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ABSTRACT 

 Urban flooding threatens infrastructure, public safety, and economic stability, with increasing 

frequency due to climate change and urbanization. Traditional monitoring methods - sensors, models, and 

remote sensing - are effective but limited by cost, time delays, and low spatial resolution. This thesis 

explores Twitter as a complementary data source for urban flood monitoring. A framework was developed 

to collect, filter, and analyze flood-related tweets using natural language processing, machine learning, 

sentiment analysis, and geocoding. Social media data was then integrated with rainfall data to generate near 

real-time flood maps. Additionally, a rain-on-mesh simulation using HEC-RAS incorporated terrain, land 

cover, and soil data to validate results. Findings show that approximately 75% of flood-affected zones 

identified via Twitter matched those from model-generated inundation maps. This demonstrates that social 

media can enhance situational awareness and support rapid flood response, making it a valuable tool for 

supporting traditional urban flood monitoring systems.  

 

 

 

INDEX WORDS: Crowdsourced Data, Urban Flood Monitoring, Natural Language Processing, 

Spatiotemporal Validation, Disaster Resilience 



 

 

LEVERAGING SOCIAL MEDIA AS A DATA SOURCE FOR IMPROVED URBAN FLOOD 

MONITORING 

 

by 

 

SWAGATO BISWAS ANKON 

BS, Rajshahi University of Engineering & Technology, Bangladesh, 2021 

 

 

 

 

 

 

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment 

of the Requirements for the Degree 

 

MASTER OF SCIENCE 

 

ATHENS, GEORGIA 

2025 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2025 

Swagato Biswas Ankon 

All Rights Reserved 

  



 

 

LEVERAGING SOCIAL MEDIA AS A DATA SOURCE FOR IMPROVED URBAN FLOOD 

MONITORING 

 

by 

 

SWAGATO BISWAS ANKON 

 

 

 

 

      Major Professor: Alysha Helmrich 

      Committee:  Matthew Vernon Bilskie 

         Linbing Wang 

         Benjamin Rachunok 

          

 

 

 

 

 

 

 

 

 

 

Electronic Version Approved: 

 

Ron Walcott 

Vice Provost for Graduate Education and Dean of the Graduate School 

The University of Georgia 

May 2025



 

iv 

 

 

ACKNOWLEDGEMENTS 

 I would like to express my deepest gratitude to my advisor Dr. Alysha Helmrich, for 

mentoring me through this journey, encouraging me to think critically, and inspiring me to bring 

about the best out of me. Her unwavering support and insightful advice made her contribution 

invaluable. I am also incredibly grateful to my committee members, Dr. Matthew Vernon Bilskie, 

Dr. Linbing Wang, and Dr. Benjamin Rachunok, for their support, constructive feedback, and 

encouragement throughout this process. Their expertise and guidance have strengthened this work 

in countless ways. This research would not have been possible without the generous support of 

Funding Organizations. I sincerely appreciate their commitment to advancing knowledge and 

fostering solutions that address critical challenges. To all those who have supported me – parents, 

colleagues, friends, and family - thank you for your encouragement and belief in me. This work 

reflects the collective effort that has shaped my journey. 

  



 

v 

 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

LIST OF TABLES ........................................................................................................................ vii 

LIST OF FIGURES ..................................................................................................................... viii 

CHAPTER 

 1 INTRODUCTION .........................................................................................................1 

 2 RELEVANT STUDY ....................................................................................................5 

 3 METHODOLOY .........................................................................................................11 

   Study Area .............................................................................................................11 

   Data Collection ......................................................................................................12 

   Data Cleaning and Pre-processing .........................................................................13 

   Data Analysis .........................................................................................................14 

   Rainfall Data ..........................................................................................................27 

   Satellite Data ..........................................................................................................29 

   Flood Model Development ....................................................................................32 

   Conceptualization ..................................................................................................36 

 4 Results ..........................................................................................................................39 

   Sentiment Distribution ...........................................................................................39 

   Identifying Flood Events........................................................................................41 

   Removal of False Positives ....................................................................................41 



 

vi 

   Mapping .................................................................................................................43 

   Validation ...............................................................................................................44 

 5 Discussions ..................................................................................................................47 

   Opportunities..........................................................................................................48 

   Limitations .............................................................................................................49 

 6 Conclusion ...................................................................................................................51 

REFERENCES ..............................................................................................................................52 

  



 

vii 

 

 

LIST OF TABLES 

Page 

Table 1: Tweet filtering using select keyword queries ...................................................................13 

Table 2: Descriptions (with examples) of the six clusters of tweets within the dataset .................18 

Table 3: Comparative performance analysis of machine learning models ...................................24 

Table 4: Details of rain gauge stations across Fulton County ......................................................27 

Table 5: Hydrological soil groups and respective soil textures ....................................................31 

Table 6: Manning’s n values considered for different land class ..................................................32 

Table 7: Curve numbers considered for different combinations ...................................................33 

Table 8: Validation details of buffer area based on flood depth ...................................................45 

  



 

viii 

 

 

LIST OF FIGURES 

Page 

Figure 1: Annual number of publications. The figure is generated ........................................................7 

Figure 2: The study area ..................................................................................................................12 

Figure 3: Preprocessing steps. First, every word was converted .........................................................13 

Figure 4: Top 100 most-weighted words displayed in a word ..............................................................15 

Figure 5: Silhouette scores with respect to the number of clusters are depicted ....................................17 

Figure 6: Six clusters of tweets as derived from the k-means clustering ...............................................18 

Figure 7: Regular expression pattern definition and formation. Six .....................................................21 

Figure 8: Expressions and scale of sentiment analysis ........................................................................25 

Figure 9: Criteria for the fusion of two buffer areas. (a) Fusion criteria ..............................................27 

Figure 10: Rain gauges plotted and labeled according to their ID ......................................................28 

Figure 11: Active measurement period of each rain station. Eight out of .............................................28 

Figure 12: The terrain map covering the Fulton County boundary is shown ........................................30 

Figure 13: The land cover map covering Fulton County boundary is ..................................................30 

Figure 14: The soil layer map covering the Fulton County boundary ..................................................32 

Figure 15: Infiltration map covering the study area ...........................................................................34 

Figure 16: (a) Generated mesh at a spacing of 100 ft x 100 ft covering ...............................................35 

Figure 17: Satellite precipitation band for January 4, 2023, between ..................................................36 

Figure 18: An idealized scenario of a rainfall event leading to flooding and its ...................................37 

Figure 19: Number of tweets in each sentiment category. More than 4800...........................................40 



 

ix 

Figure 20: Sentiment distribution within Fulton County for the whole .................................................40 

Figure 21: A time series plot of daily rainfall depth and normalized ....................................................41 

Figure 22: A time series plot of hourly average satellite rainfall depth ................................................42 

Figure 23: Near real-time mapping of flood-affected zones. Three time ...............................................43 

Figure 24: Validation results for 4 January 2023 10:00 – 11:00 AM UTC ...........................................44 

Figure 25: Flooded areas that could not be traced with Twitter ..........................................................46 

 



 

1 

 

 

CHAPTER 1 

INTRODUCTION 

 Flooding is one of the most common natural disasters. It has become more frequent and severe due 

to a combination of natural and anthropogenic factors. Natural factors include the effects of climate change, 

such as more intense and frequent rainfall, rising sea levels due to melting glaciers, and shifting weather 

patterns that prolong or intensify storms (Clarke et al., 2022; Easterling et al., 2012). Other natural drivers 

are storm surges from hurricanes or typhoons, which overwhelm river systems (Han & Tahvildari, 2024). 

Anthropogenic factors include urbanization, which has significantly altered natural water recharge systems 

(Wakode et al., 2018). Expanding impervious surfaces, such as roads, buildings, and parking lots, reduces 

the land’s ability to absorb rainfall. As a result, infiltration deteriorates drastically. Instead of groundwater 

recharging, the additional water overflows as surface runoff (Arnold & Gibbons, 1996). River alterations, 

such as channelization and construction in floodplains, increase downstream flood risks (O’Driscoll et al., 

2010). Factors like aging dams and insufficient flood planning, further compound these issues. The 

consequences worsen even more in an urban context.  

Urban flooding is critical because it poses severe challenges to the functionality, safety, and resilience of 

cities worldwide. Flooding in urban areas is pluvial in nature and is mostly driven by rainfall: short intense 

or prolonged steady. As urban areas expand, they become increasingly vulnerable to flooding due to the 

prevalence of impermeable surfaces, insufficient drainage infrastructure, and inadequate urban planning 

(Andreasen et al., 2023; Duy et al., 2018). When cities experience heavy rainfall, stormwater often 

overwhelms drainage systems, leading to extensive waterlogging in streets, homes, and commercial areas. 

This can lead to notable economic impacts, including temporary business closures, disruptions to 

transportation systems, and damage to critical infrastructure such as roads, bridges, and power grids (A. 

Helmrich et al., 2023). Recovery costs can burden municipal budgets, and property values in flood-prone 
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areas decline, creating long-term financial instability (BenDor et al., 2020). The consequences of urban 

flooding extend beyond economic impacts. Public health is affected, as stagnant floodwaters often contain 

sewage, chemicals, and other pollutants, increasing the risk of waterborne diseases such as cholera and 

typhoid (Basaria et al., 2023). Breeding mosquitoes in standing water also leads to outbreaks of vector-

borne diseases like dengue and malaria (Coalson et al., 2021). Furthermore, the physical toll on affected 

populations, including injuries and fatalities, can have lasting impacts. Low-income and marginalized 

communities are particularly at risk, as they are often situated in vulnerable areas and lack access to 

adequate resources for recovery, exacerbating social inequalities (Moulds et al., 2021). Environmental 

consequences are also significant, as urban flooding disrupts ecosystems by washing pollutants into nearby 

rivers, lakes, and wetlands. Changes to land cover, such as soil damage due to extreme weather events like 

wildfires, can reduce water absorption capacity, leading to increased flood risk (Miller & Hutchins, 2017). 

