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ABSTRACT 

 The decreasing trend of cancer mortality has been mostly due to the improved 

diagnostic techniques for detecting the early stage of cancer as well as development of 

therapeutic strategy which heavily depends on the understanding of the fundamental 

biology of tumor cell. We applied a systematic study by using bioinformatics and 

computational biology methods on gene expression data to address problems that related 

to those two issues. (1).A comparative study of public gene-expression data of seven 

types of cancers was conducted with the aim of deriving serum marker genes for early 

detection, The analysis results indicate that (1a) each cancer type can be distinguished 

from its corresponding control tissue based on the expression patterns of a small number 

of genes; (1b) the expression patterns of some genes can distinguish multiple cancer 

types from their corresponding control tissues, potentially serving as general markers for 

all or some groups of cancers; (1c) the proteins encoded by some of these genes are 

predicted to be blood secretory providing potential cancer markers in blood. (2). A 

comparative analysis of two types of skin cancers, melanoma and basal cell carcinoma in 

comparison with other cancer types, was conducted with the aim of improving the 

understanding and identifying key regulatory factors that either cause or contribute to the 



aggressiveness of melanoma. Our findings include the following. (2a) Advanced 

melanoma shows substantial up-regulation of key genes involved complimentary 

metabolism process, providing a source of the energetics necessary to support the rapid 

growth. (3) A comparative analysis of six solid cancer types in micro-environmental 

study with the aim of proposing a model of how cancer cells utilize a few mechanisms to 

keep the protons
 
outside of the cells. (3a)The model consists of a number of previously 

studied, well or partially, mechanisms for transporting out the excess protons and a new 

mechanism that neutralizes protons. (3b)We hypothesize that these processes are 

regulated by cancer related conditions making these encoded processes not available to 

normal cells under acidic conditions. We believe this systematic study will bring 

important insight regarding to both topics to the cancer research field. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Purpose of the Study  

Cancer is a key threat to people’s health and life, accounting for ~13% of all 

disease-causing deaths in the world (WHO 2006). In 2007, 7.6 million people died of 

cancer world-wide (Dunham 2007). In the U.S, over 1.4 million new cancer cases were 

reported each year in the past few years, and cancer is the second leading cause of death 

following heart disease. Statistics from the SEER reports indicate that the mortality rate 

across all cancer types in the U.S. went from 195.4 per 100,000 cases in 1950, continued 

an upward trend till 1978 reaching 204.4, and then steadily decreased to 184.0 in 2005 

(Ries LAG 2008). This decreasing trend has been mostly due to the improved diagnostic 

techniques for detecting the early stage of cancer as well as development of therapeutic 

strategy. Regarding to these two major issues, we applied a systematic study with 

bioinformatics and computational biology method on gene expression data of cancer.  

 

Since the most patients are asymptomatic in the early stages of cancer, and only a few 

effective cancer-screening tests are clinically available. While some tests have proved to 

be effective in detecting cancer at its early stage, they are often too invasive, such as 

colonoscopy, to be routinely used during regular physicals and are currently limited to 

only a small number of cancer types. Often a cancer is already in an advanced stage when 

diagnosed; clearly, more effective techniques for early cancer detection are urgently 
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needed. Since traditional method of identifying novel tumor markers is labor intensive 

and time consuming, it has been very difficult to find markers with high sensitivity and 

specificity. In recent years, gene expression profiling has been a popular method for 

biomarker discovery (Simon 2003; Sommer and Haendler 2003; Yanagisawa, Xu et al. 

2003; Rai and Chan 2004). Studies of this nature have been fruitful in identifying novel 

genes that are altered in expression in disease states, as the method can assess the levels 

of thousands of genes simultaneously.  

 

Other than the early detection problem, another challenge is the development of new 

therapeutic strategy which heavily depends on the understanding the fundamental biology 

of tumor cell. Since the finding that cancerous cells divide fast make the milestone 

contribution to the development of the most popular chemotherapeutic drugs that target 

fast-dividing cancer cells (Li 2006). More than 50% of people diagnosed with cancer are 

treated with chemotherapy. The understanding of the cancer biology helped people to 

identify the specific feature of the tumor behavior and eventually lead the development of 

the cancer treatment and saves peoples life. And during the last decade the conceptual 

progress have been made in understanding cancer mechanistic underpinnings. This 

progress provides a big leap for the entire cancer research industry. The limitation of 

current popular treatment is obvious as a great number of patients are not successfully 

cured. As the entire field improving the understanding on the biology of cancer, new 

drugs and therapies invented to help saving patients’ life and reduce their suffering.  
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To address the issues in these two aspects, we applied the bioinformatics and 

computational biology methods on gene expression data to address problems that related 

to those two issues. In this comprehensive study, we present a work on serum marker for 

cancer detection. To meet the need of deeper understanding of tumor-genesis at the 

molecular level, new experimental technologies were developed. To analyze and explain 

the experiment results, bioinformatics technics are widely used. Here we present a 

comparative by using the bioinformatics methods to solve the aforementioned two major 

problems. 

 

Gene expression data by microarray technology and application to cancer research  

Our work mainly based on the data analysis and data mining of the transcriptomic 

data, which is cancer gene-expression data generated from the microarray experiment. 

Microarray technology is introduced to the scientific community for decades. A DNA 

microarray is a collection of microscopic DNA spots attached to a small chip. DNA 

microarrays are used to measure the expression levels of large numbers of genes 

simultaneously. Each DNA spot contains picomoles (10−12 moles) of a specific DNA 

sequence, known as probes. These can be a short section of a gene or other DNA element 

that are used to hybridize a cDNA or cRNA sample (called target) under high-stringency 

conditions. Probe-target hybridization is usually detected and quantified by detection of 

fluorophore-, silver-, or chemiluminescence-labeled targets to determine relative 

abundance of nucleic acid sequences in the target. Since an array can contain tens of 

thousands of probes, a microarray experiment can accomplish many genetic tests in 

parallel.  
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Microarray technology is proven to be among the most useful techniques for molecular 

biology and widely used in the field of cancer research (Guo 2003). Figure 1.1 shows a 

typical cDNA microarray experiment. Gene expression arrays are used to detect RNA 

expression levels in the cell. By comparing RNA expression levels among the samples of 

interest (tumor sample in certain stage or subtypes, the normal tissue as control sample), 

gene expression changes can be profiled on a genome-wide scale to reflect possible 

biologic or clinical relevance.  

 

Current situation of the data analysis and data mining on cancer microarray data 

DNA microarray technology appears to be the most comprehensive and 

productive approach to characterize human malignancies molecularly. Gene expression 

profiling of cancers expanded exponentially in the past several years and represents the 

largest category of research based on this technology. Gene expression profiling using 

DNA microarray can offer a global view of networking events in multiple genes and 

pathways and generate exciting new hypotheses. The power of this approach has been 

demonstrated in the studies of a wide variety of malignancies, including cancers of 

prostate, breast, liver, pancreas, ovary, stomach, lung, and head and neck (Bhattacharjee, 

Richards et al. 2001; Dhanasekaran, Barrette et al. 2001; Garber, Troyanskaya et al. 

2001; Tonin, Hudson et al. 2001; Al Moustafa, Alaoui-Jamali et al. 2002; Belbin, Singh 

et al. 2002; Chen, Cheung et al. 2002; Han, Bearss et al. 2002; Hedenfalk, Ringner et al. 

2002; Hippo, Taniguchi et al. 2002; Luo, Dunn et al. 2002). These microarray studies 

have revealed a large set of genes differentially expressed between cancerous and normal 
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cells, including those genes known to be important for neoplastic transformation. 

Although the information obtained through these studies have contributed to a better 

understanding of tumor genesis, the potential of gene expression profiling has not been 

fully realized because of the lack of knowledge about the functions of many genes and 

the lack of more adequate bioinformatics or statistical tools.  

 

Feature of the microarray data and analysis methods 

Microarray data sets are commonly very large, and analytical precision is 

influenced by a number of variables. Statistical challenges include taking into account 

effects of background noise and appropriate normalization of the data. Normalization 

methods may be suited to specific platforms and, in the case of commercial platforms, the 

analysis may be proprietary. Algorithms that affect statistical analysis include: (A) Image 

analysis: gridding, spot recognition of the scanned image (segmentation algorithm), 

removal or marking of poor-quality and low-intensity features (called flagging). (B) Data 

processing: background subtraction (based on global or local background), determination 

of spot intensities and intensity ratios, visualization of data, and log-transformation of 

ratios, global or local normalization of intensity ratios, and segmentation into different 

copy number regions using step detection algorithms. (C) Identification of statistically 

significant changes: T-test, ANOVA, Bayesian method (Ben-Gal, Shani et al. 2005) 

Mann–Whitney test methods tailored to microarray data sets, which take into account 

multiple comparisons (Leung and Cavalieri 2003) or cluster analysis(Priness, Maimon et 

al. 2007). These methods assess statistical power based on the variation present in the 

data and the number of experimental replicates, and can help minimize Type I and type II 



 

6 

errors in the analyses (Wei, Li et al. 2004). (D) Network-based methods: Statistical 

methods that take the underlying structure of gene networks into account, representing 

either associative or causative interactions or dependencies among gene products. 

Microarray data may require further processing aimed at reducing the dimensionality of 

the data to aid comprehension and more focused analysis.(Wouters, Gohlmann et al. 

2003) Other methods permit analysis of data consisting of a low number of biological or 

technical replicates; for example, the Local Pooled Error (LPE) test pools standar 

deviations of genes with similar expression levels in an effort to compensate for 

insufficient replication (Jain, Thatte et al. 2003). 

 

The systematic study of cancer gives new insight 

To make improvement on the two aforementioned fields in the cancer research, 

we present a comprehensive computational study, based on public microarray gene-

expression data, on solving the following related issue: 1) a prediction of serum markers 

for seven major internal cancer types as for early detection purpose and a systematic 

analysis on the cancer related cancer hallmarks. For understanding fundamental cancer 

biology in purpose of development of new therapy that target on the tumor specific 

feature, 2) a metabolic study on skin cancers to reveal a novel boosted oncogenic 

metabolism for the melanoma and  3) a micro-environmental study on six cancer types to 

reveal a complicated up-regulation of  cell de-acidification mechanism in tumor. The 

results suggest promising detection and drug target for cancer and bring new insights of 

the cancer biology. 
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Figures 

 

Figure 1: Schematic of a cDNA microarray experiment. (Guo 2003) 
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A COMPARATIVE ANALYSIS OF GENE-EXPRESSION DATA OF MULTIPLE 

CANCER TYPES
1
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1
Xu K and Cui J. et al. 2010.  PLoS ONE 5(10): e13696. doi:10.1371/journal.pone.0013696 
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Abstract 

A comparative study of public gene-expression data of seven types of cancers 

(breast, colon, kidney, lung, pancreatic, prostate and stomach cancers) was conducted 

with the aim of deriving marker genes, along with associated pathways, that are either 

common to multiple types of cancers or specific to individual cancers. The analysis 

results indicate that (a) each of the seven cancer types can be distinguished from its 

corresponding control tissue based on the expression patterns of a small number of genes, 

e.g., 2, 3 or 4; (b) the expression patterns of some genes can distinguish multiple cancer 

types from their corresponding control tissues, potentially serving as general markers for 

all or some groups of cancers; (c) the proteins encoded by some of these genes are 

predicted to be blood secretory, thus providing potential cancer markers in blood; (d) the 

numbers of differentially expressed genes across different cancer types in comparison 

with their control tissues correlate well with the five-year survival rates associated with 

the individual cancers; and (e) some metabolic and signaling pathways are abnormally 

activated or deactivated across all cancer types, while other pathways are more specific to 

certain cancers or groups of cancers. The novel findings of this study offer considerable 

insight into these seven cancer types and have the potential to provide exciting new 

directions for diagnostic and therapeutic development. 

 

Introduction 

Cancer is a key threat to people’s health and life, accounting for ~13% of all 

disease-causing deaths in the world (WHO 2006). In 2007, 7.6 million people died of 

cancer world-wide (Dunham 2007). In the U.S, over 1.4 million new cancer cases were 
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reported each year in the past few years, and cancer is the second leading cause of death 

following heart disease. Statistics from the SEER reports indicate that the mortality rate 

across all cancer types in the U.S. went from 195.4 per 100,000 cases in 1950, continued 

an upward trend till 1978 reaching 204.4, and then steadily decreased to 184.0 in 2005 

(Ries LAG 2008). This decreasing trend has been mostly due to the improved diagnostic 

techniques for detecting the early stage of cancer. General survival statistics of cancer 

indicate that early detection and treatment are the key to longer survival across all cancer 

types (Ries LAG 2008).     

 

Challenges in early cancer detection arise mainly from the reality that most patients are 

asymptomatic in the early stages of cancer, and only a few effective cancer-screening 

tests are clinically available. While some tests have proved to be effective in detecting 

cancer at its early stage, they are often too invasive, such as colonoscopy, to be routinely 

used during regular physicals and are currently limited to only a small number of cancer 

types. Frequently a cancer is already in an advanced stage when diagnosed; clearly, more 

effective techniques for early cancer detection are needed.  

 

A number of genetic markers have been proposed for various cancers, such as BRCA1 

and BRCA2 for familial breast cancer (Ford, Easton et al. 1998) and CDH1 (CD324 or E-

cadherin) for gastric cancer (Guilford, Hopkins et al. 1998).  Recent studies have 

identified a number of promising serum markers for cancer that are being used clinically 

(Diamandis 2004). Among them, PSA (prostate-specific antigen) is probably the most 

well known and has been widely used for diagnosing prostate cancer through blood tests 
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(Catalona, Smith et al. 1995). However, the effectiveness of PSA in prostate cancer 

detection is far from adequate, widely considered as having a false positive rate that is too 

high to be a reliable indicator (Dhanasekaran, Barrette et al. 2001; Lilja, Ulmert et al. 

2008). Similar observations have been made about other serum  markers such as CA125 

for ovarian cancer (Matei, Graeber et al. 2002).  

 

Herein we present a computational study on prediction of both genetic and serum 

markers for seven cancer types, as well as for groups of these cancers, based on public 

microarray gene-expression data and a computer program for prediction of blood-

secretory proteins, which we previously developed (Cui, Liu et al. 2008). Compared to 

earlier studies on cancer marker identification, the present study has the following key 

unique features: (i) a focus on identification of multi-gene markers that was achieved 

through exhaustive analysis of all possible combinations of genes, taking full advantage 

of available high-level computing power, rather than using heuristic approaches that may 

not necessarily find the optimal markers; (ii) an attempt to find markers for groups of 

cancers in addition to those for individual cancers; and (iii) an attempt to link the 

information derived from transcriptomic data of tissues to marker prediction in serum 

using a novel prediction program (Cui, Liu et al. 2008). In addition, our pathway 

enrichment analysis is also focused on identification of pathways that are abnormally 

activated or deactivated across multiple types, with the aim of identifying commonalities 

and uniqueness among different groups of cancers. It is anticipated that these novel data 

will prove highly valuable in elucidating the genetic alterations in various cancers, as 

well as offering potential directions for new approaches in diagnostics and therapeutics. 
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Results 

This study is focused on seven cancer types, namely breast, colon, kidney, lung, 

pancreas, prostate and stomach, which are chosen because there are large sets of 

microarray gene-expression data in the public domain, collected on a genome scale from 

tissues for each of these cancer types as well as from their corresponding control tissues. 

By working on multiple cancer types simultaneously, our goal is to derive potential 

markers either specific to individual cancer types or general to all or groups of cancers, as 

well as to identify abnormally activated or deactivated pathways across all cancer types 

or some groups of cancers.  

 

1. Predicted marker genes for individual cancer types 

We have searched for individual genes and gene combinations whose expression 

patterns can best distinguish between cancer and associated reference tissues for each of 

the seven cancer types considered in this study. Specifically, all 1-, 2-, 3- and 4-gene 

combinations encoded in the human genome were ranked in terms of their discerning 

power in distinguishing the cancer samples from the corresponding reference samples for 

each cancer type. In addition, we have also ranked k-gene combinations, based on their 

discerning power between early cancer samples and control samples if the relevant data 

are available and sufficiently large. Throughout the remainder of this paper, k-gene 

groups refer to combinations of k-genes for k = 1, 2, 3, 4 unless stated otherwise. 

 

A:  Breast cancer: The analysis was done on a gene-expression dataset consisting of 43 

paired breast cancer and cancer-adjacent reference tissues from the same patients  (Pau 
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Ni, Zakaria et al. 2010). Of the 43 samples, 32 were early-stage cancers (stages I and II). 

314 genes were found to be consistently and abnormally expressed with at least a 2-fold 

change in their expression across the cancer and the reference tissues in our training data, 

88 of which were up-regulated and 226 down-regulated in the cancer tissues. For the 

differentially expressed genes, our prediction program (Cui, Liu et al. 2008) indicates that 

76 of the encoded proteins are secreted and could thus serve as potential serum 

biomarkers( Appendix Table A2.1).  

 

An analysis of the microarray data was then conducted, with the goal of identifying k-

gene combinations whose expression patterns can accurately distinguish between the 

cancer and the reference samples. For this, a linear classifier for each k was trained on the 

microarray data. Figure 2.1 (a) and (c) show the classification accuracies of the best 100 

k-gene combinations on the whole training set and on the training set containing only of 

early stage samples, respectively. An independent evaluation set is used to assess the 

performance of the trained classifier, which consists of 31 breast cancer and 27 cancer-

adjacent reference samples from the same patients (some cancer-adjacent samples of the 

patients are missing) (Pedraza, Gomez-Capilla et al. 2010), of which 12 are early stage 

samples paired with corresponding control samples. Figure 2.1 (b) and (d) show the 

classification performance by the trained classifiers on the evaluation set. The detailed 

list of these 100 k-gene combinations is given in Appendix Table A2.1. 

 

As can be seen in Figure 2.1, the majority of the top k-gene combinations, particularly for 

k > 1, perform well on the independent test sets, although their ranking orders, derived 
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based on the training data, may not be well preserved on the test sets. We believe that the 

fluctuations in their classification accuracies on the test sets by the trained classifiers are 

caused by the limited training data so some k-gene combinations did not generalize well 

to the test set.  

 

The best three single gene discriminators are PCOLCE2, ANGPTL4 and LEP, having 

88.4%, 88.4% and 87.2% classification accuracy on the training set and 94.8% , 84.5% 

and 96.6% on the test set, respectively. The top three 2-, 3- and 4-gene combinations are 

(Al Moustafa, Alaoui-Jamali et al. 2002), {RRM2+COL1A1+PCOLCE2, 

RRM2+COL1A1+PPARG, RRM2 + STBD1 + MAOA}, and 

{RRM2+COL1A1+GPR109B+IGJ, RRM2+COL1A1+GPR109B+IGJ, 

RRM2+COL1A1+GPR109B + SPINT2}, respectively. Similarly, for early breast cancer, 

the best three k-gene discriminators are {GPR109B, PCOLCE2, PCSK5}, 

{PCSK5+COL10A1, FERMT2+SPINT2, MAOA+IGJ}, {COL1A1+PCSK5+TF, 

GPX3+COL1A1+SPINT2, GPX3+FAP+TMEM97}, and 

{RRM2+COL1A1+GPR109B+IGJ, RRM2+COL1A1+GPR109B+IGJ, RRM2+ 

COL1A1+ GPR109B+SPINT2}, respectively.  

 

Among these top discriminators, some have been considered as possible breast cancer 

marker genes by previous studies. For example, ADIPOQ (adiponectin)  is found to be 

closely associated with a breast-cancer risk (Miyoshi, Funahashi et al. 2003). The 

SPINT2, an inhibitor of HGF activator, was reported to have higher expression levels in 

early stage breast cancer and associated with a poor prognosis (Parr, Watkins et al. 2004), 

http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=2878087
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consistent with our findings. Some others are involved in the activities of cancer cells in 

general (Hanahan and Weinberg 2000). For example, CAV1, down-regulated in the 

cancer samples, was found to inhibit breast cancer growth and metastasis (Sloan, Stanley 

et al. 2004);  the down-regulation of PPARG is associated with local recurrence and 

metastasis in breast cancer (Jiang, Douglas-Jones et al. 2003); and ANGPTL4 may act as 

a regulator of angiogenesis.(Le Jan, Amy et al. 2003). Other top discriminators represent 

new discoveries. For example, MAOA, ACSM5 and GPR109B have not been reported 

related to cancer. To the best our knowledge, all the 2-, 3- and 4-gene discriminators are 

novel predictions.  

