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ABSTRACT 

The spatial autocorrelation of crop yield violates the independence assumption of conventional 

methods such as ordinary least square (OLS). Therefore, in the model of crop yield, spatial 

structure must be incorporated. More often, crop yields are available across space as well as over 

time, and the additional dimension allows the estimation of the full spatial covariance matrix, 

using the time dimension. However, the stationarity of the spatial pattern does not necessarily 

hold over time. In this study, we present empirical evidence that the spatial autocorrelation 

pattern of cotton yield can be fundamentally changed by the adoption of Bt cotton seeds. The 

finding of this study provides a cautionary note that spatial autocorrelation may vary over time 

due to technological change.  
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CHAPTER 1 

INTRODUCTION 

Crop yield are often correlated among spatially neighboring observations. This spatial 

autocorrelation violates the assumption of independence in classical statistical analysis. Models 

that fail to consider spatial autocorrelation will result in incorrect inference. Therefore, spatial 

analysis approaches are needed to model crop yield. Spatial autocorrelation can be introduced 

into this model in the form of spatial lag process or spatial error autoregressive process. In either 

of the two methods, the spatial correlation pattern is assumed to be invariant within the study 

field. Most often, crop yield observations are available as over time. This additional dimension 

allows the estimation of a spatial autocorrelation structure, using the time dimension to provide 

the asymptotics (Anselin, 2013). However, as for crop yield, it is possible that the spatial 

autocorrelation pattern changes over time. Few studies have explicitly considered the variation of 

spatial autocorrelation of crop yield. The exceptions include Ping et al. (2004) and Maestrini and 

Basso (2018). The former provides evidence that the spatial autocorrelation pattern of cotton 

yield is significantly different between dry years and wet years. The latter discusses the 

predictors of crop yield by categorizing the crop field into two types - stable spatial pattern and 

variant spatial pattern. They conclude that for spatial patterns that are stable over time the best 

predictor of the spatial variability is the historical yield, while for the fields that are more 

sensitive to weather and thus fluctuate over years, the best predictor of the spatial patterns are 

exogenous variables such as weather, Normalized Difference Vegetation Index (NDVI), etc.  
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Different from the short-run impact of weather conditions discussed in Ping et al (2004), 

the advancement of agricultural technology is able to cause fundamental changes in a spatial 

autocorrelation pattern by reducing the impacts of an adverse natural environment. Therefore, the 

spatial dependence is expected to decrease with the diffusion of the technology since it can 

induce stable yield across natural environmental conditions. In this study, we hypothesize that 

the spatial autocorrelation of crop yield can be decreased with the widespread use of agricultural 

technology. Taking genetically modified cotton as our example, we examine the change in 

spatial autocorrelation of the cotton yield before and after the adoption of Bacillus thuringiensis 

(hereafter abbreviated Bt) cotton in the Yellow River valley region of China. This genetically 

modified cotton produces an insecticidal protein that protects the cotton plant from certain 

caterpillar insect pests. Since its first introduction into the market in 1996, Bt cotton was rapidly 

adopted in both developed and developing countries. The Yellow River valley is one of the 

cotton planting regions that promptly adopted Bt cotton after its official approval by the Chinese 

government, and provides us an appropriate sample area to explore our research question. To 

investigate our hypothesis, we use Moran’s 𝐼 as the statistic of spatial autocorrelation and 

explore its change with the adoption Bt cotton. In order to support the potential causality 

relationship between the change of spatial autocorrelation and the adoption of Bt cotton, we 

present a set of robustness checks. We further discuss the application of this finding in precision 

agriculture and crop insurance. In general, the changes in the spatial autocorrelation challenge 

the validity of the assumption of stable spatial pattern over time. Cautious examination ex ante 

and certain adjustment of the assumption ex post are suggested if fundamental technology 

advancement took place over the study period. This finding serves as a cautionary note for the 

use of an underlying assumption of stable second moments (covariance structure). We suggest 
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that statistics such as Moran’s   𝐼  provide a tool to examine the stationarity of the spatial 

autocorrelation pattern of crop yield over time when modeling and predicting crop yields. 

The finding of this study provides evidence of an unexplored impact of Bt cotton. While 

there are concerns that Bt cotton might have limited ability to benefit small farmers and may 

even intensify social inequality, abundant literature has provided empirical evidence that Bt 

cotton reduces the use of insecticides, increases productivity and farmers’ cotton profit and living 

standards around the world. (Pray et al., 2001; Huang et al., 2002b; Chen et al. 2013, Gouse et al., 

2005; Qaim et al, 2006; Kathage and Qaim, 2015). However, the beneficial effects of Bt cotton 

are more than the increased economic welfare, and new findings on the broader beneficial 

impacts are disclosed including improvements in farmer’s health status (Huang et al., 2002b), 

water savings (James, 2002), and gender equality employment (Kouser et al., 2015). Bt cotton 

can also provide considerable environmental benefits by substantially reducing the number of 

pesticide sprayings. A number of studies have demonstrated that the adoption of Bt cotton can 

increase the population of beneficial insects (Head et al., 2001; Smith, 1997; Xia et al., 1999) 

and is compatible with integrated pest management initiatives (Benedict and Altman, 2001). 

Many crop scientists have examined the impact of Bt cotton on soil health and biodiversity, and 

pointed out that the cultivation of Bt cotton produces positive effects on diversity of soil, plants, 

microbial groups (Cattaneo et al., 2006; Donegan et al., 1995; Velmourougane, 2017; Sarkar, et 

al., 2009). The quantitative measure of the change in cotton spatial dependence caused by Bt 

cotton has not been discussed to date. Contributing to the larger literature exploring the impacts 

of Bt cotton, this study provides evidence that Bt cotton may potentially reduce cotton yield’s 

spatial dependence and increase the resistance of cotton to systemic adverse geographic 
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conditions. To our knowledge, this work is the first attempt to examine the effect of the adoption 

of Bt cotton on the spatial autocorrelation of cotton yield. 

