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Abstract

In this dissertation, we explore the problems of high-dimensional feature screening and sampling

techniques using Quantum Walk. In the first project, we introduce a novel feature screening methodology

that is robust to the underlying distributions of the data, making it well-suited for high-dimensional

heterogeneous data. This method is built upon a dependence measure induced by Wasserstein distance,

and Gaussianization of the data. We analyze its non-asymptotic properties. We also establish sure screening

and rank consistency properties for the proposed screening method upon mild signal strength conditions.

Simulation studies demonstrate that our approach outperforms classical feature screening methods in

highly nonlinear and heterogeneous cases. In the second project, we propose a model-free feature screening

procedure tailored to high-dimensional quantile regressions. We introduce a novel dependence measure to

quantify quantile dependence using Copula theory and corresponding non-parametric Kernel estimator.

We derive the optimal bandwidth selection for the estimator, and analyze asymptotic properties of the



estimator. We also prove sure screening and rank consistency properties for this screening method upon

mild signal strength conditions. Additionally, we propose a data-driven threshold selection method for

the screening procedure, which effectively controls false discoveries. The feature screening and FDR

control performance of our proposals is validated through simulations. In the third project, we apply

our feature screening methods to the U.S. 2020 economic data to identify variables related to the GDP

growth rate from 2019 to 2020. Using the selected variables and downstream statistical analysis, we explore

strategies for maintaining economic stability during major crises, such as the COVID-19 pandemic. In

the final project, we investigate the problem of sampling using the 2-state Quantum Walk on the line. We

overview the 2-state Quantum Walk on the line and highlight the limitations of this sampling method. We

propose a novel approach that combines the strengths of the 2-state Quantum Walk and Kernel smoothing

techniques. Experiments indicate that our proposal outperforms traditional Quantum Walk in terms of

both density estimation and sampling efficacy.

Index words: feature screening, high-dimensional data, heterogeneous data, Wasserstein

distance, quantile regression, FDR control, Quantum Walk, Kernel Smoothing
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Chapter 1

Introduction

1.1 Challenges in High-Dimensional Data Analysis

Recently, there is a rapid increase of the demand to high-dimensional data analysis in various domains,

from genomics to finance. However, analyzing high-dimensional datasets are usually challenging.

On one hand, high-dimensional data often suffer from redundancy, multicollinearity, and spurious

dependence, which can obscure model specification and reduce model interpretability (Fan and Li, 2006).

These problems also result in overfitting in statistical models, which could reduce the effectiveness of

classical statistical methods (Hastie, 2009) in practice. Feature screening plays a vital role in resolving the

challenges in analyzing high-dimensional data. Feature screening usually ranks features based on marginal

statistical criteria, such as correlation coefficients. By selecting the most “informative" variables, feature

screening could improve model interpretability, and enhances generalization performance (Fan and Lv,

2008; Guyon and Elisseeff, 2003).
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On the other hand, due to the curse of dimensionality (Bellman, 1966), it could possibly lead to

severe computational bottlenecks and storage demands (Donoho et al., 2000). Traditional computing

methods struggle to handle high-dimensional data analysis efficiently since they are built on classical

computer with classical bits. In contrast, utilizing quantum computer becomes an attractive alternative.

Quantum computation, constructed on quantum bits (qubits), provides tremendous speedup for plenty

of computational tasks (Montanaro and Pallister, 2016). Shor’s factorization algorithm (Shor, 1994) and

Grover’s search algorithm (Grover, 1996) reveal that quantum computing outperforms classical methods

in optimization and search problems.

1.2 Literature Review for Feature Screening

Datasets with high dimensional features characterize many contemporary research areas. When the fea-

tures contain redundant or noisy information, estimating their functional relationship with the response

may become quite challenging (Fan et al., 2009; Hall and Miller, 2009; Lv and Liu, 2014). To address

these challenges arising from high dimensionality, Fan and Lv, 2008 proposed the sure independence

screening (SIS) method, which aims to remove redundant features by ranking their marginal Pearson

correlations. Motivated by the success of SIS, the idea of feature screening has been extended to analyze

various high-dimensional datasets (Fan and Lv, 2010; J. Liu et al., 2015).

The idea of feature screening is popular for the following two reasons.

Sure screening. The selected subset of features contains all the active ones with probability approaching

one.
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Computationally efficient. Selection of features is processed by ranking the marginal “significance” of

the features. The computational complexity is linearly proportional to the dimension.

However, most existing feature screening methods rely on model assumptions such as linearity or

other specific parametric forms. In high-dimensional regimes, it is challenging to correctly specify a model

before discarding a large number of redundant features. Consequently, it is crucial to develop model-

free feature screening methods that can be implemented without pre-specifying a model. The model-free

property is essential because it ensures the effectiveness of the screening method even when the underlying

model is misspecified, which is crucial for obtaining a reliable and parsimonious set of active feature for

downstream analyses. Over the past decade, the development of model-free feature screening methods

has become a hot topic in statistics (Zhu et al., 2011; R. Li et al., 2012; Mai and Zou, 2013; Y. Zhou and

Zhu, 2018; W. Liu et al., 2022). Additionally, model-free feature screening techniques have been applied

to discriminant analysis (Cui et al., 2015), censored data analysis (T. Zhou and Zhu, 2017), survival data

analysis (Lin et al., 2018), multi-class classification (Ni and Fang, 2016), among many other applications.

To apply feature screening methods, one need to choose a threshold parameter to separate active from

inactive features. Under some pre-specified model assumption, this threshold can be determined using

cross-validation or information-criterion approaches. However, in a model-free context, such approaches

are not directly applicable because goodness-of-fit is not well-defined. In practice, one may choose a con-

servative threshold to ensure that all active features are likely to be included, although this can admit many

inactive features and inflate the false discovery rate (FDR). Consequently, balancing the sure screening

property with FDR control is inherently challenging in model-free feature screening. Unfortunately, only

limited works tried to integrate FDR control with feature screening methods (W. Liu et al., 2022; Guo

et al., 2023; Tong et al., 2023).
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1.2.1 Distribution-Robust feature screening

Another crucial property of feature screening is data adaptivity, which implies that the performance

of the feature screening methodology should not rely on strong assumptions, such as independence or

sub-Gaussianity. These assumptions are often unreasonable due to the presence of spurious correlations

and heterogeneity in high-dimensional datasets (Fan and Zhou, 2016; Fan et al., 2018). If not properly

addressed, these challenges can lead to misleading conclusions. Unfortunately, only a limited number of

studies have focused on these complex issues, see McKennan and Nicolae, 2019; Wang et al., 2012. Achiev-

ing data adaptivity for feature screening is particularly difficult, and only a few works have tackled this prob-

lem. For example, Xie et al., 2020 proposed a category-adaptive screening method for high-dimensional

heterogeneous data to identify category-specific important covariates, while He et al., 2013 introduced a

quantile-adaptive screening method for such data. In this context, we refer to feature screening methods

that are insensitive to the underlying data distributions as Distribution-Robust feature screening. Such

methods would be better equipped to handle high-dimensional heterogeneous data.

1.2.2 Feature screening with quantile regression

Quantiles provide informative snapshots for summarizing a probability distribution. In contrast to mo-

ments, which capture global characteristics and can be heavily influenced by extreme values, quantiles

focus on localized distributional properties and are less sensitive to small perturbations in the data. Build-

ing on this concept, quantile regressions have become fundamental tools in statistics and data science

(Stigler, 1984). Rather than focusing solely on the mean, quantile regressions examine various quantiles

of the conditional distribution of a response variable, allowing researchers to explore a specific percentile
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of interest or to investigate how predictors influence the response across lower, median, and upper quan-

tiles. This flexibility is particularly valuable in applications where extreme values or specific regions of the

distribution are of primary concern, such as assessing tail risk in finance (Linton and Xiao, 2017; Nguyen

et al., 2020), studying treatment effects in epidemiology (Wei et al., 2019; Powell, 2020), and detecting

anomalies in sensor networks (Xu et al., 2019, Z. Li and Van Leeuwen, 2023).

The applications of quantile regressions continue to expand in the era of big data, offering a nuanced

understanding of how features influence various segments of the outcome distribution (Yu et al., 2003;

Koenker, 2017). Despite the importance of model-free feature screening for quantile regressions, this area

remains under-explored. A quantile-adaptive nonlinear feature screening method was proposed for high-

dimensional heterogeneous data, which employs splines to model marginal effects at a specific quantile

of interest (He et al., 2013). More recently, a sure independence screening procedure based on quantile

correlation was proposed, which is robust against outliers and can capture nonlinear relationships between

the response variable and features (Ma and Zhang, 2016).

1.3 Literature Review for Quantum Sampling

Quantum Walks (QWs) are quantum counterparts to classical random walks, offering a rich set of con-

cepts in this area. Like classical random walks, QWs can be defined as an evolution process on a graph. In

classical random walks, the walker occupies definite locations (states), and the transition process stochas-

tically depends on a probability distribution. In contrast, in QWs, the walker exists in a superposition

of states, and the evolution is determined by unitary operators, which are deterministic. For a thorough

introduction to QWs, we refer to works such as Aharonov et al., 2001; Kempe, 2003; S. Venegas-Andraca,
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2022, among others. Limit theorems for QWs (Attal et al., 2015; Chisaki et al., 2009; Konno, 2005) have

also inspired the development of quantum sampling methods.

A key concept in QWs is the QW on the Line, which corresponds to the evolution process over the

set of all integers Z, as defined in Nayak and Vishwanath, 2000; S. E. Venegas-Andraca, 2012. In Machida,

2013, the author proved limit theorems for the 2-state QW on the line, under various initial states, showing

its ability to sample from a variety of target distributions, including the Semicircle distribution, Uniform

distribution, Truncated Gaussian distribution, and Arcsine distribution. Despite its strong theoretical

properties, the 2-state QW on the line, at any given time t, generates samples from a discrete distribution

that does not match the target distributions in the limiting case, which limits its finite-sample performance

in QW-based sampling methods.

1.4 Organization of this dissertation

The structure of this proposal is as follows. In this chapter, we provide the background on feature screen-

ing and Quantum Walks, along with a review of existing research in the literature. In Chapter 2, we

introduce a Distribution-Robust feature screening method designed for high-dimensional heterogeneous

data. This method is based on a novel dependence measure derived from Wasserstein distance. In Chap-

ter 3, we present a model-free feature screening approach and an associated FDR control method for

high-dimensional quantile regressions. Chapter 4 focuses on analyzing U.S. 2020 economic data using

the proposed feature screening and downstream methods, exploring strategies for maintaining economic

stability during major crises such as COVID-19. Finally, in Chapter 5, we propose a novel quantum sam-
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pling algorithm that combines the principles of 2-state Quantum Walk on the line with Kernel smoothing

techniques.

1.5 Notation

Let Z, N, R, and C denote the set of integers, natural numbers, real numbers, and complex numbers

respectively. ℜ(z), and ℑ(z) denote the real part, and imaginary part of z ∈ C respectively. Let |S|

denotes the cardinality of a set S. The superscript ⊺ denotes the transpose of a matrix or a vector. Given

a vector x = (x1, . . . , xd)
⊺ ∈ Rd, we write the vector ℓq-norm as ∥x∥q =

(∑d
j=1 |xj|q

)1/q for 1 ⩽

q < ∞ and the vector ℓ∞-norm as ∥x∥∞ = max
j∈{1,··· ,d}

|xj|. Given two vectors |x⟩c, |y⟩c in a Hilbert

space Hc, and |z⟩p in a Hilbert space Hp, we write the inner product between |x⟩c and |y⟩c as ⟨x|y⟩c,

outer product between |x⟩c and |y⟩c as |x⟩c⟨y|, tensor product between |x⟩c and |z⟩p as |x⟩c ⊗ |z⟩p =

|x⟩c |z⟩p. Given a matrix A ∈ Rd1×d2 , if d1 = d2 = d, tr(A) denote the trace of A. For a ∈ R, let

⌊a⌋ = max{z ∈ Z, z ⩽ a} and ⌈a⌉ = min{z ∈ Z, z ⩾ a}. Function f(a) = (a)+ is defined as

f(a) = a if a ⩾ 0, and f(a) = 0 if a < 0. 1{·} denotes indicator function, i.e. for event B, 1B = 1 if B

holds, and 1B = 0 if B does not hold. For a setD ⊂ R, and r > 0,Cr(D) denotes the set of functions

that are differentiable up to order r on the setD;C∞(D) denotes the set of functions that are infinitely

differentiable on the set D. For a set D ⊂ R, D+ denotes the positive subset of D. For event B, P(B)

denotes the probability that event B happens. For random variable X , E(X) denotes the expectation

of X . d−→, and p−→ denote convergence in distribution, and convergence in probability respectively. For

random variables Xn, and sequence an, Xn = OP (an) as n → ∞ means that ∀ϵ > 0, there exists

a finite M > 0, s.t. P
(∣∣∣Xn

an

∣∣∣ > M
)
< ϵ, for large enough n; Xn = op(an) as n → ∞ means that

7



∀ϵ > 0, lim
n→∞

P
(∣∣∣Xn

an

∣∣∣ ⩾ ϵ
)
= 0;Xn = Oa.s.(an) asn→ ∞means that there exists a finiteM > 0, s.t.∣∣∣Xn

an

∣∣∣ ⩽M holds almost surely for large enough n;Xn = oa.s.(an) as n→ ∞ means thatXn/an → 0

almost surely asn→ ∞. For sequence an, and bn, bn = O(an) asn→ ∞means that there exists a finite

M > 0, s.t.
∣∣∣ bnan ∣∣∣ ⩽M for large enough n; bn = o(an) as n→ ∞ means that bn/an → 0 as n→ ∞.

8



Chapter 2

Distribution-Robust

High-dimensional Feature

Screening

In this chapter, we propose a feature screening method by a novel dependence measure constructed on

Wasserstein distance, which is fit to high-dimensional heterogeneous data. In Section 2.1, we introduce

the dependence measure constructed on Wasserstein distance, and reviewed its limitations in previous

works. In Section 2.2, we propose a Wasserstein dependence measure via Gaussianization and establish its

non-asymptotic properties, which is not requiring restrictive conditions on the data. In Section 2.3, we

formalize the feature screening methodology and show that our proposed method enjoys sure screening

property and even stronger rank consistency property with strong enough signal strength and proper

selected screening threshold,. We name this method as Distribution-Robust r-Wasserstein Dependence

Sure Independence Screening (DR-WDr-SIS). In Section 2.4, we present the results by simulation studies.
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2.1 Wasserstein Dependence

2.1.1 Dependence measure with Wasserstein distance

Wasserstein distances are metrics on spaces of probability measures that possess finite moments of a certain

order. They quantify the distance between two distributions by determining the minimal cost required

to transport probability mass by transforming one distribution into the other. The formal definition of

the Wasserstein distance is provided below.

Definition 2.1.1. Let P
(
Rd
)

denote the set of Borel probability measures on Rd, and let Pr

(
Rd
)

be the

subset comprising measures with finite moments of order r ∈ [1,∞). For measures µ, ρ ∈ P
(
Rd
)

, let

Γ(µ, ρ) denote the set of probability measures γ on Rd × Rd with marginals µ and ρ; that is,

γ
(
B × Rd

)
= µ(B) and γ

(
Rd ×B

)
= ρ(B)

for all Borel setsB ⊆ Rd. The r-Wasserstein distance between measures µ and ρ in Pr

(
Rd
)

is defined by

Wr(µ, ρ)
.
=

(
inf

γ∈Γ(µ,ρ)

∫
Rd×Rd

∥x− y∥r dγ(x, y)
)1/r

,

where ∥ · ∥ denotes some norm in Rd. For simplicity, we considered ∥ · ∥ as ℓq norm, ∥ · ∥q , for q ⩾ 1, and

r = 1, 2 in this Chapter.

By Definition 2.1.1, it is obvious that Wr(µ, ρ) = 0 if and only if µ = ρ, which motivates studies on

constructing dependence measures between variables using Wasserstein distances. Consider two continu-

ous random variablesX and Y with joint distribution fX,Y (x, y). The Wasserstein dependence of order

10



r, is defined as the r-Wasserstein distance between the joint distribution fX,Y (x, y) and the product of

their marginal distributions fX(x) fY (y). Mathematically, Wasserstein dependence of order r is defined

as

Wr (fX,Y , fX ⊗ fY ) ,

where we use fX,Y , fX , and fY to represent their corresponding measures, and fX ⊗ fY represents the

measure of (X, Y ) when they are independent with each other. This dependence measure captures the

degree to which (X, Y ) deviates from independence.

2.1.2 Limitation of Wasserstein Dependence

There has been a few works studying constructing dependence measure by Wasserstein distance. However,

Hallin et al., 2021; Ozair et al., 2019 lack the theoretical results of proposed methods. De Keyser and Gijbels,

2025; Mordant and Segers, 2022 impose strong assumptions based on Multivariate Gaussian distributions

or Gaussian Copula, which limits their general applicability. These methods often normalize the proposed

Wasserstein dependence statistic by the supreme of the Wasserstein dependence over all possible measures

to slightly mitigate the impact of heterogeneous data. However, constructing Wasserstein dependence

which is not sensitive to the conditions of marginal distributions is still unsolved.

Despite these drawbacks on previous works, estimation of Wasserstein dependence, or empirical

Wasserstein distance is usually needed in statistical applications, since one typically does not have direct

access to the distributions of interest fX,Y (x, y), and its margins fX(x), and fY (y). Instead, statisticians

usually only have access to the sample or equivalently, to their empirical measures, f̂X,Y (x, y), f̂X(x), and

f̂Y (y). The convergence properties, in Wasserstein distance, of these empirical measures has been studied

11



extensively; In Rippl et al., 2016, limiting distributions of empirical Wasserstein distance is proved under

Gaussian assumptions. Del Barrio and Loubes, 2019; Del Barrio et al., 2024; Fournier and Guillin, 2015;

Lei, 2020; Weed and Bach, 2019 exhaustively studied both asymptotic and non-asymptotic properties of

empirical Wasserstein distance under more general settings. Nevertheless, these works are always based

on strong marginal conditions such as existence of moments to a specific order. These assumptions can

be restrictive in high-dimensional settings, especially for capturing complex dependencies; requiring all

features to satisfy such conditions often degrades performance in real-world applications.

In addition, construct the estimation of Wasserstein dependence usually involves the estimation of

fX,Y (x, y), and its margins fX(x), andfY (y) simultaneously using the same sample. As proposed in Nies

et al., 2022, there are mainly two estimators. The first methodology is to apply sample splitting scheme.

Formally, suppose we have a sample of size 2n, {(xi, yi)}2ni=1, then the first half {(xi, yi)}ni=1 is used to

estimate the joint measure fX,Y , and the second half {(xi, yi)}2ni=n+1 is used to estimate the margins fX ,

and fY . However, this method has flaws in sample efficiency. On the other hand, a permutation estimator

can be an alternative by pretending the permuted sample
{(
xi, yσ(i)

)}
is from the independent version

of the measure, fX⊗fY , and apply it for estimation, whereσ is a permutation over the samples. However,

this method performs poor in practice, and it will be shown in Section 2.4.

2.2 Wasserstein Dependence via Guassianization

To overcome the disadvantages discussed in Section 2.1, we propose to construct Wasserstein Dependence

via Guassianization. Mathematically, let {(xi, yi)}ni=1 be a random sample observed from (X, Y ). The

12



marginal CDFs ofX , and Y can be estimated by empirical CDFs,

F̂X(x) =
1

n

n∑
i=1

1{xi⩽x} and F̂Y (y) =
1

n

n∑
i=1

1{yi⩽y}.

For simplicity, we ignore the case when ties appear in the samples. Then, the Guassianized random sample

(ŝi, t̂i)
.
=

(
Φ−1

(
n

n+ 1
F̂X(xi)

)
,Φ−1

(
n

n+ 1
F̂Y (yi)

))
, (2.2.1)

is the counterpart of its genuine Gaussianized random sample

(si, ti)
.
=
(
Φ−1 (FX(xi)) ,Φ

−1 (FY (yi))
)
, (2.2.2)

for i = 1, · · · , n. Consequently, we construct a sample version dependence measure

ÎW (X, Y ; r)
.
= Wr

(
f̂Ŝ,T̂ , ϕ⊗ ϕ

)
, (2.2.3)

where f̂Ŝ,T̂ represents the empirical measure on Gaussianized random sample (2.2.1), ϕ⊗ϕ represents the

measure of independent bivariate Gaussian distribution. In this definition, the second measure is replaced

with ϕ⊗ ϕ since the margins of Gaussianized sample are mimicking the standard Gaussian distribution.

Clearly, (2.2.3) is the empirical version of

IW (X, Y ; r)
.
= Wr (fS,T , ϕ⊗ ϕ) , (2.2.4)
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where fS,T represents the joint measure of (S, T ) .= (Φ−1 (FX(X)) ,Φ−1 (FY (Y ))). Correspondingly,

we name this dependence measure as Distribution-Robust r-Wasserstein Dependence (DR-WDr). Then

we study the property of the sample version estimator (2.2.3) in the following theorem.

Theorem 2.2.1. For Distribution-Robust r-Wasserstein Dependence, and its sample version defined in

(2.2.3), and (2.2.4),

1. when r = 1, there exists some positive constantsM ,C , n0, and ε0, which are not related to margins

of (X, Y ) or n, s.t. when n ⩾ n0, ∀ε ∈ (M logn√
n
, ε0),

P
(∣∣∣ÎW (X, Y ; 1)− IW (X, Y ; 1)

∣∣∣ ⩾ ε
)
⩽ C exp

(
−Cnε2

log2 n

)
.

More specifically, for some K > 0, and κ ∈ [0, 1
2
), there exists some positive constants n0, and C ,

which are not related to margins of (X, Y ) or n, s.t. when n ⩾ n0,

P
(∣∣∣ÎW (X, Y ; 1)− IW (X, Y ; 1)

∣∣∣ ⩾ Kn−κ
)
⩽ C exp

(
−Cn

1−2κ

log2 n

)
.

2. when r = 2, there exists some positive constantsM ,C , n0, and ε0, which are not related to margins

of (X, Y ) or n, and ∀β ∈ (0, 1), s.t. when n ⩾ n0, ∀ε ∈ (M log
3
4 n

n
1
4
, ε0),

P
(∣∣∣ÎW (X, Y ; 2)− IW (X, Y ; 2)

∣∣∣ ⩾ ε
)
⩽ C exp

(
−Cnε4

log2 n

)
+ C exp

(
−C

(
nε2
)β)

.
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More specifically, for some K > 0, and κ ∈ [0, 1
4
), there exists some positive constants n0, and C ,

which are not related to margins of (X, Y ) or n, and ∀β ∈ (0, 1), s.t. when n ⩾ n0,

P
(∣∣∣ÎW (X, Y ; 2)− IW (X, Y ; 2)

∣∣∣ ⩾ Kn−κ
)

⩽C exp

(
−Cn

1−4κ

log2 n

)
+ C exp

(
−Cnβ(1−2κ)

)
.

Theorem 2.2.1 discussed the non-asymptotic property of DR-WDr, where the exponential conver-

gence rate is fast and guarantees superior theoretical performance. In addition, the results are not es-

tablished on restricted moment conditions on the margins or even stronger distributional assumptions,

which shows robustness to the underlying distribution of (X, Y ), and suggests DR-WDr is naturally fit

to highly heterogeneous data.

2.3 Distribution Robust Feature Screening

2.3.1 Screening Methodology

The advantages of DR-WDr motivates us to construct a model-free feature screening method which is fit

to heterogeneous data. Consider a high-dimensional data set, where Y is the response, andX1, · · · , Xp

are predictors. Feature screening is to identify the true active set for modelingY withX .
= (X1, · · · , Xp),

which is defined as

A .
=
{
j ∈ {1, · · · , p} : FY |X(y|X) functionally depends onXj for some y

}
.
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The natural idea is to reserve the features which have large DR-WDr with Y . Specifically, we estimate A

via

A∗(t)
.
= {j ∈ {1, · · · , p} : IW (Xj, Y ; r) ⩾ t},

where t > 0 is a screening threshold.

Let {(xi, yi)}ni=1 be an i.i.d. random sample drawn from (X, Y ), where xi = (xi,1, . . . , xi,p)
⊤. We

estimate IW (Xj, Y ; r) by ÎW (Xj, Y ; r) as defined in (2.2.3). Then the active set is estimated by

Â(tn) =
{
j ∈ {1, · · · , p} : ÎW (Xj, Y ; r) ⩾ tn

}
, (2.3.1)

with screening threshold, tn. We name this screening approach as Distribution-Robust r-Wasserstein

Dependence Sure Independence Screening (DR-WDr-SIS).

2.3.2 Theoretical properties

DR-WDr-SIS achieves both the sure screening property and a stronger rank consistency property under

some relatively mild conditions, and proper selected threshold tn. These conditions are introduced below.

Condition 2.1. Let c1 > 0, c2 > 0, κ1 ∈ [0, 1
2
), and κ2 ∈ [0, 1

2r
) be some constants.

(a) min
j∈A

{[IW (Xj, Y ; r)]r} ⩾ c1n
−κ1 .

(b) min
j∈A

{IW (Xj, Y ; r)} −max
j∈Ac

{IW (Xj, Y ; r)} ⩾ c2n
−κ2 .

Condition 2.1(a) is a minimum signal strength condition which indeed requires the DR-WDr between

active features and the response variable to be uniformly bounded below. This condition allows the signal
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strength to converge to zero when n diverge, and it also requires the decaying speed of the signal strength

is not too quick. Secondly, Condition 2.1(b), states the requirement on the difference between the signal

strengths of active and inactive features. Because DR-WDr is non-negative, Condition 2.1(b) is generally

stronger than Condition 2.1(a). In general, these minimum signal strength conditions allowing active

features to be distinguished from inactive ones, and Condition 2.1 is not too restrictive, as it permits the

minimum signal strength to diminish toward zero as n increases.

Theorem 2.3.1 (Sure screening property). Suppose Condition 2.1(a) holds, we take threshold value trn =

ctn
−τ , with ∀ct ∈ (0, c1), and τ ⩾ κ1, then there exists some positive constants n1 andC1, which are not

related to margins of (X, Y ) or n, s.t. when n ⩾ n1,

1. with r = 1,

P
(
A ⊆ Â(tn)

)
⩾ 1−O

(
SA exp

(
−C1n

1−2κ1

log2 n

))
,

where SA is the cardinality of the active set A.

2. with r = 2, ∀β ∈ (0, 1),

P
(
A ⊆ Â(tn)

)
⩾ 1−O

(
SA

[
exp

(
−C1n

1−2κ1

log2 n

)
+ exp

(
−C1n

β(1−κ1)
)])

,

where SA is the cardinality of the active set A.

Theorem 2.3.2 (Rank consistency property). Suppose Condition 2.1(b) holds. There exists some positive

constants n2 andC2, which are not related to margins of (X, Y ) or n, s.t. when n ⩾ n2,
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1. with r = 1,

P
(
min
j∈A

{
ÎW (Xj, Y ; 1)

}
−max

j∈Ac

{
ÎW (Xj, Y ; 1)

}
> 0

)
⩾1−O

(
p exp

(
−C2n

1−2κ2

log2 n

))
.

If log p = o
(

n1−2κ2

log2 n

)
, we also have

lim inf
n→∞

(
min
j∈A

{
ÎW (Xj, Y ; 1)

}
−max

j∈Ac

{
ÎW (Xj, Y ; 1)

})
> 0, almost surely.

2. with r = 2, ∀β ∈ (0, 1),

P
(
min
j∈A

{
ÎW (Xj, Y ; 2)

}
−max

j∈Ac

{
ÎW (Xj, Y ; 2)

}
> 0

)
⩾1−O

(
p

[
exp

(
−C2n

1−4κ2

log2 n

)
+ exp

(
−C2n

β(1−2κ2)
)])

.

If log p = o
(

n1−4κ2

log2 n

)
, and log p = o

(
nβ(1−2κ2)

)
, we also have

lim inf
n→∞

(
min
j∈A

{
ÎW (Xj, Y ; 2)

}
−max

j∈Ac

{
ÎW (Xj, Y ; 2)

})
> 0, almost surely.

Condition 2.1(a) guarantees the sure screening property in Theorem 2.3.1, ensuring that all active

features are included in the selected subset of variables when an appropriate threshold is applied to

DR-WDr-SIS. Under the stronger Condition 2.1(b), the rank consistency property in Theorem 2.3.2

maintains the stability of feature rankings based on their Distribution-Robust Wasserstein Dependences,

effectively separating active features from inactive ones. Collectively, these theorems validate that ranking
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variables by their marginal Distribution-Robust Wasserstein Dependences with the response and selecting

the highest-ranked features serves as a reliable method for feature screening.

2.4 Simulation Study

Table 2.1: The quantiles of minimum model size for Experiment 1 over 200 replications.

Experiment 1.a Experiment 1.b

Quantiles 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 500

SIS 4.00 5.00 8.00 22.25 121.25 4.00 7.00 12.00 34.25 148.10
DC-SIS 4.00 5.00 10.00 34.00 199.65 4.95 7.00 16.50 47.75 207.50
bcDC-SIS 4.00 5.75 11.00 39.00 218.10 5.00 8.00 18.00 50.25 265.10
BCor-SIS 5.00 17.00 51.00 166.25 315.55 8.00 35.75 106.50 209.00 362.20
MDC-SIS 4.00 5.00 9.00 26.50 159.25 5.00 7.00 18.00 43.25 205.80
WD1-SIS 112.00 213.00 296.50 383.25 473.00 273.70 321.25 376.50 436.00 483.05
WD2-SIS 87.85 203.50 270.50 390.00 462.00 278.85 328.50 378.50 431.25 486.05
DR-WD1-SIS 4.00 6.00 14.50 67.25 292.25 5.00 12.75 49.00 141.25 340.50
DR-WD2-SIS 4.00 6.00 25.00 93.25 331.00 5.00 15.75 76.00 179.75 307.05

p = 2000

SIS 4.00 5.00 6.00 9.00 35.10 4.00 5.00 6.00 10.00 33.15
DC-SIS 4.00 5.00 6.00 12.00 66.00 5.00 5.00 7.00 11.00 51.50
bcDC-SIS 4.00 5.00 6.00 12.00 66.00 5.00 5.00 7.00 11.00 69.10
BCor-SIS 4.00 6.75 23.00 104.25 762.45 5.00 13.00 48.00 187.25 853.05
MDC-SIS 4.00 5.00 6.00 9.00 52.05 5.00 5.00 7.00 12.00 65.20
WD1-SIS 110.95 357.50 725.50 1204.25 1849.40 1035.95 1184.50 1337.00 1582.50 1901.85
WD2-SIS 79.50 228.50 623.00 1111.50 1811.80 913.70 1255.75 1383.50 1568.75 1847.05
DR-WD1-SIS 4.00 5.00 6.5 17.00 217.55 5.00 6.00 9.00 25.00 334.70
DR-WD2-SIS 4.00 5.00 6.0 22.00 309.30 5.00 6.00 9.50 27.00 372.05

In this section, three simulated experiments were utilized to compare our proposal (DR-WDr-SIS

with r = 1, 2) with SIS in Fan and Lv, 2008, DC-SIS in R. Li et al., 2012, bcDC-SIS in Székely and Rizzo,

2014, MDC-SIS in Shao and Zhang, 2014, BCor-SIS in Pan et al., 2019. We also present the screening

performance using Wasserstein dependence without Gaussianization and name it as WDr-SIS with r =
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1, 2. In this method, we implement permutation estimator as mentioned in Section 2.1. In addition,

the calculation of (2.2.3) involves semi-discete Wasserstein distance, for which multiple methods were

proposed (Dieci and Omarov, 2024; Hartmann and Schuhmacher, 2020) to approximate the semi-discrete

Wasserstein distance. In this section, we consider constructing 2-dimensional low-discrepancy sequence

(Sobol’, 1967) of size n on [0, 1]2, and then apply Probit transformations to estimate the measure ϕ⊗ ϕ.

For each experiment, we have two settings n = 100, p = 500, and n = 200, p = 2000. We repeat

the experiments for 200 replicates. Within each replication, we rank the features descendingly by the

above nine screening metrics and record the minimum model size that contains all active variables. The

screening performance is measured by quantiles (at levels 5%, 25%, 50%, 75%, 95%) of the minimum

model size (Mmin) over 200 replications. Throughout this subsection, we denote Σ = (σij)p×p with

σij = 0.5|i−j|. We consider the following three regression models.

1. Y = 5X1+3X12+4X26+6X39+
√
20ε, where ε i.i.d.∼ N(0, 1). This model is an additive linear

model, which has 4 active variables.

2. Y = 5X1 + 2 sin
(
π
2
X2

)
+ 2 |X3| + 2 exp(5X4) + ε, where ε i.i.d.∼ N(0, 1). This model is an

additive nonlinear model, which has 4 active variables.

3. Y = 4X1 +3 log
(∣∣∣ X2

1−X1

∣∣∣) sin (2π |X3|) + 4 |X3| exp (5X4 + 5X5) + ε, where ε i.i.d.∼ N(0, 1).

This model has more complex nonlinear structure, which has 5 active variables.

In each experiment, ε is independent of the covariate vector X = (X1, · · · , Xp)
⊺, and we consider

two subexperiments, which come from different data generation processes, and stand for different data

structure.

a. X ∼MVN(0p,Σ), which represents homogeneous data.
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Table 2.2: The quantiles of minimum model size for Experiment 2 over 200 replications.

Experiment 2.a Experiment 2.b

Quantiles 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 500

SIS 50.55 194.75 309.50 403.75 479.10 62.70 207.75 325.00 431.25 480.00
DC-SIS 50.95 167.50 294.50 391.25 464.20 47.00 117.25 248.50 380.50 478.10
bcDC-SIS 40.65 160.75 271.50 372.50 475.10 33.90 140.50 266.00 379.00 482.05
BCor-SIS 4.00 4.00 6.00 10.00 57.10 4.00 5.00 9.00 25.00 83.10
MDC-SIS 52.70 183.50 327.00 413.50 490.05 33.95 147.25 272.00 390.50 480.00
WD1-SIS 48.75 126.00 234.00 355.50 463.15 276.00 332.75 394.00 445.50 490.10
WD2-SIS 151.90 326.75 407.00 469.25 494.00 232.75 355.75 424.00 463.75 493.05
DR-WD1-SIS 4.00 4.00 5.00 5.00 11.05 4.00 4.00 5.00 6.00 10.10
DR-WD2-SIS 4.00 4.00 5.00 5.00 16.10 4.00 4.00 5.00 5.00 9.00

p = 2000

SIS 192.75 771.50 1217.00 1647.75 1936.00 194.55 712.25 1233.00 1653.75 1957.35
DC-SIS 161.00 657.00 1023.00 1544.50 1876.15 92.75 515.00 910.00 1420.25 1868.20
bcDC-SIS 105.40 463.00 880.00 1465.00 1887.60 93.50 423.00 858.50 1444.25 1852.60
BCor-SIS 4.00 4.00 5.00 5.00 7.00 4.00 5.00 6.00 7.00 29.15
MDC-SIS 167.75 707.75 1093.50 1588.00 1958.05 89.75 547.25 1097.50 1545.00 1939.05
WD1-SIS 27.75 169.50 421.00 834.25 1484.25 1065.90 1246.50 1434.50 1718.25 1913.05
WD2-SIS 823.85 1439.00 1747.50 1881.00 1970.10 1061.55 1401.50 1718.00 1868.00 1971.00
DR-WD1-SIS 4.00 4.00 4.00 5.00 5.00 4.00 4.75 5.00 6.00 6.00
DR-WD2-SIS 4.00 4.00 4.00 5.00 5.00 4.00 4.00 4.00 5.00 6.00

b. X∗
i ∼ Fi mod 4 independently, for i = 1, · · · , p, where (1) F0(x) is the standard normal distri-

bution; (2) F1(x) is the Student’s t distribution with degrees of freedom 5; (3) F2(x) is Pareto

distribution with shape parameter k = 3, and scale parameterα = 1; (4)F3(x) is Weibull distribu-

tion with shape parameterk = 1.5, and scale parameterλ = 1. Then withX∗ =
(
X∗

1 , · · · , X∗
p

)⊺,

we have X = Σ
1
2X∗, which represents heterogeneous data.

