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ABSTRACT 

Most recent educational assessments were developed under an item response theory 

(IRT) framework and were designed to scale examinees on an ability continuum. Because there 

is an increasing desire for more formative feedback about mastery of specific skills, researchers 

and educators have recently been exploring diagnostic classification models (DCMs), which 

have potential to improve educational assessment and research due to the multidimensional 

nature of their feedback. However, because DCMs have only been introduced in recent years, 

they are not yet widely implemented in analysis. This study seeks to examine the effects of 

retrofitting, or retroactively fitting a DCM to item responses from an assessment not intended for 

classification. Using simulations and empirical analysis, I explore item parameter translation and 

model fit performance within a retrofitting context. 
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CHAPTER 1 

INTRODUCTION 

Item response theory (IRT) is a traditional assessment framework widely used in large-

scale educational assessments of knowledge or content understanding. Assessments developed 

under this framework aim to scale examinees on a relative continuum of ability level. There is an 

increasing desire for more formative feedback during and alongside instruction about which 

skills examinees have and have not mastered, in addition to obtaining their traditional total score. 

Consequently, many researchers are exploring diagnostic models to help assess students’ content

mastery and inform instructional practices. 

Within the past decade or so, diagnostic classification models (DCMs; Rupp et al., 2010) 

have emerged as a new approach to educational assessment in which examinees can be 

probabilistically classified into one of two or more proficiency statuses based on their responses 

to assessment items. Most commonly, DCMs classify examinees as either masters or non-

masters of a given attribute. DCMs have promising potential to improve educational assessment 

and educational research, as they allow for diagnostic and formative feedback about which 

standards students have mastered, which can then be used to guide instructional practices. 

However, because most assessments today are designed under the IRT framework, DCMs are 

not yet widely utilized for providing meaningful formative feedback. The best way to produce 

meaningful and accurate examinee classifications is to use an assessment that was designed to be 

diagnostic, but this is not always an option. Creating a diagnostic assessment can be time-
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consuming, and there is already a great deal of data for tests developed under the IRT 

framework. 

Calibrating DCMs with item responses from an IRT framework is a possibility that has 

not yet been thoroughly examined. Retrofitting occurs when a DCM is used to retroactively 

classify examinees as attribute masters or non-masters based on their responses for an 

assessment not designed to classify examinees (Liu et al., 2017). In an article exploring 

retrofitting DCMs to IRT data, Liu et al. (2017) express that retrofitting is not recommended as a 

practical means to obtain examinee classifications, but it is noted that the practice could be useful 

for learning more about construct domains. The authors suggest that a retrofitted model may be 

used when it is not feasible to develop a diagnostic test, when the purpose of the analysis is to 

obtain formative feedback to support learning or improve understanding of a construct, or for 

some assessments where there are distinct subdomains that items are intended to measure. To 

that end, the purpose of this study is to examine both the relationship between the item 

parameters for IRT-generated data and the item parameters that a diagnostic model will estimate, 

as well as the performance of fit statistics in a retrofitting context. 

In the first simulation, I examined the extent to which changes in IRT item parameters in 

a two-parameter logistic model would affect analogous parameters for DCM items. The ultimate 

goals of this simulation were to better inform appropriate use cases of retrofitting and to better 

understand the impacts of retrofitting on examinee classifications. In the first simulation, I 

examined if harder IRT items translated to harder DCM items, as well as if highly discriminating 

IRT items translated to highly discriminating DCM items. 

In the second simulation, I sought to explore how model fit statistics performed in the

retrofitting context. The goal of this study was to gain insight into how well, if at all, the 
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retrofitted model would pick up on the misfit from the initial data generation process. 

Understanding how the model fit indices perform could be helpful in later determining 

thresholds for adequate model fit when retrofitting. 

Lastly, I conducted an empirical analysis on the dataset SAT12 included with the mirt 

package (Chalmers, 2012) in R, which was obtained from the TESTFACT (Woods et al., 2003) 

manual. These data comprise 600 examinees’ responses to a multiple-choice, 12th-grade science 

assessment test (SAT) intended to measure chemistry, biology, and physics. The documentation 

for the dataset included a scoring key, along with a note that the key for one of the items might 

be incorrect. A modified scoring key was provided and used in my analysis. 

