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ABSTRACT

Mercury, the smallest planet in the Solar System and closest planet to the Sun, has
undergone global contraction, which is a process causing the planet to shrink due to its
long, sustained cooling. This has led to the formation of thousands of shortening landforms
distributed across Mercury’s surface. These positive-relief, surface-breaking landforms are
caused by the folding over thrust faults. Traditionally, Mercury’s shortening landforms
have been classified into one of three categories: “lobate scarps”, “wrinkle ridges”, and
“high-relief ridges”. In this dissertation, these categories are assessed through multiple
statistical analyses. The subsurface fault geometry is then modeled for a large sample size
of Mercury’s shortening landforms. These statistical and modeling efforts both inform a
new assessment of Mercury’s global contractional strain. Finally, Mercury’s current orbit
and rotation is assessed for its influence on the observed systemic thrust fault orientations.
Through this work, Mercury’s shortening landforms are found to exist along a
morphological spectrum between “lobate scarp” and “wrinkle ridge” designations,

suggesting that the morphology of Mercury’s shortening landforms does not support these



categories. Mercury’s shortening landforms are also shown to host a wide range of thrust
system geometries that include single-listric faults, imbricate stacks, and push-up
structures. This data set is then used to establish globally observed ranges of geometric
fault parameters which are then used to inform strain calculations. Using multiple thrust
fault data sets, Mercury’s radial contraction is estimated to be multiple kilometers over a
wide range of plausible physical parameters. The systematic orientations of Mercury’s
thrust faults also seem to be influenced by the stresses caused by the planet’s current orbital
configuration overlain onto global contraction. The collection of research presented in this

dissertation provides valuable insight into Mercury’s tectonic character.
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CHAPTER 1
INTRODUCTION AND LITERATURE REVIEW

The surface of Mercury is host to a global network of positive relief, surface-
breaking shortening landforms, indicating a complex tectonic history (e.g., Byrne et al.,
2014). Early interpretations attributed these tectonic features to crater forming events
(Strom et al., 1975). However, modeling informed by early observations from the Mariner
10 mission had predicted that Mercury has undergone global contraction: the process in
which a planet shrinks due to long, sustained cooling (e.g., Solomon, 1977). A planet
undergoing global contraction experiences a horizontally isotropic, fully compressional
stress state throughout its lithosphere (Melosh and McKinnon, 1988). This build-up of
stresses would eventually reach the brittle strength of the lithosphere and so initiate the
growth of thrust faults to accommodate the contraction (Solomon, 1978). The shortening
landforms are now widely accepted to be the surface manifestation of thrust faulting and
folding caused primarily by global contraction (Byrne et al., 2018, 2014; Solomon et al.,
2008; Strom et al., 1975). For the work presented here, I use the term “shortening
landforms” as an identifier of all positive-relief landforms that are interpreted as having
been formed by thrust faulting. Other works refer to such landforms as “lobate scarps”,
“wrinkle ridges”, “shortening structures” or “thrust fault-related landforms” but shortening
landforms is the preferred term here for consistency.

Shortening landforms on Mercury, and more generally on all planetary bodies with

a solid surface, are identified as positive-relief cliffs, frequently demarcated by a surface



break alongside the bottom of the cliff (e.g., Schultz and Watters, 2001; Watters, 2003).
After the exploration of Mercury via three fly-bys by the Mariner 10 mission in 1974 to
1975 where only 45% of the innermost planet were imaged, the MErcury Surface, Space
ENvironment, GEochemistry, and Ranging (MESSENGER) mission fully mapped
Mercury from orbit from 2011 to 2015. It revealed the contractional tectonic character on
Mercury in much greater detail (e.g., Byrne et al., 2018, 2014). On Mercury, these
shortening landforms can have reliefs of up to 3 km and surface breaks that reach up to
1,000 km (e.g., Byrne et al., 2018; Ferrari et al., 2015; Watters et al., 2016). Hundreds to
thousands of landforms that accommodate horizontal shortening have been identified,
indicating extensive contraction of the planet’s lithosphere (e.g., Byrne et al., 2014; Man
et al., 2023a; Watters, 2021).

The geology of Mercury has been classified and mapped as three main
morphological units: the impact crater facies, intercrater plains, and the smooth plains (e.g.,
Denevi et al., 2013, 2009; Trask and Guest, 1975). Impact crater facies are portions of
Mercury’s surface that have formed due to the direct, or long-term, consequences of
medium-, or large-sized meteorite impacts. Intercrater plains are expanses of Mercury’s
surface that have been heavily cratered, representing the oldest surfaces of the planet. It is
thought to consist of ancient volcanic crust. The smooth plains unit is geologically younger,
hosting fewer craters and is thought to have formed by the emplacement of flood-volcanic
lavas (Denevi et al., 2013; Head et al., 2011). Shortening landforms have formed within all
of Mercury’s geologic units (e.g., Byrne et al., 2014).

Recent efforts have been made to map the geology of Mercury’s surface in greater

detail for individual quadrangles (e.g., Buoninfante et al., 2025; Galluzzi et al., 2018, 2016;



Guzzetta et al., 2017). There are 15 near-equal area quadrangles of Mercury’s surface
divided by the International Astronomical Union, with 10 having been completely mapped
at the 1:3 million scale (Buoninfante et al., 2025; Galluzzi et al., 2016; Giacomini et al.,
2024, 2022; Guzzetta et al., 2017; Malliband et al., 2023; Man et al., 2023b; Mancinelli et
al., 2016; Pegg et al., 2021; Wright et al., 2019). The ongoing mapping has revealed
interesting structural characteristics across Mercury. For example, the recent work of
Buoninfante et al. (2025) showed tectonic structures in the H12 quadrangle outside of the
impact basins trend with primarily northwest—southeast strikes. Such trends have been
observed previously as shortening landforms have systematic orientations on Mercury’s
surface, with strong north—south trends near the equator that become more variable towards
the poles (e.g., Byrne et al., 2018; Klimczak et al., 2015). The, structural analysis of the
HO2 Victoria quadrangle on Mercury has revealed similar fault traces which highlighted a
predominate stress field acting in the ENE-WSW direction (Galluzzi et al., 2019).
Systematic fault orientations have been noted in global-scale structural maps and analyses
(e.g., Byrne et al., 2018; Klimczak et al., 2025, 2015).

Other structural trends highlight that mantle convection may have played a role in
deforming Mercury’s surface producing long wavelength topographic undulations
(Klimczak et al., 2013, 2012; Zuber et al., 2012). Additional recent mapping efforts have
revealed small-scaled graben forming at the hinge lines of the anticlinal folding atop
shortening landforms on Mercury, indicating that Mercury’s global contraction may still
be ongoing (Man et al., 2023a). The notion that tectonics are still active throughout
Mercury’s lithosphere has been additionally supported by the presence of relatively smaller

fault segments and thrusts (Banks et al., 2015; Watters et al., 2016). With the BepiColombo



mission arriving at Mercury in November 2026, it is important to address open questions
that pertain to Mercury’s tectonics to help guide the scientific objectives of this mission
(Benkhoff et al., 2021). This dissertation aims to shed light on the current questions
regarding lithospheric shortening on Mercury.

Diversity of shortening landforms on Mercury

Shortening landforms on Mercury have typically been categorized into three
morphological groups: lobate scarps, wrinkle ridges, and high-relief ridges (e.g., Melosh
and McKinnon, 1988; Watters et al., 2004, 2001; Watters and Robinson, 1999). Lobate
scarps are linear to arcuate surface-break structures in map-view. In cross-section, lobate
scarps are asymmetric, with a steeply sloping forelimb that immediately trails the surface
break, followed by a more gently sloping backlimb (e.g., Strom, 1979; Strom et al., 1975;
Watters, 1993). The direction of tectonic transport, or vergence, is evident by the direction
the forelimb faces, as the hanging wall folds over the footwall at the surface break (e.g.,
Byrne et al., 2014). Wrinkle ridges on Mercury tend to have lower structural reliefs than
lobate scarps, while hosting more complex, often sinuous map patterns. In cross-section,
wrinkle ridges display a superimposed ridge (the “wrinkle”) above a primary, more-broad,
ridge (e.g., Watters, 1988). Although surface breaks are common for wrinkle ridges (e.g.,
Golombek et al., 2001, 1991; Schleicher et al., 2019; Strom et al., 1975; Watters, 1988),
these shortening landforms have often been interpreted as anticlinal structures that form
above blind thrusts (e.g., Schultz, 2000) or back thrusts (Okubo and Schultz, 2004). More
recently, wrinkle ridges have been interpreted as two oppositely facing monoclines that
have formed over two oppositely verging thrusts (Byrne et al., 2018). High-relief ridges

are described as being morphologically similar to lobate scarps but are more symmetric



due to a steeper backlimb in cross-section (e.g., Watters et al., 2021). These shortening
landforms have then been interpreted as anticlines forming above steeply dipping reverse
faults (e.g., Watters et al., 2001).

The traditional landform categorical names “lobate scarps”, “wrinkle ridges”, and
“high-relief ridges” have only been given qualitative descriptors. It is often difficult for
planetary geologists to categorize landforms as they exhibit characteristics of two, or
sometimes even all three of the traditional categories (i.e., Strom et al., 1975). Other works
of contractional tectonics on Mercury have questioned the use of these traditional
categories and have noted that although endmember shortening landforms of each type
exist, many contractional landforms are difficult to distinguish as lobate scarps, wrinkle
ridges, or high-relief ridges (e.g., Byrne et al., 2018, 2014; Crane and Klimczak, 2019a;
Klimczak et al., 2018). Although terrestrial analogues have been suggested to describe non-
Earth shortening landforms, such terminology has never been used to describe thrust
systems observed on Earth and can often lead to false assumptions of the subsurface fault
architecture and formation of such structures.

A quantitative definition of lobate scarps, wrinkle ridges, and high-relief ridges
does not yet exist. Furthermore, a statistical analysis of the morphology of shortening
landforms on Mercury’s surface has never been performed to test the legitimacy of these
traditional categories. The implementation of such work in this dissertation intends to better
define the structural characteristics of lobate scarps, wrinkle ridges, and high-relief ridges,
or alternatively, may dissuade the scientific community from using such terminology as to

avoid the generalization and misinterpretation of complex contractional tectonics on

Mercury.



Thrust fault geometries underlying shortening landforms on Mercury

Wrinkle ridges and lobate scarps have been used to describe almost all shortening
landforms on Mercury’s surface (e.g., Melosh and McKinnon, 1988; Watters et al., 2004).
The large variation of thrust systems formed on Earth brings into question this
generalization of Mercury’s shortening landforms into these two groups. Positive relief,
contractional tectonic landforms on Earth are created due to the stresses from plate
tectonics and manifest as mountain ranges produced by complex systems of thrusts and
folds (e.g., Boyer and Elliot, 1982; Chapple, 1978; Crane and Klimczak, 2019b; Matthews
and Work, 1978; McClay, 1978; Morley, 1988). The Earth hosts fold and thrust belts
attributed to large-scale crustal shortening accommodated by multi-fault thrust complexes
(e.g., McClay and Price, 1981). Duplex thrust structures comprised of stacked panels of
rock bounded by thrusts, imbricate thrusts branching of a single décollement, and other
thrust complexes comprised of faults with identical to oppositely senses of vergence are all
examples in the large variety of observed contractional tectonic geometries found on Earth
(Boyer and Elliot, 1982).

Without plate tectonics, global contraction serves as the main driver for lithospheric
deformation on Mercury. Often shortening landforms on non-Earth bodies are modeled
with a single homoclinal-to-listric fault using elastic, dislocation modeling tectonics, or
geologic forward modeling techniques (e.g., Byrne et al., 2016; Egea-Gonzalez et al., 2017,
Egea-Gonzalez et al., 2012; Peterson et al., 2020; Schultz and Watters, 2001; Williams et
al., 2013). To date, only few works have proposed similar thrust geometries for Mercury’s
shortening landforms to that of the Earth. For example, Rothery and Massironi (2010) have

suggested that Beagle Rupes, a large shortening landform on Mercury with apparent strike-



slip motion at its tips, is the manifestation of an extensive décollement. Crane and
Klimczak (2019a) have proposed that the upper portions of Mercury’s lithosphere may be
mechanically weaker than the lower portions due to fracturing caused by many impacts
over geologically long periods of time. This may influence the propagation of thrusts in
the lithosphere from faulting in the basement rock. Such a mechanism has been linked to
basement-reactivated thin-skinned tectonics, a fault propagation mechanism occurring on
Earth (Pfiffner, 2017).

Currently most studies on the subsurface architecture of non-Earth shortening
landforms have focused on only one landform, or up to just a few landforms, and have
mostly constrained models by matching the overlying observed topography (Egea-
Gonzalez et al., 2017, 2012; Herrero-Gil et al., 2020, 2019; Mueller et al., 2014; Peterson
et al., 2020; Schultz and Watters, 2001; Williams et al., 2013). A comprehensive modeling
effort for a large number of landforms to investigate the variability of fault geometries
underneath Mercury’s shortening landforms has not been carried out prior to this
dissertation.

Mercury’s global contractional strain

Mercury’s global contraction has produced a horizontal compressive stress stat that
has caused thrust faulting throughout the planet’s lithosphere (e.g., Solomon, 1978). The
amount Mercury has contracted has been estimated using two methods: thermal evolution
modeling (e.g., Breuer et al., 2007; Hauck et al., 2004; Michel et al., 2013; Solomon, 1977;
Tosi et al., 2013) or tectonic mapping and structural analysis (Byrne et al., 2014; Di Achille
et al., 2012; Watters, 2021; Watters et al., 2015a, 2009, 1998; Watters and Nimmo, 2010).

Thermal evolution models solve a series of physical equations to replicate how Mercury’s



shape and interior structure has changed over time. Alternatively, structural mapping
efforts rely on the sum of the shortening strain accommodated by thrust faults underneath
shortening landforms. These have developed from works that estimate the strain of a
volume using the lengths of a population of faults (Cowie et al., 1993; Scholz and Cowie,
1990). For Mercury, the relief of the shortening landforms is assumed to equal the throw
of the underlying thrust fault (e.g., Byrne et al., 2014; Watters, 2021, Watters et al., 1998).
Lengths of the faults are extracted from global structural maps and the reliefs of a subset
of shortening landforms are extracted. Using trigonometry, and assuming the entire fault
population hosts a common thrust fault dip, the displacement is calculated for this smaller
set thrust faults. Displacement and length of thrust faults are observed to have a power-log
relationship (Clark and Cox, 1996; Cowie and Scholz, 1992), which is used to estimate the
displacement for the entire, mapped population of thrust faults. This method is prone to
disagreement because the derived strain for Mercury’s lithosphere is dependent on the
number of faults studied (e.g., Byrne et al., 2014; Watters, 2021).

The mapping structural analysis technique has been used extensively producing a
wide range of results, with estimates for Mercury’s radial contraction, AR, to be as little as
0.8 km (Watters et al., 2015a) to as large as 7.1 km (Byrne et al., 2014). The disadvantage
caused by the dependence on the number of shortening structures considered is reflected
in the history of using this method to estimate Mercury’s contraction. Watters et al. (1998)
produced an initial estimate of Mercury’s radial contraction of 1.5-2.9 km which has been
revisited in the works Watters et al. (2009), Watters and Nimmo (2010), Watters et al.

(2015a), and Watters (2021) that each produce a slightly different result by incrementally



changing the geologic interpretation of the shortening landforms considered for each
respective analysis.

In order to resolve this discrepancy, alternative methods to estimate Mercury’s
global contraction that circumnavigate the dependency of thrust fault sample size are
needed. In particular, the methodology proposed and utilized in Twiss and Marrett (2010a,
b) provides a way to calculate the strain attributed by a population of faults in a faulted
volume using fault-population statistics, which constitutes an independent assessment of
fault strain for the study of global contraction. This method is based on the fact that a
population of faults is never really completely measured when calculating the total strain
of a volume. Prior to this dissertation, this methodology has never been used to estimate
the strain of global contraction.

Fault orientations on a contracting planet

Mercury’s global contraction has produced a widespread population of thrust faults
(e.g., Byrne et al., 2014). The horizontal stresses caused by global contraction are isotropic
(Melosh and McKinnon, 1988), and therefore, the tectonics produced by global contraction
alone would show random orientations. However, the thrust fault orientations across
Mercury’s surface have systematic orientations, showing roughly north—south trends at the
equatorial regions and generally east-west oriented towards the poles (e.g., Byrne et al.,
2018; Klimczak et al., 2015). This systematic fracture pattern indicates that other tectonic
processes have acting in conjunction with global contraction.

Multiple works have invoked different processes to try to explain the systematic
fault orientations throughout Mercury’s surface. Mercury’s rotation is thought to have

slowed over time (e.g., Burns, 1975 Kaula, 1968; Melosh, 1977; Melosh and McKinnon,



1988) which has been modeled to cause north—south oriented thrust faults near the equator
and thrust faults without preferred orientations at the poles (e.g., Klimczak et al., 2015;
Pechmann and Melosh, 1979) or normal faults orientated east—west at the poles (Beuthe,
2010). The Caloris impact driven reorientation, despinning, and global contraction
combined had predicted thrust fault orientations that resembled the tectonic patterns
observed with Mariner 10 data but did not resemble the more complete tectonic maps
produced by MESSENGER data (Matsuyama and Nimmo, 2009).

No process or combination of processes has satisfactorily described the observed
tectonic patterns on Mercury. However, these patterns may also reflect lighting bias as
MESSENGER took imagery observing in the eastern or western directions that would
highlight north—south trending structures. Despite this, previous studies have suggested
that Mercury’s current orbit may affect the fracture patterns on the planet’s surface since
thrust faulting shows concentric patterns around Mercury’s hot poles (e.g., Byrne et al.,
2018; Klimczak et al., 2025, 2015). Mercury is currently in an eccentric 3:2 spin—orbit
resonance with the Sun. It’s current orbital configuration causes pronounced solar tides
within the planet’s lithosphere (Hoolst and Jacobs, 2003). Mercury’s current orbit
superposed onto global contraction warrants further investigation, and a comprehensive
study on how this combination of stresses influences the orientations of Mercury’s
tectonics has not been explored in detail prior to the work presented here. By conducting
such an analysis, Mercury’s current 3:2 spin-orbit resonance can be critically evaluated in

its role in systematic fault patterns.
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Overview and significance of dissertation chapters

Mercury is an ideal planet to directly explore the effects global contraction has on
a brittle lithosphere. Although there has been extensive mapping and modeling efforts of
Mercury’s contractional tectonics, these tectonics have yet to be interpreted at the same
level of detail as contractional tectonic systems on Earth. Furthermore, discrepancies in the
literature regarding Mercury’s amount of global contraction, and the analysis of the stress
state and predicted fault orientations due to different superposed tectonic events leaves
many questions regarding Mercury’s tectonics inadequately answered. The goal of this
dissertation is then to investigate, in great detail, the morphology and subsurface structure
of Mercury’s shortening landforms, as well as to provide an alternative assessment of
estimating Mercury’s contractional strain. In addition, the influence of Mercury’s current
orbital characteristics on the planet’s fault orientations are studied.

Chapter 2 focuses on a statistical analysis of the morphology of the shortening
landforms on Mercury’s surface to test whether traditionally-used landform designations
are indeed morphologically distinct from one another. Two multivariate statistical analyses
assess a sample of 100 shortening landforms on Mercury made up of wrinkle ridges and
lobate scarps. Chapter 3 investigates the variety of thrust systems within Mercury’s
lithosphere by modeling 55 morphologically variable shortening landforms based on the
endmember lobate scarp and wrinkle ridge structures from Chapter 2. Kinematic forward
models are constructed in 2-dimensions with fault-bend fold geometries using the MOVE
geologic modeling software MOVE. The models are used to structurally interpret the
subsurface of shortening landforms across Mercury’s entire surface and to better constrain

subsurface modeling with observations. Chapter 4 adapts the methodology created and
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utilized by Twiss and Marrett (2010a, b) to estimating Mercury’s radial contractional strain
using three different fault data sets available in the literature. Chapter 5 compares
Mercury’s observed fault pattern to one that is predicted for overlapping stresses produced

by solar tides and Mercury’s rotation onto those produced by global contraction.
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CHAPTER 2
A STATISTICAL EVALUATION OF THE MORPHOLOGICAL VARIABILITY OF

SHORTENING LANDFORMS ON MERCURY!!

' Loveless, S.R., Klimczak, C., McCullough, L.R., Crane, K.T., Holland, S.M., Byrne,
P.K., 2024. Icarus 416, 116106. Reprinted here with permission of the publisher.
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Abstract

Observations of Mercury from both the Mariner 10 and MESSENGER missions
showed that Mercury has a global population of shortening landforms, with several
thousands of individual structures identified to date. The accommodation of widespread
tectonic shortening is widely regarded to be the result of global contraction—the long,
sustained cooling of the interior that has caused the planet to shrink. Shortening landforms
on Mercury have been traditionally categorized into three distinct categories: lobate scarps,
wrinkle ridges, and high-relief ridges. Although the clearest examples of shortening
landforms at the time were used to describe and define these categories qualitatively, later
studies showed that shortening landforms on Mercury display morphological
characteristics that do not make for a ready classification into one of these “traditional”
groups. More recently, other studies have classified shortening landforms based on the
terrain that those landforms reside in to avoid generalizing morphology. In this study, we
quantitatively assess the shape of shortening landforms by measuring and compiling a suite
of 12 morphological parameters for 100 such structures across the planet. These parameters
were evaluated for their importance in defining categories using two multivariate statistical
analyses, a Principal Component Analysis (PCA) and Linear Discriminant Analysis
(LDA). These methods allow us to assess any correlation that the traditional categories,
terrain types, or alternative classification schemes have with the variation observed across
our set of measurements. Our results show that the morphologic characteristics of
shortening landforms on Mercury are not accurately captured by traditionally recognized
groups. Instead, shortening landforms fall along a morphological spectrum, where only a

few ideal examples of lobate scarps or wrinkle ridges provide clear endmembers.
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Therefore, despite the frequent use of the terms “lobate scarps” and “wrinkle ridges” in
works regarding planetary tectonics, we find that such terminology does not appropriately
define the morphology of shortening landforms found on Mercury and may lead to the
generalization, or misinterpretation of landforms described as accommodating shortening
on Mercury’s surface. Future studies should test if a distinction between the landforms is

found in the underlying thrust fault systems.
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2.1 Introduction

Categories of shortening landforms

Modeling motivated by early observations from the Mariner 10 mission of crustal
shortening had predicted that Mercury had undergone global contraction, a phenomenon
resulting from the long, sustained cooling of a terrestrial body that leads to a planetary
volumetric decrease (e.g., Solomon, 1977). Global contraction was predicted to be
principally accommodated via widespread thrust faulting throughout the brittle portion of
Mercury’s lithosphere (Solomon, 1978) that manifests at the surface as linear, positive-
relief landforms. Observations from the MErcury Surface, Space ENvironment,
Geochemistry, and Ranging (MESSENGER) mission provided greater detail of the crustal
shortening that accommodated global contraction (e.g., Byrne et al., 2014). In this study,
we focus on these tectonic landforms related to global contraction. We use the strain term
“shortening landforms” as an identifier of all positive-relief landforms we interpret as
having been formed by thrust faulting; such landforms have been described as “shortening
structures” or “thrust fault-related landforms™ in earlier works but we prefer this term for
consistency.

Mercury’s surface has been mapped into three main morphologic unit types: inter-
crater plains, smooth plains, and impact crater facies (e.g., Denevi et al., 2013, 2009; Trask
and Guest, 1975). Inter-crater plains are heavily cratered and represent the oldest surfaces
on the innermost planet. Smooth plains are interpreted to be more recently emplaced
expanses of flood-volcanic deposits bearing fewer craters (Denevi et al., 2013; Head et al.,
2011). Impact crater facies are collectively units that formed as direct or long-term

consequences of large impacts, with most being contained within and around their host
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impact basins. Shortening landforms occur in all surface morphologic units (e.g., Byrne et
al., 2014) and are interpreted to have acquired most of their strain near the end of when the
smooth plains were emplaced and somewhat thereafter (Byrne et al., 2018, 2016; Crane
and Klimczak, 2017).

Shortening landforms are not only found on Mercury but on all major terrestrial
bodies. Generally, they are manifest as surface-breaking scarps showing positive relief
(Schultz and Watters, 2001; Watters, 2003). Early photogeologic data sets of Mercury,
Venus, the Moon, and Mars revealed shortening landforms with several typical
characteristics (e.g., Strom et al., 1975). Strom et al. (1975) attributed the morphology of
shortening landforms on Mercury to tectonic processes and crater-forming events. Dzurisin
(1978) initially categorized shortening landforms on Mercury into six morphological
groups: arcuate scarps, lobate scarps, irregular intracrater scarps, irregular Caloris scarps,
linear ridges, and irregular Caloris ridges. Of those, lobate scarps and wrinkle ridges were
used to describe tectonics observed from the Mariner 10 mission (e.g., Strom, 1979) and
were subsequently used widely to categorize shortening landforms throughout the Solar
System, including Mercury (e.g., Melosh and McKinnon, 1988; Watters and Robinson,
1999; Watters et al., 2004), Venus (e.g., Solomon et al., 1992; Squyres et al., 1992), and
Mars (e.g., Watters and Robinson, 1999; Mueller and Golombek, 2004). A few high relief-
ridges have been described in detail on Mercury (Watters et al., 2001). In this paper, we
refer to lobate scarps, wrinkle ridges, and high relief-ridges as the “traditional categories”
by which extraterrestrial crustal shortening structures have been identified and mapped.

Lobate scarps (Figure 2.1a) are linear to bow-like structures in map-view that have

a surface break. In cross-section, they have asymmetric positive relief with a relatively
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steep sloping forelimb that immediately trails the surface break followed by a more gently
sloping backlimb (e.g., Strom et al., 1975; Strom, 1979; Watters, 1993). The shapes of
lobate scarps provide evidence that the vergence, or direction of tectonic transport, of the
thrust system is in the direction of the forelimb with anticlinal folding of the hanging wall
(e.g., Byrne et al., 2014). Named examples of lobate scarps on Mercury have the

a2

International Astronomical Union (IAU) descriptor term rupes (pl. “rup@s”) (e.g., Beagle
Rupes, Enterprise Rupes, Carnegie Rupes, etc.).

Wrinkle ridges on Mercury (Figure 2.1b) generally have lower relief than lobate
scarps and differ from other shortening landforms by their complex, sinuous map pattern
and their superimposed ridge (the “wrinkle”) above a primary broad ridge (e.g., Watters,
1988). Wrinkle ridges are common on the volcanic plains of many terrestrial bodies in the
Solar System (e.g., Nahm et al., 2023; Plescia and Golombek, 1986). They are interpreted
as anticlinal structures formed above blind thrust faults (e.g., Schultz, 2000) and potentially
backthrusts (Okubo and Schultz, 2004); however, surface breaks are common (Golombek
etal., 2001, 1991; Schleicher et al., 2019, Strom et al., 1975; Watters 1988).

High-relief ridges (Figure 2.1c) have been reported by a single author on both
Mercury and Mars (Watters, 1993), with only a few examples on the former. In cross-
section, high-relief ridges are morphologically similar to lobate scarps but are more
symmetric due to the landforms hosting a steeper backlimb (e.g., Watters et al., 2021).
High-relief ridges have been interpreted to be anticlines formed above steeply dipping
reverse faults (e.g., Watters et al., 2001).

Byrne et al. (2014) avoided using these traditional morphological categories and

instead classified shortening landforms by the terrain type in which they are found. These
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authors’ classification includes smooth-plains structures, cratered-plains structures, crater-
related structures, and high-terrain bounding structures. Crater-related structures are
defined as landforms bound to and/or found within an impact basin, and high-terrain
bounding structures are described as landforms separating high-standing from low-lying
terrain. However, both of these structure types still occur in either smooth- or cratered-
plains, and so the four categories in Byrne et al. (2014) can be further simplified to smooth-
plains structures or cratered-plains structures.

