We find a combination of parameters that produce a minimal amount of global

contraction (Δ), a combination of optimal parameters that produces the most probable

amount of global contraction (Δ), and a combination of parameters that produces a

maximum amount of global contraction (Δ) from the investigated fault population

datasets. The combination of parameters that produces Δ includes an average

thickness of the faulted volume of 50 km, with all faults in the population dipping 22°

(Table 4.2). This set of parameters produced a Δ of 1.5–1.9, 0.9–1.1, and 1.3–1.5 km

for the Loveless et al., Watters (2021), and Byrne et al. (2014) datasets respectively. The

lower and upper bounds for these ranges of Δ represent elliptical and rectangular shapes

of the fault tip line, respectively

While dip values of 30° and a thickness of the faulted volume of 40 km imply that

they are assumed to be constant for the fault population and throughout Mercury, they also

represent conservative estimates of averages, as there are established ranges of variations

of these parameters around these values. Therefore, we consider the resulting Δ values
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(Table 4.2) as being optimal, producing Δ of 2.3–2.9, 2.4–3.0, and 2.8–3.5 km for the

Loveless et al., Watters (2021), and Byrne et al. (2014) datasets respectively.

A maximum amount of radial contraction is calculated by assuming a thickness of

the faulted volume of 30 km depth and that all faults in the fault population dip 40°. With

this combination of fault population parameters, the Loveless et al. dataset returns a Δ

of 3.5–4.4 km. The Watters (2021) and Byrne et al. (2014) datasets produced Δ of

6.0–7.6 and 6.6–8.4 km, respectively (Table 4.2).

4.4 Discussion and conclusions

Our results establish that each dataset, irrespective of the number of considered

faults, produces similar amounts of contractional strain, which, in turn, yields radius

change estimates that are comparable to one another. For the Watters (2021) dataset, we

find radial contraction estimates of 0.9 to 7.6 km, with the optimal range of Δ being

2.4–3.0 km. Watters (2021) calculated substantially smaller values of Δ, amounting to

0.9, 1.1, and 1.3 km for  = 35°, 30°, and 25°, respectively. These values appear to agree

with our Δ values across all three datasets (Table 4.2). However, the Δ values in

this work represent the extreme lower bounds of physical parameters, whereas the range of

radius change values produced in Watters (2021) spans the entire considered parameter

space in that publication. Therefore, the Δ results presented here cannot be considered

to confirm the range of estimates presented in Watters (2021). The low values for

Mercury’s contraction presented inWatters (2021) arise from the low number of shortening

landforms considered to have contributed to global contraction.

Using the same method as Watters (2021) but for a larger number of faults, Byrne

et al. (2014) estimated Mercury’s radial contraction to be ~3.1–7.1 km, which falls in the
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range of Δ to Δ calculated in this study (Table 4.2). The larger sample size is

likely closer to the true number of faults in Mercury’s population of thrust faults, which

likely explains their results showing a better overlap with ours. The large sample size of

this dataset and the sampling of structural reliefs over a wide range of fault lengths—as

seen in the spread of the displacement-to-length data when compared to the length

frequency distribution (Figure 4.3, right column)—makes this dataset statistically more

probable. In contrast, the dataset by Watters (2021) sampled the structural relief of only

the largest of shortening landforms, which is seen in the spread of the data being skewed

toward the longest faults (Figure 4.3, center column).

We find Mercury’s radius change that can be attributed to thrust faulting to show

optimal values between 2.3 and 3.5 km consistently across all three datasets. In order to

overcome the frictional resistance to sliding, Mercury would have to contract to build up

stresses beyond the brittle strength of its lithosphere (Klimczak, 2015). For a variety of

rock-mechanical properties, this study found that Mercury would have had to experience

0.4–2.1 km of radial contraction before thrust faults could form and that this range would

need to be added to any estimates from faulting. Adding the findings by Klimczak (2015)

to the range of values calculated in this study yields a range radial contraction of 2.7 to 5.6

km that is likely to have occurred on Mercury. This result is in reasonable agreement with

many thermal evolution modeling efforts (e.g., Breuer et al., 2007; Hauck et al., 2004;

Michel et al., 2013; Solomon, 1977) and, in combination with timing and strain rate

estimates of global contraction (Crane and Klimczak, 2017), may be used to tightly

constrain future thermal evolution modeling.
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In this work, we adapted the methodology presented and tested by Twiss and

Marrett (2010a, b) to estimate the amount of thrust fault strain Mercury experienced from

global contraction. Using three datasets sampling vastly different numbers of faults of the

same population (Figure 4.1), we demonstrated that any bias that incompletely sampled

fault populations introduced using the previous method is avoided using the method

presented here. Thus, future calculations of Mercury’s radial contraction will produce more

robust estimates using the framework of Twiss and Marrett (2010a). We also suggest that

this methodology can be used to calculate fault population strain for other planetary

processes and bodies.
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4.6 Figures

Figure 4.1: Comparison of mapped thrust fault populations considered in this study across

Mercury in Winkel Tripel projection, color-coded based by source. The dataset by Byrne

et al. (2014) is displayed in blue atop the dataset by Watters (2021), which is displayed in

orange. The faults from Chapter 1 are displayed in thick black lines. For reference, smooth

plains units (Denevi et al., 2013) are colored in light green.
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Figure 4.2: Block diagram of fault geometric parameters modified after Twiss and Marrett

(2010a, b). The block (blue outline) is a representative portion of the faulted volume of

Mercury’s lithosphere. In this diagram the fault plane () is the area marked as red

shaded region and it is here shown as rectangular shape. The plane outlined with green

dashes is the total cross-sectional area () of the faulted volume. The green shaded region

represents  projected onto .
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Figure 4.3: Thrust fault population statistics for three datasets on Mercury, where the data

by Loveless et al., Watters (2021), and Byrne et al., (2014) are shown in black, orange,

and blue in the left, center, and right columns, respectively. (a) Fault displacement-to-

length data and the corresponding regressions shown for all datasets in the top row. Data

(points) and regression (solid line) for Chapter 3 (Loveless et al., 2024 panel) was derived

from model results. Data from Byrne et al. (2014) and Watters (2021) is shown for the

assumption that all measurements are from faults with dips of for  = 30°. Regressions for

those data are shown for  = 30° with a solid line and for  = 22° and 40° with dashed

lines, respectively. (b) Cumulative fault length frequency distributions shown for all

datasets in the bottom row. Cumulative length-frequency regressions are shown as solid

lines for the linear portion of the data distribution. Color-coding of the datasets

corresponds to that in Figure 4.1.
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4.7 Tables

Table 4.1: Parameters used to solve for fault strain. Statistical parameters , , , and

 were derived from regressions performed in this work using measurements

published in the original datasets.

Symbol Definition Value

 Fault dip angle.  = 22°, 30°, or 40°a

 Angle between the normal vector to the

fault plane and the horizontal vector t.

 = 22°;  = 68°

 = 30°;  = 60°

 = 40°;  = 50°

 Angle between the horizontal vector t and

the slip direction of the fault.

 = 22°;  = 158°

 = 30°;  = 150°

 = 40°;  = 140°

() Maximum displacement of the largest

fault in the faulted volume.

() = 9300 ma

 Geometric shape factor defining shape of

the fault plane as either rectangular or

elliptical.

Rectangular faults;  = 0.41a

Elliptical faults;  = 0.32

 Thickness of the faulted volume.  = 30 km, 40 km, or 50 kma
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 Inverse of the scaling factor of the

displacement-to-length relationship.

 = 87.98a

 = 22°;  = 337.9b

 = 30°;  = 451.0b

 = 40°;  = 579.8b

 = 22°;  = 101.9c

 = 30°;  = 136.0c

 = 40°;  = 174.9c

 Exponent of the power law displacement-

to-length relationship.

 = 0.97a

 = 1.11b

 = 1.00c

 Additive inverse of the exponent of the

cumulative length-frequency

relationship.

 = 1.94a

 = 2.61

 = 2.05c

 Ratio of  to .  = 2.00a

 = 2.35

 = 2.05c

a Value taken or derived from data from Chapters 2, 3 and Loveless et al. (2024b)

b Value derived from data published in Byrne et al. (2014)
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c Value derived from data published in Watters (2021)
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Table 4.2: Radius change values listed for those parameters that have the largest

impact on calculations. The lower and upper bounds of each of the ranges listed for

Δ represent elliptical and rectangular shapes of the fault tip line, respectively.

 [km]  [°]

 [km]

Chapters 2 and 3

 [km]

Watters

(2021)

 [km]

Byrne et al.

(2014)

(n = 100) (n = 653) (n = 5934)

Minimum 50 22 1.5–1.9 0.9–1.1 1.3–1.5

Optimal 40 30 2.3–2.9 2.4–3.0 2.8–3.5

Maximum 30 40 3.5–4.4 6.0–7.6 6.6–8.4
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CHAPTER 5

EFFECTS OF SOLAR TIDES ON MERCURY’S GLOBAL FAULT PATTERN. 4

4 Loveless, S.R. To be submitted to Icarus.
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Abstract

The long, sustained cooling of Mercury caused the planet to undergo global

contraction, which is accommodated in the lithosphere by a population of surface-breaking

thrust faults. Horizontal stresses from global contraction alone are isotropic, and thus they

predict that thrust fault orientations across the planet are random. However, Mercury’s

thrust fault orientations are observed to be systematic, showing general north–south

alignment in the equatorial regions and more variation in preferred orientations near the

poles. This observation is widely considered to indicate other tectonic processes

overlapped with global contraction. Planetary reorientation, tidal despinning, solar tides,

and mantle convection all having been invoked individually or in combination to have

produced the global pattern of faults. The specific scenario by which only solar tides and

Mercury’s rotation overlap with global contraction has yet to be fully explored. Here, we

calculate the time-averaged stresses produced by tides to assess their effects over

geologically long timescales and then superpose these stresses over an isotropic horizontal

stress field caused by global contraction that would produce thrust faulting throughout

Mercury’s lithosphere. We find that stresses produced from Mercury’s current orbit alone

are on the order of 1 KPa and are therefore insufficient to cause faulting as a stand-alone

process. However, as these stresses are superposed onto the stresses of a few MPa caused

by global contraction, we find that the slight differences in the horizontal principal stresses

are enough to influence thrust fault orientations. The predicted optimal thrust fault

orientations show a widespread match to the observed pattern. The superposition of stresses

caused by solar tides and Mercury’s rotation onto global contraction may thus explain

much of the observed tectonic pattern on Mercury. Future work will include the modeling
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of cyclical stresses over Mercury’s orbital cycle and compare the recurring loading of those

stresses with empirical mechanical fatiguing of basalts to assess the influence the fatiguing

of Mercury’s lithosphere has on Mercury’s thrust fault pattern.
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5.1 Introduction

Mercury has undergone global contraction due to its long, sustained cooling

(Solomon, 1978). This contraction is the major source of tectonic stress and has driven the

formation of a globally distributed population of thrust faults and folds manifest at the

surface as positive relief landforms (e.g., Byrne et al., 2014, Chapter 1). Horizontal

compressive stresses from global contraction when acting as the sole tectonic process are

isotropic (Melosh and McKinnon, 1988), which would result in random thrust fault

orientations and thus showing no systematic pattern across the planet. However, Mercury’s

thrust fault orientations are observed to be systematic, displaying north–south trending

fracture patterns at the equatorial regions that become less pronounced, or east–west

oriented, towards the poles (e.g., Byrne et al., 2018; Klimczak et al., 2015). Therefore, it is

widely thought that other tectonic processes must have overlapped with global contraction

to have influenced the observed fault orientations. Different studies have assessed various

combinations of processes to explain the observed fault pattern, including Mercury’s True

Polar Wander (TPW) (e.g., Benz et al., 1988), impact damage from the Caloris basin

(Klimczak et al., 2025) or TPW from the Caloris impact (Matsuyama and Nimmo, 2009),

and rotational spin-down (Klimczak et al., 2015; Melosh and McKinnon, 1988) to predict

different fault patterns.

Mercury is in a 3:2 spin orbit resonance with the sun, where Mercury spins about

its axis three times for every two orbits around the Sun. This resonance caused it to have

slowed in rotation, a process widely referred to as tidal despinning (e.g., Kaula, 1968;

Burns, 1975; Melosh 1977; Melosh and McKinnon, 1988). Rotational spin-down

overlapping global contraction is predicted to cause north–south oriented thrust faulting at
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the equatorial regions with no preferred polar thrust fault orientations (e.g., Klimczak et

al., 2015; Pechmann and Melosh, 1979) or east–west oriented normal faults at the poles

(Beuthe, 2010). The predictions for the equatorial orientations agree well with

observations; however, thrusts near the poles have preferential orientations (Klimczak et

al., 2025) that poorly match the predictions. Reorientation of Mercury’s spin axis caused

by the Caloris impact in combination with tidal despinning (Matsuyama and Nimmo, 2009)

agrees with the patterns revealed by the Mariner 10 mission but showed disagreement with

tectonic patterns revealed from mapping efforts from the MESSENGER mission (Byrne et

al., 2018). Prior to Klimczak et al. (2015) studies that predicted fault orientations provided

a set of orbital events did not use rock-mechanics to predict their resulting fault

orientations.

The 3:2 spin orbit resonance on Mercury also causes systematic, repetitive time-

dependent tidal displacements as well as temperature variations as two points on Mercury’s

surface tend to face the sun for extended periods of time. These points are called Mercury’s

hot poles and located along the equator of the planet at longitudes 0° and 180°. The solar

tides driven gravitational potential Mercury experiences through its orbit is among the

largest of the planetary bodies in the solar system (Hoolst and Jacobs, 2003). These tides

may influence global fault patterns within Mercury’s lithosphere (Byrne et al., 2018;

Klimczak et al., 2025; Williams et al., 2011), and fault orientations show concentric

patterns around the hot poles. Additionally, Mercury’s surface is systematically heated due

to its orbital configuration leading to variations in both the thickness and strength of the

lithosphere geographically around the hot poles (Williams et al., 2011). With an

eccentricity of 0.2056, Mercury’s orbit is also the most eccentric in the solar system, thus
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creating a complex suite of orbital characteristics producing stresses throughout the

planet’s surface that warrants further investigation.

