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ABSTRACT
Most recent educational assessments were developed under an item response theory

(IRT) framework and were designed to scale examinees on an ability continuum. Because there
is an increasing desire for more formative feedback about mastery of specific skills, researchers
and educators have recently been exploring diagnostic classification models (DCMs), which
have potential to improve educational assessment and research due to the multidimensional
nature of their feedback. However, because DCMs have only been introduced in recent years,
they are not yet widely implemented in analysis. This study seeks to examine the effects of
retrofitting, or retroactively fitting a DCM to item responses from an assessment not intended for
classification. Using simulations and empirical analysis, I explore item parameter translation and

model fit performance within a retrofitting context.
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CHAPTER 1
INTRODUCTION

Item response theory (IRT) is a traditional assessment framework widely used in large-
scale educational assessments of knowledge or content understanding. Assessments developed
under this framework aim to scale examinees on a relative continuum of ability level. There is an
increasing desire for more formative feedback during and alongside instruction about which
skills examinees have and have not mastered, in addition to obtaining their traditional total score.
Consequently, many researchers are exploring diagnostic models to help assess students’ content
mastery and inform instructional practices.

Within the past decade or so, diagnostic classification models (DCMs; Rupp et al., 2010)
have emerged as a new approach to educational assessment in which examinees can be
probabilistically classified into one of two or more proficiency statuses based on their responses
to assessment items. Most commonly, DCMs classify examinees as either masters or non-
masters of a given attribute. DCMs have promising potential to improve educational assessment
and educational research, as they allow for diagnostic and formative feedback about which
standards students have mastered, which can then be used to guide instructional practices.
However, because most assessments today are designed under the IRT framework, DCMs are
not yet widely utilized for providing meaningful formative feedback. The best way to produce
meaningful and accurate examinee classifications is to use an assessment that was designed to be

diagnostic, but this is not always an option. Creating a diagnostic assessment can be time-



consuming, and there is already a great deal of data for tests developed under the IRT
framework.

Calibrating DCMs with item responses from an IRT framework is a possibility that has
not yet been thoroughly examined. Retrofitting occurs when a DCM is used to retroactively
classify examinees as attribute masters or non-masters based on their responses for an
assessment not designed to classify examinees (Liu et al., 2017). In an article exploring
retrofitting DCMs to IRT data, Liu et al. (2017) express that retrofitting is not recommended as a
practical means to obtain examinee classifications, but it is noted that the practice could be useful
for learning more about construct domains. The authors suggest that a retrofitted model may be
used when it is not feasible to develop a diagnostic test, when the purpose of the analysis is to
obtain formative feedback to support learning or improve understanding of a construct, or for
some assessments where there are distinct subdomains that items are intended to measure. To
that end, the purpose of this study is to examine both the relationship between the item
parameters for IRT-generated data and the item parameters that a diagnostic model will estimate,
as well as the performance of fit statistics in a retrofitting context.

In the first simulation, I examined the extent to which changes in IRT item parameters in
a two-parameter logistic model would affect analogous parameters for DCM items. The ultimate
goals of this simulation were to better inform appropriate use cases of retrofitting and to better
understand the impacts of retrofitting on examinee classifications. In the first simulation, I
examined if harder IRT items translated to harder DCM items, as well as if highly discriminating
IRT items translated to highly discriminating DCM items.

In the second simulation, I sought to explore how model fit statistics performed in the

retrofitting context. The goal of this study was to gain insight into how well, if at all, the



retrofitted model would pick up on the misfit from the initial data generation process.
Understanding how the model fit indices perform could be helpful in later determining
thresholds for adequate model fit when retrofitting.

Lastly, I conducted an empirical analysis on the dataset SAT12 included with the mirt
package (Chalmers, 2012) in R, which was obtained from the TESTFACT (Woods et al., 2003)
manual. These data comprise 600 examinees’ responses to a multiple-choice, 12th-grade science
assessment test (SAT) intended to measure chemistry, biology, and physics. The documentation
for the dataset included a scoring key, along with a note that the key for one of the items might
be incorrect. A modified scoring key was provided and used in my analysis.

