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ABSTRACT 

 Diagnostic classification models (DCMs) are psychometric models that enable the 

categorization of examinees based on their proficiency (proficient or non-proficient) in specific 

skills or attributes. The information from DCMs can aid educators in identifying specific areas 

where examinees require additional support and provide actionable feedback. This study 

examines the robustness of a recently developed DCM, the one-parameter log-linear cognitive 

diagnosis model (1-PLCDM), that prioritizes interpretability and ease of application. Through a 

simulation study, I demonstrate that the 1-PLCDM maintains robust classification accuracy and 

reliability when the assumptions of attribute independence and a simple Q-matrix structure are 

violated. 
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CHAPTER 1 

INTRODUCTION 

 Effectively identifying and diagnosing students’ skills is essential for ensuring an 

accurate educational assessment. This serves as a vital tool for teachers in monitoring student 

progress and ensuring meaningful learning outcomes. Thus, accurate classification of 

students into different level of proficiency (proficient / non-proficient), enables educators to 

identify the specific areas where students need support and provide feedback that highlights 

each student's strengths and areas for improvement. Also, it helps teachers determine if 

adjustments to their teaching methods are needed to enhance students' understanding of the 

material.  

 Diagnostic classification models (DCMs) are psychometric models which classify 

students based on their mastery of specific skills, classifying them into “proficient” or “non-

proficient”, “mastery” or “non-mastery”, (Rupp et al., 2010). This model provides insights 

that broaden educators’ perspectives on overall student performance, helping them identify 

the specific skills students have mastered and the areas where additional support is needed. 

DCMs use criterion-referenced score interpretations that assess a student’s mastery of 

predefined skills, rather than comparing performance to others. This makes it a valuable tool 

for classification, helping to determine what students know and can do in relation to the 

specific content of the test. A key feature of DCMs is the use of a Q-matrix, which defines 

the relationship between test items and attributes. This allows DCMs to estimate whether 

examinees have mastered specific attributes based on their responses. This diagnosis provides 

detailed, actionable feedback for both educators and learners (Maas et al., 2022).  
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In the world of DCMs, there are several models; the log-linear cognitive diagnosis (LCDM) 

model (Henson et al., 2009), deterministic input noisy or gate (DINO) model (Templin & 

Henson, 2006), the deterministic inputs noisy and gate (DINA) model (Haertel, 1989; Junker 

& Sijtsma, 2001), the compensatory re-parameterized unified model, (C-RUM; Hartz, 2002) 

and more. These models are designed to be applied in diverse settings based on several 

reasons such as flexibility, ease of interpretation, statistical fit and so on. The DINA model is 

the most widely used DCM model in educational assessment due to its estimation simplicity 

and ease of interpretation, even though it is not necessarily the best in relation to flexibility 

and statistical fit (36%; Sessoms & Henson, 2018). On the other hand, the LCDM is one of 

the most flexible discussed models in the literature on DCMs, designed to accommodate a 

variety of attribute interactions, it is well suited for complex assessments requiring detailed 

diagnostic feedback. While, complex models, like the LCDM are flexible and capable of 

fitting data more accurately, parameter estimates can often be difficult to understand and 

interpret even for experienced psychometricians (Bradshaw and Levy, 2019). This is why the 

DINA model is the most widely used, because practitioners and researchers tend to prefer 

models that are easier to understand and interpret. They place a high value on simplicity, 

especially in educational settings where it’s important that the results are clear and the way 

classifications are made is easily understood. Simpler models often have straightforward 

interpretations, which is preferred as long as the results are accurate and reliable. In practical 

applications, ease of estimation and interpretability often outweighs the complexity of 

achieving the best statistical fit. As a result of these, less complex DCMs continue to be 

developed prioritizing simplicity and ease of interpretation while maintaining accuracy and 

reliability. One such model is the one-parameter log-linear cognitive diagnosis model (1-

PLCDM) which was designed for this purpose. This model forgoes some flexibility to 
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enhance understanding and interpretation of parameter estimates. This paper aims to assess 

the robustness of the 1-PLCDM. 

 

1-PLCDM 

 The 1-PLCDM is a recently developed DCM that offers a straightforward 

interpretation of parameter estimates. It imposes item parameter constraints on the LCDM, 

estimating a singular main effect for all items assessing the same attribute, along with an 

intercept for each item, similar to the Rasch model which includes a difficulty parameter for 

each item and a single discrimination parameter across all items (DeMars, 2010). 

The measurement properties of the 1-PLCDM are analogous to those of the Rasch model, 

including sum score sufficiency, item and person free measurement, and invariant item and 

person ordering. The sum score sufficiency property in the 1-PLCDM means that the total 

score, or the sum of correct responses across items, is all that is required to ascertain 

examinee probability of proficiency. Item and person free measurement implies that item 

parameters remain consistent, regardless of the group of people taking the test. Invariant item 

and person ordering ensure that if one item is more difficult than another for an individual, 

this holds true across all examinees, while higher-proficiency individuals are consistently 

more likely to answer items correctly than those with lower proficiency levels. 

While the 1-PLCDM is easy to interpret and implement, it does make certain 

assumptions which limits the performance of the model. One of those attribute independence 

(Madison et al., 2024), in other words, it assumes that attributes being tested do not correlate 

with each other. In many real-world educational situations, multiple attributes often correlate, 

this is where the model can begin to struggle, as these interactions might reduce its ability to 

classify students accurately. As a result, it could affect the instructional support a student 

receives, making it harder to tailor the right interventions. It also assumes that the Q-matrix 
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has a simple structure, that is an item cannot assess more than one attribute, in many 

educational settings, attributes often interact, and specific test items may assess multiple 

attributes, needing a more complex Q-matrix structure. Given these circumstances, the goal 

of this study is to understand how correlated attributes can affect the model’s performance. 

