HIGH-RESOLUTION SALMONELLA SURVEILLANCE IN COMMERCIAL BROILER BREEDER PRODUCTION

by

AMY TAYLOR SICELOFF

(Under the Direction of Nikki W. Shariat)

ABSTRACT

A high-resolution sequencing approach, CRISPR-SeroSeq, has revealed the frequent occurrence of multiserovar Salmonella populations in food animals and the environment; this highlights the limitations of traditional culture-based methods, as most are reliant on isolation of a few colonies and thus underestimate serovar diversity. The work presented here relies on deep serotyping by CRISPR-SeroSeq to investigate multiserovar Salmonella population dynamics in domestic poultry production. Despite a decrease in Salmonella prevalence at broiler processing from 17% to 8% between 2016 and 2020, the rate of foodborne illnesses remains stable. This disconnect may be attributed to serovars evading detection and therefore intervention strategies. A two-year surveillance study of broiler breeder farms found 18% of Salmonella-positive environmental samples contained multiserovar populations, with serovar Kentucky often excluding others. Longitudinal sampling across two commercial complexes found 17% and 41% of samples collected from pullet and breeder flocks were Salmonella-positive, respectively, with peak prevalence around 38 weeks of age. On-farm rodents were collected and screened for Salmonella by composite gastrointestinal tract samples,

revealing 35% positivity with shared serovars between the corresponding flocks and underscoring the potential for on-farm transmission. Successful Salmonella mitigation is contingent upon robust surveillance data, which in turn requires optimal sample collection and isolation methods. The combination of selective pre-enrichment with molecular enumeration in environmental breeder and broiler farm samples demonstrated comparable serovar recovery compared to traditional enrichment while reducing the isolation process by 24 hours. Additionally, PCR assays, along with retrospective bioinformatic analyses, were used to differentiate between live attenuated serovar Typhimurium vaccine strain and field strains found at processing. Importantly, 6% of serovar Typhimurium isolates from domestic broiler products collected in 2016 to 2022 were vaccine strains, which negatively counted towards a processing establishment's ranking and may have dissuaded vaccination use. Collectively, these results emphasize the need to improve Salmonella detection methods while minimizing turnaround time. By leveraging high-resolution sequencing, this dissertation highlights the complexity of Salmonella populations in chickens, including serovar-specific interactions and on-farm transmission pathways. This work supports that effective control strategies require adherence to biosecurity measures, reliable monitoring, and tailored interventions, all of which are fundamental in pre-harvest poultry production.

INDEX WORDS: broiler breeder production, Salmonella enterica subsp. enterica, multiserovar populations, CRISPR-SeroSeq, next-generation sequencing, molecular diagnostics

HIGH-RESOLUTION SALMONELLA SURVEILLANCE IN COMMERCIAL BROILER BREEDER PRODUCTION

by

AMY TAYLOR SICELOFF

BS, Florida State University, 2020

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2025

© 2025

Amy Taylor Siceloff

All Rights Reserved

HIGH-RESOLUTION SALMONELLA SURVEILLANCE IN COMMERCIAL BROILER BREEDER PRODUCTION

by

AMY TAYLOR SICELOFF

Major Professor: Nikki W. Shariat Committee: Jan Mrazek

Pejman Rohani

Liliana C.M. Salvador Christine M. Szymanski

Electronic Version Approved:

Ron Walcott Vice Provost for Graduate Education and Dean of the Graduate School The University of Georgia May 2025

ACKNOWLEDGEMENTS

I would not have reached this milestone without the unwavering support of my family and friends, both old and new. Thank you all for helping me celebrate my wins, move past my losses, and for listening to me talk about chickens for five years. I am especially grateful to my mom, Susan, for teaching me that everything truly works out in the end but comforting me along the way, and my dad, Chuck, for always reminding me to fly like a peacock. I am inspired every day by their resilience, kindness, and generosity. Thank you to my sisters, Ashley, Amanda, and Alana, for serving as both my anchors and lighthouse; I would be lost without you all.

To my lab mates who became a second family, thank you for all the laughs, helping hands, and sometimes unconventional advice; it has been a privilege to learn and grow alongside you all, and I cannot wait to see your continued success. Thank you to all the collaborators and industry partners who welcomed me to the field of food safety and taught me along the way, including (but not limited to): Dr. Doug Waltman and the GPLN, Dr. Sean Nolan and the whole NIPCAM team, Dr. Dayna Harhay and the wonderful US-MARC group. Finally, to my mentor, Dr. Nikki Shariat, thank you for always believing in me and pushing me outside of my comfort zone - I would not be the scientist I am today without your guidance and encouragement, and I am forever grateful that you took the chance on a graduate student who didn't know how to use a pipette.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	IV
LIST OF TABLES	VIII
LIST OF FIGURES	IX
CHAPTER	
1 INTRODUCTION AND LITERATURE F	REVIEW1
Evolution of Salmonella subspecies an	d serovars1
Public health implications of Salmonel	<i>la</i> 3
Domestic poultry production and the re	ole of Salmonella11
Methods for Salmonella detection, qua	ntification, and serotyping19
Research objectives	40
References	42
2 REGIONAL SALMONELLA DIFFERENC	CES IN UNITED STATES
BROILER PRODUCTION FROM 2016 T	O 2020 AND THE
CONTRIBUTION OF MULTISEROVAR	POPULATIONS TO
SALMONELLA SURVEILLANCE	107
Abstract	108
Importance	109
Introduction	109
Recults	113

	Discussion1	21
	Materials and methods	29
	Acknowledgements1	32
	Author contributions1	33
	References1	33
3	LONGITUDINAL STUDY HIGHLIGHTS PATTERNS OF SALMONELLA	4
	SEROVAR CO-OCCURRENCE AND EXCLUSION IN COMMERCIAL	
	POULTRY PRODUCTION1	44
	Abstract1	45
	Introduction1	46
	Materials and methods1	51
	Results1	57
	Discussion1	72
	Acknowledgements	79
	Author contributions	79
	References	80
4	OPTIMIZING SALMONELLA RECOVERY FROM COMMERCIAL	
	POULTRY ENVIRONMENTAL SAMPLES WITH SELECTIVE PRE-	
	ENRICHMENT1	92
	Abstract1	93
	Introduction1	94
	Materials and methods1	98
	Results and discussion	02

	Acknowledgements	210
	Author contributions	210
	References	210
5	IN SILICO AND PCR SCREENING FOR A LIVE ATTENUATED	
	SALMONELLA TYPHIMURIUM VACCINE STRAIN	217
	Summary	218
	Introduction	219
	Materials and methods	222
	Results	227
	Discussion	232
	Acknowledgements	236
	Author contributions	236
	References	237
6	CONCLUSIONS AND FUTURE DIRECTIONS	248
	References	259
APPEND	DICES	
A	SUPPLEMENTAL MATERIAL FOR CHAPTER 2	271
В	SUPPLEMENTAL MATERIAL FOR CHAPTER 3	274
C	SUPPLEMENTAL MATERIAL FOR CHAPTER 5	278

LIST OF TABLES

Page
Table 2-1: Prevalence of Salmonella in broiler carcasses at processing, 2016 to 2020114
Table 2-2: Prevalence of Salmonella in raw intact chicken parts at processing, 2016 to
2020 115
Table 3-1: CRISPR-SeroSeq summary results from GPLN sample set (n = 568)159
Table 5-1: Primer sequences used for the study

LIST OF FIGURES

Page
Figure 1-1: Salmonellosis cases attributed to chicken has increased while Salmonella
contamination of final products has decreased from 2016 to 20226
Figure 1-2: Top Salmonella serovars differ between food animals
Figure 1-3: Vertical integration model of broiler breeder production
Figure 1-4: Workflow for Salmonella isolation varies by organization and sample type.23
Figure 1-5: The application of Salmonella CRISPR arrays for deep serotyping34
Figure 1-6: High-resolution Salmonella surveillance can enable early detection of serovar
shifts35
Figure 1-7: Distribution of serovars/sample varies by stage of poultry production38
Figure 2-1: Salmonella serovar distribution in broiler carcasses and intact parts at
processing across the United States, 2016-2020
Figure 2-2: Serovar distribution for Salmonella positive breeder, carcass, intact parts, and
non-intact parts samples collected in Georgia, 2016-2020
Figure 2-3: Salmonella-positive breeder monitoring samples often contain multiple
serovars
Figure 3-1: Salmonella prevalence and presence of multiserovar populations by age 158
Figure 3-2: Multiserovar population dynamics vary by serovar
Figure 3-3: Serotyping results of breeder and broiler samples collected in Georgia from
August 2020 to June 2022 163

Figure 3-4: Multiserovar populations observed among multiple farms with several
pullet/breeder houses
Figure 3-5: Salmonella prevalence and serovar complexity throughout one breeder
production cycle
Figure 3-6: Salmonella prevalence and serovar distribution in pullet and breeder flocks
across two complexes
Figure 3-7: Salmonella serovars isolated from rodent composite samples and bait station
swabs171
Figure 4-1: Sampling schematic and workflow conditions
Figure 4-2: Comparison of Salmonella recovery among different culture conditions203
Figure 4-3: Salmonella recovery varies between broiler and breeder flocks205
Figure 4-4: Deep serotyping results for each Salmonella-positive enrichment208
Figure 5-1: Schematic showing transposition of <i>crp</i> and <i>cya</i> genes and design of
molecular assays
Figure 5-2: Incidence of Salmonella Typhimurium vaccine strain isolated from broiler
products by USDA-FSIS between 2016 and 2022
Figure 5-3: PCR assays distinguish between field isolates and vaccine strains229
Figure 5-4: Multiplex PCR assay to distinguish between field isolates and vaccine strains
231
Figure 5-5: PCR screen can detect presence of the vaccine isolate in mixed Salmonella
cultures
Figure 5-6: PCR screen can detect presence of the vaccine isolate in mixed Salmonella
cultures from breeder flocks234

CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

Evolution of Salmonella subspecies and serovars

Salmonella was first discovered in 1885, when it was presumed to be the causative agent of swine cholera (1). It has since become one of the most studied microorganisms as it is a significant contributor to foodborne disease in a wide range of hosts. The divergence of Salmonella and Escherichia coli, another leading bacterial cause of foodborne illness, occurred between 120 and 160 million years ago, and marked the acquisition of Salmonella pathogenicity island 1 (SPI-1)(2, 3). The SPI-1 encodes a type III secretion system (T3SS), which is considered to be the most important virulence determinant of Salmonella, as it supports host invasion and regulates immune responses (4). Members of the genus *Salmonella* are gram-negative, facultative anaerobic, rodshaped bacilli divided among two species, S. bongori and S. enterica, with the latter responsible for more than 99% of human clinical infections (5–9). S. bongori is primarily associated with cold-blooded animals with rare instances of acute salmonellosis in humans, usually following exposure to an infected reptile (10). Importantly, this species provides context for Salmonella enterica evolution as the inclusion of Salmonella pathogenicity island 2 (SPI-2), and corresponding macrophage replication abilities, occurred following species delineation (3, 11–14).

Currently, there are six defined subspecies within Salmonella enterica, including enterica (I), salamae (II), arizonae (IIIa), diarizonae (IIIb), houtenae (IV), indica (VI)

(15, 16). In turn, each subspecies is comprised of serovars that are each defined by the unique combination of two flagellar (H) and one somatic (O) antigen(s), for a total of over 2,600 serovars (6, 15). More than half of these serovars belong to Salmonella enterica subsp. enterica (hereafter, Salmonella), and less than 10% regularly cause human illness (17). These serovars are further classified as typhoidal or nontyphoidal; members of these two groups have vastly different disease outcomes, with typhoidal serovars acting as specialist pathogens to cause severe diseases in a limited host range (18, 19). Interestingly, many Salmonella serovars are named after geographical regions or the presumed illness caused, rather than the antigenic profile naming convention applied for other subspecies or bacteria (20). As a result of this, a handful of serovars are inappropriately named, including Infantis, Typhimurium, and London; the former two serovars do not exclusively cause the illnesses described (i.e., sickness in infants or typhoid fever in mice), while the latter was actually first isolated from Reading, England but serovar Reading was already defined so it was instead inspired by the last name of the patient. Aside from some interesting origin stories, it is most important to define Salmonella serovars as they exhibit a range of phenotypes based on varying genotypes, including virulence factors, antimicrobial resistance, propensity to cause disease, manifestation of symptoms, and host preferences (21–32). Further variation exists at the strain level as well (33–37). The high phenotypic diversity may be attributed in part to host adaptation, as colonization of different hosts may rely on certain fitness traits and the community composition surrounding salmonellae likely varies by host, thus providing additional opportunities for divergent evolution (38–43).

One of the main limitations associated with the conventional *Salmonella* serovar naming methods is the lack of recognition of lineages (44–46). Polyphyletic serovars are characterized by shared O and H antigens but separate genomic features, such that lineages often have different disease outcomes and host associations (47–50). It is hypothesized that polyphyly may occur as a result of convergent evolution, such that the genes encoding the surface and flagellar antigens have undergone horizonal transfer, and this is supported by the lack of shared most recent common ancestors between lineages (51–57). While there may one day be a reclassification of *Salmonella* serovars or refinement of the attributes used to define them, the primary focus of surveillance and risk assessment models should be the identification of all serovars present such that appropriate controls may be enacted and the threat to public health is minimized (58, 59).

Public health implications of Salmonella

Salmonella is a leading bacterial cause of illness in the United States, with an estimated 1.35 million infections, 26,500 hospitalizations, 420 deaths, and cost of illness of over \$4 billion annually (17, 60). As an enteric bacterium, Salmonella transmission occurs primarily via the fecal-oral route. Salmonellosis is typically self-limiting, with mild gastrointestinal symptoms, but some illnesses may require treatment for dehydration or prolonged infection. In the case of a doctor visit, salmonellosis is a nationally notifiable disease, with submission of clinical samples or isolates to local or state public health laboratories (61). The Centers for Disease Control and Prevention (CDC) track the frequency and/or extent of domestic Salmonella illnesses, along with serotyping results, to reevaluate the public health risk annually with the assistance of PulseNet, the national molecular subtyping network for foodborne disease surveillance including all 50 states

(62, 63). PulseNet was developed in 1996 in response to the major E. coli outbreak three years prior, and it has helped recall over 1 billion pounds of contaminated foods since its inauguration. PulseNet originally relied on Pulsed-Field Gel Electrophoresis (PFGE) as DNA fingerprinting to detect outbreak strains but now whole genome sequencing (WGS) is employed as the gold standard for identifying foodborne pathogens (64, 65). Similarly, the Foodborne Diseases Active Surveillance Network (FoodNet) conducts surveillance for eight major foodborne illnesses, including Salmonella; this is a collaboration between the CDC, United States Department of Agriculture – Food Safety and Inspection Service (USDA-FSIS), United States Food and Drug Administration (US-FDA), and 10 state health departments, which encompasses ~16% of the domestic population (66, 67). Outside of these two networks, the CDC can work alongside other organizations in the United States and internationally to complete epidemiological traceback. The BEAM (Bacteria, Enterics, Ameba, and Mycotics) Dashboard is a newly released, interactive tool to analyze and visualize data collected by the CDC on bacterial, viral, and parasitic agents, and other foodborne, waterborne, and fungal diseases and is publicly accessible (68).

Most (80%) Salmonella outbreaks can be attributed to seven specific food categories, including: chicken, fruits, pork, seeded vegetables (such as tomatoes), other produce (such as fungi, herbs, nuts, and root vegetables), beef, and turkey (69). This source diversity highlights the complexity of Salmonella outbreak traceback, compared to other foodborne pathogens, such as Listeria monocytogenes or Escherichia coli O157, which are attributed to fewer sources. Importantly, chicken is estimated as the largest single food contributor to Salmonella outbreaks (19.7%)(69). In terms of confirmed tests,

chicken accounted for 46% (88/192) of meat and poultry outbreaks reported to the CDC from 2012 to 2021 (70). In response to the high rate of foodborne salmonellosis, many regulatory policies have been instituted to control Salmonella contamination in food animal production. The USDA-FSIS established performance standards in processing plants in 1996 as part of the "Pathogen Reduction; Hazard Analysis and Critical Control Point (PR/HACCP) Systems Final Rule" (71). Their performance standards have been updated over the years in response to successful pathogen reduction efforts. As part of the USDA-FSIS Salmonella Verification Program, samples are collected from processing establishments across the United States each week (72). These are analyzed in a 52-week window to assess the public health risk from certain meat and poultry products as they are processed. Salmonella prevalence in raw parts (legs, breasts, wings) has decreased in the last few years, from 16.7% in 2016 to 7.8% in 2022, without a concurrent reduction of number of salmonellosis cases attributed to chicken (69, 73)(Fig. 1-1). Notably, Salmonella incidence is greater in parts than whole carcasses; this may be due to the release of internalized serovars within joints, cross-contamination during processing, or contaminated equipment during parts cut-up (74–82). Overall, the antimicrobial interventions applied in poultry processing plants have significantly reduced contamination on final products, but any remaining salmonellae are still causing human illness, which underscores the need for additional control measures (81, 83–95). Importantly, serovars of concern may be persisting within the processing environment or they may be continually reintroduced to the processing environment due to sustained contamination of the broiler house environment (76, 80, 96–99); thus, it is necessary to

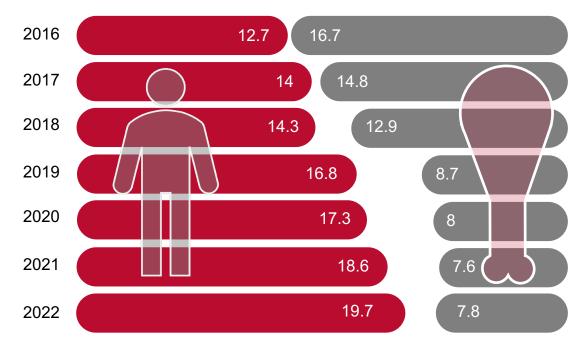


Figure 1-1. Salmonellosis cases attributed to chicken has increased while Salmonella contamination of final products has decreased from 2016 to 2022. The red bar graphs represent the estimated proportion of Salmonella illnesses attributed to chicken, with an increase from 12.7% in 2016 to 19.7% in 2022 (69). The gray bars represent Salmonella-positive surveillance samples collected from raw parts (legs, breasts, wings) in domestic broiler processing plants, with a 50% reduction over six years (73). Bar length is proportional to percentages listed.

employ high-resolution *Salmonella* surveillance to characterize present serovars and develop targeted control strategies (100, 101).

Salmonella serovars in food animal production

All Salmonella serovars can cause disease in humans, and many of those have multiple animal or environmental reservoirs. Some serovars are considered to be hostadapted (e.g., serovar Dublin) with even fewer as host-restricted (e.g., serovar Gallinarum), which has important implications as host adaptation may concurrently increase mortality (22, 39, 102, 103). As such, there is variation in the serovars most commonly found in the four main food animal commodities (beef, chicken, pork, turkey) according to host (Fig. 1-2). Notably, serovars Infantis is the only to be found in the top ten list of all commodities. Serovars Montevideo, Kentucky, Anatum, and Reading were the most abundant in beef (17%, 277/1634), chicken (31%, 4855/15553), pork (12%, 674/5696), and turkey (8.2%, 206/2503), respectively. Interestingly, the top serovar isolated from each food commodity differed from the serovar linked to the most outbreak illnesses over the last 10 years: serovar Newport in beef (n = 659), Typhimurium in pork (n = 480), Enteritidis in chicken (n = 1,065) and turkey (n = 661) (68). This observation underscores the importance of serovar identification, as a lower abundance of a highly pathogenic serovar poses a greater risk than a higher abundance with lower pathogenicity and the infectious dose varies between serovars (104). Between 2019-2023, serovars Kentucky and Infantis represent 62% (9,619/15,553) of Salmonella-positive chicken samples, which highlights the lower serovar diversity found in this commodity. Comparatively, the top two serovars in beef, pork, and turkey account for 26% (433/1,634), 23% (1,288/5,696), and 16% (388/2,503) of samples, respectively. Notably,

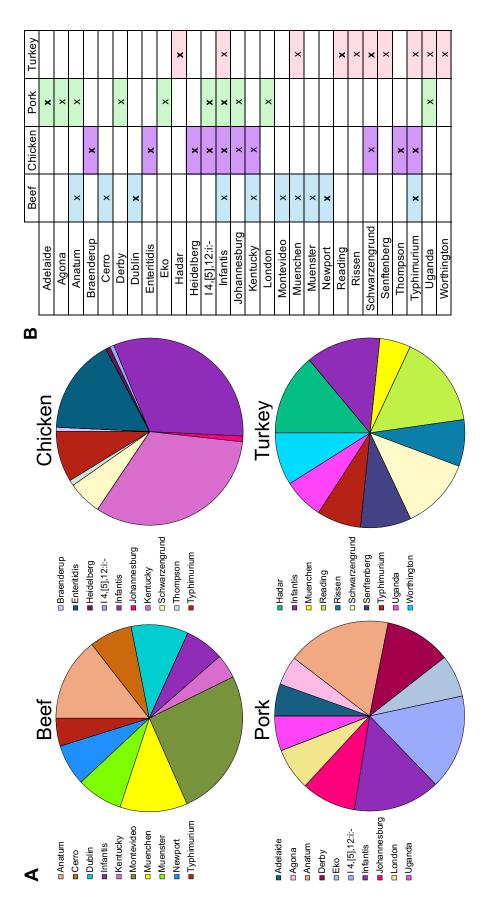
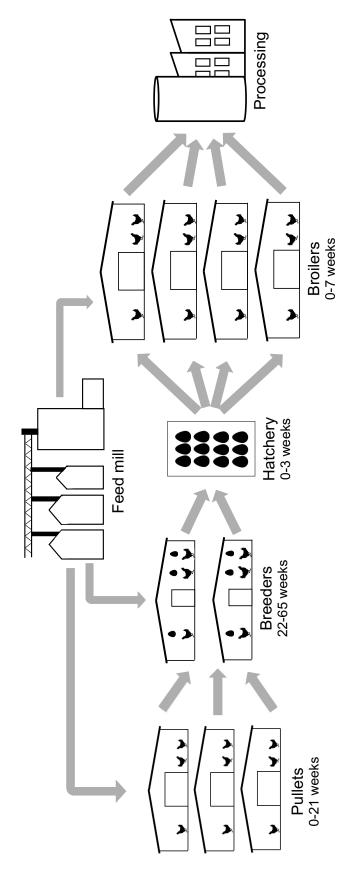


Figure 1-2. Top Salmonella serovars differ between food animals.

A) Ten of the most common serovars for each food animal (beef, chicken, pork, turkey) monitored by USDA-FSIS are displayed. Serovar data was accessed from the publicly available sampling repository (73) and included samples that were collected from 2019 to 2023. B) Comparison of top serovars between commodities, with bolded "x" to represent outbreak serovars of concern for human health (69). chicken production is the only food production system in the United States with true vertical integration, which supports improved biosecurity as a closed system limiting external contamination. The USDA-FSIS is the best national dataset to indicate major serovars in food animal production through their *Salmonella* Verification Program (105); however, this program samples animals at processing and does not include any on-farm testing. Therefore, selection of certain serovars with enhanced antimicrobial resistance at processing may bias this dataset and not accurately reflect serovars most often found in the food animals. Additionally, the CDC periodically updates the list of serovars that are frequently attributed to foodborne outbreaks on their BEAM dashboard (68).

Both the USDA-FSIS and CDC lists may change in terms of serovar identity following shifts of prevalence in the poultry industry; these shifts may be naturally occurring as some serovars are better adapted to compete against other serovars (i.e., serovar Kentucky can colonize chickens more readily), or they may occur because of industry-wide, serovar-specific mitigations that leave a vacant niche (106–109). For example, serovar Gallinarum and its biovar Pullorum were predominant in commercial poultry production in the early 1930s but these serovars caused severe disease in chickens, making it a top priority to control transmission and avoid a food shortage (110). To avoid endemic colonization on farms, strict control measures had to be enacted such that one positive test result for serovars Gallinarum or Pullorum mandated culling the entire flock, which successfully eliminated these pathogens from the domestic poultry industry. Following this eradication, serovars Enteritidis and Heidelberg increased in frequency until targeted vaccination efforts began (109, 111–113); the efforts have not

removed these serovars entirely but have reduced their prevalence. Currently, serovar Kentucky is most abundant in the poultry industry, as it has been for over 20 years, but it is infrequently linked to human illness in the United States (48). Serovar Infantis is a potential candidate for the next serovar: it has increased considerably following the multistate outbreak in 2018 (114).


Genomic analysis may support the identification of emerging serovars through characterization of genes present in past superspreader serovars but routine, highresolution Salmonella surveillance can help narrow the focus based on serovars existing within production systems (115). Salmonella control in poultry production is a complex undertaking due in part to the range of antimicrobial tolerance across serovars and asymptomatic colonization of chickens; both features impact final product contamination as some serovars are preferentially surviving interventions and it is challenging to design an economic monitoring or control program when extensive testing is required to characterize Salmonella populations in chickens. Namely, the ubiquity of Salmonella in commercial chicken flocks acts as a bottleneck in the implementation of effective management strategies since the risk cannot be properly attributed without determining the quantity and identity of present salmonellae. Reduction of Salmonella in finished chicken products has been achieved with generic antimicrobial interventions but the discordance with clinical cases demonstrates that further efforts are required to control problematic serovars. Current USDA-FSIS performance standards only regulate the Salmonella incidence of poultry products, so there is no differentiation of serovars, but a new framework has been proposed to consider Salmonella presence, quantity, and identity collectively (116, 117). Importantly, this framework highlights the impact of the

Salmonella load in the incoming flock, such that greater quantities or presence of resistant serovars lowers the efficacy of applied antimicrobials, which in turn prioritizes on-farm surveillance.

Domestic poultry production and the impact of Salmonella

The United States produces over nine billion meat-type chickens (broilers) each year, and Georgia is the largest broiler producer (annual production of 1.3 billion broilers)(118). As a result, Georgia has an annual profit of \$4,032,731,000, which accounts for 14% of the total profit produced by the domestic poultry industry (119). In the United States, the poultry industry is vertically integrated, as each company maintains all production operations within complexes and the chickens are moved between different farms depending on the life stage (Fig. 1-3). Additionally, each complex typically has one hatchery, feed mill, and processing plant. The vertical integration model can be split between live production (pre-harvest) on farms and processing (post-harvest).

The pre-harvest stages include the maturation of young chickens (pullets) for breeding (breeders), and then the hatching of eggs for meat production (broilers). Pullet chicks are sourced from primary breeding (genetics) companies that enact strict biosecurity practices to limit pathogen introduction (including *Salmonella*). These biosecurity measures include building facilities on concrete pads and requiring shower inshower out practices for visiting personnel. The male and female pullets are raised in single-sex houses until ~21 weeks of age when they reach sexual maturation. At this time, all the hens from one pullet farm are typically moved to one breeder farm, while the roosters may be divided among multiple breeder farms to facilitate gender ratios of 10 males per 100 females. Breeder chickens produce broilers, which are the chickens that

broilers going to each establishment, respectively. Total grow-out times for broilers may vary depending on ideal size for processing, with a range of gray arrows indicating the movement of chickens, eggs, and feed. The hatchery and processing plant act as bottlenecks in this model with all eggs and Figure 1-3. Vertical integration model of broiler breeder production. The schematic for a single commercial broiler complex is shown, with the five to nine weeks of age and an average of seven weeks shown.

are commercially sold. Broiler breeders continue reproducing until about 65 weeks; the average breeder hen will lay around 180 eggs, all of which are transferred to the complex hatchery (120). After hatching, the new broiler chicks are moved to broiler farms for grow-out until approximately five to nine weeks of age, depending on the broiler product being grown.

Salmonella colonization of chickens and transmission between flocks

While chickens are a significant reservoir of Salmonella, most serovars do not cause symptomatic illness in chickens, leading to the (unofficial) classification as a commensal bacterium; there are exceptions, of course, such as the substantial mortality caused by serovar Gallinarum and its biovar, Pullorum, or a high dosage of some serovars (e.g., serovar Enteritidis) in newly hatched chicks (121, 122). Salmonella colonization is typically limited to the lower gastrointestinal tract of chickens, namely the ceca, although some serovars may spread to the internal organs and tissues (123–126). There are opportunities for disease introduction and subsequent spread at each stage of poultry production within a commercial complex, including vertical transmission from parents to progeny and horizontal transmission between multiple houses on a farm. For example, the individual components of feed could be contaminated and distributed among farms, eggs covered with excess fecal content could introduce pathogens from the farm to hatchery, or personnel and surrounding wildlife populations could cause lapses in onfarm biosecurity (127–134). Additionally, the presence of rodents and insects (namely darkling beetles) has negative implications for on-farm Salmonella control since there is cyclical transmission between these populations and the corresponding chicken flocks (135–141). Rodents are primarily cause for concern in breeder and table egg producing

(layer) flocks since the extended production period and presence of raised slats with nest boxes for egg laying provides ample opportunity for rodents to live within the house (142–145). Rodents and insects may become colonized with *Salmonella* before or after entering a poultry house and then spread the bacteria throughout the shared environment via fecal droppings. In turn, the chickens may eat the droppings and then maintain the *Salmonella* in the house via their own shedding. Further, rodents may introduce structural damage to the poultry houses as they nest in ceilings and walls, thus creating additional opportunities for *Salmonella* introduction from external sources.

It has been demonstrated that both horizontal and vertical transmission of Salmonella occurs within a poultry complex, as isolated strains matched between breeder farms and subsequent broiler flocks (127, 146–153). Horizontal transmission refers to Salmonella spread among flocks following an initial introduction event, such as contaminated litter or feed, shared farm equipment, or improper personal protective equipment use by farm personnel (129, 154–156). Contamination from a previous flock through litter or dust is more likely to occur on broiler rather than breeder farms since the whole house environment is only emptied and sanitized between breeder flocks (157). Additionally, cross-contamination occurs in broiler flocks through the movement of chick trays, since these are used to transport chicks to the farm from the hatchery but not always disinfected in between trips (158). Importantly, some serovars, such as Enteritidis, are able to enter the fertilized egg, thus enabling vertical transmission from hen to progeny, which may then lead to subsequent spread to other chicks in the shared environment for several weeks of production (113, 126, 159–166). Vertical transmission is exclusively driven by in ovo colonization in chickens, and may occur between primary

breeding flocks, broiler breeders, and broilers, with breeders as the common denominator (132, 153). Across the commercial complex, *Salmonella* incidence increases through live production (pullets: 16.5%; breeders: 23.2%; broilers: 70-95%) followed by a steep reduction at processing (2.4-4.7%) (83, 99, 131, 167, 168).

Despite the regulatory programs for food safety, there is no mandatory, national surveillance system in place to record Salmonella incidence pre-harvest. The National Poultry Improvement Plan (NPIP) is a voluntary federal-state cooperative testing and certification program that was instituted in the 1930s to initially help the United States eradicate pullorum disease in chickens but has since expanded to include other poultry diseases (169–171). The NPIP program was established by the USDA – Animal and Plant Health Inspection Service (USDA-APHIS) and is a cooperative between the USDA, state officials and authorized laboratories, as well as industry, to conduct monitoring of commercial and backyard flocks. There are published program standards to guide best biosecurity practices, sample collection, and testing approaches, including approval of commercial assays (171). Importantly, the NPIP designated the "gold standard" on-farm, noninvasive sample collection method as boot socks, pre-moistened cotton that is worn on top of protective, plastic booties to promote adherence of fecal material while walking through the poultry house. The technical standards are developed as a joint effort by industry members, state governments, and federal officials, and are designed to promote disease control and prevention in the poultry industry. To that end, NPIP hosts a biennial conference to provide updates from the poultry industry and review new diagnostic tools. While NPIP is focused on poultry health rather than human health, it does include testing

for *Salmonella* serovar Enteritidis which frequently causes salmonellosis outbreaks and therefore supports food safety advances.

Poultry producers may opt to monitor *Salmonella* in their pullet and breeder flocks by collecting environmental samples around 16 and 42 weeks of age, respectively, and integrators can analyze their samples in-house or send them to a third party. Any results from these company samples are kept private, so the first time that commercial flocks are officially tested for *Salmonella* is at the processing plant by USDA-FSIS and these results, including product type and serovar, are made publicly available. As such, there is limited knowledge of *Salmonella* serovars routinely identified in broiler breeder production, although previous work has demonstrated that parental breeder flocks contribute to *Salmonella* colonization of progeny broiler flocks (146). There are several important questions to consider when developing a robust monitoring program, including when the best time is to collect samples, what the best sample type is, and what the limitations of the isolation method are. The vertical integration model of poultry production enables the standardization of methods, but optimal sample collection likely varies between production stages and commercial complexes.

On-farm Salmonella control

There are several different strategies for mitigating *Salmonella* during live production, and the implementation of these strategies also varies by production stage and commercial complex. The final rule for the Veterinary Feed Directive by the US-FDA limited the off-label application of antibiotics for increased growth and feed conversion in food animal production, which necessitated the implementation of alternative control strategies for *Salmonella* (172). There are different methods employed

between breeder and broiler production, including the use of pre-and probiotics, litter amendments, water treatments, feed withdrawal, phage cocktails, vaccines, and on-farm biosecurity measures (129, 135, 173–193). The primary Salmonella control in breeder flocks is vaccination, to prevent vertical, and then horizontal, transmission to broiler flocks (167, 187, 188, 194–204). Both live attenuated and killed (bacterin) vaccines are used for Salmonella control in the poultry industry; the former contains an avirulent strain to promote long-lasting immunity without causing a host carrier state and includes widely used commercial formulations against serovar Typhimurium, while the latter is developed using heat-inactivated bacteria and provides short-term protection (205–214). Importantly, bacterin vaccines may be developed for widespread commercial use, such as for serovar Enteritidis, with extensive efficacy testing and implementation as a long-term control strategy. Alternatively, autogenous vaccines serve as a rapid, short-term control as they are produced based on a Salmonella strain isolated from a complex and only allowed to be used on flocks within that complex (215). Ultimately, the purpose of all vaccines is to reduce Salmonella contamination on final processing, though this may occur through decreased colonization of chickens, minimized Salmonella shed into the environment, and provided cross-protection against nontarget serovars (204, 206, 210, 216). Vaccinations are primarily used within breeder flocks due to the importance of limiting colonization earlier in production and conferred resistance to progeny but in the case of excessive Salmonella contamination at processing, they may be utilized as an additional control in broiler flocks (217, 218). Only live attenuated vaccines are used in broiler flocks since they may be administered without excessive stress and handling (both which may lead to high mortality) by spraying the flocks or adding to the drinking water.

The use of this control strategy should be increasing as USDA-FSIS updated their regulatory policy to discount isolation of vaccine strains from the *Salmonella* performance categorization of processing establishments (219, 220).

Since Salmonella is an enteric pathogen, the addition of pre- and probiotics can support a healthy gut microbiota and therefore limit colonization through competitive exclusion (173, 201, 221–224). The gut microbiome is one of the primary defenses against Salmonella colonization in chickens, as the presence of other bacteria limits the resources available to salmonellae (225–229). This occurrence is especially important for Salmonella control in hatcheries, as the parental fecal microbiota influences the establishment of the eggshell microbiota for progeny (230, 231). In broiler production, poultry litter is reused between flocks to promote the development of a stable gut microbiome and protect against poultry pathogens, although this also contributes to continued Salmonella colonization of flocks (127, 155, 157, 232–236). To control Salmonella in the broiler house environment, litter amendments and heat treatments, water acidification, and phage cocktails are applied (178–183, 192, 234, 236–243). All of these Salmonella control strategies are costly for integrators to implement and have varying levels of success. Conversely, increased on-farm biosecurity may be achieved at much lower cost while still proving effective in limiting disease transmission.

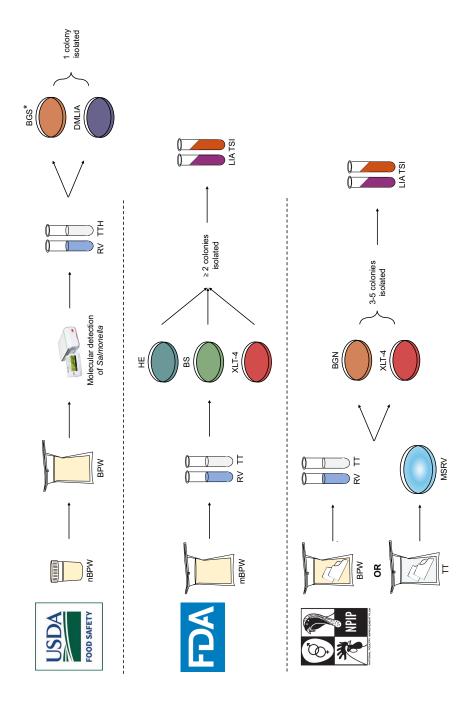
Best biosecurity practices include, but are not limited to, not sharing equipment between farms or cleaning before use, disinfecting vehicles (e.g., wheels and wheel wells) before entering the property, providing disposable boot covers and sanitizing footbaths prior to entering a house, controlling rodent and insect populations, limiting moisture levels in the house and litter, removing dead chickens from the shared

environment, and ensuring that the houses are structurally intact to prevent any interactions with wildlife (100, 101, 127, 244–250). There are numerous other biosecurity components to consider, ranging from the condition of the farm environment (presence of surface water, overgrown foliage, etc.) to the house infrastructure (ventilation fans, water quality, feed delivery, etc.) and logistics (supply deliveries, egg collection, etc.). The presence of multiple houses on one production farm increases the importance of biosecurity, as any initial introduction event to one house will likely lead to colonization of the other flocks as the contamination is spread between houses. One study found that samples collected from multiple houses on one farm were almost as highly correlated as samples collected within the same house (245). Anecdotally, domestic breeder farms have fewer houses than broiler farms on average, which may further support lower levels of Salmonella at this stage. In addition to Salmonella transmission via human activity, rodents and insects may serve as disease vectors (136, 138–140, 142–144, 191, 251–256). Interestingly, serovars Enteritidis and Typhimurium were originally used as rodenticides to control rodent populations, although this practice ended following repeated Salmonella transmission to humans (257–259). As such, controlling rodent and insect populations is an important component of on-farm biosecurity. Ultimately, combining multiple aspects of pre-harvest control is necessary to effectively reduce the bacterial load entering the processing plant to ensure the antimicrobial interventions are able to minimize contamination of final products (90, 97, 99, 127, 217, 260).

Methods for *Salmonella* isolation and detection, quantification, and serotyping

Conventional culture-based workflow

Culture-based Salmonella surveillance involves a multistep process to recover Salmonella isolates that are then serotyped, with an average turnaround time of five days from sample collection to an isolate. One key component of this process includes a selective enrichment step that is performed in broth with various reagents to limit the growth of background organisms while still allowing salmonellae to grow. This is required as the relative levels of Salmonella in most matrices are quite low. Currently, two of the most commonly used selective enrichment broths are Rappaport-Vassiliadis (RV) and tetrathionate (TT), and they are often applied in parallel to increase Salmonella recovery as they have different modes of selection (261–263). RV broth includes magnesium chloride and malachite green to collectively decrease pH, increase osmolarity, and inhibit general coliforms (264). As indicated by its name, TT broth is dependent on the production of tetrathionate to permit Salmonella growth, along with bile salts to suppress gram-positive bacteria and coliforms (265). Salmonellae can use tetrathionate as a terminal electron acceptor for anaerobic respiration, which confers a fitness advantage over competing bacteria (266, 267). RV broth is more sensitive and specific than TT broth, which, in food, corresponds to increased Salmonella recovery from samples with a high and low microbial load in RV and TT media, respectively (268, 269).


Following selective enrichment, the cultures are struck onto differential and selective agar to determine if *Salmonella* is present, and presumptive colonies can then be confirmed and characterized with biochemical and molecular assays. There are many media available for *Salmonella* isolation with different compounds added for distinguishment, including brilliant green sulfa (BGS), double modified lysine iron

(DMLIA), Hektoen enteric (HE), bismuth sulfite (BS), xylose lysine deoxycholate (XLD), xylose lysine tergitol-4 (XLT-4), and a suite of chromogenic agars. Some agars may rely on the same indicator mechanism with unique selection, such as XLD and XLT-4 which both indicate Salmonella presence through hydrogen sulfide production and resulting black colonies, but background microflora is inhibited by a bile acid and a surfactant, respectively (270). Additionally, some formulations are separated by the inclusion of an antibiotic, such as novobiocin in brilliant green (BGN) agar to limit growth of gram-positive bacteria. Indicator agars relying on general biochemical reactions may have a greater rate of false positives due to metabolic similarities between closely related bacteria and subsequent shared colony morphologies; this may be overcome by the use of chromogenic agar as coloration is driven by chromogen hydrolysis following targeted bacterial uptake (271). Alternatively, biochemical-based agars may also have increased false negatives when isolating strains with atypical colony formation, such as an H₂S-negative salmonellae on XLT-4 (272). Therefore, multiple selective indicator agars with different mechanisms of action should be incorporated into any routine Salmonella workflows to increase sensitivity and specificity. As an alternative to biochemical tests, semi-solid agar relies on bacterial motility to indicate presence or absence (273). For example, modified semi-solid Rappaport-Vassiliadis (MSRV) contains the same base ingredients as RV broth, but the selectivity added by the motility test can eliminate the need for prior selective enrichment while improving Salmonella recovery (274). Alternatively, nonmotile serovars or variants would not be identified with MSRV, and these false negatives can have important public health

implications, as observed in a historical French outbreak of a nonmotile serovar Typhimurium variant (275).

While the fundamental workflow for *Salmonella* culturing is maintained across laboratories, such that the original sample is selectively enriched and plated onto differential agar, the actual media and methods used may vary widely based on the sample matrix and geographic location. Importantly, non-selective pre-enrichment may be necessary for some sample types, such as carcass rinses from the processing plant or antimicrobial-treated feed, to allow for the recovery of injured salmonellae (276–280). Alternatively, matrices with high bacterial load, such as environmental samples, may be better served by starting with selective enrichment to inhibit the growth of nontarget organisms. As such, each of the regulatory agencies have developed protocols for the isolation and identification of *Salmonella* from a range of sample types, depending on which products the agency is responsible for (Fig. 1-4).

The USDA-FSIS protocol is designed for *Salmonella* recovery from post-harvest, post-intervention samples, including chicken carcass and parts rinses, so it begins by adding neutralizing buffered peptone water (nBPW) to the sample to mitigate the bactericidal effects of applied antimicrobials and reduce the risk of false negatives (281, 282). Since the USDA-FSIS laboratories screen thousands of surveillance samples annually, it is necessary to have a streamlined workflow and a rapid turnaround, so they have implemented the use of molecular screening to determine *Salmonella* status prior to conventional culturing steps. Any *Salmonella*-positive samples are then selectively enriched with RV and TT Hajna, a variation on the standard TT formulation to increase selectivity, followed by plating on two indicator agars (BGS, DMLIA) and selecting one

(not pictured for the USDA-FSIS protocol). The FDA and NPIP protocols have an optional rapid screening step prior to enrichment. *The respectively (282; 284; 171). All workflows result in confirmation of presumptive Salmonella colonies with biochemical or molecular tests USDA-FSIS protocol was edited in August 2024 to replace BGS with XLD plates (283). nBPW: neutralizing buffered peptone water; BPW: brilliant green sulfa agar; DMLIA: double modified lysine iron agar; LIA: lysine iron agar slant; TSI: triple sugar iron slant; HE: Hektoen Figure 1-4. Workflow for Salmonella isolation varies by organization and sample type. Culturing procedures followed by the USDA-FSIS, FDA, and NPIP for post-harvest poultry products, general environmental samples, and poultry house environmental samples, buffered peptone water; RV: Rappaport-Vassiliadis broth; TT: tetrathionate broth; TTH: tetrathionate broth, Hajna formulation; BGS: enteric agar; BS: bismuth sulfite agar; XLT-4: xylose lysine tergitol-4 agar; MSRV: modified semi-solid Rappaport-Vassiliadis agar.

presumptive colony for characterization. As of August 2024, the USDA-FSIS laboratory guidebook has been updated to remove the use of BGS and supplement with XLD plates but most samples in the current regulatory dataset were processed with the previous protocol (283). The US-FDA has an extensive manual for Salmonella isolation, due to their need to isolate Salmonella from a wide variety of matrices, including produce, egg products, spices, and other environmental samples (284). For environmental samples, the US-FDA protocol is similar to that of the USDA-FSIS except multiple presumptive colonies are picked from each of three agar plates (HE, BS, XLT-4), followed by biochemical testing for confirmation. The NPIP presents two workflows for Salmonella recovery from environmental poultry samples (e.g., boot socks), one including preenrichment (BPW) while the other starts from selective enrichment (TT) (171). Skipping the pre-enrichment step is only applicable in matrices with high microflora since the focus needs to be on reducing background bacteria to allow for Salmonella growth. The NPIP method prescribes successive selective enrichment, as the TT is sub-cultured onto MSRV plates, which are then used to inoculate selective and differential agar (BGN, XLT-4) following growth. For screening organs and tissues, the NPIP program recommends the use of delayed secondary enrichment (DSE) to confirm true negatives. DSE involves leaving an incubated selective enrichment culture at room temperature for five days, followed by subculture into fresh enrichment media; this has been shown to greatly improve Salmonella recovery, particularly as it allows for the detection of slower growing serovars (285). Both the US-FDA and NPIP protocols contain the optional step of utilizing a molecular assay to screen for Salmonella prior to culturing, as the USDA-FSIS does, and result in confirmation with differential agar slants.

Incubation of enrichment cultures may vary slightly by time and temperature, but it is usually in the range of 35 – 42°C and 24 – 48 hours for *Salmonella* growth. These variables may have negative or positive interactions depending on the state of the cells prior to enrichment and the presence of competing microflora (286, 287). For example, a higher temperature may inhibit nontarget organisms, but *Salmonella* growth is not concurrently increased due to the heat stress caused to previously injured cells.

Alternatively, extending the time of enrichment has been suggested to increase *Salmonella* recovery but this may also allow for continued growth of other bacteria (285, 288). Any deviation outside of the optimal range may have unexpected effects, which underscores the importance of considering all the abiotic and biotic factors associated with *Salmonella* enrichment (261, 289, 290).

The composition of enrichment media is one of the most influential factors on Salmonella recovery as previous work has demonstrated that some serovars grow better in certain enrichment broths, which then impacts the applicability of surveillance testing (291, 292). This phenomenon is often referred to as "media bias" or "enrichment bias", and it was discovered by comparing colony compositions on indicator plates inoculated with RV and TT culture, along with molecular population analyses (276, 277, 292–299). As such, it is important to integrate complementary methods to minimize the impact upon recovery and characterization of Salmonella populations; this may be achieved by comparing the mode of selectivity and optimizing culture conditions based on sample matrix (300–302). For example, it has been observed that serovar Enteritidis grows more readily in TT broth compared to RV broth, so surveillance samples collected from a commercial hatchery should utilize TT medium to prevent false negatives (294). More

work is required to define the mechanism(s) behind media bias to then better understand the assumptions of *Salmonella* enrichment. Further, identifying the determinants behind media bias can enable analyses of publicly available whole genome sequences to extrapolate results to other serovars and develop a robust enrichment protocol to account for bias. However, in the meantime, industries should institute standardized protocols to reduce the random variation introduced to risk analysis models, as current datasets may have skewed counts of serovar abundance and diversity due to the different methods used for *Salmonella* isolation (303).

The standard culture-based methods for *Salmonella* isolation typically only identify one serovar; this limitation is due in part to the similar colony morphology most serovars display, but largely due to time and resource constraints associated with characterizing multiple colonies per sample. For a 95% probability of identifying two serovars, which must exist in equal proportions, six colonies would have to be selected and characterized (304). It is not feasible to select that many colonies as part of a longitudinal surveillance study or regulatory program involving hundreds (or thousands) of samples. Additionally, most multiserovar populations contain serovars of varying relative abundances, which then changes the probability of isolation (277). Considering the range of human pathogenicity associated with different serovars, it is crucial to identify all serovars present in a Salmonella population to assess the public health risk. Further, salmonellae may interact directly or indirectly with a variety of other microorganisms in the environment and animals, so they are under selective pressure to not only outcompete other serovars but other genera as well. These mixed communities can serve as an opportunity for the spread of mobile genetic elements, and given overall

Salmonella sequence similarity, may also promote recombination. Transfer of genetic material can significantly impact Salmonella serovar evolution as phenotypes and genotypes fluctuate, which was demonstrated by the two recent outbreaks attributed to an emergent clade of serovar Reading in raw turkey products (305). Retrospective genomic investigation suggested that the emergence of the outbreak strains may be partly attributed to plasmid-mediated antimicrobial resistance acquisitions, integration of phagelike sequences encoding virulence factors, and mutations affecting a siderophore receptor that also served as a colicin receptor and beta-glucuronidase activity. Collectively, these genomic changes support the two-part hypothesis pertaining to the spread of outbreak strains following introduction to the domestic turkey industry. Firstly, resistance to colicin, an antibiotic peptide, allowed serovar Reading to survive in mixed populations including other serovars and E. coli. Secondly, the addition of virulence factors through plasmids and phage-like sequences promoted the persistence of strains in production and subsequent host colonization. This phenomenon underscores the importance of robust Salmonella surveillance programs with reliable methods of detection to monitor the rise of pathogenic serovars.

Culture-independent diagnostic tests (CIDTs) are becoming widely used in clinical settings due to the rapid turnaround time and ease of use, but these are not currently a suitable, independent alternative to conventional culturing methods for two primary reasons (306). First, most CIDTs on the market rely on polymerase chain reactions (PCR), so an overabundance of background bacteria, along with biochemical compounds, in a sample may inhibit target amplification (307, 308). However, there are mechanisms to alleviate PCR inhibition, such as additional DNA extraction steps,

inactivation of proteases, or addition of bovine serum albumin to the PCR master mix (309, 310). Additionally, some CIDT assays are highly sensitive and specific, which can allow for detection of Salmonella at low quantities or in mixed population, and there are products, such as antibody-integrated magnetic beads, filters, and bacteriophage-based biosorbents, that can capture Salmonella cells from a mixed sample (311–317). Second, the integration of these methods in existing commercial kits may overcome detection limitations but CIDTs are not sufficient for advanced surveillance systems since they do not result in an isolated colony for further characterization (318). This may be overcome as sequencing technologies continue to improve but this is currently an important restriction since epidemiological traceback investigations rely on strain WGS comparisons. For example, the 14% (1253/8825) of Salmonella-positive clinical samples reported by the CDC in 2022 would not have been linked to outbreaks, possibly underestimating the correspond magnitudes (319). Furthermore, reflex cultures from CIDT-positive samples have lower Salmonella recovery with higher costs when compared to conventional culture methods (320). Importantly, CIDTs may result in false positives due to the presence of dead cells in the sample, which would usually be excluded during the culturing process (321–323). On the other hand, this occurrence is also what enables PCR detection of viable but nonculturable cells, which refers to the survival state of bacteria when they are metabolically or physiologically active but cannot be grown in culture without prior recovery (324). As such, the viability of cells plays an important role in method selection and consideration should be given to approaches that can differentiate between live and dead cells (325, 326). Other molecular methods that are dependent on culture-based enrichment may provide better resolution for Salmonella

monitoring, including analysis of whole genome sequences, with some approaches having potential tradeoffs of enrichment bias, higher costs, or longer turnaround time compared to CIDTs.

Molecular-based approaches

Among molecular assays, real-time and endpoint PCR methods are most commonly employed for rapid *Salmonella* screening in food production due to the high sensitivity and specificity, reliability, and accessibility in comparison to culture-based methods (327–343). PCR has been utilized for *Salmonella* detection for 30 years, with significant improvements in specificity and sensitivity over the years as new genomic targets have been identified (344–347). For example, the introduction of internal amplification controls to real-time PCR assays reduced the incidence of false negatives, in which *Salmonella* was present but not detected due to assay failure (348, 349); limiting false negatives is critical to promote public health and prevent distribution of contaminated products (350). Additionally, it is now possible to screen for multiple gene targets within a single reaction, which simplifies testing for laboratories focused on multiple pathogens and increases confidence in detection of a single organism with multiple targets (351–358).

Recent technological advances have led to the development of PCR-based platforms for *Salmonella* detection and quantification based on amplification of genetic targets conserved among all subsp. *enterica* serovars, such as the tetrathionate reductase cluster (*ttr*) and genes encoding invasion proteins (*invA*) or transcriptional regulators (*hilA*) (334, 359–361). These commercial systems streamline *Salmonella* testing by reducing the time required for sample processing and analysis; consumables are provided

for sample lysis and PCR amplification, including a lyophilized PCR master mix and internal amplification control, and it is possible to screen 96 samples simultaneously on a preprogrammed instrument with visualization software (362). For *Salmonella* detection, each sample is reported as positive, negative, or undetermined, while quantification is based on a cycle threshold (Ct) value, which indicates how many cycles were required for the fluorescence signal from target DNA amplification to exceed a predefined threshold. The resulting Ct value can be transformed to a unit that is more easily interpreted, such as logarithmic colony-forming units per milliliter (log CFU/ml) or gram (log CFU/g), if the company provides a formula based on the predefined calibration curves for each sample matrix (363, 364).

Molecular enumeration approaches serve as an alternative to the most probable number (MPN) culture-based enumeration method, which is a time- and resource-intensive process (365); however, there are still limitations associated with the molecular assays (366). Primarily, these assays can only report results for sample types that have been validated by the companies, which includes the most used matrices for the respective industry, but this hinders the innovation of these systems since new sample types cannot easily be analyzed. Additionally, PCR efficiency may differ between the isolates used to develop and standardize the assay and the experimental isolates, leading to quantification errors (367). Importantly, some studies have demonstrated that molecular enumeration results are not replicable, and the rate of false positives ranges across manufacturers (366); this complicates the integration of these systems into routine *Salmonella* surveillance. The combination of culture- and molecular-based approaches for *Salmonella* detection can help overcome some of the associated limitations, including

the combination of MPN and qPCR tests for quantification and the repurposing of commercial PCR systems for detection of *Salmonella* above a threshold and measurement of time-to-positivity based on growth rates (366, 368–370). There are many detection methods available, including additional approaches based on molecular, immunological, and biochemical principles, all with their respective pros and cons, so it is important to consider the sample matrix, desired measurements, and laboratory constraints in method selection (371).

Salmonella serotyping and characterization

Following isolation and confirmation of a presumptive Salmonella colony, additional culture- and molecular-based methods may be applied to identify the present serovar. As a first pass of characterization, sera containing antibodies against the O antigens can be used in agglutination testing to determine the serogroup of an isolate (372). Similar testing may be done to recognize the H antigens, but this is more time- and labor-intensive as the cells must be captured in both antigenic phases and there are more than twice as many H antigens to O antigens. As such, typically only the O antigen is resolved with serum agglutination, and there has been an increase in use of molecular assays for serovar typing (serotyping) (373). There are several PCR targets for serotyping, including but not limited to the O antigen gene cluster (rfb), H antigen phase variation (*fliC*, *fljB*), intergenic spacer regions, and serovar-specific markers (374–378). Prior to the routine implementation of WGS, multilocus sequence typing (MLST) was utilized for serotyping as an improvement upon the resolution provided by PFGE (379). MLST is determined by comparing the nucleotide sequences of seven conserved housekeeping genes in Salmonella, such that the combination of these genes denotes a

sequence type (ST) which can be used to assess relatedness of isolates along with serovar identification.

The development of WGS has enabled increased resolution of MLST as the core (cgMLST) and whole genomes (wgMLST) can now be compared to provide greater separation between isolates based on the additional targets (380). There has been an explosion of WGS-based methods for serotyping and characterization, including single nucleotide polymorphism (SNP) analyses, identification of antimicrobial resistance and other virulence factors, phage and plasmid detection, source attribution, and exploration of evolutionary relationships (51, 381–398). While the continued advancement of nextgeneration sequencing technology expands accessibility to WGS, this and the aforementioned approaches for Salmonella characterization are limited by the isolation of a single colony for DNA extraction and downstream analyses. As an alternative, metagenomic sequencing provides insight into the microbial community composition surrounding salmonellae but there are still associated limitations (399–404). Classical metagenomics are based on unenriched bacterial populations, which, given the balance of sequencing depth and affordability, restricts identification to the genus or species level. Continued exploration of quasi-metagenomics (sequencing from enrichments) may provide the high resolution required for epidemiological investigations (405, 406).