In the following sections, I describe the models and methods that were used to carry out 

the two simulation-based studies and the empirical data analysis. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter summarizes the frameworks and models used in the methods of these 

studies, building from the concepts of item response theory and latent class modeling to the 

newer framework of diagnostic classification models. 

Item Response Theory 

IRT is currently the most ubiquitous framework for analyzing large-scale assessment 

results, having developed from the concepts of classical test theory (CTT) before it. While CTT 

was focused on an assessment as a whole and considered overall scores to sets of questions, IRT 

focuses on each single item, modeling the relationship between a person’s latent ability and the 

probability that they respond correctly to a specific item. IRT models grew in popularity due to 

their appealing invariance properties, in which item parameter estimates are not dependent on the 

characteristics of the sample, and ability estimates are not dependent on the specific assessment.  

A common IRT model, the two-parameter logistic model (2-PL; Birnbaum, 1968), 

models probability of correct response  =  to item  for examinee  as a function of two 

item parameters and continuous examinee ability level  . Item difficulty, denoted , is defined 

as the point along the ability continuum at which an examinee would have a . 5 chance of 

answering the item correctly. Item discrimination, denoted , quantifies how well the item can 

discriminate between examinees who know the correct answer and those who do not. The item

response function for a 2-PL model can be expressed as 
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 =  ∣∣  , ,   =
exp ( − )

 + exp ( − )

The probability of correct response to an item under an IRT framework can also be 

expressed visually using an item characteristic curve (ICC). An example ICC for an item with 

 = . and  =  is shown in Figure 1. 

Figure 1. Example Item Characteristic Curve (ICC) for a 2-PL Model Item 

The dashed vertical line at zero represents the difficulty of this item, which demonstrates 

that an examinee with an ability level of zero will have a .50 chance of answering this item 

correctly. Although harder to visualize, the slope of this curve at its steepest point represents 

discrimination. 
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Latent Class Models 

 In contrast with the IRT framework, latent class models (LCMs) represent correct 

response probability as being conditional on categorical latent class membership. These analyses 

are generally exploratory in nature, as the number of classes is not known before analysis. 

Instead, researchers must look at the relevant theory and the characteristics of the data through 

factor analysis to determine the number of latent classes present. Additionally, in traditional 

latent class analyses, no constraints are placed on the item-attribute relationships a priori, 

meaning it is unknown or unspecified which items measure each attribute. The general latent 

class formula models the probability of observing a specific latent class as 

 =  = ∑



1

∏
 − 

1



1

 

where  is the probability of membership in latent class ,  is the probability of correct 

response to item  for a member of latent class , and  is the observed response of respondent 

 to item .  

Diagnostic Classification Models 

 Diagnostic classification models (DCMs; Rupp et al., 2010) are a special family of latent 

class models that are relatively recent in psychometric literature and are unique in being both 

confirmatory and constrained. While a typical latent class model is exploratory, DCMs are 

confirmatory for two reasons. The first is that the number of latent classes are specified prior to 

analysis as distinct attribute profiles, or vectors of length  with elements  = [1,2, … ,] 

indicating which attributes the examinee has mastered. Each number in the attribute profile will 

have a value of 1 for attributes that an examinee has mastered and a value of 0 for attributes that

an examinee has not mastered. For example, on an assessment measuring three attributes, an 
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examinee with the attribute profile [,,] will have mastered attributes 1 and 3, but not 

attribute 2. An examinee with the attribute profile [,,] would be referred to as a complete 

non-master of the set of attributes, and an examinee with the attribute profile [, ,] would be 

referred to as a complete master of the set of attributes. 

The second reason DCMs are considered confirmatory is that item-attribute relationships 

are also specified before analysis in a Q-matrix, which maps items to the attribute(s) that they 

measure (Tatsuoka, 1983). A Q-matrix has  rows and  columns, where  is the number of 

items on the assessment and  is the number of attributes the assessment is intended to measure. 

An entry , in the Q-matrix will take on a value 1 if item  measures attribute  and a 0 if it 

does not. A sample three-item, three-attribute Q-matrix is shown in Table 1. In this example, 

each item measures two of the three attributes. 