Motivation and goal of this study

The traditional landform categories of lobate scarps, wrinkle ridges, and high relief-
ridges are qualitative; no quantified definitions by which these landforms can be
systematically classified or distinguished have been proposed. As Strom et al. (1975) stated
regarding shortening landforms mapped around the Caloris basin using images from the
Mariner 10 mission: “Many of the scarps in the plains surrounding the Caloris Basin grade
into or are transitional with ridges, so that the two structures are difficult to distinguish”.
Other studies of Mercury’s shortening landforms have questioned the traditional
categories: although endmembers of the traditional categories are present, most structures
are not so easily classified (e.g., Byrne et al., 2018, 2014; Crane and Klimczak, 2019a;
Klimczak et al., 2018). We therefore carry out a statistical investigation of the morphology
of the traditional categories of lobate scarps and wrinkle ridges on Mercury to establish
whether there is a quantitative basis by which to use these traditional terms in studying the
planet’s inventory of crustal shortening structures. To do so, we based our study on
multivariate statistical analysis of morphologic measurements of select shortening

landforms of each assessed type. This approach allowed us to not only evaluate whether
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the traditional categories can be distinguished, but also to assess other categorizations, such
as those based on terrain types (e.g., those advocated by Byrne et al., 2014). We do not
consider high-relief ridges in our assessment due to the low sample size of landforms in
this category and the statistical inaccuracies that may arise from it.

2.2 Methods

Data collection

The entire catalogue of global image mosaics at a resolution of 166 m/pixel and
digital elevation models (DEMs) from the MESSENGER mission available on the
Planetary Data System (PDS) was loaded into a Geographic Information System (GIS)
using ArcMap® 10.8. This includes the 250 m/pixel northern hemisphere MLA DTM
(Zuber et al., 2012). We also used the DEMs from MESSENGER flybys (Preusker et al.,
2011) and the more recently resolved DEM of the south pole by Bertone et al. (2023) at a
resolution 250 m/pixel. The lowest-resolution elevation dataset used in this study is the
global USGS DEM, which is based on the Mercury Dual Imaging System narrow-angle
camera and multispectral wide-angle camera and has a resolution of ~665 m/pixel (Becker
et al., 2016). For coverage of topography see supplementary material (Loveless et al.,
2024a).

In ArcMap, Mercury was divided into a 20°X20° grid, producing 162 grid boxes,
of which 100 were randomly selected with uniform probability via a random number
generator. Each grid box was thoroughly surveyed for shortening landforms, and one such
landform was then chosen based on what would be the best candidate with respect to the
rest of the data collection. Selections were made to account for good representations of

global distribution (see Figure 2.2), size, traditional categories, and also DEM availability
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and resolution. If shortening landforms fell into an area with only the lower-resolution,
global DEM topography, only large shortening landforms (>100 km long) were selected to
minimize the effect of DEM spatial resolution on the topographic measurements.

Each selected landform was assigned to a lobate scarp, wrinkle ridge, or transitional
(i.e., a structure that transitions from a lobate scarp to a wrinkle ridge along its length)
classification. High-relief ridges were not considered because only a small number have
been described for Mercury (e.g., Watters, 2021; Watters et al., 2001). Several of the
authors assigned each landform a lobate scarp or wrinkle ridge designation by visual
inspection and then compared their assignments. Transitional structures could also be
categorized as either wrinkle ridges or lobate scarps at the location of the profile showing
the highest structural relief that was also used to collect our measurements. Following
Byrne et al. (2014), we also categorized the shortening landforms as cratered-plains
structures or smooth-plains structures.

All landforms were assigned to one of five map patterns: concave, sinuous, straight,
convex, or switching vergence. Convexity and concavity were defined with respect to the
hanging wall block. In a concave map pattern (Figure 2.3a), the hanging wall creates a
concave scarp shape over the footwall; the concave pattern opens towards the footwall.
Sinuous map patterns (Figure 2.3b) demonstrate a large amount of variation along strike as
the surface break pattern switches between concave and convex patterns along the length
of the structure. Straight map patterns (Figure 2.3c) show little curvature or variability
along the length of the surface break. Convex map patterns (Figure 2.3d) depict the hanging
wall extending in an arching manner over the footwall, such that the concave pattern opens

towards the hanging wall (often described as an arcuate or bow pattern (e.g., Byrne et al.,
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2018; Watters et al., 2015a). Shortening landforms that have a switching vergence map
pattern (Figure 2.3e¢) demonstrate tectonic movement in opposite directions along the
length of the structures; that is, the hanging wall and footwall switch sides along the
structure’s length (Figure 2.3e).

In ArcMap, each landform was analyzed using a stereographic projection centered
on the landform. We mapped their surface breaks at a 1:250,000 scale as polylines using
the streaming function with vertex placements every 500 meters. Marker points were
placed every 10 km along the polylines/surface breaks, and topographic profiles were
generated perpendicular to the landform at these marker points. Points that comprise the
profile were evenly spaced every 245 m along the length as this is approximately the same
as the highest resolution DEMs used in this work. All topographic profiles along a landform
were compared to determine which displayed the maximum structural relief.
Morphological measurements were made along the profile with maximum structural relief.

We measured and calculated twelve parameters on each shortening landform
(Figure 2.4). The structural relief (in meters) is the elevation difference measured between
the onset of the forelimb/surface break and the peak of the topographic profile. The breadth
(meters) of the structure is the horizontal distance across the topographic profile measured
from the surface break to the end of the backlimb (Figure 2.4), with the end of the backlimb
being the point on the backlimb where the structure is no longer topographically
distinguishable from the surrounding terrain. The breadth thus represents the final length
of the transect after shortening occurred. Total cross-sectional length (meters) is the
distance along the transect (Figure 2.4) and represents the initial length of the transect

before shortening. Shortening strain (unitless) along the transect is the change in length
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(breadth minus total cross-sectional length) divided by the total cross-sectional length,
under the assumption that the total cross-sectional length is the initial length that was
shortened entirely by the underlying thrust fault to the presently observed breadth.
Forelimb length (meters) is the component of the total cross-sectional length measured
from the surface break to the peak of the shortening landform, and backlimb length (meters)
is the component of the total cross-sectional length measured from the peak of the
topographic profile to the end of the backlimb.

Forelimb slope (measured in degrees, Figure 2.4) is the average slope between each
pair of adjacent points along the transect from the surface break to the peak of the
shortening landform. The same method was applied to find the backlimb slope (degrees).
The forelimb generally slopes upwards, and thus has positive slope values, whereas the
backlimb generally slopes down and thus has negative slope values. Symmetry (degrees) is
the difference of the forelimb slope and absolute value of the backlimb slope. A
symmetrical shortening landform will have a symmetry of 0°, whereas deviations from 0°
represent asymmetrical landforms. Percent backlimb downslope is the ratio of down-
sloping (negative) backlimb slope segments to the total number of backlimb slope
segments in the profile. A backlimb that slopes downward everywhere will have a percent
downslope of 100%. This metric captures the complexity of topography on the backlimb,
such as the wrinkle on wrinkle ridges.

The length (meters) of the shortening landform was identified using the mapped
traces of the scarps and ridges (Figure 2.2). To avoid distortions from the projection of

global data, we used the Tools for Graphics and Shapes Plugin for ArcMap 10.8 to calculate
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geodesic lengths. The block diagram in Figure 2.4 shows half of the length of the
shortening landform.

To test if our measurements are biased by dependencies of landform size on terrain
ruggedness or DEM resolution, we also calculated the Topographic Roughness Index

(TRI), given by Riley (1999) as:

N
1
TRI= [ (= 402
i=1

where N is the number of transect segments measured along the topographic profile, and x;
is the elevation at segment i on the profile.

Statistical analysis

We performed two types of statistical analyses to assess the existence of distinct
categories of morphologic shortening landforms: a principal component analysis (PCA)
and a linear discriminant analysis (LDA), a type of discriminant function analysis. As for
all statistical techniques, these analyses assume random sampling. PCA and LDA also
assume multivariate normality, which is achieved through data transformations of some
variables (see Table A2.1). After the data were transformed, they were scaled by the z-
score of each measurement: z = (x — u)/o, where x is the measurement, u is the average
of the measurements, and o is the standard deviation. This transformation places each
measurement on the same scale with a mean of zero and a standard deviation of one,
causing the LDA to be influenced purely by the variance of the data and not by the relative
size of different measurements.

PCA is an eigenanalysis-based multivariate statistical method for rotating the data

along orthogonal axes that explain a progressively decreasing proportion of the variance
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(i.e., principal components, PCs; Pearson, 1901). By selecting the PCs that explain the
greatest proportion of the total variance, PCA can be used to reduce dimensionality and
simplify analysis of multivariate data. For this study, these PCs can be used to detect
whether the landforms cluster into distinct categories or lie along a continuum. Each PC is
described by a set of linear coefficients called loadings that describe how much each
variable contributes to each PC. Through these loadings, we can determine which
morphologic characteristics account for the greatest variance in Mercury’s shortening
landforms.

Linear discriminant analysis constructs a linear mathematical model that
maximizes the separation between predefined groups using eigenanalysis methods (Davis,
2002; Maindonald and Braun, 2003). LDA generates k — 1 linear discriminants (LDs),
where k is the number of predefined groups (landform categories or terrain types). Each
sample has scores (positions) along these linear discriminants, and the positions of samples
in this linear discriminant space is used to classify the samples into groups. If the model
can successfully classify the samples into groups based on the morphological variables, the
landform categories assigned by LDA will match those that we assigned during data
collection.

We conducted two LDAs with two groups, one distinguishing lobate scarps and
wrinkle ridges, the other distinguishing smooth-plains and cratered-plains structures. Once
an LDA model was completed, it was evaluated using a “jackknife” validation technique
with the original data to reduce the self-constructed biasing accuracy of the model. The
jackknife technique is a resampling method in which a statistic—in our case the results of

running our sample through our LDAs—is calculated repeatedly with one of the
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observations excluded in turn. By calculating the statistic multiple times, an estimate of the
parameter, or average of how accurate the LDA is, can be found.
2.3 Results

A catalog of 100 shortening landforms was compiled that contains the geographic
position of each shortening landform, the highest-resolution DEM available at the time of
this writing that covers the shortening landform, the 12 collected parameters, the visual
assessment of the traditional category to which the shortening landform ought to be
assigned, the map patterns of the scarp (Figure 2.3), and the terrain type in which the
structure is found. The catalog comprises 75 lobate scarps and 25 wrinkle ridges, and is
included in the supplementary material.

Principal component analysis

For our PCA, Figure A2.1 shows the scree plot that presents the percentage of
variance that is explained by each of the 12 PCs. PCs 1 and 2 together describe 65% of the
variance of the data, and therefore we use them to present and discuss the results for
grouping of shortening landforms. Variable loadings (Table 2.1, columns PC1 and PC2)
describe the contribution of each variable to each principal component. A positive loading
has a positive correlation with its respective PC and likewise a negative loading is
negatively correlated. Loadings for each PC were deemed important contributors if their

absolute value exceeded the value of a loading if each loading contributed equally to the

variance of a PC, i.e., given by \/ 1/# of measurements (see the bold values in Table 2.1).

The strongest influencing parameters on PC1 are those that pertain to the size of the
shortening landforms, i.e., relief, breadth, total cross-sectional length, fore- and backlimb

length, and mapped length (Table 2.1). PC2 is most influenced by the shortening strain and
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both fore- and backlimb slopes; however, as shown below, TRI value, breadth, and cross-
sectional length are also influential (Table 2.1).

PCA sample scores form a single cloud of points (Figure 2.5). These scores are
coded in three ways to aid in the interpretation of the PCs (Figure 2.5), including the
traditional categories for a clustering of lobate scarps and wrinkle ridges (Figure 2.5a),
concave, convex, straight, sinuous, and switching vergence map patterns (Figure 2.5b), and
smooth-plains structures and cratered-plains structures (i.e., those shortening landforms
classified solely by terrain type) (Figure 2.5¢c). For each categorization, there is substantial
overlap in categories with no distinct separation of groups. This indicates that the
morphology of shortening landforms on Mercury provides no evidence of any distinct
groups based on traditional categories, map pattern, or terrain type.

Discriminant function analysis

LDA produces a linear equation that maximizes the separation of pre-defined
groups. LDA loadings are the coefficients (slopes) in this linear equation. Their signs
indicate the directions in which they influence a discriminant function, and their
magnitudes indicates their relative contributions. Therefore, the sign of large loadings is
important in assigning the relative extent of where the shortening landform would be placed
in LD space. We performed LDAs to classify landforms by traditional types and terrain
types (Table 2.1). For both the traditional categories and structures categorized by their
host terrain, the breadth of the landform holds a strong negative influence on the LDA,
whereas the total cross-sectional length holds an almost equally strong, positive influence

on the LDA. In both cases, breadth and cross-sectional length are substantially more
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influential than any of the other measurements, and so they provide the greatest influence
on the LDA predictions.

A jackknife resampling of the LDA indicates that it is 79% accurate in predicting
the traditional categories of the shortening landforms. The LDA was 76% accurate in
classifying landforms based on terrain type. Both LDAs were only moderately successful
in predicting traditional categories and terrain types, and the 21-24% cases of inaccurate
classification question the support of these classifications.

When a sample is assessed with an LDA, that sample is assigned an LD value that
the LDA uses to distinguish the predefined group to which that sample belongs (Figure
2.6). In an LDA that attempts to distinguish between two groups, samples that cannot be
differentiated would have LD values in and around zero. Our traditional category LDA
(Figure 2.6a) assigns negative LD values to landforms where it predicts are lobate scarps,
and positive LD values where it predicts wrinkle ridges. The negative and positive values
produced by the terrain-type LDA correspond to predictions of cratered- and smooth-plains
structures, respectively (Figure 2.6b).

Both LDAs show a substantial overlap of categories between LD values, with many
structures clustering near zero. The traditional category LDA assigns the landforms of this
work with LDs that fall in the range of —2.33 to +4.60. Of this, a total of 67 structures are
assigned LDs that fall in the range between —0.82 and +1.54. In this range, lobate scarp
designations greatly extend over wrinkle ridge designations, indicating that the quantitative
morphological measurements that define wrinkle ridges and lobate scarps are not distinctly
different when assessed with this method. This result is emphasized by the

misclassification of structures relative to our visual inspection (e.g., wrinkle ridges
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assigned negative-lobate scarp values Figure 2.6b). The overlap of LDs implies that most
shortening landforms exist on a spectrum between lobate scarps and wrinkle ridges,
whereas the small remainder can be identified as distinguishable endmembers. In this work,
33 of the 100 structures are clear endmembers: just 25 lobate scarps and 8 wrinkle ridges
lie outside of this central cluster (Figure 2.6).

The LDA pertaining to the terrain type in which the structures reside (Figure 2.6b)
also depicts a substantial amount of overlap between cratered-plains structures and smooth-
plains structures, albeit with even fewer endmembers. This finding implies that the
morphology of shortening landforms is not distinctly different across the terrains observed
on Mercury’s surface. All the structures in this study exist as either smooth-plains
structures or cratered-plains structures (cf. Byrne et al., 2014), and so we interpret this
result as indicating that a certain morphological variability of shortening landforms on
Mercury is found in both terrain types. Unlike the traditional categories, however,
categorization by terrain type does not assume specific morphological characteristics of
shortening landforms, and so does not require (nor did we expect) the statistical detection
of distinct groups based on morphology that were classified by Byrne et al. (2014)
according to terrain type.

2.4 Discussion

We applied multivariate statistical analyses—principal component analysis and
linear discriminant analyses —to assess if a systematic categorization of shortening
landforms is possible based on morphological measurements alone. Prior to this study,
shortening landforms on Mercury were assumed to fall into distinct categories based purely

and subjectively on visual assessment of their map patterns and topography (Dzurisin,
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1978; Melosh and McKinnon, 1988; Strom et al., 1975; Watters et al., 2004). Other studies
have since challenged the use of these categories and have grouped Mercury’s shortening
landforms based on the terrain type in which they are located (e.g., Byrne et al., 2014).
Although this latter approach is agnostic to landform morphology (and allows for the
possibility that a continuum of landform shape exists), it sidesteps the issue of actually
assessing quantitatively the morphology of shortening landforms on Mercury.

As with any statistical testing, it is important to note possible sources of bias and
efforts for bias mitigation. One bias in our data collection may arise from the lack of equal
and global coverage of high-resolution DEMs at present. This variability in data
availability may bias our results toward larger landforms in more rugged terrain, such as
cratered-plains landforms. We tested for dependency of landform size with terrain
ruggedness by calculating the Topographic Roughness Index (TRI) along our profiles and
observed its effect on our statistical results. The loadings of the TRI for both LDAs are
negligible, whereas the loadings of the TRI for the PCA are small compared to the largest
contributors (Table 2.1). A PCA performed without the TRI measurements (not included)
produced nearly indistinguishable results. We take these results as support that our
morphologic measurements are representative for a wide range of landform sizes on
Mercury, irrespective of resolution and coverage of elevation data.

Moreover, our data include shortening landforms spanning a wide range of sizes
(~30-1,000 km in length), thus accounting for a wide range of structure size. We also tested
for size bias by scaling relief to shortening landform length, and then plotting the scaled
relief against the LDs generated by the LDAs. No correlation between relief-to-length ratio

and the LDs was found. Additionally, we performed the LDAs without the breadth and
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topographic profile-length measurements, the most influential parameters in the original
LDAs, to evaluate size bias. Excluding these data produced a similar spectrum rather than
distinct groups: there was a substantial overlap in LD space for both the traditional
categories and terrain type, and the success of the LDA correctly assigning the categories
to our samples was approximately the same (80% and 73% for the traditional categories
and terrain types respectively). These results indicate that additional evaluation of the LDA
does not alter its outcome: the morphology of shortening landforms on Mercury does not
separate such landforms into distinctly different groups.

“Lobate scarps”’ and “wrinkle ridges”

Our principal component analysis and linear discriminant analyses demonstrate that
morphological measurements do not support the grouping of shortening landforms on
Mercury into distinctly different categories. Only one cluster of data points is displayed
based on the sample scores created in our PCA, showing no distinct patterns within the
data scatter. For shortening landforms classified into the traditional categories (Figure
2.5a), our findings indicate that they are not distinctly different from one another for the
morphologic parameters we assessed. PC1 is strongly anticorrelated with relief, breadth,
total cross-sectional length, fore- and backlimb lengths, and mapped lengths (Table 2.1),
implying that landform size may help in differentiating landform types. Although wrinkle
ridge endmembers have generally lower relief than lobate scarps, there is substantial
overlap of the two groups, with only few distinct lobate scarp and wrinkle ridge
endmembers (note the lobate scarp and wrinkle ridge endmembers on the left and right of
Figure 2.5a, respectively). This finding indicates that the size of the landforms, as a

function of their relief, breadth, and total cross-sectional length, does not unequivocally
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distinguish these categories. PC2 has a strong positive correlation with shortening strain
and the slopes of the fore- and backlimb. Influential parameters on PC2 such as the slopes
and shortening strain are measurements of a landform’s relative shape along its topographic
profile, suggesting that the gradients of shortening landforms are also important in
distinguishing landform type. However, lobate scarps and wrinkle ridges fully overlap
along the PC2 axis, strongly implying that the parameters governing PC2 alone do not
unequivocally distinguish between the traditional categories.

Principal component analysis is based only on the morphological measurements; it
is agnostic to any group classification. In contrast, LDA constructs a linear model that
maximizes the separation of pre-defined groups. In the LDA assessing the difference
between lobate scarps and wrinkle ridges, higher (positive) LD values predicted a structure
to be a wrinkle ridge, whereas lower (negative) LD values predict lobate scarps. Substantial
overlap along the LD axis (Figure 2.6a) highlights a broad region where lobate scarps and
wrinkle ridges cannot be distinguished by this basis. Moreover, ~20% of structures are
misclassified by a jackknife of the LDA. If lobate scarps and wrinkle ridges truly fell into
distinct categories, there would be two clusters on opposite ends of the LD axis with little
to no overlap and a minimum of false predictions. The LDA therefore supports the results
of the PCA, indicating that although clear endmembers of what have been traditionally
identified as “lobate scarps” and “wrinkle ridges” do exist, shortening landforms on
Mercury form a spectrum between these morphologically idealized endmembers. This
result is supported by observations of transitional structures (e.g., Clark et al., 2017;
Watters, 2021; Watters and Nimmo, 2010) and by structures for which traditional

classification is not obvious.
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In the LDA, the total cross-sectional length and breadth are much more influential
than any other measurements (Table 2.1). This is an interesting outcome as both
measurements give first-order estimates of the shortening caused by the faulting and
folding of the structure. Breadth is particularly notable because it is governed by the
geometry of the underlying thrust fault and associated folding (e.g., Brandes and Tanner,
2014). Specifically, shortening-landform breadth is influenced by a combination of fault
and depth of penetration, and it may thus reflect a difference in the type of thrust system
underlying the landforms (e.g., some examples in Boyer and Elliot, 1982; Crane, 2020a;
Martinez-Torrest et al., 1994). Therefore, the distinction between lobate scarps and wrinkle
ridges on Mercury may lie in the underlying thrust system structure rather than their
morphology. Future studies should perform detailed analysis of the underlying fault
geometries of lobate scarps and wrinkle ridges and compare the thrust systems of the two
categories.

To visually assess the traditional categories, we first independently (i.e.,
individually) classified the thrust-fault related landforms and compared our heuristic
assessments for each structure. In several instances, we debated our assessments of
structures between our authorship group because our interpretations did not agree or
because it was too difficult to decide between assigning only the terms lobate scarps and
wrinkle ridges to landforms. The quantitative results of the PCA and LDA reflect this
heuristic, qualitative ambiguity. Crane and Klimczak (2019a) reached the same conclusion,
confirming the finding stated in Byrne et al. (2018): “a classification scheme for shortening
structures based on morphology, such as that used historically for Mercury, works only in

a general way but cannot capture the broad variation in geometry of these landforms”.
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One defining criterion of wrinkle ridges is the presence of a wrinkle that typically
sits atop and frequently parallels the strike of the ridge (e.g., Dzurisin, 1978; Nahm et al.,
2023; Strom et al., 1975). Of our 25 wrinkle ridges, 14 do not show this superimposed
wrinkle and their categorization was based purely on the complex map pattern. Most
shortening landforms on Mercury’s smooth plains have a wrinkle-ridge-like map pattern
(Crane and Klimczak, 2019a) but lack a clearly defined, superposed wrinkle that parallels
the main ridge. Although small, wrinkle-like structures are widespread in the planet’s
smooth plains, these structures are frequently not situated atop a broader ridge. That many
ridges lack wrinkles may indicate that wrinkles did not form or that they are too degraded
to be preserved—but speaks subjectively to the conclusion that not all wrinkle ridges are
actually, in fact, wrinkle ridges.

While several thousands of shortening landforms have been mapped across
Mercury’s surface (n = 6000; e.g., Byrne et al., 2014), only a few structures (n = 60) have
been regarded as high-relief ridges (Watters, 2021). Due to this small sample size, high-
relief ridges were not analyzed with the statistical methods presented in this study. High-
relief ridges are noted to be more symmetrical in cross-section, as their general
morphological characteristics resemble that of a lobate scarp aside from a steeper backlimb.
Provided that symmetry and backlimb slope are not the most influential parameters in our
statistical analyses (Table 2.1), and that high-relief ridges previously described in the
literature are on the order of tens to hundreds of km in length (Watters, 2021)—which
scales similarly to many shortening landforms in this work—we anticipate that high-relief
ridges would lie in the shortening landform spectrum produced from our results,

indistinguishable from the other traditional categories.
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The traditional categories of shortening landforms have also been used for Mars
(e.g., Watters and Robinson, 1999), the Moon (Watters, 1988), and Venus (e.g., Bilotti and
Suppe, 1999). Our finding that morphology does not support the classification of landforms
on Mercury into binary categories raises questions about the suitability of these
classifications on other planetary bodies. In a recent study, McCullough et al. (2023)
focused on highlighting the differences between lobate scarps and wrinkle ridges on Mars
by also conducting several LDAs based on morphology of shortening landforms there.
Their LDA focused on surface observations also achieved only 79% accuracy, with broad
overlap between lobate scarp and wrinkle ridge morphology. These results largely match
those in this study and suggest that shortening landforms on Mars also form a
morphological spectrum defined by the “traditional” endmembers, further supporting that
the retention of the existing, binary classification scheme obfuscates the complexity and
natural variability that defines the real-world continuum of shortening landform
morphologies.

Other categories

We also assessed if a distinct grouping of shortening landforms by terrain type can
be statistically detected, as such groupings have been applied to Mercury (Byrne et al.,
2014). Both the PCA and LDA showed that our landforms are not distinctly different from
one another in different geological units across Mercury (Figure 2.4c, 2.6b). There are 8
endmembers for cratered-plains structures, which are the largest shortening landforms of
our analysis. This finding supports the finding by Byrne et al. (2014) that the largest
shortening landforms generally occur in Mercury’s cratered plains. However, our PCA

shows that structure size or strain alone are not unequivocal criteria to distinguish smooth-
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and cratered-plains structures, especially when comparing landforms of intermediate and
smaller sizes (< 600 km in length).

The substantial overlap of landforms in the LDA (Figure 2.6b) with many structures
having small absolute LD values shows that the morphology of shortening landforms do
not differ distinctly by terrain type on Mercury. In particular, the loading of the TRI is very
small (Table 2.1), indicating that terrain type does not influence the morphological
variability on Mercury, particularly for attributes related to landform size and shape.
However, as we note above, categorization by terrain type does not rely on morphologic
characteristics of shortening landforms, and we therefore suggest that this classification
scheme is appropriate so long as no assumptions are made regarding the morphology of
the individual landforms themselves.

Finally, we also assessed if shortening landforms can be discretely categorized
based on the map patterns they display (Figures 2.3, 2.4b). Given the varying sample sizes
between the five map patterns, a PCA was the only suitable method for assessing categories
from map patterns. The PCA sample scores depict no distinct groupings based on map
patterns, and all five patterns collectively form a single cloud of points. These results
indicate that any shortening landform can exhibit any map pattern, regardless of various
morphologic parameters such as those associated in PCs 1 and 2 with landform size and
shape, or accumulated strain amount.

2.5 Conclusions

Shortening landforms on Mercury have been traditionally classified into three
categories: lobate scarps, wrinkle ridges, and high-relief ridges. This distinction has

primarily been based on subjective, visual assessment of structures in photogeologic
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datasets. The goal of this study was to assess if the traditional classification scheme for
shortening landforms on Mercury can be applied based on the morphologic variability
using multivariate statistical tests. We find that the morphology of most shortening
landforms on Mercury is consistent with elements of both wrinkle ridges and lobate scarps,
with few distinct endmembers of either category. We also find that any morphology of
shortening landforms can be observed in any terrain type and that the different observed
map patterns can belong to any shortening landform regardless of its morphology.

29 ¢

In conclusion, the terms “lobate scarp,” “wrinkle ridge,” and “high-relief ridge,”
although having found widespread use in planetary tectonics literature (e.g., Melosh and
McKinnon, 1988; Watters and Robinson, 1999; Watters et al., 2004), do not adequately
capture the variability of shortening landform shape, and can erroneously undermine the
true complexity of such landforms. The continued use of these terms will oppose the
facilitation of new insights into the geometry of crustal shortening on rocky planetary
bodies and may reduce the accessibility of planetary tectonics to those who study

shortening systems on Earth—where such terms have never been routinely used.
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2.8 Figures
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Figure 2.1: Examples of the three “traditional” categories of shortening landforms found
on Mercury. a) Map view of an unnamed lobate scarp near the south pole (left) along with
the corresponding topographic profile from x to x’. b) The wrinkle ridge Schiaparelli
Dorsum in map view (left) along with the corresponding topographic profile from y to y’.
¢) The high relief-ridge Antoniadi Dorsum in map view (left) and its corresponding

topographic profile from z to z’. All images are shown in a stereographic projection
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centered on the shortening landform and all profiles are shown at ~16 X vertical

exaggeration.