Various other planetary bodies throughout the solar system display fracture patterns

or seismicity that is linked to tides. Most of these planetary bodies are satellites with

eccentric orbits or have undergone some orbital change, such as despinning, precession, or

a change in orbital resonance that would have induced systematic stress patterns in their

lithospheres. On the Moon, systematic fracture orientations have been linked to some

combination of global contraction overlapping with diurnal tidal stresses and orbital

recession (Watters et al., 2019, 2015b) or with despinning, and various true polar wander

parameters (Matsuyama et al., 2021). Furthermore, seismic activity on the Moon is time

dependent on tides induced by Earth (e.g., Latham et al., 1971; Toksöz et al., 1977; Turner

et al., 2022; Watters et al., 2019).

Tidal deorbiting of Phobos intoMars has also been linked to systematic orientations

of extensional landforms about the sub-planet point of the satellite (Hurford et al., 2016).

Tidal effects from both the Sun and Phobos have also been predicted to induce seismicity

on Mars (Manga et al., 2019). Models of stresses from diurnal tides on Europa are large

enough to initiate cracking and match Europa’s large-scale linear and cycloidal fractures

(Greenberg et al., 1998; Marshall and Kattenhorn, 2005). Further evidence of tidally

induced fracturing on Europa has been linked to left-lateral strike slip deformation patterns

(Collins et al., 2022). Tidal displacements of the subsurface ocean of Enceladus have been

modeled to predict seismicity within its icy lithosphere (Olsen et al., 2021), and tides

influence the tectonic and cryovolcanic activity of the large-scale tiger-stripe fractures on

the moon’s surface (Hedman et al., 2013; Nimmo et al., 2014). Cycloid fracture patterns
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present on both Europa and Enceladus are hypothesized to be caused by cyclical tidal

stresses (Greenberg et al., 1998; Rhoden et al., 2021, 2010). Stellar induced tidal stresses

acting upon exoplanets may even be responsible for the initiation of exoplanetary tectonics

(Zanazzi and Triaud, 2019) and have been modeled to induce seismic activity for various

exoplanets with nonzero eccentric orbits (Hurford et al., 2020).

Because the major effects that tides have on tectonic patterns and seismicity on

planetary bodies, we investigate how much solar tides overlapping with global contraction

influence Mercury’s tectonics, as that combination of processes has not yet been

specifically studied. We explore the effects that Mercury’s current orbit and spin-orbit

resonance have on the orientations of its population of thrust faults by investigating the

impact of tidally-induced stresses on fault orientations and the weakening effect they have

on the lithosphere due to their cyclical variations.

5.2 Methods

To explore the effect of Mercury’s eccentric 3:2 spin–orbit resonance with the Sun,

we calculate the tidal displacement across the planet and derive the resultant stresses of the

surface of Mercury. We follow the methods laid out by Matsuyama and Nimmo (2009,

2008). A complete list of the parameters and values we use is located in Table 5.1. The

stress sign convention for the physical framework in those works is such that tensile

stresses are positive and compressive stresses are negative. While tidal displacements and

corresponding stresses change throughout the 3:2 spin–orbit resonance cycle stresses,

radial displacement and stresses arising from tides oscillate as the relative positions of

Mercury’s subplanet point changes throughout the planet’s orbit. The displacements can

be averaged over geologically long time periods to study their long-term effects as the
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geographic location of the subplanet point averaged over time is a fixed location on

Mercury’s surface. For that, the radial displacement, ,(,), at colatitude  and

longitude , of a body distorted by rotation and solar tides can be found using:

,(,) =  1−  cos  −
1
3
+ 3 cos  −

1
3
 , 1

where  is the mean radius of the planet,  is the flattening caused by rotation, and  is

the flattening caused by tidal bulging (Matsuyama and Nimmo, 2008). Here, rotational

deformation is geographically dependent on the rotation pole, with averaged coordinates,

(,):

cos  = cos  cos + sin  sin  cos( − ) . 2

Tidal deformation is geographically dependent on the sub-planet point with averaged

coordinates (,):

cos  = cos  cos + sin  sin  cos( − ) . 3

We adopt the flattening terms used by Matsuyama and Nimmo (2009), which take into

account Mercury’s 3:2 spin-orbit resonance by including the Hansen coefficients:

 =
1
4
ℎ
 




2 + 3(1 − )


 − 3(, ) and

 =
1
4
ℎ
 




(, ). 4

Here, ℎ
 is the degree 2 spherical harmonic Love number,  is the mean motion, G is the

gravitational constant, andM is the mass of Mercury. The values p and e are the spin/orbit

rate (3/2) and the eccentricity respectively. The Hansen coefficients, (, ), are a series

of coefficients that are commonly used in mathematical expansions of elliptical motion

related to the ratio (p) of angular velocity and mean motion tabulated by (Goldreich and
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Peale, 1966). For a 3:2 spin orbit resonance, we follow the work of Matsuyama and Nimmo

(2009) by using the Hansen coefficients to the order :

(3/2, ) =
7
2
−
123

16
+⋯ 5

The normal stresses acting in the horizontal plane tangential to the surface along

the north–south direction () are:

 =
2
3

1 + 
5 + 

  (6 sin  cos  + 9 cos  − 5), 6

and the normal stresses in the horizontal plane acting in east–west () directions are:

 =
2
3

1 + 
5 + 

 (−6 sin  cos  + 3 cos  + 1). 7

Finally, shear stresses () acting in the horizontal direction tangential to Mercury’s

surface due to tides are:

 = −2
1 + 
5 + 

 sin  sin(2) . 8

Equations 6, 7, and 8 use the following relationships:

sin  (,,,) cos (,,,) = cos  sin  − sin  cos() cos( − ),

sin  (,,,) sin (,,,) = sin  sin( − ) , 9

where the coordinates (,) are either coordinates for the sub-planet point for n = tidal

or the coordinates for the rotational axis for n = rot. In equations 6, 7, and 8,  is the

Poisson’s ratio and  is the rigidity of the lithosphere. We calculate rigidity as  = 

()
,

where  is Young’s Modulus. We use a value of  = 29 GPa to represent the deformation

modulus integrated over the thickness of Mercury’s fractured lithosphere (Klimczak and

McCarthy, 2025). The subscript n indicates that these stresses are calculated for both tidal

(n = tidal) and rotational (n = rot) distortions. The total normal stresses acting in the north–
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south and east–west directions and the total shear stresses caused by tides and rotation are

then the sums of the tidal and rotational components:

 = !"# + #$%&'; = !"# + #$%&';  = !"# + #$%&' . 10

We solve for this stress field in 30° by 30° latitudinal and longitudinal regions across

Mercury.

The principal horizontal stresses,  and  arising from tides are calculated from

the combination of , , and  using the following relationships (Turcotte and

Schubert, 2014):

 =
 + 

2
+ 

 − 
2




+ 
 

.

;

 =
 + 

2
− 

 − 
2




+ 
 

.

. 11

The angle, , to which  acts with respect to the east–west direction can be found using

the relation (Turcotte and Schubert, 2014):

2 = atan
2

 − 
 , 12

while the direction  makes with  is 90° by definition.

5.3 Results

We find that the time average radial displacement of Mercury’s surface due to tides

and rotation is on the order of ±1 m (Figure 5.1). A positive radial displacement occurs at

the equator, with maximum peaks at the hot pole locations (warm colors in Figure 5.1).

The polar regions experience a negative radial experience due to flattening caused by

rotation and solar tides (cool colors Figure 5.1). A radial displacement of ±1 m agrees with

other works that have calculated radial displacement due to tides (e.g., Hoolst and Jacobs,

2003; Thor et al., 2020).
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We first calculate the average stresses produced by the tides and rotation of

Mercury’s current 3:2 spin-orbit resonance alone (Figure 5.2). These stresses are calculated

in 30° by 30° bins. We represent the horizontal principal stresses as line segments oriented

in the direction they are acting on, with blue lines showing horizontal compression and

orange lines showing horizontal tension. Throughout Mercury’s surface, the principal

stresses generated from solar tides and Mercury’s rotation alone are compressive and

tensile only on the order of a few kPa (Figure 5.2). These stresses are not strong enough to

overcome the unconfined compressive strength of rock, and therefore, solar tides and

Mercury’s rotation are insufficient to induce faulting of the lithosphere. Stresses in the

equator show tensile principal stress components acting in north–south direction and

compressive principal stress components acting in the east-west direction. The magnitudes

of the tensile north–south trending stresses substantially increase away from the equator in

mid-latitude regions, and at the poles the orientations of the tensile stresses show more

deviation from the north–south trend produced at the equator. The orientations of the stress

field show systematic variations around the hot poles.

Global contraction imposes a global compressive stress state (Melosh and

McKinnon, 1988) which has created a global population of thrust faults on Mercury (Byrne

et al., 2014). We note that solar tides and Mercury’s rotation do not generate stresses that

are large enough to fracture Mercury’s lithosphere. Therefore, we superpose enough

compressive stress to predict thrust faulting at all locations across the tidally stressed

surface of Mercury. For this, we assume an unconfined compressive strength of a fractured

basaltic rock mass at ~10 MPa (Schultz, 1993), which equals the stresses needed at the

surface to produce thrust faulting. We superpose compressive stresses onto our solutions
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for tidal stresses in a manner such that a minimum of 10 MPa are reached for all principal

stress components. The larger of the two principal stresses, , is more tensile than .

Therefore, as compression is added, the stresses acting in the direction of  become less

compressive than those acting in the direction of , and so the direction of  becomes

the direction of the intermediate, compressive principal stress acting in the horizontal

direction, . Conversely, the stresses acting in the  direction become more compressive,

resulting in the maximum compressive principal stress,  to be acting in the direction of

.

Superposing global contraction onto the stresses caused by solar tides and

Mercury’s rotation shifts all stress components to be compressive. Therefore, we now show

a map of the principal stresses caused by solar tides, Mercury’s rotation, and global

contraction acting together (Figure 5.3). The maximum horizontal principal stress, , are

represented with thick, blue lines, and the minimum horizontal principal stress, , are

represented with thin, blue lines. The addition of ~10 MPa to the stresses shown in Figure

5.2 causes the stresses  and  to be near isotropic as the differential stresses from tides

and rotation are on the order of only a few KPa. We find that the maximum horizontal

principal stress component is oriented in east–west direction in a wide region of the

equatorial and mid-latitudes (, Figure 5.3). Its orientation varies in northwest–southeast

and northeast–southwest orientations towards the poles. In turn, the minimum horizontal

principal stress components are oriented north–south a wide region of along the equator

and mid-latitudes and show more variation in the polar region (, Figure 5.3). This

principal stress shows subtle systematic variations around the hot poles.
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Next, we calculate the optimal orientations of thrust faults predicted by the stress

field where stresses from global contraction and tides and rotation are superposed. Since

we previously selected the superposed compressive stresses from global contraction to

exceed the unconfined compressive strength across all locations, thrust faulting will occur

in this stress state. Because of the anisotropy the tidal and rotational forcing introduces to

the horizontal principal stress components, it is possible to determine optimal thrust fault

orientations. For our stress field (Figure 5.3), the minimum principal stress component acts

vertically and is equal to the overburden, while the intermediate and maximum principal

stresses are horizontal. Per definition, the strike of an optimally oriented dip-slip fault

forms in the direction of the intermediate compressive principal stress component. On our

stress map (Figure 5.3), the orientations of  are then equal to the optimal thrust fault

orientations, which we have highlighted in Figure 5.4. This map shows the optimal

orientations for the same 30° by 30° latitudinal and longitudinal regions across Mercury

with the black lines aligning with the predicted strikes of the thrust fault planes. We predict

predominantly north–south trending thrust fault orientations in a broad region around the

equator and mid-latitudes. Optimal thrust fault orientations are predicted to show greater

variations near the poles, showing northwest–southeast and northeast–southwest strikes.

We compare our predictions for Mercury’s global thrust fault pattern caused by

tides and rotation overlapping with global contraction with the observed fault orientations

on Mercury. Rose diagrams of fault orientations of 30° by 30° regions were generated by

Klimczak et al. (2025) and are represented in grey in Figure 5.5. These show length-

weighted modes of the azimuths of Mercury’s faults. We overlay these rose diagrams with

the predicted fracture patterns we calculated shown in Figure 5.4 (blue lines, Figure 5.5).
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The predicted thrust fault orientations produced in this work reasonably agree in almost all

of the 30° by 30° regions with the orientations analyzed by Klimczak et al. (2025) as the

line segments from the predictions align well with the rose diagrams of faults produced by

observations (Figure 5.5).

We compare our thrust fault predictions to both the length-weighted averages,

standard deviations, and modes of the observed thrust faults produced by Klimczak et al.

(2025) (Table 5.2). All the predicted thrust orientations fall within one standard deviation

of the observed fault orientations for each region, predicted thrust fault orientations fall

within ½ of the respective bins observed standard deviations for 58 of the 72 bins, and as

much as 40 of the 72 bins have predicted thrust fault patterns that fall within ¼ of the

observed standard deviation (Table 5.2). The average angular difference across all of the

predicted thrust fault orientations with observed thrust fault orientations is 12.7°, however

we note a latitudinal variation. In near equatorial latitudes, the average difference between

predicted orientations and observed orientations is 6.6°, at mid latitudes the average

difference is 9.1°, and at near polar latitudes, the average difference is 22.6°. We consider

these alignments as good indication that our modeled thrust fault network successfully

matches observations.

We also show the observed modes of the thrust faults produced by Klimczak et al.

(2025) which is the fault orientation that is observed to occur the most per 30° by 30°

region in Table 5.2. This data shows that many regions are multimodal, meaning that

Mercury’s faults tend to show multiple reoccurring strikes per region. We bold the values

in Table 5.2 where our predictions fall within 10° of either the weighted mean or one of

the observed modes per region. Predictions in all but 19 of the regions fall within 10° of
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either the weighted mean or any of the modes in its respective region. The rose diagrams

in Figure 5.5 are constructed of bins of ~10° which was found to be the bin size that best

visualizes structure orientations (Klimczak et al., 2025) and so we consider these

alignments as good indication that our modeled thrust fault network successfully matches

observations.

5.4 Discussion

In this work we predict thrust fault orientations from the time-averaged stress field

caused by the deformation that Mercury experiences from its 3:2 spin-orbit resonance with

the sun superposed on global contraction. Stresses from tides and rotation alone (Figure

5.2) have magnitudes of only a few kPa and are both tensile and compressive. Neither the

compressive nor the tensile stresses are large enough to reach the compressive and tensile

strengths of Mercury’s lithosphere. This finding shows that solar tides and rotational

bulging are insufficient to actively drive thrust faulting on Mercury.