In the following sections, I describe the models and methods that were used to carry out

the two simulation-based studies and the empirical data analysis.



CHAPTER 2
LITERATURE REVIEW

This chapter summarizes the frameworks and models used in the methods of these
studies, building from the concepts of item response theory and latent class modeling to the
newer framework of diagnostic classification models.
Item Response Theory

IRT is currently the most ubiquitous framework for analyzing large-scale assessment
results, having developed from the concepts of classical test theory (CTT) before it. While CTT
was focused on an assessment as a whole and considered overall scores to sets of questions, IRT
focuses on each single item, modeling the relationship between a person’s latent ability and the
probability that they respond correctly to a specific item. IRT models grew in popularity due to
their appealing invariance properties, in which item parameter estimates are not dependent on the
characteristics of the sample, and ability estimates are not dependent on the specific assessment.

A common IRT model, the two-parameter logistic model (2-PL; Birnbaum, 1968),
models probability of correct response P(X ij= 1) to item i for examinee j as a function of two
item parameters and continuous examinee ability level 6;. Item difficulty, denoted b;, is defined
as the point along the ability continuum at which an examinee would have a . 50 chance of
answering the item correctly. Item discrimination, denoted a;, quantifies how well the item can
discriminate between examinees who know the correct answer and those who do not. The item

response function for a 2-PL model can be expressed as



exp (ai(Gj — bi))

P(X; =1]6,a,b;) =
(% )b 1+exp(ai(9j—bi))

The probability of correct response to an item under an IRT framework can also be
expressed visually using an item characteristic curve (ICC). An example ICC for an item with
a = 1.2 and b = 0 is shown in Figure 1.

Figure 1. Example Item Characteristic Curve (ICC) for a 2-PL Model Item
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The dashed vertical line at zero represents the difficulty of this item, which demonstrates
that an examinee with an ability level of zero will have a .50 chance of answering this item
correctly. Although harder to visualize, the slope of this curve at its steepest point represents

discrimination.



Latent Class Models

In contrast with the IRT framework, latent class models (LCMs) represent correct
response probability as being conditional on categorical latent class membership. These analyses
are generally exploratory in nature, as the number of classes is not known before analysis.
Instead, researchers must look at the relevant theory and the characteristics of the data through
factor analysis to determine the number of latent classes present. Additionally, in traditional
latent class analyses, no constraints are placed on the item-attribute relationships a priori,
meaning it is unknown or unspecified which items measure each attribute. The general latent

class formula models the probability of observing a specific latent class as
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where v, is the probability of membership in latent class c, ;. is the probability of correct
response to item i for a member of latent class ¢, and x;,- is the observed response of respondent
T to item .
Diagnostic Classification Models

Diagnostic classification models (DCMs; Rupp et al., 2010) are a special family of latent
class models that are relatively recent in psychometric literature and are unique in being both
confirmatory and constrained. While a typical latent class model is exploratory, DCMs are
confirmatory for two reasons. The first is that the number of latent classes are specified prior to
analysis as distinct attribute profiles, or vectors of length A with elements . = [aq, a3, ..., Q4]
indicating which attributes the examinee has mastered. Each number in the attribute profile will
have a value of 1 for attributes that an examinee has mastered and a value of 0 for attributes that

an examinee has not mastered. For example, on an assessment measuring three attributes, an



examinee with the attribute profile [1, 0, 1] will have mastered attributes a4 and a3, but not
attribute a,. An examinee with the attribute profile [0, 0, 0] would be referred to as a complete
non-master of the set of attributes, and an examinee with the attribute profile [1, 1, 1] would be
referred to as a complete master of the set of attributes.

The second reason DCMs are considered confirmatory is that item-attribute relationships
are also specified before analysis in a Q-matrix, which maps items to the attribute(s) that they
measure (Tatsuoka, 1983). A Q-matrix has I rows and A columns, where I is the number of
items on the assessment and A4 is the number of attributes the assessment is intended to measure.
An entry q; 4 in the Q-matrix will take on a value 1 if item i measures attribute a and a 0 if it
does not. A sample three-item, three-attribute Q-matrix is shown in Table 1. In this example,
each item measures two of the three attributes.