The rest of this thesis is organized as follows. First, we outline the concept of spatial 

autocorrelation and the statistics used to test the spatial autocorrelation, and review the literature 

on spatial models for crop yield. Next, we introduce the background of Bt cotton in the study 

area, the Yellow River valley region in China. Then, the findings and robustness checks are 

presented. Similar situations in the cotton planted in another province in China and three states of 

the U.S. are discussed as supplemental evidence of the generalization of the results. Next, we 

discuss the application of this finding in precision agriculture and crop insurance. The conclusion 

and discussion section wrap up these findings and give some directions for future work.  
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CHAPTER 2 

THE METHOD AND LITERATURE REVIEW 

In this section, we outline the specification of spatial autocorrelation in econometric models, 

review the diagnostic statistics used to test the presence of spatial autocorrelation, and 

summarize the literature that models crop yield with spatial statistic methods.  

2.1 SPATIAL AUTOCORRELATION 

Spatial autocorrelation occurs when the value of a spatially observed random variable is 

dependent from the observed values at nearby locations. The framework used for the statistical 

analysis of spatial autocorrelation is a so-called spatial stochastic process, or a random variable 𝑦 

referenced by location 𝑖 

                            {𝑦! , 𝑖 ∈ 𝐷}   (2.1)  

where the location set 𝐷 can be either a continuous surface or a finite set of discrete locations.  

Spatial processes can be modeled in two basic approaches. One is geostatistics, or Kriging, 

which is used to model the process over a continuous location set (Cressie 1992). The 

fundamental assumption of the Kriging method is in terms of covariance stationarity. That is, the 

spatial autocorrelation is a function only of distance. The other method uses a discrete location 

set, and is used to model areal (lattice) data. The stationarity assumption is replaced by spatial 

autoregressive models that are based on specific choices of spatial weight matrix. The most 
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fundamental spatial autoregressive models are the spatial error model and the spatial lag model. 

The spatial error model is given as  

                     𝑦 = 𝑋𝛽 + 𝜀, 𝜀 = 𝜆𝑊𝜀 + 𝜐.   (2.2)  

where  𝑦 is an 𝑛  ×  1 vector of spatial random variables,; 𝑋 is an 𝑛  ×  𝑘 matrix of explanatory 

variables; 𝛽 is a 𝑘  ×  1 vector of regression coefficients; 𝜀 is an 𝑛  ×  1 vector of residuals; 𝜆 is a 

spatial autoregressive parameter, which measures the influence of neighboring values; 𝑊 is an 

𝑛  ×  𝑛 spatial weights matrix; and 𝜐 is a homoscedastic uncorrelated error term. The spatial lag 

model is given as         

                   𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝜐,   (2.3)  

where  𝜌 is the spatial autoregressive parameter and the others are as above. Theory and a priori 

information suggest a spatial error regression in Equation 2.2 to model crop yield. 

2.2 MORAN’S I: GLOBAL AND LOCAL 

To detect the existence of spatial autocorrelation, spatial diagnostics such as Moran’s 𝐼 and 

Geary’s 𝐶 are widely used.  Moran’s 𝐼 is an extension of Pearson correlation coefficient in space. 

However, different from Pearson’s correlation coefficient which requires that the observations of 

the pairs of two variables be mutually independent, Moran’s 𝐼 considers the case in which 

observations of a variable are correlated with one another.  

In 1948, Moran asked if the occurrence of an event (with probability 𝑝) can be regarded as 

statistically independent across counties, or, on the other hand, if the presence of some event in a 

county makes its presence in neighboring counties more or less likely. In this question, he 

simplified the spatial relationship as 1 for adjacent neighbors, and 0 otherwise, and proposed a 

test of significance for the spatially random distribution. In the 1970s, Cliff and Ord (1972, 1981) 
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presented a comprehensive work on spatial autocorrelation, in which they explicated and 

generalized Moran’s work and suggested the calculation of a spatial autocorrelation coefficient 

they named Global Moran’s 𝐼. Spatial autocorrelation over the entire area of interest can be 

described in terms of Global Moran’s 𝐼, with value that ranges from −1 to 1. Value 1 means 

complete clustering of similar values, while -1 suggests a checkerboard pattern, and 0 implies no 

spatial autocorrelation that is, there is no detectable spatial structure in the data.  

Another widely used statistic to test spatial randomness is Geary’s 𝐶 (Geary 1954), which 

measures dissimilarity of a spatial variable within a dataset. The value range of this statistic is 

between 0 and 2, where 0 implies strong positive spatial autocorrelation, 1 implies no 

autocorrelation, and 2 implies strong negative spatial autocorrelation. It is inversely related to 

Moran's 𝐼, and the difference in effectiveness of Moran’s 𝐼  and Geary’s 𝐶 to measure the spatial 

autocorrelation is negligible (Myint, 2003). 

In the 1990s, Anselin (1995) introduced local Moran’s  𝐼 and local Geary’s 𝐶 to measure 

the spatial associations of neighboring observations to a specific observation. He also showed 

that the local values were proportional to their global values. These statistics were called Local 

Indicators of Spatial Association (LISA), and used to identify possible centers of statistically 

significant clustering or “hot spots”.  

The Global Moran’s 𝐼  statistic (Cliff and Ord, 1981) is given by 

                   𝐼 = !
!!
∗

!!"!!!!!
!!!

!
!!!

!!!!
!!!

   (2.4)  

where 𝑧!  is the deviation of a variable of site  𝑖 from its spatial mean, i.e. 𝑧! = 𝑥! − 𝑋, and 

𝑋 = !!!
!!!
!

, 𝑤!" is the spatial weight between site  𝑖   and site  𝑗, 𝑁 denotes the total number of 

sites, and 𝑆! is the aggregate of all the spatial weights: 
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                   𝑆! = 𝑤!"!
!!!

!
!!!   .   (2.5)  

Contrary to intuition, the expected value of Moran’s 𝐼 under the null hypothesis of no 

autocorrelation is not equal to zero, but is given by 

                   𝐸 𝐼 = !!
!!!

     (2.6)  

and	  its	  variance	  is	  given	  by  

 𝑉 𝐼 = !(!! !!!!!!! !!!!!!!!!)
!!! !!! !!! !!!

− ! !! !!!!)!!!!!!!!!!

!!! !!! !!! !!!
− !