For example, if two attributes are highly related (e.g., a student’s ability to understand both 

reading comprehension and vocabulary at the same time), how does that influence the 

accuracy of the model's classification? The second part of this study examines what happens 

when the Q-matrix, which maps the relationships between test items and student attributes, 

becomes more complex. When the Q-matrix doesn’t follow a simple structure, the 

assumptions of the 1-PLCDM may not hold, and that could impact its ability to classify 

students correctly. By understanding these limitations, we can improve how we use these 

models and make them more effective for everyday educational use. 

The study’s purposes are to analyze: 

1. the degree to which correlation between attributes affects the performance of the 1- 

PLCDM, and  

2. the impact of assuming the Q-matrix is simple structure when it has complex items. 
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CHAPTER 2 

LITERATURE REVIEW 

 This chapter begins with an overview of DCMs, followed by a review of the current 

literature on various types of DCMs and DCMs misspecification. It then highlights the focus 

of this study, the 1-PLCDM. The primary goal of this chapter is to provide a comprehensive 

overview of the existing literature on DCMs and the 1-PLCDM. 

 

DCMs 

 DCMs, as described by Rupp et al. (2010), are psychometric models that assign 

probabilistic classifications to respondents by analyzing their mastery of discrete latent 

variables, referred to as "attributes”. These attributes, when utilized in educational 

measurement, generally describe the skills essential for solving specific challenges. Students 

are grouped according to their demonstrated mastery of these skills, resulting in attribute 

profiles that clearly distinguish mastered attributes from not-mastered attributes. 

 DCM’s are special latent class models (is a constrained and confirmatory latent class 

model), this means that they constrain force attribute mastery into increased correct response 

probabilities. A Q-matrix, which defines the relationship between test items and attributes, is 

used to enforce this structure. This guarantee that people who are proficient in a certain trait 

are more likely to provide accurate answers to specific questions. DCM is a confirmatory 

latent class model because with DCMs, the classes are known and predefined and they 

correspond to the attribute profiles, these profiles are outlined in Q-matrix that indicates 

which items measure which attributes. 
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 In contrast to the scaled scores derived from Item Response Theory (IRT) models 

which allow for norm-referenced interpretations, which are used in various assessment 

contexts where individual performance comparison within a group is needed, such as college 

admissions testing (e.g., SAT, Graduate Record Examination (GRE)) and extensive 

international studies (e.g., Program for International Student Assessment (PISA), Trends in 

International Mathematics and Science Study (TIMSS)), DCMs, makes use of criterion-

referenced interpretations which is useful for diagnosis. This makes DCMs particularly 

valuable in contexts where diagnosing individual strengths and weaknesses is more useful 

than ranking students. 

 

Types of DCMs 

 Based on their structure and underlying assumptions, DCMs can be broadly labeled as 

“general DCMs” or “constrained DCMs”.  

 

General DCMs 

 General DCMs have the ability to better capture the underlying processes that 

determine how students master different attributes, which influences their item responses. 

One key advantage of using a general model is its ability to accommodate a wide range of 

assumptions about both items and attributes. This flexibility enables researchers to test 

whether certain model constraints are truly necessary based on data provided. Essentially, 

these general models serve as parent frameworks from which more specific diagnostic 

models can be derived by enforcing statistical constraint on the parameters. Each specific 

DCM within these frameworks makes different assumptions about how student skills interact. 

For example, some models assume that a lack of mastery in one skill can be offset by mastery 

in another, while others do not allow for such compensatory effects. General DCMs includes, 
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general diagnostic model (GDM; Von Davier, 2005), the generalized deterministic inputs, 

noisy "and" gate model (G-DINA; de la Torre, 2011), and LCDM. 

The LCDM is a general DCM that has emerged as one of the most flexible models in 

the literature on DCMs. The LCDM is designed to model the conditional item response 

probabilities. It accommodates a variety of attribute interactions, the LCDM provides a 

versatile framework that can model both compensatory and non-compensatory relationships 

between attributes, making it well-suited for complex assessments requiring detailed 

diagnostic feedback. Previous studies have shown accuracy of the LCDM model heavily 

relies on the correct specification of the Q-matrix (Madison & Bradshaw, 2014, Rupp and 

Templin, 2008). 

 The LCDM, introduced by Henson, Templin, and Willse (2009), is grounded in a log-

linear framework that models the probabilistic relationship between multiple attributes and 

item responses. Furthermore, the log-linear model is formulated in terms of the log-odds of a 

correct response for each item, contingent upon the latent variables. For an item measuring 

two attributes, attribute 2 and attribute 3, the form of LCDM item response function is:  

Complex structure:  

 

𝑃(𝑋! = 1|𝛼") = 	
exp(𝜆!,$	+	𝜆!,&(()	(𝛼() + 𝜆!,&	(*)	(𝛼*) +	𝜆!,(((,*)	(𝛼(. 𝛼*))

1 + exp(𝜆!,$	+	𝜆!,&(()(𝛼() + 𝜆!,&	(*)	(𝛼*) +	𝜆!,(((,*)	(𝛼(. 𝛼*))
 

 

𝜆!,$		, is known as the intercept, it indicates the log-odds that a student who has not mastered 

neither attribute 2, nor attribute 3 measured by item 𝑖 will provide a correct response. 