Table 1. Sample Three-Item, Three-Attribute Q-Matrix  

Item 1 2 3 

1 1 1 0 

2 1 0 1 

3 0 1 1 

Additionally, DCMs are constrained due to the restrictions placed on how attributes 

impact item responses, as specified in the measurement model. The constraints on the model 

force attribute mastery to translate to increased correct response probability such that a master of 

one attribute must have a higher correct response probability than a complete non-master. 
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The Log-Linear Cognitive Diagnostic Model 

 Several DCMs have been proposed and explored in the literature surrounding diagnostic 

measurement, all of which make different assumptions about how attribute mastery impacts item 

responses. Some of these models are general while others are more constrained and make stricter 

assumptions. The model used in this study is the log-linear cognitive diagnosis model (LCDM; 

Henson et al., 2009), which subsumes many other commonly used DCMs. The LCDM item 

response function for a binary item i on an assessment measuring two attributes, 1 and 2, 

models the correct response probability  =  ∣∣   for an examinee  in class  as 

 =  ∣∣   =
exp (,0 + ,1,11+ ,1,22+ ,2,1,21 ⋅ 2)

+ exp (,0 + ,1,11+ ,1,22+ ,2,1,21 ⋅ 2)
 

Where the intercept ,0 is the log-odds of a non-master answering the item correctly; ,1,1 is 

the increase in log-odds of a correct responses for masters of only the first attribute; ,1,2 is the 

increase in log-odds of a correct response for masters of only the second attribute; and ,2,1,2 is 

the increase in log-odds of a correct response for masters of both attributes. An item on an 

assessment measuring two attributes with the parameters ,0 = −.5, ,1,1 = .5, ,1,2 = , 

and ,2,1,2 =  would estimate the correct response probability for a complete non-master as 

 =  ∣∣ [,]  =
exp−.5 + .5+  +  ⋅ 

 + exp−.5 + .5+ +  ⋅ 
= .76 

Similarly, the model would estimate the correct response probability for a complete master of 

both attributes as 

 =  ∣∣ [,]  =
exp−.5 + .5+  +  ⋅ 

 + exp−.5 + .5+ +  ⋅ 
= .88 
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The probabilities of correct response for each attribute profile can also be visually 

represented in an item characteristic bar chart (ICBC). A sample ICBC for the above example 

item is shown below in Figure 2. 

Figure 2. Example Item Characteristic Bar Chart (ICBC) for an LCDM Item 

While the 2-PL model directly includes difficulty and discrimination parameters in the 

item response function, DCMs do not include such parameters. Without the presence of similar 

item parameters for the LCDM, conceptualizing the characteristics of an item was challenging as 

the framework is based on examinee class membership rather than examinee ability level. In this 

retrofitting context, I have defined item difficulty as the average correct response probability 

between masters of an attribute and non-masters of an attribute, which will notably only work 

with a simple-structure Q-matrix. Although there are multiple ways I could have defined this 

parameter, I felt that average correct response probability best captured how generally easy or 
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hard an item would be to different members of a similar sample. Similarly, I have defined 

discrimination in this retrofitting context as the difference between the correct response 

probabilities for masters and non-masters of an attribute. It is important to note that these 

definitions would need to be adjusted for studies involving complex items, which measure more 

than one attribute, to account for partial and complete masters and non-masters of all attributes 

involved. 

Model Misspecification 

Research on model misspecification in DCMs has started to appear, much of which 

examines the effects of Q-matrix misspecification on parameter estimates and model fit. A Q-

matrix is considered misspecified when the items in the Q-matrix do not properly align with the 

attributes they truly measure, which can occur when designing the Q-matrix for an assessment 

(Madison and Bradshaw, 2014). Careful Q-matrix design, influenced by the opinions of content 

experts, is essential to any diagnostic assessment design process. Different types of Q-matrix 

misspecification have been shown to impact both reliability and classification accuracy, severely 

impacting the validity of any inferences made using the assessment.  

For example, Rupp and Templin (2007) observed through a simulation study that while 

overspecified Q-matrices did not result in strongly decreased classification accuracy, 

underspecified Q-matrices did decrease classification accuracy in the DINA model. Kunina-

Habenicht et al. (2012) found through a simulation study that classification accuracy for log-

linear models can significantly decrease with too many incorrect Q-matrix entries, or if assuming 

the wrong number of dimensions. Madison (2023) used simulations to observe that with 

longitudinal DCMs, classification accuracy was not strongly impacted when only either the

measurement model or structural model was misspecified, but both types of model 
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misspecification occurring together severely decreased performance in both classification 

accuracy and reliability.  

