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ABSTRACT

Escherichia coli O157:H7 is a major foodborne pathogen often linked to fresh produce,
especially romaine lettuce. This study examined the efficacy of ascaroside #18 (ascr#18) as a
pre-harvest treatment to reduce E. coli O157:H7 contamination on romaine lettuce. Plants were
treated with ascr#18 via foliar spray or soil drench at three concentrations (0.01 pM, 0.1 uM, and
1 uM) before inoculation with E. coli O157:H7. Pathogen populations were enumerated on Days
0, 3, and 7. Foliar spray treatments achieved greater reductions than soil drench application, with
the highest reduction (2.21 log MPN/head) at 0.1 uM on Day 0 (8-10 days after initial ascr#18
treatment). Although ascr#18 demonstrated significant potential in reducing E. coli O157:H7
contamination when compared to the control, differences among concentrations were not
significant (p > 0.05). Future studies should explore a broader concentration range to optimize its
use in commercial leafy green production.
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CHAPTER 1
INTRODUCTION

Fruits and vegetables are rich in essential nutrients that support a healthy lifestyle.
However, as demand and consumption have risen over the past few decades, they have been
frequently associated with outbreaks of foodborne illness (Critzer & Doyle, 2010; Luna-Guevara
et al., 2019). Major pathogens like Sa/monella enterica and Escherichia coli O157:H7
significantly contribute to foodborne outbreaks associated with fresh produce, posing a serious
public health risk, and contributing to an economic burden estimated at $77.7 billion annually
(Olaimat & Holley, 2012; Scharff, 2012). Leafy greens including romaine lettuce are at high risk
for contamination with E. coli O157:H7, which is frequently implicated in foodborne outbreaks
in the United States (Carstens et al., 2019).

Traditional post-harvest washing and sanitizing practices are critical in reducing
microbial contamination on fresh produce. Postharvest sanitizers, such as peracetic acid (PAA)
and chlorine-based treatments like sodium (NaOCI) or calcium hypochlorite (Ca(ClO),, are
widely employed to prevent cross-contamination through wash water (Allende et al., 2008;
Alvaro et al., 2009; Beuchat et al., 2004; Van Haute et al., 2015). However, their efficacy can be
affected by factors such as pH, light, and organic matter, and they can form harmful disinfection
by-products (Gil et al., 2009; Ramos et al., 2013; Widmer et al., 2025; Zagory, 2000).
Additionally, pathogens can adhere to plant tissues or rough surfaces, making them less
accessible to conventional sanitizers and difficult to remove or inactivate completely. Therefore,
integrating pre-harvest interventions alongside good agricultural practices (GAPs) could help

reduce contamination during the growing stage to improve the overall produce safety.
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One such strategy is the use of plant immune elicitors. Ascaroside #18 (ascr#18), a major
ascaroside pheromone secreted by plant-parasitic nematodes, has been investigated as a natural
alternative to prime plant defense mechanisms. Studies have revealed that low concentrations of
ascr#18 can trigger plant immune responses and enhance resistance against various pathogens
including bacteria, viruses, and nematodes (Klessig et al., 2019; Manohar et al., 2020;
Manosalva et al., 2015). Another recent study has shown its efficacy in controlling Salmonella
enterica on seeds and sprouts (Hu et al., 2023), but its efficacy in reducing foodborne pathogen
contamination on leafy greens requires further study.

In this study, we hypothesized that ascr#18 treatment reduces E. coli O157:H7
contamination on romaine lettuce. We will examine the efficacy of ascr#18 applied at varying
concentrations as either a foliar or soil drench application during different stages as a preharvest

treatment.



CHAPTER 2
LITERATURE REVIEW
Foodborne illness in the US

Foodborne illnesses continue to be a major public health challenge in the United States,
with millions of cases reported annually. As stated by the Centers for Disease Control and
Prevention (CDC), an estimated 48 million people in the US experience foodborne illnesses each
year, causing approximately 128,000 hospitalizations and 3,000 deaths (CDC, 2018). These
foodborne illnesses have many causes, including pathogens, allergens, and chemical
contaminants (Hoffman et al., 2015). Notably, 31 known pathogens have been identified as the
primary causes of foodborne illnesses, with nontyphoidal Sal/monella enterica, Campylobacter
spp., Norovirus, Clostridium perfringens, and Staphylococcus aureus being the most significant
contributors (Scallan et al., 2011).

Foodborne illnesses not only pose significant health risks but also create a substantial
economic burden. The U.S. Government Accountability Office (GAO) reported that six major
pathogens, including Salmonella, Listeria monocytogenes, Campylobacter, Clostridium
perfringens, Shiga toxin-producing E. coli (STEC), and norovirus, cause approximately 10
million foodborne illnesses each year in the U.S., leading to 53,300 hospitalizations and more
than 900 deaths (U.S Government Accountability Office, 2025). The annual cost of disease
caused by these pathogens is estimated to be $14.0 billion, with Toxoplasma gondii,
Campylobacter spp., Salmonella, L. monocytogenes, and norovirus responsible for 90% of the
economic and health burden. This estimate covers multiple dimensions, including medical
expenditure, productivity losses, and lost utility due to deaths (Hoffmann et al., 2012). According

to a 2018 report from the U.S. Department of Agriculture's Economic Research Service, the
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annual economic burden of 15 leading foodborne pathogens was estimated at $17.6 billion,
representing a 13% increase or approximately $2 billion over the 2013 estimate of $15.5 billion
for the same pathogens (Hoffmann & Ahn, 2021). A more recent study published in 2024
provided a comprehensive evaluation, estimating the cost of foodborne illness in the U.S. to be
$75 billion in 2023, a significant increase due to the expanded scope of 48 million cases from the
previously reported 9 million which is caused by 31 major known pathogens and unspecified
agents (Hoffmann et al., 2024).

It is estimated that nontyphoidal Salmonella causes approximately one million foodborne
illnesses annually in the U.S. and two-thirds of these nontyphoidal Sa/monella infections are
attributed to food sources, with an increasing proportion linked to fresh produce (Mitchell Jr et
al., 2024). Pathogens like Salmonella and E. coli also significantly contribute to foodborne
outbreaks associated with fresh produce, posing serious public health risks (Olaimat & Holley,
2012). Among these, STEC including E. coli O157:H7, causes an estimated 265,000 illnesses
annually in the U.S., with costs exceeding $280 million. Leafy greens, a significant source of
foodborne STEC outbreaks, are the second most common vehicle for infections, following

ground beef (Marshall et al., 2020).

Fresh Produce Related Multistate Outbreaks in the US
In the past few years, consumer behavior has shifted significantly towards healthier
lifestyles, which has led to an increased consumption of fruits and vegetables. Fruits and
vegetables are important as they are rich in essential nutrients like minerals, vitamins, and
phytochemicals, which are vital for a balanced diet. In addition to their nutritional value, they

provide several health benefits, including anti-inflammatory and antioxidant effects (Slavin &



Lloyd, 2012). Global fruit and vegetable production nearly doubled from 1980 to 2004, while the
United States imports grew to $12.7 billion, with daily sales of pre-cut produce in North America
reaching 6 million packages by 2005 (Olaimat & Holley, 2012). The USDA Economic Research
Service reports that between 2007 and 2021, U.S. imports of fresh produce increased from 50%
to 60% for fruit and 20% to 38% for vegetables; the average American consumed 63.3 kg of
fresh vegetables in 2022 (USDA-ERS, 2024; USDA, 2023).

The rising consumer demand for fresh produce has potentially been a contributing factor
to an increase in produce-associated foodborne outbreaks (Warriner et al., 2009). Unlike
processed foods that are cooked at high temperatures to kill harmful bacteria, fresh produce is
generally eaten raw or undergoes minimal processing, which makes it more likely to be a source
of foodborne pathogens like E. coli O157. Between 1990 and 2003, the Center for Science in the
Public Interest (CSPI) recorded 554 produce-related outbreaks that caused 28,315 illnesses.
Fruits like cantaloupe and berries were associated with 93 outbreaks, while vegetables like
sprouts and mushrooms were linked to 205 outbreaks. Additionally, 256 outbreaks were linked
to produce dishes, including lettuce-based salads (DeWaal et al., 2006). Approximately 30% of
these cases were attributed to bacteria like Salmonella, E. coli O157:H7, and Campylobacter spp.
This trend continued as data from 2004 and 2013 indicated that fresh produce items, including
cilantro, cucumbers, cantaloupes, and peppers, were responsible for 629 outbreaks and nearly
20,000 reported illnesses (Martinovic et al., 2022). Table 1 provides examples of several
multistate outbreaks associated with fresh produce, showing the associated pathogens, the
number of states impacted, and the severity of each outbreak in terms of hospitalizations and

deaths.
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Escherichia coli O157:H7

E. coli O157:H7 is a Gram-negative, virulent serotype of Shiga toxin-producing E. coli
(STEC), also known as enterohemorrhagic E. coli (EHEC). These E. coli are important food and
waterborne pathogens that commonly cause acute bloody diarrhea and are associated with
various gastrointestinal illnesses, including diarrhea, abdominal cramps, and in severe cases,
hemolytic uremic syndrome (HUS) in humans (Ameer et al., 2023; Bush & Vazquez-Pertejo,
2020; Elias A Rahal et al., 2012). Symptoms usually appear 3 to 4 days following exposure, and
most people recover without treatment after 5 to 7 days (CDC, 2024Db).