However, we demonstrate that stresses from solar tides and rotation influence the

orientations of faults if faulting is driven by other sources of stresses. For Mercury, global

contraction without a doubt has driven thrust faulting, as evinced by the globally distributed

population of thrust faults. By superposing enough compressive stress to predict thrust

faulting onto the stress field of solar tides and rotation, we predict optimal orientations of

thrust faults that show reasonably good agreement with the observed global fault pattern.

The horizontal principal stresses produced by tides and rotation only differ by a few kPa,

and when compression on the order of ~10 MPa is added to the point of rock failure, these

stresses become near isotropic (Figure 5.3). A near isotropic range of  and  principal

stresses allow for a wide range of plausible fault orientations. Therefore, the small
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differences of horizontal stresses caused by tides and rotation allow for predicting just

optimal thrust fault orientations provided the calculated stress regime. Such orientations

are thus expected to be only subtly preserved in Mercury’s geologic record. We interpret

these results as indication that Mercury’s 3:2 spin-orbit resonance does in fact influence

the orientations of Mercury’s thrust faults caused by global contraction.

Due to its current orbit and that we find that solar tides and rotation play a role in

Mercury’s thrust fault patterns, Mercury’s current orbit may influence the planet’s

seismicity. Moonquakes have been suggested to be linked to tides, but even so the largest

moonquakes are relatively weak with amplitudes of ~3 (e.g., Lammlein et al., 1974). On

Mars, tides induced from Phobos have been linked to seismic events (e.g., Manga et al.,

2019; Pou et al., 2021). Therefore, tides on Mercury may cause seismicity, especially since

the deformation from the Sun onto Mercury is estimated to be among the largest in the

Solar System (Hoolst and Jacobs, 2003).
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5.5 Figures

Figure 5.1: Map of the time-averaged radial displacement produced by solar tides and

Mercury’s rotation due to Mercury’s 3:2 spin–orbit resonance with the Sun. Map shown

in equirectangular projection.
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Figure 5.2: The orientations and magnitudes of the principal stresses produced by

Mercury’s orbit and rotation alone. Tensile and compressive stresses are represented as

orange and blue line segments, respectively.
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Figure 5.3: The horizontal principal stresses from Mercury’s orbit and rotation shown as

overlapping with stresses from global contraction.



133

Figure 5.4: The optimal thrust fault orientations predicted for the stress field represented

in Figure 5.3.
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Figure 5.5: Predicted thrust fault patterns from Mercury’s current eccentric 3:2 spin-orbit

resonance with the sun superposed by global contraction shown as blue line segments

overlain on rose diagrams representing a 30°×30° binning of latitudinal and longitudinal

variations of structure orientations modified from Klimczak et al. (2025).
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5.6 Tables

Table 5.1: Parameters used in the calculations of this work and the sources of

their values.

Symbol Definition Value

 Radius of Mercury 2,440 kma

ℎ
 Love number assuming fluid behavior 0.92b

 Mean motion 8.3×107 rad/sc

 Gravitational Constant 6.67×10-11 m3 kg-1 s-2 d

 Mass of Mercury 3.3×1023 kgc

 The spin/orbit ratio 3/2c

 Mercury’s eccentricity 0.2056c

, Time averaged rotational pole

coordinates

(2°, 0°)

, Time averaged subsolar point

coordinates

(90°, 0°)e
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 Poisson’s ratio of Mercury’s

lithosphere

0.25e

 The rigidity of Mercury’s lithosphere 1.16×1010 Pa

 Young’s Modulus of Mercury’s

lithosphere

29 GPaf

aPerry et al. (2011)

bXiao et al. (2024)

cWilliams (2020)

dNewton (1686)

eMatsuyama and Nimmo (2009)

f(Klimczak and McCarthy, 2025)
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Table 5.2 Thrust fault orientations for 30° by 30° latitudinal and longitudinal regions

across Mercury as indicated by their center coordinates. Predicted thrust fault orientations

of tides and rotation superposing global contraction are listed as optimal strikes. The

weighted mean and standard deviation (Std. Dev.) of the observed fault strike data on

Mercury are listed in comparison to the statistical modes. Data from Klimczak et al. (2025).

All fault strike values are given in azimuth notation from 0° to 180°. Values in bold indicate

match between predictions and orientations.

Lon

(°)

Lat

(°)

Optimal

Strike (°)

Weighted Mean

and Std Dev. (°)

Mode

1 (°)

Mode

2 (°)

Mode

3 (°)

Mode

4 (°)

-165 -75 8 176 ± 55 40 87 – –

-165 -45 2 9 ± 37 34 136 – –

-165 -15 1 1 ± 38 12 154 – –

-165 15 0 2 ± 40 24 164 – –

-165 45 178 3 ± 42 36 165 – –

-165 75 168 6 ± 58 30 61 107 160

-135 -75 25 8 ± 50 12 90 169 –

-135 -45 6 9 ± 34 15 159 – –

-135 -15 2 3 ± 35 51 157 – –

-135 15 1 179 ± 45 24 160 – –

-135 45 177 175 ± 36 19 155 – –

-135 75 143 10 ± 47 36 141 – –

-105 -75 141 14 ± 59 28 96 166 –

-105 -45 6 16 ± 35 25 166 – –
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-105 -15 3 178 ± 32 33 153 – –

-105 15 2 20 ± 41 15 171 – –

-105 45 1 173 ± 39 10 154 – –

-105 75 20 176 ± 48 88 – – –

-75 -75 20 4 ± 56 11 37 92 118

-75 -45 1 10 ± 40 27 136 – –

-75 -15 2 176 ± 35 30 162 – –

-75 15 3 5 ± 38 28 164 – –

-75 45 6 176 ± 40 41 164 – –

-75 75 141 177 ± 57 43 65 88 120

-45 -75 143 2 ± 55 13 153 – –

-45 -45 177 10 ± 33 27 138 – –

-45 -15 1 12 ± 31 14 155 – –

-45 15 2 8 ± 36 13 172 – –

-45 45 6 3 ± 41 8 169 – –

-45 75 25 169 ± 38 25 62 133 –

-15 -75 168 173 ± 51 15 115 – –

-15 -45 178 4 ± 40 16 56 159 –

-15 -15 0 175 ± 35 28 137 – –

-15 15 1 14 ± 42 14 154 – –

-15 45 2 4 ± 46 14 162 – –

-15 75 8 8 ± 56 22 57 89 154

15 -75 12 1 ± 50 41 76 120 157
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15 -45 2 4 ± 44 13 108 147 –

15 -15 0 7 ± 40 13 123 161 –

15 15 179 1 ± 41 13 160 – –

15 45 178 4 ± 44 16 35 168 –

15 75 172 166 ± 59 41 62 155 –

45 -75 37 169 ± 50 53 81 157 –

45 -45 3 174 ± 42 17 131 – –

45 -15 179 3 ± 42 21 159 – –

45 15 178 169 ± 38 16 161 – –

45 45 174 11 ± 42 12 46 171 –

45 75 155 6 ± 53 63 115 166 –

75 -75 160 179 ± 49 63 168 – –

75 -45 179 164 ± 42 36 156 – –

75 -15 178 6 ± 37 18 160 – –

75 15 177 172 ± 41 11 148 – –

75 45 174 171 ± 43 19 158 – –

75 75 39 4 ± 48 34 126 165 –

105 -75 39 167 ± 54 31 96 171 –

105 -45 174 169 ± 44 35 158 – –

105 -15 177 11 ± 39 29 131 – –

105 15 178 177 ± 42 18 60 172 –

105 45 179 5 ± 42 9 43 102 146

105 75 160 3 ± 44 40 96 129 –
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135 -75 155 5 ± 52 8 90 145 –

135 -45 174 176 ± 39 36 151 – –

135 -15 178 179 ± 39 22 166 – –

135 15 179 159 ± 38 42 153 – –

135 45 3 168 ± 43 20 162 – –

135 75 37 169 ± 43 20 53 134 –

165 -75 172 9 ± 48 74 128 147 –

165 -45 178 3 ± 42 44 160 – –

165 -15 179 18 ± 40 22 45 152 –

165 15 0 3 ± 42 34 155 – –

165 45 2 156 ± 46 15 35 52 126

165 75 12 169 ± 51 36 101 160 –
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CHAPTER 6

CONCLUSIONS

This dissertation explores a wide range of topics concerning lithospheric shortening

on Mercury. First, in Chapter 2, the legitimacy of the traditional categories “lobate scarps”,

“wrinkle ridges”, and “high-relief ridges” is quantitatively tested using two multivariate

statistical analyses. These analyses show that most landforms previously classified in one

category are not distinctly different from landforms previously categorized into another.

Second, in Chapter 3 the subsurface of the wrinkle ridge and lobate scarp archetypes found

from the distribution of the LDA in Chapter 2 is modeled using the MOVE geologic

modeling software revealing that Mercury was host to a large variety of complex thrust

systems. The data acquired from Chapters 2 and 3 then informed the strain analysis in

Chapter 4, which uses multiple fault data sets on Mercury to estimate multiple kilometers

of radial contraction over a wide range of plausible physical configurations. Finally, in

Chapter 5, the time-averaged horizontal stresses within Mercury’s lithosphere caused by

solar tides and Mercury’s rotation are superposed onto the stresses caused by global

contraction to predict fracture patterns. This dissertation thus covers four important topics

regarding Mercury’s contractional tectonic character. In the proceeding text, this chapter

will summarize the contributions each chapter makes to the current understanding within

the scientific community. Following this, open-ended questions and future work will be

discussed.
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Mercury’s morphological spectrum of shortening landforms

Previously, most contractional tectonic landforms on non-Earth terrestrial bodies

were classified as either lobate scarps, wrinkle ridges, or high-relief ridges (e.g., Melosh

and McKinnon, 1988; Strom, 1979; Watters et al., 2004, 2001; Watters and Robinson,

1999). These landform designations are loosely defined by the general morphology of a

few exemplary shortening landforms. Consequently, many shortening landforms on

Mercury are difficult to designate to one of the traditional categories, and some works have

since refrained from using these terminologies to describe Mercury’s tectonics (e.g., Byrne

et al., 2014; Crane and Klimczak 2019a). The principal component analysis and linear

discriminant analyses presented in Chapter 2 demonstrates that the morphological

variation across 100 randomly selected shortening landforms does not support the grouping

of such landforms into the traditional categories. Instead, most shortening landforms fall

on a spectrum between lobate scarps and wrinkle ridges, with few archetype landforms of

each category. Additionally, the geologic unit a shortening landform forms in does not

govern the morphology of that shortening landform. The variance of the morphologies of

these shortening landforms formed in the smooth plains units and the intercrater plains

shows substantial overlap. These findings suggest that the continued use of the traditional

categories may prevent the enablement of new insights regarding the architecture of

Mercury’s contractional tectonics.

Geometric forward models of thrust systems on Mercury

The modeling results presented in Chapter 3 inform the current understanding of

Mercury’s tectonic character. The 55 shortening landforms that make up the endmembers

of the traditional category LDA conducted in Chapter 2 are designated as lobate scarp and
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wrinkle ridge archetypes and are selected for subsurface modeling. This modeling effort

shows that Mercury is host to a wide range of complex thrust geometries including single-

listric thrusts, imbricate stacks, and pop-up structures. Faults modeled in this work located

in the smooth plains geologic units fault deeper than the depth estimates of the volcanically

emplaced lavas that make up the smooth plains (Du et al., 2020; Head et al., 2011; Ostrach

et al., 2015). This suggests that the formation mechanisms of the contractional tectonics

both inside and outside the smooth plains units are the same. Alternatively, the load-

induced subsidence suggested to form wrinkle ridges in the smooth plains units can be

ruled out, and instead global contraction is likely the primary source of compressional

horizontal stresses to create shortening landforms in both the intercrater plains and smooth

plains units.

Resolving Mercury’s global contraction discrepancy

The amount that Mercury has radially contracted due to long-sustained cooling is

widely debated (e.g., Byrne et al., 2014; Watters, 2021). In Chapter 4, the methodology

introduced by Twiss and Marrett (2010a, b) is successfully implemented to calculate

Mercury’s radial contraction using multiple fault data sets. The work in Chapter 4 also

calls into question the reasoning that a population of more-shallowly dipping thrust faults

causes greater amounts of global contraction. This correlation is an artifact of the

methodologies previously used to calculate Mercury’s contraction. The method introduced

by Twiss and Marrett (2010a, b) circumnavigates the strong dependence of the number of

shortening landforms considered onto the amount of estimated radial contraction. The

results of Chapter 4 show that multiple data sets spanning almost three orders of magnitude

of sample sizes produced relatively similar amounts of strain. Chapter 4 both indicates that
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this method can be applied to calculate the strain of non-Earth, faulted planetary surfaces,

as well as advocates that Mercury has experienced multiple kilometers of radial contraction

after the brittle strength of the lithosphere has been exceeded.

Mercury’s Eccentric 3:2 Spin-Orbit Resonance and the Planet’s Fracture Patterns

The effects of Mercury’s current 3:2 spin-orbit resonance on the systematic fracture

orientations throughout Mercury’s surface have been proposed by previous works (Byrne

et al., 2018; Klimczak et al., 2025) but have not yet been explored in detail as is done in

Chapter 5. Here, the horizontal principal stresses caused by solar tides and Mercury’s

rotational bulge are calculated across Mercury’s lithosphere and are found to only differ

by a few KPa. Once global contraction forces all the stresses into compression past the

unconfined compressive strength of the lithosphere (~10s of MPa; Schultz, 1993) the

principal stresses become near isotropic. However, this small deviation from a near

isotropic stress state causes the predicted thrust faulting to have preferred, optimal

orientations. The work shown in Chapter 5 reveals that these optimal fracture orientations

align well with observed fracture trends presented in Klimczak et al. (2025, 2015). This

work suggests that Mercury’s current orbital configuration has likely affected the

propagation of fractures on Mercury once compressional stresses from global contraction

superseded the brittle strength of Mercury’s lithosphere.

Open questions and future work

The research presented in this dissertation highlights the complex tectonic history

of a planet that has undergone considerable global contraction. Further work using the same

suite of analyses and modeling onto other terrestrial bodies that host a similar set of

contractional tectonics would reveal much about their tectonic character and history.
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Statistical analyses of contractional morphology, forward modeling of non-Earth fault

architectures, application of alternative strain assessments, and new insight into tidal and

rotational influence of fracture propagation of planetary bodies are all aspects of this

dissertation that can be applied to other objects throughout the solar system.