CRISPR-SeroSeq

Salmonellae possess two arrays containing clustered regularly interspaced short palindromic repeats (CRISPRs), consisting of invariant direct repeats (29 nucleotides) and variable spacer sequences (32 nucleotides)(407). CRISPR systems serve as a prokaryotic adaptive immune response, such that spacer sequences were added into the

arrays from foreign nucleic acids (408–417). The CRISPR-associated (Cas) proteins are responsible for the generation and maintenance of spacer sequences, and in turn, the transcribed spacers guide the Cas machinery to cleave the complementary exogenous DNA introduced by invading mobile genetic elements. Importantly, while there may be redundancy of some spacer sequences due to shared environments and exposure to bacteriophages, the spacer composition in both CRISPR loci can be defined and combined to create unique profiles for different serovars (Fig. 1-5A)(418). The canonical CRISPR-based immunity is no longer active in Salmonella: the CRISPR arrays are still intact in Salmonella genomes, but there is no evidence of recent evolution (408). However, they have been utilized as a reliable genomic target for differentiating between serovars and determining relatedness of isolates in diagnostic assays as a CRISPR typing scheme (49, 419–428). Additionally, since Salmonella spacers are mostly organized in a chronological order, based on exposure to foreign DNA, phylogenetic analysis of the CRISPR arrays in Salmonella can provide insights into the evolution of serovars (46, 429, 430).

A deep serotyping method, CRISPR-SeroSeq, relies on the conservation of CRISPR arrays in *Salmonella* to identify and quantify the relative frequencies of all serovars present in a mixed bacterial population (Fig. 1-5B)(431). Importantly, CRISPR-SeroSeq is not limited to single, isolated *Salmonella* colonies and usually begins with an overnight enrichment instead, from which total genomic DNA is extracted. The resulting high-resolution population analyses have the potential to support the development of an early warning system for rising *Salmonella* serovars of concern since these would be identified earlier than with culture-based methods (Fig. 1-6). Due to the sequence

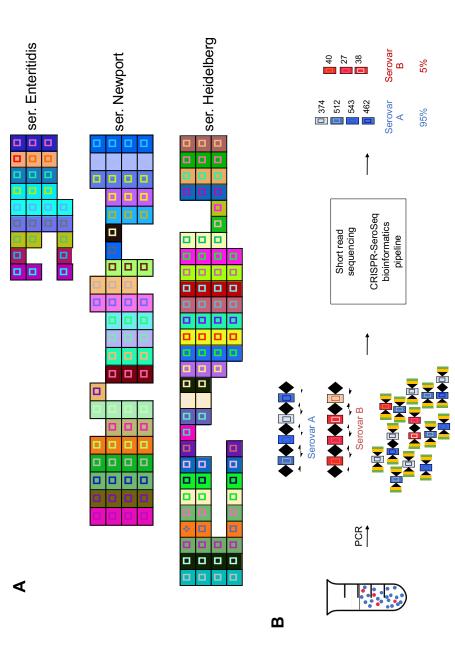
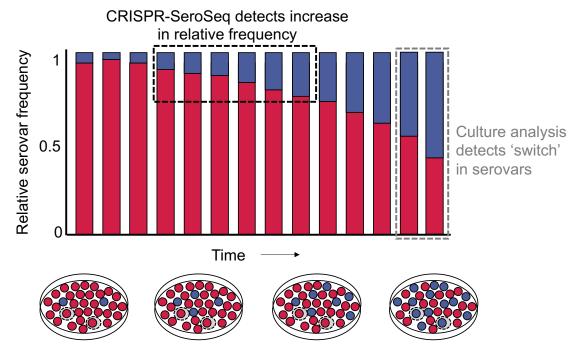
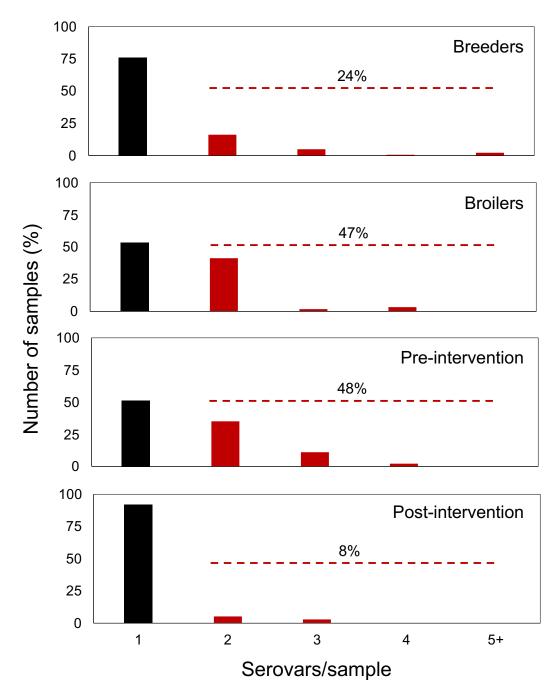



Figure 1-5. The application of Salmonella CRISPR arrays for deep serotyping. A) Graphical representation of spacers within one CRISPR array for serovars Enteritidis, Newport, and Heidelberg. Each box with a unique combination of colors and symbols represents one unique spacer sequence. Each row represents one isolate, with spacer deletions delineating strains. The direct repeats are not shown. Adapted from Shariat et al., 2015. B) Genomic DNA is isolated from a mixed population of Salmonella serovars grown in enrichment media. Direct repeat sequences (black diamonds) are conserved throughout Salmonella and serve as a target for primers (black arrows). Dual indexed barcodes (yellow) and Illumina adaptors (green) are added to allow sample multiplexing for nextgeneration sequencing. The pooled sample PCR products are sequenced, then parsed through our CRISPR-SeroSeq program. Adapted from Thompson et al., 2018.


Figure 1-6. High-resolution *Salmonella* **surveillance can enable early detection of serovar shifts.** Graphical representation of multiserovar population with two serovars (red and blue) to visualize proportional changes over time, as measured by CRISPR-SeroSeq (bar graph) and conventional plating methods. The red serovar is decreasing in abundance, corresponding with an increase of the blue serovar. Culture-based approaches are often limited by the number of colonies picked for further characterization, which could delay response until the two serovars are almost equally represented. With CRISPR-SeroSeq, the blue serovar would be detected earlier, thus allowing more time for enacting controls to avoid an outbreak.

similarity of direct repeats and widespread presence of CRISPRs in bacteria, present in 40% of species, it is necessary to use selective enrichment media to promote Salmonella growth while limiting others to reduce nontarget DNA and possible inhibition (277, 432). CRISPR-SeroSeq is similar to 16S amplicon sequencing, with PCR amplification of CRISPR spacers rather than gene regions. Because the spacer content is related to the serovar identity, CRISPR-SeroSeq is more high-resolution as the spacers can differentiate between serovars of the same subspecies rather than operational taxonomic units (OTUs) (433). The PCR primers for CRISPR-SeroSeq are complementary to the conserved direct repeats to then amplify the spacer sequences. Therefore, the assay does not amplify the whole array. This was designed to overcome PCR bias as array length differs among serovars and among isolates of the same serovar (431). Illumina adapters and dualindexed barcodes are included in the primer sequences to facilitate multiplexed sequencing. To account for media bias, deep serotyping results can be normalized across all enrichments sequenced for one positive sample, such that the final relative frequencies reflect population dynamics across different methods.

The CRISPR-SeroSeq data analysis pipeline includes a series of shell and R (434) scripts to calculate the relative *Salmonella* serovar frequency within each sample population. The first step is to convert the raw reads from the sequencing facility to a FASTA formatted file, using seqtk (435), such that a local alignment search (BLAST, (436) search may be completed with the experimental sequences as the query and a curated database of *Salmonella* spacer sequences as the subject. To start, the CRISPR-SeroSeq database was created with whole genome sequences from lab datasets and GenomeTrakr (437) accessed from NCBI Pathogen Detection and assembled using

SPAdes (438). CRISPR spacers were extracted with CRISPRFinder (439), then added to the database. To account for spacer duplication or deletion events between strains of the same serovar, CRISPR arrays from at least 10 different isolates, representing various regions, sources, and years, were used to generate a comprehensive spacer list for each serovar. The database includes serovars that are commonly associated with human illness or found in food animals and the environment, with new serovars continually being added. Following the increase in accessibility of WGS, and the transition to this as a standard practice in food safety regulation, there are now over 700,000 *Salmonella* isolates accessible on NCBI Pathogen Detection. While it is possible for users to manually annotate serotyping information for their isolate, this is not always accurate, so SeqSero2 (390) is now used to predict "computed serotypes" based off serovar-specific markers and thus improves confidence in any downstream uses of the publicly available genomes.

Deep serotyping with CRISPR-SeroSeq has been applied to a variety of matrices, including post-intervention chicken carcasses and parts, surface water, on-farm environmental samples, produce, animal feed, and wild bird feces (82, 83, 168, 277, 296, 431, 440–444). Collectively, these previous studies revealed that *Salmonella* often exists in multiserovar populations, with a range in serovar diversity across sample types. Notably, the proportion of multiserovar populations found in samples increases from breeders to broilers, with a significant reduction following antimicrobial interventions (Fig. 1-7). Additionally, members of multiserovar populations differ between sample source, which serves as an interesting observation to investigate host-associated serovars. Namely, the high-resolution population analyses provided by CRISPR-SeroSeq can help

Figure 1-7. Distribution of serovars/sample varies by stage of poultry production. CRISPR-SeroSeq was used to analyze multiserovar populations (red bars) found in environmental samples collected from commercial breeder and broiler flocks and raw poultry products before and after antimicrobial interventions. The proportion of total samples containing multiserovar populations is listed above the dotted line.

reveal patterns of serovar co-occurrence and co-exclusion. It has been demonstrated that interserovar competition occurs, such that some serovars may exclude others from colonization or growth, but there may also be undefined serovar mutualism as is observed between some bacterial species (445, 446). Post-intervention, post-harvest poultry samples have the lowest complexity, while surface water samples have the greatest; this observation highlights the impact of environment and contributing sources upon Salmonella population dynamics. Further, multiserovar populations may be limited by carrying capacity and selective pressure, such that a chicken cannot contain as much Salmonella as an environmental reservoir can and different stresses are associated with both. In particular, the studies on Salmonella in poultry production formed the foundation for my doctoral research as the initial surveillance results provided an overview of the serovars found in broiler production. However, the incidence of Salmonella in broiler breeder production remained an important question mark, since it had been suggested that these flocks contribute significantly to Salmonella transmission in broilers and contamination on final products (146). To better understand how to control Salmonella in poultry, it is necessary to explore the population dynamics present at the earlier preharvest stages to determine if serovar presence is stable through the duration of a flock and to identify factors that could influence this stability. Additionally, the application of CRISPR-SeroSeq to breeder samples would provide insight on best management practices since the resulting serovar diversity could be compared to that samples collected from broiler farms with different management strategies.

Research objectives

Salmonella is a leading bacterial cause of foodborne illness in the United States (447), with a fifth of salmonellosis cases attributed to poultry (69). Salmonella enterica is comprised of over 2,600 serovars, as characterized by their lipopolysaccharide (O) and flagellar (H) antigens (6). More than half of the identified serovars are within subsp. enterica and collectively account for over 99% of isolated strains (6). The different serovars display various phenotypes, including host restriction (448), host adaptation (22), modes of pathogenesis (21, 32), increased development of multidrug resistance (449), and propensity to cause disease (450). Previous work in our lab has demonstrated that Salmonella often exists in multiserovar populations and that conventional culture approaches are limited in their identification of multiple serovars within one sample. To further complicate the issue, serovars are not always of equal abundance within a population which can lead to some, potentially more pathogenic, serovars remaining undetected. As such, to minimize the public health risk for America's most consumed protein (https://www.nationalchickencouncil.org/about-the-industry/statistics/per-capitaconsumption-of-poultry-and-livestock-1965-to-estimated-2012-in-pounds/), it is necessary to not only identify when Salmonella is present in broiler breeder production but to differentiate between serovar diversity as well.

My doctoral research aimed to combine microbiology, molecular biology, and computational biology approaches to observe multiserovar population dynamics, characterize shifts in serovar prevalence, and highlight the importance of *Salmonella* controls in the chicken industry. In collaboration with the Georgia Poultry Laboratory Network (GPLN), I analyzed *Salmonella*-positive surveillance samples from southeastern

broiler breeder farms to measure the frequency of multiserovar populations, as well as to identify the most prevalent serovars in production and observe patterns of interserovar interactions. Additionally, I completed longitudinal surveillance sampling of pullet and breeder flocks in two commercial broiler breeder complexes to record any fluctuations in Salmonella population dynamics throughout production. On-farm rodent samples were also collected as part of the longitudinal study to measure transmission between rodent populations and breeder flocks based on shared Salmonella serovars. A subset of the longitudinal breeder flock samples collected during peak production (weeks 29-31) were used to compare Salmonella recovery and diversity between conventional and modified enrichment conditions. CRISPR-SeroSeq was employed for deep serotyping on all positive samples to provide both quantitative and qualitative results, including serovar identities and relative abundances within multiserovar populations, as this method promotes a reliable, high-resolution Salmonella surveillance system. Collectively, these data generated from both studies can enable the identification of competitive factors which impact Salmonella diversity in multiserovar populations as it revealed cooccurrence and co-exclusion patterns. Ultimately, understanding the ecology of multiserovar Salmonella populations will inform management decisions, as they can be tailored to the serovars present, as well as to the conditions of the flock (i.e., age of chickens, number of houses on farm, extent of pest control). The framework presented here can be extrapolated to other food animal production systems, as they face similar challenges with controlling Salmonella populations to protect consumers, and to other foodborne pathogens as well.

To harness *Salmonella* as a model organism to characterize interserovar competitive dynamics, survey the serovar diversity in broiler breeder flocks, and support improved surveillance, I employed two specific aims:

- 1. Assess *Salmonella* dynamics in commercial poultry production by identifying patterns of serovar co-occurrence
- 2. Explore the impact of control strategies and isolation methods on serovar diversity and population complexity

References

- Salmon DE, Smith T. 1891. Special report on the cause and prevention of swine plague. Gov't print. off, Washington.
- 2. Ochman H, Wilson AC. 1987. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86.
- Groisman EA, Ochman H. 1997. How Salmonella became a pathogen. Trends Microbiol 5:343–349.
- 4. Lou L, Zhang P, Piao R, Wang Y. 2019. *Salmonella* pathogenicity island 1 (SPI-1) and its complex regulatory network. Front Cell Infect Microbiol 9.
- Lamas A, Miranda JM, Regal P, Vázquez B, Franco CM, Cepeda A. 2018. A comprehensive review of non-enterica subspecies of *Salmonella enterica*. Microbiol Res 206:60–73.
- Grimont P, Weill F-X. 2007. Antigenic formulae of the *Salmonella* serovars: WHO
 Collaborating Centre for Reference and Research on *Salmonella*. 9th Edition, Institute

 Pasteur 1–166.

- 7. Tindall BJ, Grimont PAD, Garrity GM, Euzéby JP. 2005. Nomenclature and taxonomy of the genus *Salmonella*. Int J Syst Evol Microbiol 55:521–524.
- 8. McQuiston JR, Herrera-Leon S, Wertheim BC, Doyle J, Fields PI, Tauxe R V., Logsdon JM. 2008. Molecular phylogeny of the salmonellae: relationships among *Salmonella* species and subspecies determined from four housekeeping genes and evidence of lateral gene transfer events. J Bacteriol 190:7060–7067.
- Aleksic S, Heinzerling F, Bockemühl J. 1996. Human infection caused by salmonellae of subspecies II to VI in Germany, 1977–1992. Zentralblatt für Bakteriologie 283:391–398.
- 10. Giammanco GM, Pignato S, Mammina C, Grimont F, Grimont PAD, Nastasi A, Giammanco G. 2002. Persistent endemicity of *Salmonella bongori* 48:z 35:— in southern Italy: molecular characterization of human, animal, and environmental isolates. J Clin Microbiol 40:3502–3505.
- Schmidt H, Hensel M. 2006. Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 19:257–257.
- 12. Ochman H, Groisman EA. 1996. Distribution of pathogenicity islands in *Salmonella* spp. Infect Immun 64:5410–5412.
- 13. Fookes M, Schroeder GN, Langridge GC, Blondel CJ, Mammina C, Connor TR, Seth-Smith H, Vernikos GS, Robinson KS, Sanders M, Petty NK, Kingsley RA, Bäumler AJ, Nuccio S-P, Contreras I, Santiviago CA, Maskell D, Barrow P, Humphrey T, Nastasi A, Roberts M, Frankel G, Parkhill J, Dougan G, Thomson NR. 2011. *Salmonella bongori* provides insights into the evolution of the salmonellae. PLoS Pathog 7:e1002191.

- 14. Hensel M. 2000. Salmonella pathogenicity island 2. Mol Microbiol 36:1015–1023.
- 15. Issenhuth-Jeanjean S, Roggentin P, Mikoleit M, Guibourdenche M, De Pinna E, Nair S, Fields PI, Weill FX. 2014. Supplement 2008-2010 (no. 48) to the White-Kauffmann-Le Minor scheme. Res Microbiol 165:526–530.
- 16. Desai PT, Porwollik S, Long F, Cheng P, Wollam A, Clifton SW, Weinstock GM, McClelland M. 2013. Evolutionary genomics of *Salmonella enterica* subspecies. mBio 4.
- 17. Centers for Disease Control and Prevention. *Salmonella*.

 https://www.cdc.gov/salmonella/index.html#:~:text=CDC%20estimates%20Salmonella%20bacteria%20cause,for%20most%20of%20these%20illnesses. Retrieved 3 April 2024.
- 18. Gal-Mor O, Boyle EC, Grassl GA. 2014. Same species, different diseases: how and why typhoidal and non-typhoidal *Salmonella enterica* serovars differ. Front Microbiol 5.
- 19. Gal-Mor O. 2018. Persistent infection and long-term carriage of typhoidal and nontyphoidal salmonellae. Clin Microbiol Rev 32:e00088-18.
- Gossner CM, Le Hello S, de Jong B, Rolfhamre P, Faensen D, Weill F-X, Giesecke J.
 Around the world in 1,475 *Salmonella* Geo-serotypes. Emerg Infect Dis
 22:1298–1302.
- 21. Cheng RA, Eade CR, Wiedmann M. 2019. Embracing diversity: differences in virulence mechanisms, disease severity, and host adaptations contribute to the success of nontyphoidal *Salmonella* as a foodborne pathogen. Front Microbiol 10:1–20.

- 22. Uzzau S, Brown DJ, Wallis T, Rubino S, Leori G, Bernard S, Casadesús J, Platt DJ, Olsen JE. 2000. Host adapted serotypes of *Salmonella enterica*. Epidemiol Infect 125:229–255.
- 23. Fierer J, Guiney DG. 2001. Diverse virulence traits underlying different clinical outcomes of *Salmonella* infection. J Clin Invest 107:775–780.
- 24. Rakov A V., Mastriani E, Liu SL, Schifferli DM. 2019. Association of *Salmonella* virulence factor alleles with intestinal and invasive serovars. BMC Genomics 20.
- 25. Fenske GJ, Pouzou JG, Pouillot R, Taylor DD, Costard S, Zagmutt FJ. 2023. The genomic and epidemiological virulence patterns of *Salmonella enterica* serovars in the United States. PLoS One 18.
- 26. Suez J, Porwollik S, Dagan A, Marzel A, Schorr YI, Desai PT, Agmon V, McClelland M, Rahav G, Gal-Mor O. 2013. Virulence gene profiling and pathogenicity characterization of non-typhoidal *Salmonella* accounted for invasive disease in humans. PLoS One 8.
- 27. Lan R, Reeves PR, Octavia S. 2009. Population structure, origins and evolution of major *Salmonella enterica* clones. Infect Genet Evol 9:996-1005.
- 28. Feng Y, Liu J, Li YG, Cao FL, Johnston RN, Zhou J, Liu GR, Liu SL. 2012. Inheritance of the *Salmonella* virulence plasmids: mostly vertical and rarely horizontal. Infect Genet Evol 12:1058–1063.
- 29. Jones TF, Ingram LA, Cieslak PR, Vugia DJ, Tobin-D'Angelo M, Hurd S, Medus C, Cronquist A, Angulo FJ. 2008. Salmonellosis outcomes differ substantially by serotype. J Infect Dis 198:109–114.

- 30. Kirkwood M, Vohra P, Bawn M, Thilliez G, Pye H, Tanner J, Chintoan-Uta C, Branchu P, Petrovska L, Dallman T, Hall N, Stevens MP, Kingsley RA. 2021. Ecological niche adaptation of *Salmonella Typhimurium* U288 is associated with altered pathogenicity and reduced zoonotic potential. Commun Biol 4:498.
- 31. Porwollik S, McClelland M. 2003. Lateral gene transfer in *Salmonella*. Microbes Infect 5:977–989.
- 32. Miller RA, Wiedmann M. 2016. The cytolethal distending toxin produced by nontyphoidal *Salmonella* serotypes Javiana, Montevideo, Oranienburg, and Mississippi induces DNA damage in a manner similar to that of serotype Typhi. mBio 7.
- 33. Seif Y, Kavvas E, Lachance JC, Yurkovich JT, Nuccio SP, Fang X, Catoiu E, Raffatellu M, Palsson BO, Monk JM. 2018. Genome-scale metabolic reconstructions of multiple *Salmonella* strains reveal serovar-specific metabolic traits. Nat Commun 9:1–12.
- 34. Abdullah WZW, Mackey BM, Karatzas KAG. 2017. High phenotypic variability among representative strains of common *Salmonella enterica* serovars with possible implications for food safety. J Food Prot 81:93–104.
- 35. Yuan Y, Seif Y, Rychel K, Yoo R, Chauhan S, Poudel S, Al-bulushi T, Palsson BO, Sastry A V. 2022. Pan-genome analysis of transcriptional regulation in six *Salmonella enterica* serovar Typhimurium strains reveals their different regulatory structures. mSystems 7.

- 36. Mourão J, Rebelo A, Ribeiro S, Peixe L, Novais C, Antunes P. 2020. Atypical non-h2s-producing monophasic *salmonella typhimurium* st3478 strains from chicken meat at processing stage are adapted to diverse stresses. Pathogens 9:1–18.
- 37. Ramirez-Hernandez A, Bugarel M, Kumar S, Thippareddi H, Brashears MM, Sanchez-Plata MX. 2019. Phenotypic and genotypic characterization of antimicrobial resistance in *Salmonella* strains isolated from chicken carcasses and parts collected at different stages during processing. J Food Prot 82:1793–1801.
- 38. Huang K, Herrero-Fresno A, Thøfner I, Skov S, Olsen JE. 2019. Interaction differences of the avian host-specific *Salmonella enterica* serovar Gallinarum, the host-generalist S. Typhimurium, and the cattle host-adapted S. Dublin with chicken primary macrophage.
- 39. Stevens MP, Kingsley RA. 2021. *Salmonella* pathogenesis and host-adaptation in farmed animals. Curr Opin Microbiol 63:52-58.
- 40. Tanner JR, Kingsley RA. 2018. Evolution of *Salmonella* within hosts. Trends Microbiol 26:986–998.
- 41. Baumler A, Fang FC. 2013. Host specificity of bacterial pathogens. Cold Spring Harb Perspect Med 3:a010041–a010041.
- 42. Langridge GC, Fookesa M, Connora TR, Feltwella T, Feaseya N, Parsonsb BN, Seth-Smitha HMB, Barquista L, Stedmana A, Humphreyd T, Wigleyb P, Petersf SE, Maskellf DJ, Coranderg J, Chabalgoityh JA, Barrowi P, Parkhilla J, Dougana G, Thomsona NR. 2015. Patterns of genome evolution that have accompanied host adaptation in *Salmonella*. Proc Natl Acad Sci U S A 112:863–868.

- 43. Posada D. 2000. How does recombination affect phylogeny estimation? Trends Ecol Evol 15:489–490.
- 44. Cherchame E, Ilango G, Noël V, Cadel-Six S. 2022. Polyphyly in widespread *Salmonella enterica* serovars and using genomic proximity to choose the best reference genome for bioinformatics analyses. Front Public Health 10.
- 45. Worley J, Meng J, Allard MW, Brown EW, Timme RE. 2018. *Salmonella enterica* phylogeny based on whole-genome sequencing reveals two new clades and novel patterns of horizontally acquired genetic elements. mBio 9.
- 46. Timme RE, Pettengill JB, Allard MW, Strain E, Barrangou R, Wehnes C, Van Kessel JS, Karns JS, Musser SM, Brown EW. 2013. Phylogenetic diversity of the enteric pathogen *Salmonella enterica* subsp. *enterica* inferred from genome-wide reference-free SNP characters. Genome Biol Evol 5:2109–2123.
- 47. Haley BJ, Kim SW, Pettengill J, Luo Y, Karns JS, Van Kessel JAS. 2016. Genomic and evolutionary analysis of two *Salmonella enterica* serovar Kentucky sequence types isolated from bovine and poultry sources in North America. PLoS One 11:e0161225.
- 48. Richards AK, Kue S, Norris CG, Shariat NW. 2023. Genomic and phenotypic characterization of *Salmonella enterica* serovar Kentucky. Microb Genom 9.
- 49. Vosik, D., D. Tewari, L. Dettinger, N. M. M'ikanatha, Shariat NW. 2018. CRISPR typing and antibiotic resistance correlates with polyphyletic distribution in human isolates of *Salmonella Kentucky*. Foodborne Pathog Dis 15:101–108.
- Nguyen S V., Harhay DM, Bono JL, Smith TPL, Fields PI, Dinsmore BA, Santovenia
 M, Wang R, Bosilevac JM, Harhay GP. 2018. Comparative genomics of Salmonella

- enterica serovar Montevideo reveals lineage-specific gene differences that may influence ecological niche association. Microb Genom 4.
- 51. Yin Z, Liu J, Du B, Ruan HH, Huo YX, Du Y, Qiao J. 2020. Whole-genome-based survey for polyphyletic serovars of *Salmonella enterica* subsp. *enterica* provides new insights into public health surveillance. Int J Mol Sci 21:1–19.
- 52. Zheng J, Luo Y, Reed E, Bell R, Brown EW, Hoffmann M. 2017. Whole-genome comparative analysis of *Salmonella enterica* serovar Newport strains reveals lineage-specific divergence. Genome Biol Evol 9:1047–1050.
- 53. Connor TR, Owen S V., Langridge G, Connell S, Nair S, Reuter S, Dallman TJ,
 Corander J, Tabing KC, Le Hello S, Fookes M, Doublet B, Zhou Z, Feltwell T,
 Ellington MJ, Herrera S, Gilmour M, Cloeckaert A, Achtman M, Parkhill J, Wain J,
 De Pinna E, Weill F-X, Peters T, Thomson N. 2016. What's in a name? Species-wide
 whole-genome sequencing resolves invasive and noninvasive lineages of *Salmonella*enterica serotype Paratyphi B. mBio 7.
- 54. Sangal V, Harbottle H, Mazzoni CJ, Helmuth R, Guerra B, Didelot X, Paglietti B, Rabsch W, Brisse S, Weill F-X, Roumagnac P, Achtman M. 2010. Evolution and population structure of *Salmonella enterica* serovar Newport. J Bacteriol 192:6465–6476.
- 55. Cao G, Meng J, Strain E, Stones R, Pettengill J, Zhao S, McDermott P, Brown E, Allard M. 2013. Phylogenetics and differentiation of *Salmonella* Newport lineages by whole genome sequencing. PLoS One 8:e55687.
- Beltran P, Musser JM, Helmuth R, Farmer JJ, Frerichs WM, Wachsmuth IK, Ferris
 K, McWhorter AC, Wells JG, Cravioto A. 1988. Toward a population genetic

- analysis of *Salmonella*: genetic diversity and relationships among strains of serotypes S. choleraesuis, S. derby, S. dublin, S. enteritidis, S. heidelberg, S. infantis, S. newport, and S. typhimurium. Proc Natl Acad Sci USA 85:7753–7757.
- 57. Selander RK, Beltran P, Smith NH, Helmuth R, Rubin FA, Kopecko DJ, Ferris K, Tall BD, Cravioto A, Musser JM. 1990. Evolutionary genetic relationships of clones of *Salmonella* serovars that cause human typhoid and other enteric fevers. Infect Immun 58:2262–2275.
- 58. Cohn AR, Cheng RA, Orsi RH, Wiedmann M. 2021. Moving past species classifications for risk-based approaches to food safety: *Salmonella* as a case study. Front Sustain Food Syst 5.
- 59. Cobo-Simón M, Hart R, Ochman H. 2023. Gene flow and species boundaries of the genus *Salmonella*. mSystems 8:e00292-23.
- 60. United States Department of Agriculture Economic Research Service. 2021. Cost estimates of foodborne illnesses. https://www.ers.usda.gov/data-products/cost-estimates-of-foodborne-illnesses/. Retrieved 3 April 2024.
- 61. Plumb I, Fields P, Bruce B. 2024. Salmonellosis, nontyphoidal. CDC Yellow Book.
- 62. Boxrud D, Monson T, Stiles T, Besser J. 2010. The role, challenges, and support of PulseNet laboratories in detecting foodborne disease outbreaks. Public Health Rep 125:57–62.
- 63. Centers for Disease Control and Prevention. 2024. PulseNet.

 https://www.cdc.gov/pulsenet/hcp/about/index.html. Retrieved 19 December 2024.
- 64. Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB, Swaminathan B, Barrett TJ. 2006. Standardization of pulsed-field gel electrophoresis protocols for the

- subtyping of *Escherichia coli* O157:H7, *Salmonella*, and *Shigella* for PulseNet. Foodborne Pathog Dis 3:59–67.
- 65. den Bakker HC, Allard MW, Bopp D, Brown EW, Fontana J, Iqbal Z, Kinney A, Limberger R, Musser KA, Shudt M, Strain E, Wiedmann M, Wolfgang WJ. 2014. Rapid whole-genome sequencing for surveillance of *Salmonella enterica* serovar Enteritidis. Emerg Infect Dis 20:1306–1314.
- 66. Scallan E, Mahon BE. 2012. Foodborne diseases active surveillance network (FoodNet) in 2012: a foundation for food safety in the United States. Clin Infect Dis 54:381–384.
- 67. Centers for Disease Control and Prevention. 2024. Foodborne Diseases Active Surveillance Network (FoodNet). https://www.cdc.gov/foodnet/data/index.html. Retrieved 19 December 2024.
- 68. Centers for Disease Control and Prevention. BEAM (Bacteria, Enterics, Amoeba, and Mycotics) Dashboard. www.cdc.gov/ncezid/dfwed/BEAM-dashboard.html. Retrieved 3 April 2024.
- 69. Interagency Food Safety Analytics Collaboration. 2024. Foodborne illness source attribution estimates for *Salmonella*, *Escherichia coli* O157, and *Listeria monocytogenes* United States, 2022. https://www.cdc.gov/ifsac/php/data-research/annual-report-2022.html. Retrieved 19 December 2024.
- 70. Marshall KE, Cui Z, Gleason BL, Hartley C, Wise ME, Bruce BB, Griffin PM. 2024.
 An approach to describe *Salmonella* serotypes of concern for outbreaks: using burden and trajectory of outbreak-related illnesses associated with meat and poultry. J Food Prot 87:100331.

- 71. United States Department of Agriculture Food Safety and Inspection Service. 2019.

 Pathogen reduction *Salmonella* and *Campylobacter* performance standards verification testing. Inspection Methods 1–25.
- 72. United States Department of Agriculture Food Safety and Inspection Service.

 **Salmonella* verification testing program monthly posting.

 https://www.fsis.usda.gov/science-data/data-setsvisualizations/microbiology/salmonella-verification-testing-program-monthly.

 Retrieved 19 December 2024.
- 73. United States Department of Agriculture Food Safety and Inspection Service. Raw poultry sampling. https://www.fsis.usda.gov/news-events/publications/raw-poultry-sampling. Retrieved 21 January 2025.
- 74. Sexton T, Geornaras I, Belk KE, Bunning M, Martin JN. 2018. *Salmonella* contamination in broiler synovial fluid: are we missing a potential reservoir? J Food Prot 81:1425–1431.
- 75. Rasschaert G, Houf K, Godard C, Wildemauwe C, Pastuszczak-Fra, K M, De Zutter AL. 2008. Evidence for long-term persistence of specific *Salmonella enterica* serovar Hadar subtypes in successive broiler flocks at the farm level. Vet Microbiol 132:169–176.
- 76. Rivera-Pérez W, Barquero-Calvo E, Zamora-Sanabria R. 2014. Salmonella contamination risk points in broiler carcasses during slaughter line processing. J Food Prot 77:2031–2034.
- 77. Morris GK, Wells JG. 1970. *Salmonella* contamination in a poultry-processing plant. Appl Microbiol 19:795–799.

- 78. Rimet C-S, Maurer JJ, Pickler L, Stabler L, Johnson KK, Berghaus RD, Villegas AM, Lee M, França M. 2019. *Salmonella* harborage sites in infected poultry that may contribute to contamination of ground meat. Front Sustain Food Syst 3.
- 79. Boubendir S, Arsenault J, Quessy S, Thibodeau A, Fravalo P, Thériault WP, Fournaise S, Gaucher M-L. 2020. *Salmonella* contamination of broiler chicken carcasses at critical steps of the slaughter process and in the environment of two slaughter plants: prevalence, genetic profiles, and association with the final carcass status. J Food Prot 84:321–332.
- 80. Obe T, Nannapaneni R, Schilling W, Zhang L, McDaniel C, Kiess A. 2020.

 Prevalence of *Salmonella enterica* on poultry processing equipment after completion of sanitization procedures. Poult Sci 99:4539–4548.
- 81. Lambertini E, Ruzante JM, Chew R, Apodaca VL, Kowalcyk BB. 2019. The public health impact of different microbiological criteria approaches for *Salmonella* in chicken parts. Microb Risk Anal 12:44–59.
- 82. Rasamsetti S, Shariat NW. 2023. Biomapping *Salmonella* serovar complexity in broiler carcasses and parts during processing. Food Microbiol 110.
- 83. Richards AK, Siceloff AT, Simmons M, Tillman GE, Shariat NW. 2024. Poultry processing interventions reduce *Salmonella* serovar complexity on postchill young chicken carcasses as determined by deep serotyping. J Food Prot 87.
- 84. Williams MS, Ebel ED, Saini G, Nyirabahizi E. 2020. Changes in *Salmonella* contamination in meat and poultry since the introduction of the pathogen reduction and hazard analysis and critical control point rule. J Food Prot 83:1707–1717.

- 85. Wythe LA, Dittoe DK, Feye KM, Olson EG, Perry LM, Ricke SC. 2022. Reduction of *Salmonella* Infantis on skin-on, bone-in chicken thighs by cetylpyridinium chloride application and the impact on the skin microbiota. Poult Sci 101:101409.
- 86. May KN. 1974. 3. Changes in microbial numbers during final washing and chilling of commercially slaughtered broilers. Poult Sci 53:1282–1285.
- 87. Kumar S, Singh M, Cosby DE, Cox NA, Thippareddi H. 2020. Efficacy of peroxy acetic acid in reducing *Salmonella* and *Campylobacter* spp. populations on chicken breast fillets. Poult Sci 99:2655–2661.
- 88. Bauermeister LJ, Bowers JWJ, Townsend JC, McKee SR. 2008. The microbial and quality properties of poultry carcasses treated with peracetic acid as an antimicrobial treatment. Poult Sci 87:2390–2398.
- 89. Bauermeister LJ, Bowers JWJ, Townsend JC, Mckee SR. 2008. Validating the efficacy of peracetic acid mixture as an antimicrobial in poultry chillers. J Food Prot 71:1119–1122.
- 90. Berrang ME, Bailey JS, Altekruse SF, Shaw WK, Patel BL, Meinersmann RJ, Fedorka-Cray PJ. 2009. Prevalence, serotype, and antimicrobial resistance of *Salmonella* on broiler carcasses postpick and postchill in 20 U.S. processing plants. J Food Prot 72:1610–1615.
- 91. Boubendir S, Arsenault J, Quessy S, Thibodeau A, Fravalo P, Thériault WP, Fournaise S, Gaucher M-L. 2021. *Salmonella* contamination of broiler chicken carcasses at critical steps of the slaughter process and in the environment of two slaughter plants: prevalence, genetic profiles, and association with the final carcass status. J Food Prot 84:321–332.

- 92. Chen X, Bauermeister LJ, Hill GN, Singh M, Bilgili SF, Mckee SR. 2014. Efficacy of various antimicrobials on reduction of *Salmonella* and *Campylobacter* and quality attributes of ground chicken obtained from poultry parts treated in a postchill decontamination tank. J Food Prot 77:1882–1888.
- 93. Bolton DJ, Meredith H, Walsh D, McDowell DA. 2014. The effect of chemical treatments in laboratory and broiler plant studies on the microbial status and shelf-life of poultry. Food Control 36:230–237.
- 94. Cano C, Meneses Y, Chaves BD. 2021. Application of peroxyacetic acid for decontamination of raw poultry products and comparison to other commonly used chemical antimicrobial interventions: a review. J Food Prot 84:1772–1783.
- 95. Leone C, Xu X, Mishra A, Thippareddi H, Singh M. 2024. Interventions to reduce *Salmonella* and *Campylobacter* during chilling and post-chilling stages of poultry processing: a systematic review and meta-analysis. Poult Sci 103:103492.
- 96. Dodd CER, Aldsworth TG. 2002. The importance of rpoS in the survival of bacteria through food processing. Int J Food Microbiol 74:189–194.
- 97. Volkova VV, Bailey RH, Rybolt ML, Dazo-Galarneau K, Hubbard SA, Magee D, Byrd JA, Wills RW. 2010. Inter-relationships of *Salmonella* status of flock and grow-out environment at sequential segments in broiler production and processing.

 Zoonoses Public Health 57:463–475.
- 98. Guillén S, Nadal L, Álvarez I, Mañas P, Cebrián G. 2021. Impact of the resistance responses to stress conditions encountered in food and food processing environments on the virulence and growth fitness of non-typhoidal salmonellae. Foods 10:617.

- 99. Berghaus RD, Thayer SG, Law BF, Mild RM, Hofacre CL, Singer RS. 2013.
 Enumeration of *Salmonella* and *Campylobacter* spp. in environmental farm samples and processing plant carcass rinses from commercial broiler chicken flocks. Appl Environ Microbiol 79:4106–4114.
- 100. Bailey JS. 1993. Control of *Salmonella* and *Campylobacter* in poultry production.A summary of work at Russell Research Center. Poult Sci 72:1169–1173.
- 101. Gast RK. 2007. Serotype-specific and serotype-independent strategies for preharvest control of food-borne *Salmonella* in poultry. Avian Dis 51:817–828.
- 102. World Health Organization. Salmonella (non-typhoidal).
 https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal).
 Retrieved 13 January 2025.
- 103. Bäumler AJ, Tsolis RM, Ficht TA, Adams LG. 1998. Evolution of host adaptation in *Salmonella enterica*. Infect Immun 66:4579–4587.
- 104. Teunis PFM. 2022. Dose response for *Salmonella* Typhimurium and Enteritidis and other nontyphoid enteric salmonellae. Epidemics 41:100653.
- 105. USDA Food Safety Inspection Service. 2015. Serotypes profile of Salmonella isolates from meat and poultry products January 1998 through December 2014. https://www.fsis.usda.gov/sites/default/files/media_file/2020-10/Salmonella-Serotype-Annual-2014.pdf. Retrieved 19 December 2024.
- 106. Joerger RD, Sartori CA, Kniel KE. 2009. Comparison of genetic and physiological properties of *Salmonella enterica* isolates from chickens reveals one major difference between serovar Kentucky and other serovars: response to acid. Foodborne Pathog Dis 6.

- 107. Cheng Y, Pedroso AA, Porwollik S, McClelland M, Lee MD, Kwan T, Zamperini K, Soni V, Sellers HS, Russell SM, Maurer JJ. 2015. rpoS-regulated core genes involved in the competitive fitness of *Salmonella enterica* serovar Kentucky in the intestines of chickens. Appl Environ Microbiol 81:502–514.
- 108. Cogan TA, Humphrey TJ. 2003. The rise and fall of *Salmonella* Enteritidis in the UK. J Appl Microbiol 94:114–119.
- 109. Rabsch W, Hargis BM, Tsolis RM, Kingsley RA, Hinz K-H, Tschape H, Baumler AJ. 2000. Competitive exclusion of *Salmonella* Enteritidis by *Salmonella* Gallinarum in poultry. Emerg Infect Dis 6.
- 110. Schat KA, Nagaraja K V., Saif YM. 2021. Pullorum disease: evolution of the eradication strategy. Avian Dis 65.
- 111. Foley SL, Nayak R, Hanning IB, Johnson TJ, Han J, Ricke SC. 2011. Population dynamics of *Salmonella enterica* serotypes in commercial egg and poultry production. Appl Environ Microbiol 77:4273–4279.
- 112. Bäumler AJ, Hargis BM, Tsolis RM. 2000. Tracing the origins of *Salmonella* outbreaks. Science (1979) 287:50–52.
- 113. Wright AP, Richardson L, Mahon BE, Rothenberg R, Cole DJ. 2016. The rise and decline in *Salmonella enterica* serovar Enteritidis outbreaks attributed to egg-containing foods in the United States, 1973–2009. Epidemiol Infect 144:810–819.
- 114. Centers for Disease Control and Prevention. 2018 *Salmonella* infections linked to raw chicken products. https://archive.cdc.gov/www_cdc_gov/salmonella/infantis-10-18/index.html. Retrieved 19 December 2024.

- 115. Chavez-Arroyo A, Bäumler AJ. 2023. Predicting the next superspreader. mSystems 8.
- 116. United States Department of Agriculture Food Safety and Inspection Service. Salmonella performance standards. https://www.fsis.usda.gov/policy/fsis-directives/10250.2. Retrieved 19 December 2024.
- 117. United States Department of Agriculture Food Safety and Inspection Service.
 2024. Salmonella framework for raw poultry products.
 https://www.fsis.usda.gov/policy/federal-register-rulemaking/federal-register-rules/salmonella-framework-raw-poultry-products. Retrieved 19 December 2024.
- 118. United States Department of Agriculture National Agricultural Statistics Service.
 2021. Poultry production and value 2020 summary.
 https://downloads.usda.library.cornell.edu/usdaesmis/files/m039k491c/pn89f234j/4742b442c/plva0421.pdf. Retrieved 19 December 2024.
- 119. United States Department of Agriculture National Agricultural Statistics Service.

 Quick Stats. https://quickstats.nass.usda.gov. Retrieved 19 December 2024.
- 120. McDaniel C. 2021. The only good broiler breeder egg is a fertilized egg. http://extension.msstate.edu/publications/information-sheets/the-only-good-broiler-breeder-egg-fertilized-egg. Retrieved 19 December 2024.
- 121. Velge P, Menanteau P, Chaumeil T, Barilleau E, Trotereau J, Virlogeux-Payant I.2022. Two *in vivo* models to study *Salmonella* asymptomatic carrier state in chicks.Methods Mol Biol 2427:249–264.

- 122. Shivaprasad HL. 2000. Fowl typhoid and pullorum disease. Rev Sci Tech 19:405–424.
- 123. Wigley P. 2014. *Salmonella enterica* in the chicken: how it has helped our understanding of immunology in a non-biomedical model species. Front Immunol 5.
- 124. Wang J, Fenster DA, Vaddu S, Bhumanapalli S, Kataria J, Sidhu G, Leone C, Singh M, Dalloul RA, Thippareddi H. 2024. Colonization, spread and persistence of *Salmonella* (Typhimurium, Infantis and Reading) in internal organs of broilers. Poult Sci 103:103806.
- 125. Wigley P. 2024. *Salmonella* and the chicken: reflections on salmonellosis and its control in the United Kingdom. Poultry Science and Management 1.
- 126. Keller LH, Schifferli DM, Benson CE, Aslam S, Eckroade RJ. 1997. Invasion of chicken reproductive tissues and forming eggs is not unique to *Salmonella* Enteritidis. Avian Dis 41:535.
- 127. Machado Junior PC, Chung C, Hagerman A. 2020. Modeling *Salmonella* spread in broiler production: identifying determinants and control strategies. Front Vet Sci 7.
- 128. Vinueza-Burgos C, Baquero M, Medina J, De Zutter L. 2019. Occurrence, genotypes and antimicrobial susceptibility of *Salmonella* collected from the broiler production chain within an integrated poultry company. Int J Food Microbiol 299:1–7.
- 129. English KG. 2015. Effect of biosecurity and management practices on the prevalence of *Salmonella*, *Campylobacter*, and *Clostridium* perfringens in a poultry production system. MS Thesis, Auburn University, Auburn, AL, USA.

- 130. Rajan K, Shi Z, Ricke SC. 2017. Current aspects of *Salmonella* contamination in the US poultry production chain and the potential application of risk strategies in understanding emerging hazards. Crit Rev Microbiol 43:370–392.
- 131. Wang J, Vaddu S, Bhumanapalli S, Mishra A, Applegate T, Singh M, Thippareddi H. 2023. A systematic review and meta-analysis of the sources of *Salmonella* in poultry production (pre-harvest) and their relative contributions to the microbial risk of poultry meat. Poult Sci 102.
- 132. Li S, He Y, Mann DA, Deng X. 2021. Global spread of *Salmonella* Enteritidis via centralized sourcing and international trade of poultry breeding stocks. Nat Commun 12.
- 133. Andino A, Pendleton S, Zhang N, Chen W, Critzer F, Hanning I. 2014. Survival of *Salmonella enterica* in poultry feed is strain dependent. Poult Sci 93:441–447.
- 134. Jarquin R, Hanning I, Ahn S, Ricke SC. 2009. Development of rapid detection and genetic characterization of *Salmonella* in poultry breeder feeds. Sensors 9:5308–5323.
- 135. Sylejmani D, Musliu A, Ramadani N, Sparagano O, Hamidi A. 2016. Associations between the level of biosecurity and occurrence of *Dermanyssus gallinae* and *Salmonella* spp. in layer farms. Avian Dis 60:454–459.
- 136. Umali D V., Lapuz RRSP, Suzuki T, Shirota K, Katoh H. 2012. Transmission and shedding patterns of *Salmonella* in naturally infected captive wild roof rats (*Rattus rattus*) from a *Salmonella*-contaminated layer farm. Avian Dis 56:288–294.
- 137. Dominguez JE, Rosario L, Juliana S, Redondo LM, Chacana PA, Regino C, Fernández Miyakawa ME. 2023. Rats as sources of multidrug-resistant

- Enterobacteriaceae in animal production environments. Zoonoses Public Health 70:627–635.
- 138. Meerburg BG, Kijlstra A. 2007. Role of rodents in transmission of *Salmonella* and *Campylobacter*. J Sci Food Agric 87:2774–2781.
- 139. Domanska-Blicharz K, Opolska J, Lisowska A, Szczotka-Bochniarz A. 2023.

 Bacterial and viral rodent-borne infections on poultry farms. An attempt at a systematic review. J Vet Res 67:1–10.
- 140. Raufu IA, Ahmed OA, Aremu A, Odetokun IA, Raji MA. 2019. *Salmonella* transmission in poultry farms: the roles of rodents, lizards and formites. Savannah Veterinary Journal 2:1–4.
- 141. Roche AJ, Cox NA, Richardson LJ, Buhr RJ, Cason JA, Fairchild BD, Hinkle NC.2009. Transmission of *Salmonella* to broilers by contaminated larval and adult lesser mealworms, *Alphitobius diaperinus* (Coleoptera: Tenebrionidae). Poult Sci 88:44–48.
- 142. Lapuz RRSP, Umali DV, Suzuki T, Shirota K, Katoh H. 2012. Comparison of the prevalence of *Salmonella* infection in layer hens from commercial layer farms with high and low rodent densities. Avian Dis 56:29–34.
- 143. Garber L, Smeltzer M, Fedorka-Cray P, Ladely S, Ferris K. 2003. Salmonella enterica serotype Enteritidis in table egg layer house environments and in mice in U.S. layer houses and associated risk factors. Avian Dis 47:134–142.
- 144. Henzler DJ, Opitz HM. 1992. The role of mice in the epizootiology of *Salmonella* Enteritidis infection on chicken layer farms. Avian Dis 36:625–631.

- 145. Camba SI, Del Valle FP, Umali DV, Soma T, Shirota K, Katoh H, Sasai K. 2020. The expanded role of roof-rats (*Rattus rattus*) in *Salmonella* spp. contamination of a commercial layer farm in east Japan. Avian Dis 64:46–52.
- 146. Liljebjelke KA, Hofacre CL, Liu T, White DG, Ayers S, Young S, Maurer JJ. 2005. Vertical and horizontal transmission of *Salmonella* within integrated broiler production system. Foodborne Pathog Dis 2:90–102.
- 147. Crabb HK, Allen JL, Devlin JM, Firestone SM, Wilks CR, Gilkerson JR. 2018. *Salmonella* spp. transmission in a vertically integrated poultry operation: clustering and diversity analysis using phenotyping (serotyping, phage typing) and genotyping (MLVA). PLoS One 13:1–19.
- 148. Byrd JA, Corrier DE, Deloach JR, Nisbet DJ, Stanker LH. 1998. Horizontal transmission of *Salmonella* Typhimurium in broiler chicks. J Appl Poult Res 7:75–80.
- 149. Hannah JF, Wilson JL, Cox NA, Richardson LJ, Cason JA, Bourassa DV, Buhr RJ.2011. Horizontal transmission of *Salmonella* and *Campylobacter* among caged and cage-free laying hens. Avian Dis 55:580–587.
- 150. Gast RK, Guraya R, Jones DR, Anderson KE. 2014. Horizontal transmission of *Salmonella* Enteritidis in experimentally infected laying hens housed in conventional or enriched cages. Poult Sci 93:3141–3151.
- 151. Chen S, Feng Z, Sun H, Zhang R, Qin T, Peng D. 2021. Biofilm-formation-related genes csgD and bcsA promote the vertical transmission of *Salmonella* Enteritidis in Chicken. Front Vet Sci 7.

- 152. Parsons D, Orton T, Dsouza J, Moore A, Jones R, Dodd C. 2005. A comparison of three modelling approaches for quantitative risk assessment using the case study of *Salmonella* spp. in poultry meat. Int J Food Microbiol 98:35–51.
- 153. Lei CW, Zhang Y, Kang ZZ, Kong LH, Tang YZ, Zhang AY, Yang X, Wang HN.
 2020. Vertical transmission of *Salmonella* Enteritidis with heterogeneous antimicrobial resistance from breeding chickens to commercial chickens in China.
 Vet Microbiol 240.
- 154. Conner DE, Wakefield CB. 2006. Incidence of *Salmonella* in processed broilers following transportation in contaminated coops. In Memorias del XII European Poultry Conference, Verona, Italy. World's Poultry Science Association, Beekbergen, The Netherlands.
- 155. Roll VFB, Dai Prá MA, Roll AP. 2011. Research on *Salmonella* in broiler litter reused for up to 14 consecutive flocks. Poult Sci 90:2257–2262.
- 156. Parker EM, Parker AJ, Short G, O'Connor AM, Wittum TE. 2022. *Salmonella* detection in commercially prepared livestock feed and the raw ingredients and equipment used to manufacture the feed: a systematic review and meta-analysis. Prev Vet Med 198:105546.
- 157. Pal A, Bailey MA, Talorico AA, Krehling JT, Macklin KS, Price SB, Buhr RJ, Bourassa D V. 2021. Impact of poultry litter *Salmonella* levels and moisture on transfer of *Salmonella* through associated in vitro generated dust. Poult Sci 100:101236.
- 158. Cason JA, Cox NA, Bailey JS. 1994. Transmission of *Salmonella* Typhimurium during hatching of broiler chicks. Avian Dis 38:583–8.

- 159. Keller LH, Benson CE, Krotec K, Eckroade RJ. 1995. *Salmonella* Enteritidis colonization of the reproductive tract and forming and freshly laid eggs of chickens. Infect Immun 63:2443–2449.
- 160. Gast RK, Beard CW. 1990. Production of *Salmonella* Enteritidis-contaminated eggs by experimentally infected hens. Avian Dis 34:438–446.
- 161. Humphrey TJ, Whitehead A, Gawler AH, Henley A, Rowe B. 1991. Numbers of *Salmonella* Enteritidis in the contents of naturally contaminated hens' eggs.
 Epidemiol Infect 106:489–496.
- 162. Miyamoto T, Baba E, Tanaka T, Sasai K, Fukata T, Arakawa A. 1997. *Salmonella* Enteritidis contamination of eggs from hens inoculated by vaginal, cloacal, and intravenous routes. Avian Dis 41:296–303.
- 163. Galiş AM, Marcq C, Marlier D, Portetelle D, Van I, Beckers Y, Théwis A. 2013. Control of *Salmonella* contamination of shell eggs—preharvest and postharvest methods: a review. Compr Rev Food Sci Food Saf 12:155–182.
- 164. Bailey JS, Cox NA, Berrang ME. 1994. Hatchery-acquired salmonellae in broiler chicks. Poult Sci 73:1153–1157.
- 165. Gast RK, Holt PS, Murase T. 2005. Penetration of *Salmonella* Enteritidis and *Salmonella* Heidelberg into egg yolks in an in vitro contamination model. Poult Sci 84:621–625.
- 166. Schoeni JL, Glass KA, McDermott JL, Wong AC. 1995. Growth and penetration of Salmonella Enteritidis, Salmonella Heidelberg and Salmonella Typhimurium in eggs. Int J Food Microbiol 24:385–96.

- 167. Dórea FC, Cole DJ, Hofacre C, Zamperini K, Mathis D, Doyle MP, Lee MD, Maurer JJ. 2010. Effect of *Salmonella* vaccination of breeder chickens on contamination of broiler chicken carcasses in integrated poultry operations. Appl Environ Microbiol 76:7820–7825.
- 168. Obe T, Siceloff AT, Crowe MG, Scott HM, Shariat NW. 2023. Combined quantification and deep serotyping for *Salmonella* risk profiling in broiler flocks. Appl Environ Microbiol 89.
- 169. U.S. Poultry & Egg Association. National Poultry Improvement Plan.
 https://www.poultryimprovement.org/index.cfm. Retrieved 19 December 2024.
- 170. United States Department of Agriculture Animal and Plant Health Inspection Service. 2018. The National Poultry Improvement Plan and auxiliary provisions. https://www.poultryimprovement.org/documents/AuxiliaryProvisions07252018.pdf. Retrieved 19 December 2024.
- 171. United States Department of Agriculture Animal and Plant Health Inspection Service. 2024. National Poultry Improvement Plan program standards. https://www.poultryimprovement.org/documents/2024-NPIP-Program-Standards-A-E-June-11-2024.pdf. Retrieved 19 December 2024.
- 172. United States Food and Drug Administration. 2024. Veterinary Feed Directive (VFD). https://www.fda.gov/animal-veterinary/development-approval-process/veterinary-feed-directive-vfd. Retrieved 19 December 2024.
- 173. Kimminau EA, Karnezos TP, Berghaus RD, Jones MK, Baxter JA, Hofacre CL.2021. Combination of probiotic and prebiotic impacts *Salmonella* Enteritidis infection in layer hens. J Appl Poult Res 30.