More than 100 STEC serogroups are associated with human illness, but E. coli O157:H7
is the predominant STEC serotype identified in the United States, responsible for an estimated
73,000 cases annually (Brooks et al., 2005). E. coli O157:H7 prevalence in humans is due to its
exceptional pathogenicity, which results from multiple virulence factors. This includes genes
encoding Shiga toxins (Stx1 and Stx2) and the locus of enterocyte effacement (LEE)
pathogenicity island. This region encodes a type III secretion system (T3SS) that allows the
bacterium to inject effector proteins into host cells, promoting colonization and evasion of host
immune responses (Kaper et al., 2004). Furthermore, E. coli O157:H7 carries a 60 MDa
virulence plasmid (pO157), which encodes a hemolysin and contributes to its ability to induce
attaching and effacing (A/E) lesions on intestinal epithelial cells (Elias A. Rahal et al., 2012).

E. coli O157:H7 is highly virulent due to its extremely low infectious dose, allowing it to
cause outbreaks even when only a small number of bacteria are present in contaminated water or
food. For healthy adults, as few as 10-100 colony-forming units (CFU) of E. coli O157:H7 may
be sufficient to cause infection (Elias A. Rahal et al., 2012). However, severe E. coli O157:H7

infections are more likely to affect the elderly, children under 5, and immunocompromised



individuals. These vulnerable populations may develop serious complications such as HUS, from
exposure to even fewer bacterial cells (Ameer et al., 2023; CDC, 2024a). E. coli O157:H7 has a
high tolerance for acidic environments, allowing it to persist in low pH conditions, including the
bovine and human gastrointestinal tracts and certain acidic foods, which increases its potential to
cause infection at low doses (Lim et al., 2010; Price et al., 2004). Variations in infectious dose
and pathogenicity are influenced by the strain type, the food source, and the host immune status
(Teunis et al., 2008). Additionally, some strains of E. coli O157:H7 can persist for prolonged
periods of time outside its host and on surfaces, primarily because of biofilm formation, which
enhances its resistance to sanitizers and contributes to contamination in agricultural and food
processing facilities (Vogeleer et al., 2014).

The known distribution of E. coli O157:H7 and other STEC strains varies across regions,
due to differences in agricultural practices, dietary habits, and surveillance systems. In the U.S.,
E. coli O157:H7 remains the predominant STEC serotype, particularly in outbreaks linked to
vegetable row crops, beef, dairy, and fruit (Tack et al., 2021). Leafy greens, especially romaine
lettuce, are the most frequent vehicle of E. coli O157:H7 contamination, with recurring outbreaks
traced to growing regions in California and Arizona (CDC, 2024c). Tack et al. (2021) reported
that this serotype accounted for 71% of all STEC outbreaks in the U.S. from 2010 to 2017.
Although E. coli O157:H7 is the most commonly associated strain in foodborne E. coli
outbreaks, non-O157 STEC strains are increasingly identified in human infections and are a
major public health concern. The most common non-O157 STEC serogroups reported to cause
foodborne illness in the U.S. are 026, O111, 0103, O121, 045, and O145 (Alharbi et al., 2022;

Gould et al., 2013). Gould et al. (2013) found that non-O157 STEC infections were more
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common among persons of Hispanic ethnicity and were also frequently associated with
international travel.

In Europe, non-O157 strains account for a larger proportion of human cases, with
serogroup 026 becoming increasingly prevalent (European Centre for Disease Prevention and
Control, 2024). A regional survey in England (2013-2017) found that non-O157 serogroups
accounted for over 80% of clinical isolates (Hoyle et al., 2021). In South America, studies from
countries like Argentina and Chile have identified the presence of all STEC strains, including
both non-O157 and O157:H7 variants. The most prevalent non-O157 STEC serogroups
identified in Argentina include 0145, 026, 0174, and O121, with O174 recognized as an
emerging pathogen (Torti et al., 2021). Research by Irino et al. (2002) indicates that in Brazil,
non-O157 STEC strains have been associated with sporadic cases of nonbloody diarrhea. In
Australia and New Zealand, E. coli O157 is the most common STEC serogroup associated with
human infections, though other serogroups are present. Between 2007 and 2016, E. coli O157
accounted for 56% of cases in Australia, followed by 026 (11%) and O111 (7%) (Vally et al.,
2012).

In Asia, E. coli O157:H7 is the predominant STEC serotype in Japan, while in South
Korea, E. coli 026 and O111 are the most frequently isolated serotypes in human infections
(Furukawa et al., 2018; Jeon et al., 2006). China has reported O157:H7 outbreaks linked to
cattle, pigs, and milk, though data on other serotypes remains limited. However, non-O157
STEC strains have been isolated from outpatients with acute diarrhea in southeastern China (Bai
etal., 2015; Xu et al., 1999). A study in Calcutta India, found that non-O157 STEC strains are
prevalent and more frequently isolated from human cases than O157 (Khan et al., 2002). Both

STEC O157 and non-O157 have been isolated in several Middle Eastern countries, including
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Iran, but data on STEC prevalence in this region are limited (Tahamtan et al., 2010). In African
countries, there is limited data on STEC prevalence, but several studies have identified O157:H7
in various food sources in countries like Nigeria and South Africa (Ateba et al., 2008;
Onwumere-Idolor et al., 2024). There are few studies on STEC prevalence in North Africa, but
E. coli O157 has been detected in food, animal, and human samples from countries like Egypt,
Morocco, Tunisia, and Algeria, with limited research on non-O157 STEC serogroups (Ahmed &
Van Velkinburgh, 2014; Barka et al., 2014). While E. coli O157 is the most commonly identified
STEC serotype across all continents, due to its link to severe infections, with improved
diagnostics and more robust surveillance systems, the prevalence of non-STEC strains is

increasingly significant in many regions worldwide.

E. coli O157:H7 Contamination of Leafy Greens

E. coli O157:H7 outbreaks were historically linked to beef and dairy products, but in
recent decades, leafy greens like romaine lettuce have emerged as a common source of infection
(Coulombe et al., 2020; Heiman et al., 2015). E. coli O157:H7 contamination in romaine lettuce
continues to be a recurring food safety issue. Between 2009 and 2018, 40 E. coli O157:H7
outbreaks were associated with leafy greens in both Canada and the U.S., leading to 1,212
illnesses, 420 hospitalizations, 77 HUS cases, and 8 deaths. Among these outbreaks, it was
reported that romaine lettuce was the most implicated, accounting for 54% of cases, more than
any other type of leafy green (Marshall et al., 2020).

Contamination of leafy greens primarily occurs through several routes that are influenced
by agricultural practices and environmental factors. Pre-harvest contamination is a major concern

with domestic and wild animals being significant sources. Grazing cattle on agricultural lands
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near leafy green fields is considered a key risk factor, as ruminants, particularly cattle, serve as
the primary reservoir for E. coli O157:H7, which sheds the bacteria through their feces
(Coulombe et al., 2020). For example, a traceback investigation of the 2020 E. coli O157:H7
outbreak associated with leafy greens in the Central Coast of California found the outbreak strain
in cattle feces collected a mile upslope from a produce farm; this indicates a potential role of
nearby livestock in produce contamination (FDA, 2021). Other transmission routes include the
use of contaminated irrigation water, soil amendments such as untreated manure, and direct or
indirect contact with infected animals (Rangel et al., 2005).

Contaminated irrigation water, especially from surface sources, is a major source of .
coli O157:H7 contamination of fresh produce, as it can directly introduce pathogens to the crops
(Beuchat, 1996). Surface water is more likely to be contaminated with pathogenic bacteria,
parasites, and viruses due to its exposure to environmental contaminants such as municipal
waste, livestock runoff, industrial effluents, wildlife, and human pollutants (Alegbeleye et al.,
2018; Haldar et al., 2022). Pathogens may be introduced when present in poor-quality irrigation
water and adhere to crop surfaces, even penetrating plant tissues under certain conditions.
Several studies have shown that this direct introduction increases the risk of internalizing
pathogens such as Salmonella and Shiga-toxigenic E. coli during fruit and vegetable production
(Gomes et al., 2009; Guo et al., 2002; Li et al., 2008; Warriner et al., 2003). The ability of
pathogens to adhere and internalize makes them harder to remove, reducing the effectiveness of
conventional washing and chemical sanitizing methods (Alegbeleye et al., 2018).