Figure 2.2: Global map of Mercury in Robinson projection, showing the 100 shortening
landforms analyzed in this study. Those that were traditionally identified as lobate scarps
are shown in light blue, while those identified as wrinkle ridges are shown in green.
Smooth-plains units (Denevi et al., 2013) are highlighted in pink. The map indicates the

locations of five examples of shortening landforms, shown in Figure 2.3 (a—e).
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Figure 2.3: Examples of the five scarp map patterns observed in this study. Here, the
hanging walls are denoted with ‘HW’ and the footwalls are labeled with ‘FW’. a) A scarp
with a concave map trace. b) A scarp with a sinuous map trace. c) A scarp with a straight
map trace. d) A scarp with a convex map pattern. e) A scarp for which vergence switching

is evident. All images are shown in a stereographic projection centered on the shortening

landform.
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Figure 2.4: Block diagram of a shortening landform annotated with parameters measured
for each landform in Figure 2.2. The landform shows the shape of the forelimb (in red) and
backlimb (in blue) and part of the map trace (in white) along which the fault length was
measured. The extracted profile with the maximum relief shows the breadth and locations
where symmetry and slopes of the forelimb and backlimb were derived. The horizontal lines
labeled Forelimb Length, Backlimb Length, and total Cross-Sectional Length are
representations of the unfolded topographic profile. Thrust fault geometry in the subsurface
is interpreted based on the morphology of the structure. The assumed fault geometry is
based off simple cross-sectional balancing, and similar fault structures generated in
previous modeling studies (e.g., Herrero-Gil et al., 2020). The dashed line in the subsurface
represents an arbitrary marker horizon to depict deformation along the fault. The image
in this figure is taken from the low-incident angle global mosaic. Elevation (Bertone et al.,

2023) is shown as blue for low-lying areas and brown for high-standing terrain.

41



6 Lobate Scarps
a) @ Wrinkle Ridges
4
.
2 |+ ° "
~ ° 1
Q 0 L] ° .0 %
[ o L ]
® °
=2 [ ] ( ] [ ]
%
o® )
_4 -
°
_6 -
1 1 1 1 1 1 1
6 I b) A Concave
A Convex
4 L Straight
A Sinuous
Y S A Switching Vergence
2+ = aA e
Wy
N
oo} A A4 Aaa A 2
a A A48 A‘ A A
A y's
-2 |a A A ash AA
A /
A A
-4 L
A
A
-6 |
1 1 1] 1 1 1 1
6 o Cratered Plains
C) ® Smooth Plains
4 L o
o [o]
o
o® %o
2 + 0%ax0 ®
o OC?QD o ‘: &) ° [ ]
y gBeo & o
O 0} ? Qe ©® o
o o afCe o o
o ocso @ %
2 Lo 8 9 %o ®
o o &
8@ 2
-4 |
o
°
_6 -
1 1 l 1 l 1 1 1

PC1
Figure 2.5: PCA sample scores coded by traditional categories (a), map trace (b), and (c)

terrain type.

42



a)

Wrinkle Ridges

-3 -2 -1 0 1 2 3 4 5

LD

b)
Cratered Plains . o Smooth Plains
BSEp FRIYGNTee & 0 o

| T T T T T T T ]
-3 =2 -1 0 1 2 3 4 5

LD

Figure 2.6: Classification of landforms by linear discriminant analysis based on
traditional categories (a) and terrain types (b). Note the poor discretization of landforms
in both cases, suggesting that landform morphology does not support the existence of

distinct categories per this technique.
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2.9 Tables
Table 2.1: Loadings of variables on PCs 1 and 2 and linear discriminant loadings for the
traditional category LDA (LD TC) and terrain type LDA (LD TT). Bolded values indicate

the most important loadings for each axis.

Parameter PC1 PC2 LDTC LDTT
Relief -0.38 0.26 -3.70 -2.87
Breadth -0.43 -0.18 -28.97 -39.81
Total Cross-Sectional Length -0.43 -0.18 26.79 42.68
Shortening Strain -0.12 0.50 -0.15 0.72
Forelimb Slope -0.16 0.48 1.70 0.41
Backlimb Slope -0.05 0.43 0.17 -0.25
Symmetry -0.20 0.29 0.13 0.49
Forelimb Length -0.30 -0.17 2.81 0.63
Backlimb Length -0.41 -0.14 1.41 -2.64
% Backlimb Downslope 0.13 0.09 -0.41 -0.10
Mapped Length -0.32 -0.10 0.51 0.18
TRI -0.17 0.21 0.27 0.04
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CHAPTER 3
GEOMETRIC FORWARD MODELING OF THRUST SYSTEMS UNDERLYING

SHORTENING LANDFORMS ON MERCURY?

2 Loveless, S.R., Klimczak, C., Crane, K.T., and Byrne, P.K., Submitted to Journal of Structural Geology,
2025
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Abstract

Mercury hosts thousands of shortening landforms that are widespread across the
entire planet. The shortening is widely accepted to be caused by a combination of thrust
faulting and folding, resulting from the global contraction of Mercury caused by long,
sustained cooling. Most shortening landforms on Mercury’s surface have been classified
into one of two groups: lobate scarps or wrinkle ridges. There is no distinct statistical
difference in the surface morphology of these shortening landform classifications. Only a
small subset of shortening landforms are clear-endmember wrinkle ridges and lobate
scarps. The difference between geomorphic manifestations of shortening landforms may
be governed entirely by the thrust systems and associated folding that form them. We
therefore model thrust systems associated with 55 lobate scarp and wrinkle ridge
endmember shortening landforms found across the surface of Mercury. Structures were
modeled in 2D sections below the topographic profiles of landforms with the greatest
structural reliefs. Models utilized the fault-bend fold algorithm in the MOVE geologic
modeling software. Once models matched the observed topography and shortening strain,
fault geometric parameters, such as number of structures, dip, depth extent of faulting,
height, etc., were extracted and compiled for all structures. Our modeling shows that
Mercury hosts a wide range of complex thrust systems, including single, listric faults,
imbricate thrusts, and pop-up structures. In particular, the morphologies of lobate scarps
end-member structures are best explained by models of a single, listric fault, whereas most
wrinkle ridge end-member structures require more than one fault. We identify a large
overlap in the variation of fault geometric parameters for both wrinkle ridge and lobate

scarp archetypes, confirming the results of our previous geomorphic analysis that
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shortening landforms do not comprise two distinct categories. The overlap in geometric

parameters also suggests that global contraction generated most of these structures.
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3.1 Introduction

Mercury hosts a global population of positive-relief, tectonic shortening landforms
as revealed by both the Mariner 10 (e.g., Strom et al., 1975) and MEcury Surface, Space
ENvironment, GEochemistry, and Ranging (MESSENGER) missions (e.g., Byrne et al.,
2018). Such landforms are thought to be produced by global contraction (e.g., Solomon,
1978) and are widely accepted to be formed by thrust faulting and folding (e.g., Byrne et
al., 2018, 2014; Strom et al., 1975). Many terms have previously been used to describe
tectonic landforms formed by thrust faults, e.g., “shortening structures” or “thrust fault-
related landforms”, but for simplicity we will refer to all such structures as “shortening
landforms” throughout this study.

Shortening landforms are common on all major rocky bodies in the Solar System.
Such structures depict positive-relief cliffs, often paralleled by breaks along the surface
(e.g., Schultz and Watters, 2001; Watters, 2003). Since the earliest observations of tectonic
features on terrestrial bodies, shortening landforms have been categorized into groups
based on surface morphology alone (e.g., Dzurisin, 1978; Strom, 1979). Of the different
classifications used to describe shortening landforms, lobate scarps and wrinkle ridges have
been used as designations for almost all shortening landforms found on Mercury’s surface
(e.g., Melosh and McKinnon, 1988; Watters et al., 2004). Lobate scarps are described to
show clear linear-to-arcuate surface breaks in plan view, with topographic characteristics
of steeply sloping forelimbs at the surface break trailed by gradual sloping backlimbs
(Figure 3.1a; e.g., Strom et al., 1979, 1975; Watters, 1993). Such surface expression is

linked to asymmetric anticlinal folding of the hanging wall (Byrne et al., 2014) with the
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asymmetry, or vergence, providing clear indication of tectonic transport to be in the
direction in which the forelimb slopes (i.e., the vergence). This geometry is akin to the
folding geometry of fault-displacement gradient folds described by Wickham (1995).
Wrinkle ridges have been described as having complex, sometimes sinuous map
patterns in plan view that are accompanied by cross-sectional topographic profiles

13

demonstrating a superimposed ridge (the “wrinkle”) on top of a primary ridge (e.g.,
Watters, 1988). Shortening landforms of this class are common within volcanic plains of
terrestrial planetary bodies throughout the Solar System (e.g., Nahm et al., 2023; Plescia
and Golombek, 1986). On Mercury, wrinkle ridges frequently host faults that break at the
surface (Golombek et al., 2001; Schleicher et al., 2019; Strom et al., 1975; Watters, 1988),
but many have also been interpreted to be anticlinal folds above blind thrust faults (e.g.,
Schultz, 2000) containing backthrusts (Okubo and Schultz, 2004). Byrne et al. (2018)
argued that wrinkle ridges host two oppositely facing monoclines which may indicate
vergence of two opposing thrusts.

The oversimplification that categorizing shortening landforms into these two
groups is challenged by the large variation of thrust systems found on Earth. Mountain
ranges that formed by shortening display a wide range of complex systems of thrust faults
and folds (e.g., Boyer and Elliot, 1982; Crane and Klimczak 2019b; Chapple, 1978;
Matthews and Work, 1978; McClay, 1978; McClay and Price, 1981; Morley, 1988). There
is no evidence that suggests that thrust systems on Earth operate differently and therefore
thrust systems on other planets should not be treated otherwise than those observed on

Earth. Fold and thrust belts are common large-scale crustal shortening systems that are

accommodated by multi-fault thrust complexes (e.g., McClay and Price, 1981). Common
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Earth thrust systems like duplex structures are described with listric or curved fault
geometries with either stacked panels bounded by thrust faults or as imbricate thrusts with
multitude of thrusts branching off a single décollement (Boyer and Elliot, 1982). Many of
these thrust systems are created by displacement along multiple faults to build positive
relief. In contrast, thrust systems on other planets are commonly interpreted as single,
homoclinal (non-curved) fault planes (e.g., Schultz and Watters, 2001).

Few studies have suggested fault geometries on Mercury like to those on Earth.
Some examples include for an extensive décollement underlying Beagle Rupes (Rothery
and Massironi, 2010) and pop-up thrust system structure for shortening landforms and
complex compound landforms on Borealis Planitia (Crane and Klimczak, 2019a). Other
analogies between Earth and Mercury tectonics have been drawn from the
conceptualization of thin- and thick-skinned deformation (Crane and Klimczak, 2019a).
Thin-skinned deformation is strain accommodated by faults in weak upper horizons of the
lithosphere (originally, for Earth, the sedimentary cover atop crystalline basement rock),
whereas thick-skinned deformation is strain accommodated by faults that have penetrated
deep into the basement (Chapple, 1978; Pfiffner, 2017). Analogies of thrust fault-related
landforms to shortening structures on Earth have been made for thin-skinned tectonics
features like the Yakima fold and thrust belt in Washington State (e.g., Watters et al., 2004),
and the Lesser Himilayan Duplex (Crane and Klimczak, 2019a). Thick-skinned
deformation has been used to describe Mercury’s shortening landforms with comparisons
to the Wind River thrust fault (Mueller et al., 2014; Watters and Robinson, 1999). Although
impact-weakened stratigraphic horizons or volcanic layering are frequently invoked as

layers permitting thin-skinned tectonics in volcanic plains, basement-reactivated thin-
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skinned tectonics has been invoked as a hybrid mechanism on Borealis Planitia (Crane and
Klimczak, 2019a). By this mechanism, faulting and folding within the smooth plains are
influenced by fault activity in the basement rock (Pfiftner, 2017).

Many previous subsurface modeling efforts for shortening landforms on rocky
bodies have used the elastic halfspace mechanical dislocation COULOMB code (e.g.,
Byrne et al., 2016; Egea-Gonzalez et al., 2017, 2012; Peterson et al., 2020; Schultz and
Watters, 2001; Williams et al., 2013) or geometric cross-balancing techniques including
trishear modeling (e.g., Herrero-Gil et al., 2020, 2019) or fault-propagation folding
(Mueller et al., 2014). Using COULOMB, a set of physical parameters for a predefined
fault plane are invoked as the surrounding lithosphere is elastically deformed to match the
observed topography (Toda et al., 2005). Early studies modeled simple homoclinal faults
with uniform displacements (e.g., Schultz and Watters, 2001) that can produce artifacts in
the predicted topography if the superposed displacement is not tapered toward the fault
tips. However, listric fault geometries have also been applied to COULOMB modeling to
produce acceptable model topographies (e.g., Byrne et al., 2016; Peterson et al., 2020;
Watters and Schultz, 2002), but other studies have found listric faults to inaccurately
represent the uplifted topography (e.g., Egea-Gonzalez et al., 2012; Herrero-Gil et al.,
2019). Alternatively, the trishear forward modeling technique recreates fault propagation
folding, which uses cross-balancing techniques that relates folding deformation at the
upper fault tip to a specialized limb angle and hinge ratios. These cross-balancing methods
have been used in conjunction with faulted offset craters to model the underlying fault
geometry (e.g., Herrero-Gil et al., 2020; Mueller et al., 2014). These methods come with a

set of drawbacks. First, not every surface-breaking thrust fault has a superposed offset
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crater. Second, the trishear approach requires introducing additional geometric
complexities and a wide, largely unknown parameter space associated with planetary
shortening landforms.

The goal of this study is to investigate the variety of thrust systems in Mercury’s
subsurface. This is done by modeling 55 morphologically variable shortening landforms
by selecting the endmember lobate scarp and wrinkle ridge structures from the data set
published in Loveless et al. (2024a). To be concise, we refer to these endmember structures
as lobate scarp archetypes and wrinkle ridge archetypes, however, we note that some
wrinkle ridge endmember structures were classified as lobate scarps in the LDA of Chapter
2. Our modeling utilizes the fault-bend fold algorithm in the MOVE geologic modeling
software from PE Limited (Petex). Fault-bend folding is a proven geometric forward-
modeling technique that can be applied to fault displacement-gradient folds (e.g., Brandes
and Tanner, 2014; Connors et al., 2021; Hughes et al., 2014; Medwedeff and Suppe, 1997;
Suppe, 1983). We collect and synthesize fault geometric parameters for our 55 models to
identify the structural characteristics of shortening landforms on Mercury.

3.2 Methods

Landform selection

We previously assessed the morphological variability of 100 randomly selected
shortening landforms on Mercury to distinguish lobate scarps and wrinkle ridges (Chapter
2). In particular, we conducted a Linear Discriminant Analysis (LDA) that maximizes the
difference between two predefined groups by creating a linear equation that classifies cases
based on their correlated parameters. An LDA used to distinguish two groups assigns to

each case a positive or negative value, or linear discriminant (LD) for its classification. For
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example, an LDA of lobate scarps and wrinkle ridges shows a large degree of overlap in
the LD (Figure 2.6; Chapter 2), indicating that the morphology of these shortening
landforms on Mercury does not support distinct groups. To further investigate if a structural
difference between these categories exists, we use the end members of the lobate scarps
(n=30) and all of the wrinkle ridges (n=25; Figure 3.2) to model their underlying thrust
systems. We use the terms lobate scarp archetypes and wrinkle ridge archetypes when
referencing these lobate scarp and wrinkle ridge shortening landforms that we model in
this work.
Modeling

We construct models using the 2D Move-On-Fault module in the MOVE modeling
software by PE Limited (Petex). Our models make use of the Fault-Bend Fold algorithm,
which is a geologic restoration technique that directly relates folding in the hanging wall
of the fault to the shape and displacement along the fault plane. Describing deformation as
a fault-bend fold uses structural balancing, which is the integration of satisfying a set of
conditions between the interpreted initial state and observed deformed state of the area or
volume of interest (Dalhstrom, 1969). Such conditions include the maintenance of length
of the interpreted geologic horizons pre- and post-deformation.

A fault-bend fold is a fault-related geometry, where folding of the hanging wall is
caused by distortions along the fault plane (Suppe, 1983). The relationship between the slip
along the fault plane and the folding of the above horizons is modeled through a series of
trigonometric relationships dependent on changes of the fault dip. The specific shape of
the fault and the amount of along-slip displacement govern the distorted shape of the

overlying layers of rock. Whereas a homoclinal fault experiencing simple shear
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accommodates all of the shortening through the displacement along the fault, a fault-bend
fold will drive different amounts of shortening accommodated along the fault plane through
a combination of slip and folding arising from changes in the dip of the fault plane.
Homoclinal portions of a fault in a fault-bend fold will accommodate shortening with more
slip, and as the fault changes dip, or ruptures the surface, folding becomes more prevalent.
The faults modeled in this study break the surface, so the fault-bend fold geometry
simulates how the uplifted hanging wall folds over the footwall.

Such geometric configurations have been used for many years to characterize
contractional tectonic architecture on Earth (e.g., Connors et al., 2021; Suppe, 1983; Suppe
and Namson, 1979). Fault-bend folds are present in seismic reflection profiles of
contractional tectonics on Earth (e.g., Shaw et al., 2005). Fault-bend fold architectures have
also been used to describe or model the structural geology of shortening landforms on
Mercury (Byrne et al., 2018; Crane, 2020a; Crane and Klimczak, 2019a). This type of fault
geometry is a good representation of surface-breaking thrust faults for which displacements
are large enough to permit the hanging wall to fold over the footwall.

We model the fault structure under each of our selected shortening landforms along
the inferred direction of tectonic transport and at the point of highest structural relief along
the topographic profile. The direction of tectonic transport is assumed to be perpendicular
to the long axis of a landform, except where an impact crater is crosscut and shortened by
the fault, indicating the direction of displacement (Galluzzi et al., 2015). The selected
topographic profile is then imported into the MOVE software and 50 arbitrary, evenly
spaced horizontal geologic horizons are constructed underneath the topographic profile to

track the modeled deformation. The uppermost of these horizons is taken as the planetary
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surface. The elevation of this surface horizon is set equal to the measured elevation at the
start of the forelimb. We vary the specific spacing of the horizons based on the length of
the landform.

After the horizons are constructed, we draw a fault plane within the model setup.
We conduct the modeling while simultaneously assessing the photogeology of the
shortening landform to accurately inform the model with all of the available observations.
Initially the fault is assumed to be a homoclinal fault plane with a reverse sense of slip and
a dip angle of 30°. Iterative model previews are generated as the fault plane geometry,
depth, and displacement are changed until the modeled surface horizon matches the
observed topography. Fault parameters were adjusted based on the results from the
previous models by raising or lowering areas the fault in the respective areas of the surface
that needed alterations. The amount by which a fault was changed is relative to the
discrepancy between the modeled surface and the observed surface in the previous model.
Once the observed topography is matched, we calculate the shortening strain from folding
for our model to test against the observed shortening strain as an additional control point.
More details on this control point are provided in section titled Controls of the Models. A
model is deemed to be a successful match once the modeled topography matches the
observed topography within 10% of the maximum relief of the structure and the shortening
strain from folding of the model matches within 0.2% of the observed shortening strain
across the structure (Loveless et al., 2024a).

If two or more surface breaks are present on image data, then we include more than

one fault in the model. In this case, we model the primary fault first, which we determine
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using photogeological observations. The geometries and displacements of any other faults
are subsequently added to replicate the desired deformation.

Once a model was complete, 13 modeled fault parameters were extracted (Figure
3.3), including near-surface fault dip, average dip, maximum dip, input shortening, average
heave, average throw, average slip, maximum slip, depth of faulting, fault height, and
modeled strain from folding. Near-Surface Fault Dip is defined as the dip of the fault in
the uppermost 10% of the fault. Average Dip (« in Figure 3.3) is the average downward
angle the fault makes with a horizontal plane, and Maximum Dip is the maximum
downward angle relative to a horizontal plane. All dips are measured in degrees. Input
Shortening, measured in kilometers, is the horizontal shortening implemented in the Fault-
Bend Fold algorithm to which the model displaces the deformed horizons.

The slip accommodated along a fault in a fault-bend fold structure varies along the
height of the fault (Suppe, 1983); therefore, we include additional measurements from our
models. Average Heave and Average Throw, both measured in kilometers, are the average
horizontal and vertical components of the displacement laterally along the fault. Average
Slip is the average displacement laterally along the fault. Maximum Slip is the maximum
amount of displacement that occurs along the fault. Other measurements include Depth of
Faulting, measured in kilometers, as the depth extent measured vertically from the surface
to the lowermost portion of the fault and Fault Height, measured in kilometers, which is
the down-dip length of the modeled fault plane (red line in Figure 3.3). From fault height,
we calculate Aspect Ratio, which is the fault height divided by the mapped length of the
fault taken from Loveless et al. (2024a). If more than one fault was needed for a model, the

fault height of the largest of the faults is reported. Number of Faults is the number that was
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needed to model the observed deformation for each landform. Finally, the modeled strain
from folding of the uppermost hanging-wall horizon produced by the model is calculated

as:

S Ly — Ly
Fold — )
Lt

where Ly is the horizontal hanging wall horizon length and L is the total hanging wall
horizon length.

Thrust System Type and Fault Shape are two qualitative metrics that describe the
subsurface structure of the shortening landforms. Thrust System Type refers to the number
of faults (one, two, or three) and their respective directions of tectonic movement, or
direction of tectonic transport from one another. Fault Shape describes whether the fault
plane is listric (curved) or planar.

Controls of the models

As for cross-section restoration and balancing, a model can be deemed successful
once it satisfies all control parameters. For geologic restoration of studies on Earth, such
controlling parameters include interpretations of seismic sections and lithologic changes
and repeated or missing sequences in borehole data (e.g., Egan et al., 1997; Pierdominici
et al.,, 2011). Fault geometry, depth, and dip can be directly correlated to the seismic
response of faults in the subsurface, and surface dips from in sifu field measurements can
all serve as controls.

For other terrestrial planets, subsurface data and in situ analyses are more difficult
or impossible to obtain. The current standard of fault modeling efforts in the past has been
to match the topography by forward modeling of an initially undeformed surface. This

technique has been applied to many bodies that host faulting such as Mercury (e.g., Crane,
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2020b; Watters et al., 2016), the Moon (e.g., Byrne et al., 2015; Collins et al., 2023;
Williams et al., 2013), and Mars (e.g., Herrero-Gil et al., 2019; Schultz and Watters, 2001).
Topography is a reasonable control for these bodies because they lack substantial surface
erosion. However, forward modeling can produce more than one solution for the same
topography (Egea-Gonzalez et al., 2017), and that there is an element of non-uniqueness
to such modeling. Therefore, for our modeling efforts we use the matching the topography
within £10% of the structure’s vertical relief as the minimum criterion to be met for a
model to be deemed acceptable. This is done by creating copies of the topographic profile
at elevations +10% of the vertical relief and forward modeling the surface until it lies
between those boundaries.

To maximize the likelihood of producing a unique solution for our models, we must
use additional control points aside from the observed topography. To better constrain our
models, the modeled strain from folding must be as close as possible to the observed
shortening strain. The observed shortening strain values are taken from Loveless et al.
(2024a). These values were calculated as the change in length (landform breadth minus the
total cross-sectional length) divided by the total cross-section length. In a fault-bend fold,
shortening along the fault is accommodated by both the heave (the horizontal component
of displacement) and by folding of the hanging wall. The amount of strain accommodated
by folding is a function of the shape of the fault.

At the surface, the amount of shortening accommodated by folding is governed by
the depth of faulting, input shortening, and variations of the fault dip (See Section 3.3). A
deeper modeled fault requires less input shortening to match the actual topography as more

material displaced from depth to the surface, but more folding will be accommodated at
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the surface. An increase in modeled depth of faulting increases the strain from folding.
Alternatively, more shallowly penetrating faults require greater shortening, but the
modeled strain from folding will decrease. Therefore, a unique solution for fault depth,
input shortening, and fault dip is achieved by matching the modeled strain from folding to
the observed shortening strain values in addition to matching the modeled topography with
the observed topography.

We try to match the modeled strain from folding to the observed shortening strain
values exactly but find negligible changes in the overall fault geometry in a +£0.2% range
of the modeled strain from folding. We summarize our strain-matching efforts with box-
and-whisker plots, a non-parametric way to portray variance (Figure 3.4). The distribution
of the sample size for our modeled strain from folding and the distribution of the observed
shortening strain from the same landforms compiled from Loveless et al. (2024a) aligns
well (Figure 3.4). We interpret this as an indication that our models provide a good
representation of the folding at the surface and the subsurface fault architecture of the
shortening landforms.

On Mercury, some shortening landforms crosscut craters. If a crater is assumed to
be initially circular, the overall shortening deformation of the cut crater can be used to
constrain geometric properties of the fault, such as fault dip and displacement vector
(Galluzzi et al., 2015), which can be another control point for a structural model. Most of
the shortening landforms selected in our study do not crosscut craters, and if they do, the
craters are either not adequately deformed enough to extract any meaningful structural
information or are located far from our cross-section line and so do not contain the exact

information needed for our model. Only in a couple instances does this method work in our

59



sample of shortening landforms as this method works only on well-preserved craters. For
11 of the 55 landforms, deformed craters were present near the cross-section. However,
most of the faults assessed in this work that show cross-cutting relationships with craters
do not unequivocally show the direction of tectonic transport. Therefore, this is a valid
control point that is considered but is only used for a small subset of our sample size.

3.3 Sensitivity study

We conducted a sensitivity study to test the efficacy of our workflow, the impact
of control points, and the resulting fault geometries. For that, we construct three models
for the same shortening landform (Figure 3.5). All models satisfy the topographic control
point and match the direction of tectonic transport from a nearby shortened crater but vary
with fault geometric parameters (Table 3.1). Out of the three, only one satisfies the second
control point by matching the modeled to the observed strain from folding. In Model 1, we
construct a fault that matches the observed topography and that penetrates to 11.4 km and
dips an average of 9°, leading to a slip on the fault of ~5700 m from an input shortening of
5500 m. In Model 2, we construct a fault that matches the same topography but penetrates
to a depth of 24.2 km and dips at an average 21°. Model 2 requires an input shortening of
2400 m producing a slip along the fault of 2800 m. The fault for Model 3 also was
constructed to match the input topography, but penetrates to 48.1 km, dips at an average of
40°, and requires 850 m of shortening to produce 1673 m of slip on the fault.

The shortening strain observed along the landform for all three models is —0.806%.
The modeled strain from folding is —0.622%, —0.801%, and —1.255% for Models 1 to 3,
respectively (Table 3.1). The modeled strain from folding of Model 1 matches the observed

folding strain with a percent match of 77.2%. The modeled strain from folding of Model 2
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most closely resembled the observed folding strain matching at 99.4% of the observed
value. Model 3 has a percent match of 31.9% to the observed folding strain. Model 2
represents a successful model that both matches the observed topography and accords with
the observed folding strain. The result of this sensitivity study highlights the dependence
of the modeled strain from folding on the depth of faulting, dip of the fault, and input
shortening. Therefore, by using both topography and the strain produced from folding as
control points, we produce well constrained solutions of our shortening landform models.

In a fault-bend fold, the strain accommodated by folding varies fault geometry
(Figure 3.5, Table 3.1). Therefore, matching the observed and modeled folding strain plus
the observed topography yields unique, doubly constrained solutions for the underlying
fault geometry. Folding at the surface is directly related to the dip and depth of faulting.
For the same landform, a fault penetrating to greater depths will have a greater dip than
those penetrating to shallower depths. Slip in fault-bend folds decreases with steeper dips
while greater amounts of deformation are accommodated by antiformal folding (Suppe,
1983). Therefore, our models produce less folding if the modeled fault penetrates to
shallower depths, and the average slip along the fault increases (Table 3.1).

Larger amounts of input shortening and thus slip along the fault are needed to uplift
the hanging wall block to match the topography (Model 1, Figure 3.5). This increases the
total shortening strain of the surface, with consequently less strain accommodated by only
the folding (Model 1, Table 3.1). We interpret such fault geometry as overestimating the
accommodated shortening but producing faults that are too shallow with too gentle dips.
Faults penetrating deeper need lower amounts of input shortening and so accommodate

more folding at the surface (Model 2, Figure 3.5). Model 2 is the best-fit solution in which
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the model matches the observed topography and strain from folding, and so we take the
modeled fault geometry as the best representation of reality. The smallest amount of input
shortening, largest fault dip and deepest extent of fault produce equally good topographic
matches, but the modeled strain from folding exceeds the observed strain (Model 3, Table
3.1). This model likely underestimates the accommodated shortening while producing very
deep faults that dip too steeply.
3.4 Results

We applied our workflow and matched the two or, where possible, three controls
to model the thrust systems of 55 shortening landforms on Mercury. From these models,
13 values were compiled to study the variability of these thrust systems. Additionally,
thrust system type and overall fault shape (i.e., listric or homoclinal) was specified for each
landform. We summarize our observation in a catalogue containing 30 lobate scarp and 25
wrinkle ridge archetypes. The summary of observations and individual MOVE models are
published in the online repository accompanying this paper (Loveless et al., 2024b).

