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Abstract

Deep learning has experienced rapid growth and garnered significant atten-
tion in recent decades. Simultaneously, neuroscience has remained a challeng-
ing and enigmatic field of study. Inspired by the structure and function of
the brain, researchers have developed increasingly powerful and sophisticated
deep learning models that have achieved remarkable performance in various
domains, including computer vision, natural language processing, and medical
image analysis. These brain-inspired models have revolutionized the field of ar-
tificial intelligence, enabling breakthroughs in tasks such as image recognition,
language understanding, and disease diagnosis. In turn, the application of these
advanced deep learning models has provided valuable insights into the inner
workings of the human brain, revealing temporal and spatial functional brain
networks. The symbiotic relationship between artificial intelligence and neuro-
science is evident, as they continuously inform and complement each other’s
progress.

This dissertation presents novel frameworks that integrate deep learning
and knowledge from brain science. This research aims to gain insights into the
brain and refine deep learning models through brain-inspired principles. The
dissertation first discusses how deep learning has been applied to study the brain,
focusing on areas such as modeling cortical folding patterns, hierarchical brain
structures, and spatial-temporal brain networks. It then discusses how artificial
neural networks have drawn inspiration from the brain, using examples like
convolutional neural networks, attention mechanisms, and language models.
The dissertation’s main contributions are several computational frameworks
integrating brain-inspired insights. These include a graph representation neural
architecture search method to optimize recurrent neural networks for analyzing
spatiotemporal brain networks, a hierarchical semantic tree concept whitening



model to disentangle concept representations for image classification, a twin-
transformer framework to study gyri and sulci in the cortex, a core-periphery
guided vision transformer, and methods leveraging language models to generate
data and analyze health narratives. Overall, this dissertation explores how we
can understand the brain better using deep learning and ultimately build more
efficient, robust, and interpretable artificial neural networks inspired by the
brain.

Index words: Deep Learning, Brain-inspired AI, Large Language
Model, Brain Neural Network, Artificial Neural
Network, Casual Inference, Medical Image Analysis.
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Chapter 1

Introduction

This dissertation delves into the intersection of deep learning and brain science,
with a special focus on brain-inspired artificial intelligence (AI). Our research
aims to better understand the brain and further refine deep learning models
through brain-inspired principles and findings. We cover diverse topics in this
research direction and explore the potential of brain-inspired AI.

1.1 Deep Learning for Neuroscience

Deep learning has wide applications in various domains, including neuroscience
(Kellmeyer, 2019; Marblestone et al., 2016). Recent developments in deep learn-
ing are capable of recognizing patterns and deciphering unstructured data (L.
Zhao, Zhang, et al., 2023). Since the rise of deep learning in the 2010s (Schmid-
huber & Blog, 2020), there has been significant efforts to apply latest deep learn-
ing methods to the study of the brain (L. Zhang, Wang, et al., 2020; L. Zhao,
Zhang, et al., 2023).

In studying brain folding patterns, a significant piece of research proposed
an innovative ’cortex2vector’ framework (L. Zhang et al., 2023). This project
tackled the encoding of individual cortical folding patterns into anatomically
meaningful embedding vectors, providing a unique means to represent the nu-
anced structure of the brain. For example, this study utilized a learning-based
framework to translate the complex folds of the brain into a mathematical rep-
resentation that can be better understood and compared across different brains.

Another study in this field developed a topology-preserving transfer learn-
ing framework to differentiate fMRI time series derived from cortical folds (S.
Liu et al., 2022). This is particularly crucial for understanding differences be-
tween Autism Spectrum Disorder (ASD) and healthy controls. By preserving
the topological structure of the brain during analysis, this research was able to
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isolate unique structural characteristics associated with ASD, providing novel
insights into its diagnosis and treatment.

In the domain of exploring and modeling hierarchical structures within
the brain, various research have made significant strides (Pang et al., 2022). For
instance, one study devised an unsupervised differentiable neural architecture
search algorithm. This research aimed at automating the design of deep belief
networks, a type of neural network optimized for hierarchical functional brain
network decomposition. By using a unique Gumbel-Softmax scheme, they
managed to reframe the discrete architecture sampling procedure into a con-
tinuous process, providing more accurate modeling of the brain’s hierarchical
structure.

Another important study in this domain proposed a multimodal deep be-
lief network model (S. Zhang et al., 2019), which has the capability to discover
and represent the hierarchical organizations of common and consistent brain
networks from both fMRI and DTI data. This research went beyond the tradi-
tional means of neuroimaging data analysis by integrating different modalities,
thereby enhancing the understanding of the brain’s architecture.

In the area of temporal and spatial pattern representation, various stud-
ies employed different neural network architectures. One used a deep convo-
lutional autoencoder to learn mid-level and high-level features from complex,
large-scale task-based fMRI time series in an unsupervised manner (H. Huang
et al., 2017). Another proposed a deep sparse recurrent autoencoder for simul-
taneous extraction of spatial patterns and temporal fluctuations of brain net-
works (Q. Li et al., 2019). Yet another study made use of an unsupervised em-
bedding framework based on Transformer to encode brain function into dense
vectors (L. Zhao et al., 2022), paving the way for more accurate representation
of the dynamic aspects of brain function.

Spatial-temporal modeling of functional brain networks is another area of
intense research focus. For example, one study delved into fully Bayesian spatio-
temporal modeling of fMRI data (Woolrich et al., 2004). They offered a new
means of analyzing fMRI data, incorporating a high level of statistical rigor
into the model. Meanwhile, another study presented a two-stage deep learn-
ing framework (Y. Zhao et al., 2019), offering a comprehensive and systematic
approach to spatial-temporal resting state network modeling.

When it comes to the exploration of the core-periphery structure in gyri and
sulci, one particular study is worth mentioning (X. Yu, Zhang, Dai, Zhao, et al.,
2023). This work presented a unique Twin-Transformer framework to delve
into the unique functional roles of gyri and sulci, as well as their interactions.
This study took the innovative step of using separate transformers to process
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information from gyri and sulci, revealing a new layer of complexity in how
these two structures interact.

Lastly, in the domain of multimodality fMRI studies, researchers have
sought to couple various types of data with brain function. For instance, one
study coupled the visual semantics of artificial neural networks and human
brain function via synchronized activations (L. Zhao, Dai, et al., 2023), creating
a more comprehensive model of how the brain processes visual information.
Another study aimed to link the neurons in the popular natural language pro-
cessing model BERT with the biological neurons in the human brain (X. Liu
et al., 2023), providing an entirely new perspective on natural language under-
standing. Yet another study proposed a brain-inspired adversarial visual atten-
tion network to characterize human visual attention directly from functional
brain activity (H. Huang et al., 2022). This research integrated multiple sources
of data to create a more nuanced understanding of how attention works in the
human visual system. The BI-AVAN framework characterizes human visual
attention directly from functional brain activity, unlike many previous studies
which relied primarily on eye-tracking data. It simulates the competitive dy-
namics between attention-related and attention-neglected objects, successfully
identifying and locating the visual objects that the human brain focuses on in
an unsupervised manner. By utilizing independent eye-tracking data as valida-
tion, we demonstrated that our model offers robust and promising results in
discerning meaningful human visual attention and mapping the relationship
between brain activities and visual stimuli.

1.2 Refining Deep Learning through Brain-Inspired

AI

In this section, we delve into how artificial neural networks draw inspiration
from biological neural networks, as well as our own contributions to brain-
inspired artificial intelligence.

From the inception of artificial neural networks (ANNs), biological neural
networks (BNNs) have been a rich source of inspiration. For example, the de-
sign of convolutional neural networks (CNNs) (LeCun, Bengio, et al., 1995),
a core component in many deep learning models, was motivated by the cat’s
visual cortex (Hubel & Wiesel, 1962). The visual cortex was found to have neu-
rons that individually responded to small regions of the visual field, forming a
local receptive field. These discoveries led to the concept of local receptive fields
in CNNs, where individual neurons process data for a specific region of the
image.
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Similarly, the attention mechanism of the transformer architecture (Vaswani
et al., 2017), a key component in many state-of-the-art natural language pro-
cessing models, also mirrors mechanisms in the human brain. The attention
mechanism was designed to weight the importance of different inputs, similar
to how the human brain prioritizes information.

Moreover, BERT (Devlin et al., 2018), a groundbreaking model for natural
language understanding, and the Vision Transformer (ViT) (Dosovitskiy et al.,
2020), a revolutionary model in the field of computer vision, both exhibit ar-
chitectures reminiscent of aspects of the brain. BERT’s attention mechanism
parallels the brain’s capacity to focus on specific parts of the linguistic input
when constructing meaning, and ViT’s architecture parallels the brain’s visual
processing system, with its emphasis on capturing global, contextual informa-
tion.

Turning to our own contributions, our work on Hierarchical Semantic
Tree Concept Whitening (HaST-CW) attempts to disentangle concepts with
hierarchical relations in the context of image classification. This method was
inspired by the way the human brain processes hierarchical information, allow-
ing us to improve the interpretability and robustness of the model by forcing it
to decorrelate the latent representations of different concepts.

Our Core-Periphery Principle Guided Redesign of Self-Attention in Trans-
formers (CP-ViT) (X. Yu, Zhang, Dai, Lyu, et al., 2023) used the core-periphery
principle, a common organizational paradigm in human brain networks, to en-
hance the performance and interpretability of ViTs. We designed a sparse graph
guided by the core-periphery structure, enabling more efficient and meaningful
information exchange in the self-attention mechanism.

Inspired by the human ability to describe various concepts using different
words and sentence structures while preserving their underlying meanings, large
language models such as ChatGPT and GPT4 exhibit a similar capacity. We
employed large language models such as ChatGPT, which we believe can ap-
proximate certain aspects of the human brain’s complexity and capacity for
generalization, in our work on AugGPT. Here, we leveraged these models to
generate auxiliary samples for few-shot text classification, showcasing the power
of these models in handling sparse data scenarios, much like the human brain
can learn from a few examples.

Lastly, in our AD-AutoGPT project, we were inspired by the brain’s ability
to break down complex tasks into multiple subtasks, execute them, and inte-
grate the results. We developed an automated system capable of collecting, pro-
cessing, and analyzing complex health narratives of Alzheimer’s Disease based
on users’ textual prompts. This project underscores how we can learn from
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the brain’s operational principles to design more effective and autonomous
systems.

In sum, the brain continues to inspire the design and operation of artificial
neural networks, guiding us towards more efficient, robust, and interpretable
models. By observing and understanding the mechanisms of our own brains, we
can make strides towards creating artificial general intelligence, and our research
contributes to this exciting journey.

1.3 Contributions

To address these challenges and explore brain-inspired AI, we proposed a series
of computational frameworks to show 1) how we leverage the deep learning
model to understand the function brain networks. 2) how we optimize the
deep learning model under the direction of brain-inspired pattern. The contri-
butions of this dissertation are summarized as follows:

• We proposed a novel graph representation neural architecture search
(GR-NAS) method based on graph representation to optimize the vanilla
RNN cell structure for decomposing spatial/temporal brain networks.

• We utilized a novel graph representation-based neural architecture search
(GR-NAS) model to optimize the inner cell architecture of recurrent
neural network (RNN) for decomposing the spatio-temporal FBNs and
identifying the neuroimaging biomarkers of subtypes of PAE.

• We proposed a novel Hierarchical Semantic Tree Concept Whitening
(HaST-CW) model to decorrelate the latent representations in image
classification for disentangling concepts with hierarchical relations.

• We introduced a novel Twin-Transformer to represent and unveil the
fundamental functional roles of the two basic cortical folding patterns:
gyri and sulci.

• We leveraged the Core-Periphery (CP) organization, which is widely found
in human brain networks, to guide the information communication
mechanism in the self-attention of vision transformer (ViT) and name
this novel framework as CP-ViT.

• We proposed a graph varying coefficient neural network (GVCNet) for
estimating the individual treatment effect with continuous treatment
levels using a graph convolutional neural network.
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• We propose a new data augmentation method named AugGPT, which
leverages ChatGPT to generate auxiliary samples for few-shot text classi-
fication.

• Inspired by AutoGPT, the state-of-the-art open-source application based
on the GPT-4 large language model, we develop a novel tool called AD-
AutoGPT which can conduct data collection, processing, and analysis
about complex health narratives of Alzheimer’s Disease in an autonomous
manner via users’ textual prompts.

Overall, this dissertation mainly focus on 1) the deep learning model used
for exploring the function brain network on Medical Image and 2) Optimizing
the deep learning model based on the inspiration of structure and function of
brain neural networks.

1.4 Dissertation Outline

This dissertation contains 8 chapters.
Chapter 2 introduces the investigation of spatial/temporal Function Brain

Networks with a novel graph representation neural architecture search (GR-
NAS) model. First, The novel model has significantly well performance on op-
timally decomposing spatial/temporal functional brain networks from fMRI
data. Second, GR-NAS was used to identify the neuroimaging biomarkers of
Prenatal alcohol exposure (PAE) groups, whcih provides a new perspective for
the abnormal brain early diagnosis with fMRI data.

Chapter 3 details the novel Hierarchical Semantic Tree Concept Whitening
(Hast-CW) model. Rather than relying on post-hoc schemes, we proactively
instill knowledge to alter the representation of human-understandable concepts
in hidden layers. Specifically, we use a hierarchical tree of semantic concepts
to store the knowledge, which is leveraged to regularize the representations of
image data instances while training deep models.

Chapter 4 explores the brain’s basic structural and functional mechanisms
with a novel Twin-Transformer, then leverage the found core-perphery pat-
tern to guide the vision transformer (ViT). In the first study, A novel Twin-
Transformer framework was designed to explore and unveil the unique func-
tional roles of gyri and sulci as well as their relationship and interaction in the
whole brain function. Second, inspired by the first study, we utilized the prin-
ciples found in BNNs to guide and improve our ANN architecture design.
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Chapter 5 introduces the novel GVCNet model for measuring the regional
causal connections between amyloid-β accumulation and AD pathophysiology,
which may serve as a robust tool for early diagnosis and tailored care.

Chapter 6 introduces a text data augmentation approach based on Chat-
GPT (named AugGPT). AugGPT rephrases each sentence in the training sam-
ples into multiple conceptually similar but semantically different samples for
downstream model training.

Chapter 7 details the novel tool called AD-AutoGPT which can conduct
data collection, processing, and analysis about complex health narratives of
Alzheimer’s Disease in an autonomous manner via users’ textual prompts.

Chapter 8 concludes the whole dissertation and discusses future works.
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Chapter 2

Neural Architecture
Search in Medical Image

AI

2.1 Graph Representation Neural Architecture

Search for Optimal Spatial/Temporal Func-

tional Brain Network Decomposition

2.1.1 Overview

Decomposing the spatial/temporal functional brain networks from 4D func-
tional magnetic resonance imaging (fMRI) data has attracted extensive atten-
tion. Among all these efforts, deep neural network-based methods have shown
significant advantages due to their powerful hierarchical representation ability.
However, the network architectures of those deep learning models are manually
crafted, which is time consuming and non-optimal. This paper presents a novel
graph representation neural architecture search (GR-NAS) method based on
graph representation to optimize the vanilla RNN cell structure for decompos-
ing spatial/temporal brain networks. The core idea is to embed the discrete
search space of the RNN cell into a continuous domain that preserves the topo-
logical information. After that, popular search algorithms, e.g., reinforcement
learning (RL) and Bayesian optimization (BO), can be employed to find the
optimal architecture in this continuous space. The proposed method was evalu-
ated on the Human Connectome Project (HCP) task fMRI datasets. Extensive
experiments demonstrated the superiority of the proposed model in brain net-
work decomposition both spatially and temporally. To our best knowledge,
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the proposed model is among the early efforts using NAS strategy to optimally
decompose spatial/temporal functional brain networks from fMRI data.

2.1.2 Background

Exploring functional brain networks (FBNs) has been an active research topic
in neuroimaging field for years (Woolrich et al., 2004; Y. Zhao et al., 2019). To
decompose the FBNs from functional magnetic resonance imaging (fMRI)
data, various model-driven and data-driven methods have been proposed (X.
Hu et al., 2018; H. Huang et al., 2017; Q. Li et al., 2019; H. Wang et al., 2018;
W. Zhang et al., 2019; W. Zhang et al., 2020), among which deep learning-based
approaches have gained increasing attention because of their powerful and hier-
archical representation ability. For example, a deep convolutional auto-encoder
(DCAE) was proposed to explore both the high-level and low-level FBNs (H.
Huang et al., 2017). Another group of studies employed a deep belief network
(DBN) to identify the FBNs in a hierarchical manner (W. Zhang et al., 2019; W.
Zhang et al., 2020). Recently, recurrent neural network (RNN) based models
have shown significant advantages in modeling temporal dependencies within
fMRI data and achieved promising results (Q. Li et al., 2019; H. Wang et al.,
2018). For instance, a deep sparse recurrent autoencoder (DSRAE) (Q. Li et al.,
2019) was developed to simultaneously decompose the FBNs at connectome-
scale, demonstrating the effectiveness of RNN models in extracting neurosci-
entifically meaningful spatial/temporal networks from 4D fMRI data.

However, current deep learning models such as the abovementioned DSRAE
are limited in the sense that their network architectures are manually crafted.
Generally, designing an appropriate or optimal neural network is a laborious
and time-consuming process that greatly depends on rich domain knowledge
and experience. Also, for modeling the FBNs under different task stimuli, the
neural network architectures might need to be optimized, respectively. For ex-
ample, the optimal hyper-parameters of DSRAE for the emotion task might not
be optimal for the working memory task process. To overcome these challenges,
some literature efforts were made based on evolutionary neural architecture
search (NAS) to find the optimal architectures for 4D fMRI data (Q. Li et al.,
2020; Yan et al., 2020). Another literature work that adopted differentiable
neural architecture search (DARTS) (H. Liu et al., 2018), named ST-DARTS
(Q. Li et al., 2021), was proposed to improve the efficiency of searching optimal
RNN architectures while maintaining comparable performances. Neverthe-
less, ST-DARTS is still limited in discrete space and neglects the topological
information within RNN cells, which might be trapped on a local optimum
and thus degenerates the performance.
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This paper proposed a novel graph representation NAS (GR-NAS) method
to optimize the vanilla RNN cell structure for decomposing the spatial/temporal
FBNs. Specifically, we represented the RNN cell architectures in the discrete
DARTS search space as graphs and embedded them into a latent continuous
search space via a Graph Isomorphism Network (GIN) (K. Xu et al., 2018) en-
coder. With the embeddings in this continues space, several search strategies,
such as reinforcement learning (RL) (Zoph & Le, 2016) and Bayesian optimiza-
tion (BO) (Williams, 1992), can be adopted to search for the optimal RNN cells.
We evaluated the proposed unsupervised NAS framework on publicly available
Human Connectome Project (HCP) task fMRI data with RL and BO search
strategies. Extensive experimental results demonstrated the superiority of the
proposed method in both searching optimal network architectures and decom-
posing meaningful FBNs. Moreover, the transfer learning process based on
unsupervised NAS between different tasks can also achieve good performance,
suggesting the robustness and generality of the proposed method.

2.1.3 Materials and Method

Overview

Fig. 2.1 presents the overview of our proposed GR-NAS model. The gen-
eral target of this work is to learn the optimal RNN cells for decomposing
the spatial/temporal FBNs from fMRI data. RNN cells, which have graph-
structured architectures, are embedded with the Graph Isomorphism Autoen-
coder to learn the pre-trained embeddings. Then, two different downstream
architecture search algorithms are adopted to search the optimal architecture
on the pre-trained embeddings. Finally, we apply the learned RNN cell to 4D
fMRI data to obtain the feature map in the latent layer for decomposing the
spatial/temporal brain function network.

Data Description and Pre-processing

We adopted the publicly available HCP grayordinate-based tfMRI datasets
from the Q3 release of the Human Connectome Project (https://db.humanconnectome.org).
The detailed acquisition parameters are as follows: TR=720ms, TE=33.1ms, flip
angle=52°, in-plane FOV=208mm×180mm, 104×90 matrix, slice thickness=2mm,
72 slices, multiband factor=8, echo spacing=0.58ms, BW=2290Hz/Px. Impor-
tant preprocessing steps including spatial smoothing, temporal filtering, nui-
sance regression, and motion censoring were applied to all subjects. In addition,
we extracted the 4D fMRI volume of each subject and rearranged it into a 2D
signal matrix for Emotion and Working Memory (WM) task, respectively. In
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Figure 2.1: Our framework of GR-NAS. (a) GIN encoder and multiple layer
perceptron (MLP) decoder are used to embed the DARTS RNN cell architec-
tures to obtain pre-trained embeddings. (b) RF/BO search algorithms are used
on the pre-trained embeddings to search for the optimal architecture based on
the architecture performance estimation. (c) Decomposed spatial/temporal
function network with the learned architecture. The input is our 4D-fMRI
data which consists of the spatial (360 region of interests) and temporal (length
of fMRI tasks’ time duration) information. The selected DARTS RNN cell is
evaluated by cross-entropy loss.

the training stage, we randomly selected 750 subjects and divided them into
three groups: 450 subjects as training set, 150 subjects as validation set and an-
other 150 subjects as testing set. During the network architecture search process,
we only used the training set and validation set. All subjects were included in
evaluating the searched architectures.
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Graph Representation Neural Architecture Search

In this work, we proposed a novel GR-NAS model for searching the optimal
architecture of RNN cell, and it has been applied to decompose the FBNs.
Specifically, GR-NAS has a variational graph isomorphism autoencoder that
embeds the represented graph of RNN cell into a continuous searching space.
Then, search algorithms can be used to explore the optimal architecture.

Variational Graph Isomorphism Autoencoder: We set the searching
space of our RNN cell as that of DARTS. In this space, each RNN cell can
be represented as a directed acyclic graph (DAG) G= (V , E), where V is the
set of nodes and E is the set of edges. Each node is associated with one of K
predefined operations. Therefore, the DAG can be represented by two matrices:
one upper triangular adjacency matrixA ∈ RN×N encoding the connections
among N nodes and another one-hot operation matrixX ∈ RN×K recording
the operation in each node. Then, a two-layer GIN encoder is used to embed
the adjacency matrix A and operation matrix X into a vector Z ∈ RN . The
encoder is defined as:

q(Z|X,A) =
n∏

i=1

q(zi|X,A), with q(zi|X,A) ∼ N (zi|µi, diag(σ
2))

(2.1)
where µ, σ are the mean and the variance of approximation q(zi|X,A),

respectively. Then we use a L-layer GIN to obtain the node embedding matrix
H:

H(k) =MLP k ((i+ ϵk ) ·H(k−1) + A ·H(k−1)), k = 1, 2, . . . , L, (2.2)

whereH(0) = X , ϵ is a trainable bias, and MLP is a multi-layer perceptron
with each layer a linear-batchnorm-ReLU triplet. We use H(L) to obtain the
mean µ and the variance σ of the q(Z|X,A). After the encoder, a generative
model, which aims at reconstructing X̂, Â from the latent variableZ , is defined
as:

P (Â|Z) =
∏N

i=1

∏N
j=1p(Âij|zi, zj), with P (Âij = 1|zi, zj) = σ(zTi zj)

(2.3)
P (X̂ = [k1, . . . , kn]

T |Z) =
∏N

i=1P (X̂ = ki|zi) =
∏N

i=1 softmax(WZ + b)

(2.4)
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whereσ is the logistic sigmoid function and Aij contains the elements of
A. With the autoencoder, we maximize the lower bound L:

L = Eq(X,A)[logp(A|Z)]−KL[q(Z|X,A)||p(Z), (2.5)

where we assume that given the latent variable Z , the adjacent matrix A
and the operation matrix X are conditionally independent. In other words,
p(X,A|Z) = p(A|Z)p(X|Z). The term KL is the KL divergence, which
measures the difference between the posterior distribution q(·) and the prior
distribution p(·). We perform full-batch gradient descent and use the reparam-
eterization scheme to inject random noise to the training layer, which has been
proven to be effective on the regularization of neural networks. The loss func-
tion is optimized using mini-batch gradient descent over neural architectures.

Search Strategies: This paper uses two different representative search algo-
rithms to evaluate our model on pre-trained embeddings: reinforcement learn-
ing (RL) and Bayesian optimization (BO). In GR-NAS (RL), the embeddings
are agents, the validation loss for each embedding is used as the reward, a single
layer long short-term memory (LSTM) is used as the controller, and the action
is used as the movement on one of the embedding’s 16 dimensions. We lever-
aged the pre-trained embedding pass to the policy LSTM network to evaluate
the current state and then obtain the next action and state based onL2 distance
to minimize the reward, i.e., the validation loss of selected embedding. We used
the Adam optimizer and set the learning rate as 0.01. The discount factor is set
to 0.9, and the baseline value is set to 25. The estimated wall-clock time for each
run is set to 20 mins. In GR-NAS (BO), deep networks are used for global op-
timization (DNGO) (White et al., 2021) to search the optimal architecture on
our embeddings. A one-layer adaptive basis regression network with 128 hidden
dimensions is employed for modeling the distribution over function. During
the training, selected pre-trained embeddings will receive corresponding loss
values and then pass them to DNGO for selecting top architectures.

Temporal/Spatial Functional Network Learning

After GR-NAS searching on the embeddings, optimal RNN cells are found for
spatial/temporal function network learning. The temporal network dynamics
were learned with the latent RNN cells and the spatial networks were derived
by such temporal network dynamics with Elastic Net regression (Zou & Hastie,
2005). Then we put these architectures into our temporal function network
learning model, which is the same as the model used for the performance esti-
mate strategy in Fig. 2.1(c). In the process of architecture searching, we set the
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epoch as 10. In the temporal function network learning, the epoch was set as
200 to guarantee the convergence with 128 batch size. For other hyperparam-
eters, each cell has 8 nodes, and the number of operations is 4 (tanh, identity,
sigmoid, ReLU). The hidden size is set as 32, and the initial learning rate is set
as 20. We implemented the proposed GR-NAS model with PyTorch 1.4.1 on a
single RTX 2080 GPU.

2.1.4 Results

DARTS Cell Structure and Spatial/Temporal Functional Networks

Compared to ST-DARTS, we implemented GR-NAS to embed and then learn
the best cell structure with RL and BO. We can learn the spatial/temporal
functional brain networks from WM task and emotion fMRI datasets with
the learned cell to learn the cell structure, GR-NAS takes approximately one
GPU day. Under different settings in search algorithm parameters and different
tasks, the learned cell structures might be distinct. Under the same setting,
comparison between our GR-NAS model and ST-DARTS was made on WM
fMRI data. As shown in Fig. 2.2, for different task designs, our GR-NAS
model under RL and BO both achieved more remarkable performance than ST-
DARTS, which indicates our model can learn the temporal function networks
that measured by Pearson correlation coefficient (PCC) better.

GR-NAS
(BO)

GR-NAS
   (RL)

Best cell

Best cell

(A)

(B)

(C)

ST-DARTS

Best cell
0-back, PCC = 0.49 2-back, PCC = 0.31 cue, PCC = 0.26 

0-back, PCC = 0.78 2-back, PCC = 0.70 cue, PCC = 0.60 

0-back, PCC = 0.75 2-back, PCC = 0.72 cue, PCC = 0.56 

Figure 2.2: Comparison pf different cells found by ST-DARTS, GR-NAS (RF),
and GR-NAS (BO). The best cells found by various models are placed in the
left of each row. Furthermore, the most stimuli-correlated temporal networks
learned by given cells on WM different tasks are on the right. Blue curves de-
note the task-design, and orange curves denote the learned temporal network
dynamics.
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WM

0-back 2-back cueBenchmark

DC=0.65 DC=0.73 DC=0.70

0-back 2-back cueGR-NAS
    (RL)

0-back 2-back cue

DC=0.55 DC=0.58 DC=0.58

ST-DARTS

DC=0.66 DC=0.70 DC=0.72

0-back 2-back cue
GR-NAS
   (BO)

Figure 2.3: The most stimuli-correlated spatial networks learned by GR-NAS
on WM fMRI tasks. The spatial benchmarks are learned by Elastic Net regres-
sion based on the temporal task-design, as in the same way we learned spatial
networks. The bottom left contains the result of ST-DARTS.

We use Dice coefficient (DC) (Dice, 1945) to measure the similarity between
two sets. DC is commonly used for similarity measuring between the spatial
networks and the benchmark, which are derived by Elastic Net regression of
fMRI data. Our first preparation is converting the functional spatial networks
Net(i) into a Boolean type. Then, we assign one to the activated voxel, whose
signal value is more than 10−3, and zero to the deactivate voxel, whose signal
value is less than 10−3. Thus, the DC betweenNet(i) andNet(j) is defined as
follows:

DCi,j =
2× |Net(i) ∩Net(i)|
|Net(i)|+ |Net(j)|

(2.6)

Here we show the results of WM task. As shown in Fig. 2.3 , the individual best
is as high as 0.73 in WM, comparing to the highest value 0.58 by ST-DARTS.

Transfer Learning on Different Task-fMRI Datasets

We also tried to use the architecture learned from the emotion fMRI data on
WM data to examine the results of decomposing temporal functional brain
networks.Fig. 2.4 shows the results of the spatial network learned by transfer
learning compared with the ST-DARTS benchmark. Compared with the re-
sults in Fig. 2.2 and Fig. 2.4, the average correlation rates of transfer learning are
slightly lower than the proposed method, but it still outperforms ST-DARTS
because of an embedding process that makes the similar characteristics between
the two tasks into a same target domain. This result demonstrated that our
embedding method can effectively find an optimal architecture.
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WM Arch on Emotion

Best cell

Best cell

(A)

(B)

(C)

ST-DARTS

Best cell
0-back, PCC = 0.22 2-back, PCC = 0.20 cue, PCC = 0.36 

0-back, PCC = 0.75 2-back, PCC = 0.63 cue, PCC = 0.60 

0-back, PCC = 0.76 2-back, PCC = 0.67 cue, PCC = 0.52 

GR-NAS
   (RL)

GR-NAS
(BO)

Figure 2.4: Comparison between different cells found by ST-DARTS, GR-NAS
(RL) and GR-NAS (BO). The best cells found by the various models are placed
in each row’s left. Moreover, the most stimuli-correlated temporal networks
learned by given cells on WM different tasks are on the right. Blue curves de-
note the task-design, and orange curves denote the learned temporal network
dynamics.

Stability and Robustness of GR-NAS

To illustrate the stability and robustness of the GR-NAS model, we showed
all the three runs’ results of PCCs under GR-NAS between learned temporal
network dynamics and task design. In Fig. 2.5, the PCCs of GR-NAS vary from
0.6 to 0.8, which is substantially higher than the previous results by ST-DARTS
from 0.2 to 0.4. This result indicates that the proposed GR-NAS model can
stably and robustly derive meaningful networks. The DCs of BO NAS and RF
NAS are from 0.65 to 0.75 across the WM task, which outperform 0.55 to 0.65
by ST-DARTS. This result indicates that the spatial networks learned from
the proposed GR-NAS model can derive similar maps with the benchmark
even with different architecture search algorithms. Additionally, the variance
of PCC/DC values under the proposed GR-NAS model is much less than that
of PCC/DC values by ST-DARTS (Fig.2.5), which suggests the effectiveness
and robustness of GR-NAS.

2.1.5 Discussion and Conclusion

This paper presented a novel GR-NAS model for optimal brain network de-
composition. Unlike previous methods, we embedded the DARTS RNN cells
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ST-DARTS GR-NAS (BO) GR-NAS (RL)

PCC DC

Figure 2.5: Comparison between different cells found by ST-DARTS, GR-NAS
(RL) and GR-NAS (BO). The best cells found by the various models are placed
in each row’s left. Moreover, the most stimuli-correlated temporal networks
learned by given cells on WM different tasks are on the right. Blue curves de-
note the task-design, and orange curves denote the learned temporal network
dynamics.

into a pre-trained embedding space to preserve the topological information and
learn the optimal architecture on a continuous space. Then, we implemented
RL and BO in GR-NAS model to search for the optimal architectures based
on the embeddings. In addition, we implemented transfer learning in this work
to evaluate our GR-NAS model. It is promising that transfer learning is better
than ST-DARTS, but it is slightly worse than the proposed GR-NAS model.
The results indicate that our continuous embedding search space is better than
a discrete search space, and it can effectively find the optimal architecture for
deep neural networks.

2.2 Individual Functional Network Abnormali-

ties Mapping via Graph Representation-based

Neural Architecture Search

2.2.1 Overview

Prenatal alcohol exposure (PAE) has garnered increasing attention due to its
detrimental effects on both neonates and expectant mothers. Recent research
indicates that spatio-temporal functional brain networks (FBNs), derived from
functional magnetic resonance imaging (fMRI), have the potential to reveal
changes in PAE and Non-dysmorphic PAE (Non-Dys PAE) groups compared
with healthy controls. However, current deep learning approaches for decom-
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posing the FBNs are still limited to hand-crafted neural network architectures,
which may not lead to optimal performance in identifying FBNs that better
reveal differences between PAE and healthy controls. In this paper, we utilize a
novel graph representation-based neural architecture search (GR-NAS) model
to optimize the inner cell architecture of recurrent neural network (RNN)
for decomposing the spatio-temporal FBNs and identifying the neuroimaging
biomarkers of subtypes of PAE. Our optimized RNN cells with the GR-NAS
model revealed that the functional activation decreased from healthy controls to
Non-Dys PAE then to PAE groups. Our model provides a novel computational
tool for the diagnosis of PAE, and uncovers the brain’s functional mechanism
in PAE.