Postharvest water is commonly used for washing and cooling leafy greens after harvest,
but can also serve as a source of contamination. If not properly sanitized, it can spread pathogens

to the fresh produce (Coulombe et al., 2020). Washing contaminated produce may release
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microorganisms into the water, which can then transfer to other produce when the water is being
reused (Possas & Pérez-Rodriguez, 2023).

Poor hygiene practices among workers during post-harvest handling and processing can
introduce pathogens to fresh produce (Beuchat, 1996). Workers infected with E. coli O157:H7
may unintentionally transfer the pathogen via the fecal-oral route to produce through direct
contact during harvesting or packaging if hygiene protocols like proper handwashing are not
followed. Poor hygiene practices among workers handling lettuce can be especially problematic
when they are asymptomatic carriers of harmful pathogens (Todd et al., 2008).

Leafy greens can also get contaminated by E. coli O157:H7 from machinery and
equipment. Contaminated tools, bins, or surfaces reused without proper sanitation can spread
pathogens across multiple batches. For example, one study found that contaminated processing
equipment transferred E. coli O157:H7 to multiple batches of fresh-cut lettuce (Buchholz et al.,
2012). It is important to use equipment that is easy to clean and sanitize, especially when
equipment is in direct contact with fresh produce.

Soil amendments of biological origin like manure, composted agricultural waste, and
sewage sludge, are commonly used in crop production to improve soil fertility and boost crop
yields. These materials increase nutrient availability and support sustainable agriculture.
However, when improperly treated or applied, they present a contamination risk by introducing
foodborne pathogens. Raw or improperly treated manure is known to harbor pathogens like E.
coli O157:H7, which may contribute to the contamination of leafy greens (Alegbeleye et al.,
2018; Manyi-Loh et al., 2016). Microorganisms from manure can transfer to crops either through

direct contact or indirectly through soil, water, and aerosols. Once introduced to the soil, E. coli
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O157 can persist under favorable conditions such as moderate temperatures, high moisture, and
neutral pH.

Improper storage conditions, especially those with high humidity and inadequate
temperature control, can exacerbate contamination by creating favorable environments for
pathogen growth. The ability of E. coli O157:H7 to persist for prolonged durations under various
storage conditions increases the risk of foodborne illness. Luo et al. (2010) observed that E. coli
O157:H7 could survive on fresh-cut romaine and iceberg lettuce at 5°C, but its growth was
restricted, whereas at 12°C storage, bacterial levels increased significantly by over 2.0 log CFU/g
within 3 days. Temperature control and humidity management are important to inhibit bacterial
growth in fruits and vegetables.

Outbreaks associated with romaine lettuce tend to follow a seasonal pattern, with most
cases occurring in the months of spring and fall rather than in the summer and winter (Coulombe
et al., 2020). These periods align with transitions in U.S. lettuce-growing regions, which may
influence pathogen prevalence. E. coli O157:H7 survives significantly longer on romaine
harvested in the fall compared to late spring, due to environmental factors such as cooler storage
temperatures, higher moisture levels, and reduced microbial competition during this season
(USDA Agricultural Research Service, 2024). This may help explain the increased incidence of
outbreaks linked to lettuce cultivated and harvested toward the end of the growing seasons in
California and Arizona.

Several factors influence the ability of E. coli O157:H7 to adhere to and proliferate on
leafy green surfaces, including leaf surface characteristics, leaf age, nutrient availability, and
environmental conditions (Brandl & Amundson, 2008). Leaf surface topography plays a key role

in bacterial colonization, as microbes tend to cluster in specific microsites rather than spreading
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uniformly. Common colonization sites include rough areas, veins, trichomes, epidermal cell wall
junctions, and stomata. These areas harbor higher concentrations of water and nutrients, creating
favorable microenvironments for microbial growth and attachment (Beattie & Lindow, 1999;
Brandl & Amundson, 2008; Doan et al., 2020). Doan et al. (2020) examined the surface structure
of leafy greens and discovered that E. coli O157:H7 adhered more readily to leaves with
prominent veins compared to those with smoother surfaces. These vein structures provided
protective niches, aiding bacterial persistence. These surface features also increased E. coli
O157:H7 resistance to chlorine washes, reducing the effectiveness of post-harvest sanitization.
Leaf age also significantly influences E. coli O157:H7 contamination risk on leafy
greens. Younger leaves are more prone to bacterial colonization due to their structural and
chemical composition. Brandl and Amundson (2008) reported that E. coli O157:H7 populations
were as much as ten times greater on younger, inner lettuce leaves than on middle leaves, largely
due to differences in nutrient availability. Their analysis showed that young leaf exudates
contained 2.9 times more nitrogen and 1.5 times more carbon than those from middle-aged
leaves. These nutrients enhance bacterial growth and colonization. The study also showed that
adding ammonium nitrate to middle leaves boosted E. coli O157:H7 growth, indicating that

lower nitrogen levels naturally limit its growth on the older leaves.

Postharvest Handling of Fresh Produce
The Food Safety Modernization Act (FSMA) was enacted in 2011, shifting the FDA’s
focus from addressing food contamination to emphasizing its prevention (FDA, 2011). Under
FSMA, the Standards for the safe Growing, Harvesting, Packing, and Holding of fresh fruits and
vegetables intended for human consumption, also known as the Produce Safety Rule, were

established in 2016. This rule introduced basic requirements for the safe production and handling
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of fresh fruits and vegetables, aiming to reduce the risk of foodborne illnesses (FDA, 2016).
Recognizing the ongoing challenges of foodborne illnesses associated with fresh produce, the
FDA implemented stricter regulations. Subpart E of the revised FSMA Produce Safety Rule (21
CFR 112.44) now mandates that agricultural water used in washing or cooling processes must
not contain any detectable levels of generic E. coli per 100 mL sample (FDA, 2024b). However,
traditional washing techniques and post-harvest sanitizers, while helpful in removing surface
contaminants, may not effectively eliminate all microbial risks.

Washing fresh produce is important as it removes some dirt, debris, and surface
pathogens. Therefore, properly treated wash water can reduce the load of surface pathogens but
does not result in complete decontamination. One significant challenge with wash water is the
potential for cross-contamination, where pathogens from contaminated produce can spread to
clean produce during washing, although the addition of antimicrobial substances, such as
chlorine or peracetic acid, can result in microbial inactivation and reduce subsequent cross-
contamination of produce (Gil et al., 2009). However, pathogen adherence on fresh produce
surfaces poses a major challenge. Pathogens can attach to rough surfaces, crevices, or cut edges
of produce, making them difficult to remove or inactivate with wash water. Furthermore, the
presence of organic matter in wash water may reduce the effectiveness of certain antimicrobial
agents, requiring higher concentrations or more frequent replenishment to maintain effectiveness
(Gil et al., 2009).

Chlorine washes such as sodium hypochlorite (NaOCl) are widely used post-harvest
sanitizers due to their strong antimicrobial properties. They are commonly used at a
concentration ranging from approximately 25 to 200 ppm for a contact time of 1 to 2 minutes

when washing fresh produce. This process works by oxidizing microbial cell components, which
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helps to reduce populations of pathogens such as Salmonella, Listeria, and E. coli on the surface
of fruits and vegetables (Beuchat, 1998). Chlorine washes can reduce microbial levels by 2 -3
log CFU/g, but do not fully eliminate them as bacteria can adhere in tiny crevices on the surface
(Gross et al., 2016). Its efficacy can also be significantly affected by the pH level of the water
and the presence of organic matter, which can neutralize chlorine and reduce its antimicrobial
activity (Zagory, 2000). Additionally, chlorine can produce potentially harmful by-products, like
haloacetic acids and trihalomethanes, when reacting with organic matter in water, posing health
and environmental concerns (Gil et al., 2009).