!!!

!
   (2.7)  

where	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑆! =
!
!

(𝑤!" + 𝑤!")!!
!!!

!
!!! ,   (2.8)  

                                  𝑆! = 𝑤!" + 𝑤!"!
!!!

!
!!!

!!
!!!    (2.9)  

and 

                                                              𝐾 = ! !!
!!

!!!

!!
!!

!!!
!.   (2.10)  

The sampling distribution of Moran’s 𝐼   statistic approaches a normal distribution 

asymptotically under the null hypothesis of no spatial autocorrelation as  𝑁 increases to infinity. 

The 𝑧-‐score is calculated as: 

                               𝑍 = !!![!]
![!]

  .   (2.11)  

Apart from the measure of overall spatial autocorrelation within the region, often, the 

degree of local similarity of the values is of interest. The Local Moran’s  𝐼 is a LISA which 

measures the degree of the local similarity of observations around an individual site. The Local 

Moran’s 𝐼 (Anselin, 1995) is calculated as 
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                             𝐼! =
!!
!!
! 𝑤!"𝑧!!

!!!    (2.12)  

where 𝑆! is the aggregate of all the spatial weights: 

                          𝑆!! =
!!!

!!!
!
!!!   .   (2.13)  

The mean and variance of Local Moran’s 𝐼  for a complete random spatial process are given 

by: 

                       𝐸 𝐼! =
! !!"!

!!!

!!!
   (2.14)  

	  

and	   

𝑉 𝐼! =
!!! !!"

!!
!!!

!!!
− !!!! !!"!!!!

!!!
!
!!!

!!! !!!
− [

!!"!
!!!

!!!
]!   (2.15)  

where	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝐾 = ! !!
!!

!!!

!!
!!

!!!
!.   (2.16)  

The associated 𝑧-score of the test of significance is calculated as: 

                       𝑍! =
!!!![!!]
![!!]

.   (2.17)  

Similar to the Global Moran’s 𝐼, a significantly positive value of Local Moran’s 𝐼 indicates 

that the site has similar values clustering together. A significantly negative value indicates that 

the neighboring sites have dissimilar values.  
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2.3 THE SPATIAL WEIGHTS MATRIX 

To model spatial autocorrelation explicitly in a spatial process model, the spatial weights matrix 

𝑊 must be defined first. Conceptually, the spatial weights matrix is a 𝑁×𝑁 matrix reflecting 

how much a site spatially interacts with all the rest of sites. Spatial weights are often row 

standardized, particularly with binary weighting strategies. Row standardization is used to create 

proportional weights, i.e. the weights are the value of each cell divided by the sum of the values 

of its row. In 𝑊 , each off-diagonal element 𝑤!"  represents the magnitude of geographic 

interaction between a pair of values observed at sites 𝑖 and 𝑗. Zero indicates a lack of spatial 

interaction between two observations. The diagonal element 𝑤!! can be interpreted as “self-

influence” and is defined as zero.  

There are two fundamentally different ways to construct the weight matrix. One is to 

weight spatial interaction by inverse geographical distance. This inverse distance method 

assumes the spatial process is observed on a continuous (geostatistical) area. The other is to 

define spatial interaction with a binary variable to represent contiguity, meaning that two spatial 

sites share a common border of non-zero length. 

The most common measure of distance is Euclidean distance: 

𝑑!" = (𝑖!"#$%&' − 𝑗!"#$%&')! + (𝑖!"#$!!"# − 𝑗!"#$!!"#)!,   (2.15)  

giving	  a	  weight	  of	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	      𝑤!" =

!
!!"
.   (2.16)  

There are other more complicated specifications of the weight matrix based on distance, such as 

inverse distance with higher order of power, 𝑤!" = ( !
!!"
)!  , and exponential distance, 𝑤!" =

exp −𝛼𝑑!" , where α is a positive constant for both weights.  
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In many settings, the spatial process is defined as a statistical summary over a geographical 

region, such as averages, ratios or counts over a state or county. This type of spatial process 

refers to areal data or regional summary data. Due to its convenience, the inverse distance weight 

matrix is often employed to model regional summary data, where the observations are assumed 

to be located at the center point of the area. However, modeling regional summary data with an 

inverse distance matrix gives rise to a conceptual inconsistency between “emptiness” among the 

data points versus the assumption of the continuous spatial indexing. Another commonly cited 

problem is the arbitrariness of assigning the summary value to the centroid (Wall, 2002).  

One way to construct the weight matrix for an areal process is based on physical neighbors 

or contiguity relationship. Thus, instead of measuring geographic distance between data points, 

the spatial weight is defined by whether two areal units touch. There are two common ways to 

identify neighbors, both of which are based on a chessboard. One is called Rook’s weight, in 

which neighbors share a common border:  

         𝑤!" =
1, 𝑖𝑓  𝑖  𝑎𝑛𝑑  𝑗  𝑠ℎ𝑎𝑟𝑒  𝑎  𝑏𝑜𝑟𝑑𝑒𝑟  
0,                                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    (2.17)  

 

The other is called Queen’s weight, in which neighbors share a common border or a vertex: 

𝑤!" =
1, 𝑖𝑓  𝑒𝑖𝑡ℎ𝑒𝑟  𝑖  𝑎𝑛𝑑  𝑗  𝑠ℎ𝑎𝑟𝑒  𝑎  𝑏𝑜𝑟𝑑𝑒𝑟  𝑜𝑟  𝑎  𝑣𝑒𝑟𝑡𝑒𝑥  
0,                                                                                                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    (2.18)  

 

There are “hybrid” methods of the two approaches often used in practice. The following 

weight matrices combine the two approaches.  

Radial Distance Weights 
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Let 𝑑 denote a threshold distance beyond which there is no spatial interaction between sites. The 

radial distance weight matrix, W, is defined as: 

                   𝑤!" =
1, 0 ≤ 𝑑!" < 𝑑
0,                   𝑑!" < 𝑑  .   (2.19)  

 

k-Nearest Neighbor Weights 

Let 𝑘 denote the number of closest sites to i, Then for each given 𝑘, the 𝑘-nearest neighbor 

weight matrix, 𝑊, has spatial weights given by: 

𝑤!" =
!
!!"
,      𝑖, 𝑗  𝑎𝑟𝑒  𝑘-‐𝑛𝑒𝑎𝑟𝑒𝑠𝑡  𝑝𝑜𝑖𝑛𝑡𝑠

0,                                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.     

