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ABSTRACT
The present work evaluates the effectiveness of various supervised machine learning
(ML) methods for attrition modeling using real-world employee data, which includes self-
reported, HRIS, and performance-related features. Seven algorithms—tree-based methods
(CART, random forest), regularized regression (elastic net, LASSO, ridge regression), and a
hybrid method incorporating decision trees and regularized regression (XGBoost)—are
compared to a logistic regression model across two sample sizes (500, 1000) and 7 datasets. In
summary, the two tree-based ensemble methods—XGBoost and random forest—demonstrated
the best classification performance compared to their base methods across small (n = 500) and
large (n = 1000) sample sizes. These methods relied on information from all three data sources to
make predictions, with features related to tenure and pay being most important. Further
exploratory analyses indicated that performance can be further refined by adjusting the
prediction threshold below 50%. It is hoped that these results will inform practitioners in model
selection and will guide additional research in this growing area of inquiry.
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CHAPTER 1
INTRODUCTION

Voluntary employee attrition—where employees choose to leave an organization—has
long been a significant challenge across industries (Bolt et al., 2022). In recent years, this issue
has become even more pressing. In 2021, 47.8 million workers quit their jobs, followed by over
50 million in 2022, and over 44 million in 2023 (Melhorn & Hoover, 2024). This phenomenon
has become a mainstream topic, commonly referred to with colloquial terms like “The Great
Resignation” (Melhorn & Hoover, 2024; Smet et al., 2021). High-attrition industries are
disproportionately affected by this trend, as the cycle of attrition leads to understaffing, which in
turn drives even more employees to leave due to overwork and burnout (Society for Human
Resource Management [SHRM], 2024). As companies grapple with labor shortages and rising
turnover costs, accurately predicting employee attrition is critical. By anticipating when
employees are likely to leave, organizations can take proactive measures to mitigate the impact
of attrition on their operations and overall productivity.

Over the past century, researchers in fields such as industrial/organizational psychology
and organizational behavior have made significant strides in understanding the drivers of
employee attrition (Hom et al., 2017). The resulting body of work, referred to as turnover
research, is built upon explanatory models which collectively identify factors that influence
attrition (Bolt et al., 2022; Rubenstein et al., 2018). As a result, organizations are better equipped
to identify the relevant precursors of attrition and develop interventions aimed at reducing
attrition. These contributions have undeniably improved our understanding of why employees

leave.



Despite these advances, a critical gap remains. Traditional explanatory models, while
excellent at identifying correlates of turnover, fall short when it comes to predicting future
turnover. Traditional turnover models test theoretical relationships between antecedent variables
(e.g., job satisfaction) and outcomes (i.e., turnover), using statistical methods (primarily
structural-equation modeling) to evaluate how close the hypothesized model is to the actual data
(Russell, 2013). This methodological approach has yielded valuable insights into the
psychological mechanisms underlying attrition, but it does not provide evidence of predictive
ability (Speer et al., 2019). Compared to explanatory approaches, predictive approaches are less
constrained by theory, use different statistical techniques, make use of available data, and apply
trained models to make predictions in independent samples.

The lesser-studied practice of attrition modeling may provide a path toward prediction of
employee attrition. Attrition modeling is the process of using statistical techniques to forecast
employee turnover by analyzing relevant organizational data (Speer et al., 2019). This predictive
approach often relies on data from human resource information systems (HRIS), employee
surveys, and performance metrics to identify patterns that signal oncoming attrition. Thus far,
attrition modeling methodologies have received little attention in academic research, and even
less is known about their use in applied settings (Allen et al., 2014). Notably, there are a few
reports documenting applied attrition modeling research conducted by the U.S. military (e.g.,
Lucas et al., 2008; Strickland et al., 2005), but very little research is available outside of these
works (Putka et al., 2018). This gap is indicative of the wider issue—predictive methodologies
have not been fully integrated into organizational research or practice (Pargent et al., 2023;

Yarkoni & Westfall, 2017).



At the same time, innovative predictive algorithms and methodologies have come out of
the field of machine learning (ML), many of which can contribute to attrition modeling research
and practice. Machine learning is a class of predictive modeling approaches in which algorithms
are used to train classifiers, which learn complex patterns from existing data. Once trained,
classifiers are tested on unseen data through a process known as cross-validation. Specifically,
supervised machine learning (ML) algorithms, which predict outcomes based on patterns learned
from labeled training data, are well suited for attrition modeling applications because they can be
trained on datasets where the outcome (attrition vs. retention) is known. Importantly, ML
algorithms are flexible and can incorporate a wide range of organizational data.

While turnover research has flourished in the organizational sciences, research on applied
attrition modeling methodologies has mostly been investigated by researchers in the computer
sciences, who have produced over 50 papers on the topic in the last 20 years (Akasheh et al.,
2024). While this body of work provides valuable insights into the available attrition modeling
methodologies, it has several important limitations, including its reliance on simulated data.
Many challenges remain, including the lack of practical guidance on applying these techniques
effectively in real-world organizational contexts (Landers et al., 2023; Putka et al., 2018).

In Chapter 2, I review the past and current state of turnover research, attrition research
and statistical methodology in the organizational sciences. In Chapter 3, I discuss the merits of
the ML approach to attrition modeling, providing an in-depth analysis of the advantages and
disadvantages of the chosen algorithms, specifically: XGBoost, random forest, classification and
regression trees (CART), elastic net regression, lasso regression, ridge regression, and logistic
regression. In Chapter 4, I discuss the methodological approach in detail. In Chapter 5, I evaluate

the effectiveness of the chosen ML algorithms compared to logistic regression using real-world



call center employee data. The classification performance of these algorithms is compared in
three ways: parsimony, technique, and sample size. Parsimony is assessed by comparing the
performance of ML algorithms to the current standard, logistic regression, and by comparing the
performance of more complex models to their foundational models. Technique is assessed by
comparing regularized regression-based algorithms with tree-based algorithms. To provide
actionable recommendations for model selection in different organizational contexts, I also test
algorithms on datasets with different sample sizes (n = 500, n = 1000).

Through this work, I aim to provide a balanced approach to predicting employee attrition,
offering valuable insights for both researchers and practitioners. Findings from this study will
serve as a guide for practitioners seeking guidance on attrition modeling analyses and processes,
which is largely lacking from empirical literature thus far (Speer, 2024). In keeping with the
principle of parsimony, I also seek to identify cases where more complex modeling is not
needed. By identifying effective attrition modeling techniques, this study aims to contribute to
the empirical literature on attrition modeling with ML and encourage future research on

methodologies aimed at prediction.



CHAPTER 2
LITERATURE REVIEW

Turnover Research in the Organizational Sciences

Turnover research in the organizational sciences has historically emphasized explanation
over prediction, keeping with broader trends in the psychological sciences (Yarkoni &
Westerfall, 2017). Shmueli (2010) distinguishes between these two approaches. Explanatory
research aims to minimize bias in each study to uncover generalizable causal mechanisms.
Predictive research, on the other hand, prioritizes accuracy for forecasting future outcomes, often
at the expense of theoretical fidelity. Turnover research, shaped by explanatory objectives, has
primarily developed and tested theoretical models that describe why employees leave
organizations (Hom et al., 2017). These models are evaluated using methods that align with
explanatory goals, such as ordinary least squares regression and structural equation modeling
(SEM), which focus on understanding associations rather than optimizing predictive accuracy.
While this approach has broadened our understanding of the cognitive processes involved in
voluntary turnover, it has also raised questions about the relevance of this research to practical
applications aimed at predicting attrition in future datasets (Russel, 2013; Speer et al., 2019). The
present chapter evaluates research on employee attrition in the organizational sciences (referred
to as turnover research) from the lenses of explanation and prediction.
Theoretical Models

Given the large organizational impact of voluntary employee turnover, it comes as no
surprise that turnover has been an active area of research since the early 1900s. During the first
part of the 20th century, interest was mostly driven by high levels of turnover in US

manufacturing and focused primarily on measuring individual differences (Bolt et al., 2022).



March and Simon (1958) are credited as having developed the first formalized model of
voluntary employee turnover, which they published in their book, Organizations. Their
theoretical model proposed that a combination of individual, organizational, and external factors
influenced voluntary employee turnover. Specifically, they pointed to the desire fo leave and the
ease of leaving as key turnover antecedents. Their research laid the foundation for a long
research tradition that focused on understanding the psychological processes leading up to
employee attrition.

Mobley’s (1977) Intermediate Linkages Model advanced the March and Simon tradition
by theorizing a 10-step process through which job satisfaction influences turnover decisions. Job
dissatisfaction was proposed to initiate a sequence of cognitive and behavioral steps (evaluation
of one’s existing job, job satisfaction or dissatisfaction, thoughts of quitting, attitude toward
searching, attitude toward quitting, intention to search for alternatives, search for alternatives,
evaluation of alternatives, comparison of alternatives to one’s present job, and intention to quit)
that result in either staying or quitting. By laying out these cognitive and behavioral steps, this
work provided a theoretical taxonomy which identified both latent psychological variables and
measurable behaviors as turnover antecedents.

Hom and Griffeth’s (1991) work marked a pivotal moment in turnover research
methodology. Their (1991) paper used structural equation modeling (SEM) to empirically test
Mobley’s (1977) Intermediate Linkages Model. SEM is a family of statistical approaches that
combines factor analysis and linear regression for theory testing (Williams et al., 2009). Factor
analysis constitutes the first step of testing a structural equation model. Factor analysis (e.g.,
confirmatory factor analysis, exploratory factor analysis, principal components analysis) is used

to validate self-report survey scales by assessing the degree to which responses on survey items



fit together. Different “factors” are formed from the items, each representing a latent
psychological construct that is being indirectly measured by responses to survey items. First,
exploratory or confirmatory factor analysis (EFA, CFA) is used to validate the measurement
model, assessing the degree to which responses to survey items accurately reflect the
hypothesized latent constructs. Following this step, the structural model is evaluated, which tests
the strength and direction of the hypothesized relationships with linear regression (Anderson &
Gerbing, 1988).

SEM allowed researchers to answer questions about the mechanism and the underlying
processes by which psychological predictors influenced attrition outcomes. SEM provided
researchers with a formalized statistical framework to test the types of models they had theorized
for years, including mediation and moderation hypotheses. Mediation models estimate the
impact of an antecedent X variable on a consequent Y variable through an intermediate
mediating variable M, answering the question of how an antecedent like job satisfaction impacts
attrition outcomes (Hayes, 2013). Moderation models estimate the impact of an additional
antecedent variable W in combination with the existing antecedent variable X on a consequent Y
variable, answering the question of when or under what circumstances job satisfaction impacts
attrition outcomes, for example. Moderation and mediation hypotheses are still frequently tested
in attrition research (Bolt, 2022) given their ability to help explain causal processes and
intervening factors.

Compared to regression, SEM puts less emphasis on explaining variance in the outcome
with R? and puts more emphasis on model fit and the strength of paths between variables (Kline,
2012; Tanaka; 1993).While the measures Hom and Griffeth (1991) employed were developed in

earlier work (Hom, Griffeth, & Sellaro, 1984), the 1991 study tested Mobley’s Intermediate



Linkages Model using SEM. SEM, with its focus on causal relationships and goodness-of-fit
indices, provided a framework for understanding the interrelations among turnover antecedents.
By introducing SEM as a methodology, Hom and Griffeth’s (1991) study influenced how
organizational researchers tested turnover theories. Specifically, it demonstrated a method which
does not evaluate the quality of a model based on whether or not it is capable of predicting future
behaviors. Rather, the SEM approach, which uses goodness-of-fit indices, evaluates the quality
of the model based on whether the size or direction of coefficients in the observed data match
those that were implied by the theory. Hom et al. (2017) retrospectively noted that, shortly after
structural equation modeling became popularized, “[...] SEM users became more interested in
explaining covariances among exploratory constructs than variance in turnover” (Hom et al.,
2017, p. 535).

In the years following Hom and Griffeth’s (1991) influential paper, researchers continued
to theorize the processes leading up to attrition. Lee and Mitchell (1994) introduced the
Unfolding Model as a departure from the March and Simon (1958) framework, which had
emphasized job dissatisfaction as the key driver of turnover. Instead, the Unfolding Model
proposed that critical events, or "shocks," could independently prompt employees to reevaluate
their employment situation. It offered four decision paths, only one of which involved job
dissatisfaction, suggesting that elaborate cognitive deliberation might not always precede
turnover.

Despite its innovative taxonomy, the Unfolding Model remained explanatory and
retrospective, focusing on categorizing why employees left rather than predicting who would
leave. Retrospective analyses, such as Lee et al.’s (1996) study of nurses who had recently quit,

validated the model’s paths and highlighted the prevalence of shocks. While this work provided



valuable insights into turnover mechanisms, its reliance on retrospective interviews offered
limited applicability for forecasting turnover in future contexts. Moreover, the concept of a shock
itself is inherently subjective and context-dependent, making it difficult to measure
prospectively. A job offer might constitute a shock for one employee but not for another, and the
unfolding model provides little guidance on how to operationalize such constructs in a way that
generalizes across contexts.

Modern Turnover Research and Theory

The refinement and development of theoretical models persisted into the 21st century,
with a growing emphasis on understanding why employees stay rather than why they leave (Hom
etal., 2017). A prominent framework in this area is Job Embeddedness Theory, which posits that
retention is influenced by an individual’s embeddedness in their family, community, and
occupation (Mitchell et al., 2001). The theory identifies three key dimensions: fit, the
compatibility between an employee and their organization; links, the number of connections an
individual has within their organization or community; and sacrifice, the perceived costs—both
material and psychological—of leaving the job.

As with earlier theories, Job Embeddedness Theory expanded the scope of turnover
research by introducing new psychological predictors (Bolt et al., 2022). However, many of
these constructs, while theoretically compelling, are challenging to measure in practical contexts.
For example, assessing an employee’s community links would be both impractical and invasive.
Even if these constructs were measurable, they are associated primarily with retention rather than
attrition. From a predictive standpoint, retention is a low-priority outcome due to its high base

rate, making it less useful for forecasting turnover trends or guiding workforce interventions.
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The 21st century turnover literature has also been marked by a significant shift toward
using turnover intentions rather than actual turnover as the primary outcome variable (Bolt et al.,
2022). In their review of 100 years of turnover research, Bolt et al. (2022) found that 66% of
studies published between 2001 and 2019 used turnover intentions as the dependent variable,
compared to only 22% of studies published between 1937 and 2001. This shift has had
significant implications for the field, as turnover intentions are not synonymous with actual
turnover, and their correlation varies widely depending on the context and measurement. The
meta-analytic correlation between turnover intentions and turnover behavior has been estimated
to be » =0.50 and » = 0.35 by Steel and Ovalle (1984) and Griffeth et al., (2000), respectively.
Furthermore, focusing on an attitudinal variable rather than a behavioral outcome has entrenched
turnover research further into the explanatory tradition, emphasizing theory development at the
expense of predictive applicability.

Though it is unclear, one potential reason for the shift from turnover outcome to turnover
intentions may have to do with how models with binary or continuous criteria are statistically
evaluated. Up until the 1990s, researchers frequently used ordinary least squares (OLS)
regression (linear regression) rather than logistic regression to model attrition as a binary
outcome (Husleid & Day, 1991; Hom et al., 2017). This is problematic due to the lack of fit
between the assumptions of OLS regression and the nature of employee attrition data. Attrition is
a binary outcome, usually recorded as a 0 for stayers and a 1 for leavers. OLS regression is
intended to predict a continuous outcome variable, as opposed to a binary outcome variable,
because it assumes a normal distribution of the outcome. OLS regression is estimated as follows:

Equation 1. Ordinary Least Squares Regression

?= ﬁ0+ ﬁlxl + ﬁ2x2+...
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Where Y is the predicted score for a given observation, 3, is the intercept, which
represents the value of Y when all predictors are equal to zero, and f; and [, represent the beta
coefficients for the two predictors, x; and x, (Kline, 2013). Thus, OLS regression produces a
continuous predicted score which is a linear combination of continuous predictors.

In contrast, logistic regression produces log odds, or the predicted probabilities of group
membership in a binary category (0 or 1) based on the values of the independent variables.
Unlike linear regression, it assumes a binary distribution of outcomes (Tansey et al., 1996). Its
equation is as follows:

Equation 2. Logistic Regression

log (P(y =1)

m) = ,80+ ﬁlxl +,82X2+...

Where log (%) is the probability that the dependent variable () belongs to one of

two categories (y = 1 or y = 0). Note that the rest of the equation remains the same as the OLS
equation, but with a slightly different interpretation. f, is the intercept, and the beta coefficients
which follow it, 8;, represent the regression coefficients indicating the change in the log-odds of
Y for every one-unit change in the corresponding X predictor, x;.

This slight difference in model assumptions produces meaningful differences. Huselid
and Day (1991) reanalyzed Blau and Boal’s (1987) study, which had used OLS (linear)
regression to examine the interaction between organizational commitment and job involvement
in predicting turnover. Blau and Boal reported significant interaction effects, but when Huselid
and Day applied logistic regression—the appropriate method—the interaction effects
disappeared. This finding demonstrated that OLS regression, despite its widespread use, was ill-

suited for binary outcomes like turnover, as it relies on assumptions of continuity and normality
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that are violated with binary data. However, OLS regression had long been favored for its
simplicity, interpretability, and the convenience of using R>—a measure of the variance in the
outcome explained by the model coefficients—as a key evaluation criterion (Kutner et al., 2004).
The use of turnover intentions, rather than binary turnover, allows researchers to continue to use
OLS regression rather than logistic regression.