Beyond chlorine, other postharvest sanitizers such as peracetic acid (PAA) have gained
popularity for produce washing in the fresh produce industry. Under 21 CFR 173.315(a), PAA is
generally recognized as safe (GRAS) chemical that can be utilized for fruits and vegetables, with
guidelines recommending that its concentration in wash water should not exceed 80 ppm to
ensure safety (USDA, 2024). Several authors have demonstrated that PAA effectively reduces
microbial contamination on various fresh produce surfaces and has the advantage of maintaining
its effectiveness even in the presence of organic matter, unlike chlorine (Huang et al., 2018; Van
Haute et al., 2015). Its strong oxidizing properties provide extensive antimicrobial activity to
effectively combat a broad spectrum of foodborne pathogens and spoilage organisms.
Additionally, PAA produces minimal to no toxic by-products such as carboxylic acids and does
not produce halogen-containing disinfection by-products (DBPs), making it a more
environmentally friendly option for sanitizing produce (Kitis, 2004). While PAA offers several
advantages over chlorine, it also has its limitations. One major disadvantage associated with the
use of PAA is its reduced antimicrobial efficacy at the allowed concentrations for vegetables,

which can be a significant limitation in effectively reducing pathogen loads (Ramos et al., 2013).
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Its effectiveness can be limited by its corrosive nature, as exposure to high concentrations may
cause respiratory irritation, damage to the eyes, and other health issues for workers (Kitis, 2004).
Other alternative sanitizers include ozone, electrolyzed water, and ultraviolet (UV) light.
Ozone is a powerful oxidant that effectively reduces microbial loads and degrades pesticide
residues. However, ozone treatment can potentially deteriorate the flavor and color of fresh
produce, impacting its sensory quality (Ramos et al., 2013). Electrolyzed water is highly
effective against a wide range of foodborne pathogens and reduces microbial counts in fruits and
vegetables due to its high oxidation-reduction potential (over 1000 mV), low pH (2-4), and
active oxidizers like hypochlorous acid (Graca et al., 2011). UV light, used commonly for
surface decontamination, disrupts microbial DNA and prevents replication. Its use is limited to
surface applications and requires direct exposure, making it less effective for complex surfaces
or internalized pathogens; moreover, in some specific conditions, microorganisms may repair
UV-C light-induced damage, which may significantly reduce the safety of produce (Alexandre et
al., 2012; Ramos et al., 2013). These sanitizers have limitations that require careful consideration
of their use. Following FDA regulatory guidelines is important for safe use, ensuring
concentrations and application methods are optimized to enhance efficacy while minimizing
potential risks. A summary of the limitations of these conventional sanitizers is presented in

Table 2.
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Natural antimicrobial compounds

Natural antimicrobial compounds are bioactive substances obtained from diverse sources,
such as animals, plants, bacteria, and fungi, which can inhibit foodborne pathogens (Gyawali &
Ibrahim, 2014). These compounds, including essential oils (EO), plant extracts, and nematode-
derived molecule (ascaroside), are increasingly studied as alternatives to conventional chemical
sanitizers due to their efficacy and their ability to reduce drawbacks related to using conventional
sanitizers. This shift is driven by growing consumer concerns regarding the safety of synthetic
antimicrobials (Lucera et al., 2012). Many of these compounds are recognized as GRAS by the
FDA, which allows their inclusion in food-related applications, provided they meet the required
safety standards (ASM, 2024).

The mechanisms of action of natural antimicrobials include disruption of microbial cell
membranes, affecting nucleic acid mechanisms, causing the decay of the proton motive force,
and depleting adenosine triphosphate (ATP). They also inhibit enzymatic activity and interfere
with membrane function by interacting with bacterial membrane proteins (Burt, 2004; Quinto et
al., 2019). These antimicrobial properties have been demonstrated in vitro against a range of
foodborne pathogens, including L. monocytogenes, Salmonella, and E. coli O157:H7 (Mith et al.,
2014). However, the successful application of these natural compounds is influenced by factors
such as the type of compound, concentration, pH, and the target microorganism (ASM, 2024).
Applying natural antimicrobials in the fresh produce industry requires careful implementation of
tested methods to maintain their effectiveness and reduce contamination risks. Ongoing studies
continue to explore how these compounds perform under various environmental conditions and

how they can be incorporated into post-harvest practices.
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Essential Oils and Plant Extracts

Essential oils (EOs), extracted from various parts of plants like leaves, flowers, roots,
seeds, and bark, have long been valued and recognized for their antioxidant, antimicrobial, and
anti-inflammatory properties (Bakkali et al., 2008; Burt, 2004). These oils are natural mixtures of
volatile compounds, each adding to their antimicrobial effects, making them effective for
pathogen control. Their active components, including thymol, eugenol, and carvacrol, contribute
to their efficacy in inactivating foodborne pathogens like E. coli O157:H7 and Salmonella spp
(Pandey et al., 2017). Research shows that EOs demonstrate greater antimicrobial effects on
Gram-positive bacteria compared to Gram-negative bacteria. This difference is due to structural
differences in their cell walls, which influence EO penetration and efficacy (Gurtler & Garner,
2022). This mode of action inhibits bacterial growth and reduces the potential for resistance
development, which is common with synthetic sanitizers.

Several studies have highlighted the potential of some types of EOs as effective post-
harvest wash sanitizers for fresh produce. Dunn et al. (2019) evaluated clove bud oil (0.2% and
0.5%) and thyme oil (0.2% and 0.5%) emulsions as sanitizing agents for produce washing,
specifically targeting a five-serovar S. enterica cocktail. Their findings showed that these
essential oil emulsions performed better than chlorine. Additionally, their strong antimicrobial
activity, even in the presence of organic matter, indicates they could serve as viable replacements
for chlorine in postharvest produce sanitation. Karagozlii et al. (2011) also demonstrated that
mint and basil oils, even at low concentrations (0.01 ml/L, 0.032 ml/L, or 0.08 ml/L)
significantly reduced Sa/monella Typhimurium and E. coli O157:H7 populations on
contaminated fresh-cut lettuce and purslane. Their results showed a reduction of up to 2 log

CFU/g in S. Typhimurium with a 10-minute basil oil wash at 0.08 ml/L, highlighting the ability
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of EO to reduce microbial loads. Additional studies have also evaluated the use of oregano oil to
decrease E. coli O157:H7 and Salmonella Typhimurium populations on iceberg lettuce. Giindiiz
et al. (2010) evaluated the effectiveness of oregano oil at three different concentrations (25, 40,
and 75 ppm), along with four different treatment times (5, 10, 15, and 20 min) to inactivate S.
Typhimurium at 20°C. The results showed that washing lettuce with oregano oil at 75 ppm gave
a better decontamination result when compared to washing with 50 ppm of chlorine in the
inactivation of S. Typhimurium.

Further studies have reinforced the antimicrobial effects of plant extracts, particularly
garlic and onions against various foodborne pathogens. A study conducted by Benkeblia (2004)
showed that essential oils from different onions and garlic inhibited the growth of Salmonella
Enteritidis and Staphylococcus aureus. The antimicrobial efficacy of these extracts was found to
increase with higher concentrations of essential oil. For example, garlic oil at high concentrations
(200-500 ml/L) demonstrated a stronger antibacterial effect than onion extracts, with S.
Enteritidis being more sensitive than S. aureus. The findings indicate that garlic oil may be an
effective natural antibacterial agent in food safety, especially when used at higher concentrations
to enhance microbial reduction in contaminated food. In organic farming, onion and garlic
essential oils have potential applications as natural wash solutions to inhibit the growth of
foodborne pathogens. Moringa oleifera extract has also demonstrated significant antibacterial
activity against various pathogens, including E. coli O157:H7, and S. enterica, which are
frequently linked to fresh produce (Abdallah et al., 2023).
Bacteriophage

Bacteriophages or phages are viruses that specifically infect and lyse bacterial cells,

thereby providing a natural way to control bacterial contamination in food (Loc Carrillo et al.,
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2005). Phages are increasingly recognized as a proposed alternative to chemical treatment and
antibiotics due to their target specificity, eco-friendliness, and potential as biocontrol agents for
detecting pathogenic bacteria within the food industry (Garcia et al., 2008). Their selective action
on bacterial pathogens, including E. coli O157:H7, makes them useful in fresh produce.

Recent studies have shown the efficacy of the use of bacteriophage in reducing foodborne
pathogens in fresh produce. Sharma et al. (2009) reported that a mixture of three E. coli
O157:H7 specific bacteriophages known as ECP-100 achieved significant reductions in the
number of viable E. coli O157:H7 populations on experimentally fresh-cut iceberg lettuce and
cantaloupe, particularly under modified atmosphere conditions and storage at lower
temperatures. ECP-100 treatment on lettuce resulted in a 1.57 to 2.42 log CFU/cm? reduction
compared to controls, while phage-treated cantaloupes stored at 4°C showed a 2.57 log CFU/ml
decrease compared to untreated samples, indicating high efficacy of phage across different fresh
produce types. Some of the findings on the use of bacteriophages to reduce pathogen populations
on fresh produce suggest that phages can also serve as an alternative antimicrobial agent to
control bacterial contamination of agricultural produce in vitro (Wang et al., 2017).

Organic Acids

Organic acids like acetic, propionic, sorbic, lactic, malic, and citric acids are natural
antimicrobial agents widely used for their well established efficacy, cost-effectiveness, and
ability to prevent the growth of foodborne pathogens (Lucera et al., 2012). They elicit
antibacterial activity by lowering environmental and cellular pH, promoting anion accumulation
that disrupts microbial cell functions, and inhibiting enzymatic activity and cellular metabolism
(Wang et al., 2019). Their antimicrobial properties have led to their recognition as GRAS,

making them increasingly valuable as alternatives to traditional chemical sanitizers in fresh
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produce safety. Combinations of different organic acids have the potential to provide broader
antimicrobial activity than relying on a single acid alone (Lucera et al., 2012).