Thrust system types

Among the 55 landforms, we modeled thrust systems that can be described as
having one of three general geometries. The most prominent thrust system type we model
are single, listric faults (Figure 3.6a), with 38 shortening landforms showing this geometry.
In these thrust systems, the depth and curvature of the fault dictate how the hanging wall
is folded. The large variety of modeled listric fault shapes span the entire range of modeled
fault parameters, accommodating small and large strains and lithospheric penetration

depths from <10 km to as deep as ~50 km.
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The remaining 17 modeled thrust systems have multiple faults. Of those, we
modeled seven imbricate thrusts (Figure 3.6b). These are a series of sub-parallel thrusts
for which tectonic transport is occurring in the same direction and that may be rooted by a
floor-thrust or décollement (Boyer and Elliot, 1982). Such structures are known on Earth
to consist of overlapping, stacked series of blocks of rock separated by subparallel thrust-
faults (Hopgood, 1987). Imbricate thrusts were modeled to occur underneath shortening
landforms that displayed vergence in the same or nearly the same direction and to be
tectonically related by their geographic proximity to one another or by their map patterns.
In some instances, the vergence may change along the length of the shortening landform
resulting in possible changing thrust system geometries underneath the shortening
landform. This phenomenon occurs at the shortening landform shown on the right panel of
Figure 3.6b. Along the surface break towards the southwest, one of the shortening
landforms changes vergence and thus may transition from an imbricate thrust to a pop-up
structure.

Indeed, pop-up structures comprise the third thrust system type we identified, of
which we modeled 10 of them. Pop-up structures were interpreted to occur under those
shortening landforms that have two or more sets of tectonic vergence in opposite directions
(Figure 3.6¢). These pop-up structures host a central crustal block that has been uplifted
due to two oppositely dipping thrust faults that border its sides, where the bigger structure
is the primary thrust and the smaller structure the secondary or back thrust (Butler, 1987).
Generally, pop-up structures on terrestrial planets are found to vary in terms of the size

relation of the primary thrust and secondary thrust. Most pop-up structures we model on
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Mercury, however, show a primary thrust that greatly exceeded the size of the back thrust

in terms of fault depth and height, similar to the example in Figure 3.6c.
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Comparison between shortening landform archetypes

We average all of the parameters generated by the modeled shortening landforms
in this work (Table 3.2). Across all structures, the average near surface fault dip, average
dip, and maximum dip are 21°, 22°, and 40°, respectively. The average input shortening
for all shortening landforms is ~1.5 km. The mean values for average heave, average slip,
maximum slip, and average throw are 1.2 km, 1.4 km, 1.6 km, and 0.6 km, respectively.
The average depth of faulting across all shortening landforms is 21.9 km and the average
fault height is 65.4 km. The sample of shortening landforms in this work produced a
modeled strain from folding of —0.28%.

We compiled the parameters of our models to analyze their averages and variability
for the wrinkle ridge (n = 25) and lobate scarp archetypes (n = 30) for their comparison.
First, we averaged each parameter for each archetype landform to identify what defines a
typical lobate scarp and wrinkle ridge on Mercury; the results are presented in Table 3.2.
The representative thrust fault architecture underlying a lobate scarp archetype is a single,
listric thrust fault that shallows with depth (e.g., Figure 3.5 Model 2; Figure 3.6a). These
shortening landforms have an average dip of ~26° and fault to depths of ~27 km. The faults
accommodate an average of ~2 km of slip and produce an average of —0.4% of modeled
shortening strain from folding in the hanging wall.

The typical trust system underlying a wrinkle ridge archetype requires more than
one fault, either as imbricate thrusts (Figure 3.6b) or pop-structures (Figure 3.6¢). The most
representative wrinkle ridge archetype model is shown in Figure 3.6¢c. Such shortening

landforms are underlain by faults with an average dip of ~19° that penetrate to depths of
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~13 km. These structures accommodate an average slip of ~0.7 km and produce an average
of —0.16% of modeled shortening strain from folding in the hanging wall.

Second, we compute box-and-whisker plots for the aspect ratio, depth of faulting,
the maximum and average dip angles, the maximum and average slip, the input shortening,
and the shortening strain from folding (Figure 3.7) to document and compare the variability
of the fault geometries associated with wrinkle ridge and lobate scarp archetypes on
Mercury. We find that these parameters capture all aspects of modeled fault geometries.
As with Figure 3.4, the bold lines within the boxes indicate the median value for each
distribution, whereas the upper and lower bounds of the boxes are the first and third quartile
values of each distribution. Minima and maxima data are indicated by the bounds of the
line segment. Statistical outliers are shown as hollow dots along the axis.

The majority of aspect ratios for both wrinkle ridge and lobate scarp archetypes fall
between 0.1 and 0.6 (Figure 3.7a). The average aspect ratio among all shortening landforms
is 0.4. The range of aspect ratios for lobate scarp archetypes is from 0.1 to 1.3. Wrinkle
ridge archetypes have an aspect ratio range of 0.1 to 1.4. Both archetypes show large
overlap, but generally lobate scarp archetypes have higher aspect ratios as a result of their
greater relief with respect to their lengths than wrinkle ridge archetypes do. We also find
that lobate scarp archetypes penetrate to greater depths than their wrinkle ridge archetype
counterparts (Figure 3.7b). Lobate scarp archetypes host faults that penetrate to depths of
8.4 km to 48 km, whereas the range of wrinkle ridge archetypes depth of faulting spans
from 1.9 km to 38 km. These ranges of depths are nearly identical as only 6 lobate scarp
archetypes are modeled to fault at depths greater than 38 km and only 7 wrinkle ridge

archetypes are modeled to fault at depths less than 8.4 km.
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Lobate scarp archetypes host faults with a median maximum and a median average
dip of 43° and 24° respectively (Figure 3.7c and d). Wrinkle ridge archetypes dip more
shallowly than lobate scarp archetypes with a median maximum dip of 36° and a median
average dip of 17°. The range for both maximum and average dip values overlap for both
wrinkle ridge and lobate scarp archetypes. The maximum dip angle for lobate scarp
archetypes ranges from 21° to 66° and wrinkle ridge archetype maximum dip angles ranges
from 16° to 60° (Figure 3.7c), almost covering the same range of dip angles.

For both maximum and average slip values, wrinkle ridge archetypes overlap with
the lower extent of lobate scarp archetype values (Figure 3.7g and h). A similar trend is
shown in the ranges of input shortening values for wrinkle ridge and lobate scarp
archetypes, where wrinkle ridge archetypes overlap with the lower extent of lobate scarp
archetype values. The modeled strain from folding for wrinkle ridge and lobate scarp
archetypes also demonstrates considerable overlap (Figure 3.7h). More negative values of
modeled strain from folding indicate a greater amount of folding. Wrinkle ridge archetypes
show less modeled shortening strain from folding than lobate scarp archetypes, but almost
the entire range of wrinkle ridge archetype values falls within the lower range of modeled
strain from folding values for lobate scarp archetypes.

The largest shortening landform on Mercury: Enterprise Rupes

Enterprise Rupes is widely regarded as one of the largest shortening landforms on
Mercury’s surface (e.g., Byrne et al., 2018; Ferrari et al., 2015; Watters et al., 2016) so we
include it in our analysis (Figure 3.8a). Its highest vertical relief exceeds 3 km, and it has
a mapped fault length of ~1000 km (Loveless et al., 2024a). Owing to its size, Enterprise

Rupes was statistically classified with the highest lobate scarp designation in Chapter 2.
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Enterprise Rupes is located in the southern hemisphere and crosscuts multiple impact
craters including Rembrandt Basin: a large, 715 km diameter impact basin. Its highest
structural relief towards the southeastern portion of its surface break. In this region,
Enterprise Rupes is unaffected by large impacts or the geology of the Rembrandt basin,
which is host to other smaller impacts, extensional and contractional tectonic features, thus
providing an ideal cross-section to model the subsurface structure solely as it relates to the
underlying fault architecture.

Northwestward along the surface break, there are notable topographic highs that
are likely unrelated to the deformation produced by the primary fault that formed Enterprise
Rupes. To better constrain the shortening strain of Enterprise Rupes, we subtract these
topographic variations from the observed topography (light blue line, Figure 3.8b). The
displacement and strains generated by our model can therefore be assumed to be a lower
bound for the possible displacements and strains. In this region, the morphology of
Enterprise Rupes indicates two fault surface breaks and forelimbs with opposing vergence.
The primary direction of tectonic transport along Enterprise Rupes is towards the southeast,
as indicated by the pronounced forelimb along much of the structure and the multiple
impact craters that Enterprise Rupes crosscuts.

The vertical relief at this area has been measured to be 3.3 km (Loveless et al.,
2024a). The backlimb beyond the pop-up created by the oppositely verging thrust is also
uplifted. To achieve such relief, a model input of 9 km of shortening was applied to the
main thrust. The role of the secondary thrust only affects the peak at the tip of the
shortening landform. The input shortening for this thrust was 2.7 km. These input

shortenings for the primary and secondary thrusts translated to a maximum slip value of
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9.3 km and 2.7 km, respectively. The primary fault has an average dip of 9° and a maximum
dip of 17°. The secondary fault has an average dip of 11° and a maximum dip of 21°. The
lower average dip angles are because of the extensive listric architecture of the fault
geometry. We model Enterprise Rupes to fault to a depth of 34 km. The modeled strain
from folding for Enterprise Rupes is —0.13, which is less than the median value of —0.34
found among lobate scarp archetypes (Figure 3.7h). However, the maximum slip, average
slip, and slip components (average heave and throw) for Enterprise Rupes are,
unsurprisingly, the largest values modeled in our data set.
3.5 Discussion

Lobate scarp and wrinkle ridge archetype thrust systems

We modeled the subsurface structure of 55 shortening landforms on Mercury to
learn about the thrust systems that generated them. The results of our study show a large
variation of fault geometric parameters (Figure 3.7). This finding demonstrates that thrust
systems on Mercury are complex and host a large variation of thrust geometries, similar to
what is observed in thrust systems on Earth. Based on a linear discriminant analysis of the
shapes of these landforms (Chapter 2), we selected those shortening landforms for our
modeling that showed the biggest differences to one another with the intention of analyzing
the broadest variation of thrust system morphologies that occur on Mercury’s surface. We
interpret the large variation of dip angles, depth of faulting, and slip as indicative of
highlighting the innate complexities of Mercury’s thrust systems.

The morphology of shortening landforms on Mercury supports wrinkle ridges and
lobate scarps as endmember categories on a spectrum of shortening landforms (Chapter 2).

The results in this study provide additional support for these as archetypes as the average
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values for all shortening landforms consistently lie between average parameter values for
the archetypes (Table 3.2). In addition, the distributions of fault parameters of wrinkle ridge
and lobate scarp archetypes either overlap or form a continuum, as seen in the first and
third quartile values of wrinkle ridge archetypes beginning or ending where those of lobate
scarp archetypes end or begin (see position of boxes in Figure 3.7).

The most notable difference between archetype types is the number of faults, and
the least amount of overlap occurs in the depth of faulting. A typical lobate scarp archetype
was modeled using one listric thrust fault that penetrated to depths of ~27 km (e.g., Figure
3.6a) whereas a typical wrinkle ridge archetype was modeled with 2 faults (Table 3.2) and
penetrates only to depths of ~13 km (e.g., Figure 3.6¢). The differences between wrinkle
ridge and lobate scarp archetypes are likely to arise differences in host lithology. Most of
the wrinkle ridge archetypes in this study are situated in the smooth plains units, whereas
most of the lobate scarp archetypes are located in the intercrater plains units (Figure 3.2).
Regardless, with an average depth of faulting of 13 km, wrinkle ridge archetypes penetrate
deeper than estimates of up to 2 km for the depth of the volcanic emplacements that make
up the smooth plains units (Du et al., 2020; Head et al., 2011; Ostrach et al., 2015). This
geometry suggests that the mechanisms that produce lobate scarp and wrinkle ridge
archetypes are the same. However, geographically, the lithosphere underlying the smooth
plains units may have hosted very deeply penetrating thrust faults, the surface expression
of which would have been muted by the subsequent emplacement of relatively well-layered
smooth plains. These newer mechanical layers were not present in the intercrater plains,
and such faulting underneath the smooth plains lava emplacements may have been

reactivated upward, creating the shortening landforms observed in these units without slip
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occurring at deeper depths. When a geologically younger, thin unit of rock is placed on top
of a faulted rock volume and is then mechanically faulted through, more complex
deformation in the upper layer is caused by the basement-reactivated fault.

Both endmember types vary widely in subsurface geometry, with some wrinkle
ridge archetypes being modeled with single faults and some lobate scarp members hosting
multi-fault thrust systems. These results illustrate further that the “typical” archetype lobate
scarp and wrinkle ridge structures show some differences, but that the spectrum of thrust
architecture underlying both of these landform types shows substantial overlap. These
findings echo those of Chapter 2, further corroborating that shortening landforms on
Mercury’s surface exist on a spectrum between the traditional nomenclature of lobate
scarps and wrinkle ridges.

Tectonic architecture of thrust systems on Mercury

All shortening landforms in this study are underlain by listric faults (e.g., Figure
3.6). The typical lobate scarp archetype structure contains only a single, listric fault.
Shortening landforms that are modeled with more than one fault may either be constructed
with multiple listric faults, or the secondary (and possibly tertiary) faults may have a more
homoclinal geometry (e.g., the secondary faults in Figure 3.6c and Figure 3.8). The listric
geometry of the fault is what dictates the shape of the overlying topography in a fault-bend
fold. When comparing lobate scarps on Mercury with tectonic deformational features on
Earth, Byrne et al. (2018) had described lobate scarps “as upthrust volumes of rock that are
likely the folded portions of hanging walls atop of thrust faults.” This analogy describes
lobate scarps that have formed from surface breaking thrusts on Mercury as fault-bend

folds.
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Previous studies using the COULOMB dislocation modeling found listric faults to
be a viable architecture underlying contractional tectonics on terrestrial planets (e.g.,
Peterson et al., 2020; Watters and Schultz, 2002). However, these studies also show that
listric faults and homoclinal faults generate similar topography, suggesting non-unique
solutions. Other studies using the same modeling technique have argued that listric faults
fail to accurately generate observed topography (e.g., Egea-Gonzalez et al., 2012; Herrero-
Gil et al., 2019). This modeling technique does not consider folding. If the hanging wall is
faulted over the footwall at the surface, it will likely fold over the fault. By using a fault-
bend-fold geometry, our models replicate this folding. In a fault-bend-fold model, the listric
shape of the underlying fault greatly affects the way the surface folds after the input
shortening is applied. The change in dip along a listric geometry affects the displacement
along the fault as governed by the same trigonometric relationships described by a ramp-
up structure in Suppe (1983).

A typical archetype wrinkle ridge structure requires two or more faults to accurately
replicate topographic observations (Figure 3.7c¢). Pop-up structures are more common than
imbricate thrusts for multi-fault thrust systems used to model wrinkle ridge archetypes. For
wrinkle ridge archetypes, we see that the folding of the hanging wall produced by the pop-
up structure creates a plateau flanked on either side by monoclines that are folded over
their fault plains. This agrees with previously proposed structural interpretations of wrinkle
ridges (Byrne et al., 2018). Slope-asymmetry analysis of wrinkle ridges on Mars supports
similar geometries (Okubo and Schultz, 2004). These Martian wrinkle ridges are the
accumulation of a primary thrust and secondary back and fore thrusts that branch off the

primary thrust. We find some similar subsurface geometries for shortening landforms with
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opposing thrust-fault vergence. However, the wrinkle ridge archetypes on Mercury
described here have greater relief than the Martian landforms analyzed in Okubo and
Schultz (2004). We also find simpler fault architectures to be able to replicate many of our
wrinkle ridge archetypes than some of the geometries suggested by Okubo and Schultz
(2004). Additionally, contractional tectonics on Earth that result in a hanging-wall folding
over the thrust and footwall (e.g., Last et al., 2012; Petterson et al., 1997) are frequently
used as analogous structures for contractional tectonics on other terrestrial planets (e.g.,
Crane, 2020b; Crane and Klimczak, 2019a; Plescia and Golombek, 1986; Watters, 1988).
The results presented here then suggest that fault-bend fold architectures should be further
utilized when structurally assessing contractional tectonics in Mercury’s smooth plains.
Imbricate thrust structures are the least common fault geometry we model in our
sample of shortening landforms. Only two lobate scarp archetypes and five wrinkle ridge
archetypes were modeled as imbricate thrusts. The small sample size of multi-fault lobate
scarp archetypes is likely a result of the sample selection process, as the LDA in Chapter
2 classified the most endmember lobate scarps by their larger sizes. The size of these
structures may be indication that the faults matured to the point that previous imbricate
thrusts linked into a large singular fault plane, indicative of how Cowie and Scholz (1992)
suggest faults grow within the Earth’s lithosphere. Alternatively, more shortening
landforms occupy the geologically younger smooth plains than the geologically older
intercrater plains units (Byrne et al., 2014). The concentration of shortening landforms in
the smooth plains attests to the greater number of shortening landforms we modeled in the
smooth plains to host more than one fault in the underlying structure. However, many

shortening landforms on Mercury display multiple sub-parallel to parallel surface breaks
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similar in photogeology to the imbricate thrusts modeled here (e.g., Crane and Klimczak,
2019a). Expanding the sample size of this work may then increase the shortening landforms
in the intercrater plains units.

Implications for Mercury tectonics

Many studies use the vertical relief of a structure as equal to the throw of the
underlying fault to infer the displacement along the fault plane (e.g., Byrne et al., 2014;
Klimczak et al., 2018; Watters, 2021; Watters et al., 2001). Friction theory predicts optimal
dip angles for thrust faults in a basaltic rock volume to be ~31° and thus displacements are
typically inferred for angles of 30°+5°. Results of our analysis show that the average and
maximum dip angles of thrust faults on Mercury are ~22° to ~40°, respectively (Table 3.2).
This is a larger range of dip angles of thrust faults than used previously, including thrust
faults with much shallower and steeper dips. Our results thus warrant considerations of a
wider range of dip angles for any analysis inferring thrust fault displacements from
measurements of structural relief. Using the traditional method of deriving shortening
strain for planetary thrust faults (e.g., Byrne et al., 2014; Watters, 2021), an average dip
value of ~22° would increase previous estimates of Mercury’s global strain whereas an
angle of 40° would reduce strain estimates (e.g., Byrne et al., 2014; Watters 2021). The
larger range of dip angles found in this study suggests that previous assumptions of the
range of dip angles for Mercury’s population of thrust faults yielded a too narrow range of
strain estimates.

Enterprise Rupes is a shortening landform that Galluzzi et al. (2015) assessed with
crosscut craters. They found a large range of dip angles for the faults underlying Enterprise

Rupes, ranging from 15°+5° to 57°+16°, which agrees well with our range of modeled dips.
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Our results indicate that Enterprise Rupes has an average dip angle of ~10° and a maximum
dip of 21° close to the surface, agreeing well with the lower estimates of two of the three
crosscut craters near our transect. However, the crater evaluated by Galluzzi et al. (2015)
that is closest to our transect has the steepest dip angles. This mismatch may be due to the
degradational state of this crater or to the natural complexity of the fault system in this area.
Galluzzi et al. (2015) consider a single fault when assessing the deformation of this crater,
while multiple faults are required to match the map pattern and topography of Enterprise
Rupes. If this crater was deformed by two opposing faults, this may explain the mismatch
between the two analyses.

A second shortening landform in our study also crosscuts a crater assessed by
Galluzzi et al. (2015) (their Crater 05-C). We find a near-surface dip angle and average dip
angle of 29° and 30°, respectively, which is relatively close to the dip angle range of 20° £+
3° reported in Galluzzi et al. (2015). The discrepancies of our results may be due to the fact
that a crosscut crater only captures the local, near-surface dip of the fault. Our modeling
efforts capture the broader structure and take into account the topography beyond the extent
of the crater.

The mean of the average dips for our modeled lobate scarp archetypes averages at
~27° for all models. This value agrees with previous modeling results of individual or small
sets of shortening landforms (e.g., Egea-Gonzalez et al., 2017, 2012; Schultz and Watters,
2001). The mean of the maximum dips for lobate scarp archetypes is ~43°, with a few
individual structures even showing maximum dips of ~60° (Figure 3.7c), which is rather
atypical for thrust faults. However, our wrinkle ridge archetypes have an average dip of

~19°. This value is considerably less than the range of dip angles found in COULOMB
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dislocation modeling efforts by Peterson et al. (2020). Multiple models constructed in
Peterson et al. (2020) were shown to produce similar topographies for the same shortening
landform and listric fault geometries were created by using a step curvature function from
one fault tip to the other. In our study we find that folding at the surface plays a substantial
role in dictating the depth and dip angle of our faults. The COULOMB modeling software
cannot take into account distortion from folding and instead assumes fully elastic
deformation around the fault from a single faulting event, scaled up to the shape of the
landforms after many slip events, which becomes unrealistic for the large displacements
associated with these shortening landforms. This limitation in COULOMB is likely the
reason for the discrepancy in dip angles for wrinkle ridge archetypes in the two approaches.

Our models indicate a wide range of depths of faulting for all shortening landforms.
The average depth of faulting for all modeled shortening landforms is ~22 km and
shortening landforms inside the intercrater plains fault to an average depth of ~27 km.
Intercrater plains likely are composed of a brittle volume of basaltic crust that may act as
a single mechanical unit. The greatest penetration depths we find extend to ~48 km (Figure
3.7b), suggested that the faulted volume of Mercury’s lithosphere reaches depths perhaps
as much as 50 km. Previous studies that have investigated the depth extent of faulting for
shortening landforms on Mercury provide similar values, such as 25-40 km for faults in
the intercrater plains (e.g., Egea-Gonzdlez et al., 2012; Ritzer et al., 2010; Watters and
Schultz 2002).

Alternatively, the basaltic lava emplacements of the smooth plains units are only
estimated to be only a few hundred meters to up to ~2 km thick and they sit on top of

basement rock (Du et al., 2020; Head et al., 2011; Ostrach et al., 2015). The modeled
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average depth of faulting of 13 km for the wrinkle ridge archetypes in this study greatly
exceeds these thickness estimates. This model depth indicates that many of the modeled
wrinkle ridge archetypes are not by any measure constrained to within the smooth plains
units. Previous work has also suggested that smooth plains structures can fault to
comparable depths to intercrater plains structures (e.g., Peterson et al., 2020). In these
geographic regions, Mercury’s lithosphere is composed of volcanic deposits overlaying
mechanically weak layers of rock due to impacts. Therefore, there are likely multiple
mechanical interfaces of different deformed basaltic layers, and so the terms thin and thick-
skinned tectonics as described for Earth’s tectonics by Pfiffner (2017) are likely an
inaccurate way to structurally describe Mercurian tectonics. However, we find that these
faulting depths for wrinkle ridge archetypes agree with the term “basement involved thin-
skinned tectonics” attributed to Mercury’s tectonics by Crane and Klimczak (2019a). In
this case, the deformation in the smooth plains units are influenced by the faulting in the
underlying basement rock such that deformation in the basement produces a series of
structural geometries and patterns in the smooth plains that are characteristic of thin-
skinned deformation. Many of our wrinkle ridge archetype models are consistent with
basement involved thin-skinned tectonics, where, for example, pop-up structures that
reside in the smooth plains units typically contain a primary fault that penetrates 10 km
below the surface but the secondary fault only penetrating no deeper than ~ 3 km (Figure
3.6¢). In a 2-3 km thick smooth plains units, then, these secondary faults may be the result
of more complex deformation occurring solely within these unit but that connect to, and
were initiated by faulting at depth, in the underlying basement rock. The mechanically

distinct plains units may then partition strain off of the primary, deeply rooted thrust,
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resulting in additional faults and folds that are only confined to the smooth plains units.
This is similar to the process described by Crane and Klimczak (2019a) for contractional
tectonics in Mercury’s smooth plains units where thrusts rooted in the underlying
lithosphere causes deformation in the overlying, mechanically-weak layer.

Wrinkle ridges in the smooth plains units on Mercury have been compared with
shortening structures in the lunar maria, with those landforms on the Moon being ascribed
to loading-induced subsidence with contributions from global contraction (Schleicher et
al., 2019). However, loading-induced subsidence is inconsistent with basement-involved
thin-skinned thrust tectonics and a formation of such structures on Mercury by global
contraction alone is more plausible. In fact, thrust faults underlying shortening landforms
described as wrinkle ridges found in several mare units in lunar mascon basins are found
to be deep-seated (Byrne et al., 2016; Collins et al., 2023). Their origin is ascribed to
mascon tectonics (Byrne et al., 2015), and their continued growth and surface expression
in the surficial mare units did not require loading stresses from the mare units whereas
contributions of stresses from the lunar global contraction are plausible (Byrne et al., 2015).

We do not detect a systematic pattern of the distribution of shortening strains across
Mercury, albeit wrinkle ridge archetypes tend to produce somewhat less strain than lobate
scarp archetypes. However, the variance of shortening strain from wrinkle ridge archetypes
and lobate scarp archetypes overlaps substantially (Figure 3.7f). These findings agree with
previous studies that observed geologic trends in morphology and timing (e.g., Banks et
al., 2015; Crane and Klimczak, 2019a; Peterson et al., 2019). If global contraction were the
source of stresses driving faulting, there would be no systematic pattern of strain

distribution expected, even if it overlapped with other processes. Other processes that have
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been invoked for Mercury to produce global fracture patterns like despinning (e.g.,
Matsuyama and Nimmo, 2009; Melosh, 1977) or reorientation (Matsuyama and Nimmo,
2009) would only influence the orientation of fracture patterns (Klimczak et al., 2025)
when working in conjunction with global contraction. However, the shortening strain of
the landforms likely would not have a global systematic pattern if global contraction is the
primary source of stresses to cause faulting.

3.6 Conclusions

We investigated the thrust fault geometries beneath 55 shortening landforms on
Mercury. We specifically selected wrinkle ridge and lobate scarp archetypes to highlight
the differences in thrust system geometries that are present within Mercury’s lithosphere.
We find that while Mercury hosts diverse thrust systems, including single, listric faults,
imbricate thrusts, and pop-up structures, the thrust fault geometries of wrinkle ridge and
lobate scarp archetypes overlap or form a continuum (Figure 3.7). This overlap and
continuation in range of fault geometric parameters confirm our previous results (Chapter
2), where shortening landforms on Mercury form a spectrum of landform shapes rather
than discrete categories. The results of the work presented here further illustrates the
impracticality of traditional “lobate scarp” and “wrinkle ridge” nomenclature to describe
landforms that are much more similar than they are different.

We find a large range of fault geometric parameters for the thrust systems that
underly Mercury’s shortening landforms. The average fault dip of all the structures ranges
from ~22° and to ~40°. We also find that the deepest fault penetrates Mercury’s lithosphere

to 48 km, whereas the average depth of faulting for all studied structures is 22 km. These
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parameters may serve to better constrain future studies estimating fault strain or analyzing
lithospheric structure on Mercury.