Increased use of turnover intentions as a dependent variable has both methodological and
substantive consequences. Turnover intentions, while valuable as an explanatory construct, are
inherently less actionable than actual turnover predictions for workforce planning. Their weaker
and variable correlation with actual turnover further limits their utility for predicting behavioral
outcomes. By prioritizing intentions over behavior, the field has reinforced its focus on
explanation, sidelining opportunities to build predictive models that could forecast turnover with
practical relevance.

Compared to OLS, logistic regression is better suited for prediction. Logistic regression
produces expected attrition probabilities, which can be compared to actual attrition outcomes.
The difference between the predictions made by the model and the outcomes observed constitute
model performance. In contrast, an OLS regression model with turnover intentions as the
dependent variable would produce expected values of the latent variable, turnover intentions.
Moving Forward: Applied Attrition Modeling

The historical reliance on explanatory methods like SEM, mediation, and moderation has
shaped turnover research around understanding why employees leave rather than if they will
leave. These methods have provided valuable insights into causal mechanisms, elucidating
relationships among predictors, mediators, and outcomes. For example, SEM has advanced our

understanding of latent constructs, while mediation and moderation models have helped clarify



13

how turnover antecedents interact with one another. This explanatory tradition has produced a
wealth of knowledge and a robust library of predictors, offering a foundation for predictive
analytics.

The practical challenge of predicting which employees will leave and when remains
underexplored. In practice, people analytics teams in organizations are increasingly using
predictive methodologies—referred to as applied attrition modeling—to address this challenge
(Speer et al., 2019). These approaches prioritize forecasting accuracy and actionable insights,
using statistical methodologies like logistic regression and modern machine learning (ML)
algorithms. Speer et al. (2019, 2024) have significantly contributed to introducing machine
learning (ML) approaches to attrition modeling in organizational research. Their 2019
publication outlined key considerations for applied attrition modeling and provided an overview
of both traditional methods, such as logistic regression, and modern ML techniques. In a
subsequent study, Speer (2024) demonstrated the application of random forests—a modern ML
method discussed later—for attrition modeling, showing that it outperformed logistic regression.
The 2024 study also focused on mitigating adverse impacts associated with ML-based attrition
modeling. Despite the potential of these contributions, as of May 2024, Speer et al. (2019) had
only 44 citations, with just two applying ML to attrition modeling: one a dissertation predicting
attrition among federal STEM workers (Pasquarella, 2023) and the other a self-citation (Speer,
2024).

Meanwhile, computer sciences disciplines have begun leveraging our extensive turnover
research library to develop predictive models, demonstrating the potential of machine learning in
attrition modeling (Akasheh et al., 2024). Akasheh et al. (2024) conducted a systematic review of

applied attrition modeling studies using machine learning (ML) published between 2012 and
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May 2023, revealing that only 3 of the 52 reviewed papers appeared in organizational science
journals: Human Resource Management Journal (Yuan et al., 2021), Management Research
Review (Rombaut & Guerry, 2017), and Journal of Management Analytics (Wang & Zhi, 2021).
These studies showcased a range of approaches, from Yuan et al.'s (2021) comparison of
methods for modeling turnover intentions with grouped data, to Rombaut and Guerry's (2017)
demonstration that archival features like age, sex, and seniority could predict attrition without
survey data, and Wang and Zhi's (2021) evaluation of a custom ensemble algorithm on simulated
datasets. Despite these contributions, most research on applied ML for attrition modeling
originates from computer science disciplines, as Akasheh et al. highlighted in their review. These
works typically compare ML algorithm performance on datasets comprising human resource
information system (HRIS) data (e.g., attendance, salary), passive data (e.g., hours worked), and
less frequently, self-reported survey data (e.g., job satisfaction, pay satisfaction).

In summary, research on applied attrition modeling with ML is disproportionately being
conducted by researchers outside of the organizational sciences. Furthermore, most studies
reviewed by Akasheh et al. (2024) (61%) used fictitious datasets like the IBM HR dataset (29%),
raising concerns about the generalizability of findings. As of writing this dissertation, there are
no published empirical studies which compare the performance of ML algorithms for applied
attrition modeling with real-world HRIS, self-report, and performance data. The available studies
use just one or two data types, which are often simulated.

It is now time to balance the field’s strong explanatory tradition with predictive methods.
Explanatory methodologies and research findings have enabled practitioners to identify possible
reasons why employees voluntarily exit the organization. However, there is an organizational

question that has been largely under addressed: regardless of why, how many employees, and
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which employees, are going to leave in a given period of time? This challenge is especially
salient in high-turnover industries like customer service. Logistic regression provides an early
bridge, accommodating the binary nature of turnover while prioritizing accuracy. Machine
learning techniques build on this foundation, integrating diverse data sources and complex
patterns to enhance predictive utility. By complementing explanatory research with applied
attrition modeling, turnover research can evolve to address organizational needs, providing both

theoretical depth and practical solutions for workforce planning.



16

CHAPTER 3

THE PRESENT STUDY

Overview: Transitioning from Explanation to Prediction

Predictive research differs from explanatory research in its goals, analytical tools, and
approaches to data preparation (Shmueli, 2010). As previously noted, the research question
drives the choice of analytical tools, and transitioning from explanation to prediction requires
adopting statistical methodologies tailored to forecasting needs. The current chapter describes the
ways in which machine learning (ML) approaches lend themselves to predictive endeavors.

Despite the growing interest in predictive methods, academic research comparing ML
approaches to applied attrition modeling remains limited. While dozens of ML algorithms are
available, studies in the computer sciences often test numerous methods without providing clear
rationales for their selection or exploring the reasons behind performance differences. To address
this gap, this study narrows the focus to a subset of algorithms which are well-suited for attrition
modeling. These include regularized regression techniques (elastic net, lasso, and ridge
regression) and tree-based methods (random forests and extreme gradient boosting, or
XGBoost). Table 1 summarizes these methods, which are discussed in detail in this chapter.

Table 1. Selected Modern Machine Learning and Traditional Methods

Method Techni Ensemble Base or Foundational Model(s)
etho echnique Method se or Fou io odel(s
Random Forest  Tree-based Bagging Decision Trees
Elastic Net ) Ridge regression
. Regul d . .
Logistic eewarize Hybrid model Lasso regression

regression

Regression Logistic regression
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Regularized tree-

XGBoost based ensemble Boosting Decision Trees, Ridge Regression
method
Logisti
O8IS IC. Regression NA NA
Regression

Methodological Rationale

Before selecting the methods for this study, I conducted a comprehensive literature
review to examine which predictive modeling techniques have been used for applied attrition
modeling and similar use cases. This review spanned the organizational sciences, psychological
sciences, and computer science research. The goal was to identify methods which are well-suited
for the types of data used in attrition models (e.g., categorical, continuous tabular data), methods
which can be easily compared to one another, and methods which have demonstrated strong
performance on similar tasks.

From the organizational sciences, key contributions include Landers et al. (2023), Putka
et al. (2018), and Speer et al. (2019, 2024). Putka et al. (2018) provide an overview of several
modern ML algorithms, including lasso regression (LARS), elastic net regression, decision trees
(CART), support vector machines, and stochastic gradient boosted trees, which they compared to
ordinary least squares regression and forward stepwise regression. Using a sample of biodata and
performance data from the U.S. Army’s Reserve Officer Training Corps, their study aimed to
compare the effectiveness of ML methods to traditional methods in predicting job performance.
Note that their outcome was a continuous variable rather than binary variable, which limits the
generalizability of their findings to the present work. Overall, they found that all machine
learning models yielded higher predictive validity than traditional OLS regression, forward

stepwise regression, and decision trees. They also concluded that, for this particular use case,
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linear regression methods were sufficient. Methods which accounted for more complex
relationships such as nonlinearities and interactions did not substantially outperform linear
methods like elastic net. Moreover, modern regression approaches (lasso and elastic net
regression) outperformed stepwise regression most markedly at lower sample sizes.

Building on the work of Putka et al. (2018), Landers et al. (2023) conducted a simulation
study to examine the use of several modern ML algorithms to predict job performance, focusing
on adverse impact and the optimal number of features. Their overarching goal was to determine
whether using individual items or scale composite scores would yield superior predictive validity
across various ML methods. They compared elastic net regression, random forest, lasso
regression, linear (OLS) regression, support vector matrices, XGBoost, deep neural networks,
and k-nearest neighbors. Similarly to Putka et al. (2018), Landers et al. (2023) found that modern
ML algorithms were superior to OLS regression across sample sizes and demonstrated the
largest advantage in smaller sample sizes and when item wise prediction was used rather than
scale wise prediction. Elastic net regression and lasso regression, which utilize regularization to
drop uninformative predictors, performed especially well across conditions. Interestingly,
random forest outperformed the other tree-based method, XGBoost, when the ratio of predictors
to observations was high. Overall, performance prediction improved with ML in data-sparse
conditions.

Speer and colleagues (2019) provided an in-depth guide on attrition modeling, effectively
translating turnover research into practical steps for attrition modeling. This work did not test
attrition models, but discussed several relevant methodologies, including logistic regression,
decision trees, ensemble models, and survival analysis. Survival analysis is a class of

methodologies first used in medical research to predict the amount of time it will take for an
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outcome to occur, which has also been applied to turnover research but to a much lesser extent
(Allen et al., 2014; Morita et al., 1989). Survival analysis, including Cox regression, produces
estimates of the probability of departure at various future time points and regression weights
indicating the relative impact of each feature on time to departure, with the assumption that all
observations will depart at some point (Speer et al., 2019). However, applications of survival
analysis in the turnover literature have been sparse. In their review of turnover research from
1958-2010, Allen et al. (2014) found that survival analysis accounted for only 11% of studies,
with many of these using it for exploratory purposes. For instance, Mattox and Jinkerson (2005)
applied it to quantify the relative effects of predictors on estimated survival times.

Speer et al. (2024) used a sample of call center employee data containing archival HRIS
variables and performance variables to predict turnover over a 6-month period using random
forests. They also tested logistic regression, elastic net regression, and a deep neural network at
the request of the reviewers but note that random forest exhibited the best performance out of
these methods. The outcome variable was multicategorical; algorithms predicted the probability
of staying, voluntarily leaving, and involuntarily leaving. Overall, random forests were best at
predicting involuntary attrition and performed well overall.

Outside of Speer’s work, I found two works pertaining to applied attrition modeling
which were published in conference proceedings. The first was Vahnove et al. (2023), who
performed a meta-analysis on research which used supervised machine learning models to
predict categorical human resource management outcomes (Vanhove et al., 2023). The complete
meta-analysis was not yet published at the time I was writing this paper. However, the authors
did summarize a few of the findings, which suggested that boosting and random forest

algorithms consistently outperformed other algorithms (discriminant analysis, logistic regression,
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Bayesian algorithms, K-nearest neighbors, neural networks, and support vector machines) across
classification performance indices.

The second unpublished work was that of Shewach et al. (2024), published at the SIOP
conference that year. Their simulation study compared the performance of logistic regression,
elastic net logistic regression, and decision trees (C5.0) across varying degrees of class
imbalance, different optimization criteria, and different sampling techniques. They note that they
did not choose to include random forest and gradient boosting because the data simulation
method did not incorporate complex feature relationships that would allow these models to
outperform simpler methods. Their work did not compare the performance of these methods to
one another; rather, they focused on comparing the relative performance of the methods across
different conditions of the data using a vote-counting approach.

Finally, I evaluated results from a systematic literature review conducted on the past
decade (2012-2022) of research on ML techniques for predicting employee turnover (Akasheh et
al., 2024). In summary, the review found that supervised algorithms were used far more
frequently than unsupervised algorithms (e.g., k-nearest neighbors), which were only used by 2
of the 52 papers included in the review. In terms of frequency, the review identified the
following methodologies in order from most frequently tested to least frequently tested: support
vector machines (n = 2), naive bayes (n = 2), decision trees (n = 3), neural networks (n = 4),
logistic regression (n = 4), “other” supervised classifiers (n =12), XGBoost (n = 5; one paper
used a different boosting algorithm called CatBoost), and random forest (n =17). Classifiers in
the “other” category included ad-hoc hybrid methods and methods which made slight

adjustments to popular algorithms. In terms of predictive performance, the review suggests that
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no single algorithm universally dominated, but tree-based ensembles like XGBoost and random
forest were frequently among the strongest performers.

Given these findings from my review of the literature, I selected a set of algorithms that
have demonstrated a high level of classification and predictive accuracy in similar applications,
and which allow for meaningful comparisons across method types while also capturing a range
of complexity in model structure. Logistic regression serves as a traditional benchmark as it is
frequently used in turnover research, making it an essential point of comparison. Decision trees
(CART) were included as a simple, interpretable tree-based method that forms the foundation for
more complex ensemble models. Lasso regression and ridge regression were selected as base
regularized regression methods, as they serve as key components of the chosen hybrid models,
elastic net and XGBoost. Finally, I included three modern ML methods: XGBoost, elastic net,
and random forest. All three of these methods were chosen for their superior performance and
popularity across the reviewed studies. Moreover, XGBoost was selected as it integrates tree-
based modeling with ridge-like regularization, elastic net was selected because it combines the
benefits of lasso and ridge regression, and random forest was selected because it is an ensemble
of decision trees.

To manage the scope of this work, several commonly used methods were intentionally
excluded. Unsupervised methods, such as k-nearest neighbors, were excluded because they are
not widely used in attrition modeling and tend to underperform on high-dimensional datasets.
Neural networks (deep learning) were not included because they require much more tuning and
computation compared to tree-based algorithms, such as XGBoost, and because neural networks
significantly underperform such methods on tabular (i.e., Excel) data (Shwartz-Ziv & Armon,

2022). Survival analysis, while a valuable tool in attrition research, was excluded because it does
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not produce probability estimates in a manner that allows for direct comparison to other ML
models. Nevertheless, future research on the application of survival analysis to applied attrition
modeling is needed, as it remains underutilized despite its potential (Morita et al., 1989; Somers
& Birnbaum, 1999; Speer et al., 2019). Overall, the selected models build upon one another in a
structured way, allowing for direct evaluation of how specific modeling choices (e.g.,
regularization, ensembling) impact predictive accuracy. Table 2 provides a summary of this
section, some of which reflects the findings of Akasheh et al. (2024).

Table 2. Methodologies Considered for Inclusion

Method Citation(s) Inc‘l?/gled? Rationale
Logistic Rombaut and Guerry, (2017)*; Y Base method for comparison.
regression | Setiawan et al., (2020)*; Ozdemir
et al., (2020)*; Najafi-Zangeneh et
al., (2021)*,
Vanhove et al. (2023); Speer et al.
(2019; 2024); Shewach et al.,
(2024)
Lasso Landers et al. (2023); Putka et al. Y Builds on logistic regression, base
regression | (2018) method for comparison to elastic net
regression.
Ridge Y Builds on logistic regression, base
regression method for comparison to elastic net
regression.
Elastic net | Landers et al. (2023); Putka et al. Y Builds on lasso and ridge regression;
regression | (2018); Speer et al. (2019; 2024), demonstrated high performance in
Shewach et al., (2024). similar applications (e.g., Landers et
al., 2023; Putka et al., 2018).
Decision | Nazetal., (2022)*; Kang et al., Y Base method for comparison to
trees (2021)*. Shewach et al., (2024) random forest and XGBoost.
XGBoost | Punnoose and Ajit (2016)*, Ain Y Ensemble method which incorporates
and Nayyar (2018)*, Zhao et al. ridge regularization and tree-based
(2018)*, Jhaver et al. (2019)*, classifiers. Commonly used in the
Tharani and Raj (2020)*, Putka et attrition modeling literature.
a. (2018) (Stochastic Gradient Demonstrated high performance in
Boosted Trees). similar applications.
Random Tama and Lim (2021)*; Baoetal. |Y Ensemble method which incorporates
forest (2017)*, Alamsyah and Salma tree-based classifiers. Commonly
(2018)*, Sisodia et al. (2018)*, used. Demonstrated high performance
Gao et al. (2019)*, El-Rayes et al. in similar applications.
(2020)*, Jain et al. (2020)*, Cai et
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al. (2020)*, Hossen et al. (2021)*,
Wild Ali (2021)*, Joseph et al.
(2021)*, Hebbar et al. (2018)*,
Wang and Zhi (2021)*, Jain and
Jana, (2021)*, Krishna and
Sidharth (2022)*, Raza et al.,
(2022)*, Alzate Vanegras et al.
(2022)*, Landers et al. (2023);
Speer et al. (2019, 2024)
Neural Srivastava and Nair, (2018)*; N Computationally intensive;
networks | Meng et al., (2019)*; Teng et al., underperforms tree-based methods on
(2021)*; Al-Darraji et al., (2021)*; tabular data. Demonstrated to
Srivastavaand Eachempati (2021)*; underperform random forest in applied
Alharbi et al., (2023)*, Landers et attrition modeling context (Speer et
al. (2023), Speer et al. (2024). al., 2024).
Support Dolatabadi and Keynia, (2017)*; N Performs poorly with high
vector Yigit and Shourabizadeh, (2017)*, dimensional datasets (Yang et al.,
machines | Landers et al. (2023); Putka et al. 2021)
(2018)
k-Nearest | Fanetal. (2012)*, Avrahamietal. | N Performs poorly with high-
neighbors | (2022)*, Landers et al. (2023) dimensional datasets (Saxena et al.,
2017); Performed poorly across
conditions in Landers et al. (2023)
Bayesian | Fallucchi et al., (2020)%*; N Assumes that predictor features are
methods Thompson et al., (2022)* independent (Jadhav & Channe, 2016).
(naive
bayes)
Survival Speer et al., (2019) N Results are not easily comparable to
analysis ML results.
OLS Landers et al. (2023); Putka et al. N Not suitable for binary data.
regression | (2018)

Note: Citations with an asterisk* were included in Akasheh’s (2024) systematic review.