- 174. Micciche AC, Foley SL, Pavlidis HO, McIntyre DR, Ricke SC. 2018. A review of prebiotics against *Salmonella* in poultry: current and future potential for microbiome research applications. Front Vet Sci 5:1–11.
- 175. Tellez G, Pixley C, Wolfenden RE, Layton SL, Hargis BM. 2012. Probiotics/direct fed microbials for *Salmonella* control in poultry. Food Research International 45:628–633.
- 176. Nava GM, Bielke LR, Callaway TR, Castañeda MP. 2005. Probiotic alternatives to reduce gastrointestinal infections: the poultry experience. Anim Health Res Rev 6:105–118.
- 177. Menconi A, Wolfenden AD, Shivaramaiah S, Terraes JC, Urbano T, Kuttel J, Kremer C, Hargis BM, Tellez G. 2011. Effect of lactic acid bacteria probiotic culture for the treatment of *Salmonella enterica* serovar Heidelberg in neonatal broiler chickens and turkey poults. Poult Sci 90:561–565.
- 178. Williams ZT, Blake JP, Macklin KS. 2012. The effect of sodium bisulfate on *Salmonella* viability in broiler litter. Poult Sci 91:2083–2088.
- 179. Vicente J, Higgins S, Hargis B, Tellez G. 2007. Effect of poultry guard litter amendment on horizontal transmission of *Salmonella* Enteritidis in broiler chicks. Int J Poult Sci 6:314–317.
- 180. Bourassa D V., Wilson KM, Ritz CR, Kiepper BK, Buhr RJ. 2018. Evaluation of the addition of organic acids in the feed and/or water for broilers and the subsequent recovery of *Salmonella* Typhimurium from litter and ceca1. Poult Sci 97:64–73.
- 181. Harris C, Josselson L, Bourassa D, Fairchild B, Kiepper B, Buhr R. 2019. Evaluation of drinking water antimicrobial interventions on water usage, feed

- consumption, and *Salmonella* retention in broilers following feed and water withdrawal. J Appl Poult Res 28.
- 182. Wales AD, Allen VM, Davies RH. 2010. Chemical treatment of animal feed and water for the control of *Salmonella*. Foodborne Pathog Dis 7:3–15.
- 183. Renu S, Han Y, Dhakal S, Lakshmanappa YS, Ghimire S, Feliciano-Ruiz N, Senapati S, Narasimhan B, Selvaraj R, Renukaradhya GJ. 2020. Chitosan-adjuvanted *Salmonella* subunit nanoparticle vaccine for poultry delivered through drinking water and feed. Carbohydr Polym 243:116434.
- 184. Higgins JP, Higgins SE, Guenther KL, Huff W, Donoghue AM, Donoghue DJ, Hargis BM. 2005. Use of a specific bacteriophage treatment to reduce *Salmonella* in poultry products. Poult Sci 84:1141–1145.
- 185. Lim T-H, Lee D-H, Lee Y-N, Park J-K, Youn H-N, Kim M-S, Lee H-J, Yang S-Y, Cho Y-W, Lee J-B, Park S-Y, Choi I-S, Song C-S. 2011. Efficacy of bacteriophage therapy on horizontal transmission of *Salmonella* Gallinarum on commercial layer chickens. Avian Dis 55:435–438.
- 186. Desin TS, Koster W, Potter AA. 2013. *Salmonella* vaccines in poultry: past, present and future. Expert Rev Vaccines 12:87–96.
- 187. Berghaus RD, Thayer SG, Maurer JJ, Hofacre CL. 2011. Effect of vaccinating breeder chickens with a killed salmonella vaccine on *Salmonella* prevalences and loads in breeder and broiler chicken flocks. J Food Prot 74:727–734.
- 188. Zhang-Barber L, Turner AK, Barrow PA. 1999. Vaccination for control of *Salmonella* in poultry. Vaccine 17:2538–2545.

- 189. Meher MM, Sharif MA, Al Bayazid A. 2022. Seroprevalence of *Salmonella* spp. infection in different types of poultry and biosecurity measures associated with salmonellosis. Int J Agric Environ Food Sci 6:557–567.
- 190. Dorea FC, Berghaus R, Hofacre C, Cole DJ. 2010. Survey of biosecurity protocols and practices adopted by growers on commercial poultry farms in Georgia, U.S.A. Avian Dis 54:1007–1015.
- 191. Dale EL, Nolan SP, Berghaus RD, Hofacre CL. 2015. On farm prevention of Campylobacter and Salmonella: lessons learned from basic biosecurity interventions. J Appl Poult Res 24:222–232.
- 192. Payne JB, Kroger EC, Watkins SE. 2002. Evaluation of litter treatments on *Salmonella* recovery from poultry litter. J Appl Poult Res 11:239–243.
- 193. Byrd JA, Hargis BM, Caldwell DJ, Bailey RH, Herron KL, McReynolds JL, Brewer RL, Anderson RC, Bischoff KM, Callaway TR, Kubena LF. 2001. Effect of lactic acid administration in the drinking water during preslaughter feed withdrawal on *Salmonella* and *Campylobacter* contamination of broilers. Poult Sci 80:278–283.
- 194. Young SD, Olusanya O, Jones KH, Liu T, Liljebjelke KA, Hofacre CL. 2007. Salmonella incidence in broilers from breeders vaccinated with live and killed Salmonella. J Appl Poult Res 16:521–528.
- 195. Bailey JS, Rolon A, Hofacre CL, Holt PS, Wilson JL, Cosby DE, Richardson LJ, Cox NA. 2007. Intestinal humoral immune response and resistance to *Salmonella* challenge of progeny from breeders vaccinated with killed antigen. Int J Poult Sci 6:417–423.

- 196. Inoue AY, Berchieri A, Bernardino A, Paiva JB, Sterzo E V. 2008. Passive immunity of progeny from broiler breeders vaccinated with oil-emulsion bacterin against *Salmonella* Enteritidis. Avian Dis 52:567–571.
- 197. Sharma P, Caraguel C, Sexton M, McWhorter A, Underwood G, Holden K, Chousalkar K. 2018. Shedding of *Salmonella* Typhimurium in vaccinated and unvaccinated hens during early lay in field conditions: a randomised controlled trial. BMC Microbiol 18.
- 198. da Silva Teixeira M, Lages DH, Alves VV, da Silva Martins NR, de Freitas Neto OC. 2022. Assessment of maternal immunity against *Salmonella enterica* serovar Heidelberg in progeny of broiler breeders vaccinated with different formulations of bacterins. Avian Pathology 51:197–205.
- 199. Pavic A, Groves PJ, Cox JM. 2010. Utilization of a novel autologous killed trivaccine (serogroups B [Typhimurium], C [Mbandaka] and E [Orion]) for *Salmonella* control in commercial poultry breeders. Avian Pathology 39:31–39.
- 200. Hofacre CL, Rosales AG, Costa MD, Cookson K, Schaeffer J, Jones MK. 2021. Immunity and protection provided by live modified vaccines against paratyphoid *Salmonella* in poultry an applied perspective. Avian Dis 65:295–302.
- 201. Bailey JS, Rolon A, Hofacre CL, Holt PS, Wilson JL, Cosby DE, Richardson LJ, Cox NA. 2007. Resistance to challenge of breeders and their progeny with and without competitive exclusion treatment to *Salmonella* vaccination programs in broiler breeders. Int J Poult Sci 6:386–392.

- 202. Willson NL, Chousalkar K. 2023. Dominant Salmonella serovars in Australian broiler breeder flocks and hatcheries: a longitudinal study. Appl Environ Microbiol 89.
- 203. Methner U, Haase A, Berndt A, Martin G, Nagy B, Barrow PA. 2011. Exploitation of intestinal colonization-inhibition between *Salmonella* organisms for live vaccines in poultry potential and limitations. Zoonoses Public Health 58:540–548.
- 204. Barrow PA. 2007. *Salmonella* infections: immune and non-immune protection with vaccines. Avian Pathol 36:1–13.
- 205. Tran TQL, Sylvain Quessy, Ann Letellier, Annie Desrosiers, Martine Boulianne.2010. Immune response following vaccination against *Salmonella* Enteritidis using 2 commercial bacterins in laying hens. Can J Vet Res 74:185–192.
- 206. Hormaeche CE, Joysey HS, Desilva L, Izhar M, Stocker BAD. 1990. Immunity induced by live attenuated *Salmonella* vaccines. Res Microbiol 141:757–764.
- 207. Zhang X, Kelly SM, Bollen W, Curtiss 3rd R. 1999. Protection and immune responses induced by attenuated *Salmonella* Typhimurium UK-1 strains. Microb Pathog 26:121–130.
- 208. Khan S, McWhorter AR, Andrews DM, Underwood GJ, Moore RJ, Van TTH, Gast RK, Chousalkar KK. 2024. A live attenuated *Salmonella* Typhimurium vaccine dose and diluent have minimal effects on the caecal microbiota of layer chickens. Front Vet Sci 11.
- 209. Curtiss 3rd R, Kelly SM, Hassan JO. 1993. Live oral avirulent *Salmonella* vaccines. Vet Microbiol 37:397–405.

- 210. Clark-Curtiss JE, Curtiss 3rd R. 2018. *Salmonella* vaccines: conduits for protective antigens. J Immunol 200:39–48.
- 211. Curtiss 3rd R, Kelly SM. 1987. Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic.
 Infect Immun 55:3035–3043.
- 212. Barbour EK, Frerichs WM, Nabbut NH, Poss PE, Brinton MK. 1993. Evaluation of bacterins containing three predominant phage types of *Salmonella* Enteritidis for prevention of infection in egg-laying chickens. Am J Vet Res 54:1306–1309.
- 213. Gast RK, Stone HD, Holt PS, Beard CW. 1992. Evaluation of the efficacy of an oilemulsion bacterin for protecting chickens against *Salmonella* Enteritidis. Avian Dis 36:992.
- 214. Nakamura M, Nagamine N, Takahashi T, Suzuki S, Sato S. 1994. Evaluation of the efficacy of a bacterin against *Salmonella* Enteritidis infection and the effect of stress after vaccination. Avian Dis 38:717.
- 215. Putnam M, Mills J, Markis M, El-Attrache J. 2023. Advancement of autogenous vaccines in the poultry industry. Avian Dis 67.
- 216. Bearson SMD, Monson MS, Bearson BL, Whelan SJ, Byrd JA, Burciaga S. 2024.
 Commercial vaccine provides cross-protection by reducing colonization of
 Salmonella enterica serovars Infantis and Hadar in turkeys. Vaccine 42:727–731.
- 217. Cookson K, Hofacre CL, Da Costa M, Schaeffer JL, Jones M, Baxter JA, Berghaus R, Cosby D, Berrang M, McMillan EA. 2024. Live *Salmonella* Typhimurium vaccination of broilers results in lower *Salmonella* prevalence on carcasses at commercial processing. J Appl Poult Res 33.

- 218. Jones MK, M, Hofacre CL, Baxter VA, Cookson K, Schaeffer J, Barker A, Dickson J, Berghaus RD. 2021. Evaluation of a modified live *Salmonella* Typhimurium vaccination efficacy against *Salmonella enterica* serovar Infantis in broiler chickens at processing age. J Appl Poult Res 30:100156.
- 2024. Constituent update: FSIS intends to exclude vaccine strains from the FSIS Salmonella performance categorization. https://www.fsis.usda.gov/news-events/news-press-releases/constituent-update-march-1-2024. Retrieved 19 December 2024.
- 220. Johnson TJ, Flores-Figueroa C, Munoz-Aguayo J, Pinho G, Miller E. 2024. Persistence of vaccine origin *Salmonella* Typhimurium through the poultry production continuum, and development of a rapid typing scheme for their differentiation from wild type field isolates. Poult Sci 103.
- 221. Nisbet DJ, Tellez GI, Lowry VK, Anderson RC, Garcia G, Nava G, Kogut MH, Corrier DE, Stanker LH. 1998. Effect of a commercial competitive exclusion culture (PreemptTM) on mortality and horizontal transmission of *Salmonella* Gallinarum in broiler chickens. Avian Dis 42:651–656.
- 222. Maurer JJ, Cheng Y, Pedroso A, Thompson KK, Akter S, Kwan T, Morota G, Kinstler S, Porwollik S, McClelland M, Escalante-Semerena JC, Lee MD. 2024.
 Peeling back the many layers of competitive exclusion. Front Microbiol 15.
- 223. Lee MD, Pedroso AA, Maurer JJ. 2023. Bacterial composition of a competitive exclusion product and its correlation with product efficacy at reducing *Salmonella* in poultry. Front Physiol 13.

- 224. Blankenship LC, Bailey JS, Cox NA, Stern NJ, Brewer R, Williams O. 1993. Twostep mucosal competitive exclusion flora treatment to diminish salmonellae in commercial broiler chickens. Poult Sci 72:1667–1672.
- 225. Lee MD, Pedroso AA, Lumpkins B, Cho Y, Maurer JJ. 2023. Pioneer colonizers: bacteria that alter the chicken intestinal morphology and development of the microbiota. Front Physiol 14.
- 226. Johnson TJ, Youmans BP, Noll S, Cardona C, Evans NP, Peter Karnezos T, Ngunjiri JM, Abundo MC, Lee CW. 2018. A consistent and predictable commercial broiler chicken bacterial microbiota in antibiotic-free production displays strong correlations with performance. Appl Environ Microbiol 84.
- 227. Pineda M, Kogut M, Genovese K, Farnell YZ, Zhao D, Wang X, Milby A, Farnell M. 2021. Competitive exclusion of intra-genus *Salmonella* in neonatal broilers.
 Microorganisms 9:1–17.
- 228. Soerjadi AS, Stehman SM, Snoeyenbos GH, Weinack OM, Smyser CF. 1981. Some measurements of protection against paratyphoid *Salmonella* and *Escherichia coli* by competitive exclusion in chickens. Avian Dis 25:706–712.
- 229. Pedroso AA, Lee MD, Maurer JJ. 2021. Strength lies in diversity: how community diversity limits *Salmonella* abundance in the chicken intestine. Front Microbiol 12.
- 230. Trudeau S, Thibodeau A, Côté JC, Gaucher M Lou, Fravalo P. 2020. Contribution of the broiler breeders' fecal microbiota to the establishment of the eggshell microbiota. Front Microbiol 11:1–14.
- 231. Corrier DE, Nisbet DJ, Scanlan CM, Hollister AG, Caldwell DJ, Thomas LA, Hargis BM, Tomkins T, Deloach JR. 1995. Treatment of commercial broiler chickens

- with a characterized culture of cecal bacteria to reduce salmonellae colonization. Poult Sci 74:1093–1101.
- 232. Bucher MG, Zwirzitz B, Oladeinde A, Cook K, Plymel C, Zock G, Lakin S, Aggrey SE, Ritz C, Looft T, Lipp E, Agga GE, Abdo Z, Sistani KR. 2020. Reused poultry litter microbiome with competitive exclusion potential against *Salmonella* Heidelberg. J Environ Qual 49:869–881.
- 233. Williams ZT, Macklin KS. 2013. Stratification of bacterial concentrations, from upper to lower, in broiler litter. J Appl Poult Res 22:492–498.
- 234. Wilkinson KG, Tee E, Tomkins RB, Hepworth G, Premier R. 2011. Effect of heating and aging of poultry litter on the persistence of enteric bacteria. Poult Sci 90:10–18.
- 235. Oladeinde A, Abdo Z, Zwirzitz B, Woyda R, Lakin SM, Press MO, Cox NA, Thomas IV JC, Looft T, Rothrock MJ, Zock G, Lawrence JP, Cudnik D, Ritz C, Aggrey SE, Liachko I, Grove JR, Wiersma C. 2022. Litter commensal bacteria can limit the horizontal gene transfer of antimicrobial resistance to *Salmonella* in chickens. Appl Environ Microbiol 88.
- 236. Vaz CSL, Voss-Rech D, De Avila VS, Coldebella A, Silva VS. 2017. Interventions to reduce the bacterial load in recycled broiler litter. Poult Sci 96:2587–2594.
- 237. Line JE. 2002. *Campylobacter* and *Salmonella* populations associated with chickens raised on acidified litter. Poult Sci 81:1473–1477.
- 238. Clavijo V, Morales T, Vives-Flores MJ, Reyes Muñoz A. 2022. The gut microbiota of chickens in a commercial farm treated with a *Salmonella* phage cocktail. Sci Rep 12.

- 239. Van Immerseel F, Cauwerts K, Devriese LA, Haesebrouck F, Ducatelle R. 2002. Feed additives to control *Salmonella* in poultry. Worlds Poult Sci J 58:501–513
- 240. Onrust L, Baeyen S, Haesebrouck F, Ducatelle R, Van Immerseel F. 2020. Effect of in feed administration of different butyrate formulations on *Salmonella* Enteritidis colonization and cecal microbiota in broilers. Vet Res, 20200419th ed. 51:56.
- 241. Berchieri A, Barrow PA. 1996. Reduction in incidence of experimental fowl typhoid by incorporation of a commercial formic acid preparation (Bio-AddTM) into poultry feed. Poult Sci 75:339–341.
- 242. Korzeniowski P, Śliwka P, Kuczkowski M, Mišić D, Milcarz A, Kuźmińska-Bajor M. 2022. Bacteriophage cocktail can effectively control *Salmonella* biofilm in poultry housing. Front Microbiol 13.
- 243. Macklin KS, Hess JB, Bilgili SF. 2008. In-house windrow composting and its effects on foodborne pathogens. Journal of Applied Poultry Research 17:121–127.
- 244. United States Department of Agriculture Animal and Plant Health Inspection Service. Defend the flock. https://www.aphis.usda.gov/livestock-poultry-disease/avian/defend-the-flock. Retrieved 2 April 2024.
- 245. Berghaus RD, Mathis DL, Bramwell RK, Macklin KS, Wilson JL, Wineland MJ, Maurer JJ, Lee MD. 2012. Multilevel analysis of environmental *Salmonella* prevalences and management practices on 49 broiler breeder farms in four southeastern states, USA. Zoonoses Public Health 59:365–374.
- 246. Obe T, Boltz T, Kogut M, Ricke SC, Brooks LA, Macklin K, Peterson A. 2023.
 Controlling *Salmonella*: strategies for feed, the farm, and the processing plant. Poult Sci 102.

- 247. Van Immerseel F, De Zutter L, Houf K, Pasmans F, Haesebrouck F, Ducatelle R.
 2009. Strategies to control *Salmonella* in the broiler production chain. Worlds Poult Sci J 65:367–392.
- 248. European Poultrymeat Industry Guide. 2012. Guide of good hygiene practice for the prevention and control of microbiological infections focused on *Salmonella* control of chickens reared for meat at slaughterhouses. Official Journal of the European Union.
- 249. Shaji S, Selvaraj RK, Shanmugasundaram R. 2023. *Salmonella* infection in poultry: a review on the pathogen and control strategies. Microorganisms 11:2814.
- 250. Iannetti L, Neri D, Santarelli GA, Cotturone G, Podaliri Vulpiani M, Salini R, Antoci S, Di Serafino G, Di Giannatale E, Pomilio F, Messori S. 2020. Animal welfare and microbiological safety of poultry meat: impact of different at-farm animal welfare levels on at-slaughterhouse *Campylobacter* and *Salmonella* contamination. Food Control 109.
- 251. Goodwin MA, Waltman WD. 1996. Transmission of *Eimeria*, viruses, and bacteria to chicks: darkling beetles (*Alphitobius diaperinus*) as vectors of pathogens. J Appl Poult Res 5:51–55.
- 252. Davies RH, Wray C. 1995. Mice as carriers of *Salmonella* Enteritidis on persistently infected poultry units. Vet Rec 137:337–341.
- 253. Bertelloni F, Bresciani F, Cagnoli G, Scotti B, Lazzerini L, Marcucci M, Colombani G, Bilei S, Bossù T, De Marchis ML, Ebani VV. 2023. House flies (*Musca domestica*) from swine and poultry farms carrying antimicrobial resistant Enterobacteriaceae and *Salmonella*. Vet Sci 10:118.

- 254. Donoso A, Paredes N, Retamal P. 2020. Detection of antimicrobial resistant Salmonella enterica strains in larval and adult forms of lesser mealworm (Alphitobius diaperinus) from industrial poultry farms. Front Vet Sci 7.
- 255. Guard-Petter J, Henzler DJ, Rahman MM, Carlson RW. 1997. On-farm monitoring of mouse-invasive *Salmonella enterica* serovar Enteritidis and a model for its association with the production of contaminated eggs. Appl Environ Microbiol 63:1588–1593.
- 256. Guard J, Cao G, Luo Y, Baugher JD, Davison S, Yao K, Hoffmann M, Zhang G, Likens N, Bell RL, Zheng J, Brown E, Allard M. 2020. Genome sequence analysis of 91 *Salmonella* Enteritidis isolates from mice caught on poultry farms in the mid 1990s. Genomics 112:528–544.
- 257. Brown CM, Parker M. 1957. *Salmonella* infections in rodents in Manchester with special reference to *Salmonella* Enteritidis var. Danysz. The Lancet 270:1277–1280.
- 258. Healing TD. 1991. *Salmonella* in rodents: a risk to man? CDR (Lond Engl Rev) 1:R114-6.
- 259. Friedman CindyR, Malcolm G, Rigau-Pérez JoséG, Arámbulo P, Tauxe RobertV.
 1996. Public health risk from *Salmonella*-based rodenticides. The Lancet 347:1705–1706.
- 260. Arsenault J, Letellier A, Quessy S, Boulianne M. 2007. Prevalence and risk factors for *Salmonella* and *Campylobacter* spp. carcass contamination in broiler chickens slaughtered in Quebec, Canada. J Food Prot 70:1820–1828.
- 261. Maijala R, Johansson T, Hirn J. 1992. Growth of *Salmonella* and competing flora in five commercial Rappaport-Vassiliadis (RV)-media. Int J Food Microbiol 17:1–8.

- 262. Knox R. 1945. The effect of tetrathionate on bacterial growth. Br J Exp Pathol 26:146–150.
- 263. Vassiliadis P. 1983. The Rappaport-Vassiliadis (RV) enrichment medium for the isolation of salmonellas: an overview. J Appl Bacteriol 54:69–76.
- 264. Konforti N, Navon B, Rappaport F. 1956. A new enrichment medium for certain salmonellae. J Clin Pathol 9:261–266.
- 265. D'aoust J-Y. 1981. Update on preenrichment and selective enrichment conditions for detection of *Salmonella* in foods. J Food Prot 44:369–375.
- 266. Hensel M, Hinsley AP, Nikolaus T, Sawers G, Berks BC. 1999. The genetic basis of tetrathionate respiration in *Salmonella* Typhimurium. Mol Microbiol 32:275–287.
- 267. Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, Russell JM, Bevins CL, Adams LG, Tsolis RM, Roth JR, Bäumler AJ. 2010. Gut inflammation provides a respiratory electron acceptor for *Salmonella*. Nature 467:426–429.
- 268. Hammack TS, Amaguaña RM, June GA, Sherrod PS, Andrews WH. 1999. Relative effectiveness of selenite cystine broth, tetrathionate broth, and Rappaport Vassiliadis medium for the recovery of *Salmonella* spp. from foods with a low microbial load. J Food Prot 62:16–21.
- 269. Kalapothaki V, Vassiliadis P, Mavrommati Ch, Trichopoulos D. 1983. Comparison of Rappaport-Vassiliadis enrichment medium and tetrathionate brilliant green broth for isolation of salmonellae from meat products. J Food Prot 46:618–621.

- 270. Miller RG, Tate CR, Mallinson ET, Scherrer JA. 1991. Xylose-lysine-tergitol 4: an improved selective agar medium for the isolation of *Salmonella*. Poult Sci 70:2429–2432.
- 271. Rank EL. 2012. Chromogenic agar media in the clinical, food, and environmental testing arenas, Part I. Clin Microbiol Newsl 34:43–47.
- 272. Mallinson ET, Miller RG, de Rezende CE, Ferris KE, de Graft-Hanson J, Joseph SW. 2000. Improved plating media for the detection of *Salmonella* species with typical and atypical hydrogen sulfide production. J Vet Diagn Invest 12:83–87.
- 273. Worcman-Barninka D, Destro MT, Fernandes SA, Landgraf M. 2001. Evaluation of motility enrichment on modified semi-solid Rappaport–Vassiliadis medium (MSRV) for the detection of *Salmonella* in foods. Int J Food Microbiol 64:387–393.
- 274. Aspinall ST, Hindle MA, Hutchinson DN. 1992. Improved isolation of salmonellae from faeces using a semisolid Rappaport-Vassiliadis medium. European Journal of Clinical Microbiology & Infectious Diseases 11:936–939.
- 275. Le Hello S, Brisabois A, Accou-Demartin M, Josse A, Marault M, Francart S, Da Silva NJ, Weill F-X. 2012. Foodborne outbreak and nonmotile *Salmonella enterica* variant, France. Emerg Infect Dis 18:132–134.
- 276. Myint MS, Johnson YJ, Tablante NL, Heckert RA. 2006. The effect of preenrichment protocol on the sensitivity and specificity of PCR for detection of naturally contaminated *Salmonella* in raw poultry compared to conventional culture. Food Microbiol 23:599–604.

- 277. Cox NA, Berrang ME, House SL, Medina D, Cook KL, Shariat NW. 2019.
 Population analyses reveal preenrichment method and selective enrichment media
 affect Salmonella serovars detected on broiler carcasses. J Food Prot 82:1688–1696.
- 278. Edel W, Kampelmacher EH. 1973. Comparative studies on the isolation of "sublethally injured" salmonellae in nine European laboratories. Bull World Health Organ 48:167–174.
- 279. Cox N, Bailey J, Thomson J. 1982. Effect of various media and incubation conditions on recovery of inoculated *Salmonella* from poultry feed. Poult Sci 61:1314–1321.
- 280. Juven BJ, Cox NA, Bailey JS, Thomson JE, Charles OW, Shutze JV. 1984.
 Recovery of *Salmonella* from artificially contaminated poultry feeds in non-selective and selective broth media. J Food Prot 47:299–302.
- 281. Gamble GR, Berrang ME, Buhr RJ, Hinton A, Bourassa D V., Ingram KD, Adams ES, Feldner PW, Johnston JJ. 2017. Neutralization of bactericidal activity related to antimicrobial carryover in broiler carcass rinse samples. J Food Prot 80:685–691.
- 282. United States Department of Agriculture Food Safety and Inspection Service.
 2023. Microbiology Laboratory Guidebook (MLG) 4.14: Isolation and identification of *Salmonella* from meat, poultry, pasteurized egg, siluriformes (fish) products and carcass and environmental sponges.
- 283. United States Department of Agriculture Food Safety and Inspection Service.

 2024. Microbiology Laboratory Guidebook (MLG) 4.15: Isolation and identification of *Salmonella* from meat, poultry, pasteurized egg, siluriformes (fish) products and carcass and environmental sponges.

- 284. United States Food and Drug Administration. Bacteriological Analytical Manual (BAM) Chapter 5 *Salmonella* May 2024 Edition.
- 285. Waltman WD, Horne AM, Pirkle C, Dickson TG. 1991. Use of delayed secondary enrichment for the isolation of *Salmonella* in poultry and poultry environments.

 Avian Dis 35:88–92.
- 286. Koutsoumanis KP, Kendall PA, Sofos JN. 2004. Modeling the boundaries of growth of *Salmonella* typhimurium in broth as a function of temperature, water activity, and pH. J Food Prot 67:53–59.
- 287. Waltman WD, Horne AM, Pirkle C. 1993. Influence of enrichment incubation time on the isolation of *Salmonella*. Avian Dis 37:884–7.
- 288. D'Aoust J-Y, Sewell AM, Jean A. 1992. Efficacy of prolonged (48 h) selective enrichment for the detection of foodborne *Salmonella*. Int J Food Microbiol 15:121–130.
- 289. Jameson JE. 1962. A discussion of the dynamics of *Salmonella* enrichment. Journal of Hygiene 60:193–207.
- 290. Beckers HJ, Heide JVD, Fenigsen-Narucka U, Peters R. 1987. Fate of salmonellas and competing flora in meat sample enrichments in buffered peptone water and in Muller-Kauffmann's tetrathionate medium. Journal of Applied Bacteriology 62:97–104.
- 291. Singer RS, Mayer AE, Hanson TE, Isaacson RE. 2009. Do microbial interactions and cultivation media decrease the accuracy of *Salmonella* surveillance systems and outbreak investigations? J Food Prot 72:707–713.

- 292. Pettengill JB, McAvoy E, White JR, Allard M, Brown E, Ottesen A. 2012. Using metagenomic analyses to estimate the consequences of enrichment bias for pathogen detection. BMC Res Notes 5:378.
- 293. Gorski L. 2012. Selective enrichment media bias the types of *Salmonella enterica* strains isolated from mixed strain cultures and complex enrichment broths. PLoS One 7:e34722.
- 294. Gorski L, Shariat NW, Richards AK, Siceloff AT, Aviles Noriega A, Harhay DM.2024. Growth assessment of *Salmonella enterica* multi-serovar populations in poultry rinsates with commonly used enrichment and plating media. Food Microbiol 119.
- 295. Gorski and L, Liang AS. 2010. Effect of enrichment medium on real-time detection of *Salmonella enterica* from lettuce and tomato enrichment cultures. J Food Prot 73:1047–1056.
- 296. Obe T, Berrang ME, Cox NA, House SL, Shariat NW. 2021. Comparison of selective enrichment and plating media for *Salmonella* isolation from broiler carcasses. J Food Saf 41:e12928.
- 297. Schrank IS, Mores MAZ, Costa JLA, Frazzon APG, Soncini R, Schrank A, Vainstein MH, Silva SC. 2001. Influence of enrichment media and application of a PCR based method to detect *Salmonella* in poultry industry products and clinical samples. Vet Microbiol 82:45–53.
- 298. Jarvis KG, White JR, Grim CJ, Ewing L, Ottesen AR, Beaubrun JJ-G, Pettengill JB, Brown E, Hanes DE. 2015. Cilantro microbiome before and after nonselective preenrichment for *Salmonella* using 16S rRNA and metagenomic sequencing. BMC Microbiol 15:160.

- 299. Larsen BR, Richardson KE, Obe T, Schaeffer C, Shariat NW. 2021. Mixed *Salmonella* cultures reveal competitive advantages between strains during preenrichment and selective enrichment. J Food Saf 41:e12934.
- 300. Rybolt ML, Wills RW, Bailey RH. 2005. Use of secondary enrichment for isolation of *Salmonella* from naturally contaminated environmental samples. Poult Sci 84:992–997.
- 301. D'aoust J-Y. 1984. Effective enrichment-plating conditions for detection of *Salmonella* in foods. J Food Prot 47:588–591.
- 302. Buhr RJ, Richardson LJ, Cason JA, Cox NA, Fairchild BD. 2007. Comparison of four sampling methods for the detection of *Salmonella* in broiler litter. Poult Sci 86:21–25.
- 303. Waltman WD, Mallinson ET. 1995. Isolation of *Salmonella* from poultry tissue and environmental samples: a nationwide survey. Avian Dis 39:45.
- 304. Cason J, Cox N, Buhr R, Bourassa D, Richardson L. 2011. Probability of identifying different *Salmonella* serotypes in poultry samples, p.75–76; abstr 262P. In International Poultry Scientific Forum. Southern Poultry Science Society, Mississippi State, MS.
- 305. Miller EA, Elnekave E, Flores-Figueroa C, Johnson A, Kearney A, Munoz-Aguayo J, Tagg KA, Tschetter L, Weber BP, Nadon CA, Boxrud D, Singer RS, Folster JP, Johnson TJ. 2020. Emergence of a novel *Salmonella enterica* serotype Reading clonal group is linked to its expansion in commercial turkey production, resulting in unanticipated human illness in North America. mSphere 5.

- 306. Rogers GB, Carroll MP, Bruce KD. 2009. Studying bacterial infections through culture-independent approaches. J Med Microbiol 58:1401–1418.
- 307. Wilson IG. 1997. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63:3741–51.
- 308. Bradford LM, Yao L, Anastasiadis C, Cooper AL, Blais B, Deckert A, Reid-Smith R, Lau C, Diarra MS, Carrillo C, Wong A. 2024. Limit of detection of *Salmonella* ser. Enteritidis using culture-based versus culture-independent diagnostic approaches. Microbiol Spectr 12.
- 309. Rossen L, Nørskov P, Holmstrøm K, Rasmussen OF. 1992. Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int J Food Microbiol 17:37–45.
- 310. Schrader C, Schielke A, Ellerbroek L, Johne R. 2012. PCR inhibitors occurrence, properties and removal. J Appl Microbiol 113:1014–1026.
- 311. Moore MM, Nucci MJ, Madson SM, Wagley GS, Keys CE, Brown EW, McQuiston JR, Fields PI. 2019. Evaluation of a bead-based *Salmonella* molecular serotyping method for *Salmonella* isolated from food and environmental samples. J Food Prot 82:1973–1987.
- 312. Sakudo A, Chou H, Nagatsu M. 2015. Antibody-integrated and functionalized graphite-encapsulated magnetic beads, produced using ammonia gas plasma technology, for capturing *Salmonella*. Bioorg Med Chem Lett 25:1012–1016.
- 313. Ogunremi D, Dupras AA, Naushad S, Gao R, Duceppe M-O, Omidi K, Márquez IG, Huang H, Goodridge L, Lévesque RC, Hasan NA, Dadlani M, Dixon B, Magierowski S, Masson L. 2020. A new whole genome culture-independent

- diagnostic test (WG-CIDT) for rapid detection of *Salmonella* in lettuce. Front Microbiol 11.
- 314. Wolffs PFG, Glencross K, Thibaudeau R, Griffiths MW. 2006. Direct quantitation and detection of salmonellae in biological samples without enrichment, using two-step filtration and real-time PCR. Appl Environ Microbiol 72:3896–3900.
- 315. Bennett AR, Davids FGC, Vlahodimou S, Banks JG, Betts RP. 1997. The use of bacteriophage-based systems for the separation and concentration of *Salmonella*. J Appl Microbiol 83:259–265.
- 316. Shaw SJ, Blais BW, Nundy DC. 1998. Performance of the Dynabeads anti-Salmonella system in the detection of Salmonella species in foods, animal feeds, and environmental samples. J Food Prot 61:1507–1510.
- 317. Moreira ÂN, Conceição FR, Conceição R de CS, Ramos RJ, Carvalhal JB, Dellagostin OA, Aleixo JAG. 2007. Detection of *Salmonella* Typhimurium in raw meats using in-house prepared monoclonal antibody coated magnetic beads and PCR assay of the fimA gene. J Immunoassay Immunochem 29:58–69.
- 318. Besser J, Singer R, Jervis RH, Boxrud D, Smith K, Daly ER. 2023. Laboratory criteria for exclusion and readmission of potentially infectious persons in sensitive settings in the age of culture-independent diagnostic tests: report of a multidisciplinary workgroup. J Food Prot 86:100173.
- 319. Centers for Disease Control and Prevention. FoodNet Fast. https://wwwn.cdc.gov/foodnetfast/. Retrieved 12 January 2025.

- 320. Imdad A, Retzer F, Thomas LS, McMillian M, Garman K, Rebeiro PF, Deppen SA, Dunn JR, Woron AM. 2018. Impact of culture-independent diagnostic testing on recovery of enteric bacterial infections. Clinical Infectious Diseases 66:1892–1898.
- 321. Zeng D, Chen Z, Jiang Y, Xue F, Li B. 2016. Advances and challenges in viability detection of foodborne pathogens. Front Microbiol 7.
- 322. Wolffs P, Norling B, Rådström P. 2005. Risk assessment of false-positive quantitative real-time PCR results in food, due to detection of DNA originating from dead cells. J Microbiol Methods 60:315–323.
- 323. Hyeon J-Y, Mann DA, Wang J, Kim WK, Deng X. 2019. Rapid detection of *Salmonella* in poultry environmental samples using real-time PCR coupled with immunomagnetic separation and whole genome amplification. Poult Sci 98:6973–6979.
- 324. Fakruddin Md, Mannan KS Bin, Andrews S. 2013. Viable but nonculturable bacteria: food safety and public health perspective. ISRN Microbiol 2013:1–6.
- 325. Li B, Chen J-Q. 2013. Development of a sensitive and specific qPCR assay in conjunction with propidium monoazide for enhanced detection of live *Salmonella* spp. in food. BMC Microbiol 13:273.
- 326. González-Escalona N, Hammack TS, Russell M, Jacobson AP, De Jesús AJ, Brown EW, Lampel KA. 2009. Detection of live *Salmonella* sp. cells in produce by a TaqMan-based quantitative reverse transcriptase real-time PCR targeting invA mRNA. Appl Environ Microbiol 75:3714–3720.

- 327. Cocolin L, Rajkovic A, Rantsiou K, Uyttendaele M. 2011. The challenge of merging food safety diagnostic needs with quantitative PCR platforms. Trends Food Sci Technol 22:S30–S38.
- 328. Malorny B, Bunge C, Helmuth R. 2007. A real-time PCR for the detection of *Salmonella* Enteritidis in poultry meat and consumption eggs. J Microbiol Methods 70:245–251.
- 329. Ellingson JLE, Anderson JL, Carlson SA, Sharma VK. 2004. Twelve hour real-time PCR technique for the sensitive and specific detection of *Salmonella* in raw and ready-to-eat meat products. Mol Cell Probes 18:51–57.
- 330. Hein I, Flekna G, Krassnig M, Wagner M. 2006. Real-time PCR for the detection of *Salmonella* spp. in food: an alternative approach to a conventional PCR system suggested by the FOOD-PCR project. J Microbiol Methods 66:538–547.
- 331. Nam H-M, Srinivasan V, Gillespie BE, Murinda SE, Oliver SP. 2005. Application of SYBR green real-time PCR assay for specific detection of *Salmonella* spp. in dairy farm environmental samples. Int J Food Microbiol 102:161–171.
- 332. Makino S, Kurazono H, Chongsanguam M, Hayashi H, Suzuki S, Cheun H, Shirahata T. 1999. Establishment of the PCR system specific to *Salmonella* spp. and its application for the inspection of food and fecal samples. Journal of Veterinary Medical Science 61:1245–1247.
- 333. Whyte P, Mc Gill K, Collins JD, Gormley E. 2002. The prevalence and PCR detection of *Salmonella* contamination in raw poultry. Vet Microbiol 89:53–60.

- 334. Malorny B, Paccassoni E, Fach P, Bunge C, Martin A, Helmuth R. 2004.
 Diagnostic real-time PCR for detection of *Salmonella* in food. Appl Environ Microbiol 70:7046–7052.
- 335. Garrido-Maestu A, Azinheiro S, Roumani F, Carvalho J, Prado M. 2020.
 Application of short pre-enrichment, and double chemistry real-time PCR, combining fluorescent probes and an intercalating dye, for same-day detection and confirmation of *Salmonella* spp. and *Escherichia coli* O157 in ground beef and chicken samples.
 Front Microbiol 11.
- 336. Oliveira S, Santos L, Schuch D, Silva A, Salle C, Canal C. 2002. Detection and identification of salmonellas from poultry-related samples by PCR. Vet Microbiol 25–35.
- 337. Chapela M-J, Garrido-Maestu A, Cabado AG. 2015. Detection of foodborne pathogens by qPCR: a practical approach for food industry applications. Cogent Food Agric 1:1013771.
- 338. Ferretti R, Mannazzu I, Cocolin L, Comi G, Clementi F. 2001. Twelve-hour PCR-based method for detection of *Salmonella* spp. in food. Appl Environ Microbiol 67:977–978.
- 339. Cohen HJ, Mechanda SM, Lin W. 1996. PCR amplification of the fimA gene sequence of *Salmonella* Typhimurium, a specific method for detection of *Salmonella* spp. Appl Environ Microbiol 62:4303–4308.
- 340. Chua T, Bhagwat AA. 2009. A rapid and simple dna extraction procedure to detect *Salmonella* spp. and *Listeria monocytogenes* from fresh produce using real-time PCR. Food Anal Methods 2:96–101.

- 341. Mafu AA, Pitre M, Sirois S. 2009. Real-time PCR as a tool for detection of pathogenic bacteria on contaminated food contact surfaces by using a single enrichment medium. J Food Prot 72:1310–1314.
- 342. Ríos-Castillo AG, Ripolles-Avila C, Rodríguez-Jerez JJ. 2022. Detection by realtime PCR and conventional culture of *Salmonella* Typhimurium and *Listeria* monocytogenes adhered to stainless steel surfaces under dry conditions. Food Control 137:108971.
- 343. Lungu B, Waltman WD, Hofacre CL. 2012. Comparison of a real-time PCR method with a culture method for the detection of *Salmonella enterica* serotype Enteritidis in naturally contaminated environmental samples from integrated poultry houses. J Food Prot 75:743–747.
- 344. Aabo S, Andersen JK, Olsen JE. 1995. Research note: Detection of *Salmonella* in minced meat by the polymerase chain reaction method. Lett Appl Microbiol 21:180–182.
- 345. Kimura B, Kawasaki S, Fujii T, Kusunoki J, Itoh T, Flood SJA. 1999. Evaluation of TaqMan PCR assay for detecting *Salmonella* in raw meat and shrimp. J Food Prot 62:329–335.
- 346. Chen J, Zhang L, Paoli GC, Shi C, Tu S-I, Shi X. 2010. A real-time PCR method for the detection of *Salmonella enterica* from food using a target sequence identified by comparative genomic analysis. Int J Food Microbiol 137:168–174.
- 347. Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D. 2011. Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol 28:848–861.

- 348. Klerks MM, Zijlstra C, van Bruggen AHC. 2004. Comparison of real-time PCR methods for detection of *Salmonella enterica* and *Escherichia coli* O157:H7, and introduction of a general internal amplification control. J Microbiol Methods 59:337–349.
- 349. Hoorfar J, Cook N, Malorny B, Wagner M, De Medici D, Abdulmawjood A, Fach P. 2004. Diagnostic PCR: making internal amplification control mandatory. J Appl Microbiol 96:221–222.
- 350. Sullivan G, Guo X, Tokman JI, Roof S, Trmcic A, Baker RC, Tang S, Markwell P, Wiedmann M, Kovac J. 2020. Extended enrichment procedures can be used to define false-negative probabilities for cultural gold standard methods for *Salmonella* detection, facilitating comparisons between gold standard and alternative methods. J Food Prot 83:1030–1037.
- 351. Hu Q, Lyu D, Shi X, Jiang Y, Lin Y, Li Y, Qiu Y, He L, Zhang R, Li Q. 2014. A modified molecular beacons—based multiplex real-time PCR assay for simultaneous detection of eight foodborne pathogens in a single reaction and its application. Foodborne Pathog Dis 11:207–214.
- 352. Kim JS, Lee GG, Park JS, Jung YH, Kwak HS, Kim SB, Nam YS, Kwon S-T.

 2007. A novel multiplex PCR assay for rapid and simultaneous detection of five pathogenic bacteria: *Escherichia coli* O157:H7, *Salmonella*, *Staphylococcus aureus*, *Listeria monocytogenes*, and *Vibrio parahaemolyticus*. J Food Prot 70:1656–1662.
- 353. Wolffs PFG, Glencross K, Norling B, Griffiths MW. 2007. Simultaneous quantification of pathogenic *Campylobacter* and *Salmonella* in chicken rinse fluid by a flotation and real-time multiplex PCR procedure. Int J Food Microbiol 117:50–54.

- 354. Bai J, Trinetta V, Shi X, Noll LW, Magossi G, Zheng W, Porter EP, Cernicchiaro N, Renter DG, Nagaraja TG. 2018. A multiplex real-time PCR assay, based on invA and pagC genes, for the detection and quantification of *Salmonella enterica* from cattle lymph nodes. J Microbiol Methods 148:110–116.
- 355. Chen J, Tang J, Liu J, Cai Z, Bai X. 2012. Development and evaluation of a multiplex PCR for simultaneous detection of five foodborne pathogens. J Appl Microbiol 112:823–830.
- 356. Alves J, Marques VV, Pereira LFP, Hirooka EY, De Oliveira TCRM. 2012. Multiplex PCR for the detection of *Campylobacter* spp. and *Salmonella* spp. in chicken meat. J Food Saf 32:345–350.
- 357. Bhagwat AA. 2003. Simultaneous detection of *Escherichia coli* O157:H7, *Listeria monocytogenes* and *Salmonella* strains by real-time PCR. Int J Food Microbiol 84:217–224.
- 358. González-Escalona N, Brown EW, Zhang G. 2012. Development and evaluation of a multiplex real-time PCR (qPCR) assay targeting ttrRSBCA locus and invA gene for accurate detection of *Salmonella* spp. in fresh produce and eggs. Food Research International 48:202–208.
- 359. Rockett RJ, Arnott A, Wang Q, Howard P, Sintchenko V. 2020. Genomic surveillance enables suitability assessment of *Salmonella* gene targets used for culture-independent diagnostic testing. J Clin Microbiol 58.
- 360. Rahn K, De Grandis SA, Clarke RC, Mcewen SA, Galin JE, Ginocchio C, CurtissR, Gyles CL. 1992. Amplification of an invA gene sequence of *Salmonella*

- Typhimurium by polymerase chain reaction as a specific method of detection of *Salmonella*. Mol Cell Probes 6:271–279.
- 361. Pathmanathan SG, Cardona-Castro N, Sánchez-Jiménez MM, Correa-Ochoa MM, Puthucheary SD, Thong KL. 2003. Simple and rapid detection of *Salmonella* strains by direct PCR amplification of the hilA gene. J Med Microbiol 52:773–776.
- 362. Margot H, Stephan R, Guarino S, Jagadeesan B, Chilton D, O'Mahony E, IversenC. 2013. Inclusivity, exclusivity and limit of detection of commercially available real-time PCR assays for the detection of *Salmonella*. Int J Food Microbiol 165:221–226.
- 363. Burns MJ, Nixon GJ, Foy CA, Harris N. 2005. Standardisation of data from realtime quantitative PCR methods – evaluation of outliers and comparison of calibration curves. BMC Biotechnol 5:31.
- 364. Applegate SF, Englishbey AK, Stephens TP, Sanchez-Plata MX. 2023.

 Development and verification of a poultry management tool to quantify *Salmonella* from live to final product utilizing RT-PCR. Foods 12.
- Onyeaka HN, Nwabor OF. 2022. Enumeration of foodborne microorganisms, p.
 In Food Preservation and Safety of Natural Products.
- 366. Schmidt JW, Carlson A, Bosilevac JM, Harhay D, Arthur TM, Brown T, Wheeler TL, Vipham JL. 2024. Evaluation of methods for identifying poultry wing rinses with *Salmonella* concentrations greater than or equal to 10 CFU/mL. J Food Prot 87:100362.
- 367. Pérez LM, Fittipaldi M, Adrados B, Morató J, Codony F. 2013. Error estimation in environmental DNA targets quantification due to PCR efficiencies differences between real samples and standards. Folia Microbiol (Praha) 58:657–662.

- 368. Siala M, Barbana A, Smaoui S, Hachicha S, Marouane C, Kammoun S, Gdoura R, Messadi-Akrout F. 2017. Screening and detecting *Salmonella* in different food matrices in southern Tunisia using a combined enrichment/real-time PCR method: correlation with conventional culture method. Front Microbiol 8.
- 369. Kim SA, Park SH, Lee SI, Ricke SC. 2017. Development of a rapid method to quantify *Salmonella* Typhimurium using a combination of MPN with qPCR and a shortened time incubation. Food Microbiol 65:7–18.
- 370. Harhay DM, Weinroth MD, Bono JL, Harhay GP, Bosilevac JM. 2021. Rapid estimation of *Salmonella enterica* contamination level in ground beef application of the time-to-positivity method using a combination of molecular detection and direct plating. Food Microbiol 93.
- 371. Bell RL, Jarvis KG, Ottesen AR, McFarland MA, Brown EW. 2016. Recent and emerging innovations in *Salmonella* detection: a food and environmental perspective. Microb Biotechnol 9:279–292.
- 372. Centers for Disease Control and Prevention. Serotypes and the importance of serotyping *Salmonella*. https://www.cdc.gov/salmonella/reportspubs/salmonella-atlas/serotyping-importance.html#:~:text=For%20instance%2C%20Salmonella%20bacteria%20look,is%20part%20of%20the%20flagella. Retrieved 12 January 2025.
- 373. Association of Public Health Laboratories. 2014. Salmonella Serotyping in US Public Health Laboratories.
 https://www.aphl.org/aboutAPHL/publications/Documents/FS_SalmonellaSustainabil

ityWhitePaper Nov2014.pdf. Retrieved 12 January 2025.

- 374. Kim S, Frye JG, Hu J, Fedorka-Cray PJ, Gautom R, Boyle DS. 2006. Multiplex PCR-based method for identification of common clinical serotypes of *Salmonella enterica* subsp. *enterica*. J Clin Microbiol 44:3608–3615.
- 375. Fitzgerald C, Sherwood R, Gheesling LL, Brenner FW, Fields PI. 2003. Molecular analysis of the rfb O antigen gene cluster of *Salmonella enterica* serogroup o:6,14 and development of a serogroup-specific PCR assay. Appl Environ Microbiol 69:6099–6105.
- 376. Herrera-León S, Ramiro R, Arroyo M, Díez R, Usera MA, Echeita MA. 2007. Blind comparison of traditional serotyping with three multiplex PCRs for the identification of *Salmonella* serotypes. Res Microbiol 158:122–127.
- 377. Guard J, Jones DR, Gast RK, Garcia JS, Rothrock MJ. 2023. Serotype screening of *Salmonella enterica* subspecies I by intergenic sequence ribotyping (ISR): critical updates. Microorganisms 11.
- 378. Bugarel M, Tudor A, Loneragan GH, Nightingale KK. 2017. Molecular detection assay of five *Salmonella* serotypes of public interest: Typhimurium, Enteritidis, Newport, Heidelberg, and Hadar. J Microbiol Methods 134:14–20.
- 379. Achtman M, Wain J, Weill F-X, Nair S, Zhou Z, Sangal V, Krauland MG, Hale JL, Harbottle H, Uesbeck A, Dougan G, Harrison LH, Brisse S. 2012. Multilocus sequence typing as a replacement for serotyping in *Salmonella enterica*. PLoS Pathog 8:e1002776.
- 380. Leeper MM, Tolar BM, Griswold T, Vidyaprakash E, Hise KB, Williams GM, Im SB, Chen JC, Pouseele H, Carleton HA. 2023. Evaluation of whole and core genome

- multilocus sequence typing allele schemes for *Salmonella enterica* outbreak detection in a national surveillance network, PulseNet USA. Front Microbiol 14:1254777.
- 381. Vohra P, Bugarel M, Turner F, Loneragan GH, Hope JC, Hopkins J, Stevens MP, Vohra CP, Harold Drake EL. 2017. Quantifying the survival of multiple *Salmonella enterica* serovars in vivo via massively parallel whole-genome sequencing to predict zoonotic risk. Appl Environ Microbiol 84:e02262-17.
- 382. Ibrahim GM, Morin PM. 2018. *Salmonella* serotyping using whole genome sequencing. Front Microbiol 9.
- 383. Elnekave E, Hong SL, Lim S, Johnson TJ, Perez A, Alvarez J. 2020. Comparing serotyping with whole-genome sequencing for subtyping of non-typhoidal *Salmonella enterica*: a large-scale analysis of 37 serotypes with a public health impact in the USA. Microb Genom 6:1–13.
- 384. Rose E, Carleton H, Pettengill J, Tolar B, Lindsey R, Batz M, Bazaco M, Chen J, Click E, Cote A, Cui Z, Lauer A, Simmons M, Tameru B, Tillman GE, Bruce B. 2022. Source attribution of *Salmonella* using whole genome sequencing and random forest. International Symposium Salmonella and Salmonellosis. Saint Malo, France.
- 385. Ashton PM, Nair S, Peters TM, Bale JA, Powell DG, Painset A, Tewolde R, Schaefer U, Jenkins C, Dallman TJ, De Pinna EM, Grant KA. 2016. Identification of *Salmonella* for public health surveillance using whole genome sequencing. PeerJ 2016:1–18.
- 386. Medina-Santana JL, Ortega-Paredes D, de Janon S, Burnett E, Ishida M, Sauders B, Stevens M, Vinueza-Burgos C. 2022. Investigating the dynamics of *Salmonella*

- contamination in integrated poultry companies using a whole genome sequencing approach. Poult Sci 101.
- 387. Inns T, Ashton PM, Herrera-Leon S, Lighthill J, Foulkes S, Jombart T, Rehman Y, Fox A, Dallman T, De Pinna E, Browning L, Coia JE, Edeghere O, Vivancos R. 2017. Prospective use of whole genome sequencing (WGS) detected a multi-country outbreak of *Salmonella* Enteritidis. Epidemiol Infect 145:289–298.
- 388. Stevens EL, Carleton HA, Beal J, Tillman GE, Lindsey RL, Lauer AC, Pightling A, Jarvis KG, Ottesen A, Ramachandran P, Hintz L, Katz LS, Folster JP, Whichard JM, Trees E, Timme RE, Mcdermott P, Wolpert B, Bazaco M, Zhao S, Lindley S, Bruce BB, Griffin PM, Brown E, Allard M, Tallent S, Irvin K, Hoffmann M, Wise M, Tauxe R, Gerner-Smidt P, Simmons M, Kissler B, Defibaugh-Chavez S, Klimke W, Agarwala R, Lindsay J, Cook K, Austerman SR, Goldman D, Mcgarry S, Hale KR, Dessai U, Musser SM, Braden C. 2022. Use of whole genome sequencing by the federal Interagency Collaboration for Genomics for Food and Feed Safety in the United States. J Food Prot 85:755–772.
- 389. Deng X, Shariat N, Driebe EM, Roe CC, Tolar B, Trees E, Keim P, Zhang W, Dudley EG, Fields PI, Engelthaler DM. 2015. Comparative analysis of subtyping methods against a whole-genome-sequencing standard for *Salmonella enterica* serotype Enteritidis. J Clin Microbiol 53:212–218.
- 390. Zhang S, Bakker HC Den, Li S, Chen J, Dinsmore BA, Lane C, Lauer AC, Fields PI, Deng X. 2019. SeqSero2: rapid and improved *Salmonella* serotype determination using whole-genome sequencing data. Appl Environ Microbiol 85:1–13.

- 391. Brown E, Dessai U, Mcgarry S, Gerner-Smidt P. 2019. Use of whole-genome sequencing for food safety and public health in the United States. Foodborne Pathog Dis 16:441–450.
- 392. Orlek A, Stoesser N, Anjum MF, Doumith M, Ellington MJ, Peto T, Crook D, Woodford N, Sarah Walker A, Phan H, Sheppard AE. 2017. Plasmid classification in an era of whole-genome sequencing: application in studies of antibiotic resistance epidemiology. Front Microbiol 8:1–10.
- 393. Taylor AJ, Lappi V, Wolfgang WJ, Lapierre P, Palumbo MJ, Medus C, Boxrud D. 2015. Characterization of foodborne outbreaks of *Salmonella enterica* serovar Enteritidis with whole-genome sequencing single nucleotide polymorphism-based analysis for surveillance and outbreak detection. J Clin Microbiol 53:3334–3340.
- 394. Ricke SC, Kim SA, Shi Z, Park SH. 2018. Molecular-based identification and detection of *Salmonella* in food production systems: current perspectives. J Appl Microbiol 125:313–327.
- 395. den Bakker HC, Moreno Switt AI, Cummings CA, Hoelzer K, Degoricija L, Rodriguez-Rivera LD, Wright EM, Fang R, Davis M, Root T, Schoonmaker-Bopp D, Musser KA, Villamil E, Waechter H, Kornstein L, Furtado MR, Wiedmann M. 2011. A whole-genome single nucleotide polymorphism-based approach to trace and identify outbreaks linked to a common *Salmonella enterica* subsp. *enterica* serovar Montevideo pulsed-field gel electrophoresis type. Appl Environ Microbiol 77:8648–8655.
- 396. Zhang S, Li S, Gu W, Den Bakker H, Boxrud D, Taylor A, Roe C, Driebe E, Engelthaler DM, Allard M, Brown E, McDermott P, Zhao S, Bruce BB, Trees E,

- Fields PI, Deng X. 2019. Zoonotic source attribution of *Salmonella enterica* serotype Typhimurium using genomic surveillance data, United States. Emerg Infect Dis 25:82–91.
- 397. Foley SL, White DG, McDermott PF, Walker RD, Rhodes B, Fedorka-Cray PJ, Simjee S, Zhao S. 2006. Comparison of subtyping methods for differentiating *Salmonella enterica* serovar Typhimurium isolates obtained from food animal sources. J Clin Microbiol 44:3569–3577.
- 398. Yin X, Fu Y, Tate H, Pinto C, Dudley EG, M'ikanatha NM. 2022. Genomic analysis of *Salmonella* Typhimurium from humans and food sources accurately predicts phenotypic multi-drug resistance. Food Microbiol 103:103957.
- 399. Billington C, Kingsbury JM, Rivas L. 2022. Metagenomics approaches for improving food safety: a review. J Food Prot 85:448–464.
- 400. Ko KKK, Chng KR, Nagarajan N. 2022. Metagenomics-enabled microbial surveillance. Nat Microbiol 7:486–496.
- 401. Weinroth MD, Noyes NR, Morley PM, Belk KE. 2019. Metagenomics of meat and poultry, p. 939–962. In Food Microbiology: Fundamentals and Frontiers, 5th edition.
- 402. Ottesen A, Kocurek B, Ramachandran P, Reed E, Commichaux S, Engelbach G, Mammel M, Saint Fleurant S, Zhao S, Kabera C, Merrill A, Bonin N, Worley H, Noyes N, Boucher C, McDermott P, Strain E. 2022. Advancing antimicrobial resistance monitoring in surface waters with metagenomic and quasimetagenomic methods. PLOS Water 1:e0000067.
- 403. Noyes NR, Weinroth ME, Parker JK, Dean CJ, Lakin SM, Raymond RA, Rovira P, Doster E, Abdo Z, Martin JN, Jones KL, Ruiz J, Boucher CA, Belk KE, Morley PS.