Double-Power Distance Weights 

If 𝑑  denotes the maximum radius of influence then the class of double-power distance weights is 

defined as: 

           𝑤!" =
1− (!!"

!
)!

!
, 0 ≤ 𝑑!" < 𝑑

0,                                                               𝑑!" < 𝑑  
.   (2.21)  

 

Boundary Length Weights 

Let 𝑙!" define the total boundary length shared between 𝑖 and  𝑗 and 𝐾 be the total number of 

adjacent sites of 𝑖. Then the boundary length weights are: 

      𝑤!" =
!!"
!!"!

!!!
, 𝑖𝑓  𝑖  𝑎𝑛𝑑  𝑗  𝑠ℎ𝑎𝑟𝑒  𝑎  𝑏𝑜𝑟𝑑𝑒𝑟

0,                                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.   (2.22)  

Combined Distance-Boundary Weights 
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In the settings in which a spatial variable exhibits autocorrelation of both distance and boundary 

length, the combined distance-boundary weights are employed: 

𝑤!" =
!!"!!"

!!

!!"!
!!! !!"

!! , 𝑖𝑓  𝑖  𝑎𝑛𝑑  𝑗  𝑠ℎ𝑎𝑟𝑒  𝑎  𝑏𝑜𝑟𝑑𝑒𝑟

0,                                                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.   (2.23)  

In this study, since crop yield of interest is a typical class of regional summary data, we 

present the Moran’s 𝐼 calculated by Queen’s weight matrix, which is the specification most 

widely used in the setting of regional summary data. 

  

2.4 LITURATURE REVIEW 

The modeling of crop yield has garnered a great deal of attention in the agricultural economics 

literature. Many studies have attempted to investigate the best modeling approaches including 

parametric methods (Ramirez 1997; Ramirez et al. 2003; Sherrick et al. 2004) and 

nonparametrics methods (Goodwin and Ker, 1998). Most of these studies based on the 

assumption that crop yield are independently and identically distributed. In 1990s, with yield 

monitors being commercially available and global positioning systems (GPS) becoming 

increasingly operational for civilian use, spatial statistics methods were widely used in crop yield 

models. Lambert et al. (2004) compared OLS regression and four spatial regression methods. 

Their results suggest that all four spatial regression methods provided similar estimates and 

outperform OLS. Mainstream econometrics (Coley 1999; Auffhammer et al. 2013; Schlenker 

and Roberts, 2009) has used the variance-covariance (VC) matrix to represent the autocorrelation 

relationship in crop yield models. In the case of panel data, estimating the spatial covariance 

matrix does not require an explicit spatial process or a functional form for the distance decay 
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when the time dimension is considerably greater than the cross-sectional dimension (T >> N). 

For instance, the seemingly uncorrelated regression (SUR) estimator is able to consider the full 

spatial covariance matrix. Recently, new methodologies such as copula-based methods (Vedenov, 

2008, Woodard et al., 2011 and Goodwin et al., 2014) and Bayesian methods (Ker et al., 2015; 

Park et al., 2015) have been developed to model the dependence structures of crop yield in 

probabilistic settings. However, a key underlying assumption of these approaches is the stable 

spatial variability of crop yields over time, and few papers have discussed the variability of the 

autocorrelation structure.  
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CHAPTER 3 

DATA AND EMPIRICAL RESULTS 

3.1 BACKGROUND 

China was the world’s largest producer of cotton and largest consumer of cotton fiber, with a 

share of around 25% of global cotton production (USDA Agricultural Outlook Forum 2014). In 

2018, China remains the world’s second-largest producer, behind India. The major cotton 

producing areas in China are comprised of the northwest cotton region (i.e., Xinjiang Province), 

the Yellow River valley region and the Yangtze River valley region. Approximately 99.7% of 

cotton produced in China is produced in these three areas.  

The diffusion of Bt cotton was rapid in China starting in 1996. Currently, over 90% of the 

cotton planted in the Yellow River valley region is Bt cotton; non-Bt cotton is concentrated in 

Xinjiang Province and the Yangtze River valley region where the bollworm pest is not a major 

peril to the crop. The Yellow River valley region is composed of three provinces: Henan, Hebei, 

Shandong (known as the Yellow Three). The cotton yield data and geographic information data 

such as longitude and latitude of the counties comes from the county-level crop yield dataset 

from the county-level data center of Ministry of Agriculture of China. The study period covers 

1980 to 2015. Figure 1 presents a map of the three Provinces in Yellow River Valley and 

Xinjiang Province.  
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Figure 1. The Map of the Three Provinces in Yellow River Valley and Xinjiang Province 

 

Bt cotton has been formally approved by the government for commercial use in Hebei and 

Shandong since 1997 and Henan since 1999. Table 1 reports the official Bt cotton adoption rate. 

Prior to the formal approval, some farmers had already distributed the seeds of Bt cotton 

varieties cultivated by the National Cotton Research Centre (located in Henan province) from the 

year 1996, which explains why there was Bt cotton adoption recorded in Henan before approval. 

However, according to Pemsl (2006), there was a black market in Shandong and Hebei selling Bt 

cottonseeds prior to approval as far back as 1993. Approximately 16% of farming households in 

these two provinces adopted Bt cotton prior to the official approval. This unofficial adoption was 

not reflected in the official data given in Table 1. For the cotton farmers in these three provinces, 
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1992 was a particularly bad year due to a severe bollworm infestation. This painful experience 

partially may result in the rapid diffusion of Bt cotton within this area (Liu, 2006).  