Our modeling results inform an understanding of Mercury’s tectonic character. The
shortening landforms that reside in Mercury’s smooth plains units are likely caused by the
basement involved thin-skin tectonics mechanism suggested by Crane and Klimczak
(2019a), with thrusts penetrating well below the lavas that makeup the smooth plains units.
As the faults penetrate deep into the underlying basement rock and show no noticeable
difference in strain compared with faults in intercrater plains, the formation of these thrusts
by loading-induced subsidence can be ruled out and instead are likely to have been
primarily driven by global contraction.
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3.9 Figures

>

2000

1000

Elevation [m]

-1000
0 20000 40000 60000

Horizontal Distance [m]

Elevation [m]
W\
(=)
o

0 20000 40000 60000 80000
Horizontal Distance [m]

Figure 3.1: Examples of what have been classified as "labate scarps” (a) and "wrinkle
ridges" (b) on Mercury (modified from Chapter 1). a) Map view of an unnamed !abate
scarp near the south pole (left) with the corresponding topographic profile from x to x'
(right). b) Map view of Schiaparelli Dorsum, a prominent wrinkle ridge (left) with the
corresponding topographic profile from y' (vight). Maps use a stereographic projection
centered on the shortening landform. Both profiles are shown at ~J 6x vertical

exaggeration.
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Figure 3.2: Global distribution of 55 shortening landforms modeled in this study shown in
Robinson projection. Landforms traditionally identified as !abate scarps are shown in
magenta, while those previously identified as wrinkle ridges are shown in green. For
reference, the smooth-plains units (Denevi et al., 2013) are shaded in gray. The LDA
analysis of the 100 shortening landforms assessed in Chapter 2 is shown on the LD axis

below.
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Figure 3.3: Block diagram of a shortening landform with stylized fault plane to highlight
the fault geometric parameters extracted from each model. The dashed line in the
subsurface represents an arbitrary marker horizon to depict deformation along the fault.
The image in this figure is taken from the MESSENGER low-incident angle global mosaic

(Denevi et al., 2017). Elevation data are from Bertone et al. (2023).
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Figure 3.4: Box and whisker plot of the observed strain from folding compared with the
modeled strain from folding. Bold lines indicate the median, the left and right edges of the
gray box are the first and third quartiles, and maxima and minima are indicated by the

vertical segments. Outliers are shown as dots.
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Figure 3.5: Three thrust fault models replicating the topography of the shortening
landform depicted in Figure 3.3. All models are shown with 2X vertical exaggeration. Red
line is the modeled fault. Blue lines are arbitrary horizons used to visualize subsurface

deformation. Gray lines are observed topography; black, the modeled topography.
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Figure 3.6: Three different thrust fault systems from Mercury with subsurface models
shown on the left and map view on the right panel. a) An example of a single, listric fault

(1.8X vertical exaggeration). b) An imbricate thrust (3.0X vertical exaggeration). c) A
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pop-up structure (1.8X vertical exaggeration). Model line colors are the same as in

Figure 3.5.
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Figure 3.7: Box-and-whisker plots for eight parameters of our model solutions, showing
the distributions of fault geometries of wrinkle ridge and lobate scarp archetypes on
Mercury. These plots show comparisons of: (a) aspect ratios, (b) depth of faulting; (c)
maximum dip, (d) average dip, (e) maximum slip; (f) average slip; (g) input shortening;

(h) modeled strain from folding.
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Figure 3.8: Top panel depicts the photogeology of Enterprise Rupes. Bottom panel depicts
the model constructed underneath the transect E to E’ in the image. Color coding is the
same as in Figure 3.5 but observed topography corrected for anomalous topographic

variations is shown in light blue. Model and topography in 4X VE.
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3.10 Tables
Table 3.1: Comparison of parameters for the three subsurface models of the same

shortening landform in Figure 3.4. Input shortening is a constraint of the model.

Parameters Modell Model2 Model3
Observed Folding Strain [%] -0.81 -0.81 -0.81
Modeled Strain from Folding [%] -0.62 -0.80 -1.36
% of Match Modeled to Observed Folding Strain 77.2 99.4 31.9
Input shortening [km] 5.5 24 0.9
Depth of Faulting [km] 11.4 24.2 48.1
Average dip [°] 9 21 40
Maximum slip [km] 5.9 3.2 2.3
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Table 3.2: Averaged values of modeled parameters for lobate scarp and wrinkle ridge

archetypes. Medians and ranges of these modeled parameters are shown in Figure 3.7.

Modeled Parameter

All Shortening Lobate Scarp Wrinkle Ridge

Landforms Archetypes Archetypes

Near Surface Fault Dip (°) 21 25 17
Average Dip (°) 22 26 19
Maximum Dip (°) 40 43 36
Input shortening (km) 1.5 2.0 1.0
Average Heave (km) 1.2 1.7 0.7
Average Slip (km) 1.4 2.0 0.7
Maximum Slip (km) 1.6 2.2 0.9
Average Throw (km) 0.6 0.8 0.3
Depth of Faulting (km) 21.9 27.4 13.3
Fault Height (km) 65.4 90.0 64.5
Modeled Strain from

—0.28% —0.39% —0.16
Folding (%)
Number of Faults 1.36 1.12 1.7
Aspect Ratio 0.41 0.44 0.28
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CHAPTER 4
SEVERAL KILOMETERS OF GLOBAL CONTRACTION ON MERCURY: A

SAMPLE-SIZE INDEPENDENT ASSESSMENT OF FAULT STRAIN.?

3 Loveless, S.R. and Klimczak, C. Submitted to AGU Advances, 2025.
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Abstract

Mercury underwent global contraction due to the sustained cooling of the planet.
Positive-relief landforms, found widespread across Mercury, are thought to be the surface
expressions of thrust faults accommodating the contraction. Disagreement exists in the
literature on the amount of contraction, with estimates of radius change ranging from ~1 to
7 km. These differences solely arise from the method used to estimate the fault population
strain, which relies on the number of structures. Here, we adapt previous framework by
which the continuum approximation to shortening strains can be determined from fault
length and displacement statistics for an incompletely sampled fault population. We apply
this method to three datasets that sample different numbers of faults. Our results show that
even for conservative fault parameters, two to three kilometers of radial contraction are
returned, irrespective of the dataset used, and thus resolving the debate on the amount of

global contraction on Mercury.
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4.1 Introduction

Disagreement on Mercury’s radial contraction.

Thermal evolution models and observations of Mercury’s surface indicate that the
planet has undergone global contraction, a process caused by long, sustained planetary
cooling (e.g., Solomon, 1978). Shortening strain from global contraction is widely accepted
to be accommodated in the lithosphere via thrust faulting, which manifest at the surface as
positive-relief landforms (Byrne et al., 2018, 2014; Solomon et al., 2008; Strom et al.,
1975). Previous studies measured the length and relief of these shortening landforms to
estimate the total contractional strain of Mercury (Di Achille et al., 2012; Byrne et al.,
2014; Watters and Nimmo, 2010; Watters et al., 1998). These previous studies rely on the
same method, by which a map of thrust fault related landforms is produced, lengths of the
landforms are extracted, relief of a subset of structures is measured and assumed to be
related to fault displacement via the fault dip such that a displacement-to-length
relationship is established, which then is extrapolated to all mapped structures. Strain is
then calculated for the area of the faulted domain by summing the strain of each of the
mapped structures. This method is thus dependent on the number of structures considered.

The dependency on the number of faults produced a discrepancy in radius change
estimates in the literature. Watters (2021), who used n=653 faults, calculated Mercury’s
radius to have decreased by 0.9—-1.3 km, whereas (Byrne et al., 2014), who considered a
population of faults containing n=5934 structures, determined a range of 3.1-7.1 km of
radius change. Watters (2021) assumed that shortening landforms in Mercury’s smooth
plains units are attributed to lithospheric loading and associated subsidence from the

emplacement of the volcanic units rather than global contraction and thus excluded the
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structures and area covered by plains units from the calculation. Byrne et al. (2014)
considered a wider range of possibilities, including and excluding the smooth plains units.
In their work, radial shortening was calculated using shortening landforms across eight
great circles and by using the displacement length scaling. In all cases, with or without the
shortening landforms in the smooth plains units, Byrne et al. (2014) mapped more faults in
the same area that was considered by Watters (2021). Therefore, the method used in these
studies is a disadvantage, as different geological interpretations result in a different number
of considered structures, and in turn, cause the discrepancy in estimates of the amount of
global contraction despite sampling the same population of faults.

An additional component of radius change occurs prior to the onset of faulting
because the lithosphere resists faulting until its strength is reached (Klimczak, 2015). For
a wide range of strength considerations, Klimczak (2015) estimates an additional 0.4 to 2.1
km of radius decrease to be added to the estimates calculated from fault strain. This results
in radius changes from as little as 1.3 km, when adding the lowest possible amounts from
Watters (2021) and Klimczak (2015), to as much as 9.2 km, when considering the upper
estimates from Byrne et al. (2014) and Klimczak (2015). This range of values is a critical
constraint for thermal evolution models, whereby the most plausible solutions require a
radial shortening of ~5—-10 km (Breuer et al., 2007; Hauck et al., 2004; Michel et al., 2013;
Solomon, 1977; Tosi et al., 2013). Driven by the constraint of low values of radial
contraction by Watters et al. (1998), Tosi et al. (2013) identified a very small fraction of
model solutions that required less than 3.5 km of radial shortening when assuming very

large reference viscosities.
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The large range of estimated amounts of radial shortening on Mercury is only a
very loose constraint for thermal evolution models, highlighting the need for improvement
in the method on which the estimations are based on. Thus, we provide an alternative
assessment of Mercury’s global contractional strain, for which we apply fault strain theory
introduced and tested by Twiss and Marrett (2010a, b) to three published Mercury thrust
fault datasets to reevaluate to amount of radial contraction.

4.2 Methods

The fault strain theory laid out by Twiss and Marrett (2010a) is based on the fact
that an entire population of faults is never really fully considered when estimating the strain
of a faulted volume. Instead, this approach utilizes the displacement of the largest fault in
the population, which is easiest to detect, and scales it using both displacement-to-length
and fault-length-frequency statistics to estimate the total strain of the faulted volume. This
method assumes infinitesimal strain, where the faulted volume must be large relative to the
dimensions of the largest fault. This assumption is valid for our purposes, as we are
considering the entire brittle volume of Mercury’s lithosphere. This method also assumes
that all structures in the population have the same fault geometric parameters, such as dip
and fault shape, which was also assumed in previous works (Byrne et al., 2014; Di Achille
et al., 2012; Watters et al., 1998; Watters and Nimmo, 2010).

The method by Twiss and Marrett (2010a) allows us to calculate the strain in
Mercury’s faulted portion of the lithosphere independent of the number of considered
faults. We test this approach for three different datasets in the literature that sample
substantially different numbers of thrust faults from the same population of structures

(Figure 4.1). We use the previously mentioned data from Byrne et al. (2014) who sample
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n=5934 structures, from Watters (2021), who samples n=653 structures, and from Chapter
2, 3 and Loveless et al. (2024b), in which n=100 structures were considered.
Twiss and Marrett (2010a) derived the equation for the total strain of faults sampled

in three dimensions of a volume in the horizontal direction ¢

(1) 1+%
1
et =es | —— 5 |, 1
1—53+—
S

where e;lt)is the shortening strain of the fault with the highest displacement in the volume.

The parameters p and s are derived from statistics based on the total population of fault

parameters (Table 4.1). The strain of fault 7 in direction ¢ is given by:

0 _ o) [82 cos(@) 5

where §@ is the displacement of the ith fault and ¢ is the angle between the horizontal
direction ¢ and the slip direction on the fault (Figure 4.2), corresponding to subtracting the
fault dip, a, from 180°. Here, B is the probability of the fault being intersected by a
random line parallel to ¢. The parameter T is the dimensional length of the faulted volume
in direction ¢ (Figure 4.2). The probability for an individual fault written as a continuous
function of fault-displacement 4 is:
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Here, Ay is the area of the fault plane. The angle 6 is measured between the normal vector
to the fault plane and ¢, or by subtracting « from 90° (Figure 4.2). The denominator, 4, is

the total cross-sectional area of the faulted volume, which is normal to ¢. The parameter A

is a geometrical shape factor that accounts for the fault height, as defined by down-dip
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minor axis length, /, and the length, L, specifying either rectangular or elliptical shapes of
the fault tip line. For rectangular fault shapes, A is simply the ratio of / and L (as shown in
Figure 4.2), whereas for elliptical shapes this ratio is multiplied by /4. The factor B is a
scaling parameter derived from the displacement-to-length statistic of the faults (see
below). The probability in Eq. 3 then is the ratio of the area of the fault plane that is
projected onto the total cross-sectional area of the faulted volume to the total cross-
sectional area (Figure 4.2). This probability can be estimated for any fault in a population,
as the areas of the fault planes are obtained from the displacement-length and cumulative
number-length relationships. Note the absence of the superscript i for the geometric
parameters A and 6 on the right-hand side of Eq. 3, as these are assumed to be the same for
all faults in the population.

The faulted volume, 7, is then calculated as the product of A, and 7. We define the
faulted volume to be equal to the outer shell of Mercury that has a thickness defined by the

depth-extent of the deepest faults, D, and planetary radius, Ry, as:
V:AthgnR,?l—gn(R,?l—De’). 4

Following the approach by Twiss and Marrett (2010a) we combine Egs. 1 to 4,
yielding:

2

? 2
etot — ABP cos 6 cos ¢ (6(1))“5 1+2p - 5
V 1 - S3 + 5

Here, the displacement, &, has the superscript of (1), indicating that it is only the value

from the largest fault.
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Finally, the amount to radial contraction can be derived by calculating the initial
radius of Mercury, R;, from the fault population strain in Eq. 5 via the relation presented

by (Watters and Nimmo, 2010):

RZ \°5
f
R. = ) 6
l <e§f’tt + 1)

where Ry is the final radius, which we take to be Mercury’s current mean radius of 2440

km. The change in radius, corresponding to the radius decrease from global contraction, is
then calculated as AR = Ry — R;.

Parameterization

We use the data from Byrne et al. (2014), Watters (2021), and the data from
Chapters 2, 3, and Loveless et al. (2024b), hereon referred to as the Loveless et al. dataset,
to parameterize Eq. 5 with all required fault-geometric values (Table 4.1). Geometric
forward modeling of 55 shortening landforms on Mercury (Chapter 3) yielded thrust fault
parameters that provide detailed observational constraints, including ranges of values for
fault dips and fault aspect ratios needed here to calculate the geometric shape factor. In
particular, Chapter 3 establishes that the average ranges of fault dip on Mercury are
between 22° and 40°, a wider range than those considered in the previous global
contractional strain analyses of Mercury. We therefore calculate the fault strain for dip
values bounded by 22° and 40°, as well as the case for rock-mechanically calculated
optimal dips of 30°. The depth extent of the faulting was determined to be 22 km on average
with the largest structures to be no deeper than ~50 km (Chapter 3), and thus we use values
of 30 km, 40 km, and 50 km in our calculations to constrain the thickness of the faulted

volume, which agree well with lithospheric thickness and crustal depth estimates (Padovan

99



et al., 2015). We find that a value of 40 km best represents the thickness of the faulted
volume because the vast majority of fault models return faults with shallower depths and
only a few faults exceed depths of 40 km (Chapter 3). This thickness is not likely to be
constant throughout Mercury, and a thickness of 40 km likely averages variations in the
faulted volume.

We parameterize the shape factor A by taking the average aspect ratio derived in
Chapter 3 as the ratio of the modeled down dip length of the fault plane to the map-view
length of the fault (Table 4.1). This value was found to be 0.41 and is thus equal to A if all
faults are assumed to be rectangular. If faults are assumed to have an elliptical planar
geometry, then we multiply this aspect ratio by /4, providing a value of A = 0.32. The
aspect ratio was derived from listric fault geometries modeled in Chapter 3. It is defined
only by the horizontal and downward dipping dimensions of the fault plane and not by
variations in dip along the fault plane (i.e., listric or homoclinal). We note that the block
diagram in Figure 4.2 shows a rectangular shape of a homoclinal plane for simplicity.

Enterprise Rupes is the largest shortening landform on Mercury both in mapped
length and vertical relief (Byrne et al., 2018; Ferrari et al., 2015; Watters et al., 2016) and
thus is likely underlain by the thrust fault accommodating the largest displacement on
Mercury. In order to detect the maximum displacement of the fault, Chapter 3 constructed
a 2D balanced cross-section of the fault system along the location of maximum relief,
matching observed topography, shortening strain from folding, and the slip vector that was
indicated by offset impact craters. It was found that Enterprise Rupes consists of two
oppositely dipping thrust faults with the primary thrust showing a displacement of value of

5§ =9300 m.
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Values B and p in Eq. 5 are identified from the power-law displacement-to-length

relationship of the population of faults (Cowie and Scholz, 1992):
6= ! LP 7
=5 L7

Previous studies used model 1 regressions to derive a scaling relationship (e.g., Byrne et
al., 2014; Watters, 2021). To provide statistically unbiased results for the regression
parameters, we apply a model 2 linear regression to all datasets, as the independent
variables (x values) of the regression, i.e., the fault length values, are not taken at controlled
intervals, which is an assumption of a model 1 least squares regression (Sokal and Rohlf,
1995).

The fault displacements in Byrne et al. (2014) and Watters (2021) were found by
relating the observed structural relief via the fault dip, where dips were assumed to be 25°,
30°, and 35°. We carry out three model 2 regressions for these two datasets to account for
the updated range of dip angles (Chapter 3). We show those regression results in Figure
4.3a along with displacement-to-length data derived from 55 balanced cross-sections of
thrust fault systems in Chapter 3. From these regressions, we extracted the values p and B
and listed their values in Table 4.1. Because no fault dip values are known in the structural
relief measurements by Byrne et al. (2014) and Watters (2021) the three different
assumptions of dips produce three different values for parameter B. The values for
parameter p remain unchanged for different assumptions of fault dip values.

The value for s used in Eq. 5 is derived from the slope, —m, of the power-law
length-frequency distribution, NUM(L), of the mapped fault population (Cladouhos and

Marrett, 1996; Watterson et al., 1996) as follows:
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m
NUM(L) =G L™;s = 8

Here, G is the scaling factor relating the cumulative number of faults to the fault length. It
is equal to the cumulative number of faults that have a unit length (Twiss and Marrett,
2010a). Because extrapolation over the total spread of the cumulative length frequency
distribution produces overestimates of the strain, we follow practices laid out in Twiss and
Marrett (2010a) and apply a regression to only its linear portion (Figure 4.3b). For each
dataset, we extract the values for m , calculate s (Eq. 8) and list the results in Table 4.1.
We note that the displacement-to-length data for all three datasets (Figure 4.3a) is a subset
of the fault sample size (Figure 4.3b), producing a different number of data points between
the two graphs.
4.3 Results

Radial contraction estimates

We present our results of radial contraction for the combination of possible
geometric properties in Table 4.2. Overall, our analysis reveals that the amount of radial
contraction on Mercury is anywhere between 1.5 and 4.4 km for the Loveless et al. dataset,
0.9 and 7.6 km for the Watters (2021) dataset, or 1.3 and 8.4 km for the Byrne et al. (2014)
dataset. These total ranges depend on the combination of the thickness of the faulted
volume, fault dips, and shapes of the fault plane. Thinner faulted volumes, higher fault
dips, and rectangular fault shapes produce higher amounts of strain when compared to
thicker faulted volumes, shallower fault dips, and elliptical fault shapes, respectively.

In particular, the volumetric strain decreases the deeper we assume the faulted
volume to extend. With decreasing dip, the one-dimensional strain of the largest fault

increases (i.e., the term in brackets in Eq. 2), but the proportion of the projected area of the
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fault plane onto the cross-sectional area of the faulted volume goes down, and thus the
probability, ‘B, goes down (Eq. 3). Therefore, the strain calculated in one dimension
follows the trend in Byrne et al. (2014) and Watters (2021) where strain estimates increase
with lower fault dips. However, the probability governs the total outcome of Eq. 5, and
therefore, explains why lower amounts of strain are produced for lower dip angles.
Rectangular shapes of the fault tip line create a larger area of fault planes to be projected
onto the cross-sectional area of the faulted volume than elliptical shapes. Therefore, the
calculated amount of strain is larger for rectangularly shaped fault tip lines.

We find a combination of parameters that produce a minimal amount of global
contraction (AR,;,), @ combination of optimal parameters that produces the most probable

amount of global contraction (AR,p¢), and a combination of parameters that produces a

maximum amount of global contraction (AR,,,x) from the investigated fault population
datasets. The combination of parameters that produces AR, includes an average
thickness of the faulted volume of 50 km, with all faults in the population dipping 22°
(Table 4.2). This set of parameters produced a AR ,;,, of 1.5-1.9, 0.9-1.1, and 1.3—1.5 km
for the Loveless et al., Watters (2021), and Byrne et al. (2014) datasets respectively. The
lower and upper bounds for these ranges of AR represent elliptical and rectangular shapes
of the fault tip line, respectively

While dip values of 30° and a thickness of the faulted volume of 40 km imply that
they are assumed to be constant for the fault population and throughout Mercury, they also
represent conservative estimates of averages, as there are established ranges of variations

of these parameters around these values. Therefore, we consider the resulting AR values
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(Table 4.2) as being optimal, producing AR,y of 2.3-2.9, 2.4-3.0, and 2.8-3.5 km for the
Loveless et al., Watters (2021), and Byrne et al. (2014) datasets respectively.

A maximum amount of radial contraction is calculated by assuming a thickness of
the faulted volume of 30 km depth and that all faults in the fault population dip 40°. With
this combination of fault population parameters, the Loveless et al. dataset returns a AR 1«
of 3.5-4.4 km. The Watters (2021) and Byrne et al. (2014) datasets produced AR, 5 of
6.0-7.6 and 6.6-8.4 km, respectively (Table 4.2).

4.4 Discussion and conclusions

Our results establish that each dataset, irrespective of the number of considered
faults, produces similar amounts of contractional strain, which, in turn, yields radius
change estimates that are comparable to one another. For the Watters (2021) dataset, we

find radial contraction estimates of 0.9 to 7.6 km, with the optimal range of AR, being

2.4-3.0 km. Watters (2021) calculated substantially smaller values of AR, amounting to
0.9, 1.1, and 1.3 km for a = 35°, 30°, and 25°, respectively. These values appear to agree
with our AR,,;,, values across all three datasets (Table 4.2). However, the AR ,,;,, values in
this work represent the extreme lower bounds of physical parameters, whereas the range of
radius change values produced in Watters (2021) spans the entire considered parameter
space in that publication. Therefore, the AR ,;,, results presented here cannot be considered
to confirm the range of estimates presented in Watters (2021). The low values for
Mercury’s contraction presented in Watters (2021) arise from the low number of shortening
landforms considered to have contributed to global contraction.

Using the same method as Watters (2021) but for a larger number of faults, Byrne

et al. (2014) estimated Mercury’s radial contraction to be ~3.1-7.1 km, which falls in the
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range of ARy, t0 ARpay calculated in this study (Table 4.2). The larger sample size is
likely closer to the true number of faults in Mercury’s population of thrust faults, which
likely explains their results showing a better overlap with ours. The large sample size of
this dataset and the sampling of structural reliefs over a wide range of fault lengths—as
seen in the spread of the displacement-to-length data when compared to the length
frequency distribution (Figure 4.3, right column)—makes this dataset statistically more
probable. In contrast, the dataset by Watters (2021) sampled the structural relief of only
the largest of shortening landforms, which is seen in the spread of the data being skewed
toward the longest faults (Figure 4.3, center column).

We find Mercury’s radius change that can be attributed to thrust faulting to show
optimal values between 2.3 and 3.5 km consistently across all three datasets. In order to
overcome the frictional resistance to sliding, Mercury would have to contract to build up
stresses beyond the brittle strength of its lithosphere (Klimczak, 2015). For a variety of
rock-mechanical properties, this study found that Mercury would have had to experience
0.4-2.1 km of radial contraction before thrust faults could form and that this range would
need to be added to any estimates from faulting. Adding the findings by Klimczak (2015)
to the range of values calculated in this study yields a range radial contraction of 2.7 to 5.6
km that is likely to have occurred on Mercury. This result is in reasonable agreement with
many thermal evolution modeling efforts (e.g., Breuer et al., 2007; Hauck et al., 2004;
Michel et al., 2013; Solomon, 1977) and, in combination with timing and strain rate
estimates of global contraction (Crane and Klimczak, 2017), may be used to tightly

constrain future thermal evolution modeling.
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In this work, we adapted the methodology presented and tested by Twiss and
Marrett (2010a, b) to estimate the amount of thrust fault strain Mercury experienced from
global contraction. Using three datasets sampling vastly different numbers of faults of the
same population (Figure 4.1), we demonstrated that any bias that incompletely sampled
fault populations introduced using the previous method is avoided using the method
presented here. Thus, future calculations of Mercury’s radial contraction will produce more
robust estimates using the framework of Twiss and Marrett (2010a). We also suggest that
this methodology can be used to calculate fault population strain for other planetary
processes and bodies.
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Byrne et al. (2014)
Watters (2021)

Loveless et al. (2024) 180° 120°W 60°W 0° 60°E 120°E 180°

Figure 4.1: Comparison of mapped thrust fault populations considered in this study across
Mercury in Winkel Tripel projection, color-coded based by source. The dataset by Byrne
et al. (2014) is displayed in blue atop the dataset by Watters (2021), which is displayed in
orange. The faults from Chapter I are displayed in thick black lines. For reference, smooth

plains units (Denevi et al., 2013) are colored in light green.
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Figure 4.2: Block diagram of fault geometric parameters modified after Twiss and Marrett
(2010a, b). The block (blue outline) is a representative portion of the faulted volume of
Mercury’s lithosphere. In this diagram the fault plane (Ag) is the area marked as red
shaded region and it is here shown as rectangular shape. The plane outlined with green
dashes is the total cross-sectional area (A¢) of the faulted volume. The green shaded region

represents Ay projected onto Ay.
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Loveless et al. (2024) Watters (2021) Byrne et al. (2014

Fault Displacement [m]

\ |

Cumulative Length Frequency

Fault Length [m]

Figure 4.3: Thrust fault population statistics for three datasets on Mercury, where the data
by Loveless et al., Watters (2021), and Byrne et al., (2014) are shown in black, orange,
and blue in the left, center, and right columns, respectively. (a) Fault displacement-to-
length data and the corresponding regressions shown for all datasets in the top row. Data
(points) and regression (solid line) for Chapter 3 (Loveless et al., 2024 panel) was derived
from model results. Data from Byrne et al. (2014) and Watters (2021) is shown for the
assumption that all measurements are from faults with dips of for a = 30°. Regressions for
those data are shown for a = 30° with a solid line and for a = 22° and 40° with dashed
lines, respectively. (b) Cumulative fault length frequency distributions shown for all
datasets in the bottom row. Cumulative length-frequency regressions are shown as solid
lines for the linear portion of the data distribution. Color-coding of the datasets

corresponds to that in Figure 4.1.
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4.7 Tables
Table 4.1: Parameters used to solve for fault strain. Statistical parameters B, p, s, and
m were derived from regressions performed in this work using measurements

published in the original datasets.

Symbol Definition Value
a Fault dip angle. a =22° 30°, or 40°?
0 Angle between the normal vector to the «a =22°; 6 =68°
fault plane and the horizontal vector z. a=30° 6 =60°
a =40° 6 =50°
¢ Angle between the horizontal vector fand «a =22°; ¢ = 158°
the slip direction of the fault. a =30° ¢ =150°

& = 40° ¢ = 140°

W Maximum displacement of the largest §®) =9300 m?

fault in the faulted volume.

A Geometric shape factor defining shape of Rectangular faults; A = 0.41?
the fault plane as either rectangular or Elliptical faults; A = 0.32
elliptical.

D Thickness of the faulted volume. D =30 km, 40 km, or 50 km?
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B Inverse of the scaling factor of the B =87.98%
displacement-to-length relationship.
a =22° B =337.9
a =30° B =451.0°

a =40°; B =579.8°

a=22°B=101.9°
a =30° B =136.0°

& = 40° B = 174.9°

p Exponent of the power law displacement- p =0.97*
to-length relationship. p=1.11°
p = 1.00°
m Additive inverse of the exponent of the m=1.94*
cumulative length-frequency m =2.61
relationship. m = 2.05¢
s Ratio of m to p. s =2.00?
s=2.35
s =2.05°

2 Value taken or derived from data from Chapters 2, 3 and Loveless et al. (2024b)

® Value derived from data published in Byrne et al. (2014)
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¢ Value derived from data published in Watters (2021)
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Table 4.2: Radius change values listed for those parameters that have the largest
impact on calculations. The lower and upper bounds of each of the ranges listed for

AR represent elliptical and rectangular shapes of the fault tip line, respectively.