𝜆!,&		(()	, It indicates the increase in the log-odds of a correct response that a student gets for 

mastering attribute 2. 
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𝜆!,&		(*)	, It indicates the increase in the log-odds of a correct response that a student gets for 

mastering attribute 3. 

𝜆!,(((,*)	 is the sum of all of the products of the two-way interaction parameters, it indicates 

the change in the log-odds of a correct response that a student gets for mastering both 

attribute 2 and attribute 3.  

In the estimation of the LCDM, main effect parameters are constrained to be greater than zero 

so that examinees who have mastered more of the measured attributes on an item have 

increasing predicted correct response probabilities, and to prevent latent class switching (Lao 

& Templin, 2016).  

 The LCDM’s primary advantage is its flexibility; it can represent both compensatory 

and non-compensatory interactions between attributes, allowing for a range of diagnostic 

inferences based on the hypothesized structure of the cognitive processes being assessed. 

This model can capture complex interactions between attributes, where mastery of some 

attributes may compensate for deficiencies in others, or where certain combinations of 

attributes must be mastered together to achieve a correct response (Kunina-Habenicht, 2012). 

One of the LCDM’s significant strengths lies in its ability to serve as a foundational model 

for other DCMs. Simpler models like the DINA can be represented as special cases of the 

LCDM or G-DINA by adjusting its parameters.  

 The LCDM stands out for its flexibility and robustness, especially in handling 

complex attribute interactions. Simulation studies have demonstrated the robustness of the 

LCDM under various conditions, including Q-matrix misspecifications and different attribute 

correlations. Results shows, the accuracy of the model is highly dependent on the correct 

specification of the Q-matrix, which defines the mapping between items and attributes. A 

poorly specified Q-matrix can lead to biased estimates and misclassifications, underscoring 

the need for careful design and validation (Madison & Bradshaw, 2014). 
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 Although the LCDM is powerful and adaptable, its complexity in interpretation can 

sometimes make it challenging to apply in practice. Building on the flexibility of the LCDM, 

researchers have worked to create simpler models that are easier to use while still providing 

accurate and reliable diagnostic information.  

 The G-DINA model is also a type of general DCM. Where the LCDM use the logit 

link function the G-DINA uses the identity link function. This model extends the flexibility 

of the DINA model by allowing for compensatory, conjunctive, and disjunctive interactions 

among attributes. It provides a general framework for modeling multiple cognitive processes, 

accommodating scenarios where mastery of one attribute can compensate deficiencies in 

another. This flexibility makes G-DINA highly adaptable to diverse testing conditions, 

offering a more nuanced understanding of examinee abilities than the all-or-nothing approach 

of DINA (Chen & de la Torre, 2013). Like the LCDM, the accuracy of the G-DINA model 

heavily relies on the correct specification of the Q-matrix.  

 

Constrained DCMs 

 As highlighted by Henson et al.,(2009), the parameters in the general DCMs can be 

adjusted in various ways to create different DCMs, each designed to reflect different behavior 

in estimation. Attribute behavior can range from completely non-compensatory to partially 

compensatory to fully compensatory. In compensatory models, mastery of one attribute can 

compensate the lack of mastery in another attribute. In contrast, non-compensatory models 

require mastery of specific attributes, as the absence of a necessary attribute cannot be 

compensated for by mastering others. Constrained DCMs includes, DINA, CRUM, 1-

PLCDM, DINO model, and so on. 

 The DINA model, one of the most widely used DCMs (Sessoms & Henson, 2018),   

strictly non-compensatory model, DINA assumes that all relevant attributes must be mastered 
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to produce a correct response. It incorporates two item-level parameters: the “guessing” 

parameter, which estimates the chance of a correct answer from a student lacking mastery, 

and the “slipping” parameter, which accounts for the possibility that a student with full 

mastery may still respond incorrectly. While the DINA model’s simplicity makes it easy to 

use and interpret, it has certain limitations, it is not the most flexible model. In the estimation 

of the DINA model, the main effects are constrained a priori to be zero, only the intercept and 

interaction are estimated. This constraint forces attributes to behave in a non-compensatory 

way, meaning that non-mastery of one measured attribute cannot be compensated for by 

mastery of other measured attributes. Its rigid nature can lead to misclassifications in 

scenarios where compensatory attributes are important (Bradshaw & Templin, 2014). 

 Despite this, the DINA model remains attractive due to its straightforward structure 

and diagnostic insights, especially for educational practitioners seeking actionable feedback 

making it the most commonly used DCM (36%; Sessoms & Henson, 2018). For an item 

measuring two attributes, the form of DINA item response function is: 

 

𝑃(𝑋! = 1|𝛼") = 	
exp(𝜆!,$	 + 𝜆!,((*)(𝛼(. 𝛼*))

1 + exp(𝜆!,$	 + 𝜆!,((*)(𝛼(. 𝛼*))
 

 In the C-RUM model, also known as the additive CDM (ACDM; de la Torre, 2011), 

mastering additional attributes increases the probability of a correct response. This reflects 

the compensatory nature of the model, where the mastery of one attribute can aid the lack of 

mastery in another. For complex items, the C-RUM only estimates the main effects of the 

attributes and constrains interaction terms to be zero. This simplification makes the model 

more straightforward to interpret and apply, but it also limits its ability to capture complex 

dependencies between attributes. For an item measuring two attributes, the form of CRUM 

item response function is: 
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𝑃(𝑋! = 1|𝛼") = 	
exp(𝜆!,$	+	𝜆!,&(() +	𝜆!,&(*)	)

1 + exp(𝜆!,$	+	𝜆!,&(() +	𝜆!,&(*)	)
 