Table 1. Adoption Rate (in %) of Bt Cotton in the Three Provinces 

Year Shandong  Henan Hebei China 

1996 - 1.9 - 0.5 

1997 0.0 1.1 22.8 2.9 

1998 12.6 1.9 70.7 7.6 

1999 74.4 19 90.3 21.0 

2000 90.2 38.7 100 39.7 

2001 100.0 70.3 94.7 45.7 

2002 100.0 62.3 95.4 49.1 

2003 98.1 78.0 98.3 64.0 

2004 100.0 91.7 100.0 69.4 

2005 100.0 83.1 100.0 70.9 

2006 100.0 82.9 97.0 69.7 

Data Source: Fok, Michel, and Naiyin Xu. "Variety market development: 
A Bt cotton cropping factor and constraint in China." (2011). 

 

 

Figure 2 represents the county-average yield of the three provinces. Before the introduction 

of Bt cotton, the yield curves were stationary. As reported in Liu (2006), a huge shortfall can be 

seen in 1992. Following 1992, the yields recovered quickly and rose rapidly all the way to 2005, 

and continued to increase slowly to date. The histograms of county-average yield (Figure 3) 

show pronounced mixed distribution patterns. The normal distributions estimated via mixture 
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model are overlaid on the histogram. Two periods of descriptive statistics of yields are present in 

Table 2, with 1996 as the cutting point. The average yields increased by 51.7%, 69.6% and 53.2% 

for Henan, Hebei and Shandong respectively. The results of t-test statistics show that the 

increases are all statistically significant at 1% confidence level. The data shows that the 

considerable increase in cotton yield occurs coincidently with the adoption of Bt cotton. 

However, the portion of the increase in yields that can be explained by the adoption of Bt cotton 

technology is another important research question.  

 

Table 2. Summary Statistics of Cotton Yield (in ton/ha) before and after Bt Cotton 

 
Year Mean Std. Dev. Min Max 

Henan 
1980~1996 0.60 0.10 0.35 0.74 

1997~2015 0.91 0.09 0.68 1.02 

Hebei 
1980~1996 0.56 0.15 0.34 0.88 

1997~2015 0.95 0.14 0.56 1.10 

Shandong 
1980~1996 0.79 0.10 0.62 0.95 

1997~2015 1.21 0.15 0.88 1.44 
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Figure 2. Historical County-Average Cotton Yield of the Three Provinces 
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Figure 3. Distribution of County-Average Cotton Yields Fitted with a Mixture Normal Distribution
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CHAPTER 4 

EMPIRICAL RESULTS 

This section presents the main results of the test of the research hypothesis. We use Moran’s 𝐼 to 

examine the change in spatial autocorrelation of cotton yield over time, and compare this change 

with the adoption of Bt cotton. To make the cotton yields comparable among different years, the 

yields were standardized by their temporal average for each year (Blackmore, 2000) by using 

Equation 4.1. 

                                                         𝑆𝑇_𝑦𝑖𝑒𝑙𝑑 𝑠, 𝑡 = 100× !"#$% !,!
!
! !"#$% !,!!

!!!
       (4.1) 

where 𝑦𝑖𝑒𝑙𝑑 𝑠, 𝑡  is the observed cotton yield for county 𝑠 in year 𝑡, and 𝑁 is the total number of 

counties. Moreover, the spatial data is not stationary if there is a significant spatial trend. The 

landscape of China in general is of high elevation in the west inland and descends to the east 

coast. Accordingly, cotton yield exhibits spatial trend due to the temperature, rainfall and soil 

conditions. Therefore, in order to remove trend effect in cotton yield, the data is detrend by 

regressing cotton yields on the easting-northing coordinates: 

               𝑆𝑇_𝑦𝑖𝑒𝑙𝑑 𝑠, 𝑡 = 𝜇(𝑡)+   𝛼 ∗ 𝑒𝑎𝑠𝑡𝑖𝑛𝑔 𝑠 + 𝛽 ∗ 𝑛𝑜𝑟𝑡ℎ𝑖𝑛𝑔 𝑠 +   𝜀(𝑠, 𝑡)                (4.2) 

and  

                                                        𝑑𝑒𝑡𝑟𝑒𝑛𝑑_𝑦𝑖𝑒𝑙𝑑 𝑠 = 𝜇 +   𝜀(𝑠)        (4.3) 

where 𝑆𝑇_𝑦𝑖𝑒𝑙𝑑 𝑠, 𝑡  is the standardized cotton yield of county s in year 𝑡, 𝜇 is the portion of 

yield not spatially dependent in year 𝑡, 𝑒𝑎𝑠𝑡𝑖𝑛𝑔 𝑠  and 𝑛𝑜𝑟𝑡ℎ𝑖𝑛𝑔 𝑠  are the coordinates of the 
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centroid of county s,   𝛼 ∗ 𝑒𝑎𝑠𝑡𝑖𝑛𝑔 𝑠 + 𝛽 ∗ 𝑛𝑜𝑟𝑡ℎ𝑖𝑛𝑔 𝑠  is a deterministic surface (the trend), 

and 𝜀(𝑠, 𝑡) is a spatially autocorrelated error.  

We examine Moran's 𝐼 for three provinces separately instead of together as a whole. 

Global Moran’s 𝐼 for the detrended cotton yield of each province is shown in in Figure 3. The 

adoption rate is overlaid on the plots. A pronounced decline in global Moran’s  𝐼  can be seen to 

track with the adoption of Bt cotton in the three provinces, and the statistics show the yields are 

not spatially correlated at the 5% confidence level after 1996. Take Henan for example, from 

1980 to 1999: the Moran’s 𝐼 of cotton yield is significantly above zero except the year 1981. 