These multifaceted impacts underscore the urgent need for sustainable urban planning, improved 

infrastructure, and proactive policies to mitigate flooding risks. Effective mitigation relies heavily on robust 

flood monitoring systems that provide real-time insights and predictive capabilities.  

Urban flood monitoring is a major concern worldwide, especially in regions prone to severe weather events. 

It involves observing and analyzing environmental factors such as rainfall, water levels, and drainage 

systems to assess and mitigate the risks of flooding in cities. It plays a critical role in real-time flood warning 

systems, helping protect lives, reduce property damage, and enhance community resilience during flood 

events. Providing reliable flood risk assessment data supports informed decision-making for emergency 

responders, infrastructure managers, and urban planners. Additionally, in response to climate change 

impacts, such as intense rainfall and sea level rise, urban flood monitoring is essential. Traditional tools 

like sensors, satellite imagery, and hydrological models are often used to gather and analyze data for this 

purpose (Henonin et al., 2013; Tanim et al., 2022). Remote sensing or satellite technology offers good 

coverage for tracking storm activity and surface water changes (Farhadi et al., 2022; X. Zhu et al., 2024). 

Hydrological models simulate flood scenarios to evaluate vulnerabilities in flood-prone areas. They are 

widely adopted in flood management practices across the globe and have proven efficient in modeling flood 
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behavior and supporting early warning systems. These traditional approaches excel at the physical and 

environmental dimensions of flooding. For example, quantifying and predicting aspects of flooding like 

where and when it will occur, the extent of inundation, and the potential damage to infrastructure. However, 

they often overlook the human aspect – specifically, the public perception of flooding. Flooding oftentimes 

extends beyond mapped flood zones, and continued development in flood-prone areas leaves residents 

vulnerable to future flooding events (Hino et al., 2024). Urban flooding is highly localized and cannot be 

strictly confined to mapped floodplains (Balaian et al., 2024; Son et al., 2023). Public perception of flood 

risk, driven by personal experiences, community aspects, or cultural contexts, may diverge from scientific 

assessments (Sawaneh et al., 2024). This gap can worsen the impacts of flooding by influencing 

preparedness levels, evacuation decisions, or policy priorities (Ahmadi et al., 2022). Besides, traditional 

methods come with their own limitations. For example, sensors or gauges can be scarce in remote regions, 

unscaled with limited battery life. Hydrological models can be time-consuming and are mostly used for 

mitigation purposes. To address these limitations and incorporate public perceptions into flood monitoring, 

Volunteered Geographic Information (VGI) through crowdsourcing can play a pivotal role. It does not 

require continuous gauge readings or time-consuming computational models. It can also provide insights 

into behavioral patterns, risk awareness, and community concerns. By leveraging information shared by 

individuals through social media, mobile apps, or community reporting platforms, real-time insights into 

localized flooding conditions and human responses in the form of texts, images, or videos can be gathered. 

These resources can be analyzed further to derive valuable insights.  

However, some concerns have been raised regarding the credibility of social media data. First, it is 

susceptible to different kinds of biases. There is selection bias, where there is variability of social media 

usage of different demographic groups (Iacus et al., 2020); self-selection bias, where users engage with 

content that aligns with their existing beliefs (Persily & Tucker, 2020); and activity bias, where the most 

active users post more frequently than average users (Baeza-Yates, 2018). These biases can affect the 

quality and generalizability of social media research outputs. Moreover, lack of fact or cross-checking can 

alter public perception as misinformation or false data can spread through social media, compromising the 
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accuracy of research data (Papadopoulos et al., 2016). Besides, there remains the technical challenge of 

using sophisticated methodologies and analytical tools to process the big, unstructured social media data 

(Erokhin & Komendantova, 2024). 

Building on these considerations, this study evaluates the potential to leverage social media data as a 

strategic data source for urban flood monitoring despite the limitations. The following three research 

questions are explored:   

1. To what extent can integrating social media data contribute to the spatiotemporal resolution of 

urban flood mapping? 

2. How can big unstructured data (as found in social media data) be efficiently processed to generate 

actionable, near-real-time flood maps? 

3. Does social media data exhibit a spatiotemporal correlation between the user-generated reports and 

observed flood events? 

Chapter 2 provides a review of existing literature that describes the current state of research regarding urban 

flood monitoring, emphasizing the integration of crowdsourced data. Chapter 3 presents the methodology, 

comprising the architecture of collection, processing and analysis of Twitter data, rainfall data, satellite 

data, hydrological model development, and conceptualization of integration between rainfall and Twitter 

data. Chapter 4 articulates the results and validations, then Chapter 5 discusses the potential opportunities 

and limitations of crowdsourced data in urban flood monitoring as found in this study. Chapter 6 marks the 

conclusions of the study.  
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CHAPTER 2 

RELEVANT STUDY 

 Conventional flood monitoring methods play a major role in mitigating flood-related damage and 

ensuring public safety. Conventional methods mainly involve the usage of water level gauges, in-situ 

devices, land parcels, survey data, or close-circuit cameras to gather hydrological information. These 

methods offer several advantages; for example, they provide reliability since ground-based measurements 

are often highly accurate and trusted by engineers and urban planners (Tao et al., 2024). They also provide 

direct observation through real-time data, enabling quick decision-making during emergencies. However, 

they heavily depend on ground-based measurements that are scarce in many regions (Yilmaz et al., 2010). 

Besides, oftentimes, these gauges face data transmission delays, especially when installed in remote 

locations. To address these limitations, physical hydrological models (Nkwunonwo et al., 2020), sometimes 

in combination with machine learning approaches (Koutsovili et al., 2023) have been utilized. In most of 

these studies, the HEC-HMS (Hydrologic Engineering Center’s Hydrologic Modeling System) was used as 

the baseline physical model, incorporating high-resolution digital elevation, soil maps, and land use data. 

The integration of machine learning models significantly contributed to flood risk assessment and early 

warning systems. These models can effectively address the gaps present in conventional methods by 

integrating large datasets from various sources, such as satellite imagery or remote sensing, to enhance data 

coverage and reduce dependency on ground-based measurements (Saha & Chandra Pal, 2024). 

Furthermore, machine learning models can uncover complex patterns in flood behavior that may not be 

easily identifiable through traditional approaches (Tang et al., 2023). In most cases, the models were trained 

with time lags to predict critical water depth. However, these models are often time-consuming and struggle 

to provide short-term forecasts (Liu et al., 2022). Machine learning models need high-quality data and 

parameter tuning; further, they may face scalability issues when applied to large regions (Koutsovili et al., 
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2023). Various sensors (such as optical, pressure, infrared, and ultrasonic) are also used in flood monitoring. 

In these studies, the research design is based solely on sensor data or hybridized with satellite, field gauges, 

and/or machine learning models (Finley et al., 2020; Jang & Jung, 2023; Karyotis et al., 2019; Mousa et 

al., 2016; Sunkpho & Ootamakorn, 2011). The sensor-based methods can provide continuous, high-

resolution flood monitoring even in remote and inaccessible areas. Integrating multiple sensors improves 

measurement accuracy if there is a lack of data with sparse, ground-based measurements. But most of the 

sensors have limited battery lifetime, high installation costs, scalability issues, and are sensitive to weather 

conditions, causing measurement errors. Besides, some of these sensors are equipped with a global 

positioning system that requires strong connectivity. In some cases, machine learning models are subjected 

to proper area-specific training datasets as well as hyperparameter tuning. Even a few of these limitations 

can affect the quality of the developed study. Some studies have been undergone regarding the usage of 

unmanned aerial vehicles (UAV) for flood monitoring (Feng et al., 2015; Z. J. Zhu et al., 2017). These 

UAVs can capture high-resolution special images that can be further processed based on machine learning 

algorithms for flood mapping. However, UAVs also suffer from limited battery life, regulatory constraints, 

and specific software requirements. Besides, the captured images may also be compromised by dense 

vegetation and cloud cover. The applicability of the stated methods in an urban context is also a challenge, 

as most floods in urban areas are pluvial in nature (Song et al., 2019). 

Volunteered reports generated by the massive population living in an urban area can be a solution to go 

beyond the traditional approaches. In these cases, crowdsourced data through public webcams, social 

media, or citizen science produces a high volume of fine-scale data that has the potential to be used in 

disaster management studies (A. M. Helmrich et al., 2021; See, 2019). Social media is perhaps the most 

common crowdsourcing media. This Volunteered Geographic Information (VGI) is a user generated 

information stream providing near real-time data that is rich in quality and does not depend on mechanical 

gauges (Chen et al., 2016; Imran et al., 2014; Karimiziarani et al., 2022). (Muralidharan et al., 2011) was 

one of the foremost to examine the role of social media – Facebook and Twitter, used by nonprofits and 

media organizations during the 2010 Haiti earthquake relief efforts. Since 2011, the domain caught an eye 
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in disaster research and shows a significant rising trend in the number of publications (Figure 1). (Granell 

& Ostermann, 2016) presented a review of the main categories and different VGI applicability in disaster 

research. Twitter was found to be the most used among VGIs in all categories. Thus, researchers have 

leveraged specifically Twitter data to analyze various aspects of disasters from multiple perspectives. For 

example, situational awareness during a crisis is one of the popular research domains. (Snyder et al., 2020) 

proposed a methodology to identify relevant tweets using deep learning models during crisis events to 

support situational awareness from Twitter data. (Q. Huang & Xiao, 2015; Z. Wang & Ye, 2019) examined 

spatiotemporal situational awareness by separating tweets according to categories at different phases of a 

crisis using keywords and predefined word lexicons. However, these lacked how it would be beneficial for 

emergency responders where (Zade et al., 2018; Zhai, 2022) went one step ahead to propose actionability: 

reach the right information to the right correspondent. (Lachlan et al., 2016) evaluates how well Twitter 

was used for public communication, especially during the pre-disaster preparedness phase, with the role of 

hashtags in making actionable information.  