2.2.2 Background

Prenatal alcohol exposure (PAE) can induce adverse outcomes among young
mothers (Archibald et al., 2001; Jones & Smith, 1973). Though the PAE-related
abnormalities include functional cognitive behavioral impairment have been
reported (Bandoli et al., 2020; Mattson et al., 2019), the adverse effects on the
health of young mothers are often overlooked. Based on functional magnetic
resonance (fMRI), researchers have identified altered brain network organi-
zation in individuals exposed to ethanol (J. Lv, Jiang, Li, Zhu, Zhao, et al.,
2015; S. Zhao et al., 2016), resulting in a significant decrease of small-worldness
in spatio-temporal functional brain networks (FBNs). Notably, the spatio-
temporal FBNs are fundamental components of brain activities that reflect
transformations in brain function. Therefore, analyzing variations in brain
function from the perspective of spatio-temporal FBNs could potentially re-
veal the effect across the different sub-types of PAE (J. Lv, Jiang, Li, Zhu, Chen,
et al., 2015). The spatio-temporal FBNs have been extensively investigated in
the neuroimaging community using deep learning approaches (H. Huang et al.,
2017; Q. Li et al., 2019; Y. Zhao et al., 2018). For example, a deep sparse recurrent
autoencoder (DSRAE) (Q. Li et al., 2019) was developed to simultaneously de-
compose FBNs and demonstrated the effectiveness of recurrent neural network
(RNN) models in extracting neuroscientifically meaningful spatio-temporal
networks from 4D fMRI data. Generally, designing appropriate or optimal
neural network architectures manually as aforementioned approaches is a chal-
lenging and time-consuming process that heavily relies on domain knowledge
and experience. To address these challenges, neural architecture search (NAS)
related approaches have been proposed for identifying the optimal architec-
tures for FBNs analysis [10, 11]. Among them, differentiable neural architecture
search (DARTS) (H. Liu et al., 2018) has improved the efficiency of search-
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ing optimal RNN architectures while maintaining comparable performances,
which has been adopted in spatio-temporal FBNs decomposition, called spatio-
temporal DARTS (ST-DARTS) (Q. Li et al., 2021). Despite the efficiency of
the DARTS framework that relaxed the operations on inner nodes with the
maximum approximation for the optimization process, DARTS-based algo-
rithms are still limited by the discrete space among the inner nodes in RNN
cells. Additionally, these algorithms do not consider the topological informa-
tion among inner nodes within RNN cells (H. Liu et al., 2018), and may be
trapped in local optimum that further degrade performance. Considering that
PAE-related FBNs are suggested to be associated with functional connectivity
among brain regions, which is a kind of topology of the human brain (Woz-
niak et al., 2017), applying the DARTS-based methods directly on assessing the
brain functions with PAE may be negatively affected due to the lack of topo-
logical information. In this work, we use a novel graph representation-based
neural architecture search (GR-NAS) to optimize the RNN cell architecture
for decomposing the spatio-temporal FBNs (Dai et al., 2022) and identifying
the neuroimaging biomarkers of subtypes of PAE. Specifically, to optimize the
DARTS’s discrete searching process, we represent the RNN cell architectures as
graphs and embed them into a latent continuous search space via graph isomor-
phism network (GIN) (K. Xu et al., 2018) encoder that is the graph representa-
tion process. Then, the GR-NAS can utilize the embedded graph to search the
optimal RNN cells in a continuous space and preserve the topological informa-
tion. In this paper, we employed reinforce learning (RL) as the search strategy
engine for optimizing RNN cells on the PAE task fMRI dataset (Santhanam
et al., 2009), which includes the normal controls, exposed Non-dysmorphic
PAE (Non-Dys PAE) and exposed dysmorphic PAE participants. The results
demonstrate the robustness and the reliability of the identified biomarkers of
PAE in both group-wise and individual manner. To our best knowledge, this
paper is one of the earliest contributions to PAE FBN analysis with NAS-based
deep models, providing a new perspective for the abnormal brain early diagnosis
with fMRI data.

2.2.3 Materials and Method

Overview

Fig. 2.6 presents the overview of the GR-NAS model. The general purpose
of this work is to learn the optimal RNN cells for decomposing the spatio-
temporal FBNs from fMRI data for the subtypes of PAE. RNN cells’ graph-
structured architectures are embedded with the GIN encoder to learn the pre-
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Figure 2.6: Our framework of GR-NAS. (a) A GIN encoder and a multiple layer
perceptron (MLP) decoder are used to embed the RNN cell architectures to
obtain pre-trained embeddings. (b) RL search strategy is used on the pre-trained
embeddings to search for the optimal architecture based on the architecture
performance estimation. (c) Decomposed spatio-temporal functional network
learning with the learned optimal cell architecture.

trained embeddings. Then, RL search strategy is used to find the optimal archi-
tecture of the SOTA ST-DARTS, which is taken as the baseline in this paper.
Finally, we utilize the acquired RNN cells to analyze the 4D fMRI data, high-
lighting the distinctions from the original RNN cells and obtaining a high-level
feature map in the latent layer for decomposing spatio-temporal FBNs.
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Data Description and Pre-processing

In this paper, we adopted 44 participants’ fMRI data that were scanned at the
Biomedical Imaging Technology Center of Emory University. The 44 partici-
pants were from 3 groups, which were the exposure with presence of dysmor-
phic signs group (PAE, 14 participants), the exposure with the absence of dys-
morphic signs group (Non-Dys PAE, 14 participants) and the unexposed nor-
mal controls group (Control, 16 participants) (Santhanam et al., 2009). All the
participants were with an age range of 20 to 26. Ten task blocks of subtraction
arithmetic and letter-matching control stimuli were alternated during the ex-
periment, and in total 100 time points were used. Important pre-processing
steps include motion correction, slice time correction, spatial smoothing, and
global drift removal. FSL-FLIRT was used to register the pre-processed volumes
against the Montreal Neurological Institute (MNI) template. In order to focus
on the fluctuations of fMRI signals, we normalized each extracted signal with
mean of 0 and standard deviation of 1.

Spatio-temporal Differentiable Architecture Search (ST-DARTS)

The ST-DARTS is the SOTA DARTS-based RNN cell optimization algorithm
in the field of neuroimaging, which is taken as the baseline in this paper. The
ST-DARTS RNN cell is based on the vanilla RNN cell [13, 18], which is defined
as:

ht = tanh(WxhXt + Uhhht−1 + bh) (2.7)

in which, the ht is the RNN cell’s hidden state that maintains the sequence
memory of the temporal information of brain dynamics, xt is the input of the
fMRI signal matrix,Wxh and Uhh are the weights of the current input and the
previous hidden state, respectively,bh is the bias, and tanh(·) is the activation
function in RNN cell that implements the non-linearity to squash the activa-
tions to the range [-1,1]. Then the RNN cell’s output yt could be defined based
on the hidden state ht and the weights of output Vyh:

yt = Vyhht (2.8)

Inherited from the vanilla RNN cell, for each ST-DARTS RNN cell, there
are two inputs and a single output, which are the current step input xt (the
volume sample on the t-th time point), the hidden state from the previous step
ht−1, and the concatenation of all the intermediate nodes yt. Each ST-DARTS
RNN cell is a directed acyclic graph consisting of an ordered sequence of N
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nodes. The candidate operation choices on nodes are relaxed by softmax to
make the search space continuous as follows:

ōi,j(node) =
∑

o∈O
exp(α

(i,j)
o )∑

o′ exp(α
(i,j)
o′ )

o(node) (2.9)

where the function o(·) indicates the operation that is applied on the inner
node node(i) of the cell. For more specifically, ō(i,j) represents the mixed op-
eration from node(i) to node(j), and o′ denotes the one-step forward model’s
operation. And node denotes the collect of the inner nodes of such ST-DARTS
RNN cell. node(i) represents the ith node in the cell architecture that is a latent
representation. α(i,j)

o is the operation mixing weight of the given operation o(·)
from node(i) to node(j). After the jointly learning process of the cell architec-
ture parameter α and the entire ST-DARTS RNN architecture weights w, the
discrete architecture can be obtained by replacing the mixed operation ō(i,j)

with the most likely operation. Though the ST-DARTS RNN cell is searched
after relaxing the discrete operations into a continuous space, such cell only
focuses on the operations between the inner nodes and ignores the topologi-
cal information within RNN cells. In other words, the current ST-DARTS
RNN cell makes the topological information actually in the discrete space, in-
stead of in the continuous space, which would be improved with a future NAS
method to convert the whole acyclic graph into a continuous space to promote
spatio-temporal FBN decomposition.

Graph Representation Neural Architecture Search

In this work, we use the novel GR-NAS model to search for the optimal RNN
cell architecture, and then apply it to the PAE-related FBNs decomposition.
GR-NAS employs a variational graph isomorphism autoencoder to embed topo-
logical graph of RNN cell into a continuous searching space; then RL strategy
is used to explore the optimal architecture in this searching space.

Variational Graph Isomorphism Autoencoder: During the embedding
process, each RNN cell was represented as a directed acyclic graph (DAG). We
denote the DAG asDAG = (V,E), where V is the set of nodes andE is the
set of edges. Each node of the DAG is associated with one of four predefined
activation operations, including tanh, identity (indicating there is a connec-
tion between two nodes without activation operation), sigmoid and ReLU.
Therefore, the DAG can be represented by two matrices: one upper triangular
adjacency matrix A ∈ RN×N that encodes the connections among N nodes
and one-hot operation matrixX ∈ RN×K that records the operation of each
node. To preserve the topological information of RNN cell, GIN was used to
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encode the graph-structured architectures into embedding space Z ∈ RN×K

as follows:

q(Z|X,A) =
n∏

i=1

q(zi|X,A), with q(zi|X,A) ∼ N (zi|µi, diag(σ
2))

(2.10)
where a one-layer GIN encoder q(·) is used to embed the adjacency matrix

A and operation matrixX into the embedding vector Z . zi represents the ith

value of the latency embedding vector Z. µ,σ are the mean and variance of
approximation q (zi|X,A), respectively. N (·) indicates Gaussian distribution.
Then the embedding matrix H was as:

H =MLP ((1 + ϵ) ·X + A×X) (2.11)

whereH is the output node embedding matrix, ϵ is a trainable bias, MLP
denotes a multi-layer perceptron, in which each layer is a linear-batchnorm-
ReLU triplet. With Eq. 2.11, based on H, the mean µ and the variance σ could
be obtained from H as the Gaussian distribution parameters to approximate
q (Z |X,A). We use generative model p(·) to obtain the reconstructed con-
nection Â and one-hot operation matrix X̂ from the latent variable Z. The
one-layer MLP decoder is:

P (Â|Z) =
∏N

i=1

∏N
j=1p(Âij|zi, zj), with P (Âij = 1|zi, zj) = ϑ(zTi zj)

(2.12)
P (X̂ = [k1, . . . , kn]

T |Z) =
∏N

i=1P (X̂ = ki|zi) =
∏N

i=1 softmax(WZ + b)

(2.13)
where ϑ is the logistic sigmoid function and Âij indicates the element of Â.

ki indicates the ith operation. We optimize the GIN autoencoder by maximiz-
ing the lower bound L of variational parameters as:

L = Eq(Z|X,A)[logp(X̂, Â|Z)]−KL[q(Z|X,A)||p(Z), (2.14)

where we assume the adjacent matrix A and the operation matrix X are
conditionally independent here. The E term indicates the expectation, and the
KL term measures the differences between the posterior distribution q(·) and
the prior distributionp(·). Then, the full-batch gradient descent was performed
and the parameterization scheme was used to generate random noises during
the training process as the regularization (Zou & Hastie, 2005).
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Search Strategy on Embeddings: With the obtained RNN-based em-
beddings cell on the PAE-related fMRI data, we then employed down-stream
search methods to evaluate our model on pre-trained embeddings. During the
GR-NAS-RL process, the state is the 16-dimension embedding. The action is
the movement on one of the embedding’s 16 dimensions. The reward is the
reconstruction loss from current state. Pre-trained embedding is passed to the
ST-DARTS RNN cell to evaluate current state and then obtain the next action
and state based on the L2 distance to minimize the reward. In order to prove
the robustness and stability of our framework, we also took use of Bayesian
optimization (BO) as an alternative search strategy for comparison. During the
GR-NAS-BO process, the deep networks for global optimization was used to
search for the optimal architecture on the 16-dimensional embeddings. One-
layer adaptive basis regression network is employed for modeling the distribu-
tion over functions with 128 hidden dimensions. We use Adam optimizer here
and set the learning rate to be 0.01. After the searching process, the derived
best ST-DARTS RNN cell architecture will be fed into the GR-NAS model
for future spatio-temporal function network learning for PAE.

PAE Spatio-temporal Functional Network Learning

After GR-NAS searching on the embeddings, optimal ST-DARTS RNN cells
are achieved for PAE subtypes’ spatio-temporal functional network. With the
latent ST-DARTS RNN cells, the temporal network dynamics were achieved,
and the spatial networks were derived with the Elastic Net regression further
(Y. Zhao et al., 2018; Zou & Hastie, 2005). We used the Pearson’s correlation
coefficient (PCC) to evaluate how consistent temporal networks are with the
true brain states that are stimulated by the task design. For each extracted spatial
network, we use the Dice coefficient (DC) (Dice, 1945) to measure the similarity
between two networks (the derived FBNsNet(i) and the benchmark networks).
More specifically, Net(0) is the benchmark derived from the true brain state
series that stimulated by tasks with Elastic Net regression, andNet(1) toNet(32)

are the brain spatial networks that are derived PAE-related FBNs. The Elastic
Net regression is an effective way to regress the temporal series to the spatial
features that could take advantage of both Lasso and Ridge regressions (Y. Zhao
et al., 2018; Zou & Hastie, 2005). In the temporal functional network learning
process, the epoch was set as 200 to guarantee convergence, the batch size was
set as 128. Each cell has 8 nodes that are set in the same ways as in [12, 13, 15].The
hidden layer size was set as 32, and the initial learning rate was set as 20. We
implemented the proposed GR-NAS model with PyTorch 1.4.1 on a single RTX
2080 GPU.
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2.2.4 Results

The framework has been applied to the dataset of three groups of PAE related
participants: Control, Non-Dys PAE and PAE. The severity of PAE is in the or-
der of Control < Non-Dys PAE < PAE. The common networks are learned for
all three group and the group-wise statistic is applied to each group separately.

GR-NAS(B) Control, PCC = 0.55 Non-Dys PAE, PCC = 0.61 PAE, PCC = 0.55

(A) PAE, PCC = 0.30Non-Dys PAE, PCC = 0.37 Control, PCC = 0.26Best cellST-DARTS

Best cell

Figure 2.7: Comparisons across different cell architectures derived from ST-
DARTS and GR-NAS. The best cell architectures learned by the search models
are shown on the left of each row. And the most task stimuli-correlated tem-
poral networks learned by such cell architectures are shown on the right. The
blue curves denote the task-design convolved with HRF and the orange curves
denote the learned temporal network dynamics.

Optimized ST-DARTS Cell Architecture

We implemented GR-NAS to embed and then learn the best cell architecture
with the RL search strategy. With the learned cell architecture, we can produce
the spatio-temporal functional brain networks from PAE fMRI datasets. In
order to get the cell architecture, GR-NAS takes approximately one GPU day.
Under the same super-parameter setting, our GR-NAS model was compared
with ST-DARTS based on the PAE-related task fMRI data. As shown in Fig. 2.7,
for different groups, our GR-NAS model could achieve greater performance
than ST-DARTS, which means our model can learn the temporal functional
networks better. The temporal results with the searched cell genotypes are
shown in Fig. 2.7. The task design curve convolved with hemodynamic response
function (HRF) is visualized as blue curves, which is used for calculating the
PCCs with the learned temporal net-works from GR-NAS model. For ST-
DARTS, the PCC is around 0.3 and the best PCC is 0.37 for the Non-Dys PAE
group. The PCCs for all the groups under GR-NAS are all higher than 0.55 and
the best PCC is 0.61 for the Non-Dys PAE group. Apparently, the GR-NAS
model performs much better than the SOTA original ST-DARTS.

25



Spatio-temporal Functional Networks of Subtypes of PAE

In order to illustrate the brain spatial networks, we show the most typically
derived group spatial functional brain networks in Fig. 2.8. To avoid the effect
of the noises, we set the z-score maps with a threshold >1.65. As reported in
(J. Lv, Jiang, Li, Zhu, Zhao, et al., 2015; Santhanam et al., 2009), the activation
regions tend to shrink by the increment of severity of PAE effect, which means
the number of activated voxels would decrease from Control group to the severe
PAE group.

Figure 2.8: Spatial network of group-wise activation. With GR-NAS, the
voxel number (V) of the group networks decreases across three groups, i.e.,
V(Control) > V(Non-Dys PAE) > V(PAE). The top graph shows the activation
of spatial map for each group.

As shown in Fig. 2.8, based on the activation patterns and the quantitative
voxel numbers of the activation region across three groups under three different
methods share the same pattern: Control >Non-Dys PAE > PAE, which is
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consistent with the characteristic of PAE (J. Lv, Jiang, Li, Zhu, Zhao, et al., 2015).
More specifically, the temporal and parietal brain regions are activated clearly
with all the three models, and the area of activation has been decreased from
Control to the PAE patients. This is consistent with the previous litera-ture,
which has already shown that such temporal and parietal brain regions’ activa-
tion decrease is related to the mental disease (Calhoun et al., 2009). For the
ST-DARTS model, the number of activated voxels does not decrease between
the Control group and the Non-Dys PAE group. However, according to the
visualization of the brain patterns, the key regions are cut down. With GR-
NAS, the pattern is shown more clearly, which proves that GR-NAS could
obtain more variable and neuroscientific brain networks.

Specific Network Analysis

In order to support the sub-networks identified by the group-wise analysis, we
selected the top three temporal correlated and anti-correlated networks of the
Control group that exhibited high correlation with the task design HRF and
the top three net-works that exhibited high anti-correlation with the task design
HRF. For each selected top temporal network in the Control group, we selected
the most DC-correlated net-works in the Non-Dys PAE group and the PAE
group based on the DC. As shown in Table 2.1, most of the DCs between the
Non-Dys PAE group and the Control group are greater than those between the
PAE group and the Control group. With GR-NAS, the highest DC between
Control and Non-Dys PAE groups is 0.7, and a 0.02 decrease is occurred be-
tween the Control and PAE group. This also proves that the disease severity
of the Non-Dys PAE group is not as severe as that of the PAE group, which
produces a straightforward evidence to reveal the PAE mechanism.

Individual-wise Brain Spatial Networks Analysis

Furthermore, in order to prove our findings are robust and stable, we also show
the individual-wise brain spatial networks with both GR-NAS-RL and GR-
NAS-BO in Fig. 2.9. Similar to the group-wise results, the activated brain
voxels decrease sharply from the Control group to the Non-Dys PAE group
then to the PAE group. Though the activations on the individual-wise brain
are affected by the noise and lead to the uneven cluster, the activated brain voxels
decreasing tendency is clearly same as the group-wise results. Especially with the
GR-NAS-RL method, for both Network #9 and Network #32, the tendency of
the decrease is clearer. The activated regions are clustered around the parietal
and temporal areas, which are the key areas for cognitive conception (Barch
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Table 2.1: Networks in the Control group, the matched networks in the Non-
Dys PAE group and the PAE group selected by DC.

GR-NAS (RL)

The top temporal
anti-correlated networks

Control Non-Dys PAE PAE
#25 #28 (0.63) #6 (0.63)
#31 #3 (0.7) #19 (0.68)
#29 #3 (0.63) #12 (0.61)

The top temporal
correlated networks

#4 #28 (0.61) #15 (0.61)
#12 #4 (0.63) #12 (0.64)
#7 #8 (0.62) #31 (0.62)

et al., 2013). Quantitively, for the Network #9 with GR-NAS-RL method, the
number of activated voxels decreases from 54101 to 30202 then to 27385, and for
the Network #32, the activated voxels goes down from 60667 to 32776 and then
to 10682. This is similar with the tendency that the activation regions would
shrink with the increment of severity of PAE effects [23]. On the other hand,
with the GR-NAS-BO method, the number of activated voxels of Network
#17 decreases from 55219 to 34860 and then to 34354, and from 68236 to 35966
and then to 34689 for Network #16. Based on Fig. 2.9, the difference between
Non-Dys PAE and PAE group is consistently less than the difference between
the Control group and the Non-Dys PAE group, no matter each kind of search
strategy, which may provide evidence for the diagnosis of Non-Dys PAE.

2.2.5 Discussions and Conclusions

In this paper, we utilized a novel GR-NAS model for optimal brain network
decomposition. Unlike previous methods, we embedded the RNN cells into
a pre-trained embedding space to preserve the topological information so we
can learn optimal architecture in a continuous space. Then, we implemented
alternative searching strategies to search for the optimal architectures on the
embeddings. Our approaches have been applied to three groups of participants
affected by PAE to different degrees, namely, the Control group, the Non-Dys
PAE group and the PAE group. The experimental results have suggested that
our method can detect the temporal and parietal networks across three groups,
while such networks are affected by an increment of PAE severity (i.e., the acti-
vated regions shrink according to the PAE degree).
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Figure 2.9: Individual-wise brain spatial networks. The index under the graph
means the ith network in that group. The bottom picture shows the activated
voxel for each brain network.
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Chapter 3

Hierarchical Semantic
Tree Concept Whitening
for Interpretable Image

Classification

3.1 Overview

With the popularity of deep neural networks (DNNs), model interpretability
is becoming a critical concern. Many approaches have been developed to tackle
the problem through post-hoc analysis, such as explaining how predictions are
made or understanding the meaning of neurons in middle layers. Nevertheless,
these methods can only discover the patterns or rules that naturally exist in mod-
els. In this work, rather than relying on post-hoc schemes, we proactively instill
knowledge to alter the representation of human-understandable concepts in
hidden layers. Specifically, we use a hierarchical tree of semantic concepts to
store the knowledge, which is leveraged to regularize the representations of im-
age data instances while training deep models. The axes of the latent space are
aligned with the semantic concepts, where the hierarchical relations between
concepts are also preserved. Experiments on real-world image datasets show
that our method improves model interpretability, showing better disentangle-
ment of semantic concepts, without negatively affecting model classification
performance.
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3.2 Background

Machine learning interpretability has recently received considerable attention
in various domains (De Clercq et al., 2018; Du et al., 2019; Koh et al., 2020;
Murdoch et al., 2019). An important challenge that arises with deep neural
networks (DNNs) is the opacity of semantic meanings of data representations
in hidden layers. Several types of methods have been proposed to tackle the
problem. First, recent works have shown that some neurons could be aligned
with certain high-level semantic patterns in data (Olah et al., 2017; B. Zhou et al.,
2018). Second, it is possible to extract concept vectors (Kim et al., 2018) or clus-
ters (Ghorbani, Wexler, et al., 2019) to identify semantic meanings from latent
representations. However, these methods are built upon the assumption that
semantic patterns are already learned by DNNs, and the models would admit
the post-hoc method of a specific form. There is no guarantee that the assump-
tion holds true for any model, especially when meaningful patterns or rules may
not be manifested in the model, thus leading to over-interpretation (Murdoch
et al., 2019; Rudin, 2019a). Meanwhile, although many post-hoc explanation
methods are proposed with the expectation of improving or debugging mod-
els, it is challenging to achieve this goal in practice. Although we could collect
human annotations to guide prediction explanations and improve model cred-
ibility (Chang et al., 2021; J. Wang et al., 2018), manually labeling or checking
semantic concepts is rather difficult. Unlike explaining individual predictions,
which is a local and instance-level task, extracting concepts provides a global
understanding of models, where manual inspection of such interpretation is
time-consuming and much harder, if not impossible.

Instead of relying on post-hoc approaches, we aim to instill interpretability
as a constraint into model establishment. For example, explanation regulariza-
tion is proposed in (Ross & Doshi-Velez, 2018), but it constrains gradient magni-
tude instead of focusing on semantic concepts. Meanwhile, β-VAE and its vari-
ants (R. T. Chen et al., 2019; Higgins et al., 2017) add independence constraints
to learn disentangled factors in latent representations, but it is difficult to ex-
plicitly specify and align latent dimensions with semantic meanings. Ideally, we
want to construct DNNs whose latent space could tell us how it is encoding con-
cepts. The recent decorrelated batch normalization (DBN) method (L. Huang
et al., 2018a) normalizes representations, providing an end-to-end technique for
manipulating representations, but it is not directly related to interpretability.

In this work, we propose a novel Hierarchical Semantic Tree Concept Whiten-
ing (HaST-CW) model to decorrelate the latent representations in image classi-
fication for disentangling concepts with hierarchical relations. The idea of our
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work is illustrated in Fig. 3.1. Specifically, we define each concept as one class of
objects, where the concepts are of different granularities and form a hierarchical
tree structure. We decorrelate the activations of neural network layers, so that
each concept is aligned with one or several latent dimensions. Different from
the traditional DBN method (Fig. 3.1a) that only treats different concepts as
being independent, our method could leverage the underlying hierarchically
related organization of label concepts specified by the domain knowledge (Fig.
3.1b). The consideration of relations between different concepts is crucial in
many real-world applications. For example, in the healthcare domain, the re-
lationship of different disease stages (concepts) may reflect the progression of
the disease, which is significant for reversing pathology (L. Wang et al., 2020; L.
Zhang, Wang, et al., 2020, 2021). Also, in the precision agriculture domain, real-
time monitoring of interactions of multiple agricultural objects (concepts) with
each other and with the environment are crucial in maintaining agro-ecological
balance (De Clercq et al., 2018). In our model, a novel semantic constraint (SC)
loss function is designed to regularize representations. As a result, the data rep-
resentations of two concepts with higher semantic similarity will be closer with
each other in the latent space. Moreover, a new hierarchical concept whitening
(HCW) method is proposed to decorrelate different label concepts hierarchi-
cally. We evaluated the proposed HaST-CW model using a novel agriculture
image dataset called Agri-ImageNet. The results suggest that our model could
preserve the semantic relationship between the label concepts, and provide a
clear understanding of how the network gradually learns the concept in differ-
ent layers, without hurting classification performance.

3.3 Related Work

Post-Hoc Interpretation. Post-Hoc interpretation can be divided into ap-
proaches that explain predictions or models (Du et al., 2019; Murdoch et al.,
2019). Prediction-oriented interpretation aims to develop faithful and robust
measures to quantify feature importance towards individual predictions for
identifying those features (e.g., pixels, super-pixels, words) that made most con-
tributions (Bach et al., 2015; Ghorbani, Abid, et al., 2019; Lundberg & Lee, 2017;
Ribeiro et al., 2016; Selvaraju et al., 2017; Smilkov et al., 2017). Model-oriented
interpretation analyzes behaviors of neural networks either by characterizing
the function of model components (Olah et al., 2017; Simonyan et al., 2013;
Zeiler & Fergus, 2014) or analyzing semantic concepts from latent representa-
tions (Bau et al., 2018; Ghorbani, Wexler, et al., 2019; Kim et al., 2018; Mu &
Andreas, 2020). The proposed method also targets concept-level interpretation
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Figure 3.1: The intuition behind HaST-CW. (a) Distribution of discrete con-
cepts in the latent space after applying concept whitening. (b) Distribution of
hierarchical concepts after applying HaST-CW.

in deep neural networks. Different from post-hoc techniques that focus on
discovering existing patterns in models, the newly proposed HaST-CW proac-
tively injects concept-related knowledge into training and disentangles different
concepts to promote model interpretability.
Inherently Interpretable Models. Another school of thought favors building
inherently explainable machine learning models (Z. Chen et al., 2020; Rudin,
2019b). Some approaches design models that highlight prototypical features of
samples as interpretation. For example, Chen et al. (C. Chen et al., 2018) clas-
sifies images by dissecting images into parts and comparing these components
to similar prototypes towards prediction. Li et al. (O. Li et al., 2018) designs
an encoder-decoder framework to allow comparisons between inputs and the
learned prototypes in latent space. Some other works such as β-VAE and its
variants (R. T. Chen et al., 2019; Higgins et al., 2017) regularize representation
learning for autoencoders to produce disentangled factors in representation
dimensions, but the semantic meaning of each dimension remains unknown
without further manual inspection. In contrast, our method attempts to ex-
plicitly align latent dimensions with specific semantic concepts contained in
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external knowledge. A recent technique called Concept Whitening (CW) (Z.
Chen et al., 2020) constrains the latent space, after revising Batch Whitening
(L. Huang et al., 2018b; Siarohin et al., 2018), such that it aligns with predefined
classes. Our method attempts to infuse more complex knowledge of concept
relations into representation learning.
Applying Whitening to Computer Vision. Whitening is a standard image
preprocessing technique, which refers to transforming the covariance matrix of
input vectors into the identity matrix. In fact, the well-known Batch Normaliza-
tion (Ioffe & Szegedy, 2015) can be regarded as a variant of whitening where only
the normalization process is retained. There are many works in deep learning
that describe the effectiveness of whitening (Cogswell et al., 2015; Luo, 2017; Pal
& Sudeep, 2016) and the process of finding the whitening matrix (Desjardins
et al., 2015). Our work further takes semantics into consideration during the
whitening process towards more interpretable representation learning.

3.4 Methodology

3.4.1 Overview

The proposed HaST-CW model aims to preserve the underlying hierarchical
relationship of label concepts, as well as to disentangle these concepts by decor-
relating their latent representations. To achieve this goal, we leverage the hi-
erarchical tree structure of the label concepts extracted from specific domain
knowledge (Sec. 3.4.2). Then, the obtained structure of label concepts is used
as prior knowledge to be instilled into the model for guiding the representation
learning process. There are two key components in the knowledge instillation
process – the hierarchical concept whitening (HCW) module and the seman-
tic constraint (SC) loss, which will be elaborated in Sec. 3.4.3 and Sec. 3.4.4,
respectively.

3.4.2 The Hierarchical Semantic Tree of Concepts

In this work, we used a newly collected and curated Agri-ImageNet dataset to
develop and evaluate the HaST-CW model. There are 9173 high quality images
in Agri-ImageNet, covering 21 different types of agricultural objects. Taking
each type of agricultural object as one class, we have 21 label concepts in to-
tal. Some pairs of agriculture objects have the supertype-subtype relationship
between them, so we obtain the parent-child relationship between the corre-
sponding labels. As a result, a tree structure is built to represent the underlying
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hierarchically related organization of label concepts, which is shown in Fig. 3.2.
Two concepts connected in the tree structure means they have parent-child re-
lationship, where the parent is located at the lower hierarchy level. Besides the
parent-child relation, we further introduce two notions – brother and cousin.
If two concepts have the same parent, then they are brothers. If the parents
of two concepts are brothers, then the two concepts are cousins. According
to the laws of inheritance: (1) objects with the parent-child relation should be
more similar than those with the uncle-child relation (vertical parent-child re-
lationship); and (2) the traits of brothers should be more similar than cousins
(horizontal brother-cousin relationship). An effective model should be able to
capture both of the vertical relationship and horizontal relationship, so that the
representation of any concept in the latent space should be closer to its parent
than uncles, and closer to brothers than cousins. For our HaST-CW model
shown in Fig. 3.3, a new HCW module (Sec. 3.4.3) is proposed to preserve the
vertical relationship, and a novel SC loss (Sec. 3.4.4) is proposed to preserve the
horizontal relationship.

3.4.3 Hierarchical Concept Whitening

The hierarchical concept whitening (HCW) module is one of the key compo-
nents in the HaST-CW model, which aims to disentangle different label con-
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cepts while preserving their underlying hierarchical relationship. Specifically,
in this work, the set of label concepts were denoted by C = {Ci}Nc

i=1, where
Ci represents the ith concept andNc = 21 is the number of concepts. ForCi,
its parent, children, brothers and cousins were denoted as Ci.P , {Ci.children},
{Ci.B} and {Ci.C}, respectively. A dataset is denoted as D{xi, yi}ni=1. We use
X

Ci = {x
Ci
j }ni

j=1 to denote the set of ith-class samples labeled byCi.
In traditional whitening transformation (Z. Chen et al., 2020), during the

training process, data samples are first fed into the model in mini-batches to
obtain the latent representation matrix Zd×n, where n is the mini-batch size
and d is the dimension of latent representation. We use ResNet as the model
backbone in this work. Then a transformation ψ is applied to decorrelate and
standardize Zd×n:

ψ(Z) = W(Z − µ1n×1
T ), (3.1)

where Wd×d is the orthogonal whitening matrix, and µ = 1
n

∑n
i=1 zi is the

sample mean. A property of representation whitening is that Q
T

W is still a valid
whitening matrix if Q is an orthogonal matrix. We leverage this property for
interpretable representation learning. In our model, besides decorrelation and
standardization, we expect that the transformed representation of samples from
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conceptCi, namely Q
Tψ(ZCi), can align well with the ith axis of latent space.

Meanwhile, the underlying hierarchical relationship of concepts should also be
preserved in their latent representations. That is, we need to find an orthogonal
matrix Q = [q1, q2, . . . , qNc

] with two requirements: (1) Z
Ci should be most

activated by qi, i.e., the ith column of Q; (2) Z
Ci should also be activated by{qc},

where c ∈ {Ci.children} is the child of conceptCi. The first constraint makes
the representation align together with the corresponding concept dimension,
and the second one maintains the vertical parent-child relationship between
concepts. To this end, the optimization problem can be formulated as:

max
q1,...qNc

Nc∑
i=1

[
1

ni

q
T
i ψ(Z

Ci)1ni×1+∑
c∈{Ci.children}

1

ni ×Ncd

(qc)
Tψ(ZCi)1ni×1], (3.2)

s.t. Q
T

Q = Id,

whereNcd = |{Ci.children}| is the number of child concepts ofCi. To solve
this optimization problem with the orthogonality constraint, a gradient descent
method with the curvilinear search algorithm (Wen & Yin, 2013) is adopted.
With the whitening matrix W and rotation orthogonality matrix Q, HaST-CW
can replace any batch normalization layer in deep neural networks. The details
of representation whitening for HaST-CW is summarized in Algorithm 1.