Chapter 2 presents work on the application of statistical analyses onto the

morphology of Mercury’s shortening landforms revealing the variability of Mercury’s

contractional tectonics. A similar analysis has been applied to Mars in McCullough et al.

(2024), from which the LDA showed similar distributions. However, McCullough et al.

(2024) had further defined, quantitatively, the distinctions between lobate scarps and

wrinkle ridges, rather than assess the legitimacy of these categories. Additionally, the

assessment of the different terrain types and their potential to influence Martian shortening

landform variability has yet to be explored. This analysis can also be applied to the Moon,

which hosts an abundant number of shortening landforms that have been classified as

lobate scarps and wrinkle ridges (e.g., Watters, 1988). Interestingly, topographic and image

data available for Lunar lobate scarps and wrinkle ridges is of much higher resolution than

data available for Mercury, with resolutions of less than 1m to up to a few m (e.g., Barker

et al., 2016; Henriksen et al., 2017). Therefore, the morphology of Lunar shortening

landforms of scales much smaller than those on Mercury have been studied (e.g., Frueh et

al., 2025; Watters et al., 2010). Lunar shortening landforms may produce different

morphological trends if similar statistical analyses are performed on these structures.

The modeling work done in Chapter 3 could also be applied to a wide range of

tectonic features found throughout the solar system. Similar modeling was conducted for

shortening landforms on Mars (McCullough et al. 2024), however this work did not utilize



146

the new model control points presented in Chapter 3. Conducting a new analysis on a set

of randomly selected shortening landforms on Mars would reveal important aspects of the

Martian tectonic character. Furthermore, a similar modeling analysis on the moon would

reveal whether wrinkle ridges in the Lunar Mare host faults that penetrate beneath the

volcanic lava emplacements that make up the Mare geologic units, as such tectonics have

also been ascribed to lithospheric subsidence (e.g., Watters, 1988).

Chapter 4 had proven that an alternative way to calculate the strain of a faulted

volume was viable in determining the strain due to global contraction accommodated by

Mercury’s population of faults. Prior to this dissertation, the methodology introduced by

Twiss and Marrett (2010a, b) had yet to be applied to any non-Earth faulted volume of

rock. Future work using this methodology could be applied to terrestrial objects like the

Moon, or Mars, which may have experienced global contraction (e.g., Frueh et al., 2023;

Klimczak, 2015; Nahm and Schultz, 2011). Alternatively, a strain analysis of Venus’

Tesserae could be used to compare with the strains associated with orogenic settings on

Earth, which may provide clues if such regions were created via a plate tectonic-like

mechanism. It is important to note that Chapters 2 and 3 informed the results of Chapter

4, and a similar suite of research projects should be conducted in order to best inform the

results of other planetary objects when testing this method.

Chapter 5 had shown that stresses within Mercury’s lithosphere caused by rotation

and solar tides likely subtly influence tectonic patterns when they are overlain by stresses

from global contraction. However, these stresses are time-dependently-cyclically loaded

onto Mercury’s surface throughout Mercury’s 3:2 spin-orbit cycle. The application of the

mechanical fatiguing of the lithosphere due to tides and rotation repeating over millions of
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cycles of Mercury’s orbit has yet to be fully explored. Chapter 5 indicates that time-

averaged stresses caused by solar tides and rotation alone are insufficient to produce

stresses that would induce any fracturing, but the cyclicity of such stresses over

geologically long time periods would weaken Mercury’s lithosphere. The fatiguing in parts

of Mercury’s lithosphere that are geographically dependent on Mercury’s 3:2 spin-orbit

resonance has the potential to influence fault orientations and their area densities.

Future work will thus have to incorporate the fatiguing effects onto Mercury’s

lithosphere caused by the cyclical loading of tidal and rotational deformation. The

weakening effects of Mercury’s orbit has been previously proposed by Klimczak et al.

(2015). Mechanical fatiguing related to tides is a process that has been proposed for

planetary bodies throughout the solar system including the moon (Frohlich and Nakamura,

2009; Patzek and Rüsch, 2022) and the icy satellites (e.g., Hammond et al., 2018, 2015).

For the moon, tidally induced mechanical fatiguing has been used to explain lunar seismic

activity (Frohlich and Nakamura, 2009) and thermal fatiguing due to the moon’s orbit has

shown to be sufficient to breakdown rocks (Patzek and Rüsch, 2022). Cycloid fractures on

Europa appear to form below the failure threshold expected for the moon’s lithosphere

(Hoppa et al., 1999), and so fatiguing has been proposed as the primary mode for these

systematic fracture patterns (Rhoden et al., 2021). However, these objects orbit planets in

a 1:1 spin-orbit resonance or have varying obliquities or precessions that could influence

the stresses they experience. It is yet to be explored how the cyclical stresses of Mercury’s

current orbit overlain by substantial global contraction would be affected by tidally and

rotation-driven fatiguing. Future work will then include the weakening effects of tidal and

rotation fatiguing to assess the geographic variations of the brittle strength of Mercury’s
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lithosphere, perhaps while incorporating empirical fatiguing data from rock testing of

basalt.

Concluding remarks

The work presented in this dissertation highlights a wide range of questions that

pertain to the tectonic character of lithospheric shortening throughout the solar system, all

stemming from research regarding the shortening landforms of Mercury. Answering these

questions will provide necessary insight into the structural elements, the tectonic histories,

and the influence the thermal and orbital evolutions of terrestrial bodies throughout the

solar system have on the deformation of their lithospheres.
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APPENDIX A: CHAPTER 2

Table A2.1: Transformations used to normalize all of the measurements in this study.

After these transformations, the data was scaled using the measurement’s z-scores (where

 = ( − )/).

Parameter Normalized Transformation

Relief ln(x)

Breadth ln(x)

Total Cross-Sectional Length ln(x)

Shortening Strain ln(x)

Forelimb Slope ln(x)

Backlimb Slope ln (−x)

Symmetry ln (|x|)

Forelimb Length ln(x)

Backlimb Length ln(x)

% Backlimb Downslope ln(x)

Mapped Length ln(x)

TRI ln(x)
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Figure A2.1: Scree plot depicting the percent variance described by each of the 12

principal components. The red horizontal line depicts the percent variance each PC would

have if they each equally contributed to the total variance observed across the data (i.e.,

100% variance/12 parameters).
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Table A2.2: Extracted morphology values for 100 shortening landforms