Other types of model misspecification include measurement non-invariance and item 

parameter drift. Measurement non-invariance describes violations to the assumption of 

measurement invariance, which assumes that item parameter estimates are independent of the 

sample and examinee classifications are independent of the items. One source of measurement 

non-invariance is differential item functioning (DIF).  

DIF is broadly defined as an item functioning differently for examinees who have 

matched proficiency measures but are from different groups (Angoff, 1993). Because DCMs 

assume multidimensionality, a more specific definition for DIF in the DCM framework is the 

difference in probabilities of correct response between two examinees with the same attribute 

profile but are from different groups (Hou et al., 2014; Li & Wang, 2015). There have been 

multiple studies examining methods for detecting DIF in the DCM framework, ranging from 

more traditional methods such as the Mantel-Haenszel test (MH; Mantel & Haenszel, 1959) and 

the simultaneous item bias test (SIBTEST; Shealy & Stout, 1993) to those which are based 

specifically on DCM models, including a modified higher-order DINA model (HO-DINA; de la 

Torre & Douglas, 2004), the Wald test (Hou et al., 2014), and the LCDM-DIF method proposed 

by Li and Wang (2015). Although functioning differently, these methods all assess the presence 

of DIF and the degree to which it occurs. Overall, conducting DIF analysis to detect any 

potential item bias is crucial for ensuring test fairness across multiple groups of examinees 

(Camilli, 2006). 

As an extension of DIF, item parameter drift refers to violations in measurement

invariance occurring over time. Madison and Bradshaw (2018) examined item parameter drift in 
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the context of longitudinal DCMs and found that their proposed model was robust to effects of 

measurement non-invariance on classification accuracy and reliability, but item parameter 

estimation was somewhat impacted.  

While DCMs can be robust to certain misspecifications, they are prone to suffering 

decreased classification accuracy with an underfitted Q-matrix, measurement model, and/or 

structural model. Other types of misspecification seem to worsen model performance only when 

the degree of misspecification is large or multiple types of misspecification occur 

simultaneously. There is currently little research available on retrofitting as a type of 

misspecification.  

 This study comprises two simulations conducted in R version 4.0.5 (R Core Team, 2021), 

each of which explored a different aspect of the process and effects of retrofitting, and an 

empirical analysis of retrofitting on IRT item response data. The first simulation sought to 

examine how manipulating difficulty and discrimination item parameters might impact the 

analogous difficulty and discrimination of LCDM items when retrofitting. The second simulation 

sought to determine the impact of retrofitting on LCDM model and item fit. The empirical 

analysis used data from the mirt package in R with item responses from a 12th-grade science 

assessment test to empirically examine how item parameters translate and how model fit indices 

perform in a retrofitting context. The overarching motivation of the three studies combined was 

to improve how researchers interpret DCM results when retrofitting has occurred. In the 

following sections, I will detail my methods and results for each of the two simulation studies 

and the empirical analysis.  
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CHAPTER 3 

SIMULATION 1: ITEM PARAMETERS 

Methods 

The first simulation examined if item difficulty and/or item discrimination would 

translate when retrofitting the LCDM to item responses from an assessment developed under the 

IRT framework. Put another way, this simulation examines the degree to which difficult IRT 

items translate to difficult DCM items, and the degree to which highly discriminating IRT items 

translate to high discriminating DCM items. If item difficulty translates, then as IRT item 

difficulty increases, DCM item difficulty will also increase, and we will observe strong positive 

correlations between the parameters. Similarly, if discrimination translates, then as IRT item 

discrimination increases, so will DCM item discrimination, and we will observe strong positive 

correlations. 

Conditions 

Models. I used the 2-PL IRT model for data generation and the LCDM for calibration. 

Sample Characteristics. The sample consisted of 1,000 generated examinees to be sure 

that sample size would not affect item parameter recovery in a model with no interaction terms 

(Sen & Cohen, 2021). These ability levels were generated from a standard normal distribution 

( = ,  = ) to mimic ability estimates seen in other IRT contexts. 