The overall training pipeline of our HaST-CW model is shown in Algo-
rithm 2. We adopt an alternative training scheme. In the first stage, the deep
neural network is trained with the traditional classification loss. In the second
stage, we solve for Q to align representation dimension with semantic concepts.
The two stages work alternatively during the training process. The classification
loss of the first stage is defined as:

min
θ,ω,W,µ,

1

m

m∑
i=1

ℓ(g(QTψ(Φ(xi; θ);W, µ);ω); yi), (3.3)

where Φ(·) and g(·) are layers before and after the HaST-CW module parame-
terized by θ andω, respectively. ψ(·) is the whitening transformation parameter-
ized by the sample mean µ and whitening matrix W. The rotation orthogonal
matrix Q will be updated according to Eq. (3.2) in the second stage. The oper-
ation of Q

Tψ(·) forms the HCW module. During the first training stage, Q

will be fixed and other parameters (θ, ω,W, µ) will be optimized according to
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Algorithm 1 Forward Pass of HCW Module

1: Input: mini-batch input Z ∈ Rd×n

2: Optimization Variables: orthogonal matrix Q ∈ Rd×d

3: Output: whitened representations Ẑ ∈ Rd×n

4: The batch mean: µ = 1
n

Z · 1

5: The centered representations: ZC = Z − µ · 1
T

6: Calculate ZCA-whitening matrix W

7: Calculate the whitened representation: Ẑ = Q
T

WZC

Eq. (3.3) to minimize the classification error. The first stage will take Tthre mini
batches (we set Tthre = 30 in experiments). After that, Q will be updated by
the Cayley transform (Wen & Yin, 2013):

Q
′ = (I +

η

2
A)−1(I − η

2
A)Q, (3.4)

A = GQ
T − QG

T , (3.5)

where A is a skew-symmetric matrix. G is the gradient of the concept alignment
loss, which is defined in Algorithm 2. η is the learning rate. At the end of the
second stage, an updated Q

′ will participate in the first training stage of the next
iteration.

3.4.4 Semantic Constraint Loss

Besides preserving the vertical parent-child relationship of concepts, we further
model the horizontal relation between concepts that are at the same hierarchy
level (i.e., brothers or cousins). Different from the HCW in Eq. (3.2) that focuses
on concept alignment, here we directly control the distance between represen-
tations of different concepts with the horizontal relation (Chopra et al., 2005;
Schroff et al., 2015). To this end, we propose a Semantic Constraint (SC) loss
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Algorithm 2 The Overall Framework of HaST-CW
1: Input: Training dataset DT = {xi, yi}ni=1, Concept datasets DC =
{X

C1 , X
C2 , . . . , X

CNc}
2: Optimization Variables: W,Q, θ, µ, ω,G = [g1, g2, . . . , gNc

]
3: Hyperparameters: β, η
4: for t = 1 to T do

5: Randomly sample a mini-batch{xi, yi}ni=1from DT

6: Do one step of SGD w.r.t θ and ω on the loss
1
n

∑n
i=1 ℓ(g(Q

Tψ(Φ(xi; θ);W, µ);ω); yi)
7: Update W and µ by exponential moving average
8: if tmod Tthre = 0 then

9: for i ∈ {1, 2, . . . , Nc} do

10: Sample mini-batches {x
Ci
j , yj}

ni
j=1 from DC

11: gi = − 1
ni

∑ni

j=1 ψ(Φ(x
Ci
j ; θ);W, µ)

12: Cchild ∈ {Ci.children},and child ∈ {1, 2, . . . , Nc}
13: Nchild = |{Ci.children}|
14: for child do

15: Sample mini-batches {x
Cchild
j , yj}nchild

j=1

16: gchild = − 1
nchild×Nchild

∑nchild

j=1 ψ(Φ(xCchild
j ; θ);W,µ)

17: end for

18: end for

19: end if

20: end for

to model the horizontal brother-cousin relationship as below:

LSC = αLB + βLC, (3.6)

LB =
∑
j

∑
Bi∈{Ci.B}

∑
k

max{0,mB − d(zCi
j , z

Bi
k )},

LC =
∑
j

∑
Bi∈{Ci.B}

∑
Ci∈{Ci.C}

∑
k

∑
l

max{0, d(zCi
j , z

Bi
k )

−d(zCi
j , z

Ci
l ) +mC}.

There are two components in the SC loss and their contributions are con-
trolled by two hyperparameters – α and β. The first term LB is a contrastive
loss, which takes a pair of image representations labeled by two brother con-
cepts as input and enlarges the distance between them. It uses a hyperparame-
ter mB to control the distance. The distance between two concepts increases

39



when mB is set larger. Bi ∈ {Ci.B} denotes one of the brothers of concept
Ci. The second term LC is a triplet loss. It takes three inputs: the anchor
image representation z

Ci
j , the image representation z

Bi
k labeled by brother con-

cept of the anchor, and the image representation z
Ci
l labeled by cousin concept

of the anchor. Ci ∈ {Ci.C} denotes the cousins of concept Ci. The triplet
loss encourages the anchor-brother distance to be smaller compared with the
anchor-cousin distance in representation space. In this way, the distance of im-
age representations from brother classes tends to be smaller than the distance
of image representations from cousin classes. The gap between the two types of
distance is controlled by the margin valuemC . Consequently, the hierarchical
concept whitening module, together with the SC loss, enables the latent repre-
sentations of concepts with similar semantics to be close with each other in the
latent space.

3.4.5 Latent Feature Maps Activation

The proposed HaST-CW model can generate latent representations (ẑi) for
input images (xi) at each neural network layer by ẑi = Q

Tψ(Φ(xi; θ);W, µ).
The latent representation can be used to assess the interpretability of the learn-
ing process by measuring the degree of activation of ẑi at different concept
dimensions (i.e. {qi}). In the implementation, Φ(·) is a CNN based deep net-
work, whose convolution output zi = Φ(xi; θ) is a tensor with the dimension
zi ∈ Rd×h×w. Since ẑi is calculated by ẑi = Q

Tψ(zi) where Q
T ∈ Rd×d, we

obtain ẑi ∈ Rd×h×w, where d is the channel dimension and h × w is the fea-
ture map dimension. The hierarchical concept whitening operation Q

Tψ(·) is
conducted upon the d feature maps. Therefore, different feature maps contain
the information of whether and where the concept patterns exist in the image.
However, as a tensor the feature map cannot directly measure the degree of
concept activation. To solve this problem and at the same time to reserve both
of the high-level and low-level information, we first apply the max pooling on
the feature map and then use the mean value of the downsteam feature map
to represent the original one. By this way, we reshape the original feature map
zi ∈ Rd×h×w to z

′
i ∈ Rd×1. Finally, z

′
i is used to measure the activation of

image xi at each concept dimension.

3.5 Experiments

In the experiments section, we first visually demonstrate how our method can ef-
fectively learn and hierarchically organize concepts in the latent space (Sec. 3.5.2).
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We also show that (Sec. 3.5.3), compared to existing concept whitening meth-
ods, HaST-CW not only separates concepts, but also can separate groups of
semantically related concepts in the latent space. After that, we discuss the
advantages offered by our method with quantitative results and intuitive exam-
ples (Sec. 3.5.4) compared with baselines, including the CW module and ablated
versions of our method.

3.5.1 Experimental Setting

Data Preparation

In this work, we use a newly collected and curated Agri-ImageNet dataset to
evaluate the proposed HaST-CW model. In total, 9173 images from 21 classes
are used in our experiments. Each image is labeled with the class at the highest
possible hierarchy level. For example, an image of Melrose apple will be labeled
as "Melrose" rather than the superclass "Apple". Then we divide images per class
into three parts by 60%/20%/20% for a standardized training/validation/test
splitting. Because the resolution of the original images can range from 300 to
5000, we adopt the following steps to normalize the image data: 1) we first lock
aspect ratio and resize the images to make the short edge to be 256; 2) Dur-
ing each training epoch, the images in the training and validation datasets are
randomly cropped into 224×224; 3) During testing process, images in the test
dataset are center cropped to be of size 224×224; 4) After cropping, the pixel
values of images are normalized to [0,1]. Then, the whole training dataset is
divided into two parts (DT and DC in Algorithm 2). DC is the concept dataset
used to update the matrix Q in the second stage (Eq. (3.4)). It is created by
randomly selecting 64 images from each class in the training dataset. The re-
maining images in the training dataset DT are used in the first stage to train the
model parameters (Eq. (3.3)).

Model Setting

In this work, we use several ResNet structures (K. He et al., 2016a) to extract
features from images, including ResNet18 and ResNet50. During the training
process, the two-stage training scheme adopts a 30-to-1 ratio to alternatively
train the whole framework. In this case, after 30 mini batches of continuous
training, the model will pause and the rotation orthogonal matrix Q will be
optimized at the next mini batch. Two hyper-parameters α and β in the SC
loss are set to be 1.0. Adam optimizer is used to train the whole model with a
learning rate of 0.1, a batch size of 64, a weight decay of 0.01, and a momentum
rate of 0.9.
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3.5.2 Visualization of Semantic Map

To illustrate the learned semantic hierarchical structure, we show the represen-
tations extracted from the latent hidden layer of all the samples in Figure 3.4.
For better visualization, we use Uniform Manifold Approximation and Projec-
tion (UMAP) (McInnes et al., 2018) to project the representations to a two-
dimensional space. All the images are color coded using the 17 sub-concepts
which are defined on the left of Figure 3.4. The top panel shows the result using
CW method. In general, all the concepts are assembled as small groups, but
neither semantic relations nor hierarchical structures have been learned. We
highlight the super-concept of “Weed" (black) and three sub-concepts ( “Ap-
ple Golden" - green, “Apple Fuji" - red and “Apple Melrose" - blue) in the right
column. We can see that the three types of apple (sub-concepts) are evenly dis-
tributed along with other fruits samples. The bottom panel shows our HaST-
CW results. All the different concepts successfully keep their distinct cluster
patterns as CW result. After our two-stage training process to instill the se-
mantic and hierarchical knowledge, the three types of apple images have been
pulled together and form a new concept (“Apple" with orange circle) at a higher
level. Moreover, the newly learned concept of “Apple" simultaneously possesses
sufficient distance to “Weed" (different super-concept) and maintains relatively
close relations to “Strawberry", “Orange", “Mango" as well as other types of
“Fruit". This result demonstrates the effectiveness of our hierarchical semantic
concept learning framework, without negatively affecting the overall classifica-
tion performance.

3.5.3 Efficiency and Accuracy of Concept Alignment

In this section, we compare the learning efficiency and accuracy of the proposed
HaST-CW with that of the conventional CW method. We track the alignment
between image representations and their corresponding concepts at each layer.
Specifically, we randomly select six concepts, and for each concept we sort and
select the top five images whose representations show the strongest activation
at the corresponding concept axis. We show the results at both shallow and
deep layers (layer 4 vs. layer 8) in Figure 3.5. From the results of layer 4 (the left
column) we can see that most of the top five images obtained by conventional
CW (the rows marked by green box) are mismatched with the corresponding
concepts. For example, the five images under the concept of “Apple-Melrose"
obtained by CW are from the “Weed" class. The five images under the concept
of “Snake Weed" are actually from other subclass of “Weed". Moreover, this
situation continues in the following layers and has not been changed until layer
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Figure 3.4: UMAP visualization of the latent space embedding with Agri-
ImageNet images, colored according to the legend of image labels on the left.
The top panel shows the results of the CW method and we highlight the super-
concept “Weed" (black) and three sub-concepts. As shown in the bottom panel,
we apply the same rules to the output of HaST-CW and visualize the results.
In addition, we draw an orange circle that encapsulates three types of apples to
represent the super-concept “Apple".

8. On the contrary, with the help of our designed semantic constraint loss, our
HaST-CW (the rows marked by orange boxes) can learn the intrinsic concept
faster and achieves the best performance at an earlier training stage (e.g., at a
shallow layer). This result demonstrates that by paralleling multiple HCW
layers the proposed HaST-CW model can capture the high-level features more
efficiently.

To further demonstrate the alignment between images and the correspond-
ing concepts, we project each image in the test dataset into a latent space where
each concept can be represented by an axis. To visualize the alignments at differ-
ent concept hierarchies (Figure 3.2), we show three pairs of concepts which be-
long to different hierarchical levels as examples: “Apple-Melrose"-“Apple-Fuji"
is from hierarchy 3 (H-3), “Snake Weed"-“Parkinsonia" is from hierarchy 2 (H-
2), and “Weed"-“Apple" crosses hierarchies 1 and 2 (“Weed": H-1, “Apple": H-2).
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Within each concept pair, a two-dimensional space has been built by taking
the two concepts as axes. Thus, each image can be mapped into the space by
calculating the similarity between image representation and the two concept
representations. The results are shown in Figure 3.6. Different rows correspond
to different methods and the concept axes (space) are defined at the bottom.

The first column of Figure 3.6 shows the data distribution in the two-dimensional
space of “Apple-Melrose"-“Apple-Fuji" concept pair. The images belonging
to Apple-Melrose class should have the highest similarity with the concept of
“Apple-Melrose", and thereby they should be located at the right-bottom corner.
Similarly, the images of Apple-Fuji class should be located at the left-top cor-
ner. The other images should distribute in the space according to the similarity
with the two concepts. For example, compared to images of fruit-related classes,
images of weed-related classes will have lower semantic similarity with the two
concepts, so they should locate near the origin point (left-bottom corner). As
shown in the first column, the two models which adopt the HaST-CW method
(the second and third rows) can better follow the above-mentioned patterns.
While in the CW model (the first row), nearly all the images are gathered at
the right-bottom corner. This may be due to the high similarity between the
two concepts considered, since they share the same super-class of “Apple". As a
result, CW model may be limited in distinguishing different classes with high
semantic similarity. A similar situation happens in the second column with the
concept pair of “Snake Weed"-“Parkinsonia". These results suggest that com-
pared to CW method, HaST-CW can better capture the subtle differences of
semantic-related classes.

The third column shows the results of the concept pair of two super-classes:
“Weed" and “Apple". As each of the super-class concept contains multiple sub-
classes, the intra-class variability is greater. Our proposed HaST-CW, together
with the SC loss (the third row), can effectively capture the common visual
features and project the “Weed" and “Apple" images to the left-top and right-
bottom, respectively. At the same time, the images belonging to different sub-
classes under “Weed" and “Apple" are assembled as blocks instead of scattered
along the diagonal line. In the other two methods, especially in the CW method
(the first row), the images of “Weed" class spread out over a wide range along
the vertical axis. This result suggests that the proposed HaST-CW with SC loss
can effectively model both the inter- and intra- class similarity.

3.5.4 Interpretable Image Classification

In this section, we compare the classification performance of the proposed
HaST-CW method and the SC loss function with the conventional CW method
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using different backbones: ResNet18 and ResNet50. The results are summa-
rized in Table 3.1. Different rows correspond to different model settings. Within
each model setting, we repeat the experiments for five times to reduce the effect
of random noise. The mean and variance of accuracy (ACC.) are reported in
the fourth column. From the results, we can see that the classification perfor-
mance is slightly better than the other three model settings. This result indicates
that the proposed HaST-CW model can improve the interpretability without
hurting predictive performance.

Table 3.1: Comparison of Classification Performance.

Module Backbone Loss Acc.
CW ResNet18 LCE 63 .48 ± 0.68
CW ResNet50 LCE 69.25 ± 3 .93

HaST-CW ResNet50 LCE 69.30 ± 3 .75
HaST-CW ResNet50 LCE + LSC 69.49 ± 3 .20

To track and visualize the classification process, we randomly select two
images from Apple-Melrose class and Snake Weed class. The activation values
between each image with the six relevant concepts are calculated and normal-
ized to [0, 1]. The images, concepts and activation values are organized into a
hierarchical activation tree. The results are shown in Figure 3.7. We could ob-
serve that the activation values of each image correctly represent the semantic
relationship between the images and the concepts. For example, in Figure 3.7
(a), the image located at the root is from Snake Weed class which is a subclass of
Weed. The activation values of the image are consistent with this relationship
and possess the highest activation values on the two concepts – “Weed" and
“Snake Weed".

3.6 Conclusion and Future Work

In this study, we propose a new HaST-CW and demonstrate its superiority over
Concept Whitening (Z. Chen et al., 2020). HaST-CW decorrelates representa-
tions in the latent space and aligns concepts with corresponding dimensions. In
addition, it correctly groups concepts at different granularity levels in the latent
space and preserves hierarchical structures of concepts of interest. By doing so,
we can interpret concepts better and observe the semantic relationships among
concepts. We believe there are many possibilities for future work. One promis-
ing direction is automatically learning concepts from data. In this scenario,
we can jointly learn possible concepts from common abstract features among
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images and how to represent these learned concepts in the latent space. In addi-
tion, HaST-CW can be extended with post-hoc interpretability strategies (such
as saliency-based methods that highlight focused areas used for classification).
In general, given the increasing demand of interpretability in deep learning,
our work complements previous work and lays a solid foundation for further
exploration.
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Figure 3.5: Top 5 activation images of each concept. The image panel is divided
into two sets of columns: the left set of columns contains the results of layer 4
(a shallow layer), whereas the right set of columns holds the results of layer 8
(a deeper layer). Each concept covers two rows that correspond to the results
of the conventional CW (marked by green boxes) and the proposed HaST-CW
(marked by orange boxes), respectively.
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Figure 3.6: Data distribution in the concept latent space. Three pairs of con-
cepts corresponding to different semantic hierarchy levels are selected. For each
concept pair, a two-dimensional space is built by taking the concepts as axes.
To visualize the alignments between images and the concepts, the images are
projected into the two-dimensional space by similarity values between image
representations and the two concept representations. Different rows in the
figure panel correspond to different methods and the concept axes (space) are
defined at the bottom.
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Figure 3.7: Hierarchical activation tree. We randomly select two images from
the Apple-Melrose class and the Snake Weed class. For each image, activation
values corresponding to the 6 concepts are calculated and normalized to [0, 1].
The highest activation values are highlighted with red along the hierarchical
path.
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Chapter 4

Core Pereiphery
Structure

4.1 Gyri vs. Sulci: Disentangling Brain Core-

Periphery Functional Networks via Twin-Transformer

4.1.1 Overview

The human cerebral cortex is highly convoluted into convex gyri and concave
sulci. It has been demonstrated that gyri and sulci are significantly different in
their anatomy, connectivity and function: besides exhibiting opposite shape
patterns, long-distance axonal fibers connected to gyri are significantly denser
than those connected to sulci, and neural signals on gyri are more complex
in the low-frequency band while sulci have more complex patterns in the high-
frequency band. Although accumulating evidence shows significant differences
between gyri and sulci, their primary roles in brain function have not been
elucidated yet. To solve this fundamental problem, we design a novel Twin-
Transformer framework to explore and unveil the unique functional roles of
gyri and sulci as well as their relationship and interaction in the whole brain
function. Our Twin-Transformer framework adopts two identical and con-
nected (twin) Transformers to model and disentangle spatial-temporal patterns
of gyri and sulci: one focuses on the information of gyri and the other is on
sulci. The Gyro-Sulcal interactions, along with the tremendous but widely ex-
isting variability across individuals, are characterized and represented via a novel
Gyro-Sulcal Commonality-Variability Disentangled Loss (GS-CV Loss). We
validated our Twin-Transformer on one of the largest brain imaging datasets
(HCP task-fMRI gray-ordinate dataset), for the first time, to elucidate the dif-
ferent roles of gyri and sulci in brain function. Our results suggest that gyri
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and sulci could work together in a core-periphery network manner, that is, gyri
could serve as core networks for information gathering and distributing in a
global manner, while sulci could serve as periphery networks for specific local
information processing. These findings have shed new light on our fundamen-
tal understanding of the brain’s basic structural and functional mechanisms.

4.1.2 Background

The human cerebral cortex (top of Fig. 4.1-a) is highly convoluted into convex
gyri and concave sulci ( Fig. 4.1-b). Gyri and sulci serve as the basic building
blocks to make up complex cortical folding patterns, and are fundamental to re-
alize the brain’s basic structural and functional mechanisms. Numerous efforts
have been devoted to understanding the function-anatomy patterns of gyri and
sulci from various perspectives, including genetics (Richiardi et al., 2015), cell bi-
ology (Gertz & Kriegstein, 2015), and neuroimaging (H. Liu et al., 2019a). It has
been demonstrated consistently that gyri and sulci are significantly different in
their anatomy, connectivity and function. Several studies (Fischl & Dale, 2000;
Hilgetag & Barbas, 2005; G. Li et al., 2015; J. Nie et al., 2012) found that the
formation of gyri/sulci may be closely related to the micro-structure of white
matters. For example, diffusion tensor imaging (DTI) derived long-distance
axonal fibers connected to gyri are significantly denser than those connected
to sulci (bottom of Fig. 4.1-a). That is, the long-distance fiber terminations
dominantly concentrate on gyri rather than sulci, and interestingly, this phe-
nomenon is evolutionarily preserved across different primate species. Mean-
while, using functional magnetic resonance imaging (fMRI), a few functional
measurements that can directly reflect brain functional activities on gyri and
sulci have been explored, such as functional BOLD signals (H. Liu et al., 2019a),
correlation-based connectivity/interaction (Deng et al., 2014), and spatial dis-
tribution of functional networks (J. Lv, Jiang, Li, Zhu, Chen, et al., 2015; J. Lv
et al., 2014). Despite accumulating functional differences found between gyri
and sulci, their basic roles as well as their relationship and interaction in the
whole brain function have not been explored or elucidated yet.

To answer this fundamental question in brain science, we proposed a novel
Twin-Transformer framework ( Fig. 4.1-c) to explore and unveil the unique
functional roles of gyri and sulci. Unlike traditional factorization-based ap-
proaches that assume linearity and independence, the Transformer attention
mechanism is an ideal backbone to characterize, represent and reveal the com-
plex and deeply buried patterns in the observed brain functional data. Our
whole framework is illustrated in Fig. 4.2. Our Twin-Transformer framework
adopts two identical and connected (twin) Transformers to model and disentan-
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gle spatial-temporal patterns of gyri and sulci: one focuses on the information of
gyri and the other focuses on sulci. To model the complex 4D (spatial-temporal)
fMRI data, within each transformer, we designed a spatial module and a tempo-
ral module to disentangle and extract the patterns in both spatial and temporal
domains from the original fMRI signals. The two Transformers are connected
and interact via a group of shared weights and constraints between the two
spatial/temporal modules. In addition, to effectively capture the Gyro-Sulcal
interactions, as well as the tremendous and widely existing variability across
individual brains, a novel Gyro-Sulcal Commonality-Variability Disentangled
Loss (GS-CV Loss) is proposed to guide the training process. After the model
is well-trained, the functional brain networks (FBNs) and the corresponding
temporal activations that are specific to gyri and sulci can be recovered by the
corresponding transformers. We validated our Twin-Transformer on the one of
the largest brain imaging datasets (HCP task-fMRI gray-ordinate dataset), for
the first time, to elucidate the different roles of gyri and sulci in brain function.
Our results suggest that gyri and sulci could work together in a core-periphery
network manner (Fig. 4.1-d), that is, gyri could serve as core networks for infor-
mation gathering and distributing in a global manner, while sulci could serve
as periphery networks for specific local information processing. These findings
have shed new light on our fundamental understanding of the brain’s basic
structural and functional mechanisms. The contributions of this paper are
summarized as follows:

• We introduced a novel Twin-Transformer to represent and unveil the
fundamental functional roles of the two basic cortical folding patterns:
gyri and sulci.

• We discovered unique functional role patterns that are specifically located
on gyri (global) and sulci (local).

• We found that gyri and sulci may work together in a Core-Periphery net-
work manner: gyri serve as core networks for information gathering and
distributing, while the sulci serve as periphery networks for specific local
information processing.

4.1.3 Related Works

Gyri and Sulci

Gyri and sulci are the standard morphological and anatomical nomenclature of
cerebral cortex and are usually defined in anatomical domains (Jiang et al., 2021).
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Figure 4.1: Core-periphery brain networks in gyri and sulci. (a) is the brain
structural and functional anatomy of gyri and sulci. (b) is the segmentation of
gyri and sulci. (c) is the proposed Twin-Transformer, where one is for gyri and
the other is for sulci. (d) is the core-periphery brain networks derived from the
gyri and sulci, where gyri is the core network, and sulci is the periphery network.

Neuroscientific studies have demonstrated that gyri and sulci may emerge from
a complex cortical folding process, which is closely related to neurodevelop-
ment (G. Li et al., 2015), cytoarchitecture (Fischl et al., 2008), and cognitive
functioning (Honey et al., 2010). Moreover, specific gyral-sulcal patterns have
been widely reported to be closely relevant to brain neuronal processes (De Juan
Romero & Borrell, 2015; Johnson et al., 2015), functional activity (Troiani et al.,
2020), and human behaviors (Yang et al., 2019). Therefore, gyral-sulcal patterns
play important roles in brain anatomy, function, and cognition. Unveiling their
fundamental roles as well as their relationship and interaction in the whole brain
function is of fundamental importance to understand the underlying structural
and functional brain mechanisms. In this paper, for the first time, we proposed
a novel Twin-Transformer framework to elucidate the different roles of gyri and
sulci in brain function.

Transformer

Since it was first proposed in 2017 (Vaswani et al., 2017), with its strong rep-
resentation capacity, transformer and its variants, such as BERT (Devlin et al.,
2018) and Generative Pre-trained Transformer (GPT) (Brown et al., 2020), have
achieved breakthroughs in the NLP domain. Inspired by the tremendous suc-
cess of transformer architectures in NLP, vision transformer (ViT) (Dosovitskiy
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et al., 2020) has been proposed by introducing transformer architecture into
image representation learning and utilized to address a variety of vision tasks,
such as image classification (M. Chen et al., 2020), object detection (Carion
et al., 2020), semantic segmentation (Zheng et al., 2021), image processing (H.
Chen et al., 2021), and video understanding (L. Zhou et al., 2018). Thanks
to its exceptional performance, transformer-based vision models have become
a potential alternative to CNN in image processing domain. To leverage the
brilliant spatial and temporal representation capacity of ViT in handling im-
age/video data, we proposed a novel Twin-Transformer framework to capture
the complex gyral-sulcal spatial-temporal patterns from brain function data.

Core-periphery Network

Core-periphery (M. P. Rombach et al., 2014) structures are widely existing in
transportation systems (Roth et al., 2012), social networks (Boyd et al., 2006),
financial networks (haldane2011systemic), and brain networks (Guillon et al.,
2019). The study (Guillon et al., 2019) on brain complex network reported the
core/periphery networks in region of interest (ROI) with fMRI, MEG and
DWI data. Another study (S. Gu et al., 2020) demonstrated the core-periphery
network universally exists in human functional brain networks and unified the
core-periphery with the modular organization. However, existing studies are
limited in simply reporting core-periphery structure may exist in brain newtork,
the factor behind this biological phenomena is unclear. In this work, using our
novel Twin-Transformer model we are able to unveil that gyri and sulci, as the
two basic anatomical folding patterns, serve as the core network and periphery
network, respectively.

4.1.4 Methods

Gyri and Sulci Data Preparation

In our experiments, we used high-quality task-based fMRI (tfMRI) data of 540
subjects from the Human Connectome Project (HCP), that is, 3 Tesla motor
and working memory (WM) task gray-ordinate dataset (H. Liu et al., 2019b)
(Barch2013). The publicly available preprocessed tfMRI data went through the
minimal preprocessing pipelines that are especially designed for high spatial and
temporal resolution of HCP datasets (Glasser2013). The preprocessed tfMRI
imaging data is a kind of 4D imaging data, which consists of a time-series of 3D
images of the brain. For motor task-fMRI, each voxel contains a series of brain
signals of length 284. We reorganize the signals in each voxel into a 2D matrix.
In this way, a 4D tfMRI imaging can be represented by a 2D matrix, where rows
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represent the tfMRI time series and columns represent the brain voxels (Fig. 4.2-
a). We normalized the brain signals to zero mean and unit variance. Since each
subject of the preprocessed data has 59,412 voxels in standard grayordinate space,
the column dimension of the 2D matrix is 59,412. To facilitate patch partition,
we expanded the space dimension from 59,415 to 60,000 by adding zero vectors
along the spatial dimension. Finally, a set of 2D brain signal matrices of all the
subjects with dimensions of 284×60,000 are generated. Then we map the gyri
and sulci masks onto the 2D brain signal matrix of each subject, and both gyri
and sulci signal matrices of the 284×60,000 are generated correspondingly.

Twin-Transformers

To reveal the common and variable patterns contained in the gyri and sulci, a
novel Twin-Transformer framework is proposed, including a gyri transformer
and a sulci transformer. The architecture of the Twin-Transformer is illustrated
in Fig. 4.2. There is a spatial and temporal self-attention module in the gyri
transformer for disentangling spatial and temporal patterns of gyri as shown
in Fig. 4.2-c. The structure of the sulci transformer is the same as the gyri
transformer. For each input signal matrix, spatial patches are generated by shift-
ing window along the space dimension, as illustrated by the orange arrow in
Fig. 4.2-a, while temporal patches are generated by shifting window along the
time dimension, as shown in the green arrow in Fig. 4.2-a. Gyri transformer
generates spatial and temporal patterns of brain networks on gyri, while sulci
transformer generates spatial and temporal patterns of those on sulci. By con-
straining the spatial and temporal patterns between gyri and sulci, commonality
and variability between gyri and sulci can be discovered.

Specifically, within gyri or sulci transformer, the spatial self-attention mod-
ule is designed to learn the latent representations of spatial features, and it fo-
cuses on the space dimension and takes non-overlapping spatial patches as to-
kens to build attention across the spatial variant patches and generate spatial
patterns. It divides the input signal matrix into P non-overlapping patches by
shifting the sliding window (orange dotted box following orange arrow) from
left to right along the space dimension. The size of the sliding window can be
adjusted according to the size of the input data. Each spatial patch contains
complete temporal information of the focal brain region. The P patches cor-
respond to P components of brain networks as predefined. Patches are used
as tokens, and each token is first fed into a linear projection layer to obtain the
latent representation zi ∈ ℜ1×D1 and then the learnable spatial positional em-
bedding,Es

i ∈ ℜ1×D1 is added to the representations of each input token. The
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Figure 4.2: Illustration of the proposed Twin-Transformer framework. (a)
shows the patch division of the gyri and sulci signal matrices. (b) is the posi-
tion encoding for the spatial and temporal patches. (c) shows the details of the
Twin-Transformer. The gyri transformer shares weights with sulci transformer,
and each transformer includes a spatial and temporal self-attention module for
processing spatial patches and temporal patches. (d) is the reconstruction of the
gyri and sulci signal matrices from disentangled spatial and temporal patterns.

spatial transformer encoder can be formulated as:

Spa(Z) =MLP (MSA(LN(zS1 ||zS2 ||zS3 ||...||zSP ))) (4.1)

where MSA() is the multi-head self-attention, MLP() represents multilayer per-
ceptron, and LN() is layernorm. zsi = (zi+E

S
i ), i = 1, 2, ..., P and || denotes

the stack operation. Spa(Z) ∈ P×N is the output of the spatial Transformer,
whereP represents the number of brain networks andN is the number of voxels
in the brain. Spa(Z) models the activated voxels within each brain network.

The temporal transformer is designed to learn the latent representations of
temporal patterns of brain networks. The temporal self-attention module fo-
cuses on the temporal dimension and the non-overlapping temporal patches are
used as tokens. Correspondingly, the temporal Transformer builds attention
across the temporal variant patches and generates temporal features. Similar
to the spatial transformer, by shifting the sliding window (green dotted box
following green arrow) from top to bottom along the time dimension, T non-
overlapping temporal patches are generated. The size of the sliding window
equals 1, hence the number of patches equals the length of the brain signals.
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Each temporal patch contains information of all the voxels. After input embed-
ding and positional embedding, each patch is represented by zti = (zi + Et

i ),
i = 1, 2, ..., T . The temporal self-attention module can be formulated as:

Tem(Z) =MLP (MSA(LN(zt1||zt2||zt3||...||ztP ))) (4.2)

The outputs Tem(Z) of the temporal self-attention module have a dimension
of Tem(Z) ∈ T ×P , where T represents the time points of the fMRI signals.
Tem(Z) represents the signal pattern of each brain network. Taking Spa(Z)
and Tem(Z) together, we can obtain both the spatial and temporal patterns
of each pair of gyri and sulci.

Gyri and Sulci Commonality-Variability Disentangled Loss

To simultaneously capture common and variable patterns in the gyri and sulci ,
a new gyri-sulci commonality-variability disentangled loss (GS-CV Loss) is pro-
posed. There are three components in GS-CV Loss. The first one is the signal
matrix reconstruction loss. The whole framework is trained in a self-supervised
manner to reconstruct the input signal matrix from the learned spatial and tem-
poral patterns of gyri and sulci. This is crucial to ensure the learned spatial and
temporal features can capture the complete spatial and temporal information
of the input data. The reconstruction loss can be formulated as:

Lreco =
∑

∥X − Spa(Z) · Tem(Z)∥L1 (4.3)

where X is the input signal matrix, and we use L1-norm to constrain the
reconstruction of the input gyri and sulci pair. The second component is the
commonality constrain loss of spatial patterns between gyri and sulci, which
aims to find the common spatial patterns between gyri and sulci. For this pur-
pose, the learned spatial feature matrix is divided into common part (the first
p rows) and variable part (the remaining rows). The common and variable pat-
terns can be learned by minimizing the difference between common parts of gyri
and sulci and leaving the variable parts to learn freely. This can be formulated
as:

Lcomm_spa =
∑

Corr(∥Spa(Z1)[−p :, ∗]− Spa(Z2)[−p :, ∗]∥) (4.4)

where [0 : p, ∗] represents the firstp rows inSpa(Zi), and⋆means for each row,
all the elements in the columns are included, and vice versa. Since the scale of
the brain signals in gyri and sulci is different, we adopt the Pearson correlation
coefficient to constrain the similarity of common spatial patterns between gyri
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and sulci to be maximized. Similarly, the commonality constraint on temporal
features, which is the third component in GS-CV Loss, is formulated as:

Lcomm_tem =
∑

Corr(∥Tem(Z1)[∗, 0 : p]− Spa(Z2)[∗, 0 : p]∥) (4.5)

In order to make spatial patterns distinct and limit the scale of temporal pattern
from being arbitrarily large, we add a normalization on temporal features, which
is formulated as:

Ltem_norm = max(0,
1

P
(

P∑
i=1

∥Tem(Zi[∗, i])∥2)− 1) (4.6)

Combining the four parts, the GS-CV Loss can be formulated as:

GS − CV _Loss = αLreco + βLcommspa + γLcommtem + δLtem_norm

(4.7)
where the regularization parameters α, β, γ, and δ controls the balance of dif-
ferent factors on the overall loss function.