Several studies have highlighted the efficacy of organic acids in reducing bacterial
contamination in fresh fruits and vegetables. Akbas and Olmez (2007) investigated the
effectiveness of organic acids (citric and lactic acids), ozonated water, and chlorine in reducing
bacteria growth and population, while still maintaining fresh-cut iceberg lettuce storage quality.
Lettuce samples were treated with 0.5% citric acid, 0.5% lactic acid, 4 mg/L ozonated water, or
100 mg/L chlorine for 2 minutes. During storage for 12 days, organic acid treatments resulted in
lower mesophilic and psychrotrophic bacterial counts compared to ozonated water and chlorine
treatments. Lactic acid dipping effectively reduced Enterobacteriaceae populations by 2.2 log
CFU/g and maintained low levels for the first 6 days of storage. The moisture content, color, 3-
carotene, texture, and vitamin C levels of the lettuce samples during storage were not shown to
have significant changes due to treatment. This study concluded that lactic and citric acid
treatments, as well as ozonated water, could serve as alternative treatments to chlorine for
extending the shelf life of lettuce.

Similarly, the antimicrobial effects of citric, malic, propionic, lactic, and acetic acid
against E. coli O157:H7, L. monocytogenes, and S. Typhimurium, on organic lettuce and apples
were also clearly demonstrated by (Park et al., 2011). Lettuce and apples were inoculated and
treated with 1% and 2% organic acid solutions for 0, 0.5, 1, 5, and 10 minutes. After 10 minutes
of treatment, significant reductions in pathogen populations were observed compared to the
control (distilled water). For lettuce, the reductions ranged from 0.93 to 2.98 log CFU/g,
depending on the type of acid and its concentration, with citric acid achieving the highest

reduction (1.85 to 2.86 log CFU/g). No significant changes were observed in the color of the
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lettuce samples during storage. These results confirm the efficacy of organic acids in reducing
microbial contamination and significantly mitigating pathogen levels when used as part of post-

harvest sanitation protocols.

Ascaroside #18 (ascr#18)

While many natural compounds are employed as produce washes to achieve surface
decontamination, certain antimicrobials take a different approach by focusing on stimulating the
innate immune response of the host plant, rather than surface decontamination. One such novel
treatment is ascaroside #18 (ascr#18), a nematode-derived molecule that has gained attention as a
pre-harvest treatment that activates plant defense mechanisms. By triggering the immune
response of the plant, ascr#18 offers a novel strategy that distinguishes it from other external
wash sanitizers while providing a long-term solution for microbial inactivation in fresh produce.

Ascr#18 is an important component of the ascaroside family, an evolutionarily conserved
group of signaling molecules secreted by nematodes, particularly plant-parasitic nematodes. It is
the most abundant ascaroside and functions effectively even at picomolar to micromolar
concentrations (Manosalva et al., 2015). The structure of these ascarosides includes
dideoxysugar ascarylose, in addition to lipophilic chains derived from fatty acids, and other
components from primary metabolism. They function as molecular pheromones unique to
nematodes (Klessig et al., 2019). It was first recognized as a small component in the ascaroside
profile of Caenorhabditis elegans but has since emerged as the most abundant ascaroside in three
different plant-parasitic nematode species, including Meloidogyne spp., as demonstrated by

Manosalva et al. (2015). They reported that the ascr#18 in these species of nematodes is
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characterized by an 11-carbon side chain and typically accompanied by compounds with longer
carbon chains.

The specific efficacy of ascr#18 in priming plant defenses against pathogens has received
much interest in recent research. Its primary mode of antimicrobial action involves metabolism
within plants through peroxisomal B-oxidation, generating shorter-chained ascarosides that
activate the defense response (Manohar et al., 2020). This activation involves the upregulation of
mitogen-activated protein kinases (MAPKs) and modulates defense signaling pathways regulated
by salicylic acid (SA) and jasmonic acid (JA), thereby inducing the expression of defense-related
genes. Furthermore, plant cells perceive ascr#18 as nematode-associated molecular patterns
(NAMP) or pathogen-associated molecular patterns (PAMP), activating immune responses in
plant-nematode interaction. At low concentrations, ascr#18 triggers plant immune responses
against bacterial, viral, and nematode infections (Manosalva et al., 2015).

Ascr#18 has shown promise as an antimicrobial agent against soilborne pathogens. A
study on ascr#18 found that plant treatment with ascr#18 inhibited Pseudomonas syringae pv.
Tomato (Ps?) on the Arabidopsis roots, highlighting its antibacterial activity against the soilborne
pathogen (Manosalva et al., 2015). Recent studies have expanded to explore the effectiveness of
ascr#18 in controlling foodborne pathogens in agricultural settings. It has effectively reduced S.
enterica levels in fenugreek and alfalfa sprouts and seeds. However, its efficacy has not yet been
thoroughly evaluated under field conditions, which presents a gap in understanding its potential
at a commercial scale. This study highlights the potential of ascr#18 as an effective treatment to
improve the microbial safety of vegetable seeds and sprouts (Hu et al., 2023).

The efficacy of ascr#18 as a preharvest treatment is highly dependent on its

concentration, with low doses often being more effective in priming plant defenses against

27



pathogens. A study by Manosalva et al. (2015) showed that while ascr#18 enhanced Arabidopsis
resistance to Pst and provided protection against Phytophthora infestans in tomato at lower
concentrations, its effectiveness decreased at higher concentrations. Such dose-response effects
are commonly observed in other plant signaling compounds. The optimal concentration of
ascr#18 for plant treatments is important to maximize its protective effects.

Ascr#18 can be applied to plants through soaking, soil drenching, or foliar spraying. Soil
drench involves applying the compound directly to the root zone, allowing for systemic
distribution, while foliar application involves spraying the compound on the leaves, potentially
enabling more immediate, localized responses (Schroeder, 2014). Ascr#18 activates defense
mechanisms by triggering MAPKs and modulating hormone signaling pathways, which could
potentially lead to metabolic costs for the plant if not optimally applied (Manosalva et al., 2015).
The optimal application method may vary depending on the crop type and target pathogen.

Conclusion

Contamination of leafy greens with human pathogens continues to cause foodborne
illnesses due to its cultivation practices and surface characteristics, despite current agricultural
practices and regulations. Conventional sanitizers have shown limitations in efficacy and raise
environmental concerns, prompting the need for natural alternatives.

Ascr#18, a novel intervention, has demonstrated the potential to elicit plant defenses and
reduce pathogen contamination in numerous studies. However, there remains a gap in research
specifically addressing the efficacy of ascr#18 in protecting leafy greens against foodborne
pathogens. This study seeks to evaluate ascr#18 efficacy as a pre-harvest treatment against E.
coli O157 on romaine lettuce and relate these findings to its potential as a natural antimicrobial

agent. The second objective is to investigate the optimal method of ascr#18 application on plants
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through foliar spray and soil drench techniques. We will also use this experiment to determine
the best method of applying the ascr#18 treatment to other leafy greens. The result of this study
could be crucial to developing more effective food safety interventions and enhancing the

microbial safety of fresh produce when combined with good agricultural practices.
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CHAPTER 3
MATERIALS AND METHODS
Bacterial cultures

A four-strain cocktail of pathogenic E. coli O157:H7 was obtained from -80°C glycerol
stocks from the isolate collection of the Department of Food Science and Technology, University
of Georgia, Athens. The strains included CDC 658 (human feces, cantaloupe-associated outbreak
disease), F4546 (human feces, alfalfa sprout-associated disease), H1730 (human feces, lettuce-
associated disease) (Megan M Lang et al., 2004) and K3995 (clinical isolate, spinach-associated
outbreak) (Zangari et al., 2014).

E. coli O157:H7 strains were streaked on CHROMagar O157 (CHROMagar
Microbiology, Paris, France) and then cultured overnight in Tryptic Soy Broth (TSB; Difco,
Sparks, MD) at 35°C. Rifampicin resistance was developed by transferring 10 pL of culture to
fresh TSB and spreading 0.1 mL aliquots on Tryptic Soy Agar (TSA; Difco, Sparks, MD) plates
with increasing rifampicin concentrations, starting at 12.5 mg/mL and doubling until resistance
was achieved at 50 mg/mL (Weinstein & Zaman, 2019). Rifampicin-resistant strains were stored
with 50% glycerol in 2 ml microcentrifuge tubes (ThermoFisher Scientific, Waltham, MA) at
—80 until use.

A growth curve assay was performed using a microplate reader (Biotek, Winooski, VT)
to test for growth inhibition in each of the four E. coli O157:H7 strains and evaluate differences
between the wild-type and rifampicin-adapted strains. Cultures were grown overnight in TSB
plate with 50 mg/mL of rifampicin (TSB-R) at 35°C. Diluted cultures (200 uL) were added to
individual wells of a 96-well plate (Falcon). OD600 readings were taken every 60 minutes for 24
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hours at 35°C with continuous shaking between readings. Growth curve data showed no
difference in the growth of the different strains.