With the diffusion of Bt cotton since 1996, the Moran’s 𝐼 continuously decreases to insignificant, 

meaning spatial autocorrelation gradually diminishes. Note that a nontrivial percentage of 

farmers in Shandong and Hebei had adopted Bt cotton back to 1994; however, the adoption rate 

in Figure 4 does not reflect the rate of early adoption before the official approval due to limited 

availability of black market data. To further examine the change of autocorrelation with the 

adoption of Bt Cotton, a simple OLS regression of Moran's 𝐼 on the adoption rate was run for 

each province:  

                                                     𝑀𝑜𝑟𝑎𝑛!𝑠  𝐼 𝑡 = 𝑠 + 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛(𝑡)+   𝜖(𝑡),                 (4.4) 

where 𝑀𝑜𝑟𝑎𝑛!𝑠  𝐼 𝑡  is the Moran's 𝐼 of cotton yield for the year 𝑡, 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛(𝑡) is the adoption 

rate, and 𝜖(𝑡) is a random error. In order to focus on any change occurring after the adoption of 

Bt cotton, we choose t from 1993 to 2010.  
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Figure 4. Global Moran’s 𝐼 and Adoption Rate of Bt Cotton for the Three Provinces 

 

 

 

 

 

 

 

 

 

 

 



 

 24 

Table 3 reports the results of the regressions. For three provinces, the coefficient of the 

adoption rates are negatively significant at 5% level, indicating that the adoption rate of Bt cotton 

is negatively associated with the degree of spatial autocorrelation of cotton yield, bolstering our 

research hypothesis. It is interesting to note that, for three provinces, the coefficients of adoption 

rates are -0.002 and the intercepts are about 0.2 This value can be interpreted that the Moran’s 𝐼 

will be close to zero from significantly positive with the adoption increasing from zero to 100%. 

 

Table 3. OLS Regression of Moran’s 𝐼 on Bt Cotton Adoption Rate  

 
 Mean Std. Dev. t-value Pr(>|t|) 

Henan 
Intercept 0.234 0.045 5.205 0.000*** 

Adoption rate (in %) -0.002 0.001 -3.024 0.009** 

Hebei 
Intercept 0.237 0.029 8.059 0.000*** 

Adoption rate (in %) -0.002 0.000 -5.013 0.000*** 

Shandong 
Intercept 0.184 0.046 3.987 0.004** 

Adoption rate (in %) -0.002 0.001 -2.862 0.021* 

Significant at * p < 0.05, ** p < 0.01, *** p < 0.000 
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CHAPTER 5 

ROBUSTNESS CHECK 

This section presents further evidence to check the robustness of the conclusion drawn above. 

First, we discuss the effect of missing values of crop yield on the estimate of Moran's 𝐼, showing 

the number of missing values in our data does not cause any essential difference in the results 

presented in the above section. Moreover, two additional cases are given. One case is from 

another province in China where Bt cotton comprises only a small percentage of the cotton 

acreage: its Moran's 𝐼 does not show a fundamental change during the same period of time. The 

other is an analogous case from three US states: the trend of increased Bt adoption rate and 

decreased spatial autocorrelation can be observed in these states. However, due to a large number 

of missing values in this data, we use these results as a robustness check instead of solid 

evidence to test the research hypothesis.   

5.1 MISSING VALUES 

The biasedness of Moran’s 𝐼  is jeopardized by the existence of missing values in the yield data. 

Possible solutions include replacing the missing values with a spatial mean, or spatially 

interpolated values; and omitting the sites of missing values from the dataset. However, none of 

these methods is able to fully overcome the potential bias without further information. 

Conceptually, the spatial interpolation method is likely to result in an upwardly biased estimate 

of the spatial autocorrelation, and simple omission may lead to cells without neighbors, which 
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are referred to as “isolated islands” and lead to problematic results in spatial analysis. In the 

context of this study, there are multiple reasons for the missing values. For instance, the missing 

values may result from no cotton grown in a county for a certain year, or simply from an absent 

record. Without detailed information about the reason for the missing values, any method used to 

replace missing values would lead to considerable bias. However, for a data set with a large 

number of observations, any bias will be small if the percent of missing values is moderate. This 

study provides evidence that the missing values will lead to a conservative direction towards 

accepting the null hypothesis. In other words, if the percentage of missing values is moderate, 

say less than 5%, the bias of Moran’s I will decrease the probability of accepting the null and 

result in a lower p-value.  

Figure 5 presents the percentage of missing values of the three provinces. A rise in the 

percentage of missing values can be seen in recent years in Shandong and Hebei. In Henan, the 

missing value problem was severe prior to 1994. On average, the three provinces of Hebei, 

Henan, and Shandong have 1.98%, 2.36% and 4.71% missing values, respectively.  

 

Figure 5. The Percentages of Missing Values of Cotton Yield in the Three Provinces
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In order to examine the magnitude of the distortion on Moran’s 𝐼 caused by the missing 

values, we use a Monte Carlo simulation to present the deviation from a hypothesized true mean 

for varying percentages of missing data. We take the three provinces as a whole so that we have 

large number of sites (counties) to examine. The simulation was implemented as follows. First, 

we assume the cotton yield follows a normal distribution. The mean and variance were estimated 

with all the historical data. Second, we control values of Global Moran’s 𝐼 of cotton yield in 

these three provinces to be approximately 0.5, 0.2, 0.1, -0.2 and spatial randomness, respectively. 

We utilize the Global Moran’s 𝐼 calculated in the study period. For example, Global Moran’s 𝐼 

was 0.195 in year 2004 and there were 10% counties with missing observations. We then filled 

the missing counties with spatial interpolation method to boost the Moran’s 𝐼 close to 0.2. Third, 

at each level, we randomly omit 2%, 5%, 10% 20% and 50% data, and compute the Global 

Moran’s  𝐼 each case. This step is repeated 10000 times. We also compare between the Global 

Moran’s  𝐼 with missing values and the “true” Moran’s  𝐼. The frequencies of Type I error- 

rejection of a true null hypothesis and Type II error-failure to reject a false null hypothesis in the 

10000 times simulation were also calculated. Figure 6 shows the boxplots of the simulation and 

Table 4 reports the corresponding probabilities of two types of error for each case. The 

probability of errors increases with the rise of percent of missing value. Global Moran’s 𝐼 is 

resistant to the potential bias caused by the missing values if there are less than 5% missing and 

the true value of Moran’s 𝐼 is high, like 0.5. However, if the amount of missing value takes over 

50% of the whole dataset and the true value of Moran’s 𝐼 is low, like 0.1. The probability of 

making type I error will be over 50%. In another word, the result of Moran’s 𝐼 is not trustworthy. 
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In addition, global Moran’s 𝐼 seems easily distorted by missing values if the true value is close to 

zero. 
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Figure 6. Summaries of the Simulation of Global Moran’s I Versus the Percent of Missing Values 
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Table 4. Probability of errors caused by missing values 

True value 1% 5% 10% 20% 50% 

The probability of falsely accepting the Null of spatial randomness 

Global Moran’s=0.5 0 0 0 0 0 

Global Moran’s=0.2 0 0 0 0 16.38% 

Global Moran’s=0.1 0 0.03% 1.95% 17.79% 64.07% 

Global Moran’s=-0.2 0 0 0 0 12.39% 

The probability of falsely not accepting the Null of spatial randomness 

Global Moran’s= -0.004 0 0 0 0.12% 2.35% 
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5.2 TWO COUNTERPARTS-XINJIANG PROVINCE AND THREE U.S. STATES 

In order to test the generalization of the conclusion, we examine two counterpart regions. 

