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ABSTRACT 

 Causal analysis of covariance structures through structural equation modeling represents 

an indispensable tool for theory development and theory testing. In order to decide on whether to 

accept or reject a theoretical model, researchers rely on goodness-of-fit indices. However, the 

majority of currently used fit indices are global, that is, they are a function of the fit of both the 

measurement and the structural model. As has been shown by McDonald and Ho (2002) and 

O’Boyle and Williams (2011), this often leads researchers to erroneously accept misspecified 

models because good fit of the measurement model masks bad fit of the structural model. This 

study aims to provide alternative, more accurate fit indices. Two general frameworks for fit 

indices that rely on fit of the structural model only were developed, testing James’ et al. (1982) 

condition nine and ten. Path-related fit indices were derived from the two frameworks and their 

performance under several different cutoff values was tested in a simulation of six population 

models. Their performance was compared to the performance of four of the most popular and 

widely used global fit indices CFI, RMSEA, TLI, and SRMR. Results show that all newly 

developed path-related fit indices are considerably more accurate in rejecting even slightly 



 

misspecified models than any of the global fit indices. Recommendations and implications for 

theory and practice are discussed. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 Over the past three decades, structural equation modeling (SEM) has become an essential 

tool for model testing in a variety of scientific disciplines.  SEM allows researchers to investigate 

causal interrelationships between a set of variables.   Using SEM, one can determine whether the 

propositions stated in a theoretical model hold when evaluated against empirical data 

(Moshagen, 2012).  This makes SEM an indispensable technique for developing, evaluating and 

modifying theories (Anderson & Gerbing, 1988).  The popularity of SEM stems from the many 

advantages it provides compared to other techniques such as regression: Using SEM, one can 

assess complex models with multiple dependent variables.  Furthermore, one can estimate the 

full model at once, which allows one to test various hypotheses in one step instead of conducting 

separate analyses as in path analysis.  One of the greatest advantages of SEM is that it allows 

researchers to model measurement error contained in a model’s variables, which makes it 

superior to regular regression techniques with composite measures (Kline, 2005), which assumes 

outcome and predictor variables are measured without error.  Thus, problems with measures may 

be identified so that they are not wrongfully attributed to theoretical, substantive causal 

relationships.  Moreover, SEM provides researchers with a means to simultaneously assess the 

interrelationships between manifest indicators and their underlying latent factors as well as the 

interrelationships and causal structures among latent factors (Anderson & Gerbing, 1988).  In 

addition to theory testing, there are other useful applications of SEM such as scale development, 

construct validation, and measurement invariance (MacCallum & Austin, 2000).    
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 Researchers have used SEM to evaluate theoretical models in such diverse fields as 

psychology (Aryee, Chen, Sun, & Debra, 2007), economics (Küpper & Burkhart, 2009), 

marketing (Kemp & Bui, 2010), accounting (Stone, Bryant, & Wier, 2010), educational sciences 

(Velathuyam & Aldridge, 2013), and even bioinformatics (Wu et al., 2013).   For example, SEM 

has been employed to study consumer behavior (Kemp & Bui, 2011), employee outcomes of 

abusive supervision (Aryee et al., 2007), antecedents of childrens’ motivation to learn 

(Velathuyam & Aldridge, 2013), and determinants of patients’ adherence to medication (Boyer 

et al., 2012).   By evaluating causal models, researchers test scientific theories, thereby 

enhancing knowledge about construct interrelationships and building a foundation for subsequent 

research.  Furthermore, establishing causal relationships between variables may serve as a basis 

for researchers and practitioners to design interventions, which oftentimes may be costly and 

time-consuming.  Due to its theoretical and practical implications, it is crucially important that 

researchers can accurately evaluate proposed theoretical models using SEM.   The goal of the 

current study is to improve one of the tools  researchers use to interpret the results of SEM to 

help them draw the right conclusions from their data and advance theory-building and practice in 

their respective fields.  Specifically, several new measures to more accurately evaluate causal 

models will be developed and their performance will be tested in a simulation study. 

 Improving these tools is necessary because the measures researchers currently use to 

evaluate their models lead in many cases to a misinterpretation of their results.  Before outlining 

the reasons for this, some introductory comments about SEM will provide the context for the 

ensuing discussion. 

 Latent variable SEMs consist of two distinct sub-models: (a) the measurement model and 

(b) the structural model.   In the measurement portion of the model, the relationships between 

observed variables and the latent factors representing them are examined.   In the structural 
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portion of the model, the hypothesized causal relationships between latent variables are 

evaluated.  As such, different hypotheses are assessed in the measurement model and structural 

models.  In order to test these hypotheses, the overall composite model is assessed against 

empirical data.  If the pattern of covariances in the sample data is similar to an estimated 

covariance matrix based on the hypothesized relationships in the model, it is said to have good fit 

to the data.  Misfit in the measurement model indicates that the observed variables might not 

measure what they were designed to measure.  If misfit occurs in the structural portion of the 

model, the hypothesized structural relations do not hold in the sample.    

 In order to quantify the degree to which a model fits the sample data and to decide 

whether to accept or reject a model, researchers have developed a multitude of different 

goodness-of-fit indices (e.g.  Bentler, 1990; Bentler & Bonett, 1980; Mulaik, James, van Alstine, 

Bennett, Lind, Stilwell, 1989; Tucker & Lewis, 1973).  Fit indices provide researchers with a 

single numerical value that informs researchers about how well their theoretical model 

fits the sample data.  Practically all of these fit indices can be considered global, which means 

that they provide a measure of how well the overall composite model fits the data.  One 

confounding problem with using global fit indices is that when evaluating the source of misfit, 

they do not provide information on the location of the misspecification.  In other words, if a 

model does not fit the data well, a global fit index does not indicate whether the misspecification 

occurred in the measurement model, the structural model, or both.  Global fit indices alone do 

not tell the researcher if there was an issue with their measures, which might be fixed by 

modifying the measurement model, or if the hypothesized causal relationships were not 

confirmed in their data.   

 Even more problematic, a global fit index might indicate good fit of the composite model, 

however, this does not rule out the possibility that there is misfit in either portion of the model.  
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As such, there is the danger that researchers obtain favorable goodness-of-fit indices despite 

misspecifications in the structural model, consider their hypotheses as supported and publish 

their research, which then might become the foundation for subsequent research.   

 Soon after goodness-of-fit indices gained popularity among researchers, various authors 

recognized this problem and started questioning the appropriateness of evaluating global model 

fit to draw conclusions about causal relations (e.g. Marsh, 1987; Marsh & Hocevar, 1985; 

Mulaik et al., 1989; Sobel & Bohrnstedt, 1985).  Despite their warnings, global fit indices 

continue to be widely used and researchers generally take fit index values above recommended 

cut-off values as evidence of support for their hypotheses (O’Boyle & Williams, 2011).  A recent 

re-investigation of published studies show how pervasive the problem is: In more than two thirds 

of studies examined, authors stated that their hypotheses were supported when overall fit of their 

model was good.  However, a separate examination of the measurement and structural models 

yielded that the causal relationships did not hold in the sample data (O’Boyle & Williams, 2011).   

 A handful of researchers have devoted attention to the issues related to global fit indices 

and have suggested alternative ways of assessing model fit that focus more on the structural 

portion of the model (Marsh, 1987; Marsh & Hocevar, 1985; McDonald & Ho, 2002; Mulaik et 

al., 1989; O’Boyle & Williams, 2011; Sobel & Bohrnstedt, 1985; Williams & O’Boyle, 2011).  

In their recent study, Williams and O’Boyle (2011) discussed two fit indices that focus 

exclusively on the structural portion of models and do not take into account any properties of the 

measurement model.  They conducted a re-analysis of simulation data published earlier by 

Williams and Holahan (1994) and examined the performance of their two proposed fit indices.  

Williams and O’Boyle (2011) were able to show that they were much more accurate than global 

fit indices in accepting correctly specified models and rejecting misspecified models.  Therefore, 
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they recommended that these path-related fit indices should from thereon be used in addition to 

global fit indices to assess model fit. 

 While Williams and O’Boyle’s (2011) work is an important step towards more accurate 

model testing, they failed to include several key points: First, they presented only two specific 

path-related fit indices.  However, these fit indices can be shown to be special cases of a general 

framework for the evaluation of the structural portion of a model that is able to incorporate many 

stand-alone fit index researchers may choose.  Such general frameworks for path-related fit 

indices have not been described to date.    

 A second issue with Williams and O’Boyle’s article is that they did not provide cutoff-

points for the two path-related fit indices whose performance they assessed.   This is problematic 

because path-related and global fit indices do not reflect the same properties of a model: As 

mentioned above, the values of path-related fit indices are a function of fit in the structural 

portion of the model, whereas global fit indices are a function of fit in the composite model.  

Therefore, cutoff points recommended for global fit indices will most likely not apply to path-

related fit indices.  Without appropriate cutoff values, there is no useful information to be gained 

from path-related fit indices.  As such, it is necessary to empirically derive cutoff values 

specifically for path-related fit indices that allow researchers to decide whether to accept or reject 

a model based on the values obtained.     

  The current study will address these important points and provide several novel 

contributions.  Two general frameworks will be outlined from which researchers can derive fit 

indices that focus only on the structural portion of a model.  Fit indices based on these 

frameworks will provide a test of two complementary hypotheses: Fit indices based on the first 

framework will allow researchers to assess structural model fit in regards to the hypothesis that 

causal relationships not estimated in a model are in fact zero.  Three exemplary path-related fit 
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indices that incorporate different stand-alone fit indices will be developed based on this 

framework.  Fit indices derived from the second framework test the hypothesis that the estimated 

paths in a model are are indeed non-zero.  Using simulation data, the ability of these fit indices to 

identify correctly specified and misspecified models will be tested.  Furthermore, 

recommendations for appropriate cutoff values will be given.  This will facilitate researchers’ 

decision whether to accept or reject a model. 

 By using fit indices derived from the two frameworks presented in this study, future 

researchers will be able to subject their models to a more stringent test than by using global fit 

indices alone and can thus be more confident in their models if they are found to provide 

acceptable fit to the data.   

 The remainder of this chapter is organized as follows: first, some technical details of 

SEM will be outlined to provide a foundation for the discussion of fit indices.  Next, issues with 

model testing that motivated the development of fit indices will be discussed.  A typology of 

existing global fit indices will be provided and their respective properties will be discussed 

briefly.  Shortcomings of these global fit indices will then be outlined and an overview over 

different researchers’ suggestions to alleviate these issues will be given.   Finally, the general 

frameworks for path-related fit indices will be developed and several different fit path-related fit 

indices will be derived from these frameworks. 

SEM – Definition and Process 

 Structural equation models can be defined as a set of complex statistical hypotheses 

(McDonald & Ho, 2002).  These hypotheses involve both the measurement model and the 

structural portion of a model.  As mentioned above, in the measurement model, a researcher 

examines whether the hypothesized relationships between latent variables and the corresponding 

manifest variables chosen to represent the latent variables are supported in the sample data 
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(Lance & Vandenberg, 2002).  More specifically, one examines whether on the one hand, 

observed variables have a non-zero relationship with the latent variables they were designed to 

measure, and on the other hand, are not directly related to any other latent variables in the model.   

 In the structural portion of the model, the relationships between the latent variables are 

assessed in respect to two equally important hypotheses.  These two hypotheses were presented 

in James’ et al. (1982) seminal book on causal analysis and arguably represent the foundation of 

hypothesis testing in SEM.  According to James et al. (1982), ten conditions must be fulfilled to 

make causal assumptions, of which conditions 9 and 10 are central to this study.  Condition 9 

states that, in order to claim that a causal model is consistent with the data, the parameters 

estimated in the model must be significantly different from zero.  Condition 9 can be tested 

either by examining each estimated parameter individually for significance or by conducting 

nested model comparisons, which will be explained in more detail below.  Condition 10, on the 

other hand, focuses on the parameters in a model that are not being estimated.  Not estimating 

specific parameters is tantamount to hypothesizing that they are equal to zero, which represents 

an important hypothesis in and of itself, a fact that is very often overlooked by researchers 

(Williams & O’Boyle, 2011).  In other words, the paths not included in a model are of equal 

importance as the estimated paths.    

 McDonald and Ho (2002) therefore suggested that in developing their model, researchers 

should not only provide rationale on why they hypothesize certain relationships, but also state 

why they did not estimate certain parameters in their model.  In summary, assessing an SEM 

informs the researcher about whether the measurement model is correctly specified, and whether 

in the structural model, estimated paths are non-zero while the paths excluded from the model 

are in fact zero.   
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After the pattern of parameters hypothesized to be zero/non-zero has been specified, the 

model is estimated.  The estimation procedure involves an iterative process, whereby the 

discrepancy of a covariance matrix  implied by the interrelationships of variables in the 

hypothesized model and an observed covariance matrix S is minimized through a fit function 

(Lance & Vandenberg, 2002).  If the hypothesized model fits the sample data well, the residuals 

between the model-implied covariance matrix  and the sample covariance matrix S are  

expected to converge asymptotically to zero.  While there are several different fit functions used 

in SEM (e.g.  maximum likelihood, weighted least squares, generalized least squares), the 

maximum likelihood fit function FML is by far the most widely employed (Lance & Vandenberg, 

2002; Moshagen, 2012).  It is defined as 

               (1) 

 where  is the natural logarithm of the determinant of the model-implied 

covariance matrix,  is the natural logarithm of the determinant of the sample covariance 

matrix,  denotes the trace of S post-multiplied by the inverse of ,and p refers to 

the number of manifest variables in the model.  In the limit if  and S are identical, the 

difference between  and  will be equal to zero, the inverse of  will be equal to 

S, too, so that their product will yield a p x p identity matrix I.  As such, FML minimizes the 

discrepancies between covariances (  - ) and variances (  - p) of  

and S (James et al., 1982; Lance & Vandenberg, 2002).   