AR [km] AR [km] AR [km]
D [km] «a[°] Chapters 2 and 3 Watters Byrne et al.
(2021) (2014)
(n = 100) (n = 653) (n = 5934)
Minimum 50 22 1.5-1.9 0.9-1.1 1.3-1.5
Optimal 40 30 2.3-2.9 2.4-3.0 2.8-3.5
Maximum 30 40 3.5-4.4 6.0-7.6 6.6-8.4
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CHAPTER 5

EFFECTS OF SOLAR TIDES ON MERCURY’S GLOBAL FAULT PATTERN. *

4 Loveless, S.R. Tobe submitted to Icarus.
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Abstract

The long, sustained cooling of Mercury caused the planet to undergo global
contraction, which is accommodated in the lithosphere by a population of surface-breaking
thrust faults. Horizontal stresses from global contraction alone are isotropic, and thus they
predict that thrust fault orientations across the planet are random. However, Mercury’s
thrust fault orientations are observed to be systematic, showing general north—south
alignment in the equatorial regions and more variation in preferred orientations near the
poles. This observation is widely considered to indicate other tectonic processes
overlapped with global contraction. Planetary reorientation, tidal despinning, solar tides,
and mantle convection all having been invoked individually or in combination to have
produced the global pattern of faults. The specific scenario by which only solar tides and
Mercury’s rotation overlap with global contraction has yet to be fully explored. Here, we
calculate the time-averaged stresses produced by tides to assess their effects over
geologically long timescales and then superpose these stresses over an isotropic horizontal
stress field caused by global contraction that would produce thrust faulting throughout
Mercury’s lithosphere. We find that stresses produced from Mercury’s current orbit alone
are on the order of 1 KPa and are therefore insufficient to cause faulting as a stand-alone
process. However, as these stresses are superposed onto the stresses of a few MPa caused
by global contraction, we find that the slight differences in the horizontal principal stresses
are enough to influence thrust fault orientations. The predicted optimal thrust fault
orientations show a widespread match to the observed pattern. The superposition of stresses
caused by solar tides and Mercury’s rotation onto global contraction may thus explain

much of the observed tectonic pattern on Mercury. Future work will include the modeling
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of cyclical stresses over Mercury’s orbital cycle and compare the recurring loading of those
stresses with empirical mechanical fatiguing of basalts to assess the influence the fatiguing

of Mercury’s lithosphere has on Mercury’s thrust fault pattern.
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5.1 Introduction

Mercury has undergone global contraction due to its long, sustained cooling
(Solomon, 1978). This contraction is the major source of tectonic stress and has driven the
formation of a globally distributed population of thrust faults and folds manifest at the
surface as positive relief landforms (e.g., Byrne et al., 2014, Chapter 1). Horizontal
compressive stresses from global contraction when acting as the sole tectonic process are
isotropic (Melosh and McKinnon, 1988), which would result in random thrust fault
orientations and thus showing no systematic pattern across the planet. However, Mercury’s
thrust fault orientations are observed to be systematic, displaying north—south trending
fracture patterns at the equatorial regions that become less pronounced, or east-west
oriented, towards the poles (e.g., Byrne et al., 2018; Klimczak et al., 2015). Therefore, it is
widely thought that other tectonic processes must have overlapped with global contraction
to have influenced the observed fault orientations. Different studies have assessed various
combinations of processes to explain the observed fault pattern, including Mercury’s True
Polar Wander (TPW) (e.g., Benz et al., 1988), impact damage from the Caloris basin
(Klimczak et al., 2025) or TPW from the Caloris impact (Matsuyama and Nimmo, 2009),
and rotational spin-down (Klimczak et al., 2015; Melosh and McKinnon, 1988) to predict
different fault patterns.

Mercury is in a 3:2 spin orbit resonance with the sun, where Mercury spins about
its axis three times for every two orbits around the Sun. This resonance caused it to have
slowed in rotation, a process widely referred to as tidal despinning (e.g., Kaula, 1968;
Burns, 1975; Melosh 1977; Melosh and McKinnon, 1988). Rotational spin-down

overlapping global contraction is predicted to cause north—south oriented thrust faulting at
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the equatorial regions with no preferred polar thrust fault orientations (e.g., Klimczak et
al., 2015; Pechmann and Melosh, 1979) or east-west oriented normal faults at the poles
(Beuthe, 2010). The predictions for the equatorial orientations agree well with
observations; however, thrusts near the poles have preferential orientations (Klimczak et
al., 2025) that poorly match the predictions. Reorientation of Mercury’s spin axis caused
by the Caloris impact in combination with tidal despinning (Matsuyama and Nimmo, 2009)
agrees with the patterns revealed by the Mariner 10 mission but showed disagreement with
tectonic patterns revealed from mapping efforts from the MESSENGER mission (Byrne et
al., 2018). Prior to Klimczak et al. (2015) studies that predicted fault orientations provided
a set of orbital events did not use rock-mechanics to predict their resulting fault
orientations.

The 3:2 spin orbit resonance on Mercury also causes systematic, repetitive time-
dependent tidal displacements as well as temperature variations as two points on Mercury’s
surface tend to face the sun for extended periods of time. These points are called Mercury’s
hot poles and located along the equator of the planet at longitudes 0° and 180°. The solar
tides driven gravitational potential Mercury experiences through its orbit is among the
largest of the planetary bodies in the solar system (Hoolst and Jacobs, 2003). These tides
may influence global fault patterns within Mercury’s lithosphere (Byrne et al., 2018;
Klimczak et al., 2025; Williams et al., 2011), and fault orientations show concentric
patterns around the hot poles. Additionally, Mercury’s surface is systematically heated due
to its orbital configuration leading to variations in both the thickness and strength of the
lithosphere geographically around the hot poles (Williams et al., 2011). With an

eccentricity of 0.2056, Mercury’s orbit is also the most eccentric in the solar system, thus
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creating a complex suite of orbital characteristics producing stresses throughout the
planet’s surface that warrants further investigation.

Various other planetary bodies throughout the solar system display fracture patterns
or seismicity that is linked to tides. Most of these planetary bodies are satellites with
eccentric orbits or have undergone some orbital change, such as despinning, precession, or
a change in orbital resonance that would have induced systematic stress patterns in their
lithospheres. On the Moon, systematic fracture orientations have been linked to some
combination of global contraction overlapping with diurnal tidal stresses and orbital
recession (Watters et al., 2019, 2015b) or with despinning, and various true polar wander
parameters (Matsuyama et al., 2021). Furthermore, seismic activity on the Moon is time
dependent on tides induced by Earth (e.g., Latham et al., 1971; Toksoz et al., 1977; Turner
et al., 2022; Watters et al., 2019).

Tidal deorbiting of Phobos into Mars has also been linked to systematic orientations
of extensional landforms about the sub-planet point of the satellite (Hurford et al., 2016).
Tidal effects from both the Sun and Phobos have also been predicted to induce seismicity
on Mars (Manga et al., 2019). Models of stresses from diurnal tides on Europa are large
enough to initiate cracking and match Europa’s large-scale linear and cycloidal fractures
(Greenberg et al., 1998; Marshall and Kattenhorn, 2005). Further evidence of tidally
induced fracturing on Europa has been linked to left-lateral strike slip deformation patterns
(Collins et al., 2022). Tidal displacements of the subsurface ocean of Enceladus have been
modeled to predict seismicity within its icy lithosphere (Olsen et al., 2021), and tides
influence the tectonic and cryovolcanic activity of the large-scale tiger-stripe fractures on

the moon’s surface (Hedman et al., 2013; Nimmo et al., 2014). Cycloid fracture patterns

119



present on both Europa and Enceladus are hypothesized to be caused by cyclical tidal
stresses (Greenberg et al., 1998; Rhoden et al., 2021, 2010). Stellar induced tidal stresses
acting upon exoplanets may even be responsible for the initiation of exoplanetary tectonics
(Zanazzi and Triaud, 2019) and have been modeled to induce seismic activity for various
exoplanets with nonzero eccentric orbits (Hurford et al., 2020).

Because the major effects that tides have on tectonic patterns and seismicity on
planetary bodies, we investigate how much solar tides overlapping with global contraction
influence Mercury’s tectonics, as that combination of processes has not yet been
specifically studied. We explore the effects that Mercury’s current orbit and spin-orbit
resonance have on the orientations of its population of thrust faults by investigating the
impact of tidally-induced stresses on fault orientations and the weakening effect they have
on the lithosphere due to their cyclical variations.

5.2 Methods

To explore the effect of Mercury’s eccentric 3:2 spin—orbit resonance with the Sun,
we calculate the tidal displacement across the planet and derive the resultant stresses of the
surface of Mercury. We follow the methods laid out by Matsuyama and Nimmo (2009,
2008). A complete list of the parameters and values we use is located in Table 5.1. The
stress sign convention for the physical framework in those works is such that tensile
stresses are positive and compressive stresses are negative. While tidal displacements and
corresponding stresses change throughout the 3:2 spin—orbit resonance cycle stresses,
radial displacement and stresses arising from tides oscillate as the relative positions of
Mercury’s subplanet point changes throughout the planet’s orbit. The displacements can

be averaged over geologically long time periods to study their long-term effects as the
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geographic location of the subplanet point averaged over time is a fixed location on
Mercury’s surface. For that, the radial displacement, 7y.4¢tig21(6, @), at colatitude 6 and

longitude ¢, of a body distorted by rotation and solar tides can be found using:

1 1
Trottidal(6, @) = R [1 - fr <COS2 Yiot — §> + 3f; <cos2 Yeidal — §>], 1

where R is the mean radius of the planet, f, is the flattening caused by rotation, and f; is
the flattening caused by tidal bulging (Matsuyama and Nimmo, 2008). Here, rotational
deformation is geographically dependent on the rotation pole, with averaged coordinates,
(Brov Prot):
C0S2 Ypor = €0S 0 €0S B¢ + sin O sin Oy coS(P — Prot) - 2
Tidal deformation is geographically dependent on the sub-planet point with averaged
coordinates (Oyidar, Pridal):
OS2 Yiigal = €OS 0 €0S Byigar + Sin O sin Oiqa cos(P — Prigal) - 3
We adopt the flattening terms used by Matsuyama and Nimmo (2009), which take into

account Mercury’s 3:2 spin-orbit resonance by including the Hansen coefficients:

1 nZ 3 3
fr =7 |27 +3(1—e*) 72 —3H(p,e)| and
1 . n’R3
ft:ZhZ oM H(p,e). 4

Here, hl is the degree 2 spherical harmonic Love number, n is the mean motion, G is the
gravitational constant, and M is the mass of Mercury. The values p and e are the spin/orbit
rate (3/2) and the eccentricity respectively. The Hansen coefficients, H(p, e), are a series
of coefficients that are commonly used in mathematical expansions of elliptical motion

related to the ratio (p) of angular velocity and mean motion tabulated by (Goldreich and
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Peale, 1966). For a 3:2 spin orbit resonance, we follow the work of Matsuyama and Nimmo
(2009) by using the Hansen coefficients to the order e3:

7e 123e3
H(3/2,€):7— 16

The normal stresses acting in the horizontal plane tangential to the surface along

the north—south direction (gyg) are:

2/14+v .
906 = §<5 + V).ufn(6 sin® Vn cos” l/)n +9 cos? Yn — 5)' 6

and the normal stresses in the horizontal plane acting in east-west (0,4 ) directions are:

2/1+v . 5 ) 2
Ty =§<5+v>yfn(—6sm Yn COS“ Y, + 3 cos®y, + 1). 7

Finally, shear stresses (gpq) acting in the horizontal direction tangential to Mercury’s

surface due to tides are:

1+v

Opp = —2 5—-|-1/an sin? y,, sin(2y,,) . 8

Equations 6, 7, and 8 use the following relationships:
sinyy, (0, ¢n, 8, @) cos i, (0, dn, 0, ) = cos b, sin @ — sin 6, cos(O) cos(p — ¢p,,),
i Y (6 B, 6, B) S0 Yy, (6, By, 6, $) = sin 6, sin(h — by, 9
where the coordinates (6,,, ¢,,) are either coordinates for the sub-planet point for n = tidal

or the coordinates for the rotational axis for n = rot. In equations 6, 7, and 8, v is the

Poisson’s ratio and u is the rigidity of the lithosphere. We calculate rigidity as u = 2

where E is Young’s Modulus. We use a value of E = 29 GPa to represent the deformation
modulus integrated over the thickness of Mercury’s fractured lithosphere (Klimczak and
McCarthy, 2025). The subscript n indicates that these stresses are calculated for both tidal

(n = tidal) and rotational (n = rot) distortions. The total normal stresses acting in the north—
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south and east—west directions and the total shear stresses caused by tides and rotation are
then the sums of the tidal and rotational components:
006 = 006rot T 006100’ 069 = Opdror T Tddriaa’ 066 = T0¢ror T O0gyiaar 10
We solve for this stress field in 30° by 30° latitudinal and longitudinal regions across
Mercury.
The principal horizontal stresses, o, and o_ arising from tides are calculated from

the combination of ggg, 044, and ggy using the following relationships (Turcotte and

Schubert, 2014):

Opp + O'd)d) Opg — O‘¢¢ 2 0.5
=T T [( ) (”545)] ;
Ogg + Op¢ Ogg — Og¢p 2 0.5
o_ = > — [( > ) + (092¢)] . 11

The angle, w, to which o, acts with respect to the east—west direction can be found using

the relation (Turcotte and Schubert, 2014):

20
2w = atan (¢>, 12
Ogo — Op¢

while the direction o_ makes with o, is 90° by definition.
5.3 Results

We find that the time average radial displacement of Mercury’s surface due to tides
and rotation is on the order of £1 m (Figure 5.1). A positive radial displacement occurs at
the equator, with maximum peaks at the hot pole locations (warm colors in Figure 5.1).
The polar regions experience a negative radial experience due to flattening caused by
rotation and solar tides (cool colors Figure 5.1). A radial displacement of 1 m agrees with
other works that have calculated radial displacement due to tides (e.g., Hoolst and Jacobs,

2003; Thor et al., 2020).
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We first calculate the average stresses produced by the tides and rotation of
Mercury’s current 3:2 spin-orbit resonance alone (Figure 5.2). These stresses are calculated
in 30° by 30° bins. We represent the horizontal principal stresses as line segments oriented
in the direction they are acting on, with blue lines showing horizontal compression and
orange lines showing horizontal tension. Throughout Mercury’s surface, the principal
stresses generated from solar tides and Mercury’s rotation alone are compressive and
tensile only on the order of a few kPa (Figure 5.2). These stresses are not strong enough to
overcome the unconfined compressive strength of rock, and therefore, solar tides and
Mercury’s rotation are insufficient to induce faulting of the lithosphere. Stresses in the
equator show tensile principal stress components acting in north—south direction and
compressive principal stress components acting in the east-west direction. The magnitudes
of the tensile north—south trending stresses substantially increase away from the equator in
mid-latitude regions, and at the poles the orientations of the tensile stresses show more
deviation from the north—south trend produced at the equator. The orientations of the stress
field show systematic variations around the hot poles.

Global contraction imposes a global compressive stress state (Melosh and
McKinnon, 1988) which has created a global population of thrust faults on Mercury (Byrne
et al., 2014). We note that solar tides and Mercury’s rotation do not generate stresses that
are large enough to fracture Mercury’s lithosphere. Therefore, we superpose enough
compressive stress to predict thrust faulting at all locations across the tidally stressed
surface of Mercury. For this, we assume an unconfined compressive strength of a fractured
basaltic rock mass at ~10 MPa (Schultz, 1993), which equals the stresses needed at the

surface to produce thrust faulting. We superpose compressive stresses onto our solutions
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for tidal stresses in a manner such that a minimum of 10 MPa are reached for all principal
stress components. The larger of the two principal stresses, g,, is more tensile than o_.
Therefore, as compression is added, the stresses acting in the direction of o, become less
compressive than those acting in the direction of o_, and so the direction of g, becomes
the direction of the intermediate, compressive principal stress acting in the horizontal
direction, g,,. Conversely, the stresses acting in the o_ direction become more compressive,
resulting in the maximum compressive principal stress, oy to be acting in the direction of
o_.

Superposing global contraction onto the stresses caused by solar tides and
Mercury’s rotation shifts all stress components to be compressive. Therefore, we now show
a map of the principal stresses caused by solar tides, Mercury’s rotation, and global
contraction acting together (Figure 5.3). The maximum horizontal principal stress, gy, are
represented with thick, blue lines, and the minimum horizontal principal stress, a},, are
represented with thin, blue lines. The addition of ~10 MPa to the stresses shown in Figure
5.2 causes the stresses gy and gy, to be near isotropic as the differential stresses from tides
and rotation are on the order of only a few KPa. We find that the maximum horizontal
principal stress component-is oriented in east-west direction in a wide region of the
equatorial and mid-latitudes (oy, Figure 5.3). Its orientation varies in northwest—southeast
and northeast—southwest orientations towards the poles. In turn, the minimum horizontal
principal stress components are oriented north—south a wide region of along the equator
and mid-latitudes and show more variation in the polar region (o}, Figure 5.3). This

principal stress shows subtle systematic variations around the hot poles.

125



Next, we calculate the optimal orientations of thrust faults predicted by the stress
field where stresses from global contraction and tides and rotation are superposed. Since
we previously selected the superposed compressive stresses from global contraction to
exceed the unconfined compressive strength across all locations, thrust faulting will occur
in this stress state. Because of the anisotropy the tidal and rotational forcing introduces to
the horizontal principal stress components, it is possible to determine optimal thrust fault
orientations. For our stress field (Figure 5.3), the minimum principal stress component acts
vertically and is equal to the overburden, while the intermediate and maximum principal
stresses are horizontal. Per definition, the strike of an optimally oriented dip-slip fault
forms in the direction of the intermediate compressive principal stress component. On our
stress map (Figure 5.3), the orientations of o}, are then equal to the optimal thrust fault
orientations, which we have highlighted in Figure 5.4. This map shows the optimal
orientations for the same 30° by 30° latitudinal and longitudinal regions across Mercury
with the black lines aligning with the predicted strikes of the thrust fault planes. We predict
predominantly north—south trending thrust fault orientations in a broad region around the
equator and mid-latitudes. Optimal thrust fault orientations are predicted to show greater
variations near the poles, showing northwest—southeast and northeast—southwest strikes.

We compare our predictions for Mercury’s global thrust fault pattern caused by
tides and rotation overlapping with global contraction with the observed fault orientations
on Mercury. Rose diagrams of fault orientations of 30° by 30° regions were generated by
Klimczak et al. (2025) and are represented in grey in Figure 5.5. These show length-
weighted modes of the azimuths of Mercury’s faults. We overlay these rose diagrams with

the predicted fracture patterns we calculated shown in Figure 5.4 (blue lines, Figure 5.5).
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The predicted thrust fault orientations produced in this work reasonably agree in almost all
of the 30° by 30° regions with the orientations analyzed by Klimczak et al. (2025) as the
line segments from the predictions align well with the rose diagrams of faults produced by
observations (Figure 5.5).

We compare our thrust fault predictions to both the length-weighted averages,
standard deviations, and modes of the observed thrust faults produced by Klimczak et al.
(2025) (Table 5.2). All the predicted thrust orientations fall within one standard deviation
of the observed fault orientations for each region, predicted thrust fault orientations fall
within Y5 of the respective bins observed standard deviations for 58 of the 72 bins, and as
much as 40 of the 72 bins have predicted thrust fault patterns that fall within % of the
observed standard deviation (Table 5.2). The average angular difference across all of the
predicted thrust fault orientations with observed thrust fault orientations is 12.7°, however
we note a latitudinal variation. In near equatorial latitudes, the average difference between
predicted orientations and observed orientations is 6.6°, at mid latitudes the average
difference is 9.1°, and at near polar latitudes, the average difference is 22.6°. We consider
these alignments as good indication that our modeled thrust fault network successfully
matches observations.

We also show the observed modes of the thrust faults produced by Klimczak et al.
(2025) which is the fault orientation that is observed to occur the most per 30° by 30°
region in Table 5.2. This data shows that many regions are multimodal, meaning that
Mercury’s faults tend to show multiple reoccurring strikes per region. We bold the values
in Table 5.2 where our predictions fall within 10° of either the weighted mean or one of

the observed modes per region. Predictions in all but 19 of the regions fall within 10° of
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either the weighted mean or any of the modes in its respective region. The rose diagrams
in Figure 5.5 are constructed of bins of ~10° which was found to be the bin size that best
visualizes structure orientations (Klimczak et al., 2025) and so we consider these
alignments as good indication that our modeled thrust fault network successfully matches
observations.

5.4 Discussion

In this work we predict thrust fault orientations from the time-averaged stress field
caused by the deformation that Mercury experiences from its 3:2 spin-orbit resonance with
the sun superposed on global contraction. Stresses from tides and rotation alone (Figure
5.2) have magnitudes of only a few kPa and are both tensile and compressive. Neither the
compressive nor the tensile stresses are large enough to reach the compressive and tensile
strengths of Mercury’s lithosphere. This finding shows that solar tides and rotational
bulging are insufficient to actively drive thrust faulting on Mercury.

However, we demonstrate that stresses from solar tides and rotation influence the
orientations of faults if faulting is driven by other sources of stresses. For Mercury, global
contraction without a doubt has driven thrust faulting, as evinced by the globally distributed
population of thrust faults. By superposing enough compressive stress to predict thrust
faulting onto the stress field of solar tides and rotation, we predict optimal orientations of
thrust faults that show reasonably good agreement with the observed global fault pattern.
The horizontal principal stresses produced by tides and rotation only differ by a few kPa,
and when compression on the order of ~10 MPa is added to the point of rock failure, these
stresses become near isotropic (Figure 5.3). A near isotropic range of oy and gy, principal

stresses allow for a wide range of plausible fault orientations. Therefore, the small
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differences of horizontal stresses caused by tides and rotation allow for predicting just
optimal thrust fault orientations provided the calculated stress regime. Such orientations
are thus expected to be only subtly preserved in Mercury’s geologic record.-We interpret
these results as indication that Mercury’s 3:2 spin-orbit resonance does in fact influence
the orientations of Mercury’s thrust faults caused by global contraction.

Due to its current orbit and that we find that solar tides and rotation play a role in
Mercury’s thrust fault patterns, Mercury’s current orbit may influence the planet’s
seismicity. Moonquakes have been suggested to be linked to tides, but even so the largest
moonquakes are relatively weak with amplitudes of ~3 (e.g., Lammlein et al., 1974). On
Mars, tides induced from Phobos have been linked to seismic events (e.g., Manga et al.,
2019; Pou et al., 2021). Therefore, tides on Mercury may cause seismicity, especially since
the deformation from the Sun onto Mercury is estimated to be among the largest in the

Solar System (Hoolst and Jacobs, 2003).
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Figure 5.1: Map of the time-averaged radial displacement produced by solar tides and
Mercury’s rotation due to Mercury’s 3:2 spin—orbit resonance with the Sun. Map shown

in equirectangular projection.
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Figure 5.2: The orientations and magnitudes of the principal stresses produced by
Mercury’s orbit and rotation alone. Tensile and compressive stresses are represented as

orange and blue line segments, respectively.
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Figure 5.3: The horizontal principal stresses from Mercury’s orbit and rotation shown as

overlapping with stresses from global contraction.
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Figure 5.4: The optimal thrust fault orientations predicted for the stress field represented

in Figure 5.3.
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Figure 5.5: Predicted thrust fault patterns from Mercury’s current eccentric 3.2 spin-orbit
resonance with the sun superposed by global contraction shown as blue line segments
overlain on rose diagrams representing a 30°X30° binning of latitudinal and longitudinal

variations of structure orientations modified from Klimczak et al. (2025).
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5.6 Tables
Table 5.1: Parameters used in the calculations of this work and the sources of

their values.

Symbol Definition Value
R Radius of Mercury 2,440 km®
h? Love number assuming fluid behavior 0.92°
n Mean motion 8.3x107 rad/s°
G Gravitational Constant 6.67x10"! m? kgt 524
M Mass of Mercury 3.3%10% kg*
p The spin/orbit ratio 3/2¢
e Mercury’s eccentricity 0.2056°¢
Brotr Prot Time averaged rotational pole (2°, 0°)
coordinates

Otidal Priqgan Time  averaged subsolar point (90°, 0°)°

coordinates
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v Poisson’s  ratio of  Mercury’s 0.25¢

lithosphere
U The rigidity of Mercury’s lithosphere  1.16x10'° Pa
E Young’s Modulus of Mercury’s 29 GPaf
lithosphere

aPerry et al. (2011)

bXiao et al. (2024)

“Williams (2020)

dNewton (1686)

*Matsuyama and Nimmo (2009)

f(Klimczak and McCarthy, 2025)
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Table 5.2 Thrust fault orientations for 30° by 30° latitudinal and longitudinal regions
across Mercury as indicated by their center coordinates. Predicted thrust fault orientations
of tides and rotation superposing global contraction are listed as optimal strikes. The
weighted mean and standard deviation (Std. Dev.) of the observed fault strike data on
Mercury are listed in comparison to the statistical modes. Data from Klimczak et al. (2025).
All fault strike values are given in azimuth notation from 0° to 180°. Values in bold indicate

match between predictions and orientations.

Lon Lat  Optimal Weighted Mean Mode Mode Mode Mode

©) () Strike(®) andStdDev.(®) 1) 2¢) 3(¢) 40

-165 =75 8 176 + 55 40 87 - -
-165 -45 2 9+ 37 34 136 - -
-165 -15 1 1+38 12 154 — -
-165 15 0 2+40 24 164 — -
-165 45 178 3+42 36 165 - -
-165 75 168 6+ 58 30 61 107 160
-135 -75 25 8£50 12 90 169 -
-135 -45 6 9+ 34 15 159 - -
-135 -15 2 3+35 51 157 - -
-135 15 1 179 £ 45 24 160 - -
-135 45 177 175+ 36 19 155 - -
-135 75 143 10 + 47 36 141 — —
-105 -75 141 14 +£59 28 96 166 -
-105 -45 6 16 + 35 25 166 - -
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CHAPTER 6
CONCLUSIONS

This dissertation explores a wide range of topics concerning lithospheric shortening
on Mercury. First, in Chapter 2, the legitimacy of the traditional categories “lobate scarps”,
“wrinkle ridges”, and “high-relief ridges” is quantitatively tested using two multivariate
statistical analyses. These analyses show that most landforms previously classified in one
category are not distinctly different from landforms previously categorized into another.
Second, in Chapter 3 the subsurface of the wrinkle ridge and lobate scarp archetypes found
from the distribution of the LDA in Chapter 2 is modeled using the MOVE geologic
modeling software revealing that Mercury was host to a large variety of complex thrust
systems. The data acquired from Chapters 2 and 3 then informed the strain analysis in
Chapter 4, which uses multiple fault data sets on Mercury to estimate multiple kilometers
of radial contraction over a wide range of plausible physical configurations. Finally, in
Chapter 5, the time-averaged horizontal stresses within Mercury’s lithosphere caused by
solar tides and Mercury’s rotation are superposed onto the stresses caused by global
contraction to predict fracture patterns. This dissertation thus covers four important topics
regarding Mercury’s contractional tectonic character. In the proceeding text, this chapter
will summarize the contributions each chapter makes to the current understanding within
the scientific community. Following this, open-ended questions and future work will be

discussed.
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Mercury’s morphological spectrum of shortening landforms

Previously, most contractional tectonic landforms on non-Earth terrestrial bodies
were classified as either lobate scarps, wrinkle ridges, or high-relief ridges (e.g., Melosh
and McKinnon, 1988; Strom, 1979; Watters et al., 2004, 2001; Watters and Robinson,
1999). These landform designations are loosely defined by the general morphology of a
few exemplary shortening landforms. Consequently, many shortening landforms on
Mercury are difficult to designate to one of the traditional categories, and some works have
since refrained from using these terminologies to describe Mercury’s tectonics (e.g., Byrne
et al., 2014; Crane and Klimczak 2019a). The principal component analysis and linear
discriminant analyses presented in Chapter 2 demonstrates that the morphological
variation across 100 randomly selected shortening landforms does not support the grouping
of such landforms into the traditional categories. Instead, most shortening landforms fall
on a spectrum between lobate scarps and wrinkle ridges, with few archetype landforms of
each category. Additionally, the geologic unit a shortening landform forms in does not
govern the morphology of that shortening landform. The variance of the morphologies of
these shortening landforms formed in the smooth plains units and the intercrater plains
shows substantial overlap. These findings suggest that the continued use of the traditional
categories may prevent the enablement of new insights regarding the architecture of
Mercury’s contractional tectonics.

Geometric forward models of thrust systems on Mercury

The modeling results presented in Chapter 3 inform the current understanding of
Mercury’s tectonic character. The 55 shortening landforms that make up the endmembers

of the traditional category LDA conducted in Chapter 2 are designated as lobate scarp and
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wrinkle ridge archetypes and are selected for subsurface modeling. This modeling effort
shows that Mercury is host to a wide range of complex thrust geometries including single-
listric thrusts, imbricate stacks, and pop-up structures. Faults modeled in this work located
in the smooth plains geologic units fault deeper than the depth estimates of the volcanically
emplaced lavas that make up the smooth plains (Du et al., 2020; Head et al., 2011; Ostrach
et al., 2015). This suggests that the formation mechanisms of the contractional tectonics
both inside and outside the smooth plains units are the same. Alternatively, the load-
induced subsidence suggested to form wrinkle ridges in the smooth plains units can be
ruled out, and instead global contraction is likely the primary source of compressional
horizontal stresses to create shortening landforms in both the intercrater plains and smooth
plains units.