 

THE 1-PLCDM 

 This inclination towards simplicity continues to be addressed by the advancement of 

simple DCMs. A recently presented unique and simple DCM which prioritizes 

interpretability above complexity, the model is referred to as the 1-PLCDM (Madison et al., 

2023). This can be accomplished by enforcing item parameter constraints on the LCDM. The 

1-PLCDM estimates a singular main effect for all items assessing the same attribute and an 

intercept for each item. The model is analogous to the unidimensional Rasch model and 1-PL 

IRT models, both of which utilize a singular discrimination parameter for all items and an 

individual difficulty parameter for each item (DeMars, 2010). Madison et al. (2023) 

introduced this model in a single-attribute context and demonstrated its advantages, such as 

invariant measurement and the sufficiency of sum scores, using real data. They only defined 

it in the single attribute context, where the form of 1-PLCDM item response function is: 

𝑃(𝑋! = 1|𝛼") = 	
exp(𝜆!,$ + 𝜆&𝛼&)

1 + exp(𝜆!,$ + 𝜆&𝛼&)
 

Notice that the main effect is not subscripted because it is constrained to be equal across all 

items. Prior studies suggest that even when the equality constraint on main effects is violated, 

the 1-PLCDM still performs well, maintaining classification accuracy and reliability across 

different sample sizes and test lengths (Maas et al., 2024). 

 

Single Attribute 1-PLCDM 

 The single attribute 1-PLCDM centers around on a single latent attribute.  Its purpose 

is to determine whether a respondent has mastered one specific attribute by examining their 

responses to the items designed to assess a skill. However, the assumption of a single 
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attribute limits the model's ability in real-world assessments, where tests measure multiple 

attributes. By narrowing its focus to a single attribute, it is not applicable in multi-

dimensional assessment. Expanding this model to handle multiple attributes was suggested as 

an area for future research (Madison et al., 2023). 

 

Multi-attribute 1-PLCDM 

 The multi-attribute 1-PLCDM builds upon the foundation of its single-attribute by 

enabling the assessment of multiple cognitive skills or traits at once (Madison et al., 2023). 

Through this modification, the model becomes more versatile for multi attribute assessments 

like many diagnostic tests in educational settings. Despite assessing multiple attributes, the 

model maintains its structural simplicity by estimating a singular main effect for all items 

measuring the same attribute. This simplicity allows it to offer clear diagnostic feedback 

across various attributes without the additional complexity of multiple item parameters. To 

achieve the same properties (sum score sufficiency, invariant item/person ordering) as the 

single attribute 1-PLCDM, the model depends on a simple Q-matrix and assumes that the 

attributes are independent.  

 

DCM Misspecification 

 DCMs, and other psychometrics, have certain components that need to be specified 

according to the assessment. In certain situations, these specifications can be incorrect, 

potentially leading to biased results. For DCMs, there is the structural model, which 

parameterizes how attribute prevalence and how attributes are related to each other. And 

there is the measurement model, which parametrizes how attribute mastery corresponds to 

item responses. Here, I review research that has looked at DCM misspecifications of both 

model components and their effect on model performance.  
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Q-matrix Misspecification 

 The Q-matrix is a binary matrix used in cognitive diagnosis models (CDMs) to map 

test items to the attributes they assess. Each row represents an item, and each column 

represents a skill/attribute, with entries indicating whether a skill/attribute is required for an 

item. The Q-matrix is an item-by-attribute matrix of 0s and 1s indicating which attributes are 

measured on each item. If item 2 requires attribute 2, then cell 2 in the Q-matrix will be 1, 

and 0 otherwise.  

 Kunina-Habenicht et al. (2012) identified two types of Q-matrix misspecification 

that impact classification accuracy;  “underspecification” which happens when a skill that is 

actually needed for a test question is mistakenly left out (changing a "1" to "0"), as a result, 

the model does not estimate enough parameters for that question, leading to an incomplete or 

incorrect understanding of what skills are required, while “overspecification”  occurs when 

extra, unnecessary skills are assigned to a test question (changing a "0" to "1"). This causes 

the model to estimate more parameters than needed, adding noise and reducing accuracy 

(2012). Results from the study revealed adverse effect on classification accuracy and 

parameter recovery of latent class distributions, correlations, and attribute proportions. 

 De la Torre (2009) found that while small errors might be tolerated, too many lead to 

a significant drop in the Q-matrix diagnostic accuracy. 

 Rupp and Templin (2007) investigated Q-matrix misspecification in the DINA Model, 

examining its impact on parameter estimates and classification accuracy. Their findings 

indicate that incorrectly deleting attributes from the Q-matrix results in overestimation of 

slipping parameters, while unduly adding attributes leads to overestimation of guessing 

parameters. The study also found high misclassification rates for attribute classes where 
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attribute combinations were deleted, as well as incorrect dependencies between attributes 

reducing model accuracy.  

Madison and Bradshaw (2014) further emphasize the critical role of Q-matrix design 

in maximizing classification accuracy in the LCDM. Their study examined different Q-matrix 

designs and their effects on classification accuracy and reliability and convergence rates. 

They found that attribute isolation is essential, with each attribute needing to be measured in 

isolation at least once. Additionally, they warn against conjoined attributes, where two 

attributes are always measured together, as it causes ambiguity in skill classification, 

balancing the number of attributes per item is also important, as an excess of attributes per 

item does not necessarily improve classification accuracy. Together, these findings 

emphasize the need for precision in Q-matrix development. 