Xinjiang Province has been the largest cotton producing province of China in terms of the 

cultivation scale, the yield, and the quality (see Figure 7). Due to severe coldness in winter, the 

incidence of cotton bollworm, cotton aphid and other pests in Xinjiang is not one of the major 

threats for the cotton producers. In addition, the cotton-planting regions in Xinjiang are 

distributed across many oases segmented by deserts. These deserts serve as natural firewalls to 

prevent hazards and disasters on a large scale. The adoption of Bt cotton in Xinjiang is still very 

limited because of its later introduction and fewer available Bt cotton varieties compared to other 

regions. Bt cotton has been commercialized in Xinjiang in 1999; the adoption grew extremely 

slowly to 13% in 2008 (Wang et al., 2015, Pray, 2002). Therefore, we could expect that the 

spatial pattern is unlikely to alter with the emerging genetically modified technology. As present 

in Figure 7, the yield of Xinjiang Province grew continuously and smoothly and there was no 

sudden increase over the past three decades. The Global Moran’s 𝐼  of cotton yield in Xinjiang 

appears to be stationary (see Figure 8). There is no clear decrease in Global Moran’s I after 1999 

as expected. There are 19 years in which Moran’s 𝐼 is not significant. Eight of these years 

happened before the introduction of Bt cotton. The results of Moran’s 𝐼 echoes to the facts that 

cotton yields in Xinjiang Province are independent to each other due to the isolation formed by 

deserts. 
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Figure 7. Historical County-Average Cotton Yield of Xinjiang Province 
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Figure 8. Global Moran’s 𝐼 for Xinjiang Province 

 

Bt cotton was quickly diffused into the US cotton industry since it was first marketed in 

1996. Producers in the southeast region adopted the new insecticidal cottons most rapidly to 

reduce the threat caused by the proliferation of a type of insecticide-resistant tobacco budworm. 

According to Layton et al. (1997), 42% of Mississippi’s cotton crop was planted Bt varieties in 

1996, the first year of commercialization. Nationwide, Bt cotton acreage expanded from 15% of 

U.S. cotton acreage in 1997 to 37% in 2001. Currently, 85% of U.S. cotton acres are planted 

with genetically engineered, insect-resistant seeds. Figure 9 presents the cotton yield of the three 

states. The average yield of the three states shows a similar pattern as those in Yellow River 

Valley. After the introduction of Bt cotton, the yield significantly rises. However, we must be 

very careful interpreting the results for U.S. cotton because approximately 60% of the overall 
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sample is missing data (See Figure 10). The three states of Mississippi, Alabama, and Georgia 

have relatively fewer missing values than the neighboring states. A large number of the missing 

values are highly likely to be unreported records rather no cotton production. The simulation 

results in Chapter 4 shows that Global Moran’s I is likely to be distorted if the percentage of 

missing values is over 20%. Due to this significant drawback, we only view the case of these 

three cotton production states of the U.S. as a supplemental reference, rather than as concrete 

empirical evidence. Figure 11 presents Global Moran’s 𝐼  of cotton yield for the three states as a 

whole area.  Similarly to the story of three Chinese provinces, Global Moran’s 𝐼 significantly 

decreased with the increase in the adoption rate of Bt cotton. Before the year of 2000, the values 

of Moran’s 𝐼 were stable at around 0.5. After that, a downward trend can be seen. 

 

Figure 9. Historical County-Average Cotton Yield of Three States 
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Figure 10. The Percent of Missing Values in the Three Southeastern U.S. States 

  

Figure 11. Global Moran’s I of Cotton Yield for the Three Southeastern U.S. States 
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CHAPTER 6 

APPLICATIONS 

 

6.1 PRECISION AGRICULTURE 

Traditional methods of crop production unavoidably lead to over- and under-applications of 

herbicides, pesticides, irrigation, and fertilizers. Precision agriculture (PA) is an approach to farm 

management that uses multiple technologies to realize optimal use of inputs with minimum 

inputs and achieve maximum productivity and healthy environment. It was born with the wide 

use of GPS in the early 1990s. To date, it has developed a system approach including using 

sensors to obtain real-time data of the crops, soil and ambient air, weather conditions, along with 

other relevant information such as the use of fertilizers and pesticides, labor costs and build 

predictive model.  

Site-specific yield monitor data are expected to preform spatial structure, which violates 

the assumption of classic linear regression model. Therefore, successful application of precision 

agriculture depends on the understanding of spatial variability of crop yield and the other spatial 

variables (Pierce and Nowak, 1999). Anselin (2013) suggest two spatial process models: the 

spatial error model (Equation 2.2) and the spatial lag model (Equation 2.3). Crop yield response 

models assume crop yield follow the spatial error process. 

                                             𝑌 = 𝑋𝛽 + 𝜀, 𝜀~𝑁(0,𝜎!V)                                                     (6.1) 



 

 39 

where 𝑌 represents crop yield, 𝑋 can be a vector of inputs of interest and the error term is follow 

a spatial pattern characterized by 𝜎!𝑉.  

When observations are available across space as well as over time, the additional 

dimension allows the estimation of the full covariance of one type of association, using the other 

dimension to provide the asymptotics (Anselin, 2013). However, this study suggests it is possible 

that 𝑉 is a function of time as follows rather than simply invariant over time. 