 

Figure 1: Annual number of publications. The figure is generated from a comprehensive literature search, 

using search operators such as Booleans, parenthesis, truncation etc. to build the query “("Social Media" 

OR Twitter) AND (Flood OR "Disaster Management" OR Resilience OR "Crisis Informatic*" OR "Crisis 

Mapping")” for “Web of Science” document searching. The results show a significant rising trend in the 
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number of publications since 2011, and it is still growing. This indicates that the emergent field is of 

growing interest to researchers. 

 

Some studies have been conducted to evaluate disaster resilience. (Crooks et al., 2013) focuses on 

understanding the spatial and temporal characteristics of Twitter’s response to an earthquake using 

geotagged tweets. (K. Wang et al., 2021, 2023) made sentiment analysis of disaster-related tweets to 

measure underlying emotion and correlated it to resilience and Twitter indices. (Kryvasheyeu et al., 2016; 

Mendoza et al., 2019) used Twitter as the medium of rapid damage assessment after a disaster for improved 

resilience. Some studies focus on using Twitter data to complement existing methodological gaps. (Zou et 

al., 2018) concluded that the inclusion of social media data improves damage estimation models by offering 

additional insights. (Panteras & Cervone, 2018) used Twitter data to bridge temporal gaps generated from 

satellite maps due to infrequent visits and cloud cover. (Cervone et al., 2016) shows that social media can 

support rapid decision-making in emergency response by identifying critical areas and complementing 

remote-sensing data gaps when integrated effectively. (Z. Wang & Ye, 2018) conducted a comprehensive 

review, categorizing existing studies that worked on any of these four key dimensions: spatial, temporal, 

content, and network. Additionally, they identified studies with hybrid classifications that combined these 

dimensions among themselves or with remote sensing and census data, providing a nuanced framework for 

understanding the multifaceted nature of disaster-related research.  

(Smith et al., 2017) built a two-dimensional real-time hydrodynamic modelling framework using Twitter 

data. A standard rainfall hyetograph was applied uniformly across the modelled area, assuming a short-

duration, high-intensity rainfall event typical for surface water flooding. The onset of a flood event was 

detected based on the volume and content of tweets within a defined time window. However, the study is 

limited by the resolution, scalability, and accuracy of the modelling. (Jongman et al., 2015) focused on 

analyzing data from the Global Flood Detection System’s raster maps and Twitter to enhance the 

understanding and management of flood events. Twitter signals were available up to two days before floods 

were reported, showing potential for early flood detection. Even Twitter effectively identified unexpected 

flood events, such as dam bursts or intentional levee breaches. This information provided qualitative 
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insights that were not captured by satellite data. The study mostly covered riverine floods, and Twitter data 

mostly captured responses from urban areas with dense populations. There was still a challenge due to 

differences in spatial and temporal resolution. A national scale real-time flood monitoring framework was 

developed by (Barker & Macleod, 2019). They integrated data from sources like the Environment Agency 

in England/Wales and the Scottish Environmental Protection Agency to obtain up-to-date flood warnings 

and river levels and fused it with geotagged Twitter data. A Natural Language Processing approach was 

used: Doc2Vec for feature extraction and Logistic Regression to classify Tweets in "relevant" or 

"irrelevant" categories based on manually labelled training data. The prototype pipeline successfully 

retrieved and processed geotagged tweets in real-time, demonstrating its ability to monitor floods at a 

national scale. However, the number of geotagged Tweets was very few. Also, the study is limited in its 

applicability to urban areas in cases of pluvial floods. On the other hand, (X. Huang et al., 2018) used 

remote sensing imagery, stream gauge readings and crowdsourced Twitter data for near real-time 

inundation probability. The results show that integrating satellite data with social media and gauge readings 

significantly improves flood extent mapping, providing a higher-resolution and more accurate flood 

probability distribution. The study achieved a finer scale compared to other models. There still remains the 

need for an integrated approach that transforms relevant qualitative Twitter texts into quantifiable measures 

that directly correlate with rainfall events. A framework was conceptualized to address the time lag 

threshold that can be seen between a rainfall event leading to pluvial flooding and its respective Twitter 

responses. One major challenge is extracting location information from a large pool of tweets with proper 

detaining and accuracy. Traditional Named Entity Recognition (NER) tools struggle to accurately identify 

complex locative references due to the unique characteristics of tweets (Middleton et al., 2020). A variety 

of approaches, including regular expression pattern formation or regular expression with a combination of 

other natural language processing techniques, can achieve better accuracy to extract location entities 

embedded in textual tweets (Subarkah et al., 2023; Yenkar & Sawarkar, 2021; Zhang et al., 1991).  

Twitter generally comes with a high-resolution timestamp. Spatial and contextual dimensions are often 

attributed to questionable reliability and consistency. Proper handling of the content largely determines the 
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credibility of a study. (Arolfo et al., 2022) conducted quality analysis of Twitter data using four pillars: 

readability, completeness, usefulness, and trustworthiness. The analysis shows that the average quality of 

Twitter data streams is higher than anticipated. It varies significantly depending on the filtering techniques 

and the type of content. Besides, (Fuchs et al., 2013) applied a visual analytics approach to analyze 

georeferenced Twitter data to investigate how well the tweets reflect disaster events in space and time and 

found out that filtering tweets based on specific flood-related keywords improved event detection. 

(Pramanick et al., 2021) shows how language use on social media evolves rapidly during crises, impacting 

the performance of NLP models. The study states the importance of temporal adaptation during different 

phases of a crisis. (Paradkar et al., 2022) focuses on analyzing the consistency between the spatially 

geotagged tweets and the locations mentioned in their content during Hurricane Harvey. Although a small 

number of tweets are generally geotagged, point locations were the most consistent, followed by area-wise 

locations. (Gulnerman & Karaman, 2020) evaluated the spatial reliability and accuracy of social media data 

filtering techniques, with a specific focus on disaster-related events. Filtering techniques that incorporate 

domain-specific lexicons and machine learning approaches performed better in terms of spatial reliability. 
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CHAPTER 3 

METHODOLOGY 

 This study employs a multi-step process to integrate near real-time social media with rainfall data. 

Twitter data related to flooding was collected, preprocessed, and filtered using natural language processing 

(NLP) and machine learning techniques to identify flood-related tweets. A sentiment analysis was applied 

to categorize these tweets, focusing on negative sentiments for further geocoding. Geolocation techniques 

extracted spatial information from tweets to map flood-affected areas. The identified flood events were then 

cross-referenced with rainfall data from USGS and satellite sources to establish spatiotemporal correlations. 

A hydrological model using HEC-RAS was developed to simulate flood scenarios for validation. The 

methodology ensures a comprehensive approach for leveraging social media as a crowdsourced data source 

for urban flood monitoring. 

3.1 Study Area 

Situated in the north-central part of Georgia in the southeastern United States, Atlanta is a 

sprawling metropolitan area consisting of approximately 6.3 million people. It is in the foothills 

of the Appalachian Mountains and has a humid, subtropical climate. Atlanta experiences annual 

temperatures between 11.7 and 22.2 ° C and receives a mean 126 cm of annual precipitation 

(Chang et al., 2021). Extreme rainfall and flooding are exacerbated by urbanization, hilly 

topography, and floodplain development (Chang et al., 2021). In this study, Fulton County, which 

covers a major portion of metropolitan Atlanta, is selected as the study area, as shown in Figure 2. 
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Figure 2: The study area 

3.2 Data Collection 

Social media data was collected through Twitter, currently known as ‘X.’ As of 2022, Twitter had more 

than 368 million monthly active users who generate a large amount of data that can have significant utility 

(X/Twitter: Number of Users Worldwide 2024 | Statista, 2023). Twitter provides features that support 

crowdsourcing data, such as geo-tagging, real-time posting, and accessibility (e.g., no user cost, widespread 

use). Furthermore, until 2023, Twitter hosted a freely available API, which provided a friendly environment 

to mine data. Crowdsourced data were collected as tweets related to flooding were collected through the 

Twitter API between September 2021 and March 2022. A 15-mile radius centering Atlanta, GA (33.7490,-

84.3880). Three sets of keyword queries were used to filter flooding-related tweets, as described in Table 

1. Almost 148,000 tweets were extracted from filtering the keyword queries within the given temporal and 

spatial constraints. The following attributes were cataloged for each tweet: Tweet ID – the unique identifier 

of each of the tweet; Timestamp – the time including time zone information when the tweet was posted; 

Text – the content of the tweet; Search terms – the term(s) used to retrieve the tweets. The tweets were 

collected anonymously. 
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Table 1. Tweet filtering using select keyword queries. 