 Several assumptions underlie the maximum likelihood fit function (Marsh, Balla & 

McDonald, 1988): The observed variables must have a multivariate normal distribution and be 

linearly related to the latent constructs.  The analysis must be based on a sample covariance 

)ˆ(
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matrix, as opposed to a correlation matrix (Jöreskog & Sörbom, 1981).  Furthermore, the model 

must be identified and sample size N must be large (Marsh et al., 1988).  If these assumptions are 

met, then N-1 times the value of the maximum likelihood discrepancy function FML is 

asymptotically distributed as the 2
-statistic.  This property allows for statistical hypothesis 

testing.  Smaller 2
-values indicate better model fit, so that the 2

-statistic can be considered a 

badness-of-fit test.  Good model fit (or a lack of badness of fit) is indicated by a non-significant 

2
-value, so that a model is rejected when its 2

-value is significantly different from zero.  The 

null hypothesis states that model fit is perfect except for sampling error and that the model-

implied covariance matrix does not differ from the sample covariance matrix.  It is rejected when 

2 
is significantly different from df, the expected value under H0  (Bentler & Bonett, 1980).    

 However, there are serious issues with using the 2
-statistic as a determinant of model fit.  

(N-1)*FML is only asymptotically distributed as 
2
, which means that only with large samples, 

the fit function follows the 2
-distribution that enables statistical significance testing.  Therefore, 

the 2
-statistic is directly sample-size dependent and increases with larger samples.  This means 

that, as sample size increases, so does the danger of rejecting a model that in reality fits the data 

well, thereby committing a Type I error.  Even trivially small discrepancies between  and S 

will lead to rejection of the null hypothesis and thus the rejection of one’s model.  At the same 

time, one runs the danger of committing a Type II error when testing one’s model with data 

derived from small samples, as with smaller samples, models are more likely to not be rejected 

even if in reality, they may not fit the data well (Bentler & Bonett, 1980).  As such, the 2
-

statistic is not always clearly interpretable (Bentler, 1990).   

 This is problematic for various reasons: In order to support their hypotheses, researchers 

might be tempted to test their models purposefully on small samples or use only subsamples of  

)ˆ(
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their sample.  This, however, runs counter to the very purpose of theory development and testing, 

namely, uncovering relationships between variables that can be generalized to the population or 

large parts thereof (Marsh et al., 1988).  Moreover, a statistically significant 2
 may not 

necessarily mean that the fixed parameters were poorly specified (Jöreskog, 1969; Mulaik et al., 

1989).  Rather, there could be other problems with the model due to a violation of any one of 

James’ et al. (1982) conditions of causality such as, for example, lack of self-containment.   

 Therefore, Mulaik et al. (1989) claimed that researchers should not be interested as much 

in absolute fit as in close fit of their model to the data.  Consequently, there might not be much 

value in assessing model fit in terms of a strictly dichotomous accept-reject decision strategy.  In 

accordance with Mulaik et al. (1989), researchers have argued that theoretical models are 

designed with the goal of reflecting approximations instead of perfect representations of reality.  

Therefore, the null hypothesis of perfect model fit may be unrealistically stringent, irrelevant and 

of little practical value, and should thus not be used as the sole basis for the decision to accept or 

reject a theoretical model (McDonald, 1989; Steiger, 2007).  Instead, a shift from classical 

hypothesis testing approaches towards a comparative model testing approach was recommended 

(Bentler & Bonett, 1980; Mulaik et al.; 1989; Tanaka, Panter, Winborne, & Huba, 1990).  This 

motivated the development of alternative means to assess model fit.  These alternatives – 

hierarchical model testing and goodness-of-fit indices- will be described on the following pages. 

 Hierarchical Model Testing 

 In light of the limitations of the 2
-statistic, several authors (e.g.  Bentler & Bonett, 1980, 

James et al., 1982) have recommended using hierarchical model testing.  Thereby, a sequence of 

nested models is estimated and one’s hypothesized model is compared to both more and less 

restrictive nested models.  The least restrictive model in this sequence is a saturated structural 

model (SS) in which, once the causal order among variables is established, all possible 
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relationships between latent variables are freely estimated.  This model always has the best 

possible fit and the number of its degrees of freedom is equal to the degrees of freedom of the 

measurement model.  On the other end of the continuum lies a null model, which, in its most 

rigid form, has all paths set to zero.  As such, the null model represents the hypothesis of no 

relationships between any measured variables.  This model displays the worst possible fit and the 

highest number of degrees of freedom.  In between the saturated structural model and the null 

model lies one’s hypothesized, or target model (T).  Furthermore, there are more restrictive 

models (T-x) than the target model, where one or more paths that are estimated in the target 

model are set to zero, and less restrictive models (T+x), in which one or more parameters that are 

fixed to zero in the target model are freely estimated.    

 The difference between the target model’s and an alternative model’s 2
-statistics then 

provides useful information for hypothesis testing: If the difference in 2
 between a target model 

and a more restrictive model (T-x) is significant, one can conclude that the additional paths 

estimated in the target model are relevant and improve model fit.  If, on the other hand, the 2
-

value of the target model is not significantly smaller than the 2
-value of a more restrictive 

model, it tells the researcher that the additional paths included in the target model do not improve 

model fit.  Since parsimonious models with fewer estimated parameters are preferable (Mulaik et 

al., 1989), the target model should be abandoned in favor of a more parsimonious model in that 

case.   

 Likewise, a target model whose 2
 is significantly larger than the 2

-value of a less 

restrictive model (T+x) may be abandoned, as a larger 2 
in this case indicates that the model’s 

restrictions lead to worse model fit.  If, on the other hand, the target model’s 2 
is not 

significantly larger than the 2 
of a less restrictive model, the target model fulfills James’ et al. 
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(1982) condition 10 requirement, that is, no important paths have been wrongfully omitted from 

the model.   

 In summary, if one’s target model fits the data significantly better than a more restrictive 

model, and at the same time, it does not display significantly worse fit than a model with 

additional parameters estimated, one may conclude that the hypothesized model is consistent 

with the data
1
.   

 Hierarchical model testing provides important information about the fit of one’s target 

model in relation to other relevant models and helps circumvent the issues associated with the 

2
-statistic.  However, Bentler and Bonett (1980) noted that there would be much value in 

additionally obtaining a single index of the increase in goodness-of-fit in the comparison of two 

models.  Therefore, a multitude of goodness-of-fit indices have been developed to provide 

information about model fit beyond the 2
-statistic.  In the following, a typology of existing fit 

indices will be provided. 

Goodness-of-Fit Indices 

 Ever since Bentler and Bonett’s (1980) seminal article, goodness-of-fit indices have 

played a central role in the evaluation of structural equation models (Kenny & McCoach, 2003).  

Goodness-of-fit indices provide a single numerical measure of whether a hypothesized model 

does not have any paths inappropriately constrained to zero and as such, meets James’ et al. 

(1982) condition 10 requirement.  Since the number of fit indices has grown large over the years, 

several researchers have provided different conceptual frameworks to organize them (e.g.  

Tanaka, 1993).  In the context of the present study, the widely recognized (e.g.  Bollen, 1989; Hu 

& Bentler, 1998; Marsh et al., 1988; Meade, Johnson & Braddy, 2008; Tanaka, 1993) distinction 

between absolute and incremental fit indices is most relevant and will therefore be used.  This 

                                                 
1
 Although it represents only one out of an infinite number of theoretically possible models. 
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distinction refers to the reference point against which model fit is evaluated: the reference point 

in absolute fit indices is perfect model fit, whereas in incremental fit indices, the target model is 

being compared to another reference model (Meade et al., 2008).   

Absolute Fit Indices 

 Absolute (alternatively: stand-alone) fit indices provide a direct measure of how well a 

covariance matrix derived from a hypothesized model reproduces the sample data, whereby no 

explicit reference to another model is made (Hu & Bentler, 1998).  As such, they may be 

considered as the multivariate equivalent to the coefficient of determination (R
2
) in regression 

analysis (Fan, Thompson & Wang, 2007, Tanaka & Huba, 1989).  They are functions of the 

discrepancy of  and S, sample size, and degrees of freedom (McDonald & Ho, 2002).  

 Researchers have combined these elements in various ways to build different indicators 

of absolute model fit.  Technically, the 2
-statistic may also be considered an absolute fit index.  

As described above, however, the assumption that the 2
-statistic is asymptotically distributed as 

2
 represents a test of the unrealistic hypothesis of perfect model fit, which is most likely 

rejected with large sample sizes.  Researchers have therefore suggested that in cases of small 

model misspecifications, where the degree of discrepancy is limited, the distribution of the 2
-

statistic may be better approximated by the noncentral 2
-distribution.  The noncentral 2

-

distribution has been described as a more realistic and thus useful reference distribution (Rigdon, 

1996).  The degree of noncentrality is indicated by the parameter , which is asymptotically 

equal to 2
-df (McDonald, 1989).  The size of the noncentrality parameter (NCP)  can be 

considered an indicator of the degree of model misspecification, whereby a small NCP is 

associated with a small degree of model misspecification (Bentler, 1990).    

  

)ˆ(
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Therefore, the NCP may be considered another absolute fit index, and a number of researchers 

have chosen to incorporate the NCP into their absolute and incremental fit indices.   

 Another absolute fit index is 2
/df (Jöreskog, 1969), which has the same underlying 

rationale as 2
.  By dividing a model’s 2 

by its degrees of freedom, however, 2
/df has an 

additional penalty function for lack of parsimony built in, since the number of degrees of 

freedom decreases with the number of parameters estimated Marsh et al., 1988).  The 2
/df – 

ratio is expected to approximate 1.0 when the model is consistent with the data, as E(2
) = df 

under the central 2
-distribution.  When model fit is not perfect, the expected 2 

–value equals 

the sum of df and the NCP, so that E(2
) = df + NCP.  As such, with increasing model misfit, the 

2
/df – ratio gets larger than 1.0 due to 2 

being a function of both df and the NCP, which 

increases with model misfit as well.     

 Among the group of absolute fit indices, Hu and Bentler (1998) recommended using the 

root-mean-squared error of approximation (RMSEA; Steiger & Lind, 1980), and the standardized 

root-mean-square residual (SRMR; Jöreskog & Sörbom, 1981).  These indices were shown to be 

sensitive to model misspecification, while being less sensitive to sample size and estimation 

method than other fit indices.  Other absolute fit indices include Akaike’s Information Criterion 

(AIC; Akaike, 1987), the goodness-of-fit index (GFI; Jöreskog & Sörbom, 1984), the adjusted 

goodness-of-fit index (AGFI; Jöreskog & Sörbom, 1984), and the critical N (Hoelter, 1983).  

However, due to various issues with these indices such as low sensitivity for model 

misspecification, and high sensitivity to distribution, estimation method, and sample size, Hu and 

Bentler (1998) did not recommend their use.   

Incremental Fit Indices 

 Incremental fit indices measure the fit of a hypothesized model by comparing it to a 

reference model, which is usually either a baseline model or a fully parameterized model (Meade 
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et al., 2008).  As such, incremental fit indices provide a measure of how well a model fits the 

data compared to either the best- or the worst-fitting model in a series of nested models.  

Incremental fit indices incorporate stand-alone indices and can be further categorized into three 

groups.  Type I fit indices are normed and only use information from the fit function.  Bentler 

and Bonett (1980) were among the first researchers to develop a type I incremental fit index.  

Their normed fit index (NFI) is defined as follows 

     NFI =             (2) 

where FB and FT  refer to the test statistic for a baseline model and the hypothesized target model, 

respectively.  The difference in fit between the target model and the worst-fitting baseline model 

is assessed in reference to the worst possible fit.  In other words, obtaining a high NFI means that 

the target model provides a meaningful improvement in fit compared to a model where no 

relationships between any manifest variables are hypothesized. 

 Type II indices additionally use information from the expected value of the fit function 

under the central 2
-distribution and are considered non-normed, since their value can fall 

outside the range of 0-1.  One early example is the Tucker-Lewis Index (Tucker & Lewis, 1973) 

that incorporates the 
2
/df stand-alone index: 

     TLI =                    (3) 

whereby E(
2
) = df.  If the target model is consistent with the data, the expected value of 

2
/df is 

1.0 and the expressions in the numerator and denominator become identical, so that TLI = 1.0 

with perfect model fit.  Similar to the NFI, the reference model is a baseline model that specifies 

no relationships at all between any of the variables. 


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Type III indices are similar to type II indices in that they incorporate expected values of 

the fit function, however, instead of the central 2
-distribution, a noncentral 2

-distribution is 

assumed for their expected values (Meade et al., 2008).  Bentler’s (1990) comparative fit index 

(CFI), which is one of the most popular and widely used fit indices (Williams & O’Boyle, 2011), 

belongs to the group of type III indices and is defined as follows: 

     CFI =                               (4) 

 where the NCP of the target model is being compared to the NCP for a baseline model.  

The CFI, too, incorporates the most rigid form of baseline models, specifying no relationships at 

all.  As the NCP of a true target model approximates zero, the expected value of the CFI is 1.0 

when model fit is perfect. 