Supervised Classification Methods

Attrition modeling typically relies on classification algorithms (Speer et al., 2019).

Classification algorithms estimate the probability that observation i belongs to the positive (1) or

negative (0) class. There are two main categories of classification algorithms: supervised and

unsupervised. At a high level, supervised ML algorithms work by learning patterns of X — Y

relationships in a training dataset where the desired response Y is labeled. The model then forms

predictions from learned patterns of X — Y relationships, which are applied to an out-of-sample

dataset to make predictions on data where the outcome is unknown (Choudhary & Gianey,
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2017). Based on learned patterns among predictors/independent variables, referred to as features,
trained models (classifiers) predict group membership on unseen data. Figure 1 visualizes this
process. Out-of-sample validation (cross validation) is typically not undergone in the turnover
literature. However, it is a critical process which helps lend evidence for the model
generalizability.

In contrast, unsupervised ML techniques make associations between features based on
patterns in the data. Principal component analysis and factor analysis are examples of
unsupervised techniques (Kuhn & Johnson, 2013). Almost all (96%) of computer science
research on attrition modeling has been conducted using supervised ML algorithms, while the
remaining 4% have used unsupervised ML algorithms (Akasheh et al., 2024). Compared to
unsupervised ML algorithms, supervised ML algorithms are better suited for attrition modeling
because they learn patterns from organizational data. Knowing the outcome in the training data
provides important information that guides the algorithm in its predictions on the test data,
giving it a competitive advantage over unsupervised methods. In addition, unsupervised methods
are usually outcome-agnostic. A factor analysis, for example, is performed on theorized
predictors, with the goal of understanding relationships between different factors rather than
between factors and the outcome (Kuhn & Johnson, 2013).

Figure 1. Training and Testing a Supervised Machine Learning Algorithm
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Logistic Regression

Though not always considered a ML algorithm, logistic regression serves as the
foundational model for many ML algorithms. Despite being a traditional statistical approach,
logistic regression can be deployed similarly to modern ML algorithms when enhanced with
cross-validation. Cross-validation is an analytic method which applies a trained model to unseen
data. A logistic regression model which has been “trained” or “run” on one dataset where the
turnover outcome is known can be used to make predictions on another dataset in which the
outcome is not known. This process essentially tests the validity of a model on unseen data and
evaluates the model’s quality based on the accuracy of its predictions, rather than the strength of
its beta coefficients, using a confusion matrix, a 2 by 2 table displaying counts of true positive,
true negative, false positive, and false negative predictions. Thus, one of the key issues with
current applications of regression models in turnover research is their lack of cross-validation.
Models are not tested; they are only trained and appear to work best when they are overfit. It is
no surprise, therefore, that researchers in the psychological sciences often find it difficult to

replicate other researchers’ findings (Yarkoni & Westfall, 2017).
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Modern ML algorithms also differ from logistic regression in how they balance bias and
variance (Yarkoni & Westfall, 2017). Bias and variance both constitute sources of error in a
model. A model with high bias is less flexible, applying more stringent rules about the form of
the data. With too high of a bias, a model can miss meaningful patterns, or underfit the data. In
contrast, a model with too high a variance will over capitalize on chance variations and outliers
in the training data, resulting in poor generalization to the test data (Gupta et al., 2022). This is a
phenomenon referred to as overfitting (Briscoe & Feldman, 2011). A model with too high
variance is too flexible; it learns the idiosyncrasies of the data, not the underlying pattern, which
becomes apparent when the model is applied to a different dataset.

Models with too many predictors, particularly irrelevant and redundant predictors, can
overfit the data. Figure 2 provides a conceptual visualization of the bias-variance tradeoff, where
model complexity, operationalized by the number of predictors in the model, is plotted against
error. Low model complexity represents a high bias:variance ratio, and high model complexity
represents a high variance:bias ratio. As model complexity increases, classification errors on the
training data decrease as the data becomes overfit. The dotted line represents the optimal
tradeoff, where classification error on the test data is the lowest.

Figure 2. Visualizing the Bias-Variance Tradeoff
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Regularized Regression: A Solution to Overfitting

Logistic regression, as a relatively simple model, is characterized by high bias and low
variance. However, high bias can also arise from challenges associated with the predictors in the
model, such as collinearity and overfitting due to an excessive number of predictors.
Collinearity, where predictors are strongly correlated with one another, inflates the standard
errors of estimated coefficients, thereby reducing their reliability and interpretability. Overfitting,
on the other hand, occurs when the model includes too many predictor variables, leading to
unstable parameter estimates that can vary drastically with minor changes in the data, such as the
removal of features or the addition of new observations. These issues collectively undermine the

validity and generalizability of the logistic regression model.
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Regularized regression is an advanced extension of logistic regression designed to
address key challenges such as overfitting, multicollinearity, and high-dimensional data. As a
class of algorithms designed to address overfitting, regularized regression introduces penalties to
the model’s loss function (which seeks to identify the model parameters that maximize the
likelihood of the observed data) to constrain the size of the coefficients, thereby stabilizing
estimates and improving generalizability. By introducing penalty terms to the logistic regression
loss function, regularized regression methods reduce model complexity and optimize the bias-
variance tradeoff. This balance ensures better generalization to unseen data. Three primary
approaches are discussed: ridge regression (Hoerl & Kennard, 1970), lasso regression
(Tibshirani, 1996), and elastic net regression (Zou & Hastie, 2005). These methods extend
logistic regression while maintaining its foundational assumptions of binary outcomes and
independence of observations. They differ from standard logistic regression by explicitly
addressing multicollinearity and irrelevance among predictors, enhancing predictive accuracy
and interpretability.

Ridge Regression

Ridge regression, first introduced by Hoerl and Kennard (1970) for linear regression, was
one of the earliest methods in this class. Le Cessie and Van Houwelingen (1992) extended ridge
regression to logistic regression, adapting it for binary outcome data. Ridge regression, also
known as L2-regularized logistic regression, minimizes overfitting by shrinking coefficients of
less predictive features towards zero without eliminating them entirely (Hoerl & Kennard, 1970).
Ridge regression is useful in cases where there are collinear features by reducing the variance in

coefficient estimates. This is a strong advantage over logistic regression, which is known to
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produce unstable coefficient estimates when collinearity is present. Like logistic regression,
ridge regression keeps all features in the model.
Lasso Regression

Lasso (least absolute shrinkage and selection operator) regression builds upon ridge
regression by addressing one of its key limitations: the inability to perform variable selection
(Tibshirani, 1996). While ridge regression shrinks all coefficients toward zero, it does not
eliminate any, meaning irrelevant or redundant features remain in the model, albeit with smaller
weights. Tibshirani (1996) introduced lasso regression to solve this problem. By replacing
ridge’s L2-norm penalty with an L1-norm penalty, lasso regression retains the ability to suppress
coefficients of less predictive features while also setting some coefficients exactly to zero. This
property makes lasso regression particularly well-suited for high-dimensional problems where
many predictors may be irrelevant.

Both lasso and ridge regression have advantages for ML applications compared to
logistic regression. Logistic regression produces coefficients that are tailored to the present
sample, which is useful for understanding feature relationships within a one-shot analysis.
However, these coefficients do not generalize well to unseen data (Rosenbusch et al., 2021). By
reducing the number of predictors and/or the strength of model coefficients, lasso and ridge
regression achieve better predictive accuracy on unseen data. In other words, algorithms can
improve their performance on unseen data by reducing their performance on training data. This
concept is central to the bias-variance tradeoff, which is present in all applications of ML (James
et al., 2023).

Elastic Net Regression
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The most recently developed regularization method — elastic net regression — (LARS —
EN; Zou & Hastie, 2005) balances the L1 penalty used in lasso regression and the L2 penalty
used in ridge regression (Putka et al., 2018). Additionally, elastic net has the capability to retain
groups of highly correlated features (Zou & Hastie, 2005).

Consider a model with 10 features, three of which demonstrate a strong correlation with
one another and with the outcome. Whereas the lasso regression algorithm would arbitrarily
choose two of the three features to discard, the elastic net algorithm would group these features
together as a factor. This allows for the capturing of a wider net of variance while still
maintaining lower variance than ridge regression. Moreover, the elastic net helps reduce the
complexity of the model by reducing a larger number of features to a single factor that represents
them.

Elastic net regression with OLS estimation was developed by Zoe and Hastie (2005) and
has since been adapted for use in logistic regression problems (Ren et al., 2022; Shiomi et al.,
2022). The regularization term I1(f) used in logistic elastic net regression is expressed as:

Equation 3. Elastic Net Regularization Term

1

NE) =52 alfil+=52p2,

Where n,, represents the total number of features, and « is the hyperparameter that
balances the A1 norm term |f;|, and the A2 norm term Zi. A value of @ = 1 would produce a
lasso regression model and a value of @ = 0 would produce a ridge regression model. Various
values of a between 0-1 are tested during the hyperparameter tuning process. The 41 penalty
shrinks coefficients of uninformative features to 0, while A2 distributes the weight of coefficients

across features. This process reduces the risk of the model capturing spurious patterns in the data
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and overfitting, thereby enhancing generalization of the model and out-of-sample performance
(Sajaddian et al., 2021).

As a hybrid technique, elastic net regression provides an optimal balance between lasso
regression and ridge regression. Elastic net can effectively handle data with correlated features,
an important issue plaguing employee attrition data. Whereas ridge regression would choose
only one of the correlated features arbitrarily, elastic net regression balances them by disturbing
the L1 and L2 coefficient across the features (Zou & Hastie, 2005). This built-in feature
balancing function makes elastic net a desirable algorithm for predicting employee attrition. In
addition, elastic net’s ability to handle groups of related variables, effectively creating factors, is
highly desirable in contexts where several items from the same scale are used (Putka et al.,
2018).

Hyperparameter Tuning

Hyperparameter tuning is the process of optimizing different settings in the algorithm to
improve predictive performance (Hastie et al., 2009). This iterative process allows ML models to
adapt flexibly to the data, balancing bias and variance for better generalization to unseen
samples. Unlike traditional regression approaches, which focus on parameter estimation for
theoretical validation, regularized regression seeks to find a model that best fits the data and
makes accurate predictions.

Regularized regression models undergo hyperparameter tuning to determine the optimal
lambda (L1 or L2) and mixture (alpha) values. The penalty parameter, lambda, controls the
strength of regularization by shrinking the regression coefficients toward zero. Larger values of
lambda increase the regularization effect, simplifying the model and reducing the risk of

overfitting, while smaller values allow for more complex models with less regularization. For
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lasso regression, the regularization is entirely L1-based, which can shrink some coefficients to
exactly zero, effectively performing feature selection (selecting useful features and removing
redundant or irrelevant features). In contrast, ridge regression uses L2 regularization, which
shrinks coefficients without driving any to zero. During hyperparameter tuning, different values
of lambda are tested to find the optimal level of regularization. The alpha parameter, used in
elastic net regression, determines the balance between L1 and L2 penalties, where an alpha of 0
corresponds to ridge regression and an alpha of 1 corresponds to lasso regression. Tuning alpha
allows elastic net models to achieve an optimized balance of L1 and L2 regularization for a
specific dataset.

Regularized regression has not received attention in the computer science attrition
literature and was not included in Akasheh et al.’s (2024) review. However, it has received
attention in two publications both of which used regularized regression methods to explain
variance in future job performance from psychometric tests. Putka et al. (2018) used modern ML
algorithms and OLS regression to explain variance in performance from biodata in a sample of
U.S. Army Reserve Trainees, comparing the ML algorithms to each other and to OLS regression.
They compared results (R?) at the item- and measure-level, finding that modern ML methods
consistently outperformed OLS regression. Similarly, Landers et al. (2023) also found that
modern ML algorithms outperformed OLS regression in explaining variance in job performance
from psychometric tests. Both papers note that the significant performance gains from
regularized regression were due to its ability to exclude irrelevant features.

A notable difference between the studies by Putka et al. (2018) and Landers et al. (2023)
and the present study is that they evaluated algorithmic classification performance in terms of

variance explained (R?) rather than predictive accuracy. Nonetheless, investigating regularized
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regression for predictive applications is worthwhile due to its relevance in attrition modeling,
where models often include numerous potential features.
Tree-Based Algorithms: Random Forest and Decision Trees

While regularized regression techniques provide solutions to mitigate bias in logistic
regression by reducing overfitting and improving model generalization, they do not address some
of the inherent structural limitations of the model, namely, assumptions of linearity and
independence of predictors. Logistic regression assumes a log-linear relationship between
predictors and the outcome, which may not hold in cases where interactions or non-linear
dependencies exist in the data. The assumption that features independently contribute to the log-
odds further constrains the model’s flexibility in capturing complex patterns. Decision trees and
other tree-based algorithms offer an alternative to the shortcomings of logistic regression.
Decision Trees: The Foundational Model

The decision tree, being a tree-based algorithm itself, is also the foundational model upon
which other tree-based models are built. Decision trees (Breiman, 1984) work by breaking
observations into smaller and smaller groups that are as homogenous as possible with respect to
the outcome, resulting in a set of probabilities representing their likelihood of belonging to a
particular group (Speer et al., 2019). Unlike logistic regression, decision trees do not rely on a
pre-specified form, making them well-suited for capturing non-linear relationships and
interactions without feature engineering (Breiman et al., 1984).

The most popular decision tree algorithm, classification and regression trees (CART;
Breiman, 1984), uses binary recursive partitioning to repeatedly split groups of observations with
similar standings on features. Decision trees are made up of nodes, branches, and leaves. The

strongest predictor is used as the root node (Kotsiantis, 2007), which is the first feature by which
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observations are split. Figure 2 visualizes a decision tree with tenure as the root node. The red
branches represent critical values predictive of outcome variable with a value of 0, attrition, and
green branches represent critical values of an outcome variable with a value of 1, retention. In
other words, the tree creates branches based on critical values of tenure (less than one year or
greater than one year, for example), but is not yet able to make a determination. From there, it
forms two interior nodes, “pay satisfaction” and “average hours worked per week”, and branches
based on values of these two features. Thus, the algorithm identifies points at which a feature
predicts an outcome and results in the purest nodes and splits the group into child nodes based on
these points. The decision tree will stop at a predetermined number of samples in each node,
maximum tree depth, or minimal improvement in node purity (Putka et al., 2018). The final
nodes are referred to as leaves, which represent the outcomes or predictions for the target
variable based on the paths taken through the tree from the root to leaf during training (Provost
& Fawcett, 2013).

At each split, the algorithm selects the feature and threshold that maximize a splitting
criterion, such as minimizing impurity. Common measures of impurity include the Gini index
used in classification tasks and mean squared error (MSE) for regression. For classification, the
impurity at a node is typically calculated using Gini Impurity:

Equation 3. Gini Impurity

K

Gini Impurity = 1 — Z p*,
k=1

Where pr is the proportion of observation in class k at the node. Thus, if the split results
in all observations in a node belonging to the same class, pr= 1 for one class and px = 0 for

another class, the sum of the squared proportions is 100%. Subtract this from 1 to get Gini
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impurity of 0. Splits are chosen to reduce impurity in the node as much as possible, resulting in
child nodes that are more homogenous than the parent (Breiman, 1984).

Notably, decision trees can handle different types of data, such as categorical and
continuous data, in the same analysis (Louppe, 2015), making them suitable for attrition
modeling. For example, categorical variables like team membership and continuous variables
like job satisfaction can be included in the same model. Another aspect of decision trees that
makes them valuable for attrition modeling is that they automatically implement feature selection
to some degree. They do so through the determination of feature importance, which indicates the
extent to which each feature contributes to node purity (Louppe, 2015). Thus, if a predictor does
not contribute to the splitting of nodes, it is left out of the tree. In addition, decision trees are
more robust to outliers compared to parametric tests like regression (Pargent et al., 2023).
Decision trees can model nonlinear relationships by splitting the same feature many times,
effectively addressing a key limitation of regression models (Putka et al., 2018). Additionally,
interactions are captured natively by decision trees. In the example provided in Figure 2, the first
split is based on the value of Tenure, and the second split is based on the value of Pay
Satisfaction. By producing these splits, the tree is modeling the interaction between Tenure and
Pay Satisfaction because the importance of Pay Satisfaction is conditional on the value of Tenure
being below a given threshold (Scottifer, 2017). This effectively answers the question addressed
in a moderation hypothesis: under what circumstance does Tenure influence Pay Satisfaction?
Additionally, the model answers the question of mediation. We can see through the structure of
the tree that Pay Satisfaction mediates the effect of Tenure on Job Satisfaction. These

relationships are observed empirically through the modeling process, rather than being
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hypothesized. Rather than fitting the data to a predefined structural model, the data create the
structural model.