Category Keyword queries 

Rainfall Raining, rained, pouring, monsoon, rain, rainfall, rainstorm, precipitation, rainwater, 

rain shower,  

Flood flood, flooded, flooding, flood with, flooded with, flooding with, flood of, inundation, 

submerge, immerse 

Synonyms Pour, shower, hurricane, storm, soak, soaked, poured, puddle, puddles, sewer 

overflow, backup, drizzle, ponding, overflow, pond, drown, drowning, drowned, 

cloudburst, torrent 

 

3.3 Data Cleaning and Pre-processing 

A multi-step process was applied to clean the dataset for analysis. The first cleaning step was to remove the 

duplicate tweets, including retweets (reposts or forwards of another user’s tweet). Retweets were not 

applicable because dissemination of information was not in the scope of the study. Almost 8% of the tweets 

were removed through this process – half were duplicate tweets and half were retweets. Next, several 

preprocessing steps were followed before data analysis to ensure data standardization, consistency, and 

relevance for analysis, as shown in Figure 3.  

Figure 3: Preprocessing steps. First, every word was converted to lowercase for uniformity. Second, 

insignificant information such as numbers, hashtags, URLs, and special characters (i.e., emojis and 

punctuation marks) were removed. Third, the words in tweets were split into comma-separated individual 

words called tokens. Fourth, all the stopwords were removed in this step. Words that are commonly used 

in writing but do not contain significant meaning are called stopwords. They include articles, prepositions, 

pronouns, conjunctions, common verbs, etc. Fifth, every word was transformed to its root form through 

lemmatization. For example, rained or raining or rains became rain. 
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3.4 Data analysis 

3.4.1 Keywords Visualization 

A term frequency-inverse document frequency (TF-IDF) algorithm was applied to determine the most 

important words in the corpus. TF-IDF algorithms are effective for assessing large datasets, such as Twitter 

data, due to their fast computation and simplicity. It effectively highlights contextually significant words 

and filters out common, less informative terms, improving text analysis accuracy. The term frequency (TF) 

represents the ratio of how often a word appears in a document compared to the total number of words in 

that document and is represented as: 

TF(t, D) =
Number of times term (t) appears in document (D)

Total number of terms in document (D)
 

 

The inverse document frequency (IDF) reflects the significance of a word within a corpus, calculated as the 

logarithm of the ratio between the total number of documents in the corpus and the number of documents 

containing the word. It is calculated as: 

𝐼𝐷𝐹 (𝑡, 𝑁) = log (
Total number of documents in the entire corpus (N)

The number of documents in the corpus that contain the term (𝑛𝑡)
) 

 Finally, the important keywords are defined by TF-IDF as, 

TF − IDF (t, D, N) =  TF(t, D) . 𝐼𝐷𝐹 (𝑡, 𝑁) = 𝑓𝑡,𝐷 . log (
𝑁

𝑛𝑡
) 

Where, t is a specific term or word, D is a specific document, N is the total number of documents in the 

entire corpus, and 𝑛𝑡  is the number of documents in the corpus that contain the term t. Words with the 

highest TF-IDF weight indicate their strong importance within a document, as determined by their 
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frequency and the overall size of the corpus. A word cloud of the top 100 most-weighted words is shown 

in Figure 4. 

 

Figure 4: Top 100 most-weighted words displayed in a word cloud. Disclaimer: The word cloud is 

generated from a collection of tweets and contains taboos (e.g., English swear words). The inclusion of 

such terms reflects the original content of the tweets and does not endorse or promote any inappropriate 

language. 

3.4.2 Clustering 

In large datasets, the texts are generally vast and unstructured. Organizing them is essential to obtain 

meaningful insights. While each tweet is short and unique, it can contain valuable information, opinions, 

and news that can be clustered based on similarity. This helps identify patterns, trends, or topics that may 

not be visible when analyzed individually. K-means clustering was applied in this study on the previously 

derived TF-IDF vectors using Algorithm 1. K-means clustering is one the most widely adopted clustering 

algorithms across various domains because of its efficiency and low computational complexity (Ikotun et 

al., 2023).  
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Here, the algorithm takes a list of tweets as input and aims to produce clusters of tweets based on their 

content similarity. First, it computes the TF-IDF vectors for the tweets that transform the text into numerical 

representations (as described in section 3.4.1). It reflects the importance of terms within the dataset. These 

vectors are then normalized to ensure consistent distance calculations among the post vectors when 

applying cosine similarity: 

𝑐𝑜𝑠(𝑡𝑖 , 𝑐𝑗) =  
𝑡𝑖. 𝑐𝑗

|𝑡𝑖|. |𝑐𝑗|
=  

∑ 𝑡𝑖𝑘𝑐𝑗𝑘

√∑ 𝑡𝑖𝑘
2 ∑ 𝑐𝑗𝑘

2 

  

Where 𝑡𝑖  is the tweet vector and 𝑐𝑗 is the centroid vector. Next, the K-means clustering is initialized with 

a user-defined number of clusters. Different values of k are tested using silhouette scores to determine the 

optimum value, as demonstrated in Figure 2. The optimum value of k was determined to be six. The 

algorithm iterates until convergence by first calculating the cosine similarity between each tweet and the 
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centroids of the clusters. The tweet is assigned to the cluster with the highest cosine similarity, aggregating 

the tweets. After all tweets have been assigned to clusters, the centroids of the clusters are recalculated by 

averaging the vectors of all the tweets in each cluster. The process repeats, with the centroids being updated 

at each iteration, until the movement of the centroids falls below a user-defined threshold (10−4), signaling 

convergence. Once convergence is achieved, the algorithm assigns the final cluster labels to the tweets. 

Lastly, the dimensionality of the data is reduced using principal component analysis for visualization 

purposes, and the resulting clusters are returned. The resulting clusters are presented in Figure 5. Table 2 

describes the general themes of the discussions in each of these clusters. The themes are generalized based 

on the top 30 most-weighted keywords in each cluster. 

 

Figure 5: Silhouette scores with respect to the number of clusters are depicted. As k increases from two to 

five, silhouette scores drop, suggesting that the clustering is worsening. This might happen because the 

tweets are not being grouped into well-defined clusters. The silhouette score jumps significantly at k = 6. 

This suggests that the data is much better separated into six clusters than five or fewer clusters. At this 

point, the clusters are well-defined. After k = 6, the silhouette score fluctuates slightly with small increases 

and decreases between k = 7 and k = 9. This suggests that adding more clusters doesn’t dramatically 

improve the quality of the clusters. At k = 10, there’s a notable jump in the silhouette score again. The 

magnitude of the increase indicates that the model is overfitting, as too many clusters may start to capture 

noise. 
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Figure 6: Six clusters of tweets as derived from the k-means clustering (optimum number of k = 6). 

 

Table 2. Descriptions (with examples) of the six clusters of tweets within the dataset 

ID Description 

Cluster 0 Personal reflections on life, emotions, and weather 

Example 1: I needa hurry up and get out the house before it rain. Glad I did my baby hair 

already. 

Example 2: Recent extreme weather is a great opportunity to remake the global economy 

Cluster 1 Flood warnings and emergency alerts 

Example 1: LIX issues Flood Warning for Mississippi River at Red River Landing [LA] 

till May 25, 7:00 AM CDT 

Example 2: Flood Alerts are active in parts of the Midwest and Northeast as the rain from 

Winter Storm #Miles meets snowpack and frozen ground.  

Cluster 2 Severe weather (tornado and thunderstorm warnings) 

Example 1: TAE issues Severe Thunderstorm Warning [wind: 60 MPH (RADAR 

INDICATED), hail: 0.75 IN (RADAR INDICATED)] for Bay, Calhoun, Gulf [FL] till 

12:45 PM CDT  

Example 2: Severe thunderstorm may hit today at Fulton County Georgia [wind: 50 

MPH] 

Cluster 3 Casual, everyday conversations about weather and life 

Example 1: If it's going to rain, could it at least storm and go crazy smh 

Example 2: I love this game so much I played in the rain! Thank you! #tennis 

#ultimatetennis #tenniscouples #couplesplay #hittingballs @ Decatur, Georgia 

Cluster 4 Daily life influenced by weather and astrological signs (sagittarius, aquarius etc.) 

Example 1: I hate shooting in the rain. This lightning delay wasn't long enough. 

Example 2: If you‚Äôre an aquarius i hope you ride your motorcycle in the rain. 

Cluster 5 Severe thunderstorm warnings, evacuation and monitoring. 

Example 1: A flooded river in Oregon is prompting the evacuation of roughly 50 people 

from an RV Park. 10 have already been successfully rescued. 

Example 2: Today, we're monitoring a severe weather threat that brings the possibility 

of thunderstorms, tornadoes, damaging winds, and flash flooding. 
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3.4.3 Location Detection 

In order to identify where flooding may be occurring, it was crucial to geolocate the tweets in order to get 

a spatial visualization. However, less than 1% of the tweets had the built-in geolocation function enabled 

on Twitter. This number of tweets was insufficient to support an urban flood monitoring system 

meaningfully. However, many of the tweets had user-generated location information embedded in their text 

content. Therefore, these text-embedded locations needed to be detected and assigned. Initially, the research 

team used methods such as Natural Language Toolkit (NLTK) or TextBlob, but the results were 

unsatisfactory, as both methods detected many false positives and missed numerous location information. 