- 2017. Enrichment allows identification of diverse, rare elements in metagenomic resistome-virulome sequencing. Microbiome 5:142.
- 404. Konganti K, Reed E, Mammel M, Kayikcioglu T, Binet R, Jarvis K, Ferreira CM, Bell RL, Zheng J, Windsor AM, Ottesen A, Grim CJ, Ramachandran P. 2023. bettercallsal: better calling of *Salmonella* serotypes from enrichment cultures using shotgun metagenomic profiling and its application in an outbreak setting. Front Microbiol 14.
- 405. Ottesen A, Ramachandran P, Chen Y, Brown E, Reed E, Strain E. 2020.

 Quasimetagenomic source tracking of *Listeria monocytogenes* from naturally contaminated ice cream. BMC Infect Dis 20:83.
- 406. McIntyre ABR, Ounit R, Afshinnekoo E, Prill RJ, Hénaff E, Alexander N, Minot SS, Danko D, Foox J, Ahsanuddin S, Tighe S, Hasan NA, Subramanian P, Moffat K, Levy S, Lonardi S, Greenfield N, Colwell RR, Rosen GL, Mason CE. 2017.

 Comprehensive benchmarking and ensemble approaches for metagenomic classifiers.

 Genome Biol 18:182.
- 407. Touchon M, Rocha EPC. 2010. The small, slow and specialized CRISPR and anti-CRISPR of *Escherichia* and *Salmonella*. PLoS One 5:14.
- 408. Shariat N, Timme RE, Pettengill JB, Barrangou R, Dudley EG. 2015.

 Characterization and evolution of *Salmonella* CRISPR-Cas systems. Microbiology 161:374–386.
- 409. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C. 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defense system. Microbiology 155:733–740.

- 410. Bhaya D, Davison M, Barrangou R. 2011. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297.
- 411. Medina-Aparicio L, Dávila S, Rebollar-Flores JE, Calva E, Hernández-Lucas I.2018. The CRISPR-Cas system in Enterobacteriaceae. Pathog Dis 76.
- 412. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ,
 Barrangou R, Brouns SJJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica
 FJM, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, Van Der Oost J,
 Backofen R, Koonin E V. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13:722–736.
- 413. Westra ER, Van Houte S, Gandon S, Whitaker R. 2019. The ecology and evolution of microbial CRISPR-Cas adaptive immune systems. Phil. Trans. R. Soc. B 374:20190101.
- 414. Mojica FJM, Rodriguez-Valera F. 2016. The discovery of CRISPR in archaea and bacteria. FEBS Journal 283:3162–3169.
- 415. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712.
- 416. Marraffini LA, Sontheimer EJ. 2010. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190.
- 417. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561.

- 418. Shariat N, Dudley EG. 2014. CRISPRs: molecular signatures used for pathogen subtyping. Appl Environ Microbiol 80.
- 419. Shariat N, Kirchner MK, Sandt CH, Trees E, Barrangou R, Dudley EG. 2013.
 Subtyping of *Salmonella enterica* serovar Newport outbreak isolates by CRISPR-MVLST and determination of the relationship between CRISPR-MVLST and PFGE results. J Clin Microbiol 51:2328–2336.
- 420. Bugarel M, Bakker H den, Grout J, Vignaud M-L, Loneragan GH, Fach P, Brisabois A. 2018. CRISPR-based assay for the molecular identification of highly prevalent *Salmonella* serotypes. Food Microbiol 71:8–16.
- 421. Shariat N, Sandt CH, Dimarzio MJ, Barrangou R, Dudley EG. 2013. CRISPR-MVLST subtyping of *Salmonella enterica* subsp. *enterica* serovars Typhimurium and Heidelberg and application in identifying outbreak isolates. BMC Microbiol 13.
- 422. Fabre L, Zhang J, Guigon G, Le Hello S, Guibert V, Accou-Demartin M, de Romans S, Lim C, Roux C, Passet V, Diancourt L, Guibourdenche M, Issenhuth-Jeanjean S, Achtman M, Brisse S, Sola C, Weill F-X. 2012. CRISPR typing and subtyping for improved laboratory surveillance of *Salmonella* infections. PLoS One 7:e36995.
- 423. Zhang K, Zhang Y, Wang Z, Li Y, Xu H, Jiao X, Li Q. 2021. Characterization of CRISPR array in *Salmonella enterica* from asymptomatic people and patients. Int J Food Microbiol 355.
- 424. Richards AK, Hopkins BA, Shariat NW. 2020. Conserved CRISPR arrays in *Salmonella enterica* serovar Infantis can serve as qPCR targets to detect Infantis in mixed serovar populations. Lett Appl Microbiol 71:138–145.

- 425. Shariat NW, Feye KM, Richards AK, Booher B, Flores Z, Rubinelli PM, Olson EG, Ricke SC. 2020. Incidence of *Salmonella* serovars isolated from commercial animal feed mills in the United States and serovar identification using CRISPR analysis. J Appl Microbiol 130:2141–2146.
- 426. Yousfi K, Usongo V, Berry C, Khan RH, Tremblay DM, Moineau S, Mulvey MR, Doualla-Bell F, Fournier E, Nadon C, Goodridge L, Bekal S. 2020. Source tracking based on core genome SNV and CRISPR typing of *Salmonella enterica* serovar Heidelberg isolates involved in foodborne outbreaks in Québec, 2012. Front Microbiol 11.
- 427. Liu F, Barrangou R, Gerner-Smidt P, Ribot EM, Knabel SJ, Dudley EG. 2011.

 Novel virulence gene and clustered regularly interspaced short palindromic repeat

 (CRISPR) multilocus sequence typing scheme for subtyping of the major serovars of
 Salmonella enterica subsp. enterica. Appl Environ Microbiol 77:1946–1956.
- 428. Fabre L, Le Hello S, Roux C, Issenhuth-Jeanjean S, Weill F-X. 2014. CRISPR is an optimal target for the design of specific PCR assays for *Salmonella enterica* serotypes Typhi and Paratyphi A. PLoS Negl Trop Dis 8:e2671.
- 429. Pettengill JB, Timme RE, Barrangou R, Toro M, Allard MW, Strain E, Musser SM, Brown EW. 2014. The evolutionary history and diagnostic utility of the CRISPR-Cas system within *Salmonella enterica* ssp. *enterica*. PeerJ 2014.
- 430. Fricke WF, Mammel MK, McDermott PF, Tartera C, White DG, LeClerc JE, Ravel J, Cebula TA. 2011. Comparative genomics of 28 Salmonella enterica isolates: evidence for CRISPR-mediated adaptive sublineage evolution. J Bacteriol 193:3556–3568.

- 431. Thompson CP, Doak AN, Amirani N, Schroeder EA, Wright J, Kariyawasam S, Lamendella R, Shariat NW. 2018. High-resolution identification of multiple *Salmonella* serovars in a single sample by using CRISPR-SeroSeq. Appl Environ Microbiol 84:1–13.
- 432. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S, Mojica FJM, Scott D, Shah SA, Siksnys V, Terns MP, Venclovas Č, White MF, Yakunin AF, Yan W, Zhang F, Garrett RA, Backofen R, van der Oost J, Barrangou R, Koonin E V. 2020. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18:67–83.
- 433. Fox GE, Wisotzkey JD, Jurtshuk P. 1992. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170.
- 434. R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.
- 435. Seqtk. https://github.com/lh3/seqtk. Retrieved 3 April 2024.
- 436. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410.
- 437. Timme RE, Rand H, Leon MS, Hoffmann M, Strain E, Allard M, Roberson D, Baugher JD. 2018. GenomeTrakr proficiency testing for foodborne pathogen surveillance: an exercise from 2015. Microb Genom 4.
- 438. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N,

- Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477.
- 439. Grissa I, Vergnaud G, Pourcel C. 2007. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:52–57.
- 440. Cason EE, Carlson AV, Siemens AL, Shariat NW. 2024. High-resolution serotyping reveals *Salmonella* surveillance challenges in the turkey industry. J Food Prot 87:100319.
- 441. Shariat NW, Larsen BR, Schaeffer C, Richardson KE. 2022. Animal feed contains diverse populations of *Salmonella*. J Appl Microbiol 132:4476–4485.
- 442. Siceloff AT, Ohta N, Norman KN, Loneragan GH, Norby B, Scott HM, Shariat NW. 2021. Antimicrobial resistance hidden within multiserovar *Salmonella* populations. Antimicrob Agents Chemother 65:1–6.
- 443. Smith JC, Varriano S, Roach K, Snipes Z, Dawson JL, Shealy J, Dunn LL, Snyder WE, Shariat NW. 2023. Prevalence and molecular characterization of *Salmonella* isolated from wild birds in fresh produce environments. Front Microbiol 14.
- 444. Deaven AM, Ferreira CM, Reed EA, See JRC, Lee NA, Almaraz E, Rios PC, Marogi JG, Lamendella R, Zheng J, Bell RL, Shariat NW. 2021. *Salmonella* genomics and population analyses reveal high inter- and intraserovar diversity in freshwater. Appl Environ Microbiol 87:1–14.
- 445. Yang Y, Tellez G, Latorre JD, Ray PM, Hernandez X, Hargis BM, Ricke SC, Kwon YM. 2018. *Salmonella* excludes *Salmonella* in poultry: confirming an old paradigm using conventional and barcode-tagging approaches. Front Vet Sci 5:1–7.

- 446. Rolon ML, Voloshchuk O, Bartlett KV, LaBorde LF, Kovac J. 2024. Multi-species biofilms of environmental microbiota isolated from fruit packing facilities promoted tolerance of *Listeria monocytogenes* to benzalkonium chloride. Biofilm 7:100177.
- 447. Tack DM, Marder EP, Griffin PM, Cieslak PR, Dunn J, Hurd S, Scallan E, Lathrop S, Muse A, Ryan P, Smith K, Tobin-D'Angelo M, Vugia DJ, Holt KG, Wolpert BJ, Tauxe R, Geissler AL. 2020. Preliminary incidence and trends of infections with pathogens transmitted commonly through food Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2016–2019. Morb Mortal Wkly Report, CDC 69: 509–514.
- 448. Pascopella L, Raupach B, Ghori N, Monack D, Falkow S, Small PL. 1995. Host restriction phenotypes of *Salmonella* Typhi and *Salmonella* Gallinarum. Infect Immun 63:4329–4335.
- 449. Shah DH, Paul NC, Sischo WC, Crespo R, Guard J. 2016. Population dynamics and antimicrobial resistance of the most prevalent poultry-associated *Salmonella* serotypes. Poult Sci 96:687–702.
- 450. Tack DM, Marder EP, Griffin PM, Cieslak PR, Dunn J, Hurd S, Scallan E, Lathrop S, Muse A, Ryan P, Smith K, Tobin-D'Angelo M, Vugia DJ, Holt KG, Wolpert BJ, Tauxe R, Geissler AL. 2019. Preliminary incidence and trends of infections with pathogens transmitted commonly through food Foodborne Diseases Active Surveillance Network, 10 U.S. sites, 2015–2018. Morb Mortal Wkly Report, CDC 68:369–373.

CHAPTER 2

REGIONAL *SALMONELLA* DIFFERENCES IN UNITED STATES BROILER

PRODUCTION FROM 2016 TO 2020 AND THE CONTRIBUTION OF

MULTISEROVAR POPULATIONS TO *SALMONELLA* SURVEILLANCE¹

¹Siceloff AT, Waltman D, Shariat NW. 2022. Applied and Environmental Microbiology, 88(8), e0020422.

Reprinted here with permission of the publisher.

Abstract

Poultry remains a considerable source of foodborne salmonellosis despite significant reduction of Salmonella incidence during processing. There are multiple entry points for Salmonella during production that can lead to contamination during slaughter, and it is important to distinguish the serovars present between the different stages to enact appropriate controls. National Salmonella data from the United States Department of Agriculture-Food Safety Inspection Service (USDA-FSIS) monitoring of poultry processing was analyzed from 2016-2020. The overall Salmonella incidence at processing in broiler carcasses and intact parts (parts) decreased from 8.9% to 6.3% over this period. The incidence in parts was higher (11.1%) than in carcasses (4.5%). Regional differences include higher proportions of serovars Infantis and Typhimurium in the Atlantic and higher proportion of serovar Schwarzengrund in the Southeast. For Georgia, the largest broiler producing state, USDA-FSIS data was compared to Salmonella monitoring data from breeder flocks over the same period, revealing serovar Kentucky as the major serovar in breeders (67.9%) during production, but not at processing, suggesting that it is more effectively removed during antimicrobial interventions. CRISPR-SeroSeq was performed on breeder samples collected between 2020-2021 to explain the incongruence between pre- and post-harvest and showed that 32% of samples contain multiple serovars, with up to 11 serovars found in a single flock. High-resolution sequencing identifies serovar patterns at the population level and can provide insight to develop targeted controls. The work presented may apply to other food production systems where Salmonella is a concern, as it overcomes limitations associated with conventional culture.

Importance

Salmonella is a leading cause of bacterial foodborne illness in the United States, with poultry as a significant Salmonella reservoir. We show the relative decrease in Salmonella over a five-year period from 2016-2020 in processed chicken parts and highlight regional differences with respect to prevalence of clinically important Salmonella serovars. Our results show that the discrepancy between Salmonella serovars found in pre- and post-harvest poultry during surveillance are due in part by the limited detection depth offered by traditional culture techniques. Despite the reduction of Salmonella at processing, the number of human salmonellosis cases has remained stable, which may be attributed to differences in virulence among serovars and their associated risk. When monitoring for Salmonella, it is imperative to identify all serovars present to appropriately assess public health risk and to implement the most effective Salmonella controls.

Introduction

Despite efforts to mitigate *Salmonella* during slaughter, poultry remains a significant cause of human salmonellosis and is responsible for approximately 23% of salmonellosis cases each year, 17% of which are directly linked to chicken (1). Isolates belonging to *Salmonella enterica* subps. *enterica* are most frequently associated with human illness, and this subspecies is represented by over 1,500 distinct serovars that are characterized by their lipopolysaccharide (O) and flagellar (H) antigens (2). Serovars can inhabit different niches and show host tropism with altered capacities to cause illness in humans and animals (3–6). Of serovars frequently found in poultry in the United States,

serovar Kentucky has a low association with human illness, while serovars Enteritidis, Typhimurium, and Infantis are often responsible for human salmonellosis (7, 8).

The United States produces over nine billion broilers each year (9), with the Southeast producing 5.01 billion, followed by the South Central region (~1.95 billion) and the Atlantic (~1.11 billion). A total of 1.3 billion broilers are produced in Georgia (14%), the top broiler-producing state. The poultry industry is vertically integrated into complexes, with each life stage of the chicken separated into different houses, and large integrators operate multiple complexes. Each complex typically encompasses parental breeder flocks ('breeders') whose eggs are sent to a single hatchery facility within the complex. Newly hatched broiler chicks are then disseminated to multiple broiler farms, and these are subsequently processed at a single processing plant belonging to that complex. Vertical integration is economically beneficial and allows for stricter biosecurity measures that provide greater control over pathogen spread for foodborne and avian pathogens. Vertical and horizontal transmission from breeders to broiler flocks is the largest *Salmonella* contributor to chickens at processing, making breeders the single most important target for *Salmonella* mitigation (10–12).

USDA-FSIS regularly collects surveillance samples from processing establishments, including carcass and raw part rinses, and publicly reports this data along with establishment performance standards. Given that current *Salmonella* regulation by USDA-FSIS has not led to a decrease in overall human salmonellosis, in October 2021, the agency introduced an initiative to reduce *Salmonella* in broilers (13). It is possible that this initiative may lead to the use of additional *Salmonella* controls during live production to reduce overall *Salmonella* load as birds arrive at the processing facility.

While there is no national monitoring system in place to survey *Salmonella* in broiler flocks, since 2016, with the support of the National Chicken Council, several integrators began monitoring *Salmonella* in their breeder flocks at 16 weeks (prior to egg production) and 42 weeks (after peak egg production). This monitoring is typically performed at state-supported, commercial, or academic laboratories, and is not reported.

Vaccination of breeder flocks, and sometimes broiler flocks is an effective method of Salmonella control in live production (14). Commercially available live attenuated vaccines targeting serovar Typhimurium and killed vaccine against serovar Enteritidis are broadly used. An additional strategy is the use of autogenous vaccines that effectively reduce intestinal Salmonella in parental breeders, and in their subsequent broiler progeny (12, 15–18). These killed vaccines are developed for a specific broiler complex and are generated against 1-5 Salmonella serovars that have been collected from those premises. Development of effective autogenous vaccines that make the greatest positive impact to food safety rely on two attributes: i) appropriate surveillance to identify and isolate serovars in both pre- and post-harvest, and ii) recognition of greatest concern serovars. Both attributes require the identification of all Salmonella serovars present in a population, and this is not always achieved with conventional culture methods. As demonstrated by a previous study (19), some serovars with increased antimicrobial resistance may be hiding in the background of Salmonella populations and are only revealed following antimicrobial treatment, which effectively reduces all susceptible serovars and allows for the growth of resistant serovars.

Current surveillance relies on *Salmonella* isolation by enrichment and characterization of a few resulting colonies that grow on indicator agar (20). This is a

serious limitation in *Salmonella* surveillance and source tracking as generally only the most abundant serovar(s) in a mixed population are detected, while the less abundant serovar(s) remain undetected (21, 22). Where clinically important serovars are undetected, traditional surveillance underestimates the presence of *Salmonella* serovars of the greatest food safety concern. High-throughput sequencing-based technologies have addressed this problem by discerning multiple serovars in a single sample and revealing serovars at orders of magnitude greater than logistically possible by picking colonies off a plate (23, 24). *Salmonella* clustered regularly interspaced short palindromic repeat (CRISPR) spacer content is tractable with serovar identity, and these sequences have been employed effectively for molecular serotyping (25–29). CRISPR-SeroSeq (serotyping by sequencing the CRISPR loci) is an amplicon-based sequencing tool that uses *Salmonella* CRISPR identities to quantify the relative frequency of multiple serovars in a single sample, down to serovars comprising as little as 0.003% of the population (19, 22, 23, 30, 31).

Prior to this study, some poultry integrators reported to us that some serovars they find during live production (pre-harvest) do not align with those found during processing (post-harvest). We initiated this study to determine whether this pattern occurred more broadly across national and regional surveillance data from processing. Using serovar population analyses by CRISPR-SeroSeq revealed that many pre-harvest samples contain multiple serovars, which explains the serovar diversity seen during processing. Although this study uses broiler production, the findings here are broadly applicable to other industries where *Salmonella* is a concern. Additionally, this study highlights the

importance of comprehensive surveillance monitoring in food production systems to identify and control pathogens prior to an outbreak.

Results

Between 2016-2020, the percentage of *Salmonella* positive broiler carcasses increased slightly from 4.1% to 4.5% across the United States (Table 2-1). For all five regions, the percentage of *Salmonella* positive carcasses peaked in 2017 or 2018.

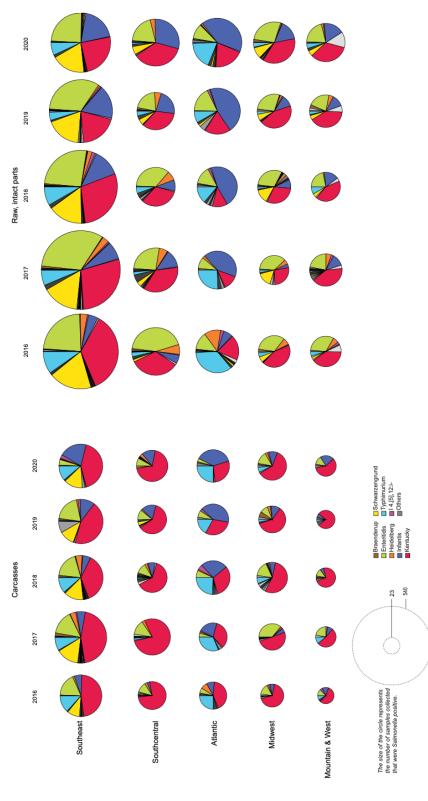
Conversely, this measure decreased significantly in raw, intact parts (herein referred to as 'parts') from 16.8% to 7.8% and peaked for most regions in 2016 (Table 2-2). During this time, the total number of carcass samples collected by USDA-FSIS increased by 10% while the number of parts samples more than doubled. Significantly, for all regions across all five years, the percentage of *Salmonella*-positive samples was greater in parts (11.1%; 9,474/85,022) than in carcasses (4.5%; 2,145/47,538) (Tables 2-1 and 2-2).

The Southeast is the largest poultry producing region in the United States with more samples collected than any other region. Therefore, expectedly, it had the highest overall number of *Salmonella* isolated from carcasses and parts, with an annual average of 4.1% (886/21,780), and 11.5% (2,140/18,614) *Salmonella*-positive parts samples.

Despite this, *Salmonella* incidence in 2020 was lowest in Southeast processing establishments, at 3.6% in carcasses and 6.0% in parts. Poultry production in the Atlantic and the South Central regions is comparable, and this is reflected in their similar *Salmonella* prevalence values. In carcasses, the Atlantic region had an average *Salmonella*-positive incidence of 6.0% (407/6736), while the South Central region had an average of 3.5% (228/6581) (Table 2-1). Both these incidences were increased in parts with averages of 13.6% (815/6010) and 8.9% (812/9115) in the Atlantic and South

Table 2-1. Prevalence of Salmonella in broiler carcasses at processing, 2016 to 2020.

	No (%) oN	No (%) of samples ^a										
	Southeast	st	South Central	entral	Atlantic		Midwest	:	Mounta	Mountain & West	All regions	ns
۲۲	Total	SP	Total	SP	Total	SP	Total	SP	Total	SP	Total	SP
2020	4,624	165 (3.57)	2,101	85 (4.05)	1,391	93 (69.9)	1,081	71 (6.57)	479	37 (7.72)	9/9/6	451 (4.66)
2019	4,439	170 (3.83)	1,982	72 (3.63)	1,372	83 (6.05)	1,016	63 (6.20)	461	29 (6.29)	9,270	417 (4.50)
2018	4,238	170 (4.01)	1,906	77 (4.04)	1,353	99 (7.32)	1,027	81 (7.89)	200	33 (6.60)	9,024	460 (5.10)
2017	4,289	230 (5.36)	1,896	115 (6.07)	1,336	(8 (2.09)	1,056	61 (5.78)	491	36 (7.33)	890'6	510 (5.62)
2016	4,179	151 (3.61)	1,833	68 (3.71)	1,283	64 (4.99)	1,004	46 (4.58)	503	23 (4.57)	8,802	352 (4.00)
Total	Fotal 21,769	886 (4.07) 9,718 417 (4	9,718	417 (4.29)	6,735	407 (6.04)	5,184	322 (6.21)	2,434	158 (6.49)	45,840	2,190 (4.78)
aSP, Saln	'SP, Salmonella positive.	ive.										


Table 2-2. Prevalence of Salmonella in raw intact chicken parts at processing, 2016 to 2020.

	No. (%)	No. (%) of samples a										
	Southeast	ıst	South (South Central	Atlantic	u	Midwest	st	Mounta	Mountain & West	All regions	ns
۲	Total	SP	Total SP	SP	Total	SP	Total SP	SP	Total	SP	Total	SP
ı	5,078	306 (6.03)	2,571	192 (7.47)	1,971	209 (10.60)	1,379	149 (10.88)	1,580	127 (8.04)	12,579	1,012 (8.05)
2019	4,229	345 (8.16)	2,022	121 (5.98)	1,466	183 (12.48)	928	101 (10.87)	1,221	92 (7.53)	9,872	1,001 (10.14)
2018	3,318		1,566	131 (8.37)	920	139 (15.11)	276	95 (16.49)	781	73 (9.35)	7,161	900 (12.57)
2017	3,236		1,570	170 (10.83)	827	126 (15.24)	570	74 (12.98)	646	91 (14.09)	6,850	842 (12.29)
2016	2,743	487 (17.75)	1,382	•	822	159 (19.34)	207	87 (17.16)	581	81 (13.94)	6,035	983 (16.29)
Total	18,604	Total 18,604 2,140 (11.50) 9,111 812 (8.	9,111	812 (8.91)	900'9	816 (13.57) 3,960	3,960	506 (12.77) 4,809	4,809	464 (9.65)	42,490	4,738 (11.15)
aSP. Salr	Salmonella positive	itive										

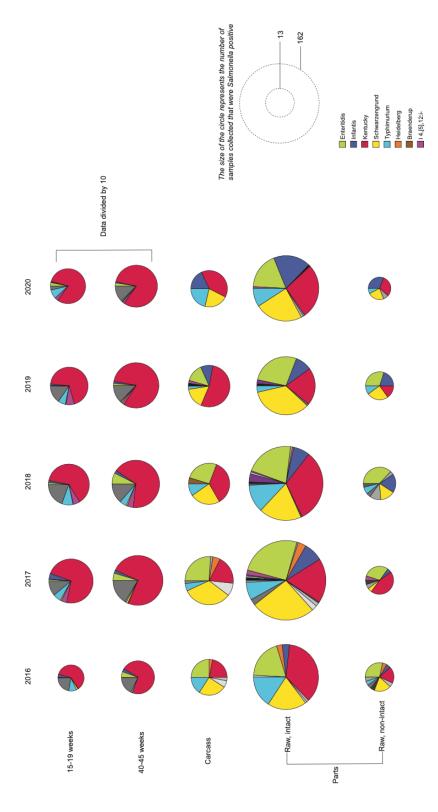
Central, respectively (Table 2-2). While the Southeast has the highest overall *Salmonella* prevalence, this is the only region where the number of *Salmonella* isolated has decreased each year in both carcasses and parts since 2017 (carcasses: 230 isolates in 2017 to 165 isolates in 2020, parts: 540 isolates in 2017 to 306 isolates in 2020), whereas for other regions the annual number of *Salmonella* isolated has somewhat increased. Importantly, the total number of samples per type and year has been relatively maintained in all regions.

The USDA-FSIS also reports the serovar information, and we analyzed this data as well. Between 2016-2020, the number of serovars found in parts (59 serovars) was greater than in carcasses (37) (Supplemental Tables 2-1 and 2-2), which fits the trend observed above with overall *Salmonella* incidence between carcasses and parts. The Southeast region had the greatest diversity, with an annual average of 22 serovars in parts and 14 serovars in carcasses. This was followed by the Atlantic and South Central regions, with an annual average of 14 and 13 serovars in raw, intact parts, and 8 and 9 serovars in carcasses, respectively. For most regions, the number of different serovars found per sample type peaked in 2016 and 2017 and has since reduced. For carcasses, the annual number of serovars peaked at 18 in the Southeast (2017) while in parts, the highest annual number of serovars was 26, in the Southeast (2016).

In terms of serovar identity, there were also regional differences, as highlighted by the major serovars in Figure 1. Serovar Typhimurium was more frequently isolated from both carcasses and parts in the Atlantic and Southeast regions (light blue; Fig. 2-1). Proportionally, serovar Typhimurium was greatest in the Atlantic region, comprising 23.3% (91/390) of carcass samples and 19.7% (160/814) of parts samples from 2016-

based on broiler production per region, according to USDA (9). Select serovars are highlighted as shown; the full serovar information is Pie charts depicting the prevalence of different serovars in broiler processing establishments in the United States. The size of the circle reflects the number of positive samples and the regions are defined as follows: Atlantic (CT, DE, MA, MD, ME, NH, NJ, NY, PA, RI, VT, VA, and WV), Southeast (AL, GA, FL, KY, MS, NC, SC, and TN), South Central (AR, LA, OK, and TX), Midwest (IL, IN, IA, KS, MI, MN, MO, NE, ND, OH, SD, and WI), and Mountain & West (AZ, CA, CO, ID, MT, NV, NM, OR, UT, WA, and WY). Regions are ordered Figure 2-1. Salmonella serovar distribution in broiler carcasses and intact parts at processing across the United States, 2016-2020. provided in Supplemental Tables 1 and 2.

2020. The relative proportion of serovar Typhimurium in the Southeast was lower, at 10.3% (90/877) and 7.3% (155/2,138) in carcass and parts samples, respectively. While serovar Infantis (dark blue) was isolated from both products in all regions each year, it was most prominent, relatively, in samples from the Atlantic. Here, it has rapidly increased from 6.9% (11/159) and 9.4% (6/64) in 2016 to 41.6% (86/207) and 34.2% (26/76) in 2020 in carcasses and parts, respectively. In the Southeast, serovar Schwarzengrund (yellow) was the third most isolated serovar from 2016-2020, with 16.8% (360/2,138) in parts and 13.0% (114/877) in carcasses. We also observed some trends that occurred across all regions. For instance, the relative proportion of serovar Kentucky (red) decreased from carcasses to parts, with an overall average of 50.5% (1,386/4,733) and 29.3% (1,093/2,164), respectively. Additionally, serovar Enteritidis (green) increased between the two sample types, as it was found in 25.2% (1,208/4,733) of parts and 13.0% (281/2,164) of carcasses.

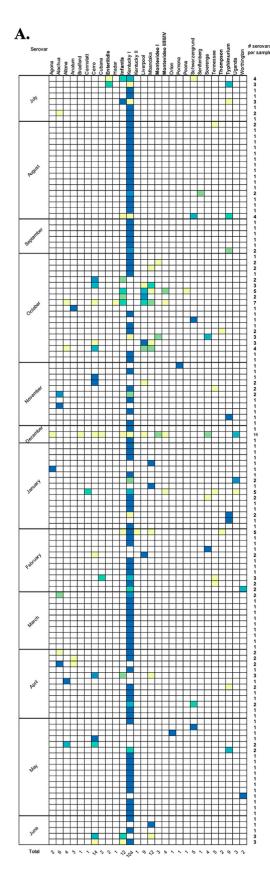

Since our monitoring data from breeder flocks is relatively unbiased (a large number of different companies and complexes submit samples for *Salmonella* testing) and because Georgia represents the largest broiler producing state, we next sought to compare the serovars that are isolated from breeders at 16 and 42 weeks with those found during slaughter. The number of isolates peaked in 2017 for carcasses (58), raw, intact parts (185), and breeders (young = 497, old = 635) (Fig. 2-2). For non-intact parts, the number of *Salmonella* isolated peaked in 2018 (27 isolates). Following these peaks in 2017 and 2018, the overall *Salmonella* incidence in all sample types has decreased. From 2016-2020, the average number of serovars isolated each year was higher in non-intact

parts (13), compared to carcass rinses (6) and intact parts (7) (Supplemental Table 2-3). For all three processing sample types, the greatest diversity was found in 2017.

The serovar identity across the three sample types over time reveals some interesting patterns. Since 2016, serovar Kentucky has increased in prevalence, replacing serovar Enteritidis as the most common serovar isolated from carcasses (Fig. 2-2). Relative to carcasses, serovar Kentucky is proportionally reduced in both intact and non-intact parts, as was observed in the national data (Fig. 2-1). Despite not being identified in carcasses until 2019, the incidence of serovar Infantis increased dramatically since 2016, and in 2020, accounted for 18% (30/170) of *Salmonella*-positive samples. Serovar Enteritidis was proportionally higher in parts from 2016-2020 than in carcasses, though it was not identified in non-intact parts in 2020.

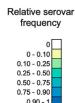
Strikingly, from 2016-2020 serovar Kentucky was the most common serovar isolated from young and old breeder flocks and has proportionally increased each year to account for 80% and 81% of samples, respectively. Serovars Enteritidis and Typhimurium alternate in prevalence to account for the second and third most commonly isolated serovars between 2016 and 2020, although serovar Typhimurium, and its monophasic variant, I 1,4,[5],12: i:-, are more frequently associated with young breeders while serovar Enteritidis more often isolated from older breeders (Fig. 2-2).

The discrepancy between high serovar Kentucky prevalence in breeder flocks but low prevalence at processing suggests that this serovar is effectively mitigated during slaughter. However, it does not explain the origin of other serovars such as Infantis, Enteritidis, and Schwarzengrund that are found at processing. One possible explanation is that multiple serovars exist in breeder flocks but the amount of serovar Kentucky is so



weeks and 40-45 weeks (top two row) and samples from processing establishments in Georgia (bottom three rows). The size of Figure 2-2. Serovar distribution for Salmonella positive breeder, carcass, intact parts, and non-intact parts samples collected in Georgia, 2016-2020. Pie charts depicting the prevalence of different serovars in breeder samples collected at 15-19 the circle reflects the number of positive samples, and the values for the breeder samples are divided by 10. Select serovars are highlighted as indicated. For the samples from processing, the full serovar data is presented in Supplemental Table 3.

high, that detecting the other serovars by traditional culture methodology (i.e. picking a small number of colonies) prevents the detection of less abundant serovars that might also be present. To determine if this was the case, we sought to apply high-resolution serovar population analyses to samples collected from breeder flocks. CRISPR-SeroSeq was performed on 134 Salmonella positive samples that were collected at the Georgia Poultry Lab Network from July 2020 to June 2021. There was an average of 1.6 serovars per sample, with 32.1% (43/134) samples containing more than one serovar (range 1-11), and a total of 26 serovars across the sample set (Fig. 2-3). Across the dataset, the October 2020 samples were most diverse: we identified 13 different serovars (plus two different lineages of serovar Montevideo) and 57.9% (11/19) samples contained multiple serovars. The March 2021 samples were the least diverse, with only two serovars identified and a single instance of a multi-serovar sample. Expectedly, serovar Kentucky was the most common serovar, followed by serovars Cerro and Mbandaka. Serovar Kentucky was present in 77.6% (104/134) samples, and as the majority serovar (darker blue) in 89.4% (93/104) of these samples. We identified five serovars of human importance, as denoted by the CDC Top 10 serovar list: Enteritidis, Infantis, Montevideo, Thompson, and Typhimurium. Notably, serovar Infantis was detected in 9.0% (12/134) samples, and it was present as a minority serovar in 91.7% (11/12) of these samples.


Discussion

Salmonella contamination of poultry remains a significant and complex problem (32–36). The overall number of Salmonella positive samples and the number of serovars identified in broiler processing plants is reflective of the size of production in the different regions. However, this is not reflected by the proportion of samples that are

B.

Serovar	Serovar prevalence across samples	Incidence of majority to minority (ratio)	Majority serovar in sample (%)	Minorityy serovar in sample (%)
Agona	2	1:1	50	50
Alachua	6	3:3	50	50
Altona		2:2	50	50
Anatum	3	1:2	33	67
Bradford	1	0:1	0	100
Cannstatt	1	0:1	0	100
Cerro	14	8:6	57	43
Cubana	2	0:2	0	100
Enteritidis		0:2	0	100
Hadar	1	0:1	0	100
Infantis	12	1:11	8	92
Kentucky I	104	94:10	90	10
Kentucky II		0:1	0	100
Liverpool		4:5	44	56
Mbandaka		3:9	25	75
Montevideo I		0:3	0	100
Montevideo II/III/IV	4	0:4	0	100
Orion	1	1:0	100	0
Pomona		0:1	0	100
Poona		3:2	60	40
Schwarzengrund		0:1	0	100
Senftenberg		2:2	50	50
Soerenga		0:5	0	100
Tennessee		0:2	0	100
Thompson	9	5:4	56	44
Typhimurium		2:1	67	33
Uganda		2:0	100	0
Worthington		1:0	100	0

Figure 2-3. Salmonella-positive breeder monitoring samples often contain multiple serovars. CRISPR-SeroSeq was used to determine the relative abundance of Salmonella serovars within each sample. Each column is an individual sample that was derived from the overnight enrichment culture tetrathionate from environmental boot sock sample; these are arranged according to the date they were submitted, and the month is indicated. The individual serovars are shown on the left and the heatmap shows relative serovar abundance in each sample according to the key. Samples with more than one serovar are indicated in bold (bottom row). The two serovar Kentucky lineages and four serovar Montevideo lineages are named as previously described (72, 73).

Salmonella positive. For example, in 2020, the two highest producing regions (Southeast and South Central) had the lowest proportion of Salmonella positive carcasses and parts. Further, the proportional decrease of Salmonella positive carcasses (2017/2018-2020) and parts (2016-2020) across all five regions indicates that Salmonella control measures can be effective. This timeframe is concurrent with the most recent performance standards from USDA-FSIS (37) and suggests that this approach has been useful at reducing the overall Salmonella prevalence in poultry.

Despite the success in reducing overall Salmonella incidence at processing, the number of human salmonellosis cases linked to poultry has remained relatively unchanged (13). This is likely due in part to the particular serovars that are present in poultry production, their propensity to colonize poultry, and their individual association with human illness. Further investigation is warranted to identify serovar-specific capabilities to persist in poultry production. When we began this study, our intention was to analyze and present the national data together; however, we noticed the region-specific trends and decided to present the data by region. The growing proportion of serovar Infantis in the Atlantic region from 2016-2020 is particularly striking. While serovar Infantis has proportionally increased in all five regions in both carcasses and parts, in the Atlantic it has been the major serovar found in carcasses since 2019 and in parts from 2017. This may reflect climate or environmental conditions in the Atlantic that somehow promote colonization of poultry by serovar Infantis (or that suppress other serovars such as Kentucky), or that serovar Infantis has filled a vacated ecological niche (e.g. through vaccination targeting serovar Kentucky).

For several years, serovar Kentucky has been the most prevalent serovar isolated during poultry production in the United States, though in the United States serovar Kentucky does not have a high association with human illness (7, 38). The data presented here comparing *Salmonella* serovar incidence in breeder flocks with that at processing in Georgia shows that the high proportion of serovar Kentucky in flocks is reduced significantly during processing. This observation is in agreement with studies showing the competitive fitness of serovar Kentucky in colonizing chicken intestines (39) and also suggests that serovar Kentucky is susceptible to antimicrobial interventions used in the carcass chilling procedure. Further, in the national processing data, the proportion of serovar Kentucky is consistently lower in parts than on carcasses, suggesting that the additional antimicrobial intervention steps between chilling and parts cut-up also effectively removes serovar Kentucky.

Across the United States, *Salmonella* incidence increases from carcasses to parts, despite collection of similar numbers of samples. A similar increase has been noted in other studies comparing *Salmonella* prevalence in post-chill carcasses and parts (40–42). This might be due to cross-contamination of equipment used to generate parts (43). These findings suggest the need for additional interventions during processing of parts. The reduction of serovar Kentucky prevalence between carcasses and parts is accompanied by an increase of other serovars, specifically serovars Enteritidis and Infantis, which are both frequently associated with human salmonellosis (7, 8). There are a few possible, non-mutually exclusive, explanations for these observations. First, peroxyacetic acid is an effective antimicrobial commonly used in processing (44) and some serovars may tolerate this antimicrobial better than serovar Kentucky (45). Second, despite cleaning

and sanitation, these patterns may reflect serovar differences in survival in processing environments such as the ability to form strong biofilms (46–49). Third, some serovars, such as Enteritidis, can systemically infect chickens (50, 51), and separation of the carcass into parts may release internalized *Salmonella*. Significant further research is required to address the potential impact of these explanations on the serovars found in processing.

Salmonella serovars found at processing must have originated from live production, and the reduction of serovar Kentucky during processing is able to reveal the identity of additional serovars, some of which are often associated with human illness. Using CRISPR-SeroSeq, we determined that one third of samples contained more than one serovar. This type of approach overcomes the disadvantage of only detecting the most abundant serovar (or that which grows best), which occurs when only a small number of colonies are selected from a plate (52). CRISPR-SeroSeq identifies multiple serovars based on amplification of total genomic DNA in a sample, therefore allowing for a greater representation of Salmonella serovar diversity. This analysis explains some of the differences between the breeder samples and the processing plant samples. For example, it revealed that serovar Infantis is most often outnumbered by other serovars, including serovars Kentucky, Liverpool, and Cerro, and that serovars Enteritidis and Typhimurium were minority serovar in 100% and 33% of instances where they were detected, respectively, though the former was only detected in two samples. The high number of samples containing serovar Cerro was surprising as this serovar is most frequently associated with cattle (53). Potential explanations include the high number of cow-calf operations in Georgia (54), many of which are near broiler production farms, or

introduction via feed that contains meat and bone meal or blended animal byproducts (55, 56). Our data also suggests that there may be seasonal attributes that contribute to serovar diversity as the samples collected in October 2020 were more diverse than others and that the samples from October and November also had the lowest incidence of serovar Kentucky. The data analyzed here only represents a single year and future analyses are required to see if these trends are significant. Continuing to apply high-resolution surveillance approaches can elucidate intraspecies population dynamics, as some serovars may prove to be consistently more dominant in populations, and there may be some environmental conditions which encourage competitive exclusion.

Targeted serovar-specific *Salmonella* reduction through autogenous vaccination has increased in use in the poultry industry, as integrators try to eliminate serovars of the greatest food safety concern and to also reduce the quantity of *Salmonella* on birds arriving at their processing facilities. Generation of an autogenous vaccine requires the serovar of concern to have been isolated within a complex previously and this is subject to the limitations of *Salmonella* isolation during monitoring (i.e. the lower resolution of selecting and characterizing a small number of colonies). Population-based approaches, such as CRISPR-SeroSeq, aid in revealing the presence of serovars that maybe less fit than others in live chickens but that can persist in the processing environment and potentially cause human illness (22, 23, 31). Such serovars would be ideal candidates to be targeted by autogenous vaccines. This approach, too, will improve *Salmonella* surveillance and food safety. Historically, successful, serovar-specific industry-wide interventions have reduced or eliminated the presence of those serovars (57). This often results in another serovar taking over (e.g. serovar Kentucky replacing serovar Enteritidis

following efforts in the 1990s to eliminate the latter). The use of serovar population analyses followed by in-depth phenotypic characterization of different strains or serovars, particularly in pre-harvest poultry, may help to predict these shifts as they are occurring and allow vaccines or other interventions to be generated in a timelier manner.

There are a few caveats to our study: first, the samples analyzed here are not matched to each other, and we did not follow the same breeder flocks to broilers and then to processing. This may be why we did not identify many instances of serovar Enteritidis in our population analyses of Salmonella-positive breeder flocks. Further, USDA-FSIS does not sample carcasses and parts from the same processing establishment on the same day, thus it is not possible to directly compare between the samples collected at processing as different flocks are slaughtered each day. Nonetheless, the large number of samples and the unbiased nature in which they are collected has allowed us to visualize broad, industry-wide trends. A second caveat is that although Salmonella quantity in broilers is linked to Salmonella found at processing (58), we did not include broilers in this study. This was because there is no broad Salmonella monitoring program for broilers beyond what integrators may individually perform and any on-farm sampling we would have done would be biased to one or a small number of integrators. Colonization of breeder flocks with Salmonella is a major contributor of Salmonella found in broilers, which is one reason why interventions such as vaccination are performed in breeders (11, 59). However, this does not discount the possibility of additional Salmonella contamination of broiler flocks from environmental sources such as litter, insects, feed, and rodents (60–65), and this was not captured in our study. A recent study demonstrated high concordance of serovars on pre-intervention broilers (directly after kill) with those

on broilers post intervention (66), so a future study centered on assessing Salmonella populations in broilers directly before processing could provide some useful information. A third caveat is the Salmonella isolation protocols performed by USDA-FSIS differ from those performed at GPLN, as the choice of media used for enrichment and Salmonella isolation can impact which serovars are detected (22, 67–70) and this bias may explain some variability across sample types. We were surprised that although serovar Schwarzengrund was frequently identified at processing in the Southeast, including in Georgia, we did not often detect this serovar in breeder samples by colony isolation and serotyping, nor by CRISPR-SeroSeq analysis of enriched samples from breeder flocks. Previous work has shown that serovar Schwarzengrund is preferentially isolated following enrichment in Rappaport-Vassiliadis (RV) broth compared to tetrathionate (TT) broth (22, 70). Unlike processing plant samples where the Salmonella are damaged and isolation requires a non-selective pre-enrichment step to allow the Salmonella to recover (20), isolation from farm samples are approved by the National Poultry Improvement Plan (NPIP) to be incubated directly into selective enrichment both. In the case of this study, all breeder samples were enriched in TT broth and not in RV broth, which may explain this discrepancy.

Salmonella contamination of poultry products remains a complex issue (35, 57) and this study highlights serovar differences regionally and during processing (i.e. between carcasses and parts), which adds to this complexity. Significantly, the population analyses performed here partially explains the serovar incongruity that occurs between pre- and post-harvest by demonstrating that a third of all breeder samples contain more than one serovar and that when serovar Kentucky is present, it tends to account for a

greater proportion of the *Salmonella* that is present. There are multiple sources which may contribute to *Salmonella* presence in a poultry environment, such as crosscontamination from workers, rodent activity, and contaminated feed products (71), so it is important to expand surveillance sampling to monitor these contamination routes, as this could lead to improved *Salmonella* control. Finally, although poultry is a considerable *Salmonella* reservoir, contamination of other food animals, including cattle and swine, are also of significant food safety concern. These industries also face the pre- and post-harvest *Salmonella* challenges that have been described here; the approaches and conclusions drawn here are relevant to those and other industries where *Salmonella* is a problem.

Materials and Methods

Analysis of USDA-FSIS data

Salmonella data from January 2016-December 2020 was downloaded from the USDA-FSIS website (https://www.fsis.usda.gov/science-data/data-sets-visualizations/laboratory-sampling-data). This data includes establishment identity and location, date of isolation, sample type, and Salmonella serovar identity. For national analysis, regions were characterized as follows: Atlantic (Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, Virginia, and West Virginia), Southeast (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee), South Central (Arkansas, Louisiana, Oklahoma, Texas), Midwest (Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, Wisconsin), and Mountain & West (Arizona, California, Colorado, Idaho, Montana,

Nevada, New Mexico, Oregon, Utah, Washington, Wyoming). Data for carcasses and parts were downloaded and analyzed separately. For the parts samples, the data were separated into 'raw-intact chicken' and 'raw-ground, comminuted or otherwise non-intact chicken' because these reflect different processing steps and different *Salmonella* risks/prevalence. For the national data, the non-intact category was not considered because in lower poultry production regions there were only a small number of positive samples, and this data reflected a single processor sampled multiple times or a small number of processors within that region. For the Georgia analysis, both the intact and non-intact parts data were considered.

Salmonella isolation and serotyping

Several integrators participate in the routine surveillance program through the Georgia Poultry Laboratory Network (GPLN), where breeder flocks are tested for *Salmonella* at approximately 16 weeks (pullets; pre-egg production) and 40 weeks (post-peak egg production). To condense the sample collection into two subsets, samples from weeks 15-19 (young breeders) and 40-45 (old breeders) were grouped together for analysis. Hatching egg companies maintain breeder flocks and in accordance with NPIP regulations must test their flocks for *Salmonella* every 30 days. *Salmonella* data from hatching egg company samples that were received closest to 16 and 40 weeks from these companies were included in this study. The data includes eight different hatching egg companies and six different integrators. Samples are submitted to GPLN typically as boot socks in Whirl-pak bags. Between 125-150 ml tetrathionate (TT) enrichment broth was added to each boot sock sample and these were incubated at 37°C for 20-24 hours. The bags were gently mixed and 100 µl of enrichment transferred into a modified

semisolid Rappaport Vasiliadis (MSRV) agar plate and incubated at 42°C. The plates were checked at 24 hours and 48 hours and transferred onto two types of agar: brilliant green (BG) agar containing novobiocin and xylose lysine tergitol-4 (XLT-4). These were incubated at 37°C for 20-24 hours and four presumptive *Salmonella* colonies were selected. *Salmonella* was confirmed by biochemical identification using the Vitek system (Biomeriuex), and then serotyped by conventional serum agglutination (BD Difco, Fisher Scientific, Atlanta, GA; Remel, Lenexa, KS, and SSI Diagnostics, Cederlane, Burlington, NC) and using the Luminex xMap molecular assay (Luminex, Austin, TX).

Serovar population analyses by CRISPR-SeroSeq

We selected a subset of the *Salmonella*-positive samples submitted to GPLN from July 2020 to June 2021 to complete CRISPR-SeroSeq. While the other component of the GPLN surveillance study (described above) was focused on breeder samples collected at weeks 16 and 42, this subset included samples across a range of weeks in breeder production. Our curated sample collection is once per week, shifting one day each week to reduce bias from companies who may regularly submit samples on the same day of the week. We divided the samples from each week into quadrants to have a representative dataset for each month, using the first sample in each quadrant. The number of sample collection days differs per month, and sample number is variable (higher sample numbers later in the week than earlier in the week) so our dataset is not uniform across the months but contains at least one sampling day per month. The overnight TT enrichment cultures were briefly vortexed and 1 ml of each was transferred into microcentrifuge tubes and centrifuged at 5,000 rpm for 10 minutes. The supernatant was removed, and the pellets stored at -20°C. Genomic DNA was isolated from pellets using the Promega Genome

Wizard kit (Madison, WI), according to the manufacturer's instructions, and was resuspended in 200 µl of molecular grade water and stored at -20°C. Genomic DNA was diluted 10-fold in molecular grade water and 2 µl was used as a template in the first PCR step for CRISPR-SeroSeq with primers targeting the conserved direct repeat sequences within Salmonella CRISPR arrays (23). PCR products were purified using the Ampure system (Beckman Coulter, Indianapolis, IN), according to the manufacturer's instructions. For the second PCR to add dual index sequences, 5 µl of the cleaned amplicon was used as a template, following the Illumina Nextera protocol (Illumina, San Diego, CA). PCR products were purified using Ampure and pooled in approximate equimolar ratios. Pooled libraries were multiplexed and sequenced on the Illumina NextSeq platform with 150 cycles, single end reads. Each sequencing run contained two negative control samples: a non-template water control from the first PCR and a nontemplate water control from the second PCR. A positive control containing Salmonella serovar Enteritidis genomic DNA with a known CRISPR profile was also included on each run. CRISPR-SeroSeq analyses were performed using a R script that scans sequence reads and uses BLAST to match sequence reads to a database of over 135 serovars, before writing the output directly to Excel. Serovars were called only if they contained multiple CRISPR spacers that were unique to that serovar.

Acknowledgements

This study was funded by a USDA-NIFA award to NWS (2020-67017-30792). The authors are grateful to Dr. Charles Hofacre and members of the Shariat Lab for providing a critical review, and to Christopher Noble, Colleen Sedney, and Amber Richards for their technical contributions.

Author Contributions

ATS: Software, Formal analysis, Investigation, Data curation, Writing – original draft, Writing – review & editing, Visualization; **DW:** Conceptualization, Methodology, Validation, Investigation, Resources, Data curation, Writing – review & editing, Supervision, Project administration, Funding acquisition; **NWS:** Conceptualization, Methodology, Formal analysis, Investigation, Data curation, Writing – original draft, Writing – review & editing, Visualization, Supervision, Project administration, Funding acquisition

References

- The Interagency Food Safety Analytics Collaboration. 2021. Foodborne illness source attribution estimates for 2019 for Salmonella, Escherichia coli O157, Listeria monocytogenes, and Campylobacter using multi-year outbreak surveillance data, United States.
- Grimont P, Weill F-X. 2007. Antigenic formulae of the *Salmonella* servovars: WHO
 Collaborating Centre for Reference and Research on *Salmonella*. 9th Ed Inst Pasteur
 1–166.
- Uzzau S, Brown DJ, Wallis T, Rubino S, Leori G, Bernard S, Casadesús J, Platt DJ,
 Olsen Je. 2000. Host adapted serotypes of *Salmonella enterica*. Epidemiol Infect.
 125:229–255.
- 4. Cheng RA, Eade CR, Wiedmann M. 2019. Embracing diversity: differences in virulence mechanisms, disease severity, and host adaptations contribute to the success of nontyphoidal *Salmonella* as a foodborne pathogen. Front Microbiol 10:1368.

- Cohn AR, Cheng RA, Orsi RH, Wiedmann M. 2021. Moving past species classifications for risk-based approaches to food safety: *Salmonella* as a case study. Front Sustain Food Syst 5:652132.
- 6. Andino A, Hanning I. 2015. *Salmonella enterica*: survival, colonization, and virulence differences among serovars. Sci World J 2015:520179.
- Centers for Disease Control and Prevention. National Outbreak Reporting System (NORS).
- 8. Tack D, Marder E, Griffin P, Cieslak P, Dunn J, Hurd S, Scallan E, Lathrop S, Muse A, Ryan P, Smith K, Tobin-D'Angelo M, Vugia D, Holt K, Wolpert B, Tauxe, R, Geissler A. 2019. Preliminary incidence and trends of infections with pathogens transmitted commonly through food Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2015–2018. Morb Mortal Wkly Report, CDC 68:369–373.
- United States Department of Agriculture-National Agricultural Statistics Service.
 2021. Poultry Production and Value 2020 Summary.
- 10. Bailey JS, Stern NJ, Fedorka-Cray P, Craven SE, Cox NA, Cosby DE, Ladely S, Musgrove Mt. 2001. Sources and movement of *Salmonella* through integrated poultry operations: a multistate epidemiological investigation. J Food Prot 64:1690–1697.
- 11. Liljebjelke KA, Hofacre CL, Liu T, White DG, Ayers S, Young S, Maurer JJ. 2005. Vertical and horizontal transmission of *Salmonella* within integrated broiler production system. Foodborne Pathog Dis 2:90–102.
- 12. Dórea FC, Cole DJ, Hofacre C, Zamperini K, Mathis D, Doyle MP, Lee MD, Maurer JJ. 2010. Effect of *Salmonella* vaccination of breeder chickens on contamination of

- broiler chicken carcasses in integrated poultry operations. Appl Environ Microbiol. 76:7820–7825.
- 13. United States Department of Agriculture. 2021. USDA launches new effort to reduce *Salmonella* illnesses linked to poultry; Release No. 0223.21.
- 14. Hofacre CL, Rosales AG, Costa M Da, Cookson K, Schaeffer J, Jones MK. 2021. Immunity and protection provided by live modified vaccines against paratyphoid *Salmonella* in poultry—an applied perspective. Avian Dis 65:295–302.
- 15. Young SD, Olusanya O, Jones KH, Liu T, Liljebjelke KA, Hofacre CL. 2007. Salmonella incidence in broilers from breeders vaccinated with live and killed Salmonella. J Appl Poult Res 16:521–528.
- 16. Inoue AY, Berchieri A, Bernardino A, Paiva JB, Sterzo EV. 2008. Passive immunity of progeny from broiler breeders vaccinated with oil-emulsion bacterin against *Salmonella* Enteritidis. Avian Dis 52:567–571.
- 17. Pavic A, Groves PJ, Cox JM. 2010. Utilization of a novel autologous killed trivaccine (serogroups B [Typhimurium], C [Mbandaka] and E [Orion]) for *Salmonella* control in commercial poultry breeders. Avian Pathol 39:31–39.
- 18. Desin TS, Köster W, Potter AA. 2013. *Salmonella* vaccines in poultry: past, present and future. Expert Rev Vaccines 12:87–96.
- Siceloff AT, Ohta N, Norman KN, Loneragan GH, Norby B, Scott HM, Shariat NW.
 2021. Antimicrobial resistance hidden within multiserovar *Salmonella* populations.
 Antimicrob Agents Chemother 65:e00048-21.
- 20. United States Department of Agriculture Food Safety and Inspection Service.
 Microbiology Laboratory Guidebook Isolation and identification of Salmonella

- from meat, poultry, pasteurized egg, and catfish products and carcass and environmental sponges.
- 21. Cason J, Cox N, Buhr R, Bourassa D, Richardson L. 2011. Probability of identifying different *Salmonella* serotypes in poultry samples, p. P75–76; abstr 262P. *In* International Poultry Scientific Forum. Southern Poultry Science Society, Mississippi State, MS.
- 22. Cox NA, Berrang ME, House SL, Medina D, Cook KL, Shariat NW. 2019.
 Population analyses reveal preenrichment method and selective enrichment media
 affect Salmonella serovars detected on broiler carcasses. J Food Prot 82:1688–1696.
- 23. Thompson CP, Doak AN, Amirani N, Schroeder EA, Wright J, Kariyawasam S, Lamendella R, Shariat NW. 2018. High-resolution identification of multiple Salmonella serovars in a single sample by using CRISPR-SeroSeq. Appl Environ Microbiol 84:e01859-18.
- 24. Vohra P, Bugarel M, Turner F, Loneragan GH, Hope JC, Hopkins J, Stevens MP.
 2018. Quantifying the survival of multiple *Salmonella enterica* serovars *in vivo* via massively parallel whole-genome sequencing to predict. Appl Environ Microbiol 84:e02262-17.
- 25. Touchon M, Rocha EPC. 2010. The small, slow and specialized CRISPR and anti-CRISPR of *Escherichia* and *Salmonella*. PLoS One 5:14.
- 26. Fabre L, Zhang J, Guigon G, Le Hello S, Guibert V, Accou-Demartin M, De Romans S, Lim C, Roux C, Passet V, Diancourt L, Guibourdenche M, Issenhuth-Jeanjean S, Achtman M, Brisse S, Sola C, Weill F-X. 2012. CRISPR typing and subtyping for improved laboratory surveillance of *Salmonella* infections. PLoS One 7:e36995.