The results of the above experiments are given in Tables 2.1 – 2.3. Firstly, across the 3 experiments, it is ob-

vious that without Gaussianization, feature screening with Wasserstein Dependence measure (WDr-SIS)
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Table 2.3: The quantiles of minimum model size for Experiment 3 over 200 replications.

Experiment 3.a Experiment 3.b

Quantiles 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 500

SIS 63.60 214.75 322.00 413.50 484.15 81.00 255.25 344.50 442.00 490.05
DC-SIS 71.85 208.50 330.50 419.50 482.10 68.85 228.25 323.00 427.75 485.05
bcDC-SIS 68.40 222.75 311.00 413.75 485.00 59.75 177.00 310.50 421.00 485.00
BCor-SIS 5.00 8.00 17.00 77.75 251.05 7.00 25.00 73.50 172.00 309.25
MDC-SIS 85.55 218.75 335.00 424.25 486.05 70.45 195.25 330.50 430.75 483.10
WD1-SIS 141.85 305.25 396.50 463.00 491.05 242.00 373.25 436.00 473.00 494.05
WD2-SIS 280.65 371.00 430.00 476.25 496.00 264.00 383.25 435.00 470.00 494.05
DR-WD1-SIS 5.00 5.00 8.50 24.25 155.20 6.00 7.00 10.00 28.50 134.20
DR-WD2-SIS 5.00 6.00 9.00 34.50 154.70 6.00 6.00 8.00 22.25 157.15

p = 2000

SIS 265.85 842.75 1330.00 1668.25 1897.25 358.70 1020.25 1556.00 1821.25 1961.15
DC-SIS 248.65 772.75 1216.50 1626.50 1918.00 286.00 829.75 1373.50 1682.50 1945.05
bcDC-SIS 149.25 729.25 1230.50 1616.75 1955.05 220.70 779.50 1252.00 1633.25 1915.50
BCor-SIS 5.00 6.00 10.0 39.00 206.65 7.95 20.75 65.00 177.25 471.00
MDC-SIS 190.70 858.50 1318.50 1658.75 1967.20 278.75 835.50 1294.00 1676.50 1917.35
WD1-SIS 563.20 1274.50 1667.50 1843.00 1972.10 1072.85 1496.00 1752.50 1881.75 1979.10
WD2-SIS 1145.35 1529.25 1704.00 1882.25 1972.10 1061.80 1505.25 1716.00 1887.50 1980.05
DR-WD1-SIS 5.00 5.00 6.00 7.00 13.05 6.00 6.00 6.00 8.00 27.20
DR-WD2-SIS 5.00 5.00 6.00 6.00 16.10 6.00 6.00 6.00 6.00 8.05

needs hundreds of variables to identify the active variables, which means it could hardly find the active

variables regardless of the true model. More specifically, Experiment 1 involves a linear model, where in

ideal cases (quantile levels 5% and 25%), most methods (except for WDr-SIS) could successfully select the 4

active variables with a relatively small amount of features. However, in extreme cases (quantile levels 95%),

SIS outperforms all other methods. In Experiments 2 and 3, two nonlinear models are implemented, one

is additive and the other one is even more complex. In these cases, only BCor-SIS and DR-WDr-SIS could

succeed in finding the active variables. Comparing subexperiments a & b in nonlinear cases, BCor-SIS
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is not as robust as our proposal, DR-WDr-SIS. DR-WDr-SIS’s performance is not changing much be-

tween homogeneous data and heterogeneous data. However, sensitivity to heterogeneous data is actually

happening to all of the methods except for DR-WDr-SIS across different models.

2.5 Proofs for Chapter 2

Proposition 2.5.1. McDiarmid, 1989. Let (z1, · · · , zn) be independent random variables. Suppose a

measurable function g satisfies |g (x)− g (x̃)| ⩽ ci, where x, x̃ ∈ Rn only differ on the ith coordinate.

Then for any ε > 0, we have

P (|g (z1, · · · , zn)− Eg (z1, · · · , zn)| ⩾ ε) ⩽ 2 exp

(
−2

ε2∑n
i=1 c

2
i

)
.

Proposition 2.5.2. Lemmas 12.1 and 12.3 from Abramovich et al., 2006. For z ⩾ 1 and 0 < η ⩽ 0.01, we

have

ϕ(z)

2z
⩽ 1− Φ(z) ⩽

ϕ(z)

z
,

Φ−1(1− η) ⩽
√

2 log η−1.

Proposition 2.5.3. Proposition 3 from Mai et al., 2023. For any random sample ξi, i = 1, · · · , n, and its

empirical CDF F̂ξ(·), there exists some positive constantsC , andn0, which are not related to ξ orn, s.t. when

n ⩾ n0, ∀t ∈ R,

Φ−1

(
n

n+ 1
F̂ξ(t)

)
⩽ C

√
log n.
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Lemma 2.5.1. Corrected Lemma 5 from Mai et al., 2023. For i.i.d. standard Gaussian sample zi
i.i.d.∼

N(0, 1), and z∗i
.
= zi1{|zi|⩽√

2 logn}+sign (zi)
√
2 log n1{|zi|>√

2 logn}, i = 1, · · · , n, there exists some

positive constantsM ,C , n0, and ε0, which are not related to n, s.t. when n ⩾ n0, ∀ε ∈ (M 1
n
, ε0),

P

(
1

n

n∑
i=1

|z∗i − zi| ⩾ ε

)
⩽ C exp

(
−Cnε

2

log n

)
.

Proof. Let g (x) .
= 1

n

∑n
i=1 |xi|1{|xi|⩽

√
2 logn}, where x = (x1, · · · , xn) ∈ Rn. Consider x, x̃ ∈

Rn, which only differ on the ith coordinate. W.L.O.G., we may assume x = (x1, · · · , xn), and x̃ =

(x̃1, · · · , xn). Then we have

|g (x)− g (x̃)| =
∣∣∣∣ 1n |x1|1{|x1|⩽

√
2 logn} − 1

n
|x̃1|1{|x̃1|⩽

√
2 logn}

∣∣∣∣ ⩽ C

√
log n

n
,

for some positive constantC , which is not related to n. Since zi
i.i.d.∼ N(0, 1), applying Proposition 2.5.1,

we have

P

(∣∣∣∣∣ 1n
n∑

i=1

|zi|1{|zi|⩽√
2 logn} − E

[
|zi|1{|zi|⩽√

2 logn}
]∣∣∣∣∣ ⩾ ε

)
⩽ C exp

(
−Cnε

2

log n

)
, (2.5.1)

for any ε > 0 and some positive constantC , which is not related to n.

We also observe the truth that

E
[
|zi|1{|zi|⩽√

2 logn}
]
=

∫ √
2 logn

−
√
2 logn

|x|ϕ(x)dx =

√
2

π
−
√

2

π

1

n
, (2.5.2)
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when n ⩾ 3. Then, following (2.5.1) and (2.5.2), and assuming that ε > 2
n

√
2
π

, we have

P

(∣∣∣∣∣ 1n
n∑

i=1

|zi|1{|zi|⩽√
2 logn} −

√
2

π

∣∣∣∣∣ ⩾ ε

)

=P

(∣∣∣∣∣ 1n
n∑

i=1

|zi|1{|zi|⩽√
2 logn} − E

[
|zi|1{|zi|⩽√

2 logn}
]
−
√

2

π

1

n

∣∣∣∣∣ ⩾ ε

)

⩽P

(∣∣∣∣∣ 1n
n∑

i=1

|zi|1{|zi|⩽√
2 logn} − E

[
|zi|1{|zi|⩽√

2 logn}
]∣∣∣∣∣+

√
2

π

1

n
⩾ ε

)

⩽P

(∣∣∣∣∣ 1n
n∑

i=1

|zi|1{|zi|⩽√
2 logn} − E

[
|zi|1{|zi|⩽√

2 logn}
]∣∣∣∣∣ ⩾ ε

2

)

⩽C exp

(
−Cnε

2

log n

)
. (2.5.3)

Finally, we have

P

(
1

n

n∑
i=1

|z∗i − zi| ⩾ ε

)
=P

(
1

n

n∑
i=1

(
|zi| −

√
2 log n

)
1{|zi|>√

2 logn} ⩾ ε

)

⩽P

(
1

n

n∑
i=1

|zi|1{|zi|>√
2 logn} ⩾ ε

)

=P

(∣∣∣∣∣ 1n
n∑

i=1

|zi| −
1

n

n∑
i=1

|zi|1{|zi|⩽√
2 logn}

∣∣∣∣∣ ⩾ ε

)

⩽P

(∣∣∣∣∣ 1n
n∑

i=1

|zi| −
√

2

π

∣∣∣∣∣ ⩾ ε

2

)
(2.5.4)

+ P

(∣∣∣∣∣ 1n
n∑

i=1

|zi|1{|zi|⩽√
2 logn} −

√
2

π

∣∣∣∣∣ ⩾ ε

2

)
, (2.5.5)

⩽C exp

(
−Cnε

2

log n

)
,

where (2.5.4) follows Lemma 2 from Mai et al., 2023 with ε ∈ (0, ε0) for some positive constant ε0 not

related to n, and (2.5.5) follows from (2.5.3).
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Lemma 2.5.2. (Modified Lemma 12 from Mai et al., 2023) With the same condition in Lemma 2.5.1,

there exists some positive constants M , C , n0, and ε0, which are all not related to n, s.t. when n ⩾ n0,

∀ε ∈ (M
√
logn
n

, ε0),

P

(
1

n

n∑
i=1

(z∗i − zi)
2 ⩾ ε

)
⩽ C exp

(
−Cnε2

log2 n

)
.

Proof. The proof is similar to Lemma 2.5.1. Let g (x) .= 1
n

∑n
i=1 x

2
i1{|xi|⩽

√
2 logn},x = (x1, · · · , xn) ∈

Rn. Consider x, x̃ ∈ Rn, which only differ on the ith coordinate. W.L.O.G., we may assume x =

(x1, · · · , xn), and x̃ = (x̃1, · · · , xn). Then we have

|g (x)− g (x̃)| =
∣∣∣∣ 1nx211{|x1|⩽

√
2 logn} − 1

n
x̃211{|x̃1|⩽

√
2 logn}

∣∣∣∣ ⩽ C
log n

n
,

for some positive constantC , which is not related to n. Since zi
i.i.d.∼ N(0, 1), applying Proposition 2.5.1,

we have

P

(∣∣∣∣∣ 1n
n∑

i=1

z2i 1{|zi|⩽√
2 logn} − E

[
z2i 1{|zi|⩽√

2 logn}
]∣∣∣∣∣ ⩾ ε

)
⩽ C exp

(
−Cnε2

log2 n

)
, (2.5.6)

for some positive constantC , which is not related to n.

We have the similar result as (2.5.1),

E
[
z2i 1{|zi|⩽√

2 logn}
]
=

∫ √
2 logn

−
√
2 logn

x2ϕ(x)dx = 1− 2√
π

√
log n

n
− 2Φ

(
−
√

2 log n
)
. (2.5.7)
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When n ⩾ 100, by Proposition 2.5.2, we have

Φ
(√

2 log n
)
⩾1− 1

n
,

Φ
(
−
√

2 log n
)
= 1− Φ

(√
2 log n

)
⩽
1

n
,

1 ⩾ E
[
z2i 1{|zi|⩽√

2 logn}
]
⩾1− 2√

π

√
log n

n
− 2

n
⩾ 1−

(
2√
π
+ 2

) √
log n

n
.

Then, following that (2.5.6), and (2.5.7), and assuming that M ⩾ 2
(

2√
π
+ 2
)

, and ε > M
√
logn
n

, we

have

P

(∣∣∣∣∣ 1n
n∑

i=1

z2i 1{|zi|⩽√
2 logn} − 1

∣∣∣∣∣ ⩾ ε

)

⩽P

(∣∣∣∣∣ 1n
n∑

i=1

z2i 1{|zi|⩽√
2 logn} − E

[
z2i 1{|zi|⩽√

2 logn}
]∣∣∣∣∣ ⩾ ε

2

)

⩽C exp

(
−Cnε2

log2 n

)
. (2.5.8)

Finally, we have

P

(
1

n

n∑
i=1

(z∗i − zi)
2 ⩾ ε

)
=P

(
1

n

n∑
i=1

(
|zi| −

√
2 log n

)2
1{|zi|>√

2 logn} ⩾ ε

)

⩽P

(
1

n

n∑
i=1

z2i 1{|zi|>√
2 logn} ⩾ ε

)

=P

(∣∣∣∣∣ 1n
n∑

i=1

z2i −
1

n

n∑
i=1

z2i 1{|zi|⩽√
2 logn}

∣∣∣∣∣ ⩾ ε

)

⩽P

(∣∣∣∣∣ 1n
n∑

i=1

z2i − 1

∣∣∣∣∣ ⩾ ε

2

)
(2.5.9)

+ P

(∣∣∣∣∣ 1n
n∑

i=1

z2i 1{|zi|⩽√
2 logn} − 1

∣∣∣∣∣ ⩾ ε

2

)
, (2.5.10)
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⩽C exp

(
−Cnε2

log2 n

)
,

where (2.5.9) follows from Lemma 2 from Mai et al., 2023 with ε ∈ (0, ε0) for some positive constant ε0

not related to n, and (2.5.10) follows from (2.5.8).

Theorem 2.5.4. (Modified Theorem 1 from Mai et al., 2023) For any continuous random sample ξi
i.i.d.∼

Fξ(·), i = 1, · · · , n, and its empirical CDF F̂ξ(·), consider zi
.
= Φ−1 (Fξ(ξi)), ẑi

.
= Φ−1

(
n

n+1
F̂ξ(ξi)

)
,

i = 1, · · · , n. There exists some positive constants M , C , n0, and ε0, which are not related to ξ or n, s.t.

when n ⩾ n0, ∀ε ∈ (M logn√
n
, ε0),

P

(
1

n

n∑
i=1

|ẑi − zi| ⩾ ε

)
⩽ C exp

(
−Cnε

2

log n

)
.

Proof. Theorem 2.5.4 follows directly from Lemma 8 in Mai et al., 2023 and Lemma 2.5.1, noting that

zi
i.i.d.∼ N(0, 1), i = 1, . . . , n.

Theorem 2.5.5. (Modified Lemma 14 from Mai et al., 2023) With the same conditions in Theorem 2.5.4,

there exists some positive constants M , C , n0, and ε0, which are not related to ξ or n, s.t. when n ⩾ n0,

∀ε ∈ (M (logn)
3
2√

n
, ε0),

P

(
1

n

n∑
i=1

(ẑi − zi)
2 ⩾ ε

)
⩽ C exp

(
−Cnε2

log2 n

)
.
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Proof. Firstly, it is easy to observe that zi
i.i.d.∼ N(0, 1). With the same definition of z∗i , i = 1, · · · , n, in

Lemma 2.5.1, when n ⩾ n0, we have

1

n

n∑
i=1

(ẑi − zi)
2 ⩽

1

n

n∑
i=1

|ẑi − zi| (|ẑi − z∗i |+ |z∗i − zi|)

⩽ C

√
log n

n

n∑
i=1

|ẑi − zi|+
1

n

n∑
i=1

|ẑi − zi| |z∗i − zi| (2.5.11)

⩽ C

√
log n

n

n∑
i=1

|ẑi − zi|+
1

2n

n∑
i=1

(ẑi − zi)
2 +

1

2n

n∑
i=1

(z∗i − zi)
2 ,

for some positive constantsC , and n0, which are not related to ξ or n. Here (2.5.11) follows from Proposi-

tion 2.5.3. Hence, we have

1

2n

n∑
i=1

(ẑi − zi)
2 ⩽ C

√
log n

n

n∑
i=1

|ẑi − zi|+
1

n

n∑
i=1

(z∗i − zi)
2 ,

and the rest proof follows directly from Lemma 2.5.2 and Theorem 2.5.4.

Proof of Theorem 2.2.1. Let f̂S,T be the empirical measure on the genuine Gaussianized sample (2.2.2).

Then for r ⩾ 1, by triangular inequality and property of distance, it is easy to have

∣∣∣ÎW (X, Y ; r)− IW (X, Y ; r)
∣∣∣

=
∣∣∣Wr(f̂Ŝ,T̂ , ϕ⊗ ϕ)−Wr(fS,T , ϕ⊗ ϕ)

∣∣∣
⩽Wr(f̂Ŝ,T̂ , fS,T )

⩽Wr(f̂Ŝ,T̂ , f̂S,T ) +Wr(f̂S,T , fS,T ), (2.5.12)

Then we consider the two terms separately.
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1. For Wr(f̂Ŝ,T̂ , f̂S,T ), with Π as the set of all permutations on {1, · · · , n}, we have

Wr
r (f̂Ŝ,T̂ , f̂S,T ) = inf

π∈Π


1

n

n∑
i=1

∥∥∥∥∥∥∥∥
si
ti

−

ŝπ(i)

t̂π(i)


∥∥∥∥∥∥∥∥
r

q


⩽
1

n

n∑
i=1

∥∥∥∥∥∥∥∥
si
ti

−

ŝi
t̂i


∥∥∥∥∥∥∥∥
r

q

⩽
1

n

n∑
i=1

[
|si − ŝi|+

∣∣ti − t̂i
∣∣]r (2.5.13)

⩽Cr

[
1

n

n∑
i=1

|si − ŝi|r +
1

n

n∑
i=1

∣∣ti − t̂i
∣∣r] , (2.5.14)

where (2.5.13) follows from ∥x∥q ⩽ ∥x∥1, for q ⩾ 1 and x ∈ Rd, and (2.5.14) follows from

|a+ b|r ⩽ Cr (|a|r + |b|r) forCr = 2(r−1)+ and r ⩾ 0.

With r = 1, by Theorem 2.5.4, there exists some positive constants M , C , n0, and ε0, which are

not related to margins of (X, Y ) or n, s.t. when n ⩾ n0, ∀ε ∈ (M logn√
n
, ε0),

P
(
W1(f̂Ŝ,T̂ , f̂S,T ) ⩾ ε

)
⩽ C exp

(
−Cnε

2

log n

)
. (2.5.15)

With r = 2, by Theorem 2.5.5, there exists some positive constants M , C , n0, and ε0, which are

not related to margins of (X, Y ) or n, s.t. when n ⩾ n0, ∀ε ∈ (M (logn)
3
4

n
1
4

, ε0),

P
(
W2(f̂Ŝ,T̂ , f̂S,T ) ⩾ ε

)
⩽ C exp

(
−Cnε4

log2 n

)
. (2.5.16)
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2. ForWr(f̂S,T , fS,T ), we mainly refer to the proof of Theorem 2 in Fournier and Guillin, 2015. Since

margins of (S, T ) are both standard Gaussian, it is easy to find the conditions in Fournier and

Guillin, 2015 could always be satisfied.

With r = 1, Condition (1) in Theorem 2 in Fournier and Guillin, 2015 is satisfied with α = 2 and

any γ < 1
8

. Correspondingly, there exist some positive constantC , which is not related to margins

of (X, Y ) or n, s.t. when n ⩾ 1, ∀ε ∈ (0, 1),

P
(
W1(f̂S,T , fS,T ) ⩾ ε

)
⩽ C exp

(
− Cnε2

log2
(
2 + 1

ε

)) . (2.5.17)

With r = 2, Condition (2) in Theorem 2 in Fournier and Guillin, 2015 is satisfied with ∀α ∈ (0, 2)

and any γ > 0. Correspondingly, ∀α ∈ (0, 2), and ∀δ ∈ (0, α), there exist some positive constant

C , which is not related to margins of (X, Y ) or n, s.t. when n ⩾ 1, ∀ε ∈ (0, 1),

P
(
W2(f̂S,T , fS,T ) ⩾ ε

)
⩽ C exp

(
−Cnε4

)
+ C exp

(
−C

(
nε2
)α−δ

2

)
. (2.5.18)

Finally, when r = 1, and ε > M logn√
n

, it is easy to find log2
(
2 + 1

ε

)
⩽ C log2 n for some positive

constantC . Hence combining (2.5.15), (2.5.17), and (2.5.12), it induces

P
(∣∣∣ÎW (X, Y ; 1)− IW (X, Y ; 1)

∣∣∣ ⩾ ε
)
⩽ C exp

(
−Cnε2

log2 n

)
.

When r = 2, combining (2.5.16), (2.5.18), and (2.5.12), it induces ∀β = α−δ
2

∈ (0, 1),

P
(∣∣∣ÎW (X, Y ; 2)− IW (X, Y ; 2)

∣∣∣ ⩾ ε
)
⩽ C exp

(
−Cnε4

log2 n

)
+ C exp

(
−C

(
nε2
)β)

.
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The second statement follows directly from the first statement.

Proof of Theorem 2.3.1. Under Condition 2.1(a), we can observe that

tn ⩽ c
1
r
t n

−κ1
r < c

1
r
1 n

−κ1
r ⩽ min

j∈A
{IW (Xj, Y ; r)} .

Then we have

P
(
A ̸⊆ Â(tn)

)
=P

(⋃
j∈A

{
j ̸∈ Â(tn)

})

⩽
∑
j∈A

P
(
ÎW (Xj, Y ; r) ⩽ tn

)
⩽
∑
j∈A

P
(∣∣∣ÎW (Xj, Y ; r)− IW (Xj, Y ; r)

∣∣∣ ⩾ IW (Xj, Y ; r)− tn

)
⩽
∑
j∈A

P
(∣∣∣ÎW (Xj, Y ; r)− IW (Xj, Y ; r)

∣∣∣ ⩾ (c
1
r
1 − c

1
r
t )n

−κ1
r

)
.

Then there exist some positive constantsC1, and n1, which are not related to margins of (X, Y ) orn. Let

n ⩾ n1, by Theorem 2.2.1, and consider the complementary set,

1. when r = 1, it follows that

P
(
A ⊆ Â(tn)

)
⩾ 1− C1SA exp

(
−C1n

1−2κ1

log2 n

)
.

2. when r = 2, ∀β ∈ (0, 1), it follows that

P
(
A ⊆ Â(tn)

)
⩾ 1− SA

[
C1 exp

(
−C1n

1−2κ1

log2 n

)
+ C1 exp

(
−C1n

β(1−κ1)
)]
.
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Proof of Theorem 2.3.2. Under Condition 2.1(b), we have

P
(
min
j∈A

{
ÎW (Xj, Y ; r)

}
−max

j∈Ac

{
ÎW (Xj, Y ; r)

}
⩽ 0

)
⩽P
(
min
j∈A

{
ÎW (Xj, Y ; r)

}
−max

j∈Ac

{
ÎW (Xj, Y ; r)

}
⩽min

j∈A
{IW (Xj, Y ; r)} −max

j∈Ac
{IW (Xj, Y ; r)} − c2n

−κ2

)
=P
([

min
j∈A

{IW (Xj, Y ; r)} −min
j∈A

{
ÎW (Xj, Y ; r)

}]
+

[
max
j∈Ac

{
ÎW (Xj, Y ; r)

}
−max

j∈Ac
{IW (Xj, Y ; r)}

]
⩾ c2n

−κ2

)
.

Let j1
.
= argmin

j∈A
ÎW (Xj, Y ; r) and j2

.
= argmax

j∈Ac

ÎW (Xj, Y ; r), then we could have

IW (Xj1 , Y ; r) ⩾min
j∈A

{IW (Xj, Y ; r)} ,

IW (Xj2 , Y ; r) ⩽max
j∈Ac

{IW (Xj, Y ; r)} .

It induces

P
(
min
j∈A

{
ÎW (Xj, Y ; r)

}
−max

j∈Ac

{
ÎW (Xj, Y ; r)

}
⩽ 0

)
⩽P
([

IW (Xj1 , Y ; r)− ÎW (Xj1 , Y ; r)
]
+
[
ÎW (Xj2 , Y ; r)− IW (Xj2 , Y ; r)

]
⩾ c2n

−κ2

)
⩽P

({∣∣∣ÎW (Xj1 , Y ; r)− IW (Xj1 , Y ; r)
∣∣∣ ⩾ 1

2
c2n

−κ2

})
+ P

({∣∣∣ÎW (Xj2 , Y ; r)− IW (Xj2 , Y ; r)
∣∣∣ ⩾ 1

2
c2n

−κ2

})
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⩽2P
(

max
j∈{1,··· ,p}

{∣∣∣ÎW (Xj, Y ; r)− IW (Xj, Y ; r)
∣∣∣} ⩾

1

2
c2n

−κ2

)
=2P

(
p⋃

j=1

{∣∣∣ÎW (Xj, Y ; r)− IW (Xj, Y ; r)
∣∣∣ ⩾ 1

2
c2n

−κ2

})

⩽2

p∑
j=1

P
(∣∣∣ÎW (Xj, Y ; r)− IW (Xj, Y ; r)

∣∣∣ ⩾ 1

2
c2n

−κ2

)
.

Then by Theorem 2.2.1, there exists some positive constants n2 andC2, which are not related to margins

of (X, Y ) or n, s.t. when n ⩾ n2,

1. with r = 1,

P
(
min
j∈A

{
ÎW (Xj, Y ; 1)

}
−max

j∈Ac

{
ÎW (Xj, Y ; 1)

}
> 0

)
⩾ 1− 2C2p exp

(
−C2n

1−2κ2

log2 n

)
,

2. with r = 2, ∀β ∈ (0, 1),

P
(
min
j∈A

{
ÎW (Xj, Y ; 2)

}
−max

j∈Ac

{
ÎW (Xj, Y ; 2)

}
> 0

)
⩾1− 2C2p

[
exp

(
−C2n

1−4κ2

log2 n

)
+ exp

(
−C2n

β(1−2κ2)
)]
,

The rest of the proof follows directly from the proof of Theorem 3 in W. Liu et al., 2022.

34



Chapter 3

Model-free Feature Screening and

False Discovery Control for

High-dimensional Quantile

Regressions

In this chapter, we establish a novel model-free feature screening and corresponding FDR control method

for high-dimensional quantile regressions. In Section 3.1, we introduce a Copula Quantile Dependence as

a novel measure of quantile dependence. In Sections 3.2 – 3.4, we discuss the method to estimate Copula

Quantile Dependence through the estimation of Copula. We also prove the asymptotic properties of the

estimations. In Section 3.5, we propose a model-free feature screening procedure for quantile regression

and establish its sure screening and rank consistency properties under mild conditions. In Section 3.6,

we develop a data-driven threshold selection method to control the false discovery rate for the proposed
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screening procedure. In Section 3.7, we use simulation experiments to assess the empirical performance

of the proposed methods.

3.1 Quantile Dependence and Conditional Copula Density

Let X and Y be two continuous random variables with marginal cumulative distribution functions

(CDFs): U .
= FX(X) and V .

= FY (Y ), respectively. By the probability integral transform, U and V

are uniformly distributed over [0, 1]. According to Sklar’s theorem (Sklar, 1959), the joint probability

distribution ofX and Y can be represented by

FX,Y (x, y) = P(X ⩽ x, Y ⩽ y) = P(U ⩽ FX(x), V ⩽ FY (y))
.
= C (u, v) ,

where u .
= FX(x), v .

= FY (y), and C(u, v) .= P(U ⩽ u, V ⩽ v) is the copula function ofX and Y .

Suppose that the joint density ofX and Y exists and that the copula function C(·, ·) is differentiable.

A classical result in probability theory suggests that the conditional probability of V given U = u can be

calculated through the first-order derivative of the copula function with respect to u. To be specific, we

have

P(V ⩽ v | U = u) =
∂

∂u
C(u, v) .= C2|1(v | u).

In the rest of the paper, we call the derivative C2|1(v | u) the conditional copula function of V given

U . We can define C1|2(u | v) in a similar fashion. Denote F−1
Y (·) as the (generalized) inverse function of

FY (·) andC−1
2|1(· | u) as the (generalized) partial inverse function of C2|1(· | u) : v 7→ C2|1 (v | u). The
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conditional α-th quantile of Y givenX = xwith α ∈ (0, 1), i.e. Qα(Y |X = x), can be expressed by

Qα(Y |X = x) = F−1
Y

(
C−1
2|1 (α | FX(x))

)
. (3.1.1)

We say Y is quantile independent ofX at the quantile level α if and only if the conditional quantile

Qα(Y |X = x) equals the marginal α-th quantile of Y (i.e. F−1
Y (α)) almost surely with respect to the

measure of X . This is equivalent to the condition that C2|1 (α | u) ≡ α for almost every u ∈ [0, 1]

under some mild conditions to be specified below. This observation motivates us to measure the quantile

dependence betweenX and Y through an integrated (weighted) square deviation.

Definition 3.1.1 (Copula Quantile Dependence). For continuous random variablesX and Y , we define

their quantile dependence at the quantile level α ∈ (0, 1) as

Dα(X, Y ;ω) =

∫ 1

0

[
C2|1 (α | u)− α

]2
ω (u) du, (3.1.2)

where ω(·) is an almost everywhere positive integrable weight function.

Next, we introduce two conditions and a lemma to study the properties of the quantile dependence

defined above.

Condition 3.1. The joint density ofX and Y exists and the inverse of FY (·) exists on the domain of Y .

Condition 3.2. The copula function C(·, ·) is differentiable. The partial inverse of C2|1(· | u) exists for

almost every u ∈ (0, 1).

Lemma 3.1.1. Suppose Conditions 3.1 and 3.2 hold. The following properties hold ∀α ∈ (0, 1).
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(a) Dα(X, Y ;ω) ⩾ 0.

(b) Dα(X, Y ;ω) = 0 if and only if Y is quantile independent ofX at the quantile level α.

(c) C2|1 (α | u) ≡ α for almost every u ∈ [0, 1] if and only if Y is quantile independent of X at the

quantile level α.

Lemma 3.1.1 introduces the nice statistical properties of Copula Quantile Dependence as a measure

of the association between X and Y at a given quantile level α. This measure is always nonnegative.

Moreover, ifX andY are independent at quantile levelα, then the Copula Quantile Dependence is exactly

zero. Hence, the magnitude of this metric naturally serves as a statistic to evaluate the quantile dependence.

In addition, Condition 3.1 and 3.2 are mild, since they hold for most commonly used distributions and

parametric copulas.

3.2 Estimation of Copula Density

Accurate copula density estimation is essential for constructing the Copula Quantile Dependence, as de-

fined in (3.1.2). Traditional parametric approaches (e.g., Gaussian or Clayton copulas) tend to be rigid and

susceptible to misspecification. In contrast, non-parametric methods offer flexibility but often struggle

with boundary bias and inconsistencies when densities are unbounded (Chen and Huang, 2007). To

overcome these limitations, we propose estimating the copula density using a Probit transformation. This

transformation idea has been explored by existing literature (Segers, 2012; Geenens, 2014; Geenens et al.,

2017).
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Let Φ(·) and ϕ(·) denote the CDF and density of the standard Gaussian distribution. We apply the

Probit transformation to U and V by defining

S = Φ−1(U) and T = Φ−1(V ).

Because copulas are invariant under monotonic transformations, the joint CDF of (S, T ) is

FS,T (s, t) = P(S ⩽ s, T ⩽ t) = C(Φ(s),Φ(t)), ∀(s, t) ∈ R2.

Differentiating FS,T (s, t) with respect to s and t yields the joint density of S and T , i.e.

fS,T (s, t) =
∂2

∂u∂v
C(Φ(s),Φ(t))ϕ(s)ϕ(t).

Therefore, the copula density satisfies

C1,2(u, v)
.
=

∂2

∂u∂v
C(u, v) =

fS,T
(
Φ−1(u),Φ−1(v)

)
ϕ
(
Φ−1(u)

)
ϕ
(
Φ−1(v)

) . (3.2.1)

Equation (3.2.1) offers a practical way to estimate the copula density. Let {(xi, yi)}ni=1 be a sample

drawn from (X, Y ). We estimate the marginal CDFs ofX and Y by

F̂X(x) =
1

n

n∑
i=1

1{xi⩽x} and F̂Y (y) =
1

n

n∑
i=1

1{yi⩽y}.
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We then apply the Probit transformation to obtain the sample

(ŝi, t̂i)
.
=
(
Φ−1

(
ûi
)
,Φ−1

(
v̂i
))

=
(
Φ−1
(

n
n+1

F̂X(xi)
)
,Φ−1

(
n

n+1
F̂Y (yi)

))
. (3.2.2)

Using this transformed sample, we estimate fS,T (s, t) with a kernel density estimator:

f̂S,T (s, t) =
1

n|H|

n∑
i=1

K

H−1/2

s− ŝi

t− t̂i


 ,

where K(·, ·) is a kernel function, and H is a bandwidth matrix.

Choosing K(s, t) = ϕ(s)ϕ(t) as a product Gaussian kernel and H = h2I for some bandwidth

h > 0, we substitute f̂S,T (·, ·) into (3.2.1) to estimate the copula density by

Ĉ1,2(u, v) =
1

nh2ϕ (s)ϕ (t)

n∑
i=1

ϕ

(
s− ŝi
h

)
ϕ

(
t− t̂i
h

)
, (3.2.3)

where s = Φ−1(u) and t = Φ−1(v). The asymptotic normality of Ĉ1,2(u, v), along with other properties,

was studied in Geenens et al., 2017.

The proposed transformation from (X, Y ) to (S, T ) can be viewed through the lens of optimal

transport. Consider the p-Wasserstein distance

Wp(µ, ρ) = inf
γ∈Γ(µ,ρ)

(∫
R2×R2

∥x− y∥pp dγ(x,y)

) 1
p

,

where µ is the joint distribution of (X, Y ), ρ is the joint distribution of (S, T ), and Γ(µ, ρ) is the col-

lection of all couplings of µ and ρ. Among all transformations from µ to ρ that preserve the underlying
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copula, the marginal transformation

(S, T ) =
(
Φ−1(FX(X)),Φ−1(FY (Y ))

)

minimizes the Wasserstein distance. For further details, see Alfonsi and Jourdain, 2014.

3.3 Estimation of Conditional Copula

Using the copula density estimator introduced in (3.2.3), we propose the following estimator for the

conditional copula function:

Ĉ2|1(v | u) .=
∫ v

0

Ĉ1,2(u, v′)dv′

=
1

nh2ϕ [Φ−1 (u)]

n∑
i=1

ϕ

(
Φ−1 (u)− ŝi

h

)∫ v

0

ϕ
(

Φ−1(v′)−t̂i
h

)
ϕ [Φ−1 (v′)]

dv′

=
1

nh2ϕ [Φ−1 (u)]

n∑
i=1

ϕ

(
Φ−1 (u)− ŝi

h

)∫ Φ−1(v)

−∞
ϕ

(
v′′ − t̂i
h

)
dv′′

=
1

nhϕ (Φ−1(u))

n∑
i=1

ϕ

(
Φ−1(u)− ŝi

h

)
Φ

(
Φ−1(v)− t̂i

h

)
. (3.3.1)

In Theorem 3.3.1, we establish the asymptotic normality of this conditional copula estimator under

mild conditions from Geenens et al., 2017 and Segers, 2012. These conditions ensure both the existence

and uniqueness of the copula, and they hold for many commonly used copula families. Further details

can be found in Segers, 2012.

Condition 3.3. Suppose {(xi, yi)}ni=1 is an i.i.d. sample from (X, Y ) with joint CDF FX,Y . We require

the following conditions to hold.
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(a) The marginal distributions FX and FY of FX,Y are continuous.

(b) The copula C(·, ·) associated with FX,Y has continuous first and second partial derivatives in the

interior of the unit square. Specifically, ∂
∂u
C(u, v), and ∂2

∂v2
are continuous on (0, 1) × [0, 1]; and

∂
∂v
C(u, v) and ∂2

∂v2
C(u, v) are continuous on [0, 1]× (0, 1). Moreover, there exists positive constants

K1 andK2 such that


∣∣∣ ∂2

∂u2C(u, v)
∣∣∣ ⩽ K1

u(1−u)
, for (u, v) ∈ (0, 1)× [0, 1];∣∣∣ ∂2

∂v2
C(u, v)

∣∣∣ ⩽ K2

v(1−v)
, for (u, v) ∈ [0, 1]× (0, 1).