ID # Relief [m] Breadth [m] CrossSection[m] Strain
1 1414.7531 42526.7063 42630.774 0.00244114
2 823.3459 28531.7712 28633.9304 0.00356776
3 1415.5202 37238.2114 37573.4665 0.00892266
4 1203.0848 29636.3524 29817.9583 0.00609049
5 802.9927 42437.7454 42598.5608 0.00377514
6 1781.1514 42599.7651 42806.0202 0.00481837
7 647.5123 47766.8962 47782.9792 0.00033658
8 1550.7377 24819.1458 25244.2102 0.0168381
9 2842.878 36748.6307 37114.5679 0.00985967
10 1229.6014 38903.8359 39051.8106 0.00378919
11 1091.315 78337.1439 78534.7767 0.0025165
12 950.2112 20378.7798 20523.8215 0.00706699
13 1612.3143 100045.575 100123.617 0.00077945
14 221.2723 4333.60635 4353.17784 0.00449591
15 1736.4284 60375.2936 60916.0961 0.00887783
16 229.2747 21917.1499 21925.162 0.00036543
17 2166.0015 29558.6143 29802.3743 0.00817921
18 572.0013 27335.3806 27384.9034 0.0018084
19 3261.757 261819.743 262520.975 0.00267115
20 1432.3385 31157.6789 31462.7864 0.00969741
21 756.7711 10583.4863 10687.5329 0.00973533
22 528.3406 38240.5145 38434.6025 0.00504983
23 1146.6646 20890.4225 21078.7039 0.0089323
24 3631.6634 44893.5447 46544.6826 0.03547425
25 1675.2407 57000.6292 57180.0884 0.00313849
26 486.4815 31560.4968 31612.5302 0.00164597
27 1413.4661 57248.4787 57403.6841 0.00270375
28 423.6231 37660.8846 37678.3001 0.00046222
29 405.6563 19923.0495 19957.8296 0.00174268
30 442.216 28902.3786 29198.6378 0.01014634
31 1166.88 34298.3851 34441.522 0.00415594
32 791.9257 43597.8141 43676.3045 0.00179709
33 300.2517 48405.9177 48425.6295 0.00040705
34 1575.7803 40823.0403 41028.9797 0.00501936
35 1494.8211 58188.1933 58460.7637 0.00466245
36 2315.9009 71780.1216 72125.52 0.00478885
37 871.629 16659.2543 16746.1424 0.00518855
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38 3338.2986 52100.4754 52765.131 0.01259649
39 2876.7431 68384.4369 68871.6772 0.00707461
40 2648.8584 39703.1234 40208.4858 0.01256855
41 721.8928 16107.5105 16253.5991 0.00898808
42 1011.5381 45838.5339 45937.4948 0.00215425
43 191.8138 27039.1022 27043.1876 0.00015107
44 315.6608 19842.1864 19855.8012 0.00068569
45 637.6115 35654.7232 35717.4473 0.00175612
46 1339.1792 31860.1452 31978.0891 0.00368827
47 534.5221 24505.2428 24546.6923 0.0016886
48 1546.2202 107962.668 108268.807 0.00282759
49 1253.4104 52800.8995 52888.5406 0.00165709
50 1891.0696 47429.4332 47814.7893 0.00805935
51 1890.8744 68477.7235 68629.5921 0.00221287
52 1561.2718 71660.3615 71936.0761 0.00383277
53 180.7307 29923.3794 29934.1921 0.00036122
54 413.1501 16978.5985 16995.6659 0.00100422
55 1538.9979 114825.265 114938.198 0.00098256
56 304.1298 26756.0438 26815.9895 0.00223545
57 2310.064 48727.3531 49060.9416 0.00679947
58 460.8051 27106.0022 27150.0391 0.00162198
59 1151.851 50431.8737 50511.4042 0.00157451
60 661.7843 47328.3053 47374.1255 0.0009672
61 723.9938 67633.8733 67697.364 0.00093786
62 2441.737 108679.397 108922.243 0.00222954
63 643.1144 57545.8891 57697.5568 0.00262867
64 787.6495 46419.8163 46483.0248 0.00135982
65 1542.0267 21226.7505 21557.7177 0.01535261
66 1611.9516 51171.034 51855.0343 0.01319062
67 478.3598 27166.4589 27209.3595 0.00157669
68 553.7783 17504.4993 17562.8132 0.0033203
69 1105.5798 74129.8799 74329.6723 0.00268792
70 964.6781 30538.1027 30951.2725 0.01334904
71 997.1419 25672.7245 25896.2253 0.00863063
72 839.5641 38299.3496 38357.485 0.00151562
73 834.2471 38317.6591 38362.6317 0.0011723
74 2894.3435 47422.4755 48296.4109 0.01809525
75 1090.5031 54253.7608 54349.8462 0.00176791
76 3189.4176 76816.9086 77411.3091 0.00767847
77 667.7308 29883.3246 29910.3179 0.00090247
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78 1335.6184 28906.3636 29077.5134 0.00588598
79 1455.6099 49797.4674 50240.7561 0.00882329
80 968.2256 20228.6765 20375.4518 0.00720354
81 617.6321 15444.5436 15511.5306 0.00431853
82 780.9744 35969.3971 36009.9357 0.00112576
83 267.427 35633.2622 35651.1806 0.0005026
84 332.8557 35134.6654 35156.4129 0.00061859
85 762.2883 44785.0123 44822.0975 0.00082739
86 344.0871 13473.4272 13489.294 0.00117625
87 423.5033 40085.8368 40115.7661 0.00074607
88 1738.6533 54950.7019 55142.9328 0.00348605
89 1699.4111 46916.0186 47118.0924 0.00428867
90 1233.548 51665.0028 51776.1223 0.00214615
91 2260.825 54083.1276 54400.9202 0.00584168
92 1726.3409 51638.9512 51748.4537 0.00211605
93 1213.8447 55061.1697 55207.9054 0.00265788
94 283.8638 29590.7322 29603.3527 0.00042632
95 1051.7507 31840.2654 32112.1001 0.00846518
96 741.6715 24526.6213 24612.2341 0.00347846
97 2507.0921 70138.1022 70488.7924 0.00497512
98 494.2391 41441.0797 41475.2635 0.0008242
99 885.7175 43427.0448 43472.2099 0.00103894
100 962.0807 28133.0479 28328.6195 0.00690368
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ID # FLSlope[deg] BLSlope[deg] Symm [deg] FLLength[m] BLLength[m]
1 4.33437615 -1.7221491 2.61222706 18871.0904 23759.6836
2 4.28815714 -1.9512687 2.33688839 11079.176 17554.7544
3 7.08615801 -4.0679367 3.01822132 11595.9321 25977.5344
4 6.84118787 -3.3631054 3.47808245 10316.9645 19500.9938
5 10.7091503 -1.2389679 9.47018237 4590.45992 38008.1009
6 8.19034495 -3.1115268 5.07881817 12766.2247 30039.7955
7 1.19022801 -1.3818176 -0.1915896 31191.247 16591.7322
8 19.5412803 -3.0712122 16.4700682 5244.57243 19999.6378
9 10.7835876 -4.2108801 6.57270758 15604.2942 21510.2738
10 5.82833844 -2.894981 2.93335748 12330.6952 26721.1153
11 2.46211918 -0.5438498 1.91826943 25654.5011 52880.2756
12 8.60299906 -3.7279153 4.8750838 6521.03796 14002.7835
13 2.02521036 -1.2769238 0.74828654 45775.6172 54347.9998
14 5.30508684 -3.041099 2.2639878 2423.55148 1929.62637
15 11.1349 -1.6816272 9.45327277 9487.25361 51428.8425
16 1.69685519 -0.6842528 1.01260243 7753.99363 14171.1684
17 7.13795842 -1.3856369 5.75232151 17982.693 11819.6812
18 5.04742212 -1.1299734 3.91744869 6649.91594 20734.9874
19 5.55530827 -0.5454401 5.0098682 34636.93 227884.045
20 7.71263668 -4.2910074 3.42162924 11121.1708 20341.6157
21 8.2825555 -3.1428291 5.13972639 5355.92217 5331.61076
22 1.88200588 -2.001642 -0.1196361 16869.1984 21565.4041
23 6.67832263 -3.9942308 2.68409178 10062.7573 11015.9466
24 22.5675883 -1.2670319 21.3005564 11850.596 34694.0865
25 8.77638967 -1.4943078 7.28208188 11234.3158 45945.7726
26 4.52841191 -0.7227509 3.80566102 6204.13894 25408.3912
27 6.12187344 -1.2806706 4.84120285 13391.7016 44011.9825
28 2.47487738 -0.7766711 1.69820633 9824.5252 27853.7749
29 3.1945116 -3.2220462 -0.0275346 7328.13018 12629.6994
30 4.60206005 -1.4829924 3.11906766 5565.05753 23633.5803
31 8.04235204 -2.2201431 5.82220899 8500.0347 25941.4873
32 4.69318863 -0.9095408 3.78364786 9789.60977 33886.6947
33 2.50616623 -0.2211198 2.28504641 6878.4167 41547.2128
34 10.7297507 -1.9392173 8.79053341 8723.53496 32305.4448
35 10.0961839 -1.4177259 8.67845799 8785.80427 49674.9594
36 12.0392373 -1.9870173 10.0522201 11585.3783 60540.1417
37 5.21244231 -4.2999692 0.91247315 9705.42767 7040.71468
38 14.8396327 -3.5836382 11.2559945 13786.8926 38978.2383
39 9.45730269 -2.6854072 6.77189552 18308.0783 50563.5989
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40 13.1669947 -4.1885875 8.97840719 12299.8954 27908.5903
41 9.16255712 -1.4924726 7.67008452 4722.57831 11531.0208
42 5.85192378 -2.0410572 3.81086661 10029.537 35907.9578
43 1.04184322 -0.7641516 0.27769165 10554.0612 16489.1264
44 2.7074319 -1.2510107 1.45642121 6697.57397 13158.2272
45 4.15858003 -2.2887612 1.86981879 8824.22653 26893.2207
46 5.48778264 -1.9480223 3.53976038 14165.7502 17812.3389
47 3.13158868 -2.8537392 0.27784945 9823.69026 14723.002
48 8.64953772 -1.983849 6.66568867 10716.9439 97551.8631
49 5.5726165 -1.3104196 4.26219693 13024.6796 39863.861
50 11.7153143 -3.8205656 15.5358799 12500.0888 35314.7005
51 5.59622047 -0.9876966 4.60852383 19553.0506 49076.5415
52 9.80954268 -2.1123154 7.69722731 9466.11247 62469.9636
53 3.61009936 -0.5597266 3.05037273 2883.92798 27050.2641
54 2.86933322 -1.2605264 1.60880685 8277.30286 8718.36301
55 3.50709202 -0.3663037 3.1407883 25290.4571 89647.7406
56 5.59643767 -1.5194053 4.07703234 3149.64594 23666.3436
57 10.9737834 -2.6145666 8.35921683 12802.0485 36258.893
58 4.70818216 -2.0893543 2.6188279 5642.24216 21507.7969
59 3.87796939 -1.0636195 2.8143499 17189.7625 33321.6417
60 3.85375476 -1.0187958 2.83495891 9892.99542 37481.1301
61 1.95928734 -1.3595472 0.59974009 21244.7664 46452.5976
62 4.75031376 -0.7636002 3.98671356 30024.7996 78897.4437
63 5.56964578 -1.3107604 4.25888535 6703.69611 50993.8607
64 1.84812212 -2.0518746 -0.2037525 24560.0204 21923.0044
65 9.09156692 -9.8404842 -0.7489172 9997.14662 11560.571
66 18.3455751 -2.0137784 16.3317966 6018.51433 45836.5199
67 5.42620769 -1.5421615 3.88404621 5109.00117 22100.3583
68 5.74922954 -3.3172895 2.43194004 5568.15886 11994.6543
69 6.56574378 -0.9479773 5.61776653 9826.25085 64503.4215
70 16.2649877 -2.4957175 13.7692702 4200.1425 26751.13
71 4.76839349 -2.5638817 2.20451183 12599.6595 13296.5658
72 3.05598145 -1.8407863 1.2151951 15837.7038 22519.7813
73 2.5895742 -1.5239533 1.06562093 18530.1916 19832.44
74 18.8763479 -5.2032381 13.6731098 10253.1232 38043.2877
75 3.14634156 -1.7547005 1.39164107 19983.8048 34366.0414
76 10.7699828 -1.172075 9.59790781 18436.6534 58974.6557
77 2.13591043 -2.0012117 0.13469873 17947.3536 11962.9643
78 6.73505466 -1.2846205 5.45043412 12545.7006 16531.8127
79 3.56841871 -2.8218137 0.74660504 24181.1135 26059.6426
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80 4.75314649 -4.2177919 0.5353546 11943.5635 8431.88831
81 7.76443129 -1.4604338 6.30399752 4692.49213 10819.0385
82 2.9539605 -2.0585928 0.89536771 15188.8545 20821.0812
83 2.80802469 -0.7022452 2.10577945 5476.67457 30174.506
84 3.52274734 -0.753642 2.76910535 5445.03238 29711.3805
85 2.51147986 -1.3212894 1.19019049 17440.1893 27381.9082
86 3.88954773 -1.0928557 2.79669203 5093.43099 8395.86296
87 3.76646369 -0.8367953 2.92966838 6475.96679 33639.7993
88 8.03219948 -1.5634731 6.46872639 12743.5229 42399.41
89 7.15687389 -2.548597 4.60827693 13846.7169 33271.3756
90 5.9619167 -1.7055367 4.25637998 12000.5789 39775.5434
91 9.532602 -2.9300773 6.6025247 14098.9102 40302.01
92 3.33033829 -1.9068747 1.42346358 29876.2233 21872.2304
93 5.07282174 -2.3028254 2.7699963 13887.6851 41320.2203
94 2.62935594 -0.5634701 2.06588579 6203.39943 23399.9532
95 7.09791248 -4.1352187 2.96269374 8920.09864 23192.0015
96 6.23973855 -2.1103115 4.12942702 6917.55894 17694.6751
97 8.50028562 -1.8374819 6.66280377 17618.5531 52870.2393
98 3.98665269 -0.8486063 3.13804635 7145.04131 34330.2222
99 4.23954861 -0.6999844 3.53956423 12030.7039 31441.506
100 7.3953577 -2.8896203 4.50573743 7610.99011 20717.6294
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ID # Back % DS Length [m] Type Map_Pattern Terrain_Type
1 76 584067.883 LS CC SP
2 83.3333333 95265.0575 LS CV SP
3 92.0353982 148745.564 WR ST SP
4 82.7160494 231721.946 LS CC ICP
5 70.1388889 157429.145 LS CV SP
6 100 173135.621 LS ST ICP
7 100 89247.503 LS CV SP
8 68.2926829 205172.914 WR CV SP
9 96 713501.292 LS CV ICP
10 95.9349594 172035.282 WR SV SP
11 60.989011 331039.824 LS CV ICP
12 90.625 33247.1877 LS ST ICP
13 93.9759036 245318.552 LS ST ICP
14 88.8888889 57982.3502 WR ST SP
15 81.3397129 114674.78 LS ST SP
16 86.1538462 46169.8734 LS CV SP
17 90.4761905 383446.351 LS ST ICP
18 75.7894737 30153.1339 LS ST ICP
19 54.4843049 1016397.49 LS CV ICP
20 86.0465116 165327.838 LS CC ICP
21 69.5652174 91811.6231 WR ST SP
22 67.0454546 171838.009 WR ST SP
23 80.4347826 277181.536 WR SV ICP
24 87.8504673 264458.757 LS CC ICP
25 92.5 232790.158 WR CV SP
26 64.6551724 72910.4218 LS ST ICP
27 68.7861272 476406.251 LS SV ICP
28 80.4878049 104573.459 WR CV SP
29 100 105642.66 LS ST ICP
30 69.3877551 50153.3501 WR ST SP
31 84.4660194 412107.7 LS CV ICP
32 66.8831169 248928.947 LS ST ICP
33 60 136685.223 WR CV SP
34 100 175995.589 LS ST ICP
35 61.3333333 322692.829 LS ST ICP
36 90.2173913 339451.504 LS ST ICP
37 92 183083.727 LS CV ICP
38 80.9248555 175405.712 LS ST ICP
39 88.3116883 86228.1949 LS ST ICP
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40 90.6976744 413258.918 LS CV ICP
41 70.8333333 44263.5481 LS ST SP
42 88.3435583 264170.482 LS SV ICP
43 100 137426.246 WR SV SP
44 92.8571429 113012.418 WR CC SP
45 89.1666667 153399.225 LS CV ICP
46 76.7123288 289548.092 LS CV ICP
47 100 82027.9011 WR SV ICP
48 86.4864865 614188.341 LS CV ICP
49 97.5 135361.176 LS ST ICP
50 86.8965517 147509.187 LS CV ICP
51 63.2911392 353511.532 WR SV SP
52 85.2631579 202239.698 LS ST ICP
53 79.6052632 114744.885 LS CV SP
54 85 61276.042 WR SV SP
55 55.1470588 633835.691 LS CV ICP
56 73.8095238 87069.9018 LS ST ICP
57 98.2142857 372346.859 LS ST ICP
58 87.6404494 59963.8842 LS ST ICP
59 84.939759 308717.292 LS CV ICP
60 71.7948718 266855.486 LS ST ICP
61 95.7746479 209827.824 LS CV ICP
62 67.5 215074.875 LS ST ICP
63 68.75 96992.921 LS CV ICP
64 97.1428571 725541.644 WR SV SP
65 97.826087 124140.85 LS ST ICP
66 65.6410256 91147.0014 LS CC ICP
67 90.0990099 139813.232 WR CV ICP
68 98.1818182 59247.1728 LS ST ICP
69 66.023166 187098.695 LS ST ICP
70 67.5925926 98854.0378 LS CV SP
71 85.4545455 173777.298 WR ST SP
72 95.4545455 66893.8259 LS CV ICP
73 100 166335.453 WR SN SP
74 100 116861.67 LS CC ICP
75 73.7179487 217442.645 LS CV ICP
76 74.4444444 179329.277 LS ST ICP
77 92.3076923 91832.9148 LS CC ICP
78 89.6551724 154465.653 LS CV ICP
79 73.5849057 113118.536 LS CV SP



191

80 82.8571429 214755.411 WR CV SP
81 86.0465116 75954.821 WR CC SP
82 96.2962963 102527.432 LS ST ICP
83 69.2771084 128315.987 WR CV SP
84 75.1677852 179964.326 WR SV SP
85 86.5168539 156455.715 LS ST ICP
86 94.8717949 53307.0123 LS ST ICP
87 69.1358025 127370.954 WR ST SP
88 98.4615385 268334.099 LS ST ICP
89 78.807947 174329.608 LS CV ICP
90 87.5 192266.094 LS ST ICP
91 98.3870968 212040.625 LS ST ICP
92 73.9130435 179539.942 LS CV ICP
93 100 172425.118 LS CV ICP
94 71.9626168 113141.477 LS CV ICP
95 82.1782178 81230.2971 LS ST ICP
96 78.0821918 177710.561 LS ST ICP
97 90.5172414 445421.91 LS CV ICP
98 83.2061069 193656.585 LS ST ICP
99 66.6666667 69374.6942 LS ST ICP
100 69.1489362 92590.6711 LS CV ICP
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ID # TRI Longitude[deg] Latitude[deg]
1 69.3438249 77.922263 5.037331
2 20.9162111 -143.58591 57.549008
3 31.4289475 1.525039 57.904785
4 27.0443175 -13.268803 -72.933222
5 23.3289423 78.206399 64.859683
6 59.2978222 101.502874 -28.557211
7 17.2207048 76.575795 4.921491
8 46.5004916 -34.769593 73.89957
9 62.059886 -96.794286 -49.914551
10 15.7823154 100.26 49.39
11 18.7716757 15.514446 -40.738363
12 26.6177783 -13.934785 -1.558415
13 26.1924712 9.440699 -36.009377
14 24.110678 -47.437094 75.172131
15 24.4165178 -165.12844 52.794662
16 5.98795385 -133.85836 20.346179
17 76.6400751 -145.04759 -35.113607
18 13.3020716 -122.88483 5.650176
19 15.1340842 81.672632 -32.377029
20 33.6327886 160.012391 56.027688
21 33.9625764 19.04462 67.28654
22 25.1632703 -67.422804 78.442622
23 33.6246935 -26.673686 62.882416
24 64.8427652 -52.628714 58.245027
25 46.4334553 117.706938 -42.449749
26 12.6915444 -101.30613 -7.165898
27 18.0104381 65.633289 -50.312925
28 6.94785783 -126.22177 46.546291
29 14.9137983 -105.96778 35.033733
30 35.0569478 -102.46533 68.962233
31 23.3239235 66.607711 -28.385816
32 12.9072726 -21.050565 6.953675
33 2.80801734 38.831812 62.152694
34 66.5484069 -178.09639 -7.043594
35 19.6284344 -64.885453 -20.764056
36 65.7853947 -70.778464 -41.903033
37 29.9477228 37.696557 22.368543
38 35.2642779 -34.108979 51.459815
39 80.0030898 56.501872 -4.768983
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40 106.677432 43.564966 19.523098
41 33.2189572 129.467892 73.006214
42 14.4106723 -112.57768 12.854376
43 30.4782681 170.699396 65.913308
44 8.86227542 6.04407 37.013483
45 13.4030755 168.843045 53.515638
46 21.3027244 28.06513 -30.165926
47 57.0581058 147.823402 -0.508532
48 39.355251 -171.92419 -58.562305
49 57.5054245 12.042639 1.880505
50 31.3129792 -174.96293 -74.161057
51 41.8893084 -164.29777 23.264114
52 58.5022334 151.285125 8.287738
53 4.82693665 62.201109 57.05819
54 27.3220065 42.097741 44.468632
55 29.4689243 102.705785 1.259371
56 19.1203283 -133.29573 23.011225
57 77.7215205 67.197281 -7.42877
58 13.9331363 -103.2915 31.331447
59 10.6346347 -31.350246 38.354478
60 43.4282339 141.559736 20.994221
61 28.7667363 9.127369 16.35234
62 44.6002016 53.228844 16.676984
63 18.7132556 -92.022571 31.593786
64 33.7065078 -39.641455 -65.308742
65 44.8837914 47.264397 -34.192529
66 39.1308739 173.982222 61.565743
67 12.4327147 -97.718928 -7.025252
68 18.1141249 -42.843891 17.173965
69 15.7398617 53.615377 -58.022215
70 42.230102 12.424462 80.610875
71 32.9912996 -8.590569 73.447571
72 14.285837 40.722586 32.417555
73 32.0344958 171.940191 -11.569986
74 85.7999797 124.690101 -57.880756
75 10.8516274 -65.053295 -4.346401
76 83.9803992 22.108039 -16.937989
77 42.3826758 106.340245 -6.795465
78 64.8099183 148.292773 -29.601304
79 33.1644211 -95.764571 77.900197
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80 29.8820557 115.527757 78.934831
81 24.4731544 118.33 75.46127
82 37.9726669 104.039669 40.416535
83 5.66487582 44.755001 55.1378
84 7.07479903 27.411263 62.611347
85 12.6689081 -98.322293 46.704889
86 10.7311632 -103.83707 46.70867
87 7.98315617 24.605854 55.243704
88 55.6703096 -68.137551 -64.873283
89 19.841403 -100.32781 -15.720014
90 65.2837881 126.317936 2.69957
91 71.964816 103.655316 -17.734348
92 64.8035798 132.897981 10.000297
93 40.3212755 -138.4018 -41.964729
94 6.46072261 -109.95028 46.154289
95 30.5976984 -67.253211 58.22483
96 20.5436433 71.236676 -26.426689
97 46.1645592 -40.55403 -57.472881
98 10.73221 -166.19316 32.795531
99 42.1553644 102.421014 30.271132
100 26.243627 -134.63239 -5.609274
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CODE IN R USED FOR STATISTICAL ANALYSIS OF CHAPTER 2

setwd('') # Set directory

thrustFaults <- read.table(file='Loveless et al

Supplementary Table.csv', header=TRUE, row.names=1,

sep=',')