 

Similar analyses have been carried out on six other cancer types. For each cancer type, a 

training dataset was collected, and a linear classifier was trained on the dataset for each k. 

The key findings on each of these six cancer types are highlighted below, with the 

summary being given in Appendix Table A2.1 and other details in Appendix Tables A2.2 

– A2.7.  

 

B. Colon cancer: Our analysis was done on a microarray dataset consisting of 53 colon 

cancer and 28 cancer-adjacent reference tissues from the same patients (some of the 

cancer samples have no reference samples) (Ki, Jeung et al. 2007). 248 genes were found 

to be consistently and abnormally expressed with at least a 2-fold change in their 

expression across the cancer and the reference tissues in our training data, 56 of which 

are up-regulated and 192 are down-regulated in colon cancer tissues.  An independent set, 

consisting of 24 colon cancer and 24 cancer-adjacent reference samples from the same 
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patients (Jiang, Tan et al. 2008) was used to test the performance of the trained classifier. 

Figure 2.2 shows the classification accuracies by the best 100 k-gene discriminators on 

both the training and the testing sets.  

The best three single-gene discriminators are MMP7, DPT and MMP1 having 97.5%, 

96.3% and 95.1% classification accuracy on the training set and 97.9% , 97.9% and 

91.7% on the test set, respectively. The top three 2-gene discriminators are 

MMP7+FAM107A, FRZB+MMP7, and SLIT3+MMP7 (we did not try k > 2 since the 

best 2-gene combinations already gives 100% classification accuracy). Some of our top 

discriminators have been previously studied in the context of colorectal cancer. For 

example, MMP1 is an invasion-promoting factor, and its up-regulation, as observed in 

our data, is associated with the invasiveness of the cancer (Behrens, Mathiak et al. 2003). 

MMP7 is known to play an important role in cancer growth, and its up-regulation could 

be a key mechanism for cancer cells’ escape from the immune surveillance (Wang, Chen 

et al. 2006). FRZB, a down-regulated gene, is annotated to function in the negative 

regulation of the Wnt signaling pathway, which promotes tumor growth. Other top 

discriminators represent new findings. For example, ADAMDEC1, down-regulated in 

tumor tissue, is a gene moderately expressed in the colon; and it may play a role in the 

immune response but has never been reported as being related to colon cancer. 

 

C. Kidney cancer:  The analysis was carried on a microarray gene-expression dataset 

consisting of 49 kidney cancer and 23 cancer-adjacent reference tissue samples from the 

same patients (Jones, Otu et al. 2005). 232 genes were found to be consistently and 

abnormally expressed with at least a 2-fold change in their expression across the cancer 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12949792&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12949792&dopt=Abstract
http://www.ebi.ac.uk/ego/DisplayGoTerm?id=GO:0030178
http://www.ebi.ac.uk/ego/DisplayGoTerm?id=GO:0030178
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and reference tissues in our training data, 130 of which are up-regulated and 102 are 

down-regulated in cancer. An independent evaluation set, consisting of 35 kidney cancer 

samples and 12 cancer-adjacent reference samples from the same patients was applied 

(Someya, Yamasoba et al. 2008). Figure 2.3 shows the classification accuracies by the 

top k-gene discriminators on both the training and the testing sets. 

 

The best three single gene discriminators are CCL18, ACPP and UMOD, having the 

same classification accuracy, 98.6% on the training set and 89.4%, 95.7% and 100% on 

the test set, respectively. The top three 2-gene combinations are EGF+ALB, 

ACPP+UMOD, and UMOD+ALB. Among the top discriminators, UMOD has been 

reported to be related to kidney disease (Hart, Gorry et al. 2002). SERPINA5, down-

regulated in the cancer, regulates the invasive potential of renal cancer growth and 

invasion. Other top discriminators represent new discoveries. For example, AFM has not 

been reported to be related to cancer, and C6orf155 does not have a characterized 

function.  

 

D. Lung cancer: The analysis was done on a microarray dataset consisting of 58 lung 

cancer tissue and 49 cancer-adjacent reference tissue samples from the same patients 

(Landi, Dracheva et al. 2008). 700 genes were found to be consistently and abnormally 

expressed with at least a 2-fold change in their expression across the cancer and reference 

tissues in our training data, 259 of which are up-regulated and 441 are down-regulated in 

lung cancer tissues. An independent set, consisting of 27 lung cancer and 27 cancer-

adjacent reference samples from the same patients (Su, Chang et al. 2007), was used to 
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assess the performance of our trained classifier. Figure 2.4 shows the classification 

accuracies by the top 100 k-gene discriminators on both the training and the testing sets. 

The best three single gene discriminators are CAV1, SFTPC and TNXB, having the same 

classification accuracy, 99.1% on the training set and 98.2%, 96.3% and 94.4% on the 

test set, respectively. The top three 2-gene combinations are FERMT2+GREM1, 

TEK+NFASC, CAV1+MMP1. Among the top discriminators, CAV1 has been found to 

be down-regulated in  breast cancer (Park, Kim et al. 2005), and has been reported to be 

associated with metastasis in lung cancer (Ho, Huang et al. 2002). SFTPC has been 

reported to be associated with interstitial lung disease (Bridges, Wert et al. 2003).  

FAM107A, which suppresses cell growth, may play a role in cancer development 

(Kholodnyuk, Kozireva et al. 2006). CD93 is believed to be involved in intercellular 

adhesion and in the clearance of apoptotic cells (Ikewaki, Tamauchi et al. 2007). NMU, 

up-regulated in lung cancer, is a promoter for cancer formation and a promoter for lung 

cancer metastasis and cancer cachexia (Wu, McRoberts et al. 2007). Other top 

discriminators represent new observations. For examples, SPP1 and EMCN have not 

previously been reported as cancer-related.  

 

E. Pancreatic cancer: The analysis was done on a microarray dataset consisting of 39 

paired pancreatic cancer and cancer-adjacent reference tissue samples from the same 

patients (Badea, Herlea et al. 2008). 969 genes were found to be consistently and 

abnormally expressed with at least a 2-fold change in their expression across the cancer 

and reference tissues in the training data, 690 of which are up-regulated and 279 are 

down-regulated in pancreatic cancer. An independent set, consisting of 36 lung cancer 
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samples and 16 cancer-adjacent reference samples from the same patients (Pei, Li et al. 

2009), was used to assess the classification performance of our trained classifier. Figure 

2.5 shows the classification accuracies by the top 100 k-gene discriminators on both the 

training and the testing sets. 

 

The best three single-gene discriminators are KRT17, COL10A1 and FAM19A5, having 

the same classification accuracy, 93.6% on the training set and 88.5% , 84.6% and 84.6% 

on the test set, respectively. The top three 2- and 3-gene discriminators are 

{MMP7+AZGP1; MMP7+ELA3B; MMP7+FGL1} and {COL8A2+SGPP2+CCL18; 

COL8A2+PMEPA1+TMEM45B; LCN2+COL8A2+PMEPA1}, respectively. Among the 

top discriminators, KRT17 is known to be involved in tissue repair, as is CTHRC1 (Tang, 

Dai et al. 2006). AZGP1 has been reported to cause extensive loss of fat, often associated 

with advanced cancers (Groundwater, Beck et al. 1990; Bing, Bao et al. 2004). ELA3B 

has been proposed as a pancreatic cancer marker (Shimada, Yamaguchi et al. 2002). 

PLA2G1B regulates the inhibition of pancreatic phospholipase a2, which is involved in 

the uptake of dietary fat (Pan and Bahnson 2007). Other top discriminators represent new 

findings. For examples, RSAD2, involved in antiviral defense, has not been reported as 

being related to cancer, as well as SGPP2, known to be involved in pro-inflammatory 

signaling (Mechtcheriakova, Wlachos et al. 2007), and CST4. 

 

F. Prostate cancer: The analysis was done on a microarray dataset consisting of 65 

prostate cancer and 63 cancer-adjacent reference tissue samples from the same patients 

(Chandran, Dhir et al. 2005). 139 genes were found to be consistently and abnormally 
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expressed with at least a 2-fold change in their expression across the cancer and reference 

tissues in our training data, of which 44 are up-regulated and 95 are down-regulated in 

lung cancer tissues. We then used an independent set, consisting of 62 prostate cancer 

samples and 47 cancer-adjacent reference samples from the same patients (Lapointe, Li et 

al. 2004). Figure 2.6 shows the classification accuracies by the top 100 k-gene 

discriminators on both the training and testing sets. 

 

The best three single gene discriminators are CRISP3, MYLK and PALLD, having 

75.8%, 73.4% and 71.9% classification accuracy on the training set and 72.5% , 83.5% 

and 69.6% on the test set, respectively. The top three 2- and 3-gene discriminators are 

{LTF+IGF1; LTF+SPARCL1; SMTN+CCK}, {SMTN+CCK+CCL2; 

SMTN+CCK+COMP; SMTN+CCK+PLA2G7}, respectively. Among the top 

discriminators, CRISP3 has been reported to be a potential prostate cancer marker and is 

up-regulated in the prostate cancer tissues (Kosari, Asmann et al. 2002). LTF is known to 

inhibit the growth of tumors (Varadhachary, Wolf et al. 2004). IGF1, a growth factor, 

plays a role in the development of prostate cancer (Soulitzis, Karyotis et al. 2006) and has 

been reported as an indicator of advanced prostate cancer (Chan, Stampfer et al. 2002). 

EDNRA is known be relevant to the progression of prostate cancer (Akhavan, McHugh et 

al. 2006). Other top discriminators represent new discoveries. For example, CHRDL1 

may play a role in regulating angiogenesis (Kane, Godson et al. 2008) but has not been 

reported to be cancer-related to cancer. The same is with SMTN. 
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G. Stomach cancer: The analysis was done on a microarray dataset consisting of 89  

stomach cancer and 23 cancer-adjacent reference tissues from the same patients (Chen, 

Leung et al. 2003). Out of the 89 cancer tissue samples, 31 are early-stage cancers.  336 

genes were found to be consistently and abnormally expressed with at least a 2-fold 

change in their expression across the cancer and reference tissues in our training data, 

156 of which are up-regulated and 180 are down-regulated in lung cancer tissues.  An 

independent set, consisting of 38 stomach cancer samples and 31 cancer-adjacent 

reference samples from the same patients (D'Errico, de Rinaldis et al. 2009) was used to 

assess the performance of our trained classifier, of which 12 are early stage samples 

partially paired with 10 reference samples. Figure 2.7 shows the classification accuracies 

by the top 100 k-gene discriminators on both training and testing sets.  

 

The best three single-gene discriminators are SERPINH1, BGN and COL12A1, having 

99.1%, 98.2% and 98.2% classification accuracy on the training set and 94.2% , 88.4% 

and 84.1% on the test set, respectively. The top three 2-gene combinations are 

CHGA+SERPINH1, PGC+SERPINH1 and TGFBI+CHGA, respectively. For early 

stomach cancer, the best three 1-gene discriminators are also SERPINH1, BGN and 

COL12A1, respectively. Among the top discriminators, BGN is known to have a role in 

controlling cell growth in cancer (Chen, Lenschow et al. 2002).  The abnormal expression 

of CTHRC1, a regulator of matrix deposition, has been  widely found across different 

solid cancers and is considered to be associated with cancer invasion and metastasis 

(Tang, Dai et al. 2006). NID2, which inhibits nidogen expression, has a potential 

pathogenic role in gastrointestinal cancer (Ulazzi, Sabbioni et al. 2007). SPARC, a 
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regulator of cell growth, is known to be associated with the development of gastric cancer 

(Wang, Lin et al. 2004). Of particular interest is that PGC has been proposed as an 

indicator of gastric cancer (Ning, Sun et al. 2004), and the serum level of PGC has been 

used as a biomarker for precancerous lesions of the stomach (Broutet, Plebani et al. 

2003).  Other top discriminators represent new discoveries. For example, ABCA5, 

ADAMTS12 and CLEC3B have not been reported to be cancer related. 

 

Interestingly, the number of differentially expressed genes across different cancer types 

has a wide spread
2
, ranging from 139 (prostate), 232 (kidney), 248 (colon), 249 (breast), 

336 (stomach) to 554 (lung) and 733 (pancreatic). One possible explanation is that these 

numbers may reflect the aggressiveness of the corresponding cancers. We did notice that 

there is strong correlation between the number of differentially expressed genes in a 

given cancer type and the five-year survival rate of patients with that cancer (CancerFact 

2006) (detailed statistics in Table 2.1), as shown in Figure 2.8 Another interesting 

observation is that, while the majority of the differentially expressed genes with at least a 

2-fold change in five cancer types (breast, colon, lung, prostate, stomach) are down-

regulated, in kidney and pancreatic cancers, the majority of such genes are up-regulated, 

possibly suggesting unique characteristics of these two cancer types.    

 

 

                                                 
2

While the measured expression levels of most genes, including 135 house-keeping genes, vary 

substantially across different types of cancers, the relative gene expression changes for each cancer versus 

its reference tissues from different datasets were found to be consistent. Hence, the 2-fold change cutoff in 

gene-expression level changes has the same meaning across the seven cancer datasets, i.e., comparing the 

numbers of the genes with at least 2-fold expression-level changes is meaningful. 
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2. Markers for multiple cancer types 

We have also sought to identify genes that could be used as indicators for cancer 

in general or for a group of cancers.  It is possible to find common gene “markers” across 

different cancer types because of the observation that the majority of the cancers, if not 

all, undergo a common set of alterations (Hanahan and Weinberg 2000) during 

oncogenesis, namely (a) self-sufficiency in growth signals, (b) insensitivity to antigrowth 

signals, (c) evasion of apoptosis, (d) limitless replication potential, (e) sustained 

angiogenesis and (f) tissue invasion and metastasis. Some of these biological processes 

may be executed by the same groups of proteins during the formation and progression of 

different cancers, hence possibly giving rise to common markers for different cancer 

types. 

 

A. Identification of genes differentially expressed across multiple cancer types: We have 

examined differentially expressed genes with at least 2-fold changes between cancer and 

reference tissues across all seven cancer types and attempted to find those genes common 

to multiple cancer types. The key findings are summarized in Table 2.2.  

 

As can been seen from Supplementary Table 2.3, 92 genes are differentially expressed 

(same direction of regulation) across at least three cancer types, among which 20 genes 

are across at least four cancer types, four genes (ABCA8, DPT, FHL1 and TOP2A) 

across five cancer types and one gene, CDC2, across six cancer types. The differences in 

the gene expression across different cancer types may indicate either a general or a 

specific relevance of a gene to these types of cancers, which has been partially confirmed 
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by the functional analysis and an extensive literature search. The detailed molecular 

function of these genes is summarized in Table 2.3.  67 out of the 92 genes have been 

reported to be cancer associated in previous studies. For example, CDC2, up-regulated in 

six of the seven cancers studied, has been reported to be related to colon (Nozoe, Honda 

et al. 2003), prostate (Chen, Xu et al. 2006) and stomach cancer (Masuda, Inoue et al. 

2003), which is not surprising in view of its role in regulating the cell cycle, e.g. entry 

from G1 to S; TOP2A, again up-regulated in six of seven cancers, has been reported to be 

associated with gastric (Varis, Zaika et al. 2004), breast (Koren, Rath-Wolfson et al. 

2004) and ovarian cancer (Chekerov, Klaman et al. 2006), consistent with a function in 

DNA strand regulation; RRM2, up-regulated in four of the seven cancers, has been 

suggested to be related to esophageal and gastric cancers and prostate cancer (Kolesar, 

Huang et al. 2009), consistent with its critical role in DNA synthesis which must be 

maintained in rapidly dividing cells; And LCN2, up-regulated in four of the seven 

cancers, has been reported in breast (Bauer, Eickhoff et al. 2008), colon (Lee, Lee et al. 

2006)  and pancreatic cancer (Tong, Kunnumakkara et al. 2008). The function of LCN2 

is believed to be involved in transport into cells, consistent with maintaining sufficient 

substrates for metabolically active cancer cells. Of the 92 genes, 49 have been reported to 

be relevant to immune diseases, such as CXCL12, COL1A1, MMP9, CD36 and ALOX5 

(Aota, Sumi et al. 2004; Lee, Kim et al. 2005; Piovan, Tosello et al. 2005; Herb, Thye et 

al. 2008), likely reflecting an inflammatory–type response often associated with cancer. 

In addition, MMP9, important in extracellular matrix degradation, is up-regulated in three 

of the seven cancers, and CD36, which may function in cell adhesion, is down-regulated 
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in three of the seven cancers; both of these changes are consistent with a role of the gene 

products in metastasis.  

 

B. Pathway enrichment analysis of differentially expressed genes: We have carried out a 

pathway-enrichment analysis on genes that are differentially expressed in any of the 

seven cancer types. Overall, a number of signaling pathways are consistently and highly 

enriched across all seven types of cancers, such as Wnt, p53 and integrin signaling 

pathways, as well as a few other processes like phospho-APC/C-mediated degradation of 

cyclin A and inflammation determined by chemokine and cytokine signaling pathways 

(in addition to the general cellular processes such as cell cycle, DNA replication and 

repair, apoptosis and various metabolic pathways). Notably, these pathways are mostly 

enriched with up-regulated genes in cancer, indicating a possible activation of these 

processes. In addition, a few metabolic pathways such as tyrosine, histidine, 

phenylalanine, butanoate and 5-hydroxytryptamine pathways are enriched only with 

down-regulated genes across all cancers. This may indicate a possible deficiency of the 

relevant metabolic enzymes in cancer, which could for example arise from loss-of-

function mutations in their genes. These observations may suggest the essential roles 

played by these processes in cancer formation and progression. Note that the increased 

enzymatic activity of histidine decarboxylase (HDC) has been observed in colorectal 

cancer (Garcia-Caballero, Neugebauer et al. 1988). This is opposite to our observation, so 

additional information is clearly needed regarding the levels of activities of these 

processes across different subtypes/stages of a cancer. 
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Other than the above processes common to all cancers, a few pathways are enriched only 

in specific cancers. For example, arginine, proline, glutamate and riboflavin (vitamin B2) 

metabolism are enriched with up-regulated genes only in lung cancer; folate biosynthesis 

and nitrogen metabolism pathways are enriched in breast cancer; 

formyltetrahydroformate biosynthesis in stomach cancer; and NF-kB activation and Csk 

activation by cAMP-dependent protein kinase inhibits signaling through T-cell receptor 

in kidney cancer. Of particular interest is the finding that, compared to other cancer types, 

pancreatic cancer has the greatest number of differentially expressed genes involved in a 

complex network consisting of the EGF signaling pathway, purine and aminosugar 

metabolism, PKC-catalyzed phosphorylation of inhibitory phosphoprotein of myosin 

phosphatase, metabotropic glutamate receptor group II pathway, Fc epsilon receptor I 

signaling and the BCR and IL 4 signaling pathways. This suggests a highly active state of 

the underlying cells in terms of cell growth, differentiation, invasion and metastasis, 

consistent with the aggressiveness of the cancer. Seeking the genes and their products 

that are responsible for the more aggressive behaviors of pancreatic cancer may provide 

new targets for treating the cancer or preventing the cancer from progression. 

 

A number of pathways specific to a group of cancers have also been identified, which 

may suggest common characteristics of the underlying neoplasms. For example, the 

glutathione metabolic pathway is enriched across five cancer types, excluding breast and 

prostate cancer; E. coli infection-related pathways are activated in kidney, lung, 

pancreatic and stomach cancers but not in other cancers; the thyrotropin-releasing 

hormone receptor signaling pathway is activated in pancreatic and kidney cancer, but not 
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in the other five cancers; and steroid biosynthesis is activated in breast, lung and 

pancreatic cancer but not in the other four cancers. Cancer-specific pathway activations 

have been previously reported. For example, the thyrotropin-releasing hormone receptor 

signaling pathway was reported to promote programmed cell death in pancreatic cancer 

(Mulla, Geras-Raaka et al. 2009); steroid biosynthesis in pancreatic cancer was found 

based on analyses of several steroidogenic enzymes, such as the cytochrome P-450scc 

enzymatic complex (P450scc) that is responsible for the conversion of cholesterol into 

pregnenolone (Morales, Cuellar et al. 1999). These diverse findings indicate that 

comparative analyses of cancer microarray data can reveal interesting and undetected 

relationships across different cancer types/subtypes, thus providing useful guiding 

information for further investigation. The detailed pathway-enrichment information 

across different cancer types is summarized in Table 2.4.   