Table 1. Sample Three-Item, Three-Attribute Q-Matrix

Item a as as
1 1 1 0
2 1 0 1
3 0 1 1

Additionally, DCMs are constrained due to the restrictions placed on how attributes
impact item responses, as specified in the measurement model. The constraints on the model
force attribute mastery to translate to increased correct response probability such that a master of

one attribute must have a higher correct response probability than a complete non-master.



The Log-Linear Cognitive Diagnostic Model

Several DCMs have been proposed and explored in the literature surrounding diagnostic
measurement, all of which make different assumptions about how attribute mastery impacts item
responses. Some of these models are general while others are more constrained and make stricter
assumptions. The model used in this study is the log-linear cognitive diagnosis model (LCDM;
Henson et al., 2009), which subsumes many other commonly used DCMs. The LCDM item
response function for a binary item 7 on an assessment measuring two attributes, a; and a,,
models the correct response probability P(Y,; = 1 | a, ) for an examinee e in class a, as

exp (/11',0 + Airy(ar) + Ay (az) + Aip ) (ay - az))

1+ exp (/11',0 + Aipy(a) + A1) (@) + Aipa,2)(a; - “2))

P(Yei=1|ac)=

Where the intercept 4; o is the log-odds of a non-master answering the item correctly; 4; 1 (1) is
the increase in log-odds of a correct responses for masters of only the first attribute; 4; 1 () is the
increase in log-odds of a correct response for masters of only the second attribute; and 4; 3 (1,2) 18
the increase in log-odds of a correct response for masters of both attributes. An item on an
assessment measuring two attributes with the parameters 4; g = —2.5, 4;1,(1) = 1.5, 4;1,(2) = 2,
and ;5 (12) = 1 would estimate the correct response probability for a complete non-master as

exp(—2.5+ 1.5(0) +2(0) + 1(0-0)) 076

P = 100D = (25 + 15(0) 1 2000+ 10-0))

Similarly, the model would estimate the correct response probability for a complete master of

both attributes as

exp(-2.5+ 15(D)+2(1)+ 1(1-1)) 8a1

P =111011) = 37 exp(—2.5+ 1.5(1) +2(1) + 1(1-1))



The probabilities of correct response for each attribute profile can also be visually
represented in an item characteristic bar chart (ICBC). A sample ICBC for the above example
item is shown below in Figure 2.

Figure 2. Example Item Characteristic Bar Chart (ICBC) for an LCDM Item
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While the 2-PL model directly includes difficulty and discrimination parameters in the
item response function, DCMs do not include such parameters. Without the presence of similar
item parameters for the LCDM, conceptualizing the characteristics of an item was challenging as
the framework is based on examinee class membership rather than examinee ability level. In this
retrofitting context, I have defined item difficulty as the average correct response probability
between masters of an attribute and non-masters of an attribute, which will notably only work
with a simple-structure Q-matrix. Although there are multiple ways I could have defined this

parameter, I felt that average correct response probability best captured how generally easy or
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hard an item would be to different members of a similar sample. Similarly, I have defined
discrimination in this retrofitting context as the difference between the correct response
probabilities for masters and non-masters of an attribute. It is important to note that these
definitions would need to be adjusted for studies involving complex items, which measure more
than one attribute, to account for partial and complete masters and non-masters of all attributes
involved.

Model Misspecification

Research on model misspecification in DCMs has started to appear, much of which
examines the effects of Q-matrix misspecification on parameter estimates and model fit. A Q-
matrix is considered misspecified when the items in the Q-matrix do not properly align with the
attributes they truly measure, which can occur when designing the Q-matrix for an assessment
(Madison and Bradshaw, 2014). Careful Q-matrix design, influenced by the opinions of content
experts, is essential to any diagnostic assessment design process. Different types of Q-matrix
misspecification have been shown to impact both reliability and classification accuracy, severely
impacting the validity of any inferences made using the assessment.