To prepare the inoculum, frozen glycerol stock cultures were revived by transferring
them into TSB-R and incubating overnight at 35°C. The overnight cultures were then streaked
onto a TSA plate supplemented with 50 mg/ml rifampicin (TSA-R) and incubated again at 35°C
overnight. Colonies were picked with a sterile loop onto 10 ml of TSB-R and incubated for 24h
at 35°C. Before use, 1 ml of each of the cultures was transferred to 2 ml microcentrifuge tubes
and centrifuged at 12,000 RCF for 2 minutes. Supernatant was decanted and pellets were washed
with 1 ml of 0.1% peptone. Cultures were washed a total of three times and resuspended in 9 ml
of 0.1% peptone for a total volume of 10 ml. A 1 ml aliquot from each tube was combined with
36 ml of 0.1% peptone for an approximate final concentration of 7 log CFU/mL. The final
suspension was serially diluted and enumerated using an Eddy Jet 2 spiral plater (Neutec,
Farmingdale, NY, USA) on TSA-R plates and incubated for 24 hours at 35°C.

Lettuce seeds

Romaine lettuce (Lactuca sativa L, var. Dragoon, cv. Green mini) seeds were purchased
from Johnny’s Selected Seeds (Winslow, ME) and stored at 4 °C before use for this experiment.
The Dragoon variety is a mini-romaine well suited to greenhouse production due to its compact
and uniform size, with a seed to harvest cycle of 43 days. Plants were grown in a climate-
controlled greenhouse at the University of Georgia Horticulture Farm (Athens, GA), with
temperature setpoints of approximately 20 °C at night and 27 °C during the day. Relative
humidity averaged around 65% during the day and 83% at night, though actual conditions varied
slightly depending on weather and time of day. Seeds were sown in cell trays filled with Miracle-

Gro potting mix and irrigated every other day. After 4 weeks, seedlings were transplanted into 2
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gallon square pots (5.5 in x 5.5 in x 6 in). Ascr#18 plant treatments were applied after
transplanting when the plants were about 6 weeks old. Lettuce heads were randomly assigned to
three different ascr#18 concentration treatments and control groups. Each treatment had three
independent replicates with three independent samples (n=9).
Ascr#18 preparation

Ascr#18 stock solutions (10 uM and 100 uM) were provided by Ascribe Bioscience Inc.
and stored at 4°C. Working solutions of 0.01 uM, 0.1 uM, and 1 uM were prepared by diluting
the stock in 0.1% (v/v) Tween-20, a non-ionic surfactant. For the 0.1 uM and 1 uM
concentrations, 1 mL of the stock was diluted in 99 mL Tween-20 solution, while the 0.01 uM
solution was prepared by further diluting 1 mL of the 0.1 uM solution (1:10). All working
solutions were stored at 4°C before plant treatment.
Plant treatment

Lettuce plants were treated with the ascr#18 formulation via foliar spray or soil drench (3
mL per plant), except for the control groups. The formulation was evenly applied on the leaf
surfaces using a spray bottle for the foliar spray. For the soil drench application, it was applied
directly to the plant root zone. The treatments were conducted three times; 7-10 days after the
plants were transplanted, 2 days pre-inoculation, and 2 days post-inoculation (Figure 1). Before
inoculation, plants were moved from the horticulture greenhouse to an environmental chamber
(24°C, 70% RH) located in the Department of Food Science and Technology, University of
Georgia, Athens BSL-2 lab. A water treatment control was also included to ensure physical
removal is not the cause of reduction of E. coli O157:H7 populations inoculated onto romaine

lettuce.
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4 weeks 7-10 days 2 days before inoculation 2 days after inoculation

> >
Day 0 Day 3 Day 7
Harvest/processing Harvest/processing

Seeding Transplanting First treatment Second treatment Third treatment Harvest/processing

Figure 1: Diagram illustrating the application schedule for the ascr#18 plant-based treatment and

E. coli O157:H7 inoculation onto romaine lettuce plants.

Lettuce inoculation

Romaine lettuce heads were individually placed inside the biosafety cabinet. A 100 puL
aliquot of the inoculum was spot inoculated onto 10 different locations on each head using a
micropipette (Corning) to ensure consistent application of the inoculum and allow more accurate
determination of the reduction in the pathogen population (M. M. Lang et al., 2004). The lettuce
heads were allowed to air dry for 1 h inside the biosafety cabinet. Three biological replicates
from each treatment method and control group were harvested and processed on Day 0, with the
remaining lettuce heads returned to the environmental chamber (Percival Scientific Inc., Perry,
IA) for later processing on Days 3 and 7.
Microbial analysis

To evaluate ascr#18 efficacy, lettuce heads were harvested using pruning shears
decontaminated between cuttings with 70% ethanol. Harvested leaves were carefully placed in a
sterile Whirl-pak® (VWR International, Radnor, PA). Each sample was rinsed with 250 ml of

0.1% peptone and Tween-80 (Sigma-Aldrich Co, St. Louis, MO) solution. Samples were hand
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massaged for 60 seconds, after which the rinsate was spiral plated on TSA-R plates using an
Eddy Jet 2 spiral plater (exponential-50 pL setting). Colonies on plates were counted after
incubating for 24 h at 35°C.

Recovered bacterial populations were estimated using the Most Probable Number (MPN)
procedure with 48 deep-well plates when counts fell under the plating limit of detection (Figure
2). Wells were filled with TSB-R, comprising five dilutions and eight replicates. The first row
contained 1 ml double-strength TSB-R, while others had 1.8 ml single-strength TSB-R. A Iml
aliquot of the rinsate was added to double-strength wells, followed by four tenfold serial
dilutions (0.2 ml into 1.8 ml). Plates were sealed with adhesive film (allowing air exchange) and
incubated at 35°C for 24 h, then 5 puL from each well was channel streaked onto TSA-R plate
and incubated again at 35°C for 24 h. Positive and negative wells were recorded and the MPN
results were calculated using an online calculator (EPA, 2020). The results were expressed as the
amount of E. coli O157:H7 per lettuce head (MPN/Head) with 95% confidence intervals. The
raw MPN/mL values were converted to per head estimates by multiplying by the total rinsate
volume (250 mL). These were then log transformed and reported as log MPN/Head. The
detection limit was 1.45 log MPN/Head of E. coli O157:H7. Samples for days 3 and 7 were
harvested and processed as previously described.

Statistical Analysis

The experiment consisted of two application methods, four treatment groups with three
biological replicates each, three sampling points (days 0, 3, and 7), and three independent
experimental replications, resulting in a total sample size of 216. For each treatment group, nine
samples were analyzed per experimental replication, with three samples collected per sampling

day (n =9). Data collected were analyzed using the mixed model ANOVA in JMP Pro 17 (SAS
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Institute Inc., Cary, NC). Tukey’s test was used for pairwise comparisons when significant
differences were detected. Analyses assessed differences (P < 0.05) between treatment and

control groups.

Most Probable Number

Perform the dilutions by adding 200 uL of the
homogenate to the subsequent 1.8 mI TSBR

A AN~ A

1 2XTSBR TSBR TSBR TSBR TSBR
2 2XTSBR TSBR TSBR TSBR TSBR
3 2XTSBR TSBR TSBR TSBR TSBR
4 2XTSBR TSBR TSBR TSBR TSBR
5 2XTSBR TSBR TSBR TSBR TSBR
6 2XTSBR TSBR TSBR TSBR TSBR
I—Q—| 7 2XTSBR TSBR TSBR TSBR TSBR
Add 1 ml of the 8 2XTSBR TSBR TSBR TSBR TSBR
homogenate to the
first column of the 48 10 102 1073 10* 10°
15 well tray containing 1 Incubate the tray at
ml of the 2X TSBR 35°Cfor24h

O O O O O Channel streak 5 L from each
well to TSA-R plates

107 10?7 10® 10*% 105

FIGURE 2. Schematic diagram of MPN procedure (Bardsley et al., 2021)
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CHAPTER 4

RESULTS

Reduction of E. coli O157:H7 on ascr#18-treated Romaine lettuce

The fixed effects of ascr#18 on E. coli O157:H7 populations on romaine lettuce were
analyzed using ANOVA (Table 1). Application method (foliar spray), treatment concentration,
and sampling day each had a significant impact on E. coli O157:H7 populations, although their
interactions were not significant (P > 0.05). Similarly, when ascr#18 treatment was applied as a
soil drench, neither treatment concentration, sampling day, nor their interaction had a significant
effect on E. coli O157:H7 populations (P > 0.05). Overall analysis considering both foliar spray
and soil drench methods revealed that application method, treatment concentrations, and the
interaction between treatment concentration and application method were all significant (P <

0.05) factors influencing E. coli O157:H7 reductions on romaine lettuce in this study.