Resolving Mercury’s global contraction discrepancy

The amount that Mercury has radially contracted due to long-sustained cooling is
widely debated (e.g., Byrne et al., 2014; Watters, 2021). In Chapter 4, the methodology
introduced by Twiss and Marrett (2010a, b) is successfully implemented to calculate
Mercury’s radial contraction using multiple fault data sets. The work in Chapter 4 also
calls into question the reasoning that a population of more-shallowly dipping thrust faults
causes greater amounts of global contraction. This correlation is an artifact of the
methodologies previously used to calculate Mercury’s contraction. The method introduced
by Twiss and Marrett (2010a, b) circumnavigates the strong dependence of the number of
shortening landforms considered onto the amount of estimated radial contraction. The
results of Chapter 4 show that multiple data sets spanning almost three orders of magnitude

of sample sizes produced relatively similar amounts of strain. Chapter 4 both indicates that
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this method can be applied to calculate the strain of non-Earth, faulted planetary surfaces,
as well as advocates that Mercury has experienced multiple kilometers of radial contraction
after the brittle strength of the lithosphere has been exceeded.

Mercury’s Eccentric 3:2 Spin-Orbit Resonance and the Planet’s Fracture Patterns

The effects of Mercury’s current 3:2 spin-orbit resonance on the systematic fracture
orientations throughout Mercury’s surface have been proposed by previous works (Byrne
et al., 2018; Klimczak et al., 2025) but have not yet been explored in detail as is done in
Chapter 5. Here, the horizontal principal stresses caused by solar tides and Mercury’s
rotational bulge are calculated across Mercury’s lithosphere and are found to only differ
by a few KPa. Once global contraction forces all the stresses into compression past the
unconfined compressive strength of the lithosphere (~10s of MPa; Schultz, 1993) the
principal stresses become near isotropic. However, this small deviation from a near
isotropic stress state causes the predicted thrust faulting to have preferred, optimal
orientations. The work shown in Chapter 5 reveals that these optimal fracture orientations
align well with observed fracture trends presented in Klimczak et al. (2025, 2015). This
work suggests that Mercury’s current orbital configuration has likely affected the
propagation of fractures on Mercury once compressional stresses from global contraction
superseded the brittle strength of Mercury’s lithosphere.

Open questions and future work

The research presented in this dissertation highlights the complex tectonic history
of a planet that has undergone considerable global contraction. Further work using the same
suite of analyses and modeling onto other terrestrial bodies that host a similar set of

contractional tectonics would reveal much about their tectonic character and history.
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Statistical analyses of contractional morphology, forward modeling of non-Earth fault
architectures, application of alternative strain assessments, and new insight into tidal and
rotational influence of fracture propagation of planetary bodies are all aspects of this
dissertation that can be applied to other objects throughout the solar system.

Chapter 2 presents work on the application of statistical analyses onto the
morphology of Mercury’s shortening landforms revealing the variability of Mercury’s
contractional tectonics. A similar analysis has been applied to Mars in McCullough et al.
(2024), from which the LDA showed similar distributions. However, McCullough et al.
(2024) had further defined, quantitatively, the distinctions between lobate scarps and
wrinkle ridges, rather than assess the legitimacy of these categories. Additionally, the
assessment of the different terrain types and their potential to influence Martian shortening
landform variability has yet to be explored. This analysis can also be applied to the Moon,
which hosts an abundant number of shortening landforms that have been classified as
lobate scarps and wrinkle ridges (e.g., Watters, 1988). Interestingly, topographic and image
data available for Lunar lobate scarps and wrinkle ridges is of much higher resolution than
data available for Mercury, with resolutions of less than 1m to up to a few m (e.g., Barker
et al., 2016; Henriksen et al., 2017). Therefore, the morphology of Lunar shortening
landforms of scales much smaller than those on Mercury have been studied (e.g., Frueh et
al., 2025; Watters et al., 2010). Lunar shortening landforms may produce different
morphological trends if similar statistical analyses are performed on these structures.

The modeling work done in Chapter 3 could also be applied to a wide range of
tectonic features found throughout the solar system. Similar modeling was conducted for

shortening landforms on Mars (McCullough et al. 2024), however this work did not utilize
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the new model control points presented in Chapter 3. Conducting a new analysis on a set
of randomly selected shortening landforms on Mars would reveal important aspects of the
Martian tectonic character. Furthermore, a similar modeling analysis on the moon would
reveal whether wrinkle ridges in the Lunar Mare host faults that penetrate beneath the
volcanic lava emplacements that make up the Mare geologic units, as such tectonics have
also been ascribed to lithospheric subsidence (e.g., Watters, 1988).

Chapter 4 had proven that an alternative way to calculate the strain of a faulted
volume was viable in determining the strain due to global contraction accommodated by
Mercury’s population of faults. Prior to this dissertation, the methodology introduced by
Twiss and Marrett (2010a, b) had yet to be applied to any non-Earth faulted volume of
rock. Future work using this methodology could be applied to terrestrial objects like the
Moon, or Mars, which may have experienced global contraction (e.g., Frueh et al., 2023;
Klimczak, 2015; Nahm and Schultz, 2011). Alternatively, a strain analysis of Venus’
Tesserae could be used to compare with the strains associated with orogenic settings on
Earth, which may provide clues if such regions were created via a plate tectonic-like
mechanism. It is important to note that Chapters 2 and 3 informed the results of Chapter
4, and a similar suite of research projects should be conducted in order to best inform the
results of other planetary objects when testing this method.

Chapter 5 had shown that stresses within Mercury’s lithosphere caused by rotation
and solar tides likely subtly influence tectonic patterns when they are overlain by stresses
from global contraction. However, these stresses are time-dependently-cyclically loaded
onto Mercury’s surface throughout Mercury’s 3:2 spin-orbit cycle. The application of the

mechanical fatiguing of the lithosphere due to tides and rotation repeating over millions of
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cycles of Mercury’s orbit has yet to be fully explored. Chapter 5 indicates that time-
averaged stresses caused by solar tides and rotation alone are insufficient to produce
stresses that would induce any fracturing, but the cyclicity of such stresses over
geologically long time periods would weaken Mercury’s lithosphere. The fatiguing in parts
of Mercury’s lithosphere that are geographically dependent on Mercury’s 3:2 spin-orbit
resonance has the potential to influence fault orientations and their area densities.

Future work will thus have to incorporate the fatiguing effects onto Mercury’s
lithosphere caused by the cyclical loading of tidal and rotational deformation. The
weakening effects of Mercury’s orbit has been previously proposed by Klimczak et al.
(2015). Mechanical fatiguing related to tides is a process that has been proposed for
planetary bodies throughout the solar system including the moon (Frohlich and Nakamura,
2009; Patzek and Riisch, 2022) and the icy satellites (e.g., Hammond et al., 2018, 2015).
For the moon, tidally induced mechanical fatiguing has been used to explain lunar seismic
activity (Frohlich and Nakamura, 2009) and thermal fatiguing due to the moon’s orbit has
shown to be sufficient to breakdown rocks (Patzek and Riisch, 2022). Cycloid fractures on
Europa appear to form below the failure threshold expected for the moon’s lithosphere
(Hoppa et al., 1999), and so fatiguing has been proposed as the primary mode for these
systematic fracture patterns (Rhoden et al., 2021). However, these objects orbit planets in
a 1:1 spin-orbit resonance or have varying obliquities or precessions that could influence
the stresses they experience. It is yet to be explored how the cyclical stresses of Mercury’s
current orbit overlain by substantial global contraction would be affected by tidally and
rotation-driven fatiguing. Future work will then include the weakening effects of tidal and

rotation fatiguing to assess the geographic variations of the brittle strength of Mercury’s
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lithosphere, perhaps while incorporating empirical fatiguing data from rock testing of
basalt.

Concluding remarks

The work presented in this dissertation highlights a wide range of questions that
pertain to the tectonic character of lithospheric shortening throughout the solar system, all
stemming from research regarding the shortening landforms of Mercury. Answering these
questions will provide necessary insight into the structural elements, the tectonic histories,
and the influence the thermal and orbital evolutions of terrestrial bodies throughout the

solar system have on the deformation of their lithospheres.
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APPENDIX A: CHAPTER 2

Table A2.1: Transformations used to normalize all of the measurements in this study.

After these transformations, the data was scaled using the measurement’s z-scores (where

z=(x — /o).

Parameter Normalized Transformation
Relief In(x)
Breadth In(x)
Total Cross-Sectional Length In(x)
Shortening Strain In(x)
Forelimb Slope In(x)
Backlimb Slope In (—x)
Symmetry In (|x[)
Forelimb Length In(x)
Backlimb Length In(x)
% Backlimb Downslope In(x)
Mapped Length In(x)
TRI In(x)
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Figure A2.1: Scree plot depicting the percent variance described by each of the 12
principal components. The red horizontal line depicts the percent variance each PC would
have if they each equally contributed to the total variance observed across the data (i.e.,

100% variance/12 parameters).
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Table A2.2: Extracted morphology values for 100 shortening landforms

ID# Relief [m] Breadth [m] CrossSection[m] Strain

1 1414.7531 42526.7063 42630.774 0.00244114
2 823.3459 28531.7712 28633.9304 0.00356776
3 1415.5202 37238.2114 37573.4665 0.00892266
4 1203.0848 29636.3524 29817.9583 0.00609049
5 802.9927 42437.7454 42598.5608 0.00377514
6 1781.1514 42599.7651 42806.0202 0.00481837
7 647.5123 47766.8962 47782.9792 0.00033658
8 1550.7377 24819.1458 25244.2102 0.0168381
9 2842.878 36748.6307 37114.5679 0.00985967
10 1229.6014 38903.8359 39051.8106 0.00378919
11 1091.315 78337.1439 78534.7767 0.0025165
12 950.2112 20378.7798 20523.8215 0.00706699
13 1612.3143 100045.575 100123.617 0.00077945
14 221.2723 4333.60635 4353.17784 0.00449591
15 1736.4284 60375.2936 60916.0961 0.00887783
16 229.2747 21917.1499 21925.162 0.00036543
17 2166.0015 29558.6143 29802.3743 0.00817921
18 572.0013 27335.3806 27384.9034 0.0018084
19 3261.757 261819.743 262520.975 0.00267115
20 1432.3385 31157.6789 31462.7864 0.00969741
21 756.7711 10583.4863 10687.5329 0.00973533
22 528.3406 38240.5145 38434.6025 0.00504983
23 1146.6646 20890.4225 21078.7039 0.0089323
24 3631.6634 44893.5447 46544.6826 0.03547425
25 1675.2407 57000.6292 57180.0884 0.00313849
26 486.4815 31560.4968 31612.5302 0.00164597
27 1413.4661 57248.4787 57403.6841 0.00270375
28 423.6231 37660.8846 37678.3001 0.00046222
29 405.6563 19923.0495 19957.8296 0.00174268
30 442.216 28902.3786 29198.6378 0.01014634
31 1166.88 34298.3851 34441.522 0.00415594
32 791.9257 43597.8141 43676.3045 0.00179709
33 300.2517 48405.9177 48425.6295 0.00040705
34 1575.7803 40823.0403 41028.9797 0.00501936
35 1494.8211 58188.1933 58460.7637 0.00466245
36 2315.9009 71780.1216 72125.52 0.00478885
37 871.629 16659.2543 16746.1424 0.00518855
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38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

3338.2986
2876.7431
2648.8584
721.8928
1011.5381
191.8138
315.6608
637.6115
1339.1792
534.5221
1546.2202
1253.4104
1891.0696
1890.8744
1561.2718
180.7307
413.1501
1538.9979
304.1298
2310.064
460.8051
1151.851
661.7843
723.9938
2441.737
643.1144
787.6495
1542.0267
1611.9516
478.3598
553.7783
1105.5798
964.6781
997.1419
839.5641
834.2471
2894.3435
1090.5031
3189.4176
667.7308

52100.4754
68384.4369
39703.1234
16107.5105
45838.5339
27039.1022
19842.1864
35654.7232
31860.1452
24505.2428
107962.668
52800.8995
47429.4332
68477.7235
71660.3615
29923.3794
16978.5985
114825.265
26756.0438
48727.3531
27106.0022
50431.8737
47328.3053
67633.8733
108679.397
57545.8891
46419.8163
21226.7505
51171.034

27166.4589
17504.4993
74129.8799
30538.1027
25672.7245
38299.3496
38317.6591
47422.4755
54253.7608
76816.9086
29883.3246

52765.131

68871.6772
40208.4858
16253.5991
45937.4948
27043.1876
19855.8012
35717.4473
31978.0891
24546.6923
108268.807
52888.5406
47814.7893
68629.5921
71936.0761
29934.1921
16995.6659
114938.198
26815.9895
49060.9416
27150.0391
50511.4042
47374.1255
67697.364

108922.243
57697.5568
46483.0248
21557.7177
51855.0343
27209.3595
17562.8132
74329.6723
30951.2725
25896.2253
38357.485

38362.6317
48296.4109
54349.8462
77411.3091
29910.3179
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0.01259649
0.00707461
0.01256855
0.00898808
0.00215425
0.00015107
0.00068569
0.00175612
0.00368827
0.0016886

0.00282759
0.00165709
0.00805935
0.00221287
0.00383277
0.00036122
0.00100422
0.00098256
0.00223545
0.00679947
0.00162198
0.00157451
0.0009672

0.00093786
0.00222954
0.00262867
0.00135982
0.01535261
0.01319062
0.00157669
0.0033203

0.00268792
0.01334904
0.00863063
0.00151562
0.0011723

0.01809525
0.00176791
0.00767847
0.00090247



78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

1335.6184
1455.6099
968.2256
617.6321
780.9744
267.427
332.8557
762.2883
344.0871
423.5033
1738.6533
1699.4111
1233.548
2260.825
1726.3409
1213.8447
283.8638
1051.7507
741.6715
2507.0921
494.2391
885.7175
962.0807

28906.3636
49797.4674
20228.6765
15444.5436
35969.3971
35633.2622
35134.6654
44785.0123
13473.4272
40085.8368
54950.7019
46916.0186
51665.0028
54083.1276
51638.9512
55061.1697
29590.7322
31840.2654
24526.6213
70138.1022
41441.0797
43427.0448
28133.0479

29077.5134
50240.7561
20375.4518
15511.5306
36009.9357
35651.1806
35156.4129
44822.0975
13489.294

40115.7661
55142.9328
47118.0924
51776.1223
54400.9202
51748.4537
55207.9054
29603.3527
32112.1001
24612.2341
70488.7924
41475.2635
43472.2099
28328.6195

185

0.00588598
0.00882329
0.00720354
0.00431853
0.00112576
0.0005026

0.00061859
0.00082739
0.00117625
0.00074607
0.00348605
0.00428867
0.00214615
0.00584168
0.00211605
0.00265788
0.00042632
0.00846518
0.00347846
0.00497512
0.0008242

0.00103894
0.00690368



ID# FLSlope[deg] BLSlope[deg] Symm][deg] FLLength[m] BLLength[m]
1 4.33437615 -1.7221491 2.61222706 18871.0904 23759.6836
2 4.28815714 -1.9512687 2.33688839 11079.176 17554.7544
3 7.08615801 -4.0679367 3.01822132 11595.9321 25977.5344
4 6.84118787 -3.3631054 3.47808245 10316.9645 19500.9938
5 10.7091503 -1.2389679 9.47018237 4590.45992 38008.1009
6 8.19034495 -3.1115268 5.07881817 12766.2247 30039.7955
7 1.19022801 -1.3818176 -0.1915896  31191.247 16591.7322
8 19.5412803 -3.0712122 16.4700682 5244.57243 19999.6378
9 10.7835876 -4.2108801 6.57270758 15604.2942 21510.2738
10 5.82833844 -2.894981 2.93335748 12330.6952 26721.1153
11  2.46211918 -0.5438498 1.91826943 25654.5011 52880.2756
12 8.60299906 -3.7279153 4.8750838  6521.03796 14002.7835
13  2.02521036 -1.2769238 0.74828654 45775.6172 54347.9998
14  5.30508684 -3.041099 2.2639878  2423.55148 1929.62637
15  11.1349 -1.6816272 9.45327277 9487.25361 51428.8425
16  1.69685519 -0.6842528 1.01260243 7753.99363 14171.1684
17  7.13795842 -1.3856369 5.75232151 17982.693 11819.6812
18 5.04742212 -1.1299734 3.91744869 6649.91594 20734.9874
19 5.55530827 -0.5454401 5.0098682  34636.93 227884.045
20 7.71263668 -4.2910074 3.42162924 11121.1708 20341.6157
21  8.2825555 -3.1428291 5.13972639 5355.92217 5331.61076
22 1.88200588 -2.001642 -0.1196361 16869.1984 21565.4041
23 6.67832263 -3.9942308 2.68409178 10062.7573 11015.9466
24 225675883 -1.2670319 21.3005564 11850.596 34694.0865
25 8.77638967 -1.4943078 7.28208188 11234.3158 45945.7726
26 4.52841191 -0.7227509 3.80566102 6204.13894 25408.3912
27 6.12187344 -1.2806706 4.84120285 13391.7016 44011.9825
28 2.47487738 -0.7766711 1.69820633 9824.5252 27853.7749
29 3.1945116 -3.2220462 -0.0275346  7328.13018 12629.6994
30 4.60206005 -1.4829924 3.11906766 5565.05753 23633.5803
31 8.04235204 -2.2201431 5.82220899 8500.0347 25941.4873
32 4.69318863 -0.9095408 3.78364786 9789.60977 33886.6947
33 2.50616623 -0.2211198 2.28504641 6878.4167 41547.2128
34  10.7297507 -1.9392173 8.79053341 8723.53496 32305.4448
35 10.0961839 -1.4177259 8.67845799 8785.80427 49674.9594
36 12.0392373 -1.9870173 10.0522201 11585.3783 60540.1417
37 5.21244231 -4.2999692 0.91247315 9705.42767 7040.71468
38 14.8396327 -3.5836382 11.2559945 13786.8926 38978.2383
39 9.45730269 -2.6854072 6.77189552 18308.0783 50563.5989
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1.04184322
2.7074319
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4.76839349
3.05598145
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1.2151951
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12299.8954
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31441.506
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ID# Back% DS Length [m]
1 76 584067.883
2 83.3333333  95265.0575
3 92.0353982  148745.564
4 82.7160494  231721.946
5 70.1388889  157429.145
6 100 173135.621
7 100 89247.503
8 68.2926829  205172.914
9 96 713501.292
10  95.9349594  172035.282
11  60.989011 331039.824
12 90.625 33247.1877
13  93.9759036  245318.552
14  88.8888889 57982.3502
15  81.3397129  114674.78
16  86.1538462  46169.8734
17  90.4761905  383446.351
18  75.7894737  30153.1339
19 54.4843049 1016397.49
20 86.0465116  165327.838
21  69.5652174  91811.6231
22  67.0454546  171838.009
23 80.4347826  277181.536
24  87.8504673  264458.757
25 925 232790.158
26  64.6551724  72910.4218
27 68.7861272  476406.251
28  80.4878049  104573.459
29 100 105642.66
30 69.3877551  50153.3501
31 84.4660194  412107.7
32 66.8831169  248928.947
33 60 136685.223
34 100 175995.589
35 61.3333333  322692.829
36 90.2173913  339451.504
37 92 183083.727
38  80.9248555  175405.712
39 88.3116883  86228.1949
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69.3438249
20.9162111
31.4289475
27.0443175
23.3289423
59.2978222
17.2207048
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62.059886
15.7823154
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29.9477228
35.2642779
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Longitude[deg] Latitude[deg]
77.922263 5.037331
-143.58591 57.549008
1.525039 57.904785
-13.268803 -72.933222
78.206399 64.859683
101.502874 -28.557211
76.575795 4.921491
-34.769593 73.89957
-96.794286 -49.914551
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24.4731544
37.9726669
5.66487582
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118.33
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-100.32781
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-138.4018
-109.95028
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CODE IN R USED FOR STATISTICAL ANALYSIS OF CHAPTER 2

setwd('') # Set directory
thrustFaults <- read.table(file='Loveless et al
Supplementary Table.csv', header=TRUE, row.names=1,

Sep:l’ l)

# Units, if applicable, are the last value in each

measurement name. For example, Relief, with units of meters

is labeled as 'Relief m'

# Defining Categories from the data table

# Traditional Categories

lobateScarps <- thrustFaults$Type == 'LS'

wrinkleRidges <- thrustFaults$Type == 'WR'

# Map Patterns

concave <- thrustFaults$Map Pattern == 'CC'

convex <- thrustFaults$Map Pattern == 'CV'

straight <- thrustFaults$Map Pattern == 'ST'
switchingVergence <- thrustFaults$Map Pattern == 'SV'
sinuous <- thrustFaults$Map Pattern == 'SN'
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# Terrain Type

interCraterPlains <- thrustFaults$Terrain Type == 'ICP'

smoothPlains <- thrustFaults$Terrain Type == 'SP'

# Data Transformations

attach (thrustFaults)

up fault <- cbind(log(Relief m), log(Breadth m),
log(Tot CrossSectional Length m), log(Strain),
log (Fore Slope deg), log(-Back Slope deg),

log (abs (Symmetry deg)), log(Fore Length m),

log (Back Length m), log(Back Perc DS),

log (Mapped Length m), log(TRI), thrustFaults[12],
thrustFaults[13], thrustFaults[14])

colnames (up_fault) <- c('Relief', 'Breadth', 'TopoLength',
'Strain', 'Fslope', 'Bslope', 'symmetry', 'FL', 'BL',

'BPD', 'SL', 'TRI','Type', 'Map', 'Terrain')
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detach (thrustFaults)

PCA data <- up_ fault[ , 1:12]

pca <- prcomp (PCA data, scale.=TRUE)

# Define statistics Derived from the PCA

variance <- (pca$sdev) "2

loadings <- pcaSrotation

scores <- pcaS$x

varPercent <- variance/sum(variance) * 100

# Observe how much variance is accounted for in each PC

varPercent

# View Scree Plot

barplot (varPercent, xlab='PC', ylab='Percent Variance',

names.arg=1:length (varPercent), las=1, col='gray')
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dev.new ()

# Display PCA loadings

round (loadings, 2) [, 1:3]

# Traditional Categories Panel

plot (scores[, 1], scores|[, 2], xlab='PC 1', ylab='PC 2',
type='n', asp=1, las=1, cex.lab=1l., cex.axis=l.)

points (scores[lobateScarps, 1], scores[lobateScarps, 217,
pch=16, cex=1., col='green')

points (scores[wrinkleRidges, 1], scores[wrinkleRidges, 2],
pch=16, cex=1., col='black')

legend(-6.5, 5, bty="'n', legend=c('Lobate Scarps', 'Wrinkle
Ridges'), col=c('green', 'black'), pch=c(l6, 16), cex=1l.)

text (-5, -5, 'a)', cex=1)

# Map Patterns Panel

dev.new ()

plot (scores[, 1], scores|[, 2], xlab='PC 1', ylab='PC 2',

type='n', asp=1, las=1, cex.lab=1l, cex.axis=1)
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points (scores[concave, 1], scores[concave, 2], pch= 17,
cex=1, col='blue')

points (scores[switchingVergence, 17,

scores [switchingVergence, 2], pch= 17, cex=1, col='red')
points (scores[convex, 1], scores[convex, 2], pch=17, cex=1,
col="'black")

points (scores[straight, 1], scores|[straight, 2], pch= 17,
cex=1, col='gray')

points (scores[sinuous, 1], scores[sinuous, 2], pch= 17,
cex=1, col='green')

legend(-6.5, 5, bty='n', legend=c('Concave', 'Switching
Vergence', 'Convex', 'Straight', 'Sinuous'), col=c('blue',
'red', 'black', 'gray', 'green'), pch=c(17, 17, 17, 17,
17), cex=1)

text (-5, -5, 'b)', cex=1)

# Terrain Type Panel

dev.new ()

plot (scores[, 1], scores|[, 2], xlab='PC 1', ylab='PC 2',
type='n', asp=1, las=1, cex.lab=1l, cex.axis=1)

points (scores[interCraterPlains, 17,

scores[interCraterPlains, 2], pch=1, cex=1, col='black')
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points (scores[smoothPlains, 1], scores[smoothPlains, 2],
pch=16, cex=1, col='red')

legend(-6.5, 5, bty='n', legend=c('Cratered Plains',
'Smooth Plains'), col=c('black', 'red'), pch=c(l, 106),
cex=1)

text (-5, -5, 'c)', cex=1)

# scale data, using z transformation

zScale <- function(x) { (x - mean(x)) / sd(x) }

detach (thrustFaults)

head (up_fault)

scaled Faults <- up fault[ , 1:12]

scaled Faults <- apply(scaled Faults, 2, FUN=zScale)

up fault[ , 1:12] <- scaled Faults[ , 1:12]

head (up_fault)

#attach (up fault)
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library (MASS)

# Traditional Category (cat) DFA =====

LDA cat <- lda(Type ~ Relief + Breadth + TopoLength +

Strain + Fslope + Bslope + symmetry + FL + BL + BPD + SL +

TRI, data=up fault)

LDA cat # cat stands for category as in traditional

category

# Observe loadings

round (LDA cat$scaling, 2)

predictions cat <- predict (LDA cat)

#0Observe accuracy with original data

acc_cat <- table(up fault$Type, predictions cat$class)

acc_cat

sum(acc _cat[row(acc cat) == col(acc cat)]) / sum(acc cat)
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# Perform jackknife resampling to accurately predict

classifications of traditional categories

jackknife cat <- lda(Type ~ Relief + Breadth + TopoLength +
Strain + Fslope + Bslope + symmetry + FL + BL + BPD + SL +
TRI, data=up fault, CV=TRUE)

accJack cat <- table(up faultS$Type, jackknife cat$Sclass)

accJack cat

# True accuracy of traditional category DFA
sum (accJack cat[row(accJack cat) == col(accJack cat)]) /

sum (accJack cat)

# Terrain type (terr) DFA =====

LDA terr <- lda(Terrain ~ Relief + Breadth + TopoLength +
Strain + Fslope + Bslope + symmetry + FL + BL + BPD + SL +
TRI, data=up fault)

LDA terr # cat stands for category as in traditional

category

# Observe loadings

round (LDA terr$scaling, 2)
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predictions terr <- predict (LDA terr)

#0Observe accuracy with original data
acc_terr <- table(thrustFaults$Terrain Type,
predictions terrSclass)

acc_terr

sum(acc_terr[row(acc terr) == col(acc terr)]) /

sum (acc_terr)

# Perform jackknife resampling to accurately predict

classifications of terrain type

jackknife terr <- lda(Terrain ~ Relief + Breadth +
TopoLength + Strain + Fslope + Bslope + symmetry + FL + BL
+ BPD + SL + TRI, data=up fault, CV=TRUE)

accJack terr <- table(thrustFaults$Terrain Type,

jackknife terr$Sclass)

accJack terr

True accuracy of Terrain Type DFA

sum (accJack terr[row(accJack terr) == col(accJack terr)]) /

sum (accJack terr)
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# Observe predictions on LD axis

# Traditional Categories

dev.new ()

stripchart (predictions cat$x ~ thrustFaultsS$SType, pch =
c(l6, 16), col=c('green', 'black'), xlim=c(-3.5, 3.5),
method="'jitter', xlab='Lobate Scarps

LD Wrinkle Ridges')

# Terrain Type

dev.new ()

stripchart (predictions terr$x ~ thrustFaults$Terrain Type,
pch = ¢(1, 16), col=c('black', 'red'), xlim=c(-3.5, 3.5),
method="'jitter', xlab='Cratered Plains

LD Smooth Plains')

# ======================= Test for biasing: DFA No Breadth

& CIOSS—SeCtiOHal Length (NBC) S

# Traditional Categories

LDA cat NBC <- lda(Type ~ Relief + Strain + Fslope + Bslope

+ symmetry + FL + BL + BPD + SL + TRI, data=up fault)
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LDA cat NBC # cat stands for category as in traditional

category

# Observe Loadings

round (LDA cat NBCSscaling, 2)

predictions cat NBC <- predict (LDA cat NBC)