Item Characteristics. Difficulty was categorized into three levels: easy, medium, and 

hard. Easy difficulty parameters were generated from a random uniform distribution with a range

of [−.5,−.5]; medium difficulty parameters were generated similarly from a range of
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[−.5,.5]; hard difficulty parameters were generated similarly from a range of [.5, .5]. I 

chose these ranges to be in line with commonly seen values for item difficulty in the 2-PL setting 

and to ensure I had equally sized intervals. 

Similar to item difficulty, discrimination was categorized into three levels: low, medium, 

and high. Low discrimination parameters were generated from a random uniform distribution 

with a range of [.5, .75]; medium discrimination parameters were generated from a random 

uniform distribution with a range of [.75, .5]; and high discrimination parameters were 

generated from a random uniform distribution with a range of [.5, .75]. I chose these values 

based on common interpretations, and because discrimination is typically constrained to be 

positive but usually does not exceed 2. Difficulty levels were crossed with discrimination levels 

to create nine total conditions under which I ran the simulation. 

Test Characteristics. The total length of the test was 10 items. Templin & Bradshaw 

(2013) used a simulation study to examine the reliability for the assessment with different 

numbers of attributes and items per attribute, and they found an average reliability for DCMs of 

.8 with ten items measuring a single attribute. 

Procedure 

During each replication, 10 pairs of item difficulty and discrimination parameters were 

randomly generated. I then generated item responses for a 10-item IRT assessment measuring 

two dimensions, which were used to calibrate the LCDM. I used the item parameters estimated 

by the LCDM to calculate correct response probabilities for non-masters and masters of the two 

attributes, which were then used to calculate the analogous item difficulty and discrimination

parameters. I ran 50 replications of this simulation for each of the nine conditions crossing 

difficulty and discrimination, for a total of 450 replications.
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 After calculating DCM difficulty and discrimination, I correlated these with the initial 

IRT difficulty and discrimination parameters, respectively. I then averaged these values across 

replications for each of the nine conditions as well as recorded the proportion of significant 

correlations for each condition at a significance level of  = .5. 

Results 

The average correlations between IRT and DCM item difficulties are plotted for each 

combination of the levels of the initial item parameters in Figure 3.  

Figure 3. Average IRT/DCM Difficulty Correlations vs. Initial Parameters 

 

Overall, results indicate that IRT item difficulty and DCM item difficulty are strongly 

related. There was a slight interaction, which indicates that the correlation between IRT and 

DCM item difficulty was stronger for medium and highly discriminating items (~.95) than for 

the low discriminating items (~.70). These findings indicate that IRT and DCM difficulty tend to 

have moderate to strong correlations, which are stronger for items with initial medium or high 

IRT discrimination. This suggests that a harder IRT item does tend to have harder DCM 
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difficulty as I defined in the context of retrofitting, especially for medium and high 

discrimination items. 

Figure 4. Average IRT/DCM Discrimination Correlations vs. Initial Parameters 

The average correlations between IRT and DCM discrimination are also plotted for each 

combination of the levels of the initial item parameters in Figure 4. Overall, positive correlations 

indicate that higher quality IRT items translate to higher quality DCM items, with correlations 

ranging from .30 to .70. However, there is a clear interaction where items with low IRT 

discrimination and medium difficulty seem to have a weaker relationship between IRT and DCM 

discrimination. Overall, the IRT/DCM discrimination correlations are weaker than the IRT/DCM 

difficulty correlations. Items with medium and high IRT discrimination did follow a similar trend 

to one another, as was the case in the difficulty correlations plot.  

The relationship between IRT and DCM discrimination does not follow the trend seen 

with difficulty parameters. Notably, highly discriminating IRT items produced the weakest 

correlations between IRT and DCM discrimination, while low discrimination IRT items 

produced two of the three strongest correlations. Items with medium difficulty and medium 
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discrimination produce the strongest correlation between IRT and DCM discrimination overall. 

These results indicate that the relationship between IRT and DCM discrimination as I have 

defined in the context of retrofitting is not as straightforward as for difficulty. This suggests that 

a highly discriminating IRT item may not necessarily translate into a highly discriminating DCM 

item, and that further inspection of initial item parameters is recommended. 
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CHAPTER 4 

SIMULATION 2: MODEL FIT 

Methods 

The goal of this simulation was to examine how commonly used model fit indices, 

calculated in R, would perform in the retrofitting context. 