Effect of application method

Figure 3 presents the mean populations of E. coli O157:H7 on romaine lettuce following
treatment with ascr#18 at different concentrations, comparing foliar spray and soil drench
application methods. A consistent trend is evident across all tested concentrations (0.01 uM, 0.1
uM, and 1 uM). The foliar spray application resulted in significantly higher E. coli O157:H7
reduction compared to the soil drench application method (P < 0.05). On average across all days
(0, 3, and 7), foliar spray at 0.01 uM, reduced E. coli O157:H7 populations to 3.5 log
MPN/Head, compared to 5.5 log MPN/Head population for the soil drench treatment. At 0.1 pM,
foliar spray-treated lettuce had populations of 2.9 log MPN/Head, while soil drench-treated

lettuce had populations of 5.3 log MPN/Head. Similarly, at 1 uM, populations decreased to 3.2
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log MPN/Head for foliar spray, whereas soil drench remained at 5.4 log MPN/Head (P < 0.05).

Although increases in ascr#18 concentration from 0.01 uM to 1 uM resulted in slight reductions

in pathogen populations for both application methods, the differences between concentrations

within each method were not statistically significant (P > 0.05). The foliar spray consistently

reduced E. coli O157:H7 to below or near 3.5 log MPN/Head across all tested concentrations,

while the soil drench method averaged approximately 5 log MPN/Head final populations.

Table 3. Fixed effect of ascr#18 in reducing E. coli O157:H7 populations on romaine lettuce

when applied as a foliar spray or soil drench (a = 0.05).

Source Nparm DF  Sum of Squares F ratio Prob >F
Foliar spray
Treatment 56.06 7.88 <.0001
Day 27.47 5.79 0.0042
Treatment*Day 5.36 0.38 0.8925
Soil drench
Treatment 3 3 7.06 2.54 0.0590
Day 2 2 1.00 0.55 0.5810
Treatment*Day 4.51 0.81 0.5617
Overall analysis (Foliar + Soil
Drench)
Method 1 1 223.87 140.73 <.0001
Treatment 3 3 54.69 11.46 <.0001
Method*Treatment 3 3 15.42 3.23 0.0230

DF: Degree of freedom, Nparm: Number of Parameters.

Pr > F: P value, Effects are considered significant when P value < 0.05.

Sample size: 216 =2 application method % 4 treatment groups x 3 time points (day 0, 3, 7) % 3 biological

replicates % 3 independent experiments
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Foliar
I Soil drench

Cell population (Log MPN/Head)

0.01 M 0.1 M
Ascr#18 treatment concentrations

Figure 3. Mean populations of E. coli O157:H7 on romaine lettuce treated with different ascr#18
concentrations (0.01 uM, 0.1 uM, 1 uM) using foliar spray and soil drench application methods. Means
values with different letters were significantly different (P < 0.05; limit of detection = 1.45 log MPN/Head).
Error bars indicate standard error.

Impact of ascr#18 treatment concentrations.

In this study, all ascr#18 treatments (0.01 uM, 0.1 uM, and 1 uM) resulted in reductions
of E. coli O157:H7 populations when compared to its untreated controls over a 7-day sampling
period (0 d, 3 d, and 7 d). The extent of reduction of ascr#18 treatment concentrations varied
across the sampling period (Table 4).

Significant reductions in E. coli O157:H7 were observed on Days 0 and 3 for the foliar
spray application method (P < 0.05; Table 4). In comparison to the untreated control, E. coli

O157:H7 reductions ranged from 1.11-2.21 log MPN/head on Day 0. Treatment at 0.1 pM

38



ascr#18 showed the highest reduction of E. coli O157:H7, with a decrease of 2.21 log
MPN/head. However, ascr#18 treatments at 0.01 uM and 1 uM resulted in E. coli O157:H7
reductions of 1.11 and 1.58 log MPN/head, respectively. By Day 3, all foliar treatments
demonstrated reductions between 1.86-2.05 log MPN/head. While the 0.1 uM treatment
maintained a relatively higher microbial reduction (2.05 log MPN/head) than other treatments,
differences between treatment concentrations were not significantly different (P > 0.05). By Day
7, microbial reductions decreased, suggesting a potential decline in antimicrobial effectiveness
over time. The 0.01, 0.1, and 1 uM ascr#18 treatment reduced the population of E. coli O157:H7
by 0.72, 1.35, and 1.41 log MPN/head, respectively. The microbial reduction obtained was
greater for 0.1 uM ascr#18 treatment across Days 0 and 3. However, no significant differences
(P > 0.05) were observed among the ascr#18 treatment concentrations or between the treatments

and the control used in the study on Day 7 (Fig. 4).

Ascr#18 treatment applied through soil drench showed smaller reductions in E. coli
O157:H7 across the sampling period (Fig. 5); the population differences between the ascr#18
treatment and the untreated controls ranged from 0.22 to 0.77 log MPN/head on Day 0. The 0.1
UM treatment exhibited the highest reduction (0.77 log MPN/head), followed closely by the 1
uM treatment (0.72 log MPN/head), while the 0.01 pM treatment showed the least reduction
(0.22 log MPN/head). However, there were no significant differences in reductions among the
treatment concentrations (P > 0.05). By Day 3, reductions remained within a similar range (0.48—
0.76 log MPN/head), with the highest reduction observed at 1 uM treatment, followed by 0.1 uM
treatment, which showed a reduction of 0.58 log MPN/head. By Day 7, reductions generally
decreased further among all the ascr#18 treatment concentrations tested, ranging from -0.07-0.41

log MPN/head. The 1 uM treatment showed a slight rebound in bacterial populations, resulting
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in a small increase in E. coli O157:H7 compared to the untreated control (-0.07 log MPN/head).
Overall, the greatest reduction in ascr#18 treated inoculated romaine lettuce was observed with
0.1 uM treatment on Day 0. No significant differences (P > 0.05) were observed between the soil

drench treatments and the control on Days 0, 3, and 7 (Fig. 5).

Table 4. Microbial reduction (Log MPN/Head) on romaine lettuce in comparison to ascr#18
treatment concentration and sampling time (n = 9)

Log E. coli O157:H7 reductions (Log MPN/Head)

Treatment Day 0 Day 3 Day 7
Foliar
0.01 uM 1.11 1.95 0.72
0.1 uM 2.21 2.05 1.35
1 uM 1.58 1.86 1.41
Soil drench
0.01 uM 0.22 0.48 0.41
0.1 uM 0.77 0.58 0.41
1 uM 0.72 0.76 -0.07

The log reduction represents the log difference between the mean viable cell counts of the control and
treatment groups (Log MPN/Head). Control and treatments were compared separately for each sampling
point (Days 0, 3 & 7). Control, inoculated but not treated; ascr#18 treatment concentration, 0.01 uM, 0.1
uM, 1 uM.
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Figure 4. Mean cell populations of E. coli O157:H7 inoculated on romaine lettuce (n = 9) treated via foliar
application across different ascr#18 concentration treatments (0.01, 0.1, 1 uM) at each sampling point (Days
0, 3, & 7). Limit of detection = 1.45 log MPN/Head. Each bar diagram represents average counts and error
bars indicate standard error.
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Figure 5. Mean cell populations of E. coli O157:H7 inoculated on romaine lettuce (n = 9) treated via soil
drench application across different ascr#18 concentration treatments (0.01, 0.1, 1 uM) at each sampling point
(Days 0, 3, & 7). Limit of detection = 1.45 log MPN/Head. Each bar diagram represents average counts and
error bars indicate standard error.
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CHAPTER 5
DISCUSSION
Ascarosides, including ascr#18, function similarly to microbe-associated molecular

patterns (MAMPs) by triggering plant immune responses, which help reduce the impact of
pathogen attacks and nematode infections (Manohar et al., 2020). The immune-stimulating
property of ascr#18 has been shown to enhance the resistance of various plants such as tomato,
potato, rice, wheat, soybean, and Arabidopsis, against nematodes, bacteria, fungi, and viruses
(Klessig et al., 2019). Recent studies have further demonstrated the antimicrobial potential of
ascr#18 in food safety applications. For instance, Hu et al. (2023) reported that ascr#18 treatment
at 1 uM applied as a seed treatment or immersion, reduced Sa/monella populations on alfalfa and
fenugreek sprouts. Similarly, the efficacy of ascr#18 treatment for controlling enterohemorrhagic
E. coli (EHEC) growth on sprouts has also been established (Hu et al., 2024). In the current
study, we extend these findings to romaine lettuce, where foliar application of ascr#18 reduced