For example, Rupp and Templin (2007) observed through a simulation study that while
overspecified Q-matrices did not result in strongly decreased classification accuracy,
underspecified Q-matrices did decrease classification accuracy in the DINA model. Kunina-
Habenicht et al. (2012) found through a simulation study that classification accuracy for log-
linear models can significantly decrease with too many incorrect Q-matrix entries, or if assuming
the wrong number of dimensions. Madison (2023) used simulations to observe that with
longitudinal DCMs, classification accuracy was not strongly impacted when only either the

measurement model or structural model was misspecified, but both types of model
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misspecification occurring together severely decreased performance in both classification
accuracy and reliability.

Other types of model misspecification include measurement non-invariance and item
parameter drift. Measurement non-invariance describes violations to the assumption of
measurement invariance, which assumes that item parameter estimates are independent of the
sample and examinee classifications are independent of the items. One source of measurement
non-invariance is differential item functioning (DIF).

DIF is broadly defined as an item functioning differently for examinees who have
matched proficiency measures but are from different groups (Angoft, 1993). Because DCMs
assume multidimensionality, a more specific definition for DIF in the DCM framework is the
difference in probabilities of correct response between two examinees with the same attribute
profile but are from different groups (Hou et al., 2014; Li & Wang, 2015). There have been
multiple studies examining methods for detecting DIF in the DCM framework, ranging from
more traditional methods such as the Mantel-Haenszel test (MH; Mantel & Haenszel, 1959) and
the simultaneous item bias test (SIBTEST; Shealy & Stout, 1993) to those which are based
specifically on DCM models, including a modified higher-order DINA model (HO-DINA; de la
Torre & Douglas, 2004), the Wald test (Hou et al., 2014), and the LCDM-DIF method proposed
by Li and Wang (2015). Although functioning differently, these methods all assess the presence
of DIF and the degree to which it occurs. Overall, conducting DIF analysis to detect any
potential item bias is crucial for ensuring test fairness across multiple groups of examinees
(Camilli, 2006).

As an extension of DIF, item parameter drift refers to violations in measurement

invariance occurring over time. Madison and Bradshaw (2018) examined item parameter drift in



12

the context of longitudinal DCMs and found that their proposed model was robust to effects of
measurement non-invariance on classification accuracy and reliability, but item parameter
estimation was somewhat impacted.

While DCMs can be robust to certain misspecifications, they are prone to suffering
decreased classification accuracy with an underfitted Q-matrix, measurement model, and/or
structural model. Other types of misspecification seem to worsen model performance only when
the degree of misspecification is large or multiple types of misspecification occur
simultaneously. There is currently little research available on retrofitting as a type of
misspecification.

This study comprises two simulations conducted in R version 4.0.5 (R Core Team, 2021),
each of which explored a different aspect of the process and effects of retrofitting, and an
empirical analysis of retrofitting on IRT item response data. The first simulation sought to
examine how manipulating difficulty and discrimination item parameters might impact the
analogous difficulty and discrimination of LCDM items when retrofitting. The second simulation
sought to determine the impact of retrofitting on LCDM model and item fit. The empirical
analysis used data from the mirt package in R with item responses from a 12th-grade science
assessment test to empirically examine how item parameters translate and how model fit indices
perform in a retrofitting context. The overarching motivation of the three studies combined was
to improve how researchers interpret DCM results when retrofitting has occurred. In the
following sections, I will detail my methods and results for each of the two simulation studies

and the empirical analysis.
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CHAPTER 3
SIMULATION 1: ITEM PARAMETERS

Methods

The first simulation examined if item difficulty and/or item discrimination would
translate when retrofitting the LCDM to item responses from an assessment developed under the
IRT framework. Put another way, this simulation examines the degree to which difficult IRT
items translate to difficult DCM items, and the degree to which highly discriminating IRT items
translate to high discriminating DCM items. If item difficulty translates, then as IRT item
difficulty increases, DCM item difficulty will also increase, and we will observe strong positive
correlations between the parameters. Similarly, if discrimination translates, then as IRT item
discrimination increases, so will DCM item discrimination, and we will observe strong positive
correlations.
Conditions

Models. I used the 2-PL IRT model for data generation and the LCDM for calibration.

Sample Characteristics. The sample consisted of 1,000 generated examinees to be sure
that sample size would not affect item parameter recovery in a model with no interaction terms
(Sen & Cohen, 2021). These ability levels were generated from a standard normal distribution
(u = 0, 0 = 1) to mimic ability estimates seen in other IRT contexts.