- 27. Shariat N, Timme RE, Pettengill JB, Barrangou R, Dudley EG. 2015.
 Characterization and evolution of *Salmonella* CRISPR-Cas systems. Microbiology 161:374–386.
- 28. Bugarel M, Bakker H den, Grout J, Vignaud M-L, Loneragan GH, Fach P, Brisabois A. 2018. CRISPR-based assay for the molecular identification of highly prevalent *Salmonella* serotypes. Food Microbiol 71:8–16.
- 29. Richards A, Hopkins B, Shariat N. 2020. Conserved CRISPR arrays in *Salmonella* enterica serovar Infantis can serve as qPCR targets to detect Infantis in mixed serovar populations. Lett Appl Microbiol 71:138-145.
- 30. Deaven AM, Ferreira CM, Reed EA, Chen See JR, Lee NA, Almaraz E, Rios PC, Marogi JG, Lamendella R, Zheng J, Bell RL, Shariat NW. 2021. *Salmonella* genomics and population analyses reveal high inter- and intra- serovar diversity in freshwater. Appl Environ Microbiol 87:e02594-20.
- 31. Rasamsetti S, Berrang M, Cox NA, Shariat NW. 2021. Selective pre-enrichment method to lessen time needed to recover *Salmonella* from commercial poultry processing samples. Food Microbiol 99:103818.
- 32. Rajan K, Shi Z, Ricke SC. 2017. Current aspects of *Salmonella* contamination in the US poultry production chain and the potential application of risk strategies in understanding emerging hazards. Crit Rev Microbiol 43:370–392.
- 33. Williams MS, Ebel ED, Saini G, Nyirabahizi E. 2020. Changes in *Salmonella* contamination in meat and poultry since the introduction of the pathogen reduction and hazard analysis and critical control point rule. J Food Prot 83:1707–1717.

- 34. Rimet C-S, Maurer JJ, Pickler L, Stabler L, Johnson KK, Berghaus RD, Villegas AM, Lee M, França M. 2019. *Salmonella* harborage sites in infected poultry that may contribute to contamination of ground meat. Front Sustain Food Syst 3:2.
- 35. Antunes P, Mourão J, Campos J, Peixe L. 2016. Salmonellosis: the role of poultry meat. Clin Microbiol Infect 22:110–121.
- 36. Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Dewulf J, Hald T, Michel V, Niskanen T, Ricci A, Snary E, Boelaert F, Messens W, Davies R. 2019. Salmonella control in poultry flocks and its public health impact. EFSA J 17:e05596.
- 37. USDA-FSIS. USDA-FSIS *Salmonella* Performance Standards.
- 38. United States Department of Agriculture FSIS. 2014. Serotypes profile of *Salmonella* isolates from meat and poultry products January 1998 through December 2014.
- 39. Cheng Y, Pedroso AA, Porwollik S, McClelland M, Lee MD, Kwan T, Zamperini K, Soni V, Sellers HS, Russell SM, Maurer JJ. 2015. Regulated core genes involved in the competitive fitness of *Salmonella enterica* serovar Kentucky in the intestines of chickens. Appl Environ Microbiol 81:502–514.
- 40. Thames H, Fancher C, Gates Colvin M, McAnally M, Tucker E, Nuthalapati N, Zhang L, Kiess A, Dinh T, Sukumaran A. 2021. Prevalence of *Salmonella*, *Campylobacter*, and spoilage bacteria on broiler meat at different stages of commercial poultry processing, p. 5. *In* 2021 International Poultry Scientific Forum.

- 41. Hardie KM, Guerin MT, Ellis A, Leclair D. 2019. Associations of processing level variables with *Salmonella* prevalence and concentration on broiler chicken carcasses and parts in Canada. Prev Vet Med 168:39–51.
- 42. Ramirez-Hernandez A, Bugarel M, Kumar S, Thippareddi H, Brashears MM, Sanchez-Plata MX. 2019. Phenotypic and genotypic characterization of antimicrobial resistance in *Salmonella* strains isolated from chicken carcasses and parts collected at different stages during processing. J Food Prot 82:1793–1801.
- 43. Obe T, Nannapaneni R, Schilling W, Zhang L, McDaniel C, Kiess A. 2020.

 Prevalence of *Salmonella enterica* on poultry processing equipment after completion of sanitization procedures. Poult Sci 99:4539–4548.
- 44. González RJ, Sampedro F, Feirtag JM, Sánchez-Plata MX, Hedberg CW. 2019.

 Prioritization of chicken meat processing interventions on the basis of reducing the
 Salmonella residual relative risk. J Food Prot 82:1575–1582.
- 45. Abdullah WZW, Mackey BM, Karatzas KAG. 2017. High phenotypic variability among representative strains of common *Salmonella enterica* serovars with possible implications for food safety. J Food Prot 81:93–104.
- 46. Chia TWR, Goulter RM, McMeekin T, Dykes GA, Fegan N. 2009. Attachment of different *Salmonella* serovars to materials commonly used in a poultry processing plant. Food Microbiol 26:853–859.
- 47. Arnold JW, Silvers S. 2000. Comparison of poultry processing equipment surfaces for susceptibility to bacterial attachment and biofilm formation. Poult Sci 79:1215–1221.

- 48. Dantas STA, Camargo CH, Tiba-Casas MR, Vivian RC, Pinto JPAN, Pantoja JCF, Hernandes RT, Fernandes Júnior A, Rall VLM. 2020. Environmental persistence and virulence of *Salmonella* spp. isolated from a poultry slaughterhouse. Food Res Int 129:108835.
- 49. Obe T, Richards AK, Shariat NW. 2021. Differences in biofilm formation of *Salmonella* serovars on two surfaces under two temperature conditions. J Appl Microbiol 00:1–11.
- 50. Barrow PA. 1991. Experimental infection of chickens with *Salmonella enteritidis*. Avian Pathol 20:145–153.
- 51. Suzuki S. 1994. Pathogenicity of *Salmonella enteritidis* in poultry. Int J Food Microbiol 21:89–105.
- 52. Gardner Iana. 2004. An epidemiologic critique of current microbial risk assessment practices: the importance of prevalence and test accuracy data. J Food Prot 67:2000–2007.
- 53. Kovac J, Cummings KJ, Rodriguez-Rivera LD, Carroll LM, Thachil A, Wiedmann M. 2017. Temporal genomic phylogeny reconstruction indicates a geospatial transmission path of *Salmonella* Cerro in the United States and a clade-specific loss of hydrogen sulfide production. Front Microbiol 8:737.
- 54. USDA-NASS. 2021. USDA Georgia County Estimates Cattle 2020-2021.
- 55. Jiang X. 2016. Prevalence and characterization of *Salmonella* in animal meals collected from rendering operations. J Food Prot 79:1026–1031.
- 56. Parker EM, Parker AJ, Short G, O'Connor AM, Wittum TE. 2022. *Salmonella* detection in commercially prepared livestock feed and the raw ingredients and

- equipment used to manufacture the feed: a systematic review and meta-analysis. Prev Vet Med 198:105546.
- 57. Foley S, Nayak R, Hanning I, Johnson T, Han J, Ricke S. 2011. Population dynamics of *Salmonella enterica* serotypes in commercial egg and poultry production. Appl Environ Microbiol 77:4273–9.
- 58. Berghaus RD, Thayer SG, Law BF, Mild RM, Hofacre CL, Singer RS. 2013.

 Enumeration of *Salmonella* and *Campylobacter* spp. in environmental farm samples and processing plant carcass rinses from commercial broiler chicken flocks. Appl Environ Microbiol 79:4106–4114.
- 59. Berghaus R, Thayer S, Maurer J, Hofacre C. 2011. Effect of vaccinating breeder chickens with a killed *Salmonella* vaccine on *Salmonella* prevalences and loads in breeder and broiler chicken flocks. J Food Prot 74:727–734.
- 60. Sargeant JM, Totton SC, Plishka M, Vriezen ER. 2021. *Salmonella* in animal feeds: a scoping review. Front Vet Sci 8:727495.
- 61. Magossi G, Bai J, Cernicchiaro N, Jones C, Porter E, Trinetta V. 2019. Seasonal presence of *Salmonella* spp., *Salmonella* Typhimurium and Its monophasic variant serotype I 4,[5],12:i:-, in selected United States swine feed mills. Foodborne Pathog Dis 16:276–281.
- 62. Henzler DJ, Opitz HM. 1992. The role of mice in the epizootiology of *Salmonella* enteritidis infection on chicken layer farms. Avian Dis 36:625–631.
- 63. Roche AJ, Cox NA, Richardson LJ, Buhr RJ, Cason JA, Fairchild BD, Hinkle NC.
 2009. Transmission of *Salmonella* to broilers by contaminated larval and adult lesser mealworms, *Alphitobius diaperinus* (Coleoptera: Tenebrionidae). Poult Sci 88:44–48.

- 64. Dale EL, Nolan SP, Berghaus RD, Hofacre CL. 2015. On farm prevention of Campylobacter and Salmonella: lessons learned from basic biosecurity interventions. J Appl Poult Res 24:222–232.
- 65. Pal A, Bailey MA, Talorico AA, Krehling JT, Macklin KS, Price SB, Buhr RJ, Bourassa D V. 2021. Impact of poultry litter *Salmonella* levels and moisture on transfer of *Salmonella* through associated *in vitro* generated dust. Poult Sci 100:101236.
- 66. Boubendir S, Arsenault J, Quessy S, Thibodeau A, Fravalo P, Thériault WP, Fournaise S, Gaucher M-L. 2020. *Salmonella* contamination of broiler chicken carcasses at critical steps of the slaughter process and in the environment of two slaughter plants: prevalence, genetic profiles, and association with the final carcass status. J Food Prot 84:321–332.
- 67. Singer RS, Mayer AE, Hanson TE, Isaacson RE. 2009. Do microbial interactions and cultivation media decrease the accuracy of *Salmonella* surveillance systems and outbreak investigations? J Food Prot 72:707–713.
- 68. Gorski L. 2012. Selective enrichment media bias the types of *Salmonella enterica* strains isolated from mixed strain cultures and complex enrichment broths. Plos One 7:e34722.
- 69. Larsen BR, Richardson KE, Obe T, Schaeffer C, Shariat NW. 2021. Mixed *Salmonella* cultures reveal competitive advantages between strains during preenrichment and selective enrichment. J Food Saf 41:e12934.

- 70. Obe T, Berrang ME, Cox NA, House SL, Shariat NW. 2021. Comparison of selective enrichment and plating media for *Salmonella* isolation from broiler carcasses. J Food Saf 41:e12928.
- Sanchez S, Hofacre CL, Lee MD, Maurer JJ, Doyle MP. 2002. Animal sources of salmonellosis in humans. J Am Vet Med Assoc 221:492–497.
- 72. Vosik D, Tewari D, Dettinger L, M'ikanatha NM, Shariat NW. 2018. CRISPR typing and antibiotic resistance correlates with polyphyletic distribution in human isolates of *Salmonella* Kentucky. Foodborne Pathog Dis 15:101–108.
- 73. Nguyen S V, Harhay DM, Bono JL, Smith TPL, Fields PI, Dinsmore BA, Santovenia M, Wang R, Bosilevac JM, Harhay GP. 2018. Comparative genomics of *Salmonella enterica* serovar Montevideo reveals lineage-specific gene differences that may influence ecological niche association. Microb Genomics 4.

CHAPTER 3

LONGITUDINAL STUDY HIGHLIGHTS PATTERNS OF SALMONELLA SEROVAR CO-OCCURRENCE AND EXCLUSION IN COMMERCIAL POULTRY $PRODUCTION^1$

¹Siceloff AT, Waltman D, Nolan SP, Gunning CE, Rohani P, Shariat, NW.

Submitted to Frontiers in Microbiology, 02/03/25.

Abstract

Recent advances in next-generation sequencing approaches have revealed that Salmonella often exists in multiserovar populations, with important implications for public health as time and resource constraints limit serovar characterization by colonybased isolation methods. It is important to characterize Salmonella population dynamics to then understand how the microbial ecology influences serovar evolution and thus, animal and human health outcomes. Chicken remains the leading source of foodborne Salmonella outbreaks in the U.S., despite reductions in contamination at the product level, underscoring the need for targeted control strategies. This study aimed to survey multiserovar Salmonella populations in broiler breeder flocks and monitor fluctuations throughout production. Deep serotyping was performed on environmental breeder samples collected over two years as part of a surveillance program. About 18% (104/568) of samples contained multiple serovars, with serovar Kentucky negatively associated with other serovars, often excluding them. Longitudinal sampling across two commercial complexes over 65 weeks included pullet and breeder farms. Environmental samples were collected via pre-moistened boot socks and rodent bait boxes, with on-farm rodents captured. Salmonella prevalence in pullet flocks was 17% (11/64), while 41% (135/330) of breeder samples were positive, peaking at 38 weeks of age. Rodents showed 35% (17/49) positivity in gastrointestinal samples and 9% (3/33) in bait station swabs, with six serovars identified, three of which were shared with flocks. Our cross-sectional and longitudinal Salmonella surveillance highlights the complexity of serovar interactions with further work required to elucidate the mechanisms of competitive exclusion.

Introduction

Salmonella is a leading bacterial cause of foodborne illness in the United States, with an estimated 1.35 million infections, 26,500 hospitalizations, 420 deaths, and cost of illness of over \$4 billion USD annually (Centers for Disease Control and Prevention, n.d.; United States Department of Agriculture - Economic Research Service, 2021). While Salmonella is ubiquitous in the environment, most Salmonella illnesses are foodborne, with more than 75% of outbreaks attributed to seven food categories (chicken, fruits, pork, seeded vegetables, other produce, beef, turkey) (Interagency Food Safety Analytics Collaboration, 2024). Importantly, chicken is considered the largest single food contributor, accounting for 19.7% of Salmonella outbreaks (Interagency Food Safety Analytics Collaboration, 2024). The use of post-harvest antimicrobial interventions in domestic broiler processing plants has supported a significant decrease in Salmonella incidence from 8.9% in 2016 to 6.5% in 2022, based on surveillance data collected in the contiguous states by the United States Department of Agriculture - Food Safety and Inspection Service (USDA – FSIS)(United States Department of Agriculture - Food Safety and Inspection Service, 2023); however, this has not been accompanied by a reduction in attribution of poultry in human salmonellosis cases (Centers for Disease Control and Prevention, n.d.; United States Department of Agriculture - Food Safety and Inspection Service, 2022). To maximize the success of post-harvest interventions, it is necessary to reduce the load of Salmonella entering the plant, which in turn requires increased pre-harvest control and surveillance (Bailey, 1993).

Salmonella enterica subsp. enterica is responsible for 99% of human salmonellosis, and it is comprised of over 1,500 different serovars, as identified by their

lipopolysaccharide (O) and flagellar (H) antigens (Grimont and Weill, 2007; Lamas et al., 2018). In 2022, the five most commonly isolated serovars from human clinical cases in the United States were Enteritidis (2.7 cases per 100,000 population), Typhimurium (1.6), Newport (1.4), Javiana (0.9), and I 4, [5], 12: i: (0.6); these have also been the top five serovars annually since 2010 (Centers for Disease Control and Prevention, n.d.; Delahoy et al., 2022). Four of the five serovars are commonly isolated from food animal sources (poultry, beef, swine), while serovar Javiana is often attributed to fresh produce and thought to be associated with reptiles (Centers for Disease Control and Prevention, n.d.; Mukherjee et al., 2019). Different serovars pose different risks to public health based on their host restriction and adaptation (Uzzau et al., 2000), pathogenicity (Cheng et al., 2019), and propensity to carry antimicrobial resistance genes (Shah, D. H., N. C. Paul, W. C. Sischo, R. Crespo, Guard, 2016). Therefore, for meaningful food safety improvement, it is critical to identify which Salmonella serovars are present within a food product and to target mitigation against those that convey the greatest risk. For example, in poultry, serovars Kentucky and Enteritidis are commonly isolated; serovar Kentucky is not often responsible for human salmonellosis in the United States, while serovar Enteritidis is responsible for the largest number of cases each year (Centers for Disease Control and Prevention, n.d.).

Poultry production begins with pullet flocks, consisting of sexually immature chickens that are raised in single sex houses until ~21 weeks of age. At this point, pullet flocks are divided and transferred to breeder farms, where fertilized eggs will then become broiler chickens that are grown for five to nine weeks before slaughter. Breeder flocks remain in production until ~65 weeks, the average breeder hen will lay around 180

eggs with peak production between 28-32 weeks of age (McDaniel, 2021). In the United States, commercial chicken production is vertically integrated, with each stage of production maintained within a single complex that belongs to a single company (integrator). Poultry disease management (e.g., vaccination) is usually performed at the complex level; this also extends to Salmonella controls (e.g., vaccination, water acidification, or use of litter amendments or pre- and probiotics). For a single integrator, management strategies differ from complex-to-complex, depending on the Salmonella risks and serovars detected at processing. Each complex encompasses both live production (breeder flocks, hatchery, broiler flocks, and feed mill) and processing (slaughter and distribution) stages. This allows for greater control and coordination across the entire supply chain, leading to more efficient production and distribution, and improved food safety and quality control. Vertical integration also supports greater biosecurity control as integrators can limit pathogen introduction to flocks, but subsequently provides the opportunity for vertical transmission of existing pathogens from parent to progeny.

To add further complexity to poultry production, multiple *Salmonella* serovars can exist within a population (Thompson et al., 2018; Rasamsetti et al., 2022; Siceloff et al., 2022; Obe et al., 2023; Rasamsetti and Shariat, 2023; Richards et al., 2024). However, the conventional methods of *Salmonella* culturing typically only identify the most abundant serovar within a population or the serovar that can best outcompete others under certain enrichment conditions (Gorski et al., 2024). For many laboratories, time and resource constraints often necessitate selecting only one colony from an indicator agar plate. For a 95% probability of identifying two serovars from a sample, six colonies

must be isolated and the two serovars must exist in equal proportions (Cason et al., 2011). This limitation can be mitigated in part where careful attention is spent to select a small number of colonies that have different colony morphologies. Alternatively, molecular-based deep serotyping, such as CRISPR-SeroSeq, can provide greater resolution of *Salmonella* populations by identifying multiple serovars that co-occur within a sample. Previous studies on *Salmonella* complexity in poultry have demonstrated that 32% of *Salmonella*-positive samples from breeders and 57% of *Salmonella*-positive broiler houses contain more than one serovar (Siceloff et al., 2022; Obe et al., 2023). At processing, 48% and 7.9% of *Salmonella*-positive carcasses at hot rehang and post-chill, respectively, have multiserovar populations Richards et al., 2024). Our previous study sought to compare the serovars isolated from live production and processing operations to better understand *Salmonella* transmission dynamics in the poultry industry, but the discrepancies between serovars identified at both stages further highlighted the need for high-resolution surveillance to elucidate transmission patterns (Siceloff et al., 2022).

Previous work has demonstrated that both vertical and horizontal transmission of *Salmonella* occurs within a poultry complex, as matching subtypes were isolated from breeder farms and their subsequent broilers both on farm and at processing (Byrd et al., 1998; Liljebjelke et al., 2005; Hannah et al., 2011; Gast et al., 2014; Crabb et al., 2018; Lei et al., 2020). Some serovars, such as Enteritidis, can enter the fertilized egg, which then leads to colonization of the chicks and spread amongst flocks as the birds share a common environment for several weeks of production (Gast and Beard, 1990; Humphrey et al., 1991; Keller et al., 1995; Miyamoto et al., 1997; Guard-Petter, 2001). Additionally, *Salmonella* may be present on the exterior of the eggshell through fecal contamination

(Gantois et al., 2009). Because breeder flocks colonized with *Salmonella* can be a source of downstream *Salmonella* in broiler flocks, integrators have focused on *Salmonella* monitoring and control in their breeder flocks, with elective testing in pullet and breeder flocks around 16 and 42 weeks, respectively.

Effective Salmonella controls in breeders include vaccination and increased biosecurity. Vaccination provides direct and indirect protection of animals against Salmonella colonization There are three types of Salmonella vaccinations used in broiler production the United States: 1) commercial live attenuated vaccines against serovar Typhimurium; 2) a commercial killed vaccine against serovar Enteritidis; and 3) autogenous (killed) vaccines that are generated against specific serovars and are generally limited for use within a single complex. Because delivery of killed vaccines necessitates individual bird handling and the multiplication of broilers is so large, use of these vaccines is typically restricted to breeders. It has been observed that live attenuated vaccines can provide cross-protection to animal hosts against additional serovars other than the original vaccine strain, though the efficacy varies across isogenic groups and serogroups (Tennant et al., 2015; Hofacre et al., 2021; Bearson et al., 2024). Increased on-farm biosecurity can also help prevent Salmonella transmission; best practices include not sharing equipment between farms or cleaning equipment before use, disinfecting vehicles before entering the property, use of disposable boot covers and sanitizing footbaths prior to entering a house, controlling rodent and insect populations, maintaining dry litter, and ensuring that the houses are structurally intact to prevent any interactions with wildlife (United States Department of Agriculture - Animal and Plant Health Inspection Service, n.d.). In addition to human activity, rodents and insects may serve as

disease carriers and introduce pathogens, such as *Salmonella*, to poultry flocks (Henzler and Opitz, 1992; Davies and Wray, 1995; Goodwin and Waltman, 1996; Garber et al., 2003; Meerburg and Kijlstra, 2007; Lapuz et al., 2012; Trampel et al., 2014; Dale et al., 2015; Raufu et al., 2019; Smith et al., 2022).

The overall goal of this study was to measure the changes in *Salmonella* prevalence and serovar population dynamics during broiler breeder production and determine the incidence of multiserovar populations in breeder flocks. Additionally, we sought to assess if *Salmonella* transmission was occurring between breeder flocks and rodent populations. The study was accomplished in two parts. First, to investigate broad *Salmonella* patterns in breeder flocks, we performed deep serotyping on 568 blinded samples collected from breeder flocks over a two-year period. Second, to more finely assess *Salmonella* prevalence and serovar dynamics in breeders, we collected monthly samples from eight breeder flocks (13 different houses) and their source pullet flocks as well as rodents from the corresponding farms over one full production cycle (65 weeks) and used deep serotyping to assess *Salmonella* populations. Our findings highlight the importance of on-farm biosecurity and reveal, for the first time, patterns of serovar co-occurrence and exclusion.

Materials and methods

Longitudinal breeder flock sample collection and Salmonella culturing

Across two commercial complexes (Complexes 1 and 2), 15 pullet (five farms) and 13 breeder houses (seven farms) were sampled over a 65-week production period. Pullets were sampled at weeks 14 and 21, then breeders sampled monthly, apart from weekly sampling during peak production (29-31 weeks). Prior to flock placement, the

empty, cleaned out breeder houses were sampled to determine if there was any residual *Salmonella* contamination from the previous flock. Complex 2 Farm 1 (2-1) was not sampled prior to placement as the birds had been moved early but it was cleaned out previously to the same standard as the other farms. Two pre-moistened boot sock pairs (Romer Labs, Newark, DE) were collected from each house, walking between the feed and water lines on both sides of the scratch (pullets) or on the slats (breeders), and cultured for *Salmonella* (n = 394). Rodents (mice (*Mus musculus*) plus roof (*Rattus rattus*) and Norway (*Rattus norvegicus*) rats; n = 355 carcasses across 49 composite samples) were captured from breeder farms by an integrated pest management company and tested for *Salmonella*, along with bait station swabs (n = 33).

All samples were stored on ice during transportation. 200 mL of buffered peptone water (BPW; Neogen, Lansing, MI) was added to each boot sock and homogenized with a Seward stomacher (Stomacher® 400 Circulator Lab Blender, Bohemia, NY) for two minutes at 230 rpm. Following Hygiena's protocol for *Salmonella* enrichment and quantification (data not shown), 60 mL of BPW was transferred to 60 mL of pre-warmed MP media (Hygiena, Camarillo, CA) with novobiocin (40 mg/L; Thermo Scientific Chemicals, Waltham, MA) and incubated shaking at 42°C for 10 hours. Subsequently, 1 mL of culture was inoculated into 10 mL of tetrathionate (TT; Hardy Diagnostics, Santa Maria, CA), then incubated at 37°C for 20-24 hours. For the rodent samples, 200 mL BPW with novobiocin (40 mg/L) was added to the removed gastrointestinal (GI) tract, homogenized, and incubated at 42°C for 20-24 hours, then 1 mL and 0.1 mL of culture were added to 10 mL of TT and Rappaport-Vassiliadis (RV; Hardy Diagnostics, Santa Maria, CA) broth, respectively, and incubated at 37°C for 20-24 hours. Following

selective enrichment, all cultures were streaked onto xylose lysine tergitol-4 (XLT-4; Hardy Diagnostics, Santa Maria, CA) plates, then incubated at 37°C for 24-48 hours. Any presumptive *Salmonella* colonies were restreaked onto Luria-Bertani (LB; Hardy Diagnostics, Santa Maria, CA) agar, then confirmed with serum agglutination (BD Difco, Franklin Lakes, NJ). All enrichments were pelleted via centrifugation at 14,000 rpm for 3 minutes, then stored at -20°C.

GPLN sample collection

Several commercial poultry integrators participate in a routine Salmonella surveillance program through the Georgia Poultry Laboratory Network (GPLN), where samples are collected from breeder flocks at approximately 16 weeks (pullets; pre-egg production) and 40 weeks (post-peak egg production). In addition to integrators with conventional broiler breeder flocks, hatching egg companies maintain breeder flocks and these must be tested for Salmonella every 30 days in accordance with the National Poultry Improvement Plan (NPIP). The data in this study includes five different hatching egg companies, 11 different integrators, and six breeding companies. For each breeder flock, up to six samples are submitted in a single accession, typically with two boot socks in Whirl-Pak bags collected from the slats on each side of the house (left, right), two boot socks through the middle scratch area, and two miscellaneous environment samples (e.g., egg belt or ventilator fan swabs); only the four standardized samples were considered for this study. The metadata affiliated with each sample includes age of flock (if available), coded company name (to maintain blinded study), sample type, and date submitted. As part of a previous study, a subset of these samples (n = 134) was analyzed in comparison to processing plant samples and the results were published (Siceloff et al., 2022).

Between 125 and 150 mL of tetrathionate (TT) enrichment broth was added to each sample, and these were incubated at 37°C for 20 to 24 h. The bags were gently mixed, and 100 µL of enrichment was transferred into a modified semisolid Rappaport-Vassiliadis (MSRV) agar plate, followed by static incubation at 42°C. The plates were checked at 24 and 48 h and transferred onto two types of agar: brilliant green (BG) agar containing novobiocin and xylose lysine tergitol-4 (XLT-4). These were incubated at 37°C for 20 to 24 h, and four presumptive *Salmonella* colonies were selected for further characterization. From each colony, *Salmonella* was confirmed by biochemical identification using the Vitek system (BioMerieux) and serogrouped by conventional serum agglutination (BD Difco, Fisher Scientific, Atlanta, GA; Remel, Lenexa, KS; and SSI Diagnostics, Cedarlane, Burlington, NC). At least one boot sock sample per flock was then serotyped at GPLN using the Luminex xMap molecular assay (Luminex, Austin, TX) to identify the serovars belonging to representative serogroups.

For the days that we collected samples, we selected one *Salmonella*-positive boot sock sample from each breeder flock submitted to GPLN from July 2020 to June 2022 to complete CRISPR-SeroSeq. The samples for the study were collected on one day per week, shifting one day each week to avoid bias by oversampling companies who may regularly submit on the same day of the week. The number of sample collection days differs per month, and the sample number is variable (higher sample numbers later in the week than earlier in the week), so our data set is not uniform across the months but contains at least one sampling day per month over 24 months. From the main sample set, a subset of samples submitted on the same day from breeder flocks on the same farm were chosen to complete a paired house study to measure the rate of on-farm *Salmonella*

transmission. For each *Salmonella*-positive sample, the overnight TT enrichment cultures were briefly vortexed, and 1 mL of each was transferred into microcentrifuge tubes, centrifuged at 2,000 x g for 10 min, and stored at -20°C until later use.

CRISPR-SeroSeq

Total genomic DNA was isolated from the *Salmonella*-positive culture pellets using the Genome Wizard kit (Promega, Madison, WI, USA), according to the manufacturer's instructions, then DNA was resuspended in 200 µl of molecular grade water and stored at -20 °C. For the 134 samples that were previously analyzed, and for the samples from the longitudinal study, the CRISPR-SeroSeq libraries were generated using a 2-step PCR process, with the first PCR targeting the conserved CRISPR direct repeat sequences and the second PCR adding Illumina adaptors and index sequences as described (Thompson et al., 2018). For the remaining samples, a 1-step PCR was used with the Illumina adaptors and index sequences incorporated into the same primers as the target sequence, as described (Richards et al., 2024). The extracted DNA for each Salmonella-positive enrichment was used as template for the reaction, and the PCR products were visualized on a 2% agarose gel to confirm amplification. Following purification with AMPure XP beads (Beckman-Coulter, Indianapolis, IN, USA), the samples were pooled at approximate equimolar ratios and the resulting library was sequenced (150 cycles, single read, Illumina, San Diego, CA, USA).

Sequences were analyzed using the CRISPR-SeroSeq pipeline by means of an R script (version 4.04) that utilizes a local alignment search tool (Altschul et al., 1990) to match experimental reads to a curated database containing the complete CRISPR profiles for over 150 serovars. BLAST matches with 100% coverage and identity are recorded on

an Excel sheet and the relative frequency was calculated with unique spacer reads corresponding to each serovar (Siceloff et al., 2022). Serovars with a relative frequency greater than 0.5% were included in the analysis for all individual samples. Where a spacer was shared between two serovars present in a sample, the unique spacer read counts for each serovar were used to proportionally allocate the reads of the shared spacer to the two serovars. The CRISPR sequences are insufficient to distinguish between serovars Durban, Kokomele, Panama, Pomona, and Reading II, and in this instance, all five serovars are listed. Many *Salmonella* serovars are polyphyletic (Worley et al., 2018; Cherchame et al., 2022), and these evolutionary patterns are reflected in the CRISPR sequences (Shariat et al., 2013; Nguyen et al., 2018; Vosik et al., 2018). Where this occurs (e.g., Montevideo I and II), we have attributed a I, II, or III to indicate different lineages of a single serovar. For the longitudinal study, serovar populations were normalized across both boot socks pairs collected from one house on a single sampling visit.

Statistical analysis

All statistical analyses were conducted with R (version 4.2.3). While the longitudinal dataset includes repeated measures from the same flocks over time, analyses were conducted under the assumption of independence between observations. The paired house subset from the GLPN dataset was normalized using the DESeq2 package (http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html) to adjust the read counts per sample based on the size factors present.

Results

From July 2020 to June 2022, a total of 4,485 samples from 1,421 breeder flocks were submitted to the Georgia Poultry Laboratory Network (GPLN) on our sample collection days, and 35% (1581/4485) of these were *Salmonella*-positive. Flock age information was provided for 92% (4140/4485) of the samples (Fig. 3-1A). One-quarter of the submitted samples were from pullet flocks under 21 weeks of age. Within breeder flocks, most submitted samples were after peak production, between 35 – 50 weeks (34%; 1388/4485). The high proportions at these two time ranges corresponds to the participation of many companies in screening their pullet and breeder flocks around 16 and 42 weeks, respectively. *Salmonella* prevalence was highest in flocks aged 28-35 weeks (42%; 210/495), the time frame that corresponds to breeder peak production. Prevalence was lowest in flocks aged 21-28 weeks (26%; 104/396), and there was an observed relationship between age and prevalence such that the prevalence within each age class was not due to random chance (Fig. 3-1B; p < 0.00005, Chi-squared test).

To assess the overall serovar diversity throughout the GPLN sample set, one *Salmonella*-positive sample was selected from each flock on each collection day to complete deep serotyping using CRISPR-SeroSeq, for a total of 568 samples analyzed with 22 companies represented (Fig. S3-1). A total of 38 serovars were identified, including 16 serovars and one untypeable serovar that were each found in at least five different samples (Tables 3-1, S3-1). There was an average of 1.3 serovars per sample, with a maximum of nine serovars identified from one boot sock. About one-fifth (18%; 104/568) of samples contained more than one serovar (Fig. 3-1C). The measured frequency of multiserovar populations was the greatest in flocks aged 21-28 weeks (pre-

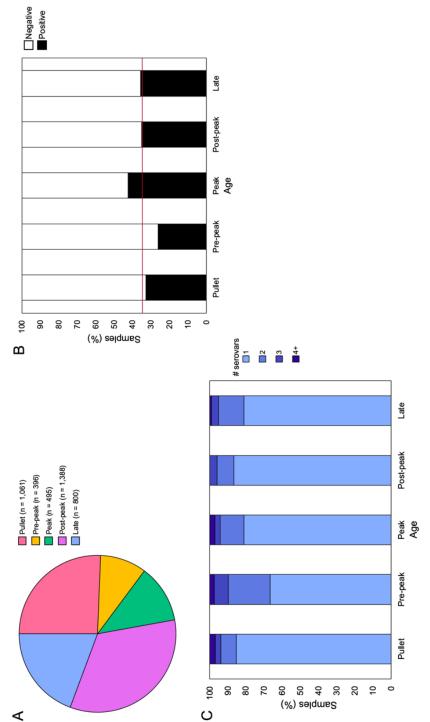


Figure 3-1. Salmonella prevalence and presence of multiserovar populations by age. A) Proportion of submitted breeder samples per age class from July 2020 - June 2022 on predetermined sample collection days (n = 4,140). Categories are defined as – pullet: 0-21 weeks, pre-peak: 21-28 weeks, peak: 28-35 weeks, post-peak: 35-50 weeks, late: after 50 weeks. B) Frequency of submitted samples that were positive or negative for Salmonella in each age class, with an observed relationship between age and prevalence (p < 0.00005, Chi-squared Test). The red horizontal line denotes the average prevalence across the sample set (34.7%). C) Distribution of serovars/sample identified through deep serotyping of 568 Salmonella-positive samples. Counts of multiserovar populations across age classes are varied but not statistically significant (p = 0.06, Fisher's Exact Test)

Table 3-1. CRISPR-SeroSeq summary results from GPLN sample set (n = 568).

Serovar ^a	Frequency ^b	Present (%)°	Alone (%) ^d	Major (%) ^e	Average relative frequency (%) ^f	Months ^g	Companies ^h
Kentucky I	462	81.3	86	65	94	23	20
Cerro	43	7.6	30	57	65	10	5
Mbandaka	34	6	12	17	30	15	7
Typhimurium	25	4.4	32	41	62	14	11
Liverpool	21	3.7	29	53	58	11	6
Infantis	19	3.3	16	12	38	11	6
Alachua	17	3	47	11	61	6	2
Senftenberg II	12	2.1	8	18	36	8	6
Tennessee	9	1.6	11	25	36	5	5
Enteritidis	8	1.4	62	0	72	5	7
Uganda	8	1.4	12	57	49	5	1
Montevideo I	6	1.1	0	17	18	4	3
Montevideo II	6	1.1	0	0	4	3	4
Agona	5	0.9	40	0	45	3	3
Altona	5	0.9	20	25	39	5	2
Anatum	5	0.9	20	25	42	2	3
Untypeable	5	0.9	20	0	32	3	2

^aOnly serovars present in five or more samples were included (n = 17), including eight serovars of clinical importance (bolded), that are most frequently isolated from human samples (Center for Disease Control and Prevention BEAM Dashboard). The suffixes (-I, -II, -III) for some serovars refer to polyphyletic lineages.

^bIndicates the total number of samples each serovar was found in.

^cIndicates the total percentage of samples each serovar was found in.

^dIndicates how often a serovar was the single serovar in a sample.

^eIndicates the frequency in which the serovar was present at a higher relative frequency in a mixed population of multiple serovars.

^fThis was calculated across all 'present' samples.

gIndicates how many months (n = 24) each serovar was identified in.

^hIndicates how many companies (n = 22) each serovar was identified from.

peak production; 33%; 13/39), and lowest in pullet flocks (15%; 19/130) and flocks aged 35-50 weeks (post-peak production; 13%; 26/196). However, there was not a significant difference in the multiserovar populations recorded across the age classes (p = 0.06, Fisher's exact test).

From the deep serotyping results of the GPLN dataset, serovar Kentucky was most often identified as the major serovar within a sample (as defined by the relative frequency): in 86% (396/462) of samples where it was detected, it was the sole serovar and in samples where it co-occurred with another serovar (n = 66), it was the major serovar in 65% (43/66) of these (Fig. 3-2A). The average relative frequency of serovar Kentucky when it was present was 94%, as determined by calculating the mean of relative frequencies in each corresponding sample with deep serotyping results (Table 3-1). Although at a significantly lower incidence, serovar Cerro was the second most prevalent serovar detected (n = 43; 7.6%) followed by serovar Mbandaka (n = 34; 6.0%). When comparing the presence versus majority of the top ten serovars in our dataset, some serovars displayed a higher overall frequency across the samples but lower relative frequency within samples (Fig. 3-2A, top and middle panel). For example, serovar Mbandaka was present in 6.0% of samples (34/568) but was major or alone in 27% (9/34) of these and at an average relative frequency of 30% (Fig. 3-2A and Table 3-1).

To observe any relationships between serovar identity and overall serovar complexity within a sample, we compared the distribution of serovars per sample for the ten most abundant serovars in the dataset (Fig. 3-2A, bottom panel). Serovar Kentucky was most often found as the only serovar within a sample (red dot in Fig. 3-2A; mean = 1.2 serovars per sample when serovar Kentucky is present). Alternatively, serovars Cerro

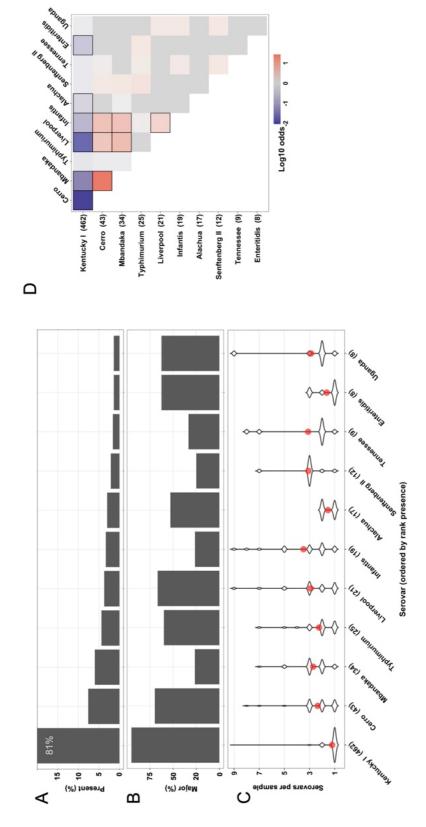


Figure 3-2. Multiserovar population dynamics vary by serovar. Only the top 10 most present serovars from the dataset are shown, with serovars Enteritidis and Uganda tied in 10th place. A) Top bar graph indicates the total sample percentage that each serovar was identified in, with only serovars present in 5 or more samples being displayed. B) Percent of samples in which each serovar was considered major, or most abundant. C) Violin plot shows number of serovars per sample (Y) when a specific serovar (X, ordered by rank presence) is present. Red dots show mean number of serovars per sample (among samples containing each indicated serovar). D) Log10 odds ratio of serovar co-occurrence. Row labels show number of samples where serovar was present. Red shading shows positive association while blue shading show negative association. Black outlines indicate cells with FDR < 0.05.

and Mbandaka were often found within samples containing multiple serovars (mean number of serovars per sample of 2.3 and 2.7, respectively). This trend was observed with five of the other top ten serovars as well, with the exception of serovars Alachua and Enteritidis which were most often detected in samples with low serovar complexity. Of the top 10 most frequently detected serovars, serovar Infantis was detected as a member of the most complex samples (mean number of serovars per sample = 3.5) and was infrequently found alone (16%; 3/19). To determine if there was a pattern of serovar cooccurrence, we calculated the pairwise odds ratio of co-occurrence for the top ten serovars (Fig. 3-2B). To account for multiple comparisons, we controlled the false discovery rate (FDR) at $\alpha = 0.05$ (Benjamini and Yekutieli, 2001). In concordance with previous observations, serovar Kentucky has a significantly negative odds ratio of being identified with other serovars (FDR < 0.05). Serovars Cerro, Mbandaka, Liverpool, and Infantis all had significantly positive odds ratios, indicating that they are more likely to co-occur with each other. This is consistent with the frequent finding of these four serovars in multiserovar populations.

To compare the most common serovar identities between pre- and post-harvest, we downloaded the *Salmonella* regulatory sampling results from domestic poultry processing establishments in Georgia as collected by USDA – FSIS for the same period as the study (2020 – 2022)(Fig. 3-3), and expanded the GPLN dataset to include all boot sock samples with conventional serotyping information (n = 719). Serovar Kentucky was the most abundant serovar across both GPLN and FSIS datasets, with a marked decrease of the second most abundant serovar in the GPLN dataset (serovar Cerro; 5.1% by colony serotyping) but not FSIS (serovars Infantis (24% in parts) and Typhimurium (21% in

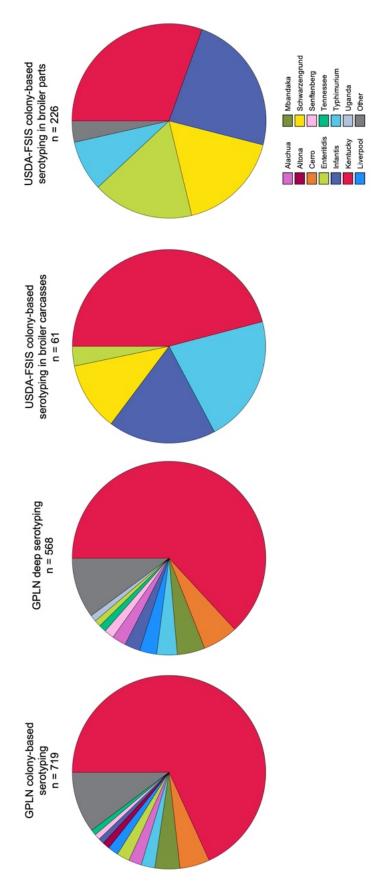


Figure 3-3. Serotyping results of breeder and broiler samples collected in Georgia from August 2020 to June 2022. The two pie charts on the leftmost pie chart contains the CRISPR-SeroSeq results for the GPLN subset analyzed in this study, while the second pie chart includes all samples samples routinely collected at domestic processing establishments by USDA-FSIS, separated by sample type of parts (i.e., legs, breasts, wings) and left represent serotyping results from environmental samples sent to GPLN; only the 10 most frequently identified serovars are reported. The traditionally serotyped (i.e., colony-based) during the study dates. The two pie charts on the right indicate traditional serotyping results from whole carcasses; only the 5 most frequently identified serovars are reported (Raw Poultry Sampling, https://www.fsis.usda.gov/newsevents/publications/raw-poultry-sampling, accessed 5 April 2023.)

carcasses)). Alternatively, serovar Infantis was found 3.3% (19/568) and 0.97% (7/719) of breeder samples through deep serotyping and conventional serotyping, respectively. Similarly, serovar Typhimurium was identified in 4.4% (25/568) of samples with deep serotyping and 2.4% (17/719) of conventionally serotyped breeder samples. Notably, serovar Schwarzengrund was not present in the top 10 serovars isolated from breeder flocks while it was often found at processing. Overall serovar diversity was greater in the pre-harvest samples, with similar profiles observed from both deep serotyping and conventional serotyping due to the selection and typing of multiple colonies for isolation at GPLN, according to the National Poultry Improvement Plan (NPIP) *Salmonella* isolation protocols (United States Department of Agriculture - Animal and Plant Health Inspection Service, 2024).

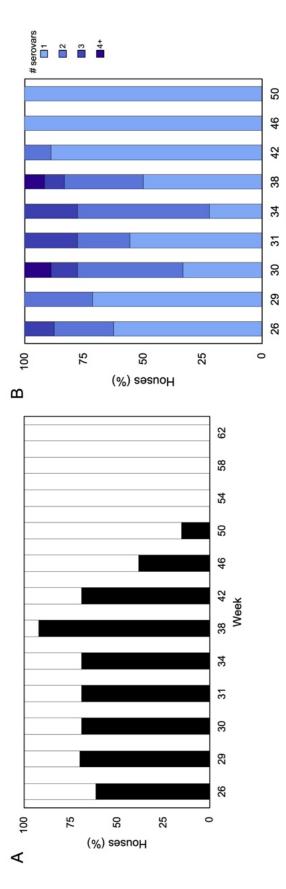
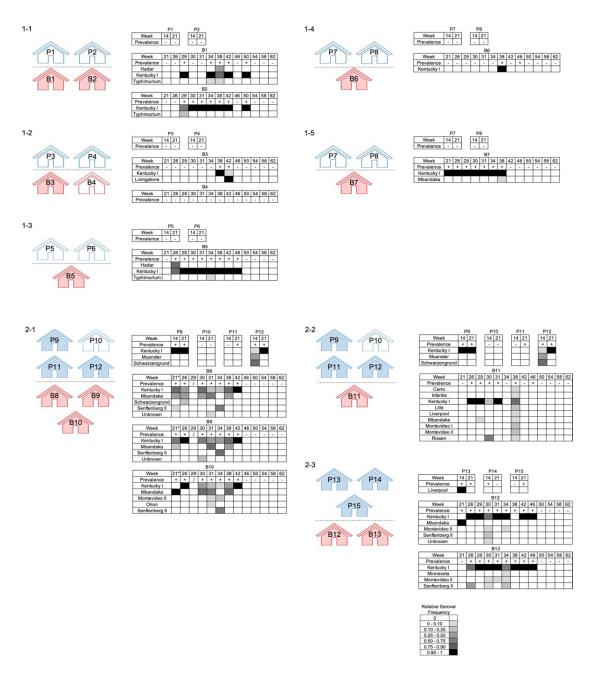

To effectively control *Salmonella*, it is necessary to not only identify all serovars present but also to recognize the sources and transmission patterns of *Salmonella*. Thus, to determine the level of on-farm *Salmonella* transmission, we chose a subset of samples submitted to GPLN representing multiple breeder houses on the same farm that were collected on the same day; this subset is not mutually exclusive from the main GPLN dataset due to the instances where a paired house sample was also the representative sample for the flock accession. In total, there were 322 boot sock samples, each representing a single breeder house across 129 farms. The number of houses on each farm ranged from two to eight houses. The majority of these samples (82%; 265/322) contained only a single serovar, which, as expected, was predominantly serovar Kentucky. There was an average of 1.3 serovars per sample, with a total of 38 farms that contained at least one multiserovar population (i.e., on a single boot sock) (Fig. 3-4). In

Figure 3-4. Multiserovar populations observed among multiple farms with several pullet/breeder houses. Deep serotyping results for farms containing multiserovar populations (38/129) are shown, with samples from the same farm indicated by the vertical lines, age of flock represented by the colored rectangle, and farms with at least one serovar not shared amongst all the houses are denoted with an asterisk. Flocks without provided age information are shown without a corresponding-colored rectangle. Pullet: 0-21 weeks, pre-peak: 21-28 weeks, peak: 28-35 weeks, post-

34 of these 38 farms, there was at least one serovar present that was absent in another house on the same farm. Additionally, there were 10 farms comprised of single serovar populations where at least one house contained a separate serovar from the rest (Fig. S3-2). From the entire paired house dataset (129 farms, 322 houses), the Bray-Curtis dissimilarity was calculated pairwise for all houses on a farm and then averaged to determine the similarity of populations; 70% (90/129) of farms contained similar populations (Bray-Curtis: 0-0.3), with the remaining farms consisting of moderate similarity (23/129; Bray-Curtis: 0.3-0.7) or dissimilar populations (16/129; Bray-Curtis: 0.7-1). Additionally, an ANOVA model indicated the Shannon diversity index based on present serovars varied with age class (p < 0.005). Collectively, these results demonstrate that serovar complexity may be influenced by the presence of multiple houses on one farm but also depends on the age of the flock.


The high-resolution viewpoint of *Salmonella* populations in breeder flocks provided above is useful to identify broad patterns but we next sought to more closely investigate whether *Salmonella* incidence and serovar population dynamics change through the lifetime of individual flocks. For this longitudinal study, 394 boot sock samples were collected from 15 pullet houses (P1-P15, across five flocks) and 13 breeder houses (B1-B13, across eight flocks; sourced from the 15 pullet houses) across two commercial broiler breeder complexes (1 and 2) over a 65-week production period (Fig. S3-3). Importantly, Complex 1 employed an integrated pest control service to control rodent and insect populations, while Complex 2 relied on farm staff. Sampling was increased during peak production (i.e., when the hens are laying the most eggs; weeks 29-31 in this study) because we hypothesized that the birds would be shedding more

(n = 13) that were positive or negative for Salmonella during each sampling week (n = 12). One farm was inaccessible during week 29, so only 10 houses are represented at that timepoint. B) Distribution of single and multiserovar populations identified in each house. Spearman's Figure 3-5. Salmonella prevalence and serovar complexity throughout one breeder production cycle. A) Proportion of breeder houses rank correlation suggests that there is a stronger association between prevalence and complexity (r_s = 0.79, p = 0.01 (Spearman's rank correlation rho)).

Salmonella during this time due to stress; however, we found that Salmonella prevalence peaked at 38 weeks (Fig. 3-5A). Overall, 37% (146/394) of samples were Salmonella-positive, with a prevalence of 17% (11/64) and 41% (135/330) from pullet and breeder samples, respectively. Only the pullet houses in Complex 2 were positive for Salmonella (6/7 houses), while 92% (12/13) of breeder houses across both complexes were Salmonella-positive at least one sampling point (Fig. S3-3). Importantly, only two breeder flocks were positive at week 50 (flocks B1 and B2, which were on the same farm), and no flocks were positive after this time. We observed a parabolic curve of the prevalence over the duration of the study, such that the prevalence increased until week 38, and this was accompanied by a corresponding increase in multiserovar populations (Fig. 3-5B; $r_s = 0.79$; p = 0.01, Spearman's rank correlation r).

Deep serotyping of breeder flocks detected five serovars in Complex 1 and 15 serovars in Complex 2 (Fig. 3-6; p < 0.00005, Shannon diversity index with Hutcheson t-test). There was a maximum of nine serovars detected from one flock (B11, week 38), with an average of 1.6 serovars per sample. Four serovars were found in pullet flocks from Complex 2. Two out of the four serovars (Kentucky and Schwarzengrund) identified in the pullets were also found in the corresponding breeder flocks. In pullets, 18% (2/11) of boot socks contained more than one serovar, while 38% (51/135) of boot socks from breeders had multiserovar populations. Serovar Kentucky was the most predominantly identified serovar from the breeder flocks, being detected in all (n = 12) breeder flocks that were *Salmonella*-positive. Serovar Mbandaka was also frequently detected (5/6 flocks from Complex 2). Of note is that serovar Mbandaka was only detected in one source pullet flock (P13). Across the two complexes, serovar complexity

Figure 3-6. Salmonella prevalence and serovar distribution in pullet and breeder flocks across two complexes. Pullet (blue) and breeder (red) houses are shown; Salmonella-positive houses are indicated by shading. The breeder flocks that originated from shared pullet flocks are indicated by the numbering. The prevalence indicates whether or not a house was positive (+) or negative (-) for Salmonella on the corresponding sampling week. The relative serovar frequencies are reported as determined by deep serotyping via CRISPR-SeroSeq. *The houses on Complex 2 Farm 1 (2-1) had birds placed the morning of week 21 so the houses were not empty during sampling, but they were cleaned out prior.

was highest in samples collected during weeks 30, 31, 34, and 38 (Fig. 3-5B; p = 0.02, Fisher's exact test). Collectively, these data demonstrate that *Salmonella* serovar diversity differs between complexes and management strategies, namely integrated pest control, and *Salmonella* surveillance could be optimized around 34-38 weeks.

To evaluate whether Salmonella transmission occurs between rodents and breeder flocks, we tested rodents collected on the breeder farms, both inside and outside the houses. During the production cycle and immediately following farm depopulation, the gastrointestinal (GI) tract of 355 rodents (49 composite samples with a maximum of 10 GI tracts included for individuals of the same species that were captured from the same house) were cultured for Salmonella, along with 33 bait station swabs. House mice provided the majority of GI tracts (300/355; 38/49 composite samples), followed by roof rats (46/355; 8/49), and Norway rats (9/355; 3/49). In total, 35% (17/49) of composite samples and 9% (3/33) of bait station swabs were Salmonella-positive, and six serovars were identified (Fig. 3-7). None of the Norway rats were positive for Salmonella, while 50% (4/8) of the roof rat and 34% (13/38) of the house mice composite samples were positive. As observed within the breeder flocks, serovar Kentucky was most often present within the rodent samples as well. Serovar Mbandaka was only recovered in the bait station swabs although it was also identified in the boot socks collected from the breeder flocks. Interestingly, serovars Anatum, Cubana, and Enteritidis were isolated exclusively from rodents and not any flock samples, demonstrating that external factors may influence cyclical transmission and rodent populations can introduce Salmonella to breeder flocks.

Week	Flock	Sample	n	RV	П	Anatum	Cubana	Enteritidis	Hadar	Kentucky	Mbandaka
pre-placement	1-1	Bait station swab	-		х						
pre-placement	1-1	Mouse	1	х							
pre-placement	1-1	Mouse	1		х						
end of placement	1-1	Mouse	10		х						
mid-placement	1-3	Mouse		х							
end of placement	1-3	Mouse			х						
end of placement	1-3	Roof rat		Х							
end of placement	1-3	Roof rat	1		Х						
pre-placement	1-5	Mouse	10	х							
pre-placement	1-5	Mouse	10		х						
pre-placement	2-1	Mouse	10		х						
pre-placement	2-1	Mouse	10		х						
mid-placement	2-1	Bait station swab			х						
mid-placement	2-1	Mouse	1		х						
mid-placement	2-1	Mouse			Х						
mid-placement	2-1	Mouse			х						
mid-placement	2-1	Roof rat			Х						
end of placement	2-1	Mouse			Х						
end of placement	2-1	Mouse		Х							
end of placement	2-1	Mouse			Χ						
pre-placement	2-2	Bait station swab	-		х						
mid-placement	2-2	Roof rat	1		Х						

_	
Relative Sero	var
Frequency	1
0	
0 - 0.10	
0.10 - 0.25	
0.25 - 0.50	
0.50 - 0.75	
0.75 - 0.90	
0.90 - 1	

Figure 3-7. Salmonella serovars isolated from rodent composite samples and bait station swabs. The week column corresponds to the flock age when sampling, n includes how many individual rodents comprised the composite sample, and the RV/TT columns indicate the selective media that Salmonella was recovered from. The relative serovar frequencies are reported as determined by deep serotyping via CRISPR-SeroSeq. Three of the identified serovars were also found in the corresponding flock samples.

Discussion

This study, to our knowledge, is the first to characterize changes in multiserovar populations over time in breeder flocks and also to document significant patterns of Salmonella serovar co-occurrence in any animal production system. About 20% (104/568) of breeder flocks from this study contain multiple Salmonella serovars, which demonstrates the need for routine surveillance to identify all serovars present to properly assess the risk and apply mitigation strategies. Our previous work (Siceloff et al., 2022) with a subset of samples from the GPLN dataset found 32% (43/134) contained multiple serovars; this difference in multiserovar populations may be attributed to the four-fold increase in the number of isolates/samples in the dataset which may have led to a decrease in multiserovar prevalence but overall increase in serovar diversity, as the current study identified 38 serovars while the previous found 26 serovars. Serovar diversity may still be underrepresented in this study as we only analyzed one boot sock collected from each flock. Other work, albeit in broiler flocks, not breeders, has demonstrated the need to collect two boot sock pairs for a more complete understanding of the Salmonella population dynamics (Obe et al., 2023). In that study, which began after we started the current study, it was noted that a single boot sock pair from a broiler house was not always sufficient to capture the full serovar diversity in a single house because in 33% of instances, deep serotyping data from a second boot sock pair contained another serovar. Here, in our 15-house longitudinal study, 20% of instances required two boot socks. Nonetheless, deep serotyping identifies more serovars than isolated by culture alone (38 serovars with CRISPR-SeroSeq vs 32 serovars with colony

picking in 568 GPLN samples) and so provides a better idea of the complexity of serovar ecology within our dataset.