E. coli O157:H7 populations by 1 - 2 log MPN/head.

According to the results in Figure 3, ascr#18 method of application is a significant factor
in reducing the population of E. coli O157:H7 populations on contaminated romaine lettuce.
While previous studies have primarily focused on root treatment, soil drench, or immersion
methods for ascr#18 to control both soilborne and foodborne pathogens, foliar spray applications
also show promise. Foliar sprays are widely used in leafy green production for various
treatments, including nutrient supplementation and fertilizer application (Kathi et al., 2024;
Nayak et al., 2020). Treatment with ascr#18 using foliar spray application was more effective
than the soil drench in all tested concentrations in this present study. Interestingly, using the

foliar application approach, Klessig et al. (2019) made a similar observation that foliar
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applications of ascr#18 at concentrations ranging from 0.01-10 uM effectively controlled plant
pathogens in non-sprout plant tissues such as maize, rice, wheat, and soybean. The superior
performance of foliar application in this current study may be attributed to the primary
occurrence of E. coli O157:H7 contamination on leaf surfaces. In a study by Manosalva et al.
(2015), leaf infiltration of ascr#18 at 0.3 uM or 1 uM activated both local and systemic defenses
in Arabidopsis, demonstrating that plants respond to ascr#18 via their leaves. This response was
comparable to that observed with root application. Our results are also consistent with previous
research on the efficacy of the application methods for natural antimicrobials. It was found that
spraying lytic bacteriophages onto lettuce after hypochlorite washing resulted in greater
immediate reductions of E. coli O157:H7 populations (2.22 log CFU/cm? on day 0) compared to
immersion method (Ferguson et al., 2013). Similarly, the current study showed that foliar sprays
of ascr#18 achieved reductions of 1.5 - 2 log MPN/head reduction compared to less than 1 log
MPN/head reduction for soil drench applications. Additional work is needed to evaluate whether
combining both application methods could achieve a greater reduction of E. coli O157:H7

populations on leafy greens.

All tested concentrations of ascr#18 (0.01 uM, 0.1 uM, and 1 uM) significantly
decreased the E. coli O157:H7 populations on romaine lettuce for the foliar spray application. No
clear dose-response relationship was observed, as all ascr#18 treatments were significantly
effective when compared to the control treatment (Fig. 4). Ascr#18 has been shown to effectively
reduce pathogens across Arabidopsis roots (Manohar et al., 2020), and fenugreek and alfalfa
sprouts (Hu et al., 2023), targeting soilborne and human pathogens respectively, at lower
concentrations. These findings show ascr#18 efficacy at low doses, achieving pathogen

reductions comparable to a postharvest wash with chlorine or PAA. However, there exists no
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clear dose-response, preventing the determination of an optimal dose for pre-harvest pathogen
control in fresh produce. The lack of a dose-response relationship in this study may also have
been due to the narrow range of concentrations tested. A previous study found thata 1 uM
ascr#18 treatment on Arabidopsis roots significantly reduced virulent Pseudomonas syringae
populations, while higher concentrations (5 uM) were less effective (Manosalva et al., 2015).
The results of this study align with previous studies demonstrating that ascr#18 activates plant

immunity, enabling protection against pathogens even at very low doses.

The current study found that ascr#18-induced reduction of E. coli O157:H7 on romaine
lettuce was most pronounced on Day 0. Foliar spray application achieved up to 2.21 log
MPN/head with the 0.1 uM concentration on Day 0, outperforming soil drench treatments, which
achieved maximum reductions of 0.77 log MPN/head on Day 0 (Table 3). Over time, the
efficacy of both application methods diminished, with no significant differences detected
between the treatments and the control by Day 7. Other studies on plant defense elicitors have
also demonstrated a temporal decline in efficacy when used to inhibit soilborne pathogens. For
instance, Cohen et al. (2011) observed that resistance induced by DL-3-amino-butyric acid
(BABA) against Bremia lactucae in lettuce declined over time, with treatment failing to prevent
sporulation 5 days post-inoculation. Manosalva et al. (2015) also demonstrated that ascr#18-
induced defenses peak within 24—72 hours post-treatment, with diminishing systemic effects
beyond this window. In Arabidopsis, root pretreatment with ascr#18 induced significant
upregulation of defense-related genes (FRK1, PHI1, PR-4, and LOX2) within 624 hours, but
these responses waned by 48-96 hours, suggesting transient activation of plant immunity which
is common in pattern-triggered immunity (PTI), where plants respond to pathogen-associated

molecular patterns (PAMPs). While the current study used both preventive (applied two days
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before inoculation) and curative (applied two days after inoculation) treatments, the highest
reduction in E. coli O157:H7 populations was observed on Day 0, following preventive
treatment alone, highlighting that ascr#18 is better in priming the plant defenses prior to
challenge from inoculation. The observed decline in efficacy at later sampling points may reflect
the rapid metabolism and degradation of ascr#18 in planta, as studies have shown that
approximately 50% of ascr#18 is metabolized within 12 hours in Arabidopsis leaves, with further
conversion into shorter-chain ascarosides (e.g., ascr#9) and eventual dissipation by 96 hours
(Manohar et al., 2020). Further study should be done using curative treatment alone, particularly
when inoculation precedes ascr#18 application to better understand whether plants can still

activate defensive response or exhibit immunity to control pathogens under these conditions.

Although ascr#18 treatment at the tested concentrations reduced E. coli O157:H7
populations on romaine lettuce (Table 4), the observed reductions varied across application
methods. These findings emphasize the complexity of controlling pathogen growth in produce
(Alvaro et al., 2009; Aryal et al., 2024). Chlorine-based treatments remain the standard for
reducing microbial loads on fresh produce surfaces by inactivating pathogens to prevent cross-
contamination, concerns over chemical residues and byproduct formation limit their widespread
acceptance. For ascr#18 to emerge as a practical alternative, it must demonstrate consistent
efficacy across varying conditions while offering benefits like ease of use and minimal impact on
produce quality. Unlike other novel interventions such as bacteriophages (Garcia et al., 2008)
and essential oils (Dunn et al., 2016), ascr#18 stands out for its ability to prime plant immune
defenses. Its application as a pre-harvest treatment could add an extra layer of protection,
reducing pathogen risks early rather than relying solely on post-harvest interventions to control

contamination. As the demand for safer and more sustainable food safety solutions grows,
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ascr#18 may offer a promising option for leafy green growers. Future studies are needed to

evaluate the long-term benefits of ascr#18 in commercial settings.
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CHAPTER 6

CONCLUSION

With the persistent challenge of foodborne outbreaks associated with fresh produce,
particularly leafy greens, ongoing development and research into preharvest interventions along
with GAPs are important to minimize microbial contamination. This study demonstrated that
ascr#18 effectively reduced E. coli O157:H7 levels on romaine lettuce, providing strong
evidence for its potential as a pre-harvest treatment for growers. Unlike post-harvest washing
methods, which primarily remove surface pathogens, ascr#18 targets contamination at its source
in the field and reduces risk before harvest. However, ascr#18 is not intended to replace post-
harvest washing but rather to serve as an additional layer of protection.

While these results also highlight the greater efficacy of foliar spray applications
compared to soil drench methods, further studies are required to determine the optimal
concentrations for maximum pathogen reduction. Expanding studies to assess a broader
concentration range is necessary for its application in the fresh produce industry. In the future,
ascr#18 could be a valuable preharvest strategy to improve the safety of fresh produce and

reduce the risk of foodborne illness.
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APPENDIX

FIGURE 6: Image of romaine lettuce (var. Dragoon) plants growing in the University of Georgia
Horticulture Farm greenhouse.
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TABLE 5. The connecting letters report for application methods at different ascr#18 treatment
concentrations. Mean cell population values with different letters indicate significant differences
(p<0.05).

Treatment Level Mean
0.01 uM Soil drench A 5.5397
Foliar B 3.5775
0.1 uM Soil drench A 5.3231
Foliar B 2.9647
1 uM Soil drench A 5.4441
Foliar B 3.2208

TABLE 6. The connecting letters report for foliar spray treatments. Mean cell population values
with different letters indicate significant differences (p<0.05).

Day Level Mean
0 Control A 5.3929
00luM A B 4.2773
1 uM B 3.8124
0.1 uyM B 3.1763
Control A 5.2898
3 1 uM A B 3.4261
0.01 uM B 3.3378
0.1 uM B 3.2360
Control A 3.8388
7 0.01luM A 3.1174
0.1 uM A 24818
1 uM A B 2.4241
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TABLE 7. The connecting letters report for soil drench treatments. Mean cell population values
with different letters indicate significant differences (p<0.05).

Day Level Mean
0 Control A 6.0645
0.01luM A 5.8395
1 uM A 5.3375
0.1 uM A 5.2867
Control A 6.0547
3 0.0l uM A 5.5670
0.1 uM A 5.4690
1 uM A 5.2908
1 uM A 5.7039
7 Control A 5.6261
0.1 uyM A 5.2136
0.0l uyM A 5.2125
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