 Apart from these examples, researchers have developed numerous other type I, type II, 

and type III fit indices.  Their properties are comprehensively documented in Marsh et al.,’s 

(1988) and Hu and Bentler’s (1998, 1999) and other authors’ (e.g.  Rigdon, 1996; Tanaka, 1993) 

work.   

Issues with Existing Fit Indices 

 While fit indices were designed to circumvent the issues related to hypothesis testing 

with the 2
-statistic, they themselves present challenges that limit their ability to identify 

correctly specified and misspecified models.  Ideally, the size of a fit index is influenced only by 

the degree of model misspecification, so that misspecified models obtain a lower value than 

correctly specified models (alternatively, in case of badness-of-fit indices such as RMSEA and 

SRMR, misspecified models should obtain a higher value).  However, many fit indices have 

shown to be sensitive to sample size, distribution, estimation method, number of variables in the 

model (Kenny & McCoach, 2003; Moshagen, 2012) and effects of violation of normality and 



1
NCPT

NCPB
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independence (Hu & Bentler, 1998, 1999).  At the same time, fit indices are not always sensitive 

to model misspecification (Hu & Bentler, 1998, 1999).    

Furthermore, there still do not exist reliable cut-off points for what constitutes acceptable 

model fit.  Bentler and Bonett (1980) suggested that models with TLI- and NFI-values lower than 

.90 might be severely misspecified.  This led many researchers to erroneously reason that fit 

index values above .90 indicate good model fit (Lance, Butts, & Michels; 2006).  Hu and Bentler 

(1998,1999) conducted extensive simulation studies and recommended a cutoff value of .95 for 

many fit indices such as the CFI and the TLI, which has been subsequently adopted by most 

researchers.  Recent simulation studies have shown, however, that these cutoff values may still 

be too lenient and not help researchers in choosing the right model (Williams & O’Boyle, 2011). 

Arguably one of the most problematic aspects about all incremental and some standalone fit 

indices, however, concerns the type of baseline model incorporated in them.   

Baseline Models in Fit Indices 

 There are several different baseline models that may be used in incremental fit indices, 

and which one of them is the appropriate one has been subject to debate (e.g.  Mulaik et al., 

1989; Sobel & Bohrnstedt, 1985; Williams & O’Boyle, 2011).  Williams and Holahan (1994) 

discussed three distinct types of baseline models.  First, an absolute null model (AN) is 

characterized by the absence of a measurement model, that is, there is no link between latent 

variables and their manifest indicators.  Furthermore, there are no correlations among exogenous 

latent variables and no structural parameters linking the latent variables.  The 

variance/covariance matrix of an absolute null model is a diagonal matrix, with all off-diagonal 

elements being zero (i.e., ).  As described above, when built into incremental fit 

indices, the comparison to an absolute null model represents the hypothesis that the target model 

fits the data better than a model specifying no relationships between the variables at all.   

Ii

2)ˆ( 
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 Second, a less stringent baseline model is an uncorrelated factors model (UF), which 

specifies a measurement model linking latent variables and their indicators, but neither 

correlations among exogenous latent variables nor structural parameters relating latent variables.  

Third, in a structural null model (SN), both the measurement model and correlations among 

exogenous latent variables are estimated, but all directed paths are set to zero.  As such, out of 

these three baseline models, the structural null model resembles most closely the target model in 

that the only difference lies in the directional paths estimated in the target model that are set to 

zero in the structural null model. 

 Bentler and Bonett (1980) argued that one should use the “most restrictive, theoretically 

defensible model” (p.600) as a basis for comparison.   Counter to their recommendation, most 

researchers incorporated the absolute null model in their fit indices, such as the NFI, the TLI, and 

the CFI.  This approach has been criticized by a number of researchers: Sobel and Bohrnstedt 

(1985) were the first authors to voice strong concerns about this practice.  According to them, the 

choice of a baseline model should be guided by the current state of knowledge about the 

relationships to be tested.  They argued that if there existed some prior knowledge about 

relationships among variables, that is, if the research model were in part confirmatory, it would 

not be appropriate to compare the target model to an absolute null model.  By choosing an 

absolute null model as baseline model, researchers would ignore what is already known about 

relationships among at least some of the variables in the model.  Furthermore, the only 

information gained from a fit index based on an absolute null model is that estimating some 

relationships provides better fit to the data than hypothesizing no relationships between variables 

at all.  However, it does not tell the researcher if one’s model provided meaningful and valid 

information over what is already known.   
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Sobel and Bohrnstedt (1985) further argued that the absolute null model should only be 

employed in purely exploratory cases where there is no existing theory to guide model 

development.  McDonald and Ho (2002), too, pointed out that there is no compelling rationale 

for using the absolute null model as a baseline model.   

 Mulaik et al. (1989) agreed with Sobel and Bohrnstedt (1985) in that the use of the 

absolute null model in incremental fit indices may mask small, yet important differences between 

two nested structural models and argued for the use of less restrictive null models.  They noted 

that the overall fit of a structural equation model may oftentimes be heavily influenced by the fit 

of the measurement model and much less by the fit of the structural model.  In the measurement 

model, a substantial number of parameters that are irrelevant for the structural relations in the 

model are estimated and thus influence overall goodness-of-fit.  As researchers add manifest 

indicators to their model to decrease the risk of obtaining improper solutions (Ding, Velicer & 

Harlow, 1995), more parameters in the measurement model need to be estimated.  With more 

parameters in the measurement model, the influence of the measurement model on global fit 

indices increases, so that it may drive fit to a larger degree than the structural portion of the 

model.  As such, it may be well possible to obtain a high goodness-of-fit index/low badness-of-

fit index when only the measurement model is correctly specified.   

At the same time, the structural model, that researchers are primarily interested in 

because it represents the causal relationships in the model, may be misspecified.  Likewise, when 

model fit is found to be not acceptable, global fit indices do not provide any information about 

whether the misspecification occurred in the measurement portion or the structural portion of the 

model, or both (McDonald & Ho, 2002).   

Marsh and Hocevar (1985) noted that the problem of confounding sources of misfit 

extends to higher-order factor models.  In this special case, a global fit index might indicate good 
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model fit when the relationship between indicators and first-order factors is correctly specified, 

however, the relations between first- and second-order factors might be misspecified.  Likewise, 

second-order factors might provide a good representation of the covariances among first-order 

factors, but if the relationships between indicators and first-order factors are misspecified global 

fit indices might still indicate poor model fit. 

Solutions to the Baseline Problem 

 In order to alleviate the problem of confounding sources of misspecification, researchers 

have suggested different solutions: Sobel and Bohrnstedt (1985) recommended that researchers 

individually tailor the baseline model to the respective research question they wish to examine.  

That way, the baseline model would reflect all current knowledge about the relationships among 

variables in the model, whereas the target model should additionally incorporate as of yet 

unknown relationships among variables.  However, tailoring the baseline model of a fit index 

individually to a specific research context might necessarily lead to highly idiosyncratic choices 

of nontrivial null models, so that the comparability of goodness of fit of different models 

estimated in different studies would be severely limited (Marsh et al ., 1988).    

 Marsh (1987) introduced the target coefficient (TC2), a fit index for higher-order factor 

models that allows one to test whether the relationships between first- and second-order factors 

are correctly specified.  The TC2 is defined as 
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                                                                (5) 

where FU  denotes an uncorrelated factors model, T denotes the target model and F denotes an 

oblique factors model.  The uncorrelated factors model represents the baseline with the worst 

possible model fit whereas the oblique model represents the best possible model fit.  As such, the 

improvement in fit of the target model over the baseline model is evaluated against the total 

amount of fit contributed by the relationship between first-and second-order factors.  This way, 
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the confounding influence of the relationships between indicators and first-order factors is 

excluded from the analysis.  However, by using an uncorrelated factors model as the baseline 

model, one still includes correlations between first-order factors in the analysis even though they 

are not relevant to the model comparison.  Therefore, one confounding element remains, as 

model fit might to some degree be driven by the correlations among factors. 

Similarly, Mulaik et al. (1989) developed the relative normed fit index (RNFI), which 

incorporates the uncorrelated factors model instead of the absolute null model as a baseline 

model.   

 

It is defined as  
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where  FU  is a measure of fit of the uncorrelated factors model, FJ  is a measure of fit of the 

structural model, and FM  is a measure of fit of the measurement model.  DJ and dM denote the 

degrees of freedom of the structural and the measurement model.  The difference in fit between 

the baseline model FU and the structural model FJ  is compared to the difference in fit between 

the baseline model and the measurement model.  The degrees of freedom in the denominator 

provide a correction for sample-size bias following Marsh’s et al. (1988) recommendations.  The 

RNFI allows one to determine the increase in model fit related to the structural model relative to 

model fit due to the measurement model.   Similar to Marsh’s TC2, one weakness of the RNFI 

lies in its use of the uncorrelated factors model as a baseline model: there are still parameter 

estimates involved in the model comparison that are not directly relevant for causal relationships 

in the structural model.  In general, one should therefore not use the uncorrelated factors model 

as a baseline model if the focus is on the structural relationships of the model. 
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 In their seminal paper, Anderson and Gerbing (1988) recommended using a two-step 

approach in model testing.  In step one, the measurement model should be estimated separately, 

and only after the measurement model has been respecified until it fits the data well, one should 

assess overall model fit.  However, as McDonald and Ho (2002) noted, Anderson and Gerbing 

(1988) still recommended that once the measurement model has been adjusted overall model fit 

should be assessed with global fit indices that rely on absolute null model comparisons.   

 Regardless of the criticisms on the use of the absolute null model and the alternatives 

some authors have provided, to this day researchers continue to use fit indices based on it.  

Rigdon (1996) noted that, despite being aware of the issue underlying the use of the absolute null 

model in fit indices, researchers may be hesitant to develop better fit indices that focus more on 

fit of the structural model.  He stated that “… certainly, without population distributions for the 

resulting indexes, researchers who adopt alternative baseline models will be forced to develop 

and defend criteria for evaluating the index values that result.  Consequently, it is unlikely that 

there will be a movement toward an alternate baseline model anytime soon” (p.377). 

 McDonald and Ho (2002) were the first to systematically examine the impact of the type 

of baseline model.   They assessed the difference between global fit indices and a fit index that 

focuses only on path model relationships in regards to their ability to identify correctly specified 

and misspecified models.  The authors suggested that fit of the measurement model and the 

structural model should be evaluated separately in order to disentangle model fit of the 

measurement model and the structural model.  As the asymptotic 2
-distribution of a composite 

model’s discrepancy function consists of two independent additive noncentral 2
-values, one can 

obtain a 2
-value for the measurement model and one for the structural model.  Likewise, the 

corresponding degrees of freedom for the measurement model and the structural model are 

additive.  This important property of the asymptotic 2
-distribution allows researchers to 
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decompose overall model fit into separate measures of model fit contributed by the measurement 

model and by the structural model, respectively.   

 In order to demonstrate the impact of the measurement model on overall model fit, 

McDonald and Ho (2002) re-examined models from 14 published studies.  In these studies, 2
-

values and degrees of freedom for the composite model as well as separate 2
-values and degrees 

of freedom for the measurement model and/or the structural model were provided.  The authors 

analyzed 2
-values and degrees of freedom of the measurement model and the structural model.  

Additionally, they calculated separate RMSEA-values for both the measurement and the 

structural model.  The RMSEA based on the structural portion of the model was later termed 

RMSEA-P (O’Boyle & Williams, 2011) and represents one of only two known fit indices that 

focus exclusively on causal relations of a model.  It is defined as  
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where p 
2 

refers to the 2
-statistic of the structural model, dfp are the degrees of freedom of the 

structural model, and n denotes the sample size.  As such, the RMSEA-P is a measure of the 

degree of misspecification in the structural model per degree of freedom, adjusted for sample 

size.   

McDonald and Ho (2002) found that the number of degrees of freedom for the structural 

model was generally (much) smaller than for the measurement model, which indicates that 

model fit was more strongly influenced by the measurement portion of the model.  A troubling 

finding, however, was that in many cases in McDonald and Ho’s (2002) analysis, model fit of 

the composite model appeared satisfactory when the structural portion of the model did not fit 

the data well and yielded high 2
- and RMSEA-P values.  Here, the good fit of the measurement 

model masked the bad fit of the structural model.   
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 These findings are alarming, because they imply that a substantial part of existing 

research involving structural equation models may have arrived at faulty conclusions based on 

favorable values of global fit indices.  Although McDonald and Ho’s (2002) findings clearly 

support earlier critics’ concerns about global fit indices, researchers continue to use and manage 

to publish their studies in top-tier journals.  However, it is highly questionable whether the 

relationships between latent variables reported in their studies would have been supported when 

examined in isolation, separated from the measurement model (Williams and O’Boyle, 2011).   

 O’Boyle and Williams (2011) further advanced the discussion about fit indices that focus 

on the structural portion of a model.  Extending McDonald and Ho’s (2002) work, they re-

examined 43 studies published in top-tier journals between 2001 and 2008 that contained 

structural equation models.  In these models, they decomposed overall model fit into fit of the 

measurement model and fit of the structural model.  O’Boyle and Williams (2011) conducted 2
-

difference tests between the composite model and the measurement model to determine whether 

the difference in fit between these models was large enough to assume that the structural portion 

contributed to overall fit on top of the measurement model.  Additionally, they calculated the 

RMSEA-P as proposed by McDonald and Ho (2002).   