Item Characteristics. Difficulty was categorized into three levels: easy, medium, and
hard. Easy difficulty parameters were generated from a random uniform distribution with a range

of [-1.5,—0.5]; medium difficulty parameters were generated similarly from a range of
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[—0.5, 0.5]; hard difficulty parameters were generated similarly from a range of [0.5,1.5]. 1
chose these ranges to be in line with commonly seen values for item difficulty in the 2-PL setting
and to ensure I had equally sized intervals.

Similar to item difficulty, discrimination was categorized into three levels: low, medium,
and high. Low discrimination parameters were generated from a random uniform distribution
with a range of [0.25, 0.75]; medium discrimination parameters were generated from a random
uniform distribution with a range of [0.75, 1.25]; and high discrimination parameters were
generated from a random uniform distribution with a range of [1.25, 1.75]. I chose these values
based on common interpretations, and because discrimination is typically constrained to be
positive but usually does not exceed 2. Difficulty levels were crossed with discrimination levels
to create nine total conditions under which I ran the simulation.

Test Characteristics. The total length of the test was 10 items. Templin & Bradshaw
(2013) used a simulation study to examine the reliability for the assessment with different
numbers of attributes and items per attribute, and they found an average reliability for DCMs of
.8 with ten items measuring a single attribute.

Procedure

During each replication, 10 pairs of item difficulty and discrimination parameters were
randomly generated. I then generated item responses for a 10-item IRT assessment measuring
two dimensions, which were used to calibrate the LCDM. I used the item parameters estimated
by the LCDM to calculate correct response probabilities for non-masters and masters of the two
attributes, which were then used to calculate the analogous item difficulty and discrimination
parameters. I ran 50 replications of this simulation for each of the nine conditions crossing

difficulty and discrimination, for a total of 450 replications.
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After calculating DCM difficulty and discrimination, I correlated these with the initial
IRT difficulty and discrimination parameters, respectively. I then averaged these values across
replications for each of the nine conditions as well as recorded the proportion of significant

correlations for each condition at a significance level of « = .05.

Results

The average correlations between IRT and DCM item difficulties are plotted for each
combination of the levels of the initial item parameters in Figure 3.

Figure 3. Average IRT/DCM Difficulty Correlations vs. Initial Parameters
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Overall, results indicate that IRT item difficulty and DCM item difficulty are strongly
related. There was a slight interaction, which indicates that the correlation between IRT and
DCM item difficulty was stronger for medium and highly discriminating items (~.95) than for
the low discriminating items (~.70). These findings indicate that IRT and DCM difficulty tend to
have moderate to strong correlations, which are stronger for items with initial medium or high

IRT discrimination. This suggests that a harder IRT item does tend to have harder DCM
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difficulty as I defined in the context of retrofitting, especially for medium and high

discrimination items.

Figure 4. Average IRT/DCM Discrimination Correlations vs. Initial Parameters

1.00-
0.75-
C
.8
© IRT Discrim
o
£0.50- Low
o = Med
High
o
<
0.25-
0.00-
Easy Med Hard
IRT Difficulty

The average correlations between IRT and DCM discrimination are also plotted for each
combination of the levels of the initial item parameters in Figure 4. Overall, positive correlations
indicate that higher quality IRT items translate to higher quality DCM items, with correlations
ranging from .30 to .70. However, there is a clear interaction where items with low IRT
discrimination and medium difficulty seem to have a weaker relationship between IRT and DCM
discrimination. Overall, the IRT/DCM discrimination correlations are weaker than the IRT/DCM
difficulty correlations. Items with medium and high IRT discrimination did follow a similar trend
to one another, as was the case in the difficulty correlations plot.