For CART decision trees, three key hyperparameters are tuned: cost complexity (cp),
min_n, and tree depth (max_depth). The cost complexity parameter (cp) controls pruning by
penalizing splits that do not sufficiently reduce the overall error. Higher values of cp result in
simpler trees with fewer splits, reducing overfitting, while smaller values allow for more
complex trees. The min_n parameter specifies the minimum number of samples required in a
node for it to be split. Larger values of min_n prevent small, overly specific splits, promoting
model generalization. The tree depth (max_depth) parameter limits the maximum number of
levels in the tree. Shallow trees are less likely to overfit but may underfit the data, whereas
deeper trees allow more granular splits at the risk of capturing noise.

Decision trees are non-parametric models that do not assume specific data distributions or
predefined relationships between features and outcomes. They assume that predictors are related
to the target variable, an assumption which is evident in the calculation of metrics like Gini
impurity, which assess the quality of splits based on how well features separate classes. Decision
trees rely on the presence of predictive features. If a feature lacks discriminatory power, the
decision tree cannot use it to determine group membership, leading to poor classification
performance. Moreover, unlike some regression-based models, decision trees cannot extrapolate
to predict classes they have not encountered during training. For instance, a tree trained
exclusively on positive class instances will fail to recognize or accurately predict negative class
instances, as it lacks the necessary exposure to learn distinguishing patterns.

Figure 3. Example Decision Tree for Attrition Prediction
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Random Forest: An Ensemble of Trees

Random forests are an ensemble method which combines the predictions of multiple
decision trees. They use an ensemble technique called bagging, where multiple independent
classifiers (trees) are trained, and the predictions from the independent classifiers are combined
(Oshiro et al., 2012). The core principle of ensemble methods like random forests is that the
performance of a set of many weak classifiers is usually better than the performance of a single
classifier given the same training data (Sirikulviriya & Sinthupinyo, 2011). Thus, random forests
combine multiple trees, effectively canceling out inefficiencies or biases of each individual tree
to improve prediction and reduce the risk of overfitting (Berk, 2006).

First, trees are trained on random bootstrapped samples with replacement from the
dataset. Next, features are randomly sampled, such that individual trees are tasked with splitting
on a random subset of features. Finally, a vote is taken across trees to produce the final trained
model. Through this process, the randomness introduced into the process provides a trained
model that is more stable, more predictive, and more robust to overfitting compared to a single

tree (Louppe, 2015; Pargent et al., 2023).
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Random forests also inherently provide an out of sample error estimate during training.
Because each tree is trained on a bootstrap sample, the samples not included in training can act
as a test set for evaluating the performance of the model. This provides an unbiased estimate of
the model’s generalization error without requiring a separate validation set (Breiman, 1996;
Breiman, 2001).

Thus far, the most applied method for the study of employee attrition in the computer
science literature has been random forests (Breiman, 2001), which comprise 32% of papers
reviewed by Akasheh et al., (2024). There are several reasons why random forests are well-
suited for applied attrition modeling. Like decision trees, random forests also do not assume
linear relationships between features and outcomes (Louppe, 2015). This makes random forest
and tree-based methods appropriate for attrition modeling, given that relationships between
antecedents and outcomes may not always be linear. For example, there is often a curvilinear
relationship between job performance and attrition, such that very high and very low performers
are more likely to leave the organization (Sturman et al., 2012). This lack of assumptions makes
algorithms such as random forest powerful tools in predicting attrition, where there may be many
complex interrelations between variables with each other and with the outcome.

Through careful hyperparameter tuning, such as adjusting the number of trees, the
number of features to consider at each split, or the maximum depth of each tree, random forests
can be further optimized. Number of trees specifies the number of trees in the first. More trees
generally improve performance because they reduce variance by averaging predictors over more
independent trees. However, beyond a certain point, adding more trees results in diminishing
returns in accuracy and increases computational costs (Oshiro et al., 2012). The number of

features considered for splitting determines the number of features which are evaluated to
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determine a split. Smaller values reduce the correlation between trees, increasing diversity of the
forest, but too small a value may reduce predictive ability (Breiman, 2001). Finally, maximum
tree depth limits the “depth” of individual trees in the forest, or the number of times the tree can
produce child nodes. Deeper trees capture more details about the data, but are more likely to
overfit (Probst et al., 2019).

Extreme Gradient Boosting (XGBoost): An Ensemble Method with Regularization

XGBoost is a tree-based ensemble method that incorporates advanced regularization
techniques to improve predictive accuracy and control overfitting (Chen & Guestrin, 2016).
Unlike random forests, which use bagging to train trees independently, XGBoost employs a
boosting framework. In boosting, classifiers are trained iteratively, with each successive tree
focusing on correcting the errors made by the previous ones (Dong et al., 2020). Gradient
boosting, the foundation of XGBoost, works by “learning” from mistakes at each step, iteratively
adjusting weights assigned to observations to prioritize those that were misclassified (Bentéjac et
al., 2021). Initially, all observations are given equal weights. After each iteration, weights are
increased for incorrectly classified observations and decreased for those correctly classified,
ensuring the model focuses on the hardest-to-predict cases (Hastie et al., 2009).

The iterative nature of gradient boosting allows the model to progressively improve
performance until it reaches a predetermined number of iterations or when further improvements
plateau (Gonzalez et al., 2020). Building on traditional gradient boosted machines, XGBoost
incorporates both L1 (lasso) and L2 (ridge) regularization in its objective function, penalizing
overly complex models and reducing the risk of overfitting (Chen & Guestrin, 2016).

XGBoost relies on gradient descent as the optimization method to minimize a specific

loss function, such as mean squared error (MSE) or log loss, at each iteration (Bentéjac et al.,
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2021). Gradient descent is a first-order optimization algorithm that iteratively updates model
parameters in the direction of the negative gradient of the loss function with respect to those
parameters. This ensures that the model progressively moves toward minimizing prediction
errors (Hastie et al., 2009).

The boosting process begins with an initial prediction (e.g., the mean of the target
variable for regression or the log odds for classification). For each observation, the gradient of
the loss function is computed, representing the error for the current prediction. A new decision
tree is then trained to predict these gradients, effectively modeling the adjustments needed to
minimize the loss. The model’s predictions are updated iteratively by adding a scaled version of
the tree’s output to the current predictions. The scaling factor, known as the learning rate (eta),
dampens the updates, preventing large jumps that could lead to overfitting (Hastie et al., 2009).
By focusing on the largest errors at each step, gradient descent ensures that the ensemble
becomes progressively stronger, combining the outputs of all trees to create a robust final model.

XGBoost is tuned with several hyperparameters: trees, tree depth (max_depth), learning
rate (eta), loss reduction (gamma), sample proportion (subsample), and minimum n
(min_child weight). The trees parameter determines the number of boosting rounds (i.e., the
number of trees in the ensemble). As with random forest, more trees generally improve
performance but increase computational cost and risk of overfitting. The tree depth (max_depth)
limits the maximum depth of each tree; shallow trees control overfitting, while deeper trees
capture more complex patterns in the data. The learning rate (eta) scales the contribution of each
tree to the final prediction, with smaller values requiring more boosting rounds but often
improving generalization. The loss reduction (gamma) parameter specifies the minimum

reduction in loss required to make a split, effectively regularizing the model by preventing splits
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that do not significantly reduce error. The sample proportion (subsample) determines the fraction
of data randomly sampled for each boosting iteration, promoting model diversity and reducing
overfitting. Finally, the min_child weight parameter specifies the minimum sum of weights in a
leaf node; higher values prevent small, unreliable splits, further regularizing the model. Tuning
these parameters allows XGBoost to balance flexibility, computational efficiency, and predictive
performance.

XGBoost has been used for applied attrition modeling in the computer sciences. Akasheh
et al. (2024) conclude from their systematic review of the attrition modeling literature that
random forests and XGBoost (a tree-based boosting algorithm) have received the most research
attention (constituting 34% and 11% of papers, respectively), and may demonstrate the best
classification performance compared to the other methods.

Ensemble and Hybrid Methods Compared to Base Methods

The methods discussed in this section were chosen because they facilitate comparisons of
different techniques, namely, tree-based methods and regularized regression methods. Among
them, XGBoost combines elements of both: it is both tree-based and incorporates regularization.
This method is also more complex in that it has more hyperparameters to tune. While tree-based
methods including decision trees, random forests, and XGBoost have been widely used for
applied attrition modeling, regularized regression methods (lasso, ridge, and elastic net) have not
received research attention (Akasheh et al., 2024). By including regularization methods, tree-
based methods, and a hybrid method (XGBoost), comparisons can be made between these
methodologies based on their shared and unshared techniques.

Ensemble and hybrid methods like elastic net, random forests, and XGBoost were built to

mitigate high levels of bias and overfitting present in their base models. Elastic net builds upon
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ridge regression and lasso regression. It balances the L1 and L2 regularization parameters, and
has the added capability of grouping related features. Random forests enhance the decision tree
methodology by introducing randomness in training and by aggregating the predictions of
multiple trees, thereby producing more stable estimates that are less prone to overfitting.
XGBoost, another ensemble method which utilizes both trees and regularized regression,
iteratively corrects errors of previous trees through gradient boosting, further refined with
regularization to curb overfitting. These advancements constitute an important evolution from a
single tree to a more robust ensemble method. In light of these advancements, I expect hybrid
and ensemble models to outperform their base models.
Hypothesis 1: The classification performance of elastic net regression on out-of-sample
data will surpass that of lasso regression and ridge regression.
Hypothesis 2: The classification performance of random forests on out-of-sample attrition data
will surpass that of decision trees.

Hypothesis 3: The classification performance of XGBoost on out-of-sample attrition data will
surpass that of decision trees, random forest, lasso regression, ridge regression, and elastic net
regression.

Additionally, the ML methods presented in this chapter have many advantages over
logistic regression. Models with high bias tend to underfit the data, missing important patterns,
while those with high variance overfit, capturing noise and reducing generalizability.
Regularization techniques, such as ridge and lasso regression, mitigate these issues by penalizing
model complexity.

Modern ML algorithms, such as random forests and XGBoost, extend beyond the

capabilities of logistic regression by incorporating advanced techniques to handle nonlinearity,
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multicollinearity, and complex interactions among predictors. These algorithms also integrate
hyperparameter tuning, an iterative process that optimizes model settings to improve
performance across diverse datasets. Given these advancements, I expect ML algorithms to
outperform logistic regression:
Hypothesis 4: The classification performance of the ML algorithms (lasso, ridge, elastic net
regression; decision trees, random forest, and XGBoost) on out-of-sample attrition data will
surpass that of logistic regression.

If supported, these findings would suggest that researchers and practitioners could benefit
from the use of more complex and laborious methodologies over simpler approaches.
Choice of Predictors

The previous section explored the ways in which explanatory and predictive research
differ in their statistical approach. Beyond methodology, these approaches also differ in their
choice and use of data. Turnover research has historically used validated self-report surveys to
measure theorized predictors (Bolt et al., 2022, Hom et al., 2017). As an explanatory endeavor,
turnover research prioritizes with theoretical fidelity, using validated surveys to reduce
unnecessary noise and sources of error, effectively isolating the variables of interest. Structural
equation modeling methods, which have long been favored, may have further constrained the
types of data used by necessitating clean and well-structured input data (e.g., psychometrically
validated measures). In contrast, ML approaches offer greater flexibility, handling diverse data
types, including categorical, ordinal, and continuous variables, within a single analysis.

In their review of the turnover literature, Bolt et al. (2022) found that 77% of studies used
survey data, while only 9% incorporated organizational records. Although validated

psychometric scales from self-report surveys offer valuable insights, their use in applied contexts
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is often limited by time and resource constraints (Speer et al., 2019). Moreover, explanatory
models’ reliance on such measures has historically restricted progress in identifying broader
predictors of voluntary attrition. Despite decades of research, explanatory studies have struggled
to account for more than 10-15% of the variance in voluntary turnover (Lee & Mitchell, 1994;
Holton et al., 2008; Russel, 2013).

Unlike explanatory research, which prioritizes theoretical fidelity, predictive research
emphasizes practicality and empirical predictive power. Predictor variables are chosen not only
for their theoretical relevance but also for their data availability, completeness, and quality
(Shmueli, 2010). This approach necessitates the use of diverse datasets that combine self-
reported affective factors, such as job satisfaction, with objective organizational data, including
absences, tenure, pay, and performance metrics. These performance metrics may be collected
passively through software or actively via structured performance evaluations. The integration of
these data types has the potential to enhance the predictive power of models, particularly when
leveraging ML methods.

By integrating self-reported data with archival HRIS records, predictive research can
address the limitations of traditional approaches. Self-report measures capture subjective aspects
of employee attitudes, such as satisfaction and engagement, while archival data provide
consistent, objective insights into behaviors and organizational factors. Rubenstein et al. (2018)
highlighted that variables such as tenure, rewards, and job alternatives significantly correlate
with turnover, underscoring the importance of integrating multiple data sources for more
comprehensive models. However, the unique contributions of these data sources and their
combined predictive potential remain understudied, particularly within machine learning

contexts. To explore this further, the following research question is posed:
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Research Question 1: What data type (HRIS, performance, or self-report) is most predictive of

attrition?

Sample Size

In explanatory research, sample sizes are typically optimized to achieve sufficient
statistical power, ensuring the detection of meaningful relationships between variables.
Researchers calculate the required number of observations (n) based on the expected effect size,
desired significance level (o), and statistical power (1—P), often targeting a power of 0.80 or
higher. This approach ensures that findings are robust and reproducible, with minimal risk of
Type 11 errors (failing to detect a true effect). Predictive research, including applied attrition
modeling, operates under different constraints, as sample sizes are often determined by the size
of the organization or the available dataset. This limitation can lead to smaller sample sizes,
especially in smaller organizations, which may challenge the generalizability and performance of
predictive models. To explore the robustness of various modeling methods, this study compares
their performance at two distinct sample sizes, simulating conditions that reflect both small and
large organizations. This comparison will aid in selecting methods that perform consistently
across different sample size contexts, offering insights into the scalability of predictive
approaches in applied settings.

Conventional wisdom holds that, in general, larger samples are better. Larger samples get
us closer to the true population, which should produce more generalizable estimates. There are
two aspects of sample size that are important: n, the number of observations, and &, the number
of features. In a study comparing item- and scale-wise prediction of job performance, Putka et al.
(2018) found that ML algorithms outperform OLS regression most markedly at smaller n:k

ratios. In sample sizes between 50-100, the performance gap between ML and OLS regression
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was the greatest, gradually decreasing up until 1500. Specifically, elastic net outperformed
stepwise regression and lasso regression, and random forest outperformed decision trees
(CART). Putka et al. (2018) interprets this finding to indicate that ensemble ML methods are
better equipped to handle the bias-variance tradeoff in smaller samples compared to their base
models and compared to OLS regression to an even greater extent. Although ML methods
outperformed OLS regression at small sample sizes, ML methods still performed best at larger
sample sizes.

In a similar study evaluating the use of psychometrically validated scales to predict job
performance, Landers et al. (2023) also found that ML algorithms outperformed OLS when the
ratio of n:k was low. Similar to findings from Putka et al. (2018), Landers et al. (2023) still found
that the overall R? for elastic net regression, random forest, and linear regression was highest
when the n:k ratio or overall sample size was high.

Like Putka et al. (2018) and Landers et al. (2023), Zou and Hastie (2003) found that
elastic net outperformed lasso regression in a sample of genetics data with a low n:k ratio. They
conclude that the ability of elastic net to retain correlated features results in superior performance
with a smaller n, whereas lasso regression would retain only one of the correlated features,
missing out on potentially meaningful relationships between the dropped features and the
outcome.

In summary, while ML algorithms may have some advantage over traditional methods in
samples with few observations on each feature, they still perform better with more observations.
However, they may be more useful than traditional methods in small sample sizes. I propose the
following hypothesis:

Hypothesis 5: Random Forest, Elastic Net, and XGBoost will outperform their base



models most markedly at small sample sizes.
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CHAPTER 4

METHODS

Sample

The current study sought to test and compare ML approaches to applied attrition
modeling with a sample of archival contact center employee data. Data spanning from January to
December of 2023 was obtained from an anonymous organization specializing in customer
service and sales. Only employees who successfully completed the selection and training process
and initiated paid work with the organization were included in the analysis. All employees were
at the same level in the organization and belonged to one of 35 different teams. Demographic
data is not available for this sample, but all employees were all US citizens who were 18 years
and older.

Defining Attrition

The focus of this study is voluntary attrition, which occurs when employees choose to
leave an organization for reasons such as job dissatisfaction, career change, or better
opportunities elsewhere. Voluntary attrition is distinct from other forms of attrition like
retirement and involuntary attrition (Feldman, 1994). In the present study, only cases of
voluntary attrition were classified as attrition events. Counting employees who leave under
circumstances other than voluntary attrition as positive cases could introduce unnecessary noise
into the analysis. Precursors to different types of attrition are distinct both theoretically and
empirically, and should be modeled separately (Adams & Beehr, 1998; Speer et al., 2019).

In each dataset, individuals were assigned one of three values under the “attrition”
variable: 0, 1, or NA. A value of “0” indicated no attrition or involuntary attrition for that month.

A value of “1” indicated voluntary attrition for that month. NA values indicate that an individual
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was not present for that month. These NA observations were removed prior to running the

models.