(c) The copula density C1,2(·, ·) exists, is strictly positive, and has continuous second partial derivatives on

(0, 1)2. Furthermore, there is a positive constantK00 such that

C1,2(u, v) ⩽ K00min

{
1

u(1− u)
,

1

v(1− v)

}
.

Theorem 3.3.1. Suppose Condition 3.3 holds. Let K(s, t) = ϕ(s)ϕ(t), H = h2I, and h = O(n−β) for

some β ∈ (0, 1
2
). When n→ ∞, the following result holds ∀(u, v) ∈ (0, 1)2:

√
nh
[
Ĉ2|1 (v | u)− C2|1 (v | u)− h2B(u, v)− o(h2)

]
d−→ N

(
0, σ2(u, v)

)
.

The expressions ofB(·, ·) and σ2(·, ·) are specified in Section 3.8.
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The bandwidth parameter h is crucial in estimating the conditional copula function and understand-

ing its asymptotic behavior. Next, we investigate the optimal choice of h that minimizes the asymptotic

estimation error.

Definition 3.3.1. Let Ĉ2|1
(
v | u

)
be the conditional copula estimator in (3.3.1) for v ∈ (0, 1). We define

the mean integrated (weighted) square error (MISE) and the asymptotic mean integrated (weighted) square

error (AMISE). as follows.

MISE(v, h, ω)
.
= E

{∫ 1

0

[
Ĉ2|1
(
v | u

)
− C2|1

(
v | u

)]2
ω(u) du

}
,

AMISE(v, h, ω)
.
=

∫ 1

0

[
h4B2(u, v) +

1

nh
σ2(u, v)

]
ω(u) du,

whereB2(u, v) andσ2(u, v) represent the squared asymptotic bias and asymptotic variance of the estimator,

respectively.

The AMISE in Definition 3.3.1 is derived from the asymptotic normality of the estimator in Theo-

rem 3.3.1, where h4B2(u, v) captures the squared bias and (nh)−1σ2(u, v) captures the variance. Condi-

tion 3.4 guarantees that ω(·) is integrable in the MISE and AMISE definitions, and Corollary 3.3.1 studies

the optimal bandwidth that minimizes AMISE.

Condition 3.4. The weight function ω(u) is differentiable at any u ∈ (0, 1), and ω(u)
ϕ2(Φ−1(u))

is integrable

over u ∈ (0, 1).
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Corollary 3.3.1. Suppose Conditions 3.3 and 3.4 hold. The bandwidth for estimator (3.3.1) that minimizes

AMISE satisfies

h∗(v, ω) = argmin
h>0

AMISE (v, h, ω) =

[ ∫ 1

0
σ2(u, v)ω(u)du

4
∫ 1

0
B2(u, v)ω(u)du

] 1
5

· n− 1
5 , ∀v ∈ (0, 1).

3.4 Estimation of Copula Quantile Dependence

Substituting the conditional copula estimator in (3.3.1) into (3.1.2) yields the following estimator for the

Copula Quantile Dependence:

D̂α(X, Y ;ω, h)
.
=

∫ 1

0

[
Ĉ2|1 (α | u)− α

]2
ω(u)du. (3.4.1)

In practice, the integral in (3.4.1) can be approximated by a finite-sample weighted average over the trans-

formed observations {ûi}ni=1, giving

D̂∗
α(X, Y ;ω, h)

.
=

1

n

n∑
i=1

[
Ĉ2|1 (α | ûi)− α

]2
ω(ûi). (3.4.2)

Theorem 3.4.1. Suppose that Conditions 3.1–3.4 hold. Let K(s, t) = ϕ(s)ϕ(t), H = h2I, and choose

h = O
(
n−β

)
for some β ∈ (0, 1

4
). Let Z1, Z2, and Z3 be i.i.d. standard normal random variables. For

any quantile level α ∈ (0, 1), the following results hold as n→ ∞:

(a) If Y is quantile independent ofX at level α, then

D̂α(X, Y ;ω, h)
d−→ n−1h−1M⊥α,2(ω) + h4M⊥α,4(ω)
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+ 2n−1
2h2 σ⊥α,1(ω)Z1 +

√
2n−1h−

1
2 σ⊥α,3(ω)Z2.

(b) If Y is quantile dependent onX at level α, then

D̂α(X, Y ;ω, h)
d−→ Dα(X, Y ;ω) + h2 M̸⊥α,4(ω) + 2n−1

2 σ ̸⊥α,1(ω)Z3.

Explicit expressions forM⊥α,2(ω),M⊥α,4(ω), σ⊥α,1(ω), σ⊥α,3(ω), M̸⊥α,4(ω), and σ ̸⊥α,1(ω) are given in

Section 3.8.

The above theorem presents the asymptotic properties of the sample Copula Quantile Dependence

statistic, highlighting how it behaves under various conditions. When Y is quantile independent ofX at

quantile level α, the asymptotic distribution of D̂α(X, Y ;ω, h) is driven by two independent Gaussian

components. Depending on the choice of β, one of these components may dominate. At β = 1
5

, both

components converge at the same rate, and the asymptotic distribution is the sum of two independent

Gaussian random variables.

3.5 Model-free Feature Screening for Quantile Regressions

3.5.1 Screening Procedure

Let Y ∈ R be a response variable and X = (X1, . . . , Xp)
⊤ ∈ Rp be a covariate vector of p features. For

a quantile level α ∈ (0, 1), suppose there is a sparse set of active features

Mα
.
= {j ∈ {1, · · · , p} : Qα(Y |X) functionally depends onXj},

45



whereQα(Y |X) is the α-th conditional quantile of Y given X. Please note that the active set Mα may

vary across different quantile levels. We also define Mc
α, the complement set of Mα, as the inactive set.

Motivated by the desirable properties of Copula Quantile Dependence (see Lemma 3.1.1), we propose

a feature screening approach that retains features exhibiting high Copula Quantile Dependence with Y .

Specifically, we estimate Mα via

M∗
α(tα)

.
= {j ∈ {1, · · · , p} : Dα(Xj, Y ;ω) ⩾ tα},

where ω is a weight function satisfying Condition 3.4, and tα > 0 is a screening threshold.

Let {(xi, yi)}ni=1 be an i.i.d. random sample drawn from (X, Y ), where xi = (xi,1, . . . , xi,p)
⊤.

With a suitably chosen bandwidth h, we estimateDα(Xj, Y ;ω) by D̂α(Xj, Y ;ω, h) as defined in (3.4.1).

We then estimate the active set at the quantile level α by

M̂α(tn,α) =
{
j ∈ {1, · · · , p} : D̂α(Xj, Y ;ω, h) ⩾ tn,α

}
, (3.5.1)

where tn,α is a screening threshold. We refer to this screening approach as Quantile Copula–based Screening

(QC-Screening), and summarize it in Algorithm 3.1.

The computational complexity of Algorithm 3.1 is of orderO(n2p) since either (3.4.1) or (3.4.2) incurs

a computational cost of order O(n2). For (3.4.1), note that Ĉ2|1(· | ·) introduces an extra summation

over n. To analyze the computational cost of (3.4.2), we can use the definition of Ĉ2|1(· | ·) in (3.3.1),

expand the quadratic terms, and swap the integral with the summation to derive an analytic expression

for D̂α(X, Y ;ω, h). The cost is dominated by the O(n2) summation over interaction terms. Specifically,
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Algorithm 3.1 Quantile Copula-based Screening (QC-Screen)
1: Input: An observed sample {(xi, yi)}ni=1, a quantile level α ∈ (0, 1), a bandwidth parameter h, a

weight function ω(·), and a selection threshold t > 0.
2: Calculate Empirical CDF of Y by F̂Y (·) = 1

n

∑n
i=1 1{yi⩽·}.

3: Calculate pseudo sample by
{
t̂i
}n
i=1

=
{
Φ−1

(
n

n+1
F̂Y (yi)

)}n

i=1
.

4: for j ∈ {1, · · · , p} do
5: Calculate Empirical CDF ofXj by F̂Xj

(·) = 1
n

∑n
i=1 1{xi,j⩽·}.

6: Calculate pseudo sample by {ŝi,j}ni=1 =
{
Φ−1

(
n

n+1
F̂Xj

(xi,j)
)}n

i=1
.

7: Calculate conditional copula function estimator betweenXj and Y by (3.3.1).
8: Calculate Copula Quantile Dependence estimator, D̂α (Xj, Y ;ω, h) by (3.4.1).
9: Find the selected set M̂α(t) by (3.5.1).

10: Output: Selected set M̂α(t).

with ω(u) = ϕ2
(
Φ−1(u)

)
, the analytic form D̂α(X, Y ;ω, h) admits

D̂α(X, Y ;ω, h) =
2

n2h
√
2 + h2

∑
1≤k<l≤n

ϕ
(

ŝk−ŝl
h
√
2+h2

)
ϕ
(√

ŝ2k+ŝ2l√
2+h2

)
Φ
(

Φ−1(α)−t̂k
h

)
Φ
(

Φ−1(α)−t̂l
h

)
+

1√
2π n2 h

√
2 + h2

n∑
i=1

ϕ
(

ŝi√
1+

h2

2

)
Φ2
(

Φ−1(α)−t̂i
h

)
− α

√
π n
√

1
2
+ h2

n∑
i=1

ϕ
(

ŝi√
1
2
+h2

)
Φ
(

Φ−1(α)−t̂i
h

)
+

α2

2
√
3π

. (3.5.2)

3.5.2 Theoretical Properties

Under some mild conditions and with an appropriately chosen threshold tn,α, QC-Screen achieves both

the sure screening property and a stronger rank consistency property. We first state these conditions.

Condition 3.5. Let cα1 > 0, cα2 > 0, κα1 ∈ [0, 2β), and κα2 ∈ [0, 2β) be some constants.

(a) minj∈Mα {Dα(Xj, Y ;ω)} ⩾ cα1n
−κα1 .
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(b) minj∈Mα {Dα(Xj, Y ;ω)} −maxj∈Mc
α
{Dα(Xj, Y ;ω)} ⩾ cα2n

−κα2 .

Condition 3.5(a) is a minimum signal strength condition that requires the Copula Quantile Depen-

dence between active features and the response variable to be uniformly bounded below and does not

decay to zero too quickly as the sample size n increases. Condition 3.5(b), on the other hand, imposes

an assumption on the gap between the signal strengths of active and inactive features. Since the Copula

Quantile Dependence is always non-negative, Condition 3.5(a) is weaker than Condition 3.5(b). These

minimum signal strength conditions can be viewed as sparsity assumptions, allowing active features to be

distinguished from inactive ones. In general, Condition 3.5 is very mild, as it allows the minimum signal

strength to approach zero as the sample size grows.

Theorem 3.5.1 (Sure screening property). Suppose Conditions 3.1 – 3.4, and 3.5(a) hold. Choose h =

O(n−β) for someβ ∈ (0, 1
4
). For any quantile levelα ∈ (0, 1), let tn,α = ct,αn

−τα for some ct,α ∈ (0, cα1)

and τα ⩾ κα1. Then, there exists positive constants nα1 andCα1, such that

P
(
Mα ⊆ M̂α (tn,α)

)
⩾ 1−O

(
Sα exp

(
−Cα1n

1−2κα1
))
, when n ⩾ nα1,

where Sα is the cardinality of Mα. If Sα = O(nνα) for a positive constant να, we also have

lim
n→∞

P
(
Mα ⊆ M̂α (tn,α)

)
= 1.

Theorem 3.5.2 (Rank consistency property). Suppose Conditions 3.1 – 3.4, and 3.5(b) hold. Choose h =

O(n−β) for some β ∈ (0, 1
4
). Then, for any quantile level α ∈ (0, 1), there exists positive constants nα2
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andCα2, such that

P
(
min
j∈Mα

{
D̂α(Xj, Y ;ω, h)

}
− max

j∈Mc
α

{
D̂α(Xj, Y ;ω, h)

}
> 0

)
>1−O

(
p exp

(
−Cα2n

1−2κα2
))
, when n ⩾ nα2.

If log p = o(n1−2κα2), we also have

lim inf
n→∞

(
min
j∈Mα

{
D̂α(Xj, Y ;ω, h)

}
− max

j∈Mc
α

{
D̂α(Xj, Y ;ω, h)

})
> 0, almost surely.

Based on Condition 3.5(a), the sure screening property in Theorem 3.5.1 ensures that all active features

are reserved in the selected subset of features with a well selected threshold for the Copula Quantile Depen-

dence. Based on the stronger Condition 3.5(b), the rank consistency property in Theorem 3.5.2 ensures

that the ranking of features by their Copula Quantile Dependence remains stable, which indicates the

separability among active features and inactive features. Both theorems guarantee that ranking variables

based on their marginal Copula Quantile Dependence with the response and selecting the top-ranked

features would be a feasible solution for feature screening.

3.6 False Discovery Control

In the QC-Screen procedure, selecting an appropriate screening threshold parameter tn,α is crucial for

distinguishing between active and inactive features. Theorem 3.5.1 suggests us to choice tn,α = ct,αn
−τα

for some unknown constants ct,α and τα. When certain model assumptions hold, ct,α and τα (and thus

tn,α) can be determined through cross-validation or information criterion methods. However, in a model-
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free context, these approaches are not directly applicable because loss functions that assess goodness-of-fit

are not well-defined. In practice, one may opt for an arbitrary but conservative screening threshold to

ensure that all active features are included with high probability. For instance, following Fan and Lv, 2008

and He et al., 2013, one can rank the dependence measures and retain the top ⌊n/ log n⌋ features, where

⌊·⌋ denotes the floor function. However, such a rule-of-thumb screening threshold is not data-adaptive

and may include too many inactive features, thereby inflating the false discovery rate (FDR).

In this section, we introduce a data-driven method for selecting the screening threshold in QC-Screen,

designed to adaptively balance the inclusion of active features with FDR control. We rigorously demon-

strate that the threshold selected by this method ensures asymptotic control of the FDR, making it a

practical and theoretically sound approach for model-free feature screening.

Our proposed method applies similar symmetric scheme with Barber and Candès, 2015; Guo et al.,

2023; W. Liu et al., 2022; Tong et al., 2023. Via Theorem 3.4.1, we notice our proposed Copula Quantile

Dependence is asymptotic symmetric around its mean values. To increase the FDR performance with

increasing symmetry, we propose the following Corollary 3.6.1.

Corollary 3.6.1. Under the same conditions in Theorem 3.4.1, for any quantile level α ∈ (0, 1), we define

D̂†
α(X, Y ;ω, h)

.
=

n−1h−1M⊥α,2(ω) + h4M⊥α,4(ω)√
4n−1h4σ2

⊥α,1
(ω) + 2n−2h−1σ2

⊥α,3
(ω)

log

[
D̂α(X, Y ;ω, h)

n−1h−1M⊥α,2(ω) + h4M⊥α,4(ω)

]
+ δn(α),

(3.6.1)
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where δn(α) is a sequence converging to 0 as n→ ∞. If Y is quantile independent ofX at level α, the

following result holds as n→ ∞:

D̂†
α(X, Y ;ω, h)

d−→ Z.

Since the mapping from D̂α(X, Y ;ω, h) to D̂†
α(X, Y ;ω, h) is one to one monotonic, we may focus

on an equivalent problem setup introduced in Section 3.5. For a given screening threshold t > 0, the

active set Mα(t) is estimated by QC-Screen as

M̂α(t) =
{
j ∈ {1, · · · , p} : D̂†

α(Xj, Y ;ω, h) ⩾ t
}
. (3.6.2)

Then, the false discovery proportion (FDP) of the screening procedure is defined by

FDP(t;α)
.
=
#{j : j ∈ M̂α(t) ∩Mc

α}
#{j : j ∈ M̂α(t)}

=
#{j ∈ Mc

α : D̂†
α(Xj, Y ;ω, h) ⩾ t}

#{j : D̂†
α(Xj, Y ;ω, h) ⩾ t}

, (3.6.3)

where #{·} is the cardinality of a set, and we follow the convention that 0/0 = 0. Consequently, we

define FDR as the expectation of FDP, i.e. FDR(t;α) .= E[FDP(t;α)].

Corollary 3.6.1 has shown that D̂†
α(Xj, Y ;ω, h) converges in distribution to a standard Gaussian

distribution whenY is quantile independent withXj at the quantile levelα. Therefore, D̂†
α(Xj, Y ;ω, h)

is nearly symmetric towards 0. Additionally, it is common to make a sparsity assumption that the number

of active features Sα is much smaller than the dimensionality p for screening problems. These two results

together motivate us us to approximate the unknown numerator in (3.6.3) as follows

#{j ∈ Mc
α : D̂†

α(Xj, Y ;ω, h) ⩾ t} ≈ #{j ∈ Mc
α : D̂†

α(Xj, Y ;ω, h) ⩽ −t}
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⩽ #{j : D̂†
α(Xj, Y ;ω, h) ⩽ −t},

which yields a slightly conservative approximation of FDP(t;α), i.e.

F̂DP(t;α) =
#{j : D̂†

α(Xj, Y ;ω, h) ⩽ −t}
#{j : D̂†

α(Xj, Y ;ω, h) ⩾ t}
. (3.6.4)

To control FDR at a pre-specified level γ ∈ (0, 1), we choose the threshold Tγ(α) by

Tγ(α) = inf

{
t > 0 :

1 + #{j : D̂†
α(Xj, Y ;ω, h) ⩽ −t}

#{j : D̂†
α(Xj, Y ;ω, h) ⩾ t}

⩽ γ

}
, (3.6.5)

where the extra term 1 in the numerator makes the choice of Tγ(α) slightly more conservative. Then, the

selected set is given by

M̂α (Tγ(α)) =
{
j ∈ {1, · · · , p} : D̂†

α(Xj, Y ;ω, h) ⩾ Tγ(α)
}
. (3.6.6)

When the solution of (3.6.5) does not exist, we set M̂α (Tγ(α)) to be an empty set. We summarize this

FDR control approach in Algorithm 3.2.

Next, we introduce a condition for the dependence among features and a theorem to demonstrate

that the QC-Screen procedure with the screening threshold selected by (3.6.5) can asymptotically control

FDR at the level γ.

Condition 3.6. Denote p0,α = |Mc
α| the cardinality of the inactive set,Bj(α)

.
= 1{D̂†

α(Xj ,Y ;ω,h)<0} and

Sc
α =

∑
j∈Mc

α
Bj(α). We assume p0,α → ∞ as n→ ∞ and Var (Sc

α) = o(p20,α).
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Algorithm 3.2 FDR control for QC-Screen
1: Input: An observed sample {(xi, yi)}ni=1, a quantile level α ∈ (0, 1), a bandwidth parameter h, a

weight function ω(·), a FDR level γ.
2: for j ∈ {1, · · · , p} do
3: Calculate Copula Quantile Dependence estimator, D̂α (Xj, Y ;ω, h) through Algorithm 3.1.
4: Calculate D̂†

α (Xj, Y ;ω, h) by (3.6.1), and our suggested δn(α) in Appendices A.3.
5: Sort

∣∣∣D̂†
α (Xj, Y ;ω, h)

∣∣∣’s from the smallest to the largest as t1, · · · , tp, and let t0 = 0 and tp+1 = ∞.
6: Setm = 0.
7: while 1+#{j:D̂†

α(Xj ,Y ;ω,h)⩽−tm}
#{j:D̂†

α(Xj ,Y ;ω,h)⩾tm}
> γ andm ⩽ p do

8: m = m+ 1.
9: Find the selected set M̂α(tm) by (3.6.2).

10: Output: Threshold tm, and selected set M̂α(tm).

Remark 3.6.1. The above condition is inherited from Dai et al., 2023, which restricts the dependency among

inactive features. This condition would fail to hold only under some extreme cases, e.g. the Copula Quantile

Dependences corresponding to null features have constant pairwise correlations, or can be clustered into a

fixed number of groups so that their within-group correlation is a constant. For further details, see Sections 2

and 3 in Dai et al., 2023.

Theorem 3.6.1 (Asymptotic FDR control). Suppose Conditions 3.1 – 3.6 hold. We choose h = O
(
n−β

)
for some β ∈ (0, 1

4
). For any quantile level α ∈ (0, 1), and ∀γ ∈ [0, 1], let Tγ(α) be a screening threshold

selected by (3.6.5). Then we have

lim sup
n→∞

FDR (Tγ(α);α) ⩽ γ.
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3.7 Simulation Study

In this section, we illustrate the methodoloies we proposed in by several experiments. The choice of

the weight function is actually flexible. For simplicity of calculation and to guarantee integrability in

D̂α(X, Y ;ω, h), we would select ω(u) = ϕ2(Φ−1(u)) in this section.

3.7.1 Feature Screening Performance

Table 3.1: The median and IQR of minimum model size over 200 replications for Experiment 1.a.

p = 1000 p = 5000

median IQR median IQR

α = 0.5

QC-Screen 9.00 4.00 9.00 5.00
SIS 6.00 4.00 7.00 4.00
DC-SIS 7.00 4.00 7.00 3.00
Qa-SIS 8.00 4.00 8.00 4.00
QC-SIS 8.00 4.00 8.00 3.00

α = 0.75

QC-Screen 10.00 5.00 11.00 5.25
SIS 6.00 4.00 7.00 4.00
DC-SIS 7.00 4.00 7.00 3.00
Qa-SIS 9.00 4.25 8.00 5.00
QC-SIS 8.00 4.00 9.00 5.00

In this section, we use simulated examples to evaluate the finite-sample performance of the proposed

Quantile Copula-based screening procedure (QC-Screen). We compare its performance against several

existing methods, including sure independence screening (SIS; Fan and Lv, 2008), distance correlation-

based screening (DC-SIS; R. Li et al., 2012), quantile-adaptive variable screening (Qa-SIS; He et al., 2013),

quantile correlation-based screening (QC-SIS; G. Li et al., 2015, Ma and Zhang, 2016).
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We consider the following four regression models.

Model 1.a: Y = 5X1 + 3X4 + 4X10 + 6X15 +
√
50ε, where ε i.i.d.∼ N(0, 1). The number of active

features is 4 at all quantile levels.

Model 1.b: Y = 5 log
(
15
∣∣∣ X1

1−X1

∣∣∣) + 3(2X2 − 1)2 + 4 sin(2πX3)
2−sin(2πX3)

+ 6 exp(5X4) +
√
1.74ε, where

ε
i.i.d.∼ N(0, 1). The number of active features is 4 at all quantile levels.

Model 1.c: Y = 4(X1)
2+7 sin(2πX2)·|X3|+2 exp(5X4)·log

(
7
∣∣∣ X5

1−X5

∣∣∣)+exp(0.2X6+0.3X7)·ε,

where ε i.i.d.∼ N(0, 1). The number of active features is 5 at the quantile levelα = 0.5 and 7 at other

quantile levels.

Model 1.d: Y = 2X2
1 + 2X2

2 + exp(5X3 + 5X4 + 5X5 + 5X6 + 5X7) · ε, where ε i.i.d.∼ N(−qα, 1),

and qα is theα quantile of standard normal distribution. The number of active variables is 2 across

different α values.

Table 3.2: The median and IQR of minimum model size over 200 replications for Experiment 1.b.

p = 1000 p = 5000

median IQR median IQR

α = 0.5

QC-Screen 6.00 1.00 6.00 2.00
SIS 28.00 72.75 114.50 517.75
DC-SIS 8.00 22.00 13.00 170.00
Qa-SIS 7.00 1.00 7.00 1.00
QC-SIS 40.00 107.75 237.00 816.25

α = 0.75

QC-Screen 6.00 1.00 7.00 2.00
SIS 28.00 72.75 114.50 517.75
DC-SIS 8.00 22.00 13.00 170.00
Qa-SIS 7.00 1.00 7.00 2.00
QC-SIS 6.00 1.00 7.00 1.00
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In all models, the feature vector is X = (X1, . . . , Xp)
⊺ ∼ Np(0,Σ), where Σ = (σij) with σij =

0.8|i−j|. The error term ε is independently sampled from N(0, 1) and is independent of X. We set the

sample size n = 400, the number of features p = 1000, 5000, and generate 200 replicates for each model.

Table 3.3: The median and IQR of minimum model size over 200 replications for Experiment 1.c.

p = 1000 p = 5000

median IQR median IQR

α = 0.5

QC-Screen 6.00 1.00 6.00 1.25
SIS 31.00 80.50 108.50 465.25
DC-SIS 8.00 21.25 11.00 125.00
Qa-SIS 7.00 2.00 7.00 2.00
QC-SIS 11.00 12.75 20.00 81.25

α = 0.75

QC-Screen 7.00 1.00 8.00 3.00
SIS 70.50 169.25 249.50 827.75
DC-SIS 13.50 49.00 42.50 234.25
Qa-SIS 7.00 1.00 7.00 1.00
QC-SIS 7.00 1.00 7.00 1.00

For each model, the quantile levels α = 0.5, and α = 0.75 are analyzed. In each simulation, features

are ranked in descending order according to the screening criteria of the respective methods. The mini-

mum model size that includes all active features is recorded for each replication. Screening performance is

assessed using the median and inter quartile range (IQR) of the minimum model size over 200 replications.

The results of the experiments are summarized in Tables 3.1 – 3.4. For Model 1.a, all five methods

perform comparably, successfully identifying the four active variables within about 10 features. Model

1.b, an additive nonlinear model, highlights the limitations of SIS in handling nonlinearity, resulting in

significantly worse performance compared to other methods. Among quantile-based methods, QC-SIS

shows inconsistent results across quantile levels, notably failing to identify active features efficiently at
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the 0.5 quantile level. Model 1.c examines a complex nonlinear model with varying active variables across

quantile levels. Here, SIS and DC-SIS perform poorly due to their inability to address quantile-specific

screening, with performance declining further in this challenging setting. Model 1.d, a highly complex

nonlinear model with only two active variables, shows QC-Screen as the only effective method. SIS and

DC-SIS are severely impacted by nonlinearity and quantile-specific features. Qa-SIS overestimates model

size and struggles at extreme quantile levels, while QC-SIS remains better overall but has limitations near

the 0.5 quantile level.

Table 3.4: The median and IQR of minimum model size over 200 replications for Experiment 1.d.

p = 1000 p = 5000

median IQR median IQR

α = 0.5

QC-Screen 2.00 0.00 2.00 0.00
SIS 176.00 421.75 872.00 1846.00
DC-SIS 138.50 281.00 694.00 1734.25
Qa-SIS 6.00 2.00 7.00 2.00
QC-SIS 3.00 8.00 4.00 23.25

α = 0.75

QC-Screen 2.00 0.00 2.00 2.00
SIS 157.50 341.75 821.50 1829.00
DC-SIS 137.50 275.25 705.00 1701.75
Qa-SIS 12.00 13.00 35.50 51.00
QC-SIS 2.00 1.00 2.00 2.00

In summary, across all models, the proposed QC-Screen method demonstrates robust feature screen-

ing performance, consistently outperforming other methods. These results emphasize the strengths of

QC-Screen in handling complex, nonlinear, and quantile-dependent relationships.
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3.7.2 False Discovery Control Performance

In this subsection, we evaluate the empirical performance of the proposed QC-FDR procedure through

simulated experiments. We conduct simulated experiments to assess its ability to control FDR and to

verify its effectiveness in achieving the sure screening property. The implementation details are outlined

in Algorithm 3.2.

Table 3.5: FDR control performances over 200 replications with p = 1000.

Model α γ |Ŝ| P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Pa F̂DR

2.a

0.5

0.10 12.00 0.965 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.965 0.1284
0.15 12.00 0.975 0.985 0.990 0.990 0.990 0.990 0.990 0.990 0.985 0.970 0.965 0.1575
0.20 12.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.1934
0.25 13.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.2198

0.75

0.10 11.00 0.885 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.900 0.880 0.1188
0.15 11.00 0.910 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.990 0.950 0.880 0.1470
0.20 12.00 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.985 0.2076
0.25 13.00 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.2448

2.b

0.5

0.10 11.00 0.935 0.940 0.940 0.940 0.940 0.940 0.940 0.940 0.940 0.940 0.935 0.1268
0.15 12.00 0.955 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.955 0.935 0.1500
0.20 12.00 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.1911
0.25 13.00 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.2152

0.75

0.10 11.00 0.820 0.835 0.835 0.835 0.835 0.835 0.835 0.835 0.835 0.835 0.820 0.0994
0.15 11.00 0.895 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.960 0.900 0.845 0.1448
0.20 12.00 0.980 0.995 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.985 0.975 0.2068
0.25 13.00 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.2367

2.c

0.5

0.10 11.00 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.1286
0.15 12.00 0.985 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.980 0.955 0.955 0.1509
0.20 12.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.995 0.1906
0.25 13.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.2155

0.75

0.10 11.00 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.0913
0.15 11.00 0.990 0.995 0.995 0.995 0.995 0.995 0.995 0.975 0.935 0.850 0.840 0.1300
0.20 12.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.985 0.970 0.970 0.1971
0.25 13.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.970 0.970 0.2280

We consider three models, each has 10 active features, defined as follows:

Model 2.a: Y = 5
10∑
j=1

Xj + ε.
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Model 2.b: Y = 5
10∑
j=1

exp(1
2
Xj) + ε.

Model 2.c: Y = 5
2∑

j=1

log
(

|Xj |
2|1−Xj |

)
+ 5

5∑
j=3

sin
(
π
2
Xj

)
+ 5

8∑
j=6

exp(1
2
Xj) + 5

10∑
j=9

Xj + ε.

In the above models, the feature vector X = (X1, . . . , Xp)
⊤ and the error term ε are generated as

described in Section 3.7.1. The sample size is set to n = 400, the number of features is p = 1000, 2000,

and each model is simulated for 200 replications.

Table 3.6: FDR control performances over 200 replications with p = 2000.

Model α γ |Ŝ| P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Pa F̂DR

2.a

0.5

0.10 11.00 0.895 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.895 0.0981
0.15 11.00 0.940 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.935 0.900 0.1116
0.20 12.00 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.1704
0.25 12.00 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.2026

0.75

0.10 10.00 0.780 0.810 0.810 0.810 0.810 0.810 0.810 0.810 0.810 0.805 0.775 0.0811
0.15 11.00 0.880 0.985 0.990 0.990 0.990 0.990 0.990 0.990 0.970 0.890 0.815 0.1100
0.20 11.00 0.980 0.995 1.000 1.000 1.000 1.000 1.000 0.995 1.000 0.995 0.980 0.1713
0.25 13.00 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.2370

2.b

0.5

0.10 11.00 0.920 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.920 0.0946
0.15 11.00 0.950 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.945 0.920 0.1146
0.20 12.00 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.1652
0.25 13.00 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.2099

0.75

0.10 10.00 0.675 0.715 0.715 0.715 0.715 0.715 0.715 0.715 0.715 0.715 0.675 0.0661
0.15 10.00 0.810 0.965 0.980 0.980 0.980 0.980 0.980 0.980 0.965 0.800 0.695 0.0957
0.20 11.00 0.950 0.990 0.995 1.000 1.000 1.000 1.000 1.000 0.980 0.930 0.910 0.1629
0.25 12.00 0.970 0.990 0.995 1.000 1.000 1.000 1.000 1.000 0.985 0.950 0.935 0.2219

2.c

0.5

0.10 11.00 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.0901
0.15 11.00 0.980 0.995 0.995 0.995 0.995 0.995 0.990 0.985 0.970 0.930 0.915 0.1088
0.20 12.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.990 0.990 0.1586
0.25 12.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.990 0.990 0.1993

0.75

0.10 10.00 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.660 0.660 0.0692
0.15 10.00 0.995 0.995 0.995 0.995 0.995 0.995 0.990 0.965 0.920 0.695 0.680 0.0942
0.20 11.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.965 0.885 0.885 0.1647
0.25 13.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.925 0.925 0.2322

We evaluate the proposed method under four FDR levels: γ = 0.1, 0.15, 0.2, 0.25. For each replica-

tion, we compute the false discovery proportion (FDP), defined as the ratio of false discoveries to total

discoveries. The FDR is estimated as the average FDP over 200 replications (F̂DR). The performance of

59



feature screening is assessed using the median of the selected model sizes (|Ŝ|), as well as the proportion of

replications in which each active feature is selected (Pi, i = 1, · · · , 10) and all active features are correctly

selected simultaneously (Pa). The QC-FDR method is implemented at two quantile levels: α = 0.5 and

α = 0.75.

The results, summarized in Tables 3.5 and 3.6, show that the proposed QC-FDR method effectively

controls the empirical FDR at or below the specified FDR levels in almost all scenarios, across linear and

nonlinear models. Additionally, the QC-FDR method achieves the sure screening property with high

probability. For simpler settings with p = 1000, the probability of selecting all active features exceeds

80%. For the higher dimension with p = 2000, this probability exceeds 65%. These results hold for

both linear models, and even more complex nonlinear models. These findings confirm that the QC-

FDR procedure is robust and effective for controlling FDR across a wide range of settings. The method

balances false discovery control with sure screening property, making it a practical and powerful tool for

high-dimensional quantile regression analysis.

3.8 Important Parameters

We have the following parameters used in the Theorem 3.3.1.

B(u, v) =
1

2

[([
Φ−1(u)

]2 − 1
)
C2|1 (v | u) + 3ϕ′ (Φ−1(u)

) ∂

∂u
C2|1 (v | u)

+ ϕ2
(
Φ−1(u)

) ∂2

∂u2
C2|1 (v | u) + ϕ′ (Φ−1(v)

) ∂
∂v

C2|1 (v | u)

+ ϕ2
(
Φ−1(v)

) ∂2
∂v2

C2|1 (v | u)
]
, (3.8.1)

σ2(u, v) =
1

2
√
π

C2|1 (v | u)− C2
2|1 (v | u)

ϕ (Φ−1(u))
. (3.8.2)
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We have the following parameters used in the Theorem 3.4.1.

σ2
⊥α,1(ω) =

(
α− α2

){∫ 1

0

[
1

2

([
Φ−1(u)

]2 − 1
)
α +

1

2
ϕ′ (Φ−1(α)

)]2
ω2 (u) du

−
(∫ 1

0

[
1

2

([
Φ−1(u)

]2 − 1
)
α +

1

2
ϕ′ (Φ−1(α)

)]
ω (u) du

)2
}
, (3.8.3)

σ2
̸⊥α,1(ω) =

∫ 1

0

[
C2|1 (α | u)− C2

2|1 (α | u)
] [
C2|1 (α | u)− α

]2
ω2 (u) du

+
(
α− α2

){∫ 1

0

∂2C
∂u∂v

(u, α)
[
C2|1 (α | u)− α

]
ω (u) du

}2

−
{∫ 1

0

u
∂2C
∂u2

(u, α)
[
C2|1 (α | u)− α

]
ω (u) du

}2

− 2

∫ 1

0

∂2C
∂u∂v

(u, α)
[
C2|1 (α | u)− α

]
ω (u) du∫ 1

0

{
C2|1 (α | u)− C2

2|1 (α | u)− [C (u, α)− αu]
∂2C
∂u2

(u, α)

}
[
C2|1 (α | u)− α

]
ω (u) du, (3.8.4)

M⊥α,2(ω) =
α− α2

2
√
π

∫ 1

0

ω (u)

ϕ (Φ−1(u))
du, (3.8.5)

σ2
⊥α,3(ω) =

(α− α2)
2

2
√
2π

∫ 1

0

ω2 (u)

ϕ (Φ−1(u))
du, (3.8.6)

M⊥α,4(ω) =

∫ 1

0

[
1

2

([
Φ−1(u)

]2 − 1
)
α +

1

2
ϕ′ (Φ−1(α)

)]2
ω (u) du, (3.8.7)

M̸⊥α,4(ω) =2

∫ 1

0

[
C2|1 (α | u)− α

]
B(u, α)ω(u)du. (3.8.8)

When we select ω(u) = ϕ2(Φ−1(u)), we have

σ2
⊥α,1(ω) =

(
α− α2

)(18α2 − 40αϕ′(Φ−1(α)) + 25 [ϕ′(Φ−1(α))]
2

400
√
5π2

− [3ϕ′(Φ−1(α))− 2α]
2

432π2

)
,

M⊥α,2(ω) =
α− α2

4π
,

61



σ2
⊥α,3(ω) =

[α− α2]
2

16π2
,

M⊥α,4(ω) =
2α2 − 4αϕ′(Φ−1(α)) + 3 [ϕ′(Φ−1(α))]

2

24
√
3π

.