From surveillance sampling through GPLN, 35% of breeder flocks were Salmonella-positive, while 43% of samples from the longitudinal study were positive. Since GPLN receives the most samples around 16 and 42 weeks, the resulting prevalence may be an underestimation as samples from flocks around the peak and late age classes are not submitted as often. Together, the overall prevalences are comparable to a longitudinal study conducted in Australia, where 36% of breeder flocks were Salmonellapositive but higher than the prevalence observed from breeder flocks in Ontario, Canada (25%)(Murray et al., 2023; Willson and Chousalkar, 2023). Our results differ from the Australian study with regards to peak Salmonella prevalence as they found their highest number of positive samples at week 7. These results may differ due to geography and different management and production practices between the United States and Australia. Further, serovar profiles as detected by deep serotyping may not be wholly reflective of native Salmonella populations within hosts as selective enrichment is required prior to sequencing and may promote media bias. Previous work has demonstrated that media bias exists, such that some serovars may be preferentially enriched in one medium when compared to another, and this may be partially overcome by the use of multiple enrichment media (Gorski et al., 2024). In this study, only tetrathionate (TT) broth was used in culturing the breeder boot sock samples since we opted to follow industry standards, as prescribed by NPIP, and so, we acknowledge that the resulting serovar profiles may be skewed.

Our results from GPLN show that *Salmonella* prevalence is highest during peak production (28-35 weeks), while our longitudinal study, which was limited to two complexes, suggest that peak prevalence occurs at 38 weeks. Another difference in the two studies presented here is that in the GPLN data, 36% (286/800) of flocks older than 50 weeks were positive for *Salmonella*, while in the longitudinal study, none of the flocks were positive after 50 weeks. Additionally, some serovars were more abundant in the GPLN dataset when compared to the longitudinal study, including the frequent identification of both serovars Cerro and Mbandaka. Therefore, while this study demonstrates that broad surveillance approaches can generate strong trends with respect to *Salmonella* prevalence, integrators should consider that their complexes may differ in terms of determining the peak shedding period and the serovar profiles. This is important since optimizing *Salmonella* surveillance can lead to the development of targeted management approaches, such as vaccination.

We were intrigued by the prevalence of and the interactions between Cerro and Mbandaka from the GPLN dataset. Identifying these serovars at a relatively high frequency (7.6% and 6.0%, respectively) was unexpected as they are commonly found in cattle but not in broilers. Further, they are rarely found in poultry products; between 2016-2023, FSIS found serovars Cerro and Mbandaka in 0.045% (4/8853) and 0.21% (19/8853) *Salmonella*-positive broiler samples, respectively, and none originated from facilities in Georgia. A recent study in four broiler complexes found low prevalence of these serovars; serovar Cerro was found in one of 68 positive houses, and serovar Mbandaka in four of the houses, including the same house where Cerro was detected (Obe et al., 2023). Therefore, beyond breeders, the incidence of these two serovars in

poultry production and processing is significantly reduced. There are three potential explanations for this. First, it is possible that these serovars are entering in feed. Meat and bone meal are a common feed source for chickens, and would explain the presence of cattle-associated serovars since multiple animals may be included in the ground product. Breeders are typically fed a mash diet, while broilers are fed a pelleted diet. Importantly, extrusion during the pelleting process serves as an additional pathogen reduction step, which may explain the lower incidence in broilers. This also opens the possibility that these serovars may not be present in the birds themselves (or may not be actively shed), and that the industry standard of environmental boot sock sampling is detecting Salmonella in feed that has fallen on the slats/floor. This is also supported by the serovar profile observed in house B11 at week 38, which includes serovars Mbandaka and Cerro, as well as serovar Rissen (most often found in swine). At the following sampling (42 weeks), the house was Salmonella negative. Second, since many poultry growers also have cow-calf operations, this practice may serve as a potential entry source for these serovars. Given that we observed the co-occurrence of serovar Cerro and Mbandaka in 19 different flocks, we think this is unlikely. The third explanation is that the application of Salmonella vaccines in breeders is suppressing specific serovars (i.e., serovars Typhimurium, Enteritidis, and Infantis) and that this provides the opportunity for less competitive serovars such as Cerro and Mbandaka to colonize breeders. Where vaccine pressure is subsequently reduced in broilers, these serovars could then be replaced by those that are better adapted to poultry. Vaccine pressure could also explain the low incidence in our study of serovars that are often found at processing, including Typhimurium (4.4%; 25/568), Enteritidis (1.4%; 8/568), and Infantis (3.3%; 19/568). For

example, during the same time frame, serovar Infantis was found in 18% (11/61) and 23% (53/226) of regulatory carcass and parts samples, respectively (Fig. 2). Two potential but non-exclusive explanations are that i) broiler flocks become more broadly colonized by serovar Infantis due to reduced vaccine pressure in broilers and increased environmental presence of serovar Infantis in broiler houses allows broilers to become colonized; and ii) there is some selection for serovar Infantis during processing, perhaps during chilling, though a recent paper did not find evidence of selection for serovar Infantis (Richards et al., 2024).

There has been a substantial amount of work conducted to explore the physiological traits of select serovars of animal or human clinical importance, namely serovars Enteritidis and Typhimurium. However, studying the growth dynamics within multiserovar populations are a more recent consideration. In one elegant study, the fitness of two serovars (Kentucky and Typhimurium) did not differ when grown individually in chicken cecal contents. Rather, limited growth of serovar Typhimurium only manifested when co-cultured alongside serovar Kentucky (Y. Cheng et al., 2015). Further, a cell invasion-deficient serovar Kentucky strain did not have reduced colonization in chickens compared to a cell invasion-proficient strain of serovar Typhimurium, which supports the finding that differential growth rates in host can be driven by stress response pathways rather than virulence factors (Cheng et al., 2015). An additional study found that serovar dominance in mixed populations may simply be dependent on which serovar colonized the host first (Yang et al., 2018). Competitive exclusion has been utilized to inhibit Salmonella colonization in poultry production, but additional work is required to characterize this phenomenon in multiserovar populations and identify the driving forces

in serovar dominance (Bailey et al., n.d.; Soerjadi et al., 1981; Nisbet et al., 1998; Nava et al., 2005; Methner et al., 2011; Micciche et al., 2018; Bucher et al., 2020; Pineda et al., 2021; Maurer et al., 2024). Similarly to other control strategies, such as vaccination, competitive exclusion may have unexpected consequences as the removal of one serovar from a system leaves an open niche for another, potentially higher risk, serovar (Rabsch et al., 2000; Foley et al., 2011).

There are opportunities for pathogen colonization at each stage of poultry production, as the individual components of feed could be contaminated and distributed among farms, eggs with excess fecal content could spread pathogens from farm to hatchery, or any lapse in on-farm biosecurity could serve as an introduction event (Dale et al., 2015; English et al., 2015; Rajan et al., 2017; Vinueza-Burgos et al., 2019; Machado Junior et al., 2020; Wang et al., 2023). We observed similar serovar profiles between multiple houses on one farm, as 70% (90/129) of farms contained similar populations (Bray-Curtis: 0 - 0.3), emphasizing the need to ensure that on-farm biosecurity is promoted to prevent Salmonella introduction and transmission. Rodents may act to introduce Salmonella to flocks since they are known to be vectors, and this observation was supported in our study as we found several matching serovars between rodent and breeder boot sock samples. However, further characterization to the strain level is required to confirm transmission in this study. One previous study isolated the same strain of serovars Enteritidis and Typhimurium (Liljebjelke et al., 2005) between rodents and flocks. This finding underscores the importance of pest control on farm towards reducing Salmonella in the flocks. There have been limited studies conducted on the role of rodents in on-farm Salmonella transmission, and most have focused on layer

flocks, so future work is required to understand the impact of rodents upon *Salmonella* diversity (Henzler and Opitz, 1992; Davies and Wray, 1995; Guard-Petter et al., 1997; Garber et al., 2003; Meerburg and Kijlstra, 2007; Lapuz et al., 2012; Guard et al., 2018; Camba et al., 2020). Additionally, we noted higher *Salmonella* prevalence and greater serovar complexity in breeder flocks that were positive as pullets. This may indicate that early monitoring and response in pullets is a good strategy for reducing *Salmonella* in breeders. Since we collected noninvasive environmental samples, there is a possibility that these serovars were present in the pullet flocks but remained undetected due to low quantity or lack of shedding at the time of sampling. However, since we began sampling after the pullets had been in the houses for 14 weeks, we would expect to find evidence of *Salmonella* colonization in the litter. As the longitudinal study was only across two complexes, further studies would be needed to confirm the impact of *Salmonella* incidence from pullets to breeders.

While this study only included breeder flocks from the southeast, the framework presented here provides support to develop robust *Salmonella* surveillance at any stage of live production. The results are broadly applicable to the domestic poultry industry as Georgia contributes 14% of broilers to the national poultry production (United States Department of Agriculture - National Agriculture Statistics Service, 2023). The observed population dynamics demonstrate that select serovars can impact the presence of others, underscoring the importance of future work to explore interserovar relationships and physiological mechanisms behind competitive exclusion of serovars. To that end, this study also demonstrates the need for high-resolution surveillance approaches, as characterizing serovar interactions and developing targeted solutions requires the reliable

and robust detection and relative quantification of all present serovars. The pre-harvest reduction of *Salmonella* in of all types of food animal production systems supports further reductions at processing, so it is critical to understand the driving factors behind population dynamics in food animal production and enact effective control strategies. The framework presented here can be applied to other food animal production systems where *Salmonella* is a problem. Finally, amplicon-based approaches can be extended to other infectious organisms that occur in mixed populations to investigate relationships among bacterial subtypes or among viral variants.

Acknowledgements

This work was funded by a USDA – NIFA grant to NWS (award #: 2020-67017-30792). The paired house study was partially funded by a summer research grant from the University of Georgia Graduate School to ATS. We are grateful to the technical staff at GPLN for their assistance in this work and to the industry members who partnered with us in this study, as well as to current and previous members of the Shariat Lab for their technical assistance.

Author Contributions

ATS: Conceptualization, Methodology, Software, Formal analysis, Investigation, Data curation, Writing – original draft, Writing – review & editing, Visualization; **DW:**Conceptualization, Methodology, Validation, Investigation, Resources, Data curation, Writing – review & editing, Supervision, Project administration, Funding acquisition;

SPN: Conceptualization, Methodology, Validation, Investigation, Resources, Writing – review & editing, Supervision, Project administration; CEG: Methodology, Software, Validation, Formal analysis, Data curation, Writing – review & editing, Visualization;

PR: Conceptualization, Methodology, Validation, Formal analysis, Writing – review & editing, Supervision, Project administration, Funding acquisition; NWS:

Conceptualization, Methodology, Formal analysis, Investigation, Data curation, Writing – original draft, Writing – review & editing, Visualization, Supervision, Project administration, Funding acquisition

References

- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. *J Mol Biol* 215, 403–410. doi: 10.1016/S0022-2836(05)80360-2
- Bailey, J. S. (1993). Control of *Salmonella* and *Campylobacter* in poultry production.
 A summary of work at Russell Research Center. *Poult Sci* 72, 1169–1173. doi: 10.3382/ps.0721169
- 3. Bailey, J. S., Rolon, C., Hofacre, C. L., Holt, P. S., Wilson, J. L., Cosby, D. E., et al. (2007). Resistance to challenge of breeders and their progeny with and without competitive exclusion treatment to *Salmonella* vaccination programs in broiler breeders. *Int J Poult Sci* 6, 386–392. doi: 10.3923/ijps.2007.386.392
- Bearson, S. M. D., Monson, M. S., Bearson, B. L., Whelan, S. J., Byrd, J. A., and Burciaga, S. (2024). Commercial vaccine provides cross-protection by reducing colonization of *Salmonella enterica* serovars Infantis and Hadar in turkeys. *Vaccine* 42, 727–731. doi: 10.1016/j.vaccine.2023.12.054
- Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. *The Annals of Statistics* 29. doi: 10.1214/aos/1013699998

- Bucher, M. G., Zwirzitz, B., Oladeinde, A., Cook, K., Plymel, C., Zock, G., et al.
 (2020). Reused poultry litter microbiome with competitive exclusion potential against
 Salmonella Heidelberg. J Environ Qual 49, 869–881. doi: 10.1002/jeq2.20081
- Byrd, J. A., Corrier, D. E., Deloach, J. R., Nisbet, D. J., and Stanker, L. H. (1998).
 Horizontal transmission of *Salmonella* Typhimurium in broiler chicks. *J Appl Poult Res* 7, 75–80. doi: 10.1093/japr/7.1.75
- 8. Camba, S. I., Del Valle, F. P., Umali, D. V., Soma, T., Shirota, K., Katoh, H., et al. (2020). The expanded role of roof-rats (*Rattus rattus*) in *Salmonella* spp. contamination of a commercial layer farm in east Japan. *Avian Dis* 64, 46–52. doi: 10.1637/0005-2086-64.1.46
- 9. Cason, J., Cox, N., Buhr, R., Bourassa, D., and Richardson, L. (2011). Probability of identifying different *Salmonella* serotypes in poultry samples. In *International Poultry Scientific Forum. Southern Poultry Science Society, Mississippi State, MS*, p75–76; abstr 262P.
- 10. Centers for Disease Control and Prevention (n.d.). BEAM (Bacteria, Enterics, Amoeba, and Mycotics) Dashboard. Available at:
 www.cdc.gov/ncezid/dfwed/BEAM-dashboard.html (Accessed April 3, 2024a).
- 11. Centers for Disease Control and Prevention (n.d.). *Salmonella*. Available at: https://www.cdc.gov/salmonella/index.html#:~:text=CDC%20estimates%20Salmonella%20bacteria%20cause,for%20most%20of%20these%20illnesses (Accessed April 3, 2024b).
- 12. Cheng, R. A., Eade, C. R., and Wiedmann, M. (2019). Embracing diversity: differences in virulence mechanisms, disease severity, and host adaptations contribute

- to the success of nontyphoidal *Salmonella* as a foodborne pathogen. *Front Microbiol* 10, 1–20. doi: 10.3389/fmicb.2019.01368
- 13. Cheng, Y., Pedroso, A. A., Porwollik, S., McClelland, M., Lee, M. D., Kwan, T., et al. (2015). *rpoS*-regulated core genes involved in the competitive fitness of *Salmonella enterica* serovar Kentucky in the intestines of chickens. *Appl Environ Microbiol* 81, 502 LP 514. doi: 10.1128/AEM.03219-14
- 14. Cherchame, E., Ilango, G., Noël, V., and Cadel-Six, S. (2022). Polyphyly in widespread *Salmonella enterica* serovars and using genomic proximity to choose the best reference genome for bioinformatics analyses. *Front Public Health* 10. doi: 10.3389/fpubh.2022.963188
- 15. Crabb, H. K., Lee Allen, J., Maree Devlin, J., Matthew Firestone, S., Reginald Wilks, C., and Rudkin Gilkerson, J. (2018). *Salmonella* spp. transmission in a vertically integrated poultry operation: clustering and diversity analysis using phenotyping (serotyping, phage typing) and genotyping (MLVA). *PLoS One* 13, 1–19. doi: 10.1371/journal.pone.0201031
- 16. Dale, E. L., Nolan, S. P., Berghaus, R. D., and Hofacre, C. L. (2015). On farm prevention of *Campylobacter* and *Salmonella*: lessons learned from basic biosecurity interventions. *J Appl Poult Res* 24, 222–232. doi: 10.3382/japr/pfv016
- 17. Davies, R. H., and Wray, C. (1995). Mice as carriers of *Salmonella* Enteritidis on persistently infected poultry units. *Vet Rec* 137, 337–341. doi: 10.1136/vr.137.14.337
- 18. Delahoy, M. J., Shah, H. J., Lowell Weller, D., Ray, L. C., Smith, K., McGuire, S., et al. (2022). Preliminary incidence and trends of infections caused by pathogens transmitted commonly through food Foodborne Diseases Active Surveillance

- Network, 10 U.S. Sites, 2022. *Morbidity and Mortality Weekly Report* 72, 701–706. doi: 10.1101/2022.09.14.22279742
- 19. English, K. G., Singh, M., and Hess, J. B. (2015). Effect of biosecurity and management practices on the prevalence of *Salmonella*, *Campylobacter*, and *Clostridium perfringens* in a poultry production system. Master's thesis. Auburn (AL): Auburn University
- 20. Foley, S., Nayak, R., Hanning, I., Johnson, T., Han, J., and Ricke, S. (2011).
 Population dynamics of *Salmonella enterica* serotypes in commercial egg and poultry production. *Appl Environ Microbiol* 77, 4273–9. doi: 10.1128/aem.00598-11
- 21. Gantois, I., Ducatelle, R., Pasmans, F., Haesebrouck, F., Gast, R., Humphrey, T. J., et al. (2009). Mechanisms of egg contamination by *Salmonella* Enteritidis. *FEMS Microbiol Rev* 33, 718–738. doi: 10.1111/j.1574-6976.2008.00161.x
- 22. Garber, L., Smeltzer, M., Fedorka-Cray, P., Ladely, S., and Ferris, K. (2003).
 Salmonella enterica serotype Enteritidis in table egg layer house environments and in mice in U.S. layer houses and associated risk factors. Avian Dis 47, 134–142. doi: 10.1637/0005-2086(2003)047[0134:SESEIT]2.0.CO;2
- 23. Gast, R. K., and Beard, C. W. (1990). Production of *Salmonella* Enteritidiscontaminated eggs by experimentally infected hens. *Avian Dis* 34, 438–446. doi: 10.2307/1591433
- 24. Gast, R. K., Guraya, R., Jones, D. R., and Anderson, K. E. (2014). Horizontal transmission of *Salmonella* Enteritidis in experimentally infected laying hens housed in conventional or enriched cages. *Poult Sci* 93, 3141–3151. doi: 10.3382/ps.2014-04237

- 25. Goodwin, M. A., and Waltman, W. D. (1996). Transmission of Eimeria, viruses, and bacteria to chicks: darkling beetles (*Alphitobius diaperinus*) as vectors of pathogens. *J Appl Poult Res* 5, 51–55. doi: 10.1093/japr/5.1.51
- 26. Gorski, L., Shariat, N. W., Richards, A. K., Siceloff, A. T., Aviles Noriega, A., and Harhay, D. M. (2024). Growth assessment of *Salmonella enterica* multi-serovar populations in poultry rinsates with commonly used enrichment and plating media. *Food Microbiol* 119. doi: 10.1016/j.fm.2023.104431
- 27. Grimont, P., and Weill, F.-X. (2007). Antigenic formulae of the *Salmonella* servovars: WHO Collaborating Centre for Reference and Research on *Salmonella*.

 9th Edition, Institute Pasteur, 1–166.
- 28. Guard, J., Henzler, D. J., Ramadan, H., Jones, D. R., Gast, R. K., Davison, S., et al. (2018). Serotyping of *Salmonella enterica* isolated from mice caught on us poultry farms 1995 through 1998. *Food Safety* 6, 44–50. doi: 10.14252/foodsafetyfscj.2017022
- 29. Guard-Petter, J. (2001). The chicken, the egg and *Salmonella* Enteritidis. *Environ Microbiol* 3, 421–430. doi: 10.1046/j.1462-2920.2001.00213.x
- 30. Guard-Petter, J., Henzler, D. J., Rahman, M. M., and Carlson, R. W. (1997). On-farm monitoring of mouse-invasive *Salmonella enterica* serovar Enteritidis and a model for its association with the production of contaminated eggs. *Appl Environ Microbiol* 63, 1588–1593. doi: 10.1128/aem.63.4.1588-1593.1997
- 31. Hannah, J. F., Wilson, J. L., Cox, N. A., Richardson, L. J., Cason, J. A., Bourassa, D. V, et al. (2011). Horizontal transmission of *Salmonella* and *Campylobacter* among

- caged and cage-free laying hens. *Avian Dis* 55, 580–587. doi: 10.1637/9890-971711-digest.1
- 32. Henzler, D. J., and Opitz, H. M. (1992). The role of mice in the epizootiology of *Salmonella* Enteritidis infection on chicken layer farms. *Avian Dis* 36, 625–631. doi: 10.2307/1591757
- 33. Hofacre, C. L., Rosales, A. G., Costa, M. D., Cookson, K., Schaeffer, J., and Jones, M. K. (2021). Immunity and protection provided by live modified vaccines against paratyphoid *Salmonella* in poultry an applied perspective. *Avian Dis* 65, 295–302. doi: 10.1637/aviandiseases-D-20-00126
- 34. Humphrey, T. J., Whitehead, A., Gawler, A. H., Henley, A., and Rowe, B. (1991). Numbers of *Salmonella* Enteritidis in the contents of naturally contaminated hens' eggs. *Epidemiol Infect* 106, 489–496. doi: 10.1017/s0950268800067546
- 35. Interagency Food Safety Analytics Collaboration (2024). Foodborne illness source attribution estimates for *Salmonella*, *Escherichia coli* O157, and *Listeria monocytogenes* United States, 2022. Available at: https://www.cdc.gov/ifsac/php/data-research/annual-report-2022.html (Accessed January 11, 2025).
- 36. Keller, L. H., Benson, C. E., Krotec, K., and Eckroade, R. J. (1995). *Salmonella* Enteritidis colonization of the reproductive tract and forming and freshly laid eggs of chickens. *Infect Immun* 63, 2443–2449. doi: 10.1128/iai.63.7.2443-2449.1995
- Lamas, A., Miranda, J. M., Regal, P., Vázquez, B., Franco, C. M., and Cepeda, A.
 (2018). A comprehensive review of non-enterica subspecies of *Salmonella enterica*.
 Microbiol Res 206, 60–73. doi: 10.1016/j.micres.2017.09.010

- 38. Lapuz, R. R. S. P., Umali, D. V., Suzuki, T., Shirota, K., and Katoh, H. (2012).
 Comparison of the prevalence of *Salmonella* infection in layer hens from commercial layer farms with high and low rodent densities. *Avian Dis* 56, 29–34. doi:
 10.1637/9704-030711-Reg.1
- 39. Lei, C. W., Zhang, Y., Kang, Z. Z., Kong, L. H., Tang, Y. Z., Zhang, A. Y., et al. (2020). Vertical transmission of *Salmonella* Enteritidis with heterogeneous antimicrobial resistance from breeding chickens to commercial chickens in China. *Vet Microbiol* 240. doi: 10.1016/j.vetmic.2019.108538
- 40. Liljebjelke, K. A., Hofacre, C. L., Liu, T., White, D. G., Ayers, S., Young, S., et al. (2005). Vertical and horizontal transmission of *Salmonella* within integrated broiler production system. *Foodborne Pathog Dis* 2, 90–102. doi: 10.1089/fpd.2005.2.90
- 41. Machado Junior, P. C., Chung, C., and Hagerman, A. (2020). Modeling *Salmonella* spread in broiler production: identifying determinants and control strategies. *Front Vet Sci* 7. doi: 10.3389/fvets.2020.00564
- 42. Maurer, J. J., Cheng, Y., Pedroso, A., Thompson, K. K., Akter, S., Kwan, T., et al. (2024). Peeling back the many layers of competitive exclusion. *Front Microbiol* 15. doi: 10.3389/fmicb.2024.1342887
- 43. McDaniel, C. (2021). The Only Good Broiler Breeder Egg Is a Fertilized Egg.

 Available at: http://extension.msstate.edu/publications/information-sheets/the-only-good-broiler-breeder-egg-fertilized-egg (Accessed April 3, 2024).
- 44. Meerburg, B. G., and Kijlstra, A. (2007). Role of rodents in transmission of Salmonella and Campylobacter. J Sci Food Agric 87, 2774–2781. doi: 10.1002/jsfa.3004

- 45. Methner, U., Haase, A., Berndt, A., Martin, G., Nagy, B., and Barrow, P. A. (2011).
 Exploitation of intestinal colonization-inhibition between *Salmonella* organisms for live vaccines in poultry potential and limitations. *Zoonoses Public Health* 58, 540–548. doi: 10.1111/j.1863-2378.2011.01400.x
- 46. Micciche, A. C., Foley, S. L., Pavlidis, H. O., McIntyre, D. R., and Ricke, S. C. (2018). A review of prebiotics against *Salmonella* in poultry: current and future potential for microbiome research applications. *Front Vet Sci* 5, 1–11. doi: 10.3389/fvets.2018.00191
- 47. Miyamoto, T., Baba, E., Tanaka, T., Sasai, K., Fukata, T., and Arakawa, A. (1997). *Salmonella* Enteritidis contamination of eggs from hens inoculated by vaginal, cloacal, and intravenous routes. *Avian Dis* 41, 296–303. doi: 10.2307/1592181
- 48. Mukherjee, N., Nolan, V. G., Dunn, J. R., and Banerjeel, P. (2019). Sources of human infection by *Salmonella enterica* serotype Javiana: a systematic review. *PLoS One* 149, e0222108. doi: 10.1371/journal.pone.0222108
- 49. Murray, C. E., Varga, C., Ouckama, R., and Guerin, M. T. (2023). Temporal study of Salmonella enterica serovars isolated from environmental samples from Ontario poultry breeder flocks between 2009 and 2018. Pathogens 12. doi: 10.3390/pathogens12020278
- 50. Nava, G. M., Bielke, L. R., Callaway, T. R., and Castañeda, M. P. (2005). Probiotic alternatives to reduce gastrointestinal infections: the poultry experience. *Anim Health Res Rev* 6, 105–118. doi: 10.1079/ahr2005103
- Nguyen, S. V, Harhay, D. M., Bono, J. L., Smith, T. P. L., Fields, P. I., Dinsmore, B.
 A., et al. (2018). Comparative genomics of *Salmonella enterica* serovar Montevideo

- reveals lineage-specific gene differences that may influence ecological niche association. *Microb Genom* 4. doi: 10.1099/mgen.0.000202
- 52. Nisbet, D. J., Tellez, G. I., Lowry, V. K., Anderson, R. C., Garcia, G., Nava, G., et al. (1998). Effect of a commercial competitive exclusion culture (PreemptTM) on mortality and horizontal transmission of *Salmonella* Gallinarum in broiler chickens. *Avian Dis* 42, 651–656. doi: 10.2307/1592698
- 53. Obe, T., Siceloff, A. T., Crowe, M. G., Scott, H. M., and Shariat, N. W. (2023).
 Combined quantification and deep serotyping for *Salmonella* risk profiling in broiler flocks. *Appl Environ Microbiol*. doi: 10.1128/aem.02035-22
- 54. Pineda, M., Kogut, M., Genovese, K., Farnell, Y. Z., Zhao, D., Wang, X., et al. (2021). Competitive exclusion of intra-genus *Salmonella* in neonatal broilers.

 *Microorganisms 9, 1–17. doi: 10.3390/microorganisms9020446
- 55. Rabsch, W., Hargis, B. M., Tsolis, R. M., Kingsley, R. A., Hinz, K.-H., Tschape, H., et al. (2000). Competitive exclusion of *Salmonella* Enteritidis by *Salmonella* Gallinarum in poultry. *Emerg Infect Dis* 6. doi: 10.3201/eid0605.000501
- 56. Rajan, K., Shi, Z., and Ricke, S. C. (2017). Current aspects of *Salmonella* contamination in the US poultry production chain and the potential application of risk strategies in understanding emerging hazards. *Crit Rev Microbiol* 43, 370–392. doi: 10.1080/1040841X.2016.1223600
- 57. Rasamsetti, S., Berrang, M. E., Cox, N. A., and Shariat, N. W. (2022). Assessing *Salmonella* prevalence and complexity through processing using different culture methods. *Poult Sci* 101. doi: 10.1016/j.psj.2022.101949

- 58. Rasamsetti, S., and Shariat, N. W. (2023). Biomapping *Salmonella* serovar complexity in broiler carcasses and parts during processing. *Food Microbiol* 110, 104149. doi: 10.1016/j.fm.2022.104149
- 59. Raufu, I. A., Ahmed, O. A., Aremu, A., Odetokun, I. A., and Raji, M. A. (2019). Salmonella transmission in poultry farms: the roles of rodents, lizards and formites. Savannah Veterinary Journal 2, 1–4.
- 60. Richards, A. K., Siceloff, A. T., Simmons, M., Tillman, G. E., and Shariat, N. W. (2024). Poultry processing interventions reduce *Salmonella* serovar complexity on postchill young chicken carcasses as determined by deep serotyping. *J Food Prot* 87. doi: 10.1016/j.jfp.2023.100208
- 61. Shah, D. H., N. C. Paul, W. C. Sischo, R. Crespo, Guard, J. (2016). Population dynamics and antimicrobial resistance of the most prevalent poultry-associated *Salmonella* serotypes. *Poult. Sci.* 96, 687–702. doi: 10.3382/ps/pew342
- 62. Shariat, N., Kirchner, M. K., Sandt, C. H., Trees, E., Barrangou, R., and Dudley, E. G. (2013). Subtyping of *Salmonella enterica* serovar Newport outbreak isolates by CRISPR-MVLST and determination of the relationship between CRISPR-MVLST and PFGE results. *J Clin Microbiol* 51, 2328–2336. doi: 10.1128/JCM.00608-13
- 63. Siceloff, A. T., Waltman, D., and Shariat, N. W. (2022). Regional *Salmonella* differences in United States broiler production from 2016 to 2020 and the contribution of multiserovar populations to *Salmonella* surveillance. *Appl Environ Microbiol* 88, e0020422. doi: 10.1128/aem.00204-22
- 64. Smith, R., Hauck, R., Macklin, K., Price, S., Dormitorio, T., and Wang, C. (2022). A review of the lesser mealworm beetle (*Alphitobius diaperinus*) as a reservoir for

- poultry bacterial pathogens and antimicrobial resistance. *Worlds Poult Sci J* 78, 197–214. doi: 10.1080/00439339.2022.2003172
- 65. Soerjadi, A. S., Stehman, S. M., Snoeyenbos, G. H., Weinack, O. M., and Smyser, C. F. (1981). Some measurements of protection against paratyphoid *Salmonella* and *Escherichia coli* by competitive exclusion in chickens. *Avian Dis* 25, 706–712. doi: 10.2307/1590001
- 66. Tennant, S. M., Schmidlein, P., Simon, R., Pasetti, M. F., Galen, J. E., and Levine, M. M. (2015). Refined live attenuated *Salmonella enterica* serovar Typhimurium and Enteritidis vaccines mediate homologous and heterologous serogroup protection in mice. *Infect Immun* 83, 4504–4512. doi: 10.1128/IAI.00924-15
- 67. Thompson, C. P., Doak, A. N., Amirani, N., Schroeder, E. A., Wright, J., Kariyawasam, S., et al. (2018). High-resolution identification of multiple *Salmonella* serovars in a single sample by using CRISPR-SeroSeq. *Appl. Environ. Microbiol.* 84, 1–13. doi: 10.1128/AEM.01859-18
- 68. Trampel, D. W., Holder, T. G., and Gast, R. K. (2014). Integrated farm management to prevent *Salmonella* Enteritidis contamination of eggs. *J Appl Poult Res* 23, 353–365. doi: 10.3382/japr.2014-00944
- 69. United States Department of Agriculture Animal and Plant Health Inspection

 Service (2024). National Poultry Improvement Plan Program Standards. Available at:

 https://www.poultryimprovement.org/documents/2024-NPIP-Program-Standards-A
 E-June-11-2024.pdf (Accessed January 11, 2025).

- 70. United States Department of Agriculture Animal and Plant Health Inspection

 Service (n.d.). Defend the Flock. Available at: https://www.aphis.usda.gov/livestockpoultry-disease/avian/defend-the-flock (Accessed April 2, 2024).
- 71. United States Department of Agriculture Economic Research Service (2021). Cost Estimates of Foodborne Illnesses. Available at: https://www.ers.usda.gov/data-products/cost-estimates-of-foodborne-illnesses/ (Accessed April 3, 2024).
- 72. United States Department of Agriculture Food Safety and Inspection Service (2022).
 Salmonella by the Numbers. Available at:

 https://www.fsis.usda.gov/inspection/inspection-programs/inspection-poultryproducts/reducing-salmonella-poultry/salmonella (Accessed April 2, 2024).
- 73. United States Department of Agriculture Food Safety and Inspection Service (2023).

 Raw Poultry Sampling. Available at: https://www.fsis.usda.gov/news-events/publications/raw-poultry-sampling (Accessed May 4, 2023).
- 74. United States Department of Agriculture National Agriculture Statistics Service (2023). Broilers: Inventory by State, US. Available at: https://www.nass.usda.gov/Charts_and_Maps/Poultry/brlmap.php (Accessed April 2, 2024).
- 75. Uzzau, S., Brown, D. J., Wallis, T., Rubino, S., Leori, G., Bernard, S., et al. (2000). Host adapted serotypes of *Salmonella enterica*. *Epidemiol Infect* 125, 229–255. doi: 10.1017/S0950268899004379
- 76. Vinueza-Burgos, C., Baquero, M., Medina, J., and De Zutter, L. (2019). Occurrence, genotypes and antimicrobial susceptibility of *Salmonella* collected from the broiler

- production chain within an integrated poultry company. *Int J Food Microbiol* 299, 1–7. doi: 10.1016/j.ijfoodmicro.2019.03.014
- 77. Vosik, D., Tewari, D., Dettinger, L., M'ikanatha, N. M., and Shariat, N. W. (2018).
 CRISPR typing and antibiotic resistance correlates with polyphyletic distribution in human isolates of *Salmonella* Kentucky. *Foodborne Pathog Dis* 15, 101–108. doi: 10.1089/fpd.2017.2298
- 78. Wang, J., Vaddu, S., Bhumanapalli, S., Mishra, A., Applegate, T., Singh, M., et al. (2023). A systematic review and meta-analysis of the sources of *Salmonella* in poultry production (pre-harvest) and their relative contributions to the microbial risk of poultry meat. *Poult Sci* 102. doi: 10.1016/j.psj.2023.102566
- 79. Willson, N. L., and Chousalkar, K. (2023). Dominant Salmonella Serovars in Australian broiler breeder flocks and hatcheries: a longitudinal study. Appl Environ Microbiol 89. doi: 10.1128/aem.00627-23
- 80. Worley, J., Meng, J., Allard, M. W., Brown, E. W., and Timme, R. E. (2018). Salmonella enterica phylogeny based on whole-genome sequencing reveals two new clades and novel patterns of horizontally acquired genetic elements. mBio 9. doi: 10.1128/mBio.02303-18
- 81. Yang, Y., Tellez, G., Latorre, J. D., Ray, P. M., Hernandez, X., Hargis, B. M., et al. (2018). *Salmonella* excludes *Salmonella* in poultry: confirming an old paradigm using conventional and barcode-tagging approaches. *Front Vet Sci* 5, 1–7. doi: 10.3389/fvets.2018.00101

CHAPTER 4

OPTIMIZING SALMONELLA RECOVERY FROM COMMERCIAL POULTRY ENVIRONMENTAL SAMPLES WITH SELECTIVE PRE-ENRICHMENT¹

¹Siceloff, AT and Shariat, NW. To be submitted to the Journal of Food Protection.

Abstract

The current, culture-based method for detecting Salmonella is time and resource intensive, as it can take between three to five days with pre-enrichment and selective enrichment steps. Previous work by our group has shortened this process by combining novobiocin and selective ingredients from Rappaport-Vassiliadis (RV) (malachite green; 0.1 g/L) and tetrathionate (TT) (bile salts; 1 g/L) to BPW in parallel, creating an allencompassing selective pre-enrichment step. In this study, we sought to validate the use of selective pre-enrichment on commercial poultry live production samples, as the increased presence of background bacteria may limit Salmonella recovery. Two pairs of boot sock samples were collected from 35 houses, representing 17 different commercial broiler or breeder farms (n = 70 samples). The samples were cultured under selective preenrichment conditions in parallel with standard non-selective pre-enrichment (BPW) followed by selective enrichment (RV, TT). Additionally, molecular enumeration was performed to quantify the amount of *Salmonella* present in each sample. Overall, Salmonella was found in 74% (52/70) of samples collected, and selective pre-enrichment and selective enrichment conditions each recovered Salmonella in 14/17 farms. There was no significant difference in the Salmonella recovery between selective preenrichment (n = 41 positives) and selective enrichment (n = 52 positives) (p = 0.07, Chisquared test). However, the average quantity was greater in Salmonella-positive samples recovered with selective pre-enrichment (5.2 log₁₀ CFU/sample) than those that were not recovered (3.0 \log_{10} CFU/sample) (p = 0.01, Welch two sample t-test). CRISPR-SeroSeq was employed to quantify the relative frequency of Salmonella serovars in each sample and culture condition. An ANOVA model indicated the Shannon diversity index based on present serovars did not vary between culture conditions (p = 0.1). These findings suggest that increasing the selectivity of the *Salmonella* pre-enrichment step could eliminate the need for a separate selective enrichment step without compromising serovar diversity, thus reducing the time to *Salmonella* isolation by 24 hours.

Introduction

Salmonella is a leading bacterial cause of foodborne illness, with an estimated 1.35 million cases and 420 deaths annually in the United States, resulting in an estimated annual economic burden of over \$4 billion (Centers for Disease Control and Prevention, n.d.-b; United States Department of Agriculture - Economic Research Service, 2021). Poultry is a considerable source of these outbreaks, with one in five cases attributed to chicken products (Interagency Food Safety Analytics Collaboration, 2024). Despite improvements in Salmonella mitigation during commercial poultry processing, there has not been a corresponding decrease in the number of cases linked to these products (Interagency Food Safety Analytics Collaboration, 2024; United States Department of Agriculture - Food Safety and Inspection Service, n.d.). The United States Department of Agriculture – Food Safety and Inspection Service (USDA – FSIS) has issued a directive to reduce Salmonella illnesses by 25% ("Healthy People 2030"), which encourages the development of preharvest controls to decrease postharvest Salmonella contamination. To accomplish this, accurate and rapid Salmonella surveillance is required to support the development of appropriate on-farm management strategies.

Conventional *Salmonella* isolation relies on culture-based approaches, which include separate recovery and selective enrichment steps, and takes several days to complete (International Organization for Standardization, 2017). The culturing process

typically begins by homogenizing the sample with a non-selective media, such as buffered peptone water (BPW) or universal pre-enrichment broth (UPB), followed by a 24-hour incubation to allow for recovery of any injured salmonellae. The enriched BPW culture is then aliquoted into selective enrichment media, such as Rappaport-Vassiliadis (RV) and tetrathionate (TT) broths. Collectively, the pre-enrichment and selective enrichment steps take around 48 hours to complete. Following selective enrichment, the cultures are plated onto selective and differential agar plates, such as xylose lysine tergitol-4 (XLT-4) or brilliant green sulfa (BGS), and incubated for 24-48 hours. Typically, one to three presumptive Salmonella colonies are selected and confirmed using various molecular, biochemical, or serological tests (Andrews et al., 2018; United States Department of Agriculture - Food Safety and Inspection Service, 2024). In total, conventional culturing protocols can take up to five days to isolate and confirm Salmonella. Some workflows may reduce time required as certain matrices enable bypassing of pre-enrichment if the salmonellae are not presumed to be injured, such as on-farm environmental samples that follow the National Poultry Improvement Plan (NPIP) protocol (United States Department of Agriculture - Animal and Plant Health Inspection Service, 2024). However, previous work has demonstrated that some servorars are preferentially enriched in different media, so starting the isolation process with selective enrichment broth may save 24 hours but observed serovar diversity and abundance may be impacted (Gorski, 2012; Gorski et al., 2024; Pettengill et al., 2012). Additionally, molecular-based detection methods may reduce time to a confirmed Salmonella-positive sample, but these do not culminate in an isolate, which is required for further characterization and also to demonstrate cellular viability (Centers for Disease

Control and Prevention, 2024). As such, it is critical to shorten the time to a confirmed *Salmonella* isolate, so that corrective measures may be taken sooner rather than later and the risks associated with potential outbreaks can be minimized.

Aside from the time required, the bias for improved growth of some serovars in one selective enrichment broth over another is also of concern (Cox et al., 2019; Obe et al., 2021; Rasamsetti et al., 2022). For example, serovar Enteritidis seems to grow more readily in TT broth than RV broth (Gorski et al., 2024). This occurrence may be attributed to the different metabolic capacity of serovars, but the mechanisms of selective media bias have not been broadly studied. Additionally, some serovars do not produce hydrogen sulfide, which is an important phenotypic characteristic used to identify Salmonella on indicator agar such as XLT-4 and double modified lysine iron agar (DMLIA) (Mallinson et al., 2000). To address these media biases, some protocols include the use of two selective enrichment media in parallel, as well as multiple agar plates. To further complicate the issue, multiple Salmonella serovars may be found within a sample but typically only the most abundant serovar is identified through standard isolation, as only a few colonies are picked. For a 95% probability of detecting two serovars that share the same colony morphology, the serovars must exist in equal abundances and six colonies must be picked for characterization (J. Cason et al., 2011); this is not feasible on a larger scale due to time and resource constraints. As such, some serovars may evade detection due to fluctuating population dynamics during selective enrichment and conventional method limitations. Ultimately, accurate and reliable Salmonella screening requires an approach that can detect all serovars present within a population, irrespective of culturing conditions.

CRISPR-SeroSeq is a next-generation sequencing approach to quantify the relative abundances of multiple serovars present in a sample based on the native CRISPR arrays (Thompson et al., 2018). Salmonella contains two conserved CRISPR arrays with conserved direct repeats (29 nucleotides) and variable spacer sequences (32 nucleotides); this system formerly served as a prokaryotic adaptive immune response, such that spacer sequences were added onto the arrays from foreign nucleic acids, but this is no longer active (Touchon & Rocha, 2010). However, the CRISPR arrays are still intact in Salmonella genomes and can provide a metric to differentiate between serovars as each has a unique spacer profile (Bugarel et al., 2018; Fabre et al., 2012; Kushwaha et al., 2020; Pettengill et al., 2014; Shariat et al., 2015). We have applied CRISPR-SeroSeq for deep serotyping in a variety of sample matrices, such as poultry carcass and parts rinses, bird and cattle feces, environmental boot socks, and freshwater, (E. E. Cason et al., 2024; Deaven et al., 2021; Obe et al., 2023; Rasamsetti & Shariat, 2023; Siceloff et al., 2021; Smith et al., 2023). In each of these cases, CRISPR-SeroSeq has provided a higher resolution profile of complex Salmonella populations than by colony isolation alone, demonstrating its utility for improved Salmonella surveillance.

Increasing the selectivity of the pre-enrichment step can reduce time required for isolation by 24 hours while still promoting *Salmonella* growth. This can be accomplished by adding in selective ingredients from standard enrichment media to limit competing gram-negative bacteria, along with an antibiotic (novobiocin) to remove any gram-positive bacteria. By condensing the conventional process of *Salmonella* isolation into a single selective pre-enrichment step, it is possible to directly streak enriched culture onto indicator plates and determine if *Salmonella* is present within two days of sample

collection. Critically, there must be a balance of selective ingredients in the preenrichment conditions to generate a harsh environment to minimize background flora proliferation without also inhibiting Salmonella growth. Previous work by our group successfully developed a selective pre-enrichment protocol with validation testing on poultry carcass rinses (Rasamsetti et al., 2021). This sample type provided an opportunity to determine the optimal concentration of selective ingredients for recovery of potentially injured Salmonella. However, there were not significant levels of background coliforms which compete against Salmonella, such as various Campylobacter and Escherichia species, since they are typically reduced following antimicrobial interventions during processing (De Villena et al., 2022). As such, we sought to validate the use of selective pre-enrichment conditions for Salmonella recovery from complex on-farm environmental samples. We hypothesized that the harsh conditions of a commercial poultry processing plant may reflect different dynamics of Salmonella recovery and growth than the conditions at commercial poultry farms, and so, selective pre-enrichment may not be sufficient for Salmonella isolation from environmental farm samples. Additionally, we evaluated if quantity of Salmonella is a limiting factor in the use of selective preenrichment methods.

Materials and methods

Sample collection

Boot socks were used to collect environmental samples from 17 different commercial broiler or breeder farms (n = 35 houses). Two pairs of boot socks premoistened in buffered peptone water (BPW) (Romer Labs, Newark, DE) were used for sampling each house, resulting in a total of 70 samples. One pair was used to walk along

the right side of the house and the other on the left side. Samples were collected by walking the entire length of the house between the feed and water lines (Fig. 4-1A). For samples from breeder houses, boot socks were collected by walking on the slats. The samples were kept on ice and transported to the laboratory for processing.

Salmonella isolation and quantification

A total of 200 mL of BPW (Neogen, Lansing, MI) was added to each pair of boot socks and these were stomached at 230 rpm for 2 min using the Stomacher 400 Circulator (Seward, Bohemia, NY)(Fig. 4-1B). For the selective pre-enrichment conditions, the homogenized culture was aliquoted into three separate sterile conical tubes and incubated for four hours at 37°C. Following this initial Salmonella recovery period, selective ingredients were added in different combinations with the following final concentrations: novobiocin 0.015 g/L (Thermo Scientific Chemicals, Waltham, MA); bile salts 1 g/L (Ward's Science, Rochester, NY); malachite green 0.1 g/L (Ward's Science, Rochester, NY). Condition 1 was a non-selective BPW control (BPW), Condition 2 contained bile salts and novobiocin (BPW + BS + Nv), and Condition 3 contained malachite green and novobiocin (BPW + MG + Nv). When BPW is used alone, the condition was referred to as non-selective pre-enrichment in the manuscript, while the addition of malachite green, bile salts, and novobiocin in different combinations to the BPW were denoted as selective pre-enrichment. All enrichments continued to incubate for an additional 20 h at 37°C. Following incubation, all broths were streaked for isolation onto xylose lysine tergitol-4 agar (XLT-4; Hardy Diagnostics, Santa Maria, CA) and plates were incubated for 24-48 h at 37°C. Additionally after the initial 24 hours, 0.1 and 1 mL of each BPW-only control sample were subinoculated into Rappaport-Vassiliadis (RV) and tetrathionate (TT)

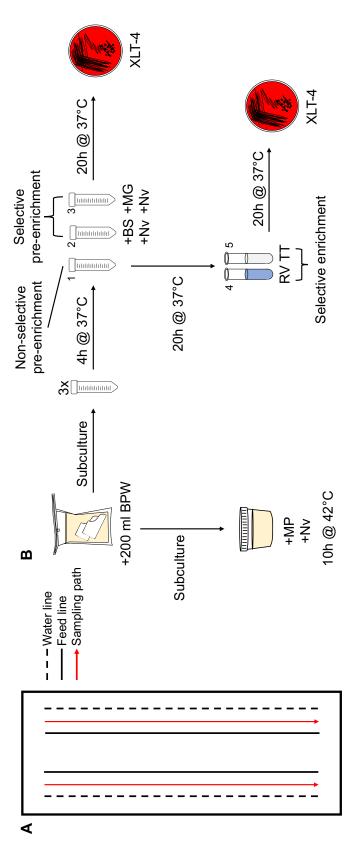


Figure 4-1. A) Sampling schematic. Two pairs of boot socks were collected between the feed and water lines on both sides of the house (n = 35 houses, B) Workflow for culture conditions. Each boot sock was homogenized with 200 ml BPW, then subcultured into the selective pre-enrichment media 70 samples).

used for molecular enumeration (MP + Nv). In parallel, aliquots from each sample were cultured in three different conditions: non-selective enrichment (1), selective pre-enrichment (2,3), and selective enrichment (4,5). 1 – BPW, 2 – BPW + BS + Nv, 3 – BPW + MG + Nv, 4 – BPW into RV, 5 – BPW into TT. All enrichments were plated on XLT-4 for Salmonella isolation and confirmation.

BPW, buffered peptone water; Nv, novobiocin; BS, bile salts; MG, malachite green; RV, Rappaport-Vassiliadis broth; TT, tetrathionate broth; XLT-4, xylose lysine tergitol-4. selective enrichment broths (Hardy Diagnostics, Santa Maria, CA), respectively, and incubated at 37°C for 24 h and then streaked on XLT-4. The samples from non-selective BPW, when inoculated into either RV or TT broth represent selective enrichment in the manuscript. XLT-4 plates were examined for development of typical black H₂S colonies, followed by confirmation with serum agglutination (BD Difco, Franklin Lakes, NJ). For *Salmonella* quantification, a 60 mL aliquot of the unenriched BPW sample was transferred to 60 ml of pre-warmed MP media (Hygiena, Camarillo, CA) containing 40 mg/L novobiocin (Thermo Scientific Chemicals, Waltham, MA) and incubated at 42°C for 10 h. At this time, *Salmonella* lysates were prepared following the manufacturer's protocol and stored at 4°C prior to enumeration using the BAX® System SalQuant® (Hygiena, n.d.). Per-sample *Salmonella* quantity was calculated using the provided formulas for boot socks (version 3.6). The limit of quantification (LOQ) is reported to be 1 log₁₀ CFU/sample and culture-positive samples that did not yield a value were scored as 0 log₁₀ CFU/sample.

DNA isolation and CRISPR-SeroSeq.

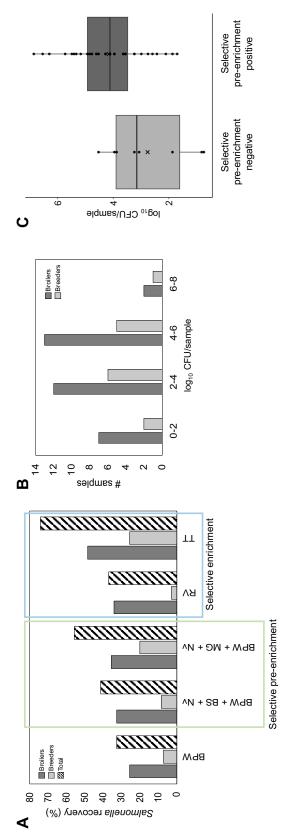
The overnight cultures for each condition were briefly vortexed, and 1 mL of each was transferred into microcentrifuge tubes and centrifuged at 14,000 rpm for 3 min. The supernatant was removed, and the pellets were stored at 20°C. Total genomic DNA was isolated from pellets using the Promega Genome Wizard kit (Madison, WI) following manufacturer's instructions and then resuspended in 200 mL of molecular-grade water and stored at 20°C prior to use as the template for CRISPR-SeroSeq as described previously (Richards et al., 2024; Siceloff et al., 2022). Serovars were called only if they

contained multiple CRISPR spacers that were unique to that serovar in the sample and had cumulative reads greater than 0.5% of the total population for that sample.

Statistical analysis.

All statistical analyses were conducted with R (version 4.2.3). CRISPR-SeroSeq reads were normalized across culture conditions using the DESeq2 package (http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html) to adjust the read counts per sample based on the size factors present.

Results and Discussion

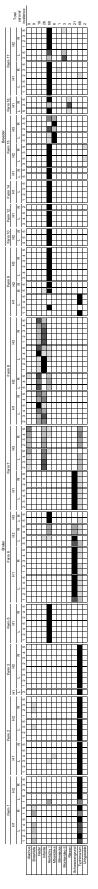

In this study, 35 commercial poultry houses (flocks) from 17 farms across multiple integrator complexes were sampled to validate the use of selective preenrichment culture conditions for quicker Salmonella recovery from a matrix with high microflora. Two pairs of boot sock samples were collected from each house and independently cultured in the various conditions: non-selective enrichment, selective preenrichment, and selective enrichment (Fig. 4-1). Salmonella presence was confirmed by colony isolation after streaking on an indicator plate and Salmonella quantity was enumerated using a commercial kit (BAX® System SalQuant®, Hygiena). A house was considered Salmonella-positive when at least one pair of boot socks tested positive and subsequently, a farm was positive if at least one house was. In total, 74% (52/70) samples were Salmonella-positive, as determined by the traditional culture conditions (BPW into RV or TT; bottom two rows in Fig. 4-2). In comparison, 59% (41/70) were positive by selective pre-enrichment (p = 0.07, Chi-squared test) and 33% (23/70) with BPW alone. Both selective conditions recovered Salmonella in 14/17 farms, and on the house level, Salmonella was detected in 69% (24/35) and 77% (27/35) of houses using selective pre-

		No. of positives	23/70 (32.9%)	29/70 (41.4%)	39/70 (55.7%)	26/70 (37.1%)	52/70 (74.3%)		
1	2	В						CN C	2
Breeder Farm 14 Farm 15 Farm 16 Farm 17		RL	ŀ					UN	2
	ľ	1						QV.	1
	4	LR	ı					6.0	2.0
	Ĺ	В	Ē		Ξ			9.0	2
	.,	LRL	H					90 00	40.0
	2	٦	L						
	-	LR	H					10	200
	Ļ	В						8.4	
13 Fa	ļ	R L	F						
Farm	-	1	L					L	
arm 12	+	LR	H					8 4 4	
	Ĺ	В	Ē						1
arm 11		LRLR	ı					Ŀ	
-	-	1	t					E	
0	2	L R	F					9	
Farm 10	L	LRLR	t	L					
ļ	l	٦ د	Ļ						
	3	LF	t					8.0	V.6. V.
Farm 9	2	LRLRI	ŀ	Ĺ	Ĺ			F	
ſ	Ļ	В	L					0	2.0
	l	٦ د						1 2 7	
	3	LF					ĺ	0 8 0	2
Farm8	2	. R L R I	F	Ĺ	Ĺ			0 7 0	200
ĺ	Ļ	В					ĺ	0 0 0	200
	l	RL	F					9.0	4
	3	1 7	L					6.1	
Farm 7	2	L R	ŀ			-		-	
ľ	Ļ	L R	Þ				į	0 7 0	4
	l	R	F					0.0	
	3	7	L				ĺ	9.4	100
Farm 6	2	LR	H					61 60	210
	Ļ	. В					ĺ	400	and the
	l	R	F					ō	
Farm 5	2	J L	L		L				,
FE	-	LR			L			2 8 4 5	4.0
	2	Я	Ē	Ī	Ī	Ī	Ī	Ē	j
Farm 4		RL	H	-	-	-			-
	ľ	-	F					Ļ	
13	2	LR					ı	7.4 0.4	
Farm	Ļ	LRL						0	2.0
	 	RL				_			,
am 2	2	7 (ĺ	ĺ		Í	4 6 9 1	
FE	-	LR						7.4 7.0	200
	2	В	ĺ				ĺ	4.9	2.0
Farm 1	l	RL				L		61 46	170
	ľ	7					ĺ	8.8	200
	House	Boot sock	BPW	BPW + BS + Nv	BPW + MG + Nv	BPW into RV	BPW into TT	lon. CFIllsamries	
		Ulture condition ^a	Non-selective pre-enrichment E	Selective pre-enrichment E	Selective pre-enrichment E	Selective enrichment E	elective enrichment E	3	

Figure 4-2. Comparison of Salmonella recovery among different culture conditions. The farms are separated by broiler and broiler breeder production, with total recovery in 77% (34/44) and 69% (18/26) of samples, respectively. Gray coloration indicates a Salmonella-positive enrichment, while white indicates a negative. The house number is bolded to reflect positivity. Salmonella quantity, as determined by a commercial molecular enumeration assay, is listed below each sample.

^a BPW, buffered peptone water; Nv, novobiocin; BS, bile salts; MG, malachite green; RV, Rappaport-Vassiliadis broth; TT, tetrathionate broth ^b-, culture negative sample; 0, below the limit of quantification (LOQ); ND, no data available enrichment or selective enrichment, respectively. The two best recovery conditions were with malachite green and in TT broth. Notably, malachite green is the primary ingredient in RV, which conflicts with the industry-wide preference of TT enrichment for environmental farm samples. The performance of culture conditions varied between broiler and breeder flocks, such that 7.7% (2/26) of breeder samples had *Salmonella* recovery in RV compared to 55% (24/44) of broiler samples (Fig. 4-3A). This discrepancy is not explained by differences in *Salmonella* quantity between the two production systems, since there was an average of 4.0 and 5.1 log₁₀ CFU/sample for broiler and breeders, respectively (p = 0.1, Welch two sample t-test; Fig. 4-3B). However, *Salmonella* quantity affected overall recovery, as the average of *Salmonella*-positive samples recovered in selective pre-enrichment was 3.0 log₁₀ CFU/sample, compared to 5.2 log₁₀ CFU/sample for those recovered only in selective enrichment (p = 0.01, Welch two sample t-test; Fig. 4-3C).