Attrition was tracked on a monthly basis. In this organization, employees often leave

without providing prior notice, making it challenging to identify their exact departure day or

week in real time. For example, an employee might fail to show up for their shifts during the last

few days of month 1. If the employee returns to work in month 2, they are not considered to have

voluntarily left in month 1. However, if they do not return in month 2, their departure is recorded

as having occurred in month 1. Consequently, data from the past month (month 1) is used to

predict attrition in the following month (month 3) while we are still in the present month (month

2). Observations are only counted as having turned over in month 3 if they were present in month

2.

Forecasting attrition at the monthly level is more practical for this organization compared

to daily, weekly, or quarterly forecasts. A one-month interval provides sufficient time for the

organization to respond proactively, such as initiating recruitment efforts to address anticipated

workforce gaps.

Table 3. Organizational Data

Performance Data

Feature Name

Description

Performance*

Attendance**
Number of Phone Calls*

Other-rated performance score given weekly. Percent of points
earned out of available points.

Number of scheduled hours that were worked.
Number of phone calls

Self-Report Data

Feature Name

Description

Client Satisfaction**
Pay Satisfaction**

Recommendation Intentions**

Job Resources — 1**

Overall satisfaction with the client being served.
Satisfaction with rate of compensation.

How likely the employee would be to recommend the company to
a friend or colleague.
Perceived completeness of job resources.



Job Resources — 2**
Job Resources — 3**

Schedule Availability Satisfaction**

Scheduling Satisfaction Overall**
Manager Satisfaction — Overall**
Manager Satisfaction — Communications®*
Manager Satisfaction — Helpfulness**
Manager Satisfaction — Responsiveness™*
Manager Satisfaction — Respect™*
Manager Satisfaction — Professionalism™*

Manager Satisfaction — Feedback**

Manager Satisfaction — Knowledge**
Manager Satisfaction — Kindness**

50

Perceived accuracy of job resources.
Perceived ease of use of job resources.

Satisfaction with the number of hours available to schedule each
week.
Overall satisfaction with the scheduling process.

Overall satisfaction with the management team.

Satisfaction with communications from the management team.
Satisfaction with the helpfulness of the management team.
Satisfaction with the responsiveness of the management team.
Satisfaction with the respectfulness of the management team.
Satisfaction with the professionalism of the management team.

Satisfaction with the receptiveness to feedback of the management
team.

Satisfaction with the knowledge of the management team.
Satisfaction with the kindness of the management team.

HRIS Data

Feature Name

Description

Invoice Total*2
Invoice Other*
Total Hours*

Total amount earned in one week.
Other hours the employee was paid for (training, misc. events)
Total hours worked in one week.

Note. Features with a single asterisk* were used in the final dataset. Features with a double asterisk** were used as a rolling
average feature in the final dataset. Features with a delta® were included as a % change feature. Note that features are all
individual items, not scale composites.
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Table 4. Engineered Features for Attrition Modeling

Engineered Features

Feature Name Description Use
Number of Satisfaction Count of the number of satisfaction
Surveys Taken* surveys taken during employees' tenure.  Counted monthly.
Tenure* in days (M = 260.24, Number of days since the first day of
SD = 284.02) work. Counted monthly.
Number of Weeks Skipped* Number of weeks gone without working
(M = 0.64, SD = 284.24) in a month. Counted monthly.

Calculated for
% change from last month to the present Performance and HRIS

MoM % Change month. variables.
Calculated for
Performance, HRIS,

Rolling average over all months, and Self-Report
Rolling Average including the present month. variables.
Whether or not the employee left the
Attrition — Outcome*™ company voluntarily. Outcome.

Features and Feature Engineering

Three types of predictor variables (features) are included in this study: performance,
human resources information system (HRIS), and self-report features. Performance and HRIS
features were captured passively by the software used by the organization and from employee
evaluations performed by managers, and self-report data came from satisfaction surveys which
were distributed monthly. Survey responses were recorded on a Likert-type 1-5 scale. See Table
2 for a description of these features.

Feature Engineering. Feature engineering is a method used to either generate new data
from existing data or reformat data in a way that the model can better process (Vasquez et al.,
2024). Feature engineering is particularly important when working with time-series data with

ML. Most ML algorithms cannot be implemented with true time-series data, where all
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observations for all months are included in a single dataset. Instead, information must be
transformed into a feature which represents changes that occur over time (Verdonck et al., 2024).

Engineered features include the number of weeks gone without scheduling in the current
month, rolling averages of self-reported and performance variables, cumulative counts of self-
reported surveys taken, month-over-month percentage changes in performance, and the attrition
outcome. See Table 3 for a description of all engineered features. Number of weeks gone without
scheduling was created based on organizational feedback. Individuals at the organization noted
that this metric was predictive of attrition in years past. Percent change, rolling averages, and
cumulative counts are discussed below.

Percent Change. The percentage change in performance variables was determined using

the following formula:

Current Month — Previous Month

Percent Change = X 100

Previous Month

Rolling Averages. As is common in organizational research, data missingness was a
concern due to low survey response rates. To minimize the amount of missing data for each
observation, a rolling average was generated for each self-report survey item. Despite the
creation of rolling averages, the proportion of missing self-report data across months January
through October was still high, averaging 100%, 83%, 65%, 58%, 56%, 53%, 47%, 42%, 46%,
47%, respectively. Overall response rates were low, and high levels of attrition followed by
increased mid-year hiring efforts resulted in a dip in valid response counts in July.

In addition to creating rolling averages, I also created a feature representing the count of
the number of employee satisfaction surveys taken. This feature represents the information
(survey frequency) which was lost by averaging scores monthly, since some employees opted to

respond more than once per month. Secondly, this feature was instrumental in determining
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whether the data were missing at random. Notably, a significant correlation was observed
between the number of surveys completed and employee attrition over time (» = -.15, p <.05),
such that employees who completed fewer surveys were more likely to leave. Consistent with
Ding and Simonoff's (2010) recommendations, I included this indicator in each model to ensure
that the relationship between missingness and the outcome variable, attrition, is adequately
captured by the model.

Feature Selection

Feature selection is the process of identifying and removing irrelevant or redundant
features from the dataset to improve model performance, reduce computational complexity, and
enhance interpretability (Kotsiantis et al., 2006). Some machine learning methods, such as
decision trees, random forests, XGBoost, lasso regression, and elastic net regression, perform
feature selection inherently as part of their algorithmic structure. These methods are often
referred to as "embedded feature selection" because the selection occurs during model training.
However, when comparing models across multiple datasets or time periods, relying solely on
embedded methods can lead to inconsistent feature selection, as each algorithm would select
different features depending on the specific training data.

To ensure consistent feature selection across months and facilitate clear comparisons, [
applied a filter method to remove redundant or weakly correlated features from all datasets.
Filter methods are advantageous for preprocessing as they operate independently of specific
algorithms, making them computationally efficient and more robust to overfitting compared to
wrapper or embedded methods (Saeys et al., 2007; Chandrashekar & Sahin, 2014). A

correlation-based filter method was particularly suited for this study, as it allowed the consistent
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removal of irrelevant and redundant features across months, enabling meaningful comparisons of
predictive performance.

The filter method was applied to a random subset of 1,000 observations from April, as
the proportion of missing data stabilized at approximately 50% after this month (83% missing in
February, 65% in March, and 58% in April). Using a single dataset (April) for feature selection
ensured uniformity in the features selected across months, minimizing potential biases
introduced by temporal variability in the data. Within the April subset, missing data were
addressed using k-Nearest Neighbors (KNN) imputation, testing k values from 3 to 15. The
Kolmogorov-Smirnov test showed no significant differences between the original and imputed
datasets (p > 0.05), so imputation proceeded with k=5, balancing imputation accuracy and
computational efficiency.

Once missing data were imputed, correlation matrices were generated to identify features
that were either redundant (highly correlated with other features in the dataset, » > .80) or
irrelevant (weakly or not significantly correlated with the outcome variable at o = .05 level).
Redundant features were removed to prevent multicollinearity, which can inflate variance and
lead to unstable models, particularly in algorithms sensitive to correlated inputs (Dormann et al.,
2013). Irrelevant features were removed to improve model generalization and reduce the
dimensionality of the dataset, aligning with research that demonstrates the negative impact of
irrelevant features on ML model performance (Guyon & Elisseeft, 2003). This process ensures
that the features retained are both relevant to the prediction task and non-redundant, enabling
consistent feature selection across datasets while preserving meaningful variability.

Correlation results for the month of April are presented in Appendix A (rolling averages

of self-reported features), Appendix B (HRIS features), Appendix C (performance features), and
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Appendix D (engineered features). For self-reported features, only one item, prior experience,
was removed due to its low correlation with the outcome. Among the HRIS features, several
redundant variables were eliminated. Specifically, Invoiced Rate was removed because it was a
linear combination of Invoiced Other and Invoiced Total. Similarly, the rolling average (RA) of
Invoiced Total was removed due to its high correlation (» = 0.92) with Invoiced Total. Total
Hours was retained over Total Hours RA and Total Hours percent change (%A), as Total Hours
%A correlated perfectly (» = 1.0) with Invoiced Total %A, and Total Hours RA had a high
correlation (» = 0.90) with Invoiced Total RA while being less proximal to the outcome variable.
Regarding performance features, “# of Phone Calls RA” was removed because it exhibited a low
correlation with the outcome and a high correlation with “# of Phone Calls.” Similarly, “# of
Phone Calls %A” was removed for its low correlation with the outcome. Among performance
metrics, “Performance” was retained, while “Performance RA” and “Performance %A” were
removed due to their high correlations with “Performance” and their low correlations with the
outcome. Lastly, “Attendance RA” was removed because of its strong correlation with
“Attendance.” All four engineered features (tenure, number of satisfaction surveys taken, weeks
skipped, and attrition) were retained.

This research-oriented methodology differs from the approach typically taken in practice,
where feature selection would be performed on each dataset. By employing this systematic
filtering approach, I ensured that all datasets used in model training and evaluation shared the
same feature set, facilitating fair comparisons of predictive performance across months.

Dummy-Coded Features. 1 transformed two categorical features, employee department
and direct supervisor, into dummy variables, where a series of 0’s and 1’s across columns

indicate the level of the categorical feature (i.e., managerl = 1, 0, 0, 0; manager2 =0, 1, 0, 0;
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etc.). Ultimately, I excluded these columns from analysis because observations were too sparse
for the model to run. Specifically, there were several instances of zero variance (all values of 0)
within folds, which prevented the models from running.

Procedure

A total of seven methods were tested and compared: logistic regression, decision trees
using the “classification and regression trees” (CART) algorithm (Breiman, 1984), least absolute
shrinkage and selection operator logistic regression (lasso/LARS; Tibshirani, 1996), ridge
logistic regression (Hoerl & Kennard, 1970), elastic net logistic regression (LARS-EN; Zou &
Hastie, 2005), random forest (Breiman, 2001), and XGBoost (Chen & Guestrin, 2016). I initially
sought to compare CART to C5.0, another decision tree algorithm, but was unable to generate a
model with C5.0 which effectively produced splits.

I used the R package tidymodels (Kuhn & Wickham, 2020) to specify the models and
model parameters. The tidymodels package, which provides workflows for deploying various
ML algorithms, integrates with several other R packages to implement the specified algorithms.
Specifically, I used packages “glmnet” for elastic net regression, lasso regression, ridge
regression, and logistic regression (Friedman & Hastie, 2010), “ranger” for random forest
(Ziegler, 2017), “rpart” for CART (Therneau & Atkinson, 2023), and “xgboost” for XGBoost
(Chen et al. 2024) within the tidymodels framework. I chose to use the tidymodels package
because it allows for the development of standardized workflows for data preprocessing and
cross-validation, which can be applied across various algorithms and datasets.

I used 5-fold nested cross-validation to train and evaluate models. This process is
visualized in Figure 4. First, data were partitioned into equally sized groups, called folds, to form

the “outer loop”. In the first round, folds B, C, D, and E are split into 5 equally sized folds to
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form the inner loop. The inner loop is responsible for model training and hyperparameter
selection. In this loop, each fold takes a turn as the validation set, while the remaining folds are
used for training. This process is repeated 5 times. After completing inner loop cross-validation,
the best-performing classifier (based on inner validation results) is selected and then evaluated
on the held-out outer fold A, which serves as the test set for this round. This process is repeated 5
times, with each outer fold taking its turn as the test set, while the remaining outer folds are used
to form the inner loop for training and validation. This process provides results for 5 subsets of
data. Final model parameters, performance metrics, and variable importance scores or variable
coefficients were recorded for each cross-validation round.

Prior to running models, I used the set.seed() function to generate a starting point for R’s
random number generator, which allows the random numbers to follow a sequence. This
function allows for results to be reproduced and ensures that folds are generated the same way

across models (Lantz, 2019). I chose the seed value 123.
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Figure 4. 5-fold Nested Cross Validation Process
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Inner Loop
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Data Imputation

Data Imputation. Missing data is inevitable in organizational datasets, and most ML
methods cannot handle missing values. Several approaches — including mean and median
imputation, listwise deletion, and k-nearest neighbor (KNN) imputation — have been utilized in
the ML literature to address the issue of missing data. ANN imputation estimates missing values
based on the average of observations with similar response patterns (Peterson, 2009). I selected
this method because it has been found to produce more reasonable imputed values compared to
listwise deletion or mean and median imputation (Batista & Monard, 2003; Jadhav et al., 2019).

To determine the optimal £, I performed an exhaustive test of all values ranging from 3-
15 to find the value which minimized the difference in variable distribution between the original

and imputed datasets. A Kolmogorov-Smirnov test was performed to estimate statistical
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significance between variable distributions before and after imputation. The average p-value for
differences between original and imputed datasets was 1 across all conditions, suggesting that the
kNN method retained the original variable distributions. Ultimately, I proceeded with the
commonly used value, k=5 (Jadhav et al., 2019).

Imputation was performed within-folds, with the outcome variable removed prior to
imputation to prevent data leakage (Sajjadian et al., 2021). Additionally, features were centered
and scaled within folds. Centering aids in model interpretation, and scaling ensures that features
on larger scales (e.g., 1-100) do not dominate those on smaller scales (e.g., 1-5) (Vasquez et al.,
2024).

Sample Size Conditions

Two sample size conditions, n = 1000 and n = 500, were tested to assess the impact of
sample size on model performance. The larger sample size condition, » = 1000, was selected
because it represents the maximum number of observations available in the monthly datasets.
Note that three months were shy of 1000 observations. Datasets for August, September, and
October had 945, 830, and 848 observations. The large sample size condition constitutes the
study’s best-case scenario, as larger samples generally improve the stability and reliability of ML
models by providing more representative data distributions (Kuhn & Johnson, 2013). The
smaller sample size condition, n = 500, was chosen for its alignment with the constraints of the
5-fold nested cross-validation process. In this condition, each fold includes a minimum of 80
observations for inner loop validation. This ensures that the cross-validation process is
adequately powered while avoiding excessively small validations sets that could lead to unstable

performance metrics (Varma & Simon, 2006). Testing this smaller sample size allows for the
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evaluation of model performance in smaller organizations. Samples for the small dataset
condition were taken as a random sample from the large sample size condition.
Addressing Class Imbalance

Monthly attrition rates can be found in Table 5. Across datasets, the average attrition rate
was 11%, indicating a high degree of class imbalance. Most attrition datasets face class
imbalance, where the number of positive cases in the outcome (attrition) is disproportionately
low compared to the number of negative cases (retention). In situations of class imbalance, the
algorithm often exhibits a majority class bias, wherein it underpredicts the occurrence of the
minority class to maintain overall high classification performance (Kotsiantis et al., 2006). This
bias exists because the algorithm’s overall performance suffers less from misclassifying minority
cases, which constitute a smaller proportion of total observations (Chawla et al., 2004). As a
result of this bias, class imbalance can harm prediction, particularly in small datasets and in
datasets where the relationship between features and the outcome is complex (Japkowicz &
Stephen, 2002). Across base and ensemble algorithms, all algorithms perform better with class
balanced data (Garcia et al., 2022). Thus, it is best practice to use a method of class-balancing,
which evens out the number of positive and negative observations.

I considered three class-balancing techniques: over-sampling, under-sampling, and the
Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al., 2002; Provost, 2000;
Elkan, 2001). Over-sampling involves randomly re-sampling the underrepresented class, while
under-sampling reduces the number of observations in the overrepresented class. Both methods
come with notable drawbacks. Over-sampling retains the dataset’s original size but can lead to
overfitting due to the duplication of observations in the training data (Garcia et al., 2022). On the

other hand, under-sampling reduces the dataset’s overall size, which risks discarding potentially
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important cases that may compromise the model’s performance (Kotsiantis et al., 2006; Garcia et
al., 2022).

SMOTE blends aspects of over-sampling and under-sampling, and is widely regarded as
an effective method for addressing class imbalance (Kotsiantis et al., 2006). Unlike random over-
sampling, which duplicates minority class instances, SMOTE generates synthetic samples by
interpolating between existing minority class observations. Specifically, for a given minority
class instance, synthetic samples are generated based on the values of other similar instances
(Chawla et al., 2002). This process preserves the feature space's structure and mitigates
overfitting associated with other oversampling methods, such as random oversampling or
random under sampling (Batista et al., 2004). Given its ability to balance the dataset while
preserving its underlying characteristics, I ultimately decided to use SMOTE for this analysis.

To maintain the integrity of the dataset during cross-validation, SMOTE was applied
separately to each fold of the inner loop during cross-validation, ensuring that synthetic samples
were generated only within the training folds and not carried over into the validation fold. Note
that class imbalance is only used on training folds. The goal of model training is to produce a
model that can make predictions on data to predict real outcomes, and therefore the test or
validation set should remain untouched.