3.9 Proof of Key Theorems in Chapter 3

3.9.1 Proof for Section 3.3

For the following proofs, we define the genuine sample as {(si, ti)}ni=1
.
= {(Φ−1 (ui) ,Φ

−1 (vi))}ni=1,

where {(ui, vi)}ni=1
.
= {(FX (xi) , FY (yi))}ni=1 is the genuine copula sample (or true copula sample)

observed from the distribution of (U, V ), i.e. C (u, v), pretending the marginal distributions are available.

Then, we define the genuine sample based empirical copula as

Cn(u, v)
.
=

1

n

n∑
i=1

1{ui⩽u,vi⩽v}, (3.9.1)

and the corresponding genuine sample based empirical copula process as

Bn(u, v)
.
=

√
n (Cn(u, v)− C(u, v)) . (3.9.2)

Besides, we also define the pseudo sample based empirical copula as

Ĉn(u, v)
.
=

1

n

n∑
i=1

1{ûi⩽u,v̂i⩽v}, (3.9.3)
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and the corresponding pseudo sample based empirical copula process as

Cn(u, v)
.
=

√
n
(
Ĉn(u, v)− C(u, v)

)
. (3.9.4)

We also define the following counterpart of Ĉ2|1(v | u), which is the kernel density estimator using genuine

sample Mathematically, we consider

Ĉ∗
2|1(v | u) .= 1

nhϕ (Φ−1(u))

n∑
i=1

ϕ

(
Φ−1(u)− si

h

)
Φ

(
Φ−1(v)− ti

h

)
. (3.9.5)

Proof of Theorem 3.3.1. By the definition of pseudo sample based empirical copula in (3.9.3), and consid-

ering substitution (s, t) = (Φ−1 (u) ,Φ−1 (v)), we have

Ĉ2|1 (Φ(t) | Φ (s)) =
1

hϕ (s)

∫∫
I2

ϕ

(
s− Φ−1(u∗)

h

)
Φ

(
t− Φ−1(v∗)

h

)
dĈn(u∗, v∗).

Then by the definition of pseudo sample based empirical copula process in (3.9.4), we have

√
nh
{
Ĉ2|1 (Φ(t) | Φ (s))− E

[
Ĉ∗
2|1 (Φ(t) | Φ (s))

]}
=

1√
hϕ (s)

∫∫
I2

ϕ

(
s− Φ−1(u∗)

h

)
Φ

(
t− Φ−1(v∗)

h

)
dCn(u

∗, v∗). (3.9.6)

With genuine sample based empirical copula process defined in (3.9.2), we define the random process

{Gn(u, v) : (u, v) ∈ I2} as

Gn(u, v)
.
= Bn(u, v)−

∂C
∂u

(u, v)Bn(u, 1)−
∂C
∂v

(u, v)Bn(1, v). (3.9.7)
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In Segers, 2012, it is shown that when Condition 3.3 holds, Gn(u, v) and Cn(u, v) are such that

sup
(u,v)∈I2

|Cn(u, v)−Gn(u, v)| = Oa.s.
(
n−1/4(log n)1/2(log log n)1/4

)
, (3.9.8)

as n → ∞. Mimicking the integration by parts in proof of Theorem 6 in Fermanian et al., 2004 for

(3.9.6), we have

√
nh
{
Ĉ2|1 (Φ(t) | Φ (s))− E

[
Ĉ∗
2|1 (Φ(t) | Φ (s))

]}
=

1√
hϕ (s)

∫∫
I2

Cn(u
∗, v∗)ϕ′

(
s− Φ−1(u∗)

h

)
ϕ

(
t− Φ−1(v∗)

h

)
du∗

hϕ(Φ−1(u∗))

dv∗

hϕ(Φ−1(v∗))

=
1√
hϕ (s)

∫∫
I2

Gn(u
∗, v∗)ϕ′

(
s− Φ−1(u∗)

h

)
ϕ

(
t− Φ−1(v∗)

h

)
du∗

hϕ(Φ−1(u∗))

dv∗

hϕ(Φ−1(v∗))

+Rn(s, t). (3.9.9)

Then with the result in (3.9.8), we have

|Rn (s, t)| ⩽
1√
hϕ (s)

sup
(u∗,v∗)∈I2

|Cn(u
∗, v∗)−Gn(u

∗, v∗)|{∫ 1

0

∣∣∣∣ϕ′
(
s− Φ−1(u∗)

h

)∣∣∣∣ du∗

hϕ(Φ−1(u∗))

}{∫ 1

0

ϕ

(
t− Φ−1(v∗)

h

)
dv∗

hϕ (Φ−1(v∗))

}
=

1√
hϕ (s)

sup
(u∗,v∗)∈I2

|Cn(u
∗, v∗)−Gn(u

∗, v∗)|
∫
R
|ϕ′(z)| dz

∫
R
ϕ(z)dz

=Oa.s.
(
n−1/4h−1/2(log n)1/2(log log n)1/4

)
=oa.s.(1), (3.9.10)
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when h = O(n−β), β ∈ (0, 1
2
). Then for short, let

Jst,h (u
∗, v∗) =ϕ

(
s− Φ−1(u∗)

h

)
Φ

(
t− Φ−1(v∗)

h

)
,

dJst,h (u
∗, v∗) =ϕ′

(
s− Φ−1(u∗)

h

)
ϕ

(
t− Φ−1(v∗)

h

)
du∗

hϕ(Φ−1(u∗))

dv∗

hϕ(Φ−1(v∗))
,

and consider the definition of Gn(u, v) in (3.9.7), we have

√
nh
{
Ĉ2|1 (Φ(t) | Φ (s))− E

[
Ĉ∗
2|1 (Φ(t) | Φ (s))

]}
=

1√
hϕ (s)

∫∫
I2

Bn(u
∗, v∗)dJst,h (u

∗, v∗)

− 1√
hϕ (s)

∫∫
I2

∂C
∂u

(u∗, v∗)Bn(u
∗, 1)dJst,h (u

∗, v∗)

− 1√
hϕ (s)

∫∫
I2

∂C
∂v

(u∗, v∗)Bn(1, v
∗)dJst,h (u

∗, v∗)

+Rn (s, t)

.
=K∗

n (s, t) +Bn,1 (s, t) +Bn,2 (s, t) +Rn (s, t) . (3.9.11)

By the definition of Bn(u, v) in (3.9.2), we may notice the truth that

K∗
n (s, t) =

√
nh
{
Ĉ∗
2|1 (Φ(t) | Φ (s))− E

[
Ĉ∗
2|1 (Φ(t) | Φ (s))

]}
.

Hence we have

Ĉ2|1 (Φ(t) | Φ (s)) =Ĉ∗
2|1 (Φ(t) | Φ (s)) +

Bn,1 (s, t)√
nh

+
Bn,2 (s, t)√

nh
+
Rn (s, t)√

nh
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=An(s, t) +
Rn (s, t)√

nh
, (3.9.12)

where by (3.9.5) and Lemmas A.1.1 and A.1.2, we have

An(s, t)

=
1

nh

n∑
i=1

{
ϕ
(
s−si
h

)
ϕ (s)

Φ

(
t− ti
h

)
+Bn,1,i (s, t) +Bn,2,i (s, t)− E [Bn,1,i (s, t)]− E [Bn,2,i (s, t)]

}
.
=

1

nh

n∑
i=1

Bn [s, t; (si, ti)] . (3.9.13)

Then, by Lemma A.1.5, and (3.9.10), when h = O(n−β), β ∈ (0, 1
2
), for any (s, t) ∈ R2, we have

√
nh
[
Ĉ2|1 (Φ(t) | Φ (s))− C2|1(Φ(t) | Φ(s))− h2B(Φ(s),Φ(t))− o(h2)

]
d−→N

(
0, σ2 (Φ(s),Φ(t))

)
,

asn→ ∞. The rest of the proof follows directly from applying back substitution (u, v) = (Φ(s),Φ(t)).

3.9.2 Proof for Section 3.4

Proof of Theorem 3.4.1. By (3.9.12), it is obvious that An (Φ
−1(u),Φ−1(α)) is part of Ĉ2|1 (α | u). By

definition in (3.4.1), we have

D̂α(X, Y ;ω, h)

=

∫ 1

0

[
An(Φ

−1(u),Φ−1(α)) +
Rn (Φ

−1(u),Φ−1(α))√
nh

− α

]2
ω (u) du
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=

∫ 1

0

[
An(Φ

−1(u),Φ−1(α))− α
]2
ω (u) du

+ 2

∫ 1

0

[
An(Φ

−1(u),Φ−1(α))− α
] Rn (Φ

−1(u),Φ−1(α))√
nh

ω (u) du

+

∫ 1

0

[
Rn (Φ

−1(u),Φ−1(α))√
nh

]2
ω (u) du

.
=D̂α1 + D̂α2 + D̂α3.

We consider D̂α1 first. Mimicking the proof in Sections 3 & 4 in Hall, 1984, with substitution (s, t) =

(Φ−1(u),Φ−1(α)), and by (3.9.13), we have

∫ 1

0

[
An

(
Φ−1(u),Φ−1(α)

)
− α

]2
ω(u)du

=

∫
R
[An (s, t)− α]2 ϕ (s)ω (Φ(s)) ds

=2

∫
R
{An (s, t)− E [An (s, t)]} {E [An (s, t)]− α}ϕ (s)ω (Φ(s)) ds

+

∫
R
{An (s, t)− E [An (s, t)]}2 ϕ (s)ω (Φ(s)) ds

+

∫
R
{E [An (s, t)]− α}2 ϕ (s)ω (Φ(s)) ds

=2

∫
R

{
1

nh

n∑
i=1

(Bn [s, t; (si, ti)]− E [Bn [s, t; (si, ti)]])

}

{E [An (s, t)]− α}ϕ (s)ω (Φ(s)) ds

+

∫
R

{
1

nh

n∑
i=1

(Bn [s, t; (si, ti)]− E [Bn [s, t; (si, ti)]])

}2

ϕ (s)ω (Φ(s)) ds

+

∫
R
{E [An (s, t)]− α}2 ϕ (s)ω (Φ(s)) ds

=
2

nh

n∑
i=1

∫
R
{Bn [s, t; (si, ti)]− E [Bn [s, t; (si, ti)]]}

{E [An (s, t)]− α}ϕ (s)ω (Φ(s)) ds
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+
1

n2h2

n∑
i=1

∫
R
{Bn [s, t; (si, ti)]− E [Bn [s, t; (si, ti)]]}2 ϕ (s)ω (Φ(s)) ds

+
2

n2h2

∑
1⩽k<l⩽n

∫
R
{Bn [s, t; (sk, tk)]− E [Bn [s, t; (sk, tk)]]}

{Bn [s, t; (sl, tl)]− E [Bn [s, t; (sl, tl)]]}ϕ (s)ω (Φ(s)) ds

+

∫
R
{E [An (s, t)]− α}2 ϕ (s)ω (Φ(s)) ds

.
=2In1 + In2 + 2In3 + In4. (3.9.14)

By Lemmas A.1.6 – A.1.9, and noticing that: 1) when nh → ∞ as n → ∞, the variance of In2 is

neglectable comparing to the variance of In3, i.e. OP (n
− 3

2h−1) = oP (n
−1h−

1
2 ); 2) when nh → ∞

as n → ∞, and Y ̸⊥α X , the variance of In3 is neglectable comparing to the variance of In1, i.e.

OP (n
−1h−

1
2 ) = oP (n

− 1
2 ); 3) when h = O(n−β), β ∈ (0, 1

3
), and Y ̸⊥α X , the mean of In2 is

neglectable comparing to the second term in mean of In4, i.e. O(n−1h−1) = o(h2), we have

D̂α1 =OP (n
− 1

2h2)

+ n−1h−1M⊥α,2(ω) + o(n−1h−1) +OP (n
− 3

2h−1)

+OP (n
−1h−

1
2 )

+ h4M⊥α,4(ω) + o(h4)

=O(n−1h−1) +O(h4n) +OP (n
−1h

− 1
2

n ) +OP (n
− 1

2h2n), if Y ⊥α X (3.9.15)

D̂α1 =OP (n
− 1

2 )

+ n−1h−1M2(ω) + o(n−1h−1) +OP (n
− 3

2h−1)

+OP (n
−1h−

1
2 )
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+

∫ 1

0

[
C2|1 (α | u)− α

]2
ω (u) du+ h2M̸⊥α,4(ω) + o(h2n)

=

∫ 1

0

[
C2|1 (α | u)− α

]2
ω(u)du+O(h2) +OP (n

− 1
2 ), if Y ̸⊥α X (3.9.16)

as n → ∞, where Y ⊥α X (Y ̸⊥α X) represents Y is quantile independent (dependent) with X at

quantile level α.

Besides, by Lemma A.1.10, and considering “convergence almost surely" implies “convergence in prob-

ability", we may have

D̂α3 =Oa.s.
(
n−3/2h−2 log n(log log n)1/2

)
=OP

(
n−3/2h−2 log n(log log n)1/2

)
=oP

(
n−1
)
, (3.9.17)

as n → ∞, when h = O(n−β), β ∈ (0, 1
4
). Obviously, D̂α3 is neglectable comparing to OP terms of

D̂α1 in (3.9.15) and (3.9.16), for both cases Y ⊥α X and Y ̸⊥α X , when h = O(n−β), β ∈ (0, 1
4
).

Finally, for D̂α2, by applying Cauchy-Schwarz inequality, we have

∣∣∣D̂α2

∣∣∣ ⩽ 2
(
D̂α1 × D̂α3

) 1
2
.

Correspondingly, we have two cases.

1. If Y ⊥α X , by results in (3.9.15) and (3.9.17), we have

∣∣∣D̂α2

∣∣∣ ⩽{oP (n−2h−1) + oP (n
−1h4) + oP (n

−2h−
1
2 ) + oP (n

− 3
2h2)

} 1
2
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=
{
oP (n

−2h−1) + oP (n
−1h4)

} 1
2 , (3.9.18)

asn→ ∞, when h = O(n−β), β ∈ (0, 1
4
). In (3.9.18), by applying continuous mapping theorem,

we have

∣∣∣D̂α2

∣∣∣ ⩽oP ([max{n−2h−1, n−1h4}
] 1

2

)
=oP

(
max{n−1h−

1
2 , n− 1

2h2}
)
,

as n→ ∞. This means
∣∣∣D̂α2

∣∣∣ is always bounded in order by the OP terms in (3.9.15). Hence D̂α2

is neglectable comparing to D̂α1.

2. If Y ̸⊥α X , by results in (3.9.16) and (3.9.17), we have

∣∣∣D̂α2

∣∣∣ ⩽{oP (n−1) + oP (n
−1h2) + oP (n

− 3
2 )
} 1

2

=
{
oP (n

−1)
} 1

2 , (3.9.19)

as n → ∞, when hn = O(n−β), β ∈ (0, 1
4
). In (3.9.19), by applying continuous mapping

theorem, we have

∣∣∣D̂α2

∣∣∣ ⩽ oP (n
− 1

2 ),

as n→ ∞. This means
∣∣∣D̂α2

∣∣∣ is always bounded in order by the OP term in (3.9.16). Hence D̂α2

is neglectable comparing to D̂α1.
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Combining all above analyses, we conclude D̂α(X, Y ;ω, h) and D̂α1 have the same asymptotic dis-

tribution.

Therefore, on one hand, when Y ⊥α X , as in the analysis above (3.9.15), and using the results in

Lemmas A.1.6 – A.1.9, we could have

D̂α(X, Y ;ω, h)
d−→n−1h−1M⊥α,2(ω) + h4M⊥α,4(ω)

+ 2n− 1
2h2σ⊥α,1(ω)Z1 +

√
2n−1h−

1
2σ⊥α,3(ω)Z2,

as n→ ∞, whereZ1 andZ2 as standard normal distributions are naturally independent by the way how

In1 and In3 are defined in (3.9.14). On the other hand, when Y ̸⊥α X , as in the analysis above (3.9.16),

and using the results in Lemmas A.1.6 – A.1.9, we could have

D̂α(X, Y ;ω, h)
d−→
∫ 1

0

[
C2|1 (α | u)− α

]2
ω(u)du+ h2M̸⊥α,4(ω)

+ 2n− 1
2σ ̸⊥α,1(ω)Z3,

as n→ ∞, whereZ3 is a standard normal distribution.

3.9.3 Proof for Section 3.5

Proof of Theorem 3.5.1. ∀j ∈ Mα, noticing that h2M̸⊥α,4(ω) + o(h2) = o(n−κα1), by the selection of

tn,α, we have 0 < tn,α ⩽ ct,α
cα1
Dα(Xj, Y ;ω), then we have

[
Dα(Xj, Y ;ω) + h2M̸⊥α,4(ω) + o(h2)

]
− tn,α
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⩾

(
1− ct,α

cα1

)
Dα(Xj, Y ;ω) + h2M̸⊥α,4(ω) + o(h2)

⩾
1

2

(
1− ct,α

cα1

)
Dα(Xj, Y ;ω) > 0,

with large enough n. When j ∈ Mα, we have Y ̸⊥α Xj , then by results in Theorem 3.4.1 and normal

tail bound, we have

P
(
j ∈ M̂α (tn,α)

)
=P

(
D̂α(Xj, Y ;ω, h) ⩾ tn,α

)
⩾1− C∗1 exp

−1

2

(
tn,α − [Dα(Xj, Y ;ω) + h2M̸⊥α,4(ω) + o(h2)]

2n− 1
2 σ̸⊥α,1(ω)

)2


⩾1− C∗1 exp

[
− 1

32

(
1− ct,α

cα1

)2

n

(
Dα(Xj, Y ;ω)

σ̸⊥α,1(ω)

)2
]
,

for some positive constantC∗1. Then, from result in (3.8.4), we have

σ2
̸⊥α,1(ω) ⩽

∫ 1

0

[
C2|1 (α | u)− C2

2|1 (α | u)
] [
C2|1 (α | u)− α

]2
ω2 (u) du

+

{∫ 1

0

∂2C
∂u∂v

(u, α)
[
C2|1 (α | u)− α

]
ω (u) du

}2

+ 2

∫ 1

0

∂2C
∂u∂v

(u, α)
[
C2|1 (α | u)− α

]
ω (u) du∫ 1

0

{
C2|1 (α | u)− C2

2|1 (α | u)− [C (u, α)− αu]
∂2C
∂u2

(u, α)

}
[
C2|1 (α | u)− α

]
ω (u) du

⩽
∫ 1

0

ω2 (u) du+

[
K00 sup

u∈(0,1)

ϕ2 (Φ−1(u))

u(1− u)

∫ 1

0

ω (u)

ϕ2 (Φ−1(u))
du

]2
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+ 2

[
K00 sup

u∈(0,1)

ϕ2 (Φ−1(u))

u(1− u)

∫ 1

0

ω (u)

ϕ2 (Φ−1(u))
du

]
[

sup
u∈(0,1)

{
ϕ2
(
Φ−1(u)

) [
1 +

K1

u(1− u)

]}∫ 1

0

ω (u)

ϕ2 (Φ−1(u))
du

]
(3.9.20)

⩽
∫ 1

0

ω2 (u) du+ C∗2

[∫ 1

0

ω (u)

ϕ2 (Φ−1(u))
du

]2
(3.9.21)

⩽C∗3, (3.9.22)

where C∗2 and C∗3 are some positive constants, (3.9.20) follows from C2|1 (α | u) ∈ [0, 1] and Con-

dition 3.3; (3.9.21) follows from ϕ2(Φ−1(u))
u(1−u)

and ϕ2 (Φ−1(u)) are bounded over (0, 1); (3.9.22) follows

from Condition 3.4 and ω (u) is bounded over (0, 1). With some positive constantsC∗4 andC∗5, under

Condition 3.5(a), this induces

P
(
j ∈ M̂α (tn,α)

)
⩾1− C∗1 exp

[
−C∗4nD

2
α(Xj, Y ;ω)

]
⩾1− C∗1 exp

(
−C∗5n

1−2κα1
)
.

Finally, by Fréchet inequality, when n is large enough, we have

P
(
Mα ⊆ M̂α (tn,α)

)
=P

( ⋂
j∈Mα

{
j ∈ M̂α (tn,α)

})

⩾
∑
j∈Mα

P
(
j ∈ M̂α (tn,α)

)
− (Sα − 1)

⩾1−O
(
Sα exp

(
−Cα1n

1−2κα1
))
,

for some positive constantCα1. The rest of the proof follows directly from the above results.
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Proof of Theorem 3.5.2. Under Condition 3.5(b), we have

P
(
min
j∈Mα

{
D̂α(Xj, Y ;ω, h)

}
− max

j∈Mc
α

{
D̂α(Xj, Y ;ω, h)

}
⩽ 0

)
⩽P
(

min
j∈Mα

{
D̂α(Xj, Y ;ω, h)

}
− max

j∈Mc
α

{
D̂α(Xj, Y ;ω, h)

}
⩽ min

j∈Mα

{Dα(Xj, Y ;ω)} − max
j∈Mc

α

{Dα(Xj, Y ;ω)} − cα2n
−κα2

)
=P
([

min
j∈Mα

{Dα(Xj, Y ;ω)} − min
j∈Mα

{
D̂α(Xj, Y ;ω, h)

}]
+

[
max
j∈Mc

α

{
D̂α(Xj, Y ;ω, h)

}
− max

j∈Mc
α

{Dα(Xj, Y ;ω)}
]
⩾ cα2n

−κα2

)
.

Let j1
.
= argminj∈Mα

D̂α(Xj, Y ;ω, h) and j2
.
= argmaxj∈Mc

α
D̂α(Xj, Y ;ω, h), then we could have

Dα(Xj1 , Y ;ω) ⩾ min
j∈Mα

{Dα(Xj, Y ;ω)} ,

Dα(Xj2 , Y ;ω) ⩽ max
j∈Mc

α

{Dα(Xj, Y ;ω)} .

It induces

P
(
min
j∈Mα

{
D̂α(Xj, Y ;ω, h)

}
− max

j∈Mc
α

{
D̂α(Xj, Y ;ω, h)

}
⩽ 0

)
⩽P
([

Dα(Xj1 , Y ;ω)− D̂α(Xj1 , Y ;ω, h)
]

+
[
D̂α(Xj2 , Y ;ω, h)−Dα(Xj2 , Y ;ω)

]
⩾ cα2n

−κα2

)
⩽P
({∣∣∣D̂α(Xj1 , Y ;ω, h)−Dα(Xj1 , Y ;ω)

∣∣∣ ⩾ 1

2
cα2n

−κα2

}
⋃{∣∣∣D̂α(Xj2 , Y ;ω, h)−Dα(Xj2 , Y ;ω)

∣∣∣ ⩾ 1

2
cα2n

−κα2

})
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⩽P
({∣∣∣D̂α(Xj1 , Y ;ω, h)−Dα(Xj1 , Y ;ω)

∣∣∣ ⩾ 1

2
cα2n

−κα2

})
+ P

({∣∣∣D̂α(Xj2 , Y ;ω, h)−Dα(Xj2 , Y ;ω)
∣∣∣ ⩾ 1

2
cα2n

−κα2

})
⩽2P

(
max
j∈[p]

{∣∣∣D̂α(Xj, Y ;ω, h)−Dα(Xj, Y ;ω)
∣∣∣} ⩾

1

2
cα2n

−κα2

)
=2P

(
p⋃

j=1

{∣∣∣D̂α(Xj, Y ;ω, h)−Dα(Xj, Y ;ω)
∣∣∣ ⩾ 1

2
cα2n

−κα2

})

⩽2

p∑
j=1

P
(∣∣∣D̂α(Xj, Y ;ω, h)−Dα(Xj, Y ;ω)

∣∣∣ ⩾ 1

2
cα2n

−κα2

)
. (3.9.23)

Then we consider two different cases

1. When Y ̸⊥α Xj , noticing that h2M̸⊥α,4(ω) + o(h2) = o(n−κα2), we could have

{∣∣∣D̂α(Xj, Y ;ω, h)−Dα(Xj, Y ;ω)
∣∣∣ ⩾ 1

2
cα2n

−κα2

}
⊆
{ ∣∣∣D̂α(Xj, Y ;ω, h)−

[
Dα(Xj, Y ;ω) + h2M̸⊥α,4(ω) + o(h2)

]∣∣∣ ⩾ 1

4
cα2n

−κα2

}
,

with large enough n. Correspondingly, by results in Theorem 3.4.1 and normal tail bound, we have

P
(∣∣∣D̂α(Xj, Y ;ω, h)−Dα(Xj, Y ;ω)

∣∣∣ ⩾ 1

2
cα2n

−κα2

)

⩽C∗6 exp

−1

2

(
1

8
cα2

n
1
2
−κα2

σ̸⊥α,1(ω)

)2
 ,

whereC∗6 is some positive constant. Besides, we haveσ2
̸⊥α,1

(ω) is bounded by (3.9.22). This induces

P
(∣∣∣D̂α(Xj, Y ;ω, h)−Dα(Xj, Y ;ω)

∣∣∣ ⩾ 1

2
cα2n

−κα2

)
⩽ C∗6 exp

(
−C∗7n

1−2κα2
)
,

(3.9.24)
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whereC∗7 is some positive constant.

2. When Y ⊥α Xj , noticing that n−1h−1M⊥α,2(ω) + h4M⊥α,4(ω) + o(n−1h−1) + o(h4) =

o(n−κα2), we could have

{∣∣∣D̂α(Xj, Y ;ω, h)−Dα(Xj, Y ;ω)
∣∣∣ ⩾ 1

2
cα2n

−κα2

}
⊆
{∣∣∣D̂α(Xj, Y ;ω, h)−

[
Dα(Xj, Y ;ω) + n−1h−1M⊥α,2(ω) + h4M⊥α,4(ω)

+ o(n−1h−1) + o(h4)
]∣∣∣ ⩾ 1

4
cα2n

−κα2

}
,

with large enough n. Correspondingly, define

σn,⊥α =



2n− 1
2h2σ⊥α,1(ω) if β ∈ (0, 1

5
),

√
2n−1h−

1
2σ⊥α,3(ω) if β ∈ (1

5
, 1
4
),

n− 9
10

√
4c4hσ

2
⊥α,1

(ω) + 2c−1
h σ2

⊥α,3
(ω) if β = 1

5
, h ∼ chn

− 1
5 ,

(3.9.25)

where ch is some positive constant. Correspondingly, by results in Theorem 3.4.1 and normal tail

bound, we have

P
(∣∣∣D̂α(Xj, Y ;ω, h)−Dα(Xj, Y ;ω)

∣∣∣ ⩾ 1

2
cα2n

−κα2

)
⩽ C∗8 exp

[
− 1

32
(cα2)

2 n
−2κα2

σ2
n,⊥α

]
,
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whereC∗8 is some positive constant. Besides, we could have σn,⊥α = o(n− 1
2 ), which induces

P
(∣∣∣D̂α(Xj, Y ;ω, h)−Dα(Xj, Y ;ω)

∣∣∣ ⩾ 1

2
cα2n

−κα2

)
⩽C∗8 exp

(
−C∗9n

1−2κα2
)
,

(3.9.26)

whereC∗9 is some positive constant.

Combining the results in (3.9.24) and (3.9.26) back into (3.9.23), we have

P
(
min
j∈Mα

{
D̂α(Xj, Y ;ω, h)

}
− max

j∈Mc
α

{
D̂α(Xj, Y ;ω, h)

}
⩽ 0

)
⩽ O

(
p exp

(
−Cα2n

1−2κα2
))
,

for some positive constantCα2, or equivalently,

P
(
min
j∈Mα

{
D̂α(Xj, Y ;ω, h)

}
− max

j∈Mc
α

{
D̂α(Xj, Y ;ω, h)

}
> 0

)
>1−O

(
p exp

(
−Cα2n

1−2κα2
))
.

The rest of the proof follows directly from the proof of Theorem 3 in W. Liu et al., 2022.

3.9.4 Proofs for Section 3.6

Proof of Corollary 3.6.1. By Theorem 3.4.1, when Y ⊥α X , we have

D̂α(X, Y ;ω, h)

n−1h−1M⊥α,2(ω) + h4M⊥α,4(ω)

d−→

√
4n−1h4σ2

⊥α,1
(ω) + 2n−2h−1σ2

⊥α,3
(ω)

n−1h−1M⊥α,2(ω) + h4M⊥α,4(ω)
Z + 1,
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where Z represents some standard Gaussian random variable. Then with Delta method, it is direct to

have

log

[
D̂α(X, Y ;ω, h)

n−1h−1M⊥α,2(ω) + h4M⊥α,4(ω)

]
d−→

√
4n−1h4σ2

⊥α,1
(ω) + 2n−2h−1σ2

⊥α,3
(ω)

n−1h−1M⊥α,2(ω) + h4M⊥α,4(ω)
Z,

which completes the proof.

Proof of Theorem 3.6.1. For FDR control, we mainly consider M̃c
α = {j ∈ [p] : Y ⊥α Xj}, p̃0,α =∣∣∣M̃c

α

∣∣∣, the cardinality of M̃c
α, and p̃0,α/p0,α → 1 instead. By definition, we have

FDR (Tγ(α);α) =E [FDP (Tγ(α);α)]

=E

[
#{j ∈ M̃c

α : D̂†
α(Xj, Y ;ω, h) ⩾ Tγ(α)}

#{j : D̂†
α(Xj, Y ;ω, h) ⩾ Tγ(α)}

]

=E

[
#{j ∈ M̃c

α : D̂†
α(Xj, Y ;ω, h) ⩾ Tγ(α)}

1 + #{j : D̂†
α(Xj, Y ;ω, h) ⩽ −Tγ(α)}

·1 + #{j : D̂†
α(Xj, Y ;ω, h) ⩽ −Tγ(α)}

#{j : D̂†
α(Xj, Y ;ω, h) ⩾ Tγ(α)}

]

⩽E

[
#{j ∈ M̃c

α : D̂†
α(Xj, Y ;ω, h) ⩾ Tγ(α)}

1 + #{j ∈ M̃c
α : D̂†

α(Xj, Y ;ω, h) ⩽ −Tγ(α)}

·1 + #{j : D̂†
α(Xj, Y ;ω, h) ⩽ −Tγ(α)}

#{j : D̂†
α(Xj, Y ;ω, h) ⩾ Tγ(α)}

]

⩽γE

[
#{j ∈ M̃c

α : D̂†
α(Xj, Y ;ω, h) ⩾ Tγ(α)}

1 + #{j ∈ M̃c
α : D̂†

α(Xj, Y ;ω, h) ⩽ −Tγ(α)}

]
, (3.9.27)

where the last inequality follows from how Tγ(α) is selected.

In the rest of the proof, we find the upper bound of expectation term in (3.9.27) by super-martingale

theories.
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W.L.O.G., we assume

∣∣∣D̂†
α(X1, Y ;ω, h)

∣∣∣ ⩾ ∣∣∣D̂†
α(X2, Y ;ω, h)

∣∣∣ ⩾ · · · ⩾
∣∣∣D̂†

α(Xp, Y ;ω, h)
∣∣∣ > 0,

and we further define
∣∣∣D̂†

α(Xp+1, Y ;ω, h)
∣∣∣ = 0. To determine threshold Tγ(α), different values of t

starting from the smallest,
∣∣∣D̂†

α(Xp+1, Y ;ω, h)
∣∣∣, to the largest,

∣∣∣D̂†
α(X1, Y ;ω, h)

∣∣∣, are tried in (3.6.5). In

this process, Tγ(α) is actually the stopping time. Moreover, since value of #{j∈M̃c
α:D̂

†
α(Xj ,Y ;ω,h)⩾t}

1+#{j∈M̃c
α:D̂

†
α(Xj ,Y ;ω,h)⩽−t}

would not change for t =
∣∣∣D̂†

α(Xj, Y ;ω, h)
∣∣∣, j ̸∈ M̃c

α, it would not matter if we only consider

t =
∣∣∣D̂†

α(Xj, Y ;ω, h)
∣∣∣, j ∈ M̃c

α. Correspondingly, W.L.O.G., we denote the index set of M̃c
α as

{1, . . . , p̃0,α}, and assume

∣∣∣D̂†
α(X1, Y ;ω, h)

∣∣∣ ⩾ ∣∣∣D̂†
α(X2, Y ;ω, h)

∣∣∣ ⩾ · · · ⩾
∣∣∣D̂†

α(Xp̃0,α , Y ;ω, h)
∣∣∣ > 0,

and further define
∣∣∣D̂†

α(Xp̃0,α+1, Y ;ω, h)
∣∣∣ = 0, and considerTγ(α) as the stopping time. In other words,

for k = p̃0,α + 1, p̃0,α, · · · , 1, we define

Lk(α) =
#
{
j ∈ M̃c

α : D̂†
α(Xj, Y ;ω, h) ⩾

∣∣∣D̂†
α(Xk, Y ;ω, h)

∣∣∣}
1 + #

{
j ∈ M̃c

α : D̂†
α(Xj, Y ;ω, h) ⩽ −

∣∣∣D̂†
α(Xk, Y ;ω, h)

∣∣∣}
=

#
{
j ∈ M̃c

α : j ⩽ k and D̂†
α(Xj, Y ;ω, h) ⩾ 0

}
1 + #

{
j ∈ M̃c

α : j ⩽ k and D̂†
α(Xj, Y ;ω, h) < 0

} .

∀j ∈ M̃c
α, by definition ofBj(α), and S̃c

k(α)
.
=
∑k

j=1Bj(α), we could have

Lk(α) =

∑k
j=1 [1−Bj(α)]

1 +
∑k

j=1Bj(α)
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=
k − S̃c

k(α)

1 + S̃c
k(α)

=
k + 1

1 + S̃c
k(α)

− 1.

Denote the σ-field generated by
{∑k

j=1Bj(α), Bk+1(α), · · · , Bp̃0,α+1(α)
}

as Fk,α. Correspondingly,

Tγ(α) would be a stopping time in reverse time (from p̃0,α + 1 to 1) with respect to the random process

{Lk(α)}1k=p̃0,α+1 and its backward filtration Fp̃0,α+1,α ⊂ · · · ⊂ F1,α.