Boot socks have been indicated as the best sample type for capturing *Salmonella* within a poultry house, with greater recovery observed than from fecal, organ, or litter grab samples (Buhr et al., 2007; United States Department of Agriculture - Animal and Plant Health Inspection Service, 2024). However, recent work has revealed that boot socks do not provide high levels of reproducibility for *Salmonella* quantification, such that two pairs from a single house can have different quantities (Obe et al., 2023). Additionally, the same study highlighted the importance of collecting two pairs of boot sock per house for a more robust characterization of the *Salmonella* population dynamics. Namely, it was determined that one-third of boot socks collected in a single house had at


samples, compared to 52 by selective enrichment (p = 0.07, Chi-squared test). B) Histogram of Salmonella quantity in broiler and breeder Figure 4-3. A) Salmonella recovery varies between broiler and breeder flocks. Selective pre-enrichment recovered Salmonella in 41 flocks. There was an average of 4.0 and 5.1 \log_{10} CFU/sample for broiler and breeders, respectively (p = 0.1, Welch two sample t-test). C) Salmonella quantity impacts recovery with selective pre-enrichment. Quantity distribution is different for samples that were Salmonellapositive and were recovered in selective pre-enrichment conditions or not (p = 0.01, Welch two sample t-test).

least one unique serovar between the two pairs. Thus, it may be necessary to regularly use two pairs of boot socks to collect environmental samples and screen for *Salmonella* in poultry houses. When combining the results of boot sock pairs, *Salmonella* recovery with selective pre-enrichment and selective enrichment were much more comparable, with a difference of three houses (p = 0.6, Chi-squared test). Therefore, if multiple boot socks are collected, selective pre-enrichment may be utilized to reduce turnaround time required to screen for *Salmonella* within commercial poultry flocks.

It is important to consider the average Salmonella quantity of a sample type prior to the implementation of selective pre-enrichment, since there was a difference in recovery based on enumeration values. However, there are likely multiple contributing factors which influence the performance of selective pre-enrichment methods, such as composition of background microflora, viability of salmonellae, and presence of external physical or chemical contaminants; this is reflected by the range of quantities in the Salmonella-positive, selective pre-enrichment negative samples (1.4 log₁₀ CFU/sample – 6.1 log₁₀ CFU/sample). Further, there were two samples below the limit of detection from which Salmonella was recovered by selective pre-enrichment. Importantly, our previous study with processing plant samples, with expected lower Salmonella quantities due to the use of antimicrobial interventions, found comparable levels of recovery between selective pre-enrichment and enrichment methods. Future work elucidating the physiology behind differential Salmonella growth in selective enrichment media can support the optimization of the selective pre-enrichment conditions as the exact limiting factors for various sample matrices can be determined. Overall, the ability of selective pre-enrichment to simultaneously inhibit the growth of background bacteria and recover

Salmonella at various levels, while reducing the time required for isolation, demonstrates the efficacy and feasibility of this approach.

To assess the potential impact of media bias in selective pre-enrichment and selective enrichment conditions, CRISPR-SeroSeq was used to analyze the serovar populations within samples, with enrichment in BPW serving as the control (Fig. 4-4). There were 28 enrichments that were excluded from the analysis due to poor amplification, but each Salmonella-positive sample was reflected in the results. In total, we identified 12 different serovars, including one untypeable. There was an average of 1.6 and 1.7 serovars per sample from selective pre-enrichment and enrichment cultures, respectively; this indicates that there is not a loss of population complexity with selective pre-enrichment (p = 0.5, Kruskal-Wallis test with post-hoc Dunn's test). Overall, there were differences in serovar profiles between broiler and breeder flocks but alignment among the culture conditions for each sample. Serovar Kentucky was the most abundant in breeder flocks, as it was found in 97% (36/37) of enrichments, while serovar Typhimurium was found in 63% (65/104) of broiler sample enrichments. There was greater serovar diversity observed in broiler flocks, with varied profiles between farms and the presence of five serovars of clinical importance (Centers for Disease Control and Prevention, n.d.-a). Serovar Infantis was the third most abundant, identified solely in broiler flocks (26/141). There were a few outliers with different serovars identified between the culture conditions, such as the absence of serovar Typhimurium in the TT enrichment for Farm 1, House 1 (left side) and the detection of serovar Enteritidis only from the selective pre-enrichment for Farm 2, House 2 (right side). Serovars Mbandaka, Minnesota, Montevideo II, and Rissen were only found in one house each, suggesting

serovars, including one untypeable, were detected on six breeder farms. All samples within a farm are grouped together, with house (H) and side of house (L/R) indicated. Culture conditions are listed as follows: 1 – BPW, 2 – BPW + BS + Nv, 3 – BPW + MG + Nv, 4 – BPW into RV, 5 – BPW into TT. 28 Figure 4-4. Deep serotyping results for each Salmonella-positive enrichment. Eight serovars were identified across nine broiler farms, while seven enrichments were not included in the CRISPR-SeroSeq analysis due to poor amplification.

that there was an introduction event but there was not *Salmonella* transmission between the other houses on the farms yet.

The issue of Salmonella contamination in poultry remains a significant and complicated problem. Although overall Salmonella incidence has decreased during processing, the number of human salmonellosis cases linked to poultry has remained largely unchanged (Centers for Disease Control and Prevention, n.d.-a; United States Department of Agriculture - Food Safety and Inspection Service, n.d.). This is likely due in part to specific serovars present in poultry production, their ability to colonize poultry and survive antimicrobial interventions, and their association with human illness. To develop serovar-specific mitigation strategies and promote the reduction of salmonellosis, surveillance methods must provide accurate results in a timely manner. While there are commercial products available for rapid Salmonella detection, there is still a need to characterize all serovars present, particularly during an outbreak when strain typing can aid in source tracking. Our study shows that adding selective ingredients during the preenrichment step supports earlier isolation of Salmonella without compromising serovar diversity. Namely, the inclusion of bile salts or malachite green and novobiocin in BPW can reduce the turnaround time by 24 h, compared to the conventional method which involves a non-selective pre-enrichment step followed by selective enrichment. Although our study was conducted in the context of poultry production, our results have broader implications for other food industries, including meat production, that routinely conduct Salmonella surveillance. Future work may involve comparison of results from selective pre-enrichment in additional matrices, such as tissue or organ samples.

Acknowledgements

This work was funded by a USDA-NIFA award to NWS (2020-67017-30792). We are grateful to Dr. Tomi Obe and Marco Reina for help with sample collection, and to Surendra Rasamsetti for technical advice.

Author Contributions

ATS: Software, Formal analysis, Investigation, Data curation, Writing – original draft, Writing – review & editing, Visualization; NWS: Conceptualization, Methodology, Formal analysis, Investigation, Resources, Data curation, Writing – original draft, Writing – review & editing, Visualization, Supervision, Project administration, Funding acquisition

References

- 1. Andrews, W. H., Wang, H., Jacobson, A., & Hammack, T. (2018). *Bacteriological Analytical Manual (BAM) Chapter 5: Salmonella*. United States Food and Drug Administration.
- Bugarel, M., Bakker, H. den, Grout, J., Vignaud, M. L., Loneragan, G. H., Fach, P.,
 & Brisabois, A. (2018). CRISPR-based assay for the molecular identification of highly prevalent *Salmonella* serotypes. *Food Microbiology*, 71, 8–16.
 https://doi.org/10.1016/j.fm.2017.03.016
- 3. Buhr, R. J., Richardson, L. J., Cason, J. A., Cox, N. A., & Fairchild, B. D. (2007).

 Comparison of four sampling methods for the detection of salmonella in broiler litter.

 Poultry Science, 86(1), 21–25. https://doi.org/10.1093/ps/86.1.21
- 4. Cason, E. E., Carlson, A. V., Siemens, A. L., & Shariat, N. W. (2024). High-resolution serotyping reveals *Salmonella* surveillance challenges in the turkey

- industry. *Journal of Food Protection*, 87(10), 100319. https://doi.org/10.1016/j.jfp.2024.100319
- Cason, J., Cox, N., Buhr, R., Bourassa, D., & Richardson, L. (2011). Probability of identifying different *Salmonella* serotypes in poultry samples. *International Poultry Scientific Forum. Southern Poultry Science Society, Mississippi State, MS.*, p75–76; abstr 262P.
- 6. Centers for Disease Control and Prevention. (n.d.-a). *BEAM (Bacteria, Enterics, Amoeba, and Mycotics) Dashboard*. Retrieved 3 April 2024, from www.cdc.gov/ncezid/dfwed/BEAM-dashboard.html
- 7. Centers for Disease Control and Prevention. (n.d.-b). *Salmonella*. Retrieved 3 April 2024, from https://www.cdc.gov/salmonella/index.html#:~:text=CDC%20estimates%20Salmonel
- 8. Centers for Disease Control and Prevention. *Foodborne Illness and Culture-Independent Diagnostic Tests*. Retrieved 3 April 2024, from https://www.cdc.gov/foodnet/reports/cidt.html

la%20bacteria%20cause,for%20most%20of%20these%20illnesses

- Cox, N. A., Berrang, M. E., House, S. L., Medina, D., Cook, K. L., & Shariat, N. W. (2019). Population analyses reveal preenrichment method and selective enrichment media affect *Salmonella* serovars detected on broiler carcasses. *Journal of Food Protection*, 82(10), 1688–1696. https://doi.org/10.4315/0362-028X.JFP-19-166
- 10. De Villena, J. F., Vargas, D. A., López, R. B., Chávez-Velado, D. R., Casas, D. E., Jiménez, R. L., & Sanchez-Plata, M. X. (2022). Bio-mapping indicators and pathogen loads in a commercial broiler processing facility operating with high and low

- antimicrobial intervention levels. *Foods*, *11*(6). https://doi.org/10.3390/foods11060775
- Deaven, A. M., Ferreira, C. M., Reed, E. A., See, J. R. C., Lee, N. A., Almaraz, E., Rios, P. C., Marogi, J. G., Lamendella, R., Zheng, J., Bell, R. L., & Shariat, N. W. (2021). *Salmonella* genomics and population analyses reveal high inter- and intraserovar diversity in freshwater. *Applied and Environmental Microbiology*, 87(6), 1–14. https://doi.org/10.1128/AEM.02594-20
- 12. Fabre, L., Zhang, J., Guigon, G., Le Hello, S., Guibert, V., Accou-Demartin, M., de Romans, S., Lim, C., Roux, C., Passet, V., Diancourt, L., Guibourdenche, M., Issenhuth-Jeanjean, S., Achtman, M., Brisse, S., Sola, C., & Weill, F.-X. (2012). CRISPR typing and subtyping for improved laboratory surveillance of *Salmonella* infections. *PLoS ONE*, 7(5), e36995. https://doi.org/10.1371/journal.pone.0036995
- 13. Gorski, L. (2012). Selective enrichment media bias the types of *Salmonella* enterica strains isolated from mixed strain cultures and complex enrichment broths. *PLOS ONE*, 7(4), e34722.
- 14. Gorski, L., Shariat, N. W., Richards, A. K., Siceloff, A. T., Aviles Noriega, A., & Harhay, D. M. (2024). Growth assessment of *Salmonella enterica* multi-serovar populations in poultry rinsates with commonly used enrichment and plating media. *Food Microbiology*, 119. https://doi.org/10.1016/j.fm.2023.104431
- 15. Hygiena. (n.d.). *BAX® System SalQuant®*. Retrieved 10 January 2025, from https://www.hygiena.com/food-safety/pathogen-detection/salmonella/bax-system-salquant

- 16. Interagency Food Safety Analytics Collaboration. (2024). Foodborne illness source attribution estimates for Salmonella, Escherichia coli O157, and Listeria monocytogenes United States, 2022. Retrieved 10 January 2025, from https://www.cdc.gov/ifsac/php/data-research/annual-report-2022.html
- 17. International Organization for Standardization. (2017, February). *Microbiology of the food chain. Horizontal method for the detection, enumeration and serotyping of Salmonella Part I: Detection of Salmonella spp.* ISO 6579-1:2017. https://www.iso.org/standard/56712.html
- 18. Kushwaha, S. K., Bhavesh, N. L. S., Abdella, B., Lahiri, C., & Marathe, S. A. (2020).
 The phylogenomics of CRISPR-Cas system and revelation of its features in
 Salmonella. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-77890-6
- Mallinson, E. T., Miller, R. G., de Rezende, C. E., Ferris, K. E., de Graft-Hanson, J.,
 & Joseph, S. W. (2000). Improved plating media for the detection of *Salmonella* species with typical and atypical hydrogen sulfide production. *Journal of Veterinary Diagnostic Investigation*, 12(1), 83–87. https://doi.org/10.1177/104063870001200119
- 20. Obe, T., Berrang, M. E., Cox, N. A., House, S. L., & Shariat, N. W. (2021).
 Comparison of selective enrichment and plating media for *Salmonella* isolation from broiler carcasses. *Journal of Food Safety*, 41(6), e12928.
 https://doi.org/https://doi.org/10.1111/jfs.12928
- 21. Obe, T., Siceloff, A. T., Crowe, M. G., Morgan Scott, H., & Shariat, N. W. (2023).
 Combined quantification and deep serotyping for *Salmonella* risk profiling in broiler flocks. *Applied and Environmental Microbiology*, 89(4).
 https://doi.org/10.1128/aem.02035-22

- Pettengill, J. B., McAvoy, E., White, J. R., Allard, M., Brown, E., & Ottesen, A.
 (2012). Using metagenomic analyses to estimate the consequences of enrichment bias for pathogen detection. *BMC Research Notes*, 5(1), 378.
 https://doi.org/10.1186/1756-0500-5-378
- 23. Pettengill, J. B., Timme, R. E., Barrangou, R., Toro, M., Allard, M. W., Strain, E., Musser, S. M., & Brown, E. W. (2014). The evolutionary history and diagnostic utility of the CRISPR-Cas system within *Salmonella enterica* ssp. *enterica*. *PeerJ*, 2014(1). https://doi.org/10.7717/peerj.340
- 24. Rasamsetti, S., Berrang, M., Cox, N. A., & Shariat, N. W. (2021). Selective preenrichment method to lessen time needed to recover *Salmonella* from commercial poultry processing samples. *Food Microbiology*, 99. https://doi.org/10.1016/j.fm.2021.103818
- 25. Rasamsetti, S., Berrang, M. E., Cox, N. A., & Shariat, N. W. (2022). Assessing Salmonella prevalence and complexity through processing using different culture methods. Poultry Science, 101(7), 101949. https://doi.org/https://doi.org/10.1016/j.psj.2022.101949
- Rasamsetti, S., & Shariat, N. W. (2023). Biomapping Salmonella serovar complexity
 in broiler carcasses and parts during processing. Food Microbiology, 110.
 https://doi.org/10.1016/j.fm.2022.104149
- 27. Richards, A. K., Siceloff, A. T., Simmons, M., Tillman, G. E., & Shariat, N. W. (2024). Poultry processing interventions reduce *Salmonella* serovar complexity on postchill young chicken carcasses as determined by deep serotyping. *Journal of Food Protection*, 87(3). https://doi.org/10.1016/j.jfp.2023.100208

- Shariat, N., Timme, R. E., Pettengill, J. B., Barrangou, R., & Dudley, E. G. (2015).
 Characterization and evolution of *Salmonella* CRISPR-Cas systems. *Microbiology*, 161(2), 374–386. https://doi.org/10.1099/mic.0.000005
- Siceloff, A. T., Ohta, N., Norman, K. N., Loneragan, G. H., Norby, B., Scott, H. M.,
 & Shariat, N. W. (2021). Antimicrobial resistance hidden within multiserovar
 Salmonella populations. Antimicrobial Agents and Chemotherapy, 65(6), 1–6.
 https://doi.org/10.1128/aac.00048-21
- 30. Siceloff, A. T., Waltman, D., & Shariat, N. W. (2022). Regional *Salmonella* differences in United States broiler production from 2016 to 2020 and the contribution of multiserovar populations to salmonella surveillance. *Appl Environ Microbiol*, 88(8), e0020422. https://doi.org/10.1128/aem.00204-22
- 31. Smith, J. C., Varriano, S., Roach, K., Snipes, Z., Dawson, J. L., Shealy, J., Dunn, L. L., Snyder, W. E., & Shariat, N. W. (2023). Prevalence and molecular characterization of *Salmonella* isolated from wild birds in fresh produce environments. *Frontiers in Microbiology*, 14. https://doi.org/10.3389/fmicb.2023.1272916
- 32. Thompson, C. P., Doak, A. N., Amirani, N., Schroeder, E. A., Wright, J., Kariyawasam, S., Lamendella, R., & Shariat, N. W. (2018). High-resolution identification of multiple *Salmonella* serovars in a single sample by using CRISPR-SeroSeq. *Appl. Environ. Microbiol.*, 84(21), 1–13. https://doi.org/10.1128/AEM.01859-18
- 33. Touchon, M., & Rocha, E. P. C. (2010). The small, slow and specialized CRISPR and anti-CRISPR of *Escherichia* and *Salmonella*. *PLoS ONE*, *5*(6), 14.

- 34. United States Department of Agriculture Animal and Plant Health Inspection Service. (2024). National Poultry Improvement Plan Program Standards. Retrieved 10 January 2025, from https://www.poultryimprovement.org/documents/2024-NPIP-Program-Standards-A-E-June-11-2024.pdf
- 35. United States Department of Agriculture Economic Research Service. (2021). *Cost Estimates of Foodborne Illnesses*. Retrieved 10 January 2025, from https://www.ers.usda.gov/data-products/cost-estimates-of-foodborne-illnesses/
- 36. United States Department of Agriculture Food Safety and Inspection Service. (n.d.).

 **Raw Poultry Sampling*. Retrieved 21 January 2025, from https://www.fsis.usda.gov/news-events/publications/raw-poultry-sampling*
- 37. United States Department of Agriculture Food Safety and Inspection Service.
 (2024). Microbiology Laboratory Guidebook (MLG) 4.15: Isolation and
 Identification of Salmonella from Meat, Poultry, Pasteurized Egg, Siluriformes (Fish)
 Products and Carcass and Environmental Sponges.

CHAPTER 5

IN SILICO AND PCR SCREENING FOR A LIVE ATTENUATED SALMONELLA ${\sf TYPHIMURIUM\ VACCINE\ STRAIN}^1$

¹Siceloff AT*, Raccoursier M*, Shariat NW. 2024. Avian Diseases, 68(1):18-24.

Reprinted here with permission of the publisher.

^{*}These authors contributed equally.

Summary

The application of live attenuated Salmonella Typhimurium vaccines has significantly helped control Salmonella in poultry products. Because the U.S. Department of Agriculture–Food Safety Inspection Service (USDA-FSIS) scores all Salmonella as positive, regardless of serovar, attenuated vaccine strains that are identified at processing contribute negatively toward Salmonella performance standards. This study was designed to determine the incidence of a live attenuated Salmonella serovar Typhimurium vaccine identified in broiler products by FSIS and to develop a PCR assay for screening of isolates. Salmonella Typhimurium short-read sequences from broiler samples uploaded to the National Center for Biotechnology Information (NCBI) Pathogen Detection database by the USDA-FSIS from 2016 to 2022 were downloaded and assembled. These were analyzed using the Basic Local Alignment Search Tool with a sequence unique to field strains, followed by a sequence unique to the vaccine strain. The PCR assays were developed against field and vaccine strains by targeting transposition events in the *crp* and cya genes and validated by screening Salmonella serovar Typhimurium isolates. Between 2016 and 2022, 1,708 Salmonella Typhimurium isolates of chicken origin were found in the NCBI Pathogen Detection database, corresponding to 7.99% of all Salmonella identified. Of these, 104 (5.97%) were identified as the vaccine strain. The PCR assay differentiated field strains from the vaccine strain when applied to isolates and was also able to detect the vaccine strain from DNA isolated from mixed serovar overnight Salmonella enrichment cultures. Live attenuated Salmonella vaccines are a critical preharvest tool for Salmonella control and are widely used in industry. With forthcoming regulations that will likely focus on Salmonella Typhimurium, along with

other serovars, there is a need to distinguish between isolates belonging to the vaccine strain and those that are responsible for causing human illness.

<u>Introduction</u>

Salmonella is a leading causative agent of bacterial foodborne illness in the United States and is responsible for over one million human cases each year (1, 2). In total, 17% of salmonellosis cases are linked to the consumption of contaminated chicken products (3, 4) There are over 2600 different Salmonella serovars, though a small subset of these are responsible for most clinical infections, including Salmonella serovars Enteritidis, Typhimurium, and Infantis, which are commonly found in poultry (5–7). Conversely, Salmonella enterica serovar Kentucky, the serovar most frequently isolated from broilers at pre- and postharvest, is not associated with significant human illness in the United States (5–7).

As part of the *Salmonella* verification program, the U.S. Department of Agriculture–Food Safety Inspection Service (USDA-FSIS) performs weekly *Salmonella* monitoring at processing establishments and publicly reports these data, along with establishment performance standards (8). The workflow for *Salmonella* culturing involves selection of a single colony from an agar plate. After confirmation that this colony is *Salmonella* positive, the isolate is then analyzed by whole-genome sequencing (WGS). The *Salmonella* serovar is computationally inferred from the WGS as part of the FSIS analysis, and the sequence and serovar information is made publicly available. The current performance standards are based on *Salmonella* prevalence, and there are three different categories. Establishments in Category 1 have the lowest *Salmonella* prevalence

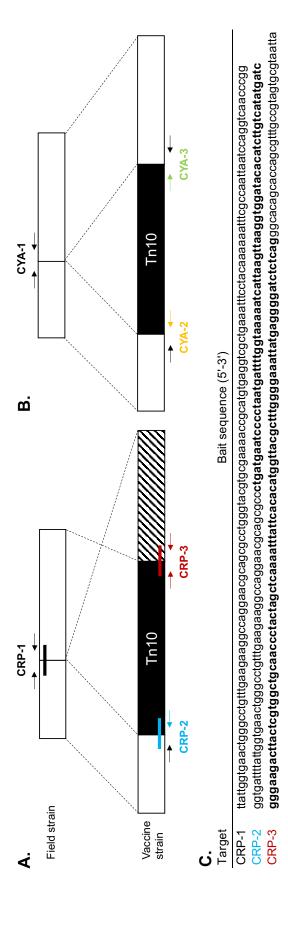
over a 52-wk moving window, while establishments listed as Category 3 have the highest and are considered to be failing the performance standards.

Broiler integrators use a variety of interventions to effectively reduce Salmonella during production and processing. In addition to proper on-farm biosecurity, the application of Salmonella vaccines is an important tool to reduce Salmonella during production (9–21). In the United States, there are three different types of vaccines available: live attenuated; commercial killed vaccine; and autogenous killed vaccine. Live attenuated vaccines consist of mutant Salmonella Typhimurium strains (18, 22–29) and across the industry are broadly applied to pullets and breeder flocks. The commercial killed vaccine is a Salmonella enterica serovar Enteritidis bacterin and is applied to pullets (17, 30–33). Autogenous killed vaccines contain the serovars that are producing problems in a particular company or complex (21, 34). Notably, when integrators have high Salmonella prevalence at processing (i.e., are in Category 3), they may apply live attenuated vaccines to broilers (at the hatchery or farm) with the intention of reducing the prevalence at processing plants (in this instance, killed or autogenous vaccines are not applied to broilers). When a live attenuated Salmonella enterica serovar Typhimurium vaccine persists, it can be isolated by the USDA-FSIS during the verification program. Because the current performance standards are based on Salmonella prevalence, isolation of the vaccine strain at processing counts negatively toward an establishment's performance standard.

One commercially available *Salmonella* Typhimurium vaccine (Megan Vac 1) has two transposon (Tn10) insertions in genes Δcya and Δcrp (Fig. 5-1), which eliminate the ability to synthesize adenylate cyclase (CYA) and the cyclic adenosine

monophosphate receptor protein (CRP), respectively (22, 29). The *cya* and *crp* genes play a role in global regulation of many *Salmonella* functions (35, 36). This vaccine is avirulent, highly immunogenic, and is easy to grow and store (25, 28). From a diagnostic perspective, there are several indications that a group B (O:4) *Salmonella* is the vaccine strain rather than a *Salmonella* Typhimurium field strain; these include its H₂S-negative phenotype on xylose lysine tergitol-4 (XLT-4) agar among other phenotypes. With the increasing use of molecular diagnostics, there is a need for a rapid PCR-based screen that distinguishes nonvaccine from vaccine strains. Such an assay, which is straightforward to implement and affordable, would provide a standardized method across diagnostic facilities.

Given the introduction of new key performance indicators (KPIs) from the USDA-FSIS that include the specific reduction of *Salmonella* Typhimurium in broilers, it is particularly important to the commercial poultry industry to be able to determine whether *Salmonella* Typhimurium isolates found in their production systems are field strains or vaccine strain (37). It is becoming increasingly evident that *Salmonella* exists in poultry as mixed serovar populations that are not resolved when a single colony is selected off an agar plate (7, 38–43). Because the vaccine isolate is attenuated and also appears as smaller colonies than other salmonellae, it is likely that in a mixed population of multiple serovars, it will be outnumbered by other salmonellae and thus would not be selected when a colony is picked from agar. However, if the USDA-FSIS moves to the use of assays that screen enrichment cultures specifically for *Salmonella* Typhimurium (e.g., by PCR), there will be a need for a complementary PCR assay that can determine


whether *Salmonella* Typhimurium positive samples represent presence of the vaccine or a field strain.

This study was developed with two objectives. The first was to determine the prevalence of a commercial live attenuated vaccine by the USDA-FSIS at processing. The second objective was to develop a PCR assay to distinguish between vaccine and nonvaccine *Salmonella* Typhimurium isolates and to be able to detect the presence of vaccine strain in a mixed *Salmonella* population. From a regulatory perspective, the bioinformatic assay provides a method to be able to distinguish between vaccine strain and field isolates. From an industry perspective, the PCR assay presented enables rapid identification of vaccine strain that may not be detected by traditional culture methodology (i.e., if it is outnumbered by additional, nonvaccine salmonellae), which will aid in *Salmonella* monitoring systems. Further, the assay could also be used by integrators to assess vaccine takes in birds after application.

Materials and methods

In silico analysis of FSIS *Salmonella* Typhimurium genomes

The National Center for Biotechnology Information (NCBI) Pathogen Detection database (44) was searched for *Salmonella* Typhimurium genomes corresponding to the USDA-FSIS isolates from all chicken-related samples from January 2016 to December 2022. Raw sequence reads were downloaded, and genomes were assembled using SPAdes (45). The Basic Local Alignment Search Tool (46) was used to align sequences of 125–126 nucleotides that correspond to the *crp* gene in native *Salmonella* Typhimurium (i.e., field isolates) and the vaccine strain (Fig. 5-1C) sequences, respectively. The accession number for the Δcrp mutant is MT900624.1.

corresponding to the field strain (black horizontal bar) and either end of the transposon insertion site (blue and red bars) were used to screen WGS. jem operon (jem.A. jem.B.) and jem.C.) and the tet operon (ter.R., tet.A., tet.C., and tet.D.) is removed. The left and right transposase elements remain. The nucleotides in length (GenBank accession no.: AF162223). For both Δcrp and Δcya mutants, the central portion of the transposon containing the gene, as indicated. The arrows indicate the primer sequences and direction of PCR amplification. The diagonal lines on the 3' end of crp indicate Figure 5-1. Schematic showing transposition of crp and cya genes and design of molecular assays. The vaccine strain was generated by P22 junction where the transposon was inserted generates a sequence that is unique to the vaccine strain. Three PCR assays were developed for each transduction of $\Delta crp::TnI0(A)$ or $\Delta cya::TnI0(B)$ and subsequent fusaric acid selection for tetracycline-sensitive isolates (18). TnI0 is 9147that this portion of the sequence is in the reverse orientation compared with the native *crp* in *Salmonella* Typhimurium. (C) Bait sequences The portion of the sequences that target TnI0 are shown in bold.

Salmonella isolates and mixed enrichment samples

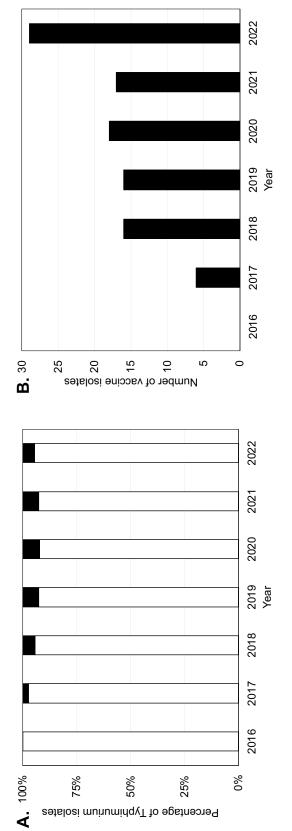
Four Salmonella Typhimurium isolates were obtained from the Diagnostic Laboratory at the Poultry Diagnostic and Research Center at the University of Georgia (Athens). Two had been typed as the vaccine strain based on three criteria: 1) an H₂Snegative morphology on XLT-4 agar; 2) agglutination with O:4 antiserum (BD Difco, Franklin Lakes, NJ); and 3) phenotype on an API 20E strip (BioMérieux, Marcy-l'Etoile, France). The remaining two isolates were typed as Salmonella Typhimurium field isolates. A single Salmonella colony from each isolate was propagated in 5 ml of Luria-Bertani broth and grown overnight at 37 C. Total genomic DNA was isolated from 600 μl of these cultures using the Promega Genome Wizard kit (Madison, WI) according to the manufacturer's protocol and was resuspended in 200 µl of molecular grade water and stored at -20 C until use. For the blinded study, 18 Salmonella Typhimurium isolates were provided to us from the Georgia Poultry Lab Network. Here, the Salmonella Typhimurium isolates were characterized as the vaccine strain based on H₂S-negative reading on triple sugar iron agar slants and the phenotype on a Vitek-2 gram-negative card. Colonies were scraped from the Luria-Bertani agar plate, and resuspended in 600 µl of nuclei lysis solution, and the genomic DNA was isolated as mentioned previously. As part of two independent projects, deep serotyping was performed on Salmonella-positive swabs from a commercial hatchery and on Salmonella-positive boot sock samples from commercial breeder flocks. Total genomic DNA was isolated from overnight tetrathionate enrichments, and deep serotyping was performed (M. Rothrock, unpubl. data; Shariat, unpubl. data). The isolated DNA from 11 hatchery samples and 21 breeder

samples that were shown to contain *Salmonella* Typhimurium were used as a template for the PCR assay.

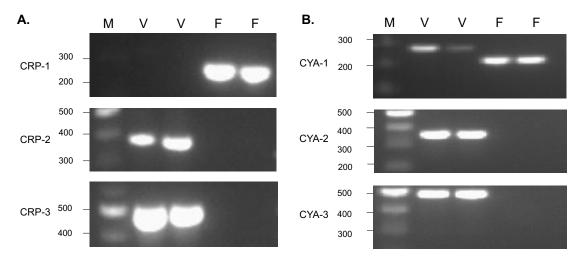
PCR assay

The primers used for the *cya* and *crp* assays are shown in Table 1 and were designed based on the vaccine strain sequences that were publicly available through NCBI for Δcya (accession no.: MT900625.1) and Δcrp (accession no.: MT900624.1). The expected size of each product is also shown in the table. Two microliters of DNA template (with a concentration between 10 and 35 ng/µl) was combined with 1 U/µl Taq polymerase (New England BioLabs, Ipswich, MA), 2 nmol deoxynucleoside triphosphate (New England BioLabs), 1× Taq polymerase buffer (New England BioLabs), and 10 mM of each primer for a total reaction volume of 25 µl. The PCR included denaturation for 3 min at 95 C, followed by 30 cycles of 95 C for 30 sec, 65 C for 30 sec, and 68 C for 30 sec. This was followed with a final extension step of 68 C for 3 min. A total of 5 µl of each PCR product was visualized on a 1.5% agarose gel run at 110 V. For the PCR screen of enrichment samples containing mixed serovars, the same PCR parameters were used, with the exception that it was run for 40 cycles. The PCR products for all six assays (CRP-1 to CYP-3 and CYA-1 to CYA-3) were treated with 20 U/µl of Exonuclease (New England BioLabs) and 1.25 U/μl of Antarctic alkaline phosphatase (New England BioLabs). The mixture was incubated for 30 min at 37°C to remove remaining primers and unincorporated deoxynucleoside triphosphate. The enzymes were inactivated by incubating the samples at 85 C for 15 min. Purified PCR products were sequenced at Eton Biosciences (North Carolina Branch; Research Triangle Park, NC), and the sequences were aligned using MegAlign, version 17.3.3 (47).

Table 5-1. Primer sequences used for the study.


Gene	PCR assay	Forward primer sequence (5′–3′)	Reverse primer sequence (5'–3')	Product size (nucleotides)
crp	CRP-1	ctccgtggcagtgctgatcaaag	cgtcaaggaaggcgaggttacctac	281
	CRP-2 CRP-3	ctccgtggcagtgctgatcaaag cgtcacctaaaatctactcagcgtcgg	gttetegetttggttggeaggttae attaegeactaeggeaaaegetg	386 501
cya	CYA-1	gcgatatctgcgggttcaccag	cgataatcgcgcaaactggaaaatcgatc	221
	CYA-2 CYA-3	gcgatatctgcgggttcaccag gctcacggatatcagaccagtcaacaag	tcaagtaatgcgtggcaagccaac cgataatcgcgcaaactggaaaatcgatc	364 494

Results


Bioinformatic analyses of FSIS Salmonella Typhimurium genomes

Between January 2016 and December 2022, 1,708 Salmonella Typhimurium genomes were uploaded to the NCBI Pathogen Detection database by the USDA-FSIS. These accounted for 7.99% of all Salmonella genomes belonging to FSIS isolates from chicken-related samples, including postchill carcass rinses, parts, and comminuted products. Using the publicly available sequences for the Δcya (accession: no. MT900625.1) and Δcrp (accession no.: MT900624.1) Salmonella Typhimurium sequences, we identified sequences that would differentiate between field strains and the vaccine strain. The mutants were generated by P22 transduction of Δcrp ::Tn10 and Δcya ::Tn10. In the vaccine strain, much of Tn10 has been deleted, leaving the left and right transposase sequences. The junctions where the transposon was inserted into the cva and the crp genes provides unique sequences to the vaccine strains (Fig. 5-1). These query sequences corresponding to the Tn10 junction were used to screen the 1,708 assembled Salmonella serovar Typhimurium genomes. A total of 104 (5.97%) of these genomes were identified as the vaccine strain (Fig. 5-2A). There were no vaccine strains present in the 2016 dataset, though this subsequently increased each year to 29 instances in 2022 (Fig. 5-2B).

The analysis presented here was based on assembly of the genomic short-read sequences available at NCBI. Because this can be computationally intensive, we also developed a protocol for screening the short-read sequences themselves into WGS of the *Salmonella* genomes. The query sequences are less than 130 nucleotides; this facilitates

(A) Proportion of 1,708 Salmonella Typhimurium isolates corresponding to the field strain (white) and vaccine strain (black). (B) The number of Figure 5-2. Incidence of Salmonella Typhimurium vaccine strain isolated from broiler products by USDA-FSIS between 2016 and 2022. vaccine strain isolates detected each year.

Figure 5-3. PCR assays distinguish between field isolates and vaccine strains. (A) Three *crp* PCR assays were used to screen two *Salmonella* Typhimurium field isolates (F) and two isolates of the vaccine strain (V) using the primer pairs listed in Table 1. PCR products were analyzed by gel electrophoresis. (B) The same isolates were screened with three *cya* PCR assays. Molecular marker (M), with sizes shown to the left of each gel.

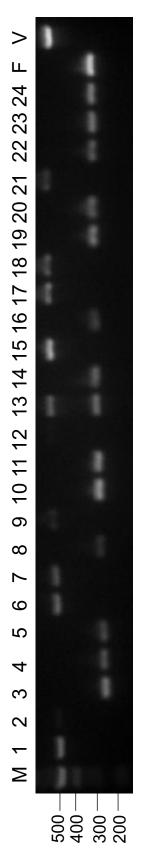
using these to directly screen the short-read sequences and avoid having to assemble the genome.

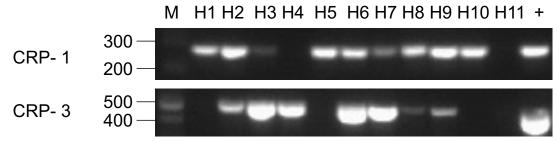
PCR assays to differentiate Salmonella Typhimurium vaccine strain from nonvaccine strains

Six PCR assays were used to screen vaccine and nonvaccine *Salmonella* Typhimurium isolates. Three assays were designed against the *crp* gene, with one targeting the field strain sequence and two targeting the transposon insertion junctions in *crp* (Fig. 5-1). Three similar assays were designed against the *cya* gene. The PCR assays were able to successfully differentiate between the field and vaccine strains (Fig. 5-3) and were confirmed by Sanger sequencing of the amplicons for all six assays (data not shown). The primers for each assay were designed to generate products of differing sizes to facilitate the use of a multiplex PCR (Table 5-1). We demonstrated that a multiplex PCR approach would work for the Δcrp mutation using CRP-1 (targets the field strain) and CRP-3 (targets the vaccine strain) assays (Fig. S5-1). Next, a blinded study was performed. The Georgia Poultry Lab Network provided 18 *Salmonella* Typhimurium isolates, and these were screened using the multiplex CRP-1 and CRP-3 PCR assay. We correctly attributed nine vaccine isolates and nine field isolates (Fig. 5-4).

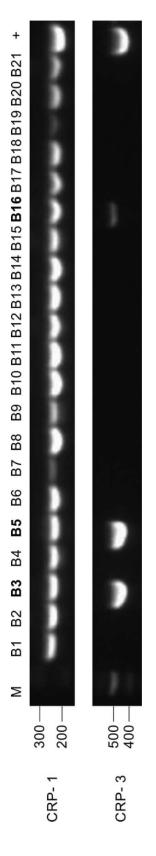
Detection of vaccine strain from mixed Salmonella cultures

As part of a separate project, we performed deep serotyping on *Salmonella* enrichment cultures that were collected at a commercial hatchery. We detected *Salmonella* Typhimurium in a number of these samples. The integrator informed us that they recently applied the vaccine at the hatchery. We used the *crp* PCR assay (CRP-1 and CRP-3) to screen 11 of these samples (H1–H11) and detected the vaccine isolate in nine




Figure 5-4. Multiplex PCR assay to distinguish between field isolates and vaccine strains. A multiplex PCR using the primer pairs from assay CRP-1 and CRP-3 were used to screen three vaccine strain isolates and two field isolates of *Salmonella* serovar Typhimurium. Molecular marker (M), with sizes shown to the left of the gel.

of them (Fig. 5-5). Eight of these had PCR products for CRP-1 and CRP-3, showing that they contained the vaccine strain and another *Salmonella*. In sample H4, only the vaccine isolate was detected. In another independent project, 21 *Salmonella*-positive enrichments from environmental breeder samples that had been shown to contain *Salmonella* Typhimurium were screened using our assay. Three samples (B3, B5, and B16) had positive amplification of the CRP-3 assay, demonstrating presence of the vaccine isolate in these samples (Fig. 5-6). All 21 samples had positive amplification from the CRP-1 assay, showing that these were mixed cultures. We note that the PCR assay targeting the field strain does not distinguish between *Salmonella* Typhimurium and other serovars, given the high conservation of this gene across *Salmonella*.


Discussion

Although the broiler industry has decreased *Salmonella* prevalence by over 50% in the last few years, there has not been a reduction in human cases attributed to *Salmonella* from poultry products in the United States (5, 49, 50). This may, in part, be due to the successful reduction of *Salmonella* Kentucky, which is the most prevalent serovar isolated from chickens but is not associated with significant human illness in the United States (5–7). In October 2021, the USDA-FSIS announced a new initiative to reduce *Salmonella* in broilers (51). This was followed by an announcement of KPIs to achieve this goal (37). Specifically, KPIs measure the percentage of reduction in raw poultry samples contaminated with the *Salmonella* serovars commonly associated with human illness, which includes *Salmonella* Typhimurium.

This new initiative highlights the importance of the different preharvest *Salmonella* control strategies such as biosecurity (52–57), pest control (53, 58–62), litter

Figure 5-5. PCR screen can detect presence of the vaccine isolate in mixed Salmonella cultures. The CRP-1 (field strain) and CRP-3 (vaccine strain) assays were used to screen six mixed cultures containing Salmonella serovar Typhimurium. These samples were collected from hatchery environments and are labeled 1-6, with those containing the vaccine strain highlighted in bold. Molecular marker (M), with sizes shown to the left of the gel. For the positive controls, two isolates from our diagnostic laboratory were used; one was a field strain of Salmonella serovar Typhimurium (used as a positive control for CRP-1), and the other was a Salmonella serovar Typhimurium that had been typed as the vaccine strain (used as a positive control for CRP-3).

assay) and CRP-3 (vaccine assay) assays were used to screen 21 mixed cultures containing serovar Typhimurium (B1-B21). Samples Figure 5-6. PCR screen can detect presence of the vaccine isolate in mixed Salmonella cultures from breeder flocks. The CRP-1 (field containing the vaccine strain are highlighted in bold. M; molecular marker, with sizes shown to the left of the gel. As a positive control for the CRP-1 assay, a field isolate of serovar Typhimurium was used and for CRP-3, an isolate of the vaccine strain was used.

amendments (63–68), and treatment of feed (69–77) and water (72, 75, 77, 78). Vaccination, particularly the use of the live attenuated vaccine against Salmonella Typhimurium, has also shown to be effective at reducing Salmonella (9, 15, 18, 25, 27, 29, 79). Live attenuated vaccines are used by a large proportion of broiler integrators in the United States as the main method of *Salmonella* control in breeders (11,13,14,80). The analysis presented here shows that 6% of Salmonella Typhimurium isolates found by the USDA-FSIS from broiler processing establishments belong to a vaccine strain. These are negatively impacting establishment performance standards. Performance standards are available to the public, and customers can use these data to make the decision to continue or change providers. When a processing establishment falls into Category 3, the integrator may then choose to apply a live attenuated Salmonella vaccine to the broiler flocks. Because the vaccine strain discussed here persists in chickens, this corrective action actually exacerbates the problem, as more of it will be isolated by the USDA-FSIS during verification sampling. In light of Salmonella Typhimurium being designated as a KPI, isolation of the live attenuated Salmonella Typhimurium vaccine strain during processing may continue to count negatively toward performance standards. The bioinformatic approach outlined here provides a straightforward way that regulators could screen WGS information from Salmonella Typhimurium isolates to determine whether or not they belong to the vaccine strain. Furthermore, should the USDA-FSIS move to include some kind of Salmonella Typhimurium PCR to screen enrichment cultures that potentially contain mixed serovars (as opposed to picking and sequencing an individual colony), the PCR assay detailed here could be used in parallel to determine whether those samples are vaccine strains.

Because the USDA-FSIS is now focusing on this serovar, integrators and regulators are keen to use rapid diagnostics that can specifically detect these serovars. Rapid diagnostics will likely be used directly on a sample prior to culture or on some kind of enriched or pre-enriched sample. When *Salmonella* Typhimurium is detected in these instances, there will be a need to determine whether it is vaccine strain or not, which can be accomplished by the PCR assay presented here.

Vaccination is a valuable tool for food safety and also for animal health regarding protection against poultry pathogens. The work presented here highlights the importance of distinguishing vaccine and field strains from each other to facilitate improved *Salmonella* surveillance in the poultry industry.

<u>Acknowledgments</u>

We are grateful to the Diagnostic Laboratory at the Poultry Diagnostic and Research Center, to Dr. Doug Waltman at the Georgia Poultry Lab Network for sharing *Salmonella* Typhimurium isolates, and to Dr. Michael Rothrock for providing isolated DNA from *Salmonella* enrichment cultures from a commercial hatchery. We thank Amber Richards for assistance in making the accompanying video.

Author Contributions

ATS: Methodology, Software, Formal analysis, Investigation, Data curation, Writing – original draft, Writing – review & editing, Visualization; MR: Methodology, Formal analysis, Investigation, Data curation, Writing – original draft, Writing – review & editing, Visualization; NWS: Conceptualization, Methodology, Formal analysis, Investigation, Resources, Data curation, Writing – original draft, Writing – review & editing, Visualization, Supervision, Project administration, Funding acquisition

References

- Tack DM, Marder EP, Griffin PM, Cieslak PR, Dunn J, Hurd S, Scallan E, Lathrop S, Muse A, Ryan P, et al. Preliminary incidence and trends of infections with pathogens transmitted commonly through food — foodborne diseases active surveillance network, 10 U.S. Sites, 2016–2019. MMWR Morb Mortal Wkly Rep. 69:509–514; 2020.
- Scallan E, Hoekstra RM, Angulo FJ, Tauxe R V, Widdowson MA, Roy SL, Jones JL, Griffin PM. Foodborne illness acquired in the United States-major pathogens. *Emerg Infect Dis*. 17:7–15; 2011.
- 3. Interagency Food Safety Analytics Collaboration. Foodborne illness source attribution estimates for 2021 for *Salmonella*, *Escherichia coli* O157, and *Listeria monocytogenes* using multi-year outbreak surveillance data, United States. Atlanta, Georgia and Washington, District of Columbia: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Food and Drug Administration, U.S. Department of Agriculture, Food Safety and Inspection Service. [modified 2023 November 6; accessed 2023 December 19].
 https://www.cdc.gov/foodsafety/ifsac/pdf/P19-2021-report-TriAgency-508.pdf; 2023.
- 4. Batz MB, Richardson LTC, Bazaco MC, Parker CC, Chirtel SJ, Cole D, Golden NJ, Griffin PM, Gu W, Schmitt SK, et al. Recency-weighted statistical modeling approach to attribute illnesses caused by 4 pathogens to food sources using outbreak data, United States. *Emerg Infect Dis.* 27(1):214–222; 2021.
- Centers for Disease Control and Prevention. FoodNet Fast: Pathogen Surveillance
 Tool. Atlanta, Georgia: U.S. Department of Health and Human Services. [modified

- 2023 June 28; accessed 2023 December 19]. https://wwwn.cdc.gov/foodnetfast/; 2023.
- 6. Shah DH, Paul NC, Sischo WC, Crespo R, Guard J. Population dynamics and antimicrobial resistance of the most prevalent poultry-associated *Salmonella* serotypes. *Poult Sci.* 96:687–702; 2016.
- 7. Siceloff AT, Waltman D, Shariat NW. Regional *Salmonella* differences in United States broiler production from 2016 to 2020 and the contribution of multiserovar populations to *Salmonella* surveillance. *Appl Environ Microbiol*. 88(8):e0020422; 2022.
- U.S. Department of Agriculture, Food Safety and Inspection Service. *Performance standards: Salmonella verification program for raw poultry products*. Washington, District of Columbia: U.S. Department of Agriculture, Food Safety and Inspection Service. [modified 2021 March 2; accessed 2023 May 3].
 https://www.fsis.usda.gov/policy/fsis-directives/10250.2; 2021.
- 9. Zhang-Barber L, Turner AK, Barrow PA. Vaccination for control of *Salmonella* in poultry. *Vaccine* 17:2538–2545; 1999.
- 10. Desin TS, Koster W, Potter AA. *Salmonella* vaccines in poultry: past, present and future. *Expert Rev Vaccines* 12:87–96; 2013.
- 11. Ruvalcaba-Gomez JM, Villagran Z, Valdez-Alarcon JJ, Martinez-Nunez M, Gomez-Godinez LJ, Ruesga-Gutierrez E, Anaya-Esparza LM, Arteaga-Garibay RI, Villarruel-Lopez A. Non-antibiotics strategies to control *Salmonella* infection in poultry. *Animals (Basel)* 1:102; 2022.

- 12. Berghaus RD, Thayer SG, Maurer JJ, Hofacre CL. Effect of vaccinating breeder chickens with a killed *Salmonella* vaccine on *Salmonella* prevalences and loads in breeder and broiler chicken flocks. *J Food Prot.* 74:727–734; 2011.
- 13. Young SD, Olusanya O, Jones KH, Liu T, Liljebjelke KA, Hofacre CL. *Salmonella* incidence in broilers from breeders vaccinated with live and killed *Salmonella*. *J Appl Poult Res.* 16:521–528; 2007.
- 14. Dorea FC, Cole DJ, Hofacre C, Zamperini K, Mathis D, Doyle MP, Lee MD, Maurer JJ. Effect of *Salmonella* vaccination of breeder chickens on contamination of broiler chicken carcasses in integrated poultry operations. *Appl Environ Microbiol*. 76:7820–7825; 2010.
- 15. Jones MK, M, Hofacre CL, Baxter VA, Cookson K, Schaeffer J, Barker A, Dickson J, Berghaus RD. Evaluation of a modified live *Salmonella* Typhimurium vaccination efficacy against *Salmonella enterica* serovar Infantis in broiler chickens at processing age. *J Appl Poult Res.* 30:100156; 2021.
- 16. Barrow PA. *Salmonella* infections: immune and non-immune protection with vaccines. *Avian Pathol.* 36:1–13; 2007.
- 17. Huberman YD, Velilla A V., Terzolo HR. Evaluation of different live *Salmonella*Enteritidis vaccine schedules administered during layer hen rearing to reduce excretion, organ colonization, and egg contamination. *Poult Sci.* 98:2422–2431; 2019.
- 18. Hassan JO, Curtiss R. Efficacy of a live avirulent *Salmonella* Typhimurium vaccine in preventing colonization and invasion of laying hens by *Salmonella* Typhimurium and *Salmonella* Enteritidis. *Avian Dis.* 41:783–791; 1997.

- 19. Pavic A, Groves PJ, Cox JM. Utilization of a novel autologous killed tri-vaccine (serogroups B [Typhimurium], C [Mbandaka] and E [Orion]) for *Salmonella* control in commercial poultry breeders. *Avian Pathol.* 39:31–39; 2010.
- 20. Bailey JS, Rolon C, Hofacre CL, Holt PS, Wilson JL, Cosby DE, Richardson LJ, Cox NA. Resistance to challenge of breeders and their progeny with and without competitive exclusion treatment to *Salmonella* vaccination programs in broiler breeders. *Int J Poult Sci.* 6:386–392; 2007.
- 21. Bailey JS, Rolon A, Hofacre CL, Holt PS, Wilson JL, Cosby DE, Richardson LJ, Cox NA. Intestinal humoral immune response and resistance to *Salmonella* challenge of progeny from breeders vaccinated with killed antigen. *Int J Poult Sci.* 6:417–423; 2007.
- 22. Curtiss R III, Kelly SM. Salmonella Typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infect Immun. 55:3035–3043; 1987.
- 23. Curtiss R III, Hassan JO. Nonrecombinant and recombinant avirulent *Salmonella* vaccines for poultry. *Vet Immunol Immunopathol*. 54:365–372; 1996.
- 24. Porter SB, Curtiss R III. Effect of inv mutations on *Salmonella* virulence and colonization in 1-day-old White Leghorn chicks. *Avian Dis.* 41(1):45–57; 1997.
- 25. Zhang X, Kelly SM, Bollen W, Curtiss R III. Protection and immune responses induced by attenuated *Salmonella* Typhimurium UK-1 strains. *Microb Pathog*. 26:121–130; 1999.

- 26. Alderton MR, Fahey KJ, Coloe PJ. Humoral responses and salmonellosis protection in chickens given a vitamin-dependent *Salmonella* typhimurium mutant. *Avian Dis*. 35:435–442; 1991.
- 27. Hassan JO, Porter SB, Curtiss R III. Effect of infective dose on humoral immune responses and colonization in chickens experimentally infected with *Salmonella* Typhimurium. *Avian Dis.* 37:19–26; 1993.
- 28. Porter SB, Tinge SA, Curtiss R III. Virulence of *Salmonella* Typhimurium mutants for White Leghorn chicks. *Avian Dis.* 37(2):265–273; 1993.
- 29. Curtiss R III, Kelly SM, Hassan JO. Live oral avirulent *Salmonella* vaccines. *Vet Microbiol*. 37:397–405; 1993.
- 30. Tran TQL, Quessy S, Letellier A, Desrosiers A, Boulianne M. Immune response following vaccination against *Salmonella* Enteritidis using 2 commercial bacterins in laying hens. *Can J Vet Res.* 74:185–192; 2010.
- 31. Barrow PA. Experimental infection of chickens with *Salmonella Enteritidis*. *Avian Pathol*. 20:145–153; 1991.
- 32. Cooper GL, Nicholas RA, Cullen GA, Hormaeche CE. Vaccination of chickens with a *Salmonella* Enteritidis *aroA* live oral *Salmonella* vaccine. *Microb Pathog*. 9:255–265; 1990.
- 33. Inoue AY, Berchieri A, Bernardino A, Paiva JB, Sterzo EV. Passive immunity of progeny from broiler breeders vaccinated with oil-emulsion bacterin against *Salmonella* Enteritidis. *Avian Dis.* 52:567–571; 2008.

- 34. Horton BC, Gehring KB, Sawyer JE, Arnold AN. Evaluation of autogenous vaccine use in mitigating *Salmonella* in lymph nodes from feedlot cattle in Texas. *J Food Prot.* 84:80–86; 2021.
- 35. Alper MD, Ames BN. Transport of antibiotics and metabolite analogs by systems under cyclic AMP control: positive selection of *Salmonella* Typhimurium *cya* and *crp* mutants. *J Bacteriol*. 133:149–157; 1978.
- 36. El Mouali Y, Gaviria-Cantin T, Sánchez-Romero MA, Gibert M, Westermann AJ, Vogel J, Balsalobre C. CRP-cAMP mediates silencing of *Salmonella* virulence at the post-transcriptional level. *PLoS Genet*. 14:e1007401; 2018.
- 37. U.S. Department of Agriculture, Food Safety and Inspection Service. FY 2022–2026

 Food safety key performance indicator. Washington, District of Columbia: U.S.

 Department of Agriculture, Food Safety and Inspection Service. [modified 2022 June 29; accessed 2023 May 3]. https://www.fsis.usda.gov/inspection/inspection-programs/inspection-poultry-products/reducing-salmonella-poultry/salmonella-0; 2022.
- 38. Obe T, Siceloff AT, Crowe MG, Scott HM, Shariat NW. Combined quantification and deep serotyping for *Salmonella* risk profiling in broiler flocks. *Appl Environ Microbiol*. 89:e0203522; 2023.
- 39. Obe T, Berrang ME, Cox NA, House SL, Shariat NW. Comparison of selective enrichment and plating media for *Salmonella* isolation from broiler carcasses. *J Food Saf.* 41:e12928; 2021.
- 40. Rasamsetti S, Shariat NW. Biomapping *Salmonella* serovar complexity in broiler carcasses and parts during processing. *Food Microbiol*. 110:104149; 2023.

- 41. Rasamsetti S, Berrang ME, Cox NA, Shariat NW. Assessing *Salmonella* prevalence and complexity through processing using different culture methods. *Poult Sci*. 101:101949; 2022.
- 42. Rasamsetti S, Berrang M, Cox NA, Shariat NW. Selective pre-enrichment method to lessen time needed to recover *Salmonella* from commercial poultry processing samples. *Food Microbiol*. 99:103818; 2021.
- 43. Cox NA, Berrang ME, House SL, Medina D, Cook KL, Shariat NW. Population analyses reveal preenrichment method and selective enrichment media affect *Salmonella* serovars detected on broiler carcasses. *J Food Prot.* 82:1688–1696; 2019.
- 44. The National Center for Biotechnology Information. *Pathogen Detection*. Bethesda, Maryland: National Institutes of Health, National Library of Medicine. [accessed 2023 Jun 8]. https://www.ncbi.nlm.nih.gov/pathogens/; 2023.
- 45. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, *et al.* SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *J Comput Biol.* 19:455–477; 2012.
- 46. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. *J Mol Biol*. 215:403–410; 1990.
- 47. Clewley JP, Arnold C. MegAlign. The multiple alignment module of Lasergene.