Table 5. Monthly Voluntary Attrition Rates

Month Sample Size Attrition Rate
April 500 9.6%
April 1000 9.6%
May 500 12.0%
May 1000 10.5%
June 500 12.4%
June 1000 12.7%
July 500 12.4%

July 1000 12.2%
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August 500 7.4%
August 1000 9.6%
September 500 11.8%
September 1000 11.6%
October 500 12.8%
October 1000 11.4%

Note. Attrition is determined by whether the employee returned the following month.

Hyperparameter Tuning

Grid search with a specified search space was used in the inner loops to select the set of
hyperparameters which maximized algorithmic performance. Grid search is a systematic method
for hyperparameter optimization that tests different parameter combinations within a provided
search space to identify the set of parameters that yields the best performance for a given ML
model (Liashchynskyi & Liashchynskyi, 2019). Grid search was performed automatically and
individually for each algorithm.

Note that each additional value of hyperparameters tested increases the number of models
that are fit multiplicatively. For example, a single inner loop fold with three values of three
hyperparameters to test will produce 3 x 3 x 3 fits. The best hyperparameters will be chosen
from this fold, and the process will repeat four more times, producing 135 calculations per outer
fold and 675 total calculations for the classifier. Not only is this process computationally
expensive and time consuming; testing too many possible hyperparameter values can result in
overfitted models. For this reason, algorithms with more hyperparameters to test (i.e., XGBoost)
were restricted to fewer values per hyperparameter. The number of distinct values tested for each
hyperparameters were as follows: 2 for XGBoost, 2 for CART, 5 for random forest and elastic
net, and 10 for ridge and lasso regression. The tuned hyperparameters, as well as the

hyperparameter values chosen for use in the outer loop, can be found in Appendix E.
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Classification performance of the chosen algorithms and logistic regression is evaluated

by the predictions made on the validation fold during 5-fold nested cross-validation.

Classification algorithms produce probabilities of group membership for each observation in the

dataset. With a 0 or 1 outcome, where an outcome of 1 is considered positive, a probability

assigned to an observation that is greater than 50% is labeled positive, and probabilities less than

50% are labeled negative. The confusion matrix (see Table 6) is a table which contains the

number of false positive, false negative, true positive, and true negative classifications made by

the classifier. The foundational metrics typically used to evaluate classifiers are sensitivity/recall

(Equation 1), specificity (Equation 2), accuracy (Equation 3), and precision (Equation 4).

Table 6. Confusion Matrix

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

Equation 4. Sensitivity/Recall (True Positive Rate)

Equation 5. Specificity

Equation 6. Accuracy

Equation 7. Precision

S itivity = e
ensitivity = TP + FN
Specificity = TN
pecificity = TN * FP
TP + TN
Accuracy =

TP + TN + FP + FN
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TP

p . . -
recision TP + FP

Performance Metric Evaluation with Class Imbalance

Even when class imbalance is addressed during model training, class imbalance in the
test data impacts the usefulness of certain evaluation metrics, especially accuracy. Consider a
sample of n=100 with a 20% attrition rate and a trained classifier which predicts that only one of
the 100 cases are positive and 99 of the cases are negative. Although the model’s performance on

the positive class appears poor, it would still achieve a relatively high accuracy score of 80%:

TP + TN _ 1+80
TP+TN+FP+FN 1+80+0+19

=80%

Accuracy =

Accuracy is a poor metric to use in cases of class imbalance because it overemphasizes
performance on the majority class. Similarly, specificity and precision are not useful in this

example. In contrast, recall strongly penalizes the model for missing true positive cases.

TP 1

Recall = = =5%
TP + FN 1+ 19
Specificity = TNTiVFP = 8083 5 100%
Precision = LN S 100%

TP+FP 1+0

For this reason, I do not evaluate classifiers based on accuracy, specificity, or precision
alone. Instead, I use balanced metrics — balanced accuracy (BA), BA-Recall, and BA-Specificity
— along with recall and AUC. Balanced accuracy (BA) is the average of recall and specificity and
gives equal importance to correctly classifying both positive and negative classes.

Equation 8. Balanced Accuracy

Recall + Specificity
2

Balanced Accuracy =

Following from the previous example, the classifiers” BA would be calculated as follows:
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Recall + Specificity 5 + 100

— 0
> > 52.5%

Balanced Accuracy =

Balanced accuracy represents the degree to which the model effectively balances recall
and specificity, which are inversely correlated. A model with higher recall will also have a
higher false positive rate, because more positive instances must be predicted overall in order for
true positives to increase. On the other hand, a model with higher specificity will have a lower
false positive rate because more negative predictions will need to be made to have a high true
negative rate. Similarly, BA-Recall weights recall at 75% and specificity at 25%, and BA-
Specificity weights specificity at 75% and recall at 25%. Some organizations may be risk-averse
in one direction — perhaps an organization has a low budget and cannot afford to over hire. Such
an organization would prefer the model with a higher BA-Specificity score over a model with a
high BA or BA-Recall score. Balanced accuracy metrics, and weighted balanced accuracy
metrics, provide an index of performance that balances risk in the desired direction, allowing the
user to determine which approach fits best with their organization’s needs (Shewach et al.,
2024).

Lastly, I evaluate classifier performance using area under the curve (AUC). Rather than
evaluating performance based on the confusion matrix, AUC evaluates the reflects the ability of
a classifier to distinguish between positive and negative classes across a range of thresholds. It is
calculated using the predicted probabilities of class membership, rather than directly relying on
the confusion matrix. This distinction is important because AUC evaluates a classifier’s ability to
rank observations correctly—distinguishing between positive and negative classes—independent
of any specific classification threshold. The predicted probabilities are used to plot the Receiver

Operating Characteristic (ROC) curve, which visualizes the trade-off between the true positive
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rate (sensitivity) and the false positive rate at various thresholds. By considering all possible
thresholds, AUC provides a single, summary measure of a model's overall discriminatory power.

In contrast, metrics like accuracy, sensitivity, and specificity are threshold-dependent and
tied directly to the confusion matrix, which represents outcomes based on a fixed decision
threshold (e.g., 50%). Because AUC uses probabilities rather than hard classifications, it is
threshold agnostic. A classifier with higher AUC scores is better at ranking positive instances
higher than negative ones, regardless of where the threshold is set. A low AUC score suggests
poor ranking performance, even if threshold-dependent metrics like accuracy appear high. This
feature makes AUC useful when evaluating models under imbalanced data conditions, where
reliance on confusion-matrix-based metrics may overstate a model's true performance.
Evaluating Feature Importance

Regression-based methods (logistic, lasso, ridge, and elastic net regression) produce beta
coefficients for each feature. The magnitude of these coefficients represents the importance of
each feature, with larger absolute values indicating that the feature was useful in generating
predictions (Saarela & Jauhiainen, 2021). This is especially true in regularized regression
models, where uninformative coefficients are reduced (as in ridge and elastic net regression) or
shrunk to zero (as in lasso regression) (Shiomi et al., 2022).

In contrast, decision trees and random forest estimate feature importance through Gini
importance, which identifies the most influential predictors in the dataset (Breiman, 2001;
Louppe, 2015; Strobl et al., 2008). Gini importance is formulated as:

Equation 6: Gini Importance.

Gini = p;(1—py) +p2(1 —p3)
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where p, and p, are the probabilities of class 1 and class 2, respectively (Saarela &
Jauhiainen, 2021). Gini importance is calculated after the entire model has run and estimates the
extent to which a feature improves the homogeneity of the resulting child node compared to the
parent node. Each tree begins with a root node (Tenure in Figure 2, for example) with a given
impurity where X% of observations belong to class 1 and class 2. If we then split on another
variable, we get two child nodes. Gini importance compares the purity of the two child nodes
resulting from the split to the root node that preceded it. A higher Gini importance score
indicates that a feature provides a strong ability to differentiate between classes (Nembrini et al.,
2016).

XGBoost does not use Gini impurity to split nodes like decision trees and random forests.
As previously discussed, XGBoost measures model improvement based on the log loss. Feature
importance is measured retrospectively using Gain, which quantifies improvements in the loss
function.
Comparing Classification Performance Across Models

A statistical test is needed to determine whether differences in performance metrics among
ML classifiers (e.g., specificity, recall, etc.) are meaningful. With 5-fold nested cross-validation,
a total of 5 classifiers are produced for each dataset, each with their own performance metrics.
Across 7 algorithms, 7 months, and 2 sample sizes, there are a total of 490 classifiers to evaluate.
As of writing this dissertation, there is a lack of consensus within the ML literature on the

best method for cross-algorithm comparison. Researchers have used a variety of methods
including paired t-tests, corrected t-tests, counting wins and losses, ANOV A, the Friedman test
(a non-parametric ANOVA), and the Wilcoxon signed-ranks test (see DemSar et al., 2006;

Nadeau & Bengio, 2003). Of these methods, the Friedman test and the Friedman aligned rank
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test appears to be the most reasonable options for comparing classifier performance across and
within sampled months.
The Friedman Test

The Friedman test, a non-parametric test similar to ANOVA, can be used to compute the
rank performance of several classifiers across different datasets (Demsar et al., 2006). It ranks
classifier performance within blocks (datasets) and tests whether the rank performance of
classifiers are significantly different (Garcia et al., 2010). The Friedman test is preferred when
comparing the relative performance of ML classifiers because, unlike parametric tests like t-tests
and ANOVA, it does not assume a normal distribution of parameters, homogeneity of variance,
or independence of datasets. As an omnibus test, the Friedman test analyzes the performance of
classification algorithms separately on different datasets and calculates a statistic (F) indicating
whether there were significant differences (Santafe et al. 2015).

To calculate the test statistic, I used the Inman-Davenport (1980) corrected F statistic, Fip, a
variation of the Friedman test designed to address small-sample biases in the original Friedman
test statistic. This correction makes the test more robust, particularly in scenarios with a limited
number of datasets or classifiers. If the null hypothesis of no differences between classifier ranks
is rejected, the post-hoc Nemenyi test is applied to perform pairwise comparisons between
algorithms.

Friedman Aligned Rank Test
The Friedman aligned rank test, like the standard Friedman test, is used to compare the
relative performance of classifiers. However, it is particularly suited for situations where the

same dataset is used across comparisons (Garcia et al., 2010; Santafé¢ et al., 2015). Given that
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datasets within months overlap, I applied the Friedman aligned rank test to each matrix to
account for this dependency.
Averaging Across Folds

Guidance on handling multiple folds when evaluating classification algorithms is limited
in the literature. Using metric scores (i.e., BA, BA-Recall, BA-Specificity, Recall, AUC) from
all 5 folds for each month would violate the Friedman test’s assumption of independence
between rows. To address this, I chose to average the scores across folds, ensuring that
comparisons across months adhered to the test's assumptions while maintaining the integrity of

the results.
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CHAPTER 5

RESULTS

Comparing Performance Metrics Between and Across Sample Size Conditions

To compare the overall rank performance of algorithms across different sample size
conditions, I conducted Inman-Davenport corrected Friedman tests on five matrices, each
corresponding to a performance metric (true positive rate, balanced accuracy, balanced accuracy-
sensitivity weighted, balanced accuracy-recall weighted, and area under the curve). The
performance scores were averaged across cross-validation folds. Each month was represented by
two rows in the matrices, one for each sample size (z = 500 and » = 1000). Both the Inman-
Davenport corrected Friedman test and the Friedman aligned ranks test were applied. Significant
differences indicate that a given method outperformed another method more frequently. Since
significant results were consistent across both omnibus tests, only the results from the Inman-
Davenport corrected Friedman test (y?) are reported for simplicity. When significant differences
were found, the Nemenyi post-hoc test was used to determine the critical difference (CD) values
and generate a matrix of paired difference scores. Critical difference represents the value at
which differences are statistically significant. CD plots were created to visually represent the
magnitude of differences between methods and their statistical significance.

To evaluate Hypothesis 5, which predicted that hybrid and ensemble methods would
outperform their base methods most noticeably at larger sample sizes, I also performed an
Inman-Davenport corrected Friedman test on matrices with two columns for each method, one
for each sample size. This way, methods can be evaluated across different sample sizes.

Recall
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Recall Across Sample Sizes. First, | compared each method on recall, also known as
sensitivity or true positive. Recall is a metric which indicates how well a classifier identifies
positive cases. The omnibus Iman-Davenport corrected Friedman’s rank sum test indicated a
statistically significant difference between methods on their recall rankings (y° (6,78) = 22.824, p
< 0.001). Based on the critical difference value produced by the Nemenyi post-hoc test (CD
(7,91) = 2.462, a = 0.05), the following pairwise differences from the Nemenyi difference matrix
were statistically significant, with the first listed method outranking the second listed method:
XGBoost (Xgb) vs. decision trees (DT) (p < 0.001), XGBoost vs. elastic net (EN) (p <0.001),
XGBoost vs. lasso regression (Lasso) (p < 0.001), XGBoost vs. ridge regression (Ridge) (p <
0.001), random forest (RF) vs. decision trees (p = 0.002), random forest vs. lasso regression (p =
0.002), and random forest vs. decision trees (p < 0.001). The CD plot in Figure 5 visualizes these
pairwise differences, with bold horizontal lines connecting classifiers with statistically similar
rankings at the p = 0.05 level. Note that lower rankings (e.g., 1, 2) indicate better performance.

Interestingly, decision trees exhibited a higher recall in April (47%), the month during
which feature selection was performed, compared to other months, where recall ranged between
25%-27% (see Table 7). This suggests that decision trees may benefit from monthly variable
selection. In contrast, other methods did not display such a substantial difference in recall
between April and other months, indicating that their performance was less influenced by the

timing of feature selection.
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Figure 5. Critical Difference Plot for Recall Across Sample Sizes
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Recall Between Sample Sizes. The Iman Davenport corrected Friedman’s rank sum test

revealed a statistically significant difference between method-sample size pairs in recall score

rankings (y? (13,78) = 11.484, p < 0.001). However, the Nemenyi post-hoc test did not indicate

significant differences between most pairs of base methods and ensemble/hybrid methods at

small sample sizes (see Fig. 6 for pairwise comparisons). Specifically, random forest (S) did not

outrank decision trees (S), and elastic net (S) did not outrank lasso regression (S) or ridge

regression (S). However, XGBoost (S) did outrank decision trees (S). These mixed null results

indicate that base methods are as capable as ensemble and hybrid methods at identifying true

positives in small (n = 500) sample sizes, apart from XGBoost, which significantly outperformed

decision trees.



Figure 6. Critical Difference Plot for Recall Between Sample Sizes
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BA Across Sample Sizes. An Inman-Davenport correction of Friedman’s rank sum test
revealed a statistically significant difference between scores on balanced accuracy across
methods, x%(6,78) = 15.475, p < .001. The post-hoc Nemenyi test produced a critical difference
score of 2.462 (k=17, df=91). Based on the difference matrix, XGBoost ranked significantly
higher on BA compared to all other methods except for random forest. Additionally, random
forest performed similarly to logistic regression and ridge regression, and outperformed lasso
regression, elastic net, and decision trees. The CD plot shown in Figure 8 visualizes pairwise

differences on BA.



Figure 7. Critical Difference (CD) Plot for Balanced Accuracy across Sample Sizes
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indicated a significant difference between method-sample size pairs in balanced accuracy scores,

x2(13,78) =7.402 , p < 0.001. The Nemenyi post-hoc test indicated a critical difference of 7.723

(k=14, df= 84, a=0.05). I did not find full support for Hypothesis 2, which predicted ensemble

and hybrid methods to outperform base methods at small sample sizes. Contrary to expectations,

XGBoost with a small sample size did not outperform ridge regression used with a small sample

size, but it did outperform ridge regression used with a large sample size. XGBoost (S) did not

outperform ridge regression (S), but it did outperform ridge regression (L). However, XGBoost

(S) did outperform decision trees (S). No other significant differences were found for BA

between sample sizes.



Figure 8. Critical Difference (CD) Plot for Balanced Accuracy Between Sample Sizes
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Balanced Accuracy — Specificity Weighted

BA-Specificity across Sample Sizes. Overall, methods did not vary substantially in their
scores on specificity, which limits the utility of the specificity-weighted balanced accuracy
metric. Specificity is a metric used to estimate how well a classifier can identify negative
instances. Because there were so many negative instances in the data, classifiers did not have to
try very hard to find them. Thus, all methods scored relatively well on specificity, and on BA-
Specificity by extension. An Inman-Davenport correction of Friedman’s rank sum test revealed a
statistically nonsignificant difference in scores on BA-Specificity across methods, (6,78) =
0.431, p = .855. There were no statistically significant differences between scores on BA-
Specificity among methods. Mean BA-Specificity scores can be found in Table 9.

BA-Specificity between Sample Sizes. Similarly, the Inman-Davenport correction of
Friedman’s rank sum test indicated a nonsignificant difference between method-sample pairs on

BA-Specificity scores, y°(13,78) = 0.271, p = 0.994.
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Balanced Accuracy — Recall Weighted

BA-Recall across Sample Sizes. An Inman-Davenport correction of Friedman’s rank sum
test revealed a statistically significant difference in scores on BA-Recall across methods, y’
(6,78) = 18.08, p < 0.001. The Nemenyi post-hoc test yielded a critical difference score of 2.462
(k=17,df=91, a=0.05). Based on the difference matrix, statistically significant differences
exist between XGBoost vs. ridge regression, XGBoost vs. decision trees, XGBoost vs. lasso
regression, XGBoost vs. elastic net, random forest vs. decision trees, random forest vs. lasso
regression, and random forest vs. elastic net (see Figure 9).