4.1.5 Results

We applied our method to one of the largest brain image dataset - HCP tfMRI
data (we used both motor and working memory tasks in this work). Using
the fMRI signals from gyri and sulci for each subject, as a paired input for
Twin-Transformer, we generated the gyri/sulci related patterns: the output of
each transformer includes 100 well-trained spatial components that can be in-
terpreted as 100 FBNs that are specific to gyri and/or sulci. The corresponding
100 temporal components can be treated as the representative signals of each
FBN in the embedding space. We first illustrate the global/local patterns of
gyri/sulci using both individual and group-wise results, revealing that gyri and
sulci may work together in a Core-Periphery network manner. To examine
the core-periphery concept in temporal domain, we further analyze the task in-
volved rate (TIR) of the temporal components. We found that gyri have much
higher TIR than sulci, which indicates that gyri participate more in tasks than
sulci do. In addition, gyri dominant FBNs show clearly global distribution
patterns, while sulci dominant FBNs display an opposite local mode. All of
these results taken together suggest that gyri serve as core networks for infor-
mation gathering and distributing, while the sulci serve as periphery networks
for specific local information processing. We also tested our proposed meth-
ods on another tfMRI dataset of working memory, and the conclusions are
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reproducible and consistent, and these results can be found in supplementary
material.

Core-Periphery Network

Figure 4.3: Core-Periphery Relationship Between Gyri and Sulci. (a): The
activated voxels within gyri and sulci in common spatial brain networks. For
better visualization, we enlarge the gyri and sulci parts into the left one and the
right one. The major clusters of activated voxels in gyri are marked as G1-G4,
whereas the major clusters in sulci noted as S1-S4. (b): The brain regions that
correspond to the major activated brain voxels in gyri. The notations and colors
are consistent with the gyri part in (a). (d): The brain regions that correspond to
the major activated brain voxels in sulci. The notations and colors are consistent
with the sulci part in (a). (c): Connected graph of the entire relationship matrix
in (a). The red points are gyri, and the blue points are sulci.

We can identify the activated brain voxels whose weights are consistently
above a pre-defined threshold across all gyri- or sulci- derived spatial compo-
nents. By connecting all the activated brain voxels, we construct a relationship
matrix of gyri and sulci. Fig. 4.3 shows an example of one randomly selected
subject (more individual cases and group-wise results have been included in
supplementary material). There are 17,232 voxels for gyri and 18,327 voxels for
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sulci in this subject’s gray-ordinate surface, so the dimension of the obtained
relationship matrix is 35559×35559, and 17232×17232 and 18327×18327

for gyri part and sulci part, respectively. The middle in Fig. 4.3-a demonstrates
the entire relationship matrix, the sub-figures on left and right highlight the
connections within gyri and sulci voxels, which are located in the top-left and
bottom-right of the relationship matrix. In general, the relation matrix is sparse,
which means only a few regions (voxels) are involved in a specific task at the same
time, and this result is consistent with previous literature reports (H. Huang
et al., 2017; Q. Li et al., 2021; H. Liu et al., 2019b; J. Lv, Jiang, Li, Zhu, Chen,
et al., 2015). The most interesting finding using our Twin-Transformer is that
the activated brain voxels in gyri-gyri section (left in Fig. 4.3-a) incline to form
larger and connected blocks or clusters, as highlighted with four circles (G1-G4),
while the activated brain voxels in sulci-sulci section (right in Fig. 4.3-a) tend to
assemble as much smaller and scattered patterns (S1-S4). It worth noting that
if the voxels are close in relationship matrix, they also tend to be neighbors on
cortical surface. Therefore, after mapping the blocks of G1-G4 to cortex, we
can see large continuous gyri regions on the brain surface (Fig. 4.3-b) forming
gyri-based FBNs. However, the activated regions of sulci (sulci-based FBNs) are
relatively small and separated (Fig. 4.3-d). To further examine the relationship
between gyri-based and sulci-based FBNs, we visualize the gyri-sulci section
which is located in the bottom left of the relationship matrix, as a connected
graph shown in Fig. 4.3-c. We labeled the nodes in the graph with previously
identified G1-G4 and S1-S4, and build their connections according to the re-
lationship matrix. We can clearly see that all the gyri-based FBNs serve as the
hub nodes, and they together compose the Core Network. Meanwhile, the
sulci-based FBNs serve the supporting nodes, forming the Periphery Network.
That is, the Core Networks includes gyri-based FBNs and they connect each
other directly; the Periphery Networks consist of sulci-based FBNs and their
communications in the entire brain network rely on the Core Network.

To further prove the concept of the Core-Periphery Network of gyri and
sulci, we compute the independent probability (IP) PGG, PSS and PGS for
sub-matricesAGG,ASS , andAGS of the entire relationship matrix, which rep-
resents the interactions within gyri vertices (Core Network), sulci vertices (Pe-
riphery Network) and between gyri, and sulci vertices (between Core and Pe-
riphery Networks). Independent probability (Cucuringu et al., 2016) is defined
as the probability that there is an edge between any pairs of nodes in a given
matrix, and it is an important measurement to indicate if the matrix or graph
is organized as Core-Periphery pattern (Holme, 2005; M. P. Rombach et al.,
2014). We set three different thresholds for edge activation to calculate the IP,
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Table 4.1: The Independent Probability of Gyri Sulci Network

IP WM MOTOR
0.10 0.15 0.20 0.10 0.15 0.20

PGG 0.35± 0.02 0.30± 0.02 0.07± 0.05 0.42± 0.06 0.12± 0.02 0.02± 0.01
PGS 0.20± 0.02 0.16± 0.02 0.05± 0.05 0.37± 0.05 0.08± 0.02 0.01± 0.01
PSS 0.12± 0.02 0.09± 0.02 0.04± 0.04 0.33± 0.05 0.06± 0.02 0.01± 0.01

Table 4.2: Gyri and Sulci Ratio Under Different Experimental Settings

Components Comm. Spatial Comm. Temporal Gyri-Sulci Specific
Gyri Ratio Sulci Ratio Gyri Ratio Sulci Ratio Gyri Ratio Sulci Ratio

50 52.6± 0.08 47.4± 0.08 50.1± 0.09 49.9± 0.09 50.5± 0.03 49.5± 0.03
100 53.8± 0.08 46.2± 0.08 57.5± 0.07 42.5± 0.07 51.8± 0.03 48.2± 0.03
150 54.6± 0.05 45.4± 0.05 53.2± 0.04 46.8± 0.04 51.6± 0.04 48.4± 0.04
200 54.5± 0.01 45.5± 0.01 56.7± 0.03 43.3± 0.03 55.7± 0.04 44.3± 0.04

and the average results of 500 subjects are shown in Table 1. The results show
that PGG > PGS > PSS , which confirms that our derived gyri/sulci networks
have the core–periphery structure.

Task Involved Rates in Gyri and Sulci

Besides the spatial patterns of the gyri and sulci, we examine temporal patterns
of gyri and sulci in this section. We calculated the Pearson correlation coeffi-
cient (PCC) between the temporal patterns and five task stimuli in motor task:
left hand, right hand, left foot, right foot, and tongue. We empirically set the
threshold for PCC to consider the specific temporal pattern correlated with
task stimulus. We define the task-involved rates (TIR) as the number of task
stimuli that the temporal patterns involved divided by the number of all stimuli.
We calculated the TIR under different experimental settings, 50, 100, 150, and
200 components, and under the different thresholds for PCC. The whole TIR
consists of three parts, which are common spatial TIR, common temporal TIR,
and gyri-sulci specific TIR. The results are shown in Fig. 4.4. We can see that
the TIR in gyri are all higher than that in sulci, except in common temporal
patterns, since the common temporal patterns are trained to be similar under
the temporal similarity loss. It has been widely recognized that a single brain
task may need to recruit multiple brain regions or FBNs to work together. Our
results show gyri have been involved more frequently, and in more tasks than
sulci, which further indicates that gyri play a key role (Core Network) in brain
activities, whereas sulci play a supportive role (Periphery Network).
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Figure 4.4: Task Involved Rates. TIR of temporal patterns of gyri and sulci.
The temporal patterns are correlated with the task stimulus, and the threshold
is set in the range of 0.1, 0.15, 0.2, 0.25. The four plots are the results under
different experimental settings of 50, 100, 150, 200 components, where each
three subplots are the detailed TIR in different parts.

Gyri/Sulci/Gyri-Sulci Dominant Network

Besides common FBNs that are derived by enforcing the external constraint, we
also achieved a few FBNs that are categorized as gyri dominant (all the activated
voxels belong to gyri), sulci dominant (all the activated voxels belong to sulci)
and gyri-sulci collaborative brain networks (the activated voxels belong to both
gyri and sulci). We display the networks of different categories from randomly
selected 10 subjects in Fig. 4.5. The results are similar to the common FBNs that
gyri dominant FBNs tend to have large and continuous gyri regions, while sulci
dominant ones display scattered and local distributions. We also analyzed the
group-wise ratio between the number of activated brain voxels in gyri and sulci
using different numbers of components in our Twin-Transformer. The results
are shown in Table 2. The gyri ratio is consistently higher than sulci (highlighted
in bold). This result indicates that although there exist sulci dominant BFNs
across subjects, the number of activated voxels in gyri is likely more than that
in sulci. In summary, our proposed Twin-Transformer provides a new and
powerful tool to disentangle the different functional roles of gyri and sulci with
a new perspective.
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Figure 4.5: Gyri/Sulci/Gyri-Sulci Dominant Brain Networks. The three rows
display of gyri dominant/sulci dominant/gyri-sulci dominant brain networks
separately. They are brain functional networks from randomly selected 10 sub-
jects.

4.1.6 Discussion

Impacts on Brain Science and Artificial Intelligence: In the brain science
field, gyri and sulci are known to possess different structural, connectional and
functional characteristics. However, it is the first time that our twin-transformer
is powerful and accurate enough to differentiate gyri and sulci into core-periphery
networks, which might suggest that the cerebral cortex is segregated into two
fundamentally different functional units of gyri and sulci. This result has pro-
found impacts on many aspects of basic, cognitive and clinical neuroscience.
Core-periphery network phenomena have been reported in many real-world
networked systems such as transportation, social network, financial networks,
and biological neural networks, among others, and our work here revealed and
characterized such core-periphery pattern in a fine-grained manner on cortical
gyri and sulci. Given that the graph structures, e.g., relational graph of CNNs,
of artificial neural networks in highly optimized deep learning models are more
similar to those in biological neural networks, it is reasonable to postulate that
the core-periphery network structure discovered in human brains in this work
could be potentially infused into the design of next-generation artificial neural
networks in deep learning as a prior knowledge or meaningful constraint, thus
leading to brain-inspired artificial intelligence.

Limitation: Our work has several potential limitations. a) We simply add
the degree from each activation graph generated by each common spatial com-
ponent to build the gyri/sulci graph. There is still some room for building
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a better gyri/sulci graph. b) We mainly focus on discovering the relationship
between gyri and sulci at this moment, and ignored the intermediate regions
on the gyral wall that is between gyri and sulci. In the near future, we plan
to explore the intermediate regions’ roles in the core-periphery brain network
system.

4.1.7 Conclusion

In this paper, we proposed a novel data-driven Twin-Transformer framework
and applied it to HCP gray-ordinate tfMRI dataset to characterize the roles of
cortical gyri and sulci on the brain functional networks. With this framework,
we can disentangle the spatial and temporal patterns from the brain signals of
gyri and sulci, providing us the possibility to quantitatively analyze the differ-
ence between gyri and sulci. The most important finding in this study is that
we identified the core-periphery relationship between gyri and sulci, as well as
the corresponding core-periphery brain networks. Our results show that core-
periphery networks are broadly existing between gyri and sulci across all subjects.
Overall, our proposed Twin-Transformer contributes to a better understand-
ing of the roles of gyri and sulci in brain architecture, which offers new insight
into the design of next-generation artificial neural networks, brain-inspired AI
models, and beyond.

4.2 CORE-PERIPHERY PRINCIPLE GUIDED

REDESIGN OF SELF-ATTENTION IN TRANS-

FORMERS

4.2.1 Overview

Designing more efficient, reliable, and explainable neural network architectures
is critical to studies that are based on artificial intelligence (AI) techniques. Nu-
merous efforts have been devoted to exploring the best structures, or structural
signatures, of well-performing artificial neural networks (ANN). Previous stud-
ies, by post-hoc analysis, have found that the best-performing ANNs surpris-
ingly resemble biological neural networks (BNN), which indicates that ANNs
and BNNs may share some common principles to achieve optimal performance
in either machine learning or cognitive/behavior tasks. Inspired by this phe-
nomenon, rather than relying on post-hoc schemes, we proactively instill or-
ganizational principles of BNNs to guide the redesign of ANNs. We lever-
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age the Core-Periphery (CP) organization, which is widely found in human
brain networks, to guide the information communication mechanism in the
self-attention of vision transformer (ViT) and name this novel framework as
CP-ViT. In CP-ViT, the attention operation between nodes (image patches) is
defined by a sparse graph with a Core-Periphery structure (CP graph), where the
core nodes are redesigned and reorganized to play an integrative role and serve as
a center for other periphery nodes to exchange information. In addition, a novel
patch redistribution strategy enables the core nodes to screen out task-irrelevant
patches, allowing them to focus on patches that are most relevant to the task. We
evaluated the proposed CP-ViT on multiple public datasets, including medical
image datasets (INbreast) and natural image datasets (CIFAR-10, CIFAR-100,
and TinyImageNet). Interestingly, by incorporating the BNN-derived princi-
ple (CP structure) into the redesign of ViT, our CP-ViT outperforms other
state-of-the-art ANNs. In general, our work advances the state of the art in
three aspects: 1) This work provides novel insights for brain-inspired AI: we
can utilize the principles found in BNNs to guide and improve our ANN archi-
tecture design; 2) We show that there exist sweet spots of CP graphs that lead
to CP-ViTs with significantly improved performance; and 3) The core nodes in
CP-ViT correspond to task-related meaningful and important image patches,
which can significantly enhance the interpretability of the trained deep model.
(Code is ready for release).

4.2.2 Background

Aided by the rapid advancement in hardware and massively available data, deep
learning models have witnessed an explosion of various artificial neural net-
works (ANN) architectures (K. He et al., 2016b; Krizhevsky et al., 2017; Vaswani
et al., 2017), and made breakthroughs in many application fields due to their
powerful automatic feature extraction capabilities. It is widely expected the
architectures of ANN, as the core of current AI techniques, to be more effi-
cient, reliable, explainable, and transformable, to adapt to various and complex
problems in real applications. Essentially, various ANN architectures, repre-
sented via different neuron wiring patterns, correspond to different informa-
tion exchange mechanisms, and therefore, have an inevitable effect on the la-
tent feature representation and the downstream task performance. For example,
multilayer perceptron (MLP) directly stacks multiple layers of neurons with
paired-wise full connections between adjacent layers, whereas convolutional
neural networks (CNN) focus on learning effective convolutional kernels that
indicate specific wiring patterns among the neurons within the receptive field.
Similarly, recurrent neural networks (RNN) adopt cyclic connections between
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nodes, allowing output to affect subsequent input to the same nodes (Sherstin-
sky, 2020). This special neuron wiring pattern of building cycles between nodes
also enables RNNs to model and infer temporal dynamic relationships (Tealab,
2018) contained in sequential data. More recently, transformer has become an-
other mainstream ANN architecture due to its outstanding self-attention mech-
anism that allows effective and efficient message exchanges among neurons, and
produced promising results in the natural language processing (Devlin et al.,
2018; Vaswani et al., 2017) and computer vision domains (Dosovitskiy et al.,
2020; Z. Liu et al., 2021). In particular, many advancements in transformer ar-
chitecture design, e.g., vision transformer (ViT) (Dosovitskiy et al., 2020), have
centered around more effective message exchange mechanisms among spatial
tokens by designing different Token Mixers. For instance, the shifted window
attention in Swin (Z. Liu et al., 2021), the token-mixing MLP in Mixer (Tol-
stikhin et al., 2021), and the pooling in MetaFormer (W. Yu et al., 2022), among
others, were all designed to improve the self-attention upon the original vanilla
ViT (Dosovitskiy et al., 2020), and thus enable more effective and efficient mes-
sage exchanges among spatial patches/tokens. However, despite tremendous
advancements in ANN architecture design in MLPs, CNNs, RNNs, and trans-
formers, particularly for better message exchange mechanisms, there has been a
fundamental lack of general principles that can inform and guide such ANN
architecture design and redesign.

To seek such guiding principles for ANN architecture design, more and
more research studies started exploring the “structural signatures" of well-performing
ANNs. Hence, the deep learning community has witnessed a paradigm shift
from optimal feature design to optimal ANN architecture design. In general,
the major strategies for optimal ANN architecture design can be categorized
into two basic streams based on how to search in the neural architecture space.
The first strategy is to design neural architectures that achieve the best possi-
ble performance using given computing resources in an automated way with
minimal human intervention. Neural architecture search (NAS) (Elsken et al.,
2019; Ren et al., 2021; Zoph & Le, 2016) is a major methodology in this cate-
gory. NAS has a relatively low demand for the researchers’ prior knowledge
and experience, making it easier to perform modifications to the neural archi-
tecture though it usually comes with a high computational cost. The second
category of the strategy is to take the advantage of prior knowledge from spe-
cific domains, such as brain science, to guide ANN architecture design. For
example, the authors in (Y. Zhang, Choi, et al., 2021) designed a two-stream
model for grounding language learning in vision based on the brain science
principle that humans learn language by grounding concepts in perception and
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action, and encoding “grounded semantics” for cognition. It is worth noting
that the above-mentioned two strategies should be viewed as complementary
to each other rather than being in conflict, and their combination provides the
researchers with an opportunity to explore and design well-performing neu-
ral architectures under different principles. For instance, recent studies, via
qualitatively post-hoc analysis, have found that the best-performing ANNs sur-
prisingly resemble biological neural networks (BNN) (You et al., 2020), which
indicates that ANNs and BNNs may share some common principles to achieve
optimal performance in either machine learning or cognition/behavior tasks.

Regular Self-Attention 
Core-Periphery

Graph
Core-Periphery
Brain Networks Core-Periphery Self-Attention 

Self-Attention 
in ViTs

Complete
Graph

Biological Neural Network Artificial Neural Network

Figure 4.6: The Core-Periphery principle in brain networks inspires the de-
sign of ANNs. The Core-Periphery structure broadly exists in brain networks,
with a dense “core” of nodes (pink) densely interconnected with each other
and a sparse “periphery” of nodes (blue) sparsely connected to the core and
among each other. Inspired by this principle of BNN, we aim to instill the
Core-Periphery structure into the self-attention mechanism and propose a new
CP-ViT model.

Inspired by the above-mentioned prior outstanding studies, in this work,
we aim to proactively instill the Core-Periphery (CP) organization to guide
the redesign of ANNs by using ViT as a working example. It has been widely
confirmed that the Core-Periphery organization universally exists in the func-
tional networks of human brains and other mammals, effectively promoting
the efficiency of information transmission and communication for integrative
processing (Bassett et al., 2013; S. Gu et al., 2020). The concept of the Core-
Periphery brain network is illustrated in Fig. 4.6. By using the Core-Periphery
property as a guiding principle, we infused its effective and efficient information
communication mechanism into the redesign of ViT. To this end, we quan-
tified the Core-Periphery property of the human brain network, infused the
Core-Periphery property into ViT, and proposed a novel CP-ViT architecture.
Specifically, we update the complete graph of dense connections in the original
vanilla ViT (Dosovitskiy et al., 2020) with a sparse graph with Core-Periphery
property (CP graph), where the core nodes are redesigned and reorganized to
play an integrative role and serve as a center for other periphery nodes to ex-
change information. Moreover, in our design, a novel learning mechanism
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is used to endow the core nodes with the power to capture the task-related
meaningful and important image patches. We evaluated the proposed CP-ViT
on multiple public datasets, including a medical image dataset (INbreast) and
natural image datasets (CIFAR-10, CIFAR-100, TinyImageNet). The results
indicate that the optimized CP-ViT in sweet spots (You et al., 2020) outper-
forms other ViTs. We summarize our contributions in three aspects: 1) This
work provides novel insights for brain-inspired AI: we can utilize the principles
found in BNNs to guide and improve our ANN architecture design; 2) We
show that there exist sweet spots of CP graphs that lead to CP-ViTs with signif-
icantly improved performance and 3) The core nodes in CP-ViT correspond to
task-related meaningful and important image patches, which can significantly
enhance the interpretability of the trained deep model.
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Figure 4.7: (a) Two types of representative brain networks in motor and work-
ing memory tasks. (b) Three examples of CP graphs. (c) Complete graph. The
first row in (a), (b), and (c) shows their wiring patterns, while the second row
shows their corresponding adjacency matrices. Black color in adjacency matrices
means connections between nodes, while white represents no edge. (d) Graph
search space defined by the total nodes number and the core nodes number.
The complete graphs are located at the diagonal highlighted by a red box and
the CP graphs are located at the remaining parts.

4.2.3 Results

Exploring Core-Periphery Graphs

Core-Periphery property in brain networks. We quantitatively measured
the Core-Periphery property of brain networks. Working memory network
(BN-WM) and motor network (BN-M) are two typical functional networks
that are widely existed in the human brain. In this work, we used task fMRI
data of these two tasks in the Human Connectome Project (Van Essen et al.,
2013) to generate functional brain networks. Using voxels as nodes and the cor-
relations between fMRI signals associated with each voxel as edges, we built two
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population-level functional networks and showed their connection patterns as
well as the adjacency matrices in Fig. 4.7(a). To measure the Core-Periphery
property of the two functional brain networks, we adopted independent prob-
ability (Cucuringu et al., 2016) as the measurement. Independent probability
is defined as the probability that there is an edge between any pairs of nodes in
a given matrix. Thus, the independent probabilities of the core-core connec-
tions, core-periphery connections, and periphery-periphery connections can
be represented as Icc, Icp and Ipp, respectively. If the given matrix or graph is
organized in a Core-Periphery manner (Holme, 2005) (M. P. Rombach et al.,
2014), the corresponding independent probabilities will have the following rela-
tions: Icc > Icp > Ipp. According to previous studies (H. Liu et al., 2019a), the
convex gyri and concave sulci areas, which are two basic anatomical structures
of the cerebral cortex, play different functional roles: gyri are functional hubs
for global information exchange while sulci are responsible for local informa-
tion processing. Therefore, we divided the nodes (voxels) into two categories,
gyri-nodes (nodes in gyri regions) and sulci-nodes (nodes in sulci regions), and
examined if brain networks have CP structure: gyri-nodes act as core nodes
and sulci-nodes act as periphery nodes. The core-periphery measures of brain
networks are shown in the last two columns in Table 4.3. Rcc,Rpp andRcp rep-
resent the normalized independent probabilities of core-core, core-periphery,
and periphery-periphery connections. The independent probabilities and nor-
malized independent probabilities are formulated as:

Icc =
1Acc

∥Acc∥1
, Icp =

1Acp

∥Acp∥1
, Ipp =

1App

∥App∥1
,

Rcc = Icc/(Icc + Icp + Ipp),

Rcp = Icp/(Icc + Icp + Ipp),

Rpp = Ipp/(Icc + Icp + Ipp).

(4.8)

Core-Periphery structure in artificial neural networks. We introduced
the Core-Periphery organization into ANNs by CP graphs. There are two key
factors that can affect the CP graph generation process. The first is the number
of nodes, including the number of total nodes and the core nodes, which defines
the search space. In this work, we set the maximum number of total nodes as
196, i.e., the number of patches for the vision transformer, then the number
of core nodes can be any number between 0 and 196. Thus, the search space
will include

∑196
i=1

∑0<j<=i
j (i + j) = 19208 types of CP graphs, where i

and j represent the number of total nodes and the core nodes. The second
is the wiring patterns of CP graphs: in this work, we used pcc, pcp, and ppp
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Table 4.3: Evaluation of the Core-Periphery property in CP graphs, graphs
generated by other graph generators, and brain networks

IP CP Graphs CE. Graphs WS Graphs ER Graphs BN-M BN-WM
Rcc .59± .06 .33± .00 .40± .27 .36± .23 .55± .11 .61± .09
Rcp .35± .13 .33± .00 .40± .28 .36± .24 .34± .07 .26± .10
Rpp .07± .06 .33± .00 .20± .28 .28± .22 .15± .05 .14± .06

to represent the wiring probabilities between core-core nodes, core-periphery
nodes, and periphery-periphery nodes, respectively. Fig.4.7 (b) and (c) present
the wiring patterns and adjacency matrices of three examples of CP graphs and
the complete graph. As shown in Fig. 4.7(b) and (c), CP graphs are densely
connected for core nodes and sparsely connected for periphery nodes. The
overall connection patterns of CP graphs are more sparse than the complete
graph. The search space of CP graphs was shown in Fig. 4.7(d) where the
complete graphs located at the diagonal were highlighted by a red box and three
types of CP graphs corresponding to Fig. 4.7(b) were highlighted by pink circles.
For each type of CP graph, we generated 5 samples with different wiring patterns
and obtained 19208 * 5 CP graphs in total. Since the number of the generated
CP graphs is huge (19208 * 5 in total), we sampled 190 types of CP graphs out
of the total 19208 and finally obtained 190*5 candidates. For example, for a CP
graph with 50 nodes, the number of core nodes is set to be [10, 20, 30, 40]. As
a result, four different CP graphs, including [50, 10], [50, 20], [50, 30], and [50,
40], are obtained. For each of these four types of CP graphs, we generate 5
samples for further experiments.

Similar to brain networks, we also used the normalized independent prob-
ability to measure the Core-Periphery property for the generated CP graphs.
We calculated the normalized averaged independent probability over 190*5 CP
graphs and showed the results in the first column of Table 4.3. From the ta-
ble we can see that Rcc > Rcp > Rpp, which suggests that our generated CP
graphs, as expected, display prominent Core-Periphery properties, while the
graphs generated by the classic graph generators, such as (1) Complete graph
(CE.) generator; (2) Watts-Strogatz (WS) generator; and (3) Erdos-Renyi (ER)
generator don’t have the Core-Periphery property.
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Table 4.4: Summary of datasets

Dataset Training Validation Class Original Res. Resized Res.
INbreast 6000 100 3 1024 * 1024 * 3 224 * 224 * 3

CIFAR-10 50000 10000 10 32 * 32 * 3 224 * 224 * 3
CIFAR-100 50000 10000 100 32 * 32 * 3 224 * 224 * 3

TinyImageNet 100K 10000 200 64 * 64 * 3 224 * 224 * 3

Sweet Spots for CP-ViTs

In this section, we evaluated the performance of the proposed CP-ViT. The CP-
ViT was implemented based on the ViT-S/16 architecture (X. Chen et al., 2021)
and evaluated on 4 different types of public datasets, the medical image dataset
INbreast (Moreira et al., 2012), the natural image dataset CIFAR-10 (Krizhevsky,
Hinton, et al., 2009), CIFAR-100 (Krizhevsky, Hinton, et al., 2009) and Tiny-
ImageNet (Griffin et al., 2007). The summary of the datasets we used in this
work is presented in Table 4.4. The parameters of CP-ViT were initialized and
fine-tuned from ViT-S/16 trained on ImageNet (Krizhevsky et al., 2017). We
trained the CP-ViT for 100 epochs with batch size 64 for INBreast and 256 for
CIFAR-10, CIFAR-100 and TinyImageNet, and used AdamW optimizer and
cosine learning rate schedule (Loshchilov & Hutter, 2016) with an initial learn-
ing rate of 0.0001 and minimum of 1e−6. All the experiments were conducted
using NVIDIA Tesla V100 GPU.

We explored the performance of different types of CP graphs in the search
space (Fig. 4.7(a)) in terms of top 1 accuracy and connection ratio. The connec-
tion ratio (CR) quantitatively measures the computational costs of different
self-attention operations, which is defined by (4.9):

CR =
1Mcp

∥Mcp∥1
(4.9)

where 1Mcp represents the number of 1s in the mask matrix of cp graphs -Mcp

which is derived from the adjacency matrix of the CP graph, and ∥•∥1 is the
number of elements in the mask matrix. In general, CR represents the ratio of
actual self-attention operations to the potential maximum self-attention oper-
ations. Given a graph, the potential maximum self-attention operation is fixed.
Less actual self-attention operation means less computational cost and hence it
has a smaller CR value.
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(c) CP-ViT on CIFAR-100
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(d) CP-ViT on TinyImageNet
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Figure 4.8: Performance of CP-ViT measured using INbreast, CIFAR-10,
CIFAR-100 and TinyImageNet datasets. Sub-figures on the left column under
each datasets show the top 1 classification accuracy of the CP-ViTs and vanilla
ViTs in the search space. A deeper color means higher top 1 accuracy. Sweet spots
are marked by red crosses, in which CP-ViTs achieve better performance than
vanilla ViT. Sub-figures on the middle column are the accuracy degradation of
the CP-ViTs compared to vanilla ViTs. Sub-figures on the right column are the
self-attention connection ratio of the CP-ViTs and vanilla ViT. Lighter color
means a lower connection ratio. Sweet spots are marked by the blue crosses.
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Table 4.5: Comparison between the proposed CP-ViT in sweet spots with fine-
tuned vanilla ViT-S (Dosovitskiy et al., 2020). * means vanilla ViT-S finetuned
by ourselves.

Dataset Model CP Graph CR (%) Rcc,Rcp,Rpp Top1 Acc.(%)
ViT-S(*) (N,N) 100.00 0.33, 0.33, 0.33 89.91
CP-ViT (30, 10) 32.36 0.58, 0.33, 0.09 90.58
CP-ViT (50, 10) 29.20 0.53, 0.34, 0.12 90.01
CP-ViT (90, 20) 43.82 0.52, 0.36, 0.12 90.58
CP-ViT (90, 70) 84.50 0.54, 0.40, 0.06 90.01
CP-ViT (100, 90) 92.80 0.49, 0.39, 0.11 90.69

INbreast CP-ViT (130, 80) 31.34 0.58, 0.34, 0.07 90.58
CP-ViT (130, 100) 82.94 0.57, 0.36, 0.07 90.69
CP-ViT (150, 120) 84.18 0.57, 0.41, 0.02 90.01
CP-ViT (160, 140) 87.77 0.55, 0.41, 0.03 90.58
CP-ViT (170, 130) 80.79 0.57, 0.41, 0.02 90.58
CP-ViT (170, 150) 87.65 0.56, 0.41, 0.03 90.12
CP-ViT (190, 180) 84.89 0.52, 0.42, 0.05 90.69
ViT-S(*) (N,N) 100.00 0.33, 0.33, 0.33 98.50
CP-ViT (100, 90) 92.80 0.49, 0.39, 0.11 98.91
CP-ViT (110, 100) 94.49 0.53, 0.42, 0.05 98.91
CP-ViT (120, 90) 89.73 0.51, 0.41, 0.08 98.91

CIFAR-10 CP-ViT (120, 110) 94.70 0.49, 0.38, 0.12 98.97
CP-ViT (130, 110) 87.32 0.56, 0.40, 0.03 98.97
CP-ViT (160, 150) 90.47 0.54, 0.39, 0.06 98.91
CP-ViT (180, 150) 91.79 0.50, 0.42, 0.07 98.91
CP-ViT (190, 170) 92.59 0.53, 0.43, 0.03 98.94
ViT-S(*) (N,N) 100.00 0.33, 0.33, 0.33 91.10
CP-ViT (110, 90) 88.96 0.59, 0.37, 0.04 91.32

CIFAR-100 CP-ViT (110, 100) 94.49 0.53, 0.42, 0.05 91.45
CP-ViT (120, 100) 92.40 0.50, 0.41, 0.09 91.15
CP-ViT (130, 120) 87.50 0.58, 0.32, 0.09 91.11
CP-ViT (190, 180) 94.89 0.52, 0.42, 0.05 91.12
ViT-S(*) (N,N) 100.00 0.33, 0.33, 0.33 87.36
CP-ViT (120, 110) 94.71 0.49, 0.39, 0.12 87.51

TinyImageNet CP-ViT (130, 120) 87.50 0.58, 0.33, 0.09 87.37
CP-ViT (160, 130) 90.02 0.54, 0.44, 0.02 87.40
CP-ViT (160, 150) 90.47 0.54, 0.40, 0.06 87.63
CP-ViT (180, 170) 95.84 0.50, 0.43, 0.07 87.84

For each specific combination of different numbers of nodes/core nodes
in the search space, we trained the CP-ViT with 5 different CP graph samples
and reported the average result in Fig. 4.8. The four results in Fig. 4.8(a-d)
correspond to four different datasets. For the results on each dataset, we display
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three subfigures: the top 1 accuracy (left), the accuracy degradation (middle),
and the connection ratio (right). We highlighted the sweet spots, which are
corresponding to the CP graphs that lead to improved performance (You et al.,
2020), with red crosses in Fig. 4.8. In the top-1 accuracy of Fig. 4.8, deeper color
means better performance. The accuracy degradation subfigures show the ac-
curacy variation compared to fully connected self-attention ViTs. Our CP-ViTs
gain a positive boost in sweep spots as it has higher accuracy than vanilla ViTs.
At the same time, our CP-ViTs maintain competitive top-1 accuracy in most
search space areas, as shown in the middle subfigures. The performance of CP-
ViTs varies in the search space. This result indicates that different self-attention
(wiring) patterns may have great influences on the performances of ViTs. Com-
pared to vanilla ViTs with a fully-connected self-attention pattern, the proposed
CP-ViT provides the potential for the model to only search for optimal self-
attention patterns. The CRs of all the ViTs including vanilla ViTs and CP-ViTs
were shown on the right. The CRs of the sweet spots were marked with a blue
cross. Besides the improvement in classification accuracy (0.78% for INbreast,
0.47% for CIFAR-10, 0.35% for CIFAR-100, 0.48% for TinyImageNet),
the proposed CP-ViT also leads to a great reduction in connection ratio due to
less self-attention operations (-70.80% connections for INbreast, -12.68%
connections for CIFAR-10, -12.50% connections for CIFAR-100, -12.50%
connections for TinyImageNet). The model setting, top1 accuracy, and CRs of
different ViTs were reported in Table 4.5. For all the four datasets, our CP-ViT
not only shows improved classification performance but also reduces connec-
tion ratio compared to vanilla ViTs. Interestingly, our results demonstrate that
the “sweet spots" are corresponding to the wiring patterns (graphs) with CP
structures, instead of fully connected self-attention.