 

C. Top k-gene markers for multiple cancer types: We have examined the k-gene 

combinations among genes that are differentially expressed in each cancer type to find 

gene combinations that are common to multiple cancer types. The idea is to identify 

commonalities of gene combinations with differential expression patterns between cancer 

and reference tissue across multiple cancer types, which could provide useful information 

about common underlying mechanisms of carcinogenesis of different cancers. 

Supplementary Table 2.5 – 2.7 gives the detailed list of all the k-gene combinations with 

classification accuracies at least 75% across at least three cancer types.  

 



 

28 

As shown in Table 2.5, the top two 2-gene combinations, CDC2 + DPT and CDC2 + 

TOP2A, are found to be good markers for five types of cancers, namely breast, colon, 

lung, prostate and stomach cancers. Similarly, ABCA8+ALDH1A1+DPT and 

ABCA8+AURKA+DPT are good 3-gene markers for four types of cancers with higher 

classification accuracies than the top 2-gene markers, as shown in Table 2.6.  

 

As noted, CDC2 and DPT appear in all of the top 2-, 3- and 4-gene discriminators, and, 

consequently, we have examined the functions of these genes. CDC has been reported to 

play a key role in cell proliferation (Wang, Hasham et al. 2003) and apoptosis (Ababneh, 

Gotz et al. 2001), and DPT is suggested to have a possible role in carcinogenesis through 

its interaction with a known oncogene,  TGFB1. Moreover, some of the top discriminator 

genes have been reported to be cancer relevant. For example, ECT2 is reported to be 

involved in cancer development, influencing processes such as the cell cycle, apoptosis 

and cell division (Eguchi, Takaki et al. 2007); FABP4 is involved in the activation of the 

immune response and is reported to be related to breast cancer (Li, Lu et al. 2007) and 

bladder cancer (Ohlsson, Moreira et al. 2005); and TOP2A is involved in stomach cancer 

(Varis, Zaika et al. 2004). These independent observations confirm that the findings 

herein are meaningful.  

 

D. Top k-gene markers that are blood secretory: Using our prediction program in 

conjunction with the above top gene discriminators, it is possible to identify proteins that 

may be secreted into circulation, thus possibly providing candidate serum marker proteins 

for cancer detection. Table 2.8 summarizes the top k-gene markers that are predicted to 
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have their proteins secreted into blood. Some genes involved in these top candidate 

markers have been previously reported to be cancer related, e.g. KLF4 and MMP7 (Wei, 

Gong et al. 2005; Zhang, Jin et al. 2005), and MMP7 that has been reported relevant to 

five out of seven cancer types in this study. Other predicted blood-secretory marker 

proteins such as DPT, PAICS, CHRDL1, KLF2, COL10A1 and MYL9 have not 

heretofore been reported to be cancer related. 

 

While Table 2.8 gives a detailed list of all the gene combinations whose proteins are 

predicted to be blood secretory, with discerning power between cancer and corresponding 

reference tissues higher than 70%, a few top candidates for these seven cancer types are 

highlighted. One 2-gene combination, DPT+KLF4, covers four cancer types, namely 

breast, colon, lung and stomach cancer, with 70% classification accuracy. Note that DPT 

has not been previously found to be cancer related. Three types of cancers are covered by 

22 2-gene combinations, with MMP11+RRM2 and MMP7+MMP9 representing the top 

2-gene markers with at least 75% classification accuracy. The best 4-gene combination, 

MMP7+MMP9+MMP11+RRM2, gives at least 86% classification accuracy for  lung, 

pancreatic and stomach cancers, and all of these four genes are up-regulated by at least 2-

fold in the cancer tissues, suggesting the potential of this combination as a good blood 

marker for these cancer types. CCL18+TGFBI represents a good discriminator for 

kidney, pancreatic and stomach cancer, which are up-regulated by at least 2-fold in 

cancer tissues. Similarly, CN2+THBS2 are both up-regulated by 2-fold in kidney, lung 

and pancreatic cancer.  MMP11+RRM2 are up-regulated in lung cancer, pancreatic 

cancer and stomach cancer tissues, and hence may also make a good marker for these 
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three cancer types. The summary of the top k-gene for each of the seven cancer types is 

in the Table 2.9. 

 

Methods 

1. Microarray gene expression data for human cancers 

Microarray gene expression data were downloaded for seven cancer types, 

namely, breast, colon, kidney, lung, pancreatic, prostate and stomach cancer from the 

GEO database of NCBI (Edgar, Domrachev et al. 2002). To ensure that our prediction 

results can be generalized to larger datasets (i.e., not over-trained), a training data and an 

independent testing data were downloaded for each cancer type (Table 2.10). For each 

dataset, we have included the following data items: (a) (normalized) gene expression 

levels for each gene in the cancer tissue of each patient, (b) (normalized) gene expression 

levels for each gene in the control tissue of each patient and (c) stage information for the 

majority of the cancer samples (this information is not available for some data).  

 

We have chosen microarray datasets normalized by RMA, which has been reported to 

reflect more accurately gene-expression changes due to biology compared to other 

normalization methods. Expression levels of 135 house-keeping genes were examined, 

and large variations were observed for individual genes in the reference tissues across the 

seven types of cancers. The distributions of the fold-changes (FC) of individual genes 

between cancer and corresponding reference tissues across the seven types of cancers 

were also checked, and it was found that the distributions are highly similar. Figure 2.9 

shows one such comparison of FC distributions between breast cancer and lung cancer. 
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Hence we conclude that comparisons of fold-changes across different cancer datasets in 

our study are meaningful.  

 

2. Identification of differentially expressed genes 

For each gene in a dataset, we consider the two distributions of gene expression 

values across all cancer samples and across all the control samples, respectively. The 

Mann-Whitney test (Wilcoxin 1947) was applied first to identify those genes 

differentially expressed in cancer versus the control samples, using a p-value cutoff = 

0.05. In addition, the fold-change for each gene in the cancer versus the control samples 

was calculated using the following formula: 

 

 

where   and   represent the mean expression level of each gene among all 

cancer and reference samples for each cancer type, respectively. A positive FC indicates 

up-regulation in cancer versus reference tissues, while a negative FC indicates down-

regulation. Overall, we consider a gene being differentially expressed if the p-value of the 

Mann-Whitney test is < 0.05 and its fold-change is at least 2 or at most 0.5.  

 

3. Prediction of blood secreted proteins  

All genes that are predicted to be differentially expressed between cancer and 

corresponding reference samples were analyzed by a computer program developed to 

predict blood-secretory proteins (Cui, Liu et al. 2008). The basic idea of the algorithm is 
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that through an extensive literature search, a large number of human proteins were 

identified that are documented in the literature to be blood secretory; we then  trained a 

support vector machine (SVM)-based classifier using various sequence-based features to 

distinguish between the blood-secretory proteins and proteins that are not secreted, using 

features such as signal peptides, transmembrane domains, glycosylation sites, disordered 

regions, secondary structural content, hydrophobicity and polarity measures. On a large 

independent test set containing 105 secretory proteins and 7,258 non-secretory proteins of 

humans, the classifier achieved ~94% prediction sensitivity and ~98% prediction 

specificity. 

 

This program was applied to all annotated human proteins in Swissprot (Boeckmann, 

Bairoch et al. 2003), and 2,842 were predicted to be blood-secretory. To ensure that 

potential serum proteins are not overlooked, we have also included proteins reported to 

be extracellularl, which adds additional 1,277 proteins to the above predicted protein list, 

giving rise to a total of 3,882 proteins as potential blood secretory proteins.  

 

4. Prediction of marker genes for each cancer type  

Based on the identified differentially expressed genes, the following approach 

was employed to assess the discerning power of each k-gene combination in terms of 

classification accuracy of cancer tissue samples versus control samples. For each k-gene 

combination out of the differentially expressed gene list for each cancer type, an SVM-

based classifier was trained to maximize the classification accuracy defined as  

Overall accuracy = (TP+TN)/N, 
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where TP and NP are true positives and negatives, respectively, and N is the total number 

of samples. The linear kernel function was used to find the optimum linear separation 

plane for the SMV classifier, and the training and testing were conducted using the 

LIBSVM (Chang and Lin 2001) software package.  

 

For each cancer type, a 5-fold cross-validation was done on the training data and the 

genes ranked according to their classification performance. In order to find markers that 

are generalized well to other datasets, we applied the identified gene markers on an 

independent testing dataset. Because a total independent testing dataset was used for each 

cancer type, the intent was to show that the markers have consistent performance in the 

testing dataset. The LIBSVM, with 5-fold cross validation, was applied to the test dataset 

to determine the classification accuracy. The markers based on the classification accuracy 

in the training dataset was ranked, and if more than 2 markers have the same training 

accuracy the markers with the greatest testing accuracy are ranked higher. 

 

5.  Prediction of markers for multiple cancer types 

The following procedure to identify k-gene discriminators for multiple cancer 

types was employed.  All of the genes that consistently exhibited differential expression 

in at least 2 types of cancers were collected. For each k-gene combination in this gene 

list, its classification accuracy between each cancer type and the corresponding reference 

tissues for k = 1, 2, 3, 4 was calculated. This was done for every cancer type. Then, the k-

gene combinations exhibiting discerning power across multiple cancer types were 
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determined. By applying a fixed cut-off on classification accuracies, the top 

discriminators for multi-cancer types were identified.  

 

6. Pathway enrichment analysis of differentially expressed genes 

Functional analysis and pathway enrichment analysis were conducted using 

DAVID (Dennis, Sherman et al. 2003), where the pathway information is based on the 

annotation from KEGG (Kanehisa and Goto 2000), BBID (Becker, White et al. 2000) and 

BIOCARTA (www.biocarta.com). A p-value < 0.05 was used to guarantee the 

significance level of the enriched pathway.  

 

Concluding remarks 

A computational protocol for predicting gene markers in cancer tissues and protein 

markers in serum was developed for seven cancer types. In addition to individual gene 

markers, we have focused on gene combinations that can be used to distinguish multiple 

cancer types and their corresponding reference tissues. The pathway enrichment analysis 

among the differentially expressed genes across multiple cancer types, as well as those 

specific to individual cancer types, has identified a number of abnormally activated or 

deactivated pathways across multiple cancers and for specific cancers. The information 

provided on individual genes and pathways, along with potential serum biomarkers, 

should provide highly useful information for elucidating pathways in cancer, as well as 

expediting the search for potential serum biomarkers of specific cancers.   
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Figures 

 

(a)      (b) 

 

(c)      (d) 

Figure 2.1: Classification performance by top k-gene groups of breast cancer. 

Classification accuracies by the top 100 k-gene markers on the training and the test sets. 

For each panel, the x-axis is the list of 100 k-gene markers ordered by their classification 

performance on the training datasets, and the y-axis represents the classification 

accuracy. (a) classification accuracies by the top 100 k-gene combinations between breast 

cancer and reference samples in the training set, and (b) on the test set; (c) classification 

accuracies by top 100 k-gene combinations between early breast cancer and 

corresponding reference samples in the training set and (d) on the test set.  
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(a)      (b) 

Figure 2.2: Classification performance by top k-gene groups of colon cancer. (a) 

classification accuracies by the top 100 k-gene combinations between colon cancer and 

reference samples in the training set. (b) classification accuracies by the top 100 k-gene 

combinations on the test set.   

 

(a)      (b) 

Figure 2.3: Classification performance by top k-gene groups of kidney cancer. (a) 

classification accuracies by the top 100 k-gene combinations between kidney cancer and 

reference samples in the training set. (b) classification accuracies by the top 100 k-gene 

combinations on the test set.   
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(a)      (b) 

Figure 2.4: Classification performance by top k-gene groups of lung cancer. (a) 

classification accuracies by the top 100 k-gene combinations between lung cancer and 

reference samples in the training set. (b) classification accuracies by the top 100 k-gene 

combinations on the test set.  

 

(a)      (b) 

Figure 2.5: Classification performance by top k-gene groups of pancreatic cancer. (a) 

Classification accuracies by the top 100 k-gene combinations between pancreatic cancer 

and reference samples in the training set. (b) classification accuracies by the top 100 k-

gene combinations on the test set. 
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(a)      (b) 

Figure 2.6: Classification performance by top k-gene groups of prostate cancer. (a) 

classification accuracies by the top 100 k-gene combinations between prostate cancer and 

reference samples in the training set. (b) classification accuracies by the top 100 k-gene 

combinations on the test set. 
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(a)      (b) 

 

(c)      (d) 

Figure 2.7: Classification performance by top k-gene groups of stomach cancer. (a) 

classification accuracies by the top 100 k-gene combinations between stomach cancer and 

reference samples in the training set. (b) classification accuracies by the top 100 k-gene 

combinations on the test set. (c) classification accuracies by top 100 k-gene combinations 

between early stomach cancer and corresponding reference samples in the training set 

and (d) on the test set.  
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(a) 

 

(b) 

 

Figure 2.8: Comparison of the gene expression fold changes (a) between breast cancer 

training and testing datasets (b) between breast cancer and lung cancer 
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Figure 2.9: Correlation between 5-year survival rate and the number of differentially 

genes in each cancer type.  
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Tables 

Table 2.1:  Statistics of 5-year relative survival rates by race and year of diagnosis, US. 

1974-2001 (all numbers are in percentage) 

 

Cancer 

Site 

Relative 5-Year Survival Rate (%) No. of 

differential 

genes White African American All Race 

1974-

76 

1983-

85 

1995-

2001 

1974-

76 

1983-

85 

1995-

2001 

1974-

76 

1983-

85 

1995-

2001 
 

Prostate 68 76 100 58 64 97 67 75 100 139  

Breast  75 79 90 63 64 76 75 78 88 249 

Kidney 52 56 65 49 55 64 52 56 65 232 

Colon 51 58 65 46 49 55 50 58 64 248 

Stomach 15 16 21 16 19 23 15 17 23 336 

Lung & 

bronchus 

13 14 16 11 11 13 12 14 15 554 

Pancreas 3 3 4 3 5 4 3 3 4 733 
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Table 2.2: List of genes that are differentially expressed in more than 4 cancer types and 

their relevance to different cancer types.  “↑” indicates up-regulated gene expression in 

the corresponding cancer type while “↓”is down-regulation. “*” indicates that a gene has 

been reported as relevant to the corresponding cancer type. “B.” for breast cancer; “C.” 

for colon cancer; “K.” for kidney cancer”; “L.” for lung cancer”;  “Pa.” for pancreatic 

cancer”; “Pr.” for prostate cancer” and “S.” for stomach cancer”.  

 

Gene ID 

Direction of regulation Reported to be related to cancers 

B
re

a
st 

C
o

lo
n

 

K
id

n
ey

 

L
u

n
g

 

P
a

n
cre

a
s 

P
ro

sta
te 

S
to

m
a

ch
 

B
. 

C
. 

K
.  

L
. 

P
a

. 

P
r. 

S
. 

Other cancer types 

CDC2 ↑ ↑   ↑ ↑ ↑ ↑ * *   *   * * 

liver cancer; squamous 

cell 

carcinoma;nasopharynge

al carcinoma 

AURKA ↑ ↑   ↑   ↑ ↑ * *   * * * * 

ovarian 

cancer;esophageal 

squamous cancer;uterine 

cancer;bladder cancer 

ABCA8 ↓ ↓ ↓ ↓     ↓                 

DPT ↓ ↓   ↓   ↓ ↓                 

TOP2A ↑ ↑   ↑ ↑   ↑ * *         * 

bladder cancer;ovarian 

cancer; squamous cell 

carcinoma 

MMP7   ↑   ↑ ↑   ↑ * *   * *   * 

ovarian cancer; oral 

cancer; rectal cancers; 
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bladder cancer; liver 

cancer 

MAD2L1   ↑   ↑ ↑   ↑   *         * 

 thyroid carcinomas; 

oesophageal squamous 

cancer 

KLF4 ↓ ↓   ↓     ↓ * *         * 

esophageal 

cancer;bladder cancer 

MELK ↑     ↑ ↑   ↑ *             

brain cancer;endometrial 

cancer 

C7   ↓ ↓ ↓   ↓   *         *   uterine cervical cancers 

ECT2   ↑   ↑ ↑   ↑         *       

PRC1 ↑     ↑ ↑   ↑ *               

RRM2 ↑     ↑ ↑   ↑       * * *     

ALDH1A1 ↓ ↓   ↓     ↓         *     

non-small cell 

bronchopulmonary 

cancer; liver cancer;T-

cell leukemia 

PMAIP1 ↑ ↑   ↑ ↑       *   * *       

FABP4 ↓ ↓   ↓     ↓ *             Bladder cancer; 

LCN2   ↑ ↑ ↑ ↑     * *     *     ovarian cancer; leukemia 

COL11A1 ↑ ↑   ↑ ↑                   adenomas; 

TTK   ↑   ↑   ↑ ↑                

CENPF ↑     ↑ ↑   ↑ *               
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Table 2.3: The list of genes that differentially expressed in more than 3 cancer type. “↑” 

indicates that a gene is up-regulated in the corresponding cancer type while “↓” indicates 

that a gene is down-regulated 

 

Gene ID 

  
Direction of regulation Function 

B
re

. 

C
o

n
. 

K
id

. 

Lu
n

. 

P
an

. 

P
ro

. 

St
o

. 

 

ABCA8 ↓ ↓ ↓ ↓     ↓ ATP-dependent lipophilic drug transporter 

ACADL ↓     ↓ ↓     NA 

ADH1B ↓   ↓ ↓       NA 

ADH1C ↓ ↓         ↓ NA 

AGR2 ↑     ↑ ↑     NA 

ALDH1A1 ↓ ↓   ↓     ↓ 

Binds free retinal and cellular retinol-binding protein- 
bound retinal. Can convert/oxidize retinaldehyde to 
retinoic acid 

ANLN   ↑     ↑   ↑ 

Required for cytokinesis. Essential for the structural 
integrity of the cleavage furrow and for completion of 
cleavage furrow ingression. 

AOC3 ↓ ↓   ↓       

Cell adhesion protein that participates in lymphocyte 
recirculation by mediating the binding of lymphocytes to 
peripheral lymph node vascular endothelial cells in an L-
selectin- independent fashion. Has a monoamine 
oxidase activity. 

ASPM ↑     ↑ ↑     

 Probable role in mitotic spindle regulation and 
coordination of mitotic processes. May have a 
preferential role in regulating neurogenesis. 

AURKA ↑ ↑   ↑   ↑ ↑ 

 May play a role in cell cycle regulation during anaphase 
and/or telophase, in relation to the function of the 
centrosome/spindle pole region during chromosome 
segregation. May be involved in microtubule formation 
and/or stabilization. May play a key role during tumor 
development and progression. Phosphorylates ARHGEF2 
and BORA. 

BUB1   ↑   ↑     ↑ 

 Involved in cell cycle checkpoint enforcement. Can 
interact and phosphorylate BUB3. 

C7   ↓ ↓ ↓   ↓   

 C7 is a constituent of the membrane attack complex. C7 
binds to C5b forming the C5b-7 complex, where it serves 
as a membrane anchor. 

CAV1 ↓     ↓   ↓   

 May act as a scaffolding protein within caveolar 
membranes. Interacts directly with G-protein alpha 
subunits and can functionally regulate their activity 

CCL18     ↑   ↑   ↑  Chemotactic factor that attracts lymphocytes but not 
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monocytes or granulocytes. May be involved in B-cell 
migration into B-cell follicles in lymph nodes. Attracts 
naive T-lymphocytes toward dendritic cells and 
activated macrophages in lymph nodes, has chemotactic 
activity for naive T-cells, CD4+ and CD8+ T-cells and thus 
may play a role in both humoral and cell-mediated 
immunity responses. 

CD36 ↓     ↓     ↓ 

Seems to have numerous potential physiological 
functions. Binds to collagen, thrombospondin, anionic 
phospholipids and oxidized LDL. May function as a cell 
adhesion molecule. Directly mediates cytoadherence of 
Plasmodium falciparum parasitized erythrocytes. Binds 
long chain fatty acids and may function in the transport 
and/or as a regulator of fatty acid transport. 

CDC2 ↑ ↑   ↑ ↑ ↑ ↑ 

Plays a key role in the control of the eukaryotic cell 
cycle. It is required in higher cells for entry into S-phase 
and mitosis. p34 is a component of the kinase complex 
that phosphorylates the repetitive C-terminus of RNA 
polymerase II. 

CDH3   ↑   ↑ ↑     

Cadherins are calcium dependent cell adhesion proteins. 
They preferentially interact with themselves in a 
homophilic manner in connecting cells; cadherins may 
thus contribute to the sorting of heterogeneous cell 
types. 