Figure 9. Critical Difference (CD) Plot for BA-Recall across Sample Sizes
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BA-Recall Between Sample Sizes. An Inman-Davenport correction of Friedman’s rank
sum test indicated a significant difference between pairs on BA-Recall scores y°(13,78) = 9.807,
p <0.001. The Nemenyi post-hoc test indicated a critical difference of 7.723 (k =14, df =84, a =
0.05). There were statistically significant differences between several pairs, as can be seen in
Figure 10. XGBoost (S) significantly outranked ridge regression (S) and decision trees (S). See

Table 10 for all BA-Recall means across methods and sample sizes.
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Figure 10. Critical Difference (CD) Plot for BA-Recall Between Sample Sizes
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AUC

AUC Across Sample Sizes. An Inman-Davenport correction of Friedman’s rank sum test
indicated a significant difference between pairs on AUC scores y?(6,78) = 163.59, p < 0.001. The
Nemenyi post-hoc test determined a critical difference of 2.462 (k= 7, df =91, a = 0.05). While
the ranking order varied slightly, the significant differences followed a consistent pattern:
random forest outperformed lasso regression, elastic net, logistic regression, and ridge
regression. Similarly, XGBoost outperformed elastic net, logistic regression, and ridge
regression. Random forest and XGBoost achieved AUC values of 70% and 68%, respectively.
These values represent the likelihood that these classifiers would correctly rank a randomly
chosen positive instance higher than a randomly chosen negative instance. Thus, AUC values
below 50% indicate that a classifier is not practically useful. Notably, decision trees

outperformed logistic regression, a result that, while statistically significant, lacks practical
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relevance. Decision trees averaged an AUC of 48% across folds, which is worse than random
guessing.

Figure 11. Critical Difference (CD) Plot for AUC Across Sample Sizes

CD
1 2 3 4 5 6 7
L | | | | | |
RF — Elastic
Xgb Logistic
DT ——Ridge
Lasso

AUC between Sample Sizes. The Inman-Davenport correction of Friedman’s rank sum
test indicated a significant difference between method-sample pairs on AUC scores x*(13,78) =
44.064, p < 0.001. The Nemenyi post-hoc test indicated a critical difference of 7.7233 (k=14, df
=84, a = 0.05). As with previous analyses, there were no significant differences between base-
hybrid/ensemble pairs with different sample sizes aside from XGBoost (S), which significantly

outranked ridge regression (S).
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Figure 12. Critical Difference (CD) Plot for AUC Between Sample Sizes
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Summary: Performance Metric Rankings

In summary, XGBoost and random forest classifiers consistently outranked elastic net,

lasso regression, ridge regression, decision trees, and logistic regression in terms on recall,

balanced accuracy, BA-Recall, and AUC. XGBoost and random forest were in the top ranks

across all these metrics. Decision trees appeared in the top ranks for AUC, and logistic

regression also appeared in the top ranks for recall and BA-Recall.

Regularized Regression

Hypothesis 1 posited that elastic net would outperform its base methods, lasso regression

and ridge regression. This hypothesis was not supported by the data, as elastic net, lasso

regression, and ridge regression did not show significantly different performance rankings on

BA, BA-Recall, or BA-Specificity. Though not hypothesized, lasso regression significantly

outranked ridge regression on AUC. However, because both lasso regression (AUC = 35%) and

ridge regression (AUC = 25%) had AUC values below 50%, this finding is not practically

meaningful.
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Overall, regularized regression methods performed poorly compared to tree-based
methods. Interestingly, logistic regression frequently ranked similarly to ridge regression, lasso
regression, and elastic net regression, suggesting that regularization does not introduce any added
benefit above and beyond logistic regression in applied attrition modeling applications. Findings
suggest that regression-based methods are less suited for applied attrition modeling compared to
tree-based methods.

Tree-Based Methods

Hypothesis 2 proposed that random forest would outperform its base method, decision
trees. This hypothesis was largely supported by the data. Random forest outranked decision trees
based across all performance metrics except for AUC, where there was not a significant
difference between the two methods. Although the higher rank of random forest compared to
decision trees on AUC was not statistically significant, it was practically meaningful. Random
forest had an AUC greater than 50% (AUC =70%), whereas decision trees scored below 50%
(48%).

Hypothesis 3, which proposed the XGBoost would outperform all other methods, was
partially supported. Based on the critical difference plots, random forest performed as well as
XGBoost across all metrics. However, XGBoost outperformed random forest on recall
substantially. Across all folds and all months, XGBoost successfully identified 20% of positive
cases, whereas random forest only correctly identified 9%. Due to the degree of class imbalance
in the data, correctly identifying positive instances is more challenging than correctly identifying
negative instances, so attention should be paid to recall and BA-recall. Although the difference in
performance between XGBoost and random forest finding is not statistically significant based on

the Nemenyi post-hoc test, it is practically meaningful.
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There is an inherent tradeoff between recall and specificity. When more positive cases are
predicted, fewer negative cases are predicted. This is evident in XGBoost and random forests’
specificity scores, where XGBoost correctly identified 93% of negative instances compared to
97% for random forest. Table 14 presents information from the confusion matrix, which provides
the total count of true and false positive and negative predictions across all months and folds by
each method. XGBoost has substantially higher counts of false positives, but it also is closer to
predicting the correct absolute number of leavers and stayers.

Although random forest and XGBoost did not rank significantly higher on AUC than
decision trees, this discrepancy is likely attributable to decision trees' high AUC score in April—
the month utilized for feature selection. Moreover, although the difference is not statistically
significant, it is practically significant. AUC measures a classifier’s ability to distinguish
between positive and negative cases across various classification thresholds. A test
demonstrating an AUC value less than .51 would never be used because it does not outperform
chance. In summary, Hypothesis 3, which proposed that XGBoost would outperform all other
methods, was partially supported. Random forest also performs strongly, but favors the majority
class, suggesting that it does not handle class imbalance as effectively as XGBoost. Additional
mean performance scores across sample sizes and months are available in Table 12 and 13.

ML vs. Logistic Regression

Hypothesis 4 predicted that all ML algorithms included in this study (lasso, ridge, and
elastic net regression, decision trees, random forests, and XGBoost) would demonstrate superior
classification performance on out-of-sample attrition data compared to logistic regression.
Surprisingly, this hypothesis was not supported by the Friedman tests or by the post-hoc

Nemenyi tests. Logistic regression’s score on recall or BA-Recall across months was not
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statistically significantly different from that of random forest or XGBoost. However, logistic
regression had a substantially lower average recall (6%) compared to random forest (9%) and
especially compared to XGBoost (21%). While the difference in rankings is not statistically
significant, there was a practically meaningful difference in average performance. While logistic
regression underperformed relative to random forest and XGBoost, its overall performance was
comparable to other regression-based methods.
Modern ML vs. Base Methods

Hypothesis 5 predicted that modern machine learning methods (XGBoost, elastic net, and
random forest) would outperform their base methods (decision trees, ridge regression, lasso
regression, and logistic regression) at smaller sample sizes. There was no support for this
hypothesis from random forest or from elastic net regression, as no significant differences
between sample size and the rank performance of base-hybrid/ensemble method pairs were
observed for these classifiers. It is likely that larger differences in sample sizes are required to
detect any meaningful performance variations among these classifiers. However, XGBoost
demonstrated superior rankings compared to decision trees on BA and recall; compared to ridge
regression on AUC; and compared to ridge regression and decision trees on BA-Recall. Thus,
this hypothesis was partially supported.
Additional Exploratory Analysis: Results Across Thresholds

Table 14 contains a summary of model predictions. TP, TN, FP, and FN refer to the true
and false positive and negative predictions made by each model. Net refers to the difference
between the number of stayers predicted by the model and the actual number of stayers. Across

methods, a surplus of stayers was predicted.



86

As previously discussed, classification algorithms produce predicted probabilities, which
are typically converted into positive or negative predictions using a 50% threshold. However,
thresholds can be adjusted to modify the tradeoff between identifying positive instances
(recall/sensitivity) and identifying negative instances (specificity). Figure 13 illustrates the ROC
curves for each method, which is calculated using the predicted probability and actual outcome
for each individual observation (a total of 10123 predicted probabilities for each method). The
ROC curve highlights the tradeoff between recall and specificity at various threshold settings.
Using predicted probabilities generated by the best performing method, XGBoost, across folds,
months, and sample sizes, performance metrics at different thresholds were calculated and are
presented in Table 14 to demonstrate how changing the threshold impacts performance metric
scores.

As the threshold lowers and the number of true positives increases, the number of false
positives also rises, reflecting the tradeoff inherent in adjusting thresholds. Although XGBoost
demonstrated strong overall performance, its precision remains limited. By reducing the
threshold to 35%, the model can be optimized to provide a more accurate count of employees
likely to leave the organization, a valuable tool for workforce planning. However, at this
threshold, precision is only 25%, meaning that just 25% of the individuals predicted to leave
were correctly identified. While XGBoost performs well with this dataset at an aggregate level
and offers promise for applied attrition modeling, its individual-level predictions remain

imprecise.
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Figure 13. ROC by Method Across all Months and Sample Sizes

ROC by Method Across all Months and Sample Sizes
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Figure 14. XGBoost Performance Metrics Across Thresholds
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Feature Importance Results

Feature Importance — Tree-Based Methods

An exploratory research question was posed to examine how feature importance scores
vary across methods. Random forest, XGBoost, and decision trees produce feature importance
scores which indicate the extent to which each feature contributes to the quality of its splits. For
XGBoost, three metrics were generated to assess feature importance: gain, cover, and frequency.
Gain measures each feature’s contribution to the model’s predictive ability via informing splits,
cover reflects the number of observations associated with a feature across the trees, and
frequency indicates the proportion of trees where a feature appears (Chen et al., 2024). Of these
metrics, gain was selected for interpretation as it provides a closer comparison to random forest’s
feature importance scores. Moreover, the results from gain were similar to those of cover and
frequency. Using results from » = 1000 samples, I normalized feature importance scores on a
scale of 0-100 and summarized them in Figures 15-16. Features are listed on the Y axis, and

average importance score is represented on the X axis.
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Figure 15. Random Forest Feature Importance Across Months

Random Forest Feature Importance

100, n=97.14%
96.08, n=94.29%
5.66, n=94.29%

Tenure
Total Invoice % Change
Attendance - % Change

"‘

Attendance NN 60.88, n=91.43%
Total Hours [N 55.44, n=85.71%
Performance I 51.88, n=91.43%
Invoice Total I  49.55, n=88.57%
Number of Phone Calls I 48.13, n=85.71%
Pay Satisfaction I 19.7, n=82.86%
Scheduling Satisfaction Overall I 16.28, n=80%
Number of Sat. Surveys Taken I 16.19, n=88.57%
Client Satisfaction I 138, n=85.71%
o Job Resources - 1 I 13.13, n=88.57%
=) Invoice Other I 13.05, n=80%
8 Schedule Availability Satisfaction I 12.31,n=82.86%
L. Manager Satisfaction - Responsiveness I 11.16, n=80%
Recommendation Intentions I 9.72, n=80%
Job Resources - 2 I 9.2 n=91.43%
Job Resources - 3 Il 389, n=8857%
Manager Satisfaction - Communications Il 6.74,n=71.43%
Manager Satisfaction - Feedback Il 6.14, n=82.86%
Manager Satisfaction - Knowledge Il 6.09, n=80%
Number of Weeks Skipped (Month) Bl 5.37,n=68.57%
Manager Satisfaction - Professionalism B 3.85, n=77.14%
Manager Satisfaction - Overall B 3.27,n=82.86%
Manager Satisfaction - Helpfulness I 1.89,n=71.43%
Manager Satisfaction - Respect | 1.12, n=77.14%
Manager Satisfaction - Kindness 0, n=77.14%
0 50 100 150

Average Importance (Scaled)

Note. Feature importance values have been scaled 0-100. Numbers next to the bars represent the mean, and n =
represents that percent of time they were used (not dropped).

Decision Trees. In the case of decision trees, not all folds resulted in fully developed
branches, which led to inconsistent feature importance rankings. While random forests produced
70 importance rankings for each feature, decision trees yielded only one or two rankings. Due to
this inconsistency and the limited interpretability, feature importance rankings from decision
trees were excluded from further analysis.

XGBoost vs. Random Forest. To compare the significance of feature importance
rankings, I performed a paired Wilcox signed ranks test on the average rank value (for » = 1000,
rankings within month, normalized on a 0-100 scale) of each feature between the two methods.

Overall, feature rankings were similar between random forest and XGBoost. With a Bonferroni
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correction for multiple comparisons, there were no significant differences in average rankings (p
=1.00).

Figure 16. XGBoost Variable Importance Across Months

XGBoost Feature Importance
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Manager Sat - Kindness I 7.16, n=
Manager Sat - Professionalism Bl 562, n=24
Manager Sat - Helpfulness M 361, n=24
Manager Sat - Respect 0, n=23
0 30 60 90

Average Importance (Scaled)

Feature Importance —Regression

Regularized regression and logistic regression do not have a direct comparison for
variable importance. Instead, I report means and standard deviations of regression coefficients
(B) across models. Note that absolute values are used with a + or — sign to indicate directionality.

Logistic Regression Model Coefficients. Figure 17 visualizes the mean and standard
deviation of each feature coefficient across logistic regression models. Overall, many of the
features with the strongest coefficients are HRIS features. However, the only feature with a 3
approaching a significant effect at an a = 0.05 confidence level Number of Satisfaction Surveys

Taken, (M = 0.86, SD = 0.65, p = 0.07).
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Figure 17. Logistic Regression Model Coefficients

Average Logistic Regression Coefficients
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Number of Phone Calls Il +0.22 (0.62)
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Manager Satisfaction - Overall l +0.06 (0.43)
Number of Weeks Skipped (Month) ll +0.06 (0.23)
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Pay Satisfaction | +0.02 (0.24)
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0 1 2 3 4
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Ridge, Lasso, and Elastic Net Regression Model Coefficients. Figures 18, 19, and 20
plot the average regression coefficients for ridge, lasso, and elastic net regression across all
models with n = 1000 sample sizes. The first number to the right of the bar indicates the average
coefficient for that respective feature. The number in parentheses represents the standard
deviation and the percentage indicates the percent of the time they were included in the model.
Unlike logistic regression, regularized regression tests do not provide an explicit p-value; rather,
significance is determined by the size of the coefficient and/or whether it was dropped.

Intercepts are not plotted, but were equal to -2.24, -2.36, and -2.35 for elastic net, lasso,
and ridge regression, respectively. Based on these intercepts and the average B coefficients, we

could calculate the probability of the positive event occurring based on the value of the feature,
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holding all else constant. However, these probabilities would be more meaningful coming from a
model with better predictive accuracy. Due to the poor performance of these models, I refrain
from interpreting their B coefficients.

Across methods, coefficients are similar in rank order. Logistic regression has overall
higher coefficients with wider standard deviations overall, as is to be expected since it does not
incorporate regularization and experiences more instability in coefficient values compared to
regularized methods. In practice, more care should be taken in paring down the list of features

when using logistic regression, particularly those with strong correlations.
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Figure 18. Average Ridge Regression Model Coefficients
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Figure 19. Average Lasso Regression Model Coefficients
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Figure 20. Average Elastic Net Regression Coefficients
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CHAPTER 6

DISCUSSION

This dissertation evaluates the comparative performance of two prominent machine
learning approaches: tree-based methods and regularized regression methods. Both base methods
(logistic regression, lasso regression, ridge regression, and decision trees) and hybrid/ensemble
techniques (random forest, elastic net, XGBoost) were evaluated. Across various metrics,
XGBoost and random forest consistently outperformed the incumbent method, logistic
regression, as well as decision trees, ridge regression, and lasso regression. First, these findings
suggest that researchers and practitioners may benefit from using newer, more complex ML
algorithms over their base methods or logistic regression. Second, findings suggest that ensemble
methods are better suited for applied attrition modeling compared to base methods for datasets
with a similar & (~28 features) and n (n = 500-1000). Third, tree-based ensemble methods
significantly outperformed regularized regression methods, suggesting that tree-based methods
are better suited for applied attrition modeling.

Practical Implications

Although a resampling method (SMOTE) was employed during the cross-validation
process to address class imbalance in training folds, all models still underpredicted the number of
positive cases (employee attrition). This highlights a key area for improvement, suggesting that a
lower classification threshold should be tested via model calibration, which is the process of
testing various cutoff thresholds. As demonstrated with XGBoost, lowering the threshold from
50% would increase sensitivity by capturing more true positive cases, albeit at the cost of
reduced specificity. In practice, researchers and industry professionals can use thresholds to

adjust the model based on the organization’s tolerance for false positives versus false negatives.
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An organization most concerned about over hiring would opt for a higher threshold than an
organization concerned about under hiring, as missing potential positive cases would lead to
insufficient replacement hiring and increased workload for existing staff. If avoiding false
positives is critical, for example, when organizations face budget constraints that prevent over-
hiring, a lower threshold may be optimal.

Compared to other methods included in this study, XGBoost was the most effective at
correctly identifying true positive instances across different sample sizes and months, as
evidenced by its mean true positive rate. This makes XGBoost a strong choice for organizations
aiming to identify as many at-risk employees as possible. However, the higher recall exhibited
by XGBoost comes at the expense of lower specificity because more instances are classified as
positive overall (see Table 11). Random forest also offers the advantages of simplicity,
interpretability, and computational efficiency, making it a practical choice when these factors are
prioritized alongside balanced performance across metrics.