# Units, if applicable, are the last value in each

measurement name. For example, Relief, with units of meters

is labeled as 'Relief_m'

# Defining Categories from the data table

# Traditional Categories

lobateScarps <- thrustFaults$Type == 'LS'

wrinkleRidges <- thrustFaults$Type == 'WR'

# Map Patterns

concave <- thrustFaults$Map_Pattern == 'CC'

convex <- thrustFaults$Map_Pattern == 'CV'

straight <- thrustFaults$Map_Pattern == 'ST'

switchingVergence <- thrustFaults$Map_Pattern == 'SV'

sinuous <- thrustFaults$Map_Pattern == 'SN'
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# Terrain Type

interCraterPlains <- thrustFaults$Terrain_Type == 'ICP'

smoothPlains <- thrustFaults$Terrain_Type == 'SP'

# Data Transformations

attach(thrustFaults)

up_fault <- cbind(log(Relief_m), log(Breadth_m),

log(Tot_CrossSectional_Length_m), log(Strain),

log(Fore_Slope_deg), log(-Back_Slope_deg),

log(abs(Symmetry_deg)), log(Fore_Length_m),

log(Back_Length_m), log(Back_Perc_DS),

log(Mapped_Length_m), log(TRI), thrustFaults[12],

thrustFaults[13], thrustFaults[14])

colnames(up_fault) <- c('Relief', 'Breadth', 'TopoLength',

'Strain', 'Fslope', 'Bslope', 'symmetry', 'FL', 'BL',

'BPD', 'SL', 'TRI','Type', 'Map', 'Terrain')
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detach(thrustFaults)

# ======================= PCA =======================

PCA_data <- up_fault[ , 1:12]

pca <- prcomp(PCA_data, scale.=TRUE)

# Define statistics Derived from the PCA

variance <- (pca$sdev)^2

loadings <- pca$rotation

scores <- pca$x

varPercent <- variance/sum(variance) * 100

# Observe how much variance is accounted for in each PC

varPercent

# View Scree Plot

barplot(varPercent, xlab='PC', ylab='Percent Variance',

names.arg=1:length(varPercent), las=1, col='gray')
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dev.new()

# Display PCA loadings

round(loadings, 2)[, 1:3]

# Traditional Categories Panel

plot(scores[, 1], scores[, 2], xlab='PC 1', ylab='PC 2',

type='n', asp=1, las=1, cex.lab=1., cex.axis=1.)

points(scores[lobateScarps, 1], scores[lobateScarps, 2],

pch=16, cex=1., col='green')

points(scores[wrinkleRidges, 1], scores[wrinkleRidges, 2],

pch=16, cex=1., col='black')

legend(-6.5, 5, bty='n', legend=c('Lobate Scarps', 'Wrinkle

Ridges'), col=c('green', 'black'), pch=c(16, 16), cex=1.)

text(-5, -5, 'a)', cex=1)

# Map Patterns Panel

dev.new()

plot(scores[, 1], scores[, 2], xlab='PC 1', ylab='PC 2',

type='n', asp=1, las=1, cex.lab=1, cex.axis=1)
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points(scores[concave, 1], scores[concave, 2], pch= 17,

cex=1, col='blue')

points(scores[switchingVergence, 1],

scores[switchingVergence, 2], pch= 17, cex=1, col='red')

points(scores[convex, 1], scores[convex, 2], pch=17, cex=1,

col='black')

points(scores[straight, 1], scores[straight, 2], pch= 17,

cex=1, col='gray')

points(scores[sinuous, 1], scores[sinuous, 2], pch= 17,

cex=1, col='green')

legend(-6.5, 5, bty='n', legend=c('Concave', 'Switching

Vergence', 'Convex', 'Straight', 'Sinuous'), col=c('blue',

'red', 'black', 'gray', 'green'), pch=c(17, 17, 17, 17,

17), cex=1)

text(-5, -5, 'b)', cex=1)

# Terrain Type Panel

dev.new()

plot(scores[, 1], scores[, 2], xlab='PC 1', ylab='PC 2',

type='n', asp=1, las=1, cex.lab=1, cex.axis=1)

points(scores[interCraterPlains, 1],

scores[interCraterPlains, 2], pch=1, cex=1, col='black')
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points(scores[smoothPlains, 1], scores[smoothPlains, 2],

pch=16, cex=1, col='red')

legend(-6.5, 5, bty='n', legend=c('Cratered Plains',

'Smooth Plains'), col=c('black', 'red'), pch=c(1, 16),

cex=1)

text(-5, -5, 'c)', cex=1)

# ======================= DFA =======================

# scale data, using z transformation

zScale <- function(x) { (x - mean(x)) / sd(x) }

detach(thrustFaults)

head(up_fault)

scaled_Faults <- up_fault[ , 1:12]

scaled_Faults <- apply(scaled_Faults, 2, FUN=zScale)

up_fault[ , 1:12] <- scaled_Faults[ , 1:12]

head(up_fault)

#attach(up_fault)
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library(MASS)

# Traditional Category (cat) DFA =====

LDA_cat <- lda(Type ~ Relief + Breadth + TopoLength +

Strain + Fslope + Bslope + symmetry + FL + BL + BPD + SL +

TRI, data=up_fault)

LDA_cat # cat stands for category as in traditional

category

# Observe loadings

round(LDA_cat$scaling, 2)

predictions_cat <- predict(LDA_cat)

#Observe accuracy with original data

acc_cat <- table(up_fault$Type, predictions_cat$class)

acc_cat

sum(acc_cat[row(acc_cat) == col(acc_cat)]) / sum(acc_cat)
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# Perform jackknife resampling to accurately predict

classifications of traditional categories

jackknife_cat <- lda(Type ~ Relief + Breadth + TopoLength +

Strain + Fslope + Bslope + symmetry + FL + BL + BPD + SL +

TRI, data=up_fault, CV=TRUE)

accJack_cat <- table(up_fault$Type, jackknife_cat$class)

accJack_cat

# True accuracy of traditional category DFA

sum(accJack_cat[row(accJack_cat) == col(accJack_cat)]) /

sum(accJack_cat)

# Terrain type (terr) DFA =====

LDA_terr <- lda(Terrain ~ Relief + Breadth + TopoLength +

Strain + Fslope + Bslope + symmetry + FL + BL + BPD + SL +

TRI, data=up_fault)

LDA_terr # cat stands for category as in traditional

category

# Observe loadings

round(LDA_terr$scaling, 2)
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predictions_terr <- predict(LDA_terr)

#Observe accuracy with original data

acc_terr <- table(thrustFaults$Terrain_Type,

predictions_terr$class)

acc_terr

sum(acc_terr[row(acc_terr) == col(acc_terr)]) /

sum(acc_terr)

# Perform jackknife resampling to accurately predict

classifications of terrain type

jackknife_terr <- lda(Terrain ~ Relief + Breadth +

TopoLength + Strain + Fslope + Bslope + symmetry + FL + BL

+ BPD + SL + TRI, data=up_fault, CV=TRUE)

accJack_terr <- table(thrustFaults$Terrain_Type,

jackknife_terr$class)

accJack_terr

True accuracy of Terrain Type DFA

sum(accJack_terr[row(accJack_terr) == col(accJack_terr)]) /

sum(accJack_terr)
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# Observe predictions on LD axis

# Traditional Categories

dev.new()

stripchart(predictions_cat$x ~ thrustFaults$Type, pch =

c(16, 16), col=c('green', 'black'), xlim=c(-3.5, 3.5),

method='jitter', xlab='Lobate Scarps

LD Wrinkle Ridges')

# Terrain Type

dev.new()

stripchart(predictions_terr$x ~ thrustFaults$Terrain_Type,

pch = c(1, 16), col=c('black', 'red'), xlim=c(-3.5, 3.5),

method='jitter', xlab='Cratered Plains

LD Smooth Plains')

# ======================= Test for biasing: DFA No Breadth

& Cross-Sectional Length (NBC) =======================

# Traditional Categories

LDA_cat_NBC <- lda(Type ~ Relief + Strain + Fslope + Bslope

+ symmetry + FL + BL + BPD + SL + TRI, data=up_fault)
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LDA_cat_NBC # cat stands for category as in traditional

category

# Observe Loadings

round(LDA_cat_NBC$scaling, 2)

predictions_cat_NBC <- predict(LDA_cat_NBC)

#Observe Accuracy of original data

acc_cat_NBC <- table(up_fault$Type,

predictions_cat_NBC$class)

acc_cat_NBC

sum(acc_cat_NBC[row(acc_cat_NBC) == col(acc_cat_NBC)]) /

sum(acc_cat_NBC)

# Perform jackknife resampling

jackknife_cat_NBC <- lda(Type ~ Relief + Strain + Fslope +

Bslope + symmetry + FL + BL + BPD + SL + TRI,

data=up_fault, CV=TRUE)

accJack_cat_NBC <- table(up_fault$Type,

jackknife_cat_NBC$class)

accJack_cat_NBC



206

#True accuracy traditional categories

sum(accJack_cat_NBC[row(accJack_cat_NBC) ==

col(accJack_cat_NBC)]) / sum(accJack_cat_NBC)

# Terrain type

LDA_terr_NBC <- lda(Terrain ~ Relief + Strain + Fslope +

Bslope + symmetry + FL + BL + BPD + SL + TRI,

data=up_fault)

LDA_terr_NBC

predictions_terr_NBC <- predict(LDA_terr_NBC)

# Observe Loadings

round(LDA_terr_NBC$scaling, 2)

#Check Accuracy with original data

acc_terr_NBC <- table(thrustFaults$Terrain_Type,

predictions_terr_NBC$class)

acc_terr_NBC
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sum(acc_terr_NBC[row(acc_terr_NBC) == col(acc_terr_NBC)]) /

sum(acc_terr_NBC)

# jackknife technique

jackknife_terr_NBC <- lda(Terrain ~ Relief + Strain +

Fslope + Bslope + symmetry + FL + BL + BPD + SL + TRI,

data=up_fault, CV=TRUE)

accJack_terr_NBC <- table(thrustFaults$Terrain_Type,

jackknife_terr_NBC$class)

accJack_terr_NBC

#True accuracy Terrain type

sum(accJack_terr_NBC[row(accJack_terr_NBC) ==

col(accJack_terr_NBC)]) / sum(accJack_terr_NBC)
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Figure A2.2: 100 shortening landforms analyzed in Chapter 2

All axes are in meters. Y-axis is elevation and X-axis is horizontal distance.
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APPENDIX B: CHAPTER 3