Conditions 

Models. The first model was correctly fitted such that the LCDM was calibrated with 

item responses generated from the LCDM. The second model was a misfitted model in which the 

LCDM was calibrated with item responses generated from a 2-PL IRT framework. 

Sample Characteristics. For the LCDM data, 1,000 examinees were generated from a 

binomial distribution  = .5. For the IRT data, 1,000 examinees were generated from the 

standard normal distribution  = , = . These sizes were chosen to represent moderate 

sized samples attainable in research applications and as sufficient sample sizes for misfit 

detection (citation of some study looking at model fit inference and sample size). 

Item Characteristics. For both sets of data, all item parameters were randomly generated 

from uniform distributions. For the LCDM data, intercepts were generated from a range of 

[−.5,] and main effects were generated from a range of [,.5]. I chose these ranges based on 

commonly seen values for these item parameters in empirical and simulation-based studies. For 

the IRT data, difficulty parameters were generated from a range of [−.5,.5] and 

discrimination parameters from a range of [.5, .75], as in the first simulation. 



19 

Test Characteristics. I generated parameters for 10 items designed to measure one 

attribute with a base mastery rate of .50. I chose 10 items to reflect a practical classroom scenario 

with a single-attribute, formative, and diagnostic assessment. 

Q-Matrix. All questions were designed to measure only one attribute, creating a Q-

matrix with one column in which all entries are 1. As with the first simulation, I chose this Q-

matrix structure for simplicity of calculations and interpretations. 

Procedure 

To create the LCDM data, I generated 1,000 examinees’ proficiency statuses, 10 item

intercepts, and 10 item main effects. These were used to calculate correct response probabilities, 

which were then compared to a chance matrix to score the responses as correct or incorrect to 

create response data that was used to calibrate the LCDM. 

The IRT data required a similar process in which I generated item parameters and 

examinee characteristics with which to create item responses, but these were generated under an 

IRT framework utilizing continuous examinee ability, as well as item difficulty and item 

discrimination. I then used the resulting item response data to calibrate the LCDM. 

For both models, I recorded AIC, BIC, and mean RMSEA for each of the 1,000 

replications, as well as the proportion of replications that produced significant 2 and 2 fit 

indices at  = .5. AIC and BIC are both relative fit indices that weigh the balance between 

goodness of fit with model complexity to achieve an optimal combination of adequate fit and 

parsimony. Both include penalties for more complex models, but the penalty is larger for BIC 

than AIC, so BIC is more likely to prefer a simpler model.

RMSEA, which is an absolute fit index, examines differences between the observed and 

the predicted item responses while adjusting for sample size to quantify how far a hypothesized



20 

model is from being perfectly able to recreate the data. It’s commonly used with sample sizes 

large enough to produce a statistically significant 2 statistic even when there is no model misfit. 

While RMSEA is not intended for use with DCMs, it can be thought of as an approximation 

error between the model and the data, adjusting for model complexity. 

I also recorded the results of two hypothesis tests. Pearson’s 2 test is used to assess local 

dependence between pairs of items, but very large sample sizes often lead to significant 2 

statistics even with adequate model fit. 2 (Liu et al., 2016) is a limited-information fit index 

best used when there is sparseness in the contingency table of response patterns. This is because 

2 compares marginal response probabilities for small combinations of items instead of full 

response patterns, which are often sparse for an assessment with too many items or too few 

examinees. Statistically significant values of both statistics indicate poor model fit. 

Results

AIC and BIC consistently preferred the correctly fitted model, indicating robustness of 

these statistics to this type of model misfit, each preferring the correct model 96% of the time. 

Mean RMSEA values were very small for both models, with the correctly fitted model showing a 

slightly lower distribution of values. Below is a table summarizing mean RMSEA distribution 

percentiles across all replications for both models. 

Table 2. Mean Item RMSEA Percentiles for Misfit and Correctly Specified Models 

Model 10% 25% 50% 75% 90% 

Misfit .0014 .0015 .0018 .0020 .0023 

Correct .0013 .0014 .0016 .0018 .0021
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The difference in performance for the misfitted model and the correctly fitted model 

appears marginal, suggesting a weaker ability to detect this type of misfit.  