CENPF ↑     ↑ ↑   ↑ 

Probably required for kinetochore function, involved in 
chromosome segregation during mitosis. Interacts with 
retinoblastoma protein (RB), CENP-E and BUBR1. 

CHRDL1 ↓     ↓   ↓   

Antagonizes the function of BMP4 by binding to it and 
preventing its interaction with receptors. Alters the fate 
commitment of neural stem cells from gliogenesis to 
neurogenesis. Contributes to neuronal differentiation of 
neural stem cells in the brain by preventing the 
adoption of a glial fate. May play a crucial role in 
dorsoventral axis formation. May play a role in 
embyonic bone formation (By similarity). May also play 
an important role in regulating retinal angiogenesis 
trough modulation of BMP4 actions in endothelial cells. 

CKS2 ↑       ↑   ↑ 

Binds to the catalytic subunit of the cyclin dependent 
kinases and is essential for their biological function. 

CLDN4       ↑ ↑   ↑ 

Plays a major role in tight junction-specific obliteration 
of the intercellular space. 

CLEC3B ↓     ↓     ↓ 

Tetranectin binds to plasminogen and to isolated kringle 
4. May be involved in the packaging of molecules 
destined for exocytosis. 

CNN1   ↓   ↓   ↓   

Thin filament-associated protein that is implicated in the 
regulation and modulation of smooth muscle 
contraction. It is capable of binding to actin, calmodulin, 
troponin C and tropomyosin. The interaction of calponin 
with actin inhibits the actomyosin Mg-ATPase activity 
(By similarity). 

COL10A1 ↑     ↑ ↑     

Type X collagen is a product of hyperthrophic 
chondrotocytes and has been localized to presumptive 
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mineralization zones of hyaline cartilage. 

COL11A1 ↑ ↑   ↑ ↑     

May play an important role in fibrillogenesis by 
controlling lateral growth of collagen II fibrils. 

COL1A1 ↑     ↑ ↑     

 Type I collagen is a member of group I collagen (fibrillar 
forming collagen). 

COX7A1 ↓     ↓   ↓   

This protein is one of the nuclear-coded polypeptide 
chains of cytochrome c oxidase, the terminal oxidase in 
mitochondrial electron transport. 

CXCL12   ↓   ↓   ↓   

Chemoattractant active on T-lymphocytes, monocytes, 
but not neutrophils. SDF-1-beta(3-72) and SDF-1-
alpha(3-67) show a reduced chemotactic activity. 
Binding to cell surface proteoglycans seems to inhibit 
formation of SDF-1-alpha(3-67) and thus to preserve 
activity on local sites. 

DMD   ↓     ↓ ↓   

May play a role in anchoring the cytoskeleton to the 
plasma membrane. 

DPT ↓ ↓   ↓   ↓ ↓ 

Seems to mediate adhesion by cell surface integrin 
binding. May serve as a communication link between 
the dermal fibroblast cell surface and its extracellular 
matrix environment. Enhances TGFB1 activity. Inhibits 
cell proliferation. Accelerates collagen fibril formation, 
and stabilizes collagen fibrils against low-temperature 
dissociation. 

ECT2   ↑   ↑ ↑   ↑ 

Binds highly specifically to RhoA, RhoC and Rac proteins, 
but does not appear to catalyze guanine nucleotide 
exchange. 

ESM1   ↑     ↑   ↑ 

May have potent implications in lung endothelial cell- 
leukocyte interactions. 

FABP4 ↓ ↓   ↓     ↓ 

Lipid transport protein in adipocytes. Binds both long 
chain fatty acids and retinoic acid. Delivers long-chain 
fatty acids and retinoic acid to their cognate receptors in 
the nucleus. 

FAM107A   ↓   ↓     ↓ 

When transfected into cell lines in which it is not 
expressed, suppresses cell growth. May play a role in 
tumor development. 

GPX3 ↓     ↓     ↓ 

Protects cells and enzymes from oxidative damage, by 
catalyzing the reduction of hydrogen peroxide, lipid 
peroxides and organic hydroperoxide, by glutathione. 

GREM1       ↑ ↑   ↑ 

Cytokine that may play an important role during 
carcinogenesis and metanephric kidney organogenesis, 
as a BMP antagonist required for early limb outgrowth 
and patterning in maintaining the FGF4-SHH feedback 
loop. Down-regulates the BMP4 signaling in a dose-
dependent manner. Acts as inhibitor of monocyte 
chemotaxis. 

HBB ↓ ↓   ↓       

LVV-hemorphin-7 potentiates the activity of bradykinin, 
causing a decrease in blood pressure. 

HPGD     ↓ ↓     ↓ Inactivation of prostaglandins. 

HS3ST1     ↑ ↑ ↑     

Rate limiting enzyme for synthesis of HSact. Performs 
the crucial step modification in the biosynthesis of 
anticoagulant heparan sulfate (HSact) that is to 
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complete the structure of the antithrombin 
pentasaccharide binding site. 

INHBA ↑       ↑   ↑ 

Inhibins and activins inhibit and activate, respectively, 
the secretion of follitropin by the pituitary gland. 
Inhibins/activins are involved in regulating a number of 
diverse functions such as hypothalamic and pituitary 
hormone secretion, gonadal hormone secretion, germ 
cell development and maturation, erythroid 
differentiation, insulin secretion, nerve cell survival, 
embryonic axial development or bone growth, 
depending on their subunit composition. Inhibins 
appear to oppose the functions of activins. 

KLF4 ↓ ↓   ↓     ↓ 

Transcription factor which acts as both an activator and 
repressor. Binds the CACCC core sequence. Binds to 
multiple sites in the 5'-flanking region of its own gene 
and can activate its own transcription. Required for 
establishing the barrier function of the skin and for 
postnatal maturation and maintenance of the ocular 
surface. Involved in the differentiation of epithelial cells 
and may also function in skeletal and kidney 
development. 

KRT8 ↑     ↑ ↑     

Together with KRT19, helps to link the contractile 
apparatus to dystrophin at the costameres of striated 
muscle. 

LCN2   ↑ ↑ ↑ ↑     Transport of small lipophilic substances (Potential). 

MAD2L1   ↑   ↑ ↑   ↑ 

Required for the execution of the mitotic checkpoint 
which monitors the process of kinetochore-spindle 
attachment and delays the onset of anaphase when this 
process is not complete. It inhibits the activity of the 
anaphase promoting complex by sequestering CDC20 
until all chromosomes are aligned at the metaphase 
plate. 

MCM4 ↑     ↑     ↑ Involved in the control of DNA replication. 

MDK ↑     ↑ ↑     

Has heparin binding activity, and growth promoting 
activity. Involved in neointima formation after arterial 
injury, possibly by mediating leukocyte recruitment. 
Also involved in early fetal adrenal gland development 
(By similarity). 

MELK ↑     ↑ ↑   ↑ 

Phosphorylates ZNF622 and may contribute to its 
redirection to the nucleus. May be involved in the 
inhibition of spliceosome assembly during mitosis. 

MME ↓   ↓ ↓       

Thermolysin-like specificity, but is almost confined on 
acting on polypeptides of up to 30 amino acids. 
Biologically important in the destruction of opioid 
peptides such as Met- and Leu-enkephalins by cleavage 
of a Gly-Phe bond. Involved in the degradation of atrial 
natriuretic factor (ANF). 

MMP1   ↑   ↑ ↑     

Cleaves collagens of types I, II, and III at one site in the 
helical domain. Also cleaves collagens of types VII and X. 
In case of HIV infection, interacts and cleaves the 
secreted viral Tat protein, leading to a decrease in 
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neuronal Tat's mediated neurotoxicity. 

MMP11       ↑ ↑   ↑ 

May play an important role in the progression of 
epithelial malignancies. 

MMP12       ↑ ↑   ↑ 

May be involved in tissue injury and remodeling. Has 
significant elastolytic activity. Can accept large and small 
amino acids at the P1' site, but has a preference for 
leucine. Aromatic or hydrophobic residues are preferred 
at the P1 site, with small hydrophobic residues 
(preferably alanine) occupying P3. 

MMP7   ↑   ↑ ↑   ↑ 

Degrades casein, gelatins of types I, III, IV, and V, and 
fibronectin. Activates procollagenase. 

MMP9       ↑ ↑   ↑ 

May play an essential role in local proteolysis of the 
extracellular matrix and in leukocyte migration. Could 
play a role in bone osteoclastic resorption. Cleaves KiSS1 
at a Gly-|-Leu bond. 

MT1M       ↓ ↓   ↓ 

Metallothioneins have a high content of cysteine 
residues that bind various heavy metals; these proteins 
are transcriptionally regulated by both heavy metals and 
glucocorticoids. 

MT1X   ↓       ↓ ↓ 

Metallothioneins have a high content of cysteine 
residues that bind various heavy metals; these proteins 
are transcriptionally regulated by both heavy metals and 
glucocorticoids. 

MXRA5       ↑ ↑   ↑ NA 

MYB ↑         ↑ ↑ 

Transcriptional activator; DNA-binding protein that 
specifically recognize the sequence 5'-YAAC[GT]G-3'. 
Plays an important role in the control of proliferation 
and differentiation of hematopoietic progenitor cells. 

MYH11   ↓   ↓   ↓   Muscle contraction. 

MYL9 ↓ ↓   ↓       

Myosin regulatory subunit that plays an important role 
in regulation of both smooth muscle and nonmuscle cell 
contractile activity via its phosphorylation. Implicated in 
cytokinesis, receptor capping, and cell locomotion. 

MYLK   ↓   ↓   ↓   

Calcium/calmodulin-dependent enzyme implicated in 
smooth muscle contraction via phosphorylation of 
myosin light chains (MLC). Implicated in the regulation 
of endothelial as well as vascular permeability. In the 
nervous system it has been shown to control the growth 
initiation of astrocytic processes in culture and to 
participate in transmitter release at synapses formed 
between cultured sympathetic ganglion cells. Critical 
participant in signaling sequences that result in 
fibroblast apoptosis. 

NDC80 ↑     ↑ ↑     

Acts as a component of the essential kinetochore- 
associated NDC80 complex, which is required for 
chromosome segregation and spindle checkpoint 
activity. Required for kinetochore integrity and the 
organization of stable microtubule binding sites in the 
outer plate of the kinetochore. 

NUSAP1       ↑ ↑   ↑ 

Microtubule-associated protein with the capacity to 
bundle and stabilize microtubules (By similarity). May 
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associate with chromosomes and promote the 
organization of mitotic spindle microtubules around 
them. 

PAICS   ↑   ↑     ↑ NA 

PCK1 ↓ ↓ ↓         NA 

PDK4       ↓ ↓   ↓ 

 Inhibits the mitochondrial pyruvate dehydrogenase 
complex by phosphorylation of the E1 alpha subunit, 
thus contributing to the regulation of glucose 
metabolism. 

PHLDA2 ↑     ↑ ↑      May play a role in regulating placenta growth. 

PLA2G7     ↑     ↑ ↑ 

Modulates the action of platelet-activating factor (PAF) 
by hydrolyzing the sn-2 ester bond to yield the 
biologically inactive lyso-PAF. Has a specificity for 
substrates with a short residue at the sn-2 position. It is 
inactive against long-chain phospholipids. 

PMAIP1 ↑ ↑   ↑ ↑     

Promotes activation of caspases and apoptosis. 
Promotes mitochondrial membrane changes and efflux 
of apoptogenic proteins from the mitochondria. 
Contributes to p53-dependent apoptosis after radiation 
exposure. Promotes proteasomal degradation of MCL1. 
Competes with BAK1 for binding to MCL1 and can 
displace BAK1 from its binding site on MCL1 (By 
similarity). Competes with BIM/BCL2L11 for binding to 
MCL1 and can displace BIM/BCL2L11 from its binding 
site on MCL1. 

PRC1 ↑     ↑ ↑   ↑ 

KIF4A translocates PRC1 to the plus ends of 
interdigitating spindle microtubules during the 
metaphase to anaphase transition, an essential step for 
the formation of an organized central spindle midzone 
and midbody and for successful cytokinesis. Required 
for KIF14 localization to the central spindle and 
midbody. Acts as a microtubule-binding and bundling 
protein both in vivo and vitro. May function as an in vivo 
cyclin- CDK substrate. 

PTGER4   ↓   ↓ ↓     

Receptor for prostaglandin E2 (PGE2). The activity of 
this receptor is mediated by G(s) proteins that stimulate 
adenylate cyclase. Has a relaxing effect on smooth 
muscle. May play an important role in regulating renal 
hemodynamics, intestinal epithelial transport, adrenal 
aldosterone secretion, and uterine function. 

PTRF ↓     ↓   ↓   

Termination of transcription by RNA polymerase I 
involves pausing of transcription by TTF1, and the 
dissociation of the transcription complex, releasing pre-
rRNA and RNA polymerase I from the template. PTRF is 
required for dissociation of the ternary transcription 
complex (By similarity). 

PTTG1   ↑     ↑   ↑ 

Regulatory protein, which plays a central role in 
chromosome stability, in the p53/TP53 pathway, and 
DNA repair. Probably acts by blocking the action of key 
proteins. During the mitosis, it blocks Separase/ESPL1 
function, preventing the proteolysis of the cohesin 
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complex and the subsequent segregation of the 
chromosomes. At the onset of anaphase, it is 
ubiquitinated, conducting to its destruction and to the 
liberation of ESPL1. Its function is however not limited 
to a blocking activity, since it is required to activate 
ESPL1. Negatively regulates the transcriptional activity 
and related apoptosis activity of TP53. The negative 
regulation of TP53 may explain the strong transforming 
capability of the protein when it is overexpressed. May 
also play a role in DNA repair via its interaction with Ku, 
possibly by connecting DNA damage-response pathways 
with sister chromatid separation. 

RNASE1   ↓     ↓   ↓ 

Endonuclease that catalyzes the cleavage of RNA on the 
3' side of pyrimidine nucleotides. Acts on single 
stranded and double stranded RNA. 

RRM2 ↑     ↑ ↑   ↑ 

Provides the precursors necessary for DNA synthesis. 
Catalyzes the biosynthesis of deoxyribonucleotides from 
the corresponding ribonucleotides. Inhibits Wnt 
signaling. 

S100P ↑     ↑ ↑     NA 

SDPR ↓ ↓   ↓       

May play a role in targeting PRKCA to caveolae (By 
similarity). 

SFN     ↑ ↑ ↑     p53-regulated inhibitor of G2/M progression. 

SLC16A3     ↑ ↑ ↑     

Proton-linked monocarboxylate transporter. Catalyzes 
the rapid transport across the plasma membrane of 
many monocarboxylates such as lactate, pyruvate, 
branched-chain oxo acids derived from leucine, valine 
and isoleucine, and the ketone bodies acetoacetate, 
beta-hydroxybutyrate and acetate (By similarity). 

SOX4       ↑ ↑   ↑ 

Transcriptional activator that binds with high affinity to 
the T-cell enhancer motif 5'-AACAAAG-3' motif. 

SPARCL1   ↓   ↓   ↓   NA 

SULF1       ↑ ↑   ↑ 

Exhibits arylsulfatase activity and highly specific 
endoglucosamine-6-sulfatase activity. It can remove 
sulfate from the C-6 position of glucosamine within 
specific subregions of intact heparin. Diminishes HSPG 
(heparan sulfate proteoglycans) sulfation, inhibits 
signaling by heparin-dependent growth factors, 
diminishes proliferation, and facilitates apoptosis in 
response to exogenous stimulation. 

TFAP2A       ↑ ↑   ↑ 

Sequence-specific DNA-binding protein that interacts 
with inducible viral and cellular enhancer elements to 
regulate transcription of selected genes. AP-2 factors 
bind to the consensus sequence 5'-GCCNNNGGC-3' and 
activate genes involved in a large spectrum of important 
biological functions including proper eye, face, body 
wall, limb and neural tube development. They also 
suppress a number of genes including MCAM/MUC18, 
C/EBP alpha and MYC. AP-2 alpha is the only AP-2 
protein required for early morphogenesis of the lens 
vesicle (By similarity). 
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TGFBI     ↑   ↑   ↑ 

Binds to type I, II, and IV collagens. This adhesion 
protein may play an important role in cell-collagen 
interactions. In cartilage, may be involved in 
endochondral bone formation. 

TGFBR3 ↓ ↓   ↓       

Binds to TGF-beta. Could be involved in capturing and 
retaining TGF-beta for presentation to the signaling 
receptors. 

THBS2     ↑ ↑ ↑     

Adhesive glycoprotein that mediates cell-to-cell and cell-
to-matrix interactions. Can bind to fibrinogen, 
fibronectin, laminin and type V collagen. 

TOP2A ↑ ↑   ↑ ↑   ↑ 

Control of topological states of DNA by transient 
breakage and subsequent rejoining of DNA strands. 
Topoisomerase II makes double-strand breaks. 

TOX3 ↑     ↑ ↑     NA 

TPX2       ↑   ↑ ↑ NA 

TRIM29   ↑     ↑   ↑ 

It is able to complement the radiosensitivity defect of an 
ataxia telangiectasia (AT) fibroblast cell line. 

TTK   ↑   ↑   ↑ ↑ 

Phosphorylates proteins on serine, threonine, and 
tyrosine. Probably associated with cell proliferation. 

TWIST1         ↑ ↑ ↑ 

Probable transcription factor, which seems to be 
involved in the negative regulation of cellular 
determination and in the differentiation of several 
lineages including myogenesis, osteogenesis, and 
neurogenesis. Inhibits myogenesis by sequestrating E 
proteins, inhibiting trans-activation by MEF2, and 
inhibiting DNA-binding by MYOD1 through physical 
interaction. This interaction probably involves the basic 
domains of both proteins (By similarity). Also represses 
expression of proinflammatory cytokines such as TNFA 
and IL1B. 

UBE2C   ↑   ↑     ↑ 

Catalyzes the covalent attachment of ubiquitin to other 
proteins. Required for the destruction of mitotic cyclins. 
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Table 2.4:  Enriched pathways by differentially expressed genes in different cancer types 

(enrichment P-value cutoff = 0.05)  

Pathways 

C
O

U
N

T
 

B
R

E
A

S
T

 

C
O

L
O

N
 

K
ID

N
E

Y
 

L
U

N
G

 

P
A

N
C

R
E

A
S

E
 

P
R

O
S

T
A

T
E

 

S
T

O
M

A
C

H
 

Complement and coagulation cascades 4   X X X X     

ECM-receptor interaction 4 X     X X   X 

Focal adhesion 4 X     X X X   

Cell Communication 4 X     X X X   

Cell adhesion molecules (CAMs) 3       X X   X 

PPAR signaling pathway 3 X X X         

Glycine, serine and threonine metabolism 3   X X   X     

p53 signaling pathway 2       X X     

Cell cycle 2       X     X 

Glycolysis / Gluconeogenesis 2     X   X     

Platelet Amyloid Precursor Protein Pathway 2     X   X     

PKC-catalyzed phosphorylation of inhibitory 

phosphoprotein of myosin phosphatase 2   X       X   

Fibrinolysis Pathway 2     X   X     

Eicosanoid Metabolism 2   X     X     

RBphosphoE2F 2 X     X       

Adipocytokine signaling pathway 1 X             

Small cell lung cancer 1         X     

Hematopoietic cell lineage 1         X     

TGF-beta signaling pathway 1       X       

Cytokine-cytokine receptor interaction 1         X     

Calcium signaling pathway 1           X   

ABC transporters – General 1   X           

Metabolism of xenobiotics by cytochrome P450 1             X 

Nitrogen metabolism 1             X 

3-Chloroacrylic acid degradation 1 X             

Propanoate metabolism 1 X             

Pyruvate metabolism 1 X             

Linoleic acid metabolism 1             X 

Arachidonic acid metabolism 1             X 

Glycerophospholipid metabolism 1 X             

Glycerolipid metabolism 1 X             

O-Glycan biosynthesis 1         X     

Tryptophan metabolism 1 X             
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Tyrosine metabolism 1     X         

Histidine metabolism 1 X             

Arginine and proline metabolism 1     X         

Urea cycle and metabolism of amino groups 1 X             

Bile acid biosynthesis 1 X             

Visceral Fat Deposits and the Metabolic Syndrome 1 X             

Vitamin C in the Brain 1         X     

Inhibition of Matrix Metalloproteinases 1       X       

IGF-1 Receptor and Longevity 1 X             

Low-density lipoprotein (LDL) pathway during 

atherogenesis 1       X       

Classical Complement Pathway 1     X         

Pertussis toxin-insensitive CCR5 Signaling in 

Macrophage 1   X           

Chemokine_families 1   X           
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Table 2.5: The top 2-gene markers for multiple cancer types. Each numerical value 

shows the classification accuracy between a cancer and its corresponding reference. Each 

entry represents the classification accuracy between a cancer set and its corresponding 

reference set on the training (train) and the testing (test) datasets, respectively.   