#0Observe Accuracy of original data
acc_cat NBC <- table(up fault$SType,
predictions cat NBCSclass)

acc_cat NBC

sum(acc _cat NBC[row(acc cat NBC) == col(acc cat NBC)]) /

sum (acc_cat NBC)

# Perform jackknife resampling

jackknife cat NBC <- lda(Type ~ Relief + Strain + Fslope +
Bslope + symmetry + FL + BL + BPD + SL + TRI,

data=up fault, CV=TRUE)

accJack cat NBC <- table(up faultSType,
jackknife cat NBCSclass)

accJack cat NBC
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#True accuracy traditional categories
sum (accJack cat NBC[row (accJack cat NBC) ==

col (accJack cat NBC)]) / sum(accJack cat NBC)

# Terrain type

LDA terr NBC <- lda(Terrain ~ Relief + Strain + Fslope +
Bslope + symmetry + FL + BL + BPD + SL + TRI,
data=up fault)

LDA_terr_NBC

predictions terr NBC <- predict (LDA terr NBC)

# Observe Loadings

round (LDA terr NBCSscaling, 2)

#Check Accuracy with original data
acc_terr NBC <- table(thrustFaults$Terrain Type,
predictions terr NBCSclass)

acc_terr NBC
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sum(acc_terr NBC[row(acc terr NBC) == col(acc_terr NBC)]) /

sum (acc_terr NBC)

# jackknife technique

jackknife terr NBC <- lda(Terrain ~ Relief + Strain +
Fslope + Bslope + symmetry + FL + BL + BPD + SL + TRI,
data=up fault, CV=TRUE)

accJack terr NBC <- table(thrustFaults$Terrain Type,
jackknife terr NBCSclass)

accJdack terr NBC

#True accuracy Terrain type

sum (accJack terr NBC[row (accJack terr NBC) ==

col (accJack terr NBC)]) / sum(accJack terr NBC)
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Figure A2.2: 100 shortening landforms analyzed in Chapter 2

All axes are in meters. Y-axis is elevation and X-axis is horizontal distance.
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APPENDIX B: CHAPTER 3

Table B3.1: Extracted modeled values for 55 shortening landforms

ID# NearSurfDip AvgDip MaxDip Shorteninglnput MaxSlip
3 17.4523293 16.664975 30.6548524 1600 1093.8
6 31.4376616 28.6293578  50.4783039 750 1087.6
8 35.4218911 37.7403089  59.6563648 525 903.5
10 24.9187624 20.00801 41.6298063 750 932.2
13 19.7423434 22.8567914  38.5314512 1200 1476.4
14 27.0987698 28.2204263  40.6191981 100 124.6
15 33.0362945 35.5505958  57.7206132 700 1166.6
18 25.587665 28.5341646  46.5989515 600 821.8
19 9.26562479 9.78909079  21.2638761 11700 9302
21 21.4097102 33.1177196  56.6355393 500 457.9
22 15.1453844 16.5947491  37.0497505 700 533

23 10.1081836 11.4505312  24.4536685 2200 1296.6
25 24.0420398 29.9662603  50.0581356 700 997.8
28 12.8349691 15.1794956  29.5889576 800 898.7
30 17.2324122 13.107212 30.4027008 620 685.5
31 29.9317113 34.0069952  53.3221232 850 1307.3
33 14.3486836 17.4440833  31.8827002 800 647.6
35 32.6215617 28.4820299  43.2609184 1700 2184.1
36 24.6884556 21.2341145  37.7269578 1500 1815.2
38 29.0068782 29.7217589  44.1766589 1650 2167.8
39 18.8505749 16.5476046  35.8012632 2000 2359.1
42 14.5932629 17.2551672  28.7261919 1750 1946.2
43 12.6351179 14.1498884  32.1198152 150 173.6
44 12.1663845 19.7743227  34.1328216 550 642.3
47 13.6031011 21.6790501  42.1037836 625 802.7
48 12.782887 11.0039327  48.2239091 4200 4387.8
49 26.0466719 24.9789806  41.7156239 1650 2080.3
50 28.7531061 22.8485415  46.1610024 2400 3194.9
51 14.2265962 18.3236293  33.3679355 4700 5621.424
52 24.8980114 20.956467 40.2266276 2000 2473.3
54 12.9281711 16.2720796  36.9170103 550 461.7
62 15.8398562 15.6562063  29.256544 4800 4311.5
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63
64
65
66
67
69
71
72
73
74
76
80
81
83
84
87
88
89
90
91
92
97
99

33.0647349
14.4396979
28.102828
45.2808138
20.2484234
21.6381341
22.5628835
22.8747058
14.6159115
26.5285914
27.41693
16.7913944
6.26275276
16.6838411
21.3449306
8.6868375
18.8260813
20.4018377
28.9389655
28.2768339
24.2615146
23.2505631
25.1964116

23.8693261
19.9474767
31.276406

39.4467879
16.6758432
21.892657

17.734026

22.6464562
15.4567379
20.5088512
25.5879833
23.6725809
7.93933851
13.7952238
17.5822944
9.38995944
17.253773

23.3940046
32.2673101
33.6132966
29.3721004
26.3792121
30.8249482

44.5565016
33.3436626
61.1520975
65.7348623
35.562357

39.4452366
35.8290923
41.8984768
35.7799029
45.3879263
44.6694318
38.2365638
15.7115534
22.8207701
36.7301331
24.9408628
26.7478861
40.600054

47.2412694
51.1721855
41.4762492
42.0492666
41.6722882
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700
700
900
400
400
1300
1150
1000
900
1400
1600
700
900
700
250
2100
1600
2000
1250
975
2400
1400
1000

920
811.4
1537.6
786
471.5
1623.8
1324.6
1285.7
712.1
1889.8
2139.7
600.4
826.1
749.7
297
1134.6
1760.1
2470.9
1722.2
1440.2
2913.8
1395.6
1206.3



ID # AvgHeave AvgSlip
3 868.8 908.1
6 704.8 929.7
8 470.7 665.3
10 710.8 805.1
13 1158.8 1350.2
14 95 112.6
15 652 872.3
18 568.2 699.5
19 8121.8 8239.7
21 316.4 377.4
22 345.3 367.6
23 1167.1 1233.4
25 650.7 827.9
28 786.7 839.4
30 464.5 491

31 792.4 1048.1
33 474.9 505

35 1610.7 1862.5
36 1450.9 1666.7
38 1563.3 1934.8
39 1925.3 2245
42 1718.3 1859.6
43 147.2 162.5
44 532.3 590.9
47 593.5 714.7
48 2689.2 2774.5
49 1568.2 1790.5
50 2244 2814.1
51 3186.7 3445.4
52 1904.2 2289.5
54 322.1 352.8
62 3845.3 4147.4
63 672.4 781.9
64 684.4 739.9
65 795.5 1257.6
66 350.8 649

67 386.4 434.8
69 1268.5 1418.6
71 986.4 1075.4

AvgThrow DepthofFaulting FaultHeight
241.1 8994.11894 41702.5
575.3 28913.151 63861.9
442 17639.9469 32186.8
339 18987.7705 64256
662.8 48310.3821 120490.5
58 2382.75764 5274.1
542.1 39740.0604 77917.3
391.2 18741.3496 39137.5801
1293.1 38408.2057 296045.4
202.6 15994.7189 31604.8
111.2 9403.87686 41425.2
383.8 18104.1053 66302.6
482.3 38079.1611 80567.2229
270.9 11739.1364 55190.4017
140.6 11981.9572 69370.5
654.6 24826.8868 48810
166.3 17680.3297 56827.8267
908.2 35385.9004 80038.6464
747.9 22795.4191 89247
1101.4 36085.9283 76883.3
1090.5 31258.8428 82857
681.6 8412.30111 27350.5
64.6 7887.01002 28218.2402
245.8 7407.93819 25712.2489
379.3 8500 24158.1909
610.1 18643.2582 129472.689
817.8 23032.3099 59226.1
1615.7 24200.0758 71732.3
1261.7 31285.3253 94139.2
1190.8 33211.2817 86556.4287
136.1 13668.7966 44901.9
1457.1 27024.7543 126170.8
364.8 14932.3452 43455.7731
262.8 18353.2286 62857.9298
912.8 17619.4321 34798.2
523.6 47872.8996 73281.6706
187.9 7901.28728 30308.8694
591.3 26202.3527 85860.7186
393.8 13930.0497 68843
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72
73
74
76
80
81
83
84
87
88
89
90
91
92
97
99

963.4
525.8
1338
1538.9
424.7
577
693.8
240.3
1062
1574.3
1916.5
1169.9
913.6
2182.7
1342
900.1

1144.2
579.7
1675.1
1870.2
475.3
587.5
725.8
271.4
1078.2
1693.9
2191.7
1549.6
1207.5
2651
1578
1121.6

577.9
217.3
926.5
999.6
193.1
98
197.3
118.1
166.1
594.6
985.4
985.6
757.9
1478
787
659.9
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19557.6595
17301.4368
20474.03
38717.5446
10614.3408
1931.18996
6190.69691
10840.3134
6258.05065
20930.7475
18603.7625
37227.0583
37481.1503
48000
35957.1192
29180.1556

52894.6073
61986.6
64460.6
103905.852
35911.7
17758
35139.1466
40588.71
47126.3843
75839.4113
52564.5
67487.0396
71325.1909
92594.5293
87650.2
53728.28



ID #

AspectRatio

NumofFaults

ModeledStrain

observedstrain

10
13
14
15
18
19
21
22
23
25
28
30
31
33
35
36
38
39
42
43
44
47
48
49
50
51
52
54
62
63
64
65
66
67
69
71

0.2803613

0.36885477
0.15687646
0.37350478
0.49115935
0.09096044
0.67946326
1.29796061
0.29126932
0.34423528
0.24107123
0.2392028

0.34609377
0.52776682
1.38316782
0.11843991
0.41575691
0.24803355
0.26291532
0.43831697
0.9609038

0.10353352
0.2053337

0.22751702
0.29451187
0.21080291
0.43754127
0.48629039
0.2662974

0.42798931
0.73278069
0.58663663
0.44803036
0.08663587
0.28031224
0.80399431
0.21678112
0.45890603
0.39615646

W R RPRRPRRPRRPRRLRNNMRPRORRPRNRPRPRPRRPRRPRRRPRPNRORRPNNNMNNNRPRPRRPRRLRNRRPEPN

-0.0032972
-0.0030006
-0.0059493
-0.0014138
-0.0007959
-0.0028581
-0.0043936
-0.0023394
-0.0012714
-0.0031977
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Figure B3.1: Subsurface models of 55 shortening landforms in Chapter 3

All axes are in meters. Y-axis is elevation and X-axis is horizontal distance. Blue lines are
the modeled surface. Red lines are the modeled faults. Gray, thick lines in the background

are the matched, observed topography.
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APPENDIX C: CHAPTER 4

Table C4.1: Complete AR and strain results table

Depth of Faulted Volume

Data Set AR Values [km] Strain Values
Loveless 30km 40km 50km | 30km 40 km 50 km
22°dip & A = %% 2.5 1.9 1.5 |-2.0x10°% -1.5x103 -1.2x1073
22°dip& A = % 3.1 2.4 1.9 |-2.6x10° -1.9x10° -1.6x10?
30° dip & A = %% 3.1 23 1.9 |-25%x10° -1.9x10° -1.5%x10?
30° dip & A = % 3.9 29 24 | -32x10° -24x10° -1.9x10°
40° dip & A = %% 3.5 2.6 2.1 | -29%x10° -2.1x10° -1.7x107?
40° dip & A = % 4.4 33 2.7 |-3.6x10° -2.7x10° -2.2x10?
Byrne 30km 40km 50km | 30km 40 km 50 km
22° dip&l:%% 1.7 1.3 1.1 | -1.4x103 -1.1x103 -8.7x10*
22° dip & A zf 22 1.7 1.3 | -1.8x10° -1.4x103 -1.1x10?
30° dip & A = %% 3.7 2.8 22 |-3.0x10° -2.3x10° -1.8x10?
30°dip & A = % 4.7 3.5 2.8 |-3.8x10° -29x10° -2.3x10°
40° dip & A = %% 6.6 4.9 40 |-54x10° -4.0x10° -3.2x10°

8.4 6.3 50 |-6.8x102 -5.1x10° -4.1x10?

40" dip & A =+
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Watters
22°dip & 1 =Z2
4 L
22" dip& A=+
dip & 1= "L
30°dip & A = i1
30°dip & A=+
40° dip & 1 = =2
4 L

40" dip & A=+

30km 40km 50km | 30km 40 km 50 km
1.4 1.1 0.9 |-1.2x10° -8.8x10* -7.1x10*
1.8 1.4 1.1 | -1.5x10% -1.1x103 -9.0x10*
32 24 1.9 |-2.6x10° -2.0x10° -1.6x10?
4.0 3.0 24 | -33x10° -2.5x10° -2.0x10°
6.0 4.5 3.6 |-49%x10° -3.7x10°% -2.9%x10?
7.6 5.7 46 |-62x10° -4.7x10° -3.8x10?
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CODE IN R USED FOR STRAIN CALCULATIONS OF CHAPTER 4

setwd (' ') # SET DIRECTORY FOR FAULT DATA SETS

# Reading in files and assigning data to appropriate vector
names. All data is log transformed for regressions.
Displacement length data should be in a two-column data
table and in meters. Assessment of the cumulative number
length distribution should be done prior and the truncated
data table containing only the linear portion of the data

should be read in.

# == Loveless et al ==

Loveless dispLength <- read.table('modeled DL.csv', sep=','
, header=TRUE)

Loveless length <- loglO(Loveless dispLengthS$SSL)

Loveless disp <- loglO(Loveless dispLengthSAvgSlip)

Loveless Number Data <-
read.table ('Loveless NUM L Linear.csv',6 sep=',' ,
header=TRUE)

Loveless linear Num <- loglO(Loveless Number Data$NUM)
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Loveless linear length <-

logl0 (Loveless Number Data$length m)

# == Byrne et al ==

Byrne dispLength <- read.table('Byrne DL.csv', sep=',' ,
header=TRUE)

Byrne length <- 1loglO (Byrne dispLengthS$Length m)

Byrne disp22 <- 1loglO (Byrne dispLengthSDisplacement 22)
Byrne disp25 <- loglO (Byrne dispLengthSDisplacement 25)
Byrne disp30 <- 1loglO (Byrne dispLengthSDisplacement 30)
Byrne disp35 <- loglO (Byrne dispLengthSDisplacement 35)

Byrne disp40 <- loglO (Byrne dispLengthSDisplacement 40)

Byrne Number Data <- read.table('Byrne NUM L Linear.csv',
sep=',"' , header=TRUE)
Byrne linear Num <- 1loglO (Byrne Number Data$NUM)

Byrne linear length <- 1loglO(Byrne Number DataS$Length m)

# == Watters ==

Watters dispLength <- read.table('Watters DL.csv', sep=','

, header=TRUE)
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Watters length <- loglO (Watters dispLength$Length m)

Watters disp22 <- loglO(Watters dispLength$Displacement 22)
Watters disp25 <- loglO (Watters dispLength$Displacement 25)
Watters disp30 <- loglO (Watters dispLength$Displacement 30)
Watters disp35 <- loglO (Watters dispLength$Displacement 35)

Watters disp40 <- loglO (Watters dispLength$Displacement 40)

Watters Number Data <-
read.table('Watters NUM L Linear.csv', sep=',"' ,
header=TRUE)

Watters linear Num <- loglO (Watters Number Data$SNUM)

Watters linear length <- loglO (Watters Number Data$Sph Len)

# Model 2 regression functions - package was troublesome

smaSlope <- function(x, y) { # Slope
cor <- cor(x,y)
sign <- ifelse(cor >= 0, 1, -1)
bl <- sign * sd(y)/sd(x)
bl
}

smalntercept <- function(x, y) { # Intercept
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bl <- smaSlope (x, V)
b0 <- mean(y) - mean(x)*bl

b0

seSlope <- function(x, y){ # Standard Error of Slope
bl <- smaSlope (x, V)
se <- abs(bl)*sqgrt ((l-(cor(x,y))"2)/length(x))

se

selntercept <- function(x, y){ # Standard Error of
Intercept

A <- sd(y)

B <- sgrt((l-(cor(x,y))"2)/length(x))

C <- sqgrt(l+((mean(x))”™2)/(sd(x))"2)

se <- A*B*C

se

# Running Functions to derive statistics P, B, M, and G

Loveless P <- smaSlope (Loveless length, Loveless disp)

Loveless B <- 10" (-l*smalntercept (Loveless length,

Loveless disp))
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Loveless M <- -1 * smaSlope (Loveless linear length,
Loveless linear Num)
Loveless G <- smalntercept (Loveless linear length,

Loveless linear Num)

Loveless P se <- seSlope(Loveless length, Loveless disp)
Loveless B se <- 107 (-1*selntercept (Loveless length,
Loveless disp))

Loveless M se <- seSlope(Loveless linear length,

Loveless linear Num)

Byrne P22 <- smaSlope (Byrne length, Byrne disp22)
Byrne B22 <- 107 (-1*smalntercept (Byrne length,

Byrne disp22))

Byrne P25 <- smaSlope (Byrne length, Byrne disp25)
Byrne B25 <- 107 (-1*smalntercept (Byrne length,

Byrne disp25))

Byrne P30 <- smaSlope (Byrne length, Byrne disp30)
Byrne B30 <- 107 (-1*smalntercept (Byrne length,

Byrne disp30))
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Byrne M <- -1 * smaSlope (Byrne linear length,
Byrne linear Num)
Byrne G <- smalntercept (Byrne linear length,

Byrne linear Num)

Byrne P35 <- smaSlope (Byrne length, Byrne disp35)
Byrne B35 <- 107 (-1*smalntercept (Byrne length,

Byrne disp35))

Byrne P40 <- smaSlope (Byrne length, Byrne disp40)
Byrne B40 <- 10" (-1*smalntercept (Byrne length,

Byrne disp40))

Watters P22 <- smaSlope (Watters length, Watters disp22)

Watters B22 <- 10" (-1*smalntercept (Watters length,

Watters disp22))

Watters P25 <- smaSlope (Watters length, Watters disp25)

Watters B25 <- 107 (-1*smalntercept (Watters length,

Watters disp25))

Watters P30 <- smaSlope (Watters length, Watters disp30)
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Watters B30 <- 10" (-1*smalntercept (Watters length,

Watters disp30))

Watters P35 <- smaSlope (Watters length, Watters disp35)
Watters B35 <- 10" (-1*smalntercept (Watters length,
Watters disp35))

Watters M <- -1 * smaSlope (Watters linear length,
Watters linear Num)

Watters G <- smalntercept (Watters linear length,

Watters linear Num)

Watters P40 <- smaSlope (Watters length, Watters disp40)
Watters B40 <- 107 (-1*smalntercept (Watters length,

Watters disp40))

# Standard deviations for regression Statistics for P B and

M

Loveless P se <- seSlope(Loveless length, Loveless disp)
Loveless B se <- 107 (-1*selntercept (Loveless length,
Loveless disp))

Loveless M se <- seSlope(Loveless linear length,

Loveless linear Num)
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Byrne M se <- seSlope(Byrne linear length,

Byrne linear Num)

Byrne P25 se <- seSlope (Byrne length, Byrne disp25)
Byrne B25 se <- 10" (-l*selntercept (Byrne length,

Byrne disp25))

Byrne P30 se <- seSlope (Byrne length, Byrne disp30)
Byrne B30 se <- 107 (-l*selIntercept (Byrne length,

Byrne disp30))

Byrne P35 se <- seSlope (Byrne length, Byrne disp35)
Byrne B35 se <- 10" (-l*selntercept (Byrne length,

Byrne disp35))

Watters M se <- seSlope (Watters linear length,

Watters linear Num)

Watters P25 se <- seSlope (Watters length, Watters disp25)
Watters B25 se <- 10”7 (-l*selIntercept (Watters length,

Watters disp25))

Watters P30 se <- seSlope (Watters length, Watters disp30)

255



Watters B30 se <- 107 (-l*selIntercept (Watters length,

Watters disp30))

Watters P35 se <- seSlope(Watters length, Watters disp3)5)
Watters B35 se <- 107 (-l*selIntercept (Watters length,

Watters disp35))

# Stating Derived Statistics

Loveless G
Watters G

Byrne G

Loveless P
Byrne P22

Watters P22

Byrne P30

Watters P30

Loveless P

Byrne P40
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Watters P40

Loveless B
Byrne B30

Watters B30

Loveless M
Byrne M

Watters M

Loveless P se
Byrne B30 se

Watters P30 se

Loveless B se
Byrne B30 se

Watters B30 se

# Strain & Radius Change Function. The annotation
strain real lower is the calculation ran for an elliptical
fault shape (lower values). Strain real upper is the

calculation for rectangular fault shapes (higher values)
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strain real lower <- function(p, B, m, dipangle, lithrad) {

p_norm <- p

B norm <- B

m norm <- m

nu <- pi/4. # Geometric Shape factor for
elliptical faults

phi <- ((180-dipangle) *pi/180)

rho <- phi

theta <- (90-dipangle) *pi/180

R Mercury <- 2.44 * 1076 # Meters

R Lith <- (2.44 * 1076) - (lithrad * 1000.) #
Meters. lithrad is the depth of the brittle lithosphere of
Mercury

Vol Mercury <- (4/3) * pi * (R Mercury”3)

Vol Lith <- Vol Mercury - ((4/3) * pi *
(R_Lith)"3)

s <- m norm/p norm

Enterprise Relief <- 3261.8 #meters

displ <- 9300 # modeled Enterprise Relief

A <- nu * 0.41 * (B norm”(2./p norm)) #geometric
factor and average from models

Bird <- 1./Vol Lith

C <= (displ)”(1 + (2./p_norm))

D <- -1*cos(theta) * cos(phi)
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E <- (1+(2./p norm))/(1-(s-(2/p_norm)))
strainTOT <- -1*A*Bird*C*D*E

Vol initial <- Vol Lith/(strainTOT + 1)

R Initial = ((R Mercury”2)/(strainTOT+1))"0.5
radiusDif <- R Initial - R Mercury

c(strainTOT, radiusDif)

strain real upper <- function(p, B, m, dipangle, lithrad) {

p_norm <- p #rnorm(l, mean=p, sd=psd) #creating
random values for each statistic

B norm <- B #rnorm(l, mean=B, sd=bsd) # and using
their estimates and standard errors

m norm <- m # rnorm(l, mean=m, sd=msd) # found

from the regression to generate random values

nu <- 1.
phi <- ((180-dipangle) *pi/180)
rho <- phi

theta <- (90-dipangle) *pi/180

R Mercury <- 2.44 * 1076 # Meters

R Lith <- (2.44 * 1076) - (lithrad * 1000.) #
Meters. lithrad is the depth of the brittle lithosphere of
Mercury

Vol Mercury <- (4/3) * pi * (R Mercury”3)
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Vol Lith <- Vol Mercury - ((4/3) * pi *
(R_Lith)"3)

s <- m _norm/p norm

Enterprise Relief <- 3261.8 #meters

displ <- 9300 # Enterprise Relief/sin(phi)

A <- nu * 0.41 * (B norm”(2./p norm)) #geometric
factor and average from models

Bird <- 1./Vol Lith

C <= (displ)”(1 + (2./p_norm))

D <- -1*cos(theta) * cos(phi)

E <- (1+(2./p _norm))/(1-(s-(2/p_norm)))

strainTOT <- -1*A*Bird*C*D*E

Vol initial <- Vol Lith/(strainTOT + 1)

R Initial = ((R Mercury”2)/(strainTOT+1))"0.5

radiusDif <- R Initial - R Mercury

c(strainTOT, radiusDif)

# ======= Calcultating Strain and Radius change for

Elliptical Fault Shape for all data sets =======

# Fault dip of 22 deg
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strain real lower (Loveless P, Loveless B, Loveless M, 22,
30)

strain real lower (Byrne P22, Byrne B22, Byrne M, 22, 30)
strain real lower (Watters P22, Watters B22, Watters M, 22,

30)

strain real lower (Loveless P, Loveless B, Loveless M, 22,
40)

strain real lower (Byrne P22, Byrne B22, Byrne M, 22, 40)
strain real lower (Watters P22, Watters B22, Watters M, 22,

40)

strain real lower (Loveless P, Loveless B, Loveless M, 22,
50)

strain real lower (Byrne P22, Byrne B22, Byrne M, 22, 50)
strain real lower (Watters P22, Watters B22, Watters M, 22,

50)

# ======= Elliptical Fault Shape ======= optimal 30 degrees

# Fault dip of 30 deg

strain real lower (Loveless P, Loveless B, Loveless M, 30,

30)
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strain real lower (Byrne P30, Byrne B30, Byrne M, 30, 30)
strain real lower (Watters P30, Watters B30, Watters M, 30,

30)

strain real lower (Loveless P, Loveless B, Loveless M, 30,
40)

strain real lower (Byrne P30, Byrne B30, Byrne M, 30, 40)
strain real lower (Watters P30, Watters B30, Watters M, 30,

40)

strain real lower (Loveless P, Loveless B, Loveless M, 30,
50)

strain real lower (Byrne P30, Byrne B30, Byrne M, 30, 50)
strain real lower (Watters P30, Watters B30, Watters M, 30,

50)

# Fault dip of 40 deg

strain real lower (Loveless P, Loveless B, Loveless M, 40,
30)

strain real lower (Byrne P40, Byrne B40, Byrne M, 40, 30)
strain real lower (Watters P40, Watters B40, Watters M, 40,

30)
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strain real lower (Loveless P, Loveless B, Loveless M, 40,
40)

strain real lower (Byrne P40, Byrne B40, Byrne M, 40, 40)
strain real lower (Watters P40, Watters B40, Watters M, 40,

40)

strain real lower (Loveless P, Loveless B, Loveless M, 40,
50)

strain real lower (Byrne P40, Byrne B40, Byrne M, 40, 50)
strain real lower (Watters P40, Watters B40, Watters M, 40,

50)

# ======= Calcultating Strain and Radius change for

Rectangular Fault Shape for all data sets =======

# Fault dip of 22 deg

strain real upper (Loveless P, Loveless B, Loveless M, 22,
30)

strain real upper (Byrne P22, Byrne B22, Byrne M, 22, 30)
strain real upper (Watters P22, Watters B22, Watters M, 22,

30)
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strain real upper (Loveless P, Loveless B, Loveless M, 22,
40)

strain real upper (Byrne P22, Byrne B22, Byrne M, 22, 40)
strain real upper (Watters P22, Watters B22, Watters M, 22,

40)

strain real upper (Loveless P, Loveless B, Loveless M, 22,
50)

strain real upper (Byrne P22, Byrne B22, Byrne M, 22, 50)
strain real upper (Watters P22, Watters B22, Watters M, 22,

50)

# Fault dip of 30 deg

strain real upper (Loveless P, Loveless B, Loveless M, 30,
30)

strain real upper (Byrne P30, Byrne B30, Byrne M, 30, 30)
strain real upper (Watters P30, Watters B30, Watters M, 30,

30)

strain real upper (Loveless P, Loveless B, Loveless M, 30,

40)
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strain real upper (Byrne P30, Byrne B30, Byrne M, 30, 40)
strain real upper (Watters P30, Watters B30, Watters M, 30,

40)

strain real upper (Loveless P, Loveless B, Loveless M, 30,
50)

strain real upper (Byrne P30, Byrne B30, Byrne M, 30, 50)
strain real upper (Watters P30, Watters B30, Watters M, 30,

50)

# Fault dip of 40 deg

strain real upper (Loveless P, Loveless B, Loveless M, 40,
30)

strain real upper (Byrne P40, Byrne B40, Byrne M, 40, 30)
strain real upper (Watters P40, Watters B40, Watters M, 40,

30)

strain real upper (Loveless P, Loveless B, Loveless M, 40,
40)

strain real upper (Byrne P40, Byrne B40, Byrne M, 40, 40)
strain real upper (Watters P40, Watters B40, Watters M, 40,

40)
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strain real upper (Loveless P, Loveless B, Loveless M, 40,
50)

strain real upper (Byrne P40, Byrne B40, Byrne M, 40, 50)
strain real upper (Watters P40, Watters B40, Watters M, 40,

50)
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