The relationship between IRT and DCM discrimination does not follow the trend seen
with difficulty parameters. Notably, highly discriminating IRT items produced the weakest
correlations between IRT and DCM discrimination, while low discrimination IRT items

produced two of the three strongest correlations. Items with medium difficulty and medium
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discrimination produce the strongest correlation between IRT and DCM discrimination overall.
These results indicate that the relationship between IRT and DCM discrimination as I have
defined in the context of retrofitting is not as straightforward as for difficulty. This suggests that
a highly discriminating IRT item may not necessarily translate into a highly discriminating DCM

item, and that further inspection of initial item parameters is recommended.
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CHAPTER 4
SIMULATION 2: MODEL FIT
Methods

The goal of this simulation was to examine how commonly used model fit indices,
calculated in R, would perform in the retrofitting context.
Conditions

Models. The first model was correctly fitted such that the LCDM was calibrated with
item responses generated from the LCDM. The second model was a misfitted model in which the
LCDM was calibrated with item responses generated from a 2-PL IRT framework.

Sample Characteristics. For the LCDM data, 1,000 examinees were generated from a
binomial distribution (p = .50). For the IRT data, 1,000 examinees were generated from the
standard normal distribution (# = 0,0 = 1). These sizes were chosen to represent moderate
sized samples attainable in research applications and as sufficient sample sizes for misfit
detection (citation of some study looking at model fit inference and sample size).

Item Characteristics. For both sets of data, all item parameters were randomly generated
from uniform distributions. For the LCDM data, intercepts were generated from a range of
[—2.5, 2] and main effects were generated from a range of [1, 2.5]. I chose these ranges based on
commonly seen values for these item parameters in empirical and simulation-based studies. For
the IRT data, difficulty parameters were generated from a range of [—1.5,1.5] and

discrimination parameters from a range of [0.25, 1.75], as in the first simulation.
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Test Characteristics. I generated parameters for 10 items designed to measure one
attribute with a base mastery rate of .50. I chose 10 items to reflect a practical classroom scenario
with a single-attribute, formative, and diagnostic assessment.

Q-Matrix. All questions were designed to measure only one attribute, creating a Q-
matrix with one column in which all entries are 1. As with the first simulation, I chose this Q-
matrix structure for simplicity of calculations and interpretations.

Procedure

To create the LCDM data, I generated 1,000 examinees’ proficiency statuses, 10 item
intercepts, and 10 item main effects. These were used to calculate correct response probabilities,
which were then compared to a chance matrix to score the responses as correct or incorrect to
create response data that was used to calibrate the LCDM.

The IRT data required a similar process in which I generated item parameters and
examinee characteristics with which to create item responses, but these were generated under an
IRT framework utilizing continuous examinee ability, as well as item difficulty and item
discrimination. I then used the resulting item response data to calibrate the LCDM.

For both models, I recorded AIC, BIC, and mean RMSEA for each of the 1,000
replications, as well as the proportion of replications that produced significant y? and M, fit
indices at « = .05. AIC and BIC are both relative fit indices that weigh the balance between
goodness of fit with model complexity to achieve an optimal combination of adequate fit and
parsimony. Both include penalties for more complex models, but the penalty is larger for BIC
than AIC, so BIC is more likely to prefer a simpler model.

RMSEA, which is an absolute fit index, examines differences between the observed and

the predicted item responses while adjusting for sample size to quantify how far a hypothesized
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model is from being perfectly able to recreate the data. It’s commonly used with sample sizes
large enough to produce a statistically significant y? statistic even when there is no model misfit.
While RMSEA is not intended for use with DCMs, it can be thought of as an approximation
error between the model and the data, adjusting for model complexity.

I also recorded the results of two hypothesis tests. Pearson’s y? test is used to assess local
dependence between pairs of items, but very large sample sizes often lead to significant y?
statistics even with adequate model fit. M, (Liu et al., 2016) is a limited-information fit index
best used when there is sparseness in the contingency table of response patterns. This is because
M, compares marginal response probabilities for small combinations of items instead of full
response patterns, which are often sparse for an assessment with too many items or too few
examinees. Statistically significant values of both statistics indicate poor model fit.

Results

AIC and BIC consistently preferred the correctly fitted model, indicating robustness of
these statistics to this type of model misfit, each preferring the correct model 96% of the time.
Mean RMSEA values were very small for both models, with the correctly fitted model showing a
slightly lower distribution of values. Below is a table summarizing mean RMSEA distribution
percentiles across all replications for both models.