 Methods Mol Biol. 70:119–129; 1997.
- 48. Thompson CP, Doak AN, Amirani N, Schroeder EA, Wright J, Kariyawasam S, Lamendella R, Shariat NW. High-resolution identification of multiple *Salmonella*

- serovars in a single sample by using CRISPR-SeroSeq. *Appl Environ Microbiol*. 84:e01859-18; 2018.
- 49. U.S. Department of Agriculture, Food Safety and Inspection Service. *USDA-FSIS* quarterly sampling reports on Salmonella and Campylobacter. Washington, District of Columbia: U.S. Department of Agriculture, Food Safety and Inspection Service. [modified 2023 October 27; accessed 2023 December 19]. https://www.fsis.usda.gov/science-data/data-sets-visualizations/microbiology/microbiological-testing-program-rte-meat-and-7; 2023.visualizations/microbiology/microbiological-testing-program-rte-meat-and-7; 2023.
- 50. Punchihewage-Don AJ, Hawkins J, Adnan AM, Hashem F, Parveen S. The outbreaks and prevalence of antimicrobial resistant *Salmonella* in poultry in the United States: an overview. *Heliyon* 8:e11571; 2022.
- 51. U.S Department of Agriculture, Food Safety and Inspection Service. *USDA launches new effort to reduce Salmonella illnesses linked to poultry*. Washington, District of Columbia: U.S. Department of Agriculture, Food Safety and Inspection Service. [modified 2021 October 19; accessed 2023 May 3]. https://www.usda.gov/media/press-releases/2021/10/19/usda-launches-new-effort-reduce-salmonella-illnesses-linked-poultry#:~:text=USDA%20intends%20to%20seek%20stakeholder,contamination%20 coming%20into%20the%20slaughterhouse; 2021.
- 52. Donado-Godoy P, Gardner I, Byrne BA, Leon M, Perez-Gutierrez E, Ovalle MV, Tafur MA, Miller W. Prevalence, risk factors, and antimicrobial resistance profiles of

- Salmonella from commercial broiler farms in two important poultry-producing regions of Colombia. *J Food Prot.* 75:874–883; 2012.
- 53. Dale EL, Nolan SP, Berghaus RD, Hofacre CL. On farm prevention of Campylobacter and Salmonella: lessons learned from basic biosecurity interventions. J Appl Poult Res. 24:222–232; 2015.
- 54. English K. Effect of biosecurity and management practices on the prevalence of Salmonella, Campylobacter and Clostridium perfringens in a poultry production system [thesis]. [Auburn (AL)]: Auburn University; 2015.
- 55. Sylejmani D, Musliu A, Ramadani N, Sparagano O, Hamidi A. Associations between the level of biosecurity and occurrence of *Dermanyssus gallinae* and *Salmonella* spp. in layer farms. *Avian Dis.* 60:454–459; 2016.
- 56. Meher MM, Sharif MA, Bayazid AA. Seroprevalence of *Salmonella* spp. infection in different types of poultry and biosecurity measures associated with salmonellosis. *Int J Agric Environ Food Sci.* 6:557–567; 2022.
- 57. Dorea FC, Berghaus R, Hofacre C, Cole DJ. Survey of biosecurity protocols and practices adopted by growers on commercial poultry farms in Georgia, U.S.A. *Avian Dis.* 54:1007–1015; 2010.
- 58. Meerburg BG, Kijlstra A. Role of rodents in transmission of *Salmonella* and *Campylobacter*. *J Sci Food Agric*. 87:2774–2781; 2007.
- 59. Raufu IA, Ahmed OA, Aremu A, Odetokun IA, Raji MA. *Salmonella* transmission in poultry farms: the roles of rodents, lizards and formites. *Savannah Vet J.* 2:1–4; 2019.

- 60. Lapuz RRSP, Umali D V, Suzuki T, Shirota K, Katoh H. Comparison of the prevalence of *Salmonella* infection in layer hens from commercial layer farms with high and low rodent densities. *Avian Dis.* 56:29–34; 2012.
- 61. Goodwin MA, Waltman WD. Transmission of *Eimeria*, viruses, and bacteria to chicks: darkling beetles (*Alphitobius diaperinus*) as vectors of pathogens. *J Appl Poult Res.* 5:51–55; 1996.
- 62. Smith R, Hauck R, Macklin K, Price S, Dormitorio T, Wang C. A review of the lesser mealworm beetle (*Alphitobius diaperinus*) as a reservoir for poultry bacterial pathogens and antimicrobial resistance. *Worlds Poult Sci J.* 78:197–214; 2022.
- 63. Ruiz-Barrera O, Ontiveros-Magadan M, Anderson RC, Byrd JA, Hume ME, Latham EA, Nisbet DJ, Arzola-Alvarez C, Salinas-Chavira J, Castillo-Castillo Y. Nitrotreatment of composted poultry litter; effects on *Salmonella*, *E. coli* and nitrogen metabolism. *Bioresour Technol*. 310: 123459; 2020.
- 64. Vaz CSL, Voss-Rech D, De Avila VS, Coldebella A, Silva VS. Interventions to reduce the bacterial load in recycled broiler litter. *Poult Sci.* 96:2587–2594; 2017.
- 65. Williams ZT, Blake JP, Macklin KS. The effect of sodium bisulfate on *Salmonella* viability in broiler litter. *Poult Sci.* 91:2083–2088; 2012.
- 66. Line JE. *Campylobacter* and *Salmonella* populations associated with chickens raised on acidified litter. *Poult Sci.* 81:1473–1477; 2002.
- 67. Wilkinson KG, Tee E, Tomkins RB, Hepworth G, Premier R. Effect of heating and aging of poultry litter on the persistence of enteric bacteria. *Poult Sci.* 90:10–18; 2011.

- 68. Vicente J, Higgins S, Hargis B, Tellez G. Effect of poultry guard litter amendment on horizontal transmission of *Salmonella* Enteritidis in broiler chicks. *Int J Poult Sci*. 6:314–317; 2007.
- 69. Van Immerseel F, Cauwerts K, Devriese LA, Haesebrouck F, Ducatelle R. Feed additives to control *Salmonella* in poultry. *Worlds Poult Sci J.* 58:501–513; 2002.
- 70. Jones FT. A review of practical *Salmonella* control measures in animal feed. *J Appl Poult Res.* 20:102–113; 2011.
- 71. Cochrane RA, Huss AR, Aldrich GC, Stark CR, Jones CK. Evaluating chemical mitigation of *Salmonella* Typhimurium ATCC 14028 in animal feed ingredients. *J Food Prot.* 79:672–676; 2016.
- 72. Renu S, Han Y, Dhakal S, Lakshmanappa YS, Ghimire S, Feliciano-Ruiz N, Senapati S, Narasimhan B, Selvaraj R, Renukaradhya GJ. Chitosan-adjuvanted *Salmonella* subunit nanoparticle vaccine for poultry delivered through drinking water and feed. *Carbohydr Polym.* 243:116434; 2020.
- 73. Onrust L, Baeyen S, Haesebrouck F, Ducatelle R, Van Immerseel F. Effect of in feed administration of different butyrate formulations on *Salmonella* Enteritidis colonization and cecal microbiota in broilers. *Vet Res.* 51:56; 2020.
- 74. Gosling RJ, Mawhinney I, Richardson K, Wales A, Davies R. Control of *Salmonella* and pathogenic *E. coli* contamination of animal feed using alternatives to formaldehyde-based treatments. *Microorganisms*. 9:263; 2021.
- 75. Bourassa DV, Wilson KM, Ritz CR, Kiepper BK, Buhr RJ. Evaluation of the addition of organic acids in the feed and/or water for broilers and the subsequent recovery of *Salmonella* Typhimurium from litter and ceca. *Poult Sci.* 97:64–73; 2018.

- 76. Iba AM, Berchieri Jr A. 1995. Studies on the use of a formic acid-propionic acid mixture (Bio-addTM) to control experimental *Salmonella* infection in broiler chickens. *Avian Pathol.* 24:303–311; 1995.
- 77. Wales A, McLaren I, Rabie A, Gosling RJ, Martelli F, Sayers R, Davies R.

 Assessment of the anti-Salmonella activity of commercial formulations of organic acid products. Avian Pathol. 42:268–275; 2013.
- 78. Harris C, Josselson L, Bourassa D, Fairchild B, Kiepper B, Buhr R. Evaluation of drinking water antimicrobial interventions on water usage, feed consumption, and *Salmonella* retention in broilers following feed and water withdrawal. *J Appl Poult Res.* 28; 2019.
- 79. Sharma P, Caraguel C, Sexton M, McWhorter A, Underwood G, Holden K, Chousalkar K. 2018. Shedding of *Salmonella* Typhimurium in vaccinated and unvaccinated hens during early lay in field conditions: a randomised controlled trial. *BMC Microbiol.* 18; 2018.
- 80. Hofacre CL, Rosales AG, Costa MD, Cookson K, Schaeffer J, Jones MK. Immunity and protection provided by live modified vaccines against paratyphoid *Salmonella* in poultry-an applied perspective. *Avian Dis.* 65:295–302; 2021.

CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

Salmonella is a leading bacterial cause of foodborne illness, with substantial global morbidity and mortality rates (3). This dissertation has focused on nontyphoidal serovars commonly found in chickens, but the challenges and results presented may apply to other production systems or foodborne pathogens. While 80% of Salmonella illnesses are attributed to seven food categories, including meat, poultry, and produce, chicken is the most significant single contributor (19.7%) (30). Concerted efforts have been made towards reducing Salmonella contamination on raw products, resulting in a 50% decrease from 2016 to 2022, but the fact that chicken remains a significant contributor reflects that it is a complex, multifaceted problem to solve (2, 46, 49, 67). Some major hurdles to overcome for *Salmonella* mitigation include the largely asymptomatic colonization in chickens, limitations in detection methods, and phenotypic differences among serovars. Additionally, the substantial production volume of chicken in the United States may compound the problem, as the estimated per capita chicken consumption (102.3 lbs) in 2024 was almost double that of beef and pork together (111.6 lbs).

Most *Salmonella* control has focused on post-harvest processing, where the combination of antimicrobials, such as chlorine and peracetic acid, and temperature controls, such as rapid heating and extended cooling, have been effective in reducing contamination (20, 51, 62). However, the unchanging rate of salmonellosis attributed to

chicken demonstrates that further reductions are necessary, which may be accomplished by minimizing the Salmonella load entering the processing plant to support greater efficacy of antimicrobial interventions. While all Salmonella serovars are capable of causing human illness, due to the inclusion of Salmonella Pathogenicity Islands 1 and 2, it is estimated that less than 100 are routinely isolated from human clinical cases (11). As such, it is essential to focus on serovar identity in addition to prevalence. Targeted control strategies, namely vaccination, have demonstrated considerable success in Salmonella mitigation, but these can be costly to maintain in broiler production (7, 22, 57, 69, 70). Alternatively, increased on-farm biosecurity can be a little to no cost approach with noticeable improvements in Salmonella prevalence (39, 65). Since Salmonella colonization in chickens is most often asymptomatic, it is vital to integrate highresolution surveillance to ensure that applied controls are effective in Salmonella mitigation. Conventional Salmonella isolation is limited in the observed diversity, as multiple serovars may exist within a host but colony picking is often restricted by time and resources. Molecular-based approaches may enable the identification of multiple serovars, but these are in turn limited by the lack of a single isolate for further characterization. Evaluating all present serovars within a sample is critical to promoting public health, as serovars pose unique risks based on their individual genotypes and phenotypes. For example, some serovars may have increased antimicrobial resistance, host pathogenicity, or stress response mechanisms (13, 23, 24, 26, 58, 59, 71).

The second chapter of this dissertation detailed a study analyzing trends in Salmonella serovars routinely identified in commercial chicken processing plants in the United States. The study's original design considered the national data collectively, but it

was divided among five areas of the country due to the observation of region-specific trends. For example, there was an increased abundance of serovars Infantis and Schwarzengrund in the Atlantic and Southeast regions, respectively. While the total Salmonella prevalence and serovar diversity are reflective of the scale of production in each region, the proportion of Salmonella-positive samples is not in alignment. The two regions with the greatest production (Southeast and South Central) had the least proportion of positive carcasses and parts. Interestingly, the Salmonella incidence is higher in parts than carcasses, further supporting previous findings that crosscontamination may occur during parts cut-up and there are some invasive serovars in joints or other harborage sites (41, 52–54, 56). For the last two decades, serovar Kentucky has been the most predominant serovar isolated from domestic poultry production yet rarely causes human illness in the United States, with only 258 cultureconfirmed cases by the CDC (10, 64); this observation emphasizes the importance of identifying which serovars are present in production. To determine the contribution of Salmonella in breeders to that found on final products, we next sought to apply deep serotyping on a subset of on-farm surveillance samples. The serovar profiles of preharvest breeder samples and post-harvest broiler samples were discordant, as serovar Schwarzengrund was detected primarily at processing with a concurrent reduction of serovar Kentucky. This discrepancy may be explained in two ways, or perhaps a combination of both: 1) antimicrobial interventions used as hazard control in processing plants likely reduce the majority of resistant serovars, including Kentucky, causing a shift in population dynamics; 2) there are additional contributing factors to Salmonella

contamination of final products, including persistent serovars on the broiler farms and within processing plants.

Biomapping in processing plants may help to recognize shortcomings in sanitization at specific steps, such as biofilms remaining on equipment used for parts cutup or in chill tanks, but serovars found at post-harvest must have originated from preharvest stages; therefore, it is necessary to focus on removing primary sources of Salmonella introduction. Importantly, this study revealed that one-third of pre-harvest breeder samples contained more than one serovar, further complicating control strategies. For example, autogenous vaccines can only be developed following serovar isolation within a complex, and other commercial vaccines will not be applied in broiler flocks unless there is a demonstrated need. Additionally, the presence of multiple serovars may explain some of the incongruence of those identified at pre- and post-harvest as some serovars, such as Infantis, were often present in lower relative frequencies. This highresolution analysis of multiserovar populations also revealed some interesting intraspecies dynamics, including the presence of serovars Cerro and Mbandaka, which are typically associated with cattle, and possible seasonal effects on serovar diversity, with the greatest diversity observed in October. Since this study only included one year of breeder surveillance samples, future work was required to further elucidate mechanisms driving serovar diversity and multiserovar populations. Additionally, the dataset did not include paired samples which limited comparisons to the state level, rather than complexes or flocks, and only post-harvest broiler samples were analyzed. However, this study provided the first high-resolution viewpoint of Salmonella populations in

breeder production and identified regional trends in serovars found at broiler processing plants across the United States.

The study presented in Chapter 3 was designed to further investigate the integrated farm continuum, with a focus on breeder production, by deep serotyping of blinded surveillance samples and monthly sampling of eight flocks throughout one production cycle, starting at the pullet farms. Importantly, this was the first longitudinal characterization of multiserovar population dynamics in broiler breeders in the United States, and the generated data can be used to inform management decisions to reduce Salmonella contamination in chicken; namely, the heightened biosecurity in breeder production, as compared to broilers, helps to limit serovars of concern. However, the deep serotyping of 129 farms with multiple houses revealed that 70% contained similar populations, as determined by the Bray-Curtis dissimilarity matrix, so any slip in biosecurity can enable on-farm transmission. Additionally, the high-resolution deep serotyping results provide new insight on Salmonella population dynamics, with observed patterns of serovar co-occurrence, including positive and negative associations. The study findings may serve as a steppingstone towards improved Salmonella control in commercial broiler production, as serovar-specific mitigation strategies can be developed based on inter- and intraserovar interactions, and a framework is provided for routine Salmonella monitoring in live production.

Since this was a follow up to data analyses presented in Chapter 2, some of the surveillance samples collected by GPLN between 2020 and 2021 are also included, although the total prevalence of multiserovar populations was lower in this study (~20%); this may be attributed to the quadrupled sample size and the inclusion of additional

samples containing single serovar populations, or the inclusion of a single boot sock representing a flock, rather than two pairs. However, the overall diversity increased in the set of samples collected between 2020 and 2022, with 38 serovars identified. Comparatively, the 35% Salmonella prevalence in the GPLN surveillance samples is equal to or greater than that found in previous studies, including a longitudinal study in Australia and breeder flocks in Ontario, Canada (42, 68). An additional study found varying proportions in breeder flocks, with 55% and 40% of boot sock and drag swabs being Salmonella-positive, respectively (7); this is in closer alignment with the prevalence of samples from the longitudinal study (43%). Notably, the prevalence was lower on pullet farms, with 15% and 17% prevalence in the submitted GPLN samples and the longitudinal study, respectively. From the repeated sampling, Salmonella-positive pullet farms were in a single complex, namely the one lacking integrated pest control; this supports the finding that biosecurity plays a critical role in Salmonella introduction. Furthermore, captured on-farm rodents contained serovars that matched those found in the corresponding breeder flocks, highlighting the potential of cyclical transmission with these vectors. Future work should evaluate the extent of Salmonella transmission by rodents, as they can move between farms, and regularly monitor rodent colonies to characterize Salmonella colonization, including the duration and stability of multiserovar populations.

There was greater serovar diversity observed in breeder surveillance samples compared to post-intervention broiler carcass and parts rinses, which exemplifies the efficacy of antimicrobial interventions during processing to reduce contamination.

Importantly, vaccination efforts in breeder flocks are successfully managing serovars of

concerns, including serovars Enteritidis and Typhimurium which are both often found in broiler flocks. Serovar Kentucky is the most prevalent serovar in breeder flocks and has been dominant in the domestic poultry industry for over 20 years with no significant association with human illness (12, 25). This phenomenon may be explained by the increased fitness of serovar Kentucky in colonizing chickens, as conferred by several stress response-regulated genes, along with the absence of key virulence genes for host cell invasion and survival (14). Unsurprisingly, we found that serovar Kentucky is negatively associated with other serovars, such that it is most often isolated from single serovar populations. Interestingly, the cattle-associated serovars Cerro and Mbandaka were the second and third most abundant serovars in the GPLN dataset, respectively; their presence may be explained by the inclusion of meat and bone meal in the mash diet of breeders. Deep serotyping also revealed some serovars primarily co-exist in multiserovar populations, including the repeated detection of serovar Liverpool with serovars Cerro and Mbandaka. Further analysis determined that overall serovar prevalence is not correlated with relative serovar abundance, such that serovar Typhimurium is not widely present but is often the major serovar in a mixed population. Alternatively, serovar Infantis is typically found with a lower relative abundance. These observations underscore the limitations of conventional culture-based methods for Salmonella detection and isolation, since it is unlikely to identify multiple serovars when selecting a few colonies from an indicator plate. To protect consumers, it is critical to characterize all serovars present in a contaminated chicken sample, and the framework presented here supports the integration of robust Salmonella monitoring at any stage of live production. Additionally, future studies in commercial chicken production should

focus on further exploring interserovar dynamics, including elucidation of the mechanisms behind serovar diversity and population complexity.

The following two dissertation chapters included applied research projects to improve Salmonella detection in the poultry industry. In Chapter 4, a novel PCR assay was developed to separate serovar Typhimurium vaccine and field strains, which is an important distinction since the vaccine strain is attenuated and thus poses a relatively lower public health risk. In the United States, there are two primary commercial formulations of live serovar Typhimurium vaccines with attenuation by mutations in the cya/crp or aroA genes affecting metabolism (1, 18); this study focused on the former and its application in broiler flocks. Previous work has determined that the cya/crp mutant strains induce a stronger and long-lasting host immune response, and the ease of application through spray or water treatment further make this an attractive control strategy (19, 21). However, it is important to note that it is possible, although unlikely, that the vaccine strain may revert to a virulent phenotype following recombination, so Salmonella populations should be monitored following application (21). Vaccination has been proven to reduce Salmonella contamination on final products and in some cases offers cross-protection against other serovars, either through an induced immune response or maternally provided innate immunity (5–7, 15, 17, 22, 27, 28, 33, 35, 57, 61, 70).

Despite the conferred benefits, vaccination is not routinely used in broiler production due to the cost-benefit tradeoffs, namely, the expenses generated by required personnel and consumables for administering vaccines in hundreds of flocks and the concern of prolonged vaccine strain shedding. While the vaccine strain in this study is

non-H₂S producing, enabling differentiation from field strains, this is only applicable for certain indicator media, including XLT-4, XLD, and DMLIA. As such, vaccine strains may not be identified accordingly on alternative indicator media, such as BGS, thus negatively impacting a processing establishment's performance standards as defined by current USDA-FSIS regulations. Vaccination in broiler flocks is critical to reduce the incidence of serovars of concern in production; in particular, the results presented in Chapter 2 suggest that the selective pressure generated by vaccine use in parental flocks is relieved without additional vaccinations and allows for the return of pathogenic serovars. To encourage vaccination in broiler flocks, it was imperative to develop a reliable, rapid diagnostic test for serovar Typhimurium vaccine strains. For example, retrospective bioinformatic analyses of regulatory samples collected between 2016 and 2022 revealed that 6% of serovar Typhimurium isolates were the vaccine strain, yet these still counted negatively against a processing establishment. The presented PCR assays were validated with a blinded study of field and vaccine isolates and screening environmental poultry farm samples. Importantly, the PCR assays can be used in parallel to detect vaccine presence in mixed serovar populations, thus facilitating improved Salmonella surveillance in the poultry industry and promoting food safety with routine vaccine use.

The final research chapter validated the use of selective pre-enrichment to facilitate *Salmonella* recovery two days after sample collection. Selective pre-enrichment refers to the inclusion of individual selective ingredients (malachite green, bile salts, novobiocin) with non-selective pre-enrichment broth, thus encompassing the primary and secondary enrichment steps in one 24 h period. The former two ingredients are from the

widely used enrichment media, RV and TT, respectively, while the latter is a bacteriostatic antibiotic targeting gram-positive bacteria. Collectively, these components create a harsh environment (low pH, high osmotic pressure) to allow for Salmonella growth while minimizing the proliferation of non-target organisms (32, 40, 55, 66). The selective pre-enrichment conditions were first developed by our group during a broiler processing plant sampling project, with comparable recovery in traditional selective enrichment methods (50). In this study, 35 commercial poultry houses from 17 farms across multiple integrator complexes were sampled to validate the use of selective preenrichment culture conditions for quicker Salmonella recovery with high background microflora. Both selective pre-enrichment and enrichment recovered Salmonella in 14/17 farms, with no significant difference on a per-sample basis (p = 0.07, Chi-squared test). Similarly, the culture condition did not impact Salmonella diversity (p = 0.1, ANOVA test of Shannon diversity indices) or multiserovar population complexity (p = 0.5, Kruskal-Wallis test with post-hoc Dunn's test), as measured by deep serotyping with CRISPR-SeroSeq. Alternatively, Salmonella quantity seems to influence recovery with selective pre-enrichment, as the average amount (log₁₀ CFU/sample) was greater in the positive pre-enrichment cultures than the negatives (p = 0.01, Welch two sample t-test). However, the substantial variance of Salmonella quantity in negative pre-enrichment samples (range: $1.4 - 6.1 \log_{10} \text{CFU/sample}$) suggests that other variables likely impact recovery as well and additional work is required to identify them. In short, selective preenrichment can serve as a shortened approach for Salmonella recovery without compromising resulting serovar profiles.

A critical finding of this study was that enrichment media efficiency varies by sample type, as we observed lower Salmonella recovery from breeder samples cultured in RV in comparison to broiler samples; this may be explained by the different gut microbiome composition of breeders and broilers, along with varying metabolic capacity. For example, a previous study applying metagenomics to evaluate the microbial dynamics of various culture conditions found that the taxa comprising the tomato phyllosphere varied substantially by enrichment media (45). Additional work has confirmed that enrichment media influence microbiome profiles, which denotes the importance of defining the physiological response of different serovars to selective ingredients to avoid false negatives (31, 43). Notably, there have been many studies on the gut microbiota in broilers, but this is not complemented by similar work in breeders (4, 16, 34, 38, 44, 48). It has been established that the gut microbiome development in newly hatched chicks is dependent on microbial exposure and food sources during the first few days, which has important implications for Salmonella control (9, 29, 36, 47, 63). Future work should define the community composition in breeders to provide insights on Salmonella colonization and recovery. Ultimately, it is necessary to characterize the community dynamics within the gut microbiota to optimize enrichment media and develop new or refine existing mitigation strategies, such as probiotics and competitive exclusion products (5, 8, 37, 60).

Collectively, the research conducted during my graduate program provides new insights into *Salmonella* population dynamics, including regional serovar trends and patterns of serovar co-occurrence, and supports optimized sample collection and enrichment. Most importantly, my work can be used to inform management decisions and

aid in the development of targeted mitigation strategies, thus promoting increased food safety in the poultry industry. There are many questions remaining on *Salmonella* transmission and control in chickens; still, the high-resolution deep serotyping data included in this dissertation may serve as preliminary data to design experiments and further elucidate contributing factors to serovar diversity and population complexity.

References

- Alderton MR, Fahey KJ, Coloe PJ. 1991. Humoral responses and salmonellosis
 protection in chickens given a vitamin-dependent *Salmonella* Typhimurium mutant.

 Avian Dis 35:435–442.
- 2. Antunes P, Mourão J, Campos J, Peixe L. 2016. Salmonellosis: the role of poultry meat. Clinical Microbiology and Infection 22:110–121.
- 3. Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ, Crump JA. 2015. Global burden of invasive nontyphoidal *Salmonella* disease, 2010. Emerg Infect Dis 21:941–949.
- 4. Apajalahti J, Kettunen A, Graham H. 2004. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. Worlds Poult Sci J 60:223–232.
- 5. Bailey JS, Rolon A, Hofacre CL, Holt PS, Wilson JL, Cosby DE, Richardson LJ, Cox NA. 2007. Resistance to challenge of breeders and their progeny with and without competitive exclusion treatment to *Salmonella* vaccination programs in broiler breeders. Int J Poult Sci 6:386–392.

- 6. Bearson SMD, Monson MS, Bearson BL, Whelan SJ, Byrd JA, Burciaga S. 2024. Commercial vaccine provides cross-protection by reducing colonization of *Salmonella* enterica serovars Infantis and Hadar in turkeys. Vaccine 42:727–731.
- 7. Berghaus RD, Thayer SG, Maurer JJ, Hofacre CL. 2011. Effect of vaccinating breeder chickens with a killed *Salmonella* vaccine on *Salmonella* prevalences and loads in breeder and broiler chicken flocks. J Food Prot 74:727–34.
- 8. Blankenship LC, Bailey JS, Cox NA, Stern NJ, Brewer R, Williams O. 1993. Twostep mucosal competitive exclusion flora treatment to diminish salmonellae in commercial broiler chickens. Poult Sci 72:1667–72.
- 9. Bucher MG, Zwirzitz B, Oladeinde A, Cook K, Plymel C, Zock G, Lakin S, Aggrey SE, Ritz C, Looft T, Lipp E, Agga GE, Abdo Z, Sistani KR. 2020. Reused poultry litter microbiome with competitive exclusion potential against *Salmonella* Heidelberg. J Environ Qual 49:869–881.
- Centers for Disease Control and Prevention. FoodNet Fast.
 https://wwwn.cdc.gov/foodnetfast/. Retrieved 12 January 2025.
- 11. Centers for Disease Control and Prevention. Salmonella.
 https://www.cdc.gov/salmonella/index.html#:~:text=CDC%20estimates%20Salmonella%20bacteria%20cause,for%20most%20of%20these%20illnesses. Retrieved 12
 January 2025.
- 12. Centers for Disease Control and Prevention. BEAM (Bacteria, Enterics, Amoeba, and Mycotics) dashboard. www.cdc.gov/ncezid/dfwed/BEAM-dashboard.html. Retrieved 12 January 2025.

- 13. Cheng RA, Eade CR, Wiedmann M. 2019. Embracing diversity: differences in virulence mechanisms, disease severity, and host adaptations contribute to the success of nontyphoidal *Salmonella* as a foodborne pathogen. Front Microbiol 10:1–20.
- 14. Cheng Y, Pedroso AA, Porwollik S, McClelland M, Lee MD, Kwan T, Zamperini K, Soni V, Sellers HS, Russell SM, Maurer JJ. 2015. rpoS-regulated core genes involved in the competitive fitness of *Salmonella enterica* serovar Kentucky in the intestines of chickens. Appl Environ Microbiol 81:502–514.
- 15. Clark-Curtiss JE, Curtiss 3rd R. 2018. *Salmonella* vaccines: conduits for protective antigens. J Immunol 200:39–48.
- 16. Clavijo V, Morales T, Vives-Flores MJ, Reyes Muñoz A. 2022. The gut microbiota of chickens in a commercial farm treated with a *Salmonella* phage cocktail. Sci Rep 12.
- 17. Cookson K, Hofacre CL, Da Costa M, Schaeffer JL, Jones M, Baxter JA, Berghaus R, Cosby D, Berrang M, McMillan EA. 2024. Live *Salmonella* Typhimurium vaccination of broilers results in lower *Salmonella* prevalence on carcasses at commercial processing. J Appl Poult Res 33.
- Curtiss 3rd R, Kelly SM. 1987. Salmonella Typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infect Immun 55:3035–3043.
- 19. Curtiss R. 2023. Vaccines to control Salmonella in poultry. Avian Dis 67.
- 20. De Villena JF, Vargas DA, López RB, Chávez-Velado DR, Casas DE, Jiménez RL, Sanchez-Plata MX. 2022. Bio-mapping indicators and pathogen loads in a commercial broiler processing facility operating with high and low antimicrobial intervention levels. Foods 11.

- 21. Desin TS, Koster W, Potter AA. 2013. *Salmonella* vaccines in poultry: past, present and future. Expert Rev Vaccines 12:87–96.
- 22. Dorea FC, Cole DJ, Hofacre C, Zamperini K, Mathis D, Doyle MP, Lee MD, Maurer JJ. 2010. Effect of *Salmonella* vaccination of breeder chickens on contamination of broiler chicken carcasses in integrated poultry operations. Appl Environ Microbiol 76:7820–7825.
- 23. Fenske GJ, Pouzou JG, Pouillot R, Taylor DD, Costard S, Zagmutt FJ. 2023. The genomic and epidemiological virulence patterns of *Salmonella enterica* serovars in the United States. PLoS One 18.
- 24. Fierer J, Guiney DG. 2001. Diverse virulence traits underlying different clinical outcomes of *Salmonella* infection. J Clin Invest 107:775–780.
- 25. Foley S, Nayak R, Hanning I, Johnson T, Han J, Ricke S. 2011. Population dynamics of *Salmonella enterica* serotypes in commercial egg and poultry production. Appl Environ Microbiol 77:4273–4279.
- 26. Guillén S, Nadal L, Álvarez I, Mañas P, Cebrián G. 2021. Impact of the resistance responses to stress conditions encountered in food and food processing environments on the virulence and growth fitness of non-typhoidal salmonellae. Foods 10.
- 27. Hofacre CL, Rosales AG, Costa MD, Cookson K, Schaeffer J, Jones MK. 2021.
 Immunity and protection provided by live modified vaccines against paratyphoid
 Salmonella in poultry an applied perspective. Avian Dis 65:295–302.
- 28. Hormaeche CE, Joysey HS, Desilva L, Izhar M, Stocker BAD. 1990. Immunity induced by live attenuated *Salmonella* vaccines. Res Microbiol 141:757–764.

- Impey CS, Mead GC. 1989. Fate of salmonellas in the alimentary tract of chicks pretreated with a mature caecal microflora to increase colonization resistance. J Appl Bacteriol 66:469–475.
- 30. Interagency Food Safety Analytics Collaboration. 2024. Foodborne illness source attribution estimates for *Salmonella*, *Escherichia coli* O157, and *Listeria monocytogenes* United States, 2022. https://www.cdc.gov/ifsac/php/data-research/annual-report-2022.html. Retrieved 19 December 2024.
- 31. Jarvis KG, White JR, Grim CJ, Ewing L, Ottesen AR, Beaubrun JJ-G, Pettengill JB, Brown E, Hanes DE. 2015. Cilantro microbiome before and after nonselective preenrichment for *Salmonella* using 16S rRNA and metagenomic sequencing. BMC Microbiol 15.
- Jensen A. 2003. Addition of Novobiocin in pre-enrichment step can improve *Salmonella* culture protocol of modified semisolid Rappaport–Vassiliadis. J Microbiol Methods 55:249–255.
- 33. Johnson TJ, Flores-Figueroa C, Munoz-Aguayo J, Pinho G, Miller E. 2024. Persistence of vaccine origin *Salmonella* Typhimurium through the poultry production continuum, and development of a rapid typing scheme for their differentiation from wild type field isolates. Poult Sci 103.
- 34. Johnson TJ, Youmans BP, Noll S, Cardona C, Evans NP, Peter Karnezos T, Ngunjiri JM, Abundo MC, Lee CW. 2018. A consistent and predictable commercial broiler chicken bacterial microbiota in antibiotic-free production displays strong correlations with performance. Appl Environ Microbiol 84.

- 35. Jones MK, M, Hofacre CL, Baxter VA, Cookson K, Schaeffer J, Barker A, Dickson J, Berghaus RD. 2021. Evaluation of a modified live *Salmonella* Typhimurium vaccination efficacy against *Salmonella* enterica serovar Infantis in broiler chickens at processing age. J Appl Poult Res 30.
- 36. Lee MD, Pedroso AA, Lumpkins B, Cho Y, Maurer JJ. 2023. Pioneer colonizers: bacteria that alter the chicken intestinal morphology and development of the microbiota. Front Physiol 14.
- 37. Lee MD, Pedroso AA, Maurer JJ. 2023. Bacterial composition of a competitive exclusion product and its correlation with product efficacy at reducing *Salmonella* in poultry. Front Physiol 13.
- 38. Maurer JJ, Cheng Y, Pedroso A, Thompson KK, Akter S, Kwan T, Morota G, Kinstler S, Porwollik S, McClelland M, Escalante-Semerena JC, Lee MD. 2024. Peeling back the many layers of competitive exclusion. Front Microbiol 15.
- 39. Meher MM, Arman Sharif MD, Bayazid A Al. 2022. Seroprevalence of *Salmonella* spp. infection in different types of poultry and biosecurity measures associated with salmonellosis. Int J Agri Environ Food Sci 6:557–567.
- 40. Miller VR, Banwart GJ. 1965. Effect of various concentrations of brilliant green and bile salts on salmonellae and other microorganisms. Appl Microbiol. 13:77–80.
- 41. Morris GK, Wells JG. 1970. *Salmonella* contamination in a poultry-processing plant.

 Appl Microbiol. 19(5):795–99
- 42. Murray CE, Varga C, Ouckama R, Guerin MT. 2023. Temporal study of *Salmonella enterica* serovars isolated from environmental samples from Ontario poultry breeder flocks between 2009 and 2018. Pathogens 12.

- 43. Noyes NR, Weinroth ME, Parker JK, Dean CJ, Lakin SM, Raymond RA, Rovira, Doster E, Abdo Z, Martin JN, Jones KL, Ruiz J, Boucher CA, Belk KE, Morley PS. 2017. Enrichment allows identification of diverse, rare elements in metagenomic resistome-virulome sequencing. Microbiome 5.
- 44. Oakley BB, Morales CA, Line J, Berrang ME, Meinersmann RJ, Tillman GE, Wise MG, Siragusa GR, Hiett KL, Seal BS. 2013. The poultry-associated microbiome: network analysis and farm-to-fork characterizations. PLoS One 8.
- 45. Ottesen AR, Gonzalez A, Bell R, Arce C, Rideout S, Rideout, Allard M, Evans P, Strain E, Musser S, Knight R, Brown E, Pettengill JB. 2013. Co-enriching microflora associated with culture based methods to detect *Salmonella* from tomato phyllosphere. PLoS One 8:e73079.
- 46. Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Dewulf J, Hald T, Michel V, Niskanen T, Ricci A, Snary E, Boelaert F, Messens W, Davies R. 2019. *Salmonella* control in poultry flocks and its public health impact. EFSA Journal 17:e05596.
- 47. Pedroso AA, Lee MD, Maurer JJ. 2021. Strength lies in diversity: how community diversity limits *Salmonella* abundance in the chicken intestine. Front Microbiol 12.
- 48. Prax N, Wagner S, Schardt J, Neuhaus K, Clavel T, Fuchs TM. 2021. A diet-specific microbiota drives *Salmonella* Typhimurium to adapt its *in vivo* response to plant-derived substrates. Anim Microbiome 3.

- 49. Rajan K, Shi Z, Ricke SC. 2017. Current aspects of *Salmonella* contamination in the US poultry production chain and the potential application of risk strategies in understanding emerging hazards. Crit Rev Microbiol 43:370–392.
- 50. Rasamsetti S, Berrang M, Cox NA, Shariat NW. 2021. Selective pre-enrichment method to lessen time needed to recover *Salmonella* from commercial poultry processing samples. Food Microbiol 99.
- 51. Rasamsetti S, Shariat NW. 2023. Biomapping *Salmonella* serovar complexity in broiler carcasses and parts during processing. Food Microbiol 110.
- 52. Rasschaert G, Houf K, Godard C, Wildemauwe C, Pastuszczak-Frak M, De Zutter L. 2008. Contamination of carcasses with *Salmonella* during poultry slaughter. J Food Prot 71:146–152.
- 53. Rimet C-S, Maurer JJ, Pickler L, Stabler L, Johnson KK, Berghaus RD, Villegas AM, Lee M, França M. 2019. *Salmonella* harborage sites in infected poultry that may contribute to contamination of ground meat. Front Sustain Food Syst 3.
- 54. Rivera-Pérez W, Barquero-Calvo E, Zamora-Sanabria R. 2014. *Salmonella* contamination risk points in broiler carcasses during slaughter line processing. J Food Prot 77:2031–2034.
- 55. van Schothorst M, Renaud AM. 1985. Malachite green pre-enrichment medium for improved *Salmonella* isolation from heavily contaminated samples. J Appl Bacteriol 59:223–230.
- 56. Sexton T, Geornaras I, Belk KE, Bunning M, Martin JN. 2018. *Salmonella* contamination in broiler synovial fluid: are we missing a potential reservoir? J Food Prot 81:1425–1431.

- 57. Sharma P, Caraguel C, Sexton M, McWhorter A, Underwood G, Holden K, Chousalkar K. 2018. Shedding of *Salmonella* Typhimurium in vaccinated and unvaccinated hens during early lay in field conditions: a randomised controlled trial. BMC Microbiol 18.
- 58. Siceloff AT, Ohta N, Norman KN, Loneragan GH, Norby B, Scott HM, Shariat NW. 2021. Antimicrobial resistance hidden within multiserovar *Salmonella* populations. Antimicrob Agents Chemother. 65:1–6.
- 59. Suez J, Porwollik S, Dagan A, Marzel A, Schorr YI, Desai PT, Agmon V, McClelland M, Rahav G, Gal-Mor O. 2013. Virulence gene profiling and pathogenicity characterization of non-typhoidal *Salmonella* accounted for invasive disease in humans. PLoS One 8.
- 60. Tellez G, Pixley C, Wolfenden RE, Layton SL, Hargis BM. 2012. Probiotics/direct fed microbials for *Salmonella* control in poultry. Food Research International 45:628–633.
- 61. Tennant SM, Schmidlein P, Simon R, Pasetti MF, Galen JE, Levine MM. 2015.

 Refined live attenuated *Salmonella enterica* serovar typhimurium and enteritidis vaccines mediate homologous and heterologous serogroup protection in mice. Infect Immun 83:4504–4512.
- 62. Thames HT, Fancher CA, Colvin MG, McAnally M, Tucker E, et al. 2022. The prevalence of *Salmonella* and *Campylobacter* on broiler meat at different stages of commercial poultry processing. Animals 12.

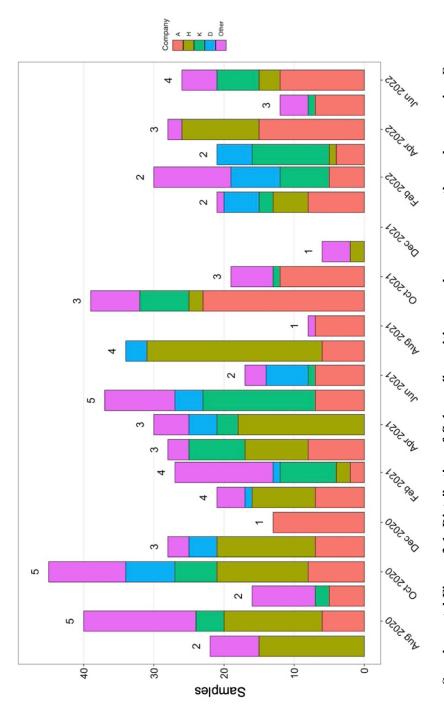
- 63. Trudeau S, Thibodeau A, Côté JC, Gaucher M Lou, Fravalo P. 2020. Contribution of the broiler breeders' fecal microbiota to the establishment of the eggshell microbiota. Front Microbiol 11:1–14.
- 64. United States Department of Agriculture Food Safety and Inspection Service. 2015. Serotypes profile of *Salmonella* isolates from meat and poultry products. https://www.fsis.usda.gov/sites/default/files/media_file/2020-10/Salmonella-Serotype-Annual-2014.pdf. Retrieved 19 December 2024.
- Van Immerseel F, De Zutter L, Houf K, Pasmans F, Haesebrouck F, Ducatelle R.
 2009. Strategies to control *Salmonella* in the broiler production chain. Worlds Poult Sci J 65:367–392.
- 66. Vassiliadis P. 1983. The Rappaport—Vassiliadis (RV) enrichment medium for the isolation of salmonellas: an overview. J Appl Bacteriol 54:69–76.
- 67. Williams MS, Ebel ED, Saini G, Nyirabahizi E. 2020. Changes in *Salmonella* contamination in meat and poultry since the introduction of the pathogen reduction and hazard analysis and critical control point rule. J Food Prot 83:1707–1717.
- 68. Willson NL, Chousalkar K. 2023. Dominant *Salmonella* serovars in Australian broiler breeder flocks and hatcheries: a longitudinal study. Appl Environ Microbiol 89.
- 69. Young SD, Olusanya O, Jones KH, Liu T, Liljebjelke KA, Hofacre CL. 2007. Salmonella incidence in broilers from breeders vaccinated with live and killed Salmonella. J Appl Poult Res 16:521–528.
- 70. Zhang-Barber L, Turner AK, Barrow PA. 1999. Vaccination for control of *Salmonella* in poultry. Vaccine 17:2538–2545.

71. Zhou K, Sun L, Zhang X, Xu X, Mi K, Wenjin M, Zhang L, Huang L. 2023. Salmonella antimicrobials inherited and the non-inherited resistance: mechanisms and

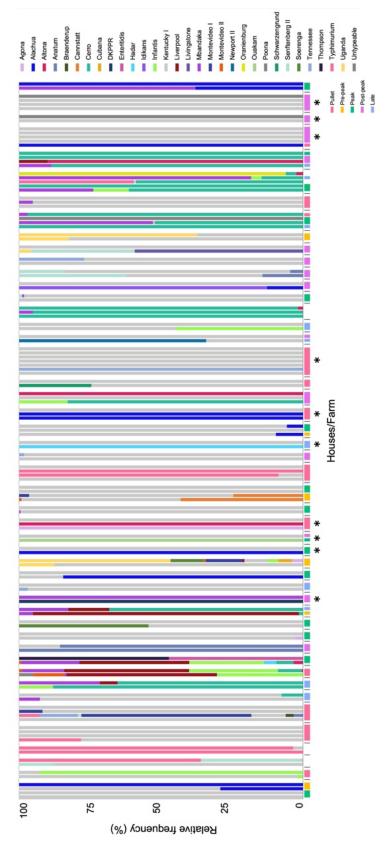
alternative therapeutic strategies. Front Microbiol 14.

APPENDIX A
SUPPLEMENTAL MATERIAL FOR CHAPTER 2

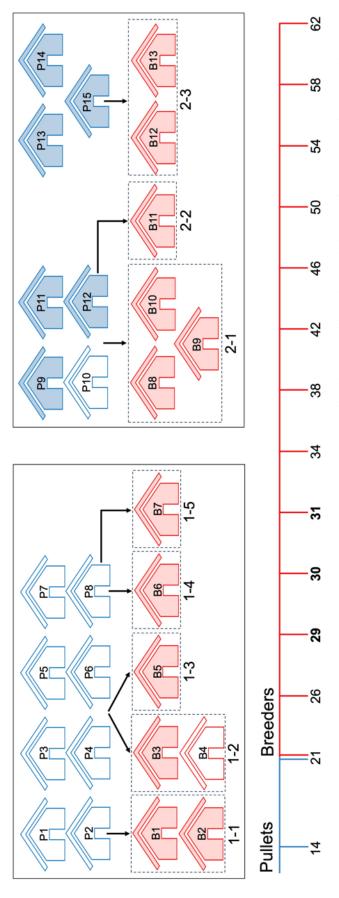
2016 2017 20 1 1 1 5 27 34 5 27 34 5 9 12	18 20			South	South Central	3			At	Atlantic		ĺ		M	Midwest				founta	Mountain & West	st
1 5 27 34 3 1 1 2 8 8 9 12 9 12		019 2020	2016 20	017 2	2017 2018 2019 2020	019 2		2016 2	2017 20	2018 2019 2020	019 20		2016 2017	017 2	2018 2	2019 20	2020 2	016 2	017 2	2016 2017 2018 2019 2020	19 20
1 5 27 34 5 1 1 5 9 12 9 12															2	2	L				
1 5 27 34 1 2 8 8 9 12			-	1	_																
1 5 27 34 2 1 1 2 8 8 9 12	_	1			_			-													
1 5 27 34 1 1 2 8 9 12			_	2									-						-		
1 5 27 34 3 1 1 2 8 9 12											2	3									
27 34 1 2 8 9 12	2	2 1	-		_			-				_				4	_			_	_
1 2 8 9 12	2	33 7	00	15	6	~	7	4	3	7	9	3	7	22	13	6 1	10	3	∞	4	
2 8 9 12	_	-					2								_						
9 12	∞	2 1	2	3	2	_	3	2	_	_			_	_	_	7	2				
	10	18 34	2		9	12	12	9	15	26 3	34	35	3	3	2	, ,	4	3	3	2	2
Johannesburg					_																
Kentucky 71 103 63		75 69	52 5	06	48	44	59	27	23	31 2	25	26	31	31	44	38 4	43	13	19	_	23 22
Litchfield 1		1							1	1		1	1		2					1	
Liverpool 3	3																				
Manhattan 1 2	2																				
Mbandaka 1		1 1			2					1					-						
Montevideo 2 1	_		-												2	1		_		1	
Muenchen	_	ю													1		_				
Newport							1														
Ohio 2 5		1											-								
Oranienburg														_	2						
Orion 1																					
Rubislaw						_															
Saintpaul 1								-													
Schwarzengrund 15 33 24		19 23			_	3	_					_									
		,			,	,		,		,					_						
1	2	2			2	_				2				_							
Typhimurium 20 19 19	19	14 18		2	_	1		16	21		14	23			2	7		2	4		
Uganda				_																	
Worthington																	_				
4,[5],12:d:-		1																			
8,20:1:-					_ ,																
14,[5],12:::- 2 1	_	3 4			_				_	0	2		_	_	_	_	_	_	_		
Rough O:k:-														_							
Rough_O:e,h:e,n,z15																					
Rough_O:gms:- 1						,															
Rough O:r:1,5						_			2	_											


Supplemental Table 2-2. Serovar incidence in raw intact chicken parts in the United States by region, 2016-2020.

Serovars		S	Southea	st			Sou	ıth Cer	ntral				Atlantic				N	/lidwe	st			Mour	ntain &	West	
Sciovais	2016	2017	2018	2019	2020	2016	2017	2018	2019	2020	2016	2017	2018	2019	2020	2016	2017	2018	2019	2020	2016	2017	2018	2019	2020
Agona					1								2												
Alachua Altona			1	1		1			1		1														
Anatum		1																1		1				1	
Barranquilla		•																•		•		1		•	
Berta				1	1	1	1			1														2	
Blockley		1											1	1	4										
Braenderup		5	3	1	1	2	1	1	2	1		2	1		1	2	1	1	2	3	1	1		3	1
Brandenburg											1											1			
Cerro Eko											1				,										
Enteritidis		175	121	115	75	86	45	47	25	38	21	12	20	32	1 21	29	27	29	28	41	26	20	16	20	26
Hadar		2	2	113	2	00	45	47	23	50	21	12	20	32	1	2,	2,	2	1	71	20	20	10	20	20
Heidelberg		15	9	3	2	13	11	10	7	6	20	3			2	6	4	3	2	1	5	5	1	4	2
Infantis		39	57	59	58	12	22	12	27	57	11	53	65	83	86	1	3	8	11	23	1	11	12	11	22
Johannesburg		1		2	1	2	1	1			1				1						6	3	3	6	17
Kentucky	173	153	133	67	75	66	61	43	42	70	30	16	17	34	40	38	20	29	44	55	32	37	31	37	43
Kiambu			1		1																				
Litchfield		1	1				1						2		1							1			
Liverpool Livingstone		1					1																		
London		1													1										
Manhattan		1													1										
Mbandaka		3		3						1	4		1				1				1		1		
Minnesota																				1					
Montevideo		2	1		1			2	1		1		1		3					1					
Muenchen	1			2	1												1								
Muenster			1								1														
Newport Nima				1			1	2						1						1		1			
Ohio		4		1	1											1									
Oranienburg		4			1		1									1									
Orion					•		•					1													
Ouakam			2																						
Putten																									
Reading																			1	1					
Rissen																	2								
Rubislaw																				1					
Ruiru chwarzengrund		81	71	62	56	3	6	1	6	11	1 2			3	2	5	12	13	6	13	2	1	3	4	6
senftenberg		01	1	02	30	1	0	1	0	11	1			3	2	3	12	13	0	13	1	1	3	*	0
Tennessee											-											1			
Thompson	4	10	6	3	4	3	10	4	4	3	2	4	3	3	4		1	1		1		2		1	3
Typhimurium	47	34	38	15	21	6	4	7	5	2	56	32	19	15	38	4	2	2	3	5	4	1	6	3	5
Uganda						1	2				1				1							1			
Worthington				1												1									1
4,[5],12:d:-		1	3	1																					
6,7:b:- 8,20:-:z6		1							1	1															
8,20:i:-		1							1	1															
I 4,[5],12:i:-	3	3	7	3	2	1	1				4		3	3				3	1		2	2			1
I 4:b:-	-	-		-		-								-				-	-	1	_	-			-
lough O:d:e,n,x				1				1																	
Rough O:k:1,5		1																				1			
lough_O:gms:-																									
Rough_O:r:1,5	1	2	2	3	1		1			1		3	3	7				1	1			1			
II 13,23:gz51:-		1	2	1										1				1							
III_40:z4,z24:- III_48:g,z51:-					1								1					1							
III_48:g,z31:-					•													1							
	486	539	462	345	306	198	170	131	121	192	159	126	139	183	207	87	74	95	100	149	81	91	73	92	127


Supplemental Table 2-3. Salmonella serovars found at processing in Georgia, 2016-2020.

'			Carcasses	,,			R	Raw, intact	 			Raw, ground, non-intact	ound, no	n-intact	
Serovar	2016	2017	2018	2019	2020	2016	2017	2018	2019	2020	2016	2017	2018	2019	2020
4,[5],12:d:-				1			2	1	1						
6,7:b:-							1								
8,20:i:-							1								
I 4,[5],12:i:-				1				5	2						
Alachua								1							
Berta						1									
Braenderup			2				3	1		-		1			
Enteritidis	∞	15	11	9		21	41	30	24	20	9	9	10	9	
Hadar		1					1	1					1		
Heidelberg	-	3				3	5	1			-				
Infantis				4	9	4	13	10	8	20	-	-	5	4	4
Johannesburg										1					
Kentucky	7	11	15	23	13	39	29	45	18	30	4	6	4	3	4
Kiambu										-					
Liverpool							1								
Manhattan															1
Montevideo	-					1	7			1	-				
Muenchen									-						
Ohio	7	5				1	4								
Ouakam								1							
Schwarzengrund	∞	19	10	7	7	21	42	26	30	56	4	1	3	S	3
Senftenberg											-				
Thompson							4				-		-		
Typhimurium	2	3	4	1	7	17	12	17	3	10	1		7	7	1
Rough_O:gms:-		1													
Rough_O:r:1,5								-					1		
III 13,23:g,z51:-							-				-	-			
III_48:g,z51:-												1			
Total	32	28	42	43	33	108	162	140	87	110	21	20	27	20	13


APPENDIX B SUPPLEMENTAL MATERIAL FOR CHAPTER 3

Supplemental Figure 3-1. Distribution of Salmonella-positive samples across months and companies. From August 2020 to June 2022, a total of 568 breeder slat samples from 22 companies were analyzed with CRISPR-SeroSeq. The top 4 companies from the dataset (based on total number of samples submitted) are shown with individual colors, while the remaining 18 companies are grouped as "other". Numbers above bars indicate how many collection days were included in that month.

results for farms containing multiserovar populations or single serovar populations with different identities (48/129) are shown, with samples from the same farm indicated by the vertical lines, age of flock represented by the colored rectangle, and farms with only one serovar are Supplemental Figure 3-2. Diverse populations observed among multiple farms with several pullet/breeder houses. Deep serotyping denoted with an asterisk. Flocks without provided age information are shown without a corresponding-colored rectangle. Pullet: 0 – 21 weeks, pre-peak: 21 - 28 weeks, peak: 28 - 35 weeks, post-peak: 35 - 50 weeks, late: after 50 weeks.

Salmonella-positive houses are indicated by shading. The breeder flocks that originated from shared pullet flocks are indicated by the numbering, with the farm information included below. Pullets were sampling at weeks 14 and 21. Empty, cleaned out breeder houses were sampled at week 21, then Supplemental Figure 3-3. Longitudinal Salmonella sampling schematic. Pullet (blue) and breeder (red) houses for two complexes are shown; sampling occurred monthly, with the exception of weekly sampling during peak production (bolded weeks).

Supplemental Table 3-1. CRISPR-SeroSeq summary results from complete GPLN dataset (n = 568).

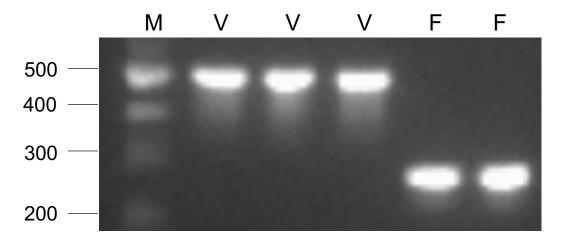
	_ h		4		Average relative		
Serovar ^a	Frequency ^b	Present (%) ^c	Alone (%) ^d	Major (%) ^e	frequency (%) ^f	Months ^g	Companies ^h
Kentucky I	462	81.3	86	65	94	23	20
Cerro	43	7.6	30	57	65	10	5
Mbandaka	34	6	12	17	30	15	7
Typhimurium	25	4.4	32	41	62	14	11
Liverpool	21	3.7	29	53	58	11	6
Infantis	19	3.3	16	12	38	11	6
Alachua	17	3	47	11	61	6	2
Senftenberg II	12	2.1	8	18	36	8	6
Tennessee	9	1.6	11	25	36	5	5
Enteritidis	8	1.4	62	0	72	5	7
Uganda	8	1.4	12	57	49	5	1
Montevideo I	6	1.1	0	17	18	4	3
Montevideo II	6	1.1	0	0	4	3	4
Agona	5	0.9	40	0	45	3	3
Altona	5	0.9	20	25	39	5	2
Anatum	5	0.9	20	25	42	2	3
Untypeable	5	0.9	20	0	32	3	2
Hadar	4	0.7	75	0	76	4	1
Cubana	3	0.5	0	0	3	3	2
Minnesota	3	0.5	0	33	48	2	2
Schwarzengrund		0.5	67	0	75	3	3
Soerenga	3	0.5	33	0	53	3	1
Thompson	3	0.5	0	67	52	3	2
Worthington	3	0.5	67	100	84	2	2
Cannstatt	2	0.4	0	0	34	1	1
DKPPR	2	0.4	50	0	60	2	1
ldikans	2	0.4	0	50	48	2	1
Oranienburg	2	0.4	0	50	48	2	2
Orion	2	0.4	0	50	29	2	2
Poona	2	0.4	0	0	8	1	2
Braenderup	1	0.2	0	0	3	1	1
Give	1	0.2	0	100	69	1	1
Livingstone	1	0.2	0	100	59	1	1
Muenchen I	1	0.2	100	-	100	1	1
Muenster	1	0.2	100	-	100	1	1
Newport II	1	0.2	0	100	66	1	1
Ouakam	1	0.2	100	-	100	1	1
Saintpaul II	1	0.2	100	-	100	1	1

^aSerovars of clinical importance (bolded) are most frequently isolated from human samples (Center for Disease Control and Prevention BEAM dashboard). The suffixes (-I, -II, -III) for some serovars refer to polyphyletic lineages. The abbreviation DKPPR represents serovars Durban, Kokomele, Panama, Pomona, and Reading II.

^bIndicates the total number of samples each serovar was found in.

^cIndicates the total percentage of samples each serovar was found in.

^dIndicates how often a serovar was the single serovar in a sample.


^eIndicates the frequency in which the serovar was present at a higher relative frequency in a mixed population of multiple serovars.

^fThis was calculated across all 'present' samples.

^gIndicates how many months (n = 24) each serovar was identified in.

 $^{^{\}rm h}$ Indicates how many companies (n = 22) each serovar was identified from.

APPENDIX C
SUPPLEMENTAL MATERIAL FOR CHAPTER 5

Supplemental Figure 5-1. Multiplex PCR assay to distinguish between field isolates and vaccine strains. A multiplex PCR using the primer pairs from assay CRP-1 and CRP-3 were used to screen three vaccine strain isolates and two field isolates of serovar Typhimurium. M; molecular marker, with sizes shown to the left of the gel.