Table B3.1: Extracted modeled values for 55 shortening landforms

ID # NearSurfDip AvgDip MaxDip ShorteningInput MaxSlip
3 17.4523293 16.664975 30.6548524 1600 1093.8
6 31.4376616 28.6293578 50.4783039 750 1087.6
8 35.4218911 37.7403089 59.6563648 525 903.5
10 24.9187624 20.00801 41.6298063 750 932.2
13 19.7423434 22.8567914 38.5314512 1200 1476.4
14 27.0987698 28.2204263 40.6191981 100 124.6
15 33.0362945 35.5505958 57.7206132 700 1166.6
18 25.587665 28.5341646 46.5989515 600 821.8
19 9.26562479 9.78909079 21.2638761 11700 9302
21 21.4097102 33.1177196 56.6355393 500 457.9
22 15.1453844 16.5947491 37.0497505 700 533
23 10.1081836 11.4505312 24.4536685 2200 1296.6
25 24.0420398 29.9662603 50.0581356 700 997.8
28 12.8349691 15.1794956 29.5889576 800 898.7
30 17.2324122 13.107212 30.4027008 620 685.5
31 29.9317113 34.0069952 53.3221232 850 1307.3
33 14.3486836 17.4440833 31.8827002 800 647.6
35 32.6215617 28.4820299 43.2609184 1700 2184.1
36 24.6884556 21.2341145 37.7269578 1500 1815.2
38 29.0068782 29.7217589 44.1766589 1650 2167.8
39 18.8505749 16.5476046 35.8012632 2000 2359.1
42 14.5932629 17.2551672 28.7261919 1750 1946.2
43 12.6351179 14.1498884 32.1198152 150 173.6
44 12.1663845 19.7743227 34.1328216 550 642.3
47 13.6031011 21.6790501 42.1037836 625 802.7
48 12.782887 11.0039327 48.2239091 4200 4387.8
49 26.0466719 24.9789806 41.7156239 1650 2080.3
50 28.7531061 22.8485415 46.1610024 2400 3194.9
51 14.2265962 18.3236293 33.3679355 4700 5621.424
52 24.8980114 20.956467 40.2266276 2000 2473.3
54 12.9281711 16.2720796 36.9170103 550 461.7
62 15.8398562 15.6562063 29.256544 4800 4311.5
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63 33.0647349 23.8693261 44.5565016 700 920
64 14.4396979 19.9474767 33.3436626 700 811.4
65 28.102828 31.276406 61.1520975 900 1537.6
66 45.2808138 39.4467879 65.7348623 400 786
67 20.2484234 16.6758432 35.562357 400 471.5
69 21.6381341 21.892657 39.4452366 1300 1623.8
71 22.5628835 17.734026 35.8290923 1150 1324.6
72 22.8747058 22.6464562 41.8984768 1000 1285.7
73 14.6159115 15.4567379 35.7799029 900 712.1
74 26.5285914 20.5088512 45.3879263 1400 1889.8
76 27.41693 25.5879833 44.6694318 1600 2139.7
80 16.7913944 23.6725809 38.2365638 700 600.4
81 6.26275276 7.93933851 15.7115534 900 826.1
83 16.6838411 13.7952238 22.8207701 700 749.7
84 21.3449306 17.5822944 36.7301331 250 297
87 8.6868375 9.38995944 24.9408628 2100 1134.6
88 18.8260813 17.253773 26.7478861 1600 1760.1
89 20.4018377 23.3940046 40.600054 2000 2470.9
90 28.9389655 32.2673101 47.2412694 1250 1722.2
91 28.2768339 33.6132966 51.1721855 975 1440.2
92 24.2615146 29.3721004 41.4762492 2400 2913.8
97 23.2505631 26.3792121 42.0492666 1400 1395.6
99 25.1964116 30.8249482 41.6722882 1000 1206.3
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ID # AvgHeave AvgSlip AvgThrow DepthofFaulting FaultHeight
3 868.8 908.1 241.1 8994.11894 41702.5
6 704.8 929.7 575.3 28913.151 63861.9
8 470.7 665.3 442 17639.9469 32186.8
10 710.8 805.1 339 18987.7705 64256
13 1158.8 1350.2 662.8 48310.3821 120490.5
14 95 112.6 58 2382.75764 5274.1
15 652 872.3 542.1 39740.0604 77917.3
18 568.2 699.5 391.2 18741.3496 39137.5801
19 8121.8 8239.7 1293.1 38408.2057 296045.4
21 316.4 377.4 202.6 15994.7189 31604.8
22 345.3 367.6 111.2 9403.87686 41425.2
23 1167.1 1233.4 383.8 18104.1053 66302.6
25 650.7 827.9 482.3 38079.1611 80567.2229
28 786.7 839.4 270.9 11739.1364 55190.4017
30 464.5 491 140.6 11981.9572 69370.5
31 792.4 1048.1 654.6 24826.8868 48810
33 474.9 505 166.3 17680.3297 56827.8267
35 1610.7 1862.5 908.2 35385.9004 80038.6464
36 1450.9 1666.7 747.9 22795.4191 89247
38 1563.3 1934.8 1101.4 36085.9283 76883.3
39 1925.3 2245 1090.5 31258.8428 82857
42 1718.3 1859.6 681.6 8412.30111 27350.5
43 147.2 162.5 64.6 7887.01002 28218.2402
44 532.3 590.9 245.8 7407.93819 25712.2489
47 593.5 714.7 379.3 8500 24158.1909
48 2689.2 2774.5 610.1 18643.2582 129472.689
49 1568.2 1790.5 817.8 23032.3099 59226.1
50 2244 2814.1 1615.7 24200.0758 71732.3
51 3186.7 3445.4 1261.7 31285.3253 94139.2
52 1904.2 2289.5 1190.8 33211.2817 86556.4287
54 322.1 352.8 136.1 13668.7966 44901.9
62 3845.3 4147.4 1457.1 27024.7543 126170.8
63 672.4 781.9 364.8 14932.3452 43455.7731
64 684.4 739.9 262.8 18353.2286 62857.9298
65 795.5 1257.6 912.8 17619.4321 34798.2
66 350.8 649 523.6 47872.8996 73281.6706
67 386.4 434.8 187.9 7901.28728 30308.8694
69 1268.5 1418.6 591.3 26202.3527 85860.7186
71 986.4 1075.4 393.8 13930.0497 68843
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72 963.4 1144.2 577.9 19557.6595 52894.6073
73 525.8 579.7 217.3 17301.4368 61986.6
74 1338 1675.1 926.5 20474.03 64460.6
76 1538.9 1870.2 999.6 38717.5446 103905.852
80 424.7 475.3 193.1 10614.3408 35911.7
81 577 587.5 98 1931.18996 17758
83 693.8 725.8 197.3 6190.69691 35139.1466
84 240.3 271.4 118.1 10840.3134 40588.71
87 1062 1078.2 166.1 6258.05065 47126.3843
88 1574.3 1693.9 594.6 20930.7475 75839.4113
89 1916.5 2191.7 985.4 18603.7625 52564.5
90 1169.9 1549.6 985.6 37227.0583 67487.0396
91 913.6 1207.5 757.9 37481.1503 71325.1909
92 2182.7 2651 1478 48000 92594.5293
97 1342 1578 787 35957.1192 87650.2
99 900.1 1121.6 659.9 29180.1556 53728.28
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ID # AspectRatio NumofFaults ModeledStrain observedstrain Type
3 0.2803613 2 -0.0032972 -0.0023068 WR
6 0.36885477 1 -0.0030006 -0.0012162 LS
8 0.15687646 1 -0.0059493 -0.0044036 WR
10 0.37350478 2 -0.0014138 -0.0009559 WR
13 0.49115935 1 -0.0007959 -0.0007795 LS
14 0.09096044 1 -0.0028581 -0.0011323 WR
15 0.67946326 1 -0.0043936 -0.0052743 LS
18 1.29796061 1 -0.0023394 -0.0018084 LS
19 0.29126932 2 -0.0012714 -0.0026711 LS
21 0.34423528 2 -0.0031977 -0.002477 WR
22 0.24107123 2 -0.0007956 -0.0012881 WR
23 0.2392028 2 -0.0008782 -0.0005995 WR
25 0.34609377 1 -0.0024414 -0.000792 WR
28 0.52776682 1 -0.0008594 -0.0004622 WR
30 1.38316782 3 -0.0004912 -0.0026176 WR
31 0.11843991 1 -0.0047637 -0.0041559 LS
33 0.41575691 2 -0.0006448 -0.0004071 WR
35 0.24803355 1 -0.0040296 -0.0046624 LS
36 0.26291532 1 -0.0026624 -0.0012175 LS
38 0.43831697 1 -0.0041409 -0.003233 LS
39 0.9609038 1 -0.0027812 -0.0018029 LS
42 0.10353352 1 -0.0041236 -0.0021543 LS
43 0.2053337 1 -0.0002677 -3.78E-05 WR
44 0.22751702 1 -0.0013113 -0.0006857 WR
47 0.29451187 1 -0.0026672 -0.0016886 WR
48 0.21080291 2 -0.000857 -0.0007157 LS
49 0.43754127 1 -0.0035827 -0.0016571 LS
50 0.48629039 1 -0.0080121 -0.0080594 LS
51 0.2662974 3 -0.0032507 -0.0022129 WR
52 0.42798931 1 -0.0043434 -0.0038328 LS
54 0.73278069 2 -0.0015795 -0.0002515 WR
62 0.58663663 2 -0.0021918 -0.0005628 LS
63 0.44803036 1 -0.0041019 -0.0026287 LS
64 0.08663587 1 -0.0006676 -0.0003411 WR
65 0.28031224 1 -0.0161714 -0.0153526 LS
66 0.80399431 1 -0.004594 -0.0035105 LS
67 0.21678112 1 -0.001457 -0.0003956 WR
69 0.45890603 1 -0.00194 -0.0026879 LS
71 0.39615646 3 -0.0014694 -0.0022405 WR
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72 0.7907248 1 -0.0026241 -0.0015156 LS
73 0.37266018 2 -0.0012037 -0.0002937 WR
74 0.55159746 1 -0.0050177 -0.0047544 LS
76 0.57941377 1 -0.0033263 -0.0019861 LS
80 0.1672214 2 -0.000636 -0.0018251 WR
81 0.23379688 2 -0.0008705 -0.0010947 WR
83 0.27384855 1 -0.0008196 -0.0005026 WR
84 0.22553753 1 -0.0008573 -0.0001549 WR
87 0.36999318 2 -0.0010992 -0.0007461 WR
88 0.28263054 1 -0.0010693 -0.0008807 LS
89 0.30152365 1 -0.0046653 -0.0042887 LS
90 0.35100853 1 -0.0035168 -0.0021462 LS
91 0.33637512 1 -0.0024771 -0.0014811 LS
92 0.5157322 1 -0.003803 -0.0021161 LS
97 0.19678017 1 -0.0022704 -0.0012664 LS
99 0.77446511 1 -0.0029164 -0.0010389 LS
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Figure B3.1: Subsurface models of 55 shortening landforms in Chapter 3

All axes are in meters. Y-axis is elevation and X-axis is horizontal distance. Blue lines are

the modeled surface. Red lines are the modeled faults. Gray, thick lines in the background

are the matched, observed topography.
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APPENDIX C: CHAPTER 4

Table C4.1: Complete Δ and strain results table

Depth of Faulted Volume

Data Set Δ Values [km] Strain Values

Loveless 30 km 40 km 50 km 30 km 40 km 50 km

22˚ dip &  = 






2.5 1.9 1.5 -2.0×10-3 -1.5×10-3 -1.2×10-3

22˚ dip &  = 


3.1 2.4 1.9 -2.6×10-3 -1.9×10-3 -1.6×10-3

30˚ dip &  = 






3.1 2.3 1.9 -2.5×10-3 -1.9×10-3 -1.5×10-3

30˚ dip &  = 


3.9 2.9 2.4 -3.2×10-3 -2.4×10-3 -1.9×10-3

40˚ dip &  = 






3.5 2.6 2.1 -2.9×10-3 -2.1×10-3 -1.7×10-3

40˚ dip &  = 


4.4 3.3 2.7 -3.6×10-3 -2.7×10-3 -2.2×10-3

Byrne 30 km 40 km 50 km 30 km 40 km 50 km

22˚ dip &  = 






1.7 1.3 1.1 -1.4×10-3 -1.1×10-3 -8.7×10-4

22˚ dip &  = 


2.2 1.7 1.3 -1.8×10-3 -1.4×10-3 -1.1×10-3

30˚ dip &  = 






3.7 2.8 2.2 -3.0×10-3 -2.3×10-3 -1.8×10-3

30˚ dip &  = 


4.7 3.5 2.8 -3.8×10-3 -2.9×10-3 -2.3×10-3

40˚ dip &  = 






6.6 4.9 4.0 -5.4×10-3 -4.0×10-3 -3.2×10-3

40˚ dip &  = 


8.4 6.3 5.0 -6.8×10-2 -5.1×10-3 -4.1×10-3
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Watters 30 km 40 km 50 km 30 km 40 km 50 km

22˚ dip &  = 






1.4 1.1 0.9 -1.2×10-3 -8.8×10-4 -7.1×10-4

22˚ dip &  = 


1.8 1.4 1.1 -1.5×10-3 -1.1×10-3 -9.0×10-4

30˚ dip &  = 






3.2 2.4 1.9 -2.6×10-3 -2.0×10-3 -1.6×10-3

30˚ dip &  = 


4.0 3.0 2.4 -3.3×10-3 -2.5×10-3 -2.0×10-3

40˚ dip &  = 






6.0 4.5 3.6 -4.9×10-3 -3.7×10-3 -2.9×10-3

40˚ dip &  = 


7.6 5.7 4.6 -6.2×10-3 -4.7×10-3 -3.8×10-3
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CODE IN R USED FOR STRAIN CALCULATIONS OF CHAPTER 4

setwd(' ') # SET DIRECTORY FOR FAULT DATA SETS

# Reading in files and assigning data to appropriate vector

names. All data is log transformed for regressions.

Displacement length data should be in a two-column data

table and in meters. Assessment of the cumulative number

length distribution should be done prior and the truncated

data table containing only the linear portion of the data

should be read in.