We also compared the proposed CP-ViT with the state-of-the-art methods
in Table 4.6, including various convolutional networks and transformer archi-
tectures. Note that we applied the core-periphery principle to guide the design
on small ViT, therefore, the counterparts we compared to in this work are also
small-scale transformers and their variants. “−−" means there is no available
reports or not applicable. As presented in the table, our method outperforms
the CNNs, and a series of variants of transformers on these datasets, suggesting
the superiority of the proposed CP-ViTs over the existing methods.

Visualization of Important Patches

Another advantage of CP-ViT is that it can potentially improve the interpretabil-
ity of the deep-learning models via semi-intervention when linking the explain-
able concepts contained in the data to the instilled CP structures (section 3.2.3).
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Table 4.6: Comparisons with state-of-the-art transformers and other architec-
tures.

Model CIFAR-10 CIFAR-100 TinyImageNet INbreast
ResNet-18 (K. He et al., 2016b) 95.55 76.64 67.33 84.34

ResNet-18+Gaze (S. Wang, Ouyang, et al., 2022) −− −− −− 86.74
ViT-S-SAM (X. Chen et al., 2021) 98.20 87.60 87.50 90.20

ViT-S (X. Chen et al., 2021) 97.60 85.70 87.40 89.91
DeiT-S (Touvron et al., 2021) 97.50 90.30 86.90 89.90

Mixer-S-SAM (X. Chen et al., 2021) 96.10 82.40 85.60 87.60
T2T-ViT-12 (Y. Wang et al., 2021) 98.53 89.63 86.20 88.40

AutoFormer-S (M. Chen et al., 2021) 98.50 90.60 87.60 90.10
CP-ViT-S(ours) 98.97 91.45 87.84 90.69

In our CP-ViT the core nodes are expected to be associated with the impor-
tant image patches relating to the classification tasks. To evaluate this, we show
the patches that were redistributed to the core nodes when the model was well-
trained in Fig. 4.9. For INBreast, we randomly selected the images of three
subjects in each class and displayed the original images, the images overlaid with
important patches, and the images overlaid with the expert’s eye gazes in three
columns. As shown in the Fig. 4.9, the patches of the core nodes are well co-
localized with the locations that were identified as diagnostic biomarkers of the
disease in literature publications (Ibrokhimov & Kang, 2022). We also show
the medical physicians’ eye gaze maps on these images, given that the eye gaze
acquired by eye-tracking equipment is considered the ground truth for identi-
fying important areas in the image. The important patches identified by our
CP-ViT highly overlap with the eye gaze maps, demonstrating the correspon-
dence between the core nodes and the task-related concepts, i.e., the
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Core Patches Identified on INbreast. Overlapping rate (OR) is shown under each image. 
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Figure 4.9: Visualization of important image patches that were distributed to
the core nodes. For the INbreast dataset (the first block), images of three ran-
domly selected subjects for each class were shown. For each subject, there are
three images displayed in three columns. The left column is the original image,
the middle column shows the important patches marked by red, and the right
column is the eye gaze of medical physicians on the image. For the natural im-
age datasets (the second block, CIFAR-10, CIFAR-100 and TinyImageNet), the
important patches identified in eight randomly selected classes were displayed.
The left column is the original image, and the right column shows the identified
core patches marked in red.
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important image patches. For natural image datasets, we also visualized the
patches assigned to the core nodes under the black dotted line in Fig. 4.9. It is
clear that the objects in the patches of core nodes are semantically related to the
class labels.

Fast Search for Sweet Spots

Our proposed CP-ViT aims to achieve better performance more efficiently, by
directly updating the initial dense wiring patterns with sparse CP graphs which
are widely existing in BNN. Previous studies suggest that in ANN there exist
sweet spots that correspond to some specific wiring patterns leading to signif-
icantly improved performance (You et al., 2020). Therefore, it is interesting
to investigate the relationship between sweet spots (the ANN structures with
better performance) and the introduced CP structure. We conducted intensive
experiments to illustrate how the accuracy changes under the CP measurements
(in terms of normalized independent probability) and the results are summa-
rized in Fig. 4.10. We found the normalized independent probabilities between
core nodes -Rcc, core and periphery nodes -Rcp and periphery nodes -Rpp fall
in different range: [0.45, 0.70] forRcc, [0.25, 0.45] forRcp, and [0.00, 0.15] for
Rcc. BothRcc andRcp display obvious and consistent patterns in terms of the
relationship between ANN performance (accuracy) and CP properties: there
exists a certain range of CP structures with which the corresponding wiring
patterns of ANN can achieve better performance. For example, when the nor-
malized independent probabilities between core and periphery nodes (Rcp) fall
within the range of [0.36, 0.42], our CP-ViT inclines to have the best accuracy
on all four datasets. On the contrary, the normalized independent probabilities
between periphery nodes (Rpp) show relatively less influence on the overall per-
formance. These results suggest that the wiring patterns between core nodes
and periphery nodes have more influence on the overall ANN performance than
the wiring patterns between periphery nodes. For comparison, we also calcu-
lated the range of group-wise normalized independent probabilities in human
functional brain networks when performing two different tasks - motor and
working memory tasks. The results are shown in Fig. 4.10 (e-f). Interestingly,
the distribution ofRcc,Rcp andRcp shows obvious overlaps among different
functional brain networks though the major range of CP metrics is different
from ANN (our CP-ViT). In general, our CP-ViT can leverage the CP struc-
ture to learn the optimal combinations of total nodes and core nodes, and to
quickly find the sweet spots in a more efficient way.
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Figure 4.10: Visualization of Core-periphery measures versus the classification
performance. The regression results of the normalized independent probability
versus the classification accuracy for experiments on each dataset are presented
in (a), (b), (c), and (d). The core-periphery measures for brain networks of
motor and working memory are shown in (e) and (f).
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4.2.4 Methods

4.2.5 Related Work

Core-periphery Structure The Core-Periphery structure is a fundamental
network signature that is composed of two qualitatively distinct components:
a dense “core” of nodes strongly interconnected with one another, allowing
for integrative information processing to facilitate the rapid transmission of
the message, and a sparse “periphery” of nodes sparsely connected to the core
and among each other (Gallagher et al., 2021). The Core-Periphery pattern has
helped explain a broad range of phenomena in network-related domains, includ-
ing online amplification (Barberá et al., 2015), cognitive learning processes (Bas-
sett et al., 2013), technological infrastructure organization (Alvarez-Hamelin
et al., 2005; Carmi et al., 2007), and critical disease-spreading conduits (Kit-
sak et al., 2010). All these phenomena suggest that the Core-Periphery pattern
may play a critical role to ensure the effectiveness and efficiency of informa-
tion exchange within the network. In the literature, there are two widely-used
approaches for generating graphs with Core-Periphery property (CP graphs):
the classic two-block model of Borgatti and Everett (BE algorithm) (Borgatti &
Everett, 2000) and the k-cores decomposition (Gallagher et al., 2021). The for-
mer approach partitions a network into a binary hub-and-spoke layout, while
the latter one divides it into a layered hierarchy. In this work, for simplicity,
we adopted a two-block model to generate a CP graph which is used to guide
the self-attention operations between patches (tokens) in ViT. In this way, the
Core-Periphery property is infused into the ViT model.

Methods for Designing More Efficient ViT Architecture ViT and its
variants have achieved promising performances in various computer vision tasks,
but their gigantic parameter counts, heavy run-time memory usage, and high
computational cost become a major burden for the applications. Therefore,
there is an urgent need to develop lightweight vision transformers with compa-
rable performance and efficiency. For this purpose, several studies aimed to use
network pruning, sparse training, and supernet-based NAS to slim vanilla ViT.
From token level, Tang et al. (Tang et al., 2022) designed a patch slimming
method to discard useless tokens. Evo-ViT (Y. Xu et al., 2022) updated the se-
lected informative and uninformative tokens with different computation paths.
VTP (M. Zhu et al., 2021) reduced embedding dimensionality by introducing
control coefficients. From model architecture level, UP-ViTs (H. Yu & Wu,
2021) pruned the channels in ViTs in a unified manner, including residual con-
nections in all the blocks, multi-head self-attention (MHSA) (Vaswani et al.,
2017), feedforward neural layers (FFNs), normalization layers, and convolution
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layers in ViT variants. SViTE (T. Chen et al., 2021) dynamically extracted and
trained sparse subnetworks instead of training the entire model. To further
co-explore data and architecture sparsity, a learnable token selector was used
to determine the most vital image patch embeddings in the current input sam-
ple. AutoFormer (M. Chen et al., 2021) and ViTAS (Su et al., 2021) leveraged
supernet-based NAS to optimize the ViT architecture. Despite the remarkable
improvements achieved by the above methods, both token-sampling and data-
driven strategies may highly depend on the data and tasks performed, impeding
the vision transformers’ generalization capability. A more universal principle
(e.g., derived from BNNs) that can guide a more efficient design of ANN’s
architecture is much desired. In this work, we will leverage a widely existing
Core-Periphery property in BNN to develop a more efficient CP-ViT.

Core-Periphery Principle Guided Transformer

The Core-Periphery principle can be applied to ViT and its variants via a unified
framework that is illustrated in Fig. 4.11. The framework includes two main
parts: Core-Periphery graph generation and Core-Periphery graph guided re-
design of the self-attention mechanism.
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Figure 4.11: Core-Periphery Principle Guided Re-design of Self-Attention. The
proposed Core-Periphery guided re-design framework for ViTs consists of two
major components: the Core-Periphery graph generator and the re-design of the
self-attention mechanism. The basic idea is that we mapped the ViT structure
to graphs and proposed a new graph representation paradigm to represent the
self-attention mechanism. Under this paradigm, the design of the self-attention
mechanism can be turned into a task of designing desirable graphs. (a) The CP
graph generator was proposed to generate graphs with Core-Periphery property
in a wide range of search spaces. (b) The self-attention of the nodes is controlled
by the generated CP graph and the patches are re-distributed to different nodes
by a novel patch distribution method. (c) The new self-attention mechanism
will upgrade the regular self-attention in vanilla ViT. The new ViT architecture
is thus named as CP-ViT.

Core-Periphery Graph Generation The self-attention of our proposed CP-
ViT is controlled by Core-Periphery graphs (CP graphs). We proposed a CP
graph generator to generate a wide spectrum of CP graphs in the graph space
defined by the number of total nodes and the core nodes. Although several
graph generators have been proposed in previous works, they were not designed
for generating CP graphs. For example, Erdos-Renyi (ER) generator samples
graphs with given node and edge numbers uniformly and randomly (Erdos,
Rényi, et al., 1960); Watts-Strogatz (WS) generator generates graphs with small-
world properties (Watts & Strogatz, 1998), and the complete graphs genera-
tor generates graphs where nodes are pair-wise densely connected with each
other (Walker, 1992).

To generate graphs with CP property, we proposed a novel CP graph gen-
erator that is parameterized by a total node number n, a core node numberm,
and three wiring thresholds pcc, pcp, ppp which are the wiring probabilities
between the core-core nodes, core-periphery nodes, and periphery-periphery
nodes, respectively. Based on these measures, the CP graph generation process
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is as follows: we first defined the core nodes numberm and the periphery nodes
number n−m; Then, for each of the core-core node pairs, we used a random
seed sampled from the continuous uniform distribution in [0, 1] to generate a
wiring probability prs. If the wiring probability is greater than the threshold
pcc, the two core nodes are connected. This wiring process is formulated as:

A (i, j) =

{
1 if prs ≥ pcc

0 if prs < pcc
(4.10)

whereA is the adjacency matrix of the generated graph, 1means that there exists
an edge between the nodes i and j, 0 means there is no edge between the nodes.
The same procedure was applied to core-periphery and periphery-periphery
node pairs with the corresponding thresholds pcp and ppp, respectively. In
this way, by using different combinations of n, m, and wiring thresholds, we
can generate a large number of candidate graphs in the graph space; finally,
all the generated graphs were examined by the CP detection algorithm (BE
algorithm) (Borgatti & Everett, 2000) and the graphs with CP property will be
used in the further steps to guide the self-attention operation.

Core-Periphery Guided Self-Attention To instill the CP principle into the
self-attention mechanism in ViT, we redesigned the self-attention operations
according to the generated CP graphs: the patches are replaced by the nodes, and
the new self-attention relations are replaced by the edges in the CP graph. Thus,
the self-attention in the vanilla ViT can be represented as a complete graph,
and similarly, the CP principle can be effectively and conveniently infused into
the ViT architecture by upgrading the complete graph with the generated CP
graphs. CP graph can be represented asG = (V , E), with nodes setV and edges
set E . The redesign of self-attention is formulated as:

x
(r+1)
i = σ(r)({(

q
(r)
i (K

(r)
j )T

√
dk

)V
(r)
j ,∀j ∈ N(i)}) (4.11)

where σ(·) is the activation function, which is usually the softmax function in
ViTs, q(r)i is the query of patches in the i-th node in G,N(i) = {i∥i∨ (i, j) ∈
E} are the neighborhood nodes of node i, dk is the dimension of queries and
keys, andK(r)

j and V (r)
j are the key and value of patches in node j.

In vanilla ViT, one input image is divided into 196 patches, and each patch
resolution is 16 by 16. In CP-ViT, each node corresponds to a single patch or
multiple patches. We proposed the following patch assignment pipeline to map
the original patches to the nodes: for a CP graph with n nodes, each node will
be assigned to either ⌊196/n⌋+ 1 or ⌊196/n⌋ patches. For example, if we use
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a CP graph with 5 nodes, the 5 nodes will have 40, 39, 39, 39, and 39 patches, re-
spectively; and if we use a CP graph with 196 nodes, each node will correspond
to a single patch. Note that the patches are randomly assigned to the nodes
at the beginning of the training process, and then they will be re-distributed
iteratively after each training epoch based on a novel patch distribution method
that will be elaborated in the next section. Based on the above discussion, the
CP graph-guided self-attention conducted at the node level can be formulated
as:

Attention(Q,K, V,Mcp) = softmax(
QKT ⊙Mcp√

dk
V ) (4.12)

where the queries, keys, and values of all the patches are packed into the matrices
Q,K , and V , respectively. Mcp is the mask matrix derived from the adjacency
matrixA of the CP graph, and⊙ is the dot product. The size of the mask matrix
Mcp is 197× 197 (196 patches plus 1 classification token), and it is a symmetric
matrix. The derivation process ofMcp is as follows: for a CP graph with 5 nodes,
the 5 nodes have 40, 39, 39, 39, and 39 patches, respectively. If the element (1, 2)
in the corresponding adjacencyA is 1, which means the node #1 is connecting
to the node #2, and as a result, the 40 patches corresponding to the node #1
are connecting to the 39 patches associated with the node #2. Therefore, the
elements at (1 : 40, 40 : 79) and (40 : 79, 1 : 40) in the mask matrixMcp will
be 1, where the (40 : 79, 1 : 40)means the elements from the 40th row to 79th
row, and from the 1st column to the 40th column. The elements in the last
row and column ofMcp are 1 because the classification token is connected to all
the nodes, including both core and periphery nodes. Similar to the multi-head
attention in transformers (Vaswani et al., 2017), our proposed CP multi-head
attention is formulated as:

MultiHead(Q,K, V,Mcp) = Concat(head1, ..., headh)W
o

where headi = Attention(QWQ
i , KW

K
i , V W

V
i ,Mcp)

(4.13)

where the parameter matrices WQ
i , WK

i , W V
i and WO are the projections.

Multi-head attention helps the model to jointly aggregate information from
different representation subspaces at various positions. In this work, we apply
the CP principle to each representation subspace.
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Algorithm 3 Patch Re-Distribution
1: Input: Likelihoods of an image belonging to a particular class (before

activation layer) y, patch embeddings P k, k = 1, 2, ..., 196
2: Calculate the gradients of the likelihoods y with respect to patch embed-

dings P k, respectively. ∂y
∂Pk

i
.

3: Obtain patch important weights αk, k = 1, 2, ..., 196 by average-pooling
of gradients over the feature dimension, αk = 1

Z

∑Z
i=1

∂y
∂Pk

i
, where Z is

the dimension of the patch embeddings.
4: Sort the patch important weights αk in a descending manner, Sort(αk).
5: Determine the number of patches assigned to core nodes, for simplicity,

we call these patches as core patches.
6: Match the core patches to core nodes in a way that the patches with higher

importance weights are distributed to the core nodes with a higher degree.

7: Re-organized the patches of the images according to the importance
weights.

8: Output: Patch re-organized images.

… … … … … … … … … …

… … … … … … … … … …

14

14

class token

… … … … … … … … … …

… … … … … … … … … …

1st Epoch 
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Last Epoch Patch Re-distribution

Figure 4.12: Illustration of Patch Redistribution Process. The pink nodes are
the core nodes, while the blue nodes are the periphery nodes. The initial patch
distribution at the first epoch is the same as the vanilla ViTs. After each iteration
during the training process, the gradients of patches discriminate from each
other due to different contributions to the classification. The red the image
patches are, the high gradient they are. Thus, the core patches that contribute
most to the classification task are re-distributed to core nodes.
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Patch Redistribution The CP structure inclines to make the communica-
tion and message exchange at core nodes more intensive while less frequent
among periphery nodes. This is based on the fact that the core nodes usually
process the most important information in many biological networks (Bassett
et al., 2013). To this end, we need to evaluate the importance of the patches and
select the most important ones to assign to the core nodes, which is defined as
task-related activation feature mapping. For a specific task of CP-ViT, in order
to identify the important patches, we computed the gradients of the output
y (before the activation function) with respect to patch features (after patch
embedding) P k, i.e. ∂y

∂Pk . These gradients flowing back to the patch features
are global-average-pooling over the feature dimensions to obtain the patch im-
portance weights. The important weights are:

αk =
1

Z

Z∑
i=1

∂y

∂P k
i

(4.14)

whereZ is the dimension of the patch embedding features. After we have the
weights of all the patches, the topK patches that have the highest weights are
selected and re-distributed to the core nodes. Note that the patch distribution
process is not random but distributed based on the nodes’ degree in a in a de-
scending manner: the patches with higher importance weights are distributed
to the core nodes with a higher degree. The algorithm for patch redistribution
is detailed described in algorithm 3, and the corresponding patch redistribution
process is illustrated in Fig. 4.12. As shown in Fig. 4.12, the image patches were
randomly distributed at the first epoch but as the training process proceeded,
patches with high gradients are identified as important patches and gradually
redistributed to the core nodes. After certain iteration epochs, those patches
that contribute the most to the classification result will be distributed to the
core nodes.

4.2.6 Conclusion

In this work, we proactively instilled an organizational principle of BNN, that
is, Core-Periphery property, to guide the design of ANN of ViT. For this, we
provide a unified framework to introduce the core-periphery principle to guide
the design of self-attention, the most prominent mechanism in transformers.
Our extensive experiments suggest that there exist sweet spots of CP graphs that
lead to CP-ViTs with significantly improved predictive performance. In general,
our work advances the state of the art in three ways: 1) this work provides novel
insights for brain-inspired AI by applying organizational principles of BNNs to
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ANN design; 2) the optimized CP-ViT can significantly improve its predictive
performance while have the potential to reduce the unnecessary computational
cost; and 3) the core nodes in CP-ViT are associated with task-related meaning-
ful image patches, which can significantly enhance the interpretability of the
trained deep model.
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Chapter 5

Identification of Causal
Relationship between

Amyloid-β Accumulation
and Alzheimer’s Disease

Progression via
Counterfactual

Inference

5.1 Overview

Alzheimer’s disease (AD) is a neurodegenerative disorder that is beginning with
amyloidosis, followed by neuronal loss and deterioration in structure, func-
tion, and cognition. The accumulation of amyloid-β in the brain, measured
through 18F-florbetapir (AV45) positron emission tomography (PET) imaging,
has been widely used for early diagnosis of AD. However, the relationship be-
tween amyloid-β accumulation and AD pathophysiology remains unclear, and
causal inference approaches are needed to uncover how amyloid-β levels can
impact AD development. In this paper, we propose a graph varying coefficient
neural network (GVCNet) for estimating the individual treatment effect with
continuous treatment levels using a graph convolutional neural network. We
highlight the potential of causal inference approaches, including GVCNet, for
measuring the regional causal connections between amyloid-β accumulation
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and AD pathophysiology, which may serve as a robust tool for early diagnosis
and tailored care.

5.2 Background

The differentiation of Alzheimer’s disease (AD) from the prodromal stage of
AD, which is the mild cognitive impairment (MCI), and normal control (NC)
is an important project that interests many researchers making effort on (Q.
Li et al., 2017; M. B. Miller et al., 2022). It is commonly recognized through
studies that the progression of AD involves a series of gradually intensifying
neuropathological occurrences. The process begins with amyloidosis, followed
by neuronal loss and subsequent deterioration in the areas of structure, func-
tion, and cognition (Ossenkoppele et al., 2022). As a non-invasive method that
could measure the accumulation of amyloid in the brain, 18F-florbetapir (AV45)
positron emission tomography (PET) imaging has been widely used for early
diagnosis of AD (Q. Ge et al., 2022). The use of florbetapir-PET imaging to
characterize the deposition of amyloid-β has shown to be of significant diag-
nostic value in identifying the onset of clinical impairment.

In recent years, there has been increasing research in counterfactual causal in-
ference to estimate the treatment effect in various domains such as medicine (B.-M.
Lv et al., 2021; Meilia et al., 2020; Yazdani & Boerwinkle, 2015), public health (Glass
et al., 2013; Glymour & Spiegelman, 2017; Rothman & Greenland, 2005), and
marketing (Hair Jr & Sarstedt, 2021; Varian, 2016). Especially, estimating the
causal effect of continuous treatments is crucial. For example, in precision
medicine, a common question is “What is the ideal medicine dosage to attain
the best result?”. Therefore, an average dose-response function (ADRF) that
elucidates the causal relationship between the continuous treatment and the
outcome becomes imperative.

Estimating the counterfactual outcome presents a significant challenge in
causal effect estimation, as it is inherently unobservable. To provide a clear defi-
nition, we use the binary treatment scenario (T = 1 or T = 0) for illustration.
As depicted in Fig. 5.1, let us consider a patient with a headache (xi) who has
the option to either take the medicine (T = 1) or not take it (T = 0). The
potential outcomes corresponding to these two treatment choices would be
being cured (Yi(T = 1)) or not being cured (Yi(T = 0)), respectively. The
causal effect is defined as the difference between these two potential outcomes.
However, given that a patient can only choose one treatment option, we can
observe only one outcome (the observed outcome), while the other outcome
that was not observed is considered the counterfactual outcome. Similarly, in
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the context of a continuous setting, estimating the counterfactual outcome
remains a significant challenge.

Therefore, a variety of existing works on causal effect estimation focus on
counterfactual estimation (Hassanpour & Greiner, 2019; Johansson et al., 2016;
Morgan & Winship, 2015) under the assumption of binary treatments or con-
tinuous treatments (ADRF estimation) (Bica et al., 2020; Hirano & Imbens,
2004; L. Nie et al., 2021; Schwab et al., 2020; Y. Zhang et al., 2022).

Especially, in the context of continuous treatments, the generalized propen-
sity score (GPS), proposed by Hirano and Imbens (Hirano & Imbens, 2004), is
a traditional approach to estimate ADRF with counterfactual outcomes. More-
over, as machine learning has gained increasing attention due to its extraor-
dinary ability to solve complex problems, many existing works use machine
learning techniques to address the problem. Schwab et al. (Schwab et al., 2020)
proposed DRNet to split a continuous treatment into several intervals and built
separate prediction heads for them on the latent representation of input. Nie
et al. (L. Nie et al., 2021) adopted varying coefficient structure to explicitly in-
corporate continuous treatments as a variable for the parameters of the model,
preserving the continuity of ADRF. Other methods, such as GAN (Bica et al.,
2020) and transformer (Y. Zhang et al., 2022), have also been proposed.

In this work, we propose a novel model, the Graph Varying Coefficient
Neural Network (GVCNet), for measuring the regional causal associations
between amyloid-β accumulation and AD pathophysiology. Specifically, by
comparing our model with the most advanced model, VCNet, we demonstrate
that our model achieves better performance in AD classification. Moreover, we
adopt K-Means clustering to group the generated average dose-response func-
tion (ADRF) curves from each region of interest (ROI) and then map them
onto the cortical surface to identify the amyloid-β positive regions.

The main contributions of this work are summarized as follows:
1. To the best of our knowledge, this is the early attempt to utilize the brain

structural topology as the graph to measure the regional causal associations
between amyloid-β accumulation and AD pathophysiology. Consistent exper-
imental results on AD public dataset not only demonstrate the effectiveness
and robustness of the proposed framework, but also support this hypothesis:
the AD pathophysiology is deeply associated with amyloid-β accumulation,
no matter with which kind of topology graph. 2. Compared with the most
advanced approach (i.e., VCNet), the proposed GVCNet experimentally ob-
tains a higher diagnosis accuracy, suggesting that the good performance could
be achieved with graph topology. As such our framework, such attempt ex-
tends the applications of graph-based algorithms on brain imaging analysis and
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Figure 5.1: An Example of counterfactual problem: A patient with a headache
who takes medicine and is cured. While the counterfactual scenario, i.e., the
outcome had the patient not taken the medicine, is unobserved.

provides a new insight into the causal inference that combines the phenotype,
structural and functional data. 3. Our work demonstrates clearly that there are
four brain regions (i.e., pre- & post- central gyrus among cortical area, left &
right pallidum among subcortical area) can be as the key ROIs for AD diagno-
sis. With the quantitative experimental results, with such ROIs, the diagnosis
accuracy is better than with the whole brain information.

5.3 Related Work

5.3.1 Counterfactual Outcome Estimation

The definition of counterfactual outcome is typically framed using the potential
outcome framework (Rubin, 1974). To provide a clear definition, we illustrate
with the use of binary treatments, which can be extended to multiple treatments
by comparing their potential outcomes. Each individual xi has two potential
outcomes: Yi(T = 1) and Yi(T = 0), corresponding to the two possible treat-
ments (T = 1 or T = 0). Since an individual can only receive one of the two
treatments in observational data, only one potential outcome can be observed
(observed outcome), while the remaining unobserved outcome is referred to as
the counterfactual outcome. Hence, the major challenge in estimating Individ-
ual Treatment Effect (ITE) lies in inferring counterfactual outcomes. Once the
counterfactual outcomes are obtained, ITE can be calculated as the difference
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between the two potential outcomes:

ITEi = Yi(T = 1)− Yi(T = 0). (5.1)

Many existing approaches have been proposed to estimate the counterfac-
tual outcomes, such as conditional outcome modeling that trains two separate
models to predict outcomes for the treatment group and control group and use
the predicted value to fill the unobserved counterfactual outcomes. In addition,
tree-based and forest-based methods are widely used to estimate ITE (Chip-
man et al., 2010; Hansen, 2008; Wager & Athey, 2018). Additionally, matching
methods (Morgan & Winship, 2015; Stuart, 2010), stratification mathods (L.
Yao et al., 2022), deep representation methods (Hassanpour & Greiner, 2019;
L. Yao et al., 2022) have been proposed to address the problem as well.

5.3.2 Continuous Treatment Effect Estimation

Continuous treatments are of great practical importance in many fields, such
as precision medical. Typically, the objective of continuous treatment effect
estimation is to estimate the average dose-response function (ADRF), which
demonstrates the relationship between the specific continuous treatment and
the outcome. Although recent works utilized the representation learning meth-
ods for ITE estimation (Chu et al., 2020; Johansson et al., 2016; Shalit et al.,
2017; L. Yao et al., 2018), most of the existing works are under the assumption
of binary treatments, which cannot be easily extended to continuous treatment
due to their unique model design.

To address this issue, Schwab et al. (Schwab et al., 2020) extended the TAR-
Net (Shalit et al., 2017) and proposed Dose Response networks (DRNet), which
divided the continuous dosage into several equally-sized dosage stratus, and as-
signed one prediction head for each strata. To further achieve the continuity
of ADRF, Nie et al., (L. Nie et al., 2021) proposed a varying-coefficient neural
network (VCNet). Instead of the multi-head design, it used a varying coeffi-
cient prediction head whose weights are continuous functions of treatment t,
which improved the previous methods by preserving a continuous ADRF and
enhancing the expressiveness of the model. Hence, in this paper, we adopt it
as part of the model to estimate the effect of each Regions of Interest (ROI) of
the brain on Alzheimer’s disease.
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5.3.3 Traditional Correlation-based PET Image Analysis

Methods

The correlation-based methods on PET images analysis could be used in many
clinical applications, such as tumor detection and brain disorder diagnosis. An
et al. used canonical correlation analysis-based scheme to estimate a standard-
dose PET image from a low-dose one in order to reduce the risk of radiation
exposure and preserve image quality (An et al., 2016). Landau et al. used the
traditional corrlation method to compare the retention of the 11-C radiotracer
Pittsburgh Compound B and that of two 18-F amyloid radiotracers (florbetapir
and flutemetamol) (Landau et al., 2014). Zhu et al. used the cannoical represen-
tation to consider the correlations relationship between features of PET and
other different brain neuroimage modalities (X. Zhu et al., 2014). Li et al. used
sparse inverse covariance estimation to reveal the relationship between PET and
structural magnetic resonance imaging (sMRI) (Q. Li et al., 2018).

And for the AD diagnosis, it has been suggested that brain regions such as
the posterior cingulate and lateral temporal cortices are affected more in AD
than the NC, with the florbetapir-PET (Camus et al., 2012). Some researches on
florbetapir-PET imaging have revealed that neurodegeneration does not influ-
ence the level of amyloid-β accumulation. Instead, amyloid-β pathophysiology
is considered a biologically independent process and may play a "catalyst" role
in neurodegeneration (Jack et al., 2014). There have also been many theories
that highlight the amyloid-β pathologies as the main driving forces behind dis-
ease progression and cognitive decline. In order to characterize the relationship
between the amyloid-β accumulation and AD pathophysiology, the counterfac-
tual causal inference method will be a useful tool to uncover how the patterns
of causality or significant changes in regional or temporal amyloid-β levels can
impact the development of AD over time.

5.3.4 Graph Neural Network

Deep learning has revolutionized many machine learning tasks, but challenges
arise when data is represented as graphs. The basic idea behind GNNs is to
iteratively update the feature vectors of each node by aggregating the feature
vectors of its neighboring nodes.

The update rule for a GNN can be formalized as follows:

hl+1
i = σ(aliW

l), ali = gl(hli, {hlu : u ∈ N (i)}), (5.2)
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Figure 5.2: The framework of GVCNet for AD classification and individual
treatment effect estimation. (a) we utilize ChebNet for feature embedding and
then integrate treatment in the following dynamic fully connected layer for AD
classification task. (b) We employee KMeans cluster algorithm to cluster the
individual ADRFs into 3 groups: aβ-positive (up), aβ-negative (down) and aβ-
neutral and mapping these groups on the brain.

where h(l+1)
i is the feature vector of node i at layer l + 1, N (i) is the set of

neighboring nodes of i, gl is the aggregation function at latyer l, and W (l) is
a learnable weight matrix at layer l. The function σ is a non-linear activation
function, such as the ReLU function. Graph convolutional networks (GCNs)
extend convolutional neural networks (LeCun, Bengio, et al., 1995) to the graph
domain, allowing for meaningful feature extraction. GCNs have been applied
in various fields, including node classification (C. Wang et al., 2017), link predic-
tion (M. Zhang & Chen, 2018), and graph generation (Kawamoto et al., 2018).
Initial work on GCNs was proposed by (Gori et al., 2005) in 2013, followed
by the seminal paper by (Kipf & Welling, 2016) in 2017. Since then, many ex-
tensions and improvements to GCNs have been proposed, including Graph
Attention Networks (GATs) (Veličković et al., 2017) and GraphSAGE (Hamil-
ton et al., 2017). Researchers have also studied different graph convolutional
layers, such as Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017)
and Convolutional Graph Neural Networks (ConvGNNs) (Schlichtkrull et al.,
2018). Overall, GCNs have shown great potential in graph representation learn-
ing and have the potential to revolutionize many applications where data is
represented in the form of graphs.
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5.4 Methodology

5.4.1 Problem Setting

VCNet is one of the advanced methods for ADRF estimation, typically it can
generate continuous ADRF and provide promising counterfactual estimation.
Hence, in this study, we adopt this model to estimate the effect between the
amyloid-β level and the probability of gaining AD. Typically, we treat the
amyloid-β in a specific brain region as the treatment T and whether the subject
gains AD as the outcome Y .

In our study, we used the Harvard-Oxford Atlas (HOA) to divide the en-
tire brain into 69 regions. Since the some regions for tau imaging is not a target
binding region, we excluded the following regions: left cerebral white matter,
left cerebral cortex, left lateral ventrical, right cerebral white matter, right cere-
bral cortex, right lateral ventricle and brain-stem. For the rest of 62 regions,
we treated one region as the treatment and used the other regions as covari-
ates (X) to train a separate model for each setting. We iterated this process 62
times to obtain the causal effect and accuracy estimates for each region. To cap-
ture more information, we used graph structures of the whole brain denoted
as G = (V , E ,X ), where each graph contains 62 nodes representing 62 ROIs,
V represents the node set and E represents the edge set. Let X ∈ RN×F be
the input feature matrix, where each row corresponds to a node and each col-
umn corresponds to a feature. To estimate the causal effect of one ROI, we
removed the corresponding node and all edges related to it and used the rest
of the graph as input (61 nodes). Finally, we used the amyloid-B value as the
treatment variable T for the VCNet analysis. In our work, we follow three
fundamental assumptions for identifying ADRF:

Assumption 1 StableUnitTreatmentValueAssumption (SUTVA): There
are no unit interactions, and there is only one version of each treatment, which
means that various levels or doses of a specific treatment are considered as separate
treatments.

Assumption 2 Positivity: Every unit should have non-zero probability of being
assigned to every treatment group. Formally, P (T = t|X = x) ̸= 0,∀t ∈
T ,∀x ∈ X .

Assumption 3 Ignorability: Given covariatesx, all potential outcomes{Y (T =

t)}t∈T are independent of the treatment assignment, implying that there are no
unobserved confounders. Mathematically, {Y (T = t)}t∈T ⊥⊥ T |X .
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Table 5.1: Data Description.