This might be due to significant variability in location embeddings in tweets of different clusters. For 

example, a term may be either a place or a name (e.g., Georgia), cardinal directions being identified as a 

location, multiple locations listed in one tweet, or shorthand for street names (e.g., Street as St.). For this 

reason, 500 tweets were randomly selected from each cluster to learn how people reference locations in 

their tweets. Broadly, the identified content was categorized into three types:  

• Type 1: County-wise location (e.g., Fulton County) 

• Type 2: Area-wise location, such as districts (e.g., downtown), cities (e.g., Alpharetta), and 

neighborhoods (e.g., Old Fourth Ward)  

• Type 3: Street-wise location (e.g., Peachtree Street) 

The randomly selected tweets from each cluster showed that the locations could be identified through 

patterns to recognize all three types of locations. These patterns could be unique or common among the 

clusters. So, in the first phase, a regular expression pattern recognition tool was used to detect and assign 

these locations. As the tool takes user-generated predefined patterns as inputs, these patterns were defined 

first. Each unit of the pattern was considered and constructed to account for possible variations. Figure 7 

shows a detailed overview of the defined patterns for all three types of locations. The patterns were applied 

to the tweets based on the details that could be extracted using ‘if’ statements (as indicated in the order 

column). This process begins with order 1. If a pattern of order 1 successfully extracts a location from a 
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tweet, the succeeding order patterns will not be applied to that tweet. Conversely, if the order 1 pattern fails 

to identify a location, the order 2 pattern will be applied, and so forth. Finally, the order 5 pattern, which is 

the least detailed, will be applied to any remaining tweets.  
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Figure 7: Regular expression pattern definition and formation. Six constitutional units were defined first. 

The units were structured to form patterns for county-wise, area-wise, and street-wise location extraction. 

The patterns were then applied to the tweets to capture matches. The order of application was based on the 

level of subtlety that could be extracted for a location. The matches were deemed as location outputs. The 

extracted locations were further processed for minor modifications to make them suitable for the 

OpenStreetMaps geolocation application. For example, the relays were replaced with a comma where 

applicable. All terms within the ‘County’ and ‘Street’ definitions were replaced with ‘County,’ ‘Street,’ and 

‘Road,’ respectively, where applicable. 

 

However, there could be tweets that did not fall under a defined pattern. Also, some people may misspell a 

location due to various reasons, such as English not being their first language, tweeting in rush due to the 

severity of an event, etc. To accommodate those locations, a second step was undertaken. In the second 

phase, each unique pattern-captured location from the first step was used as a reference to find a match 

from the remaining tweets. In this case, if a match of 80% or higher was found between the reference 

locations and any of the word(s) in the remaining tweets, it was also extracted and counted as a location. 

The process identified 12.9% (~19,000) of the tweets as containing location information provided by users.  

This pool of tweets was named ‘GeoTweets Pool.’ Finally, the ‘GeoTweets Pool’ was processed further in 

the next steps. 

3.4.4 Separating Flood-Related Tweets 

Filtering flood-related tweets was essential for refining the dataset and identifying tweets pertaining to flood 

events. The ‘GeoTweets Pool,’ identified in the previous step, contained writings on a diverse array of 

topics. Twitter users may tweet about their sentiments regarding activities, experiences while driving, 

poetry or story about rain, and other subjects during a rainfall event. However, it is important to recognize 

that not every rainfall event will result in flooding. Therefore, it was necessary to identify the tweets 

referencing a flooding event to support an urban flood monitoring system. For example, tweets discussing 

flood warnings, extreme weather alerts, personal experiences during a flood (e.g., reporting an 

inconvenience), damage reports, emergency evacuation information, road closures, etc. To identify the 

flood-related tweets, machine learning models were leveraged. Five hundred tweets were randomly selected 
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from each cluster within the ‘GeoTweets Pool.’ The tweets were manually inspected to detect if the tweet 

indicated a flooding event or not. Each tweet was labeled as either not indicative of flooding (0) or indicative 

of flooding (1). 

The tweet text content (X) and corresponding labels (y) are extracted from the manually inspected dataset. 

The overall dataset is then split into a training set (70%) and a test set (30%). The feature extraction is 

completed with the TF-IDF vectorizer to convert the tweet text into numerical features representing the 

word's importance in each tweet. Four classification models (Logistic Regression (LR), Random Forest 

(RF), Naïve Bayes (NB), and Support Vector Machine (SVM)) were executed to have a comparative 

analysis of their performance. The vectorizer is fitted on the training data and transformed for the training 

and test data. Since urban flooding events are scarce, tweets indicating a flood event were relatively low 

compared to tweets that did not indicate a flooding event. The balancing ratio (flood-indicative to non-

flood-indicative ratio) was nearly 0.25, indicating a moderate class imbalance. This could influence the 

performance of the machine learning models, especially for the minority class if not addressed. Therefore, 

optimal class weights (LR, RF, SVM) or class priors (NB) were assigned—higher for the minority class 

and lower for the majority class. Considering weights, each classifier is trained on the training set, and 

predictions are made on the test set. The classified results fall under the following four categories: 

• True positive (TP): the number of tweets that correctly fall under flood tweets 

• False positive (FP): the number of tweets that incorrectly fall under flood tweets 

• True negative (TN): the number of tweets that correctly fall under non-flood tweets 

• False negative (FN): the number of tweets that incorrectly fall under non-flood tweets 

The labeling performance is measured in terms of accuracy, precision, recall, and F-1 score. Precision 

measures the proportion of tweets predicted as flood-related that are actually flood-related as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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Recall measures the proportion of actual flood-related tweets that were correctly identified by the model. It 

is calculated as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-Score is the harmonic mean of precision and recall, which balances the two as: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ´ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ´ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Accuracy means the overall proportion of correctly classified tweets (both flood-related and non-flood) and 

is measured as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Finally, a comparative performance analysis of the four models predicting flood tweets is shown in Table 

3.  

Table 3. Comparative performance analysis of machine learning models 

Model Precision Recall F-1 Score Accuracy 

Logistic Regression 0.94 0.74 0.83 0.85 

Random Forest 0.92 0.89 0.90 0.89 

Naïve Bayes 0.90 0.83 0.86 0.88 

Support Vector Machine 0.94 0.90 0.91 0.91 

Since the support vector machine achieved the best results in all four metrics, it was applied to the remaining 

unlabeled tweets for the classification task using the same TF-IDF vectorizer. Almost 5,200 tweets were 

identified as flood-related tweets. This updated pool of tweets was named ‘Flood GeoTweets Pool.’ 

3.4.5 Sentiment Analysis 

The ‘Flood GeoTweets Pool’ was further processed with sentiment analysis, a natural language processing 

(NLP) technique used to determine the emotional tone expressed in a piece of text. The goal of sentiment 

analysis is to identify whether the sentiment conveyed in the text is positive, negative, or neutral emotions. 
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In this study, text was processed with vader, a predefined lexicon-based sentiment analyzer where the words 

in a document are annotated with semantic scores between -1 and 1 (Hutto & Gilbert, 2014) (Figure 8). 

Vader can score individual words and sentence fragments (aggregating scores of each word in the sentence). 

It also accounts for intensifier words (e.g., ‘flooding’ versus ‘severe flooding,’ where severe is working as 

an intensifier.) In this study, the compound score of each tweet classified as: 

• Positive: If the compound score falls within the range 0.1 to 1.00 

• Neutral: If the compound score falls within the range -0.1 to 0.1 

• Negative: If the compond score falls within the range -0.1 to -1.00 

 

Figure 8: Expressions and scale of sentiment analysis 

The ‘Flood GeoTweets Pool’ was processed through the sentiment analyzer for sentiment classification.  

The collection of real-time field data on critical aspects such as infrastructure damage, road closures, and 

public distress was essential for the flood monitoring system. These data provide valuable insights into the 

severity of flooding and its impact on mobility and community well-being. To ensure that the most relevant 

information was analyzed, tweets expressing compound negative sentiment were specifically targeted for 

the study, as firsthand reports of disruptions, safety concerns, and frustration caused by the flood are more 

likely to be captured by negative sentiments (Karmegam & Mappillairaju, 2020). The updated pool of 

tweets was named ‘Sen Flood GeoTweets Pool’ and was processed further in the next step. 
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3.4.6 Geocoding 

OpenStreetMaps (OSM) geocoding feature in QGIS was used to geolocate the ‘Sen Flood GeoTweets 

Pool.’ OSM primarily relies on the Nominatim service, which follows a structured process for interpreting 

and matching location queries. When a user enters a place name or address (extracted locations from tweets 

described above), the input query is parsed into its component parts (e.g., house number, street, city, postal 

code, country). The query is structured hierarchically (from specific to broad) to improve matching 

accuracy. Nominatim searches OpenStreetMap’s geospatial database, which contains location data tagged 

with attributes. The system uses full-text search indexing on pre-processed address components to find 

relevant entries quickly. If a multiple match is found for a query, relevant results within a county boundary 

are selected for display. Once a match is found, Nominatim assigns geographic coordinates (latitude & 

longitude) from OSM’s point, line, or polygon data. The exact point coordinates are returned for point-

based features (e.g., buildings, landmarks). For polygon features (e.g., cities, administrative boundaries), a 

centroid (central coordinate) is computed. In this study, areawise and streetwise locations returned centroid 

coordinates of respective polygon features. However, since a centroid coordinate does not fully represent a 

polygon area, an average buffer radius of 0.5 mile was considered around the centroid coordinate. If the 

‘buffer area’ of two points overlapped by more than or equal to half of the radius, they were fused together 

to a single point, as shown in Figure 9. On the other hand, countywise locations were regarded as 

administrative boundaries of each county. As the boundaries of counties are fixed, the county-wise locations 

are not required to have geocoding. Tweets that contain countywise locations are assumed to have an effect 

on the whole county boundary.  
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Figure 9: Criteria for the fusion of two buffer areas. (a) Fusion criteria do not apply as the overlapping 

distance is less than half of the radius. (b) Fusion criteria apply as the overlapping distance is greater or 

equal to half of the radius. 