Table 2. Mean Item RMSEA Percentiles for Misfit and Correctly Specified Models

Model 10% 25% 50% 75% 90%
Misfit .0014 .0015 .0018 .0020 .0023
Correct .0013 .0014 .0016 .0018 .0021
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The difference in performance for the misfitted model and the correctly fitted model
appears marginal, suggesting a weaker ability to detect this type of misfit.

Finally, I recorded the proportion of the 1,000 replications that resulted in rejections of
Pearson’s y? test of model fit, as well as the M, statistic. The table below shows that the
misfitted model produced significant statistics more frequently than the correct model for both
indices. Additionally, M, rejected more often than y? for both models. M, is more sensitive to
local misfit, meaning that small violations of local independence may push M, past the rejection
threshold but not y?2.

Table 3. Significance Rates for x* and M, Goodness of Fit Tests

Fit Index Model Significant Non-Significant
Misfit .099 901
%
Correct .003 997
Misfit 122 .878
M,
Correct .037 .963

These results suggest that the misfitted model, which is not appropriately calibrated to
IRT data, may not have adequately represented patterns and relationships in the item response
data and did not properly model the underlying structure of the data. This is notable because
researchers may not realize retrofitting has occurred if they did not develop the items on their
own or otherwise do not know enough about the assessment framework. Those who are unaware
of the initial structure of the data may be able to notice these poor model fit indices in a situation
where retrofitting has occurred and change course if needed. Additionally, researchers who are
intentionally retrofitting may want to pay close attention to fit indices and make note in their

studies that the LCDM does not do very well with reproducing the structure of IRT data.
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CHAPTER 5
EMPIRICAL ANALYSIS

Methods
Dataset

The final portion of this study was an empirical analysis of retrofitting conducted on a
sample of item responses from a 12th-grade science assessment test (SAT), provided for use in
the mirt package in R. These data comprise responses to 32 multiple-choice items from 600 12th-
grade examinees, along with two scoring keys. The two keys were nearly identical except for
item 32, which was changed after nominal response model analyses revealed that the initial key
may have been incorrect. While the assessment intended to measure topics in chemistry, biology,
and physics, an exploratory factor analysis (EFA) conducted in Mplus Version 8 (Muthén &
Muthén, 2017) resulted in a two-factor model having better fit, so I used a two-factor model in
the rest of the analysis.
Procedure

This analysis included both fitting a multidimensional 2-PL model and calibrating the
LCDM with this sample of item responses to examine and compare the item parameters and the
performance of model fit indices. For the LCDM, a Q-matrix was created based on maximum

factor loadings from the two-factor EFA in Mplus. The Q-matrix used is shown in Table 2.
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Table 4. O-Matrix Design for Empirical Analysis

Item a; Item a;
1 0 1 17 1 0
2 1 0 18 0 1
3 0 1 19 0 1
4 0 1 20 1 0
5 1 0 21 1 0
6 0 1 22 1 0
7 1 0 23 0 1
8 0 1 24 1 0
9 1 0 25 0 1
10 0 1 26 0 1
11 1 0 27 1 0
12 0 1 28 0 1
13 1 0 29 0 1
14 0 1 30 1 0
15 1 0 31 1 0
16 0 1 32 0 1

Item parameter estimates and examinee ability estimates were gathered from the MIRT
model summary. Similarly, class membership estimates were gathered from the LCDM summary
and then used to calculate correct response probabilities for masters and non-masters of each
attribute. I used these probabilities to calculate DCM difficulty and discrimination, according to
the definitions provided. Item difficulty estimates from the MIRT analysis were correlated with
the parameters calculated in the LCDM analysis, and discrimination parameter estimates were
similarly correlated between the two analyses. Lastly, I recorded relevant fit statistics to compare

with the results of the second simulation.
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Results

The IRT and DCM difficulty estimates had a very strong negative correlation (r =
—.948), while the IRT and DCM discrimination estimates had a moderately weak positive
correlation (r = .279). These results show a similar degree of item parameter recovery as the
first simulation. Compared with the results of the simulation, the observed difficulty correlation
is in line with what I might expect for items with any difficulty and medium or high
discrimination, and the discrimination correlation is also what I might expect for highly
discriminating items. After examining the item parameter estimates from the MIRT analysis, I
noticed that most items from the assessment had medium to high initial discrimination estimates
(mean discrimination 1.10).