C
o

u
n

t 

Markers 

Breast Colon Kidney Lung Pancreas Prostate Stomach 

tr
a

in
 

te
st

 

tr
a

in
 

te
st

 

tr
a

in
 

te
st

 

tr
a

in
 

te
st

 

tr
a

in
 

te
st

 

tr
a

in
 

te
st

 

tr
a

in
 

te
st

 

5 

CDC2+DPT 

70.7

% 

94.8

% 

91.7

% 97.9% _ _ 

88.9

% 

92.6

% _ _ 

60.2

% 

81.6

% 

66.7

% 

85.5

% 

CDC2+TOP2A 

72.4

% 

94.8

% 

75.0

% 

100.0

% _ _ 

85.2

% 

85.2

% 

71.2

% 

71.2

% _ _ 

78.3

% 

85.5

% 

4 

CDC2+ECT2 _ _ 

85.4

% 97.9% _ _ 

83.3

% 

77.8

% 

78.8

% 

86.5

% _ _ 

75.4

% 

78.3

% 

ABCA8+AUR

KA 

81.0

% 

96.6

% 

91.7

% 

100.0

% _ _ 

94.4

% 

94.4

% _ _ _ _ 

75.4

% 

92.8

% 

ABCA8+FABP

4 

79.3

% 

96.6

% 

89.6

% 97.9% _ _ 

96.3

% 

98.1

% _ _ _ _ 

79.7

% 

84.1

% 

DPT+FABP4 

79.3

% 

87.9

% 

95.8

% 89.6% _ _ 

94.4

% 

96.3

% _ _ _ _ 

82.6

% 

75.4

% 

FABP4+TOP2

A 

77.6

% 

94.8

% 

85.4

% 

100.0

% _ _ 

96.3

% 

94.4

% _ _ _ _ 

78.3

% 

85.5

% 

3 
CDC2+SULF1 _ _ _ _ _ _ 

90.7

% 

88.9

% 

96.2

% 

90.4

% _ _ 

95.7

% 

88.4

% 
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Table 2.6: The top 3-gene discriminators for multiple cancer type types 

C
o

u
n

t 
Markers 

 

Breast Colon Kidney Lung Pancreas Prostate Stomach 
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te
st

 

tr
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n
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tr
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n
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4 ABCA8+ALDH1A1+DPT 
75.
9% 

96.
6% 

93.
8% 

97.
9% _ _ 

92.
6% 

96.
3% _ _ _ _ 

75.
4% 

91.
3% 

4 ABCA8+AURKA+DPT 
77.
6% 

96.
6% 

95.
8% 

10
0.0
% _ _ 

92.
6% 

94.
4% _ _ _ _ 

76.
8% 

91.
3% 

4 
ALDH1A1+FABP4+TOP2

A 
79.
3% 

93.
1% 

87.
5% 

85.
4% _ _ 

96.
3% 

77.
8% _ _ _ _ 

76.
8% 

76.
8% 

 

 

Table 2.7:  The top 4-gene discriminators for multiple cancer types  

C
o

u
n

t 

Markers 

Breast Colon Kidney Lung Pancreas 
Prostat

e 
Stomach 
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4 
ABCA8+CDC2+KLF4+TOP

2A 
79.3

% 
94.8

% 
93.8

% 
100.0

% _ _ 
94.4

% 
98.1

% _ _ _ _ 
88.4

% 
94.2

% 

4 
ABCA8+FABP4+KLF4+TO

P2A 
79.3

% 
96.6

% 
89.6

% 
100.0

% _ _ 
96.3

% 
98.1

% _ _ _ _ 
87.0

% 
89.9

% 

4 
ALDH1A1+FABP4+KLF4+T

OP2A 
79.3

% 
94.8

% 
89.6

% 
97.9

% _ _ 
96.3

% 
96.3

% _ _ _ _ 
85.5

% 
91.3

% 

4 
CDC2+COL11A1+PMAIP1

+TOP2A 
79.3

% 
100.0

% 
93.8

% 
100.0

% _ _ 
90.7

% 
90.7

% 
90.4

% 
86.5

% _ _ _ _ 

4 DPT+FABP4+KLF4+TOP2A 
79.3

% 
94.8

% 
91.7

% 
100.0

% _ _ 
98.1

% 
96.3

% _ _ _ _ 
85.5

% 
91.3

% 
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Table 2.8: Top k-gene discriminators with their proteins to be blood secretory. Each 

numerical value represents the classification accuracy between cancer tissues and their 

corresponding reference tissues.  

  Breast Colon Kidney Lung Pancreas 
Prostat

e Stomach 

C
o

u
n

t 

Markers 

tr
ai

n
 

te
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tr
ai

n
 

te
st

 

tr
ai

n
 

te
st

 

tr
ai

n
 

te
st

 

tr
ai

n
 

te
st

 

tr
ai

n
 

te
st

 

tr
ai

n
 

te
st

 

4 DPT+KLF4 
70.7

% 
84.5

% 
89.9

% 
97.9

% _ _ 
94.4

% 
94.4

% _ _ _ _ 
84.1

% 
91.3

% 

3 GREM1+MMP7 _ _ _ _ _ _ 
88. 
9% 

79.6
% 

92.3
% 

73.1
% _ _ 

89.9
% 

75.4
% 

3 MMP7+MMP9 _ _ _ _ _ _ 
75.9

% 
79.6

% 
96.2

% 
78.9

% _ _ 
77.9

% 
76.8

% 

3 

MMP11+MMP7+MM
P9+RRM2 _ _ _ _ _ _ 

85.2
% 

96.3
% 

96.2
% 

88.5
% _ _ 

88.1
% 

88.4
% 

3 CCL18+TGFBI _ _ _ _ 
74.5

% 
80.9

% _ _ 
82.7

% 
82.7

% _ _ 
71.0

% 
75.4

% 

3 LCN2+THBS2 _ _ _ _ 
74.5

% 
87.2

% 
88. 
9% 

85.2
% 

96.2
% 

82.8
% _ _ _ _ 

3 DPT+MMP7 _ _ 
97.9

% 
89.6

% _ _ 
85.2

% 
88. 
9% _ _ _ _ 

84.2
% 

81.2
% 

3 FAM107A+KLF4 _ _ 
87.5

% 
100.0

% _ _ 
94.4

% 
92.6

% _ _ _ _ 
91.3

% 
92.8

% 

3 

FAM107A+KLF4+MM
P7+PAICS _ _ 

100.
0% 

100. 
0% _ _ 

94.4
% 

94.4
% _ _ _ _ 

91.3
% 

91.3
% 

3 INHBA+RRM2 
74.1

% 
100. 
0% _ _ _ _ _ _ 

94.2
% 

88.5
% _ _ 

78.3
% 

81.2
% 

3 GPX3+RRM2 
81.0

% 
96.6

% _ _ _ _ 
88. 
9% 

94.4
% _ _ _ _ 

85.5
% 

81.2
% 

3 COL11A1+DPT 
72.4

% 
96.6

% 
97.9

% 
89.6

% _ _ 
92.6

% 
94. 
4% _ _ _ _ _ _ 

3 MMP11+RRM2 _ _ _ _ _ _ 
88. 
9% 

90.7
% 

86.5
% 

88.5
% _ _ 

75.0
% 

82.6
% 
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Table 2.9:  A summary of the top three k-gene discriminators for each of the seven 

cancer types along with discriminators for early stage breast and stomach cancer. “C” for 

cancer and “R” for reference tissues; and “---“ indicates that the corresponding k-gene 

combinations were not  assessed since (k-1)-gene combinations already give 100% 

classification accuracy.  

Cancer 

type 

N
o

. 
o

f 
sa

m
p

le
s 

 (
C

/R
) 

in
 

tr
ai

n
in

g
 a

n
d

  
te

st
in

g
 s

et
 

Top three k-gene discriminators 

  
 

1-gene 

 

2-gene 

 

3-gene 

 

4-gene 

Breast 

cancer 

43/43 

31/27 

PCOLCE2 

ANGPTL4 

LEP 

ADIPOQ+TMEM97 

PPARG+TMEM97 

TACSTD2+CAV1 

RRM2+COL1A1+PCOLCE2 

RRM2+COL1A1+PPARG 

RRM2 + STBD1 + MAOA 

RRM2+COL1A1 + 
GPR109B+IGJ 

RRM2+COL1A1 + 

GPR109B+IGJ 
RRM2+COL1A1+GPR109B + 

SPINT2 

Breast 

cancer 

Early 

stage 

31/31 

12/12 

GPR109B 

PCOLCE2  

ADIPOQ 

PCSK5+COL10A1 

FERMT2+SPINT2 

MAOA+IGJ 

COL1A1+PCSK5+TF 

GPX3+COL1A1+SPINT2 

STBD1+TMEM97+COL10A1 

RRM2+COL1A1+GPR109B+IG
J  RRM2+ COL1A1+ 

GPR109B+SPINT2 

COL1A1+MAOA+SPINT2+CO
L11A1 

Colon 

cancer 

53/28 

24/24 

MMP7 

DPT 

MMP1 

MMP7+FAM107A 

FRZB+MMP7 

SLIT3+MMP7 

--- --- 

Kidney 

cancer 

49/23 

35/12 

CCL18 

ACPP 

UMOD 

EGF+ALB 

ACPP+UMOD 

UMOD+ALB 

--- --- 

Lung 

cancer 

58/49 

27/27 

CAV1 

SFTPC 

TNXB  

FERMT2+GREM1 

TEK+NFASC 

CAV1+MMP1 

--- --- 

Pancreati

c cancer 

39/39 

36/16 

KRT17 

COL10A1 

FAM19A5 

MMP7+AZGP1 

MMP7+ELA3B 

MMP7+FGL1 

COL8A2+SGPP2+CCL18 

COL8A2+PMEPA1+TMEM45

B 

LCN2 + COL8A2 + PMEPA1 

--- 

Prostate 

cancer 

65/63 

62/47 

CRISP3 

MYLK 

PALLD 

LTF+IGF1 

LTF+SPARCL1 

SMTN+CCK 

SMTN+CCK+CCL2 

SMTN+CCK+COMP  

SMTN+CCK+PLA2G7 

--- 
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Stomach 

cancer 

89/23 

38/31 

SERPINH1 

BGN 

COL12A1 

CHGA+SERPINH1 

PGC+SERPINH1 

TGFBI+CHGA 

--- --- 

Stomach 

cancer 

Early 

stage 

31/23 

12/10 

SERPINH1 

BGN 

COL12A1 

--- --- --- 

 

 

 

 

Table 2.10:  A summary of the training and the testing set used in our analysis  

Cancer  GEO dataset ID 

training / testing data 

# reference/ 

#cancer samples 

breast cancer GSE15852 / GSE10810 43/43 (27/31) 

colon cancer GSE6988   / GSE10950 28/53 (24/24) 

kidney cancer GSE15641 / GSE4866 23/49 (12/35) 

lung cancer GSE10072 / GSE7670 49/58 (27/27) 

pancreatic cancer GSE15471 / GSE16515 39/39 (16/36) 

prostate cancer GSE6606 / GSE3933 63/65 (47/62) 

stomach cancer GSE2701 / GSE13911 23/89 (31/38) 
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CHAPTER 3 

A COMPARATIVE STUDY OF GENE-EXPRESSION DATA OF BASAL CELL 

CARCINOMA AND MELANOMA REVEALS NEW INSIGHTS ABOUT THE TWO 

CANCERS
3
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
3
Xu K and Mao X. et al. 2012.  PLoS ONE 7(1): e30750. doi:10.1371/journal.pone.0030750 

Reprinted here with permission of the publisher.   
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Abstract 

A comparative analysis of genome-scale transcriptomic data of two types of skin 

cancers, melanoma and basal cell carcinoma in comparison with other cancer types, was 

conducted with the aim of identifying key regulatory factors that either cause or 

contribute to the aggressiveness of melanoma, while basal cell carcinoma generally 

remains a mild disease. Multiple cancer-related pathways such as cell proliferation, 

apoptosis, angiogenesis, cell invasion and metastasis, are considered, but our focus is on 

energy metabolism, cell invasion and metastasis pathways. Our findings include the 

following. (a) Both types of skin cancers use both glycolysis and increased oxidative 

phosphorylation (electron transfer chain) for their energy supply. (b) Advanced 

melanoma shows substantial up-regulation of key genes involved in fatty acid 

metabolism (β-oxidation) and oxidative phosphorylation, with aerobic metabolism being 

far more efficient than anaerobic glycolysis, providing a source of the energetics 

necessary to support the rapid growth of this cancer. (c) While advanced melanoma is 

similar to pancreatic cancer in terms of the activity level of genes involved in promoting 

cell invasion and metastasis, the main metastatic form of basal cell carcinoma is 

substantially reduced in this activity, partially explaining why this cancer type has been 

considered as far less aggressive. Our method of using comparative analyses of 

transcriptomic data of multiple cancer types focused on specific pathways provides a 

novel and highly effective approach to cancer studies in general. 
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Introduction  

The improvement of the cancer treatment and therapy heavily relies on the 

understanding of the fundamental tumor biology. The rapidly increasing pool (Sherlock, 

Hernandez-Boussard et al. 2001; Barrett, Troup et al. 2007) of large-scale transcriptomic 

data for various cancer types has provided unprecedented opportunities for computational 

cancer biologists to study common characteristics across multiple cancer types as well as 

distinct properties of individual cancer types, which could provide novel insights about 

different cancer phenotypes at the molecular level. To target the unique feature of the 

most aggressive cancer types melanoma, here we present a comparative analysis of gene 

expression data collected on cancer and control tissue samples of two skin cancer types, 

melanoma and basal cell carcinoma, which have very distinct characteristics.  

 

Skin cancer is one of the most common cancer types in the USA. Currently over 3.5 

million cases of skin cancers are diagnosed and reported annually (Rogers, Weinstock et 

al. 2010). It has been estimated that three out of ten Caucasians will develop skin cancer 

during their lifetime (Polsky and Wang 2011). The most common skin cancer is basal cell 

carcinoma (BCC), which develops in the basal cell layer of the skin, and primarily occurs 

in fair-skinned individuals. Sunlight is known to be a major factor for causing the disease. 

BCC is rarely deadly since it generally does not metastasize (Jemal, Siegel et al. 2010). In 

contrast, melanoma is a rare type of skin cancer but is among the deadliest forms of 

cancers (Jerant, Johnson et al. 2000). The tumor is derived from melanocytes, cells that 

produce the dark pigment. While melanoma is not limited to skin, it generally starts from 

the skin. A number of genes or their mutations have been found to be associated with the 
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development of melanoma such as MC1R (Box, Duffy et al. 2001), CDK4 (Zuo, Weger 

et al. 1996) and CDKN2A (Hughes-Davies 1998). The early stage of the disease is 

referred to as the radial growth phase when the tumor grows mostly horizontally. The 

behavior of the tumor drastically changes as soon as it starts to grow vertically, i.e., 

entering the vertical growth phase. It generally starts invading neighboring tissues when 

its thickness goes beyond 1mm (Balch, Buzaid et al. 2001).  

 

While some information is known about the potential causes of the two skin cancer types, 

such as excessive exposure to sunlight and development of the basal-cell nevus syndrome 

being the main causes of basal cell carcinoma and a few rare mutations in the 

aforementioned genes being the main reason for the development of melanoma, a 

detailed understanding about why the two skin cancer types behave so differently remains 

to be very limited.  

 

Through comparative analyses of genome-scale transcriptomic data on the two cancer 

types, we have gained a number of new insights which could shed new lights on our 

efforts to understand the detailed mechanisms of these two rather different skin cancer 

types. To put our analysis in a larger context, seven other cancer types have also been 

included, which range from relatively slow growing cancer to the fastest growing 

cancers, i.e, prostate, breast, kidney, colon, stomach, lung and pancreatic. By using 

transcriptomic data collected on cancer versus control tissues and comparing expression 

changes of the genes involved in different pathways associated with energy metabolism, 

we found that: (i) multiple genes involved in oxidative phosphorylation are up-regulated 
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in both melanoma and BCC, which is unique to only skin cancers among the nine types 

of cancer we examined and is inconsistent with Warburg’s thesis (Warburg 1956); (ii) 

interestingly, the key enzyme in ATP generation in the oxidative phosphorylation 

pathway is up-regulated only in advanced melanoma but not in any form of BCC; (iii) the 

level and scale of up-regulated genes involved in cell invasion and metastasis in 

advanced melanoma are comparable to those of pancreatic cancer, while the 

corresponding values in BCC are essentially at the lower end among all the nine cancer 

types we examined. We believe that our comparative transcriptomic data analyses of 

multiple cancer types focused on specific cancer related pathways provide a novel and 

highly effective approach to cancer studies, which could lead to substantial new insights 

about cancer formation (when the relevant data are available) and progression.  

 

Results 

Our analysis was done on two gene-expression datasets. One set consisted of 52 

tissue samples for the study of melanoma. Of the 52 tissue samples, 18 were common 

nevi (moles) (CMN), 11 were dysplastic nevi (pre-cancerous) (DN), 8 in the radial 

growth phase (RGP) (early stage) and 15 in the vertical growth phase (VGP) (advanced 

stage) (Scatolini, Grand et al. 2010). For this particular dataset, the common nevi tissues 

were used as the control set since the original study did not include normal skin tissues 

(Scatolini, Grand et al. 2010).  The second set consisted of 31 tissues for the study of 

BCC. Of the 31 tissue samples, 8 were in the superficial form (early stage), 7 in the 

morphea form (intermediate stage) and 8 in the nodular form (advanced stage), along 

with  8 normal skin epithelial tissues as the control (Lo, Yu et al. 2010).  
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1. Differentially expressed genes in the two skin cancer types 

In this study, a gene is considered differentially expressed at a specific stage of a 

cancer if the distribution of its expression levels among cancer tissues at that stage is 

deemed to be statistically different
4
 from the distribution of its expression levels among 

the control tissues (see Material and Methods). For BCC, 158, 406 and 494 genes were 

found to be differentially expressed in superficial, morphea and nodular forms, 

respectively, compared to the controls, which is consistent with our previous observation 

that the number of differentially expressed genes increases as a cancer advances (Xu, Cui 

et al. 2010; Cui, Chen et al. 2011). Using the same cutoff, 123, 326 and 1,647 genes were 

deemed to be differentially expressed in DN, RGP and VGP melanoma. In our previous 

study, we found that there is a strong correlation between the number of differentially 

expressed genes and the five-year survival rate associated with a particular cancer (Xu, 

Cui et al. 2010). Thus, the high number of differentially expressed genes in VGP 

melanoma is consistent with the clinical statistics regarding the mortality rate of this 

cancer. There is a possibility that this number could be potentially under-estimated since 

the controls (moles) for the melanoma analysis are not normal skin tissues and moles are 

probably the first step moving towards melanoma. The detailed lists of differentially 

expressed genes are given in Appendix Table A3.1. Overall it was found that the numbers 

of differentially expressed genes in the two cancer types are comparable in their early 

stages; and a substantial rise in the number of differentially expressed genes in the 

advanced stage, VGP, of melanoma was observed.  

 

                                                 
4
 Among all the genes deemed to be differentially expressed in our study, their expression values are either 

consistently up-regulated or consistently down-regulated.  
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A careful analysis of the pathways in the KEGG database that are enriched by the 

differentially expressed genes among the cancer tissues of BCC and melanoma was 

conducted with the DAVID program (see Material and Methods). For BCC, no pathways 

were found to be clearly enriched in the early stage, while 19 and 18 pathways were 

enriched in the intermediate and advanced stages, respectively. For melanoma, 1, 8 and 

61 pathways were enriched in the DN, RGP and VGP forms, respectively. The names of 

these enriched pathways are given in Table 3.1.  

 

It was noted that 11 enriched pathways are specific to VGP melanoma, the deadliest form 

among all the skin cancer types, including pathways associated with amino sugar and 

nucleotide sugar metabolism, linoleic acid metabolism and the citratric acid cycle (TCA 

cycle). In addition, some pathways are significantly enriched in only melanoma among 

the two skin cancer types considered, such as fatty acid metabolism, cell cycle, apoptosis 

and the ErbB signaling pathway. For BCC, it was noted that its advanced stage cancer 

has three pathways uniquely enriched among all the cancer types under consideration, 

including the spliceosome, GnRH signaling and long-term potentiation pathways.  