Finally, I recorded the proportion of the 1,000 replications that resulted in rejections of 

Pearson’s 2 test of model fit, as well as the 2 statistic. The table below shows that the 

misfitted model produced significant statistics more frequently than the correct model for both 

indices. Additionally, 2 rejected more often than 2 for both models. 2 is more sensitive to 

local misfit, meaning that small violations of local independence may push 2 past the rejection 

threshold but not 2. 

Table 3. Significance Rates for 2 and 2 Goodness of Fit Tests 

Fit Index Model Significant Non-Significant 

2 
Misfit .099 .901 

Correct .003 .997 

2 
Misfit .122 .878 

Correct .037 .963 

These results suggest that the misfitted model, which is not appropriately calibrated to 

IRT data, may not have adequately represented patterns and relationships in the item response 

data and did not properly model the underlying structure of the data. This is notable because 

researchers may not realize retrofitting has occurred if they did not develop the items on their 

own or otherwise do not know enough about the assessment framework. Those who are unaware 

of the initial structure of the data may be able to notice these poor model fit indices in a situation 

where retrofitting has occurred and change course if needed. Additionally, researchers who are 

intentionally retrofitting may want to pay close attention to fit indices and make note in their 

studies that the LCDM does not do very well with reproducing the structure of IRT data. 
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CHAPTER 5 

EMPIRICAL ANALYSIS 

Methods 

Dataset 

The final portion of this study was an empirical analysis of retrofitting conducted on a 

sample of item responses from a 12th-grade science assessment test (SAT), provided for use in 

the mirt package in R. These data comprise responses to 32 multiple-choice items from 600 12th-

grade examinees, along with two scoring keys. The two keys were nearly identical except for 

item 32, which was changed after nominal response model analyses revealed that the initial key 

may have been incorrect. While the assessment intended to measure topics in chemistry, biology, 

and physics, an exploratory factor analysis (EFA) conducted in Mplus Version 8 (Muthén & 

Muthén, 2017) resulted in a two-factor model having better fit, so I used a two-factor model in 

the rest of the analysis. 

Procedure 

This analysis included both fitting a multidimensional 2-PL model and calibrating the 

LCDM with this sample of item responses to examine and compare the item parameters and the 

performance of model fit indices. For the LCDM, a Q-matrix was created based on maximum 

factor loadings from the two-factor EFA in Mplus. The Q-matrix used is shown in Table 2. 



23 

Table 4. Q-Matrix Design for Empirical Analysis 

Item 1 2 Item 1 2 

1 0 1 17 1 0 

2 1 0 18 0 1 

3 0 1 19 0 1 

4 0 1 20 1 0 

5 1 0 21 1 0 

6 0 1 22 1 0 

7 1 0 23 0 1 

8 0 1 24 1 0 

9 1 0 25 0 1 

10 0 1 26 0 1 

11 1 0 27 1 0 

12 0 1 28 0 1 

13 1 0 29 0 1 

14 0 1 30 1 0 

15 1 0 31 1 0 

16 0 1 32 0 1 

Item parameter estimates and examinee ability estimates were gathered from the MIRT 

model summary. Similarly, class membership estimates were gathered from the LCDM summary 

and then used to calculate correct response probabilities for masters and non-masters of each 

attribute. I used these probabilities to calculate DCM difficulty and discrimination, according to 

the definitions provided. Item difficulty estimates from the MIRT analysis were correlated with 

the parameters calculated in the LCDM analysis, and discrimination parameter estimates were

similarly correlated between the two analyses. Lastly, I recorded relevant fit statistics to compare 

with the results of the second simulation.
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Results 

The IRT and DCM difficulty estimates had a very strong negative correlation  =

−.948, while the IRT and DCM discrimination estimates had a moderately weak positive 

correlation  = .79. These results show a similar degree of item parameter recovery as the 

first simulation. Compared with the results of the simulation, the observed difficulty correlation 

is in line with what I might expect for items with any difficulty and medium or high 

discrimination, and the discrimination correlation is also what I might expect for highly 

discriminating items. After examining the item parameter estimates from the MIRT analysis, I 

noticed that most items from the assessment had medium to high initial discrimination estimates 

(mean discrimination 1.10). 