For the second portion of the simulation, the MIRT model had better fit than the LCDM
according to the same metrics used in the second simulation. AIC and BIC both preferred the
correctly fitted model, and the mean RMSEA value for the MIRT model (.0251) was marginally
smaller than for the LCDM (.0282).

Table 5. Fit Indices for Correctly Specified and Misfitted Models

Fit Index Correct (MIRT) Misftit (LCDM)
AIC 19280.81 19462.45
BIC 19566.61 19757.04
Mean RMSEA 0251 .0282

Additionally, the M, test of model fit was significant at « = .05, M,(463) = 629.43,
p < .001. Overall, these results further suggest that the measured fit indices are able to detect

this type of model misfit.
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CHAPTER 6
DISCUSSION

From the first simulation study, I concluded that the LCDM does a better job recovering
item difficulty parameters than item discrimination but is not an adequate recreation of the data
structures in an IRT model. The second simulation, comparing model fit indices for both a
correctly fitted model and a misfitted model, showed AIC and BIC to be the best index of those
examined for detecting this type of model misfit, while RMSEA was not consistently useful.

I also conducted an empirical analysis using an IRT-based dataset of science aptitude test
responses. The first part of the empirical analysis showed similar results to those of the first
simulation, producing a strong correlation between item difficulty parameters and a
weak/moderate correlation between item discrimination parameters. The second part of the
empirical analysis examined the model fit when both an IRT model and a DCM were fit to the
same response data, ultimately supporting the results of the second simulation that showed AIC,
BIC, and M, as useful detectors of this misfit.

Some potential limitations of this study include the simple-structure Q-matrix used in the
simulations and the source of the data for the empirical analysis. Using a simple Q-matrix, in
which each item measures only one attribute, means the study did not account for assessments
with complex items. Complex items are much more likely to appear in assessments in practice,

as one item rarely measures a single attribute of interest. The interpretation of the results,



26

including the nature and strength of the item parameter relationships, should not be generalized
to assessments with complex items.

For the empirical analysis, the data originally came from the 2003 TESTFACT manual
and were found in the mirt package in R. I could not locate detailed descriptions of the items, the
examinees, or the assessment they came from, so I cannot guarantee that these data represent an
assessment with proper design and implementation. Based on the context of the original data,
and knowing that other researchers (Chalmers, 2012) have used it in the context of the mirt
package as sample data, I felt comfortable moving forward with the analysis using this dataset.

Further research is needed in both contexts to establish any relationships or guideline
criteria. [ would like to see further research into the interaction observed between the IRT and
DCM item discrimination parameters when the initial IRT parameters meet certain conditions. It
appeared that there was a difference in the relationship of discrimination parameters with items
initially low in difficulty and with medium discrimination, when compared with the other
combinations of initial item parameters. Closer analysis may reveal more information about the
nature or source of that difference. Additionally, more research into the performance of fit
statistics in this retrofitting context would shed light on which indices are useful and why, as
well as how they may perform in more realistic conditions. Further research is especially needed
to justify any guidelines or thresholds for making model fit decisions.

Ultimately, my intent with these three studies in combination was to begin to improve the
application and interpretation of DCMs in a retrofitting context. The overall goal was to
contribute to the limited research on retrofitted DCMs and inspire other researchers to further
examine the outcomes of this practice, which I believe could lead to a more widespread

implementation of DCMs in educational research and assessment. If thoroughly understood and
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properly conducted, the practice of retrofitting analysis may allow researchers to better
understand behavior and properties of DCMs, such as how they classify examinees, while still
using the widely available non-diagnostic item response data. Similarly, educators looking to use
diagnostic models in their practice could benefit from the ability to use items banks that were not
intended for diagnosing examinees. For example, formative feedback is highly desired among
educators and researchers, and DCMs have the capability to provide that. The implementation of
retrofitting DCMs to IRT data could make DCMs accessible to more individuals, companies, and
schools, and I hope to meaningfully contribute to current literature surrounding this unique

Process.
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