 

Attributes Structure Misspecification 

 Attribute structures describe how skills relate to each other, they define the 

relationships between skills or knowledge required to complete specific tasks. There are are 

two main aspects to attribute structures: the external shape, which shows the visual layout of 

attribute relationships, and the internal organization, which provides the numerical 

representation, correctly specifying these structures is important for model fit, item fit, 

accurate respondent classification, and reliable diagnostic feedback (Leighton et al., 2004). 

 Misspecifications in attribute structures, such as incorrect relationships between 

attributes or errors in hierarchical ordering, can impact classification accuracy leading to 

biased parameter estimates and misclassification of respondents (Templin, Henson, Templin, 

and Roussos 2008). Research emphasizes the implications of misspecifications of attribute 

structure which impacts respondent classification, cannot be compensated by other 

components like item design or correct item-attribute relationships (Kunina-Habenicht et al., 



 15 

2012; Rupp & Templin, 2008). Liu and Huggins-Manley (2016) showed that adding more 

profiles than needed doesn’t significantly affect accuracy, but omitting necessary ones does. 

Liu (2017) categorized attribute misspecifications into two types: sequence misspecification, 

when the hierarchical order of attributes is incorrectly defined, and design misspecification, 

which involve changes to the shape or number of connections in the attribute structure.  Both 

types affect the external shape and internal organization of attribute structures, resulting in 

overfitting, underfitting, or misfitting diagnostic models, all of which impact the accuracy of 

respondent classifications.  Liu’s simulations revealed that in three-attribute settings, 

sequence misspecification caused worse model fit, while in five-attribute settings, design 

misspecification had greater negative impacts. In terms of internal organization, overfitting 

models performed better than underfitting and misfitting ones. The results reinforce how 

important correct structure is to accurately classify student. To reduce error, researchers 

recommend that attribute structures be supported in theory and empirical validation. Liu and 

Huggins-Manley (2016) emphasized the need for theory-driven or data-supported structures.  

 

Measurement Model Misspecification 

 Incorrect measurement model specification poses serious challenges in psychometric 

modeling, especially for DCMs. When measurement models are wrongly specified, it can 

lead to flawed parameter estimates and incorrect skill classifications. Kunina-Habenicht, 

Rupp, and Wilhelm (2012) explored the impact of two key types of measurement model 

misspecification within LDCM; Q-matrix misspecification and interaction effect 

misspecification. These types of misspecifications can significantly influence the accuracy of 

parameter estimates and the resulting classification of respondents. Interaction effects capture 

relationships between different attributes that influence the probability of a respondent 

endorsing an item. Misspecification occurs when interaction terms among attributes are 
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omitted from a diagnosis model. Their research found that Q-matrix misspecification had the 

biggest negative effect on classification accuracy, while omitting interaction terms especially 

two-way or three-way interactions mostly reduced parameter precision.  

 In addition, Madison and Bradshaw (2018) examined the performance of the 

longitudinal DCMs when measurement invariance is assumed but item parameter drift (IPD) 

is present. Measurement invariance refers to whether the meaning of the measured construct 

and its relationship with item responses remain constant over time or across different groups.   

 Their simulations showed that while the TDCM retained reliable classification 

accuracy even with high IPD, its ability to recover accurate item parameters dropped as IPD 

increased. These findings suggest that the model remains reliable for diagnosing skills but not 

it comes to recovering item parameters. This highlights the importance of accounting for 

measurement changes when analyzing long term data. 
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CHAPTER 3 

METHODS 

 This chapter outlines the methods employed to evaluate the robustness of the 1-

PLCDM under assumption violations. Two simulation studies were conducted to address the 

research questions. The first simulation study examines how attribute correlation affects the 

performance of the 1-PLCDM. The second simulation study explores the impact of assuming 

a simple Q-matrix structure when the items require a more complex Q-matrix structure. 

 

Simulation Study 1: Effects of Attribute Dependence  

 The purpose of Simulation Study #1 was to evaluate how attribute dependence affects 

the classification accuracy and reliability of the 1-PLCDM. Here, I describe the fixed and 

manipulated factors, then describe the evaluation metrics.  

Manipulated factors 

 This simulation study manipulated one factor: attribute correlation. The attribute 

correlations  were pulled from a random uniform distribution. A compound attribute 

correlation structure was implemented, ensuring that all pairwise attribute correlations were 

the same. This made it possible to analyze in detail how the model performs across the entire 

range of possible attribute correlation values.  

Fixed factors 

 In order to isolate the impact of the correlation of attributes in the study, several 

parameters were kept fixed across simulation conditions:  

 Test Length: The number of items used to simulate the test was set at 20 items where 

four attributes were each assessed by five items. Previous study on DCMs conducted by 
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(Maas et al., 2024) utilized 5 items per attribute, suggesting that 20 items provide a 

representative and robust dataset for simulation.  

 Sample size: The sample size was set at 1000 examinees for each simulation 

condition. This sample size was chosen to provide sufficient data for reliable estimation of 

model parameters while reflecting a realistic testing scenario and is within the range of other 

1-PLCDM simulation study sample sizes (Maas et al., 2024). 

 Examinee Attribute Profiles: To simulate item response data, first attribute profiles 

are generated for each examinee, taking into consideration the base rates of mastery and the 

attribute correlations. The base rate of mastery was set at .50 for all attributes. A base rate of 

.50 indicates that out of all examinees, 50% were expected to master each attribute. The 

attribute profiles were generated using a multivariate binary distribution, which simulates 

mastery states (1 = mastered, 0 = not mastered) while incorporating attribute correlations.  