Even the best performing models, XGBoost and random forest, are not yet full optimized
for deployment in an applied organizational setting. While XGBoost outperforms a random
guess, or an educated guess based on how many employees left the previous month—the gains,
though meaningful, are incremental. For instance, in a sample size of 1000 employees, XGBoost
predicted that 89 employees would leave in October, while 97 actually left. Compared to an
educated guess based on the 73 leavers in September, XGBoost would leave us at -8 and versus -
24. However, precision remains a concern, as only 30% of the predicted positive cases are
correct based on average precision scores. Further refinements are needed to produce models that
are ready for deployment in organizations. To improve the operational utility of these models,

further hyperparameter tuning would be needed. The hyperparameters outlined in Appendix A
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offer a foundational starting point for these efforts, providing a guide for future iterations and
refinements of the model.

Different sample sizes were investigated to compare conditions that represent practical
limitations faced by organizations. Hypothesis 5 stated that random forest, elastic net, and
XGBoost would outperform their base models most markedly at small sample sizes. This
hypothesis was partially supported; no significant relationships between sample size and rank
performance of base-hybrid/ensemble method pairs were observed aside from XGBoost, which
outranked decision trees on recall, BA, and BA-Recall, and outranked ridge regression on BA-
Recall and AUC in small sample size conditions. This finding is not surprising, given that
XGBoost emerged as the top performer and that there were only slight differences between the
rank performance of other methods. Moreover, this finding is in line with previous research,
which suggests that modern methods outperform base methods in small samples (Landers et al.,
2024).

Interestingly, there was a slight (but nonsignificant) performance difference among base
methods at small and large sample sizes, favoring smaller samples. For example, based on AUC,
every method except for decision trees performs slightly better in small sample sizes. Based on
precision, decision trees, lasso, logistic and random forest perform better at small sample sizes.
However, XGBoost performs equally well across sample sizes, with just a one-point differences
on recall (recall = 0.21 when n = 500; recall 0.20 when n = 1000). These results indicate that
XGBoost performs more robustly on small samples compared to other methods, suggesting that
XGBoost effectively mitigates the main drivers of performance inconsistency, including random

variance, overfitting, and class imbalance. This is likely due to its boosting mechanics rather than
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regularization or tree-based structure, given that the other methods with these characteristics did
not perform as effectively.
Feature Importance: Comparisons to Prior Work and Theoretical Significance

Results explored feature importance rankings across ML methods, highlighting the most
influential predictors of voluntary attrition. To my knowledge, no prior research has integrated
performance data, HRIS data, and self-reported data to train attrition models using ML
techniques. The results of this study indicate that feature importance rankings were largely
consistent between random forest and XGBoost, reinforcing the reliability of these predictors.
Features related to tenure, performance, and pay consistently emerged as the strongest indicators
of attrition risk, aligning with previous research on voluntary turnover.

Among the top-ranked predictors, tenure demonstrated the highest importance in both
random forest and XGBoost models, with a negative correlation with attrition (» =-.19, p <
0.01), suggesting that longer-tenured employees were less likely to leave. This aligns loosely
with findings from Rubenstein et al.’s (2018) meta-analysis, which reported a meta-analytic
point biserial correlation of 7 = 0.20 (» = -0.27 when excluding an outlier). The consistency
between this study and prior research reinforces the well-documented empirical and theoretical
relationship between tenure and turnover, where longer-tenured employees accumulate firm-
specific knowledge, develop stronger workplace ties, and face higher opportunity costs
associated with leaving.

Another key finding concerns the relationship between manager satisfaction and
voluntary attrition, which was notably weaker than prior research might suggest. In this study,
point-biserial correlations between attrition and manager satisfaction were small and

counterintuitive, averaging around » = 0.08. By contrast, Rubenstein et al. (2018) found that job
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satisfaction, which includes managerial satisfaction as a component, had a much stronger meta-
analytic correlation with attrition (» = -0.25). This discrepancy raises important questions about
the role of job attitudes in high-turnover roles such as customer service. One possible
explanation is that employees in these roles do not enter them expecting high levels of
managerial support or intrinsic job satisfaction. Unlike workers in other sectors with higher
average tenure, customer service employees may be less motivated by their enjoyment of the
work itself.

This study also revealed important findings related to pay and scheduling stability, which
further differentiate voluntary attrition patterns in customer service jobs from those in more
stable professions. Pay satisfaction exhibited a weaker (and counterintuitive) relationship with
attrition ( = .08, p < 0.01) compared to Rubenstein et al.’s meta-analytic estimate of » =-.17,
again suggesting that financial considerations in this dataset were more complex than a simple
dissatisfaction-to-turnover pathway. Instead, behavioral indicators such as Total Invoice %
Change emerged as stronger predictors based both on feature importance scores and the bivariate
correlation between Total Invoice % Change and attrition (» = -.19, p <0.01). Specifically,
employees who experienced a decrease in their total invoiced hours from month to month were
slightly more likely to leave, a pattern consistent with research on the negative effects of
schedule instability in frontline service jobs (Choper et al., 2021). This suggests that the
unpredictability of earnings — rather than absolute pay satisfaction — was a primary driver of
attrition, reinforcing findings that financial stability is often a stronger predictor of retention than
static pay levels in hourly workforces (Henly & Lambert, 2010).

Another interesting finding relates to attendance and total hours worked, both of which

ranked highly in feature importance. Attendance, representing the extent to which employees
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showed up to work within their scheduled time blocks, was among the most predictive features
based on feature importance and based on its strong bivariate correlation with attrition (» =-0.19,
p <0.01). This negative bivariate correlation suggests that employees with higher levels of
attendance (the percent of time that they worked their scheduled shifts) were less likely to attrit.
This finding is consistent with turnover research demonstrating that withdrawal behaviors often
precede voluntary attrition (Hom et al., 2017). Overall, many of the most important features were
indicative of how much an employee had been present in the previous month. This finding is
aligned with research on pre-quitting behaviors, defined as “behavioral changes reflecting
progression through the turnover process that (a) observers can notice and (b) are associated with
future turnover behavior” (Gardner et al., 2018, p. 3224). Essentially, pre-quitting behaviors are
behavioral indicators that an employee may have already decided to quit. Thus, the algorithms
likely identified individuals who have already made the conscious decision to leave the
organization via their disengagement or “pre-quit” behaviors.

In contrast, employees who consistently worked a greater number of hours exhibited
lower attrition rates (Total Hours, » =-.21, p <0.01), likely reflecting a stronger attachment to
the organization and their intention to continue work. This aligns with job embeddedness theory
(Mitchell et al., 2001), which posits that employees who are more integrated into their work
environment through stable schedules, greater work commitments, and stronger financial
resilience, are less likely to quit. When compared to meta-analytic findings, these findings
suggest that turnover in customer service roles follows a distinct pattern from turnover in higher-
tenured professions.

Cross-Model Comparisons
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Employee turnover research has long theorized and researched the complex cognitive,
behavioral, and situation-dependent processes that ultimately result in voluntary employee
attrition. The attrition decision process is long and complex, and relationships between predictor
variables may be moderated and mediated by one another and/or may be nonlinear. The results
of this dissertation lend support for the complexity of this process. Across various performance
evaluation metrics, XGBoost and random forest algorithms, both tree-based methods,
consistently outperformed the incumbent method, logistic regression, and the other regression-
based methods. Regression-based models, including logistic regression, elastic net regression,
lasso regression, and ridge regression significantly underperformed random forest and XGBoost.
Methods which incorporate regularization were expected to outperform logistic regression, but it
appears that regularization did not play a significant role in model performance. One
interpretation of this null finding could be that the feature selection employed before running
models could have removed the advantages of regularized regression. However, the feature
selection used was very conservative, retaining feature correlations as high as » =.79. Given that
regression-based methods performed poorly overall, the most likely explanation is that these
methods could not adequately account for the complex relationships between features with other
features and with the outcome.

Ethical Implications

There are several importance ethical and legal considerations stemming from the
implementation of an attrition modeling algorithm, depending on how it is used. The purpose of
the attrition modeling methodologies presented here is to arrive at an estimated number of total
attrits with the highest possible certainty. However, the use of such models in areas like

promotions and compensation introduces the potential for adverse impact, even if demographic



103

data is not explicitly included as a feature. For example, a model that results in higher turnover
probabilities for women could lead to unintentional biases in pay or promotion decisions, even in
the absence of gender as a variable (Castille & Castille, 2019). This is a significant limitation to
the present work; demographic data was not available. Researchers interested in implementing
attrition modeling for such uses ought to consider the potential legal consequences of doing so
when designing and evaluating attrition models and must evaluate their outcomes for adverse
impact. Speer (2024) outlines procedures for practitioners to test their attrition models for
adverse impact and provides recommendations for reducing adverse impact if it is indeed found.

Another critical ethical consideration is the use of employee surveillance in data
collection for attrition modeling. While electronic monitoring may provide valuable insights,
research suggests that excessive surveillance can have negative consequences for employee
morale and organizational culture. Thiel et al. (2022) found that electronic monitoring
undermines the positive influence of leaders on employees, eroding trust and diminishing
engagement. If employees perceive that they are being excessively monitored, it may foster
feelings of distrust and reduce job satisfaction, potentially exacerbating. Organizations must
weigh the benefits of monitoring against these risks and ensure that data collection methods
respect employees’ privacy and autonomy.
Limitations and Directions for Future Research

The largest limitation to the current work is the scope. Other methods of hyperparameter
tuning (random hyperparameter search), resampling (under-sampling, over-sampling), and model
optimization (cost-sensitive learning with weights, optimizing for Kappa or ROC) are available,
but could not all be tested in this work. Specifically, I encourage future researchers to integrate

cost-sensitive learning into their models. Cost-sensitive learning is a method of addressing the
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majority-class bias demonstrated by classifiers in the case of class imbalance. It works by
applying a high performance “cost” to misclassifying the minority class (Provost, 2000; Elkan,
2001). Cost-sensitive learning can be applied in tandem with oversampling techniques, providing
a more robust solution to class imbalance than resampling alone (Shewach et al., 2024).

This work tested only a small subset of the available ML algorithms. Other promising
methods include ad-hoc ensemble models, where researchers can combine multiple types of
classifiers to create a custom model. Ensemble models have been found to be highly effective
and have won SIOP’s machine learning competition in the past. Indeed, ensemble models were
the best-performing methods in this study. Additionally, researchers can build on this work by
comparing additional tree-based boosting methods to random forest and XGBoost. I recommend
future researchers investigate uses of Light GBM. LightGBM was designed as a highly efficient
alternative to XGBoost which can demonstrate superior speed and predictive accuracy in high
dimensional, large datasets (Ke et al., 2017). Similarly to XGBoost, it LightGBM is a tree-based
boosting algorithm which incorporates L2 regularization. However, its implementation Is
optimized for speed and memory on large datasets, making it a great candidate for use with large
attrition datasets. Another recent development is CatBoost, which is a tree-based gradient
boosting algorithm similar to XGBoost but is optimized for datasets with categorical features,
making it a strong option for datasets with categorical features like department, manager, etc.
(Prokhorenkova et al., 2018). Both CatBoost and LightGBM are faster and more memory-
efficient than XGBoost, making them great options in organizational contexts when resources
are limited. Another interesting and novel boosting algorithm is SnapBoost, which varies the
type of base learner at each implementation (Parnell et al., 2020). Specifically, SnapBoost

randomly chooses between a decision tree or a linear model at each boosting step, allowing it to



105

combine the strengths of trees and linear models within a single ensemble (Parnell et al., 2020).
This novel approach may prove highly useful in applied attrition modeling, as some feature-
outcome relationships may demonstrate linear associations. In summary, no single algorithm will
work well across all use cases (Wolpert & Macready, 1997), so I encourage future researchers to
explore various options for applied attrition modeling.

Several limitations of the present study pertain to the dataset. As noted in the Ethical
Implications section, demographic data was not available, which limits the ability to examine
how attrition patterns may vary across different groups. Additionally, many of the predictive
features in the dataset are inherently tied to an individual’s tenure at the organization and their
presence in the previous month. Prior research has consistently shown that newer employees are
at a higher risk of attrition (Hom et al., 2017), and the models in this study largely capitalize on
this relationship. The most influential features—tenure, total invoice percent change, attendance,
attendance percent change, and total hours—serve as indicators of whether an employee was
active in the preceding month. As a result, these models may be less effective in identifying
attrition risk for longer-tenured employees or for cases where attrition is driven by factors
unrelated to recent attendance patterns. Future work should explore the inclusion of more static
features, such as job role or department, to improve predictive performance across a broader
range of employees.

Another key direction for future research involves improving the usability of
organizational data for ML models. The process of identifying and extracting useful data is the
most time-consuming part of attrition modeling. The data typically used in organizations often
requires significant data engineering, from addressing missing values to consolidating records

from multiple sources. Simulated datasets used in academic research bypass many of these
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challenges, but they may fail to capture the complexities of real-world organizational data or
produce overly optimistic correlations between predictors and outcomes. Future studies could
focus on developing techniques that enhance the quality and usability of organizational datasets.
Moreover, using methods which identify messy data (redundancies, multicollinearity, mixed data
types) with user supervision would expedite the process of getting from model ideation to model
creation and exploration.

Future researchers may wish to investigate different prediction windows. For instance,
attrition could be predicted over a 6-month period rather than over a 1-month period. Using a
larger window would drastically improve the degree of class imbalance in the outcome, as more
people attrit over a longer period. However, there are additional challenges associated with using
a larger window, such as handling missing data from employees who start work during that time.

There are several additional temporal factors that may warrant consideration in applied
attrition modeling depending. For example, patterns of attrition may change significantly under
different economic circumstances. The presence of viable job alternatives, for example, has been
found to positively predict attrition (Rosenbusch et al., 2018). Beyond economic conditions,
industry-specific cycles can influence turnover rates, necessitating the inclusion of domain
knowledge when constructing predictive models. For instance, academic institutions may
experience increased faculty turnover at the end of academic years, whereas industries like retail
or hospitality may experience higher seasonal turnover post-holiday or during off-peak seasons.
Similarly, performance review cycles, fiscal year transitions, and organizational restructuring
events can introduce attrition spikes that would be overlooked in a purely static model.

To account for these effects, categorical variables representing economic trends,

seasonality, and industry-specific events can be introduced into attrition models. Researchers
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must ensure that a long enough window is available to capture longitudinal patterns. Incremental
learning can also help. Incremental learning is a machine learning approach where a model
continuously updates itself as new data becomes available rather than being retrained from
scratch. Incremental learning is especially useful in attrition modeling because workforce
dynamics, economic conditions, and organizational trends change over time, making it
impractical to rely solely on static models trained on historical data. By enabling models to adapt
to new information without forgetting previously learned patterns, incremental learning ensures
that seasonal effects, economic shifts, and industry-specific trends are incorporated in real time.
At the time of writing this dissertation, the available ML packages in R do not support
incremental learning. Researchers may opt for other platforms for model building such as
Python.
Implications for Turnover Theory: Integrating ML-Driven Insights into Theoretical Models
Finally, the present work was primarily focused on methodology rather than theoretical
contribution. However, the two do not have to be opposed (Shumeli, 2013). The emergence of
predictive modeling presents an opportunity to refine and challenge existing turnover
frameworks, including the Unfolding Model (Lee & Mitchell, 1994) and Job Embeddedness
Theory (Mitchell et al., 2001). These frameworks emphasize the complex decision-making
process that leads up to voluntary attrition. ML algorithms, particularly tree-based algorithms,
can capture complex, nonlinear relationships in real-time workforce data, allowing researchers to
better understand the relationships between predictors and “steps” in the decision-making
process. Such methods may also allow researchers to uncover relations among features not

captured by more rigid methods. Current methodologies, like SEM, produce insights which are
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model-driven. In contrast, ML methods are largely data-driven, allowing for unexplored or
unexpected feature relationships to emerge.
Conclusions

Over the past decade, there has been a growing movement toward applying predictive
models in psychology, with researchers like Rosenbusch et al. (2021) and Pargent et al. (2023)
providing accessible guidelines for using supervised ML algorithms. These models not only offer
the potential for organizations to develop more effective interventions but can also uncover
previously unexplored psychological constructs. Integrating both predictive and explanatory
models, as advocated by Yarkoni & Westfall (2017), would allow organizational researchers to
advance both theory and practice, addressing real-world problems while contributing to the
broader understanding of employee behavior.

This dissertation demonstrates the application of predictive techniques to address a
longstanding research topic in the organizational sciences. Findings suggest that the use of ML
algorithms, and XGBoost and Random Forest in particular, can improve predictive accuracy over
logistic regression and over their base methods. Results also suggest that these algorithms
utilized information from all three data sources — HRIS records, performance evaluations, and
self-report surveys — to arrive at predictions. However, further refinement of these models,
particularly through hyperparameter tuning and threshold optimization, is necessary to make
them fully applicable in practice. While the incremental improvements over traditional methods
are clear, organizations must weigh these gains against the practical and computational resources

required to implement ML solutions effectively.
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APPENDIX F
CODE

Al R code, as well as a simulated dataset, can be found in a public repository at this

address: https://github.com/rhess-io0/Public---Attrition-Modeling-Script
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