Similar to McDonald and Ho (2002), they found that in the majority (70%) of the studies 

examined, fit indices for the composite model indicated good model fit but when examined in 

isolation, the structural portion of the model fit the data poorly and yielded fit indices that did not 

meet conventional cutoff criteria.  This means that in the majority of the models examined, 

researchers have omitted potentially relevant paths linking latent variables, failing to meet 

James’ et al. (1982) condition 10 requirement.  O’Boyle and Williams (2011) thus recommended 

that researchers rely more on fit indices that focus on the fit of the structural model, such as the 

RMSEA-P instead of inferring from global fit indices that their model fits the data well.   
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 To provide an additional path-related fit index, Williams and O’Boyle (2011) 

subsequently presented the noncentrality structural covariance index (NSCI-P, whereby the “P” 

stands for “path”).  The NSCI-P was originally developed by Williams and Holahan (1994), 

however, it remained overlooked by the literature until Williams and O’Boyle recently re-

introduced it.  It involves a comparison of the NCPs of the structural null model, the target model 

and the saturated structural model and is defined as 

    NSCI-P =
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In the NSCI-P, the difference in fit of the structural null model and the target model is evaluated 

against the total amount of fit available in the structural model, that is, the difference between the 

structural null model and the saturated structural model.   

 Using simulation data from Williams and Holahan (1994), Williams and O’Boyle (2011) 

demonstrated that both the NSCI-P and the RMSEA-P are considerably more accurate in 

identifying correct models than global fit indices such as the RMSEA and CFI.  Based on these 

results, they recommended that researchers should always include path-related fit indices in 

model evaluation.   

 As mentioned above, the two path-related fit indices RMSEA-P and NSCI-P are to date 

the only known fit indices that incorporate a structural null model as a baseline model.  They 

provide researchers with an important tool to evaluate their hypotheses more accurately.  

However, it is not clear why Williams and O’Boyle (2011) limited their treatment of path-related 

fit indices to these two specific indices.  Instead, analogous to better-known global fit indices, it 

would be helpful to provide a general framework for path-related fit indices.  This would allow 

for the development of different path-related fit indices by incorporating various stand-alone 

indices.  As described above, a number of researchers have called for the development and 
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application of path-related fit indices, however, nobody has specifically outlined what a general 

framework for path-related fit indices might look like.  Therefore, one goal in this study is to 

outline such a framework and test whether fit indices based on this framework are better able to 

identify correctly specified and misspecified models than global fit indices.   

General Framework and Exemplary Path-Related Fit Indices for Condition 10 

 As with incremental global fit indices, a general framework for path-related fit indices 

involves nested model comparisons.  Contrary to global fit indices, these model comparisons 

must be limited to the latent variable level for path-related fit indices.  As such, baseline models 

that include parts of the measurement model cannot be incorporated in path-related fit indices.  

This leaves the uncorrelated factors model and the structural null model as possible baseline 

models for path-related fit indices.  The uncorrelated factors model may still contain potentially 

confounding information, as estimating the correlations between exogenous latent variables does 

not provide direct information on causal relationships.  Therefore, the structural null model is the 

most appropriate baseline model for path-related fit indices.  As such, the range of nested model 

comparisons contains a structural null model, T-x models, the target model, T+x models, and a 

saturated structural model.  In order to facilitate the discussion of the frameworks for path-

related fit indices, it is helpful to express total fit contained in the structural portion of the model 

with the following formula: 

                                   Total Fit (Structural Model) = 
                 

         
            (9) 

where FSN represents fit of the structural null model, FT represents fit of the target model and FSS 

represent fit of the saturated structural model.  This formula shows that total fit in the structural 

model can be expressed as the sum of two elements:  The first element is the discrepancy in fit 

between the structural null model and the target model (FSN - FT). As such, it is a measure of the 

improvement in fit obtained by estimating the hypothesized paths in a model over a model with 
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no structural relationships.  This is equivalent to James’ et al. (1982) condition 9 test. The second 

element denotes the discrepancy between the fit of the target model and the fit of the best 

possible model with all unidirectional paths estimated (FSN - FSS).  As such, this expression is a 

measure of James’ et al. (1982) condition 10, in that it measures the changes in model fit 

obtained by setting specific paths to zero.  Overall, this formula shows that perfect model fit is a 

function of both estimating significant structural paths and setting non-significant structural 

paths to zero.  From this formula, path -related fit indices for condition 9 and condition 10 tests 

can be derived. 

As has been demonstrated above, a path-related fit index would include a nested model 

comparison between the target model and a saturated structural model in order to provide an 

omnibus test of James’ et al. (1982) condition 10,  This gives a measure of the degree to which 

setting a number of paths in the target model to zero reduces model fit as compared to a model 

with perfect fit in the structural portion of the model.  The resulting difference should be 

evaluated against the maximum amount of fit available only in the structural portion of the 

model.  By doing so, one excludes the potentially misleading influence of the measurement 

model.  This number is obtained by comparing the structural null model, representing the worst 

possible fit the structural portion of a model can have, to the saturated structural model.  This 

differentiates path-related fit indices from global fit indices where the total amount of fit is 

defined as the difference between the saturated structural model and the absolute null model.  As 

such, a general path-related fit index testing condition 10 (from hereon termed C10) would take 

the following form: 

     C10 =  
    -   

    -    
             (10) 

 A researcher may pick any stand-alone fit index F and create path-related fit indices by 

incorporating them into the above framework.  In order to demonstrate this, the performance of 
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three path-related C10 fit indices in identifying correctly specified and misspecified models will 

be examined in this study.  The first index that will be examined is a C10-index as proposed  

 

above incorporating the 
2
-statistic: 

                            (11) 

Alternatively, one may additionally build in a penalty function for lack of parsimony and design 

a path-related C10 fit index based on Jöreskog’s (1969) stand-alone index 2
/df:  

                              (12) 

Finally, a path-related fit index based on NCPs takes the following form: 
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These three fit indices are examples of path-related fit indices based on the framework 

introduced above, however, researchers may incorporate any stand-alone fit index of their 

choice, such as for example the GFI, the AGFI or the SRMR.  

General Framework and Exemplary Path-Related Fit Indices for Condition 9 

 While researchers have devoted much attention to developing fit indices that provide a 

test of James’ et al. (1982) condition 10, the NSCI-P and the TC2 are currently the only omnibus 

goodness-of-fit indices that provide a test of condition 9.  As mentioned above, researchers have 

relied on two approaches recommended by James et al. (1982) to test whether a model fulfills 

condition 9.  First, one may examine each parameter separately by testing it for significance or 

creating confidence intervals.  However, James et al. (1982) pointed out that significance tests of 

individual parameters might not be independent and have an unknown bias.  Second, one may 
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test each parameter by comparing the model in which the respective parameter is estimated to a 

nested model where the same parameter is fixed to zero and conduct a single df chi-square 

difference test to determine if fit worsens if the parameter is set to zero.    

 Given the large number of omnibus tests for condition 10, it is not entirely clear why 

there are only two corresponding omnibus tests for condition 9 to date.  Above all, these two 

indices have remained largely overlooked by the literature until recently.  A potential reason may 

lie in the great influence of James’ et al. (1982) work on other researchers, where the authors 

explicitly stated that goodness-of-fit tests only relate to condition 10.  However, their argument 

was based on the use of the 2
–statistic to assess overall model fit, which indeed represents a 

condition 10 test.  In their quest to develop fit indices as an alternative to the 2
–test, researchers 

perhaps focused too much on condition 10 tests and did therefore not consider developing fit 

indices for condition 9.  In the case of Marsh’s (1987) TC2, it is likely that it didn’t become 

popular because Marsh only briefly mentions it in the appendix of an article on higher-order 

factor analysis, but does not discuss it at all in his later work on goodness-of-fit indices. 

 Analogous to condition 10 omnibus fit indices, a fit index testing condition 9 can be 

developed by combining relevant model comparisons into one index.   More specifically, it 

involves two model comparisons.  First, the improvement of fit of a target model over a 

structural null model should be assessed.  This number should then be evaluated against the total 

amount of fit contributed by the structural portion of the model.   As described above, the total 

amount of fit contained in a structural model can be obtained by comparing the structural null 

model to the saturated structural model.  As such, the general structure of a measure of overall 

goodness-of-fit (in the following termed C9) testing condition 9 can be defined as follows: 

     C9 = 
   -  

   -   
                  (14) 
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Similar to C10 fit indices, researchers can select any stand-alone fit index of their choice 

to create a C9 index.  In order to demonstrate this, two C9 indices will be designed by employing 

the general framework presented above, and their ability to identify correct and misspecified 

models will be tested on simulation data.  A C9 index in its simplest form incorporates the 2
–

statistic: 

                (15) 

Analogous to the C10 indices presented above, one may alternatively build a C9 index based on 

the χ2/df stand-alone index, if model parsimony is supposed to be taken into account: 

                (16) 

As mentioned above, the NSCI-P is another path-related fit index containing the structure of the 

general C9 framework that incorporates NCPs as standalone-indices.  As with C10 fit indices, 

these C9 indices are exemplary for fit indices built from the general C9 framework, however, 

any other stand-alone fit index may be incorporated into the framework to design a path-related 

fit index.  An overview over the general frameworks and the fit indices derived from them  is 

shown in Table 1. 

Cutoff Values of Path-Related Fit Indices 

 Cutoff values provide researchers with guidance on which fit index values represent 

acceptable model fit.  While there exist a number of simulation studies on cutoff values for 

global fit indices (e.g.  Hu & Bentler, 1998; 1999), only one study to date (Williams & O’Boyle, 

2011) briefly mentions potential cutoff values for path-related fit indices.  As path-related fit 

indices do not focus on the same elements of a model as global fit indices, they are expected to 

be different from cutoff indices for global goodness-of-fit indices.  As such, traditional cutoff 
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values might not be applicable to path-related fit indices.  Therefore, the main goal of this study 

is to systematically examine cutoff values specifically for path-related fit indices and determine 

which ones are most effective in accepting correct models and rejecting misspecified models.   

 The performance of fit indices under specific cutoff values is generally determined 

through hierarchical model comparisons on simulated data.  In simulated data, the underlying 

population model is known, as such, the “true” target model is also known.  A series of nested 

models is fit to the data that are created on basis of the population model.  This series includes a 

null model, models with paths incorrectly set to zero, the target model, models with non-

significant paths estimated, and a saturated structural model.   Different cutoff values can then be 

evaluated according to two criteria.  The first criterion concerns the frequency of Type-II error 

under a certain cutoff value, which is the percentage of cases in which the correct target model is 

incorrectly rejected in favor of more or less restrictive misspecified models.  The second 

criterion refers to the power of a cutoff value, that is, the percentage of cases in which 

misspecified models are rejected under a certain cutoff value.  

Potential Cutoff Values for C10 Indices 

 Fit indices based on the C10 framework presented above involve a comparison of the 

target model to the best-fitting model in a series of nested models.  If a target model is correctly 

specified and no paths are inappropriately fixed to zero, it is expected that estimating additional 

structural paths will not lead to a substantial improvement in model fit.  As such, it is expected 

that the difference in fit between the correctly specified model and the saturated structural model 

is approximately zero.  In the C10 framework, this quantity is divided by the amount of total fit 

available in the structural portion of the model, so that the overall expression approximates zero 

as well.  As such, C10 indices may work as “light switches”, in that they yield a value of 

approximately zero for correctly specified models.  A pilot study conducted prior to this study, 
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where the performance of the three C10 indices presented above was assessed using simulated 

data, lends tentative support for a cutoff value of zero.   

 In this study, the performance of the three proposed C10 fit indices in regards to the 

criteria described above will be evaluated using cutoff values of 0, 0.01, 0.025 and 0.05.  

Furthermore, their performance will be compared to four of the most popular global fit indices.  

More specifically, Type II error rate and power for the RMSEA, CFI, TLI, and the root mean 

squared residual SRMR under their respective cutoff values (.95 for CFI and TLI, .06 for RMSEA 

and .08 for SRMR; Hu & Bentler, 1998, 1999) will be compared to Type II error rate and power 

of the C10 fit indices under the four cutoff values mentioned above. 

Potential C9 – Cutoff Values 

  As described above, C9 fit indices are based on a comparison of the fit of the structural 

null model to the fit of the target model.  This quantity is then divided by a term that expresses 

the difference in fit of the structural null model and the saturated structural model.  If the 

parameters estimated in a target model are significant as hypothesized, target model fit will 

approximate the fit of the saturated structural model.  Consequently, the values in the numerator 

and in the denominator are expected to become approximately equal when the paths estimated in 

the target model are significant.  As such, it is expected that C9 indices become approximately 

1.0 when a model is correctly specified.  A previously conducted pilot study provided first 

support for this assumption.  Analogous to C10, four different cutoff values for C9 indices will 

be examined through a simulation study, and their Type II error rate and power will be 

determined.  The cutoff values for C9 indices examined in this study are .95, .975, .99 and 1.0.    

In summary, this study will contribute to the existing literature on fit indices by providing 

two general frameworks for path-related fit indices that test James’ et al. (1982) condition 9 and 

10.  Based on these frameworks, exemplary path-related fit indices will be created using various 
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stand-alone indices and will be tested on simulated data.  Several potential cutoff values will be 

assessed and their performance in identifying correctly specified and misspecified models will be 

evaluated.  Additionally, the performance of C10 fit indices will be compared to the performance 

of popular global fit indices.  Overall, the findings from this study might provide future 

researchers with a means to more accurately assess model fit. 
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Table 1.   

Overview over general frameworks and fit indices built from them using stand-alone fit indices. 