Groups N Age p-value Sex(M/F) p-value MMSE Score p-value CDR Score p-value

ADNI1
NC 100 75.83 4.71 0.4416 61/39 0.3923 28.94 1.12 0 0.0 0.0 0

MCI 205 74.98 7.23 136/69 27.18 1.69 0.49 0.03
AD 92 75.87 7.33 54/38 23.48 2.11 0.81 0.244

ADNI2
NC 159 76.63 6.33 0.1436 77/82 0.2099 28.63 1.69 0 0.09 0.21 0

MCI 143 75.04 7.43 74/69 24.71 4.50 0.68 0.53
AD 106 76.29 7.95 63/43 20.02 4.60 1.06 0.48

N is the number of participants in such group; p-value is calculated based
on ANOVA; M means male; F means female

Table 5.2: Evaluation on GVCNet. ⋆means the demographic feature is selected.

Dataset Graph Age Sex MMSE CDR Accuracy (%)
ADNI1+ADNI2 Corr 0.8296 ± 0.0020
ADNI1+ADNI2 Corr ⋆ ⋆ 0.8675 ± 0.0018
ADNI1+ADNI2 Corr ⋆ ⋆ ⋆ ⋆ 0.8868 ± 0.0027
ADNI1+ADNI2 DTI 0.8698 ± 0.0019
ADNI1+ADNI2 DTI ⋆ ⋆ 0.8689 ± 0.0018
ADNI1+ADNI2 DTI ⋆ ⋆ ⋆ ⋆ 0.8872 ± 0.0022

5.4.2 GVCNet

In our proposed GVCNet framework, as illustrated in Figure 7.1, there are
three main components: ChebNet (Defferrard et al., 2016), Deep&Cross Net-
work (R. Wang et al., 2017), and VCNet (L. Nie et al., 2021). These components
work together to estimate the Average Treatment Effect (ATE) using graph-
structured data and demographic information.

The ChebNet component takes advantage of the graph structure of the
data and utilizes this graph structure to generate features or representations
that capture the underlying relationships between entities.

The Deep&Cross Network component incorporates demographic data
into the framework. The Deep&Cross Network module utilizes these demo-
graphic features to learn complex interactions between them, capturing both
low-order and high-order feature interactions. This helps to capture additional
information beyond what can be learned solely from the graph-structured data.

The resulting latent representation, denoted asZ ′, which is a combination
of features from ChebNet and Deep&Cross Network, is then fed into the VC-
Net component. VCNet infers the treatment distribution from Z ′ to ensure
that it contains sufficient information for accurate ADRF estimation. Finally,
the ADRF is estimated based on t andZ ′.
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5.4.3 ChebNet

In this paper, to preserve the topological information of PET data. We intro-
duce the Chebyshev neural network (ChebNet) (Defferrard et al., 2016) to re-
place the first two fully connected layers in VCNet. ChebNet uses Chebyshev
polynomials to approximate the graph Laplacian filter, which is a commonly
used filter in GCNs. Chebyshev polynomials are a sequence of orthogonal
polynomials that can be used to approximate any smooth function on a given
interval, and can be efficiently computed using recursive formulas.

The equation of first ChebNet is as follows:

fout(L,X) = σ

(
K−1∑
k=0

ΘkTk(L̃)X

)
(5.3)

whereX ∈ RN×F is the input matrix ofN nodes, each withF features,L is the
graph Laplacian, and L̃ is the normalized Laplacian defined as L̃ = 2L/λmax−
IN , whereλmax is the largest eigenvalue ofL. Tk(·) are Chebyshev polynomials
of order k and Θk are the learnable filter coefficients for the k-th Chebyshev
polynomial. Finally, σ(·) is a non-linear activation function such as ReLU
or sigmoid that is applied element-wise to the output of the ChebNet. And
the binary cross-entropy loss function is utilized to quantify the dissimilarity
between the predicted probability of the positive class and its true probability
in binary classification tasks.

5.4.4 Deep & Cross Network

The Deep & Cross Network (DCN) (R. Wang et al., 2017) is utilized to com-
bine demographic data with topological information from PET data. Instead
of conducting task-specific feature engineering, the DCN is capable of auto-
matically learning the interactions between features that contribute to the task.
Although deep neural networks (DNNs) are capable of extracting feature in-
teractions, they generate these interactions in an implicit way, require more
parameters, and may fail to learn some feature interactions efficiently.

The DCN uses an embedding and a stack layer to embed sparse features
in the input into dense embedding vectors xTembed,k to reduce the dimension.
These vectors are then stacked with normalized dense features xTdense in the
input as a single vector x0 = [xTembed,1, ..., x

T
embed,k, x

T
dense]. A cross network

and a deep network are adopted to further process this vector in parallel. The
hallmark of the paper is the cross network, which applies explicit and efficient
feature crossing as shown below:
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xl+1 = x0x
T
l wl + bl + xl (5.4)

Here, xl denotes the output of the l-th cross layer, andwl and bl represent
the weight and bias of the l-th cross layer, respectively. The equation demon-
strates that the degree of feature interactions grows with the depth of the layer.
For example, the highest polynomial degree of x0 of an l-layer cross network is
l+1. Additionally, the interactions in the deep layer depend on the interactions
in shallow layers.

In addition to the cross network, a fully-connected feed forward neural
network is used to processx0 simultaneously. The outputs of the cross network
and the deep network are concatenated and fed into a standard logit layer to
conduct the final prediction by the combination layer.

5.4.5 VCNet

Despite the prior endeavours on ITE estimation, most of the work are focused
on binary treatment settings and fail to extend to continuous treatment eas-
ily. Although some papers propose to estimate the continuous treatment by
splitting the range of treatment into severel intervals and use one prediction
network for each interval, the continuity of ADRF is still an open issue. To ad-
dress these issues, VCNet is proposed by (L. Nie et al., 2021), which is capable
of estimating continuous treatment effect and maintaining the continuity of
ADRF simultaneously.

A fully connected feedforward neural network is trained to extract latent
representation z from input x. To guarantee z encode useful features, z is
used to estimate the conditional density of the corresponding treatment P(t|z)
through a conditional probability estimating head. Specifically, P(t|z) is es-
timated based on the (B + 1) equally divided grid points of treatment and
the conditional density for the remaining t-values is computed using linear in-
terpolation. After obtaining the z containing valuable information, a varying
coefficient neural network fθ(t)(z) is adopted to predict the causal effect of t
on the outcome yi,t based on z and the corresponding t, where the network pa-
rameters are a function of treatment fθ(t) instead of fixed parameters. Typically,
the B-spline is used to model θ(t):

θ(t) = [
L∑
l=1

a1,lφ
NN
l (t), ...,

L∑
l=1

adθ(t),lφ
NN
l (t)]T ∈ Rd(θ), (5.5)
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φNN
l (t) denotes the spline basis of the treatment and a1,l are the coefficients

to be learned; d(θ) is the dimension of θ(t). By utilizing the varying coefficient
neural network, the influence of the treatment effect t on the outcome is inte-
grated via the parameters of the outcome prediction network, thereby prevent-
ing any loss of treatment information. Additionally, the incorporation of t in
this manner allows for the attainment of a continuous ADRF.

5.5 Experiment

5.5.1 Dataset

In this paper, we conducted an evaluation of their proposed algorithm using
two subsets of data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu), specifically ADNI-1 and ADNI-2, as well as the
entire dataset. The subjects were divided into three categories, consisting of
AD, NC, and MCI, as shown in Table 5.1. In this paper, we take AD as the
AD group (298 subjects) and NC+MCI as the non-AD group (607 subjects).
All florbetapir-PET images were co-registered with each individual’s sMRI and
subsequently warped to the cohort-specific DARTEL template. And all subject
has demographic features: age, sex, CDR score and MMSE score.

All sMRI and florbetapir-PET images in this study are pre-processed by FM-
RIB Software Library (FSL) 6.0.3 (https://fsl.fmrib.ox.ac.uk/). The brain ex-
traction step is based on the BET algorithm firstly(Smith, 2002). And the skull
is stripped from the source image sapce. Secondly, the sMRI images are aligned
to Montreal Neurological Institute T1 standard template space (MNI152) with
the FLIRT linear registration algorithm(Jenkinson et al., 2002), which can save
computational time during the application stage. All florbetapir-PET images
were co-registered with each individual’s sMRI and subsequently warped to
the cohort-specific DARTEL template. More specifically, after registration, the
sMRI and florbetapir-PET images are cropped to the size of 152 × 188 × 152 by
removing the voxels of zero values in the periphery of brain. Then, all the images
are downsampled to the size of 76 × 94 × 76 that to reduce the computational
complexity. And all subject has demographic features: age, sex, CDR score and
MMSE score.

In order to generate the structural connectivity matrix between different
cortical regions, we also used the T1w and diffusion MRI (dMRI) provided
in the ADNI database. T1-weighted images were acquired using a 3D sagit-
tal MPRAGE volumetric sequence with TE = 3.0 ms; TI = 900.0 ms; TR =
2300.0 ms; flip angle = 9°; matrix size = 176 × 240 × 256; voxel size = 1.2 × 1.1 × 1.1
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mm3. dMRI was acquired with a spin-echo planar imaging (EPI) sequence. 48
noncollinear gradient directions were acquired with a b-value of 1,000 s/mm2.
7 additional volumes were acquired without diffusion weighting (b-value = 0
s/mm2). Other parameters of dMRI were as follows: TE = 56.0 ms; TR =
7200.0 ms; flip angle = 90°; matrix size = 116 × 116 × 80; isotropic voxel size = 2 ×
2× 2 mm3. A subset of 20 subjects was used for generating a group-wise connec-
tivity matrix. For each subject, whole brain tractography was computed using
the dMRI data, with the Unscented Kalman Filter (UKF) tractography method
(Wan & Van Der Merwe, 2000, 2001) provided in the SlicerDMRI (Norton
et al., 2017; F. Zhang et al., 2020) software. Structural T1w imaging data was
processed using FreeSurfer (version 6.0, https://surfer.nmr.mgh.harvard.edu/),
and cortical regions were parcellated with the Desikan-Killiany Atlas (Alexan-
der et al., 2019). Co-registration between the T1-weighted and dMRI data was
performed using FSL (Jenkinson et al., 2012). Then, for each pair of cortical
regions, streamlines that end in the two regions were extracted and the number
of streamlines were computed, followed by the creation of the subject-specific
connectivity matrix. For the group-wise connectivity matrix, the mean number
of streamlines across the 20 subjects was recorded.

In the trainning process, We randomly split the dataset into a training set
(633 subjects) and a testing set (272 subjects). The proposed model was tested
on the testing set to calculate the classification accuracy and generate average
dose-response function curves (ADRFs) for each ROI.

5.5.2 Experiment Setting

In GVCNet, we designate each one of the 62 ROIs as the treatment and use
the other ROIs as patient features. The average amyloid-β level serves as the
signal for each ROI. We construct the input graph by defining the ROIs as
nodes V and the DTI structure among the ROIs as edgesE. For the sturctural
connectivity matrix, we have two alternative cunstructing options as follows:
one is to use the Pearson correlation value among the ROIs’ T1-weighted values
to construct the structural correlation graph (which is called the Corr graph in
this paper to make it simplified); the other is to use the smoothed white fibers
among the ROIs based on the 20 subjects (which is called DTI graph). Then
treat the graph embedding and demographic data as input of the deep and cross
network. Finally, feed the treatment and calculate the counter-factor with our
GVCNet. For the hyper-parameters, we set the learning rate to 1e-4 andβ to 0.5.
During model training, all networks were trained for 600 epochs. Our model
is trained using Adam (Kingma & Ba, 2014) with momentum as 0.9.
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Figure 5.3: The cortical curve trends clustered by k-means.
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Figure 5.4: The subcortical curve trends clustered by k-means.
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Table 5.3: Evaluation on GVCNet and VCNet on ADNI1+ADNI2

Average Accuracy
VCNet 0.8401 ± 0.0048
Graph-VCNet 0.8872 ± 0.0022

5.5.3 Prediction Performance

First, we compare our model, GVCNet with the baselien model, VCNet. As
shown in Table 5.3, the prediction performance of our model is around 88.72%,
which is 4.7% higher than VCNet. In Table 5.2, we evaluate the model’s perfor-
mance by the accuracy percentage. The table presents the evaluation results of
the GVCNet model on different datasets, using different types of graphs, and
considering different demographic factors.

The first three rows present the evaluation results on the combined ADNI1+ADNI2
dataset, using Corr graphs and again different combinations of demographic
factors. The model achieves an average accuracy of 0.8296 when no demo-
graphic features are selected, an average accuracy of 0.8675 when age and sex are
used, and an average accuracy of 0.8868 when all the demographic features are
selected.

The last three rows present the evaluation results on the combined ADNI1+ADNI2
dataset, using DTI graphs and again different combinations of demographic
factors. The model achieves an accuracy of 0.8698 when no features are selected,
an accuracy of 0.8689 when age and sex features are considered, and an accuracy
of 0.8872 when all the features are selected. By comparing the last 6 rows, we
can see that using DTI as the graph structure is slightly better than using the
correlation graph between the ROIs as the graph structure.

5.5.4 ADRF Curve Analysis

Based on the patterns of the estimated ADRF of each region and the premise
that different parts of the brain may play different roles during the normal/abnormal
aging process, we use KMeans clustering method to cluster the ADRF curves
from each region into three groups: upward(up, aβ positively respond to the
treatment), downward(down, aβ negatively respond to the treatment) and un-
biased, based on their trend of relationship with AD probability. Brain regions
within each cluster were visualized onto the cortex and subcortex mappings
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in Fig. 5.3 and Fig. 5.4. It can be found that there exist strong causal rela-
tionships between the AD progression and the PET signal level in the precen-
tral/postcentral gyrus (cortical) and left/right pallidum (subcortical), indicating
the potentially important role of these regions in modulating the Amyloid-β
protein pathway in AD. It is interesting to observe that both the cortical (precen-
tral gyrus) and subcortical (pallidum) regions responsible for voluntary motor
movements (Banker & Tadi, 2019; Freund, 2002) are all highly responding to
AD, indicating a possible link between the behavior and pathological aspect of
AD.

In addition, based on Table 5.4 that brain regions in the up group will have
a slightly higher prediction power towards the AD probability, we investigated
the patterns of ADRF curves and the regions within the up group in Fig. 5.5,
which is consistent with Figs. 5.3 and 5.4 that pre- and post- central gyrus, left
and right pallidum are upward with the increasing treatment. Moreover, we can
obtain the same conclusion from both the VCNet and GVCNet, as shown in
Fig. 5.6. Compared with the VCNet, our proposed Graph-VCnet can achieve
much better prediction accuracy no matter with which kind of brain regions.
And more specifically, with upward brain regions, both VCNet and Graph-
VCNet could achieve the best prediction accuracy, compared with the other
kinds of brain regions.

Table 5.4: KMeans Cluster Accuracy

Cluster Accuracy
Down 0.8836 ± 0.0034
Unbiased 0.8822 ± 0.0035
Up 0.8915 ± 0.0018

5.6 Conclusion and Discussion

In this chapter, we propose a novel model called GVCNet, which combines a
graph neural network architecture with a targeted regularization approach to es-
timate varying coefficients of a treatment effect model and improve the model’s
performance. Experiment results show that GVCNet exhibits promising ca-
pabilities in making counterfactual causal inferences for Alzheimer’s Disease
(AD) progression based on the regional level of Amyloid-beta protein.

The rationalization for employing a graph neural network architecture in
GVCNet stems from the inherent complexity and interconnectedness of brain
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Figure 5.5: ADRF for the typical upward ROIs.
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Figure 5.6: Prediction accuracy with VCNet and Graph-VCNet based on dif-
ferent brain regions.

regions, both structurally, functionally, and pathologically. The graph struc-
ture allows for capturing the potentially long-distance spatial relationships and
dependencies among these regions, providing a more comprehensive represen-
tation of the underlying proteinopathy dynamics. Furthermore, GVCNet in-
corporates a targeted regularization approach. Regularization techniques play
a crucial role in mitigating model complexity and ensuring robustness. By im-
posing the proposed regularization constraints, GVCNet can effectively handle
the inherent noise and variability in PET imaging data, leading to more reliable,
generalizable, and accurate predictions.
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The potential of GVCNet in patient management, treatment, and drug
discovery is substantial. If the model demonstrates sufficient robustness and
consistency through rigorous validation studies, it can be ultimately utilized to
project personalized AD progression trajectories. By leveraging counterfactual
analysis, GVCNet can provide insights into the "what if" scenarios by assessing
how the current imaging results would evolve if they were to worsen (due to
disease progression) or improve (because of the medications or other types of
interventions). This information is invaluable in guiding clinicians and patients
in making informed decisions about treatment strategies and long-term care
plans. Moreover, GVCNet’s ability to predict the personalized treatment effect
of a patient after administering a medication targeting Amyloid-beta deposition
is of significant clinical importance. It can provide insights into the expected
outcomes and help determine the optimal dosage for individual patients. This
personalized, regional treatment prediction can aid in tailoring interventions
and optimizing therapeutic strategies, leading to improved patient outcomes
and more efficient use of resources.

Looking ahead, the future of imaging-guided diagnosis, prognosis, and
treatment planning for AD is likely to focus on unraveling the underlying mech-
anisms that link imaging targets, such as Amyloid-beta protein, with the pa-
tient’s internal and external characteristics (e.g., genetic factors, health condi-
tions, comorbidities, and social determinants of health) to the disease progres-
sion. The proposed counterfactual causal inference modeling approach with
multi-modal data input, as demonstrated by GVCNet, will play a pivotal role in
this pursuit. With more data modalities and holistic patient characterization, we
can uncover critical insights into the disease’s pathophysiology, identify novel
therapeutic targets, and develop more effective interventions.

In conclusion, counterfactual causal inference modeling such as GVCNet
holds immense potential for advancing our understanding of personalized AD
management. It will enable personalized projections of disease trajectories and
treatment effects, empowering clinicians and patients to make informed deci-
sions. The integration of imaging-guided diagnosis, prognosis, and mechanistic
insights will shape the future of AD research and pave the way for improved
patient care and therapeutic strategies.
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Chapter 6

AugGPT: Leveraging
ChatGPT for Text Data

Augmentation

6.1 Overview

Text data augmentation is an effective strategy for overcoming the challenge
of limited sample sizes in many natural language processing (NLP) tasks. This
challenge is especially prominent in the few-shot learning scenario, where the
data in the target domain is generally much scarcer and of lowered quality. A
natural and widely-used strategy to mitigate such challenges is to perform data
augmentation to better capture the data invariance and increase the sample size.
However, current text data augmentation methods either can’t ensure the cor-
rect labeling of the generated data (lacking faithfulness) or can’t ensure sufficient
diversity in the generated data (lacking compactness), or both. Inspired by the re-
cent success of large language models, especially the development of ChatGPT,
which demonstrated improved language comprehension abilities, in this work,
we propose a text data augmentation approach based on ChatGPT (named
AugGPT). AugGPT rephrases each sentence in the training samples into mul-
tiple conceptually similar but semantically different samples. The augmented
samples can then be used in downstream model training. Experiment results
on few-shot learning text classification tasks show the superior performance of
the proposed AugGPT approach over state-of-the-art text data augmentation
methods in terms of testing accuracy and distribution of the augmented sam-
ples. Codes of AugGPT are available at https://github.com/yhydhx/AugGPT.
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6.2 Background

The effectiveness of natural language processing (NLP) heavily relies on the
quality and quantity of the training data. With limited training data available,
which is a common issue in practice due to privacy concerns or the cost of anno-
tations, it can be challenging to train an accurate NLP model that generalizes
well to unseen samples. The challenge of training data insufficiency is especially
prominent in few-shot learning (FSL) scenarios, where the model trained on
the original (source) domain data is expected to generalize from only a few ex-
amples in the new (target) domain (Y. Wang et al., 2020). Many FSL methods
have shown promising results in overcoming this challenge in various tasks.

Existing FSL methods mainly focus on improving the learning and general-
ization capability of the model via better architectural design (C. Wang et al.,
2021; Yin, 2020), leveraging pre-trained language models as the basis and then
fine-tuning it using limited samples (Devlin et al., 2018) with meta-learning (Lee
et al., 2022; Yin, 2020) or prompt-based methods (Brown et al., 2020; Han et
al., 2022; Lester et al., 2021; J. Wang et al., 2022). However, the performance of
these methods is still intrinsically limited by the data quality and quantity in
both the source and target domains.

Besides model development, text data augmentation can also overcome the
sample size limit and work together with other FSL methods in NLP (Kumar
et al., 2019; Wei & Zou, 2019b). Data augmentation is usually model-agnostic
and involves no change to the underlying model architecture, which makes this
approach particularly practical and applicable to a wide range of tasks. In NLP,
there are several types of data augmentation methods. Traditional text-level data
augmentation methods rely on direct operations on the existing sample base.
Some frequently used techniques include synonym replacement, random dele-
tion, and random insertion (Feng et al., 2021). More recent methods utilize lan-
guage models to generate reliable samples for more effective data augmentation,
including back-translation (Sennrich et al., 2015) and word vector interpolation
in the latent space (Jindal et al., 2020). However, existing data augmentation
methods are limited in the accuracy and diversity of the generated text data, and
human annotation is still mandatory in many application scenarios (Bayer et al.,
2022; Feng et al., 2021; Shorten et al., 2021).

The advent of (very) large language models (LLMs) such as the GPT fam-
ily (Brown et al., 2020; Min et al., 2021) brings new opportunities for generating
text samples that resemble human-labeled data (C. Zhou et al., 2023), which sig-
nificantly alleviates the burden of human annotators (Z. Liu et al., 2022). LLMs
are trained in self-supervised manners, which scale up with the amount of text
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corpus available in the open domains. The large parameter space of LLMs also
allows them to store a large amount of knowledge, while large-scale pre-training
(e.g., the autoregressive objective in training GPTs) enables LLMs to encode
rich factual knowledge for language generation even in very specific domains
(S. Wang et al., 2023). Furthermore, the training of ChatGPT follows that of
Instruct-GPT (Ouyang, Wu, Jiang, Almeida, Wainwright, Mishkin, Zhang,
Agarwal, Slama, Gray, et al., 2022), which utilizes reinforcement learning with
human feedback (RLHF), thus enabling it to produce more informative and
impartial responses to input.

Inspired by the success of language models in text generation, we propose
a new data augmentation method named AugGPT, which leverages ChatGPT
to generate auxiliary samples for few-shot text classification. We test the per-
formance of AugGPT via experiments on both general domain and medical
domain datasets. Performance comparison of the proposed AugGPT approach
with existing data augmentation methods shows double-digit improvements in
sentence classification accuracy. Further investigation into the faithfulness and
compactness of the generated text samples reveals that AugGPT can generate
more diversified augmented samples while simultaneously maintaining their
accuracy (i.e., semantic similarity to the original labels). We envision that the
development of LLMs will lead to human-level annotation performance, thus
revolutionizing the field of few-shot learning and other tasks in NLP.

6.3 Related Works

6.3.1 Data Augmentation

Data augmentation, the artificial generation of new text through transforma-
tions, is widely used to improve model training in text classification. In NLP,
existing data augmentation methods work at different granularity levels: char-
acters, words, sentences, and documents.

Data augmentation at the character level refers to the randomly inserting,
exchanging, replacing, or deleting of characters in the text (Belinkov & Bisk,
2017), which improves the robustness of the NLP model against noises. An-
other method called optical character recognition (OCR) data augmentation
generates new text by simulating the errors that occur when using OCR tools
to recognize text from pictures. Spelling augmentation (Coulombe, 2018) de-
liberately misspells some frequently misspelled words. Keyboard augmentation
(Belinkov & Bisk, 2017) simulates random typo errors by replacing a selected
key with another key close to it on the QWERTY layout keyboard.
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b

Sentence Augmentation
By ChatGPT

I have pain in the elbow joint

I feel fluid when I cough.

My son has a lot of acne.

The speaker is experiencing pain in their elbow joint.

The speaker reports pain in their elbow joint.

The speaker has noticed pain in their elbow joint.

The speaker has a fluid sensation in their throat when they cough.

The speaker feels like something is coming up when they cough.

The speaker coughs and feels like fluid is trying to escape.

The speaker's son's skin is affected by a large number of acne pimples.

The speaker describes their son's skin as having a lot of acne.

The speaker's son is struggling with a lot of acne on their skin.

Samples Data Augmentation With ChatGPT

ChatGPT Joint pain Cough Acne

Sentence Classification
By BERT

novel samples augmentation samples

BERT Classifier
Joint pain

Acne
Cough

Figure 6.1: The framework of AugGPT. a (top panel): First, we apply Chat-
GPT for data augmentation. We input samples of all classes into ChatGPT
and prompt ChatGPT to generate samples that preserves semantic consistency
with existing labelled instance. b (bottom panel): In the next step, we train a
BERT-based sentence classifier on the few-shot samples and the generated data
samples and evaluate the model’s classification performance.

Data augmentation also works at the word level. Random swap augmenta-
tion randomly exchanges two words in the text, and random deletion augmenta-
tion randomly deletes some words (Wei & Zou, 2019a). Synonym augmentation
uses synonym databases such as PPDB (Pavlick et al., 2015) to replace randomly
selected words (Niu & Bansal, 2018). WordNet (G. A. Miller, 1995) is also widely
used as a reference for synonym augmentation. These methods maintain seman-
tic consistency and are suitable for text classification tasks. Wang et al. (W. Y.
Wang & Yang, 2015) proposed a data augmentation method based on word
embeddings, replacing words with their top-n similar words to create a new
sentence. Different pre-trained word embeddings are considered (e.g., Google-
News Lexical Embeddings (Mikolov et al., 2013)). This method is based on the
principle that words close to each other in the embedding space often appear in
similar contexts, which might help with maintaining grammatical consistency.

However, a serious limitation of word embedding-based methods is that
close words in the embedding space are not necessarily semantically similar,
yet semantic changes can affect the classification results. For example, “hot"
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Table 6.1: Generated Samples From ChatGPT on PubMed20K
Original Text Altered Text

The follow-up rate after 5 years was 85%.

1. The study showed a follow-up rate of 85% after 5 years.
2. The 5-year follow-up rate was found to be significantly high at 85%.
3. The participants had an impressive follow-up rate of 85% after 5 years.
4. The data indicated a follow-up rate of 85% 5 years post-study.
5. The 5-year follow-up rate was recorded as 85%, according to the findings.
6. The results of the study showed a follow-up rate of 85% after a 5-year period.

This means that the maturation of calluses
was 27% faster in the LIPUS group.

1. The LIPUS group showed a 27% acceleration in callus maturation.
2. The results revealed that the callus maturation process was 27% faster in the LIPUS group.
3. The study found that the callus maturation rate in the LIPUS group was 27% quicker.
4. Callus maturation was 27% more rapid in the LIPUS group compared to others.
5. The callus maturation process in the LIPUS group was 27% more efficient, according to the
results.

Test Registration: IRCT.ir
IRCT2012071010230N1.

1. The trial was registered with the IRCT under the identifier IRCT2012071010230N1.
2. The study was officially registered with IRCT.ir, with the registration number
IRCT2012071010230N1.
3. The trial was documented with IRCT.ir with the identification code IRCT2012071010230N1.
4. IRCT.ir served as the official registrar for the trial, with the registration number
IRCT2012071010230N1.
5. The study was recorded with IRCT under the registration number IRCT2012071010230N1.
6. IRCT.ir recorded the trial with the identifier IRCT2012071010230N1.

While behavioral and technological
interventions can lead to some modest
improvements in glycemic control,
these interventions have not performed
much better than conventional prevention
in achieving glycemic control.

1. The study found that although behavioral and technological interventions led to some
slight improvements in glycemic control, they were not significantly more effective
than typical care.
2. Despite the modest improvement in glycemic control through behavioral and
technological interventions, they did not perform better than the standard care.
3. The results showed that while behavioral and technological interventions resulted
in some minimal gains in glycemic control, they did not surpass the usual care in
achieving glycemic control.
4. Although behavioral and technological interventions showed some improvement
in glycemic control, they were not found to be significantly superior to the usual care.
5. The study showed that the usual care was not outperformed by behavioral and
technological interventions in terms of achieving glycemic control, despite some
small improvements.

and “cold" usually appear in similar contexts, so their word embeddings are
close, but they have exactly opposite semantic meanings. The counter-fitting
embedding augmentation (Alzantot et al., 2018; Mrkšić et al., 2016) solves this
problem by using a synonym dictionary and an antonym dictionary to adjust
the initial word embeddings. Specifically, the distance between embeddings of
synonyms will be shortened, and the distance between embeddings of antonyms
will become enlarged.

Contextual augmentation (Kobayashi, 2018; Kumar et al., 2020) is another
word-level data augmentation method, which uses masked language models
(MLMs) such as BERT(Devlin et al., 2019a; Sun et al., 2020), DistilBERT(Sanh
et al., 2019) and RoBERTA(Y. Liu et al., 2019) to generate new text based on
the context. Specifically, they insert < mask > tokens in some positions of
the text, or replace some words in the text with< mask > tokens, and then let
the MLM predict what words should be put in these masked positions. Since
MLMs are pre-trained on a large number of texts, contextual augmentation can
usually generate meaningful new texts.

Some text data augmentation methods work at the sentence and document
level. For example, back translation (Sennrich et al., 2016) uses translation
models for data augmentation. Specifically, the language model first translates
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the text into another language and then translates it back to the original lan-
guage. Due to the randomness of the translation process, the augmented text
is different from the original text, but semantic consistency is maintained. At
the document level, Gangal et al. (Gangal et al., 2022) proposed a method to
paraphrase the entire document to preserve document-level consistency.

In general, regardless of the granularity level or the text generation backbone
(i.e., rule-based or language models), the goal of data augmentation is to produce
sensible and diverse new samples that maintain semantic consistency.

6.3.2 Few-shot Learning

Deep learning has achieved remarkable success in various data-intensive appli-
cations. However, the performance of deep models could be affected if the
dataset size is small in the downstream tasks. Few-shot Learning is a branch of
science that focuses on developing solutions to address the challenge of small
sample sizes (Fei-Fei et al., 2006; Y. Wang et al., 2020). FSL research aims to
leverage prior knowledge to rapidly generalize to new tasks that contain only a
few labeled samples. A classic application scenario for few-shot learning is when
obtaining supervised examples is difficult or not possible due to privacy, safety,
or ethical considerations. The development of few-shot learning enables prac-
titioners to improve the efficiency and accuracy of text classification in various
scenarios and deploy practical applications.

Recent advances in few-shot learning have shown promising results in over-
coming the challenges of limited training data for text classification. For exam-
ple, a common approach in NLP is to use a pre-trained language model such as
BERT (Devlin et al., 2018) as a starting point and then fine-tune it with limited
samples. Some of the most recent methodological developments (Y. Ge et al.,
2022; Yin, 2020) approaches that have gained traction include prompt-tuning
(Brown et al., 2020; Han et al., 2022; Lester et al., 2021; J. Wang et al., 2022) and
meta-learning (Lee et al., 2022; Yin, 2020). In general, existing FSL methods
target either architectural design (C. Wang et al., 2021; Yin, 2020), data aug-
mentation (Kumar et al., 2019; Wei & Zou, 2019b) or the training process (Wei
et al., 2021).

Despite the recent development of prompt-tuning and meta-learning meth-
ods, they suffer from some major limitations. For example, prompt engineering
is a cumbersome art that requires extensive experience and manual trial-and-
errors (Gao et al., 2021). Meta-learning, on the other hand, suffers from prob-
lems such as training instability (Antoniou et al., 2018; Finn et al., 2017; X. Yao
et al., 2021) and sensitivity to hyper-parameters (Antoniou et al., 2018; Finn et al.,
2017). In addition, all these FSL pipelines demand deep machine learning exper-
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tise and acquaintance with complex model architectures and training strategies,
which are not attainable by common practitioners and general developers. As
discussed in section 6.3.1, data augmentation is an effective solution for FSL
and can be combined with other FSL models. Thus, the AugGPT method pro-
posed in this paper, which has demonstrated the capability to generate accurate
and comprehensive training samples, can overcome the issues of current FSL
methods and potentially change the landscape of few-shot learning in NLP.

6.3.3 Very Large Language Models

Pre-trained language models (PLMs) based on the transformer architecture,
such as the BERT (Devlin et al., 2018) and GPT (Radford et al., 2018) model
families, have revolutionized natural language processing. Compared to pre-
vious methods, they deliver state-of-the-art performance on a wide range of
downstream tasks and contribute to the rising popularity and democratization
of language models. In general, there are three classes of pre-trained language
models: autoregressive language models (e.g., the decoder-based GPT), masked
language models (e.g., the encoder-based BERT), and encoder-decoder mod-
els(e.g., BART (Lewis et al., 2019) and T5 (Raffel et al., 2020)). These models
typically contain between 100M and 1B parameters (Min et al., 2021).

In recent years, NLP communities have witnessed the rise of very large lan-
guage models such as GPT-3 (175B parameters) (Brown et al., 2020), PaLM
(540B parameters) (Chowdhery et al., 2022), Bloom (176B parameters) (Scao et
al., 2022), OPT (up to 175B parameters) (S. Zhang et al., 2022), and the FLAN
series (FLAN has 137B parameters) (Longpre et al., 2023). At their core, these
large language models are transformer models inspired by BERT and GPT, al-
beit at a much larger scale.

Large language models aim to learn accurate latent feature representations
of input text. These representations are often context-dependent and domain-
dependent. For example, the vector representation of the word "treat" might be
vastly different between medical domains and the general domain. For smaller
pre-trained language models, it is often necessary to continuously pre-train and
fine-tune such models to attain acceptable performance (Y. Gu et al., 2021).
However, very large language models can potentially eliminate the need for
fine-tuning while maintaining competitive performance (Brown et al., 2020;
Rezayi, Dai, et al., 2022; C. Zhou et al., 2023).