For the second portion of the simulation, the MIRT model had better fit than the LCDM 

according to the same metrics used in the second simulation. AIC and BIC both preferred the 

correctly fitted model, and the mean RMSEA value for the MIRT model (.0251) was marginally 

smaller than for the LCDM (.0282).  

Table 5. Fit Indices for Correctly Specified and Misfitted Models 

Fit Index Correct (MIRT) Misfit (LCDM) 

AIC 19280.81 19462.45 

BIC 19566.61 19757.04 

Mean RMSEA .0251 .0282 

Additionally, the 2 test of model fit was significant at  = .5, 246 = 69.4, 

 < .. Overall, these results further suggest that the measured fit indices are able to detect 

this type of model misfit. 
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CHAPTER 6 

DISCUSSION 

From the first simulation study, I concluded that the LCDM does a better job recovering 

item difficulty parameters than item discrimination but is not an adequate recreation of the data 

structures in an IRT model. The second simulation, comparing model fit indices for both a 

correctly fitted model and a misfitted model, showed AIC and BIC to be the best index of those

examined for detecting this type of model misfit, while RMSEA was not consistently useful. 

I also conducted an empirical analysis using an IRT-based dataset of science aptitude test 

responses. The first part of the empirical analysis showed similar results to those of the first

simulation, producing a strong correlation between item difficulty parameters and a 

weak/moderate correlation between item discrimination parameters. The second part of the 

empirical analysis examined the model fit when both an IRT model and a DCM were fit to the 

same response data, ultimately supporting the results of the second simulation that showed AIC, 

BIC, and 2 as useful detectors of this misfit. 

Some potential limitations of this study include the simple-structure Q-matrix used in the 

simulations and the source of the data for the empirical analysis. Using a simple Q-matrix, in 

which each item measures only one attribute, means the study did not account for assessments 

with complex items. Complex items are much more likely to appear in assessments in practice, 

as one item rarely measures a single attribute of interest. The interpretation of the results,
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including the nature and strength of the item parameter relationships, should not be generalized 

to assessments with complex items. 

For the empirical analysis, the data originally came from the 2003 TESTFACT manual 

and were found in the mirt package in R. I could not locate detailed descriptions of the items, the 

examinees, or the assessment they came from, so I cannot guarantee that these data represent an 

assessment with proper design and implementation. Based on the context of the original data, 

and knowing that other researchers (Chalmers, 2012) have used it in the context of the mirt 

package as sample data, I felt comfortable moving forward with the analysis using this dataset. 

Further research is needed in both contexts to establish any relationships or guideline 

criteria. I would like to see further research into the interaction observed between the IRT and 

DCM item discrimination parameters when the initial IRT parameters meet certain conditions. It 

appeared that there was a difference in the relationship of discrimination parameters with items 

initially low in difficulty and with medium discrimination, when compared with the other 

combinations of initial item parameters. Closer analysis may reveal more information about the 

nature or source of that difference. Additionally, more research into the performance of fit 

statistics in this retrofitting context would shed light on which indices are useful and why, as 

well as how they may perform in more realistic conditions. Further research is especially needed 

to justify any guidelines or thresholds for making model fit decisions.  

Ultimately, my intent with these three studies in combination was to begin to improve the 

application and interpretation of DCMs in a retrofitting context. The overall goal was to 

contribute to the limited research on retrofitted DCMs and inspire other researchers to further 

examine the outcomes of this practice, which I believe could lead to a more widespread

implementation of DCMs in educational research and assessment. If thoroughly understood and 
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properly conducted, the practice of retrofitting analysis may allow researchers to better 

understand behavior and properties of DCMs, such as how they classify examinees, while still 

using the widely available non-diagnostic item response data. Similarly, educators looking to use 

diagnostic models in their practice could benefit from the ability to use items banks that were not 

intended for diagnosing examinees. For example, formative feedback is highly desired among 

educators and researchers, and DCMs have the capability to provide that. The implementation of 

retrofitting DCMs to IRT data could make DCMs accessible to more individuals, companies, and 

schools, and I hope to meaningfully contribute to current literature surrounding this unique 

process.  
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