Stand-alone indices C9 C10 
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Note. C9 = condition 9 fit index; C10 = condition 10 fit index; SN = structural null model; T = 

target model; SS = saturated structural model; NCP = noncentrality parameter 
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CHAPTER 2 

METHOD 

Population Models 

 To test the hypotheses, artificial data based on six different population models were 

created.  These six models were previously simulated by Williams and Holahan (1994) and the 

data gained from their simulations were also the basis for Williams and O’Boyle’s (2011) recent 

study.  They were chosen for this study to allow for comparability of this study’s results with 

results from Williams and O’Boyle’s (2011) work.  Furthermore, simulating meaningful 

theoretical models may increase the external validity of the results obtained in the simulation 

(Gerbing & Anderson, 1993).   

Model 1a was originally presented by MacCallum (1986).  As shown in Figure 1, it 

contains three exogenous and two endogenous latent variables, whereby each latent variable is 

represented by two manifest indicators.  The model contains six structural parameters with 

values of .4 and .6.  The remaining structural parameters are fixed to zero.  In order to determine 

whether the number of indicators influences the fit index values, this model was also simulated 

with four indicators per latent variable (model 1b).  Model 2a was taken from Mulaik et al. 

(1989) and slightly modified by Williams and Holahan (1994).  It is presented in Figure 2 and 

contains four exogenous and three endogenous latent variables, whereby the exogenous latent 

variables are correlated at .3.  Nine structural paths have values of either .4 or .6, and six 

additional paths are set to zero.  Analogous to model 1b, model 2b is identical to model 2a with 

the exception that instead of two indicators, each latent variable is represented by four indicators. 
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 Model 3 stems from Duncan, Haller and Portes (1971) and is presented in Figure 3.  It 

contains six perfectly measured exogenous latent variables and two endogenous latent variables 

with two indicators each.  The values of the ten estimated structural parameters range from .08 to 

.42, and four additional paths are fixed to zero.  Finally, model 4 is a longitudinal model 

originally presented by Ecob (1987).  As shown in Figure 4, one latent variable is perfectly 

measured, whereas the other latent variable is represented by three indicators. Both variables are 

measured at three occasions. Eight structural parameters range in value from -.14 to .78, the 

remaining four paths were set to zero.   

 The differences between models in regards to various characteristics represent one 

strength of the six population models examined in this study:  The models contain a varying 

number of indicators per factor (between one and four),  a varying number of latent variables 

(between five and eight), and a different number of omitted paths in the target model (Williams 

& Holahan, 1994).  Given that the size of the measurement model relative to the size of the 

structural model may influence global fit indices’ sensitivity to model misspecification, it is 

beneficial to examine population models with different measurement models.  Furthermore, the 

examined models are representative of a number of variable interrelationships that are of interest 

to researchers, as they include a longitudinal model, a model with non-recursive variable 

relationships, and mediational mechanisms.  This allows for generalizability of this study’s 

results to a broad range of theoretical models. 

Study Design 

 Nested models were fit to the data generated based on the six population models at four 

different sample sizes.  A literature review conducted prior to the simulation indicated that the 

most commonly used sample sizes in simulation studies on fit indices are 100, 200, 500 and 

1000; therefore, these sample sizes were used in this study as well.   
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Where possible, seven nested models were fit to the data generated from each of the six 

population models described in the previous paragraph.  The first model is a structural null 

model (SN), where only a measurement model and the correlations among latent variables are 

specified, whereas all latent variable relations are set to zero.  The second model (T-3) is a model 

with major misspecifications.  In the T-3 model, a measurement model and latent variables are 

specified, however, three paths that are estimated in the target model are fixed to zero in this 

model.  The third model is a model with minor misspecification (T-1) where one path estimated 

in the target model is set to zero.  Fourth, the target model (T) is identical to the population 

model based on which the simulation data were generated.    In the fifth model (T+1), one path 

whose true value in the population model equals zero is added to the target model.  The sixth 

model (T+3) contains three additional parameters not estimated in the target model.  Finally, the 

last model is a saturated structural model (SS) in which all structural paths are estimated.   

 As such, the order of models tested is SN  T-3  T-1  T  T+1  T+3  SS, 

going from the most restrictive model SN to the least restrictive model SS.  For each model 

tested, 1000 replications were run.  This sequence of models was tested for the population 

models taken from Mulaik et al. (1989) and Duncan et al. (1971).   In the case of the population 

model of MacCallum (1986), adding a path to the target model yielded a saturated structural 

model. As such, models T+1 and T+3 were not tested with this population model.  Similarly, in 

Ecob’s (1987) population model, there was only one path to be added between the target model 

and the saturated structural model.  Therefore, model T+3 was not estimated in the population 

model from Ecob (1987).  In total, fit indices were derived from 4*7*1000 = 28,000 replications 

for each of the population models taken from Mulaik et al. (1989) and Duncan et al. (1971).  

This number is composed of four different sample sizes, seven different nested models and 1000 

replications per estimation.  For the model from MacCallum (1986), 4*5*1000 = 20,000 
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replications were run.  Finally, for the Ecob (1987) model, fit indices were derived from 

4*6*1000 = 24,000 replications.  

Procedure 

 First, simulated data were generated based on variable relationships in the six population 

models described above.  In their studies, Duncan et al. (1971), Ecob (1987) and Mulaik et al. 

(1989) only provided path coefficients and intercorrelations between variables, however, they 

did not provide covariance matrices.  Therefore, a population covariance matrix for each of these 

three models had to be calculated first.  Generally, covariance matrices can be obtained by using 

the following formula (Jöreskog & Sörbom, p.5): 

         (17) 

 Software programs such as SAS (Sas Institute, 2011) allow for a calculation of 

covariance matrices based on specified parameters.  Once a population covariance matrix for a 

particular model has been calculated, the population model specifying the variable 

interrelationships based on which the covariance matrix was created (the target model) was fit to 

the covariance matrix.  This provided a test of whether the model had been correctly specified 

and whether the parameter estimates were correctly reflected in the covariance matrix.  If a 2
–

value of 0 was obtained and the parameter estimates were identical to the parameter estimates of 

the population model, the population covariance matrix was subjected to Cholesky 

decomposition.  The resulting transformed matrix was then entered into PRELIS (Jöreskog & 

Sörbom, 1996), and for every sample size, 1000 data sets that add  random error components to 

the population covariance matrix were created. This resulted in a total of 24,000 data sets (six 

population models times four different sample sizes times 1000 replications). 
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 In the next step, the nested models described above were fit to the data sets generated in 

the previous step using LISREL (Jöreskog & Sörbom, 1996).  The resulting fit indices for each 

model were saved in fit files separate from the regular LISREL output.  A syntax written in SAS 

was then used to “harvest” a number of different fit indices and provide their means and standard 

deviations across the 1000 data sets for each model.  These mean values then served as input for 

the calculation of the path-related fit indices C9 and C10.    

 Once the C10 and C9 fit indices had been calculated, their values were examined.  For 

each path-related fit index, Type II error and power were calculated under the different proposed 

cutoff values, (0, 0.01, 0.025, 0.05 for C10 indices; .95, .975, .99, 1.00 for C9 indices).  That 

way, it was determined which cutoff value performed best in identifying correctly specified and 

misspecified models.  Furthermore, the different path-related fit indices were compared to each 

other in regards to their performance, and the best-performing C10 and C9 indices were 

determined.  Finally, Type II error rates and power were calculated for the three global fit indices 

RMSEA, CFI, TLI, and SRMR under their respective recommended cutoff values (.95 for CFI 

and TLI, .06 for RMSEA, .08 for SRMR; Hu & Bentler, 1998,1999).   Their Type II error rates 

and power were then compared to Type II error and power of the path-related fit indices to 

determine which group of fit indices performed better in identifying correct and misspecified 

models. 
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Figure 1.  Population model originally presented by MacCallum (1986). Simulated both with 

two and four indicators per latent variable in this study. 
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Figure 2.  Population model originally presented by Mulaik et al. (1989). Simulated both with 

two and four indicators per latent factor in this study. 
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Figure 3.  Population model originally presented by Duncan et al. (1971). Exogenous latent 

variables are assumed to be perfectly measured, each endogenous latent variable is represented 

by two indicators. 
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Figure 4.  Population model taken from Ecob (1987).  ξ1, η1 and η3 are measured perfectly, ξ2, η2 

and η4 are each represented by three indicators. 
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CHAPTER 3 

RESULTS 

Within each of the six population models, fit indices were derived for every nested model 

at sample sizes 100, 200, 500, and 1000.   C10 and C9 fit indices were calculated from each 

model’s respective 2
–value and degrees of freedom using the formulas displayed in Table 1.   

Since each model was run with 1000 replications, the displayed fit index values for a particular 

model represent the mean of the single fit index values yielded in these replications.   For some 

of the models estimated, not all 1000 replications produced admissible and convergent solutions.   

This happened particularly frequently with severely misspecified models, such as SN or SS 

models as well as at low sample sizes.   Fit indices from non-admissible and non-convergent 

model estimations were excluded from the calculation of mean fit index values for any particular 

model.   As such, for some of the nested models that were estimated, the resulting fit indices do 

not represent the averaged fit indices of 1000, but a smaller number of replications.   Tables 2-7 

display the resulting fit indices for each population model and indicate the number of admissible 

and convergent solutions that were yielded by estimating the individual models.   

Similar to results from a previous pilot study, C10 fit index values were 1.000 for the 

worst-fitting SN model and approached zero as model fit became perfect.   In the population 

model from Duncan et al. (1971), 2
/df  and 2

–df  fit indices for the T-1, T, T+1 and T+3 

models became slightly negative at some sample sizes.   In Ecob’s (1987) model, 2
/df  and 2

–

df  fit indices took on slightly negative values for the T and T+1 models. In Mulaik’s et al. 

(1989) model with four indicators per factor, one 2
/df fit index value became slightly negative 

for the target model at sample size 100. 
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C9 fit index values were zero for the SN model and approached 1.000 with improving 

model fit.  In Duncan’s et al. (1971) population model, fit indices based on 2
/df  and 2

–df  

reached values slightly greater than 1.000 in the T-1, T, T+1 and T+3 models.   Similarly, values 

slightly greater than one were obtained in Ecob’s (1987) population model for fit indices based 

on 2
/df  and 2

–df  in the T and T+1 models. In Mulaik’s et al. (1989) population model in the T 

model at sample size 100, a value slightly greater than one was obtained for the fit index based 

on 2
/df.   

The main goal of this study was to determine the most effective fit index and the cutoff 

value under which it performs best.   Therefore, the performance of the C10 and C9 fit indices 

under various different cutoff values was determined and compared to the performance of 

RMSEA, CFI, TLI, and SRMR under their respective recommended cutoff values.   Two criteria 

were used to evaluate the performance of each fit index.  The first criterion was Type II error.   

For each fit index, it was assessed by counting the number of cases across the six population 

models in which a target model was rejected under a particular cutoff value.   

The second criterion was power.  It was further divided into two subcategories:  First,     

P(T-1) was defined as the power of a fit index to reject slightly misspecified models with only 

one significant path removed (T-1 models) under a particular cutoff value.   Second, P(T-3) 

refers to the power of a fit index to reject models with large misspecifications, that is, models 

with three significant paths taken out of the model (T-3 models) under a particular cutoff value.  

For each fit index, both subcategories of power were evaluated by determining the percentage of 

cases across all population models in which a misspecified model was correctly rejected under a 

particular cutoff value. 

It must be noted that when specifying the T-3 and T-1 models, the paths with the lowest 

parameter estimates were removed from the target model.   For example, for each T-1 model, the 
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smallest parameter estimate out of all parameter estimates contained in the population model was 

selected and removed from the target model.   Likewise, for each T-3 model, the three smallest 

parameter estimates were removed from the target model.  This was done intentionally to allow 

for a more stringent test of the various fit indices’ sensitivity to misspecification, since removing 

paths with small parameter estimates from the target model does not change the fit of the model 

as drastically as removing paths with large parameter estimates. 

Table 8 displays Type II error, P(T-1), and P(T-3) for the C10 fit indices and the global 

fit indices RMSEA, CFI, TLI and SRMR.  Results are aggregated across all six population 

models.  Furthermore, results are displayed both for each sample size individually and averaged 

across all sample sizes.   In the following, the averaged results across all sample sizes will be 

discussed. 

All four global fit indices performed well in regards to Type II error: In none of the six 

nested model sequences, the target model was incorrectly rejected, which equals a Type II error 

rate of 0%.   However, the favorable Type II error rate came at the expense of power:  

Regardless of sample size, all T-1 models yielded fit index values above the cutoff of .95 for CFI 

and TLI, equal to a power rate of 0%.   The other two global fit indices SRMR and RMSEA 

performed better, yielding a power rate of 8.25% and 25%, respectively.  As such, when using 

CFI or TLI, in an empirical study with no knowledge of the “true” population model, one would 

have incorrectly selected the misspecified T-1 model as the best-fitting model.  When using 

SRMR or RMSEA, one would have incorrectly selected T-1 in 91.75% and 75% of cases, 

respectively.  The severely misspecified T-3 model was correctly rejected in 16.67% of cases for 

CFI, 33.33% of cases for TLI, 50% of cases for RMSEA, and 62% of cases for SRMR.  This 

means that, depending on the fit index, severely misspecified models are accepted in 38% to 

83.33% of cases when evaluating model fit with global fit indices.      
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Among the C10 fit indices, the only fit index that performed as badly as the global fit 

indices was C10-2
 with a cutoff value of zero.   Here, both the target model and all misspecified 

models were rejected in 100% of the cases, as such, both Type II error and the two power rates    

P (T-1) and P (T-3) equaled 100%.  All other combinations of C10 fit indices and different cutoff 

values performed better than the global fit indices in regards to power. Two distinct 

combinations of C10 indices and particular cutoff values performed best:   The fit indices based 

on 2
/df and 2

-df  with a cutoff value of .01 both showed a Type I error rate of 0%.   For both fit 

indices, the T-1 model was correctly rejected in 83.33% of all cases, whereas the T-3 model was 

correctly rejected in 100% of the cases.   As such, these two combinations of C10 indices and 

different cutoff values performed best among the path-related fit indices, which in turn worked 

much better than any of the global fit indices SRMR, RMSEA, CFI, and TLI. 