                                     𝜀!~𝑁 0,𝜎!V!                      (6.2) 

or 

                                             𝜀!~𝑁 0,𝜎!!V                                     (6.3) 

 Before using temporal data to estimate a spatial covariance matrix, it is necessary to 

examine the spatial diagnostic statistics over time and make sure the spatial autocorrelation 

pattern is stable. 

6.2 REDUCING CROP INSURANCE PRICE 

Accurate modeling of crop yield is critical for the proper design of crop insurance contracts and 

the maintenance of profitable insurance programs. The spatial autocorrelation of crop yield or 

crop loss is considered as systemic risk, which is related to contract designing, premium setting 

and reinsurance strategies. As far as our best knowledge, there are few studies that discuss that 

technology change affects crop insurance premium through reducing spatial autocorrelation of 

yield. 

Ideally, an insurable loss is independent among the insured units, and thus the insured units 

do not suffer loss at the same time. Auto insurance and home insurance typically covers this type 

of loss. As for crop insurance, if yield losses within a region, say a state or a province, are highly 
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correlated with each other, it is highly likely that a large number of counties suffer losses in a 

year. As a result, insurance companies are not able to sufficiently diversify its risk by increasing 

the unit of insurance, i.e. selling more contracts in this region. This means insurance companies 

may face a huge amount of claims at once. In order to cope with catastrophic risk, insurance 

companies have to reserve a high portion of the collected premium or pay a high price to reinsure 

the risk. The associated cost is called a catastrophic risk loading, and is paid by farmers or the 

public in terms of premium subsidy or catastrophic plan. In a word, less spatial autocorrelation 

means lower premium.  

The spatial autocorrelation effect on an insurance premium can be understood by 

examining insurer’s risk exposure or actual payouts. Take as an example the three Yellow River 

provinces in this study. An insurance company insures the cotton yield of all the counties within 

these provinces at an actuarially fair price, meaning a price does not take into account 

administrative cost and profit. Assuming the insurance premium is set as a province-average 

yield, that is 100 for the standardized yield and 80% coverage level, we calculate its potential 

payout (known as indemnity) each year as: 

𝐼𝑛𝑑𝑒𝑚𝑛𝑖𝑡𝑦 𝑡 = (𝑆𝑇_𝑦𝑖𝑒𝑙𝑑 𝑠, 𝑡 −!
!!! 100 ∗ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒) ∗ 𝐼𝑛𝑑(𝑆𝑇!"#$% !,!   < 100 ∗

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒)                                                                                                                              (6.2) 

where 𝐼𝑛𝑑𝑒𝑚𝑛𝑖𝑡𝑦(𝑡)  represents the indemnity occurring at year 𝑡 , 𝑆𝑇_𝑦𝑖𝑒𝑙𝑑 𝑠, 𝑡  is the 

standardized yield value of county 𝑠 in year 𝑡, 𝑁 is the total number of counties, 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 

represents coverage level, and   𝐼𝑛𝑑(𝑆𝑇!"#$% !,! < 100 ∗ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒  𝑙𝑒𝑣𝑒𝑙)  is the indicator 

function equal to 1 if standardized yield is less than the average standardized yield times 

coverage level. Here we set coverage level at 80%. 
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Figure 11 depicts the insurance payouts for the three provinces. To take into account the 

change in the number of counties planted in cotton, the payouts were divided by the number of 

non-missing observations. This value can be roughly interpreted as the actuarially fair premium 

under this simplified framework. A salient decrease can be observed after 1996, the year Bt 

cotton was commercially available. The decreased average payouts or premium implies that the 

yield variability at the county level is small and a fewer number of counties have cotton yields 

less than the insured coverage. The change in average insurance payouts before and after 1996, 

the year of approval Bt cotton, was assessed by analysis of variance (ANOVA). Table 5 reports 

the results of the ANOVA for the payouts on the adoption of Bt cotton. A significant difference 

(P<0.001) of average insurance payouts can be seen before and after the approval of Bt cotton. 

The result shows that the negative variation (less than the county-average) of crop yield among 

counties significantly decreased after the year of 1996. In another word, as expected, the 

resulting average insurance payouts decreased significantly.  
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Figure 12. Average Insurance Payouts for the Three Yellow River Provinces 
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Table 5. ANOVA Results on the Adoption of Bt Cotton  

 
 DF Sum Square Mean Square F-value Pr(>F) 

Henan 
Adopt Bt cotton 1 170.1 170.11 22.66 0.000*** 

Residuals 34 255.2 7.51 

 

 

Hebei 
Adopt Bt cotton 1 133.7 133.66 20.52 0.000*** 

Residuals 34 221.5 6.52 

 

 

Shandong 
Adopt Bt cotton 1 51.23 51.23 46.44 0.000*** 

Residuals 34 37.51 1.1   

Significant at * p < 0.05, ** p < 0.01, *** p < 0.000 
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CHAPTER 7 

CONCLUSION AND DISCUSSION 

The implication of our analysis is twofold. First, this work provides a cautionary note on 

modeling crop yield based on the assumption of stable spatial autocorrelation. It is widely agreed 

that there is a spatial structure to crop yield distributions and considering the spatial structure 

may provide more accurate inference and prediction. To model the spatial structure of crop yield 

with spatial-temporal data, it is often assumed that the spatial autocorrelation of the crop yield is 

spatially invariant. However, the finding of this study suggests that spatial autocorrelation might 

not always be stable over a long period of time. In particular, the spatial autocorrelation may 

change with the introduction of significant advancements in agricultural technology such as 

genetically modified seeds. Therefore, it is necessary to be watchful of the varying spatial 

autocorrelation patterns within the sample period. This thesis proposes as the use of Moran’s 𝐼 to 

check whether there is salient change in the pattern of spatial autocorrelation of crop yield within 

the sample period.  

Adding to the large body of literature on the impacts of the diffusion of Bt cotton, this 

thesis points out an unexplored potential impact, which is that the adoption of Bt cotton is likely 

to reduce the spatial autocorrelation of cotton yield within an area. In combination with other 

literature on the effects of Bt cotton on reducing the agricultural intensification and increasing 

biodiversity, we might expect the diffusion of Bt cotton to tend to increase resistance of cotton to 

adverse natural shocks and geographic conditions. 
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