# == Loveless et al ==

Loveless_dispLength <- read.table('modeled_DL.csv', sep=','

, header=TRUE)

Loveless_length <- log10(Loveless_dispLength$SL)

Loveless_disp <- log10(Loveless_dispLength$AvgSlip)

Loveless_Number_Data <-

read.table('Loveless_NUM_L_Linear.csv', sep=',' ,

header=TRUE)

Loveless_linear_Num <- log10(Loveless_Number_Data$NUM)
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Loveless_linear_length <-

log10(Loveless_Number_Data$length_m)

# == Byrne et al ==

Byrne_dispLength <- read.table('Byrne_DL.csv', sep=',' ,

header=TRUE)

Byrne_length <- log10(Byrne_dispLength$Length_m)

Byrne_disp22 <- log10(Byrne_dispLength$Displacement_22)

Byrne_disp25 <- log10(Byrne_dispLength$Displacement_25)

Byrne_disp30 <- log10(Byrne_dispLength$Displacement_30)

Byrne_disp35 <- log10(Byrne_dispLength$Displacement_35)

Byrne_disp40 <- log10(Byrne_dispLength$Displacement_40)

Byrne_Number_Data <- read.table('Byrne_NUM_L_Linear.csv',

sep=',' , header=TRUE)

Byrne_linear_Num <- log10(Byrne_Number_Data$NUM)

Byrne_linear_length <- log10(Byrne_Number_Data$Length_m)

# == Watters ==

Watters_dispLength <- read.table('Watters_DL.csv', sep=','

, header=TRUE)
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Watters_length <- log10(Watters_dispLength$Length_m)

Watters_disp22 <- log10(Watters_dispLength$Displacement_22)

Watters_disp25 <- log10(Watters_dispLength$Displacement_25)

Watters_disp30 <- log10(Watters_dispLength$Displacement_30)

Watters_disp35 <- log10(Watters_dispLength$Displacement_35)

Watters_disp40 <- log10(Watters_dispLength$Displacement_40)

Watters_Number_Data <-

read.table('Watters_NUM_L_Linear.csv', sep=',' ,

header=TRUE)

Watters_linear_Num <- log10(Watters_Number_Data$NUM)

Watters_linear_length <- log10(Watters_Number_Data$Sph_Len)

# Model 2 regression functions - package was troublesome

smaSlope <- function(x, y) { # Slope

cor <- cor(x,y)

sign <- ifelse(cor >= 0, 1, -1)

b1 <- sign * sd(y)/sd(x)

b1

}

smaIntercept <- function(x, y) { # Intercept
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b1 <- smaSlope(x, y)

b0 <- mean(y) - mean(x)*b1

b0

}

seSlope <- function(x, y){ # Standard Error of Slope

b1 <- smaSlope(x, y)

se <- abs(b1)*sqrt((1-(cor(x,y))^2)/length(x))

se

}

seIntercept <- function(x, y){ # Standard Error of

Intercept

A <- sd(y)

B <- sqrt((1-(cor(x,y))^2)/length(x))

C <- sqrt(1+((mean(x))^2)/(sd(x))^2)

se <- A*B*C

se

}

# Running Functions to derive statistics P, B, M, and G

Loveless_P <- smaSlope(Loveless_length, Loveless_disp)

Loveless_B <- 10^(-1*smaIntercept(Loveless_length,

Loveless_disp))
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Loveless_M <- -1 * smaSlope(Loveless_linear_length,

Loveless_linear_Num)

Loveless_G <- smaIntercept(Loveless_linear_length,

Loveless_linear_Num)

Loveless_P_se <- seSlope(Loveless_length, Loveless_disp)

Loveless_B_se <- 10^(-1*seIntercept(Loveless_length,

Loveless_disp))

Loveless_M_se <- seSlope(Loveless_linear_length,

Loveless_linear_Num)

Byrne_P22 <- smaSlope(Byrne_length, Byrne_disp22)

Byrne_B22 <- 10^(-1*smaIntercept(Byrne_length,

Byrne_disp22))

Byrne_P25 <- smaSlope(Byrne_length, Byrne_disp25)

Byrne_B25 <- 10^(-1*smaIntercept(Byrne_length,

Byrne_disp25))

Byrne_P30 <- smaSlope(Byrne_length, Byrne_disp30)

Byrne_B30 <- 10^(-1*smaIntercept(Byrne_length,

Byrne_disp30))
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Byrne_M <- -1 * smaSlope(Byrne_linear_length,

Byrne_linear_Num)

Byrne_G <- smaIntercept(Byrne_linear_length,

Byrne_linear_Num)

Byrne_P35 <- smaSlope(Byrne_length, Byrne_disp35)

Byrne_B35 <- 10^(-1*smaIntercept(Byrne_length,

Byrne_disp35))

Byrne_P40 <- smaSlope(Byrne_length, Byrne_disp40)

Byrne_B40 <- 10^(-1*smaIntercept(Byrne_length,

Byrne_disp40))

Watters_P22 <- smaSlope(Watters_length, Watters_disp22)

Watters_B22 <- 10^(-1*smaIntercept(Watters_length,

Watters_disp22))

Watters_P25 <- smaSlope(Watters_length, Watters_disp25)

Watters_B25 <- 10^(-1*smaIntercept(Watters_length,

Watters_disp25))

Watters_P30 <- smaSlope(Watters_length, Watters_disp30)
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Watters_B30 <- 10^(-1*smaIntercept(Watters_length,

Watters_disp30))

Watters_P35 <- smaSlope(Watters_length, Watters_disp35)

Watters_B35 <- 10^(-1*smaIntercept(Watters_length,

Watters_disp35))

Watters_M <- -1 * smaSlope(Watters_linear_length,

Watters_linear_Num)

Watters_G <- smaIntercept(Watters_linear_length,

Watters_linear_Num)

Watters_P40 <- smaSlope(Watters_length, Watters_disp40)

Watters_B40 <- 10^(-1*smaIntercept(Watters_length,

Watters_disp40))

# Standard deviations for regression Statistics for P B and

M

Loveless_P_se <- seSlope(Loveless_length, Loveless_disp)

Loveless_B_se <- 10^(-1*seIntercept(Loveless_length,

Loveless_disp))

Loveless_M_se <- seSlope(Loveless_linear_length,

Loveless_linear_Num)
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Byrne_M_se <- seSlope(Byrne_linear_length,

Byrne_linear_Num)

Byrne_P25_se <- seSlope(Byrne_length, Byrne_disp25)

Byrne_B25_se <- 10^(-1*seIntercept(Byrne_length,

Byrne_disp25))

Byrne_P30_se <- seSlope(Byrne_length, Byrne_disp30)

Byrne_B30_se <- 10^(-1*seIntercept(Byrne_length,

Byrne_disp30))

Byrne_P35_se <- seSlope(Byrne_length, Byrne_disp35)

Byrne_B35_se <- 10^(-1*seIntercept(Byrne_length,

Byrne_disp35))

Watters_M_se <- seSlope(Watters_linear_length,

Watters_linear_Num)

Watters_P25_se <- seSlope(Watters_length, Watters_disp25)

Watters_B25_se <- 10^(-1*seIntercept(Watters_length,

Watters_disp25))

Watters_P30_se <- seSlope(Watters_length, Watters_disp30)



256

Watters_B30_se <- 10^(-1*seIntercept(Watters_length,

Watters_disp30))

Watters_P35_se <- seSlope(Watters_length, Watters_disp35)

Watters_B35_se <- 10^(-1*seIntercept(Watters_length,

Watters_disp35))

# Stating Derived Statistics

Loveless_G

Watters_G

Byrne_G

Loveless_P

Byrne_P22

Watters_P22

Byrne_P30

Watters_P30

Loveless_P

Byrne_P40
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Watters_P40

Loveless_B

Byrne_B30

Watters_B30

Loveless_M

Byrne_M

Watters_M

Loveless_P_se

Byrne_B30_se

Watters_P30_se

Loveless_B_se

Byrne_B30_se

Watters_B30_se

# Strain & Radius Change Function. The annotation

strain_real_lower is the calculation ran for an elliptical

fault shape (lower values). Strain_real_upper is the

calculation for rectangular fault shapes (higher values)
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strain_real_lower <- function(p, B, m, dipangle, lithrad){

p_norm <- p

B_norm <- B

m_norm <- m

nu <- pi/4. # Geometric Shape factor for

elliptical faults

phi <- ((180-dipangle)*pi/180)

rho <- phi

theta <- (90-dipangle)*pi/180

R_Mercury <- 2.44 * 10^6 # Meters

R_Lith <- (2.44 * 10^6) - (lithrad * 1000.) #

Meters. lithrad is the depth of the brittle lithosphere of

Mercury

Vol_Mercury <- (4/3) * pi * (R_Mercury^3)

Vol_Lith <- Vol_Mercury - ((4/3) * pi *

(R_Lith)^3)

s <- m_norm/p_norm

Enterprise_Relief <- 3261.8 #meters

disp1 <- 9300 # modeled Enterprise_Relief

A <- nu * 0.41 * (B_norm^(2./p_norm)) #geometric

factor and average from models

Bird <- 1./Vol_Lith

C <- (disp1)^(1 + (2./p_norm))

D <- -1*cos(theta) * cos(phi)
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E <- (1+(2./p_norm))/(1-(s-(2/p_norm)))

strainTOT <- -1*A*Bird*C*D*E

Vol_initial <- Vol_Lith/(strainTOT + 1)

R_Initial = ((R_Mercury^2)/(strainTOT+1))^0.5

radiusDif <- R_Initial - R_Mercury

c(strainTOT, radiusDif)

}

strain_real_upper <- function(p, B, m, dipangle, lithrad){

p_norm <- p #rnorm(1, mean=p, sd=psd) #creating

random values for each statistic

B_norm <- B #rnorm(1, mean=B, sd=bsd) # and using

their estimates and standard errors

m_norm <- m # rnorm(1, mean=m, sd=msd) # found

from the regression to generate random values

nu <- 1.

phi <- ((180-dipangle)*pi/180)

rho <- phi

theta <- (90-dipangle)*pi/180

R_Mercury <- 2.44 * 10^6 # Meters

R_Lith <- (2.44 * 10^6) - (lithrad * 1000.) #

Meters. lithrad is the depth of the brittle lithosphere of

Mercury

Vol_Mercury <- (4/3) * pi * (R_Mercury^3)
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Vol_Lith <- Vol_Mercury - ((4/3) * pi *

(R_Lith)^3)

s <- m_norm/p_norm

Enterprise_Relief <- 3261.8 #meters

disp1 <- 9300 # Enterprise_Relief/sin(phi)

A <- nu * 0.41 * (B_norm^(2./p_norm)) #geometric

factor and average from models

Bird <- 1./Vol_Lith

C <- (disp1)^(1 + (2./p_norm))

D <- -1*cos(theta) * cos(phi)

E <- (1+(2./p_norm))/(1-(s-(2/p_norm)))

strainTOT <- -1*A*Bird*C*D*E

Vol_initial <- Vol_Lith/(strainTOT + 1)

R_Initial = ((R_Mercury^2)/(strainTOT+1))^0.5

radiusDif <- R_Initial - R_Mercury

c(strainTOT, radiusDif)

}

# ======= Calcultating Strain and Radius change for

Elliptical Fault Shape for all data sets =======

# Fault dip of 22 deg
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strain_real_lower(Loveless_P, Loveless_B, Loveless_M, 22,

30)

strain_real_lower(Byrne_P22, Byrne_B22, Byrne_M, 22, 30)

strain_real_lower(Watters_P22, Watters_B22, Watters_M, 22,

30)

strain_real_lower(Loveless_P, Loveless_B, Loveless_M, 22,

40)

strain_real_lower(Byrne_P22, Byrne_B22, Byrne_M, 22, 40)

strain_real_lower(Watters_P22, Watters_B22, Watters_M, 22,

40)

strain_real_lower(Loveless_P, Loveless_B, Loveless_M, 22,

50)

strain_real_lower(Byrne_P22, Byrne_B22, Byrne_M, 22, 50)

strain_real_lower(Watters_P22, Watters_B22, Watters_M, 22,

50)

# ======= Elliptical Fault Shape ======= optimal 30 degrees

# Fault dip of 30 deg

strain_real_lower(Loveless_P, Loveless_B, Loveless_M, 30,

30)
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strain_real_lower(Byrne_P30, Byrne_B30, Byrne_M, 30, 30)

strain_real_lower(Watters_P30, Watters_B30, Watters_M, 30,

30)

strain_real_lower(Loveless_P, Loveless_B, Loveless_M, 30,

40)

strain_real_lower(Byrne_P30, Byrne_B30, Byrne_M, 30, 40)

strain_real_lower(Watters_P30, Watters_B30, Watters_M, 30,

40)

strain_real_lower(Loveless_P, Loveless_B, Loveless_M, 30,

50)

strain_real_lower(Byrne_P30, Byrne_B30, Byrne_M, 30, 50)

strain_real_lower(Watters_P30, Watters_B30, Watters_M, 30,

50)

# Fault dip of 40 deg

strain_real_lower(Loveless_P, Loveless_B, Loveless_M, 40,

30)

strain_real_lower(Byrne_P40, Byrne_B40, Byrne_M, 40, 30)

strain_real_lower(Watters_P40, Watters_B40, Watters_M, 40,

30)
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strain_real_lower(Loveless_P, Loveless_B, Loveless_M, 40,

40)

strain_real_lower(Byrne_P40, Byrne_B40, Byrne_M, 40, 40)

strain_real_lower(Watters_P40, Watters_B40, Watters_M, 40,

40)

strain_real_lower(Loveless_P, Loveless_B, Loveless_M, 40,

50)

strain_real_lower(Byrne_P40, Byrne_B40, Byrne_M, 40, 50)

strain_real_lower(Watters_P40, Watters_B40, Watters_M, 40,

50)

# ======= Calcultating Strain and Radius change for

Rectangular Fault Shape for all data sets =======

# Fault dip of 22 deg

strain_real_upper(Loveless_P, Loveless_B, Loveless_M, 22,

30)

strain_real_upper(Byrne_P22, Byrne_B22, Byrne_M, 22, 30)

strain_real_upper(Watters_P22, Watters_B22, Watters_M, 22,

30)
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strain_real_upper(Loveless_P, Loveless_B, Loveless_M, 22,

40)

strain_real_upper(Byrne_P22, Byrne_B22, Byrne_M, 22, 40)

strain_real_upper(Watters_P22, Watters_B22, Watters_M, 22,

40)

strain_real_upper(Loveless_P, Loveless_B, Loveless_M, 22,

50)

strain_real_upper(Byrne_P22, Byrne_B22, Byrne_M, 22, 50)

strain_real_upper(Watters_P22, Watters_B22, Watters_M, 22,

50)

# ======= Rectangular Fault Shape =======

# Fault dip of 30 deg

strain_real_upper(Loveless_P, Loveless_B, Loveless_M, 30,

30)

strain_real_upper(Byrne_P30, Byrne_B30, Byrne_M, 30, 30)

strain_real_upper(Watters_P30, Watters_B30, Watters_M, 30,

30)

strain_real_upper(Loveless_P, Loveless_B, Loveless_M, 30,

40)
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strain_real_upper(Byrne_P30, Byrne_B30, Byrne_M, 30, 40)

strain_real_upper(Watters_P30, Watters_B30, Watters_M, 30,

40)

strain_real_upper(Loveless_P, Loveless_B, Loveless_M, 30,

50)

strain_real_upper(Byrne_P30, Byrne_B30, Byrne_M, 30, 50)

strain_real_upper(Watters_P30, Watters_B30, Watters_M, 30,

50)

# Fault dip of 40 deg

strain_real_upper(Loveless_P, Loveless_B, Loveless_M, 40,

30)

strain_real_upper(Byrne_P40, Byrne_B40, Byrne_M, 40, 30)

strain_real_upper(Watters_P40, Watters_B40, Watters_M, 40,

30)

strain_real_upper(Loveless_P, Loveless_B, Loveless_M, 40,

40)

strain_real_upper(Byrne_P40, Byrne_B40, Byrne_M, 40, 40)

strain_real_upper(Watters_P40, Watters_B40, Watters_M, 40,

40)
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strain_real_upper(Loveless_P, Loveless_B, Loveless_M, 40,

50)

strain_real_upper(Byrne_P40, Byrne_B40, Byrne_M, 40, 50)

strain_real_upper(Watters_P40, Watters_B40, Watters_M, 40,

50)
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