 In summary, by using either C10-2
/df or C10-2

-df with a cutoff value of .01, one is able 

to considerably increase the likelihood of rejecting misspecified models compared to global fit 

indices. 

 Type II error rates, P (T-1), and P (T-3) for C9 fit indices are displayed in Table 9.   The 

following combinations of fit indices and cutoff values performed best in identifying the target 

model and misspecified models: Both C9-2
/df and C9-2

-df (NSCI-P; Williams & Holahan, 

1994) with a cutoff value of .01 yielded a Type II error of 0%, a P (T-1) rate of 83%, and a P (T-

3) rate of 100%.   As such, these fit indices represent a reliable omnibus test of James’ et al. 

(1982) condition 9, that is, whether the structural paths specified in a model are significant.   
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Table 2. 

Results from MacCallum (1986), model with two indicators per factor. 

 
 

 
 

 
 

 
 

 
C10 fit indices 

 

 
C9 fit indices 

 

 
Global fit indices 

 
 

Model 
 

 
N 

 
χ2 

 
df 

 
χ2 χ2/df χ2-df 

 

 
χ2 χ2/df 

χ2-

df 

 

 

 

SRMR RMSEA CFI TLI 
 

 
Rep. 

                      

SN 

 100  323.170  32  1.000 1.000 1.000  .000 .000 .000  .398 .252 .763 .667  981 

 200  612.442  32  1.000 1.000 1.000  .000 .000 .000  .396 .255 .768 .673  1000 

 500  1483.440  32  1.000 1.000 1.000  .000 .000 .000  .396 .257 .770 .677  1000 

 1000  2937.300  32  1.000 1.000 1.000  .000 .000 .000  .395 .258 .771 .678  1000 

                      

T-3 

 100  111.988  29  .290 .312 .283  .710 .688 .717  .128 .150 .931 .893  870 

 200  197.091  29  .292 .319 .289  .708 .681 .711  .124 .155 .932 .895  926 

 500  450.362  29  .292 .320 .290  .708 .680 .710  .120 .158 .933 .896  989 

 1000  873.243  29  .291 .321 .291  .709 .679 .709  .120 .158 .933 .897  1000 

                      

T-1 

 100  61.870  27  .121 .139 .117  .879 .861 .883  .070 .099 .971 .952  996 

 200  96.501  27  .121 .141 .119  .879 .859 .881  .067 .103 .972 .953  1000 

 500  200.746  27  .121 .142 .120  .879 .858 .880  .065 .105 .972 .954  1000 

 1000  375.837  27  .120 .142 .120  .880 .858 .880  .064 .105 .972 .954  1000 

                                        (table continued) 
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Table 2 continued           

        

 
C10 fit indices  

 
C9 fit indices  Global fit indices   

Model 
 

 N 
 

χ2 
 

df 
 

χ2 χ2/df χ2-df 
 

 χ2 χ2/df χ2-df 
 

 

 

SRMR RMSEA CFI TLI 
 

 Rep. 

                      

 

T 

 

 100  26.947  26  .004 .000 .000  .996 1.000 1.000  .035 .020 .997 .999  1000 

 200  26.378  26  .002 .000 .000  .998 1.000 1.000  .024 .014 .999 1.000  1000 

 500  25.877  26  .001 .000 .000  .999 1.000 1.000  .015 .009 1.000 1.000  1000 

 1000  25.987  26  .000 .000 .000  1.000 1.000 1.000  .011 .006 1.000 1.000  1000 

                      

SS 

 100  25.887  25  .000 .000 .000  1.000 1.000 1.000  .034 .020 .997 .999  999 

 200  25.389  25  .000 .000 .000  1.000 1.000 1.000  .024 .014 .999 1.000  1000 

 500  24.908  25  .000 .000 .000  1.000 1.000 1.000  .015 .009 1.000 1.000  1000 

 1000  25.054  25  .000 .000 .000  1.000 1.000 1.000  .011 .007 1.000 1.000  1000 

                      
Note. N = sample size; df = degrees of freedom; SRMR = standardized root mean squared residual; RMSEA = root mean squared 

error of approximation; CFI = comparative fit index; TLI = Tucker-Lewis-Index; Rep. = number of replications that produced 

admissible and convergent solutions (out of 1000) 
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Table 3. 

Results from MacCallum (1986), model with four indicators per factor. 

 
 

 
 

 
 

 
 

 
C10 fit indices 

 

 
C9 fit indices 

 

 
Global fit indices 

 
 

Model 
 

 
N 

 
χ2 

 
df 

 
χ2 χ2/df χ2-df 

 

 
χ2 χ2/df 

χ2-

df 

 

 

 

SRMR RMSEA CFI TLI 
 

 
Rep. 

                      

SN 

 

 100  471.122  167  1.000 1.000 1.000  .000 .000 .000  .373 .107 .934 .925  1000 

 200  753.511  167  1.000 1.000 1.000  .000 .000 .000  .371 .110 .938 .930  1000 

 500  1620.810  167  1.000 1.000 1.000  .000 .000 .000  .370 .112 .939 .931  1000 

 1000  3077.380  167  1.000 1.000 1.000  .000 .000 .000  .370 .113 .939 .931  1000 

                      

T-3 

 100  267.618  164  .314 .313 .308  .686 .687 .692  .144 .062 .978 .974  1000 

 200  349.506  164  .312 .314 .309  .688 .686 .691  .140 .064 .980 .977  1000 

 500  612.941  164  .309 .314 .308  .691 .686 .692  .138 .065 .981 .978  1000 

 1000  1055.790  164  .307 .312 .306  .693 .688 .694  .136 .065 .981 .979  1000 

                      

T-1 

 100  212.187  162  .127 .127 .124  .873 .873 .876  .080 .039 .989 .987  1000 

 200  240.375  162  .126 .128 .124  .874 .872 .876  .072 .042 .992 .990  1000 

 500  343.718  162  .125 .128 .124  .875 .872 .876  .067 .043 .992 .991  1000 

 1000  520.115  162  .123 .127 .123  .877 .873 .877  .065 .043 .993 .991  1000 

                      
                  (table continued) 
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Table 3 continued           

        

 
C10 fit indices  

 
C9 fit indices  Global fit indices   

Model 
 

 N 
 

χ2 
 

df 
 

χ2 χ2/df χ2-df 
 

 χ2 χ2/df χ2-df 
 

 

 

SRMR RMSEA CFI TLI 
 

 Rep. 

                      

 

T 

 

 100  175.532  161  .004 .000 .000  .996 1.000 1.000  .049 .013 .996 .996  1000 

 200  167.688  161  .002 .000 .000  .998 1.000 1.000  .035 .009 .999 .999  1000 

 500  162.667  161  .001 .000 .000  .999 1.000 1.000  .022 .006 1.000 1.000  1000 

 1000  161.901  161  .000 .000 .000  1.000 1.000 1.000  .015 .004 1.000 1.000  1000 

                      

SS 

 100  174.404  160  .000 .000 .000  1.000 1.000 1.000  .049 .013 .996 .996  972 

 200  166.567  160  .000 .000 .000  1.000 1.000 1.000  .034 .009 .999 .999  986 

 500  161.735  160  .000 .000 .000  1.000 1.000 1.000  .021 .006 1.000 1.000  991 

 1000  160.917  160  .000 .000 .000  1.000 1.000 1.000  .015 .004 1.000 1.000  997 

                      
Note. N = sample size; df = degrees of freedom; SRMR = standardized root mean squared residual; RMSEA = root mean squared 

error of approximation; CFI = comparative fit index; TLI = Tucker-Lewis-Index; Rep. = number of replications that produced 

admissible and convergent solutions (out of 1000) 
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Table 4. 

Results from Mulaik et al. (1989), model with two indicators per factor 

 
 

 
 

 
 

 
 

 
C10 fit indices 

 

 
C9 fit indices 

 

 
Global fit indices 

 
 

Model 
 

 
N 

 
χ2 

 
df 

 
χ2 χ2/df χ2-df 

 

 
χ2 χ2/df 

χ2-

df 

 

 

 

SRMR RMSEA CFI TLI 
 

 
Rep. 

                      

SN 

 

 100  489.737  71  1.000 1.000 1.000  .000 .000 .000  .418 .224 .824 .775  974 

 200  918.458  71  1.000 1.000 1.000  .000 .000 .000  .417 .229 .825 .776  985 

 500  2214.920  71  1.000 1.000 1.000  .000 .000 .000  .417 .233 .825 .776  963 

 1000  4372.020  71  1.000 1.000 1.000  .000 .000 .000  .417 .234 .825 .776  956 

                      

T-3 

 100  171.670  65  .281 .297 .270  .719 .703 .730  .166 .106 .955 .937  949 

 200  287.650  65  .277 .298 .271  .723 .702 .729  .164 .113 .954 .935  986 

 500  642.952  65  .276 .299 .273  .724 .701 .727  .164 .117 .953 .934  998 

 1000  1234.150  65  .275 .299 .274  .725 .701 .726  .164 .118 .952 .933  1000 

                      

T-1 

 100  88.764  63  .094 .094 .081  .906 .906 .919  .072 .047 .989 .984  1000 

 200  121.288  63  .086 .091 .080  .914 .909 .920  .067 .060 .988 .983  1000 

 500  225.172  63  .083 .091 .080  .917 .909 .920  .064 .066 .987 .981  1000 

 1000  397.087  63  .081 .091 .080  .919 .909 .920  .063 .068 .986 .980  1000 

                  (table continued) 
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Table 4 continued           

        

 
C10 fit indices  

 
C9 fit indices  Global fit indices   

Model 
 

 
N 

 
χ2 

 
df 

 
χ2 χ2/df χ2-df 

 

 
χ2 χ2/df χ2-df 

 

 

 

SRMR RMSEA CFI TLI 
 

 
Rep. 

                      
 

T 

 

 100  53.646  62  .015 .004 .001  .985 .996 .999  .038 .004 .999 1.005  1000 

 200  52.015  62  .007 .002 .000  .993 .998 1.000  .027 .003 1.000 1.003  1000 

 500  51.122  62  .003 .001 .000  .997 .999 1.000  .017 .002 1.000 1.001  1000 

 1000  50.792  62  .001 .000 .000  .999 1.000 1.000  .012 .001 1.000 1.001  1000 

                      

T+1 

 100  52.608  61  .012 .004 .001  .988 .996 .999  .037 .004 .999 1.005  1000 

 200  51.044  61  .006 .002 .000  .994 .998 1.000  .026 .003 1.000 1.003  1000 

 500  50.171  61  .002 .001 .000  .998 .999 1.000  .016 .002 1.000 1.001  1000 

 1000  49.840  61  .001 .000 .000  .999 1.000 1.000  .011 .001 1.000 1.001  1000 

                      

T+3 

 100  50.435  59  .008 .002 .001  .992 .998 .999  .036 .003 .999 1.006  1000 

 200  48.950  59  .004 .001 .000  .996 .999 1.000  .025 .002 1.000 1.003  1000 

 500  48.054  59  .001 .000 .000  .999 1.000 1.000  .016 .002 1.000 1.001  1000 

 1000  48.054  59  .001 .000 .000  .999 1.000 1.000  .016 .002 1.000 1.001  1000 

                      

SS 

 100  47.076  56  .000 .000 .000  1.000 1.000 1.000  .034 .003 .999 1.006  1000 

 200  45.821  56  .000 .000 .000  1.000 1.000 1.000  .024 .002 1.000 1.003  1000 

 500  45.154  56  .000 .000 .000  1.000 1.000 1.000  .015 .002 1.000 1.001  1000 

 1000  44.869  56  .000 .000 .000  1.000 1.000 1.000  .011 .001 1.000 1.001  1000 

Note. N = sample size; df = degrees of freedom; SRMR = standardized root mean squared residual; RMSEA = root mean squared 

error of approximation; CFI = comparative fit index; TLI = Tucker-Lewis-Index; Rep. = number of replications that produced 

admissible and convergent solutions (out of 1000) 
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Table 5. 

Results from Mulaik et al. (1989), model with four indicators per factor 

 
 

 
 

 
 

 
 

 
C10 fit indices 

 

 
C9 fit indices 

 

 
Global fit indices 

 
 

Model 
 

 
N 

 
χ2 

 
df 

 
χ2 χ2/df χ2-df 

 

 
χ2 χ2/df χ2-df 

 

 

 

SRMR RMSEA CFI TLI 
 

 
Rep. 