 

In addition, we have checked if some of the annotated proto-oncogene and tumor-

suppressor genes (http://www.uniprot.org/keywords/) show differential expressions in 

BCC and melanoma. Overall it was found that 2, 5 and 4 oncogenes are over-expressed 

in early, intermediate and advanced stage of BCC samples, respectively, and 0, 1 and 0 

tumor suppressor genes are respectively under-expressed in the three stages. Similarly, 

for melanoma, 9, 1 and 32 oncogenes are over-expressed in precancerous, early stage and 
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advanced melanoma, respectively, and 0, 4 and 4 tumor suppressor genes are respectively 

under-expressed in the three stages.  

 

Some of these up-regulated oncogenes have been reported as key regulatory genes for 

some of the skin cancer types. Among the up-regulated oncogenes in melanoma, ABL2, 

NRAS, PDGFC and FGF1 have been reported to be melanoma-associated oncogenes 

(Polsky and Cordon-Cardo 2003). Thus, RAB6B, REL and WHSC1L1, as identified by 

our analysis, may represent additional oncogenes for melanoma. For BCC, HRAS, RRAS 

and RUNX1 have been reported as BCC-associated oncogenes (Iwasaki, Srivastava et al. 

2010). Hence, ECT2, PLAG1, RAB6C and SSPN, which were identified by our analysis, 

may represent additional oncogenes for BCC. It is interesting that nine oncogenes exhibit 

up-regulation in the pre-cancer stage of melanoma, which may be the initial switch of the 

tumorgenesis leading to melanoma. Moreover, the large increase in the number of up-

regulated oncogenes in VGP melanoma may suggest the aggressiveness of the cancer. A 

detailed list of all the identified oncogene and tumor-suppressor genes is given in Figure 

3.1. 

 

2. Differentially expressed gene involved in energy metabolism  

We have examined expression fold-changes of genes involved in four energy 

metabolic pathways: glycolysis, fatty acid metabolism, the TCA cycle and oxidative 

phosphorylation (also called the electron transfer chain) in the two skin cancer types and 

compared them with the other seven non-skin cancer types. Figure 3.2 shows expression 

level changes of genes involved in the four energy pathways of the two skin cancer types 
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and the other seven cancer types. By examining the figure, the following observations 

can be made.  

 

1. Substantial increases in expression levels of multiple genes involved in glycolysis are 

observed in both the advanced forms of the two skin cancer types and five of the seven 

reference cancer types, namely kidney, colon, stomach, lung and pancreatic, consistent 

with Warburg’s thesis (Hanahan and Weinberg 2011).  

 

2. Two enzyme-encoding genes involved in fatty acid metabolism show substantial up-

regulation in both BCC and melanoma, in contrast to the seven non-skin cancer, 

indicating a unique way that skin cancer obtains energy not only from glucose 

metabolism like other cancers but also from fatty acid metabolism, which is a more 

efficient energy generation pathway.  

 

3. Moderately increased expression levels of genes involved in the TCA cycle are also 

observed in advanced melanoma, along with breast, colon, stomach and lung cancers.  

 

4. Most interesting is the finding that multiple genes involved in oxidative 

phosphorylation are up-regulated in the advanced form of both skin cancer types, which 

strongly suggests that both skin cancer types obtain much of their energy through 

oxidative phosphorylation, which produces an order of magnitude more ATPs than each 

of the other three energy pathways (per glucose). This is very surprising as this indicates 
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the two skin cancer types, even in their advanced forms, are not under hypoxic condition, 

and hence do not show the Warburg effect. 

 

5. ATP synthase is up-regulated only in advanced melanoma, in addition to the protein 

complex responsible for electron transfer but not in any form of BCC, indicating that 

ATP synthesis is faster in advanced melanoma than BCC. Further analysis of the 

differentially expressed genes in advanced melanoma suggests that the increased levels of 

acetyl-CoA, NADH and FADH2 derived from fatty acid oxidation can enter mitochondria 

and undergo oxidative phosphorylation. This process would be highly advantageous for a 

tumor as β-oxidation of fatty acids yields a larger number of acetyl-CoA molecules 

compared to glycolysis, and thus it has a larger number of substrates for the TCA cycle 

and subsequent oxidative phosphorylation. In order to utilize the increased number of 

acetyl-CoAs, the cells may need to have an increased rate of oxidative phosphorylation. 

Acetyl-CoA is an allosteric inhibitor of the PDH enzymes. As we observed, PDHA2 is 

substantially down-regulated in VGP melanoma, which can be attributed to the increased 

level of acetyl-CoA. As the PDHA2 activity decreases, pyruvate will naturally be 

diverted to lactic acid formation, which is shown by the up-regulation of LDHA and 

lactate transporters (MCT proteins SLC16As 3&6).  Figure 3.3 gives an energy model for 

advanced melanoma based on the results of our data analysis.  

 

3. Differentially expressed gene involved in tumor invasion and metastasis 

We have studied expression changes of genes involved in the metastatic process, 

with the goal of identifying possible reasons why the two skin cancer types have 
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substantial differences in their ability to metastasize.  For this, focus was placed on the 

pro-metastasis gene families, namely the positive regulation of the epithelial-

mesenchymal transition (EMT), the negative regulation of cell adhesion, the chemokine 

and MMP families, both of which promote degradation of extracellular matrices. Figure 

3.4 shows the observed expression changes of genes involved in these processes of the 

two skin cancer types, along with the other seven cancer types. We have made the 

following observations from the data in Figure 3.4.  

 

1. The VGP melanoma has the greatest number of up-regulated genes involved in the 

pro-metastasis gene family, having even more such genes than pancreatic cancer; While 

simply counting the number of up-regulated genes may be a rather crude way to assess 

the ability of a cancer to metastasize, Figure 3.5 shows that there is a strong (negative) 

correlation between this number and the five-year survival rate of a cancer.  

 

2. VGP melanoma is the only skin cancer type with up-regulated genes involved in 

positive regulation of the epithelial-mesenchymal transition,  which is considered to be 

the crucial developmental and regulatory program for cell invasion and metastasis 

(Klymkowsky and Savagner 2009; Polyak and Weinberg 2009); in addition, the  

significant up-regulation of genes involved in degrading the cell-cell adhesion molecules 

and the increased negative regulation of the cell adhesion, the matrix metalloproteinases 

and chemokines all suggest that VGP is highly metastatic (Hanahan and Weinberg 2000).  
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3. The lymphatic spread represents a major way for metastasis. We noted that the number 

of differentially expressed genes in lymphocyte proliferation is much higher in VGP 

melanoma compared to all the other skin cancer subtypes under consideration (see Figure 

3.6).  

 

4. It has been reported that a chaotic circadian rhythm may lead to faster tumor growth 

(Fu and Lee 2003). From the above figure, we noted that key genes of the circadian 

rhythm pathway are differentially expressed in VGP melanoma but only to a very limited 

extent in other skin cancer subtypes under consideration. CRY2, the most important gene 

controlling cell circadian rhythm (van der Horst, Muijtjens et al. 1999), shows down-

regulation only in VGP melanoma among all the cancer types. Items (2) – (4) above 

suggest that VGP melanoma has the greatest activities for cell-invasion and metastasis. 

 

5. In contrast, only a few genes of BCC are up-regulated in the aforementioned processes. 

Among the two different BCC subtypes, it is the morphea form, not the nodular form, 

that has the most up-regulated genes, which is consistent with previous reports that this 

form represents the BCC form with the greatest number of metastasis cases (Bozikov and 

Taggart 2006). We observed that in the morphea BCC, a number of genes encoding the 

collagens and proteins involved in anti-metastasis are highly up-regulated, suggesting 

that the cancer is under the control of the  immune system in inhibiting its invasion and 

metastasis throughout its development. 
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Overall our analysis suggests that VGP melanoma has the highest potential and unique 

ability to metastasize among the cancer types studied herein, while the BCC’s ability to 

metastasize is weakest among the nine types of cancer under consideration.  

 

3.  Differentially expressed genes involved in other cancer-related processes 

3a. Differentially expressed genes involved in cell proliferation:  Self-sufficiency 

in growth signals is a major acquired capability of any cancer. Our analysis of 

differentially expressed genes involved in positive regulation of cell proliferation 

indicates that VGP melanoma has substantially more genes up-regulated in this category 

than all the other skin cancer forms. Specifically, we noted that the number of such up-

regulated genes is comparable to that of pancreatic cancer with the detailed data given in 

Figure 3.7. Particularly worth noting is that VGP melanoma is the only cancer type 

among the nine cancer types showing substantial up-regulation of genes of the Jak-STAT 

signaling pathway, which is a crucial pathway that promotes cell growth.  

3b. Differentially expressed genes involved in apoptosis:  The morphea BCC, nodular 

BCC and VGP melanoma all have substantial numbers of differentially expressed genes 

involved in negative regulation of cell death as shown in Figure 3.8. From this figure we 

can see an increasing trend in the number of up-regulated genes as the cancer type 

becomes more aggressive. Specifically it was noted that this number for VGP is higher 

than all the other cancer types under consideration except for pancreatic cancer.  

 

3c. Differentially expressed genes involved in angiogenesis:  None of the skin cancer 

types show increased activities of angiogenesis, unlike the advanced form of the other 
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cancers as shown in Figure 3.9. This observation is consistent with our earlier finding that 

skin cancers are generally not under hypoxic stress and hence probably have no pressure 

to activate the angiogenesis pathway.  

 

4. Signature genes for the two skin cancer types 

We have predicted signature genes and gene groups for melanoma and BCC, 

respectively, where a signature (or marker) gene or gene group refers to genes whose 

expression pattern is unique to a specific cancer type. We then tested the performance of 

the identified signature genes for the two cancer types, respectively, on two datasets, 

independent of the training datasets used, i.e., GSE3189 for melanoma and GSE12542 for 

BCC. For melanoma, the top five 1-gene signatures, OAS3 (82.9% on training and 71.4% 

on testing set), RALBP1 (82.9% on training and 71.4% on testing set), GLA (80.4% on 

training and 71.4% on testing set), LLGL1 (80.4% on training and 71.4% on testing set) 

and SERPINA6 (80.4% on training and 71.4% on testing set), all have better than 80% 

classification accuracy between melanoma cases and control cases in the test set. Among 

the top markers, OAS3 and SERPINA6 are predicted to be blood secretory by our 

prediction program (Cui, Liu et al. 2008), hence suggesting the potential feasibility in 

identifying diagnostic markers for melanoma through blood tests. Similarly, four 1-gene 

signatures with classification accuracy better that 71% are predicted to be urine 

excretory, CCL18 (73.2% on training and 71.4% on testing set), HEXB (73.2% on 

training and 71.4% on testing set), IFI30 (73.2% on training and 71.4% on testing set) 

and STC1 (73.2% on training and 71.4% on testing), by using our prediction program 

(Hong, Cui et al. 2011), suggesting the potential feasibility in identifying diagnostic 



 

74 

markers for melanoma through urine tests. Among the top 2-gene signatures, three pairs 

reach classification accuracy better than 85% on both the training and the testing datasets. 

Three pairs, with training classification accuracies better than 90% and testing 

classification accuracy better than 70%, are predicted to be blood secretory and only 1 

pair CTSK_RNASE6 (87.8% on training and 73.0% on testing sets), with training 

classification accuracy better than 87% and testing classification accuracy better than 

70%, are predicted to be urine excretory.  

 

For BCC, the top two 1-gene markers, CS (90.3% on training and 87% on testing set) and 

TACSTD1 (87.1% on training and 87% on testing dataset), both have at least 87% 

classification accuracy on both the training and testing datasets. Among the top markers, 

EGR1 (87.1% on training and 81.3% on testing set) is predicted to be blood secretory. 

Similarly, RAB3D (80.6% on training and 80% on testing dataset) is predicted to be urine 

excretory, with a classification accuracy better that 80% in both sets, providing potential 

diagnostic markers for melanoma through urine tests. The top two 2-gene signatures all 

have classification accuracies better than 90% on both the training and testing sets. Also, 

four pair signatures, with classification accuracy better than 80% on both the training and 

testing sets, are predicted to encode blood secretory proteins. The detailed list of all these 

marker genes is given in Appendix Table A3.2.  

 

 

 

 



 

75 

Materials and Method 

1. Microarray gene expression data for human cancers 

Microarray gene expression data for both skin cancer types were downloaded 

from the GEO database of NCBI (Edgar, Domrachev et al. 2002). The melanoma data is 

the dataset GSE12391 and the BCC data is the dataset GSE6520. The gene-expression 

data for the seven cancer types used in this study: breast, colon, kidney, lung, pancreatic, 

prostate and stomach, are also downloaded from the GEO database of NCBI. For each 

dataset used for each cancer type, we have made sure that the dataset was generated using 

the same platform by the same research group. For each of the classification problem 

solved in this study, we have used a training dataset and a separate testing set for each 

cancer type. The details of the data are given in Table 3.2.  

 

Considering that different microarray datasets used in this study cover different gene sets, 

we have considered the genes that belong to all microarray datasets used in this study for 

all the comparative analyses throughout this paper, which consists of 4,401 genes. The 

detailed list of these genes is given in Appendix Table A3.3. When mapping genes across 

different datasets, we rely on the NCBI gene IDs of the genes, i.e., two genes in different 

datasets are considered as the same genes if their IDs are identical.  

 

The cancer gene list is downloaded from the Cancer Gene Census website, which 

contains 457 confirmed cancer genes (http://www.sanger.ac.uk/genetics/CGP/Census/).  
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2. Identification of differentially expressed genes 

For each dataset used in this study, we have used the normalized expression data 

from the original study. We fully understand that gene-expression data across different 

datasets may not necessarily directly comparable; so we have compared the fold-changes 

between the diseased and the control tissues for each cancer type with fold-changes of 

expression data of another cancer type. Supplementary Figure 3.10 shows that the global 

fold-changes between two cancer types are generally comparable across the nine cancer 

types under consideration. It should be noted that when calculating the fold-change of an 

individual gene for a specific cancer type, we did not use the information of paired 

diseased-control tissues, instead we estimated the fold change based on the distributions 

of gene-expressions of the gene across all the cancer tissues versus control tissues, for 

each cancer type. We did so because some of the datasets have paired information wile 

other datasets do not.  

 

 For each dataset, the Mann-Whitney test was applied to identify genes that are 

differentially expressed in cancer versus control samples as follows: Given the null 

hypothesis 0H
 that a gene is not differentially expressed between the cancer versus the 

control groups, rejection of this hypothesis means that the gene is differentially expressed 

in cancer. We consider a gene as up-regulated if the statistical significance, p-value, is 

less than 0.01 and its fold-increase is at least 1.5. A down-regulated gene is defined 

similarly.  
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For the non-skin cancer data, we only consider those genes with consistent up/down-

regulation in both the training and the testing data sets as differentially expressed genes.  

 

3. Pathway enrichment analysis of differentially expressed genes 

Functional analysis and pathway enrichment analysis were conducted using 

DAVID (Dennis, Sherman et al. 2003), where the pathway information is based on the 

annotation from KEGG (http://www.genome.ad.jp/kegg/). A p-value < 0.05 was used as 

the threshold to determine if a pathway is enriched or not by the identified differentially 

expressed genes. Note that the observations made throughout this paper are generally 

stable with respect to the p-value cutoff. Also note all the pathway enrichment analysis is 

based on the 4,401 genes that are shared by all the datasets used in this study. 

 

4. Prediction of signature genes 

To derive signature genes or gene groups, we conducted an exhaustive search for 

all the k-gene (k=1, 2) combinations among the differentially expressed genes, using a 

linear SVM-based classifier. We have used 5-fold cross validation to validate each 

identified signature. We refer the reader to (Cui, Li et al. 2011) for the detailed procedure 

used. 

 

Concluding remarks 

Our gene-expression data analysis revealed that both skin cancer types utilize 

oxidative phosphorylation as the key energy metabolism in addition to glycolysis. All 

evidence revealed by our study strongly indicates that the two skin cancer types are not 
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under hypoxic stress, hence explaining why the two cancer types do not show the 

Warburg effect. The high energy metabolism in melanoma, powered by the substantially 

more efficient energy pathway, the up-regulated oxidative phosphorylation compared to 

the alternatives, along with its high ability to metastasize, explained why the cancer is so 

aggressive. In contrast, BCC, while using energy from oxidative phosphorylation, seems 

to have an obvious block from the immune system, which appears to prevent cell 

invasion and metastasis, hence making the cancer one of the least deadly cancers.   

 

The new insights derived in this study are global in nature and lack of detailed 

mechanism information due to the low-resolution nature of the non-paired datasets used 

in this study. We anticipate that higher-resolution insights could be derived using the 

same computational approach but on paired cancer-control datasets.  

 

We believe that our study provides a new and highly effective way to gain new insights 

and understanding about certain unique characteristics of different cancers in their 

formation and progression through mining large-scale gene-expression data across 

multiple cancer types, but focused on key relevant cancer pathways.   
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Figures 

 

Figure 3.1: Expression level changes of proto-oncogene and tumor-suppressor genes for 

two skin cancer types. We only consider the up-regulated proto-oncogene and down-
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regulated tumor-suppressor genes. Each row represents expression changes of a gene 

across all the cancer types under study. Each column represents one cancer type. The fold 

change of gene expression is color-coded with red, white and green for up-, no and down-

regulation.  
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Figure 3.2: Expression level changes of genes involved in the four types of energy 

metabolism for two skin cancer types and seven non-skin cancer types. Each row 

represents expression changes of a gene across all the cancer types under study. Rate 

limiting enzymes in each pathway are indicated using *. Each column represents one 
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cancer type. The fold change of gene expression is color-coded with red, white and green 

for up-, no and down-regulation.  

 

 

 

Figure 3.3: A model for energy metabolism for VGP melanoma. 
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Figure 3.4: Expression changes of genes involved in the pro-metastasis of the two skin 

cancer types and other seven non-skin cancer types. 
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Figure 3.5: Correlation between 5-year survival rate and the number of differentially 

genes in each cancer type using the same statistical significance cutoff (see Material and 

Methods). The x-axis is the five-year survival rate ranging from 0 to 100% (data used 

from www.cancer.org), and the y-axis is the number of differentially expressed genes for 

each cancer type. 
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Figure 3.6: Expression level changes of genes involved in the positive regulation of 

lymphocyte proliferation for two skin cancer types and seven non-skin cancer types. Each 

row represents expression changes of a gene across all the cancer types under study. Each 

column represents one cancer type. The fold change of gene expression is color-coded 

with red, white and green for up-, no and down-regulation.  
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Figure 3.7: Expression level changes of genes involved in the positive regulation of cell 

proliferation for two skin cancer types and seven non-skin cancer types. Each row 

represents expression changes of a gene across all the cancer types under study. Each 
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column represents one cancer type. The fold change of gene expression is color-coded 

with red, white and green for up-, no and down-regulation.  
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Figure 3.8: Expression level changes of genes involved in the negative regulation of cell 

death for two skin cancer types and seven non-skin cancer types. Each row represents 

expression changes of a gene across all the cancer types under study. Each column 

represents one cancer type. The fold change of gene expression is color-coded with red, 

white and green for up-, no and down-regulation.  