3.5 Rainfall Data 

3.5.1 In-situ Rainfall Data 

In-situ rainfall data was collected from USGS archives for the specified timeframe. The rainfall data was 

collected daily and contained other information like rain gauge station names and coordinates, as mentioned 

in Table 4. The gauges have been plotted using QGIS (Figure 10). Not all of the gauges were actively 

measuring rainfall throughout the timeframe of tweet collection. Figure 11 shows an overview of each rain 

station's active status, which highlights the periods of data availability and gaps in measurement. 

Table 4. Details of rain gauge stations across Fulton County. 

ID Station name Coordinates 

1 Palmetto 3.2 NW, GA US 34.0139, -84.6997 

2 Atlanta 3.7 N, GA 33.8169, -84.4174 

3 Roswell 0.7 SE, GA 34.0298, -84.3466 

4 Alpharetta 2.1 NNE, GA 34.0983, -84.2600 

5 Alpharetta 1.6 SE, GA 34.0529, -84.2506 

6 Alpharetta 4.8 WNW, GA 34.0903, -84.3515 

7 Atlanta 3.2 S, GA 33.7171, -84.4210 

8 Roswell 5.9 SE, GA 33.9789, -84.2800 

9 College Park 1.6 NNW, GA 33.6620, -84.4641 

10 Atlanta 2.3 NE, GA 33.7881, -84.3966 

11 Atlanta 2.3 SE, GA US 33.7363, -84.3995 

12 Atlanta Fulton Co Airport, GA US 33.7775, -84.5246 

13 Alpharetta 3.7 ENE, GA US 34.0962, -84.2168 

14 Roswell 3.0 ESE, GA US 34.0139, -84.3119 

15 Roswell 2.7 NW, GA US 34.0611, -84.3945 
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Figure 10: Rain gauges plotted and labeled according to their ID for Fulton County.  
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Figure 11: Active measurement period of each rain station. Eight out of 15 rain stations monitored rainfall 

throughout the timeframe.  

3.5.2 Satellite Rainfall Data 

Satellite rainfall data was collected from the Center for Hydrometeorology and Remote Sensing (CHRS) 

of the University of California Irvine (Nguyen et al., 2019). The raster resolution was 0.04 x 0.04 degree. 

The collected data provided hourly precipitation data throughout the study area, ensuring that real-time, 

localized variations in rainfall patterns were captured to supplement the coarse in-situ rainfall data. 

3.6 Satellite Data 

3.6.1 Digital Elevation Model (DEM) Data 

A digital elevation is a representation of the Earth’s topographic bare surface in a digital format. It is usually 

created from elevation data collected through remote sensing methods like LiDAR, radar, or satellite 

imagery. In this study, the DEM raster with a resolution of 30 meters was collected from the NASA/NGA 

Shuttle Radar Topography Mission (SRTM) data and processed through QGIS. It provides a grid-based 

format where each cell contains an elevation value, making it possible to generate contour maps, analyze 

slope gradients, or simulate water flow across landscapes. A detailed terrain map is shown in Figure 12. 

3.6.2 Land-Use and Land-Cover (LULC) Data 

Land-use and land cover (LULC) data represent the physical characteristics of the Earth's surface, 

distinguishing between natural features like forests, water bodies, and grasslands, as well as human-made 

features such as urban areas, agricultural fields, and infrastructure. In this study, Sentinal-2 10-meter land 

cover raster from 2021 was extracted from the ESRI National Land Cover Dataset (NLCD) and processed 

through QGIS. A detailed land cover map is shown in Figure 13. 
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Figure 12: The terrain map covering the Fulton County boundary is shown. The color gradient implies 

lower (red) to higher (green) elevation. 
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Figure 13: The land cover map covering Fulton County boundary is shown. Fifteen unique color codes 

demonstrate various land cover types. 

3.6.3 Soil Layer Data 

Soils are categorized into hydrologic soil groups (HSG) to represent bare soil's minimum infiltration rate 

under sustained saturation conditions. A detailed classification of hydrological soil groups and their textures 

are shown in Table 5. 

                                  Table 5. Hydrological soil groups and respective soil textures. 

HSG Texture 

A Sand, loamy sand, or sandy loam 

B Silt loam or loam 

C Sandy clay loam 

D Clay loam, silty clay loam, sandy clay, silty clay, or clay 

Group A soils consist of sand or gravel materials with a high water transmission rate (> 0.30 in/hr). These 

show low runoff potential and high infiltration rates even when thoroughly wetted. Group B mainly consists 

of drained soils with moderately fine to coarse textures as well as moderate water transmission (0.15 – 0.30 

in/hr). These show moderate infiltration rates when thoroughly wetted. On the other hand, Group C soils 

have moderately fine to fine textures with low water transmission (0.05 - 0.15 in/hr). When thoroughly 

wetted, these soils show low infiltration rates. Finally, Group D soils consist mostly of clays with high 

swelling potential. These soils have a very low rate of water transmission (0 - 0.05 in/hr). Moreover, Group 

D soils have very low infiltration rates, and thus, the runoff potential is maximum. In certain cases, places 

can have a mixture of multiple soil groups. These are expressed as a combination of existing groups. For 

example, if an area has both soil Group A and B, it is expressed as Group AB, where A is the dominant 

group. Impervious developed areas are often referred to as the ‘none’ category. Figure 14 shows a detailed 

soil map of the study area extracted from the Soil Survey Geographic Database (SSURGO) and processed 

through QGIS.  
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Figure 14:  The soil layer map covering the Fulton County boundary is shown. Unique color codes separate 

different soil groups. As it can be seen, a major part of Fulton County falls under ‘none’ category as these 

places are impervious due to developed regions. 

3.7 Flood Model Development 

3.7.1 Manning’s n Value 

Manning's n, also known as the Manning's roughness coefficient, is a dimensionless empirical parameter 

that characterizes the resistance or friction caused by channel surface roughness, which affects the speed 

and behavior of water flow in natural and artificial channels. It takes into account the effect of channel 

surface irregularities, vegetation, material composition, and other obstructions on water flow. The following 

Manning’s n values (presented in Table 6) were selected for the NCLD land cover raster. 

Table 6. Manning’s n values considered for different land classes. 

NLCD Class ID NLCD Class Name Manning’s n 

0 No Data 0.06 

11 Open Water 0.04 

21 Developed, Open Space 0.05 

22 Developed, Low Intensity 0.08 
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23 Developed, Medium Intensity 0.10 

24 Developed, High Intensity 0.15 

31 Barren Land Rock-Sand-Clay 0.04 

41 Deciduous Forest 0.16 

42 Evergreen Forest 0.16 

43 Mixed Forest 0.16 

52 Shrub-Scrub 0.10 

71 Grassland-Herbaceous 0.06 

81 Pasture-Hay 0.06 

82 Cultivated Crops 0.06 

90 Woody Wetlands 0.12 

95 Emergent Herbaceous Wetlands 0.07 

 

3.7.2 Curve Numbers 

This study adopted the Soil Conservation Service Curve Number model to estimate runoff from a rainfall 

event. Developed by the National Resources Conservation Service (NRCS), it is a widely used empirical 

parameter to evaluate how much rainfall will likely runoff a particular area based on land use, soil type, 

and moisture conditions. These values are reported in Table 7.  

Table 7. Curve numbers considered for different combinations of land cover and soil groups. 

NLCD Class Name Hydrological Soil Groups 

 None A B C D No Data AD BD CD 

No Data 86 61 74 82 86 86 86 86 86 

Open Water 99 99 99 99 99 99 99 99 99 

Developed, Open Space 84 49 69 79 84 84 84 84 84 

Developed, Low Intensity 87 61 75 83 87 87 87 87 87 

Developed, Medium Intensity 93 81 88 91 93 93 93 93 93 

Developed, High Intensity 95 89 92 94 95 95 95 95 95 

Barren Land Rock-Sand-Clay 84 49 69 79 84 84 84 84 84 

Deciduous Forest 63 30 48 57 63 63 63 63 63 

Evergreen Forest 80 35 58 73 80 80 80 80 80 

Mixed Forest 79 36 60 73 79 79 79 79 79 

Shrub-Scrub 77 35 56 70 77 77 77 77 77 

Grassland-Herbaceous 89 55 71 81 89 89 89 89 89 

Pasture-Hay 84 49 69 79 84 84 84 84 84 

Cultivated Crops 83 63 73 80 83 83 83 83 83 

Woody Wetlands 93 72 80 87 93 93 93 93 93 

Emergent Herbaceous Wetlands 93 72 80 87 93 93 93 93 93 
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3.7.3 Infiltration Layer 

The infiltration map in Figure 15 visually represents infiltration rates across the study area by combining 

hydrological soil group classifications and land cover types from the NLCD dataset. Different colors 

overlaying the map correspond to distinct levels or classes of infiltration potential. 