By Corollary 3.6.1, when j ∈ M̃c
α, it is easy to notice D̂†

α(Xj, Y ;ω, h)’s are identically distributed,

hence {B1(α), · · · , Bk(α)} are identically distributed with respect to Fk,α. So, via Lemma 8 in Tong

et al., 2023, we could have P (Bk(α) = 1 | Fk,α) =
S̃c
k(α)

k
. Consequently, on one hand, if S̃c

k(α) = 0, it

means S̃c
k−1(α) = 0, hence Lk−1(α) = k − 1 < k = Lk(α). On the other hand, if S̃c

k(α) > 0, then

we have

E [Lk−1(α) | Fk,α]

=

[
k

1 + S̃c
k(α)

− 1

]
P (Bk(α) = 0 | Fk,α) +

[
k

1 + S̃c
k(α)− 1

− 1

]
P (Bk(α) = 1 | Fk,α)

=

[
k

1 + S̃c
k(α)

− 1

]
k − S̃c

k(α)

k
+

[
k

S̃c
k(α)

− 1

]
S̃c
k(α)

k

=
k + 1

1 + S̃c
k(α)

− 1

=Lk(α).
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Therefore, {Lk(α)}1k=p̃0,α+1 is a super-martingale with respect to {Fk,α}. Then, by Optional Stopping

Time theorem, we could have

E

[
#{j ∈ M̃c

α : D̂†
α(Xj, Y ;ω, h) ⩾ Tγ(α)}

1 + #{j ∈ M̃c
α : D̂†

α(Xj, Y ;ω, h) ⩽ −Tγ(α)}

]
⩽E

[
Lp̃0,α

]
=E

[
p̃0,α − S̃c

α

1 + S̃c
α

]

=E

 1− S̃c
α

p̃0,α

1
p̃0,α

+ S̃c
α

p̃0,α

 , (3.9.28)

where S̃c
α
.
=
∑p̃0,α

j=1 Bj(α). Then, by letting ∆Sc
α = Sc

α − S̃c
α, we have

Var

[
S̃c
α

p0,α

]
=Var

[
Sc
α −∆Sc

α

p0,α

]

=Var
[
Sc
α

p0,α

]
+ Var

[
∆Sc

α

p0,α

]
− 2E

[
Sc
α

p0,α

∆Sc
α

p0,α

]
+ 2E

[
Sc
α

p0,α

]
E
[
∆Sc

α

p0,α

]
⩽Var

[
Sc
α

p0,α

]
+ Var

[
∆Sc

α

p0,α

]
+ 2E

[
Sc
α

p0,α

∆Sc
α

p0,α

]
+ 2E

[
Sc
α

p0,α

]
E
[
∆Sc

α

p0,α

]
⩽Var

[
Sc
α

p0,α

]
+ Var

[
∆Sc

α

p0,α

]
+ 4

p0,α − p̃0,α
p0,α

(3.9.29)

⩽Var
[
Sc
α

p0,α

]
+

1

4

[
p0,α − p̃0,α

p0,α

]2
+ 4

p0,α − p̃0,α
p0,α

=o(1)

where (3.9.29) follows from the truth Sc
α ⩽ p0,α and ∆Sc

α ⩽ p0,α − p̃0,α, and the last equality follows

from Condition 3.6. Hence, Var
[

S̃c
α

p̃0,α

]
=
(

p0,α
p̃0,α

)2
Var
[

S̃c
α

p0,α

]
= o(1). Besides, by Corollary 3.6.1, it is

obvious that E
[

S̃c
α

p̃0,α

]
→ 1

2
, and by Markov’s inequality, we have S̃c

α

p̃0,α

p−→ 1
2

, as n → ∞. Then since
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f(x) = 1−x
1

p̃0,α
+x

is bounded and continuous, we have

E

 1− S̃c
α

p̃0,α

1
p̃0,α

+ S̃c
α

p̃0,α

→ E
[
1− 1

2

0 + 1
2

]
= 1. (3.9.30)

The rest of the proof follows directly from (3.9.27), (3.9.28), and (3.9.30),

lim sup
n→∞

FDR (Tγ(α);α) ⩽ γ lim sup
n→∞

E

 1− S̃c
α

p̃0,α

1
p̃0,α

+ S̃c
α

p̃0,α

 = γ.
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Chapter 4

Applications to the U.S. 2020

Economic Data

The economic landscape of the United States in 2020 underwent significant shifts due to the unprece-

dented impact of the COVID-19 pandemic (Polyakova et al., 2020). This period was marked by substan-

tial economic disruptions, with varying degrees of resilience and recovery across states (Altig et al., 2020;

Thakur et al., 2020). Understanding the underlying factors driving these disparities is essential for formu-

lating effective economic policies and strategies (Abedi et al., 2021). Moreover, the inherent disparities

among states, such as differences in population density, urbanization, health infrastructure, and economic

resources, provide critical context for analyzing the structure of the U.S. economy during this tumultuous

period (Carethers, 2021; Paul et al., 2021).

To address these issues, we analyze a dataset containing macroeconomic variables for all 50 states and

the District of Columbia (n = 51). This dataset comprises 163 variables (p = 163) categorized into six

domains: (1) housing information, (2) employment status, (3) income and benefits, (4) health insurance
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Table 4.1: Top 10 selected variables by DR-WD1-SIS.

Variable Name

X17 Proportion of population 16 years and over in unemployed civilian labor force
X36 Proportion of workers 16 years and over working from home
X42 Proportion of civilian employed population 16 years and over in natural resources,

construction, and maintenance occupations
X45 Proportion of civilian employed population 16 years and over in construction indus-

tries
X48 Proportion of civilian employed population 16 years and over in retail trade industries
X57 Proportion of civilian employed population 16 years and over private wage and salary

workers
X79 Proportion of civilian noninstitutionalized population with no health insurance

coverage
X85 Proportion of civilian noninstitutionalized population 19 to 64 years in employed

labor force with health insurance coverage
X88 Proportion of civilian noninstitutionalized population 19 to 64 years in employed

labor force with no health insurance coverage
X93 Proportion of civilian noninstitutionalized population 19 to 64 years in unemployed

labor force with no health insurance coverage

coverage, (5) poverty levels, and (6) demographic characteristics, which is available at the official website

of U.S. Census Bureau, https://data.census.gov. Details of the variables are provided in Table A.2 in the

appendices. The primary objective of this study is to identify the most influential factors associated with

the growth rate of Gross Domestic Product (GDP) from 2019 to 2020, which is available at the official

website of Bureau of Economic Analysis, U.S. Department of Commerce, https://www.bea.gov.

4.1 Feature Screening with DR-WDr-SIS

As discussed in Chapter 2, DR-WDr-SIS is a general feature screening method fit to high-dimensional het-

erogeneous data. We apply DR-WDr-SIS to GDP growth rate and each variable, ranking their marginal
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Table 4.2: Top 10 selected variables by DR-WD2-SIS.

Variable Name

X17 Proportion of population 16 years and over in unemployed civilian labor force
X32 Proportion of workers 16 years and over commuting to work with car, truck, or van

(carpooled)
X36 Proportion of workers 16 years and over working from home
X42 Proportion of civilian employed population 16 years and over in natural resources,

construction, and maintenance occupations
X45 Proportion of civilian employed population 16 years and over in construction indus-

tries
X46 Proportion of civilian employed population 16 years and over in manufacturing in-

dustries
X48 Proportion of civilian employed population 16 years and over in retail trade industries
X79 Proportion of civilian noninstitutionalized population with no health insurance

coverage
X85 Proportion of civilian noninstitutionalized population 19 to 64 years in employed

labor force with health insurance coverage
X88 Proportion of civilian noninstitutionalized population 19 to 64 years in employed

labor force with no health insurance coverage

significance and select top 10 variables which is highly related to GDP growth. We select variables with

both DR-WD1-SIS and DR-WD2-SIS, and the results are summarized in Table 4.1 and Table 4.2. There

are 8 variables which are selected by both methods, which fall into three categories: (1) employment status

(X17, X42, X45, X48), (2) commuting to work (X36), and (3) health insurance coverage (X79, X85, X88).

As a general screening method, DR-WDr-SIS could screen out redundant features and reduce the di-

mension effectively. However, with data resources from 51 states, it would be meaningful if we construct

comparison between the states with high GDP growth rate and low GDP growth rate during the pan-

demic. This helps understand the vital factors stablize economy during tumultuous period. Hence we

consider feature screening with different quantile levels of GDP growth rate in Section 4.2.
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Figure 4.1: Top 12 and bottom 12 states in GDP growth rate from 2019 to 2020.

4.2 Feature Screening with QC-FDR

We focus on theα = 0.25, 0.75 quantile levels among 51 samples, which characterizes top 12 states and the

bottom 12 states in terms of GDP growth rate as shown in Figure 4.1. States labeled in green (orange) are

the highest (lowest) 12 among 51 samples in GDP growth rate. Specifically, we employ the proposed QC-

FDR method to screen important macroeconomic variables at quantile levels α = 0.25 and α = 0.75.

The weight function is set as ω(u) = ϕ2(Φ−1(u)), and the target FDR level is chosen as γ = 0.15.

The bandwidth parameter is determined using the optimal bandwidth selection procedure detailed in

Corollary3.3.1.

Using the QC-FDR at the α = 0.25 quantile level, we identified seven key macroeconomic variables

for the 12 states with the lowest GDP growth rate, as summarized in Table 4.3. These variables fall into

86



Table 4.3: Selected variables at quantile level α = 0.25.

Variable Name

X17 Proportion of population 16 years and over in unemployed civilian labor force
X36 Proportion of workers 16 years and over working from home
X42 Proportion of civilian employed population 16 years and over in natural resources,

construction, and maintenance occupations
X49 Proportion of civilian employed population 16 years and over in transportation and

warehousing, and utilities industries
X57 Proportion of civilian employed population 16 years and over private wage and salary

workers
X58 Proportion of civilian employed population 16 years and over government workers
X107 Percentage of families and people whose income in the past 12 months is below the

poverty level among families with female householder, no spouse present with related
children of the householder under 5 years only

three main categories: (1) employment status (X17,X42,X49,X57,X58), (2) commuting to work (X36),

and (3) poverty level (X107). However, when implementing QC-FDR at the α = 0.75 quantile level,

none variable is selected. To investigate the relationship between GDP growth rate and these variables,

we employed local linear quantile regressions (Yu and Jones, 1998) at the α = 0.25, 0.75 quantile level.

The results are illustrated in Figure 4.2. Seven patterns are plot for seven selected variables. Lines in red

represent the fitted local linear quantile regression at quantile level α = 0.25; lines in green represent the

fitted local linear quantile regression at quantile level α = 0.75.

Based on the results in Figure 4.2, we can conclude that during the COVID-19 pandemic from 2019

to 2020, the GDP growth rate in the United States exhibited notable relationships with key labor force

characteristics, reflecting the economic disruptions and structural shifts triggered by the crisis.

First, forX17, there is a negative relationship between GDP growth and the proportion of the popula-

tion in the unemployed civilian labor force. The result highlights the widespread unemployment during
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the pandemic, especially in industries which are tremendously impacted by lockdown and declining de-

mand. High unemployment led to low household income and consumption, further exacerbating the

economy.

Second, for X36, there is a positive relationship between GDP growth and the proportion of work-

ers working from home. This underscores the elasticity of the industries which are capable of remote

work. With remote working, businesses would be able to sustain productivity and making revenue, which

contributes to the economic stability.

Thirdly, forX49, it shows a negative relationship between GDP growth and the proportion of the em-

ployed population in transportation, warehousing, and utilities. This reflects severe disruptions in supply

chains. Low mobility, decreased trade activity, and reduced industrial demand for utilities contributed to

economic deceleration.

One of the most interesting variables isX42. The relationship between GDP growth and the propor-

tion of the workforce in natural resources, construction, and maintenance occupations varied across states

with high and low GDP growth rates. This divergence probably reflects differences in industry resilience

and economic structures during the pandemic. For states with high GDP growth rates, the positive cor-

relation suggests that these industries played a stabilizing or even growth-promoting role. Conversely, in

states with low GDP growth rates, the negative correlation suggests that these occupations suffered greater

disruptions. This contrast underscores how the same industry can have different impacts depending on a

state’s underlying economic conditions and industrial composition.

Finally, the relationships between GDP growth from 2019 to 2020 and the remaining selected variables

(X57, X58, X107) appear more complex and potentially nonlinear, indicating the need for further research

and in-depth economic analysis.
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Figure 4.2: Scatter plots and fitted local linear quantile regressions between GDP growth rate and selected
variables at quantile level α = 0.25, 0.75.
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Chapter 5

Consistent Sampling With

Smoothed Quantum Walk

In this chapter, we introduce a novel sampling technique grounded in the dynamics of a 2-state Quan-

tum Walk (QW) in a one-dimensional space. The content of this chapter is primarily derived from our

publication (Zhang and Ke, 2024). In Section 5.1, we revisit the 2-state QW on the line and pinpoint its

limitations in sampling. In Section 5.2, we review the kernel smoothing method and elucidate the reasons

why it serves as a complementary approach to the 2-state QW on the line sampling method. These reasons

include the presence of discontinuities in sampling distributions and potential inaccuracies in limiting dis-

tributions, which are issues that the kernel smoothing method can address. In Section 5.3, by applying the

Epanechnikov kernel and transformation method, we develop innovative smoothed quantum sampling

methods. These methods effectively mitigate the limitations associated with sampling using the 2-state

QW, thereby enhancing the overall sampling quality. In Section 5.4, we demonstrate the superior empiri-

cal properties of these smoothed quantum sampling methods through extensive experiments. The results
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clearly show significant improvements in density estimation and sampling efficacy when compared to

traditional Quantum Walk distributions and sampling techniques, highlighting the practical advantages

of our proposed methods.

5.1 Sampling with 2-state Quantum Walk on the Line

Based on the state - space postulate presented in Machida, 2013, the discrete-time 2-state QW on the line

is defined within the tensor space Hp ⊗ Hc. Here, Hp represents the position Hilbert space, while Hc

denotes the coin Hilbert space. Specifically, the position space can be expressed as the span of its basis

states, Hp = Span
(
{|x⟩p : x ∈ Z}

)
. And the coin space can be written as Hc = Span ({|0⟩c , |1⟩c})

where ⟨0|c = [1, 0] and ⟨1|c = [0, 1]. Let |Ψt⟩ be the superposition of 2-state QWs on the line at time

t ∈ {0, 1, 2, . . .}. |Ψt⟩ can be decomposed as

|Ψt⟩ =
∑
x∈Z

|x⟩p ⊗ |ψt(x)⟩c ,

where |ψt(x)⟩c ∈ Hc. Upon the measurement of |Ψt⟩, the squared modulus of |ψt(x)⟩c quantifies the

probability mass function associated with the observation of the quantum walker at position x at time t.

The evolution of QWs can be regarded as a stochastic process (S. E. Venegas-Andraca, 2012) that is

contingent upon two quantum operators. First, a Hadamard operator denoted as Hc, is applied to the

coin state. It is defined as

Hc
.
= cos θ|0⟩c⟨0|+ sin θ|0⟩c⟨1|+ sin θ|1⟩c⟨0| − cos θ|1⟩c⟨1|
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=

cos θ sin θ

sin θ − cos θ

 (5.1.1)

where θ ∈ [0, 2π). It is straightforward to verify that Hc is a unitary matrix. Subsequently, a condi-

tional shift operator acts on the position state. If the coin state is |1⟩c, this operator moves the quantum

walker one step forward; if the coin state is |0⟩c, it moves the walker one step backward. Specifically, the

conditional shift operator can be defined as

Sp
.
=
∑
i∈Z

|i+ 1⟩p⟨i| ⊗ |1⟩c⟨1|+
∑
i∈Z

|i− 1⟩p⟨i| ⊗ |0⟩c⟨0|. (5.1.2)

By the two quantum operators, QWs update the current superposition |Ψt⟩ to a new superposition

|Ψt+1⟩ at time t through

|Ψt+1⟩ = Sp (Ip ⊗Hc) |Ψt⟩ ,

where Ip is the identity operator on the position state. Then, the probability of finding the quantum

walkerXt in position x at time t is calculated by

P (Xt = x) = ⟨ψt(x)|ψt(x)⟩c . (5.1.3)

By employing the discrete-time Fourier transformation, we establish the following definition:

|Ψ̂t(k)⟩c
.
=
∑
x∈Z

e−ikx |ψt(x)⟩c , for k ∈ [−π, π).
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Subsequently, the inverse transformation can be defined as

|ψt(x)⟩c
.
=

1

2π

∫ π

−π

|Ψ̂t(k)⟩c e
ikxdk.

As elaborated in Machida, 2013, the mathematical expressions presented above lay the groundwork

for a quantum sampling scheme to generate a random sample of the target distribution by matching the

moments in the quantum sampling process.

Theorem 5.1.1 (Machida, 2013). Let F : R 7→ R be a real function satisfying

1. F (k + 2π) = F (k),

2.
∫ π

−π
F (k)2dk = 2π,

3. F (k) ∈ C∞([−π, π]) almost everywhere,

4. |F (k − π)| = |F (−k)| = |F (k)|.

Construct the following non-localized initial state

|Ψ̂0(k)⟩c = F (k)(α |0⟩c + β |1⟩c),

or equivalently

|ψ0(x)⟩c =
[
1

2π

∫ π

−π

F (k)eikxdk

]
(α |0⟩c + β |1⟩c)

with α, β ∈ C and |α|2 + |β|2 = 1.
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Let r be a non-negative integer, c = cos θ, and s = sin θ. The limiting moments ofXt/t satisfy

lim
t→∞

E
[(

Xt

t

)r]
=

∫
R
xrf(x;α, β)F (κ(x))21{x∈(−|c|,|c|)}dx,

where

f(x;α, β) =
|s|

π (1− x2)
√
c2 − x2

[
1−

{
|α|2 − |β|2 + 2sℜ(αβ̄)

c

}
x

]
,

κ(x) = arccos

(
|s|x

c
√
1− x2

)
.

Furthermore, whenα, β are selected in a way that |α|2−|β|2+ 2sℜ(αβ̄)
c

= 0 (e.g. α =
√
2
2
, β =

√
2
2
i),

it becomes possible to select the form ofF to regulate the (scaled) limiting moments ofXt. Provided that

an appropriately chosen initial state |ψ0(x)⟩c, we are able to generate Xt,i

t
, i = 1, · · · , N , as a random

sample drawn from a target distribution. This process allows us to obtain a set of samples that follow the

desired statistical characteristics. Here we list a few examples.

1. Wigner semicircle law:

Let F (k) =
√

2|s|3 sin k

1−c2 sin2 k
. Then,

lim
t→∞

E
[(

Xt

t

)r]
=

∫
(−|c|,|c|)

xr
2
√
c2 − x2

πc2
dx;

2. Uniform distribution:
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Let F (k) =
√

πs2| sin k|
2(1−c2 sin2 k)

3
2

. Then,

lim
t→∞

E
[(

Xt

t

)r]
=

∫
(−|c|,|c|)

xr
1

2|c|
dx;

3. Truncated Gaussian distribution:

Let F (k) =
√ √

2π|c|s2| sin k|

2σ erf
(

|c|√
2σ

)
(1−c2 sin2 k)

3
2
exp

{
− c2 cos2 k

4σ2(1−c2 sin2 k)

}
. Then,

lim
t→∞

E
[(

Xt

t

)r]
=

∫
(−|c|,|c|)

xr
exp

(
− x2

2σ2

)
√
2πσ erf

(
|c|√
2σ

)dx,
where erf(·) is the Gaussian error function, and σ > 0 stands for the standard deviation;

4. Arcsine law:

Let F (k) =
√

|s|
1−c2 sin2 k

. Then,

lim
t→∞

E
[(

Xt

t

)r]
=

∫
(−|c|,|c|)

xr
1

π
√
c2 − x2

dx.

In most scenarios, the preparation of the initial state |ψ0(x)⟩c is not overly complex. For example,

when dealing with the Wigner semicircle law, Uniform distribution, or Truncated Gaussian distribution,

even if the non-localized initial state cannot be generated accurately, preparing the initial state |ψ0(x)⟩c

solely for those x around 0 would be enough. This approach can approximate the true initial state on

Z with arbitrarily tiny difference. We plot the Quantum Walk distributions with target distributions in

Figure 5.1. In this figure, Four patterns are illustrated for different approximation laws and t values. The
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(a) Semicircle law, t = 1000.
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(b) Semicircle law, t = 5000.
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(c) Uniform distribution, t = 1000.
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(d) Uniform distribution, t = 5000.

Figure 5.1: Quantum Walk distributions and target distributions.

red lines are the true probability distributions of the Quantum Walk sample Xt

t
, while the blue areas

denote the probability density functions (PDFs) of the target distributions. Nevertheless, this quan-

tum sampling scheme has two notable limitations. Firstly, at a finite time t, Xt

t
actually approximates

a continuous target distribution on the set (−|c|, |c|) by an empirical discrete distribution on the set{
i
t
: i ∈ Z ∩ (−|c| · t, |c| · t)

}
. This approximation error may introduce bias, consequently resulting in

sub-optimal finite-sample performance. Secondly, the previous analysis merely offers the asymptotic be-

havior of the (scaled) moments. A more desirable property, the limiting distribution ofXt (or of Xt

t
) is still
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lacking. Denote ftarget(·) as the PDF of the target distribution. It is not guaranteed that ∀x ∈ (−|c|, |c|),

limt→∞ P
(
Xt

t
= x

)
= ftarget(x). In fact, limt→∞P

(
Xt

t
= x

)
does not even exist in general. To over-

come these two limitations, we propose innovating the quantum sampling method by drawing on the

insights from statistical kernel smoothing techniques.

5.2 Kernel Smoothing

In non-parametric statistics, kernel smoothing stands as a prevalent technique for deriving estimates

through a weighted average of a “localized" neighborhood in the random sample (Fan, 1996; Nadaraya,

1964; Wand and Jones, 1994; Watson, 1964). A Kernel function K(·) is commonly employed to assign

weights. The extent of the local neighborhood is regulated by a bandwidth (or smoothing) parameter

h that can converge to 0 as the sample size n diverges. For example, in non-parametric regression, the

Epanechnikov kernel is a highly favored choice. It is renowned for attaining a high minimax efficiency

(Fan, 1992). To be specific, we define Epanechnikov kernel as

K(u) =
3

4

(
1− u2

)
+
. (5.2.1)

SupposeX1 . . . , Xn form an independent and identically distributed (i.i.d.) sample obtained from

a probability density function f(·). The kernel smoothing density estimator of f(·) then defined in the

following way.

f̂(x)
.
=

1

n

n∑
i=1

Kh (x,Xi) , (5.2.2)

whereKh(x, y) = h−1K{(x− y)/h}.
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Under mild conditions, the kernel density estimator possesses the following two desirable statistical

properties.

1. lim
n→∞

E
[
f̂(x)

]
= f(x),

2. lim
n→∞

Var
[
f̂(x)

]
= 0.

Furthermore, it can be proved that kernel density estimator converges in probability to underlying true

density function, i.e. ∀x, f̂(x) p−→ f(x). Therefore, we intend to leverage the insights of kernel smooth-

ing to address the limitations of the quantum sampling method, as discussed in Section 5.1.

5.3 Kernel Smoothed Quantum Sampling

In this section, we propose a novel quantum sampling method that combines quantum walk with kernel

smoothing. We define f ∗(·) as the density function of the target distribution,Xt,i as the location of the

ith quantum walker at time t, and Yt,i
.
=

Xt,i

t
for i = 1, . . . , N and t ∈ Z+.

We then define a kernel smoothing density estimator of the target distribution f ∗(·) using Epanech-

nikov kernel. Mathematically,

f̂0(x)
.
=

1

Nh

3

4

N∑
i=1

(
1−

(
x− Yt,i
h

)2
)

+

.

As illustrated in Section 5.1, the target distribution for quantum sampling usually has a bounded

domain, (−|c|, |c|). However, the support of f̂0(·) is the whole real line. To bridge the definitions, f̂0(·)

can be rescaled by

f̂1(x)
.
=

f̂0(x)∫
(−|c|,|c|) f̂0(z)dz

. (5.3.1)
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We refer to f̂1(x) as Smoothed Quantum Sampling (SQS). As demonstrated by the empirical experiments

in Section 5.4, SQS exhibits biases near the boundary regions.

To reduce the boundary bias problem, we propose a Transformed Smoothed Quantum Sampling

(TSQS). LetTc : (−|c|, |c|) 7→ R be a monotonically increasing function that is three times continuously

differentiable. Such a Tc(·) function is straightforward to construct. For example, one can select Tc(·) as

the inverse of a Gaussian distribution function

Tc,1(x) = Φ−1

(
x+ |c|
2|c|

)
, (5.3.2)

where Φ(·) is the cumulative distribution function of standard Gaussian random variable. Alternatively,

Tc(·) can be chosen as logit function

Tc,2(x) = logit

(
x+ |c|
2|c|

)
= ln

x+ |c|
|c| − x

.

Using an appropriately selected transformation function Tc(·), we define the TSQS estimator by

f̂2(x)
.
=T ′

c(x) ·
1

Nh

3

4

N∑
i=1

(
1−

(
Tc(x)− Tt,i

h

)2
)

+

, (5.3.3)

where Tt,i = Tc(Yt,i), and T ′
c(·) represents the first order derivative of Tc(·).
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5.4 Experiments

In this section, we conduct a series of numerical experiments to validate the concepts presented in this

paper. Additionally, we evaluate and compare the empirical performance of Quantum Walk (QW),

Smoothed Quantum Sampling (SQS), and Transformed Smoothed Quantum Sampling (TSQS) across

different scenarios. Throughout this section, we set α =
√
2
2
, β =

√
2
2
i, and θ = π

4
.

5.4.1 Empirical analysis for Quantum Sampling Performance

In the first experiment, we evaluate the empirical performance of SQS and TSQS across different settings.

Additionally, we compare SQS and TSQS with QW and the target distribution. As target distributions,

we consider the Wigner semicircle law and the Uniform distribution, as introduced in Section 5.1. The

Quantum Walk (QW) runs for t = 5000 steps, and the sample size is set to be N = 5000 and 10000.

For SQS and TSQS, we use the Epanechnikov kernel and analyze their performance under both large

and small smoothing parameters. Specifically, we choose h = 0.4 and 0.1 for the Wigner semicircle law

and choose h = 0.1 and 0.05 for the Uniform distribution. For TSQS, we apply the inverse Gaussian

transformation function Tc,1(·) as defined in (5.3.2). For each scenario, we repeat 500 replications. The

experiment results for SQS and TSQS are presented in Figures 5.2 and 5.3. In each figure, eight patterns

are plotted for different setting of approximation law, sample size N , and bandwidth h. The light blue

lines are the mean functions of Epanechnikov kernel estimators with 500 replications. The orange cross-

shaded areas represent the area given bymean±2×standard error. The red lines are the true probability

distributions of the Quantum Walk sample Yt,i. The blue areas are PDFs of the target distributions.
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(a) Semicircle law,
t = 5000,N = 5000,

h = 0.4.
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(b) Semicircle law,
t = 5000,N = 5000,

h = 0.1.
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(c) Semicircle law,
t = 5000,N = 10000,

h = 0.4.
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(d) Semicircle law,
t = 5000,N = 10000,

h = 0.1.
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(e) Uniform
distribution, t = 5000,

N = 5000,
h = 0.1.
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(f) Uniform
distribution, t = 5000,

N = 5000,
h = 0.05.
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(g) Uniform
distribution, t = 5000,

N = 10000,
h = 0.1.
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(h) Uniform
distribution, t = 5000,

N = 10000,
h = 0.05.

Figure 5.2: SQS densities.

The experimental results clearly demonstrate that, for a given time t, the samples generated by both

SQS and TSQS, with properly selected N and smoothing parameter h, are much closer to the target

density than those generated by QW. This improvement is due to the bias correction introduced by kernel

smoothing. Additionally, as t and N increase, the samples from SQS and TSQS gradually converge to

the target density. However, the choice of h plays a crucial role in balancing the bias-variance trade-off. A

large h results in a smoother estimate with lower variance but higher bias, whereas a smaller h produces

a more “localized" estimate with lower bias but higher variance. In practice, we can choose h through a

multi-fold cross-validate approach.
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(a) Semicircle law,
t = 5000,N = 5000,

h = 0.4.
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(b) Semicircle law,
t = 5000,N = 5000,

h = 0.1.
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(c) Semicircle law,
t = 5000,N = 10000,

h = 0.4.
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(d) Semicircle law,
t = 5000,N = 10000,

h = 0.1.
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(e) Uniform
distribution, t = 5000,

N = 5000,
h = 0.1.
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(f) Uniform
distribution, t = 5000,

N = 5000,
h = 0.05.
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(g) Uniform
distribution, t = 5000,

N = 10000,
h = 0.1.
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(h) Uniform
distribution, t = 5000,

N = 10000,
h = 0.05.

Figure 5.3: TSQS densities.

Furthermore, as illustrated in Figure 5.2, both QW and SQS exhibit boundary bias. In the Wigner

semicircle law experiment, f̂1(·) shows densities outside (−|c|, |c|), indicating that f̂1(x) > 0 when

x = −|c| or x = |c|, by the continuity of f̂1(x). This results in a positive bias at the boundary for the

samples generated by SQS. For the Uniform distribution case, when x is close to the boundaries, f̂1(x)

only uses interior observations, leading to an underestimation of the target density and hence a negative

bias. Although this issue diminishes as N → ∞ and h → 0, it remains significant in practice with a

finite sample. Encouragingly, as shown in Figure 5.3, this boundary bias issue is mitigated by TSQS as we

expected.
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5.4.2 Statistical analysis for Quantum Sampling Performance

Next, we conduct a statistical inference analysis for quantum sampling methods. Specifically, we apply the

Kolmogorov–Smirnov (KS) test to assess whether a sample of sizem generated by a quantum sampling

method originates from the target distribution. The KS test is a non-parametric method for comparing

two continuous one-dimensional probability distributions. In our context, it measures the goodness-of-fit

between the sampled data and the target distribution by analyzing their cumulative distribution functions.

The resulting p-values from the KS test indicate the likelihood that the observed differences between the

sample and target distributions arise by chance. A high p-value provides little evidence against the null

hypothesis, suggesting that the sample distribution aligns well with the target distribution.

We consider a similar experiment setting as Section 5.4.1. For QW, we set t = 5000 andN = 200000.

We also set the sample size of the obsevations in KS tests to be m = 50000, 200000 and 500000. For

the experiment of Wigner semicircle law, we choose h = 0.02 for SQS and h = 0.05 for TSQS. For

the experiment of Uniform distribution, we choose h = 0.006 for SQS and h = 0.08 for TSQS. The

histograms of p-values over 500 replications are reported in Figure 5.4. In this figure, six patterns are

plotted for different approximation laws and different sample sizesm of observations in KS tests. Green

bars and lines are from QW samples. Orange bars and lines are from SQS samples. Blue bars and lines are

from TSQS samples. When the null hypothesis of the KS test holds true, the p-value of the test statistic

should follow a uniform distribution between 0 and 1. In Figure 5.4, the QW samples and SQS samples

exhibit comparable performance whenN is small, with all methods displaying evenly distributed p-values

across [0, 1]. However, asN increases, all methods tend to perform poorly, with their p-values concentrate

increasingly towards 0. Notably, TSQS samples outperform the others, as their p-values are less skewed
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(a) Semicircle law,m = 50000.
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(b) Semicircle law,m = 200000.
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(c) Semicircle law,m = 500000.
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(d) Uniform distribution,
m = 50000.
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(e) Uniform distribution,
m = 200000.
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Figure 5.4: Histograms and distributions of p-values of KS tests on QW samples and SQS samples.

towards 0 compared to those of QW and SQS. This suggests that TSQS samples better approximate the

target distributions as the sample size grows.
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Appendices

A.1 Additional Lemmas for Chapter 3

Lemma A.1.1. ForBn,1 (s, t) defined in (3.9.11), we have

Bn,1 (s, t) = n− 1
2h−

1
2

n∑
i=1

(Bn,1,i (s, t)− E [Bn,1,i (s, t)]) ,

where

Bn,1,i (s, t)
.
=

−1

ϕ (s)

∫∫
R2

1{si⩽s−hwu}ϕ
′ (wu)

∂C
∂u

(Φ (s− hwu) ,Φ (t− hwv))ϕ (wv) dwvdwu.

Let h→ 0 as n→ ∞. When n→ ∞, we have the following results hold for any (s, t) ∈ R2,

E [Bn,1,i (s, t)] =− h

[
C2|1 (Φ (t) | Φ (s)) + Φ (s)

∂2C
∂u2

(Φ (s) ,Φ (t))

]
+ o(h),

E
[
B2

n,1,i (s, t)
]
=h

1

2
√
π

C2
2|1 (Φ (t) | Φ (s))

ϕ (s)
+ o(h),

E [Bn,1 (s, t)] =0,

Var[Bn,1 (s, t)] =
1

2
√
π

C2
2|1 (Φ (t) | Φ (s))

ϕ (s)
+ o(1).
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Proof. By definition and change of variables,wu = s−Φ−1(u∗)
h

andwv =
t−Φ−1(v∗)

h
, we have

Bn,1 (s, t) =− 1√
hϕ (s)

∫∫
R2

Bn(Φ (s− hwu) , 1)ϕ
′ (wu)

∂C
∂u

(Φ (s− hwu) ,Φ (t− hwv))ϕ (wv) dwvdwu,

By definition of Bn(·, ·), we have

Bn(Φ(s− hwu), 1) =
√
n (Cn (Φ(s− hwu), 1)− C (Φ(s− hwu), 1)) ,

and

Cn (Φ(s− hwu), 1) =
1

n

n∑
i=1

1{ui⩽Φ(s−hwu),vi⩽1}

=
1

n

n∑
i=1

1{ui⩽Φ(s−hwu)}

=
1

n

n∑
i=1

1{si⩽s−hwu}

= Fn,S (s− hwu) ,

C (Φ(s− hwu), 1) = FU,V (Φ (s− hwu) , 1)

= FU (Φ (s− hwu))

= FS (s− hwu) ,
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where Fn,S(·) is the empirical CDF on sample {si}ni=1. Hence we have

Bn(Φ(s− hwu), 1) =
√
n (Fn,S (s− hwu)− FS (s− hwu))

=
√
n (Fn,S (s− hwu)− Φ (s− hwu))

=Pn (s− hwu) ,

which is the standard Gaussian empirical process. Then we have

Bn,1 (s, t)

=− 1

ϕ (s)
n− 1

2h−
1
2

n∑
i=1[∫∫

R2

1{si⩽s−hwu}ϕ
′ (wu)

∂C
∂u

(Φ (s− hwu) ,Φ (t− hwv))ϕ (wv) dwvdwu

−
∫∫

R2

Φ (s− hwu)ϕ
′ (wu)

∂C
∂u

(Φ (s− hwu) ,Φ (t− hwv))ϕ (wv) dwvdwu

]
=n− 1

2h−
1
2

n∑
i=1

(Bn,1,i (s, t)− E [Bn,1,i (s, t)])

For E [Bn,1,i (s, t)], by Taylor expansion at (s, t), we have

E [Bn,1,i (s, t)]

=
−1

ϕ (s)

∫∫
R2

{
Φ (s)

∂C
∂u

(Φ (s) ,Φ (t))−
∂
[
Φ (s) ∂C

∂u
(Φ (s) ,Φ (t))

]
∂(s, t)⊺

(hwu, hwv)
⊺

}

ϕ′ (wu)ϕ (wv) dwvdwu + o(h)

=h

[
∂C
∂u

(Φ (s) ,Φ (t)) + Φ (s)
∂2C
∂u2

(Φ (s) ,Φ (t))

]
∫∫

R2

wuϕ
′ (wu)ϕ (wv) dwvdwu + o(h)
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=− h

[
∂C
∂u

(Φ (s) ,Φ (t)) + Φ (s)
∂2C
∂u2

(Φ (s) ,Φ (t))

]
+ o(h).

For E
[
B2

n,1,i (s, t)
]

, by Taylor expansions at (s, t), we have

E
[
B2

n,1,i (s, t)
]

=E

[
1

ϕ2 (s)

∫∫∫∫
R4

1{si⩽s−hwu1}1{si⩽s−hwu2}

∂C
∂u

(Φ (s− hwu1) ,Φ (t− hwv1))
∂C
∂u

(Φ (s− hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

]

=
1

ϕ2 (s)

∫∫∫∫
R4

E
[
1{si⩽s−hwu1}1{si⩽s−hwu2}

]
∂C
∂u

(Φ (s− hwu1) ,Φ (t− hwv1))
∂C
∂u

(Φ (s− hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

=
1

ϕ2 (s)

∫∫∫∫
R4

Φ (s− hmax{wu1, wu2})

∂C
∂u

(Φ (s− hwu1) ,Φ (t− hwv1))
∂C
∂u

(Φ (s− hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

=
2

ϕ2 (s)

∫∫∫
R3

∫ ∞

wu1

Φ (s− hwu2)

∂C
∂u

(Φ (s− hwu1) ,Φ (t− hwv1))
∂C
∂u

(Φ (s− hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwu2dwu1dwv1dwv2

=
2

ϕ2 (s)

∫∫∫
R3

∫ ∞

wu1

{
∂C
∂u

(Φ (s) ,Φ (t))
∂C
∂u

(Φ (s) ,Φ (t)) Φ (s)

− ∂C
∂u

(Φ (s) ,Φ (t)) Φ (s)
∂
[
∂C
∂u

(Φ (s) ,Φ (t))
]

∂(s, t)⊺
(hwu1, hwv1)

⊺
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− ∂C
∂u

(Φ (s) ,Φ (t))
∂
[
Φ (s) ∂C

∂u
(Φ (s) ,Φ (t))

]
∂(s, t)⊺

(hwu2, hwv2)
⊺

}

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwu2dwu1dwv1dwv2 + o(h)

=− h
2

ϕ2 (s)

∫∫∫
R3

∫ ∞

wu1

{
∂C
∂u

(Φ (s) ,Φ (t))
∂2C
∂u2

(Φ (s) ,Φ (t)) Φ (s)ϕ (s)wu1

+

[
∂C
∂u

(Φ (s) ,Φ (t))

]2
ϕ (s)wu2

+
∂C
∂u

(Φ (s) ,Φ (t))
∂2C
∂u2

(Φ (s) ,Φ (t)) Φ (s)ϕ (s)wu2

}

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwu2dwu1dwv1dwv2 + o(h)

=h
1

2
√
π

1

ϕ (s)

[
∂C
∂u

(Φ (s) ,Φ (t))

]2
+ o(h).