 Q-matrix design: A simple Q-matrix structure was employed for the study. This 

design specifies that each item measures a single attribute, simplifying the relationships 

between test items and attributes. The simplicity of the Q-matrix was intentional to focus on 

the effects of attribute correlation without introducing additional complexity from the item-

attribute mappings.  

 Item Parameters: To generate item response data, item parameters were assigned 

fixed values to ensure consistent response probabilities across the simulation. In this study, 

each item had a fixed intercept of – 1.5 and main effect of 2. These parameter values 

produced a mean item discrimination of .45 which can be considered average item 

discrimination (Maas et al, 2024).  

 Number of Replications: The number of replications was set to 1000 to ensure 

robust and reliable results in the simulation study. This large number of replications provides 
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a stable estimate of the model's performance by minimizing the impact of random variability 

inherent in the data generation process.  

 

Data Generation 

 Examinees and item responses for each replication were generated with code written 

within the computational freeware environment R Version 4.4.3 (R Core Team, 2019). I 

estimated the 1-PLCDM using the TDCM package (Madison et al., 2024). The TDCM 

package builds on the CDM package (Robitzsch, 2025), which uses marginal maximum 

likelihood estimation via the expectation maximization algorithm (Dempster, Laird, Rubin 

1977). Within the TDCM package, I used summary functions, tdcm.summary 

and mg.tdcm.summary, for single group and multigroup analyses, respectively to extract 

item, person, and structural parameters. Finally, results were compiled and summarized using 

R as well.  

 

Evaluation Metrics 

 Classification Accuracy. In this study, classification accuracy was defined as the 

proportion of examinees whose model-estimated mastery status matched their generated 

mastery status. Classification accuracy was computed for each attribute, or marginally, then 

averaged across the four attributes.  

 Classification Reliability. Reliability was evaluated by examining the consistency of 

classification outcomes across multiple simulation replications. Reliabilities of the 

classifications were calculated according to the tetrachoric correlation-based metric defined 

by Templin and Bradshaw (2013). High reliability indicates that the model produces stable 

and precise classifications.  
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Simulation Study 2: Effect of Q-matrix Simplification  

 The purpose of Simulation Study #2 was to explore the impact of reducing to a simple 

Q-matrix structure when the items require a more complex representation. First, I describe 

the fixed and manipulated factors, then the evaluation metrics. In this study we define Q-

matrix complexity as the number of test items that assess more than one attribute. For 

example, in the 20% complexity condition below, 20% (4/20) of the items measure two 

attributes.   

 

Fixed factors 

 For consistency, most conditions were the same as Simulation Study #1: test length 

was 20 items (five per attribute); number of attributes was four; sample size was 1000; base-

rates were .50 and attribute correlations were fixed at .50. One difference from Simulation 

Study #1 was item response generation as this study had complex items. For complex items, 

the responses were modeled to account for interactions between multiple attributes, meaning 

that a single item could assess more than one attribute simultaneously. 

Item Parameters: To estimate the CRUM model, item parameters were pulled from a 

uniform distribution of intercept (−1.75, -1.25), and the main effects from (1.75, 2.25). We 

used a distribution to draw the main effects because setting a specific value for the main 

effects would prevent meaningful comparisons of attribute main effects within the CRUM 

model. 

 

Manipulated factors 

 This simulation study manipulated one key factor: Q-matrix design, which varied in 

complexity with four levels (0%, 20%, 40%, 60%, and 80%).  
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• In the 0% complexity condition, all items were simple, each measuring just one 

attribute. 

• In the 20% complexity condition, four out of the 20 items were complex, with each 

measuring two attributes. Specifically, items 1, 6, 11, and 16 each measured two 

attributes. 

• In the 40% complexity condition, eight out of the 20 items were complex, with items 

1, 2, 6, 7, 11, 12, 16, and 17 each measuring two attributes. 

• In the 60% complexity condition, twelve out of the 20 items were complex, with 

items 1, 2, 3, 6, 7, 8, 11, 12, 13, 16, 17, and 18 each measuring two attributes. 

• Finally, in the 80% complexity condition, sixteen out of the 20 items were complex, 

with items 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, and 19 each measuring two 

attributes. 

 

Data Generation 

 In Simulation Study 2, examinees were generated with code written within the 

computational freeware environment R. I initially estimated the CRUM model to compare 

main effects, with the aim of simplifying the Q-matrix. In this process, the attribute with the 

larger main effect was identified as the primary attribute and the second measured attribute 

was dropped from that item in the updated Q-matrix. After simplifying the Q-matrix, I fitted 

the 1-PLCDM to the observed responses. I estimated 1000 replications per condition, 

expecting this to be enough replications to provide stable summaries of results.  

 

Evaluation Metrics 

 Similar to Simulation Study #1, I used classification accuracy and reliability as 

evaluation metrics. 
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CHAPTER 4 

RESULTS 

 This chapter presents the results obtained from two simulation studies used to 

evaluate the robustness of the 1-PLCDM under conditions where its assumptions are violated. 

Each study assesses classification accuracy and reliability as defined in Chapter 3. 

 

SIMULATION STUDY RESULTS 

 This chapter has two sections. Section 1 summarizes the findings from Simulation 

Study 1, which examines how the 1-PLCDM performs when attributes are correlated, 

violating the independence assumption. Section 2 summarizes the findings from Simulation 

Study 2, which looks into the impact of simplifying Q-matrix structures by changing the 

number of items that measure more than one attribute. Both studies look at how assumption 

violations effect model accuracy. 