Existing studies indicate that pre-trained language models can help augment
a dataset with new samples with similar semantic meaning (Bayer et al., 2022;
Feng et al., 2021), which is of significant practical value to real-world applica-
tions. In this study, we aim to use ChatGPT, a popular LLM to conduct data
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augmentation. ChatGPT is based on GPT-3 (Brown et al., 2020), which was
trained on massive web data with diverse and rich information. Furthermore,
ChatGPT was trained through Reinforcement learning from Human Feedback
(RLHF). During RLHF, human feedback is incorporated into the process of
generating and selecting the best results. More specifically, a reward model is
trained based on human annotators’ ranking or generated results. In turn, this
reward model rewards model outputs that are most aligned with human prefer-
ence and human values. We believe these innovations make ChatGPT the best
candidate for generating human-level quality data samples.

6.3.4 ChatGPT: Present and Future

ChatGPT is a game changer in natural language processing. For the first time in
human history, the power of large language models is accessible to the general
public through a user-friendly chatbot interface. In turn, this common acces-
sibility contributes to ChatGPT’s unprecedented popularity. ChatGPT has
emerged as a general-purpose problem solver for many NLP applications (Qin
et al., 2023). Qin et al. (Qin et al., 2023) evaluated ChatGPT on a compre-
hensive set of NLP tasks, including common benchmarks in natural language
inference, arithmetic reasoning, named entity recognition, sentiment analysis,
question answering, dialogue and summarization. They conclude that Chat-
GPT excels in most tasks, except for tasks that focus on specific details (e.g.,
sequence tagging).

ChatGPT is also a valuable solution for multilingual tasks. A recent empir-
ical study (Jiao et al., 2023) reports that ChatGPT excels at tasks involving high-
resource languages (various European languages and Chinese) and is compara-
ble with Google Translate, DeepL Translate and Tencent TranSmart. Nonethe-
less, ChatGPT performs poorly on low-resource languages and faces extra chal-
lenges handling distant language translation (i.e., English-German translation is
considered to be less "distant", compared to English-Hindi translation). A later
study (Bang et al., 2023) confirms that ChatGPT struggles with low-resource
languages, although the authors observe that ChatGPT does better in under-
standing non-Latin scripts than generating them.

In addition, it is also possible to use the purely text-based ChatGPT to in-
teract with multi-modal data. A group of researchers (Bang et al., 2023) use
HTML Canvas and Python Turtle graphics as media for text-to-image genera-
tion. ChatGPT can faithfully generate HTML and Python code, which can be
then used to generate desired images. The authors designed a flag drawing task
that required ChatGPT to generate code that can generate country flags. It was
found that ChatGPT could generate better flags when the prompt for code was
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https://www.kaggle.com/datasets/
paultimothymooney/medical-
speech-transcription-and-
intent

preceded by a prompt that queries ChatGPT for the flag’s description. In other
words, descriptive text prompts could improve multimodal task performance.

Beyond computer science, ChatGPT can be readily applied to medical re-
port generation and comprehension (Antaki et al., 2023; Shen et al., 2023), ed-
ucation (Baidoo-Anu & Owusu Ansah, 2023; Kung et al., 2023; Pavlik, 2023),
rigorous math research (Frieder et al., 2023) and finance (Dowling & Lucey,
2023). Overall, ChatGPT is a versatile tool that promotes general AI usage.

However, researchers are also cautious about the possible negative impact
of ChatGPT. Some of the more prominent concerns are related to bias (McGee,
2023; van Dis et al., 2023), ethics (Blum, 2022; Jabotinsky & Sarel, 2022), plagia-
rism (Khalil & Er, 2023; Susnjak, 2022) and job replacement en masse (Castelvec-
chi, 2022; Zarifhonarvar, 2023). In response, a commentary published in Na-
ture advocates for urgent attention to accountability, open-source large lan-
guage models and societal embrace of AI (van Dis et al., 2023).

6.4 Dataset

We first use an open domain dataset Amazon to verify the effectiveness of our
method. Then, we use clinical natural language processing (clinical NLP) as the
task and carry out our experiments on two popular public benchmarks. Data
augmentation is particularly in demand in clinical NLP, because the significant
burden of expert annotation and stringent privacy regulations make large-scale
data labeling infeasible. We will describe these datasets in detail in the following
sections.

6.4.1 Amazon dataset

Amazon(Bao et al., 2019; R. He & McAuley, 2016; S. Wang, Liu, et al., 2022)
contains customer reviews from 24 product categories. The task is to classify
reviews into their respective product categories. Since the original Amazon
product dataset is proverbially large, we sample a subset of 300 samples from
each category.

6.4.2 Symptoms Dataset

This dataset is published on Kaggle1. It contains the audio data of common
medical symptom descriptions over 8 hours. We use the text transcripts corre-
sponding to the audio data and perform sample de-duplication, and use them
as model input. The dataset after preprocessing includes 231 samples of 7 symp-
tom categories. Every example represents a sentence describing the provided
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symptoms, and the task is to classify the sentence into the corresponding symp-
toms.

6.4.3 PubMed20k Dataset

The PubMed20K dataset is an extensively utilized resource in NLP and text min-
ing research, comprising around 20,000 annotated scientific abstracts from the
biomedical field. These annotations encompass named entities, relationships
between entities, and various semantic roles, making the dataset valuable for di-
verse NLP tasks such as named entity recognition, relation extraction, and text
classification. The dataset originates from the PubMed database, which spans
a wide array of biomedical subjects. Owing to its substantial size, variety, and
high-quality annotations, PubMed20K has emerged as a popular benchmark
dataset for assessing the performance of machine learning models in the realm
of biomedical NLP. The abstracts in the PubMed 20K dataset undergo prepro-
cessing and segmentation into individual sentences. Each sentence is labeled
with one of the following five categories: background, objective, method, result,
or conclusion. The task is to map the input sentences to their corresponding
categories.

6.5 Method

6.5.1 Overall Framework

Given a base datasetDb = {(xi, yi)}Nb
i=1 with a label space yi ∈ Yb, a novel

datasetDn = {(xj, yj)}Nn
j=1 with a label spaceyj ∈ Yn, andYb∩Yn = ∅. In the

few-shot classification scenario, the base datasetDb has a relatively larger set of
labeled samples, while the novel datasetDn has only a few labeled samples. The
performance of few-shot learning is evaluated on the novel dataset. Our goal
is to train a model with both base and limited novel datasets, while achieving
satisfying generalizability on the novel dataset.

The overall framework of AugGPT is shown in Fig 6.1, and the training
steps are shown in Algorithm 4. First of all, we fine-tune BERT onDb. Then,
the Daug

n is generated by data augmentation with ChatGPT. Finally, we fine-
tune BERT withDaug

n .

6.5.2 Data Augmentation with ChatGPT

Similar to GPT (Radford et al., 2018), GPT-2 (Radford et al., 2019), and GPT-3
(Brown et al., 2020), ChatGPT belongs to the family of autoregressive language
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Algorithm 4 The framework of AugGPT for few-shot text classification.
Input: base datasetDb and novel datasetDn

Initialize: Initialized pre-trained BERTmodel
Definition: D′ is the dataset with the base datasetDb and augmented dataset
Daug

n , and chatGPT_aug is the data augmentation method based on ChatGPT
Parameters: Fine-tuning epochs of base dataset epochb, fine-tuning epochs of
FSL epochf

for epoch in epochb do

train(model,Db)
end for

Daug
n = chatGPT_aug(Dn)

for epoch in epochf do

train(model,Daug
n )

end for

models and uses transformer decoder blocks (Vaswani et al., 2017) as the model
backbone.

During pre-training, ChatGPT is regarded as an unsupervised distribution
estimation from a set of samples X = {x1, x2, ..., xn}, and sample xi com-
posed of m tokens is defined as xi = (s1, s2, ..., sm). The objective of pre-
training is to maximize the following likelihood:

L(xi) =
m∑
i=1

logP (si|s1, ..., si−1; θ) (6.1)

where θ represents the trainable parameters of ChatGPT. The tokens are repre-
sented by token embedding and position embedding:

h0 = xiWe +Wp (6.2)

where We is the token embedding matrix and Wp is the position embedding
matrix. ThenN transformer blocks are used to extract the features of the sam-
ple:

hn = transformer_blocks(hn−1) (6.3)

where n ∈ [1, N ].
Finally, the target token is predicted:

si = softmax(hNW
T
e ) (6.4)
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where hN is the output of top transformer blocks.
After pre-training, the developers of ChatGPT apply Reinforcement Learn-

ing from Human Feedback (RLHF)(Ouyang, Wu, Jiang, Almeida, Wainwright,
Mishkin, Zhang, Agarwal, Slama, Gray, et al., 2022) to fine-tune the pre-trained
language model. The RLHF aligns language models with user intent on a wide
range of tasks by fine-tuning them according to human feedback. The RLHF
of ChatGPT contains three steps:

Supervised Fine-tuning (SFT): Unlike GPT, GPT-2, and GPT-3, Chat-
GPT uses labeled data for further training. The AI trainers play as users and AI
assistants to build the answers based on prompts. The answers with prompts
are used as supervised data for further training of the pre-trained model. After
further pre-training, a SFT model can be obtained.

Reward Modeling (RM): Based on the SFT method, a reward model is
trained to take in a pair of prompt and response, and output a scalar reward.
Human labelers rank the outputs from best to worst to build a ranking dataset.
The loss function between two outputs is defined as follows:

loss(θr) = E(x,yw,yl)∼Dc [log (σ (rθr (x, yw)− rθr (x, yl)))] (6.5)

where θr is the parameters of reward model; x is the prompt, yw is the preferred
completion out of the pair ofyw andyl;Dc is the dataset of human comparisons.

Reinforcement Learning (RL): By using reward models, ChatGPT can
be fine-tuned using Proximal Policy Optimization (PPO) (Schulman et al.,
2017). In order to fix the performance degradation on public NLP datasets,
the RLHF mixes the pretraining gradients into the PPO gradients, which is
also known as PPO-ptx:

objective(ϕ) = γEx∼Dpretrain

[
log
(
πRL
ϕ (x)

)]
+

E(x,y)∼D
πRL
ϕ

[
rθr(x, y)− β log

(
πRL
ϕ (y | x)/θSFT(y | x)

)] (6.6)

where πRL
ϕ is the learned RL policy, θSFT is the supervised trained model, and

Dpretrain is the pretraining distribution. The γ is the pre-training loss coef-
ficient that controls the strength of pre-training gradients, and the β is the
KL (Kullback-Leibler) reward coefficient that controls the strength of the KL
penalty.

Compared to previous data augmentation methods, ChatGPT is more suit-
able for data augmentation for the following reasons:
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• ChatGPT is pre-trained on large-scale corpora, so it has a broader se-
mantic expression space, and is helpful to enhance the diversity of data
augmentation.

• Since the fine-tuning stage of ChatGPT introduces a large number of
manual annotation samples, the language generated by ChatGPT is more
in line with human expression habits.

• Through reinforcement learning, ChatGPT can compare the advantages
and disadvantages of different expressions and ensure that the generated
data are of high quality.

Under the BERT framework, we introduce ChatGPT as the data augmen-
tation tool for few-shot text classification. Specifically, ChatGPT is applied to
rephrase each input sentence into six additional sentences, thereby augmenting
the few-shot samples.

6.5.3 Few-shot Text Classification

We apply BERT (Devlin et al., 2019b) to train a few-shot text classification
model. The output features h of the top layer of BERT can be written as:

z = [zc, z1, z2, ..., zn], (6.7)

where zc is the representation of the class-specific token CLS. For text classifi-
cation, zc is usually fed into a task-specific classifier header for final prediction.
However, in the FSL scenario, it is difficult to achieve satisfactory performance
through BERT fine-tuning because the small scale of few-shot samples will eas-
ily lead to over-fitting and lack of generalization ability.

To effectively address the challenge of few-shot text classification, many
approaches have been proposed. Generally, there are four categories of methods
for few-shot text classification based on large language models: meta-learning,
prompt-tuning, model design, and data augmentation. meta-learning refers to
the process of learning to learn with tasks that update meta-parameters (Lee
et al., 2022; Yin, 2020). Prompt-based methods guide large language models to
predict correct results by designing templates (Brown et al., 2020; Han et al.,
2022; Lester et al., 2021; J. Wang et al., 2022). Model design methods guide the
model to learn from few-shot samples by changing the structure of the model
(Liao, Liu, Dai, Wu, et al., 2023). Data augmentation uses similar characters
(Belinkov & Bisk, 2017), similar word semantics (Alzantot et al., 2018; Mrkšić
et al., 2016), or knowledge base (Rezayi, Dai, et al., 2022; Rezayi, Liu, et al.,
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2022) to expand samples. Our method directly data augmentation through the
language capabilities of large language models, which is a simple and efficient
data augmentation method.

Objective Function: Our objective function of few-shot learning consists
of two parts: cross entropy and contrastive learning loss. We feed zc into a fully
connected layer, the classifier for the final prediction:

ŷ = W T
c zc + bc, (6.8)

whereWc and bc are trainable parameters, and take cross-entropy as one of the
objective functions:

LCE = −
∑
d∈D′

C∑
c=1

ydc ln ŷdc, (6.9)

where C is the output dimension, which is equal to the union of label spaces
of the base dataset and novel dataset, and yd is the ground truth.

Then, to make full use of the prior knowledge in the base dataset to guide
the learning of the novel dataset, we introduce the contrastive loss function to
make the sample representation of the same category more compact and the
sample representation of different categories more separate. The contrastive
loss between pairs of samples in the same batch is defined as follows:

LCL = − log

∑
ecos(vi,vi′ )∑

ecos(vi,vi′ ) +
∑
ecos(vi,vj)

, (6.10)

where vi and v′
i are the zc of samples that belong to the same category; vi and

vj are the zc of samples belong to different categories; cos(·; ·) is the cosine
similarity.

In the BERT fine-tuning stage on the base dataset, we only use cross entropy
as the objective function. In the few-shot learning stage, we combine cross
entropy and contrastive learning loss as the objective function:

L = LCE + λLCL. (6.11)

6.5.4 Baseline Methods

In the experiment section, we compare our method with other popular data
augmentation methods. For these methods, we use the implementation in
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Table 6.2: Data Augmentation and Ablation Study. The BERT + C indicates
BERT with contrastive loss.

Data Augmentation Amazon Symptoms PubMed20K
BERT BERT + C BERT BERT + C BERT BERT + C

Raw 0.734 0.745 0.636 0.606 0.792 0.798
BackTranslationAug 0.757 0.748 0.778 0.747 0.812 0.83
CWAUB(Insert) 0.761 0.750 0.697 0.677 0.802 0.811
CWAUB(Substitute) 0.770 0.757 0.626 0.667 0.815 0.830
CWAUDB(Insert) 0.759 0.762 0.707 0.747 0.796 0.796
CWAUDB(Substitute) 0.787 0.766 0.667 0.646 0.797 0.800
CWAURB(Insert) 0.775 0.768 0.758 0.707 0.815 0.814
CWAURB(Substitute) 0.745 0.730 0.727 0.667 0.782 0.782
CounterFittedEmbeddingAug 0.754 0.741 0.667 0.626 0.805 0.805
InsertCharAugmentation 0.771 0.775 0.404 0.475 0.826 0.831
InsertWordByGoogleNewsEmbeddings 0.816 0.794 0.636 0.677 0.786 0.784
KeyboardAugmentation 0.764 0.766 0.545 0.505 0.809 0.815
OCRAugmentation 0.775 0.782 0.768 0.778 0.789 0.789
PPDBSynonymAug 0.691 0.690 0.697 0.758 0.795 0.829
SpellingAugmentation 0.727 0.736 0.697 0.707 0.808 0.811
SubstituteCharAugmentation 0.762 0.768 0.535 0.586 0.816 0.821
SubstituteWordByGoogleNewsEmbeddings 0.729 0.741 0.727 0.727 0.807 0.822
SwapCharAugmentation 0.762 0.766 0.475 0.485 0.797 0.801
SwapWordAug 0.771 0.766 0.687 0.727 0.798 0.794
WordNetSynonymAug 0.805 0.798 0.616 0.758 0.761 0.757
ChatGPT (2-shot) 0.753 0.980 0.748
AugGPT 0.816 0.826 0.889 0.899 0.835 0.835

open-source libraries including, nlpaug (Ma, 2019) and textattack (Morris et
al., 2020).

• InsertCharAugmentation. This method inserts random characters at
random locations in text, which improves the generalization ability of
the model by injecting noise into the data.

• SubstituteCharAugmentation. This method randomly replaces se-
lected characters with other ones.

• SwapCharAugmentation (Belinkov & Bisk, 2017). This method ran-
domly exchanges two characters.

• DeleteCharAugmentation. This method randomly deletes characters.

• OCRAugmentation. OCRAugmentation simulates possible errors
during OCR recognition. For example, OCR tool may wrongly identify
“0" as “o", and wrongly identify “I" as “l".

• SpellingAugmentation (Coulombe, 2018). It creates new text by delib-
erately misspelling some words. The method uses a list of English words
that are most likely to be misspelled provided by Oxford Dictionary, for
example, misspelling “because" as “becouse".
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• KeyboardAugmentation (Belinkov & Bisk, 2017). It simulates typo
error by replacing randomly selected characters with the adjacent char-
acters in the QWERTY layout keyboard. For example, replacing ‘g’ with
‘r’, ‘t’, ‘y’, ‘f’, ‘h’, ‘v’, ‘b’ or ‘n’.

• SwapWordAug (Wei & Zou, 2019a). It randomly exchanges words in
text. This method is a submethod of Easy Data Augmentation (EDA)
proposed by Wei et al.

• DeleteWordAug. DeleteWordAug randomly deletes words in the text,
which is also a submethod of EDA.

• PPDBSynonymAug (Niu & Bansal, 2018). It replaces words with their
synonym in PPDB thesaurus. Synonym replacement can ensure seman-
tic consistency and is suitable for classification tasks.

• WordNetSynonymAug. It replaces words with their synonym in Word-
Net thesaurus.

• SubstituteWordByGoogleNewsEmbeddings (W. Y. Wang & Yang, 2015).
It replaces words with their top-n similar words in the embedding space.
The word embeddings used are pre-trained with GoogleNews corpus.

• InsertWordByGoogleNewsEmbeddings (Ma, 2019). It randomly se-
lects word from vocabulary of GoogleNews corpus and inserts it the
random position of the text.

• CounterFittedEmbeddingAug (Alzantot et al., 2018; Mrkšić et al.,
2016). It replaces words with their neighbors in counter-fitting embed-
ding space. Compared with GoogleNews word vectors used by Substi-
tuteWordByGoogleNewsEmbeddings, counter-fitting embedding intro-
duces the constraint of synonyms and antonyms, that is, the embedding
between synonyms will be pulled closer, and vice versa.

• ContextualWordAugUsingBert(Insert) (Kobayashi, 2018; Kumar et
al., 2020). This method uses BERT to insert words based on context,
that is, add< mask > token at random position of the input text, and
then let BERT predict the token at that position.

• ContextualWordAugUsingDistilBERT(Insert). This method uses
DistilBERT to replace BERT for prediction, and the rest is the same as
ContextualWordAugUsingBert(Insert).
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Single-turn dialogue Multi-turn dialogues

Please rephrase the following sentence: {text}

You are a helpful assistant that rephrase text and make sentence smooth.

I will give you a sample, please rephrase it, then give me 6 rephrased answers.

Sure, please provide the sentence you would like me to rephrase.

{text}

System User Assistant

Figure 6.2: Single-turn dialogue and multi-turn dialogues prompt

• ContextualWordAugUsingRoBERTA(Insert). This method uses RoBERTA
to replace BERT for prediction, and the rest is the same as Contextual-
WordAugUsingBert(Insert).

• ContextualWordAugUsingBert(Substitute). This method (Kobayashi,
2018; Kumar et al., 2020) uses BERT to replace words based on context,
that is, replace randomly selected words in text with< mask > token,
and then let BERT predict the token at that position.

• ContextualWordAugUsingDistilBERT(Substitute). This method
uses DistilBERT to replace BERT for prediction, and the rest is the same
as ContextualWordAugUsingBert(Substitute).

• ContextualWordAugUsingRoBERTA(Substitute). This method uses
RoBERTA to replace BERT for prediction, and the rest is the same as
ContextualWordAugUsingBert(Substitute).

• BackTranslationAug. The method (Sennrich et al., 2016) translates the
text into German and then into English, resulting in a new text that is
different from the original but has the same semantics. We use wmt19-
en-de and facebook/wmt19-de-en language translation models (Ng et al.,
2020) developed by Facebook for translation.

6.5.5 Prompt Design

We have designed prompts for single-turn dialogue and multi-turn dialogues.
The prompts are shown in Fig 6.2. The Amazon dataset use the multi-turn
dialogues prompt for data augmentation. The Symptoms and PubMed20K
use the single-turn dialogue prompt for data augmentation.
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(a) Symptoms (b) PubMed20K (c) Amazon

Figure 6.3: We employed two evaluation metrics to assess the faithfulness and
compactness of our newly augmented data. The top left plot displays the cosine
similarity metric and final accuracy of all data augmentation methods on the
Symptoms dataset, and the bottom left plot shows the TransRate metric and
final accuracy of all data augmentation methods on the Symptoms dataset. In
the middle and bottom panels, we plotted the cosine similarity and TransRate
values of all data augmentation methods on the Amazon and PubMed20K
datasets, respectively. On the right side of the picture, we listed all the aug-
mented methods with different colors and shapes.

6.5.6 Evaluation Metrics

We employed cosine similarity and TransRate(L.-K. Huang et al., 2022) as met-
rics to assess the faithfulness (i.e., whether the generated data samples are close
to the original samples) and compactness (i.e., whether samples of each class are
compact enough for good discrimination) of the augmented data.

6.5.7 Embedding Similarity

To evaluate the semantic similarity between the samples generated by data aug-
mentation methods and actual samples, we adopt embedding similarity be-
tween the generated samples and the actual samples of the test dataset. Some
of the most common similarity metrics include Euclidean distance, cosine sim-
ilarity and dot product similarity. In this study, we select cosine similarity to
capture the distance relationship in the latent space. The cosine similarity mea-
sures the cosine value of the angle between two vectors. This value increases
when two vectors are more similar, and is bounded by a range between 0 and 1.
Since the pre-trained language models without fine-tunning poorly to capture
semantic meaning, we fine-tunning the pre-trained BERT on base dataset by
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BERT-flow (B. Li et al., 2020) method, and finally apply the fine-tunned BERT
to get smaple embedding. The cosine similarity metric is commonly used in
NLP (J. Wang & Dong, 2020) and we follow this convention.

cos(θ) =
A ·B

∥A∥2 ∥B∥2
, (6.12)

where A and B denote the two embedding vectors in comparison, respectively.

6.5.8 TransRate

TransRate is a metric that quantifies transferability based on the mutual infor-
mation between the features extracted by a pre-trained model and their labels,
with a single pass through the target data. The metric achieves a minimum
value when the data covariance matrices of all classes are identical, making it im-
possible to distinguish between the data from different classes and preventing
any classifier from achieving better than random guessing. Thus, a higher Tran-
sRate could indicate better learnability of the data. More specifically, knowledge
transfer from a source task Ts to a target task Tt is measured as shown below:

TrRTs→Tt(g) = H(Z)−H(Z|Y ), (6.13)

where Y represents the labels of augmented examples, andZ denotes the latency
embedding features extracted by the pre-trained feature extractorg. TrRmeans
the TransRate value. H(·) denotes the Shannon entropy(Cover, 1999).

6.5.9 Direct Classification Performance by ChatGPT

An interesting and important question about the utilization of ChatGPT for
text data augmentation would be how ChatGPT will perform when directly ap-
plied to FSL downstream tasks. Thus, we developed tailored prompts for Chat-
GPT to perform the classification tasks with integrated the API for prompting.
For the Symptoms dataset, we employed the following prompt instruction:
"Given a person’s health description or symptom, predict the corresponding
illness from the following categories: CLASSES." Additionally, we used "De-
scription: DESCRIPTION. Typically, this symptom corresponds to CLASS"
as the prompt for each example in the dataset. In this way, We can include
few-shot examples (in this work, we used two) to facilitate the model’s adapta-
tion to downstream tasks. We used similarly-designed prompt instructions for
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the other two tasks and the corresponding example prompt to implement the
few-shot in-context learning by ChatGPT.

6.6 Experiment Results

In our experiments, we use BERT as the base model. Firstly, we train our model
on the base dataset to produce the pre-trained model. Then we fine-tune the
model with the combination of few-shot samples and the augmented samples
generated from various data augmentation methods. Specifically, in all three
FSL tasks, we perform 2-shot learning, i.e., there would be two real samples
used for each class in the target domain. Afterward, We use those samples to
fine-tune the pre-trained models. To evaluate the effectiveness of different data
augmentation methods, we apply two different settings. The first one is the
vanilla BERT model. In the second setting, we add a contrastive loss to the
training objective function. In our experiments on the Symptoms dataset, we
use a batch size of 8 for 150 epochs, set the maximum sequence length to 25,
λ as 1, and use a learning rate of 4e-5. In our experiments on the PubMed20K
dataset, we adopt the same training configuration, with the maximum sequence
length set to 40. For all three tasks, we will generate six augmented samples per
class. Examples of the augmented samples generated by AugGPT and other
selected baseline methods can be found in the appendix. Codes and the three
benchmark datasets can be found at https://github.com/yhydhx/AugGPT.

6.6.1 Classification Performance Comparison

Table 6.2 shows the accuracy of different data augmentation methods. As
shown in Table 6.2, AugGPT achieves the highest accuracy for Amazon, Symp-
toms and PubMed20K datasets. For the Amazon dataset, AugGPT and Insert-
WordByGoogleNewsEmbeddings achieve the best performance for BERT, and
AugGPT achieve the best performance for BERT with contrastive loss. In the
PubMed20K dataset, AugGPT achieves 83.5% accuracy for both BERT and
BERT with contrastive loss, whereas without data augmentation, the accuracy
values are only 79.2% and 79.8%, respectively. For the Symptoms dataset, the
accuracy for BERT downstream augmentation is only 63.6%, and 60.6% with
contrastive loss. However, our AugGPT approach significantly improves the
accuracy to 88.9% and 89.9%, respectively. These results suggest that data aug-
mentation using ChatGPT is more effective in enhancing the performance of
machine learning models in various applications.
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6.6.2 Evaluation of Augmented Datasets

In addition to the classification accuracy, we evaluate the augmented data in
the latent space and visualize the results in Fig 6.3. Latent embeddings are eval-
uated using cosine similarity and the TransRate metric (see section 6.5.6 for
more details). The horizontal axis represents the cosine similarity values and
Transrate values, and the vertical axis describes the classification accuracy. Since
embedded similarity measures the similarity between the generated data and
the test dataset, high similarity means that the generated data are close to real
input data and with higher faithfulness and compactness. Higher TransRate
indicates better learnability of the data. Therefore, a higher TransRate score in-
dicates that the augmented data are of higher quality. The most ideal candidate
method should be positioned at the top-right of the visualization. As shown
in Fig 6.3, AugGPT produces high-quality samples in terms of both faithful-
ness and compactness on the Symptoms dataset and the PubMed20K dataset.
On the open-domain Amazon dataset, AugGPT also produces high-quality
samples with a higher TransRate.

6.6.3 Performance Comparison with ChatGPT

Furthermore, we used ChatGPT to directly perform the downstream text data
classification tasks under a 5-shot learning scheme. We used in-house designed
instructions with few-shot in-context examples to prompt ChatGPT as de-
scribed in 4.7. The performance of ChatGPT for the downstream tasks is listed
in Table 2. The result reveals that state-of-the-art large language models such
as ChatGPT tend to perform better on relatively easier tasks, for example, iden-
tifying symptoms according to a one-sentence description. However, when it
comes to complicated tasks such like PubMed, model fine-tuning is still needed
and could achieve better performance compared to few-shot prompts.

6.7 Conclusion and Discussion

In this paper, we proposed a novel data augmentation approach for few-shot
classification. Unlike other methods, our model expands the limited data at the
semantic level to enhance data consistency and robustness, which results in a
better performance than most of the current text data augmentation methods.
With the advancement of LLM and its nature of a multi-task learner (Radford
et al., 2019), we envision that a series of tasks in NLP can be enhanced or even
replaced in a similar fashion.
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Although AugGPT has shown promising results in data augmentation, it
has certain limitations. For example, when recognizing and augmenting medical
texts, AugGPT may produce incorrect augmentation results due to the lack of
domain knowledge of ChatGPT. In future works, we will investigate adapting
the general-domain LLMs, such as ChatGPT, to domain-specific data, such as
medical texts, via model fine-tuning, in-context learning (prompt engineering),
knowledge distillation, style transfer, etc.

AugGPT has demonstrated that the augmentation results can effectively
improve the performance of the downstream classification task. A promising
direction for future research is to investigate AugGPT against a wider range
of downstream tasks. For example, given the strong ability of ChatGPT to ex-
tract key points and understand sentences, it can be utilized in tasks such as text
summarization. Specifically, ChatGPT might be valuable for domain-specific
science paper summarization (Cai et al., 2021) and clinical report summariza-
tion (Cai et al., 2022). Publicly available domain-specific science paper sum-
marization datasets and clinical report datasets are rare and often provided at
small scales due to privacy concerns and the need for expert knowledge to gener-
ate annotated summaries. However, ChatGPT could address this challenge by
generating diverse augmented summarization samples in different representa-
tion styles. The data generated from ChatGPT are typically concise, which can
be valuable for further enhancing the generalization capabilities of the trained
model.

The dramatic rise of generative image models such as DALLE2 (Ramesh
et al., 2022) and Stable Diffusion (R. Rombach et al., 2022) provides opportu-
nities for applying AugGPT to few-shot learning tasks in computer vision. For
example, accurate language descriptions may be used to guide the generative
model to generate images from text or to generate new images based on existing
images as a data augmentation method for few-shot learning tasks, especially
when combined with efficient fine-tuning methods (E. J. Hu et al., 2021; Ruiz
et al., 2022) such as LoRA for Stable Diffusion. Thus, prior knowledge from a
large language model can facilitate faster domain adaptation and better few-shot
learning of generative models in computer vision.

Recent research shows that large language models (LLMs), such as GPT-
3 and ChatGPT, are capable of solving Theory of Mind (ToM) tasks, which
were previously thought to be unique to humans (Kosinski, 2023). While the
ToM-like capabilities of LLMs may be an unintended byproduct of improved
performance, the underlying connection between cognitive science and the
human brain is an area ripe for exploration. Advancements in cognitive and
brain science can also be used to inspire and optimize the design of LLMs. For
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example, it has been suggested that the activation patterns of the neurons in
the BERT model and those in the human brain networks may share similarities
and could be coupled together(X. Liu et al., 2023). This presents a promising
new direction for developing LLMs by utilizing prior knowledge from brain
science. As researchers continue to investigate the connections between LLMs
and the human brain, we may discover new means to enhance the performance
and capabilities of AI systems, leading to exciting breakthroughs in the field.
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Chapter 7

An Autonomous GPT for
Alzheimer’s Disease

Infodemiology

7.1 Overview

Inspired by AutoGPT, the state-of-the-art open-source application based on
the GPT-4 large language model, we develop a novel tool called AD-AutoGPT
which can conduct data collection, processing, and analysis about complex
health narratives of Alzheimer’s Disease in an autonomous manner via users’
textual prompts. We collated comprehensive data from a variety of news sources,
including the Alzheimer’s Association, BBC, Mayo Clinic, and the National
Institute on Aging since June 2022, leading to the autonomous execution of
robust trend analyses, intertopic distance maps visualization, and identification
of salient terms pertinent to Alzheimer’s Disease. This approach has yielded not
only a quantifiable metric of relevant discourse but also valuable insights into
public focus on Alzheimer’s Disease. This application of AD-AutoGPT in pub-
lic health signifies the transformative potential of AI in facilitating a data-rich
understanding of complex health narratives like Alzheimer’s Disease in an au-
tonomous manner, setting the groundwork for future AI-driven investigations
in global health landscapes.

7.2 Background

Alzheimer’s Disease (AD), a progressive neurodegenerative disorder, remains
one of the most pressing public health concerns globally in the 21st century
(Avramopoulos, 2009; Dartigues, 2009). This disease, characterized by cogni-
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tive impairments such as memory loss, predominantly affects aging populations,
exerting an escalating burden on global healthcare systems as societies continue
to age (Post, 2000). The significance of AD is further magnified by the increas-
ing life expectancy globally, with the disease now recognized as a leading cause
of disability and dependency among older people (Hinton & Levkoff, 1999).
Consequently, AD has substantial social, economic, and health system implica-
tions, making its understanding and awareness of paramount importance (Rice
et al., 1993; Y. Zhao et al., 2008).

Despite the ubiquity and severity of AD, a gap persists in comprehensive,
data-driven public understanding of this complex health narrative. Tradition-
ally, public health professionals have to rely on labor-intensive methods such as
web scraping, API data collection, data postprocessing, and analysis/synthesis
to gather insights from news media, health reports, and other textual sources
(Bacsu, Fraser, et al., 2022; Mavragani, 2020; Y. Zhang, Lyu, et al., 2021). How-
ever, these methods often necessitate complex pipelines for data gathering, pro-
cessing, and analysis. Moreover, the sheer scale of global data presents an ever-
increasing challenge, one that demands a novel, innovative approach to stream-
line these processes and extract valuable, actionable insights efficiently and au-
tomatically. In addition, the technical expertise required for developing data
processing and analysis pipelines significantly limits the access and engagement
of the broader public health community.

AutoGPT (Richards, 2023) is an experimental open-source application that
harnesses the capabilities of large language models (LLMs) such as GPT-4 (Ope-
nAI, 2023) and ChatGPT (Y. Liu et al., 2023) to automate and optimize the
analytical process. With its advanced linguistic understanding and autonomous
operation, AutoGPT simplifies complex data pipelines, facilitating comprehen-
sive analyses of vast datasets with simple textual prompts. This tool transcends
traditional limitations, unlocking the potential of LLMs for autonomous data
collection, processing, summarization, analysis, and synthesis.