Then, the rest of the proof follows directly from the above results, and the definition of C2|1(· | ·).

Lemma A.1.2. ForBn,2 (s, t) defined in (3.9.11), we have

Bn,2 (s, t) = n− 1
2h−

1
2

n∑
i=1

(Bn,2,i (s, t)− E [Bn,2,i (s, t)]) ,

where

Bn,2,i (s, t)
.
=

−1

ϕ (s)

∫∫
R2

1{ti⩽t−hwv}ϕ
′ (wu)

∂C
∂v

(Φ (s− hwu) ,Φ (t− hwv))ϕ (wv) dwvdwu.

Let h→ 0 as n→ ∞. When n→ ∞, we have the following results hold for any (s, t) ∈ R2,

E [Bn,2,i (s, t)] =− hΦ (t)
∂2C
∂u∂v

(Φ (s) ,Φ (t)) + o(h),

E
[
B2

n,2,i (s, t)
]
=o(h),
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E [Bn,2 (s, t)] =0,

Var[Bn,2 (s, t)] =o(1).

Proof. By definition and change of variables,wu = s−Φ−1(u∗)
h

andwv =
t−Φ−1(v∗)

h
, we have

Bn,2 (s, t) =− 1√
hϕ (s)

∫∫
R2

Bn(1,Φ (t− hwv))ϕ
′ (wu)

∂C
∂v

(Φ (s− hwu) ,Φ (t− hwv))ϕ (wv) dwvdwu,

Similar with the analysis in Lemma A.1.1, we have

Bn(1,Φ (t− hwv)) =
√
n (Fn,T (t− hwv)− Φ (t− hwv))

=Pn (t− hwv) ,

which is the standard Gaussian empirical process, where Fn,T (·) is the empirical CDF on sample {ti}ni=1.

Then we have

Bn,2 (s, t)

=− 1

ϕ (s)
n− 1

2h−
1
2

n∑
i=1[∫∫

R2

1{ti⩽t−hwv}ϕ
′ (wu)

∂C
∂v

(Φ (s− hwu) ,Φ (t− hwv))ϕ (wv) dwvdwu

−
∫∫

R2

Φ (t− hwv)ϕ
′ (wu)

∂C
∂v

(Φ (s− hwu) ,Φ (t− hwv))ϕ (wv) dwvdwu

]
=n− 1

2h−
1
2

n∑
i=1

(Bn,2,i (s, t)− E [Bn,2,i (s, t)])
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For E [Bn,2,i (s, t)], by Taylor expansion at (s, t), we have

E [Bn,2,i (s, t)]

=
−1

ϕ (s)

∫∫
R2

{
Φ (t)

∂C
∂v

(Φ (s) ,Φ (t))−
∂
[
Φ (t) ∂C

∂v
(Φ (s) ,Φ (t))

]
∂(s, t)⊺

(hwu, hwv)
⊺

}

ϕ′ (wu)ϕ (wv) dwvdwu + o(h)

=hΦ (t)
∂2C
∂u∂v

(Φ (s) ,Φ (t))

∫∫
R2

wuϕ
′ (wu)ϕ (wv) dwvdwu + o(h)

=− hΦ (t)
∂2C
∂u∂v

(Φ (s) ,Φ (t)) + o(h).

For E
[
B2

n,2,i (s, t)
]

, by Taylor expansions at (s, t), we have

E
[
B2

n,2,i (s, t)
]

=E

[
1

ϕ2 (s)

∫∫∫∫
R4

1{ti⩽t−hwv1}1{ti⩽t−hwv2}

∂C
∂v

(Φ (s− hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s− hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

]

=
1

ϕ2 (s)

∫∫∫∫
R4

E
[
1{ti⩽t−hwv1}1{ti⩽t−hwv2}

]
∂C
∂v

(Φ (s− hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s− hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

=
1

ϕ2 (s)

∫∫∫∫
R4

Φ (t− hmax{wv1, wv2})

∂C
∂v

(Φ (s− hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s− hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2
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=
2

ϕ2 (s)

∫∫∫
R3

∫ ∞

wv1

Φ (t− hwv2)

∂C
∂v

(Φ (s− hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s− hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv2dwv1dwu1dwu2

=
2

ϕ2 (s)

∫∫∫
R3

∫ ∞

wv1

{
∂C
∂v

(Φ (s) ,Φ (t))
∂C
∂v

(Φ (s) ,Φ (t)) Φ (t)

− ∂C
∂v

(Φ (s) ,Φ (t)) Φ (t)
∂
[
∂C
∂v

(Φ (s) ,Φ (t))
]

∂(s, t)⊺
(hwu1, hwv1)

⊺

− ∂C
∂v

(Φ (s) ,Φ (t))
∂
[
Φ (t) ∂C

∂v
(Φ (s) ,Φ (t))

]
∂(s, t)⊺

(hwu2, hwv2)
⊺

}

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv2dwv1dwu1dwu2 + o(h)

=− h
2

ϕ (s)

∂C
∂v

(Φ (s) ,Φ (t))
∂2C
∂u∂v

(Φ (s) ,Φ (t)) Φ (t)

∫∫∫
R3∫ ∞

wv1

(wu1 + wu2)ϕ
′ (wu1)ϕ (wv1)ϕ

′ (wu2)ϕ (wv2) dwv2dwv1dwu1dwu2 + o(h)

=o(h).

Then, the rest of the proof follows directly from the above results.

Lemma A.1.3. Let h → 0 as n → ∞. When n → ∞, we have the following result holds for An(s, t)

defined in (3.9.13), for any (s, t) ∈ R2,

E [An(s, t)] = C2|1(Φ(t) | Φ(s)) + h2B(Φ(s),Φ(t)) + o(h2),

whereB(·, ·) is given in Section 3.8.
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Proof. By definition ofAn(·, ·), and (si, ti)
i.i.d.∼ FS,T , i = 1, · · · , n, we have

E [An(s, t)] =E
[
Ĉ∗
2|1 (Φ(t) | Φ(s))

]
=

1

hϕ (s)
E
[
ϕ

(
s− s1
h

)
Φ

(
t− t1
h

)]
=

1

hϕ (s)

∫∫
R2

ϕ

(
s− s∗

h

)
Φ

(
t− t∗

h

)
fS,T (s∗, t∗) dt∗ds∗

=
1

hϕ (s)

∫
R
ϕ

(
s− s∗

h

){[
Φ

(
t− t∗

h

)∫ t∗

−∞
fS,T (s∗, x) dx

] ∣∣∣∣∣
∞

t∗=−∞

+

∫
R

1

h
ϕ

(
t− t∗

h

)∫ t∗

−∞
fS,T (s∗, x) dxdt∗

}
ds∗, (A.1.1)

where (A.1.1) follows from integration by parts. In (A.1.1), for any (s, t) ∈ R2, s∗ ∈ R, and h > 0, we

have

lim
t∗→+∞

Φ

(
t− t∗

h

)
= 0,

lim
t∗→−∞

Φ

(
t− t∗

h

)
= 1,

lim
t∗→−∞

∫ t∗

−∞
fS,T (s∗, x) dx = 0,

and

g (s∗, t∗)
.
=

∫ t∗

−∞
fS,T (s∗, x) dx =

∂FS,T

∂s
(s∗, t∗) = ϕ (s∗) C2|1 (Φ(t∗) | Φ(s∗)) , (A.1.2)
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which is bounded for any t∗ ∈ R, hence
[
Φ
(
t−t∗

h

) ∫ t∗

−∞ fS,T (s∗, x) dx
] ∣∣∣∞

t∗=−∞
= 0. Then by change

of variables us = s−s∗
h

, and ut = t−t∗
h

, we have

E [An(s, t)]

=
1

h2ϕ (s)

∫∫
R2

ϕ

(
s− s∗

h

)
ϕ

(
t− t∗

h

){∫ t∗

−∞
fS,T (s∗, x) dx

}
dt∗ds∗

=
1

ϕ (s)

∫∫
R2

ϕ (us)ϕ (ut)

{∫ t−hut

−∞
fS,T (s− hus, x) dx

}
dutdus (A.1.3)

=
1

ϕ (s)

∫∫
R2

ϕ (us)ϕ (ut) g (s, t) dutdus

− 1

ϕ (s)

∫∫
R2

ϕ (us)ϕ (ut)

[
∂g (s, t)

∂(s, t)⊺
(hus, hut)

⊺

]
dutdus

+
1

ϕ (s)

∫∫
R2

ϕ (us)ϕ (ut)

[
1

2
(hus, hut)

∂2g (s, t)

∂(s, t)⊺∂(s, t)
(hus, hut)

⊺

]
dutdus

+ o
(
h2
)

(A.1.4)

=C2|1 (Φ(t) | Φ(s))
∫∫

R2

ϕ (us)ϕ (ut) dutdus

+
h2

2ϕ (s)

∫∫
R2

ϕ (us)ϕ (ut) tr

[
∂2g (s, t)

∂(s, t)⊺∂(s, t)
uu⊺

]
dutdus

+ o
(
h2
)

(A.1.5)

=C2|1 (Φ(t) | Φ(s)) +
h2

2ϕ (s)
tr

[
∂2g (s, t)

∂(s, t)⊺∂(s, t)

∫∫
R2

ϕ (us)ϕ (ut)uu
⊺dutdus

]
+ o

(
h2
)

=C2|1 (Φ(t) | Φ(s)) +
h2

2ϕ (s)
tr

[
∂2g (s, t)

∂(s, t)⊺∂(s, t)
I2

]
+ o

(
h2
)

(A.1.6)

=C2|1 (Φ(t) | Φ(s)) +
h2

2ϕ (s)

[
∂2g (s, t)

∂s2
+
∂2g (s, t)

∂t2

]
+ o

(
h2
)
, (A.1.7)
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where (A.1.4) follows from Taylor expansion of g (s− hus, t− hut) at (s, t); (A.1.5) follows from the

fact in (A.1.2), the second term in (A.1.4) integrates to 0, and u = (us, ut)
⊺; (A.1.6) follows from

∫∫
R2

ϕ (us)ϕ (ut)uu
⊺dusdut = I2,

which is 2 by 2 identity matrix.

The rest of the proof follows directly from substituting the second order partial derivatives ofg (s, t) =

ϕ (s) C2|1 (Φ(t) | Φ(s)) into (A.1.7).

Lemma A.1.4. Let h → 0 as n → ∞. When n → ∞, we have the following result holds for An(s, t)

defined in (3.9.13), for any (s, t) ∈ R2,

Var [An(s, t)] =
1

nh
σ2 (Φ(s),Φ(t)) + o

(
1

nh

)
,

where σ2(·, ·) is given in Section 3.8.

Proof. By Lemma A.1.3, when n→ ∞, we have

E [Bn [s, t; (si, ti)]] = hC2|1(Φ(t) | Φ(s)) + h3B(Φ(s),Φ(t)) + o(h3). (A.1.8)

Besides, by definition ofAn(·, ·), and Lemmas A.1.1 and A.1.2, we have

E
[
B2
n [s, t; (si, ti)]

]
=E

[
ϕ2
(
s−si
h

)
Φ2
(
t−ti
h

)
ϕ2 (s)

]
+ E

[
B2

n,1,i (s, t)
]
+ 2E [Bn,1,i (s, t)Bn,2,i (s, t)]
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+ 2E

[
ϕ
(
s−si
h

)
Φ
(
t−ti
h

)
ϕ (s)

Bn,1,i (s, t)

]
+ 2E

[
ϕ
(
s−si
h

)
Φ
(
t−ti
h

)
ϕ (s)

Bn,2,i (s, t)

]
+ o(h)

.
=

5∑
k=1

In2k(s, t) + o(h). (A.1.9)

Then we consider the five terms separately.

1. For In21(s, t), similar with the proof of Lemma A.1.3, when h→ 0 as n→ ∞, we have

In21(s, t)

=
1

ϕ2 (s)

∫∫
R2

ϕ2

(
s− s∗

h

)
Φ2

(
t− t∗

h

)
fS,T (s∗, t∗) dt∗ds∗

=
1

ϕ2 (s)

∫
R
ϕ2

(
s− s∗

h

){[
Φ2

(
t− t∗

h

)∫ t∗

−∞
fS,T (s∗, x) dx

] ∣∣∣∣∣
∞

t∗=−∞

+

∫
R

2

h
Φ

(
t− t∗

h

)
ϕ

(
t− t∗

h

)∫ t∗

−∞
fS,T (s∗, x) dxdt∗

}
ds∗ (A.1.10)

=
2

hϕ2 (s)

∫∫
R2

ϕ2

(
s− s∗

h

)
Φ

(
t− t∗

h

)
ϕ

(
t− t∗

h

)
∫ t∗

−∞
fS,T (s∗, x) dxdt∗ds∗ (A.1.11)

=
2h

ϕ2 (s)

∫∫
R2

ϕ2 (us)ϕ (ut) Φ (ut) g (s− hus, t− hut) dutdus (A.1.12)

=
2h

ϕ (s)
C2|1 (Φ(t) | Φ(s))

∫∫
R2

ϕ2 (us)ϕ (ut) Φ (ut) dutdus + o(h) (A.1.13)

=
h

2
√
π

C2|1 (Φ(t) | Φ(s))
ϕ (s)

+ o(h), (A.1.14)

where (A.1.10) follows from similar integration by parts with (A.1.1); (A.1.11) follows from

[
Φ2

(
t− t∗

h

)∫ t∗

−∞
fS,T (s∗, x) dx

] ∣∣∣∞
t∗=−∞

= 0,
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which is induced by similar analysis in Lemma A.1.3; (A.1.12) follows from the same change of

variables in (A.1.3); (A.1.13) follows from Taylor expansion at (s, t), and the truth in (A.1.2); (A.1.14)

follows from ∫∫
R2

ϕ2 (us) · ϕ (ut) Φ (ut) dutdus =
1

4
√
π
.

2. When h→ 0 as n→ ∞, the result of In22(s, t) is given in Lemma A.1.1.

3. For In23(s, t), similar with the proof of Lemmas A.1.1 and A.1.2, when h → 0 as n → ∞, by

definition and Taylor expansions at (s, t), we have

In23(s, t)

=2E

[
1

ϕ2 (s)

∫∫∫∫
R4

1{si⩽s−hwu1}1{ti⩽t−hwv2}

∂C
∂u

(Φ (s− hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s− hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

]

=
2

ϕ2 (s)

∫∫∫∫
R4

E
[
1{si⩽s−hwu1}1{ti⩽t−hwv2}

]
∂C
∂u

(Φ (s− hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s− hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

=
2

ϕ2 (s)

∫∫∫∫
R4

FS,T (s− hwu1, t− hwv2)

∂C
∂u

(Φ (s− hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s− hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

=
2

ϕ2 (s)

∫∫∫∫
R4

{
FS,T (s, t)

∂C
∂u

(Φ (s) ,Φ (t))
∂C
∂v

(Φ (s) ,Φ (t))
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− ∂C
∂u

(Φ (s) ,Φ (t))
∂C
∂v

(Φ (s) ,Φ (t))
∂FS,T (s, t)

∂(s, t)⊺
(hwu1, hwv2)

⊺

− FS,T (s, t)
∂C
∂v

(Φ (s) ,Φ (t))
∂
[
∂C
∂u

(Φ (s) ,Φ (t))
]

∂(s, t)⊺
(hwu1, hwv1)

⊺

− FS,T (s, t)
∂C
∂u

(Φ (s) ,Φ (t))
∂
[
∂C
∂v

(Φ (s) ,Φ (t))
]

∂(s, t)⊺
(hwu2, hwv2)

⊺

}

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2 + o(h)

=o(h).

4. For In24(s, t), similar with the proof of Lemma A.1.3, when h→ 0 as n→ ∞, we have

In24(s, t)

=− 2

ϕ2 (s)
E

[∫∫
R2

ϕ

(
s− si
h

)
Φ

(
t− ti
h

)
1{si⩽s−hwu}

∂C
∂u

(Φ (s− hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

]

=− 2

ϕ2 (s)

∫∫
R2

E
[
ϕ

(
s− si
h

)
Φ

(
t− ti
h

)
1{si⩽s−hwu}

]
∂C
∂u

(Φ (s− hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

=− 2

ϕ2 (s)

∫∫
R2

∫ s−hwu

−∞
ϕ

(
s− s∗

h

)∫
R
Φ

(
t− t∗

h

)
fS,T (s∗, t∗) dt∗ds∗

∂C
∂u

(Φ (s− hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

=− 2

ϕ2 (s)

∫∫
R2

∫ s−hwu

−∞
ϕ

(
s− s∗

h

)
{[

Φ

(
t− t∗

h

)∫ t∗

−∞
fS,T (s∗, x) dx

] ∣∣∣∣∣
∞

t∗=−∞

+
1

h

∫
R
ϕ

(
t− t∗

h

)∫ t∗

−∞
fS,T (s∗, x) dxdt∗

}
ds∗
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∂C
∂u

(Φ (s− hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu (A.1.15)

=− 1

h

2

ϕ2 (s)

∫∫
R2

∫ s−hwu

−∞
ϕ

(
s− s∗

h

)∫
R
ϕ

(
t− t∗

h

)∫ t∗

−∞
fS,T (s∗, x)

dxdt∗ds∗
∂C
∂u

(Φ (s− hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu (A.1.16)

=− h
2

ϕ2 (s)

∫∫
R2

∫ ∞

wu

ϕ (zs)

∫
R
ϕ (zt) g (s− hzs, t− hzt) dztdzs

∂C
∂u

(Φ (s− hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu (A.1.17)

=− h
2C2

2|1 (Φ (t) | Φ (s))

ϕ (s)

∫∫
R2

∫ ∞

wu

ϕ (zs)

∫
R
ϕ (zt) dztdzs

ϕ′ (wu)ϕ (wv) dwvdwu + o(h) (A.1.18)

=− h
C2
2|1 (Φ (t) | Φ (s))

√
πϕ (s)

+ o(h), (A.1.19)

where (A.1.15) follows from similar integration by parts with (A.1.1); (A.1.16) follows from

[
Φ

(
t− t∗

h

)∫ t∗

−∞
fS,T (s∗, x) dx

] ∣∣∣∞
t∗=−∞

= 0,

which is analyzed in Lemma A.1.3; (A.1.17) follows from change of variables, zt = t−t∗

h
, and zs =

s−s∗

h
; (A.1.18) follows from Taylor expansions at (s, t), the truth in (A.1.2), and the definition of

C2|1(· | ·); (A.1.19) follows from

∫∫
R2

∫ ∞

wu

ϕ (zs)

∫
R
ϕ (zt) dztdzsϕ

′ (wu)ϕ (wv) dwvdwu =
1

2
√
π
.
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5. For In25(s, t), similar with the proof of Lemma A.1.3, when h→ 0 as n→ ∞, we have

In25(s, t)

=− 2

ϕ2 (s)
E

[∫∫
R2

ϕ

(
s− si
h

)
Φ

(
t− ti
h

)
1{ti⩽t−hwv}

∂C
∂v

(Φ (s− hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

]

=− 2

ϕ2 (s)

∫∫
R2

E
[
ϕ

(
s− si
h

)
Φ

(
t− ti
h

)
1{ti⩽t−hwv}

]
∂C
∂v

(Φ (s− hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

=− 2

ϕ2 (s)

∫∫
R2

∫
R
ϕ

(
s− s∗

h

)∫ t−hwv

−∞
Φ

(
t− t∗

h

)
fS,T (s∗, t∗) dt∗ds∗

∂C
∂v

(Φ (s− hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

=− 2

ϕ2 (s)

∫∫
R2

∫
R
ϕ

(
s− s∗

h

)
{[

Φ

(
t− t∗

h

)∫ t∗

−∞
fS,T (s∗, x) dx

] ∣∣∣∣∣
t−hwv

t∗=−∞

+
1

h

∫ t−hwv

−∞
ϕ

(
t− t∗

h

)∫ t∗

−∞
fS,T (s∗, x) dxdt∗

}
ds∗

∂C
∂v

(Φ (s− hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu (A.1.20)

=− 2

ϕ2 (s)

∫∫
R2

∫
R
ϕ

(
s− s∗

h

)
{
Φ (wv) g (s

∗, t− hwv) +
1

h

∫ t−hwv

−∞
ϕ

(
t− t∗

h

)
g(s∗, t∗)dt∗

}
ds∗

∂C
∂v

(Φ (s− hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

=− h
2

ϕ2 (s)

∫∫
R2

∫
R
ϕ (zs){

Φ (wv) g (s− hzs, t− hwv) +

∫ ∞

wv

ϕ (zt) g(s− hzs, t− hzt)dzt

}
dzs
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∂C
∂v

(Φ (s− hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu (A.1.21)

=− h
2C2|1 (Φ (t) | Φ (s)) C1|2 (Φ (s) | Φ (t))

ϕ (s)∫∫∫
R3

ϕ (zs) Φ (wv) dzsϕ
′ (wu)ϕ (wv) dwvdwu

− h
2C2|1 (Φ (t) | Φ (s)) C1|2 (Φ (s) | Φ (t))

ϕ (s)∫∫∫
R3

ϕ (zs)

∫ ∞

wv

ϕ (zt) dztdzsϕ
′ (wu)ϕ (wv) dwvdwu + o(h) (A.1.22)

=o(h),

where (A.1.20) follows from similar integration by parts with (A.1.1); (A.1.21) follows from change

of variables, zt = t−t∗

h
, and zs = s−s∗

h
; (A.1.22) follows from Taylor expansions at (s, t), the truth

in (A.1.2), and the definition of C1|2(· | ·).

Combining all above results and by (A.1.9), we have

E
[
B2
n [s, t; (si, ti)]

]
=

h

2
√
π

C2|1 (Φ(t) | Φ (s))

ϕ (s)
− h

2
√
π

C2
2|1 (Φ(t) | Φ (s))

ϕ (s)
+ o(h), (A.1.23)

as n→ ∞. Results in (A.1.8) and (A.1.23) induce

Var [Bn [s, t; (si, ti)]] =E
[
B2
n [s, t; (si, ti)]

]
− {E [Bn [s, t; (si, ti)]]}2

=h

[
1

2
√
π

C2|1 (Φ(t) | Φ (s))

ϕ (s)
− 1

2
√
π

C2
2|1 (Φ(t) | Φ (s))

ϕ (s)

]

+ o(h), (A.1.24)
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as n→ ∞. Consequently, by definition ofAn(·, ·), and (si, ti)
i.i.d.∼ FS,T , i = 1, · · · , n, we have

Var [An(s, t)] =n
−1h−2Var [Bn [s, t; (si, ti)]]

=
1

nh

[
1

2
√
π

C2|1 (Φ(t) | Φ (s))

ϕ (s)
− 1

2
√
π

C2
2|1 (Φ(t) | Φ (s))

ϕ (s)

]

+ o

(
1

nh

)
. (A.1.25)

Lemma A.1.5. Let h→ 0, and nh→ ∞ as n→ ∞. When n→ ∞, we have the following result holds

forAn(s, t) defined in (3.9.13), for any (s, t) ∈ R2,

√
nh
[
An(s, t)− C2|1(Φ(t) | Φ(s))− h2B(Φ(s),Φ(t))− o(h2)

] d−→ N
(
0, σ2 (Φ(s),Φ(t))

)
,

whereB(·, ·) and σ2(·, ·) are given in Section 3.8.

Proof. By similar with the proof in Lemmas A.1.3 and A.1.4, it is easy to find E
[
|Bn [s, t; (si, ti)]|3

]
=

O(h). Hence, together with the definition ofAn(·, ·), and (A.1.23), we have

σ2
in
.
=Var

[
Bn [s, t; (si, ti)]

h

]
= O

(
1

h

)
,

ρin
.
=E

[∣∣∣∣Bn [s, t; (si, ti)]

h
− E

[
Bn [s, t; (si, ti)]

h

]∣∣∣∣3
]

⩽E

[(∣∣∣∣Bn [s, t; (si, ti)]

h

∣∣∣∣+ ∣∣∣∣E [Bn [s, t; (si, ti)]

h

]∣∣∣∣)3
]

⩽8E

[∣∣∣∣Bn [s, t; (si, ti)]

h

∣∣∣∣3
]
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=O
(

1

h2

)
,

as n→ ∞. Then, when nh→ ∞ as n→ ∞, we have

(
∑n

i=1 ρin)
1
3

(
∑n

i=1 σ
2
in)

1
2

⩽O
(
n

1
3h−

2
3

)
· O
(
n− 1

2h
1
2

)
=O

(
(nh)−

1
6

)
→ 0,

as n→ ∞. Then by Liapunov’s CLT for Triangular Arrays, we have asymptotic normality ofAn(s, t) =

1
n

∑n
i=1

Bn[s,t;(si,ti)]
h

. The rest of the proof follows directly from Lemmas A.1.3 and A.1.4.

Lemma A.1.6. Suppose Condition 3.4 holds. Let h → 0 as n → ∞. For In1 defined in (3.9.14), consider

In1
.
= 1

nh

∑n
i=1 Zn1i. For any quantile level α ∈ (0, 1), we have the following results hold as n→ ∞.

(a) When Y is quantile independent withX at the quantile level α, we have

E [Zn1i] =0,

E
[
Z2

n1i

]
= Var [Zn1i] =h

6σ2
⊥α,1(ω) + o(h6),

where σ2
⊥α,1

(ω) is defined in Section 3.8. Correspondingly, we have In1
d−→ N

(
0, n−1h4σ2

⊥α,1
(ω)
)

.

(b) When Y is quantile dependent withX at the quantile level α, we have

E [Zn1i] =0,

E
[
Z2

n1i

]
= Var [Zn1i] =h

2σ2
̸⊥α,1(ω) + o(h2),
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where σ2
̸⊥α,1

(ω) is defined in Section 3.8. Correspondingly, we have In1
d−→ N

(
0, n−1σ2

̸⊥α,1
(ω)
)

.

Proof. With t = Φ−1(α), we defineZn1i
.
= Yn1i − E [Yn1i], where

Yn1i =

∫
R
Bn [s, t; (si, ti)] {E [An (s, t)]− α}ϕ (s)ω (Φ (s)) ds.

Define t(k)n = E
[
Y k
n1i

]
for k ∈ Z+, then we have

t(1)n =

∫
R
E [Bn [s, t; (si, ti)]] {E [An (s, t)]− α}ϕ (s)ω (Φ (s)) ds.

By Lemma A.1.3, and (A.1.8), we have

t(1)n =h3α

∫
R
B(Φ (s) ,Φ(t))ϕ (s)ω (Φ (s)) ds+ o(h3), if Y ⊥α X,

(A.1.26)

t(1)n =h

∫
R
C2|1 (Φ(t) | Φ (s))

[
C2|1 (Φ(t) | Φ (s))− α

]
ϕ (s)ω (Φ (s)) ds+O(h3), if Y ̸⊥α X,

(A.1.27)

as n→ ∞. Then, we consider

t(2)n

=E
[
Y 2
n1i

]
=E
[ ∫∫

R2

Bn [s∗1, t; (si, ti)] {E [An (s∗1, t)]− α}ϕ (s∗1)ω (Φ (s∗1))

Bn [s∗2, t; (si, ti)] {E [An (s∗2, t)]− α}ϕ (s∗2)ω (Φ (s∗2)) ds∗2ds∗1

]
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=

∫∫
R2

E (Bn [s∗1, t; (si, ti)]Bn [s∗2, t; (si, ti)])

{[
C2|1 (Φ(t) | Φ (s∗1))− α

]
+ h2B(Φ (s∗1) ,Φ(t)) + o(h2)

}
ϕ (s∗1)ω (Φ (s∗1)){[

C2|1 (Φ(t) | Φ (s∗2))− α
]
+ h2B(Φ (s∗2) ,Φ(t)) + o(h2)

}
ϕ (s∗2)ω (Φ (s∗2))

ds∗2ds∗1, (A.1.28)

when h→ 0 as n→ ∞. Then, by definition ofAn(·, ·), we have

E (Bn [s∗1, t; (si, ti)]Bn [s∗2, t; (si, ti)])

=E

{[
ϕ
(
s∗1−si

h

)
ϕ (s∗1)

Φ

(
t− ti
h

)
+Bn,1,i (s∗1, t) +Bn,2,i (s∗1, t)

− E [Bn,1,i (s∗1, t)]− E [Bn,2,i (s∗1, t)]

]
[
ϕ
(
s∗2−si

h

)
ϕ (s∗2)

Φ

(
t− ti
h

)
+Bn,1,i (s∗2, t) +Bn,2,i (s∗2, t)

− E [Bn,1,i (s∗2, t)]− E [Bn,2,i (s∗2, t)]

]}

=E

[
ϕ
(
s∗1−si

h

)
ϕ (s∗1)

Φ

(
t− ti
h

)
ϕ
(
s∗2−si

h

)
ϕ (s∗2)

Φ

(
t− ti
h

)]

+ E

[
ϕ
(
s∗1−si

h

)
ϕ (s∗1)

Φ

(
t− ti
h

)
Bn,1,i (s∗2, t)

]

+ E

[
ϕ
(
s∗1−si

h

)
ϕ (s∗1)

Φ

(
t− ti
h

)
Bn,2,i (s∗2, t)

]

− E

[
ϕ
(
s∗1−si

h

)
ϕ (s∗1)

Φ

(
t− ti
h

)]
(E [Bn,1,i (s∗2, t)] + E [Bn,2,i (s∗2, t)])

+ E

[
ϕ
(
s∗2−si

h

)
ϕ (s∗2)

Φ

(
t− ti
h

)
Bn,1,i (s∗1, t)

]

+ E [Bn,1,i (s∗1, t)Bn,1,i (s∗2, t)]
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+ E [Bn,1,i (s∗1, t)Bn,2,i (s∗2, t)]

+ E

[
ϕ
(
s∗2−si

h

)
ϕ (s∗2)

Φ

(
t− ti
h

)
Bn,2,i (s∗1, t)

]

+ E [Bn,1,i (s∗2, t)Bn,2,i (s∗1, t)]

+ E [Bn,2,i (s∗1, t)Bn,2,i (s∗2, t)]

− E

[
ϕ
(
s∗2−si

h

)
ϕ (s∗2)

Φ

(
t− ti
h

)]
(E [Bn,1,i (s∗1, t)] + E [Bn,2,i (s∗1, t)])

− (E [Bn,1,i (s∗1, t)] + E [Bn,2,i (s∗1, t)]) (E [Bn,1,i (s∗2, t)] + E [Bn,2,i (s∗2, t)])

.
=

12∑
k=1

In1k(s∗1, s∗2, t), (A.1.29)

where we consider the twelve terms separately.

1. For In11(s∗1, s∗2, t), by similar integration by parts in (A.1.1), we have

In11(s∗1, s∗2, t)

=

∫∫
R2

ϕ
(
s∗1−s∗

h

)
ϕ (s∗1)

ϕ
(
s∗2−s∗

h

)
ϕ (s∗2)

Φ2

(
t− t∗

h

)
fS,T (s∗, t∗) dt∗ds∗

=
2

h

1

ϕ (s∗1)

1

ϕ (s∗2)

∫
R
ϕ

(
s∗1 − s∗

h

)
ϕ

(
s∗2 − s∗

h

)
∫
R
ϕ

(
t− t∗

h

)
Φ

(
t− t∗

h

){∫ t∗

−∞
fS,T (s∗, x) dx

}
dt∗ds∗.

Then, with change of variables zs = s∗1−s∗

h
, and zt = t−t∗

h
, and the fact in (A.1.2), we have

In11(s∗1, s∗2, t) =2h
1

ϕ (s∗1)

1

ϕ (s∗2)

∫
R
ϕ (zs)ϕ

(
zs +

s∗2 − s∗1
h

)
∫
R
ϕ (zt) Φ (zt) g(s∗1 − hzs, t− hzt)dztdzs.
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2. For In12(s∗1, s∗2, t), by similar integration by parts in (A.1.1), we have

In12(s∗1, s∗2, t)

=
−1

ϕ (s∗1)ϕ (s∗2)

∫∫
R2

∫ s∗2−hwu

−∞
ϕ

(
s∗1 − s∗

h

)∫
R
Φ

(
t− t∗

h

)
fS,T (s∗, t∗)

dt∗ds∗
∂C
∂u

(Φ (s∗2 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

=
−1

hϕ (s∗1)ϕ (s∗2)

∫∫
R2

∫ s∗2−hwu

−∞
ϕ

(
s∗1 − s∗

h

)∫
R
ϕ

(
t− t∗

h

)
∫ t∗

−∞
fS,T (s∗, x) dxdt∗ds∗

∂C
∂u

(Φ (s∗2 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu.

Then, with change of variables zt = t−t∗

h
and zs = s∗1−s∗

h
, and the fact in (A.1.2), we have

In12(s∗1, s∗2, t)

=− h

ϕ (s∗1)ϕ (s∗2)

∫∫
R2

∫ ∞

s∗1−s∗2
h

+wu

ϕ (zs)

∫
R
ϕ (zt) g (s∗1 − hzs, t− hzt)

dztdzs
∂C
∂u

(Φ (s∗2 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu.

3. For In13(s∗1, s∗2, t), by similar integration by parts in (A.1.1), we have

In13(s∗1, s∗2, t)

=
−1

ϕ (s∗1)ϕ (s∗2)

∫∫
R2

∫
R
ϕ

(
s∗1 − s∗

h

)∫ t−hwv

−∞
Φ

(
t− t∗

h

)
fS,T (s∗, t∗)

dt∗ds∗
∂C
∂v

(Φ (s∗2 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu
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=
−1

ϕ (s∗1)ϕ (s∗2)

∫∫
R2

∫
R
ϕ

(
s∗1 − s∗

h

){
Φ (wv)

∫ t−hwv

−∞
fS,T (s∗, x) dx

+
1

h

∫ t−hwv

−∞
ϕ

(
t− t∗

h

)∫ t∗

−∞
fS,T (s∗, x) dxdt∗

}
ds∗

∂C
∂v

(Φ (s∗2 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu.

Then, with change of variables zt = t−t∗

h
and zs = s∗1−s∗

h
, and the fact in (A.1.2), we have

In13(s∗1, s∗2, t)

=
−h

ϕ (s∗1)ϕ (s∗2)

∫∫
R2

∫
R
ϕ (zs)

[
Φ (wv) g (s∗1 − hzs, t− hwv)

+

∫ ∞

wv

ϕ (zt) g (s∗1 − hzs, t− hzt) dzt

]
dzs

∂C
∂v

(Φ (s∗2 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu.

4. For In14(s∗1, s∗2, t), by Lemmas A.1.1, A.1.2 and A.1.3, we have

In14(s∗1, s∗2, t)

=h2
[
C2|1(Φ(t) | Φ(s∗1))

]
[
C2|1 (Φ (t) | Φ (s∗2)) + Φ (s∗2)

∂2C
∂u2

(Φ (s∗2) ,Φ (t))

+ Φ (t)
∂2C
∂u∂v

(Φ (s∗2) ,Φ (t))

]
+ o(h2).