 

 

Figure 3.9: Expression changes of genes involved in the pro-angiogenesis of the two skin 

cancer types and other seven non-skin cancer types. 
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Figure 3.10: Comparison of the gene expression fold changes. (A) between training and 

testing datasets of lung cancer, and (B-I) between different types of cancer. The 

distributions of the fold-changes (FC) of individual genes across all genes between cancer 

and the corresponding control tissues for the seven types of cancers were checked and 

found to be similar. (J) Comparison of the gene expression fold changes between paired 

and unpaired breast cancer. (PC: Pearson Correlation, P-value <0.005)) 
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Tables 

Table 3.1 : The enriched pathways by all the cancer types in the study. (each cell in the 

represents the number of genes differentially expressed in the corresponding cancer type 

and pathway) 

genes 
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hsa05200:Pathways in cancer 18 18 20 28 29 40 56   16   5   40 

hsa04010:MAPK signaling 
pathway 8     17     28   13 19   10   

hsa05010:Alzheimer's disease                 13 8       

hsa05012:Parkinson's disease                 13 8       

hsa00190:Oxidative 
phosphorylation                 13 7       

hsa05016:Huntington's disease                 12 9       

hsa04510:Focal adhesion 16 15 12 14 22 29 38   10     7 22 

hsa04310:Wnt signaling 
pathway 6     10     19   10       18 

hsa04810:Regulation of actin 
cytoskeleton 9       17   32   9 10     26 

hsa04530:Tight junction       9   18 16   8 8     16 

hsa03010:Ribosome                 6     5 22 

hsa04512:ECM-receptor 
interaction 8 12     16 20 20   6       13 

hsa04916:Melanogenesis             13   6 7     12 

hsa03320:PPAR signaling 
pathway   11 11 9   9     6         

hsa04270:Vascular smooth 
muscle contraction 11     13   17     5 6       

hsa04540:Gap junction       7   9     5 6       

hsa04114:Oocyte meiosis       8     13   5         

hsa04722:Neurotrophin 
signaling pathway             13   5         

hsa05210:Colorectal cancer 6 5 8 7   10 11   5         

hsa04060:Cytokine-cytokine 
receptor interaction     14   25 28 34           32 

hsa04062:Chemokine signaling 
pathway     12     18 19         7 29 

hsa04142:Lysosome     10 8 10   15           26 

hsa04120:Ubiquitin mediated                       6 23 
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proteolysis 

hsa04144:Endocytosis     11                   21 

hsa04110:Cell cycle 5 8 9 17 26 23 28           20 

hsa00230:Purine metabolism       14 11 17             18 

hsa04650:Natural killer cell 
mediated cytotoxicity     9       16           18 

hsa04514:Cell adhesion 
molecules (CAMs)   9 11   10 18 14           17 

hsa04612:Antigen processing 
and presentation     7                   16 

hsa04620:Toll-like receptor 
signaling pathway           10             16 

hsa04660:T cell receptor 
signaling pathway     7     11             16 

hsa04670:Leukocyte 
transendothelial migration   7 12     13 17           15 

hsa04012:ErbB signaling 
pathway       6     15           14 

hsa05416:Viral myocarditis   6 5 9   10 11           14 

hsa04664:Fc epsilon RI signaling 
pathway       6   8             12 

hsa04666:Fc gamma R-mediated 
phagocytosis   6 9     11 15           12 

hsa04914:Progesterone-
mediated oocyte maturation       6 7 10             12 

hsa05322:Systemic lupus 
erythematosus       7                 12 

hsa00520:Amino sugar and 
nucleotide sugar metabolism                         11 

hsa00982:Drug metabolism     6                   11 

hsa04115:p53 signaling pathway     11 7 13 14 14           11 

hsa04210:Apoptosis     6 7     16           11 

hsa04621:NOD-like receptor 
signaling pathway     5       8           11 

hsa04640:Hematopoietic cell 
lineage     6 6   10 13           11 

hsa04662:B cell receptor 
signaling pathway     5       10           11 

hsa00980:Metabolism of 
xenobiotics by cytochrome P450                         10 

hsa03050:Proteasome         5   7           10 

hsa05332:Graft-versus-host 
disease                         10 

hsa04672:Intestinal immune 
network for IgA production       5 6               9 

hsa04920:Adipocytokine   6   5                 9 
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signaling pathway 

hsa05212:Pancreatic cancer 5       8 11 15           9 

hsa05217:Basal cell carcinoma         7               9 

hsa00010:Glycolysis / 
Gluconeogenesis   6 10   7 9 11     5     8 

hsa04940:Type I diabetes 
mellitus       5                 8 

hsa05110:Vibrio cholerae 
infection           7             8 

hsa05320:Autoimmune thyroid 
disease                         8 

hsa05330:Allograft rejection                         8 

hsa00511:Other glycan 
degradation                         7 

hsa00591:Linoleic acid 
metabolism                         7 

hsa03420:Nucleotide excision 
repair         5               7 

hsa00020:Citrate cycle (TCA 
cycle)                         6 

hsa00071:Fatty acid metabolism   6   6                 6 

hsa00280:Valine, leucine and 
isoleucine degradation   8 8       6           6 

hsa00620:Pyruvate metabolism   8       5             6 

hsa00983:Drug metabolism     6                   6 

hsa03030:DNA replication     5 6 10 8 5           6 

hsa04130:SNARE interactions in 
vesicular transport                         6 

hsa05310:Asthma                         6 

hsa05340:Primary 
immunodeficiency                         6 

hsa00250:Alanine, aspartate and 
glutamate metabolism           5             5 

hsa00565:Ether lipid metabolism   6   5   7             5 

hsa03430:Mismatch repair         6               5 

hsa04080:Neuroactive ligand-
receptor interaction                       7   

hsa04630:Jak-STAT signaling 
pathway   8       15           7   

hsa04910:Insulin signaling 
pathway   10         15     9   5   

hsa03040:Spliceosome                   8       

hsa04020:Calcium signaling 
pathway 8     11   16 23     8       

hsa04912:GnRH signaling                   7       
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pathway 

hsa05414:Dilated 
cardiomyopathy 8     7   11 17     6       

hsa04720:Long-term 
potentiation                   5       

hsa04730:Long-term depression       7           5       

hsa00030:Pentose phosphate 
pathway     7       5             

hsa00040:Pentose and 
glucuronate interconversions                           

hsa00051:Fructose and mannose 
metabolism     7     7 5             

hsa00052:Galactose metabolism             5             

hsa00240:Pyrimidine 
metabolism     8 7 10                 

hsa00260:Glycine, serine and 
threonine metabolism     5 5     8             

hsa00270:Cysteine and 
methionine metabolism             7             

hsa00310:Lysine degradation                           

hsa00330:Arginine and proline 
metabolism       6 5 6               

hsa00340:Histidine metabolism   6                       

hsa00350:Tyrosine metabolism     5                     

hsa00380:Tryptophan 
metabolism   6       5               

hsa00410:beta-Alanine 
metabolism   5 5                     

hsa00480:Glutathione 
metabolism     5 6 5   8             

hsa00500:Starch and sucrose 
metabolism             6             

hsa00510:N-Glycan biosynthesis           5               

hsa00561:Glycerolipid 
metabolism   7                       

hsa00562:Inositol phosphate 
metabolism           7               

hsa00564:Glycerophospholipid 
metabolism   7       7               

hsa00590:Arachidonic acid 
metabolism       6 5                 

hsa00600:Sphingolipid 
metabolism             5             

hsa00630:Glyoxylate and 
dicarboxylate metabolism   5                       

hsa00640:Propanoate   8   5     6             
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metabolism 

hsa00650:Butanoate 
metabolism   6                       

hsa00910:Nitrogen metabolism       5                   

hsa02010:ABC transporters       6   6               

hsa03018:RNA degradation         5                 

hsa03410:Base excision repair         6                 

hsa04070:Phosphatidylinositol 
signaling system           8               

hsa04260:Cardiac muscle 
contraction 5                         

hsa04350:TGF-beta signaling 
pathway 6     9   12               

hsa04360:Axon guidance   9     11 15 27             

hsa04370:VEGF signaling 
pathway             9             

hsa04520:Adherens junction 6 6       12 16             

hsa04610:Complement and 
coagulation cascades     9 8     10             

hsa04742:Taste transduction                           

hsa04930:Type II diabetes 
mellitus             6             

hsa04960:Aldosterone-regulated 
sodium reabsorption   6         6             

hsa05014:Amyotrophic lateral 
sclerosis (ALS)     5   5                 

hsa05020:Prion diseases           5               

hsa05120:Epithelial cell signaling 
in Helicobacter pylori infection     6       8             

hsa05130:Pathogenic 
Escherichia coli infection         6 6 11             

hsa05211:Renal cell carcinoma           9 10             

hsa05213:Endometrial cancer             7             

hsa05214:Glioma       6   7 8             

hsa05215:Prostate cancer     6 7   9 11             

hsa05216:Thyroid cancer             6             

hsa05218:Melanoma     6 8 6 9               

hsa05219:Bladder cancer     5 6 8 10 7             

hsa05220:Chronic myeloid 
leukemia   6   6   8 11             

hsa05221:Acute myeloid 
leukemia   5         9             

hsa05222:Small cell lung cancer 5     8 11 14 17             

hsa05223:Non-small cell lung 
cancer         5 7 7             
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hsa05410:Hypertrophic 
cardiomyopathy (HCM) 8     7   11 15             

hsa05412:Arrhythmogenic right 
ventricular cardiomyopathy 
(ARVC) 5     6 8 10 19             

 

 

Table 3.2:  A summary of the non-skin cancer data used in our analysis  

Cancer  GEO dataset ID 

training / testing data 

# reference/ #cancer samples 

breast cancer GSE15852 / GSE10810  43/43 (27/31)  

colon cancer GSE6988    / GSE10950  28/53 (24/24) 

kidney cancer GSE15641 / GSE17816  23/49 (9/36)  

lung cancer GSE10072  / GSE7670  49/58 (27/27)  

pancreatic cancer GSE15471   / GSE16515  39/39 (16/36)  

prostate cancer GSE6606  / GSE3933  63/65 (47/62)  

stomach cancer GSE2701  / GSE13911 23/89 (31/38)  

Basal Cell Carcinoma GSE6520  / GSE12542 8/23 (8/8) 

Melanoma GSE12931   / GSE3189  18/34 (7/45) 
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CHAPTER 4 

A SYSTEMS BIOLOGY APPROACH TO ELUCIDATION OF HOW CANCER 

CELLS AVOID ACIDOSIS
5
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Abstract 

 The rapid growth of cancer cells fueled by glycolysis produces large amounts of 

protons in cancer cells, which triggers various mechanisms to transport them out, hence 

leading to increased acidity in their extracellular environments. It has been well 

established that the increased acidity will induce cell death of normal cells but not cancer 

cells.  The main question we address here is: how cancer cells deal with the increased 

acidity to avoid the activation of apoptosis. We have carried out a comparative analysis 

of transcriptomic data of six solid cancer types, breast, colon, liver, two lung 

(adenocarcinoma, squamous cell carcinoma) and prostate cancers, and proposed a model 

of how cancer cells utilize a few mechanisms to keep the protons
 
outside of the cells. The 

model consists of a number of previously studied, well or partially, mechanisms for 

transporting out the excess protons, such as through the monocarboxylate transporters, V-

ATPases, NHEs and the one facilitated by carbonic anhydrases. In addition we propose a 

new mechanism that neutralizes protons through the conversion of glutamate to γ-

aminobutyrate, which consumes one proton per reaction. We hypothesize that these 

processes are regulated by cancer related conditions such as hypoxia and growth factors 

and by pH levels, making these encoded processes not available to normal cells under 

acidic conditions.  

 

Introduction 

One of the key cancer hallmarks is their reprogrammed energy metabolism 

(Hanahan and Weinberg 2011). That is, glycolysis replaces oxidative phosphorylation to 

become the main ATP producer. A direct result of this change is that substantially more 
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lactates, as the terminal receivers of electrons from the glucose metabolism, are produced 

and transported out of the cells. To maintain the cellular electro-neutrality when releasing 

lactates, the cells release one proton for each released lactate, the anionic form of lactic 

acid. This leads to increased acidity in the extracellular environment of the cancer cells. It 

has been well established that high (extracellular) acidity can induce the apoptotic 

process in normal cells (Webster, Discher et al. 1999), leading to the death of these cells. 

Interestingly this does not seem to happen to cancer cells, hence giving them a 

competitive advantage over the normal cells and allowing them to encroach the space 

occupied by the normal cells. Currently it is not well understood of how the cancer cells 

deal with the increased acidity in their extracellular environments to avoid acidosis.  

A number of studies have been published focused on issues related to how cancer cells 

deal with the increased acidity in both the extracellular and intracellular environments 

(Wykoff, Beasley et al. 2000; Fang, Gillies et al. 2008; Sonveaux, Vegran et al. 2008; 

Swietach, Wigfield et al. 2008; Swietach, Wigfield et al. 2008; Neri and Supuran 2011; 

Hernandez 2012). The majority of these studies were focused on possible cellular 

mechanisms for transporting out or neutralizing intracellular protons, which are typically 

on one cancer type. More importantly these studies did not tie such observed capabilities 

and proposed mechanisms of cancer cells in avoiding acidosis with the rapid growth of 

cancer as we suspect there is an encoded mechanism that connects the two.  

We have carried out a comparative analysis of genome-scale transcriptomic data 

collected on six types of solid cancers, namely breast, colon, liver, two lung 

(adenocarcinoma, squamous cell carcinoma) and prostate cancers, aiming to gain a 

systems level understanding of how the cancer cells keep their intracellular pH level 
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within the normal range while their extracellular pH level is low. Our analysis of the 

transcriptomic data on these cancer and their matching control tissues indicate that (i) all 

the six cancer types utilize the monocarboxylate transporters as the main mechanism to 

transport out lactates and protons simultaneously, triggered by the accumulation of 

intracellular lactates; (ii) these transporters are probably supplemented by additional 

mechanisms through anti-porters such as ATPases to transport protons out along with 

some cations such as Ca
2+ 

or
 
Na

+ 
 to reduce the intracellular acidity while maintaining the 

cellular electron-neutrality; and (iii) cancer cells may also utilize another mechanism, i.e., 

using glutamate decarboxylase to catalyze the decarboxylation of glutamate to a γ-

aminobutyric acid (GABA), consuming one proton for each reaction -- a similar process 

is used by  the bacterial Lactococcus lactis to neutralize acidity when lactates are 

produced. Based on these analysis results, we proposed a model that connects these 

deacidification processes with a number of cancer related genes/cellular conditions, 

which are probably intrinsic capabilities of fast-growing cells used under hypoxic 

conditions rather than gained capabilities through molecular mutations.  

We believe that our study represents the first systemic study focused on how cancer cells 

deal with the acidic environment through the activation of the encoded acid resistance 

mechanisms triggered by cancer associated genes and conditions. These results have 

established a foundation for a novel model for how cancer cells avoid acidosis.  
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Results 

1. Cellular responses to increased acidity  

The degradation of each mole of glucose generates 2 lactates, 2 protons and 2 

ATPs, detailed as  

glucose + 2ADP + 2Pi -> 2 lactate + 2 H
+
 + 2 ATP + 2H2O, 

showing the source of the increased acidity when glycolysis serves as the main ATP 

producer in cancer cells (Gatenby and Gillies 2004); in contrast the complete degradation 

of glucose through oxidative phosphorylation is pH neutral. Clearly these extra protons 

need to removed or neutralized since otherwise they will induce apoptosis. The 

monocarboxylate transporter (MCT) has been reported to play a key role in maintaining 

the pH homeostasis (Feron 2009) with 4 isoforms, MCT1-4, to have crucial physiological 

roles in proton-linked transportation (Halestrap and Price 1999; Halestrap 2012). 

Previous studies have reported that a number of genes in the MCT family, namely MCT1, 

MCT2 and MCT4, are up-regulated in cancer such as breast, colon, lung and ovary 

cancers.  Note that a monocarboxylate transporter transports out lactates and protons with 

a 1:1 stoichiometry to maintain cellular electron-neutrality (Halestrap and Meredith 

2004).  

  

Our transcriptomic data analyses of the six cancer types added to this knowledge that 

other members of the MCT family also show up-regulation in five out of the six cancer 

types. The only exception is the prostate cancer, which did not show any increased 

expression in any member of the proton-linked MCT. Figure 1 shows the transcription 

up-regulation of two proton-linked MCT member genes, namely MCT1 (SLC16A1) and 
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MCT4 (SLC16A4)  in five cancer types. Specifically MCT4 shows up-regulation in four 

of the six cancer types, an observation that has not been reported before. 

 

One published study suggests that MCT1 might be regulated by P53 (Boidot, Vegran et 

al. 2012) in cancer. Another study shows strong evidences that MCT1 and MCT4 are 

regulated by intracellular hypoxia. We hypothesize that hypoxia may be the main 

regulating factor of the over-expression of the MCT genes, which may require additional 

conditions such as pH level or accumulation of lactates as the co-regulating factors. This 

is consistent with our analysis result of transcriptomic data of cell lines collected under 

hypoxic condition, where MCT1 and MCT4 genes are up-regulated (see Figure 4.1).  

 

The protons transported out of the cells will increase the acidity of the extracellular 

environment. Previous studies have shown that (normal) cells tend to adjust the 

intracellular pH level to a similar pH level of the extracellular environment (Fellenz and 

Gerweck 1988), possibly to keep the stress level low caused by the large pH gradient 

between the extracellular and intracellular environments. It has been well established that 

the increased intracellular acidity will induce apoptosis through directly activating the 

caspase genes, which bypasses the more upstream regulatory proteins of the apoptosis 

system such as p53, hence leading to the death of the normal cells that do not seem to 

have the proper intracellular conditions to deal with the reduced pH.  
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2. Additional mechanisms for dealing with excess protons in cancer cells 

We have examined if other genes relevant to the removal or neutralization of 

protons in cancer cells systematically across all the human genes. Our main findings are 

summarized in Figure 1, detailed as follows. 

 

V-ATPase: Transmembrane ATPases import many of the metabolites necessary for cell 

metabolism and export toxins, wastes and solutes that can hinder the health of the cells 

(Perez-Sayans, Somoza-Martin et al. 2009). One particular type of ATPase is the V-

ATPase that catalyzes ATP hydrolysis to transport solutes out. It pumps out a proton in 

exchange for an extracellular Na
+
 or another cation such as K

+
 or Ca

2+
 to maintain the 

intracellular electro-neutrality. V-ATPases have been found to be up-regulated in 

multiple cancer types but the previous studies have been mostly focused on using the 

increased V-ATPases as a biomarker for metastasis (Sennoune, Bakunts et al. 2004) or on 

utilizing them as potential drug targets as a way to trigger apoptosis, hence causing 

cancer cell death (Sennoune, Bakunts et al. 2004; Sennoune, Luo et al. 2004; Fais, De 

Milito et al. 2007). 

 

We have examined the expression levels of the 19 genes that encode the subunits of V-

ATPase, the V0 (transmembrane) domain and the V1 (cytoplasmic) domain namely 

ATP6V0A1, ATP6V0A2, ATP6V0B, ATP6V0E1, ATP6V0E2, ATP6AP1 and 

ATP6AP2 for V0 and ATP6V1A,  ATP6V1B1, ATP6V1C1, ATP6V1C2, ATP6V1D, 

ATP6V1E1, ATP6V1E2, ATP6V1F, ATP6V1G1, ATP6V1G2, ATP6V1G3 and 

ATP6V1H for V1. We found that multiple V-ATPase genes are up-regulated, indicating 
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that the V-ATPases are active in transporting the protons out. Interestingly some of the 

ATPase genes do not show up-regulation and some even show down-regulation in 

prostate cancer (Figure 1). More detailed examination of the gene expression data 

indicates that the actual expression levels of the ATPase genes are at the baseline level in 

both the prostate cancer and the adjacent control issues, hence the fold-change data are 

not particularly informative.  Overall the data on prostate cancer seem to suggest that the 

acidity level in this cancer type is not substantially elevated. For the other five cancer 

types, the expression levels of some V-ATPase genes do not show changes in cancer. We 

found that these genes expression levels are also elevated in the control tissues compared 

to cell-line data of the corresponding tissue types (data not shown here), which is 

consistent with previously published data that the elevated acidic level in the extracellular 

environment can also induce increased expression of the V-ATPase genes in normal 

tissues (Padilla-Lopez and Pearce 2006). This may explain why some of the V-ATPase 

genes do not show overexpression in cancer versus control tissues.  

 

Then the question is why cancer cells seem to handle the increased acidity better than the 

normal cells. Our hypothesis is that while pH may play some regulatory role of the 

expression of the V-ATPase genes, the main regulator of the V-ATPase is probably 

mTORC1 as it has been suggested recently (Pena-Llopis, Vega-Rubin-de-Celis et al. 

2011). mTORC is one of the most important regulators relevant to cell growth, and they 

generally have dysregulated expressions in cancer. To check on this hypothesis, we have 

examined the gene expression level of mTORC1 (GBL and FRAP1) in the six cancer 

types. We see clear up-regulation of this gene in all six cancer types. So overall we 
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speculate that it is the combined effect of pH and up-regulation of mTORC1 that makes 

cancer cells more effective in pumping out the excess protons than the normal cells.  

 

Na+-H+ Exchanger (NHE): NHE anti-porters represent another class of proteins that 

can transport out protons and in a cation to maintain intracellular electro-neutrality. We 

have examined the five genes encoding this class of transporters, and found that these 

genes are highly up-regulated in the two lung cancer types, which seem to play a 

complementary role to that of the V-ATPases as their expression-change patterns are 

highly complementary between NHE genes and the V-ATPase genes in five out six 

cancer types, specifically up-regulation in breast, colon and liver cancers but not in the 

two lung cancer types as shown in Figure 4.1. Literature search suggests that NHEs are 

regulated by both growth factors and pH among a few other factors, which may partially 

explain why the system is more active in cancer (affected by both growth factors and pH) 

than in control tissues (affected only by pH).  