The abstraction ratio in hydrological modeling refers to the proportion of rainfall that does not contribute 

directly to runoff but is instead absorbed or retained by the soil, vegetation, and other land features before 

reaching water bodies. It is a parameter often used in infiltration and runoff models to approximate initial 

losses due to various interception processes, surface storage, etc. In this study, it is considered that a ratio 

of 0.2 or 20% of the total precipitation is considered to be lost to initial abstractions before any runoff 

occurs. The 0.2 factor is a widely used empirical assumption for the SCS Curve Number method to 

incorporate initial losses.  

 

Figure 15: Infiltration map covering the study area. 
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3.7.4 2D Flow Area Generation 

Flow area covering Fulton County for mesh creation and computational points generation was completed 

for the simulation model in HEC-RAS, as shown in Figure 16.  

 

 

Figure 16: (a) Generated mesh at a spacing of 100 ft x 100 ft covering Fulton County Boundary. 137,929 

cells were generated in the mesh. (b) Each cell was used to generate computational points. 

3.7.5 Rainfall Event Assignment 

Hourly gridded satellite rainfall data, as described in Section 3.5.2, was assigned to the study area. Figure 

17 shows an example of a precipitation band over Fulton County for January 4, 2023, between 10:00 and 

11:00 AM UTC. 
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Figure 17: Satellite precipitation band for January 4, 2023, between 10:00 and 11:00 AM UTC. The color 

contours vary between 2 to 21 millimeters of rainfall per hour over the study area. 

3.8 Conceptualization 

Extreme natural events generally create a digital social media footprint (Ogie et al., 2022). People talk about 

the event, express concerns, authorities issue warnings, etc. In this study, public social media sentiment in 

response to flooding as a direct cause of rainfall has been taken into consideration. The emotional 

expression regarding flood can be plotted in a time series with the associated rainfall event for a particular 

spatial zone. An idealized scenario of the time series plot is shown in Figure 18. 
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Figure 18: An idealized scenario of a rainfall event leading to flooding and its Twitter response. The blue 

area represents the magnitude of rainfall over time, and the red area represents the sum of sentiments over 

time. The time between the start of rainfall and the first trace of flooding reported in social media data is 

denoted as accumulation time (a). The time to peak rainfall from the start of the event is represented by (b). 

The peak sentiment value will likely occur after the peak rainfall as it takes time for rainwater to 

accumulate. The time between peak rainfall and peak sentiment is denoted as lag time (c). When the rainfall 

decreases and flooding recedes, the perception of flooding will also decrease. The time between the peak 

sentiment and the end trace of flooding (according to social media) is denoted as the time of dissipation 

(d).   

However, some cases may not always align with the idealized scenario depicted in Figure 18. For example, 

ideally, the first trace of flooding, according to social media, should fall within the timespan of the rainfall 

event. However, if the rainfall event starts and ends during overnight hours (e.g., 11:30 PM – 3:00 AM), 

there may be few tweets until morning when people start their daily activities and notice the flooding. 

Similarly, peak sentiment should ideally follow peak rainfall with a lag time as rainwater accumulates into 

flooding. This pattern may shift if peak rainfall begins overnight. Then, the peak in sentiment—driven by 

user engagement and reactions, which slows in overnight hours—occurs earlier than the peak in rainfall.   

Moreover, in an ideal case, the tweet sentiment trend is continuous: gradually rising until its peak from the 

first trace of flooding and then gradually falling until nil. However, Twitter response may be sporadic, 
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depending upon users recognizing and acknowledging flooding on social media. To counteract these issues, 

certain assumptions are made: 

• 12:00 AM to 06:00 AM, these 6 hours are considered ‘off hours’ because it falls within typical 

sleeping hours when most people are inactive. As a result, the number of tweets can become 

significantly less (Garett et al., 2018). The discontinuity of Twitter responses during the off-hours 

were disregarded. However, if any social media responses were found during off hours, they were 

included. It ensured consistency in responses to flooding.  

• If discontinuity of Twitter responses for 2 or more consecutive hours other than the ‘off-hours’ is 

seen, the later responses after the discontinuation period were disregarded. This served to end the 

event in regard to real-time tracking. Thus, the false positive flood indications were avoided. In this 

case, the last tweet before the discontinuity was regarded as the ‘end trace of flooding’ point. 
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CHAPTER 4 

RESULTS 

 The results of this study are presented in several key sections. First, sentiment distribution that 

shows the number of tweets in sentiment categories regarding flood-related tweets and maps their spatial 

distribution within Fulton County. Next, the correlation between sentiment spikes and rainfall data is 

explored to identify flood events, followed by removing false positives to refine detection accuracy. Real-

time mapping of flood-affected areas highlights impacted zones, and finally, validation using HEC-RAS 

simulations confirms the reliability of social media-derived flood data. 

4.1 Sentiment Distribution 

The geographic distribution of sentiments due to flooding is a follow-through of sentiment analysis and 

geocoding processes, as described in sections 3.4.5 and 3.4.6, respectively. The categorization of the ‘Flood 

GeoTweets Pool’ among negative, positive, and neutral sentiments have been shown in Figure 19. As 

described in section 3.4.5, tweets with negative sentiments named ‘Sen Flood GeoTweets Pool,’ are 

processed further for geocoding. The geocoding process showed a wide spatial distribution of tweets 

throughout the United States and other parts of the world. The spatial distribution of this pool of tweets, 

limited to only Fulton County during the tweet collection timeframe, is illustrated in Figure 20. 
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Figure 19: Number of tweets in each sentiment category. More than 4800 tweets were categorized as 

expressing negative sentiments. The number of tweets expressing positive and neutral sentiments are quite 

low (Around 300 and 100, respectively) compared to the negative ones.  

 

Figure 20: Sentiment distribution within Fulton County for the whole timeframe of tweet collection. As 

described in section 3.4.6, a buffer radius of 0.5 mile was considered around each coordinate and 

consequently, fusion rules were applied. 
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4.2 Identifying Flood Events 

The daily tweet sentiments were plotted against the measured daily rainfall data (via USGS gauges) for the 

whole timeframe of Twitter data extraction. A single or, in most cases, clusters of continuous spikes were 

found associated with a rainfall event. Single spikes indicate that the flooding event started and ended on 

the same day. Whereas continuous spikes indicate that the flooding incident continues through multiple 

days. Figure 21 shows a visualization of rainfall and sentiment spikes. 

 

Figure 21: A time series plot of daily rainfall depth and normalized sum of daily sentiment scores from 

October 2021 to February 2023. Sentiment I is derived from area and streetwise location tweets, and 

Sentiment II is derived from countywise location tweets. Overall, sentiment spikes are seen for a heavy 

rainfall event in a single day, resulting in localized floods, or prolonged rainfall events for multiple days, 

even though the rainfall depth per day is not substantial.  

4.3 Removal of False Positives 

The hourly average rainfall amount calculated from the satellite rainfall data was plotted against the 

normalized hourly sum of sentiments. A single rainfall event between 3 and 4 January 2023 was considered 

for the hourly plot. Figure 22 shows the distribution plot. 
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Figure 22: A time series plot of hourly average satellite rainfall depth and normalized sum of hourly 

sentiment scores for a single rainfall event that started on January 3, 2023, between 6:00 and 7:00 PM 

UTC and ended on January 4, 2023, between 4:00 and 5:00 PM UTC. Similar to Figure 21, Sentiment I is 

derived from area and streetwise location, and Sentiment II is derived from countywise location. For both 

cases, sentiment spikes appear between 10:00 and 11:00 AM on January 4. Combined sentiments represent 

the summation of Sentiment I and Sentiment II. The ‘off hours’ have been colored grey in the x-axis. 

Although there is no sentiment spike recorded between 10:00 and 11:00 PM on January 4, the data 

collection continues as it ends if a two-hour gap occurs. Two of the six ‘off-hours’ on January 5 showed 

sentiment spikes. Therefore, adhering to the conceptualization described in Section 3.8, they have been 

counted. However, when the ‘off hours’ ended, there was no spike seen for two consecutive hours on 

January 5. Hence, 8 AM UTC is considered as the cut-off time for this rainfall event, and any tweet after 

this time is likely to be a false positive or late post and, therefore, disregarded. Anywhere between 3:00 to 

4:00 AM UTC was the end trace of flooding, according to social media.  
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4.4 Mapping 

The tweets that contributed to the ‘combined sentiments’ in Figure 18 were the real-time user-generated 

posts. Twenty-six buffer areas were detected throughout Fulton County for the rainfall event between 3 and 

4 January 2023. Figure 23 shows a detailed mapping of the flood-affected zones in real time. A flooded 

zone was defined as an area where the depth of standing water crossed 0.5 ft at minimum.  

 

Figure 23: Near real-time mapping of flood-affected zones. Three time-based snapshots have been depicted 

in this figure for 4 January 2023. The red legend represents flood-affected zones between 10:00 and 11:00 

AM UTC, while the blue and green legends represent 1:00 – 2:00 PM UTC and 5:00 – 6:00 PM UTC, 

respectively. Each time-based snapshot displays two insets. The inner insets reveal the land use, and the 

outer insets depict a heatmap. The heatmaps focus on the intensity of tweets, where the darker shades 

indicate comparatively dense Twitter responses. The heatmaps also have callouts that frequently mention 

emergencies. The red zones include streets, residential zones, and parkside areas near Big Creek vicinity 

consisting of emergecies such as flood warnings, road blockages, property damage, etc. The blue and green 
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zones near downtown Atlanta include streets and commercial zones consisting of emergencies such as 

warnings, road blockages, etc.   