5. For In15(s∗1, s∗2, t), it is easy to find that In15(s∗1, s∗2, t) = In12(s∗2, s∗1, t).
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6. For In16(s∗1, s∗2, t), by normality of si, we have

In16(s∗1, s∗2, t)

=
1

ϕ (s∗1)ϕ (s∗2)

∫∫∫∫
R4

Φ (min{s∗1 − hwu1, s∗2 − hwu2})

∂C
∂u

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂u

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwu1dwu2dwv1dwv2

=
1

ϕ (s∗1)ϕ (s∗2)

∫∫∫
R3

∫ ∞

s∗1−s∗2
h

+wu2

Φ (s∗1 − hwu1)

∂C
∂u

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂u

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwu1dwu2dwv1dwv2

+
1

ϕ (s∗1)ϕ (s∗2)

∫∫∫
R3

∫ s∗1−s∗2
h

+wu2

−∞
Φ (s∗2 − hwu2)

∂C
∂u

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂u

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwu1dwu2dwv1dwv2.

7. For In17(s∗1, s∗2, t), by definition, we have

In17(s∗1, s∗2, t)

=
1

ϕ (s∗1)ϕ (s∗2)

∫∫∫∫
R4

FS,T (s∗1 − hwu1, t− hwv2)

∂C
∂u

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2.
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8. For In18(s∗1, s∗2, t), it is easy to find that In18(s∗1, s∗2, t) = In13(s∗2, s∗1, t).

9. For In19(s∗1, s∗2, t), it is easy to find that In19(s∗1, s∗2, t) = In17(s∗2, s∗1, t).

10. For In110(s∗1, s∗2, t), by normality of ti, we have

In110(s∗1, s∗2, t)

=
1

ϕ (s∗1)ϕ (s∗2)

∫∫∫∫
R4

Φ (t− hmax{wv1, wv2})

∂C
∂v

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

=
1

ϕ (s∗1)ϕ (s∗2)

∫∫∫
R3

∫ ∞

wv1

Φ (t− hwv2)

∂C
∂v

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv2dwv1dwu1dwu2

+
1

ϕ (s∗1)ϕ (s∗2)

∫∫∫
R3

∫ wv1

−∞
Φ (t− hwv1)

∂C
∂v

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv2dwv1dwu1dwu2.

11. For In111(s∗1, s∗2, t), it is easy to find that In111(s∗1, s∗2, t) = In14(s∗2, s∗1, t).

12. For In112(s∗1, s∗2, t), by Lemmas A.1.1 and A.1.2, we have

In112(s∗1, s∗2, t)

=− h2
[
C2|1 (Φ (t) | Φ (s∗1)) + Φ (s∗1)

∂2C
∂u2

(Φ (s∗1) ,Φ (t))
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+ Φ(t)
∂2C
∂u∂v

(Φ (s∗1) ,Φ (t))

]
[
C2|1 (Φ (t) | Φ (s∗2)) + Φ (s∗2)

∂2C
∂u2

(Φ (s∗2) ,Φ (t))

+ Φ (t)
∂2C
∂u∂v

(Φ (s∗2) ,Φ (t))

]
+ o(h2).

Substituting the above results and (A.1.29) back into (A.1.28), we could have

t(2)n

=

∫∫
R2

12∑
k=1

In1k(s∗1, s∗2, t)

{[
C2|1 (Φ(t) | Φ (s∗1))− α

]
+ h2B(Φ (s∗1) ,Φ(t)) + o(h2)

}
ϕ (s∗1)ω (Φ (s∗1)){[

C2|1 (Φ(t) | Φ (s∗2))− α
]
+ h2B(Φ (s∗2) ,Φ(t)) + o(h2)

}
ϕ (s∗2)ω (Φ (s∗2))

ds∗2ds∗1

=

∫∫
R2

[
2h

∫
R
ϕ (zs)ϕ

(
zs +

s∗2 − s∗1
h

)
∫
R
ϕ (zt) Φ (zt) g(s∗1 − hzs, t− hzt)dztdzs

− h

∫∫
R2

∫ ∞

s∗1−s∗2
h

+wu

ϕ (zs)

∫
R
ϕ (zt) g (s∗1 − hzs, t− hzt)

dztdzs
∂C
∂u

(Φ (s∗2 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

− h

∫∫
R2

∫ ∞

s∗2−s∗1
h

+wu

ϕ (zs)

∫
R
ϕ (zt) g (s∗2 − hzs, t− hzt)

dztdzs
∂C
∂u

(Φ (s∗1 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

+

∫∫∫
R3

∫ ∞

s∗1−s∗2
h

+wu2

Φ (s∗1 − hwu1)
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∂C
∂u

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂u

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwu1dwu2dwv1dwv2

+

∫∫∫
R3

∫ s∗1−s∗2
h

+wu2

−∞
Φ (s∗2 − hwu2)

∂C
∂u

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂u

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwu1dwu2dwv1dwv2

]
{[

C2|1 (Φ(t) | Φ (s∗1))− α
]
+ h2B(Φ (s∗1) ,Φ(t)) + o(h2)

}
ω (Φ (s∗1)){[

C2|1 (Φ(t) | Φ (s∗2))− α
]
+ h2B(Φ (s∗2) ,Φ(t)) + o(h2)

}
ω (Φ (s∗2)) ds∗2ds∗1 (A.1.30)

+

∫∫
R2

{
− h

ϕ (s∗1)ϕ (s∗2)

∫∫
R2

∫
R
ϕ (zs)

[
Φ (wv) g (s∗1 − hzs, t− hwv)

+

∫ ∞

wv

ϕ (zt) g (s∗1 − hzs, t− hzt) dzt

]
dzs

∂C
∂v

(Φ (s∗2 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

− h

ϕ (s∗1)ϕ (s∗2)

∫∫
R2

∫
R
ϕ (zs)

[
Φ (wv) g (s∗2 − hzs, t− hwv)

+

∫ ∞

wv

ϕ (zt) g (s∗2 − hzs, t− hzt) dzt

]
dzs

∂C
∂v

(Φ (s∗1 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

+ h2
[
C2|1(Φ(t) | Φ(s∗1))

] [
C2|1 (Φ (t) | Φ (s∗2)) + Φ (s∗2)

∂2C
∂u2

(Φ (s∗2) ,Φ (t))

+ Φ (t)
∂2C
∂u∂v

(Φ (s∗2) ,Φ (t))

]
+ o(h2)

+ h2
[
C2|1(Φ(t) | Φ(s∗2))

] [
C2|1 (Φ (t) | Φ (s∗1)) + Φ (s∗1)

∂2C
∂u2

(Φ (s∗1) ,Φ (t))

+ Φ (t)
∂2C
∂u∂v

(Φ (s∗1) ,Φ (t))

]
+ o(h2)

+
1

ϕ (s∗1)ϕ (s∗2)

∫∫∫∫
R4

FS,T (s∗1 − hwu1, t− hwv2)
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∂C
∂u

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

+
1

ϕ (s∗1)ϕ (s∗2)

∫∫∫∫
R4

FS,T (s∗2 − hwu1, t− hwv2)

∂C
∂u

(Φ (s∗2 − hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s∗1 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

+
1

ϕ (s∗1)ϕ (s∗2)

∫∫∫
R3

∫ ∞

wv1

Φ (t− hwv2)

∂C
∂v

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv2dwv1dwu1dwu2

+
1

ϕ (s∗1)ϕ (s∗2)

∫∫∫
R3

∫ wv1

−∞
Φ (t− hwv1)

∂C
∂v

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv2dwv1dwu1dwu2

− h2
[
C2|1 (Φ (t) | Φ (s∗1)) + Φ (s∗1)

∂2C
∂u2

(Φ (s∗1) ,Φ (t))

+ Φ (t)
∂2C
∂u∂v

(Φ (s∗1) ,Φ (t))

]
[
C2|1 (Φ (t) | Φ (s∗2)) + Φ (s∗2)

∂2C
∂u2

(Φ (s∗2) ,Φ (t))

+ Φ (t)
∂2C
∂u∂v

(Φ (s∗2) ,Φ (t))

]
+ o(h2)

}
{[

C2|1 (Φ(t) | Φ (s∗1))− α
]
+ h2B(Φ (s∗1) ,Φ(t)) + o(h2)

}
ϕ (s∗1)ω (Φ (s∗1)){[

C2|1 (Φ(t) | Φ (s∗2))− α
]
+ h2B(Φ (s∗2) ,Φ(t)) + o(h2)

}
ϕ (s∗2)ω (Φ (s∗2))

ds∗2ds∗1
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=

∫∫
R2

[
2h2

∫
R
ϕ (zs)ϕ (zs + u)

∫
R
ϕ (zt) Φ (zt) g(s∗1 − hzs, t− hzt)dztdzs

− h2
∫∫

R2

∫ ∞

wu−u

ϕ (zs)

∫
R
ϕ (zt) g (s∗1 − hzs, t− hzt) dztdzs

∂C
∂u

(Φ (s∗1 + hu− hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

− h2
∫∫

R2

∫ ∞

wu+u

ϕ (zs)

∫
R
ϕ (zt) g (s∗1 + hu− hzs, t− hzt) dztdzs

∂C
∂u

(Φ (s∗1 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

+ h

∫∫∫
R3

∫ ∞

wu2−u

Φ (s∗1 − hwu1)

∂C
∂u

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂u

(Φ (s∗1 + hu− hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwu1dwu2dwv1dwv2

+ h

∫∫∫
R3

∫ wu2−u

−∞
Φ (s∗1 + hu− hwu2)

∂C
∂u

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂u

(Φ (s∗1 + hu− hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwu1dwu2dwv1dwv2

]
{[

C2|1 (Φ(t) | Φ (s∗1))− α
]
+ h2B(Φ (s∗1) ,Φ(t)) + o(h2)

}
ω (Φ (s∗1)){[

C2|1 (Φ(t) | Φ (s∗1 + hu))− α
]
+ h2B(Φ (s∗1 + hu) ,Φ(t)) + o(h2)

}
ω (Φ (s∗1 + hu)) duds∗1

+

∫∫
R2

{
− h

ϕ (s∗1)ϕ (s∗2)

∫∫
R2

∫
R
ϕ (zs)

[
Φ (wv) g (s∗1 − hzs, t− hwv)

+

∫ ∞

wv

ϕ (zt) g (s∗1 − hzs, t− hzt) dzt

]
dzs

∂C
∂v

(Φ (s∗2 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

− h

ϕ (s∗1)ϕ (s∗2)

∫∫
R2

∫
R
ϕ (zs)

[
Φ (wv) g (s∗2 − hzs, t− hwv)
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+

∫ ∞

wv

ϕ (zt) g (s∗2 − hzs, t− hzt) dzt

]
dzs

∂C
∂v

(Φ (s∗1 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

+ h2
[
C2|1(Φ(t) | Φ(s∗1))

] [
C2|1 (Φ (t) | Φ (s∗2)) + Φ (s∗2)

∂2C
∂u2

(Φ (s∗2) ,Φ (t))

+ Φ (t)
∂2C
∂u∂v

(Φ (s∗2) ,Φ (t))

]
+ o(h2)

+ h2
[
C2|1(Φ(t) | Φ(s∗2))

] [
C2|1 (Φ (t) | Φ (s∗1)) + Φ (s∗1)

∂2C
∂u2

(Φ (s∗1) ,Φ (t))

+ Φ (t)
∂2C
∂u∂v

(Φ (s∗1) ,Φ (t))

]
+ o(h2)

+
1

ϕ (s∗1)ϕ (s∗2)

∫∫∫∫
R4

FS,T (s∗1 − hwu1, t− hwv2)

∂C
∂u

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

+
1

ϕ (s∗1)ϕ (s∗2)

∫∫∫∫
R4

FS,T (s∗2 − hwu1, t− hwv2)

∂C
∂u

(Φ (s∗2 − hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s∗1 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

+
1

ϕ (s∗1)ϕ (s∗2)

∫∫∫
R3

∫ ∞

wv1

Φ (t− hwv2)

∂C
∂v

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv2dwv1dwu1dwu2

+
1

ϕ (s∗1)ϕ (s∗2)

∫∫∫
R3

∫ wv1

−∞
Φ (t− hwv1)

∂C
∂v

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv2dwv1dwu1dwu2
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− h2
[
C2|1 (Φ (t) | Φ (s∗1)) + Φ (s∗1)

∂2C
∂u2

(Φ (s∗1) ,Φ (t))

+ Φ (t)
∂2C
∂u∂v

(Φ (s∗1) ,Φ (t))

]
[
C2|1 (Φ (t) | Φ (s∗2)) + Φ (s∗2)

∂2C
∂u2

(Φ (s∗2) ,Φ (t))

+ Φ (t)
∂2C
∂u∂v

(Φ (s∗2) ,Φ (t))

]
+ o(h2)

}
{[

C2|1 (Φ(t) | Φ (s∗1))− α
]
+ h2B(Φ (s∗1) ,Φ(t)) + o(h2)

}
ϕ (s∗1)ω (Φ (s∗1)){[

C2|1 (Φ(t) | Φ (s∗2))− α
]
+ h2B(Φ (s∗2) ,Φ(t)) + o(h2)

}
ϕ (s∗2)ω (Φ (s∗2))

ds∗2ds∗1,

where the last equality follows from change of variable u = s∗2−s∗1
h

to (A.1.30). Then we consider two

different cases.

1. If Y ⊥α X , by the fact that C2|1 (Φ(t) | Φ (s)) = C2|1 (α | Φ (s)) ≡ α, applying Taylor expan-

sions at (s∗1, t), and the fact in (A.1.2), we have

t(2)n

=h6
∫∫

R2

{
2αϕ (s∗1)

∫
R
ϕ (zs)ϕ (zs + u)

∫
R
ϕ (zt) Φ (zt) dztdzs

− α2ϕ (s∗1)

∫∫
R2

∫ ∞

wu−u

ϕ (zs)

∫
R
ϕ (zt) dztdzsϕ

′ (wu)ϕ (wv) dwvdwu

− α2ϕ (s∗1)

∫∫
R2

∫ ∞

wu+u

ϕ (zs)

∫
R
ϕ (zt) dztdzsϕ

′ (wu)ϕ (wv) dwvdwu

− α2ϕ (s∗1)

∫∫∫
R3

∫ ∞

wu2−u

wu1ϕ
′ (wu1)ϕ (wv1)ϕ

′ (wu2)ϕ (wv2)

dwu1dwu2dwv1dwv2
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+ α2ϕ (s∗1)

∫∫∫
R3

∫ wu2−u

−∞
(u− wu2)ϕ

′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2)

dwu1dwu2dwv1dwv2

}
B2(Φ (s∗1) ,Φ(t))ω

2 (Φ (s∗1)) duds∗1

+ h6
∫∫

R2

{
α

∫∫∫
R3

ϕ (zs) dzswuϕ
′ (wu)ϕ (wv) dwvdwu

+ α

∫∫∫
R3

ϕ (zs) dzswuϕ
′ (wu)ϕ (wv) dwvdwu

+ 2α2

∫∫∫∫
R4

wu1wu2ϕ
′ (wu1)ϕ (wv1)ϕ

′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

+ α

∫∫∫
R3

∫ ∞

wv1

wu1wu2

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv2dwv1dwu1dwu2

+ α

∫∫∫
R3

∫ wv1

−∞
wu1wu2

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv2dwv1dwu1dwu2

}

B(Φ (s∗1) ,Φ(t))ϕ (s∗1)ω (Φ (s∗1))

B(Φ (s∗2) ,Φ(t))ϕ (s∗2)ω (Φ (s∗2)) ds∗2ds∗1 + o(h6)

=h6
(
α− α2

) ∫
R
B2(Φ (s) ,Φ(t))ϕ (s)ω2 (Φ (s)) ds

+ h6
(
2α2 − α

) [∫
R
B(Φ (s) ,Φ(t))ϕ (s)ω (Φ (s)) ds

]2
+ o(h6), (A.1.31)

as n→ ∞.

2. If Y ̸⊥α X , applying Taylor expansions at (s∗1, t), and the fact in (A.1.2), we have

t(2)n
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=h2
∫∫

R2

{

2ϕ (s∗1) C2|1 (Φ(t) | Φ(s∗1))
∫
R
ϕ (zs)ϕ (zs + u)

∫
R
ϕ (zt) Φ (zt) dztdzs

− ϕ (s∗1) C2
2|1 (Φ(t) | Φ(s∗1))∫∫

R2

∫ ∞

wu−u

ϕ (zs)

∫
R
ϕ (zt) dztdzsϕ

′ (wu)ϕ (wv) dwvdwu

− ϕ (s∗1) C2
2|1 (Φ(t) | Φ(s∗1))∫∫

R2

∫ ∞

wu+u

ϕ (zs)

∫
R
ϕ (zt) dztdzsϕ

′ (wu)ϕ (wv) dwvdwu

+

∫∫∫
R3

∫ ∞

wu2−u

[
− wu1ϕ (s∗1) C2

2|1 (Φ (t) | Φ (s∗1))

+ (u− wu1 − wu2)ϕ (s∗1) Φ (s∗1) C2|1 (Φ (t) | Φ (s∗1))
∂2C
∂u2

(Φ (s∗1) ,Φ (t))

]
ϕ′ (wu1)ϕ (wv1)ϕ

′ (wu2)ϕ (wv2) dwu1dwu2dwv1dwv2

+

∫∫∫
R3

∫ wu2−u

−∞

[
(u− wu2)ϕ (s∗1) C2

2|1 (Φ (t) | Φ (s∗1))

+ (u− wu1 − wu2)ϕ (s∗1) Φ (s∗1) C2|1 (Φ (t) | Φ (s∗1))
∂2C
∂u2

(Φ (s∗1) ,Φ (t))

]
ϕ′ (wu1)ϕ (wv1)ϕ

′ (wu2)ϕ (wv2) dwu1dwu2dwv1dwv2

}
[
C2|1 (Φ(t) | Φ(s∗1))− α

]2
ω2 (Φ (s∗1)) duds∗1

+ h2
∫∫

R2

{
C2|1 (Φ (t) | Φ (s∗1))

∂2C
∂u∂v

(Φ(s∗2),Φ(t))∫∫
R2

∫
R
ϕ (zs) dzswuϕ

′ (wu)ϕ (wv) dwvdwu

+ C2|1 (Φ (t) | Φ (s∗2))
∂2C
∂u∂v

(Φ(s∗1),Φ(t))∫∫
R2

∫
R
ϕ (zs) dzswuϕ

′ (wu)ϕ (wv) dwvdwu

+ C2
2|1 (Φ(t) | Φ(s∗1))

∂2C
∂u∂v

(Φ (s∗2) ,Φ (t))

∫∫∫∫
R4
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wu1wu2ϕ
′ (wu1)ϕ (wv1)ϕ

′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

+ C (Φ (s∗1) ,Φ (t))
∂2C
∂u2

(Φ (s∗1) ,Φ (t))
∂2C
∂u∂v

(Φ (s∗2) ,Φ (t))

∫∫∫∫
R4

wu1wu2ϕ
′ (wu1)ϕ (wv1)ϕ

′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

+ C2
2|1 (Φ(t) | Φ(s∗2))

∂2C
∂u∂v

(Φ (s∗1) ,Φ (t))

∫∫∫∫
R4

wu1wu2ϕ
′ (wu1)ϕ (wv1)ϕ

′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

+ C (Φ (s∗2) ,Φ (t))
∂2C
∂u2

(Φ (s∗2) ,Φ (t))
∂2C
∂u∂v

(Φ (s∗1) ,Φ (t))

∫∫∫∫
R4

wu1wu2ϕ
′ (wu1)ϕ (wv1)ϕ

′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

+ Φ(t)
∂2C
∂u∂v

(Φ (s∗1) ,Φ (t))
∂2C
∂u∂v

(Φ (s∗2) ,Φ (t))

∫∫∫
R3

∫ ∞

wv1

wu1wu2

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv2dwv1dwu1dwu2

+ Φ(t)
∂2C
∂u∂v

(Φ (s∗1) ,Φ (t))
∂2C
∂u∂v

(Φ (s∗2) ,Φ (t))

∫∫∫
R3

∫ wv1

−∞
wu1wu2

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv2dwv1dwu1dwu2

+ C2|1(Φ(t) | Φ(s∗2))C2|1 (Φ (t) | Φ (s∗1))

−
[
Φ (s∗1)

∂2C
∂u2

(Φ (s∗1) ,Φ (t)) + Φ (t)
∂2C
∂u∂v

(Φ (s∗1) ,Φ (t))

]
[
Φ (s∗2)

∂2C
∂u2

(Φ (s∗2) ,Φ (t)) + Φ (t)
∂2C
∂u∂v

(Φ (s∗2) ,Φ (t))

]}
[
C2|1 (Φ(t) | Φ (s∗1))− α

]
ϕ (s∗1)ω (Φ (s∗1))[

C2|1 (Φ(t) | Φ (s∗2))− α
]
ϕ (s∗2)ω (Φ (s∗2)) ds∗2ds∗1 + o(h2)

=h2
∫
R

[
C2|1 (Φ(t) | Φ(s))− C2

2|1 (Φ(t) | Φ(s))
]

[
C2|1 (Φ(t) | Φ(s))− α

]2
ϕ (s)ω2 (Φ (s)) ds
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− h2
∫∫

R2

{
[
C2|1 (Φ (t) | Φ (s∗1))− C2

2|1 (Φ (t) | Φ (s∗1))
] ∂2C
∂u∂v

(Φ(s∗2),Φ(t))

+
[
C2|1 (Φ (t) | Φ (s∗2))− C2

2|1 (Φ (t) | Φ (s∗2))
] ∂2C
∂u∂v

(Φ(s∗1),Φ(t))

− [C (Φ (s∗1) ,Φ (t))− αΦ (s∗1)]
∂2C
∂u2

(Φ (s∗1) ,Φ (t))
∂2C
∂u∂v

(Φ (s∗2) ,Φ (t))

− [C (Φ (s∗2) ,Φ (t))− αΦ (s∗2)]
∂2C
∂u2

(Φ (s∗2) ,Φ (t))
∂2C
∂u∂v

(Φ (s∗1) ,Φ (t))

−
(
α− α2

) ∂2C
∂u∂v

(Φ (s∗1) ,Φ (t))
∂2C
∂u∂v

(Φ (s∗2) ,Φ (t))

− C2|1(Φ(t) | Φ(s∗2))C2|1 (Φ (t) | Φ (s∗1))

+ Φ (s∗1) Φ (s∗2)
∂2C
∂u2

(Φ (s∗1) ,Φ (t))
∂2C
∂u2

(Φ (s∗2) ,Φ (t))

}
[
C2|1 (Φ(t) | Φ (s∗1))− α

]
ϕ (s∗1)ω (Φ (s∗1))[

C2|1 (Φ(t) | Φ (s∗2))− α
]
ϕ (s∗2)ω (Φ (s∗2)) ds∗2ds∗1 + o(h2), (A.1.32)

as n→ ∞.

Actually, by similar proofs with those of t(1)n and t(2)n in (A.1.26), (A.1.27), (A.1.31), and (A.1.32), we could

have, ∀k ⩾ 1,

t(k)n =C⊥α,kh
3k + o(h3k), if Y ⊥α X, (A.1.33)

t(k)n =C̸⊥α,kh
k + o(hk), if Y ̸⊥α X, (A.1.34)

as n→ ∞, for some constants C⊥α,k, and C̸⊥α,k.

Correspondingly, with all above results, we have the following two conditions.
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1. If Y ⊥α X , by definition of Zn1i, and results in (A.1.26), (A.1.31),and (A.1.33), change of variable

u = Φ(s), and back substitution α = Φ(t), we could have

E [Zn1i] =0,

E
[
Z2

n1i

]
= Var [Zn1i] =t

(2)
n −

(
t(1)n

)2
=h6

(
α− α2

){∫
R
B2(Φ (s) ,Φ(t))ϕ (s)ω2 (Φ (s)) ds

−
[∫

R
B(Φ (s) ,Φ(t))ϕ (s)ω (Φ (s)) ds

]2}
+ o(h6)

=h6
(
α− α2

){∫ 1

0

B2(u, α)ω2 (u) du

−
[∫ 1

0

B(u, α)ω (u) du

]2}
+ o(h6),

E
[
Z4

n1i

]
=t(4)n − 4t(3)n t(1)n + 6t(2)n

(
t(1)n

)2 − 3
(
t(1)n

)4
=O(h12),

as n→ ∞. Then with the definition ofB(·, ·), and noticing that, when Y ⊥α X ,

B(u, α) =
1

2

([
Φ−1(u)

]2 − 1
)
α +

1

2
ϕ′ (Φ−1(α)

)
, (A.1.35)

we could have the result of E [Z2
n1i] and Var [Zn1i].

2. If Y ̸⊥α X , by definition ofZn1i, and results in (A.1.27), (A.1.32), and (A.1.34), change of variable

u = Φ(s), and back substitution α = Φ(t), we could have

E [Zn1i] =0,
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E
[
Z2

n1i

]
= Var [Zn1i] =t

(2)
n −

(
t(1)n

)2
=h2

∫
R

[
C2|1 (Φ(t) | Φ(s))− C2

2|1 (Φ(t) | Φ(s))
]

[
C2|1 (Φ(t) | Φ(s))− α

]2
ϕ (s)ω2 (Φ (s)) ds

+ h2
(
α− α2

){∫
R

∂2C
∂u∂v

(Φ (s) ,Φ (t))

[
C2|1 (Φ(t) | Φ (s))− α

]
ϕ (s)ω (Φ (s)) ds

}2

− h2

{∫
R
Φ (s)

∂2C
∂u2

(Φ (s) ,Φ (t))

[
C2|1 (Φ(t) | Φ (s))− α

]
ϕ (s)ω (Φ (s)) ds

}2

− 2h2
∫
R

∂2C
∂u∂v

(Φ(s),Φ(t))

[
C2|1 (Φ(t) | Φ (s))− α

]
ϕ (s)ω (Φ (s)) ds∫

R

{
C2|1 (Φ (t) | Φ (s))− C2

2|1 (Φ (t) | Φ (s))

− [C (Φ (s) ,Φ (t))− αΦ (s)]
∂2C
∂u2

(Φ (s) ,Φ (t))

}
[
C2|1 (Φ(t) | Φ (s))− α

]
ϕ (s)ω (Φ (s)) ds+ o(h2)

=h2
∫ 1

0

[
C2|1 (α | u)− C2

2|1 (α | u)
]

[
C2|1 (α | u)− α

]2
ω2 (u) du

+ h2
(
α− α2

){∫ 1

0

∂2C
∂u∂v

(u, α)

[
C2|1 (α | u)− α

]
ω (u) du

}2

− h2

{∫ 1

0

u
∂2C
∂u2

(u, α)
[
C2|1 (α | u)− α

]
ω (u) du

}2
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− 2h2
∫ 1

0

∂2C
∂u∂v

(u, α)
[
C2|1 (α | u)− α

]
ω (u) du∫ 1

0

{
C2|1 (α | u)− C2

2|1 (α | u)

− [C (u, α)− αu]
∂2C
∂u2

(u, α)

}
[
C2|1 (α | u)− α

]
ω (u) du+ o(h2)

E
[
Z4

n1i

]
=t(4)n − 4t(3)n t(1)n + 6t(2)n

(
t(1)n

)2 − 3
(
t(1)n

)4
=O(h4),

as n→ ∞.

Then, the rest proof of asymptotic property of In1 in both conditions would be similar with the proof of

Lemma 1 in Hall, 1984 by using Lindeberg’s condition and noticing

s−2
n

n∑
i=1

E
[
Z2

n1i1{|Zn1i|>εsn}
]
⩽ ε−2s−4

n

n∑
i=1

E
[
Z4

n1i

]
→ 0,

as n→ ∞, where s2n =
∑n

i=1 E [Z2
n1i].

Lemma A.1.7. Suppose Condition 3.4 holds. Let h → 0 as n → ∞. For In2 defined in (3.9.14), consider

In2
.
= 1

n2h2

∑n
i=1 Zn2i. For any quantile level α ∈ (0, 1), we have the following results hold as n→ ∞,

E [Zn2i] =hM2(ω) + o(h),

E
[
Z2

n2i

]
=O(h2),
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where

M2(ω) =
1

2
√
π

∫ 1

0

[
C2|1 (α | u)− C2

2|1 (α | u)
] ω (u)

ϕ (Φ−1(u))
du.

Correspondingly, we have In2 = n−1h−1M2(ω) + o(n−1h−1) +OP (n
− 3

2h−1).

Further whenY isquantile independentwithX at the quantile levelα, we haveM⊥α,2(ω)
.
=M2(ω)

as defined in Section 3.8.

Proof. With t = Φ−1(α), and by definition, we have

E [Zn2i] =

∫
R
E {Bn [s, t; (si, ti)]− E [Bn [s, t; (si, ti)]]}2 ϕ (s)ω (Φ(s)) ds,

where the result of E {Bn [s, t; (si, ti)]− E [Bn [s, t; (si, ti)]]}2 is given in (A.1.24). Hence, we have,

E [Zn2i] = h
1

2
√
π

∫
R

[
C2|1 (Φ(t) | Φ (s))− C2

2|1 (Φ(t) | Φ (s))
]
ω (Φ(s)) ds+ o(h),

as n→ ∞. Then, by change of variable u = Φ(s), and back substitution α = Φ(t), we have

E [Zn2i] =h
1

2
√
π

∫ 1

0

[
C2|1 (α | u)− C2

2|1 (α | u)
] ω (u)

ϕ (Φ−1(u))
du+ o(h),

as n→ ∞. Further if Y ⊥α X , by the truth C2|1 (α | u) ≡ α, we have the corresponding result. Then,

using similar method in the proof of Lemma A.1.6, we could also find that E [Z2
n2i] = O(h2), as n→ ∞.

The rest of the proof follows directly from the above results.
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Lemma A.1.8. Suppose Condition 3.4 holds. Let h → 0, and nh → ∞ as n → ∞. For In3 defined in

(3.9.14), consider In3
.
= 1

n2h2Un with

Un =
∑

1⩽k<l⩽n

Hn [(sk, tk), (sl, tl)] ,

Hn [(sk, tk), (sl, tl)] =

∫
R
Vn(sk, tk; s, t)Vn(sl, tl; s, t)ϕ (s)ω (Φ(s)) ds,

Vn(s
∗, t∗; s, t) =Bn [s, t; (s

∗, t∗)]− E [Bn [s, t; (s1, t1)]] , (A.1.36)

where Bn [·, ·; (·, ·)] is defined in (3.9.13). For any quantile level α ∈ (0, 1), we have the following result

holds as n→ ∞,

E
{
H2

n [(s1, t1), (s2, t2)]
}
=h3σ2

3(ω) + o(h3),

where

σ2
3(ω) =

1

2
√
2π

∫ 1

0

[
C2|1 (α | u)− C2

2|1 (α | u)
]2 ω2 (u)

ϕ (Φ−1(u))
du.

Correspondingly, we have In3
d−→ N

(
0, 1

2
n−2h−1σ2

3(ω)
)

.

Further when Y is quantile independent withX at the quantile level α, we have σ2
⊥α,3

(ω)
.
= σ2

3(ω)

as defined in Section 3.8.

Proof. With t = Φ−1(α), and by definition, we have

H2
n [(s1, t1), (s2, t2)]

=

∫∫
R2

{Bn [s∗1, t; (s1, t1)]− E [Bn [s∗1, t; (s1, t1)]]}
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{Bn [s∗2, t; (s1, t1)]− E [Bn [s∗2, t; (s1, t1)]]}

{Bn [s∗1, t; (s2, t2)]− E [Bn [s∗1, t; (s1, t1)]]}

{Bn [s∗2, t; (s2, t2)]− E [Bn [s∗2, t; (s1, t1)]]}

ϕ (s∗1)ω (Φ (s∗1))ϕ (s∗2)ω (Φ (s∗2)) ds∗1ds∗2.

By exchanging the integral and expectation, we have

E
{
H2

n [(s1, t1), (s2, t2)]
}

=

∫∫
R2

{E[(Bn [s∗1, t; (s1, t1)]− E [Bn [s∗1, t; (s1, t1)]])

(Bn [s∗2, t; (s1, t1)]− E [Bn [s∗2, t; (s1, t1)]])]}2

ϕ (s∗1)ω (Φ (s∗1))ϕ (s∗2)ω (Φ (s∗2)) ds∗1ds∗2

=

∫∫
R2

{E (Bn [s∗1, t; (s1, t1)]Bn [s∗2, t; (s1, t1)])

− E [Bn [s∗1, t; (s1, t1)]]E [Bn [s∗2, t; (s1, t1)]]}2

ϕ (s∗1)ω (Φ (s∗1))ϕ (s∗2)ω (Φ (s∗2)) ds∗1ds∗2

=

∫∫
R2

{E (Bn [s∗1, t; (s1, t1)]Bn [s∗2, t; (s1, t1)])}2

ϕ (s∗1)ω (Φ (s∗1))ϕ (s∗2)ω (Φ (s∗2)) ds∗1ds∗2

− 2

∫∫
R2

E (Bn [s∗1, t; (s1, t1)]Bn [s∗2, t; (s1, t1)])

E [Bn [s∗1, t; (s1, t1)]]E [Bn [s∗2, t; (s1, t1)]]

ϕ (s∗1)ω (Φ (s∗1))ϕ (s∗2)ω (Φ (s∗2)) ds∗1ds∗2

+

∫∫
R2

{E [Bn [s∗1, t; (s1, t1)]]E [Bn [s∗2, t; (s1, t1)]]}2
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ϕ (s∗1)ω (Φ (s∗1))ϕ (s∗2)ω (Φ (s∗2)) ds∗1ds∗2

.
=

∫∫
R2

In31(s∗1, s∗2, t)ϕ (s∗1)ω (Φ (s∗1))ϕ (s∗2)ω (Φ (s∗2)) ds∗1ds∗2

− 2

∫∫
R2

In32(s∗1, s∗2, t)ϕ (s∗1)ω (Φ (s∗1))ϕ (s∗2)ω (Φ (s∗2)) ds∗1ds∗2

+

∫∫
R2

In33(s∗1, s∗2, t)ϕ (s∗1)ω (Φ (s∗1))ϕ (s∗2)ω (Φ (s∗2)) ds∗1ds∗2. (A.1.37)

We consider the three terms separately. For In31(s∗1, s∗2, t), by (A.1.29), we could find

In31(s∗1, s∗2, t) =

[
12∑
k=1

In1k(s∗1, s∗2, t)

]2
.