In this study, we modify the AutoGPT architecture into public health ap-
plications and develop AD-AutoGPT to analyze a multitude of news sources,
including the Alzheimer’s Association, BBC, Mayo Clinic, and the National
Institute on Aging, focusing on discourse since June 2022. We are among the
pioneers in integrating AutoGPT into public health informatics, adapting this
transformative AI tool into the public health domain to elucidate the complex
narrative surrounding Alzheimer’s Disease. This research underlines the enor-
mous potential of autonomous LLMs in global health research, paving the way
for future AI-assisted investigations into various health-related domains.

We summarize our key contributions below:
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• Inspired by AutoGPT, we develop a novel LLM-based tool called AD-
AutoGPT, which can generate data collection, processing, and analy-
sis pipeline in an autonomous manner based on users’ textual prompts.
More specifically, we adapt AD-AutoGPT to the public health domain
to showcase its great potential of autonomous pipeline generation to
understand the complex narrative surrounding Alzheimer’s Disease.

• While AutoGPT is an effective autonomous LLM-based tool, it has lots
of limitations when applying it on AD Infodemiology during the process
of public health information retrieval, text-based information extraction,
text summarization, summary analysis, and visualization.

To overcome AutoGPT’s limitations for the AD Infodemiology task,
AD-AutoGPT provides the following improvements: 1) specific prompt-
ing mechanisms to improve the efficiency and accuracy of AD informa-
tion retrieval; 2) a tailored spatiotemporal information extraction func-
tionality; 3) an improved text summarization ability; 4) an in-depth anal-
ysis ability on generated text summaries; and 5) an effective and dynamic
visualization capability.

• We show that AD-AutoGPT transforms the traditional labor-intensive
data collection, processing, and analysis paradigm into a prompt-based
automated, and optimized analytical framework. This has allowed for
efficient, comprehensive analysis of numerous news sources related to
Alzheimer’s Disease.

• Through AD-AutoGPT, we have provided a case study for detailed trend
analysis, intertopic distance mapping, and identified salient terms related
to Alzheimer’s Disease from four AD-related new sources. This con-
tributes significantly to the existing body of knowledge and facilitates a
nuanced understanding of the disease’s discourse in public health.

• Our research underlines the capacity of AD-AutoGPT to facilitate data-
driven public understanding of complex health narratives, such as Alzheimer’s
Disease, which is of paramount importance in an aging global society.

• The methodologies and insights from our work provide a foundation for
future AI-assisted public health research. Our AD-AutoGPT pipeline is
extendable to other topics in public health or even other domains. This
work paves the way for comprehensive and efficient investigations into
various domains.
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7.3 Related Works

7.3.1 Large Language Models

Large language models (LLMs), with their origins in Transformer-based pre-
trained language models (PLMs) such as BERT (Devlin et al., 2018) and GPT
(Radford et al., 2018), have substantially transformed the field of natural lan-
guage processing (NLP). LLMs have superseded previous methods such as
Recurrent Neural Network (RNN) based models, leading to their widespread
adoption across various NLP tasks (Y. Liu et al., 2023; L. Zhao, Zhang, et al.,
2023). Furthermore, the emergence of very large language models such as GPT-
3 (Brown et al., 2020), Bloom (Scao et al., 2022), GPT-4 (OpenAI, 2023), PaLM
(Chowdhery et al., 2022), and PaLM-2 (Anil et al., 2023) demonstrates a clear
trend towards even more sophisticated language understanding capabilities.

These models are designed to learn accurate contextual latent feature rep-
resentations from input text (Kalyan et al., 2021), which can then be employed
in a variety of applications, including question answering, information extrac-
tion, sentiment analysis, text classification, and text generation. The innovative
technique of reinforcement learning from human feedback (RLHF) (Ziegler et
al., 2019) has been used to further align LLMs with human preferences, which
has found applications in Artificial General Intelligence (AGI) models such
as InstructGPT (Ouyang, Wu, Jiang, Almeida, Wainwright, Mishkin, Zhang,
Agarwal, Slama, Ray, et al., 2022), Sparrow (Glaese et al., 2022), and Chat-
GPT (Y. Liu et al., 2023). More recently, GPT-4 has significantly advanced the
state-of-the-art of language models, opening up new opportunities for LLM
applications.

Other than the applications in NLP domain, LLMs also show promising re-
sults and significant impacts in other disciplines such as biology (Agathokleous
et al., 2023), geography (Mai, Cundy, et al., 2022; Mai et al., 2023), agriculture
(Lu et al., 2023), education (Kasneci et al., 2023; Latif et al., 2023), medical and
health care (Dave et al., 2023; Z. Liu et al., 2023), and so on.

7.3.2 Public Health Infodemiology

Infodemiology (Eysenbach, 2002) is a field that studies the determinants and
distribution of information on the internet or in a population, with the goal of
informing public health and public policy (Eysenbach, 2002; Mavragani, 2020).
The term combines "information" and "epidemiology" and is a recognized ap-
proach in public health informatics, providing insights into health-related be-
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haviors and perceptions. It plays a crucial role in monitoring and managing the
information epidemic ("infodemic") associated with major public health crises.

For example, Piamonte et al. (Piamonte et al., 2022) analyzed global search
queries for Alzheimer’s disease (AD) using Google Trends data, comparing this
online interest (Search Volume Index) with measures of disease burden. The
study revealed that search behavior and interest in AD were influenced by fac-
tors like news about celebrities with AD and awareness months, and also high-
lighted potential correlations between this online interest and socioeconomic
development.

With the rise of the internet and digital technologies, infodemiology pro-
vides a vital lens to examine the flow of health information and misinformation,
helping public health practitioners develop effective communication strate-
gies and interventions (Mackey et al., 2022; Zielinski, 2021). In the context of
Alzheimer’s disease, understanding online behaviors and interests via infodemi-
ology can help enhance public awareness, correct misconceptions, and inform
preventative and management strategies for the disease (Bacsu, Cammer, et al.,
2022; Piamonte et al., 2022).

7.3.3 AutoGPT and LLM Automation

The development and use of AutoGPT, LangChain2, and many other automa-
tion techniques for LLMs represent a significant advancement in the field of
NLP and artificial intelligence. AutoGPT builds on the successes of large lan-
guage models like GPT-3 and GPT-4, but takes automation a step further by
providing a more user-friendly interface for non-expert users (Richards, 2023).

With AutoGPT, complex tasks such as data collection, data cleaning, analy-
sis, and even the generation of human-like text can be completed using straight-
forward prompts, removing the need for extensive coding or data science exper-
tise. This has the potential to democratize access to powerful language model
technology, opening up new possibilities for research and application in a wide
range of fields, including public health.

Recent studies (Fezari & Ali-Al-Dahoud, n.d.; G. T. Zhao, n.d.) have high-
lighted the potential of AutoGPT and similar tools for automating the retrieval
and analysis of large datasets. For example, with a well-formulated query, Au-
toGPT can be directed to crawl through a wide array of online platforms, col-
lecting and analyzing comments, discussions, and posts pertaining to vaccines.
The system would subsequently generate a summarizing report, outlining ma-
jor themes of public opinion and prevalent misconceptions, thereby providing
valuable insights for public health officials in formulating targeted communica-
tion and intervention strategies.
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In the context of infodemiology, AutoGPT can automate the process of
analyzing online health information trends, which traditionally involves exten-
sive manual effort. Specifically, it can efficiently scan and interpret internet
data, track the spread of health information and misinformation, assess public
reaction to health policies or events, and potentially predict future trends.

7.3.4 Improving Autonomous LLM-based Tools for Public

Health

While recognizing the potential of autonomous large language models (LLMs)
like AutoGPT in public health research and practice, we identified certain limi-
tations in their current state that may hinder their efficacy in particular use cases,
such as infodemiology. By tailoring these tools to the specific needs of public
health professionals, we aim to enhance their utility in these contexts.

Firstly, despite AutoGPT’s extensive searching capabilities, its ability to ac-
quire specialized information quickly and precisely, for instance, about Alzheimer’s
disease (AD), can be somewhat limited. In response to this, we have integrated
specific prompting mechanisms in our model, AD-AutoGPT. These tailored
prompts direct AD-AutoGPT to gather data from a select list of authoritative
websites relevant to AD, which enhances the efficiency and relevance of infor-
mation acquisition.

Secondly, Our AD-AutoGPT model also addresses the challenge AutoGPT
faces in extracting critical details such as the time and place of news events from
articles accurately. AD-AutoGPT uses web-crawling scripts to extract accurate
timestamps from news pieces, and employs geo-location libraries such as geopy
(“GitHub - geopy/geopy: Geocoding library for Python. — github.com”, n.d.)
and geopandas (“GitHub - geopandas/geopandas: Python tools for geographic
data — github.com”, n.d.) to retrieve precise location information from texts.

Thirdly, depth of analysis is another area where AutoGPT could benefit
from further refinement. Owing to the token limit in models like ChatGPT,
AutoGPT’s analysis is often restricted to the first 4096 tokens (Y. Liu et al.,
2023). Consequently, it might miss core content or important details. To over-
come this limitation, AD-AutoGPT segments the text, vectorizes it, and then
processes these chunks independently. It creates summaries for each of these
segments and then amalgamates these summaries to create a comprehensive
representation of the news article.

Fourthly, AutoGPT’s current capabilities, while useful, lack the capacity
to conduct an in-depth analysis of the generated summaries. The synthesized
data can still be redundant and may not accurately capture the most essential
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information. In contrast, AD-AutoGPT applies Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) to extract the most pertinent keywords from the text
summaries, offering users a succinct understanding of the central themes in the
Alzheimer’s disease domain.

Lastly, while AutoGPT is effective at generating text-based information, it
lacks robust visualization capabilities. Addressing this limitation, AD-AutoGPT
integrates dynamic visualization techniques, creating plots of news occurrences
over time, highlighting locations where news events are happening, and even
illustrating the evolution of research keywords over time.

AD-AutoGPT is refined through the application of domain-specific knowl-
edge and technical adjustments to optimize its relevance and effectiveness for
public health researchers and practitioners. As a result, AD-AutoGPT is faster
and more efficient in its operations compared to the original AutoGPT, high-
lighting the advantages of tailoring autonomous LLM-based tools for specific
use cases in public health.

7.4 Method

In this section, we will introduce AD-AutoGPT, an LLM-based tool we de-
veloped to automate the process of Alzheimer’s Disease Infodemiology. AD-
AutoGPT uses the Langchain framework to realize the connection with GPT-4
and ChatGPT API, and establish an LLM-based autonomous framework with
a chain of thinking mode for Alzheimer’s disease. This is a model that can
automatically search for the latest news, extract meaningful spatio-temporal
data, summarize the news, analysis news content, and visualize analysis results.
The overall framework of AD-AutoGPT is shown in Figure 7.1. We construct
an instruction library that contains a set of possible commands/tools we have
developed to achieve the public health infodemiology task. A prompt shown
in Figure 7.2a is designed to facilitate LLMs to identify usable tools from the
instruction library and form a data processing pipeline that demonstrates the
process of thinking. AD-AutoGPT’s ability of “translating” natural language
prompts to real data processing pipeline is similar to the idea of semantic pars-
ing used in traditional question answering literature (Berant et al., 2013; Liang
et al., 2017; Mai et al., 2021), which aims at translating a natural language ques-
tion into an executable query for a given database or knowledge base. However,
the difference is that semantic parsing is only able to generate rather simple ex-
ecutable queries on a well-defined knowledge base while our AD-AutoGPT
can handle much more complex real-world tasks such as searching and collect-
ing news from Google, analyzing new contents, and visualizing topic trends
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Task 1, Task 2…

Instruction Library
Search and Save News

Summarize News

Draw Plots

ResponseOrder

Goal Achieved?

Yes
No

Memory

Extract Spatial Data

Extract Temporal Data

Analyze Linear Discriminant Extract Hyperlinks

Introduce AD-AutoGPT

… …

GOAL Final Answer

Figure 7.1: The basic framework of AD-AutoGPT. The instruction library
contains a set of possible commands we have developed to complete the public
health infodemiology task. These commands can also be expanded in the future.
In order to achieve the goal, AD-AutoGPT will access GPT-4 and divide the
final goal into several smaller tasks, and then solve small tasks step-by-step by
choosing the most appropriate command for the sub-task in the instruction
library. After thinking and judging, if the final goal has not been achieved, AD-
AutoGPT will continue to split the task and execute the command. If the final
goal has been achieved, AD-AutoGPT will return the final answer.
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and spatial-temporal distributions of news. Below we will introduce the work-
flow of AD-AutoGPT and the basic principles of the algorithms used in the
workflow in detail.

7.4.1 Overall Framework

Our primary goal is to learn from the chain thinking mode of AutoGPT to
realize the automatic collection and summary of Alzheimer’s disease news. To
achieve this goal, the power of LLMs must be used. Advanced LLMs such as
ChatGPT and GPT-4 have brought earth-shaking changes to the NLP domain,
and we see the potential advantages of LLMs for the public health field.

The overall framework is shown in Figure 7.1. For the target task, AD-
AutoGPT will use ChatGPT or GPT-4 to divide the target task into several
small tasks and process them separately. We provide AD-AutoGPT with an
instruction library which contains customized functions/tools including:

1. Search and Save News, which utilizes Google API to search for the
latest news posted on authoritative websites and save the URLs on a
local device;

2. Summarize News, which uses ChatGPT or GPT-4 to summarize the
main content of one piece of news and extract the spatial-temporal infor-
mation of each stored news;

3. Visualize Results, which will draw all the results for visualization, and
will also display the results of the LDA analysis of the news content.

After operating every small task choosing from these tools, AD-AutoGPT
will judge whether the overall goal has been achieved according to the running
results of the function, or it needs to think again and solve the next small prob-
lem. Chain thinking is realized through such a pattern. If during the process
AD-AutoGPT thinks that the system has reached the initial goal, the system
will exit and return a final answer to the initial question.

7.4.2 Designing Prompts to Implement Chain of Thoughts

A prompt example can be seen in Figure 7.2a and the model thinking process of
AD-AutoGPT is shown in Figure 7.2b. According to the input, this prompt has
four parts in the task process which are question, thought, action, and action
input.
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Question: Can you help me to know something new about Alzheimer’s Disease and maybe draw some plots for me?

Answer the following questions in the given format, You can use the following tools：{tools}

When answering, please follow the format enclosed in ---

---

Question: The question need to be answered

Thought: What should I do to answer the above question

Action: choose one tool from ”{tool_names}“ 

Action Input: choose the input_args that action requires

Observation: Choose the results returned by tools

（The action of thinking/observation can repeat N times）
Thought: Now, I've got the final answer

Final Answer: The final answer of the initial question

---

Now start to answer user's questions, remember to follow the specified format step by step before providing the final answer.

Question: {input}

{agent_scratchpad}

(a) An instance of prompt specifies the format in which the AI answers questions.

Observation: News Links have been saved on this device.

Thought: Now I can use the tool to summarize the news and draw plots based on the summary.

Action: Summarize News

Action Input: The file containing the news links.

Browsing {website} and saving useful information in workplace folder…

Observation: The news information you need is obtained, the summary information is stored under the workplace   folder 
and you can use them to get visualization results

Thought: Now I can use the tool to draw plots based on the summary of the news.

Action: Draw Plots

Action Input: The summary information obtained from the previous step.

Visualizing the news topics...

Visualizing the news places...

Observation: Every thing you need is obtained.

Thought: Now I’ve got the final answer.

Final answer: Based on the latest news about Alzheimer’s disease, there have been some new studies on the potential

benefits of exercise and a healthy diet in reducing the risk of developing Alzheimer’s disease. The news also reported on the

development of a new drug that may help slow the progression of the disease. The plots show the frequency of news articles

related to Alzheimer’s disease over time and the locations where the news was reported.

Finished chain
Based on the latest news about Alzheimer’s disease, there have been some new studies on the potential benefits of exercise

and a healthy diet in reducing the risk of developing Alzheimer’s disease. The news also reported on the development of a

new drug that may help slow the progression of the disease. The plots show the frequency of news articles related to

Alzheimer’s disease over time and the locations where the news was reported.

System User Assistant

Thought: I need to use the tool “Search and Save news” to find the latest news about Alzheimer’s disease

Action: Search and Save news

Action Input: None

(b) An example of AI thinking and calling functions to solve user problems

Figure 7.2: The prompt of AD-AutoGPT, the AI assistant will answer the
question based on the given format and can use the specified functions. In the
prompt, tools represent the functions that AD-AutoGPT can call, including
tool_names, tool_descriptions and so on.

1. Question is the problem that AI needs to solve.
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2. Thought is the idea and thought process of AI for this problem.

3. Action is the operation selected by AI after thinking which AI thinks is
most suitable for solving the current task.

4. Action input is used as the input of the function.

For output, a prompt has three parts which are observation, thought, and final
answer.

1. Observation is the output of the function to inspire AI’s next thinking.

2. Thought shows the results of AI’s thinking about Observation.

3. The final answer is the judgment of the result. If the AI thinks that the
current result can fully answer the initial question, the AI will return the
final answer. Otherwise, it will continue to think and call other functions.

The last part of the prompt is the question entered by the user, such as
the question in Figure 7.2a, "Can you help me to know something new about
Alzheimer’s Disease and maybe draw some plots for me?". AI will decompose the
complex target tasks proposed by users into several simple tasks, thus inspiring
a chain of thoughts. And the thinking process of AI can be seen in Figure 7.2b

Owing to this set of prompts, we can ensure that the thinking logic of AD-
AutoGPT does not deviate from the right track and make the whole chain of
thoughts visible to users.

7.4.3 Text Summary

To achieve the purpose of extracting the most critical information from a large
amount of news text, AD-AutoGPT performs new text summary and LDA
topic modeling.

The text summary is mainly achieved by accessing ChatGPT or GPT-4 API.
Owing to the powerful text summarization ability of GPT-4, AD-AutoGPT
can make more efficient use of text than other models. AD-AutoGPT traverses
the saved news URLs one by one, and then saves the text from the website by
calling the web crawler scripts. Next, it uses ChatGPT or GPT-4 to summarize
the news text. It is worth mentioning that because LLMs have a token limit, all
the text here will be pre-processed first, and then be summarized. More specifi-
cally, since GPT-4 has a limit on the number of tokens, in order to summarize
the complete news text, we use the map_reduce method to process it (Richards,
2023).
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7.4.4 Spatiotemporal Information Extraction

Next, AD-AutoGPT will perform spatiotemporal information extraction on
the collected news articles. The temporal information can be easily extracted
from news metadata while extracting place mentions from news articles is a kind
of oral. Here, we adopt the geoparsing approach (Gritta et al., 2018; Karimzadeh
et al., 2019) which first recognizes place names from raw text, so-called toponym
recognition (Mai, Cundy, et al., 2022; J. Wang et al., 2020) and then link the
recognized place names to a specific geographic entity in an existing gazetteer or
geospatial knowledge graphs (Ahlers, 2013; Mai, Hu, et al., 2022), so-called to-
ponym resolution (Ju et al., 2016), so that the spatial footprints (i.e., geographic
coordinates) of these places can be obtained. More specifically, we use GeoText3,
a python-based geoparsing tool to achieve this goal.

7.4.5 LDA Analysis

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is a probabilistic topic
model. LDA can give a probability distribution of topics of each document in
the corpus. By analyzing a batch of document sets and extracting their topic
distributions, topic clustering can be performed according to the topic distribu-
tion. LDA is a typical bag-of-words model, that is, a document is interpreted as
a set of words, and there is no sequential relationship among words. In addition,
a document can contain multiple topics, and each word in the document is as-
sumed to be generated by one of the topics. LDA is an unsupervised learning
method that does not require a manually labeled training set during training
but only needs a document set and the total number of topicsK . In addition,
another advantage of LDA is that every topic is associated with a set of most
frequent keywords which can be used to interpret this topic.

In short, AD-AutoGPT uses LDA topic modeling to discover the topics
for the summary text of each piece of collected news, For each topic, the key-
word with the highest frequency of occurrence and the highest weight will be
displayed to the user.

7.5 Case Study and Experimental Results

7.5.1 Alzheimer’s Disease News Information Retrieval

The effectiveness of our proposed AD-AutoGPT is mainly verified on the data
provided by the most authoritative websites reporting Alzheimer’s disease, which
are Alzheimer’s Association, BBC, National Institute of Aging, and Mayo
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Clinic. By using the prompt shown in Figure 7.2a, we are able to instruct the
LLM (e.g., ChatGPT or GPT-4) to search for the right tool in our instruction
library – Search and Save News to achieve the first news data collection step.

We have collected 277 news in total from these four websites in the period
of last year. On this actual news dataset, we validate the functions of AD-
AutoGPT for text extraction, text summarization, spatio-temporal-data anal-
ysis, hot topics analysis, and result visualization. In this process, the time and
location of the news will also be extracted and saved. Note that AD-AutoGPT
automatically uses the given prompt and formalizes a data collection and pro-
cessing pipeline based on the toolsets in our instruction library without any
human intervention.

7.5.2 Spatiotemporal Information Extraction and Visual-

ization

Alzheimer’s Association

BBC

Mayo Clinic

NIA

(a) Places where the latest news about
Alzheimer’s diseases happened.

N
ew

s 
C

o
u

n
t

Timeline Month

(b) The number of news collected for each
month from June 2022 to May 2023.

Figure 7.3: The visualization of the results from the spatial and temporal infor-
mation extraction. (a) shows the spatial distribution of the Alzheimer’s disease
news. The news mainly happened in America and Western Europe. (b) shows
the temporal change in the number of news occurrences from June 2022 to
May 2023.

Based on the given prompt, AD-AutoGPT decides to use Extract Spatial
Data tool and Extract Temporal Data tool in our instruction library (see Figure
7.1) to extract the places where these news articles mentioned and the times-
tamps when these news articles were posted online.

The spatial locations of extracted places from all news articles are visual-
ized in Figure 7.3a. Note that this map visualization is automatically generated
by AD-AutoGPT based on the prompt shown in Figure 7.2b. It can be seen
that most of the news articles about Alzheimer’s Disease in the past year mainly
occurred in the United States and Western Europe. For the BBC, although
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it basically only reports Alzheimer’s disease news in the UK, the total num-
ber of news is not inferior to that of other websites. Similarly, websites in the
United States such as NIA also pay more attention to local news, especially in
the southeastern states of the United States. For the Alzheimer’s Association,
the sources of news reports are relatively scattered all over the world, while the
United States and Western Europe still show higher report frequencies than
other regions such as South America, Africa, Australia, and so on. Finally, for
Mayo Clinic, since there is less news from this news source, only a few occur-
rences can be seen on the map. Generally speaking, the distribution of news is
worldwide, but it is concentrated in the southeastern United States and Western
Europe. These might be because of the select bias of those four news media we
use or the well-developed Alzheimer’s disease research in these regions.

Temporal data analysis results can be seen in Figure 7.3b. The numbers of
news reports about Alzheimer’s disease in each month of the past year (June
2022 to May 2023) are visualized. It can be seen that the overall trend of the
number of news reports is declining, from 31 in a single month in June 2022 to 13
in May 2023. It can also be seen that September, October, and November 2022
are the period of high incidences of news reports. The number of news reports
in each of the three months exceeded 27, and those in September 2022 reached
32, which was the highest in 2022. This might be because there was news that
had a profound impact on AD-related media during this period, resulting in a
sudden increase in reports, which deserves special attention from users.

Therefore, it can be seen that AD-AutoGPT can not only extract useful
spatiotemporal information from a wide range of news sources but can also use
the visualization function to more intuitively display the spatial distribution
of the AD-related news and their development through time which might be
useful for users. We need to emphasize that these spatiotemporal analyses was
done by AD-AutoGPT without any human input. Thereby AD-AutoGPT im-
proves the efficiency of researchers’ work, which AutoGPT cannot do because
it does not design functions of information extraction from web pages.

7.5.3 LDA Topic Modeling and Hot Topic Analysis

Based on the LDA topic modeling, a hot topic analysis is automatically con-
ducted by AD-AutoGPT. The results can be seen in Figure 7.4. AD-AutoGPT
aggregates the summaries of the news reported in the past year for LDA analysis,
and finally got 5 hot topics. It selects the top 5 words with the most occurrences
for each of the 5 hot topics and draws streamgraphs according to the number
of occurrences and word weights of the words. Please refer to Figure 7.4a and
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(a) The word count trend of each topic
obtained from the LDA results.

(b) The word importance trend of each
topic obtained from the LDA results.

Figure 7.4: For each Topic, the Streamplot graph displays the occurrence times
and frequency of different keywords in different time periods.

7.4b. In this way, you can see the changes in topic distributions according to
time, so as to quickly understand the trend of the research topic.

It can be found that the keywords of the first hot topic are mainly protein,
lipid, and drug, and this type of topic has occupied the largest weight in the past
year, which shows that scientists are mostly concerned about seeking reliable
drug treatment for Alzheimer’s disease. The keywords of the topic with the
second highest proportion are individual, treatment, amyloid, and tissue. This
topic is also about the drug treatment of Alzheimer’s disease, but the focus
has obviously shifted from the research and development of new drugs to the
current personal medication, reflecting the patients’ concerns about self-care.
The keywords of the third-ranked topic include sleep, brain, blood, cell, etc.
This type of news mainly focuses on the causes of Alzheimer’s disease, which
is similar to popular science news. It can be seen that journalists have attached
great importance to popular science in the past year. For the fourth-ranked
topic, the keywords are increase, future, disorder, future, etc.

This topic is mostly related to the future plan or expectation for Alzheimer’s
disease research. The keywords of the last topic are mainly diagnosis, caregiver,
vitamin, etc., reflecting the public’s concerns about the diagnosis, care and pre-
vention of Alzheimer’s disease.

Therefore, we can conclude that through hot topic analysis, we can easily get
the popular topics in the news during June 2022 - May 2023 period by using AD-
AutoGPT’s autonomous workflow. Users no longer need to read extensively
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on news, but they can easily use the help of AD-AutoGPT to understand the
hot topics of Alzheimer’s disease in the past period so that the efficiency of
work and research on Alzheimer’s disease is greatly improved. Owing to GPT-
4’s powerful summarizing ability, in the future, the work of early information
collection can be completely handed over to AI. Humans only need to judge and
focus on the most critical information returned by AI to quickly understand
the development and changes in the public health domain, thus saving time
and resources.

7.6 Discussion and Conclusion

7.6.1 Automating Data Analytics

The success of AD-AutoGPT shows the transformative potential of LLMs in
the public health domain. By harnessing the advanced linguistic understand-
ing and autonomous operations of AD-AutoGPT, we were able to streamline
the analytical process and conduct comprehensive analyses of extensive news
sources related to Alzheimer’s Disease (AD). Moreover, AD-AutoGPT has
the potential to go beyond the public health domain and be applied in various
disciplines.

One of the key advantages of autonomous LLM-based tools such as Auto-
GPT and AD-AutoGPT is their ability to automate and optimize complex data
extraction and analysis tasks, as well as transcending traditional labor-intensive
methods. This enables researchers and professionals across different fields to
access and engage with large language models, empowering them to conduct
sophisticated analyses efficiently, regardless of their technical expertise.

7.6.2 Prioritizing Insights and Innovation

Through the development of AD-AutoGPT, we conduct a detailed trend anal-
ysis, intertopic distance mapping, and identified salient terms relevant to AD.
These findings provide valuable insights into the shifting focus and narrative
surrounding AD, not only in the domain of public health but also in broader
contexts. By quantifying and visualizing the discourse, we gain a nuanced under-
standing of the prevalent topics, concerns, and perspectives related to AD, facil-
itating targeted interventions, communication strategies, and decision-making
across multiple fields.

The integration of AutoGPT and other autonomous LLM-based tools into
research across different disciplines represents a significant advancement. By
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automating data analysis tasks, researchers can dedicate more time and resources
to interpreting the results and deriving actionable insights. This accelerates the
research process and enhances the accuracy and reliability of the findings in
diverse areas, such as social sciences, economics, technology, and more.

7.6.3 Transforming Public Health

Furthermore, the insights obtained from this research have broader implica-
tions beyond public health. The automation capabilities of AD-AutoGPT can
revolutionize the field of infodemiology by efficiently analyzing online infor-
mation trends, tracking the dissemination of information and misinformation,
and predicting future trends. This has the potential to inform evidence-based
interventions, enhance communication strategies, and combat misinformation
across various domains.

While our AD-AutoGPT has made significant strides in utilizing autonomous
LLM-based tools for AD analysis in the public health domain, there are still
areas for further exploration and improvement. For example, based on differ-
ent underlying pathologies, AD-related dementias (ADRD) can be categorized
as four major types: prion disease, AD, frontotemporal lobar degeneration
(FTLD), and Lewy body diseases (LBD). In practical clinical settings, differen-
tiations among these subtypes of dementias are very challenging, due to both
mixed pathologies and clinical symptoms. Our proposed AD-AutoGPT is a
general framework and can be easily extended and refined to adapt to other
dementias and various brain disorders. Future studies could also focus on ex-
panding the dataset to include a broader range of sources and different languages
to capture a more comprehensive understanding of the global discourse on dif-
ferent dementias across different fields. Additionally, exploring the integration
of AD-AutoGPT with other data sources, such as social media platforms and
electronic records, could provide a more holistic perspective on ADRD conver-
sations and outcomes across multiple disciplines.

7.6.4 Ethical Issues related to Autonomous LLM-based Tools

In the use of autonomous LLM-based tools, several ethical issues arise that war-
rant careful consideration. First, these models generate output based on their
training data, which if biased or discriminatory, could result in outputs that per-
petuate such biases (Ferrara, 2023; Magee et al., 2021). Ethical considerations
must therefore include the selection and handling of training data of LLMs to
minimize the risk of biased or inappropriate outputs.
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In addition, issues of privacy and consent are paramount, particularly when
dealing with sensitive data such as health information (Z. Liu et al., 2023). Even
though LLMs do not remember specific inputs or retain personal data, the po-
tential misuse of these tools can lead to leaking private or sensitive information
, which raises significant ethical and legal questions.

Moreover, the potential for misuse extends to the propagation of false in-
formation or misinformation (Hazell, 2023; Liao, Liu, Dai, Xu, et al., 2023),
a concern that is especially salient in the context of public health. LLMs can
generate plausible-sounding but factually incorrect or misleading information
(Latif et al., 2023; Y. Liu et al., 2023), which, if not properly managed, could
have severe consequences.

Finally, the democratization of powerful technologies like AutoGPT also
raises questions about responsibility and oversight. As these tools become more
accessible and widespread, ensuring appropriate use and managing the potential
for misuse becomes increasingly challenging.

Addressing these ethical issues is essential for the responsible development
and deployment of autonomous LLM-based tools. This includes the develop-
ment of robust guidelines for data handling, the implementation of safeguards
against misuse, the provision of clear user instructions and warnings about po-
tential pitfalls, and ongoing efforts to refine and improve these tools in light of
user feedback and societal needs. The goal should be to harness the potential of
these technologies while mitigating risks and adverse impacts, striking a balance
between technology innovation and ethical responsibility.
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Chapter 8

Conclusion and Future
Works

8.1 Conclusion

The conclusion of my dissertation summarizes the significant research I con-
ducted throughout my doctoral study.

First, drawing inspiration from the architecture of the brain, my research
aimed to optimize neural architecture within the DARTS RNN space. The
evaluation on spatial-temporal functional brain networks yielded promising
results, demonstrating the potential of this approach. Furthermore, we applied
the same method to PAE datasets to identify biomarkers of PAE, both at the
group-wise and individual levels. The experimental results have suggested that
our method can detect the temporal and parietal networks across three groups,
and these networks are affected by an increase in PAE severity.

Incorporating the hierarchical structure of functional brain networks, we
integrated hierarchical topology information into batch normalization within
CNN models. This enhancement allowed for a better understanding of how
deep neural networks process data, improving model interpretability and disen-
tangling semantic concepts without compromising classification performance.

Building upon the insights gained from the GyriNet, we developed the
novel model twin-transformer, which revealed the core roles of gyri nodes and
the peripheral roles of sulci nodes. Leveraging this knowledge, we applied
the core-periphery relationship pattern to the computational graph between
patches in the Vision transformer, achieving state-of-the-art performance.

Continuing our investigation, we utilized causal inference approaches to
explore the role of specific regions of interest (ROIs) in relation to Alzheimer’s
disease (AD). This line of research has led to the identification of key ROIs
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associated with AD, providing valuable insights into the mechanisms of the
disease.

Inspired by how humans describe objects, we turned our attention to large
language models, particularly ChatGPT. We discovered that ChatGPT exhib-
ited similar capabilities to our own brains, expressing sentences in different ways
while preserving semantic meaning. Leveraging ChatGPT in few-shot taxon-
omy tasks resulted in impressive performance.

Finally, we aimed to construct an autonomous AI-driven system (AD-AutoGPT)
capable of conducting data collection, processing, and analysis autonomously
in response to users’ textual prompts. This system represents a significant step
towards creating a self-sufficient framework for data-driven investigations.

8.2 Future Work

This dissertation represents an initial exploration into brain-inspired artificial
intelligence. Indeed, there are numerous promising avenues for future research
that extend beyond the existing body of work. The core-periphery pattern dis-
covered in our brain serves as a starting point, but it’s crucial to acknowledge the
intricate complexity of brain function. Future investigations can delve deeper
into the patterns of the brain and refine deep learning models accordingly. Con-
versely, leveraging advanced deep learning models can provide valuable insights
into understanding the mechanisms of our brain.

The emergence of large language models, such as ChatGPT, has showcased
remarkable abilities to generate human-like content. Similarly, the SAM vision
model has demonstrated its potential in understanding object boundaries with-
out the need for extensive training. Future research can explore the fusion of
multiple media sources, including sound, text, audio, and images, to transform
the input of deep learning models from single data types to multi-modality
data. This mimics how our brain comprehends the world, utilizing our senses
of sight, hearing, and cognitive understanding. The ultimate goal may lie in a
unified model capable of addressing any task, thereby eliminating the need for
specialized models for different modalities.

By integrating these future research directions, we can advance the field of
brain-inspired artificial intelligence. The synergy between brain-inspired prin-
ciples and cutting-edge deep learning models holds tremendous potential in
creating more intelligent and comprehensive systems. This would enable ma-
chines to approach human-like understanding and cognitive capabilities across
various domains. The journey towards achieving this goal requires continu-
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ous exploration, collaboration, and innovation in the field of brain-inspired
artificial intelligence.
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