 

3. Carbonic anhydrases play roles in pH neutralization in cancer cells 

It has been previously suggested that carbonic anhydrases (CAs) play a role in 

neutralizing the protons in cancer cells. For example, a model of how the membrane-

associated CAs facilitate out-transportation of protons has been presented (Swietach, 

Vaughan-Jones et al. 2007). The key idea of the model is that the CAs catalyze the 

otherwise slow reaction from CO2 + H2O to H2CO3, which dissociates into HCO3
−
 and H

+
 

in an acidic extracellular environment, detailed as follows: 

HCO3
−
 + H

+
    H2CO3    CO2 + H2O. 
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The HCO3
−  

(bicarbonate)
 
is then transported across the membrane through an NBC 

transporter (Johnson 2009), where it reacts with a H
+ 

to form a CO2 and H2O; and the 

CO2 is freely membrane-permeable to get inside the cell, forming a cycle for removing 

some of the excess H
+
. See Figure 4.6 for a more detailed picture of this mechanism. 

 

To check if the model is supported by the data, we found that (1) a number of the 

membrane-associated CAs (CA9, CA12, CA14) show up-regulation in five out of six 

cancer types (except for prostate cancer), as shown Figure 4.2; and (2) two of the three 

NBC genes, NBC2 (SLC4A5) and NBC3 (SLC4A7) show up-regulation in four cancer 

types. It has been reported that CA9 and CA12 are hypoxia inducible in brain cancer 

(Proescholdt, Mayer et al. 2005). Hence we assume that all the three above membrane-

associated CAs are inducible by hypoxia.  In addition, our literature search indicates that 

the NBC genes are pH inducible (Chiche, Brahimi-Horn et al. 2010).  

 

Interestingly all the cytosolic CAs (CA2, CA3, CA7, CA13) show down-regulation, 

reflecting that oxidative phosphorylation is not being used as actively in cancer cells as in 

normal cells.  

 

4. Neutralization of acidity through decarboxylation reactions: a novel mechanism?  

Our search for possible mechanisms of cancer cells in deacidification led us to 

study how Lactococcus lactis deals with the lactic acids in their environment. We noted 

that the bacteria use the glutamate decarboxylases (GAD) to consume one (dissociable) 
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H
+ 

during the decarboxylation reaction that it catalyzes (Cotter and Hill 2003), as shown 

below:  

OOC-CH2-CH2-CH(NH2)-COO
2-

 + H
+
  → CO2 + OOC-CH2-CH2-CH2NH2

-
 

or 

Glu
2-

 + H
+
 → CO2+ GABA

- 

The reaction converts a glutamate to one γ-aminobutyrate (GABA) plus a CO2. Two 

human homologues of the GAD, GAD1 and GAD2, are found. Published studies have 

shown  that the activation of the GAD genes leads to GABA synthesis in human brain 

(Hyde, Lipska et al. 2011), suggesting that the human GAD genes have the same function 

as the bacterial GAB gene, i.e., catalyzing the reaction for the synthesis of GABA. Most 

of these studies are in the context of nervous systems in human brains (Kaila 1994; 

Owens and Kriegstein 2002; Yamada, Okabe et al. 2004). Specifically, GABA is known 

to serve as a key inhibitory neurotransmitter. In addition, activities of GABA have been 

identified in human liver (White and Sato 1978). While hypotheses have been postulated 

about its functions in liver (Lewis and Howdle 2003), no solid evidence has been 

established about its function there.  

 

We have observed that GAD1 is up-regulated in three out six cancer types under study, 

namely colon, liver, lung adenocarcinoma, and GAD2 is up-regulated in prostate cancer.  

It has been fairly well established that glutamate, the substrate of the above reaction 

catalyzed by GAD, is elevated in cancer in general (DeBerardinis, Lum et al. 2008). 

Hence it makes sense to assume that the above reaction indeed takes place in cancer. This 

is supported by our observation that multiple in-take transporters are up-regulated in five 
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out six cancer types (see Figure 4.3). An even more interesting observation is that 

multiple genes encoding the out-going transporters of GABA are up-regulated in five out 

of the six cancer types, indicating that the GABA molecules are not being used by cancer 

cells but instead serves a way to remove H
+
 out of the cells.  

 

Currently no published data are available to implicate which genes encode the main 

regulator of the GAD genes, to the best of our knowledge. However, our search for 

possible regulators of the GAD genes in the Cscan database (Zambelli, Prazzoli et al. 

2012) revealed that FOS, a known oncogene, can potentially regulate the GAD genes 

(Wang, Wu et al. 2003). Some experimental data from the ENCODE database 

(Rosenbloom, Dreszer et al. 2012) show that the expression of the GAD1 gene 

(NM_000817, NM_013445) is positively co-related with that of the FOS in the HUVEC 

cell-line. Putting all this information together, we hypothesize that FOS, in conjunction 

with some pH–associated regulator, regulates the GAD genes, which leads to the 

synthesis of GABA and reduces one H
+ 

as a by-product per synthesized GABA; and then 

the unneeded GABA molecules are transported out of the cells. This may provide another 

mechanism that cancer cells use to keep their intracellular pH level in the normal range.  

 

5. A model for cancer cells to keep their intracellular pH in the normal range 

Overall 44 genes are implicated in our above analyses. Our search results of these 

genes against Cscan database (Zambelli, Prazzoli et al. 2012) indicate that 28 out of the 

44 genes are regulated directly by nine proto-oncogenes, namely BCL3, ETS1, FOS, JUN, 

MXI1, MYC, PAX5, SPI1 and TAL1; and 17 genes are regulated by two tumor-
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suppressors, IRF1 and BRCA1 as shown in Figure 4.4, indicating that there is a strong 

connection between deacidification and cancer growth.  

Figure 4.5 summarizes our overall model for the deacidification mechanisms and the 

associated conditions that may trigger each mechanism to be activated. Specifically, we 

hypothesize that hypoxia and growth factors may serve as the main regulatory factors of 

the deacdification processes in cancer mechanisms, hence making them available only in 

cancer cells, in conjunction with the cellular pH level,.    

 

Materials and Method 

1.  Gene expression data for six cancer types 

The gene-expression data for the six cancer types, (breast, colon, liver, lung 

adenocarcinoma, squamous cell lung, prostate), are downloaded from the GEO database 

(Edgar, Domrachev et al. 2002) of NCBI. For each cancer type, we have applied the 

following criteria in selecting the dataset used for this study: (1) all the data in each 

dataset were generated using the same platform by the same research group; (2) each 

dataset consists of only paired samples, i.e., cancer tissue sample and the matching 

adjacent noncancerous tissue sample; and (3) each dataset has at least 10 pairs of samples.  

In the GEO database, only six cancer types have datasets satisfying these criteria. A 

summary of the 12 datasets, 2 sets for each cancer, is listed in Table 4.1. 

 

2. Identification of differentially expressed genes in cancer versus control tissues 

For each dataset used in this study, we have used the normalized expression data 

from the original study. Since we used only paired data, for each dataset a non-parametric 
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test, Sign Test developed by Frank Wilcoxon (Karas and Savage 1967) for matched pairs,  

is applied to identify the significant differentially expressed genes  in tumor versus 

adjacent normal samples. We consider a gene being differentially expressed if the 

statistical significance, p-value, is less than 0.01. 

 

3. Searching for regulatory relationships in human  

To retrieve the transcriptional regulation relationship information about the genes 

we are interested in this study, we have used a web-based database along with its search 

engine  Cscan (http://www.beaconlab.it/cscan) to predict the common transcription 

regulators based on a large collection of ChIP-Seq data for several TFs and other factors 

related to transcription regulation for human and mouse (Zambelli, Prazzoli et al. 2012). 

It infers regulatory relationships based on ChIP-Seq data collected under 777 different 

conditions in the hmChip database (Chen, Wu et al. 2011) and transcription factors from 

the UCSC Genome Browser (Rosenbloom, Dreszer et al. 2012).  

 

4. Cancer related genes  

To retrieve cancer related genes, specifically proto-oncogene and tumor 

suppressor genes for our study, we searched the UNIPROT database 

(http://www.uniprot.org/keywords/) using keywords, which led to the retrieval of 232 

proto-oncogenes (KW-0656) and 194 tumor-suppressor genes (KW-0043) in human.  

http://www.beaconlab.it/cscan
http://www.uniprot.org/keywords/
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Concluding Remarks 

Based on comparative transcriptomic data analysis results on six cancer types, we 

have proposed a model of how cancer cells deal with excess protons in both intracellular 

and extracellular environments. Some of the mechanisms have been reported in the 

literature but mostly on specific genes or in a fewer cancer types. Our analysis results 

have confirmed the models previously proposed. In addition we have proposed a new 

model based on how bacterial Lactococcus deals with a similar situation.  

 As our model is proposed based on transcriptomic data only, further experimental 

validation on a number of hypotheses are clearly needed, including (i) the main regulators 

of these processes and their regulatory relationships with pH related regulators, (ii) the 

new mechanism proposed based on a homologous system in Lactococcus, the organism 

that produces lactates; and (iii) the proposed NBC cotransporter transports in HCO3
− 

 and 

Na
+  

together but it is not clear how the Na
+ 

is handled in cancer cells; and similar 

questions can be asked about the in-transported Ca
2+

 or Na
+ 

 by other deacidification 

processes. All these require further investigation both experimentally and 

computationally. 

 Our overall search procedure for enzymes and transporters that may change the 

number of protons in a systematic manner proves to be highly effective. For example, the 

carbonic anhydrases are found to be possibly relevant to the deacidification process from 

the search, only later we found that this system has been studied and reported in the 

literature.  This result clearly shows the power of this procedure, when coupled with 

additional searches and analyses of the transcriptomic data, which we believe to be 

applicable to elucidation of other cancer related processes.  



 

116 

Figures 
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Figure 4.1: Expression level changes of V-ATPase genes in six cancer types in 

comparison with their matching control tissues. Each entry in the table shows the ratio 

between a gene’s expression levels in cancer and in the matching control, averaged across 

all the samples (see Methods and Material).  
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Figure 4.2: Expression level changes of genes involved in carbonic anhydrases (CAs) pH 

regulation in six cancer tissues in comparison with their matching control tissues. 
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Figure 4.3: Expression level changes of genes involved in the conversion of glutamate to 

GABA and CO2, along with the genes encoding the GABA transporters.  
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Figure 4.4: Regulatory relationships between genes involved in deacidification and 

cancer growth. Each circle represents a deacidification related gene, each hexgon 

represents an oncogene and each triangle a tumor suppressor gene, with each link 

represents a direct regulatory relationship.  
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Figure 4.5: A model for deacdification in cancer cells. Each cylinder represents a pump 

or transporter used to remove protons and possibly other molecules out; and each 

rectangle bar represents a condition that is a possible regulatory factor for the 

corresponding pump or transporter.  



 

120 

 

Figure 4.6: Deacdification mechanisms in cancer cells. Each rectangle bar represents a 

transporter, enzyme or pump family. The red colored rectangles are up-regulated in our 

study and the green show down-regulation. Dashed arrows indicate CO2 diffusion across 

the membrane.  
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Tables 

  set1 set2 pairs 

breast cancer  GSE14999  GSE15852  61 / 43 

colon cancer GSE18105 GSE25070  17 / 26 

liver cancer  GSE22058 GSE25097  97 / 238 

lung adenocarcinoma  GSE31552 GSE7670 31 / 26 

lung squamous cell carcinoma  GSE31446 GSE31552 13 / 17 

prostate cancer  GSE21034 GSE6608 29 /58 

Table 4.1: A summary of the cancer datasets used in our transcriptomic data analysis 
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CHAPTER 5 

DISCUSSION AND PROSPECT 

Discussion and Prospect 

This systematic study utilizes innovative ideas and cutting-edge computational 

methods to address biological problems that are related to hot topics in cancer. The idea 

is to integrate novel computational techniques to find answers to biological questions that 

are otherwise limited by current experimental techniques. The rapidly increasing pool 

(Sherlock, Hernandez-Boussard et al. 2001; Barrett, Troup et al. 2007) of large-scale 

transcriptomic data for various cancer types has provided unprecedented opportunities for 

computational cancer biologists to study common characteristics across multiple cancer 

types as well as distinct properties of individual cancer types, which could provide novel 

insights about different cancer phenotypes at the molecular level. 

 

In this study, I represent a comprehensive study regarding to the issues in the cancer early 

detection and fundamental cancer biology. For early detection issue, we developed a 

computational pipeline for the prediction of protein markers in serum for seven cancer 

types. In addition to individual gene markers, we have focused on gene combinations that 

can be used to distinguish multiple cancer types and their corresponding reference 

tissues. The pathway analysis across multiple cancer types has identified a number of 

abnormally activated or deactivated pathways across multiple cancers and for specific 

cancers. The information provided on individual genes and pathways, along with 
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potential serum biomarkers, should provide highly useful information for elucidating 

pathways in cancer, as well as expediting the search for potential serum biomarkers of 

specific cancers. The prediction of protein marker is promising as my colleague’s 

urine marker prediction result, generated by a similar prediction process, is validated 

to be effective with the experimental validation. In addition our computational pipeline 

is not limited to these seven cancer types biomarkers; it can be applied to different types 

of cancer as well as any other diseases. Thus, we expect that this will be powerful in 

aiding biomarker discovery studies.   

 

For fundamental cancer biology issue, we did a systematic analysis on metabolism and 

followed-up cellular pH regulation topic. Our skin cancer study revealed that both skin 

cancer types, basal cell carcinoma and melanoma, utilize oxidative phosphorylation as 

the key energy metabolism in addition to glycolysis and the two skin cancer types are not 

under hypoxic stress. The boosted energy metabolism in melanoma, powered the up-

regulated oxidative phosphorylation with multiple energy resource, along with its high 

ability to metastasize, become a unique feature and explained why the cancer is so 

aggressive. Interestingly our predicted metabolic model is examined to inconsistent with 

Warburg's thesis (Warburg 1956) a former Nobel Prize winning study. However, we are 

excited to find that according to an independent experimental study (Kluza, Corazao 

Rozas et al. 2012), a work published on “cancer research” a top journal in cancer research 

field, we are clear that the melanoma tumors are able to keep functional mitochondrial 

and used multiple energy resource to compensate from each other as a complementary 

metabolism to promote cancer cell survival and growth. By this exciting experiment 

validation, we clearly see the innovation and advantage of the computational result the 
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experiment design in molecular biology and cancer research. This is not the first study to 

challenge the generality of the classic Warburg's theory; however we extend the 

understanding of the metabolic feature of melanoma and hope this finding can potentially 

inspire the drug development of the melanoma and save patients’ life. 

Through the microenvironment study, we proposed a model of how cancer cells deal with 

excess protons in both intracellular and extracellular environments, which are generated 

due to the reprogrammed energy metabolism. We have proposed a new model based on 

how bacterial Lactococcus deals with a similar situation. Another contribution of the 

work is that we have proposed possible regulatory mechanisms that allow cancer cells to 

fully utilize these encoded deacidification mechanisms that are not triggered in normal 

cells. As homologue based prediction is validated to be effective in many aspects, we are 

confident our prediction is an innovative way to predict novel oncogenic mechanism in 

tumor as a key oncogenic feature. The inhibition of pH regulators causes both the pHi 

and the pHe values to return to normal, with the consequent impairment of tumor growth. 

This constitutes an novel anti-tumor mechanism for drugs. It has been reported that are 

few specific, non-toxic compounds, E.g antibodies for CA9 and CA12, that interfere with 

the pH-regulating proteins that play effective role as anti-cancer drugs (Neri and Supuran 

2011). All the key genes involved in tumor deacidification process, including transporters, 

enzymes and transcription factors, are potentially promising drug target for specific 

cancer types or even in cancer general. 

 

We believe that our study provides a new and highly effective way to gain new insights 

and understanding about certain unique characteristics of different cancers in their 
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formation and progression through mining large-scale gene-expression data across 

multiple cancer types, but focused on key relevant prospects as cancer early detection and 

fundamental cancer biology.  As the current experiment technology have inevitable 

limitation on specific issue, the new coming technology especially next generation 

sequencing will bring much more fruitful information. By continually applying new 

computational approaches and methodologies, I hope to tackle more biological questions 

from different angles and new perspectives in cancer research field and hope our research 

can eventually help doctors to save patients’ life. 
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APPENDICES 

Appendix Tables 

Appendix Table A2.1.1 The detailed list of 100 k-gene 100 combinations for Figure 2.1 

(a)(b) breast cancer 

http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/BREAST_CANCER/bre

ast_tn_blood_1to4.htm 

 

Appendix Table A2.1.2. The detailed list of 100 k-gene combinations for Figure 2.1 (c) 

(d) early stage breast cancer 

http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/BREAST_CANCER/BR

EAST_STAGE_1_TO_4.htm 

 

Appendix Table A2.2. The detailed list of 100 k-gene combinations for Figure 2.2 (a)(b)  

colon cancer 

http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/COLON_CANCER/colo

n_1to4_marker.htm 

 

Appendix Table A2.3. The detailed list of 100 k-gene combinations for Figure 2.3 (a)(b) 

kidney cancer 

http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/KIDNEY_CANCER/kid

ney_1to4_chart.htm 

http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/BREAST_CANCER/breast_tn_blood_1to4.htm
http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/BREAST_CANCER/breast_tn_blood_1to4.htm
http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/BREAST_CANCER/BREAST_STAGE_1_TO_4.htm
http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/BREAST_CANCER/BREAST_STAGE_1_TO_4.htm
http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/COLON_CANCER/colon_1to4_marker.htm
http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/COLON_CANCER/colon_1to4_marker.htm
http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/KIDNEY_CANCER/kidney_1to4_chart.htm
http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/KIDNEY_CANCER/kidney_1to4_chart.htm
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Appendix Table A2.4. The detailed list of 100 k-gene combinations for Figure 2.4 (a)(b) 

lung cancer 

http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/LUNG_CANCER/LUN

G_CANCER_1to4.htm  

 

Appendix Table A2.5. The detailed list of 100 k-gene combinations for Figure 2.5 (a)(b) 

pancreatic cancer 

http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/PANCREATIC_CANC

ER/PANCREASE_CANCER_1TO4xlsx.htm 

 

Appendix Table A2.6. The detailed list of 100 k-gene combinations for Figure 2.6 (a)(b) 

prostate cancer 

http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/PROSTATE_CANCER/

PROSTATE_1to4_MARKER_CHART.htm 

 

Appendix Table A2.7.1. The detailed list of 100 k-gene combinations for Figure 2.7 

(a)(b) stomach cancer 

http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/STOMACH_CANCER/

STOMACH_1_to_4_CHART.htm 

 

Appendix Table A2.7.2. The detailed list of 100 k-gene combinations for Figure 2.7 

(c)(d)  early stage stomach cancer 

http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/LUNG_CANCER/LUNG_CANCER_1to4.htm
http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/LUNG_CANCER/LUNG_CANCER_1to4.htm
http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/PANCREATIC_CANCER/PANCREASE_CANCER_1TO4xlsx.htm
http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/PANCREATIC_CANCER/PANCREASE_CANCER_1TO4xlsx.htm
http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/PROSTATE_CANCER/PROSTATE_1to4_MARKER_CHART.htm
http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/PROSTATE_CANCER/PROSTATE_1to4_MARKER_CHART.htm
http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/STOMACH_CANCER/STOMACH_1_to_4_CHART.htm
http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/STOMACH_CANCER/STOMACH_1_to_4_CHART.htm


 

148 

http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/STOMACH_CANCER/

stamach_stage_1to4.htm 

 

Appendix Table A3.1. Differentially expressed genes in skin cancer. 

http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_2/table_1.htm 

 

Appendix Table A3.2. The top signatures for the melanoma and BCC. 

http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_2/table_2.htm 

 

Appendix Table A3.3. The Common Gene Shared by the Datasets 

http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_2/table_3.htm 

 

 

http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/STOMACH_CANCER/stamach_stage_1to4.htm
http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_1/STOMACH_CANCER/stamach_stage_1to4.htm
http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_2/table_1.htm
http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_2/table_2.htm
http://csbl.bmb.uga.edu/publications/materials/kunxu/PAPER_2/table_3.htm