Section 1: Simulation Study 1 

Classification Accuracy 

 Classification accuracy is the proportion of examinees whose estimated mastery state 

matched their generated mastery state. Figure 1 shows a scatter plot of the classification 

accuracy and the corresponding correlation values across 1000 simulation replications. Each 

point on the plot represents the marginal attribute accuracy of the 1-PLCDM model for a 

single replication. To better understand the performance of the model in accurately 

classifying respondents under different levels of attribute correlation, a linear regression was 

fitted where mean accuracy was the outcome and the attribute correlation was the predictor. 

Overall, the model’s classification accuracy remained stable.  
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• The intercept (𝑏$ =	0.848) indicates that when the attribute correlation was 0 (i.e. 

when attributes are independent), the predicted mean classification accuracy is 0.848. 

• The slight positive slope (𝑏& =	0.003) suggests that for every one-unit increase in 

attribute correlation (i.e., from 0 to 1), the predicted mean accuracy would increase by 

0.003. 

• The effect size (R² = 0.018) means that only 1.8% of the variability in the dependent 

variable is explained by the model. 

 While the effect was statistically significant (p < 0.001), the r-squared value indicates 

a minimal effect size, the positive effect is not practically significant; when there was no 

correlation, the model predicts a mean accuracy of 0.848 and with the maximum correlation 

of 1.0, the model predicts a mean accuracy of 0.851. Even when attributes were highly 

correlated, the model performed well. In other words, even as the attributes relate with each 

other, the model's classification accuracy remained consistent. The results show that accuracy 

did not decline as the correlations increased.  

 

Classification Reliability 

 In addition to accuracy, we assessed the 1-PLCDM's classification reliability, which 

measures how consistently the model classifies respondents. In this study, classification 

reliability was determined by calculating tetrachoric correlations between the model's 

predicted classifications and the true simulated mastery status (Templin & Bradshaw, 2013). 

A similar regression was conducted to assess how classification reliability varied across 

different level of attribute correlation. Here too, the trend was relatively flat, and no 

significant or meaningful decline in reliability was observed as correlation increased. 

Reliability stayed within the moderate range, even when attributes were highly correlated. 
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These results strongly support the robustness of the 1-PLCDM against the violation of the 

attribute independence assumption. 

 To better understand the reliability of the model in accurately classifying respondents 

under different levels of attribute correlation, a linear regression was fitted where mean 

reliability was the outcome and the attribute correlation was the predictor. Overall, the 

model’s reliability remained stable.  

• The intercept (𝑏$ =	0.809) indicates that when the attribute correlation was 0 (i.e. 

when attributes are independent), the reliability is 0.809. 

• The slight positive slope (𝑏& =	0.001) suggests that for every one-unit increase in 

attribute correlation (i.e., from 0 to 1), the reliability would increase by 0.001. 

• The effect size (R² = 0.0003) means that only 0.03% of the variability in the 

dependent variable is explained by the model. 

 

Section 2: Simulation Study 2 

Classification Accuracy 

 The results from Simulation Study 2 reveal how classification accuracy under the 1-

PLCDM model varies with increasing levels of Q-matrix complexity. As illustrated in Figure 

3, mean classification accuracy declined a little, but still within reasonable range as item 

complexity increases. At the lowest level of complexity (i.e., 0%), the model demonstrates 

strong performance, achieving a mean classification accuracy of approximately 0.85. This 

suggests that when the Q-matrix is simple structure and correctly specified, the model can 

effectively differentiate between mastery and non-mastery profiles. As the proportion of 

complex items increases to 20%, accuracy remains relatively stable, indicating that the model 

maintains robustness in the presence of a small number of multi-attribute items. However, a 

noticeable decline begins as complexity rises to 40%, with mean accuracy dropping to around 
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0.83. This trend continues with further increases in complexity. At 60% complexity, the mean 

accuracy falls to approximately 0.81, and at the highest level of complexity (80%), accuracy 

declines further to below 0.78. These findings suggest that the 1-PLCDM’s ability to classify 

attribute mastery declines as item complexity increases, but still within an acceptable range.   

 Thus, as the structure of the Q-matrix became increasingly complex, the model’s 

ability to correctly classify examinees declined somewhat, but still within an acceptable 

range.  

 

Classification Reliability 

 Figure 4 shows the average classification reliability across simulation replications for 

each Q-matrix complexity condition. As shown in the results, reliabilities ranged from .81 to 

.76, with a mean of .77 and a median of .78. These values indicate a generally stable 

classification performance, even as item complexity increased. Across the five complexity 

levels (0%, 20%, 40%, 60%, and 80%), reliability began at approximately .81 under the 

simple Q-matrix structure This high reliability suggests that when items each measure only a 

single attribute, the 1-PLCDM can classify examinees’ mastery statuses with strong 

consistency. As complexity increased to 20% and 40%, reliability declined only slightly, 

remaining close to .79 and .78, respectively. A more noticeable decrease occurred at 60% 

complexity, where reliability fell to its lowest point at approximately .76. However, this 

decline was still relatively modest and did not reflect a breakdown in classification 

consistency. Interestingly, at the highest complexity level (80%), reliability moved to .79, 

nearly returning to the levels observed under simpler conditions. Figure 4 shows this trend 

visually. 
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 These findings suggest that while the model is somewhat sensitive to item 

complexity, it remains reliable enough for practical use in educational assessments. 

Assessment designers may therefore consider using the 1-PLCDM, even in complex testing 

environments. 