                      

SN 

 

 100  853.305  344  1.000 1.000 1.000  .000 .000 .000  .388 .103 .941 .935  1000 

 200  1301.250  344  1.000 1.000 1.000  .000 .000 .000  .386 .106 .946 .940  1000 

 500  2700.360  344  1.000 1.000 1.000  .000 .000 .000  .385 .108 .947 .942  1000 

 1000  5049.930  344  1.000 1.000 1.000  .000 .000 .000  .384 .108 .947 .942  1000 

                      

T-3 

 100  451.035  338  .164 .150 .150  .836 .850 .850  .093 .040 .987 .985  1000 

 200  497.988  338  .156 .151 .149  .844 .849 .851  .085 .042 .991 .990  1000 

 500  694.369  338  .151 .151 .148  .849 .849 .852  .080 .042 .992 .991  1000 

 1000  1040.810  338  .150 .151 .149  .850 .849 .851  .079 .042 .992 .991  1000 

                      

T-1 

 100  415.406  336  .090 .078 .077  .910 .922 .923  .081 .026 .991 .990  1000 

 200  427.741  336  .082 .078 .076  .918 .922 .924  .071 .029 .995 .994  1000 

 500  522.826  336  .079 .078 .076  .921 .922 .924  .065 .030 .996 .995  1000 

 1000  698.511  336  .078 .078 .076  .922 .922 .924  .063 .030 .996 .995  1000 

                      
 

T 

 

 100  378.809  335  .014 -.001 .001  .986 1.001 .999  .052 .012 .995 .994  1000 

 200  355.461  335  .006 .000 .000  .994 1.000 1.000  .037 .008 .999 .999  1000 

 500  343.194  335  .003 .000 .000  .997 1.000 1.000  .023 .005 1.000 1.000  1000 

 1000  338.875  335  .001 .000 .000  .999 1.000 1.000  .016 .004 1.000 1.000  1000 

                  (table continued) 
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Table 5 continued           

        

 
C10 fit indices  

 
C9 fit indices  Global fit indices   

Model 
 

 N 
 

χ2 
 

df 
 

χ2 χ2/df χ2-df 
 

 χ2 χ2/df χ2-df 
 

 

 

SRMR RMSEA CFI TLI 
 

 Rep. 

                      

T+1 

 100  377.758  334  .011 .000 .001  .989 1.000 .999  .052 .012 .995 .994  1000 

 200  354.463  334  .005 .000 .000  .995 1.000 1.000  .036 .008 .999 .999  1000 

 500  342.147  334  .002 .000 .000  .998 1.000 1.000  .023 .005 1.000 1.000  1000 

 1000  337.849  334  .001 .000 .000  .999 1.000 1.000  .016 .004 1.000 1.000  1000 

                      

T+3 

 100  375.540  332  .007 .000 .000  .993 1.000 1.000  .051 .012 .995 .994  1000 

 200  352.320  332  .003 .000 .000  .997 1.000 1.000  .036 .008 .999 .999  1000 

 500  340.131  332  .001 .000 .000  .999 1.000 1.000  .022 .005 1.000 1.000  1000 

 1000  335.831  332  .001 .000 .000  .999 1.000 1.000  .016 .004 1.000 1.000  1000 

                      

SS 

 100  372.313  329  .000 .000 .000  1.000 1.000 1.000  .050 .012 .995 .994  1000 

 200  349.305  329  .000 .000 .000  1.000 1.000 1.000  .035 .008 .999 .999  1000 

 500  337.158  329  .000 .000 .000  1.000 1.000 1.000  .022 .005 1.000 1.000  1000 

 1000  332.872  329  .000 .000 .000  1.000 1.000 1.000  .016 .004 1.000 1.000  1000 

                      
Note. N = sample size; df = degrees of freedom; SRMR = standardized root mean squared residual; RMSEA = root mean squared 

error of approximation; CFI = comparative fit index; TLI = Tucker-Lewis-Index; Rep. = number of replications that produced 

admissible and convergent solutions (out of 1000) 
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Table 6. 

Results from Duncan et al. (1971) 

 
 

 
 

 
 

 
 

 
C10 fit indices 

 

 
C9 fit indices 

 

 
Global fit indices 

 
 

Model 
 

 
N 

 
χ2 

 
df 

 
χ2 χ2/df χ2-df 

 

 
χ2 χ2/df χ2-df 

 

 

 

SRMR RMSEA CFI TLI 
 

 
Rep. 

                      

SN 

 

 100  125.928  27  1.000 1.000 1.000  .000 .000 .000  .233 .179 .786 .644  985 

 200  222.983  27  1.000 1.000 1.000  .000 .000 .000  .229 .183 .793 .655  988 

 500  515.220  27  1.000 1.000 1.000  .000 .000 .000  .228 .185 .796 .661  992 

 1000  1002.620  27  1.000 1.000 1.000  .000 .000 .000  .227 .185 .797 .662  1000 

                      

T-3 

 100  26.466  20  .105 .054 .049  .895 .946 .951  .052 .044 .984 .968  1000 

 200  31.361  20  .082 .065 .052  .918 .935 .948  .044 .046 .988 .973  1000 

 500  46.675  20  .066 .070 .053  .934 .930 .947  .037 .049 .989 .975  1000 

 1000  73.174  20  .060 .072 .054  .940 .928 .946  .035 .050 .989 .975  1000 

                      

T-1 

 100  19.474  18  .043 -.015 -.003  .957 1.015 1.003  .037 .025 .993 .992  1000 

 200  19.536  18  .025 -.002 .001  .975 1.002 .999  .027 .019 .996 .996  1000 

 500  20.426  18  .013 .004 .003  .987 .996 .997  .018 .015 .998 .997  1000 

 1000  22.958  18  .009 .006 .004  .991 .994 .996  .014 .014 .999 .997  1000 

                      
 

T 

 

 100  17.971  17  .029 -.022 -.008  .971 1.022 1.008  .033 .024 .993 .994  1000 

 200  17.611  17  .016 -.009 -.004  .984 1.009 1.004  .024 .017 .997 .998  1000 

 500  16.965  17  .006 -.004 -.002  .994 1.004 1.002  .015 .010 .999 1.000  1000 

 1000  17.078  17  .003 -.002 -.001  .997 1.002 1.001  .010 .007 .999 1.000  1000 

                  (table continued) 
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Table 6 continued           

        

 
C10 fit indices  

 
C9 fit indices  Global fit indices   

Model 
 

 N 
 

χ2 
 

df 
 
χ2 χ2/df χ2-df 

 

 χ2 χ2/df χ2-df 
 

 

 

SRMR RMSEA CFI TLI 
 

 Rep. 

                      

T+1 

 100  17.035  16  .021 -.020 -.007  .979 1.020 1.007  .031 .024 .993 .994  1000 

 200  16.592  16  .011 -.009 -.004  .989 1.009 1.004  .022 .017 .997 .998  853 

 500  15.982  16  .004 -.004 -.002  .996 1.004 1.002  .013 .010 .999 1.000  1000 

 1000  16.057  16  .002 -.002 -.001  .998 1.002 1.001  .010 .007 .999 1.000  1000 

                      

T+3 

 100  14.738  14  .000 -.023 -.010  1.000 1.023 1.010  .024 .024 .994 .995  1000 

 200  14.296  14  .000 -.011 -.005  1.000 1.011 1.005  .017 .017 .998 .999  754 

 500  13.846  14  .000 -.004 -.002  1.000 1.004 1.002  .011 .010 .999 1.000  1000 

 1000  14.008  14  .000 -.002 -.001  1.000 1.002 1.001  .008 .007 1.000 1.000  1000 

                      

SS 

 100  14.745  13  .000 .000 .000  1.000 1.000 1.000  .024 .029 .993 .987  959 

 200  14.312  13  .000 .000 .000  1.000 1.000 1.000  .017 .021 .997 .995  971 

 500  13.827  13  .000 .000 .000  1.000 1.000 1.000  .011 .013 .999 .999  972 

 1000  13.995  13  .000 .000 .000  1.000 1.000 1.000  .007 .009 .999 .999  983 

                      
Note. N = sample size; df = degrees of freedom; SRMR = standardized root mean squared residual; RMSEA = root mean squared 

error of approximation; CFI = comparative fit index; TLI = Tucker-Lewis-Index; Rep. = number of replications that produced 

admissible and convergent solutions (out of 1000) 
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Table 7. 

Results from Ecob (1987). 

 
 

 
 

 
 

 
 

 
C10 fit indices 

 

 
C9 fit indices 

 

 
Global fit indices 

 
 

Model 
 

 
N 

 
χ2 

 
df 

 
χ2 χ2/df χ2-df 

 

 
χ2 χ2/df χ2-df 

 

 

 

SRMR RMSEA CFI TLI 
 

 
Rep. 

                      

SN 

 100  176.080  55  1.000 1.000 1.000  .000 .000 .000  .220 .152 .849 .819  379 

 200  293.783  55  1.000 1.000 1.000  .000 .000 .000  .214 .154 .853 .823  388 

 500  674.592  55  1.000 1.000 1.000  .000 .000 .000  .218 .159 .855 .826  691 

 1000  1312.890  55  1.000 1.000 1.000  .000 .000 .000  .220 .161 .855 .826  892 

                      

T-3 

 100  55.920  48  .082 .052 .048  .918 .948 .952  .070 .027 .989 .987  631 

 200  63.232  48  .072 .062 .055  .928 .938 .945  .053 .034 .991 .993  258 

 500  86.796  48  .068 .070 .062  .932 .930 .938  .045 .038 .991 .994  265 

 1000  123.322  48  .063 .068 .059  .937 .932 .941  .045 .005 .002 .993  226 

                      

T-1 

 100  50.024  46  .036 .016 .015  .964 .984 .985  .063 .021 .992 .993  526 

 200  51.905  46  .027 .018 .016  .973 .982 .984  .048 .020 .995 .995  658 

 500  56.048  46  .020 .018 .015  .980 .982 .985  .037 .018 .997 .997  768 

 1000  65.866  46  .017 .018 .015  .983 .982 .985  .032 .019 .998 .997  853 

                      
 

T 

 

 100  47.303  45  .016 -.001 .000  .984 1.001 1.000  .054 .017 .994 .996  717 

 200  46.826  45  .006 -.003 -.002  .994 1.003 1.002  .038 .014 .997 .998  850 

 500  45.625  45  .003 .000 .000  .997 1.000 1.000  .024 .008 .999 1.000  966 

 1000  45.737  45  .002 .000 .000  .998 1.000 1.000  .017 .006 1.000 1.000  992 

                  (table continued) 
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Table 7 continued           

        

 
C10 fit indices  

 
C9 fit indices  Global fit indices   

Model 
 

 N 
 

χ2 
 

df 
 

χ2 χ2/df 
χ2-

df 

 

 χ2 χ2/df χ2-df 
 

 

 

SRMR RMSEA CFI TLI 
 

 Rep. 

                      

T+1 

 100  46.522  44  .010 .002 .002  .990 .998 .998  .053 .018 .994 .995  664 

 200  45.996  44  .003 -

.001 

-

.001 
 .997 1.001 1.001  .037 .014 .997 .998  784 

 500  44.727  44  .002 .000 .000  .998 1.000 1.000  .023 .008 .999 1.000  935 

 1000  44.709  44  .001 .000 .000  .999 1.000 1.000  .016 .006 1.000 1.000  987 

                      

SS 

 100  45.249  43  .000 .000 .000  1.000 1.000 1.000  .052 .012 .994 .996  608 

 200  45.214  43  .000 .000 .000  1.000 1.000 1.000  .037 .015 .997 .998  755 

 500  43.704  43  .000 .000 .000  1.000 1.000 1.000  .023 .008 .999 1.000  893 

 1000  43.691  43  .000 .000 .000  1.000 1.000 1.000  .016 .006 1.000 1.000  951 

Note. N = sample size; df = degrees of freedom; SRMR = standardized root mean squared residual; RMSEA = root mean squared 

error of approximation; CFI = comparative fit index; TLI = Tucker-Lewis-Index; Rep. = number of replications that produced 

admissible and convergent solutions (out of 1000) 
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Table 8. 

Performance of C10 fit indices under different cutoff values, SRMR, RMSEA, CFI, and TLI averaged across all six population models. 

   Cutoff values 

  
 χ2 

 
χ2/df 

 
χ2-df 

 
SRMR RMSEA CFI TLI 

  
 

               
 

  
 

N Crit. 
 

0 .01 .025 .05 
 

0 .01 .025 .05 
 

0 .01 .025 .05 
 

.08 .06 .95 .95 
 

                      

100 

β  100

.00 
66.67 16.67 0 

 
50 0 0 0 

 
83.33 0 0 0 

 
0 0 0 0 

P(T-1)  100 100 100 66.67 
 

83.33 83.33 66.67 66.67 
 

83.33 83.33 66.67 66.67 
 

33.33 16.67 0 0 

P(T-3)  100 100 100 100 
 

100 100 100 100 
 

100 100 100 66.67 
 

66.67 50 16.67 33.33 

  
 

               
 

  
 

200 

β  100 16.67 0 0 
 

33.33 0 0 0 
 

50 0 0 0 
 

0 0 0 0 

P(T-1)  100 100 83.33 66.67 
 

83.33 83.33 66.67 66.67 
 

100 83.33 66.67 66.67 
 

0 16.67 0 0 

P(T-3)  100 100 100 100 
 

100 100 100 100 
 

100 100 100 100 
 

66.67 50 16.67 33.33 

  
 

               
 

  
 

500 

β  100 0 0 0 
 

16.67 0 0 0 
 

16.67 0 0 0 
 

0 0 0 0 

P(T-1)  100 100 66.67 66.67 
 

100 83.33 66.67 66.67 
 

100 83.33 66.67 66.67 
 

0 33.33 0 0 

P(T-3)  100 100 100 100 
 

100 100 100 100 
 

100 100 100 100 
 

66.67 50 16.67 33.33 

  
 

               
 

  
 

1000 

β  100 0 0 0 
 

33.33 0 0 0 
 

33.33 0 0 0 
 

0 0 0 0 

P(T-1)  100 83.33 66.67 66.67 
 

100 83 67 67 
 

100 83 67 67 
 

0 33.33 0 0 

P(T-3)  100 100 100 100 
 

100 100 100 100 
 

100 100 100 100 
 

50 50 16.67 33.33 

                      

Avg.  