4.5 Validation 

The hourly gridded rainfall data for 3 to 4 January 2023 was assigned to the HEC-RAS model for the 

simulation process. The model-generated flood maps for Fulton County were used to validate the Twitter 

data-generated flood-affected zone map. The spatiotemporal validation results for 10:00 to 11:00 AM UTC 

are shown in Figure 24. 

 

Figure 24: Validation results for 4 January 2023 10:00 – 11:00 AM UTC. The buffer area from Twitter 

data has been depicted in the red circles from Area 1 to Area 5. The HEC-RAS simulated flood scenario 

shows a good match where the skewness is less than 0.1 miles for Area 1, Area 3, Area 4, and Area 5 for 

the timeframe. The flood depth varies between places and reaches up to 4 ft near water bodies in these 

zones. However, for Area 2, the Twitter-derived area shows a slight skewness of less than 0.2 miles from a 

major flooded area of at least 0.5 ft in depth from the model-generated results.  
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Table 8 describes an overview of 26 buffer areas relative to a corresponding or nearby major flooded area 

with at least 0.5 ft flood depth. 

Table 8. Validation details of buffer area based on flood depth. 

Status Number of buffer areas 

Good Match 19 

Skewed by    0.2 miles 3 

Skewed by  >  0.2 and    0.5 miles 2 

Skewed by  >  0.5 miles  2 

Nearly 75% of the buffer areas show a good match with HEC-RAS simulated results. Only two buffer areas 

skewed more than 0.5 miles. Although the detected buffer areas showed satisfactory results, many flooded 

zones that were simulated in HEC-RAS for the timeframe could not be traced in Twitter data. Figure 25 

shows some of the undetected areas. Despite having a few undetected flooded zones, the maps provide 

valuable insights. Many of the flooded zones were located near meandering creeks and water bodies where 

surging waters overwhelmed their channels. A few occurred due to stormwater accumulation in low-lying 

areas in cities, streets, parks, or other land use zones. 
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Figure 25: Flooded areas that could not be traced with Twitter data. Although some of these points crossed 

busy highways, residential areas, commercial areas, or park sides having flood depths ranging from 0 - 5 

ft, these areas did not show up in Twitter data.  
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CHAPTER 5 

DISCUSSIONS 

 The findings of this study demonstrate the potential of social media as a valuable source of 

crowdsourced data for enhancing urban flood monitoring. By analyzing tweets related to flooding, this 

study successfully identified flooding events, mapped affected areas in near real-time, and validated these 

findings against hydrological model simulations. The integration of social media with rainfall data provided 

deeper insights into both the spatiotemporal distribution of flooding and public sentiment during such 

events. A major highlight from this study is the extraction of location-based flood information from non-

geotagged tweets. Initially, less than 1% of the tweets contained built-in geolocation metadata. However, 

by leveraging a regular expression-based pattern recognition technique, approximately 13% of the tweets 

were successfully geolocated based on user-generated location descriptions. This represents a substantial 

improvement in spatial resolution for flood monitoring as the extracted locations contained more specific 

to detailed information than tools like Named Entity Recognition for this case. It indicates that user-reported 

location references can be effectively harnessed for disaster response.  

Developing a training dataset by manual labeling for the machine learning classification of flood-related 

tweets was a crucial step. Support Vector Machine outperformed other classifiers and was selected for the 

classification task. The temporal analysis of rainfall and sentiment trends provided valuable insights into 

the lag between precipitation events and public perception of flooding. Although daily rainfall readings 

from 15 rain stations across Fulton County have been used in this study, there is a discrepancy in daily 

rainfall amount between the values of gauge rainfall data and satellite rainfall data. It is because not all rain 

gauges were active throughout the timeframe of tweet mining, as shown in Figure 11. However, the 

recorded gauge rainfall data still provided valuable insights in identifying flood events, as shown in section 

4.2. The flood maps provided a good resolution as the buffer areas were circular, having a radius of 0.5 



 

48 

miles. The radius was set as an optimum value for this study, as a lower radius would increase the 

redundancy of the flooded zones and a higher radius would lead to less accuracy (Fan et al., 2020). In 

addition, validation of the Twitter-derived flood maps with this radius of buffer area against HEC-RAS 

simulated flood scenarios revealed a good degree of agreement. Approximately 75% of the buffer areas 

closely matched the flood zones identified in the hydrological simulations. Some discrepancies were 

observed, with a small number of buffer areas showing minor spatial offsets of up to 0.5 miles. Additionally, 

while social media data effectively captured flooding in urbanized areas, some flooded regions detected by 

the hydrological model were absent in the Twitter dataset. This could be attributed to several factors, 

including limited social media activity in certain locations leading to tweets not being posted or some busy 

highways or city areas may have a very fast water dissipation system that there was no flooding issue in 

reality (Li et al., 2023). Alternatively, these instances may simply reflect surface runoff rather than true 

flooding. It is also possible that local authorities could take proactive flood mitigation measures – such as 

clearing and draining waterlogged areas, releasing water from upstream reservoirs, etc. – before significant 

social media engagement occurred. 

5.1 Opportunities 

The study presents several opportunities for enhancing flood monitoring and disaster response. One of the 

major advantages is the ability to capture near real-time, user-generated data, allowing for immediate 

situational awareness. Unlike traditional monitoring methods that rely on fixed sensors or satellite imagery 

with time delays, the study offers instant reporting from individuals directly experiencing the event. 

Furthermore, the scalability of this approach means that it can be implemented in regions where traditional 

monitoring infrastructure is limited or non-existent. Additionally, public perception, emotional distress, or 

urgency can be understood by incorporating sentiment analysis. For example, in Figure 23, specific 

emergencies – such as road blockages, vehicle breakdowns, and property damage – could be identified.  
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The findings of this study have significant implications for practice in disaster response and urban planning. 

Although the depth of the floodwater cannot be directly known from text-based tweets, they provide 

valuable humanitarian information. Emergency management agencies can integrate social media 

monitoring into their warning systems to enhance flood response strategies. By identifying near real-time 

reports of flooding as depicted in Figure 18, it is easier to identify the nature of the emergency at each 

hotspot. Therefore, first responders can allocate resources more effectively based on the needs of the buffer 

areas. Additionally, transportation authorities can use this approach to assess road closures and traffic 

disruptions, improving public safety during flood events. For urban planners, the insights from social media 

data can inform long-term flood mitigation efforts. By analyzing repeated flooding reports in specific 

locations, planners can identify vulnerable areas that require improved drainage infrastructure, flood 

barriers, or other adaptation measures. Policymakers can also use social media sentiment analysis to gauge 

public concerns and perceptions of flood risk, which can guide the development of more effective 

communication and preparedness campaigns. 

5.2 Limitations 

One key challenge in utilizing social media data for flood monitoring is the inherent variability and 

limitations in data collection, processing, and interpretation. These limitations arise from methodological 

constraints, biases in data availability, and the evolving nature of digital communication, all of which can 

impact the accuracy and reliability of the results. 

There are methodological factors upon which the results can vary significantly, such as the K-means 

clustering of tweets, which revealed six themes in this study. Although the silhouette scores imply that the 

clusters were not mutually distinct (having substantial overlaps), it paved the way to the succeeding steps: 

identifying patterns for location detecting using regular expressions and developing a training dataset to 

identify flood relevant tweets. Moreover, robust filtering techniques have been adopted in this study to 

remove inconsistent, misinformative data. The quality of social media data remains a concern as the local 
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context may lead to the need for filtering techniques to be adjusted. For example, a city in Kentucky is 

named Rain. Separating flood-relevant tweets as described in section 3.4.4, requires manual labeling of 

tweets to develop the training dataset. The task can be painstaking for large datasets. Another limitation of 

the data quality is the amount of information that can be derived from a social media post. Text-based tweets 

do not directly provide insights on floodwater depth; future research can be conducted by integrating 

relevant images and videos gathered from Twitter for a more holistic approach to flood monitoring. For 

example, in a study by (Couey et al., 2022), camera pictures were used to train and evaluate machine 

learning models to detect recent moisture in street-level images, aiding in early flood detection. In another 

instance, (Alizadeh et al., 2022) used crowdsourced street photos to enhance flood mapping and optimize 

evacuation routes through image processing. Furthermore, social media data is inherently biased towards 

populations with high internet users and active social media usage. This creates gaps in data availability, 

particularly in rural or underserved regions (Olteanu et al., 2019). Besides, the accuracy of the regular 

expression pattern recognition method for location extraction can be compromised for a more diverse or 

big dataset. It is because as the dataset becomes larger, increasing variations in user-reported locations, 

ambiguous place names, and informality in language can lead to inconsistency in pattern formation, 

necessitating continuous improvements in geolocation extraction methods. Besides, two hours of non-

activity in Twitter has been arbitrarily assumed as the cutoff point for the removal of false positives, as 

described in section 4.3. This is not absolute, as it may not be the case for another rainfall event in another 

region.  
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CHAPTER 6 

CONCLUSION 

 This study demonstrates a novel approach of leveraging social media data for near real-time urban 

flood monitoring. The integration of crowdsourced Twitter data and hourly rainfall data allowed for 

successfully identifying flood events, mapping affected areas, and validating results against hydrological 

simulations. The findings highlight the effectiveness of social media in capturing localized flood conditions, 

particularly in urban areas where conventional monitoring methods face limitations. This approach offers 

valuable insights for enhancing flood response strategies, optimizing resource allocation, and improving 

real-time situational awareness. The integration of social media data into flood monitoring frameworks 

presents a promising avenue for strengthening urban resilience and disaster preparedness. 
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