By the proof of Lemma A.1.6, we could have

∫∫
R2

In31(s∗1, s∗2, t)ϕ (s∗1)ω (Φ (s∗1))ϕ (s∗2)ω (Φ (s∗2)) ds∗1ds∗2

=

∫∫
R2

{
1

ϕ (s∗1)ϕ (s∗2)

[
2h

∫
R
ϕ (zs)ϕ

(
zs +

s∗2 − s∗1
h

)
∫
R
ϕ (zt) Φ (zt) g(s∗1 − hzs, t− hzt)dztdzs

− h

∫∫
R2

∫ ∞

s∗1−s∗2
h

+wu

ϕ (zs)

∫
R
ϕ (zt) g (s∗1 − hzs, t− hzt)

dztdzs
∂C
∂u

(Φ (s∗2 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

− h

∫∫
R2

∫ ∞

s∗2−s∗1
h

+wu

ϕ (zs)

∫
R
ϕ (zt) g (s∗2 − hzs, t− hzt)

dztdzs
∂C
∂u

(Φ (s∗1 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

+

∫∫∫
R3

∫ ∞

s∗1−s∗2
h

+wu2

Φ (s∗1 − hwu1)

∂C
∂u

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂u

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))
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ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwu1dwu2dwv1dwv2

+

∫∫∫
R3

∫ s∗1−s∗2
h

+wu2

−∞
Φ (s∗2 − hwu2)

∂C
∂u

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂u

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwu1dwu2dwv1dwv2

]

+

[
− h

ϕ (s∗1)ϕ (s∗2)

∫∫
R2

∫
R
ϕ (zs)

[
Φ (wv) g (s∗1 − hzs, t− hwv)

+

∫ ∞

wv

ϕ (zt) g (s∗1 − hzs, t− hzt) dzt

]
dzs

∂C
∂v

(Φ (s∗2 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

− h

ϕ (s∗1)ϕ (s∗2)

∫∫
R2

∫
R
ϕ (zs)

[
Φ (wv) g (s∗2 − hzs, t− hwv)

+

∫ ∞

wv

ϕ (zt) g (s∗2 − hzs, t− hzt) dzt

]
dzs

∂C
∂v

(Φ (s∗1 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

+ h2
[
C2|1(Φ(t) | Φ(s∗1))

] [
C2|1 (Φ (t) | Φ (s∗2)) + Φ (s∗2)

∂2C
∂u2

(Φ (s∗2) ,Φ (t))

+ Φ (t)
∂2C
∂u∂v

(Φ (s∗2) ,Φ (t))

]
+ o(h2)

+ h2
[
C2|1(Φ(t) | Φ(s∗2))

] [
C2|1 (Φ (t) | Φ (s∗1)) + Φ (s∗1)

∂2C
∂u2

(Φ (s∗1) ,Φ (t))

+ Φ (t)
∂2C
∂u∂v

(Φ (s∗1) ,Φ (t))

]
+ o(h2)

+
1

ϕ (s∗1)ϕ (s∗2)

∫∫∫∫
R4

FS,T (s∗1 − hwu1, t− hwv2)

∂C
∂u

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

+
1

ϕ (s∗1)ϕ (s∗2)

∫∫∫∫
R4

FS,T (s∗2 − hwu1, t− hwv2)
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∂C
∂u

(Φ (s∗2 − hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s∗1 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv1dwu1dwv2dwu2

+
1

ϕ (s∗1)ϕ (s∗2)

∫∫∫
R3

∫ ∞

wv1

Φ (t− hwv2)

∂C
∂v

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv2dwv1dwu1dwu2

+
1

ϕ (s∗1)ϕ (s∗2)

∫∫∫
R3

∫ wv1

−∞
Φ (t− hwv1)

∂C
∂v

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂v

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwv2dwv1dwu1dwu2

− h2
[
C2|1 (Φ (t) | Φ (s∗1)) + Φ (s∗1)

∂2C
∂u2

(Φ (s∗1) ,Φ (t))

+ Φ (t)
∂2C
∂u∂v

(Φ (s∗1) ,Φ (t))

]
[
C2|1 (Φ (t) | Φ (s∗2)) + Φ (s∗2)

∂2C
∂u2

(Φ (s∗2) ,Φ (t))

+ Φ (t)
∂2C
∂u∂v

(Φ (s∗2) ,Φ (t))

]
+ o(h2)

]}2

ϕ (s∗1)ω (Φ (s∗1))ϕ (s∗2)ω (Φ (s∗2)) ds∗2ds∗1,

where the last nine terms in the square are neglectable, since the weighted integrals of their squares are of

order O(h4), and the weighted integrals of the interaction terms between them and the other terms are

also of order O(h4). Then, by change of variable u = s∗2−s∗1
h

, we have

∫∫
R2

In31(s∗1, s∗2, t)ϕ (s∗1)ω (Φ (s∗1))ϕ (s∗2)ω (Φ (s∗2)) ds∗1ds∗2
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=

∫∫
R2

[
2h

∫
R
ϕ (zs)ϕ

(
zs +

s∗2 − s∗1
h

)
∫
R
ϕ (zt) Φ (zt) g(s∗1 − hzs, t− hzt)dztdzs

− h

∫∫
R2

∫ ∞

s∗1−s∗2
h

+wu

ϕ (zs)

∫
R
ϕ (zt) g (s∗1 − hzs, t− hzt)

dztdzs
∂C
∂u

(Φ (s∗2 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

− h

∫∫
R2

∫ ∞

s∗2−s∗1
h

+wu

ϕ (zs)

∫
R
ϕ (zt) g (s∗2 − hzs, t− hzt)

dztdzs
∂C
∂u

(Φ (s∗1 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

+

∫∫∫
R3

∫ ∞

s∗1−s∗2
h

+wu2

Φ (s∗1 − hwu1)

∂C
∂u

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂u

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwu1dwu2dwv1dwv2

+

∫∫∫
R3

∫ s∗1−s∗2
h

+wu2

−∞
Φ (s∗2 − hwu2)

∂C
∂u

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂u

(Φ (s∗2 − hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwu1dwu2dwv1dwv2

]2
ω (Φ (s∗1))

ϕ (s∗1)

ω (Φ (s∗2))

ϕ (s∗2)
ds∗2ds∗1 +O(h4)

=h

∫∫
R2

[
2h

∫
R
ϕ (zs)ϕ (zs + u)

∫
R
ϕ (zt) Φ (zt) g(s∗1 − hzs, t− hzt)dztdzs

− h

∫∫
R2

∫ ∞

wu−u

ϕ (zs)

∫
R
ϕ (zt) g (s∗1 − hzs, t− hzt) dztdzs

∂C
∂u

(Φ (s∗1 + hu− hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

− h

∫∫
R2

∫ ∞

wu+u

ϕ (zs)

∫
R
ϕ (zt) g (s∗1 + hu− hzs, t− hzt) dztdzs
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∂C
∂u

(Φ (s∗1 − hwu) ,Φ (t− hwv))ϕ
′ (wu)ϕ (wv) dwvdwu

+

∫∫∫
R3

∫ ∞

wu2−u

Φ (s∗1 − hwu1)

∂C
∂u

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂u

(Φ (s∗1 + hu− hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwu1dwu2dwv1dwv2

+

∫∫∫
R3

∫ wu2−u

−∞
Φ (s∗1 + hu− hwu2)

∂C
∂u

(Φ (s∗1 − hwu1) ,Φ (t− hwv1))
∂C
∂u

(Φ (s∗1 + hu− hwu2) ,Φ (t− hwv2))

ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwu1dwu2dwv1dwv2

]2
ω (Φ (s∗1))

ϕ (s∗1)

ω (Φ (s∗1 + hu))

ϕ (s∗1 + hu)
duds∗1 +O(h4).

Then we apply Taylor expansion at (s∗1, t) to every term in the square, and by the fact in (A.1.2), we have

∫∫
R2

In31(s∗1, s∗2, t)ϕ (s∗1)ω (Φ (s∗1))ϕ (s∗2)ω (Φ (s∗2)) ds∗1ds∗2

=h3
∫∫

R2

[
2ϕ (s∗1) C2|1 (Φ(t) | Φ(s∗1))

∫
R
ϕ (zs)ϕ (zs + u)

∫
R
ϕ (zt) Φ (zt) dztdzs

− ϕ (s∗1) C2
2|1 (Φ(t) | Φ(s∗1))

∫∫
R2

∫ ∞

wu−u

ϕ (zs)

∫
R
ϕ (zt) dztdzs

ϕ′ (wu)ϕ (wv) dwvdwu

− ϕ (s∗1) C2
2|1 (Φ(t) | Φ(s∗1))

∫∫
R2

∫ ∞

wu+u

ϕ (zs)

∫
R
ϕ (zt) dztdzs

ϕ′ (wu)ϕ (wv) dwvdwu

+

∫∫∫
R3

∫ ∞

wu2−u

[
− wu1ϕ (s∗1) C2

2|1 (Φ (t) | Φ (s∗1))

+ (u− wu1 − wu2)ϕ (s∗1) Φ (s∗1) C2|1 (Φ (t) | Φ (s∗1))
∂2C
∂u2

(Φ (s∗1) ,Φ (t))

]
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ϕ′ (wu1)ϕ (wv1)ϕ
′ (wu2)ϕ (wv2) dwu1dwu2dwv1dwv2

+

∫∫∫
R3

∫ wu2−u

−∞

[
(u− wu2)ϕ (s∗1) C2

2|1 (Φ (t) | Φ (s∗1))

+ (u− wu1 − wu2)ϕ (s∗1) Φ (s∗1) C2|1 (Φ (t) | Φ (s∗1))
∂2C
∂u2

(Φ (s∗1) ,Φ (t))

]
ϕ′ (wu1)ϕ (wv1)ϕ

′ (wu2)ϕ (wv2) dwu1dwu2dwv1dwv2

]2
ω2 (Φ (s∗1))

ϕ2 (s∗1)
duds∗1 + o(h3)

=h3
∫∫

R2

[
ϕ (s) C2|1 (Φ(t) | Φ(s))

ϕ
(

u√
2

)
√
2

− ϕ (s) C2
2|1 (Φ(t) | Φ(s))

ϕ
(

u√
2

)
√
2

]2
ω2 (Φ (s))

ϕ2 (s)
duds+ o(h3)

=h3
1

2
√
2π

∫
R

[
C2|1 (Φ(t) | Φ(s))− C2

2|1 (Φ(t) | Φ(s))
]2
ω2 (Φ (s)) ds+ o(h3), (A.1.38)

as n→ ∞. By similar steps of change of variables and Taylor expansions above, and using the results in

Lemma A.1.6, we could find

∫∫
R2

In32(s∗1, s∗2, t)ϕ (s∗1)ω (Φ (s∗1))ϕ (s∗2)ω (Φ (s∗2)) ds∗1ds∗2 =O(h4), (A.1.39)∫∫
R2

In33(s∗1, s∗2, t)ϕ (s∗1)ω (Φ (s∗1))ϕ (s∗2)ω (Φ (s∗2)) ds∗1ds∗2 =O(h4), (A.1.40)

as n→ ∞.

Substituting (A.1.38), (A.1.39), and (A.1.40) into (A.1.37), and applying change of variable u = Φ(s),

and back substitution α = Φ(t), we have

E
{
H2

n [(s1, t1), (s2, t2)]
}
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=h3
1

2
√
2π

∫ 1

0

[
C2|1 (α | u)− C2

2|1 (α | u)
]2 ω2 (u)

ϕ (Φ−1(u))
du+ o(h3),

as n→ ∞. Further if Y ⊥α X , by the truth C2|1 (α | u) ≡ α, we have the corresponding result.

Then we prove the normality of Un. We could have the following properties.

1. FunctionHn [(s∗1, t∗1), (s∗2, t∗2)] is symmetric, i.e.

Hn [(s∗1, t∗1), (s∗2, t∗2)]

=

∫
R
Vn(s∗1, t∗1; s, t)Vn(s∗2, t∗2; s, t)ϕ (s)ω (Φ(s)) ds

=Hn [(s∗2, t∗2), (s∗1, t∗1)] .

2. E {Hn [(s1, t1), (s2, t2)]| (s1, t1)} = 0 almost surely. This could be proved by

E {Hn [(s1, t1), (s2, t2)]| (s1, t1)}

=E
[∫

R
Vn(s1, t1; s, t)Vn(s2, t2; s, t)ϕ (s)ω (Φ(s)) ds

∣∣∣∣ (s1, t1)]
=

∫
R
Vn(s1, t1; s, t)E [Vn(s2, t2; s, t)| (s1, t1)]ϕ (s)ω (Φ(s)) ds

=

∫
R
Vn(s1, t1; s, t)E [Vn(s2, t2; s, t)]ϕ (s)ω (Φ(s)) ds,

and noticing E [Vn(s2, t2; s, t)] = 0, where Vn(·, ·; ·, ·) is defined in (A.1.36).

3. We define

Gn [(s∗1, t∗1), (s∗2, t∗2)]
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.
=E {Hn [(s1, t1), (s∗1, t∗1)]Hn [(s1, t1), (s∗2, t∗2)]} .

By similar proof with that of E {H2
n [(s1, t1), (s2, t2)]}, and mimicking the proof of Lemma 3 in

Hall, 1984, we could have,

E
{
H4

n [(s1, t1), (s2, t2)]
}
=O(h5),

E
{
G2

n [(s1, t1), (s2, t2)]
}
=O(h7),

as n→ ∞.

Finally, we check the condition of the Theorem 1 in Hall, 1984. When nh→ ∞ as n→ ∞, we have

E {G2
n [(s1, t1), (s2, t2)]}+ n−1E {H4

n [(s1, t1), (s2, t2)]}
[E {H2

n [(s1, t1), (s2, t2)]}]
2

=
O(h7) + n−1O(h5)

[h3σ2
3(ω) + o(h3)]

2

=O(h) +O(n−1h−1) → 0,

as n→ ∞. Hence, by applying Theorem 1 in Hall, 1984, we have

Un
d−→ N

(
0,

1

2
n2E

{
H2

n [(s1, t1), (s2, t2)]
})

,

as n→ ∞. And the normality of In3 follows directly from the above results.

Lemma A.1.9. Suppose Condition 3.4 holds. Let h→ 0 as n→ ∞. Consider In4 defined in (3.9.14). For

any quantile level α ∈ (0, 1), we have the following results hold as n→ ∞.
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(a) When Y is quantile independent withX at the quantile level α, we have

In4 = h4M⊥α,4(ω) + o(h4),

whereM⊥α,4(ω) is defined in Section 3.8.

(b) When Y is quantile dependent withX at the quantile level α, we have

In4 =

∫ 1

0

[
C2|1 (α | u)− α

]2
ω(u)du+ h2M̸⊥α,4(ω) + o(h2),

where M̸⊥α,4(ω) is defined in Section 3.8.

Proof. By definition, we have

In4 =

∫ 1

0

{
E
[
An

(
Φ−1(u),Φ−1(α)

)]
− α

}2
ω(u)du,

where E [An (·, ·)] is given by Lemma A.1.3. Then the proof of this lemma follows directly from the truth

C2|1 (α | u) ≡ α, and result in (A.1.35), when Y ⊥α X .

Lemma A.1.10. Suppose Condition 3.4 holds. Let h→ 0 as n→ ∞. ConsiderRn(·, ·) defined in (3.9.9).

We have the following results hold as n→ ∞.

∫ 1

0

R2
n

(
Φ−1(u),Φ−1(α)

)
ω(u)du = Oa.s.

(
n−1/2h−1 log n(log log n)1/2

)
.
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Further when h = O(n−β), β ∈ (0, 1
2
), we have

∫ 1

0

R2
n

(
Φ−1(u),Φ−1(α)

)
ω(u)du = oa.s.(1).

Proof. By definition of Rn(·, ·), change of variables s = Φ−1(u), s∗ = s−Φ−1(u∗)
h

and t∗ = t−Φ−1(v∗)
h

,

and substitution t = Φ−1(α), we have

∫ 1

0

R2
n

(
Φ−1(u),Φ−1(α)

)
ω(u)du

=

∫
R
R2

n (s, t)ω (Φ(s))ϕ(s)ds

=
1

h

∫
R

{∫∫
I2

[Cn(u
∗, v∗)−Gn(u

∗, v∗)]ϕ′
(
s− Φ−1(u∗)

h

)
ϕ

(
t− Φ−1(v∗)

h

)
du∗

hϕ(Φ−1(u∗))

dv∗

hϕ(Φ−1(v∗))

}2
ω (Φ(s))

ϕ(s)
ds

=
1

h

∫
R

{∫∫
R2

[Cn(Φ(s− hs∗),Φ(t− ht∗))−Gn(Φ(s− hs∗),Φ(t− ht∗))]

ϕ′ (s∗)ϕ (t∗) ds∗dt∗
}2
ω (Φ(s))

ϕ(s)
ds.

By Cauchy-Schwarz Inequality, we have

∫ 1

0

R2
n

(
Φ−1(u),Φ−1(α)

)
ω(u)du

⩽
1

h

∫
R

∫∫
R2

[Cn(Φ(s− hs∗),Φ(t− ht∗))−Gn(Φ(s− hs∗),Φ(t− ht∗))]2

(s∗)2 ϕ (s∗)ϕ (t∗) ds∗dt∗
ω (Φ(s))

ϕ(s)
ds

⩽
1

hn

∫
R

[
sup

(s∗,t∗)∈R2

|Cn(Φ(s− hs∗),Φ(t− ht∗))−Gn(Φ(s− hs∗),Φ(t− ht∗))|

]2
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∫∫
R2

(s∗)2 ϕ (s∗)ϕ (t∗) ds∗dt∗
ω (Φ(s))

ϕ(s)
ds

=
1

h

[
sup

(u′,v′)∈I2

|Cn(u
′, v′)−Gn(u

′, v′)|

]2
∫∫∫

R3

(s∗)2 ϕ (s∗)ϕ (t∗) ds∗dt∗
ω (Φ(s))

ϕ(s)
ds

=
1

h

[
sup

(u′,v′)∈I2

|Cn(u
′, v′)−Gn(u

′, v′)|

]2 ∫ 1

0

ω (u)

ϕ2 (Φ−1(u))
du.

The rest of the proof follows directly from (3.9.8) and Condition 3.4.

A.2 Simulations for Bandwidth Selection in Chapter 3

We would showcase the bandwidth selection we proposed in Corollary 3.3.1 minimized the MISE(α, h, ω)

asymptotically. Throughout this section, we use the weight function ω(u) = ϕ2(Φ−1(u)). With 500

replicates, and n = 100, 2000, we consider the following three experiments:

1. (X, Y ) ∼ MVT2(02, I2×2, 5), which means (X, Y ) follows a 2-dimensionl multivariate t dis-

tribution with mean (0, 0)⊺ and variance identity matrix. And we consider the quantile levels

α = 0.5, 0.75, which corresponds to subexperiments 1.a and 1.b.

2. Y = X · ε,X ∼ Pareto(5, 1). This meansX follows Pareto distribution with shape parameter

k = 5, and scale parameter α = 1, and ε is fromN(0, 1) and independent withX . We consider

quantile level α = 0.5.

3. X ∼ Lognormal(0, 1), Y ∼ Weibull(0.5, 1), and C = CGu
2 . This meansX follows Log-normal

distribution with logarithm of location parameter µ = 0, and logarithm of scale parameter σ = 1;
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Y follows Weibull distribution with shape parameter k = 0.5, and scale parameter λ = 1; the

copula of (X, Y ) is a Gumbel copula with θ = 2. We consider quantile level α = 0.25.

It is worth noticing that in Experiments 1 and 2, we consider the case when Y is quantile independent

fromX at the quantile level α. Correspondingly, MISE (α, h, ω) = E
[
D̂α(X, Y ;ω, h)

]
, and we have

h∗(α, ω) =
[

M⊥α,2(ω)

4M⊥α,4(ω)

] 1
5 · n− 1

5 , where

M⊥α,2(ω) =
α

4π
− α2

4π
,

M⊥α,4(ω) =
2α2 − 4αϕ′(Φ−1(α)) + 3 [ϕ′(Φ−1(α))]

2

24
√
3π

.

Remark A.2.1. In Experiment 3, since we have

C (u, v) = exp
[
−
(
(− log(u))θ + (− log(v))θ

) 1
θ

]
,

with θ = 2, it is easy to prove

C2|1 (v | u) = −
log(u) exp

{
− [(log u)2 + (log v)2]

1
2

}
u [(log u)2 + (log v)2]

1
2

.

Then numerically, we have

AMISE (0.25, h, ω) = h4
∫ 1

0

B2(u, v)ω(u)du+
1

nh

∫ 1

0

σ2(u, v)ω(u)du

= 0.005585× h4 + 0.01181× 1

nh
.

158



h ∗ hopt0

5 × 10−4

1 × 10−3

1.5 × 10−3

2 × 10−3

2.5 × 10−3

3 × 10−3

3.5 × 10−3

0.0 0.2 0.4 0.6 0.8
h

M
IS

E
AMISE

MISE with Dα

MISE with Dα
 ∗ 

(a) Experiment 1.a with
α = 0.5, and
n = 100.
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(b) Experiment 1.a with
α = 0.5, and
n = 2000.
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(c) Experiment 1.b with
α = 0.75, and
n = 100.
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(d) Experiment 1.b
with α = 0.75, and

n = 2000.
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(e) Experiment 2 with
α = 0.5, and
n = 100.
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(f) Experiment 2 with
α = 0.5, and
n = 2000.
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(g) Experiment 3 with
α = 0.25, and
n = 100.
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(h) Experiment 3 with
α = 0.25, and
n = 2000.

Figure A.5: Bandwidth selection for sample Copula Quantile Dependence.

Consequently, we have h∗(0.25, ω) = 0.8803× n− 1
5 . Besides, for MISE (0.25, h, ω), we use approxima-

tion,

MISE∗ (0.25, h, ω) ≈ 1

n

n∑
i=1

[
Ĉ2|1 (0.25 | ûi)− C2|1 (0.25 | ûi)

]2
ω(ûi)

instead for easy computation.
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The results of the 3 experiments are given in Figure A.5. Eight patterns are plotted for three experiments

and n = 100, 2000. Over 500 replications, the sample MISE (α, h, ω) are plotted versus bandwidth h.

Yellow solid lines represent the results using D̂α(X, Y ;ω, h), purple dashed lines represent the results

using D̂∗
α(X, Y ;ω, h), and blue dashed lines represent the results using AMISE (α, h, ω). The vertical

blue dot dashed lines are references for the optimal bandwidth h∗α(ω) proposed in Corollary 3.3.1, and the

vertical green dashed lines are references for the empirical optimal bandwidth by minimizing the empirical

MISE. In each pattern of Experiments 1 and 2, we show a Zoom-in window to illustrate the closeness

between D̂α(X, Y ;ω, h) and D̂∗
α(X, Y ;ω, h). It shows not only the bandwidth is optimally selected,

but also the closeness between D̂α(X, Y ;ω, h) and D̂∗
α(X, Y ;ω, h).

A.3 Bias Adjustification Term in Chapter 3

In this subsection, we introduce the method for figuring out the bias adjustification term, δn, in Corol-

lary 3.6.1 by simulations. The target of the bias adjustification term is to improve the empirical performance

of the QC-Screen with FDR control.

By considering random variables, (X, Y ), which are independent with each other, we may calculate

the Copula Quantile Dependence, D̂α(X, Y ;ω, h), under null case. Withω(u) = ϕ2(Φ−1(u)), optimal

bandwidth h∗α(ω), α = 0.1, 0.15, · · · , 0.9, and n = 100 ∗ 2q with q = 0, 1, · · · , 8, we calculate

statistics,

D̂‡
α(X, Y ;ω, h∗α(ω))

.
=

n−1 [h∗α(ω)]
−1M⊥α,2(ω) + [h∗α(ω)]

4 M⊥α,4(ω)√
4n−1 [h∗α(ω)]

4 σ2
⊥α,1

(ω) + 2n−2 [h∗α(ω)]
−1 σ2

⊥α,3
(ω)

· log

[
D̂α(X, Y ;ω, [h∗α(ω)])

n−1 [h∗α(ω)]
−1M⊥α,2(ω) + [h∗α(ω)]

4 M⊥α,4(ω)

]
,

160



which is the D̂†
α(X, Y ;ω, h∗α(ω)) without bias adjustification. For each (α, n) combination, with 5000

replication, we find the δ∗n(α) as below

δ∗n(α)
.
= sup

{
t ∈ R : Algorithm 3.2 selects no variables with D̂‡

α(X, Y ;ω, h∗α(ω)) + t
}
.
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Figure A.6: Scatter plots, fitted lines and confidence intervals of linear regressions between log (δ∗n(α))
and log(n).

In this set, we may apply Algorithm 3.2 with different γ values. Larger γ value would induce a smaller

δ∗n(α), hence make the final FDR control algorithm be more conservative and select less variables. How-

ever, large γ value would usually guarantee the FDR being controlled well. Practically, people hardly select

very high FDR level, hence, we consider γ = 0.35 in the above equation, which would be conservative
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enough. Correspondingly, ∀α, with δ∗n(α)’s, we construct a power decay converging sequence, kα1n−kα2 ,

with some constant kα2 > 0, to characterize the bias justification term. In Figure A.6, for eachα, we plot

the the graphs between log (δ∗n(α)) and log(n). 17 patterns are plot for different values of α. The result

clearly shows a linear pattern and verifies the correctness of power decay of the bias adjustification term.

In addition, it is also noticeable that all the lines in this graph are nearly parallel with each other, which

motivates us to select a uniform kα2 over α. Upon the simulation results, we suggest to use kα2 = 0.1.

Then, we applied least square estimator to find the kα1 for differentα values, and the results are shown

in Table A.1.

Table A.1: Results of bias adjustification term

α kα1

0.10 2.436
0.15 2.343
0.20 2.390
0.25 2.478
0.30 2.650
0.35 3.006
0.40 3.044
0.45 2.985
0.50 2.858
0.55 2.759
0.60 2.716
0.65 2.649
0.70 2.514
0.75 2.455
0.80 2.487
0.85 2.529
0.90 2.459
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A.4 Variable Names of the U.S. 2020 Economic Data

In this section, we show the list of variables of the U.S. 2020 economic data.

Table A.2: Variable names of U.S. 2020 economic data

Variable Names

X1 Number of owner-occupied housing units with a mortgage

X2 Median value of owner-occupied housing units with a mortgage (dollars)

X3 Median household income in the past 12 months of owner-occupied housing units

with a mortgage (dollars)

X4 Median monthly housing costs of owner-occupied housing units with a mortgage

(dollars)

X5 Median real estate taxes of owner-occupied housing units with a mortgage (dollars)

X6 Number of owner-occupied housing units

X7 Number of renter-occupied housing units

X8 Median household income in the past 12 months of owner-occupied housing units

(dollars)

X9 Median household income in the past 12 months of renter-occupied housing units

(dollars)

X10 Median monthly housing costs of occupied housing units (dollars)

X11 Median monthly housing costs of owner-occupied housing units (dollars)

Continued on the next page
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Variable Rewritten Names

X12 Median monthly housing costs of renter-occupied housing units (dollars)

X13 Population 16 years and over

X14 Proportion of population 16 years and over in labor force

X15 Proportion of population 16 years and over in civilian labor force

X16 Proportion of population 16 years and over in employed civilian labor force

X17 Proportion of population 16 years and over in unemployed civilian labor force

X18 Proportion of population 16 years and over in armed forces

X19 Proportion of population 16 years and over not in labor force

X20 Population of civilian labor force

X21 Unemployment Rate in civilian labor force

X22 Population of females 16 years and over

X23 Proportion of population of females 16 years and over in labor force

X24 Proportion of population of females 16 years and over in civilian labor force

X25 Proportion of population of females 16 years and over in employed civilian labor

force

X26 Number of householders own children under 6 years

X27 Proportion of householders own children under 6 years with all parents in family in

labor force

X28 Number of householders own children 6 to 17 years

Continued on the next page
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Variable Rewritten Names

X29 Proportion of householders own children 6 to 17 years with all parents in family in

labor force

X30 Population of workers 16 years and over

X31 Proportion of workers 16 years and over commuting to work with car, truck, or van

(drove alone)

X32 Proportion of workers 16 years and over commuting to work with car, truck, or van

(carpooled)

X33 Proportion of workers 16 years and over commuting to work with public transporta-

tion (excluding taxicab)

X34 Proportion of workers 16 years and over commuting to work by walking

X35 Proportion of workers 16 years and over commuting to work by other means

X36 Proportion of workers 16 years and over working from home

X37 Mean travel time to work of workers 16 years and over (minutes)

X38 Civilian employed population 16 years and over

X39 Proportion of civilian employed population 16 years and over in management, busi-

ness, science, and arts occupations

X40 Proportion of civilian employed population 16 years and over in service occupations

X41 Proportion of civilian employed population 16 years and over in sales and office oc-

cupations

Continued on the next page
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Variable Rewritten Names

X42 Proportion of civilian employed population 16 years and over in natural resources,

construction, and maintenance occupations

X43 Proportion of civilian employed population 16 years and over in production, trans-

portation, and material moving occupations

X44 Proportion of civilian employed population 16 years and over in agriculture, forestry,

fishing and hunting, and mining industries

X45 Proportion of civilian employed population 16 years and over in construction indus-

tries

X46 Proportion of civilian employed population 16 years and over in manufacturing in-

dustries

X47 Proportion of civilian employed population 16 years and over in wholesale trade

industries

X48 Proportion of civilian employed population 16 years and over in retail trade industries

X49 Proportion of civilian employed population 16 years and over in transportation and

warehousing, and utilities industries

X50 Proportion of civilian employed population 16 years and over in information indus-

tries

X51 Proportion of civilian employed population 16 years and over in finance and insur-

ance, and real estate and rental and leasing industries

Continued on the next page
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Variable Rewritten Names

X52 Proportion of civilian employed population 16 years and over in professional, scien-

tific, and management, and administrative and waste management services industries

X53 Proportion of civilian employed population 16 years and over in educational services,

and health care and social assistance industries

X54 Proportion of civilian employed population 16 years and over in arts, entertainment,

and recreation, and accommodation and food services industries

X55 Proportion of civilian employed population 16 years and over in other services, except

public administration industries

X56 Proportion of civilian employed population 16 years and over in public administra-

tion industries

X57 Proportion of civilian employed population 16 years and over private wage and salary

workers

X58 Proportion of civilian employed population 16 years and over government workers

X59 Proportion of civilian employed population 16 years and over self-employed in own

not incorporated business workers

X60 Proportion of total households with earnings

X61 Mean earnings of households with earnings (dollars)

X62 Proportion of total households with Social Security

X63 Mean Social Security income of households with Social Security (dollars)

Continued on the next page
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Variable Rewritten Names

X64 Proportion of total households with retirement income

X65 Mean retirement income of households with retirement income (dollars)

X66 Proportion of total households with Supplemental Security Income

X67 Mean Supplemental Security Income of households with Supplemental Security

Income (dollars)

X68 Proportion of total households with cash public assistance income

X69 Mean cash public assistance income of households with cash public assistance income

(dollars)

X70 Proportion of total households with Food Stamp/SNAP benefits in the past 12

months

X71 Per capita income (dollars)

X72 Median earnings for workers (dollars)

X73 Median earnings for male full-time, year-round workers (dollars)

X74 Median earnings for female full-time, year-round workers (dollars)

X75 Civilian noninstitutionalized population

X76 Proportion of civilian noninstitutionalized population with health insurance cover-

age

X77 Proportion of civilian noninstitutionalized population with private health insurance

X78 Proportion of civilian noninstitutionalized population with public coverage

Continued on the next page
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Variable Rewritten Names

X79 Proportion of civilian noninstitutionalized population with no health insurance

coverage

X80 Civilian noninstitutionalized population under 19 years

X81 Proportion of civilian noninstitutionalized population under 19 years with no health

insurance coverage

X82 Civilian noninstitutionalized population 19 to 64 years

X83 Civilian noninstitutionalized population 19 to 64 years in labor force

X84 Civilian noninstitutionalized population 19 to 64 years in employed labor force

X85 Proportion of civilian noninstitutionalized population 19 to 64 years in employed

labor force with health insurance coverage

X86 Proportion of civilian noninstitutionalized population 19 to 64 years in employed

labor force with private health insurance

X87 Proportion of civilian noninstitutionalized population 19 to 64 years in employed

labor force with public coverage

X88 Proportion of civilian noninstitutionalized population 19 to 64 years in employed

labor force with no health insurance coverage

X89 Civilian noninstitutionalized population 19 to 64 years in unemployed labor force

X90 Proportion of civilian noninstitutionalized population 19 to 64 years in unemployed

labor force with health insurance coverage

Continued on the next page
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Variable Rewritten Names

X91 Proportion of civilian noninstitutionalized population 19 to 64 years in unemployed

labor force with private health insurance

X92 Proportion of civilian noninstitutionalized population 19 to 64 years in unemployed

labor force with public coverage

X93 Proportion of civilian noninstitutionalized population 19 to 64 years in unemployed

labor force with no health insurance coverage

X94 Civilian noninstitutionalized population 19 to 64 years not in labor force

X95 Proportion of civilian noninstitutionalized population 19 to 64 years not in labor

force with health insurance coverage

X96 Proportion of civilian noninstitutionalized population 19 to 64 years not in labor

force with private health insurance

X97 Proportion of civilian noninstitutionalized population 19 to 64 years not in labor

force with public coverage

X98 Proportion of civilian noninstitutionalized population 19 to 64 years not in labor

force with no health insurance coverage

X99 Percentage of families and people whose income in the past 12 months is below the

poverty level among all families

Continued on the next page
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Variable Rewritten Names

X100 Percentage of families and people whose income in the past 12 months is below the

poverty level among all families with related children of the householder under 18

years

X101 Percentage of families and people whose income in the past 12 months is below the

poverty level among all families with related children of the householder under 5 years

only

X101 Percentage of families and people whose income in the past 12 months is below the

poverty level among all families with related children of the householder under 5 years

only

X102 Percentage of families and people whose income in the past 12 months is below the

poverty level among married couple families

X103 Percentage of families and people whose income in the past 12 months is below the

poverty level among married couple families with related children of the householder

under 18 years

X104 Percentage of families and people whose income in the past 12 months is below the

poverty level among married couple families with related children of the householder

under 5 years only

X105 Percentage of families and people whose income in the past 12 months is below the

poverty level among families with female householder, no spouse present

Continued on the next page
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Variable Rewritten Names

X106 Percentage of families and people whose income in the past 12 months is below the

poverty level among families with female householder, no spouse present with related

children of the householder under 18 years

X107 Percentage of families and people whose income in the past 12 months is below the

poverty level among families with female householder, no spouse present with related

children of the householder under 5 years only

X108 Percentage of families and people whose income in the past 12 months is below the

poverty level among all people under 18 years

X109 Percentage of families and people whose income in the past 12 months is below the

poverty level among related children of the householder under 18 years

X110 Percentage of families and people whose income in the past 12 months is below the

poverty level among related children of the householder under 5 years

X111 Percentage of families and people whose income in the past 12 months is below the

poverty level among related children of the householder 5 to 17 years

X112 Percentage of families and people whose income in the past 12 months is below the

poverty level among all people 18 years and over

X113 Percentage of families and people whose income in the past 12 months is below the

poverty level among all people 18 to 64 years

Continued on the next page
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Variable Rewritten Names

X114 Percentage of families and people whose income in the past 12 months is below the

poverty level among all people 65 years and over

X115 Percentage of families and people whose income in the past 12 months is below the

poverty level among all people in families

X116 Percentage of families and people whose income in the past 12 months is below the

poverty level among all unrelated individuals 15 years and over

X117 Below poverty level population for whom poverty status is determined

X118 Below poverty level female population for whom poverty status is determined

X119 Below poverty level population 25 years and over for whom poverty status is deter-

mined

X120 Below poverty level population in civilian labor force of 16 years and over for whom

poverty status is determined

X121 Below poverty level population 16 years and over for whom poverty status is deter-

mined

X122 Percent of below poverty level population for whom poverty status is determined

X123 Percent of below poverty level female population for whom poverty status is deter-

mined

X124 Percent of below poverty level population 25 years and over for whom poverty status

is determined

Continued on the next page
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Variable Rewritten Names

X125 Percent of below poverty level population in civilian labor force of 16 years and over

for whom poverty status is determined

X126 Percent of below poverty level population 16 years and over for whom poverty status

is determined

X127 Number of households

X128 Median household income (dollars)

X129 Number of families

X130 Median family income (dollars)

X131 Number of married-couple families

X132 Median married-couple family income (dollars)

X133 Number of nonfamily households

X134 Median nonfamily household income (dollars)

X135 Total population

X136 Median age (years)

X137 Population in households

X138 Average household size

X139 Average family size

X140 Population 15 years and over

X141 Male population 15 years and over

Continued on the next page
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Variable Rewritten Names

X142 Female population 15 years and over

X143 Population 3 years and over enrolled in school

X144 Male population 3 years and over enrolled in school

X145 Female population 3 years and over enrolled in school

X146 Population 25 years and over

X147 Female population 15 to 50 years

X148 Female population 15 to 50 years who had a birth in the past 12 months

X149 Unmarried female population 15 to 50 years who had a birth in the past 12 months

X150 Population 30 years and over

X151 Civilian population 18 years and over

X152 Civilian noninstitutionalized population

X153 Civilian noninstitutionalized population under 18 years

X154 Civilian noninstitutionalized population 18 to 64 years

X155 Civilian noninstitutionalized population 65 years and older

X156 Population 1 year and over

X157 Native born population

X158 Foreign-born population

X159 Foreign-born naturalized U.S. citizen population

X160 Foreign-born not a U.S. citizen population

Continued on the next page
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Variable Rewritten Names

X161 Population born outside the United States

X162 Foreign-born population excluding population born at sea

X163 Population 5 years and over
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