β  100 20.83 4.17 0 
 

33.33 0 0 0 
 

45.83 0 0 0 
 

0 0 0 0 

P(T-1)  100 95.83 79.17 66.67 
 

91.67 83.33 66.67 66.67 
 

95.83 83.33 66.67 66.67 
 

8.25 25 0 0 

P(T-3)  100 100 100 100 
 

100 100 100 100 
 

100 100 100 91.67 
 

62.50 50 16.67 33.33 

                      

Note. N = Sample size; Avg. = Average; Crit. = Criterion, by which fit indices are evaluated; β = Type II error, i.e. the percentage of 

cases  in which a correct model is incorrectly rejected in favor of a more or less restrictive model under a particular cutoff value; P(T-1) = 

Power of a fit index to detect small misspecifications, i.e. percentage of cases in which a model with small misspecifications (one path 

missing) is correctly rejected under a particular cutoff value; P(T-3) = Power of a fit index to detect large misspecifications, i.e. 
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percentage of cases in which a model with large misspecifications (three paths missing) is correctly rejected; Average = average of β, P 

(T-1), P (T-3) across all sample sizes; SRMR = standardized root mean squared residual; RMSEA = root mean squared error of 

approximation; CFI = comparative fit index; TLI= Tucker-Lewis- Index; underlined = best –performing fit indices 
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Table 9. 

 

Performance of C9 fit indices under different cutoff values averaged across all six  

population models.   

    

 

Cutoff values 

   
χ2 

 
χ2/df 

 
χ2-df 

                            

N Crit. 
 

.95 .975 .99 1.00 
 

.95 .975 .99 1.00 
 

.95 .975 .99 1.00 

100 

β 
 

0 16.67 66.67 100 
 

0 0 0 50 
 

0 0 0 83.33 

P (T-1) 
 

66.67 100 100 100 
 

66.67 66.67 83.33 83.33 
 

66.67 66.67 83.33 83.33 

P (T-3)  100 100 100 100  100 100 100 100  66.67 100 100 100 

  
               

200 

β 
 

0 0 16.67 100 
 

0 0 0 33.33 
 

0 0 0 50 

P (T-1) 
 

66.67 83.33 100 100 
 

66.67 66.67 83.33 83.33 
 

66.67 66.67 83.33 100 

P (T-3)  100 100 100 100  100 100 100 100  100 100 100 100 

  
               

500 

β 
 

0 0 0 100 
 

0 0 0 16.67 
 

0 0 0 16.67 

P (T-1) 
 

66.67 66.67 100 100 
 

66.67 66.67 83.33 100.00 
 

66.67 66.67 83.33 100 

P (T-3)  100 100 100 100  100 100 100 100  100 100 100 100 

  
               

1000 

β 
 

0 0 0 100 
 

0 0 0 33.33 
 

0 0 0 33.33 

P (T-1) 
 

66.67 66.67 83.33 100 
 

66.67 66.67 83.33 100 
 

66.67 66.67 83.33 100 

P (T-3) 
 

100 100 100 100 
 

100 100 100 100 
 

100 100 100 100 

                 

Avg.  
β 

 
0 4.17 20.83 100 

 
0 0 0 33.33 

 
0 0 0 45.83 

P (T-1)   66.67 79.17 95.83 100 
 

66.67 66.67 83.33 91.67 
 

66.67 66.67 83.33 95.83 

 P (T-3)  100 100 100 100  100 100 100 100  91.67 100 100 100 

                 

Note. N = Sample Size; Avg. = Average across sample sizes; Crit. = Criterion, by which fit indices are  
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evaluated; β = Type II error, i.e. the percentage of cases  in which a correct model is incorrectly rejected in 

favor of a more or less restrictive model under a particular cutoff value; P (T-1) = Power of a fit index to 

detect small misspecifications, i.e. percentage of cases in which a model with small misspecifications (one 

path missing) is correctly rejected under a particular cutoff value; P (T-3) = Power of a fit index to detect 

large misspecifications, i.e. percentage of cases in which a model with large misspecifications (three paths 

missing) is correctly rejected a; Average = Average of β, P (T-1), P (T-3) across all sample sizes ; underlined 

= best –performing fit indices 
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CHAPTER 4 

DISCUSSION 

This study had three primary goals:  The first goal was to develop two general 

frameworks for path-related fit indices that evaluate James’ et al. (1982) condition 9 and 

condition 10.  The second goal was to create exemplary fit indices based on these two 

frameworks by incorporating three common standalone fit indices and to test their performance 

under various different cutoff values, so that the best-performing combination of each fit index 

and a particular cutoff value could be determined.   Finally, the third goal was to compare the 

performance of the path-related fit indices to popular global fit indices. 

The results from the simulation study showed that all C10 and C9 fit indices performed 

very well in accepting the correctly specified target model and rejecting models with both small 

and severe misspecifications.  The optimal cutoff value differed for fit indices based on 2 
on the 

one hand and on 2
/df and 2

-df  on the other hand.  The fit indices based on 2
/df and 2

-df 

displayed the highest power rates for the slightly misspecified T-1 models and showed therefore 

the best performance.  As described above, it is worth mentioning that only the paths with the 

smallest parameter estimates were deleted from the target model to create T-1- and T-3- models.  

For example, in Ecob’s model, a path with an estimate of -.142 was removed from the target 

model to create the T-1 model, while there were path estimates as large as .782 in the model.  

The fact that power was still high despite the small differences between the target and the 

misspecified models is proof of the accuracy of path-related fit indices.   
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Based on the results of this study, C10 indices reliably indicate whether any significant 

paths have been erroneously set to zero in a model, whereas C9 indices reliably indicate whether 

the specified paths in a model are significant.      

As predicted, the comparison between path-related and global fit indices showed that all 

path-related fit indices were considerably more accurate than the global fit indices SRMR, 

RMSEA, CFI, and TLI.   Using CFI and TLI and their recommended cutoff values, none of the 

six T-1 models with small misspecifications at any of the four sample sizes would have been 

rejected, and only a small number of misspecified models were identified using RMSEA and 

SRMR.  In only one of the six population models, CFI was able to detect the severely 

misspecified T-3 model, whereas the other five T-3 models would have been erroneously 

accepted. Using TLI, the T-3 model was correctly rejected in two out of the six population 

models. RMSEA identified the misspecified T-3 model in three of the population models. Finally, 

across all sample sizes, SRMR performed best among the global fit indices, since four of the six 

T-3 models were correctly rejected.  As such, the global fit indices were shown to be too lenient 

in regards to model misspecification.  Given that at equal fit, the more parsimonious model is 

preferable (Mulaik et al., 1989), one would be likely to select a model with important significant 

paths left out over a correctly specified model when evaluating theoretical models against 

empirical data.    

The findings of this study imply that in the majority of cases, the perfect fit of the 

measurement model masked the misspecifications in the structural model.   This is particularly 

troubling because the models evaluated in this study had rather small measurement models with 

relatively few parameters estimated: Duncan’s et al. (1971) model had only 1.25 indicators per 

factor.   Ecob’s (1987) model had two indicators per factor, and MacCallum’s (1986) and 

Mulaik’s et al. (1989) models were each specified with two and four indicators per factor.   Yet 
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despite the small number of paths estimated in the measurement model, it still masked the bad fit 

of the misspecified models.    

Increasing the number of manifest variables in one’s models has been shown to reduce 

the number of non-converged and improper solutions, and to yield more accurate and stable 

parameter estimates as well as more reliable factors (Marsh, Hau, Balla, & Grayson, 1998).   As 

such, researchers may aim to use models with more indicators than in the current simulation 

study.  The measurement models may therefore be larger in empirical research than in the current 

simulation study.  This means that the problem of measurement model fit masking structural 

model fit may be even more pronounced in models assessed against empirical data.    

Overall, these findings are in line with the concerns many researchers have previously 

voiced about evaluating structural relations with global fit indices (e.g.  McDonald & Ho, 2002, 

Mulaik et al., 1989; O’Boyle and Williams, 2011; Rigdon, 1996; Sobel & Bohrnstedt, 1985).    

They demonstrate that global fit indices may not represent adequate tools for helping researchers 

decide whether to accept or reject a theoretical model.    It could also be shown that path-related 

fit indices based on the frameworks introduced in this study provide a viable alternative to global 

fit indices and are much more accurate in detecting model misspecifications. 

Limitations and Directions for Future Research 

While this study provides researchers with an alternative to evaluating model fit with 

global fit indices, there were some limitations to this research.   As mentioned above, four out of 

the six population models examined in this study had measurement models with only two or 

fewer indicators.   Since models tested against empirical data usually incorporate more 

indicators, future research should simulate models with a higher number of indicators.  That way, 

it could be determined whether the differences between path-related and global fit indices in 

regards to power are even greater than in the models used for this study.  Furthermore, in this 
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study only three different standalone fit indices were incorporated into the C10 and C9 

frameworks.  Since the ideal cutoff values differed for two of the six C10 and C9 fit indices, it 

appears that there does not exist one single best-performing cutoff value that can be applied to all 

path-related fit indices.  Future research should therefore evaluate fit indices created from the 

general frameworks but using additional standalone indices such as the SRMR or the AGFI and 

determine their respective cutoff values as well as their performance. 

 Another limitation of this study is that the models were simulated under ideal 

circumstances, that is, all variables were assumed to be perfectly normally distributed and no 

missing data was incorporated into the simulation. Future studies should introduce perturbations 

in order to provide for more realistic scenarios that may be better applicable to empirical data. 

A relatively minor limitation of this study is that in the evaluation of the global fit 

indices, the formula to calculate CFI used by LISREL 8.70 and newer versions might lead to 

heavily inflated CFI values (G. Cheung, personal conversation, August 23, 2013).   In this study, 

LISREL 8.80 was used, which might have caused inflated CFI values, so that CFI displayed the 

worst power to reject misspecified models among all fit indices examined.  When interested in 

CFI values, future researchers might therefore consider estimating models with other software 

programs that use different baseline models, such as for example MPlus (Muthén & Muthén, 

2011).   Finally, for the simulations in this study, the variables were specified as normally 

distributed.  Future research should examine the performance of the path-related fit indices 

proposed in this study when variables do not follow a normal distribution. 

Implications  

 The findings of this study have important implications for researchers, editors and 

practitioners.  First, they clearly support McDonald and Ho’s (2002) and O’Boyle and William’s 

(2011)  recommendation for researchers to not rely only on global fit indices to assess structural 
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relationships, but to use path-related fit indices that assess fit of the structural model.  Both 

McDonald and Ho’s (2002) and O’Boyle and Williams’ (2011) analyses of published SEM 

models showed that a large majority of models might be misspecified because the authors 

assessed model fit with global fit indices.   Researchers should therefore use caution when 

building theories based on previously published research where SEM was used, since there is a 

realistic chance that published theoretical models may be flawed.   As such, researchers might 

consider re-examining and calculating structural model fit of published models if they aim to 

derive hypotheses and build their own research on such models.   If χ
2
-values and df are provided 

for the structural model, path-related fit indices can be quickly and easily calculated.   

 Editors of scientific journals should be aware of the issues around assessing model fit 

with global fit indices.   They should require every author to assess fit of the structural model and 

accept papers only if authors provide sufficient proof that the hypothesized structural 

relationships are significant, and that the relationships that are not estimated are in fact zero.    At 

the minimum, authors should be urged to provide χ
2
-values and df for the measurement model 

and the structural model separately, so that other researchers can calculate path-related fit indices 

on their own. 

 Finally, practitioners should also closely examine structural model fit if they aim to 

design interventions based on variable relationships established through SEM.  As a fictitious 

example, an I/O- psychologist might have found in the literature that there is a strong 

relationship between leader behaviors and employee turnover intentions.   Having an issue with 

employee turnover in his organization, he might decide to conduct an expensive large-scale 

leadership training in his organization.   However, if global fit indices were used in the studies 

the I/O psychologist bases his decision on the “true” relationship between those variables might 
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be weaker or not exist at all.   In this case, a lot of resources would be wasted.   This example 

applies to all other sciences in which SEM is being used.   

Conclusion 

  Due to its many advantages, SEM has become one of the most widely used tools for 

theory development and theory evaluation in many scientific disciplines.   The findings 

researchers obtain by testing their theories using SEM become the cornerstone for other 

researchers’ as well as practitioners’ work.   Misinterpretations of the variable interrelationships 

in one’s data might lead to the perpetuation of flawed theories and impede the advancement of 

scientific knowledge building.  Therefore, it is essential that the tools researchers use to evaluate 

their models are accurate.  This study replicated findings that show that current tools are not 

sensitive enough to reject misspecified models.  In addition, researchers are provided with newly 

developed fit indices that circumvent the issues related to global fit indices.   It was shown that 

by using the new path-related fit indices to evaluate their data, causal models are subjected to a 

more stringent test and misspecified models can be better identified.  As such, this research 

contributes to the improvement of tools for model testing, so that researchers can have greater 

confidence in the verity of their theoretical models.    
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