 

Summary of Findings: 

 The 1-PLCDM is highly robust to violations of attribute independence. It maintains 

strong accuracy and high reliability, even when attributes are correlated. Increasing item 

complexity shows a slight decline in classification accuracy, while reliability remains 

consistent. 
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CHAPTER 5 

CONCLUSIONS 

 This study examined the robustness of a recently developed DCM, the 1-PLCDM, 

which offers a simple DCM with straightforward interpretation of parameter estimates and 

preferable measurement properties. It imposes item parameter constraints on the LCDM, 

estimating a singular main effect for all items assessing the same attribute, along with an 

intercept for each item. The 1-PLCDM is highly valued for its simplicity and ease of 

interpretation. To afford these properties, the 1-PLCDM makes strong assumptions about the 

data and the item response generation process that may not hold in practical educational 

assessments. The purpose of this study was to examine its performance when these 

assumptions are violated. Specifically, the assumptions that (1) attributes are independent and 

(2) each item measures a single attribute, are often violated in real-world testing scenarios.  

 To conduct this study, I used a simulation study to control attribute relationships and 

item complexity. The analysis was carried out using the R programming environment, with 

the TDCM package developed by Madison et al. (2025) utilized for model estimation. The 

study explored two key variables: attribute correlation and Q-matrix complexity. First, the 

impact of attribute correlation was investigated by varying the dependencies between 

attributes using a uniform distribution. The objective was to evaluate how the 1-PLCDM 

performed when the assumption of attribute independence was violated. The second area of 

focus was Q-matrix complexity, where test items were designed to assess either one attribute 

or multiple attributes. The complexity of these items varied from 0% to 80%. A simplified Q-

matrix was used to estimate the 1-PLCDM, while the data were generated using a more 
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complex Q-matrix. This allowed for a direct assessment of how item complexity affected the 

model’s ability to classify respondents accurately. 

 The results from Simulation Study 1 show that the 1-PLCDM holds up well, even 

when the attributes being assessed are correlated. This means it can still be trusted to give 

meaningful diagnostic feedback, even in real-world scenarios where attributes correlate, 

making it a reliable option for classroom assessments and other educational settings. 

 The model maintained high classification accuracy and reliability, with regression 

analysis revealing a statistically significant but small positive relationship between attribute 

correlation and classification accuracy. This suggests that while modest correlations between 

attributes slightly improved classification accuracy, the effect was minimal. In contrast, as 

item complexity increased, the model’s performance showed a slight reduction in accuracy. 

However, this decrease was small, and the model still produced consistent, reliable results, 

with the accuracy remaining within an acceptable range. 

 These findings highlight that the 1-PLCDM is robust in environments where skills 

correlate. This makes it a reliable tool for classroom assessments, where attributes are often 

correlated. Educators can confidently use the 1-PLCDM, knowing that moderate correlations 

between skills do not undermine its diagnostic capability. The model effectively balances 

simplicity with accuracy, allowing educators to simplify the assessment process without 

sacrificing the quality of the results. 

For practitioners considering the 1-PLCDM, this study provides the following guidance: 

• The model performs well under typical classroom conditions where skill correlations 

exist. 

• Its reliability is stable enough to support data-driven instructional decisions. 

• Caution is advised when using the model in assessments with many complex items 

unless steps are taken to reduce item complexity in the Q-matrix. 
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 In summary, this study validates the 1-PLCDM as a robust and practical tool for 

diagnostic assessment, particularly in environments where simplicity, clarity, and usability 

are prioritized. Its overall performance remains stable and interpretable. These findings 

enhance our understanding of where and how the 1-PLCDM can be applied effectively, 

thereby contributing to the ongoing refinement of diagnostic measurement modeling for 

educational use. 

 

Limitations and Future Directions 

 The simulation study had some limitations. While the study introduced variation in 

the Q-matrix structure to test different levels of complexity, the most complex condition only 

included items measuring two attributes. This does not capture scenarios where items assess 

three or more attributes at once, which is common in real-world diagnostic assessments. In 

practice, Q-matrices often reflect more diverse and nuanced patterns of relationships between 

attributes. Additionally, the study fixed factors such as test length, sample size, and item 

quality, which may have constrained its ability to fully capture the variability and complexity 

typically seen in real-world assessment data. 

 Future research could benefit from testing the model with a broader and more realistic 

Q-matrix structure, including more complex items that assess multiple attributes. Also 

applying the model to empirical data will allow for an evaluation of its effectiveness in real-

world contexts. Examining model fit across a wider range of conditions can further assess its 

accuracy and applicability in different settings. Extending the 1-PLCDM to more complex 

applications, such as longitudinal application or dual-purpose applications (e.g., scaling and 

classification), would allow for exploration of its potential in more diverse and nuanced 

settings. By broadening the scope of the study and applying the model to real-world data, 
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future research can provide deeper insights into the practical utility and limitations of the 1-

PLCDM and its ability to handle more complex real-world situations. 
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Table 1 
 
Regression analysis for attribute correlation 
 

Coefficient Estimate Std. Error t-value p-value 

Intercept 0.848 <0.001 2049.8 <.001 

Attribute correlation 0.003 0.001 4.3 <.001 
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Table 2 
 
Regression analysis for Reliability 
 

Coefficient Estimate Std. Error t-value p-value 

Intercept 0.809 0.001 1133.2 <.001 

Attribute correlation 0.001 0.001 0.564 0.573 
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Figure 1 
 
Scatter plot showing classification accuracy for varying levels of attribute correlation 
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Figure 2 
 
Scatter plot showing classification reliability for attribute correlation 
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Figure 3 
 
Scatter plot showing classification accuracy for Q-matrix Complexity 
 
 



 40 

 
 
 
Figure 4 
 
Scatter plot showing classification reliability for Q-matrix Complexity 
 

 

 


